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HARMONIC SEEDS
G. L. Cohen and R. M. Sorli

School of Mathematical Sciences, University of Technology, Sydney
PO Box 123, Broadway, NSW 2007, Australia
(Submitted December 1996)

1. INTRODUCTION

Harmonic numbers were introduced by Ore [6] in 1948, though not under that name. A
natural number » is harmonic if the harmonic mean of its positive divisors is an integer.
Equivalently, » is harmonic if H(n) is an integer, where

nt(n)
o(n)’

H(n)=

and 7(7), o(n), respectively, are the number of and sum of the positive divisors of ».

Ore listed all harmonic numbers up to 10°, and this list was extended by Garcia [3] to 107 and
by Cohen [2] to 2-10°. The second author of this paper has continued the list up to 10'°. In all
of these cases, straightforward direct searches were used. No odd harmonic numbers have been
found, giving the main interest to the topic since all perfect numbers are easily shown to be
harmonic. If it could be proved that there are no odd harmonic numbers, then it would follow
that there are no odd perfect numbers.

A number might be labeled also as arithmetic or geometric if the arithmetic mean, or geo-
metric mean, respectively, of its positive divisors were an integer. Most harmonic numbers, but
not all, appear to be also arithmetic (see Cohen [2]). It is easy to see that the set of geometric
numbers is in fact simply the set of perfect squares, and it is of interest, according to Guy [4], that
no harmonic numbers are known that are also geometric.

Although it is impractical to extend the direct search for harmonic numbers, we shall show,
through the introduction of harmonic seeds, that no harmonic number less than 10'? is powerful.
(We say that n is powerful if p|n implies p®|n, where p is prime.) In particular, then, no har-
monic number less than 10'? is also geometric. We have also used harmonic seeds to show that
there are no odd harmonic numbers less than 10'.

To define harmonic seeds, we first recall that d is a unitary divisor of n (and » is a unitary
multiple of d) if d |» and gcd(d, n/d) =1; we call the unitary divisor d proper if d > 1. Then:

Definition: A harmonic number (other than 1) is a harmonic seed if it does not have a smaller
proper unitary divisor which is harmonic (and 1 is deemed to be the harmonic seed only of 1).

Then any harmonic number is either itself a harmonic seed or is a unitary multiple of a har-
monic seed. For example, 7 =2%3°5?31 is harmonic (with H(n) = 27); the proper unitary divisors
of n are the various products of 23, 3% 5%, and 31. Since 2°5?31 is harmonic and does not itself
have a proper unitary harmonic divisor, it is a harmonic seed of n. (We are unable to prove that a
harmonic number's harmonic seed is always unique, but conjecture that this is so0.)

It is not as difficult to generate harmonic seeds only, and our two results on harmonic
numbers less than 10'?, that (except for 1) none are powerful and none are odd, will clearly follow
when the corresponding properties are seen to be true of the harmonic seeds less than 10'%.
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2. COMPUTATION AND USE OF HARMONIC SEEDS

We shall need the following lemmas. Always, p and g will denote primes. We write p®||n to
mean p®|n and p”*' fn, and we then call p° a component of n.

Lemma 1: Besides 1, the only squarefree harmonic number is 6 (Ore [6]).

Lemma 2: There are no harmonic numbers of the form p® (Ore [6]). The only harmonic
numbers of the form p?g®, p # q, are perfect numbers (Callan [1], Pomerance [7]).

Lemma 3: If n is an odd harmonic number and p*||n, then p* =1 (mod 4) (Garcia [3], Mills
[5D.

Lemma 4: If n is an odd harmonic number greater than 1, then 7 has a component exceeding 10’
Mills [5]).

We first illustrate the algorithm for determining all harmonic seeds less than 10'2.

By Lemma 2, even perfect numbers are harmonic seeds and all other harmonic seeds, besides
1, have at least three distinct prime factors. Then, in seeking harmonic seeds n with 2%||n, we
must have a <35, since 2%°3-5>10"2.

We build even harmonic seeds n, based on specific components 2%, 1<a <35, by calculating
H(n) simultaneously with 7 until H(n) is an integer, using the denominators in the values of H(n)
to determine further prime factors of n. This uses the fact that H, like o and 7, is multiplicative.
For example, taking a =13,

13 13 14
H(213) = 2 T(123 ) — 277 )
o(2®)  3-43-127

Choosing the largest prime in the denominator, either 127%||n for 1<b<3 (since 2"3-127% >
10'%), or p'?|n for some prime p so that 127 |z(n). In the latter case, clearly n>10". With
b=1 we have

247

H2B127) =
( ) 3.43’

so that 43°||n for 1< c <3 (since 2"°43*127 >10'%) or p*?|n. In similar fashion, we then take, in
particular,
7 6
H(2P127-43) = % H2™127-43-11) = 232—7
At this stage we must have either 3%||n for 1<d <6, or p?|n for two primes p, or p*|n for some
prime p. All possibilities must be considered. We find
13 3y _ 237 13 3y _ A5
H@P127-43-11-3) = ==, H(2"127-43-11.35) =27,

and so 2"°3°5-11-43-127 must be a harmonic seed.

0Odd harmonic seeds up to 10'? were sought in the same way. Each odd prime was con-
sidered in turn as the smallest possible prime factor of an odd harmonic number. By Lemma 4,
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only the primes less than 317 needed to be considered since 317-331-10” >10'?. Lemmas 1 and
3 were also taken into account.

The list of all harmonic seeds less than 10' is given in Table 1. Inspection of this list allows
us to conclude the following.

Theorem 1: There are no powerful harmonic numbers less than 10'2.

Theorem 2: There are no odd harmonic numbers less than 10'2.

We had hoped originally that we would be able to generate easily all harmonic numbers, up to
some bound, with a given harmonic seed. This turns out to be the case for those harmonic num-
bers which are squarefree multiples of their harmonic seed. In fact, we have the following result.

Theorem 3: Suppose n and ng,...q, are harmonic numbers, where ¢, <---<gq, are primes not
dividing n. Then ngq, is harmonic, except when 7>2 and ¢,g, =6, in which case nqq, is
harmonic.

Proof: We may assume 7 >2. Suppose first that ¢, >3. Since ng, ...q, is harmonic and H is
multiplicative,

2q 2q,
H ...q,) = H(n)H ... Hl =Hm—L... =t__
(nqy...q,) (mH(q) (4) ()] g+l g+l s

say, where # is an integer. Then

+1 +1
H(n)ql...q,:h‘hT----‘itz—.

Since (¢, +1)/2 <---<(g, +1)/2 < g,, we have g, | h, and then

Hngy...qp) = Ho) 2. 2 F 4+
@+l g+l g 2
an integer. Applying the same argument to the harmonic number ng; ...q,_,, and repeating it as
necessary, leads to our result in this case. In the less interesting case when ¢, =2 (since then n
must be an odd harmonic number), we again find that ng, is harmonic except perhaps if g, =3, in
which case ng,q, is harmonic. These details are omitted.
The point of Theorem 3 is that harmonic squarefree multiples of harmonic seeds may be built
up a prime at a time. Furthermore, when » and nq, are harmonic numbers, with ¢, >2, g, [n, we
have

>

Hg) = Hg,
so that (g, +1)/2|H(n). Thus, g, <2H(n)—1, implying a relatively short search for all possible
q,, and then for ¢,, and so on.

There does not seem to be a corresponding result for non-squarefree multiples of harmonic
seeds. For example, 263%5-13%17-127 is harmonic, but no unitary divisors of this number other
than its seed 2°127 and 1 are harmonic.

As an example of the application of Theorem 3, in Table 2 we give a list of all harmonic
numbers 7 that are squarefree multiples of the seed 2457000. It is not difficult to see that the list
is complete, and in fact it seems clear that there are only finitely many harmonic squarefree
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multiples of any harmonic number, all obtainable by the algorithm described above. However, a
proof of this statement appears to be difficult.

TABLE 1
Harmonic seeds n less than 102

n H (n) n H ()

1 1| 2876211000 = 22325313231 -61 150

6=2-3 21l 8410907232 = 25327213 - 192127 171

28 = 227 3| 8589869056 = 216131071 17

270 = 2 - 335 6| 8628633000 = 23335313231 - 61 195

496 = 2431 5| 8698459616 = 2572112192127 121

672 =2%3.7 8|l 10200236032 = 2147-.19-31-151 96

1638 =2-327-13 9|l 14182439040 = 273%5-7-11217-19 384

6200 = 235231 10 || 19017782784 = 2°327211-13-19-31 336

8128 = 26127 71l 19209881600 = 211527213 -19- 31 256

18620 = 225 - 7219 14 || 35032757760 = 2°325-7311-13- 31 392
30240 = 25335 . 7 24 || 43861478400 = 219335223 - 31 -89 264
32760 = 23325.7-13 24 || 57575890944 = 2'33211-13.43-127 192
173600 = 25527 - 31 25 || 57648181500 = 2232537313317 273
1089270 = 2 - 325 - 7213 - 19 42 || 66433720320 = 213335.11-43-127 224
2229500 = 22527213 35| 71271827200 = 28527-19-31-37-73 |270
2457000 = 2333537 - 13 60 || 73924348400 = 24527 - 31283 - 331 125
4713984 = 293%11-31 48 || 77924700000 = 2533557219 - 31 375
6051500 = 22537213 - 19 50 || 81417705600 = 273 -527-11217-19- 31 | 484
8506400 = 25527331 49 || 84418425000 = 2332557213 -19- 31 375
17428320 = 25325 - 7213 - 19 96 || 109585986048 = 2°377-11-31-41 324
23088800 = 2°527%19 - 31 70 || 110886522600 = 233 - 527 - 31283 - 331 155
29410290 = 2 - 3%5- 7213 - 19 81 || 124406100000 = 2532557313 - 31 375
33550336 = 2128191 13 || 137438691328 = 218524287 19
45532800 = 27335217 - 31 96 || 156473635500 = 2232537213%17 - 19 390
52141320 = 23345.7-11219 108 || 183694492800 = 2732527213 -17-19-31 | 672
81695250 = 2 - 33537213 - 19 105 || 206166804480 = 211325 7-13231 - 61 384
115048440 = 23325 - 13231 - 61 78 || 221908282624 = 287 - 19237 - 73 - 127 171
142990848 = 29327-11-13-31 | 120 || 271309925250 = 2 - 37537213 - 19 - 41 405
255428096 = 2°7 - 11219 - 31 88 || 428440390560 = 25325 - 7213219 - 31 - 61 | 546
326781000 = 2333537213 - 19 168 || 443622427776 = 273411%17-31-61 352
459818240 = 285-7-19-37-73 | 96 || 469420906500 = 2233537213317 - 19 507
481572000 = 253%537%13 168 || 513480135168 = 2°3%7211-13-19- 31 648
644271264 = 25327.13231 - 61 117 || 677701763200 = 27527 - 11- 17231 - 307 | 340
1307124000 = 2533537213 - 19 240 || 830350521000 = 2334537311213 - 19 756
1381161600 = 2732527 - 13- 17 - 31 | 240 || 945884459520 = 293%5 - 7311 - 13- 31 756
1630964808 = 233411331 - 61 99 || 997978703400 = 2333527 - 31283 - 331 279

1867650048 = 219311 - 23 - 89 128

Of the harmonic seeds in Table 1, the most prolific in producing harmonic squarefree multi-
ples is 513480135168, with 216 such multiples. The largest is the 32-digit number
N, =29388663214285910932405215567360
=2°3%5.7%11-13-19-23-31-137-821-8209-16417 - 32833,
with H(N,) = 65666. Much larger harmonic numbers were given by Garcia [3] and the algorithm
above can be applied to give a great many harmonic squarefree multiples of those which are of
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truly gigantic size. Furthermore, most known multiperfect numbers (those n for which o(n) = in,
for some integer £ > 2) are also harmonic, for these are known only for £ <10 and nearly always
it is the case that & | 7(n). For example, the largest known 4-perfect number (i.e., having £ =4) is

N, =2%3197.11.23-83-107-331-3851-43691-174763- 524287
this has 169 harmonic squarefree multiples, the largest of which is
N;=N,-31-61-487-3343.3256081-6512161-13024321 ~ 553- 107
with H(N,) =13024321.

TABLE 2
All squarefree harmonic multiples n of 2457000
n H(n)
27027000 = 2333537 -11-13 110
513513000 = 2333537-11-13-19 209
18999981000 = 2333537 -11-13-19- 37 407
1386998613000 = 233%537-11-13-19-37- 73 803
1162161000 = 23335%7-11-13 - 43 215
2945943000 = 2333537 - 11-13 - 109 218
2457000 = 2°33537 - 13 60
46683000 = 233353713 - 19 114
1727271000 = 23335%7-13-19- 37 222
126090783000 = 23335%7-13-19-37- 73 438
765181053000 = 2333537 - 13- 19 - 37 - 443 443
5275179000 = 233%537-13-19- 113 226
10597041000 = 2333537 - 13- 19 - 227 227
56511000 = 2333537 - 13- 23 115
12941019000 = 2333537 - 13- 23 - 229 229
5914045683000 = 2333537 . 13- 23 - 229 - 457 457
71253000 = 233353713 - 29 116
144963000 = 2333537 - 13- 59 118
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MORGAN-VOYCE TYPE GENERALIZED POLYNOMIALS
WITH NEGATIVE SUBSCRIPTS

A. F, Horadam

The University of New England, Armidale, Australia 2351
(Submitted January 1997)

1. PURPOSE OF THE PAPER

Previous papers ([1], [2], [3], and [4]) have investigated aspects of the Morgan-Voyce
polynomials B,(x), b,(x) and certain polynomials C,(x), c,(x) associated with them, together
with generalizations of them, P(x), O{")(x), namely,

PO () =b,(x), (11
B (x)=B,(x), (12)
PAx) = c,(x), (1.3)
O0(x) = C,(0). 14
Both generalizations are absorbed into a composite polynomial R (x) such that [4]
R{D(x) = B (x), (1.5)
R D(x)= 00 (x). (1.6)

Here we consider the implications for the theory in the case R”:*)(x), where n> 0.

Because of the detailed information in the previous papers, only the algebraic skeletal struc-
ture of the new system of polynomials will be outlined.

For the record, we list the following equalities involving negative subscripts which are readily
obtainable from the Binet forms in [2]:

B_,(x)=~B,(x), )

b_(x) = b,,(x), (1.8)

C.,(x)=C, (%), (1.9)

€y () =~ (). (1.10)

Additionally, we require

BOW) = By 418, 111, (1.11)

OV =Ly, +1F,  [3], (1.12)

XM =2F"1  [3] (1.13)

0 (x) = B+ P2(x) (n=1) [3], (1.14)

whence

0P W) - B = Fyy - (1.15)

1998] 391



MORGAN-VOYCE TYPE GENERALIZED POLYNOMIALS WITH NEGATIVE SUBSCRIPTS

Worth recording finally is ([2], (1.7), (1.9)) the differential equation
5’%1—6("—) = —nB_,(x). (1.16)

2. THE POLYNOMIALS R":")(x)

Define the polynomials {R"":*)(x)} by means of a Morgan-Voyce type recurrence

RGP(x) = (x+2RGH(0)-REH(x) (2> 0) 2.1
with
ROO(x)=u, ROGY(x)=(@-Dx+u-r. (2.2)

Paralleling the data in [4], we postulate the existence of a sequence of integers {c” “)} n=0,
for which

R&9(x) = Zc('n Ok, (23)
in which
I 2.4)
u-1, n>Q,
and
< =u—nr. (2.5)
Moreover, for x =01in (2.1) and (2.3),
g =201 -1 . (2.6)
Furthermore, (2.1) leads to (k 2 1)
=201 =+ @7

The Coefficients c(" )

Repeated use of (2.1) and (2.2) allows us to construct a table of the coefficients c(’,,”k) as

follows.
TABLE 1. The Coefficients ¢} (n>0)

PCARY 1 2 3 4 5 6

0 |u

-1 |u-r -14u

-2 (u=-2r -24+3u-r ~1+u

-3 |u-3r -3+6u-—4r —4+5u—-r -1+u

-4 |u—4r —-4+10u-10r -10+15u—-6r —6+Tu-r ~1+u

=5 |u-5 -5+154-20r -20+35u-21 -21428u-8 -8+4+%u-r -1+u

—6 |u—-6r —6+2lu-35 -35+70u—-56r -56+84u-36r -36+45u-10r -10+1lu—-r -1+u
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Comparison of this table with the corresponding table for cf,’ k") in [4] reveals that the sign of
the constants and the sign of the coefficients for r have both changed from + to —. On the other
hand, the sign of the coefficients of # remains unchanged (+), but » has been replaced by —n+1.
That is, from [4], we have the key formula

rwy _ _[(n+k-1 n+k n+k
Cnk = ( 2k -1 ) (2k+1)+"( 2%k ) 238)
+k-1 k k
=(n ok )—r(;k++l)+(u 1)(n+ ) 2.9
by Pascal's Theorem.
Suitable specializations # =1, 2 in (1.5) and (1.6) reduce this to
" _[(n+k-1 _ n+k
-nk“( 2% ) ’(2k+1 (2.10)
and
” n+k), (n+k-1\__(n+k
L “( 2% )*( % )2k +1 2.11)

for P)(x) and QU)(x), respectively, tables for which the reader may care to construct.
Further specializations are obvious, e.g., a0, =("3").

Next, multiply (2.9) throughout by x* and sum. Then, by (1.5) (n — —n), (1.8), and (2.3),
we deduce that

Theorem 1: R":"(x)= P (r)(x) +(@—1Db,y,(%).

