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ON THE SQUARE ROOTS OF TRIANGULAR NUMBERS 

A. Behera and G. K. Panda 
Department of Mathematics, Regional Engineering College, Rourkela 769 008, India 

(Submitted July 1996-Final Revision November 1998) 

1. BALANCING NUMBERS 

We call an Integer n e Z+ a balancing number if 

1+ 2+ --- + (»- l ) = (w + l) + (w + 2) +••• + (» + >•) (1) 

for some r e Z+. Here r is called the balancer corresponding to the balancing number n. 
For example, 6, 35, and 204 are balancing numbers with balancers 2, 14, and 84, respectively. 
It follows from (1) that, if n is a balancing number with balancer r, then 

n2^(n + r)(n + r + l) ^ 

r = - ( 2 f t + l) + V8ft2 + l 
2 W 

and thus 

It is clear from (2) that w is a balancing number if and only if n2 is a triangular number (cf 
[2], p. 3). Also, it follows from (3) that n is a balancing number if and only if 8n2 +1 is a perfect 
square. 

2. FUNCTIONS GENERATING BALANCING NUMBERS 

In this section we introduce some functions that generate balancing numbers. For any balan-
cing number x, we consider the following functions: 

F(x) = 2xV8x2 + l, (4) 
G(x) = 3x + V8x2 + 1, (5) 
H{x) = \lx + 6V8x2+l. (6) 

First, we prove that the above functions always generate balancing numbers. 

Theorem 2.1: For any balancing number x, F(x), G(x), and H(x) are also balancing numbers. 

Proof: Since x is a balancing number, 8x2 +1 is a perfect square, and 

8x2(8x2 + l ) ^ 4 x 2 ( 8 x 2 + 1) 

is a triangular number which is also a perfect square; therefore, its square root 2x V8x2 +1 is a (an 
even) balancing number. Thus, for any given balancing number x, F(x) is an even balancing num-
ber. Since 8x2 +1 is a perfect square, it follows that 

8(G(x))2 +1 = (8x + 3V8x2 + l)2 

is also a perfect square; hence, G(x) is a balancing number. Again, since G(G(x)) = H(x), it 
follows that i/(x) is also a balancing number. This completes the proof of Theorem 2.1. 
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It is important to note that, if x is any balancing number, then F(x) is always even, whereas 
G(x) is even when x is odd and G(x) is odd when x is even. Thus, if x is any balancing number, 
then G(F(x)) is an odd balancing number. But 

G(F(x)) = 6xV8x2 + l + \6x2 +1. 

The above discussion proves the following result. 

Theorem 2.2: If x is any balancing number, then 

K(x) = 6xV8x2 + l +16x2 +1 (7) 
is an odd balancing number. 

3, FINDING THE NEXT BALANCING NUMBER 

In the previous section, we showed that F(x) generates only even balancing numbers, 
whereas K(x) generates only odd balancing numbers. But H(x) and K(x) generate both even 
and odd balancing numbers. Since H(6) = 204 and there is a balancing number 35 between 6 and 
204, it is clear that H(x) does not generate the next balancing number for any given balancing 
number x. Now the question arises: "Does G(x) generate the next balancing number for any 
given balancing number x?!! The answer to this question is affirmative. More precisely, if x is 
any balancing number, then the next balancing number is 3x + V8x2 +1 and, consequently, the 
previous one is 3x - V8x2 4-1. 

Theorem 3.1: If x is any balancing number, then there is no balancing number y such that 
x < y < 3x + V8x2 +1 . 

Proof: The function G: [0, oo) -> [1, oo), defined by G(x) = 3x + V8x2 +1, is strictly increas-
ing since 

G'(x) = 3 + , 8* >Q. 

Also, it is clear that G is bijective and x < G(x) for all x > 0. Thus, G~l exists and is also strictly 
increasing with G~l(x) < x. Let u = G_1(x). Then G(u) = x and u = 3x + v8x2 +1. Since u < x, 
we have u = 3x - V8x2 4-1. Also, since 8(G_1(x))2 +1 = (8x - 3V8x2 +1)2 is a perfect square, it 
follows that G_1(x) is also a balancing number. 

Now we can complete the proof in two ways. The first is by the method of induction', the 
second is by the method of infinite descent used by Fermat ([2], p. 228). 

By induction: We define BQ = l (the reason is that 8 -12 +1 = 9 is a perfect square) and Bn = 
G(Bn_x) for n = 1,2,.... Thus, Bl = 6, B2 = 35, and so on. Let ZZJ be the hypothesis that there is 
no balancing number between Bt_x and Bt. Clearly, Hx is true. Assume Ht is true for / = 1, 2, ..., 
n. We shall prove that Hn+l is true, i.e., there is no balancing number^ such that Bn <y<Bn+v 

Assume, to the contrary, that such a j exists. Then G~l(y) is a balancing number, and since G_1 

is strictly increasing, it follows that G~l(Bn) <G~l(y) <G~~l(Bn+l), i.e., Bn_x <G~l(y) <Bn, which 
is a contradiction to the assumption that Hn is true. So Hn+l is also true. Thus, if x is a balancing 
number, then x = Bn for some n and there is no balancing number between x and G(x). 
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By the method of infinite descent: Here assume Hn is false for some n. Then there exists a 
balancing number y such that Bn_l <y<Bn, and this implies that Bn_2 <G~l(y) <Bn_x. Finally, 
this would imply that there exists a balancing number B between B0 and Bx, which is false. Thus, 
Hn is true for n = 1,2,.... 

This completes the proof of Theorem 3.1. 

Corollary 3.2: If x is any balancing number, then its previous balancing number is 3x - V8x2 +1 . 

Proof: G(3x-V8x2 + l) = x. 

4, ANOTHER FUNCTION GENERATING BALANCING NUMBERS 

In this section we develop a function f(x,y) of two variables generating balancing numbers 
such that all the functions F(x), G(x), H(x), and K(x) are obtained as particular cases of this 
function. 

Let x be any balancing number. We try to find balancing numbers of the form 

B- px + q^Sx2 + 1, 

where p, q e Z+. In the previous section we have seen that most of the balancing numbers are of 
this form. Since B is a balancing number, SB2 +1 = (8#x + pjsx2 +1)2 + 8#2 - p2 +1 must be a 
perfect square; this happens if Sq2-p2 + 1 = 0, i.e., p = JSq2 +1. Since p e Z+, it follows that 
$q2 +1 must be a perfect square, and this is possible if q is a balancing number. 

The above discussion proves the following theorem. 

Theorem 4.1: If x andj are balancing numbers, then 

f(x, y) = xftf + l +WS*2 + 1 (8) 
is also a balancing number. 
Remark 4.2: (a) fix, x) = F(x); (b) f(x, 1) = G(x); (c) f(x, 6) = H(x); (d) f(x, G(x)) = K(x). 

5. RECURRENCE RELATIONS FOR BALANCING NUMBERS 

We know that Bx-6, B2 - 35, B3 = 204, and so on. We have already assumed that B0 - 1. 
In Section 3 we proved that, if Bn is the n* balancing number, then 

Bn+1 = 3B„ + y[$BjTl and Bn_x = W„ - ^ +1. 

It is clear that the balancing numbers obey the following recurrence relation: 
Bn^ = 6Bn-Bn_v (9) 

Using the recurrence relation (9), we can obtain some other interesting relations concerning 
balancing numbers. 

Theorem 5.1: 
(a) B„^Bn_^{B„ + \){B„-l). 
0>) Bn = Bk- Bn-k ~ Bk-\ • Bn-k-i f o r a i w positive integer k < n. 
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(c) B2n=B2
n-B2

n_v 

(d) B2n+l = Bn(Bn+l-B
n-l)-

Proof: From (9), it follows that 
Bn+l + Bn_l=6 

Bn 
Replacing n by n - 1 in (10), we get 

B„-i + B
n-2=6 ( 1 1 ) 

Bn-l 

From (10) and (11), we obtain B% - Bn_x- Bn+l = B%_t- Bn_2° Bn. Now, iterating recursively, we 
see that B%-Bn_vBn+l = B?-B0B2 = 36-l-35 = l. Thus, B2

n -1 = Bn+l • Bn_h from which (a) 
follows. 

The proof of (b) is based on induction. Clearly, (b) is true for n > 1 and k = 1. Assume that 
(b) is true for k = r, i. e., Bn = Br- Bn_r - Br_x • Bn_r_v Thus, 

5r+1 • £„_,._! - 5 r • Bn_r_2 = (65r - 4-_1)5„_r_1 - 5 r • 5w_r_2 

= 6Br • 5 ^ ^ ! - 5 r - l ' 4i-r-l ~ ^r ' Bn-r-2 
= Br(6Bn-r-l ~ Bn-r-2) ~ Br-\ ' Bn-r-\ 
= Br • Bn_r - Br_x • Bn_r_x = £„, 

showing that (b) is true for k = r +1. This completes the proof of (b). 
The proof of (c) follows by replacing n by In and & by n in (b). Similarly, the proof of (d) 

follows by replacing n by In +1 and A by n in (b). This completes the proof of Theorem 5.1. 

6. GENERATING FUNCTION FOR BALANCING NUMBERS 

In Section 5 we obtained some recurrence relations for the sequence of balancing numbers. 
In this section our aim is to find a nonrecursive form for Bni n - 0,1,2,..., using the generating 
function for the sequence Bn. 

Recall that the generating function for a sequence {xn} of real numbers is defined by 

n=0 

Thus, 

(see [5], p. 29). 1 dn , . 
5=0 

Theorem 6.1: The generating function of the sequence Bn of balancing numbers is g(s) = 1 - 6 ^ 2 

and, consequently, 

Mi? 

A:=0 V 

where [ ] denotes the greatest integer function. 
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Proof: From (9) for n = 1,2,..., we have Bn+l - 6Bn + Bn_x = 0. Multiplying each term by sn 

and taking summation over n = 1 to n = oo, we obtain 

j i x ^ * - ef;^+^z^-^-1=o 
which, in terms of g(s), yields 

l(g(s) -l-6s)- 6(g(s) -1) +sg(S) = 0. 

Thus, 

g(s) = L _ - = (1 - (6s - s2))'1 

6 W 1-65 + 52 V V " (13) 
= l + ( 6^ -^ ) + (6^-^2)2 + (65-52)3 + .-.. 

When n is even, the terms containing sn in (13) are (6s-s2)"'2, (6s-.s2)('l/2)+1, ...,(6s~s2)n, and 
in this case the coefficient of sn in #(.$) is 

When 7i is odd, the terms containing sn in (13) are (6s - s2)^'2, (6^-^)(w+3) /2,. . . , (6s-s2)", and 
in this case the coefficient of sn in g(s) is 

6" - f W r 1 ) 6 "" 2 + P*2 2 ) 6 "" 4 - - +(-l)(w"1)/2[ J J6. (15) 
It is clear that (14) represents the right-hand side of (12) when n is even and (15) represents the 
right-hand side of (12) when n is odd. This completes the proof of Theorem 6.1. 

1. ANOTHER NONRECURSIVE FORM FOR BALANCING NUMBERS 
In Section 6 we obtained a nonrecursive form for Bn, n = 0,1,2,..., using the generating 

function. In this section we shall obtain another nonrecursive form for Bn by solving the recur-
rence relation (9) as a difference equation. 

We rewrite (9) in the form 
B^-6Bn+B^ = 0, (16) 

which is a second-order linear homogeneous difference equation whose auxiliary equation is 
A2-6A + l = 0. (17) 

The roots XY = 3 + -J$ and A2 = 3 - V8 of (17) are real and unequal. Thus, 

Bn = Arl+Br2, (is) 
where A and B are determined from the values of B0 and Bx. Substituting B0 = l and Bl = 6 into 
(18), we get 

A + B = \ (19) 
AAt + BA2 = 6. (20) 
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Solving (19) and (20) for A and B, we obtain 

A- ^ 2 ~ ^ = ^* • B= ^~^ 1 - ^ 2 

Substituting these values into (18), we get 

Ji,= ; ? , "=o,i,2,.... 

Theorem 7.1: If Bn is the 72th balancing number, then 

B„ = A\ 7 , " = 0,1,2,..., 

where Ax = 3 + V$ and 2 2 = 3 - V8 . 

8. LIMIT OF THE RATIO OF THE SUCCESSIVE TERMS 

The Fibonacci numbers ([1], p. 6) are defined as follows: F0 = 1,Fx = 1, Fn -Fn_l+Fn_2 for 
n = 2,3,.... It is well known that 

r Fn+l 1 + ̂ 5 
M-»OO r A 

which is called the golden ratio [1]. We prove a similar result concerning balancing numbers. 

Theorem 8.1: If Bn is the /1th balancing number, then 

l i m % ^ 3 + V8. 
«->>oo Bn 

Proof: From the recurrence relation (9), we have 

% L + % I - 6 . (21) 

Putting 2 = l i m ^ ^ - in (21), we get A2 - 6X +1 = 0, i.e., X = 3 ± V8. Since 5W+1 > 5„, we must 
have A > 1. Thus, A = 3 + V8 . This completes the proof of Theorem 8.1. 

An alternative proof of Theorem 8.1 can be obtained by considering the relation 

and using the fact that B„ -> oo as n -> oo. 

It is important to note that the limit ratio 3 + V8 represents the simple periodic continued 
fraction ([4], Ch. X) 

[6,-61 = 6 + —. , (22) 

- 6 + — h — 
6 + --6 + ... 

and from Theorem 178 ([4], p. 147) it follows that, if C„ is the nth convergent of (22), then 
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nn+2 nn+2 

where XY = 3 + JE and X2 = 3 - V8. An application of Theorem 7.1 shows thatQ = ^±L; thus, 
^ = 1 ^ ^ = 5 ^ , 1 1 = 0,1,2,.... 

9. AN APPLICATION OF BALANCING NUMBERS TO A 
DIOPHANTME EQUATION 

It is quite well known that the solutions of the Diophantine equation 

x2+y2 = z2, x,y,zGZ+ (23) 
are of the form 

x = u2-v2, y = 2uv, z = u2+v2, 

where % v e Z+ and 2/ > v ([3], [4], [7]). The solution (x, j , z) is called a Pythagorean triplet. 
We consider the solutions of (23) in a particular case, namely, 

x2 + (x + l ) 2 = / . (24) 

In this section we relate the solutions of (24) with balancing numbers. 
Let (x, y) be a solution of (24). Hence, 2y2 -1 = (2x +I)2. Thus, 

is a triangular number as well as a perfect square. Therefore, 

£ = V j W - l ) (25) 
is an odd balancing number (since y2 and 2 j 2 - 1 are odd). Since y2 > 1, it follows from (25) that 

y2=1±M7i (26) 

Again, since y is positive by assumption, we have 

From (24) and (26), we obtain 

V = I ^ 1 + V8#2+1 
' 2 

4 
Since x is positive, it follows that 

^(V8,S2 + l - l ) - l 
X~ 2 

For example, if we take 5 = 35 (an odd balancing number), then we have 

VKV8-352 + 1-Q-1 
X = — = 1 

2 
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and 
32 + (3 + l)2=52, 

i.e., 
x2 + (x + l)2 = j 2 . 
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(Submitted April 1997) 

1. INTRODUCTION 

Long [4] considered the identity 

Ll-5F„2 = 4(-l)" (1.1) 

and noted that the left side consists of terms of the second degree. He gave numerous variations 
of (1.1) by varying the terms that make up the products and also the subscripts. For example, he 
obtained 

_JF_dLm+n+d, rfeven, 

[L_dFm+n+d - 2(-\)nFm_n, d odd. 

Long noticed that the replacement of the minus sign on the left with a plus sign simply reversed 
the even and odd cases on the right side, so that a counterpart to (1.2) is 

T 77 Mr J? JL_dFm+n+d-2(-iyFm_„, d even, 
[F_dLm+n+d, dodd. 

In this paper we generalize all the results of Long that focus on the difference of products, 
and we produce many more. A pleasing feature of the identities contained here is that while being 
more general than those of Long, they maintain the elegant properties which Long observed. 

2. THE SEQUENCES 

Define the sequences {Un}, {Vn}, {W„}, and {Xn} for all integers n by 

\U„=pU^-gU^3,U0 = 0, UX = \, 
Vn=pVn_l-qV^2, V0 = 2, V^p, 
Wn=pWn_x-qWn_2, W0 = a, Wx=b, 
Xn = Wn+1-qW„_ 

Here a, b, p, and q are any complex numbers with A = p2 — 4q & 0. Then the roots a and /? of 
x2 -px + q = 0 are distinct. Hence, the Binet form (see [2] and [3]) for Wn is 

a-p ' 
where A = h-aj3 and B~b-aa. It can also be shown that Xn = Aan+Bf5n. The sequences 
{Un} and {Vn} generalize {Fn} and {Ln}, respectively. Also, since {Wn} generalizes {Un}, then 
{Xn} generalizes {Vn} by virtue of the fact that V„ = Un+l-qU„_l, which can be proved using 
Binet forms. 
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We consider a second group of sequences obtained from (2.1) by putting q = -\. In the 
obvious order, we name these sequences {un}, {yn}, {w„}, and {xn}. The sequences {«„} and {vn} 
also generalize {Fn} and {Ln}, respectively. Furthermore, {wn} and {xn} generalize {un} and 
{v„}, respectively. We write D = p 2 + 4 . 

Finally, our third group of sequences is obtained from (2.1) by putting q = \. In order, we 
name these sequences {P„}, {Q„}, {R„}, and {S„}. 

3 . T H E FIRST SET O F IDENTITIES 

For the sequences {«„}, {v„}, {wn}, and {xn}, we have found the following: 

XnVm ~ xn+dvm+d - 1 n , VJ • 1 > 
[Du_dwm+n+d, rfeven, 

\v_dxm+n+d + {-\)mxQvn_m, d odd, 
x»vm-xm+dv„+d={ (3.2) 

[D(u_dwm+n+d + (-l)mw^n_m), d even, 

ru x u _ K w ^ ^ + 2 ( - 1 ) " H ' , w - » . rf°dd> f 3 3 ) 
1-- -- a even, 

)V-dM>m+n+d + (-l)m+1w0v„_m, rf odd, 
\u-dx„^n+d+{-\)m+lx0un_m, d even, 

Jv-dwm + n + d + (-ir+1Xo"n-m, ^ odd, 
\u-dxm+n+d+(-l)m+1w0v„_m, rfeven, 

(3.5) 

fv_dwm+M+d, rfodd, 
[w_rfxm+„+d+2(-l)m+1w„_m, rfeven, 

^ \v_dxm+n+d, dodd, 
x„vm-Dw„+dum+d=\ (3.7) 

[£>w.dwm+M+d + 2(-l)mx„_m, rf even, 
+ (-\)mDwQun_m, dodd, 

xnvm-Dwm+dun+d=-\ (3.8) 
[Du_dwm+n+d +(-l)mx0v„_m, d even, 

[«_d>vm+„+d, tfeven, 

feCv-rfJWw + H^Vn-m). c/odd, 
wA-*«Arf= , 1VB+1 , ( 3 1 0 > 

[«_rfwffl+„+d + H) w<>Un-m, d even, 

- A - ^ v ^ J ^ — +2(-ir""-" j°dd' 0.11) 
l5-A+„+rf, rfeven, 

1999] 107 



GENERALIZATIONS OF SOME IDENTITIES OF LONG 

\v_dwm+n+d+(-l)mw0vn_m, dodd, 
ym+dvn+d--\ , ^m • ( J . 12) 

[u_dxm+n+d + (-l)mx0un_m, d even. 

If on the left side, in each case, we replace the minus sign with a plus sign, the identities are 
exactly as stated but with the even and odd cases reversed. This parallels the observations of 
Long for his Fibonacci-Lucas identities. For example, as a counterpart to (3.6), we have 

XnUm + Vm+dWn+d ~ 1 , ( J . 1 J ) 
[v_dwm+n+d, rfeven. 

The proofs of (3.1)-(3.12) and their counterparts with a plus sign on the left are similar. For 
the proofs, we require the following: 

q"U_„ = -U„, (3 14) 

4V-n = Vn, (3.15) 

Wn+d+qdWn_d = W„Vd, (3.16) 

Wn+d-qdWn_d = XnUd, (3.17) 

Xn+d + qdX„_d = XnVd, (3.18) 

X„+d-qdXn_d = AW„Ud. (3.19) 

Identities (3.14) and (3.15) can be proved using Binet forms, while (3.16)-(3.19) occur in Bergum 
andHoggatt [1]. 

As an example, we prove (3.1). 

Proof of (3.1): With q - - 1 and using the Binet forms in Section 2, we have 

x*vm ~ xn+dvm+d = (Aa" + Bj3")(am + 0m) - (Aan+d +B'/3"+d)(am+d +(3m+d) 

= {A am+" + Bj3m+n) - (A a
m+n+2d + B/3m+n+2d) 

+ (A anpm + Bampn) - (A a
n+dj3m+d + Bam+d/3n+d) 

= V * - x^n+2d + {apnAoTm + BfiTm) ~(afir+d(Aan'm + Bfi^ 

= -(x(m+n+d)+d - x(m+n+dyd) + (1 - (ap)d){aP)mxn_m. 

Now q = - 1 implies aj3 = -l. From (3.18) and (3.19), the right side becomes 

l-xm+n+dvd + 2(-l)wx„_,M, rf odd, 

l-^^m+ w +c/^? tfeven, 

and the use of (3.14) and (3.15) gives the result. 

4. THE SECOND SET OF IDENTITIES 

We now consider the sequences {PJ, {Qn}, {R„}, and {Sn}. For these sequences, we have 
derived twenty-four identities that parallel (3.1)-(3.12). Twelve identities have a minus sign con-
necting the two products on the left, and twelve have a plus sign. Each can be obtained by look-
ing at its counterpart in the list (3. l)-(3.12) and using the following rules: 
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(i) Replace u by P9 v by 0, w by R, and x by S. 
(ii) Replace any occurrence of {-l)m on the right side by 1. 

(iii) Then the difference of the two products is equal to the even case, and the sum of the two 
products is equal to the odd case. 

For example, using (3.3), we have 

SnPm - Sn+dPm+d - P_dSm+n+d, (4.1) 

SnPm + Sn+dPm+d = Q^d^nt¥n+d ~ ̂ K-m • (4-2) 
These can be proved in the same manner shown previously, and because of the above rules of 
formation we refrain from listing the others. 

