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1. INTRODUCTION 

Four properties, related to columns, column sums, diagonal sums, and determinants, will be 
considered for 
(a) the "Pascal square" recurrence relation and its variations, 
(b) the "Pascal triangle" recurrence relation and its variations, and 
(c) more general recurrence relations which admit these properties. 

Associated basic linear recursive sequences are also outlined. Other research may be found in 
Bollinger [2], Philippou & Georghiou [9], and Carlitz & Riordan [4] who discuss the recurrence 
relation (2.1) in depth, but with different boundary conditions. In the following, {£} represents 
the entry in the nxh row, p^ column of a square array. 

2. GENERALIZED PASCAL SQUARES 

Bondarenko [3] presents an extremely useful collation of the myriad results concerning 
Pascal triangles and their generalizations. We attempt to provide additional insights and unifi-
cation of some of these by considering properties of square arrays in which the entries are 
governed by linear partial recurrence relations of a particular form. A number of illustrative cases 
are given followed by more general results. 
2.1 Case 1: The Pascal Square and Variations 

The Pascal array in Table 1 is formed by the use of the recurrence relation 

feHVR-i} <"a,^0) (21) 
with 

1 ^ = 0 (»>0), {°} = 1(/7>1), and {°} = 1. 

This is clearly just a rotation of the usual Pascal triangle. We highlight four properties, some well 
known, which will be generalized. 

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July 1996, was 
scheduled to appear in the Conference Proceedings. However, due to limitations placed by the publisher on the 
number of pages allowed for the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly 
to assure its presentation to the widest possible number of readers in the mathematics community. 
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TABLE 1 

1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

2 

1 

3 

6 

10 

15 

21 

28 

36 

45 

3 

1 

4 

10 

20 

35 

56 

84 

120 

165 

. Pascal1 s 

4 

1 

5 

15 

35 

70 

126 

210 

330 

495 

5 

1 

6 

21 

56 

126 

252 

462 

792 

1287 

Square 

6 

1 

7 

28 

84 

210 

462 

924 

1716 

3003 

7 

1 

8 

36 

120 

330 

792 

1716 

3432 

6435 

8 

1 

9 

45 

165 

495 

1287 

3003 

6435 

12870 

Property 1 (Columns): The form of the recurrence relation implies that first differences by col-
umn give entries in the previous column. As the 0th column is constant, entries in the p^ column 
are given by the /?* order polynomial in n which interpolates the first (or any consecutive) p +1 
entries in that column 

In this case, since {n
p} = ("¥), the polynomial is (n + p)(n + p -1) ... (n +1) / p!. 

Property 2 (Column Sums): For n>\ and p>0, 

For the Pascal square, 

§{p}=L»+i}' 
which is better known as the combinatorial identity 

X^(i + P\(n + p+l 
7=0 p + l 

Property 3 (Diagonal Sums): Let the «* diagonal sum be 

1=0 ^ J 

then, for « > 1 , 

<tn-<*n-i „-!_„-;-, = 1 
/=0 

="i{r-H 
;=0 ^ J I . 

+ < 
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and so 

-Sm-{.0-.H9 
=4.-l-{«-l}+{"}' 

(2.2) 

In this case, dn - 2dn_l = 2" (as rf0 = 1) as expected. 

Property 4 (Determinants): Let 

\a,b) 

denote the square array of given entries with a<(n,p)<b, then, taking determinants and using 
elementary determinantal row operations: 

J(0,/H) 

[01 

lor 
0 

J(l,m) 

{o} 

M [fc}-M 
{oj-fo1} 

- ft 

© 
1(1, m) 

W] (by use of the recurrence relation) 

{*/4J^*-4 m) 

WH 
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Thus, all square sub-arrays of the Pascal array with top-left comer {§} = 1 are unimodular. 

Property 5 (Generalizations): The derivations of Properties 1-4 rely (if at all) only on the left-
hand (p = -l) zero boundary conditions. They thus apply to the Pascal array generalized by 
arbitrary top-row entries and hence to left-justified sub-arrays of the Pascal square. In particular, 
all square sub-arrays of the Pascal array with left side in the p = 0 column (or, by symmetry, top 
row in the n = 0 row) are unimodular, as noted by Bicknell & Hoggatt [1] for the simple Pascal 
array. 

Two examples, formed by varying the top row (n = 0) boundary conditions, follow. 

Case 1,.Example 1 (Vietafs Array): Using (2.1) with {°p} = 2 (jp > 1) gives the array in Table 2. 
Applying Properties 1-5, one need only interpolate a p^-order polynomial to jp + 1 (consecutive) 
entries of the p^ column to determine the column; column sums are as indicated for the Pascal 
array (p > 1); diagonal sums obey dn = 2dn_x = 3 • 2""1 (as dx - 3) and all (left-justified) square 
sub-arrays are unimodular. This is known as Vieta's array [10]. 

TABLE 2, Vietafs Array 

1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 

2 
5 
9 
14 
20 
27 
35 
44 
54 

2 
7 
16 
30 
50 
77 
112 
156 
210 

2 
9 
25 
55 
105 
182 
294 
450 
660 

2 
11 
36 
91 
196 
378 
672 
1122 
1782 

2 
13 
49 
140 
336 
714 
1386 
2508 
4290 

2 
15 
64 
204 
540 
1254 
2640 
5148 
9438 

2 
17 
81 
285 
825 
2079 
4719 
9867 
19305 

Case 1, Example 2 (A Fibonacci Array): Similar results hold for the array in Table 3, which is 
(2.1) with {°p} = Fp+l (p>0), except now the /?* column sum is {Pli} = Fp, while diagonal sums 
obey dn = 2dn__x + Fn_x = 2» + Z ^ l^F^. 

Again, by Property 5, all (left-justified) square sub-arrays are unimodular. 

TABLE 3, Fibonacci Array of Case 1, Example 2 

1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 

2 
4 
7 
11 
16 
22 

3 
7 
14 
25 
41 
63 

5 
12 
26 
51 
92 
155 

8 
20 
46 
97 
189 
344 

13 
33 
79 
176 
365 
709 

21 
54 
133 
309 
674 
1383 

34 
88 
221 
530 
1204 
2587 

1 7 29 92 247 591 1300 2683 5270 
1 8 37 129 376 967 2267 4950 10220 
1 9 46 175 551 1518 3785 8735 18955 

2.2 Case 2: The Pascal Triangle and Variations 
The Pascal triangle array in Table 4 is formed by use of the recurrence relation 

U={";K:1>} <"ai^o> p3) 

with 
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{^} = 0 (»>0), {°} = 0(/>>l), and {°} = 1. 

Precisely the same methods apply to this case as presented for Case 1. Corresponding results 
are given. 

TABLE 4. Pascal Triangle 

1 
1 
1 
1 
1 
1 
1 
1 

0 
1 
2 
3 
4 
5 
6 
7 

0 
0 
1 
3 
6 

10 
15 
21 

0 
0 
0 
1 
4 

10 
20 
35 

0 
0 
0 
0 
1 
5 

15 
35 

0 
0 
0 
0 
0 
1 
6 

21 

0 
0 
0 
0 
0 
0 
1 
7 

0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 

1 8 28 56 70 56 28 8 1 

Property 6 (Columns): It is interesting to note that the /7th column of the Pascal triangle is thus 
determined by the polynomial in n which interpolates p zeros followed by 1. 

Property 7 (Column Sums): 

For the Pascal triangle, 
|{;Hr4-U>K} (2.4) 

as expected (since here {£} is just the binomial coefficient). 

Property 8 (Diagonal Sums): 

d„ — d„ x — d„ r, + < > = d 
n n—i n—l \TI\ t n-2> 

dQ = dx - 1 in this case (very well known). 

Property 9 (Determinants): 

Ml -MM1!! N0P 
= 1 in this case. 

Similarly (see Property 5), all (left-justified) square sub-arrays are unimodular (as noted by 
Bicknell & Hoggatt [1]). Also, as before, Properties 6-9 apply to the array formed with arbitrary 
initial row. Three examples follow. 

Case 2, Example 1 (Division of /?-Space by n (p - 1)-Spaces): The array in Table 5 is (2.3) 
with {Q} = 1, {°p} = 1 (p > 1). This relation is a generalization of the recurrence relations governing 
the maximum number of parts into which p-space can be divided by n (p-l) -spaces for/? = 1, 2, 
3. (Shannon [12] discusses these three instances in the context of the pedagogy of problem-
solving.) 
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Properties 6-9 reduce to: entries in the p^1 column are given by the /7th-order polynomial 
which interpolates {1,2,4,..., 2P}, the p^ column sum is given by 

(thus, the diagonal sums are the partial sums of the Fibonacci sequence), and all left-justified 
square sub-arrays are unimodular. 

TABLE 5. Array In Case 25 Example 1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
4 
7 
11 
16 
22 
29 
37 

1 
2 
4 
8 
15 
26 
42 
64 
93 

1 
2 
4 
8 
16 
31 
57 
99 
163 

1 
2 
4 
8 
16 
32 
63 
120 
219 

1 
2 
4 
8 
16 
32 
64 
127 
247 

1 
2 
4 
8 
16 
32 
64 
128 
255 

1 
2 
4 
8 
16 
32 
64 
128 
256 

Case 29 Example 2 (Another Fibonacci Array): Using (2.3) with {°p} = Fp+1 (p > 0) gives the 
array in Table 6. In this case, the /7th column is determined by the interpolating polynomial for 
the sequence {F +l, Fp+2, • ••,F2p+l}, the pm column sum is given by 

ln + l\-F 
[p + lf P+2> 

diagonal sums obey dn = dn_x +dn_2+Fn+l (d0 = l9dx = 2) and all left-justified square sub-arrays 
are unimodular. 

TABLE 6e Array In Case 29 Example 2 

1 1 2 3 5 8 13 21 34 
1 2 3 5 8 13 21 34 55 
1 3 5 8 13 21 34 55 89 
1 4 8 13 21 34 55 89 144 
1 5 12 21 34 55 89 144 233 
1 6 17 33 55 89 144 233 377 
1 7 23 50 88 144 233 377 610 
1 8 30 73 138 232 377 610 987 
1 9 38 103 211 370 609 987 1597 

It is of interest to note that Lavers [8] found the corresponding "Fibonacci triangle" in his 
investigation of certain idempotent transformations. 

Case 25 Example 3 (The Lucas Triangle): Setting {§} = 1, {°} = 2, and {°p} = Q(p> 2) in (2.3) 
gives the array in Table 7. This is the so-called Lucas triangle ([3], p. 26). Here the /7th column 
is determined by the interpolating polynomial for the sequence {0,..., 0,2,2/7 + 1}, the pxh column 
sum is given by 

diagonal sums obey dn = dn_x + dn_2 (dQ = l9dx = 3) (the Lucas numbers) and, once again, all left-
justified square sub-arrays are unimodular. 
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TABLE 7. Array in Case 25 Example 3 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 

0 
2 
5 
9 
14 
20 
27 
35 
44 

0 
0 
2 
7 
16 
30 
50 
77 
112 

0 
0 
0 
2 
9 
25 
55 
105 
182 

0 
0 
0 
0 
2 
11 
36 
91 
196 

0 
0 
0 
0 
0 
2 
13 
49 
140 

0 
0 
0 
0 
0 
0 
2 
15 
64 

0 
0 
0 
0 
0 
0 
0 
2 
17 

2.3 Generalizations 
We now generalize the foregoing to recursive relations of the form 

with {"]} = 0\/n and other boundary conditions for {£} (n < 0, p > 0) given as necessary. 

The above covers each of the earlier cases and others including: 
(a) the complementary binomial coefficients of Puritz ([3], p. 33) (Table 8) where 

(2.5) 

with 
feH%"H-'} ("^i0)-

{_",} = 0V„, {°} = 0 ( ^ 1 ) , and {»}: 

TABLE 8: Array in 2.3(a) 
1 0 
1 -1 
1 -2 
1 -3 
1 -4 
1 -5 
1 -6 
1 -1 
1 -8 

0 
1 
3 
6 
10 
15 
21 
28 
36 

0 
-1 
-4 
-10 
-20 
-35 
-56 
-84 
-120 

0 
1 
5 
15 
35 
70 
126 
210 
330 

0 
-1 
-6 
-21 
-56 
-126 
-252 
-462 
-792 

0 
1 
7 
28 
84 
210 
462 
924 
1716 

0 
-1 
-8 
-36 
-120 
-330 
-792 
-1716 
-3432 

0 
1 
9 
45 
165 
495 
1287 
3003 
6435 

(b) an analog of the Pascal triangle (Table 9) studied by Wong & Maddocks ([3], p. 36), 
where 

with 
{ ;H";H:K~4 <«—>• 

{-J} = 0(p>t», and {»} = !, 

for which row sums are Pell numbers and diagonal sums are "Tribonacci" numbers; 
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TABLE 9, Array in 2.3(b) 
0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 
5 5 1 0 0 0 0 0 
7 13 7 1 0 0 0 0 
9 25 25 9 1 0 0 0 

11 41 63 41 11 1 0 0 
13 61 129 129 61 13 1 0 
15 85 231 321 231 85 15 1 and 

(2.6) 

(c) the recurrence relation 

studied by Cadogan ([3], p. 30). 

Property 10 (Column Sums): The most straightforward generalization is for the special case of 

with {.4} = 0 Vw and other boundary conditions for {£} (n < 0, p > 0) given as necessary 

For n>\ and p>0, 

-fc+4-u.wa 
Property 11 (Diagonal Sums): For n > 1, 

=55M'-iM-} 
; = r j=r 7=0 I J ^ J 

Property 12 (Determinants): For ft * 0, and noting that {Q} = aft" (a = {g}? w > 0), 

ffl {?} • • • $ ' 
'fell w ffl-H'} fel-H";1 

l(l,m) 

o H o 

Z^ / I n - 1 
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H o ^ / o iLwA o f'" ^ a ^ - a M o 
^ ^ / ^ ' i,j ^ J i,J,...k { J 

= am+1 b^afl 
m(m+l)/2 

Sufficient conditions for this derivation are that each element below and including {m+(™-l>} 
(m > 2, 0 < p < m -1) has been formed by the given recurrence relation. (Thus, if m + (m - l)r < 0, 
the result will only apply to sub-arrays beginning at row l-m-(m-l)r. This is not a restriction 
i f r > - l . ) 

When b = 0, we need only restrict the previous formula to r = s - -1 (though it will apply to 
5 > - l ) , hence, 

"> J(0,w) 

m+l m(m+l)/2 
= a a 

Thus, other unimodular arrays can be formed by setting, for example, a - h = S ax, = 1. 

3. GENERALIZED PASCAL TRIANGLES 

Consider the square with the rule of formation, 

®-V-H-U-% 
with 

nl=o(P<o), l^ j^o o>o), JQ1 = 1(J»0). 

TABLE 10. Generalized Pascal Triangle 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 

1 
2 
3 
5 
6 
9 
10 
14 
15 
20 
21 
27 
28 
35 

1 
2 
5 
7 
13 
16 
26 
30 
45 
50 
71 
77 
105 

1 
3 
6 
13 
19 
35 
45 
75 
90 
140 
161 

1 
3 
9 
16 
35 
51 
96 
126 
216 
266 

1 
4 
10 
26 
45 
96 
141 
267 

1 
4 
14 
30 
75 
126 
267 

1 
5 
15 
45 
90 
216 

1 
5 
20 
50 
140 

1 
6 
21 
71 

1 1 1 
6 7 7 
27 

(3.1) 

If we add along the diagonals in Table 10, we get the sequence {1,2,3,6,18,27,54,81,162,...}, 
which is generated by the recurrence relation Wn - Wn_x + Wn_2 + S(2, n)Wn_^ n>3, where 

fl if/w|«, 
5(m, n) = 0 otherwise, (Shannon [11]) 
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and the initial terms are Wi = i, i = 1,2, 3. We can bifurcate this sequence into Wln = {1, 3, 9, 27, 
81,...} and W2n = (2, 6,18,54,162,...}, which are generated by the recurrence relation 

W; 
J" ••Wj.n-i+Wj^2, n>2. (3.3) 

This bifurcation enables us to distinguish two triangles within the square array, as in Tables 11 
and 12. 

TABLE 11, Triangle Corresponding to {Wln} [1] 
l 
l l 1 
1 2 3 2 1 
1 3 6 7 6 3 1 
1 4 10 16 19 16 10 4 1 
1 5 15 30 45 51 45 30 15 5 1 
1 6 21 50 90 126 141 126 90 50 21 6 1 

TABLE 12. Triangle Corresponding to {W2n} 
1 
2 
3 
4 
5 
6 

2 
5 
9 
14 
20 

1 
5 
13 
26 
45 

3 
13 
35 
75 

1 
9 
35 
96 

4 
26 
96 

1 
14 5 1 
75 45 20 6 

Notice that the triangle in Table 12 has the feature that 

UP}-2-3"- "-*1--
Obviously we get the ordinary Pascal triangle if we take the diagonals of the Pascal square (see 
Table 1). Similarly, if we consider 

;HVHr-K-i (3.4) 

with (o} = l? {£} = !, which is also of the form (2.5), we get the square in Table 13(a) and the 
triangle in Table 13(b). In addition to the properties of Section 2, the numbers in Table 11(a), 
D(n, m), are Delanoy numbers [14] and are linked to minimal paths in lattices. We observe here 
that the row sums yield the Pell sequence {Pn} = {1,2,5,12,29,70,...} defined by the initial terms 
i} = 1, P2 = 2, and the second-order recurrence relation (Horadam [7]) Pn = 2Pn_l + Pn_2, n>2. 

TABLE 13, Arrays Corresponding to (3.4) 

(a) (b) 
1 
1 
1 
1 
1 

1 
3 
5 
7 
9 

1 
5 
13 
25 
41 

1 
7 
25 
63 
129 

1 
9 
41 
129 
321 

1 
1 
1 
1 
1 
1 

1 
3 
5 
7 
9 

1 
5 
13 
25 

1 
7 1 
25 9 1 

This is a particularly rich triangle because, when we add along the diagonals, we obtain the 
third-order sequence {0,0,1,1,2,4, 7,13,24,44,...}. 
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Again, if we take the triangle from the diagonals of the array formed from equation (2.3), 

{;H";K--i} 
with {Q} = L {p} = 1, we get the square and triangle of Table 14(a) and (b). 

TABLE 14. Arrays Associated with (3.5) 

(a) (b) 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
4 
7 
11 
16 
22 
29 
37 

1 
2 
4 
8 
15 
26 
42 
64 
93 

1 
2 
4 
8 
16 
31 
57 
99 
163 

1 
2 
4 
8 
16 
32 
63 
120 
219 

1 
2 
4 
8 
16 
32 
64 
127 
247 

1 
2 
4 
8 
16 
32 
64 
128 
255 

1 
2 
4 
8 
16 
32 
64 
128 
256 

1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 

1 
2 
4' 
7 
11 
16 

1 
2 
4 
8 
15 

1 
2 
4 
8 

Here, too, we find two sequences. The row sums yield {xn} - {1,2,4,7,12,20, 33,...}, with 
the nonhomogenous second-order recurrence relation xn = xn_x +xn_2 + 1, while the diagonal sums 
yield {yn} - {1,1,2, 3,5, 7,11,16,24,35, 52,...}, which is formed from the fifth-order recurrence 
relation yn-yn_x +yn_2 ~yn^5, n>5, which is a particular case of equation (1) found in Dubeau & 
Shannon [5]. 

4. CONCLUSION 

We have demonstrated that a number of well-known properties of Pascal-type arrays are 
consequences of a more general partial recurrence relation. Further investigations could include 
relating the various sequences to standard sequences identified by Sloane [13]. Algebraic struc-
tural properties can be studied along the lines of Korec [6] who has, in effect, generalized some of 
the work of Wells [15]. 
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ON A GENERALIZATION OF A CLASS OF POLYNOMIALS 
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{SubmittedFebruary 1996-Final Revision August 1997) 

1. INTRODUCTION 

In [1], R. Andre-Jeannin considered a class of polynomials Un(p, q; x) defined by 

Un(P> ft x) = (x + P)U„-i(P, ft x) ~ qUn-iiP, ft x), n>\9 

with initial values U0(p, q;x) = 0 and U{(p, q;x) = l. 
Particular cases of Un(p,q;x) are: the well-known Fibonacci polynomials Fn(x); the Pell 

polynomials Pn(x) (see [4]); the Fermat polynomials of the first kind fl(x) (see [5], [3]); and the 
Morgan-Voyce polynomials of the second kind Bn(x) (see [2]). 

In this paper we shall consider the polynomials $„(p, q; x) defined by 

fa(P, ft x) = (x + P)0n-i(P,ft *)-qfa-3(P> ft *)> 0-°) 
with initial values <j>_x{p, q\ x) - <fi0(p, q;x) = 0 and <t>x{p, q;x) = l. The parameters p and q are 
arbitrary real numbers, q * 0. 

Let us denote by a, /?, and y the complex numbers, so that they satisfy 

a+p + y=p^ ap + ay+py = 0, afiy = -q. (1.1) 

The first few members of the sequence {<f>n(p, q; x)} are: 

fad**ft>*)= P+x> 03(P>ft>x)= P2+2PX+x2> 04(P>ftx) = p3-q+3P2X+3PX2+*3-

By induction on n, we can say that there is a sequence {cn k(p, q)}n>o,k>o of numbers, so that 
it holds 

fa+i(P> ftx) = Y, cn,k(P> 4)x\ 0 -2) 
k>0 

where cnk(p, q) - 0 for k > n and cn n(p, q) = l. Therefore, if we set c_lk(p, q) - c_xk{jp, q) = 0, 
k > 0, then we have 

t-i(P, ftx) = 1Lc-2,k(P> ?)** and 0o(p, q;x) = ]Tc_lk(p, q)xk 

k>0 k>0 

Later on, we consider some other interesting sequences of numbers, define the polynomials 
0l(p, q\ x) and $(p, q\ x), which are rising diagonal polynomials of (j)n(p, q\ x) and <j>l

n(p, q; x), 
respectively, and finally, consider the generalized polynomials </>™{x). 

2. DETERMINATION OF THE COEFFICIENTS cnk(p, q) 

The main purpose of this section is to determine the coefficients cnk(p, q). First, for n>\, 
& > 1, from (1.0), (1.1), and (1.2), we obtain 

Cn.k(P> 4) = Cn-l,k-l(P> q)+PCn-l,k(P> 9) - Wn-3,k(P> ?) 
= V U - I ( A # ) + ( ^ + / ? ) ^ I , ^ 
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Therefore, we shall prove the following lemma. 

Lemma 2.1: For every k > 0, we have 

(l-pt + qt'T^^d^t", (2.1) 

where 

<..=jj*rX^X*r>^v. (2.2) 
Proof: From (2.1), using (1.1), we get 

(l-pt + qt3y(k+l) = (1 - o0~(t+1)(l - Pty(k+l\\ - yty<k+1> 

w>0 /+ /+$=« v /V /V / J+/4 

Statement (2.2) follows immediately from the last equality. D 
Now we shall prove the following theorem. 