Numerical Specializations
Using (1.1)-(1.14) variously, we deduce that

RGO = PO =b,() = F,,.,, (2.12)
RGP = PQ() = -B, () = ~F,5, (2.13)
RED@) = PO(1) = —,() = -L,,, (2.14)
RCA2() =091 =C,(1) = L,, (2.15)
RGO = 091 =2PD() =25,(1) = 2F5, 4, (2.16)
RZ2(1) = 09() = By (2.17)
Also [cf (2.13)],

RO =B_,() = F, (2.18)

Moreover, we have from (2.1) that
ROY(=1) = REW(-1) + R (-1), (2.19)
R%M(=3) = «(R%:(-3) + R4 (-3)), (2.20)
RG9(-2)=~RG%(-2) 221)

[eg, RGV(-2)=-u-r+2=-R%"(-2)].
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3. MISCELLANEOUS RESULTS

Chebyshev Polynomials

Employing the notation in [4] for the Chebyshev polynomials U,(x) and 7 (x), we discover
that, with (1.7)-(1.10),

B.(9)=-U,(552) G.1)
c,m=21,(%52), (32)
b= 52)-0,(552), 6
e, = Uy Z2)+0, (22, )

x+2

[Ordinarily, U_,(x) = —U,,_,(x), but this is not true when x is replaced by 2.
As in [4], we have

Theorem 2: R":“(x)=-B_,_,(x)—(r+u—2)B_,(x)+(u- DB_,(x).

Theorem 3: R":"(x)=((u—1)x—r+u)B_,(x)—uB._

n-1-
Both these theorems can, by (3.1), be cast in terms of U,(%2). Theorer 3 is, in fact, an

equivalent of the Binet form for R_,(x). A Simson formula analog for R_,(x) corresponding to
that in [4] for R, (x) is left to the reader's interest, and likewise for a generating function analog.

Zeros and Orthogonality

These properties for B_,(x), ..., c_,(x) may be approached as for those of B,(x),...,c,(x) in
[2], by referring to (1.7)-(1.10).

Rising Diagonals

Rising diagonal polynomials (functions) are obtained from Table 1 by considering a set of
upward-slanting parallel diagonal lines (cf. [2]). Designate these polynomials by R (x) or just
R _,(x) for brevity. Then Ry(x)=u—-r, R_,(x)=u—-2r+(u-1x.

A little tricky exploration enables us to affirm that [see (2.9)]

]
g*’-n(x) = zc—n—l+k,kxk . (35)
k=0

Comparison with [2, (7.1)] is worthwhile at this point. The contrast in the two forms demon-
strates that, in passing from R ,(x) in [2] to R _,(x) here, we cannot with impunity always merely
replace n by its negative. Asymmetry in the two patterns of rising diagonals explains this dilemma.
[Indeed, R (x) is chosen to be different in [2] and here. ]

Adopting [2] as our model, we are able to establish the following corresponding results (no
proofs offered.) :
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Theorem 4 (Recurrence): R_, (x)=2R_,. ,(x)+(x—-DR_,,,(x).
Corollary 1: R_,(1)=2""2u-2r-1}.

Theorem 5 (Generating function):
2R ()Y = {u—r+[-utx@-DH1- Cy+(x -y}
i=0

Analogously to the procedures in [2], we may derive a Binet form and a Simson formula for
R_,(x).
4. CONCLUSION

The development outlined above complements that in [4] and thus rounds out the general
theory for integer » (about which more could be written). :
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1. INTRODUCTION

The Zeckendorf decomposition of a natural number 7 is the unique expression of » as a sum
of Fibonacci numbers with nonconsecutive indices and with each index greater than 1, where
Fy,=0, F, =1, and F,, = F + F,,, form the Fibonacci numbers for i > 0 (see [13] and [17], or see
[16, pp. 108-09]). The Zeckendorf decompositions of products of the forms kF,, and kL, with
k,meN (where L, =F,_,+F,,, is the m" Lucas number) have occurred in questions in cryp-
tography [3] and in the study of periodic points in algebraic topology [11]. They are also the
subject of study in [5]. We describe here a simple method for finding results concerning the
Zeckendorf decomposition of such a product. We let f=(1++/5)/2 throughout the paper, and
we make use of the connection between the S-expansion and the Zeckendorf decomposition as
developed by Grabner et al. in [8] and [9].

The S-expansion of n €N is the unique finite sum of integral powers of £ that equals » and
contains no consecutive powers of #. Grabner et al., in [8] and [9], prove that for m sufficiently
large the Zeckendorf decomposition of AF,, can be produced by replacing B in the B-expansion
of k with F,,,,. For example, the B-expansion of 5 is f°+ '+, and the Zeckendorf decom-
position of 5F;, is F;+ Fy + F;. See[1], [2], [6], [10], [14], and Section 2 for background on the
P-expansion.

We have found that by studying short lists of f-expansions of small positive integers we can
easily observe patterns that represent new results. In Section 4 we improve upon the results of
[5] involving the number of addends in the Zeckendorf decomposition of mF,, and we include a
proof of Conjecture 3 from the same paper. This conjecture states that, for certain values of m
and £, the Zeckendorf decomposition of (mLy, +1)(Fpz,,+1) contains F,; . as one of its terms.
This is equivalent to saying that 5° occurs in the f-expansion of mL,, +1. Most of the identities
in [5] can be discovered easily using the techniques given here, as we demonstrate in Section 3.
While a computer can be used to form lists of S-expansions, we were able to discover all the
results in Sections 3 and 4 easily by hand. All proofs are provided in Section 6.

The developments presented here provide the background necessary for [12], joint work with
L. Sanchis, in which we prove Conjecture 1 from [5]. The conjecture involves the ratio of natural
numbers & that do not have F, in the Zeckendorf decomposition of 4F, to those natural numbers
that do. The list of f#-expansions of & for 1<k <500, produced easily by a computer, was suf-
ficient to allow us to discover the recursive patterns in the S-expansions and then to prove that
the conjecture is correct. This result also answers an equivalent question posed by Bergman in
[1] concerning the frequency of positive integers 7 with #° appearing in the S-expansion of .

We present an algorithm for finding the S-expansion of a positive integer that can be used to
efficiently produce a list of S-expansions. The beginning of this list is given in Section 2. The
algorithm actually applies more generally. Given a sum n=YM 1,F with m, M €Z and 4, eN
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for all 7, the algorithm produces a representation of # as a sum of nonconsecutive Fibonacci num-
bers, some of which may have negative indices. If the smallest index in the resulting sum is at
least 2, then the algorithm has produced the Zeckendorf decomposition of n without requiring the
calculation of the value of n. This algorithm runs in time that is linear in M —m+3X 1. For
another algorithm that produces the Zeckendorf decomposition of 7 with the same input (but does
not give the #-expansion of a number) see, for example, [7].

2. PRELIMINARIES

Remark 2.1: Note that in [8] and [9] the indices for Fibonacci and Lucas numbers are different
from the standard used here. Weuse F;=0,F,=1,L,;=2,and L, =1. For x<0, let F_ be equal
to (-)F .

Definition 2.2: Let n eN. The Zeckendorf decomposition of 7 is the unique expression of » as a
sum of Fibonacci numbers of the form >_, u,F;, with r €N, g, €{0, 1}, and with g, =0.

Definition 2.3: Let 8 be the golden ratio (1++/5)/2. For any n €N, the B-expansion of 7 is
the unique expression of 7 as a finite sum of integral powers of # with no consecutive powers
occurring. That is, n=3X2__ e with ¢ €{0,1}, ee,,, =0, and with at most finitely many e,
equal to one.

For this value of 3, the [S-expansion was first defined by Bergman in 1957 in [1]. For gen-
eralizations using other values of f3, see, for example, [2], [6], [14], and [15].

Definition 2.4: For k €N, the lower width of %, £(k) [resp. the upper width of k, u(k)] is
defined to be the absolute value of the smallest (resp. largest) exponent that appears in the -
expansion of £.

For example, the B-expansion of 12is f°+ 472+ 7+ f°, so £(12) = 6 and u(12) =5.

The following is a restatement of Lemma 1 and Theorem 1 in [9] for the special case of
Fibonacci numbers. See also Theorem 1 in [8].

Theorem 2.5 (Grabner et al. [8]): For k eN and for n>£4(k)+2, if the fS-expansion of k is
T8, e, then the Zeckendorf decomposition of kF, is T eF,,. For k €N, we have

that £(k) is the even number defined by Ly ; <k < Ly, If 2 <k <Ly, then u(k) = £(k) -1.
If k > Lyy,, then u(k) = £(k). We also have that u(1) =0 and %(2) =1.

For example, the S-expansion of 10 is #~*+ 2+ B2+ B*, as can be determined quickly by
the algorithm of Section 5 (see 5.7), and the Zeckendorf decomposition of 10Fy,, is Fyggs+
Fo08 + Fig0p + Fypo4- The power of Theorem 2.10 in [8] is clear here. Using the greedy algorithm,
we would have needed to calculate the value of 10F;,,,, which is daunting.

As usual, a sum of Fibonacci numbers will be represented by a vector of zeros and ones. A
one occurs in coordinate s if F, appears in the sum. We allow negative indices.

Definition 2.6: We define V to be the infinite dimensional vector space over Z given by

Vi={(.e, Vo1, Vo, 15 V2, V3, ... )1V, €4V, with at most finitely many v, nonzero}.
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For convenience, we underline the second coordinate. We define V'* to be the subset of V that
consists of all vectors of J with all entries nonnegative.

All vectors in V are infinite dimensional, but we will abuse notation and omit the entries
before the first possibly nonzero entry and after the last possibly nonzero entry. If the entries are
all single digits, we may omit commas and parentheses.

Definition 2.7: Let n eN. Let Z(n) be the vector in V* corresponding to the Zeckendorf de-
composition of 7 that has O in the first coordinate.

In Definition 2.7, we must require that the vector have zero in the first coordinate in order to
have Z well defined. For example, the Zeckendorf decomposition of 4 is 1+ 3, which can be rep-
resented by either F{+F, or F, +F,. Whenever 1 occurs in the Zeckendorf decomposition, we
always represent it as F, in the image of Z. Thus, Z(4)=(0,1,0,1).

Definition 2.8: We define the function 8:N— V'* so that f(n) is the vector in V'* with v, =e¢,_,
when the B-expansion of nis 2 __ e 8. Thus, the coefficient of £° is underlined.

For example, B(12) is represented by 100101000001. Here the exponents of 3 increase from
left to right, which does not match the usual notation for a f-expansion. We must choose be-
tween the usual notation for Z(n) and for B(r). Because this paper concerns Zeckendorf
decompositions, we have chosen the former.

The p-expansion of k is as follows for 1<k <20, with the exponents of £ increasing from
feft to right.

k (k)

1 1

2 1001

3 10001

4 101 01

5 10010001

6 10000101

7 100000001

8 1000100001

9 101001001
10 101000101
11 101010101
12 100101000 O0TCO0T1
13 100100010001
14 10010000100T1
15 100100101001
16 1 0000100O0T1TO0I1
17 1000009010101
18 1000 0000O0OCGOCOGOCT1
19 100000010O0O0CUO0OTUOI11
20 100010010O0CVO0TO001

It is possible to generate the £ row in this list by applying the algorithm developed in Sec-
tion 5 to the vector (0, k, 0) (see 5.5). We will see in Remark 5.9 that we may instead move from
one row to the next by adding one to the underlined entry and applying s{ to the result. This
second method is much more efficient.
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Definition 2.9: We define a linear transformation that shifts the entries of a vector. For ¢ €Z, let
s;:V —V be given by the following. If ¥ €V has coordinates v, for i € Z, then s,(¥) is the vector
with coordinates w;:=v,_,.

Next, we restate part of Theorem 2.5 using the notation of this section.

Theorem 2.10 (Grabner et al. [8]): For k €N and for n € Z, kF, is represented by the vector
S,_o(B(k)). For n=> (k) +2, this vector is Z(kF)).

3. PATTERNS IN -EXPANSIONS

Most of the identities in [5] can be found using lists of S-expansions. For example, (2.4) of
[5] gives the Zeckendorf decomposition for 4F F,,, whenever k,n>3. This could be deter-
mined by adding the formulas given in [5] for FF,,, and for 3F,F,,, and reducing the result so
that no two consecutive Fibonacci numbers occur. On the other hand, we are able to determine
the pattern for the S-expansions of 4F, from scratch very quickly by considering the list below.
We then arrive at the Zeckendorf decomposition of 4F, F,,, by simply shifting the vector B@AE)
to the right by n+ k% —2 spaces.

The following list provides the [-expansion for 4F, as k increases from 3 to 10. Note that
we can add two consecutive rows in this list and then apply the algorithm from Section 5 to the
sum. The result will be the next row in the list. This is easy to do by hand. The diagonal lines of
ones appear in a predictable pattern that will continue, as can be proven by induction.

k= 0 0
k=4: 0 00
k=5: 0 00
k=6: 1 0 0
k=T: O0Nd 0
k=38 0 0Nd
k= 0 00
k=10 1 00

For n>3 and k >3 we have, as in (2.4) of [5],

k—4)/
AFF . = w2 T F B+ B + z:S'=14) 2 Eij+n+4 (k even),
k* n+k — k-3)/
Fys By + By 59 Fyy (k0UO)

Note that a similar method can be used for finding the B-expansion of mL, and hence for finding
the Zeckendorf decomposition of products of the form mL,F,,, .

4. NEW RESULTS

We summarize here the new results we have found using the S-expansion. Proofs are pro-
vided in Section 6. We begin with a technical definition and then state precisely in 4.2 the useful
fact that, if two Zeckendorf decompositions have indices that do not overlap significantly, then
the two Zeckendorf decompositions can meld into the Zeckendorf decomposition of the sum.
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Definition 4.1: For x €Z, we say that a v eV is reduced to index x if every entry with index
(i.e., coordinate) > x is either zero or one and ¥V has at most finitely many ones with index > x
and Vv has no consecutive ones with indices > x. If ¥ is reduced for all x €Z, then ¥ is totally
reduced.

Note that, for all 7 €N, the vectors z(n) and B(n) are totally reduced.

Fact 4.2: If n,meN and if Z(n)+Z(m) is totally reduced, then Z(n+m)=Z(n)+Z(m). The
same is true for S-expansions by 2.10. One way to determine whether Z(n)+Z(m) is totally
reduced is to consider the following two sets. Let I, = {i e Z: F, is in the Zeckendorf decomposi-
tion of n}, and let /,, be the corresponding set for m. Let d =min{|i—j|i €, jel,}. Then
Z(n)+Z(m) is totally reduced if d > 2.

Let O(n) = nF,, and note that we will find it useful to use exponents in vectors. For example,
the B-expansion of Ly is given by 10000000000000001, which we may write as 1070071. Simi-
larly, the S-expansion of L, is 10101010101010101, which we may write as (10)*1(01)*.

Proposition 4.3: For k>2, we have B(2L,,)=110010*7200%-31001. Thus, the Zeckendorf
decomposition of N2Ly,) = Fop 142, + Fop 2421y, + Fooe-2421,, + Forsrsar,, -

The preceding proposition is proven in detail in Section 6, but to give an idea of the flavor of
such proofs, we provide a sketch here. We have B(L,,)=10*7'00%"1 (see (1.5) of [4] and
apply 2.10). We think of 2L, as 20%7100%~'2 and we prove that B(2L,,) is given by

100102"-2902"-31001,

where the braces mark the vectors s_,,(#(2)) and s,,(8(2)). Because the two braces do not
touch, the entire vector is totally reduced.

In the following propositions, let f[n] denote the number of addends in the Zeckendorf
decomposition of n as in [5]. Note that f[Q(m)] is equal to the number of ones in the vector

-

P(m) by 2.10. The next two propositions are generalizations of (3.3) and (3.4) in [5].

Proposition 4.4: If k>2, and if 1<m<L,, ,, then f[O(L,, +m)]=2+f[0(m)]<2k+1.
Moreover, Z(Q(Ly, +m)) = Z(LyFy, 1m) +Z(MFy 4,).

Proposition 4.5: If k>2, and if 1<m<L,,_,, then f[Q2L,, +m)]=4+ f[Q(m)]. Moreover,
Z(QQLy +m) =2QLy By, 1) + 2Py, ).

In [5] a positive integer 7 is said to have Property % if F, occurs in the Zeckendorf decom-
position of nF,. This is equivalent to stating that a one occurs in the underlined coordinate of
PB(n). We prove Conjecture 3 of [5] in the following proposition.

Proposition 4.6: If m, k eN with 1<k and 1<m< L,,_,, then mL,, does not have Property %,
and mLy, +1 does have Property %.

Proposition 4.7: For k >2, we have B(L,;,, + L,,_,) = 100100(10)*-21(01)*"'001. Thus, we see
that O(Ly;,; + Ly;,) has Property P.

See Section 6 for proofs of the propositions in this section.
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5. THE ALGORITHM

The algorithm begins with a positive integer n expressed as n= Y A.F,, with A, any non-
negative integer for i €Z, and with m, M €Z. Tt ends with an expression for n as a sum of
Fibonacci numbers with nonconsecutive (possibly negative) indices. This sum is the Zeckendorf
decomposition for » under certain conditions. There are other algorithms that produce Zecken-
dorf decompositions (normal forms) in this setting (see [7]). The advantage of the algorithm
given here is that it allows us to find the fB-expansion of k£ €N by applying the algorithm to

(0, %, 0) (see 5.5).

Definition 5.1: Let ¥ €l be a vector with coordinates v, for i €Z. Let o:V — Z be the func-
tion given by o(¥):= 2;2_,, v,F;. Note that o is a linear function and that it is not injective.

Verbose Description of the Algorithm: We begin with n represented by the vector ¥:=(...,4,,
A1, Ags A3, ...), where 4, =0 for i > M and for i <m as above. Thus, the initial values for the

entries in ¥ are v, = A, for i €Z. First, we search for the smallest integer x for which the vector v

is reduced to index x. If there is no such integer, then we are done. Details of the search are

below in the second description of the algorithm. We assign #:=x-1if v. =0 and 7:=x if
=1. Note that this implies that v,,; =0 and v, > 1.

Case 1. v,_; #0. We have (...,v,_;,v,,0,...). We replace v,_,v,,0 with v_, -1, v,—1, 1.
This does not change the value of O’(V), because F,+F,_, = F,,;. We return to the beginning of
the algorithm and search for a new value of x.

Case 2. We have (...,v,,,0,v,,0,...), and, because the vector is not reduced to index 7 -1,
v, >1. We replace v,_,,0,v,,0 with v,_, +1,0,v,—2,1. This does not change the value of o(¥).
To see this, consider two smaller steps. We can replace v,_,,0,v,,0 with v,_, +1,1,v,-1,0 be-
cause F; = F,_, + F,_,. Now we have two consecutive nonzero entries, so we can do as in the first
case. This results in v,_, +1,0,v,—2,1. Note that the sum of all the entries in the vector vV has
not changed. We return to the beginning of the algorithm.

