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ON A GENERALIZATION OF THE BINOMIAL THEOREM 
M. A, Nyblom 

Department of Mathematics, Advanced College, Royal Melbourne Institute of Technology 
GPO Box 2476V, Melbourne, Victoria 3001, Australia 

(Submitted August 1996-Final Revision September 1998) 

1. INTRODUCTION 

The elementary binomial theorem is arguably one of the oldest and perhaps most well-known 
result in mathematics. This famous theorem, which was known to Chinese mathematicians from 
as early as the thirteenth century, has been subject since that time to a number of generalizations, 
one of which is attributable to Newton. In this result, commonly referred to today as the General 
Binomial Theorem, Newton asserted that the expansion of (l + x)n for negative and fractional 
exponents consisted of the following series 

(i+xy = i+m+^^x^...+n^-l)---^-p+l)
xp+..., (i) 

where the variable x was assumed "small" This binomial series was applied to great effect by 
Newton in such diverse problems as the quadrature of the hyperbola, root extraction, and the 
approximation of n. In contrast, the second and perhaps more obvious extension to the binomial 
theorem can be found in the so-called multinomial theorem of Leibniz, where the expansion of a 
general multinomial 

(x1 + x2 + .-. + xJw (2) 

into a polynomial of m variables was considered (see [1], p. 340). This particular result, which 
has found numerous applications in the area of combinatorics, is somewhat more "algebraic" in 
character when compared with the former generalization, which is essentially a statement con-
cerning the power series representation of a function. In keeping with the "algebraic" spirit of (2), 
we present in this paper an additional extension to the binomial theorem via the development of an 
expansion theorem for the following class of polynomial functions, denoted 

7 = 1 

in which the sequence {an} of complex numbers is assumed in arithmetic progression. It should 
be noted that the construction of this expansion theorem can be viewed as a "connection con-
stant" problem of the Umbral Calculus (see [4], p. 120) in which real numbers cnk are sought so 
that a given polynomial sequence pn(x) can be expanded in terms of another, as follows: 

In this article we shall not make use of the Umbral Calculus to derive the desired expansion 
theorem; rather, we shall be content with applying more elementary methods to effect the said 
result. The outline of this paper is as follows. To facilitate the main result, it will first be neces-
sary to formulate an expression for the coefficients within the polynomial expansion of (3) in 
terms of the elements of an arbitrary sequence. This is achieved in Section 2, where the coef-
ficient of xn~p for p = 1,2,..., w, denoted $p(ri), will be shown to consist of a /?-fold summation 
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of a p-fold product. When {an} is substituted with an arithmetic progression, these summands 
then reduce, as demonstrated in Section 3, to a linear combination of binomial coefficients as 
follows: 

m=l v r 
(4) 

Moreover, the scalars &£\ which vary in accordance with the particular arithmetic progression 
chosen, will be calculated via an accompanying algorithm, thereby determining completely the 
equation for the coefficient of xn~p. This use of an algorithm in the formulation of &p(n) high-
lights one major difficulty when attempting to construct a general expansion theorem for (3), 
namely that, in most instances, no simple closed-form expression exists for Q^ in terms of the 
parameters m and p. However, all such apparent difficulties diminish when dealing with a con-
stant sequence (say an=a), as the corresponding scalars will assume the following simple form, 

\0 for m - 1,2,..., /?, 
ip form = p + l, 

which, when combined with equations (3) and (4), will yield the binomial theorem. An alternate 
expansion theorem is also derived when {an} is in geometric progression. Finally, in Section 4, 
we will explore an application of the above expansion theorem to the Pochhammer family of poly-
nomial functions that result when an - n -1. Of particular interest will be the derivation of closed-
form expressions for the Stirling numbers of first order, which shall mirror existing formulas for 
the Stirling numbers of second order (see [6], p. 233). 

2. PRELIMINARIES 

In this section we shall be concerned with the expansion of a class of polynomial functions 
which result from the n-fold binomial product (x + al)(x-¥a2)--(x-\-ari) for a given sequence 
{an}. Our aim is to derive a closed-form expression for the coefficients within these polynomial 
expansions in terms of the elements of {an}. We begin with a formal definition. 

Definition 2.1: Let {an} be an arbitrary sequence of complex numbers. Then the following n-
fold binomial product (x + ax)(x + a2) - - • (x + an) shall be denoted by (x)a„. In addition, the coeffi-
cient of xn~p for p = 1,2,..., n within the polynomial expansion of (x)a„ will be written as <l>p(n). 

Remark 2.1: The notation {x)a„ has been improvised from the Pochhammer symbol (x)„, which 
denotes the rising factorial polynomial of degree n given by x(x +1) • • • (x + w -1). 

It is clear from the definition that each coefficient <j>p(ri) in (x)a„ is an elementary symmetric 
function in %a 2 , ...,an. Although it is well known (see [2], p. 252) that these functions can be 
expressed in terms of a multiple summation of a/?-fold product, the formulation provided is some-
what incomplete for our purposes here. This is the motivation behind the following discussion, 
which will lead to a more satisfactory representation of $p(n) in Proposition 2.1. We return now 
to the expansion of {x)Qn. 

To determine how the coefficients within (x)a„ are formed by the terms of an arbitrary 
sequence, Set us examine &p(n) for p = 1,2,3 in the cases n = 2,...,5. Beginning with ^l(n)y it is 
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evident upon expanding that the coefficient of x""1 is equal to the n^ partial sum of the sequence 
{an}. Next, by grouping lower-order terms in each expansion, we observe the following for 
increasing n: 

<f>2(2) = a2aly 

<f>2(3) = a2al+a3(a1+a2l 
02(4) = a2ax + a3{ax + a2)+aA(ax + a2 + a3). 

Thus, it would appear, at least empirically, that ^2(w) consists of a summation of n-1 terms, each 
of which is the sum of a 2-fold product. Therefore, if the outer and inner terms of each product in 
the above summands were indexed by ix and i2, respectively, one may then infer that 

n-\ f h 1 n~\ k 
fa(") = Z a/1+ij Z % f = Z Z %+\% • (5) 

Zl=i [/2=i J /1=i /2=i 
Finally, for simplicity, set </>2(n) = (j>2{nJtt). Then a similar arrangement of lower-order terms 
reveals 

^3(3) = a3$2(l), 

^3(4) = o^2(l) + a4$2(2), 
03(5) = a3^2(l)+a4^2(2)+a5^2(3). 

Once again we are presented with a clear pattern in which <t>3{n) appears to consist of a sum-
mation of n-2 terms each of the form af +2̂ 2(̂ 1) • Thus, after relabeling index variables from im 

to im+1 in (5), we propose 
n-2 ^ n-2 h h 

&(«)=Z^i+2(?2(fi)} = Z Z Z V2Vi<v (6) 

/!=! /,=1 /2=1 /3=1 

Consequently, with the aid of equations (5) and (6), one may conjecture that </>p(n) is formed 
from a/?-fold summation of the product at +p.tai + 2 ••• ay in which the index of the outer sum-
mand assumes the values il = l92,...,n-p + l with all subsequent indexes im ranging over im =1, 
2, ..., i ^ for m- 2,3,...,/?. By continuing as above and using (5) and (6), one may construct 
similar expressions for the coefficients of lower-order powers in (x)^ that are in agreement with 
the previously suggested rule of formation. Hence, we now consider the following result, which 
is stated in terms of elementary symmetric functions. 

Proposition 2.1: Suppose {an} is an arbitrary sequence, then for n = 2,3,... the elementary sym-
metric function $p(ri) in al9 a2j..., an is given by 

4M = 

ft 

Z a / , for/? = 1, 
/,=! 

n-p+1 ij *p-\ 

£ Z • • • Hah+p-iai2+P-2 • • • aiP
 forp=2>3> 

(7) 

Jj=l l2 = l 1 =1 

Proof: Fix the sequence {an) in question and set n - 2 as the base for the following induc-
tive argument. Clearly, (7) holds for the case n-2 since 
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2 1 'i 

H2) = X % =ax+a2 and 02(2) = X I a / 1 + i a / 2 = aia2, 

which are in agreement with the coefficients found in the expansion 

(x+ax)(x + a2) = x2 + (ax + a 2 ) x + a ^ . 

Assume the result holds for n - k where k > 2. Thus, 

(X)ak = Xk+^(k)xk-l+^2(k)xk-2 + "•+&(*), (8) 

where the coefficients (/>p(k) are of the form as stated above. Multiplying (8) by the term 
(x + ak+l) and collecting like powers of x yields a polynomial of degree k + 1 with coefficients 
defined as follows: 

W * + l ) = ^ + 1 + ^ ( * ) , (9) 
0p(k + l) = ak+l<fip_x(k) + </>p(k) for/> = 2,3,.. . ,*, (10) 

^ + 1 ( * + 1) = **+1**(*). (11) 
From this set of equations we now generate via the inductive hypothesis corresponding expres-
sions for (j)p{k +1). Beginning with (9), it is immediately apparent that 

jfc+i 

0i(*+i) = £ v 

Now from (10) we have, for p = 2, 3,..., k, 

k-p+2 ij ip-2 

~'\+p-2ai2+p-3 '"uip-i 0(k + l) = ak+l £ Z *•• Z ah+P-2ai:^'"a> 
/1=1 ' = 1 '-1*1 (12) 

k-p+l /j '>-i 

+ Z I-Ivi^ ;,=1 / 2 =1 ^ = 1 
+p-2'"aip-

Relabeling index variables from im to im+l in the expression for (f>p_i{k), observe that ak+l#p-\(k) is 
equal to 

i, i2 h-\ 
ah+p-l ]L* 2^ " ' Lu ai2+p-2ai3+p-3 ' * * aip 

/ 2 =1 / 3 =1 / p = l 

when il = k-p + 2. Consequently, by factoring ai+ \ in the above (/?-l)-fold summation and 
adding the result to the second summand of (12) yields 

k-p+2 /'j ip-\ 

? ' J = 1 / 2 = 1 ^ = 1 

Finally, from (11), we deduce $k+l(k + 1) = ak+lak ---^ which, clearly, is in agreement with the 
hypothesized expression for the coefficient of x° in (x)ak+l • Thus, the result holds for n - k +1. 
Hence, by induction, (7) is valid for all n = 2,3,.... D 
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39 MAIN RESULTS 

With the formulation in Section 2 of a precise relationship between the coefficients of (x)a„ 
and the elements of {an}, it is now possible to determine, for suitable classes of sequences, explicit 
algebraic expressions for $p(ri) in terms of the parameters n and p. Clearly, those sequences of 
interest must possess a closed-form expression for their respective partial sums. However, in 
general, this will not guarantee the existence of explicit formulas for subsequent </>p{n), as the 
following simple example indicates. Let an = *+1), then an elementary calculation establishes 
$i(n) = -—^. This, in turn, implies that 

which cannot be expressed as a rational function in n due to the presence of the factor 1
 2 . 

Remark 3.1: We note that the function <j>2{n) in the previous example can be written as the sum 
of a rational function in n and the di-gamma function y/'{z). Indeed, by decomposing into partial 
fractions, observe that 

t,(.K+V 

where y/(z) = Tf(z)/T(z). 

Thus, in addition to the previous condition, those sequences under consideration should also 
admit for each p = 2, 3,... a closed-form expression for the /1th partial sum of 

1*2=1 '/»=! 
'h+p-l] La ' " JL* "h+p-2 ' • ' aip 

Recalling that the partial sum of an arithmetic progression can be expressed as a linear combina-
tion of at most two binomial coefficients, we observe from the following result (see [3]) that 
an=ax + {n- l)d (where a1? d e C) is one such sequence that satisfies the required properties. 

Lemma 3.1: Let r e N+, then 

j?(i + r\_(n + r + \\ 

Therefore, with the aid of Lemma 3.1, we can now state and prove the desired expansion 
theorem. 

Theorem 3.1: Suppose {an} is an arithmetic progression where <?„=#! + ( « - l)d for a given al9 

d eC. Then the equation for the coefficient of xn~p for n = 2,3,... and p = l, 2, ...,n in the 
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resulting polynomial expansion of {x)Qn consists of a linear combination of binomial coefficients as 
follows, 

w=£*f£p
+

+i--") (») 
m=l \ r s • 

in which the corresponding scalars 6$ are determined via the accompanying algorithm. 

Algorithm 3.1: Set 6^ -d and (tip = ax-d, then calculate remaining scalars 6$ iteratively as 
follows: 

for/= 2,3,..., w, 

for/= 2,3,...,?, 
^ ) = ^ ) ( ^ - / - 2 ) + aO + ^ - 1 ) ( 2 / - 7 K 

^ = ^-1>(a1-rf). 

Proof: In Proposition 2.1, let a„ = ax + (« - l)rf and set </>p{n) - <f>p(n+p-1), noting that in 
the resulting p-fold summation for <j)p(n) we no longer need require p<n. Thus, it suffices to 
demonstrate via the following inductive argument on the parameter p, that there exists 6$ e C 
such that 

m=\ v ^ s . 
Beginning with /? = 1, we have 

where 0^ = <f and 0 ^ = a1-d; consequently, (14) is valid for p = 1. Assume now that the result 
holds for p = k where £ > 1. To facilitate the inductive step, consider from (7) the expression for 
0k+i(n) a s follows: 

~ " {*l ik 1 
/!=! [/2=1 1^=1 J 

If necessary, by relabeling index variables, observe that the Mold summation within the paren-
theses of the above equation, is equal to 0kQi). Therefore, by assumption, we have 

fc-w=S^|S«s'(5;*::)}-|«'{£s-(^*::)} o»> 
Now, for each m, an application of Lemma 3.1 yields 

^ (il+2k-m\_ ^(il+2k-m\ .AY/,+2^ 
Lah+k\2k + \-mrakL\2k + \-m)+a^\2k + \ 

n Jn + 2k + l-rn\ , on Jn + 2k + 2-m\ = a(h,m)[ 2k + 2_m )+W,»\ 2k + 3-m } 
where a{k, m) = d(m-k-2) + al and /?(&, m) - d(2k-m + 2). As a result, (15) reduces to 
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?!««-S«e>/»».-<"jt2*j?i-)+g«'«(*.-s("iJ*jl-") 
w=l v ' m=l v / 

Finally, since 

we deduce that 

where 
m=l V ' 

0<J+1> = 0<J>,5(*, m) + &£Lxa{k, m -1) for m = 2,3,..., k +1, 

(16) 

(17) 

(18) 

Hence, the result holds for p = k +1. and so, by induction, (14) is valid for all p = 1,2,.... Having 
established an explicit equation for </>p(ri), we note that it may be extended to encompass the case 
p = 0 by defining 9f^ = 1. It is now a simple matter to construct the accompanying algorithm. 
We begin by arranging those scalars involved in the first n +1 coefficients into a lower-triangular 
matrix as follows: 

[0j°> 0 0 ••• 0 
ep ep o 
0p> 0f 0f K = 

0[n) ef> 0^ 

o 
o 

aw 

Suppose it is required that the n rows of A„ are to be determined. Clearly, from above, the 
entries of row two are given by 0^ = d and 0^ -ax-d. Now let us assume for argument's sake 
that the (z -1)* row has been calculated where i > 2. Then the following row of values can be 
obtained from the former by setting k = i -1 in equations (16), (17), and (18). Consequently, we 
deduce from (16) that 

0[i) = 0['-1)d(2i-l). (19) 

While (17) implies, for j = 2,3,..., /', 

0f = tf-Vfti - 1 , j) + &f:Pa(i -1 ,7-1) , (20) 

where a(i-l,j-l) = d(j-i-2) + almd P{i-\,j) = d(2i -j). Similarly, from (18), 

0& = 0?~%l-d). (21) 

Then, clearly, as the initial two rows of values are known, we may calculate all remaining n-\ 
rows by applying equations (19), (20), and (21) in succession for each / = 2, 3,...,«, thus com-
pleting 4 r The algorithm now readily follows. D 
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The binomial theorem will now follow from Theorem 3.1 by demonstrating that, for a con-
stant sequence (say an - a), the matrix A^ is rendered diagonal with 0^+1) = ap for p = 0,1,..., n. 

Corollary 3.1: Let a, b e C. Then, for all integers n > 1, 

(a + by = t(,f]arb"-r. (22) 

Proof: In what follows, assume n > 2, as (22) holds trivially for n = 1. Consider an arith-
metic progression defined by ax = a and d - 0. Then, by Theorem 3.1, the coefficient of xn~p for 
/? = 0,1,..., n in the polynomial expansion of (x + of is equal to 

We assert that 0^ = 0 for every / = l,2,...,/i and 7 = 1,2,...,/. From Algorithm 3.1, it is clear 
that 0 ^ = 0. Now, if the result is assumed to hold for the ( / - l )* row where 2<i<n, then 
#0) = ef(~l)d{2i -1) = 0, while 0̂ > = ^ a = 0 for j = 2,3,..., /. Hence, via the principle of finite 
mathematical induction the assertion is valid, and so 

for p - 0,1,..., n. Now, as 0$) - a an(j ^ - a^~l>} for / = 2,3,..., n, a similar inductive argu-
ment establishes 0^_\ = ap for p - 1,2,..., n. Consequently, by recalling that 6^0) = 1, we deduce 
that the coefficient of xn~p for p = 0,1,..., n in the above expansion is equal to 

* ( ; ) • 

Setting x = i yields the statement of the binomial theorem for the given n; however, the result 
now follows as this was arbitrarily chosen. • 

To contrast the previous result, we shall consider now an alternate expansion theorem for 
(x)an where an is a geometric progression (i.e., an - azn for a,zG C); however, unlike Theorem 
3.1, no algorithm will be required to complete the formulation of <f>p(n). It should be noted that 
setting z = 1 in this result will not produce the binomial theorem, as the expressions for (j>p{n) in 
this case reduce to an indeterminate form. 

Theorem3.2: For a given integer w = 2,3,..., set /„ = {z GC\Z = VT, r - 1,2,...,«}. If an -azn 

with a , z e C and z eln, then the coefficient of xn~p for p = l,2,...,n in the polynomial 
expansion of (x)a„ is given by 

^p(n) = aPz^^f[^^. (23) 
;=i l z 

Proof: The result clearly holds for p = 1 as ^(w) is equal to the wth partial sum of {an}. To 
demonstrate (23) for p = 2,3,...,«, consider for a fixed z £/„ the polynomial function in x, 
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p„(x) = (\+zx)(\ + z2x)-(\ + z"x) = J c / 
m=0 

Clearly, pn(x) satisfies the following functional identity: 

(1 + zn+lx)pn(x) = (1 + zx)pn{zx). (24) 

Substituting the above partial sum for p„(x) in (24) and equating coefficients of xm yields 

Cm + Cm-lZ" = (Cm + Cm-l) Z™ > 

where m = l,2,...,n. Thus, after some rearrangement of terms, we obtain the recurrence relation 

_zm(l-zn~m+l) 
m~ ] — zm m~l> 

from which one easily deduces, as c0 = 1, the formula 

C j > = r i * H - D n I z £ _ _ , (25) 
7=1 l Z 

where p = 2, 3,..., n, noting here that the expression in (25) is well-defined due to the restriction 
z<£ln. Now let x = y~l for y^O and observe that ynpn{y~l) = (y)a„, where aw = z"; hence, 
(j)p{n) = cp. Therefore, by Proposition 2.1, we find that 

n-p+l ii ip-\ 

cp = zl«r*<£ ^ . . . ^ ^ - ^ (26) 
/!=! 72=1 ip = l 

for /? = 2,3,..., w. As the coefficient of x""^ for /? = 2,3,..., n in (x)a„, where an = az" is equal 
to a ^ , we deduce from (25) the desired expression. • 

It is possible to retrieve a binomial coefficient from the expression in (23) by taking the limit 
as z —> w, where w is a root of unity. The result that follows may be obtained by an application of 
L'Hopital's rule for indeterminant forms; however, the argument used below is probably more 
direct. We will require the following technical lemma. 

Lemma 3.2: If w is a primitive m^ root of unity, where m is a positive even integer, then 

(x + w)(x+w2)--(x + wm) = xm-l. 

Proof: Let an = wn and consider the polynomial (x)^ . By making the substitution x = -y, 
observe that 

m m 
(~y)am = (-i)mU(y-wJ) = U(y-wJ)-

Since w is a primitive root of unity, the set {w, w2,..., wm) contains all the irfi1 roots of unity with-
out repetition. Hence, the product on the right of the above is equal to ym -1 = xm -1. • 

Corollary 3.2: Suppose n, m, and/? are positive integers with m even and 1 < p <mn. If w is a 
primitive mfi root of unity, then the following limit holds: 

1999] 11 



ON A GENERALIZATION OF THE BINOMIAL THEOREM 

P i -mn-j+l 
limTT , 

i-iy 
;2 

(") for p = ms, 

[0 for p^ms. 

Proof: Set an = zn and consider for a fixed x the polynomial in z and x given by 

/(Z) = (*)„_ = (* + 2)(* + Z2) - (X + Zm"). 

As / (z) is a continuous function of the complex variable z, we have 

lim / (z) = /(if,) = (xw- l)n = t (n\-\Tr*r9 (27) 

noting here that the right-hand side follows from Lemma 3.2 and the periodicity of the sequence 
{wn}. Now when z £lmn one can expand f(z) in a polynomial in x as follows, 

WW 

/ ( * ) = £ * P ( m « ) ^ \ (28) 

where the complex coefficients <j>p(mri) are of the form as stated in Theorem 3.2. As the set Imn 

contains only finitely many complex numbers, there must exist, for 8 > 0 sufficiently small, an 
open neighborhood about w of the form Bs(w) :={z eC:\z-w\<S} such that Bs(w) n Imn = {w}. 
Hence, the expression for f(z) in (28) is valid in the deleted neighborhood Bs(w)\{w} and so, by 
(27) 

mn n / \ 

iim x^(^»)^m"-p=I ("K-irrx" 
Clearly, as the right-hand side of the above consists of a polynomial in xm\ we have 

<j> Jmri) 
lim -j——— = 0 when p *• ms, 

while, if p = ms, then by setting r = n-s one deduces again from (27) that 

l i m j e 0 g O = (-1)' ( n ) = UL(") D 
z-*wzhP{P+V w\ms{ms+l)\n~S) ^f {$)' 

Remark 3.2: In the case in which m - 4, we have for w = ±i the limit 

—-1 —z J I n 
lim F T — 
- . .- J = 1 x ~ 

where 1 < s < n. 
4. APPLICATION 

We now turn our attention to the Pochhammer class of polynomial functions which result 
from (3) by setting an - n -1. This family of polynomials was first studied by Stirling in 1730 and 
later by Appell; however, the name Pochhammer is used in recognition for the invention of the 
symbol (x)n. These polynomials feature in many areas of analysis, including the study of special 
functions, where they occur in the coefficients of hypergeometric series (see [5], p. 149). When 
expanded into a polynomial, (x)n can be written as 
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r=0 

where the integers 5r
(n) are the Stirling numbers of first order. This group of numbers are 

normally calculated by first defining Sfp = 0, Sjp = 1, and then applying the recursion formula 
S^ = S%~p-rS^ for each w = l,2,... and r = l,2,...,« in succession. However, the Stirling 
numbers Sj£}p for /? = 1,2,... also appear as the coefficients of xn~p, in the falling factorial 
polynomial of degree n which results from (3) by setting an = l-n (see [5], p. 20). Thus, by 
applying Theorem 3.1 with the parameters ax = 0 and d = -l, we can now derive algebraic 
expressions for S£)p. To illustrate, suppose three iterations of Algorithm 3.1 are performed, 
thereby producing the matrix 

[ 1 0 0 0] 
-1 1 0 0 

^ | 3 -4 1 0" 
[-15 25 -11 1J 

Then, by reading directly from this matrix we deduce, using (13), the following formulas: 

si-GMTM":2} 
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1. INTRODUCTION 

In this paper we discuss the Fibonacci matrices which are matrices whose elements are the 
classical Fibonacci numbers. Some properties are given for these matrices. The relations between 
these matrices and the units of the field 2(0), (6A + 6?> + 62 + Q+l = 0) is also discussed. As an 
application, we deduce an interesting relation which includes the Fibonacci and Lucas numbers by 
using the properties of these Fibonacci matrices. 

2. FIBONACCI NUMBERS AND FIBONACCI MATRICES 

It is well known that if 2 = 0*1 ^en 2W =[Fp'1 / " )• Many Fibonacci and Lucas identities 
have been developed using 2, (see [1]). 

We are interested in finding other matrices like 2 so that the /2th power of the matrix has only 
the Fibonacci numbers as its elements. If such matrices exist, then we want to know their proper-
ties and what relations exist between the matrices and the Fibonacci numbers. 

For matrices of order 2, we examine the set 

F-{(1 £>=0or,}. 
One can easily see that the only matrices that work are 

1 = 1 1 1 J ' 2 V 1 0 J ' 1? -°̂ 2> -°^1 > ~°^2 • 

For matrices of order 4, we let 

fo i o ol 
1 1 0 0 
0 0 0 1 

v0 0 1 1, 

> # 2 = 

(o o i o"! 
0 1 0 1 
1 0 1 0 
0 1 0 0) 

Note that Hx and H2 behave like 2, and are made up of submatrices that are Fibonacci matrices of 
order 2, the null matrix or matrices that have properties similar to the Fibonacci matrices of order 
2. However, Hx and H2 are not irreducible, so we ask whether there exists any irreducible matrix 
of order 4 that behaves like 2,. 

Definition: A square matrix 3i of order r with integer elements is called a Fibonacci matrix if and 
only if: 

(a) s&n, n = 1,2,... has only Fibonacci numbers as its elements. The elements may be posi-
tive, zero, or negative. 

(b) sin is irreducible (a matrix B is called irreducible if the matrix B cannot be reduced to a 
block diagonal matrix by permuting some rows or some columns). Our definition of irreducible is 
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different from the common definition in order to avoid combining two Fibonacci matrices of order 
2 to obtain a Fibonacci matrix of order 4. 

(c) {si" | n > 1} has Ft Gsin for all / and some n. 

A is called a basic Fibonacci matrix if si has only 1 , -1 , and 0 as its elements. 

3. FIBONACCI MATRICES OF ORDER 4 AND THEIR PROPERTIES 

Proposition 1: The matrices 

0 
Fy 

KF0 

Fy 
0 

K-F, 

f 0 
Fy 

-Fn 

Fy 

~Fi 0 "| 
~F2 -F, 

0 -F0 

F, R 

0 -F, 
-F0 Ft 

Fy -F0 
-F, 0 

o J 

-Fi) 
0 
Fy 

-F2J 

-Ft 

Fy 
F2 
0 

-F? ~F2 
0 -F0 

F2 F0 

Fy Ft 

and 

-F, 0 
^o 

Fy "*b F, 

(-Fx 
0 
Fy 

-F, 

-Fy 
Fy 

~Fy 

-F2^ 
F2 

~Fy 
0 J 

0 > 
~Fy 

-F0 -F0 -F, ij 

f-F0 -F2 -F2 -F0^ 
Fn 0 o 
Fy 
0 

F, R 
Fy F2 

-Fy ~F, 
0 
Fy 

'F0 

Fy 
0 

F2 

Fy 

-Fy -F? 
Fy 0 

Fy F2 

V M F -E 0 [o J 

-Fy -F, 

Fy 

-F2 

F2 

0 F0^ 
~F2 ~F0 

-Fy -Fx 

Fy 0 

C-F, - i v -Fn -F,' 2 
F2 

-Fy 
0 

0 
Fy 

-F2 
yF2 

f 

0 

-Fy 

-Fy 
Fy 

-F0 

Fy Fx 

-F, 0 
^o ~Fy. 

F0 -F; 

-F0 
Fy Fx 

are all basic Fibonacci matrices. We denote these matrices, respectively, by Fl9 F2,..., Fl0. 

Proof: For Fh we can easily calculate Fx
2, i^3 , . . . , FJ10. For example, 

F™ = 

F9 

Fyo 
0 

-Fyo 

0 
Fyy 
*io 

-^ io 

-Fy0 

Fy0 
Fyy 
0 

-Fy0) 
0 

*io 
F9 ) 

By using the basic definition and the well-known properties of the Fibonacci numbers, one can 
easily prove by induction that 

(R 
WlOk Fx

im = 

I0k-l 
K lOifc 

0 

0 
10/M-l 

-F, 
F, 

l O f c 

lOJfc 
Fy 

-Fy 10k 

lOJfc 

F\Qk 

K I0k+l 
0 

0 

F\0k-lj 

£ = 1,2,. 

