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THE FIBONACCI TRIANGLE MODULO/? 

Brad Wilson 
2030 State Street #5, Santa Barbara, CA 93105 

(Submitted July 1996-Final Revision August 1997) 

1. INTRODUCTION 

LetF„\ = F„F„_1...F2F1. 

Definition: The Fibonacci coefficient [£]s is defined to be 

F\ FnFn-\ • A 
Fk\Fn_k! (FkFk_l...Fl)(F^kFn_k_l...Fl)' 

An important property of the Fibonacci coefficients from [4] is 

= F, M-l 
k-i + Ft 

is 
k-e-i 

k-i 0) 
From the Fibonacci coefficients we form the Fibonacci triangle in much the same way as 

Pascal's triangle is formed from the binomial coefficients; namely, the Fibonacci triangle is formed 
by letting the k^ element of the rfi row be [£]g. 

1 
1 1 

1 1 1 
1 2 2 1 

1 3 6 3 1 
1 5 15 15 5 1 

FIGURE 1. Rows 0 to 5 of the Fibonacci Triangle 

The parity of the binomial coefficients and the iterative structure of Pascal's triangle have 
been the subject of many papers (see, e.g., [2], [3], [13]). More recently, the Fibonacci coeffi-
cients and the iterative structure of the Fibonacci triangle modulo 2 and 3 has been examined in 
[5], [11], and [12]. In this paper we extend the results of [11] and [12] from the Fibonacci coef-
ficients and triangle modulo 2 and 3 to modulus/? for/? an odd prime. 

For an odd prime p other than 5 and / > 0, define r}; e N as the smallest number such that 
p*\Fri. In particular, r0 = 1 and rx is what is commonly called the rank of apparition of p. We will 
denote p- {r0,r1?...}. It is well known that rt\ri+l for all i GN, SO any n eN can be written 
uniquely as n = nkrk+nk_lrk_l + "-+nlrl-\-nQ for O^n^^-. We call this the base p repre-
sentation of n E N. 

Our main results are 

Theorem 1: Let r - max,^ •—-. The number of entries in the 71th row of the Fibonacci triangle 
not divisible by/? is 2Sl3S24S3...rSr-1, where sf is the number of/'s in the base p expansion of n. 

Theorem 2: Let /? ̂  2,5 be a prime. There is the following connection between the Fibonacci 
and binomial coefficients modulo/?: 
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THE FIBONACCI TRIANGLE MODULO p 

[r;H*Kr>" «•*"» 
In particular, the triangle AFp formed by having [^j]g (mod/?) as the k* entry of the rfi* row is 
Pascal's triangle modulo/? if and only if rx is even. 

Theorem 3: For p ^ 2,5 a prime, we have 

nrx+j 
J& 

(jwYfl F^-^^'^-^^0-0 (mod/?). 

2. PRELIMINARY FACTS 

Of fundamental importance in our investigation are the following two well-known facts (see 
[9]): First, if (a, b) denotes the greatest common divisor of two natural numbers, then 

(FmFm) = F(m,ny ( 2 ) 
Second, 

A sequence {Aj} is said to be regularly divisible by d e N if there exists r{d) e N such that 
d\Aj if and only if r(d)\j. A sequence is regularly divisible if it is regularly divisible for all d e N 
(see [5]). From (2), we see that the sequence {Fn}™=l is regularly divisible. To simplify notation, 
for/? our fixed prime and for i > 0, we let rx; e N be the smallest number such that pl\Frr Notice 
that r0 = 1 and rx is what is generally called the rank of apparition of/?. Let p - {r0, rx...}. Since 
the Fibonacci sequence is regularly divisible rt\ri+l so each n GN can be written uniquely as 
n = ntrt + nt_ft_x H f- n^ + nQ with 0 < nf <^yL. We call this the base p representation of n and 
denote it by n = (nft^...nxi%)p (see [6]). 

It is well known from [7] that for z > 1 we have 

(4) 

The following theorem was first shown in [5] in a different form. The introduction of the 
base p allows us to state the theorem more succinctly. The theorem was given in this form in 
[10]. The proof is reproduced here with the permission of the first author of [10]. 

Kummer's Theorem for Generalized Binomial Coefficients: Let si= { /̂}7=i be a sequence of 
positive integers. If si is regularly divisible by the powers of/?, then the highest power of/? that 
divides 

rn + n 
m si 

An+n^m+n-1 • • • A7+I 
AmAm_l...AzAl 

is the number of carries that occur when the integers n and m are added in base p , where p = 
{ry}7=o f°r rj defined by pJ \ A?., pj\ Ar for 0 < r < fj. 

Proof: By definition of rt, Ar. is the first element in si divisible by p*. By regular divisibility 
of the sequence {Aj}J=l, we see that p'\Ak if and only if rt\k. This means the number of Ak, 
k <n that; are multiples of pj is 
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'i ri 

Now suppose, in base p, we have m = mtrt+mt_lrt_l + '-•vrn^^-m^ and n-ntrt +nt_lrt_l + -- + 
nf\ +wo> where we allow some of the initial digits to be 0 so we may assume m and n are written 
with the same number of digits in base p. Counting the multiples of pl in {Ah A^,..., Am+n}, 
( 4 , A2,..., 4 J , and {Ax, A2,..., An}, we see a carry at the /* place, 

occurs if and only if the number of multiples of pl in {Ax, A2,..., A^+J is one greater than the 
number of multiples of pi in {A1,A2,...9-Am} plus the number of multiples of pj in {Al,A2,...,An}. 
Therefore, the number of carries is the highest power of/? that divides [^"h. D 

In particular, the theorem applies to the Fibonacci sequence: {sij} J=1 = {Fj}J=l • 

Corollary (Knuth and Wilf) [5]: The highest power of/7 that divides [mT\ is the number of car-
ries that occur when the integers n and m are added in base p, where p = {?)}7=o f°r rj defined 
by Pj\Frj, Pj\Fr for 0<r <rJm 

3. CONGRUENCES FOR FIBONACCI NUMBERS AND COEFFICIENTS 

In this section we give a series of lemmas about congruences of Fibonacci numbers and 
coefficients. 

Lemma 1: For i > 1, Fnn+1 = Fmrl = i^+1 (mod /?')• 

Proof: Since p^F^, we have i y + 1 = i^r + iv_i = Fnr_{ (mod /?'), so we will switch freely 
between Fnr+l and Fnr_x modulo p' throughout the rest of the article. Since p\Fr, Fr

l
+l = Fr + 

Fr_x = Flr_x (mod /?'), so the lemma is true for n - 1. Assume i^r_! = i^+1 (mod /?')• Using (3) 
with n-kr^ m-r^X gives 

Z,e##fma 2; For i > 1, / ^ = Fr§{hF^l) (mod /?2/). 

Proof: This is clearly true for n - 1. Now assume i^r = Fr(kFr
k~l) (mod /?2/). Then, using 

(3) with n - fy; - 1 , #* = /; +1 gives 

^ + D , - V i V V V i ^ Fri(Fkrrl + kF$Fri+l) (mod />2<). (5) 

Since Lemma 1 says i^_j = ̂ +1 (mod p')> w e get 

Since p*\Fr, this congruence gives 

F , ( ^ 1 + ̂ , ^ + 1 ) S / v i ( * + l ) ^ + i ( m o d ^ ) . 

This congruence together with (5) gives F(k+V)r =Fr(k + l)Fr
k
+l (mod /?2/). • 

n 
r,_ = M±l ••+"i^+"o 

»/ 

196 [JUNE-JULY 



THE FIBONACCI TRIANGLE MODULO p 

Lemma 3: For 0 < jj and 0 < m < rx -1, we have Firi+mFjr{+l = F£ri+lFM+m (mod/?). 

Proof: For m- 0, both sides are congruent to 0 modulo p since pli7^ and p\FJh. For 
7W = 1, both sides are identical. Assume that Fir+JF,

jr+l = Firi+lFjri+m (modp) for all m < k < rx -1 
for some k. Using our induction hypothesis, FM+k = i>1+(£_i) + ifo+(*-2), and F ^ = F£ri+(yt_1} + 

Ftrx +kFjrx +1 = ^ r , +(k-l)Fjn +1 + ^ +(k-2)Fjrx +1 

= ^+1^+^-1) +^+i^}/i+(jt-2) = Feri+iFjrl+k (mod/?). D 

Note that alternate forms of Lemma 3 are 
F£r+m F,r+m 

^ = f^(mod/?), 
r£rl+l rjrx+l 

which will be used below in Lemma 6 and, for m ^ 0, 

- ^ - = ~W^- (mod/?), 

which we will use in Theorem 2 below. 

Lemma 4: For 0<j,£ we have 

%u5^(mod/7 ) . 
Proof: By (3) with n = ̂ rb w = y>i +1, we have 

F(£+j)rl+l = ^ ^ r , + i V r 1 + l ^ r 1 + l = - ^ + 1 ^ + 1 ( m ° d i 7 ) ' 

Since iy + 1 is invertible modulo/?, we may divide to put this in the form of the statement of the 
lemma. • 

Lemma 5: For p & 2,5, 

fl (mod /?) if /} = 2 (mod 4), 
Fri-1 = \-l (mod /?) if rx = 0 (mod 4), 

[an element of order 4 (modp) ifrjisodd. 

Proof: From (3) with n = a-l, m = a9 we get F2 + F2_x = F2a_v From (3) with n = a, 
m = a + l, we get F* + F*+l = F2a+l. If ^ = 2a, then F2a+l = F2a + F2a_x = F2a_x (mod/?), so 

^ + # i - ^ - i - 4 f i = ̂  + # i - 2Fa
2
 +Fa

2_l + 2FaFa_l (mod/?), 

where the last equality is found by expanding F2
+l - (Fa + Fa_l)2. This means 0 = F2 + 2FaFa_x 

(mod /?). Since i^ # 0 (mod /?), we can factor it out to get 0 = Fa + 2Fa_x (mod /?) or, stated 
differently, Fa ^ -2Fa_x (mod /?). Then Ffl+1 = Fa + Fa_x - - i ^ (mod /?). If Fa +, - (~l)kFa_k 

(modp) for all 0 < k < £ < a -1, then 
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= (-lY(FaHt.2) - Fa_(e_1}) = (-l)<Fa_t (mod />), 

so 

This means that if /̂  = 2 (mod 4), we have Q odd, so -̂ V_i = 1 (mod/?). If AJ = 0 (mod 4), we have 
a even, so F x = -1 (mod/?). 

Now assume that ^ is odd. Since Fr = 0 (mod /?), we get 7^ 2 = Fr+l (mod /?). Assume 
Fri+k = (-l)k-lFri_k(modp)for^llO<k<£<rl-l. Then 

^ ( - l ) ' - 1 ^ . , (mod/>). 

Therefore, F2n_l = iv.+o-.-i) = (-l)r,_2ivi_(r,_1) = -1 (mod/>). By (3) with n = rx-\,m = ru we get 

so iv2-i = _ 1 (m°d/?)> i.e., has order 4 modulo/?. • 

Lemma 6: For 0 < i < j < rx, 

Imi+iL Fln-m)h-iF^'-i (mod p). 

Proof: This is clear for /' = 0 = j . Assume true for all 0 < i < j; < k < rx for some k. Take 
\<£<k-\. Then, by (1), 

nrx + k 
mrx+l = F„ mrx+£+l 

nrx+k-l 
mrl + £ +iv (n-m^+k-i-l 

nrx + k-l 
mr1+£-\ 

The induction hypothesis gives 

\nrx + kl = rnrx ]\k-l] pi Fk-t-x F 
m)rx+k-t-l mn 

k-\ 
£-1 

k-t 
(n—m)^ —\rmr\ -1 

{F 
F 

V »" i - l 

k-X 
£ 

= \nri\ F£ Fk~£ 

L ^ r i J g (w_,M)ri" r,_1 

Using Lemma 3, we find this is equivalent to 

[/»! + * ] • = r ^ i l Ft Fk-i(FM\k-i 

By (1), we conclude that 

{n-m)rx +k-£-l 

1 (n-m)rx-\ 

/ f c - l 
£ - 1 %, 

+ 
Fk-t-i 

b FX 

k-X 
»y 

(mod/?). 

(mod /?). 

fc,+4-tei['i^-*-'<-''<mod") 

The cases £ = 0 and £ = £ are dealt with similarly. D 
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4, MAIN RESULTS 

Theorem 1: Let r - max,^-^-. The number of entries in the rfi1 row of the Fibonacci triangle 
not divisible hyp is 2*13*24*3... rSr~l, where % is the number of I'S in the base p expansion of n. 

Proof: First, we note that the maximum exists. It is well known that rx<p + l. By (4), we 
know that ^ ^ p for / > 1, so r < p +1. 

By Kummer's Theorem for Generalized Binomial Coefficients, /?|[£]g if and only if there is 
no carry when k and n-k are added in base p. Let the base p expansions of n and k be n = 
(nt... n2nln0)p and k = (kt... k2k1k0)p. Then there is no carry when adding k and n-k in base p if 
and only if kt < nt for all i. For a fixed n, the number of such k is 11/(^ +1) since there are (nt +1) 
possible values of kt less than or equal to ni. • 

The iterative structure of Pascal's triangle modulo 2 has been studied extensively (see [13]). 
Recently, the iterative structure of the Fibonacci triangle modulo 2 has also been studied. In par-
ticular, a map between the Fibonacci triangle modulo 2 and Pascal's triangle modulo 2 was found 
in [11]. For all primes p^2,5 whose rank of apparition is even, we get an analogous result: a 
map between the Fibonacci triangle modulo p and Pascal's triangle modulo p. While the result for 
these primes is similar to the case p = 2, our method of proof is different and, in fact, breaks 
down for p = 2. 

Theorem 2: Let p^2,5 be a prime. There is the following connection between the Fibonacci 
and binomial coefficients modulo/?: 

~nrx 
krx 

B » W * M (mQdp) 

In particular, the triangle A^ formed by having [^] g (mod/?) as the k^ entry of the 17th row is 
Pascal's triangle modulo/? if and only if rx is even. 

Proof: By definition 

nrx 
krx 

FnnFm-l---F( (n-k)rx+l 

Fkrx
Fkrx-\' •F2F, 

Separating the factors divisible hyp from those not divisible by/?, we get 

nrx 
\krl 

Fnrx
 F(n-l)rx • • • F{n-k+l)rx 

FkrF(k-l)rx-"Frx 

F«_,F„_o...F, nrx nr\ (n-k)rx+l 

Fkrx-lFkrr 
[ 1 

Using Lemmas 3 and 4 to simplify, we obtain 

lkrL 

_ rnrx (n-l)rx .E (n-k+l)rx
 rnrx+l rnrx+l rnrx+l 

Fkrx
F(k-l)rx 

Fkrx+l Fkrx+l pjfcr,+l 

F„E _ rnrx
r(n-l)rx -~r{n-k+\)rx 

.F,„ 

^krx^{k-\)rx '"^rx 

1 nrx+l • 

yFkrx+\J 
( m o d /?). 
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Using Lemma 4 to simplify further, we get 

1% Fkri
F{k-\)r{—r^ 

\7\ -F*y?'"F^ V^J*-* (^dP). (6) 
Now there are two cases to consider. If the number of factors of/? in the numerator of the 

fraction 

is greater than the number of factors of/? in the denominator, then [/£j]8= 0 (mod /?). But by 
Rummer's theorem applied to s4 = {FriJ}J=l, p\[^]d if and only if there is a carry when adding k 
and n — k in base p' - {p0, px, p2 . . . } , where pf is defined by pj \FrJ if and only if pi \j. By (4), 
all the Pj are powers ofp, so there is a carry when adding & and n- k in base £?' if and only if 
there is a carry when adding k and « - k in base/? (i.e., {1, /?, p2,...} ). By Kummer's Theorem for 
Generalized Binomial Coefficients, there is a carry when adding k and n - k in base/? if and only if 
p\(l). In short, modulo/?, the zeros of [J£j]8 correspond to the zeros of (£), since the base p' 

for sl= {Fru}J=l is the same, up to repeated terms, as the base corresponding to (£), namely, 

Now consider the case where the number of factors of/? in the numerator of the above frac-
tion is the same as the number of factors of/? in the denominator. We know that Fnr[ = Fn (nF"~l) 
(mod p2) by Lemma 2, so 

J7 J7 77 / \ Z7«-lz7«-2 J7n~k 
rnrx

r{n-l)rx •••r(n-k+l)rl ' " * r-^r*--*-' -r^-
^krx ^(k-l)rx • • • A , W ^ >j + 1 ^ n + 1 • • • ̂  >. +i 

This means that (6) can be simplified to 

tel-(*)^r"F<r^ <m°d"> (7> 
By Lemma 1, this simplifies to 

[*?L • © ^ " " ^ ^ ^ - {t]FXk)n (rnodp). (8) 
This proves the first assertion of the theorem. 

Now suppose that rx is even. By Lemma 5, Fr+l = ±1 (mod/?). Then (8) reduces to 

nrx 
hrx M (mod/?). 

Finally, we need to show that when rx is odd, AFP is not the same as Pascal's triangle modulo 
p (p = 2 being the lone exception). For this, it is enough to show a single entry that does not 
match. By (8), 

ftl-®^ <mo<"') 
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By Lemma 5, when rx is odd, Fri+l has order 4 modulo/?. In particular, an odd power of Fr+X 

cannot be congruent to 1 modulo /?, so 

Lri Jg ±l*\ (mod/?). • 

In the case p = 5, we find A/? is the same as the Fibonacci triangle modulo 5. The case 
p = 2 was dealt with previously in [11]. 

We note that there are infinitely many primes/? for which AFP is the same as Pascal's triangle 
modulo p and there are infinitely many for which AFp is not the same as Pascal's triangle modulo 
p. By Theorem 2, this is equivalent to saying there are infinitely many primes p for which rx is 
even, since there are infinitely many F2i and for i > 2 there is always a prime factor of F2, which is 
not a prime factor of F2j for any j < i [this follows from rx(2) = 3, F2t > F2J for / > j and (4)]. 
Similarly, Fy, / > 2 may be used to show that infinitely many primes/? have odd rx. 

As a result of Theorem 2 and Lemma 6, we have the following connection between an arbi-
trary nonzero Fibonacci coefficient modulo p and a well-defined Fibonacci coefficient in the first 
rx rows of the Fibonacci triangle. 

Theorem 3: For p^2,5 a prime, we have 

[m 

Proof: By Lemma 6, 
mrx+i 

FrMn-m)+i{n-m)+m{j-i) ( m o d / ? ) (9) 

[̂ l-teLt'K"'-'̂ 'lmoip) 
By (8), this becomes 

\nrx+j 
\_mri' 

Applying Lemma 1, we get 

m^+i 

nrx+j 

{$]/$"-m%-^F^ <mod^ 

• \ n \ \J\ J7r\m(n-m) J7Kn-m) Erm(j-i) 

\m)uhri+l n+l r,+1 

Fr^(n-m)+i{n-m)+mU-i) ( m o d / ? ) Q 

Theorem 3 allows rapid computation of [n
k\ (mod/?) for large n, k as shown in Examples 1 

and 2 in the next section. Theorem 3 may be interpreted geometrically as a relation between 
columns in rows nrx to nrx +(rx -1) and the first rx rows of the Fibonacci triangle modulo/?; each 
entry in the first rx rows is multiplied by the constant fc)p£*™M™>*»U-0 modulo/? to get the 
corresponding entry between rows nrx and nrx + (rx-l). This is demonstrated in Example 3 of 
Section 5. 
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5. EXAMPLES 

Example 1: In order to calculate [4^ (mod 13), we first note that for /? = 13, rx = l, and 
F^ = F6 = S (mod 13). Then by (9) we have 

'83 
46 i^tflMl^^ 

Remembering that F6 has order 4 modulo 13 (since rx is odd), we have 

'Jg 
g(3)(2Xl) : 

"J8f •G? L4J, 
82 (mod 13). 

Since (") = 7 (mod 13) and [\\ = 1 (mod 13), we conclude that 

= 7(1)(-1) = 6 (mod 13). 83 
46 

Example 2: In order to calculate ['̂ glg (mod 89), we note for p = 89, /j = 11, and iv,-i = 1̂0 -
55 (mod 89). Then by (9) we have 

10001 _ [90(11)+ 101 = ( 9 0 W 
[768jg-L69(ll) + 9 j g - H L 9 . 

Fi(ollX69)(90-69) ( m o d g9) 

Since (;$) = 0 (mod 89) (i.e., a carry occurs when adding 21 and 69 base 89), we conclude that 

1000 
768 = 0 (mod 89). 

Example 3: Theorem 3 can be interpreted geometrically. For p = 3 we have /j = 4 and iv-i -
2 ^ - 1 (mod 3). The first four rows of the Fibonacci triangle taken modulo 3 are: 

1 
1 1 

1 1 1 
1 2 2 1 

FIGURE 2. Basic Triangle Modulo 3 
By Theorem 3, this 4-row triangle with variations based on the parity of m and n will build 

the entire Fibonacci triangle modulo 3. Specifically for the 4 cases of m, n even or odd, we have 
1 

1 1 
1 1 1 

1 2 2 1 
m, n even 

1 
1 2 

1 2 1 
1 1 2 2 

/weven 

1 
2 1 

1 2 1 
2 2 1 1 

neither 

1 
2 2 
1 1 1 

2 1 1 2 
weven 

FIGURE 3. The Four Variants of the Basic Triangle Modulo 3 
For example, the triangle in rows 4 to 7 (n = 1) and columns 0 to 3 (m = 0) is the second tri-

angle in Figure 3 with entry multiplied by (J) = 1. The triangle in rows 8 to 11 (n = 2) and 
columns 4 to 7 (m = 1) is the fourth triangle in Figure 3 with each entry multiplied by (J) = 2. 
These are shown in Figure 4. 
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1 
1 1 
1 1 1 
12 2 1 
10 0 0 1 
12 0 0 2 1 
12 10 12 1 
112 2 2 2 11 
10 0 0 2 0 0 0 1 
110 0 110 0 11 
1 1 1 0 2 2 2 0 1 1 1 
1 2 2 1 1 2 2 1 1 2 2 1 

FIGURE 4. Rows 0 to 11 of the Fibonacci Triangle Modulo 3 
More generally, to determine the triangle in rows An to An + 3 and columns Am to Am + 3, we 

pick the appropriate triangle in Figure 3, based on the parity of m, n and multiply each entry by 
©(mod 3). 
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1. INTRODUCTION 

In [3], Todorov proved a theorem related to the explicit expression for Stirling numbers of 
the second kind, S(n, m), in a very complicated way. In this paper, we shall prove that this result 
is a consequence of the well-known representation of the Stirling numbers of the second kind. 

Starting from the rational generating function for Stirling numbers of the second kind, 

= ^S(n,m)t", (1) 
(1 -00-20- (1-^0 „t 

we find that the left side of (1) is identical to 
tm(l + t + t2 + ---)(l+2t + 22t2 + ---)---(l + mt+m2t2 + ---) 

( ^ , (2) 

n=m 
= £ £ 1*'2*» •••»!*' 

If we identify coefficients of f from equations (1) and (2), we get (see Aigner [1] or Comtet [2]): 

S(n,m)= £ 1 '2 k\ r\ K') k— 
•m 

kx+k2 + ---+km=n-m 

This formula is identical to 

S(n,m)= X hh'-'n-m- (3) 

In this paper, we prove that Todorov's expression for Stirling numbers of the second kind (see 
[3]) is a simple consequence of the representation (3). 