As stated above, the algorithm terminates when there is no minimal value x.

Definition 5.2: Let :V*—V* be the function that assigns to a vector ¥ V" the result of
applying this algorithm to V.

Precise Description of the Algorithm: As above, n=Y A.F,.
max:= M, min:=m;
t:= max;
while (f = min) do {
if (v, =0) then £:=2-1;
elseif (v,_;=0and v, =1) then #:=¢-2;
else if (v,_; # 0) then {
Vig=Lhvp=yv—-Lv_=v_,-1;
if (v,,, =0) then #:=7+1;
else t:=1+2;
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else {
Vg =L vi=v, -2, v, =y, +1;
if (t —2 <min) then min:=7-2;
if (v,,,=0) then £:=7+1;
elset:=1+2;

}

Remark 5.3: The algorithm o is designed so that, for all ¥ €V, o(¥) = o(A(¥)), and s,(4(¥))
=sl(s,(¥)) for all t €Z. The second equality follows from the fact that the algorithm is inde-
pendent of the numbering of the coordinates of the vector ¥ .

Proofs of the results from this section are postponed until Section 6.

Proposition 5.4: The algorithm terminates in a finite number of steps for any vector ¥ eV’*. The
result A(V) is totally reduced.

Proposition 5.5: For all k eN, (k) = s&(O, k,0).

Remark 5.6: If ¥ V¥, and if S(¥) has no nonzero entries for all coordinates with index less
than 2, then A(¥)=Z(o(¥)). For k eN and n> (k) +2, we have Z(kF) =s, ,(B(k)) as in
Theorem 2.10.

Example 5.7: We apply the algorithm to 10F;, to find the B-expansion of 10.

10
10 8 1
107 01
2 0 5 11
2 0 5 00 1
30 3 101
30 2 011
302 000 1
400 1001
10210 1001
101011001
10100 010 1 =310

Note that in the 9" row we have in coordinates 2 through 6 the Zeckendorf decomposition of
10, with a 4 in the O coordinate. A similar pattern occurs whenever this method is used to find
the B-expansion of any positive integer.

Having determined the f-expansion of 10, we can apply Theorem 2.10 and see that
Z(10F;400) = S4005(101000101). This is much easier than calculating the value of 10F,,, and
applying the greedy algorithm.

Theorem 5.8: For ¥, w eV* and for k €N, we have d(AF)+W)=AF +w) and AkV)=
A(ksd(P)). In addition, for all n,m N, we have B(nm) = d(nf(m)) and S +m)= A(B(n)+
Bm)).
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Remark 5.9: The list of S-expansions in Section 2 above can be generated by applying the algo-
rithm to (0, £, 0) for each & (see 5.5). Theorem 5.8 provides a more efficient method for deriving
the list. Once we have found that ,75'(2) = 1001, we note that

BB3) = (0,3, 0) = A(4(0,2,0) +(0, 1, 0)) = A((B(2)) + (0, 1, 0)).

To move from the S-expansion of £ —1 to that of &, we need only add one to the underlined entry
(which corresponds to °) and then apply the algorithm.

6. PROOFS

Lemma 6.1: If a vector ¥ V" is reduced to index s+1, and if v, = 1, then, when the algorithm is
applied, none of the entries with index less than s will be changed until after the algorithm has
changed v into a vector that is reduced to index s.

Proof of 6.1: We induct upon 7 using the following induction hypothesis:

If ¥ is reduced to index 7+1 for some ¢ with exactly » nonzero entries (ones) with index
greater than 7, and if v, =1, then none of the entries with index less than 7 will be changed until
after the algorithm has changed ¥ into a vector that is reduced to index .

Suppose n=1. Then either v,=1 and v,,, =0, which means that ¥ is already reduced to
index s, or v,=1=v,,; and v, =0 for i >2, which means that the algorithm will change the
vector so that v, =0=v,,, and v, =1 without changing any other entries. The new vector is
reduced to index s. Thus, the statement is true for n=1.

Now induct on n. Consider the triple 1,v,,,,v,,,. If this triple is 1,0,0 0r 1,0, 1, then V is
already reduced to index s. If the triple is 1,1, 0, the algorithm first replaces the triple with 0,0, 1,
and we can use the inductive hypothesis. We now have a vector that is reduced to index s+3
that has v, =1. The number of ones with index greater than s+2 is one smaller than the num-
ber of ones we had originally with index greater than s. Thus, the algorithm does not change the
values of entries with index less than s+2 until the vector has been changed to a new vector that
is reduced to index s+2. This means that we will have the triple 0,0,1 either unchanged or
replaced with 0, 0, 0. In either case, the resulting vector is reduced to index s.

Proof of 5.4: If v eV™ is reduced to index s for all s, then the algorithm does not ever
change the vector. We have ${(¥) = ¥, and the proposition is proven for that case.

Otherwise, there is a unique x(¥) € Z with ¥ reduced to index x(v) and with ¥ not reduced
to index x(¥)—1. In this case, we define 7(¥) to be the sum of all entries of ¥ with index less
than x(¥). We will see that 7(¥) will reach zero in a finite number of steps. This means that the
algorithm stops in a finite number of steps and that the vector #(¥) is in the desired form.

We refer now to the cases given in the Verbose Description of the Algorithm in Section 5.
The algorithm first assigns #:= x(v)—1if v, = 0 and assigns #:= x(V) if v, = 1.

In Case 1, the triple (v,_;, v,, 0) is replaced by (v,_; —1,v, —1, 1) and the new vector is reduced
to index #+2 with v,,; =1. By Lemma 6.1, we know that the algorithm will next change the vec-
tor so that it is reduced to index #+1 without changing the values of entries with index less than
t+1. At this stage, the new vector ¥ has a new x(¥)-value that is less than or equal to 7+1.
Thus, the new value of 7(¥) is at most 2 less than the old value of 7(¥).
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In Case 2, we see that (v,_,, 0,v,, 0) is replaced by (v,_, +1,0,v, —2,1) and the new vector is
reduced to index 7 +2 with v,,; =1. By Lemma 6.1, we know that the algorithm will next change
the vector so that it is reduced to index 7 +1 without changing the values of entries with index less
than 7+1. At this stage, the new vector ¥ has a new x(¥)-value that is less than or equal to ¢ +1.
Thus, the new value of 7(¥) is at most 1 less than the old value of 7(¥).

In both cases, the value of 7(¥) decreases. Thus, the algorithm terminates in a finite number
of steps. The vector that results will be reduced to index s for all s eZ.

Proof of 5.5: This result follows from the work of Grabner et al., but a direct proof is as
follows. Because £ + B! = *2 for all i €Z, we can replace each F, in the description of the
algorithm with "2 and replace each o with ¢’, where o’(¥) = X2 _, v, 2. Because kF, = kf3°,

for the vector (0, £, 0) the algorithm will produce the same result either way. Thus, (0, &, 0) is
Bk).

Proof of 5.8: Let X =sA(V)+w, and let y=V+w. We first prove that, for all 1 €Z, we
have o(s,(¥)) = o(s,(7)). We have, using Remark 5.3 and the fact that s, and o are linear,
o(5,()) = o(s;4P)) + o(5,(#)) = o(5;:4(P)) + o(5,00)) = o(5,(¥)) + O-(St %) = o(s,(7))-

Next we prove that, for all # €Z and for all ¥ N, we have o(s,(kV)) = o(s,(ksd¥)). We
have (s, (k) = ko (s, (7)) = ko(sl(s,(7))) = ko (s,(s49)) = o (s (ksl)).

Theorem 2.10 implies the following. There exist #,7,, %, ¢, €N such that, for all i >0, we
have &q‘(stlﬂ' @)=z (a(st|+i ®)), &q’(stz'ﬂ' )=z (O—(st2+i@))): *ﬂ(st:d—i (kv))=Z (U(st3+i (k9))), and
(s, (ksdP)) = Z(0 (s, ,;(ks4V))). Let 1 = max{t,, 1,, 13, 1,}.

Using 5.3 again, we see that s,(A4(kV)) = (s, (k7)) = Z(o(s,(k4¥))), and Z(o(s,(ksdP))) =
A(s, (kAV)) = 5,(A(ksd¥)). But s, is one-to-one. Thus, A(kV) = A(kA(V)).

Similarly, 5,((%)) = A(s,(%)) = 2(o(s,(%))) = Z(o(5,(7)) = A(s5,(7)) = 5,(4(7)). Again be-
cause s, is one-to-one, (%) = A(¥). Thus, A(AF)+W) = AT +W).

Next, let m,neN. We have that B(nm) = (0, nm, 0) = A(n(0, m, 0)) = A(nA(0, m, 0)) =
AnP(m)), and also, B(nm) = A(0, n+m, 0) = A((0, n, 0) + (0, m, 0)) = A(H4(0, n, 0) + A(0, m, 0))=
A(B(m) + B(m)). Thus, Theorem 5.8 is proven.

Proof of 4.3: We have, for all k N, that B(L,,) =10*"'100%"!1 (see Proposition 10 of [5]
and apply 2.10). Thus, using Theorem 5.8, we have B(2L,,) = A(2B8(Ly,)) = 4(20%100%12)
= A(5.5,(0,2,0) +5,,(0,2,0)) = (5.5, (0,2, 0) + 5, (0,2,0)) = A(5.,.4(0, 2, 0) + 5, 4(0, 2,)) =
A5, B(2) + 5, B(2)) = A((10010%720) + (00%*731001)) = 10010%*-200%-31001. Finally, we apply
2.10 to complete the proof.

Proof of 4.4: We have that B(L,,) = 10%*7100%!1, as in the proof of Theorem 4.3. Because
m<L,, ,, we have by 2.5 that /(m),u(m)<2k—-2. Thus, using 4.2, we see that B(L,, +m) =
B(L,)+ B(m). Thus, f[O(L,, +m)] is the number of ones in B(L,,) plus the number of ones in

-

Pm), and fIO(L,, +m)]=2+f[0(m)]. Because (L, )=u(l,,)=2k, there can be at most
2k +1 addends in O(m). This proves the last inequality.
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Proof of 4.5: Using 4.3, we have that f(2L,,) =10010*-200%**~*1001. Because m< L, ,,
we have by 2.5 that £(m), u(m) <2k —4. Using 4.2, we see that S(2L,, +m)= B(2L,,)+ B(m).
Thus, f[Q(2L,, +m)] is the number of ones in B(ZLZk) plus the number of ones in f(m), and
SIQ@Ly, +m)] =4+ f[O(m)].

Proof of 4.6: We have f(L,,) = 10*7100%1, as in the proof of 4.3. Let ¥ = 5,,(010), and
let s,,(010). Then B(sz) =V +w, and so by Theorem 5.8 we have ﬁ(m[,zk) = A(mV +mw) =
A(A(m7) + i) = A(A(5_3, (0,1, 0)) + 4(5,,,(0,m,0))) = A5, (H(0, 7, 0)) + 5, (4(0,m, 0)))
= d(s_,, (B(m)) + 5, (B(m))). By Fact 4.2 and Theorem 2.5, s_,,(B(m))+s,,(B(m)) is totally
reduced whenever m< L,,_,. Thus, B(mL,,) = s_,, (B(m))+,,(B(m)) for 1<m<L,,_,. When-
ever m< L,,_,, the two shifted -expansions of m will not overlap, and in fact there will be zeros
in the coordinates corresponding to 87, #°, and f'. Thus, mL,, does not have Property %.
When a one is inserted in the coordinate corresponding to £°, the resulting vector is totally
reduced and equals B(mL,, +1) (see 5.9). Thus, mL,, +1 does have Property %.

Proof of 4.7: We have, for all k eN, that B(L,,,,) = (10)*1(01)* (see (3.1) of [5]). Thus,
using 5.8, we have (L + L) = S(B(Ls) + B(L,)) = s4(102020201) = 100100101001, so, the result
holds for & =2. We induct on k. We assume that B(L,,_, + L,, ) = 100100(10)*31(01)*~2001.
Fact 4.2 implies that B(L,, + L,,_,) = 1010%300%-2101. Therefore, B(Ly;., + Lyp—1) = By, +
Lyy + Ly s+ Ly ) = ABULyyy + L) + Bl + Ly ) = sA(201100(10)°1(01)*20111) =
S(201100(10)¥21(01)*201001). Note that this last vector is reduced to index —2k +5. The
algorithm will not change any of the entries except that the 20110 that occurs on the left changes
to 1001001. Thus, B(L,;.,+Ly;_,) = 10010010(10)*-31(01)*-201001, and the induction is com-
pleted.
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NEW PROBLEM WEB SITE

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems
can now be searched electronically (at no charge) on the World Wide Web at

http://problems.math.umr.edu

Over 23,000 problems from 42 journals and 22 contests are references by the site, which
was developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site
was generously provided by the Department of Mathematics and Statistics at the Umver51ty
of Missouri-Rolla, through Leon M. Hall, Chair. :

Problem statements are included in most cases, along with proposers, solvers (whose
solutions were published), and other relevant bibliographic information. Difficulty and
subject matter vary widely; almost any mathematical topic can be found. '

The site is being operated on a volunteer basis. Anyone who can donate journal issues or
their time is encouraged to do so. For further information, write to

Mr. Mark Brown

Director of Operations, MathPro Press
1220 East West Highway #1010A
Silver Spring, MD 20910

(301) 587-0618 (Voice mail)
bowron@compuserve.com (e-mail)
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ON CERTAIN SUMS OF FUNCTIONS OF BASE B EXPANSIONS

Curtis Cooper, Robert E. Kennedy, and Milo Renberg

Dept. of Mathematics, Central Missouri State University, Warrensburg, MO 64093-5045
(Submitted January 1997-Final Revision June 1997) =

¢. INTRODUCTION

Let s,(7) denote the base 10 sum of the digits in the base & representation of the nonnegative
integer 7 and 1, (7) denote the number of large digits ([5/27 or more) in the base b representation
of the nonnegative integer i. For example, 5,,(4567) =22, 5,(7079) =17 since 7079 = 26432,
and s,(19) = 3 since 19 =10011,. In addition, Z,,(4567) =3, L,(7079) =2, and L,(19)=3. The
mathematical literature has many instances of sums involving s, and I,. Bush [1] showed that

13 400~ Jitrionx
Here, logx denotes the natural logarithm of x. Mirsky [7], and later Cheo and Yien [2], proved
that

—Z b( )-—21 logx+0(1)

n<x

Trollope [9] discovered the following result. Let g(x) be periodic of period one and defined on

[0, 1] by
1x 0<x<i
g0=1{"" .
(1 ) E<XS1
and let
) 1 ;
f@=3 8@).
i=0

Now, if n=2"(1+x), 0<x <1, then

2 5(0)= 21 5 nlogn—E,(n),

i<n

where

E(n)= 2'"-1{2 f(x)+(1+x)l—o%—§gjzi)—2x}.

In addition, it was shown in [6] that

We will discuss some other sums involving s, and Z,. In particular, we will give formulas for
1 o

Z(Lb(l))m and —Z(Sb(l))'”

i=0

where m and » are positive integers. Then, we will find a formula for
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b-1

= 250 L),
i=0

We define C,(x;y) to be the sum of the carries when the positive integer x is multiplied by y,
using the normal multiplication algorithm in base b arithmetic. That is, we convert x and y to base
b and then multiply in base 5. In this algorithm, we consider the carries above the numbers as
well as in the columns. We will prove that

e Gad) _s@)
i (@)  b-1

We will conclude the paper with some open questions.

1. FIRST SUM
To compute
15
o D L),
i=0
we begin with the function

f(x) = (1+ +1+éx+ +ex)n = (rb/2-1+Lb/2Jex)n
S —— —
[6/27 times Lb/2 f times

The motivation for this function comes from the fact that in the base b representation of i =i, ...
iy, the j® digit of i, i ;» 18 either small or large and thus contributes 0 or 1 to the number of large
digits in . Expanding the product, we see that there is a 1-1 correspondence between the num-
bers 0<i <b"—1 and the b" terms 1-e»®*. Therefore,

f(x)=(b/21+1b/2)e*)" = bill b
Thus, i=0
)= 3 (L),
and so we have that =0

-1
AR OE ;)(Lb(i))’”-

To continue our discussion, we need the idea of Stirling numbers of the first and second kinds. A
discourse on this subject can be found in [3]. A Stirling number of the second kind, denoted by
{%}, symbolizes the number of ways to partition a set of n things into ¥ nonempty subsets. A
Stirling number of the first kind, denoted by [7], counts the number of ways to arrange » objects
into & cycles. These cycles are cyclic arrangements of the objects. We will use the notation
[4, B, C, D] to denote a clockwise arrangement of the four objects 4, B, C, and D in a circle. For
example, there are eleven different ways to make two cycles from four elements:

(L2314], (L2413, [L3402] [2,3,4]01),

(1,3,2](4], [L4,2](3], [14,3][2), [2,43]01],

[1,2103,4] [L3][2,4], I[1,4](2,3]
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Hence, [3]=11. Now it can be shown, by induction on m, that
JARIEE Z{ }n’ (Lb/21e"Y ([b/2]+1b/2)e")",

where nl =n(n—1)---(n— j+1). The last quantity is known as the j® falling factorial of n. A
discussion of this idea can be found in [3]. Thus,

%(% @)" = Z {’;’} wllb/2) b = bné {f;ﬂ (L%_AJ)’ l

j=1

Since 7 = j!(%), we have proved the following theorem.

