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ALMOST SQUARE TRIANGULAR NUMBERS 

K. B. Subramaniam 
Dept. of Education in Science & Math., Regional Institute of Education (NCERT), Bhopal-462 013, India 

(Submitted July 1997-Final Revision April 1998) 

1. INTRODUCTION 

While undergoing the study of Square Triangular Numbers (STN), it was observed that there 
are certain triangular numbers (TN) which, although not squares, are "very close" to squares. If 
we restrict this closeness to just unity, we obtain what we shall call "Almost Square Triangular 
Numbers" (ASTN). More precisely, an ASTN is a TN that differs from a perfect square exactly 
by unity. 

The very description of ASTN leads to their two types: first, those TN that exceed a perfect 
square by one; second, those that fall short of a perfect square by one. 

The purpose of this paper is to account for all the ASTN of both types by linking them with 
STN. 

2. SOME PRELIMINARIES 

2.1 (Def.) a-ASTN 

A TN x will be called an ASTN of the type a (a-ASTN) iff x -1 is a perfect square. 
The first ten a-ASTN are: 

10, 325, 11026, 374545, 12723490, 432224101, 14682895930, 
498786237505, 16944049179226, and 575598885856165. 

2.2 (Def.) jff-ASTN 

A T N j will be called an ASTN of the type (5 (/?-ASTN) iff y +1 is a perfect square. 
The first ten jfl-ASTN are: 

3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726276, and 20720703. 

We will need the following notations: 

an = the n* a-ASTN, fin = the nxh /?-ASTN, tn = the «th STN, 

Un = JTn* an = {an~\f\ bn = <Jin + \f2. 
We will also need the results (in addition to the well-known fact that x is a triangular number 

iff 8x +1 is a perfect square) from our earlier works: 

Un^6Un_x-Un_2 (from[l]); (2.1) 

U^Un+l + l = U2
n (from [2]). (2.2) 

3. THE a-ASTN 

Our first result paves the way for constructing an a-ASTN using a given STN, thus guaran-
teeing the infinitude of the set of all a-ASTN. 
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Lemma 3.1: If x is an STN, then 9x +1 Is an a-ASTN. 

Proof: Note that 8(9x + l) + l = (3V8x + l)2. Since x is a TN, 8x + l must be a perfect 
square, thus making 9x + l a TN. Moreover, x itself is a perfect square, say z2, so 9x + l = 
(3z)2 +1, which means that 9x +1 is an a-ASTN. D 

That this construction indeed exhausts all the a-ASTN is confirmed by the following result. 

Lemma 3.2: If x is an a-ASTN, then (x -1) / 9 must be an STN. 

Proof: In order that the lemma may make any sense, we must ensure that x - 1 is indeed a 
multiple of 9. For this, we note that whenever x is an a-ASTN, x - 1 is a perfect square. As a 
result, 8x = 8, 7,4,1 (mod 9). On the other hand, whenever x is a TN, 8x +1 is a perfect square. 
Thus, 8x = 8,0, 3, 6 (mod 9). Therefore, x = 1 (mod 9). Let (x -1) / 9 = z. Clearly, z is a perfect 
square. Also, 8z +1 = (8x +1) / 9 is a perfect square. This means that z is a TN and, hence, an 
STN. D 

Our next result establishes a direct link between an and tn. In what follows, n will always 
denote an arbitrary natural number. 

Theorem 3.1: an = 9tn + l. 

Proof: First, note that a1 = 10=9f1 + l. Assume the assertion is true for n = k, so that 
ak = 9tk+l. If possible, let ak+l * 9tk+l +1. But (ak+l -1) / 9 is an STN (by Lemma 3.2), so let 
(ak+i ~ 1) I ̂  - tm for some m. We have ak+l > an so that tm>tk. This means m>k. But m can-
not be equal to k +1 (by our assumption), so m > k +1. Also, 9tk+l +1 is an a-ASTN (by Lemma 
3.1), so let 9tk+l + \-ap for some p. We have tk < tk+l < tm. This leads to ak<ap< ak+l, an 
absurdity. Hence, by mathematical induction, an-9tn + \. • 

4. THE ^-ASTN 

As in the case of the a-ASTN, our first attempt would be toward constructing a /7-ASTN 
from STN. But here, unlike the case of a-ASTN, we need two consecutive STN. First, we will 
need the following auxiliary results. 