1. THE MAIN RESULT 

Let us take, in (3), the change of indices in the following way: 

i, = J,s (*=1,2,...,*). (4) 
Then, from 1 < ix < i2, we have 2 < ix +1 < i2 +1, i.e., 2<jl<j2-l. Similarly, from 

(Vse{1,2,...,£}), s ^ + s - 1 ^ + 5 - 1 , 

using (4), we get 
S ^ ^ - l (5 = 2, . . . , k). 

For k=n-m, we obtain k + l<jk-(n-m)<m, i.e., k + l<jk <n. So, the sum on the right 
side of the equality (3) is identical to 
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S(n,m)= ± 7 f -JfJf(jk-k)Uk_1-k + l)...(jl-l), (5) 
Jk=k+l Jk-\=k J2=3 J\=2 

which is the result from [3]. 

Example: We use n = 6, m = 3, and k = n-m = 3. Following the change of indices from the 
equality (4), we get ix = jx - 1 , i2 = j 2 - 2, and z3 = j3 - 3. Then, from 1 < ix < i2 < i3 < 3, we have 
2 < y 1 < j 2 - l 3 3 < 7 2 < 7 3 - l 3 a n d 4 < j 3 - 3 < 3 ? i . e . J 4 < j 3 < 6 . 

After these transformations, from formula (3) it follows that 
5(6,3) = 90= X hhh 

l<i,<l2</3<3 

= 1-1-1 + 1-1-2 + 1-1-3 + 1-2-2 + 1-2-3 + 1-3-3 + 2-2-2 + 2-2-3+2-3-3 + 3-3-3 
= l -M + 2-(M + 2-l + 2-2) + 3-(M + 2-l + 2-2 + 3-l + 3-2 + 3-3) 

= Z ZE1(73-3)(72-2)a-l), 
; 3 = 4 y2=3 / i=2 

which is formula (5), where we use n = 6, wi = 3, and k-n-m-3. 
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1. INTRODUCTION 

All graphs in this article are finite, undirected, without loops or multiple edges. Let G be a 
graph with vertices vl5 v2,..., vn. The complement in G of a subgraph H is the subgraph of G 
obtained by deleting all edges in H. The join GxvG2 of two graphs GY and G2 is obtained by 
adding an edge from each vertex in Gl to each vertex in G2. Let Kn be the complete graph and 
Pn the path on n vertices. 

The concept Fibonacci number f of a simple graph G refers to the number of subsets S of 
V(G) such that no two vertices in S are adjacent [5]. Accordingly, the total number of subsets of 
{1,2,..., n) such that no two elements are adjacent is Fn+l, the (n + if* Fibonacci number. 

2. THE FIBONACCI NUMBER OF A GRAPH 

The following propositions can be found in [1], [2], and [3]. 
(a) f(Pn) = Fn+l. 
(b) Let Gj = (V, £,) and G2 = (V, E2) be two graphs with E^ c E2, then f(G2) < / ( Q ) . 
(c) Let G = (V,E) be a graph with ux,xi2,...,us vertices not contained in V. If G1 = (V1,E1) 

denotes the graph with V1 = V<J{U1,...,US} and Ex = £u{{w1,Vj),\<i<s,Vj eV}, then 
f(Gl)=f(G)+r-i. 

(d) A fan on k vertices, denoted by Nk, is the graph obtained from path Pk_x by making vertex 1 
adjacent to every vertex of Pk_l9 we have f(Nk) = Fk +1. 

(e) If J is a tree on n vertices, then Fn+l < f(T) < 2"~l + 1. The upper and lower bounds are 
assumed by the stars Sn and paths Pn9 where f(Sn) = T~l +1 and f(Pn) = Fn+V 

(f) If Gx and G2 are disjoint graphs, then f(Gl ^J G2) = /(Gj) • f(G2). 

3. THE SPECTRUM OF A GRAPH 

The spectral radius r{G) is the largest eigenvalue of its adjacency matrix A{G). For n > 4 let 
"Kn be the class of all maximal outerplanar graphs (Mops for short) on n vertices. If G GK„, 
then G has at least two vertices of degree 2, has a plane representation as an n-gon triangulated by 
n- 3 chords, and the boundary of this «-gon is the unique Hamiltonian cycle Z of G. As in [4], 
we let P* denote the graph obtained from Pn by adding new edges joining all pairs of vertices at a 
distance 2 apart. An internal triangle is a triangle in a Mop with no edge on the outer face. Let 
<§„ be the subclass of all Mops in Kn with no internal triangle. Rowlinson [6] proved that 
Kx v Pn_1 is the unique graph in <§„ with maximal spectral radius. He also proved the uniqueness 
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of P% with minimal r(G) for all graphs in <§„. In [6], Cvetkovid and Rowlinson conjectured that 
Kl\/Pn_l with spectral radius very close to l + 4n is the unique graph with the largest radius 
among all Mops in K„. In [2], Cao and Vince showed that the largest eigenvalue of Kx v Pn_l is 
between l + V^-2 + / 7^2^ and 1 + Vw. This result comes close to confirming the conjecture of 
Rowlinson and Cvetkovid but does not settle it. 

We will show that these two graphs Kx v Pw-1 and P* are extremal and unique in Kn with 
respect to their Fibonacci numbers. 

All Mops of order 8 are shown in Figure 1. Each Mop is labelled by its spectral radius r and 
Fibonacci number/ 

4 THE UPPER BOUND 

We established in [1] an upper bound on/of all Mops in $£„ as in the following theorem. 

Theorem 1: The Fibonacci number/(G) of a maximal outerplanar graph G of order n > 3 is 
bounded above by Fn +1. Moreover, this upper bound is best possible. 

The upper bound in Theorem 1 is realized by the Mop Kx\/Pn_v Here, we prove that this 
Mop is unique. 

Theorem 2: Kx v Pn_x is unique in Kn. 

Proof: We suppose that n>6 because, if n{4,5}, then Kx vPn_x - P% and 3£„ contains only 
one graph. We continue the proof by induction on n. Assume uniqueness for all Mops of order 
less than n, and let G be a Mop of order «, G*Kxv Pn_v There exists a vertex v of degree 2 in 
G. We consider two families of subsets of V(G). Each subset in the first family contains v, 
whereas v is not in any subset of the second family. Let u and w be neighbors of v in G. Deleting 
u and w, we obtain the outerplanar graph Gu w of order n- 3 and the isolated vertex v. Since G is 
a triangulation of a polygon, GM w contains a path Pn_3 of length n-4. 

Note that v can be chosen so that d(u) + d(w) in G is minimum. Also, since G ^ Kx vi^_1? 

then GUiW * Pn_3. Moreover, Pn_3 is a proper subgraph of GMjW. By Proposition (a), 

f{P„-,)=F„_2 

and, since v is a member of every subset of V(G), 

f(P„-3 ^{v}) = f(P„-3). 
Now, by Proposition (b), 

f(Gu,w)<Fn-2-
Next, we consider those admissible subsets of V(G) not containing v. Let Gv be the remain-

ing graph of order n-\ after deleting v. Gv is maximal outerplanar of order n-l. By the induc-
tion hypothesis, KlvPn_2 is unique in $4_i, and this implies that /(Gv) is strictly less than 
Fn_l +1. Combining the above results, we have 

/ (G) = /(GM,W) + F(GV)<^_2+FW_1 + KFW + 1. 
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(10) r = 3520, / = 29 (11) r = 3516, / = 29 (12) r = 3All, f = 28 

FIGURE 1. Twelve Mops with Their Spectral Radii and Fibonacci Numbers Indicated 
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5. THE LOWER BOUND 

For the lower bound in Kn, we let Hn = P*, n>6. These Mops Hn satisfy a recurrence 
relation f{Hn) = /{H^ + f(Hn_3), whose solution hn is 

h = U + V + 10 
3u+3v 

u + v + l 
+ 

+ 

u + v-5 
3u+3v 

u + v-5 
3u+3v 

U + V-2 , U-V nr. 

——+~r^\ 
u + v-2 u-v V3z 

where 
J29 + 3V93 , J29-3V93 

u = 3 a n ( J v = 3 
V 2 V 2 

After simplification, we have 
/i„= (1.3134...)(1.4655...y\ 

Figure 2 shows a configuration of i/w for the even and odd cases. 

k + l k + 2 k + 3 k + 4 k + 5 2k - 1 

s s s s 
) 

Ik 

& 
k-l 

k+l k+2 k+3 2k-l 

& 
5 k-l k 1 2 3 

FIGUME 2. J?M Satisfies the Lower Bound 

k-l 

Theorem 3: The Fibonacci number f(G) of a maximal outerplanar graph G of order /? > 3 is 
bounded below by f{P„). Moreover, P% is unique. 

Proof: As in the proof of Theorem 2, we suppose n > 6. We will prove the theorem by 
induction on n. The result is obvious for graphs of small order. Assume the validity of the theo-
rem for all Mops of order less than n and let G be a Mop of order n where G ^ P*. Each Mop 
has at least two vertices of degree 2. Suppose v is a vertex of degree 2 and u and w are adjacent 
to v. Since there are at least two choices of v, we will choose vertex v such that d(u)+-d(w) is 
maximum. We consider two families of subsets of V(G). Each subset in the first family contains 
v, whereas v is not in any subset of the second family. Deleting u and w, we obtain the outer-
planar subgraph GM w of order n-3 and the isolated vertex v. Now Guw is not maximal. We 
construct the Mop G*tW containing Gu^w by adding edges in such a way that A(G*>W) >5. This 
construction is always possible due to our choice of the vertex v. Thus, G* w * î 2_3 and, by the 
induction hypothesis, 

f{GuJ > /(G„* J > /(P„2_3) = f(H„_3). (*) 

Next, we consider those sets of V(G) not containing v. Let Gv be the remaining graph of order 
n - 1 after deleting the vertex v. Gv is a Mop. By the induction hypothesis 

f(Gv)>f(Pll) = f(H„_l). (**) 
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Combining (*) and (**), we have 

/ (G) = f(Gv)+f(GKW) > f{Hn_,) + f(Hn_3) = f(H„) = f(P>). 

We summarize our results for n < 20 in Table 1. 

TABLE 1. The Fibonacci Numbers Fn, f(Kx v/>„_,) and/(P„2) for n < 20 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

K 

r~ i 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 
2584 
4181 
6765 
10946 

MvU 
i 
2 
3 
4 
6 
9 
14 
22 
35 
56 
90 
145 
234 
378 
611 
988 
1598 
2585 
4182 
6766 
10947 

KPn) 
i ; 
2 i 
3 
4 
6 
9 
13 
19 
28 
41 
60 
88 
129 
189 
277 
406 
595 
872 
1278 
1873 
2745 
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1. INTRODUCTION 

A Fibonacci-related sequence is used as motivation for the representation of a resulting infi-
nite series in closed form. Use is made of Z transform theory in the solution of a homogeneous 
difference-delay equation, together with an appeal to some asymptotic properties. 

2, METHOD 

Consider the homogeneous difference-delay equation 

fn+l-¥n-cfn-a=°> " ^ , 1 ( 1 ) 

fn+l-¥n = 0, n<aj 
with fQ = l;a and n are positive integers including zero, and b and c are real constants. 

The Z transform of a sequence {/„} is a function F(z) of a complex variable defined by 
F(z) = Z[fn] = EjJL0 fnz~n (see [6]) for those values of z for which the infinite series converges. 

Taking the Z transform of equation (1) and using the initial condition f0 = 1 yields, upon 
rearrangement, 

Z 7a+l 

In particular, putting c • 

and expanding in series 

z 
- b, equation (2) ma) 

F(z) = 

form results in 

FCA: 

-b 
rbe 

(*-

OO 

-cz~a 

put in 
z 

-b)[l~ 

v ¥zl 

za+1-bza-
the form 

bz-aV 
z-b\ 

-ar 

-c 

r=Q{z-b) 

Convergence of the infinite series (3) is assured for \j^\ < 1. 
The inverse Z transform of (3), from tables given in [6], is 

fn = iin~rarY"-ar)U{n-ar), (4) 
r=0V / 

where U(n - ar) is the discrete step function. Equation (4) may thus be rewritten as 

/.= z {n-r
ary-ar\ (5) 

where [x] represents the integer part of x. 

1998] 211 



ON A FIBONACCI RELATED SERIES 

The inverse Z transform of (3) may also be expressed as 

f^i^^-lfH^) (6) 

where C is a smooth Jordan curve enclosing the singularities of (2) and the integral is traversed 
once in an anticlockwise direction around C. [Here in (6) it may be shown that there is no contri-
bution from the integration around the contour.] 

For the restriction (which will subsequently be required for a resulting infinite series) 

(o + l) a+\ 

(ab)° 
<1, (V) 

the characteristic function 
g(z) = za+l-bza-b (8) 

has (a +1) distinct zeros ^-, j = 0,1,2,..., a. All the singularities in (2) are therefore simple poles 
such that the residue, Res7, of the poles in (2) may be evaluated as follows: 

Res, = lim ( Z ^j\a+l_bza_c (a + l^.-af 

From (5), and using (6) and (9), it can be concluded that 
lnl{a+\)]fM „„\ _a_ P"+l 

ab 

(9) 

(10) 

3. CONJECTURE 

A Tauberian theorem [1] suggests, from (10), that 
[n/(o+l)l 

/.= I r=0 

cn+1 
n-ar\h(n-ar)_ 

r ) (a + l)40-ab' 
(11) 

where £0 ;is the dominant zero of (8), defined as the one with the greatest modulus. 
For n large, more and more terms in the left-hand side of the series (11) are incorporated, and 

therefore it is conjectured^that 

for all values of n. 
Using the ratio test, the infinite series in (12) may be shown to converge in the region given 

by (7). A diagram of the region of convergence is shown as the shaded region of Figure 1 on the 
following page. 

It is now worthwhile to examine briefly the location of all the zeros of (8) and highlight the 
fact that £0, the dominant zero of (8) is always real. Details of the following statements may be 
seen in the work of Sofo and Cerone [4]. 

It may be shown, by using Rouche's theorem [5], that the characteristic function (8) with 
restriction (7) has exactly a zeros in the contour r : | r | < ab | 

fl+l| Since the coefficients of (8) are 

212 [JUNE-JULY 



ON A FIBONACCI RELATED SERIES 

real, its complex zeros occur in conjugate pairs. Hence, the one remaining zero of (8), occurring 
outside the contour T, must be real. Furthermore, it can be shown that g0>h for b>0 and 
\£0\>\^\forb<0. 

-10 

a value 

FIGURE 1. The Convergence Region (7) 

Utilizing (10) and the conjectured result (12), it may be seen that these would imply 

y"(n-ar)h(„-ar) y In-arWar) gg 
h \ r ) J&y r ) (a + ltfo-ab' 

so 
y (-{n- ar)\. _(„-flr) _ _ y W 

such that 

I (-D r+ifar+r-l-n 

ab 

$ 
:n+l 

h-{n-ar) _ JST *J 
ab' 

where use is made of the relation (see [3]) 

-m) = (-iym+n-1) and [°] = 0. (13) 

4. PROOF OF CONJECTURE 

Consider equation (12) and let n - -aN such that 

y (-a(N+r)\-a(N+r) _ €oaN+i 

£1 r ) (« + lKo- ab' 

Utilizing the result 

b-a(N+r) _ 

(14) 

1998] 213 



ON A FIBONACCI RELATED SERIES 

from (8) and equation (13) allows the left-hand side of (14) to be expressed as 

y f-a(N+r)\ b-a(N+r) = Y(_ w(aN + ar + r -1 
1+a 

= y (- iyfa^+ar+r ~ A a ( y r ) f a N + a r 1 ^-^i+flx^+o 
r=0 V V J k=0 V / 

(15) 

The convergent double sum (15) may be written term by term as 

aN-l 
0 

raN + a 

I 1 

^ W«)" + ... + [f i ]^+D + f a_l]^N+0) 

faN + a 

v o J 
a(l+aXN+l) aN + \ \ 

raN + 2a + l\ 

) 

(aN + 3a + 2 
0 

aN + 2a 
0 

(aN + 3a 

v 

£ •a(l+aXW+2) 

0 fo 

'aJV + a - l J * 0 

aAT + 2a N, 
+ - + U + 2a-lF 

aN + 3a , a(l+aX^+3) 

aN + a 
aN + a 

a(N+3)\ 

a(N+4) 

\ 
p-a(N+l) 

\b0 

J 
aN + 2a\ 

aN + 2a) 
bO 

aiV + 3 a f ° J 

(16) 

+ •• 

Summing (16) diagonally from the top right-hand corner and gathering the coefficient of inverse 
powers of £0 gives 

Y^ f l ( jv+r)V/ iv-*f a(N+r-k) Va(N + r-k) + r-
r=0 fc=0 V v ' /V 

After some lengthy algebra, (16) may be written as 

(17) 

«T oAf l+a^c-iyo+arv r=l 

_ e-aAf 
~ So i+IS 

.0+«)+£. 

= & aN+l 

( l + a ) 4 - « ( ^ ) 
lo aW+1 

(l + a ) £ 0 - a £ : 

which is identical to the right-hand side of (14); hence, the conjecture is proved. 

Some numerical results of the conjecture, to five significant digits, are shown in the following 
table. 

n 

3 
3 
3 
3 

a 

3 
3 
4 
4 

b 

e 
-e 
1.9 

-1.9 

4o 
2.83729 

-255538 
2.01521 

-2.01521 

Sum and Right-hand Side of (12) 

20.28791 
-20.63241 

6.66073 
-6.66073 
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5, OBSERVATIONS 

1. In the special case in which a = 1, h = 1, the two zeros of (8) are the Golden ratio a = £0 = 
(1 + V5) / 2 and /? = ^ = (1 - J5) 12 and equation (1) is the Fibonacci sequence. From (10), 
the familiar relationship 

Jn k\ r ) CC-P 
is obtained. 

2. Other parameter values (a, h, c) may be taken so that the solution of (1) may involve known 
polynomial solutions, such as the Tchebycheff polynomials. 

3. In equation (12) the restriction of (n, a) being natural numbers can be relaxed to (n, a) being 
real numbers, in which case the combinatorial relation would involve Gamma functions. 

4. For n>a, the closed-form expression at (12), namely, <^+1 /[(I+a)£0-ab] is, in fact, a solu-
tion to the difference-delay equation (1); this may be verified by direct substitution. 

5. Equation (1) may be extended easily to consider a forcing term of the type wn = (^)6W, for 
example, for m and n positive integers. 

6. CONCLUSIONS 

A technique has been demonstrated whereby closed-form representation of infinite series may 
be determined. The method described in this paper may be modified and utilized to consider 
difference-delay equations of higher order, nonhomogeneous difference-delay equations, equa-
tions with poles of multiple order, and equations with multiple delay. These variations will be 
considered by the authors in a forthcoming paper. The authors [2] also considered differential 
difference equations in which case resulting series were able to be represented in closed form. 
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1. INTRODUCTION 

The study of Fibonacci sequences in groups began with the earlier work of Wall [7], where 
the ordinary Fibonacci sequences in cyclic groups were investigated. Another early contributor to 
this field was Vinson , who was particularly interested in ranks of apparition in ordinary Fibonacci 
sequences [6]. In the mid eighties, Wilcox extended the problem to abelian groups [8]. Campbell, 
Doostie, and Robertson expanded the theory to some finite simple groups [2]. One of the latest 
works in this area is [1], where it is shown that the lengths of ordinary 2-step Fibonacci sequences 
are equal to the length of the 2-step Fibonacci recurrences in finite nilpotent groups of nilpotency 
class 4 and exponent a prime number/?. The theory has been generalized in [3] to the ordinary 
3-step Fibonacci sequences in finite nilpotent groups of nilpotency class 2 and exponent/?. 

Definition LI: Let H<G, K< G, and K<H. If HIK is contained in the center of GIK, then 
H IK is called a central factor of G. A group G is called nilpotent if it has finite series of normal 
subgroups G = G0 > Gx > • • • > Gr = 1 such that Gt_x IG, is a central factor of G for each / = 1, 2, 
..., r. The smallest possible r is call the nilpotency class of G. 

Further details about nilpotent groups and related topics can be found in [4]. 
Let G be a free nilpotent group of nilpotency class 2 and exponent p. G has a presentation 

G = (x, y9 z: xp = 1, yp - 1, zp = 1, z - (y, x) = y~lx~lyx). Suppose that we have integers n and m 
and a recurrence relation in this group given by 

We assume that p does not divide n. Then we get a definition of a 2-step general standard Fibo-
nacci sequence which will be (0,1, m,n + m2,...) in Z/pZ. Ifp were permitted to divide n, then 
the sequence ultimately would be periodic, but would never return to the consecutive pair 0,1. 
The length of the standard sequence is k, which we call the Wall number of the sequence, some-
times called the fundamental period of that sequence. 

Each element in the group G can be represented uniquely as xaybzc, where a, b, c G Z /pZ. 
The group relations give us a law of composition of standard forms 

xaybzc-xa'yb'zc' = xa"yb"zc\ 

where a", b", and c" are given by the following explicit formulas. 
We have a" = a + a', b" = b+b', and c" = c + c' + a'b. These product laws are discussed in 

more detail in [1]. In order to study this recurrence, we need a closed formula to describe how to 
take the next term of the sequence. Let {xay\b zc)n and (xa'yb'zc')m be two elements in G. The 
relevant formulas are 
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{xaybzc)n{xa'yb'zc')m = xa"yb"zc", 
where 

a" = na + ma', 

and 

c" = nc+mcf +mnafb+(n~^n ah+t™'1)™ a'b'. 
2 2 

2. THE MAIN RESULT AND PROOF 

Let us use vector notation to calculate the sequence. We put (l,0,G) = ($_l,r0,t0) which 
corresponds to x, and (0,1,0) = (% r1? tx) which corresponds to y. We demonstrate more vectors 
using the above product formula for c" as 

(n, m, 0)•= ( î, r2, t2) and mn, m2 + n, mn2 + yl \mn \ = (s2, r3, t3). 

We obtain two sequences (/;) and (tt) via our recurrence. Notice that we have sf - nrf for each 
integer /. By induction onj, the 7th term of the third component of our sequence of vectors is 

h = mnl X 7>-/-ir/2 + (2 f Z ry-/-iW-i +1 J r S ryw-iW+i • 

Let us denote the period of the general Fibonacci sequence in the group G by k(G). 

Theorem 2.1: Let p > 3 be a prime number. Then, if G is a nontrivial finite p-group of exponent 
p and nilpotency class 2, &(G) = k. There are four assumptions that we will insert: 
a) ?2 # 0 (mod/?), 
6) m + n-1^0 (modp), 
c) n2~m3-n-3mn#0 (mod/?), 
rfj 3w(m2 + n) # 0 (mod p). 

