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THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED 
ZECKENDORF REPRESENTATIONS* 

Michael Drmota and Johannes Gajdoslk 
Department of Discrete Mathematics, Technical University of Vienna 

Wiedner HaupstraBe 8-10, A-1040, Vienna 
(Submitted June 1996) 

1. INTRODUCTION 

Let G = (Gw) be a strictly increasing sequence of positive integers with Gl = l. Then every 
nonnegative integer n has a digital expansion 

i>\ 

with respect to basis G, where the digits si - si{ji) > 0 are integers. This digital expansion is 
unique, when one assumes that the digits et are chosen in such a way that the digital sum Z7>! si 

is as small as possible; in this case, we will call the digital expansion a proper digital expansion. 
It is easy to see that the following algorithm provides this expansion. 

1. For n = 0, we have £,-(«) = 0 for every i > 1. 
2. If Gj <n< Gj+l and n' = n-Gj has the proper expansion n' = Zz>isffjt, then the expan-

sion of n = Sz->i etGt is given by si = s\ for i & j and by Sj =e'. + l. 

The most prominent digital expansions are related to linear recurring sequences G = (Gn), e.g., 
the binary (resp. the #-ary) expansion relies on Gn = 2n~l (resp. on G„ = qn~l). If Gn are the Fibo-
nacci numbers, i.e., Gn = Fn+l, then we obtain the Zeckendorf expansion. 

For each digital expansion with respect to a basis G, we can define a partial order in a quite 
natural way. We will say a<Gh if and only if et(a) < st{b) for every i > 1. It is well known that 
for every partial order there is a Mobius function (see [10], [13]). Let sG(n) denote the sum of 
digits of n. Then it will turn out that the Mobius function juG of a digital expansion to a basis G is 
given by juG(n) = (~l)%(w) if 

maXŷ j si{n) < 1 and by juG(n) — 0 otherwise. 
If G is a proper linear recurring sequence and if the initial conditions of G are properly chosen 

(see Section 3), then 
n=0 

is either bounded or 

MG(N) = Sa(N):=Z(-iyaW, 

which we will see from calculating the Mobius function in Section 2. (We always define empty 
sums to be zero, i.e., MG(N) = SG(N) := 0 for N < 0.) 

* This work was supported by the Austrian" Science Foundation, grant P10187-PHY. This paper, presented at the 
Seventh International Research Conference held in Graz, Austria, in July 1996, was scheduled to appear in the 
Conference Proceedings. However, due to limitations placed by the publisher on the number of pages allowed for 
the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly to assure its presentation to 
the widest possible number of readers in the mathematics community. 
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THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS 

In Section 3 we will formulate conditions for G, under which we will be able to derive for-
mulas for SG(N). We will also obtain a recursive formula for the generating function of SG(Gn), 
which we will analyze in Section 4 in order to obtain asymptotic information about SG(N). 

Our main interest lies in the distribution of the SG(N) (resp. MG(N)) when 0<N <m for 
large m. This means that we count the number of times SG(N) takes a certain value k when 
0 < N < m: let dm(k): = | {0 < N < m: SG(N) = k}\ be this number and let Xm be a random variable 
with probability distribution f(Xm = k) = dm(k)/m. Then we are interested in the asymptotic dis-
tribution of Xm for m-> oo. Depending on the nature of the recurrence relation for G, we will 
observe significantly different behavior of Xm. First, we distinguish two cases: 

1. either SG(Gn) is bounded for all initial conditions of G (Section 4.1), or 
2. there are initial conditions of G such that SG(Gn) is unbounded (Section 4.2). 

Since we can establish a linear recurrence relation for the SG(Gn), the first case is equivalent 
to the assumption that the characteristic polynomial of this recursion is a product of some zr~v 

( r - v > 0 ) and certain different cyclotomic polynomials. In this case, we can derive asymptotic 
formulas for EXW and VXm, provided that the sequence G satisfies a certain technical condition. 
Our main result (Theorem 2) says that, in the case of unbounded variance, Xm satisfies a central 
limit theorem. (Note that there are sequences G for which VXm is bounded, e.g., Gn = 2W-1.) 

2. THE MOBIUS FUNCTION OF A DIGITAL EXPANSION 

Let G = (G„) be a strictly increasing sequence of integers with Gx = 1. As mentioned above, 
every nonnegative integer n has a digital expansion n - Z/^i^/Gy with nonnegative integral digits 
sr It is called proper digital expansion for n if the digital sum Zz>i st is as small as possible. 

Lemma 1: L e t T i ^ Z ^ ^ G , be a proper digital expansion for n. Then any sum of the form 
2/>i^z'Q with integral digits e\, i > 1, satisfying 0< s\ < st is a proper digital representation for 
some«'<«. 

Proof: First, note that it follows from the algorithm stated in the Introduction that any digital 
expansion of the form nj = S/=i £iGi < n is a proper one. 

Next, we will use induction on the digital sum 5' = Z/>i^J, where 0<8f
i<sr Obviously, 

there is nothing to show if $' = 0. 
Now suppose that n' - Zz>i e\Gt has digital sum s'. There exists j > 1 such that s'j > 0 and 

s\ - 0 for i> j . Then Gj <n' <nj <Gj+l. Therefore, n" = n'-Gj can be represented by n" = 
Z/=i£,"Gz with s'j-s'j-I and s'(-s\ for i*j. Since ()<£,"<£; and its digital sum satisfies 
E/^i^r= s'-l<s', this expansion for n" is proper. Consequently, Zz>i£-G7 is a proper expan-
sion for n'. D 

Now we introduce the Mobius functions ju(x, y) of a locally finite partial order < on a set X, 
i.e., all intervals [x, y] = {u e X: x < u < y) are finite (see [10], [13]). Any function f:X2-J»C 
that satisfies f(x, y) = 0 for x & y will be called an arithmetical function. The convolution / * g 
of two arithmetical functions/, g is given by 

x<u<y 

4 [FEB. 



THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS 

Obviously 8, defined by S(x, y) = 1 for x = y and S(x, y) = 0 otherwise, is the unit element of * . 
Furthermore, if f(x, x)^0 for every XGX, then there always exists an inverse arithmetical 
function f~l satisfying f~l*f = S. The Mobius function JU is defined as the inverse function of 
C, given by g(x, y) = 1 if x < y and by £(x, y)=0 otherwise. Especially, if g = £* f, then/can 
be recovered by / = ju*g. (We intend to use this Mobius function in future work for sieve 
methods in connection with specific problems of digital expansions.) 

Theorem 1: Let <G be the partial order on the nonnegative integers induced by the digital expan-
sion with respect to a strictly increasing sequence of integers G = (G„) and suppose m = E;>i s\ Gt 

and /2 = Z/>i£"Q are proper digital expansions of nonnegative integers m, n with m<G n, i.e., 
e\ < e" for all /'. Then 

(0 if there is an / with e"- e\ > 1, 

(-ifixto-'i) otherwise. 
Proof: Since there is a natural bijection between [m, n] = {d eN0|jw <G d <G n} and [0, n-m\ 

we have ju(m, n) = ju(0, n-m) if m <G n. (For m£Gn,wQ have ju(m, n) = 0.) 
Therefore, we will calculate only ju(0,n). From the definition of /j(x,y), it is clear that 

ju(0,0)=l and that 
]T ju(0,d) = 0 forn>0. 

0<Gd<Gn 

Assume for a moment that €"< 1 for all i. We show that //(0, ZyljQ,) = (~lf DY induction on 
the digital sum s = k. Clearly, for s = 0, we have ju(09 0) = 1 = (-1)°. Now assume that s>\ and 
that //(0, Z%1 Gt.) = (-1)* for all k < s. Then 

0 - X M(09d) 

-(//(o,o))+(//(o,a0)+//(o,a1)+---+Mo,aJ_1)) 
( ( s~i ^ 

+ ( / I ( 0 , G , 0 + G O H V K O , G ^ 

=i+(;>-i>l+(s)("1)2+•••+G- Oc-1)*-1-^^ 2 ^ ) 
Because of S}=0(/)(-l); = 0, it follows that ju(0, S J I Q Q , ) = (-1)', which proves the theorem in 
this special case. 

Nov/ suppose that kGt with i > 1 and k > 1 is a proper digital expansion. Then 0 = ju(0,0) + 
ju(0, G,) + • • • +//(0, kGt). Notice that /i(0,0) +ju(0, Gf) = 0. Hence, it follows that ju(0,2Gt) = 
ju(0,3Gi) = - = ju(0,kGi) = 0. 

Next, we show by induction on the digital sum s(ri) = Z;>i £" that /i(0, w) = 0 whenever there 
is an i with £'/> 1. We must start with s(n) = 2 because e"> 1 cannot be satisfied when s(ri) < 2. 
Suppose that s(n) = 2 and that there is some i with e"> 1. Then m = 2G,- and /i(0, m) = 0. Now 
assume the assertion holds for all natural numbers / with s(l) <s(n) and assume there is ay with 
e'j>\. Then 

1998] 5 



THE PARITY OF THE SUM-OF-DIGITS-FUNCTION OF GENERALIZED ZECKENDORF REPRESENTATIONS 

-M(0,ri)= £ ju(0,d)= £ M(0,d)+ X f*M 
0<Gd<Gn Q^QdKQn^i-.s^d)^! 0< G d< G «,3i :* / (<0>l 

I M(P,d). 
Q<Gd<Gn,^i\Ei{d)<\ 

Define nx := Zz>imin(£", l)Gr Because of the existence of/with £">l, we have 0<nx <n and 

0<G^<Gw,V/:£'/(c?)<l Q<Gd<Gnx 

The right-hand side is, of course, zero, due to (2), which completes our proof. • 
Since juG(m,n) = juG(0,n-rn) (if m<Gn), it is sufficient to consider the restricted Mobius 

function juG(ri) = juG(Q, n). As mentioned above, the main topic of this paper is to discuss the 
partial sums 

MG(N) = N£MG(n)-
«=0 

Nevertheless, we will rather discuss the partial sums SG(N), see (1), which will be motivated by 
the following proposition. 

Proposition 1: Suppose that G„ >2Gn_l for all n>\. Then MG(N) is bounded by 1. On the 
other hand, if Gn < 2Gn__x for all n > 1, then 

MG(N) = SG(N):=Nf(-iyc(»\ 

where sG(n) denotes the digital sum sG(n) = Z,>i ex of the proper digital representation 

i>\ 

Proof: Due to Theorem 1, only those n with expansion coefficients 0 or 1 enter the sum. If 
Gn > 2Gn_l for all n > 1, then all the digital expansions Sz>i stGt with si G {0,1} are proper ones. 
Hence, MG(N) attains only the same values as in the binary case in which the corresponding sum 
is 0 or ±1. 

If Gn < 2Gn_l for all n > 1, then in all the proper digital expansions only the digits 0 and 1 can 
occur, and the assertion follows from Theorem 1 with m - 0. D 

Remark 1: We will see later that for all G considered here, (al + l)Gn_l >Gn > a^jn_Y holds for 
n > r; therefore, Gn < 2Gn_l for all n > 1 is equivalent to ax - 2 and r = 1 or ax = 1 when the initial 
conditions of G are properly chosen. But if aY > 2 or ax = 2 and r > 1, and if Gn > 2Gn_x holds for 
the initial values, then Proposition 1 applies and MG{N) is bounded. Because of this, we will 
investigate the function SG(N) rather than MG{N), keeping in mind that, in most cases, when 
MG(N) is of interest, both are the same. 

Remark 2: If Gn = 2"~\ then tn = (-l)^(w) is the Thue-Morse sequence [11]. Since t2n + t2n+l = 0, 
we have £G(2ft + l) = t2n = tn9 and we also have SG(2ri) = 0. Thus, it is not really interesting to 
study SG(N) in this case. 
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3. DIGITAL EXPANSIONS AND GENERATING FUNCTIONS 

From this point on we will consider only integral linear recurring sequences G = (Gn)n>x that 
satisfy assumptions 1-5 below (in Section 4.1 we will also need assumption 6): 

1. Gx = l and G„+x>Gn for n>\. 
2. Gn = S[=1 ciiGn_i for n > r with some integers at > 0. 
3. Gn_j > EJ=y+i @jGn-i for w > r and 1 < j < r. 
4. G satisfies no linear recursion with constant integer coefficients with a smaller degree. 
5. The characteristic polynomial zr - E[=1 atzr~l = Il[=1(^ - at) (of the above recursion) has only 

one real, positive, and simple root ax of maximal modulus. 
6. Let bt = (af mod2)(-l)ai+'"+a'-1 (a, mod2 = 0 if a;, is even and at mod2 = 1 otherwise). Then 

is a product of zr~v (r - v > 0) and different cyclotomic polynomials Q>kh(z) (kx<k2<--
< kk,\ all of them dividing zp -1 with some fixed p>r. Furthermore, none of the at and no 
quotient at I otj (i ^ j) is a p^ root of unity. 

Assumptions 1, 2, and 4 are natural. Therefore, only conditions 3, 5, and 6 need to be motivated. 
Assumption 3 is necessary to show that S{Gn) satisfies a linear recurrence; especially, it im-

plies (6) in Proposition 2. 
From assumption 5, we obtain Gn = (ial~l + 0{{axy)n) with some /? > 0 and 0 < y < 1. Note 

that assumptions 2 and 3 imply (ax + 1)G„_X ^Gn> afjn_x for n > r, which gives ax < ax < ax +1. 
Similarly, we get ax > at for all i. 

The first part of assumption 6 (concerning the cyclotomic factors) ensures that S(Gn) is 
bounded. The assumption that at and af I ay are not /7th roots of unity is frequently used in 
problems concerning digital expansions with respect to linear recurring sequences and avoids 
technical difficulties (see Lemma 2). 

Usually, assumptions 3 and 5 are replaced by the stronger condition ax > a2 > • • • > ar and 
certain assumptions on the initial values of G (see, e.g., [8]; in this case, the second part of 
assumption 6 is also satisfied). However, there are other interesting examples, e.g., ax =ar = 1, 
a2 = • •. = ar_x - 0, that satisfy the above assumptions and are not of the form ax > a2 > • • • > ar. 

From here on, let G = (Gn) be a fixed linear recurring sequence with assumptions 1-5. For 
notational convenience, we will omit the index G in the sequel. 

Proposition 2: Let ht = (a, mod 2)(-l)ai+'""K*-1 {at mod 2 = 0 if at is even and at mod 2 = 1 other-
wise). Then S(Gn) = SG(Gn) satisfies the linear recurrence 

S(G„) = X W ? „ - , ) for»>r. (2) 
1=1 

Furthermore, if n has the proper digital expansion n = Hl
J=l SJGJ, then 

( i \ i 
^ Z ^ =2(^mod2X-l)^1 +-"+ t f |5 ,(Gy). (3) 

V/=1 J /=! 
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Proof: We will first establish a set identity that holds for all nonnegative integers sjy regard-
less of whether Zy=i SJGJ is a proper digital expansion or not: 

O^aKpfiLpL i / 

j=\ \h=j+i 

} i */-i r / 
0 ^ < ^ y = U U Z*AGA+« 

J y=l i=0 IA=y+1 
iGj<a<(i + l)Gj\ (4) 

*,-i f / = U U Z^Gh\ + iGJ+a 0<a<G> 

where each union is disjoint. (Again, empty sums are set at zero.) 
Now set l = n-l, Sj =an-j for n-r<j<n and sj = 0 otherwise. Then one obtains for 

n > r, after interchanging i and 7 and shifting /'->/?-/', h-^n-h, 

{a 
n-\ at-\ 

0<a< I^Gy=UU I ^ + ^ + f l 0<a<G„ (5) 

From this we see that, for n > r, 
3,-1 r a,-l G ^ - l 

S(G„) = Z ( - i r ( a ) = Z Z Z {-\y^^ahG"-h+jG"-i+a) 

a=0 /'=! ;=0 a=0 

=t£lY1(-^*+/^"B=Z(-i)a:ti,,i^(GJ1_,)5;l(-i)/ 

= X(«, mod2X-l)(zfc,'fl*)5(GfM) = I W ^ , ) 
/ = 1 J = l 

with £> := (a, mod 2)(-l)a i+ '"+a'1. Note that assumption 3 from above ensures that 
n-i \ i-i 

V/P=I y A=I 

You only have to start with m = lL1h=\ahGn_h+jGn_i+a and apply the algorithms stated in the 
Introduction to deduce that sn_h{m) = ah, \<h<i and sn_^m) - j . (Of course, this procedure is 
standard in the study of such digital sequences (cf. [8], [9]). This proves equation (2). 

The proof of (3) is quite similar. If we set Zy=i epj =:m + slGl in (4), we get 

{a\0<a<m + £lGl}={J{iGl+a\0<a<Gl}u{elGl+a\0<a<m}. 

Let sfix +m = Zy=i SjGj be a proper digital expansion. Then it follows that 

(6) 

SjGi+m-l £/-l G/-1 m-l 

S(sfit +m) = XC-l)*1) = £ £(-i)*3r*0 + £(-i)^A+0) 
a=0 /=0 a=0 a=0 

£rl G,-l m-\ 

= K - i y ^(-l^H-iy,It(-l)Ka) = (elmod2)S(Gl)H-^s,S(m). 
/=0 ar=0 a=0 

(7) 
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Iterated use of equation (7) gives (3). D 

Corollary: Let dm(k) := |{0<a <m\S(a) = k}\ and Dm(z) the corresponding generating function 
ro-l 

A,(*)=5X(*)** = 2y(fl)- (8) 
keZ a=0 

Then DGn{z) (and DGn(z~1)) satisfy, for n > r, the relation 

DG (z) = Y y ^ t i ^ C ^ ^ (z{-i)a>+'"a>-*+J\ ( m 
7=1 j=Q 

Proof: Suppose n > r. An iterated use of (7) gives, for 1 < i < r, y < at, and m < G„„;, 
+ jG„_i+m) 

= (aj mod 2)<S,(G„_1) + (-1)°' (a2 mod 2),S'(G„_2) + • • • 
+ (-l)-.+-"^-2(a-_1mod2)5(G^+1) + (-l)fll+""f<'wC7mod2)5(GllW) 

= 2 w ^ ) + (-l)fl,+ " '̂-,0"mod2)S(G^^^^ 

Note that, for / = 1, we just obtain S(jGn_l +m) = (Jmod2)S(Gn_l) + (-iyS(m). Hence, by using 
(5) and (8), we get 

G„-l r q-lG^-l 
JJ / z \ _ y z % ) = y y y£zS(alG^.l + ---+al_lGn_M+jGn_i+m) 

m=0 j=\ y=o m=0 

i=l J=0 m=0 

i=i y=o 

4. ASYMPTOTIC ANALYSIS 

We distinguish two cases: either S(Gn) is bounded for all suitable initial conditions of G or it 
is not. The first case will be of special interest. It turns out that in this case the distribution of the 
values of S(N) approximates a normal distribution for all suitable initial conditions of G (see 
Theorem 2). 

4.1 Bounded S(Gm) 

Proposition 3: Suppose that S{Gn) is bounded. Then S(Gn) satisfies a linear recursion for n > N 
with some JST, whose characteristic polynomial is a product of different cyclotomic polynomials. 
Remark: This motivates the first part of assumption 6 in Section 3. 

Proof: We know that every S(m) is an integer and, therefore, can only attain a finite number 
of distinct values. So we see from (2) that S(Gn) must be periodic (in n) for n> N. Let/? > r be 
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some period of S(Gn) and assume n > N. Then S(Gn+p) - S(Gn) = 0, which implies that S(Gn) is 
a linear combination of powers of /7th roots of unity. Let m(z) be the product of all cyclotomic 
polynomials corresponding to those roots of unity which appear in the representation of S(Gn). 
Then S(Gn) satisfies the linear recurrence related to m(z), D 

Proposition 4: Suppose that S{Gn) is bounded. Then DG„(Z) (defined in (8)) and Don(z~l) 
satisfy, for n > TV, a homogeneous linear recurrence with (in n) constant coefficients af(z) that are 
analytic around z = 1 and satisfy at(z) = at(z~l). 

Proof: Let/? > r be a period of S(Gn). Then, by splitting (9) into four parts, we get 

/ = max(0,fc-r) 

k-\ 

i=k+p-r 

p-1 

/ = max(0,fc-r) i-k+p-r 

with 

*, / T \ - U SZh=\ ' 6 /»%-/»-(ai+ - +ak-i-i mod 2)m,) 
/k,i\Z)~nk-JZ 

„, /-A _ |T Jsfci"1 hf»k-h+(oi+ ••• +«*-/-imod2M-) 
Yk,p+i\Z)-nk-iZ 

bkJ\Z)-nk+p-iZ 

£k,P+i(z) = hk+p-i^ , 

where /^, := £(G7), 0 < A: < p and 0 </ < p and 

[ | { 0 < 7 < a / | j ^ a 1 + ..-+a/_1(2)}| f o r l < / < r , 
4 = 

5 = 

0 otherwise, 

| { 0 ^ y < f l i l 7 s a 1 + .-+fl i . 1 + l(2)}| f o r l < / < r , 
0 otherwise. 

In the case 1 < i < r, we can calculate 

A = a , + l 

(10) 

(11) 

for a, = ^ + • • •+a,_! (2) = 1 (2), 
otherwise, 

/ * - $ = &,: 
Furthermore, we define yp+Kp+i(z~l) = ykJ(z), yp+Ki{z-l) = yk>p+i{z), CP+k,P+i(z~x) = Ck,i{z)> 

( (DG(z),DG(z),...,DGn(z)y ) 

**Hi% JQ+sp 

y v ^O+sp^ 

Jl+spy 

-Jl+sp \ 
(»o^-^DG(z-^...,DG(z->)y 

Jp-\+sp 

•Jp-l+sp y 
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r(z) = (
r u 0 0 riAzA( (TkAzy)o<kj<p (rk,p+i(zy)o<k,i<P 

\Y p+k, p+i \z))o<k, i<p 

7 M = (ziM zu(z)l=((CkAz))o<k,i<P (Ck,P+i(z))o<k,i<P ) 
" |z2>1(z) z2j2(z)J {(Cp+kAz))o,k,«p (Cp+Kp+Mo^pf 

Then the identities d 2 » = du(2- ' ) , r „ ( z ) = ru(*-»), r21(z) = r ^ z " 1 ) , Z „ ( z ) = Zu(z-1) , 
and Z2 j(z) = Z u (z _ 1 ) hold and (10) becomes 

ds(z) = r(z)ds(z)+Z(z)ds_1(z), 

or, fortnally, 

di(z)-((I-r(z))-1Z(z))dJ_1(z). 

Since the quadratic matrix T(l) consists of four quadratic p x p -blocks that are lower triangle 
matrices with zero diagonal, it is an easy exercise to show that I -T( l ) is invertible. Hence, 
(I - T(z)) is invertible in a neighborhood of z = 1. 

Call P(Z)(/) •= det(/I- 0(z)) the characteristic polynomial of the matrix 

®(z):=(I-r(z))-lZ(z). 

Then, by the theorem of Cayley-Hamilton, P(Z)(0(z))=O. From this, we see that the sequence 
(DGi+ (z))s>o satisfies a linear homogeneous recursion. 

Finally, it follows from the definition of FandZ that P(z)(/) = P(z_i)(/), from which we see 
ihatai(z) = ai(z-1). D 

Let 4(ZX 1^/^2/7, denote the roots of the polynomial P(2)(/), where z varies in a suffi-
ciently small neighborhood of z = 1. Since ai(z-l) = ai(z), they satisfy 4(z _ 1) = 4( z ) - Further-
more, there exist functions Bkfi(z, s) that are polynomials in s such that 

A%+„(*) = 2 X / ( v M ( * ) ' . (12) 
7 

Since-Dbk+ (1) = Gfc+Jp ~/^af- 1(af )*, it might be expected that (locally around z-X) there exists 
a unique root Ax(z) (satisfying ^(1) = a{) of maximal modulus which is simple. The following 
lemma shows that this is true if assumption 6 in Section 3 holds. 

