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THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED
ZECKENDORF REPRESENTATIONS*

Michael Drmota and Johannes Gajdosik
Department of Discrete Mathematics, Technical University of Vienna
Wiedner HaupstrafB3e 8-10, A-1040, Vienna
(Submitted June 1996)

1. INTRODUCTION

Let G =(G,) be a strictly increasing sequence of positive integers with G; =1. Then every

nonnegative integer n has a digital expansion
n= Z &G,
i21

with respect to basis G, where the digits &, = €,(n) 20 are integers. This digital expansion is
unique, when one assumes that the digits ¢; are chosen in such a way that the digital sum .., ¢,
is as small as possible; in this case, we will call the digital expansion a proper digital expansion.
It is easy to see that the following algorithm provides this expansion.

1. Forn=0, we have ¢;(n) =0 for every i > 1.
2. If G;<n<Gy, and n' =n—G; has the proper expansion n’ = 2.5, £/G;, then the expan-
sionof n=2,,¢G, isgivenby ¢, =¢] fori# jand by &; =& +1.

The most prominent digital expansions are related to linear recurring sequences G =(G,), e.g.,
the binary (resp. the g-ary) expansion relies on G, = 2"! (resp. on G, = ¢""). If G, are the Fibo-
nacci numbers, i.e., G, = F,,,, then we obtain the Zeckendorf expansion.

For each digital expansion with respect to a basis G, we can define a partial order in a quite
natural way. We will say a <; b if and only if &,(a) < ¢,(b) for every i >1. It is well known that
for every partial order there is a Mobius function (see [10], [13]). Let s;(n) denote the sum of
digits of n. Then it will turn out that the Mobius function u; of a digital expansion to a basis G is
given by u;(n) = (1) if max;, &,(n) < 1 and by ug(n) =0 otherwise.

If G is a proper linear recurring sequence and if the initial conditions of G are properly chosen
(see Section 3), then

N-1
® Mg(N) = Z,UG(")
n=0
is either bounded or

N-1
Mg(N)=S5(N):= 3 (=),

n=0

which we will see from calculating the Mobius function in Section 2. (We always define empty
sums to be zero, i.e., M;(N)=S85(N):=0for N<0.)

* This work was supported by the Austrian Science Foundation, grant P10187-PHY. This paper, presented at the
Seventh International Research Conference held in Graz, Austria, in July 1996, was scheduled to appear in the
Conference Proceedings. However, due to limitations placed by the publisher on the number of pages allowed for
the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly to assure its presentation to
the widest possible number of readers in the mathematics community.
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THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

In Section 3 we will formulate conditions for G, under which we will be able to derive for-
mulas for S;(N). We will also obtain a recursive formula for the generating function of S;(G,),
which we will analyze in Section 4 in order to obtain asymptotic information about S;(N).

Our main interest lies in the distribution of the S;(N) (resp. M;(N)) when 0< N <m for
large m. This means that we count the number of times S;(N) takes a certain value k£ when
OSN<m:letd,(k):= | {0< N <m: S5(N) = k}| be this number and let X,, be a random variable
with probability distribution P(X,, = k) =d, (k) /m. Then we are interested in the asymptotic dis-
tribution of X,, for m— . Depending on the nature of the recurrence relation for G, we will
observe significantly different behavior of X,,. First, we distinguish two cases:

1. either S;(G,) is bounded for all initial conditions of G (Section 4.1), or
2. there are initial conditions of G such that S;(G,) is unbounded (Section 4.2).

Since we can establish a linear recurrence relation for the S;(G,), the first case is equivalent
to the assumption that the characteristic polynomial of this recursion is a product of some 2~
(r—v20) and certain different cyclotomic polynomials. In this case, we can derive asymptotic
formulas for EX,, and VX, , provided that the sequence G satisfies a certain technical condition.
Our main result (Theorem 2) says that, in the case of unbounded variance, X,, satisfies a central
limit theorem. (Note that there are sequences G for which V.X,, is bounded, e.g., G, =2"")

2. THE MOBIUS FUNCTION OF A DIGITAL EXPANSION

Let G =(G,) be a strictly increasing sequence of integers with G; =1. As mentioned above,
every nonnegative integer » has a digital expansion n = 3., &,G; with nonnegative integral digits
g;. It is called proper digital expansion for n if the digital sum 3, &, is as small as possible.

Lemma 1: Let n=7%,,,¢G, be a proper digital expansion for n. Then any sum of the form
Y.>1 €/G; with integral digits &/, i > 1, satisfying 0< ¢/ < &, is a proper digital representation for
some n' <n.

Proof: First, note that it follows from the algorithm stated in the Introduction that any digital
expansion of the form n; = ¥/, &G; <n is a proper one.

Next, we will use induction on the digital sum s’ =%, &/, where 0<¢/<¢g,;. Obviously,
there is nothing to show if s’ = 0.

Now suppose that n' = %5, £/G; has digital sum s'. There exists j >1 such that &} >0 and
g =0 fori>j. Then G;<m <n;<G,,. Therefore, n"=n'—G; can be represented by n" =
YL, &/G, with g7=¢g,~1 and &/'=¢] for i#j. Since 0<¢'<¢; and its digital sum satisfies
Y.s16'=5"—1<s, this expansion for n” is proper. Consequently, 2.5, £/G, is a proper expan-
sion for n'. O

Now we introduce the Mébius functions x(x, y) of a locally finite partial order < on a set X,
i.e., all intervals [x, y]={u € X : x <u <y} are finite (see [10], [13]). Any function f:X%—>C
that satisfies f(x, y) =0 for x £ y will be called an arithmetical function. The convolution f g
of two arithmetical functions f, g is given by

(f*x, =2, fxuwg,y).

x<u<ly

4 [FEB.



THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

Obviously &, defined by 6(x, y) =1 for x =y and d(x, y) = 0 otherwise, is the unit element of *.
Furthermore, if f(x,x)#0 for every x € X, then there always exists an inverse arithmetical
function f~! satisfying /' f =&. The Mobius function  is defined as the inverse function of
¢ given by {(x, y)=1if x<y and by {(x, y)=0 otherwise. Especially, if g=¢* f, then f can
be recovered by f = uxg. (We intend to use this Mobius function in future work for sieve
methods in connection with specific problems of digital expansions.)

Theorem 1: Let <; be the partial order on the nonnegative integers induced by the digital expan-
sion with respect to a strictly increasing sequence of integers G = (G,) and suppose m= 2, &/ G,
and n= 2., &G, are proper digital expansions of nonnegative integers m, n with m<; n, i.e,
g <¢g foralli. Then

.11 0 if there is an 7 with £/'— ¢/ > 1,
ﬂ ) = "_ ot .
(D= otherwise.

Proof: Since there is a natural bijection between [m, n]={d eNy|m <; d <5 n} and [0, n—m],
we have p(m,n)= p(0,n—m) if m<; n. (For m<£; n, we have u(m,n)=0.)

Therefore, we will calculate only p(0,7). From the definition of u(x, y), it is clear that
;U(O, 0)=1 and that

Z p#(0,d)=0 forn>0.
0<gd<gn

Assume for a moment that &/<1 for all i. We show that 1(0, ¥*23G, )= (-1)* by induction on
the digital sum s = k. Clearly, for s=0, we have 1(0,0)=1=(-1)°. Now assume that s>1 and
that £4(0, 423G, ) = (-1)* for all k <. Then

0= > w04

0<5d<gZ54 G,

= (u(0,0)) +((0, G;) + 1(0, G, + -+ (0, G, ,))
+(u(0, G, +G,) +p(0,G;, +G,) + - +pu(0,G;_, +G; )+ -+ (p(o, SZ—I G,.jD

j=0
= 1+(~1‘)(~-1)l +(§)(—1)2 4o +(sf 1)(—1)S'l + /1[0, gGJ

Because of X%_o(})(-1)/ =0, it follows that x(0, £j2G,) = (-1)°, which proves the theorem in
this special case.

Now suppose that kG, with i >1 and & >1 is a proper digital expansion. Then 0= x(0, 0) +
4(0,G;)+---+u(0, kG;). Notice that 1(0,0)+u(0,G)=0. Hence, it follows that 1(0,2G,) =
#(0,3G;) =+ = u(0, kG;) = 0.

Next, we show by induction on the digital sum s(n) = 2,5, &’ that 1(0,n) = 0 whenever there
is an i with &/'>1. We must start with s(n) = 2 because &> 1 cannot be satisfied when s(n) <2.
Suppose that s(n) =2 and that there is some i with &'>1. Then m=2G; and x(0,m)=0. Now
assume the assertion holds for all natural numbers / with s(/) < s(») and assume there is a j with
€7>1. Then

1998] 5
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—uO,n)= 3 p0d)= ) w(0,d)+ ) #(0,4)

0<gd<gn 0<gd<gn, Vi:g;(d)<1 02gd<gn,Ji:g;(d)>1

= Y uoad)

0<gd <gn, Vi:g;(d)<1

Define r := %,;,; min( ], 1)G;. Because of the existence of j with £7 > 1, we have 0 < <n and

Y wOd= Y u0d).

0<gd<gn, Vi:g;(d)<1 0<gd<gn

The right-hand side is, of course, zero, due to (2), which completes our proof. O

Since pg(m,n) = u;(0,n—m) (if m<; n), it is sufficient to consider the restricted Mobius
function u;(n) = us(0,n). As mentioned above, the main topic of this paper is to discuss the
partial sums

N-1
Mg(N) = Zﬂa(n) .
n=0

Nevertheless, we will rather discuss the partial sums S;(N), see (1), which will be motivated by
the following proposition.

Proposition 1: Suppose that G, >2G,_, for all n>1. Then Mj;(N) is bounded by 1. On the
other hand, if G, <2G,_, for all n>1, then
N-1

Mg(N) = Sg(N) = D (=1)%,

n=0

where s;(n) denotes the digital sum s;(n) = 2,5, & of the proper digital representation

n=>y gG,.
i1

Proof: Due to Theorem 1, only those n» with expansion coefficients 0 or 1 enter the sum. If
G, 22G,_, for all n>1, then all the digital expansions 2., &,G; with & €{0, 1} are proper ones.
Hence, M;(N) attains only the same values as in the binary case in which the corresponding sum
is 0 or 1.

If G, £2G,_, for all n>1, then in all the proper digital expansions only the digits 0 and 1 can
occur, and the assertion follows from Theorem 1 with m=0. O

Remark 1: We will see later that for all G considered here, (a, +1)G,_, > G, > a,G,_; holds for
n > r; therefore, G, <2G,_, for all n>1 is equivalent to ¢, =2 and r =1 or a, =1 when the initial
conditions of G are properly chosen. Butif @, >2 or a; =2 and r > 1, and if G, >2G,_, holds for
the initial values, then Proposition 1 applies and M;(N) is bounded. Because of this, we will
investigate the function S;(N) rather than M;(N), keeping in mind that, in most cases, when
M(N) is of interest, both are the same.