Theorem 1: Let m and n be nonnegative integers. Then
= -
m b/21Y .
FE oy =3 (B2 (7).
i=0 J=1

To illustrate this theorem, if b =5, m =3, and » is a nonnegative integer, then

36 . 6

Z(LS( ))3 _—1—2-5—71 +-IEYI +Es—n

2. SECOND SUM

Let m and » be positive integers. The determination of the sum

1071

Z (51:®)"

10”

was an open question in [4]. In [10], David Zeitlin presented the following answer to the problem
in base 10. He stated that if B™ denotes Bernoulli numbers of order 7, where

-l

(830())" = (n+m) ZlO’ (n-i-rln){n+z} B

then
10"-1

1071 Z

i=0

To compute
155,
b_n Z (Sb(l ))m,
i=0

we make use of the function (g(x))", where g(x) =1+e* +e* +..- +e®D*  The motivation for
thlS function comes from the fact that in the base b representation of i =i, ... 4,j, the j% digit of 7,
i;, contributes /; to the digital sum of i. Expanding the product, we see that there is a 1-1 corre-
spondence between the numbers 0 <i <5" —1 and the b" terms 1-e%®* Therefore,

(g0 = z LenOr
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Thus, for m> 1, we have

dm n K= ~\m _,s(i)x
W(g(x)) = 2 (s(0)"e? ",
i=0
and so we have that

dr n b"-1 o
GOy =2 6o

Now we need Faa di Bruno's formula [8]. This formula states that if f(x) and g(x) are func-
tions for which all the necessary derivatives are defined and m is a positive integer, then

P CORID NI L paed) RO

o e
n.+2n2+...+m,,m=mn1....nm. m m

,(%g(x))"'_,_(%g@)}"”
1! m! ’

where n,, n,, ..., n,, are nonnegative integers.

It follows that
—gc—;(g(x))" - Z nmg(x)n—nl—nz_ -
m+2my+ - +mn,=m
|
m (g(l)(x))nl (g(Z)(x))nz ven (g(m)(x))nm)

A1), 1 Yy

where m is a positive integer and »;, n,, ..., n,, are nonnegative integers. Thus,

%(g(o))" = Z nwg(o n—my =ty = =Ny,

m+2ny+ - +mn,=m

TG & O )" - )™

Equating the two expressions for d‘i—':(g(O))" and simplifying gives the following theorem.

Theorem 2: Let n and m be positive integers and n, n,, ..., n,, be nonnegative integers. Then

P .
.b_ng(sb(l)) - Z (1!)'11”1!(2!)712”2!_”(m!)nmnm!

m+2nmy+ - +mn,=m

-(gD(0) /Y1 (gD (0) / b)™ -+ (g™ (0) / BY'mpitrat = *m

where g(0) =0 +1 +---+(b-1).
It might be noted that, in [4], formulas for the sums
] 1

107 Z_; (50"
were given for m=0,1,...,8. Using the formulas we just derived, we have the new formula for
m=29, that is,
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10-1
E: (10())9 387420489 94-1420541793-n8

10" 512 128
. 12153524229 ol + 7215728751 ¢
256 160
30325460319 s 2286016425 o
512 128
30058716303 3 2699999973 ,
+ " - "
640 160
3. THIRD SUM
We next try to tackle the sum
1 Bl

Zsb(l) Lb(’)

i=0

The base 10 result is
101 5
10,, ZSIO(I) - L0 —_” +4n

From the previous two sections, we have established the formulas

Z(b())2 b 2b+1 P bzlgln

a3 oy = (L2 ((ngzl)-(t”;fl)zjn.

Now, consider the function

h(X) — (1 +e +e2x T+ +e([‘b/2'|—l)x +e(l’b/2'|+1)x 4oes +ebx)n.

and

The motivation for this function comes from the fact that, in the base b representation of i =i, ...
i, the j® digit of i, i ;» contributes either i; or i, +1, depending upon whether or not the ijth
digit is small or large, respectively. That is, the A(x) function considers both the digital sum and
the number of large digits, compared to the g(x) function, where we were only concerned with
the digital sum. Expanding the product, we see that there is a 1-1 correspondence between the
numbers 0<i <5” —1 and the »” terms 1-e(*@*1*  Therefore,

h(x) — (1 +e* +e2x +oee +e(|'b/2'|—1)x +e(|'b/2]+1)x FR +ebx)n
b"-1
= Z l.e(sb(i)+Lb(i))x'
i=0

Thus,
b"-1

B'(x) = Y (5,3) + Ly (i) el @+
i=0
and so we have that

1998] 411



ON CERTAIN SUMS OF FUNCTIONS OF BASE B EXPANSIONS

-1
h"(0) = ZO (50)+ L))"

Computing #”(0) and dividing by 5", we obtain

b" ~]

(B2 +b-2[b/21Y , [(263+362 +b—6[B/2T) (B*+b-2[b/2])
= —__Zb n°+ 6b - 2b n.

b"~1 b"-1

_ (5@ +L,@)* - (Sb(l))2 (L)’
Zsb(l) L) = Z
bn

But,

i=0 i=0

( LS 40+ LOF 5 (0 z(lq,o))ZJ

Substituting our three formulas in the above expression, we have

b”—l 2
gsb() L0) = (——” xo- 20 2‘)

A 26°+30* +b-6[b/2T ) (B2 +b-2[b/2]Y ,
2 6b 2b
1(2-2b+1 5, b*—1
20 4 "2 ")

[

_1{(1B/21Y 2, [ (LB/21)_(1B/2)Y
> ( 5Tt 5 5 nj.
Collecting like terms, we have the following theorem.

Theorem 3: Let nbe a positive integer. Then

Zsb(z) [b(l)__{(b2+b 2['b/2'|) b -2b+1_(|_b/2_|)2}12

o 25 4 b

J1(28° 4382 +b-6b/2T ) (¥ +b-2[b/21Y
2 6b 2b

B bzlgl_((I_bI/JZJ)_(LbI/)Z_])ZJ]n_

Furthermore, we have the following corollary.
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Corollary: Let n be a positive integer and b be a positive even integer. Then

bfs,,(z) Le =2+ ln

4. FOURTH SUM
We next determine the sum
$ Glad)
o (s@)

where C,(x; y) denotes the sum of the carries when the positive integer x is multiplied by y, using
the normal multiplication algorithm in base b arithmetic.
Noting that L;(2") = C,,(2; 2'), this sum is a generalization of the sum

Z L10(2'

which was a problem considered in [6].
To compute this sum, we need the following lemma.

Lemma 1: Let d be a digit in base b and y be any positive integer. Then
G ) =5 (d-5,0)~ @)
Proof: The proof of Lemma 1 relies on Legendre's theorem,
@) =n-6-DY| 2|
21

where 7 is a positive integer. Legendre's theorem and its proof can be found in [5].
To prove Lemma 1, we note that

50)=y-@-DY| | ad s@)=dr-E-0Y|%|

t21 121
Multiplying the first equality by d and subtracting the second equality from the first yields
a-50)-5@)=6-03(|%|-d| %|)
t21
Dividing by 5 —1 and observing that the sum is C(d; y) gives us the result.
Armed with Lemma 1, we have the next lemma.
Lemma 2: Let s,(n) denote the base b digital sum of the positive integer n and C,(a; @) denote

the base b carries in the normal multiplication algorithm of multiplying @ and a’. Let x and y be
positive integers. Then s,(x-y) =s,(x)-5,(y) — (6 -DC,(x; ).

Proof: Consider x =X, x;b', the base b representation of x. Then, counting the top carries
from the multiplication using Lemma 1 and counting the bottom carries from the addition, we
have
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21 i=0

G5 )= 5 1 2590 - sb(xy))+zﬂ—-°’ﬂ"lJ—i

=L s0) -1 b(xy)+2[b,J Zzl

121 i=0

= Z___lsb(x)sb(y) ~ b——fg 5 (y)+ 7)_—1 (v~ 5, (%))

- Z — (xb'y =5, (x'y))

- '1;—_1 (5,(0)8, () — 5,()).

Next, applying Lemma 2, we obtain s,(a™*') = s,(a)-s,(a' )v— (b-1)Cy(a;a’). Thus, ifnisa

positive integer,

ic(a.ai): 1 n( Sb(ai) _Sb(ai+1)J
= %@ b-15\(s@) (s@)

1 sb(an+1)

1
5175 (@

Therefore, we have the following theorem.

Theorem 4: Let s,(n) denote the base b digital sum of the positive integer n and C,(a; a') denote

the base b carries in the normal multiplication algorithm of multiplying @ and a’. Then

v Gl ai_) _ Sb(a)'
o (s@)y b-1
To illustrate this theorem, if =3 and a = 14, then
i C3(14 14%)

i=1

=2.

That is, if we count the carries in multiplying 14 =112, by powers of 14, using the usual base 3
muitiplication algorithm, and divide by the appropriate power of 4, the result is 2. In fact, the

infinite series begins with
S 7 . 14 18
4716 64 256
5. QUESTIONS

Some open questions remain. Can a formula be found for
b1

Z(Sb(l))"‘ (L),

where n, n;, and n, are positive integers? Can a formula be found for
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b -1
Ly 19
bn i=1 Sb(’)
Also, can a formula be found for
b1
1 : ,
7 25,05, 0,
1 i=0
where b, = b)’? What about a formula for

b"-1

31,7 Z 5 (8,@)?

i=0

Finally, find the sum
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o

Dr. Edouard Zeckendorf

Among key words associated with Fibonacci numbers are Lucas numbers, Binet form, Pell
numbers, Wythoff pairs, and Zeckendorf sums. The term Zeckendorf sum entered the language
some time after 1939—a surprisingly late date, as it would appear that most named mathematical
entities as simple as these sums were named centuries ago!

Actually, it was not until the early 1950s that Zeckendorf sums were first discussed in a
publication, and not until 1972 that the chronology was clarified, by Zeckendorf himself. In an
introductory Summary [7], he writes:

Every natural number can be represented as a sum of distinct and non consecutive Fibonacci numbers or

of non consecutive Lucas numbers. Using Fibonacci numbers, such a representation is always unique.

It is the unique representations that are now known as Zeckendorf sums, and their existence and
uniqueness, as Zeckendorf's theorem. Shortly after the above-mentioned Summary, Zeckendorf
indicates that these sums date from the year 1939.

In 1952, C. G. Lekkerkerker published an account [5] of Zeckendorf's theorem. This article,
in Dutch, led to a longer work in 1960, in the prestigious Journal of the London Mathematical
Society; there, D. E. Daykin [2] proves that the Fibonacci numbers form the only sequence of
natural numbers for which Zeckendorf's theorem holds. Daykin's paper is cited by many later
papers on Zeckendorf sums and their generalizations.

In view of the widespread currency of the terms "Zeckendorf sum" and "Zeckendorf repre-
sentation," it is surprising how little is known about the life of Zeckendorf. Fortunately, Jean
Godeaux [3] was able to obtain the reminiscences of P. R. Charlier, a retired engineer who knew
Zeckendorf when both were prisoners of war. In the material that follows, Mr. Charlier's account
is supplemented with information provided by Centre de Documentation Historique, Forces
Armees Belges [6].

At the end of the nineteenth century, Dr. Abraham Zeckendorf, a dentist, and his wife,
Henriette van Gelder, set up his practice in Liége, Belgium. Dr. Zeckendorf was a Dutch citizen
and an active Jew. In May 1940, because of the Nazi invasion of Belgium, the Zeckendorf family
fled to Nice, France.
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The son, Edouard, born in Liege on May 2, 1901, was recognized early as a brilliant student.
Speaking fluently both Dutch, the language of the Zeckendorf family, and French, the official
language of Liege, Edouard attended the Royal Athenaeum of Liége from 1912 to 1919. There
he studied Greek, Latin, English, German, mathematics, and drawing.

Soon after the end of World War I, Edouard enrolled in the University of Liége, where, in
1925, he became a medical doctor, specializing in surgery and delivery. In the same year, he
became an officer in the Belgian army. Between 1927 and 1931 he obtained a License for Dental
Surgery, and in 1929 he married Elsa Schwers, a nurse and member of the Reformed Church,
born July 2, 1889 in Liége.

Elsa, like Edouard, was an artist. Before the marriage, Elsa had produced many fine draw-
ings of Paris, both in pencil and charcoal. She continued to paint many oils; during his free time,
Edouard continued his own drawing and mathematical investigations. The two often attended art
exhibits and were friends of the best local artists. They had no children, and Elsa's sudden death
in 1944 was extremely painful for Edouard.

According to Mr. Charlier, from 1930 to 1940 Dr. Zeckendorf was in charge of the military
Hopital Saint Laurent in Liége. On May 28, 1940, with the surrender of the Belgian army, Dr.
Zeckendorf was taken prisoner by the Germans. As a POW, he stayed in several oflags until
1945. (An Oflag was an Officierenlager, a camp for imprisoned officers, as contrasted to a
Stalag.)

During his captivity Dr. Zeckendorf provided medical care to allied POWs. He also sketched
soldiers representing the many various peoples of the Soviet Union. Mr. Charlier wrote that Dr.
Zeckendorf escaped from a camp, and afterwards, his status as a nonpracticing Jew was ignored
by the Germans. Records described in [6] confirm that Dr. Zeckendorf did attempt an escape, but
no details are given in [6]. Both Mr. Charlier's account and the military records indicate that Dr.
Zeckendorf chose to continue his care of POWs in Germany despite opportunities to return to his
home.

After his liberation, Dr. Zeckendorf returned to Lieége, where he found the family house
occupied by the army. At first, the house had been deemed "abandoned" by the Germans, who
occupied it and stole or destroyed the furnishings and other possessions. Later, the house had
been occupied by Americans. Dr. Zeckendorf decided to go to Nice to care for his aging mother,
his father having died only a few months after Elsa had died.

From March 16, 1949, to March 23, 1950, Dr. Zeckendorf headed the Belgian mission near
the United Nations Commission for India and Pakistan. He was in charge of the inspection of the
500-mile long cease-fire line. When he returned from India, Dr. Zeckendorf brought with him
many original sketches and photographs of the Himalayan foothills.

During his military career, Dr. Zeckendorf was honored with the following awards: Officer of
the Order of the Crown (1946); Prisoner of War Medal (1946); Officer of the Order of Leopold
(1949); Officer of the Order of Leopold II (1950).

Dr. Zeckendorf married Marie Jeanne Lempereur in Brussels, Belgium, on July 27, 1959.
Miss Lempereur's family was Belgian but had lived in Manitoba, Canada, at the time of her birth
in 1908. When she was a young girl, the family had returned to Belgium. During the eighteen
years of their marriage, Dr. and Mrs. Zeckendorf enjoyed an active life, visiting exhibits and
museums, traveling and visiting cities of artistic interest, and reading. After his second wife's
death in July 1977, Dr. Zeckendorf continued his activities, even after the discovery of cancer.
Near the end of his life, he often visited friends in Liége, and he regularly attended the monthly
meetings of the Société Royale des Sciences de Liége. He died in Liége on May 16, 1983.

It appears that [8] was Dr. Zeckendorf's only publication in English, whereas some thirty
others in French were published in Mathesis and Bulletin de la Société Royale des Sciences de
Liége. These include several articles on each of the following subjects: Fibonacci and Lucas
numbers, primes, quadratic equations, and combinatorial arrangements of letters. As citations of
these publications can be downloaded easily from the MathSci database, they are not listed here.

1998] 417



EDOUARD ZECKENDORF

Dr. Zeckendorf published one paper [8] in The Fibonacci Quarterly. In the same issue, the
founding editor, V. E. Hoggatt, Jr., also published a paper [4] dedicated to Dr. E. Zeckendorf. A
few of Dr. Zeckendorf's letters to Dr. Hoggatt, dating from July 1971 to February 1973, survive.
They reveal a warm friendship and enthusiasm for recurrence sequences. Their tone is, of course,
much less formal than other materials unearthed for this sketch. Of particular note is the distinc-
tive signature found on all the letters and reproduced here:
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Ducci-sequences are successive iterations of the function
f(xl) X35 -+05 xn) = (lxl -x2|’ |x2 _le’ ey Ixn _xll)'

Note that f: Z" — Z”, where Z" is the set of n-tuples with integer entries. Since they were intro-
duced in 1937, Ducci-sequences, also known as the n-number game, have been studied exten-
sively (e.g., [1], [31, [5], [6], [7], [8]). In 1982, Wong suggested a generalization which he called
Ducci-processes [12]. Ducci-processes are successive iterations of a function g: Z” — Z” which
satisfies the following three conditions:

(i) there exists a function #: Z*> — Z;
(i) g0x, Xz, .., X,) = (h(xy, X,), By, X3), ..., P, X;))
(iii) the 7 entries of g¥(x,, x,, ..., x,) are bounded for all k.
Note that Ducci-sequences are an example of a Ducci-process with A(x, y) =[x —y|.
In [4], Engel introduced the Ducci-process D,,, where A(x, y) = (x + y) (mod m):
D, (x;, x,, ..., x,) = (x; +x, (mod m), x, + x; (modm), ..., x, + x, (mod m)).

Since numbers are reduced modulo m, we can view the domain and range of D,, as Z7, the set of
n-tuples with entries from Z,. Because Z” is a finite set, the iterations {DJ(X)} will eventually
repeat, resulting in a cycle. As with Ducci-sequences, the goal is to characterize cycles in terms
of n and m. This is done in [9] for n=4.

We will begin with some general observations about D,,. Then we will focus on 5-tuples,
where the Fibonacci numbers play a prominent role.

GENERAL OBSERVATIONS
To simplify notation, we define two functions on Z”. For X = (x;, x,, ..., x,) € Z",
D(X)=D(x;, %5, ..., %,) = (3, + %, %, + X3, ..., X, + %),
H(X)=H(x,x,,...,x,) = (%, %3, ..., X, X))

We write D(X) = (x, +x,, X, +X;, ..., X, + X;) (mod m) in lieu of D, (X). Note that D and H
are commutative, linear operators; moreover, D(X) =X + H(X). Iterations of D and H are de-
fined as D/(X) = D(D’}(X)) and H/(X)= H(H’7'(X)), respectively. Thus, H"(X)= X and
HI(X) = B/ @),

A further simplification occurs with the introduction of the special n-tuple 4=(1,0,...,0).
Using the function H, we can write X = (X, X,, ..., X,) in terms of 4:

X=x-10,0,...,00+x,-(0,1,...,0)+ -+ +x,-(0,0,...,1)
=x,- A+%y- HY(A) +x3- H™2(A) + - +x,_;- H(A) +x, - H(A)
= Zician % ™ A).
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Hence, ;
D(X) =24, . H' e (D(4)).

Similarly, D’(X) can be written in terms of D’(4).

As we noted above, the iterations of X will eventually lead to a cycle. That is, there exist
nonnegative integers / and s for which D"**(X)=D*(X) (mod m). If / and s are as small as
possible, then we will write [,,(X) =17 and §,(X) =s. When the context is clear, we will omit the
subscript m. Thus, [(X) is the length of the cycle generated by X, while 3(X) is the number of
iterations necessary to reach that cycle. Considering all members of Z,, let ¥ and W be the tuples
for which [(Y) and 3(/) are maximum, respectively. We denote these maximum lengths by [(m)
and &(m). Our goal is to characterize [(m) and 3(m).