Lemma 4.1: 4UnUn+1 +1 = (Un+l - Unf. 

Proof: We have 
U2

n=U„^U„+l + l [by (2.2)] 

= 6U„Un+l-U2
n+l + l [by (2.1)]. 

Hence, 4UnUn+l + l = (U„+l-U„)2. 0 

Lemma 4.2: W„U„+1 +1 = (Un+1 + U„)2. 

Proof: Proceed as in Lemma 4.1. • 

Lemma 4.3: Un+l = 1Un + ftU2
n+\. 
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Proof: While proving Lemma 4.1, we found that U2 - 6Un+1Un - U2
+l +1. This yields 

(Un+l-3Un)2=W2„+l. ButU^SU^Ut-U^O. Hence, 

Un+l-3Un = ^U2 + h D 

Theorem 4.1: (Un+l-2Un)2-1 is a ^-ASTN. 

/*w/ - Let 
x = (C/w+1 - 2Unf -1 = {Un + V8C/w2 + l f - 1 (by Lemma 4.3). 

Thus, 8x + l = {8{/w + y8£/2 + lJ , a perfect square. As a result, x is a TN and, consequently, 
(C/w + 1-2C/J2-lisa^-ASTN. • 

Theorem 4.1 guarantees the infinitude of the set of all /?-ASTN, but it does not guarantee 
that this construction accounts for all the /7-ASTN. In fact, it cannot do so because there do exist 
/?-ASTN that cannot be obtained by the application of this theorem, e.g., the very first /?-ASTN 
viz. 3 cannot be expressed as (Un+l -2Un)2 - 1 for any n. 

In fact, there are infinitely many such exceptions viz. 3, 120, 4095, ... (i.e., all the odd-
indexed /?-ASTN). Of course, all the even-indexed /7-ASTN are taken care of by the above 
theorem. 

Theorem 42: (Un+l -4Un)2 -1 is a /?-ASTN. 

Proof: Let 
y - (Un+l ~AUnf - 1 = yW2

n+l -Unf -1 (by Lemma 4.3). 

Hence, 8y + l = [mn ~^U2 + l}2, so that y is a TN. This means that (C/w+1-4f/w)2-1 is a 
/?-ASTN. D 

It appears that Theorems 4.1 and 4.2 jointly account for all the /7-ASTN. The same is con-
firmed by the following theorem. 

Theorem 43: h2n = Un+l-2U„ and hln_x = Un+l-4Un. 

Before attacking the proof of Theorem 4.3 (our main theorem), we must prove the following 
three lemmas. 

Lemma 44: lfb2-l is a ^-ASTN, then either {(i? + £)/7}2 or {(R-h)/7}2 must be an STN, 
where i? = (8£2-7)1/2. 

Proofs For this lemma to make any sense, we have to ensure that either (R + b)ll or 
{R-h)ll must be an integer. To this end, we argue that whenever h2 -1 is a /?-ASTN, b2 -1 is 
a TN, so %(b2 -1) +1 = R2 must be a perfect square. Thus, R is an integer. Also (R - b)(R + b) = 
l{b2 -1). This ensures that (R-b) 11 or (R + b)/1 is an integer. 

Case 1. Let (R + b)/I be an integer, say x. Then 8x2 +1 = {(8A + R)17}2, a perfect square. 
Hence, x2 must be a TN. This means that {{R + b) 11}2 is an STN. 
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Case 2. Let (R - ft) 17 be an integer, say y. Then Sy2 +1 = {(8ft - R) 17}2, a perfect square. 
Hence, y2 must be a TN. This means that {(R-b)/7}2 is an STN. Now, we claim that 
(R + b)/7 and (R-b)/7 cannot both be integers at the same time. For, if the contrary is true, 
then {(R + b)/7}{(R-h)/7} = (h2-l)/l, which means that b2-\ is a multiple of 7. Also, 
{(R + b) 17} - {(R - b) 17} = 2b 17, which would mean b is a multiple of 7. This leads to a con-
tradiction. • 

Lemma 4.5: If b2 -1 is a /7-ASTN and i? - b is a multiple of 7, then 6 = Um+l -2Um for some wi. 