Remark 2: 1f G, =2"", then 1, = (1) is the Thue-Morse sequence [11]. Since 1,, +1;,,; =0,
we have S;(2n+1)=1,,=1,, and we also have S;(2n)=0. Thus, it is not really interesting to
study S;(NV) in this case.

6 [FEB.
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3. DIGITAL EXPANSIONS AND GENERATING FUNCTIONS

From this point on we will consider only integral linear recurring sequences G = (G,),»; that

satisfy assumptions 1-5 below (in Section 4.1 we will also need assumption 6):
G=land G, >G, forn=1.
G,=>_a for n > r with some integers a, > 0.

i=] a; n—1

G satisfies no linear recursion with constant integer coefficients with a smaller degree.
The characteristic polynomial z” —>_ a2 =[1/_;(z— @,) (of the above recursion) has only
one real, positive, and simple root «, of maximal modulus.

6. Let b =(a, mod2)(-1)@" "% (g, mod 2 =0 if g, is even and g, mod 2 = 1 otherwise). Then

Zr__i r— 1: r VH(I)kh(Z) - (1)
i=1 :

1
2
3. G, ;2% ;4aG,  forn>rand1<j<r,
4
5

is a product of 277V (r—v>0) and different cyclotomic polynomials ®y,(z) (k; <k, <--:

< k), all of them dividing z” — 1 with some fixed p >r. Furthermore, none of the &; and no

quotient @,/ a; (i # j) is a p root of unity.
Assumptions 1, 2, and 4 are natural. Therefore, only conditions 3, 5, and 6 need to be motivated.

Assumption 3 is necessary to show that S(G,) satisfies a linear recurrence; especially, it im-
plies (6) in Proposition 2.

From assumption 5, we obtain G, = Ba™! + O((ar;y)") with some >0 and 0< y <1. Note
that assumptions 2 and 3 imply (a, +1)G,_, 2 G, 2 a,G,_, for n > r, which gives ¢, <a; <a, +1.
Similarly, we get a, > g, for all i.

The first part of assumption 6 (concerning the cyclotomic factors) ensures that S(G,) is
bounded. The assumption that «; and «,/c; are not pt roots of unity is frequently used in
problems concerning digital expansions with respect to linear recurring sequences and avoids
technical difficulties (see Lemma 2).

Usually, assumptions 3 and 5 are replaced by the stronger condition @, 2a, 2--->a, and
certain assumptions on the initial values of G (see, e.g., [8]; in this case, the second part of
assumption 6 is also satisfied). However, there are other interesting examples, e.g., g, =a, =1,
a, =--=a,_, = 0, that satisfy the above assumptions and are not of the form a, 2a, >--->aq,.

From here on, let G=(G,) be a fixed linear recurring sequence with assumptions 1-5. For
notational convenience, we will omit the index G in the sequel.

Proposition 2: Let b, = (a, mod 2)(-1)@" " *%1 (g, mod2 =0 if a, is even and g, mod 2 =1 other-
wise). Then S(G,) = §;5(G,) satisfies the linear recurrence

S(G,)=Y.bS(@G,.) forn>r. Q)
i=1
Furthermore, if » has the proper digital expansion n = Z 1€,G,, then
! !
S(Z ej-Gf] =3 (6, mod 2)- 1) 5(G). @)
j=1 j=t

1998] 7



THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

Proof: We will first establish a set identity that holds for all nonnegative integers &, regard-
less of whether /_ -1€,G; is a proper digital expansion or not:

{ O<a<z } U{ iehGhSa<ZI:g,,Gh}

h=j+1 h=j

1 i 1&g
U1 X &G +a|0sa<s,Gi=U U | 266G, +alic, <a<i+nG,) @
Jj=1 |h=j+1 J=1i=0 |h=j+1
1 &1 1
= > &G, |+iG,+a|0<a <Gy,
J=1 i=0 h=j+1

where each union is disjoint. (Again, empty sums are set at zero.)
Now set /=n-1, ¢;=a, ; for n—r<j<n and ¢; =0 otherwise. Then one obtains for
n > r, after interchanging i and j and shifting i >n—i, h—>n-h,

roa-1 i—1
{ 0<ax< Z n—er}:U U{(ZahGn_h)+]G +a
i=1 j=0

i=n-r
From this we see that, forn>r,

S(Gy) = z< =3 35 CyeRaoo.m

i=l j=0 a=0

a;-1 i r ) a;—1
Z z (~ )i antj+s(@) = (- i) SG) Y (-1
j=0 i=1 Jj=0

a=0

O<a< G,,_,} (5)

1l
W Mx

> (@, mod 2(-)THWS(G,.,) = Y BS(G,)

I
1P~

with b, := (a; mod 2)(-1)®* *%-1. Note that assumption 3 from above ensures that
i-1 -1
s(z a,G,_n+ jG,_; +a) = Zah +j+s(a). (6)
h= =1
You only have to start with m= ¥/ a,G,_, + jG,_, +a and apply the algorithms stated in the
Introduction to deduce that ¢,_,(m)=a,, 1<h<i and ¢,_,(m)=j. (Of course, this procedure is
standard in the study of such digital sequences (cf. [8], [9]). This proves equation (2).
The proof of (3) is quite similar. If we set le=1 €,G; =m+¢,G, in (4), we get
S,—l

{al0<a<m+eG}=|J{iG +al0<a<G}u{eG +al0<a<m}.
i=0

Let £,G,+m= Z -1£,G; be a proper digital expansion. Then it follows that

S(&,G,+m) = s;Girn(— l)s(a) _ 2‘1 GZ 1( 1)s(le+a) + Z (- l)s(s,G,+a)
- e ™
= Z(—l)l Z( I)S(a) +(=D* Z( l)s(a) = (¢, mod Z)S(Gl)+( 1) S(m).
=0 a=0

8 [FEB.



THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

Iterated use of equation (7) gives (3). O

Corollary: Let d, (k) :=|{0<a <m|S(a) =k}| and D,(z) the corresponding generating function

D,(2)= Y d, (k) —ZzS@) ®)

keZ

Then Dy, (z) (and Dg,(z71)) satisfy, for n > r, the relation .

L e ~1)&* " %-1( { mo ) apt gyt
De(2) = Z ZZ(Z"J‘ BpS(Gpp PH(=D)%* %1 (fmod 2)S(G, ;) DG,,_,. (z('l) g ) ©)
=1 j=0
Proof: Suppose n>r. An iterated use of (7) gives, for 1<i<r, j < a,and m<G,_,,
SaG,_+-+a_G, .+ G, +m)
= (a; mod 2)8(G,_,) + (-1)"(a, mod 2)S(G,_,) + -
+(=D* 2 (g mod 2)8(G, ) + (D1 (jmod 2)S(G, ;)

+ (_ 1)a1+ +a,_|+j S(m)

i1
= 2 BS(G,op) + ()™ 41 (jmod 2)8(G,) + (- )M+ S ().
h=1

Note that, for i = 1, we just obtain S(jG,_; +m) = (jmod 2)S(G,_,) +(—1)/ S(m). Hence, by using
(5) and (8), we get
r. a- -1 G —1

DG (Z) ZZS(M) = z Z ZZS(a, 1t 401Gy + Gy tm)

i=l j=0 m=0

=
Zr: iz(zz;‘l BpS(Gp Y H(=D)H* 7 %1 (j mod 2)S(G,r-1) ni',_ ZCDATTTA S (m)

1 /=0 m=0
a

it b,,S(G,,_,,)+(~1)”‘+"'+"'"(ijdZ)S(Gn-i)) DG (z(—l)"‘*"““"-l”) 0
n—i :

4. ASYMPTOTIC ANALYSIS

We distinguish two cases: either S(G,) is bounded for all suitable initial conditions of G or it
is not. The first case will be of special interest. It turns out that in this case the distribution of the
values of S(N) approximates a normal distribution for all suitable initial conditions of G (see
Theorem 2).

4.1 Bounded S(G,)

Proposition 3: Suppose that S(G,) is bounded. Then S(G,) satisfies a linear recursion for n > N
with some N, whose characteristic polynomial is a product of different cyclotomic polynomials.

Remark: This motivates the first part of assumption 6 in Section 3.

Proof: We know that every S(m) is an integer and, therefore, can only attain a finite number
of distinct values. So we see from (2) that S(G,) must be periodic (in n) forn > N. Let p > r be

1998] 9



THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

some period of $(G,) and assume n> N. Then S(G,,,) - S(G,) =0, which implies that S(G,) is
a linear combination of powers of pt roots of unity. Let m(z) be the product of all cyclotomic
polynomials corresponding to those roots of unity which appear in the representation of S(G,).
Then S(G,) satisfies the linear recurrence related to m(z). O

Proposition 4: Suppose that S(G,) is bounded. Then Dg,(z) (defined in (8)) and Dg,(z™")
satisfy, for » > N, a homogeneous linear recurrence with (in ) constant coefficients a,(z) that are
analytic around z =1 and satisfy a,(z) = g,(z7}).

Proof: Let p>r be a period of S(G,). Then, by splitting (9) into four parts, we get

k-1

Do = Y 7.@D5 @+ X C@D;

i=max(0 k-—r) i-k+p - x+(.v—l)p(z)
o o 10
k-1 p-1 ( )
t Y ep@Dg, D+ Y L p@Dg,,, @),
i=max(0,k—r) i=k+p-r
with

(At bymg_p= (@ + -+ +a5_;_ mod 2)m;)

V(@) =hy iz

(ZZ;"_' bymy_p+(ay+ - +a_;_y mod 2)"'")

7k,p+i(z) = h_k—iz

Cri@) =My piz

(ZZ:.” by _g=(ay+ -+ pogy mod 2)”'[)

- SEpitly e (ad e ta,, o mod 2)m,
Ck,p+i(z) :hk+p-—iz( h=1 M= (@ + -+, ;MO )m’)’

where m; := S(G,), 0<k <pand 0<i< p and
{0<j<a|j=a,++a_,(2)} forl<i<r,
1o otherwise,

~ JH0<j<alj=ay+---+a_+1(2)}| forl<i<r,
"o otherwise.

In the case 1 <i <r, we can calculate
a,+1 1 fora =a +--+a,_,(2)=1(2),
h= [TJ - {O otherwise,
h+ E =a, 1
h-FK=b,

Furthermore, we define 7,4 ,i (@) =72, 7pitiCD =7V i@, Eprte i@ =E0i(2),
gﬁk,i(z—l) = gk,p.“-(Z), and

d (Z) = (dl’S(z)) (DGO"’P (Z), DGINP (z)’ T DGp—l+sp (Z))T

s dz,s(z) (DGo+;p(z_l)’ DGH,,,(Z_I)’ o DG (Z‘l))T >

p-l+sp
10 [FEB.



THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

()= N.@ L,@)_ T ki@ost,icy Tk, pri(@osii<p
1) T5@)) (O pii@oshicy O paie, pri@Dosti<p )

Z(z) = (Zl,l(z) Z1,2(Z)) _ (4 k,i(z))osk,i<p (4 k, p+i(z))05k,i<p
Z2,1(z) Z2,2(z) (§p+k,i(z))05k,i<p (§p+k,p+i (z))OSk,Kp '

Then the identities d, ((2) =d, ((z7"), T, ,(2) =T},(z"), I;,(2) =T, ,(z), Z,,(2) =Z,,(z7"),
and Z, ,(z) =Z, ,(z™") hold and (10) becomes

d,(2) =I'(2)d,(2) +Z (2) d,_,(2),

or, formally,

d,(2) = ((I-T(@)"'Z(2)d,,(2).
Since the quadratic matrix I'(1) consists of four quadratic p x p-blocks that are lower triangle
matrices with zero diagonal, it is an easy exercise to show that I-I'(1) is invertible. Hence,
(I-T'(2)) is invertible in a neighborhood of z =1.
Call P,y(/) := det(/I-©(z)) the characteristic polynomial of the matrix

0(2):=(1-T(2)'Z(2).

Then, by the theorem of Cayley-Hamilton, P;,(®(z)) =0. From this, we see that the sequence
(Dg,,,(2))s20 satisfies a linear homogeneous recursion.

Finally, it follows from the definition of I"and Z that P,(/) =F,..,(/), from which we see
that a,(z) = a,(z7!). O

Let 4(z), 1<i<2p, denote the roots of the polynomial P, (/), where z varies in a suffi-
ciently small neighborhood of z = 1. Since a,(z7!) = g,(z), they satisfy A4(z™') = A(z). Further-
more, there exist functions B, ;(z, s) that are polynomials in s such that

D, (@) =2 B, i(z5)4(z)". (12)

Since Dg,,,,(1) = Gy ~ Biet~(af)’, it might be expected that (locally around z =1) there exists
a unique root A4 (z) (satisfying 4,(1) = af) of maximal modulus which is simple. The following
lemma shows that this is true if assumption 6 in Section 3 holds.

Lemma 2: Suppose that assumptions 1-6 in Section 3 hold and let v:= max{1<i<r|b #0}.
Then, with the above notation, the 2p roots of P;y(/) are af, 1<i <r, where a;, 1<i<r, denote
the roots of 2" =3, a jz"f , 0 with multiplicity 2p —r —v, and 1 with multiplicity v.

Proof: From Dg,,,(1) = Gy, = %, Bi(k +sp)af 7" ~ Biaf M (af)’, we see that a? surely
are roots of Py (/).

Since I-T(1) is invertible, the multiplicity of O is 2p minus the rank of Z(1). Z(1) has a
simple block structure. It is an easy exercise to show that its rank equals » + v. (Recall that / +
h,=a,and h—h,=b,.)

Similarly, the multiplicity of 1 is 2p minus the rank of
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THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

K=K K =1-T(1)-Z().
KI,Z Kl,l

‘rk K, K, - K, +K,; 0
K., K, K, K, -K,

and that K, +K;, (resp. K;,-K,,) are cyclic matrices with entries 1, -a;,...,~a,,0,...,0
(resp. 1, =b,,...,—b,,0,...,0). By [3, Lemma 3], the rank of K,;+K,, is p (resp. the rank of
K, - Kl , is p—V), v being equal to the number of different p™ roots of unity that are roots of

= lbjz"f Thus, rk K =2p—v, which completes the proof of the lemma. 0

Let us define discrete random variables X, by

Observe that

z' -

d (k)

P(X,=k)= (13)

(Recall that d,(k) :=|{0<a<m|S(a)=k}|.) Itis well known that one can calculate mean and
variance using the generating function:

—Ex =Llpy

=EX,,=-D;(1),

2 _yx = L(pr M =L D (12
o2 =VX, = m(Dm(l) + Dy ()=~ Di (1) )

From here on, we will assume 1-6 in Section 3.

Lemma 3: Let 4(z) be the unique root of maximal modulus of P;y(z). Then we have A/(1) 20,

A1
ﬂGka = EXG"*W = 0(1) and o-ékﬂp .= VXGkﬂp Al(())+0(l)

as s — oo. Furthermore, if 4/"(1) # 0, then

e 7
E Cxp(lt———g;:;:‘—‘ = exp(—?)(l + O(JE))
2

as s — . This means that X, is asymptotically Gaussian with mean x4 and variance og_ .

Proof: Let A(z) = A (z) and B,(z) = B, (z, s) in (12) (where the s-degree of the polynomial
B, 1(z, 5) is zero). Since 4'(1) =0, we obtain from (12) by differentiation,

Dg,,, (M =B, (AW +0((4Wy)"),

Dy, (0=B,0AD ZD 4 o(Cay,

B.()
Désk+,,(l>=Bk(l)A(1>~‘( s ?EB}O((A(W)S),

with some 0 <y <1 properly chosen. From DG/mp (D) = Gy, We get

12 [FEB.
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Dg,, ()= Gy, %i%%(l +0@G)),

g, W= Gk+s,,( ’ﬂ'((ll)) ng)(lw( ).

Both D, (1) and Dg,, (1) are real, and because of B, (1) = Bt eR*, Bi(1) is real. Further-
more, A"(l) and BY(1) are real, too. From this, we obtain that

how = PR (140G = 00)

A"() . B _( Bi() oy = AT
VX6, = ( A0 +B(l) (BZ(I)J ](1+0(y ) = 8= A0 +0(1),

from which it is clear that 4”(1) >0. Using A'(1) = A"'(1) =0, we get

A(e') = A1) ex (s; ‘i((ll))J(HO(st“))

Now suppose A”(1) > 0, then we have

DGk”P(e"”"Gxﬂp):Gkﬂp exp( J(1+0(\/-)+0( : 1))

where the O-constants are independent of £. For any fixed 7, we get

X _ D eit/D'Gkﬂp
Eexp (it St ﬂG"“”]= G"””( ) exp —it—#G"””

O—Gk +sp Gk"'sp O-GIH'JP

o £)ofd)

Thus, by Levi's theorem (see [7]), the normalized random variables (X, — ug,)/ oG, converge
weakly to normal distribution.

Remark: The use of generating functions for the proof of asymptotic normality probably started
with Bender's paper [2]. Further references can be found in [5].

Now we will turn our attention to X,,, where m need not be an element of the basis G.

Theorem 2: Suppose that G = (G,) satisfies a linear recursion with restrictions 1-6 of Section 3.
Then, with the above notation, we have

I An(])
EX,=0(1) and VX, =——"~
M p AQ)

X,, being defined as in (13) and / being the length of the digital expansion of m. If A”(1)>0,
then X, is asymptotically Gaussian with mean value EX,, and variance V.X,, ~clogm for some
constant ¢ >0, i.e,,

lim ——‘{N<m S(N)<EX, +x,/VX, }{ ﬁfjwe"z’zdt.

1998] 13
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THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS

Remark: The special case of G, = F,,; (which leads to the original Zeckendorf representation)
was discussed in [4]. There are also recent contributions to similar questions, e.g., Dumont and
Thomas [6] prove asymptotic normality for substitution sequences by a different method, and
Barat and Grabner [1] show the existence of a limiting distribution of G-additive functions.

Proof: Let m=Y._, &G, be the digital expansion of m. Tterated use of equation (7) yields,
forl<j<l,i<ég;anda<G,,

1 -1
S( ZahGh +iG, +a) = (g, mod 2)S(G) +(—1)€'S[ Z &,0y +iG; +a)

h=j+1 h=j+1
= (£,m0d 2)S(G) +(=1)* (§;.y m0d 2)S(Gy_)) + -+ + (D)7 (g, m0d 2)S(G )
+ (=D mod 2)8(G)) + ()T S (a)

I .
= Y (=D (g, mod 2)S(G,) + (=) (i mod 2)8(G)) + (D) T S(a),

p=j+1
and from (4) we see that
! 1 &-1 ;
dm(k)= {O_<_a<ZSinIS(a)=k} = Z OSa<GjS ZghGh+iGj+a -k
= J=1 i=0 gt
1 ;-1 |
:Z Z OSa<Gj‘S(a)=(_1)s,+...+ej+]+,
j=1 i=0
1
x| k= Y (DTG ) - (- 1)+ (j mod 2)8(G))
Copet . _
£,51(2)
L . !
= Z ZdG (_l)£1+---+£j+|+l k _ Z(_l);l+...+gp+lmp _ (_l)g,.,,....,.gjﬂ (1 mod 2)mj
s =0 ’ p=j+l1
Spsl(z)
and
Dm(z) = de(k)zk
keZ

1 &1 ) 1
= g | (DT = N (DT S(GL) - (-1 (i mod 2)8(G,
G; p J

j=1 i=0 keZ p=j+1
£,51(2)

o
(—1)8‘+“'+EI+‘+‘ k+ Z(_I)SI-F-A""EP“ mp+(_l)sl+.“£"*l (’ mod 2)mj
&1 P7

=2 Z dg, (k)z £p=12)

Jj=1 i=0 keZ
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) [pzél(-l)m*m"qﬂ mp]gj_l A
— z z £,=1(2) Z Z((_l)51+--~+€j+l (imod Z)mj)DGj ( z((_l)£1+~--+£ju+:) )

J=1 i=0

1 Sj—~l

=Y > 200D (2°0D), (14)

j=1 i=0
in which
!
b(j,))= D (=D m, + (1) (i mod 2)m;,
p=j+1
£,51(2)
¢ )= (D,
Differentiation of (14) yields

l g',—l ;o ;o P P P
D)= Y (b(i, D220 Dy (20-0) + 200D (20 )e(j, ,-)zc(m)),
j=1 i=0

z-——(zD’ (@)= Z Z(b(_] i)*z°V0 Dy, (zc(f D) +2b(j,i)z"V" ’)DG (2°UN)e(j, i)z°0-D

J=1 i=0
+ 220D (z60:D) Dc';j (z°U-D) + 226U ng (z°U-1Y)).