Theorem 2.1: The coefficients c^k(p, q) are given by 

i+j+s=n-kv / V / v y 

Proof: First, let us define the generating function of the sequence <f>n(p, q; x) by 

F(*,O = I>„ + 1 (A ?;*)'"• (2.4) 
«>0 

Then, using (1.0), we find 

F(x,t) = (\~(p + x)t+qt3)-\ (2.5) 

Now, from (2.5) and (2.4), we deduce that 

since ^„+1(p, q\ x) is a polynomial of degree n. If we take x = 0 in the last formula and recall that 

<W*.*(A 9) = ̂ C U ( A ?; o), 

then from (3), and by Taylor's formula, we get 

(l-pt + qt3)^ = £ W^tf)*". (2-6) 
w>0 

Comparing (2.6) to (2.1) and (2.2), we see that 
1 

<w,tO, q) = j\€Lk(p, <r, o)=dnk 

i+j+s-n 

k+f)(k+j\(k+s-),„,- <27> = ?T"T* 
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By (2.7), we see that 

This completes the proof of Theorem 2.1. D 

Remarks: 
(i) If k = 0, then (2.3) becomes 

c„,0(p,q)= I « 7 ? ; r s = ^+1(/>,<7;0). 
i+j+s=n 

(ii) If p = 0, then (2.1) becomes 

»>o V / 
Thus, we get 

cn,n-3k(0,q) = (-l)k{n~k
2ky, cn^3k_l(0,q) = 0, cn,„_3k_2(0, q) = 0, 

for & < [/f/3]. Now, from (1.2), we find that 
[«/3J [n/3] / „ o/A 

0n+Mq;x)=%cn,„_3k(O,q)x"-3k = £(-1)* * * M*""**- (2-8) 
£=0 k=0 V ' 

We shall prove the following theorem. 

Theorem 2.2: The coefficients cw^(/?, q) have the following form: 

<x*(A *) = K |P(-1){^X" ̂ V ^ ' » * *• (2-9) 
Proof: Using (1.0), we see that $„+i(p9 q; x) = ^„+1(0, q;x + p). Thus, 

<*.*(/>, ?) = jj/£l(p, <?; o) = ^ e \ ( o , ^; P). 

Now, by (2.8), it follows that 

This is the desired equality (2.9). • 

Corollary 2.1: From (2.9) or (2.3), we find that: 

-a-fi-r = -p; 
(-«)(-/?)+{-p){-y)+(-aX-r) = 0; 

(raX-P%-r) = q. 
Hence, 

^*(-p,-?)=Hr*vfo*)-
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3. A PARTICULAR CASE 

In this section we shall consider a particular case of the polynomials <fin(p, q\ x). 
If a = p^y, then a = ]3 = 2p/3, y = -p/3,md27q = 4p3. In this case, by (2.1)? we get 

(1 -pt + qt3y(k+l) = (1 - of )~2(*+1)(l - rt)~(k+l) 

\t". 
( '2* + l + i Y * + / | „iv? 

-1 T , , a'r 
n>0 

Therefore, we have 

cn,k(P,q)=(p/irk E(-iy2'f2^.1+/)P;A 
i+j=n-lc V J\ J J 

4, SOME INTERESTING SEQUENCES OF NUMBERS 

Here we shall consider the following sequences of numbers. 

(a) If we take x - -p9 we get the sequence '#„(p, q',-p) = 0. This sequence has the follow-
ing properties: fcn(p, q\-p) = <f>3n+2(p, q; -/>)•= 0 and <f>3n+l(p, q;~p) = (-1) V . From relation 
(1.2), it follows that 

3n+l 

I(-l)VW(A<7) = 0, 
fc=0 

for /= 1, and 
3« 

Z 
k=0 

X(-i)kp%„,k(p,q) = (-Wqn, 

for/ = 2. 

(b) Using (1.0), for x = 0, we have the sequence {^„(p, ̂ ; 0)}, which is defined by 

0„(A ?; 0) = p4„-i(p, q; 0) - #„_3(A q; 0), 

for w > 2, with initial values ^(p, q; 0) = $0(p9 q;0) = 0 and ^(j?, g; 0) = 1. 

5* RISING DIAGONAL POLYNOMIALS 

Now, we define the polynomials </>l
n(p, q; x) and $l(p, q\x).' Also, we define the polynomials 

4>™(x). First, we shall write the polynomials $„(p, q; x) in tabular form (see Table 1). We define 
the polynomials (/>\(p, q',x) by 

[nil] [nil] 

4n+iO>>qm>x)= Hclk(p*q)xk = Xcn-kAp^)xk:> (5 J) 

where ^ ( p , q;x) = 0 and c^k(p, q) = 0 for k > [w/2]. Also, from Table 1, we get 

4>i(P,qm,x) = l, $l
2(p,qix) = p, $l

3(p,q;x)^p2+x, 

4>\(P, qi%) = P3-q + 2px, $(p, q; x) = p4-2pq + 3p2x + x2. 
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TABLE 1 

n 
~o~ 
1 
2 
3 
4 
5 
6 

0 
1 
P 
P2 

p3-q 
p4-2pq 
p5-3p2q 

+ x 
+ 2px 
+ 3p2x 

+ (4p3-q)x 
+ (5p4 - 6pq)x 

+ x2 

+ 3px2 

+ 6p2x2 

+ (l0p3-3q)x2 

+ x3 

+ 4px3 

+ \0p2x3 
+ x4 • ••• 

+ 5px4 +x5 ••• 

In fact, we will prove the following theorem. 

Theorem 5.1: The polynomials $\(p,..q; x) satisfy the following recurrence relation: 

4n(P, T, x) = Pfin-i(P, q\ x) + xf„_2(p, q\ x) -q<f>l
n.3(p, q; x), n>3. (5.3) 

Proof: To prove (5.3), we will use the notations <f>l„(x) and cnk instead of (j>\{p, q\ x) and 
cnk{p, q), respectively, and proceed by induction on n. From (5.2), we see that statement (5.3) 
holds for n = 3. Suppose statement (5.3) is true for n > 3. Using (5.1), and by (2.0), we obtain 

[nT2] 

Ĥ+lOO - Cn,0 + Z^Cn-k,kX 

k=l 

[nT2] 

~ PCn-l,0 ~ qCn-3,0 + 2^ (Cn-l-k,k-l + PCn-\-k,k ~ qCn-3-k,k)X 

k=l 
[(n-^/2] 

~P Lu Cn-\-k,kX 

k=0 

[(/i-2}/2]. K«^/2] 
~Q L^iCn-3-k,kX + X £^Cn-2-k,kX •> 

k=0 k=0 

since the relation c„tQ = pcn_xo -qcn_30 is valid for n > 1. Thus, statement (5.3) follows by the last 
equality. This completes the proof. • 

Similarly, let (f>l(p, q\ x) be the rising diagonal polynomial of <j>\(p, q\ x), i.e., 

fn+\(p, q,x) = Xcn-k,k(p, q)xk-
k=0 

Furthermore, if we denote the process 

by </Pn(x) = <f>„(p, q; x), then we have 
Cn,k~Cn,k a n^ C™t = C™_k k . 

From relations (5.4), we get 

(5.4) 

Hence, for k = 0, we have 

rm _ rm-\ _ , . , _ ^0 
^n,k ~ ^n-k,k ~~ ~ ^n-mk,k-

nYt\ s>0 — n 
un,Q — cn,Q ~~ cw,0-
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If n- 0,1,..., m, then[n/(m + l)] = 0, so we have 

ffnW = ^ o = cfl,o, w = 0,1,...,w. 

Also, we get 

[«/(m+l)] 

fc=0 

where c™k = 0 for A: > [n I (m +1)]. Therefore, we are going to prove the following theorem. 

Theorem 5.2: The polynomials </>™(x) satisfy the recurrence relation 
4&l(.x) = pfiHx)-qfl_2(x) + xft_m(x), n>m>2, (5 

where ^ ( x ) = $?(*) = ° a n d C+i(*) = <o> « = °> 1. • • • >™ • 

Proof: We prove that (5.6) holds for n > m > 2. If n = m, then 

fm+lW = Cm,0~ PCm-l,0 ~ <7Cm-3,0 

= P C X X ) - ?C-2W+x?»o (x) OO(A ?; ^) - o). 
Assume now that n>m + l, then, by (2.0), we have 

[n/(m+l)] [n/(m+l)] 

C+l(X) = L^Cn-mk,kX ~ Cn,0+ jL*Cn-mk,kX 

k=0 k=\ 

[»/(w+l)l 
= P ^ - 1 , 0 - ? ^ - 3 , 0 + X (PCn-l-mk,k ~ ^Cn-mk-3,k + ^ - m f c - U - i ) * * (n ~ fflk > 1) 

[«/(w+l)] [«/(m+l)] [n/(w+l)] 

" i 7 zLC«-l-wfe,A:X ~~9 iLC«-3->nfc,fcX + X 2 - » C « - l - ^ , ^ - l X 

fc=0 fc=0 fc=0 

[(w-l)/(/w+l)] [(«-3)/(/w+l)] [(w-l-/w)/(/w+l)] 

= P lLCn-l-mk,k*k-(I E C «-3-^ ,^ + X I X •m-mk-\,k 
k 

k=0 k=0 k=0 

= pft(x)-qfi_2(x) + xfi_m(x). D 

Corollary 5.1: The coefficients c™t satisfy the following relation, 

< * = / < - u - 9C3.k + <£-i-m.*-i, m > 0,« > 2,» > m, fc > 1, 

where c j ; k =< t (p , ^ ) . 

Corollary 5.2: For m = 2, from (5.6), we have 
<t>l(x) = P<t>ll(x) + (x-q)<t>l2(x), n>2, (5 

with ft0(x) = 0, <t>2
n+l(x) = cj 0 = c„>0, « = 0,1. 

Remark: For every « > 1, we have 
<t>2„(P,<i;x) = <t>n(p,x-q;0). (5 
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Proof: By (1.0), the sequence {&„(p,x-q;0)} satisfies relation (5.7) with <f>Q(p,q-x;0) = 0, 
&i(P> 9 ~ x> 0) ~ *> ̂ ( A ? - ^ 0 ) - ^ ' F r ° m this and (5.7), we see that (5.8) holds for n = 1 and 
# = 2. If (5.8) holds for n<m, then for ft = w +1 we get 

^H-I(A ?;*) = P0*fo ?; *) - (g - x)4h-2(p> ?;x) 
= P<t>m(P,q~x; 0)-(q-x)(fim_2(p,q-x; 0) = <f>m+l(p,q-x; 0). 

Using induction on ft, we conclude that relation (5.8) holds for every n > 1. By (5.8), and from 
(2.9) with k = 0, we get 

[«/3]/< _ 9 \ 

^ . ( P , f , x ) = I " , ( x - ? ) ' ^ . (5-9) 

Special Cases 
For x = q, by (5.9), we have 

[n/3] 

Jc=0 

For /? = 2 and # = 1, the last equality becomes 
[n/3] 

k=0 

For p - 0, the polynomials ^JJ+I(A #> x) ^ a v e ̂  following representations: 

&i(o, ?;*) = (* -? ) ' 
for w = 3s, and 

&i(o,?;*) = o 
for ft = 3s +1 and for n = 3s + 2. 

6. GENERALIZATION 

If we consider the general recurrence relation 

U„(x) = (x + /?)£/„_!(*) - qUn_2(x) + rUn_3(xl n > 3, 

we find that 

^ ,+ I ( * )=Z C " , * (A? , >-)**, 
fc=0 

where 

I W ( A ?> ') '" = (l-pt+02-rPT^. 
n>0 

In this case, we have a+fl + y = p, afl+ay + fiy - q, and aj3y = r. Particularly, if a - ft = 
y = p/3, then q = p2/3 and r = p3/27. So we get 

n>0 n>0 ^ ' 
hence, 
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*k(P,q,r) = ^k
3H2n)(P'3rk. 

Thus, we can define B\{x), i.e., a generalization of Morgan-Voyce polynomials, by setting 
a = p = y = 1 (i.e., p = 3,q = 3,r = 1), 
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1. INTRODUCTION 

In this work we show that we may use iterated maps to understand and generate a dividing 
formula n\Q(n), where n is any positive integer. A well-known example of a dividing formula 
concerning Fibonacci numbers, for instance, is 

n\(Fn+x+Fn_x-\), (1.1) 

where n is a prime and Fn is the /?* Fibonacci number. 
We will show that from iterated maps we have a systematic way to construct functions Q(n) 

such that n\Q{ri). In this paper, we show how to derive the above dividing formula from an 
iterated map. We also generalize the result to the case in which /? is any positive integer and to 
the case of Fibonacci numbers of degree m. We begin with Theorem 2.1 below. 

2. THE FUNDAMENTAL THEOREM: n\N(n) 

Theorem 2.1: For an iterated map, 
n\N(n), (2.1) 

where N(n) is the number of period-?? points for the map. 

Proof: If N(ri) - 0, formula (2.1) is obvious. If N(n) ^ 0, then the orbit of a period-/? point 
is an /i-cycle containing n distinct period-/? points. Since there are no common elements in any 
two distinct /?-cycles, N{ri) must be a multiple of/?, i.e., n\N(ri), and N{n)ln is an integer repre-
senting the number of /?-cycles for the map. 

As a consequence of this fundamental theorem, each iterated map, in principle, offers a 
desired Q(n) function such that n\Q(ri), where Q(n)= N{n), the number of period-/? points of an 
iterated map. Therefore, we have an additional way to understand the dividing formula n\Q(n) 
from the point of view of iterated maps. 

3. THE N(n) OF AN ITERATED MAP 

For a general discussion, we consider a map f(x) in some interval. The fixed points off are 
determined from the formula 

/ (*) = *• (3-1) 
The number of fixed points for/can be determined from the number of intersections of the curve 
y - f(x) with the diagonal line y = x in the interval. We define fW(x) for the w* iterate of x for 
/ , then f{n\x) = f(f[n~l](x)). We should distinguish a fixed point of f[n\ and a period-/? point of 
/ The fixed points of / M are determined from the formula fl"\x) = x; however, the period-/? 
points of/are determined from the following two equations: 
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f[n](x) = x, (3.2) 

fi\x)*x for/ = l,2,...,/?-!. (3.3) 

We need (3.3) because an x satisfying only (3.2). is not necessarily a period-/? point off since it 
could be a fixed point of/or, in general, a period-//? point of/, where m < n and m\n. Formulas 
(3.2) and (3.3) together ensure that x is a period-/? point of/ Then N(ri) represents the number 
of points satisfying both (3.2) and (3.3). We let N^(n) represent the number of points satisfying 
only (3.2); hence, JV£(w) represents the number of fixed points for f[n]. Accordingly, we have 

d\n 

where the sum is over all the divisors of/? (including 1 and n). N^(n) is simply determined from 
intersections of the curve y = f[n\x) with the diagonal line. Therefore, what we obtain directly 
from an iterated map is not N(n) but N^(n). We need a reverse formula expressing N(n) in 
terms of N%(d). This has already been done, because we know the following two formulas from 
[2] and [7]: 

tfi(") = 2X<*X (3-4) 
d\n 

and 
N{n) = ^M(p'd)N^d) ^juidWxin/dl (3.5) 

d\n d\n 

where ju(d) is the Mobius function. N%(ri) is called the Mobius transform of N(ri), and N(n) is 
the inverse Mobius transform of N^(n). Hence, after calculating the N^Qi) of an iterated map, 
we obtain a dividing formula n\N(n) from (3.5). There are examples of iterated maps for which 
Nx(ri) are calculated (see [1], [5]). We summarize these in the following theorem. 

Theorem 3.1: For an iterated map, 

n\N(n), with N(n) = X ^ 7 d ) ^ { d ) (3.6) 
d\n 

and, especially, 
n\{Nz{n)-N^{\)) for/? a prime. (3.7) 

4. APPLICATIONS 

We consider the B{fi\ x) map defined by 
[tix f o r0<x< l /2 , 

B(u;x) = i (4.1) 
W ; [//(*-1/2) f o r l / 2 < x < l , \ . J 

where ju is the parameter whose value is restricted to the range 0 < ju < 2 so that an x in the 
interval [0,1] is mapped to the same interval. We now have the following theorem. 

Theorem 4,1: Line segments in B^n\ju; x) are all parallel with slope jun. 

Proof: In the beginning, for a given ju, B(ju;x) contains two parallel line segments with 
slope ju. From (4.1), we see that each line segment will multiply its slope by a factor ju after one 
iteration. Q.E.D. 
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We consider the following cases. 

4,1 The Case in Which JC = 1/ 2 Is a Period-2 Point 

If x = 1 / 2 is a period-2 point of the B(ju) map, it requires that B2(ju,l/2) = l/2. This then 
requires that ju>\ and ju2-ju-l = 0. Solving this, we have // = (1 + V 5 ) / 2 « 1 6 1 8 , the well-
known golden mean. We denote this ju by I 2 , indicating that for this parameter value x = 1/2 is 
a period-2 point. To obtain N^(n), we need to count the number of line segments in B^n\ju) that 
intersect the diagonal line. Detailed discussions of this map can be seen in [3] and [4]. Briefly, 
we see that starting from x0 = 1/2, we have a 2-cycle, {x0, xx}, where xx - ju/2. It follows that 
there are two types of line segments. We denote by Z the type of line segments connecting points 
(xa, 0) and (xb,ju/ 2) with 0 < xa < xb < 1, and denote by S the type of line segments connecting 
points (xc, 0) and (xd,l/ 2) with 0 < xc < xd < 1. Since x0 -» xx and x} -» x0 under an iteration, it 
follows that the behavior of line segments of these two types under iteration is 

L-+L + S and S-+L. (4.2) 

Using the symbols Z and S, we see that the graph of B(ju) contains two Z. (4.2) shows how the 
number of line segments increases under the action of iteration. Let L(n) and S(n) be the number 
of line segments of type Z and S in B^n\ju), respectively. (4.2) shows simply that each Z is from 
previous Z and S, $oL(n) = L(n -1) + S(n - 1 ) , and each S is from previous Z, so S(n) - L(n -1). 
From these, we conclude that L(n) = L(n -1) + L(n - 2) and S(n) = iS(w -1) + iS(w - 2). That is, 
L(ri) and £(?2) are both the type of sequences of which each element is the sum of its previous 
two elements. Starting with an Z, according to (4.2), the orbit of which is 

L -> LS -> 2LS -> 3L2S -> 5Z3S -> 815^ -> • • •, 

we easily see that L{ri) = Fn and S(ri) = Fn_l. In conclusion, starting from an L, under the action 
of iteration there are F„ (L-type) and S(n) (S-typ6) parallel line segments generated in B^n\ju). 
We will use this result. Nz(n) is then determined from the number of intersections of these line 
segments with the diagonal line. 

Consider first the iS-type line segments. We note that all 5-type line segments in B[n\fi) are 
parallel and can be divided into two parts, one part in the range 0 < x < 1 / 2 and the other in the 
range 1 / 2 < x < 1. We easily see that each line segment in the range 0 < x < 1 / 2 intersects the 
diagonal line once, and others in the range 1 / 2 < x < 1 cannot intersect the diagonal line. The 
original line segment in the range 0< x < 1/2 is an Z,, so the number of S-type line segments in 
BW(ju) in this range is S{n) = Fn_v 

Consider next the L-type line segment. Similarly, line segments of this type in B^n\ju) are 
parallel, and each of those that is in the range 0<x< /J/2 intersects the diagonal line once. 
Others in the range jul2<x<\ cannot intersect the diagonal line. We divide the range 0 < x < 
ju/2 into 0 < x < 1/2 and l/2<x<ju/2. The original line segment in the range 0 < x < 1 / 2 is 
an Z, so the number of Z-type line segments in B^n\ju) in this range is L(n) - Fn. Next, the origi-
nal line segment in the range l / 2 < x < / / / 2 i s a n A S ' . After one iteration, S-^ L; the L in the 
right-hand side, after n -1 iterations, generates all the Z-type line segments in B^n\ju) in this 
range, the number of which is therefore L{n -1) = Fn_l. 

In all, the total number of intersections of line segments of types Z and S with the diagonal 
line is thus Fn_l + Fn + Fn_x - Fn+l + Fn_v We conclude that 
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Nz(n) = Fn+l + F„_, = F„ + 2Fn_v (4.3) 
Nz(ri) is, in fact, the Lucas number Ln. From (3.6) and (3.7), we have 

n\N{n), with#(») = X / < " / ^ + i + iVi) (4.4) 
d\n 

and 
n\{Fn+x + Fn_x-X), for n a prime. (4.5) 

Formula (4.5) Is also a known result [6]; however, we see that it is traceable from the point of 
view of iterated maps. 

For n a composite number, (4.4) offers additional relations for Fibonacci numbers or Lucas 
numbers. This result seems to be a new one. Consider, as a simple example, taking n = 12; since 
#(12) = 300, we can easily check that 121300. 

4.2 The Case In Which JC = 1/ 2 Is a Perlod-#i Point 

We now consider the general case in which x = 1 / 2 is a period-/w point. In general, there are 
many values of ju in the range 0 < ju < 2 such that x = 1 / 2 is a period-m point. If there are k such 
parameter values, we denote these by fil<£i2

< M3<"' <Mk =^m- We will choose the largest 
one as the parameter value, i.e., ju = Zm. It follows that Ew satisfies the equation: 

m-\ 
• I 

;=0 

/ / " - £ / / = ( ) . (4.6) 

For instance, we have E3 = 1.839, E4 = 1.9276. We refer the reader to [4] for details. Briefly, we 
see that, starting from x0 = 1/2, we have an w-cycle, {x0, x1?..., xm_x}, where xt = f^(x0) is the 
Ith iterate of xQ. It is convenient also to define xm = x0. We have, for instance, xx = (1/2)//, and 
from (4.6) we have xl = (1 /2)(1 +1 / /i +1 / /i2 + ••• + !/ ff1"1). We list all the values of xt in this 
way: 

x1-( l /2)( l + l / / i + l / / i 2 + .-- + l//iw-1), 
x2 = (l/2)(l + l / / i + l / / / 2 + - + l///w-2), 

C 2 = (l/2)(l + l / / / + l//i2), ( 4 ' ? ) 

xm_x = (l/2)(l-fl / / /) , 
xm = x0 = l/Z 

We see that xx > x2 > x3 > • • • > x ^ > xm. It follows that there are m types of line segments. We 
denote by Lt the type of line segments connecting points (xa,0) and (x^x,), where 0<xa< 
xb<l and 1 < / < m. The behavior of line segments of these types after one iteration is 

Z^-^JLJ + 1,2, 

Lm_l —> Ll + Lmy 

^2~^A + 3̂> M g ) 

and 

4 , - > £ p (4-9) 
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We note that Lm (or L0) is the only type of line segment that does not break into two line seg-
ments after one iteration. The original graph of B(ju) contains two Lx. Equations (4.8) and (4.9) 
show how the number of line segments increases under the action of iteration. Let Lt{n) be the 
number of line segments of type Lt in B[n](ju), then (4.8) and (4.9) show that 

L2(n) = Ll(n-l), 
L3(n) = L2(n-l) = Ll(n-2X 
L4(n) = L3(n-l) = Ll(n-3X 

A » = Lm-M ~ 1) = Li(n -m + l), 
or 

Z/.(/i) = i/._1(w-l) = Z1(w-7 + l), for2<j<m, (4.10) 

and especially, 
m m 

It follows that all these Lt{n) are sequences of the following type: 
m 

AW = SA("-.A l^iZm, (4.12) 

i.e., each element of which is the sum of its previous m elements. Starting with an Zj, according 
to (4.8) and (4.9), the orbit of Lx is Lx -» LXL2 -> 2LXL2L3 ->•••. We see that Lx{n) = F^m\ the 
Fibonacci numbers of degree m, whose definition is 

m 
pirn) _ V^ p{m) 

with the first m elements defined by 
Fx

(m) = l and F^ = 2l~2 for 2 <i<m. (4.13) 

Conventionally, we define Fjm) = 0 for j < 0. 
We conclude that, starting from an Z1? we have Lx(n) - F^m) and, in general, Lt{ri) = F£$+l, 

where \<i<m. In order to discuss the number of intersections of these line segments with the 
diagonal line, we need to know, starting from an Za-type line segment, how many Z^-type line 
segments there are in B^n\ju). We let Lb(n, La) represent the number of Z^-type line segments 
generated after n iterations of a starting line segment La. Using this notation, we have 

Lb(n,Lx) = F^+l, (4.14) 

and we have the following theorem. 
m-a 

Theorem 4.2: 4(w, La) = Y*Fn-b-s> w h e r e l<a,b<m. 