Lemma- 2: Suppose that assumptions 1-6 in Section 3 hold and let v:= max{l</ <r|£>- ^ 0 } . 
Then, with the above notation, the 2p roots of P(i)(/) are af, 1 < / < r, where au 1 < / < r, denote 
the roots of zr - YI^\ajZr~J, 0 with multiplicity 2p-r-v, and 1 with multiplicity v. 

Proof: From A?^(1) = G*+J, = I , / ? , ^ we see that af surely 
are roots of P(i>(/)-

Since I -T( l ) is invertible, the multiplicity of 0 is 2p minus the rank of Z(l). Z(l) has a 
simple block structure. It is an easy exercise to show that its rank equals r + v. (Recall that ^ + 
hj = at and ht - ht - bt.) 

Similarly, the multiplicity of 1 is 2p minus the rank of 
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K = ( K U KL K;; K^i-rcD-zd). 

Observe that 
r k | K U K u ^ j _ ^ fK u +K 1 } 

Kl2 K u 

and that K u + K12 (resp. K u - K 1 2 ) are cyclic matrices with entries 1, -al9 . . . , -a r ,0, . . . ,0 
(resp. 1, -bx,..., -br, 0,..., 0). By [3, Lemma 3], the rank of Kx?1 + KX 2 is p (resp. the rank of 
K x J - K J 2 is p-v), v being equal to the number of different /?* roots of unity that are roots of 
zr - Sy=i bjZr~J. Thus, rk K = 2p - v, which completes the proof of the lemma. D 

Let us define discrete random variables Xm by 

J>(Xm = k) = ̂ . (13) 

(Recall that dm(k): = |{0<a <m\S(a) = k}\.) It is well known that one can calculate mean and 
variance using the generating function: 

r2 _ w - _L( ni>n\A. n> n\-A.r>'n\2 

From here on, we will assume 1-6 in Section 3. 

Lemma 3: Let Ax(z) be the unique root of maximal modulus of P(/)(z). Then we have A"(l) ̂  0, 

A"(X\ 
uG :=EXG =0(1) and a% :=VXG = « £ + 0(l) 
^^k+sp Uk+sp V ' °ifc+*p Uk+sp A (I) 

as 5 -> oo. Furthermore, if A"(l) * 0, then 

Eexp 
( Xa. ~Ua. \ k+sp ^k+sp lt~ 
\ ^k+sp 

t2\[, .„( 1 = c x p | ~ l l + 0 O T 

as s—> oo. This means that Xam is asymptotically Gaussian with mean juGm and variance aGm. 

Proof: Let A(z) = ^(z) and Bk(z) = Bkl(z, s) in (12) (where the s-degree of the polynomial 
Bkl(z9 s) is zero). Since A'(I) = 0, we obtain from (12) by differentiation, 

DGkj\) = Bk(i)A(iy+o((A(\)rn 

D'G^ (1) = Bk(\)A(\y J*g + O {{A{\)YY), 

D^Jl) = Bk(l)A(iy(s^+^yO((A(l)yy), 

with some 0 < y < 1 properly chosen. From Z)Gjfc+j (1) = Gk+sp9 we get 
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W), 

Both Dbk+sp(l) andDgk+sp(l) are real, and because of Bk(l) = B^f'1 eR+, B'k(\) is real. Further-
more, A"{\) and 2%'(1) are real, too. From this, we obtain that 

EXo^=^(l+°(rs)) = o(i), 

VXr. Jk+sp 

f
sA"(\)^Bll(l) (W)^ 

\ U 
(i+0(rs)) = s^-+o(i), 

A{\) Bk{\) {Bk(l) 

from which it is clear that A"(\) > 0. Using A'(\) = ^'"0) = °, we get 

A(e'y = Aiiyexp^^&y + Oist*)). 

Now suppose ^4"(1) > 0, then we have 

where the 0-constants are independent of A:. For any fixed t, we get 

r4 + l 

Eexp it-
Jk+sp ' ^k+sp 

Jk+sp J 

Jk+sp v 

G, exp 
k+sp 

-it-
^ k+sp 

Or Jk+sp J 

—"-Tjl,+0l7?JJ-
Thus, by Levi's theorem (see [7]), the normalized random variables (Xom - HGJI &Gm converge 
weakly to normal distribution. 

Remark: The use of generating functions for the proof of asymptotic normality probably started 
with Bender's paper [2]. Further references can be found in [5]. 

Now we will turn our attention to Xm9 where m need not be an element of the basis G. 

Theorem 2: Suppose that G = (G„) satisfies a linear recursion with restrictions 1-6 of Section 3. 
Then, with the above notation, we have 

EXm = 0(l) and VXm=t^ + 0(t), 
P AQ) 

Xm being defined as in (13) and / being the length of the digital expansion of m. If A"(X)> 0, 
then Xm is asymptotically Gaussian with mean value EXm and variance ¥Xm -clogm for some 
constant c > 0 , i.e., 

2K J-CO 
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Remark: The special case of G„ = Fn+l (which leads to the original Zeckendorf representation) 
was discussed in [4]. There are also recent contributions to similar questions, e.g., Dumont and 
Thomas [6] prove asymptotic normality for substitution sequences by a different method, and 
Barat and Grabner [1] show the existence of a limiting distribution of G-additive functions. 

Proof: Let m = S/=i ^G,- be the digital expansion of m. Iterated use of equation (7) yields, 
for 1 < j < /, i < ej9 and a < Gjy 

( i (. i-
^hGh+iGJ+a = (*,mod2)S(Gt) + (-l)"5j 2 > A + ' G > + " 

= (sl mod 2)S{Gl) + (-1)*' ( s M mod 2)5(GM) + • • • + (-1)*'+'"+^2 {sj+l mod 2)S(Gj+l) 

+ (-l)£'+':-+s^ (i mod 2)S(Gj) + (-iyi+'"+€j+l+i S(a) 

= X (-l)€l+'"+£p+l (ep mod 2)S(Gp) + ( - l ) ^ + - + ^ (i mod 2)S(Gj) + (-if+'"+8'+l+i S(a), 

and from (4) we see that 

I dm(k) = 0<a<^siGk\S(a) = k 
I Bj-\ 

= 1 1 y=i /=o 
\0<a<G, Y^e^ + iGj+aUk] 

VW+i ) J 

-EI 
;=1 ;=0 

0 < a < G , 

/ 

% ) = (-l> */ + •••+*,+,+/ 

Y| 

k - Z(-1)"*""""'*1 S(Gp)- (-l)*/+'"+^+1 (i mod 2)S(Gj) 
P=j+i 

*„-l(2) /J 

/ */ * , - l 

y=i /=o 

f 
£, + -+SJ+l+i 

w 
k- i(-l)€l+'"+€p+lmp-(-rfl+-+€J+l(imod2)mj 

P=j+\ 

and 

AreZ 

y=l /=0 keZ 

£l+-+£j+l+i\ 

\ \ 

k - £(-l)*/+""+Vl^(G,) - (-l)*'+"+^(i mod 2)S(Gj) 
v «p-i(2) JJ 

;=1 |=o fceZ 

(-l)*'+-+*;+'+,fc+ 2(-l)*'+""+i r | '+ ,^+(-l)f f '+""*y+1(/mod2)»i>/ 
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=1; 
£(-ir'+"~'*'« 

y^" 1 ^ '* +£ '̂('mod2)'"-')JD (z((-i)"+""M'M+')) 

in which 
=11̂ 1 Vi 

;=1 7=0 

6(7,0 = i ; . ( - l ) e , + " ^ , i » p + ( - l ) " + "^ , ( /mod2)« y , 
*.«1(2) 

(14) 

c(7,o=(-ir/+"^+,+'-
Differentiation of (14) yields 

**£(*)=I i(6a,'yu-0AJ,(^a-0)+^')^(^/'0K/.»K(y,')). 
y=i <=o 

zj-(zD>m(z)) = Z X(*C/. i)2zb O'0DG(zc^) + 2b(j,i)zb^ DG(z«^)c<J, tyV* 
<% ,=1 ,=0 

+ z
bu- '\zcU- °DG (zcU- °)+z2c°- *>Dg (zc(A °))). 

It is an easy exercise to show Hl
J=l(l-j + l)kGj^CkGt. Because the ntj are bounded, we get 

b(j, i) = 0(1- _/' + l) (uniformly in i) and 

^ 0 ) = Z £ (bU,i)DGa) + c(j,i)DGj(l)) 
j=\ 1=0 

7 / 
O I ( / -7 + l)Gy 0(G,) = 0(rn) 

and 

<fc woo) 
« ^ s , - i 

= I I ( * O - , 0 2 A J / I ) + 2 * C / , I - K / , 0 ^ ( I ) + ^ 0 ) + ^ / ( I ) ) 
lz=l y=l ,'=0 

/ A"(\) 

l A"(\) 
P A(\) P A(\) + 0{m) 

mj-m+o(m)-
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Thus, we have 

EXm = 0(l) and VXm = -L^-+0(l). 

Furthermore, by using (14), we obtain 
( 

A.(^-)=S«p 
;=i 

\ 
i 

V ^=1(2) 

x E e x p j ^ ( - l ) ^ 
it r n f / + . . .+o 1+;-

and for any fixed t, 

A ^ P ^ - i ) ' ' * "«* ' ) ) = A , exp 

( A 
= Gj exp (M())) 1 + 0 ' l * 

\Jf; 

-i-iy 
, Gj 

= G/-'2/2exp 
ftlzl + a-L. 

2 I ,yfj, 

and 

|U(^(-l)--+-Omod2H)/£(l + o (^) 

•=<j\1+°\ziT l h ^ e x p f o r 1 II V7 

where the (9-constants do not depend on / ory. Thus we get, for 0 < & < y, 

77 

r 

(-;»<;<! I W U •\ylJJ) i<y</-/» 

= i _ I j A e x p ( O ( / » - * ) + O ( ^ f ) ] + 0 ( G l w , ) 

= Z W l + 0(('-*)j + 0(oi-' ,)= 2«A+0("""" 1 )+0(a i - " ) 
/-/9<;</ /-/d<;</ 

and, finally (for any fixed t), 
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Eexpl itXm Mm) = Dm{elt/CTm)Qxp(-it^ 
1 o-m m I <j„ 

| V l + 0(/H)) ( I 

and Xm is asymptotically Gaussian with mean iim and variance a2
m. D 

The condition that zr-Z|*=1&^r-/ (where v = max{l<i <r\bt ^ 0}) is a product of zr~v and 
different cyclotomic polynomials is rather restrictive in the case in which Gn < 2Gn_x for n > 1. 

Proposition 5: Suppose that G = (Gw) satisfies a linear recursion with restrictions 1-5 of Section 
3 such that Gn < 2Gn_x for n > 1. Then zr - J?i=l b^1"1 is a product of zr~v and different cyclo-
tomic polynomials, where v = max{l <i <r \bt ^0}, if and only if one of the following conditions 
holds: 
L r = 1 and ax - 2: the binary system, or 
2 Oy = a2 = • • • +ar = 1: a generalized Zeckendorf representation. 

Proof: First, let 5(z) = zr - Xz
r
=1 ̂ r _ / be of the above type, then if ax > 1 we are in the first 

case. So let us assume ax = 1, then it follows that ay e {0,1}, ar = 1, and therefore v = r. From 
this, we see that zr - E[=i btzr~l must be a symmetric polynomial that yields at - ar_t for all 
l< i '< r . Now suppose ax =--- = a/_1 = l = ar =-«- = ar_/+1 and ax=0 = ar_f fo r somel< i< r-i. 
Then, by assumption 3 in Section 3, we have that Gn_rM > YIj=r_iJ>rlapn_j = EJ=r_/+1 Gn_j for n>r 
or, equivalently, that Gn >Sy=iGn_j for n>i. Because Gn - Zy=i<*pn-j for « > r, it follows that 
TJj^+idjG^j >Gn_j forn>r. On the other hand we have, again by assumption 3, that G„_, > 
YJj=i+iafGrJ-j f°r n> r> fr°m which we see that Gn = Zy=\ai+JGn_j for n> r-i, a contradiction to 
assumption 4. 

Now let r = 1 andax = 2, then v = 0 and B(z)-z. Finally, suppose ax = a2 = ••• = ar = 1. 
Then 6/ = (-iy+1 and 

,=o z + l 

is of the desired type. • 
4,2 Unbounded S(Gn) 

Proposition 6: If S(Gn) is unbounded, then there exists some a with \<a<al {ax defined as in 
Section 3), k>l, real numbers <px,...,<pk, and polynomials fii(n), ...,j3k(n), Px(ji)9 ...,(3k{ri) not 
all of them zero, such that 

5(G#l) = a"t09/(/i)co8(ii^)+A(ii)sin(/i^))+C>(0'a)") 
1=1 

for some y e(0,1). 

Proof: Since S(Gn) satisfies the linear recurrence of Proposition 2, this representation fol-
lows immediately. D 
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Theorem 3: Suppose that G = (G„) satisfies a linear recurrence as above such that S(Gn) is 
unbounded. Then 

l i m s u p i o g ( l ^ ) l ) = i o g g 

m^oo logm logal 

Proof: First, it follows from Proposition 6 that 
r log(\S(m)\) ^ v log(\S(Gn)\) log a 
hm sup , v /u > lim sup , * =-r-g—. 

ŵ oo logm m_>^ logG„ loga^ 

The upper bound follows from the second part of Proposition 2 and again by an application of 
Proposition 6: Let m = Zy=i £jGj be the proper digital expansion of m and let C, K > 0 be large 
enough so that |/?,(w) + /?/(w)| < Cw^ for all w, i. Then we have, for / -» oo, 

log(l^)l) ^ lQgK=il^(G/)l) ^ log(/a'(C/D + Cy)) 
logw logO/G,) log^+logG, 

< / l o g q + (D + l)log/ + Cw log a 
/logaj + C" log a / 

which completes our proof D 

Remark: It is also possible to discuss the function F(m) = S(m)m~{loga)/(logai) in more detail. It 
turns out that F(m) is an almost periodic function, i.e., S(m) has an almost fractal structure. You 
just have to adapt the methods used in [8] and [9]. 

5. CONCLUSIONS 

Our starting point was the Mobius function juG(ri) of the partial order which is induced by 
proper digital expansions with respect to a basis G = (Gw). It turned out that juG(n) e {-1, 0,1}, 
so it is a natural question to determine the distribution of these three values -1,0,1. If Gw+1 > 2Gn 

for all n > 1, then the answer is very easy (see Proposition 1). Therefore, we restricted ourselves 
to the case Gn+l < 2Gn for all n > 1. Here juG(n) = (~l)SG(n). Thus, fdG{n) * 0 for all n > 0 and 
MG(N) = SG(N) is exactly the difference between the number of n < N with juG{ri) = 1 and the 
number of n< N with juG(ri) = - 1 . In the case of linear recurring sequences G = (Gn) (satisfying 
certain natural conditions), we proved that in any case MG(N)~o(N), i.e., -1,+ 1 are asymp-
totically equidistributed. 

More precisely, we discussed the distribution of values of SG(N) (which can also be con-
sidered in the case G„+1 > 2G„). It turns out that there are two essentially different cases, the case 
of bounded SG(G„) and the case of unbounded SG(Gn). If SG(G„) k unbounded, then SG(N) has 
an almost fractal structure (see Theorem 3 and the Remark following it). However, if SG(Gn) is 
bounded for all suitable initial conditions of G, then the values SG(N) admit a Gaussian limit law 
in the following sense: If Xn is a random variable defined by 

J>(XN=k) = jj\{r,<N\SG(n) = k}\ 

then XN is asymptotically Gaussian with bounded mean value and variance VXN -clogN, pro-
vided that c * 0 (Theorem 2). 
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Since SG(Gn) satisfies the linear recurrence (2), it follows that SG(Gn) Is periodic (for suffi-
ciently large ri) if it is bounded. This can only occur for all suitable initial conditions of G if and 
only If the roots of the characteristic polynomial B(z) = zr-'Zr

JsslbjZr~J of (2) are 0 or roots of 
unity. Therefore, the assumption on B(z) in Theorem 2, this is assumption 6 in Section 3, is quite 
natural. 

Finally, we want to recall that the only recurring sequences G = G(n) satisfying assumptions 
1-5 such that ax = 1 (I.e., Gn+l <2Gn) and that B(z) is the product of zr~v and cyclotomic poly-
nomials are generalized Fibonacci numbers (Proposition 5). They satisfy a recursion of the form 
Gn = Gn_x + '-+Gn_r. Here Theorem 2 applies. Hence, the values of MG(N) with respect to 
generalized Zeckendorf representations satisfy a central limit law. 
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1. INTRODUCTION 

The coefficients of the Pascal triangle were generalized in 1756 by de Moivre [5]. Each row 
of a Pascal triangle contains a sequence of numbers that are the coefficients of the power series 
expansion for the binary expression (l + x)7^. The de Moivre formula [2], [4], [5], [6] derives the 
coefficients of the power series for the generalized expansion of (1 + x + x2 + • • • + x^J"l^)N. Thus, 
for integers (J>2 andN> 1) and for 0<h<N(J-l), we define C(N,J;h) to be the coeffi-
cients of (xh) in the expansion of 

(l + x + x2 + '-' + xiJ-iy = ZC(N,J;h)xh. (1) 

A Pascal-de Moivre triangle can be created from the coefficients C(N, J; h) for each posi-
tive integer value (J). For example, with (J = 3), the Pascal-de Moivre triangle of C(N, J; h) 
terms for row numbers 1 < N < 4 is: 

N\h 0 1 2 3 4 5 6 7 8 
1 1 1 1 
2 1 2 3 2 1 (2) 
3 1 3 6 7 6 3 1 
4 1 4 10 16 19 16 10 4 .1 

In this paper, the sequence of C(N, J; h) terms in each row (N) of the Pascal-de Moivre 
triangle is examined for the series properties, at various arrangements of terms. Each C(N, J; h) 
term in the Nth row of the Pascal-de Moivre triangle is assigned a coefficient factor (Fh), such 
that 

Series with coefficients (F) = Z{(F^) C(N, J; h)}. (3) 

Sections 3 and 4 define summations of all C(N, J; h) terms in the N^ row of the Pascal-
de Moivre triangle that are separated by some fixed interval spacing (Ah). Then, from the set of 
coefficients (F), the factors (Fh) equal one at each interval step and equal zero otherwise. Sec-
tion 3 examines these summations of the C(N, J; h) terms at intervals that are a function of 
the distribution variable (J); i.e., for (Ah = f(J)). The quadruplet cycle of Section 4 adds the 
C(N, J; h) terms with interval spacing (Ah = 4). 

In Sections 5 and 6, the coefficient factors (Fh) are related to the moments of the C(N, J;h) 
distribution. A quick review of the theory of moments from [3] will illustrate which coefficient 
factors (Fh) from set (F) are involved, and what form the series in (3) will take. 

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July 1996, was 
scheduled to appear in the Conference Proceedings. However, due to limitations placed by the publisher on the 
number of pages allowed for the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly 
to assure its presentation to the widest possible number of readers in the mathematics community. 
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The moment (p\RtX^) about a point (x) for a discrete distribution of (Ch) terms can be 
expressed by a summation over all term indices (h). The R^ moment of (p\R^) is defined by the 
summation in (4) for the distribution density f(h) evaluated at each index (/*): 

rr\R,x) = n{h-x)R f(h)}, (4) 
where /(A) = ( Q ) / ( Z Q ) . 

We choose the distribution terms (Ch) to be the terms in the N^ row of the Pascal-
de Moivre triangle, given by C(N, J; h). By rearranging equation (4), we define a moment sum-
mation equation (5) for the C(N, J; h) distribution as: 

S{(A - x? C(N, J;h)} = (m{Kx))(Z{C(N, J; h)}). (5) 

The left-hand side of equation (5) is the same as equation (3) with the coefficient factors 
(Fh) = (h - x)R. Section 5 uses equation (5) to obtain Summations Based on Moments. Section 6 
uses a similar equation for (3), but with (Fh) = (-l)h(h-x)R, to obtain Summations Based on 
Alternating Signed Terms. In Sections 5 and 6, the C(N, J; h) moment summations and moments 
(n\Rtx)) are evaluated relative to points at (x = 0, the origin) and (x = M, the mean). 

2. DERIVATION AND TERMINOLOGY 

De Moivre derived the formula for each C(N, J; h) term by writing the left-hand side of 
equation (1) in the form (1 - xJ)N(l - x)~N, expanded both factors with the binomial theorem, and 
collected terms. The resulting formula (6) is a summation over all integers {0<a<[h/J]}, 
where [h I J] is the "least integer function" for the largest integer not exceeding the value ofh/J: 

1 N-l [a 
h-aJ+N-l\(N T\ 

(6) 

In a reduced format of factorials, with the substitution (N) = (N\)/((N~-1)\), the de Moivre 
formula becomes the summation in (7) over all integers {0 < a < [h I J]}: 

C(N j - h)=u-ir ( / ? " a J + # ~ 1 ) ! ^ (?) 
W,J,n) U i; (h-aJ)\ {N-a)\{a)V K) 

A standard terminology will be used for the coefficient terms of the Pascal-de Moivre 
triangles. A consistent notation for the C(N, J; h) and C(N, J; h, a) terms is described here: 

C capital letter for the term itself (the coefficient of the basic expansion); 
N, J capital letters for the independent variables of the C(N, J; h) series; 
h, a small letters for the summation indices in their respective sums. 

The power ofIhe Mathematica [8] program allowed computations that could accurately gen-
erate numbers in excess of 100 digits. Therefore, large C(N, J; h) distributions were evaluated 
with precision, including those defined by (N, J) values of (100,2) and (20,20) and (2,300). 

X COLUMNAL SUMMATIONS 

The full N^ row sequence of terms C(N9 J; h) in the Pascal-de Moivre triangle has a known 
series value of(JN) per [4], [7], when summed over all integers 0<h< N(J-1): 
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ZC(N,J;h) = (JN). (8) 

The C(N,J;h) sequence can also be partitioned by taking every (2th) term to obtain an 
ordered summation S(N, J; Q, r) of the C(N, J; h) terms. Reference to such partitioning is 
given for the binomial (J = 2) case in [9] and for the C(N, J; h) sequence in [1]. Here and in the 
next section, the derivation of S(N, J; Q, r) will use a variation of the methods described in those 
references. The main difference between Hoggatt's approach in [1] and the one employed in this 
section is that here the least integer function for \JN IQ] is used rather than the simple ratio of 
(JNIQ). 

For pictorial convenience, the partition of a C(N, J; h) sequence can be displayed in tabular 
form with (Q) columns. As a guide to the tabular display of partitions, the C(N, J; h) sequence 
at values (N, J) = (3,3) from (2) will be analyzed for various spacings (Q) to obtain the sums 
S(N,J;Q,r). 

Table of Columnal Sums S(N, J; Q, r) for (W, J) = (3,3) (9) 

A 

0 
1 
2 
3 

\WJ',Q,r) 

e = ( j - i ) = 2 

r = 0 1 

1 3 
6 7 
6 3 
1 

14 13 

[JN /Q] = [33/2] = \3 

e = j = 3 
0 1 2 

1 3 6 
7 6 3 
1 

9 9 9 

[ J " / g ] = [33/3] = 9 

Q = (J+l) = 4 

0 1 2 3 

1 3 6 7 

6 3 1 

7 6 7 7 

[JN / g ] = [34/4] = 6 

Each row will have a row number (̂ 4) with values from 0< A <[N(J-l)/Q], where the 
brackets indicate the least integer function for the greatest integer not exceeding the enclosed 
expression. The columns in this table will have column numbers (r) in the range 0 < r < (Q -1). 
The values of the column series S(N, J\'Q,r) are analyzed for various interval spacings ( 0 at or 
near the value (J). 