It is an easy exercise to show Z§-=1(l - j+1)"Gj <C,G,. Because the m; are bounded, we get
b(j,i)=0O(l - j+1) (uniformly in 7) and

1 Sj—l
D, =Y Y. (b(j,)Dg, (1) +c(j,)Dg, (1))
Jj=1 i=0
1
- 0(2 (-j+ 1)61.] = 0(G,) = O(m)
=i

and

&;-1

e
=Y X(B(j, 1" D, () +2b(), ), ) D5, (D) + Dy, (1) + D (D))

z=1 ;=1 i=0

ing" (1)+0[2(1 j+1)2G J+0(Z(:-;+1)G,}+0[§l:c;,)

1 j=1
1

=
JA4"Q)
;ng > 4Q) (1+O( D+O(m)

14N L o 1A
TP AQ) IZ G, Zngj(l J)]"’O[Z TN J"'O(m)

J:] =1

2 (aDy(2))

~
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Thus, we have

_ _14"Q)
EX,=0() and VX,=—Z50+00). (15)

Furthermore, by using (14), we obtain

tt/a',,,) Zexp Z( 1)6‘1+ te Pty

Om p-j+l
£,51(2)

8

gyt tE iy s 't e+
X Zexp(—( 1)+ (fmod 2)ijDGj(exp(O’__m(_l) e gt ))’

and for any fixed ¢,

IG;
; . it 5= )
Daj(exp(Gl_;(—l)g’+"'+gf+l+’)) D (exp( O K }
J

G e { LZQ_(_»J@ +0%D G e (% L, o(.ﬁ)j

£

5 (1+o(3))
o(1+0(3))-=r09(0(F)

where the O-constants do not depend on / or j. Thus we get, for 0< 9 <1

and

Z exp (—( 1) (i mod 2)m, )

=0

FROpS - .
1t/a,,, t2/2 &1 Ep+l J
Dm )e E 8JG eXp| — E ( 1) m +0( )+0( ,—)

m p— Jj+1
£,=1(2)

Zs G exp (0( J G,0()
1<j<I- ls

1—19<j<l

&G, exp(O(ls -1) +0( )) G lsJ
1—19<j<1

>£,G,(1+0( 1)) +0(a") = Y 5,G,+0(mi* %)+ 0(af™)
1-18<jsl 1-1%<js1

=m+0(mil®" )+0( )=m+0(mls'%)
and, finally (for any fixed 7),
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_ it/ oy,
Eexp [it Kon — ) = Dule” ") exp (—it Lu—’i)
O, m o

m

_exp (— —)(1 +0(1" ) exp (0 (Tlﬁ”))
_exp(_?)(lm( )

and X, is asymptotically Gaussian with mean 4, and variance o2, O

r—=v

The condition that z" —X/_ 52"~ (where v=max{l1<i <r|b #0}) is a product of z"™” and

different cyclotomic polynomials is rather restrictive in the case in which G, <2G,_, for n>1.

Proposition 5: Suppose that G = (G,) satisfies a linear recursion with restrictions 1-5 of Section
3 such that G, <2G,_, for n>1. Then z' - X]_ bz is a product of z"™" and different cyclo-
tomic polynomials, where v = max{1<7 <r|b, # 0}, if and only if one of the following conditions
holds:

1. r=1and a1 2: the binary system, or
2. a,=a,=--+a,=1: ageneralized Zeckendorf representation.

Proof: First, let B(z) =2 - X,_ bz~ be of the above type, then if a; > 1 we are in the first
case. So let us assume a, =1, then it follows that g, €{0,1}, a, =1, and therefore v=7. From
this, we see that z'—Y/_ 5z must be a symmetric polynomial that yields g, =a,_, for all
1<i<r. Now suppose g, =---=a,_,=1=a,=--=a,_;,, and g, =0=gq,_; for some 1<i< r—i.
Then, by assumption 3 in Section 3, wehavethat G,_,,, 2%, _.,,0,G,_, =2 G,  forn>r
or, equivalently, that G, 2 X', G,_; for n>i. Because G, =27_,a,G,_; forn >r, it follows that
2na,G,_; 2G, forn>r On the other hand we have, again by assumption 3, that G,_; >

ZF,HalG _1 for n > r, from which we see that G, = ¥'7, a,, ,G,_; for n>r —i, a contradiction to
assumption 4.
Now let r=1and g, =2, then v=0 and B(z)=z. Finally, suppose g, =a,=---=a, =1.
Then 8, = (-1)"*! and
- S ir—i__zr+1+ -1
Be) =2 7 =0
is of the desired type. O

4.2 Unbounded S(G,)

Proposition 6: 1If S(G,) is unbounded, then there exists some a with 1 <a <a, (a, defined as in
Section 3), k£ >1, real numbers ¢, ..., 9., and polynomials 5,(n),..., B, (), Bi(n), ..., B.(n) not
all of them zero, such that

k —
S(G,)=a" ) (Bi(mcos(ng,) + B n)sin(ng;)) + O((ra)")
i=1
for some y €(0, 1).

Proof: Since S(G,) satisfies the linear recurrence of Proposition 2, this representation fol-
lows immediately. O
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Theorem 3: Suppose that G =(G,) satisfies a linear recurrence as above such that S(G,) is
unbounded. Then
fm sup 10205 _ logar
Moo logm loga,

Proof: First, it follows from Proposition 6 that

lim Supw > lim sup log(IS(G,)]) _ loga
m—roo logm - m—»c0 log Gn log a .

The upper bound follows from the second part of Proposition 2 and again by an application of
Proposition 6: Let m= Zjﬂ €,G; be the proper digital expansion of m and let C, K >0 be large
enough so that | 3,(n) + B,(n)| < Cn® for all n, i. Then we have, for / — o,

log(|S(m)]) _ 108(Zj=1IS(G))) _ log(a!(CI° +CyY)
logm —  log(eG) = logeg, +logG,

lloga+(D+l)logl+C” loga
b
lloga, +C™ loga,

which completes our proof. 0

Remark: 1t is also possible to discuss the function F(m) = S(m)m (1°€®/(°€a1) in more detail. It
turns out that F(m) is an almost periodic function, i.e., S(m) has an almost fractal structure. You
just have to adapt the methods used in [8] and [9].

5. CONCLUSIONS

Our starting point was the Mobius function u;(n) of the partial order which is induced by
proper digital expansions with respect to a basis G =(G,). It turned out that u;(n) €{-1,0,1},
so it is a natural question to determine the distribution of these three values —1,0,1. If G, 22G,
for all n> 1, then the answer is very easy (see Proposition 1). Therefore, we restricted ourselves
to the case G,,, <2G, for all n>1. Here us(n)=(-1)". Thus, u;(») =0 for all >0 and
Mg(N)=S5(N) is exactly the difference between the number of n <N with u;(n)=1 and the
number of n< N with gg(n) =—1. In the case of linear recurring sequences G = (G, (satisfying
certain natural conditions), we proved that in any case M;(N)=0(N), i.e, —1,+1 are asymp-
totically equidistributed. - ’

More precisely, we discussed the distribution of values of S;(N) (whlch can also be con-
sidered in the case G,,, >2G,). It turns out that there are two essentially different cases, the case
of bounded S;(G,) and the case of unbounded S;(G,). If §;(G,) is'unbounded, then S;(N) has
an almost fractal structure (see Theorem 3 and the Remark following it). However, if S5(G,) is
bounded for all suitable initial conditions of G, then the values S;(~N) admit a Gaussian limit law
in the following sense: If X, is a random variable defined by

P(X, = k) = %,l'{n < N|Sy(n) = K} |

then X, is asymptotically Gaussian with bounded mean value and variance VX, ~clog N, pro-
vided that ¢ # 0 (Theorem 2).
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Since S;(G,) satisfies the linear recurrence (2), it follows that S5(G,) is periodic (for suffi-
ciently large ») if it is bounded. This can only occur for all suitable initial conditions of G if and

only if the roots of the characteristic polynomial B(z)=z" - ;=1bjz"f of (2) are 0 or roots of
unity. Therefore, the assumption on B(z) in Theorem 2, this is assumption 6 in Section 3, is quite
natural.

Finally, we want to recall that the only recurring sequences G = G(n) satisfying assumptions
1-5 such that a, =1 (i.e., G,,, <2G,) and that B(z) is the product of 27~ and cyclotomic poly-
nomials are generalized Fibonacci numbers (Proposition 5). They satisfy a recursion of the form
G,=G,_+--+G,_,. Here Theorem 2 applies. Hence, the values of M;(N) with respect to
generalized Zeckendorf representations satisfy a central limit law.

REFERENCES

1. G.Barat & P. J. Grabner. "Distribution Properties of G-Additive Functions." J. Number Th.
60 (1996):103-23.
2. E. A. Bender. "Central and Local Limit Theorems Applied to Asymptotic Enumeration." J.
Combin. Theory Ser. A 15 (1973):91-111.
3. M. Drmota & M. Skalba. "Relations between Polynomial Roots." Acta Arith. 71 (1995):65-
77.
4. M. Drmota & M. Skalba. "The Parity of the Zeckendorf Sum-of-Digits-Function." Manu-
script, 1995.
5. M. Drmota & M. Soria. "Marking in Combinatorial Constructions: Generating Functions
and Limiting Distributions." Theor. Comput. Sci. 144 (1995):67-99.
6. J. M. Dumont & A. Thomas. "Gaussian Asymptotic Properties of the Sum-of-Digits Func-
tion." J. Number Th. 62 (1997):19-38.
7. W. Feller. An Introduction to Probability Theory and Its Applications. Vols. I and II. New
York: Wiley, 1966.
8. P. J. Grabner & R. F. Tichy. "Contributions to Digit Expansions with Respect to Linear
Recurrences." J. Number Th. 36 (1990):160-69.
9. P. J. Grabner & R. F. Tichy. "a-Expansions, Linear Recurrences, and the Sum-of-Digits
Function." Manuscripta Math. 70 (1991):311-24.
10. J. H. Van Lint & R. M. Wilson. 4 Course in Combinatorics. Cambridge: Cambridge Uni-
versity Press, 1992.
11. H M. Morse. "Recurrent Geodesics on a Surface of Negative Curvature." Trans. Amer.
Math. Soc. 22 (1921):84-100.
12. A. Petho & R. F. Tichy. "On Digit Expansions with Respect to Linear Recurrences." J.
Number Th. 33 (1989):243-56.
13. R. P. Stanley. Enumerative Combinatorics. Vol. I. Monterey, CA: Wadsworth & Brooks/-
Cole Advanced Books & Software, 1986.

AMS Classification Numbers: 11A63, 11B39

1998] 19



THE PASCAL-DE MOIVRE TRIANGLES*

Larry Ericksen
P.O. Box 172, Millville, NJ 08332
ericksen@bellatlantic.net
(Submitted May 1997-Final Revision June 1997)

1. INTRODUCTION

The coefficients of the Pascal triangle were generalized in 1756 by de Moivre [5]. Each row
of a Pascal triangle contains a sequence of numbers that are the coefficients of the power series
expansion for the binary expression (1+x)" . The de Moivre formula [2], [4], [5], [6] derives the
coefficients of the power series for the generalized expansion of (1+x +x2+ -+ +x“D)Y_ Thus,
for integers (/=2 and N 21) and for 0<h< N(J-1), we define C(N, J;h) to be the coeffi-
cients of (x") in the expansion of

(I+x+x2+-+xY" N =S C(N, J; h)x". )
A Pascal-de Moivre triangle can be created from the coefficients C(¥, J; 4) for each posi-

tive integer value (J). For example, with (J = 3), the Pascal-de Moivre triangle of C(N, J; h)
terms for row numbers 1< N <4 is:

N\h 01 2 3 4 5 6 1738
1 11 1

2 123 2 1 )
3 136 7 6 3 1

4 1 410 16 19 16 10 4 .1

In this paper, the sequence of C(¥, J; h) terms in each row (&) of the Pascal-de Moivre
triangle is examined for the series properties, at various arrangements of terms. Each C(N, J; h)
term in the N row of the Pascal-de Moivre triangle is assigned a coefficient factor (F,), such
that

Series with coefficients (F) = Z{(F,) C(N, J; h)}. 3)

Sections 3 and 4 define summations of all C(N, J, h) terms in the N row of the Pascal-
de Moivre triangle that are separated by some fixed interval spacing (Ah). Then, from the set of
coefficients (F), the factors (F,) equal one at each interval step and equal zero otherwise. Sec-
tion 3 examines these summations of the C(N, J;h) terms at intervals that are a function of
the distribution variable (J); i.e., for (Ah= f(J)). The quadruplet cycle of Section 4 adds the
C(N, J; h) terms with interval spacing (Ah=4).

