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HARMONIC SEEDS 

G, L. Cohen and R. M, Sorli 
School of Mathematical Sciences, University of Technology, Sydney 

PO Box 123, Broadway, NSW 2007, Australia 
(Submitted December 1996) 

1. INTRODUCTION 

Harmonic numbers were Introduced by Ore [6] In 1948, though not under that name. A 
natural number n is harmonic if the harmonic mean of its positive divisors is an integer. 
Equivalently, n is harmonic if H(n) is an integer, where 

and r(ri), <r(ri), respectively, are the number of and sum of the positive divisors of n. 
Ore listed all harmonic numbers up to 105, and this list was extended by Garcia [3] to 107 and 

by Cohen [2] to 2 • 109. The second author of this paper has continued the list up to 1010. In all 
of these cases, straightforward direct searches were used. No odd harmonic numbers have been 
found, giving the main interest to the topic since all perfect numbers are easily shown to be 
harmonic. If it could be proved that there are no odd harmonic numbers, then it would follow 
that there are no odd perfect numbers. 

A number might be labeled also as arithmetic or geometric if the arithmetic mean, or geo-
metric mean, respectively, of its positive divisors were an integer. Most harmonic numbers, but 
not all, appear to be also arithmetic (see Cohen [2]). It is easy to see that the set of geometric 
numbers is in fact simply the set of perfect squares, and it is of interest, according to Guy [4], that 
no harmonic numbers are known that are also geometric. 

Although it is impractical to extend the direct search for harmonic numbers, we shall show, 
through the introduction of harmonic seeds, that no harmonic number less than 1012 is powerful. 
(We say that n is powerful if p\n implies p2\n, where/? is prime.) In particular, then, no har-
monic number less than 1012 is also geometric. We have also used harmonic seeds to show that 
there are no odd harmonic numbers less than 1012. 

To define harmonic seeds, we first recall that d is a unitary divisor of n (and n is a unitary 
multiple of d) if d | n and gcd(rf, n/d)-l;we call the unitary divisor d proper if d > 1. Then: 

Definition: A harmonic number (other than 1) is a harmonic seed If it does not have a smaller 
proper unitary divisor which Is harmonic (and 1 is deemed to be the harmonic seed only of 1). 

Then any harmonic number is either itself a harmonic seed or Is a unitary multiple of a har-
monic seed. For example, n = 23335231 is harmonic (with H{n) - 27); the proper unitary divisors 
of n are the various products of 23, 33,52, and 31. Since 235231 is harmonic and does not itself 
have a proper unitary harmonic divisor, It is a harmonic seed of n. (We are unable to prove that a 
harmonic number's harmonic seed is always unique, but conjecture that this is so.) 

It is not as difficult to generate harmonic seeds only, and our two results on harmonic 
numbers less than 1012, that (except for 1) none are powerful and none are odd, will clearly follow 
when the corresponding properties are seen to be true of the harmonic seeds less than 1012. 
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2. COMPUTATION AND USE OF HARMONIC SEEDS 

We shall need the following lemmas. Always, p and q will denote primes. We write pa || n to 
mean pa | n and pa+l \n9 and we then call pa a component of n. 

Lemma 1: Besides 1, the only squarefree harmonic number is 6 (Ore [6]). 

Lemma 2: There are no harmonic numbers of the form pa (Ore [6]). The only harmonic 
numbers of the form paqb, p*q,are perfect numbers (Callan [1], Pomerance [7]). 

Lemma 3: If n is an odd harmonic number and pa\\n, then pa = 1 (mod 4) (Garcia [3], Mills 
[5]). 

Lemma 4: Ifn is an odd harmonic number greater than 1, then n has a component exceeding 107 

(Mils [5]). 

We first illustrate the algorithm for determining all harmonic seeds less than 1012. 
By Lemma 2, even perfect numbers are harmonic seeds and all other harmonic seeds, besides 

1, have at least three distinct prime factors. Then, in seeking harmonic seeds n with 2a||/i, we 
must have a < 35, since 2363 • 5 > 1012.. 

We build even harmonic seeds w, based on specific components 2fl, 1 <a < 35, by calculating 
H(n) simultaneously with n until H(ri) is an integer, using the denominators in the values of H(n) 
to determine further prime factors of n. This uses the fact that H, like a and T, is multiplicative. 
For example, taking a =13, 

2147 13 213r(213)_ 
H(2 ) - ^ 1 3 7 - - " a(2u) 3-43427 

Choosing the largest prime in the denominator, either I27b\\n for l<b<3 (since 2133-1274> 
1012), or p1261n for some prime p so that 127 | r(ri). In the latter case, clearly n > 1012. With 
b = l, we have 

H(2l3\27) = 2 7 

3-43? 

so that 43* || n for 1 < c < 3 ( since 213434127 > 1012) or p42 \ n. In similar fashion, we then take, in 
particular, 

ff(213127-43) = - ^ - , JJ(213127-43-ll) = ^-. 

At this stage we must have either 3d||n for 1 < d < 6, or p2 \n for two primesp, or p*\n for some 
prime/?. All possibilities must be considered. We find 

F(213127-43-ll-33) = ̂ - ^ , F(213127-43.11-335) = 257, 

and so 213335 • 11 • 43 • 127 must be a harmonic seed. 
Odd harmonic seeds up to 1012 were sought in the same way. Each odd prime was con-

sidered in turn as the smallest possible prime factor of an odd harmonic number. By Lemma 4, 
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only the primes less than 317 needed to be considered since 317-331107 > 1012. Lemmas 1 and 
3 were also taken into account. 

The list of all harmonic seeds less than 1012 is given in Table 1. Inspection of this list allows 
us to conclude the following. 

Theorem 1: There are no powerful harmonic numbers less than 1012. 

Theorem 2: There are no odd harmonic numbers less than 1012. 

We had hoped originally that we would be able to generate easily all harmonic numbers, up to 
some bound, with a given harmonic seed. This turns out to be the case for those harmonic num-
bers which are squarefree multiples of their harmonic seed. In fact, we have the following result. 

Theorem 3: Suppose n and nqx...qt are harmonic numbers, where qi<-"<qt are primes not 
dividing n. Then nqx is harmonic, except when t > 2 and qxq2 - 6, in which case nqxq2 is 
harmonic. 

Proof: We may assume t>2. Suppose first that qx > 3. Since nql...qt is harmonic and His 
multiplicative, 

H(nqi...qt) = H(n)H(q{)...H(qt) = H ( n ) ^ . - ^ = h, 

say, where h is an integer. Then 

H(n)qv..qt=h^ 3 * _ . 

Since (ql + l)/2<~-<(qt + l)/2<qt, we have qt \h, and then 

H{nql...qt_l) -H{n)—— • • • - — — - — ——, 
ft + 1 fc-i + 1 qt 2 

an integer. Applying the same argument to the harmonic number nql...qt_l, and repeating it as 
necessary, leads to our result in this case. In the less interesting case when qx = 2 (since then n 
must be an odd harmonic number), we again find that nql is harmonic except perhaps if q2 - 3, in 
which case nqxq2 is harmonic. These details are omitted. 

The point of Theorem 3 is that harmonic squarefree multiples of harmonic seeds may be built 
up a prime at a time. Furthermore, when n and nq1 are harmonic numbers, with q1>2,ql](n, we 
have 

H(rlq1)3l±l = H(n)ql, 

so that (ql + l)/2\H(n). Thus, qt <2H(n)-1, implying a relatively short search for all possible 
ql9 and then for q2, and so on. 

There does not seem to be a corresponding result for non-squarefree multiples of harmonic 
seeds. For example, 26325-13317-127 is harmonic, but no unitary divisors of this number other 
than its seed 26127 and 1 are harmonic. 

As an example of the application of Theorem 3, in Table 2 we give a list of all harmonic 
numbers n that are squarefree multiples of the seed 2457000. It is not difficult to see that the list 
is complete, and in fact it seems clear that there are only finitely many harmonic squarefree 
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multiples of any harmonic number, all obtainable by the algorithm described above. However, a 
proof of this statement appears to be difficult. 

TABLE 1 

Harmonic seeds n less than 1012 

n 
_ _ 

6 = 2-3 
28 = 227 

270 = 2 • 335 
496 = 2431 
672 = 253 • 7 
1638 = 2-327-13 
6200 = 235231 
8128 = 26127 
18620 = 225-7219 
30240 = 25335 • 7 

i 32760 = 23325 -7-13 
173600 = 25527-31 

1089270 = 2-325-7213-19 
2229500 = 22537313 
2457000 = 2333537-13 
4713984 = 293311-31 
6051500 = 22537213-19 
8506400 = 25527331 
17428320 = 25325-7213-19 
23088800 = 25527219-31 
29410290 = 2 • 355 • 7213- 19 
33550336 = 2128191 
45532800 = 27335217-31 
52141320 = 23345- 7-11219 
81695250 = 2-33537213-19 
115048440 = 23325 • 13231 • 61 
142990848 = 29327-11-13-31 
255428096 = 297-ll219- 31 
326781000 = 2333537213 • 19 
459818240 = 285 • 7 • 19 • 37 • 73 
481572000 = 2533537313 
644271264 = 25327 • 13231 • 61 
1307124000 = 2533537213 • 19 
1381161600 = 2732527 • 13 • 17 • 31 
1630964808 = 233411331 • 61 
1867650048 = 2103411 -23-89 

HM 
ri 
2 
3 
6 
5 
8 
9 
10 
7 
14 
24 
24 
25 
42 
35 
60 
48 
50 
49 
96 
70 
81 
13 
96 
108 
105 
78 
120 
88 
168 
96 
168 
117 
240 
240 
99 
128 

n 
2876211000 = 23325313231 • 61 
8410907232 = 25327213 • 192127 
8589869056 = 216131071 
8628633000 = 23335313231 • 61 
8698459616 = 2572112192127 
10200236032 = 2147 • 19 • 31 • 151 
14182439040 = 27345 • 7 • ll217 • 19 
19017782784 = 29327211 -13-19-31 
19209881600 = 2n527213 • 19 • 31 
35032757760 = 29325 - 7311 • 13 • 31 
43861478400 = 210335223 -31-89 
57575890944 = 2133211 • 13 • 43 • 127 
57648181500 = 2232537313317 
66433720320 = 213335 • 11 • 43 • 127 
71271827200 = 28527 -19-31-37-73 
73924348400 = 24527 • 31283 • 331 
77924700000 = 2533557219 • 31 
81417705600 = 273 • 527 • 11217 -19-31 
84418425000 = 2332557213 • 19 • 31 
109585986048 = 29377 • 11 • 31 • 41 
110886522600 = 233 • 527 • 31283 • 331 
124406100000 = 2532557313 - 31 
137438691328 = 218524287 
156473635500 = 2232537213317 • 19 
| 183694492800 = 2732527213 -17-19-31 
206166804480 = 2 n3 25 • 7 • 13231 • 61 
221908282624 = 287 • 19237 • 73 -127 
271309925250 = 2 • 37537213 -19-41 
428440390560 = 25325 • 7213219 • 31 - 61 
443622427776 = 273411317 -31-61 
469420906500 = 2233537213317 • 19 
513480135168 = 29357211 -13-19-31 
677701763200 = 27527 • 11 • 17231 • 307 
830350521000 = 2334537311213 • 19 
945884459520 = 29355 • 7311 -13-31 
997978703400 = 2333527 • 31283 • 331 

B(4 
150 
171 
17 
195 
121 
96 
384 
336 I 
256 
392 
264 
192 | 
273! 
224 
270 
125 
375 
484 
375 
324 
155 
375 
19 
390 
672 
384 
171 
405 
546 
352 
507 
648 
340 
756 
756 
279 

Of the harmonic seeds in Table 1, the most prolific in producing harmonic squarefree multi-
ples is 513480135168, with 216 such multiples. The largest is the 32-digit number 

Nx =29388663214285910932405215567360 
= 29355.72ll-1349-23-31-137-821-820946417-32833, 

with H(Nl) = 65666. Much larger harmonic numbers were given by Garcia [3] and the algorithm 
above can. be applied to give a great many harmonic squarefree multiples of those which are of 
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truly gigantic size. Furthermore, most known multiperfect numbers (those n for which a(ri) = kn, 
for some integer k > 2) are also harmonic, for these are known only for k < 10 and nearly always 
it is the case that k \ r(n). For example, the largest known 4-perfect number (i.e., having k = 4) is 

N2 = 2373l07-11- 23-83-107-331-3851-4369M74763.524287; 

this has 169 harmonic squarefree multiples, the largest of which is 

N, = N0 -31-61-487-3343-3256081-6512161-13024321» 5.53-1073 

with H(N3) = 13024321 
TABLE 2 

All squarefree harmonic multiples n of 2457000 

n 

27027000 = 2333537-11-13 
513513000 = 2333537 

18999981000 = 233353 7 
1386998613000 = 2333537 

1162161000 = 2333537 
2945943000 = 233353 7 

| 2457000 = 2333537 
46683000 = 2333537 

1727271000 = 233353 7 
126090783000 = 2333537 
765181053000 = 2333537 
5275179000 = 233353 7 
10597041000 = 2333537 

56511000 = 2333537 
12941019000 = 233353 7 

5914045683000 = 2333537 
71253000 = 2333537 

11 -13 -19 
11 • 13 • 19 • 37 
11 • 13 • 19 • 37 • 73 
11-13-43 
11 • 13 • 109 
13 
13-19 
13 • 19 • 37 
13 • 19 • 37 • 73 
13 • 19 • 37 • 443 
13-19-113 
13 • 19 • 227 
13 • 23 
13-23-229 
13-23-229-457 
13-29 

144963000 = 2333537 -13-59 

H(n) | 

110 
209 
407 
803 
215 
218 
60 
114 
222 
438 
443 
226 
227 
115 
229 
457 
116 
118 
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MORGAN-VOYCE TYPE GENERALIZED POLYNOMIALS 
WITH NEGATIVE SUBSCRIPTS 

A* F. Horadam 
The University of New England, Armidale, Australia 2351 

(SubmittedJanuary 1997) 

1. PURPOSE OF THE PAPER 

Previous papers ([1], [2], [3], and [4]) have investigated aspects of the Morgan-Voyce 
polynomials Bn{x), hn{x) and certain polynomials C„(x), cn(x) associated with them, together 
with generalizations of them, i^r)(x), Q%\x), namely, 

P^(x) = h„(x), (1.1) 

pU(x) = Bn(x), (1.2) 

P$(x) = cn{x), (1-3) 

Q^\x) = Cn{x)- (1-4) 
Both generalizations are absorbed into a composite polynomial I^r,u\x) such that [4] 

# . » ( * ) = # r ) (*) , (1.5) 

# ' 2 ) ( x ) = QM(x). (1.6) 
Here we consider the implications for the theory in the case i?^'M)(x), where n > 0. 
Because of the detailed information in the previous papers, only the algebraic skeletal struc-

ture of the new system of polynomials will be outlined. 
For the record, we list the following equalities involving negative subscripts which are readily 

obtainable from the Binet forms in [2]: 
B_„(x) = -B„(x), (1.7) 

b_„(x) = b„+l(x), 0.8) 
C_„(x) = C„(x), (1.9) 

c_„(x) = -cn+1(x). (1.10) 

Additionally, we require 

whence 

P^\l) = F2n+l+rF2n [1], (1.11) 

<£X\) = L2n+rF2n [3], (1.12) 

ef+1>(l) = 2P«(l) [3], (1.13) 

QM(x) = #>(x)+ / $ ( * ) (« £1) P] , (1-14) 

&)(i)-I*r\l) = F2n_i. (1.15) 
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Worth recording finally is ([2], (1.7), (1.9)) the differential equation 

^ M = -„B_„(x). (1.16) 

2. THE POLYNOMIALS B<*H\x) 

Define the polynomials {R^"\x)} by means of a Morgan-Voyce type recurrence 

R^«\x) = (x+2)R^(x)-R^(x) («>0) (2.1) 

with 

I$>u)(x) = u, R^u\x) = (u-l)x + u~r. (2.2) 

Paralleling the data in [4], we postulate the existence of a sequence of integers {c^fy, n > 0, 
for which 

in which 

n(r>U) 
[if, 71 = 0, 

\u-l, n>0, 
and 

£$ = u-nr. 

Moreover, for x = 0 in (2.1) and (2.3), 
Jr,u) _ry (r,u) _Jr,u) 

Furthermore, (2.1) leads to (k > 1) 
Jr, u) _ ry (r, M) _ (r, u) (r, u) 
c-n, k ~ z c - « - l , k C-n-2, k ^ c-n- l,k-l' 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The Coefficients < £ $ 

Repeated use of (2.1) and (2.2) allows us to construct a table of the coefficients c^"l as 
follows. 

TABLE 1. The Coefficients < £ $ (n > 0) 

M 0 
- 1 
-2 
-3 
-4 
-5 
-6 

0 
2/ 

u-r 
u-2r 
u - 3 r 
w-4r 
u-Sr 
u-6r 

1 

- 1 + 2/ 
-2 + 3w-r 
-3 + 6w-4r 
-4 + 10w-10r 
-5 + 15w-20r 
-6 + 2lM-35r 

2 

-1 + W 
-4+5w-r 
-10 + 15w-6> 
-20 + 35w-21r 
-35 + 70a-56r 

3 

-l+u 
- 6 + 7 w - r 
-21+28w-8r 
-56+84w-36r 

4 5 6 

-l + u 
-% + 9u-r -l + u 
-36 + 45w-10r -10 + l l w - r -l + u 
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Comparison of this table with the corresponding table for c^M) in [4] reveals that the sign of 
the constants and the sign of the coefficients for r have both changed from + to - . On the other 
hand, the sign of the coefficients ofu remains unchanged (+), but n has been replaced by -n + l. 
That is, from [4], we have the key formula 

and 

fn + k-l} (n + k \ t , ,^(n + k\ / 0 m 

= { 2k )-r{2k + l) + (u-l\2k )> <2-9> 
by Pascal's Theorem. 

Suitable specializations u = 1, 2 in (1.5) and (1.6) reduce this to 

ts.-^H'^'H^*) (211) 
for Pf£(x) and 0^(x) , respectively, tables for which the reader may care to construct. 

Further specializations are obvious, e.g., a^k = (w+
2\_1). 

Next, multiply (2.9) throughout by xk and sum. Then, by (1.5) (TI->-W), (1.8), and (2.3), 
we deduce that 

Theorem 1: R^u\x) = P$(x) + (u-l)hn+l(x). 

Numerical Specializations 
Using (1.1)-(1.14) variously, we deduce that 

W l ) = ̂ O ) = 6»(1) = F2n_x, (2.12) 

^ 1 } (1 ) = i*?G) = "A-iO) = -̂ 2„-2> (2-13) 
* S ^O) = ̂ 2)(1) = -c„(i) = - / * _ „ (2.14) 
^0

n'2)(l) = ̂ ) 0 ) = C„(l) = Z2„, (2.15) 

^ 2 ) ( 1 ) = 0S<1) = 2Pi„0)(l) = 2*„(1) = 2F2„_b (2.16) 

^ 2 ) ( l ) = fiS)0) = ̂ 3 - (217) 
Also [cf. (2.13)], 

^ 0 ) ( 1 ) = 5_„(1) = JF2„. (2.18) 

Moreover, we have from (2.1) that 

^_">(-l) = ^ ' " ) ( - l )+<-"2 ) ( - l ) , (2-19) 
^ H ) = - ( ^ r ) ( - 3 ) + ̂ _"2

)(-3))) (2.20) 
^ a ) ( - 2 ) = -i?lr„'")(-2) (2.21) 

[e.g., R^u\-2) = -u-r + 2 = - /#">(-2)] . 

1998] 393 



MORGAN-VOYCE TYPE GENERALIZED POLYNOMIALS WITH NEGATIVE SUBSCRIPTS 

3. MISCELLANEOUS RESULTS 

Chebyshev Polynomials 
Employing the notation in [4] for the Chebyshev polynomials Un(x) and Tn(x), we discover 

that, with (1.7)-(1.10), 
B_„(x) = -U„{^^ (3.1) 

C_„(x) = 2T„{^y (3.2) 

U*) = t^,(£^)-^(£fi), (3.3) 

c_n(x) = -Un+l[^yUn [^y (3.4) 

[Ordinarily, U_n{x) = -Un_2(x), but this is not true when x is replaced by ^ . ] 
As in [4], we have 

Theorem2: R^u\x) = -B_n_l(x)-(r + u-2)B_n(x) + (u 

Theorem 3; R^ u)(x) = ((u - l)x - r + u)B_n(x)-uB_n_v 

Both these theorems can, by (3.1), be cast in terms of U^2—*-). Theorem 3 is, in fact, an 
equivalent of the Binet form for R_n{x). A Simson formula analog for R_n{x) corresponding to 
that in [4] for Rn(x) is left to the reader's interest, and likewise for a generating function analog. 

Zeros and Orthogonality 
These properties for B_n(x),...,c_n(x) may be approached as for those of Bn(x),...,cn(x) in 

[2], by referring to (1.7)-(L 10). 

Rising Diagonals 
Rising diagonal polynomials (functions) are obtained from Table 1 by considering a set of 

upward-slanting parallel diagonal lines (cf. [2]). Designate these polynomials by Sft^"^*) or just 
9L„ (x) for brevity. Then &<>(*) = u " r > ®>-i(x) = u-2r-h(u~l)x. 

A little tricky exploration enables us to affirm that [see (2.9)] 

m 
»-»(*)= 5>—i+*.***. (3-5) 

Comparison with [2, (7.1)] is worthwhile at this point. The contrast in the two forms demon-
strates that, in passing from $Ln(x) in [2] to 3ft_B(jt) here, we cannot with impunity always merely 
replace n by its negative. Asymmetry in the two patterns of rising diagonals explains this dilemma. 
[Indeed, 2ft0(x) is chosen to be different in [2] and here.] 

Adopting [2] as our model, we are able to establish the following corresponding results (no 
proofs offered.) 
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Theorem 4 (Recurrence): 9Lw(x) = 2<3l_n+l{x) + (x - l)$l_n+2(x). 

Corollary 1: (3l_n(l) = 2n-l{2u-2r-l}. 

Theorem 5 (Generating function): 

f>-,W = {u-r + [-u + x(u-l)]y}{l-(2y + (x-l)y2)rl 

Analogously to the procedures in [2], we may derive a Binet form and a Simson formula for 
<3l_„(x). 

. 4. CONCLUSION 

The development outlined above complements that in [4] and thus rounds out the general 
theory for integer n (about which more could be written). 
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1. INTRODUCTION 

The Zeckendorf decomposition of a natural number n is the unique expression of n as a sum 
of Fibonacci numbers with nonconsecutive indices and with each index greater than 1, where 
F0 = 0, Fx = 1, and Fi+2 = Ft +Fi+l form the Fibonacci numbers for i > 0 (see [13] and [17], or see 
[16, pp. 108-09]). The Zeckendorf decompositions of products of the forms kFm and kLm with 
fc,m GN (where Lm = Fm_l+Fm+1 is the m* Lucas number) have occurred in questions in cryp-
tography [3] and in the study of periodic points in algebraic topology [11]. They are also the 
subject of study in [5]. We describe here a simple method for finding results concerning the 
Zeckendorf decomposition of such a product. We let j5 - (1+ V5) / 2 throughout the paper, and 
we make use of the connection between the /^-expansion and the Zeckendorf decomposition as 
developed by Grabner et al. in [8] and [9]. 

The ^-expansion of n GN is the unique finite sum of integral powers of /? that equals n and 
contains no consecutive powers of /?. Grabner et al., in [8] and [9], prove that for m sufficiently 
large the Zeckendorf decomposition of kFm can be produced by replacing ff in the /^-expansion 
of k with Fm+i. For example, the /^-expansion of 5 is /?3 + /T1 + /T4, and the Zeckendorf decom-
position of 5Fl0 is Fl3 + F9 +F6. See [1], [2], [6], [10], [14], and Section 2 for background on the 
/^-expansion. 

We have found that by studying short lists of /^-expansions of small positive integers we can 
easily observe patterns that represent new results. In Section 4 we improve upon the results of 
[5] involving the number of addends in the Zeckendorf decomposition of mFm and we include a 
proof of Conjecture 3 from the same paper. This conjecture states that, for certain values of m 
and k, the Zeckendorf decomposition of (mL^ +l)(Fmi2k+{) contains iw^+i a s o n e of its terms. 
This is equivalent to saying that fP occurs in the /^-expansion of mLlk +1. Most of the identities 
in [5] can be discovered easily using the techniques given here, as we demonstrate in Section 3. 
While a computer can be used to form lists of /^-expansions, we were able to discover all the 
results in Sections 3 and 4 easily by hand. All proofs are provided in Section 6. 

The developments presented here provide the background necessary for [12], joint work with 
L. Sanchis, in which we prove Conjecture 1 from [5]. The conjecture involves the ratio of natural 
numbers k that do not have Fk in the Zeckendorf decomposition of kFk to those natural numbers 
that do. The list of ^-expansions of k for 1 < k < 500, produced easily by a computer, was suf-
ficient to allow us to discover the recursive patterns in the /^-expansions and then to prove that 
the conjecture is correct. This result also answers an equivalent question posed by Bergman in 
[1] concerning the frequency of positive integers n with ff appearing in the ^-expansion of n. 

We present an algorithm for finding the /^-expansion of a positive integer that can be used to 
efficiently produce a list of /^-expansions. The beginning of this list is given in Section 2. The 
algorithm actually applies more generally. Given a sum n = T^im^iFt with m, M G Z and Xt GN 
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for all i, the algorithm produces a representation of n as a sum of nonconsecutive Fibonacci num-
bers, some of which may have negative indices. If the smallest index in the resulting sum is at 
least 2, then the algorithm has produced the Zeckendorf decomposition of n without requiring the 
calculation of the value of n. This algorithm runs in time that is linear in M-m + Yffm^i. For 
another algorithm that produces the Zeckendorf decomposition of n with the same input (but does 
not give the /?-expansion of a number) see, for example, [7]. 