Proof: We will prove this theorem by induction. We start from a line segment La and 
calculate the number of Z^-type line segments generated after n iterations of La. Consider first 
La = Lm. To calculate Z^w, Zm), we note that after one iteration we have Lm-> Lx. The Lx in 
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the right-hand side, after n-\ iterations, generates all the Z^-type line segments in B^n\/u) in this 
range, the number of which is Lb{n - 1 , Zx). Using (4.14), we conclude that 

m-a 
Lb(n,LJ = Lb(n-l,Ll) = F^ = Y.Fn

(-L, w h e r e a s . (4.15) 
.9=0 

Consider next La = Lm_l. After one iteration, Lm_x -> Ly + Lm. The Lx and Lm in the right-hand 
side, after n-1 iterations, generate all the 4 -type line segments in B[n\/u) in this range, the num-
ber of which is I^in -1, Z^ + Lb(n -1, Lm). Using (4.14) and (4.15), we conclude that 

Lb(n,LJ = lb(n-l,L1) + Lb(n-l,Lm) 
m-a (A 15) 

= 4(-l}+4(-t i = l 4 ( - t s , wherea = /W-l. ^ ; 

s=0 

We can now prove the general case by induction. Consider La = Z^. , and suppose that 
m-a 

Lb(n, 4 ) = I4 ( -"L, wherea = m-/ . (4.17) 

Now consider La = Z ^ ^ . After one iteration, Z ^ ^ -> Ly + L^. The Zj and Zw_? in the right-
hand side, after n-\ iterations, generates all the Z^-type line segments in B^n\ju) in this range, 
the number of which is 1^ (n -1, Zj) + Ẑ  (n - 1 , Zw_y). Using (4.14) and (4.16), we conclude that 

Lb(n, La) = 4(/i - 1 , Zj) + 4(/i - 1 , V / ) 

= 4(-t + l 4 ( - t , - i = X4(-"L, wherea = i « - / - L Q.E.D. 

With Theorem 4.2 established, we can now discuss the intersections of line segments of these 
w-types in B^n\fj) with the diagonal line. 

We consider line segments of type Ẑ  in B^n\fi). All these line segments are parallel and can 
be divided into two parts; one part is in the range 0 < x < xb, the other is in the range xb < x < 1. 
We easily see that each line segment of those in the range 0 < x < xb intersects the diagonal line 
once and others in the range xb < x < 1 cannot intersect the diagonal line. We divide the range 
0<x<xb into 0 < x < l / 2 and l/2<x<xb. 

Consider first the range 0 < x < 1/2. The original line segment in this range is an Lx. The 
number of line segments of type Lb in B[n](ju; x) in this range is Lh(n, Ly) = F^+l. 

Consider next the range 1 / 2 < x < xb. The original line segment in the range 1 / 2 < x < xb is 
Z^+1. The number of Z^-type line segments in B[n](ju) in this range is Lb(n, Lb+1) - H™=o~lFn-b-s-

Therefore, the total number of intersections of these w-type line segments with the diagonal 
line is 

m m m-b-l 

b=\ 

m-b-l 

s=0 
1 n-b+l T Z**J n-b-s 

b=\ b=\ s=0 

m-\ m-\ m-\ 

= M-1 + 1 *#S = £(* + l)m (4.19) 
b=0 k=l fe=0 

sZ$">. (4.20) 
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/£ , defined above, may be called the Lucas numbers of degree m, whose definition is 
m 

4W) = X 4-y > w i t h t h e first m elements defined by 

4 w ) = 2 i - l , \<i<m. (4.21) 

We then have the final results: 
Nz(n) = Ln(m), (4.22) 

w|tf(«), withiV(^)-X^/rf)4W)' (4-23) 
d\n 

and 
w|(4w) -1), for n a prime. (4.24) 

5. CONCLUSIONS 

Many N(n) such that n\N(n) can be obtained in this way for other iterated maps. In prin-
ciple, infinite N(n) can be obtained, since each iterated map contributes an N(n). It seems that 
the existence of dividing formulas is not so rare and not so mysterious. 
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1. INTRODUCTION 

In this paper, we relate the positive integer solutions of the Diophantine equation of the type 
x2-Dy2 -X with the generalized sequence of numbers Wn(a,b; p,q) defined by Horadam [3]. 
We do this by utilizing the principle of composition, or Bhavana, first enunciated in the sixth 
century by the Indian astronomer and mathematician Brahmagupta while dealing with the integer 
solutions of the indeterminate equation • x2 - Dy2 - X-., D being a positive integer that is not a 
perfect square and X a positive or negative integer [1], [2]. Further, we show that all the integer 
solutions of the equation x2 -Dy2 = ±1 are related to the Chebyshev polynomials of the first and 
second kinds if the positive sign is taken in the equation and to the Pell and Pell-Lucas polyno-
mials if the negative sign is taken in the equation. It may be of interest to note that Bhaskara II, 
another Indian mathematician of the twelfth century dealt extensively with the positive integer 
solutions of the equation x2 -Dy2 = X, and gave an elegant method for finding a positive integer 
solution for an equation of the type x2 - Dy2 = 1. His technique is known as the chakravala, or 
cyclic method. Of course, this solution, in conjunction with Brahmagupta's method of compo-
sition, may be used to generate an infinite number of solutions to the equation x2 -Dy2 = 1 (see 
[1] and [2]). Among the many examples that Bhaskara II considered and solved are the equations 
x2 -6ly2 =• 1 and x2 - 67y2 = 1. It is interesting to note that the equation x2 - 6ly2 = 1 was pro-
posed by Fermat to Frenicle in 1657 and that it was solved by Euler in 1732. 

2, BRAHMAGUPTA'S THEOREMS 

We first enunciate the following two theorems originally proposed by Brahmagupta. 

Theorem 1 (Bhavana, or the Principle of Composition): If (x1? yx) is a solution of the equation 
x2 -Dy2 = Xx and (x2,y2) is a solution of the equation x2 - Dy2 = X2, then (xtx2 ±Dyxy2, xxy2 ± 
x2yx) is a solution of the equation x2 -Dy2 - XXX2. 

Theorem 2: If (xx,yx) is a solution of the equation x2 -Dy2 = ±dX2 such that X\xx and X\yx, 
then (xx IX, yx IX) is a solution of x2 - Dy2 = ±d. 

As a consequence of Theorem 1, we can see that if (a,j3) is a solution of the equation 
x2 - Dy2 = -1 then (a2 - D/32,2afJ) is a solution of x2 - Dy2 = 1. It is well known that the equa-
tion x2 -Dy2 — 1 is always solvable in integers, while x2-Dy2 = -1 may have no integer solu-
tions [4], [5]. Bhaskara has shown that- x2-Dy2 = -l has no integer solutions unless D is 
expressible as the sum of two squares [2]. 

Let us consider the different positive integer solutions of the equation 

x2-Dy2 = X. (1) 
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Let (a, b) be the "smallest" solution of (1), which is also referred to as the "fundamental" solution. 
Then, by repeated application of Theorem 1 (using the positive sign only), we can readily see that 
{xm yn) is a solution of the equation 

x2
n-Dy2

n=r, (2) 

where (xn, yn) satisfy the recurrence relations 

x«=<Kn-i+D1>yn-i, (3) 

yn = hxn-i+ayn-i-
From (3), we see that (xw, yn) satisfy the difference equations 

xn = 2axn_l-hcn_2, ô = \ x\~a, .,. 
y^lay^-Xy^ y0 = 09 yx=b. 

Hence, (xn,yn) may be expressed in terms of the generalized sequence Wn(ayb; p,q) defined by 
Horadam [3] in the form 

xn = Wn{\a-2aM yn = Wn(0,b;2a,X), (5) 
where 

K = PK-I ~ qW„.2 (» > 2), W0 = a,Wl = b. (6) 

The difference equations given by (4) have been established recently by Suryanarayan [6], 
who has very appropriately called xn and yn "Brahmagupta polynomials." In the same context, it 
is appropriate to call equation (1) "Bhaskara's equation" (rather than a Pellian equation), since Pell 
has made no contribution to this topic, while Bhaskara (in the twelfth century) was the first to 
present a method for finding a positive integer solution of (1) when 1 = 1. 

Using the properties of the sequence Wn{a,b\ p,q), it is easy to show that 

*n = j Vn(2a> A ) ' yn = K O > )̂> (7) 

where un(x, y) and vw(x, y) are generalized polynomials in two variables defined by 

Un(*,y) = xun-\i^ y) - w,-2(*> y \ uo(x> y) = °> ui(x> y) = \ (8) 
and 

vn(x, y) = xv„_x(x, y) -yv„_2(x, y), v0(x, y) = 2, v^x, y) = x. (9) 

A number of properties of the polynomials un(x,y) and vn(x,y) have been derived recently 
[7]. In particular, we have 

[(w-l)/2] , -x 

r=0 (io) 
[nil] 

^y)=Tyr-^{"~rry'2ryr-
It has been shown by Suryanarayan [6] that the Brahmagupta polynomials xn and yn have the 

property that 
Y(s) = sbe2X{s\ (11) 
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where 
x(s) = fj^-s", ro) = f>„y. (12) 

i » i 

Since xn and yn are related to the polynomials u„ and v„ by (7), it follows that 

U„(s) = W\ (13) 
where 

un(s) = f<^-\ TO = X;v. 04) 
1 1 

Relations similar to (13) hold good between Fibonacci and Lucas polynomials Fn(x) and 
Ln(x), Pell and Pell-Lucas polynomials P„(x) and Qn(x), Morgan-Voyce polynomials Bn(x) and 
C„(x), Chebyshev polynomials of the first and second kind Tn(x) and S„(x)9 etc., since 

4 0 ) = un(x> -1), 400 = v„(x, -1); 
Pn(x) = u„(2x, -1), Qn(x) = v„(2x, -1); 
4 0 ) = un+l(x + 2,1), C„(x) = v„ (x + 2,1); 
5JI(x) = ni(2x,l), 2£(x) = vll(2x,l). 

(15) 

3. BHASKARAf S EQUATION WITH A = 1 (x* - Dj 2 = 1) 

Letting 2 = 1 in (7), we see that the positive integer solutions of the equation 

x2-Dy2 = l (16) 

are given by 

^= iv l l ( 2a , l ) , yn=bun(2aM (17) 

(n - 1,2, 3,...), where (a, b) is the fundamental solution of equation (16). Since un(2x, 1) = Sn(x) 
and vn(2x, l) = 2Tn(x), the Chebyshev polynomials of the first and second kind, we see that the 
positive integer solutions of equation (16) are given by 

*n = Tn(a), yn=bSn(ay (18) 

4. BHASKARA1 S EQUATION WITH 1 = -1 (x2 - Dy2 = -1) 

It is well known that it may not always be possible to obtain positive integer solutions to the 
equation 

* 2 - z y = - i . (19) 
In fact, it is not solvable unless the length of the period in the continued fraction expansion of 4D 
is odd [1]. Let us assume so, and let the fundamental solution of (19) be (a, b). Then, from (2) 
and (4), we have that (xn, yn) is a solution of the equation 

xt-Dy2 = (-!)», (20) 
where 

1998] 127 



BRAHMAGUPTA'S THEOREMS AND RECURRENCE RELATIONS 

Hence, 

xn - 2axn_x + x„_2, x0 - 1, xl - a, 

xn = Iv„(2a, -1), ^ = te„(2a, -1). (22) 

Thus, (22) gives the various solutions for the equations x2 -Dy2 -—1 and r2 -Dy 2 = 1, respec-
tively, depending on whether n is odd or even. Since un(2x, -1) = P„(x) and vn(2x, -l) = Qn(x), 
where i^(x) and Qn{x) are the Pell and Pell-Lucas polynomials, respectively, we may rewrite (22) 
as 

xn = \0«{a\. y„=bPn(a). (23) 

Now we see that 
*„ = ̂ 02„-i(«X yn = bP2„^a) (24) 

are the various integer solutions of x2 - Dy2 = - 1 , while 

*n = \QJP\ yn=bP2„(a) (25) 

are those of x2 - Dy2 = 1, where (a, b) is the fundamental solution of x2 - Dy2 = - 1 . 
Hence, we see that all the integer solutions of x2 - Dy2 = 1 are expressible in terms of the 

Chebyshev polynomials of the first and second kinds, while those of x2 - Dy2 = -1 are expressible 
in terms of the Pell and Pell-Lucas polynomials. 
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1. GENERALIZATIONS 

We consider finding a Binet formula for the continuous function f:dt—>% which has the 
property 

/(*)= I / (*-0 , (i) 
l</<Ar 

where 
• k is a given integer and k>\, 
• either f(0),..., f(k -1) are given initial values, 
• or / : [0, k) -> $ is a given continuous initial function where 

This generalizes the Fibonacci sequence in new ways. Instead of viewing the sequence as an 
automorphism on the integers, its domain becomes the reals. The Binet formula also allows the 
initial values to be arbitrary values, possibly complex ones. Instead of having k initial values for 
the function of order k, we also allow an initial function which is defined on the interval [0, k). 

When only k initial values are given, there can be many possible functions / . However, the 
following can be shown by induction. 

Lemma LI: Given an initial function,/is uniquely defined on 9t, and if 

l im/(x)= £ / ( x ) , 

then/is continuous. 
x~*k 0<x<fc-l 

2. RELATED WORK 

In 1961, Horadam wrote that generalizations of Fibonacci's sequence either involved changes 
to the Fibonacci recurrence or allowed its initial values to be changed or, possibly, a combination 
of these [10]. 

Since then, the main contributions to a general theory seem to involve generalizations of the 
Fibonacci recurrence [17], [20]: 

/(*)= X/(*-Q. (2) 
\<l<k 

When k = 3 and / (0 ) , / ( l ) , and / (2) are arbitrary constants, this is the recurrence of the gener-
alized Tribonacci sequence. The Tetranacci or Quadranacci sequence is similarly defined when 
A = 4. 
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Direct evaluation of equation (2) can have exponential complexity. Burstall and Darlington 
[2] gave a linear algorithm for computing Fibonacci numbers as an example of their program 
transformation methods: 

f(0)<=l 
f(l)<=l 
f (x + 2) <= u + v, where (u, v) = g(x) 
g(o)<=<w> 
g(x +1) <= <u + v, u), where (u, v) = g(x) 

This approach can, of course, be generalized by allowing different initial values and letting 
k>2. For example, if f(0) is defined to be 0 instead, we have that f(n) is the nth Fibonacci 
number. Given an efficient implementation of exponentiation, using the Binet formula 

F M-ffl 
Vs 

for the same task can have lower complexity. 
A similar formula, where k - 2 and the initial values are arbitrary, was given by Horadam 

[10]. A Binet formula for the recursive sequence of order k was given by Miles [13] for the 
special case f(x) = 09 where 0 < J C < £ - 2 and f(k-l) = l. Spickerman and Joyner [18] gave 
another solution for the special case / (0) = 1, and f(x) = 2x~l for \<x<k-l. Our approach 
subsumes these results as special cases. 

We have also derived a solution to equation (1), where an arbitrary initial function is speci-
fied. This does not seem to have been considered before. 

In the next section, we discuss properties of the characteristic equation, the coefficients of 
generalized Binet formulas, and solutions that use the initial values, and the initial function. When 
the initial values are given, we present two methods of solution: one uses Binet formulas and the 
other uses an exponential generating function and the Laplace Transform. We use the latter 
method to find solutions when 2 < k < 4. They are equivalent to those found with Binet formulas, 
but they are more complicated and do not involve complex roots. 

3. THE CHARACTERISTIC EQUATION 

We consider properties of the characteristic equation associated with Fibonacci recurrences 
of equation (1). These properties include its discriminant, location of roots, reducibility, and 
solvability in radicals. Several of the results here are used in later sections. 

Equation (1) is a homogeneous linear difference equation. Its characteristic equation* is 
given below: 

/ - z y = o . (3) 
0<l<k 

The form of the general solution of such difference equations depends on whether the roots 
of its characteristic equation are simple [12]. We define the characteristic function of order k to 

* See Liu [12], §3-2, for example. 
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Lemma 3.1: For every solution r of ck, 

Cj{r) + -

where 0 < j < k. 

Proof: This follows from the definition ofck. D 

Corollary 3.2: For every solution r of ck, 

cj(r)= X /- '. 
i</<Jt-y 

Theorem 3.3: The discriminant of the characteristic equation is 

(-i)" (k+iy+l-2(2kf 
(k-if 

when k > 1. 
<& Proof: Let the resultant of c^(y) and -^- be R(c,cf). The discriminant of the characteristic 

vA(Azl) equation is (-1) 2 i?(c, c') [11]. The resultant when k - 3 is 

/?(c,C) = 

1 
0 
3 
0 
0 

- 1 
1 

- 2 
3 
0 

- 1 
-1 
- 1 
- 2 

3 

-1 
-1 

0 
-1 
- 2 

0 
- 1 

0 
0 

- 1 

This can be simplified by partial Gaussian elimination. First, we interchange elements by moving 
element a,- • to element a2k_u2k_j, where \<i,j<2k-\. This does not change the sign of the 
determinant. In the example above, we obtain 

R(c,c') = 

- 1 - 2 3 0 0 
0 - 1 - 2 3 0 
0 0 - 1 - 2 3 

-1 - 1 - 1 1 0 
0 -1 -1 -1 1 

Subtracting row 1 from row 4 and row 2 from row 5 yields 

R(c,c') = 

If we then add row 2 to row 4 and row 3 to row 5, we obtain 

- 1 
0 
0 
0 
0 

- 2 
-1 

0 
1 
0 

3 
- 2 
- 1 
- 4 
- 1 

0 
3 

- 2 
1 

- 4 

0 
0 
3 
0 
1 

i?(c,c') = 

- 1 - 2 3 0 0 
0 - 1 - 2 3 0 
0 0 - 1 - 2 3 
0 0 - 6 4 0 
0 0 0 - 6 4 
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In general, the last two row operations above can be defined as the replacement of element akHj 
by ak+ij - atj + ai+lJ, where 1 < i < k -1 and 1 < j < 2k -1. Rows k +1 to 2k - 1 in these deter-
minants have the form 

0 ••• 0 -2k k + 1 0 ••• 0, 

where row l\k + l<l<2k-l has 0 in columns 1 to / - 2 . By induction on k, we can show that, 
for all k >1, 

{2kf 
R(c,c) = (-iy -+ £ (/ + l)(2*)/(* + l)*-1-/ 

^ 0<i<k-2 

The following identity can be used to simplify the summation in this expression: 

£ {a + ld)xi = a-(.a + (n-\)d)x" +dx(\-x^) 
0<l<n-l 

With x = -j^ and « = A: - 1 , we obtain 

i?(c,C')=(-iy 
(k + l)k+1-2(2kf 

(k-lf 

when ^ > 1, and the result follows. D 

Miles [13] and Miller [14] have shown that the characteristic equation has simple roots. 
Corollary 3.4 below shows this by different means. Its proof will be used in the proof of Theorem 
3.9 below. 

Corollary 3.4: The characteristic equation has simple roots. 
Proof: It suffices to show that R(c, c')^0. The resultant equals -5 when k - 2, and 44 

when k = 3. It could only be zero if (k + l)k+l = 2(2k)k, which occurs if (k +1) log2 (k +1) - 1 -
k-klog2 k - 0. Now log2(& +1)-log2 k < 0.6 when k > 2, so that 

(* + l)log2(^ + l)- l-^-*log2^<log2A:-0.4(i t + l). 

When 1 < k < 4, log2 k - 0A(k +1) < 0. The derivative of log2 k - ®A{k +1) is negative when 
k >4. Thus, (k +1)log2(£ + l)-l-k-klog2 & <0 and R(c,c!) ^ 0 when k > 1, as required. • 

We call the k roots of equation (3), rl9..., rk. 

Corollary 3.5 The general solution to equation (1) when x is an integer has the form 

/(*)= I.CW, (4) 
1<7<& 

where the Q are constant coefficients. 
To find a solution to equation (1), we need to find a version of this summation where x can 

be a real number. 
The following lemma identifies the locations and limits of the roots of the characteristic equa-

tion more precisely than previous results by Miles [13] and Miller [14]. 
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Lemma 3.6: The characteristic equation yk - H0<i<k yl - 0 has one positive real root in the 
interval (1,2). This root approaches 2 as A; approaches infinity, and it is greater than 2(1 -2~k). 

It has one negative real root in the interval (-1,0) when k is even. This root and each com-
plex root r has modulus Tk < \r |< 1. 

Proof: By Descartes' Rule of Signs [6], the characteristic equation has one variation, and so 
has at most one positive real root. There must be just one positive root because the characteristic 
function is -k +1 when y - 1, and 1 when y = 2. Another proof of this follows immediately from 
Polya and Szego ([15], Vol. I, Pt. Ill, Prob. 16). The characteristic function ck+l is 

v y-1) 
At y = r,this equals - 1 . By Lemma 3.6, there is only one positive root, so that positive root of 
ck+l is greater than r. Hence, r is always greater than y when k > 2, so that 

2 

is always positive. The root r must be less than 2 because the characteristic equation always 
equals 1 when x = 2. Therefore, r lies between 2(1-2~*) and 2. As k approaches infinity, r 
approaches 2. 

If we replace y by —x, the characteristic function is -xk ~~^ when k is odd. This is 
negative when x > 0, and so the characteristic equation does not have any negative real roots. 

When k is even, replacing y by —x in the characteristic function gives xk + ^ f • This is 
positive when x > 1, so there is at least one negative root of the characteristic equation between 
-1 and 0. The derivative of the preceding function is 

kxk+l + (3k -l)xk +2kxk~l + 1 
(x + 1)2 

which is positive when x > 0. Therefore, xk H-2^1 is strictly increasing when x > 0. It follows 
that there is only one negative root of the characteristic equation. 

We now consider the complex roots of the characteristic equation. From Miles [13] and 
Miller [14], each of them has modulus less than one. For every root r, \r\ = \r-2\~l/k. In the 
region where |z |<l , we have l < | z - 2 | < 3 , and so each of the complex roots and the negative 
real root satisfies Tllk < \r \ < 1. D 

Corollary 3.7: l i m x ^ 0 0
J ^ i = ri a n d l i m*-»oo^ = Q-

Proof: This follows immediately from Corollary 3.5, and that \rf \< 1 for / :2 < / < k. D 

Corollary 3.8: ck is irreducible over the rationals where k > 1. 

Proof: By Gauss's lemma, the irreducibility of ck over the rationals is equivalent to its 
irreducibility over the integers [11]. If ck were reducible, the roots of one of its factors would all 
have moduli that are strictly less than 1. The product of these roots cannot be an integer. This 
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leads to a contradiction because the modulus of the product of these roots must equal the 
modulus of the constant term of this factor.* • 

We now give a series that can be used to evaluate the positive real root of the characteristic 
equation. 

Theorem 3.9: Let 2(1 - sk) be the positive root of the characteristic equation. Then 

7>1 V 

(k + l)i-2) 1 

Proof: We have 

=1 (* + !)/+ (*-!)' 

i2(k+l)i ' 

1 
(1 + 1)2' (*+iX/+i) 

Define 

This is equivalent to the previous expression when z = (j)*+1. We have 

/>o v 
Identity 29 on page 713 of Prudnikov, Brychkov, and Marichev [16] states* 

I T(kv+M) „*_ r_ 
•^kWikv-k + fi) (l-v)y + v' 

where 

. _ J - 1 (v-iy x = - and \x\-
yv 

If we rename k by /, and then let v - k +1 , ju = k, x = z, and y = x, we have 

&^(z) = xk 

dz k + l-kx' 
where 

z = -
x-1 , provided that \z\< 

(*+i> it+i 

(5) 

(6) 

When z = (̂ -f+1
? this simplifies to 2(2kf - (k +1)*+1 > 0. It is remarkable that this is the 

same condition as in the proof of Corollary 3.4, so that it always holds when k>l. 