Proof: By Lemma 4.4, {(R-b)/ 7}2 is an STN. Hence, (R-b)/7 = Um for some m, so that 
(b-Um)2 = 8t/2 +1. We claim that ft >Um, otherwise b will become £/m - (8t/2 +1)1/2 which is 
negative, an absurdity. Thus, ft - £/w = (8£/2 +1)1/2, i.e., b = Um+1 -2Um (by Lemma 4.3). • 

Lemma 4.6: If b2 -1 is a /?-ASTN and i? + 6 is a multiple of 7, then ft = Uk+l -4Uk for some &. 

Proof: As before, (R + b)l7 = Uk for some *, so that b = -Uk+ (8C/| +1)1/2. D 

Proof of Theorem 4.3: Define the sequences (xr) and (yr), respectively, by xr = Ur+l-4Ur 

and yr = Ur+l - 2Ur. Clearly, for each r, xr < yr. Also, 

xr+1 - Ur+2-4Ur+l = 2C/r+1 -C/r - j r + (Ur+l + J7r) > yr. 

Thus, xr < j r < xr+1 < yr+l. Hence, the sequence (zr), defined by z2r_x = xr and z2r - yr, is mono-
tonically increasing. We claim that the sequence <ft„) is a subsequence of the sequence 
{zn) because, for any n, either (Rf7+b)/7 or (Rn-b)/7 is equal to Uk for some k [where 
Rn = (Sb2- 7)1/2]. Thus, h„ = Uk+l-2Uk or bn = Uk+l-4Uk. Also, by Theorems 4.1 and 4.2, for 
each r, j r = bm and xr = bk for some /w and k. Hence, (zn) and <ftw) are identical. D 

We conclude by rewriting the statement of Theorem 4.3 in a more useful form, as follows. 

Corollary: p2n = {Un+l-2Un)2-I and P2n^(Un+l-4Un)2-I. 
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1. INTRODUCTION 

Daniel Shanks, in [10], introduced a very interesting algorithm for obtaining the regular con-
tinued fraction expansion of the logarithm of a number. A concise presentation can be found in 
[5]; however, it is difficult to find in the literature (e.g., texts such as [1], [2], [4], and [11] do not 
mention it). Shanks1 algorithm is the inspiration for the one we present here using Pierce expan-
sions, but it can be adapted easily to other well-known expansions such as Engel's or Sylvester's 
(see [3] and [6] for details). 

A very brief description of Pierce expansions is given below. A more complete account can 
be found in [7], [8], [9], and [12]. 

Definition 1: The Pierce expansion of a real number a G(0, 1] is an expression of the form 

±._U...+_fc!C_+..., ( 1 ) 
where ax,a2y...,an,... constitute a strictly increasing sequence of positive integers. In the case 
that the sum above is finite, we call it a terminating (or finite) expansion and then we add the 
condition that the last two terms, an_x and an, are not consecutive: an_x <an-\. 

We denote (1) by <a1?a2, ...,a„,...). The requirement that an_x <an-\ is to ensure unique-
ness in the case of terminating expansions as (a,..., k) - (a,..., k, k +1). 

Pierce expansions constitute a system of representation of real numbers in (0,1], as the fol-
lowing theorem proves. 

Theorem 1: Any real number a, 0 < a < 1, has a unique representation as a Pierce expansion: 
rationals as finite expansions and irrationals as infinite expansions. 