2. PRELIMINARIES 

Remark 2.1: Note that in [8] and [9] the indices for Fibonacci and Lucas numbers are different 
from the standard used here. We use F0 = 0, Fl = 1,1^ = 2, and 1^ = 1. For x < 0, let Fx be equal 
to(-ir+lF_x. 
Definition 2.2: Let n GN. The Zeckendorf decomposition of n is the unique expression of n as a 
sum of Fibonacci numbers of the form E ^ Mi^y w^h r G^l Mi G $> 1}> a nd with MiMi+i = 0-

Definition 23: Let /? be the golden ratio (l + V5)/2. For any n GM, the /^-expansion of n is 
the unique expression of n as a finite sum of integral powers of /? with no consecutive powers 
occurring. That is, n = SJL_00̂ ySf with ef. e{0,1}, ^- /̂+1 = 0, and with at most finitely many et 

equal to one. 

For this value of /?, the /^-expansion was first defined by Bergman in 1957 in [1]. For gen-
eralizations using other values of/?, see, for example, [2], [6], [14], and [15]. 

Definition 2.4: For k eN, the lower width of k, £(k) [resp. the upper width of k, u(k)] is 
defined to be the absolute value of the smallest (resp. largest) exponent that appears in the /?-
expansion of k. 

For example, the ^-expansion of 12 is /T6 +/T3 +^_ 1 +p\ so £(12) = 6 and i#(12) = 5. 
The following is a restatement of Lemma 1 and Theorem 1 in [9] for the special case of 

Fibonacci numbers. See also Theorem 1 in [8]. 

Theorem 2.5 (Grabner et at [8]): For k sN and for n>£(k) + 2, if the /?-expansion of k is 
^l^{k)eiP\ t h e n t h e Zeckendorf decomposition of kFn is E f i ^ } ^ + W . For k GN, we have 
that £{k) is the even number defined by L^^ <k< L^k)+l. If2<k<L£(k), then u{k) = £{k)-1. 
If it > Lm, then w(£) = £{k). We also have that i*(l) = 0 and II(2) = 1. 

For example, the /^-expansion of 10 is /T4 +/T2 +/?2 + /?4, as can be determined quickly by 
the algorithm of Section 5 (see 5.7), and the Zeckendorf decomposition of 10i^000 is F4996 + 
4̂998 + 5̂002 + ̂ 5004 • The power of Theorem 2.10 in [8] is clear here. Using the greedy algorithm, 

we would have needed to calculate the value of 10i^000, which is daunting. 
As usual, a sum of Fibonacci numbers will be represented by a vector of zeros and ones. A 

one occurs in coordinate s if Fs appears in the sum. We allow negative indices. 

Definition 2.6: We define V\o be the infinite dimensional vector space over Z given by 
V:= {(..., v_l9 v0, vh v2, v3, ...):v/ eZV,., with at most finitely many v,- nonzero}. 
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For convenience, we underline the second coordinate. We define V+ to be the subset of Fthat 
consists of all vectors of V with all entries nonnegative. 

All vectors in V are infinite dimensional, but we will abuse notation and omit the entries 
before the first possibly nonzero entry and after the last possibly nonzero entry. If the entries are 
all single digits, we may omit commas and parentheses. 

Definition 2.7: Let n GN. Let z(ri) be the vector in V+ corresponding to the Zeckendorf de-
composition of n that has 0 in the first coordinate. 

In Definition 2.7, we must require that the vector have zero in the first coordinate in order to 
have z well defined. For example, the Zeckendorf decomposition of 4 is 1 + 3, which can be rep-
resented by either Ft+F4 or F2+F4. Whenever 1 occurs in the Zeckendorf decomposition, we 
always represent it as F2 in the image of z . Thus, z(4) = (0,1,0,1). 

Definition 2.8: We define the function fi:N -» V+ so that fl(ri) is the vector in V+ with v; = et_2 

when the /^-expansion of n is SJ_oo e$l • Thus, the coefficient of ff is underlined. 

For example, /?(12) is represented by 100101000001. Here the exponents of /? increase from 
left to right, which does not match the usual notation for a /?-expansion. We must choose be-
tween the usual notation for z(ri) and for p(n). Because this paper concerns Zeckendorf 
decompositions, we have chosen the former. 

The ^-expansion of k is as follows for 1 < k < 20, with the exponents of /? increasing from 
left to right. 

k_\ 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 ! 
14 
15 
1 6 

17 
1 8 

19 
1 20 

1 

1 
1 

1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 0 1 

1 0 0 1 0 
1 0 0 1 0 
1 0 0 1 0 
1 0 0 1 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 

1 1 0 0 0 1 

0(k) 
1 

0 0 1 
0 0 0 
0 1 0 
1 0 0 
0 0 1 
0 0 0 
0 1 0 
0 0 1 
0 0 0 
0 1 0 
1 0 0 
0 0 1 
0 0 0 
0 1 0 
1 0 0 
0 0 1 
0 0 0 
0 1 0 
0 0 1 

1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 

1 
1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
1 0 1 
1 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 

It is possible to generate the &* row in this list by applying the algorithm developed in Sec-
tion 5 to the vector (0, k, 0) (see 5.5). We will see in Remark 5.9 that we may instead move from 
one row to the next by adding one to the underlined entry and applying si to the result. This 
second method is much more efficient. 
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Definition 2.9: We define a linear transformation that shifts the entries of a vector. For t e Z, let 
st :V -> V be given by the following. l£v GV has coordinates vf for i eZ, then st(y) is the vector 
with coordinates wf: = vt_t. 

Nexl;3 we restate part of Theorem 2.5 using the notation of this section. 

Theorem, 110 (Grabner et al [8]): For k eN and for n eZ, kFn is represented by the vector 
sn-i0ik))' For w £ *(*) + 2, this vector is z(iFJ. 

3. PATTERNS IN/^-EXPANSIONS 

Most of the identities in [5] can be found using lists of /^-expansions. For example, (2.4) of 
[5] gives the Zeckendorf decomposition for 4FkFn+k whenever k,n>3. This could be deter-
mined by adding the formulas given in [5] for FkFn+k and for 3FkFn+k and reducing the result so 
that no two consecutive Fibonacci numbers occur. On the other hand, we are able to determine 
the pattern for the /^-expansions of 4Fk from scratch very quickly by considering the list below. 
We then arrive at the Zeckendorf decomposition of 4FkFn+k by simply shifting the vector (3{4Fk) 
to the right by n + k - 2 spaces. 

The following list provides the ^-expansion for 4Fk as k increases from 3 to 10. Note that 
we can add two consecutive rows in this list and then apply the algorithm from Section 5 to the 
sum. The result will be the next row in the list. This is easy to do by hand. The diagonal lines of 
ones appear in a predictable pattern that will continue, as can be proven by induction. 

^ = 3 

k = b 
k = 6 
k = 7 
k = 8 

Ar = 10 

ll 0 0X1 
jl 0 0 0 

1 0 0X1 0 1 

For n > 3 and h > 3 we have, as in (2.4) of [5], 

[iV2 +Fn+l + Fn+3 +F2k+n+l + Z%-l
4)n F4J+n+4 (k even), 

k - i + /W3 + ̂ W i + Sf=I3)/2 F4J+n+2 (k odd). 
4FkFn+k = • 

Note that a similar method can be used for finding the /^-expansion of mLk and hence for finding 
the Zeckendorf decomposition of products of the form mLkFn+k. 

4. NEW RESULTS 

We summarize here the new results we have found using the /^-expansion. Proofs are pro-
vided in Section 6. We begin with a technical definition and then state precisely in 4.2 the useful 
fact that, if two Zeckendorf decompositions have indices that do not overlap significantly, then 
the two Zeckendorf decompositions can meld into the Zeckendorf decomposition of the sum. 
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Definition 4.1: For x eZ, we say that a v eV+ is reduced to index x if every entry with index 
(i.e., coordinate) > x is either zero or one and v has at most finitely many ones with index > x 
and v has no consecutive ones with indices > x. If v is reduced for all x eZ , then v is totally 
reduced. 

Note that, for all n eN, the vectors z(n) and fi(ri) are totally reduced. 

Fact 4.2: If n,msM and if z(ri) + z(m) is totally reduced, then z(n + rri) = z(n) + z(m). The 
same is true for /^-expansions by 2.10. One way to determine whether z(ri) + z{m) is totally 
reduced is to consider the following two sets. Let In = {i eZ:Ff is in the Zeckendorf decomposi-
tion of n}, and let Im be the corresponding set for m. Let d = mm{\i- j\\i eln,j zlm}- Then 
z (n) + z (m) is totally reduced if d > 2. 

Let Q(ri) - nFn, and note that we will find it useful to use exponents in vectors. For example, 
the ^-expansion of L% is given by 10000000000000001, which we may write as 1070071. Simi-
larly, the ^-expansion of L> is 10101010101010101, which we may write as (10)41(01)4. 

Proposition 43: For k>2, we have 0(2^) = 1100102*-2002M1001. Thus, the Zeckendorf 
decomposition of Q(2Ltk) = F2k+l+2Lik + F2k_2+2Lik +F_2k_2+2Lzk +F_2k+U2Lik. 

The preceding proposition is proven in detail in Section 6, but to give an idea of the flavor of 
such proofs, we provide a sketch here. We have j5{I^k) = lQ2k~lQ02k~ll (see (1.5) of [4] and 
apply 2.10). We think of IL^ as 202*~1002*~12 and we prove that M2Lik) i s 8 i v e n bY 

iooio2^-2oo2/:-3iooi 

where the braces mark the vectors s_2k(fi(7)) and %(/?(2)). Because the two braces do not 
touch, the entire vector is totally reduced. 

In the following propositions, let f[n] denote the number of addends in the Zeckendorf 
decomposition of n as in [5]. Note that f[Q(m)] is equal to the number of ones in the vector 
J3(m) by 2.10. The next two propositions are generalizations of (3.3) and (3.4) in [5]. 

Proposition 4.4: If k>2, and if l ^ m ^ Z ^ , then f[Q(L2k+m)] = 2+f[Q(m)]<2k + l. 
Moreover, ? (g (4* + m)) = ^ ( 4 ^ + J + % ^ „ + J -

Proposition 4.5: If k > 2, and if 1 < m < I^^, then f[Q{2Llk + m)] = 4 +/[g(/w)]. Moreover, 
z(Q(2I^k +m)) = z(2I^kF2L2k+m) + z(mF2L2k+ml 

In [5] a positive integer n is said to have Property 2? if Fn occurs in the Zeckendorf decom-
position of nFn. This is equivalent to stating that a one occurs in the underlined coordinate of 
fi(n). We prove Conjecture 3 of [5] in the following proposition. 

Proposition 4.6: 1fm9keN with 1 < k and 1 <m < Z^^ , then mLlh does not have Property 3P, 
and mLto +1 does have Property 9\ 

Proposition 4.7: For k >2, we have MhM + hk-i) = 100100(1 O ^ K O l ^ O O l . Thus, we see 
that Q(L2k+l + L ^ ) has Property 9. 

See Section 6 for proofs of the propositions in this section. 
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5. THE ALGORITHM 

The algorithm begins with a positive integer n expressed as n = Z ^ ^ - P - , with Xt any non-
negative integer for i G Z , and with M,MGZ. It ends with an expression for n as a sum of 
Fibonacci numbers with nonconsecutive (possibly negative) indices. This sum is the Zeckendorf 
decomposition for n under certain conditions. There are other algorithms that produce Zecken-
dorf decompositions (normal forms) in this setting (see [7]). The advantage of the algorithm 
given here is that it allows us to find the /^-expansion of k GN by applying the algorithm to 
(0,&,0)(see5.5). 

Definition 5.1: Let v eV be a vector with coordinates vi for / eZ. Let a:V -» Z be the func-
tion given by a(v): = Z^ .^V? • Note that a is a linear function and that it is not injective. 

Verbose .Description of the Algorithm: We begin with n represented by the vector v : = (..., A0, 
XhX2, X3,...), where Xi = 0 for i > M and for i <m as above. Thus, the initial values for the 
entries in v are vt = Xt for / G Z . First, we search for the smallest integer x for which the vector v 
is reduced to index x. If there is no such integer, then we are done. Details of the search are 
below in the second description of the algorithm. We assign t:=x-l if vx = 0 and t:-x if 
vx = l. Note that this implies that vt+l = 0 and vt > 1. 

Case 1. vt_x * 0. We have (...,vt_l9 vt, 0,...). We replace vt_l9 vt, 0 with vt_x-1, vt -1, 1. 
This does not change the value of <y(v), because Ft +i^_i = Ft+v ^ e return to the beginning of 
the algorithm and search for a new value of x. 

Case 2. We have (...,vt_2,0, vt, 0,...), and, because the vector is not reduced to index t-l, 
vt>\. We replace vf_2,0, vt, 0 with vt_2 +1,0, vt -2,1. This does not change the value of a(v). 
To see this, consider two smaller steps. We can replace vt_2,0, vt, 0 with vt_2 +1,1, vt -1,0 be-
cause Ft = î _x + i^_2. Now we have two consecutive nonzero entries, so we can do as in the first 
case. This results in vt_2 +1,0, vt - 2,1. Note that the sum of all the entries in the vector v has 
not changed. We return to the beginning of the algorithm. 

As stated above, the algorithm terminates when there is no minimal value x. 

Definition 5.2: Let $l\V+ -^V+ be the function that assigns to a vector v GV+ the result of 
applying this algorithm to v. 

Precise Description of the Algorithm: As above, n = Hffm XtFf. 
max:= M, min: = w; 
t:= max; 
while (t > min) do { 

if (v, =0) then t:=t-I; 
else if (v,_! = 0 and vt = 1) then t:=t-2; 
else if (vr_! ^ 0) then { 

vt+v=1', v , :=vf- l ; v ^ ^ v ^ - 1 ; 
if (vr+2 = 0) then t:=t + l; 
else t:=t + 2; 

} 
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else { 
vt+l:=l;vt: = vt~2;vt_2:=vt_2+l; 
if (f-2<min).thenmin:=*--2;.. 
if (vf+2 = 0) then t:=f + l; 
elser:=r + 2; 

} 
} • 

Remark 5.3: The algorithm si is designed so that, for all v eV+, a(v) = a($l(v)), and $t($l(v)) 
= s&(st(v)) for all t GZ. The second equality follows from the fact that the algorithm is inde-
pendent of the numbering of the coordinates of the vector .v. . 

Proofs of the results from this section are postponed until Section 6. 

Proposition 5.4: The algorithm terminates in a finite number of steps for any vector v GV+. The 
result s&(v) is totally reduced. 

Proposition 5.5: For all k eN, fi(k) = d(0,k, 0). 

Remark 5.6: If v eV+, and if sl(v) has no nonzero entries for all coordinates with index less 
than 2, then d(v) = z(a(v)). For k GN and n>l(k) + 2, we have z{kFn) = $„_2(J3(k)) as in 
Theorem 2.10. 

Example 5.7: We apply the algorithm to lOi^ to find the /^-expansion of 10. 

0 
0 
0 

1 
1 
2 
2 
3 
3 
3 
4 
2 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

1Q 
8 
7 
5 
5 
3 
2 
2 
Q 
Q 
l 
o 

1 
0 
1 
0 
1 
0 
0 
1 
1 
1 
0 

1 
1 
0 
0 
1 
0 
0 
0 
0 
1 

1 
1 
1 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 = #10) 

Note that in the 9th row we have in coordinates 2 through 6 the Zeckendorf decomposition of 
10, with a 4 in the 0th coordinate. A similar pattern occurs whenever this method is used to find 
the ^-expansion of any positive integer. 

Having determined the /^-expansion of 10, we can apply Theorem 2.10 and see that 
z(10i^000) = 54998(101000101). This is much easier than calculating the value of 10i^000 and 
applying the greedy algorithm. 

Theorem 5.8: For V , W G F + and for k EN 5 we have sS($l(v)+w) = $&(?+w) and $l(kv) = 
$l(k$l(v)). In addition, for all n^m^N, we have fi(nm) = st{nfi(m)) and fi(n + m) = M(j3(n) + 
Mm)). 
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Remark 5.9: The list of/^-expansions In Section 2 above can be generated by applying the algo-
rithm to (0, k, 0) for each k (see 5.5). Theorem 5.8 provides a more efficient method, for deriving 
the list. Once we have found that fi(2) = 1001, we note that 

fi(3) - d (0 , 3, 0) = ,^(^(0 3 2,0) + (0,1 0)) = d((fi(2)) + (0,1, 0)). 

To move from the '/^expansion of k - 1 to that of k, we need only add one to the underlined entry 
(which corresponds to 0°) and then apply the algorithm. 

• •• • ' 6.'PROOFS 

Lemma'6.1:- If a vector V eV+ is reduced to Index 5 + 1, and if v, = 1,-then, when the algorithm is 
applied, none of the entries with index less than, s will be changed until after the algorithm has 
changed v into a vector that is reduced to index s. 

Proof of 6.1: We induct upon n using the following induction hypothesis: 
If v is reduced to index t + \ for some t with exactly n nonzero entries (ones) with index 

greater than t, and if vt = 1, then none of the entries with index less than t will be changed until 
after the algorithm has changed v into a vector that is reduced to index t. 

Suppose n - 1. Then either vs = 1 and vs+l = 0, which means that v is already reduced to 
index 5, or vs = 1 = v,+1 and vs+i = 0 for i > 2, which means that the algorithm will change the 
vector so that v̂  = 0 = vs+l and vs+2 = 1 without changing any other entries. The new vector is 
reduced to index s. Thus, the statement is true for n - 1. 

Now induct on n. Consider the triple 1, vs+h vs+2. If this triple is 1,0,0 or 1,0,1, then v is 
already reduced to index s. If the triple is 1,1,0, the algorithm first replaces the triple with 0,0,1, 
and we can use the inductive hypothesis. We now have a vector that is reduced to index 5 + 3 
that has vs+2 = 1. The number of ones with index greater than 5 + 2 is one smaller than the num-
ber of ones we had originally with index greater than s. Thus, the algorithm does not change the 
values of entries with index less than 5 + 2 until the vector has been changed to a new vector that 
is reduced to index 5 + 2. This means that we will have the triple 0,0,1 either unchanged or 
replaced with 0,0,0. In either case, the resulting vector is reduced to index s. 

Proof of 5.4: If v GV+ is reduced to index s for all 5, then the algorithm" does not ever 
change the vector. We have si(v) = V, and the proposition is proven for that case. 

Otherwise, there is a unique x(v) e Z with, v reduced to index x(v) and with v not reduced 
to index x(y) -1. In this case, we define r(y) to be the sum of all entries of v with Index less 
than x(v). We will see that r(v) will reach zero in a finite number of steps. This means that the 
algorithm stops in a finite number of steps and that the vector <s4(i>) Is in the desired form. 

We refer now to the cases given in the Verbose Description of the Algorithm in Section 5. 
The algorithm first assigns t: = x(v) - 1 If vx = 0 and assigns t: = x(v) if vx = 1. 

In Case 1, the triple (v,_1? vt, 0) Is replaced by (yt_Y -1, vt -1,1) and the new vector is reduced 
to Index i + 2 with vt+l = 1. By Lemma 6.1, we know that the algorithm will next change the vec-
tor so that it is reduced to index t + \ without changing the values of entries with index less than 
t + \. At this stage, the new vector v has a new x(v) -value that is less than or equal to t + l. 
Thus, the new value of r(v) is at most 2 less than the old value of r(v). 
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In Case 2, we see that (yt_2,0, vt, 0) is replaced by (vt_2 +1,0, v, - 2,1) and the new vector is 
reduced to index t + 2 with vr+1 = 1. By Lemma 6.1, we know that the algorithm will next change 
the vector so that it is reduced to index t + \ without changing the values of entries with index less 
than t +1. At this stage, the new vector v has a new x(v) -value that is less than or equal to t +1. 
Thus, the new value of r(v) is at most 1 less than the old value of r(v). 

In both cases, the value of r(y) decreases. Thus, the algorithm terminates in a finite number 
of steps. The vector that results will be reduced to index s for all s e Z. 

Proof of5.5: This result follows from the work of Grabner et al., but a direct proof is as 
follows. Because 0 +f?+l=f?+2 for all i eZ, we can replace each Ft in the description of the 
algorithm with f?~2 and replace each a with a ' , where a'(v) = £*_,„ v,./?'-2. Because kF2 = kfi°, 
for the vector (0, k_, 0) the algorithm will produce the same result either way. Thus, s&(0, &, 0) is 

to-
Proof of 5.8: Let x = $&(v)+w, and let y = v+w. We first prove that, for all / eZ, we 

have a(st(x)) = a(st(y)). We have, using Remark 5.3 and the fact that st and a are linear, 
a(st(x)) = a(sts&(v)) + a(st(w)) = a(std(v)) + a(st(w)) = cr(st(v)) + ofc(* )) = <<$(?)) • 

Next we prove that, for all t eZ and for all k GN, we have a(st(kv)) = o-(^(fe£v)). We 
have a(st(kv)) = ka(st(v)) = M > % ( v ) ) ) = ka(st(dv)) = a(st(Mv)). 

Theorem 2.10 implies the following. There exist tl912, t3, t4 GN such that, for all / > 0, we 
have d(shH(x)) = z(a(sh+i(x)))y si(st2+i(y)) = z(a(st2+i(j))), d(sh+i(kv)) = z(a(sh+i(kv))), and 
* 4 + / W ) = I ( ( T ( V / ( M V ) ) ) . Let t = maxft, /2, r3, ?4}. 

Using 5.3 again, we see that s^^ikv)) = d(s^kv)) = z(a(sXks&v))), and z(a($t(kslv)y) = 
d($t(MV)) = st(d(Mv)). But st is one-to-one. Thus, d(kv) = d(kd(v)). 

Similarly, $t(M.(x)) = d(st(x)) = z(a(st(x))) = z(a(st(y))) = d(st(y)) = ${(d(y)). Again be-
cause st is one-to-one, s&(x) = st(?). Thus, $i(d(v)+w) = M(v +w). 

Next, let m,neN. We have that ~/3(mn) = d(0,mn, 0) = sl(/f(0, w, 0)) = sl(nd(0, m, 0)) = 
d(nfi(m)\ and also, /?(/f/?f) = d(0, n+m. 0) = rf((0, n, 0) + (0, JH, 0)) = ̂ ( ^ (0 , & 0) + sS{09 m, 0))= 
^ ( / % ) + fi(m))• Thus, Theorem 5.8 is proven. 

Proof of 43: We have, for all k eN, that /?(Z^) = lO^OO2*"1! (see Proposition 10 of [5] 
and apply 2.10). Thus, using Theorem 5.8, we have /?(2Z^) = ̂ (2/?(Z^)) = ^(202^1002^12) 
= ^(s„2,(0,2,0) + s ^ = 
^(s_2J?(2) + % t o 100102*"2002*-3100L Finally, we apply 
2.10 to complete the proof. 

Proof of 4.4: We have that ^(hk) = lO^OO2*"1!, as in the proof of Theorem 4.3. Because 
m£L2k_l9 we have by 2.5 that £(m),u(m)<2k-2. Thus, using 4.2, we see that ji(L2k+in) = 
M^2k) + Mm)- Thus, flQULft +m)] is the number of ones in fii^) plus the number of ones in 
fKm), and f[Q(L2k+m)] = 2+f[Q(m)]. Because i(Z2ik) = i/(Z2ik) = 2£, there can be at most 
2^ + 1 addends in Q(m). This proves the last inequality. 

404 [NOV. 



ON USING PATTERNS IN BETA-EXPANSIONS TO STUDY FIBONACCI-LUCAS PRODUCTS 

Proof 'of'4.5: Using 4.3, we have that ~P{2hk) = 100102*-2002^31001. Because m < Z^_3, 
we have by 2.5 that £(m), u(m) < Ik - 4. Using 4.2, we see that fi(2L2k +m) = P(2L2k) + Mm) • 
Thus, f[Q{2Llk + m)] is the number of ones in ^(2^) plus the number of ones in $(m), and 
f[Q(2L2k+m)] = 4-tf[Q(m)l 

Proof'of4.6: We have ~P{Lik) = lO^OO2*"1!, as in the proof of 4.3. Let v = s_2k(m), and 
let %(010). Then ^(I2A:) = v+w, and so by Theorem 5.8 we have fi(mL2k) = $i(mv+mw) = 
d(d(mv) + <&(mw)) = d(d(s_2k(0,m, 0)) + sl(s2k(Q,m, 0))) = M(s_2k(d(0, m, 0)) + s2k(sl(0,m, 0))) 
= d(s_2kQ(m)) + s2kQ(m))). By Fact 4.2 and Theorem 25, s_2k0(m)) + s2k(J3(m)) is totally 
reduced whenever m ^.L^^. Thus, fiijriL^ - s_2k(ft(m)) + s2k(j3(m)) for 1 < m < Z ^ ^ . When-
ever m < L2k__l, the two shifted ^-expansions of m will not overlap, and in fact there will be zeros 
in the coordinates corresponding to /T1,/?0, and fi1. Thus, mLlk does not have Property 9\ 
When a one is inserted in the coordinate corresponding to flP, the resulting vector is totally 
reduced and equals 'fi(mLlk +1) (see 5.9). Thus, mL^ +1 does have Property 8P. 