In Sections 5 and 6, the coefficient factors (F,) are related to the moments of the C(N, J; h)
distribution. A quick review of the theory of moments from [3] will illustrate which coefficient
factors () from set (F) are involved, and what form the series in (3) will take.

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July 1996, was
scheduled to appear in the Conference Proceedings. However, due to limitations placed by the publisher on the
number of pages allowed for the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly
to assure its presentation to the widest possible number of readers in the mathematics community.
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The moment (m ,,) about a point (x) for a discrete distribution of (C,) terms can be
expressed by a summation over all term indices (#). The R moment of (Mg ) is defined by the
summation in (4) for the distribution density f (k) evaluated at each index (h):

Mg,z = Z{(h=x)* f(h)}, “@
where f(h)=(C,)/(ZC,).
We choose the distribution terms (C,) to be the terms in the N™ row of the Pascal-
de Moivre triangle, given by C(N, J; h). By rearranging equation (4), we define a moment sum-
mation equation (5) for the C(¥, J; ) distribution as:

Z{(h— )" C(N, J; 1)} = (mip o JZAC(N, J; B)}). &)

The left-hand side of equation (5) is the same as equation (3) with the coefficient factors
(F,) = (h-x)R. Section 5 uses equation (5) to obtain Summations Based on Moments. Section 6
uses a similar equation for (3), but with (F,)=(~1)"(h—x)®, to obtain Summations Based on
Alternating Signed Terms. In Sections 5 and 6, the C(¥N, J; ) moment summations and moments
(Mg x)) are evaluated relative to points at (x =0, the origin) and (x = M, the mean).

2. DERIVATION AND TERMINOLOGY

De Moivre derived the formula for each C(¥, J;h) term by writing the left-hand side of
equation (1) in the form (1-x/)"(1-x)™", expanded both factors with the binomial theorem, and
collected terms. The resulting formula (6) is a summation over all integers {0<a <[h/J]},
where [h/ J] is the "least integer function" for the largest integer not exceeding the value of 2/ J:

h-aJ+N-1\(N
C(N,J;h)=ZC(N,J;h,a):Z(—l)“( N-1 )(a)' ©)

In a reduced format of factorials, with the substitution (N) = (N!)/((N —1)!), the de Moivre
formula becomes the summation in (7) over all integers {0 <a <[h/J]}:
(h—-aJ+N-1)! (N)

(h—-aJ)! (N-a)l(a)!"

A standard terminology will be used for the coefficient terms of the Pascal-de Moivre
triangles. A consistent notation for the C(N, J; h) and C(N, J; h, a) terms is described here:

C(N, J, h) = X(-1)"

Q)

C capital letter for the term itself (the coefficient of the basic expansion);
N, J capital letters for the independent variables of the C(N, J; h) series;
h, a small letters for the summation indices in their respective sums.

The power of the Mathematica [8] program allowed computations that could accurately gen-
erate numbers in excess of 100 digits. Therefore, large C(¥, J; h) distributions were evaluated
with precision, including those defined by (N, J) values of (100, 2) and (20, 20) and (2, 300).

3. COLUMNAL SUMMATIONS
The full N row sequence of terms C(N, J; h) in the Pascal-de Moivre triangle has a known

series value of (/") per [4], [7], when summed over all integers 0< 2 < N(J —1):
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SC(N, J;hy=(J"). (3

The C(N, J; h) sequence can also be partitioned by taking every (O™) term to obtain an
ordered summation S(N,J; Q,r) of the C(N,J;h) terms. Reference to such partitioning is
given for the binomial (J/ = 2) case in [9] and for the C(¥, J; h) sequence in [1]. Here and in the
next section, the derivation of S(¥, J; O, r) will use a variation of the methods described in those
references. The main difference between Hoggatt's approach in [1] and the one employed in this
section is that here the least integer function for [J” /(] is used rather than the simple ratio of
VN 10).

For pictorial convenience, the partition of a C(N, J; h) sequence can be displayed in tabular
form with (Q) columns. As a guide to the tabular display of partitions, the C(¥, J; h) sequence
at values (N, J) =(3,3) from (2) will be analyzed for various spacings (Q) to obtain the sums
SNV, J; Q,r).

Table of Columnal Sums S(V, J; @, r) for (N, J)=(3,3) ©)
0=U-1)=2 0=J=3 O0=(J+1)=4
A r= 0 1 0 1 2 0 1 2 3
0 1 3 1 3 6 1 3 6 7
1 6 7 7 6 3 6 3 1
2 6 3 1
3 1
SN, J; O, r) 4 13 9 9 9 7 6 1 7
[JY¥/01=[3*/21=13 | [JV/Q1=[3*/3]1=9 | [J¥/Q]=[3"/4]=6

Each row will have a row number (4) with values from 0< 4 <[N(J—-1)/(Q], where the
brackets indicate the least integer function for the greatest integer not exceeding the enclosed
expression. The columns in this table will have column numbers (r) in the range 0<r <(Q-1).
The values of the column series S(N, J; Q,r) are analyzed for various interval spacings (Q) at or
near the value (J).

For Q =J, the terms at (h= AQ+r) will be summed over integers 0< A <[N(J-1)/(J)].
Each column (7) in the range 0 <r <(J —1) will have the sum for S(¥, J; O, r) per equation (10).
Table (9) above shows that the C(N, J; k) sequence at (N, J)=(3,3) has each columnal sum
S(N, J; Q,r) equal to (9).

S(N,J;0,r)=XC(N, J,h)=J¥D  for each (r). (10)

In the binomial case of (J =2) for Pascal's (classical) triangle, formula (10) generalizes the
familiar fact that the sum of alternate terms (Q = 2) in any row is half the sum of the entire row
from (8), since (JY¥ ) =2W"D=(1/2)2"=(1/2)(J") when (J =2). It does not mean, however,
that the sum of alternate terms of the generalized Pascal-de Moivre triangle with (J #2) is half
the sum of the row terms (a case that is dealt with in equations (19) and (20) of the next section).

For Q=(J-1), the C(N, J, h) terms at (h= AQ+r) are summed over integers 0< A< N.
So then, for column locations (r) in the range 0 <r < (J —2), the column sums S(N, J; O, r) will
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be given by equation (11) for all N >1. Inthe (&, J) = (3, 3) example, the first column at (r = 0)
has a sum of (14), which is one more than the sum of (13) at the other column(s), as seen in table

(9). Equation (8) covers the linear (Q =1) case at (J =2).
S(N,J;0,r)=2ZC(N, J; i) =[(JY)/(J-D]+1 forJ>2andr=0 (1)
=[N/ (J-D] forJ>2and 1<r < (J-2).

For O =(J+1), the column terms at (h= AQ+r) are summed over the integers 0< A <
[N(J-1)/(J+D]. So, for column locations (7) in the range 0<r < J, the sums S(N, J; O, r)
satisfy equation (12):

SN, J; 0,r)=XC(N, J; i) =[(J")/ (J+ D]+ K. (12)
The value of (K) in equation (12) is either one or zero, as determined in table (13) below.
Table for K Values (13)
Column Type Condition for Column Type N=0dd N=Even
Unique (N +7) =0 (mod (J +1)) K=0 K=1
Common (N +7) #0 (mod (J +1)) K=1 K=0

In these O =(J+1) cases, one column is always unique. All the other columns will have
identical sums that differ from the unique column by one. In the (¥, J) = (3, 3) example, where
() is odd, the table for X values (13) indicates that the unique column will have (K =0). Thus,
from equation (12) and table (9), the unique column sum S(N, J; O, r) equals (6). At N =3, the
only column location (7) within 0 <r <3 that satisfies (N +r)=0 (mod 4) is at (» =1), per the
Condition in table (13). All other columns have (K =1) and common column sums S(N, J; Q,r)
equaling (7).

So in general, for any interval spacing Q={J+1,J, orJ -1}, each columnal series with
terms at 2= (AQ+r) is summed over integers 0< 4 <[N(J-1)/(Q)]. For the partition of the
C(N, J; h) sequence with these spacings (Q), each column (r) in the range 0<r <(Q-1) will
yield a series result for S(V, J; O, r) given by equation (14):

S(N, J;0,7) =[(JV)/(Q)]+b, where b= {0 or 1}. (14)

4. SUMMATIONS WITH QUADRUPLET CYCLES

The Method of Ramus described in [1] and [9] uses the roots of unity, with its real and
imaginary parts, to partition the terms in the N row of the Pascal and the Pascal-de Moivre
triangles. The terms of the C(¥, J; h) sequence are likewise segmented here by using the second
and fourth roots of unity. This segmentation creates four equations of series (4 through D) in
table (15), whose coefficients (F,) repeat for every fourth term of the C(¥, J; h) sequence.

These repeating coefficients (£,) in table (15) are the same as the coefficients (£,) of the
C(N, J; h) terms from equation (3). For any series in (16), each (/) value equals the (£) entry
in table (15) when {#=r (mod4)}. The sum equation of series (4), for example, is expanded in

17).
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Coefficient Table for Series {4, B, C, D} and Quadruplet Partitions (P.) (15)

Coefficients (F,) atr=| 0 1 2 3
Series A +1 0 + 0
Series B 0 +1 0 +1
Series C +1 0 -1 0
Series D 0 +1 0 -1
Quadruplet (£) = K B P B
Series (4, B,C, D) = 2{(F,)C(N, J; h)} for 0O<Sh< N(J-1). (16)

Series (4) = S{C(N, J;h=41)+C(N, J; h=41+2)} for 0<t < N(J-1)/4.  (17)

The creation of a quadruplet cycle from table (15) using the series {4, B, C, D} equations
requires the identification of the relationships between the series equations and the quadruplet
{F, B, B,, B} equations. In the nomenclature of the S(V, J; Q,r) partition sums from [1], the
quadruplet {£.} equations will be defined as

P.=8(N, J,4,r) since Q =4 and for integers (r) within 0<r <3.