5, THE THIRD SET OF IDENTITIES 

The identities of Long [4, (18)-(24)] are generalizations and variations of Simson's identity 

F„+iF„-i-Fn =(-!)"• (5-1) 
They share the common thread of being differences of products the sum of whose subscripts are 
equal. For example, 

LnFm ~ Ln-dFm+d = (~ W F-dLm-n+d • (5 -2) 

We have found similar identities for mixtures of terms from the sequences {Un}, {Vn}, {Wn}, and 
{Xn}. Following our notation in Section 2, we write e - pah - qa2 - h2 - -AB, which is essen-
tially the notation of Horadam [2]. The first group of identities is: 

XnXm - X„_dXm+d = -eqmAUdU„^d, (5.3) 

XnVm ~ Xn-dVm+d = qmAUdWn_m_d, (5.4) 

*ym - Xm+dVn_d = qmAWdUn_m_d. (5.5) 

If we replace the minus sign connecting the two products on the left with a plus sign, then identity 
(5.3) does not have an interesting counterpart. But in (5.4) and (5.5) we modify the right side by 
replacing [/with V, WwithX, dividing by A, and then adding 2Xm+n. 

The second group is: 
WnWm - Wn_dWm+d = eq">UdUn_m_d, (5.6) 

KUm-K-dUm+d = -qmUdWn_^d, (5.7) 

WJJm ~ W„»dUn_d = -q"WdUn_^d. (5.8) 

As before, if we replace the minus sign on the left with a plus sign, then (5.6) does not have an 
interesting counterpart. However, we change the right sides of (5.7) and (5.8) by replacing U 
with V9 WvnihX, adding 2Xm+n, and then dividing by A. 

The third group is: 
XnXm - MfUV^ = -eq"VdVn_m_d, (5.9) 

XnVm-AWn_dUm+d = qmVdXn_m_d, (5.10) 

XnVm-Wm,dUn_d = qmXdV„_m_d. (5.11) 
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Again, (5.9) yields nothing interesting after replacing the minus sign on the left with a plus sign. 
However, we change the right sides of (5.10) and (5.11) by replacing Fwith U, X with W, multi-
plying by A, and adding 2Xm+n. This should be compared with the processes in the previous 
groups of identities. 

The last group of identities is: 

xnwm-
xnwm-
xnum-
X„Um-

n m 

vw • 
r nrrm 

XnUm 

xnum 

-Xn-dW^^eq-U^^ 

-Xm+dWn-d=eq»VdUn_m_d, 

" Xn-dUm+d = -qmUdXn_m_d, 

' ^m+d^n-d ~ ~(flX(Pn-m-d^ 

~K-d^m+d = ^^-d^m-n+d^ 

~^m+d^Ki-d = tfX-JJjn-n+d, 

-Vn-dWm+d^-q"WdVn_m_d, 

-Vm+dWn_d = -qmVdW„_m_d. 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

In (5.12) and (5.13), replacing the minus sign on the left with a plus sign yields identities which 
are not interesting. However, in (5.14)-(5.19), we change the right side by replacing U(V) with 
V(U) and W(X) with X(W) and adding 2Wm+n. 

We refrain from giving proofs of identities (5.3)-(5.19) and their counterparts because they 
are similar to the proof of (3.1) demonstrated earlier. 
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L U C A S SEQUENCES AND FUNCTIONS O F A 3-BY-3 M A T R I X 

R. S. Melham 
School of Mathematical Sciences, University of Technology, Sydney 

PO Box 123, Broadway, NSW 2007 Australia 
{SubmittedMay 1997-Final Revision July 1997) 

1. INTRODUCTION 

Define the sequences {[/„} and {Vn} for all integers n by 

{U^pU^-qU^ tf0 = 0 , ^ = 1, 
K = ?¥„_,-qVn_2, VQ = 2, V^p, ( L 1 ) 

where/? and q are real numbers with q(p2 -4q) ^ 0 . These sequences were studied originally by 
Lucas [9], and have subsequently been the subject of much attention. 

The Binet forms for U„ and V„ are 

where 

u„ 

p* 

a"-
a 

-h2-

-P" 
-P 

-4q 

and V„ = a"+P", 

a = " ' ^ "* and p = EzJZIR 
2 ^ 2 

are the roots, assumed distinct, of x2 - px + q = 0. We assume further that a IJ3 is not an rfl* root 
of unity for any??. Write 

A = (a-fi)2 = p2-4q. 

A well-known relationship between Un and V„ is 

V^U^-qU^, (1.2) 

which we use subsequently. 
Barakat [2] considered the matrix exponential, exp(X), for the 2-by-2 matrix 

\a2l a22 

where he took trace(X) = p and det(X) = q. In so doing, he established various infinite sums 
involving terms from {U„} and {F„}. 

Following Barakat, Walton [13] evaluated the series for the sine and cosine functions at the 
matrix X and obtained further infinite sums involving terms from {Un} and {Vn}. Extensions of 
these ideas to higher-order recurrences have been given by Shannon and Horadam [12] and Pethe 
[11]. Recently, many papers have appeared which have followed the theme of these writers. See, 
for example, Brugia and Filipponi [5], Filipponi and Horadam [6], Horadam and Filipponi [8], and 
Melham and Shannon [10]. 

In this paper we apply the techniques of the above writers to a 3-by-3 matrix to obtain new 
infinite sums involving squares of terms from the sequences {[/„} and {Vn}. 
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2. THE MATRIX K %x 

Berzsenyi [4] has shown that the matrix 

(o o 
R. q -2pq 

1 P P2 , 
0 (2.1) 

is such that, for nonnegative integers n, 

( q2uU 
R" = 

q2u„^un a2u2„ 1 
-2qU^U„ -qiUl + U^U^) -2qU„Un+l 

u„un+1 u2
+1 

The characteristic equation of R is 

A3 + (q - p2)X2 + q(p2 - q)X - q3 = 0. 

(2.2) 

(2.3) 

Since p = a+fl and q = a/3, it is readily verified that a 2 , /? 2 , and afi are the eigenvalues of R. 
These eigenvalues are nonzero and distinct because of our assumptions in Section 1. 

Associated with R, we define the matrix Rk x by 

( fUlx 
Rkx = xRk=x 

12Vk-Pk q2U2
k ^ 

-2qUk_{Uk -q(U2
k + Uk_jJ\+l) -2qUkUk+l 

U2 UkUk+1 U2 
k+l 

(2.4) 

where x is an arbitrary real number and k is a nonnegative integer. From the definition of an 
eigenvalue, it follows immediately that xa2k, xj32k, and xqk are the eigenvalues of Rk x . Again, 
they are nonzero and distinct. 

3. THE M A M RESULTS 

Suppose f(z) = Z^Lo ®nzn is a power series whose domain of convergence includes xa2k, 
xfi2k, and xqk. Then we have, from (2.4), 

f(Rk,x) = fjanRlx = Yda„x"Rk" 
w=0 n=0 

*kn 
«=0 «=0 «=0 

oo oo oo 

-2q% <*„xnUkn^kn - ? £ a„x"{U2
kn + Ukn^Ukn+l) -2q£ anx"Uk„U, 

OO OO 

«=0 
kn+\ 

\n=0 
J2 

w=0 n=0 

(3.1) 

On the other hand, from the theory of matrices ([3] and [7]), it is known that 

f(Rk,x) = cJ+clRk,x+c2^x, 
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where / is the 3-by-3 identity matrix, and where c0,cu and c2 can be obtained by solving the 
system 

[c0 + clxa2k + c2x2aAk = f(xa2k), 
I c0 + cxxp2k + c2x2p*k = f(x/32k), 
\c0 + Clxakpk +c2x2a2kp2k = f(xakpk). 

If we use Cramer's rule and observe, using the Binet form for U„, that 

(a2k -p2k)(J32k -akpk)(akpk -a2k) = qkU2kU2
k(a-pf, 

we obtain 

= f(xa2k)qkpik(ak -pk) + f(xplk)qkaik(ak - pk) + f(xqk)qZk(fl2k -aIk) 
qkU2kU2

k(a-pf 

= f(xa2k)p2k(ft2k-a2k) + f(xp2k)a2k(p2k-a2k) + f(xqk)(a4k - f?k) 
xqkUlkU2{a-pf 

= f(xa2k)pk(ak -pk) + f(xp2k)ak(ak - pk) +f(xgk)(fi2k-a2k) 
x2qkU2kU2

k(a-pf 

Now, equating lower left entries In (3.1) and (3.2), we obtain 
CO 

X anX"Ul = ClxUk + C2X2U\k . 
«=0 

With the values of q and c2 obtained above, the right side of (3.3) is 

f(xa2k)(p2k(p2k-a2k)U2 +pk(ak-pk)U2
k) 

qkU2kU2(a-pf 

(3.3) 

+ 
f(xp2k)(a2k(p2k-a2k)U2

 + ak(ak-pk)U2
k) 

qkU2kU2(a-pf 

f(xgk)((a4k -p*k)U2 + (fi2k - a2k)U2
2k) 

qkU2kU2(a-pf 

If we note that U2k = UkVk and use Binet forms, we obtain finally 

y „ ynU2 _f(xa2k) + f(xp2k)-2f(xqk) 
Jkn • 

«=0 

In precisely the same manner, we equate appropriate entries in (3.1) and (3.2) to obtain 

T 
^ 2 _a*f(xa») + JPf(x/P*)-2qf(xq*) 
2_,a„x ukn+l -

a-lf(xa2k) + p-lf(xp2k) - y{xqk) 

n=0 

£mjanX UkJJkn_i -
w=0 

(3.4) 

(3.5) 

(3.6) 
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f a xnrr rj _ qfixa^)+Pf{x^k)-pf(xqk) 
ZJ anX UknUkn+l ~ 7 > VJ •') A 

f f l I » r / 2 - 0V(™2k) + <*f(x0»>) - 2qf(xqk) 
n=0 # A 

2/(xa2t)+2/(*/3a*)-4/(V) Ia„x"(C/^ + f/te_1C/fa+1) = — A « • " * ' . (3.9) 
n=0 

From (3.4) and (3.9), we obtain 

A 

I ^ t V ^ + i = T - ^ • (3-10) 

Finally, from (1.2), we have 

This, together with (3.5), (3.8), and (3.10), yields 

t"yC=f(™2k)+f(xfi2k) + 2f(xqk). (3.11) 

In contrast to our approach, Brugia and Filipponi [5] used the Kronecker square of a 2-by-2 
matrix to obtain similar sums for the Fibonacci numbers. For the function/they took the expo-
nential function, and remarked that analogous results could be obtained by using the circular and 
hyperbolic functions. Identities (3.4), (3.5), (3.8), (3.10), and (3.11), respectively, generalize 
identities (12)-(16) of [5]. 

4. APPLICATIONS 

We now specialize (3.4) and (3.11) to the Chebyshev polynomials to obtain some attractive 
sums involving the squares of the sine and cosine functions. 

Let {Tn(t)}™=0 and {Sn(t)}^=0 denote the Chebyshev polynomials of the first and second kinds, 
respectively. Then 

Y r r t =s i i i7!g] 
" w sing I t = cos0,n>O. 

Tn{t) = come] 

Indeed, {Sn(t)}™=0 and {23^(/)}^s0 are the sequences {Un}™=0 and {Vn}™=0, respectively, generated 
by (1.1), where p = 2 cos0 and q = 1. Thus, a = elB and ji = e~*°, which are obtained by solving 
x2-2cos#x + l = 0. Further information about the Chebyshev polynomials can be found, for 
example, in [1]. 

We use the following well-known power series, each of which has the complex plane as its 
domain of convergence: 

,_ v ( - i ) z n Jln+\ 

-"Scsfjjr- <4» 
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c o s ^ I ^ r , (4.2) 
n-r0 (2«)i ' 

«> 2«+l 

-^ z2" cosh z = V >. •.,. (4.4) 

Now, in (3.4), taking Un = sinw0/sin0 and replacing/by the functions in (4.1)-(4.4), we 
obtain, after replacing all occurrences of kd by $, 

yn (-l)"x2w+1 sin2(2n +1)^ _ sin x - shipcos2^) cosh(x sin 2ft) ( . 
i (2* + l)! ~ 2 ' <4^ 

yi (-l)"x2w sin2 2??̂  _ cosx - cos(x cos2^) cosh(x sin 2ft) 

h (2")! ." 2 
00 Jln+\ „- 2 

(4.6) 

V y s*n (2w + l)^ _ sinh x - sinh(x cos2^) cos(x sin 2^) ,. „, 
£0 (2» + l)! " • 2 ' \ > 

V y2w s ^ 2 2n$ _ cosh x - cosh(x cos2^) cos(x sin 2ft) ,. ~. 

h (2")! 2 ' 
Finally, in (3.11), taking Vn = 2cosn$ and replacing/by the functions in (4.1)-(4.4), we 

obtain, respectively, 
y . (-l)nx2n+l cos2(2y?4-1)^ _ sin x + sin(x cos2^) cosh(x sin2ft) ( . g, 

V (~l)W]c2 ; l cos22^ _ cosx + cos(x cos2^) cosh(x sin 2ft) ,. - Q. 
& W = 2 ' {- > 

V x2w+1 cos2(2^1 + 1)^ _ sinh x + sinh(x cos2^) cos(x sin 2<f>) M m 
& (2^X)\ = 2 \ . V- > 

^ x2"cos22M^ _ coshx + cosh(xcos2^)cos(xsin2ft) (A\n\ 
to <2*)l = 2 — ( 4 1 2 ) 
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BOOK REVIEW 
Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers 

(River Edge, NJ: World Scientific, 1997). 

This attractive and carefully written book addresses the general reader with interest in mathematics and 
its application to the physical and biological sciences. In addition, it provides supplementary reading for a 
lower division university course in number theory or geometry and introduces basic properties of the golden 
ratio and Fibonacci numbers for researchers working in fields where these numbers have found 
applications. 

An extensive collection of diagrams illustrate geometric problems in two and three dimensions, quasi-
crystallography, Penrose tiling, and biological applications. Appendices list the first 100 Fibonacci and 
Lucas numbers, a collection of equations involving the golden ratio and generalized Fibonacci numbers, and 
a diverse list of references. 

A new book on Fibonacci-related topics is published infrequently; this one will make a valuable addition 
to academic and personal libraries, and the many diagrams will knock your socks off. 

Reviewed by Marjorie Bicknell-Johnson 
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ON T H E 2-ABIC VALUATIONS O F T H E T R U N C A T E D 
P O L Y L O G A R I T H M SERIES 

Henr i Cohen 
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9936 du C.N.R.S., U.F.R. de Mathematiques et informatique, Universite Bordeaux I, 
351 Cours de la Liberation, 33405 Talence Cedex, France 

(Submitted May 1997) 

The aim of this paper is to prove the following theorem which was conjectured in [1] and [2] 
(and originated in a work of Yu [3]). 

Theorem 1: Set 
N 0j 

y=i J 

Then, if v(x) denotes the highest exponent of 2 that divides x (i.e., the 2-adic valuation), we have 
v(Sl(2m)) = 2m+2m-2 forw>4. 

For the sake of completeness, note that a direct computation shows that 
v(Sl{2m)) = 2m + 2m+dl{m\ 

with 4(0) = 0, dx{\) = - 2 , dx{2) = - 3 , and dx(3) = - 1 , the theorem claiming that d^m) = -2 for 
rn>4. 

Before proving this theorem, we will need a few lemmas. In this paper, we will work entirely 
in the field Q2 of 2-adic numbers, on which the valuation v can be extended. 

Lemma 2: We have 
CO fjj 

X — = 0 inQ2. 
j=\ J 

Proof: Since the function 
oo / 

Li1(x) = - log( l -x) = X - ? 7 
;=1 J 

converges in Q2 for v(x) > 1, and satisfies 
Ux(x) + L i ^ ) = - log((l - x)(l - y)) = Ux(x + y - xy) 

for all x and y such that v(x) > 1 and v(y) > 1, we deduce that our sum is equal to Lix(2) and that 

2Li1(2) = Li1(0) = 0, 

so Lij(2) = 0 as claimed. • 

Lemma 3: We have 

J=l J 
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Proof: This time we set 
L i2W = Z ^ 2 

J=\ J 

This is the 2-adic dilogarithm, and converges in Q2 for v(x)> 1. Most of the usual complex 
functional equations for the dilogarithm are still valid in the p-adic case. The one we will need 
here is the following: 

-X \ 1 i- 2/ U2(x) + Li2 ( j - y = -^log2(l - x), 

valid for v(x) > 1. This can be proved by differentiation, or simply by noting that it is a formal 
identity valid over the field C, hence also over any field of characteristic zero. 

Setting x = 2, we obtain 

2Li2(2) = -log(-l)212 = -Ul(2)2/2 = 0 

by Lemma 2, thus proving Lemma 3. D 

Remark: Lemmas 2 and 3 cannot be generalized immediately to polylogarithms. For example, an 
easy computation shows that Li3(2) * 0, and in fact that v(Li3(2)) = -2 (this is the explanation of 
d^m) = - 2 , as we will see below). I do not know if the value (in Q2) of Li3(2) can be computed 
explicitly. See also Theorem 8 below. 

We can now prove the following. 

Lemma 4: For all N> 0, we have 

Sl{N) = ±^ = -N^Nt 2J 

Proof: From Lemma 2, we deduce that 

Applying Lemma 2 again, we deduce that 

Sl(N) = Sl(N) + 2NYtK = N2NYt- V 

j PJU + N)-
Finally, applying Lemma 3, we obtain 

S1(N) = Sl(N)-N2»±^ = -N>2N±-^— 
j=\J y=l7 U + M) 

as claimed. D 

We can now prove Theorem 1. It follows from Lemma 4 that 

2J 
v(Sl(2m)) = 2m+2m+v(Tl(2m)) with Tl(2m) = YJ 
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Thus, Theorem 1 is equivalent to showing that v(IJ(2?w)) = -2 for m > 4. This will immediately 
follow from Lemma 5. 

Lemma 5: Set 

wx(J,m) = v ( V 
Vf(j + 2m\ 

Then, for m > 4, we have wx(J, m)>~l for all j except for j - 4 for which wx(4, m) = -2. 
Since there is a unique term in the sum defining 7[(2W) having minimal valuation, it follows 

that the valuation of 2̂ (2W) is equal to that minimum; therefore, Theorem 1 clearly follows from 
Lemma 5. 

Proof: Set j = 2ai with i odd. lfa<m, we have ^ ( j , /w) = 2a? - 3a > 2a - 3a, with equality 
only if / = 1. Clearly, the function 2a -3a attains a unique minimum on the integers for a = 2, 
where its value is equal to - 2 ; hence, if a < m, wx(j, m) > -1 except for a - 2 and i = 1, i.e., for 
j = 4 for which wx(J, m) = - 2 . Note that this value can be attained only if 2 < m, i.e., if m > 3. 

If a < m, we have wx(j, m) = 2ai-2a-m>2ai-3a + l>-l for all j by what we have just 
proved. 

Finally, if a = m, we have w^j^m) = 2mi-3m~v(i + 1). We note that, for all i, we have 
v(/ + l )< / . Thus, 

wl(j,m)>(2m~l)i-3m>2m-3m-l>-l form>4. 

Note that this is the only place where it is necessary to assume that m > 4 (for m = 3 the minimum 
would be - 2 , so we could not conclude that the valuation of the sum is equal to - 2 , and in fact it 
is not). This proves Lemma 5, hence Theorem 1. D 

Remark: Lemma 4 and suitable generalizations of Lemma 5 allow us more generally to compute 
v(Sl(h2m)) for m > 4 and a fixed odd h. I leave the details to the reader. 

In view of Lemma 3, it is natural to ask if there is a generalization of Theorem 1 to the 
dilogarithm. This is indeed the case. 

Theorem 6: Set 
N rsj 

j=\ J 

Then we have 
v(S2(2m)) = 2m+m-l form>4. 

For the sake of completeness, note that a direct computation shows that 
v(S2(2m)) = 2m + m + d2(m), 

with ^(0) = 0, d2(l) = - 3 , d2(2) - -4 , and d2{3) = - 3 , the theorem claiming that d2(m) = -1 for 
m>4. 

PYoof: By Lemma 3, we have 

y=tf+l/ % O + N) 2 
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Applying Lemma 3 once again, we have 

S2(N) = S2(N) + 2»± | = N2»± ^fr3-

The proof is now nearly identical to that of Theorem 1. We have 

v($2(2m)) = 2m + m+v(T2(2m)), 

with 

Further, we have 

Lemma 7: Set 

Then, for m > 4, we have w2(j, m)>0 for ally' except j = 4 for which w2(4, m) = - 1 . 

Since there is a unique term in the sum defining T2(2m) having minimal valuation, it follows as 
before that the valuation of T2(2m) is equal to that minimum; hence, Theorem 6 clearly follows 
from Lemma 7. 

Proof: Set j = 2ai with / odd. If a<m-l, we have w2(j,m) = 2ai-3a + l>2a-3a + l, 
with equality only if /' = 1. The function 2a - 3a +1 attains a unique minimum on the integers for 
a = 2, where its value is equal to - 1 . Thus, if a < m-1, w2(J, m)>0 except for a = 2 and i = 1, 
i.e., for j = 4 for which w2(/, m) = - 1 . Note that this value can be attained only if 2 < m -1, i.e., 
if/w>4. 

If a = m-l, we have w2(/ ,m)>2ai-3a + l > 2 a - 3 a + l. Now, since m>4, we have a > 3 , 
hence w2(/, m) > 8 - 9 +1 = 0. 

If a>m, wehwQW2(J,m) = 2ai-2a-m>2ai-3a + l>2a-3a + l>0 for ally, since m>2. 
Finally, if a = m, we have w2(j,m) = 2mi-3m-2v(i + l). We note that, for all /, we have 

v(/ + l)</;thus, 

w2(jym)>{2m-2)i-3m>2m-3m-2>0 form>4. 

This proves Lemma 7, hence Theorem 6. D 

Of course, once again this can be generalized to the computation of v(S2(h2m)) for a fixed 
odd h. 

As already mentioned, the polylogarithms of order k at 2 do not vanish if k > 3; therefore, the 
corresponding sums Sk{2m) have a bounded valuation. Using the same methods, one can prove 
the following theorem. 

Theorem 8: Denote by Ig k the base 2 logarithm of k, set e(k) = fig k~] and S(k) = 1 if k is a 
power of 2, and S(k) = 0, otherwise. Then, for k > 3, we have Li^(2) ^ 0, and in fact 

v(Lijfc(2)) = 2 W - fe(jfc) + <?(*). 
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More precisely (still for k > 3), if 
N OJ 

y=i J 
then 

v(Sk(N)) = 2e(k) - ke{k) + S(k) for N > 2<k)+5{k\ 

Proof: It is clear that all the statements of the theorem follow from the last. Assume first 
that k is not a power of 2. Then, if we set wk(J) = v(2j I jk) and j - 2ai with i odd, we have 
wk (j) = 2ai - fei. For fixed a, this is minimal for / = 1. Furthermore, if we set f(a) = 2a-ka, it 
is clear that/attains its minimum on the integers for a = e(k), and that this minimum is unique if a 
is not a power of 2. Hence, there is a single term with minimum valuation for j = 2e{^ < N, by 
assumption, so v(Sk(N)) = 2e{k) -ke(k), as claimed. 