Proof of 4.7: We have, for all k eN, that fii^ik+i) = (10)^1(01)^ (see (3.1) of [5]). Thus, 
using 5.8, we have fi(L5 + 1^) = ^(L^ + ftLj) = ̂ (102020201) = 100100101001, so, the result 
holds for k = 2. We induct on *. We assume that M^k-i + ̂ - 3 ) = 100100(1 Of"31(01)^2 001. 
Fact 4.2 implies that fiihk + ̂ - 2 ) = 10102M00U-3101. Therefore, fi(Lit+i + hk-i) = Khk-i + 
4 . + ^ - 3 + 4.-2) = ^ ( ^ - 1 + ^ - 3 ) + Khk+Lik-i)) = ^(201100(10/-31(01/-20111)-
st(201100(10)*-3l(01)*-201001). Note that this last vector is reduced to index -2& + 5. The 
algorithm will not change any of the entries except that the 20110 that occurs on the left changes 
to 1001001. Thus, M^2k+i + 4*-i) = 10010010(10)*-31(01)*~201001, and the induction is com-
pleted. 
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Readers of The Fibonacci Quarterly will be pleased to know that many of its problems 
can now be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 
Over 23,000 problems from 42 journals and 22 contests are references by the site, which 

was developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site 
was generously provided by the Department of Mathematics and Statistics at the University 
of Mssouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose 
solutions were published), and other relevant bibliographic information. Difficulty and 
subject matter vary widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or 
their time is encouraged to do so. For further information, write to 

Mr. Mark Brown 
Director of Operations, MathPro Press 
1220 East West Highway #1010A 
Silver Spring, MD 20910 
(301) 587-0618 (Voice mail) 
bowron@compuserve.com (e-mail) 
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0. INTRODUCTION 

Let sb(f) denote the base 10 sum of the digits in the base b representation of the nonnegative 
integer i and 4 ( 0 denote the number of large digits ([~*/2] or more) in the base b representation 
of the nonnegative integer i. For example, $l0(4567) = 22, ^(7079) = 17 since 7079 = 264327, 
and ^( 1 9 ) = 3 s i n c e 19 = 100112. In addition, 40(4567) = 3, 4(7079) = 2; and 4(19) = 3. The 
mathematical literature has many instances of sums involving sb and 4 - Bush [1] showed that 

Here, logx denotes the natural logarithm of x. Mrsky [7], and later Cheo and Yien [2], proved 
that 

iZ;.(»)=^io8"0(i). 

Trollope [9] discovered the following result. Let g(x) be periodic of period one and defined on 
[0,1] by 

Ux, 0<x<\, 
[ l ( l - x ) , 1 < * < 1 , 

and let 

•/(*) = I y*<2'x). 
1=0 

Now, if n = 2m(l + x), 0 < x < 1, then 

where 
^ ( / ) = 21oi2 nl°S"-E2(n), 

V * - U I * Y „ \ , n , ̂ log( l + *) E2(n) = 2 ^ 2 / ( s ) + (l + s) - y g 2 ~> -2x 

In addition, it was shown in [6] that 

f Ao(2f) = 2 
S 2' 9-

We will discuss some other sums involving sb and 4 - In particular, we will give formulas for 
bn-l % bn-\ 

±±(h(j)T and ±±(sb(i)T, 
" r=0 ^ J=0 

where m and n are positive integers. Then, we will find a formula for 
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° 7=0 

We define Cb(x; y) to be the sum of the carries when the positive integer x is multiplied by y, 
using the normal multiplication algorithm in base b arithmetic. That is, we convert x and y to base 
b and then multiply in base b. In this algorithm, we consider the carries above the numbers as 
well as in the columns. We will prove that 

fCb(a;d)_sb(a) 
£ (Sb(a)y b-y 

We will conclude the paper with some open questions. 

1. FIRST SUM 

To compute 

° 7=0 

we begin with the function 

[b/2~\ times lb/2 J times 

The motivation for this function comes from the fact that in the base b representation of i -in ... 
i2it, the 7th digit of i, J ., is either small or large and thus contributes 0 or 1 to the number of large 
digits in i. Expanding the product, we see that there is a 1-1 correspondence between the num-
bers 0 < i < bn -1 and the bn terms 1 • eLbi°x. Therefore, 

bn-\ 
f(x) = (\b 121 + |ft / 2y)n = J 1 • eL^i)x. 

/=o 
Thus, 

/W(x)=X(4(0r^(0x, 
and so we have that 

/ ( m ) ( 0 ) = I 1 ( 4 ( 0 ) m 

7=0 

To continue our discussion, we need the idea of Stirling numbers of the first and second kinds. A 
discourse on this subject can be found in [3]. A Stirling number of the second kind, denoted by 
{^}, symbolizes the number of ways to partition a set of n things into k nonempty subsets. A 
Stirling number of the first kind, denoted by [JO, counts the number of ways to arrange n objects 
into k cycles. These cycles are cyclic arrangements of the objects. We will use the notation 
[A, B, Q D] to denote a clockwise arrangement of the four objects A, B, C, and D in a circle. For 
example, there are eleven different ways to make two cycles from four elements: 

[1,2,3][4], [1,2,4][3], [1,3,4][2] [2,3,4][1], 
[1,3,2][4], [1,4,2][3], [1,4,3][2], [2,4,3][1], 
[1,2][3,4] [1,3][2,4], [1,4][2,3]. 
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Hence, [|] = 11. Now it can be shown, by induction on m, that 

where nL - n{n -1) • • • (n - j +1). The last quantity is known as the 7th falling factorial of n. A 
discussion of this idea can be found in [3]. Thus, 

Since nJ- = j\("), we have proved the following theorem. 

Theorem 1: Let m and w be nonnegative integers. Then 

To illustrate this theorem, if b - 5, JW = 3, and n is a nonnegative integer, then 

2. SECOND SUM 

Let m and w be positive integers. The determination of the sum 
1 io"-i 

1 U /=o 

was an open question in [4]. In [10], David Zeitlin presented the following answer to the problem 
in base 10. He stated that if B\n^ denotes Bernoulli numbers of order n, where 

(vj-'H--/]-
then 

To compute 

we make use of the function (g(x))n, where g(x) =1 + ex + e2* + • • • + e(6-1)x. The motivation for 
this function comes from the fact that in the base b representation of i - in ... i2iiP the 7th digit of 1, 
?y, contributes ij to the digital sum of J. Expanding the product, we see that there is a 1-1 corre-
spondence between the numbers 0 < 1 < bn - 1 and the 6W terms 1 • eSb^x. Therefore, 

/=0 
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Thus, for m > 1, we have 

and so we have that 

bn-\ 

dxr ;(g(x))n=T(sMmeSb(i)x, 
1=0 

b"-\ 

dxl r(^(0))M = l U ( 0 ) m 

i=0 

Now we need Faa di Bruno's formula [8]. This formula states that if f(x) and g(x) are func-
tions for which all the necessary derivatives are defined and m is a positive integer, then 

*1 
dx' :/(*<*)) = 

m\ [ d*+-+n-
«! +2M2 + • • • +mnm=m 

â )T" fjP 

nl\...nm\dx">+-+n» f GK*)) 

1! 

where «!, w^,..., »m are nonnegative integers. 
It follows that 

d" 

m\ 
v J 

\«m 

dx' :(g(x)Y = n-»\+"2+-+"m (T(V\»-"\ ~"2 nm »-g(x) 
«1 +2«2 "̂  ^mnm=m 

•(gv\x)r(g(2)(x)r -(gw(x)y°; (l!)"'«1!(2!)"2n2!--.(»i!)"»-nm! 

where m is a positive integer and nh 1%,..., nm are nonnegative integers. Thus, 

Equating the two expressions for ^{g{®))n and simplifying gives the following theorem. 

Theorem 2: Let n and m be positive integers and nt, z^,..., nm be nonnegative integers. Then 
hn~\ 

ht(*w= I m\ 
j = 0 n i + 2„2 +. . .+ m n„=m(l!)"1»1!(2!)"2«2!-( '«!)" '"»m! 

where g«(0) = tf +1' + ••• + (* -1) ' . 
It might be noted that, in [4], formulas for the sums 

10"-1 J_ 
10" i I MO)* 1=0 

were given for m - 0,1,..., 8. Using the formulas we just derived, we have the new formula for 
7if = 9, thatis, 
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1 1!srV r\\9 387420489 9 , 1420541793 8 

, 12153524229 7 , 7215728751 6 

+ 777 « + 777 " 
256 160 

30325460319 5 2286016425 4 

512 " 128 " 
, 30058716303 3 2699999973 2 

640 160 

3. THIRD SUM 

T7 X 3.(0-4(0-

We next try to tackle the sum 

The base 10 result is 
1 10"_1 9 5 

From the previous two sections, we have established the formulas 

and 

Now, consider the function 
h(x) = (1 + ex + e2x + • • • + e(r6/21"1)x + e(r6/2_l+1)x + — + e6x)w. 

The motivation for this function comes from the fact that, in the base b representation of i = in ... 
i2iu the j * digit of i, /,-, contributes either ij or /y + 1, depending upon whether or not the i^ 
digit is small or large, respectively. That is, the h(x) function considers both the digital sum and 
the number of large digits, compared to the g(x) function, where we were only concerned with 
the digital sum. Expanding the product, we see that there is a 1-1 correspondence between the 
numbers 0 < i < bn -1 and the V terms 1 • ̂ (0+^(0)* _ Therefore, 

h(x) = (1 + ex + e2x + • • • + e^ l - i )* + e(r*/2l+1)x +.. . + ebx) 

/=o 

Thus, 
bn-i 

h'f(x) = X (%(0 + 4(0)2*(*( 0 + i*( 0 ) x , 
i=0 

and so we have that 
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fc"(0) = *zW)+4(0)2. 
i=0 

Computing h"(0) and dividing by bn, we obtain 

±%M+W-+-sr{®p-\$+**{">+t?l+t>-

2b 
vv 

2b3 + 3b2+b-6\bl?} 
6b 

a\ b2+b-2\b!2~] 
2b n. 

12 

But, 

bn-i 

D /=0 D /=0 Z 

1 1 b
n-l bn-l bn-l 

2li ti^o+moy—ti^o?—S(4(o)2 
*\° i=0 D i=Q V /=0 ) 

Substituting our three formulas in the above expression, we have 

b" 
1 V1 ^ T r\ l(b2+b-2\bl2-\f 2 

4 
r/2b3 + 3b2+h-6\'b/2']2) (b2+b-2\bl2~}^ 

6b 
vv 

2b 

tfi A l(b2-2b + l 2 , b2-\ 
2 1 4 12 

f 

m^ 
J 

2 ir\bll\\ n&/2jYV 

Collecting like terms, we have the following theorem. 

TheoremS: Let n be a positive integer. Then 

"2 

i 2 -

Z>2 +b-2[b/Z] T ft2-2ft 
2ft 7 -̂m 

A 
n 

2b3 + 3b2+b-6[b/2f) (ft2 +b-2[b/Z] 

2\\ 

6b 2b 

Furthermore, we have the following corollary. 

n. 
J) 
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Corollary: Let n be a positive integer and b be a positive even integer. Then 
bn-l 

^(0-4(0 = ^ W * 
i=0 

We next determine the sum 

4. FOURTH SUM 

y Q(«y> 

where Q(x; y) denotes the sum of the carries when the positive integer x is multiplied by y, using 
the normal multiplication algorithm in base b arithmetic. 

Noting that ^(l1) - C10(2; 2'), this sum is a generalization of the sum 

z=l 2l 

which was a problem considered in [6]. 
To compute this sum, we need the following lemma. 

Lemma 1: Let <f be a digit in base b andj> be any positive integer. Then 

CM,y)=jrl(d-sb(y)-sb(dy)\ 

Proof: The proof of Lemma 1 relies on Legendre's theorem, 

*e.)=.-P-i>Zl£j. 
where n is a positive integer. Legendre's theorem and its proof can be found in [5]. 

To prove Lemma 1, we note that 
dy 

sb{y) = y-Q>-\m^\ and sb(dy) = dy-Q>-l)'Z 
bf 

Multiplying the first equality by d and subtracting the second equality from the first yields 

.v. d.sb(y)-sb(dy) = (b-l)Y 
t>l 

Dividing by b -1 and observing that the sum is C(d; y) gives us the result. 

Armed with Lemma 1, we have the next lemma. 

Lemma 2: Let sb(n) denote the base b digital sum of the positive integer n and Cb(a; a1) denote 
the base b carries in the normal multiplication algorithm of multiplying a and a1. Let x and y be 
positive integers. Then sh (x-y) = sb (x) • sb (y)-(b- T)Cb(x; y). 

Proof: Consider x = £JL0 xtb\ the base b representation of x. Then, counting the top carries 
from the multiplication using Lemma 1 and counting the bottom carries from the addition, we 
have 
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1 n 

Cb(x; y) = j~7^(xisb(y) ~ %0w)) + X 
D l /=0 t>\ 

V -E 
;=0 

= T-;Sb(x)h(y) - i r r Z ^ ( * y ) + I ? - Z E 5-1 ft-1 1=0 f21L ;=0 t>l b' 
1 \ n 1 

= j zy ^ H O O ~ A ^ T ^ %(x^+~b^l to ~ Sbto^ 

-iTzrWy-stWy)) 
=j—[(sb(x)sb(y)-sb(xy))' 

Next, applying Lemma 2, we obtain sb(al+l) = sb{a)• sb{d)-(b-l)Cb(a; a1). Thus, if n is a 
positive integer, 

f Q(q;a')= 1 ^ f 5fc(a«) ^ i ) 
ti sb(ay b-\^X{sb{a)y-1 (sb(a)y 

1 . , 1 5,(a"+1) 
4-1 . * w A- l (%(a))"' 

Therefore, we have the following theorem. 

Theorem 4: Let.%(«) denote the base b digital sum of the positive integer n and Q(a; a1) denote 
the base b carries in the normal multiplication algorithm of multiplying a and a1. Then 

& {sb(a)y b-r 
To illustrate this theorem, if ft = 3 and a - 14, then 

£C3(14;14') = 2 

1=1 ^ 

That is, if we count the carries in multiplying 14 = 1123 by powers of 14, using the usual base 3 
multiplication algorithm, and divide by the appropriate power of 4, the result is 2. In fact, the 
infinite series begins with 

i + JL + i i + JL + . . , 
4 16 64 256 

5. QUESTIONS 

Some open questions remain. Can a formula be found for 

JriWor-(4(or, 
?=0 

where w, #%, and Wj are positive integers? Can a formula be found for 
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Also, can a formula be found for 
1 h"~1 

where ^ = AJ1 ? What about a formula for 
hn—1 

° J=0 

Finally, find the sum 
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Among key words associated with Fibonacci numbers are Lucas numbers, Binet form, Pell 
numbers, Wythoff pairs, and Zeckendorf sums. The term Zeckendorf sum entered the language 
some time after 1939—a surprisingly late date, as it would appear that most named mathematical 
entities as simple as these sums were named centuries ago! 

Actually, it was not until the early 1950s that Zeckendorf sums were first discussed in a 
publication, and not until 1972 that the chronology was clarified, by Zeckendorf himself. In an 
introductory Summary [7], he writes: 

Every natural number can be represented as a sum of distinct and non consecutive Fibonacci numbers or 
of non consecutive Lucas numbers. Using Fibonacci numbers, such a representation is always unique. 

It is the unique representations that are now known as Zeckendorf sums, and their existence and 
uniqueness, as Zeckendorf s theorem. Shortly after the above-mentioned Summary, Zeckendorf 
indicates that these sums date from the year 1939. 

In 1952, C. G. Lekkerkerker published an account [5] of Zeckendorf s theorem. This article, 
in Dutch, led to a longer work in 1960, in the prestigious Journal of the London Mathematical 
Society, there, D. E. Daykin [2] proves that the Fibonacci numbers form the only sequence of 
natural numbers for which Zeckendorf s theorem holds. Daykinfs paper is cited by many later 
papers on Zeckendorf sums and their generalizations. 

In view of the widespread currency of the terms "Zeckendorf sumH and "Zeckendorf repre-
sentation," it is surprising how little is known about the life of Zeckendorf. Fortunately, Jean 
Godeaux [3] was able to obtain the reminiscences of P. R. Charlier, a retired engineer who knew 
Zeckendorf when both were prisoners of war. In the material that follows, Mr. Charlier's account 
is supplemented with information provided by Centre de Documentation Historique, Forces 
Armees Beiges [6]. 

At the end of the nineteenth century, Dr. Abraham Zeckendorf, a dentist, and his wife, 
Henriette van Gelder, set up his practice in Liege, Belgium. Dr. Zeckendorf was a Dutch citizen 
and an active Jew. In May 1940, because of the Nazi invasion of Belgium, the Zeckendorf family 
fled to Nice, France. 
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The son, Edouard, born in Liege on May 2, 1901, was recognized early as a brilliant student. 
Speaking fluently both Dutch, the language of the Zeckendorf family, and French, the official 
language of Liege, Edouard attended the Royal Athenaeum of Liege from 1912 to 1919. There 
he studied Greek, Latin, English, German, mathematics, and drawing. 

Soon after the end of World War I, Edouard enrolled in the University of Liege, where, in 
1925, he became a medical doctor, specializing in surgery and delivery. In the same year, he 
became an officer in the Belgian army. Between 1927 and 1931 he obtained a License for Dental 
Surgery, and in 1929 he married Elsa Schwers, a nurse and member of the Reformed Church, 
bom July 2, 1889 in Liege. 

Elsa, like Edouard, was an artist. Before the marriage, Elsa had produced many fine draw-
ings of Paris, both in pencil and charcoal. She continued to paint many oils; during his free time, 
Edouard continued his own drawing and mathematical investigations. The two often attended art 
exhibits and were friends of the best local artists. They had no children, and Elsa's sudden death 
in 1944 was extremely painful for Edouard. 

According to Mr. Charlier, from 1930 to 1940 Dr. Zeckendorf was in charge of the military 
Hopital Saint Laurent in Liege. On May 28, 1940, with the surrender of the Belgian army, Dr. 
Zeckendorf was taken prisoner by the Germans. As a POW, he stayed in several oflags until 
1945. (An Oflag was an Officierenlager, a camp for imprisoned officers, as contrasted to a 
Stalag) 

During his captivity Dr. Zeckendorf provided medical care to allied POWs. He also sketched 
soldiers representing the many various peoples of the Soviet Union. Mr. Charlier wrote that Dr. 
Zeckendorf escaped from a camp, and afterwards, his status as a nonpracticing Jew was ignored 
by the Germans. Records described in [6] confirm that Dr. Zeckendorf did attempt an escape, but 
no details are given in [6]. Both Mr. Charlier1 s account and the military records indicate that Dr. 
Zeckendorf chose to continue his care of POWs in Germany despite opportunities to return to his 
home. 

After his liberation, Dr. Zeckendorf returned to Liege, where he found the family house 
occupied by the army. At first, the house had been deemed "abandoned11 by the Germans, who 
occupied it and stole or destroyed the furnishings and other possessions. Later, the house had 
been occupied by Americans. Dr. Zeckendorf decided to go to Nice to care for his aging mother, 
his father having died only a few months after Elsa had died. 

From March 16, 1949, to March 23, 1950, Dr. Zeckendorf headed the Belgian mission near 
the United Nations Commission for India and Pakistan. He was in charge of the inspection of the 
500-mile long cease-fire line. When he returned from India, Dr. Zeckendorf brought with him 
many original sketches and photographs of the Himalayan foothills. 

During his military career, Dr. Zeckendorf was honored with the following awards: Officer of 
the Order of the Crown (1946); Prisoner of War Medal (1946); Officer of the Order of Leopold 
(1949); Officer of the Order of Leopold II (1950). 

Dr. Zeckendorf married Marie Jeanne Lempereur in Brussels, Belgium, on July 27, 1959. 
Miss Lempereur's family was Belgian but had lived in Manitoba, Canada, at the time of her birth 
in 1908,. When she was a young girl, the family had returned to Belgium. During the eighteen 
years of their marriage, Dr. and Mrs. Zeckendorf enjoyed an active life, visiting exhibits and 
museums, traveling and visiting cities of artistic interest, and reading. After his second wife's 
death in July 1977, Dr. Zeckendorf continued his activities, even after the discovery of cancer. 
Near the end of his life, he often visited friends in Liege, and he regularly attended the monthly 
meetings of the Societe Royale des Sciences de Liege. He died in Liege on May 16, 1983. 

It appears that [8] was Dr. Zeckendorf s only publication in English, whereas some thirty 
others in French were published in Mathesis and Bulletin de la Societe Royale des Sciences de 
Liege. These include several articles on each of the following subjects: Fibonacci and Lucas 
numbers, primes, quadratic equations, and combinatorial arrangements of letters. As citations of 
these publications can be downloaded easily from the MathSci database, they are not listed here. 

1998] 417 



EDOUARD ZECKENDORF 

Dr. Zeckendorf published one paper [8] in The Fibonacci Quarterly. In the same issue, the 
founding editor, V. E. Hoggatt, Jr., also published a paper [4] dedicated to Dr. E. Zeckendorf. A 
few of Dr. Zeckendorf s letters to Dr. Hoggatt, dating from July 1971 to February 1973, survive. 
They reveal a warm friendship and enthusiasm for recurrence sequences. Their tone is, of course, 
much less formal than other materials unearthed for this sketch. Of particular note is the distinc-
tive signature found on all the letters and reproduced here: 
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Ducci-sequences are successive iterations of the function 
/(x1? x2,..., xn) = (|xx -x2 | , |x2 - x j , . . . , \xn -XJI) . 

Note that / : Z" -> Zw, where Z" is the set of n-tuples with integer entries. Since they were intro-
duced in 1937, Ducci-sequences, also known as the w-number game, have been studied exten-
sively (e.g., [1], [3], [5], [6], [7], [8]). In 1982, Wong suggested a generalization which he called 
Ducci-processes [12]. Ducci-processes are successive iterations of a function g:Zn —» Zn which 
satisfies the following three conditions: 
(i) there exists a function h:Z2.—> Z; 
(ii) ^(x1? x2,..., xn) = (/i(xl3 x2),h(x2, x3), ...,h(xn9 xj) 
(iii) the n entries of gk(xh x2,... ,-xn) are bounded for all k. 
Note that Ducci-sequences are an example of a Ducci-process with h(x, y) = \x-y\. 

In [4], Engel introduced the Ducci-process Dm, where h(x, y) = (x+y) (mod m): 
Dm(xl9 x2,..., xn) - (xx + x2 (modm), x2 + x3 (modm),..., xn + jq (modm)). 

Since numbers are reduced modulo 'm, we can view the domain and range of Dm as Z£, the set of 
w-tuples with entries from Zm. Because Z* is a finite set, the iterations {Dl(X)} will eventually 
repeat, resulting in a cycle. As with Ducci-sequences, the goal is to characterize cycles in terms 
of n and m. This is done in [9] for n = 4. 

We will begin with some general observations about Dm. Then we will focus on 5-tuples, 
where the Fibonacci numbers play a prominent role. 

GENERAL OBSERVATIONS 

To simplify notation, we define two functions on Zn'. For X = (x1? x2,..., xn) GZ" 5 

D(X) = D(xt> X2, ..., Xn) = (Xx + Xj, X2 +X3, ..., Xn + XtX 

H(X) = H(xh x2,..., xn) = (xj, %.. . , xn, xjl. 

We write D(X) = (xi + x2, x2 + x3?..., xn + jq) (mod m) in lieu of D^X) . Note that D and H 
are commutative, linear operators; moreover, D(X)=X + H(X). Iterations of D and H are de-
fined as DJ(X) = D(DJ-l(X)) and HJ(X) = H(Hj-l(X)), respectively. Thus, Hn(X) = X and 
i f^(^) :=^ ( m o d ? 2 ) (^)-

A further simplification occurs with the introduction of the special ra-tuple i4 = (l,0,...,0). 
Using the function H, we can write X = (xh x2,..., xn) in terms of A: 

X = x1.(l,0,...,0) + x2.(0,l,...,0) + ...+xr|.(0,0,...,l) 
= xl'A + xrHn-l(A) + xrHn-2(A) + --+xn_l.H2(A) + xn-H{A) 
= ^n%iHn+l-f(A). 
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Hence, 

Similarly, D7 (X) can be written in terms of Dj (A). 
As we noted above, the iterations of X will eventually lead to a cycle. That is, there exist 

nonnegative integers / and s for which Dl+s(X) = DS(X) (mod m). If / and s are as small as 
possible, then we will write lm(X) = I and %m(X) - s. When the context is clear, we will omit the 
subscript m. Thus, l(X) is the length of the cycle generated by X, while §(X) is the number of 
iterations necessary to reach that cycle. Considering all members of Z", let 7 and Wbe the tuples 
for which 1(7) and §(W) are maximum, respectively. We denote these maximum lengths by l(m) 
and §(m). Our goal is to characterize l(m) and §(m). 

Theorem 1: For all n, l(m) = 1(A) and §(m) = §(A). Further, if m = p\x -p^2 ptJ, where the 
# 's are distinct primes, then l(m) = IcmflOf1),..., l(pjJ)} and §(m) = max{§(p^),..., §(PjJ)}-

Proof: Let X = (xi9x2,...,xn)eZZt. As we noted above, DJ(X) = Ti<i<nxiHn+l-i(Dj(A)). 
Thus, 

ZfiAWA)^ s E ^x^^ iD^^^ iA) ) (modm) 

^^H^iD^XA)) (modm) 
= D^A\X). 

Hence, for all X, §(X) < §(A) and l(X) \l(A). We conclude that l(m) = 1(A) and §(m) = 3(A). 
Using the prime decomposition of m, we know that 

Zm=Z
D^ ®ZB*i ®~'®Z kj9 Pi Pi Pj 

where © denotes the direct sum. For an w-tuple 
(xl9 X2,..., xn) = i\xl9 x2,..., xn),..., (xu x2,..., xn)). 

^zl ^z\ GZV 
m P? PJJ 

Thus, Dl+S(X)^DS(X) (mod m) if and only if Dl+s(X) = DS(X) (modpf') for \<i < j . Con-
sequently, I(iw) = lCTi{IO^),..-,t(P/-/)} and §(/») = m a x f S C r f ' X . - , ^ ) } . ° 

Theorem 1 greatly simplifies our work. To determine l(m) and §(m)9 it suffices to calculate 
lu(A) and £U(A) for u-pk with/? a prime. Since our ultimate goal is to characterize l(m) and 
§(m) for 5-tuples, we narrow our focus to 71-tuples with n odd. 