* David Boyd told me of this proof. It is known from the theory of Pisot numbers [1]. 
** Prudnikov, Brychkov, and Marichev [16] seem to refer to Gould [9] for this result. Gould gives a more 
restricted form where combinations rather than Gamma functions are used (Identity 1.120 on p. 15). Gould, in 
turn, apparently refers to the 1925 German edition of Polya and Szego [15]. The identity appears as a solution to 
problem 216 of Part III of Volume I of the 1972 English translation of that work [15]. The convergence condition 
(6) is discussed by Gould [8]. 
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N o w 
dz _ k +1 - he 
dx~ xk+2 

so that 
dsk{z) dz _ 1 

dz dx x2 ' 
We have 

Jo dz Ji x2 ' 
where 

xo~1 _ / n w 
x0 

Since — = k+l+^°, the value of z as a function of x is increasing when 1 < x < ̂ . In this interval, z 
increases from 0 to **k+1. We have shown that condition (6) holds when z = {j)k+l. This 
implies that < x0 < ̂ , and for all x: 1 < x < x0, condition (6) is satisfied. 

Therefore, ^ = l - ~ and the positive root of the characteristic equation is ^ . To check 
this, we can write the characteristic equation as 

/ ( y - 2 ) + l 

which holds when yk (y - 2) +1 = 0 and y * 1. On substitution of }> = -Jj-, we obtain 

2 \ t + i 

^oy 
- 2 

\xoJ 

k 

+ 1 = 0. 

This is equivalent to ^ r = (y f+1, as required. • 
x0 

Remark 3.10: Condition (6) and the one for equation (5) [16] should be strengthened. We have 
used a value x0:1 < x0 < ̂  such that - ^ = (j)k+l, but we could have chosen x0 = 2 instead. This 

XQ 

value also satisfies the condition, but in general, 
xk 2k 

k + l-kx0 \-k 

3.1 Solvability in Radicals 

We now consider the roots of specific characteristic equations. When k = 2, we have 
r1 = i±^- and r 2 = - ^ - , o r -r~l. Approximate values of rxmdr2 are 1.618033988749895 and 
-0.618033988749895, respectively. 

When k - 3, we let the real root of equation (3) be 

_ 1 + (19 - 3 V33 )1/3 +(19 + 3 -J33)l/3 

3 
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This was found by using "Cardan's Method" of 1545, due to Ferro and Tartaglia, for the solution 
of the general cubic equation (see [6], [7]). This constant rx will be used to find a solution to 
equation (1) above. The complex solutions are -cop - co2q + j and -a)2p -coq + ̂ y where 

- 1 + V3/ 2 - 1 - V 3 / -(19-3V33)173 -(19 + 3V33)173 

co = , col = -^—, p = — r^—L—9 q = — ^—l—• 
2 2 ^ 3 ' * 3 

An approximate value of rx is 1.83928675521416. The approximate values of the complex 
roots are -0.419643377607081 + 0.606290729207199/. 

Similarly, when k = 4 , the two real solutions of (3) are given by 

where 

i 1 2 . 2 i /3 rt -y i 4 8 

The complex roots are given by 

These were found by Ferrari's Solution to the general quartic (see [6], [7]). Approximations 
of the real solutions that we call rx and r2 are 1.92756197548293 and -0.77480411321543, 
respectively. The approximate values of the complex solutions are -0.07637893113374541 
0.814703647170387/. 

Lemma 3.11: There are no solutions in radicals to the characteristic equation when 5 < k < 11. 

Proof: The Galois group of the characteristic equation is Sk when 1 < k < 11. These groups 
were found by using Magma* [3], and they are not soluble [11]. D 

We conjecture that the Galois group of the characteristic equation is also Sk when k > 11. In 
general, computing the Galois group of a polynomial currently seems to be intractable when 
k > 12 (see [19]). 

4. THE COEFFICIENTS 

We consider the problem of finding the coefficients C; in the equation 

/(*)= l o r , (7) 
\<i<k 

where / (0 ) , . . . , f(k -1) are given. This is the problem of finding a general solution of a homo-
geneous linear difference equation whose characteristic equation has simple roots. 

* These computations were done by John Cannon. Robert Low also told me independently that Maple [4] gave the 
same answers where 5 < k < 8. Values of & outside this range were not used. 
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We use the elementary symmetric polynomials ([7]? [11]) of l defined over tVi, . . . , ^_ i} 5 

where 1 < i < k -1, and define Q-Q"1 = 1. The coefficient Ct is then given by the function 

i(-iy/(*-i-yX_l 

h(yi,-,yk) = °'J<k -j-r, c ; 

l<j<k 

(8) 

where yk - rx and yv ..., j ^ are assigned, respectively, to the other A: - 1 roots of equation (3) in 
any order. Equation (8) can be verified by induction on k. The formula was derived by Gaussian 
elimination and back substitution on systems such as 

1 1 1] 
h r3 
r2 '3 J 

[Ql 
\c2 

LQJ 
= 

r/(o)i 
/(i) 

L/(2)J 
when k = 3. More generally, the leftmost kxk matrix has elements a,. . - r '"1 . The determinant 
of this matrix is the Vandermonde determinant. Lang [11] in Exercise 33(c) of Chapter V dis-
cusses how this determinant can be used to find the coefficients, but no explicit formula is given. 

Example 4.1: When k - 4, we have 

fix^Ctf + Ctf+Cff + Ctf, 

where the function h(yx, y2, y3, y4) is 

/(3) - (ft + y2 + y3)f(2) + (yy2 + y2y3 + y^fjl) - yly2y3f(0) 

Thus, f(x) is 

Kb, r3> r4?
 riX* + %> r3, r4, h)ri + %> r29 r4, r3)r3* +/i(r1? r2, r3, r4)r4

x. 

Some special cases have appeared in the literature. Horadam [10] presented a Binet formula 
called equation (8), which is equivalent to the one below, where k = 29 / (0) = q, and/(l) = p: 

f(x) = -^(2{p-qr2yi
x-2{p-qrl)r2

x). 

From equation (8), we find 
f(i)-yif(Q) 

h(yhy2) = -
yi-y\ 

so that 

i " " 7c a 2 ~ /7 

in agreement with Horadam's result. 
Miles [13] discussed the special case in which f(x) = 0, where 0 < x < k - 2 and / ( £ -1) = 1. 

Equation (7) becomes 
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**-*)=TI(^> 
\<j<k 

in agreement with his equation (2 "). 
Spickerman and Joyner [18] considered the special case in which f(0) = 1 and f(x) = 2*-1, 

for 1 < x < k -1. Their solution is 
rk+\ _fk 

Ci~rf-{k\\) (9) 

This again is equivalent to a particular solution using equation (8). 

Theorem 4.2: When / (0) = 1 and f(x) = 2x~l, for l<x<k-l, equation (9) is equivalent to 
equation (8). 

Proof: The numerator of equation (8) with Spickerman and Joyner's initial values is equal to 
y( 2=7 + 7:). This follows from the observation that Tl^^^ = (-l)*-1, ck(2) = 1, and 

^ = ̂ +2X(-iy/(*-W>ri. 
Z ri ri 0<j<k 

The expression for the numerator simplifies to yk~l by use of the identity rk(2 -r) = 1, where r is 
any root of the characteristic equation. 

The denominator of equation (8) can be expressed in terms of rt by using the property that, 
for this problem, ak = (-l)y~\ where 1 < j < k [11]. By induction on k, we can show that 

no'*- .v , )=(*- i )^~ , + - -1 M-
\<j<k yk \<l<k-2 

The summation can be removed by use of the identity 

^ , i^ i a-(a + (n-l)d)xn dx(l-xn-1) 
0</<7?-l * ~ X 0 ~~ X) 

to give 

I</<A: >* x yk \i~yk) 

After some algebraic simplifications involving uses of the identity rk+l-rk -rk - 1 , the ex-
pression for the denominator can be simplified to 

y[-i ' 
Hence, in this case, equation (8) is equivalent to 

or-*)' 
Equation (9) can be derived from this by using the above identity, as required. D 
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The formula for the coefficient Q of a generalized Fibonacci recurrence can be expressed 
merely in terms of the initial values and the root rt of the characteristic equation. 

Corollary 4.3: In the case of the recurrence in equation (1), equation (8) is equivalent to 

Cv£-l)I/(*-W)<y(jfc) 

y^iy^-k) 
Proof: This follows from the proof of Theorem 4.2 and by induction on k to show that 

( \ 
\yi-H A \ 

where 0<j<k. D 

Since the coefficient Q only depends on the root rz and the k initial values, we write h(y) 
instead of h(yly..., yk). From Corollaries 3.2 and 4.3, we obtain 

<1 = (-iy I y'u (io) 
\<i<k-j 

and 
l / -«E/(»- i - ; ) S y-

m~ ^ v „ _ k ) ' ^ ' • (ID 
Lemma 4.4: Suppose that the k initial values of/* are real numbers. When k is even, 

f(x)=h(ri)rx+h(r2)rx + X 2 ^ * cos(0,. +^x), 

where v7. and w,. are real constants, and -n < 0i7 Y\-n- When k is odd, 

/(x)=/i(r1)r1
x+ X 2vz.<cos(^.+^)-

Proof: When A: is even, from Lemma 3.6, let rt be the positive real root of the characteristic 
equation and r2 be the negative real root. The k-2 complex roots can be paired as conjugates. 
From Corollary 4.3, if r and r are such a pair, then h(r) mdh(F) are also conjugates. From equa-
tion (4), it follows that f(x) can be expressed using the terms h(j\)r* andh(r2)r2 , and (k-2)/2 
terms of the form h(r)rx +h(r)rx. 

Suppose that h(r) = ll+ il2 and r = l3+il4. We can show that 

h(r)rx + h(r)rx = 2vwx cos($ + ^ ) , 

where 
v = ̂ J l^+l2 and w = yl%+%. 

Let sgn(x) equal 1 if x>0 , and equal -1 if x<0 . We have 0- sgn(/2)arccos(/1/v) and 
Y = sgn(/4)arccos(/3 / w). We assume that, for all x : - l < x < 1, 0 < arccosx < n. The case when 
k is odd is similar. D 
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5. SOLUTIONS 

Substituting expressions for the coefficients Q from equation (8) into equation (4) gives the 
unique general solution to equation (1) when the domain of/is restricted to the integers and the k 
initial values are known. This has been the usual application of Binet formulas. 

Our solution seems to be more general than those considered previously (see [10], [13], [18], 
and [20]). It can also be used to find the general solutions of all homogeneous linear difference 
equations whose characteristic equations have simple roots. 

The new generalization of the Fibonacci sequence we present defines the domain off to be 
the reals. This introduces some additional questions. We first consider the solution of equation 
(1) when k initial values are given, and then where there is a given initial function. 

6. USING THE INITIAL VALUES 

6.1 Direct Solutions 

Direct solutions use equation (7), f(x) = Z^-^ Qrx. It is not difficult to show that, if x edt 
rather than the integers, then/is a solution to equation (1), as required. 

The coefficients Q can be computed following Corollary 4.3 or equation (11) by using the k 
initial values and k roots rt of the characteristic equation. 

From Lemma 4.4 we have that, when k is odd, and the initial values are real, then/is a real-
valued function for all x edi. When k is even and the initial values are real, the image off can be 
complex when x is not an integer. This arises from the term r2 because r2 < 0. This term can be 
written (cos(^xr)+/' sin(;zx))(-r2)x. We can show that the real part of/is 

Kr\)r\ +Kri) oos(nx)(-r2)x + ]T 2vtwf cos(<97 + ytx). 
i</<f-i 

The imaginary part of/is A(r2)sin(/zx)(-r2)*. The real and imaginary parts off individually satisfy 
equation (1). The real part has the same initial values as/, but the imaginary part is zero when x is 
an integer. 

More generally, when k is even, we can replace h(r2)r2 with h(r2)m(x)(-r2)x, where m is any 
continuous function that satisfies m(x + \) = -m(x) for all x edi, and m{x) = (-l)x when x is an 
integer. This family of solutions satisfies equation (1). 

6.2 Laplace Transform Method 

Another approach we use for finding solutions to equation (1) is based on the exponential 
generating function 

G(x) = ^ ^ - , (12) 

where the function/is a solution to equation (1) for a given k, where k > 1. First, we solve the 
differential equation 

#*>(*)= £ G « ( * ) , (13) 
0<i<k 
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where G(0) = /(0), G(1)(0) = /(I), . . . , G^-^O) = /(it -1) . This is done by means of the Laplace 
Transform [5]. 

We then use this solution to find an expression for G(w)(0), where n is a nonnegative integer. 
Finally, we replace the variable n by a variable x eCt, and find / (x ) = G(x)(0). 

6.2,1 Fibonacci Function 

We apply the method of Section 6.2 in the case k = 2. The Laplace Transform of G(2)(x) = 
G(1)(x) + G(x) yields 

)> + / ( ! ) - / ( 0 ) _ ^ , K2 
SI X -

-s-\ s-r, s-r, 
The constants Ky and K2 can be found by solving the following system: 

1 
-r, -r, 

/(0) 
/ ( l ) - / (0 ) 

This system is equivalent to that discussed in Section 4 above when k = 2. The solution is 
^ = 7(0) -^ , 
K = / ( l ) - / ( 0 ) + r 2 / ( 0 ) | 

r, -r, 
Applying the inverse Laplace transform yields the same result as the direct method: 

/ ( * ) = (/(i) - f(oy2yl
x - (/(i) - /(QMK 

A special case occurs when /(0) = 2 and / ( I ) = 1. The Xth Lucas number Lx equals f(x) 
when x is an integer. We call this function L(x): L(x) - r* + r2*. If we call F(x) the solution 
to equation (1), where / (0) = 0 and /(1) = 1, it is not difficult to show that Z,(x) = F(x -1)+ 
F(x + 1), r^L(jc)+fF(;c)

? and (-1)' = *<*>-f*<*> for all x efld. 

6,2,2 Tribonacci Function 
The Laplace Transform of equation (13) when k - 3 is 

53/(0) + ( / ( l ) - / ( 0 ) > + / ( 2 ) - / ( l ) - / ( 0 ) 

= ^ + - K2s + K3 

The constants K^K^, and K3 can be found by solving the following system: 

/ (0) 
/0)-/(0) 

/ ( 2 ) - / ( l ) - / ( 0 ) 

1 
r . - l 
_l/rt 

1 
- 1 
0 

o] 
1 

- r J 
ixi \K2 

W 
= 

We hsive 
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* i 
/(0) / ( l ) | / (2 ) 

1(1-1X3^ + 1) 3r1 + l (ri-l)(3r1 + l ) ' 

K2=f(0)-Ku 

K1-r1(f(2)-f(l)-f(0)) 
K _ _̂  _ 

Hence 

„ * , 
x = • 

^HV)) * 3 - ^ ) 
j - r , 1 HwfcMV)2) hm^-m2) 

Applying the inverse Laplace Transform gives 

G(x) = K^ + K 2 e ^ c o s ^ + ^ ^ ^ s i n ^ ? f x . 

We now use the observation that the /2th derivative of ^,JC cos(&2x) at x = 0, where ^ and £2 

are constants, is lncos(dn), where l-^kl+k\ and 0= sgn(A2)arccos(^1//). Similarly, the wth 

derivative of ek]X sin(&2x) at x = 0 is ln $m(0ri). We obtain 

f(x) = Ktf + Kfr-x'1 cos(0x)+/i -x/2 sin(0x). (14) 

The angle 6 is arccos(-^-^). We can verify by induction on x that equation (14) is a solu-
tion when k = 3, that Cx=Kl9 and that this is the same function as that found by the direct 
method. It is interesting to note that, unlike the direct one, this solution does not use the complex 
roots. 

6,23 Tetranacci Function 

We shall use the method of solution of Section 6.2 when k = 4. For brevity, we define 
K = f(0), Vi=fV)-f<P), V2=f(2)-f(l)-/(0), and F3 = / ( 3 ) - / ( 2 ) - / ( l ) - / ( 0 ) . The 
Laplace Transform of (13) in this case is 

x = 
_V0si-hVl$2 + V2$ + V3 

'-J-J-s-l 
This is equivalent to 

x = 
V0s3+Vls2+V2s + V3 

(s-rl)(s~r2)(/ + (r1+r2~l)s-^-rl
2-i-r2

2~-rl--r2+rlr2-l)' 

We have 
A.1 iv» 

x - L_ + 2_ + _ 
K3s + K4 

s-rx s~r2 s2 +(rx+r2-\)s + ri +r2 -rx-r2 +ff2 - 1 ? 

where Kl9 K2, K3, and K4 are constants. They can be found by solving the following system: 
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1 
1-1 

K-h-\ 
l/r, 

1 
r 2 - l 

r2
2-r2-\ 
\lr2 

1 
-r , - r 2 

V2 
0 

0 1 
1 

-h-h\ 
rih J 

1*' k2 k 
1*4 

fol 
F' 
*V 

l̂ J 
After finding the constants, and continuing with the other steps of the method of solution, we 

obtain the following solution which can be verified by induction: 

f(x) = Kf* + K2r2
x + yx/2(K3 cos(ftc) + K5 sin(ftc)), 

where 
y = rl

2-rl+r2
2-r2+rlr2-l, 

6 = arccos r=^-5 

^ = / ( 0 ) - ^ - ^ 3 > 

^ = / ( l ) - r 1 / ( 0 ) - A 4 - ( l - 2 r 1 - r 2 ) ^ 3 

K = /(2)+r1r2/(0) - fr +r2)/(l) - (1 - 2rt - 2r2)K4 
3 r,2 - 2/j + r2 - 2r2 + 4rf2 + 2 

/(3) - (l -^-(n+r2)K7)f(l) - (1 + JC,)/(2) - K6 
K4 = 

K^K" 

V a + ^ T - O - ^ i - 2 ^ ) ^ 
'n+azT 
> 2 

£, 

* 6 = 

f 1 1 "l 

JC7 = - \-2rx- 2r2 
Of + r2

2 + 4r/2 - 2>i - 2r2 + 2)r{r2 ' 

Lemma 6.1: f(x) is symmetric in /j and r2. 

Proof: It is easy to check that yx/2(K3cos(0x) + K5sm(0x)) is symmetric in rx and r2 be-
cause j , #, and K3 to K7 are symmetric. Now ^ is equal to 

f(l)-r2f(0)-K4-(l-2r2-ri)K3 

This is Z"2 with rx and r2 interchanged. Hence, K/* + JC/^ is also symmetric. D 

This solution is also extensionally equivalent to the one found by the direct method, and 
Q = Kx, and C2 = K2. Again we see that it is not necessary to find the complex roots. 

Solutions similar to this one, and the ones in Sections 6.2.2 and 6.2.1 above have appeared 
previously (see [21], [22], [23]) but without the preceding derivations. The method of solution 
described in Section 6.2 above can also be applied when the roots are expressed numerically. 
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7. USING THE INITIAL FUNCTION 

If k > 2, then given an initial function /whose domain is the interval [0, k), we can compute 
every value of the A:-step function f(x) where x e9t. To do this, we define a function Ft. This is 
a A:111-order function on the integers that satisfies equation (1) and whose initial values are 

fO if**/, 
[I nx = i, 

where 0 < /, x < k -1. In general, 

/(/+*)= E/(/+*)m (15) 
0</<Jfc 

where / is an integer, x = l + s, and s e[0,1). We can show by induction that 

F,(I)= T,F0(l-j). (16) 
0<j<i 

Equation (15) can thus be written as 

/( / + *)= I / O + ^ I ^ - y ) - (17) 
0<i<k 0<j<i 

Equation (17) shows that/can be defined on the real numbers in terms of the initial function 
and the A>step function F0 whose domain is the integers. It is not unique. For example, from 
equation (16) we have, for a fixed k, that 

0<;St-l 

i.e., Fk_i(I-1) = F0(/). It follows that 

f(I + e)= X /(/ + *) X FUl-J-i)- (18) 
0</<it 0<;<z 

Now, from equation (11), the coefficients of equation (7), for Fk_l9 are given by 

On substitution into equation (18), we have 
n<ivz- n</<7 i<v<t 'u 1 0<i<k 0<j<i \<v<k 

where the rv are the roots of the characteristic equation. 
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1. INTRODUCTION 

In the year 1937, E. B. Escott published his paper "Rapid Method for Extracting a Square 
Root" [4], where he presented an algorithm to find rational approximations for the square root of 
any real number. Escott's algorithm is based upon the algebraic identity 

\xx+2 _ xx +11 x2 +1 e x3 +1 ^ 
y Xj - 2 Xj - 1 x2 - 1 x3 - 1 

where the xi are obtained through the following recurrence: 

Xn ~ Xn-\\Xn-l~3)-

It is obvious that, in order to calculate <JW, Escort's algorithm must use rational xi and thus the 
actual computation is considerably retarded. 

More recently, in 1993, Y. Lacroix [6] referred to Escott's algorithm in the context of the 
representation of real numbers by generalized Cantor products and their metrical study. 

In Section 2 of this paper, we present an algorithm similar to Escott's but improved in the 
sense that we only use positive integers in the recurrence leading to the computation of -JlV. 
Moreover, the approximating fractions obtained by our algorithm constitute best approximations 
(of the second kind). 

In 1984, J. O. Shallit [15] published the recurrence relations followed by the coefficients in 
the Pierce series development of irrational quadratics of the form (c - Vc2 - 4) / 2. His method is 
based on Pierce's algorithm [12] applied to the polynomial x2 -cx +1. 

In Section 3, we use the infinite product expansion provided by our square root algorithm to 
find the Pierce expansions corresponding to irrationals of the form p - ^p2 - 1 , as an alternative 
way to the one used by Shallit [15]. The same method can also be used in the case of irrationals 
of the form 2(p - l)(p - <y p2 -1), as we show in Section 4. 
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2. THE EXPANSION OF AN IRRATIONAL QUADRATIC 
AS AN INFINITE PRODUCT 

It Is well known (see [9], [10]) that the convergents p„/q„ of the regular continued fraction 
development of y/r, with r a positive integer, verify, alternatively, Pell's equation p^-rq2 = ±ly 

and we get the recurrence relationships, 

Pn = 2P\Pn-l ~ Pn-2> % = 2A?„-1 ~ ?„-2> 0 ) 
that allow us to find all the solutions of Pell's equation from the first one (px, qx); (we take p0 = l, 
% = 0). 

Lemma 1: Let (phqi) be a positive solution (px>0, qx>0) of Pell's equation x2-ry2 = l, 
where r is a positive integer free of squares. The sequence {(pn, q„)}, obtained recurrently in the 
following way, 

\Vn = Pn-MPn-l ~ 3), fl = Ph „ . 
Wn=^n-l(4Pn-l-d, 91 = ft, 

is a subsequence of the sequence {(pn, qn)} of all solutions of the given Pell equation, with the 
peculiarity that each solution is an integer multiple of the preceding one. 