Assume now that a is a power of 2. Then the minimum of/is attained for a = e(k) and for 
a = e(k) +1. The corresponding terms in the sum not only have the same valuation, but are in fact 
equal, hence the valuation w of their sum is simply 1 more than usual. We now notice that 
f(a +1)- f(a) = 2a-2e{^. Therefore, since we have assumed k>3, hence e(k)>2, we have 
| / ( a + l ) - / ( a ) | > 2 for a*e(k), so all the other terms have a valuation that is strictly larger 
than w, so v(Sk(N)) = w = 2e{k) - ke{k) + for N > 2e{k)+l, as claimed. D 

Remark: One can generalize the above results to other primes than p = 2, but the results are 
much less interesting. For example, it is easy to show, using similar methods, that the 3-adic 
valuation of 

f(2 + (_1y-i)3i 
y=i J 

is equal to 3m +1 for all m. 

REFERENCES 

1. T. Lengyel. "On the Divisibility by 2 of the Stirling Numbers of the Second Kind." The 
Fibonacci Quarterly 323 (1994): 194-201. 

2. T. Lengyel. "Characterizing the 2™adic Order of the Logarithm." The Fibonacci Quarterly 
32.5(1994):397-401. 

3. K. Yu. "Linear Forms in^-acid Logarithms." ActaArith. 53 (1989): 107-86, 
AMS Classification Number: 11A07 

1999] 121 



ALGORITHMIC SUMMATION OF RECIPROCALS OF 
PRODUCTS OF FIBONACCI NUMBERS 

Stanley Rabinowitz 
MathPro Press, 12 Vine Brook Road, Westford, MA 01886 

stanley@tiac.net 
(Submitted May 1997) 

1. INTRODUCTION 

There is no known simple form for the following summations: 

F. = I j . ^ = 1 ^ - , and K w = £ — ^ . 0) 
n=l rn «=1 -*/! «=1 rnrn+l 

It is our purpose to show that all other indefinite summations of reciprocals of products of 
Fibonacci numbers can be expressed in terms of these forms. More specifically, we will give an 
algorithm for expressing 

N j 
SN(al,a2,...>ar) = YJ-r-y — — (2) 

n-\ n+ax"n+a2 n+ar 

and 

TN(aua2,...,ar) = t F
H)"..F & 

n=\ n+ai"n+a2 n+ar 

in terms of ¥N,GN, and [K^, where a1?a2,...,ar are distinct integers. Since al,a2,...,ar are 
constants, these symbols may appear in the limits of the summations, but it is our objective to find 
formulas in which N does not appear in any of the summation limits. 

Expressions of the form SN(au c^,..., ar) and TN(ah a2, ...,ar) will be called reciprocal sums 
of order r. Those of the second form are also called alternating reciprocal sums. 

Without loss of generality, we may assume that the a, are ordered so that ax <a2 < ••• <ar. 
Furthermore, we may assume that ax = 0, because a change of the index of summation allows us 
to compute those sums where ax & 0. For example, if ax > 0, then we have 

SN(al,a2,...,ar) = SN+ai(0,a2-ah..^ar-al)-Sai(0,a2-ah..^ 

2. REDUCTION FORMULAS 

We start by showing that reciprocal sums of order r can be expressed in terms of reciprocal 
sums of order r - 2 for all integers r > 2. 

The following identity is easily proved (e.g., by using algorithm F i b S i m p l i f y from [8]). 

Theorem 1 (The Partial Fraction Decomposition Formula): 
Let a, b, and c be distinct integers. Then, for all integers n, 

-J=2L— = -A-+JL+JC-, (4) 
F F" F" T? J? F? 
rn+arn+brn+c rn+a rn+b rn+c 

where 
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A- (-D° B- (-D6
 and c - (-Dc

 m 
-1 o-a r c-a -* c-bA a-b A a-cx b-c 

Theorem 2 (The Reduction Algorithm): If r >2, then any reciprocal sum of order r can be 
expressed In terms of reciprocal sums of order r - 2. 

Proof: If f(n) is any expression Involving «, we see from Theorem 1 that 

y 1 = y A(-l)" , y *(-!)" . y C(-l)" _ 
+bFn+c 

with 4, 5, and C as given in equation (5). If f(n) is the product of r - 3 factors, each of the form 
Fn+C, then this shows that a reciprocal sum of order r can be expressed in terms of reciprocal sums 
of order r-2 for any integer r > 2. (If r = 3, then f(n) = 1.) Note that / («) may contain (-1)" 
as a factor to allow us to handle alternating reciprocal sums. • 

Since we can repeatedly reduce the order of any reciprocal sum by 2, this shows that any 
reciprocal sum can be expressed in terms of reciprocal sums of orders 1 and 2. 

3. RECIPROCAL SUMS OF ORDER 1 

Any reciprocal sum of order 1 differs by a constant from expressions of the form ¥N+C or 
GN+C. Specifically, if a > 0, then 

N i a+N i a \ 

I-F-=I-jF-l£ = F*«-F. (7) 
«=1 rn+a n=\ n n=l n 

and 
N ( X\n a+N / -|\» a / -i\« 

E^-E^-I^-^-G,. (8) 
n=\ rn+a n=l n n=\ n 

Thus, reciprocal sums of order 1 are readily computed in terms of F's and G's. 

4. ALTERNATING RECIPROCAL SUMS OF ORDER 2 

As has been pointed out, for reciprocal sums of order 2, we may assume that the denomi-
nator is of the form FnFn+a with a > 0 for if not, the reciprocal sum differs by only a finite number 
of terms from one of this form. 

There are two cases to consider, depending on whether the reciprocal sum Is alternating or 
not. 

In the alternating case, an explicit closed form can be found. The following result was proven 
by Brousseau [3] and Carlitz [5]. 

Theorem 3 (Computation of Alternating Reciprocal Sums of Order 2): If a > 0, then 
N 

«=1 A n1 n+a 

(-1)" _ l a p a p 

X rj-l y rj+N-l 

/ = ! PJ J=l Pj+N 
(9) 

Good [6] has found a different, but equivalent, expression for this reciprocal sum. He has 
shown that for a > 0, 
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y (-D" =FNf (-1)" 
F F 

n=\ rnrn+a 
Another equivalent formulation is the following. We omit the proof. 

£* F F 
nx=\ * nr n+a 

a F a F 
E 1 j+\ \^ A J+N+l 

F *-* F 
7=1 rj 7=1 rJ 

j+N 

(10) 

( i i ) 

5. NONALTERNATING RECIPROCAL SUMS OF ORDER 2 

We start with a preliminary result. 
Theorem 4: Let H„ be any sequence of nonzero terms that satisfies the recurrence H„+2 - H„+l + 
H„. Ifb>0, then 

f 1 = 1 1_ 
w=l ^n+b^n+b+2 ^b+Y^b+2 ^N+b+fii 

(12) 

Proof: We have 

# fl+fr+1 

N+b+2 

Hn+b+2 **n+b 

"n+b^n+b+2 ^n+b^n+b+l^n+b+2 ^n+b^n+b+Y^n+b+2 

1 1 
H„.hH„. ii„,h,irir,. ln+b11n+b+\ 11n+b+\11 n+b+2 

Summing from 1 to N, we find that the right side telescopes, and we get the desired result. D 

Theorem 5: For a > 0, let 
F"(a) = i-Fir-- (13) 

«=1 rnrn+a 

If we can find a closed form expression for ¥N(a-2), then we can also find a closed form expres-
sion for ¥N (a). 

Proof: The following identity is well known (see equation (9) in [3]): 

FaFn,a-2-Fa~2Fn+a = i-^Fn. (14) 

Thus, we find that 
1 a-2 (-1)" 

^n^n+a ^n^n+a-2 ^n+a-2^n+a 

N 

If we now sum as n goes from 1 to N, we get 

FJFN(<*)-Fa-2¥N("-2) = (-i)aX 

Applying Theorem 4 gives 

FJFN(a)-Fa_2¥N(a-2) = (-iy 

Solving for fN{a) gives 

n-l ^n+a-2^n+a 

l 
Fa-\Fa -fV+a-l-^V+o 

(15) 
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1 
Fa-lFa FN+a-lFN+a 

which shows that we can find ¥N(a) if we know ¥N(a - 2). D 

By induction, we see that any expression of the form 
N 1 

n=l * nx n+a 

with a > 0, can be expressed in terms of either 

y_L__ 
n=l A n1 n+l 

N 

or I 
n=\ ^n^n+2 

(16) 

The first form is known as IK^. The second form is easily evaluated by setting b - 0 in Theorem 
4 to get 

N i i 

y l =\- l 
n=\ ^n^n+2 FN+lFN+2 

(17) 

We have just shown how to find a formula for any reciprocal sum of order 2 in terms of Kn. 
We can also find a more explicit formula. If we let a = 2c +1 in formula (15), we get 

F2c+l¥N(2c +1) - F2cJF„(2c -1) = (-1): 2c+l 1 1 
.^2c^2c+l ^N+2c^N+2c+l. 

(18) 

Now sum as c goes from 1 to a. The left side telescopes, and we get 

c=l 

so that 

FN+2c^N+2c+l ^2c^2c+l. 

N * i f a 

F F W 
c=l 

1 1 
FN+2cFN+2c+l F2cF2c+l. 

Similarly, if a = 2c, we can sum as c goes from 1 to a to get 

N l l 
F F T? ^ 

n=\ rnrn+2a r2a c=l 

1 
F2c-lF2 2c * N+2c-V- N+2c J lFN 

(19) 

(20) 

We can summarize these results with the following theorem. 

Theorem 6: If a is a positive integer, then 

1 
N 1 

y _±_=J 
^ FF • 
n=l * rr n+a 

-, La/2} f 

ra /=l 

a/2 

\-^N+2i^N+2i+l ^2i^2i+l 

1 )KN . 
+ -=—, ifaisodd, 

A, 

17 2-r 17 77 
1 

-ffl /=! \F2i-lF2i FN+2i-lFN+2i 
if a is even. 

(21) 
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These formulas give us the following values for ¥N(a) for small a: 

y 1 

Z^t p p 

N 1 
Z-f p p 
n-\ rr n+4 

y _ l _ 
n=\ 1 nl n+5 

N •• 

^-d F F 
n=l n n+6 

_ 1 
~ 2 

_ 1 
~ 3 

_ l[ 
~5[ 

_ 1 
8 

N+2* N+3 

1 
r FN+1FN+2 FN+3FN+4_ 

KN + 

143 

- + -
^N+2^N+3 ^N+4^N+5 

11 
30 

120 FN+1FN+2 FN+3FN+4 FN+5FN+6^ 

(22) 

(23) 

(24) 

(25) 

As N -> oo in formula (21), we get 

2 17 77 
»=1 rnrn+a 

1 1 L°/2-J 1 

c a /=! -* 2r 2/+1 
a/2 1 a / z 1 

J_Y_L_ 
p jLt p p 

if a is odd, 

if a is even, 
(26) 

where IK = l i m ^ ^ IKW. For small values of a, these formulas yield the results found by Brousseau 
in [3]. 

6. SUMMARY 

We have just shown that any reciprocal sum of order 1 can be expressed in terms of F^ and 
GN, and that any reciprocal sum of order 2 can be expressed in terms of KN. Thus, we can 
conclude that all reciprocal sums are expressible in terms of FN,GN, and KN. We also have 
presented a mechanical algorithm for finding all such representations. 

Open Question 1: Is there a simple algebraic relationship between Ln = Z^Li(l /£w) and any of 
F^G^andK*? 

Open Question 2% Can we find the value of £ ^ ( 1 / F%) ? 

7. G O I N G T O INFINITY 

If we take the limit as N goes to infinity, we can express many infinite sums in terms of 

F = STF, G = I ^ - , K = I^r-, L = Sf , and J = I ^ - . (27) 
w=l ^ n «=l rn n=l rnrn+l n=l ^n n=l ^n 

No simple expressions for these infinite sums are known; however, they have been expressed 
in terms of Elliptic Functions [4], Theta Series [7], [1], and Lambert Series [2]. 

For example, we get results of Brousseau [3], such as 

(-i)" = i 
F„ L FF 

n=l ± n* n+a 

Z^ p a 
(28) 
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and 
y 1 = 319 (¥ 4681605A 
hFnFn+iFn+2F„+,Fn^Fn+5Fn+6Fn+1Fn+% 163801, 13933920J- ^ ) 

Carlitz has also found some pretty results for certain r^ -order reciprocal sums in terms of 
Fibonomiial coefficients (see formulas (5.6); (5.7), and (6.7) in [5]). 

Open Question 3: Are any of F, G, K, I, J connected by a simple algebraic relation? 
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1. AIM AND SCOPE OF THE PAPER 
Notation 

(i) Fn and Ln denote the 12th Fibonacci and Lucas number, respectively. 
(ii) r and s denote the residue of the subscript n [e.g., see (1.1)] modulo 2 and 4, respectively. 
(iii) The symbol |_\J denotes the greatest integer function. 
(iv) Z{k) denotes the so-called entry point of k in the Fibonacci sequence, that is, the smallest 

subscript m for which Fm is divisible by k. 
(v) P(k) denotes the repetition period of the Fibonacci sequence reduced modulo k. 

The aim of this paper is to extend some results concerning the Zeckendorf decomposition 
(ZD, in brief) [6] of integers of the form Fnld that have been established in [4]. More precisely, 
we shall determine the ZD of the integers of the form 

Fz{k)nlk (it = l,2,3,...) (1.1) 

for certain values of the integer k>2. The integrality of the numbers (1.1) is ensured by the 
definition of Z(k) and by the well-known property Fnm = 0 (mod Fm). 

This kind of study is, obviously, "endless" so that the choice of the values of k in (1.1) posed 
some problems for us. After some thinking, we decided to consider all values of k < 11 and the 
prime values of k <23 (Section 2). More interesting results emerge from the ZD of (1.1) for 
special values of k, as shown in Sections 4, 5, and 6. The numerical values of Z(k) have been 
taken from the list available in [1, pp. 33-41]. 

All of the results have been established by proving conjectures based on the behavior which 
became apparent through a study of early cases of n, once k was chosen. Conjecturing these 
results is, in most cases, a laborious task involving the use of a software package that can handle 
large-subscripted Fibonacci numbers, and a computer program for the ZD of large integers. On 
the other hand, once the conjectures are made, the proofs are not difficult but, in general, they are 
very lengthy and tedious so that giving them for all the results is unreasonable. In fact, only the 
(partial) proof of (2.4) and the complete proof of (5.4) are given (resp. Sections 3 and 5), just to 
show the technique we used. The main mathematical tools used in the proofs are the identities 
(1.4)-(1.6)of[3]. 

Note that Fx = 1 and F2 = 1 are used indifferently in the ZDs. Moreover, as usual, we assume 
that a sum vanishes whenever its upper range indicator is less than the lower one. 
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2* RESULTS 

where 

L«/2J 

^4n / 3 = fi^2 + 2 ^ \^4(2j+r)-5 + JM(2/+r)-3/ • 

4/4 = I V 
y=l 

| w / 4 | 

F5nl5- X(fi) + 2 ^ I ^5(4y+s)-17 + ^5(4;+^)-14 + ^5(4/+s)-4 + 2w ^ 4 / + * - l ) - 2 / 
3 

fo. 
x(n) = if 5 = 1 , 

if 5 = 2 , 

[F2+F4+F6 + F8+F11? if5 = 3. 
^ 4 + ^ 6 , 

L«/2J/-
F\2n I 6 = r (^4 + F*) + X i712(2;+r)-21 + ^12(2./+r)-18 + ^12(2/+; )-16 

3 \ 
+ M2(2/+r)-4 + 2*jFl2(2j+r)-2i-7 

/=i y 

L«/2J 4 
F8/7/7 = r F 4 + X ZF8(2y+r)-2/-3-

y=i i=i 

L«/2J 
F 6 w / 8 = rF2 + ] T (F6(2j+r)-i + F6(2J+r)_5). 

;=i 

L«/2J 

,=1 
F\2n ' 9 ~ r \F4 + Fj) + 2^ M2(2/+r)-19 + M2(2y+r)-5 + ^ M2(2y+r)-2/-7 

4 

7 = 1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2-40 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The complete ZD of J^5n/10 is extremely cumbersome and unpleasant. We confine our-
selves to showing it only for s = 0. 

nIA 
*i*,/io=E 

J=I 
^60;-55 + ^60/-51 + ^60y-48 + J*60 J-42 + ^6Q/-40 + ^60y-37 + ^60j-23 

+ ^60/-21 + ^60/-16 + ^60/-14 + ^60;-10 + F60j-5 + Z-f F60J-2i-25 
i = l 

^ 1 0 W
/ 1 1 = S ^ 1 0 y - 5 -

(2.9) 

(2.10) 

ln/4] 
F7(4j+s)-23 + F7(4j+s)-20 + F7(4 j+s)-6 + Zu F7(4j+s-l)-2i (2.11) 

5 

I 
7 = 1 
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where 

x(n) = 

0, 
F2, 

if 5 = 0, 
if 5 = 1, 
if s = 2, 

{F2+F4+F6+Fs+Fl0+Fu+Fl5, ifs = 3. 
Fe + F*, (2-HO 

L«/4J/^ 3 5 

F9n/17 = x(n) + 2_, -^>(4y+i)-31+ F9(4j+s)-6 + 2-i ^(4y+j)-2j-22 + 2w -^(4y+i)-2/-i i | > ( 2 12) 
y=i V (=1 1=1 

where 

x(n)-. 

0, 
^ 3 , 

if 5 = 0, 
if 5 = 1 , 
if 5 = 2, 

[^4 + F6 + ^ + ^ 0 + ^ 2 + ^ 1 4 + ^ 1 , «f* = 3. 
^6+^12> 

7=1 ;=1 

L«/2J 
^4n / 23 - /•(/£ + F9 + F14 + Fxl) + £ I F24i2j+r)_4l + F24(2j+r)_39 + F24(2J+r)_36 

/ = i 

+-^4(2y+r)-34 +-^24(2/+r)-15 +^4(2/+r)-10 +-^24(2./+r)-7 + 2-1^24(2 j+r)-2i-17 
6 

/=1 

(2.12) 

(2.13) 

(2.14) 

3. A PROOF 

Proof of (2.4) (for 5 = 1) 

Use (1.4)-(1.6) of [3] and (2.4) to rewrite the right-hand side of (2.4) as 
(»-l)/4 («-l)/4 (/7-l)/4 3 

F2+ 1L F2Sj-\2 + X (F20j-9 + F20j+l) + S HF20j-2i 

(w-l)/4 («-l)/4 (w-l)/4 

;=i /=i y=i 

= /r , ^ + 3 - ^ - 1 7 - 1 6 5 i5L5n+n-L5n_9-2200 ^F5n+n-F5n_9-990 
L20 2 ^20 2 ^20 2 

= 55Z5„_7-165 275F5„+,-2200 55Z5n+1-990 
2 15125 15125 15125 

_ L5n-i + 25i^„+1 + 4Z5n+1 _ L5„_7 + 5L5„ + 5Z5„+2 + 4L5n+l 

275 275 
(fromI9 of [5]) 

_ L5n-7 + l°LSn+2- LSn+l _ 1 °^5»+2 ~ 15^5n-3 _ 2^5„+ 2 ~ 3 ^„ -3 
275 275 55 
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_ 2F5n+3+2F5n+l-3F5n_3 = 2{F5n+3-F5n_,) + 2F5n+] -F,w_3 

55 55 

_ 8F5„ + 2F5n+] -F5„_, _ $F5n + 3F5„ _ F5„ 
55 ~ 55 "T- Q E D -

We do not exclude the possibility that a shorter proof can be given. 

4. RESULTS FOR SOME SPECIAL VALUES OF k 

From the results presented in Section 2, we noted that the ZD of Fz^n I k is independent of 
the residue of n modulo 2 or 4 whenever 

Z(k) = P(k), (4.1) 

so that its expression assumes a rather simple form [cf. (2.1), (2.3), (2.10), and (2.13)]. We were 
not able to find conditions for (4.1) to hold for k arbitrary. On the other hand, it is known (see 
(19) of [2]) that, if/? is a prime, then 

Z(p) = P(p) iff Fz(pyi = 1 (mod p). (4.2) 

A list of the first few values of t satisfying (4.1) and their Z(k) is available in [1, p. 33]. In 
the following, we show the ZD of Fz^nl k for all such k greater than 19 [cf. (2.13)] and not 
exceeding 71: 

W22 = X 
y=i 

3 

I F3Qj-23 + i L \F30j-3i-\2 + ^ 0 ; - 3 / - 4 ) 

Fun/29 = ^Fuj-7l 
j=i 

; = i 

F30n I 3 * = X F3Qj-\5 + ^ 3 0 , - 1 0 + X F30j-5i-3 > 

4 

L 
7 = 1 

n 
F\%n I 3 8 = SC^lSy-l l + FWj-%)'? 

^30w ' ^ * ~ z L V 30/-23 + ^ 3 0 / - 2 0 + ^30y-18 + ^ 3 0 ; - 1 4 + ^ 3 0 ; - 8 ) ? 
j=l 

n f 3 4 \ 
F42n ' * 8 = 2^\ F42j-33 + ^ 4 2 / - 2 0 + 2-f ^42j-3i~22 + 2 - » ^ 4 2 ; - 3 / - i 

; = l V i=l /=1 

^58,/59-X 
y=i 

F5$j-47 + ^ 5 8 ; - 4 4 + F5%j-26 + ^58 ; -16 + ^ 5 8 ; - 1 2 + ' ^ 5 8 ; - 9 

>k 

+ ZL ^58/-14/-7 + £a F5Sj-5i-l3 
/=1 i=l J 

n f 3 \ 
F30n ' ®2 ~ ZJ[ *30 / -21 + ^30y-9 + 2-f F30j-2i-l 1 

J=l /=1 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
J 
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^ 7 0 / - 6 1 + ^ 7 0 ; - 4 8 + ^ 7 0 / - 3 6 + ^ 7 0 / - 2 3 + ^ 7 0 / - 1 5 + ^ 7 0 y - 9 

3 

I + 2-rf C*Vo/-12/-17 + ^ 7 0 / - 5 / - 4 o ) + 2 u ^ 7 0 y - 7 / - l l 

(4.11) 

5. RESULTS FOR FEJ?F SPECIAL VALUES OF * 

Inspection of the results established in Sections 2 and 4 shows that, for k - 2, 4, 11, and 29, 
the ZD of Fz^n I k is constituted by exactly ft addends. If we disregard the value 2, it is quite 
natural to conjecture that the ZD of FZ(i2h+l)n IL2h+i (h = 1,2,3,...) has n addends. 