If we multiply F / , i = 1,2,..., 9, by F^, k = 1,2,..., and use the basic properties of the 
Fibonacci numbers, we have the 10 patterns Fi°k+l. For example, 
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Fx 
IOfc+1 . 

rlOk+l 
0 

M O H l 

10fc+2 

10fc+l 

Aofc+1 
MOJt+2 

1 10fc+l 

^OJfc+2 

0 
ft lOk+2 

£ 10&+1 

~Fl0k 

Fi 10fc+2 . 

10Jfc+2 
- i ^ 10&+1 - i ^ 10A:+2 

~^10k+l M0fc+3 

V ^Oi t+1 0 

[ 10Jfe+3 
0 

M0it+3 

Ao&+2 

j7 ^ 
M0fc+2 
^ 1 10Jfc+l 

iofc+i 

lOfc+27 

This completes the proof of part (a) of the Definition for Fv Part (b) of the Definition can be 
proved by the exhaustive method for all permutations of rows and columns. Part (c) of the Defi-
nition is obvious. Similar proof exists for F2, ...,Fl0. We would like to observe that the proofs 
for F4 and Fl0 can be simpler. 

Proposition 2: If Fk is a Fibonacci matrix, then so is -Fk, k = 1,..., 10. 

Proof: This is obvious since (-F)n = ±Fn, n - 1,2,.... 

We now let F2l_k = -Fk, k = l,..., 10. 

Proposition 3: If Fk is a Fibonacci matrix, then so is Fk , k = 1,..., 20, where siT denotes the 
transpose of the matrix si. 

Proof: This is obvious since (Fk
Tf = (Fk

n)T. 

Thus, we obtain 40 Fibonacci matrices of order 4. However, it is sufficient to discuss only 
Fh...,F20. Weletg={i£|Jfc = l,...,20}. 

Proposition 4: If Fk e g, then Fk
l e $ for k = 1,..., 20. 

Proof: It is not difficult to verify that i^-1 = i^, i^"1 = i^4, i^"1 = Fl2, F4
l = F10, and Ffl = 

Fl3. The rest can be proved by using the relations F2l_k = -Fk, k = 1,..., 10. Another interesting 
result is the following. 

Proposition 5: If Fk e $ , then det(i^) = 1, where the det(4) denotes the determinant of matrix 
A. 

It is well known that, in general, the multiplication of matrices is noncommutative. However, 
for these Fibonacci matrices, we have the following. 

Proposition 6:IfFk,FhE$, then FkFh = FhFk. 

Proof: One can easily verify that this is true. In order to investigate the properties of multi-
plication for the matrices in gf, we start by studying the following 10 matrices. Let 

AX = A. 
(I 1 1 O 

- 1 0 0 0 
0 - 1 0 0 

v 0 0 - 1 0 , 
and 4 = ̂ '',/ = 1,2,.... 
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It is easy to verify that A5 = -E and 4̂10 = JB, where the E is the identify a matrix of order 4. Let 
si = {Ak | k = 1,2,..., 10}. Obviously, the multiplication group of sJ is isomorphic to the group 
iyk IY - exp(2^' /10), k = 0,1,2,..., 9). It is also easy to verify that AkFh = FhAk or that the 
multiplication of them's and F's matrices is commutative. Furthermore, one can easily show that 
si$ cz §f. In fact, we have the following multiplication table, where the product array is Fn -
AkFh. For example, Fl9 = A4F9. From the table and the properties of Ak9 it is easy to see the 
results in Proposition 7. 

t ^ l 
1 
2 

3 

4 

5 

6 
7 

8 

9 

10 

1 

10 
13 

3 

7 
20 

11 
8 

18 

14 

1 

2 

9 
16 

17 

15 

19 

12 
5 

4 
6 

2 

3 

7 
20 

11 

8 

18 

14 
1 

10 
13 

3 

4 

6 
2 

9 

16 

17 

15 
19 

12 
5 

4 

5 

4 
6 

2 

9 

16 

17 
15 

19 

12 

5 

6 

2 
9 

16 

17 

15 

19 
12 

5 

4 

6 

7 

20 
11 

8 

18 

14 

1 
10 

13 

3 

7 

8 

18 
14 

1 

10 

13 

3 
7 

20 

11 

8 

9 

16 
17 

15 

19 

12 

5 
4 

6 

2 

9 

10 

13 

3 

7 

20 

11 

8 
18 

14 

1 

10 

Proposition?: Let & = {F* \k = 1,3,7,8,10,11,13,14,18,20} and g2 =%\%l. Then 
(ii) For J F ^ G ^ , there exists ^ e gy such that FkFh = ±i^2, i = 1,2. 
(6) For ̂  e $ b ^ e $2> there exist 4* e ,st such that FkFh = An. 
(c) For any Fk, Fh e %•, î 10w =± i^1(\ where n = 0,1,2,..., and i = 1,2. 

The proof is omitted since it is very straightforward. 

4. THE CHARACTERISTIC POLYNOMIAL, CHARACTERISTIC VALUE, 
AND CHARACTERISTIC VECTOR OF A FIBONACCI MATRIX 

It is not difficult to compute the characteristic polynomial for Fk e $. 

Proposition 8: The characteristic polynomials of Fl (orF2), F3 (orF5), and FA are, respectively, 
A4+223+422+32 + l, 24 + 323+422+22 + l, and X4+2X3-A2-2A + 1. The other characteris-
tic polynomials can easily be reduced by using Proposition 4 and the fact that F21_^ = -Fk. The 
proofs are omitted. 

There is a very nice property for Fk if k = h (mod 10). We can verify the following. 

Proposition 9: Let Gk = Fk
10, * = 1,-..., 20. Then: 

(a) Gk only takes one of two forms, i.e., either 
0 -F -F \ ( F 
U M0 M0 I I M l 

Fin Fn Fm 0 Gk = Gx = 10 
0 K 10 

"^10 - ^ 1 0 

M0 

o 
•"10 

F9 j 

or Gk = G2 = 
10 F >\ 

M0 
[ 10 

V M 0 

1 10 

?10 

-Fl 10 

-K 10 

^11 
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(b) Gt = G?; 
(c) Gk, k = 1,..., 20, all satisfy the same characteristic equation, 

G£-246G% + l5131Gi-246Gk+E = 0. 

We conclude this section by giving some properties of the characteristic roots of the Fibo-
nacci matrices and looking at the characteristic vectors of Fn. 

Theorem 1: 
(A) Each characteristic root of Fh e $ is a linear combination of exp(2mk 15), k = 0,1,2,3, 

with integer coefficients. 
(B) Each characteristic root of Ff, n = 1,2,..., is a linear combination of exp(2mk/5), k = 

0,1,2,3, with integer coefficients. 

Proof: 
(A) One method of proof is the following. Let the elements of the first row of Fh be fhn, 

An? Ai3> Ai4> ^ = 1,.. •, 20, and let 0* = exp(2/r?l / 5), A: = 0,1,2,3,4. It is easy to verify that the 
yEj=ifhij0Jk~l a r e ^ e roots of the characteristic equation of Fh. Noticing that T£=o 0k

 = ®> w e s e e 

that 0k, & = 4,5,..., can be written as a linear combination of 0k, k = 0,1,2,3, with integer coeffi-
cients. Hence, the conclusion of (A) is true. 

(B) We notice that \AE-A\ = 0 implies that \XnE-An\ = \AE-A\ • |/l72~1£ + ̂ " 2 ^ + --. 
+ ^w_1| = 0. Hence, it follows that the characteristic root of Ffi is 2", where X is the character-
istic root of Fh. Looking at the proof of (A), the proof of (B) is now obvious. 

Concerning the characteristic vector of Fk
n, we have the following theorem. 

Theorem 2: Let 0k = (1,0k, 0j, Ofy7', 0k = exp(2m/5), * = 1,2, 3,4, and let the fhl/s have the 
same meaning as in the proof of Theorem 1(A). Then: 

(A) 0k is the characteristic vector of Fh corresponding to the characteristic value of 
2 ; = i / « , C U = l>2,3,4; 

(B) 0k is the characteristic vector of F£ corresponding to the characteristic value of 
(4=1 fhiA~l)\ k = 1,2,3,4, n = 1,2,.... 

Proof: 
(A) The proof of this is trivial. 
(B) First, we notice that (AE -A) = 0 implies 

XJE-An = (An-lE + An-2A + --' + A"-l)(AE-A) = 0. 

The conclusion is now obtained directly from (A). 

5, APPLICATIONS AND REMARKS 

When we proved Proposition 1, we saw that the proofs for F4 and Fl0 could be simpler. That 
is so because the patterns of the signs for their powers has relatively small numbers. The matrix 
(sgn atj) is called the pattern of signs for the matrix (a^), where we have 
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sgn x = -
1, 
0, 
- 1 , 

x>0, 
x = 0 
x<0. 

One can easily verify that the pattern of signs for F£, n = 1,2,..., is a periodic function of n that 
the period is never more than ten. In fact, one can easily compute the following: 

[10, when Jfc = 1,2,7,12,13,15,16,18, 
The period ofsign's pattern for Fk = | ; j j j * = 3,5,6,8,9,14,19,20, 

[ 1,' when Jfc = 10,17. 

It is worth mentioning that in the sign's pattern of Fk, even F0 - 0, we understand that the F0 has 
a positive or negative sign. 

As an application, we look at Fl7 and deduce some wonderful relations between the Fibo-
nacci and Lucas numbers. 

By a tedious and careful investigation, one can obtain many relations like the following. 

Theorem 3: For n odd, we have 

F,n+i - 2L„F3n+2 + {L\ - 2)F2n+2 + 2LnFn+2 + 1 = 0, (1) 
F4n+l - 2Z„F3n+1 + (L2

n - 2)F2n+l + 2LnFn+l + 1 = 0, (2) 
F4n_x - 2 4 / v - , + ( 4 - 2)F2„_! + 2LnFn_x + 1 = 0, (3) 
F4n - 2 Z„F3„ + ( ^ - 2)F2n + 2L„F„ = 0. (4) 

For n even, we have 
F4„+2 - 2L„F3n+2 + ( 4 + 2)F2n+2 - 2L„Fn+2 + 1 = 0, (5) 
F4n+1 - 2L„F3„+1 + (Z* + 2)F2n+l - 2L„Fn+1 + 1 = 0, (6) 
FAn_, - 2Z„F3„_1 + 0„ + 2)F2n_l - 2LnFn_x + 1 = 0, (7) 
F4n - 2Z„F3„ + ( ^ + 2)F2„ - 2L„F„ = 0. (8) 

In order to prove Theorem 3, we need the following proposition. 

Proposition 10: Let Sn denote the sum of all principal 2 minors of Fx". Then 

_ J l}n + 2 when « is even, 
\l}n -2 when n is odd. 

A careful examination of Fl7 will show that Proposition 10 is equivalent to the following. 

[Z,„ - 2 when w is odd. 

Proof: Obviously, the left side of this equation is equal to (Fn_l +Fn+l)2 +2(Frj_lFn+l -F„). 
However, this is equal to the right side since we have Fn_xFn+l - F2 = (-1)" and Ln = Fn_x + Fn+l. 

We now give the proof of Theorem 3. Using the relation between the coefficients of the 
characteristic polynomial and the principal minors of a matrix, applying Proposition 10, and doing 
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some proper computation, we can see that the characteristic equation for the matrix Gn = Fx" is 
XA

n - 2L„l3
n + (Ll - 2)X2

n + 2LnXn + 1 = 0 when n is odd. Hence, we have 

Fl
4

7»-2LM"HLl-2)F£" + 2LnFll + E = 0 
by the Hamilton-Cayley theorem. Substituting Fl7'$ expression by Fn into the last equality and 
comparing the coefficients of the (1,1)-, (2,2)-, and (2,3)-elements of the resulting matrices, we 
obtain (2), (3), and (4) and (1) = (2) + (4). 

In a similar manner, we can prove the results when n is even. 

Remark 1: One can find a more uniform pattern than is given in Theorem 3 using the following 
proposition as an example. 

Proposition 12: The sum of all principal 2-minors of F^ is equal to l}n ± 3. 

Remark 2: In this paper, it is shown that the Fibonacci matrices play an important role in the 
connection between the ancient Fibonacci numbers and some properties of the field 2,(0), where 
the 6 is a zero of the polynomial x4 + x3 + x2 + x +1 = 0. 

Remark 3: Research problems. 
(a) Are there other Fibonacci matrices of order 4 besides the 40 matrices dealt with in this 

paper? 
(b) Are there any Fibonacci matrices of order higher than 4? 
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1. INTRODUCTION 

The Zeckendorf decomposition of a natural number n is the unique expression of n as a sum 
of Fibonacci numbers with nonconsecutive indices and with each index greater than 1, where 
FQ = 0, Fx = l, and FM - Fi + Fi_l form the Fibonacci numbers for i > 0 (see [6] and [8], or see 
pages 108-09 in [7]). The Zeckendorf decomposition of products of the form kFm for £, m GN is 
studied in [2] and [5]. For each positive integer n, let Ratio(n) be the ratio of the number of 
k GN with k<n that do have Fk in the Zeckendorf decomposition of kFk to those that do not. 
In this paper we prove Conjecture 1 from [2], which essentially states that as «->oo we have 
Ratio{n) -> /T2;, where /? = (1 + V5) / 2. This result, Theorem 4.9, is proved using methods intro-
duced in [5] by Hart. 

The /^-expansion of a natural number n, first introduced in [1], is the unique finite sum of 
integral, nonconsecutive powers of /? that equals n. Grabner et al, in [3] and [4], prove that for 
m > logjg k the Zeckendorf decomposition of kFm can be produced by replacing each /?' in the /?-
expansion of k with Fm+i. Thus, our result also answers a question posed by Bergman in [1] that 
asks for the frequency of the occurrence of /?° in the /^-expansions of the natural numbers. For 
simplicity, all results and proofs in the rest of the paper will be stated in terms of /^-expansions. 

Our proof entails first finding formulas for Ratio{L2k) and Ratio(L2k+l), where Z0 = 2, 
Lx = l, and Li+1 - Lt + Lf_x form the Lucas sequence for / > 0. We prove that as k -> a? the two 
sequences of ratios for odd- and even-indexed Lucas numbers both decrease to /T2. We then 
prove that for values of n between two Lucas numbers we have Ratioiri) trapped between the 
two sequences. 

The recursive pattern we have discovered in the /^-expansions, and upon which our proof is 
based, can be used to find the frequency of the occurrence of other powers of fi as well. This 
extension of the current problem will be addressed in a future paper. 

2. DEFINITIONS AND PRELIMINAMIES 

We use definitions and notation similar to those in [5]. In particular, £(n) denotes the abso-
lute value of the smallest power of/? in the ^-expansion ofn, and u(n) denotes the largest such 
power. 

The following is a restatement of Theorem 1 from [4] in terms of the /?-expansion. 

Theorem 2.1 (Grabmer et al): For k>l, we have £(n) = u(ri) = 2k whenever L2k <n< L2k+1, 
and we have £(n) = 2k + 2 and u(n) = 2ifc +1 whenever L2k+l <n< l2k+2. 
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Definition 2.2: We define V to be the infinite dimensional vector space over Z given by V : = 
{(..., v_j, v0, v1? v2,...) : vt G Z VJ, with at most finitely many v. nonzero}. For convenience, we 
underline the zeroth coordinate. 

Definition 2.3: Define V to be the subset of V consisting of all vectors whose entries are in the 
set {0,1} and which have no two consecutive ones. We will call the elements of V totally 
reduced vectors. 

As in [5], we represent /^-expansions by vectors of ones and zeros, where a one in the j * 
coordinate represents [5J. The powers of J3 increase from left to right in the vector. 

Definition 2.4: We define the function J5\N^>V so that, when the /^-expansion of n is 
S^-oo etPi > P(n) i s t h e v e c t o r m V w i t h v. = et. 

Definition 2.5: The function a: V -» N is defined as follows: <r((..., v_x, v0, v{,...)) = Z^-oo viP -

Thus, <j(fl(n)) = n for all natural numbers n. (Note that the definition of a in [5] is in terms 
of Fibonacci numbers and is not equivalent to the one given here. Specifically, the two functions 
are only guaranteed to be equal when applied to /?(«) where neN.) 

Figure 1 shows the vector representations of the ^-expansion of the first 30 natural numbers. 
Note that the coefficient of J3° is underlined. 
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Following [2], we say that n has property 2? if/?0 appears in the /^-expansion of n. 

Definition 2.6: For natural numbers n, m, we let 
Ones(n,m) = \{k eN:n<k <m,k has property 8P}|, 

Zeros (n,m) = \{k sM:n<k <m,k does not have property 2P}|. 
We also define, for n > 1, Ratio(n) to be Ones(0, n)/Zeros(0, ri). 

We will be using the following known facts about Fibonacci and Lucas numbers: 
Xim(FxIFx_l) = P; (1) 

Xmv{FxIFx_2) = \+p = p2; (2) 
X-»oo 

^ + / A + * - i ^ ^ (3) 
Formula (3) is from [7], page 177, (20a). 

Note that in [3] and [4] the indices for Fibonacci and Lucas numbers are different from the 
indices used here. We use FQ = 0, Fx = 1;LQ=2, and Lx = l. 

3. THE RATIO FOR LUCAS NUMBERS 

Our first goal is to prove the following proposition. 

Proposition 3.1: F o r £ > l , 

, 2 k ) - ^ and Ratio(L2k+l) F'fr + 1 Ratio(L2k) = -^± and Ratio(L2k+l) =-^ 
2k+\ T 2k+2 

Thus, both ratios decrease to 0 2 as k increases. 

We shall devote this section to developing the facts needed for the proof of Proposition 3.1. 
Recall that we express /^-expansions of integers with powers of/? increasing from left to right. 

Lemma 3.2: 

^2k (1) i3{L2k) = (l02k-lQP2k"ll) for k > 1. 
& - 2 i / n i \ & - 2 , (2) M2L2k-i) = (1000(10)^"21(0 If"2 0001) for k > 2 

(3) P{L2k+L2k_2) = (10102*-300u"3101) for * > 2. 

(4) ML2k+l) = ((l0fl(0lf)fork>h 
(5) /3{2L2k) = (10010^~2002^31001) for k > 2. 

(6) P(L2k+l + ^ _ i ) = (100100(10)"-i](01)^1001) for k > 2. 

Proof: Parts (1), (2), and (4) follow from results in [2] and from the relationship between the 
Zeckendorf expansion of nFn and the /^-expansion of n as developed in [3] and [4] (see the Intro-
duction to this paper). Part (3) follows from part (1) when we apply Proposition 4.4 from [5]. 
Parts (5) and (6) are proved in [5]. • 
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Lemma 3.3: 
(1) fi(L2k-l) = (l02k-l0(W)k-1\)fork>l. 

(2) y9(I2yfc+1+l) = (10(01)i002fcl)for^>l. 

(3) fi(2L2k -1) = (100102fc_20(10)*~1001) for k > 2. 

(4) /?(Z^+1 + L2k_x +1) = (lOOOCOl^OO^lOl) for k > 2. 

Proof: We make repeated applications of Theorem 5.8 from [5]. If v eV, w = sl(v) is the 
vector in V obtained by applying the algorithm in [5]; by the properties of this algorithm, cr(v) = 
a(w). 

Part (1): Define v(k) = (I02fc-10(10)fc_1l) and w(k) = (0(10)fc_1l). We show that M(w(k) + 
(0) = (Q02fc_1l) by induction on k. For k = 1, si(w(l) + (1)) = d((l 1)) = (001). Assume that k > 2 
and that the formula is correct for smaller k. Then 

sl(w(k)+(1)) = sl(w(k -1)+(002t_2l) + (1)) = d(s${w(k -1) + (1))+(002fc-2l)) 

= d((oq2k-h)+(oo2t_2i)) = ̂ ((po2fc_3i i)) = (oo2*-1!). 
Since v(k) = w{k) + (102*-10), we have 

si(v(k) + (1)) = d(d(w(k) + (1)) + (10u_10)) 

= ^((002*_11) + (102*_10)) = (102fe_1002fc_1l) = P(L2k). 

By uniqueness of the /^-representation, this implies that fi(L2k -1) = v(k). 
Part (2): This is proved by induction on k. For k = 1, we have 

fi(Lj +1) = ̂ ((10101) + (1)) = .s£((10201)) = d((20011)) = (10010001). 

For the inductive step, we assume that k > 2. We have 
fi(L2k+1+l) = ̂ Lu_l+L2k+l) = jA(fi(L2k_1 + l) + fi(L2k)) 

= ^((KXOrj^OO2*-2!) + (lO^OO2*-1!)) = ^((20(01)4_1002A:-211)) 

= J4((10O1(O1)*- I00"~2001)) = (10(01)* 002*1). 

Part (3): Using part (1), we have 

P(2L2k-l) = 0(L2k-\ + L2k) = d(P(L2k-\) + /3(L2k)) 

= ^((IO^-'OOO)*-1!)+(io2*-1oo2i-1i)) = s&iCo^-'oiiof-h i)) 

= (100102t_20(10)*_1001). 

Part (4): We use induction on k. For k = 2, we have 

0(L5 + Lj +1) = d(fi(L5 + \)+P(Li)) = d((l 00101000001) + (10101)) 

= ^((loonnoiooi)) = d((\ oo i i oon oo i)) = (looooioooioi). 
For the inductive step, we assume that k > 3. We have 
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P(L2k+1 + L2k_x +1) = fiiL^^ + 4 * + hk-i + Lik-2 +1) 
= d(P(L2k_l + L2k_3 + l)+P(L2k+L2k_2)) 
= d((l 000(01)*-2002*-4101) + (1010u-3002fc-3101)) 
- ^((2010(01)^2002^-41111)). 

We apply the algorithm and have 

P{l2k+l + Z^.! +1) = ai((100110(01)^2002^400101)) = (1000(0 l^OO2*"2! 01). D 

Note that in Figure 1, for L4<n<L5, J3(n) and P(L5+ri) are identical in the coordinate 
positions within 3 positions of the center. The same relationship can be observed for L3<n< L4 

between f3(n) and J3(L6 +ri). These types of relationships are described in Lemma 3.8. We now 
define a transformation that will allow us to discuss these relationships in a precise way. 

We define Sf(y, 7) to be the vector obtained by switching (from 0 to 1 or vice versa) the 
values of all entries of v whose coordinates are in a finite set Tcz Z. This is equivalent to adding 
and subtracting powers of /?. [In our applications, when applying the transformation to fi(n) we 
will switch only those entries with coordinate positions close to u(n) or -£(n), and will leave the 
central entries unchanged.] 

Definition 3.4: Let v GV. Let Tbe a finite set of coordinates. Define w = SP(v, T) G V to be the 
vector with wt G{0,1} for all / GZ and with w. * vt if i GT and wi = vt if J £ 7\ 

Definition 3.5: If v, w GV and J is a finite set of coordinates, then we say v=Tw (v is congru-
ent to w mod 7) if vi = wi Vi e T. 

Lemma 3.6: Let ^m.x GN and let The a finite set of coordinates. Suppose that 5P(J3(ji)9 T) -
fi(m),fi(n)=Tfi(n + x) and y(P(n + x\T) GV . Then 9>(fi(n + x), T) = fi(m + x). 

Proof: We are given /?-expansions for n and x as follows: n = Z^ .^ £,-/?' and x = Z^L^ Sfi. 
Let 7(0) = T o {i: *, = 0} and let 7(1) = I n {i: et = 1}. 

Let d = Z/ e r ( 0 ) /?' -Z / e r ( 1 ) /?J. The fact that £P(/?(w), T) = /?(/») means that TI+d = m. Be-
cause n, m GN, we have d GZ. 

We know that $f(J}(n + x\T) GV, which means that 5f(J3(p + x\T) is the /^-expansion of 
some real number. Since f3{ri) =T f${n + x), we have a{^f{P{n + x),T)) = n + x + d = m + x GN. 
The /^-expansion of a natural number is unique, so if(P(n + x), T) = P(m + x). D 

Corollary 3.7: Let nvn2,mv m2 be natural numbers where nl<n2,ml<m2. Let J be a finite set 
of coordinates such that 0 £ J and, for 0 < x < w2 -n1? /?(^ + x) = r ^(Wj), ififi^ +X),T)GV, 

S)(P(nlXT) = P(ml), and if(fi(n2\T) = fi(m2). Then #>(/% + x), 7) = P(ml + x) and, thus, 
Ones{nv nl + x) = Ones(mv ml + x) and Zeros(nl9 nt + x) =Zeros (mu ml-\-x). 

Figure 1 above and Figure 2 below illustrate the relationships in parts (6) and (10) of Lemma 
3.8. The formulas from Lemmas 3.2 and 3.3 are used in the proof. 
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1 n 
i 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

! 40 
41 
42 
43 
44 
45 
46 
47 

1 48 ! 49 
50 1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 

1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 

3(n) 
1 
0 
0 
I 
0 
0 
0 
I 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
I 
0 
0 
I 
0 
0 
o 
1 
0 
o 
o 
1 
o 
0 
I 
0 
0 
o 
1 
o 
0 
o 
1 
0 
o 

1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 

1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 

1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 1 
0 1 
0 1 
0 1 

7 = 1,4 

11 = L5 

18 = L6 

29 = L7 

36 = 2L6 

40 = L7 + L5 

47 = L8 

FIGURE 2. More jS-Expaesioiis 

Lemma 3.8: For k > 2 with Digits = Ones throughout or Digits = Zeros throughout: 
(1) IfO<x<Z,2£_3, then 

Digits(L2k_2, L2k_2 +x) = Digits(L2k, L2k + x) 
= Digits(L2k + L2k_2, L2k + L2k_2 + x) 
= Digits(2L2k,2L2k+x). 
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(2) IfO<x<Z2it_2,then 
Digitst^, L2k_x +x) = Digits(2L2k+l, 2L2k+l + x) 

= Digits(L2k+1,L2k+l+x) 
= Digits(L2k+1 + L2k_v L2k+l + L2k_x + x). 

(3) Digits(L2k_2, Z2yt_j) = Digits(L2k, 2L2k_x). 

(4) DigitstL^, L2k_2) = DigitspL^, L2k + L2k_2). 
(5) Digits(L2k_2, L2k_^ = Digits(L2k + L2k_2, L2k+l). 
(6) Digits(L2k, L2k+1) = 2Digits(L2k_2, L2k_^ + Digits(L2k_%, L2k_2). 
(7) Digits(L2k_x ,L2k) = Digits(L2k+l ,2L2k). 
(8) Digits(L2k_2, L2k_i) = Digits(2L2k 

(9) Digits(L2k_v L2k ) = Digits(L2k+l + 
(10) Digits(L2k+1, L2k+2) = 2Digits(L2k_v l2k) + Digits(L2k_2, L2k_x). 
(11) For L2k+l <n< L2k+2:t fi{n) starts with 100 [i.e., the values at coordinate positions 

-£(ri), -<£(»)+ 1, and -^(/i) + 2 of /?(«) are 1, 0, and 0, respectively]. 

Proof: Let Tx = {-2k, -2k+ 2,2k-2,2k}. It can be checked that ${P{L2k_2), 2J) = j3{L2k) 
and that ^{fi{L2k_^ Tx) = ./?(2JWi)- It follows from 2.1 that, for all /? with L2k_2 <n<L2k_v 

f3(n) =T @{L2k_2) and 9X/?(w), 3J) e F . Let x = n-L2k_2 so that 0 < x < Z,2yt_3 and note that, by 
3.7, Digits(L2k_2, L2k_2+x) = Digits(l2k, L2k + x). 

Let T2 = {-2k-2,2k + 2}. It can be checked that ^ ( ^ ( Z ^ ) , T2) = (3{2L2k+l) and that 
&>(/3(L2kXT2)= P(L2k+2+L2k). By 2.1, for all * satisfying L ^ H ^ L * , A^)- r 2 A ^ - i ) 
and if{p{n\ T2) GV. Let x = n-Z2yt_1 so that 0 < x <Z2^_2 and note that, by 3.7, Digits{L2k_v 
Lik-\ + x ) = Digits{2L2k+v 2L2k+l + x). 