Proof: Let 
&-1 / \ k-i / \ &-i 

'* = ™l2Zr*-/-i'/2 + 2 wZ/*-/-iW-i + ^ pS'iw-iW+i. 
/=o V / 1=0 ^ ' 1=0 

where m,neZ/pZ, /? > 2. In order to show &(G) = k, we must check that ^ = ^+1 = 0. The 
range of all the following sums is the same as above. Since ri+l = mrt + wj^j, we can recast the last 
sum to obtain 

We separate this sum to the two parts, 

O^mJ+fymn^r^ and 02 = ̂ ] » + Q W
2 j X ^ - « - , -

We can pull out factors without difficulty. We put 
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ll = mn2+ 2 \mn and l2 = L p + L p 2 

and then set 
^i = 11^-1-1^ a n d ^2 = Zli-/-iW-i-

Now we have 0X = Z^ and #2 = /2^2, and we are in a position to show that </>x = 0 and <f>2 = 0. 
First, we prove that 

Now let us show that 

' - . = < - » ' * # ' 
If a and f5 are the roots of x2 -mx-n = 0, then aP = -n and a+P = m. We have, from the 
Binet formula, 

a7-/?7
 A or'-p-' 

ri= p a n d r-i= a -

a-p a-fi 
We multiply r_7 by (a/?)7 to see that 

r_, = (-i)'+1^J/;, (l) 
and also we have 

1+rt-i = 12-(-")'-1- (2) 
This formula was known to Somer [5]. By using r_(z+1) = (-1)7(^)/+1 ri+l and (2), we obtain 

Z^+iyK-i=Z(-^]TV+^Z'!-
We will prove that S/;= 0. Since our recurrence relation is rt =rnri_l+nri_2, we deduce that 
ET; = wE^_j + «I/;_2. Replace / - 1 by i in the first sum and / - 2 by /" in the second sum on the 
right side to yield' 

(!» + / ! -1)5>,=0. (3) 

Thus, Z^; = 0 unless m +w-1 is congruent to 0 modulo/?. The next step is to show that 

so we will be half way through the proof. From the recurrence relation, 

We expand this equation to obtain 
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Replacing / - 1 by i in the first, second, and third sums, and / - 2 by i in the last sum on the right 
side, we obtain 

(4) 

Now we have 

[" - v -!] z ( - ^ p'3+3w"Z (-iy+(£f VxK+«!-i)=o. 
Using mrt + wj.i = /}+1 and •̂+1/;_1 = /j2 - (-n)1'1 = J-2 + (-1)'(w)1"1, we obtain 

(»-^-i)Z(-iy(^p-3»Z(-iy(0>-3»z^=a 
The last sum is zero by (3). Then we have 

^-^-i-3")z(-iy^TV=o.. (5) 
We multiply (5) by n to see that 

in1 - m3 - n- 3^ )X("0 f -TV = 0. 
Finally, we have 

Z(-D'(0+V = O, (6) 
unless n2-m3-n-3mn is congruent to 0 modulo p. We deduce that $2

 = ®- Hence, we have 
completed the first part of the proof. Now we prove that the other part of tk is 0. By (1), write 

<*.=Z(-iy(^J+1W-
By (4), we have 

(„2 _nP_ w )£ (-iy (I)[+V+3wV]£ ( - i ^ i j[+V/-i 

+3/W»3X(-iy+1^)+2^i=o. 

From (6), we have our first linear equation: 

a ^ S C - 1 ^ } VM+3««2ZH)'(^J V i = o- (7) 
Therefore, from the recurrence relation nrt = ri+2 -mri+l and (6), we get 

v+i i / 1 v+i LH)(0*V4Z<-»^)\ / + 2 - ^ + l ) =0. 
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2 
ri+2ri+l 

We exploit this equation to obtain 

Replace i + 2 by / in the first, second, and third sums and / +1 by / in the last sum on the left side 
to see that 

-£l<-ir^)V=o. 
The first and last sums vanish by (6). We multiply the equation by n to obtain a second linear 
equation 

-awSC-iy^J V*-i+3^S(-i)(^)+1^-i = o. (8) 
Hence, from the linear equations (7) and (8), 

X(-iy(£j+V>j-i=o (9) 
and 

I ( - i ) ' ( ^ ) V i = o, (io) 

unless 3mn(m2 + ri) is congruent to 0 modulo p. Replacing i -1 by / in (10), 

3w(iif2+ii)X(-l)'^J\i^ = 0. 

So we have finished the second part of the proof. Therefore, we have tk - 0. 

Similarly, 

tM = mn2Y^r^r? + (" jn^r^r^^ + ( 7 )w2>*wr,#;+1. 

From (1), we have 

4+1 = ™ 2 £ ( - l ) ' + ( ^ 

This is the same as 

4J.I = mn2 &-.r(i]^@|'(-.r'(i)'A,+@»|1(-r(ijA. 

+ ™„'(-l)*«[iĴ +Q«(-l)»«(lJriV1+Qn<-l)**(;J'i,'i«. 
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The last three terms are zero by the fact that rk = 0 because the period of the sequence ri is k. 
The first three sums are zero by exactly the same argument as in the proof of tk = 0. Hence, 
tk+l = 0. To be more explicit, the same restrictions are still valid for tk+l = 0. Thus, the proof of 
Theorem 2.1 is completed. 

This result has an obvious interpretation in terms of quotients of groups with presentations 
similar to those of Fibonacci groups, which is 

F(2, r, m, ri) = (xl,x2,...,xr: x^x^1 = 1, x2%%~ * = I • • •, ̂ V ^ f 1 = 1, x»x?jql = 1>. 
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1. INTRODUCTION 

One of the most effective ways of proving an integer N is prime is to show first that N is a 
probable prime, i.e., that aN~l = 1 (mod N) for some base a and l<a<N-l, and then to find 
enough prime factors of N±l so that certain other conditions are satisfied (see [1] for details of 
such primality tests). The problem of finding these prime factors is, of course, the difficult and 
time-consuming part of this process, and anything that assists in the factoring of N±l is of great 
value, particularly when N is large. 

In the case of the Fibonacci and Lucas numbers Fn and Ln, we are quite fortunate that identi-
ties exist whose form is exactly suited to this purpose. (These were discovered by Jarden [4, 
pp. 94-95]. Their use in primality testing was first made by the author in the early 1960's—see [4, 
p. 36].) The identities are all quite simple, asserting that Fn±\ and Ln±\ are equal to a product 
of certain Fibonacci and Lucas numbers with subscripts smaller than w, which numbers in turn 
may well have many known prime factors. Examples of these identities are: 

F4k+i - 1 = Fkh^ik+i a n d ^ 4 * + i + 1 = Fik+\hk • 
With the assistance of this set of identities, many large i^'s and Ln

%s have been identified as primes 
[2, p. 255]. 

In this note we give a collection of similar, but more complicated identities that can be used 
to establish the primality of'the primitive part F£ of Fk, i.e., the cofactor remaining after the alge-
braic factors of Fk have been divided out. This cofactor is given by the formula (see [2, p. 252]) 

F* = JjFfk/d\ ju the Mobius function. (1) 
d\k 

The subscript of F^ in the identities in the present collection has at most two distinct prime 
divisors, since an identity with three or more prime factors does not in general have a simple 
multiplicative structure on its right side, i.e., the right side is not just a ratio of products of Fk'§ 
and Z^s. The case of two prime divisors is transitional in that some identities have simple multi-
plicative structure and others do not [see (17) and (18)]. 

2, THE IDENTITIES 

In the proofs that follow, we use elementary Fibonacci and Lucas identities. Also, through-
out this note we use the familiar identity F2r - FrLr without further mention. In the first two 
theorems, the subscript of F£ is a power of a single prime. 

Theorem 1: For n > 3, 
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and 
K n-2 

Fr+1 = ̂ CL- (3) 
r2"~2 

Proof of (2): Substituting r = 2n~l and s = 2n~2 into the identity 

LrLs = Lr+s+(-l)sLr_s, (4) 
we obtain 

r2n~l 2"~2 

Proof of (3): Making the same substitution into the identity 

FsLr=Fr+s-(-iyFr_s, (5) 
we obtain 

2n~2 

Theorem 2: Let p = s (mod 4) be a prime, where s - ±1. Then, for n > 1, 

F*n _ l = pn-\ps)l2Lpn-\p+s)l2 ,gv 

V' 
and 

J7* , j = !f-l(p+s)/2 pn-\p-s)l2 (j, 
Pn F , 

Proof of (6): If we substitute r = i ? " - 1 ^ ) and 5 = p " " 1 ^ ) into the identity 

Fr+s = FrLs-(-iyFr_s, (8) 

and use the fact that F£n = Fn for n odd, then we obtain 

F* = p" = pn~l(p-£y2 P"~1(P+S)/2 , 

Proof of (7): This follows in the same way by setting r = p"" 1 !^ ) and j = ^""H^-)- Q 

i. For p = 3, formulas (6) and (7) have a particularly nice form: 

i $ - l = 4,-, and F3:+1 = Z2.3„_1. (9) 

2. For p = 5, formulas (6) and (7) are of not interest here, since F£, n>2, has 5 as an 
intrinsic factor [2, p. 252] and cannot be a prime. The numbers F*n/5 are dealt with in (26). 

J. For p = 7, formula (6) becomes the interesting formula 

r^n — 1 = Lrjn„\h^n-\-Liyrjn-\- (10) 

4 In general, if JV = -j (i^* ± 1) is a probable prime, then JV +1 = \ (F£ +1). 
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In the next theorems, the subscript of F£ has two different prime factors. 

Theorem 3: Let q be an odd prime, then for n > 1, 

F* n - (_l)(<?-l)/2 = qn-\q+l)l2rqn-\q-l)l2 , j jv 

and 

Also, for m > 2, we have 

F* + ( - 1 ) ^ - ^ 2 - g" \q+l)/2 q" !(g-l)/2 s^) 

and 

r 77 17 
17* _ 1 - 2m-lqn-\q+\)l2r2m-lqn-\q-\)i2 ( , ~x 

r2mq" l T V 1 J ' 

2 q L^m-Xf-X 

Proof of(11): Substituting r = q"-l{^) and s = cT\3±) mt0 Lr+s = 5FrFs + {-\)sLr_s, we 
obtain 

F* =
 F2qnqn-X qn 5Fq»-l(q+l)/2Fqn-l(q-l)/2 , n(q-l)/2 

qn 2gn qn gn 

Proof of (12): Making the same substitutions as in (11) into (4) leads to 

F* = q" =
 Lqn-\q+l)/2Lgn-\q-l)/2 , r^q-Y)l2 

2qn T T V V • 

V1 V1 

Proof of (13) and (14): These results are obtained similarly by using r = 2m~lqn~l(2±L) and 
s = 2m-lq"-l{£±) as in (11) and (12). D 

Theorem 4: If p<q,p and q odd primes, then for m, n > 1, 
cE 1 77 17 

77* _ , //"-y-1 V - y - 1 (q-lfpm-lqn-1 (<?+!) 
1 pmqn~l 

(15) 

Proof: For brevity's sake, put w = pn~lqn~l. Then, using the formula (see [5, p. 209, (79)], 
P-\ 

FPn = i(-V-£-(P;r)^-rFr2r, n odd, (16) 

we have that 

A ( - 1 ) ^ 5 — r />-,•> ^ y - i r / ° - ' g -
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FF -F F 
A wx pqw qw* pw 

= ̂ ±( - lX^(^- r )5^/r^_^ e i X ^P-rj 5 ^^ r a 

P-3 
2 

- ~ 7 - I Y 

p-3 

^ ^ i n r ^ 
S, ... /, (p-r\^-r\F^l-2r-Frl-2r 

^sF^F^i-F^ti-iy^f^;^ 
r=Q F-' V " ' I Fqw~Fw 

But, using the identity F^ - (-l)*(m 1}i^2 = i ^ + i ^ ^ - i ) w i t h k = w andnt = q,we have 

•^w^pqw ~~ •Fqvrpw 

— C I 7 77 17 77 
Jrqwrwrw(q-l)rw(q+l) l-^'r'H^^F}-

Thus, 

J7* 1 — pqw^w gw pw 
Ppqw ~ l ~ 17 F 

-*• qwx pw 

£-1 <—p-\-2r z7/?-l-2r> 

_ 5FwFw(q-l)Fw(q+l) V / i y P (p-r\^-r\FqPw * ~ Fw" [ 

It is worth while to give some special cases. 

Corollary 5: If q is a prime, then for m, n > 1, 
^/7 J7 /7 

P
3mgn-l 

and for q>7, 
9 C / 7 77 77 

J7* 1 - 5 3 5 3 (g"1) 5 9 (g+1) /z?2 . J72 A n $ n 
^5mfl« - I - ^ l^V-l^H + P

5m-\an-\ ~ *J • (1©) 
r5«V 

5m^« „ \^ 5m-l « -T- J- 5m-\ n 
•*• c m _ n - l 

The following are some further simple cases. Here q is a prime. 

^ - 1 = 1 ^ - 1 ^ , ^ 5 , (19) 

^ - 1 = 5 / ^ / ^ , ^ 7 , (20) 

and 

/ v ; - l = ̂ /^_1/V+1(25F/-10F?
2+4), qr^l l . (21) 

The next is a formula containing a "+1M. From numerical evidence, there seem to be few 
identities with a "+H that have a right side with a multiplicative structure. 
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Theorem 6: If q > 5 is a prime, then 

^ ; + i = ^ - (22) 

Proof: Using F3r = Fr(5F? +(-l)r3) and Zgr = Zr(5Fr
2 +(- l ) r ) , we find that Zg(F39 +2Fq) = 

LqFq(5Fq
2-3)+2FqLq = FqLq(5F*-l) = FqI^q. Thus, 

/Some Examples: We consider the factorizations leading to proofs of the primality of the prob-
able primes F*45, î *2853 and F*4203. In the first, we have 

F*45 = p;29 = -p0- = 349619996930737079890201. 

Then, by (20) and Tables 2 and 3 in [2], we find the complete factorization: 

5̂*29 ~ 1 = 5^28^9^30 = 5 ( A * M V X ^ 9 ( A 5 ^ ) 

= 5(3-281-29-13)(5142292)(22-ll-31-2-5-61). 

In the second, identity (20) gives 

^*285 ~ 1 = ^5*457 ~ 1 = 5 ^456^457^458 

= ^(^228M 14^57^7)^457(^229^29)5 

each factor of which is again completely factored using the tables in [2]. The primality of F*45 and 
^2285ls established, respectively, from these complete factorizations using Theorem 1 in [1]. 

In the third, identity (21) is used to obtain 

A 4203 ~~ 1 = ^7-2029 ~^ = TJ ^2028^030^ 

= IT ̂ 0 1 4 ^ 0 7 5 0 7 )(A°1 5 1015) ' 

where G = 25i^Q29-10i^Q29 + 4. As it happens, all the Fk's and Lk's can be factored completely 
and G is partially factored as G = 7-2629093-47472487-c, where c is a 1682-digit composite 
cofactor. Since the logarithm of the product of the 64 known prime factors in these factorizations 
(counting multiplicity) is about 33.9% of the 2544-digit number F*4203, the "cube root" Theorem 5 
in [1] can be used to establish the primality of this number. Fourteen of these factors have more 
than 20 digits. 

For another example, see [3, §4], where (18) is used in the primality proof of the 1137-digit 
probable prime î *225- A final example is the probable prime ^49 , for which not enough prime 
factors have been discovered to complete a primality proof. I would like to thank W. Keller for 
suggesting the above examples and for sending me information about them. 

The next theorem deals with those F*'s that have an intrinsic factor, which is divided out of 
the primitive part. Only the first power of an intrinsic factor can divide the primitive part. 
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Theorem 7: We have 

% + l = fl^ ̂ 2 , (24) 

% + l = ̂ „ n ^ l , (25) 

^ - 1 = 5 / ^ / 3 . , ^ , /1 > 2, (26) 

^ + 1 = ̂ ^ , ( 4 ^ , - 7 ^ + 1 4 ) , » > 1 . (27) 

Proof of (23) and (24): Using Zgr = Zr(Ar - (-1/) and 4 r = Z? - (-l) r2, we have 

Now, firom Z^-(-l) r5 = 4-i4+i> w e h a v e -̂ 3*2" ~ 2 = : ^ 2 M - 1 _ 5 = ̂ ^-A^+p from w h ich t h e 

identity follows. 
Also, from the equalities in (28), we have 

\^KT +2) = |(Z2„ +l) = i(Z^_1 -1) = ̂ (Z2„_, -1)(Z2„_, +1) 

^ ^ fc=2 t=2 k=\ 

Proof of (25): Using L,,. = Lr(L; - (-l)r3), we find that 
77 J7 T 

77* ^ " ^ r 1
 = IT = T2 _ o 

4-3" 17 F r ^2-S"-1 ' 
J 2-3" 4-3"-1 ^Z.3"-1 

which implies the result. 
Proof of(26): From (16), we obtain the formula F5r = 5Fr(5Fr

4 - 5Fr
2 +1), so 

% - 1 = ̂ f— 1 = 5 2 ^ ( / £ , -1) = SF^F^F^, 

using F? + {-W=Fr-iFr+x-

Proof of (27): From [4, p. 212, (86)], 

^|(-l)^V)^«odd, 

so L,„ = Z„(4 - 1L\ + ULI-7). Thus, 
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F* = F*rF*r-1 = i ^ - = L6.,„_, - 1L\„„_, + \4L]„„_, - 7 . n-\ 
'4-7n ' 

8-7" /7 C 7" 4-7""1 ' ^ 4 - 7 n - 1 4-7' 

from which the identity follows. D 

Remark: Numerical evidence suggests that, for n > 2, there are no multiplicative formulas for the 
even integers Nx = (F*3„ 13) - 1 and N2 - (F*n / 5) +1. On the other hand, if ±NX or y N2 should 
be probable primes, then the following formulas, which relate back to (24) and (25), might be 
useful in establishing their primality: 

2 l 2 
(K* \ Fl 4-3" + 1 

J 

and ~N7-l = — 2 2 2 
F* 

5~-l 

There are some other formulas involving F* and L* of various kinds, but these will not be 
considered here. 

We conclude this note by observing that the identities used in the proofs, such as those in (4), 
(5), and (8), each contain the factor (-1)*, which becomes the ±1 in the identity for F*±l. In 
general Lucas sequences, of which the pair {Fn}™=0 and {Ln}™=0 is a special case, this factor is Qs. 
Thus, the other Lucas sequences that have formulas like those in this note are those for which 
|g | = l(see[l,p.627]). 
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1. INTRODUCTION 

A directed graph, or digraph, is a finite set of vertices together with directed edges. A closed 
trail of a digraph in which no vertices are repeated is a cycle. A tree is an acyclic connected 
digraph and a forest is an acyclic graph (thus a forest is made up of trees) [1J. 

Starting with the elements of Zw as our set of vertices, we can create a digraph associated to 
any function/modulo n by having an edge from vertex bx to vertex b2 if f(J^) = b2 (mod ri). This 
digraph reflects properties of Z„ and/ 

Digraphs arising when f(x) = x2 have been studied in [2] and [5]. More recently, digraphs 
arising from f(x) = xk and n a prime have been studied in [4]. In this article we study digraphs 
arising from f(x) = xk and arbitrary n GM. 

Ifn = 2a UZi P? with a, > 1, a > 0, define 

(0 ifa = <U • [0 i f a<3 , 
1 [1 i fa>2, 2 [1 i fa>3, 

and 
L = lcm(2<\ 2S*~2\ pr'iP, ~ 1), .:,l£-lipm -1))-

We use L to determine when two digraphs are equal (Theorem 1). Define Gn (resp. Gn ) as the 
graph whose vertices are elements of Zw (resp. Z^) with an edge from \ to b2 ifbk = b2 (mod ri). 

Our principal results on G„ are: 
(1) Determine when G$ = G*2" (Theorem 1). 
(2) Show that elements in a cycle have the same order, d, and determine the cycle length, 

1(d), based on that order (Theorem 2). 
(3) Derive a formula for the number of cycles of order d (Theorem 3). 
(4) Show that the trees of all cycle vertices are isomorphic (Theorem 4) and derive a formula 

for the height of these trees (Theorem 5). 

We handle Gk-Gk by showing that well-defined parts of this graph are isomorphic to cor-
responding G^'s (Theorem 6). Finally, we use these well-defined parts and a result about the 
number of solutions to congruences (Theorem 7) to fill in the whole of G*. 

2, BACKGROUND RESULTS 

The following facts will be used in Sections 3 and 4. Facts 1, 2, and 3 are from [3]. 
Faet 1 (Chinese Remainder Theorem), If (mi9mJ) = l (l<i <j<n), then the simultaneous 
congruences x = at (mod04), 1 < i < n, have a unique solution mod m^ ...mn. 
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Fact 2. A necessary and sufficient condition for m to have a primitive root is that m = 2, 4, pe, or 
2pe, where/? is an odd prime. 
Fact 3. Let £ > 2. Then the order of 5 with respect to the modulus 2£ is 2£~2. 
Fact 4, For/? an odd prime either the congruence xk = b (mod pm), p\h has 0 or (k,pm~l(p -1)) 
solutions. The number of solutions of xk = b (mod 2a) is 0 or (2, A:/1 (2a~2, &)*2. 

Proof: If/? is an odd prime, Fact 2 says !tpm = Z m-i(/7-1̂ . Multiplication in Zy* corresponds 
to addition in Z^-i^ ,^ , so x* corresponds to kx. The map 

A*: Ip^tp-v -> ~Z-P
m-\p-\) such that ^ ( x ) = Ax 

is a (k,pm~l(p -1))-to-one map, so an element in Zpm-i^p_^ is either the image of (k,pm~l(p -1)) 
elements or none. 

For modulus 2a, Fact 3 says Z â = Z^1 x I^l_2. In Z21 x Z^-2, the multiplication by k map is 
(2, &)*1 (2a~2, £)*2 -to-one, giving our result. • 
Fact 5. In Zw, the cyclic group of order m, there exists an element of order £ if and only if £\m. 
Further, if there exists an element of order £, then there exist exactly </>(£) of them. 

Proof: lf£](m, then Lagrange's Theorem says there is no element of order £ . 
If £\m, then m~£u. For b an element of order m, we have £{ub) - (£u)b = mb = 0. Further, 

if£'<£ such that £'{ub) - 0, then m\(£'u), but -£'1/ < m, a contradiction, so t/Z? is of order ^ . 
Finally, we need to count the number of elements of order £ if there is at least one. For b of 

order m, we know ord(vft) = m/(v,m), so we get an element of order £ if and only if u = (v, m). 
Since u\m, we know v must be a multiple of u, but u = (vfu, m) if and only if 1 = (v', £). There are 
$(£) such values of v'. • 

Fact 6. For {mx, m^) = 1, we have 

Proof: The map p:Z*mim2 - > i , x Z ^ defined by p(x) = (x (modWj), x (modz^)) is easily 
shown to be a homomorphism. It is an isomorphism since Fact 1 allows us to define a map which 
is the inverse: 

p~l: Tmx x Z^ -» Tmxmi such that p~l(x, y) = z, 

where z = x (mod m^), z = y (mod m^. D 

Facts 2 and 3 tell us the structure of I*p<: 

T.= -p 

{1}, for/? = l,l=\ 
Z2, for/7 = 2,1 = 2, 
Z J X Z J M , for/? = 2,£>3, 0 ) 
^ ' ( p - i ) ' ^or/7 a n ° ^ prime. 