For Q = J , the terms at (h = AQ + r) will be summed over integers 0 < A < [N(J -1) / (J)]. 
Each column (r) in the range 0 < r < (J-1) will have the sum for S(N9 J; Q, r) per equation (10). 
Table (9) above shows that the C(N, J; h) sequence at (N, J) = (3,3) has each columnal sum 
£(# , J ; e , r )equa l to (9 ) . 

S(N, J; Q,r) = TC(N, J; h) = J{N~l) for each (r). (10) 

In the binomial case of (J = 2) for Pascal's (classical) triangle, formula (10) generalizes the 
familiar fact that the sum of alternate terms (Q = 2) in any row is half the sum of the entire row 
from (8), since (JN~l) = 2(AM)= (l/2)2N=(l/2)(JN) when (7 = 2). It does not mean, however, 
that the sum of alternate terms of the generalized Pascal-de Moivre triangle with (J * 2) is half 
the sum of the row terms (a case that is dealt with in equations (19) and (20) of the next section). 

For Q = (J-1), the C(N9 J; h) terms at (/? = AQ + r) are summed over integers 0 < A < N. 
So then, for column locations (r) in the range 0 < r < (J-2), the column sums S(N, J; Q, r) will 
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be given by equation (11) for all N>1. In the (N, J) = (3, 3) example, the first column at (r = 0) 
has a sum of (14), which is one more than the sum of (13) at the other column(s), as seen in table 
(9). Equation (8) covers the linear (Q = 1) case at (J - 2). 

$(N, J; Q9r) = ZC(tf, J;h) = [(JN)/(J-l)] + l for J>2 and r = 0 
= [(JN)/(J-l)] f o r / > 2 a n d l < r < ( J - 2 ) . 

For Q = (J + T), the column terms at (h = AQ + r) are summed over the integers 0<A< 
[N(J~ 1) / (J +1)]. So, for column locations (r) in the range 0 < r < J , the sums S(N, J; Q, r) 
satisfy equation (12): 

S(N, J; ft r) = S C(tf, J; h) = [(JN) I (J +1)] + K. (12) 

The value of (K) in equation (12) is either one or zero, as determined in table (13) below. 

Table for if Values (13) 

Column Type 

Unique 

Common 

Condition for Column Type 

(iV + r) = 0(mod(J + l)) 

(JV + r ) * 0 ( m o d ( J + l)) 

AT = Odd 

£ = 0 

K = l 

N = Even 

K = l 

K = 0 

In these Q = (J+l) cases, one column is always unique. All the other columns will have 
identical sums that differ from the unique column by one. In the (TV, J) = (3, 3) example, where 
(N) is odd, the table for K values (13) indicates that the unique column will have (K = 0). Thus, 
from equation (12) and table (9), the unique column sum S(N, J; Q, r) equals (6). At N = 3, the 
only column location .(f) within 0 < r < 3 that satisfies (N + r) = 0 (mod 4) is at (r = 1), per the 
Condition in table (13). All other columns have (K = 1) and common column sums S(N, J; Q, r) 
equaling (7). 

So in general, for any interval spacing Q-{J + \J, o r J -1} , each columnal series with 
terms at h = (AQ + r) is summed over integers 0 < A < [N(J -1) / ( 0 ] . For the partition of the 
C(N, J; h) sequence with these spacings ( 0 , each column (r) in the range 0 < r < (Q -1) will 
yield a series result for S(N, J; Q, r) given by equation (14): 

5 ( ^ J ; e , r ) = [ ( ^ ) / ( 0 ] + 6,where6 = {Oorl}. (14) 

4. SUMMATIONS WITH QUADRUPLET CYCLES 

The Method of Ramus described in [1] and [9] uses the roots of unity, with its real and 
imagineiry parts, to partition the terms in the N^ row of the Pascal and the Pascal-de Moivre 
triangles. The terms of the C(N, J; h) sequence are likewise segmented here by using the second 
and fourth roots of unity. This segmentation creates four equations of series (A through D) in 
table (15), whose coefficients (Fr) repeat for every fourth term of the C(N, J; h) sequence. 

These repeating coefficients (Fr) in table (15) are the same as the coefficients (Fh) of the 
C(N\ J; h) terms from equation (3). For any series in (16), each (Fh) value equals the (Fr) entry 
in table (15) when {h = r (mod 4)}. The sum equation of series (A), for example, is expanded in 
(17)., 

1998] 23 



THE PASCAL-DE MOIVRE TRIANGLES 

Coefficient Table for Series {A, B, C, D} and Quadruplet Partitions (Pr) (15) 

Coefficients (Fr) at r = 

Series A 
Series B 
Series C 
Series D 

Quadruplet (Pr) = 

0 1 2 3 

+ 1 0 + 1 0 
0 +1 0 +1 

+ 1 0 - 1 0 
0 + 1 0 - 1 

P P P P 
r0 r\ r2 r3 

Series (A,B,C,D) = Z{(Fh)C(N,J;h)} for 0<h< N(J-l). (16) 
Series (A) = T{C(N, J;h = At) + C(N, J;h = 4t + 2)} for 0 < t < N(J -1) / 4. (17) 

The creation of a quadruplet cycle from table (15) using the series {A, B,C,D} equations 
requires the identification of the relationships between the series equations and the quadruplet 
{P0, /} , P2, P3} equations. In the nomenclature of the S(N, J; Q, r) partition sums from [1], the 
quadruplet {Pr} equations will be defined as 

Pr = S(N, J; 4, r) since Q = 4 and for integers (r) within 0 < r < 3. 

The C(N, J; h) sequences thus created, whose sums are (Pr), will have spacings between the 
nonzero terms of (Ah = 4), compared with the nonzero term spacing of (Ah = 2) for those of the 
series {A, B, C, D). The corresponding transformation of the equations {A, B, C, D} into the 
equations {Pr} is given for each quadruplet location (r) from table (15) by: 

P0 = (A + Q/2, P^iB + D)/!, 
P2 = (A-Q/2, P3 = (B-D)/2. 

Now, in order to state the quadruplet equations, the actual formulas for the segmentation 
equations {A, B, C, D) must be obtained. The first two equations {A and B) are the equations for 
the sum of alternate terms for C(N, J; h) in the N^ row of the Pascal-de Moivre triangle. Here 
we state, from empirical analysis, that the series (A) starting at (h = 0) and the series (B) starting 
at (h- 1) have series summation formulas given by equations (19) and (20), where (N > 1) and 
(h) = J (mod 2): 

A = ((JN) + h)/2 (19) 
and 

B = ((JN)-b)/2, (20) 

where 6 = 0 for (J = even), or b = 1 for (J = odd). 
The two segmentation series {C and D} have equations that are obtained from the tables (22) 

and (23), respectively, with values of (±1,0, or + S), where S is defined by equation (21): 

S = ((-l)[N/4])(2[N,2]), (21) 

where the bracketed expressions in the exponents are least integer functions. 

24 [FEB. 



THE PASCAL-DE MOIVRE TRIANGLES 

Table for Series (Q (22) 

Table for Series ( 0 

A11N>1 
' Ar=0(mod4) 
A^=l(mod4) 
JV=2(mod4) 
A^=3(mod4) 

Table for Series ( Q 

A 1 1 J V > 1 

A^=0(mod4) 
A^=l(mod4) 
Ar=2(mod4) 
^ = 3 (mod 4) 

J = 0 ( m o d 4 ) 

0 

J = l ( m o d 4 ) 

1 

Tab le for Series (D) 

J = 0 ( m o d 4 ) 

0 

.7=1 (mod 4) 

0 

J = 2 ( m o d 4 ) 

S 
S 
0 

s 

.7=2 (mod 4) 

0 
S 
S 
S 

J = 3 ( m o d 4 ) 

1 
0 

-1 
0 

.7=3 (mod 4) 

0 
1 
0 

-1 

(23) 

As an example of quadruplet analysis, the C(N, J; h) sequence from table (2) with (N, J) = 
(4,3) is listed below in the tabular form of Section 3 with (2 = 4). The values {A, B, C, D} are 
calculated from equations (19), (20), and (21) and tables (22) and (23). Then the {Pr} values, 
obtained from equations (18), give confirmation of their equality with the corresponding column 
sums. 

Column Sums of the C(N, J; h) Sequence 

r = 0 1 2 3 
1 4 10 16 

19 16 10 4 

J _ _ _ 
Sum= 21 20 20 20 

Series Equations 

,4 = (34 + l) /2 = 41 
B = (34-l)/2 = 40 
C = l 
D = 0 

Quadruplet {Pr} Equations 

P0 = (A + Q/2 = (4l + l)/2 = 2l 
Pl = (B + D)/2 = (40 + 0)/2 = 20 
P2 = (A-Q/2 = (41-1)/2 = 20 
P3 = (B-D)/2 = (40-0)/2 = 20 

So, as just illustrated, the four quadruplet series {Pr} may be built from combinations of the 
series {A, B, C,D}9 according to equations (18). Also any desired arrangement of the four {Pr} 
equations can be combined further with any choice of coefficients (Gr) represented as num-bers, 
variables, or functions, as shown: 

Quadruplet Arrangement = X{(Gr) (Pr)} for (r) within 0 < r < 3. 
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5. SUMMATIONS BASED ON MOMENTS 

The definition of moments about a point for the C(N,J;h) distribution was introduced by 
equation (4) in Section 1. The two moments considered here are the moment (v) taken about the 
origin and the moment (ju) taken about the mean (M). The connection between Rth moment 
calculations and the summations of C(N, J;h) terms is indicated by their respective evaluation 
formulas from equation (5), when summed over 0<h< N(J-1). .. 

ZmRC(N,J;h)} = (vR)(JN), (24) 

mh-M)RC{N,J;h)} = {»R)(JN)- (25) 
The mean (M) is the midpoint of the range of (h) values and thus equals N(J -1) / 2, which may 
include half integers when N and (J -1) are both odd integers. 

The sum of all C(N, J; h) row terms in a Pascal-de-Moivre triangle equals (JN), which was 
substituted for Y,C(N,J;h) in the typical definition of moment equations [3]. Multiplied by 
(JN), the moment equations (v^) and (juR) give the C(N, J; h) moment summations (24) and 
(25). 

To find the moment equations for (v^) and (juR), we derive their exponential generating 
functions: (//egf) and (vegf). And then, by expansion of the exponential generating functions, the 
coefficient of the term {(tR)/ R\) is the equation for the J?* moments for (fiR) and (v^), in the 
summation over integers 0 < i < QO3 as outlined in [3]: 

AW = E0O(/')/CO, 
vegf = 2(v,.)(^)/(/!). 

The exponential generating fimction for (/iegf) turns out to be the exponential power series 
shown in (26), which is summed over integers 2 < r < QO . The notation Exp{x} is defined as (ex). 

/iegf = Exp{Nm-l)r($rW )/(r!))}, (26) 

where ^r = ((Jr) - l)(Br) I r with Br = the r* Bernoulli number. 
Each Bernoulli number (Br) can be derived as the coefficient of ((£r) / r!) in the exponential 

generating function (BQgf) from the summation in (27) for 0<i <oo. From reference [10], the 
sequence of Bernoulli numbers (Br) for (r > 1) is {(-1 / 2), (1 / 6), 0, (-1 / 30),...}. 

BQ0=lXBd(ti)'(i^ = t/{(et)^. (27) 

The accuracy of the (juegf) formula in (26) has been confirmed empirically by comparing the 
distribution results on the left-hand side of equation (25) with the moment equation results of the 
right-hand side of equation (25). These two approaches gave identical results through i?<32, 
which represented the limit at which the author's computer hardware capability could complete 
the calculations in a reasonable time. 

A couple of cases will illustrate the creation of the initial (fiR) equations, in terms of their 
distribution variables (Nmd J). Also, a specific example with (N, J) = (2,3) can demonstrate the 
numerical equality between the left-hand and right-hand sides of equation (25). 

For the case in which R = 2, the coefficient of (t2)/(2\) in the expansion of the (//egf) for-
mula in (26) gives the variance (ju2) of the C(N9 J; h) distribution: 
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M2 = N(S2) = N(J2 - l)B2 12, where B2 = (1 / 6), 
ju2 = N(J2-I)/12. { j 

When multiplied by (J'v), this second moment (ji2) formula (28) yields the C(N,J;h) 
moment summation formula from (25). 

Z{(h - M)2C(N, J; h)} = fi2{JN) = N(J2 - l)(JN) 112. (29) 

The result of (29) generalizes the fact that the second moment summation of terms in the N^ 
row of Pascal's (classical) triangle equals the value N(2(-N~2)), as shown in (30) for (J = 2): 

Z{(/i - MfC(N, 2; h)} = M2(2N) = N(22 -1)(2") /12 = N(2(N~2)). (30) 

For symmetrical distributions like C(N, J; h), the moment (juR) about the mean (M) will be 
zero whenever R is an odd integer. Thus, the coefficients of (t2i+l) I ((2/ +1)!) in the expansion of 
G êgf) m u s t ^e z e r o

? f°r all integers (i > 1). All of these coefficients (ju2i+i) contain a factor with 
a Bernoulli number of odd index, which is zero per [10]. So the moments (juR) are zero when R 
is an odd integer, because the corresponding Bernoulli numbers are zero. 

For the case in which R = 4, the coefficient of (/4)/(4!) in the expansion of formula (26) for 
(Megi) gives the 4th moment (ju4): 

M4 = {3N2(S2f} + {N(S4)l 
ju4 = {3N2((J2 - l)B212)2}•+ {N((J4 - l)B414)}3 whereB4 = (-1 / 30), (31) 
^ 4 = {# 2 ( ( J 2 - l ) 2 ) /48}~{#( / 4 - l ) /120} . 

The specific example of (ju4) with (N, J) = (2,3) will be left to the reader to confirm that the 
formulas in equation (25) satisfy Z{(/t - 2)4C(2,3; h)} = (ju4)(JN) = (4)(32) = 36. 

Next, the exponential generating function (vegf) for the moment about the origin is shown to 
have the same formula as (juQgf) in (26), except that the summation index (r) begins here at 
(r = 1) instead of at (r = 2). 

vegf = Exp{Nm-W(SrW )/(r!))}, (32) 

where Sr = (((Jr) - l)(Br) I r\ with Br = the r* Bernoulli number. 
By expanding the exponential generating function (vegf), the moment equation for (v^) can 

be obtained as the coefficient of the ((tR)/ R\) term. Again formula (32) was confirmed empiri-
cally to R = 32. Select cases for R = (1,2, and 4) will show the moment equations in terms of the 
distribution variables (TV) and (J). A numerical example of (v4) at (N, J) - (2,3) can illustrate 
the equality between calculations of the left-hand and right-hand sides of equation (24). 

The first moment (vj) gives the value of the mean (M) of the C(N, J; h) distribution. The 
mean (M) is the midpoint of (h) over the range 0<h< N(J-1), which must equal N(J-1)/2. 
And this value is identical to the moment derivation from (32) for the first moment (vx): 

vl=-N(Sl) = ~N(Jl-l)Bl/l wherefil = (-l/2), 
vt = N(J-l)/2 = M. { ) 

The result for (vx) generalizes the known binomial formula in [10] for the summation of 
Z{(h)lC(N, J;h)}=N(2fN-l\ since at (J=2) this also equals (vl)(JN) = (N/2)(2N) = N(2)(N-l). 

Also, from the (vegf) expansion at (i? = 2), the second moment formula for (v2) becomes 
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v2 = N2(( J -1)2 / 4) + N(( J2 -1) / (12)). (34) 

The binomial case for X{(h)2C(N, J;h)} in (24) is given at (J=2) by taking (v2) times (2^), 
where (v2) = (l/4)N2 + (1/4)N. So Z{(h)2C(N,2;h)} = (v2)(2N) = N(N + l)(2{N-2)). 

The fourth moment (v4) is obtained from the coefficient of ((*4)/4!) in the expansion of 
(vegf) in formula (32), with the Bernoulli numbers for (r >1) of {(-1/2), (1/6), 0, (-1/30),...}: 

v4 = N\(J-l)4116) + N\(J-l)2(J2 -1) /S) + N2((J2 -I)2148) -# ( ( J 4 -1 ) / 120 ) . (35) 

Calculation of (v4) for a C(N, J; h) distribution with (N, J) = (2,3) will be left to the reader to 
confirm that the formulas in equation (24) satisfy Z{(/i)4C(2,3; h)} = (v4)(JN) = (52)(32) = 468. 

The mean (v{) was shown in (33) to be equal to (N(J-l)/2), and the variance (//2) was 
given in (28) as (N(J2 -1)/12). Now, the two exponential generating functions from (26) and 
(32) can be redefined in terms of the mean and variance. To make the adjustment, the summa-
tion factor (N) is multiplied by ((J2 -1) /12) to get the variance (ju2). To balance this multipli-
cation, the terms (Sr) are then divided by the same ((J2 -1) /12) factor, thus creating a new sum-
mation term (Tr). 

Applying this transformation to formulas (26) and (32), alternative definitions of the expo-
nential generating functions for (juQgf) and (vegf) become the exponential power series in (36) and 
(37), with sums of integer index (r) over 2 < r < oo for (juQgf) and over 1 < r < oo for (vegf): 

//egf = ExpU/^KHy^xo/CH))}, (36) 

vegf =Exp{(M2)U(-W(Tr)(0/(rm, (37) 
where Tr = (12)Sr I (J2 -1) = {(12)£r / r) {((Jr) -1) / {J2 -1)} with Br = the r* Bernoulli number. 

The special characteristics of the (Tr) sequence depend on the Bernoulli numbers (Br), by 
definition. Like the (Sr) sequence, the values of (T2j+1) are zero since (B2j+1) are zero for integers 
(/' > 1). Additionally, the value of (T2) is always equal to one for all (J). 

T2 = {(12)B2/2}{((J2)-1)/(J2 -1)} = {(12)B2 /2}{1} = 1, since B2 = l/6. 

With equations (36) and (37), various moment equations such as (ju4 and v4) can be derived: 

//4 = 3(//2)2(r2)2+(^2)(r4), (38) 

v4 = (M2)\-T,)4 + 6(^2)3(-7;)2(r2) + 3(ju2)2(T2)2 + (^)(J4) . (39) 

Since (ju2) = (N(J2-I)/12) from equation (28), specific distributions can be evaluated 
exactly by knowing the values of (N and J). In the fourth moment example for a C(N, J; h) 
distribution with (N, J) = (2,3), the (Tr) sequence for r>\ begins with {(-3/2), 1, 0, (-1),...} 
and (ju2) = 413. The reader is invited to confirm that the fourth moments are again (//4 = 4) and 
(v4=52). Therefore, either interpretation of exponential generating functions, with Sr or Tn 

gives the correct moment value. 
The general rule for the leading term in the moment equation (juR) becomes apparent by 

observation of equation (36). Because the odd-indexed Bernoulli numbers (Br) are zero for r > 1, 
and because (2£) = 1, the first term in the (juR) moment equation will be a double factorial 
(i?-l)H times (ju2) to the power (R/2). In the sample equation (38) for (ju4), this first term 
was 3(//2)2-
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Since the summation in the exponential generating function for (vegf) of (37) begins at index 
(r = 1), the leading term in the moment equation (v^) is always (-TX)R times (ju2)R. In example 
(39) for (v4), this first term was (-7J)4(//2)4> o r simPty (~T\M2)4- But> bY equation (40), the 
product term (~Txju2) is just equal to {N(J-l)/2}, which is the value of the mean (vt), as seen 
in equation (33). Therefore, the leading term in the moment equation (v^) is always (vx)R. 

(-TlM2) = {6/(J + l)}{M2} - {6/(J + l)}{N(J2-l)/l2} = {N(J-l)/2} = (vx), (40) 

since i; = {(12)B111}{((J1)-1)/(J2-2)} = {-6/(J + l)} with Bx = (-1/2). 
Also, the term (-Txju2) is the coefficient of ((f) I (r!)) at r - 1 in the exponential generating 

function (vegf) from (37). This first term of the summation can now be rewritten by the equality 
(-Txju2)(tl) /(!!) = (vxt). If this term is extracted from the summation in (37), the remaining non-
zero terms in the summation have even indices in (r), since all of the odd indexed terms have a 
factor that is zero; i.e., the odd indexed Bernoulli numbers B2i+1 for / > 1. Using this information, 
both exponential generating functions (juQgf) and (vegf) from (36) and (37) can be rewritten with 
the zero-valued summation terms excluded. The exponential generating functions are now both 
summed for the redefined index (r) over all integers in the range 1 > r > oo: 

M^ = Exp{(//2)S((r2r)(^)/((2r)!))}, (41) 

vegf = Exp{(v10 + (^2)Z((r2r)(/20/((2r)!))}, (42) 

where T2r = (\2)S2r/(J2-l) = {(12)52r/(2r)}{((J2r)-l)/(/2-l)} with B2r= the (2r)* Bernoulli 
number. 

A comparison between moment generating functions of the discrete C(N, J; h) distribution 
and a normal distribution in the continuous case is useful in this format. The exponential generat-
ing functions for the continuous and normal distribution are given in [3] as: 

juQgf (continuous & normal) = Exp{ju2(t2) 12} and 
vegf (continuous & normal) •= Expffyf) + ju2(t2) 12}. 

Since (T2) was shown to be equal to one, the continuous & normal (C&N) distribution and 
the discrete C(N, J; h) distribution have moment generating functions that have identical initial 
summation terms. The relationships between the moment generating functions of both of these 
distributions are summarized in equations (43) and (44), with the second factor Exp{E} being an 
exponential summation for integers 2 < r < oo: 

Me&c(N,jM = M^czKpxp{U(W(t2lU(2r)\))} (43) 
and 

v e g f ( c ( ^ ^ (44) 

where T2r = {(12)B2r/(2r)}{((J2r)-i)/(J2-I)}. 
Besides the methodology of creating moment equations from exponential generating func-

tions, another technique was originally used that involved recursion equations. The main recur-
sion equation developed related the i?* moment (juR) about the mean (vx) to the previously 
generated moments v^R_h^ about the origin. The summation was taken over all integers of (h) in 
the range 0<h<R\ 
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^ = 2(-l)h(5)(Vi)*(v(A_fc)). (45) 

The recursion equation (45) originated from observation of moment equations (juR) from [3] 
for R = 0 through 4, including the oft quoted (ju2) = (v2) - (v^2. This latter formula is apparent 
from equation (34) in the form (v2) = (vj)2 + (ju2). 

When R is an odd integer, the moment (juR) is zero. Therefore, the recursion equation can 
also relate successive moments (v^) to previous moments (v^.^). And now the summation is 
taken over all integers of (h) in the range l<h<R. Thus, after defining (v0) = 1, the recursion 
equation for (v^) at (R =odd) becomes 

v^Zi-ir^y^iv^). (46) 

6. SUMMATIONS OF ALTERNATING SIGNED TERMS 

The alternating signed version of the moment equations yields the following summation for-
mulas for the C(N, J; h) terms, when summed over integers 0<h< N(J -1): 

U(-Vh(h)RC(N,J;h)} = vRa, (47) 

£{(-l)*(A - M)RC(N, J;h)} = MRa, (48) 

where M = (yt) = N( J -1) / 2. 
Two separate presentations on the moments for the alternating signed C(N, J; h) terms will 

be given for cases when (J) is an odd integer and when (J) is an even integer. Thus, two differ-
ent notations will be assigned for each case: 

1 • (vRa) = (vR,d) a n d (MRJ = (MR,d), when J = odd; 
2- (vRa) = (vR,e) and (MRa) = (MRJ, when J = even. 