Lemma 1: Let n be odd. If m is odd, then for each H-tuple X there exists a unique w-tuple 7 such 
that D(Y) = X (mod m). 

Proof: Let X = (xl9x2:t...,xn) and 7 = (yl9y2,...,y„) be 72-tuples. In order for D(Y) = X 
(mod w), we must have 

(yi + J2> J 2 + J3 ? ...,^» + yd s (% x2?..., * J ( m o d *»)• (i) 
Hence, 

Oi+J 2 ) - (F2+^3)+• • •+(-iy+10/ +j*+i)+—+o„+^i)=Si</<w(-iy+1^ (mod m), 
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which simplifies to 

2yl^i:i<i<n(-iy+lxi(modmy (2) 

Since m is odd, 2 has an inverse in Zm, so (2) has a solution for yv We solve, in turn, for the 
other entries of Fusing (1): 

y2
 s x i ~ y \ ( m ° d m \ y3 = x2-y2 (modm\...9yn = x^-y^ (modm). (3) 

Since the solutions in (2) and (3) are unique, 7 is unique. • 

Theorem 2: Let n be odd. Then §(m) = 0 if and only if m is odd. 

Proof: We begin with the case in which m is even. Suppose there exists an /i-tuple Y = (yl9 

y2, ...,y„) such that D(Y) = A (mod m). Then 

( y i + ^ ^ + ^ - . ^ + J i ) ^ ^ ^ - ^ ) (modm). (4) 
As in Lemma 1, (4) implies 2yx = 1 (mod m). But this is impossible since m is even. Thus A is 
not in a cycle and §(A) > 0. Hence, when m is even, §(m) & 0. 

When m is odd, we know from Lemma 1 that every n-tuple has a predecessor. For X eZ^, 
we can find a sequence of n-tuples such that 

DQQ^X, Wii^i, DiY3)sY2, D(Y4) = Y3, D(Y5) = Y4,... (modm) (5) 

or, equivalently, 

DQQ - X, D2(Y2) - X, D\Y3) = X, D4(Y4) - X, D5(Y5) - X,... (modm). 

Since there are only a finite number of w-tuples, eventually the sequence in (5) must repeat. That 
is, Yt = Yj (mod m) for some i> j . This implies D;"(I^) = DJ'(Yj) = X (mod wi). Hence, X is in a 
cycle and §(X) = 0. We conclude that §(m) = 0. D 

Using Theorems 1 and 2, we see that, when n is odd, 

§(m) = max{8(2*), §(p*2),..., S(pfO} = *(2*), 

where the #fs are distinct primes and m = 2k -p2
2 •••-pkj. Thus, finding §(m) requires only cal-

culating §(2*). 
As for I(/w), since A is in a cycle if and only if m is odd, there are two cases: l(pk)9 where p 

is an odd prime and 1(2*), In much of what follows, we will consider the first case, leaving the 
second, special case for the end. 

Theorem 3: Let n be odd and p be an odd prime. Suppose that D\A) = A (mod/?*). Then 
Dpt(A) = A (mod/ + 1 ) . Thus, t ( / + 1 ) equals either l(pk) or j? • ! ( / ) . 

Proof: We begin by noting that Theorem 2 guarantees the existence of t > 0 for which 
D^A) =5 ^ (mod /?*). Rewriting the congruence as an equation gives 

D*(A) = A + (blP
k, h2pk,...,bnpk) = A + H^h^B^iA). 

Thus 
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D2t(A) = D'(A + S1S<„ b^H^-'iA)) 
= D'(A) +1^ b^H^-'iD'iA)) 
= A + Z ^ blP

kH»+l-'(A) + I l f i ,„ biP
kH"+l-j(A + -ZHJ,„ bjP

kH"+l-J(A)) 
= * + Sls,<„ 2biP

kH"*-\A)+p2k I ^ „ J^Jin bfijlP-^-'-^A) 
= A+Z^„2bipkH"+1-'(A)+p2kX2, 

where X2 = !,!<,<„ ZKy<n bfijH2"*2-^ (A). By induction, 

Dht(A) = A+>Zl<i<nhbipkH"+1-*(A) + phkXh 

for some //-tuple Xh. Hence, 

D^ {A) = A + !,<,<„ pbiP
kHn*-\A) + p>>kXp 

= A + £,<,<„ b^H^-'iA) + pPkXp 

= A{moApM). 

Now let t = r<>*). If p\bt for all i, then D'(A) = A (mod / + 1 ) . In this case, l ( / + 1 ) = l(pk). 
On the other hand, if p\bt for some /', then l(pk+1) = p• l(pk). • 

Corollary 1: Let n be odd and/? be an odd prime. 
(i) If \{p2) * \{p), then I ( / ) = / " ' • \{p) for all & > 2. 

f/i> If l(p2) = l(p), then there exists u > 2 such that l(pk) = l(p) for all k < u and 
t ( / ) = /"W-I(p)for all* > u. 

Proof: The proof of Theorem 3 shows that, if D*(A) = A (mod//) and D\A)4 A (mod 
pk+l), then D ^ ) = ^ (mod pk+1) and D " ^ ) # A (mod / + 2 ) . Hence, if l(pk+l) = p-l(pk), 
then I(/?i+2) = p2-i(pk). Results (i) and (ii) follow immediately from this observation. • 

Corollary 1 greatly reduces our work since l(pk) = ps-lip) for some s< k -1. This allows 
us to focus on \{p) 

5-TUPLES AND FIBONACCI NUMBERS 

We now restrict our attention to 5-tuples. We begin by considering DJ(A). Surprisingly, 
DJ(A) can be expressed in terms of the Fibonacci numbers. We will use the standard notation: 
F0 = 0, Fx = 1, F2 = 1, and FJ+l = F^ + Fj. 

Theorem 4: For i > 1, 

D2i(A) = (22i~4F2 +22'-6F4 + - . + 22F2,_4 + F2,_2)-(1,1,1,1,1) 
+ Hi(F2i+1,F2i,0,0,F2i). 

Proof: We proceed by induction. First, note that 
,4 = (1,0,0,0,0), 
Z>04) = (1,0,0,0,1), 

D\A) = (1,0,0,1,2) = H\F3, F2,0,0, F2). 
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Thus (6) holds for / = 1. Now assume (6) holds for /. Then 

&M{A) = (22<~4F2 + 22i~% + •••+ 22F2i_4 + F2i_2) • (2,2,2,2,2) 

+ & (F2k+2 > F2i > °> F2i > F2k+l) 

and 

Eiu*\A) = (22i~4F2 + 22i~6F4 + • • • + 22F2,_4 + F2i_2) • (4,4,4,4,4) 

+ H {r2j+2 + ^ 2 / ' ^ l i -> ^ 2 \ > ^ 2 / + ^2i'+2 ? ̂ 2/+2 + -V2/+1 + ^2 / ) 

= (22'"2
JF2 +22'-4F4 + - . + 24F2,_4 + 22F2/_2).(1, 1,1,1,1) 

+ (Fli, F2U F2i, F2i> F2i) + H'i^M, °> °> ^2H-2> ^ + 3 ) 

= (22i-2F2+2*-4F4 + -+24F2i_4 + 22F2i_2+F2i)-(\, 1,1,1,1) 
+ HM(F2i+3,F2i+2,0,0,F2i+2). D 

Since the sum in (6) will occur frequently, we will adopt the following notation: 

SUM(2/) = 22,-4F2 + 22,-6F4 + • • • + 22F2k_4 + F2i_2. 

Note that SUM is defined only for even integers. We use this notation to rewrite (6) and (7) for 
J > 1 : 

D2i(A) = SUM(2i)-(l,l,l,l,l) + Hi(F2i+1,F2i,0,0,F2iy, (8) 

D2i+\A) = 2 • SUM(2/) • (1,1,1,1,1) + #'CF2/+2, F^, 0, F2i, Fa+2). (9) 

Theorem 5: Let m be odd. Suppose Dl(A) s A (mod m). 
If I is even, then Fx = 0 (mod m), Fl+1 = 1 (mod m), SUM(I) = 0 (mod m), and 511. 
If I is odd, then Ft = 0 (mod m), FM = -1 (mod m). 

Proof: If I is even, then (8) applies with 2/ = I. To simplify notation, let s = SUM(T). Then 

D\A) = (s, s, s, s, s) + Hl,2(FM, Fu 0,0, Ft) 
= Hl/2(s + FM,s+Fhs,s,S + Fx) 
= (1,0,0,0,0) (mod/w). 

Hence, 511, s = 0 (mod m), Fx = 0 (mod m), and Fl+l = 1 (mod m). 
If I is odd, then (9) applies with 2/ +1 = I. Let 5 = SUM(I -1) . Then 

D\A) = s-{2,2,2,2,2) + H^I2(FU1, FUl, 0, Fr_1; FI+1) 
= H<l-W2(2 -s+FUl,2-s + FUl, 2-s,2-s+F,_u 2-s+FUl) 
= #( M ) / 2 + 2(2 • 5,2 - s+F M , 2 • 5 + Ft+1,2 • 5 + FI+1,2 • 5+F M ) 
= (1,0,0,0,0) (mod/w). 

Hence, 2-5 = 1 (mod /»), FUl = -1 (mod m), and Fl+l = -1 (mod m). The last two congruences 
imply that Fx = 0 (mod w). D 
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PROPERTIES OF FK = 0 (mod m) 

For m odd, l(m) equals the smallest positive integer I for which Dl{A) = A (mod m). From 
Theorem 5, we know that Fx = 0 (mod m) and either Fl+l = 1 (mod m) or Fl+l = -1 (mod m), 
depending on whether I is even or odd, respectively. Thus, we now consider numbers K for 
which FK = 0 (mod m). We begin by observing that there does exist a l > 0 such that FK = 0 
(mod /w). Since Zm is finite, there exist / > j such that Fj=Fj (mod w) and i^+1 = FJ+l (mod m). 
These congruences together imply that Ft_x s i ^ (mod #i) which, in turn, implies Ft_2 = Fj_2 

(mod #?). Continuing, we see that Ff_j =F0 = 0 (mod m). 
Numbers K for which FK = 0 (mod #f) have been studied in [2], [10], and [11]. The lemmas 

that follow, as well as the observations in the previous paragraph, are well known. Their proofs 
are included because they involve techniques that we will use when we derive results about \{m). 

Lemma 2: Suppose FK = 0 (mod m) and FK+l = a (mod m) with K > 0. Then 

F^j^i-iy^a-Fj (modrn) (10) 
and 

FiK+j=ai'Fj (modm) (11) 

fo ra l l j> l and j = 0 , l , . . . ,Z - l . 

Proof: To prove (10), we first note that FK = 0 = -a-F0 (mod m) and FK_x = FK+l-FK = 
a - 0 = a-i^ (mod /w). Thus, (10) holds for j = 0 and y = l. Now assume (10) holds for 7 - I 
and7*; then 

^ r - O + i ) = FK-u-i)~FK-j 

-{-lya-Fj^-i-iy^aFj (modm) 

= (-iya(F;_1 + F/) (modm) 

^(-iy+2a.FJ+l (modm). 

To prove (11), we make use of the well-known identity: Fi+J = Ft_xFj + FtFj+l. Now 

FK+J = FJ+l+K_t = FjFK_x + Fj+lFK = Fj.a + FJ+l• 0 EE a • F, (modm). 

Thus (11) holds for i = 1. Now assume (11) holds for /'. Then 
F{M)K+j = FiK+j+UK-l = FiK+jFK-l + FiK+J+lFK s <* " ^ y ** s ^ ' ^} ( m ° d ^ D 

Lemma 3: Suppose FK = 0 (mod wi) and i^+1 = a (mod m) with Z > 0. Then a2 = (-t)K (mod 
wi). Thus, when m > 2, a2 = 1 (mod /w) if and only if K is even. 

Proof: By (10), 
l = i5 = / ^ - i ) s ( - ^ (modm). 

Thus a2 = ( - l ) r (mod m). As for the second statement, when m> 2, (-1)^ = 1 (mod /it) if and 
only if K is even. D 

In Theorem 5 we consider I for which Dl(A) = A (mod m) where, of course, m is odd. We 
showed that Fx = 0 (mod 01) and either i^+1 = 1 (mod m) or i\+1 = -1 (mod m) depending on 
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whether I is even or odd, respectively. Lemma 3 shows that the second case with I odd is impos-
sible. Thus, when Dl(A) = A (mod m), I is even with Fx = 0 (mod m) and Fl+l == 1 (mod m). We 
now show that there is always a K > 0 for which FK = 0 (mod m) and i^+1 = 1 (mod m). 

Lemma 4: Suppose FK = 0 (mod wi) and i^+1 = a (mod #i) with ^ > 0. Then: 
F2K = 0 (mod m) and i^r+1 = (-1)* (mod m); 
F4K = 0 (mod m) and i^r+1 = 1 (mod m). 

Proof: Using Lemmas 2 and 3, we find: 

F2K = a2F0 = 0 (mod m) and i ^ + 1 = a2Fx = (-1)^ (mod m); 
F4k = a% = 0 (mod m) and F4yt+1 = a4Ft = (-l)2K = 1 (mod m). D 

Thus that there is always a K > 0 for which FK = 0 (mod w) and i^+1 = 1 (mod m). We 
denote the smallest such integer by K(m). That is, 

K(in) = min{X > 0|i^ = 0 (mod m) and i^+1 = 1 (mod m)}. 

By Lemma 3, Z(w) is even when m>2. We note that ^(2) = 3. The next lemma contains a 
useful property of K(m). 

Lemma 5: Let K > 0. Then FK = 0 (mod wi) and FK+l = 1 (mod wi) if and only if K(m) \K. 

Proof: Suppose FK = 0 (mod TW) and i^+1 = 1 (mod /w). By definition, K(m) is the smallest 
number satisfying these conditions. Thus K(m) < K. Let K = q-K(m) + r, where 0< r <K(m). 
Then by Lemma 2, FK = FqK^+r = Fr (mod wi). Since i ^ = 0 (mod m), Fr = 0 (mod m). Hence 
r = 0. The converse follows immediately from Lemma 2. • 

Corollary 2: Let m be odd. Then l(m) = 1cm{5, j • Z(w)}, wherej is the smallest integer for which 
SUMO • K(m)) s 0 (mod m). 

Proof: We know that I(iw) is the smallest I for which Dl(A) = 4̂ (mod JW). As we observed 
above, I is even, Fx = 0 (mod wi) and Fl+l = 1 (mod m). By Lemma 5, I is a multiple of K(m). 
The conclusion now follows immediately from Theorem 5. • 

By Corollary 2, when/? is an odd prime, l(pk) is a multiple K(pk). The following lemma 
connects K(pk) and K(p). This relationship will greatly aid in the calculation of l(pk). 

Lemma 6: Letp be a prime. Then 
(i) For it > 1, J^y + 1 ) equals either K(pk) or /? • K(pk). 

(ii) If K(p2) * K(j>), then K(pk) = pk-l-K(p) for * > 2. 
fiii) If K(p2) = K(p), then there exists */>2 such that K(pk) = K(p) for k<u and K(pk) = 

pk-u-K(p) for Jfc>ii. 

Proof: This is a well-known result; its proof is given in [1]. Note the similarities between the 
properties of K in this lemma and the properties of I in Theorem 3 and Corollary 1. • 

We know that l(pk) is a multiple of K(pk), while the latter is a multiple of K(p). Thus, 
I( j /) is a multiple of ^ (p ) . We conclude this section with a lemma that gives bounds on K(p). 
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Although the result is well known [10], the proof is included because it shows the way in which 
the different cases arise. As we will see, K(p) depends on the value of 5(/7~1)/2 modulo p. When 
/? = 5, 5(p"1)/2 is, of course, congruent to 0. Hence p = 5 is a special case. For all other odd 
primes, 5(p~1)/2 is congruent to 1 or -1 depending on whether 5 is a quadratic residue or non-
residue of/?, respectively. If/? is congruent to 1 or 9 modulo 10, then 

(5/p) = (p/5) = ([l0q±l]/5) = (±l/5) = l, 

where (•) is the Legendre symbol. Hence 5 is a quadratic residue and 5(/?~1)/2 = 1 (mod/?). On 
the other hand, if/? is congruent to 3 or 7 modulo 10, then 

(5//?) = (/?/5) = ([10? + 3]/5) = (+3/5) = - l . 

In this case, 5 is a nonresidue and 5(/7"1)/2 = -1 (mod/?). 

Lemma 7: Let/? be an odd prime. Then 
K(p) ftp -1) p = 1 or 9 (mod 10), 
K(p) |(2/? + 2) /? = 3 or 7 (mod 10), 
£(5) = 20. 

Proof: By Binet's formula, 

and 

" , -
{\+Sy-(\Sy 

Sip 

1 
2P-1 [(?)#••• 

= 5(p-l)/2 ( m o d / 7 ) 

(i+Sy+1-(i-Sy+l 

V+i Js2p+1 

i 
V 

-T\ 
lpvy['?h 
;i+5 (P-»12] (mod/?). 

/_2y-^+[pj5^' 

(P + 05(/^3)/2 + fp + ^ (p- l )^ 

When /? = 1 or 9 (mod 10), Fp = l (mod /?) and Fp+1 s 1 (mod /?). These imply F ^ = 0 
(mod/?). Hence by Lemma 5, ^(/?) |(/? -1). 

When /? = 3 or 7 (mod 10), F = -1 (mod /?) and iy^ = 0 (mod /?). These imply i^+2 - "1 
(mod/?). By Lemma 4, F2p+2 = 0 (mod/?) and F2p+3 = 1 (mod/?). Hence K(p)\(2p + 2). 

By direct calculation we find that K(5) = 20. D 

PROPERTIES OF SUM (mod m) 

By Corollary 2, for odd m, I(m) = 1cm{5, j-K(m)}, wherey is the smallest integer for which 
SUM(y • K(m)) = 0 (mod m). We now consider such sums. 
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Lemma 8: Suppose FK = 0 (mod m) and FK+l = 1 (mod m), where K is an even positive Integer. 
Then 

SUMC/K) = (2iJ-l)K +... + 2* +1) • SUM(JT) (mod m). 

Proof: The congruence certainly holds for 7 = 1. Assume it holds for7 and consider 7 +1: 

SUM((7 + 1)>K) = 2u+l)K~4F2 + 2a+l)K-6F4 + • • • + 2jK FK_2 + 2jK~2FK 

+ 2 /^+2 + • • • + 2 i^y+1)^_4 + F(j+l)K_2 

= 2jK • (2^"4F2 + 2r"6F4 + • • • + FK_2) + 2^"2F^ 
+ 2 i^+2 H +2 î y+1)jK-_4 + F(j+T)K_2. 

Now by Lemma 2, i^+2 = F2 (mod m\..., F(J+l)K_2 = Fx_2 = Jy_2 (mod /w). Thus 

SUM((7 +1) • K) = 2jK • (2K~4F2 + 2r"6F4 + • • • + FK_2) + 2J'K~2FK 

+ 2JK~AF2 + • • • + 22FJK_4 + i y _2 (mod m) 

s 2 ; r • SUM(X) + 0 + SUM(/£) (mod wi) 
s 2 ^ • SUM(X) + (2°"1)i: + • • • + 2K +1) • SUM(X) (mod w) 
= (2JK + 2°-1)^ + • • • + 2K +1) • SUM(Z) (mod wi). • 

For odd m, l(m) is a multiple of j-K(m). Lemma 8 tells us how to find 7. First, we cal-
culate SUM.(K(m)). If SUM(X(w)) = 0 (mod m\ \{m) = 1cm{5, K(m)}. On the other hand, if 
SUM(K(m)) £ 0 (mod m), then we must select^ so that 

(2U-i)K{m) + . . . + 2i:(m) + j). SUM(£(WI)) = 0 (mod m). 

The next lemma will aid in calculating SUM(K(m)) modulo m. 

Lemma 9: Suppose FK = 0 (mod m) and FK+l = 1 (mod TW), where Â  is an even positive integer. 
Then 

SUM(tf) = ZI 2/ K_1 (mod w)-

Proof: By Lemma 2, 7^-/ = (-l)J+1Fj (mod w). Thus 

SXJM(K) = 2K~% + 2K~6F4 + ...+22FK_4 + FK_2 

- -2K~4FK_2 - 2K~6FK_4 22F4 - F2 (mod m). 

In preparation for using Binet's formula, let a = (1 + >/5) and b = (1 - V5). Note that 

a 2 - 1 = 5 + 2V5, Z>2 - 1 = 5-2V5,and (a2-l)-(ft2-1) = 5. 

Now, by Binet's formula, Fj = [aJ -bJ]I (2>S). Thus 2J~2Fj = [aJ -bJ]/ (22 V5). Hence 

2K~4FK_2 + 2K~6FK_4 + -+22F4+F2 

= {aK~2 -bK~2 +aK~4-bK-4 + -+a2-b2]l(22S) 
= [(aK-2+aK-4 + -+a2 + l)-(bK-2+bK-4 + -+b2 + l)]/(22j5) 
= [(aK -1) / (a2 -1) - (bK -1) / (b2 -1)] / (22 V5) 
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= [{aK -1) • (5 - 2V5) - (** -1) • (5 + 2 V5)] / (22 • 5^5) 
= [5aK - 2-S aK - 5 + 2^5 - SbK - 2V5 bK + 5 + 2V5] / (22 • 5^5) 
= (aK-bK)/(22j5)-(aK+bK)/(2-5) + l/5 
^2K-2FK-5-1[(aK+bK)/2-l]. (13) 

We use the Binomial Theorem to rewrite 5~\(aK+bK) / 2 -1] as 

(1 +75)*+(1-75)* - 1 = Sffy)5/-1. d4) 2 Tfsyy, 
We now combine (12), (13), and (14) and reduce modulo m: 

SUM(K) = -2K-4FK_2 - 2K~6FK_4 22 F4 - F2 (mod m) 
= -2K~2FK + 5-\(aK +bK)/2-l] (modm) (15) 

-Z(J)5 7"1(m o d'«)- n 
Note that Lemmas 8 and 9 hold for all m so long as K is an even positive integer. 

DETERMINING l(p) FOR ODD PRIMES 

We are now going to determine l(p) for odd primes. We will consider four cases: p = 3, 
p = 5, p = 1 or 9 (mod 10), and p = 3 or 7 (mod 10). Although the derivations will be different, 
the final result will be the same. In order to state the result, we need some additional notation. 
For a GZm with gcd(a, m) = 1, we will denote the order of a in Zm by om(a). Thus, if s > 0 is the 
smallest positive integer for which as = 1 (mod m\ we will write om(a) = s. Of course, if a = 1 
(mod m\ om(a) = 1. What we will show is that for odd/?, 

l(p) = lcm{5,op(2K^)-K(p)}. (16) 

We showed in Corollary 2 that l(p) is the least common multiple of 5 and j-K(p), where j is 
the smallest integer for which SUM(j K(p)) = 0 (mod p). As we observed above, to findj we 
first calculate SUM(K(rn)). If SUM(K(rn)) = 0 (mod m), l(m) = 1cm{5, K(m)}. On the other 
hand, if SUM(K(m)) # 0 (mod m), then we must selecty* so that 

(2GHW«) +... + 2*0"> +1) • $UM(K(m)) = 0 (mod m). 

We begin with the two special cases, p = 3 and p = 5. 

Theorem 6: 1(3) = 40 and 1(5) = 20. 

Proof: By direct calculation, it is easy to verify that ^(3) = 8. Now, by Lemma 9, 

S U M ( 8 ) - X ( ^ (mod3) 

= 1 + 2 + 1 + 2 (mod 3) = 0 (mod 3). 

Hencel(3) = lcm{5,8} = 40. 
It is also easy to verify that K(5) = 20. Now, by Lemma 9, 
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S U M ^ O ^ X f ^ V " 1 (mod5) = f2
2°l (mod 5)^0 (mod5). 

Hence 1(5) = lcm{5,20} = 20. D 

We note that (16) holds for p = 3 and p = 5. In both cases, K(p) is a multiple of <fi(p) -
p-l; hence, 2K(p) s 1 (modp). Therefore, for p = 3 and p = 5, op(2K^) = 1 and \{p) = lcm{5, 
op(2™yK(p)}. 

Next we consider primes for which p = l or 9 (mod 10). We begin with a lemma which deals 
with S U M ^ ^ " ) ) modulo j?-7' for j>\. At the moment we are concerned only when j = l. 
However, we state and prove the more general case since we will need it later. 

Lemma 10: Let/? be a prime such that p = 1 or 9 (mod 10). Let q = pj for j > 1. Then 

SUM(K(g)) s r 1 ^ ^ -1] (modq). 

Proof: To simplify notation, let K = K(q). Since 5 is quadratic residue, the congruence 
x2 = 5 (mod q) has a solution in Zq. Let r be such a solution. Then Binet's formula holds in Zp: 

FK SE [(1 + r)* - (1 - r)K] I (2Kr) = 0 (mod ?) (17) 
and 

FK+l = [(1 + r ) r + 1 - (1 - r)K+l] I (2K+lr) = 1 (mod ?). (18) 

From (17), we see that (l + r)* = ( l - r ) r (mod/?). Thus, we can rewrite (18) as 

l^(l+r)Ki(l + r)-(l-r)]/(2K+lr) = (l + r)K/2K (modq). 

Hence (l + r)K = 2 r (mod/?). Now, by (15) of Lemma 9, 

SUM(Z) s ^ [ ( ( l + r)* + (1 - r)K) / 2 -1] (mod g) 
s f ^ - l ] (modg). D 

Theorem 7: Let/? be a prime such that p = l or 9 (mod 10). Then 

l(p) = lcm{5,op(2K^yK(p)}. 