Let 73 - {-2*, 2£}. Then W L 2 , _ 2 ) ? r3) = /?(Z2, + ̂ - 2 ) > W ^ - i X ^ = AA*+i) and> 
for all « satisfying L2k_2 <n< L2k_v fi(n) =T3 @(L2k_2), and $f(fi(n\ T3) GV. Let x = w-L2k_2 

so that 0 < x < L2k_3 and note that, by 3.7, Digits(L2k__2, L2k_2+x) = Digits(L2k +L2k_2, L2k + 

^2£-2 + X ) • 
Using the largest values of x possible in the above arguments, we have formulas (3) and (5) 

of the lemma proven as well as formula (4) for k > 3. To complete the proof of formula (4), we 
check by hand that it holds for k = 2 as well. Thus, 

Digits^, Z^+1) 
= Digits{L2k, 2 1 ^ ) + Digits{2L2k_v L2k + L2k_2) + Digits{L2k + 
= Digits{L2k_2, L ^ ) + Digits(L2k_3, L ^ 2 ) + Digits(L2k_2, L ^ ) , 

which proves (6). 
Formulas (7)-(ll) remain to be proven as well as the third equality from (1) and the second 

and third equalities from (2). The proof for these remaining formulas is by induction on k. For 
k = 2, the formulas can be checked directly. Assume k > 3 and all the remaining formulas hold 
for smaller k. 
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Let T4 = {-2k - 2, - 2k, - 2k + 1,2k-1,2k +1}. Note that ^ ( A ^ - i + 0, Td = fi(L
2k+i + 0 

and ^f(fi{L2k -1),T4) = P(2L2k -1). By 2.1 and part (11) of the induction hypothesis, we see that 
for all n where L2k__x <n<L2k, (3{ri) =TA p{L2k_x +1) and if{P(n), T4) eV. Let x = n -L2 k_x so 
that 0 < x < L2k_2 -1. We have Digits^^ +1, L2k_x +x) = Digits(L2k+l +1, L2k+l + x). Since 
(^(z^-i+1))o=(^(^fc+i+1))o» w e h a v e ^^^(^2>t-i3 ^ - i + ^) = D/^^(i:2^+1, Z2>t+1 + x) for 
0 < x < £2£-2 ~ 1- When x = 0 the equality is trivially true. We note that (fl(L2k))0 = (fl(2L2k))0 

so, for x = L2k_2, we have Digits^^, L2k) = Digits(L2k+l,2L2k). Note also that the above 
shows that, for i2;t_1 <n<L2k, if{p{n), T4) starts with 100 and, hence, fi(£) starts with 100 for 
L2k+l <£<2L2k. We have proven (7), some of (11), and the second equality of (2). 

Let Ts = {-2k-2,-2k + l,-2k + 292k + l}. We can check that ^{P(L2k_2), T5) =/3{2L2k), 
y(P(L2k-i)>T5) = P(L2k+\+L2k-i) and> f o r a11 n satisfying L2k_2 <n<L2k_x, p{n)^P{L2k_2) 
and ? ( ^ ( W ) , ^ ) G F . Let x~n-L2k_2 so that 0<x<L2k_3 and note that, by 3.7, we have 
Digits(L2k_2, L2k_2 + x) = Digits(2L2k, 2L2k + x). Therefore, Digits{L2k_2, Z ^ ) = Digits(2L2k, 
Lik+i +^2k-\)- Using 2.1, we have, for L2k_2 <n<L2k_x, that ^f(J3{n), T5) starts with 100; thus, 
fi(£) starts with 100 for 2L2k <£<L2k+l + L2k_v We have proven (8), some more of (11), and 
the last equality from (1). 

Let J6 = {-2k - 2, - 2k, 2k +1}. Then we have W ^ - i + ll Te) = P(L2M + Z2*-i + l) a n d 

^WL2k~ll Te) = P(L2k+2"O- For aU w satisfying L ^ <n<L2k,we have /?(«) ^ fi{L2k.l+1) 
m&y(p(ri),T6)zV. Let x = « - ^ i - i s o *na* ®<x- ^2ic-2~ 1• Then Digit^L2k_l +1, ĵfc-i + x ) = 

+ x). We note that (/?(£2W +1))0 = (jB(L2k+l +L2k_x +1))0, 
so we actually have Digits(L2k_x, L2k_x + x) = Digits(L2k+l + £2£-i> ̂ 2*+i + ^ - i + x) ^or ^ < x < 
L2k_2 - 1 . Since also (j3(L2k))0 = (P(L2k+2))0 we have, for x = Z2^_2, that Digits(L2k_v L2k) = 
Digits(L2k+l + £2jfc-i> ^ + 2 ) - We ^ a v e P r o v e n (9) a n d ^ e last equality in (2). 

The above also shows that, for £2k_l <n<L2k, we know that 5f(J3{n), T6) starts with 100. 
Thus, for L2k+l + L2k_x + !<£< L2k+2 -1, p{£) starts with 100. After we check that fi(£) starts 
with 100 for £ - L2k+2, we have completed the proof of (11). 

Hence, 
Digits(L2k+l, L2k+2) = Digits(L2k+l, 2Ln) + Digits(2L2k, L2k+l + L2k_t) 

+ Digits(L2k+l + L2k_l,L2k+2) 
= 2Digits(L2k_l, L2k) + Digits(L2k_2, L2k_x), 

and (10) is proven. D 

Proposition 3.9: For k > 1: 
(1) Ones{L2k, L2k+l) = F2k_2 +1 and Zeros(L2k, L2k+l) = F2k-l. 

(2) Ones(L2k+l, L2k+2) = F2k_x -1 and Zeros(L2k+p L2k+2) = F2k+l + 1. 

(3) Ones(0, L2k) = F2k_x and Zeros(0, L2k) = F^+1. 

(¥j Oiej(0, L2k+l) = F2k+l and Z^ro5(0, Z^+1) = F2k+2 -1. 
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Proof: The first two results are proved by induction on k. It may be checked by inspection 
that the formulas hold for k = 1 and k = 2. Let k > 3 and assume that the formulas hold for 
smaller k. Then, by 3.8, 

OnesiLn, hk+i) = 20nes(Llk_2j L ^ ) + Ones^^ Z^_2) = 2F2k_4 + 2 + F2k_5 -1 = F2k_2 +1 
by the induction hypothesis. Similarly, using Lemma 3.8 and the induction hypothesis 

OnestLn^, L ^ ) + 0/i^(Z^_2, L^-d = 2F2k_3 - 2 + F2k_4 +1 = F2k_x -1. 

To prove the last two results, we note that 
One$(L2k, L2k+2) = Oms(L2k, L2k+l) + Oms(L2k+l, L2k+2) = F2k. 

So 
J f c - 1 i f c - 1 

One$(0, 4 , ) = l + J^Onesi^ 4 / + 2) = 1 + ^ 2 / 

= Fx + F2 + ••• + FU_2 = F2k_v 

And 
0^5(0,Z2yt+1) = Ones(0,L2k) + Ones{L2k,L2k+l) = F2k_x +F2k_2 +l = F2k+l. D 

Proof of 3.1: The formulas for Ratio (L2k) and Ratio(L2k+l) follow from 3.9. The limit fol-
lows from equation (2). To see that both sequences are decreasing, we use equation (3). We 
have (F2k+l)2 ~F2k-iF2k+3 ~ ~* < °> which implies that Ratio(L2k) > Ratio(L2k+2). We also have 
(F2kf ~F2k-2F2k+2 = l<F2k+2 ~F2k-2- T h i s i m P l i e s that Ratio(L2k+l) < Ratio{L2k_x). D 

4. THE RATIO FOR NON-LUCAS NUMBERS 

In this section we prove that the sequence Ratio(n) for n > 2 is trapped between the two 
decreasing sequences of Proposition 3.1, which both approach p~2. 

Proposition 4.1: Let k > 1. Then, for n eN with L^ < n < L2k+2, Ratioil^) < RatioQi) < 
Ratio(L2k-i)-

We devote the rest of the paper to developing the lemmas which, when combined with some 
of the results of the previous section, will allow us to prove Proposition 4.1. 

The following lemma will be used repeatedly. 
Lemma 4.2: Let a,b,c,d GN and x,y GR. If f < x and f < y, then fg-< max{x, y). When 
each < is replaced by >, the result holds with max replaced by min. 

Lemma43: For k>\\ 
(1) OneS(0,2L2k_l) = 2F2k_2 + l, Zems(Q,2L2k_l) = 2F2k-l. 
(2) One$(Q,l2k + L2k_2) = F2k_l + F2k_3, Zeros(0, L,k + Z^_2) = 

F2k+l+F2k-l-
(3) Ones(0,21^) = 2F2k_h Zeros(p, 2 ^ ) = 2F2k+l. 
(4) Ones(0, Z^+1 + l ^ ) = F2k + F2k_2 +1, Zeros(0, L^+1 + L ^ ) = F2k+2 + F2k - 1 . 

Proof: We use Lemma 3.8 and Proposition 3.9. For example, for k > 2, Ones(0,2Z2it_1) = 
One${% Z^) + Ones^, 2L2k_l) = Ones(0, L^) + Ones^L^^, L ^ ) , using part (1) of Lemma 
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3.8. Therefore, Ones(0,2Z2£_1) = F2k_l + F2k_4 +1 = 2F2k_2 +1. The case k = 1 can be checked 
directly. The rest of the proofs are similar. • 

Lemma 4.4 {F2k_2 IF2k}k is an increasing sequence that approaches /T2 as k -» oo. 

Proof: Apply equations (2) and (3). • 

Lemma 4.5: Let k > 1. If 0 < x < L^^, then Ones^L^^ L^^ +x)l Zero$(L2k+l, Z ^ ^ + x) < 

Proof: In the proof of this lemma, Digits stands for either Ones or Zeros. The proof is by 
induction on k. The cases for k = 1 and k = 2 can be checked directly. Assume k > 3, and the 
result is true for smaller k. 

Case 1. 1 < x < Z2jt_2. By Lemma 3.8 and the induction hypothesis, 

Zeras(Zajt+„Z2k+1 + x) ZerosiL^^La^ + x) 

Case 2. Lik-2 <x<^xk-v Let J ^ x - Z ^ . j and r = -y + Z2k_4. Then 0<j<Z2jfc_3 and 
LIII-A <z < Lik-i• This implies that I^k+i + x- 2^ + y. We have 

OnestLn+i, Att+i + *) = Q « " f l W , 2Lik) + Ones(2L2k, 2L,k +y) 
ZertatLn+iiLiM+x) Zeros(L2k+1,2L2k) + Zeros(2L2k,2L2k+y)' 

Note that using Lemma 3.8, 
Digits(2L2k, 2^ +y) = Digit^L^^, Xjt_2 +y) 

= DigfaiLn-i, L2k-2+y) ~ Digits^^, L>k_2) 
= Digits^^, Z,t_3 + z) - Digits^^, Z,t_2). 

Hence, using Lemma 4.3 and Proposition 3.9, we see that 
OnesCLn+i, Lli+l + x) = 2F2t_t - (F2t +1) - F2t_3 + (F2lc_4 +1) + OnesjL^^, L,k_3 + z) 
Zems(I2t+I, Zjt+1 + x) 2F2jfc+1 - (F2t+2 -1) - F2k_x + (F2k_2 -1) + Zerosil^^, L2k_3 + z) 

= ^2t-4 + OnesjLq^, Z^_3 + z) ^ 2 
F2i_2 + Zeras(I2k_3, L,t_3 + z) 

since F2i_4 / i^_ 2 < yT2 by Lemma 4.4 and One^L^^, Z ^ + z) / Zeros^^, L ^ + x)</r2 

by the induction hypothesis. 
Case 3. x = L2k_1. Then 

Ones(L2k+l, L2k+l + .Z^-i) _ ^ + ^2*-2 + * ~ C^u +1) _ -^t-2 < 0-2 
&™<Llk+l,Llk-H+L2k-l) F2k+2+F2k-l-(F2k+2-l) F2k 

using Proposition 3.9, Lemma 4.3, and Lemma 4.4. 
Case 4. Z2t_I < x < Z^ . Let >> = x - Z ^ j . So 0 < _y < Z ^ . j . We have 

OnesJLu+i, Lik+i + *) = OnesjLg^, Z^+1 + Z ^ ) + QnesjLq^, Z2fc_1 + j ) 
Zeros(L2k+l, Z ^ , + x) Zera^^+j , Z^^ + Z ^ , ) + Z B T O S ( V I . ^ H - I + J7) 
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_ F2k + Fik-i +1 - (Flk +1) + OnesjLx-i, h.k-\ + y) 
F2k+2 + F2k~l~ (F2k+2 - 1) + 2iB«M(^2t-l, 4fc-l + j ) 

_ 2̂fc-2 + 0M4fc-l> hk-l +y) ^ Q-2 

F2t+Zeras(Ljt_1,LjJfc_1+^) 

using Lemma 3.8, Proposition 3.9, Lemma 4.3, Lemma 4.4, and the induction hypothesis. 
Case5. L2k<x<L2k+l. 1Le\y = x-L2k&n&z = y + L2k_2. Then 0 < y < Z ^ and L,t_2 < 

z.< Z2A • As before, we have 
DigitsiLz^, Ljk+1 + x) = Digits^^, Z ^ + j ) 
= DigitoiLn+i, Z ^ ) + DigitsCLa, L,t +y) 
= DigtoiLn+i, I^k+1) + Digit^L^-i, Z ^ + z) - Digitsi^, L^). 

Thus, 
Q"es(I^k+1, LjM + x) = F2fc_i - 1 - (F2A_3 -1) + OnesjL,^, Z ^ + z) 
ZerosiLiM, Z ^ + x) F2k+l +1 - (F2jt_j +1) + Zeros^^, Z ^ + z) 

F2k-2 + OnesjLq-i, hk-i +*) ^ *-a 
F2jfc + Zeros^^, I , w + z) 

using the induction hypothesis. 
Case 6. x = Z2(t+1. We have 

QnesflWi, 2Z2,+1) = (2F2fc +1) - (F2t +1) 
2mw(Zjt+1,2Z,t+1) (2F2Jt+2 -1) - (i?2k+2 -1) 

= _5t_££-2. 
•̂ 2Jfc+2 

Case 7. Z^+i < x < 2Z2fc. Let y = x - Lzk+l. So 0 < y < L^^. We have, by the induction 
hypothesis and using Lemma 4.3, 

Q»w(Z2t4.1,Zat+1 + x) = Q»e5(Iat+1,2Z2tH.1) + Qwes(Z2t_1,Iat_i+^) 
ZBWM(IM+I, Afc+i + *) 2e«»(Att+i. 2I2fc+i) + 2cras(Z2jt_1, Z ^ + j ) 

= (2F2fc +1) - (F2k +1) + OnesjLu^, L ^ +y) 
(2F2k+2 -1) - (F2jt+2 -1) + Zeras^La-i, hk-i +y) 

Eq+OneKLik-uLik-i+y) ^ 0-2 
F2k+2 

+ Zeros(L2k_x,L2k_x+y) 
Case 8. 2Z2J. < x < L^^. Let y = x - 2^ and let z = y + Lik_2. Then 0 < y < I^^ and 

£2 fc_2 KKL^. We have 
D/g/Y5(Z2fc+1, Z^+i + x) = DigitstLn+u ^ 2 + hk) + Digits^^ + L*, Z ^ +L2k+y) 
= Digits(L2k+1, L y ^ + Zjk) + DigitsUn, L^ +y) 
= DigitstJitoH, L2k+2 + L,k) + DigitstLx-u £,*-! + z) ~ Digits^-i* hd-
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Thus, 
OnesjLxH, L,t+t + x) = F2jfc+1 + / ^ - ( / ^ +1) - (F2A_3 -1) + OnesjL,^, L^-i + z) 
Zeros(L2k+l, L ^ + x) F2k+3 + F2k+1 - (F2k+2 -1) - (F^ +1) + Zeros^^, L,k_x + z) 

=
 F2k+OneS(L2k-VLlk-l+Z) < o-2 

+ Zeros(L2k_l,Llk_1+z) 

by the induction hypothesis. • 

Proposition 4.6: Let k>l. If 0 < x < 1^^, then Ratio(L2k+l +x)<Ratio(L2k+l). 

Proof: 

since 
OnesjL,^ I^^ + x) 2 

Zerosi^^ + x ) ^ ^Ratl0(L>^ 

by Lemma 4.5 and Proposition 3.1. D 

Lemma 4.7: Let k>\. If 0 < JC <Z^+j, then 

OnesjLu^Lg+x) ^Ratin(T * 
Zerost^^+x)^1^-

Proof: The proof of this lemma is similar to that of Lemma 4.5 and is omitted. 

Proposition 4.8: Let k>\. If 0 < x <Z^+j, then Ratio{L2k + x)>Ratio(L2k). 

Proof: For x > 1, we have 

Ration + x ) - ^ ^ j ^ ^ ^ ^ * * - M 4 * ) 

by Proposition 4.7 and Lemma 4.2. For x = 1, Ones(L2k, Llk+x) = 1, Zerosil^^ Llk + x) = 0, 
and the result follows. D 

Proof of Proposition 4.1: By Propositions 4.6 and 4.8, it follows for & > 1 that, if Z ^ ^ < 
n < L2k+2, then Ratio(L2k) < Ratio(n) < Ratio(L2k+1) < RatiofJ^^. Also, for k > 1, if L^ < n< 
L2k+l, then Ratio^) < Ratio(ri) < Ratio^^). • 

The following theorem has now been proven. 

Theorem 4.9: The limit of the ratio of natural numbers having Property 3P to those not having 
Property 2? is l i m , ^ Ratio(n) = /?"2. 
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CORRIGENDUM 

In the November 1998 issue of The Fibonacci Quarterly (Vol. 36, no. 5), Clark Kimberling's article entitled 
"Edouard Zeckendorf' appeared on pages 416-418. Due to an unfortunate printing error, the signature which was 
to accompany the article was inadvertently omitted. We apologize to the author, and are pleased to present the 
missing signature below: 
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1. INTRODUCTION 

Let a^..^ar_x (r>2,ar_l^0) be some fixed real numbers. An r-generalized Fibonacci 
sequence {^}£?o *s defined by the linear recurrence relation of order r, 

^ r ^ + C i + , ' , + ^ r + i » ^ ^ r - l , (1) 

where V^..^Vr_x are specified by the initial conditions. A first connection between Markov 
chains and sequence (1), whose coefficients at (0 < / < r -1) are nonnegative, is considered in [6]. 
And we established that the limit of the ratio Vn I qn exists if and only if CGD{/ +1; at > 0} = 1, 
where CGD means the common great divisor and q is the unique positive root of the character-
istic polynomial P(x) = xr -a0xr~l ar_2x-ar_l (cf. [6] and [7]). 

Our purpose in this paper is to give a second connection between Markov chains and 
sequence (1) when the at are nonnegative. This allows us to express the general term Vn (n>r) 
in a combinatoric form. Note that the combinatoric form of Vn has been studied by various 
methods and techniques (cf. [2], [4], [5], [8], [9], and [10], for example). However, our method 
is different from those above, and it allows us to study the asymptotic behavior of the ratio Vn/qn, 
from which we derive a new approximation of the number q. 

This paper is organized as follows. In Section 2 we study the connection between Markov 
chains and sequence (1) when the coefficients a, are nonnegative and a0 + ••• +ar_x - 1, and we 
establish the combinatoric form of Vn for n > r. In Section 3 we are interested in the asymptotic 
behavior of Vn when the coefficients cij are arbitrary nonnegative real numbers. 

2. COMBINATORIC FORM OF SEQUENCE (1) WITH 
NONNEGATIVE COEFFICIENTS OF SUM 1 

2.1 Sequence (1) and Markov Chains 
Let |^}JS) b e a sequence (1) whose coefficients a0, ...,ar_x {ar_Y * 0) are nonnegative with 

a0 + —\-ar_l = l. Set 

X = and P = 

I 
0 
0 

-V-2 
^ r-\ a, r -2 

0 
a, 

0 

0 
at r-l -V-2 

(2) 

where Ir is the identity rxr matrix. The condition ZJTo ai = * imP^s that P = (P(n, m))n>0m>0 is 
a stochastic matrix. Consider the following general theorem on the convergence of the matrix 
sequence {P(k)}+

k=o, where P(k) = P-P P (ktimes). 
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Theorem 2.1 (e.g.9 cf. [3], [11]): Let P = (P(n, ni))n>0 w>0 be the transition matrix of a Markov 
chain. Then, the sequence {P^}t=0 converges in the Cesaro mean. More precisely, the sequence 
{ & } £ defined by 

converges to the matrix Q = {q(n, m)}n>^ m>0 with 

q(n,m)-- f>(n, rn) 

where p(n, m) is the probability that starting from the state n the system will ever pass through m9 

and /um is the mean of the real variable which gives the time of return for the first time to the state 
m, starting from m. 

It is obvious that the particular matrix given by (2) is the transition matrix of a Markov chain 
whose state space is N = {0,1,2,...}. We observe that 0,1,...,r-1 are absorbing states and the 
other states r,r + 1,... are transient, because starting from a state n>r the process will be 
absorbed with probability 1 by one of the states 0,1, . . . , r - l after n-r + l transitions. If m is a 
transient state, we have jum = +oo (cf. [3]), hence q(n, m) = 0 for m - r, r +1,.... If n and m are 
absorbing states, we have jum = l and p(n, m) = 5nm. Therefore, the limit matrix Q of Theorem 
2.1 has the following form: 

Q = 

0} 
p(r,0) 

p(r+ 1,0) 

p(n,0) 

P(r,r-l) 
p(r + l,r-l) 

p(n,r-l) 

0 
0 

0 
(3) 

The sequence defined by (1) may be written in the following form, 
X = PX. (4) 

From expression (4) we derive easily that X = P^X for n > 1, which is equivalent to X - QnX 
D l D ( 2 ) i . . . I r j ( M ) 

for n> 1, where Qn = n" . Thus, we have X = QX, where Q is given by (3). We then 
derive the following result. 

Theorem 2.2: Let {Vn}*™0 be a sequence (1) such that the real numbers a0, ...,ar_l are non-
negative with Z^/af = l. Then, for any n>r, we have 

V„ = p(n, 0)V0+p{n, \)Vl + - +p{n, r - l)Fr_,. (5) 
Note that the number p(n, j) (0 < j < r -1) is the probability of absorption of the process by 

the state j , starting from the state n. Theorem 2.2 gives the expression of the general term Vn for 
n>r as a function of the initial conditions V0,...9 Vr_x and the absorption probabilities p(n, j). 

2*2 Combinatoric Expression of p(n, m) 
For n>m>r, the number p(n,m) is the probability to reach the state m starting from the 

state w, because m is a transient state. To reach the state m starting from the state n, the process 
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makes k} jumps of j +1 units with the probability ay (0 < j < r -1) . The total number of jumps is 
kQ +&x H— + &r_i and the number of units is kQ + 2kx + ••• +rkr_x -n-rn. The number of ways to 
choose the kj (0 < 7 < r -1) is 

(*0+*! + - "+* r - l ) ! 

and the probability for each choice is afta*1 • • • a^. Hence, we have the following result. 

Theorem 2.3: For any two states n, m (n>m>r), the probability p(n,m) to reach m starting 
from n is given by 

kQ+2kl+-~+rkr_x=n-m KQ'K\' Kr-\ • 

Note that, for n>m>r, p(n, m) = H%}m+l(a0,...,ar_x), where {H%}m+l(a^...,a^)}^ is the 
sequence of multivariate Fibonacci polynomials of order r of Philippou (cf. [1]). 

Let n and j be two states such that 0<j<r<n. Then n is a transient state, j is an absorbing 
one, and p(n, j) is the probability of absorption of the process by j starting from n. First, we 
suppose that n > 2r and 7 = 0. To reach 0 starting from n, the state r is the last transient state 
visited by the process. And ar_x is the probability of the jump from r to 0, which implies that we 
have p(n, 0) = ar_xp(n, r). More precisely, to reach j (0 < j < r -1) starting from n (n > 2r), the 
process must visit one of the following states r, r + l,...,r+j, because they are the only states 
from which the process can reach j in one jump. As arArk^^x (0 < k < j) is the probability to go 
from r + k toy and p(n, r + k) is the probability to go from n to r + k, we obtain 

P(P, J) = ar-j-\P(n,r)+ar_jp(n, r +1) + • • • + a^jpfa r + j). (7) 

From expression (6), we deduce that p(n,r + l)=p(n-l,r) for any n>r + l. Thus, for any 
n > 2r and j (0 < j < r), we have 

p(n, j) = a^j^in, r)+ar_jp(n -1, r) + • • • + a , . . ^ - j , r). 

Now suppose that n < 2r. Then we have two cases. If r + y < n, expression (7) is still verified. 
For the second case, r < n < r + j , we have 

P0*> J) = <Xr-j-\P(n>r)+^r-,P0* - 1 , r) + - + aw_7_!p(r, r). 

Hence, the expression of the absorption probabilities is given by Theorem 2.4. 

Theorem 2.4: Let n and j be two states such that 0<j<r<n. Then, if we set p(i, i) - 1 and 
p(i9 k) = Q if i <k, the probability of absorption p(n, j) is given by 

P(*> J) = ar-j-\P(n*r)+ar-jP(n - 1 , r) + • • • + fl^iPCw - 7, r\ (8) 

where p(w, 0) = ar_xp(n, r). 

2.3 Combinatoric Expression of Vn 

By substituting expression (8) in (5), we obtain the following result. 

Theorem 2.5: Let {Fw}£?0 be a sequence (1). Suppose that the coefficients a0, ...,ar_1 are 
nonnegative with SJTQ a,- = 1. Then, for any w > r, we have 
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Vn = A0p(n,r) + Alp(n-l,r) + - + Ar_lp(n-r + l,r), (9) 

where 4« = ar-¥m
 +''' + amK-i> *w = 0,1,..., r - 1 and the p(k, r) are given by (6) with p(r, r) = l 

and p(k, r) = 0 if k < r. 

If we take V0 = 1 and Vx = • • • = Vr_x = 0, we get Vn - a^pty, r). Therefore, the sequence 
{(p(n, r)}£?0 satisfies the following relation: 

p(n + l,r) = a0p(n,r)+alp(n-l,r)+---+ar_lp(n-r + l,r). (10) 
Relation (10) may be proved otherwise by considering the jumps of the process from the state 
T? +1 to the state r. 

2.4 General Case and Levesque Result 
Now suppose that the coefficients a0, ...,ar_1 are arbitrary real numbers and define the num-

ber p(n, r) by (6). Then we can prove by induction on n that expression (10) is satisfied. Hence, 
Theorem 2.5 is still valid in this general case. Such a result was established by Levesque in [5]. 

3. ASYMPTOTIC BEHAVIOR OF p(n, r) 

Let {Vn}*™0 be a sequence (1). Suppose that a0, ...,ar_l are nonnegative real numbers with 
UiZlai = 1- We have established, using some Markov chains properties, that sequence (1) con-
verges for any V0,..., Vr_x if and only if CGD{/ +1; at > 0} = 1 (cf [6], Theorem 2.2). When this 
condition is satisfied, we obtain 

lim Vn = 11(0)^ + XI(lFr_2 + • • • + H(r - 1)F0, (11) 

where 

57I1 a n ( ^ ) = ^r (7 L (cf- l6l Theorem 2.4). 
A=o(l + 1M 

By using expressions (9) and (11), we derive the following result. 

Theorem 3*1: Suppose that the real numbers a0,..., ar-1 are nonnegative with J^~Q at = 1. Then, 
if CGD{/ +1; af > 0} = 1, we have 

lim p(n, r) = -—r- :—, 

where p(n9 r) is given by (6). 

Now suppose XJTQ at^l. It was shown in [7] that under the condition CGD{i +1; af > 0} = 1, 
the characteristic equation xr = a0xr~l + •••• +ar_2x+ar_l of sequence (1) has a unique simple non-
negative root q, and the moduli of all other roots is less than q. If we set bt =aj/ql+1

y we have 
bt > 0, X-IQ k = 1, and CGD{i +1; a, >0} = CGD{i +1; bt > 0}. Thus, the sequence {WX=o defined 
by Wn = Vn I qn+l is a sequence (1) whose initial conditions are Wt = Vt I ql+l for ; = 0,1,..., r - 1 and 
W„+l = H1-=obiWn_i for n>r-l (cf. [6]). Therefore, we derive from Theorem 3.1 the following 
result. 
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Theorem 3.2: Suppose that a0,..., ar_x are nonnegative real numbers and CGD{/ +1; ai> 0} = 1. 
Then we have 

Km — P(n>r) = T 2 —, 

where p(n, r) is given by (6). 

From Theorem 3.2, we can derive a new approximation of the number q. More precisely, we 
have the following corollary. 