Theorem 1: For all n, [(m)=1(4) and 8(m) = 8(A). Further, if m=pf.pl..... pj.‘f , Where the
p,'s are distinct primes, then [(m) = lem{{(p{"), ..., I(p}" )} and 8(m) = max {3(p}), ..., 3(ph}.
Proof: Let X =(x,x,,...,x,) €Z. As we noted above, D/(X) = X4, x,H"(D/(4)).
Thus,
DI(A)+§(A)( X) = Zl<i<n X, Hn+l—i ( DI(A)+§(A) ( A)) (mod m)
= Zigien 5H™ T (D¥D(4)) (mod m)
= D¥(X).
Hence, for all X, 3(X) < 8(A4) and I(X)|I(4). We conclude that I(m) = [(4) and 3(m) = 3(A4).
Using the prime decomposition of 7, we know that
2,22, 02, 0-0Z,,

where @ denotes the direct sum. For an n-tuple

(xla x2: LA xn) E((xl’ x2) tees xn)) (L) (xla x2a LR xn))'
ez, € Z:;"‘ € Z:;;,
Thus, D"**(X)=D*(X) (mod m) if and only if D"**(X) = D*(X) (mod p&) for 1<i<j. Con-
sequently, [(m) =lem{l(p"), ..., [(¥)} and &(m) = max {8(p{"), .., (p}')}. D
Theorem 1 greatly simplifies our work. To determine [(7) and 3(m), it suffices to calculate
[,(4) and 8,(4) for u= p* with p a prime. Since our ultimate goal is to characterize I(m) and
8(m) for 5-tuples, we narrow our focus to #-tuples with 7 odd.

Lemma 1: Let nbe odd. If mis odd, then for each n-tuple X there exists a unique n-tuple ¥ such
that D(Y) = X (mod m).

Proof: Let X =(x,x,,...,x,) and ¥ =, ),,...,»,) be n-tuples. In order for D(Y)= X
(mod m), we must have

()’l +y2’ BY) +y3: s Vn +y1) = (xla X505 xn) (mOd m) (1)
Hence,

01 +3) -0 +y)+--+ D™, Y+, )= leiSn(_l)Mxi (mod m),
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which simplifies to
20 = Ziien(-D'*'%; (mod m). @

Since m is odd, 2 has an inverse in Z,, so (2) has a solution for y,. We solve, in turn, for the
other entries of ¥ using (1):

Y =%-y (modm), y3=x,-y, (modm),...,y,=x, ¥, (modm). (3)
Since the solutions in (2) and (3) are unique, Y is unique. O
Theorem 2: Let nbe odd. Then 3(m) =0 if and only if m is odd.

Proof: We begin with the case in which m is even. Suppose there exists an n-tuple ¥ = (3,
Va5 --.» V) such that D(Y) = 4 (mod m). Then

O+ Y0+ s Yyt 1) =(1,0,...,0) (mod m). )

As in Lemma 1, (4) implies 2y, =1 (mod m). But this is impossible since m is even. Thus 4 is
not in a cycle and 3(4) >0. Hence, when m is even, 8(m) # 0.

When m is odd, we know from Lemma 1 that every n-tuple has a predecessor. For X €Z7,
we can find a sequence of n-tuples such that

D) =X, D%) =%, D) =Y, D)=, DE)=Y,... (modm) ®)
or, equivalently,
D(E)= X, DXB) = X, (%)= X, D'(F)= X, D(§) = X, ... (modm).

Since there are only a finite number of n-tuples, eventually the sequence in (5) must repeat. That
is, ¥, =, (mod m) for some i > j. This implies D/(})=D’(¥,)= X (mod m). Hence, X is in a
cycle and 5(X)=0. We conclude that §(m)=0. O

Using Theorems 1 and 2, we see that, when n is odd,
8(m) = max {8(2°), 8(p}*), ..., (P )} = s(2),

where the p,'s are distinct primes and m=2*.pf2 ..... pj’.‘f. Thus, finding 3(m) requires only cal-
culating 8(2F).

As for [(m), since 4 is in a cycle if and only if m is odd, there are two cases: [(p*), where p
is an odd prime and [(2¥), In much of what follows, we will consider the first case, leaving the
second, special case for the end.

Theorem 3: Let n be odd and p be an odd prime. Suppose that D'(4)= A4 (mod p*). Then
DP'(4) = A (mod p**'). Thus, [(p**) equals either [(p*) or p-I(p%).

Proof: We begin by noting that Theorem 2 guarantees the existence of >0 for which
D'(A) = A (mod p*). Rewriting the congruence as an equation gives

D'(A)= A+, b, .. b p*)= A+ 3, bp*H™(4).
Thus
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D¥(4) = DA+ e, by H™(4))
= D'(A) + Ty, b H™ (D' (A))
= A+ Ly bipkH nﬂ_i(A) + Licicn bipkH n“‘i(A +2e j<n bjpkH n+1_j(A))
= A+ 2 2bipkH s (A)+ P2k Zicien i< j<n biij2 n+2—i_j(A)
= A+ Lo, b0 B (D) + p* X,
where X, = X, X 1, B8, H"*77/ (4). By induction,
DM(4) = A+ Ty, Mo p H™ 7 (A) + P X,
for some n-tuple X,. Hence,
DP(A) = A+ Ly, PP H™ 7 (A) + pkap
= A+ T, b H™ T (A + pP X »
= A (mod p**).
Now let £ =[(p*). If p|b, for all i, then D'(4)= A (mod p**'). In this case, I(p**) =1(p*).
On the other hand, if p/, for some i, then [(p**) = p-1(p*). O
Corollary 1: Let n be odd and p be an odd prime.
(i) 1(p*) = (p), then [(p*)=p* ' Y(p) forall k > 2.
(i) If [(p?) = [(p), then there exists u > 2 such that {(p*) =(p) for all k¥ <u and
(") = p*-U(p)for all k >u.

Proof: The proof of Theorem 3 shows that, if D'(4)= 4 (mod p*) and D'(4)# 4 (mod
P, then DP'(4)= A (mod p**") and D”(A)# A (mod p**?). Hence, if I(p**) = p-1(p"),
then [(p**%) = p?-[(p*). Results (i) and (ii) follow immediately from this observation. [

Corollary 1 greatly reduces our work since {(p*) = p*-I(p) for some s<k—1. This allows
us to focus on I(p)

5-TUPLES AND FIBONACCI NUMBERS

We now restrict our attention to S-tuples. We begin by considering D/(A4). Surprisingly,
D’(A) can be expressed in terms of the Fibonacci numbers. We will use the standard notation:

‘E;):O? EZL E?_:L a,nd F}-ﬂ-i:‘F}—]N%-F}'

Theorem 4: Fori>1,
D)= @ B +2" Ft -+ 2By 4+ Py ) (LLLLD

i 6
+H (F&Hl, Fii’ 07 0’ El)

Proof: We proceed by induction. First, note that
A=(10,0,0,0),
D(4)=(1,0,0,0,1),
DHA)=(1,0,0,1,2)= H'(F, F;, 0,0, F).
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Thus (6) holds for i =1. Now assume (6) holds for i. Then

D4 = Q¥ F 4+ 22OF, 4 422 Fy y + Fy)-(2,2,2,2,2) -
+ Hi(F‘2k+2’ F;i’ O’ Ei’ ‘F;k+2)
and
D¥*2(A)= Q¥ F+ 24 F, +---+2%F,_,+F, ,)-(4,4,4,4,4)
+ H (B + By, By, By By + B, Fjig + B + )
=@ R+ 2" e 42 B+ 27K, 5)-(LLL L)
+ (F‘Zi’ Ei’ Ei’ F‘Zi’ El) +Hi(]72i+27 0’ O> Féi+2’ Ei+3)
=@ PR+ R+ 4+ 2y 42’ F + ) (LL L L))
+ HHI(FZiH’ Fi42,0,0, F50). O
Since the sum in (6) will occur frequently, we will adopt the following notation:
SUM(2i) = 2% F, + 2%, + ...+ 22F,, ,+F,_,.
Note that SUM is defined only for even integers. We use this notation to rewrite (6) and (7) for
i1
D¥(4)=SUM(2)-(1,1, L, L )+ H' (Fyy, 5, 0,0, F); ®)
D2i+1(A) =2- SUM(ZI) : (1’ 13 1’ 1’ 1) +Hi(F‘2i+2’ F‘Zi’ O> Féi) F‘2i+2)' (9)
Theorem 5: Let m be odd. Suppose D'(4)= A (mod m).
If [ is even, then F{ =0 (mod m), F{,; =1 (mod m), SUM(I) = 0 (mod m), and 5|I.
If [ is odd, then F =0 (mod m), F,, =—1 (mod m).

Proof: If [ is even, then (8) applies with 2 =[. To simplify notation, let s = SUM(I). Then
DI(A) = (S, S, S, S, S) + HI/Z(E+19 Fi’ O’ 0’ Fi)
=H"(s+F,,s+F,s,s,s+F)
=(1,0,0,0,0) (modm).
Hence, 5|, s=0 (mod m), F; =0 (mod m), and F,, =1 (mod m).
If I is odd, then (9) applies with 2i +1=[. Let s=SUM(—1). Then
DI(A) =S (2’ 2’ 2) 2a 2) + H(I_l)/z(Fi+l’ Fi-la 0, E—la E+l)
= H({—l)/2(2,s+Fi+l’ 2'S+Fi_1, 2'S, 2'S+E—l’ 2.S+Fi+l)
= HOV22(2.5,2- 5+ F_;, 2-5+ Fyy, 25+ Fyy, 2-5+ Fy)
=(1,0,0,0,0) (modm).

Hence, 2-s=1 (mod m), F;_; =-1 (mod m), and F{,, = -1 (mod m). The last two congruences
imply that /; =0 (mod m). O
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PROPERTIES OF F; =0 (mod m)

For m odd, I(m) equals the smallest positive integer [ for which D'(4) = 4 (mod m). From
Theorem 5, we know that Fy =0 (mod m) and either F{,, =1 (mod m) or Fy,,=-1 (mod m),
depending on whether [ is even or odd, respectively. Thus, we now consider numbers K for
which Fy =0 (mod m). We begin by observing that there does exist a X >0 such that F; =0
(mod m). Since Z, is finite, there exist # > j such that F; = F; (mod m) and F,, = F},; (mod m).
These congruences together imply that F_; = F,_; (mod m) which, in turn, implies F,_,=F,_,
(mod m). Continuing, we see that F,_; = Fy =0 (mod m).

Numbers K for which F; = 0 (mod m) have been studied in [2], [10], and [11]. The lemmas
that follow, as well as the observations in the previous paragraph, are well known. Their proofs

are included because they involve techniques that we will use when we derive results about [(m).

Lemma 2: Suppose Fy =0 (mod m) and Fy,, = a (mod m) with K >0. Then
Fy_;=(-1Y*'a-F, (modm) (10)
and .
Fy,;=d -F; (modm) 11)
foralli2land j=0,1,...,K-1.

Proof: To prove (10), we first note that F =0=—-a-F, (mod m) and Fy_, = Fy,, —Fy =
a-0=a-F (mod m). Thus, (10) holds for j=0 and j=1. Now assume (10) holds for j—1
and j; then

Feiony = Fr-gn = F-;
=(-Va-F,_,—(-1Y*'a-F, (modm)
=(-a-(F;_,+F)) (modm)
=(-1)’"?a-F,,, (modm).
To prove (11), we make use of the well-known identity: F,,; = F,_|F; + FF},;. Now
Fyij=Fjug = FiFg  + FjyFy = F-a+ Fj,,-0=a-F; (mod m).
Thus (11) holds for i =1. Now assume (11) holds for i. Then
Fipksj = Fx sy = FigajFxa+ Figy jnfx = a Fi-a= atl. F; (mod m). O
Lemma 3: Suppose Fy =0 (mod m) and Fy,, =a (mod m) with K>0. Then a* = (-1)* (mod
m). Thus, when m> 2, a® =1 (mod m) if and only if X is even.
Proof: By (10),
1=F=F_x = (—I)K a-Fp_ = (—I)K -a-a= (—-l)K -a* (mod m).
Thus a® = (-1)X (mod m). As for the second statement, when m>2, (-1)X =1 (mod m) if and
only if K is even. O

In Theorem 5 we consider [ for which D'(4) = A (mod m) where, of course, m is odd. We
showed that /; =0 (mod m) and either F{,, =1 (mod m) or F,,=-1 (mod m) depending on
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whether [ is even or odd, respectively. Lemma 3 shows that the second case with [ odd is impos-
sible. Thus, when D'(4) = A (mod m), | is even with F; =0 (mod m) and F,, =1 (mod m). We
now show that there is always a K > 0 for which F; = 0 (mod m) and Fy,, =1 (mod m).

Lemma 4: Suppose Fy =0 (mod m) and Fy,, = a (mod m) with K > 0. Then:
Fox =0 (mod m) and Fyp,; = (-1)* (mod m);
Fir =0 (mod m) and Fj,, =1 (mod m).
Proof: Using Lemmas 2 and 3, we find:
Fyx =a?F, =0 (mod m) and Fy,; = a*F, = (=¥ (mod m),
F, =a*F, =0 (mod m) and F,,; =a*F, = (-1)* =1 (mod m). O
Thus that there is always a K >0 for which Fy =0 (mod m) and Fy,, =1 (mod m). We
denote the smallest such integer by K(m). That is,
K(m) = min{K > 0| Fy =0 (mod m) and F,, =1 (mod m)}.
By Lemma 3, K(m) is even when m>2. We note that K(2) =3. The next lemma contains a
useful property of K(m).
Lemma 5: Let K >0. Then F; =0 (mod m) and Fy,, =1 (mod m) if and only if K(m)|K.

Proof: Suppose Fy =0 (mod m) and Fy ., =1 (mod m). By definition, K(m) is the smallest
number satisfying these conditions. Thus K(m)< K. Let K =¢q-K(m)+r, where 0<r < K(m).
Then by Lemma 2, Fy = Fx(,y., = F, (mod m). Since Fy =0 (mod m), £, =0 (mod m). Hence
r = 0. The converse follows immediately from Lemma 2. O

Corollary 2: Let m be odd. Then [(m) =lcm{5, j- K(m)}, where j is the smallest integer for which
SUM(j - K(m)) = 0 (mod m).

Proof: We know that [() is the smallest [ for which D'(4)= A (mod m). As we observed
above, [ is even, 4 =0 (mod m) and F;,; =1 (mod m). By Lemma 5, | is a multiple of K(m).
The conclusion now follows immediately from Theorem 5. O

By Corollary 2, when p is an odd prime, I(p*) is a multiple X(p*). The following lemma
connects K(p*) and K(p). This relationship will greatly aid in the calculation of [(p*).

Lemma 6: Let p be a prime. Then
(i) For k=1, K(p**) equals either K(p*) or p-K(p*).
(i) If K(p*) # K(p), then K(p*) = p*'- K(p) for k> 2.
@iii) If K(p?)=K(p), then there exists u>2 such that K(p*)=K(p) for k <u and K(p*)=
P K(p) for k>u.

Proof: This is a well-known result; its proof is given in [1]. Note the similarities between the
properties of K in this lemma and the properties of | in Theorem 3 and Corollary 1. O

We know that [(p*) is a multiple of X(p*), while the latter is a multiple of K(p). Thus,
I(p*) is a multiple of K(p). We conclude this section with a lemma that gives bounds on K(p).
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Although the result is well known [10], the proof is included because it shows the way in which
the different cases arise. As we will see, K(p) depends on the value of 5722 modulo p. When
p=S5, %2 is, of course, congruent to 0. Hence p=5 is a special case. For all other odd
primes, 579’2 is congruent to 1 or —1 depending on whether 5 is a quadratic residue or non-
residue of p, respectively. If p is congruent to 1 or 9 modulo 10, then

(5/p)=(p/5)=([10g+1]/5) = (£1/5) =1,

where (-) is the Legendre symbol. Hence 5 is a quadratic residue and 572 =1 (mod p). On
the other hand, if p is congruent to 3 or 7 modulo 10, then

5/ p)=(p/5)=([10g%3]/5) = (£3/5) = 1.
In this case, 5 is a nonresidue and 5¢7"Y"2 = —1 (mod p).

Lemma 7: Let p be an odd prime. Then

K(p)l(p-1) p=1lor9 (mod10),
K()|2p+2) p=3or7 (modl0),
K(5)=20.

Proof: By Binet's formula,

7 o 5P - (1-+5)
7 J52°

L (P)o[P)syucoaf P \so-3r2 (P )sr-1r2
_2P‘1[(1)+(3)5+ +(p_2)5” + D 5P

=52 (mod p)

and

oo Q5P - (-5
p+l — \/g 2P+

_Li(p+1) (P+)s, ... (P+])s(p32 , [P+]1)s(p-1r2
—2,;[( 1 )+( 3 )5+ +(p_2)5” + » 5=
=271[1+5¢7D2] (mod p).

When p=1 or 9 (mod 10), F,=1 (mod p) and F,,; =1 (mod p). These imply F, ;=0
(mod p). Hence by Lemma 5, K(p)|(p—1).

When p=3 or 7 (mod 10), F,=-1 (mod p) and F,,; =0 (mod p). These imply F,,, =-1
(mod p). By Lemma 4, F;,,, =0 (mod p) and F,,; =1 (mod p). Hence K(p)|(2p+2).

By direct calculation we find that K(5)=20. O

PROPERTIES OF SUM (mod )

By Corollary 2, for odd m, [(m) =1cm{5, j- K(m)}, where j is the smallest integer for which
SUM(j - K(m)) = 0 (mod m). We now consider such sums.

426 [Nov.



DUCCI-PROCESSES OF 5-TUPLES

Lemma 8: Suppose Fy =0 (mod m) and Fy,, =1 (mod m), where K is an even positive integer.
Then
SUM(GK) = (2U DK ... 425 +1).SUM(K) (mod m).