Proof: Again, to simplify notation, we let K = K(p). Using Lemmas 8 and 10, we have 

SUM(y • K) = (2°-l)K + • • • + 2K +1) • SUM(JT) (mod p) 
= ( 2 ° - ^ + • • • + 2K +1) • S - 1 ^ -1] (mod p) 
a {[2* -\]I[2K-\]}-5-\2K -1] (mod/?) 
= 5-i[2^_i](mod/7). 

We want the smallest./' for which SUM(j • K) = 0 (mod/?). Clearly, j = op(2K) and hence l(p) = 

We now consider the case in which p = 3 or 7 (mod 10). Since 5 is a nonresidue in this case, 
Binet's theorem cannot be used as above. 
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Lemma 11: Let p be a prime such that p = 3 or 7 (mod 10) with p > 3. Then SUM(2/> + 2) = 3 
(mod />) and S\JM(K(p)) # 0 (mod /?). 

Proof: By Lemma 9, 

SUM(2p + 2)^5r2^+2l5^1 (mod/0. 
For l<y<( /? + l ) /2 , 

> + 2 ) .0 (mod/>) and (2/f2
+_2

2 J - 0 (mod/?). 

Also 

and 

2^2
+ 2 ) . l (mod/,), ( 2 ^ 2 ) . l ( m o d / 0 , 

f2p+2V (2/> + 2)(2/? + l )2 /7( /7+/7- l ) - ( /7 + 2 ) _ 2 - l - 2 - ( / 7 - l ) ! 
(p + l ) p ( p - l ) - 2 ~ !•(/>-!)! ~ i m ° Q ^ -

Since 5 is nonresidue, S^p 1)/2 = -1 (mod/?). Hence 

= l + 4-(-l) + l + 5 (modp) = 3(modp). 

By Lemma 7, K(p)\(2p + 2). If K(p)*(2p + 2), let j = (2p + 2)/K(p). Then by Lemma 8, 

SUM(2p + 2) - SUM(j • K(p)) s ( ^ " W ^ +... + 2*(r t +1) • SUM(X(p)) (mod p). 

Since SUM(2p + 2) *£ 0 (modp) when p > 3, SUM(K(p)) # 0 (modp). D 

Lemma 12: help be a prime such that p = 3 or 7 (mod 10) with p > 3. Then 2X(/?) # 1 (mod/?). 

Proof: Assume to the contrary that 2r(/7) = 1 (modp). This means op(2)\K(p) which, in 
turn, implies that op(2)\(2p + 2). But we know op(2)\{p-1). Since gcd(p-1, p +1) = 2, op(2) 
must equal 2 or 4. For p > 3, 22 # 1 (mod p) and so op(2) * 2. Now 24 = 2 (mod 7), 24 = 3 
(mod 13) and, for all other p9 2 4 < p . Thus, for p > 3 , 24 ̂  1 (modp), so op(2)^4. We 
conclude that 2K{p) # 1 (modp). D 

Theorem 8: Let p be a prime such that p=3 or 7 (mod 10) with p > 3. Then we have I(p) = 

Proof: To simplify notation, we let K = K(p). Using Lemma 8, we have SUM(J'K)s 
(2{j~l)K + — + 2 r + l)-SUM(Z) (modp). By Lemma 11, SUM(JT) # 0 (modp), so we want the 
smallest j for which 

2<>-1>A: + . .-+2/ : + l sO (modp). (19) 

Now 2K # 1 (modp^) by Lemma 12. Thus, the smallest7 for which (19) holds is op(2K). 0 
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DETERMINING ! ( / ) FOR ODD PRIMES 

We know that l(pk) = ps -l(p) for some $<k-l. We now show that for most, if not all, 
primes, l(pk) = pk~l • l(p). There are several cases. 

Corollary 3: Let p be an odd prime with p * 5. If K(p2) * K(p), then \{pk) = pk~l • \{p). 

Proof: By the theorems above, we know that \{p) = 1cm{5, op(2Kip))-K(p)}. Of course, 
op(2K(p)) is relatively prime top. Further, for p 5*5, by Lemma 7, K(p) is also relatively prime 
top. Hence, gcd(l(p),p) = l. 

By Lemma 6(ii), K(pk) = pk~l-K(p) for k > 2. We know from Corollary 2 that I(p2) is a 
multiple of K(p2) = p-K(p); hence, p|I(p2). On the other hand, Corollary 1 tells us that \{p2) 
equals either \{p) or p-l(p). Since gcd(I(/?), p) = 1, l(j>l) = P'l(p)- This, in turn, implies by 
Corollary 1 that l(pk) = pk~l-l(p) for k> 2. D 

When /? = 5, the proof of Corollary 3 does not apply since K(S) = 20, hence gcd(I(5), 5) * 1. 
However, direct calculation shows that I(52) * 1(5). Thus 1(5*) = 5*"1 -1(5) for k > 2. 

Even if K(p2) = K(p), it may still be the case that l(p2) = p-l(p)• We now consider this 
possibility. 

Corollary 4: Let p be an odd prime with p.*5. Suppose that K(p2) = K(p). If opl{2K{p)) & 
op(2K(p)), then \{pk) = pk~l • l(p). 

.Proof: Let K = K(p). By Corollary 2 and Lemma 8, l(p2) = lcm{5,j-K}, where j is the 
smallest integer for which 

SUMO' • K) s (2°"1)r +... + 2* +1) • SUM(Z) = 0 (mod p2) . (20) 

First, suppose that SUM(JT) = 0 (mod p2); this implies SUM(Z) = 0 (mod p). By Lemmas 10 
and 11, this can occur only when p = 1 or 9 (mod 10), op(2K) = 1 and op2(2^) = 1. But this con-
tradicts the hypothesis. Thus, SUM(iQ # 0 (mod/?2) and 2 r ^ 1 (mod/?). Hence, the smallest j 
for which (20) holds is op2 (2K) = /? • op(2K). The proof now proceeds in the same manner as the 
proof of Corollary 3. We conclude that \{p2) * t(p) and hence l(pk) = pk~l • l(p). • 

As Wall points out, it is not known whether there exists a prime p for which K(p2) =K(p) 
[11]. It has been verified that K(p2) * K(p) for p < 10,000. Even if there is a prime for which 
K(p2) * K(p), it may still be the case that l(p2) - p • \{p). In order for l(p2) * p • l(p), two con-
ditions must hold: K(p2) = K(p) and op2(2K) = op(2K). Of course, although rare, it is possible 
for an element to have the same order modulo/? and p2. 

BOUNDS ON l(p) 

We now use the results from the previous sections to find bounds on l(p). First, we note an 
alternate way to calculate l(p). 

Corollary 5: Let/? be prime with p > 5. Then l(p) = lcm{5, op(2\ K(p)}. 
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Proof: By Theorems 7 and 8, it suffices to show that op(2K^) • K(p) = lcm{op(2), K(p)}. 
Now op(2*V>) = op(2) I gcd(K(p), op(2)). Hence 

op(2^).K(p) = op(2)/gcd(K(p),op(2))-K(p) = lcm{op(2),K(p)}. 0 

Corollary 6: Let/? be prime with p > 5. Define B(p) as follows: 
B{p) = (p -1) /> s 1 (mod 10); 
B(p) = 5(p -1) /> = 9 (mod 10); 
B(p)=5(p2 - 1 ) /2 /? s 3 or 7 (mod 10) and/? = 1 (mod 4); 
5(/?) = 5 0 2 - l ) /? = 3or7 (mod 10) and/? = 3 (mod4) 

Then I(p)|5(p). 

Proof: We know by Lemma 7 that op(2)|(/>-1). Now, for p = 1 or 9 (mod 10), we have 
^ 0 ) 1 0 - 1 ) Hence, for these primes, lcm{op(2),£(/?)}|(/?-l). Thus l(p)\B(p). 

For p = 3 or 7 (mod 10), £(/>) |2 • (/? +1). Therefore, for these primes, 
lcm{op(2), K(p)} \lcm{p -1,2 • (p +1)}. 

Since 
lcm{/>-l,2-(/? + l)} = (/>2-l)/2 /> = 1 (mod 4), 
lcm{/?-l,2(/? + l)} = (/>2-l) /?s3(mod4), 

l(p) = B(p). Q 

For the bounds given in Corollary 6, the most common situation is that l(p) = B(p). This 
is certainly the case when op(2) equals p-\ and K{p) equals p-\ or 2/?+ 2, depending on 
whether/? is congruent to ±1 or +3 modulo 10, respectively. 

For p = 1 or 9 (mod 10), l(p) can equal B(p) even when K(p) < (p -1). The smallest ex-
amples are 

p = 101: .£(101) = 50, o101(2) = 100, so 1(101) = 100 = 5(101), 
p = 29: £(29) = 14, o29(2) = 28, so 1(29) = 5 • 28 = 5(29). 

However, l(p)<B(p) if and only if both K(p) and op(2) are less than p-\. The smallest exam-
ples are 

p = 401: £(401) = 200,0^,(2) = 200, so 1(401) = 200 < 400 = 5(401), 
p = 89: £(89) = 44,Og9(2) = 11, so 1(89) = 5-44<5-88 = 5(89). 

On the other hand, for p = 3 or 7 (mod 10), \{p) * B(p) if K(p) < (2p + 2). The proof of 
Lemma 7 shows that K(p) *p + \. Hence, if K(p) * (2p + 2), then K(p) < (p +1). However, 
l(p) can be less than B(p) in a variety of ways. As we have already noted, this is the case when 
K(p) < (2p + 2). It can also occur even when K(p) = (2p + 2). There are 8 possibilities: p = 3 
or 7 (mod 10), p = 1 or 3 (mod 4), K(p) less than or equal to (2p + 2). Here are examples of 
each: 

p = U3: £(113) = 76,o113(2) = 28, soI(113) = 5-532<5-6384 = 5(113), 
p = 73: £(73) = 148, o73(2) = 8, so 1(73) = 5 • 296 < 5 • 2664 = 5(73), 
p = 43: £(43) = 88,o43(2) = 14, so 1(43) = 5-616<51848 = 5(43), 
p = 263: £(263) = 176,0^3(2) = 131, sol(263) = 5-23056<5-69168 = 5(263), 
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p = 557: K(557) = 124, o557(2) = 556, so 1(557) = 5-17236 <5-155124 = 5(557), 
p = 17: K{\1) = 36,o17(2) = 8, sot(17) = 5-72<5144 = B{\1), 
p = 47: K(47) = 32, o47(2) = 23, so 1(47) = 5• 736 < 5• 2208 = 5(47), 
p = \2T. K(U7) = 256,oul(2) = l, so 1(127)-5-1792 <5-16128 = 5(127). 

DETERMINING §(2* ) AND 1(2* ) 

Finally, we consider powers of 2. 

Lemma 13: For * > 1, K(2k) = 3 • 2k~l. Further, gcd(SUM(5 • K(2k)), 2) = 1. 

Proof: It is easy to verify that K(2) = 3 and K(22) * 3. Thus, for k > 1, K(2k) = 3 • 2k~l. 
To simplify notation, let K = K(2k), where k > 1. Since ^(2*) = 2k~\ K = 3-</>(2k). Thus 

2K = 1 (mod 2*). Combining this observation with Lemma 8 gives us 

SUM(5iT) = (24K + 23K + 22K + 2K +1) • SUM(r> (mod 2k) 
= 5-STJM(r> (mod 2*). 

Thus, to show gcd(SUM(5Z), 2) = 1, it suffices to show that gcd(SUM(JST), 2) = 1. By Lemma 9, 

suM(r>= S I 2 • P"1 (mod2<:) 

- 3 Z " I ( 3 • 2
2 " ) 5 / - 1 +532*-2-1 (mod 2') 

= 0+1 (mod 2). 

Hencegcd(SUM(Z),2) = l. D 

Theorem 9: §(2k) = £ and 1(2*) = 15-2*"1. 

Proof: As can easily be verified, D16(A) = D(A) (mod 2). Thus §(2) = 1 and 1(2) = 15. 
For k > 1, set K = K(2k) = 3 • 2k~l. Note that K is even and gcd(K, 5) = 1. Now, by Theorem 

5, 
Dk-l+5K(A) = Dk-\D5K(A)) 

a Dk-\SUM(5K) • (1,1,1,1,1) + H5K/2(A)) (mod 2k) 
= 2k~l • SUM(5£) • (1,1,1,1,1) + Dk~l(A) (mod 2k). 

Since gcd(SUM(5r>, 2) = 1, 2*"1 • SUM(5X) 4 0 (mod 2*). Hence, Dk~l+5K(A) # Z)*"1^) (mod 
2k). On the other hand, 

I?^K(A) = Dk(D5k(A)) 
= £>*(SUM(5£) • (1,1,1,1,1) + H5KI\A)) (mod 2A) 

s 2* • SUM(5Z) • (1,1,1,1,1) + £>*(A) (mod 2*) 

= DA(^) (mod2fc). 

Thus§(2i) = yfcandI(2i) = 15-2*-1. D 
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Piotr Z&rzycki 
Department of Mathematics, University of Gdansk 

It was pointed out by Professor Harvey L. Abbott that the statement in the Theorem from the 
paper is not true. The counterexample given by Professor Abbot is as follows: 

If g(l) = 1 and g(ri) = 2n for n>\, then L.C.M.(g(rri),g(n)) = g(L.C.M.(m,n)) for 
any m, n and G. C. D. (g(rn), g(h)) ^ g(G. C. D. (m, n)) for some m, n. 

The Theorem is true in a weaker form: 
If g is a multiplicity sequence and g is also quasi-multiplicative which means that 
g(m)g(n) = cg(mn) for any relatively prime m,n, then g is a strong divisibility 
sequence. 
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1. INTRODUCTION 

Let k and n be nonnegative Integers with n > 0 and let 

Sn(k) = \k+2k + -+rt. (1.1) 

Thus, Sn(0) = n9 S„(l) = tfn + l)/2, S„(2) = n(n + l)(2n + l)/6, and so forth. A well-known 
recurrence is 

k-l 

;=0 

It Is also known (and easy to prove) that 

z(5)^o)=(i+") f c - i (**i). 

2±(^2fjS„(2j) = (l+rifk-n*k-l (A>1), (1.2) 

2Y[fjt^Sn(2j + l) = (l+nfM-n
2M-l (k>l) (1.3) 

(see, e.g., [8, p. 160]). Howard [4] proved the following formula. For r = 0,1,..., 5.and n> 0, 
k>\: 

6 Z [ 6j + r J^(6-/ + r>= Z [ s . Jwr-X? (1.4) 

where w7- = w6+J- for j = 0, ± 1, ± 2,..., and the values of Wj for 7 = 0,1,..., 5 are given by 3, 2, 0, 
- 1 , 0, and 2, respectively. 

These formulas suggest there may be other simple recurrences involving only Sn(mj + r), 
where m, n, and r are fixed and 0<r<m-l. We call such formulas "lacunary," meaning they 
have lacunae, or gaps. That is, the value of Sn(mk +r) does not depend on all the previous Sn(J) 
(0< j <mk + r), but only on the terms Sn(mj + r) (0<j<k). 

In the present paper the main result is Theorem 3.1, which is a general lacunary recurrence 
for the sums S„(mj + r). After proving Theorem 3.1 in Section 3, we illustrate it by proving the 
following theorem for m = 4. 

Theorem 1.1: For k > 1 and r = 0,1,2,3, 

where the numbers Cj are determined by the following formulas: for j = 0,1,2,..., 

c4J=2(-4y-4, c4 y + 1=2(-4y-2, ' c4y+2=0, c4y+3 = -4(-4) ' - 2 . 
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After proving Theorem 1.1, we use it to compute Sn(5). One of the key ideas in all of these 
results is the generating function (ex -X)^9* -1) • • • (e6* x -1), where $ is any primitive nfi root 
of unity. This generating function, an interesting topic in its own right, is discussed in Section 2. 

We also prove similar formulas for the alternating sums 

T„(k) = 1* - 2 * +3* - - +(- l )w"V, (1.5) 

and, finally, we show how the results of this paper can be applied to the Bernoulli and Genocchi 
numbers. 

2. GENERATING FUNCTIONS 

Let 6 be a primitive m^ root of unity so that 9m - 1 and 6h *• 1 for 0 < h < m. For example, 
we could let 0 = e?*l/m. 

Define the numbers bj and Cj by means of the generating functions 
/ w - l oo j 

n ( ^ - l ) = (e*-l)(^-l)"Vm~*-l) = I*,7r, (2.1) 
u=0 j=0 J • 

and 
/ w - l co / 

* H ( ^ - l ) = X<7^. (2.2) 
u=l f=0 j \ 

Note that any primitive nfi root of unity can be used in (2.1) and (2.2). The numbers bj and c. 
depend on m, but the value of m will always be clear when we use this notation. Note also that 
b0 = 0 and for m = 1, we have Cjr = 1. 

If we replace x by —x in (2.2), we have 

£ i-iycj ±- = e^flie-8"31 -1) = U(ee"x -1) / [(-1)-V<1+**- +**~1>] 

/ W ~ l 

W = l 

This gives us another useful generating function for ci: 
/ w - l W - l oo I 

n(^'-i)=I(-i)m+y",<7^r- (2-3) 
M=I y=o 7 • 

From (2.1), (2.2), and (2.3), we have 
0 0 W / w - l / w - l / w - l 

s^7r=^n(^-i)=n(^-i)+n(^-i) 
y=o ./ • M=I M=O M=I £i + £(_ir,-ic.£i. 

•/ * 7=0 J ' 

(2.4) 

j=o J- y=o 

Thus, we have bj = (l + (-l)w+;)cy; that is, 

( 2c, if(m+j) is even, 
(2.5) 

0 i f(^+j) isodd. v } 
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To prove the main result of this section, Theorem 2.1, we need the following lemma. 

Lemma 2.1 (multisection of series): Let 6 be any primitive m^ root of unity (such as e27ti,m) 
and let F(x) - E£L0

 akxk f°r complex numbers ak. Then, for r = 0,1,..., m -1, 
oo .J m - l 
H^rXmJ+r =^T^m~J)rnOJx). (2.6) 

If z() is a complex number in the circle of convergence of F(x), we can replace x by zQ in 
(2.6). Multisection is discussed in [8, p. 131], and a proof of Lemma 2.1 is given in [3]. 

Theorem 2.1: Let 0 be a primitive m^ root of unity, and let bj be defined by (2.1). Then bj = 0 
unlessj is a multiple of m. Furthermore, if m is odd then ft. = 0 unless j is an £%&/ multiple of m. 

Proof: We take the logarithm of both sides of (2.1) to obtain 

\og{ex -1) + log(e* -1) + • • • + log^"1* -1) = log f > , 4 ' (2"7> 
;=0 i ! 

In (2.6), let F(x) = log(ex -1) and r - 0, and compare the left side of (2.7) with the right side of 
(2.6) to obtain 

y=0 ;=0 •/ • 

Applying the exponential function to (2.8), we have 

exp m 
\ 

Z<V*) = lbA- (29> 
y=0 J ;=0 J • 

We now compare coefficients of xJ on both sides of (2.9) and see that bj = 0 unlessy is a multiple 
of m. Now suppose m is odd. Replacing x by -x in (2.1), we have 

oo mj 

(e~* - l)(e-°* -1) • • • (e-*~ * -1) = L ( - l ) m % ^ y -

Thus, 
m - l m - l co v2m/" 

n«f--D+nc--o-*i'w^i- <2i°) 
M = 0 w=0 ; = 0 v • / / 

Now we observe that 
flor""* -1) = r j ( ^ - i)/[(-iy^1+f?+- ••+*""'>] = -fl(e -1)-

Thus, the left side of (2.10) is equal to 0 and, therefore, b2mJ = Q for j >0. This completes the 
proof. • 

Theorem 2.1 tells us that the generating function (2.1) could be written as: 
m - l oo mj 

u=Q j=0 ^ • ' '* 
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m-l oo w(2/+l) 

3. A GENERAL FORMULA 

We are now ready to prove our main result, a general lacunary recurrence for the sums 
Sn{mj+r). We will need the following generating function: 

F1(x) = ̂ ^ = ex+e2x + ...+e™ = 'ZSn(j)~ (3.1) 
e A j=Q J' 

Theorem 3.1: Let Sn(j), hj, and Cj be defined by (1.1), (2.1), and (2.2), respectively. Jfm is a 
positive integer, then, for r - 0,1,..., m -1: 

If m is odd and k > 1, then, for r = 0,1,..., 2m-1: 

Proof: Let -£J(x) be defined by (3.1). We multiply both sides of (2.1) by Fx(x) to obtain 

(^-iKn(^JC-i)=^wZ^i7r- (3.4) 

Recalling (2.2) and (2.11), we compare coefficients of xJ on both sides of (3.4) to derive (3.2) for 
m even or odd. 

If m is odd, then by (2.12) we can let k - j be odd in (3.2). We now consider the cases of k 
even and k odd to obtain (3.3). 

Case 1% k is even. In (3.2), since k - j is odd, replace k by 2k andj by 2j +1 to obtain 

r' + m+r) 

(3.5) 

1^({2k-l)m + (m+r)\ c / 0 • 
2 ^ 2tfy + (w + r) J V - i - 2 ; ) A l ^ i -

-^ + r + Y(2A- l )w + (m+r)^| 
iL I S \C{2k-l)m+{m+r)-iP • 
s=\ V ' 

2m(fc-l)+/w+r+l / 

If we let rf = (m + r) ;in (3.5), we get (3.3) with r replaced by r' and m<rf < 2m. 
Case 2: k is odd. In (3.2), replace k by 2&-1 and replace j by 2/ to obtain (3.3) with 

0<r <m. 

Combining the two cases gives us (3.3) with 0 < r < 2m. This completes the proof. • 

We illustrate Theorem 3.1 by proving formulas (1.2) and (1.3) and Theorem 1.1. 
Let m = 2. From definitions (2.1) and (2.2), we see that h2j+l = 0 and, for j > 0, h2j = -2 

and Cj = -l. Thus, 
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which is equivalent to (1.2) and (1.3). 
Formula (1.4) can be deduced from Theorem 3.1 by letting m = 3. 
To prove Theorem 1.1, we let m = 4 and 0 = /. The left side of 

7=0 J • 
can be written 

2 - 2ex - eix - e'ix - e(1+/>* - eil'i)x9 

so for y > 0, 
Cj = -2-iJ' -(-i)J + (l+iy +(l-iy. 

This gives us 

c4j = -4 + 2(-4y, c4J+l = -2 + 2(-4y? c4y+2 = 0, c4J+3 = - 2 - 4 ( - 4 y . (3.6) 

By (2.5) we have, for j > 1, 

b4J=2c4j = -% + 4(-4y. (3.7) 

For m = 4 and the values of Zr and cy given by (3.6) and (3.7), equation (3.2) gives Theorem 1.1. 
This completes the proof. D 

To illustrate Theorem 1.1, we compute Sn(S). In Theorem 1.1, let r = 1 and k = 2 to obtain 

Using (3.6) and the formula S„ (1) = n(n +1) / 2, we have 

We could easily keep going here and compute Sn(9), S„(13)9 and so on. 

4 ALTERNATING SUMS 

The methods of Sections 2 and 3 can be used just as easily on the alternating sums Tn(k) 
defined by (1.5). Let 6 be any primitive m^ root of unity, and define the numbers gj and hj by 
means of the generating functions 

m-l . oo / 

n(«^+i)=(«*+ix«to+i)-(«^x+i)=z«>iF. (4i> 
and 

exU(ee"X + l) = HhA- (4-2) 
11=1 ;'=0 J' 

Note that ĝ  and hj are functions of m. 
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Analogous to (2.3), and proved in the same way, is another generating function for hj: 
m-\ 

n(^+i)=i(-iy*yir- (4-3> 
H = 1 J=Q J' 

Equations (4.1), (4.2), and (4.3) give us the relationship hj = ±gj if/ is even. 
Theorems 4.1 and 4.2 are analogous to Theorems 2.1 and 3.1, and they are proved in exactly 

the same say. The following generating function is used in the proof of Theorem 4.2: 

F2(*) = { } * . - ^ - ^ + -+H)1+^-E^0)77- (4-4) 
e + 1 j=o J-

Theorem 4.1: Let 6 be a primitive rrfi root of unity and let gj be defined by (4.1). Then gj = 0 
unlessy is a multiple of m. Furthermore, if m is odd, then gj = 0 unlessy is an even multiple of m. 

Theorem 4.2: Let Tn(j) be defined by (1.5) and let gj and hj be defined by (4.1) and (4.2), 
respectively. If m is a positive integer, then, for r = 0,1,..., m -1, 

tf^tr)^-j>T>J + r) = H)"+1 I f [mk
s
+r)hmk+r_^ +hmk+r. (4.5) 

If m is odd, then, for r - 0,1,..., 2m -1, 

^(Im)+0^ ( t -^ 2 '" : r " ( 2 / W - 7 ' + r ) = ^ 1 >" + l 2 £ + r ( 2 , M ^ + r ) / i 2 m f c + ' ' -^ S +/^̂ -" (46) 

We note that, by (4.2), h0 = 27""1, so the right sides of (4.5) and (4.6) are polynomials in n of 
degrees mk + r and 2mk + r, respectively. We also note that g0 = 2m. 