Corollary 3.3: Suppose that a0,...,ar_x are nonnegative real numbers and CGD{J +1; ax > 0} = 1. 
Then the unique simple nonnegative root q of the characteristic equation of (1) is given by 

q= lim %jp(n,r), 

where p(n, r) is given by (6). 
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1. INTRODUCTION 

Let Ln be the rfi Lucas number, that is, Lx = 1, L2 = 3, Ln+l = Ln + Ln_x for n > 2. Let p be 
prime. Consider the equation 

Ln = px2 (n,x>0). (1.1) 

In [1], Cohn solved (1.1) for p = 2. In [3], Goldman solved (1.1) for p = 3,7,47, and 2207. In 
[5], Robbins solved (1.1) for p < 1000. He proved that, for 2 < p < 1000, (1.1) holds iff 

(p, n, x) = (3,2,1), (7,4,1), (11,5,1), (19, 9,2), 
(29,7,1), (47,8,1) (199,11,1), (521,13,1). ( ' } 

Besides, he proved that, for p = 14503, (1.1) holds iff 

fox) = (28,7). (1.3) 

Following Robbins, denote z(n) = mm{m\n\Fm m>0}, where Fm is the m* Fibonacci num-
ber, that is, Fx = F2 = I, Fm+l = Fm+ Fm_x for m > 2. Ifp is odd and 21 z(p), denote y(p) = jz(p). 
Then we observe that every (n, x) in (1.2) and (1.3) satisfies n =y(p). Furthermore, if 2 \n, then 
either n-2r orn = 2rq, where q is an odd prime and / = qU\ if 2\n, then n is a prime except 
n = 9 for /? = 19. The question is: Does the above conclusion holds for arbitrary/?? Our answer 
is affirmative. In this paper, we state and prove this general conclusion in Section 3. Some pre-
liminaries are given in Section 2. In Section 4, we give an algorithm which we can use to solve 
(1.1) for given p. For example, we have given the solutions of (1.1) for 1000 < p < 60000. A 
conjecture is also given in Section 4. 

2* PRELIMINARIES 

Let {nlm) be the Jacobi symbol. (For odd prime m, (nlrri) is the Legendre symbol; see [9].) 
Denote Op(ri) = k ifpk || n. 

(1) I fw>2, then m\Fn iff z(m)\n. 
(2) If m is odd and m > 3, then m \ Ln \ffnly{m) is an odd integer. 
(3) F2„ = L„F„. 
(4) L2„ = Ll-2(-ir^5F^+2(-lf. 
(5) L_n = ( - ! ) % . 
(6) Ifp is an odd prime, then z(p)\(p-e), where e = (5/p) = 1,-1,0 for p = ±l,±2,0 

(mod 5), respectively. 
(7) Ln \Ljfa iff A is odd or n = 1. 
(8) If*is odd, then (Ln, L^IL^k. 
(9) Fn^(an - (in)l (a- fi) mA Ln = an + p\whQXQ a = (l + S)l2, (3 = {1-S)I2. 
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(10) If/? is an odd prime, p | Fm and p\a, then Op(Fp„ani I Fm) = k. 
(11) If/> is an odd prime, p \ Lm, a is an odd integer, and p\a, then Op(Lpkam I Lm) = k. 

[1 ifw = 0(mod6), 
(12) 0 2 (4 ) = J2 if n = 3 (mod6), 

[0 otherwise. 
(13) Z!2m+„ s 4 (mod 8); furthermore, 4 = 1, -1,3, - 3 (mod 8) for n = 1, - 1 or ±4, ±2 or 

5,-5 (mod 12), respectively. 
(14) Z,„ = x2iff« = l o r 3 . 
(15) L„+kH-VkLn_k=LnLk. 
(16) If m > 0, then L2mk+I = (-\)m^Lt (mod Lk). 

Remarks: (1) through (10), (12), (14), and (15) can be found in [4], [8], or [6]; (13) follows 
from the observation of the sequence {Ln (mod 8)}. We give the proofs of (11) and (16) below. 

Proof of (11): From (9), it is easy to see that 4Sam = Lma + Lm_v Then 

(V5)'a- = t f ^ 4 l 1 4 « ' . 
i=0 

For the same reason, we have 
t 

1 
i=0 

If 211, then, by using (9), we get 
S^^JL^tf^r-Uli-'F^th, (2.1) 

Let t = pka. If i >p k + \ then pk+l \E~l since p \Lm, whence pk+l \hr If 2 <i < p k + \ let 
/ = rps {p\r, s< k), then 

pk-s pka^ 
psr = ({](see[7],Th.2.1), 

whence pk~s+i~l|/*.. Since /?>3, we have i>$ + 2, so &-s + i - 1 > £ + 1. Hence, /?*+1|/22- for 
i > 2. Now fy = ^4^!- Suppose that /? | Z,^ , then /? | Lm and the recurrence Ln+l = Ln + Ln_x 

implies p\Lx-\. This is impossible. Hence p\Lm_l9 whence OpQi^ = Op(t) = k. Summarizing 
the above, we have that / 1 | %=l hf. From {Ln (mod 5)}J00 = {2,1,3,4,2,1,...}, we observe that 
5 |Z^ , thusp^5 . Then, (11) follows from (2.1). D 

Proof of (16): In (15), take n = k + t. Then we get L2k+t = (~lf~lLt (mod Lk). This means 
that (16) holds for m = 1. Assume that (16) holds for m. In (15), taking n = (2wi +l)k +1, we get 
^2(m+i)k+t - (-$kl^2mk+t (moc* h) • By the induction hypothesis, we have 

W D * " ^ ( - l ^ C - l ) ^ ^ A = (~l)(m+m-l)Lt (mod 4 ) , 
thus (16) is proved. D 

Note: (1) through (16) can also be found in [10] which was published in Chinese. 
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3. THE MAIN RESULT AND ITS PROOF 

In the following discussion, we always assume n, x > 0. 

Theorem: Let/? be an odd prime, and Ln = px2, then n =y(p). Furthermore, let 2r \\y(p). 
(a) If r = 0, then p = ±l (mod 5) and y(p) is prime except y(p) = 9 for p = 19. 
(b) lfr = l,then(p,n,x) = (3,2,l). 
(b) If r > 2, then p = 7 or 23 (mod 40) and either j/(/?) = 2r or j(/?) = 2r#, where q is an 

odd prime satisfying Lr
2 = qn. 

Clearly, the theorem is a considerable improvement of both Theorem 9 and Theorem 11 in 
[5]. To prove the theorem we need the following lemmas. 

Lemma 1: Let p be an odd prime and let Ln = px2. Then 3\n except n = 9 for p - 19, and so 
2\x for p * 19 (see [5], Th. 3 and Th. 4). 

Lemma 2: Let p be prime, t = ±1 (mod 6), and p = ±L5t (mod 8). Then p == + 4 (mod 4) and 
(2//>)(2/Z>) = - l . 

/VIWJ/: If t = ±1 (mod 12), then 5t = ±5 (mod 12), whence (13) implies Lt = ±1 (mod 8) and 
L5t = ±3 (mod 8). Hence, the lemma holds. Jft = ±5 (mod 12), the lemma is proved in the same 
way. D 

Lemma 3: Let/? be prime, n = (I2s± l)t, s>09t = ±l (mod 6), and p\Lt. Then Ln * px2. 

Proof: Suppose Ln = px2. Then, from (13) and (5), we have Ln = L±t = ±Lt (mod 8). (12) 
implies 2\Ln, 2\LP so 2 \ x . Thus, 

/? s Ln = ± 4 (mod 8). (3.1) 

Rewrite n = 2-3a -k±t, where k = ±2 (mod 6). From (16), it follows that 

P%1 = L2V-k±t s ~Z±' = +A (mod 4 ) (3.2) 
It is easy to see that k = 2ht. (16) implies Lk - 4/^+0 = 1^ = 2 (mod Lt). This and 2\Lt imply 
(Lk, Lt) = 1. Since /? | 4 , we have Lk = 2 (mod/?) and (Lk, p) = 1. (13) implies 4 = -1 (mod 4). 
From (3.1), we have 

(p(TLt) 14) = +(/? / 4 ) ( 4 / 4 ) = (=F)(±)(4 / P)(Lk 14) 
= -(Lk/P)(Lk/Lt) = -(2/P)(2/it) = -i 

This contradicts (3.2). Hence, Ln ̂  px2. D 

Lemma 4: Let/? be prime, n = (l2s±5)t, t = ±l (mod 6), and p\Lt. Then 4 ^ P*2• 

Proof: Suppose Ln = px2. For the same reason as in the proof of Lemma 3, we have 

p = Ln = ±L5t (mod*). (3.3) 

Rewrite n = 2(6s±2)t±t = 2k±t. Then (16) implies 

px2 = L2k±l s -L+, = +Lt (mod Lk). (3.4) 
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For the same reason as above, Lk = 2 (mod Lt) and Lk = 2 (mod /?), (Lk, Lt) = (Lk9p) = l, and 
Lk = -1 (mod 4). Thus, from Lemma 2, we have 

(K+4) / 4 ) = =KP / 4X4 / 4) = (+X+X4 / P X 4 / 4) = (2 / /0(2 / 4) = -1. 
This contradicts (3.4). Hence, Ln * px2. D 

Lemma 5: help be prime, n = (l2s±S)t, t-2rd, r > 2 , rf = +l (mod 6), and p\Lt. Then 
Z,w*/?x2. 

. Proof: Suppose Ln = px2. Since 2r = 4-2r~2 = 4 ( - f p 2 = ±4 (mod 12) for r > 2, we have 
n = ±5^ = +t = ±4 or +4 (mod 12). (13) implies Ln = Lt = -1 (mod 8), and so Ln = px2 implies 
p = - l (mod8) . Let 3s±l = 2am, l\m. Then n = 2m-2a+lt±t = 2mk±t. (16) implies 

px* = Ln = -L±t=-Lt (modLk). (3.5) 

Again, (16) implies Lk = £2.2af+0 = (- l ) 2 0^"1^ = ±2 (mod Lt), and so Lk = ±2 (mod p). For the 
same reason as given above, Lk = -l (mod 8) and (Lk, Lt) = (Lk, p) = l. Thus, 

OK-4) / 4 ) = -(? / 4X4 / 4) = -(-1X4 / /0HX4 ' 4) = -(±2 / P)(±2 / L,) = -1 
This contradicts (3.5). Hence, Ln & px2. D 

Lemma 6: Let/? be prime, n = (125+1)£, / = 2rrf, 5> 0, r > 2, rf = +1 (mod 6), and p\Lt. Then 
Ln*px2. 

Proof: Suppose Ln = /?x2. Let 35 = 2am, 2\m. Then w = 2• m• 2"+1r±f = 2w& + f. The 
proof is completed in the same way as the proof of Lemma 5. D 

Lemma 7: Let/? be an odd prime, and Ln - px2. Then n=y(p). 

Proof: From (1.2), we know that the lemma holds for p = 19. Now we assume that p ^ 19. 
Then Lemma 1 implies 31n and (2) implies n = mt, where t - y(p) and 2 |m. Therefore, m = ±1 
(mod 6). If WI>1, then m = 125+1 or m = 125±5. Let t = 2rd, r >0, rf = ±1 (mod 6). When 
r = 0, the conditions of Lemma 3 and Lemma 4 are fulfilled. When r > 2 , the conditions of 
Lemma 5 and Lemma 6 are fulfilled. These all lead to Ln * px2. Hence, m = l, and so n =y(p). 
When r = 1, (12) implies 31| Z,w, whence Z„ = px2 iff (/?, rc, x) = (3,2,1). Obviously, 2 = j;(3), and 
we are done. • 

Lemma 8: Let p be prime, p > 3, and / =y(p) = ±1 (mod 6). If Z, = /?x2, then p = ±1 (mod 5) 
and f is prime. 

Proof: Lt = px2, 2\t9 and (4) imply 5F2 = 4 (mod/?). This implies (5//?) = l, and so 
/? = ±1 (mod 5). Suppose that t is a composite. Then t = kq, where ^ is a prime greater than 3, 
and k>\. (14) implies Lg*n. 'Since 2JLg, there exists an odd prime r such that r\Lq and 
2 JOr(Z^). From (2), it is clear that 

y(T) = q. (3.6) 

If r = q, then z(g) = 2 >y(q) = 2-y(r) = 2q. (6) implies 2q\(q-(5/ q)). This is impossible. 
Hence, r*q. 1fr\k, then (11) implies Or(Lkq) = 0r(Z^). Therefore, 2f 0r(Z,). This means that 
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Lt = px2 implies r-p. Thus, from (3.6), we get y(p) = q <kq = y(p). This is a contradiction! 
Hence, r\k. Let k -rh? then Lqh• Lqrh ILqh = px2. Let (Lqh, LqrhILqh) = d. (8) implies d\r,(2) 
implies r\Lqh, and so (11) implies Or(Lqrh/Lqh) = 1. Thus, r\d\ hence, d-r. Then we have 
either (i) Lqh = ru2 or (ii) Lqh = rpu2. (ii) contradicts the fact that y(p) = qrh, since qh <y(p). If 
(i) holds, then, from Lemma 7, we have y(f) = qh. Comparing it with (3.6), we get h = 1 and 
t = qr. 

For the same reason, there exists an odd prime s such that s | Lr and 2\Os(Lr) • And we also 
have 

y(s) = r (3.7) 

and j ^ r . Again, for the same reason as r \k, we have s\q9 whence s = q. Thus, (3.7) becomes 

y(q) = r. (3.8) 

Equations (3.6) and (3.8) imply that z(r) = 2q and z(q) = 2r. Thus, (6) implies 2g | ( r - (5 / r ) ) 
and 2r\(q-(5/ q)). Clearly, this is impossible. Hence, t is prime. D 

Lemma 9: Let p be prime, /? > 3, 2r || ̂  =y(p), and r > 2. If Z, = /?x2, then p = 7 or 23 (mod 
40) and either t - 2r or t = 2rq, where q is a prime satisfying I r =qn. 

Proof: From the proof of Lemma 7, we know that t = 2r J , d = ±l (mod 6). From the proof 
of Lemma 5, we know that p = -l (mod 8). Zr = px2, 2\t9 and (4) imply 5F2 = -4 (modp), and 
so {-51 p) = -(Sip) = 1. This leads us to p = ±2 (mod 5). Summarizing the above, we obtain 
p = 7 or 23 (mod 40). 

From the proof of Lemma 8, we know that there exists an odd prime q such that q \ lr and 
2\Oq(I r). From (2), it is clear that y(q) - 2r. Tfd^l, then, for the same reason as in the proof 
of Lemma 8, we have q\d. Let d = qh, then lrh 4r hl lrh - px2. Now (8), (2), and (11) imply 
(hrw hr h^hri) ~ Q> s o w e §e t e^her (i) lrh = qu2 or (ii) lrh - qpu2. (ii) contradicts the fact that 
y(p) = 2rqh. If (i) holds, then Lemma 7 implies y(q) = 2rh. Comparing this with y(q) = 2r, we 
get h = 1 and / r = g^2. Thus, the lemma is proved. • 

Proof of the Theorem: The Theorem follows from Lemmas 7 through 9. • 

4. AN ALGORITHM AND EXAMPLES 

From the Theorem in Section 3 and using (1) and (6), we can give the following algorithm. 

Algorithm: Let/? be a given odd prime, p^3, 19. 
I If p # ±1 (mod 5) and p # 7,23 (mod 40), then (1.1) has no solution. 

II For /? = ±1 (mod 5), let A = {g1? ...,qk} be the set of distinct prime factors greater than 3 of 

(ifl̂  If A is empty, then (1.1) has no solution. 
(b) For / = 1,..., £, calculate Z .̂ (mod/?). 
(bj If there exists an / = j such that Lq = 0 (mod p), then calculate Z^.. If Lq. = /?w2 

(i/> 0), then (w, x) = (fy.? i/) is the solution of (1.1), otherwise (1.1) has no solution. 
(d) If, for all /' = 1,..., k9 Lq. # 0 (mod/?), then (1.1) has no solution. 
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III. For p = l or 23 (mod 40), let 2a||(/? + l) and A = {ql9...,qk} be the set of distinct prime 
factors greater than 3 of /? +1. 
(a) For s = 2,3,..., a -1, calculate lv (mod p). 
(h) If there exists an s = r such that lr = 0 (mod/?), then calculate /2r. If /2r = pu2 (u > 0), 

then (w, x) = (2r, u) is the solution of (1.1), otherwise (1.1) has no solution. 
(c) If, for all s = 2,3, . . . ,a- l , lr # 0 (mod/?), then 5 = 2,3, . . . , a - l and, for every g, in,4 

such that qi =7 or 23 (mod 40), calculate lv (mod qt). Let 5 be the set of such (s9 i)'s 
that l2s = qjD. 

(d) If B is empty, then (1.1) has no solution. 
(e) For each (s,i) in5, calculate L2*q. (mod/?). 
(J9 If there exists an (s, i) = (r, j) in 5 such that L2rq. = 0 (mod /?), then calculate Z2

r^ • If 
L2rq. = pu2 iu > 0), then («, x) = (2r#;, i/) is a solution of (1.1), otherwise (1.1) has no 
solution. 

(g) If, for all (s,i) in B, L2*q. # 0 (mod/?), then (1.1) has no solution. 

Remark: For calculating Lm (mod /?) and Lm, there is an algorithm that determines the result 
after [log2#i] recursive calculations (see [2]). 

Example 1: p = 63443 # ±1 (mod 5) and /? # 7, 23 (mod 40). Hence, (1.1) has no solution. 

Example 2: p = 19489 = -1 (mod 5), p -1 = 25 x 3 x 7 x 29, A = {7,29}. By calculating, we get 
L29 = 0 (mod /?). But L^ - 59p ^ /?x2, so (1.1) has no solution. 

Examples: /? = 4481 = 1 (mod 5), p-l = 29 x5x7, ^ = {5,7}. Since L5,Z7#0 (mod/?), (1.1) 
has no solution. 

Example 4: p = 9349 = -1 (mod 5), /? - 1 = 22 x 3 x 19 x 41, A = {19,41}. By calculating, we 
get Ll9 = 0 (mod/?) and Ll9 = /?. Hence, (w, x) = (19,1) is the solution of (1.1). 

Example 5: p = 1103 = 23 (mod 40), /? +1 = 24 x 3 x 23, 4 = {23}. Since /22, /23 # 0 (mod/?) and 
/22, /23 # 0 (mod 23), (1.1) has no solution. 

Example 6: /? = 1097 = 7 (mod 40), /? + l = 26x,17, A = {17}. Since /2s = 0 (mod /?) but 
/25 = 1087 x 4481 ^ /?x2, (1.1) has no solution. 

Example 7: p = 3607 = 7 (mod 40), /? +1 = 23 x 11 x 41, A = {11,41}. Since /22, /23 # 0 (mod /?) 
and 11 and 41 # 7,23 (mod 40), (1.1) has no solution. 

Example 8: p = 14503 = 23 (mod 40), /? +1 = 23 x 72 x 37, A = 7,37}. By the Algorithm, we 
get /22 = 7 and /22.7 = /? • 72. Hence, (n, x) = (28,7) is a solution of (1.1). 

Remark: In 11(c), 111(b), and 111(d) of the Algorithm, it is unnecessary to calculate Lt9 where 
t = qJ9 2r, or 2rqj for most of the f$. The reason is that, if pLt is a quadratic nonresidue (mod 
m\ where m is some prime, then Lt * px2. For example, by using the Algorithm and making m 
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run through the first 20 odd primes, and by means of a computer, we have verified the following 
proposition. 
Proposition: Let p be prime, 103</?<6xl04. Then (1.1) holds iff 

fo »,*) = (2207,16,1), (3571,17,1), (9349,19,1), (14503,28,7). (4.1) 

Extensive numeric results inspire the following conjecture. 

Conjecture; Letj? be an odd prime and p*3, 19. Then Ln = px2 iff one of the following con-
ditions holds: 

(a), p = ±1 (mod 5), y(p) is prime, and Ly(p) = p, so («, x) - (y(p)91); 
(b) p = 7 or 23 (mod 40), j/(p) = 2r, and Ly(p) = p, so (#i, x) = (j/(p), 1); 
(c) p = 7 or 23 (mod 40), y(p) = 2rq, where q is a prime greater than 3 satisfying lr = q 

and Ly{p) = /?g2, so (w, x) = (y (» , qr). 

We point out that the conjecture would hold if we could show p2 \Ly^ for all odd prime p. 
At this time, it remains unknown whether there exists an odd prime/? such that p2 \ Ly^p). 

REFERENCES 

1. J. H. E. Cohn. "Square Fibonacci Numbers, etc." The Fibonacci Quarterly 2.2 (1964): 109-
13. 

2. A. Di Porto & P. Filipponi. "More on the Fibonacci Pseudoprimes." The Fibonacci Quar-
terly 27.2 (1989):232-42. 

3. M. Goldman. "On Lucas Numbers of the Form px2, Where p = 3, 7,47, or 2207." Math. 
Reports Canada Acad. Sci. (June 1988). 

4. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969. 
5. N. Robbins. "Lucas Numbers of the Form px2, Where p Is Prime." Internatl. J. Math. & 

Math. Sci. 14.4 (1991):697-704. 
6. N. Robbins. "Fibonacci Numbers of the Form ex2, Where 1</?<1000." The Fibonacci 

Quarterly 28.4 (1990):306-15. 
7. N. Robbins. "Some Congruence Properties of Binomial Coefficients and Linear Second 

Order Recurrence." Internatl J. Math. &Matk Sci. 11.4 (1988):743-50. 
8. S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood 

Ltd., 1989. 
9. I.M.Vinogradov. Elements of Number Theory, New York: Dover, 1954. 

10. Chizhong Zhou. Fibonacci-Lucas Sequences and Their Application (in Chinese). China: 
Hunan Science and Technology Publishing House, 1993. (MR. 95m: 11027) 

AMS Classification Number: 11B39 

1999] 45 



THE EIGHTH INTERNATIONAL CONFERENCE 
ON FIBONACCI NUMBERS AND THEIR APPLICATIONS 

Herta T. Freitag 

Rochester Institute of Technology, which has been internationally respected as a world leader 
in career-oriented and professional education since 1829, was the inspired choice of setting for 
our Eighth Conference. We are indeed grateful to RIT, as well as to the Fibonacci Association, 
for sponsoring our conference. A special word of thanks goes to Dr. Albert Simone, President of 
RIT, Wiley R. McKinzie, Dean of Applied Science and Technology, and Dr. Walter A. Wolf, 
Chair of the Computer Science Department. 

The participants came from eighteen different countries: 28 from the USA three each from 
Australia, Canada, and Japan, two each from Germany and Italy, and one participant from each of 
Austria, Belarus, Cyprus, Denmark, England, France, Greece, Iceland, New Zealand, Poland, 
Romania, and Scotland. Five of the presenters were women. There were four mathematicians 
who have attended all of the eight conferences, many who have attended several, most happily, 
several who have attended for the first time. The magnetism of Fibonacci-type mathematics drew 
even some who did not present a paper. The ages ranged from a few who were in their twenties 
to one who will soon earn the title of nonagenarian. 

There have been two major changes since our last conference, both involving Jerry Bergum. 
After eighteen years as editor of The Fibonacci Quarterly, he has handed over the baton to Curtis 
Cooper. We wish Curtis all success and fulfillment in his new role. At the same time, Jerry has 
been succeeded as conference organizer by Fred Howard, who also has our best wishes. Fred is 
already widely respected for his wisdom and kindliness. We hope that Jerry will attend many 
more of our conferences. We deeply appreciate all he has done. He has been in a very real sense 
the heart and soul of our Association. We would also like to renew our thanks to Calvin Long for 
his continuing work as our President. Our discussions have been illuminated by. his fine mathe-
matical insights. 

This is a conference where all of the talks are attended by almost all of the participants, who 
appreciated the diversity of topics covered and the remarkable level of quality of the papers. All 
of the presentations displayed the high enthusiasm of the speakers for their studies. And they all 
showed enjoyment over the opportunity of sharing their ideas with each others. 

As well as working hard (51 talks in five days!), the group also enjoyed some delightful social 
events, the highlight being a "cook-out" at the Anderson's' home with Peter and Jane our gracious 
hosts. Through his wit and warmth, Peter immediately set the stage for a conference where we 
not only saw a fellow mathematician in each other (which would already be enjoyable) but, 
moreover, a friend. We are deeply grateful to Peter and his helpers for all their hard work in 
preparing those delightful outings for us and the extra care they took in looking after us in 
Rochester. 

The friendships created by this sequence of Fibonacci conferences has produced many 
worthwhile results in the area of mathematics. At this conference we enjoyed renewing old 
friendships and beginning new ones. The "Goddess Mathesis" (to use Howard Eves' term) looks 
favorably on these friendships. 

Finally, we had to part. But now, we greatly look forward to meeting again in two years in 
Luxembourg in 2000. 
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0. INTRODUCTION 

Let R{N) be the number of representations of the nonnegative integer A^asa sum of dis-
tinct Fibonacci numbers. For N = Fn-l9 n>\, the Zeckendorf representation, in which no 
two consecutive Fibonacci numbers appear in the sum, is the only possible representation, and 
R{Fn -1) = 1, as proved by Carlitz [3] and Klarner [4]. The sequences {bn -1}, bn+l = bn +bn_l9 

arise as a generalization, having the property that R(bn-l) = R(bn+l-l) = k for all sufficiently 
large n (see [1] and [4]). The generation of the specialized and related sequence 1, 3, 8, 16, 24, 
..., 4i» whose 71th term is the least N such that n = R(N), spurred efforts to find recursive rela-
tionships for the values R(N) and ways to compute R(N) for large values of N. Some authors 
have used T(N) and some R(N) in counting representations; we will use R(N) for the number 
of ways to represent N as a sum of distinct Fibonacci numbers (without i*j) and T(N) for the 
number of representations if both Fx and F2 are used. In our notation, Carlitz and Klarner both 
givei?(F„) = [«/2], « > 2 , where [x] is the greatest integer inx. Since T(N)=R(N)+R(N-l), 
we have concentrated on formulas for R(N). 

Earlier authors have used generating functions and combinatorics to develop and prove 
representation theorems. In this paper we concentrate on properties of the integers whose repre-
sentations are being counted. We prove Conjectures 1, 2, and 3 from [1] as well as writing for-
mulas for R(MFk) and R(MLk), M>1, and solving R(N)=mR(N-l)-q for integers M9 m, 
mdq. 

1. THE SYMMETRIC PROPERTY AND A BASIC RECURSION 

The most obvious property in a table of R(N) is the palindromic subsequences it contains, 
beginning and ending with 1, for N in the interval F„ -1 < N < Fn+l - 1 ; i.e., when 0 < M <Fn_x, 
n>3, 

R(Fn+l-l-AJ)=R(Fn-l + M). (1) 

Since these values R(N) are symmetric about the center of each palindromic segment, we only 
have to compute the values of the first half of the interval. Symmetric property (1) is a variation 
of Theorem 1, whose results appear in Klarner [5], as specialized for the Fibonacci sequence 

Theorem 1: 
R(Fn+l~2-M)=R(Fn^M)y0<M<Fn__un>3. 
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Values for R(N) for 0 < N < 60 

N 
0 
i 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

R(M 
1 
1 
1 
2 
1 
2 
2 
1 
3 
2 
2 
3 
1 
3 
3 
2 

JV 

16 
17 

1 18 
19 
20 
21 
22 
23 

i 24 
25 

! 26 
• 27' - • 

28 
, 29 
30 

*w 
4 
2 
3 
3 
1 
4 
3 
3 
5, 
2 
4 • 
4 
2 
5 
3 

N 

31 
32 

! 33 
34 . 

, 35 -
36 
37 
38 

! -..39 
40' 
41 
42 : 

43 
44 
45. 

R(N) 

3 
4 i 
1 
4 
.4 ' J 
3 
6 

3 
5 
5 
2 
6 
4 
4 . 
6 

N 

46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

R(N) 

2 
5 
5 
3 
6 
3 
4 
4 
1 
5 
4 
4 
7 
3 
6 

It is a simple matter to compute a table for R(N) from generating functions for small N, but as JV 
gets larger, the computer's memory will eventually be exceeded. We have calculated R(N) for 
1 < N < 257,115 and have capabilities of calculating individual values for R(N) for very large TV; 
for example, R (3,000,000,000) = 6165. We have listed {An} for 1 </?<330. But to "study the 
mysteries of {An} or to compute R{N) for large Nby hand, we need some recursive relationships. 
Klarner [5] proved Theorem 2 for generalized Fibonacci numbers. 

Theorem 2 (Basic Recursion Formula): If Fn < M < Fn+l - 2, then 

R(M)=R(Fn+l-2-M)+R(M-FnX n>4. (2) 

Lemma 1: If Fn < M < Fn+l-2, then R{M-Fn) is the number of representations of Musing Fm 

while the number of representations of M using Fn_x is R(Fn+l - 2 - M). 