From the structure of Z^/ and Fact 6 follows the structure for Z^. If n = 2" YYJL 0 /3f' > t n e n 

?5^xrrfx z *^ x ^ x WD x '" x Wir (2) 
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Fact 7* In the group Z ^ x Z ^ x - x Z ^ , there are (ri\9 d)^, d)...(jnr,d) elements of order 
dividing d. 

Proof: Since the order of (xh x2,..., xr) is the least common multiple of the orders of the 
x/s, it is sufficient to show there are (m^d) elements of order dividing J in Zm.. Zm. is cyclic of 
order mt, so if A ^ there are <j>(h) elements of order exactly b. If b\m^ there are no elements of 
order b. The number of elements of order dividing d is thus 

£#*)= E #*) = (*"*) 
b\d,b\™t bKd,^) 

by a famous property of the Euler-^ function (e.g., [3], Exercise 1, Section 2.5). • 

3. STRUCTURE OF G** 

Gk is, by definition, the digraph whose vertices are the elements of lLn and with an edge from 
\ to b2 if b\ = b2 (mod ri). Since b\ (mod ri) is well defined for any given bl9 k and n9 the 
outdegree of any vertex in our digraph is one. Since the outdegree from any vertex is one, we 
know that each component of Gk contains at most one cycle. Since there are only finitely many 
vertices, it is clear that from any starting point iteration of the km power map eventually leads to a 
cycle, so each component contains exactly one cycle. The vertices in a component outside the 
unique cycle are thus acyclic and form a forest. 

If p\n Is a prime and p\b, then p\bk, so p\(bk (modw)). If p\b, then p\bk, so p\(bk 

(mod/*)). This says, if n = 2ap"lp%2 ...p%", there are at least 2m components, at least 2m+l If 
a ^ 0. In particular, we will examine the components with vertices relatively prime to n separ-
ately from those with vertices not relatively prime to n. 

Recall that Gk* was defined to be the digraph with the elements of Z^ as vertices and an edge 
from bx to b2 if bk = b2 (mod ri). By the last paragraph, we can study this graph independently of 
the vertices not relatively prime to n. We start our study with a lemma on tj/(d), the number of 
elements In Z^ of order d. 

Lemma 1: Ifn = 2a U™=1 p?' and y/(d) denotes the number of elements of order d In Z^, then 
m 

¥{d) = (2,d)s>(2°~\d)s*\{(d,prl(p< -1))- IY(8). 
1=1 8\d,8*d 

Proof: From Fact 7 and (2), we know the number of elements of order dividing d is 
(2,d)5i(2-2,d)s> IlU^pr'iP,--1)), i-e., 

m 

X yr(S) = (2, dt (2"-\ d)5*Y[(d, p?-l(p, -1)). 
S\d i=l 

Solving this for y/(d) gives the result. • 

The following results are analogs of results 11 through 14 of [4]. 

Lemma 2: The indegree of any vertex in G** is 0 or (2, *)* (2a~2, k)s> TJZL^k, p^iPi ~ 1)). 
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Proof: T^=I%1 xZ^_2 x Z *-i( _« x • • • x Z <j,-i( x). For b GZ*n9xk =b (mod w) is equiva-
lent to 

x*=Z> (mod 2"), 
x*=* (modrf1), /3x 

xk^b (mod/fr). 

By Fact 4 we know that, for/? odd, xk =b (mod/?"') has 0 or (k9 p^~l(Pj -1)) solutions and, for 
modulus 2*, there are 0 or (2, k)Sl (2a~2, k)Sl solutions. Taken together, the system (3) thus has 0 
or (2, *)*' (2*-2, k)8* WLi(k, p?-l(pt -1)) solutions. D 

Corollary 1: Every component of G** is cyclic if and only if (29k)8l(2a~2
9 kf1 =1 and 

(* , / f" 1 ( f l - l ) ) = lfiiraIli. 

Proof: If a component of Gk* is cyclic, then every indegree must be 1. By Lemma 2, this 
says (2, k)Sl (2a~2, k)8* YL?=l(k9 p^'l(pt -1)) = 1, so each factor must be 1. 

Conversely, if (2, k)8l(2a~2
9 kf2 = 1 and (A, p?r\pt -1)) = 1 for each i, then Lemma 2 says 

the indegree of any vertex must be 0 or 1. Since each outdegree is 1 and the sum of the indegrees 
and outdegrees must be equal, this forces each indegree to be 1, so every component is cyclic. • 

Corollary 2: Any cycle vertex has (2, k)Sl(2a'29 *)*2(nj!Li(*, p?~l(pt ~ l)))~l noncycle parents. 

Proof: If A is a cycle vertex, the indegree is at least one because it has a cycle vertex parent. 
By Lemma 2, the indegree of * is (2, k)8l(2a~2

9 kf1 Il?=l(k, p?1'^ -1)). Since exactly one of 
i's parents is a cycle vertex, there are 

(29k)*(2a-2
9k)s 

noncycle parents.- • 

( m \ 
\n(k>p?~i(Pi-i)) - i 

Theorem 1: kx = k2 (mod L) if and only if G*1* = G*2*. 

Proof: Since Z^ = Zf1 xZ**_2 x 7Lp<*-\p_i) x ••• xZpyi^Pm_^9 all elements have orders divid-
ing L and we know that there exists an element of this order, namely, (1, 1,..., 1). 

If kx = k2 (mod L\ then for any b e C 6*» = 6*2+^ s 6** (mod /i). 
Conversely, if G*r = G*2, then A*1 = A*2 (mod w) for all b e Z£. This means ord„61(kx ~ k2). 

Since there is an element of order Z, we get kx = £2 (mod L). D 

We now classify whether an element of a given order will be in a tree or cycle. First, we fix 
notation: factor L = tw for t the largest factor relatively prime to k. 

Lemma 3: The vertex A is a cycle vertex if and only if (ord„A) 11. 

Proof: If b is a cycle vertex, then there is some £ such that bk =b (mod n). We assume £ 
is the minimal natural number with this property. Since bk _1 = 1 (mod ri)9 we know that 
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(ord„ft)|(Ji^-l), so (ord„ft,&) = land(ord„ft,w) = l. Since (ord„ft)|Z, we have (ord„ft)|rw, so 
(ord„ft)|r. 

Conversely, if (ord„ft)|/, then bl = 1 (mod n), so (t, k) - 1 implies there exists £ > 0 so that 
kl = 1 (mod t). This means ft* _1 = 1 (mod n\ so bkt = ft (mod ^), so ft is a cycle vertex. D 

An immediate corollary of this classification is a count of the number of cycle vertices in Gk*. 

Corollary 3: There are (2, t)s* (2a~2, t)5* II™ ̂  p-^iPi ~l)) cycle vertices. 

Proof: By Lemma 3, we are counting the number of elements of 7*n of order dividing t. By 
(2) and Fact 7, there are (2, i)5x(^a~2, if1 U™=i(t, p?~l(Pi ~ 0) elements of order dividing t. D 

The following result gives a connection between cycle vertices in the same cycle. 

Lemma 4: Vertices in the same cycle have the same order modulo n. 

Proof: It is enough to show that consecutive vertices in a cycle have the same order. Sup-
pose b2 = b\ (mod??). If ord^ = £x and ord„ft2 = £2, thenft̂ 1 = (ft*/1 s {b^f = lk = 1 (mod TI). 
This means £2\£x, s o 

ord,A > ordA = ord„(Z>*) > ordn(bp) > • • • > ord„(Zf'>) = ord/,. 

This forces all the inequalities to be equalities, so the orders of all elements in the same cycle are 
equal. D 

By Lemma 4, it makes sense to speak of the order of a cycle. The next result relates the 
order and length of a cycle. 

Theorem 2: The length £{d) of a cycle of order d is the smallest natural number I such that 
rf|(*'-l),i.e., £(d) = orddh. 

Proof: If £(d) denotes the cycle length and ft is a cycle vertex, then ft # ft^ (mod ri) for any 
i<£(d), but b = b(km) (mod TI). Stated differently, b&~l) ±\ (mod TI) for any i<£(d), but 
j(**°-i) _ i ( m o d ny s i n c e o r d ^ = df t h is says d\{kj -1) for any i < £{d) but d\(kiW~l). U 

We can use Theorem 2 to get the length of the longest cycle in Gk . 

Corollary 4: The longest cycle in Gk has length £(t) = ordf&. 

Proof: By Lemma 3, the order modulo n of every cycle vertex divides t. Further, there 
exists a cycle vertex of order t. Since, for any d\t, we have k^ = 1 (mod t) implies k£^ = 1 
(mod d), Theorem 2 says £(t) = ordtk > orddk = £(d). Therefore, the greatest cycle length is 
£(t) = ordtk. D 

The following theorem gives the number of cycles in Gk of a given order. 
7 * 

Theorem 3: The number of cycles of order d in G„ is y/(d) I £{d). 
Proof: There are, by definition, y/(d) elements in Tn of order d. Each is in a cycle of length 

£{d) containing only elements of order d, so 
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y/(d) _ number of vertices of order d 
1(d) number of vertices of order d per cycle of order d 

= number of cycles of order d. • 

Finally, we give a few results about the tree structure. These results parallel those for prime 
modulus [4]. If b is a noncycle vertex in Gk , the height of b is defined to be the minimal natural 
number h such that bk is a cycle vertex. For c a cycle vertex, define F* as all noncycle vertices b 
of height h such that bk =c. We define the tree above c as Fc = (Jh F*. 

Lemma 5: If b,c eGk , b eFx, and c is a cycle vertex, then be eF^ . 

Proof: By Lemma 3, (ordwft)j7 while (ordwc)|f. Since ltn is abelian, (6c)r = b*tf =b* # 1 
(mod «), so the order of Ac does not divide t. By Lemma 3, this says be is not a cycle vertex, so 
the product of a cycle and noncycle vertex is a noncycle vertex. 

Since (bc)kh = bkhckh = ckh (mod n\ we see be is in the forest above the cycle containing the 
vertex c. If i <h9 then (bef = bk'ck' (mod w), which is a cycle times a noncycle, thus a noncycle 
vertex. This means that be first meets a cycle after h iterations of the k^ power map, i.e., 

heeFh
kh. D 
cK 

We can use Lemma 5 to show that any two trees in Gk are isomorphic. 

Theorem 4: If c is a cycle vertex, then Fl=Fc. 

Proof: For each h, we wish to construct a map from F* toF* that is one-to-one, onto, and 
preserves edges. As in [4], we define ch as the cycle vertex such that c\ =c (mod n). This 
means ch is the cycle vertex h cycle vertices before the cycle vertex c and therefore exists and is 
well defined. Following [4], define fh:F* ->F* such that fh(b) = bch (mod n). 

If bly b2 el7/1 and f^) = fh(b2) (mod n\ then bxch = b2ch (mod n). Since ch eZ*, this implies 
Oh ~~ ̂ 2)^ = ^ (mod n\ so ^ = A2 (mod ri). 

If* e i ? , then (bc^f = bk\ekhyl EE of1 EE 1 (mod /i). Since (be^lf~l ^ ^ (ef~l )~l (mod 
??) is a noncycle times a cycle vertex, we get a noncycle vertex. Therefore, bc^1 ei7/2 and 

Having shown fh is one-to-one and onto for vertices, we must show it preserves edges. 
Specifically, if bx G F / + 1 and b2 eFx

h such that bk = b2 (mod «), then fh+lQ\)k = tfck
h+l =b2ch = 

fh(b2) (mod «), where we have used c£+1 = ĉ  (mod n), since c^+1 is A +1 vertices before c in the 
cycle and ch is h vertices before c in the cycle. Similarly, if \ e F*+l and b2 e F* such that 
if = b2 (mod w), then (Va+i)* = *M+i = *2C* (moc* «)• • 

Finally, we give two results to help determine the height of the tree, i.e., the maximum height 
of a noncycle element of Gk . Both of these are direct analogs of the prime modulus case [4]. 

Lemma 6: IfbeFc and d = ord„c, then (ordnb)\khd if and only if b GFC
X for some x < h. 

234 [JUNE-JULY 



POWER DIGRAPHS MODULO n 

Proof: lf{or&nb)\khd, then oxAn{bk")\d so oxdn{bk")\t since d\t as c is a cycle vertex. This 
means bk is a cycle vertex in the same cycle as c, so ft GFC

X for some x < h. 
Conversely, if ft GFC

X for some x<h, then bk* =c (mod ri) so ord„(ft̂ *) = <i. Therefore, 
ord„(ft^) = ordw((i**)kh~x) = ordwc**~* = J by Lemma 4. D 

Theorem 5: The height of the trees in Gk is the minimal h such that Z \kht. 

Proof: If (&, Z) = 1, then t-Lso Lemma 3 says that all vertices are cycles; thus, the height 
is 0 and L\k°t since t = L. 

If (&, L) ̂  1, then h > 0. Take ft a vertex of maximal order, ord„ft = L. By Lemma 6, ft is of 
height A since (ord„ft)|^^ but {orAJ))\kh'lt. D 

4 STRUCTURE OF G * - G f 

Let p be the set of all prime divisors of n and consider a partition of this set: p - px ^>p2. 
Let Gk

hp be the graph whose vertices are the multiples of Yipepxp relatively prime to all p Ep 2 

and with an edge from bx to ft2 if ftf = ft2 (mod w). If ap is such that pQp\n but pap+lj[n, define 
^ = UPeplpap and ̂  = I l p e ^ ^ - Define Gk

pim2LX to be the graph whose vertices are the mul-
tiples of r\ relatively prime to all p e p2 and where there is an edge from \ to ft2 if ftf = ft2 (mod 
ri). We give a few results to help determine the structure of Gk^. 

Theorem 6: Gk^max = G%. 

Proof: Let ft0 be the solution to npQ = 1 (modn2). Define 

ju:G% -> G^i?max such that //(ft) = ftft^ (modri). 

For q Gp2, g|ft0, ^ j / ^ so ft eG*' implies ftft^ (mod ri) is in Gk
pim&x. Having shown our map is 

well defined on the set of vertices, we must show it is one-to-one onto, and preserves edges. 
If ju(I\) = ju(b2) (mod ri), then (ftx-ft2)ft(/i1 = 0 (modri). This means (bl-b2)bQ = 0 (mod n^). 

Since ft0 is invertible modulo n2,bl-b2 = Q (mod r^) so bl = b2 in G^ . 
If c <E G* ^ max, then c = fl^, so we want to show that there exists ft e G*2 such that //(ft) = c 

(mod ri). This is equivalent to 
ftfto^ = c^ (mod ri), 

which is equivalent to 
ftft0 = cQ (modWj). 

Since ft0 is invertible modulo r^ and c0 is relatively prime to all primes in p2, ft = ftj"1^ (modf^) is 
an element of G* sent to c via //. 

If ft1? ft2 e G^ such that ft* = ft2 (mod Wj), then 

//(ft/ s ftf bknk ^ ftf ft0^ = ft^ EE //(ft2) (mod w). 
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Finally, we deal with those vertices divisible by Upe^ p but not by nx. 

Theorem 7: (llpe^ pbp)h with (b, p)-l for all p e p has zero or 

( ^ ( 
n (*,pa'~i(p-iy) u P 

\^pepu p*2, bp>ap, kcp>ap 

ap-Cp-\p~\) 

^ /?ep l 5 p*2, ap>cpk, bp=cpk 
P^{k,p°>-b>-\p-\)) 

(2,k)s>(2<"2,k)s> i f 2 e p 2 

2a~°1~x if2ep1,b2>a,c2k>a 

2(*-0«*Q ky,(2a-*»-2, A:)54 if 2 e px,a > c2k, b2 = c2k 

parent vertices of the form {Upzp^^c with (c, p) = 1 for all pep, where 

[0 i f a - 6 , < 2 , [0 ifa-Z>2<3, 
o, = < and <?d = < 

3 [1 i f a - i 2 > 2 , 4 [1 ifa-b2>3. 
Proof: We want to find the number of distinct solutions, {YlP^>lpCp)c, to 

ff \k 

UP* \C 
\pep\ J J 

UP 
\pep\ J 

b (modw), 

where (cb, p) = l for ail pep. 
This is equivalent to counting the number of solutions to the system 

ff \ Y ( \ 
UP 

\\P*Pi J 
UP' \b (mod2a), 

\pe&>\ J 
ff U * / \ 

UPPY\ A Il/Pp(modK0 
\\p*p\ / ) \P&&\ ) 

ff } 
\UPC> 

\\pep\ ) 

Y 
C 

J 

= 
( \ 

UP> 
\p*fp\ J 

b (modpj-). 

Fact 1 allows us to work with each of these congruences separately and then multiply the number 
of solutions to each congruence to get the number of solutions to the system. 

If q e p 2 , then all p epx are invertible, so the number of solutions to 

ff ^ Y ( \ 
b, UP 

K\P*P\ ) 
Y[pp \b (modq**) 

\p*p\ J 
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equals the number of solutions toe* s b' ( m o d ^ ) for some b'. By Fact 4 the number of solu-
tions is zero or (/c,qag~l(q-l)) if q is an odd prime, and zero or (2, k)Sl (2a~2, k)Sl ifq = 2. 

If q G pl9 then all p e px - {q} are invertible, so the number of solutions to 

JJPP H H HPP \b (modqa«) 

is equal to the number of solutions to (qCgc)k = qbqb' (modg^) for some bf. If cqk^bq and 
either bq <aq or cqk <aq, then there are no solutions for (cb\ q)-\ since the powers of q divid-
ing the left- and right-hand sides of the congruence will be unequal for all k. 

lfbq,cqk>aq, then we are trying to solve 0-ck = 0 (modqaq). This has qaq~Cq~l(q-l) solu-
tions c for which (c, q) = l and qCqc are distinct modulo qQq. For q = 2, this reduces to 2a~°2~l. 

Finally, if aq>cqk = hq, then; the number of solutions qCqc to (qCqc)k =qb°b' {modqaq) is 
q{k~l)cg times the number of solutions to ck = b! {modqQq~bq). By Fact 4 this is zero or 

ifq is am odd prime, and zero or 

2{k-i)c2 Q ky3 (2a~bl~2, kf4 

ifq = 2. 
The product of the numbers of solutions to each of these congruences gives the number of 

solutions to the system, proving the result. D 
Remark: Similar results may be developed where the hypothesis (c, p) = 1 is dropped. For 
example, if p e p x is an odd prime and (b, p) = l, then the number of solutions to (pCpc)k = pbpb 
(mod pQp) is zero or pap~cp if cpk, bp>ap. Other cases for a , b 9 cpk may be worked out as in 
the proof of the last theorem. 

5. AN EXAMPLE 

Example 1: We will determine the structure of G5
2
6. Note that n - 56, k-2, L = 6, t - 3, and 

w = 2. We start with the components with vertices that are not multiples of 2 or 7. Z^6 = Z^ x 
Z^ = Z6 x Z2 x Z2. This means the orders of all elements divide lcm(6,2,2) = 6. We get the num-
ber of elements of each order using Lemma 1. 

Kl ) = 0,6)(1,2)0,2) = 1, 
<K2) = (2,6)(2,2)(2,2)-K1) = 7, 
<K3) = (3,6)(3,2)(3,2)-K1) = 2, 
y(6) = (6,6)(6,2X6,2) - ¥(3) - ¥(2) - V(l) = 14. 

The one element of order 1 goes to itself since 21 = 1 (mod 1); the seven elements of order 2 each 
go to the element of order 1 when squares; the two elements of order 3 are, by Theorem 2, in a 
cycle of length 2 since 21 ̂  1 (mod 3), but 22 = 1 (mod 3); and the fourteen elements of order 6 
go to elements of order 3. If b is an element of order 3, we know that x2 = b (mod 56) has at 
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(4) 

least one solution (the other element of order 3). Solving x2 = b (mod 56) is equivalent to solving 
the system 

x2=b (mod?) 
x2=b (mod 8). 

Since Tn = Z2 x Z3, the first congruence in our system has 0 or 2 solutions. Since ZJj = Z2 x Z2, 
the second congruence in our system has 0 or 4 solutions. This means the system (4) has 0 or 8 
solutions. Since there is at least one solution, this forces each element of order 3 to have indegree 
8, i.e., seven elements of order 6 and one of order 2. This completely classifies the structure of 
G\\ (see Fig. 1). 

T T T J T T T T T T T T T T T T T T T T T 

® 

Pi = {7}.G?6{7} 

Pi = {},G?; 

y 
® 

® 

Pi = {2i7},G|6i{2i7} 

o =odd mult, of 2 

\p 
Pi = {2},G^6]{2} 

x=odd mult, of 4 

^j 

=mult. of 8 

FIGURE 1. Gt 56 

Next, consider the components which are multiples of 7 but relatively prime to 2. By Theo-
rem 6 this will have a digraph structure isomorphic to Gg*. ZJ = Z2 x Z2, so there is one element 
of order 1 and three elements of order 2. Each element of order 2, when squared goes to the ele-
ment or order 1. 

The trickiest part is classifying the components that have vertices which are multiples of 2 but 
relatively prime to 7. By Theorem 6, G2

6 {2},max = ^h • Z^ = Zg, so there is one element of order 
1, one of order 2, two of order 3, and two of order 6. Upon squaring, the element of order 1 
goes to itself, the element of order 2 goes to the element of order 1, the elements of order 3 go to 
each other, by Theorem 2, since 21 # 1 (mod 3), 22 = 1 (mod 3), and the elements of order 6 go to 
the elements of order 3. By Fact 4, x2 = b (mod 7) has 0 or 2 solutions (since Tn = Z2 x Z3) and 
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each element of order 3 has the other element of order 3 coming to it, we know the indegree must 
be 2, so each element of order 6 goes to a different element of order 3 (see Fig. 1). 

We now add vertices for the multiples of 4 and of 2 that are prime to 7. Theorem 7, with 
n = 56, k = 2, px = {2}, p2 = {7}, c2 = 2, and b2 > 3, says the indegree for vertices that are multi-
ples of 8 from those that are multiples of 4, relatively prime to 7, is zero or (2, 71_1(7 -1))23"2-1 = 
2. Using the remark after Theorem 7, considering the graph of multiples of 4 relatively prime to 
7, each vertex has indegree 0 or 4. There are 5 6 - | - | = 6 odd multiples of 4, so each of the three 
cycle vertices of G5

2
6 {2},max n a s t w o °dd multiples of 4 parents (see Fig. 1). 