Compared to equations (24) and (25) of the previous moment section, the most apparent 
difference in the summation equations of (47) and (48) is that they do not have the common factor 
(JN). 

In the initial definition of the moment equations (5), the common factor to be multiplied by 
(vRa) and (JURC) w a s the sum of all the distribution terms in the Nih row of the Pascal-de Moivre 
triangle. From the discussion on quadruplet cycles, the difference of the two alternate term 
equations (A minus B) from equations (19) and (20) will give the sum of the alternating signed 
C(N9 J; h) distribution. For all cases when (J) is odd, it has a value of one: 

Z{(-l)hC(N, J; h)} = 1 for J = odd. (49) 

When (J) is an odd integer, the moment equations for ( v ^ ) and (JURJ) are derived directly 
from their exponential generating functions: (juegf,d) anc* (vegf,̂ )- The exponential generating 
functions are expanded to obtain (juRd) and ( v ^ ) as coefficients of the term ((tR)/.R\) in the 
summation over integers 0 < i < oo, as outlined in [3]: 

>«*«/ = SXA^XO/CO; 
v.gt^SXvXO/O-!)-
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In this (J = odd) case, the exponential generating functions for (jue^d) and (vegf ̂ ) turn out 
to have identical formulas, as expressed by the exponential power series in (50) and (51). Just the 
ranges of their summation index (r) differ, with 2 < r < oo for (//egJW) and 1 < r < oo for (vegU) : 

M^d = Exp{NZ((-lY(SrJ(f)/(r\))}y (50) 

v^d = Exp{NZ((-lY(Sr^(n/(r!))}, (51) 

where Srj = ((2r) - 1 ) ^ = ((2r) -1)((Jr) - l)(Br) 1 r with Br = the r* Bernoulli number. 
These exponential generating functions (juQg^d) and (vegf^) for these alternating signed dis-

tributions are closely related to the exponential generating functions (//egf) and (vegf) of (26) and 
(32) for the positively signed distributions. Only the summation term (Srtd) in (50) and (51) 
differs from the summation term (Sr) in (26) and (32) by a factor of ((2r) -1) . 

The same transformation methods described in (36), (37), (41), and (42) will change the sum-
mation variables (N) and (Srtd) in equations (50) and (51) into the variables (ju2) and (TTtd) for 
equations (52) and (53). These new exponential generating functions are both summed over all 
integers in the range 1 < r < oo. Note: (v^) = vY and (//2^) = 3ju2. 

M^d = Exp{(//2)Z((r2rj,)(r2'-) / ((2r)!))}, (52) 

Vegtrf = Exp{(vlt + (M2)Z((T2rJ(t2r)/((2r)\))}, (53) 

where T2r,d = ( 1 2 ) ^ ^ / ( ^ - 1 ) = {(22r)-l}{{\2)B2rl{2r)}{((J2r)-\)l (J2-\)} with B2r = the 
(2r)m Bernoulli number. 

The fourth moments (p4td) and (v4td), for example, can be obtained from the coefficient of 
((/4)/4!) in the expansions of (MQgf,d) anc^ (vegf,d) 'm formulas (52) and (53). The format of these 
formulas is the same as for (ju4) and (v4) in (38) and (39), where the definition of each summation 
term (Trtd) has only changed from (Tr) by a factor ((2r) -1). 

v4frf = 0hf(r\d)A + 6(M2)\-TKdf(TXd) + 3(ju2)2(Txdf + (jU2)(T4J. (55) 

A specific fourth moment example for (ju4td) and (v4td) of a distribution with (N, J) = (2, 3) 
can be calculated by inserting the proper values for {ju2) and (Trtd) in (54) and (55). Here, the 
(Trtd) sequence for ( r>l ) begins at {(-3/2),3,0,(-15),...}, and'(//2) = ( # ( / 2 - l ) / 1 2 ) = (4/3). 
Thus, for (N, J) = (2,3), the reader can find that equations (54) and (55) agree with the moment 
values in the formulas from equations (47) and (48) to give (ju4fd) = 28 and (y4id) = 140. 

Now for the other type of distribution, with (J) as an even integer. In this case, the sum of 
the alternating signed C(N,J;h) distribution is zero for JV>1, as in the binomial (J = 2) case 
from [10]. The left-hand side of equations (47) and (48) does exist. The interpretation of the 
terms (ju^) and (vR}6) on the right-hand side may not be clear, since these moments and the dis-
tribution density f(h) from equation (4) have a denominator of zero; thus, they may be unde-
fined. For convenience, these terms (//^e) and (vRt&) will still be called moments, in the sense 
that they are being used to generate the summation formulas in (47) and (48). 

The simplest results for the Rth moment equations (juRi6) and (v^ ) for the ( J = even) cases 
occur when (N) is greater than (R). Then we do get moment equations of zero: 
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juR,e = 0 and vRe = 0 forN>R. (56) 

However, for (R> N), the moment values are predominantly nonzero, when (J) is an even 
integer. The moment equations for (vRe) and (ji^) can be derived if they are broken down into 
two parts: a common factor (CF) and an equation (mk) from the corresponding exponential gen-
erating functions for (//) and (v). The moment equations are: 

MR,e = (CF)(mk(»)), (57) 
and 

Vft. = (CT)0»t(v))s (58) 

where (CF) = {(-V)N(J/2)N(N\)}{"N). 
The equation for (CF) was obtained by empirical analysis. The equations (mk) are the coeffi-

cients of the term ((**)/ k\) in the expansion of the exponential generating functions, where the 
value of (k) is defined as (R-N). The summations in the exponential generating functions for the 
(mk) coefficients are taken over all integers r > a, with a = 2 for (juRe) and at a - 1 for (vRe). 

/ i ^ . = EXp{^Z((-l)r(5r, ,)(0/(H))} f o r 2 < r < * , , (59) 

vegf;e = Exp{^S((-l) r(5r ; e)(0/(H))} for l£#•<«,, (60) 

where Sre = {(Jr)-(2r) + l}{(Br)/r) with Br = the r* Bernoulli number. 
Again a useful transformation takes summation variables (N) and (Sr e) in (59) and (60) into 

the variables (//2) and (Tre) for equations (61) and (62). Both of these new exponential generat-
ing functions have summations taken for all integers 1 > r > <x>. Note: (vle) = Vj. 

^gf,, = Exp{(//2)Z((r2r)e)(^)/((2r)!))}, (61) 

Vegf^-ExpKnO + ̂ ^ S a ^ ^ ) / ^ ) ! ) ) } , (62) 

where T2r,e = (U)S2r,e I (J2 -1) = {(J2r) - (22r) +1} {(12) / (J2 -1)}{(£2r) / (2r)}. 
The reader is challenged to find the (//^e) moment at (R = 4) for the alternating signed 

C(JV, J; h) distribution with (N, J) = (2,2). In this example, the moment equation (57) has an 
index of (k = R - N = 2), with factors (CF) =12 and mk (ju) = 1 / 6, which give a value for (/uRe) 
equal to 2. 

A Final Note: Conditions involving distribution symmetry and the patterns of Bernoulli num-
bers in the exponential generating functions favor the proposition that all of the moment equations 
and their generating functions will remain valid for all possible C(N, J; h) moment summations 
with distribution variables (N9 J) and moment numbers (R) over all positive integers. Extensive 
empirical evidence suggests optimism. 
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1. INTRODUCTION 

Some of the properties of the Brahmagupta matrix [see (1) below], and polynomials xn and 
yn in two real variables (x, y) (see § 3) have been studied in [6]; we know that the Brahmagupta 
polynomials contain the Fibonacci polynomials, the Pell and Pell-Lucas polynomials [2], [5], and 
the Morgan-Voyce polynomials [4], [7]. The convolution properties that hold for the Fibonacci 
polynomials and for the Pell and Pell-Lucas polynomials also hold for Brahmagupta polynomials. 

In this paper we extend analytically the properties of the Brahmagupta matrix and polyno-
mials derived in [6] from two real variables to two complex variables z and w, which belong to 
two distinct complex planes. We denote this space by C2. A typical member in C2 has the form 
£ = (z,w). Since C is simply R2 with the additional algebraic structure, we realize that C2 is 
(topologically) R4 with some additional algebraic properties. We have a natural way to identify 
points in C2 with points in R4. This is described by the scheme: 

C2 3(z, w) <r+ (x+iy,u + iv) «-> (x, y, u, v) eR 4 

In particular, we measure the distance in C2 in the customary Euclidean fashion: if C,x -(zx, wx) 
and £2 - (z2> wi) a r e poi^s in C2, then \gx - £21 = (\z\ ~ zi \2 +1w\ ~ w2 2\l/2 ! ) 

Another interesting feature of the Brahmagupta polynomials zn and wn in C2 is that, when the 
polynomials are expressed in terms of real and imaginary parts with z - x + iy and w = u + iv, the 
resulting polynomials xmymumvn satisfy recurrence relations (11)-(18). The functions xmyn, 
un, vn are solutions of the second-order partial differential equations (19) and (20). 

Since the calculations go through without change in the complex case, we just list some of 
the properties. 

2. BRAHMAGUPTA MATRIX 

Let B be a matrix (a Brahmagupta matrix) of the form 

B = \ z w 
tw z (1) 

where t is the fixed real number and z and w are complex variables; further, we shall assume that 
deti? = p = z2 - tw2 * 0. Using its eigenrelations, B has the following diagonal form: 

z w 

tw z 
V2 \ 2 

^2" -"V2" 

Z + W«Jt 

0 

0 
z-w4t 

V2 V2f 

V2" ~V2F_ 

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July of 1996, 
was scheduled to appear in the Conference Proceedings. However, due to refereeing problems and deadline dates, 
we are publishing it in this issue of The Fibonacci Quarterly to assure its timely publication. 
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Define 

Bn = z 
tw 

w 
z 

Zn 
\tw„ Z„ 

B„ 

Then the above diagonalization enables us to compute 

\z+wjt 0 
Bn = V2 V2 V2 vit 

0 z-w4t\ 
Since Bn+l - BnB, we have the following recurrence relations: 

z„+l = zzn + twwn9 wn+l = zwn + wzn, 

with zn - z and wn=w. From (2) we derive the following Binet forms for zn and wn\ 

Ww = 2 ^ [ ( Z + w V 7 r " ( Z " w V 7 r L 

and zn ± 4twn = (z ± 4tw)n. Note that if we set z = 1 / 2 = w and t = 5 then /? = - 1 ; then 2wn = Fn 

is the Fibonacci sequence, while 2zn = Ln is the Lucas sequence, where w > 0. 
Let % = z + w4i,rt = z-w4t,%n=zn+wn4i, rtn = zn-wn4i and fin= z2

n-tw2
n, with ?„ = 7, 

t;n - £, and /?„ = /?. Then we have %n = gn, r\n = rf, and fin = /?". To prove the last equality, 
consider/?» = (z2-fti/2)» = ^ V = ^ I I = ( ^ - ^ 2 ) = A-

We also have the following property: 

(2) 

(3) 

(4) 

(5) 

oB - . et + ei -jr(e4-e'}) 
•Jtf^-e") 

V?' 
e* + e* 

deteB=e2z. 

To prove these results, set lzk = %k + if, 2*Jtwk = %k-rjk. Since 

Bk 
and Bk 1 

i=0 ' k\ k\ 
wt 

tWu 

we express zk and wt in terms of £ and 77 to obtain the desired results. 
Recurrence relations (3) also imply that z„ and w„ satisfy the difference equations: 

*„+i = 2*z„ - Pz„_x, wn+1 = 2zwn - pwn_v (6) 
Conversely, if z0 = 1, zx = z, and w0 = 0, and wx=w, then the solutions of the difference equa-
tions (6) are given by the Binet forms (4) and (5). 

The expressions zn and wn can be extended to negative integers by defining z_n = zn/3~n and 
w_n = ~wnp~n. Then we have 

B~n = 

where we have used the property 

z w 
tw z 

Z-r, 
tw 

w = B_ 
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z w 
tw z 

~HY 1 z -w 
-tw z 

-M> 

-tw„ 

All of the recurrence relations extend to the negative integers also. Notice that B° = / , where / is 
the identity matrix. For negative integers, zn and wn are rational functions of z and w. 

3. THE BRAHMAGUPTA POLYNOMIALS 

Using the Binet forms (4) and (5), we deduce some results: Write zn and wn as polynomials in 
z and w using the binomial expansion: 

+ • 

The first few polynomials are z0 = 1, ^ = z, z2 = z2 + Tw2, z3 = z3 + 3fzw2, z4 = z4 + 6rz2w2 + t2w4, 
..., w0 = 0, w ^ w , w2 = 2zw, w3 = 3z2w + fw3, w4 =4z3w + 4tzw3,.... Notice that zn and w„ are 
homogeneous in z and w; therefore, they are analytic (in the classical one-variable sense) in each 
variable separately. Also, zn and wn satisfy the Cauchy-Riemann equations in each variable separ-
ately: If zn = xn + iyn, then 

dx dy" dy dx 
and 

^ L = ^ L fan = fyn 
du dv ' #V ^ ' 

Similar relations are satisfied by the polynomials wn = un +ivn. 
If t > 0, then zn and w„ satisfy: 

lim 
w-»oo | V 

+VF if 

-V? if 

Z-yftW 
Z+yjtW < i 

lim lim w„ 
n-±co Zn-\ «-»co ^n-\ 

z + >Jtw if 

z - V7w if 

>l; 

-VFw 
Z+y[tW 

z+V^w 

<1, 

6?Z £?W nz, n-l> 

a w ~ t
 dz~ntWn-y 

From the above relations, we infer that z„ and wn are the polynomial solutions of the "wave equa 
tion": 

d1 I a1 \ 
dz1 t dw2) u = o. (7) 

36 [FEB. 



THE BRAHMAGUPTA POLYNOMIALS IN TWO COMPLEX VARIABLES 

Since the partial differential equation (7) is linear, by the principle of superposition its general 
solution is 

00 

U(z,w) = ^(Arlz„+B„wn), 
0 

where 4 , and Bn are constants. 

4. RECURRENCE RELATIONS 

From the Binet forms (4) and (5), we record the following obvious recurrence relations: 

( 0 Zm+n=Z
m

Zn+tWmWn, 0 " ) ™m+„ + P "w m_n = 2z„Wm, 

09 Wm+n=zmW
n

+w
m

z^ (VU) Zm+n + BnZm_„ = 2tWmWn, 
(iii) finzm.n = z^n-twmvHt- (viii) wm+„ + Bnwm_„ = 2zmw„, (8) 
(iv) P"wm_„ = znwm-zmwn, (ix) 2(z2

m-zm+nzm_„) = p^^(P"-z2n), 

(V) Z^+Z'V^V. 00 Z2m~^m^m-n= P^^ln-

Putting m = n in (i) and (ii) above, we see that z2„ = z% + tw% and w2„ = 2znw„; these relations 
imply that: (a) z2n is divisible by zn±ijiwn if 7>0; (b) z2„ is divisible by zn±Jiwn if *<0; 
(c) w2„ is divisible by z„ and w„ and, if r divides s, then zm and wrn are divisors of wsn. 

Let Ei=i = 2 . Then, using the Binet forms, it is not difficult to see the following facts: 

(i\ y . -Pzn-Z
n+1+Z-P 

(m) 2 ^ - 2 ( ^ _ 2 Z 2 + 1) + 2 0 5 - 1 ) ' 

(iv) Zwjt= ^ / < ? 2 2f(/?2-2z2 + l) 2*09-1)' 

(v) 2Z1zkz„+l_k=nz„+l+i 
w 
Bw 

(vi) 27 Z WfcW^i-it = "2n+i - z - * 
W 

(vii) 2 2 ^ww_^+1 = 2 Z iv* v*+i = rm] n+V 

Mow we generalize a result satisfied by the generating functions of Fibonacci (Fn) and Lucas 
(Ln) sequences; namely, 

i n i 

Then L(f) = e2F^ [3]. A similar result holds between zn and wn. Let Z and JF be generating 
functions of zn and wn, respectively; that is, 
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Z=STS" ' ^=2>x- (9) 

Then W(s) = swe2Z^. Since the proof is similar to the real case (see [6])? we omit it here. 

5. SERIES SUMMATION INVOLVING RECIPROCALS OF zn AND wn 

All the properties of infinite series summation involving xn and yn can be extended to the 
complex variables case also. Since the arithmetic goes through without any changes, we shall just 
list them here. For details, see [6]. 

1. 
k=l 

1 ( 2z jg + l | = 1 
zk J z' 

k=r+l 

2z I±L\ -_L 
Zv,Zi \^k-l^k+l ^k+l^k Zh±\Zh zrz> r^r+1 

2z P±L\- l 

ktr+\\Wk-lWk+\ Wk+lWkJ WrWr+l 

1 ^ 7 = 1 k=r+l Zk-lZk+l k=r+l \zk-l Zk+l) 
±+J- f 2zwk = j J_+^+l 

CO -j 

°° ri. 

2zr 

k = 2
 Z ( t + l ) r ^Z(fc- l ) r Z ' 

o2*- ' -2 

£±I V_i_ 
Jfcr J ZrZ2r 

oo 1 

i - l W,. kll W(k+\)r 

2zr 

yW(k-l)r 

J3r + l \ 

w, kr 

1 
WrW. rnlr 

1 
fc=2 J2* (x+yjt)2' 

6. 
™i ZnZn+k I 

«=1 

= 7r-fi5l:=L-*(^±^)\ 
where the plus sign should be taken if \%lrj\< 1 and the minus sign should be taken if \%lrj\> 1. 
To show item 6, w e consider 

Zn-lZn+k ~~ Zn+k-lZn ~ Zn-\ 
{zz„+k_x + twwn+k_x) - ^ . , ( : v i + h w j 

Thus, 
y l" _ 1 z„_,z, •n-rn+k ^n+k-Fn 

—[ znzn+k twWk ZnZn+k 

/WW. " r fWW. *-* \ Z 

( k 

twwh 

N+k 

ILT-l^z 
N o w fixi>l and let Ntend to infinity. Using the property w e derived in Section 3, w e obtain 
the required result. Similarly, w e show that 

where the plus sign should be taken if | £ / rj \ < 1 and the minus sign should be taken if | £ / 771 > 1. 
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6* CONVOLUTIONS FOR zn AND wn 

Suppose that an(z, w) and bn(z, w) are two homogeneous polynomial sequences In two vari-
ables z and w, where n is an integer > 1. Their first convolution sequence is defined by 

n n 

(fln * bJl) = S ajbn+l-j = S han+l-j ' 

In the above definition, we have written an = an(z, w) and bn = b„(z, w). To determine the convo-
lutions zn *zn, zn * wn, and wn*wn, we use the matrix properties ofB, namely, 

z w 
tw z 

-1/f+l 
zn+l Wn+i :Bn+l=BJBn+l-J' = Zj Wj 

tWj Zj 

zn+l-j Wn+l-j 

tWn+l-j Zn+\-j 

Let 

1=1 J=l 

n+l zd) wa) 

tw® 2(1) 

. « n 
Note that B" - Bn. We prefer using the subscript notation. Since H"J=1Bn+1 =nBn+l, the above 
result can be written as 

nB„+i = 
zn*zr,+iWn*Wn 

2tz„*wn 
B?\ 

where we have written Z"=i = 2 . Therefore, we have zjp = nzn+l and wjp = nwn+h or 

2z„*z„=m„+l+^ and 2twn*wn=mn+l-*~^, 

from (8) parts (v) and (vi). The above result can be extended to the k^ convolution by defining 

We can show that 
7=1 

tf^f'tV 
We shall prove the result by induction on fc. Since Z?(1) = nBn+l, the result is true for k = 1. 

Now consider 

^ + , ) = Z 5 y ^ w = Z ^ w ( ^ ) ) 

= 2 $ '«+i- ^y'+fc ~ ^i+Jfc+1 Z 
y + Ar-lV f« + * i t k+irn+k+l 

which completes the induction. We have used the property Zf7"^-1) = (£+*), to derive the above 
result. 

From the above results, we can write the following k^ convolutions, namely, 

(k) (n + k-l) i a) (n + k-l) 
z« I k p+* and w» { k Jw»+k- (10) 
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Result (10) enables us to write the convolutions zn*z^k\ wn^w^\ zn^w^h\ and wn* z^k\ First, 
we shall show that 

We consider 

2z„*z«=2Zz*z„_,+1 

\Zj+kZn-j+l 

-2z f c S 

7+1 

0 + * - ^ «(j + k-l 
zyz„_J+1 + 2 ^ X , 

y=i V * 
w A- /+ i 

-2j+l + ^ 2 ^ + £ 1 l(H'B r t-^f_2 J + 1) 

= ?,[j + k
k~ ^ ( V ^ i + tw^Xfi* {j+l~ iyzkz„_2j+l -twkw„_2j+l) 

= \jfc + l J Z "+*+l + ^ k )PJ+ Zn+l-2j-k-

We have used (10) and (8) part (i) to derive the above result. Similarly, we can show that 

n+l-2j-k> 

n+\-2j-k' 

7. THE IMPLICATIONS OF zn AND wn IN R4 

Let z = x+iy and w = u + iv. Then z„ = x„+i>„, w„ = W„+JVW, and J3 = z2 -tw2 = a + iy, 
where a = x2 - y2 - t(u2 - v2) and y = 2(xy - tav). Note that det B * 0 implies that either a * 0 
or y * 0 • Recurrence relations (3) now become: 

**+l = 2**„ " 2m - « V l + ?%-!, 0 1) 
^+1 = 2 ^ + 2 3 % - ^ . ! - ^ . ! , (12) 

ww+i = 2xun - 2yvn - aun_x + yvn_h (13) 

V i = 2*vw + 2j/w„ - yun_x ~ a Vi> (14) 
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with x0 = 1, yQ = 0, u0 = 0, v0 = 0 and xx = x, yx=y, ux=u, vx = v. By (11)-(14), the first few 
polynomials are given by 

x2 = x2 - y2 + t(u2 - v2), 
y2 = 2(xy + tuv\ 
u2=2(xu-yv\ 
v2 = 2{xv+yu). 

x3 = x3 - 3xy2 + 3txu2 - 3txv2 - 6tyuv, 
y3 = 3x2y-y3+ 6txuv+3tyu2-3tyv2, 
1% = 3x2u - 3y2u - 6xyv - 3tuv2 + tu3, 
v3 = 6xyu + 3x2v- 3y2v + 3tu2v-tv3,.... 

By expressing equations (8) parts (i) and (ii) in terms of the real and imaginary components, we 
find that the recurrence relations transform to 

X«Hrn = XnXn ~ yJn +<*m V » " UnVm\ (15) 

(16) 

(17) 

(18) 

ym+n = XrJn + ^ m + KWn "Wml 

Um+n = XmUn + XnUm ~ J V * " 3W»> 

To transform the partial differential equation (7) in z and w to the one in variables x, y, u, and 
v, we use the partial differential operators: 

d d_ 
dz 

Then equation (7) becomes 

2{dx ldy) 
and ' jL = l(A+j 

dz 2\dx dy 

d2 d2 \(d2 d2 

dx2 dy2 t\du2 du2 

r a2 id2 

fn=<>, 

dxdy t duch gn = o. 