Proof: The largest Fibonacci number in Mis Fn. R(M) is the sum of the number of repre-
sentations of M that use Fn and the number of those that use Fn_x. Since M < Fn+l - 2, no repre-
sentations of Muse both F„ and Fn_Y\ else M>Fn+l, There are no representations of M that 
use neither Fn nor Fn_u since F„-2 = Fn_2 + Fn_3 + • • - + F3 + F2 <M. Note that M = Fn+Mx, 
where the largest possible Fibonacci number in Mx is Fn_2; else M could contain i^+1. The num-
ber of representations of M that use F„ is RiM^ =R(M-F„) since Fn is added to each possible 
representation of Mx to make a representation of Musing Fw. To list representations of Musing 
F„_i, if we write M = F„_x+Fn_2 +Mj and then list representations of Mu there can be a repeti-
tion of terms, such as Fn_2 appearing twice, so we need sums using disjoint sets of Fibonacci 
numbers. Representations of (Fn+l-2-M) = (Fn_{ + Fn_2 + • • • + F3 + F2)-M will use a set of 
Fibonacci numbers disjoint from those selected to represent M. Thus, R(Fn+l - 2 - M) must give 
the number of representations of M that use F„_x by examining Theorem 2. • 

In counting by hand, R(M)=R(M-F„)+R(M-F„_l) if M-Fnr.l<Fn_v For example, 
23 = 21 + 2 = 13 +10, and i?(23) = R(2) +i?(10). If M-F n ^ > F„_1? an adjustment must be made; 
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30 = 21 + 9 = 13 + 17 = 13+ (13 + 4), and R(30) = R(?)+R(17) -R(4). Lemma 2 makes this count-
ing correction. We take R(0)='l and R(K) = 0 when K<0 in Lemmas 2 through 6, and [x] 
denotes the greatest integer in x. 

Lemma 2: If F„<M<F„+1-2, then 

R(M)=R(M-F„)+R(M-Fn_x)-R(M-2F„_X); 
R(Fn+l-2-Ad) = R(M-Fn_x)-R(M~2Fn_x). l } 

Proof: R(M) is the number of representations of Musing Fn plus the number of represen-
tations of Musing Fn_x corrected for the number of representations of (M-Fn_x) using F„_u is 
any exist. A second way to write the representations of M that use Fn_x is to write M = Fn_x + 
(M-Fn_i) and observe that the number of representations that use Fn_x is R(M - Fn_x) if F„_x is 
not used in representing (M - Fn_x). If M > 2Fn_x, R(M - 2F„_l) is the number of representations 
of ( M - F ^ ) using Fn_h since M-Fn_x = Fn_x + {{M-Fn_x)-Fn_x). Thus, the representations 
ofM using Fn_i are counted by [R(M - Fn_x) — R(M — 2Fn_x)\, which count appeared in Lemma 1 
asi?(Fw + 1-2-M). D 

Lemma 3: 
R(F„ + K) = R(F„_l-2-K)+R(K),0<K<F„_l-2. (4) 

Lemma 2 is another form of Theorem 2, while Lemma 3 results when M = K + Fn in (2), and 
is useful in computation. For example, let K = 24, R(K) = 5; since 0< K<Fn_x -2, take »> 10. 

» = 12 
H = 13 
« = 14 
« = 16 

fl(24 + 144)=.R(87-24)+/?(24) = 8 + 5; 7?(168) = 13, 
tf(24 + 233) =./?(142-24)+i?(24) = 10 + 5; R(257) = 15, 
R(24 + 377).= R(231 - 24) +R(24) = 1.3 + 5; /?(401) = 18, 
rt(24 + 987) = /?(608-24)+/?(24) = 18 + 5; #(1011) = 23, 

where we recognize 24, 168, 257, 401, and 1011 as members of our specialized sequence {A„}. 

J eiftifta 4* 
R(M) = R(M- Fn)+R(M - FB_,), F„ < M < F„ + F„_3 - 1 . 

Proof: Because 2Fn_x = F„ + F„_3, R(M- 2F„_l) = 0 in Lemma 2 throughout the interval 
chosen. • 

Lemma 5: R(N) for the interval F„<N< Fn+X - 1 is given by: 
R(F„ + K) = R(Fn_2 + K) +R{K), 0<K<F„_3-1; 
R(F„ + K) = 2R(K), F„_3<K<Fn_2-\; (5) 
i?(F„ + ̂ ) = /?(F„+1-2-X), Fn_2<K<F„_,-\. 

Proof: Let M = Fn + K in Lemma 4 and use Theorem 1 to write the first and last Fn_3 values 
of R(N). Let F„_3+p = K\n Lemma 3, followed by application of Theorem 1 since 0 < p < F„_4: 

R(Fn + /v_3 + p) = R(F^ - 2 - (F„_3 + p)) +R(F„_3 + p) 
= R(Fn_2-2-p) + R(Fn_3 + p) 
= R(F„_3 + p)+R(Fr,_3+p). 

Thus, R(Fn + K) = 2R(K) when F„_3 <K<Fn_2-\. D 
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Lemma 6: 
R(F„ + K) = R(Fn_2+K)+R(K)-R(K-F„_3), 0<K<F„_v (6) 

Proof: For 0 < K < F„_t - 2, take M = F„ + K in Lemma 2, so that M - 2F„_l = (M- F„)+ 
(Fn -2Fn_1) = K-Fn_3. Then let K = Fn_x - 1 in the expression above, using R(F„ -1) = 1. Fin-
ally, take K = F„_x, using R(Fn+2) = [(n + 2)/2] = R(F„) +1 from [3] and [4]. • 

2. SPECIAL VALUES FOR R(b„ - 1 ) AND R(bn) 

Recursive sequences {bn -1}, bn+l = bn +bn_1, have R(bn - l)=R(bn+l -1) = k for n sufficiently 
large (see [1] and [4]). We can write sequences for which R(N-l) = k, a given constant, as 
indicated in the following example. Say k = 5 is given. Find a particular value, i.e., i?(24) = 5. 
Write 24 +1 = 25 = 21 + 3 +1 in Zeckendorf form, or 

R(24) = R(FS + F4+Fl-1) = R(F8+F4+F2-1) = 5. 

These are the first terms, when Fn = 1, in sequences we seek. Thus, 

R(F„+7+Fn+3+F„-l) = 5 = R(Fn+7+Fn+3+Fn+l-lX n>\. 

The symmetric property gives R(Fn+1-l + M)=R(Fn+%-\-M) = 5 for M = Fn+3+Fn, so that 
we can write 

R(F„+s-l-(F„+3+F„))=R(F„+7+Fn+s + F„+l-l) = 5, » > 1 . 

Since R(Fl0) = R(Fl0 +1 -1) = 5, again using the symmetric property, 

R(F„+9 +Fn-\)= R(F„+9 + Fn+l -1) = 5, n > 1, 
*(4+io ~F„-l) = R(F„+l0 - F„+l -1) = 5, n > 1. 

Since R(F2k) = R(F2k+l) = k,we can derive in a similar way, for n > 1: 

R(F2k-l+„+Fn -d = k =R(F2k_l+„ +F„+l -1); 
R(F2k+„-F„-\) = k= R(F2k+n-Fn+1 -1), forn> 1. 

For a given value of k, there are many infinite sequences such that R(b„ -1) = k. All ways of 
writing infinite sequences such that R(b„ -1) = k, for k = 1,2,3, were given by Klarner [4] as 

R(F„-l) =R(F„+l-l) =1; 
*(^ + 3 + F„ -1) = R(Fn+3 + F„+l -1) = 2; 
R(F„+5 + F„-l)= R(F„+5 + F„+l -1) - 3; 
*(^+6 - ^ -1) = *(^„+6 - F„+1 -1) - 3. 

Some useful equivalent statements are 
R(2Fn+2-l) = R(Ln+2-l) =2; 
i?(3F„+3-l) =/?(4F„+3-l) =3; 
i?(4+ 1 + JF„-l)=JR(X„+F„+ 1-l)=3. 

Lemma 7: Let {£„} be a sequence of natural numbers such that bn+2 = bn+l +bn. Then {bn} has 
the following properties: 
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(i) R(bn-l)=R(bk-l) for all n>k if Fk is the smallest Fibonacci number used in the 
Zeckendorf representation ofbk,k>2, or if {bn} has b2 > 2bx and Fk_x < b2 - ^ < Fk. 

(ii) R(bn -1) = R(bn - l)R(Fm) -q,qn constant, 0 < q < R{bn -1), where Fm is the smallest 
Fibonacci number used in the Zeckendorf representation ofbn,m>2; 

(iii) R(bn+2) = R(bn) +R(bn -1) = T(bn\ n>k,ns in (i), where T(N) is the number of repre-
sentations of JVas sums of Fibonacci numbers, where both Fx and F2 can be used; 

(iv) R(bn+2c) = R(bJ+cR(bn-l)=R(bn+2c_2)+R(bn-l\ n>k. 

Proof: Klarner [4] used the Zeckendorf representation of bn to prove (i) for n sufficiently 
large; n > k as in the second statement appears in [1]. The proof of (ii) relies on Lemma 5 and 
mathematical induction. Take Fn<bn<Fn+l-1. Let bn = Fn+K, 0<K<Fn_x-1. Assume part 
(ii) holds for all integers K = Fn_x. lfO<K< Fn_3 -1, Lemma 5 and the inductive hypothesis give 

R(h„)=R(K) + R(Fn_2+K) 
= [R(K-l)R(FJ-gi]HR(Fn_2+K-l)R(Fm)-q2] 
= [R(K-T)+R(F„_2+K-l]R(Fm)-(qi+q2) 
= R(Fn+K-l)R(Fm)-q3 

= R(bn~l)R(Fm)-q3, 0<q3<R(bn-l\ 

since 0 < qx + q2 < R(K-1) +i?(F„_2 + K -1) = R(Fn + K -1) = R(bn -1), again using the inductive 
hypothesis. A proof by induction can be made from each of the other two parts of Lemma 5, 
extendingKto the intervals Fn__3 <K< F„_2 - 1 , and Fn_2 <K< Fn_x - 1 , but is omitted here in the 
interest of brevity. 

To prove (iii), using (i) and (ii), 
R(bn+2) = R(bn+2 - l)R(Fm+2) -q = R(bn - l)(R(Fm) +1) - q 

= (R(bn-l)R(Fm)-q)+R(bn-l)=R(hri)+R(hn-l). 

Next, take N = bn and use T(N)=R(N)+R(N-l) as in [4]. Note: The notation is not stan-
dardized; the meanings of R(N) and T(N) are reversed in [4] from those used in this paper. Part 
(iv) follows from R(Fn+2c) = R(Fn) + c, using (ii) to write 

= (R(bn - l)R(Fm) - q) +cR(b„ -l)=R(h„) +cR(b„ -1), 

where, also from (iii) and (i), 

R(K+2c) = R(K+2c-2) +R(bn+2c-2 - 1) = R{K+2c-2) +R(K ~ 1). • 

3. FORMULAS FOR R(N) BASED ON 
ZECKENDORF REPRESENTATION 

A formula for R(N) for whole sequences {bj, bn+2 =bn+l +bn, can be written, or R(N) for 
large integers N based on the Zeckendorf representation of N, by repeatedly using Theorem 2, 
Lemmas 2 and 6, and formulas for R(Fn+p + N) as developed next. Let the largest Fibonacci 
number contained in Nhe Fn; equivalently, Fn is the largest term in the Zeckendorf representation 
of N9 and Fn<N < Fn+l - 2. To count the number of ways to represent N as sums of distinct 
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Fibonacci numbers, first find the largest two Fibonacci numbers in AT and then apply formulas of 
the form R(F„+p + N). 

Lemma 8: Let F„ < N < F„+l - 2. Then 
R(F„+1 + N) = R(N) + R(N-F„); 
R(Fn+2+N)==R(N) + R(F„+l-2-Ny, 
R(Fn+3 + N) = 2R(N). 

Proof: Let M = N + Fn+lin Lemm&2,where F„+2<M <F„+3-2. Then 

R(F„+l +N) = R(F„+l + N - Fn+2) + R(Fn+l + N- Fn+l) - R(F„+1 + N- 2F„+1) 
= R(N-F„) + R(N)-R(N-Fn+l) = R(N-F„) + R(N), 

where R(N - Fn+l) = 0 because N < Fn+l. 
Let M - N + Fn+3 in Lemma 2, where Fn+3 < M < Fn+4 - 2; 

m+3 +N) = R(Fn+3 + N- F„+3) + R(Fn+3 + N- F„+2) - R(F„+3 + N- 2F„+2) 
= R(N) + R(N + F„+i)-R(N-Fn) 
= R(N) + [R(N - F„) + R(N)] - R(N - F„) = 2R(N). 

Let M - N + Fn+2 in Theorem 2, where Fn+2 < M < F„+3 - 2; 

R(Fn+2 + N) = R{Fn+3 - 2 - (Fn+2 + N)) + R((Fn+2 + N) - Fn+2)) 
= R(Fn+l-2-N) + R(N).V 

Theorem3: Let Fn<N<Fn+l-2. Then 

R(F„+2k+l + N) = (k + l)R(NXk>l, (9) 

R(Fn+2k+N) = kR(N) + R(Fn+1-2-N), k>l (10) 

Proof: Assume that R(Fn+2j+l + N) = (j + l)R(N) holds for j < k; the case k - 1 was estab-
lished in Lemma 8. Consider 

R(Fn+2(k+l)+l + # ) = R(F{n+21c+\)+2 •+ N \ n < Fn+\ < F(n+2k+3)-3 • 

By the first part of Lemma 5, 

m+2k+3 + # ) = *tf»2*+l + * ) + WW 
= (k + l)R(N) + R(N) = [(k + l) + l]R(N), 

establishing the formula for R(Fn+2k+l + N) by induction. 
The proof of the even case is similar, again taking the case k = 1 from Lemma 8, and using 

Lemma 5; therefore, it is omitted here. • 

Theorem 3 can be used as a reduction formula to write R(N) for large N. For example, 
R(1694) =R(F17+ 97) = 3R(97) + R(144-2-97)= 3(9)+ 6 = 33, 

so i?(1694) = 33 since R(97) = 9 and R(45) - 6 are known from data. However, Theorem 3 can 
be written in another form that is even more useful for computation, as given in Corollary 3.1. 
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Corollary 3.1: Let Fn<N<Fn+l-2. Then 

R(Fm + N) = R(Fm_n+l)R(N) + r, m-n>2y 

where r = 0 if m-n is odd, and r = R(Fn+l -2 - N) if m-n is even. 
( i i ) 

Proof: The result follows from R(Fn) = [w/2] for [x] the greatest integer in x from [3] and 
[4]. Let /w-w = 2* + l, then m = n + 2k + l and [(/w-« + l)/2] = ifc + 1; therefore, R(Fm + N) = 
[(m-n + l)/2]R(N)by(9). Similarly, let m-n = 2k in (10). D 

4 SPECIAL VALUES FOR R(Fn±K) 

We write some special formulas useful in breaking down expressions for R(N) by putting 
special values into equation (1) and Corollary 3.1. Expressions for k = 0,1, and 2 in Lemma 9 
appear in [4]. We also find integers m and q such that R{M) = mR(M-l)-q. 

Lemma 9Special values for R(Fn-t±k): Let [x] be the greatest integer contained in x, and 
let 0 < * < F„_t. Then R(Fn -l + k) = R(Fn+l -l-k) has the following values, 0 < k < 8. 1 n-\' 

* = 0: *(F„-1) = R(F„_ 
* = 1: R(Fn) = R(F„. 
k = 2: R(F„ + \) =i?(Fn+ 
k = 3: R(Fn + 2) =R(Fn+. 
k = 4: R(F„ + 3) =R(Fn+: 
k = 5: R(F„+4) =R(Fn+ 
k = 6: R(Fn + S) =R(Fn 
k = T. R(Fn + 6) =R(Fn+ 
k = 8: R(Fn + T) =R(F„+ 

-1) =1, n>2 
-2 ) = R(F„) =[n/2], n>3 
-3) =R(Fn_l) =[ (n- l ) /2] , « > 4 
-4) = R(Fn_2) =[(/i-2)/2], »>5; 
-5) = « - 3 , «>6: 
-6) = fl(F„_3) =[(»-3)/2], n>6. 
-7) = « -4 , «>7; 
-8) =w-4, n > 7 
-9 ) =i?(F„_4) =[(»-4)/2] , n>l 

Lemma 10-Special values for R(Flc±K) and R(F2c+1±K): Considering n even and n odd, 
R{Fn±K) has the following values: 

R(F2c) =R(F2c+l) =R(F2c_2) + \; 
R(F2c + l) =R(F2c_l) = R(F2c_2); 
R(F2c+l + l) =R(F2c) =i?(F2c+1); 
R(F2c+l+2) =/?(F2c_I) = ̂  + 2); 
R(F2c+l-l) =R(F2c-l) =1-

Lemma 11: Let A" be an integer whose Zeckendorf representation has Fm + Fk for its smallest 
two terms. 

If k -2 so thatKends with Fm + l, m>A, then 
R(K) = R(K-l),m odd; i?(£) = R(K-\)-R(K-2),m even; (12) 

If k = 3 so that .£ ends in Fm +2, w > 5, then 
R(K) = R(K-\)-R(K-3),m odd; R(K) = R(K-l),m even; (13) 

If K ends in Fm + F2c, 2c > 4, then i?(r) = /?(£-1) + R(K +1); (14) 

IfKends in Fm + F2cH,2c>4, then i?(£) = R(K-1) + i?(^ + 2). (15) 
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Proof: A proof can be written by induction following this outline. Calculate (12) for K = 
F2c + lmdK 

- ^ic+i+1- Equation (12) can also be calculated for K - Fm + F2c +1 and K — Fm + 
F2c+1 +1. Then assume that (12) holds for all K such that K < Fn_l -1 and use (5) from Lemma 5, 
R(Fn + K) = R{Fn_2 + K) + R(K), 0<K<F„_3-l, calculating each part of (12). Repeat for the 
other two parts of Lemma 5. (14) and (15) can be proved by substitution into (12) and (13). 
When K ends in Fm+F2c, K+l ends in Fm+F2c + l, so replacing K by K +1 in (12) in the even 
case yields (14). When K ends in Fm + F2c+l, then K + l ends in Fm +F2c+l +1, which means that 
R(K +1) = R(K) for the odd case of (12). Also, K + 2 ends in Fm + F2c+l + 2, which means that 
R(K + 2) = R(K + l)-R(K-l) from the odd case of (13). Puttingthese together gives (15). D 

Theorem 4: Let Fm +Fk be the smallest Fibonacci numbers in the Zeckendorf representation of 
M. Then 

R(Ad) = R(M-l)R(Fk)-q, 0<q<R(M~l). (16) 

If the Zeckendorf representation of Mends in F2c+l + 1 or F2c +2, where 2c > 4, then q - 0. If M 
ends in F2c+l+2, q = R(M-3); F2c + l, q = R(M-2). If m-k is odd, q = 0. If Mends in 
F2w+F2c, 2c>4, then q = (c-l)R(M-l)-R(M + l); if Mends in F2w+1+F2c+l, 2c>4, then 
q = (c-l)R(M-l)-R(M+2). 

Proof: Apply Lemma 7(ii) and Lemma 11. When m-k is odd, q = 0 by Theorem 3. • 

Corollary 4.1: Let K be an integer whose Zeckendorf representation has smallest two terms 
Fm+Fk. Then R(K) = cR(K -1) when k = 2c and m is odd, and when k = 2c +1 and w is even. 

5. M(MFk) AND R(MLk) 

Below, R(MFk) can be obtained by putting MFk into Zeckendorf form and then applying 
Theorem 3 repeatedly. We list Zeckendorf representations of MFk for M < 18, taking smallest 
entry Fk_2c > F2 and write R(MFk) for M<29 = Lj. 

hFk = 
V* = 
L4Ft = 

L*Fk = 

L6Fk = 

2Fk 
lFk 
*Fk 
5Ft 
6Fk 
1Fk 
&Fk 
9Fk 

lOFk 

UFt 
12Ft 

l3Fk 

m \5Fk 

\6Fk 

HFk 
UFk 

-Fk+I+Fk_2 

= Fk+2+Fk_2 
= Fk+2+Fk+Fk_2 

= FM+Fk_,+Fk_4 

-Fk+i+Fk+i+Fk_4 
= FM+Fk_A 
= Fk+4+Fk+Fk_4 

= FM+FM+Fk_2+Fk_4 

= Fk+4+FM+Fk_2+Fk,4 

= FM+Fk+1+Fk+Fk^+Fk_4 
= FM +Fk_l+ Fk_, + Fk_6 
= Fk+5 + Fk+l + Fk_3 + Fk^ 
= Fk+5+Fk+2 +Fk_3 +Fk_6 

= Fk+5+Fk+2+Fk+Fk_3 + Fk_6 

- FM + FM + Fk_t + Fk_6 
= Fki.5 + FM+Fk+l+Fk_6 

= Fk+6+Fk_6 

= Fk+J - Fk_3 
= FM+Fk-Fk_i 

= FM+Fk+Fk_4 

= FM+lFk+F„_A 

= FM+3Ft+Fk_4 
= Fk+4+4Fk+Fk_4 

~ ^k+5 +^k~ ^k-5 
= Fk+s+2Fk-Ft^ 
= FM+3F„-Fk_i 
= Fk+5+4Fk-F^s 

= Fk+s+5Fk-Fk_5 

= Fk+5+6Fk-Fk_s 

Lemma 12: For MFk such that L^^i <M<Llc+h k>2c + 2, the smallest Fibonacci number in 
the Zeckendorf representation of MFk is Fk_2c, and the largest is Fk+2c_x or Fk+2c, depending 
upon the interval, where 
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<MFk <Fk+2c, 4c_j <M<Llc, 
Fk+2c < MFk < Fk+2cH, Lic<M< L2C+h 

Proof: Lemma 12 Is illustrated for M < 18. Assume it holds for all integers 0 < Q < L ^ ; 
i.e., the largest term in QFk is Fk+2c_2 and the smallest is Fk_2c_2 when Z^_2 < Q < L ^ . Since 
L2cFk=Fk+2c + Fk_2c (see [6]), MFk = QFk + L^k = Fk+2e + QFk + Fk__2c has largest term Fk+2c 

and smallest term Fk_2c for L^ < M = Z^ + Q < L^c+l. The subscript difference between Fk_2c_2 

and the next smallest Fibonacci number used in the Zeckendorf representation of MFk is even. 
For L2e_l <M<L2C, since L ^ F * = Fk+2c_t-Fk_2c+l (see [6]), MFk = L ^ F * + QFk = Fk+2c_t-

+ QFk,0<Q<L2c_2. 
Assume the largest possible term in the Zeckendorf representation of QFk is Fk+2c_3 and the 

smallest term is Fk_2j for L^^T, <Q< LIC-2 • There is no modification of terms for the Zeckendorf 
representation in adding Fk+2c-\, but the smallest term in the Zeckendorf representation of MFk 

becomes Fk_2c for l^,^ <M < Z^ since 
Fk-n ~ Fk-2c+i = {Fk_2i - Fk_2c+2) + Fk_2c 

= (Fk-y-i + Fk-2i-3 + •••+ Fk_2c+3) + Fk_2c. 

Thus, the largest term is i^i+2e-i and t n e smallest is Fk_2c for MFk, when L^^ < M < Z^. 
Note that the subscript difference between Fk_2c and the next smallest Fibonacci number used in 
the Zeckendorf representation is odd. • 

R(MFk), 1 < M < 29 = L,, k > 1c + 2 for Smallest Term FA_2c 

R(Fk) = R(Fk_0) 
R(2Fk) = 2R(Fk,2) 
R(3Fk) = 3R{Fkl)-l 
R(4Fk) = 3R(Fk_2)-2 = 3R(Fk_4) + l 4=L, 
R(SFk) = 5R(Fk_4) 
R(6Fk) =5R(Fk_4) 
R(lFk) = 5R(.Fk_4)-l 7 = L4 
R(ZFk) = 8fl(Ft_4)-3 
R(9Ft) = 8/?(Ft_4)-4 
R(lOFt) = 8K(F4_4)-5 
R(llFk) = 5R(Fk_4)-4 =5R(Fk_6) + l 11= Z, 
R(l2Fk) =10R(Fk_6) 
R(l3Fk) = l3R(Fk_6) 
R(UFk) =l2R(Fk_6) 
R(lSFt) =12R(F^6) 
R(l6Fk) = l3R(Fk_6) 
R(\lFk) =WR(Fk_6) 
R(\*Fk) =7R(Fk_6)-l 1 8 = 4 
R(\9Fk) =15R(Fk_6)-4 
R(20Fk) = 18fl(F*_6)-6 
R(2lFk) =2LR(Ft_6)-8 
R(22Fk) =l6R(Fk_6)-l 
R(23Fk) = 20/?(Ft_6)-10 
R(24Fk) =20R(Fk6)-W 
R(25Fk) = l6R(Fk.6)-9 
R(26Fk) =2LR(FM)-13 
R(UFk) = 18R(F4_«)-12 
R(2SFk) =15R(Fk_6)-U 
R(29Fk) =7R(Fk_6)-6 =!R(Fk_s) + l 29 = L, 
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Theorem 5: When L2c_l <M<4C+1, k >2c + 2, 
R(MFk) = R(MFk -l)R(Fk_2c)-q, (17) 

where R(MFk -l) = R(MF2c+2 -1). Further, q = 0 for L2c_l KMKI^, while q = R(MF2c+2 -2) 

Proof: The assertions follow from Theorem 4 by taking k = 2c + 2 in (17), since we have 
Fk_2c as the smallest term of the Zeckendorf representation of MFk by Lemma 12. When L2c_1 < 
M <Llc, the last two terms in the Zeckendorf representation are Fm+Fk_2c, where (m- k + 2c) is 
odd; thus, in using Theorem 3 repeatedly to evaluate R(MFk) from its Zeckendorf representation, 
we will have q = 0 by Corollary 3.1. When L2C<M< L2c+l, the subscripts of the last two terms 
will have an even difference, so a remainder term will be involved. Taking k - 2c + 2 to give the 
smallest Fm-F2 gives q = R(MF2c+2 - 2) by Theorem 4 in the interval where q ̂  0. • 

Next, we note that the values R(MF2c+2 -1) form palindromic subsequences such that: 

R((l2c-i + K)Fk -1) = R((Llc-K)Fk -1), 1<K<[L2e_212\; 
R((L2c+K)Fk-l)) = R((L2c+l-K)Fk-i), 0<K<[L2c_l/2]. 

Also of interest, we have 
R(L2cFk-l) = R(L2c+lFk-l); 

R(L2c_lFk-l) + 2 = R(L2cFk-l). 

Corollary 5.1: R(L„Lp-l) = 4(p-l), n>p + 3, p>2. 

Proof: Vajda [6] gives equation (17a), equivalent to 

J 4 + , + Ln-P = LnL
P> P even, 

Since Ln+p + L„_p = Fn+p+l + F„+p_l+Fn_p+l+F„_p_l, the smallest Fibonacci number used in the 
Zeckendorf representation is F„_p_i. Theorem 4 gives 

R(Ln+p + L„.p) = R(Ln+p + L„_p - WiF^) - q 

= R(I^Lp-l)R(F^-9. 
Since we only want R(L„Lp-l), we calculate R(L„+p + L„_p -1) when Fn_p_x =F2 or, for 

n-p = 3, n = p + 3, so that R(L„+p + L„_p -1) has a constant value for n>p + 3. 

R(L„+p + 4 _ p -1) = U(Z^ 3 + 4 - 1 ) 
= i?(F2/?+4+F2/?+2+3) 
= i?(F2p+2+3) + i?(F2/?+1-5) 
= (2/>-l) + (2/>-3) = 4(p- l ) , 

where we have applied earlier formulas from Theorem 3 and special values for R(Fn+l-l-K). 
Thus, R(L„Lp -1) = 4(p -1) for/? even. 
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Similarly, for p odd, 4+/?-4-p has Fn_p_2 as the smallest Fibonacci number in its Zecken-
dorf representation. Again calculate R(Ln+p - L^p -1) for the smallest value for Fn_p_2=F2, 
which occurs for n-p = 4, n = p + 4. Then 

RiL,^ - L4 -1) = R(F2p+5 + F2p+3 - 8) 
= 2R(F2p+3 - 8) = 2(2/7 - 2) = 4(/> -1). 

Thus, R(LnLp-T) = 4(p-l) for p odd, establishing Corollary 5.1 and proving Conjecture 2 of 
[i]. a 
Corollary 5.2: R(FpF„-l) = Fp, n>p, p>3. 

Proof: F2c+iFk and F2c+2Fk both have 4-2c a s ^ e smallest term in the Zeckendorf represen-
tation. Thus, 

Wienie) = W2c+iFk ~ l)R(Fk.2c) - q; 
W2MFk) = R(F2c+2Fk - l)R(Fk_2c) - q. 