Proof: We shall proceed by induction on n. Let us suppose that p2_x = rq2_x+l is verified. 
We must ascertain that 

Pl=rql + \. (3) 
We replace pn and qn using the recurrence (2): 

VU*PU - 3)2 = rqlMPli ~ I)2 +1- (4) 
To simplify, let us denote by a the expression a = 4p2_x - 2. Equality (4) becomes 

pli(a-l)2=rqUa + l)2 + l, 

which can be written as p^t(a2 - 2a +1) = rq2_t(a2 + 2a +1) +1. Grouping together the terms 
corresponding to a2 +1, we obtain the equality 

(a2 + 1 ) 0 ^ -rqlx)-2a(j>lx + ^ i ) = I (5) 

and, by the induction hypothesis, pl-.x-rq2_x = 1, and also ^ - f r ^ = 2p2_x - 1 . Therefore, (5) 
becomes 

a2-2a(2pw
2_1-l)-0, (6) 

and, as we have a - 2(2p2_t -1), we deduce that (6) is, in point of fact, an algebraic identity. • 

Theorem 1: 4r expands in an infinite product of the form 

ql
1Ja2

n~l qil\{ a\-\ 

where (pl9 q{) is a positive solution of Pelfs equation, x2-ry2 = 1; al=2pl, an - aw„j(a2
ml -3) . 
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Proof: With the same notation as in Theorem 1, we have, on the one hand, 
Pn \r — 11111 

and, on the other, we have the recurrence 

Vr = l imik, (7) 

Pn =Pr,-l.4Pn-l~^ 

Iterating, we obtain the expansion 

g„ = A.4A2-3.4fi2-3 4 ^ - 3 
In ft 4 A 2 - 1 4 p | - l 4pll-\' 

or, if we prefer, we can simplify expression (9) by defining the new recurrence 

an = a„_x(a2
n_x - 3), a{ = 2Pl, (10) 

(8) 

(9) 

which allows us to write 
Pn _ A . ^ ? " 3 . . al-i • 

v2 i ' * ' _ 2 qn qx a\-\ al
n_x-\ 

Finally, taking limits as n -> oo, the expansion ofV^ in an infinite product is 

(11) 

2 1- Ei W ° ^ i -
« « - l y 

Using the recurrence (10) in (11), we obtain 

D (12) 

(13) 
qn 2 f t ( a ? - l ) - ( a ^ 1 - l ) " 

The recurrence (10) is a fast way to compute the fractions of (13) which constitute best 
approximations of the second kind of any irrational quadratic of the form -Jr, where r is a posi-
tive integer; to start, we need only a positive solution of Pell's equation x2 - ry1 = 1. With ten 
iterations of the algorithm, we obtain a fraction whose approximation to the irrational is of the 
order lO"30,000. With 14 iterations, the approximation gives us a million correct decimal figures. 

Expansion (12), among others, is the one considered by Y. Lacroix [6] in connection with 
Cantor's representation of real numbers by infinite products (see [1]). 

3. THE PIERCE EXPANSION OF p - (p2 - l)m 

Any real number a e (0,1] has a unique Pierce expansion of the form 

a = + - - - + - 1 - 1 + ..., (14) 
ax axa2 axa2 '"Cin 

where {an} is a strictly increasing sequence of positive integers. These ai will be called coeffi-
cients or partial quotients of the development. 

Following Erdos and Shallit [3], we will denote the right-hand side of (14) by the special 
symbol (al9 a2,..., an,...). If expansion (14) is infinite, a is irrational. Otherwise, a is rational. 
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One of the first mathematicians to consider these developments was Lambert in [8]. Later, 
Lagrange refers to them in [7], but their numerical properties were not discussed until the inde-
pendent studies of Sierpinski [18] and Ostyrogadsky [13] were published. Perron mentions them 
in [11] among other unusual series representations of real numbers. T. A. Pierce [12] used these 
series to approximate roots of algebraic equations and, in 1986, Shallit [16] studied their metrical 
properties using methods developed by Renyi [14] to study the metrical properties of Engel's 
series, i.e., series of type (14) but with all its signs positive (see [2], [11], [14]). In 1984, using 
Pierce's algorithm, Shallit [15] obtained the Pierce expansion of all irrational quadratics of the 
form 

c _ ^c
2 - 4 

— with integer c, c > 3. (15) 

Quite recently, in 1994, Shallit [17] used Pierce expansions to propose a very nice method for 
determining leap years which generalizes those existent and, in 1995, Knopfmacher and Mays [5] 
related the expansions obtained in (15) to the Pierce expansions of some particular quotients of 
consecutive Fibonacci numbers. 

If c~2k, the irrational in (15) is directly of the form k - ^k2 -1. If c - 2k +1, it can be seen 
that the irrational in (15) can be written as 

1 1 . 1 
2k 2k(2k+2) + 2k(2k + 2)'^P ^P ^ 

with p = (2k + l)(2k2 + 2k -1) . Thus, the Pierce expansion of irrationals of the form studied by 
Shallit are directly related to the irrationals of the form p - ^p2 - 1 . The aim of this section is to 
find the Pierce expansion of all irrationals of this particular form using different methods than 
those in [15]. 

Now, if ^p2 -1 = q4r with r free of squares, (/?, q) is a solution of Pell's equation 

x2 - ry2 -1. 

Theorem 2: Given r, a positive integer free of squares, let (p, q) be a positive solution of Pell's 
equation x2 - ry2 = 1. The Pierce expansion of the irrational p - q4r is exactly 

p-q4r' = (ax-\ ax + \ a 2 - l , a2 + l,...)> (16) 

where ax = 2p and an+l - an{a2
n - 3). 

Proof: Using expression (13), 

Pn «». 
qn 2ql(a2-l)"-(a2

n_l-l)' 

We can write its right-hand side as 

<Vi al-i~3 _ 
2ql(a\ -1) • • • (a2„_2 -1) a2

n_x -1 2qx(a\ -1) • • • (a2„_2 -l){ a2
n_x -1 

Now, as we have the algebraic identity 
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«„-! = 1 1 
A ( a t i - l ) *(«„-i-l) K«„-i-l)(«„-i+ 1)' 

iterating the former process we eventually reach the expansion, 
K = R L _ + 1 +... 

1 1 
+ -qla\ -1) • • • (a2

n_2 - !)(«„_, -1) ft(a* -1) • • • {a\_x -1) 

In our case, px = p and qx-q\ thus, we can write 

R_PTL = _ A 1 , 

1 1 
(17) 

+ -q(a\ -1) • • • (a2„_2 - tya^ -1) q(a\ -1) • • • («*_, -1) 

As n —» oo we obtain the infinite Pierce expansion, 

<1 M 

( 1 1 (18) 
^nr=,(«*-i)-(«,-i) ^nu^-i)J' 

which is equivalent to (16). D 

4. THE PIERCE EXPANSION OF 2(p - l)[p - (p2 - if11] 

In this section we are going to see how the method we have just used can be extended to find 
the Pierce expansion of irrational quadratics of the form 2(p - l)(p - ^p2 -1) . 

As above, our starting point will be Pell's equation x2 - ry2 = 1, and we will choose a sub-
sequence of the sequence of its solutions. We will need the following result. 

Lemma 2: Given a positive solution (p, q) of Pell's equation x2 -ry2 - 1, with r free of squares, 
the recurrent sequence {{pn, #„)}, obtained in the form 

1 ^ = 2 ^ - 1 , px = p9 

is a subsequence of the sequence {(pn, qn)} of all the equation solutions. 

Proof: The result is easily proved by induction. Let us suppose that pn_l and qn_x verify 
Pn-i ~ r^n-\ - 1 • F° r the next index we will have 

Pi = ( 2 / t 1 " I)' = *Pn-l - 4Pn-l + I 
rql^rApl^q2^ 

and subtracting gives p2
n -rq2 = 4p2_l(p2_l -rq2_x) - 4p2_x +1 = 1. D 

Having proved that all pairs (pn9 qn) are solutions of the given Pell equation and using the 
fact that 4r = Hmn_^ao(pn/qn)9 we will try, as before, to expand the fraction p„/qn as a finite 
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Pierce expansion and then, taking limits, obtain the infinite Pierce expansion corresponding to the 
irrational -Jr or an equivalent one. 

Let us start with the fraction p„lq„, and let us express its numerator and denominator in 
terms of the preceding pair of solutions, i.e., 

P» =
 2Pl-\-l

=Pr\ _ * ( 1 9 ) 

<ln 2Pn-tin-i q„-i 2Pn-fln-i' 
Proceeding with the expansion of the equation above, we will eventually reach the first one, 
Px/^, and the chain of equalities 

K = £l \ I L _ 
9n <7i 2 W i 2 M> 2Pn-fin-\ 

= P\ _ 1 _ _ _1 1 
ft ft2A qi2Pi2P2 qi2P\2Pi---2pn-\ 

1 1 l 
-+-,2ft 2pi2p2 2p(lp1..2pn_x 

Taking limits in this last expression and remembering that p\ = p and qx = q, we obtain 

4~r-
P i - ' * ^ 
q <i 

j _ I I 
2p + 2p2p2

 + " ' + 2p2p2..2pn_x
 + ' 'j 

(20) 

where the p follow the recurrence pn = 2p2_x -1, pt = p. The series within parentheses on the 
right-hand side of (20) is an Engel series. 

Equality (20) can also be expressed in the form 

p-q4r = — + +•••+ + •••, (21) 
2p 2pp2 2p2pv.2pn_x 

or, if we prefer, we can state the following result. 

Lemma 3: For all positive integers p, we have 

F ^ 2px 2pxp2 2px2p2...2pn_x 

withpi = 2pll-l, pl = p. 

Expression (22) is known as Stratemeyer's formula, and can be obtained algebraically by the 
method described in Perron (see [11], Ch. IV). We mention in passing that the recurrence (22) 
verified by the p is exactly the recurrence verified by the denominators in the infinite product 
expansion presented by Cantor in [1]. We are now ready for the following result. 

Theorem 3: Ifp is a positive integer greater than one, then 2(p- l)(p- ^p2 -1) = (1, pu p2,p3, 
...), where px = p and the pi verify 

W I = 2/^-1-1. 
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Proof: To prove Theorem 3, we just have to change the Engel series in (22) into a Pierce 
expansion. In order to do that, let us consider the Pierce expansion of Theorem 3, 

0,A>A>A>->> (23) 

with the recurrence p2n = 4(p2n_l +1), p2n+l = 2 / x ^ - 1 , pi = p. If we denote by S the irrational 
number represented by (23), we have the following expansion: 

£ = 1 __L + _J = Pi"1 | ft"1 , , Am-!"1 

A AA A AAA PJh-Pin+i' 
We want to see that each fraction in the sum above is of the form 

Pln+l ~ 1 _ A " 1 /24) 
A A - • • A/7+1 A 2 A - • -2A«+i 

We will proceed by induction on n. For n = 0, it is trivially true. Let us expand the left-hand side 
of (24) in the following way: 

A t t + i - 1
 = Aft-i"1 / A ^ I - Q 1 

Pl-'Pln-lPlnPln+l Pl — Pln-l yPln+lPln) Pln-l ' \ ' 
'(*) (**) 

The term (**) can be written as follows: 

2/&-1-1-1 1 = 2(^-1) = 1 
A„+14(A„-1 + 1) P2n-l-\ P2n+14(PL-1~1) 2Plr,+l' 

Finally, by the induction hypothesis applied to factor (*) in (25), we obtain 

A»+i~l = A " 1 1 

Pl-Pm-lPlnPlH+l Pl2P3"2P2n-l 2Pln+l ' 

Thus, S can be written as 
c - / i „ „ \_ A~* | A " 1 , • A - l , 

Hzl(i+J_+_L_+...+
 1 +• 

(25) 

(26) 

A I 2/?3
 2/?32/>5 2p32py..2p2n+l 

= 2(A-l)f-L + —±— + •••+- * 
2A 2 A 2 A 2#2/?3...2/>2„+1 

(***) 
But, by Stratemeyer's formula (22), the term (* * *) is precisely pl - yjp^ - 1 . D 

5. CONCLUSIONS 

The algorithm presented in this article provides fast best approximations to any irrational of 
the form -Jr, where r is a positive integer. At the same time, the algorithm provides the necessary 
background to obtain the Pierce expansion of some quadratic irrationals whose partial quotients, 
a,, grow as x3. The procedure used proves also that the convergents in the Pierce expansions of 
these irrationals are best approximations of the second kind. 

152 [MAY 



APPROXIMATION OF QUADRATIC IRRATIONALS AND THEIR PIERCE EXPANSIONS 

We also present the Pierce series development of irrationals of the form 

whose partial quotients grow as x2. 
However, there exist quadratic irrationals that escape the above laws, whose partial quotients 

obey the metrical behavior, l i m ^ ^ »[a^ = e, found by Shallit in [16]. 
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1. INTRODUCTION AND RESULTS 

Let x be a real number with \x\<x/2. The Euler sequence E = (E2„), n = 1,2,..., is defined 
by the coefficients in the expansion of 

„=o(2»)!" 
secx = Y^-x2". 

That is, E0 = 1, E2 = 1, E4 = 5, E6 = 61, E% = 1385, El0 = 50521,.... These numbers arose in 
some combinatorial contexts, and were investigated by many authors. For example, see Lehmer 
[7] and Powell [8]. The main purpose of this paper is to study the calculating problem of the 
summation involving the Euler numbers, i.e., 

y E2ai
E2a2 •••E2ak (], 

a^t^-n (2^)1(2^)! ... (2%)! ' ^ 

where the summation is over all ^-dimension nonnegative integer coordinates (01?a2, ...,ak) such 
that ax +a2 + • • • +ak - n, and k is any odd number with k > 1. 

This problem is interesting because it can help us to find some new recurrence properties for 
(E2rt). In this paper we use the differential equation of the generating function of the sequence 
(E2rj) to study the calculating problems of (1), and give an interesting identity for (1) for any fixed 
odd number k>l. That is, we shall prove the following main conclusion. 

Theorem: Let n and m be nonnegative integers and k = 2m +1. Then we have the identity 

I E2a,E2a, •••E2al[ 

a\ +a2 + ^ak __n(2al)\(2a2)\...(2ak)\ 
1 m 

= (k- l)\(2n)! ? H)/4'V(2/ft +1,2m - 2/ + l)E2n+2m_2i, 

where t(nl k) are central factorial numbers. 
From the above theorem, we may immediately deduce the following. 

Corollary 1: For any odd prime/?, we have the congruence 

(0 (mod p), ifp = 1 (mod 4), 
[-2 (mod p), ifp = 3 (mod 4). V i -

Corollary 2: For any integer n > 0, we have the congruences 
(a) E2n+2 + E2„ = 0(mod6), 
(b) + 10£2„+2+9£2„ = 0(mod24), 
(c) E2n+6+E2„^0(mod42). 
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2. PROOF OF THE THEOREM 

In this section, we shall complete the proof of the theorem. First, we give an elementary 
lemma which is described as follows. 

Lemma: Let F(x) = l / cosx . Then, for any odd number k = 2m + l>l, F(x) satisfies the dif-
ferential equation 

m 
(2m)lFk(x) = £c;.(w)F( 2 w-2 / )(x), 

/=o 

where F( r ) (x) denotes the r* derivative of F(x), and the constants c^m), i = 0,1,2, ...,m, are 
defined by the coefficients of the polynomial 

m 
Gm(x) = (x + l2)(x + 32)(x + 52) - (x + (2m-1)2) = 5>/ ( w K~ 7 ' -

Note: The constants qQn) in the Lemma are special cases of the generalized Stirling numbers of 
the first kind, s^(n, k), introduced by Comtet [2], i.e., 

n 
(x - £0)(x - £ ) • • • (x - %n_x) = £ •%(", 0*'' • 

7=0 

Moreover, the constants cz-(/w) are, in fact, the central factorial numbers t(n, k) (see Riordan [9]). 
The inverse and similar numbers are treated in many important papers by Carlitz [3] and [4], and 
by Carlitz and Riordan [5]. For some generalizations, see Charalambides [6]. 

Now we prove the Lemma by induction. From the definition of F(x), and differentiating it, 
we may obtain 

„# / x sinx _,f/ . cos3x-f 2sin2xcosx 2 1 
Ff(x) = — — , F"(x) = 4 = —~ , 

cos x cos x cosrx cosx 
i.e., 

2F3(x) = F'Xx) + F(x) . (2) 

This proves that the Lemma is true for m = 1. Assume, then, that it is true for a positive integer 
m=u. That is, 

(2u)\F2u+l(x) = J^c^F^-^ix). (3) 
/=o 

We shall prove it is also true for m = u +1. Differentiating (3), we have 

(2u-hl)\F2u(x)F%x) = Xq(^ ( 2 w _ 2 / + 1 ) W ? 
;=0 

2u(2u +1)! F2u-\x)(FXx)f + (2i/ +1)! F2u(x)F"(x) = J q(w)F(2M-2,+2)(x). (4) 

From the equality 

4_l1(4x2 - l2)(4x2 - 32) • • • (4x2 - (2w -1)2) = £ t{2n +1,2k + l)x2^, 

we get 
cjfc(w) = (-l)Ar4^(2w + l,2ii-2Jfc + l). (5) 
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These numbers are tabulated in Riordan [9]. Using this expression and the recursive relation 
t(n, k) = t(n-2,k-2)-j(n- 2)2 t(n - 2, k), we have the recurrence relation 

ck(n +1) = ck(n) + (2n +1) V i ( " ) , (6) 

with initial conditions c0(n) = 1, cn(n) = 1232... (2n-1)2. Substituting (F '(x))2 by F 4 ( x ) - F 2 ( x ) 
and F"(x) by 2F3(x) - F(x) in (4) and applying (3) and (6), we have 

(2u + 2)\F2u+3(x) = (2u)\(2u + l)2F2u+\x) + f^ci(u)F(2u+2~2i\x) 
;=0 

= (2i# + 1 ) 2 J ^.(w)F(2M-2/)(x) + J ^(w)^2M+2-2/>(x) 

= c0(u)F(2u+2\x) + (2i# + \fcu{u)F{x) + £ (cM(u) + (2u + l ) 2 ^ ) ) ^ 2 " " 2 ' " ^ ) 
/=o 

= c0(u + l)F(2*+2)(x) + ctt+1(w + l)F(x) + J c,(w + l)F(2w+2-2/)(x) 
u+l 

= Zc/(w + 1)^( 2"+ 2"2 , ) (4 

That is, the Lemma is also true for m - u +1 . This proves the Lemma. 
Now we complete the proof of the Theorem. Note that 

F{2i)(x) = Y Eln+2i x2n i = 0 1 2 

Comparing the coefficient of x2n on both sides of the Lemma and applying (5), we immediately 
obtain 

Er, En Er> 1 m 

1 m 

= (2^)! ̂  ( _ 1 ) ' 4 ' r ( 2 ' M + l ' 2 m ~ 2 i + l^E^m-2i, 

where the constants c^m), i - 0, 1,2,..., m are the coefficients of the polynomial 
m 

GJx) = (x + l2)(x + 32)(x + 52) • • • (x + (2iff-1)2) = X C / W x ^ ' -
7=0 

This completes the proof of the Theorem. 

Proof of the Corollaries; Taking n = 0 and k = p in the Theorem, and noting that EQ = 1, 
(p-1)1 = - 1 (modp) (Wilson's theorem, see Apostol [1]), we can get 

- 1 . (p-1)! = £ ^ £ - 1 ^ ^ . ̂  + c^£zi^ 

= £p_1 + l2325272 . . . ( /? -2) 2
 s ^ 1 + (-i)^(p_i)! .£^-(-1)^ (modpX 

where we have used the congruences 

156 [MAY 



SOME IDENTITIES INVOLVING THE EULER AND THE CENTRAL FACTORIAL NUMBERS 

Therefore, 
_ JO (mod p)v ifp = 1 (mod 4), 

p~l = [-2 (mod p\ ifp = 3 (mod 4). 

This completes the proof of Corollary 1. 
Taking m-\ and 2 in the Theorem, respectively, we can get 

^2n+A+E2n+2 = E2n+2 + E2n^0 (mod 2), 

+ 1 0 £ 2 „ + 2 + 9 £ 2 ^ 0 (mod 24). 

Thus, 0^E2n+4 + 10E2n+2+9E2n^E2„+4+E2„+2 = 0 (mod3). Since (2, 3) = 1, E2n+4 + E2n+2 = 0 
(mod 2), we have E2n+4 + £2n+2 = 0 (mod 6), that is, E2n+2 +E2n = 0 (mod 6), n = 1,2, 3 , . . . . 

Similarly, taking m - 4 in the Theorem, we can obtain the congruent equation 

£2„+8 + 84JE2„+6 + 1974£2w+4 + 12916£2w+2 + 1 1 0 2 5 £ 2 ^ 0 (mod 40320). 

Thus, 0 s £ ^ + 8 4 £ ^ + 1 9 7 4 ^ ^ + 1 2 9 1 6 ^ ^ + 1 1 0 2 5 ^ - £2„+8 + £2„+2 (mod21), that is, 
E2n+6+E2n = 0 (mod21), w = 1, 2, 3, . . . . Noting that E2n+6+E2n = 0 (mod 2) and (2,21) = 1, we 
get E2n+6+E2n = 0 (mod 42). This proves Corollary 2. 
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1. INTRODUCTION 

Rabinowitz [5] has determined all integers n for which x5 ±x + n factors as a product of an 
irreducible quadratic and an irreducible cubic with integral coefficients. Using the properties of 
Fibonacci numbers, he showed that, in fact, there are only ten such integers n. 

Theorem (Rabinowitz [5]): The only integral n for which x5 + x + n factors into the product of 
an irreducible quadratic and an irreducible cubic are n = ±1 and n = ±6. The factorizations are 

x5 + x± l = (x2±x±l)(x3 + x2±l), 
x5 + x±6 = (x2±x + 2)(x3=Fx2-x±3). 

The only integral n for which x5 -x + n factors into the product of an irreducible quadratic 
and an irreducible cubic are n = ±15, n = ±22,440, and n = ±2,759,640. The factorizations are 

x 5 -x±15 = (x2±x + 3)(x3 + x2-2x±5), 
x5 - x ± 22440 - (x2 + 12x + 55)(x3 ± 12x2 + 89x ±408), 

x5 - x ± 2759640 = (x2 ± 12x + 377)(x3 + 12x2 - 233x ± 7320). 

In this paper we investigate the corresponding question for the quintics x5±xa +n, where 
a = 2,3, and 4. We show that for a = 2,3 there are only finitely many n for which x5 ±xa +n 
factors as a product of an irreducible quadratic and an irreducible cubic, whereas, for a - 4, rather 
surprisingly we show that there are infinitely many such n, which can be parameterized using the 
Fibonacci numbers. Our treatment of the polynomials x5±xa +n makes use of the following 
three results about Fibonacci numbers. 

Theorem (Cohn [1], [2]): The only Fibonacci numbers Fk (k > 0) that are perfect squares are 
F 0 - 0 2 , F 1 = F2 = l2 ,andF1 2-122. 

Theorem (London and Finkelstein [3]): The only Fibonacci numbers Fk {k > 0) that are perfect 
cubes are F0 = 03, Fx = F2 - I3, and F6 = 23. 

Theorem (Wasteels [7], May [4]): If x and y are nonzero integers such that x2 -xy-y2 = s, 
where s - ±1, then there exists a positive integer k such that 

* = *̂+i> y = Fk, * = H ) * , ifx>0,j />0, 
x = Fk, y = -FM, s = (-l)k+\ if x > 0, y < 0, 
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x = -Fk, y = Fk+l, s = {-lf+\ ifx<0,j/>0, 
x = ~Fk+i, y = ~Fk> s = ("I)*, ifx < 0, y < 0. 

We remark that the above formulation corrects, and makes more precise, May's extension of 
Wasteels' theorem. To see that May's result is not correct, take x - 13 and y = -8 in part (3) of 
her theorem. Clearly 

y2 - x y - x 2 + l = (-8)2-13(-8)-132 + 1 = 64 + 104-169 + 1 = 0, 

but there does not exist an integer n such that 13 = Fn_h - 8 = -F„, or 13 = -Fn_u -8 = F„, since 
F_7 = 13, F_6 = -8, F6 = 8, and F7 = 13. 

We prove the following results. 