Question 1. What is the value of Z(Z2/7+1)? 
Theorem IV of [5, p. 40], which is credited to L. Carlitz, immediately gives the answer: 

Z(L2h+1) = 4h + 2. (5.1) 

In fact, we state the following proposition. 

Proposition 1: For h = 1,2,3,..., we have 
FZ(L2h+1)n = F(4 

^ 2 / J + 1 L 

The proof of Proposition 1 can be obtained simply by letting n = 2h +1 and k-n in (2.2) of 

Z(L2h+l)n _ r(4h+2)n _ y F / r ~\ 
J ~ T ~ Z^r(4h+2)j-2h-V \ J ^ ) 
^2h+l ^2/H-l y=i 

PI-
Question 2. Apart from the particular case k = 2 [see (2.1)], do there exist other values of A:, 
that are not odd-subscripted Lucas numbers, for which the ZD of Fz^n I k is constituted by 
exactly n addends? 

A computer search showed that none of them exists for k < 1000. This search has not been 
completely useless as it allowed us to discover a misprint in Brousseau's table of entry points 
[1, pp. 33-41] where it is reported that Z(961) = 839; the correct value is 930. 

The ZD of F1Sn/3S has exactly In addends [see (4.6)]. The only further value of k < 1000 
for which such a decomposition occurs is k - 682. Namely, we have 

^ / 6 8 2 = X(i730;-17+^30;-14)- (5-3) 
7=1 

The decompositions (4.6) and (5.3) led us to discover the following result, the proof of which 
is appended below. 

Proposition 2: For h = 1,2,3,..., we have 
FZ(L6h+3/2)n _ F(l2h+6)n _ y / z r . F \ (c A\ 

l / O ~~ J 10 ~ Zj{r(12h+6)j-6h-5^r(12h+6)j-6h-2J- \J-^J 

Remark: Conjecturing this result has been very laborious but, once the conjecture has been 
made, its proof is quite easy. Observe that expression (5.4) works for h = 0 as well, but 
12-04-6 = 6 is not the entry point of L&0+312 = 2. 
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Proof of Proposition 2: First, observe that, for /*• > 1, 
h 

L6h+3 = 4v with v = l + £z , 6 r (v>lodd), (5.5) 
r=l 

and use (5.5) and the basic properties of Z(k) [2, p. 9] to establish that 

Z(L6h+3/2) = Z(L6h+3) (h>l). (5.6) 

Then, use Theorem IV of [5, p. 40] to write 
Z(L6h+3) = l2h + 6. (5.7) 

Finally, rewrite the right-hand side of (5.4) as 

0 V 17 'AF(l2h+6)n+6h+3 ~ *\l2h+6)n-6h-3J /x* w /i vi\ ,w? m \ 
2LF(12/H-6),-6/*-3 = " *—r-—^ l (from (1.4) of [3]) 

,=1 ^12/2+6 L 

~2 VJLI^OJI \I.-JJ u i L ^ j cuivi x l g 
= ^ (12/,+6)^+3 = ^ (12^6)^6^3 ( f r o m ( 1 . 5 ) o f [ 3 ] a n d I i g 0 f [ 5 ] ) 

A2/H-6 2 ^6/2+3 

= ^12fr*>" = F*< W 2 > " [from (5.7) and (5.6)]. Q.E.D. 

6. CONCLUDING REMARKS 

The characterization of classes of integers A: for which the ZD of i^(^)„ / A is constituted by n 
^-tuples of Fibonacci numbers whose subscripts are in arithmetical progression seems to be an 
interesting subject of study, and might be the aim of a future investigation. Propositions 1 and 2 
give a solution to this problem for q-\ and 2, respectively. For q = 3, we state the following 
proposition [cf. (2.13)]. 

Proposition 3: For h = 1,2,3,..., we have 
FZ(L6h+3/4)n _ F(l2h+6)n _\^ V p / * i \ 

T IA~~T /A~ ZJ Z^r(l2h+6)j-2i-6h+l' V°-U 
^ 6 / 2 + 3 / H " ^ 6 / H - 3 / H ;=1 /=! 

The decompositions 

Lr = IZ^2/-9 d̂ ^ ^ X V - o (6-2) 
77 " 5 77 

Ll0 + 1 

seem to be a good starting point for the above-mentioned investigation. In fact, they led us to 
claim that 

L2q + i L2q + l j=\ /=! 

Observe that both letting h = 1 in (6.1) and letting q - 3 in (6.3), yield (2.13). The proofs of 
(6.1) and (6.3) are left as an exercise for the interested reader. Note that the proof of (6.3) 
involves the use of the identity L$ I Lq = Llq +1 (see (2.5) of [3]). 
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Dedicated to Professor Leonard Carlitz on his 90th birthday. 

The very widely-known identity 

0<k<n/2 rl K\ J 

which appears frequently in papers about Fibonacci numbers, and the formula of Carlitz [4], [5], 

X ( - i y — ^ % ^ (2) 

summed over all 0 < j , j , k < n, n > 0, and where xyz = 1, as well as the formula 

where xy+jz + zx = 03 are special cases of an older well-known formula for sums of powers of 
roots of a polynomial which was evidently first found by Girard [12] in 1629, and later given by 
Waring in 1762 [29], 1770 and 1782 [30]. These may be derived from formulas due to Sir Isaac 
Newton., 

The formulas of Newton, Girard, and Waring do not seem to be as well known to current 
writers as they should be, and this is the motivation for our remarks: to make the older results 
more accessible. Our paper was motivated while refereeing a paper [32] that calls formula (1) the 
"Kummer formula" (who came into the matter very late) and offers formula (3) as a generalization 
of (1), but with no account of the extensive history of symmetric functions. 

The Girard-Waring formula may be derived from what are called Newton's formulas. These 
appear in classical books on the "Theory of Equations." For example, see Dickson [9, pp. 69-74], 
Ferrar [11, pp. 153-80], Turnbull [27, pp. 66-80], or Chrystal [6, pp. 436-38]. The most detailed 
of these is Dickson's account. But the account by Vahlen [28, pp. 449-79] in the old German 
Encyclopedia is certainly the best historical record. 

Let f(x) = xn+axxn~l+a2xn~2+ °->+an_2x2+an_xx + an = 0 be a polynomial with roots x1, 
x2, ..., xn, so that f(x) = (x-xt)(x-x2)>-(x-xn). Then we define the "elementary" symmetric 
functions ax, a2, a3,... of the roots as follows: 

^xi = xl + x2 + — +x„ = -al, 
\<i<n 

7 XjX j — XIXIJ i X i X o i X%XA I J U J J V Q i " * * — City j 

\<i<j<n 

2^ XjXjXfc • Jt'lJU^Jk'S I XIXIJXA I XtXryXc I * * * ^*"l3 

l<i<j<k<n 

xlx2x3...x„ = (-l)nan. 
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Also, we define the kth power sums of the roots by 

Then the Newton formulas are: 
sl+al = 0, 
s2+alsl+2a2 = 0, 
s3 + axs2 +a2sl + 2a3 = 0, 

sn + ^ V i +^«-2 + - +™*n = °> 
$„+l + axsn_x + a2 sn_2 + .-.+ sxan = 0. 

(4) 

(5) 

These equations may be solved by determinants to express sn in terms of an, or conversely. 
These determinant formulas are as follows: 

( - i )%= 
2a, 

1 
a, 

0 
1 

na„ a, n-l a, 'n-2 

(6) 

and 

(-!)"»!«„ = 

•̂ 1 

^2 

*5 

1 
^1 

•% 

0 
2 
* 

0 • 
0 • 
3 • 

•• 0 
•• 0 
•• 0 

°/7-l , 5if-2 •V-3 

(7) 

Turnbull [27, p. 74] gives both these determinants, but not the expanded forms. Father Hagen 
[16, p. 310] cites Salmon [26] for the determinants. Hagen and Vahlen note that we may write 
these determinants in expanded form, which is the source of the Girard-Waring formula 

*y=72X-l> *i+*2+-+*. (*i + *2 + - " + * n - 1 ) ! kxk, 

kx\k2\...kn\ a,'a* .a: 

summed over all nonnegative integers kt satisfying the equation kx + 2k2 + • 
inverse 

aJ = £(-l)k,+k2+'"+ICj 1 
kl\k2\...kJ\\ 1 J 

(8) 

+nk„ = j , and its 

(9) 

summed over all nonnegative integers kt satisfying the equation kx + 2k2 + —h jkj = j . Vahlen 
[28, p. 451] gives (8) and (9) and a very detailed account of the theory of symmetric functions 
with historical references. 

The determinant (7) and expansion (9), without mention of their use in connection with 
Girard-Waring power sums, were noted by Thomas Muir [21, pp. 216-17]. Muir cites G. Mola 
[10] for his second paper on questions of E. Fergola [10] for the expanded form of (7), i.e., (9). 
Note Problem 67-13 [31] where W. B. Gragg has an incorrect citation, misunderstanding Muir's 
citation. 

Of course, (9) was already known to Waring. A short proof of (9) was given by Richter [23] 
using generating functions and the multinomial theorem. 

With n - 2, and suitable change in notation, relation (8) yields 
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xn+yn = n X C - ^ ^ V i 1 ^ ' ^ ^ summedfor 0<i, j < « , (10) 

where -a = x+y and ft = xy. Clearly, this is the same as formula (1) when we make the dummy 
variable substitution, i = n-2j. 

With n = 3, and suitable change in notation, relation (8) yields 

xn + j " + zn = n £ ( - l ) / + ' + * ( l + J : + , ^ 7 1 ) ! ^ ^ , (11) 
i+2j+3k=n l\j\k\ 

where -a - x + y + z, ft = xy+yz + zx, and - c = xyz. When we set c =' 1 in this, we obtain for-
mula (2) above of Carlitz. 

Or, if we specialize (11) by setting ft - 0, then the only value assumed byy in the summation 
is j = 0, so that we obtain 

x"+y"+z"= £ ."Q+!;hx+y + zy(xyz)k (12) 

summed over all 0 < J, k < n. Replace i by n - 3k to get 

'•^^'T^^^c-y^r'^f, d3) 
which is formula (3). 

For the sum of four /1th powers, we obtain 

xn +yn+zn +wn= nZ(~l)i+J+k+e (? + J ' | + ^ / i ~ 1 ) ! a / & / c V (14> 

summed over all 0< i , j , k,£<n with i + 2j + 3k + 4£ = n, and where 

-a = x + y + z + w, b = xy + xz + xw+yz+yw + zw, 
-c = xyz + xyw + xzw+yzw, d- xyzw. 

By making special choices for a, ft, c, and d, we could obtain simpler formulas somewhat analo-
gous to (1), (2), or (3). For example, let ft •= c - 0, and we get 

xn+yn+zn+w"= £ ( - i ) ^ _ w | » - 3 * W 3 * 6 ^ ( 1 5 ) 

subject to xy + xz + xw+yz+yw + zw = xyz + xyw + xzw+yzw = 0. With similar conditions on the 
symmetric functions of the roots, we can obtain power sum formulas of the type 

*„=X*f= ^(-^-^(^Y-^- (16) 
l</<r 0<fc<«/r+l n f K V J 

H. A. Rothe [25], a student of Carl F. Hindenburg of the old German school of combinatorial 
analysis, found the formula 

± Ak(ajb)A„_k(c, b) = AJp + c,b) (17) 

where 
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where a, b, and c may be any complex numbers. Formula (17) generalizes the Vandermonde con-
volution that occurs when b = 0. 

It is perhaps of interest to note that J. L. Lagrange evidently believed it would be possible to 
solve the polynomial equation f(x) = 0 with a finite closed formula by manipulating the symmetric 
functions of the roots. Closed formulas using root extractions are, of course, possible for the 
quadratic, cubic, and biquadratic, but the work of Galois and Abel showed that this is impossible 
for equations of fifth degree or higher. * 

Lagrange did succeed in getting infinite series expansions of the roots in his memoir of 1770. 
For the simple trinomial equation xn +px + q = 0, the series involve binomial coefficient functions 
of the form (18). More generally, Lagrange developed what is now called the Lagrange-Burmann 
inversion formula for series. See any advanced complex analysis text. 

Reference [15] contains a list of twelve of my papers since 1956 dealing with the generalized 
Vandermonde convolution. The first two [13] and [14] deal with Rothe's work. I first became 
interested in (17) when I found it in Hagen's Synopsis [16]. 

Closely associated with (17)-(18) are the coefficients 

Ct(a, A) = ("+**), (19) 

and, in fact, we easily obtain 

fiCk(a,b)A^k(c,b) = C„(a+c,b). (20) 

Relating to Fibonacci research is the fact that Ck(n, -1) occurs in a popular formula for the 
Fibonacci numbers that is easily noted by looking at diagonal sums. This formula is 

JWi= I Q(»,-l)= Z ("~k
k\ (21) 

0<k<n/2 0<k<n/2^ ' 

This arises because the dual to relation (1) is 

I {-l)inlk\^yr"k{xyf = X"+l-y"+\ (22) 
k<nl2 V J X y 0<k<n/2 

The classical Fibonacci numbers arise with x and y as the roots of the characteristic equation 
z2-z-1 = 0 that is associated with the Fibonacci recurrence Fn+2 -Fn+l-Fn=0. With the same 
choices, relation (1) yields the classical Lucas numbers Ln for which, of course, the recurrence 
relation is Ln+2 - Ln+l -Ln = 0. 

The A coefficients (18) and the C coefficients (19) may be thought of as relating to general-
ized Lucas and Fibonacci numbers, respectively, the difference being in the presence of the frac-
tion a I (a+bk). Charles A. Church [7] noted precisely this, defining 

0<k<n/b+l V / 0<k<n/b+\n U* V / 

More general Fibonacci numbers Un with 

U*= I ("~k
rk)an-rkbk (23) 

0<k<n/r+l V / 
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were studied in the first volume of The Fibonacci Quarterly by J. A. Raab [22]. V. C. Harris and 
Carolyn Stiles [17] then introduced a generalized Fibonacci sequence that satisfies 

4= I {"JkV-rkbk (24) 
0<k<n/p+q^ ^ S 

with a - b = 1. Verner E. Hoggatt, Jr. [18] wrote about this. Papers too numerous to list (before 
and since) have studied such sequences. David Dickinson [8] and others have noted that expres-
sions of the form 

^ ( 0 = 1 ( ^ 5 ) ^ ' where W = »c-a&, |*|<1, (25) 

summed over meaningful ranges of k essentially satisfy recursive relations and therefore may be 
seen as generalized Fibonacci numbers. He finds the associated trinomial equation xc - txa -1 = 0, 
which has distinct roots ar, r = 0,1,..., c-1, and obtains the formula 

Sm(t)= I _ ; o - c - (26) 
0<r<c-l C Ot^r 

The late Leon Bernstein [1], [2], [3] examined the zeros of the function 

/(")= S (-!){"";2i\ (27) 
0</<«/2 V ^ 

finding that it has only the zeros 3 and 12. He also found several new combinatorial identities. 
Carlitz [4], [5] then studied Bernstein's work and in these papers he developed relation (2) above. 
His techniques are the usual generating function and multinomial theorem approach. Neither 
Bernstein nor Carlitz mentions or uses the work of Girard and Waring, but (11) with c- 1 is 
found by Carlitz, so that the Girard-Waring formula is implicit there. 

We may note that the late John Riordan [24, p. 47] related power sum symmetric functions to 
the general Bell polynomials he loved to study. 

The Girard-Waring formulas offer many extensions of the ordinary Fibonacci-Lucas formulas. 
These formulas should be more well known. 
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1. INTRODUCTION 

In a recent article, Andre-Jeannin [1] introduced a generalization of the Morgan-Voyce poly-
nomials by defining the sequence of polynomials {i^(r)(x)} by the relation 

P}rXx) = (x + 2)P£(x)-P&(x) (»>2), (la) 

with 
P0

(r)(x) = l and P/^OO-x + r + l. (lb) 

Subsequently, Horadam [2] defined a closely related sequence of polynomials {Qjf\x)} by the 
relation 

Q?\x) = (x + 2)Q£(x) = QP2(x) (n>2), (2a) 

with 
Q,(r)(x) = l and Qt

{r\x) = x + r + 2. (2b) 

They also established that 
P}°\x) = b„(x), (3a) 

P}\x) = B„(x), (3b) 
and 

Gf(x) = C„(x), (3c) 
where hn(x) and Bn(x) are the classical Morgan-Voyce polynomials defined in [6] and Cn{x) = 
2cn(x), where cn(x) is the polynomial introduced by Swamy and Bhattacharyya [7] in the analysis 
of ladder networks. It has also been established in [1] and [2] that, if 

#>(*)=X<V (4a) 
k>0 

and 

then, for any n > 0, k > 0, 

#>(*) = E*#**, (4b> 
k>0 

and 

The purpose of this short article is to introduce two new sequences of polynomials {p%\x)} 
and {q%\x)}9 and then relate them to Jacobsthal polynomials (see [3] and [5]). 
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2. THE NEW POLYNOMIALS {/><r)(Jt)} AND {q(
n

r)(x)} 

Let us define the following two sequences of polynomials: 

/*r)(*) = /&(* )+ *?&(*) (»*2) (6a) 
with 

p^r\x) = l and p(r\x) = r, (6b) 
and 

^ ) w = e ) i « + ^ : )
2 w (»*2) (?b) 

with 
q{

0
r)(x) = 2 and ^{r>(x) = r + l, (7b) 

where r is a real number. 
If we now express p^\x) and q„\x) by 

/£>(*) = I<i** (8a) 
and 

<7<r)(x) = £ < j x * , (8b) 
>t>0 

we can obtain recurrence relations for cfy and d%\, and derive expressions for cjfy and d£\ 
using the procedures adopted in [1] and [2]. However, we will use the properties of the sequence 
wn(a, b; p, q) defined by Horadam [4] to obtain a direct expression for p(

n
r)(x) and q^\x). From 

[4], we know that the solution wn(a, b; x) of the equation 
W»(X) = Wn-l(X) + * * V 2 ( * ) (n ^ 2 ) ( 9 a ) 

with 
w0(x) = a and Wj(x) = A (9b) 

is given by 

%(*) = wi(*X-i(*) + *w0(*K-2(*)> (10a) 
where 

HI(x) = n/ll(l,l;x). (10b) 
Hence, from (6), (7), (9), and (10), we have 

pir\x) = run_x(x) + xun_2{x) = !#„(*) + ( r - lK_i(x) (11a) 
and 

<£\x) = (r + l)Vi(x) + 2aw^2(x) = i^(x) + * v 2 ( x ) + n/„_1(x). (1 lb) 

3* /><r)(x), f^r)(x) AND JACOBSTHAL POLYNOMIALS 

We now observe that 

u*(x) = Jn+l(x) (12a) 
and 
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v„W = 7„(x), (12b) 
where Jn(x) and jn(x) are the Jacobsthal polynomials (see [3]). It is to be noted that we have 
used x instead of (2x) in the definitions of Jn(x) and j„(x); that is, Jn(x) and jn(x) are defined by 

JJx) = J«-i(*) + xJ„-2(x), J0(x) = 0, J0(x) = 1, (13a) 
and 

JM = ./„_,(*) + xjn_2(x), j0(x) = 2, j0{x) = 1. (13b) 
Hence, from (11), (12), and (13), we get 

pir\x) = J„+l(x) + (r-l)Jn(x) (14a) 
and 

tfKx) = Jn(x) + rJn(x), (14b) 
where we have used the relation 

Jn(X) = Jn+l(X) + xJn-l(X)- 0 5 ) 

Using the closed-form expressions for J„(x) and jn(x) derived in [3], we can derive polyno-
mial expressions for p%\x) and q%\x) and, thus, expressions for c^\ and d^\. Also, the inter-
relationship between cfy and d%\ may be expressed in terms of the following relation, which is a 
consequence of (14a) and (14b): 

^ (* ) - tir\x) + Ux) + xJ^ix). (16) 
Of course, we have the following particular cases: 

pV\x) = xJn_l(x), (17a) 

rfP(x) = J»*i(x), (17b) 
qf\x) = j„(x), (17c) 
qW(x) = 2Jn+l(x). (17d) 

We may derive other relations between p„r\x) and q„r\x) by utilizing the properties of Jn(x) 
and jn(x). However, we will not pursue them here. 

4. THE POLYNOMIALS i*jr)(x) AND g<r)(x) 

As was done in Section 2, by using the results of Horadam [4] concerning the generalized 
Fibonacci sequence, we may show that 

Pf\x) = Un+1(x) + (r-l)Un(x) (18a) 
and 

&r)(x) = K(x)+rU„(x), (18b) 
where 

Un(x) = wn(0,l;x), (19a) 

Vn(x) = w„(2,x + 2;x), (19b) 
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and wn(a, b; x) is now the solution of the equation 

wn(x) = (x + 2)wn_l(x)-wn_2(x) (n>2) (20a) 
with 

w0(x) = a and wl(x) = b. (20b) 

From the properties of the polynomials Bn(x) and Cn(x) given in [6] and [7], we can relate Bn(x) 
and Cn(x) directly to Un(x) and Vn(x) by 

B„(x) = Un+l(x) (21a) 
and 

C„(x) = V„(x). (21b) 

Thus, we have the following relations for n > 1: 

Pf\x) = Bn(x) + (r-l)Bn_l(x), (22a) 

<£Xx) = Cn(x)+rBU*), (22b) 
and 

&\x) = I*r\x)+bn_l(x), (22c) 

where we have used the relations (see [7]) 
b„(x) = Brl(x)-Bn_l(x) (23a) 

and 
Cn(x) = Bn(x)-B„_2(x). (23b) 

It can be observed that relations (3a), (3b), and (3c) directly follow from (22a) and (22b). 
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Ducci-sequences are successive iterations of the function 
D(X) = D(xhx2,...,x„) = (\xl-x2l |x2-x3 | , . . . ? |x„-x1 |) . 

Note that D\Zn -> Z", where Zn is the set of ft-tuples with integer entries. Since the entries of 
D(X) are less than or equal to those of X, eventually every Ducci-sequence {X, D(X), D2(X), 
...,DJ(X),...} gives rise to a cycle. That is, there exist integers i and j for which 0< i < j and 
Dj(X) = D{X). When i and j are as small as possible, we say that the resulting cycle, {Dl{X)7 

..., Dj~l(X),...}, is generated by X and has period j-i. If 7 is contained in a cycle of period k, 
then DJ(Y) = Y if and only if k\j. 