The C(N, J; h) sequences thus created, whose sums are (£.), will have spacings between the
nonzero terms of (Ah = 4), compared with the nonzero term spacing of (Ah = 2) for those of the
series {4, B,C, D}. The corresponding transformation of the equations {4, B, C, D} into the
equations {P.} is given for each quadruplet location (r) from table (15) by:

P =(4+C)/2, B =(B+D)/2,

B=(4-C)/2, P,=(B-D)/2. (18)

Now, in order to state the quadruplet equations, the actual formulas for the segmentation
equations {4, B, C, D} must be obtained. The first two equations {4 and B} are the equations for
the sum of alternate terms for C(N, J; ) in the N row of the Pascal-de Moivre triangle. Here
we state, from empirical analysis, that the series (4) starting at (4= 0) and the series (B) starting
at (h=1) have series summation formulas given by equations (19) and (20), where (N >1) and
(b)=J (mod 2):

A=((JV)+b)/2 (19)
and

B=((J")-b)/2, (20)

where b = 0 for (J = even), or b =1 for (J = odd).
The two segmentation series {C and D} have equations that are obtained from the tables (22)
and (23), respectively, with values of (%1, 0, or +.5), where S is defined by equation (21):

§=((-phH @), @1

where the bracketed expressions in the exponents are least integer functions.
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Table for Series (C) (22)
Table for Series (C) | J=0(mod4) | J=1(mod4) | J=2 (mod 4) | J=3 (mod 4)
AlIN21 0 1
N =0 (mod 4) S 1
N=1 (mod 4) S 0
N =2 (mod 4) 0 -1
N =3 (mod 4) =S 0
Table for Series (D) (23)
Table for Series (C) | J=0(mod4) | J=1(mod4) | J=2 (mod 4) | J=3 (mod 4)
AllIN21 0 0
N=0 (mod 4) 0 0
N=1 (mod 4) S 1
N=2 (mod 4) S 0
N =3 (mod 4) S -1

As an example of quadruplet analysis, the C(N, J; h) sequence from table (2) with (¥, J) =
(4, 3) is listed below in the tabular form of Section 3 with (Q =4). The values {4, B, C, D} are
calculated from equations (19), (20), and (21) and tables (22) and (23). Then the {£.} values,
obtained from equations (18), give confirmation of their equality with the corresponding column
sums. ’

Column Sums of the C(N, J; h) Sequence

r= 0 1 2 3

1 4 10 16
19 16 10 4
1

Sum= 21 20 20 20

Series Equations Quadruplet {P.} Equations
A=(3*+1)/2=41 P=(4+C)/2=(@41+1)/2=21
B=(3*-1)/2=40 B =(B+D)/2=(40+0)/2=20
C=1 B =(4-C)/2=(41-1)/2=20
D=0 B =(B-D)/2=(40-0)/2=20

So, as just illustrated, the four quadruplet series {P.} may be built from combinations of the
series {4, B, C, D}, according to equations (18). Also any desired arrangement of the four {£.}
equations can be combined further with any choice of coefficients (G,) represented as num-bers,
variables, or functions, as shown:

Quadruplet Arrangement = >{(G,) (£)} for (r) within 0<r <3.

1998] 25



THE PASCAL-DE MOIVRE TRIANGLES

S. SUMMATIONS BASED ON MOMENTS

The definition of moments about a point for the C(N, J; h) distribution was introduced by
equation (4) in Section 1. The two moments considered here are the moment (v) taken about the
origin and the moment (x) taken about the mean (M). The connection between R"™ moment
calculations and the summations of C(N, J; h) terms is indicated by their respective evaluation
formulas from equation (5), when summed over 0< A< N(J-1).

Z{WRCW, J; i)} = R)I™), 24
Z{(h-M)RC(N, J; b} = (up)(JY). (25)

The mean (A1) is the midpoint of the range of (/) values and thus equals N(J —1)/2, which may
include half integers when N and (J —1) are both odd integers.

The sum of all C(N, J; h) row terms in a Pascal-de Moivre triangle equals (J"), which was
substituted for > C(N, J; k) in the typical definition of moment equations [3]. Multiplied by
(JV), the moment equations (v;) and (uy) give the C(N, J; h) moment summations (24) and
(25).

To find the moment equations for (v;) and (uy), we derive their exponential generating
functions: (4eer) and (Veer). And then, by expansion of the exponential generating functions, the
coefficient of the term ((z%)/R!) is the equation for the R™ moments for (1) and (vz), in the
summation over integers 0 <i < oo, as outlined in [3]:

Hrog = Z(u)E) 1 G,
Vegr = SO/ ().

The exponential generating function for (i) turns out to be the exponential power series
shown in (26), which is summed over integers 2 <r <. The notation Exp{x} is defined as (e*).

Pregr = Bxp{N Z((-1"(S,)(I")/ (rN)}, (26)

where S, = ((J")-1)(B,)/r with B, = the r Bernoulli number.

Each Bernoulli number (B,) can be derived as the coefficient of ((#")/r!) in the exponential
generating function (B,ys) from the summation in (27) for 0<i <. From reference [10], the
sequence of Bernoulli numbers (B,) for (r >1) is {(=1/2),(1/6),0,(-1/30),...}.

By = Z(B)E)/ @) =1/{()-1}. @7

The accuracy of the (u,) formula in (26) has been confirmed empirically by comparing the
distribution results on the left-hand side of equation (25) with the moment equation results of the
right-hand side of equation (25). These two approaches gave identical results through R<32,
which represented the limit at which the author's computer hardware capability could complete
the calculations in a reasonable time.

A couple of cases will illustrate the creation of the initial (1) equations, in terms of their
distribution variables (N and J). Also, a specific example with (N, J) = (2, 3) can demonstrate the
numerical equality between the left-hand and right-hand sides of equation (25).

For the case in which R =2, the coefficient of (2)/(2!) in the expansion of the (Hegs) for-
mula in (26) gives the variance (u,) of the C(N, J; h) distribution:
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1, = N(S,) = N(J*~1)B, /2, whereB, =(1/6),

u,=NJ?*-1)/12. (28)

When multiplied by (JV), this second moment (u,) formula (28) yields the C(N,J; h)
moment summation formula from (25).

S{(h=MY*C(N, J; )} = up(J) = N(J* - 1)(JN) /12 (29

The result of (29) generalizes the fact that the second moment summation of terms in the N'*
row of Pascal's (classical) triangle equals the value N(2V=?)), as shown in (30) for (J =2):

Z{(h - MY’C(N, 2, i)} = 1,(2") = N2* -1)(2") /12 = N2ND). (30)

For symmetrical distributions like C(V, J; k), the moment (xz) about the mean (M) will be
zero whenever R is an odd integer. Thus, the coefficients of (¢**')/((2i +1)!) in the expansion of
(#4egr) must be zero, for all integers (i >1). All of these coefficients (u,,,,) contain a factor with
a Bernoulli number of odd index, which is zero per [10]. So the moments (u) are zero when R
is an odd integer, because the corresponding Bernoulli numbers are zero.

For the case in which R = 4, the coefficient of (#*)/(4!) in the expansion of formula (26) for
(Hegr) gives the 4™ moment (u,):

s = BN ()"} +{N(S))},
e ={3N*((J*-1DB,/2)*} +{N((J*-1)B,/4)}, where B, = (-1/30), 3D
He = {N*((J?=1)*)/ 48} —{N(J*-1)/120}.

The specific example of (x,) with (N, J)=(2,3) will be left to the reader to confirm that the
formaulas in equation (25) satisfy >{(h—2)*C(2, 3; h)} = ()(JV) = (4)(3*) = 36.

Next, the exponential generating function (vees) for the moment about the origin is shown to
have the same formula as (u4) in (26), except that the summation index (r) begins here at
(r =1) instead of at (r =2).

Vegr = Exp{N Z((-1)"($,)(") / (*N)}, (32)

where S, = (((J")-1)(B,)/r), with B, = the r* Bernoulli number.

By expanding the exponential generating function (ve,r), the moment equation for (vz) can
be obtained as the coefficient of the ((z7)/R!) term. Again formula (32) was confirmed empiri-
cally to R=32. Select cases for R=(1, 2, and 4) will show the moment equations in terms of the
distribution variables (N) and (J). A numerical example of (v,) at (N, J) = (2, 3) can illustrate
the equality between calculations of the left-hand and right-hand sides of equation (24).

The first moment (v,) gives the value of the mean (M) of the C(¥, J; h) distribution. The
mean (M) is the midpoint of (%) over the range 0 </ < N(J —1), which must equal N(J-1)/2.

And this value is identical to the moment derivation from (32) for the first moment (v,):
v, =-N(S,)=-N(J'-1)B,/1 where B, = (-1/2), (33)
vw=N({J-1)/2=M.

The result for (v,) generalizes the known binomial formula in [10] for the summation of
S{(W)'C(N, J; )}=N(2)"D, since at (J=2) this also equals (v)(J") = (N/2)(2") = NQ)VD.
Also, from the (v,4¢) expansion at (R=2), the second moment formula for (v,) becomes
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v, = N2((J-1)?/4)+ N((J*-1)/(12)). (34)

The binomial case for X{(h)*C(N, J;h)} in (24) is given at (J=2) by taking (v,) times (2V),
where (,) = (1/4) N2 +(1/4)N. So T{(h)*C(N, 2, h)} = (v)2Y) = N(N +1)(2V-?).

The fourth moment (v,) is obtained from the coefficient of ((#*)/4!) in the expansion of
(Vegr) in formula (32), with the Bernoulli numbers for (r >1) of {(-1/2),(1/6), 0, (-1/30),...}:

v, = N (J-1)*/16)+ N3(J-1D*(J*-1)/8) + N*((J*-1)*/ 48) - N((J* -1)/120). (35)

Calculation of (v,) for a C(N, J; h) distribution with (N, J) = (2, 3) will be left to the reader to
confirm that the formulas in equation (24) satisfy >{(h)*C(2, 3; B)} = (v)(J") = (52)(3%) = 468.

The mean (v;) was shown in (33) to be equal to (N(J—-1)/2), and the variance (u,) was
given in (28) as (N(J%-1)/12). Now, the two exponential generating functions from (26) and
(32) can be redefined in terms of the mean and variance. To make the adjustment, the summa-
tion factor (XN) is multiplied by ((/*—1)/12) to get the variance (1,). To balance this multipli-
cation, the terms (S,) are then divided by the same ((J2—1)/12) factor, thus creating a new sum-
mation term (7).

Applying this transformation to formulas (26) and (32), alternative definitions of the expo-
nential generating functions for () and (V) become the exponential power series in (36) and
(37), with sums of integer index (r) over 2 <r <o for (fe,r) and over 1<7 < oo for (Vey):

Hege = Exp{ (1) Z(C1 (D) / (1))}, (36)
Vegr = Exp{ (1) Z((-1Y (1)) / (*1)}, G7)

where T = (12)S, /(J*>-1)= {(12)B, / r}{((J") - 1)/ (J* - 1)} with B, = the r* Bernoulli number.

The special characteristics of the (7)) sequence depend on the Bernoulli numbers (B,), by
definition. Like the (S,) sequence, the values of (Z,,,,) are zero since (B,,,,) are zero for integers
(#=1). Additionally, the value of (7,) is always equal to one for all (J).

T, ={(12)B, / 2}{((J») -1/ (J*-1)} ={(12)B,/2}{1} =1, since B, =1/6.
With equations (36) and (37), various moment equations such as (x, and v,) can be derived:
Ha =3 (B + (u)(T), (3%)
Ve = (1) 1) +6(uy) ST +3(1) (B) + (1 )(T). (39

Since (u,)=(N(J*-1)/12) from equation (28), specific distributions can be evaluated
exactly by knowing the values of (N andJ). In the fourth moment example for a C(N, J; h)
distribution with (¥, J) =(2, 3), the (7)) sequence for » >1 begins with {(-3/2),1,0,(-1),...}
and (u,)=4/3. The reader is invited to confirm that the fourth moments are again (x, =4) and
(v, =52). Therefore, either interpretation of exponential generating functions, with S, or 7,
gives the correct moment value.