(19) 

(20) 

where fn = xn or un and gn - yn or vn. By the principle of superposition, the solution of differen-
tial equations (19) and (20) are, respectively, 

OO OO 

f(x,y,u,v) = ]T(anxn+hnun) and g(x,y,u,v)=Y*(cnyn+d„vn), 
0 0 

where an9 bn, cn9 and dn are constants. 
Now we express relation (9) in Section 4, i.e., W(s) = swe2Z^s\ in terms of real and imaginary 

parts. Let Z(s) = X(s) + iY(s) and W(s) = U(s)+iV(s). Then (9) transforms to 

U(s) = useX{s\u cosY(s) - v sin Y(s)) 
and 

V(s) = vseX(s)(v cosY(s) + u sin Y(s)). 
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Now, let us turn our attention to the convolutions in Section 6. Result (11), expressed in 
terms of real and imaginary components, becomes 

x(k)_(n + k-l] ik)_(n + k--l\ 

u(k)-(n + k-l) (k)_(n + k-i) 

We have seen here some of the properties of the matrix B with complex entries; we are sure 
there are many more of them. 
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This article will develop a method to test divisibility of arbitrary natural numbers by certain 
fixed natural numbers. The well-known tests for divisibility by 3, 9, and 11 will be obtained as 
special cases of the theorem. Note that all the variables in the following theorem are integers. 

Theorem; If (s, 10) = 1, t = 10-1 (mods), n = £^=0 l®kak, and m - 1^=0 tr~kak, then s\n <=> s\m. 

Proof: We will expand n and use standard congruence properties: 

n = I0rar + W~lar_x + • • • +10^ +a0, 
n = I0rar + Wlar_x + "' + l0al+a0 (mods), 

I0~rn = ar +10"1ar_1 + ••• + I0l~ral + 10_ra0 (mod5), 
(ICT1)^ = ar + lO"1^.! +-..- + (lO-1)"-1^ + (KT 1 )^ (mod 5), 

fr« = /w(mod,s). 

Now r = 10"1 (mod5) => 10/ = l(mods) => j|(10^-1) =>zs = lOt-1 for some Z G Z . Hence, 
I0t~zs= 1, which implies (s, 0 = 1-

The statement /rn = m (mod 5) allows us to conclude that s\ n => s\m; with the additional fact 
that (s, t) = 1, we can conclude that s\m=>s\n: 

Remark: This theorem generates a divisibility test for any natural number s that is relatively prime 
to 10. The practicality of the test comes into play for s with an associated t value close to 0. 

Divisibility Tests for Specific Natural Numbers 

1. Let $ = 3. Then r = 10_1 (mod 3) allows us to choose f = 1. Hence, 3\no3\m, where 
m = Xr

k=0ak 

2* Let $ = 9. Then r = 10_1 (mod 9) allows us to choose t = l. Hence, 9\no9\m, where 

3« Let 5 = 11. Then t = 10"1 (mod 11) allows us to choose t = -l. Hence, 11 \n<=> 11 \m9 where 
m = Er

k=0(-l)r-kak. 

4. Let s = 19. Then t = 10"1 (mod 19) allows us to choose t = 2. Hence, 19\n <=> 19|m, where 

k=o2 ak-

5. Let 5 - 7 . Then t^lO'1 (mod 7) allows us to choose t = -2. Hence, 7\no7\m, where 
m = I,rk=0(-2y~kak. 

6. Let 5 = 29. Then r = 10"1 (mod 29) allows us to choose t = 3. Hence, 29\n <=> 29|/w, where 
k=03 ak' 

7. Let 5 = 31. Then 1 = 10" (mod 31) allows us to choose t = -3. Hence, 31 \n <=> 31 |/w, where 

w = EL0(-3)' r-it 
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Specific Examples 
Ex, 1: n = 5232 is divisible by s = 3 because we can take t = \ and 

m = 5(1)° + 2(1)* + 3(1)2 + 2(1)3 =5+2 + 3+2 = 12 is divisible by 3. 

Ex. 2: n = 7119 is divisible by s - 9 because we can take t- 1 and 
m = 7(1)° + l(l)1 +1(1)2 + 9(1)3 =7 + 1 + 1 + 9 = 18 is divisible by 9. 

Ex. 3: n = 80916 is divisible by s = 11 because we can take t - -1 and 
m = 8(-l)° + O(-l)1 + 9(-l)2 +1(-1)3 + 6(-l)4 = 8 - 0 + 9 - 1 + 6 = 22 is divisible by 11. 

Ex. 4: n - 2242 is divisible by s - 19 because we can take t = 2 and 
m = 2(2)° +2C2)1 +4(2)2 +2(2)3 = 2 + 4 + 16 +16 = 38 is divisible by 19. 

Ex. 5: n = 686 is divisible by s = 7 because we can take t - -2 and 
m = 6(-2)° + 8(-2y + 6(-2)2 = 6 -16 + 24 = 14 is divisible by 7. 

Ex. 6: n = 4350 is divisible by s - 29 because we can take t - 3 and 
m = 4(3)° + 3C3)1 + 5(3)2 + 0(3)3 = 4 + 9 + 45 + 0 = 58 is divisible by 29. 

Ex. 7: n- 527000 is divisible by s - 31 because we can take t - -3 and 
m = 5(-3)° + 2(-3)! + 7(-3)2 + 0(-3)3 + 0(-3)4 + 0(-3)5 = 5 - 6 + 63 = 62 is divisible by 31. 
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1. INTRODUCTION 

Many macroscopic properties in nature represent the response of a system to an applied 
disturbance. Such properties as electrical or thermal conductivity, magnetic permeability, and 
dielectric permittivity fall into this category. They can all be described by the same model of an 
induced flux produced by an applied field or potential gradient. In this study we shall present the 
solution to a problem in plane geometry involving cardioids and ellipses which has arisen in the 
study of the interaction of electromagnetic waves with matter. 

A major area of research in the field of condensed matter physics is the optical response of 
composite materials. Moreover, recent advances in nanostructure technologies have generated 
particular interest in the physical properties of composite thin films [4]. Such structures are made 
up of an otherwise uniform thin film of one material into which are embedded shafts or cylinders 
of a different material. The film constituents can be chosen so as to obtain desired bulk properties. 
In practice, the major constituent is a dielectric material into which metal columnar inclusions are 
deposited. The optical properties of the metal-dielectric thin films can be intermediate between 
those of the metal and of the dielectric. These films also exhibit significant angular and spectral 
selectivity. The former feature has practical importance in the production of window coatings 
which minimize solar heating and glare while the latter feature is of use in solar collectors. Com-
posite thin films have recently been analyzed mathematically by means of a conformal mapping 
technique [10]. A schematic diagram of the film microstructure for obliquely deposited circular 
cylindrical columns is shown in Figure 1. 

FIGURE 1. Film Microstructure 

In general, the cylinder lengths are approximately equal to the film thickness. Therefore, by 
ignoring end effects such as fringing fields and restricting attention to a cross-section (normal to 
the cylinder axis), it becomes sufficient to model such a film as a plane figure. We therefore 
obtain a two-dimensional array of circles in the plane, each of which represents the cross-section 
of an individual cylindrical inclusion. During the production of the films it often happens that two 
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columns are deposited very close to each other and give the appearance of merging into one 
another. A mathematical model for this particular situation has recently appeared [9] which 
employs a symmetric pair of cardioids to describe the two-dimensional cross-section of the merg-
ing columns. During the analysis, the problem arose of determining the axis lengths of an ellipse 
of "best fit11 enveloping the cardioid pair. The problem was solved and only the final numbers 
were presented. It was discovered that by choosing a suitable definition of best fit, the parameters 
of an optimal elliptical envelope for a cardioid pair could be determined exactly in terms of the 
golden section. We now present the full derivation of this interesting and unexpected result 
together with some concomitant findings that have been unearthed subsequently. An elliptical 
envelope for a pair of cardioids is shown in Figure 2. 

FIGURE 2. Cardioid Pair with Elliptical Envelope 

2, GENERAL SCENARIO 

The particular problem of interest can be considered as a special case of the following situa-
tion. We begin with the complex transformation 

-\ln 
W„ (2.1) 

in which w = u + iv and z = x+iy. If we consider contours in the (Cartesian) z plane defined by 
u = Re(w) = constant and set z = rew,we obtain 

r = co^(d/n) (2.2) 

as the contour in the z plane which is mapped onto the straight line u - 1 in the wn plane. When 
« = l w e have a circle of radius j centered at the Cartesian point (y, 0). For n = 2 we obtain a 
cardioid symmetric about the x axis whose equation may be written as 

r ^ O + cos^). (2.3) 

By superimposing the closed curves given by (2.2) with their respective reflections in the y axis, 
we obtain pairs of intersecting contours. The conformal mappings (2.1) corresponding to n = 1 
and n- 2 have been used to study the polarization response of touching [7], [8] and intersecting 
[9] particles, respectively. As n -» oo, the degree of merging of the particle pair increases until, in 
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the limit, the contour corresponding to u - 1 becomes the unit circle centered at the origin. In this 
paper we shall be considering elliptical envelopes for a pair of (left- and right-hand) cardioids (the 
n - 2 case). 

The approach to be adopted here will be to eliminate 0 and then ultimately express the ellipse 
area in terms of the radial coordinate of the point of tangency. Due to the symmetry of the car-
dioid pair with respect to both the x and thej axes, it will clearly be sufficient to work just within 
the first quadrant. Moreover, due to the shape of the cardioid pair, the horizontal axis of the 
desired optimal ellipse will be the major one. Hence, we can restrict attention to the right-hand 
cardioid in the first quadrant where 0 < 0 < n 12 and search for unrotated ellipses centered at the 
origin with horizontal and vertical semi-axis lengths of a and b, respectively, where a > b > 0. 

The first step in determining our optimal ellipse is, naturally, to find the points of intersection 
of the relevant curves. In the genera! case, we must therefore begin by finding the points of inter-
section of the w-cardioid (2.2) and the ellipse. The polar equation of an ellipse with horizontal 
and vertical semi-axis lengths of a and 5, respectively, is given by 

ab 
^a2 + (b2-aY)co^0'' 

a^O^b. (2.4) 

Eliminating 0 between (2.2) and (2.4) leads to the following polynomial equation for the value of 
the radial coordinate of the point(s) of intersection (p9 <p): 

p2(^Up)-^-l) + M = ®, a*b, (2.5) 

where the functions Tn(s) are the Chebyshev polynomials of the first kind [11] and 

3 b2 a2b2 , 
a1 -bl a1 - bl 

which can be rearranged as 

In order that the solutions p represent points of tangency, we must also require that the 
slopes of the ellipse and the w-cardioid be the same at their point(s) of intersection (p, <p). We 
can specify the slope of a curve at a given point by considering the angle y between the tangent 
and radial vectors at that point. If we denote these angles for the ellipse and the /i-cardioid by yE 

and yc, respectively, then the tangency condition at (p, q>) can be written 
tmyE = tmyc, (2.7) 

where 
rd0 r($) n*\ 

tmy= — = -f-±. (2.8) 

dr r'{0) 

Substituting (2.2) and (2.4) into (2.7)-(2.8) yields, for a * b, 
A + sin2fi? 1 Jq>\ _ A . . 

sin 2̂ 7 2 \nj 
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or, by using (2.2) at (p, <p): 

X + \ = T^'") + ^"Tn{py")Un_x{pv"), p*\, (2.9) 

where the U„(s) are the Chebyshev polynomials of the second kind [11]. 

In the next section, we shall consider the interesting case of enveloping a pair of standard 
(n - 2) cardioids by an ellipse. In anticipation of the results to be obtained, we conclude this 
section by introducing the golden section^ T = (1 + V5)/2, a number also familiar as the positive 
solution to 

x2-x-l = 0, (2.10) 

which is the characteristic equation for the sequence of Fibonacci numbers {Fn}. This sequence 
has many connections with the Chebyshev polynomials mentioned above [6], [11]. In addition, 
the identity 

— [ — = m
2

+n-n\, (2.11) 
m+nr m+ mn-n 

which is well known from the field Q(V5), will be found useful in later sections. 

3. THE ELLIPSE 

We shall define an optimal elliptical envelope (or ellipse of best fit) to be an ellipse of mini-
mal area which is tangent to and completely contains the cardioid pair. This provides precisely 
the right number of conditions necessary to determine the three key parameters: the value of the 
radial coordinate of the point of tangency, r = p, and the semi-axis lengths a and b of the desired 
ellipse. We will solve the problem in terms of p and then substitute back to find the required 
ellipse dimensions. 

The first condition is that the cardioid and the ellipse must intersect. For a * b this is just 
(2.5) with n - 2, which leads to the following equation for p: 

ju = Ap2+4p3-4p4. (3.1) 

The second condition is the tangency requirement which is (2.9) with n = 2. This yields 

A = 2p(4p-3). (3.2) 

We now obtain an expression for ju in terms of p by substituting (3.2) into (3.1) to find that 

M = 2p\2p-l). (3.3) 

Substitution into (2.6) of the respective expressions (3.2) and (3.3) for /land//, together with 
some subsequent simplification, leads to: 

'-'!%£• "'ffi-'*1"-31*- <x4) 

The expression for the area of an ellipse tangent to the cardioid pair in terms of p then follows 
directly from (3.4): 
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A(P) = ^P2 f*p-V2) 
(p-3/4)(p-l/4)' 

p*V4, 3/4. (3.5) 

Expression (3.5) for the ellipse area is defined only when p = 0, l/4<p<\/2 or 3/4<p<\. In 
other words, an ellipse intersecting the cardioid at a point (p, <p) at which both curves have the 
same slope is only possible for p values in the above intervals. The graph of the ellipse area A(p) 
for 0 < p < 1 is plotted in Figure 3. 

A(p) 21 

I 

l ^ _ 

V 
1/4 p.p, 1/2 

P 
3/4 P+ 1 

FIGURE 3* Graph of Ellipse Area 

We can examine the meaning of these permissible intervals by considering what sort of ellipse 
will appear as the point of tangency moves along the right-hand cardioid. For the point P(l, 0) we 
have p-\ and, by (3.4), obtain an ellipse with a - 1 (as expected) and h = V2 / 3 . As our point 
moves (in the positive 9 sense) along the cardioid, the p value decreases from unity and we 
approach the point of maximum vertical elevation. At this point, the tangent to the cardioid is 
horizontal and so the touching ellipse in this case will have an infinitely long horizontal axis and its 
area will be undefined. This point corresponds to p- 3/4 and so, from (3.4), we see that a is 
undefined (as expected) and that b = 3V3 / 8. 

Before completing the problem, we pause briefly to dispose of the two cases not encom-
passed in the above derivation. These are the cases for which a = h and p = \ (<p = 0). In the 
former case, the point of intersection is P(l, 0) and the covering ellipse reduces to the unit circle 
centered at the origin. In the latter case, we obtain ellipses for which b<a = l. All such ellipses 
share a common vertical tangent with the cardioid at the point P, where their curvature is given by 
lib2. MP the cardioid has a curvature equal to 3/2 [12]. Only those ellipses whose curvature at 
P is less than 3/2 will lie completely outside the cardioid. Hence, we must have b2 > 2 /3 . The 
ellipse of least area satisfying this condition, E say, is obviously the one for which b = -s/2/3 . The 
generic expressions (3.4) therefore reproduce this result for the p = 1 case. In fact, the tangency 
condition (3.2) implies that the solutions p are double roots of (3.1), and p- 1 is indeed such a 
double root for a - 1 (A = //) precisely when b = v273 . 
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4. GENERIC SOLUTION 
The final stage of the generic solution Is to determine the geometrically reasonable (p>0) 

critical points of the area function A(p). The third condition is therefore the choosing of those p 
values for which the derivative A'(p) becomes zero. By imposing this requirement, we will find 
the p value corresponding to the outer elliptical envelope of minimal area—that is, the optimal 
ellipse. However, due to the nature of this approach, in determining the critical points of A(p) 
we shall find another tangent ellipse whose dimensions will also be of interest. 

Differentiating the square of (3.5) with respect to p, simplifying, and then setting the result 
to zero, leads to the equation p4g(p) - 0, where 

g-(p)-128/73-208p24-!00p-15. (4.1) 

The solutions of interest will naturally come from the zeros of the cubic polynomial g(p) defined 
in (4.1). As we now show, these can all be determined exactly. 

As g(l) is nonzero and 0 < p < 1; there will be no integer solutions for g(p) - 0 (excluding 
the trivial case). Therefore, since the coefficients of g(p) are all integral, any rational solutions 
will have the form p/q, where p\l5, q|128, and p<q [1]. The only nontrivial rational zero of 
g(p) is found to be px = 3 / 8. This leads to the factorization 

•g(p) = (8p-3)(16p2-20p + 5). (4.2) 

The remaining critical points are the zeros of the quadratic factor on the right-hand side of (4.2). 
These can be written as 

p+ = ̂ (2 + r), p . = i ( 3 - r ) . (4.3) 

By considering the sign of the second derivative of A(p) (or otherwise), it is readily seen that the 
rational solution pY corresponds to a local maximum for the area of the tangent ellipse while the 
remaining two conjugate solutions p± correspond to local minima for this area. This is also clear 
from the graph of A{p) displayed in Figure 3. We shall denote by E± the ellipses corresponding 
to p±, respectively. The larger of the two (conjugate) ellipses, E+, is the desired unique optimal 
ellipse completely enclosing the cardioid pair. Its area is less than that of the two additional plane 
figures considered separately above, namely, the unit circle and the ellipse E. 

The semi-axis lengths of the ellipse E+ and the angular coordinate <p+ of its point of inter-
section P+ with the right-hand cardioid are found by substituting p+ into (3.4) and (2.3), respec-
tively. With the aid of (2.11) and the fact that r satisfies (2.10), we obtain 

and 
C0SP+ = f' (4'5) 

or just (see [2]) <p+ - K 15. We can immediately determine the focus F+ and eccentricity e+ of E+ 
from (4.4): 

F ^ T ^ ? ^ V W 1 ^ (4.6) 
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The relative area excess of E+ over the double cardioid, DC, turns out to be 

^E+ ^DC 

^DC 
= a+A+/(3/8 + l /^)- l« .1223. 

5. CONIUGACY RELATIONS 

There Is a whole series of interesting relations linking the dimensions of the two conjugate 
ellipses E±. In these last two sections we present this material together with some related geo-
metric constructions. We therefore begin by considering the tangent ellipse E_ and implicitly 
drop the restriction that 0 < ^ < / r / 2 . By substituting p_ into (3.4) and (2.3) and again using 
(2.10) and (2.11), we obtain the following semi-axis lengths for E_: 

S "> - (5.1) a_ 4V2 4V2 
and the following angular coordinate <p_ for the point of intersection P_ of E_ with the right-hand 
cardioid: 

! 
cos^?_ :0-i), (5.2) 

or just (see [2]) <p_=27tl5. The focus F_ and eccentricity e_ of E_ follow from (5.1): 

F_=^4V^\, e_ = j | V 2 ^ T . (5.3) 

The ellipse E_ has its major axis lying along the y axis and actually cuts both cardioids. However, 
this ellipse can still be said to be tangential to the cardioid since, at the point of intersection, the 
curves have the same slope. In Figure 4 the two ellipses E± are shown superimposed onto the 
right-hand cardioid. We also make note of the angle <px which corresponds to the rational zero px 
of (4.1) and which, by (2.3), satisfies 

COS01 = - —. 
4 

(5.4) 

FIGURE 4. Might-Hamd Cardioid with Conjugate Ellipses 
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In the following, we list several conjugacy results based on the values of the various ellipse 
parameters. Identities (2.10) and (2.11) for r have been used where convenient to simplify the 
working. 

Straightforward calculations employing (4.6) and (5.3) and then (4.5), (5.2), and (5.4) lead to 

•~-=T, - T - - T = 1? and cos<p+cos(p_=cos(pl. r_ ei ez 

Using (4.4) and (5.1), it can also be shown that 

2 ̂  a+a_ J 2 \a_h+ 

from which one immediately obtains 

\(aj>- , b+b_ 
Ka_b+ a+a_ 

By considering the ratios of corresponding quantities for the two conjugate ellipses E±9 it can be 
shown that the following set of quotients are all equal to r : 

_______ fd+ _ [®±- [P+ - [*±-y± 
h_ \ A_ y a_ y p_ y x_ y_' 

where the A± are the areas of the respective conjugate ellipses and the lengths x± and y± denote 
the Cartesian coordinates of the corresponding points /+. 

Another interesting result involves arc lengths along the (right-hand) cardioid. The expres-
sion for the arc length along the cardioid (2.3) from the point P(l, 0) is s(0) =2sin(0/2) (see 
[12]). At the points P± we therefore obtain 

$(<p+) = 2 s i n ^ = T- 1, s(<p_) = 2sin^p = r, 

where we have used (4.5) and (5.2). The arc length along the cardioid from P+ to P_ is thus 
precisely one unit. 

We can also consider curvatures. The curvature of the ellipse (2.4) at a point (r, 6) is given 
by (see [12]) 

a4b 
(a4+ (h2-a2)r2 cos? Of 

K(r,6)~ / „ 4 . / t 2 _2x_.2_._2/A3/2- ( 5 5 ) 

Substituting the polar coordinates of the points P± into (5.5), using (4.4) and (5.1), and then 
taking the resulting ratio, leads to 

%-r. (5.6) 

where the K+ denote the curvatures of the ellipses E± at their respective points of intersection P+ 
with the right-hand cardioid. A result analogous to (5.6) can also be shown to hold for the ratio 
of the curvatures of the right-hand cardioid at the points P±. 
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6* PENROSE TILES 

A routine calculation reveals that the slope of the tangent line at P+ is equal to tan4#/5. By 
drawing in that part of this tangent line which lies in the first quadrant and then repeating the 
analogous procedure in the other three quadrants, we obtain a rhombus R with angles of 2K 15 on 
the x axis and angles of 3TT 15 on the y axis. This quadrilateral is in fact known as a Penrose 
rhombus because it can be divided up to form two Penrose tiles [5]. This is shown in Figure 5. 
The two Penrose tiles with colored vertices (which do not concern us here) have been dubbed 
darts and kites (after John Horton Conway) [3]. The partition BGD (where A.BGD = 4;r/5) 
divides R into the dart BCDG and the kite ABGD. Using some simple trigonometry, it can be 
shown that the length of OG is in fact equal to p_. Also, the partitions formed by the rays OP+ 

and OP+ form another Penrose rhombus OP+AP+ which is one-quarter the size of J?. Some ele-
mentary algebra also reveals that E+ is in fact the ellipse of greatest area that can be inscribed 
within R. 

FIGURE 5. Right-hand Cardioid and Optimal Ellipse with Penrose Rhombus 
Divided into a Dart and a Kite 

Another construction highlights the relationship between the darts and kites and the inter-
section points. It is possible to use intervals through these points to form new darts and kites. 
The upper and lower points of intersection of E_ with the left-hand cardioid will be denoted Q_ 
and QL, respectively. We first produce both CB and OQ_ until they meet at H and then do the 
same with both CD and OQ_ and the point /. In this way we form the dart OHCL The contigu-
ous quadrilateral AB'OD' then turns out to be a kite. These structures are displayed in Figure 6. 
After some elementary geometric considerations, it can be shown that the ratio of the area of the 
dart OHCI to that of the kite AB'ODf is precisely equal to the golden section, r. 
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FIGURE 6. Additional Darts and Kites 
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1. INTRODUCTION 

Tronic" is an old-fashioned term meaning "the product of two consecutive integers." (The 
reader will find the term indexed in [1], referring to some half-dozen articles.) In this paper we 
show that the only Fibonacci numbers that are the product of two consecutive integers are F0 - 0 
andi^3 = 2. 

The referee of this paper has called the author's attention to the prior publication (December 
1996) of this result in Chinese (see Ming Luo [3]). However, because of the relative inaccessi-
bility of the earlier result, the referee recommended publication of this article in the Quarterly. 