Introduced in 1937, Ducci-sequences and their resulting cycles have been studied extensively 
(see [l]-[7]). It is well known that for a given cycle all the entries in all the tuples are equal to 
either 0 or a constant C (see [2] and [4]). Since for every X, D{XX) = XD{X), we can assume 
without loss of generality that C = l. Thus, when studying cycles of Ducci-sequences, we can 
restrict our attention to Z2, the set of w-tuples with entries from {0,1}. In addition, we can view 
the operation associated with D as addition modulo 2 since, for x,y e {0,1}, \x-y\ = (x + y) 
(mod 2). 

Most of the work on Ducci-sequences has focused on the case when n is odd or a power of 
2. Here we consider the case when n = 2s • q, where s>\ and q is odd with q > 1. We will show 
that associated with an ^i-tuple X are 2* different g-tuples that completely determine the behavior 
of X In particular, we will show that an w-tuple X is contained in a cycle if and only if each of the 
2s associated ^-tuples is in a cycle. Further, the period of the cycle generated by Xis determined 
by the periods of the cycles generated by the 2s associated g-tuples. 

To motivate the notation that will be introduced shortly, consider the following representa-
tions of a 12-tupleX: 

X = (x1? x2, X3, x4, x5, x6, x7, x8, x9, x10, xn, x12) 

= (x1? 0, 0, 0, x5, 0,0, 0, x9,0,0,0) + (0, x2,0, 0,0, x6, 0,0, 0, x10, 0,0) 
+ (0, 0, X3,0, 0, 0, x7,0,0,0, xn, 0) 4- (0, 0, 0, x4, 0, 0, 0, x8, 0, 0, 0, x12). 

We see that associated with X are the following four 3-tuples: 
(x1? x5, Xg), (x2, x6, x10), (x3, x7, xn), and (x4, x8, x12). 

When we form these smaller tuples, we will say that we compress the original tuple. Conversely, 
we can begin with these four 3-tuples and expand them to a 12-tuple by inserting zeros and 
adding. 

Since we are interested in even tuples, we will often need to work with powers of 2. To sim-
plify notation, we will write 2s as 2As whenever this expression appears as a superscript or sub-
script. 
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Let X be an w-tuple where n - 2s • q with s > 1. For / e {1,2,..., 2s), the compression func-
tions Ci2*s

: Z£ -> Zf are defined by Cu2*s(X) = (£/), where 

For i e{l,2,...,25}, the expansion functions i^ JA, : Z?-» ZJf are defined by Eit2*s(Y) = (ej)9 

where 
\ej=yx+\ wheny = /+A-25forA = 0,l,...,qr-l, 

I ey. = 0 when 7 ^ / (mod 2*). 

The observations below follow immediately from the definitions of the compression and 
expansion functions: 

* = 5X2*,(C;.2*,W) for X <=Z2", where 2 > ; (1) 
2AS 

I' 
;=1 

q. 2(£,. 2(7)) = 7 for 7 e 2 | , where n = 2-q; (2) 

G,2(Ej.2(X)) = (0,0,..., 0) for 7 s Z | , where « = 2-^ and z>y; (3) 

Cj.2(CUJ«,{Xj) = q + ( i . , ) , , , w ( I ) for X GZ2", where 2*+11»; (4) 

Ei,r,(Ej.i<X)) = E»<j-r)-2W*)<n for Y eZq
2, where « = 2s+i-q. (5) 

We use these observations to express D2*sm(X) in terms ofDm(Ci2*s(X)). 

Theorem 1: Let Xbe an w-tuple, where 2|». Then 

z>2(X) = £ £u(z)(q2 (X))). 
/=1 

Proof: Let X = (x1? x2,..., xn). Then 

D(X) = (x1 + x2, x2+x3, x3 + x4, x4 + x5,...,xw_1+xW3 x„+xi), 

D2(X) = (xl+x3, x2+x4, x3 + x5, x4+x6,...,xw_1 + x1, x„ + x2). 

On the other hand, 

M.2V*) = ( X l? X3> X5? •••> Xn-l)> 

D(Ch2(X)) = (xl + x3, x3+x5?...5x/7_1 + x1), 

^ 2 ^ ( C i 2 f f l ) ) = (^i + % 0, x3 + x5, 09...9x^l+xu 0). 

Similarly, 

^ 2 W Q I 2 W ) ) = (0) *2+*4> 0, X4+X6,...,0, X„+X2). 

Thus 

£2(X) = EU2(D(Cl2(X))) + EX2(D(C2,2(X))). D 
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Theorem 2: Let Xbe an w-tuple, where 2\n. Then 

D2m(X) = Y,Eu2(Dm(Cia{X))\ 
/=i 

Proof: By Theorem 1, the result holds for m = 1. Assume it holds for m and consider m +1. 
NowD2(w+1)(X) = i)2(i)2w(X)). Thus 

i92^)(X) = D2 f t ^ 2 ( z r ( q 2 ( J 0 ) ) ] = t ^ . 2 b k 2 ( t £ , 2 ( i ) l c , 2 ( X ) ) ) 
v=i J j=i V V V/=i 

Using observations (2) and (3), (6) simplifies to 

D2^+1\X)=Eh2(D(ir(Cl2(X)))) + E2t2(D(D-(C2a(X)))) 

w 

JJ 
(6) 

2 

I 
1=1 

= l £ u ( ^ + 1 ( Q 2 ( J 0 ) ) . o 

Theorem3: LetXbe an w-tuple, where 2*|w with $>l. Then 
2A* 

^ , m ( x ) = ^E^XD-iQ^XX))). 
i=\ 

Proof: By Theorem 2, the result holds for s = 1. Assume it holds for 5 and consider s +1. 
Using the induction hypothesis, we have 

J?W(X) = jD(2^)-(2m)(X) = £ £ . 2 A i ( / ) ^ ( q 2 A j ( X ) ) ) 
2As 

I-
z ' = l (7) 

The last equality in (7) follows from Theorem 2. Using observations (4) and (5), (7) simplifies to 
2As 2 

D (X) -2w2^J^/'+0-l)-2A5,2A(5+l)V^ (S+0-l)-2A^2A(^+l)(^))/ 
i=l /=1 

2A(s+l) 
= X^\2^*+l)(^(Q,2*(*fl)W))- D 

;=1 

Corollary 1: Let Xbe an w-tuple, where 2s \n ;with s>\. Xis contained in a cycle if and only if 
Cu2^S(X} is contained in a cycle for j e {1,..., 2'}. 

Proof: Suppose X is contained in a cycle of period k; that is3 Dk{X) = X. Then 

D^s'k{X) = X. 

Using (1) and Theorem 3, we see that 

Ct^s(X) = Cu2,s(D^s'k(X)) = Dk(Ch2.s(X)) 

for i G {1,..., 2s). Hence for each i, Q 2A5( X) is in a cycle. 

1999] 147 



EVEN DUCCI-SEQUENCES 

Conversely, suppose that, for each j , CU2AS(X) *S m a c v c l e of period kt. Let m - lcm(&1? k2, 
..., k2,s). Since l)M(q2^(X)) = C;-2A,(X),'by Theorem 3 and (1), D2^m(X) = X. Hence, Xis 
in a cycle. • 

For odd n, an w-tuple Xis contained in a cycle if and only if the sum of the entries of X is 
congruent to 0 modulo 2 (see [4]). Thus by Corollary 1, for n - 2s -q, where s > 1 and q is odd 
with q > 1, an w-tuple X is contained in a cycle if and only if for each i e {1,..., 2*} the sum of the 
entries of Ci2^s(X) is congruent to 0 modulo 2. Although the terminology is different, this result 
appears in [4]. In a moment we will begin to consider how the period of the cycle containing X is 
related to the periods of the cycles containing Ci2*s(X), i = 1, ...,2s. First, we prove a rather 
technical corollary that we will need later. 

Corollary 2: Let Xbe an w-tuple, where 2s\n with s > 1. Then 

CU2,S(D2^-\X)) = q,2a*)+Q+n5-D,^W 
for/ = 1,2,..., 2'-1. 

Proof: Letn = 2s-q = 2s-1-2q. By Theorem 3, 

For ZeZ? and i = \,2,...,2s-1, 

c ^ f e W 2 ) ) = (°> °> •••' °) when J *L 

Hence C,^,{I^^\X)) = C^2{p{qA^l){X))). Now 

M , 2 A ( s - l ) ( ^ 0 ~ (X/5 X J + 2 A ( S - 1 ) > X/+2-2A(>-l)> Xi+3-2A(s-l)> ••• ' Xz+(2g-l)-2A(s-l))> 

Z > ( Q 2
A ( 5 - 1 ) ( ^ ) ) ~ (*/ + X /+2A(s-l) +Xz+2.2A<>-1)> ^ H ^ ' X s - l ) * •••> X2+(2g-l)-2A(>-l) +Xi)> 

Ch2,s(D^-\X)) = C^DiC^^iX))) 

- (xi + XH-2A(s-l)> X/+2-2A(s-l) + X /+3-2A(>-l )> •••> X/+(2^-2)-2A(^-l) + X 2 + ( 2 ^ - l ) - 2 A ( ^ - l ) ) 

~ \Xi> Xz+2-2A(s-l)> •'•>Xi+(2q-2)-2*(s-l)) + \Xi+2/Xs-l)> Xi+3-2*(s-l)> •••? X/+(2g-l)-2A(.y-l)) 

~ Q 2A^(^0 + Q+2A0-1), 2AX^0- 0 
We now begin considering how the period of the cycle containing X is related to the periods 

of the cycles containing CJ 2A;y(X), / = 1,..., 2s. 

Theorem 4: Let n - 2s • q, where s > 1. Suppose X is an w-tuple which is contained in a cycle of 
period k. Let kt be the period of the cycle containing the g-tuple Ci2^s{X), i = l,...,2s. Then 
k = 2* •lcm(&1? k2,..., k2^s) for some 0< t <s. 

Proof: Let m = lcm(k1? k2, . . . , ^ A , ) . As noted in the proof of Corollary 1, D2Asm(X) = X. 
Consequently, k \ 2s • m. 
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We now show that m\k. Since Dk{X) = X, It follows that D2*s'k(X) = X. As we showed 
In the proof of Corollary 1, D*(q2^(X)) = Cit2*s(X). Since kt is the period of the cycle con-
taining CU2*S(X)> ki\k f o r ' = *> • • • > v - Consequently, m\k. Since m\k and k\2s -m, we conclude 
that k = 2*' m for some 0 < t < s. • 

Theorem 5: Let n-2s -q, where s>l. SupposeXis an w-tuple which is contained in a cycle of 
period k = 2* >m, where m is odd and 0 < t < s. Then 

fori = l,...,2'. 

JRroo/- Since 0 < f < s, 1 < f +1 < s, and 2?+1|w• Thus by Theorem 3, 

D2^m-l\X) = D2A{t+l)'^{X) 
2A(f+i) , m . . (8) 

By hypothesis, D2A'-m(X) = X. Since X = Z)2A'm(X) = D2"'{D^Hm~l\X)), 

q,r((+.,w=q.a w^'c^"^ w»-
By Corollary 2, 

for/ = ! , . . . ,2 ' . Thus 

q^+i)W=q,2^)(^2 A ' - ( m-1 ) (^))+q+2^,2^+i)(^2 A ' - ( m-1 ) (^))- (9) 
Using (8) to find the two terms on the right-hand side of (9), we can rewrite (9) as 

Q f 2 W ^ = £ ¥ ( Q , 2 W ^ ) + ^ (10> 
Applying D"1 to (10) gives 

^ ( q 2 w x ) ) ^ w ^ (11) 

By hypothesis, D2^'m{X) = X. Hence D2^t+l)'m(X) = X. Thus, using Theorem 3 and (1), 

Cy,2^+i) W = Cy,2.(f+1)(D2A(r+1)-w(X)) = Dw(C;,2,(f+1)(X)) 

for 7 = 1,..., 2t+l. Using this to simplify (11) and rearranging terms gives the desired result. • 

We now prove the converse of Theorem 5. To do so, we will need the following well-known 
result: when n is odd, the period of a cycle of w-tuples divides «-(2^(n)-l), where 0(n) is Euler's 
phi function [3]. Actually, a great deal more is known about the period, but this is all we require. 
Specifically, when n is odd, the period of each cycle of w-tuples is odd. 

Theorem 6: Let n = 2s -q, where s> 1 and q is odd with q> 1. Suppose Xis an n-tuple that is 
contained in a cycle. Let m - lcm(i1? k2, ...,k2*s), where kt is the period of the cycle containing 
Cu 2*S(X) for i = 1,..., 2s. If there exists t, 0 < t < $, such that 
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C/+2Af,2A(H-l) W ~ Q,2A(H-1) W + D 2 (Q,2A(f+l) W ) (1 2) 

for / = 1,..,, 2 ' , then £>2A'W(X) = X . 

Proof: Since g is odd, each £, is odd and hence m is odd. Further, since Dki(Ct 2 A , ( I ) ) = 
q 2 A , (x ) , Dm(Ci^s(X)) = Cu2,s(X)fori = l,...,2\ Thus, if f + l = j , 

On the other hand, if r = t +1 < s, then 

CU2^r(X) = Qj2
AX^0 +Q+2Ar,2AX^) + Q+2-2Ar,2AX^0 

"• h Q+[2A(s-r)-l]-2Ar, 2A A^O-

This implies D"(Cu2,r{X)) = Q; 2.r(X); i.e., 27"(C,>r(,+1)(Jf)) = Q^t+1)(X). Hence 

q2^+ i ) (^2 A ( f + 1 ) -m(^)) = D™(Ch2.it+l)(X)) = C,^M)(X), 

so D2^'+1)m(X) = X. We now use this to show that, in fact, D2*tm(X) = X. 
As in the proof of Theorem 5, we consider D2*tm(X). Using (8), we have 

Likewise, using (8) and (12), we have 

= ^(q,2, ( t + 1 )(^))+^(^(q2, ( ( + 1 )(X))) (14) 

= D 2 (Qf2A(r+l)(^0) + Q,.2A(r+l)(^0-

Note that (13) and (14) hold for / = 1,..., 2\ Now, by Theorem 3, we have 

q 2 W £ 2 A ™ ^ (is) 
Likewise, using Theorem 3 and (12), we have 

c;+ 2^2 W ^ A ( ' + 1 H " " I ) (*) ) = v*~\Ciwi.,+i)(X)) 
, ( 1 6) 

= Dm~\Ch 2A(f+1)(X)) + D^(C, 2,(t+1)(X)). 

Note that (15) and (16) hold for i = 1,..., 2'. By Corollary 2, 
Q, 2A(f+1) \P (^)) = Q 2A(f+l) \£) + C;+2Af, 2A(r+l) (Z) • (17) 

We let Z = D2^'+1)<m-l\X) in (17), note that 2' +2t+l •{m-\) = 2'+l-m-2t, and use (15) and 
(16) to get 

Now we let Z = D2^'+1>m-2"'(X) in (17). This gives us 

Q. W^^w)=c;,2A(,+ 1 )(^2 A ( r + 1 ) m-2 A ,(^)) 
(19) 

+ q+2A
I,2A(,+i)(^A('+1)-m-2ArW). 
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We rewrite (19) using (18) and the fact that Q,2A(f+1)(D2A(r+1)'m(X)) = C,w2«0+1)(X): 

q,2,(,+1)(X) = J D ^ ( q . 2 , ( t + 1 ) ( ^ ) ) + q 2 A ( f + 1 ) ( ^ ( ( + i ) - 2 ^ ( x ) ) 

or 

Q+^,2^+1)P2A( '+1 )-m-2A'(^))=JD¥(q,2^( (+i)(x))+q,2^+1)(^). (20) 
Comparing (13) to (18), we see that 

Q W^'-""*V))= q (̂(+1)(^2A(,+1)m-2A'(^)) 
for i = 1,..., 2\ and comparing (14) to (20), we see that 

Q+2Af,2A(f+l)C^ (^0) = Q+2Af,2A(H-l)V^ (^0) 

for i = 1,...,, 2\ Hence D^'^XX) = I ) 2 ^ 1 ^ - 2 ^ ^ ) . This, in turn, implies that D2^'m{X) = 
D2*(t+l>%X) = X. D 

Thus we have completely characterized the period of a cycle of/i-tuples. We summarize the 
results of the last three theorems in the following corollary. 

Corollary 3: Let n - 2s • q, where s > 1 and g is odd with q > 1. Suppose Jf is an /i-tuple which is 
contained in a cycle of period k. Let m = 1cm (&1? &2,..., i2Aj), where &, is the period of the cycle 
containing Q 2*s (^0 • Then k = 2t • 1cm (&1? k2,..., k2^s) for some 0 < t < s if and only if 

Q+2/"t,2/K(t+l)(^0 = Q,2A(t+l)(^) + ^ 2 (Q,2A(H-1)(^0) 

for i = 1,..., 2r, where ^ is as small as possible. If no such t exists, then k-2s-m. D 

We now show that there is a cycle for each possible period. Although there are many ways 
to do this, we will continue to use the compression functions. 

Theorem 7: Let n = 2s -q, where s> 1 and q is odd with q> 1. Suppose there is a cycle of q-
tuples of period m. Then, for 0 < t < s, there exists a cycle of w-tuples of period 2{ • m. 

Proof: For 0 < r < s-1, suppose there is a (2*_1 -g) -tuple A that is contained in a cycle of 
period 2r «/w. By hypothesis, this holds for s = 1. Consider the (2s -^-tuple X = E^2{A). Now 
C1?2(X) = A and C2,2(J0 = (0,0,..., 0). By Corollary 1, X is in a cycle. By Theorem 4, the 
period of the cycle containing X is either 2r -m or 2-(2r -m). Assume the period is 2r -m. For 
r > 0 , 

±Eu2{Ch2(X)) = X = D^m(X) = t^aC/^^-CQ.aW)). 

Thus, D2A(r-1)w(Cu(X)) = CU(X); i.e., D2A(r-1)w(^) = 4 . This implies that A is in a cycle with 
period less than or equal to 2r~l-m. This contradiction shows that the period of the cycle con-
taining X is 2 • (2r • w) = 2r+1 • m when r > 0. On the other hand, if r - 0, then 

Cl2(D-\X)) = D^(Ch2(X)) = D^(A) 
and 
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C2a{D""\X)) = D-(CX2{X)) = (0,0,..., 0). 

Since 

cl2(Dm(X)) = cU2{ir-\x))+c2A(ir-\x)) = D^A) * A =cl2(x), 
we see that Dm{X) ^ X. Hence the period of the cycle containing X is 2-m when r = 0. There-
fore there are cycles of (2s -q)-tuples with period 2f -m for 1 < t < s. 

We now show that there is a cycle of (2*-g)-tuples with period m. Suppose there is a 
(2s~l • q)-tuple B that is contained in a cycle of period m and for which each Ci2*(s-i)(B), ' = 1, •••, 
2s~l, is also contained in a cycle of period m. By hypothesis, this holds for s = 1. Consider the 
(2*-g)-tuple 

7 - £ u ( 5 ) + £2 j2(5 + i ) ^ ( 5 ) ) . (21) 

Now Q 2(7) = 5 and C2 2(7) = 5 + D^"(5); C2 2(7) is also in a cycle of period m. Thus 7 is in a 
cycle. We want to use Corollary 3 to show that the period of the cycle containing 7 is m. Note 
that 

Q,2^00 = Q±i,2-(S-i)(B) w h e n j i s odd> 
Q,2**(Y) = Cif 2A(,_1}(5 + D^(5 ) ) when / is even. 

By assumption, when i is odd, the period of the cycle containing Cu2^s(Y) is rn. To show that this 
is also the case when i is even, it suffices to show that the period of the cycle containing 
C/f2A(,_i)(5 + Da^"(5)) is m for j - 1,..., 2s~l. Since gcd(/w, 2s~l) = 1, there exist integers g and h 
for which 

i - i . m + \ g-m + h-2s~l = 
z, 

Either g or h is positive, but not both. Suppose g > 0 and /i< 0. Then 

5 = Dgm(B) = D-h'2^"l\Da^(B)), 

which implies 

< W „ ( 5 ) = ZT*(C,. ̂ ^ (£^ (5 ) ) ) . 
Hence, Cj 2^s_Y)(D~ir(B)) is in the same cycle as Cj^^B). Since this cycle has period m, the 
cycle containing Cj 2^s_l)(D~I~(B)) also has period m. In a similar manner, it can be shown that 
this is also the case when g < 0 and h > 0. Since the cycle containing Q 2*S(Y), / = 1,..., 2' , has 
period m and since (21) holds, Corollary 3 implies that the cycle containing 7 has period m. D 

For a given w, the maximal period of cycles of Ducci-sequences is denoted by P{n). By Cor-
ollary 3, if n = 2s - q, where s > 1 and g is odd with q > 1, then P(??) divides 2* • P(#). We now 
show that, in fact, P{n) = 2s • P(q). This result appears in [2]; the proof there uses matrices and 
the fact that the cycle which has maximum period is generated by the ft-tuple (1,0,..., 0,0). We 
offer a new proof here based on the compression functions. The result follows immediately from 
the proof of Theorem 7. 
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Theorem 8: hQtn = 2s-q, where s> 1 and q is odd with q>\. Then P(n) = 2s• P(q). 

Proof: Let ^ be a g-tuple that is contained in a cycle of period P{q). Then the proof of 
Theorem 7 shows that the (2*-^)-tuple X = Eia^s{^) = El2{Eh2(.,.Eh2{X))) is in a cycle of 
period 2s- P(q). • 
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The identity 

1. INTRODUCTION 

!=io,(B+£"1). CD 
k=\ V 

where the C™'s are Eulerian Numbers, was known by Worpitsky [16]. Eulerian numbers satisfy 
the recursive relation 

qr=(i»+i-*)cn1+«ri o 
for 2 < k < m-1 and Cf* = C% = 1. This can be proved by induction, see Stanley [13], and is also 
proved by Carlitz [4], [5] and by Krishnapriyan [11] in different ways. 

nm can also be expressed as a linear combination of binomial coefficients in the form 

»m=XAm(£), (3) 
k=\ 

where the DJ? coefficients satisfy the recursive relation 

D? = k(D£ + Drl) (4) 

for 2 < k < m-1; also Df = 1 and D% = m\, which is not difficult to check using induction. The 
uniqueness of the C and D in formulas (1) and (3) is also easily proved. 