For example, let m = 2 and 0 = - 1 . Then we have gQ = 4, g2j = 2 if/ > 0, /{, = 2, and fy = 1 
if 7 > 0. Theorem 4.2 gives us 

4Tn(2k+r) = -2Z(fjZy„(2j+r) + l + (-iy 

+(-ir1[T1(2V)"I+2"2fc+r}-
The following formula for m = 3, which is analogous to (1.4), was given in [4]. Let m = 3, 

let 0 be a primitive third root of unity, and let Wj be defined as in Section 1. Then, for n > 0 and 
£ > 0, with r and & not both 0, 

iTM+r) = Jfj^jlr^Tn(6j + r)+[\ + {-^rl]wr 
;=<T 

+ H r i { T 1 ( 6 * J
+ r ^ + 4w6*+r 

If #* = 4, we use Theorem 4.2 to prove the following new result. 
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Theorem 4.3: Let n > 0 and k > 0. Then, for r = 0,1,2,3, and r and k not both 0, 

16T„(4k +r) = -4]T {** +;}[(-4)*-' + 2] r„(4/+/•) + />4/fc+r 

+(-irl4zT4';>4^_x, 
where h0 = & and the numbers fy, except for h0, are determined by the following formulas: for 
7 = 0,1,2,..., 

h4J=2(-4f-h+4, h4J+l = 2(-4f-h+2, h4J+2 = 0, A4.+3 = -4(-4)^4-2. 

5, BERNOULLI AND GENOCCHI NUMBERS 

The methods of this paper can be applied to other special number sequences. For example, 
consider the Bernoulli numbers Bn defined by the generating function 

^zi=iBS (5.i) 
e i „=0 " . 

These numbers are well known and have been studied extensively (see, e.g., [7, ch. 2]). It is well 
known that B0 = 1, Bl = -}{, and B2k+l = 0 for k > 0. 

We can use the methods of this paper to derive the following general lacunary recurrence for 
the Bernoulli numbers. 

Theorem 5.1: Let Bn be defined by (5.1) and let h} and c. be defined by (2.1) and (2.2), respec-
tively. Ifm is a positive integer and k > 0, then, for r even, 0 < r < m, 

| J ^ + ; ) V / > A y + r = (mk+r)cmk+r_v 

Ifm is odd and k > 0, then, for r even, 0 < r < 2m, 

£ {2mf+F+ jb(2k-l-2j)m
B2mj+r = K2k " l)m + ' l C{2k-l)m+r-l' 

Proof: Multiply both sides of (2.1) by x I (ex -1) to obtain 

*fi(^-l) = ̂ I * , 4 (5-2) 
By (2.3) and (5.2) we have, for n > 0, 

The remainder of the proof is similar to the proof of Theorem 3.1. D 

Several writers, like Chellali [1], Lehmer [5], Ramanujan [7], and Riordan [8, pp. 136-40] 
have developed lacunary formulas for the Bernoulli numbers (see [2] for references). 
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Obviously, the methods of this paper can also be used on the Genocchi numbers Gn, which 
are defined by 

AX "̂"< f~i X 

Lacunary recurrences for the Genocchi numbers can be found in [2]. Incidentally, it is well 
known that the Genocchi numbers are integers and that G2j = 2(1 - 22j)B2J. 

As a final comment, we note that the numbers bj and gj of this paper are special cases of the 
generalized Bernoulli and Euler numbers of Norlund [6, pp. 142-43], which are defined by 

and 

(e°i* + l)(e^x +1) • • • (*"** +1) = £ 2^JCfm\a)l9..., mm) ^ - , 
y'=0 J' 

where col9..., com are arbitrary complex numbers. To the writer's knowledge, none of the proper-
ties of bn and gn developed in this paper were proved by Norlund. 
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1. INTRODUCTION 

In this article I present some partial answers to the open questions raised by Cooper and 
Kennedy in [1]. In that article the authors asked whether there exists a recurrence relation among 
powers xl

n, where xn represents the solution to a given recurrence relation. I answer this in the 
affirmative below, include a few details about the corresponding order, then indicate a way to 
calculate any such relation the reader might seek, and, finally, state.a few results from such 
calculations. 

An informal sketch of the proof and procedure runs as follows. Every solution to a recur-
rence relation can be expressed as a linear combination of powers of roots to the characteristic 
polynomial. The coefficients of the original recurrence relation are the elementary symmetric 
polynomials in these roots. Every power of a solution can be expressed as a linear combination of 
products of powers of these roots by using the general multinomial theorem. These products can 
be used as roots to form a new characteristic polynomial. On inspection, the coefficients of this 
new characteristic polynomial are symmetric in the roots of the old characteristic polynomial, and, 
therefore, can be expressed as polynomials in the elementary symmetric polynomials of the roots; 
that is, the coefficients of the new recurrence relation can be expressed in terms of the coeffi-
cients of the original characteristic polynomial There is a method for obtaining the expression, 
amounting to a multivariate version of the Euclidean algorithm. 

2. EXISTENCE 

Let xn = axxn_x + «2x»-2 + 9" + akxn-k ^e a liflear homogeneous recurrence relation with con-
stant coefficients {at \ i = 1,..., k) and of order k Let p(x) = xk - axxk~l - • • • - ak be the charac-
teristic polynomial for this relation. Let p(x) factor as p(x) = (x-rl)(x-r2)'"(x-rk) over the 
field of complex numbers and suppose that the roots are distinct. We can write the Binet closed 
form for xn as xn = Ap" + A^ + • • • + 4rf• The constants {Ai\i = l9...9k} are determined by the 
initial conditions specified in a particular solution to the recurrence relation. 

Let a = (ah al9 ...,#*) and fi = (J3l9 fi2>~;Pk) ^e t w o tuples . Define the symbol afi to 
be the product of all terms at raised to the pt power: 

Writing Xn = (A/C, Arf,..., Af£), A = (Ah 4 , . . . , Ak), and R = (r1? r2?..., rk), we see that Xa = 
Aa(Raf for each fc-tuple a. 

Recall the definition of the multinomial coefficient c(a) = (ax + ••• + ak)\/(al\... ak!). 
Introduce the indexing set Bt = {(*i,...,/*)! each ij is a nonnegative integer and ix +-> + ik = I}. 
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Theorem 1: If x„ = £ Arf, then xl
n = £ c(aMa(i?T . 

J = 1 aeZ?/ 

Proof: 
( k 

X1 = 
k v 

/=1 / aeB/ arei?/ V/=l 

by the general multinomial Theorem (see Hungerford [3, Th. 1.6, p. 118]). • 

Therefore, yn = xl
n is a linear combination of terms that are products of roots from the origi-

nal characteristic polynomial of total degree /, raised to the rfi1 power. Thus, yn is a solution to a 
recurrence relation. The next theorem tells us more. 

Theorem 2: The characteristic polynomial for the sequence yn can be written in terms of the 
coefficients of the characteristic polynomial p(x) for xn. 

Proof: The characteristic polynomial for yn is 

q(x) = ]J(x-Ra) GC[X] by Theorem 1. 
aeBi 

Consider some permutation cr:{rh ...,rk} -+ {rh ...,rk} ofthe roots of p(x). a can be decom-
posed into a product of transpositions [3, p. 48]. Each transposition interchanges two roots, say 
rm and rn. The effect of this transposition is to interchange the exponents from a = (iu...Jm>..., 
in,...,4) to a' - (ii,...,in9...,im,...,ijc) w^hin the indexing set Bt. Thus, each transposition repre-
sents a transposition of the elements of Bt because the conditions defining ^-tuples in Bt are 
unchanged by switching values positionally. The composition of transpositions that give a also 
describe a composition of transpositions in Bx. Thus, a gives rise to a permutation of Bx. Since 
the product for q(x) is formed over the entire set Bh this permutation leaves q(x) fixed. 

If we were to expand q(x) into its standard form, the coefficients would be polynomial 
expressions in the roots {r1? ...,rk). These coefficients are invariant under permutation ofthe 
roots and so are symmetric polynomials in the roots. Any such symmetric polynomial can be 
expressed as a polynomial in the elementary symmetric functions [2, p. 307]. 

Since these elementary symmetric polynomials are exactly the coefficients ofthe characteris-
tic polynomial p(x), the coefficients of q(x) can be written as expressions in the coefficients of 
p(x). • 

3. ORDER 

What is the order ofthe recurrence relation yn = xl
nl 

It should be the degree ofthe characteristic polynomial q(x). This degree is counted by the 
number of elements in Bx. Given a value of k, define S(k, 1) =\BX\ where, recall, Bt = {(/,...,ik)\ 
each ij is a nonnegative integer and ix + • • • +ik -1}. 

Theorem 3: S(k, I) obeys the relations: S(k, l) = k for all k, $(l, 1) = I for all /, and S(k91) = 
S(k -1,1) + S(k, I -1) for every k and /. 

Proof: Proceed inductively. 
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S(k91) represents the number of ways to define a ft-tuple of nonnegative integers that add to 
1. There are k ways to do this, corresponding to placing a 1 in any one of the k places in the k-
tuple and 0 everywhere else. 

S(t, I) represents the number of ways to have a 1-tuple of nonnegative integers that add to /. 
There is only one such way. 

Let a - (il9 ...,ik) be a generic element ofBt. Either ix = 0 or ix > 0. If ix = 0, then i2 + ••• + 
ik = /, and the number of possible ways to select such ij's is S(k -1, /) ; in other words, a sum of 
/ obtained with k-\ variables. If ix > 0, then we can subtract one from it to get (ix-1,...,ik) as 
an element of Bt_x that has S(k,l-l) elements. Therefore, the total number of possibilities is 
S(k-\I) + S(kJ-l). D 

Theorem 4: S(k, I) = i+k^Ck_l9 where tCj stands for the binomial coefficient i!/ [j\(i - j)!]. 

Proof: Substituting / = 1 gives /+fc_1Q_1 = kCk_x= k while substituting k = l gives /+it_1Q_1 = 
ICQ - 1. To check that the given binomial coefficient satisfies the recurrence relation, simplify 

i+{k-i)-\C{k-\)-\+ (/-i)+£-iQ-i - W - 2 Q - 2 + i+k-iCjt-i - i+k-i^k-i-

The binomial coefficient /+A:_1Q_1 satisfies the recurrence relation and the initial conditions. 
Therefore, it is the solution to this recurrence relation and, by Theorem 3, S(k, f) = i+k_xCk_v D 

This answer, an order of /+jt-iQ-i for yn9 represents the largest order sufficient to express yn 
as a recurrence relation. It is not the least order necessary. The reason for the discrepancy is that 
the various values for the products of powers of roots might not be distinguishable arithmetically, 
while in the above proof the various terms were distinguished symbolically. As an example, sup-
pose xn = ln + 2n + 3n + 6n with characteristic equation 

p(x) - (x - l)(x - 2)(x - 3)(x - 6). 

The process above indicates that a characteristic polynomial for yn - x\ would be 
q(x) = (x- l)(x - 2)(x - 3)(x - 6)(x - 4)(x - 6)(x - 12)(x - 9)(x - 18)(x - 36); 

However, we do not require a double root of 6, obtained on the one hand by r/4 - 1 * 6 = 6 and 
on the other hand by r2r3 = 2 * 3 = 6. 

We can obtain a sharp result if we assume that all the elements of a e Bx gives rise to a 
unique value for Ra. We would wish for some general criteria for determining whether all such 
values are distinct, without arithmetically checking all the possibilities. One such criterion would 
be the assumption that each root is an integer and each root is divisible by a different prime. 
Then, given an arithmetic value for a product of roots, we could identify the factors by determin-
ing the power of the corresponding prime unique to each root. This would determine the power 
of the root that comprises the overall product. 

4. GENERATING A RELATIONSHIP 

One starts with the order k of the recurrence relation for xn and one decides upon the power 
/ in yn - xl

n. Next, construct q(x) symbolically, and expand the expression algebraically to obtain 
the coefficients for q(x) as explicit symmetric polynomials. Finally, write these coefficients in 
terms of the elementary symmetric polynomials (see Cox [2, pp. 307-09] for more details). The 
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algorithm amounts to successively subtracting appropriate powers of the elementary symmetric 
polynomials. The powers are obtained by identifying the leading term of the symmetric expres-
sion, and using the powers of this monomial to determine powers for products of the elementary 
symmetric polynomials. 

Example: Let xn = Alx„_l + A2xn_2, which gives rise to the characteristic polynomial 

p(x)=(x-r1)(x-r2). 

Notice that Ax = rx+r2 and A2 - -rxr2. Let yn - x2, which has derived characteristic polynomial 

q(x) = (x - r2)(x - rf2)(x - r2). 

This expands to 
q(x) = x3 - (r2 + rxr2 + r2)x2 + (r3r2 + r2r2 + rxr2)x - r3r2, 

which leads to the recurrence relation 

yn = (n2 + Wi+^2)JVI - (^2 +riri+rfi)yn-2+rMyn-y 

Performing the algorithm indicated in Cox, Little, and O'Shea [2] gives 
(r2 +7ir2 + r2) = (rx +r2)2-rlr2 = A\ +A2, 

(r3r2 +r2r2 + r/3) = fa +r2f{rlr2)-r2r2 = -A^A2 - A2, 

rM = (m? = -A-
Consequently, 

yn = (A2 + 4 ) ^ + (A2A2 + A2)yn_2 - (A3)yn_3. • 

5. RESULTS 

Using the computer algebra system Maple® and the easier algorithm indicated in [2, pp. 309-
10] yielded the following results: If xn - axn_l +bxn_2 + cxn_3 and yn = x3

n, then 
10 

yn=Haiyn-i 

with 

ax = a3 + 2ba + c, 
a2 = H)3+ha4+3h2a2 + ca3 + 2cba, 
a3 = 3c3 + ca6 - 2b4a ~ b3a3 +1 lc2ba + leba4 + 5c2a3 +10cb2a2, 
a4 = -3cb3a3 + 4cb4a + 2c3a3 + 2c2b3 - cb2a5 + c2a6 - I3c3ba + c2ba4 - I3c2b2a2 - 3c4 - b\ 
a5 = cW - 4c4ba - lc3ba4 - 5c4a3 + 5c3b3 - c3a6 - cb6 + lc2b4a - cb5a2 + 8c W , 
a6 = -2c5a3 - c4a6 + c2b6 - 2c4b3 - 4c4ba4 - \3c4b2a2 - c3b4a + c2b5a2 - 3c3b3a3 - 3c6 - 13c V 
a7 = -c W + 2c5ba4 + c3b*> - lc4b4a + l O c W - 5c5b3 +1 lc6ba + 3c7, 
aB = -2cW + 2c7ba - b3c6 - c5b4a + 3a 2c6b2, 
a9 = 2csba + c9 -h3c7, and 
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If x„ = axn_x + hxn_2 + cxn_3 + dxn_4 and yn = x2, then 
10 

with 
ax = a2 + b, 
a2 =h2 + ba2 + ca+d, 
a3 = -b3 + ca3 + 2c2 + Acba, 
a4 - db2 + Adba2 + Sdca + 2d2 + da4 - c2b - cb2a + c2a2, 
a5 = dca3 - db2a2 - 2d2b + d2a2 - dc2 - 2db3 - c3a + c2b2, 
a6 = -c4 +dcb2Q-2d3-5d2ca-d2ha2 +4dc2b-dc2a2 ~d2b2, 
a7 = 4d2cba-dac3-2a2d3-d2b3, 
ag = ~d3b2 - cd3a -d4+ c2d\ 
a9=hd4-d3c2, and 

al0 = d\ 

6, FURTHER RESEARCH 

One of the assumptions throughout this article is that the roots {#j \i = 1,..., k} are all distinct. 
The next step in investigating this problem would be to allow for several repeated roots. Each of 
the roots rt could have a multiplicity kiy which would lead to a polynomial of degree (kf -1) in n 
as the coefficient of r" in the Binet form. These different polynomials would then combine in the 
multinomial theorem to form repeated roots of high degree. Tracing this argument through care-
fully might yield precise estimates for the order of the recurrence relation yn = xl

n. 
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1. INTRODUCTION 

In this paper we consider the generalized (2, F) sequences. They are introduced in [1] and 
[2], and some of their properties are studied in [1], [2], [5], [7], [8], and [9]. The generalized 
(2, F) sequences {*,•},*<) and (yj/lo a r e defined by their first two elements and two linear 
equalities: 

xQ=a, xx = b, y0 = c,y1 = d, 
xn+2 = axn+l +fiyn, yn+2 = yyn+l+Sxm 

for n>0. In [1] the following open problem is given: Find a closed form of xn and yn for 
arbitrary n, i.e., represent them as functions of n, a, b, c, d, a,fi,y, and 8. In [5] such functions 
are obtained. They have one of the following five forms: 

where pl9 p2,p3, and p4 are the roots (complex in the general case) of the equation 
p4 - (a + r)p2 + ayp-(38 = 0 

(the above five cases correspond to four simple roots, two simple roots and one double root, ..., 
two double roots, respectively) and Q, 1 < / < 8 are (complex) constants depending on a, b, c, d, 
and pj9 1 < J < 4. 

We shall give an alternative closed form for xn and yn. Our approach is fully combinatorial 
(it is based on an enumeration of weighted paths in an infinite graph) whereas the Georgieu-
Atanassov method is from linear algebra (it uses Jordan's factorization form of some matrix). 
More concretely, we shall prove the following. 

Theorem 1 (Main result): The equalities 

4p+q+r=n-4^ ^ J\ J 4p+q+r=n-Y^ ^ J\ J 

+ ' I (ptq)[p+r1)*9F¥Ysp+d I (ptq)(ptr)*P»Ys> 
4p+q+r=n-2y ¥ A J 4p+a+r=n-3^ ^ J\ f J 

and 

448 [NOV. 



A CLOSED FORM OF THE (2, F) GENERALIZATIONS OF THE FIBONACCI SEQUENCE 

4p+q+r=n-2^- ^ ^ ^ ' 4p+q+r=n~3^ ^ / V / 

•q+r=n-4 V y / \ / 4c+g+r=«-l V 

r/» + ? - l V p + r aqppyr8p 

4p+q+r=n-4 ^ * / \ / 4p+q+r 

hold for every « > 2, where all sums are taken for nonnegative integer values of/?, q, and r. 

2* PROOF OF THE MAIN RESULT 

Our basic construction is an infinite directed graph G = (V, E) with weighted edges: 
The set of vertices is V = {W} KJ {Xt \ i G Z>0} KJ {Yt \ i G Z>0} (here Z>0 denotes the set of non-

negative integers). The set of edges is E = ^ u ^ u ^ u ^ u ^ , where Ex - {(Xi9 Xt^\i > 2}, 
all edges from Ex have weight a and we shall call them edges of type A. Analogously, the set of 
edges of type 5 with weight /? is E2 = {(Xi9Yi_2)\i^2}9 the set of edges of type C with weight y 
is E3 = {(Yl9 Y^) | i > 2}, and the set of edges of type D with weight 6 is E4 = {(Yi9 Xt_2) | / > 2}. 
The last set E0 consists of the following four edges: (Xl9 W) with weight a, (XQ, W) with weight 
5, (Yl9 W) with weight c, and (J ,̂ W) with weight d. A graphical representation of G is given in 
the figure below. 

We define the weight of a path in G as the product of weights of its edges. For two arbitrary 
vertices vl9 v2 G V, vx * v2, we define the function co(yl9 v2) as the sum of the weights of all paths 
from vx to v2 in G; for vx = v2? we set co(vl9 v2) = 1. The following lemma shows the connection 
between function G? and sequences {*,}£<>> {yy}Jl0-

Lemma 1: m{Xh W) - xt and o?(IJ, Ff) = j / , hold for every i G Z>0. 

Proof: The proof is straightforward by induction on i. For i G {0,1}, we have 
&(XQy W) = a9 ®)(xh W)-b9 w(YQ, W) = c9 and a)(Yh W) = d. For i > 2, we observe that every 
path from Xf to If starts with the edge (Xi9Xt_{) or with the edge (Xf,Yf_2). Thus, 
G)(Xif W) = aa>(XHl, W) + fiatf^, W) = a x ^ + j0y,_2 - x,. The proof for ^ W) is similar. D 

We shall compute some values of the function co that we shall use further. 

Lemma 2: The following equalities hold for every i , ; e Z , i > j > 1 (all sums are taken for non-
negative integer values of/?, f, and r): 

a>(jr„jry) = 
4p+q+r=i-j 

aqppyrSp, 
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2. <o{YiJ})= £ (P+^l)(P^)a^YSp, 
4p+q+r=i-j^- ^ ' ^ ' 

3- ^,,1}) = I [Ptq)(Ptr)*fi>*YS>, 
4p+q+r=i-j-2^ ^ / V / 

4. a>(Yi,XJ) = X (Ptq)(Ptr)*fiprrS>t 
4p+q+r=i-j-2 

Proof: We shall prove case 1 only; the proofs of 2, 3, and 4 are similar. 
Let us consider the structure of an arbitrary path from Xt to Xy Edges of type B and D 

alternate, starting with an edge of type B and ending with an edge of type D. It is clear also that 
there are edges of type C only between neighboring pairs (B9 D) and there are edges of type A 
only between neighboring pairs (D, B) at the beginning and at the end. Therefore, the considered 
path has the form 

A... ABC...CD A... ABC...CD:.. A... ABC...CD A...A, 
<l\ r\ 4i h 9P

 r
P Vi 

where the number of edges of types B and D is p, the number of edges of type A is q = Zf^1 q^ 
and the number of edges of type C is r = Ef=i rk. It is known that the number of all nonnegative 
ordered p + l-tuples with sum q is (pqq) and the number of all nonnegative ordered p-tuples with 
sum r is [p+r

r~l). Since the tuples (q\,q2,--,cIp+i) and Q\9r29...9rp) are independent, we obtain 
that the total number of paths from Xt to Xj with q edges of type A9 p edges of type B9 r edges 
of type C, and/? edges of type D is {pqq){p+r

r~l). Their weight is aq(3pyr8p. Thus, we need all 
admissible values of/?, q9 and r to compute a>(Xi9 Xj). Since the difference between indices of 
the vertices adjacent to the edge of type B or D is 2 and the difference for the edges of type A or 
C is 1, we have that i-j = 4p + q+r. That is why we obtain 

4p+q+r=i-j^ ^ / V / 

where the sum is taken for nonnegative integer values of/?, q9 and r. D 
Now we are able to prove our main result (Theorem 1). 
Proof of the Main Result: Let us observe that the last edge of an arbitrary path from Xn to 

Wis (X09 W) or (Xl9 W) or (Y0, W) or (Yl9 W). Thus, 

Let us observe also that every path from Xn to X0 ends with edge (Y2, X0) and every path from 
Xn to Y0 ends with edge (X29 Y0). That is why 

The proof for j w is similar. • 

Finally, we mention that some other problems from [1]-[11] can also be solved using the 
described method. 
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1. INTRODUCTION 

For arbitrary integers a and b, Horadam [2] and [3] established the notation 

W„ = W„(a,b;p,q), (1.1) 
meaning that 

W^pW^-qW^W^^W^b, n>2. (1.2) 

The sequence {Wn}™=0 thus defined can be extended to negative integer subscripts by the use of 
(1.2), and with this understanding we write simply {Wn}. In this paper we assume that a, b, p, and 
q are arbitrary real numbers. 

By using the generating functions of {Fn+m}™=0 and {Ln+m}^ Hansen [1] obtained expansions 
for FjFkFh FjFkLh FjLkLh and LjLkLt. By following the same techniques, Serkland [5] pro-
duced similar expansions for the Pell and Pell-Lucas numbers defined by 

[P„ = W„(0,l;2,-l), 
[Q„ = W„(2,2;2,-l). ^ } 

Later Horadam [4] generalized the results of both these writers to the sequences 

(Un = Wn(0,l;p,-l), 
\V„ = W„(2,p;p,-l). • ) 

Define the sequences {Wn} and {Xn} by 

\W„ = W„(a,b;p,-l), 

Here we emphasize that Wn is as in (1.2) but with q = - 1 , and this is the case for the remainder of 
the paper. Since {Wn} generalizes {[/„}, then {Xn} generalizes {Vn} by virtue of the fact that 
Vn = Un+l + Un_x. The object of this paper is to generalize the results of Horadam, and so also of 
Serkland and of Hansen, by incorporating terms from the sequences {Wn} and {Xn} into the 
products. 

Since A = p2 + 4 ^ 0, the roots a and p of x2 - px -1 = 0 are distinct. Hence, the Binet form 
(see [2] and [3]) for Wn is 

w = Aa"-Bfi" 
a-p ' 

where A = b-aft and B = b-aa. It can also be shown that 

Xn = Aan + Bj3n. 
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2. SOME PRELIMINARY RESULTS 

We shall need the following, each of which can be proved with the use of Binet forms: 

i-iyu_n = -un, (2.i) 

(-VV.„=K, (2.2) 

Wn = Xn+x + Xn_x, (2.3) 

Wm+dWn_d -VmXn = (rl)»*%Xn_m_d, (2.4) 

Wm+dV„_d - UmX„ = (-irWdV„_m_d, (2.5) 

^ + ̂ - 1 ^ - 1 = ̂ - , , (2.6) 

^nVm+W„_lVm.l = Xn+m_l, (2.7) 

U„Xm + C/„_1Xm_1 = Xn+m_x, (2.8) 

XnVm + X^V^ = Xn+m + X„+m_2 = Afr„+m.,. (2.9) 

3 . THE M A I N RESULTS 

Using the Binet form for W„ we have, for m an integer and \x\ small, 

«=o «=o u p a py n=0 n=Q j 

1 (Aam Bfim)_ 1 ((Aam-B]3m)-a/3(Aam-l-B/3m-l)x^ 

J a-p\\-ox I-fix J a-fi{ (l-a*)(l-/&) 

Then, putting D = 1 - px - x2, we have 

I^+m*" = m ?rl • (3.i) 
«=o u 

Of course, in (3.1), we can replace {WJ by any of the sequences in this paper. In particular, with 
m = 1 and {WJ = {Un},(3.1) becomes 

i X i * " = 7J- (3-2) 

The following result, which is essential for what follows, can be proved with partial fractions 
techniques: 

(j + kx) (I + tx) __ jl + (jt + kl)x+ktx2 

D • D If ( 3 3 ) 

__ -kt (Jl + kt) + (Jt + kl - pki)x 
" D + D2 

N o w 
Um + Um_lX , Xs + Xs_lX = £ u^, £ x^n = £ ^jj^x^n (34) 

D -LJ M_n M _n M__n ,-_n ?i=0 w=0 w=0 J = 0 
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Alternatively, using (3.3), we have 

D D 

D D2 

Then, by using (2.8) and the recurrence relation (1.2), this becomes 
-Um-\Xs_i Xm+s_l + (Um_lXs-\-Um_2Xs_l)x 

,2 D D 

_~Um-\Xs-\ • X-m+s-l + ^m+s-2X _ (jj y \ 1 • ^m+s-l+ ^m+s-2X J_ 
D D2 Vm-iAs-0-D

+
 D D-

Now, by using (3.1) and (3.2), this in turn becomes 
oo oo oo 

oo » 

H=0 »=0 z=0 

H=OV 1=0 
-i+m+s-l 

J 

By equating the coefficients of x" in the last line and the right side of (3.4), we obtain 
n n 

2^ Uf+mXn-i+s ~ ~Un+lUm-lXs-i + J^i Ui+lXn_i+m+s_l. 
i=0. /=0 

Finally, putting j = m-l, k = w + l, and / = J - 1 , we get 

UjU^ - 2^ (Ui+lXJ+k+l_i - Uj+i+lXk+l_t). (3.5) 
i=0 

If we replace X by V, we see that this generalizes Horadam's Theorem 4, which contains a 
typographical error in one of the subscripts. 