To add the odd multiples of 2 prime to 7, we note that these will be parents of odd multiples 
of 4. Using Theorem 7, with n = 56, k = 2, px - {2}, p2 = {7}, c2 = 1, and b2 = 2, says the in-
degree for vertices that are odd multiples of 4 from those that are odd multiples of 2, relatively 
prime to 7, is zero or (2, 71-1(7-1))2(2-1)1(2,2)0(2°,2)0 = 4. Using Theorem 7, with /i = 56, 
k = 4 = 22, px - {2}, p 2 = {7}, c2 - 1, and h2 > 3, says the number of odd multiples of 2 in each 
tree in G2

6 {2} is zero or (4, 71_1(7-1))23"1-1 = 4. Since there are 5 6 - } - | = 12 odd multiples of 2 
relatively prime to 7, we have three sets of four odd multiples of 2 going to one of each pair of 
odd multiples of 4 over each cycle vertex in G^6{2}max (Fig. 1). This completes the structure of 
r2 

^ 5 6 , {2} • 
Finally, G5

2
6, 

{2}, max = Q2 > which is a single element with edge from and to itself. To map 
directly onto a multiple of 23 -7, the power on 2 must be at least 2, so the only parent of our 
single cycle vertex is the odd multiple of 22 -7 (mod 56). Odd multiples of 2-7 map to the odd 
multiple of 22 • 7 when squared. This completes the description of G2

6 (see Fig. 1). 
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1. INTRODUCTION 

The decomposition of any positive integer N as a sum of positive-subscripted, distinct, non-
consecutive Fibonacci numbers Fk is commonly referred to as the Zeckendorf decomposition ofN 
(ZD of N, in brief) [10]. This decomposition is always possible and, apart from the equivalent use 
of Fx instead of F2 (or vice-versa), is unique [8]. 

In the past years sequences of integers {alb}, where a and b are certain Fibonacci and/or 
Lucas numbers (Lk), have been investigated from the point of view of the ZD of their terms (e.g., 
see [3], [4], [5]). The aim of this paper is to extend these studies to sequences {ab}. More pre-
cisely, in Section 2 we establish the ZD of mFhFk and ml^^, with h and k arbitrary positive 
integers (possibly subject to some trivial restrictions), for the first few positive values of the inte-
ger m; the ZD of FhLk,FJ?Lk, and FhI?k are also found. In Section 3, after some brief con-
siderations on the ZD of nFn, we analyze certain Fibonacci-Lucas products that emerge from 
particular choices of n. 

All the identities presented in this paper have been established by proving conjectures based 
on behavior that became apparent through the study of early cases of A, k, and n. These conjec-
tures were made with the aid of a multi-precision program including the generation of large-
subscripted Fibonacci numbers. On the other hand, once the identities were conjectured, their 
proofs appeared to be rather easy and similar to one another so that, to save space, we confine 
ourselves to proving but a few among them; this is done in Section 4. Section 5 provides a 
glimpse of possible further investigations. It is worth mentioning that formula (1.4) of [4], namely, 

±M _ M-(/,+i)+, - (-VKh+, - K+t+H)rM n n 

(here, Mr stands for either FrorLr), plays a crucial role throughout the proofs. 

2. THE ZD OF SOME FIBONACCI-LUCAS PRODUCTS 

General Remarks 
(a) The identities established in this section involve two integral parameters (namely, k and n) 
and, in most cases, are valid for all positive values of them. Sometimes they hold also for n = 0. 
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In general, some restrictions have to be imposed on k and n to obtain the ZD (as defined in 
Section 1) of the quantities on their left-hand sides. 
(b) The number of addends in the ZD of the quantities under study depends only on the integer k. 
In some cases, it is even independent of k, thus assuming a constant value. In light of [2] and [1] 
(see also [6], p. 147), this fact is not very surprising. 
(c) The usual convention that a sum vanishes whenever the upper range indicator is less than the 
lower one is adopted here. For brevity, we use the notation Fa±b = Fa+b + Fa_b. 

2.1 Fibonacci Products 

Proposition 1: 

FkFk+n = 

k/2 

ZF4/+»-2 (A: even), 
7=1 

(k-l)/2 

JWi+ Z X - (*odd). 
7=1 

(2.1) 

Remark 1: Expression (2.1) works for n = 0 as well. In this case it yields the same result as that 
obtained by letting s = 1 in formulas (2.2) and (2.3) of [5]. 

Proposition 2: 

2FkFk+n ~ 1 

(£-2)/2 

^ , + ^ W i + E ^ W i (^even), 
7=1 
{k-\)l2 

+ ̂ + n - i + Z V i (*>3, odd). 
7=1 

(2.2) 

Proposition 3: If n > 2, then 

3FkFk+n = 

(k-4)/2 
Fn + Fn+2 + J W 3 + F2k+n + X F4J+»+3 (k * 4

? © V e n ) , 
7=1 
(k-3)/2 

Fn-l + ^H-2 + ^2*+«-3 + F2k+n + X F4/+,+l (* ^ 5
? ©dd). 

7=1 

(2.3) 

Proposition 4: If w > 3, then 

4i^^ + w = 

(k-4)/2 
Fn-2 + ^,+1 + ^,+3 + ^ W l + X F4,^+4 (* ^ 4> ^m), 

7=1 

(fc-3)/2 

^ -1 +^H-3 + i W l + I X + » + 2 (* * 3, Odd). 
7=1 

(2.4) 

Proposition 5: For k, n > 3, the ZD of 5FkFk+n is given by the right-hand side of (2.5) once the 
parity of k has been reversed. This fact becomes apparent upon inspection of (1.6) of [4]. 
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2.2 Lucas Products 

Proposition 6: If n > 3, then 

LjcLk+n ~ i 

Fn-\ + Fn+1 + F2k+n±\ (k even), 
A:—2 

^-2 + Fn+l + F2k+„+l + X F2J+n+2 (k > 3, odd)' 
(2.5) 

;=i 

Remark 2: The ZD of Z£ is given by (4.2) and (4.3) of [5]. The decomposition (2.5) (k even) 
follows immediately from (17a) of [9]. 

Proposition 7: Ifn>5, then 

^k^k+n ~ 

A?±3 + F2k+n±3 (k > 4, even), 
3 k-4 

Fn-A + F2k+n+3 + £ ^ 2 ^ - 3 + Z ^2/+»f4 ( * ^ 5, odd) . 
;=1 /=! 

Proposition 8: If « > 5, then 

4 

I 
^Lk^k+n -

4 

2-J (F2j+n-5 + Flj+lk+n-s) (k > 4, even), 

3 Jfc-4 

F„_4 + Fn+3 + X F2J+2k+n_3 + £ ŷ+H+4 (* ^ 5> o d d ) -

(2.6) 

(2.7) 

Proposition 9: If « > 6, then 

r 4 

^Lk^k+n -

J L v^3/+«-8 + ^/+2Jt+w-8) (A > 6, even), 
y=i 

3 fc-5 
F„_4 + Fn_2 + F„+1 + £ F3J+2k+n_5 + £ F2y+w+4 (* > 5, odd). 

(2.8) 

2.3 Mixed Products 

That FuU = F2k is a well-known fact (e.g., see I7 of [7]). 

Proposition 10: 

Fk^k+n -

LkFk+n = \ 

XF2y+n-i (^even), 
7=1 

l^ + ̂ + « (*odd,n**l), 
Fn+F2k+n (^even), 

ix + »- i (*odd>. 

(2.9) 

(2.10) 
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Proposition 11: Ifn>k, then 

Fk Lk+n -

7=1 

Proposition 12: If n > k +1, then 

(k-2)/2 
F„±k+l + Fn+k-2 + X (F4J+n-k + ^ + ^ + 2 ) (* ^ 4> CVCn), 

(Ar-l)/2 

+ X tfW-t + ̂ iy+»+*) (* ^ 3> odd). 

(2.11) 

J2.T7 _ 

Fn_k + F„+£_2 + F„+it+1 + F„+3;k (* > 4, even), 
k-\ 

Fn_k + F „ + w + X ^2,+„-Ht+i (* ^ 3, odd). 
(2.12) 

Remark 3: The ZD of Z ^ + w is given by (2.12) above for n > 4. The decompositions (2.9) (k 
odd) and (2.10) (k even) follow immediately from (15b) and (15a) of [9], respectively. Further, it 
is worth mentioning that (30) and (31) of [9] follow by letting n = 1 in (2.10). 

3. ON THE ZD OF nFn 

A brief study of the ZD of nFni beyond being worth undertaking/?er se, allows us to extend 
the results presented in Section 2 by considering some interesting Fibonacci-Lucas products that 
result from particular choices of n. 

Definitions: 
(1) Let f(N) denote the number of addends in the ZD ofN. 
(2) Let Q(n) denote nFn. 
(3) If Fn is in the ZD of Q(n), then n is said to possess the property 2? (n has 2P, in brief). 

We are struck by two particular aspects of the ZD of Q{n) that emerge from a computer 
experiment carried out for 1 < n < 10000. Namely, we observe that 

(i) / [Q(n)] is relatively small, 
(ii) If n has 2?, then n +1 and n + 2 have not, whereas either n + 3 or n + 4 has. 

The numerical evidence leads us to offer the following conjectures. 

Conjecture 1: The ratio of the number of naturals not having 2P to that of those having 2? is 
a

2 = l + a = l + (l + V5)/2 . 

Conjecture 2: If m < L^ -1, with k > 0, then mLlk^l has 2?. 

Conjecture 3: Ifm< L^^, with £ > 1, then mL^ +1 has 2P. 

Note, As the final draft of the paper was being prepared, the second author and Laura 
Sanchis discovered what seems to be a proof of Conjecture 1. Once the details have been veri-
fied, the proof will appear in a separate paper. 

As for observation (i), we state the following theorem which will be proved in Section 4. 
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Theoreml: If «<Z^+ 1 , then f[Q(n)]<2k + l [cf. (3.1)]. 

The following further results have been establised by us. 

Proposition 13 (see Conj. 2): Both Z^+j and 21^^ have 8P. More precisely, we have 
2A:+1 

2k-\ 

Q\^^2k+l) - ^2L2k+l±2(k+l) + 2^^2j+2Llk+l-'. 2k' 

(3.1) 

(3.2) 

Remark 4: The property 2P becomes apparent in (3.1) and (3.2) for j - k +1 and &, respectively. 

Proposition 14 (see Conj. 3): For & > 2, both L^ +1 and 2 1 ^ +1 have 2?. More precisely, we 
have 

Q(L2k + l) = FL2k+l + l+FL2k±2k+h 

Q(2L2k + 1) = ^ 2 / ^ + 1 +FlLu±2k-l +F2Llk±2h+2-

Proposition 15: For ^ > 3, Z^ - 3 has 2?. More precisely, we have 
(*-4)/2 

2(4-3) = 
^V*-3 + Fi*-6 + ̂ - 3 + FLk-l + Z F2y+4 (* eV«l), 

(fc-3)/2 

•W.t-3 + 2-i ^ 2j+Lt -k-4 + F2]+Lk - l ) 
7=1 

(yt odd). 

(3.3) 

(3.4) 

(3.5) 

Proposition 16 [cf. (3.1)J: 
Q(Llk) = FL2k±2k (from (1.5) of [4]). 

Proposition 17: 

Q(Fk) = \ 

k/2 

Z,F4J+Fk-k-2 

(fc-l)/2 
FFk-k+l + 

;=i 
•F4j+Fk-k 

(k even), 

(Jfcodd). 

(3.6) 

(3.7) 

We observe that the number of addends in some of the decompositions above is independent 
of k. In fact, from (3.6), (3.3), and (3.4), it is seen that, if k > 1, then fiQi^)] = 2 whereas, if 
k>2,thmf[Q(L2k + l)] = 3mdf[Q(2L2k + l)] = 5. 

Question. Let T > 1 be an arbitrary positive integer. Does there exist at least one function 
g(k) ofk for which f{Q[g(k)]} = T for all k greater than or equal to a certain minimum value 

Let us conclude this section by showing that, if T = 4, then there is such a function. Namely, 
g{k) = L^ + 3 will work for k > k0 - 2. 
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Proposition 18: If k > 2, then 

0 ( 4 * +3) = Fhk+l +FLik+i+FLik±2M. (3.8) 

4. SOME PROOFS 

Proof of (2.3) (k odd): Use (1.1) to rewrite the right-hand side of (2.3) as 

= 2F„+1 + 2Fa t + l_ I + ^ + » - 3 - 4 + 3 ( f r o m ( 1 5 ) o f [ 4 ] ) 

= idem + L"+k+<k^ ~ £"^-(^-3) = /<few| + 5F^Fk_3 ( f r o m ( 1 6 ) o f [ 4 ] ) 

= 2(-4+/fc+(i-l) + -4+i-(/t-l)) + Fn+kFk_3 

= 2Fn+JcLk_l+F„+kFk_3 (from (1.5) of [4]) 

= Fn+k{2Lk-\+Fk-?) = 3FkFn+k-

Proof of (2.8) (k even): By using (1.5) of [4], the right-hand side of (2.8) becomes 

4 Z ^ W - 8 - Lk
 F»+*+7 + *W*4 ~ F^~5 ' Fn+k-Z [ f r o m ( U ) ] 

- r Ai+fc+1+6 ~ Ai+fc+1-6 + Ai+ifc-2+6 ~ ^n+k-2-6 
— JUJ 'k' 

4~ 
= 2Lk(Ln+k+l + Ln+k_2) — *-Lk\lLn+k) = 4LkLn+k. 

= ^ ^H-t+l^6 -r **ffc-2' 6 ( - f r o m Q 5 ) o f [ 4 ] ) 

Proof of (2.12): 
Case 1: k > 4 is even. Rewrite the right-hand side of (2.12) as 

F„+k-2 + F„+k+i + Fn+k_2k + Fn+k+2k = Fn+k_2 + Fn+k+l + F w + , 4 , (from (1.5) of [4]) 

= 2Fn+k +Fn+k^2k = Fn+ki^lk + 2 ) 

= Fn+kL2
k (from identity I15 of [7]). 

Case 2: k > 3 is odd. First, rewrite the right-hand side of (2.12) as 

Fn-k + Fn+k-l + ^ W l " *3*+,i-l " F
n+M + ^,+ik+l [ f rom ( 1 . 1 ) ] 

- Fn-k + Fn+k_i + i ^ + „ - Fn+k+2, 

then use (1.5) of [4] thrice to rewrite the expression above as 

Fn-k + ^ + w ~ 2^Wifc = F3k+n - FnLk - Fn+k 

~ Fn+2k+k ~ Fn+2k-k ~ FnLk = Fn+2kLk - FnLk 

- (Fn+2k ~Fn)Lk= (Fn+k+k - Fn+k_k)Lk 

~ Fn+k^k^k = Fn+k^k' 
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Proof of (3.2): Put 2LlkJtl = h for notational convenience, and use (1.1) to rewrite the right-hand 
side of (3.2) as 

Fh-2k-2 + Fh+2k+2 + \Fh+2k ~ Fh+2k-2 ~ Fh-2k+2 + Fh-2k) 
= Fh+2k+2 + Fh+2k-\ + Fh-2k-2 ~Fh-2k+l ~ ^Fh+2k+l ~ ^Fh-2k-\ 
= 2FhL2k+l (from (1.5) of [4]) 

= hFn^Q(h). 

Proof of (3.5) (k even): Put Lk=h for notational convenience, and use (1.1) to rewrite the right-
hand side of (3.5) as 

F
h-k-3 + Fh-6 + Fh-3 + Fh-\ + (Fh+k-2 - Fh+k-4 ~ Fh+2 + Fh) 

= F
h-k-3 + Fh+k-3 ~ Fh+l + Fh-6 + Fh-3 + Fh-\ 

= hFh_3-Fh+l+Fh_6+Fh_3 +Fh_, (from (1.5) of [4]) 

= hFh_3 - 3Fh_3 = (h- 3)Fh_3 * Q(h - 3). 

Proof of Theorem 1: From (2.3) and (2.4) of [6], we see that 
f[Q(n)]^\[V(n) + U(n)] + l, 

where V(n) = [loga n\ (a = (1.+ V5 ) / 2) and U(n) is an even number defined by L^j^_i <n< 
Lu(n)+\' I* m u s t be observed that U(ri) is defined in [6] in a slightly different way, for the authors 
use the initial values LQ = 3 and 1^ = 4 for the Lucas sequence. Now, it can be proved readily 
that, if n < Z^^ , then both V(ri) and U(ri) do not exceed 2k. This fact, along with (4.1), prove 
the theorem. 

5. CONCLUDING COMMENTS 

As can be seen from the examples presented in this section, the identities established in this 
paper represent only a small sample of the possibilities available to us. A thorough investigation 
on the ZD of Q(ri) seems to be worthwhile; this study will be the object of a future paper. An 
attempt to prove Conjectures 2 and 3 produced the following decompositions [see also (3.1)-
(3.4)] the proofs of which, based on the technique shown in Section 4, are left as an exercise to 
the interested reader. Namely, we see that 

2k-2 

Q\^^k+U = F3L2k+i-2k-4+F3I^k+l-2k±l+F3L2k+l+2k+3+ 2sF2j+3L2k+l-2(k-l) ( ^ - 2 ) , (5 -1) 

2k-2 
Q\^^2k+l) ~ F4L2k+l-2k-4 + F4L2k+i±2k+l + Mi2jl+1+2ifc+3 + 2^F2j+4L2k+l-2(k-l) \T - 2), ( 5 . 2 ) 

7=1 
2k-3 

Qi^k+l) - F5L2k+l±2k + F5L2k+l±2(k+2) + 2^F2j+5L2k+l-2(k-l) ( ^ - 2 ) , ( 5 . 3 ) 
;=i 

g(3Z^ +1) = F3Lik+l + F3Lik±lk_x + F3Lik±2k+3 {k > 2), (5.4) 

2 ( 4 Llk + 1) ~ F4L2k+l +F4Llk±2k-\JrF4Llk±2k+\ ^ F4Llk±2k+?> 
(fc>2), (5.5) 

2 ( 5 ^ +1) = F5Lik+l +F5Lik±2k_3 +FiLik±2k +F5Lih±2M (k > 3). (5.6) 
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Remark 5: The property 2? becomes apparent in (5.l)-(5.3) for j = k -1. 

Moreover, we believe that also the ZD of nLn deserves some study. A medium-range (1 < n 
< 2000) computer experiment led us to conjecture that Fn is not in the ZD of nLn for n > 2. This 
experiment allowed us to observe that, if n = F2k+l (k = 1,2, 3,...), then f(nLn) = 2 with only one 
exception in the case k = 2 for which /(5L;) = 1. In fact, from (1.5) of [4], it can be seen imme-
diately that 

F2k+lLF2k+l = FF2k+l ±(2*+l) • (5 •7) 

Remark 6: Letting k = l and 2 in (5.7) yields 21^ = F_x + F5 =F2+F5 and 5L5=F0 + Fl0 = Fl0 
(the exception), respectively. 

Further, we observed that, if n = L^ (k = 2, 3,4,...), then f{nLn) = 4. In fact, from identity 
I8 of [7] and (1.6) of [4], it can be proved readily that 

LikL,Llk=FLik±2k__i + FLik±2ic+l. (5.8) 
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SOLVING LINEAR EQUATIONS USING AN OPTIMIZATION-BASED 
ITERATIVE SCHEME 

I. Tang 
ETS-Rosedale, Mail Stop 58-N, Princeton, NJ 08441-0001 

(Submitted September 1996) 

A system of linear equations such as 

anxx + anx2 + ••• + alnxn + q = 0 
+ ... + a2nx„ + c2 = 0 a2lxx (1) 
+ .-. + annxn + cn = 0 

can be solved using either direct methods such as the Gauss-Jordan procedure or iterative 
methods such as the Gauss-Seidel procedure. When the equation system is large, and especially 
when the coefficients are sparsely distributed, iterative methods are often preferred (see [1], [2]) 
since iterative methods for these systems are quite rapid and may be more economical in memory 
requirements of a computer. Iterative methods usually require a set of starting values as assumed 
solution. This article describes a procedure that does not require starting values. The procedure 
achieves convergence rapidly and can be applied to dependent systems in which there are fewer 
equations than variables. 

Consider the case of n simultaneous equations in matrix form: 

K1] 
\Jn) 

*\\ 
An\ 

A\n *V 
v l y 

We propose to solve the system 

\Jn) 
:0 

by minimizing a scalar objective function 

/„) 
\jnj 

(2) 

(3) 

(4) 

The solution of (3) is obtained when the x values are found such that H = 0. 
Differentiation of (4) yields 

dH_ 
dt 2(A - / „ ) 

dfjdt 
But (2) gives 

{dfxldt\ 

dfjdt 
a, l i 

\an\ 

*\n 

"tin J 

(dxxldi 

dx„/dt 

a, l i 

\anl 

*\n 

6 

dxxldt\ 

dx„ldt 
dzldt 

(5) 

(6) 

and, together with (2), (5) becomes 
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dH_ 
dt 2(/i - /„) 

a, 11 

\a„i 

= 2(Xl - x„ 1) 

«i„ ^ 

nn / 

Anl 

dxxldt\ 

dxnl dt 
dzldt 

Aln 
VnJ 

\anl 

<hn ^ 

a„„ 0 , 
nn / 

dxjdt\ 

dxnldt 
dzldt 

(7) 

We now set 

dxxl dt 

dxnldt 
dzldt 

™\n 
0 

An\ 

0 \<*nl ann CnJ 

(x.\ 

\lJ 

(8) 

so that dH/dt<0. 
By choosing a small value for At (for example, set It equal to the reciprocal of the Euclidean 

norm [1] of the matrix), one could approximate the derivatives on the left-hand side of (8) by 
finite differences between the (i +1)* and the Ith iterant of each of the x's (with z remaining a 
constant =1) , and we write 

dxx _ AXj _ xi,i+i~xi,i 

dt ~ At ~ At 
• V 

(9) 

Then (8) becomes 

dx„ 
dt 

dz _ 
dt~ 

~ At 

Az 
At 

Xn,i 

*M ~ 
At 

+1 Xn,i 

At 

h 

f \ , \ fv\ 

/+1 

-At 
a, 

au 

a„-

a„. 
\anl 

aln cx\ 

ann C2j 

(\- \ 

vU 
(10) 

with zi+l = zi = l. 
Let 

[B] = 

(I 0 
0 1 

6 6 

o^ 
0 •At 

AU 

nn 

An\ a, i i 

\an\ 

aln c^ 

ann CnJ 

01) 

and 

[X] = 

fv\ 

\h 
then (10) becomes the recursion equation 

(12) 

(13) 
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Starting with an arbitrary set of values [X] - [X]0 with z = 1 as the initial solution, we carry 
out the iteration 

[X\=[B][X]0 

[X]2=[B] [X\ 
= [Bf[X]Q (14) 

and so on until 
[X]k=[Bf[X]0. 