Theorem 1: The only integers n for which x5 +x2 +n factors into the product of an irreducible 
quadratic and an irreducible cubic are n - -90, - 4,18, and 11466. The factorizations are 

x 5 +x 2 -90 = (x2+4x + 6)(x3-4x2+10x-15), 
x5 + x2 - 4 = (x2 - x + 2)(x3 +x2 - x-2) , 

x5 + x2 +18 = (x2 + x + 3)(x3 - x2 - 2x + 6), 
x5 + x2 +11466 = (x2 + 4x + 42)(x3 - 4x2 - 26x + 273). 

The only integers n for which x5 - x 2 +« factors into the product of an irreducible quadratic and 
an irreducible cubic are n - -11466, -18,4, and 90. The factorizations are 

x5 - x2 -11466 = (x2 - 4x + 42)(x3 + 4x2 - 26x - 273), 
x5 - x2 -18 = (x2 - x + 3)(x3 + x2 - 2x - 6), 
x5 - x 2 +4 = (x2 + x + 2)(x3 - x2 - x + 2), 

x 5 -x 2 +90 = (x2-4x + 6)(x3+4x2 + 10x + 15). 

Theorem 2: The only integers n for which x5 - x3 + n factors into the product of an irreducible 
quadratic and an irreducible cubic are n = ±8. The factorizations are 

x 5 -x 3 + 8 = (x2+x + 2)(x3+x2-2x±4). 

There are no integers n for which x5 + x3 +n factors into the product of an irreducible quadratic 
and an irreducible cubic. 

Theorem 3: Apart from the factorizations 

x5 + x4 +1 = (x2 + x + l)(x3 - x +1), 
x 5 - x 4 - l = (x 2 -x + l ) (x 3 -x- l ) , 

all factorizations of x5 ±x4 +n as a product of an irreducible quadratic and an irreducible cubic 
with n integral are given by 

xs +e{-iyx4 +dFk
2_lFk\lFk\2 = (x2 +eFk.xFMx + Fk^FM^2) 

x (x3 -0FkFk+lx2 -F^F^Fk^x + eF^F^F^) 

and 
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x5 +6{-l)kx* -0FkUFk
4Fk\2 = (x2 + eFk.lFk+2x + F?_iFkFk+2) 

x (x3 -6FkFk+lx2 + Fk_lI%Fk+2x-0I%_lFj*Fk+2), 

where 0 - ±1 and & is an integer with A: > 2 and Fk denotes the kih Fibonacci number. 
Taking k = 2 and 3 in Theorem 3, we obtain the factorizations 

x5 ±x4 ± 1296 = (x2 ±3x + 18)(x3 + 2x2 - 12* ±72), 
x5±x4 + 9 = (x2±3x + 3)(x3 + 2x2+3x=F3), 

x5 + x4 + 50625 = (x2 + 5x + 75)(x3 ± 6x2 - 45x + 675), 

x5 ± x4 ± 400 = (x2 + 5x + 10)(x3 ± 6x2 + 20x ± 40). 

(1.2) 

2. FACTORIZATION OF x 5 ± x 2 + n 

Let m and n be integers with n ^ 0. Suppose that 

x5 + mx2 + n - (x2 + ax + b)(x3 + ex2 + dx + e), 

where a, b, c, d, and e are integers. Then, equating coefficients in (2.1), we obtain 
be = n, 

ae + bd = 0, 
ad + bc + e = m, 
h + ac + d = 0, 

a + c = 0. 

From (2.2), as n * 0, we deduce that 
6*0, e*0: 

(2.1) 

(2.2) 
(2.3) 
(2.4) 
(2.5) 
(2.6) 

(2.7) 

We show next that a^0. Suppose, on the contrary, that a = 0. From (2.3) we see that 
bd - 0. Hence, from (2.7), we have d - 0. Then, from (2.5), we deduce that b - 0, contradicting 
(2.7). Hence, we must have 

a*0. (2.8) 
Next, we show that a2 -2b * 0. For, if a2 -2b = 0, then, from (2.3), (2.5), and (2.6), we deduce 
that 

b = a2/2, c = -a, d = a2l2, e = -a3/4. 

Then, from (2.2), (2.4), and (2.9), we have 

m = -a3/4y n = -a5/S. 

From (2.1), (2.9), and (2.10), we obtain the factorization 

5 a 2 a 
xD xl = 

4 8 

f 2 \ 
2 « 

x + ax H— 
v 2 y 

-i 2 a a' x - ax + — x 
3 \ 

As -a3 / 4 * ±1, this factorization is not of the required type. Hence, we may suppose that 

a2 - 2 6 * 0 , 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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Equations (2.3), (2.4), and (2.5) can be written as three linear equations in the three unknowns c, 
d, and e: 

[hc + ad + e =m, 
lac + d = -b, (2.13) 
\bd + ae = 0. . . 

Solving the system (2.13) for c, d, and e, we have 

-am + b2 -a2b , a2m + ab2 -abm-b3
 /rs , A. 

c - £/._ — g = — (2.14) 
a*-lab a3-lab a3-lab y J 

Putting these values into (2.6), we obtain 
a4-3a2b + b2=am. (2.15) 

Now let 
a = ^ 2 , (2.16) 

where ax is a squarefree integer and a2 is a positive integer. Then (2.15) becomes 

a\a\ -3a2a*b+b2 = axa\m. (2.17) 

From (2 ..17), we see that axa2 \ b2, so that axa2 \ b, say, 

b = axa2r, (2.18) 

where r is a nonzero integer. From (2.17) and (2.18), we deduce that 

a\a\ - 3a2a\r + axr2=m. (2.19) 

We now suppose that m- +1. From (2.19), we see that ax = ±1. Hence, a2 = 1 and (2.19) gives 

al~3axalr+r2 = axm. (2.20) 

We define integers s (> 0) and t by 

s = al t = r-±(3al-l)s. . (2.21) 

From (2.20) and (2.21), we obtain 

t2 -st-s2 =axm. (2.22) 

First, we deal with the possibility / = 0. If ax -1, then, from (2.21), we deduce that r = s 
and, from (2.22), that -s2 - m. Hence, m--\ and r = s = ±l. Then, by (2.21), we have a2 = s -
±1. Hence, by (2.16) and (2.18), we have a - 1 and b - 1. Then, from (2.14), we get e - 0, con-
tradicting (2.7). If ax = -l, then, from (2.21), we deduce that r = -Is and, from (2.22), that 
s2 = m. Hence, m-\ s = ±l, and r = +2. Then, by (2.21), we have a2 • = s = ±1. Next, by (2.16) 
and (2.18), we have a = - 1 and 6 = 2. Then, from (2.2) and (2.14), we get c = 1, </ = - 1 , e = - 2 , 
n - - 4 , and (2.1) becomes 

x5 + x 2 - 4 = ( x 2 - x + 2)(x3 + x 2 - x - 2 ) , 

which is one of the factorizations listed in Theorem 1. 
Now we turn to the case / ̂  0. As / * 0 and s> 0, by the theorem of Wasteels and May, 

there is a positive integer k such that s = Fk. Thus, by (2.21), we have Fk=a2. Appealing to the 
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theorem of London and Finkelstein, we deduce that s = Fk=cq = l or 2 , so that a2 = 1 or 2. 
We have eight cases to consider according as a{ = 1 or - 1 , a2 - 1 or 2, rn - 1 or - 1 . In each case, 
we determine a from (2.16). Then we determine the possible values of r (if any) from the quadra-
tic equation (2.20). Next, we determine b from (2.18). Then the values of c, d, and e are deter-
mined from c = -a, d = -b-ac, and e = -bd/a. Finally, n is determined using n = be. We 
obtain the following table: 

a\ a2 
1 2 

1 2 
1 1 

1 1 

-1 2 
-1 2 

-1 1 

-1 1 

w 
1 

- 1 
1 

-1 

1 
-1 

1 

-1 

a 
4 

4 
1 

1 

-4 
-4 

-1 

-1 

r 
3 

21 
(none) 

0 
3 
1 
2 

(none) 
-3 
-21 
-1 
-2 
0 
-3 

b 
6 

42 

0 
3 
1 
2 

6 
42 
1 
2 
0 
3 

c 
-4 
-4 

(inadmissible 
-1 
-1 
-1 

4 
4 
1 
1 

(inadmissible 
1 

d 
10 

-26 

as 
-2 
0 
-1 

10 
-26 
0 
-1 
as 
-2 

e 
-15 
273 

£*0) 
6 
0 
2 

15 
-273 

0 
-2 

b*0) 
-6 

n 
-90 

11466 

18 
(inadmissible as e •*• 0) 

4 

90 
-11466 

(inadmissible as e * 0) 
-4 

-18 

These give the eight factorizations listed in the statement of Theorem 1. It is easy to check in 
each case that the quadratic and cubic factors are irreducible. 

3. FACTORIZATION OF x5±x3 4- n 

Let m and n be integers with n & 0. Suppose that 

x5 +rnx3+n = (x2+ax + b)(x3+cx2 +dx + e), 

where a, b, cy d, and e are integers. Equating coefficients in (3.1), we obtain 
be = m 

From (3.6), we obtain 

As n ^ 0, we see from (3.2) that 

ae + bd = 0, 
ad + bc + e-O, 
b+ac+d-m, 

a + c = 0. 

c = -a 

b * 0, e*0: 

(3.1) 

(3.2) 
(3.3) 
(3.4) 
(3.5) 
(3.6) 

(3.7) 

(3.8) 

Suppose that a = 0. From (3.7), we have c = 0. Then, from (3.4), we deduce that e = 0, contra-
dicting (3.8). Hence, we have 

a*Q. (3.9) 

Suppose next that b = a2. Then, from (3.5) and (3.7), we deduce that d = m. Then, from (3.4), 
we obtain e = a3 -am. Next, (3.3) gives a = 0, contradicting (3.9). Thus, we have 
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b*a2. (3.10) 
Using (3.7) in (3.4), we obtain 

ad-^e-ab. (3.11) 
Solving (3.3) and (3.11) for dand e, we find that 

~a2b ab2 

b-a2' e~h-a2 

From (3.2) and (3.5), we deduce that 
a4-3a2h + b2 ab3 

h-a2 ? n h-a2 

We define the nonzero integer h by 
h = b-a2. (3.14) 

Then, from (3.7), (3.12), (3.13), and (3.14), we obtain 
a5 

b = a2+h, e = ^- + 2a3+ak 
h 

c = -a, m---r-al + /f, 
h 

d = -^--a2, n = ^- + 3a5 + 3a3h + ah2. h h 
These values of h, c, d, e, m, and n satisfy the equations (3.2)-(3.6). The equation for m can be 
rewritten as h2 - {a2 +ni)h - a4 - 0. Solving this quadratic equation for h, we obtain 

h = ±(a2 + m + e^(d1+m)2 +4a4), (3.15) 

where s - ±1. Relation (3.15) shows that y(a2 + mf + 4a4 is an integer, namely, e(2h ~a2 -m). 
Hence, there is an integer w such that 

(a2+rn)2+(2a2f=w2. (3.16) 

From (3.9) and (3.16), we see that w•* 0. As {a2 +m9 2a2, w} is a Pythagorean triple, there exist 
integers r, s, and t with gcd(r,s) = 1 such that 

a2+m = 2rst, 2a2 =(r2-s2)t, w = (r2+$2)t (3.17) 
or 

d1+m = (r2-s1)t9 2a2 = 2rst, w-{r2+^)t. (3.18) 

We assume now that m = ±l. 
If (3.17) holds, then (r2-Ars-^)t = 2a2 -2(a2 +m) = -2m = ±2, so that f = ±lorf = ±2. 

If / = ±1, then r2 - 4rs - s2 = ±2, so that r2 - s2 = 2 (mod 4), which is impossible, since r2 -s2 = 
0, l,or 3 (mod 4). Hence, f = ±2 and 

r 2 - 4 / w - / = ±l. (3.19) 
From (3.19), we see that r + s and r-s are both odd integers so that, in particular, we have 
r + s&O and r-s^0. Moreover, from (3.19), we have (r + s)2-(r + s)(r-s)-(r-s)2 =±1 . 
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Therefore, by the theorem of Wasteels and May, there are positive integers k and / such that 
\r + s\ = Fk and\r-s\ = Fl. Now, by (3.17), we have 

a2 = \r + s\\r-s\. (3.20) 

As \r + s\ and \r-s\ are both odd, and gcd(r, s) = 1, we have 

gcd(|r + j | , | r - 5 ' | ) = L (3.21) 

From (3.20) and (3.21), we deduce that each of \r +s\ and \r-s\ is a perfect square. Hence, Fk 

and Ft are both perfect squares so, by Cohn's theorem, we have \r + s\ = Fk = 1 or 144, | r - s | = 
Ft = 1 or 144. However, \r + s\ and \r-s\ are both odd, so |r + 5*| = 1 and | r - s | = 1. Therefore, 
(r, s) = (±1,0) or (0, ± 1). Hence, by (3.17), we have a2 +m = 2rst = 0, and, SLS m = ±1, we have 
m--\ a = 6, where 0=±l. From (3.15), we deduce that h- s\ thus, a-0, b = l + s, c--0, 
d = -(l + e), e = 20(\ + e), m = -l, and n = 40(l + s). Since &^0, we must have e = l. Thus, 
a = 0,b = 2,c = - 0 , d- -2, e = 40,m- -\n = W, which gives the factorization 

x5 -x3 +$0=(x2 +0x+2)(x3 -0x2-2x + 40\ 0 = ±l. 

If (3.18) holds, then 

(r2 -rs-s2)t = (r2 -s2)t-rst = {a2 +m)-a2 =m, 

so that t = ±l, r2 -rs-s2 = mt. Ifr or 5 = 0, then, by (3.18), we have a = 0, contradicting (3.9). 
Hence, r ^ 0 and s^0. Then, by the theorem of Wasteels and May, we have \r\=Fk, \s\= Fh for 
positive integers k and /. Now 

a2=rst=\r\\slgcd(\r\,\s\) = l, 

so each of \r\ and |s | is a perfect square. Thus, both Fk andi^ are perfect squares. Hence, by 
Cohn's theorem, we have \r\=Fk = l or 144 and \s\= Fx - 1 or 144. Therefore, r - ±1, ±144 and 
$ = ±l, ±144. 

From r2 -rs-s2 =mt,we deduce that 

(a) r - 1, 5 = 1, mi - - 1 , or 
(/?) r = i? 5 = - l , #tf = l, or 

(/) r = - 1 , 5 = 1, m^ = 1, or 
(S) r = -l, s = -l,mt = -l 

Then, from a2 - rst we deduce that 

(a) t = l9 m = -l, a = 0, 
(fi) t = -\m = -\a = 0, 
(/) t = -l,m = -l,a = 0, 
(<5) t = \ m = - \ a = 0, 

where 0-±l. In all four cases, a2 + m = 0 so that, by (3.15), A = £\ Thus, h = a2 +h = 1 + s. 
But h * 0, so £ * - 1 , that is, £ = 1. Hence, a = #, 6 = 2, c = -0, J = - 2 , e = 40, w = - 1 , ^ = 80, 
which gives the same factorization as before. Since x2+0x+2 and x3 -0x2-2x + 40 are both 
irreducible, this completes the proof of Theorem 2. 
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4. FACTORIZATION OF xs ±x4 + n 

Let m and n be integers with n * 0. Suppose that 

x5 + mx4 + n = (x2 + ax + b)(x3 + cx2 + dx + e), (4.1) 

where a, b, c9 d, and e are integers. Equating coefficients in (4.1), we obtain 

be = n, (4.2) 
ae + bd = 0, (4.3) 

ad + bc + e = 0, (4.4) 
b+ac + d = 0, (4.5) 

a + c = m. (4.6) 
As n ^ 0 we have, from (4.2), 

b*0, e*0 . (4.7) 

We show next that a ^ 0. Suppose a = 0. Then, by (4.3) and (4.7), we have d - 0. From (4.5), 
we deduce that b = 0, contradicting (4.7). Hence, 

a * 0 . (4.8) 

Suppose next that b = a212. Then, from (4.3) and (4.8) we obtain e = -ad 12. Next, from (4.4) 
and (4.8), we deduce that d - -ac. Then (4.5) gives 6 = 0, contradicting (4.7). Hence, 

b*a2l2. (4.9) 
If a = m then, from (4.6), we have c = 0. Then (4.5) gives d--b. Next, (4.4) gives e-bm. 
Now (4.3) and (4.7) give b = m2, so that e-m3 and d = -m2. Finally, from (4.2), we obtain 
n = m5. Thus, (4.1) becomes 

x5 + mx4 +m5 = (x2 +wx + w2)(x3 - m2x + m3). 

With m = ±1 we have 
x5 + wx4 +w = (x2+mx + l)(x3 -x + rri). 

It is easy to check that x2 + mx +1 and x3 - x + m are irreducible for w = ±1. 
Thus, we may suppose from now on that a^m. Replacing x by -x in (4.1), we obtain the 

factorization 
x5 - mx4 - n = (x2 - ax + b)(x3 -ex2 +dx-e). 

Thus, in view of (4.8), we may suppose without loss of generality that a > 0. Solving (4.3), (4.4), 
and (4.5) for c, d, and e, we obtain 

-6(q2-6) 
a(a 2 -26) ' c=-uX " ^ , (4.10) 

'-A- <4u> 
- A 3 

a(a 2 -2 i ) 

Then, from (4.6) and (4.2), we deduce that 

e= , / _ • (4.12) 
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a4-3a2b + h2 -bA
 rA _ . 

m- = , n- = . (4.13) 
a(a2-2b) ' a(a2-2b) V J 

Assume now that m = ±l. Writing the equation for m in (4.13) as a quadratic equation in b, we 
have 

b2 +a(2m-3a)b + a3(a-m) = 0. 
Solving for b, we find that 

b = -(3a-2m + s^jSa2 - %ma + 4), (4.14) 

where £ = ±1. The equation (4.14) shows that z = +V5a2-8ma + 4 is a nonnegative rational 
number. As a and m are integers, z must be a nonnegative integer such that Sa2 - 8ma + 4 = z2, 
that is, 

a2+(2a-2mf=z2. (4.15) 

As a & 0 and a ^ nt, we have z > 2, and there exist nonzero integers r, s, and t with gcd(r, s) - 1 
such that 

a = (r2-s1)t, 2a-2m = 2r$t, z = ( r 2 +^ ) r (4.16) 
or 

a = 2rst, 2a-2m = (r2-s2)t, z = (r2 + s2)t. (4.17) 

Clearly, as z > 0, we have f > 0. Replacing (r, s) by (-/*, -5) , if necessary, we may suppose that 
r > 0 . 

We suppose first that (4.16) holds. Then 

(r2 - rs - s2) t = (r2 - s2) t - rst - a - (a - m) - m. 

Now m = ±l, so t-\ and r2-rs-s2 =m. Appealing to the theorem of Wasteels and May, we 
have 

r = Fk+l,s = Fk, m = (-l)k, ifs>0, 

r = Fk, s = -Fk+l, m = (-1)*+1, if s < 0, 

for some positive integer k. Then, from (4.16), we obtain 

a = r2_s2= iFM ~ Fk = Fk-lFk+2> tts>0, 

\Fk2-Fk\l = -Fk-lFk+2> i f 5 < 0 -

As a> 0, we must have s> 0 so that r - Fk+l, s = Fk, m- {-X)k and 

« = ^ -A + 2 - (4-18) 
Further, from (4.16), we have 

z = r2 +S2 = Fk
2 +Fk\l=FkFk+2 + Fk_lFk+l (4.19) 

and 
a-m = rs = FkFk+v (4.20) 
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Also, as a > 0, we have Fk_x ^ 0 so k ^ 1 and thus k > 2. From (4.14), we have 

b - —(a + 2(a-m) + sz) 

= f(l / 2)Fk_lFk+2(Fk_lFk+2 + 2FkFk+l 4-F,F,+2 + Fk_xFk+l)9 if * = 1, 
[(1 / 2)ii_1^+2(/i.1F,+2 + 2 F ^ + 1 - F,F,+2 - Fk_xFk+l)9 if * = - 1 , 

KV-i^+i^+2? if ^ = 1, 

Thus, 

and 

Fk-iFkFk+2, if <? = - ! . 

2 o A j ^ - 1 ^ + 2 "" 2Fk-lFk+lFk+2 ~ -Fk-\Fk+2? if * - 1, 

l^A2-A+2 " 2Fk-lFkFk+2 = Fk-\Fk+2 > if ^ = - 1 , 

2 * I Fk-lFk+2 - Fk-\Fk+lFk+2 ~ ~Fk-lFkFk+2> if ^ ~ 1, 

1^-1^+2 ~ Fk-lFkFJc+2 ~ Fk-lFk+lFk+2> if ^ = - 1 . 

Then, from (4.10), (4.11), and (4.12), we obtain 
c = ~FkFk+i, i f* = ± l , 

d=l-Fk-iFk+iFk+2, i f ^ = l , 

1 ^ - 1 ^ + 2 , if^ = - l , 

From (4.13), we get 
-Fk-iFkFM, i f* = - l . 

jFk-iFk+iFk+2> if ^ - 1, 

Then (4.. 1) gives the factorizations 

x5 + H ) * * 4 + F2_xFk\xFk\2 = (x2 + Fk_xFk+2x + Fk_xFk+xFk\2) 
x O3 - FtFt+1x2 - Fk_xFk\xFk+2x + Fk_xFk\xFk\2), 

x5 + (-1) V - Fk\Fk*Fk
2

+1 = (x2 + Fk_xFk+2x + F2_xFkFk+2) 
x (x3 - FkFk+xx2 +Fk_xFk

2Fk+2x-F2_xF?Fk+2), 

and two more obtained by changing x to —x. These are the factorizations given in the statement 
of Theorem 3. 

We now suppose that (4.17) holds. Then 

(r2-4rs-sz)t = (r2-s2)t- 4rst = (2a - 2m) -2a = -2m. 

Asm = ±1 and t > 0, we have t = 1 or t = 2. If t = 1, then 

r2-4rs-/ = -2m. (4.21) 
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Hence, r = r2 = s2 = s (mod 2). But gcd(r, s) = l, so r = s = l (mod 2). Then r2 - s1 = 0 (mod 
4), which contradicts (4.21). Therefore, we must have t = 2, in which case r2 -Ars-s1 = -rn, so 
that 

(2r)2 - (2r)(r + s) - (r + sf = -m. 

As a > 0, r > 0, and r > 0, we see from (4.17) that s> 0. Thus, 2r and r + s are positive integers, 
and so, by the theorem of Wasteels and May, we have 

for some positive integer k. Thus, 

As s^0, we see that k ^2. Now 2|i^ <=> 3|/i (see [6], p. 32), so as r and s are integers, we have 

r = \F^, s = ±F3h m = (-l)'+1, 

for some integer / > 1. Hence, by (4.17), we have 

a = F3lF3l+3, (4.22) 

z = l ( / £ + F3*+3) = F3MF3l+3 + F3lF3l+2, (4.23) 
and 

a-m = }(F2
+3-F2) = F3MF3l+2. (4.24) 

Comparing (4.22), (4.23), and (4.24) to (4.18), (4.19), and (4.20), respectively, we see that the 
possibility (4.17) just leads to a special case k = 3/ +1 (/ > 1) of the previous case and, therefore, 
does not lead to any new factorizations. 