In exactly the same manner, taking the product of 

D a n d D 
and using (2.6), we obtain 

WpkUl = E ( ^ + ; _ , t / , + 1 -^+/+1C/t+/_,)- (3.6) 
7=0 

This generalizes Horadam's Theorem 5. 
Again, taking the product of 

D
 and D 

and using (2.9) yields 
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Ujnx
l = Jf^UJ-,Wk+1+i+1-Vk+i+1XJ+l_i). (3.7) 

This generalizes Horadam's Theorem 6. 
Further, taking the product of 

Wm+W^x Vs+Vs_xx 
D a M ~T~ 

and using (2.7) leads to 

Wpy^YiU^Xj^-W^V^,). (3.8) 
j=0 

Making use of (3.7), we have 

vykxy = (u^+Uj.ov.Xt = uJ+ykxl+uJ_ykxl 

= Z ( A ^ + I ^ + / « + I - ^ + I ^ ^ + I ) + Z ( A ^ - I W * + / « + I - ^ « + I ^ / + / - / - I ) 
1=0 ;=0 

= f I (A^ + ; + , + 1 (C / ; _ , + i + UH_X)-Vk+i+1(XJ+l_M + X^.0) 

+ (W2Wk+l+J - Vk+J XM) + (AUW^ - Vk+J+1XM). 

We now use (2.4) and (2.2) to simplify the last two terms on the right side. Finally, recalling that 
Un+l + Un_l - Vn and using (2.3), we obtain 

•U^W^M,¥H-W^-yk^PW^-v (3-9) 
V <=o ) 

VjV.X, 

This generalizes Horadamfs Theorem 7, and is more concisely written. 
To obtain our final product, we write 

wJvkv, = wJ(!JM+uk_l)vl. 
Then proceeding in the same manner we use (3.8) and (2.5) to obtain 

W ^ A I ^ (3-10) 
V i=o ) 

Of course, in each summation identity, the parameter contained in the upper limit of summa-
tion must be chosen so that the sum is well defined. For example, in (3.10), we assume k>2. 

4. THE MAIN RESULTS SIMPLIFIED 

We have chosen to present the results (3.5)-(3.10) in the given manner in order to facilitate 
comparison with the results of Horadam, Serkland, and Hansen. We now demonstrate that they 
can be simplified considerably. 

By using Binet forms, it can be shown that 
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Uj+iXj+k+i-i - Uj+i+lXk+l_t - (-1)'UjXk+i_2i-i9 (4.1) 

Wj+k+i-iUi+l - WJ+i+lUk+i_j = (-iyWjUk+l_2i-i, (4.2) 

A£/;_,.^+/+,.+1 -Ffc+J+1Xy+/_,. = ( - i y + ' + , A f t + 2 / + w , (4.3) 

Uj+i-Xj+k+i-i ~ ^j^^k+i-i - (~ 1)' "y^+/-2/-i> (4-4) 

^+/+ /+1Fy_,. - ^ + / _ ,F , + , + 1 = (~iy+' X , t 4 + 2 ( + w , (4.5) 

^+i+/_,f/,+1 - ^+1+1C/fc+M = ("iy W ^ w - a - i - (4.6) 

Now, if we substitute the left side of (4.1) into (3.5) and replace k by j and /by k, we obtain 

^ ^ = Z ( - i y ^ - 2 , - i - (4.7) 
j=0 

In the same manner, we use (4.2)-(4.6) to simplify (3.6)-(3.10), which become, respectively, 

UjUt^ti-VUj+k-v-i* (4 8) 
/=0 

^ = i W y + i ^ + 2 / + w , (4.9) 

^=f(- iy^-2,- i . (4l°) 
7=0 

By noting that J^=0 f(i) = T"=0 f(n -i), we see that the right sides of (4.9) and (4.10) are 
identical. However, the right sides of (4.11) and (4.12) are different expressions which reduce to 
VjVt. 
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1. INTRODUCTION 

The elements of the sequences {Ak} obeying the second-order recurrence relation 
Jo, Ax arbitrary real numbers, and Ak = PAk_t - QAk_2 for k > 2 (1.1) 

are commonly referred to as generalized Lucas numbers with generating parameters P and Q 
(e.g., see [7], p. 41 ff.), and the equation 

x2-Px + Q = 0 (1.2) 

is usually called the characteristic equation of {Ak}. In what follows, the root 

aPtQ = (P + JP2-4Q)/2 (1.3) 

of (1.2) will be referred to as the a-value of {Ak}. Here, we shall confine ourselves to consider-
ing the well-known sequences {Ak} that have (4), A) = (2, P) or (0,1) as initial conditions, and 

(P, 0 = (m9 -1) or (1, -m) (m a natural number) (1.4) 

as generating parameters (e.g., see [2] and [3]). 
The aim of this note is to find the representation of the elements of these sequences in terms 

of their a-values. More precisely, we shall express Ak as 
00 

4fe = lLcraP,Q icr ~ ° o r mS(r)> s(r) nonnegative integers] (1.5) 
r=-oo 

with crcr+l = 0, and with at most finitely many nonzero cr. 
The special case m = 1, for which, depending on the initial conditions, Ak equals the k^ 

Lucas number Lk or the k^ Fibonacci number Fk, is perhaps the most interesting (see Section 4). 

2* REPRESENTING Vk(m) AN© Uk(m) 

If we let (P, 0 = (wi, -1) in (1.1)-(1.3), then we get the numbers Vk(m) and Uk(m) (e.g., see 
[2]). They are defined by the second-order recurrence relation 

Ak(m) = mA^im) + Ak_2(m) (2.1) 

(here A stands for either V or U) with initial conditions V0(m) = 2, Vl(m) = m, U0(m) = 0> and 
U^m) = 1. Their Binet forms are 

Vk{m) = ak
m + Pk

m and Uk(m) = (ak
m-/3kJ/Jm2+4, (2.2) 

where 
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am:=amf_l = (m + ̂ m2+4)/2 (2.3) 
is the a-value of (2.1) and 

@m = -Vam = m-am. (2.3 ^ 

Observe that Vk(l) = Lk and Uk(l}= i^;, whereas Vk(2)~Qk (the k^ Pell-Lucas number) and 
Uk(2) = Pk (the k^ Pell number) (e.g., see [5]). 

The a-representations of Vk(m) and Uk(m) are presented in Subsection 3.1 below and then 
proved in detail in Subsection 3.2. 

2.1 Results 
V2k(m) = cC+c% (k = 0A,2,.^. (2.4) 

Remark 1: For k = 0 the r.h.s. of (2.4) is correct but it is not the a-representation of VQ(rn). 
2k+l 

*W0») = I>ar2(fc+1) (k = 0,1,2,...), (2.5) 

t/at(i») = i i » a r 2 ( * + I ) (* = l,.2,3i...), • (2.6) 
r=l 

U2k+l(m) = a-^+tmat;-2k-1 (k = 0,1,2,...). (2.7) 
r=l 

Remark 2: Under the usual assumption that a sum vanishes whenever the upper range indicator 
is less than the lower one, (2.7) applies also for k = 0. 

2.2 Proofs 
The proof of (2.4) can be obtained trivially by using (2.2) and (2.3 % 
Proof of (2.5): Use the geometric series formula (g.s.f.) and (2.2)-(23r) to rewrite the r.h.s. 

of (2.5) as 

Proof of(2.6): Use the g.s.f. and (2.2)-(2.3') to rewrite the r.h.s. of (2.6) as 

mal-2k(aik -1) = majfg* - a^2k) = eg*1 ~ ^2k 

« 1 - 1 (oc2
m + l)(a2

m-\) a2
m + l 

= amKa a J = ^ ( ? w ) Q 

«mV'M + 4 

To prove (2.7), we need the identity 

aJJn(m)H-lTa-m
n = Un+l(^)- (2.8) 

Proof of (2.8): Use (2.2), (2.3% and the relation ^m2+4 = aw - ^ to rewrite the l.h.s. of 
(2.8) as 
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V^+4 V^4 Pm V ^ + 4 

= <^^) = c / n + i ( w ) . n 

Proof of (2.7): Use the g.s.f., (2.2)-(2.3 % and (2.8) to rewrite the r.h.s. of (2.7) as 

2k mc£"{d*-t) = 2k mam(rfr*-c£*) _2t a^2 - fl^* 
ai-1 - a " (^ + 1X^-1) " a - ai + 1 

2 / 2* __ ~-2fc\ 

aJm2+4 

3. REPRESENTING J ^ m ) AND Gft(m) 

If we let (P, Q) = (1, -J») in (1.1)-(1.3), then we get the numbers Hk(m) and GJ.(/M) (e.g., 
see [3]). They are defined by the second-order recurrence relation 

Ak(m) = Ak_1(m)+mAk_2(m) (3.1) 

(here A stands for H or G) with initial conditions H0(m) = 2, H^m) = G^tri) = 1, and G0(m) = 0. 
Their Binet forms are 

Hk(m) = rk
m + Sk

m and Gk(m) = (yk
m-Sk

m)lV^TT, (3.2) 

where 

ym:=al i_w = (l + V ^ + T ) / 2 (3.3) 

is the a-value of (3.1), and 
8m—nilym^\-ym. (3.3 0 

Observe that ^ ( 1 ) - F^(l) = Lk and G^l) = C4(l).= Fk, whereas 14(2) = jk (the ** Jacobs-
thai-Lucas number) and Gk(2) = Jk (the km Jacobsthal number) (see [6]). 

The a-representations of Hk(m) and Gk(m) are shown in Subsection 3.1 below. To save 
space, only identity (3.7) will be proved in detail in Subsection 3.2. 

3.1 Results 
H2k(m) = m2krl2k+rlk (* = 0,1,2,...; see Remark 1), (3.4) 

2£+l 
H2k+l(m) = ^ ^ Y I - 1 ^ (* = 0,1,2,...), (3.5) 

r=l 

G2k(m) = i£mW->-y:-W+» (k = 1,2,3,...), (3.6) 

Gz*+iO») = ̂ 2 V ; U + Z wf2(*_rVir"2*"1 (* = 0,1,2,...; see Remark 2). (3.7) 
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A Special Case (cf. (2.3) and (2.4) of [6]): For m = 2 (= y2)9 identities (3.4)-(3.7) reduce to 

H2k(2) = 4k + l = j 2 k , (3.4^) 
2k+l 

3*+i(2) = I 2r~l = 22M -1 = j2k+l (3.50 

G2fc(2) = £ 2 2 ^ ) = (4* - l ) / 3 = J2k, (3.6*) 

G2,+1(2) = l + t 2 2 ' - 1 = (22i+1
 + l ) /3 = y2,+1. (3.70 

3.2 A Proof 
To prove (3.7), we need the identity 

ymG„(m) + S"m = Gn+1(m). (3.8) 

Proof of(3.8): Use (3.2) and the relation V4/W + 1 = Ym~Sm to rewrite the l.h.s. of (3.8) as 

V4w+I w sf4m + i ^f4m + i "+lK }' 
Proof of (3.7): Use the g.s.f, (3.2)-(3.3f), and (3.8) to rewrite the r.h.s. of (3.7) as 

s=0 Ym'm ""1 
v2fr+3 _ m2fcv3-2fc v2/r+3 m2Arv3-2Ar 

= ^ - 2 * + Ym ™ Ym = rfk -2k Ym ~™ Ym 
Ym-m2 rm r2

m<J*i^i 

- m2kr-2k\YTl-m2V-2k __ 52k{YTlSlkYm 

= $lk+YmG2k(m) = G2k+l(m). Q 

4. A REMARKABLE CASE (m = 1) 

The p-expansion of any natural number N is the unique finite sum of distinct integral powers 
of the golden section a that equals N and contains no consecutive powers of a. This expansion 
was first studied by Bergman in [1] where the author used the symbol f5 instead of a to denote 
the golden section. 

As already mentioned in the previous sections, if we let m-\ in (2.1)-(2.3) [or in (3.1)-
(3.3)], then we get either the Lucas numbers Lk or the Fibonacci numbers Fk, depending on the 
initial conditions of the recurrence relation (2.1) [or (3.1)] whose a-value 

a :=a 1 = y1 = (l + V5')/2 (4.1) 
is the golden section. Consequently, if we let m- 1 in (1.5), then it is evident that cr e {0,1} so 
that letting m- 1 in (2.4)-(2.7) [or in (3.4)-(3.7)] yields the /^-expansions of Lk and Fk. As an 
illustration, from (2.5) [or (3.5)], we see that the /^-expansion of Lzk+i is 

Z^+1 = a~2k + a~2k+2 + • • • + a0 + - + a2k~2+a2k. (4.2) 
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Remark 3: By letting m = 1 In (2.4), one gets L^ = a~2k + a2k. This expression works correctly 
also for k = 0 but, in this case, It Is not the ^-expansion of Z ,̂ as stated In Remark 1. In fact, this 
expansion is ZQ = 2 = 2a~la = a~l(l + V5) = a~l(a + a~l +1) = a~l(a2 + a"1) = a"2 + a. 

5. CONCLUDING COMMENTS 

The representations established in this note for certain generalized Lucas numbers, besides 
being of some interest per se, allow us to derive some cute identities involving them. For exam-
ple, by using (2.5), (2.6), and (2.4), we get 

^^- = l + ±V2r(m), (5.1) 

U2k{m) = te V4r_2(m) (k even), 
"» j l + ££71)/2F4r(/«) (*odd), 

% ^ = 2* + l + f > F 4 t + 2 _ 2 > ) , (5.3) 
#r r=l 

whereas, from (3.5) and (3.4), we obtain 

H2k+1(m) = mk+YJmk-rH2r. (5.4) 
r=l 

The most interesting among the above identities is, perhaps, the identity (5.3) which, for 
m - 1, gives a rather unusual expression for the squares of odd-subscripted Lucas numbers. Let 
us give a sketch of its proof. 

Proof of (53) (a sketch): Use (2.5) and (2.4) to write 

= m\V4k(m) + 2V4k_2(m) + -' + 2kV2(m) + 2k + ll D 

Using the same technique led us to discover a quite amazing expression for the cubes of odd-
subscripted Lucas numbers. Namely, we get 

2k+l k-l 

^ + l = i % f c + 2 - 2 , + Z ( ^ - ' ' 2 ) A r + ^ (**1), (5-5) 

where Tk denotes the k^ triangular number and Sk = 3k(k +1) +1. A direct proof of (5.5) can be 
carried out by using expressions for S r La+hr, S r rLa+hr9 and Er f2La+hr, the last two of which can 
be obtained from the BInet form for Lucas numbers and (3.1)-(3.2) of [4]. 
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A NOTE ON A PAPER BY GLASER ANB SCHOFFL 
Florian Breuer 

Department of Mathematics, University of Stellenbosch, Stellenbosch 7600, South Africa 
(Submitted April 1997-Final Revision July 1997) 

1. INTRODUCTION 

Ducci sequences are sequences of integer n-tuples u0, ul3 ... generated by the relation uk+l = 
Duk9 where D(xhx2,...,xn) = (\xl~x2l\x2-x3l...,\xn--xl\). We say that u0 generates the 
Ducci sequence u0, ii1? ... . It has been shown (e.g., in [3]) that every Ducci sequence reduces to 
a sequence of binary tuples mk = (xh..., xn), where xf e{0,c} for all i and some constant c. As 
D(M) = XDu. for all X > 1, it is customary to assume c = 1. At this point it is obvious that every 
Ducci sequence eventually forms a cycle, called a Ducci cycle. 

Many aspects of Ducci sequences have been studied, such as the smallest k such that u^ is 
part of the Ducci cycle (this is also known as the "«»Number Game," see [4]). In this note we will 
only concern ourselves with the Ducci cycles themselves. We list some of the known results and 
conventions used in this note: 

1. For binary tuples, D becomes the linear operator D(x1? x2,..., xn) = (xl+x2, x2 + x3, 
..., xn + xx) (mod 2). 

2. If a0 = (0,0,..., 0,1), then the Ducci sequence a0, a1? ... is called the basic Ducci 
sequence and the resulting cycle the basic Ducci cycle. From now on, a^ will 
always denote a tuple in the basic Ducci sequence.. 

3. The period (also referred to as the length) of the basic Ducci cycle is denoted by 
P(n) and many properties of P(n) are given in [1] and [2]. When we speak of the 
period of a Ducci sequence, we actually mean the period of the Ducci cycle pro-
duced by that Ducci sequence. 

4. If n > 1 is odd and there exists an M such that 2M = -1 (mod ri), then n is said to be 
"with a - 1 " ; otherwise, n is said to be "without a - 1 " . This useful convention was 
introduced in [1] and used extensively in [2]. 

In this paper we generalize two of the results in [2]: first, we show how Pascal's triangle can 
be used to construct any tuple in the basic Ducci sequence; second, we determine, in general, the 
first tuple in the basic Ducci sequence that is part of the basic Ducci cycle. We also provide 
counter-examples of two other remarks in [2] concerning the number of Ducci cycles of maximum 
length and determine the cause for these errors (which do not, however, affect any other results in 
[2]). 

The author would like to thank Dr. A. B. van der Merwe for many stimulating discussions. 

2. USING PASCALS TRIANGLE TO CONSTRUCT MTCCI SEQUENCES 

Glaser and Schoffl described how Pascal's triangle can be used to find the first /i-tuples of the 
basic Ducci sequence. If we assume the convention that 
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(^) = 0ifr>korr<0, 

then this method can be expressed as the following theorem (Theorem 1 in [2]). 

Theorem 1: The r^ entry of &k is 

xr = [r +
 k

k_n)(mod2)ifk<n. 

We shall prove a more general result. 

Theorem 2: For all k > 0 the r* entry of a^ is 

/sr(mod«)v y 

Proof: From Theorem 1 we know that this is true for k < n. Assume it is also true for some 
k = p, so 

*= Z 
j s r (mod/i) 

i4-n) (m°d2)-
Let us denote the r* entry of ap by xr, and the r* entry of â +i by x'r. Now, if £ = /? +1, then 
we have two cases: If r < n, then we have 

xr - xr + xr+1 

(mod 2) 

if r = n, then we have 

isO <=*.+*= XAi4-«)+£\i4-»)(mod2) 

i+p-n) U + 1 +p-n =Z 
isO 

(mod 2) 

So, by induction, the theorem is true for all natural numbers k. D 

This result suggests that we can construct the basic Ducci sequence by wrapping Pascal's 
triangle (mod 2) around a cylinder of circumference n and adding (mod 2) those entries that over-
lap. We demonstrate this below for the first seven tuples of the basic Ducci sequence for n = 3. 
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0 
0 
0 
0 
0 
0 

1 

0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 1 0 
1 1 0 
0 1 0 

0 0 1 
0 1 1 
1 0 1 
1 1 l -> 
0 0 1 
0 1 1 
1 0 1 

"0 0 0" 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 

+ 

"0 0 0" 
0 0 0 
0 0 0 
0 0 1 
0 1 0 
1 1 0 
0 1 0 

+ 

"0 0 1] 
0 1 1 
1 0 1 
1 1 1 
0 0 1 
0 1 1 
1 0 lj 

giving 
0 0 1 
0 1 1 
1 0 1 
1 1 0 
0 1 1 
1 0 1 
1 1 0 

as the first seven 3-tuples in the basic Ducci sequence. 

X TWO COUNTER-EXAMPLES 

Just below their proof of Theorem 2 [2, p. 316], Glaser and Schoffl mention that for every n 
with a -1 there exists only one cycle of maximum length. This conclusion is false, as the counter-
example (1, 0, 0, 1, 0, 0, 0, 0, 0) demonstrates; this tuple is not part of the basic Ducci sequence 
(which has maximum length) but is part of another Ducci sequence that also has maximum length. 
(This can be checked by computer: w = 9 is with a -1 and JP(9) = 63. For values of P(n) for 
/i £165, see [1].) 

In Corollary 2 [2, p. 319], Glaser and Schoffl remark that for n = 2r-l ( r>2) there are 
exactly n different cycles of maximum length, namely, the n cyclic permutations of the basic Ducci 
cycle. Again, we offer a counter-example: (0, 1, 1, 1, 0, 0, 1) forms an 8th cycle of maximum 
length (shown below). 

0 1 
1 0 
1 0 
1 1 
0 1 
1 1 
0 0 
0 1 

1 
0 
1 
0 
0 
1 
1 
1 

1 
1 
1 
0 
1 
0 
0 
1 

0 
0 
1 
1 
1 
0 
1 
0 

0 1 
1 1 
0 0 
0 1 
1 0 
1 0 
1 1 
0 1 

The cycle given above is of maximum length as P(7) = 7. 
Both of these errors arise from the misconception that the cycles of maximum length are pre-

cisely the basic cycles, an assumption that may have been implicit in earlier papers. The errors did 
not influence any other results in [2]. 
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4. THE FIRST TUPLE OF A CYCLE 

Glaser and Schoffl mentioned that Ehrlich [1] was able to describe the first w-tuple in the 
basic Ducci cycle if n is odd, but that nothing was known about the case in which n is even. They 
solved this problem for the cases n = 2r + 2S and n = 2r -2\ r>s>0. 

We give the general solution here, but first we must recall a result of Ludington Furno [3]. 
Let n = 2rk, where k is odd. 

Definition 1: We say the w-tuple (x1? ..., xw) is r-even if 

f^x ^0(mod2X\/j = \...,T. 
i=0 

Let us count the number of w-tuples that are r-even. We can choose the first n - 2r entries 
arbitrarily, but the last 2r entries are then uniquely determined by previous entries in order for the 
tuple to be r-even, so we have a total of 2n~r r-even w-tuples. For example, if w = 6 = 21 • 3, then 
the first four entries can be arbitrary, but the last two entries must have specific values in order for 
the tuple to be 1-even. So we have a total of 24 = 16 1-even 6-tuples. 

Theorem 3 (Ludington Furno): An w-tuple is in a cycle if and only if it is r-even. 

From this, follows 

Theorem 4: a2r = (0,..., 0,1, 0,..., 0,1) is the first w-tuple in the basic Ducci cycle. 
2 r - l zeros 

Proof: Obviously, &r is r-even, so it is in a cycle. As it is the 2rth row in Pascal's triangle, it 
is in the basic Ducci cycle. To show that a, = (xl9..., x„) is not in a cycle for t < 2r, we need only 
note that xx = x2 = • • • = x T = 0; thus, 

7=0 

But S * 0 for at least one j ; therefore, ar is not r-even (therefore, not in a cycle) for t < 2r. D 

REFERENCES 

1. A. Ehrlich. "Periods in Ducci's w-Number Game of Differences." The Fibonacci Quarterly 
28,6 (1990):302-05. 

2. H. Glaser & G. Schoffl. "Ducci-Sequences and Pascal's Triangle." The Fibonacci Quarterly 
33.4 (1995):313-24. 

3. A. Ludington Fumo. "Cycles of Differences of Integers." J. Number Theory 13 (1981):255-
61. 

4. A. Ludington-Young. "Length of the w-Number Game." The Fibonacci Quarterly 28.3 
(1990):259-65. 

AMS Classification Numbers: 00A08, 11B37, 11B65 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to stan@mathpro.com on Internet. All 
correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+1+Fn> F0 =0> Fl = l ? 

^n+2 ~ Ai+1 + Ai> LQ = 2, L{ = 1. 

Also,a = (l + V5)/2, £ = ( l -V5)/2 , Fn ={an-f}n)l^m& Ln = an+(3\ 

The Fibonacci polynomials Fn(x) and the Lucas polynomials Ln(x) satisfy 

F„2(x) = xF„l(x) + Fn(x), F0(x) = 0, F1(x) = l; 
4+2(*) = *A*i(*)+A»(*X A>(*) = 2> A(*) = *-

Also, 
F^=aaZ-m and ux>aw+fiw> 

where a(x) = (x + Vx2 + 4) /2 and /?(x) = (x - Vx2 +4) /2 . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-860 Proposed by Herta T. Freitag, Roanoke, VA 
Let k be a positive integer. The sequence (AQ is defined by the recurrence An+2 = 2kAn+l-An 

for n > 0 with initial conditions AQ = 0 and A{ = \. Prove that (k2 - 1)A% +1 is a perfect square 
for all «>0 . 
B-861 Proposed by the editor 

The sequence w0,wl9w2,w3,w4,... satisfies the recurrence wn = Pwn_x-Qwn_2 for n> 1. If 
every term of the sequence is an integer, must P and Q both be integers? 
B-862 Proposed by Charles K Cook, University of South Carolina, Sumter, SC 

Find a Fibonacci number and a Lucas number whose sum is 114,628 and whose least 
common multiple is 567,451,586. 
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B-H63 Proposed by Stanley Rabinowitz, Westford, MA 
Let 

*-{£ .J) H-™ .1) c-(-» 0 - B=ft ")• 
and let w be a positive integer. Simplify 30A" - 24Bn - 5C" + Dn. 
B-864 Proposed by Stanley Rabinowitz, Westford, MA 

The sequence {Qn) is defined by Qn = 2Qn_x + Qn_2 for n > 1 with initial conditions Qo = 2 and 

(a) Show that Qln = Z„ (mod 159) for all n. 
(b) Find an integer m > 1 such that 2U„ = Ln (mod m) for all n. 
(c) Find an integer a such that Q*„ = Ln (mod 31) for all w. 
(d) Show that there is no integer a such that Qan = Ln (mod 7) for all n. 
(e) Extra credit: Find an integer m > 1 such that QL9„ = Ln (mod w) for all n. 