Unless the set of equations is an inconsistent system, for sufficiently small At, which serves as an 
accelerating factor, [Bf will converge so that 

[*]*-> 

as£-»oo. It follows from (13) that 

[*]* = 

(bn 

0 

hi 

0 

u\n *l,s 

"un Xn,s 
0 1 

u\n -*V 

®nn Xn, s 
0 1 

(15) 

[*1 lo- OS) 

If the equation system is furthermore not a dependent system, the individual elements by will tend 
to zero upon convergence, and 

[X\ = 

Xl,s 

v l y 

(17) 

regardless of the initial starting value, and [X] = [xj are obtained for the solution of (2). 
Since the last column of the matrix (15) to which [B] converges contains the solution of (2), 

it is clear that to solve a set of linear equations that does not constitute a dependent system, an 
assumed starting solution is not required. We only need to multiply [B] of (11) upon itself repeat-
edly, and if the multiplication is performed by squaring the previous result, convergence is accel-
erated through the sequence [B],[Bf,[Bf,... . Although the process diverges for an over-
determined system, for a dependent system, one can obtain a solution from (15) according to the 
initial starting solution vector. 

To illustrate the scheme, consider the following examples. 
1. Consider the system: x+y = -2 

2x+y = -3 

[B] = 
(l 0 0^ 
0 1 0 

1° o lj 
-At 

(I 2) 
1 1 

(o o) 
1 1 2 
2 1 3 

(0.95 -0.03 -0.08"! 
-0.03 0.98 -0.05 

0 0 1 
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for which the acceleration factor At = 0.01 is used. Convergence leads to 

[BT-*\ 
"0 0 
0 0 
0 0 

-1 
-1 

1 

From the last column, the solution (x, y) = (-1, -1) is obtained. 
2. Given the dependent system: x+y+z + 2 = 0 

2x+y-z+3=0 

[B] = 
(I 
0 
0 
0 

0 
1 
0 
0 0 

0 0\ 
0 0 
1 0 
0 ij 

-At 
(I 
1 
1 

1° 

2] 
1 

-1 

°J 
1 1 
1 -1 

f 0.95 
-0.03 
0.01 
0 

-.03 
0.98 

0 
0 

for which the acceleration factor At is again 0.01. Iteration leads to 

[BT-> 
'0.2857 -0.428 
-0.428 0.6428 
0.1428 -0.214 

v 0 0 

0.1428 -1.142^ 
-0.214 -0.785 
0.0714 -0.071 

0 1 

0.1 
0 

0.98 
0 

-0.08^ 
-0.05 
0.01 

1 J 

The solution is found from (15) for any arbitrarily chosen starting value. For instance, if 
x0 = j ; 0 =z0 = 0, then, from the last column, we obtain (x,y,z) = (-1.142, -0.785, -0.071). If 
xQ = 2, y0 = 0, and z0 = 1, then (x, y, z) = (-0.714, -1.427,0.143) is obtained. 
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1. INTRODUCTION 

Let W(x), fix), g(x) be formal power series with complex coefficients, and W(x) * 0, 
W{0) = 1, / (0) = g(0) = 0, Then the coefficients {B^n, k), B2(n, k)} in the following expansions, 

W(x)<J(x)f lk\ = £ B f a k ) x " l n \ , (g{x)f /[W(g(x))k\] = ^B2(n,k)xnln\, (1) 
n>k ri>k 

are called a weighted Stirling pair if f(g(x)) = g(f(x)) = x, i.e.,/and g are reciprocal. 
When W(x) = l, B^in.k) and B2(n,k) reduce to a Stirling type pair whose properties are 

exhibited in [7]. 
In this paper, we shall present a weighted Stirling pair that includes some previous generaliza-

tions of Stirling numbers as particular cases. Some related combinatorial and arithmetic proper-
ties are also discussed. 

2. A WEIGHTED STIRLING PAIR 

Let t, a, P be given complex numbers with a-(1*0. Let f(x) = [(1 + ax)P'a -1]//?, g(x) -
[(\+px)alp-l]la, and W(x) = (l + ax)t/a. Then, in accordance with (1), by noting that f(x) 
and g(x) are reciprocal, we have a weighted Stirling pair, denoted by 

{S(n, k, a, /?; t\ S(n, k, /?, a, -1)} = {£> , k), B2(n, k)}. 

We call it an (a, /?; /) [resp. a (ft, a; -t)] pair for short. Moreover, one of the parameters a or 
p may be zero by considering the limit process. For instance, a (1,0; 0) [resp. a (0,1; 0)] pair is 
just Stirling numbers of the first and second kinds. 

Note that from the definition of an (a, /?; t) pair and the first equation in (1), we may obtain 
the double generating function of S(n, k, a, /?; t) as 

(l + ax)'/acxpL(l + ax^a~l\ = ^S(n,k,a,B-, t)^~uk. (2) 

If we differentiate both sides of (2) on x, then multiply by (l + ax) and compare the coefficients of 
xnuk, we have 

S(n, k-l,a,ftt+P) = S(n +1, k, a, fi; t) + (na - t)S(n, k, a, /?; t\ (3) 

and if we differentiate both sides of (2) on u and then compare the coefficients of xnuk:, we have 

S(nyk,a,P;t+P) = P(k + l)S(n,k + \a,p;t) + S(n,k,a,P;t). (4) 

Thus, the recurrence relation satisfied by S(n, k, a, /?; t) may be obtained by combining (3) 
and (4): 

S(n + \ k, a,P; t) = (t + fik-ari)S(n, k, a,/3; t) + S(n,k-l, a,p, t). (5) 
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The initial values of S(n, k, a, /?; t) may be verified easily from (1) because S(n, 0, a, J3; t) = 
t(t-a)(t-2a) -• (t-(n-l)a) for/ i>l , S(n,n,a,fi;t) = l for n>0, and S(n, k, a, fi;t) = 0 for 
k>n. Thus, a table of values of S(n, k, a, J3; t) can be given by concrete computations. 

« " 
0 
1 
2 
3 

£ 0 
1 
t 
t(t-
t(t-

TABLE1. S(n 

-a) 
-a) 

1 

1 
2t + /}-a 
(t+fi-2a) + 

, K, 

t(t-

a,fi;t) 

-a) 

2 3 

1 
3t + 30-3a 1 

From (2), we may get the explicit expression for S(n, k, a, J3; t) via the generalized binomial 
theorem along the lines of (4.1) in [6]. 

For a complex number a, define the generalized factorial of x with increment a by (x\a)n -
x(x - a)(x -2a) - - - (x -na + a) for w = 1,2,..., and (x\a)0 = 1. 

Theorem 1: The (a, /?; t) pair defined by (1) may also be defined by the following symmetric 
relations: 

((x + /) |a)„ = £S(n , K a, ft; t)(x\fi)k; 
fc=0 

(*!/?)„ = £s(«,*, A «;-0((*+0l«)*-

(6) 

(7) 
k=0 

Proof: The proof of the theorem may be carried out by the same argument used by Howard 
[6], by showing that the sequences defined by (6) and (7) satisfy the same recurrence relations and 
have the same initial values as that of an (a, /?; t) pair. D 

Examples: Let A, 0 * 0 be two complex parameters. The so-called weighted degenerate Stirling 
numbers (Sx(n, k,A\0),S(n, k, X\0)) were first introduced and discussed by Howard [6] with 
definitions 

and 

( l - x ) 1 - ^ 1 " 0 - *>*! =k\YdSl{n,k,X\0)^ 
V * ) n>k "• 

{\+ex)^n\+exy -\f ^k^si^KX^^-, 
riik n\ 

where 9p = \. Now it is clear that (-l)"-^,(»,k, \,X\0) = S{n,k,\,9;9-X) and S{n,k,X\6) = 
S{n,k,6,\;X). 

The limiting case 0 = 0, X * 0, gives the weighted Stirling numbers (R^n, k, X), R2(n, k, X)) 
discussed by Carlitz ([2], [3]) with definitions 

(l-xy\-log(\-x))k = * !£* , (» , k, X)?-
n>k n ' 

and 
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n>k H-

where the weight function et* comes from the limit of (1 + 0t)xie as 0 -> 0. It is apparent that 
((-l)^%(n, Jfc, X\ R2(n, k, X)) forms a (1,0; - X) pair. 

Further examples are the degenerate Stirling numbers [1] defined by 

and 
((i+ftr-i)* = *!2>i,*|0)£, 

n>k m 

where 0// = 1. It is clear that {(-\)n-kSx{n, k\0\ S(n, k\0)) is a (1,0;0) pair. 
The noncentral Stirling numbers were first introduced by Koutras in [8] with the definitions: 

(0„ = 5>a(»,*X'-«)k; 

(t-a)" = ^Sa(n,k)(t)k. 
Jc=0 

It is now clear by Theorem 1 that (sa(n, k), Sa(n, k)) is a (1,0; a) pair. 

3. REPRESENTATIONS OF WEIGHTED STIRLING PAIRS 

For r > 0, fr * 0, let F(x) = Z*=r fkxk I k! and JF(x) = T% WjXj I j ! be two formal power 
series. Following Howard [6], for complex z, we define the weighted potential polynomial Fk(z) 

by 
'*-*'-* =<£Fk(zyx*/k\. (8) ^l^f" fc=0 

Moreover, if r > 1, define the weighted exponential Bell polynomial Bn k(0,..., 0, / r , /r+1,...) by 

*P(x)[F(x)]* = .*! fX, (0 , . . . , 0/ r , / r + 1 , ...)*" ln\. (9) 

The following lemma is due to Howard ([6], Th. 3.1). 

Lemma 2: With Fk(z) and Bnk defined above, we have 

Now, from (9) with W(x) = (1 + ox:)'7" and F(x) = [(1 + ax)/3,a -1] / /?, we have 

S{n9k,a9frt) = B^k(\p-a9tf-a)<fi-2a\W^ (10) 

Define the weighted potential polynomials Ak(z) by 
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If we differentiate both sides of (11) with respect to x, then multiply by l + ax and compare 
the coefficients of xk, we obtain 

zAk{z +1) = (z - k)Ak{z) + k(t + (a - fi)z -(k- \)d)Ak_x{z). 

It follows that 

(-l)k[k~riyk(rr + l) = (-dk{k~k"yk(n)Ht + (a-fi)n 

-(k-VaX-lf-^-^yU"), 
with initial conditions 

^~"0"1J4)(« + l) = l,for»>0, (13) 

(-!)"(~^\An(n + \) = (t + a-P){t + a-2P)---{t + a-nP), for n>\. (14) 

(12) 

and 

Therefore, by equations (12)-(14), and the recurrence relations satisfied by S(n,n-k,fi, a; 
t + a- fl) [may be deduced from (5)] and its initial values, we have that 

{_lf(k-n-^Ak{n + \) = S{n,n-k,p,a-t + a-P). 

It then follows from Lemma 2, by taking r = 1 and (10) that 

By symmetry, we have the following representation formulas for weighted Stirling pairs. 

Theorem 3: For S(n9 k9 a, /?; t) defined by (1) and S(n, k,f3,a;t + a-{T) defined in a like way, 
we have 

£(»,*, a,£0 = l V l ) { ^ J ^ (15> 
and 

S(n, k,fi,cr,t + a-fl = %(-&$-k*}){„^ (16> 

Remark: It should be pointed out that similar representation results for the particular case when 
a = 0, 0=1, and t = l-X has been proved by Howard [6]. Here we borrow his proof 
techniques. 

4. CONGRUENCE PROPERTIES OF WEIGHTED STIRLING PAIRS 

A formal power series $(x) = E w > 0 ^ " /«! is called a Hurwitz series if all of its coefficients 
are integers. It is well known that, for the Hurwitz series flx) with aQ = 0, the series {(f>{x))klk\ 
is again a Hurwitz series for any positive integer k. 
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In this section we always assume a,/3,t e Z . Then it is clear that both (f(x))k/k\ and 
(g(x))k/k\ in (1) are Hurwitz series, so that S(n, k, a, J3; t) and S(n, k, /?, a; -i) are two integer 
sequences. 

First, let t = 0. Then we have 
Theorem 4: Let p be a prime number and let k andy be integers such that j +1 < k < p . Then the 
following congruence relation holds: 

S(p + j,k,p,a;0)^0(modp). (17) 

Proof: Assume first that a 4 0 (mod /?). For a polynomial ^(x) of degree n in x, we may 
express it, using Newton's interpolation formula, in the form 

<f>(x) = <f>(a0) + y£[a0al,..ak]{x\a}k, 
k=\ 

(18) 

where [a0al ...ak] denotes the divided difference at the distinct points x = aQ, al?..., ak9... and 
{x | a)k =(x- a0)(x - ax) • • • (x - ak_x). Moreover, we have 

[a0al...ak] = 
1 a0 

1 ax 

1 CLu 

a\ l <f>(aQ) 
ak~l Mad 

<4 <l>(ak) 

1 a0 

1 ax 

1 CCu 

k-i o 
k-1 

«0 
of 

a£ * a> 

(19) 

Now take (/>p{x) = (x\fi)p, then ^,(0) = 0. We have, by (7) and (18), that 

5(p,*,/?,a;0) = [ a 0 a 1 . . . a J , (20) 

which may be expressed as a quotient of two determinants as in (19), where a^ - ja (j = 0, 
1,2,...). 

Notice that the classical argument of Lagrange that applied to the proof of 

(x-l)->(x-p + l) = xp-l-l (mod/?) 

may also be applied to prove the relation 
<f>p(x) = (x\P)p = x(x-fl)...(x-(p-i)0) S x'-fir-ix (mod/7), (21) 

where the congruence relation between polynomials are defined as usual (cf. [4], pp. 86-87, Th. 
112). Also, using Fermat's Little Theorem, we find 

\ja (mod/?), if/?|/?, 
|0 (mod/?), ifp\p, 

where j = 0,1,2,. . . . Consequently, we obtain, witha^ = ja for k > 1, 

1 a0 ••• ak~l jp(i 
1 ax ••• a\~l <j>p{ax)\ 

WaXJaY-fi^Ua)* 

1 a 

Moreover, the denominator is given by 
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k - <A~l tP(<*k) 

= 0 (mod/?). 
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a 
la 

ka 

ak 1 ak 

{kaf~l {kaf 
= a' k(k+t)/2 Y\(j-/) # 0 for k < p (mod/?). 

0<i<j<k 

Thus, we have that S(p, k, fi, oc; 0) = 0 (mod /?) for 1 < k < p. 
Furthermore, let F(x) = (x \fi)p+j. We then have F(x) = ! £ / S(p+j, k, fi, a; 0)(x | a)k and 

F(x) = 0p(x)(x-pfi)..-(x-(p + j)fi+fi) 
^ (xP - pP-lx)x(x - fi) ... (x - (J - \)fi) (mod /?) 
= (xp - fip~lx){xj + aps-x + • • • + a^ x ) (mod /?), 

where al9..., aj-x e Z. Consequently, we have, for 1 < i < p + y, 

(22) 

F(ia) = 

Since j < k -1, we have 

(mod/>), if Pi A 
(ia)y+1 + ̂ ( /a)7 + • • • + aj^Qaf (mod/?), if/?\fi. 

1 a0 
1 a j 

1 a t 

, fc - l 
0 

a ,k-i 

F(a0) 
F(a,) = 0 (mod/?), 

where the last column is a linear combination of the first k columns modulo/?. 
Again, the same denominator determinant is not congruent to zero modulo /? for k <p. 

Thus, we have that S(p + j , k, fi, a; 0) = 0 (mod/?) for j +1 < k < p. 
The case for a = 0 (mod/?) may be proved directly using (7), (21), and (22) by comparing 

the corresponding coefficients of powers of x in both sides of (21) and (22). Hence, the theorem 
is proved. • 

Note that in the particular case in which a = 1, fi = 0 or fi= 1, a = 0, Theorem 4 reduces to 
congruences for Stirling numbers of the first and second kinds; see [5] for other congruences for 
Stirling numbers. 

Corollary 5: Let a, fi, t be integers. Then the (a, fi; t) pair satisfies the basic congruence 

S(p, k, a, fi;t) = 0 (mod p), (23) 

where/? is a prime and \<k<p. 

Proof: Let W(x) = (l + ax)t/a = Idn>0arjxn/n\ with an eZ,a0 = l. Then it is clear from (1) 
that 

J]S(n,k,a,fi;t)x»M = \^anxVn\ \Ws(n,k,a,fi;0)x«ln\ 
«>o n>k 

so that we have 

S(p, k, a, fi; t) = f.a^SQ, k, a, fi; 0){p\ 
i=k V / 
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From Theorem 4 (taking j = 0) and the fact that (?) = 0 (mod p) for 0 < i < p , it follows that 
S(p, k, a, /?; r) = 0 (mod/?), and the corollary is proved. • 
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Integers have many interesting properties. In this paper it will be shown that, for an arbitrary 
nonconstant arithmetic progression {an}™=l of positive integers (denoted by N), either {an}™=l 
contains infinitely many palindromic numbers or else 10|aw for every n GN. (This result is a 
generalization of the theorem concerning the existence of palindromic multiples, cf. [2].) More 
generally, for any number system base b, a nonconstant arithmetic progression of positive integers 
contains infinitely many palindromic numbers if and only if there exists a member of the progres-
sion not divisible by b. 

WHAT IS A PALINDROMIC NUMBER? 

A positive integer is said to be a (decadic) palindromic number or, shortly, a palindrome if its 
leftmost digit is the same as its rightmost digit, its second digit from the left is equal to its second 
digit from the right, and so on. For example, 33, 142505241, and 6 are palindromic numbers. 
More precisely, let dkdk_l...dldQ be a usual decadic expansion of n, where di e{0,1, ...,8,9} for 
i e{0,1,..., k} and dk * 0. That is, n = 2f=o4 -Iff". 

Definition: A positive integer n is called a palindrome if its decadic expansion n - Hf=0d^W 
satisfies di = dk_i for all i e {0,1,..., k}. 

In Harminc's paper [2], interesting properties of palindromes were observed. For instance, a 
palindromic number is divisible by 81 if and only if the sum of its digits is divisible by 81. Some 
open questions were also stated there. For example, it is not known whether there exist infinitely 
many palindromic primes. Korec has proved in [3] and [4] that there are infinitely many non-
palindromic numbers having palindromic squares. 

In what follows we will consider arithmetic progressions. Each such progression {<zw}*=1 is 
given by its first member ax and by its difference d; thus, an=al + (n-l)-d. Let us recall a well-
known result on prime numbers in arithmetic progressions proved by Dirichlet (cf. [1]). As usual, 
denote by (w, v) the greatest common divisor of integers u and v. If (w, v) = 1, then u and v are 
called pairwise prime integers. Integers a and b are said to be congruent modulo a positive inte-
ger m, if m\(a - b); for this, we will write a = b (mod m). Then, the theorem of Dirichlet is 

Theorem A: Every arithmetic progression in which the first member and the common difference 
are pairwise prime integers has infinitely many primes. 

In other words, if (al9 d) = l, then the congruence x = ax (mod d) has infinitely many prime 
solutions. We will present an analogous result giving easy necessary and sufficient conditions for 
an arithmetic progression to contain infinitely many palindromic solutions. Clearly, if every mem-
ber of an arithmetic progression ends in zero, then the progression cannot contain any palindromic 
number. But as we will see, this is the unique exception. 
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MULTIPLES OF THE TYPE 999...99 

Lemma: Let e GN be such that (e, 10) = 1. Then, for every n^ GN, there exists msN such that 
m>rn0 and 10™ = 1 (mod e). 

Proof: Let us investigate powers often. Each number 10^ (k GN) is congruent (mod e) to 
one of the numbers 0,1,2,..., e-1. From this fact, it follows that, among the powers 10, 102, ..., 
10z, ..., there exist infinitely many numbers pairwise congruent (mod e). Thus, there are kx, k2 GN 
such that 

10*i = \Qk2 (m o cj<,) a n ( j k2-kl>m0. 

Then 10*1 -(1-10*2"*1) = 0 (mod e) and, since (e, 10) = 1, we obtain 10*2"*1 = 1 (mod e). Hence, 
m-k2-kx has the desired properties. D 

Since 10w = 1 (mod e) means that e\999...99, the Lemma yields the following corollary. 
m of 9's 

Corollary: If e E N and (e, 10) = 1, then there exist infinitely many numbers of the type 999...99 
divisible by e. 

MAIN RESULT 

Before stating Theorem B, let us introduce a notation used in the proof. An integer with the 
same digits as n GN, but written in the opposite order, will be denoted by rf, i.e., if n = 
dkdk_v ..d^, then n* = d0dv ..dk_xdk. Thus, n is a palindrome if and only if n - rf. 

Theorem B: Let {tf„} =̂1 be an arithmetic progression of positive integers with difference d GN. 
Then {an}^=l contains infinitely many palindromes if and only if 10 j ^ or \0\d. 

Proof: Clearly, if there exists i GN such that at is a palindrome, then at and d cannot both be 
multiples often. 

Conversely, let \0\ax or 10j*f and let d = 2P-9 -e, where (e, 10) = 1. Let us denote by c the 
least member of the sequence {an}™=l that is not divisible by 10 and let 

t 

c = c^_1...c1c0 = ^ c r 1 0 / 

;=0 

where ct^0. (Since 10 jax or \0\d, we have c-ax ore = a2.) 
Consider two cases, e - 1 and e * 1. The idea is (in the first case) to insert a sufficiently large 

number of 0's between c* and c (in the second case) to include among the 0's an appropriate num-
ber of strategically placed l's. 

First, let e = 1. Then, for every integer / > max{7, /?, y}, it is easy to see that the palindrome 

c*-lQl+c = c0cl...ct_lct 0...0 ctct__l...clcQ 
y v ' 

l-t-l of 0's 
is a member of the sequence {an}™=l. 

Now, let e *= 1. By the Lemma above, there exists m > max{f, /?, y) such that 10w = 1 (mod 
e). Then, for every integer j GN, we have Wm = 1 (mod e). Moreover, there exists r e{0, 1, ..., 
e -1} such that 
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c*-10w-f+rEE0(mode). 

Put 

x = c* -10rw+w1-f + 10rw + 10(r-1)w + . . . + 10™ -be 

= c<fi - . « 0 . . .010. . .010. . .010. . .010. . .010. . .0crc f_1 . . .qcb. 
v —?—^ v—-v—'' v — v — — ' ^ - — « g > — ' v—v— ' 
m-t-l m-l m-l m-l m-t-l 

Clearly, x is a palindrome, and we will show that x is a member of the sequence {a„}™=l. There-
fore, it is sufficient to check that d\(x-c). Since 2fi\(x-c) and 9\{x-c), we will verify only 
that e\(x-c). But 

x-c = c*- iff"*"-' + iff"1 + 10^-1)W + • • • + 1(T 

= c3S!-10rw40w-r + l + --- + l (mode). 
r 

Hence 
x - c = c* • 10w_r + r (mod e), 

so that x — c is congruent to zero (mod e), and the proof if complete. D 

One could define a i-adic palindrome as a positive integer n with 6-adic expansion 
^ W f c - i - ^ o 0-e-> n = ^f=odi'h1, where 4 e{0, l , . . . , f t - l} and d^ * 0 ) satisfying dt =dk_i for all 
/ G{0,1, . . . , &}. It is not difficult to see that all results proved here for decadic palindromes hold 
for 6-adic ones, too. For any number system base b, the following theorem is true. 

Theorem C: Let {^„}^=1 be an arithmetic progression of positive integers with difference d GN. 
Then {an}™=i contains infinitely many 6-adic palindromes if and only if b\ax or b \d. 