The discriminant of x2 + 0Fk_xFk+2x + Fk_xFk+lFk+2 is 

Fk-lFk+2 ~ 4Fk-lFk+lFk+2 = Fk-lFk+2(Fk-l - 4Fk+l) 

= -Fk-iFL0Fk-i+4FkX 

which is negative for k >2. Hence, x2 + 0Fk_xFk+2x + Fk_xFk+lFk+1 *s irreducible. Similarly, the 
discriminant of x2 + 0Fk_xFk+2x + Fk-\FkFk+i *s 

Fk-lFk+2 ~ 4Fk-lFkFk+2 = Fk-lFk+2iFk+2 ~ 4Fk) 

= Fk-lFk+2(Fk+l ~ 3Fk) 

= Fk-lFk+2(Fk-l ~ 2Fk) 

= ~Fk-lFk+2(Fk-l+2Fk-2X 

which is negative for k >2. Thus, x2 + $Fk_lFk+2x + Fk_^kFk^2 is irreducible. To complete the 
proof of Theorem 3, it remains to show that the cubic polynomials 

X3 -0FkFk+lX2 - F
k^iFMFk+2X + ^Fk-lFUlFk+2 

and 

x3-0FkFk+lx2 + Fk_lF*Fk+2x-0F*_lF*Fk+2 
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are irreducible over the rational field Q for k > 2 and 0 = ±1. This is done in the next section. It 
clearly suffices to treat only the case 6=\. 

5. IKMEDUCIBILITY OF TWO CUBIC POLYNOMIALS 

In this section we prove that the two cubic polynomials 

f(x) = x3- FkFk+lx2 - Fk_^+lFk+2x + F^F^F^ (5.1) 
and 

g(x) = x3-FkFk+1x2 + Fk_1F2Fk+2x-F2_lF3Fk+2 (5.2) 

are irreducible over the rationals for k > 2. Before proving this (see Theorem 4 below), we prove 
three lemmas. 

Lemma 1: If N is a nonzero integer, then the quintic equation x5 + x4 + N = 0 has exactly one 
real root. 

Proof: The function F(x) = x5 + x4 + N has a local maximum at x = -4 / 5 and a local mini-
mum at x = 0. There are no other local maxima or local minima. Clearly, F(-415) = N + 44 /55 

and F(0) = N. As N is a nonzero integer, we cannot have N <0< N + 44 / 55. Hence, either 
N > 0 or 7V + 44 /55 < 0. If N > 0, the curve y - F(x) meets the x-axis at exactly one point x0 
(x0<~4/5). If 7Vr + 4 4 /5 5 <0, the curve y-F(x) meets the x-axis at exactly one point xx 

{xx > 0). Hence, F(x) - 0 has exactly one real root. 

Lemma 2: For k > 2, each of the quintic polynomials 

A(x) = Xs +(-l)**4 + / £ , / & , / & (5.3) 
and 

B(x) = x5 + (-l)kx4 - Fk
4_tFk

4Fk
2

+2 (5.4) 
has exactly one real root. 

Proof: As k >2, (-1)* 'F^F^F^ is a nonzero integer. Hence, by Lemma 1, the quintic 
polynomial Q(y) - y5 + y4 + (-l)kF^F^F^ has exactly one real root. Thus, the quintic poly-
nomial A{x) - {-X)kQ{{-l)kx) has exactly one real root. The quintic polynomial B(x) can be 
treated similarly. 

Lemma 3: For k > 2, each of the cubic polynomials f(x) and g(x) has exactly one real root. 

Proof: From (1.1), (1.2), (5.1), (5.2), (5.3), and (5.4), we have 

A(x) = (x2 + Fk_xFMx + F^F^F^fix) and B(x) = (x2 + Fk_xFk+2x + F , 2 _ M + 2 k W • 

Since the two quadratics have no real roots, the result follows from Lemma 2. 

Theorem 4: For k > 2 the cubic polynomials f(x) and g(x) are irreducible over the rationals. 

Proof: Suppose f(x) is reducible over the rationals. Then, by Lemma 3, f(x) has exactly 
one real root, which must be rational and, in fact, an integer. Thus, 

/ iO) = -^3~f(Fk+ix) = *3- Fk*2 - Fk_xFk+2x + Fk_xF?+2 
pk+i 
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has exactly one real root, which must be an integer. Hence, 

f2(x) = Mx-Fk+1) = x3-(3Fk+l+Fk)x2
 +F2k+3x + (-lfFk+2 

has exactly one real root r, which must be an integer. If k is even, then /2(0) = Fk+2 > 0 and 

/ 2 ( - l ) = -1 - 3Fk+l -Fk-F2k+3 + Fk+2 < Fk+2 -F2k+3 < 0, 

so -1 < r < 0, which is impossible. If k is odd, then /2(0) = -Fk+2 < 0 and 

flQ) = l ~ 3Fk+l ~Fk + F2k+3 ~ Fk+2 

= 1 + (F2k+l ~ Fk+3) + (F2k+2 ~ Fk+3) * 1 > 0, 

so 0 < r < 1, which is impossible. Hence, f(x) is irreducible over Q. 
We now turn to g(x). Suppose g(x) is reducible over Q. Then, by Lemma 3, g(x) has 

exactly one real root, which must be rational and, in fact, integral. Thus, 

fiW = -tfg(FkX) = X3-^*!*1 +Fk-lFk+2*-Fk-lFk+2 

has exactly one real root, which must be an integer. Therefore, 

&(*) = &(* + ̂ ) = *3 + ( ^ + Fk_2)x2 + F2k_xx + (-l)*"1^., 
has exactly one real root s, which must be an integer. If k is even, then g2(0) - -Fk_l < 0 and 

g2(l) = l + Fk+Fk_2 + F2k_l-Fk_l 

>1 + Fk_2+F2k_x>^ 

so that 0 < s < 1, which is impossible. If & is odd, then g2(0) - Fk_x > 0 and 

& ( - ! ) = - 1 + ^ + ^ - 2 - ^ i k - i + ^ - i 
= -l + 2Fk- 2F2k_3 - F2k_4 

<-l-2(F2k_3-Fk)<-l<0, 

so that -1 < s < 0, which is impossible. Hence, g(x) is irreducible over Q. 
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In this paper, & palindrome is a finite sequence (x(l), x(2),..., x(n)) of numbers satisfying 
(x(l), x(2),..., x{rij) = (x(ri), x(n -1),..., x(l)). Of course, an infinite sequence cannot be a palin-
drome—however, we shall call an infinite sequence x = (x(l), x(2),...) & palindromic sequence if 
for every Nthere exists n> N such that the finite sequence (x(l), x(2),..., x{n)) is a palindrome. 
If a is an irrational number, then the sequence A defined by A(n) = \_na\-[na - a \ is, we shall 
show, palindromic. 

Lemma: Suppose a- (cr(0), a(l),cr(2),...) is a sequence of numbers, and <r(0) = 0. Let A 
be the sequence defined by A(w) = a(n) - a(n -1) for n = 1, 2, 3,... . Then A is a palindromic 
sequence if and only if there are infinitely many n for which the equations 

F^k:a(k) + a(n-k) = a(n) (1) 
holdfor* = l,2,...,w. 

Proof: Equations Fn^k and Fn^k_l yield a(k) + a(n - k) - a(n) = a(k-l) + a(n-k + l), so 
that the equations 

En,k- cr(k)-a(k-l) = a(n-k + l)-a(n-k) (2) 
or 

A(*) = A(w-ifc + l) 

follow, for k = 1,2,..., n. Thus, if the n equations (1) hold for infinitely many n, then A is a 
palindromic sequence. 

For the converse, suppose n is a positive integer for which the equations En^k in (2) hold. 
The equations E„th E„tl + E„t2, EnA + E^2 + En,2> • • • > £w,i + K,2 + m~ + E„t„ readily reduce to the 
equations Fn^k. Thus, if A is palindromic, then the equations Fntk, for k = 1, 2,...,«, hold for 
infinitely many n. D 

To see how a positive irrational number a can be used to generate palindromic sequences, 
we recall certain customary notations from the theory of continued fractions. Suppose a has 
continued fraction la0,aha2,...], and let P-2-0,p_l-\pi-aipi_l-\-pi_2

 anc* 9-2 = 1, ^-i = 0, 
qt = afl^i + qt_2 for / > 0. The principal convergents of a are the rational numbers pi I qi for 
/ > 0. Now, for all nonnegative integers / and j , define pUj = jp+i+Pj and qtJ = jqi+l +qt. The 
fractions 

Pu=M±1±PLj l<j<a,+2-l, (3) 

are the /-th intermediate convergents of a. As proved in [2, p. 16], 

...<B.<...<E!iL<EhJ*L<...<Es±3,<... if/iseven, (4) 
ft ft.y ft,/+i «+2 
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...>K>...>EhL>EhJ±L>...>Ei±2->... i f /u odd, (5) 

and A,/-i?// - Ptfluj-i = H ) 7 for / = 0,1,2,... and y = 1,2,..., ai+2 - 1 . If the range of j in (3) is 
extended to 0< y < a / + 2 - l , then the principal convergents are included among the intermediate 
convergents. We shall refer to both kinds simply as convergents—those in (4) as even-indexed 
convergents and those in (5) as odd-indexed convergents. 

We shall use the notation (( )) for the fractional-part function, defined by ((x)) = x-[_xj. 

Theorem 1: Suppose piq is a convergent to a positive irrational number a. Then for k = 1,2, 
..., q -1, the sum ((ka)) + (((q- &) a)) is invariant of £; in fact, 

{ ((qa)) +1 if/? / q is an even-indexed convergent, 
((qa)) if.pl q is an odd-indexed convergent. 

Proof: Suppose piq is an even-indexed convergent and 1 <k <q-1. Then piq<a, so 
that 

kpl q<ka. (6) 

Suppose there is an integer h such that kpl q<h<ka. Then 

p/q <hlk <a. (7) 

However, as an even-indexed convergent to a , the rational number piq is the best lower 
approximate (as defined in [1]), which means that k > q in (7). This contradiction to the hypothe-
sis, together with (6), shows that 

((kp/q))<((ka)). (8) 

Since \<q-k<q-l,wQ also have 1= ((kpIq)) + (((q-k)pIq)) < ((ka)) + (((q-k)a)). Since 
((ka)) + (((q- k)a)) has the same fractional part as qa, we conclude that 

((ka)) + (((q-k)a)) = ((qa)) + l 

The proof for odd-indexed convergents p I q is similar and omitted. D 

Theorem 2: Suppose A(n) = [naj~\_(n- l)aj for some positive irrational number, for n = 1, 2, 
3, ... . Then A is a palindromic sequence. 

Proof: By Theorem 1, if p/q is an odd-indexed convergent to a , then 

((ka)) + (((q-k)a)) = ((qa))fork = l,2,...,q-l, 
and clearly this holds for k = q, also. Consequently, 

lka} + l(q-k)a] = lqai 

®(k) + a(q-k) = a(ql 

for k = 1,2,...,q. By the lemma, A is a palindromic sequence. • 

Example 1: There is only one positive irrational number for which all the convergents are princi-
pal convergents, shown here along with its continued fraction: 
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a = (l + V5)/2 = |[l,l,l,...]. 

The convergents are quotients of consecutive Fibonacci numbers, and the sequence a given by 
a(n) = \na\ begins with 0, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 
33, 35, 37, 38, 40, so that the difference sequence A begins with 1, 2, 1,2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 
1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2. The sequence A is palindromic, since (A(l),..., A(q)) is a palin-
drome for 

q e{1, 3, 8, 21,55,144, 377, 987,...}. 

Moreover, (A(2),..., A(q -1)) is a palindrome for 

ge{2,5,13,34,89,233,610,...}. 

In both cases, Fibonacci numbers abound. 

Example 2: For a = e, approximately 2.718281746, the continued fraction is 
I2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,..J, 

and the first twenty convergents (both principal and intermediate) are: 

2/l = pQ0/q00 106/39 = p60/q60 
3/1 = plQ/ql0 193/71 =-p10/q70 
5/2 = p0l/q0l 299/110 = p6l/q6l 
8/3 = / ^ / ^ 492/181 = p62/q62 

11/4 = p30/q30 685/252 = p63/q63 
19II = pmlqm 878/323 = p6A/q64 

30/ll = p3l/q3] 10111394 = p65/q6, 
49 /18 = p321 q32 1264 / 465 = pm I qso 
68 / 25 = p33/q33 1457/536 = p90 /q9Q 
87/32 = p50/q5Q 2721/1001 = psl / qm 

Here, A begins with 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 
3, 2, and (A(l),..., A(q)) is a palindrome for 

q G{1 ,4 ,11 ,18 ,25 ,32 ,71 ,536 , . . . } , 

and (A(2),..., A(q -1)) is a palindrome for 
q G{2,3, 7, 39,110,181,252, 323, 394,465,1001,...}. 

Opportunities: The foregoing theorems and examples suggest the problem of describing all the 
palindromes within the difference sequence A given by A(/?) = \na\-\_na-a\ for irrational a. 
One might then investigate what happens when na is replaced by na + fi, where /? is a real 
number. 
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1. INTRODUCTION 

We consider the second-order recurring relation 
W,=a,Wx=b,Wn=PWn^-QWn_2 («>2), (1.1) 

where a, b, P, and Q are integers, with P > 0, Q ̂  0, and A = P2 -4Q > 0. Particular cases of 
{Wn} are the sequences {Un} = {U„(P,Q)} of Fibonacci and {V„} = {Vn(P, Q)} of Lucas defined 
by U0 = 0, Ux = 1 and VQ = 2,Vl = P, respectively. It is well known that 

u"=£^=f and V"=a"+P"> <L2) 
where 

P+VA . n P-VA n _ 
« = — j — ^ — 2 — ' ^ * 

so that a + fi = P mdaj3 = Q. 
Since P > 0, notice that a > 1, a > |/?|, so that U„ > 0 (n > 1), F„ > 0 (n > 0). 
Recently, several papers ([2], [3], and [6]) have been devoted to the study of the infinite sum 

Su(x) = Su(x;P,Q) = fd^. (1.4) 

The main known results can be summarized as follows. 

Theorem 1: 
(i) If Q = - 1 , the rational values of x = r I s for which Su(x) is an integer are given by 

* = % ± L ( » = 1,2,...), (1.5) 

and the corresponding value of Sa is given by 

Su(x) = U2„U2n+l. (1.6) 

fii) If g = 1 and P > 3, the rational values of x = r I s for which ^ ( x ) is an integer are given by 

(« = 1,2,...), (1.7) C - i 

and the corresponding value of Sn is given by 

SuW^UJU^. (1.8) 

The aim of this paper is to extend the above result to the infinite sum 

Sv(x) = Sv(x;P,Q) = fj ^ - , where Q = ±1. (1.9) 
«=o x 
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Using the Binet forms (1.2) and the geometric series formula, we get the closed-form expres-
sion 

Remark 1.1: We have assumed that P > 0. Actually, it is well known that 

Un(-P,Q) = (-irXU„(P,Q) and Vn(-P,Q) = (-1)"V„(P,Q)-
From this, we get 

Sute -P, Q) = Sui-x; P, 0 and Sv(x; -P, Q) = Sv(-x; P, Q). 

Thus, the case P < 0 cannot give really new results. 

Remark 1.2: It is clear by (1.9) that Sv(x) >V0=2 for x > a, since Vn > 0 for every n > 0. 

In what follows, we shall make use of the well-known identities: 
V„ + PUn = 2Un+1; (1.11) 
AUn+PVn = 2Vn+l; (1.12) 
U2n = UnV„; (1.13) 
V2n + 2Q" = V„2; (1.14) 
V2„-2Q" = AUl, (1.15) 
V„2-AUt = 4Q"; (1.16) 
^^^U^-QUl (1.17) 

All of these identities can be proved by using the Binet forms (1.2). 

2» MAIN RESULTS 

Theorem 2: If Q = ±l, there do not exist negative rational values of x such that Sv(x) is an 
integer, except when Q--1 and P - 1. In this case, the only solution is given by x = -2, with 
Sv(-2) = 2. 

Remark 2.1: Since Vn(l, -1) = L„ (the /1th Lucas number), we see by Theorem 2 that 

Z 1 Z ^ = 2. (2.1) 

Theorem 3: If (g = - 1 , the positive rational values of x for which Sv(x) is integral are given by 

x = % ^ ( / i = l,2,...) (2.2) 

and 

x = ̂ t 2 . ( n = 0,l,...). (2.3) 

The corresponding values of Sv(x) are given by 
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Sv(U2„+l/U2„) = U2n+lV2„ (2.4) 

and 
Sv(V2n+2/V2n+l) = U2„+lV2„+2. (2.5) 

Theorem 4: If Q = 1 and P > 3, the positive rational values of x for which Sv(x) is integral are 
given by 

* = % * ( / ! = 1,2,...) (2.6) 

and 
x = ̂ ( * = 0,l,...), (2.7) 

where X„-C/„+1 + C/„. 
The corresponding values of Sv(x) are given by 

Sv(Un+l/U„) = Un+1V„ (2.8) 
and 

5K(Xn+1/X„) = Jr„+1(C/„+1-t/„). (2.9) 

3. PROOF OF THEOREM 2 

Consider the function (j> defined by 

<Kx)= X
2

{2X~P\, x*amdx*0. (3.1) 
x1 - Px + Q 

From (1.10) it is clear that 0(x) = Sv(x) when |x |>a, and one can see immediately that 

lim <f>{x) = 2 and </>(-a) = l + ̂ >\. (3.2) 
X-»-oo IP 

Assuming first that Q- 1, we see that $ is decreasing on ]-<»,/?] and thus on ]-oo, - a ] 
(recall that -a </?, since P > 0). By (3.2), it is clear that there does not exist a number x < -a 
with $(x) an integer. 

Assuming now that Q = - 1 , we see that <j> is decreasing on ] - QO, y] with y = ~2^ , and it is 
not hard to prove that <f>{y) = 1 + -̂ L > 1. If P > 2, one verifies that -a < y, and the same conclu-
sion follows. On the other hand, if P = 1, we have y = -2- J5 = -4.2..., ${y) = 1 + -4- = 1.8..., 
- a = -1.6..., ^(-a) = ! + —- = 2.1.., and that </> is increasing on [y, - a]. Thus, 2 is the only inte-
ger value of <fi within this interval, and it is immediate that ^(-1) = 2 This completes the proof. 

To prove Theorems 3 and 4, we need some further mathematical tools. These will be dis-
cussed in Sections 4 and 6. 

4. A PELL EQUATION 

In this section we shall suppose that Q = ±1. Let x = r/s>a, where r and s are positive 
integers with gcd(r, s) = l. We see by (1.10) that 

Sv(rls) = rk, (4.1) 
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where 
, _ (2r-Ps) ,A _ 

r2-PrS+Qs2' ( 4 -2 ) 

It is clear that k > 0, since Sv(r I s) > 0 by Remark 1.2. We also see that gcd (r, r2 - Prs + 
Qs2) = 1, since Q = ±1 and gcd (r, J ) = 1. From this fact, we see that ^ ( r / s) is an integer if and 
only if 

y 2r-/fr = 4(2r-Pj) 

is an integer. Putting z = 2r- Ps for notational convenience, we get the second-degree equation 
in the unknown z 

4z 
z2-hs2 

which can be written as 
= * , (4.3) 

kz2-4z-kAs1 = 0. (4.4) 

Notice that z > s^> 0, since r Is>a = -f-+^-. The only positive root of (4.4) is given by 

*=nr̂ . (45) 

where d = 4 + A(fc)2. For z to be an integer, the inequality 

4 + A ( f a ) 2 = y 0 = 0,1,...) (4.6) 

must hold. Observing that A = P2 ± 4 is never a square, it follows by (1.16) and the theory of Pell 
equation (see, e.g., [5] and [7]) that the solutions of (4.6) in the unknowny and ks are given by 

y = V2n, ks = U2n(n>0), if Q = -l, (4.7) 

and by 
y = Vn,ks = Uri (n>0\ ifQ = l. (4.8) 

In our problem we can suppose that n > 1, since ks > 0, and we have to consider the two cases 
(Q = 1 and Q = -l), separately. 

5. PROOF OF THEOREM 3 

In this section we suppose that Q = -\. Assuming that Sv{r Is) is an integer, we see by (4.7) 
that ks = U2„ mdjd=y = V2„ for n > 1. It follows by (4.5), (1.13), (1.14), and (1.15) that 

z = ,2 + v ^ 5 2 + ^ ( 5 J ) 
ks U2n 

V2 V $yf~- = $jy-, n > 2 even, 

AU2„ AUn , . 
s r " = s———, n odd. 

U2n Vn 
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On the other hand, recalling that z = 2r-Ps and using (1.11) and (1.12), we see that 

r = 
z + Ps 

u. «+l 

u. 
^U„ + PV„_Jn+x 

2V„ ~S V„ 

n>2 even, 

n odd. 
(5.3) 

Finally, we get 

x=rIs-

U. n+l 

V vn+\ 
v„ 

n even and positive, 

n odd, 
[cf. (2.2) and (2.3)]. 

To prove the second part of the theorem, notice first that -ff1 > a (n>2 even) and -fr- > a 
(n odd), since Q = -l. From (4.1), we see that 

Sv(r/s) = rk = ^ks. (5.4) 

Putting r Is = U„+lIUn (n>2 even) in (5.4) and using (4.7) and (1.13), we get 

Sv(Un+l/Un) = ^U2n = Un+lVn (n>2 even) [cf. (2.4)]. 
n 

Now, putting r I s - Vn+l I Vn in odd) in (5.4), we obtain 

Sy(Vn+JV„)^U2n^Vn+lUn («odd) [cf.(2.5)]. 

This completes the proof of Theorem 3. For the proof of Theorem 4, we need some results 
on the Fibonacci and Lucas numbers with real subscripts. These will be discussed in Section 6. 

6. FIBONACCI AND LUCAS FUNCTIONS 

Several definitions of Fibonacci and Lucas numbers with real subscripts are available in the 
literature (see, e.g., [1] and [4]) for the case in which P - -Q = 1. 

Let us suppose here that Q = 1 and P > 3. Thus, a and /? as defined by (1.3) are positive 
quantities and we can define, for every real number x, the real quantities 

ax- ftx 
U=-—£- and Vx = ax + fix. 

x a-p x 

Using (6.1), the following identities can readily be found: 
UX = PUX_X-UX_2 and V^PV^-V^, 

Ux ~ ^xi'Fxii -> 

K + 2 = V?n, 
Vx + PUx = 2Ux+l, 

Ux+y + Ux_y - UxVy, for every x and every y. 

(6.1) 

(6.2) 
(6.3) 
(6.4) 
(6.5) 
(6.6) 
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The sequences Yn = Un+l/2 will be of particular interest for our purposes. Putting x = n +1 / 2 
and j ; = l /2 in (6.6), we get 

^ = ^ 2 X (6.7) 
where X„ = Un+l + U„, as specified in Theorem 4. 

7. PROOF OF THEOREM 4 

In this section we suppose that Q = 1 and P > 3. Assuming by (4.8) that ks = {/„ and V^ = 
y = V„ (n> 1), it follows by (6.3) and (6.4) that 

2 + Jd_„2+Vn_Jn
2
/2_„V„/2 

Now by (6.5) we get 

2 " 2f/ " // ' K } 

Hence, letting n = 2m and n = 2m + lin (6.9) and using (6.7) in the latter case, one obtains 
17/ 
1 ?±k m>0. 

x~rIs= ym [cf. (2.6) and (2.7)]. 

V X 

As for the second part of the theorem, we see that Um+l IUm> a (m>0) and Xm+l I Xm> a 
(rn>0\ since Q = 1. Putting r Is = Um+l IUm in (5.4) and using (4.8) (with n = 2m), we get 

Sv(Um+l/UJ = ̂ U2m = Um+lVm [cf. (2.8)]. 

Finally, from (4.8) (with n = 2w +1) and (1.17), we get 

X X 
^v(^w+l / ^m) ~ J + ^2w+l ~ ~l~r~(Um+\ ~ Um) Am Am 

= Xn+l(Um+l-Um) [cf. (2.9)], 

and the proof is complete. 

Concluding Remark: From Theorems 3 and 4, one can study the integrity of the infinite sum 

«=0 X 

This investigation might be the aim of a future work. 
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E L E M E N T A R Y P R O B L E M S AND SOLUTIONS 

Edited hy 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to stan@wwa.com on the Internet. All 
correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A+2 = A?+i+ A > A = o> A - h 

Ai+2 = A?+l + An A = 2> A — 1. 