If Fn = r(r +1), then 4Fn +1 is a square. Our approach is to show that Fn, for n'& 0, ±3, is 
not a pronic number by finding an integer w(ri) such that 4Fn +1 is a quadratic nonresidue modulo 
w(ri). There is a sense in which this paper may be considered a companion paper to Ming Luo's 
article on triangular numbers in the sequence of Fibonacci numbers: If Fn is a pronic number, then 
Fn is two times a triangular number. We shall use two results from Luo's paper, and take advan-
tage of the periodicity of the sequence modulo an appropriate integer w(ri), enabling us to prove 
our result through use of the Jacobi symbol (4Fn +1 \w(n)) in a finite number of cases. Our main 
result is the following theorem. 

Main Theorem: The Fibonacci number Fn is the product of two consecutive integers if and only 
if n = - 3 , 0, or 3. 

2. IDENTITIES AND PRELIMINARY LEMMAS 

Let n and m be integers and {Ln} be the sequence of Lucas numbers. Properties (1) through 
(4) are well known, and (5) was established in Luo's paper [2]. 

F „ = (-l)"+1/v (1) 
Lln = Ll-2(-\y. (2) 

Fm+n = FmLn-(-V) Fm_n. (3) 
^Fmn = FJ^,+FnLm. (4) 

If k is even, 3 \ k, and (a, Lk) = 1, then 

(±4aF2k + l\L2k) = - ($aFk±Lk\64a2+5). (5) 

If the period of {Fn} modulo Q is t and n = m (mod t), then Fn = Fm (mod Q). We will use 
this fact in our proofs for the following pairs: (t, Q) = (8, 3), (20, 5), (16, 7), (24, 9), (10, 11), 
(40, 41), (50, 101), (50, 151), and (100, 3001). 

It should be noted that we have given the least period t modulo Q in each of the above pairs; 
however, Fn^Fm (mod Q) if n = m (mod hi) for any integer h. 
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Finally, we comment that it is well known that Fn and Ln are even if and only if 31 n. 
Lemma 1: For all integers k and m, and g odd, 

F s [Eik+m ( m o d Lik\ i f S = 1 (mod 4), 
2kg+m [-FK^ (mod4,), i f g s 3 (mod4). 

i W / > B y ( 3 ) , 

^Ikg+m = ^Jfc(g-l)+mAfc ~ \ V ^fc(g-2)+w = ~^2fc(g-2)+m ( m o d L ^ ) ; 

clearly, 

^fe+w = -^*(g-2)+/w - +^(g-4)+m - ' *' = ^Fyt+m ( m o d Ẑ Jfc) , 

where the positive sign occurs if and only if g = 1 (mod 4). 

Lemma 2: If 31 *, then F2k+3 = 2 / ^ (mod L^). 

Proof: By (4), 
2 ^ + 3 = ̂ 4 + % * s ^2* • 4 (mod L^), 

implying the lemma, since L^ is odd. 

Lemma 3: If i^ is pronic, then n = 0 or ±3 (mod 8). 

Proof: Assume 4Fn +1 is a square. Then AFn +1 is a quadratic residue modulo 3 and mod-
ulo 7. However, 4Fn +1 is a quadratic nonresidue modulo 3 if n = 1, 2, or 7 (mod 8), and a non-
residue modulo 7 if ?? = 4 or 12 (mod 16). If n = 6 (mod 8), then w = 6, 14, or 22 (mod 24); but, 
for each of these w's, 4i^ +1 is a quadratic nonresidue modulo 9, establishing the lemma. 

3, PROOFS OF THE THEOREMS 

Theorem 1: If n is odd and w * ±3, then i^ is not pronic. 

Proof: Assume n is odd, n * ±3, and JF„ is pronic. By Lemma 3, n = ±3 (mod 8). First, we 
assume that n = 3 (mod 8). Then n = 3, 11, 19, 27, or 35 (mod 40); however, (4Fw + l |g) =-1 
for ( i n ,0 = (11,5), (19, 41), (27, 5), and (35, 11), implying » s 3 (mod 40). Then n = 3, 23, 43, 
63, or 83 (mod 100). Proceeding as before, we find that (4Fw + l | 0 = -l'for (wi,g) = (23,3001), 
(43, 101), (63, 151), and (83, 101). Hence, if « = 3 (mod 8), then w = 3 (mod 100). Let n = 
2-2"-52r + 3, u>\. Now, if w = 2*g + 3,3J*, and # is odd, then, by Lemmas 1 and 2, 

(4F, + 1|I^) = (±8F2,+1|4,). 
By (5), if k is even and 31 A:, then 

(±8FU +1 |4 , ) = -(\6Fk ± Lk |261) = -{\6Fk ± Lk |29). 

In the proof of Luo's Lemma 2 (see [2]), it is shown that this Jacobi symbol is -1 for 

k = 2u and g = 52r if u = 0 (mod 3), 
A: = 2M-52 and g = f if i# s 1 (mod 3), 
A: = 2M-5 and g = 5t ifw = 2(mod3). 
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Thus, Fn is not pronic if n = 3 (mod 8). 
Assume now that n s -3 (mod 8). By (1), Fn - F_n and, since - « s 3 (mod 8), 

(4F_„ + l |Zt t )=-l 
by the above proof. D 

Lemma 4: If u > 4, then 
(ty i > = (-1)" -21 (mod 69) and Z2„ = -1 (mod 69), 
(b) Fr5 s (-1)M+1 -21 (mod 69) and L^5 = -1 (mod 69). 

Proof: 4 = 3 , 4 = 7, 4 = 47, 4 6 = 2207 = - l (mod 69) and, using (2), it follows by 
induction that L u = -1 (mod 69) for u > 4, Hence, 

F2U=F24Z4Z,...Z2U_1^1.3.7.47-(-l)^(-l)M.21(mod69). 

Similarly, 4o> 4o> Z40, 4 O = 54,16,47, - 1 (mod 69), respectively, and (b) readily follows. D 

Proof of the Main Theorem: If n = 0 or ± 3, Fn is clearly the product of consecutive inte-
gers. Assume that n * 0, ±3, and Fn is pronic. By Lemma 3 and Theorem 1, n = 0 (mod 8); so 
» s 0 , 8; 16, 24, or 32 (mod 40). But (4Fm + 1\Q) = -1 for (/w,Q) = (8,11), (16, 41), (24, 5), or 
(32, 5), so n = 0 (mod 40). Let n = 2-2u-5t, w>2. By Lemma 1 and (5), ifn = 2kg, 3|&, k is 
even, and ̂  is odd, then 

f-(8F, + 4 |69), i f ^ l ( m o d 4 ) , 
[ - ( 8 4 - 4 | 6 9 ) , rf# = 3 (mod 4). 

Case 1: / s i (mod 4). Let 

A: = 2M and # = 5/ = 1 (mod 4), if u is odd, u * 3 or u = 2, 
& = 2"-5 and g = * = l (mod4), if w is even, u^2 oru = 3. 

If u = 2, -(8i^ + 4 |69 ) = -(31|69) = - l ; i f « = 3, -(8F* + 4 |69) = -(17|69) = - 1 ; if u>4 mdu 
is odd (A: = 2") or if w is even (k = 2U • 5), then, by Lemma 4, 

8 4 + 4 = 8(-21) + - l = -169 (mod69). 

Hence , - (84+4 |69) = -(-169|69) = - l . 

Case 2: t s 3 (mod 4). Let 
k = 2U and ^ = 5/ = 3 (mod 4), if w is even or u - 3, 
£ = 2M-5 and £ = r = 3 (mod4), ifz/isodd, w*3. 

If w = 2, - ( 8 4 - 4 | 6 9 ) = -(17|69) = - l ; i f i# = 3, - ( 8 4 - 4 | 6 9 ) = -(121|69) = - 1 ; if w>4 and 
2/ is odd (k = 2U • 5) or 1/ is even (& = 2"), then, by Lemma 4, 

8 4 - 4 = 8-21-(-l) s 169 (mod 69). 

Hence, - ( 8 4 - 4169) = -(169169) = - 1 . D 
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1. INTRODUCTION 

An integer m is a pronic number if m is the product of two consecutive integers. We shall 
show that the only Lucas number which is a product of two consecutive integers is LQ = 2. 

The author has been informed by the referee that the results of this paper appeared recently in 
a Chinese journal (in Chinese) [2]; however, because of the relative inaccessibility of that article, 
the editor has accepted the referee's recommendation to publish the results in The Fibonacci 
Quarterly. The author has not yet seen the earlier publication, but understands that the proofs 
employ the same line of reasoning, although differing in details. 

If m = r(r +1), then 4m +1 is a square. Our approach is to show that Ln, for n > 0, is not a 
pronic number by finding an integer w(n) such that 4Ln +1 is a quadratic nonresidue modulo 
w(n). It may be noted that if Ln is a pronic number, then Ln is two times a triangular number. 
Our interest in this problem was prompted by Ming Luo's very nice paper entitled "On Triangular 
Lucas Numbers," [2], and we employ an approach similar to that of Luo. We prove the following 
theorem. 

Theorem: The Lucas number Ln is the product of two consecutive integers if and only if n = 0. 

2. SOME IDENTITIES, SOME LEMMAS, AND THE PROOF 

The Lucas numbers are defined by 
L0 = 2,LX = 1, and L„ = Ln_x + L„_2, for n > 2, 

and the recursive relation holds for n negative if L_n - (~l)nLn. 
Let n and m be any integers, and {Fn} be the Fibonacci sequence. We require the following 

well-known identities: 

Z2 = 5F„2+4(-l)"; (1) 

Lln = Ll-2{r\r; (2) 
2Lm+n = Ln,Ln+5FmF

n'> ( 3 ) 

Lm+n = LmL„-(-iyL^n=5FmFn + (-iyLm-n. (4) 

Our proof makes use of the periodicity of the sequence of Lucas numbers modulo an odd 
integer. It is well known [and easily shown using (4)] that, if tk is an odd divisor of 5Fk and 
n = m (mod 2k\ then Ln = Lm (mod tk). The reader may readily verify this fact using a table 
of Lucas numbers for these pairs used in the proofs: (2k, tk) = (8,3), (4,5), (16,7), (10,11), 
(20,25), (50,101), (44,89). (22,199), (88,43), and (88,307). 

Lemma 1: If Ln is pronic, then n = 0 (mod 100). 
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Proof: Assume that 4Ln +1 is a square. Then 4Ln +1 is a quadratic residue modulo 11 and 
modulo 25. However, we find that ALn +1 is a quadratic residue modulo 11 only if n = 0, 1, or 5 
(mod 10), i.e., n=0, 1, 5, 10, 11, or 15 (mod 20), and modulo 25 only if « = 0, 4, 8, 12, or 16 
(mod 20). Hence, n = 0 (mod 20), so n = 0, +20, ±40 (mod 100). Since L_n = Ln for n even, it 
suffices to show that 4Ln +1 is not a quadratic residue modulo 101 for n = 20 and 40 (mod 100). 
We find that the Jacobi symbol 

(4Z20 + 1|101) = (10|101) = - 1 , 
and 

(4Z40 + 1|101) = (89|101) = -1 . 

Lemma 2: If Ln is pronic, then n = 0 (mod 88). 

Proof: Assume 4Ln +1 is a square. Then 4Ln +1 is a quadratic residue modulo tk, for tk = 3, 
5, and 7. However, the only integers n for which 4Ln +1 is a quadratic residue modulo 3 and 
modulo 5 are n = 0 and 5 (mod 8), and 4Ln +1 is a quadratic nonresidue modulo 7 for n = 5 and 
13 (mod 16). Hence, n = 0 (mod 8), so n = 0, ±8, ±16, ±24, ±32, ±40 (mod 88), and, as noted 
above, it suffices to show that 4Ln +1 is not a quadratic residue for n = 8,16,24, 32, and 40 (mod 
88). We find that (44 + l|307) = (189|307), (41^ + 11199) = (73|199), (41^ + 1143) =(37143), 
(4Z32 +1|43) = (3|43), and (4Z40 +1|89) = (29|89). Each Jacobi symbol equals - 1 , implying that 
Ln is pronic only if n = 0 (mod 88). 

Lemma 3: If n = kg, g odd, then 

f4 (mod^), if^=l,3 (mod 8), 
n " \-Ln (mod 4 , ) , if g ^ 5, 7 (mod 8). 

/ *w/ - By (4), 
AJ ~ ^k(g-2)^2k ~ ("1) ^(g-4) = ~^(g-4) (m°d ^ X 

hence, 

4 = 4 g = -Lk(g-4) = +4(g-8)s • • • s ±4* = ± 4 (mod 4^)-
It is readily seen that the positive sign occurs if and only if g = 1, 3 (mod 8). • 

In the following proof, we shall use the facts that Lm is odd if and only if 3 J/w, and L2„m = -1 
(mod 8) if u>\ and 3\m. 

Proof of the Theorem: If n - 0, Ln - LQ - 2, a pronic number. Conversely, assume Ln is a 
pronic number. By Lemmas 1 and 2, w = 2" • 52• 11/, u>3. Now, iln = kg9 2u\k9 3l[k9 and^ is 
odd, then, by Lemma 3, 

(44 + l|ZM) = (±4Zt+l|Z^) = ± (44± l |Z^ ) = ( Z ^ | 4 4 ± l ) 
= ( 4 - 2 | 4 4 ± l ) = (16Z| -32 |44±l) 
= ( ( 4 4 + 1 X 4 4 - 1 ) - 3 1 K 4 ± 1 ) = (-31144 ±1) 
= ±(31|44±1) = (44±1|31). 
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Case 1: t = 5 or 7 (mod 8). Let k = 2M • 52 and g = 1 lr = 7 or 5 (mod 8). By Lemma 3, 
Ln = -Lk (mod Z^). Now, Z, 2 = -1 (mod 31) and, by induction [using (2)], L^^ = -1 (mod 
31). Hence, 

(4L„ + l\L2k) = (4Lk-l\31) = (-5\31) = -l. 

Case 2% t = 1 or 3 (mod 8). If 4 Jw, let k = 2" and g = 52 • 1 If = 3 or 1 (mod 8); if 4|w, let 
A: = 2M • 11 and g = 52t = 1 or 3 (mod 8). By Lemma 3, Z„ = Ẑ  (mod Z^). Using (2), we find 
that 4Z2„ +1 = 25, 13, -2, 3 (mod 31) for u = 0, 1, 2, 3 (mod 4), respectively. Then, if 4|i/ , 

( 44 + l |4,)-(4L2U+l|31)-(13|31),(-2|31), or(3|31), 

each of which equals - 1 . 
Similarly, 4L2„ +1 = -2 , 3, 25, 13 (mod 31) for u = 0, 1, 2, 3 (mod 4), respectively; hence, 

for 4|i/, 
( 44 + l|Za,) = (4Z^41 + l|31) = (-2|31) = - l . D 
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1. AIM OF THIS NOTE 

Several closed-form expressions involving binomial coefficients exist for Lucas numbers. 
The most celebrated among them is the following specialization of Waring's formula (e.g., see (6) 
of [7]), 

4=f ^ (Y ) <-». (1.0 
where the symbol L' J denotes the greatest integer function. Other combinatorial expressions for 
Lucas numbers are: 

^ = ̂ r Z [ 2 j 5 ' {n~0) (e-g. see (4) of [7]); (1.2) 

/ = -L(n+l)/5j n V L V J J y 

^ ^ i i - V ^ Z l ^ ^ y - 1 (»>1) (from (4.2) of [2]). (1.4) 

A supposedly new combinatorial expression for odd-subscripted Lucas numbers is reported 
(without proof) in the Appendix. 

Expression (1.3) was obtained by Robbins [7] on the basis of an analogous formula for Fibo-
nacci numbers that was established by Andrews in [1]. 

As reported in (1.5) of [4], Jaiswal [3] discovered that 

L«/3J f _ 9 . x 

^ = i + K - i ) f / r (»>o). 0.5) 
The aim of this note is to parallel Robbins' work by using (1.5) to prove a new combinatorial 

expression for Lucas numbers that can be added to the above list. 

2. ANOTHER COMBINATORIAL EXPRESSION FOR LH 

We discovered that 

4 = -l+I(-l) '^f27("y 'J2-3' (»*1). (2.1) 
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Proof: Let us write 
rL»/3j 

5"-^H)^2Fl / J2 

= ^ + 3 - l + 2 l ( - l ) ' f , l ' ; ^ 2 , V 3 ' [from (1.5)] 
/=o V / 

= Fn+, -1 + 2 " f c V 1 (" " 3 / 2 / j 2-3"V. (2.2) 

-3-3/ 

Since |_/?/3J — 1 = L(w — 3) / 3j and the binomial coefficient in (2.2) vanishes for y' = - l (see 
[6], p. 2), (2.2) can be rewritten as 

L(«-3)/3j , 1 _ 2 A 
^ = ^ 3 - 1 - 2 I ( - i y [ n 3

y. 2 7 j 2 -

= Fw+3-2Fw + l = Zw + l [from(1.5)]. 

3. CONCLUDING REMARKS 

Some simple divisibility and congruence properties of the Lucas numbers can be derived 
immediately from their closed-form expressions. For example, from (1.1), it can be seen that 
Lp = 1 (mod/?) (p a prime), whereas, from (1.2), it is apparent that no Lucas number is divisible 
by 5. 

From (2.1), it is evident that Ln is even iff n = 0 (mod 3). More precisely, it is not hard to 
see that 

4s3 1 - r x r ( - l ) L , , / 3 j - l (mod2r+3), (3.1) 

where r is the residue of n modulo 3, and 

[1 ifr=.0, 
\2n(n + \)r-1 if r *0. *r = L > ^ - i . . . ( 3 2 ) 

APPENDIX 

The following combinatorial expression for odd-subscripted Lucas numbers emerges from a 
specialization of an expression for generalized NSW numbers (see [5], p. 288), a study of which is 
being undertaken by the author of this note. The interested reader might enjoy finding a proof for 
this expression: 

2 p0 \ J J n-2j 0). 
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A LAYMAN'S VIEW 
of 

Mn§tc of tlje ©pljeteg 
by Albert V. Carlin 

When I contemplate 
a page of symbols in mathematical array, 
symmetrical and beautiful, 
though I may not understand it all, 
my mind rejoices 
to think that here and now again 
the human mind has come so far. 
So far, to glimpse 
the wondrous order 
and balance of the Universe. 
(Submitted by Herta T. Freitag, November 1997) 
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1. INTRODUCTION AND PRELIMINARIES 

In this note we use some properties of the Lucas sequences, 

Un(m,Q) = ^-Z^- and V„(m,Q) = <*" + P", (1.1) 
a- p 

where a > /?, m-a + /?, and Q = a/3, to extend two theorems due to Melham and Shannon [3]. 
For the sequences defined above, it is known that 

Un[Vh(^QlQh] = Unh(mM)'Uh(m,Q) (h*0) (1.2) 
and 

Vn[Vh{m,Q),Qh] = Vnh{m,Q)- (1-3) 
In this note we are concerned with sequences where Q = ±\. In this case, for proofs of (1.2) 

and (1.3) in the literature see, for example, [1, p. 632]. In [3], Melham and Shannon proved that 

^ 1 1 (**0) (1.4) % Ukj{m, l)t/fc0+1)(m, 1) akU2
k(m, 1) 

and - 1 _ 1 
J 0 V^m, l)VkU+l)(m, 1) = 2{a-P)Uk{m, 1)' ( L 5 ) 

They evaluated analogous sums involving Un(m, -1) and V„(m, -1) only in the special case in 
which m = 1 (Fibonacci and Lucas numbers, see (3.9) and (3.10) of [3]). The aim of this note is 
to extend (1.4) and (1.5) to even-subscripted numbers U„(m, -1) and V„(m, -1), with m arbitrary, 
so that (3.9) and (3.10) of [3] will emerge as special cases of our results. 

2. OUR RESULTS 

J 1 
U U2kj(m, - l)U2ku+1)(m, -1) a2kUlk(m, -1) Theorem 1: £ TT f_ 1N„ 7 3 — ^ = 2 t „ 2 ,,., " ^ * 0 ) - ( 2 1 ) 

Theorem 2: Y = . (2.2) 

Proof of Theorem 1; If we let Ukt[V2(m, -1), 1] = Ukt(M, 1) with M = y +S, yS=l, y>S, 
then (1.2) may be written as 

t/2fe(m,-l) = t/2(m,-l)-t/t t(»r,l), 
and it follows (for t = \J andy + 1) that 
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fa U2k}.(tn, - l)U2k{J+l)(m, -1) - U2(jn,-l) pt Ukj(mA)Uk{m{mA) 

which, by (1.4) and (1.2),. 
1 1 = 1 

U2
2{fn^l) ykUl{m,l) ykU2

2k(m^\y 

Now, since y+S = M = V2{m, -1) = a2 +^2 , with afi = -l, we have 

r+L=a2+ \ 
r a2 

whence y = a2. This completes the proof. 

By using (1.3), the proof of Theorem 2 can be carried out in a similar way, so it is left as an 
exercise for the interested reader. 

We shall conclude this note by working out some reciprocal sums emerging from particular 
choices of m in (2.1) and (2.2). If we let m = 1, we obtain (3.9) and (3.10) of [3], respectively. If 
we let m = 2, we obtain, respectively, 

£ I = I (2J) 

and 

j=o QikjQiku+i) 4^2 P2k 

where Pk (resp. Qk) denotes the 1 t h Pell (resp. Pell-Lucas [2]) number. 
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1. INTRODUCTION 

In the notation of Horadam [1], let Wn = Wn(a,b; p,q), where 

Wn=PK-i-9K-2 (»*2), W0=a, Wx=b. (1.1) 

If a and fi are assumed distinct, then the roots of X1 - pX + q = 0 have the Binet form 

W, = *^f- 0.2) 
a-p 

in which A = b-aj3mdB = h-aa. 
The 71th terms of the Fibonacci and Lucas sequences are: 

F„ = r„(0,l;l,-1); L„ = W„(2,V,l,-l). (1.3) 

As usual, we write 

Un = Wn(09V,p,q) = ^ - ^ , V„ = Wn(2,p;p,q) = a"+/]", (1.4) 
a-p 

where {Un} and {^} are the fundamental and primordial sequences, respectively, generated by 
(1.3). These sequences have been studied extensively, particularly by Lucas [3] and Horadam [1]. 
Throughout this paper, d is a natural number. 

Define the Aitken transformation by 

A(x, x', x") - (xx" - x'2) I (x - 2xr + x"), (1.5) 

where the denominator is assumed to be nonzero. 
In 1984, Phillips discovered the following relation between ratios of Fibonacci numbers and 

the Aitken transformation, 
A(r„_t,rn,rn+t) = r2n, (1.6) 

where rn = Fn+l/ Fn. An account of this work is also given by Vajda in [3]. McCabe and Phillips 
[5] generalized this to show that (1.6) holds when rn = Un+l/Un, and Muskat [7] showed that 
(1.6) holds for rn = Un+d I Un. Jamieson [6] obtained the generalization 

A^,WT,m = ̂  Hi 0.7) 
where W<^ = Fp{M)_kIFpi_k, 0<k<p-l. 

The purpose of this paper is to establish a further generalization of these results. 
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2. THE MAIN RESULTS 

First we introduce a new class of more general sequences that has not appeared previously in 
the literature. 

Definition: The generalized Fibonacci sequence (GF-Sequence) is defined by 
Ak^nk+d ryk nnk+d 

<KaMP,q)=Aa ~B/ • (2.1) 
a-p 

Thus, we have Fn = W§ (0,1; 1,-1), Un = ^ ( 0 , 1 ; p9q\ and Wn =W$(a,h; p,q), and the GF-
sequence W^kJ(a,h; p,q) is seen to be an extension of these sequences. 