To prove Theorem C, the reader can mimic the proof of Theorem B. 

Hint: Let b = p?lp?2...p"s be the standard form of b and let d = pflp^2...p^s-e, where 
(e, b) = 1. Let c be as before with 

t 

!=Q 

If e = l, take x = c*-bl+c, where 

i>mJtAA,..Ai 
If e*l, take x = c*-brm+m~t +brm+b(r~l)m+ --+bm+c, where m is sufficiently large, see the 
Lemma above for 

nhZwa*\tAA,.:.A). • 

Open problem: Characterize geometric progressions without palindromic members. 
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1. INTRODUCTION 

The concept of "Z-densities" is introduced in this paper, leading to several interesting conjec-
tures involving the divisibility properties of the Fibonacci entry-point function. 

We let 2£= {^}^=i and X = {Ln}™=l denote the Fibonacci and Lucas sequences, respectively. 
Given m, the Fibonacci entry-point ofm, denoted by Z(m), is the smallest n > 0 such that m\Fn\ 
in.this case, we write Z(m) = n. Ifm and n are arbitrary (with m>\), m\Fn iff Z(m)\n. 

If m = p, a prime-*2 or 5, it is well-known that Z(p)\(p-sp), where e =(51 p), the 
Legendre symbol 

Given an arbitrary sequence °U = {U„} of positive integers, we say that p divides °U, and 
write /?|°U iff p\Un for some n. Let n^(x) denote the number of primes p < x such that /?|°ll; 
also, 7t(x) is the number of primes p < x. The "natural" density, or simply the density, of °U is 
given by 

&U = lim x%(x) I K(X) . (1.1) 
X-»00 

It is well-known that p\3? for all/?, and so 0&=l. This is certainly not the case for a general 
°U. J. C. Lagarias [6] has determined 0°\i for a few specific sequences, among them ££. As far as 
the topic of this paper is concerned, the most interesting result obtained by Lagarias was the 
following: 

0<e = 2 / 3 . (1.2) 

That is to say, 2/3 of all primes, asymptotically, divide some Lucas number. 
Now, it is also known that p\'X iff Z(p) is even. It follows that the density of those primes/? 

for which Z(p) is even is equal to 2 /3 ; note that this extends our initial definition of "density." 
The aim of the present paper is to generalize this perspective. Thus, we ask the question: Given 
m, what is the density of those/? for which m\Z(p)7 

We can also ask the more fundamental question: Given m, what is the density of those/? such 
that Z(p) = ml However, it is clear that such densities are zero for all m, since they characterize 
the primitive prime divisors of Fm (for a given m), which are necessarily finite in number; there-
fore, the density of those/? such that Z(p) = m is of no interest to us here. 

To obtain answers to the first question above, we introduce various types of densities that 
involve Z(p) in their definitions; such densities are referred to as "Z-densities." Here is a formal 
definition: Given m and x, let M(m, x) denote the number of p < x such that m\Z(p). Then we 
define £(m)9 the "Z-density of m as a divisor," as follows (assuming the limit exists): 

£(m) = lim M(m, x) I n(x). (1.3) 
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Clearly, £(1) = 1; also, using Lagarias' result, ^(2) = 0$ = 213. 
Based on an examination of certain Fibonacci entry-point data [4], [5], one of the authors 

(Bruckman) reached some conclusions regarding the evaluation of £(m) and related Z-densities. 
More recently, the other author (Anderson) has strengthened the evidence for these conjectures, 
using extended data produced by computer runs. Much of the numerical evidence for the various 
conjectures made in this paper has been omitted in the interest of brevity. However, for the sake 
of demonstration, we have included in the Appendix one of the tables that comprise such evidence 
(in abridged form). Additional details may be obtained from either author upon request. Known 
or proven results are annotated in the usual manner. Conjectures and consequences of such con-
jectures are marked with an asterisk; in the narrative, these are referred to frequently as "condi-
tional results," meaning "results conditional on the conjectures." 

The following is one of the consequences of these conjectures, valid for all primes q: 

ai) = q/(q2-i)- (i.4)* 
The characteristic polynomial of the sequences 9 and X has the irrational zeros a and /?, the 
familiar Fibonacci constants. For sequences having a second-degree characteristic polynomial 
that has integral zeros, (1.4)* was proved by C. Ballot [1]. Thus, Ballot's result is, conditionally, 
more broadly applicable. The methods employed by Ballot to establish his result are beyond the 
scope of this exploratory paper. 

In the present work, the authors have restricted their analysis to the sequences 2F and X. 
Further generalizations are left to other researchers. 

Before proceeding to the main points of this paper, we find it convenient to decompose the 
appropriate Z-densities into certain "component" Z-densities, defined below. Our study of such 
component Z-densities led to the main conjectures we formulated. 

In this paper, lower-case letters represent nonnegative integers, except for x, which may be 
any positive real number (generally thought of as large). However, the letters m and n represent 
positive integers, and the letters/? and q represent primes. 

2. COMPONENT Z-DENSITIES 

We begin with a basic definition of "q1, qJ Z-densities." Given q, x, i, andy, with i > j > 0, 
let M(q, x; i, j) denote the number of p < x such that q1 \\ (p - sp) and qj \\Z(p). The expression 
q°\\n is taken to mean q\n. Then the "q\qj Z-density," denoted £(q\i9j), is given as follows 
(assuming the limit exists): 

C(q; i, j) - Km M(q, x; i, j) I TT(X) . (2.1) 

On the basis of empirical evidence, we formulate the following conjecture. 

Conjecture 2.1*: 

Cfa *,/) = < 
(q-2)/(q-l) ifi=7 = 0, 
q~2i i f / > W = 0, 
(q-l)q-l-2i+J i f />y> l . 

By the definition of £(q\ /', j), it is clear that, for all primes q: 
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/>y>o 
(2.2) 

It is readily verified that Conjecture 2.1* implies (2.2). 
Conjecture 2.1* appears to hold even for the "exceptional" primes 2 and 5, which play a 

special role in the study of ^ and 56. However, a different type of rule applies when we study the 
divisibility of Z(p) by both 2 and 5 in conjunction. This rule is considerably more complex than 
that indicated in Conjecture 2.1*3 must be offered in the form of a (two-dimensional) table, and 
requires a special definition: 

Given x, /*, j , k, and /, with i > j > 0, k > I > 0, we let M(2, 5, x; z, j ; k, /) denote the 
number of p<x such that 2i5k\\{p-8p) and 2J5l \\Z(p). Then the "2',2-/, 5*, 5l Z-
density," denoted ^(2,5; i, j ; k,l),is defined as follows: 

C(2,5; i, j ; k, I) = lim M(2,5, x; i, j ; *, /) / ;r(x). (2.3) 
X-»oo 

The numerical evidence, combined with general reasoning, suggests the following conjecture. 

Conjecture 12*: g(2,5; i, j ; k, I). 

( i , / ) \ (*,/): 

(0,0) 
0,0) 
(1,1) 

i £ 2 , y = 0 

(/,/), i*2 
i>j>2 

Column 
Totals 

(0,0) 

0 
1/4 
1/8 

2- i-2,-

2-i-/ 

2-2-2/+./ 

3/4 

yfc>l 
7 = 0 

0 
0 

l /2 -5" 2 t 

2l-2iy2k 

0 
2~2/+/c-2* 

5 - 2 * 

£ > / > l 

0 
0 

2 . c-l-2k+l 

2$-2ic-\-2k+l 

0 
22-2/+jc-l-2fc+/ 

4 . c-l-2i+/ 

Row 
Totals 

0 
1/4 
1/4 
2"2' 

2 - i - / 

2-1-2/+/ 

1 

The row totals in Conjecture 2.2* are the sums over all k>l>0 and are the g(2;i,j) 
obtained by setting q = 2 in Conjecture 2.1*. Likewise, the column totals are the sums over all 
i > j > 0 and are the £(5; k, I) obtained from Conjecture 2.1 * by setting q = 5 and replacing (i, y) 
by (k, I). Therefore, our conjectures are mutually consistent. 

The Z-densities introduced above give information about the divisibility properties of 
{p-£p) and Z(p). We now derive expressions for Z-densities that only yield information about 
the divisibility properties of Z(p). Accordingly, we make the following definitions: 

a^J)^aq;r + jJ); (2.4) 
r>0 

£(2,5; j,I)-X £<T(2,5;r +j, j;s+l,l). 
r>0 s>0 

(2.5) 

Note that £(q; j) is the density of those primes/? for which qj \\Z(p), and ^(2,5; j , I) is the den-
sity of those p for which 2j5l \\Z(p). If we substitute the putative results from Conjectures 2.1* 
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and 2.2*, respectively, into the formulas indicated in (2.4) and (2.5), we obtain the following 
expressions: 

r( ., J(<72-<7-l)/(?2-l) if7 = 0, 
aq;j) = \ , .... n . . . . (2-6)* 

I? 7 % + l) iO CI-
TABLE 2.1*. £(2Aj,l) 

1=0 l>\ 
Row 

Totals 

7 = 0 

7 = 1 
7 > 2 

43/144 

7/36 

43-2--/'/72 

51_'/36 
5 w / 9 

2--/5w/18 

1/3 

1/3 

2 w / 3 

cxlT »'« " « 
The row totals in Table 2.1* coincide with the £"(2;y) from (2.6)*; the column totals coin-

cide with the <̂ (5; /) from (2.6)* (obtained by setting q = 5 and replacing^ by I). 
We next require an additional set of Z-densities, this time involving mere divisibility of Z(p) 

by qj, instead of exact divisibility. Note that qJ\Z(p) iff there exists some r > 0 such that 
qr+J \\Z(p). Since r satisfying this condition is arbitrary, this suggests the following relations: 

aqJ) = TC(^r+j); (2.7) 
r>0 

£(2V) = £l£(2,5;r+;,*+/). (2.8) 
r>0 s>0 

The density (^(2J5l), according to definition (1.3), is the density of those p such that 
2J5?\Z(p). 

Substituting the conditional results from (2.6)* and Table 2.1* into the expressions in (2.7) 
and (2.8), we obtain the following: 

^ W - D '%:$ (2-9)* 

C(2>5'): 

1 if/ = / = 0 , 
52_'/24 if/ = 0,/>l, 
5s-'/144 ify = l , /> l , (2.10)* 
22-V3 i f /> l , /=0 , 
2_/52-'/36 ify >2, />l . 

Note that if we set 1 = 0 in (2.10)*, we obtain £(2J) as indicated from (2.9)* with q = 2; 
likewise, setting j = 0 in (2.10)* yields £(5'), obtained from (2.9)* by setting q = 5 and replacing 
j by /. Such numerical checks inspire confidence in the validity of our conjectures. 
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In the next section we use the conditional results obtained in this section to derive a general 
expression for £(m). 

3. DERIVATION OF £(m) 

We would normally expect that the Z-densities satisfy a multiplicative property of sorts; 
naively, we might suppose that £(m) = Uqj\\mC(qJ). However, there is apparently a certain 
amount of "distortion" in this putative multiplicativity law, due to the presence of the "special" 
densities £{2jSl) that might enter into the computation. In order to measure this distortion, we 
introduce a ratio defined as follows: 

pU,I) = a2J5l)/(a2JX(51))- (3-1) 
Computing p(J, l) from (2.9)* and (2.10)* is a relatively simple matter, and we obtain the follow-
ing expressions: 

[1/2 i f />2 , /> l , 
pU,r) = \5IA if/ = l , /> l , (3.2)* 

[l if/ = 0or / = 0. 

Based on the foregoing comments, we postulate the following "quasi-multiplicative" property. 

Conjecture 3.1 *: 

£(m) = p(J, 0 n ^ V ) > whenever 2J5f \\m. 

We may also redefine p(J, I) as an explicit function of m, as follows: 

p(m) = 
1 if lOj/w, 
5/4 if m = 10 (mod 20), (3.3)* 
1/2 if 20|m. 

Therefore, our quasi-multiplicative property now takes the following form: 

am) = p(m)UaqJ)- (3.4)* 

We may now substitute the values of £(qJ) from (2.9)* into the formula given by (3.4) 
Note the following: 

£(m) Ip{m) = Y[q2~J I (q2 -1) = t{m) /m, where 
qJ \\m 

t(m)^H(l-q-2)-\m>l;t(l) = l (3.5) 
q\m 

Therefore, we obtain our final formula for £(m): 

C(m) = p(m)t(m)/m, (3.6)* 

where pQn) and t(m) are given by (3.3)* and (3.5), respectively. As we may verify, this formula 
yields the known results: £(1) = 1 and £(2) = 213. Additional (conditional) results yielded by the 
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general formula in (3.6)* are as follows: £(3) = 3/8, £(4) = 1/3, £(5) = 5/24, etc. The condi-
tional result of (3.6)*, if true, implies that t,(m) is rational (and positive) for all m. 

Conditionally, the function C,(m) is not multiplicative, while the function C,{m)lp{m) is. 
Thus, if m and n are coprime, we have the interesting property 

amn) = p(mn)/(p(m)p(n)).amK(n)- (3-7)* 
Other interesting derived conditional properties of ^(m) follow from (3.6)*. In the interest 

of brevity, we omit the demonstration of these properties, and merely indicate the results. For 
example, (3.6)* implies the following: 

Y a m ) / m = 5 ' ^ n ' 3 1 ? 2 7 7 = 12,041,645/6,644,656. (3.8)* 
J^i ; 24-601.691 

We may also show (conditionally) that the average order of C(m), over all m<x, if 0(\ogx/ x), 
but omit the demonstration. 

We have omitted discussion of the densities of those/? for which Z(p) = m, where m is a 
specified positive integer. Such a density relates to the number of primitive prime divisors 
(p.p.d.'s) of Fm, since these are precisely those primes/? such that Z(p) -m. Hence, this density 
must be zero for all values of m, since the number of p.p.d.'s of Fm must be finite. On the other 
hand, the principles previously employed lead to a formula for such density in terms of the com-
ponent densities obtained in Section 2. Proceeding thus, we find that each such resultant density 
has a "constant" multiplier denoted as 8, where 

S = Yl{(p2-p-\)l(p2-\)}. (3.9) 
P 

However, the infinite product defining such "constant" 5 diverges to zero. To see this, note that 

o<«5=n{(i-w(p2-i)}<no-1^}; 
p p 

since it is well known that the latter product is divergent to zero, we see that S = 0. This, in turn, 
implies that the density of those primes/? such that Z(p) = m, as anticipated. 

From the definition of density and the Prime Number Theorem, we deduce that, for a given 
w, the number of p.p.d.'s of Fm is o(x/logx) for all m< x. In fact, it seems probable that the 
number of p.p.d.'s of Fm is OQogx), which is certainly o(x/logx). The conditional demon-
stration of this last statement is deferred, as it will be the subject of a future paper. 

4. NUMERICAL VERIFICATION 

In the interest of brevity, we have omitted all but one of the appendices that originally formed 
part of this paper. These contain the results of certain statistical tests conducted by the authors to 
test the validity of the conjectures. The tests were conducted by analyzing the data on Z(p) and 
p-sp for the first million primes (the highest such prime being 15,485,863). Although due cau-
tion is required in conducting any such tests, if we accept their validity, it may be stated with 
better than 95% statistical confidence that the conjectures are correct. 

For the sake of demonstration, we have included one of these tests (in abridged form) in 
Appendix 1. Anyone interested in seeing the complete results of such analysis may contact either 
author for copies thereof. 
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The numerical evidence based on these studies supports our belief that the underlying 
conjectures made in this paper are correct. However, statistical corroboration does not constitute 
mathematical proof, and proof is what is required to establish these conjectures rigorously. 

APPENDIX 1 
x = 15,485,863 ; %(x) = 1,000,01X1 

a 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

"otals for 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

i 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16-21 

q = 2: 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10-12 

Totals for q = 3 

(1) 
M(q, x; j) _ j 
333,286 
333,329 
166,737 
83,216 
41,734 
20,8% 
10,460 
5,185 
2,591 
1,307 
626 
326 
152 
75 
47 
14 
19 

1.000.000 

625,126 
249,889 
83,271 
27,764 
9,331 
3,073 
1,028 
330 
138 
32 
18 

: 1.000.000 

(2) 
;(q;i) 
3333333 
3333333 
1666667 
0833333 
0416667 
0208333 
0104167 
0052083 
0026042 
0013021 
0006510 
0003255 
0001628 
0000814 
0000407 
.0000203 
.0000200 

6250000 
2500000 
0833333 
0277778 
0092593 
0030864 
0010288 
0003429 
.0001143 
.0000381 
.0000183 

(3) 
rc(x)-5(q;f) 

333,333 
333,333 
166,667 
83,333 
41,667 
20,833 
10,417 
5,208 
2,604 
1,302 
651 
326 
163 
81 
41 
20 
20 

999.999 

625,000 
250,000 
83,333 
27,778 
9,259 
3,086 
1,029 
343 
114 
38 
18 

999.998 

(4) = 

UlU3)V+(3) 
0.0066 
0.0000 
0.0294 
0.1643 
0.1077 
0.1905 
0.1775 
0.1016 
0.0649 
0.0192 
0.9601 
0.0000 
0.7423 
0.4444 
0.8780 
1.8000 
0.0500 

5.7365 

0.0254 
0.0493 
0.0461 
0.0071 
0.5599 
0.0548 
0.0010 
0.4927 
5.0526 
0.9474 
0.0000 

7.2363 
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APPENDIX 1 (continued) 

a 
5 
5 
5 
5 
5 
5 
5 
5 

Totals for q 

7 
7 
7 
7 
7 
7 

Totals for 

11 
11 
11 
11 
11 

Totals for 

i 
0 
1 
2 
3 
4 
5 
6 
7-8 

t = 5: 

0 
1 
2 
3 
4 
5-7 

q = 7 

0 
1 
2 
3 
4-5 

(1) 
M(q, x; ft 

791,679 
166,700 
33,272 
6,612 
1,3% 
278 
51 
12 

1.000.000 

854,407 
124,742 
17,907 
2,533 
356 
55 

: 1.000.000 

908,281 
83,400 
7,581 
676 
62 

q = 11:1.000.000 

(2) 

qq;i) 
.7916667 
.1666667 
.0333333 
.0066667 
.0013333 
.0002667 
.0000533 
.0000128 

.8541667 

.1250000 

.0178571 

.0025510 

.0003644 

.0000606 

.9083333 

.0833333 

.0075758 

.0006887 

.0000683 

SUMMARY 

(3) 
TC(x)-qq;i) 

791,667 
166,667 
33,333 
6,667 
1,333 
267 
53 
13 

1.000.000 

854,167 
125,000 
17,857 
2,551 
364 
61 

1.000.000 

908,333 
83,333 
7,576 
689 
68 

1.000.000 

(4) = 

U1U3W+J3) 
0.0002 
0.0065 
0.1116 
0.4537 
2.9775 
0.4532 
0.0755 
0.0769 

4.1551 

0.0674 
0.5325 
0.1400 
0.1270 
0.1758 
0.5902 

1.6329 

0.0030 
0.0539 
0.0033 
0.2453 
0.5294 

0.8349 

Grouped 
Values of q 

2,3 

5,7,11 

2,3,5,7,11 

Total x2 Value 
Number of Number of Chi-Square at 97.5% 

Values Data Points (n) Statistic Confidence 

2 

3 

28 

19 

47 

12.9728 14.5733 

6.6229 8.2308 

19.5957 27.60 
(est) 
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APPENDIX 1-SUMMARY (continued) 
Explanation: 
1. M(q,x; j) = 1EizoM(q,x;i + j , j) enumerates those primes p<x such that, for the given 

primes qJ\\Z(p). 
2. Column (2) is obtained from the formula given in (2.6)*. 
3. In the last data point for each q, values of M(q, x; j) were aggregated with preceding values, 

in some cases, so as to make the aggregated value 12 or more. This was done to minimize 
the distortion in the calculated value of the Chi Square statistic. For these entries, Columns 
(2) aind (3) reflect the sum of the values for the indicated values of j . 

4. The values of %2 at the 97.5% confidence level are taken from Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables, ed. M. Abramowitz & I. A. 
Stegun (National Bureau of Standards, 9th ptg., 1970). These values are read using n-\ as 
the degrees of freedom. 

5. In this Summary, the Chi Square statistic is less than the corresponding x2 value at the 
97.5% confidence level. This latter amount is the value at which the "tail" of the distribution 
function, for the indicated degrees of freedom, is .025. Therefore, on the basis of this test 
alone, we would accept the conjecture in (2.6)* involving # = 2,3,5,7, or 11, with 97.5% 
confidence. 
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1. INTRODUCTION 

In 1947, Fine [1] proved that almost all binomial coefficients are even. That is, if T2(n) is 
the number of odd binomial coefficients (™) with 0 < k < m < n, then T2(ri) = o(n2). In particular, 
since the total number of such binomial coefficients is 1 + 2 + •••+« = \n2 + y n, the proportion of 
odd coefficients tends to 0 with n. In 1977, Harborth [3] improved this estimate to 

.812556wlQg23 < T2(n) < nl0^, 

and although the best constant in the lower bound has been calculated to great accuracy [2], its 
exact value is still unknown. The behavior of T2(n) and its generalizations to Tp(ri) for prime/? 
have also been studied by Howard [4], Singmaster [6], Stein [7], and Volodin [8]. In the follow-
ing definitions, let (o) = 1. For any prime/?, it is convenient to let P = {p^1), 0P - \ogpP, and to 
let Sp(n) denote the number of binomial coefficients (?) that are not divisible hyp. Then 

Tp(n) = "£sp(k) 

is the number of binomial coefficients in the first n rows of Pascal's triangle that are not divisible 
by p. It is known (see [3] and [7]) that the quotient Rp(n) = Tp(n)ln p is bounded above by 
ap = sup„>i Rp(ri) = 1 and below by J3P = in£n>\ Rp(n). The pp tend to \ with p [2], but to this 
point no exact values for f5p have been found. 

2. THECASE/? = 3 

Henceforth, the terms 0, R, S, T shall denote 03, i?3, S3, T3, respectively. Also, let 

7 = 1 

be ris base-three representation, where each a, = 1 or 2 and rx > r2 > • • • > rk > 0. We list the first 
few values of S(n), T(n), and R(n) in Table 1. 

We shall confirm a conjecture of Volodin [8], namely that inf^i^ra) = 2log32_1 =.77428. 
The fractal nature of Pascal's triangle modulo 3 implies (see [5], Cor. 2, p. 367) the following 
recursive formula for T: 

T(a-3S +b) = | a ( a + l)6* + (a + l)T(b) for a = 1 or 2, b < 3s. 