When k > 2c + 2, R(MFk -1) has a constant value. When k = 2c + 2, 

R(F2c+iFk -1) = R(F2c+iF2c+2 -1) = F2c+1 

while 

i?(4c+24 -1) = Wic+2F2c+2 -1) = 2c + 2, 
applying two identities from Carlitz [3]. Thus, R(FpFn-l) = Fp, establishing Corollary 5.2 and 
making a second proof of Theorem 3 in [1]. • 

The Lucas case R{MLk) is very similar, relying on [6] for 4 4 =Fk+p+Fk_p, p odd, and 
4 4 = Fk+p-Fk_p, p even. When F2c_2 <M<F2c, the smallest term in the Zeckendorf repre-
sentation of MLk is Fk_2c+i, w h i l e t h e largest is 4+2c-2> F2c_2 <M<F2c_u or 4+2c_i, 4c-i ̂  
M<F2c,fc>2c + l. 

Zeckendorf Representations for MLk9 1 < M < 13 

4 4 ~ 
F3Lk = 
F4Lk = 

F5Lk = 

4 = 4+1+4-1 
2 4 = 4+3+4-3 
3 4 = 4+3 + Fk+l + Fk-l + Fk-3 
4 4 = 4+4 + 4+1 + 4-2 + 4-5 
5 4 =4+5+4-5 

= 4+2 - 4-2 

= 4+4 ~ 4-4 

6 4 = 4 + 5 + 4 + i + 4 - i + 4 - 5 
7 4 = 4+5 + 4+3+4-3+4-5 

4 4 = 8 4 = 4 + 5 + 4 + 3 + 4 + i + 4 - i + 4 - 3 + 4 - 5 = 4+6 - 4-6 
9 4 = 4 + 6 + 4 + 1 + 4-2 + 4 - 4 + 4 - 7 

104 = 4+6+4+3+4-4 +4-7 
114 = 4 + 6 + 4 + 3 + F k + l + 4 - 1 + 4 - 4 + 4 - 7 
124 = 4 + 6 4- 4 + 4 + 4 + 1 + 4 _ 2 + 4_ 7 

4 4 = 1 34 = 4+7+4-7 
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R(MLk), 1 < M < 21 = F8, k > 2c + 1 for Smallest Term FA_2c_j 

R(Lk)-
R(2Lk)--
R(3Lk): 
i?(44): 
^(54) = 
R(6Lk)--
ROh)-
R(SLk). 
R(9Lk). 

R(\0Lk) •• 
R(ULk): 

2 i ? ( 4 _ , ) - l 
4 i ? ( 4 _ 3 ) - l 
4R(Fk_3)-3 

6 t f ( 4 _ 5 ) - l 
• UR(Fk_5)-5 
l2R(Fk_5)-7 
6i?(4_5)-5 
18i?(4-7) 
l6R(Fk_7) 
l6R(Fk_7) 

i?(124): 
i?(134) = 
R(ULk)--
R(\5Lk)-. 
i?(164): 
R{\lLk) •-
R(\SLk)--
R(19Lk) •• 
R(20Lk)-. 
R{2\Lk). 

lSR(Fk-7) 
8 i ? ( 4 - 7 ) - l 
24R(Fk_7)-7 
30R(Fk_7)-U 

• 20R(Fk_7)-9 
• 32R(Fk_7)-\6 
20i?(4_7)-l l 
30i?(4_7)-19 
24R(Fk_7)-l7 
SR(Fk_7)-7 

Theorem 6: When F2c_2 < M < Flc, k > 2c +1, 

R(MLk) = RiML, - l)R(Fk_2c+1) - q, (18) 

where R{MLk - 1 ) = ^(A/Lje+i-1); further, q = 0 for 4 C _ 2 < M < 4 C _ 1 ; and ? = R(ML2c+l~2) 
when 4 c - i <M<F2c. 

The proof of Theorem 6 depends on Theorem 4, and being similar to the proof of Theorem 5 
is omitted here. We note that the values R(ML2c+l -1 ) form palindromic subsequences such that 

R((F2c_1+K)Lk-l) = R((F2c-K)Lk-l\ 0 < K <[F2c_21'2]; 
R((F2c+K)Lk-l)^R((F2c-K)Lk-i), 1 < X <[F2c_, 12]. 

6. /?(Fm±FA) 

Theorem 7: R(Fm ±Fk) and R(Fm ±Fk-l) have the following values: 

R(Fm+Fk) =R(Fm_k+2)R(Fk), (m-k) odd; 
R(Fm+Fk) = R(Fm_k+2)R(Fk)-l, (m-k) even; 
R(Fm - 4 ) = R(Fm_k+l)R(Fk_1) +1, (w - *) even; 
i ? ( 4 , - 4 ) = R(Fm_M)R(Fk_l), ( « - *) odd; 
i?(4,H-4-l)=i?(4,.,+2); 
i?(4,-4-i)=i?(41_ft+1). 

Proof: By Corollary 3.1, 

R(Fm+Fk) = R(Fm_M)R(Fk)+r. 

If m-k is odd, r = 0, and R(Fm_k+1) = R(Fm_k+2), making R(Fm+Fk) = R(Fm_k+2)R(Fk). If 
M - * is even, r = / ? ( F t + 1 - 2 - F t ) = /?(Ft_2) = / ? ( / £ ) - 1 , and i?(4,_fc+1) + l = i?(4,_*+2), making 
i ? (4 , + 4 ) = i?(4,_,+2)JR(4)-i. 

Equations (7) give R(Fm ±Fk-l) by examining the difference of the subscripts; note that the 
results for R(Fm + Fk) agree with Theorem 4. Using Theorem 1, followed by Corollary 3.1, while 
noting that the greatest Fibonacci number in Fk - 2 is Fk_u 

R(Fm-Fk) = R(Fm__l + (Fk-2)) = R(Fm_k+l)R(Fk - 2 ) + r. 
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Note that R(Fk - 2) = RiF^). If m - k is odd, r = 0, while if m - k is even, 

r=R(Fk-2-(Fk-2)) = R(0) = l D 

Corollary 7.1: R{FrLt -1) can be written as 
(i) R(F„Lp-i) = 2R(Fp) + l,n>p + 2,p>l; 
(ii) R(LnFp-1) = 2R(Fp+l), n>p + \,p>2. 

Proof: Vajda [6] gives equation (15a), equivalent to 

\Fn+P + K-p = FnLp> P e v e n > 

[F„+p ~ Fn-P = FnLp, P odd, 

By Theorem 7, R(F„+p+F„„p-l) = R(F2p+2) = p + l, while R(Fn+p-F„_p-l) = R(F2p) = p. So 
R(FnLp -\) = p + \,p even, and R(F„Lp -\) = p,p odd, which makes R(F„Lp -1) = 2[p 12] +1, 
proving part (i) as well as Conjecture 3 of [1]. Since [6] also gives 

[Fn+P+Fn-p = LnFp, podd, 
[F„+p-Fn_p = LnFp, pevm. 

in the same way, we can show that R(LnFp-l) = p + l, p odd, and R(LnFp-\) = p, p even, 
which can be rewritten in the form of (ii). Thus, we have proved part (ii) as well as Conjecture 1 
of[l]. • 

Corollary 7.2: Let F„<N<F„+l-2. 
(i) RiL^) = 2R{Fp)-1 = R{V.) + 2, p > 4; 

(ii) R(Ln+p + N) = R{Fn+p_x + N) + R(Fn+p_3 + N) = R(Lp+l)R(N) + 2r, 
where r = 0 ifp is odd, and r = R(Fn+l-2-N) if/? is even; 

(iii) R(Ln+p-K) = 2R(F„+p_2 + (K-2)\2<K<F„+p_3. 

Proof: Since Lp+l=Fp+2 + Fp, let m = p + 2 and k - p in Theorem 7 to write (i). Apply 
equation (10) to R(Fn+p+l + i^+p_i + N) followed by Theorem 1 to write the first part of (ii). 
Then use Corollary 3.1 and (i) to simplify, finally obtaining (ii). 

When 2<K<Fn+p_3, the largest term in the Zeckendorf representation of Fn+p_x-K is 
Fn+P-2- Then 

R(Ln+p -K)= RiF^ + (F„+p_, - Kj) 
= 2R(Fn+p_i -K) = 2R(Fn+p_2 -2 + K).U 

Corollary 7.3: 
R(L„+p + L„_p) = (2p - 2)R(Ln_p) -l = 4(p-1)/?^^,) - (2p -1); 

R(Ln+p -Ln_p) = 4(p-l)R(F„_p_2), n-p>3. 

Proof: Let N = L„_p = F„_p+l +Fn_p_x in Corollary 7.2. Then 
R(Fn+p_l + N) + R(F„+p.3 + N) 
= {p- l)R(L„_p) + (p- 2)R(L„_p) + 2R(F„_p+2 - 2 - F„_p+l - Fn_p_x) 
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= (2p - 3)R(L„_p) + 2R(F„_p_3) = (lp - 3)R(L„_p) + R(L„_p) -1 
= (2/7 - 2)R{Ln_p) -l = (2p- 2)[2R(F„,p_l) -1] - 1 
^4(p-l)R(Fn_p_1)-(2p-l). 

Now let K = Ln_p in Corollary 7.2. Then 
R(Ln+p - L„_p) - 2R(F„+p_2 +F„_p+l +F„_p_l-2) 

= 2(p-l)R(F„„p+l + Fn_p_1-2) 
= 2(p-l)(2R(F„_p_l-2)) = 4{p-\)R(Fn_p_2), 

finishing Corollary 7.3. • 

Corollary 74: R(LnLp-1) = 4(p-1), n>p + 3, p>2. 

Proof: Vajda [6] gives Ln+p + Ln_p - LnLp when/? is even, and Ln+p - Ln_p = LnLp when/? is 
odd. The smallest Fibonacci numbers in the Zeckendorf representations are Fn_p_x and Fn_p_2, 
respectively. Since also R(Ln+p±Ln_p-l) = R(LnLp-l), apply Theorem 4 to Corollary 7.3. 
This also proves Conjecture 2 in [1]. • 

Corollary 75: R(5FnFp-l) = 4(p-l), n>p + 3, p>2. 

Proof: Ln+p + Ln_p = 5FnFp, p odd; Ln+p - Ln_p = 5FnFp, p even, also appear in [6], giving 
an easy identity as in Corollary 7.4. • 
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1. INTRODUCTION 

In this note we shall study two classes of polynomials, {P^ix)} and {Q^m(x)}, where r is 
integer. For m = ly these polynomials are the known polynomials P^r\x) (see [1]) and Q^r\x) 
(see [4]). Particularly, P^r\x) and Q^r\x) are the well-known classical Morgan-Voyce polyno-
mials bn(x) and Bn(x) (see [1], [2], [3], [4]). In Section 2 we shall study the class of polynomials 
P^lfix). The polynomials Q%\{x) are given in Section 3. The main results in this paper relate to 
the determination of coefficients of the polynomials P£„(x) and Q^m(x). Also, we give some 
interesting relations between the polynomials P^ix) and Q^m(x). 

2. POLYNOMIALS P%l(x) 

We shall introduce the polynomials P^l(x) by 

with 
tf%(x) = l + nrforn = 0,l9...9m-l9 P%>m(x) = l+mr + x. (2.2) 

So, by (2.1) and (2.2), we find the first (m-f 2)-members of the sequence {P%l(x)}\ 

P0^m(x) = l, /?2(x) = l + r,...,/jf>l(x) = l + iiir + x, 

From (2.3), by induction on n, we see that there exists a sequence {bfy} (n>0 and k > 0) of 
numbers such that 

[n/m] 

k=0 

with b%>k = 0 for k>[n/m]. 
By (2.4), we get 

#£ = #J(0).-- (2-5) 
Let us take x =0 in (2.1). Now, using (2.5), we obtain the following difference equation: 

^ = 2 ^ , 0 - ^ 2 , 0 , n*2,m*l, (2.6) 

with initial values bfy = 1 and ti(\ = 1 + r. 
Solving (2.6), we get 

i $ = l + w, «>0. (2.7) 
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From (2.1), we obtain the following recurrence relation: 

a^eu-eu+eu-i, n>m,k>\. 
Next, we can write the sequence {b^\} into the form of the general triangle: 

TABLE 1 

(2.8) 

nlk 

m 
m + \ 
m + 2 

0 2 3 

1 
1 + r 

\ + {m-\)r 
l + mr 1 

\ + {m + l)r 3 + r 
l + (m + 2)r 6 + 4r 

Remark 1: For m-\ r = 0 and r = 1, Table 1 is exactly the DFF and the DFFX triangle, respec-
tively (see [2], [3]). 

Theorem 2.1: The coefficients bn
r\ satisfy the relation 

n-m 
(2.9) 

s=0 

Proof: We shall use induction on n. By direct computation, we see that (2.9) holds for 
every n = 0,1,..., JW-1 . If we suppose that (2.9) is true for n (n>m), then, from (2.8) for n + \ 
we have 

/, (r) _ 9 / , (r) _ t (r) , r (r) 
"w+1, it _ Z £ 7 « , k °n-l, k + °n+l-m, k-\ 

n-m 
= K,k+ K-l, k+ JL,°S,k-1 + ^n+\-m,k-l ~ K-l,k 

s=Q 

n+l-m 

= *&+ I *?U 
Thus, statement (2.9) follows from the last equalities. D 

One of the main results is given by the following theorem. 

Theorem 2.2: For any n > 0 and any k > 0 such that 0 < k < [n/m], we get 

b{r) _fn-(m-2)k) (n-(m-2)k) 
D»>k-{ 2k yr{ 2k+i y 

(2.10) 

where (f) = 0 for s> p. 
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Proof: We use induction on n. First, from (2.7), we see that (2.10) is true for k = 0. Also, 
if n = 0,1,..., m -1, then k = 0, so (2.10) is true. Assume that (2.10) holds for n -1 (n > m). 
Then, by (2.8) for n, we get 

" w , it _ Z £ V l , k °n-2, k + "/t-w, k-\ ~xn,k+ D^n, k, 

where 

_0fn-l-(m-2)k^ (n-2-(rn-2)k\Jn-m-{m-2){k-l) 
x ^ - \ 2k )-{ 2k ) + { 2k-2 

and 

nfn-l-(m-2)ks\ (n 
y^=2{ 2L1 )-{ 

-2-(m-2)k) (n-m-(m-2)(k-l) 
2k + l + 2k-1 

Next, from the well-known relation 

fMVM;:.1 

we find that 

*".*-(^ 2£ J a n d -^.*-^ 2k+ 1 J' U 

Particular Cases 
For m - 1 and r = 0, and for m = 1 and r = 1, by (2.10), we get 

These are the coefficients of the classical Morgan-Voyce polynomials bn(x) and Bn(x), respec-
tively (see [3], [4]). Namely, we have 

fc=(A / fc=(A / 

We shall now prove the following lemma. 

Lemma 2.1: 

e-e,*=e+e)u, n>i. (2.n) 
Proof: From (2.10), for /• = 1, we get 

j.m urn _(n-(m-2)k\ (n-{m-2)k\ (n-2-(m-2)k) (n-2-(m-2)ks 

*Vt-*Ut-[ 2k )+{ 2k + l )-{ 2k )-{ 2k + l 

^ » - ( ^ - 2 ) ^ + ^ - l - 2 ( r 2 ) ^ = ^ + e ) f c 

From the last equalities, we get (2.11). D 

1999] 63 



POLYNOMIALS RELATED TO MORGAN-VOYCE POLYNOMIALS 

Remark 2: For m = 1, from (2.11), we obtain (see [5]) 

BM - Bn_2(x) = bn(x) + bn_x{x\ 

where Bn(x) and bn(x) are the classical Morgan-Voyce polynomials. 

3. POLYNOMIALS Qi%(x) 

First, we are going to define the polynomials <2^(x), which are the generalization of the 
polynomials Q%\x) (see [4]). The polynomials Qi%(x) are given by 

Q£Ux) = 2QPUx)-Q£2,m(x) + xQPm,m(x)> n>m, (3.1) 

with the initial values 

Q£i(x) = 2+nrforn = 0,l,...,m-l, Q%m(x) = 2 + mr + x. (3.2) 

From (3.2) and (3.1), by induction on n, we see that there exists a sequence {d%\} (n>0 and 
k > 0) of integers such that 

[nlm] 

Qft(*)=E<fc**, (3-3) 
k=0 

where 

From (3.3), we get 

Thus, by (3.1) and (3.2), we have 

, v ,1 , n > 1, 

<H. . (3-4) 2, « = 0, 

#J,(o) = <£. 

<l = 24-{o-4\o (n>2), (3.5) 

with 

4 ^ = 2 and d$=2 + r. (3.6) 

Solving (3.5), by (3.6), we obtain 

d£l=2+nr9 n>0. (3.7) 

Furthermore, from (3.1), we get 

< i = ^ l * - # U + # U - i (n>m,m>l,k>iy (3.8) 

In Table 2, we write the coefficients d%\. Thus, from Tables 1 and 2, we see that 

< i = * & + 6 2 U " = 0,l,. . . ,m-l. 
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nlk 

m-l 
m 

m+\ 

TABLE 2 

0 1 
2 

2 + r 
2 + r 

2 + (/w-l)r 
2 + mr 1 

2 + (m + l)r 4 + r 

Now we shall prove the following theorem. 

Theorem 3.1: For n > 1, the following equalities hold: 

_(n~(m-2)k\Jn-\-{m-2)k\^ (n-(rn-2)k\ 
-y 2k y{ 2k yr{ 2&+1 J-

(3.9) 

Proof: In the proof, we use induction on n. For n = 1, by direct computation, we conclude 
that (3.9) is true. We assume that (3.9) is true for n (n > 1). Then, for n +1, we get 

=2(«sa+*s?l*)-(^u+^»)+^w+^w 
= 2 < > k - d W u + ^ U * - i = ̂ U [by (3.8)]. 

Now, from (2.10), we obtain (3.9). This completes the proof. • 

Corollary 1: 
,(r) _n-(m-\)k(n-\-{m-2)k'\ , (n-(m-2)P 
"•k~ jfc ^ 2A-1 J + , \ 2A + 1 

Hence, for m = 1 and A: > 0, we get (see [4]) 

*** -J{2k-l )+r{2k + \, 

Corollary 2: 
&\(l) = L2n+rF2„ (see [4]). 

Corollary 3: 
Q%rl\l) = 2P$ (see [4]). 
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Proof: 

Theorem 3.2: The polynomials P%m{x) and Qn%(x) satisfy the relation 

e ^ ) - ^ W + ̂ (-°UW? n>! (3.10) 
Proof: Multiply both sides of (3.9) by xk and sum. Immediately, from (2.4) and (3.3), we 

obtain (3.10). D 

Remark 3: For m = l, (3.10) becomes (see [4]) 

&'>(*) = #>(*) +/£}(*), n>\. 
Theorem 3.3: 

^U*) = #i(*)-#U*)-
[n/m] 

QM,(x) = S 4 V [by (3.3)] 
[n/m] 

= 10&+«£?u)** [by (3.9)] 
Ar=0 

= ! « + * & . * ) * * [by (2. ll)] 

= # i ( * ) - # U * ) [by(2.4)]. D 

Corollary 4: For /# = 1, we get (see [4]) 

Q?\x) = PPM - P&W = 3*i(*) - 4-i(x). 
Thus, we obtain 
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1. THE FUNCTION Sk
m(n) AND RELATED RESULTS 

This article was motivated by a question posed to me by Professor H. W. Gould [2], speci-
fically: What can be said about the number theoretic function 

Gm(n)= X 1 > where tff>-2,w>l? (1) 
!<«!,..., am<n 
(fl1,.. . ,flIB)=l 

The Jordan totient function Jm(ri) generalizes Euler's totient function </>(ri). In this paper we 
investigate the function S^(n)9 which generalizes both Jordan and Euler's totient functions. Thus, 
with m>\ n> 1, and k > 1, let 

Sk
m{n)= Z l . (2) 

\<a],...,arp<n 
(ai,...,am,k)=l 

The case k~n retrieves Jm(ri), while S"(ri) is Euler's totient function. Also, it is clear that 
Sl

m(n) = nm = IJn). In fact, am(n) = £«/,„ Sl
m{d), from which we obtain by Mobius inversion that 

d\n V a 7 

Also, since £rf|/f Jm{d)Sl
m{n), it follows that 

JM = Z M(d)SlM = » f f l I ^ and am(n) = £ £ Jm(r). 

We shall make use of the following known result. 

Theorem 1: Let f(n) and F(n) be number theoretic functions such that F(n) = Td\nf(d). 
Then, for any integer N9 

N 

I 5>(«)=II/(<o=L/o) 
«=1 d\n j=l 

We may use this theorem to obtain the result that 

;=! j=\ J=l d\n ;=1 

J 

UJ\ (3) 

We now prove our next result. 

Theorem 2: Let k = IJ^i pf1 be the prime decomposition of A, where e, > 1, then 
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Proof: It follows by the inclusion-exclusion theorem that 
n n n n n n n n n 

£<»)=»--II- Z1 + 1 1 - I 1 +-+HySZ- Ei 
i{=l / ' 2 = 1 / T O = 1 / ' i = l ; ' 2 = 1 / ' i = l 

Pi \(h,~,'«, *) A P / lO'i> •••>'«»*) 
l ^ J l < z < / < * 

'1=1 '2=1 'm=l 

i</OT<[-] i</OT<[-] i</OT<[-] ! < 7 l < y j</2<[^_] ! < / m < y î b^d ^-fe] 

n 
.Pi. 

m 
+ 

-PPj. 
+ •••+(-!)' 

PiPi-Psl dH •;M5r. 
where the subindices are as defined in the first line. 

For the special case of k = n and m = l,it follows that 

as expected. Also 

Pi PiPj Pi-Ps l
Pi{ P) % d 

Un) = rT-\ji\ + 
m ( \m 

KPPjj + ••• + (-i)'f—^—)=«TT(I-— 1=«T 
again as expected. 

Similarly, it may be shown that 

Further, by setting , we obtain the result, 

#(«)= Ii=5>(<0 
l</<« d\k 

On the other hand, by defining 

(rf,it)=i 

we obtain the following result. 

Theorems: Sk
T(n)= X 1 = X ^ ^ f e ) 

(rf,fc) = l 

We may generalize the function S„(ri) by setting 

.£(»,«) = £l = I* = 
ISa am<" l<6„...,*mi[f] 

l* a"'k)=a (h «w.i)-i 

oa/k 

0, 

ifa/k, 

otherwise. 

(4) 
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We now let Sf (x) denote the generating function for S*(w), then 

tf(*)=Itf(")^ = 1*^-1 
«=i »=i 

< " + ! 
n=l /W>> x" + - + ( - i y X 

n=l 

n 

«=i 
Z^" ~xA Z — r A + ' " + ( - 1 ) ^ P l ' " / 7 j Z 

»=AL^J n=px...ps 
PlPl-Ps 

- + -(1 - x)2 (1 - x)(l- x") ' (1 _ X)( l - *"*) 

where we have used the result, 
1 I x"~k=-

+ - + ( - i y 

|x|<l. 

Pllh-P, 

rpl-p, 

( l -xXl -* P | - p * ) ' 

(1-xXl-x*) ' 

We now use Theorem 2 to partially answer Gould's question, as follows. 

Theorem 4: Let Gm(n)= ^ 1 , where AW > 2, A? > 1. Then 
\<ax,...,am<n 

A?=l l<ai,...,am_i<n fc=l fc=l d\k 
(fll,...,am_i,fc)=l 

, by Theorem 2. 

We now restrict the function S^(n) somewhat and define a new function thus: 

Lk
m(n) = ]T l where AW > 1, n > 1, k > 1. 

{ax,...,am,k)~l 

The case A = 1 gives the following result. 

ÂI + AW-1^ TheoremS: Ll
m(n)-

m 

400 = I i = I I i = 
\<a<b<n i=l ;=1 
(a,b,l) = l 

Proof: We prove the result by induction on AW. First of all, the case AW = 2 gives 

2 2 [ 2 

We now assume the result true for 1, 2, 3, ..., AW and consider 

4+1(») = I I - I i = I 4 f t ) = Z'-/ 
AW 

Now let / = j + m -1. After reverting back to the original variable, we obtain 
j+n-l/ . 

C(»)=I i 
;=m 

AW + AI 
AW + 1 

see Gould [3, (1.52), p. 7], and hence, the induction goes through. 
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Alternatively, we may show that 

where S^m, i) represents Stirling numbers of the first kind in Gould's notation [4]. We note that 
s(n,m) = (-l)n~mSl(n-l,n-m), where $(n,m) represents Stirling numbers of the first kind in 
Riordan's notation [6]. The equivalence follows from the fact that 

m-l 

/=0 

And, of course, 

= fj{-\)i-'ns{m, />' = (-1)^!^") = /*•(' 

;=0 V ' 

n+m-\ 
m 

From Theorem 5 and the standard result, 

*-Sv> /=o 

=2-
where the Fn are Fibonacci numbers, we may deduce that 

where ll(n) = IVn. 

We now let k = n/=i P?, where ex > 1, and prove our next result. 

Theorems: Lk
m{n) = Y,Kd)Ll

m 

Proof: 
d\k 

n h n h *m-l 

4(«)=z»-2 I - Si +2 2+-+ I1 
/ 1 = 1 / 2 = 1 /OT = 1 /i = l / 2 = l im = l 

pi\(il,...,im,k) piPj \(ilt„.,imfk) 

n h im-i 

+-+(-i/2Z- I1 
/'i = 1 /2 = 1 im = 1 

= 4(»)-4 +£ 
A/7; + -+(-l)'Zi « 

PiPi-P. d\k 

The special case k = n gives the result 
n\(d+m-l 

m 
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which implies that l}m{n) = £rf|„ Ld
m(d). Equivalently, 

»=1 1 - x n=\ \l-X) 
(6) 

or 
oo jn L"M ^Lj(n) ^)Z^F=Z: 

n=l n=l Ji-

lt follows from Theorem 1 that 

^0), 
that is, 

which, on letting m + j ~ 1 = f and reverting back to the original variable, gives 

ilU) 

m+n-l 

j=m 
^ \m) [m + l j ^ 

J=l 
Hn(J)- (7) 

The case m = 1 gives the result E[(n) = (j>{n). Following are the tables of the values of the Ln
m(n) 

and l}m(n) arrays. 

TABLE 1 
m \ 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
1 
2 
3 
4 
5 
6 
7 
8 

. Values of the ZJ, 

3 
2 
5 
9 
14 
20 
27 
35 
44 

4 
2 
7 
16 
30 
50 
77 
112 
156 

5 6 

4 2 
14 13 

34 43 
69 107 

125 226 

209 428 
329 749 

494 1234 

(if) Array 

7 8 

6 4 
27 26 

83 100 
209 295 
461 736 

923 1632 
1715 3312 

3002 6270 

TABLE 2 

m \ 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
3 
4 
5 
6 
7 
8 
9 

* Values of the Zj,(w) Array 

3 
3 
6 
10 
15 
21 
28 
36 
45 

4 
4 
10 
20 
35 
56 
84 
120 
165 

5 6 

5 6 
15 21 

35 56 
70 126 

126 252 

252 462 
462 924 

792 1716 

7 8 

7 8 
28 36 

84 120 
210 330 

462 792 

924 1716 

1716 3432 

3003 6435 
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We obtain a recurrence relation for Ll
m(n) as follows: 

ri / , i\ (m+n\ (m+n-\\ , (n + m-l) ri / \ , ri / M \ 

A»("+i) = [ OT J=[ w J+[ OT_! J = 4,(»)+Vi(»+i)-
With the exception of boundary conditions, we note that this relation is the same as equation (1.1) 
of Carlitz and Riordan [1]. Its generating function Ll

m(x) is 

4(*) = I4(«)*"=S4X»+i)*"-I4-i(»+iK 
n=l «=1 «=1 

n=2 n=2 
which implies that 

that is, 

But 

and, therefore, 

We may also let 

xDm(x) = £ I}m(n)x" - x4(l) - X 4,- i (»K + *4- i0 ) , 

r\ /v\ _ A»-l(x) _ AC*) 
m W 1-X (1 -x ) - 1 " 

l\(x) = X Z}(/i)x" = £ > " = 7 r ^ - r 
w = l w = l ( I -*) 2 

(l-x)OT+1 

w=i w=iv / m=o\ / v / v 
2/n j 

Similarly, we may define and show that 

T_f(n+m-i\_f1(A_(2m 

We now seek the generating function of S„. And so, with S0 = 0, let 

We now use the result 

v n I v ' v n 
to obtain 

^ = (-l)"f2"]2-2", n>0, 

fffiy = S(-l)"(fy"x" = (1-4*)*; 
hence, 
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see Gould [4, p. 16]. 
Finally, we may consider the function 

1 1 
-Jl-4x l-x 

£(«) = £ l , n>m. 
\<al<a2<---<am<n 

The case k = 1 gives 
n-(m-l) n-(m-2) n 1Zxs(m,i)ri 

This is a known result. 