Proof: The congruence certainly holds for j=1. Assume it holds for j and consider j+1:
SUM((j +1)-K) =2U*DE~4F, 4 2UDK=6 7 4o 4 2K F  +2K72F,
+ 2K g+ + 2Ry g + R JH)K-2
=2K . (25 F 4 25 SF, + o + F ) + 2572 F,
+ 25 B 4+ 22 F g+ Fpapra.
Now by Lemma 2, Fy.,, = F; (modm), ..., F{;,nx_p = Fx_p = F_, (mod m). Thus
SUM((j+1)-K) =25 .28, + 258, + .. + Fy_)) + 2K 2 F,
+ 25 B+ +22Fy y+ Fy, (modm)
=28 .SUM(K) +0+SUM(jK) (modm)
= 2K . SUM(K) + (U™ DK 4. 42X 4+ 1). SUM(K) (modm)
= (2% +2UDK ... 425 +1)- SUM(K) (modm). O
For odd m, [(m) is a multiple of j-K(m). Lemma 8 tells us how to find j. First, we cal-

culate SUM(K(m)). If SUM(K(m))=0 (mod m), [(m) = lem{5, K(m)}. On the other hand, if
SUM(K(m))# 0 (mod m), then we must select j so that

QUK ... 4 2K 4 1). SUM(K(m)) = 0 (mod m).
The next lemma will aid in calculating SUM(K(mm)) modulo m.

Lemma 9: Suppose Fy =0 (mod m) and Fy, =1 (mod m), where K is an even positive integer.

Then
K/2

SUM(K) = zl(fj)sf-l (mod m).
=
Proof: By Lemma 2, Fy_, = (-1)’*'F; (mod m). Thus
SUM(K) = 254 F, + 2K S F, + - + 22 F_, + F_, a2)
= 2K4F, - 2K¢F, ,—...~2F,— F, (modm).
In preparation for using Binet's formula, let a = (1++/5) and b = (1-+/5). Note that
a*—1=5+25, B —1=5-24/5,and (a®* -1)- (B*-1) =5.
Now, by Binet's formula, F, =[a’ -5’1/ (2/+/5). Thus 2/*F; =[a’ -b/]/ (2*/5). Hence
254, ,+2K8F, ,+. +2°F, +F,
=[a®2 -bE 2 X K 4 - P (225)
=[(@r+ak M+ + @+ D) - BE T+ -+ B2+ D)/ (225)

=[(@® -1/ (@*-1)- 5 -1 /(B> - 1]/ (2*V5)
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=[(@® -1)-(5-25) - (B¥ - 1)-(5+25)1/ (22-55)
=[5aX —2J5aX -5+ 245 5K — 2565 +5+24/5]/(2%-5/5)
= (@% -b%) 1 22J5) - (@* +b%) /1 (2-5)+1/5

=2K2F, 57 [(@® +b%)/2-1]. (13)
We use the Binomial Theorem to rewrite 5 [(@X +5%)/2—1] as
L Q+V5)X +(1-5)F K\,
5 l[( ) 2( A =jz=1(2j)51 L (14)

We now combine (12), (13), and (14) and reduce modulo m:
SUM(K) = -25*F,_, - 2K%F,_,—...—22F, — F, (modm)

= 282F +57(a* +b5)/2-1] (mod m) (15)
K/2

= ;(5)51‘1 (modm). O

Note that Lemmas 8 and 9 hold for all m so long as K is an even positive integer.

DETERMINING [(p) FOR ODD PRIMES

We are now going to determine [(p) for odd primes. We will consider four cases: p=3,
p=5, p=1or9 (mod 10), and p=3 or 7 (mod 10). Although the derivations will be different,
the final result will be the same. In order to state the result, we need some additional notation.
For a € Z,, with gcd(a, m) =1, we will denote the order of a in Z, by o,,(a). Thus, if s> 0 is the
smallest positive integer for which a* =1 (mod m), we will write o,,(a)=s. Of course, if a=1
(mod m), o,,(a) =1. What we will show is that for odd p,

I(p) =lem{5, 0,(25P)- K(p)}. (16)

We showed in Corollary 2 that [(p) is the least common multiple of 5 and j- K(p), where is
the smallest integer for which SUM(j- K(p)) =0 (mod p). As we observed above, to find j we
first calculate SUM(K(m)). If SUM(K(m))=0 (mod m), [(m)=Icm{5 K(m)}. On the other
hand, if SUM(K(m)) # 0 (mod m), then we must select j so that

(2UDKE 4 ... 4 2K 1 1). SUM(K(m)) =0 (mod m).
We begin with the two special cases, p=3 and p=5.
Theorem 6: 1(3) =40 and [(5) = 20.
Proof: By direct calculation, it is easy to verify that K(3) =8. Now, by Lemma 9,

SUM(8) = 24‘;(28]) 571 (mod 3) = (g) +(§)5 + @ 54 (g) 5% (mod3)
Ei—+2+1+2 (mod 3) = 0 (mod 3).

Hence [(3) =lcm{5, 8} = 40.
It is also easy to verify that K(5) =20. Now, by Lemma 9,
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SUM(20) = i@(})) 57! (mod5) = (220) (mod5) =0 (mod>5).
j=1

Hence 1(5) = lem{5, 20} =20. O

We note that (16) holds for p=3 and p=5. In both cases, K(p) is a multiple of ¢(p) =
p—1; hence, 2” =1 (mod p). Therefore, for p=3 and p=S5, 0,(25(”) =1 and [(p) = lem{5,
0,(2KP). K(p)}.

Next we consider primes for which p =1 or 9 (mod 10). We begin with a lemma which deals
with SUM(K(p’)) modulo p/ for j>1. At the moment we are concerned only when j=1.
However, we state and prove the more general case since we will need it later.

Lemma 10: Let p be a prime such that p=1 or 9 (mod 10). Let g= p’ for j>1. Then
SUM(K(q)) = 57[25@ —1] (mod g).

Proof: To simplify notation, let K = K(q). Since 5 is quadratic residue, the congruence
x* =5 (mod g) has a solution in Z,. Let rbe such a solution. Then Binet's formula holds in Z,,:

Fy =[1+r)X -1-r)X]1/(2Xr) =0 (mod g) a”n
and

Fiq =[A+r)** = (1-r)**1]/ (2¥*r) =1 (mod g). (18)
From (17), we see that (1+7)X = (1-r)X (mod p). Thus, we can rewrite (18) as
1= 147K [(1+7) = 1=/ K1) = 1+)K 12K (mod g).
Hence (1+7)X =2X (mod p). Now, by (15) of Lemma 9,
SUM(K) = 5 [((A+7)X +(1-r)%)/2-1] (mod q)
=572 -1] (modgq). O
Theorem 7: Let p be a prime such that p=1 or 9 (mod 10). Then
I(p) =lem{5, 0,(25P)-K(p)} .
Proof: Again, to simplify notation, we let X = K(p). Using Lemmas 8 and 10, we have
SUM(j- K) = (299K 4... £ 2K 4 1).SUM(K) (mod p)
= (UK 4. +25 41)- 525 - 1] (mod p)
= {[2" -11/[2% -1]}-57'[2% - 1] (mod p)
= 57'[2% ~1] (mod p).
We want the smallest j for which SUM(j-K) = 0 (mod p). Clearly, j =0,(2%) and hence [(p) =
lem{5,0,(2%)-K}. O

We now consider the case in which p =3 or 7 (mod 10). Since 5 is a nonresidue in this case,
Binet's theorem cannot be used as above.
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Lemma 11: Let p be a prime such that p=3 or 7 (mod 10) with p>3. Then SUM(Q2p+2)=3
(mod p) and SUM(K(p)) # 0 (mod p).

Proof: By Lemma 9,
& (2p+2),
SUMQ2p+2)= ). ( léj )5;—1 (mod p).

=1

Forl<j<(p+1)/2,
2p+2 2p+2
(p2j )EO(modp) and (pr;_zj)so (mod p).
Also
2p+2 2p+2
(p2+ )El(modp), ( I;; )El (mod p),
and

2p+2)_ Cp+2)2p+12p(p+p-1)---(p+2) _2:-1-2-(p-1! _
(P+1)_ (p+DHp(p-1)---2 = 1.(p-D)! =4 (mod p).

Since 5 is nonresidue, 5772 = —1 (mod p). Hence
SUM(2p +2) = (2P2+ 2) + (25:12)5(1:—1)/2 +(21§; 2)5}” + @g ! g)sp (mod p)
=14+4.-(-D+1+5 (mod p) =3 (mod p).
By Lemma 7, K(p)|Cp+2). f K(p) #(2p+2),let j=(2p+2)/K(p). Then by Lemma 8,
SUM(2p +2) = SUM(j-K(p)) = QU=DXP) ... 1. 2K(7) 1 1). SUM(K(p)) (mod p).
Since SUM(2p +2) # 0 (mod p) when p >3, SUM(K(p)) £ 0 (mod p). O
Lemma 12: Let p be a prime such that p =3 or 7 (mod 10) with p>3. Then 25(” £1 (mod p).

Proof: Assume to the contrary that 25(” =1 (mod p). This means 0,(2)|K(p) which, in
turn, implies that 0,(2)|(2p+2). But we know 0,(2)|(p-1). Since ged(p—-1, p+1)=2, 0,(2)
must equal 2 or 4. For p>3, 22 #1 (mod p) and s0 0,(2)#2. Now 2*=2 (mod 7), 2*=3
(mod 13) and, for all other p, 2* <p. Thus, for p>3, 2*#1 (mod p), so 0,(2)=4. We
conclude that 25(?) £ 1 (mod p). O

Theorem 8: Let p be a prime such that p=3 or 7 (mod 10) with p>3. Then we have {{p) =
lem{5, 0,(2%)- K}

Proof: To simplify notation, we let K =K(p). Using Lemma 8, we have SUM(j-K) =
QUK 4. 4+ 25 1 1)-SUM(K) (mod p). By Lemma 11, SUM(K) # 0 (mod p), so we want the
smallest j for which

2U-DK 4 425 41=0 (mod p). (19)

Now 2% #1 (mod p*) by Lemma 12. Thus, the smallest j for which (19) holds is 0,(25). O
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DETERMINING [(p*) FOR ODD PRIMES

We know that [(p¥) = p*-1(p) for some s<k—1. We now show that for most, if not all,
primes, [(p*) = p*~1-[(p). There are several cases.

Corollary 3: Let p be an odd prime with p #5. If K(p*) # K(p), then [(p*) = p¥1-1(p).

Proof: By the theorems above, we know that [(p) =lcm{5, 0,(25?)-K(p)}. Of course,
0,(2X(P)) is relatively prime to p. Further, for p#5, by Lemma 7, K(p) is also relatively prime
to p. Hence, gcd(I(p), p) =1.

By Lemma 6(ii), K(p*) = p*!-K(p) for k >2. We know from Corollary 2 that [(p?) is a
multiple of K(p?) = p-K(p); hence, p|l(p?). On the other hand, Corollary 1 tells us that [(p?)
equals either [(p) or p-I(p). Since gcd(I(p), p) =1, I(p?) = p-I(p). This, in turn, implies by
Corollary 1 that [(p*) = p*1-1(p) for k>2. O

When p =35, the proof of Corollary 3 does not apply since K(5) =20, hence ged(1(5), 5) # 1.
However, direct calculation shows that [(5?) #(5). Thus [(5%) = 571 -1(5) for k >2.

Even if K(p?) = K(p), it may still be the case that [(p?) = p-I(p). We now consider this
possibility.

Corollary 4: Let p be an odd prime with p#5. Suppose that K(p?) = K(p). If 0,,(25P) =
0,(25P), then I(p*) = p*~-1(p).
Proof: Let K=K(p). By Corollary 2 and Lemma 8, [(p?) =lcm{5, j- K}, where j is the
smallest integer for which
SUM(j-K)=(U™DX +... 425 1 1). SUM(K) = 0 (mod p?). (20)

First, suppose that SUM(K) =0 (mod p?); this implies SUM(K) =0 (mod p). By Lemmas 10
and 11, this can occur only when p =1 or 9 (mod 10), 0,(2%) =1 and 0,,(2) =1. But this con-
tradicts the hypothesis. Thus, SUM(K) # 0 (mod p?) and 2X #1 (mod p). Hence, the smallest j
for which (20) holds is 0, (2%) = p-0,(2X). The proof now proceeds in the same manner as the
proof of Corollary 3. We conclude that [(p?) = [(p) and hence [(p¥) = p*~1-[(p). O

As Wall points out, it is not known whether there exists a prime p for which K(p?) =K(p)
[11]. It has been verified that K(p?) # K(p) for p<10,000. Even if there is a prime for which
K(p*) # K(p), it may still be the case that [(p?) = p-I(p). In order for [(p?) # p-1(p), two con-
ditions must hold: K(p?) = K(p) and 0,.(2¥) = 0,(2%). Of course, although rare, it is possible
for an element to have the same order modulo p and p?.

BOUNDS ON [(p)

We now use the results from the previous sections to find bounds on [(p). First, we note an
alternate way to calculate [(p).

Corollary 5: Let p be prime with p>5. Then [(p) =lcm{5, 0,(2), K(p)}.
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Proof: By Theorems 7 and 8, it suffices to show that 0,(25(P)- K(p) = lem{0,(2), K(p)}.
Now 0,(25) = 0,(2) / gcd(K(p), 0,(2)). Hence

0,(2XP)- K(p) = 0,(2) / ged(K(p), 0,(2)) - K(p) =lem{o,(2), K(p)}. O

Corollary 6: Let p be prime with p>5. Define B(p) as follows:

B(p)=(p-1 p=1 (mod10);
B(p)=5-(p-1) P =9 (mod 10);
B(p)=5-(p*-1)/2 p=3or7 (mod10)and p=1 (mod 4);
B(p)=5-(p*-1) p=3or7 (mod10) and p =3 (mod 4)

Then I(p)|B(p).
Proof: We know by Lemma 7 that 0,(2)|(p—1). Now, for p=1 or 9 (mod 10), we have

K(p)|(p—1). Hence, for these primes, lcm{o,(2), K(p)}|(p—1). Thus [(p)|B(p).
For p=3 or 7 (mod 10), K(p)|2-(p+1). Therefore, for these primes,

lem{o, (2), K(p)}lem{p—1,2-(p+1)}.
Since
lem{p-1,2-(p+D}=(p*-1)/2 p=1 (mod 4),
lem{p-1,2-(p+D}=(p*-1) p=3 (mod 4),
(p)=B(p). O

For the bounds given in Corollary 6, the most common situation is that [(p) = B(p). This
is certainly the case when 0,(2) equals p—1 and K(p) equals p—1 or 2p+2, depending on
whether p is congruent to £1 or +3 modulo 10, respectively.

For p=1 or 9 (mod 10), {(p) can equal B(p) even when K(p) <(p—1). The smallest ex-
amples are

p=101  K(101) =50, 0,,,(2) =100, so [(101) =100 = B(101),
P=29.  K(29)=14,0,(2) =28, s0[(29) =5-28 = B(29).

However, [(p) < B(p) if and only if both K(p) and 0,(2) are less than p—1. The smallest exam-
ples are

p=401 K(401) =200, 0,,,(2) = 200, so [(401) = 200 < 400 = B(401),

p=89  K(89)=44,0,(2) =11, 50 [(89) =5-44 <5-88 = B(89).

On the other hand, for p=3 or 7 (mod 10), I(p) # B(p) if K(p)<(2p+2). The proof of
Lemma 7 shows that K(p)#= p+1. Hence, if K(p)=(2p+2), then K(p)<(p+1). However,
[(p) can be less than B(p) in a variety of ways. As we have already noted, this is the case when
K(p)<(@p+2). I can also occur even when K(p)=(2p+2). There are 8 possibilities: p =3
or 7 (mod 10), p=1 or 3 (mod 4), K(p) less than or equal to (2p+2). Here are examples of
each:

p=113  K(113)=76,0,,5(2) =28, so[(113)=5-532 <5-6384 = B(113),
p=73  K(73)=148,0,(2) =8, s01(73)=5-296 <5-2664 = B(73),

p=43  K(43)=88,0,,(2) =14, s0(43) =5-616 <5-1848 = B(43),

p=263  K(263)=176,0,5,(2) = 131, s0 [(263) = 5-23056 < 5-69168 = B(263),

432 [Nov.



DUCCI-PROCESSES OF 5-TUPLES

p=55T.  K(557) =124, 055,(2) = 556, 50 [(557) = 5-17236 < 5-155124 = B(557),
p=17  K(17)=36,0,(2)=8, so[(17)=5-72 <5-144 = B(7),

p=4T.  K(47)=32,0,(2) =23, so[(47)=5-736 <5-2208 = B(47),

p=127 K(127)=256,0,,,(2) =7, so[(127) = 5-1792 <5-16128 = B(127).

DETERMINING 5(2*) AND [(2%)

Finally, we consider powers of 2.
Lemma 13: For k>1, K(2F)=3-2*"1. Further, ged(SUM(5-K(2¥)),2) =1.
Proof: 1tis easy to verify that K(2) =3 and K(2%)# 3. Thus, for k > 1, K(2¥) =3-2%1.

To simplify notation, let K = K(2*), where k>1. Since ¢(2¥)=2*", K =3-4(2*). Thus
2K =1 (mod 2¥). Combining this observation with Lemma 8 gives us

SUM(SK) = (2*F +23% + 27X + 25 +1).SUM(K) (mod 2¥)
=5-SUM(K) (mod 2%).
Thus, to show gcd(SUM(5K), 2) =1, it suffices to show that gcd(SUM(K),2) =1. By Lemma 9,
3.2k—2

SUM(K) = }_:1 (3 '22;'1)51-1 (mod 2%)

32k2) -1\ .