The general rule for the leading term in the moment equation (u;) becomes apparent by
observation of equation (36). Because the odd-indexed Bernoulli numbers (B,) are zero for r > 1,
and because (7,)=1, the first term in the (xz) moment equation will be a double factorial
(R-1!! times (u,) to the power (R/2). In the sample equation (38) for (x,), this first term

was 3(u,)*.
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Since the summation in the exponential generating function for (v.,) of (37) begins at index
(r =1), the leading term in the moment equation (v;) is always (—7))R times (u,)R. In example
(39) for (v,), this first term was (—=1)*(u,)*, or simply (-Tu,)*. But, by equation (40), the
product term (—7ju,) is just equal to {N(J—1)/2}, which is the value of the mean (v,), as seen
in equation (33). Therefore, the leading term in the moment equation (vy) is always (v)~.

(TLipp) =6/ (J+ DM} = {6/ (J+DHN(* -1 /12} = {N(J-D/2} =(v),  (40)

since 7 = {(12)B, / B{((J) -1)/ (J*-2)} = {6/ (J + 1)} with B, =(-1/2).

Also, the term (—Zx,) is the coefficient of ((#")/(r!)) at » =1 in the exponential generating
function (V) from (37). This first term of the summation can now be rewritten by the equality
(=Tp,)(#) /(1) = (v#). If this term is extracted from the summation in (37), the remaining non-
zero terms in the summation have even indices in (7), since all of the odd indexed terms have a
factor that is zero; i.e., the odd indexed Bernoulli numbers B,,,, for i >1. Using this information,
both exponential generating functions (se¢) and (V) from (36) and (37) can be rewritten with
the zero-valued summation terms excluded. The exponential generating functions are now both
summed for the redefined index (r) over all integers in the range 1>7 > oo

Hege = Exp{() Z(L)(E) 1 (21)N)}, (41)
Vegr = Exp{(v) + (1) Z((L)(E*") 1 (21)N)}, (42)

where T,, = (12)S,,/(J*-1) = {(12)B,,/2N}H{((J*") - 1)/ (J* - 1)} with B, = the (2r)" Bernoulli
number.

A comparison between moment generating functions of the discrete C(N, J; h) distribution
and a normal distribution in the continuous case is useful in this format. The exponential generat-
ing functions for the continuous and normal distribution are given in [3] as:

HUegr (continuous & normal) = Exp{u,(t*)/2} and
Vegr (continuous & normal) = Exp{(v?) + (%) 12},

Since (7;) was shown to be equal to one, the continuous & normal (C&N) distribution and
the discrete C(N, J; h) distribution have moment generating functions that have identical initial
summation terms. The relationships between the moment generating functions of both of these
distributions are summarized in equations (43) and (44), with the second factor Exp{Z} being an
exponential summation for integers 2 <r <oo:

Hegf(C(N,J:h)) = Megiica NyEXP {ZAT)E) /1 ((2r)Y)} (43)
and

Vegf (C(N,J;h)) = VegfiC& nEXp {Z((TZr)(t 2’) /1((2r) '))} > (44)

where T, = {(12)B,, / 2r)} {(J*) 1)/ (J*~D}.
Besides the methodology of creating moment equations from exponential generating func-
tions, another technique was originally used that involved recursion equations. The main recur-
sion equation developed related the R™ moment (uy) about the mean (v,) to the previously

generated moments v _, about the origin. The summation was taken over all integers of (k) in
the range 0<Ah < R:
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Hp= Z(—l)h(i) (vl)h(v(R—h))' (45)

The recursion equation (45) originated from observation of moment equations (xz) from [3]
for R=0 through 4, including the oft quoted (u,) = (v,)—(v)*. This latter formula is apparent
from equation (34) in the form (v,) = (»)* + ().

When R is an odd integer, the moment (z,) is zero. Therefore, the recursion equation can
also relate successive moments (vz) to previous moments (¥z_s). And now the summation is
taken over all integers of (4) in the range 1<A<R. Thus, after defining (v,) =1, the recursion
equation for (v;) at (R =odd) becomes

Ve =2(- 1)(h+l)(§) (vl)h(v(R—h))' (46)

6. SUMMATIONS OF ALTERNATING SIGNED TERMS

The alternating signed version of the moment equations yields the following summation for-
mulas for the C(N, J; ) terms, when summed over integers 0<h < N(J - 1):

(D WCN, J; )} = vg,, C)
(D" (h~ MYRC(N, J; 1)} = pig,, (48)

where M =(v)=N(J-1)/2.

Two separate presentations on the moments for the alternating signed C(N, J; k) terms will
be given for cases when (/) is an odd integer and when (J) is an even integer. Thus, two differ-
ent notations will be assigned for each case:

L (Vo) = (VR,d) and (up,) = (#g.4), whenJ =odd;
2. (Vra) = (Vr.) and (ug,) = (g,.), whenJ =even.

Compared to equations (24) and (25) of the previous moment section, the most apparent
difference in the summation equations of (47) and (48) is that they do not have the common factor
).

In the initial definition of the moment equations (5), the common factor to be multiplied by
(Vo) and (ug,) was the sum of all the distribution terms in the N row of the Pascal-de Moivre
triangle. From the discussion on quadruplet cycles, the difference of the two alternate term
equations (4 minus B) from equations (19) and (20) will give the sum of the alternating signed
C(N, J; h) distribution. For all cases when (J) is odd, it has a value of one:

S{(-)'CN, J; )} =1 forJ = odd. (49)
When (J) is an odd integer, the moment equations for (vz ;) and (up ;) are derived directly
from their exponential generating functions: (ieeg,) and (Veyes). The exponential generating

functions are expanded to obtain (x4 4) and (v ;) as coefficients of the term ((¢*)/R!) in the
summation over integers 0 <i < o, as outlined in [3]:

Hegra = T () 1Y),
Vegtd = Z(vi,d)(ti)/(i!)-
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In this (J = odd) case, the exponential generating functions for (t ;) and (vegf, 4) turn out
to have identical formulas, as expressed by the exponential power series in (50) and (51). Just the
ranges of their summation index (r) differ, with 2 <r <0 for (i) and 1<7 <o for (Vege,):

Hegra = Exp{N Z((-1 (S, ))/ (1))}, (50)
Vegta = EXp{N Z((-1 (S, () / (*))}, (D

where S, ; = ((2") - DS, =(2") - )((V") - D(B,)/ r with B,= the r* Bernoulli number.

These exponential generating functions (Lgy¢,) and (veys,) for these alternating signed dis-
tributions are closely related to the exponential generating functions (#,¢) and (Veye) of (26) and
(32) for the positively signed distributions. Only the summation term (S, ;) in (50} and (51)
differs from the summation term (S,) in (26) and (32) by a factor of ((2")—1).

The same transformation methods described in (36), (37), (41), and (42) will change the sum-
mation variables (V) and (S, ;) in equations (50) and (51) into the variables (x,) and (7] ;) for
equations (52) and (53). These new exponential generating functions are both summed over all
integers in the range 1<r <oo. Note: (v ;) =v; and (1 4) = 34,.

Hegt.a = Exp{ (1) Z((L,, )/ ((21)))}, (52)
Vegr.a = Exp{ (! + (1) (%, ) 1 (@)D}, (33)

where T, , =(12)S,, ,/ (J* =D ={2*")-1{(12)B,, / 2r)H{((V*")-1)/(J*-1)} with B, = the
(2r)* Bernoulli number.

The fourth moments (x, ;) and (v, ,), for example, can be obtained from the coefficient of
((z*)/41) in the expansions of (i) and (Vo) in formulas (52) and (53). The format of these

formulas is the same as for (x,) and (v,) in (38) and (39), where the definition of each summation
term (7}, ;) has only changed from (7)) by a factor ((2") - 1).

Haa =3 (5,0)" + ()T ), (54)
Vaa = (#2)4(“7;,d)4 + 6(#2)3(’]f,d)2(];,d) + 3(#2)2(E,d)2 + ()L 4) - (55)

A specific fourth moment example for (z, ;) and (v, ;) of a distribution with (N, J) = (2, 3)
can be calculated by inserting the proper values for (u,) and (7 ;) in (54) and (55). Here, the
(T, ;) sequence for (r 1) begins at {(-3/2),3,0,(~15),...}, and (1) =(N(J*-1)/12) =(4/3).
Thus, for (N, J) =(2, 3), the reader can find that equations (54) and (55) agree with the moment
values in the formulas from equations (47) and (48) to give (1, ;) = 28 and (v, ;) = 140.

Now for the other type of distribution, with (/) as an even integer. In this case, the sum of
the alternating signed C(N, J; h) distribution is zero for N >1, as in the binomial (J =2) case
from [10]. The left-hand side of equations (47) and (48) does exist. The interpretation of the
terms (up ) and (vg ) on the right-hand side may not be clear, since these moments and the dis-
tribution density f(h) from equation (4) have a denominator of zero; thus, they may be unde-
fined. For convenience, these terms (i) and (v ,) will still be called moments, in the sense
that they are being used to generate the summation formulas in (47) and (48).

The simplest results for the R™ moment equations (uy ) and (v ) for the (J = even) cases
occur when (V) is greater than (R). Then we do get moment equations of zero:
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Hr.=0 and vp,=0 forN>R. (56)

However, for (R> N), the moment values are predominantly nonzero, when (/) is an even
integer. The moment equations for (v ) and (up,) can be derived if they are broken down into
two parts: a common factor (CF) and an equation (m,) from the corresponding exponential gen-
erating functions for (¢) and (v). The moment equations are:

Hp.o = (C)(m (), (7

VRe = (CF)(m,(v)), (58)

where (CF) = {(-D)" (J/2)" (N)}(X).

The equation for (CF) was obtained by empirical analysis. The equations (m,) are the coeffi-
cients of the term ((t*)/k!) in the expansion of the exponential generating functions, where the
value of (k) is defined as (R— N). The summations in the exponential generating functions for the
(m,) coefficients are taken over all integers » > a, with a =2 for (uz ) and at a=1 for (¢ ).

Hegse = Exp{N Z((-1)"(S, (") / (r)))} for 2<r <oo, (59
Vegt.e = EXp{N Z((-1) (S, )(#")/ (r))} for1<r<oo, (60)

where S, , = {(J") - (2")+1}{(B,)/r} with B, = the ™ Bernoulli number.

Again a useful transformation takes summation variables (V) and (S, ,) in (59) and (60) into
the variables (u,) and (7; ,) for equations (61) and (62). Both of these new exponential generat-
ing functions have summations taken for all integers 1>7 >o. Note: (v ,) =v;.

Hegt.e = Exp{(12) 2((Z,,. )" / ((2r))} (61)
Vegt o = Exp{ (1) + (1) Z((L,, ) (21))}, (62)

where T, , = (12)S,,../ (J2 =D = {(J*) - @)+ B{(12)/ (V2 - D}{(B,,) / (2r)}.