We write W$ for W^){a,b\ pyq) and note that this sequence satisfies the recurrence relation 

which has characteristic equation with roots ak and J3k and generating function 

y yrtkY = Akad - Bkpd - (Aka"fik - Bka kpd)t = W$ ~ WPd* 
hi "'d {a-B)(\-(cck + Bk)t + akBkt2) \-Vkt + qkt2 " 

Introducing such a class of generalized Fibonacci sequences W^k), we can find a nice property 
between the appropriate ratios involving this sequence and Aitken acceleration. 

If w$ * 0, we define the ratio 

W = W$IW% (2.2) 

and state the main result of this paper. 

Theorem: 
A(ie],Rik\Wt) = R?k)- (2.3) 

3. LEMMA 

For the proof of the Theorem, we introduce the following lemma. 

Lemma: 
(a) W<kldW<kld-(^)2 = -AkBkq^k+d(Ukt)2, (3-1) 

(b) ^ - W » = AkBkq^kUdUkt, (3.2) 

(c) KXlo - < » = A'&ifUJJto, (3.3) 

(d) ^f-qd{^)2=UdWJ;2k\ (3-4) 

(e) W}kl0-qktWZklQ = Ukt(Aka"k +Bk0"k). (3.5) 

Proof: We prove only part (a) because the proofs of (b)-(e) are similar. Using the definition 
of W$, we have 
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jkfyin+tyk+d _ rtk o(n+t)k+d jk^(n-tyk+d _ rtk o(n-t)k+d f jk^nk+d _ r*k nnk+d \ 2 

a-p 

= AkBkq(n~t)k+d\ ^ ~P 

and the proof of (a) is complete. 

.ifcy 
a-p 

= -AkBkq^t)k+d(Ukt)2 

a-p 

4. PROOF OF THE THEOREM 

Using (1.5) and (2.2), we may write 

w<*> raw fw^kA2 

?(k)\2 

^ W r ' ^ V ^Jxn+t)~ n(k) ~n(k) , nfifc) ~ Tj/fA: 

w(fc) w W 
n—t,Onn+t,0 

^ - 2 ^ > + c }
r »*%, ^ md 

yvn-t,0 yrn,0 vvn+t,Q 

\vvn,Q) vvn-t,dvvn+t,d \vvn,d) vrn-t,Oyvn+t,0 

<F2ctf(rt3.rf8.< - (O2) - ( O W ^ o - op2) 

^(02V(021 
^uMiU-q'VU 

u*udw%-> 
W2*>UdUkt(Aka'*+Bkp*) 

, by (3.1) and (3.2), 

, by (3.3), (3.4), and (3.5), 

This completes the proof of the Theorem. 

5. REMARK 
There is a major difference between the result of this paper and those of other papers on this 

topic. In this paper, when the Aitken transformation is applied to the three numbers, B£}t, R^k\ 
and B$t9 we obtain a doubling of tc, giving F^k\ This contrasts with the results of all the other 
authors quoted, such as the relation A(rn_t, rn, rn+t) = r2n, where it is n that is doubled. 
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But, when * = 1, a = 0, and h = 1, we have i^2) = U2n+d I U2n = r2n. Thus, the result of this 
paper may be regarded as a further generalization of the former results. 
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Harald Riede 
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(Submitted May 1996-Final Revision September 1996) 

Let s(k) denote the sum of the base 10 digits of k E N . For natural x > 2 and arbitrary fixed 
exponent m eN, it will be shown that 

x-l i x-l / Q \m 

i-5>(*r=(jigxj +o((ig*r-1). 
Here, "lg" denotes the base 10 log function. It is obvious that this formula can be generalized on 
arbitraryp-adic systems. The case m-\ has been treated in [1], m = 2 in [2]; there the general 
case is exhibited as an open problem. The proof given now is based on induction. 

I wish to thank Harald Scheid, University of Wuppertal, Germany, who drew my attention to 
certain unsolved arithmetical problems, the above among them. 

1. THE ASSUMPTION 

Let 4c f°r x = 2,3,... be the arithmetic function 

4(/«) = | ;5(*)m, «ieN0(= {0,1,2,...}). 
fc=0 

I denote the above assertion in the following manner, 

Ax(i) = x\^lgxj +di(x)-x(lgxy-\ x>2 , (1) 

with certain bounded functions df(x), i.e., 

K(x) |<4forallx, (2) 

and assume that it is valid for / = 1, ...,/w-l. The validity for / = 1 is guaranteed in [1] and the 
validity for i = m will be deduced now in several steps. 

2. A REDUCTION FORMULA FOR AWx 

The binomial product B*C of two arithmetical functions is defined by 

B*C(m) = fj(f\B(kyC(m-k). 

First, I will show that 
4o* = Ao * 4c- (3) 

x-l 9 * - l 9 x-l 9 m / \ 

Aox("»)=Z z*o°*+om =Z iwo+i r= Z Z Z n W r ' / ' 
&=0 /=0 &=0 /=0 fc=0 /=0 ;=0 ^J ' 
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=1 l(«*r{7)|>')=l I^r{7)4oO)=z[(7)4oO)Z^)'-

3. ESTIMATION OF THE REMAINDER 

Let x have the decomposition lOy + z with z<10. Suppose i^. = 4c - Al0y. In the case 
z = 0 we have i?,. = 0, otherwise 

If w +1 denotes the number of digits of x, then 

i?,(w)<z-((w + l)-9)m<9w+1-(« + i r . 

Let (an...a0) be the decimal representation of x and xk-{an...ak) (especially x0 - x, xn=an\ 
then, in particular, 

4. A DECOMPOSITION OF 4 ( m ) 

One can verify immediately that 

(4) 

fc=i 

^Ky^+Ii^Uo^^-io^+Iio*^, 
J f c = l k=0 

k=l\ /=1 
4(") = i o ^ > ) + I ho*"1! 7 40(04,(^-0kZi^CiH) 

v „ ' j = 1 
7)^fiX-, 

V »̂ . 

A:=0 

H-l 

+ Siok^('») 
&=0 

JF 

The expressions U, V, and FT shall be treated now one after another. 

5. ESTIMATION OF V AND V 
(4) 

[/ = 10"A, (m) = 1 0 X (m) < 10" -9m+1 and, since 10" < x < 10"+1, we have U = 0(x). Fur-
thermore, 

n-\ (4) w-1 
F = X 1 0 ^ ( w ) - 9w+1ZlOfc(w-* + l)w. 

fc=0 fc=0 
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Since the power series 2^ kmzh has radius of convergence 1, it is particularly convergent for 
z- 1/10; hence, 

n+l 

k 
Thus, V=0(x). 

n n+l / i \k 
]T\0k(n-k + l)m = 10"+lY,km [-:] =0(x). (5) 
k=0 k=l V 1 0 ^ 

6. DECOMPOSITION AND ESTIMATION OF THE Wi 

With respect to the assumption under induction, we obtain, for / < m-1, 

Wi=±lOkAXt(i) = £lo4xAgxk)+dtxk)-xk-(lgxky-i 

= \^]i^xk(igxky +£di(xk)-iokxk(igxky-\ 
Gt G; 

Let yk = (ak ...<%). Then 10*xk = (an...ak0...0) = x-(ak_l...a0) = x-yk_l9 so we have 
v v ,——J 

n+l digits 

G,=iix-y^iigxj=*icg**y -2>*-i0g**y. 
k=\ k=\ k=l 

The two sums herein shall now be estimated separately: 

a) We have («-£) ' = (lglO""*)' < ( l g x j <(lgl0"-*+1)' = (n-k + Vf; hence, 

£(n-ky <Y,(lgxky <£(n-k + iy =n< +f,(ri-ky. 
k=l k h=\ k=l 

Since 
n 

I< 
k=l 

we see that, for arbitrary / GN, 

b) 2>*-,(ig%)' ^Iio^igio"-^1)1=^i&(n-k+iy(^o(x). 
k=l k k 

n-ky 

n 

X(ig* 
k=l 

k=l 

n-l 

&=1 

•»'=? 

= 77T+0< 

-7 + 1 

^T+o(«'). 

Putting the two parts together, we have 
ni+l 

Gt=x~+0(x-rt)9 i'+l 
particularly with respect to (2): \G*\< 4Q-i =0(x-ni); therefore, 

Now it is easily seen that 
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And, finally, 

4(wi) = f | j X-W,,f+0(X-/!W-1). 

From this, the Initial assertion is deduced immediately. 

Often a solved problem procreates a new problem. Here is an open question: Does the given 
asymptotic estimation hold even for arbitrary real m>\l The reader is invited to prove or dis-
prove this result. 
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A SPARSE MATRIX AND THE CATALAN NUMBERS* 

Naotaka Imada 
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{SubmittedMay 1996-Final Revision August 1997) 

1. INTRODUCTION 

We shall consider a stack of r glass plates. A light ray comes from the upper left direc-
tion, reflecting at some inner boundary surfaces of the plates and passing through others. After 
repeated reflections and transmissions, the light ray goes away to the upper-right or the lower-
right direction. How many possible paths are there in this case? The closed formulas for coeffi-
cients in the recurrent relations arising from the problem of enumeration of the possible reflection 
paths of light rays in the multiple glass plates were first given by J. A. Brooks (cf. [1, p. 271, eq. 
T(n)]). Using the signed ballot numbers D(k, j), which are defined below, we can also obtain the 
formulas ([5, p. 385, eq. (3.17)]). A matrix B = B{r) constructed using the numbers D(k, j) in a 
particular but natural manner indicates some interesting properties; for instance, "the sparseness" 
in the sense that the number of zero-elements of the matrix is maximum among the equivalent 
matrices. Let BT be the transpose of B. Then the Catalan numbers (cf. [3]) appear in the matrix 
product of BT and B. 

The contents of this paper are regarded as continuations of [5]. For completeness, we will 
now summarize the results of [5]. 

Let A be an r by r matrix such that 

A = 

(This matrix arises when one enumerates the increased numbers of paths of light rays produced by 
an extra reflection fromr plates, in an iterative scheme (cf. [5].) 

Then we have 

(0 
0 
0 

0 
0 

u 

0 
0 
0 

0 
1 
1 

0 .. 
0 .. 
0 .. 

1 .. 
1 .. 
1 .. 

. 0 

. 0 

. 1 

. 1 

. 1 

. 1 

0 
1 
1 

1 
1 
1 

i\ 
I 
l 

l 
l 
V 

A~* = 

0 
0 
q 
6 
-l 
l 

0 
0 
q 

- i 
l 
0 

o .. 
o .. 
q .. 
i .. 
o .. 
o .. 

. 0 

. - l 

. l 

'. 6 
. 0 
. 0 

- l 
I 
q 
6 
0 
0 

i) 
0 
0 

6 
0 
o 

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July of 1996, 
was scheduled to appear in the Conference Proceedings. However, due to refereeing problems and deadline dates, 
we are publishing it in this issue of The Fibonacci Quarterly to assure its timely publication. 
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Let L be a column vector of size r such that 

f=(i , i , i , . . . ,1,1,1). 

Then successive multiplications by A'1 give the following sequences: 

fA-1 =(0,...,0,D(l,0)), 
?A-2 =(Z)(2,0),0,...,0), 

. . . , 
• • ' ? 

fA-2m+i = (o,...;o,D(2m-1,0),D(2m-1,1),...,D(2m-\,m-1)), 
lTA-2m = (D(2m,m-l),D(2m,m-2),...,D(2m,0),0,...,0), 

• • • ? 

where 

,0(1, 0); D(2,0); D(3,0), Z)(3,1); D(4,0), Z)(4,1); D(5,0), Z)(5,1), Z)(5,2); 
... = 1; 1; -1,1; -1,2; 1, - 3,2;..., respectively. 

From the process used to produce D(k, j), we can obtain the following recurrence relations 
(cf [5, p. 382, eqs.(2.1)-(2.3)]): 

D{k,j) = 
\-\f{D(k-1, j)-D{k -1, j-l)} for 1 < j < L^J , 
( - l )L^ forj = 0, 
0 otherwise, 

where [xj is the floor function of D. Knuth and represents the greatest integer less than or equal 
to x (see [4]). Hence, we can get a closed expression for the numbers D(k, j) (1 < k; 0 < j < 
L(*-1)/2J), namely, 

D(k,j) = (-li^^J-^j (1) 

(cf. [5, p. 382, eq. (2.6)]). The ballot numbers can be expressed as 

(cf. [2, p. 73]). So our numbers are called "signed ballot numbers." The Catalan numbers cn are 
usually defined as 

1 (2n* 

In particular, for both even and odd cases, if k - 2kl and k = 2k' + \9 respectively, we have 

D(2k', * ' - ! ) = D(2k> +1, *') = Y ^ k ' ) = cf 

Hence, we can regard our numbers {D(k,j)} as signed ballot numbers and, simultaneously, as a 
generalization of the Catalan numbers. 
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Let B be a matrix such that 
B = (A~ll A~\ ..., A~{r~l)l A~rl). (2) 

(In [5], we use the symbol BT in place of B (see [5, p. 381]). 
It can be shown that the Catalan numbers cn and zeros appear alternately in the first row and 

the last row of B (cf [5, p. 382, eq. (2.7)], and see B below for the case r = 9). 
For m = . . . , -2 , -1,0,1,2,..., let us consider an associated set of linear equations, that is, 

(Am~l\, Am~2l,..., Am~rl)x = Am\. (This x is the coefficient vector of the recurrent relations aris-
ing from the problem of light rays in multiple glass plates (cf. [5]).) Then the matrix B is the 
coefficients matrix for the case m = 0, from which we can obtain the solution x = B~ll, where B is 
a nonsingular matrix because of (7) below. 

Let Tn = T^ be the total number of ray paths formed by the r plates after n reflections, and 
let t_ = /(r) = {Tn_h T„_2,..., Tn_r)T. It is shown in [1, p. 271] and [5, p. 385, eq. (3.17)] that 

rn - (Bri\)Tt=y (-i)^J I L^J+J T • 

For the (p, q) element zp^q of B l, we notice that the following are also valid: 

v , P ' - i + » = ( - 1 ) p ' " 1 ( 2 ^ 2 - t w ) - " 1 ^ ^ ^ i - r / 2 J ' 1 - w - L r / 2 J - ^ + 1 ' 

zpq = 0... otherwise. 

(See [5, eqs. (3.8)-(3.10)].) An algebraic manipulation yields 

(_l)/>/2-ifW2 + <7 fj f o r / ? e v e n ; pl2<q<lrl2\, 

p,q 
(_l)b'2jr>-+b/2j q\ forpodd. \rl2\ + \<q<r-\_pl2\, (4) 

otherwise. 

For example, in the case r = 9, we have 

B = 

(0 
0 
0 
0 
0 
0 
0 
0 
1 

1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

-1 
1 

2 
- 1 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 

-3 
2 

5 
- 4 

1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

-1 
5 

- 9 
5 

14 
-14 

6 
-1 

0 
0 
0 
0 
0 

0] 
0 
0 
0 
1 

- 7 
20 

-28 
14 
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and 

B~l = 

0 
1 
0 
0 
0 
0 
0 
0 
0 

0 
2 
0 

- 1 
0 
0 
0 
0 
0 

0 
3 
0 

- 4 
0 
1 
0 
0 
0 

0 
4 
0 

-10 
0 
6 
0 

-1 
0 

1 
0 

-10 
0 

15 
0 

- 7 
0 
1 

1 
0 

- 6 
0 
5 
0 

-1 
0 
0 

1 
0 

-3 
0 
1 
0 
0 
0 
0 

1 
0 

-1 
0 
0 
0 
0 
0 
0 

I) 
0 
0 
0 
0 
0 
0 
ol o 

26 CATALAN NUMBERS IN BTB 

Now we will discuss further properties of B. For matrix B, computing BTB, we have the 
Catalan numbers and zeros that run parallel to the skew-diagonal line. From the lower-left to the 
upper-right of BTB, the numbers cQ,ch...,cn appear on the first, the third, ..., and the (2« + l)st 

line, respectively; i.e., we have 

B'B: 

fc 
0 

ci 
0 

C2 
0 

6 
^ 

0 
^1 
0 
c2 
0 
°? 

Cr' 

0 

c l 
0 

C2 
0 
c3 
0 

6 
Cr'+l 

0 
c2 
0 

C3 
0 

CA 

Cr '+1 
0 

c2 • 

0 • 
c3 • 
0 • 

C4 • 
0 • 

6 • 
Cr'+2 • 

0 
•• cr. 

0 
•• C r ' + 1 

0 
• ' Cr'+2 

'' C2r'-i 
0 

cr, 
0 

Cr'+\ 
0 

Cr'+2 
0 

6 
% • 

where r = 2r' + 1. In the case r = 2r', to obtain the expression BTB, we have to delete the last 
row and the last column from the one above. All the odd skew-diagonal elements of order 2n +1 
running from the lower-left to the upper-right of BTB are the Catalan number cn, while those of 
even order are zero. Namely, we have the following theorem. 

Theorem 1: For every k(l<k<r),it holds that 

[cu i for (i, /) = (k+m9 k-m) and (k--m, k +m), 
(BTB\ , = \ 

,J [0 otherwise, 
where 

f0,l , . . . ,*-2 for 2 <* <\jf-J, 
m-- 10,1,... ,/--* f o r [ ^ J + l<A:<r. 

Proof: From (2), consider an odd-skew-diagonal matrix element, we deal with the two cases 
simultaneously: 

= (0,..., 0, D(2k -1,0),..., D(2k -1, * - 2), D(2k -1, * -1))(0,..., 0, c0)T 

= D(2k-\,k-l)c0=ck_v 

k±m,k+m A " (BTB\ 

1998] 79 



A SPARSE MATRIX AND THE CATALAN NUMBERS 

Next, consider an even-skew-diagonal matrix element: 

In the upper sign case, we have 

= fA-3kA-1l 
= (D(2k,k-1),D(2k,k-2),...,D(2k, 0), 0,..., 0)(0,..., 0,c0f 
= 0, 

where 

m = 
[0, !,...,(•) f o r l < * < | _ ^ J 2 J ' 

|0,l,.. . ,r-Jfc-l for\ff\ + l<k<r-\ 

[k-2 forr = 2r' + l, 

where 

W " " U - 1 forr = 2r'. 

In the lower sign case, we have 

= lTA-2k+2A-ll 
= (D(2k-2,k-2XD(2k-2,k-3l...9D(2k-2,0X0,...,0)(0,...,0,c0) 
= 0, 

where 

fo,l,...,&-2 for2<£<|/±±J, 
[0, l , . . . , r -£ f o r ^ J + l ^ ^ ^ r . 

This establishes Theorem 1. 

As a corollary, we also have, from (1): 
l(k-m-l)/2j 

(BTB)k±m^m= £ • D(k±m,m + j')D(k*m9j) 
j=o 

l(k-m-l)/2j f x . -
1 V/Z.T- o •\2[k±m\(k + m 

T 

_ i _ L V £x r^±^Y^ 
7 

where 

(o, ! , . . . , £ - ! f o r l < £ < L ^ J , 
m-{ 

(0,l,.. . ,r-& f o r ^ J + l ^ ^ ^ r . 

This is a binomial identity for the Catalan numbers. 
For example, in the case r - 9, we have 
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BTB: 

f 1 
0 
1 
0 
2 
0 
5 

0 
1 
0 
2 
0 
5 0 14 
0 14. 0 

1 
0 
2 
0 
5 

0 
2 
0 
5 
0 

2 
0 
5 
0 

14 
0 

42 

0 
5 
0 

14 
0 

42 0 132 
0 132 0 

5 
0 

14 
0 

42 

0 
14 
0 

42 
0 

0 14 0 42 0 132 0 429 

14^ 
0 

42 
0 

132 
0 

429 
0 14 0 42 0 132 0 429 0 1430 

We may remark here that BBT is a particular kind of block matrix, with symmetric blocks in 
the main diagonal. For example, in the case /* = 9, we have 

BBT = 

26 
18 
89 
14 
0 
0 
0 
0 
0 

-218 
213 
-88 
14 
0 
0 
0 
0 
0 

89 
-88 
37 
-6 
0 
0 
0 
0 
0 

-14 
14 
-6 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 

-7 
20 
-28 
14 

0 
0 
0 
0 
-7 
50 

-145 
205 

-103 

0 
0 
0 
0 
20 

-145 
426 
-608 
307 

0 
0 
0 
0 

-28 
205 

-608 
875 

-444 

0 
0 
0 
0 
14 

-103 
307 

-444 
227 

3. SPARSENESSOFBANDir1 

We may call B "a sparse matrix" (for A) in the sense that, for a regular matrix A, it holds that 

and, simultaneously, that 

max n{AmB} = n{B] 
m: integer 

max n{B'1Am} = n{B-1} 
m: integer 

where n{M) is the number of zero-elements of a matrix (or vector) M. We shall establish below 
that 

n{B} = n{B-l} = l^{3^f}-l\ 

\B\ = \B~l\ = (-lfr/2K 

To prove these statements, we need the following lemma. 

Lemma: For nonnegative integers m > 0, we have 

f L l I W J - ^ - ' - L f J fori» = 2m', 

lLiJ ( 3 L Z fJ- 2 ) - ' t f J form = 2 ^ + 1. 

Proof of the Lemma: From the expression f A~m in Section 1, it follows by inspection that 

»{^"1} = 0 forall»>0, 
n{A-l\} = r -1, 
n{A-2\} = /•-!, 

n{A-mB) •• (5) 
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where nf = 2r -1. Hence, for m > 0, we have 

n{A~mB\ = n{(A-"-ll A'™-2!,..., A-^l)} 

To establish the Lemma, we may calculate the last summation separately for the even and odd 
cases of both rn and r. 

First, in the case in which m - 2m', we obtain the following results: 
(i) Whenr = 2r' + 1, we get 

n{A~mB) = r2 +m' +r' + l-2(m' + 1+ •••+m' + r' + m' +rf + 1) 

= 3r '2 + 2r' - m'(2r' +1) = [fj (3 [ ^ J -1) - r [ f J. 

(ii) When r - 2r', we get 

n{A'mB) = r1 -2(m' + 1+ ••• +mf +r') 

= 3r'2 - *" - 2rW = L i M ^ J " 0 "^ f 1 
The case in which m = 2m' + 1 is derived in an analogous fashion, so we omit the discussion 

for brevity. This proves the Lemma. 

We now have the following theorem. 

Theorem 2: 
(a) For the r by r matrix B, we have 

»{*Hii(3m-i)> (6) 
l*|=(-l)L*J, (7) 

max n{AmB} = n{B). (8) 
m: integer 

(b) For the matrix B~l, we have 

«{5-1} = LfJ(3^J-l), (9) 

|5- l |=( - l ) W J , (10) 
max n{BrlAm}=n{Br1}. (11) 

m: integer 

Proof of (a): In (5) of the Lemma, putting m - 0, we immediately have (6). 
For (7), the proof is by induction. If r = 2, J5(2) is a skew unit matrix of order 2. Hence, we 

have |i?(2)| = - 1 . Here, we note that in order to construct i?(r+1) of order r +1 from i?(r) of order 
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r, we must affix the column vector A~r~ll of size r +1 to B(r) as the last column, and also affix 
the row vector (0, 0,..., 0,D(r + 1, 0)) of size r + 1 to B{r) as the central row. Using Laplace's 
expansion theorem, we have 

|B(r+1)| = (~-l)^r+2^+r+lD(r +1,0)|5( r ) |- (-1)L(^)/2J. 