= > (3‘2. )5/-1+53'2k "1 (mod 2)
- 2j
Jj=1

=0+1 (mod 2).
Hence gcd(SUM(X),2)=1. O
Theorem 9: 3(2%) = k and ((2F) = 15-2%1,
Proof: As can easily be verified, D'(4) = D(A) (mod 2). Thus 3(2) =1and [(2) = 15.
For k >1, set K = K(2¥)=3-2*"1. Note that X is even and gcd(K, 5) =1. Now, by Theorem
DF9SK(4) = DY (DK (4))
= D Y(SUM(5K)- (1, 1,1,1, 1) + H**'2(4)) (mod 2*)
=2F1.SUM(SK)-(1, 1,1, 1, 1) + D¥71(4) (mod 2%).
Since gcd(SUM(5K), 2) = 1, 2¥1.SUM(5K) # 0 (mod 2*). Hence, D*"**5(4) # D*7'(4) (mod
2%). On the other hand,
DK (4) = DE(D* (4))
= D¥F(SUM(SK)-(1,1,1, 1, 1) + H*'2(4)) (mod 2¥)
=2%.SUM(5K)-(1,1,1,1, 1) + D¥(4) (mod 2)
= D*(4) (mod 2¥).
Thus 3(2%) = kand [(2¥)=15-2*71. O
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CORRIGENDUM TO THE PAPER "ON MULTIPLICITY SEQUENCES"
The Fibonacci Quarterly, Vol. 35, no. 1, pp. 9-10

Piotr Zarzycki
Department of Mathematics, University of Gdafisk

It was pointed out by Professor Harvey L. Abbott that the statement in the Theorem from the

paper is not true. The counterexample given by Professor Abbot is as follows:

If g() =1 and g(n) =2n for n>1, then L.C.M.(g(m), g(n)) = g(L.C. M .(m, n)) for
any m, n and G.C.D.(g(m), g(n)) # g(G.C.D.(m, n)) for some m, n.

The Theorem is true in a weaker form:

If g is a multiplicity sequence and g is also quasi-multiplicative which means that
g(m)g(n)=cg(mn) for any relatively prime m,n, then g is a strong divisibility
sequence.
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F. T. Howard

Wake Forest University, Winston-Salem, NC 27109
(Submitted January 1997)

1. INTRODUCTION

Let k£ and n be nonnegative integers with 7> 0 and let
S (k)y=1+2%+... 40 (1.1

Thus, S,(0)=n, S,)=nn+1)/2, S,(2)=n(n+1)(2n+1)/6, and so forth. A well-known

recurrence is
k-1

Z(’J‘.)Sn(j)=(1+n)k—1 (k>1).

J=0

It is also known (and easy to prove) that

22(:)( )S(Z]) 1+ -r* -1 (k21), 1.2)
22 @’]Ci )S.@r+D=enp -t ez (1.3)

(see, e.g., [8, p. 160]). Howard [4] proved the following formula. For »=0,1,...,5 and n>0,
k>1:

k-1 6k-+r—S5
6k +7—3 . 6k +r -3 5
612;3( 6j+r )Sn(6]+r)= ; ( s )w,_sn, (1.4)

where w; =wg, ; for j=0,%1,£2,..., and the values of w; for j=0,1,...,5 are given by 3, 2, 0,
-1, 0, and 2, respectively.

These formulas suggest there may be other simple recurrences involving only S,(mj +7r),
where m, n, and r are fixed and 0<r <m-1. We call such formulas "lacunary," meaning they
have lacunae, or gaps. That is, the value of S,(mk +r) does not depend on all the previous S, ()
(0< j <mk+r), but only on the terms S,(mj +r) (0< j<k).

In the present paper the main result is Theorem 3.1, which is a general lacunary recurrence
for the sums S,(mj +r). After proving Theorem 3.1 in Section 3, we illustrate it by proving the
following theorem for m =4,

Theorem 1.1: For k>1and r=0, 1; 2,3,
4k + iy . WS Ak 4 r s
42 (4] +rr') [ -2]S,4j+r)= 2, ( s |Cakir-g7>
s=1
where the numbers c; are determined by the following formulas: for j=0,1,2, ...,

Cy=2-4Y =4, =204y =2, €4y =0, C4p3=—4(-4) -
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After proving Theorem 1.1, we use it to compute S,(5). One of the key ideas in all of these
results is the generating function (e* —1)(e® —1) --- (%" * —1), where @ is any primitive m® root
of unity. This generating function, an interesting topic in its own right, is discussed in Section 2.

We also prove similar formulas for the alternating sums

T(k)=1%-2F +3F — ... 4 (=) nt, (1.5)
and, finally, we show how the results of this paper can be applied to the Bernoulli and Genocchi
numbers.

2. GENERATING FUNCTIONS

Let @ be a primitive m™ root of unity so that 8" =1 and 6" #1 for 0 <k <m. For example,

we could let § = e2™/™
Define the numbers b; and c; by means of the generating functions

m=1 — © J
[1E™-D=(~DE* - -D= 3577, @1
u=0 j=0 = J°
and
xm.—l Fx < xj
e E(e —1):j§)cj—ﬁ. 2.2)

Note that any primitive m™ root of unity can be used in (2.1) and (2.2). The numbers b; and ¢,
depend on m, but the value of m will always be clear when we use this notation. Note also that
by =0 and for m=1, we have ¢; = 1.

If we replace x by —x in (2.2), we have

0 ) J m-1 m—-1 " _
Z(_l)jcj ZC_' - e—xH(e—H"x _ l) — H(eH x _ 1)/[(_1)m—1ex(1+0+---+9”‘ l)]
j=0 J: u=1 u=1
m-1
G e § (GaE
u=1
This gives us another useful generating function for c;:
= 6“x .- m+j—1 xj
H(e -1)= Z(:)(—l) T 2.3)
u= J= *
From (2.1), (2.2), and (2.3), we have

2,"74 H(ef’x—n ]‘[(ef’"x 1)+]‘[(e0"x )
=

u=1

24
_ Zb + Z( 1)m+j ~1
Thus, we have b, = (1+(=1)"*/)c,; that is,
2¢; if (m+ j)is even,
p =2 Tt @.5)
0 if (m+j)is odd.
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To prove the main result of this section, Theorem 2.1, we need the following lemma.

Lemma 2.1 (multisection of series): Let 6 be any primitive m™ root of unity (such as ¢**/™)
and let F(x) = X5, a,x* for complex numbers a,. Then, for r=0,1,...,m-1,

) m-1
zamj+rxmj+r — _’17 Z H(m‘J')rF(ij). (2.6)

j=0 J=0

If z, is a complex number in the circle of convergence of F(x), we can replace x by z, in
(2.6). Multisection is discussed in [8, p. 131], and a proof of Lemma 2.1 is given in [3].

Theorem 2.1: Let 6 be a primitive m™ root of unity, and let b, be defined by (2.1). Then 5, =0
unless j is a multiple of m. Furthermore, if m is odd then b; = 0 unless j is an odd multiple of m.

Proof: We take the logarithm of both sides of (2.1) to obtain

log(e® —1) +log(e® 1) +--- +log(e? * 1) =log b ;—j' 2.7
= T

In (2.6), let F(x)=1log(e*—1) and » =0, and compare the left side of (2.7) with the right side of
(2.6) to obtain

ki J
Za x" —logaj%. (2.8)
Jj=0
Applying the exponential function to (2.8), we have
© &y
exp mZamjx’”fJ = ijx—,'. 2.9
=0 = J:

We now compare coefficients of x/ on both sides of (2.9) and see that 5, = 0 unless j is a multiple
of m. Now suppose m is odd. Replacing x by —x in (2.1), we have

G G P S B Z( 0t G
Thus,

m—-1

H(e—“x 1)+H(e -)= 221;2,,,1 (ij)' (2.10)
Now we observe that

m—1 m=1 B m=1
H(e—ﬁ”x _ 1) — H(eﬁ"x _ l) / [(_1)mex(1+6’+---+9’” l)] - _H(eﬁ x _
u=0 u=0 u=0
Thus, the left side of (2.10) is equal to 0 and, therefore, b,,, =0 for j>0. This completes the
proof. [
Theorem 2.1 tells us that the generating function (2. 1) could be written as:

ﬁ(eﬂ" -1)= Z - (m )' (m even); (2.11)

=0
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xm(2 Jj+1)

g(eg"x - 1) = jgobm(zj_,_l) W (m Odd) (2 12)

3. A GENERAL FORMULA
We are now ready to prove our main result, a general lacunary recurrence for the sums
S, (mj +r). We will need the following generating function:
e(l+n)x Iy

R =——

i J
:e”+e2x+---+e"x=ZS,,(]')x—.. (.1
j=0 J!
Theorem 3.1: Let S,(j), b;, and c; be defined by (1.1), (2.1), and (2.2), respectively. Ifmisa
positive integer, then, for r =0,1,...,m—1:
k-1 (k=Dym+r+1
mk +r . mk +r s
Z()(mj+r)b(k—j)mSn(mJ +r) = z; ( Ky )cmk+r—sn : (32)
j= =

If misodd and £ >1, then, forr=0,1,...,2m—1:

k-1 2m(k=1)+r+1
2k —-1)m+r . 2k—-Dm+r s
Z (( 2m])+r )b(zk—l—Zj)mSn(zm] +r) = Z (( S) )C(Zk—l)m+r—.s]1 . (33)

j=0 s=1

Proof: Let F(x) be defined by (3.1). We multiply both sides of (2.1) by F;(x) to obtain
m-1 " 0 J
€™ -De* [ [ - 1) = F(x)Y b, % (3.4)
u=1 Jj=0 :

Recalling (2.2) and (2.11), we compare coefficients of x/ on both sides of (3.4) to derive (3.2) for
m even or odd.

If m is odd, then by (2.12) we can let £ — j be odd in (3.2). We now consider the cases of &
even and & odd to obtain (3.3).

Case 1: k is even. In (3.2), since &k — j is odd, replace & by 2k and j by 2 +1 to obtain

k=1
Qk-Dm+(m+r) .
j;o( 2mj +(m+r) bak-1-2 j)mSn(sz +m+r)

3 2m(k—=1)+m+r+1 (2k _ l)m + (m +r) s
= Z s Cak-m+(mr)y-ST -

(3.5)

s=1
If we let ' = (m+r) ;in (3.5), we get (3.3) with 7 replaced by 7’ and m<r’ <2m.
Case 2: k is odd. In (3.2), replace k¥ by 2k —1 and replace j by 2j to obtain (3.3) with
0<r<m.

Combining the two cases gives us (3.3) with 0<r <2m. This completes the proof. 0

We illustrate Theorem 3.1 by proving formulas (1.2) and (1.3) and Theorem 1.1.
Let m=2. From definitions (2.1) and (2.2), we see that b,;,; =0 and, for j>0, b,,=-2
and ¢; = —1. Thus,
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2k + . 2k+r-1
53 ir)seien =3 (),

s=1

which is equivalent to (1.2) and (1.3).
Formula (1.4) can be deduced from Theorem 3.1 by letting m = 3.
To prove Theorem 1.1, we let m=4 and @=i. The left side of

e* ix ilx i3x x_
A Cal ) CAES CARS = Z i
can be written
2-2¢% — eix _ e—ix _ e(l+i)x _ e(l—i)x
so for j>0,
¢, =2~ - (=) +Q+iY +(1-i).
This gives us
Cy=—4+2(-4), 4 ="2+2(-4Y, €2 =0, cyu3=-2-4(-4). (3.6)
By (2.5) we have, for j>1,
by =2¢,; = —-8+4(-4) . 3.7
For m=4 and the values of b, and ¢, given by (3.6) and (3.7), equation (3.2) gives Theorem 1.1.
This completes the proof. O

To illustrate Theorem 1.1, we compute S,(5). In Theorem 1.1, let » =1 and £ =2 to obtain

24 (g) 8,5 = —56(?)&,(1) é‘; (2)@41’.

Using (3.6) and the formula §,(1) = n(n+1)/2, we have

155 4,15 15
S, (5 n+12n o ten.

We could easily keep going here and compute §,(9), S,(13), and so on.

4. ALTERNATING SUMS

The methods of Sections 2 and 3 can be used just as easily on the alternating sums 7, (k)
defined by (1.5). Let € be any primitive m™ root of unity, and define the numbers g; and 4; by
means of the generating functions

uI_IO(e“H) (E+DE*+1) - (T +]) = Z g5 J', .1
and
m-1 ) J
eI+ =Y h, % (4.2)
u=1 Jj=0 :

Note that g; and 4; are functions of m.
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Analogous to (2.3), and proved in the same way, is another generating function for 4;:
m-1 o © oy J
[TE"*+1= Z(—l)’hjﬁ. 4.3)
u=1 J=0 :

Equations (4.1), (4.2), and (4.3) give us the relationship A, =1 g; if j is even.
Theorems 4.1 and 4.2 are analogous to Theorems 2.1 and 3.1, and they are proved in exactly
the same say. The following generating function is used in the proof of Theorem 4.2:
(_ l)l+n e(l+n)x +e* 3
e*+1

had J
Ey(x) = €5 — ¥ 4 oee 4 (=)™ = jZOT(] % (4.4)

Theorem 4.1: Let 6 be a primitive m™ root of unity and let g; be defined by (4.1). Then g; =0
unless j is a multiple of m. Furthermore, if m is odd, then g; = 0 unless j is an even multiple of m.

Theorem 4.2: Let T,(j) be defined by (1.5) and let g; and A; be defined by (4.1) and (4.2),
respectively. If m is a positive integer, then, for ¥ =0,1,...,m—1,

E (mk +r . el 3T (o 41 5
Z m1 +r g(k—j)m];(m.] +r) = (_l) Z s hmk+r—sn +hmk+r' (45)
j=0 5s=0
If mis odd, then, for r =0,1,...,2m—1,
k 2mk+r

2mk +r . n 2mk +r s

Z (2m] +r)g(k—j)2m7;1(2m] +r) = (— 1) “ Z ( s )thk+r—sn +h2mk+r : (46)

Jj=0 s=0

We note that, by (4.2), hy=2™", so the right sides of (4.5) and (4.6) are polynomials in 7 of
degrees mk +r and 2mk +r, respectively. We also note that g, =2".

For example, let m=2 and 6=—1. Then we have g,=4, g,;=2ifj>0, =2, and h; =1
if j>0. Theorem 4.2 gives us

k-1
4T, 2k +r)=-2)

Jj=0

+ (_1 n+l {2ki_l (Zk +r)ns + 2n2k+r}
s .

s=1

2k . n
(zji;)];(ZJ +7)+1+ (-1

The following formula for m =3, which is analogous to (1.4), was given in [4]. Let m=3,
let @ be a primitive third root of unity, and let w; be defined as in Section 1. Then, for n>0 and
k >0, with r and % not both 0,

k-1
6k + ; n
87,(6k +7) = —6j=0(6 i+ :) L(6j+r)+[1+(-1"]w,

6k+r—1
+ (—1)"+1{ > (6k s+ r)wmﬂ’ + 4n6"+’}_

s=1

If m= 4, we use Theorem 4.2 to prove the following new result.
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Theorem 4.3: Let n>0and k >0. Then, for r=0,1,2,3, and r and & not both 0,

2D

16T (4k +r) = —4kz—l(4k +r)[( 4)i 42 i
n = - 10,(4j+r)+hy,,,

P 4j+r
4k+r

. 4k + s

+ (=)™ Z ( s r)h4k+r—:n )
s=0

where A, =8 and the numbers h;, except for h,, are determined by the following formulas: for
j=0,12,..,

By =287 +4, Ry =24 42, By =0, By, =—4(-4)"+2.

5. BERNOULLI AND GENOCCHI NUMBERS

The methods of this paper can be applied to other special number sequences. For example,
consider the Bernoulli numbers B, defined by the generating function

x = X"
ZB,,n—!. (5.1

-1 =

These numbers are well known and have been studied extensively (see, e.g., [7, ch. 2]). It is well
known that By =1, B,=- ), and B,,,, = 0 for £ >0.

We can use the methods of this paper to derive the following general lacunary recurrence for
the Bernoulli numbers.

Theorem 5.1: Let B, be defined by (5.1) and let b; and ¢; be defined by (2.1) and (2.2), respec-
tively. If m is a positive integer and & >0, then, for r even, 0<7 <m,

k-1
mk +r
Z (mj +7r )b(k—j)mij+r = (mk +r)cmk+r—l .

Jj=0
If mis odd and & > 0, then, for 7 even, 0<r <2m,
k-1
2k —Dm+r
Z (( 2mj)+ r )b(Zk—l—Z HmBamier =2k =DM +r]Co_1ymers-
j=0

Proof: Multiply both sides of (2.1) by x/(e* —1) to obtain

J

m—1 0
e -n=—-=3 5%
u=1 -

) S.
207 5.2)

By (2.3) and (5.2) we have, for n>0,
n - (n
(-D™"ne,_, = Z( j) B -
j=0
The remainder of the proof'is similar to the proof of Theorem 3.1. O

Several writers, like Chellali [1], Lehmer [5], Ramanujan [7], and Riordan [8, pp. 136-40]
have developed lacunary formulas for the Bernoulli numbers (see [2] for references).
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Obviously, the methods of this paper can also be used on the Genocchi numbers G,, which
are defined by

Lacunary recurrences for the Genocchi numbers can be found in [2]. Incidentally, it is well
known that the Genocchi numbers are integers and that G,; =2(1- 2%)B, ;-
As a final comment, we note that the numbers b; and g; of this paper are special cases of the
generalized Bernoulli and Euler numbers of Norlund [6, pp. 142-43], which are defined by
X Jt+m

(@~ (e ~1) - (e -1 = (0,0, ... ®,) ¥ BT (@, ..., o)
=0 '

and

o ) J
(emlx + l)(ea)zx + 1) .. (ea),,.x + 1) = z;)zm_jC}_m)(wl’ ey wm)%’
j=

where w,, ..., @,, are arbitrary complex numbers. To the writer's knowledge, none of the proper-
ties of b, and g, developed in this paper were proved by Norlund.
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1. INTRODUCTION

In this article I present some partial answers to the open questions raised by Cooper and
Kennedy in {1]. In that article the authors asked whether there exists a recurrence relation among
powers x|, where x, represents the solution to a given recurrence relation. I answer this in the
affirmative below, include a few details about the corresponding order, then indicate a way to
calculate any such relation the reader might seek, and, finally, state a few results from such
calculations.

An informal sketch of the proof and procedure runs as follows. Every solution to a recur-
rence relation can be expressed as a linear combination of powers of roots to the characteristic
polynomial. The coefficients of the original recurrence relation are the elementary symmetric
polynomials in these roots. Every power of a solution can be expressed as a linear combination of
products of powers of these roots by using the general multinomial theorem. These products can
be used as roots to form a new characteristic polynomial. On inspection, the coefficients of this
new characteristic polynomial are symmetric in the roots of the old characteristic polynomial, and,
therefore, can be expressed as polynomials in the elementary symmetric polynomials of the roots;
that is, the coefficients of the new recurrence relation can be expressed in terms of the coeffi-
cients of the original characteristic polynomial. There is a method for obtaining the expression,
amounting to a multivariate version of the Euclidean algorithm.