It follows by iteration that 

fz^Vii^i+i)---(^+i)6'i. (i) 
V/=i J z /=i 
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n 
0 
1 
7, 
3 

4 

5 
6 
7 

8 
9 

S(ri) 
1 
2 
3 
2 

4 

6 
3 
6 

9 
2 

r(») 
0 
l 
3 
6 

8 

12 
18 
21 

27 
36 

/?(«) 

1 
.96864 

1 

.83401 

.86938 

.96864 

.87887 

.90884 

1 

n 
10 

11 
17 
13 

14 

15 
16 
17 

18 
19 

S{n) 
4 
6 
4 
8 

12 
6 
18 
12 

3 
6 

T(ri) 
38 
42 
48 
52 

60 

72 
78 
.96 

108 

111 

R(n) 
.88890 

.84103 

.83401 

.79294 

.81077 

.86938 

.84773 

.94514 

.96864 

.91152 

n 
20 
21 
22 
23 

24 
25 
26 
27 

40 
121 

S(n) 
9 
6 
8 
18 

9 
18 
27 
2 

16 
32 

Tin) 
117 
126 
132 
144 

162 
171 
189 
216 

320 
1936 

R{ri) 
.88368 

.87887 

.85345 

.86592 

.87887 

.89754 

.93055 

1 

.78037 

.77630 

3. MAIN RESULT 

Theorem 1: The number of binomial coefficients (™), k<m<n, that are not divisible by 3 is 
bounded below by 2log32~lnl°^6 and this bound is sharp. 

Proof: Let the two sequences x, y be defined by 

x, = 3r< - a ^ + 1)...fa+1) and yt = at a, .^+ !)•«• (a,.+1) , \<i<k. 

We apply Holder's inequality to the sequences x, y with the conjugate exponents 0 = log3 6 and 
0' = log26: 

k ( k \i ( k \o> 

/=! V/=l J V/=l / 

r 
n< I3'-

/=! 
^fa + O-fa + i) 

ii^V ( 
Ik ^a,(a1 + l)-(a,+l) 

^<[t6r4a,(a1 + l)-(a/ + l)l- i«f 
1=1 1=1 

^a,.(a1 + l)-(a,. + l) 
0 V 

^(«)^|fi^[(«i+i)-(^+i)r* 

Let v = d> 10 = log2 3 = 1.58496 and let 

1=1 

Note that Uk =fx o/2 o/3 o... o/^O), where 

1998] 
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fi(x)=X+a< 
(ai+iy 

Each f is one of the two increasing functions ^ or ^ and Uk will be maximized when 
each at is chosen to maximize ff. For a given x, we find that ^ > ^~- (i.e., at = 1) if and only if 
x>. 109253. So, for x = 0, fk(0) is maximized when ak=2. For i<k, f(x) is maximized 
when a, = 1 since x will now be in the range of /• and, hence, > ^. Thus, 

j j < J L _i_ _ J _ _i_ _i ± i 2 
2V 22v 2^-1)v 2(jk_1)v • 3V 

1 1 1 2 1 i - 2 - 3 " v 

3 32 3*"1 3*"1-3V 2 3k~ 

<j since ^ -2 -3 - v >0 . 

Hence, from (2) we have, for all n, 

R(n)>±(Uk)-i>(±y*= 2^~\ 
whence 

^-(ir^2 1 0 8 3 2"1-
We now consider numbers of the form 1 + 3 + 32 + 33 + • • • + 3*. It follows from (1) that 

1 (2 • 6k 4- 22 • 6fc_1 + • •. + 2k+l} 
V ' (l + 3 + 3 2 +3 3 + - .+3*) l o g36 

= 2*(3*+3*-1 + - + l ) T r 2* = 2fc+1 ^ ^ 
/3*+1-lV°g36 /3*+l-lV°832 0k+l ~ l)l0S32 

so that l i m ^ i?(l + 3 + 32 + 33 + • • • + 3*) = 2lo^2~l. 
Hence, fi2 < 2log32"1. This implies ^ 3 = 2lo^2~l and T(n) > 2lo^2-ln[o^6, the desired result. 

Note that n and T(w) are integers, so there is strict inequality. 
The proof of Theorem 1 works because the sequence {1,1,1,...} that minimizes R(n) gives 

rise to sequences xi,yi for which equality holds in Holder's inequality. This does not occur for 
p ^ 3, so the proof does not extend to other primes. 
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1. INTRODUCTION 

Let/? be a prime. In 1889 Voronoi proved the congruence 

L2*-1 (modp), (1) ( « - « ' • • * ) % - £ 2k , , 
• 5 = 1 L . 

sa 
P 

where £, a are positive integers such thatp does not divide a and p-\ does not divide 2k; B2k is 
the 2£th Bernoulli number. More general versions of this congruence can be found in [6] or [3]. 
Following Wagstaff, denote congruence (1) also by the symbol {a}. Adding together congru-
ences {2}, {3}, and -{4}, we obtain the congruence 

{2}+ {3}-{4} 

which, after some obvious cancellations in the right member, takes the form 

(2P-2k+3P-2k_4P-2k_l)B2L^ j y * - i ( m o d / ? ) ? ( 2 ) 

4k p/4<s<p/3 

provided that p > 4. Several such identities are also obtainable in a way analogous to that shown 
above by using suitable variations of parameter a. Several authors used formulas of this type to 
test regularity via computer. The best result in this direction is the following one, due to Tanner 
and Wagstaff [5], which is valid for all primes p > 10, 

(2p--2* + gP-2k 

+ (1 + 2 

- 3 2 * - 1 

-2 2 *- 1 

-io?-2k-

2k-l+32k-

\T> 2k-l 

60 <S< 10 

-1)^*-
4k 

1+42fe" 

-(22*-1 

-(22*-

- ( l + 22fe-1+32fc-1 

i+i2M-1) yyk-

+ 62k-

l+42k 

no<s<9 

-l+l22k-1) 
18 

+ 42k~ 

1 

-4£ 

) 2> 

-1 

(3) 

- (2 2 M +4 2 *- 1 ) %s2k-1 (mod/?). 
120 ^ ^ 5 

In formula (3), the sums in the right member contain a total of about p/lS terms [formula (2) 
contains about p112 terms while formula (1) contains (p -1) / 2 terms for a = 2]. All the appli-
cations of these formulas concerning Fermat's Last Theorem are now mainly of historical interest 
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after Wiles's proof [8] of FLT. There are congruences of various types for the Bernoulli numbers. 
Recent results on congruences for Bernoulli numbers of higher order can be found in [2]. 

We shall prove the following analog of formula (1). 

Theorem 1: Let ̂  be a primitive Dirichlet character with modulus m > 2. If a > 2 is an integer 
such that m does not divide a, then 

f 0 if % is even, 
m-\ 

s=\ 

sa 
m z0): 

*(2)-2 s=l 

(4) 

where the bar means complex conjugation. 
The proof of Theorem 1 will be given in Section 2. Formula (4) can be written, equivalently, 

in the form 
fO if^iseven, 

(5) 
m-\ 

s 
s=l L 

sa 
m 

because of the formula 

X(s)-

m-l 

Z,SX(S) if^isodd, 
m s=\ 

Ysx(s) = m 
[mil] 

s=l z(2)~2; 
Y,Zis), (6) 

which is valid for an odd primitive character % • 
We use formula (5) to obtain /^-divisibility criteria for Bernoulli numbers of the form 

n(2k-\)P
n+v * - M , ~ ; 2 * 

Criteria of this type are still of interest because of their connection with the invariants of the irreg-
ular class group of a properly irregular cyclotomic field [7] (cf. also [4], p. 189). Assume now 
that m = p , an odd prime. Let y/ be the character defined as the/?-adic limit 

y/(s) - lim sp 

for every s prime top. All the values of y/ belong to Z p , the ring of/7-adic integers. Moreover, 

y/(s) = spn~l (mod/ / 7 ) , n>\. 

For an odd character, we have x - W2k~l? f ° r s o m e k>\, and 

^ ) ^ - ^ (mod//*), 
X{S) - 5-^",(2^1) - sT^y-^Vk-l) s sp-\P-2k) ( m o d pny 

Theorem 2: Let /? be a prime >3. If a is an integer such that/? does not divide a, then 

[a-a p»-\p-2k) ]Bt (2Jt-l)/7"+l 

p-l 

-I sa Pk~l)pn~l (mod//1), 

for every k > 1 such that p - l does not divide 2k. 
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Proof: We consider the 17th Bernoulli polynomial 

y=ov 

Then, for the odd character % = y2^"1, w e have 
p-1 P B (v)-B 
y sr(s) = y pk-w+l = w-w+v^' "yk-w+i 
S S (2k-l)p»+2 

[(2k-l)p» + l](2k-l)p» 3 
//Z>(2Jt-l)/7"+l ^ 31 r U(2k-\)pn-\ ^ 

T I « ( ' ) - W « ( m o d ^ 

Since p-\ does not divide 2k, we obtain the congruence 
P-\ 

which, together with Theorem 1 and relation (5), yields the sought result. 
For n = 1, congruence (7) reduces to congruence (1) since 

V - ^ , = [(2t-l)p + 1 ] J ^±_ . f (mod,) 

because of Kummer's congruence. 
We can prove, using exactly analogous techniques and starting from (7), a pn-analog of con-

gruence (3). Because of the obvious analogy between the proofs, the sought result follows simply 
by replacing expressions of the form 

Qp-2k Q2k-l ^ - 1 B2L 
9 2k 

in congruence (3) with the respective expressions 
npn-\p-2k) n(2k-l)p"-1 J2Jc-l)p"-1

 R 
U > " > A ' n{2k-l)pn+V 

The following theorem then follows. 

Theorem3: Let/? be an odd prime >10, k>l, p-l does not divide 2kand n > 1. Then 

2{p-2k)pn-1 +9(p-2k)p"-1 _lQ(p-2k)pn-1 _l 

2 (2k-l)pn+l 

."-1 /-Ot 1\„"-1 = [1+2{2k~l)p + 2{2k~l)p + 42k~l)p ] y sw-i)pn~l 

10^^120 

+ [1 + 2(2k~1)p"~l + 3^2A:-1>^"1 + 4(2*-1)/?w~1 + ^C2^-1)/7""1 ] V s(2k-l)pn~l 

120^^9 

_ 3(2k-l)p"-1 y pk-l)jTl _ |-2(2A:-l)/7"-1
 + 6(2k-l)p"-1 j y s(2k-l)p"-1 

9 ^ ^ 30 18 <s< 60 
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1 8 ^ " ^ 120 

_ 2(2k-i)P"-1 y s(2k-i)P"-1 __ r2(2k-i)P"-1
 + 4(2k-i)P"-1

 + l2(2k-i)P"-1 -J y pk-\)P
n 

60 ^ A ^ 1 0 

120 ^ A < 5 

The congruence contains in the right member pi 18 terms only. 

2, PROOF OF THEOREM 1 

At first, we note that, obviously, 

5=1 L m - I - * * ) = ! I>(4 (8) 
7=1 5=0 

For integerj, 0<j<a, define 

0(x) = 
y ifx = 0or2nj/a, 
1 if0<x<27rj/a, 
0 if 2;rj I a<x<2n, 

and continue O(JC) periodically with period 2;r over the real numbers. The function O(x) has the 
Fourier expansion 

where 

2K 

First, we assume that a <m. Then 
[//w/a] m-l 

c = — f <D(xK"^ = — ( * " -1) 

jm/a\ m-l / n __ 

5=0 5=1 

2/nr//i 2/rij 

5 = 1 n=—<x> 

Inijn 

where 

r(x)i f (e~-l)x(n) 
2n ±L n 

5=1 
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As a consequence, 

y=i 5=0 2/r „~ n 
n=—co 

•a 

v- i 
_ i a > v Xto*--** <X)i" f XM 

In Jr.L " 2̂  i i n £ 
Since 

it follows that 

« imjn (a if n = 0(moda\ 
P6 ' [0 if«#0(moda), 

^ «=-oo W /=1 5=0 In „~ na 

= 4 ^ a ( a ) - a ) i m 

For even %, the last infinite sum is equal to zero while, for odd x, it is equal to 2Z(1, ~x). In view 
of the formula (cf [1], p. 336) 

[mil] 

L{\X) = m 
(2-z(2))r(x) % I,Zis) 

and relation (8), it follows that 
m-\ , [m/2] 

^ I L W J 
(9) 

for a < m. It remains to prove the theorem for a > m. Then a = al+mt, where ax and t are inte-
gers and 0 < ax < m. Also m does not divide av We have 

m-ir m-1 

Z 
5=1 
2Hk<*)=S 5=1 

m-l 

5ax +sf zO) 

SON m-l 

5=1 L ' " J 5=1 

The last expression is zero for even % For odd % w e have, in view of (6) and (9), 

= S|"^Lk(ff) + rZ^(5)-

which proves the theorem fora>m. 
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1. INTRODUCTION 

A curious problem is that of finding closed-form expressions for the positive real numbers 
(say x) that preserve their fractional parts when raised to the k^ power (k > 2, an integer). It is 
quite obvious that all the positive integers enjoy this property. 

Since no positive number less than 1 can enjoy it, the numbers x are characterized by the fact 
that xk diminished by x equals a nonnegative integer. In other words, the numbers in question are 
given by the positive roots xn(tc) of the k^ (k > 2) degree equation 

xk-x = n. (1.1) 

where n is an arbitrary nonnegative integer. Equations like (1.1) are said to be of the Bring-
Jerrard form [1, pp. 179-81]. Observe that the positive integers emerge as solutions of (1.1) 
when n-ak -a (a- 1,2,3,...). 

From this point on, the symbol xn(k) (n = 0,1,2,...) will denote the 72th positive real number 
that preserves its fractional part when raised to the power k. 

The case k = 2 has been considered in [4]. In that article k was allowed to assume negative 
values also, and the author proved that the golden section a - (1 + JE)/ 2 = x^-l) = xx(2) is the 
only nonintegral number that preserves its fractional part both when one squares it and when one 
takes its reciprocal. 

In this article we extend this study by considering the cases k = 3,4, and 5. The solutions for 
k = 3 and 4 are readily found as the closed form expressions for third- and fourth-degree equa-
tions are known; we show them only for the sake of completeness. Solving the case k = 5 has 
been a bit more complicated, and is our main result. More precisely, we have established the 
closed-form expressions for the only three nonintegral numbers xn(S) for which it can be given: 
these numbers are xl5(5), x22440(5), and x2759640(5). This assertion comes from the fact that the 
quintic of the Bring-Jerrard form x5 - x - r (r GZ) can be solved by radicals iff either r = m5 -nt, 
or r = ±15, ±22440, or ±2759640. The proof of this result involves a well-known property [2] of 
the Fibonacci numbers Fj. 

2. THE NUMBERS xn(k) FOR k = 2, 3 AND 4 

By using (1.1) and the well-known formulas for the solution of second-, third-, and fourth-
degree equations, the following results have been established: 

xw(2) = (l + V4^TT)/2 (^ = 0,1,2,...) (see [4]), (2.1) 
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^-k-M-i^M^ *-•"••* M 
and 

where 

_jK+J-yn+2yly2„+4n 
x„(4)=^" * -"2 ^ (/i = 0,1,2,...), (2.3) 

^ Remark: If w = 0, then x„(2) and x„(4) defined by (2.1) and (2.3), respectively, clearly equal 
1, as expected. Let us show that x0(3) defined by (2.2) equals 1 as well. In fact, letting n - 0 in 
(2.2) gives 

*.(3) = f ^ + ̂ fJ = ̂ [V5 + y7], (2.5) 
where / is the imaginary unit. Considering the principal values of the cubic roots in (2.5) yields 

xQ(3) = J - I cos— -1sin — + cos— +1sin — 

as expected. 

3, SOLVING x 5 - x - r 

The quintic q(x) -x5 -x-r ( reZ) may be either irreducible or reducible over the rational 
field Q. If it is reducible over Q, then it is reducible over Z as well [9, Th. 23, p. 24]. Neces-
sary and sufficient conditions for its decomposition are given in [8]. Since the argument leading 
to the complete characterization of the quintics q(x) that are solvable by radicals is based essen-
tially on properties of irreducible quintics, we settle first the irreducible case, then we complete 
the discussion by addressing the reducible case. 

3.1 The Irreducible Case 
We shall prove that, if q(x) is irreducible over Q, then it cannot be solved by radicals. To 

this aim, we need the following theorem by Dummit [3, p. 389] that we quote in a form 
specialized to our Bring-Jerrard quintic q(x). 

Theorem 1 (Dummit): If q(x) = x5 -x-r {r el) is irreducible, then it can be solved by radi-
cals iff the polynomial 

x6-8x5+40x4-160x3+400x2-(3125r4 + 512)x + (9375r4+256) (3.1) 

has a rational root. If this is the case, then the polynomial (3.1) factors into the product of a linear 
polynomial and an irreducible quintic. 

Next we state our main theorem. 
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Theorem 2: If q(x) = x5 - x - r (r e Z) is irreducible, then it cannot be solved by radicals. 

Proof (reductio ad ahsurdum): From Theorem 1, it is sufficient to prove that no integer r 
yields a rational root u of the monic polynomial (3.1). After observing that a rational root of a 
monic polynomial is necessarily an integer (from the Rational Root Theorem, e.g., see [5, 
p. 253]), we suppose the existence of an integer root w, thus getting a contradiction. 

First, replace x by the integer u in (3.1), equate this polynomial to zero, and solve for r4, thus 
obtaining the equality 

4 = ( « - 2 ) V + 16) 
55(w-3) ' 

which can be rewritten in the form 

«2 + 16 = 5 ( « - 3 ) ^ J . (3.2) 

Now, observe that 5[5r I (u - 2)]4 must be an integer because g.c.d. (u - 3, u - 2) = 1. Conse-
quently, if u - 2 is not divisible by 5, then r I (u - 2) must be an integer, while, if u - 2 is divisible 
by 5, then 5r/(u- 2) must be an integer. In both cases it follows that, if u is an integer, then the 
quantity v = 5r / (u - 2) is an integer as well. 

Then, from (3.2), write the quadratic equation in u, 

w2-5v4*/ + 15v4 + 16 = 0, (3.3) 

whose discriminant 25v8 - 60v4 - 64 must be a perfect square (say, w2) because u is an integer by 
hypothesis. Hence, v is a root of the quadratic equation in z, 

25z 2 -60z-w 2 -64 = 0, (3.4) 

where z = v4. Again, the discriminant 100(w2 + 100) of (3.4) must be a perfect square (say, 
100s2) so that w and s satisfy the diophantine equation 

w2 + 100 = ,s2 (3.5) 

whose solutions are (w, s) = (24,26) and (0,10). 
Letting w = 24 and 0 in (3.4) yields the roots (zl9 z2) = (32 / 5, - 4) and (16/ 5, - 4 / 5), respec-

tively. None of these roots is a fourth power, as is required by the replacement z - v4 above. 
This contradiction comes from the fact that we supposed that u is an integer. Q.E.D. 

3.2 The Reducible Case 
Theorem 2 tells us that the quintics of the form q(x) may be solved by radicals only if they 

are reducible. The solution of this case has been given by Rabinowitz in his nice paper [8]. In 
fact, after showing that, if r = m5 -m (meZ), then 

x5 -x-(m5 -m) = (x-m)(x4 +mx3+m2x2 +m3x+m4 -1) , (3.6) 

this author proves the following. 
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Theorem3 (Rabinowitz): lfr^m5-m, then q(x) Is reducible iff 

r2= \ J J (3.7) 

Since the only square Fibonacci numbers with even subscript are F0 = 0, F2 = l, and Fl2 = 
144 (e.g., see [2]), the nonzero values of r (note that r = 0 has the form m5 - m with m = - 1 , 0, 
or 1) that satisfy (3.7) are given by 

l±F4F5^ = ±15, 
r = \±F9Fl0^ = ±22440, (3.8) 

[+F14F15A/^~ - ±2759640. 

4. THE NUMBERS x„(5) THAT HAVE A CLOSED-FORM EXPRESSION 

First, from (3.6) and (1.1), it is immediately seen that 

xj_a(5) = a(a = l,2,3,...). (4.1) 

Then one can readily ascertain that the decompositions of the polynomials q(x) having the posi-
tive values of r given by (3.8) are 

x 5 -x -15 = (x 2 -x + 3)(x3 + x2-2x-5) , 
x5 - x - 22440 = (x2 + 12x + 55)(x3 -12x2 + 89x - 408), 

x5 - x - 2759640 = (x2 - 12x + 377)(x3 + 12x2 - 233x - 7320). 

The real positive roots of the above polynomials give the solution of our problem. Namely, 
we get 

x to- i . J i i5 VoTf J i i5 VoTf 
%( 5 ) - - 3 + f 5 4 + 18 +f 54 18 > (4-2) 

^ 4 4 o ( 5 ) - 4 ± ^ 7 ^ P - f 9 0 ± ^ ^ , (4.3) 

/ o , , J , I , A , V726984777 , J ^ A V726984777~ (AA. 
^275964o(5) = - 4 + | 3 1 3 0 + g ±|3130 . (4.4) 

and 

5. CONCLUDING COMMENTS 

For solving the problem of finding all numbers xn(5) that have a closed-form expression, we 
have characterized all the quintics of the Bring-Jeirard form x5 -x-r over Z that are solvable by 
radicals. This result is not trivial because there are examples of irreducible polynomials of degree 
five over Q that can either be solved by radicals or not; e.g., x5 + 15x + 12 can be solved [3], 
whereas x 5 -6x + 3 cannot [10, p. 147]. 

Formal solutions applicable to unsolvable quintics were sought by using elliptic functions [6]; 
in particular, that given by Hermite is based on the Bring-Jerrard form [7]. 
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Let us conclude our paper by posing ourselves the following question. 

Question: Do there exist nonintegral numbers xn(k) with k >6, that can be expressed by 
radicals? 
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In [1, p. 137], Knuth introduced the idea of the binomial transform* 
Given a sequence of numbers (a„), its binomial transform (a„) may be defined by the rule 

*.=z.kh 
Jc=0 kn- ( i ) 

Denoting the respective generating functions of (an) and {an) by A(x) and A(x), relation (1) 
corresponds to 

l-X V l - J C 
(2) 

In [2], Prodinger gives the following generalization. A sequence (an) may be transformed 
into (an) by the rule 

k=0 
^mYkck-ak, 

which corresponds to 

A(X): 1 .A[ cx 
l-bx [\-bx 

(3) 

(4) 

Now we may look at equation (4) as the action of a group structure over the set of functions. 
Let C denote the field of complex numbers and C* denote the set of complex numbers dif-

ferent from 0. We define a group structure in C x C* by the law 
(h, c) o (£', C') = (A' + bc\ cc'). (5) 

Now 

l-b'x l__b Cx 
l-b!x 

cx 
l-bfx 

\ 

\-b cx 
l-bfxj (6) 

1 
l-(b'+bc')x {l-(h'+hc')x 

cc'x 

Relation (6) shows that the action of the element (b, c) on A(x) followed by the action of the 
element (b', c!) corresponds to the action of the product (bf + bc'y cc') over A(x). 

It is easy to verify that the operation in (5) is associative. The unit element is given by (0,1), 
and the inverse of the element (b,c) is given by (-h/c, lie). We immediately deduce that the 
inversion formula for the binomial transform is 

* A slight modification has been introduced in the original definition. 
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It may be observed that the same group structure works equally well with the transformation 
(ford fixed), 

A(x) -> X—r A f - ^ - 1 , 
v } (\-hx)d \l-bxy 

introduced by Prodinger in [2], corresponding to 
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