Also, a = (l + V5)/2, /? = ( l -V5)/2, F„=(an-/3n)lV^and Ln = an+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-848 Proposed by Russell Eulerfs Fall 1997 Number Theory Class, Northwest Missouri 
State University, Maryville, MO 

Prove that FnFn+l - Fn+6Fn_5 = 40(-l)w+1 for all integers n. 

B-849 Proposed by Larry Zimmerman & Gilbert Kessler, New York, NY 
If Fa, Fb, Fc, x forms an increasing arithmetic progression, show that x must be a Lucas 

number. 
6-850 Proposed by Al Dorp, Edgemere, NY 

Find distinct positive integers a, b, and c so that Fn - MFn_a +cFn_b is an identity. 

B-851 Proposed by Pentti Haukkanen, University of Tampere, Tampere, Finland 
Consider the repeating sequence <4i)*=o = 0,1, - ^ 0,1, - 1 , 0,1, - 1 , . . . . 
(a) Find a recurrence formula for An. 
(b) Find an explicit formula for An of the form (an -bn)/(a-b). 

B-852 Proposed by Stanley Rabinowitz, Westford, MA 
Evaluate F« 

F, 
Fl0 
Fn 
1 20 

F, 
Fx 
Fu 
F<n 
F2l 

F, 
F7 
Fn 
F„ 
1 2 2 

F, 
Ft 
Fn 
Fls 
F2i 

FA 
F, 
Fu 
F„ 
Fu 
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B-853 Proposed by Gene Ward Smith, Brunswick, ME 
Consider the recurrence f(n +1) = n(f(n) + f(n -1)) with initial conditions / (0) = 1 and 

/ ( I ) = 0. Find a closed form for the sum 

k=0 £ */« 
NOTE: The Elementary Problems Column is in need of more easy, yet elegant and 
nonroutine problems. 

SOLUTIONS 
Pattern Detective 

B-832 Proposed by Andrew Cusumano, Great Neck, NY 
(Vol 35, no. 3, August 1997) 

Find a pattern in the following numerical identities and create a formula expressing a more 
general result. 

54 - 128 - 2 

85 + 55 + 35 4- 2 5 4-15 4-15 = 13 • 84 - 128 - 2 

- 3 

135 + 85 + 55 + 35 4- 2 5 + l5 + l5 = 21 • 134 - 128 - 2 

- 3 

- 5 

215 + 135 + 85 + 55 4- 35 4- 2 5 4- l5 + l5 = 34 • 214 - 128 - 2 

- 3 

- 5 

5(19 4-2-3-5) 

5(194-2-3-5) 

8(19 4-2 • 3 • 5 4-2 • 5 • 8) 

5(19 + 2-3-5) 

8(19 4- 2 • 3 • 5 4- 2 • 5 • 8) 

13(19 4-2-3-5 4-2-5-8+ 2-8-13) 

5(19 4-2-3-5) 

8(19 + 2 • 3 - 5 4-2 • 5 • 8) 

13(19 + 2 - 3 • 5 4- 2 • 5 • 8 + 2 • 8 • 13) 

13 • 21(19 + 2-3-54-2-5-8 + 2-8- 13 + 2- 13-21) 

Solution by H.-J. Seiffert, Berlin, Germany 
Let£be an integer. Then Fk_2(F2

+Fk_lFk+l)^Fk_2(F2
 + Fk_lFk+F2_l)=(Fk-Fk_l)(F2

 + 

Fk-\Fk + Fk\) = Fl - /£_!. Using Fk_xFk+l - Fk
2 = (-1)*, which is identity (I13) of [ 1 ], we have 

Fk_2(2F2
 + (-lf) = Fk

3-Fkll. 

Multiplying this equation by Fk_xFk, adding Fk on both sides of the resulting equation, and using 
Fl + Fk_xFk* = Fk+lFk

4, we obtain 

Fl +Fk_2Fk_lFk(2F2 +(-lf) = Fk+lF<-FkFk\. 

Summing as k ranges from 1 to n yields 

I Fl = Fn+1F: - X Fk_2Fk_xFkQFk
2 + (~l)k). 

k=\ k=l 

From identity (I13), again, we find 

Ff - Ff_x + (-iy = F^F^ - F2_, = FMF}. 

(1) 
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Summing as j ranges from 1 to & gives 

^2+k-l)*-l) = £ ^ V or 2F^+{~\f = \ + 2±F]_lFj 

Now equation (1) may be rewritten as 

I Fk = K+rn -1 Fk„2Fk_xFk [ 1 + 2 £ FJ_^J 
k=\ k=\ V /=i 

Let n > 4. Using 

we find 

E^-2^- i^J l + 2 t ^ - i ^ ] = l'28 and 1 + 2 ^ ^ . ^ = 19, 

V 7=5 £=1 k=5 

valid for all w > 4. For n = 4,5, 6, 7, and 8, this produces the numerical identities given in the 
proposal. 

The proposer sent along many related identities. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, Calif.: The Fibonacci 

Association, 1979. 

Also solved by Paul S. Bruckman, L. A. G Dresel, and the proposer. 

Newton Meets Lucas 

B-833 Proposed by Al Dorp, Edgemere, NY 
(Vol 35, no. 3, August 1997) 

For n a positive integer, let f(x) be the polynomial of degree n -1 such that f(k) = Z^ for 
£ = 1,2,3,...,n. F ind/ (w + l). 

Solution by Paul S. Bruckman, Highwood, IL 
We employ the Pochhammer notation x(w) = x(x - l)(x - 2) • • • (x - m +1) and use Newton's 

Forward Difference Formula ([1], p. 29), which says that if fk is a polynomial of degree n, then 

1! 2! n\ 

where the operator A is defined by Af(x) - f(x +1) - f(x). 
In our example, Af(k) = f(k + 1) - f(k) = Lk+l - Lk - Lk_x for k = 1 ,2 , . . . ,« -1 . Similarly, 

A2f(k) = A(Af(k)) = ALk_{ = Lk_2 for k = 1,2,..., n - 2. Continuing, we find A3f(k) = Lk_3 for 
k = 1,2,..., w - 3, etc., until A""1/^) = Z ^ . 

Applying Newton's formula, we obtain 
«- i A-/ ( * + l) = ZiJSL*(t) = Z(-l)k- I4- .^) /A!. 
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Then 

n-\, 

f{n + \) = YJ{-\r\l)Lk_x 

"t(i][(-a)k-^(^ri] 
= fi(l - a)" + a{\ -p)n- (-a)""1 - {-fif1 

= Pn+l + a"+l + (-l)"[an~l + pn'1} 
= 4+ 1+(-i)"4_1. 

This is equivalent to Ln if n is odd and 5Fn if n is even. 

Reference 
1. Ronald E. Mickens. Difference Equations. New York: Van Nostrand Reinhold, 1990. 
Also solved by Charles K. Cook, L. A. G. Dresel, Hans Kappus, Harris Kwong, R. Horace 
McNutt, H.-J. Seiffert, Indulis Strazdins, and the proposer. 

Radical Inequality 

B-834 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 
(Vol 35, no. 3, August 1997) 

For x a real number and n an integer larger than 1, prove that 

/ I\T- / ^ r / \T- rsn In(n + l)(2w +1 + 6x) + 6nx2 

(x + l)Fl + (x + 2)F2 + • • • + (x + n)Fn < 2" J-* & J— . 

Solution by the proposer 
From the identity an - aFn + Fn_^ we see that for n > 2, 

F an-\_Ert±<an-l<1n-l 

a 
Thus, 

JFJ^<2". (*) 
Cauchy's Inequality ([1], p. 20) says that for all real numbers af and bf, 

(albl + a2b2 + - +anbnf <(a2 + a2 + ••• + a2)(b2 +b2 + .» + h2). 

Let ax•- x + i and bt = Fr Then, using the facts 

F?+F2
2 + -+F„2=FnF„+l, 

6 
and the inequality (*), we obtain the desired inequality for all x for which the radicand is non-
negative. 
Reference 
1. D. S. Mitrinovic. Analytic Inequalities. Berlin: Springer Verlag, 1970. 
Also solved by Paul S. Bruckman. 

184 [MAY 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Ciyptarithmic Identity 

B-836 Proposed by Al Dorp, Edgemere, NY 
(Vol 35, no. 4, November 1997) 

Replace each of W, X, 7, and Z by either F or L to make the following an identity: 

^ 2 -6X„ 2
+ 1 + 27„2

+2-3Z„2
+3 = 0 . 

Solution by L. A. G. Dresel, Reading, England 
Putting « = - l 5 w e find 

0 ? + 2 1 ? = 3(2*+ 2**) . (a) 
Putting w = 0 ,we find 

^ 2 + 272
2 = 3(Z2 + 2X 2 ) . (b) 

Since Fx = 1^ = 1, we have Wx = Yx = 1, so that (a) implies 3 - Z{Zl+2Xl), giving X0 = F0 = 0 and 
Z2 = F2 = 1. Substituting in (b) gives W$ + 272

2 = 3(F3
2 + 2Ft

2) = 18, which requires WQ = F0 = 0 
and Y2 = 1^ = 3. Therefore, the required identity is 

F„2-6F„2
+1 + 2L2

+2-3F„2
+3 = 0. 

This is satisfied for n = - 1 , n = 0, and also for n = 1. Therefore, by the Verification Theorem of 
[1], this is an identity for all values of n. 

Reference 
1. L. A. G. Dresel. "Transformations of Fibonacci-Lucas Identities." In Applications of Fibo-

nacci Numbers 5:169-84. Ed. G. E. Bergum, A. N. Philippou, & A. F. Horadam. Dordrecht: 
Kluwer, 1993. 

Also solved by Paul S. Bruckman, Charles K. Cook, Russell Jay Hendel, Daina A. Krigens, 
H.-J. Seiffert, Indulis Strazdins, and the proposer 

Polynomial Remainder 

B-837 Proposed by Joseph J. Kostdl, Chicago, IL 
(Vol 35, no. 4, November 1997) 

Let P(x) = x1997 + x1996 + x1995 + • • • + x2 + x +1 and let R(x) be the remainder when P(x) is 
divided by x2 - x - 1 . Show that R(x) is divisible by L999. 

Solution by L. A. G. Dresel, Reading, England 
Consider, more generally, the polynomial 

PJx) = x2""1 + x2"-2 + x2"~3 + ••• +x 2 + x +1 = ^—=^. "v y x - 1 

Then, if i?(x) is the remainder on dividing by x2 - x - 1 , we have the identity 

Pn(x) = (x2-x-l)Q(x)+R(x), 

where Q(x) is a polynomial in x. Putting x = a, and using the fact that a2 - a -1 = 0, we find 
that P„(a) = R(a) and Pn{0) = R(J3). Hence, a2n-\ = {a-\)R{a) and fi2n-l = (fi-l)R(P). 
Now a -1 = -0, 0-1 =-a, and R(x) = Ax + B, where,4 and B are constants. Hence, a2n -1 = 
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A - BP and (32n - 1 = A - Ba. Subtracting gives {a - P)F2n = B(a - ff), so that B = F2n = FnLn, 
while adding gives Lln-2 = 2A-B. When w is odd, we have L2

n = (an + ft")2 = L2n-2 = 2A- B, 
whereas when /? is even, we have 5i^2 = (an - pn)2 - Lln - 2 = 2 A - B. It follows that when n is 
odd, R(x) is divisible by Ln7 whereas when n is even, R(x) is divisible by Fn. 

Also solved by Charles Ashbacher, David M. Bloom, Paul S. Bruckman, Al Dorp, Russell 
Euler & Jawad Sadek, Russell Jay Hendel, Hans Kappus, Harris Kwong, R. Horace McNutt, 
Bob Prielipp, H.-J. Seiffert, Indulis Strazdins, and the proposer. 

Composite Linear Recurrence 

B-838 Proposed by Peter G. Anderson, Rochester Institute of Technology, Rochester, NY 
(Vol 35, no. 4, November 1997) 

Define a sequence of linear polynomials, fn(x) = mnx + bn, by the recurrence fn(x) = 
fn-i(fn-2(x))> n - 3, with initial conditions f(x) = \x and f2(x) = \x + y. Find a formula for mn. 

Extra credit: Find a formula for bn. 

Solution by Charles Ashbacher, Hiawatha, IA 
We claim that mn-\l2Fn for n > 1. The proof is by induction on n. For the basis step, we 

have the given initial conditions, showing that the result is true for n = 1 and n-2. Now assume 

2 ^ T x + ft1 and /*(*) = p r A - i ( * ) = : ^ r r * + * i a n d fk(x) = -^x+b2-
Then 

fir^(x) = •—F- —?—x + b, \ + b~ = —p—~—x+—cr-it+io */fc+iv / 2^ \̂ 2 *-» ) 2 *2 *-* 2 * 
1 1 , . , 1 . 1 

and the result follows for all n. 
Bruckman receives extra credit for finding that 

Strazdins reports that this sequence is studied in [1]. 

Reference 
1. H. W. Gould, J. B. Kim, & V. E. Hoggatt, Jr. "Sequences Associated with r-ary Coding of 

Fibonacci's Rabbits." The Fibonacci Quarterly 15.4 (1977):311-18. 
Also solved by Paul S. Bruckman, Charles K. Cook, L. A. G. Dresel, Russell Jay Hendel, H.-J. 
Seiffert, Indulis Strazdins, and the proposer. 

Late solutions to problems B-821 through B-824 were received from David Stone. 

Errata: In the solution to problem B-830 (Feb. 1998, p. 89), in the second line of the proof of 
part (b), the subscript 19-109 should be 19-108 in three places. On the first line of page 90, 
"n + 1" should read" n + a". 
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Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745, This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-539 Proposed by H.-J. Seiffert, Bedim, Germany 
Let 

where 

Hm(p) = i,BU,p\m£N,p>0, 

**»=S=j:'rta-<r'* T(x+y) 

denotes the Betafunction. Show that for all positive reals/? and all positive integers n, 

fJ{-\f-l[^H2kip) = A"+^B{n + p,n + p-\) + - ^ - v (1) 

From (1), deduce the identities 

irr'M2!>^:?) (2) 
and 

/(2k\ In z<-»-«'[Z / ? = # r <3> 
H-540 Proposed by Paul S. Bruckman9 Highwood, IL 

Consider the sequence U = {u(n)}*=v where u(ri) = [na], its characteristic function Su(n), 
and its counting function nv{n) = T"k=iSu(k), representing the number of elements of U that are 
<n. Prove the following relationships: 

(a) du(n) = u(n +1) -u(n) - 1 , n > 1; 
(b) *u(Fn) = Fn_l9n>\. 

H-541 Proposed by Stanley Rabimowitz? Westford, MA 

The simple continued fraction expansion for F^ I Ff2 is 

1998] 187 



ADVANCED PROBLEMS AND SOLUTIONS 

11 + -
11 + 

375131 + 
1 + -

1 + -
1 + -

1 - f • 

1 + -
1 + -

1 + 
i + '-

i + ^ 
2 + -i 

9 + 1 
11 

This can be written more compactly using the notation [11,11,375131,1,1,1,1,1,1,1,1,1,2,9,11]. To 
be even more concise, we can write this as [ll2,375131,19,2,9,11], where the superscript denotes 
the number of consecutive occurrences of the associated number in the list. 

If n > 0, prove that the simple continued fraction expansion for (Fl0n+31 Fl0n+2)5 is 

[112", x, l10"-1,2, 9,112^-1], 

where x is an integer and find x. 

SOLUTIONS 
A Fibo Matrix? 

H-522 Proposed by N. Gauthier, Royal Military College, Kingston, Ontario, Canada 
(Vol 35, no. 1, February 1997) 

Let A and B be the following 2x2 matrices: 

^ = (i o) and B = {o i 
Show that, for m > 1, 

m-\ 

j^2"Ar{Ar +B2ny1 = c2mC2m -(A + B), 

where 
cm = m/(Fm+1+Fm_1-2) and Cm = (F"^~l 

V m F^-ir 
Fm is the rrft* Fibonacci number. 
Solution by Paul S. Bruckman, Highwood, IL 

We begin by noting that the matrix B is the identity matrix / (as is any power of B). Let Sm 

denote the sum in the left member of the statement of the problem; let W(n)-nAn{An +/)"1. 
Note that 

Now 

cm=m(Lm-2T\ c2 = 2, Q=( | Q A+B^ J 
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a well-known result. Then \A" + I\ = Fn„Fn_x + Fn+l + F„_, +1 - (F„)2 = Ln +1 + (-1)" = Ln + 2en, 
where en is the characteristic function of the even integers. Then 

W(n) = n(Ln+2enyiFp F" 

{" n) I F„ F„_1 + (-l)» 

and 
^ Y ^ - i + l ~Fn 

K Fn+x + \ 

after simplification. In particular, 
'0 1 

Note that 

cfi,-« + ̂ % J)-(? }) = (» _>,) = *; 
thus, the statement of the problem is valid for m - 1. 

Let N denote the set of positive integers m for which the statement of the problem is valid. 
As we have just shown, leN. Suppose that meN. Then, letting u - 2m and using the inductive 
hypothesis, 

Sm+l = Sm + W(u) = cuCu-{A+I) + u(Lu+2r^£l
 p^+h 

=u(Lu-2y[F^1
 Fu

F
:_^u{Lu+2r[F^ Fu

F;+iy(A+D 

= u{(Lu)2- 4}-f (L« + 2){F"+1 ~1} + (L» ~ 2){F"+1 + 1 } 

- 0 4 + / ) 

=2^-2)14F>;r2 iI:-2)-^+ / ) 

= ^ ( F X _ 1 F 2 „ F T-I) _ ( " I + / ) = C 2 " C 2 "" ( ^ + / ) -
Comparison with the expression given in the statement of the problem shows, therefore, that 

rneN implies (m +1) e N. This is the required inductive step, and the desired result is proven. 

Also solved by H. Kappus, H.-J. Seiffert, and the proposer. 

2LUFU 
( 4 + 2){Fk.1-l} + (4-2){FM.1 + l} 
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Enter! 

H-523 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol. 35, no. 1, February 1997) 

Let Z(ri) denote the "Fibonacci entry-point" of n, i.e., Z(n) is the smallest positive integer m 
such that n\Fm. Given any odd prime/?, let q = j(p-l)', for any integer s, define gp(s) as 
follows: 

^ / 

Prove the following assertion: 

Z{p2) = Z(p) iff gp(l) - gp(5) (modp). (*) 

Solution by H.-J. Seiffert, Berlin, Germany 
We need the following results. 

Proposition 1: For all positive integers n, it holds that: 

[nil]/ x 

Proof: The first equation can be found on page 4 in [1] and the second on page 69 in [3]. 

Proposition 2: lip is any odd prime, then Z(p2) = Z(/?) if and only if Lp = 1 (mod p2). 

Proof: Since Z(25) = 25 * 5 = Z(5) and Z5 = l l # l (mod 25), we do suppose that p*5. 
Then (see [2], p. 386, Lemma 5), Z(p2) = Z(p) if and only if Fp_e = 0 (mod p2\ where e = (5\p) 
denotes Legendre's symbol, and (see [4], p. 367, eq. (2.10)) Fp_e = 2e(Fp -e) (mod/?2). Our 
claim now easily follows from p*5, e e {-1, +1}, and the equations Lp = 2Fp+l -Fp=Fp+ 2Fp_v 

Q.E.D. 

Lemma: If/? is a prime, then 

(j^(-l);+1f (mod/*), j = \2,...,p-\. 

Proof: For j = 1,2,...,/?-1, we have 

This proves this well-known congruence. Q.E.D. 

Let/? be an odd prime. From Proposition 1(a) and the lemma, modulo p2 we obtain 

2^=i + i ( 2^)" i - f^( i ) (m°d^2) 
or, equivalently, 
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pgp(l) = 2 - 2 " (modp2). (1) 

Similarly, using Proposition 1(b) and the above lemma, modulo p2 we find 

giving 
pgp(5)^2-2?Lp (modp2). (2) 

Hence, by (1) and (2), we have gp{\) = gp(S) (modp) if and only if Lp = 1 (mod p2). The desired 
equivalence relation now follows from Proposition 2. 

Remark: In 1960, D. D. Wall posed the problem of whether there exists a prime p such that 
p2\F e. It is still not known whether such a prime exists although it is known that it must 
exceed 109 (see [4], p. 366). In [2] (p. 384, Theorem 4), it was proved that if/? is an odd prime 
such that Fermat's last theorem fails for the exponent p in the first case, then p2 \Fp_e. Con-
versely, it seems that Andrew Wiles' proof of Fermat's last theorem does not imply that such 
primes cannot exist. 

References 
1. I S . Gradsteyn & I. M. Ryzhik. Table of Integrals, Series, and Products. 5th ed. New 

York:: Academic Press, 1994. 
2. Z. H. Sun & Z.-W. Sun. "Fibonacci Numbers and Fermat's Last Theorem." Acta Arith. 60 

(1992):371-88. 
3. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. New York: Halsted, 1989. 
4. H. C. Williams. "ANote on the Fibonacci Quotient Fp_e/p" Can. Math. Bull. 25 (1982): 

366-70. 

Also solved by the proposer. 
Z(p) ed di do da 

H-524 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 35, no. 1, February 1997) 

Let pht & prime with p = \ or 9 (mod 20). It is known that a: = (p-1)/Z(p) is an even 
integer, where Z(p) denotes the entry-point in the Fibonacci sequence [1]. Let q\-{p-\)l2. 
Show thai 
(1) ( - l ) a / 2 ss (~5yn (mod p) ifp ES 1 (mod 20), 
(2) ( - l ) a / 2 = -{-S)ql2 (modp) ifp s 9 (mod 20). 

Reference 
1. P. S. Bruckman. Problem H-515. The Fibonacci Quarterly 34,4 (1996):379. 

Solution by Paul S. Bruckman, Highwood, IL 
We will make use of the following easily verified (or well-known) results: 

(a) p\FrmdFp-e = FrLr+eiff(^)=l; 

(b) p\LrmdFp-e = Fr+eL/iff{f) = -l; 

(c) e = (-l)'(f); 

1998] 191 



ADVANCED PROBLEMS AND SOLUTIONS 

(d) 5F2 - Lr+eLr_e = 5Fr+eFr_e -I?r = (-1)'; 
(e) for all positive integers m and n > 1, Z{m)\n iff m\Fn; 
(f) Z(p)\(p-e); 
(g) Z(p*) = pZ(p) or Z(p). 

(A) Suppose eA-B = C (mod/?). Then ^/? -Bp = Cp (mod/?2) 

^ e - Z ^ ^ f f - j a - C - l ) * ) - ^ * - 0 (mod/,2). 

Now, if 1 <£</?, 

Thus, 

<.2^-f(-i^.i(i-(-i)*).^.5i<t- ,> 

-54l(f)i(l-(-l)4)-5"fc(mod^) 

=5>e-2^5~*[(l+V5y-(l-V5y] (mod/?2)=>Fp = e (mod/?2). 

From (a) and (b), we see that p\Fr and />2|FrZ,r+e if (=f) = 1, or p\Lr and p2\Fr+eLr if 
( f ) = - 1 . From (d) and (e), gcd(Fr, Lr+e) = gcd(Fr+e, 4 ) = 1. Then ? \Fr if (-f) = 1, or p2 |Zr if 
(=f) = - 1 . In any event, p2\F2r = FrLr. Then, from (e), Z(p2)\2r -p-e. Since p\{p-e), it 
follows from (f) and (g) that Z(p2) = Z<». 

(B) The steps in (A) are reversible. Thus, 

Z(pi) = Z(p)=>pi\F2r^pi\(Fp-e)^eAp-Bp 

= Cp (modp2)=>eA-B = C (modp). Q.E.D. 

Also solved by the proposer. 
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