B-865 Proposed by Alexandru Lupas, University Lucian Blaga, Sibiu, Romania 
Let f(x) = (x2 + 4)n-1/2 where n is a positive integer. Let 

g(x) = - ^ ' 
Express g(l) in terms of Fibonacci and/or Lucas numbers. 

Note: The Elementary Problems Column is in need of more easy, yet elegant and non-
routine problems. 

SOLUTIONS 
See "Basic Formulas" at the beginning of this column for notation about Fibonacci and Lucas 

polynomials. 
It Repeats! 

B-843 Proposed by R Horace McNutt, Montreal, Canada 
(Vol 36, no. 1, February 1998) 

Find the last three digits of Ll99S(l 14). 

Solution by L. A. G. Dresel, Reading, England 
We note that when x = 114, x2+4 = 13000. From the recurrence for Ln{x), we have 

L0(x) = 2, Lx(x) = x, L2(x) = x2 + 2 = -2 (mod x2 + 4) so that L3(x) = -x , L4(x) = -x 2 - 2 = 2, 
and L5(x) = x (mod x2 +4). 

Hence? modulo 13000, the sequence Ln(l 14) is periodic with period 4, so that 
I1998(l 14) = 4(114) = -2 = 12998 (mod 13000). 

Therefore, the last three digits of Ll99g(l 14) are 998. 

Solutions also received by Brian D. Beasley, Paul S. Bruckman, Mario DeNobili, Aloysius 
Dorp, Russell Jay Mendel, Harris Kwong, H.-J. Seiffert, Indulis Strazdins, and the proposer. 
One incorrect solution was received 
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A Polynomial Identity 

B-844 Proposed by Mario DeNobili, Vaduz, Lichtenstein 
(Vol 36, no. 1, February 1998) 

Ifa + b is even and a > b, show that 
[Fa(x) + Fb(x)][Fa(x) - Fb(x)] = Fa+b(x)Fa_b(x). 

Solution 1 by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
Since a + b is even, a and b have the same parity, and a -b is also even. For brevity, we 

shall write a(x\ fi(x), Fa(x), and Fb(x) as a, fi, Fa, and Fb, respectively. It follows from 
afi = -l that 

(a~P)2(F2-F2) = (aa-paf-(ab -0>? 
= a2a-2(ap)a +p2a -\a2b-2(apf + / P ] 
= a2a+p2a-a2b-p2b. 

On the other hand, 
(a-P)2Fa+bFa_b = (aa+b-pa+b)(a"-b-pa-b) 

= a2a - (a/J)a-b(p2b + a2b) + p2a 

= a2a+01a_a2b_01b 

Therefore, Fa+bFa_b = F2 - F2 = [Fa + Fb][Fa - Fb\ 

Solution 2 by H.-J. Seiffert9 Berlin, Germany 
It is known ([1], p. 12, formula 3.26) that 

Fornix) - Flm(X) = F2n(X)F2m(X) 

for all integers m and n. If a + b is even, then a -b is also even. With n = (a + b)/2 and 
m = (a-b)/2, the above identity gives the desired one. 

Reference 
1. A. F. Horadam & Bro. J. M. Mahon. Tell and Pell-Lucas Polynomials." The Fibonacci 

Quarterly 23.1 (1985):7-20. 
Comment by the editor: No reader sent in any generalizations related to Lucas polynomials. If 
(vn) is the generalized Lucas sequence defined by the recurrence vn = Pvn_x- Qvn_2 with initial 
conditions v0 = 2 and vx = P, then one can investigate the expression 

(va+vb)(va~vb)-va+bva_b. 

Applying Algorithm LucasS impl i f y (from [1]), shows that this expression simplifies to 

Q-bma+b-Qav2
b-Qbv2

b). 
Thus, ifa + b is odd, a > b, and Q = - 1 , then we have 

(Va + Vb)(Va - Vb) - Va+bVa-b = Mr*)* • 

In particular, for the Lucas polynomials, we have P - x and Q = - 1 . This shows that if a + h is 
odd with a > b, then 

[La(x) + Lb(x)][La(x) - Lb(x)] = La+b(x)La_b(x) + 40-1)*. 

1998] 469 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Reference 
1. Stanley Rabinowitz. "Algorithmic Manipulation of Fibonacci Identities." In Applications of 

Fibonacci Numbers 6:389-408. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996. 
Solutions also received by Brian D. Beasley, Paul S. Bruckman, Leonard A. G. Dresel, Steve 
Edwards, Russell Euler & Jawad Sadek, Russell Jay Mendel, Harris Kwong, Gene Ward 
Smith, Lawrence Somer, Indulis Strazdins, and the proposer. 

Curious Commuting Composition 

B-845 Proposed by Gene Ward Smith, Brunswick, ME 
(Vol 36, no. 1, February 1998) 

Show that, if m and n are odd positive integers, then Ln(Lm(x)) = Lm(Ln(x)). 

Solution 1 by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
Given x, choose 0 - 0{x) such that x = 2/ sin 0. Then Vx2 + 4 - 2 cos0, hence 

a(x) = cos0 + isin0 and /?(x) = -(cos0-?sin$). 

Consequently, for any odd positive integer w, we have 
Ln{x) = (co$n0 + i sinn0) - (cosn0-i sinn0) = 2/ sin n0. 

In other words, 0(Ln(x)) = n0(x). It follows immediately that if rn and n are odd positive inte-
gers, then Lm(Ln(x)) = 2/ sinmn0(x) = Ln{Lm{x)). 

Solution 2 by Indulis Strazdins, Riga, Latvia 
Put y - Lm(x) in the basic equality 

Ln(y) = yLn-i(y)+Ln-2(y) 
to get 

L„(Lm(x)) = ZJ„(x)Z^1(^(x)) + L„_2(Lm(x)). 

It is easily proved by induction that 
Lnm{x) = Lm(x)L{n_l)m(x) + {-\T-lL{n_2)m(x) 

so, if m is odd, we have 
L„(Lm{x)) = L„m{x). 

From this it follows that if m and n are both odd, then 
L„(Lm(x)) = Lm(Ln(x)) = Lnm(x). 

Comment by L. A. G. Dresel, Reading, England: Di Porto and Filipponi (see [1], p. 221) have 
proven the following Lemma: 

If m and n are integers with m odd, then Ln{Lm{x)) = Lnm{x). 

Ifm and n are both odd, then the desired result follows. 

Reference 
1. A. Di Porto & P. Filipponi. "A Probabilistic Primality Test Based on the Properties of Cer-

tain Generalized Lucas Numbers." Lecture Notes in Computer Science 330 (1988):211-23. 
No reader submitted any related results for compositions of Fibonacci polynomials. 
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Solutions also received by Paul & Bruckman, Leonard A, G. Dresel, Russell Euler & Jawad 
Sadeks R. Horace McNutt, H*-J« Seiffert, and the proposer. 

Integer Sum 

B-846 Proposed by Hero Filippomi, Fond U. Bordoni^ Rome, Italy 
(Vol 36, no. 1, February 1998) 

Show that 
5 F„(40k + 1) 

5 Fn(40k + l) 

z 
n=l 

Is an Integer for all integral k. Generalize. 
Solution by Gene Ward Smith, Brunswick, ME 

The sum In question, 

Is a polynomial of degree 4, namely, 

(64000ifc4 4- 144Q0JS:3 • +1760*2 + 135A: 4- 6) / 3. 

Writing this in terms of binomial coefficients gives us 

2 + 26765^1 + 328640f2] + 796800( ^1 + 512000^ 

which has Integer coefficients. The polynomial therefore is Integer-valued for Integer values oik. 
Alternatively, we may factor 

64000A4 + 1440CM:3 +1760*2 +135* + 6, 

modulo 3, and obtain k2(k + l)(k +2), from which it follows that 3 Is a divisor for any Integer k9 

so that the initial polynomial Is Integer-valued. 
We may generalize In various ways, most obviously by considering Instead 

for various values of a, b, and r. In this way we may, for Instance, similarly prove that 

is Integral., 

Bruckman and Seiffert showed that ELi^fF is an integer if and only if x = 1 or 9 (mod 40). 
Bruckman showed that SJLi •^yp is never an integer if n = 3 or 4. The proposed stated that ifk is 
a positive odd integer, then Trn=i~JL^-1 is an integer if and only if x = 1 or 9 (mod 40); but he did 
not include a proof 

Solutions also received by Paul S. Bruckman andH.-J. Seiffert. 
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Polynomial GCD 

B-847 Proposed by Gene Ward Smith, Brunswick, ME 
(Vol 36, no. 1, February 1998) 

Find the greatest common polynomial divisor of Fn+4k(x) +Fn(x) and Fn+4k_x(x) + Fn_l(x). 
Solution by Paul S. Bruckman, Highland, IL 

Let d - d{x) - V J ? + 4 . For brevity, write a(x) as a and (}{x) as /?. Note that aj3 = -l. 
Then 

i7 , N i7 r^ an+4k-fl"+4k an-/3n 

Fn+4k(X) + Fn(t) = J^ + / 

a a 
„2k , o2k ^Ik . o2k 

d P d 
~,n+2k nn+2k 

= «—zE (a2k+p2k) 
d 

= F
n+2k(X)L2k(Xl 

Replacing n by n - 1, we find that 

If g is the desired gcd of the two given expressions, then g = ^(x) gcd(Fn+2k(x\ Fn_l+2k(x)). 
Given any integer w, if d is the gcd of Fu(x) and Fu_l(x)9 then by the recurrence relation, d 

is a common divisor of F{(x) - 1 and F2(x) = x. Thus, d = gcd(Fn+2k(x), Fn_l+2k(x)) - 1 and 
g = L2k(x). 

Solutions also received by Leonard A. G. Dresel, H.-J. Seiffert, Indulis Strazdins, and the 
proposer. 

Addenda. We wish to belatedly acknowledge solutions from the following solvers: 
Brian Beasley—B-842 
Glenn A. Bookhout—B-784 
Andrej Dujella—B-772 through B-777 
Steve Edwards—B-837, B-840, B-842 
Russell Euler—B-788 
Herta Freitag—B-791, B-793 
Hans Kappus—B-784 through B-786 
Carl Libis—B-784, B-785 
Graham Lord—B-784, B-785 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-545 Proposed by Paul S. Bruckman, Highwood, IL 
Prove that for all odd primes p, 

(a) fiLk-k-l
s=§-(Lp-l) (modp); (b) I ^ - r ^ O (mod/?). 

fc=l F k=l 

H-546 Proposed by R. Andre-Jeannin, Longwy, France 
Find the triangular Mersenne numbers (the sequence of Mersenne numbers is defined by 

Mn = 2"-1). 
SOLUTIONS 

A Prime Problem 

H-528 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 35, no. 2, May 1997) 

Let 0(«) = E^nn e, given the prime decomposition of a natural number n - Upe. Prove the 
following: 

I(-l)Q(rf) 'Wo(cO = 0; (A) 
d\n 

j:(-l)Qid)LQ{nld)_a{d) =2Un, where Un = ftF^. (B) 
d\n p*\\n 

Solution by H.-J. Seiffert, Berlin, Germany 
Define the Fibonacci and Lucas polynomials by 

F0(x) = 0, Fx(x) = l, Fn+1(x) = xF„(x) + F„_1(x), n<=Z, 

L0(x) = 2, Ll(x) = x, L„+l(x) = xL„(x) + L„_l(x), neZ, 

respectively. We shall prove that for all complex numbers x and all positive integers n, 

IC-O^iWcwW-O; (A) 
d\n 

£(-i)n ( d )£w-o(,)(*) = 2.n^i(*); (B) 
d\n pe\\n 
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2̂ 2Q(w/<0-2Q(</)(X) ~2X afn I ±F2e+2(x)9 (C) 
d\n pe\\n 

where a)(n) denotes the number of distinct prime factors of n. 
The desired identities (A) and (B) are obtained from (A!) and (B*), respectively, by taking 

x = l. 
We need the following known equations [see A. F. Horadam & Bro. J. M. Mahon, "Pell and 

Pell-Lucas Polynomials, The Fibonacci Quarterly 23.1 (1985):7-20, equations (2.1), (3.23), and 
(325)], 

LJ(x) = FJ_l(x) + FJ+1(x),jeZ, (1) 

Lj+k(x) + (-lfLJ_k(x) = LJ(x)Lk(x), j,keZ, (2) 

and the easily verified relations, 

L_J(x) = (-iyLJ(x) and F_J(x) = (-iy-lFJ(x), j eZ. 

Proposition: For all nonnegative integers m and e, we have 
m-l 

X (-iy'4-2; w - Fe+l (x) - ( - i r ^ . ^ (x). 
Proof: This is true for #i = 0 (empty sums have the value zero). Suppose that the equation 

holds for m,fneNQ (whole numbers). Then 
m m-l 

X (- iy Le_y(x) = X (-l)JLe_2j(x) + (-l)mLe_2m(x) 
j=0 j=0 

= Fe+l(x) - (-l)m-e
JP2m_e_1(x) + {-\TLe_2m(x) 

= Fe+1(x) - ( - i r » - {Llm_e{x) - F2m_U*)) 
= Fe+l(x)-{-ir'-eF2m_e+l(x), 

where we have used (1). This completes the induction proof. Q.E.D. 

Corollary: For all nonnegative integers e, we have 

±(-iyLe_y(x) = 2Fe+l(x). 

Proof: Take m = e + l in the equation of the Proposition. Q.E.D. 

Now we are able to prove the desired identities. We note that if d runs through all positive 
divisors of w, so does nld. Hence, if S(n) denotes the left side of (A% then 

S(n) = I(-l)Q(n/<%rf)-n(n/<o(*) = - I ( - l ) n 0 % ^ ) - ^ ) ( * ) = Si"), 
d\n d\n 

ot$(n) = 0. This proves (A% 

The proof of (B*) is more interesting. Let T(n) denote the left side of (B*). If n - pe is a 
prime power, then by the identity of the above Corollary, 
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T(n) = T(p') = X(-iy'4-2,-(*) - 2Fe+1(x). 
/ = 0 

Thus, (B') holds for all prime powers n. The proof of (B1) is completed by showing that the func-
tion f:N->C defined by f(n) = T(n)12, n GN, is multiplicative. Let m and n be coprime 
natural numbers. If c | m and d \ «, then 

and 

so that by (2), 

(-l)Q(cd)L^hQ(cd)(x) + ( - 1 ) ^ ]LQ{fd)_Qh )(x) = ( - l ) ^ > H ) ^ ^ ? ^ c ) ( x ) ^ 

Summing over all positive divisors c of wi and d of w, we obtain the claimed equation: 
f(mri) = f(m)f(n). 

This completes the proof of (6% 

The desired identity (C1) easily follows from (B') when we replace x by i(x2+2), where 
/ = y/(-l), and use the known relations 

LJ(i(x2
+2)) = PL2J(x) 

and 

FJGtf+2)) = i'-lF2J(x)/x,jeZ. 

Let us look at what we get from (B) if we set x = 2/.. Now, since 1^(2/) = 2iJ and i^(2i) = 
jiJ~l, j eZ , (B1) gives, after some simplification, 

^)=zi=n^+i), 
where r(w) denotes the number of positive divisors of n. This is a well-known identity from 
Analytic Number Theory. 
Also solved by the proposer. 

Triple Play 

B-529 Proposed by Paul & Bruckman, Highwood, IL 
(Vol 35, no. 3f August 1997) 

Let p denote the set of Pythagorean triples (a, b, c) such that a2+h2 =^c2. Find all pairs of 
integers m,n>0 such that (a, A, c) = (FmFn, FmHFnU, Fm+2Fn+l) ep. 

Solution, by JL A. G Breself Readings England 
Let a = FmFn, b = Fm+1Fn+2, c = Fm+2Fn+v We shall prove that there is only one such Pythag-

orean triple with #w,« > 0, namely m = 3,n = 6, giving a = 16,b = 63,c = 65. We use the identity 
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SFJ^^L^-i-lTL^, so that 5c = Ln+m+^{-\T+lLn_m_x and 5b = Ln+m,3-(-ir+lL„_m+l. 
Hence, 5(c+h) = 2Ln+m+3-(-ir+lL„_m and (c-h) = (-ir+lF„_m. Since Ft and FM have no 
common factor, it follows that a, b, and c have no common factor, and the Pythagorean triples 
must take the form 2uv, u2-v2, #2+v2, where u>v>0, have no common factor; hence, c is 
odd, while just one of a and b is even. We now consider these two cases in turn. 

Case A. Let a = 2uv, then b and c wee odd, and we have 3\m and 31n, while c-b- 2v2 gives 
(-l)m+lFn_m = 2v2. Using a result proved by J. H. E. Cohn in [1], this implies that \n-m\=0 or 
6. We can reject n = rn, since this gives b-c and a - 0. Taking |«-JW| = 3, we have F±3 = 2 and 
v = 1, so that m must be odd. Furthermore, we have 5(c + b) = I0u2. Hence, if n = nt + 3, then 
10«2 = 2(I^(m+3)-2) = 10(Fm+3)2 gives u = Fm+3; if n = i» -3 , then 10«2 = 2(^ m + 2) = 10(FJ2 

gives w = i^,, since w is odd. Also, a = 2uv -2u- 2Fm+3 or 2Fn+3. But we also have a = i v ^ ; 
therefore, the smaller factor must be J^ = 2, and this must be Fm, since w is odd. Hence, m - 3 
and w = 6 is the only solution when \n - m| = 3. 

Next, take \n-tn\ = 6, so that 2v2 = (—l)WH_1î _Wf = 8. If n-rn = 6, m must be odd, and we 
obtain 1 Ou2 - 2(Z2;w+9 - 9 ) ; then, since 3\m, 2m + 9 is an odd multiple of 3, and 41 L2m+9. There-
fore, 5u2 = u2 = -1 (mod 4), which shows that there are no solutions in this case. 

Finally, ifn-rn = -6,m must be even, and we have 6\m and 6|w, so that F6\Fm and F6\Fn9 

making FmFn divisible by 64. But we have 2v2 = 8, giving v = 2, so that a = 2uv = 4u, where i/ is 
odd, since (u, v) = 1. Hence, it is not possible to satisfy a = FmFn if n - m = - 6 . 

Case B, Now, if 6 = 2wv, then c-b = u2+v2-2uv = (u-v)2, so that ( - l ) ^ 1 ^ ^ = (u-vf. It 
was also proved by J. H. E. Cohn in [1] that this implies \n-m\ = 0,1,2, or 12. But since a and c 
are odd, we must have both 31 (m +1) and 31 (n + 2). This implies 31 (w - m +1), which rules out 
|w - JW| = 0 and 12, and we are left with (~l)m+lFn_m = 1. We then find that m must be odd, of the 
form m = 6t - 1 (with t > 1), while the corresponding n can be either n = 6t + l or n = 6t - 2. But 
c - 6 = 1, so that a2 - c2 -b2 =c + b. Since a = /^v,, this gives 

(Z,m + 2)(Z2„ ± 2) = 5{2Z„+m+3 - (-1F+ I4_m}. 

Approximating by putting Lr = ar and ignoring terms that are small compared to Lr, we obtain 
a2(m+n) _ ioaw+m+3 approximately, and since a5 > 11, our equation gives a ^ " < 11a3 < a8. But 
the smallest pair of values for m and n is given above as m - 5 and w = 4, giving rn + n = 9. This 
gives a contradiction, and proves that there are no acceptable solutions in Case B. 
Reference 
1. J. H. E. Cohn. " Square Fibonacci Numbers, etc." The Fibonacci Quarterly 2,2 (1964): 109-13. 
Also solved by H.-J. Seiffert, I Strazdins, and the proposer. 

Some Period 

H-530 Proposed by Andre] Dujella, University of Zagreb, Croatia 
(Vol 35, no. 3, August 1997) 

Let k(n) be the period of a sequence of Fibonacci numbers {î } modulo n. Prove that 
k(n) < 6n for any positive integer n. Find all positive integers n such that k(n) - 6n. 
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Solution by PaulS. Bruckman, Highwood, IL 
For the first part of the problem, it suffices to prove the following lemma. 

Lemma 1: For all odd n, k(ri) < 4n. 

Of course, k(l) = 1, hence the result is trivially true for n - 1. If n > 1 is odd, let Ke denote 
k{2en), Ne = 2en, k = k(n), and Re = Ke/Ne. Assuming the result of Lemma 1, Kx = LCM(3, *) 
<3k, hence Rl<3kl2n<6, Next, K2 = LCM(6,k)<6k, hence R^ <6k/4n<6. Next, K3 = 
LCM(6,£)<6£, hence R3<6k/Sn<3. Finally, if e>4, Z, = LCM(3-2e"1, *) ^ 3 * - 2 ^ , hence 
Re<3k/2n<6. Thus, the result of Lemma 1 implies that k{n)<6n for all « > 1 ; it therefore 
suffices to prove Lemma 1. 

Proof of Lemma 1: We first assume that gcd(/i, 10) = 1. The following results are well 
known for all primes p & 2,5: A(w) is even for all n > 2; &(/?) | (p -1) if (5 / p) - 1, k(p) | (2/? + 2) 
if(5/p) = -l. Also, k(p°) = pe-'k(p) for some/with l < / < e . Therefore, if (5//?) = l, *(/?') = 
2pe~t(p -1) / 2a for some integer a, while if (5 / p) = - 1 , £(pe) = 4pe~* (p +1) / 2a for some inte-
ger a. If n = JJpe, k(n) = LCM{k(pe)}. We then see that k{n)<4Ilpelnpe~\p + l)l2. Then 
t(w)/w^4np |B(p + l)/2/?<4, since (p + X)l2p<\ for all/?. 

On the other hand, if we assume that n - 5e, then Z(n) = n and k(n) = 4n. Ifn = 5em, where 
gcd(w, 10) = 1, then k(n) = LCM(k(5e), k(m)) = LCM(4 • 5e, k(m)) < 4n. This proves Lemma 1. 
In conjunction with our earlier discussion, it follows that k(n) < 6n for all n. 

From. Lemma 1 and the earlier discussion, it is seen that the upper bound of 6n is possibly 
reached only if n - 2aSh for some integers a and b. Note that 

k(2 • 5*) = LCM(3,4 • 5b) = 12 • 5b = 6n. 

Next, 
^(4-56) = ̂ (8 = 5^)=:LCM(6,4'56) = 12-56 = 3/i or 3nl2<6n. 

Finally, if a > 4 , 
k{n) = LCM(3-2^, 4-56) = 3-2a_1 -5b = 3n/2< 6n. 

Thus, k(n) = 6n if and only if n = 2-5*, b = 1,2,.... 

/4&0 solved by IX Bloom, L. Dresel, and the proposer, 

A Rational Decision 

H-531 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 35, no. 3, August 1997) 

Consider the sum S = X ^ ( « ) / w 2 , where t(l) = l and t(n) = Iip]n(l-p~2)~\ n>ly the 
product taken over all prime/? dividing n. Evaluate S and show that it is rational. 

Solution byH.-J. Seiffert, Berlin, Germany 
We need the following results. 

Theorem 1: If / : JV-» C is a multiplicative function such that T^=if(n)/ns converges abso-
lutely for a - Re(s) > aQ, then 
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for cr>o-0? 
n=\ p 

where the product is over all primes/?. 

Proof: See ([1], pp. 230-31). 

Theorem 2: For a > 1, we have 

n0- />~ ' ) = !/«*) ^d Y[{\+p-) = as)ia2s\ 
• p p 

where £ denotes the Riemann Zeta function. 

Proof: See ([1], p. 231). 

Let Sk^irn=ltk(n)lnk,k&C,^{k)>\, where tk(\) = \ and tk(n) = II pl„(l-p~kyl for 
«>1.. Clearly, tk is a multiplicative function. Since tk(pJ) = (l-p~k)~l for all j e TV and all 
primes /?, we have 

oo 

£ fk (//) / //* = /T* (1 - /T* )~2 for all primes /?, 

where we have used the closed form expression for infinite geometric sums. Using 

l+^o-p-^-^o-^rHi-^r'o+p-3*). 
it follows from Theorems 1 and 2 that 

^ = £(Jfc)£(2*)£(3;fc) / £(6k), keC, Re(£) > 1. (1) 
Since ([1], p. 266) 

2(2/)! 
where the 5's are the Bernoulli numbers defined by ([1], p. 265, or [2], p. 9) 

5 = 1 and 4 = £ H B r , «<=#,«>2, 
r=Q\ J 

from (1) we obtain 

s - (12.7)! B2jB4jB6] 

^-4(2j)K4j)K6j)\ BUj >JSN> ( 2 ) 

showing that S2J, j e TV, is a rational number. Using the values ([2], p. 10) B2 =±, B4 = ~, 
B6 = -fi9 and Bn = ^ff£, from (2) it is easily calculated that S = S2 = | ^ | . This solves the present 
proposal. 

References 
1. T.M. Apostol. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976. 
2. H. Rademacher. Topics in Analytic Number Theory. New York: Springer-Verlag, 1973. 
Also solved by K. Lau, and the proposer, 

a2j) = (-iy+l^L;Bv,JGN, 

• ! • • ! • • > 
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