2. INVERSE AND ORTHOGONAL RELATIONS 

Using Theorem 2, we may now prove our next result. 

Theorem?: t ( » ) = X M ^ f l ^ j ) . 
d\k 

The case k = n gives 

d\n \ / v ^ 

from which it follows that T£{n) = (̂w) and 2^(m) = 1. Mobius inversion then 

hence, 

or 
(1-x) m+1 

It follows from Theorem 1 that 

t^( j \ (n + 1 

j=nr 
m + l ) j=md\j ;=wL 

U{j). 

Following a technique of Gould [5, p. 252], we may set 

£(&V>: 
hence, 
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J=m v> / ' L # " J jz=mj=m v ^ y v y 

y,-,-l( » V7 + 1 

From this, we may obtain the inverse to T^(n) as 

Also, since 

TO*" _ * 

*>)=S(-ir'n;i 

1 - r w (l-x) m+1 ' 

we may consider 
oo J 

1 ^ 0 ) 7 7 ^ = I Z("l> r iv-r7 + l 
f' + l (i-jcy+1 

- l i i c - ^ j z y : ^ > + lV_JE_Y 

But 
00 / . \ 00 

zu+
+iJ*-5sUJ«-=zUJ5*"-ibzUJ^=a^ \W+2 ' 

Therefore, 

and so 
_/=/ z/;; i + n f £ 

x - l y l x - 1 

2v/n °° 

(l-x)' J+2 

Vr r A ^ _ ( * - ! ) * y 
%mU)(l~xy+l~ l-x ,f j e . - » . = . x 

l-x" 

From equations (10) and (13), we obtain the following result. 

Theorem 8: The functions Km(n) and T%(n) satisfy the orthogonality relations 

tW)Kj(n) = S"m and tKn>(J)lJ(n) = K-
j-m j=m 

Therefore, we have the following general inversion result. 

Theorem 9: For any ordered function sequence pair, (/(«, m), g(n, m)}, 

fin, m) = | > ( » , j)TJ,(J) if and only if g{n, m) = £ / ( » , j)Km(j). 

(12) 

(13) 

;=m j=m 
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The ordered function pair 

n + \ 
m + l 

is a particular case of this theorem. 
We also note the following concerning l%(n): 

j=l j=l d\n \J J j=l d\n u \J 

that is, Zy=i TJ(n) is divisible by n. Furthermore, 

;=1 ;=1 d\n \ a ) \ J J d\n V a / 

from which we obtain 

Similarly, 

;=1 J=l \<a]<a2<---<aj<n d\n \ u ' 
{ax,...,aj,n)=\ 

— \n-i(n + l\\ ' L . / _ W i\w-/f«+MV 
7=1 

From which we obtain 

Inversely, it may be shown that 

j=\\J ' 7 = 1 

a result similar to one obtained by Gould [5, p. 255]. Following are tables of the arrays of the 
two functions T£(ri) and Km(n). 

TABLE 3, The T£(n) Array 
\ / 1 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
0 
0 
0 
0 
0 
0 
0 

2 
1 
1 
0 
0 
0 
0 
0 
0 

3 

~¥ 
3 
1 
0 
0 
0 
0 
0 

4 

T 
5 
4 
1 
0 
0 
0 
0 

5 
4 
10 
10 
5 
1 
0 
0 
0 

6 
~~2~ 
11 
19 
15 
6 
1 
0 
0 

7 
~6~ 
21 
35 
35 
21 
7 
1 
0 

8 
4 
22 
52 
69 
56 
28 
8 
1 
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TABLE 4. 

m x 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
0 
0 
0 
0 
0 
0 
0 

2 

7̂~ 
1 
0 
0 
0 
0 
0 
0 

3 

~T 
-3 

1 
0 
0 
0 
0 
0 

The Km{n) Array 

4 
-1 
7 

-4 
1 
0 
0 
0 
0 

5 6 

I ^T 
-15 -4 

10 -19 
-5 15 

1 -6 
0 1 
0 0 
0 0 

7 
1 
7 

28 
-34 

21 
-7 

1 
0 

8 
-1 

127 
-28 

71 
-56 

28 
-8 

1 
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h INTRODUCTION 

Let Fn denote the nm member of the Fibonacci sequence. Fix a positive integer m. We 
reduce {Fn}™=0 modulo m, taking least positive residues. Ifx = g satisfies the congruence 

f(x) = x2-x-l = 0 (mod/w), 

then, by setting u0 = 1, ux = g, and un = un_x + w„_2? we have that un = g" (mod m). We have 
given particular attention to those cases having the longest possible cycles, i.e., the number g 
being a primitive root modulo m. We call g a Fibonacci primitive root modulo m x£g is a root of 
x2 - x - 1 = 0 (mod m) and g is a primitive root modulo m. For a fixed prime p, Fibonacci 
primitive roots modulo/? have an extensive literature (see, e.g., [1], [3], [4], [5], [6], and [7]). 

Consider the Fibonacci sequence {Fn}™=0 modulo m. The positive integer z(rri) is called the 
rank of apparition of m in the Fibonacci sequence if it is the smallest positive integer such that 
Fz(m) = 0 (mod 7w); furthermore, k(m) is called the period of the Fibonacci sequence modulo m if 
it is the smallest positive integer for which Fk^ = 0 (mod m) and Fk^+l = 1 (mod m). For a 
fixed prime p, Wall [10] has proved that, if k(p) = k(pe) * k{pe+l), then k(pl) = pl~ek{p) for 
l>e. Wall asked whether k(p) = k(p2) is always impossible; up to now, this is still an open 
question. According to Williams [2], k(p) & k(p2) for every odd prime p less than 109. Sun and 
Sun [8] proved that the affirmative answer to Wall's question implies the first case of Fermat's last 
theorem. 

In this paper we reproduce and improve upon some results for the Fibonacci primitive roots 
mentioned above. Especially, we give connections among the existence of the Fibonacci primitive 
roots modulo pn and Wall's question. Our main theorem says that the affirmative answer to 
Wall's question [i.e., k(p)^k(p2)} and the existence of Fibonacci primitive roots modulo p 
implies the existence of Fibonacci primitive roots modulo pn for all positive integers n. This 
theorem overlaps in part with theorems proved by Phong [5], but our point of view and our 
methods are different from those of Phong, so that we obtain an effective method to decide 
whether k(p) = k(p2) or not. 

2. PMELIMINAMY RESULTS 

In this section we briefly review some elementary results concerning primitive roots and some 
well-known results concerning the rank of apparition and the period of the Fibonacci sequence. 

By Euler's theorem, if m is a positive integer and if a is an integer relatively prime to m, then 
at(m) s | (m0£j m^ where $m) is defined to be the number of positive integers not exceeding m 
which are relatively prime to m. Denote by ordm(a) the least positive integer x such that ax = 1 
(mod m). If ordm(a) = $(nt), then a is called a primitive root modulo m. 

First, we observe that, if f(x) is a polynomial in x with integer coefficients and xk is a solu-
tion to f(x) = 0 (mod pk\ then xk +pky is a solution to f(x) s 0 (mod pk+l) exactly when 
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f(xk)+f'(xk)pky^O(modpk+1). 

This congruence is equivalent to 

k -+f'(xk)y = 0(modp). 
P 

In particular, if p\f'(xk), then (f'(xk)) 1 exists modulo/?. Therefore, 

is the unique solution modulo /?. On the other hand, if p | ff{xk), then y has p solutions modulo p 
or no solution depends on f{xk) = 0 (mod pk+l) or not. We now have the following lemma. 

Lemma 2.1: Suppose that xk is a solution to f(x) = 0 (mod pk) and p\f'(xk). Then there 
exists a unique xk+l modulo pk+l such that xk+l = xk (modpk) and f(xk+1) = 0 (modpk+l). On 
the other hand, suppose that p \ff(xk) and f(xk) # 0 (modpk+l). Then there exists no solution 
t o / ( x ) s O (mod/ + 1 ) . 

A simple application of Lemma 2.1 is the following: suppose that 

d\p-l and ad = l(modp). 

Since a is a solution to f(x) = xd-1 = 0 (mod p) and f'{a)-dad~l^0 (mod p) [note that 
(d, p) = (a,p) = l], we have that there exists exactly one solution h modulo p2 such that h = a 
(mod/?) and bd = 1 (mod/?2). 

Lemma 2.2: Suppose that g is a primitive root modulo/?. Then there exists a unique gf modulo 
p2 such that g' = g (mod/?) but gr is not a primitive root modulo p2. 

Proof: Suppose that g' = g (mod/?) and ord^ (gf) = m. We have that 

p-l\m and m\p{p-\), 

so m - /?(/? -1) if and only if (gf)p~l # 1 (mod p2). By the remark above, our claim follows. D 

Let/? be an odd prime. Suppose that g is a primitive root modulo p2. Then we have that 
gp~l # 1 (mod/?2). Thus, gp~l = 1 + /1/? for some A such that /?|A. Hence, 

gp(p~l) = (l + Ap)P^l + Ap2 (mod/?3). 

By induction, we have that 
gpk(p-V^l + Apk+l (mod/ + 2 ) . 

Lemma 23: Let /? be an odd prime and let g be a primitive root modulo p2. Then g- is also a 
primitive root modulo pn for all positive integers n. 

Proof: Suppose that ord^^) -m. Since g is a primitive root modulo p2, we have that 
/?(/? -1) | m | /?2(/? -1). By the argument above, we have that gAp-V =£ 1 (mod /?3). This implies 
that m-p2(/?-!), i.e., ̂  is a primitive root modulo /?3. Again, by the argument above and by 
induction, our claim follows. D 
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Let a and P be two distinct solutions to x2 - x -1 = 0 (mod m). Then we have the Binet 
form 

an- Bn 

Fn^ a_n (modm). 

Since an = an~l + an~2 (mod m) and fin = pn~l+pn-2 (mod m), we also have that 

an = oFw_2 + a2Fn_x (mod w) and pn = ̂ „ 2 + Z ? 2 ^ (mod m). 

This tells us that, if k(m) is the period of the Fibonacci sequence modulo m, then ordm(a) | k(m) 
and ordm(j3)\k(m). 

Lemma 2.4: Let a and /? be two distinct solutions to x2 - x -1 = 0 (mod m) and let £(wi) be the 
period of the Fibonacci sequence modulo m. Then k(m) = [ordm(a)9 ordm (/?)], where [a9b] 
denotes the least common multiple of a and h. 

Proof: Let l = [ordm(aX ordm(j3)}. By the argument above, we have that l\k(m). On the 
other hand, a1 - pl = 0 (mod m) and al+l -J3M = a-j3 (mod /w). This implies that Fl = 0 (mod 
JW) and J*J+1 = 1 (mod /w). Thus, A(/w)|/ = [ovdp(a\ ordp(/?)], and our proof is complete. D 

Let ordw(a) = nx and ordm(/?) = r^. Suppose that nx > r^. Since ap == -1 (mod m), we have 
that (a)"2 = (a/?)"2 = (-1)"2 (mod m). If ^ is even, then ani = 1 (mod w). Thus, nx \n1; hence, 
«! = »2 by assumption. If /^ is odd, then we have that ani =-l (mod /w) and so nx \ 2 ^ . This 
implies that fy = «2 if ^ is also odd and nx - Ir^ if nt is even. However, it is impossible that 
i\ = «2 s 1 (mod 2); otherwise, we will have that 1 = (a/?)"1 = (-l)Wl = -1 (mod m). Hence, we 
have that ml is always even. Moreover, suppose that r^ is odd. Then nx = In^. Therefore, if 
nx = 0 (mod 4), then nx - n^. On the other hand, suppose that m is an odd prime power and 
suppose that nx = 2r = 2 (mod 4), where r is odd. Then a r = - l (mod m) and, hence, -1 = 
{aP)r s= -(3r (mod HI). This implies that pr = 1 (mod m). Thus, /^ = r, and we have the follow-
ing lemma. 

Lemma 2 5 ; Let m be an odd prime power and let a and p be distinct roots of x2 - x -1 = 0 
(mod /»). Suppose that ord^(a) > ordw(/7). Then we have either ordm(a) = ordm(p) = 0 (mod 4) 
or ordm(a) = 2ordm(^) = 2 (mod 4). 

Let z(m) be the rank of apparition of m and let k(m) be the period modulo m in the Fibonacci 
sequence. Wall [10] has shown that z(m)\k(m). Vinson [9] gave criteria for the evaluation of 
k(m)l z{m). 

Lemma 2.6: Letj? be an odd prime and let e be any positive integer. Then: 
(1) k(pe) = 4z(pe) if z(pe) # 0 (mod 2); 
(2) k(pe) = z(pe) if z(pe) s 2 (mod 4); 

(3) k(pe) = 2z(pe) if z(pe) = 0 (mod 4). 

Proof: Please see Vinson [9, Theorem 2]. • 
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3. FIBONACCI PRIMITIVE ROOTS MODULO p 

We begin with an easy observation that x2 - x -1 = 0 (mod/?) is solvable if and only if y2 = 5 
(mod /?) has solutions. If p = 5, then x2 - x - 1 = 0 (mod 5) has a double root x = 3 (mod 5). 
Therefore, 3 is the unique Fibonacci primitive root modulo 5. x 2 - x - l = 0 (modp) has two 
distinct solutions modulo/? if/? is an odd prime with (5/p) = l, where (5//?) is the Legendre 
symbol. 

For the remainder of this section, we assume that/? is an odd prime with (5//?) = 1. 
The relation of the rank of apparition to the period modulo/? in the Fibonacci sequence has 

been studied extensively by Wall [10] and Vinson [9]. We state their results in the next lemma 
without proof. 

Lemma 3.1: Let z(p) and k(p) be the rank of apparition of/? and the period modulo p in the 
Fibonacci sequence, respectively. 
(1) Suppose that /? = 11 and p = 19 (mod 20) [i.e., (SIp) = 1 and (-11p) = -1]. Then we have 

z(p) | p -1, but z(p) \^~. Furthermore, k(p) = z(p). 
(2) Suppose that /? = ! and /? = 9 (mod 20) [i.e., ( 51p) - \ and (-1//?) = !] . Then we have 

z(p) I *j~- Furthermore, k(p) = z(p), 2z(p), or 4z(p) depending on whether z(p) = 2, 0, or 
±1 (mod 4), respectively. 

The conditions for the existence of Fibonacci primitive roots modulo p and their properties 
were studied by several authors. Our next theorem overlaps in part with theorems proved by 
Phong [5]. 

Theorem 3.2: Let z(p) be the rank of apparition of/? in the Fibonacci sequence. 
(1) There is exactly one Fibonacci primitive root modulo /? if and only if /? = 11 or 19 (mod 20) 

and z(p) = p-l. 
(2) There are two Fibonacci primitive roots modulo /? if and only if p = 1 or 9 (mod 40) and 

z(p) = £± or /? s 21 or 29 (mod 40) and z(p) = ^~. 

Proof: We know that (5//?) = 1 if and only if p = ±1 (mod 10). Let a and /? be two distinct 
roots of x2 - x - 1 = 0 (mod/?) with ordp(a) > ordp(/?). 

(1) Suppose that /? = 11 or 19 (mod 20) and z(p) = / ? - ! . Then, since p -1 = 2 (mod 4), by 
Lemma 2.4, Lemma 2.5, and Lemma 3.1, z(p) = k(p) = ord^(a) = 2ordp(/?) = p-l. Conversely, 
suppose that there exists exactly one Fibonacci primitive root modulo p. Then, by Lemma 2.5, 
ordp(a) = 2oidp(JJ) = 2 (mod 4). Therefore, by Lemma 2.4, k(p) = ordp(a) = p-l. Hence, 
/? = 11 or 19 (mod 20) and z(p) = k(p) = p-1 by Lemma 3.1. 

(2) Suppose that /? = 1 or 9 (mod 40) and z(p) = ?~. Then, since ^ = 0 (mod 4), by the 
lemmas mentioned in (1), 2z(p) = k(p) - ordp(a) - oidp(fi) -p-l. Suppose that p = 21 or 29 
(mod 40) and z(p) = £Y~. Then, since ~^-= 1 (mod 2), again by the lemmas mentioned in (1), 
4z(p) = k(p) = ordp(a) = ord̂ Off) = p-l. Conversely, suppose that there exist two Fibonacci 
primitive roots modulo p. Then, by Lemma 2.5, ordp(a) = ordp(J3) = 0 (mod 4). Therefore, by 
Lemma 2.4, k(p) = p-1 = 0 (mod 4). Hence, by Lemma 3.1, our claim follows. D 
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Theorem 3.2 reproduces results for Fibonacci primitive roots modulo/? in [1], [3], [4], [6], 
and [7]. For example, Mays [4] showed that, if both p = 60k - 1 and q = 30* - 1 are primes, then 
there is exactly one Fibonacci primitive root modulo p. In fact, since p = \9 (mod 20) and 
2q = p-1, by Lemma 3.1, we have either z(p) = p -1 or z(p) = - ^ = 2 ( by the assumption that 
q is a prime). We obtain z(p)*2, because F2 = l. Therefore, z(p) = p-l. By the theorem 
above, we conclude that there exists exactly one Fibonacci primitive root modulo p. By a similar 
method, we have the following proposition. 

Proposition 3.3: Let p be a prime such that p = 11 or 19 (mod 20) and p-l = 2q, where q is a 
prime. Then there exists exactly one Fibonacci primitive root modulo p. 

Example 1: In the case , p -1 = 2 • 5. There is exactly one Fibonacci primitive root modulo 11, 
which is 8. When p = 59, p-l = 2>29. There is exactly one Fibonacci primitive root modulo 59, 
which is 34. 

When /? = 1 or 9 (mod 20), the situation is more complicated, because it is possible that 
4z(p)\p-l. There are many articles discussed for whichp, 4z(p) \p-l (see, e.g., [2], [8], and 
[11]). Here, we quote the result in [8]. 

Lemma 3.4: Let/? be a prime such that p = 1 or 9 (mod 20) and, hence, p = x2 + 5y2 for some 
integers x and y. Then 4z(p) \ p-l if and only if 41 xy. 

Suppose that p = l or 9 (mod 40) [resp. /? = 21 or 29 (mod 40)]. By Theorem 3.2, there 
exist Fibonacci primitive roots modulo p only if 4z(p) \p-l [resp. 4z(p) \p-l]. 

Proposition 3.5: Let p be a prime such that p = \ or 9 (mod 20) and, hence, p = x2 +5y2 for 
some integers x andj. 
(1) Suppose that p = l or 9 (mod 40). Then there is no Fibonacci primitive root modulo p if 

4\xy. Suppose that 4\xy and p-l = 8q, where q is a prime. Then there exist two Fibonacci 
primitive roots modulo/?. 

(2) Suppose that p = 21 or 29 (mod 40). Then there is no Fibonacci primitive root modulo p if 
4\xy. Suppose that 4\xy and p-l = 4q, where q is a prime. Then there exist two Fibonacci 
primitive roots modulo/?. 

Proof: 
(1) Suppose that 41 xy. By Lemma 3.4, 4z(p) \ p -1. We have that k(p) < ~^, by Lemma 

2.6. Hence, there is no Fibonacci primitive root modulo p. Suppose that 4 \xy and p-\- 8q, 
where q is a prime. Then we have either z(p) = ^- or z(/?) = -™- = 4. However, z(p)*4, 
because F4 = 3. By Theorem 3.2, our claim follows. 

(2) Suppose that 4 \xy. By Lemma 3.4, 4z(p) I p-l. Since 2z(p) \p-l9 this implies that 
k(p) = z(p) < ^ 9 by Lemma 2.6. Hence, there is no Fibonacci primitive root modulo p. Sup-
pose that 41 xy and p-l = 4q, where q is a prime. Then we have either z(p) = ™- or z(p) = 
~^~ = 1. However, z(p) ^ 1, because Fx = 1. By Theorem 3.2, our claim follows. 

Example 2: Since 29 = 32 +5(22) and 4 f 3-2, there is no Fibonacci primitive root modulo 29. 
Since 41 = 62+5, 4 |6, and 41-1 = 8-5, there are two Fibonacci primitive roots modulo 41 
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(namely, 35 and 7). There are two Fibonacci primitive roots modulo 149 (namely, 41 and 109), 
because 149 = 122+5, 4112, and 149-1 = 4-37. 

Remark 1: Since Fs = 3-7, F16 = 3-7-47, and F32 = 3• 7• 47• 2207, we have that, for /? = 1 or 9 
(mod 40), z(p) * 8, 16, or 32. Therefore, part (1) of Proposition 3.5 is also true, if /? -1 = \6q, 
32q, or 64q for some odd prime q. 

4. FIBONACCI PRIMITIVE ROOTS MODULO p» 

It is well known that the positive integer m possesses a primitive root if and only if 
m = 2,4, pn, or 2/?w, where/? is an odd prime. Since there is no solution to x2 - x - 1 = 0 (mod 2), 
we only have to consider the case m = pn. 

First, we consider the case p - 5. Let f(x) = x2-x-l. We have that f(3) = 5 = 0 (mod 5). 
However, since f'(3) = 5 = 0 (mod 5), by Lemma 2.1, there is no solution to f(x) = x2 -x-l = 0 
(mod 52). Hence, there is no Fibonacci primitive root modulo 5n for n > 2. On the other hand, 
suppose that p&5 and (5 /p) - 1. There exist two distinct roots, a and P such that f(a) = 
/(}}) = 0 (mod p). We have that f'{a) = 2a - 1 $ 0 (mod /?); otherwise, 0 = 4a2 - 4a - 4 = 
1 - 2 - 4 = -5 (mod p) contradicts our assumption. Using the same reasoning, we have that 
f'ifi) # 0 (mod/?). Therefore, by Lemma 2.1, we conclude that there exist two distinct roots to 
x2 -x - 1 = 0 (mod/?2). By induction, we have the following lemma. 

Lemma 4.1: Let/? be an odd prime such that /? = ±1 (mod 20). Then there exist two distinct 
roots to x2 - x -1 = 0 (mod p") for every positive integer n. Furthermore, suppose that a is a 
root to x2 - x - 1 = 0 (mod/?). Then there exists a unique an modulo pn such that a2

n-an-\ = 0 
(mod/?*) and an = a (mod/?). 

Suppose that a is a Fibonacci primitive root modulo p. By the argument above, there exists 
exactly one a2 modulo p2 such that a\ - a2 -1 = 0 (mod/?2) and a2 = a (mod/?). Suppose that 
a2 is a primitive root modulo p2. Then a2 is a Fibonacci primitive root modulo p2. In this case, 
by Lemma 2.4, k(p2), the period of the Fibonacci sequence modulo p2, is equal to ordp2(a2) = 
p{p-1) = pk(p), and since/? is odd, by Lemma 2.6, this is equivalent to z(p2) = pz(p), i.e., 
p2 \FZ(py On the other hand, suppose that p2 \Fz^py Then k(p2) = pk(p) = p(p -1). By Lemma 
2.4 and Lemma 2.5, this implies that ord^ (a2) = p(p~l) or ord^(a2) = p(p-1). By assumption, 
a2 is a primitive root modulo/? and, hence, ordp2(a2) is either (/?-l) or /?(/?-!). This implies 
that a2 is a primitive root modulo p2. 

Theorem 4.2: Let/? be an odd prime such that p = ±1 (mod 20). Suppose that there is a Fibo-
nacci primitive root modulo /?. Then there is a Fibonacci primitive root modulo pn for every 
positive integer n if and only if p2!(Fz(p), where z(p) is the least positive integer such that p\Fz(p). 

Proof: We only have to claim that the existence of a Fibonacci primitive root modulo p2 

implies the existence of a Fibonacci primitive root modulo pn. Suppose that a2 is a Fibonacci 
primitive root modulo p2. By a similar argument as in Lemma 4.1, there exists an such that a2

n -
crw-l = 0 (mod/?w) and an = a2 (mod/?2). However, Lemma 2.3 says that a2 is a primitive 
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root modulo pn for every positive integer n. an = a2 (mod/?2) implies that an is also a primitive 
root modulo pn. Hence, an is a Fibonacci primitive root modulo pn. 

Remark 2; According to Williams [12], p2\Fp_{5lp) [this is equivalent to p2 %Fz{p)} for every 
odd prime/? less than 109. Therefore, for p < 109, suppose that there exists a Fibonacci primitive 
root modulo/?. Then there exists a Fibonacci primitive root modulo pn. Furthermore, since/? is 
odd, by Lemma 2.5, the number of distinct Fibonacci primitive roots modulo pn is the same as the 
number of distinct Fibonacci primitive roots modulo p. 

Suppose that a is a root to x2 - x - 1 = 0 (mod/?). Then there exists a unique a2 modulo p2 

such that a2 = a (mod/?) and a\ -a2 -1 = 0 (mod/?2). On the other hand, suppose that a is a 
primitive root modulo /?. By Lemma 2.2, there exists a unique ar modulo p2 such that a' = a 
(mod/?) and af is not a primitive root modulo /?2. Therefore, af = a2 (mod/?2) if and only if 
P21Fz(P) [°r> equivalent^, k(p) = k(p2)]. 

Theorem 4.3: Let/? be an odd prime such that (5//?) = 1 and let a be a Fibonacci primitive root 
modulo p. Then there exists a Fibonacci primitive root modulo pn for every positive integer n if 
and only if 2ap+l -ap-a2-l^0 (mod p2). 

Proof: By Theorem 4.2, the existence of a Fibonacci primitive root modulo p2 implies the 
existence of a Fibonacci primitive root modulo pn for every positive integer n. By the argument 
above, there is no Fibonacci primitive root modulo p2 if and only if there exists X such that 
(a + Xp)2 - (a + Xp) - 1 = 0 (mod p2) and (a + Xp)p~l - 1 = 0 (mod p2). Expand both congruence 
equations and eliminate X. This implies that a must satisfy 2ap+l-ap-a2-1 = 0 (mod/?2). 
Conversely, suppose that a2 = a + Xp (mod/?2) is a solution to x2 - x - 1 = 0 (mod/?2) and sup-
pose that 2ap+l -ap-a2-l = 0 (mod p2). We have that 

2a$+l-a%-a\-l = 2a$+l-2ap
2 -2ap

2
l4-ap

2 + 2ap
2

l-a2-2 
= (a2 + 2){a2

D~l -1) (mod /?2). 

Since 2ap+l-ap-a2-l = 2a%+l-ap
2-a\-\ (modp2), this implies that (a2 + 2)(a%~1 -1) = 0 

(mod/?2). Suppose that a2 +2 = 0 (mod /?). Then, since a\ - a2 -1 = 0 (mod /?), this implies 
that 5 = 0 (mod/?), which contradicts our assumption that /?^5. Hence, a%~1 = 1 (mod/?2). 
This implies that a2 is not a primitive root modulo /?2, and our proof is complete. D 

Remark 3: From our proof, we have a more general result concerning Wall's question. We have 
the following result: suppose that a is a solution to x2 - x - 1 = 0 (mod /?) (we do not need the 
assumption that a is a primitive root modulo/?). Then k(p) = k(p2) if and only if 

2ap+l - ap - a2 - 1 = 0 (mod p2). 

For the case (5//?) = - ! , we have a similar result. We should consider everything in the ring 
Z[ i i^- j modulo/?. We have the following result: suppose a eZf 1 ^ - ] is a solution to x2 -x-
1 = 0 (mod/?). Then k(p) = k(p2) if and only if 

2 a ^ 2 + 1 - a ^ 2 - a 2 - l = 0 (mod/?2). 
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NEW PROBLEM WEB SITE 

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now be 
searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 23,000 problems from 42 journals and 22 contests are references by the site, which was developed by 
St nley Rabinowitz's MathPro Press. Ample hosting space for the site was generously provided by the 
Dep^. tment of Mathematics and Statistics at the University of Missouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions were 
published), and other relevant bibliographic information. Difficulty and subject matter vary widely; almost 
any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their time is 
encouraged to do so. For further information, write to 

Mr. Mark Brown 
Director of Operations, MathPro Press 
1220 East West Highway #1010A 
Silver Spring, MD 20910 
(301) 587-0618 (Voice mail) 
bowron@compuserve.com (e-mail) 
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Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to stan@wwa.com on Internet. All 
correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1+Fn> F0 = °, ^1 = 1; 

A1+2 = Ai+i + L„, L0 = 2, Lx = 1. 