The C numbers form the following triangular array: 
1 

1 1 
1 4 1 

1 11 11 1 
1 26 66 26 1 

where the Pascal-like formation rule is given by formula (2). The D numbers form the array: 
1 
1 2 
1 6 6 
1 14 36 24 
1 30 150 240 120 

where the formation rule for this table is given by formula (4). The D numbers are related to the 
Stirling Numbers of the Second Kind S" by the expression D™ = k\S™, which is easy to prove by 
considering the recursive relation 
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Thus, we can deduce 

which is studied in several combinatorics textbooks, (see, e.g., Aigner [1] or Stanley [13]). 
We can use expressions (1) and (3) to obtain formulas for the sum of powers Sm(ri) = \m + 

2m + • • • + nm. Adding terms, and using the identity 

we deduce 

* » = Z<7fc*i) (5) 
and 

where the C and D coefficients are defined by (2) and (4). Many papers have been written con-
cerning formulas for Sm(n). Perhaps the best known formulas express this sum as a polynomial in 
n of degree m + l with coefficients involving Bernoulli numbers. See, for example, the papers by 
Christiano [6] and by de Bruyn and de Villiers [7]. Burrows and Talbot [2] treat this sum as a 
polynomial in (n + l/2), and Edwards [8] expresses the sums Sm{n) as polynomials in X& and 
Z £ 2 . Formulas (5) and (6) express this sum as linear combinations of binomial coefficients. For-
mula (5) is also discussed by Graham et al. [9]; Shanks [12] deduces (5) by considering sums of 
powers of binomial coefficients. Hsu [10] obtains formula (6) by studying sums of the form 
T!l=0F(n, k)kp for different functions F(n9 k) and expresses these sums as linear combinations of 
the D™ coefficients. 

The combinatorial significance of Eulerian numbers is known. In Section 2 we discuss a 
combinatorial meaning of Dj£ and deduce some nonrecursive formulas for both C and D numbers 
by combinatorial means. 

In Section 3 we show that the C and D numbers satisfy the inversion formulas 

/=oV 
and 

cr=X(-iy(m~f+/W 
We then use these to obtain a number-theoretical result analogous to the well-known fact that 

whenever/? is a prime and l<k <p-l. 
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2. COMBINATORIAL MEANING 

The combinatorial significance of the Eulerian numbers is known. Cp is the number of per-
mutations PiP2---Pm of {1,2,...,/w} that have k-1 ascents [9, pp. 253-58], that is, k-l places 
where Pj<pj+V 

A combinatorial meaning of the D numbers is given by the following proposition. 

Proposition 2.1: Dk is the number of surjective functions from the set {1,2,..., m) onto the set 
{1,2,..., k). 

Proof: Consider the number of w-tuples {a^a2,...,am), where l<az <n, i = 1,2,...,wi. We 
have a total of nm different w-tuples. 

Now, the total number of different w-tuples is equal to the number of /^-tuples whose ele-
ments are equal plus the number of w-tuples whose elements are two different numbers, and so 
on. 

Since the number of subsets of k elements of a set of n elements is given by (£), the number 
of w-tuples whose elements are k different numbers is Ek(n

k), where Ef is the number of 
w-tuples with k different numbers, which is equal to the number of surjective functions from 
{1,2,..., m] onto {1,2, . . . , * } . Hence, 

By unicity of the Dp, we conclude that Dp = Ep. 

We shall now deduce a formula for Dp. 

Proposition 2.2: The number Dp is given by 

Dp = Z-T
Jf r, (7) 

where the sum is taken over all the positive integer solutions of the equation 
xl+x2 + '- + xk =tn. (8) 

Proof: By Proposition 2.1, Dp is the number of surjective functions from {1,2, ...,m} onto 
{1,2,..., &}, so we count the w-tuples formed "using" all the numbers 1,2,..., k. 

To form an w-tuple with the numbers 1,2,..., k, we use the number 1 xx times, the number 2 
x2 times, and so on up to the number k xk times, so that xx + x2 + —h xk = m and xt > 1 for 
i = 1, 2,..., k. For each solution to this equation, we have 

ml 
xx\x2\...xk\ 

ways of ordering the numbers 1,2,..., k in the w-tuple. Therefore, 

DP = Z- ml 
' xx\x2\...xkV 

where the sum is taken over all positive integer solutions of equation (8). 
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Note that the expression 
ml 

is equal to the multinomial coefficient 

( m \ 

which is the coefficient of a^a^2 ...a£k in the expansion of (ax + a2 + —hak)m. For a discussion 
of multinomial expansions, see Tomescu [14, p. 17]. Thus, we have the expression 

4F=EUX,:...: 
Other formulas for both D% and Q1 can be obtained. The expression 

fr-i 
^=i(-iy(J)(*-yr 

can also be obtained by counting functions from {1,2,...,m} onto {1,2,..., k}, see [14, pp. 41-48]. 
The expression 

c?=i(-iy(w,t1)(*-yr 
for the Eulerian numbers appears in papers by Carlitz [4], [5], and by Velleman and Call [15]. 

We are particularly interested in formula (7) because, from it, we can easily deduce that if/? is 
a prime, then 

[1 (mod/?) if* = l, 
JO (mod/?) if 2 <k<p. D£ = L ) , ' •^,1\ (9) 

We will use this result in Section 4. 

3. INVERSION FORMULAS 

In this section we discuss inversion formulas between the C and D numbers discussed above. 
For the purposes of this section, let us extend the definition of the C and D numbers by 

Um+i-kyczf+kcr1 \n<k<m, (l0) 
[0 otherwise, 

and 
j^\KD^l+Drl) \f\<k<m, ( n ) 

[0 otherwise, 

with C\ = D\ = 1. Clearly, these formulas are extensions of (2) and (4) above. For the proof of 
the next theorem, we will use the following identities: 

(m + l)(w + 1 7 * + l"W (12) 
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/• , ^(m + l-k + i^) , (m + l-k+i\ , j , ^(m + l-k + i\ r,^ 
0 + 1)( ,-a.i 1+ i \ = (m-k + 2)\ . ]; (13) j ' + l 

7=0 z<-»CT 1 if* = 0, 
0 if ! < & < « . 

(14) 

Expressions (12) and (13) are easy to verify using the definition of the binomial coefficient, while 
expression (14) is proven by induction (see [14, p. 20, prob. 2.15]). 

Now we state the following theorem. 

Theorem 3.1: The numbers Cf and Z)f are related by the inversion formulas 
k-i 

Am = Z m-k+i C'tn 
k-i 

and 
/=o 

k-l if m-k + i 

i=0 
'k-i • 

(15) 

(16) 

Proof: We first prove (15). This will be done by induction on m. It is easy to verify that 
formula (15) is true for m = 1, so assume it is true for some m. We need to show that 

k-\, y fm + l-k+i i^w+i _ nm+i 
7=0 V 

C'/w+i _ pin 
k-i ~ Uk 

In order to simplify the notation, let 

<€ = l f W + 1r* + l ] c n 1 . Q = C?w, and C ^ C ^ . 
7=0 V / 

By (10), properties of sums, and Pascal's identity, 
k-i 

7 = 0 

k-l 

^ = W « + 1 A : + / j [ ( * - / ) q , + ( i » + 2 - A + / ) Q ] 

7=0 

A r — 1 

ifc-2 

= Z(*-or+17*+, ']q, + Z('»+2-*+oh+17*+,'|Q 

=K*-o 7=0 

fc-1 

7=0 

* - l 

' 7=0 

m-k+i\ (m-k + i 
i r / - i 

Jt-2 

I 
7=0 

Q + ^ ( / I I + 2 - A H - / ) 
m + l - £ + / Q 

m-k+i k-i 

Q-Ii .(m-k + i 
7=1 

7 = 1 

A r - l 

m-k + i 

i 

k-2 

Co 

+ Z(*-0r7_Y' q, + I(w+2-A+o 
7=0 

m + l-k+i Q 

k-2 

7 = 0 ^ ' 7=0 ^ 
Jfc-2 

+ £(*-/-l) 
7=0 

W - & + / + 1 
i 

I 

k-2 

cl+Y,(m+2~k+0 
7=0 

/W + 1-A+/ Q 
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k-l 

Using identity (12), 

rn-k+i k-2 

Co + S 
;=0 

(m + l)\m + l:k + i)-(i + l)(m+}-* + i Q. 

/=o v ) 7=0 a 
Finally, by our induction hypothesis and (11), 

Similar inductive reasoning, using identity (13), proves formula (16). Another way to prove 
(16) is by expressing relations (15) and (16) in matrix form, Cc = d and Dd = c, where 

c = 

fCm\ 
r*m l_2 

. C , V~mJ 

d = 

fDm\ 

D" 

yDmJ 

c= 

(V) ° 
r1) (V) 

#w-l] (m-2 
m-lj [m-2 

0 

0 

and 
f fm-\ 

0 
m-

3 = r1) 
0 

m-2 
0 

m-2['m-2 
m-2 

and verifying that CD = Im, where Im is the mxrn identity matrix. 
The 1,7* term of C is given by 

iJ v-jf 
while the /',7th term of D is given by 

Hence, the 1,7 th term of CD is given by 

If we substitute r for k - 7 , the right-hand side becomes 

0 

0 
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m 

iH>{tr;xv) <i7) 
Now, if r < 0, then (w~y) = 0, and if r > i-j, then ((™Ijfi) = 0. Hence, expression (17) becomes 

!(-<-j?:;)(v> 
which, by (14), is equal to 0 for j +1 < / < m, and equal to 1 if i = j . It is understood that this 
sum is 0 in the case j>i. Therefore, CD =• Im. 

4. CONGRUENCES MODULO A PRIME 

Now let us go back to our result (9), which stated that, ifp is a prime, then 

fl (modz?) if* = l, 
k (0 (mod/?) if2<k<p. v } 

For instance, the fifth row of the table formed by the D numbers is 1, 30, 150, 240, 120, and we 
see that all these numbers, except for the first one, which is equal to 1, are multiples of 5. This is 
analogous to the well-known fact that, ifp is a prime number, then 

p \ \ l (modp) if k = 0 ork = p, 
* J [ 0 (modp) ifl<k<p-l { ) 

We will prove that statement (18) is equivalent to the statement 

C£ s i (mod/0 (20) 

whenever p is a prime and 1 < k < p. For instance, in the fifth row of the table formed by the 
Eulerian numbers, 1, 26, 66, 26, 1, all the numbers are congruent to 1 modulo 5. 

For the proof of the equivalence of these two statements, we will use the following identity, 

gC-f+')-(*-.) 
which is not difficult to verify by induction on n, together with the statement, 

(-1)k_I(fZ1
1)sl (m°d/0, (22) 

which is easy to show using (19) and Pascal's identity (see [3, p. 96. prob. 12]). 
Now we prove the equivalence of statements (18) and (20), which we state as a theorem. 

Theorem 4.1: Ifp is a prime, then statements (18) and (20) are equivalent. 

Proof: Assume that (20) is true. For k = l9 D[ = 1 = 1 (modp). By Theorem 3.1, we have 

*-%{"-!*')<*<• 
Then, using (20) and identity (21), for 2 < k < p, 
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A ' - | ( " - f + ' ) = (/„I).o(modP>. 

Conversely, assume statement (18) is true. By Theorem 3.1 and (22), 

^= | 1 ( - iy ( / ' " l * + ' ) ^*H) t - i ( f : 1
1 ) - i (mod^. 

Theorem 4.1 and the validity of (18) imply the validity of (20). We see that this theorem, 
together with Theorem 3.1, shows a strong relationship between the two sets of numbers C™ and 
D%. We expect this relationship to have a combinatorial significance as well. 
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1. INTRODUCTION 

Consider the second-order linear recurrences defined by 
Un+2 = P u * + l ~ QUn> U0 = °> Ul = *> 0) 
Vn+2 = PVn+1 ~ &n> ^ =2yV, = P, ( 2 ) 

and 
wn+2 = PWn+i ~ Qwn> wo> wi arbitrary. (3) 

The sequences (un) and (vn) were studied extensively by Lucas [17], and the sequence (wn) 
was popularized by Horadam [10], [11], [12], and was also studied by Zeitlin [23], [26], [27]. 
The sequence (un) is known as the fundamental Lucas sequence and the sequence (vn) is known 
as the primordial Lucas sequence. 

The relationship between wn and the pair of sequences un and vn is well known. Horadam 
[10] gives several formulas for wn\ 

W„=(Wl-PW0>n+W0Un+l> (5) 

Wn=WlHi-fiW0Vl- (6) 
In [19], it was shown that Algorithm LucasS impl i fy could be used to prove any poly-

nomial identity involving expressions of the form uan+b and van+b. Since w„ can be expressed in 
terms of un and vn, this means that we can algorithmically prove any polynomial identity involving 
expressions of the form wan+b using Algorithm LucasSimpl i fy . 

However, Algorithm LucasSimpl i fy , when applied to an expression involving w's will 
return a simplified expression involving w's and v's. Since it may be of interest to get results in 
terms of w's, we will now develop new algorithms that can be used to transform expressions 
involving Vs from one form to another. 

For example, Melham and Shannon [18] found an "addition formula" for simplifying wm+n\ 

w A2™m+l-PWm>n+WmVn 

Unfortunately, this formula involves the sequences (un) and <vw>. We call an identity impure 
if it contains terms involving w's or v's. Otherwise, if the identity only involves w's, we call it pure. 
It is our goal to find a pure formula for wn+m and related expressions. 
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2* OVERVIEW 

Two expressions occur frequently enough that we shall give them names: 

D = P2-4Q and e = w0w2-wf. (7) 

Since w2 = Pwx - Qw0, an equivalent formula for e is 

e^Pw^-Qw^-wf. (8) 

The quantity!) is the discriminant of the characteristic equation for the recurrence, and the quan-
tity e is known as the characteristic number of the sequence [2], [1]. Throughout this paper, we 
shall assume that 

g^O, D^O, and e^O. (9) 

In Section 3 we develop the Purification Theorem, which shows how to transform impure 
identities into pure identities. In subsequent sections, we then find the pure analogs (for wn) of all 
the classic identities known for un and vn, either by giving a reference to the literature where the 
pure identity was discovered, or by deriving the pure identity ourselves. If a simpler proof of the 
result can be given without using the Purification Theorem, then we present the simpler proof. 
We then give algorithms that allow pure expressions to be transformed from one form to another. 

3* THE PURIFICATION THEOREM 

To achieve our goal of finding pure identities, we need only express u„ and v„ in terms of 
members of the sequence (wn). 

Theorem 1 (The Purification Theorem): Any identity involving w's, v's, and w's can be trans-
formed into a pure identity (involving only w's). In particular, 

_w0wn+l-wlwn 
n~ e 

(10) 
(Pw0 - 2wx)wn+l - (2Qw0 - Pwx)wn 

e 
Proof: Algorithm LucasS impl i f y allows us to express both wn and wn+l in terms of u„ 

and vw. Solving these two equations for ww..and vn gives us formula (1-0). Thus, any expression 
involving w's and v's can be transformed into expressions involving w's. • 

4. THE ADDITION FORMULA 

The addition formulas for un and vn are well known: 

um+n , f\ 5 

(11) 

We would like to find a similar formula for wm+n. Horadam [10] gives several such formulas: 

v =
VmVn + DumUn 

m+n j 
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wn*m = ("m+1 ~ Pum)W
n + UmWn+U 

(12) 

W , = wm_jUn+J+l - Qwm-j-\Un+i> 

however, these are all impure. 
Applying LucasS impl i f y to um_1 gives um_l = (Pum-vm)/2Q. Substituting this value of 

um_l into Horadam's addition formula (12) and then applying the purification theorem gives us: 

w = (WQWm+l ~ WlWm)W
n+l - (WlWm+l ~ W2Wm)Wr, 

wn+m 

We state this in another form in the following theorem. 

Theorem 2 (The Addition Formula for w): For all integers n and rn, 

w0 
w„ 

wt m+l 
W„ Wt n+\ 

(13) 

5. THE NEGATION FORMULA 

Having found the addition formula entirely in terms of w's, we now proceed to express all the 
other standard formulas in the same manner. 

Horadam [10] expressed the negation formula in the following ways: 

w-„ = 2""KM„+i-wiM„); 

He also found the interesting formula: wnw_n = WQ + eQ~"u%. 
Unfortunately, these formulas are all impure. We can use the purification theorem to remove 

the w's and v's to arrive at a pure negation formula. 

Theorem 3 (The Negation Formula for w): For all integers n, 

_ (wf - Qwl)wn + w0(Pw0 - 2^)>v„+1 
w eQ" 

1 
eQ" w„ w, n+l 0 

(14) 

Solving equation (14) for wn+l gives us a useful formula that allows one to express wn+l in 
terms of w„ and w_„. 
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Theorem. 4 (The Symmetrization Formula): For all Integers n, 
_(wl-Qw2

0)wn-eQ"w_„ 
W - - w^-PwJ ' (15) 

provided that the denominator is not 0. 

6, THE SUBTRACTION FORMULA 

Melham and Shannon [18] expressed the subtraction formula in the following form: 

Again, this is an impure formula. We can now combine the negation formula with the addi-
tion formula to get a pure subtraction formula. 

Theorem 5 (The Subtraction Formula for w): For all integers n and m, 

1 
eQ» Qy»n 

vm+l 

(16) 

Proof: Horadam [10] found wn+m + Qmwn_m = wnvm. Solve for wn_m and then expand wn+tn 

by the addition formula and express vm in terms of wm and wm+l by the purification theorem. 
Upon simplifying, we get the desired result. D 

7. THE BINET FORM 

The Binet form (see [10]) for wn is given by the following theorem. 

Theorem 6 (The Binet Form): If rx and r2 are the roots of the characteristic equation 

x2-Px + Q = 0, 
then 

w„ = Ar? + Bif (17) 

where 

A=^zm. and B=mz3,. (18) 
h-r2 rx-r2 

This generalizes the result for Fibonacci numbers found by Binet [3]. 

Note that rx & r2 since P2 - 4Q * 0. One should also note that 
AB = jr and A+B = w0. (19) 

We also have 
ri-r2 = ^D. (20) 

Since wn+l = (Ar^r" + (Br2)r2, we can solve the system consisting of this equation and equa-
tion (17) for r" and r2. We get the following: 
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„ = ™n+i-r2wn a n d n = wn+l-rlWn 

wx-r2w0 Wi-rxw0 

These formulas may be used to replace powers of rx and r2 (with variable exponents) by simpler 
expressions involving rx and r2. 

If we let xn = wn+l - Qwn_x, then xn may be considered to be a companion sequence to wn, in 
the same way that vn is the companion of un. A little computation shows that 

r\ = j (x» +wn(h -ri))l(wi -Wo)-

This gives us the following theorem, since (rx)k = rx
n. 

Theorem 7 (De Moivre's Formula for wj: If xn = wn+l - Qwn_x and c - wl-r2w0 ^ 0, then for 
all integers k > 0, 

\+w w VZ)Y = xkn+wknjD 

This theorem is so named because of its resemblance to de Moivre's trigonometry formula. If 
<ww> = <ww>, we have 

fvw+yJZ)Y = vfa + i/faVD 

I 2 J " 2 ' 
8. SIMSON'S FORMULA 

In 1753, Robert Simson [21] found the formula 

Fn_xFn+l-Fn =(-1)". 

The analog for the sequence (w„) was found by Horadam [10]. 

Theorem 8 (Simsonfs Formula for w): For all integers n, 
™„-Vr,+l-w2

n=Q"-le- (23) 
Theorem 8 can also be expressed in the following manner: 

> w + 2 - ^ 2
+ i = e v (24) 

Horadam [10] also found the following generalization of Simson's formula. 

Theorem 9 (Catalan1 s Identity for w): For all integers n and r, 

wn+rwn-r-w2n=eQn~r^. (25) 
This generalizes a result found by Catalan for Fibonacci numbers in 1886 [4]. 

The determinant form of Simson's theorem is 

w, 
W" l = Q"e. (26) 
71+1 | 
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Horadam [10] generalized this to 

w w 
wM 

= Qn reurur+t, (27) 

which extends a result for generalized Fibonacci numbers found by Tagiuri [22] in 1901. Horadam 
and Shannon [13] expressed this as 

"WC = ^Q\us (28) 

In this form, it generalizes a 1960 result for Fibonacci numbers [7]. The special case of identity 
(27) when r = 1, n - a +1, and t = b-a-l is of interest. 

Theorem 10 (DfOcagmefs Identity for w): For all integers a and b, 

wn wh Qaeub_a. (29) 

This generalizes a result found by d'Ocagne for Fibonacci Numbers in 1885 [6]. The special 
case of formula (27) when n = a + r and t -b-a-r is also of interest: 

w„ wh 
yb+r 

••Qaeurub_a. (30) 

This formulation (with a = n and b-n + s) comes from [13]. Catalan's identity can be expressed 

Letting r = 1 and r - 2 in this formula and multiplying the results together yields a polynomial 
with wA

n and w\ terms. The w% term can be made to vanish in the case in which Q = -P2. This 
gives the following result. 

Theorem 11: If P2 + Q = 0, then 

^-^n^n-^n^n^W^)1- (31) 

This generalizes the identity Fw
4 - Fn_2Fn_lFn+lFn+2 = 1 that was stated by Gelin in 1880 and 

proved by Cesaro [5]. For another generalization of the Gelin-Cesaro identity, see [13]. 

Letting r = n'm formula (25) gives another interesting case. 

Theorem 12: For all integers n, 

WnW, O^ln 
2 2 

-wi=eui. 
(32) 

Gilbert [8] found an interesting pure formula in the form of a 3 x 3 determinant. 

Theorem 13: For all integers a, b, c, x, y, and z, 

^a+x Wa+y Wa+z 
Wb+x Wb+y ™b+z 
Wc+x Wc+y Wc+z 

= 0. (33) 
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9. CHANGE OF BASIS 

We often wish to change an expression involving wn and wn+l into one involving wn+a and 
wn+b for two distinct integers a and h. 

Theorem 14: For all integers n, 

w„} 1 (w* -wn ]( wh 
Wa+lWb-WaWb+AW2 -WlAWb+l -Wa+lAWn+b 

(34) 

Proof: Use the Addition Formula to express wa+l and wb+l in terms of wn and wn+l. This 
gives two equations in two variables wn and wn+l. We can thus solve for these variables. Putting 
the result in matrix form gives the above formula. • 

Note that the basis change is not always possible. The denominator can be written in the 
form -Qaeub_a by formula (29). Thus, the change of basis is possible if and only if ub_a * 0. 

10. THE FUNDAMENTAL IDENTITY 

Theorem 15 (The Fundamental Identity): The fundamental identity connecting wn and wn+l is 

Pw^n+i-QWn-wl^eQ"- (35) 
Proof: This follows immediately from formula (24) after replacing wn+2 by the value given in 

equation (3). D 

This result is not new; it is equivalent to Simson's theorem. If a is a constant, then the funda-
mental identity connecting wn and wn+a is 

vA^-0X2-^L^eX2 (36) 
This was obtained by using formula (34) on the fundamental identity, changing the basis from 

{wn, wn+l} to {wn, wn+a). Changing n to x and n + a to y gives the fundamental identity connecting 
wx and wy: 

vy_xwxwy - Qy~xw2
x -w2

y= eQxu2
y_x. (37) 

11. REMOVAL OF P AND Q 

It is occasionally useful to be able to remove the quantity P from an expression. If the expres-
sion is a polynomial in the variables P and wc. where the q are constants and if P always occurs in 
a product with one of the wc., then we can use the following results to accomplish our goal. 