Thus,, we have the desired result. 
For (8), from (2) for / (1 < / < r), we have 

n{AlB) = n{(Al-ll Al~\ ..., 1,..., Al-rY)}. 

Since columns of AlB for which the exponent of Al~s is nonnegative (l<s<I) have no zero-
elements, we have 

n{B} > n{AB} > n{A2B) > • - • > n{ArB) 
= n{Ar+lB} = n{Ar+2B} = • • • = 0. 

On the other hand, by virtue of the Lemma, we have 

n{B) > n{A~lB} > n{A~2B) > • • • > n{A-r*+lB) 

= n{A~r*B} = n{A~r*-lB} = • - • = 0, 

where 
|4r' + l... forr = 2r' + l, 

r* = { 
4r ' - l . . . forr = 2r?. 

This proves (a). 

Proof of (h): For (9), from the available range of each subscript in the expression for the 
elements of B~l [see (4) above], we can count the number n{B~1} of zero-elements of B~l. 

The validity of (10) follows from (7). 
To establish (11), we must count the number of zero-elements of B~lAm. Let L, C, and R be 

the number of zero-elements of B~lAm (0<m<r-l) in the left parts (l<j< [fr -m)l 2J), in the 
central parts (L(r-/w)/2J + l<y'<L(r-w)/2J + /»), and in the right parts (l(r-m)/2j + m + 
1 < j < r ) , respectively, where j is a column number. Then we can easily obtain 

c=o, 

(12) 

Since, for a natural number n (see [4]), n = [f J + |_'22lJ> w e obtain 

n{B-lA-m} = L + C + R 
= ±(r-m)(r + m-l) + L£flJL£=f±1J-

It is easy to observe that n{B~lA~m} is a strictly decreasing function of m. On the other hand, it 
can be shown that 

niB-'A) = L^JLU H L ^ l ^ J +1) < »{B-1} 
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and 
n{B~lA2}=:n{B-lA3} = '-' = 0. 

Hence, we get the following relation: 

n{B~1} >n{B~lA} >n{B~lA2} = n{B~lA3} = -- = 0. 

Thus, (11) is obtained. This completes the proof of (b). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rablnowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to stan@wwa.com on Internet. All 
correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+\+Fn> F0 = °> ^1 = ^ 

A»+2 ~ AH-1 + AI> LQ=2, L{= 1. 

Also, a = (l + V5)/2, j0 = ( l -V5)/2 , Fn = (an-f5n)l^and Ln = a"+J3". 
The Fibonacci polynomials, Fn(x), and the Lucas polynomials, Ln(x), satisfy 

Fn+2(x) = xFn+l(x) + F„(x)9 F0(x) = 0, F1(x) = l; 

A»+2(*) = *^ i (* ) + A,(*)> h(x) = 2, A(*) = *-
Also, 

^ ) = ° ^ : g ' f ^4(x)=a(xr+/xxr, 
where a(x) = (x + Vx2 + 4) /2 and fi(x) = (x- Vx2 +4) /2 . 

PROBLEMS PROPOSED IN THIS ISSUE 
Today's column is all about Fibonacci and Lucas polynomials, Fn(x) and Ln(x), which are 

defined above. For more information about Fibonacci polynomials, see Marjorie Bicknell, "A 
Primer for the Fibonacci Numbers: Part VII—An Introduction to Fibonacci Polynomials and 
Their Divisibility Properties," The Fibonacci Quarterly 8.4 (1970):407-420. 

B-842 Proposed by the editor 
Prove that no Lucas polynomial is exactly divisible by x - 1 . 

B-843 Proposed by R Horace McNutt, Montreal, Canada 
Find the last three digits of Ll99S(l 14). 

B-844 Proposed by Mario DeNobili, Vaduz, Lichtenstein 
If a + b is even and a > b, show that [Fa(x) + Fb(x)][Fa(x) - Fb(x)] = Fa+b(x)Fa_b(x). 
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B-845 Proposed by Gene Ward Smith, Brunswick, ME 
Show that, if m and n are odd positive integers, then Ln(Lm(x)) = Lm(Ln(x)). 

B-846 Proposed by Piero Filipponi, Fond V. Bordoni, Rome, Italy 
Show that 

^ F , ( 4 0 * + l) 
«=i n\ 

is an integer for all integral k. Generalize. 
B-847 Proposed by Gene Ward Smith, Brunswick, ME 

Find the greatest common polynomial divisor of Fn+4k(x) + Fn(x) and i^+4A:_1(x) + F^x). 

B-837 (corrected) Proposed by Joseph J. Kostdl, Chicago IL 
Let 

P(x) = x1997 + x1996 + x1995 + • • • + x2 + x +1 

and let R(x) be the remainder when P(x) is divided by x2 - x - 1 . Show that R(x) is divisible by 
L999. 

NOTE: The Elementary Problems Column is in need of more easy, yet elegant and 
nonroutine problems. 

SOLUTIONS 
It Keeps on Growing 

B-826 Proposed by the editor 
(Vol 35, no. 2, May 1997) 

Find a recurrence consisting of positive integers such that each positive integer n occurs 
exactly n times. 
Solution 

All solvers selected the monotone sequence (an) - 1,2,2,3,3,3,4,4,4,4,..., whose rfi term 
they found to be an = [^f^\. 

The recurrences found were: 

an=an_{ + 

a„ = l+a„ 

l + ^/8^7^ 1 + V&I-15 

In 
VSw + 1-1 V&i + l + l 

aM = 1 + a, |(2«+3-V8«+9)/2j» 

1, if n is triangular, 
0, otherwise: 

L. A. G. Dresel 

Gerald A. Heuer 

H.-J. Seiffert 

Reginald H. McNutt 

PaulS. Bruckman 

each with initial condition ax = l. 
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A Simple Third-Order Recurrence 
B-827 Proposed by Pentti Haukkanen, University of Tampere, Tampere, Finland 

(Vol 35, no. 2, May 1997) 
Find a solution to the recurrence 

in terms of Fn and Ln. 

Solution by Graham Lord, Princeton, NJ 
That An - (~fyn~l(Fn+2 ~ 1) satisfies the recurrence is verified by substitution: 

Ari+3-\-2An+2 - -ir2(Fn + 5-i)+2(-iri(Fw + 4-i) 
-iy+\Fn+5 - 2Fn+4) - ( - i r 2 - 2(-ir+i 

-i)n+2(Fn+3-Fn+4)+(-iy+l-2(-iy+i 

-ir+ 1(^+ 2-i) 

ŷ fec? spiral fey Mohammad K. Azarian, Brian D. Beasley, Paul S. Bruckman, Charles K. 
Cook, Leonard A. G. Dresel, Herta T Freitag, Gerald A. Heuer, Harris Kwong, Bob Prielipp, 
MaitlandA. Rose, James A. Sellers, H.-J. SeiffeH, I. Strazdins, and the proposer. 

Semi Fibonacci 

B-828 Proposed by Piero Filipponi, Rome, Italy 
(Vol 35, no. 2, May 1997) 

For n a positive integer, prove that 

X—in-l-2r 
{ 2r 

r=0 V 
is within 1 of F„ 12. 

Solution by H.-J. Seiffert, Berlin, Germany 
Let n be a positive integer. It is well known ([2], p. 50) that 

T(-j-'H. 
The formula ([1], p. 33) 

L("-!)/2J 

when letting x = TT/3 gives 

T<-<"-I-*B4¥)- (2) 
fc=0 
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since COS(TT/3) = 1 /2 and sin(;r/3) = V3 12. Adding equations (1) and (2) and dividing the 
resulting equation by 2 yields 

S 2 I * J=2F« + VfsmlT-J 
or, equivalently, 

L ( " ^ / 4 V « - l - 2 ^ 1 ^ 1 . (nn\ 

Thus, the desired sum differs from Fn 12 by at most 4-sin(-y-), which is less than 1. 

77?e proposer also found the corresponding result for Lucas numbers: 

lP n (n-2r 
hn-2r\ lr 

f (4+2) /2 , if« = 0 (mod 6), 
( 4 + 1)/2, if« = +l (mod 6), 
( 4 - 1 ) / 2 , ifw^+2 (mod 6), 
( 4 - 2 ) / 2 , if« = 3 (mod 6). 

References 
1. I. S. Gradshteyn & I. M. Ryzhik. Table of Integrals, Series, and Products. 5th ed. San 

Diego, CA: Academic Press, 1994. 
2. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
Also solved by David M. Bloom, Paul S. Bruckman, Leonard A. G. Dresel, Indulis Strazdins, 
and the proposer. 

Powers of 2 

B-829 Proposed by Jack G. Segers, Liege, Belgium 
(Vol 35, no. 2, May 1997) 

For re a positive integer, let P„ = F„+lF„, An = Pn+l-P„, Bn = A„-An_x, C„=B„+l-Bn, 
A = Q - Q - i . and E„ = D„+1-D„. Show that \P„-B„\, \A„-C„l \B„-D„\, and \C„-E„\ are 
successive powers of 2. 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
We generalize the result as follows. Define an array of integers Sin by S0n - Fn+lFn, and, 

f o r £ > l , 
$2k-l,n ~ $2k-2,n+l " $2k-2,n> 

^2k,n ~ $2k-l,n ~ $2k-\,n-\' 

Note that S0n = Pn and Sim 1 < i < 5, equals A„9 Bn, C„, Z>„, and En9 respectively. We shall prove, 
by induction on /, that 

^«-^ + 2 > n =( - i r 1 + r , 7 2 1 2 ' -
We have 

Sl,n ~ S(),n+1 ~ S0,n ~ Fn+2Fn+l ~ Fn+\Fn ~ Fn+\(Fn+2 ~ Fn) ~ Fn n+V 
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It follows that 

So,» ~S2,n = Fn+1Fn - (Fn\x - F»2) = Fn
2 - Fn+l(F„+l - Fn) = Fn

2 - Fn+lFn_x = ( - 1 ) - \ 

hence the assertion holds for i = 0. In general, assume it holds for some i > 0. If i +1 is odd, then 

~ ( \w+l ~ ^i+2,n+l) ~ \Si,n ~ $i+2,n) 
- (_i)«+R/2l 21' _ (_ i)"-!+R/212' 

= (_l)«+R/2l2'+1 

= (_n»-i+r0'+i)/2l2'+i< 

The induction is completed by proving the case of even / +1 in a similar manner. Therefore, the 
absolute differences stated in the problem are 1, 2, 4, and 8, respectively. 
Also solved by Brian D. Beasley, Paul S. Bruckman, Charles K Cook, Leonard A. G. Dresel, 
Herta T. Freitag, Graham Lord, Bob Prielipp, H.-J. Seijfert, and the proposer. 

Offset Entries 

B-830 Proposed by Al Dorp, Edgemere, NY 
(Vol 35, no. 2, May 1997) 

(a) Prove that, if n = 84, then (n + 3) \Fn. 
(b) Find a positive integer n such that (n + \9)\Fn. 
(c) Is there an integer a such that n + a never divides Fnl 

Solution by David M Bloom, Brooklyn College of CUNY, Brooklyn, NY 
We use the following results: 

Result 1 ([1], p. 37): Tfd\n, then Fd\F„. 
Result 2 ([1], p. 44): Every positive integer a divides some Fibonacci number F„ (n > 0). 
Result 3 ([2], p. 21): If a\n and 6|/i, where a and £ are relatively prime, then ab\n. 
Result 4 ([2], p. 24): If a and b are relatively prime positive integers, then the arithmetic progres-
sion (an+b), n = 1,2,3,... contains infinitely many primes (Dirichlet's Theorem). 
Result 5 ([3], p. 79): If the prime/? is of the form 5t ±1, then p\Fp_v 

(a) Since 3\F4 and 29\Fl4, we must have 3\FS4 and 29|F84 by result 1. Thus, S7\FS4 by result 3. 
(b) The integer n = 2052 = 19-108 meets the conditions of part (b). For 19|F18 and 109|F27, so 
19|F19.109 and 109|F19.109 by result 1. Thus, (19-108 + 19)|F19.109 by result 3. 
(c) The answer to part (c) is that, if a is any integer, then there must be a positive integer n such 
that (n + a)\Fn. For a = 0, n = 5 works. For a<0, n=l-a works. 

If a > 0, there must be a positive integer b such that a\Fb by result 2. By result 4, the arith-
metic progression 106 + 1, 206 + 1, 306 + 1, ... contains infinitely many primes, so there exists a 
prime p = lOkb +1 such that p>a. Since p>a, it must be relatively prime to a. Since p = 1 
(mod 10), p divides F x = Fmb by result 5. Thus, p\Fn, where n = IQkba by result 1. 
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Likewise, a\Fb implies a\Fn by result 1. Finally, n + l = (lQkb + l)a = pa, which divides Fn 

by result 3. 

References 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
2. Don Redmond. Number Theory: An Introduction. New York: Marcel Dekker, 1996. 
3. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
For part (b), Bloom found ^ = 19-108 and Bruckman found n = 19 • 180. Dresel removed the 
"0 ", finding that n = 19 • 18 satisfies part (b). 

Also solved by PaulS. Bruckman, Leonard A, C. Dresel, and the proposer 

Minimal Polynomial 

B-831 Proposed by the editor 
(Vol 35, no. 3, August 1997) 

Find a polynomial f(x, y) with integer coefficients such that f(Fn, Ln) = 0 for all integers n. 
Solution 

All solvers came up with 

f(x,y) = (y2-5x2-4)(y2-5x2 + 4) = 25x4 -I0x2y2 + / -16' 

essentially by the same method; namely, squaring the fundamental identity 
Ll-5Fn

2=4(-l)", 

which is Hoggatt's identity (I12) from [1]. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
Solved by Paul S. Bruckman, Charles K Cook, Leonard A. G. Dresel, Bob Prielipp, H.-J. 
Seiffert, Indutis Strazdins, and the proposer. 
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Edited by 
Raymond Ee Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSES IN THIS ISSUE 

H-536 Proposed by Paul S« Bruckman? Highwood, IL 
Given an odd prime/?, integers n and r with n > 1, let m -1\\n] — 1, 

p~\ rp p-l T 
V — 'V J7k . nk+r J1 —\^ pk m ^nk+r 
°n,r,p La m ° r. ? n,r,p Zu rn JL 

k=l K J f c = l K, • 

Prove the following congruences: 

ppp -FpF +F 
(a) S^m " mp+r

 p
m "p+r r (modp); 

ppj -FpI +L 
(b) Tn^"Lmp+r Y"P+r («*>d/0-

H-537 Proposed by Stanley Rahinowitz? Westford, MA 
Let (w„) be any sequence satisfying the recurrence 

Let e = w0w2 - wj and assume e * 0 and Q^O. 
Computer experiments suggest the following formula, where A is an integer larger than 1: 

k 

Wi kn 
i=0 

where 
k-2 

e J=A v / 

^=s(*;2)(-G-'oy<2-Vy 

Prove or disprove this conjecture. 

H-538 Proposed by Paul S* Bruckman, Highwood, IL 
Define the sequence of integers (Bk)k>0 by the generating function: 
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(l-xy\l + xyi = ^ B k ^ , \x\<l (see[l]). 
k>0 Kl 

Show that 

SS'-(2^2)T = T-I1^"-w h e r e" = 1 + ^ 
Reference 
1. P. S. Bruckman. "An Interesting Sequence of Numbers Derived from Various Generating 

Functions." The Fibonacci Quarterly 10.2 (1972):169-81. 

SOLUTIONS 
Find Your Identity 

H-518 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 34, no. 5, November 1996) 

Define the Fibonacci polynomials by F0(x) = 0, F^x) = 1, Fn(x) - xFn_x{x) + Fn_2(x), for n > 2. 
Show that, for all complex numbers x mdy and all positive integers n, 

£(„?* W*oo=(*-Wf±4 (1) 
As special cases of (1), obtain the following identities: 

5 1 ( - l ) R 2 -* + i y < 4 V 2 l = ^ , Z ^ 1 ; (2) 
k=0 V / k= 

5\2n-k-l 

I(-i)t(2-i+2)/5](t)=5"^; 
A;=0 

5\2n-k 

(3) 

X L - " * H ^ - 2"F„(6), where Pk = Fk{2) is the k* Pell number; (4) 

S („2_ * V* (*m* +1) = ^n(*2+*+4); (5) 

| ( - l ) - ( „ 2 " , ) F , W F 1 ( 4 / , ) = i ^ [ ^ ' , « 0 ; (6) 

iL-S-iy^+i« = ̂ -̂ (4/x). (9) 
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The latter equation is the one given in H-500. Hint: Deduce (1) from the main identity of H-492. 

Solution by the proposer 
Proof of (1): From H-492, we know that 

[H/2]/- \ 

I I \Fn-2k(x)Fn-2k(y) = 2"-lFn(xy I z), 

where z ~ y x2 + y2 + 4 . Replacing n by In and substituting k by n - k gives 

i(n
2"k)F2k(x)F2k(y) = z2"-1F2„(xy/z). 

Using F2k(x) = il-kxFk(i{x2 + 2)), i = V R ) , we get 

^ I ( - l ) i + f A W * 2 + 2 M ( / ( / +2)) = il-"xyz^FM(xy/z)2
 + 2)). 

Now7, we replace x by i<j2+ix and j ; by i\/2-jy, so that z becomes ^/i(y - x) . Then, using 
(-l)^+1J^.(-j/) = i^(y) and some elementary calculations, we obtain (1). 

Proof of (2) and (3): Let x = ia and j = i/3. In [1] it was shown that 

s v w , m J(-l)Ki+2)/51 if51*. 

so that by (1), 

Replacing n by In-1, using F2n_l(-iS) = (-1)""1 L ^ , and reindexing * by 2w-A - 1 , we 
find (2). 

Replacing n by 2w, using iF2n{-i45) = ( - l ) " " 1 ^ ^ , and substituting A by 2w - £ gives (3). 

Proof of (4): This follows from (1) by taking x = 4, j ; = 2, and using i^(4) = F3k/2. 

Proof of (5): Take^ = x + 1. We note the particular case, 

obtained when x = 1. 
Proof of (6): Take j / = - 4 / x , use ^ ( - 4 / x ) = (-l)*+1^(4/x) and F„(0) = ( l - ( - l ) n ) / 2 . 

Then, with x = 1, we obtain 

ZC-W^VA=(i-c-ir)^-1. 
k=o V / 

Proof of (7): Takej = x. 
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Proof of (8): Take y = -x and use 

(2x)»-lFn 
4-x n - l i , 

nl 2x 
2\ 2\n 4"-(-x2} 

4 + r ,2 

which easily follows from the well-known Binet form of the Fibonacci polynomials. With x - 2, 
we get 

i(-i)4+teV,2=o-(-ir)22"-3. 
k=o V / 

Proof of (9): Takej> = 0. 

Reference 
1. N. Jensen. "Solution of H-492." The Fibonacci Quarterly 34.1 (1996):91-96. 

Also solved by P. Bruckman. 

Squares among US 

H-520 Proposed by Andrej Dujella, University of Zagreb, Croatia 
(Vol 34, no. 5, November 1996) 

Let n be an integer. Prove that there exists an infinite set D c: N with the property that, fox 
all c, d eD, the integer cd + n is not squarefree. 

Solution by David Terr, University of California at Berkeley, CA 
We claim that, for all n, an arithmetic sequence 

D = {kp2+a\keN} 
satisfying the above property exists, where/? is a prime and a <p212 is a nonnegative integer. If 
41/i, we may choose p - 2 and a - 0. Ifn = 3 (mod 4), we may choose p-2 and a = 1. Finally, 
if «= 1 or 2 (mod 4), we choose/? to be an odd prime such that (=jr) =1 and find a nonnegative 
integer a < p212 such that a2 = -n(p2). By Hensel's lemma, such an a exists and is unique. 

To see that D satisfies the above property, first consider the case in which 4\n. In this case, 
D = {4k\k G N } , so if c,d eZ), we have c- 4k and rf = 4/ for some &, / G N , whence o/+w = 
I6kl+n, which is divisible by 4 and, thus, not squarefree. 

Next, consider the case in which n = 3 (mod 4). In this case, D = {4& + l|& G N } , SO if 
c,d eD, we have c = 4£ + l and <i = 4/+l for some i , / e N , whence cd + n = I6kl+4(k + l) + 
1 +7i, which is again divisible by 4 and, thus, not squarefree. 

Finally, consider the case in which n = 1 or 2 (mod 4). In this case, D = {A/?2 +a | £ GN} for 
some odd prime/? and some nonnegative integer a <p212 such that p2\ (a2 + n). If c,d eD, we 
have c = kp2-\-a and d = Ip2 + a for some A , / G N , whence cd+n = klp4 +a(k + l)p2 +a2 +/?, 
which is divisible by /?2 and, thus, not squarefree. D 

The following table lists the values of/? and a found by this method for \n\ < 10. 
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n 
-10 
- 9 
-8 
- 7 
- 6 
- 5 
_4 
- 3 
- 2 
-1 

P 
3 
2 
2 
3 
5 
2 
2 

11 
7 
2 

a 
1 
1 
0 
4 
9 
1 
0 

27 
10 

1 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

P 
2 
5 
3 
2 
2 
3 
5 
2 
2 
5 
7 

a 
0 
7 
4 
1 
0 
2 

12 
1 
0 
4 

23 

4̂feo solved by B. Beasley, P. Bruckman, and the proposer. 

Zeroing In 

H-521 Proposed by Paul S. Bruckman, Highland, IL 
(Vol 35, no. 1, February 1997) 

Let p denote any zero of the Riemann Zeta Function £(z) lying in the strip 

5 -{zeC:0<Re(z )< l} . 

Prove the following: 

(2) — p~ l = 1H— y -~\o%An, where y is Euler's Constant. 
peS 2 2 

Solution by Kee-Wai Lau, Hong Kong 
Proof of (1): It is well known that the zeros are in conjugate pairs. They either lie on 

\ or occur in pairs symmetrical about this line. If Rep = y, we have 

1 . 1 

line Re z • 

P - i + ' P~\ 
= 0. 

If Rep* j , then p is a zero if and only if p, \-p, and \-p are zeros, and we have 

1 - + — 
1 1 1 0. • 

P - \ P-i 0 - P ) - 2 0 - P ) - 2 

Proof of (2): It is known (see [1], Formula 2.12.7, p. 31) that 

«z) r - 1 0 g 2 ; r 2 r *-l 2r((z/2) + l)+yz-/pJ a 
where F is the Gamma function. 
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ADVANCED PROBLEMS AND SOLUTIONS 

It is also known (see [1], p. 20) that 

C(l~z) 2 2 T(z) £(z) ( ^ 

By substituting z = ̂  into (*) and (* *) and making use of (1) we obtain, after some algebra, 

f^p 2T(5/4) 2V
 2

l0gZ7t+4 2 IX1/2) -

Since 
rxi/2) 01 n 
— - L = — y— 2102 2 
r(i/2) r g ' 

in order to prove (2) it remains to show that 
F(5/4) „ - * • . 

In fact, by substituting z - j into the duplication formula 

P(2z)= lP(r) lP(z + (l/2)) 
r(2z) 2 r(z) 2 r(z+(i/2)) s 

and into the reflection formula 
P ( l - z ) P(z) J 

r(i-z) r(z) 
we easily obtain 

r 'Q/4)= 31 2_JT 
r(i/4) r 8 2 ' 

The result for r^'2 now follows by substituting z - \ into the recurrence formula 

P(z + l ) ^ P ( z ) 1 n 

P(z + 1) F(z) z ' 

This completes the solution of the problem. 
Reference 
1. E. C. Titchmarch. The Theory of the Riemann Zeta-Function. 2nd ed. Oxford: Clarendon 

Press, 1986. 
Also solved by. -J. Seiffert and the proposer. 
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