2. EXISTENCE

Let x, =ayx, ; +a,x, ,+ - +a,x, , be a linear homogeneous recurrence relation with con-
stant coefficients {a,|i=1,..., %} and of order £&. Let p(x)= x* —alxk'“1 —-+-—a, be the charac-
teristic polynomial for this relation. Let p(x) factor as p(x) = (x-n)(x~—7)---(x—r,) over the
field of complex numbers and suppose that the roots are distinct. We can write the Binet closed
form for x, as x, = An" + A3 +---+ Ay, The constants {4 [i=1,..., k} are determined by the
initial conditions specified in a particular solution to the recurrence relation.

Let a={(a,,a,,...,a,) and S=(F,, f,,..., §,) be two k-tuples. Define the symbol a? to
be the product of all terms «; raised to the §; power:

k
af =T ().
i=1

Writing X, = (41", 477, ..., Arl), A=(4, 4,, ..., 4,), and R=(,1,,..., 1), we see that X% =
A%(R*)" for each k-tuple «.
Recall the definition of the multinomial coefficient c(@) = (a; +--- + @ )/ (a;!... ).
Introduce the indexing set B, = {(i,...,4,)| each i, is a nonnegative integer and # +---+i, =1/}
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k
Theorem 1: If x, =Y Ar", then x. = Y c(a) A*(R®)".
i=1

aeB;

Proof: . .
X, = (Z A,»r,-") = Y c(@)X® = Y c(e)4*(R*)"

aeB; aeB;
by the general multinomial Theorem (see Hungerford [3, Th. 1.6, p. 118]). O

Therefore, y, = x! is a linear combination of terms that are products of roots from the origi-

n

nal characteristic polynomial of total degree /, raised to the n'™ power. Thus, y, is a solution to a
recurrence relation. The next theorem tells us more.

Theorem 2: The characteristic polynomial for the sequence y, can be written in terms of the
coefficients of the characteristic polynomial p(x) for x,,.

Proof: The characteristic polynomial for y, is
q(x)= H(x - R*) eC[x] by Theorem 1.

aeBy

Consider some permutation o:{#, ..., 7.} = {1, ..., 1, } of the roots of p(x). o can be decom-
posed into a product of transpositions [3, p. 48]. Each transposition interchanges two roots, say
r,, and r,. The effect of this transposition is to interchange the exponents from a = (i,...,i,,...,
Bp,....0p) to @' =(,...,05,..,dp,...,I) Within the indexing set B,. Thus, each transposition repre-
sents a transposition of the elements of B, because the conditions defining A-tuples in B, are
unchanged by switching values positionally. The composition of transpositions that give o also
describe a composition of transpositions in B,. Thus, o gives rise to a permutation of B;. Since
the product for g(x) is formed over the entire set B,, this permutation leaves g(x) fixed.

If we were to expand g(x) into its standard form, the coefficients would be polynomial
expressions in the roots {r;,...,n}. These coefficients are invariant under permutation of the
roots and so are symmetric polynomials in the roots. Any such symmetric polynomial can be
expressed as a polynomial in the elementary symmetric functions [2, p. 307].

Since these elementary symmetric polynomials are exactly the coefficients of the characteris-
tic polynomial p(x), the coefficients of g(x) can be written as expressions in the coefficients of
p(x). O

3. ORDER

What is the order of the recurrence relation y, = x4?

It should be the degree of the characteristic polynomial g(x). This degree is counted by the
number of elements in B;. Given a value of &, define S(k, 1) =|B;| where, recall, B, = {(i,...,i,)|
each i; is a nonnegative integer and i, + -+ +i, =1}

Theorem 3: S(k,I) obeys the relations: S(k,1) =k for all £, S(1,/)=1 for all /, and S(k,[)=
Stk-1,0)+S(k,1-1) for every kand /.

Proof: Proceed inductively.
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S(k, 1) represents the number of ways to define a k-tuple of nonnegative integers that add to
1. There are k£ ways to do this, corresponding to placing a 1 in any one of the k places in the k-
tuple and 0 everywhere else.

S(1, /) represents the number of ways to have a 1-tuple of nonnegative integers that add to /.
There is only one such way.

Let a = (i, ...,i) be a generic element of B,. Either ;=0 orj,>0. Ifj, =0, then i, +--- +
i, =1, and the number of possible ways to select such i 's is S(k—1,1); in other words, a sum of
I obtained with k —1 variables. If 7, > 0, then we can subtract one from i, to get (i, —1,...,7,) as
an element of B,_, that has S(k,/—1) elements. Therefore, the total number of possibilities is
Sk-L,D+Sk,1-1). O

Theorem 4: S(k,I)=,;_,C;_,, where ;C; stands for the binomial coefficient i!/[j!(i — j)!].

Proof: Substituting /=1 gives ,,,_,C,_, =, C,_,= k while substituting k¥ =1 gives ,,,_,C,_; =
;Co =1. To check that the given binomial coefficient satisfies the recurrence relation, simplify

l+(k—l)—1C(k—l)—l + (l—l)+k—le—l = l+k—2Ck—2 + l+k—2Ck—l = l+k—le—1'

The binomial coefficient ,,,_,C,_, satisfies the recurrence relation and the initial conditions.
Therefore, it is the solution to this recurrence relation and, by Theorem 3, S(k, I) = ;,,,C,_;. O

This answer, an order of ,,,_,C,_, for y,, represents the largest order sufficient to express y,
as a recurrence relation. It is not the least order necessary. The reason for the discrepancy is that
the various values for the products of powers of roots might not be distinguishable arithmetically,
while in the above proof the various terms were distinguished symbolically. As an example, sup-
pose x,, =17 +2" +3" + 6" with characteristic equation

p(x)=(x-1)(x-2)(x-3)(x-6).
The process above indicates that a characteristic polynomial for y, = x> would be
g(x) = (x = D(x = 2)(x = 3)(x = 6)(x —4)(x — 6)(x ~12)(x — 9)(x — 18)(x - 36);

However, we do not require a double root of 6, obtained on the one hand by r7, =1*6=6 and
on the other hand by 7,7 =2 *3=6.

We can obtain a sharp result if we assume that all the elements of a € B, gives rise to a
unique value for R*. We would wish for some general criteria for determining whether all such
values are distinct, without arithmetically checking all the possibilities. One such criterion would
be the assumption that each root is an integer and each root is divisible by a different prime.
Then, given an arithmetic value for a product of roots, we could identify the factors by determin-
ing the power of the corresponding prime unique to each root. This would determine the power
of the root that comprises the overall product.

4. GENERATING A RELATIONSHIP

One starts with the order % of the recurrence relation for x, and one decides upon the power
lin y, = x.. Next, construct g(x) symbolically, and expand the expression algebraically to obtain
the coefficients for g(x) as explicit symmetric polynomials. Finally, write these coefficients in
terms of the elementary symmetric polynomials (see Cox [2, pp. 307-09] for more details). The
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algorithm amounts to successively subtracting appropriate powers of the elementary symmetric
polynomials. The powers are obtained by identifying the leading term of the symmetric expres-
sion, and using the powers of this monomial to determine powers for products of the elementary
symmetric polynomials.

Example: Let x, = Ax,_, + A,x,_,, Which gives rise to the characteristic polynomial

p¥)=(x-n)(x~-n).

Notice that 4, =7 +7, and 4, = —rr,. Let y, = x>, which has derived characteristic polynomial

q(x) = (x— i) (x - ) (x - 13).
This expands to

g(x)=x’- (”12 +nn +I)X 4 (5 + 11 1 )x = 1r3

which leads to the recurrence relation
Yn = O 10+ 1YYy — (s + 1 +173)Y, 5 13V, 5.
Performing the algorithm indicated in Cox, Little, and O'Shea [2] gives
(i +rn+1) = +1) -1 = AL + 4,
G+ 1 +10) = () ()~ =~ 404, 43,
R =) = -4;.
Consequently,
Vo= (A + )y, + (A Ay + A,y = (A) Y5 D

5. RESULTS

Using the computer algebra system Maple® and the easier algorithm indicated in [2, pp. 309-
10] yielded the following results: If x, = ax,_, +bx, , +¢x, 5 and y, = x, then

10
In = Zl QY
=
with
a,=a*+2ba+c,
a, = 2b* + ba* + 3b%a* + ca® + 2cba,
a, = 3¢ +ca® - 2b*a - b%a® + 11c%ba + Tcba* + 5¢%a® +10ch?a?,
a, = -3cb’a’ + dch*a + 2c%a® + 2¢%° — cb?a’ + c?a® - 13c%ba + ¢*ba* — 13c7b%a? - 3c* - b,
a5 = c*b’a’ — 4c*ba - 1c*ba’ - 5c*a® + 560 - Pab — cb® + 1 - cb’a* + 8c*h’a’,
as =-2c°a® — c*ab + % — 2¢°b° — 4c*bat - 13c*b%a? — ba + b°a® - 3c’b*a® - 3¢ —13c%ba,
a, = —c*b’a® + 2c%a* + *® — Tc*ba +10°b%a” - 5¢°b° +11c%a + 3¢,
ag = -2c'a® +2c’ba - bc® - ’b*a + 3a%c%?,
a, = 2c%a+c® ~b*’, and

_ _ o
a4 =—C".
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If x, = ax,_; +bx, , +cx, 3 +dx, , and y, = x>, then
10
Yn= 20
i=1
with
a,=a’+b,

a, =b*+ba* +ca+d,

ay = -b> +ca’ +2c* +4cha,

a, = db* +4dba? + 5dca +2d* + da* — *b — cb*a + Fa?,

as = dea® - db*a® - 2d°b + d*a* — dc? - 2db° - Ca + b2,

ag = —c* +dcb*a —2d° - 5d*ca — d’ba* + 4dc™ — dc*a® - d*b?,
a; = 4d*cba —dac® - 2a°d® - d’p°,

ay = ~d°0* —cd’a—d* +c*d’b,

a, =bd*-d*c*, and

a,=d°.

6. FURTHER RESEARCH

One of the assumptions throughout this article is that the roots {r|i =1, ..., k} are all distinct.
The next step in investigating this problem would be to allow for several repeated roots. Each of
the roots 7, could have a multiplicity %,, which would lead to a polynomial of degree (&, —1) in»
as the coefficient of 7” in the Binet form. These different polynomials would then combine in the
multinomial theorem to form repeated roots of high degree. Tracing this argument through care-

fully might yield precise estimates for the order of the recurrence relation y, = x’.
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1. INTRODUCTION

In this paper we consider the generalized (2, F) sequences. They are introduced in [1] and
[2], and some of their properties are studied in [1], [2], [S], [7], [8], and [9]. The generalized
(2, F) sequences {x,}o, and {y}, are defined by their first two elements and two linear
equalities:
Xy =4, xl:b’ Yo =6, ylzda
Xpyg = Oy +ﬂyn> Yne2 = VY Vni1 +6xn:

for n>0. In [1] the following open problem is given: Find a closed form of x, and y, for
arbitrary n, i.e., represent them as functions of n, a, b, ¢, d, &, 8,7, and . In [5] such functions
are obtained. They have one of the following five forms:

X, =GPl + G+ G5 +Copls, ¥, =Cspl +Ceph + G5 +Ceply,  or
x, =Cpl + Gy +(G+nCps,  y, = Cspl +Ceph +(C +nCy)p5,  or
x,=Cpl +(C+Cn+ C)ps, 3, =Cspl +(C+ Cn+Cn*)pj,  or
x, =(C+Cn+C* +C?)pf,  y, =(Cs+Cqn+Cn* + Cr®)pf,  or
x, =(G+Cm)pi +(G+C)ps, v, = (Cs+Cam)pl +(C; + Cm)ps,

where p,, p,, p;, and p, are the roots (complex in the general case) of the equation
pt—(a+y)p* +ayp-p5=0

(the above five cases correspond to four simple roots, two simple roots and one double root, ...,
two double roots, respectively) and C,, 1<i <8 are (complex) constants depending on a, b, c, d,
and p;, 1<i<4.

We shall give an alternative closed form for x, and y,. Our approach is fully combinatorial
(it is based on an enumeration of weighted paths in an infinite graph) whereas the Georgieu-
Atanassov method is from linear algebra (it uses Jordan's factorization form of some matrix).
More concretely, we shall prove the following.

Theorem 1 (Main result): The equalities

\ -
x,=a 3 (P;q)(P:r)aqﬂml},rgpﬂ_l_b ¥ (P;q)(l’+r" 1)aqﬂpyr5p

4p+q+r=n—-4 4p+g+r=n-1
P (P+q)(P+r‘l)aqﬂp+lyr§p +d Z (P+Q)(P+’)aqﬂp+l},r5p
4 rena\ 4 d 4 A ’
ptq+r=n ptg+r=n

and
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y,=a z (P+qq_1)(P:r)aqﬂp},r§p+l+b Z (P;q)(}’:‘r)aqﬁpyrapﬂ
2

4p+q+r=n— 4p+q+r=n-3
+e (P‘F‘I‘l)(l’“‘)aqﬂpﬂyrgpﬂ+d Y (P+q—1)(P+r)aqﬂp},r5p
4 p+g+r=n—4 q r 4 =p— q r
prqtr=n p+q+r=n-1

hold for every n>2, where all sums are taken for nonnegative integer values of p, ¢, and r.

2. PROOF OF THE MAIN RESULT

Our basic construction is an infinite directed graph G = (V, E) with weighted edges:

The set of vertices is V = (W} U{X,|i e Z, )} W {Y|i €Z,,} (here Z,, denotes the set of non-
negative integers). The set of edges is £ = ;U E, VU E;UE, UE,, where E, = {(X,, X,_,)|i 22},
all edges from E, have weight o and we shall call them edges of type A. Analogously, the set of
edges of type B with weight S is E, = {(X,,Y_,)|i > 2}, the set of edges of type C with weight y
is £y ={(¥, Y_,)|i 22}, and the set of edges of type D with weight & is £, = {(¥, X,_,)|i = 2}.
The last set £, consists of the following four edges: (X,, W) with weight a, (X, W) with weight
b, (1, W) with weight c, and (¥, W) with weight d. A graphical representation of G is given in
the figure below.

. AX” o ‘X”*l a _Xn~2 . X Xo
p "IIE|II|II'> 3
) ~Yn 7 -Yn~] K -./n—Z h Y Y,

We define the weight of a path in G as the product of weights of its edges. For two arbitrary
vertices v, v, € V', v; #v,, we define the function @(v}, v,) as the sum of the weights of all paths
from v, to v, in G; for v, =v,, we set @(v,v,) =1. The following lemma shows the connection

. o0 e
between function @ and sequences {x;};2,, {};}i=o-

Lemma 1: o(X;,W)=x, and o(¥;, W) =y, hold for every i € Z,,.

Proof: The proof is straightforward by induction on i. For i€{0,1}, we have
o(Xp, Wy=a, o(x,W)=b, oYy, W)=c, and &(};, W)=d. For i >2, we observe that every
path from X, to W starts with the edge (X, X, ) or with the edge (X, Y_;). Thus,
o (X, W) = aw(X,_,, W)+ Bo(X,_y, W)= ax,_,+ By,_, = x,. The proof for (¥, W) is similar. O

We shall compute some values of the function @ that we shall use further.

Lemma 2: The following equalities hold for every i, j € Z, i > j 21 (all sums are taken for non-
negative integer values of p, ¢, and r):

L (X, X)= 3 (P“LQJ(P*':“l)aqﬂp},ré‘p,

4pt+qtr=i-j 9
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2 o@.r)= Z (P*‘q_l)(l’:")aqﬂp},rgp,

4p+qtr=i-j 9

3 w(Xi’y;_)= Z (p+q)(P:‘r)aqﬂp+l},r5p’

4p+g+r=i—-j-2 9

4 o X)= Y (p+q)(p:"')aqﬂp},r§p+l.

4p+qtr=i—j-2 9

Proof: We shall prove case 1 only; the proofs of 2, 3, and 4 are similar.

Let us consider the structure of an arbitrary path from X; to X;. Edges of type B and D
alternate, starting with an edge of type B and ending with an edge of type D. It is clear also that
there are edges of type C only between neighboring pairs (B, D) and there are edges of type 4
only between neighboring pairs (D, B) at the beginning and at the end. Therefore, the considered
path has the form

A..ABC..CDA..ABC..CD...A..ABC..CDA.. A,

where the number of edges of types B and D is p, the number of edges of type 4 is g= X1 q,,

and the number of edges of type C is r = X7_, r,. It is known that the number of all nonnegative
ordered p +1-tuples with sum g is (?}7) and the number of all nonnegative ordered p-tuples with
sum r is (*77!). Since the tuples (¢, 4z, ..., q,) and (7, ...,7,) are independent, we obtain
that the total number of paths from X, to X with g edges of type 4, p edges of type B, r edges
of type C, and p edges of type D is (P39)(P*7™!). Their weight is @?7y"57. Thus, we need all
admissible values of p, ¢, and r to compute w(X;, X;). Since the difference between indices of
the vertices adjacent to the edge of type B or D is 2 and the difference for the edges of type 4 or
Cis 1, we have that i — j =4p+q+r. That is why we obtain

+ +r—-1 r
o(X, X)= ¥ .(pq q)(p ’ )aqﬂpy 5°,
4p+qtr=i—j
where the sum is taken for nonnegative integer values of p, ¢, and . O
Now we are able to prove our main result (Theorem 1).

Proof of the Main Result: Let us observe that the last edge of an arbitrary path from X, to
WiS (X0> W) or (Xl’ W) or (YOa W) or (Yl’ W) Thus’
x,=o(X,,W)=aw(X,, X,)+ba(X,, X)) +ca(X,, ) +do(X,,1).

Let us observe also that every path from X, to X, ends with edge (¥;, X,) and every path from
X, to ¥, ends with edge (X,, ;). Thatis why

xn = a5w(Xn, Y2) +ba)(Xn’ Xl) +cﬁw(Xn’ XZ) +dw(Xna Y) .
The proof for y, is similar. O

Finally, we mention that some other problems from [1]-[11] can also be solved using the
described method.
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