Also, a = (1 + ̂ 5) /2 , /? = ( l -V5)/2 , Fn = (an - fin) / JT, md Ln = a"+f3n. 
B-866 Proposed by the editor 

For n an integer, show that L%n+4 + Ll2n+6 is always divisible by 25. 

B-867 Proposed by the editor 
Find small positive integers a and b so that 1999 is a member of the sequence (un), defined by 

u0 = 0, ut = 1, un - aun_x +bun_2 for n > 1. 

B-868 Based on a proposal by Richard Andre-Jeannin, Longwy, France 
Find an integer a > 1 such that, for all integers n, Fan = aFn (mod 25). 

B-869 Based on a communication by Larry Taylor, Rego Park, NY 
Find a polynomial f(x) such that, for all integers n, 2nFn = f(n) (mod 5). 

B-870 Proposed by Richard Andre-Jeannin, Longwy, France 
Solve the equation 

tan"1 y - tan"1 x = tan-1 

in nonnegative integers x and y, expressing your answer in terms of Fibonacci and/or Lucas 
numbers. 
B-871 Proposed by Paul S. Bruckman, Edmonds, WA 

Prove that 
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Notice to proposers: All problems submitted prior to 1999 for consideration for the Elementary 
Problems Column that have not yet been used are hereby released back to their authors. 

SOLUTIONS 
Class Identity 

B-848 Proposed by Russell Euler's Fall 1997 Number Theory Class, Northwest Missouri 
State University, Maryville, MO 
(Vol 36, no. 2, May 1998) 

Prove thatF„F„+1 - F„+6F„_5 = 40(-l)"+1 for all integers n. 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
We shall prove a generalization. For all integers n and k, since afi = -l, we have 

(an - p")(a"+1 - p"+1) - (a"+k - p"+k)(a"'k+1 - p"~k+l) 

= {aP)"+\a+P) + {ap)"-M(a2k-l+p2k-1) 
= (apy-k+l[(aP)k(a +p) + a2k~l +p2k~1] 
= (-l)"-k+1[-akpk-1 - ak'lpk + a2k-l+p2k-1] 
= ( - l)"-k+1(ak - pk)(ak-1 - p k ' 1 ) . 

It follows from the Binet Formula that F„Fn+1 - Fn+lcFn_k+l = (-l)B~*+1i^i^_1. In particular, 

^ W i - F^F^s = H r 5 ^ 5 = 40(-l)"+1 

for all integers n. 
Several readers found the generalization 

Fn+aFn+b ~ FnFn+a+b = (~ lY FaFb > 

which comes from formula (20a) offJJ. 

Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
Solutions also received by Brian Beasley, David M. Bloom, Paul S. Bruckman, Charles K. 
Cook, Leonard A. G. Dresel, Herta T. Freitag, Pentti Haukkanen, Russell Jay Hendel, Hans 
Kappus, Carl Libis, Bob Prielipp, MaitlandA. Rose, H.-J. Seiffert, Jndulis Strazdins, and the 
proposer. 

Fibonacci Arithmetic Progression 

B-849 Proposed by Larry Zimmerman & Gilbert Kessler, New York, NY 
(Vol 36, no. 2, May 1998) 

If Fa, Fb, Fc, x forms an increasing arithmetic progression, show that x must be a Lucas 
number. 

Solution by H.-J. Seiffert, Berlin, Germany 
In view of the counterexample, F_4, F0, FA, 6, we must suppose that a > 0. 
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Let a, b, and c be nonnegative integers such that Fa<Fb<Fc<x and Fb-Fa = Fc-Fb = 
x-Fc. If c - 2 £ ft, then F ^ ^ , and from 

2Fb=Fa+Fc>Fc = Fc_l+Fc_2>2Fb, 

It follows that we get equality; hence, Fa = 0 and Fc_l = Fc_2 = Fb. Thus, a = 0, b = 1, and c = 3, 
so that x = 2FC -Fb= 2F3 - Fx = 3 = L2 is a Lucas number. 

Now suppose that c-2 <b orc-l<b. Since 0<Fb<Fc:) we must have b<c. Thus, 
c -1 < b < c and we must have b = c -1. In this case, x = 2 i^ - i ^ = Zc_j is also a Lucas number. 

Solutions also received by Paul S. Bruckman, Aloysius Dorp, Leonard A. G Dresel, Russell 
Euler, Russell Jay Hendel, K J. Kuenzi & Bob Prielipp, Bob Prielipp, Indulis Strazdins, and 
the proposers. 

Unknown Subscripts 

B-850 Proposed by Al Dorp, Edgemere, NY 
(Vol 36, no. 2, May 1998) 

Find distinct positive integers a, b, and c so that Fn = HFn_a +cFn_b is an identity. 

Solution by Leonard A. G. Dresel, Reading, England 
We shall find two solutions, namely a = 6, b = 9, c = 4, and a - 12, b - 9, c - 72, and show 

that these are the only solutions. 
Putting n = b in the given identity, we have Fb = HFb_a, so that 17 divides i^,, giving Z? = 9, 

18, 27, ... . In fact, b = 9 is the only solution since, for & > 9, we have 176_6 <Fb< 17b_5. Letting 
b = 9, we have 17i^_a = i^ = 34 = 17i^, which gives 9-a= ±3, so that we have a = 6 or a = 12. 
To determine c, we put w = 10 in the given identity. Then, with a - 6, we have F10 = nFA+cFl9 

giving c = 55-51 = 4; whereas, with a = 12, we have i^0 = 17F_2 + ci^, giving c = 55 + 17 = 72. 
We therefore obtain the two identities Fn = llFn_6+4Fn_9 and Fn = \lFn_l2 + 12Fn_9. Each iden-
tity is true for n = 9 and n - 10, and can therefore be shown to be true for all n by induction. 
Most solvers only found one solution. 
Solutions also received by Brian Beasley, Paul S. Bruckman, Russell Jay Hendel, Daina A. 
Krigens, H.-J. Seiffert, Indulis Strazdins, and the proposer. Partial solution by A. Plaza & 
M. A. Padron. 

Repeating Series 

B-8S1 Proposed by Pentti Haukkanen, University of Tampere, Tampere, Finland 
(Vol. 36, no. 2, May 1998) 

Consider the repeating sequence (4X=o = °> 1> ~ 1> 0,1,-1,0,1,-1,.... 
(a) Find a recurrence formula for An. 
(b) Find an explicit formula for An of the form (an - bn) /(a-b). 

Solution by H.-J. Seiffert, Berlin, Germany 
Since the sum of any three consecutive terms of the sequence is seen to be 0, we have the 

recurrence 4,+2 = ~4i+i ~ 4i> ^or n - ®-
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Based on the equation 
. In V3 

3 2 
a simple induction argument shows that 

Using Euler's Relation 

A 2 . Inn r. ^ A 

sin x = - 2/ 
from above we get 

p2nm/3 _ p-2nm/3 

i.e., a = e2™13 and h = e~2*i/3 work. Equivalently, 
- l+zVl A A -1-/V3 

a - a n ( j # = 
2 2 

Cook found the recurrence An+3 = 4i • Libis found the amazing recurrence 

4 = (-i)1+^4_1+(-i)1+^4,_2. 
Solutions also received by Brian Beasely, PaulS. Bruckman, Charles K Cook, Leonard A. G. 
Dresel, Russell Euler, Russell Jay Hendel, Hans Kappus, Harris Kwong, Carl Libis, A. Plaza 
& M A. Padron, Indulis Strazdins, and the proposer. 

The Determinant Vanishes 

B-852 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 36, no. 2, May 1998) 

Evaluate 

^ 0 

^ 9 
Fw 
Fl9 
F2Q 

F; 
Fs 
Fn 
Flg 
Fn 

F2 
F, 
Fn 
Fl7 
^22 

^ 3 
F6 
Fl3 
Fl6 
F23 

F4 
F5 
Fl4 
F15 
F24 

Solution by Indulis Strazdins, Riga Tech University, Riga, Latvia 
Adding the 1st row and the 5th row, we obtain Fn+20 +i^ in the rP column, n = 0,1,2,3,4. 

This expression is equal to L10Fn+10 by using identity (15a) of [1], which says that 

for all integers m and n. The corresponding element of the 3rd row is Fn+l0, n~ 0,1,2,3,4. 
These rows are proportional, and hence the value of the determinant is 0. 
Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 

88 [FEB. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Generalization by Pentti Haukkanen, University of Tampere, Tampere, Finland 
Let (w„) be a recurrence sequence defined by wn+2 = awn+l + bwn, n > 0. Define thewxw-

determinant as 

Dm = 

Wn 1 Wt m-1 
W. 2m-l w2m-2 W~ w„ 
w, 2m W, 2m+l W> 3m-l 

The m^ row is 

if m is odd, and 
W(m-l)m W(m-l)m+l 

W 2 ! W 2 o 
7M - 1 m -2 

W m2-l 

W, (?n-l)m 

ifwiseven. 
We show that Dm = 0 whenever m>5. 
We add the (m -1)* column multiplied with a and the (m - 2)* column multiplied with b to 

the m* column. Then Dm reduces to the form 

A,= 

Wn Wt W, m-2 
»Vl 

0 

W 3m-2 U 

W 3m + 1 * 

Proceeding in a similar way with respect to the (/w-l)*, the (w-2)m
3 ..., the 3th column, the 

determinant ZL reduces to the form 

Dm = 

Wn 

W, 2w-l 
W. 2m 

Wd 4m-l 

wt 
W 2 m - 2 
W2m+1 
I f . w4m-2 

0 
* 
0 
* 

o . 
* 
0 • 
* 

• 0 
* 

. o 
* 

Now, it is easy to see that Dm = 0 whenever /w > 5, since we have a square matrix of zeros involv-
ing more than half of the rows of the whole matrix. 
Comment by the proposer: Let (wn) be any second-order linear recurrence defined by the recur-
rence wn = Pwn_x- Qwn_2. Consider the determinant 

^ 0 
* 

wa 
* 

W2a 

Wl 
* 

*W 
* 

*Wi 

w2 
* 

Wa+2 
* 

W 2 ? + 2 

w3 
* 

W « + 3 
* 

W2a+3 

w4 •• 
* 

>*W4 -
* 

" W ;• 

where the asterisks can be any values whatsoever. All the rows after the fifth one can have any 
values as well. Then the value of this determinant is 0 because the 1st, 3rd, and 5th rows are 
linearly dependent. This follows from the identity wan+b =vawain_l)+b-Qawa(n_2)+b, which is 
straightforward to verify by using algorithm LucasSimpl i f y from [1]. 
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Reference 
1. Stanley Rabinowitz. "Algorithmic Manipulation of Fibonacci Identities." In Applications of 

Fibonacci Numbers 6:389-408. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996. 
Solutions also received by Charles Ashbacher, Brian Beasley, David M. Bloom, Paul S. 
Bruckman, Charles K. Cook, Leonard A. G. Dresel, Pentti Haukkanen, Russell Jay Hendel, 
Hans Kappus, H.-J. SeiffeH, and the proposer. One incorrect solution was received 

A Deranged Sequence 

B-853 Proposed by Gene Ward Smith, Brunswick, ME 
(Vol 36, no. 2, May 1998) 

Consider the recurrence f{n + \) = n(f(ri) + f(n-V)) with initial conditions f{0)-\ and 
/ ( I ) = 0. Find a closed form for the sum 

Solution by Hans Kappus, Rodersdorf, Switzerland 
We claim that S(n) = n\. 

Proof: 

S(n + 1)-S(n) / ( * ) + /( / ! + !) 

=Z(t"i)/(*)+/(»+i) 

;1) /(*+ 1 ) +I(w*1) / (* ) 

(*> 

I" 
= n[S(n)-S(n-l) + S(n-l)] because of (*) 
= nS(n). 

Hence, S(n +1) = (n + l)S(ri). Since S(0) = 1, the proof is complete. 
Cook observes that S satisfies the same recurrence as f with different initial conditions. Many 
readers pointed out that the recurrence is well known for the number f(n) of derangements 
(permutations with no fixed points) of the set {l,2,3,...,/i}. See J. Riordan's Introduction to 
Combinatorial Analysis (New York: Wiley, 1958) for more information about the derangement 
number. 

Solutions also received by David M. Bloom, Paul S. Bruckman, Charles K. Cook, Carl Libis, 
H.-J. Seiffert, Indulis Strazdins, and the proposer. 
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Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-547 Proposed by T. K Padmakumar, Thycaud, India 
Prove: Ifp is a prime number, then 

£,(2»-l) 
2 r , 

= 0 (mod p). 1 
£(2»-l)2 

H-548 Proposed by H.- J. Seiffert, Berlin, Germany 
Define the sequence of Pell numbers by P0 = 0, Px = l, and Pn+2 = 2Pn+l + Pnforn>0. Show 

that if q is a prime such that q = l (mod 8) then 

q\P{q.l)IA if and only if 2(*"1)/4 = (-1)(^1)/8 (mod q). 

H-549 Proposed by Paul S. Bruckman, Highwood, IL 
Evaluate the expression: 

XC-irHan-'O/F^). (1) 
n>\ 

SOLUTIONS 
Exactly Right 

H-532 Proposed by Paul S« Bruckman, Highwood, IL 
(Vol 35, no. 4, November 1997) 

Let Vn - Vn(x) denote the generalized Lucas polynomials defined as follows: V0 = 2; Vl = x; 
K+2 = xK+i+K> w = 0,1,2,.... If n is an odd positive integer and y is any real number, find all 
(exact) solutions of the equation: Vn{x) - y. 

Solution byH.-J. Seiffert, Berlin, Germany 
It is well known that V„(x) is a polynomial of degree n and that, for all complex numbers x, 

Vn(x) = a(xf + fi(x)n
9 where 

a(x) = ( x W x 2 + 4 ) / 2 and ^(x)==(x-Vx2+4)/2. 

Here, 4^+4 can be any of the at most two possible roots of x2 + 4. 
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Let n GN be odd and y GR. We show that the solutions of the equation Vn(x) - j a re 

= ( ^ W + # W ) c o ^ ] + / ( V ^ - # O 0 ) s i n ^ ] , * = 0, . . . ,»-l . 

Here, we consider the main branch of the 71th root. 
Since a(y)+fl(y) -y is real and n is odd, it is easily seen that x0,...,xn_l are n distinct 

complex numbers. However, the equation Vn{x) = y cannot have more than n distinct solutions, 
so that we are done if we prove that Vn{xk) = y for k = 0,..., n-1. 

Since n is odd and oc(y)j3(y) = - 1 , we find 

which implies 

It follows that 

xk ±^x\ + 4 = 2 «/^00 e x p f ^ l and x ^ T ^ + 4 = 2 ^ 0 0 e x p f - ^ \ 

In each case, we have Vn(xk) - a(xk)n +J3(xk)n - a(y)+P(y) -y. 

Also solved by G. Smith and the proposer. 

Enter at Your Own Risk 

H-533 Proposed by Andrej Dujella, University of Zagreb, Croatia 
(Vol 35, no. 4, November 1997) 

Let Z(n) be the entry point for positive integers n. Prove that Z(n) < In for any positive 
integer n. Find all positive integers n such that Z(n) -2n. 

Solution by Paul S. Bruckman, Highwood, IL 
We first assume that gcd(w, 10) = 1. The following results are well known for all primes 

p^2,5: Z(p)\(p-(5/p)); also, Z(pe) = pe~l'Z(p) for some t with l<t<e. Then Z(pe) = 
Pe~~f{p -(5/ p))/a for some integer a = a(p). If n = Hpe, let w = PQ, where P consists of those 
prime powers pe exactly dividing n and with a(p) = 1, and Q is the corresponding product with 
a(p)>2. Note that 

Z(P)<2Hp«-l{(p + l)/2}, 
P<\\p 

since 21 {{p - (5 / p)), while 

2(0^11/^1{(p + l)/2}; 
pie 

therefore, 
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Z(n) = UM{ZQf) :pe\\n}<2 JJpe-l{(p +1) / 2}. 
pe\\" 

Then 
Z(n)/n<2H{(p + l)/2p}<4/3, 

p\n 

since (p + l)/2p<2/3 for all p>2, with equality iff p = 3. 
If n = 5em, where gcd(m, 10) = 1, then 

Z(w) = LCM(Z(5*), Z(w)) = LCM(5", Z(m)) < 5e • (4m / 3) = 4/i / 3. 

Therefore, Z(w) < 4w / 3 for all odd n. 
If w = 2m, where m is odd, then 

Z(n) = LCM(3, Z(m)) < 3Z(m) < 3(4m /3) = 4m = 2n. 

If « = 4/w, where m is odd, then 

Z(n) = LCM(6, Z(m)) < 6Z(m) < 6{4m /3) = %in = 2n. 

If n = 2ew, where £ > 3 and gcd(w, 10) = 1, then 

Z(n) = LCM(Z(2e), Z(m)) < LCM(3 • 2g~2, Z(w)) < 3 • 2*~2 • 4/w / 3 = w. 

In all cases, Z(w) < 2« for all n > 1. D 

If we examine the various parts of the foregoing proof, we see that Z(n) has a chance of 
being exactly equal to 2w only if 21 or 22 is the highest power of 2 exactly dividing n. Moreover, 
if gcd(w, 30) = 1, if m > 1, and if n = 2w or 4/w, we see that Z(/w) < 4/w / 3; in this case, Z{n) < 2n. 
Note that the factor 5̂ * of n does not affect the ratio Z(n)/n, since Z(5^) = 5-̂ . 

Thus, any n with Z(w) = 2« must be of the form 2d -3e - 5f, where rf = 1 or 2, e > 1, / > 0. 
We observe that Z(2 • 3e • 5^) = LCM(3,4. 3e'\ 5/) = 12-5/ if e = 1, or 4 • 3*"1 • 5 / if e > 2. Thus, 
Z(n) = 2ni£e = l, Z{n)<2n if e> 1. 

Therefore, if 21 ||w, Z(w) = 2w iff e = 1, i.e., iff n = 6-5^. On the other hand, we find that if 
w = 4• 3e-5? then Z(n) = n or n/3<2n in either case. 

In conclusion, Z(n) = 2w iff w = 6 • 5^, / = 0,1,2,.... D 
Also solved by JL A. G. Dresel and the proposer. 

Representation 

H-S34 Proposed by Piero Filipponi9 Romef Italy 
(PM 3§9 no. 49 November 1997) 

An interesting question posed to me by Evelyn Hart (Colgate University, Hamilton, NY) led 
me to pose, in turn, the following two problems to the readers of The Fibonacci Quarterly. 
(Please see the above volume of the Quarterly for a complete statement of Problem H-534.) 
Problem A: For k a fixed positive integer, let nk be any integer represeetable as 

where v • equals either j or zero. 

1999] 93 



ADVANCED PROBLEMS AND SOLUTIONS 

Problem B: Is it possible to characterize the set of all positive integers k for which kFk is repre-
sentable as 

where Vj is as in Problem A? 

Solution by Paul S. Bruckfnan, Highwood, IL 

Solution to Problem A: We first make some notational changes, for convenience. Let 
Oj - jFj. The set of positive integers that may be represented as a sum Sy=1 efij with Sj - 0 or 
1, sk = 1, is denoted by rk. Let r = U?=i tk. If a positive integer n cannot be represented as such 
a sum for any value of k, we write n & r. Also, define £(0) = 1. 

We note that we have the following generating function: 

na+**o=!>(*)**• (i) 
j=l le=Q 

We use a comparison test to determine the following result: 
limS(k)/f(k)=0. (2) 

The comparison is made with the more well-known generating function: 

f[(l + ̂ ) = fiq(k)xk, (3) 
j=i k=o 

where q(k) is the number of decompositions of k into distinct positive integer summands without 
regard to order; for example, q(l) = 5, since 7 = 1 + 6 = 2 + 5 = 3 + 4 = 1 + 2 + 4. Since the 9j's are 
natural numbers, it is clear that 

0<S(k)<q(kl ^ = 0,1,2,.... (4) 

Indeed, all of the q(ky$ are > 0. The following asymptotic formula (paraphrased to conform with 
our notation) is given in [1]: 

q(k) ~ |(3£3)-1/4 exp(W^7I), as * -> oo. (5) 

Thus, logq(k) - 7ijk13. On the other hand, log/(&) -kloga. Hence, log{q(k)/ f(k)} -» -oo, 
which implies lim^^^ q(k)l f(k) = 0. This, together with (4), implies (3). • 

Partial Solution to Problem B: We see that if 0k = Ey=J sfij then sk_l = 1 and k > 7, by 
the proposer's comments. For, otherwise, 0k < f(k-2) = 0k-Lk+l+2, which is clearly impos-
sible. Therefore, either 0k e rk__l or 9k <£ r. For brevity, we let U denote the set of k > 7 such 
that 0k e rk_v Note that S(0k)>\ for all k > 1. One way to characterize U9 albeit not a very 
satisfactory way from a theoretical standpoint, is to observe that U is precisely the set of k such 
that S(9k) > 2; this, however, is little more than a restatement of the definition of the S(k)'$. 

Some other observations may be made, which may or may not be useful. For example, we 
can determine the characteristic polynomial of the 0ks. The following relation is easily found: 

&k ~ 0*-i ~ #*-2 = 4-i • (6) 
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Thus, the characteristic, or "annihilating," polynomial of the 0ks is (z2 - z -I)2 = z4 -2z3 - z2 + 
2z + l; that is, we have the pure recurrence 

6k - 20k_t - 0k_2 + 20k_3 + 0k_4 = 0. (7) 

We may define the following quantity: 
uk ^ 20k + 0k_h k = 1,2,... (with 0O = 0). (8) 

Then we may recast (7) as follows: 

tt*-i-**-3 = 0jk, * = 4,5,.... (9) 
A consequence of these relations is the following: 

k k 
If2Jfc+2 = Z^2/+b % t - l = Z ^ * = 1,2,.... (10) 

This shows that u2k_l and (u2k +2) are elements of x2k and T2k+l, respectively. We also see that 
!/*+!#*_!+2 = / ( * + l), £ = 2,3,.... (11) 

It is not clear at this point how these relations may be useful in determining which values of it are 
"acceptable," in the sense that k eU. We observe from (6), however, that if Lk_x e rm for some 
m<k-3 then k e t / . 

One practical approach is simply to expand the generating function to any desired number of 
terms and pick out the values of k for which S(k) > 2. To ensure that we are not omitting some 
values ofk that eventually generate S(k) > 2, we need to take enough terms in the product. If the 
partial products 11*^(1 +x0J) have the expansion Zfl^ $(k,n)xk, and if the integer // = fi(k) is 
determined from 0M < k < 0M+l then S(k, n) = S(k) for all n > ju. In particular, S(0k9 n) = S(0k) 
for all n>0k. 

We conclude with a table indicating the first 25 values of 0k, S(k), and f(k), also indicating 
all acceptable representations of 0k as an element of rk_{ for k > 7, if such representations exist. 
We denote such representations in an abbreviated form, where the indicated /w-tuple gives the 
subscripts r of the $r's entering in the representation, shown in descending order. 

The table was not generated by expansion, as might be suggested by the previous comments. 
Rather, we used a constructive algorithm for generating the representations (if any) in rk_x of 0k. 
Following is a brief description of the algorithm. 

We begin by assuming that 0k G T W and compute the difference Nl = 0k-0k_l. There 
exists an index r such that 0r<Nl< 0r+l. The next term is either 0r or 0r_x. If Nx > f(r-1), 
such next term must be 9r. If Nx < f(r -1), such next term is either 0r or 0r_{, both cases are 
possible a priori and must be examined separately. Let N2~ Nl-9S, where 0S is the next term 
selected (i.e., s = r or r -1) and repeat the process with N2. The algorithm continues until a final 
difference Nw, say, is either determined to be representable as a sum of the 0/s or recognized as 
impossible to be thus represented. Note: If Nj - f{m) for some m andj, we may either stop at 
the term 0m or replace f(m) by 0X + 02 + • • • + 0m. Keeping track of all "forks in the road" (where 
two choices were possible a priori), we thereby generate all possible representations, if any. 

It is tempting on the basis of the data, to make the conjecture that k e U for all values except 
1, 2, 3, 4, 5, 6, 8, 8, and 14. It would seem unlikely that S(0k) = 1 for any value of k > 25, but 
these methods did not resolve this question. 
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TABLE 

* 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16 

17 

18 

19 

20 

21 

22 
23 

24 

25 

Ok 
1 
2 
6 
12 
25 
48 
91 
168 
306 
550 
979 
1728 
3029 
5278 
9150 

15792 

27149 

46512 

79439 

135300 

229866 

389642 
659111 

1112832 

1875625 

S(k) 

2 

2 
2 
2 
2 
1 
3 

3 

3 

4 

5 

5 

4 

2 
4 

8 

8 

Tk_l Representation(s) 

-

-
-

{6,5,4,3} 
-
-

{9,8,6,5,2,1} 
{10,9,7,5,3,1} 
{11,10,8,5,3} 

{12,11,8,7,6,4,2,1} 
-

{14,13,10,8,7,5,3,2,1}, 
{14,12,11,10,9,8,7,6,2} 

{15,14,11,9,6,5,3}, 
{15,13,12,11,10,9,6,2} 
{16,15,12,9,7,6,5,3,2,1}, 
{16,14,13,12,11,9,5,4} 
{17,16,13,9,8,6,4,3,2}, 

{17,16,12,11,10,8,7,6,3,1}, 
{17,15,14,13,12,7,6,5,4,2} 

{18,17,14,9,8,5,1}, 
{18,17,13,12,10,9,7,6,5,1}, 

{18,16,15,14,12,11}, 
{18,16,15,14,12,10,9,7,5,3,1} 

{19,18,15,8,5,3}, {19,18,14,6,4,2,1}, 
{19,18,14,13,10,9,8,4,3}, 

{19,17,16,15,12,11,10,9,8,5,4,2} 
{20,19,15,13,12,11,8,6,5}, 
{20,18,17,16,13,12,9,6,2}, 

{20,18,17,16,13,11,10,9,8,6,5,3,2} 
{21,19,18,16,15,14,13,10,5,1} 
{22,21,17,15,12,11,9,8,7,5,3,1}, 

{22,20,19,17,16,15,12,10,9,6,3,1}, 
{22,20,19,17,16,14;i3,12,ll,10,8,6,3,2,1} 

{23,22,18,15,14,13,7,4,3,1}, 
{23,22,17,16,15,14,13,12,11,10,9,7,5,2}, 

{23,21,20,19,14,13,10,8,6,5,4,3}, 
{23,21,20,18,17,15,14,9,7,6,4,3,2,1}, 

{23,21,20,19,14,13,10,8,7}, 
{23,21,20,1118,17,15,13,12,10,9,7,5,4,2,1} 

{24,23,19,16,14,12,11,9,7,6,4,3,2,1}, 
{24,23,18,17,16,15,13,12,8,7,6,4,2,1}, 

{24,22,21,20,14,12,10,9,7,5,3,1}, 
{24,22,21,20,14,12,11}, 

{24,22,21,19,18,16,11,10,4,1}, 
{24,22,21,19,18,15,14,12,11,8,5,3}, 

{24,22,21,19,18,15,14,12,10,9,8,7,6,4,2,1} 

/(*) 
1 
3 
9 
21 
46 
94 
185 
353 
659 
1209 
2188 
3916 
6945 
12223 
21373 

37165 

64314 

110826 

190265 

325565 

555431 

945073 
1604184 

2717016 

4592641 

Reference 
1. M. Abramowitz & I. A. Stegun, eds. Handbook of Mathematical Functions. Washington, 

D.C.: National Bureau of Standards. Ninth printing, Nov. 1970 (with corrections), p. 826. 
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Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Volume. 
Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. $38.00 

Applications of Fibonacci Numbers, Volumes 1-7. Edited by G.E. Bergum, A.F. Horadam and 
A.N. Philippou. Contact publisher for price. 

Generalized Pascal Triangles and Pyramids Their Fractals, Graphs and Applications by Boris 
A. Bondarenko. Translated from the Russian and edited by Richard C. Bollinger. 
FA, 1993. $37.00 

Fibonacci Entry Points and Periods for Primes 100,003 through 415,993 by Daniel C. Fielder 
and Paul S. Bruckman. $20.00 

Handling charges will be $4.00 for the first book and $1.00 for each additional book in the 
United States and Canada. For foreign orders, the handling charge will be $8.00 for the first 
book and $3.00 for each additional book. 

Please write to the Fibonacci Association, P.O. Box 320, Aurora, S.D. 57002-0320, U.S.A., for 
more information. 