The reader is challenged to find the (uy,) moment at (R=4) for the alternating signed
C(N, J; h) distribution with (N, J)=(2,2). In this example, the moment equation (57) has an
index of (k = R— N =2), with factors (CF) = 12 and m, (1) = 1/6, which give a value for (up )
equal to 2.

and

A Final Note: Conditions involving distribution symmetry and the patterns of Bernoulli num-
bers in the exponential generating functions favor the proposition that all of the moment equations
and their generating functions will remain valid for all possible C(N, J; /) moment summations
with distribution variables (N, J) and moment numbers (R) over all positive integers. Extensive
empirical evidence suggests optimism.
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1. INTRODUCTION

Some of the properties of the Brahmagupta matrix [see (1) below], and polynomials x, and
¥, in two real variables (x, y) (see § 3) have been studied in [6]; we know that the Brahmagupta
polynomials contain the Fibonacci polynomials, the Pell and Pell-Lucas polynomials [2], [5], and
the Morgan-Voyce polynomials [4], [7]. The convolution properties that hold for the Fibonacci
polynomials and for the Pell and Pell-Lucas polynomials also hold for Brahmagupta polynomials.

In this paper we extend analytically the properties of the Brahmagupta matrix and polyno-
mials derived in [6] from two real variables to two complex variables z and w, which belong to
two distinct complex planes. We denote this space by C>. A typical member in C? has the form
¢ =(z,w). Since C is simply R* with the additional algebraic structure, we realize that C? is
(topologically) R* with some additional algebraic properties. We have a natural way to identify
points in C? with points in R*. This is described by the scheme:

Crs(z,w) & (x+iy,u+iv) & (x, y,u,v) eR*

In particular, we measure the distance in C? in the customary Euclidean fashion: if £, =(z;, w;)
and ¢, = (z,, w,) are points in C2, then |, =&, | = (|2, — 2, * +|w, —w, |* ).

Another interesting feature of the Brahmagupta polynomials z, and w, in C? is that, when the
polynomials are expressed in terms of real and imaginary parts with z = x +iy and w = u +iv, the
resulting polynomials x,, y,,u,, v, satisfy recurrence relations (11)-(18). The functions x,, y,,
u,, v, are solutions of the second-order partial differential equations (19) and (20).

Since the calculations go through without change in the complex case, we just list some of

the properties.
2. BRAHMAGUPTA MATRIX

Let B be a matrix (a Brahmagupta matrix) of the form
lz w
B= [,w z ] 0]

where 7 is the fixed real number and z and w are complex variables; further, we shall assume that
det B = f=z2—tw? # 0. Using its eigenrelations, B has the following diagonal form:

HE A

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July of 1996,
was scheduled to appear in the Conference Proceedings. However, due to refereeing problems and deadline dates,
we are publishing it in this issue of The Fibonacci Quarterly to assure its timely publication.

N [—

N[~
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Define

Then the above diagonalization enables us to compute

e 0 TIE VR
B" = L
[a SEL o s W A @

Since B™! = B"B, we have the following recurrence relations:

%NI»—

Zy =22, IWW,, W, =2ZW, +WzZ,, 3)

with z, =z and w, =w. From (2) we derive the following Binet forms for z, and w,:

z, = —;—[(z +wﬁ)” +(z -w\/;)"], 4
W, =2—f/7[(z+w«ﬁ>" —(z-wVEY1, (5)

and z, +/tw, = (z+/tw)". Note that if we set z=1/2=w and ¢ =5 then = —1; then 2w, = F,
is the Fibonacci sequence, while 2z, = L, is the Lucas sequence, where 7> 0.

Let E=z+wlt,n=z-wJt, & =z, +wJt, n,=z,~wJt and B, = z2 —tw?, with n, =7,
£,=¢,and B,=/0. Then we have £, =£", i, =", and S, =p". To prove the last equality,
consider 7= (22~ tw?)' = E""= £,1, = (22~ w?) = B,

We also have the following property:

p_1| ef+e” (=)

ef == , dete® =e%.
4{Jt(ef e ef+el ]

To prove these results, set 2z, = & + 7%, 24/tw, = £k —n*. Since
< BF B 1]z w

e?=% = and —=—[ k k],
]Z;) k! Kkl klltw, 2z

we express z;, and w, in terms of £ and 7 to obtain the desired results.
Recurrence relations (3) also imply that z, and w,, satisfy the difference equations:
2 2Zzn —len—lﬂ Woel = ZZWH _ﬂwn—l' (6)
Conversely, if z, =1, z, =z, and w, =0, and w, =w, then the solutions of the difference equa-
tions (6) are given by the Binet forms (4) and (5).
The expressions z, and w, can be extended to negative integers by defining z_, =z,6™" and
w_,=-w,f". Then we have

-n_| Z wn_ Zon Yol 2
weefp i s

where we have used the property
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—1\" n
z w (1l z -wi|| _1{ 2z -w,
w z A\l oz ) gl oz, |
All of the recurrence relations extend to the negative integers also. Notice that B® = I, where I is
the identity matrix. For negative integers, z, and w,, are rational functions of z and w.

3. THE BRAHMAGUPTA POLYNOMIALS

Using the Binet forms (4) and (5), we deduce some results: Write z, and w,, as polynomials in
z and w using the binomial expansion:

— N n)\ _n-2, 2 n—4_.4
z,=z +t(2) we+1t (4) w4+
-1 n =313 + 12 5,5
w, =nz" w+t(3) w? + (5) "W

The first few polynomials are z, =1, z; =z, z, = 22 +W?, z; = 2° + 31z2w?, z, = 2* + 612°w* + 1*w*,
s Wo =0, wy=w, w,=2zw, W, =32%w+m3, w, =4z°w +41zw®, ... Notice that z, and w, are
homogeneous in z and w; therefore, they are analytic (in the classical one-variable sense) in each
variable separately. Also, z, and w, satisfy the Cauchy-Riemann equations in each variable separ-
ately: If z, = x, +iy,, then
0%y _ Oy Oy _ Oy

oy’ dy
D 0% _ Oy

and

é’u oy’ v

Similar relations are satisfied by the polynomials w, =u, +iv,.
If ¢ > 0, then z, and w,, satisfy:

—Jiw
IEA
n—so W, —\/t_ if z+§wl>l
H —JIw
g W z+Aftw if __‘_—;+\/7w <1,
llmzn =llm—w" =
nyeZpy n3eWnt oz tw  if Zﬁx >1;
oz, ow, nz
oz ow P
0z ow
0‘\: = t_o”-zﬂ =ntw,_,
From the above relations, we infer that z, and w, are the polynomial solutions of the "wave equa-
tion":
o 1 5
— U=0. 7
(é’z2 t 5w2) ™
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Since the partial differential equation (7) is linear, by the principle of superposition its general
solution is

Uz, w) =Y (42, +Bw,),

where 4, and B, are constants.

4. RECURRENCE RELATIONS

From the Binet forms (4) and (5), we record the following obvious recurrence relations:

W) zpn =22, +W,W,, ~v) w,+tBW, ,=2zw,,
W) Wpp =2,W, +W,2,, i)  z,,,+p"z,_,=2tw,w,,
(i) Bz, ,=z,z,—tww,, (vii}) W, +B"™W, _, =2z,w ®
@) BV =2 W= Z Wy, (X) 2z~ ZynZen) = BB~ 23,),
M) Zpin B 2= 22,2, ) Zyy = 2 Wy = B2,

Putting m=n in (i) and (i) above, we see that z,, =z>+mw? and w,, = 2z,w,; these relations
imply that: (a) z,, is divisible by z, iv/tw, if £>0; (b) z,, is divisible by z, +~/tw, if £ <0;
(c) w,,, is divisible by z, and w, and, if r divides s, then z,, and w,, are divisors of w,,.

Let 2;_; = 2. Then, using the Binet forms, it is not difficult to see the following facts:

. _ﬂzn—zn+l+z~ﬂ

O 2=t

.. _Ppw,—w, W

@ Zw ="t

2 _Pon—Zmatn-B  fB"-1

W) 25 = vy 2(p=])

Tw? = ,8222,, ~Za T2 - B _ BB -1
k WP -2z, +1)  24(B-1)°

B,

V) 2Xzz, 4 =Nz, + w

(iv)

. pw,
V) 22X W =12y — Tv—ﬂ

(Vil) 22Xz W,y =2 X W2,y = W,y

Now we generalize a result satisfied by the generating functions of Fibonacci (F,) and Lucas
(L,) sequences; namely,

> |

F=Y5r  1o=YLs

Then L(f) =™ [3]. A similar result holds between z, andw,. Let Z and W be generating
functions of z, and w,, respectively; that is,
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z2=Y 2y, w=Sws". ©)
n
1 1
Then W(s) = swe?4) _ Since the proof is similar to the real case (see [6]), we omit it here.

5. SERIES SUMMATION INVOLVING RECIPROCALS OF z, AND w,

All the properties of infinite series summation involving x, and y, can be extended to the
complex variables case also. Since the arithmetic goes through without any changes, we shall just
list them here. For details, see [6].

1 i 2z _p+1)_1
o i\ Ze1 % z
) i 2z fB+1 1 i 2z p+1 1
ka1 \Zk=1%k+1 Zp+1Zk zrzr+l kol \ Wk=1Wk41 Wi iWg W,W,+1
0 0 0 o0
2zz 1 2zw 1 +1
3. z k- z _— ﬂ ! z 4Tk Z :B
kol Zk-1%k41 S\ Zk-1 Zk kers1 Wk- W tarr1 \ Wk-1 Wk+1

o o1 (2 pa1)_1 i 2, _Br+1)__1
Z Z(k—l)r Zgr 2,2y, ’ (k+l)r w(k—l)r Wir W, W,

k=2 “(k+Dr k=2

o 'Bz"-‘—z
5. = .
k§2 Yok (x+y1)?

. 52 —L(izg—:_k(zi\/{w)}

n=1 ZnZp+k tWWk
where the plus sign should be taken if |[£/7|<1 and the minus sign should be taken if |£/n|> 1.
To show item 6, we consider
ZyiZnik ~ Znik1Zn = Znat @ity HIWW, ) = Zyp (22, HIWW,, )

n—1%n
= W(Z, Wkt — ZpakmWnet) = twﬂ"‘ w

Thus,
N n
ﬂ — 1 Zn-12n+k ~ Zn+k=1%n
n=1 ZnZntk tWWk ZnZnik

n n=1 “n n=N+1 "1

b S Zewa )1 (Sz Nz
twwkngl(z Zik ww, Zz Z z, )
Now fix k& >1 and let N tend to infinity. Using the property we derived in Section 3, we obtain
the required result. Similarly, we show that

o (n-1) k
k ﬂ — 1 Wa-1 _
B = o, (Z]Z ", k(ziﬁw)j,

n=1

where the plus sign should be taken if |£/ 77| <1 and the minus sign should be taken if |£/ 77|> 1.
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6. CONVOLUTIONS FOR z, AND w,

Suppose that a,(z, w) and b,(z, w) are two homogeneous polynomial sequences in two vari-
ables z and w, where 7 is an integer > 1. Their first convolution sequence is defined by

n
1)
(@,%b)" = Z By =D 000
=t

In the above definition, we have written a, =<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>