Theorem 16: If £ is a positive integer, then 

^o = t(fjQJ^-2j- (38) 

Applying the translation theorem (see Section 17) yields 

Theorem 17: If k is a positive integer and r is an integer, then 
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Pkw. 
7=0 V J y 

k+r-2J • (39) 

We also have 

Theorem 18: If k is a positive integer and r is an integer, then 

Qkwr = ( - l )*i(*)(- iyiw, = tjj)<rtf P-'Vk+r+j • (40) 

12. THE DOUBLE ARGUMENT FORMULA 
Horadam [10] found the double argument formula in the following form: 

p\n-J 
W 

Q) -J ^--«*Wl-i (41) 

However, this is not a closed form. 
Horadaim also found a closed form (for wQ ^ 0): w2rl = (w* + eu%) /w0. Shannon and Horadam 

[20] found the double argument formula in the following form: w2n - vnwn-w0Qn. 
Unfortunately, both these formulas are impure. To get a pure formula, let m — n in the addi-

tion formula. We obtain the following result. 

Theorem 19 (The Double Argument Formula for w): For all integers n, 

W2n = 
w2w2

n - 2wxwnwn+l + w0w2„+l _ 

13. FORMULAS FOR wt 

— 
wo Wl w 
*>l W2 Wn+\ I 
Wn Wn+l 0 

w0 wl 

w, w2 

(42) 

kn 

To find expressions for wkn where k is a positive integer constant, you can use the recurrence 
foundbyZeitlin[24]: 

W, kn = Vr,W(k-l)n-QnW(k-2)n, k^2-

Lee [16] found a more direct formula for multiple argument reduction. For k > 1, 

wk„ = wnS(k)-w0Q"S(k-l), 

where 
L(*-i)/2j/, • , \ 

— l^-J-i)f_n^\j\,k-2j-i 

Jarden [14] found the following interesting formula: 

>^=i(fk(-e»«-i)^ 

(43) 

(44) 

(45) 

(46) 
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Zeitlin has found many related formulas. For example, Zeitlin ([27], eq. 1.14, with m = 0 and 
n = 0) found the following interesting formula: 

1 v (k}rU/2\ j k-j u \W^ if/is even, 
Wt= —r > cf. . \DlJI suJ„v„ ; , where cf = < (47) 

*" 2kp0\JJ n n ' J [ 2 ^ - i V o , if/is odd. V ; 

Formula (46) can be converted into a pure formula for wkn by letting s = 0 and substituting 
un = (w0wn+l - wxw„) I e and un_x = (wxwn+l - w2wn) I (eQ). We get the following. 
Theorem 20: lf&>0, then 

wkn =TY\ i K^r^yK^-^J*~V (48) 

This can be expanded out as a polynomial in wn and ww+1. Computer experiments suggest the 
following result. 

Conjecture 21 (The Multiple Argument Formula for w): If & is an integer larger than 1, then 

e j=0 v / 

where 

14. EXPANSION OF PRODUCTS 

Horadam [10] found 
WnVm=Wn+m+Q>»-m- (51) 

But we would really like to express wnwm as a sum of w's. To do that, we can proceed as follows. 
Changing m to m +1 in equation (51) gives 

WnVm+l = Wn+m+l + Q>n-m-l • (52) 

But it is easy to show that 
A 2J 

—L v -j 
£> m D 

where 

^ = - K v
w

+ - 7 T v
w + i ? (53) 

D = P2-4Q, Di = P2w0-2Qw0-Pwl, md D2 = 2wx-Pw0. (54) 

Multiplying (51) by I\/D, multiplying (52) by D2/D, and adding the results, gives us the follow-
ing theorem. 

Theorem 22 (The Product Formula for w): For all integers n and m, 

V „ = ̂ [0M+1A"V(m+i) + Q"DyW^m + A^„+m + D2wn+m+l], (55) 

where D, Dx, and Z)2 are as given in (54). 
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Applying the symmetrlzation formula and expressing wn_(m+l) in terms of wn_m and wn_m+l 
permits us to obtain another variation of the product formula. 

Theorem 23 (Symmetric Product Formula for w): If w0 ^ 0, then, for all integers n and m, 

WmW" = Ttr[eQ"Wm-" " eQm+"W-»-»> + e®"W»->»+ ^ - eK*,] • (56) 
lfm = n in formula (55), we get 

< = ~{2eQn + Dxw2n + D2w2n+l], (57) 

which can be used to turn squares into sums. Using formula (56), this can also be written as 

Dw0w2
n = (Dw2 - e)w2n + 2ew0Q" - ew_2nQ2". (58) 

Theorem 24: If A: is a positive integer, then wk can be expressed in the form 

7=0 

where cki is a polynomial in d, e, and wQ, with integer-coefficients, where d - Dw\. 

Proof: The proof is by induction. The case k = 2 is given above in formula (58). Assuming 
it is true for wk

n, take the formula for wk
n and multiply it by {DwQ)wn. The symmetric product 

formula then gives the answer in the desired form. D 

15. THE POWER EXPANSION FORMULA 

In 1878, Lucas ([17], §XH) found an explicit formula for wn in terms of w0, wl7 P, and Q (see 
also [25], [12], and [16]). 

Theorem 25: For all n > 0, 

^M=L("i^-u(-0i-{(r-t)^p-("^rOw°4 (60) 

16. THE UNIVERSAL RECURRENCE 

We can solve the system of equations 

for P and Q. Thus, any four consecutive terms of the sequence (wn) are enough to determine P 
and Q. The result is 

We cam substitute these values of P and Q into the identity wn+4 = Pwn+3 - Qwn+2 to arrive at 
a recurrence for (w„) that does not involve P, Q, w0, or wv The result is the following. 
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Theorem 26 (The Universal Recurrence): Any second-order linear recurrence (wn) with con-
stant coefficients satisfies the recurrence 

Wn+4 2 ' ^ 0 Z ^ 

We call this the "universal recurrence" since it is satisfied by any second-order linear recurrence 
no matter what the coefficients or initial conditions, subject only to the restriction that the denom-
inator should not be 0. [This is equivalent to the condition that e ̂  0 and Q ̂  0 by formula (24).] 

The universal recurrence can be written in the form 

Wn+4 Wn+3 Wn+2 

™n+3 ™n+2 ™n+l = 0. (63) 

In this form, the result is due to Casorati. 

17. THE RECURRENCE FOR MULTIPLES 

Zeitlin [24] found the recurrence satisfied by the sequence (wkn), where k is a fixed positive 
integer: 

Wkn = VkWk{n-l) ~ Qkwk{n-2) - (64) 

This recurrence can be made pure by substituting the value for vk given by formula (10). 

Theorem 27 (The Translation Theorem): Let a be a nonzero integer. Given an identity involv-
ing wn, un, and v„, we can create another valid identity by replacing all occurrences of wx by 
wx+a. This operation is called a translation by a. 

Proof: Since the original identity is true for a completely arbitrary second-order linear recur-
rence (wn) it must be true for the particular second-order linear recurrence (wn+a). • 

Theorem 28 (The Dilation Theorem): Let & be a positive integer. Given an identity involving 
wn, un, and vn, we can create another valid identity by replacing all occurrences of wx by w^, 
provided that we also replace ux by % / % , vx by v^, Q by Qk, P by vk, and e by eu\. This 
operation is called "a dilation by k." 

Proof: The sequence (wkn) satisfies the second-order linear recurrence given by equation 
(64). Since the original identity is true for a completely arbitrary second-order linear recurrence 
(wn) it must be true for the particular second-order linear recurrence (wkn). However, this new 
recurrence has different parameters; namely, P' = vk and Q - Qk. If Wn = wkn, then the funda-
mental Lucas sequence (Un) that corresponds to (Wn) would satisfy the recurrence U„ - vkUn_x -
QkUn_2 with initial conditions U0 = 0 and Ux = l. But the sequence %, satisfies this recurrence 
by (64). To meet the initial conditions, we need only scale it down by a factor of uk. Thus, Uk = 
ukn I uk. A similar remark holds for the corresponding primordial Lucas sequence (Vn). 

Thus, if we convert to these new parameters, we should obtain a valid identity. Note that 
-wf, when converted, becomes w0w2k -w%, which is equal to eu\ by Theorem 12. • 
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18. THE RECURRENCE FOR POWERS 

Jarden [15] found the recurrence satisfied by the sequence (w'n), where t Is a fixed positive 
integer: 

Ff + 11 t+i 

S(-iyQ/o-i) /2 
J 

< j = 0 , 

where 

m 
L Ju uxu2 ,,.ur 

= 1. 

(65) 

(66) 

See also [9] and [10] for some related identities. Zeitlin [23], [26], has found many other 
identities involving powers ofw% 

19; THE ALGORITHMS 

We now summarize the algorithms found earlier in this paper. For the reader's convenience, 
we repeat some of the earlier formulas (leaving their original formula numbers). All of the algo-
rithms listed here have been implemented in Mathematica™, and are available from the author via 
e-mail. 

Algorithm ConvertToUV-to convert an expression involving w's into one involving z/'s and v's: 
Apply the substitution 

(2n/1- iVQ)if> t+iv0vw 

2 
w = • (4) 

Algorithm ConvertToW-to convert expressions involving w's and v's into expressions involving 
w's: 

Apply the identities 

_ (Pw0 - 2w{)wn+l - (2Qw0 - PwY)wn 

(10) 

Algorithm WReduce-to remove sums in subscripts: 
Repeatedly apply the addition formula 

Wn Wn+1 0 

Algorithm WNegate-to negate subscripts: 
Use the identity 

= Ot2 - Qy*l K+^o(^o - 2wx)wn+l 
eQ" w_ 

(13) 

(14) 
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Algorithm WShif t - to change basis: 
To convert an expression involving wn and wn+l into one involving wn+a and wn+b, apply the 

substitutions 
W» ^ 1 \"\ ~w0 || wb ~wa |[ wn+a | (34) 

Algorithm WExpand-to turn products into sums: 
Repeatedly apply the substitution 

W*Pn = ̂ [2W+1A^-(W+l) + QT^n-m + A ^ * + A^WflL (55) 

where D = P 2 - 4 g , £\ = P 2 w 0 -2gw 0 - /V 1 , and D2 = 2wx-Pw0. 

Algorithm WRemoveP-to remove P in coefficients with terms involving wc: 
If c is a constant, use the identity 

k 
Pkw, ^ ( k c-Znjex+c-2y. (39) y=o 

Algorithm WRemoveQ-to remove Q in coefficients with terms involving wt 

If c is a constant, use the identity 
k 

M K \( 1\J Dk-J' 
yk+c+j • =g(*)-i,̂ -A e^II 'K-iV'Sw («>) 

Algorithm RemovePowersOf WPlusl-to remove powers of wn+l: 
Use the identity 

<i = P^n^l-Q^l-^ (67) 
repeatedly until no wn+l term has an exponent larger than 1. This identity comes from formula 
(35). 

Algorithm RemovePowersOf W-to remove powers of wn: 
Use the identity 

w2 = Pw„wn+l-w2
n+l-eQ" 

repeatedly until no wn term has an exponent larger than 1 This identity comes from formula (35). 

Algorithm RemovePowersOf Q-to remove variable powers of Q. 
To remove any expressions of the form Qan+b from an expression, where n is a variable and a 

and b are independent ofn with a * 0, write Qan+b as Qb(Qn)a ifa>0 and as Qb(Q~n)~a if a < 0. 
Then replace g±w by the substitution 
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which comes from formula (35). If a < 0, we cannot In general replace Qan by any polynomial in 
the w's with subscripts consisting only of positive multiples of n. However, if Q happens to be a 
root of unity, then simplification is possible. The cases Q = -1 and Q = 1 frequently occur and are 
of this form. Let m be the smallest positive integer such that Qm = 1. Write Qan+b as QbQan. Let 
b be the residue of a modulo m, i.e., the positive integer such that 0 < b <m and b = a (mod m). 
Then Qa = Qb, so we can replace Qan by Qbn with b > 0. If b > 0, we proceed as in the previous 
case. 

Definition: A w-polynomial is any polynomial f(xu x2,..., xr) with constant coefficients, where 
each xi is of the form wx9 ux, vx9 or gx , with each x of the form a ^ +a2w2 + ••• +aknk +b, where 
b and the a7 are integer constants and the nt are variables. For purposes of this definition, the 
quantities P, Q, w0, and wx are to be considered constants. 

Algorithm WSimplif y-to convert an expression to canonical form: 
INPUT: Aw-polynomial. 
OUTPUT: Its "canonical form". Two expressions that are identical will have the same canonical 
form. In particular, an expression is identically 0 if and only if its canonical form is 0. 

Step 1. [Convert to w.] If any expression of the form ux or vx occurs, apply Algorithm 
ConvertToW to remove it. 

Step 2. [Remove variable sums in subscripts.] If any expression of the form a^+aj^ 
occurs in a subscript, apply Algorithm WReduce to remove such sums. Treat axnx -
a2n2 as a1nl + (-a2)n2. 

Step 30 [Make multipliers positive.] All subscripts are now of the form an + b9 where a and 
b are integers and n is a variable. For any term in which the multiplier a is negative, 
apply Algorithm WNegate. 

Step 4. [Remove multipliers.] All subscripts are now of the form an + b, where a is a non-
negative integer, b is an integer, and n is a variable. If a > 1, write an + b as n + n + 
—\-n + b with a copies of n and then apply Algorithm WReduce repeatedly until all 
these subscripts are of the form n + c, where c is an integer. 

Step 5. [Remove constants in subscripts.] If any expression of the form n + b with b ^ 0 and 
b & 1 occurs in a subscript, apply Algorithm WReduce to remove such sums. 

Step 6. [Remove powers of ww+1.] If any term involves an expression of the form w^+h 

where k>\ and n is a variable, apply Algorithm RemovePowersOfWPlusl to 
leave only linear terms in wn+l. 

Step 7e [Evaluate constants.] If any term involves an expression of the form w%, where c is 
an integer constant, replace wc by its numerical equivalent. If the symbols D or e 
occur, replace them by their equivalent values from formula (7). 

Step 80 [Simplify powers of Q.] If Q is a primitive ftfi1 root of unity, then replace all con-
stants appearing in an exponent with base Q by their residues modulo m. 

The canonical form is a polynomial f(xh x2,..., xr) with constant coefficients, where each xt 

is of the form wn, wn+h or Q±Tli, where the nt are variables, and the degree of each w +l term is 0 
or 1. If Q is a root of unity, then no exponent with base Q is negative. 
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Alternatively, to prove an identity, you can apply Algorithm L u c a s S i m p l i f y and show 
that the resulting canonical form is 0. 
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In Memoriam 

* v~" : t 

Richard Spain Vime (1913-1999) 
Richard Vine, retired subscription manager of The Fibonacci Quarterly (17 years), 

retiree from Lockheed, active participant in professional and community theater, avid 
tennis player, took his final bow and left this stage of life on January 25, 1999, after a 
long fight with bone cancer. Richard sends the following message to his friends in the 
Fibonacci Association: "It was a wonderful life; please think of me kindly and with 
love as I did you: La comrnedia efinita!" 
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THE GOLDEN SECTION AND NEWTON APPROXIMATION 

Georg Johann Rieger 
Institut ftir Mathematik, Universitat Hannover, Welfengarten 1, 30167 Hannover, Germany 

(Submitted July 1997-Final Revision October 1997) 

In this note we combine number theory (continued fraction convergents (see [1], ch. X) to 
the golden section) and calculus (Newton approximants to zeros (see [3], ch. 4)). 

The golden section g\=^^ satisfies g2 + g = l; for G:= g~l = g + l, we have G2 = G + 1. 
The even (continued fraction) convergents to g are 

g„- = - ^ (n = 0,1,2,3,...). 
r2n+l 

The arbitrary function H :[0, g] -» R of class C2 may satisfy H(0) = 1, H(g) = 0, and H'(x) < 0, 
H"(x) > 0 (0 < x < g). Let 

N(x).= x-Mxl. 
then Newton approximation applies with 

*o —°, x
n+i'=N(xn)>xn (n = 0,1,2,...), limxn = g. 

In this note we give H explicitly such that xn = gn (n = 0,1,2,...). For this, we look at 

D(x):--,_\-x-x2 _(g-x)(G + x) _(l-Gx)(l + gx)_ 
2+x 2+x 2+x 

y = D(x) is a hyperbola with the asymptotes x = -2 and x+y = 1. Thus, we have 

D(-G) = D(g) = 0, Z)(-l) = l, D'{-\) = 0, D(0) = ±, D(x)>0 (-G<x<g). 

By G3 +gi = 2yf5, G2-g2 = y/5,we have 

V5 _ G3 g3 

Z>(x) 1-Gx 1 + gx' 

To be specific, we choose 

i7(x):=exp 
( r* d t \ 

- / : z)(0 (0<x<g) . 

Using log and differentiation, we find that 

H(x) = (1 - Gx)Gl/^(l + #cTg2/V5 (0 < x < g) 

and also that 

/7(x) £>(*) ^ S) 
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We observe the following: 

H(x)>0, H'(x)<0 (0<x<g), H(g) = 0, H'(g) = 0, 

N(x) = x+D(x) = f£ = l--^, N(g) = g, *'(*) = ^ ; 

y = N(x) is a hyperbola with the asymptotes x = -2, y = \. Thus, we have 

N(-l) = 0, N(0) = ±. 

From D(x)H'(x) + H(x) = 0, D(x)H"(x) + N'(x)H'(x) = 0, we deduce H"(x)>0 (0<x<g). 
We also note that 

x0:=0, xn+l: = ^ - (n = 0,l,2,...). 

Theorem: We have xn= gn (n = 0,l,2,...). 

Proof: We know that xQ = g0 = 0. It remains to show that 
rp 

F "F^- + 1 F F +F 

but the numerators are equal and also the denominators. 
For integers a, b > 0, c, d > 0, let he-ad - 1, then (a, b) = (c,d) = 1, and 

T < - : 7 (mediant ) <—. 
A * + rf d 

Let a* \=a + b, b': = a + 2b>0, cf: = c + d, d': = c + 2d>0, then 

AT f « ! = £!. N(a + C)= (® + c) + (b + d) =af + c> N(c_) = ^_. 
U J b!' {h + dj (a + c) + 2(b + d) b!+d!' {dj df' 

hence, N respects mediants. 

I treated this topic during my visit to Johannesburg in 1985 (see [2]). I am grateful to the 
referee for a careful reading of the manuscript. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTLONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to stanley@tiac.net on the Internet. All 
correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+\+Fn> F0 = °> F\ = 1; 

A7+2 = Ai+i+ Ai > A) = A A ~ i-

Also, a = (l + V5)/2, /? = ( l -V5)/2 , Fn = (an-f5n)l J5~, and Ln = an+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-872 Proposed by Murray S. Klamkin, University of Alberta, Canada 
Let rn = Fn+l I Fn for n > 0. Find a recurrence for rw2. 

B-873 Proposed by Herta T. Freitag, Roanoke, VA 
Prove that 3 is the only positive integer that is both a prime number and of the form 

B-874 Proposed by David M Bloom, Brooklyn College, NY 
Prove that 3 is the only positive integer that is both a Fibonacci number and a Mersenne 

number. [A Mersenne number is a number of the form 2a -1.] 

B-875 Proposed by Richard Andre-Jeannin, Cosnes et Romain, France 
Prove that 3 is the only positive integer that is both a triangular number and a Fermat 

number. [A triangular number is a number of the form n{n +1) / 2. A Fermat number is a number 
oftheform2a+L] 

B-876 Proposed by N. Gauthier, Royal Military College of Canada 
Evaluate 

fzint nFk-l\m{ nFk+A 
k=i \FkFk+i) \FkFk+iJ 
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B-877 Proposed by Indulis Strazdim, Riga Technical University, Latvia 
Evaluate • 

AA+i 
rn+4rn+5 

^n+S^n+9 

^n+\2^n+l3 

^n+A+2 
^n+5^n+6 
17 17 rn+9rn+l0 

^n+13^n+U 

K+2^n+3 
^n+6^n+7 

Ai+loAi+1 1 

Ai+14Ai+15 

^n+3^n+4 

A I + 7 A J + 8 

Ai+llA?+12 

A7+I5A7+I6 

SOLUTIONS 
The Right Angle to Success 

B-854 Proposed by Paul S. Rruckman, Edmonds, WA 
(Vol 36, no. 3, August 1998) 

Simplify 
3 arctan (a-1) - arctan (a - 5) . 

Solution by L. A. G. Dresel, Reading, England 
Let 0 - arctan(a_1), so that tan0 = a~l. Using the formula 

x / x tanx + tany tan(x + y) = - ^-, 
V- / ' 1-tanxtanj 

we find that 
tan2<9 = 2a~{ I ( 1 - a'2) = 2a I {a2 -1)1 = 2a I a = 2, 

and 
tan3^-(2 + a - 1 ) / ( l - 2 a - 1 ) - ( 2 - ^ ) / ( l + 2^) = (l + a ) /03 2 + ̂ ) - a 2 / ^ 3 = - a 5 . 

Hence, 3 arctan (a-1) = ;r-arctan (a5), and since arctan (eT5) + arctan (a5) = / r /2 , we have 

3 arctan (of1) - arctan (a~5) -n!2. 

Solutions also received by Richard Andre-Jeannin, Charles K. Cook, Steve Edwards, Russell 
Jay Hendel, Walther Janous, Murray S. Klamkin, Angel Plaza & Miguel A. Padron, Maitland 
A. Rose, Jaroslav Seibert, H.-J. Seiffert, Indulis Strazdins, and the proposer. 

Recurrence for a Ratio 

B-855 Proposed by the editor 
(Vol 36, no. 3, August 1998) 

Let rn = Fn+l I Fn for n > 0. Find a recurrence for rn. 
Solution by Steve Edwards, Southern Polytechnic State University, Marietta, GA 

r =5ttL=
Fn+fn-i = 1 + ^ L = 1 + _ L for n>\. 

Fn -• Fn. Fn t rn_v 

Generalization by Murray S. Klamkin, University of Alberta, Canada: More generally, we 
determine a recurrence for rn = Gn+lIGn, where Gn+l = aGn+bGn_x by simply dividing the latter 
recurrence by Gn to give 

rn=G + hlrn_v 
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Klamkin gave generalizations to third-order recurrences as well as several other generalizations, 
one of which we present to the readers as problem B-872 in this issue. 
Solutions also received by Richard Andre-Jeannin, Paul S. Bruckman, Charles K. Cook, 
Mario DeNobili, Leonard A. G. Dresel, Herta T. Freitag, Pentti Haukkanen, Russell Jay 
Hendel, Walther Janous, Daina Krigens, Angel Plaza & Miguel A. Padron, Jaroslav Seibert, 
H.-J. Seiffert, Indulis Strazdins, and the proposer. 

Weak Inequality 

B-856 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 
(Vol 36, no. 3, August 1998) 

If n is a positive integer, prove that 

Solution 1 by Richard Andre-Jeannin, Cosnes etRomain, France 
We see that 

LlyfFl+L2y[F2+L3yfF3 + - + L„yfFn<Lfi + L2F2 + - + LrFn 

= F2+F4 + --+F2n = F2n+l-l<F2n+l 

= F2
+F2

+1<F2+(2Fn)2 = 5F2<SF2+4F„. 

Solution 2 by L. A. G. Dresel, Reading, England 
We shall prove the much stronger result 

L1^+L2JV2+L3jF;+-.- + L„jFr
n<435F™. 

Let y=pla = -a2 and S = S . Then Lk = ak(l+yk), Fk = ak(l-yk)/S, ^[Fk<akl2{\-
Yk12)148', and Lk^F^<a3kl2(\+yk 11)145. Summing for \<k<n, we have two geometric 
progressions, giving 

Z LkJF~k < (a*"+1)/2 - a3'2) I (a312 - \)4d - \{cCm - (-l)"a-<"+1>/2) / (1 + cTy2)45 

<{a3nl2-\)l(\-a-3l2)S. 
Now 

Hence, 

F312 = a3n/2(l - ynf121S312 > a3nl2{\ - 3y" 12) / S3'2 

>(a3nl2-3l2a)l53l2>(a3nl2-\)l8312. 

ILL.^KCF312, 

where c = V 5 / ( l - a ~ m ) = 4.34921...<4.35. 

All solvers strengthened the proposed equality. Upper bounds found were: 

Jaroslav Seibert: IF2 - 2F„ 
H.-J. Seiffert: 5F2 

Walther Janous: SF3/2 

Paul S. Bruckman: 2 .078, /^ 
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Linear Number of Digits 

B-857 Proposed by the editor 
(Vol 36, no. 3, August 1998) 

Find a sequence of integers (wn) satisfying a recurrence of the form wn+2 = Pwn+i-Qwn for 
n > 0 such that, for all n > 0, wn has precisely n digits (in base 10). 

Solution by Richard Andre- Jeannin, Cosnes etRomain, France 
The sequence wn = 10" - 1 has n digits in base 10 and satisfies the recurrence: 

w ^ l b V i - l O w ^ . 

Solutions also received by PaulS. Bruckman, Aloysius Dorp, Leonard A. G. Dresel, Gerald A. 
Heuer, Walther Janous, H.-J. Seiffert, and the proposer 

Calculating Convolutions 

B-858 Proposed by Wolf dieter Lang, Universitiit Karlsruhe, Germany 
(Vol 36, no. 3, August 1998) 

(a) Find an explicit formula for Y?k=§KFn_k which is the convolution of the sequence (n) and 
the sequence (Fn). 

(b) Find explicit formulas for other interesting convolutions. 
(The convolution of the sequence (an) and (bn) is the sum Hn

k=0akbn_k.) 

Solution to (a) by Steve Edwards, Southern Polytechnic State Univ., Marietta, GA 
We show that 

Z ^ _ ^ G w + 3 - [ ( « + 2)G1 + G0] 
Jc=0 

for any generalized Fibonacci sequence (Gn), and this gives as a special case the sum in (a), which 
sums to Fn+3 - (n + 3). 

Proof by induction: For n = 0, 0G0 = 0 = G3 - (G2 + Gx) = G3- (2Gt + G0). For n = m +1, 
m+l m m m 

k=0 y=0 j=0 j=0 

= Gm+3-[(m + 2)Gl+G0]+[Gm+2-Gl] (by a variation of (33) in [1]) 

= Gm+4-[(m + 3)Gl + G0]. 
Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
Solution to (b) by H.-J. Seiffert, Berlin, Germany 

Let Fn(x) denote the Fibonacci polynomial, defined by FQ(x) = 0, F1(x) = l, and Fn+2(x) = 
xFn+l(x) + Fn(x) for n > 0. Then we have 
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Several solvers found the convolution of (n2) and (Fn) to be Fn+6 - (n2 + An + 8). Dresel found 
the convolution of (n) and {Ln) to be Ln+3 - (w + 4) . 

Solutions also received by Richard Andre- Jeannin, Paul S. Rruckman, Leonard A. G. Dresel, 
Pentti Haukkanen, Walther Janous, Hans Kappus, Murray S. Klamkin, Carl Libis, Jaroslav 
Seibert, Indulis Strazdins, and the proposer. 

Fun Determinant 

B-859 Proposed by Kenneth R. Davenport, Pittsburgh, PA 
(Vol 36, no. 3, August 1998) 

Simplify 

Fn+6Fn+1 

A?+lA?+2 
77 77 

Fn+1Fn+% 

A7+2A7+3 
Fn+5Fn+6 

Solution by Russell Hendel, Philadelphia, PA 
The determinant's value is 32 ( - l ) w . 
It is easy to verify this for the seven values n = - 3 , - 2, - 1 , 0 , 1 , 2 , 3. The result now follows 

for all n by Dresel's Verification Theorem [1], since the determinant is a homogeneous algebraic 
form of degree 6. 

Reference 
1. L. A. G. Dresel. "Transformations of Fibonacci-Lucas Identities." In Applications of Fibo-

nacci Numbers 5:169-84. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996. 

Seiffert found that 

Fn^n+l 
77 77 

rn+prn+p+l 

•^n+q^n+q+1 

Fn+l^n+l 
77 77 

rn+p+lrn+p+2 
^n+q+Vn+q+l 

^ + 2 ^ 2 + 3 
77 77 

rn+p+2rn+p+3 

•^n+q+l^n+q+3 

= (-l)n+P-lF FF 
V V x V Q Q-V p <f q-pm 

For a related problem, see problem B-877 in this issue. 

Solutions also received by Richard Andre-Jeannin, Paul S. Rruckman, Leonard A. G Dresel, 
Walther Janous, Carl Libis, Stanley Rabinowitz, Jaroslav Seibert, H.-J. Seiffert, Indulis 
Strazdins, and the proposer. 

A d d e n d a . We wish to belatedly acknowledge solutions from the following solvers: 
Murray S. Klamkin—B-848, 849, 850, 851 
Harris Kwong—B-831 , 832 
A. J. Stam—B-853 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSIIY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-550 Proposed by Paul S. Bruckman, Highwood, IL 
Suppose n is an odd integer, p an odd prime ^ 5. Prove that Ln = \ (mod p) if and only if 

either (i) an = a, J3n^ fi (mod/?), or (ii) an = fi, (3n = a -(mod/?). 

H-551 Proposed by N. Gauthier, Royal Military College of Canada 
Let k be a nonnegative integer and define the following restricted double-sum, 

a-\ b-\ 

r=0 s=0 
br+as<ab 

where a, b are relatively prime positive integers. 
a. Show that 

2 
kb 

Sk_x - , T 
btd{{ab+rf-akrk)-fj{k

n\bmSk_n 

for k > 1. The convention that (*) = 0 if m > k is adopted. 

b. Show that 
& = — [3a2h2+2a2b + 2ah2-a2-b2-9ah + a + b + 2l 2 12L 

H-552 Proposed by Paul S. Bruckman, Highwood, IL 
Given m > 2, let {UJ™=0 denote a sequence of the following form: 

m 

where the af\ and 0/s are constants, with the $/s distinct, and the Un's satisfy the initial condi-
tions: [/w = 0,w = 0,l,...,fw-2; Um^ = l 
Part Ao Prove the following formula for the C/W's: 

5(n-/w+l, m) 
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where 
S(N,m) = {(ihi2,...,im):il + i2 + -+im = N,0<iJ<N,j = l,2,...,m}. (b) 

Part B. Prove the following determinant formula for the U„'s: 

U. 

1 1 
0\ 02 0, 0„ 

(£?;)2 {62f (0,f ... (0J2 

{oim-2 {o2r2 {0i)m-2 •'•• {0mr2 

w {02)n {0,r ••• {0mr 

i i 
0\ 02 0, 

1 

{0}? {02? {03? •;• {0m? 

{oir2 {02r-2 {03r-2 •'•• {0Jm-2 

{0dm~l {02rl W 1 - {0m)m-1 

SOLUTIONS 
Sum Problem 

H-535 Proposed by Piero Filipponi & Adina Di Porto, Rome, Italy 
(Vol 35, no. 4, November 1997) 

For given positive integers n and m, find a closed form expression for Z£=1 kmFk. 

Conjecture by the proposers: 

2*» = tkmFk = p[m\n)Fn+l + p^\n)Fn+Cm, (1) 

where p[m\n) and p^iri) are polynomials in n of degree m, 
m m 

A(m)(«) = Z ( - l ) ' ^ > m " , ^ m ) ( » ) - I ( - l ) ' e > m - ' > (2) 
7=0 7=0 

the coefficients a£w) and b^ {k = 0,1,..., m) are positive integers and Cm is an integer. 
On the basis of the well-known identity 

Zh„={n-2)F„+1 + (n-l)F„ + 2, (3) 

which is an alternate form of Hoggatt's identity I40, the above quantities can be found recursively 
by means of the following algorithm: 

1. 
p[m^\n) = {m + \)\p[m\n)dn + (-\)m+y4m+x\ 

p(m+i\n) = (m + 1)J pim\n) dn + (- l)m+1^m+1). 

m+l 

2. 4m+» = J(a/w + 1 )+^+ 1>). 

m+l 

3. bt+V) = £a<ffl+1>. 

4. Cm+l = (-\ya^\ 
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Example: The following results were obtained using the above algorithm. 

i;25„ = (/i2-4/i-f8)F„+1 + ( / i 2 -2^ + 5 ) ^ - 8 , 

E3, n = O 3 ~ 6n2 + 24n ~ 50)Fn+i + O 3 -3n2+15n-3l)Fn+50, 

%4,n = (n4-&n3+4%n2-200n + 416)Fn+l + (n4-4n3 + 30n2 - 124w + 257)F„ -416 , 

S5> w = (n5 -1On4 + 8(k3 - 500w2 + 208O? - 4322)i^+1 

+ («5-5«4+50/i3-310w2 + 1285«-2671)i^+4322. 

Remarks: 
(i) Obviously, these results can be proved by induction on n. 

(ii) It can be noted that, using the same algorithm, EljW can be obtained by the identity 

(iii) It appears that 
a(m+k) i b(m+k) = C ( ) n s t = a(m) / ^m) (jt = 1, 2 , . . . ) 

and 

\im ajf> / bjp = a. 
W—>00 

Solution by Paul S. Bruckman, Highwood9 IL 
We begin by defining certain polynomials of degree n, as follows: 

k=\ 
We then see that 

Zm,„ = 5-m{FmJa)-Fm,n(fl)}- (2) 

Now let [/denote the operator xdldx. It is easily seen that 

U(FmJx)) = Fm+ln(x). (3) 
Note that 

F0Jx) = (x"+l-x)/(x-l). (4) 

Repeated application of the recurrence in (3) yields the following: 

Fhn(x) = {nx"+2 -(n + \)x"+l +x}l{x-\)2; (5) 

F2,„(x) = {n2x"+3 - {In2 +2n- l)x"+2 + {n + 1 )V + 1 - x2 - x) I {x -1)3 ; (6) 

More generally (by induction or otherwise), 

Fm,n(x) = {x"+lPmJx)-Pm^(x)}/(x-ir\ m>0, (7) 

where Pmt„(x) is a polynomial in x of degree m. We may suppose 
m 

/>„,„(*) = £ 40", »K- (8) 
r=0 
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Note that P0n(x) = l, Px n(x) = nx-(n + l\ P2 n(x) = n2x2 -(2n2 +2n-l)x + (n + l)2, etc. 
Repeated application of (3), using (7) and (8), yields the following general formula for ^(m, n): 

Arim, w) = £ (-\y-r
m+iCs_r(n - w + s)m. (9) 

Substituting the last expression into (8) yields the following development in the "umbral" cal-
culus, involving the finite difference operators E and A (with operand zm at indicated values of z): 

m r f m m 1 

Pm,n(*) = I * " " ! ( - ! ) ' m+lCs(n-r + sy = x"< £ ( - £ ) ' ^ i Q E ( 1 / W \(zm) 
r=0 s=0 U=0 r=s J 

fw+1 1 
= x»- |£ (-EY m+lCs((Ex)-"-1 - (Ex)-') I ((ExT1 -1)| (2™) 

= {E~m I (1 - £x) • (1 - £)m+1 -E/(l-Ex)-(x- l)m+1} (2™) ^ 

Note that (E - l)m+1(zm) = Am+1(zm) = 0. Thus, since E = 1 + A, 

i>-„(x) = - ( x - i r I { 0 - x E ) - 1 } ( O 

= (x - l)m{(l + Ax / (x -1))"1} (zm) 
Z=»+l 

lz=«+l 

z=n+l 

In particular, 

P m > » = a-m{(l + a2A)-1}(z"')|z=M+i = a-M,£(riya2'A\zy 

and likewise, 
m 

pm,n(P)=p-mlL(-vplsK(n 

Now, substituting these last results into the formula in (7), we obtain 
f m m 

Fmn(a) = am+l\an+l-mJ^(-l)sa2sAs(n + l)m -a-™X(-iya2W(0) ] 

I s=0 s= 
m 

= S (-V)s{a"+2s+2As(n + \)m - a2s+1As(0)m}, 

z=«+l 

s=0 

s=0 

where, for brevity, we write As(a)m for the more precise expression As(z)m\z=a. Similarly, we 
obtain the following expression: 

Fm,nifi) = E (-l)s{Pn+2s+2tf(ri + l)m - {32s+lAs(0)m}. 

We may now substitute these last expressions into (2) and obtain 
m 

^.^ZHra^A^+ir-F^AW}. (10) 
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This is still not in the form that is envisioned by the proposers, but it only takes a bit more effort 
to put it into such form; we resort once more to the umbral calculus. Returning to our earlier 
notation, we proceed as follows: 

m 

«m^,»(«)=E(-1)I«2SAS(«+ir 
= {(l-(-a2A)m+1)/(l + a2A)}(» + l)m 

= {l/(l + a2A)}(« + l)m. 
Then, 

5-m{am^2pmn{a)_pm+n+2pmnm 

= 5-1/2{a"+2/(l + a2A)-^"+2/(l + y02A)}(n + l)m 

-{(F„+2+JF„A)/(l + 3A + A2)}(« + i r 
= {(iV,+1 + (l + A)Fn)/(l + 3A + A2)}(« + i r ; 

finally, we may recast (10) as follows: 

Zm,„ = Fn+lG(A)(n + \y+F„G(A)(n + 2T-G(A)(lT, (11) 

where 
G(A) = 1/(1 + 3A + A2). (12) 

Comparing this with the desired format, we have 
p[m\n) = G(A)(n +1)-, p^\n) = p[m\n +1), Cm = -p[m)(0). (13) 

Therefore, we may express p[m) and p$"\ as well as Cm, in terms of essentially only one 
polynomial; thus, 

2 * n = Fn+iP(m)(n) + Fnp^\n + 1) - p0">(0), (14) 

where p{m\n) = p[m\n), as given in (12) and (13). 
This is a somewhat stronger statement than the initial conjecture, since it gives a more 

specific expression, relating the three quantities p[m\n\ p{™\n), and Cm. Now we need to deter-
mine the coefficients of these polynomials. Let 

m 
p(m>(rt) = £(-l)m-'a,<mV; 

note that p{m)(0) = (-\)ma^m) = -Cm, which gives, essentially, Part 4 of the problem. Also, from 
(13), p^m\n) = G(A)(n + \)m. Now 

G(A) = l /( l + 3A + A2) = 5-1/2{a2/(l + a2A)-/?2/(l + /92A)} 
m m m s 

= K-O'Jw* =TnYF2s+2(E-iy = K-iyF2j+2X(-i)r ,cr £~; 
5=0 s=Q s=0 r=0 

therefore, 
P(m)(«) = I(-l) s^+2Z(-l)r

sCr(" + l + 5-r)" 
5=0 r=0 
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s=0 r=0 7=0 

m m s 

= I"'»QE(-i)'^2Z(-iy,C'rJE:^(ir' 
7=0 s=0 r=0 
m m m 

= I > MQl(-l)^2s+2A5(ir-' = I > „Q G(A)(1)-'. 
7=0 ^=0 7=0 

Comparison of coefficients in the two expressions for p^m\n) yields 

^m)=(-ir'mQG(A)(ir-'. (is) 
In similar fashion, we may obtain the following expression: 

*/w=HrwQG(AX2r. (i6) 
We then see from (15) and (16) that ajm+i)/b^m+i) = G(A)(l)m / G(A)(2)m. However, we see that 
such result is independent of/, so we express such ratio as p(m). Therefore, we have 

a(m+i) /b(m+i) = aM/b(m) = ^ ^ 

We now return to the problem of determining p = l im^^ p(m). First, however, we deduce 
some additional properties of the coefficients a\m>) and b\m\ From the expressions in (15) and 
(16), it readily follows that 

a\m)^mlia\^l\ $m) =m/ibfrl\.i = ],2,...,m. (18) 
Then 

m m 

p{m\n) = £ ( - l ^ a ^ W = {-l)m4m) + £ ( - l ) ^ W z ^ f V 
7 = 0 7=1 

w-1 
- (-l)wa^> + w £ (-l)w"w^(w-1>(/i,"+1 // +1). 

7=0 

We see then that 
pim\n) = (-l)wa^} +mfV w _ 1 ) (0^ ? (19) 

which is essentially Part 1 of the problem (stated somewhat more precisely). 
We now return to the expression in (13), namely, 

p(m\n) = G(A)(n + l)m. (20) 

Note that we may allow n = 0 and n = -1 in this last expression, but that if n < - 2 , extraneous 
and unintended terms arise that make the expression incorrect. 

Note t\mtp(mXn + l) = (l + A)p(m\n), while p(m)(n + 2) = (l + A)2pM(n); then p(m)(n + 2) + 
p(m\n +1) = {1 + A + l + 2A + A2}/?w(«)={l + l + 3A + A2}G(A)(w + i r = {l + G(A)}(// + l ) ^o r 

/>(w)(w + 2) + /?(w)(7f + l) = (/i +1)777 + /?(w)(//). (21) 

In particular, setting « = -1 (and assuming m>0), 

p{m)(l) + p{m\0) = p(m\-l). (22) 
Now observe that 
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m 
•yO) />(M)(-i)=(-irl>/' 

7=0 
m 

Pw(o)=c-ir <#»>=^(-i)=(-i)» £ bfm\ 
and /=0 

p<m>(l) = ̂ m>(0) = (-l)™$">. 
From (22), we then deduce the following: 

m m 
cf™) + tfp = £ 4m) or $*> = £ a/w>, valid for m > 0; 

J=0 /=1 

this is essentially Part 3 of the problem. Also 
m m 

a^ = ^-) + £ b W = £ (a(»0 + i>(-))3 v aiid for /w > 0; 
/=i /=i 

this is essentially Part 2 of the problem. 
That the a\m>) and b^ are integers is obvious from the formulas in (15) and (16). That they 

are positive requires more effort. An easy induction on (18) yields the following relations: 

4m) = nPdT*, */w) = jCflTK i = 0,1,..., m. (23) 
Thus, ajm\b^) > 0 if and only if a^\b^m)) > 0, m = 0,1,.... 

From (23) and Parts 2 and 3 of the problem, we see that, if a^m) > 0, m - 0,1,2,..., then 
a\m) > 0 =>b^m) > 0 =>b\m) > 0 (/ = 0,1,..., m). Thus, it suffices to prove that a^m) > 0, m = 0,1,.... 

Our proof of this assertion is by induction (on m). The inductive step depends on the follow-
ing recursive formula: 

[mil] 

4m+1)= X ^ / ^ ' + l), m = 0,1,2,.... (24) 

If (24) is vailid, our inductive hypothesis is that a^ > 0 for some m > 0. From our foregoing dis-
cussion, this implies that a^ > 0, / = 0,1,..., [mil]. Then (24) implies that a(

0
m+l) > 0. Since 

a^ = 1, this proves the hypothesis. Our task is thus reduced to proving (24). 
We return to the results in (19) and (22). Expressing the integral recurrence in terms of the 

coefficients (and replacing m by m +1), we obtain 
fl m 

(-l)m4m+l) = (w + 1) X(-0w~'{l + ( - 0 > ^ ' ' d t ; 
Jo /=o 

then 
m 

a ^ = (m + l)J^{l + (-iy}ajm) /(i + l), 

which is equivalent to (24). D 

Note: As rioted, we allowed the values n = 0 and n--\ although, in the original statement of the 
problem, n was required to be positive. It may be observed that if we substitute the values n - 0 
or n = -1 in the formula given by (14), we find that the expression for Sw „ dutifully vanishes, as 
we should expect from its original definition. 
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The only remaining task is to establish that p = a , as conjectured by the proposers. 

We write am for a^ and hm for h^m\ From (18), we easily deduce the following recursive 
formulas: 

m-\ m-\ 
am = X m Q ( a , + bt), bm = YjmCiai,m = l,2,.... (25) 

(=0 1=0 

We may also express am and bm in the umbral calculus as follows: 

am = (-1)"G(A)(1)", bm = (-l)m+1{AG(A)}(0)'". (26) 
It is apparent that am and hm are unbounded (as m —» oo). Also note that 0<bm<am for all 

m>\. Then (25) implies that 1 <p(m) <2 for all m> 1. From the expressions for aw and hm in 
(26), it is not difficult to show (by expansion of the operators) that p exists. 

We may express (25) in the following form: 
m—\ m-\ 

am = XmCXpQ) +1)*/, *m = E m Q P ( 0 * „ m = \2,.... (27) 
;=0 /=0 

Hence, p(m) = l + l/p(m-l), where ^-(w-1) is a "weighted average" p , and the "weights" are 
the quantities ^Q^- in the sums. Letting w->oo, we may therefore deduce that \<p<2 and 
p = 1 + p _ 1 This, in turn, implies that p- a. 

For additional confirmation, the simple continued fraction (s.c.f.) expansion for p(m) 
approaches the infinite s.c.f. [1,1,1,...], which is known to be the s.c.f. for a. • 

Also solved by I Strazdins. 
• > * > * > 

NEW PROBLEM WEB SITE 

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 
be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 23,000 problems from 42 journals and 22 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was 
generously provided by the Department of Mathematics and Statistics at the University of 
Mirrouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Brown 
Director of Operations, MathPro Press 
1220 East West Highway #1010A 
Silver Spring, MD 20910 
(301)587-0618 (Voice mail) 
bowron@compuserve.com (e-mail) 
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