We include a sketch of the proof as a guide for the algorithm of the next section. 
Proof: Uniqueness is the result of observing that a Pierce expansion verifies 

<<a1,a2,...,a„,...)<—. 
aj + 1 
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The existence is easily justified by the following algorithm. If x e(0, 1], its Pierce expansion, 
(a1? a2,..., an,...), is obtained as follows: 

Step 1. x0 «-x; i <-l. 
Step 2. at = [1 / xMJ; xi «- 1 - apc^. 
Step 3. If xz = 0, then stop; else /'<-/ +1 and go to Step 2. 

If x is a rational number piq, the algorithm will eventually terminate as Step 2 requires, on 
the first iteration, that we perform the division of q by p and after that the division of q by the 
successive remainders which are obviously decreasing and eventually must become 0. In that 
case, the expansion will be finite. If x is not rational, the algorithm will never terminate but will 
provide a series that is easily seen to converge to x. D 

2. THE PIERCE EXPANSION OF A LOGARITHM 

The following algorithm will provide us with the Pierce expansion of the logarithm of a num-
ber in base b>\. It is easily extended to bases < 1. Let xbe a real number, \<x <b. Our aim is 
to find log^ x = (al9..., an,...), where the Pierce expansion can be terminating or not. 

Let xx = x. If we have 1 < x2< b, let at be the sole positive integer verifying 

xf<-<6<xf<-+1. (2) 

The integer at is well defined as 1 <x, <b and the sequence {xf}„eN is strictly increasing. Now 
we define 

b 

xr 
(3) 

From (2), we immediately have 1 < x/+1 <xi <b. If x7+1 > 1, we can continue. Let us suppose we 
have reached an xn+l such that 1 < xn+l <xn<"-<xl<b. 

Lemma 1: For all / (1 < i < ri), 

i i , , ( - i r 1 (-i)' 

Proof: We shall proceed by induction on /. For / = 1 we have, from (3), 
_L __L 

xf =h-X2l=>x = xl = hai -x / 1 , 
therefore (4) is verified. If we assume it is verified until i = k-l, from the definition of xk+l we 
have 

xk+l=4-^xk=(b- x&yi = b^ • xl*. 

By the induction hypothesis, 

x = b^ai axCXl a^'-Mk-^) .xa\"Mk-\ 

and, replacing xk by its value, we have 

l-J_+.. .+ (-1)'"2 I (-D*-1 
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1 1 +...+ (-D*-2 ) (-D*-1 (-D*-1 

X = M " 1 ai°2 a^2-"ak-\J .^fli...flit_ifl* . y i - a j f c - i 

_ i\ai a\a2 a\a2--'ak) „ax...ak 
'Xi k+l 

This completes the proof of Lemma 1. D 

Now, if xn+l = 1, by the former lemma, 

J_-_l.+...+ (-D-1 

and we shall be done as soon as we prove a1<a2<---< an_x < a„ - 1 , to which we turn at once. 
In general, if 1 <&</?-1, from the definition of ak, 

xa
k
k <b<xa

k
k +i 

there exists a real number o-, ak < a < ak +1, such that b = xk . Consequently, we have 

< — < — and Xu-ba. (5) 
ak+\ a ak 

Now, the first inequality in (5) implies the existence of a real number a, a>ak+l, such that 
1 ^ - i - (6) 
a ak aka 

We can write 
1 ±-J- 1 

xk=b° =ba" ak" =>x^-ba=b; 
therefore, from the definition of xk+l, we can also write 

**+. = £ = *«• (7) 

Now, since b < x%$+l, if we replace xk+l by the value we have just obtained, we have 

ft<(ft*)G*+,+1 = ft~^, 

which implies that 
at±L+l 1< fc+1 r* o a < g f c + 1 + l. 

Finally, since a > ak +1, we conclude that â  < ak+l. 
If in the former reasoning we set k = n-1, we can find out what happens with the last two 

terms when xn+1 = 1. In that case, we have x%n = ft and from (7), which tells us that xn = bl/a, we 
can say (&1/a)a" = xnan =fo=>an = a. On the other hand, since from the definition of a, (6), we 
have a > an_x +1, we can conclude that an_x <an-\. 

Thus, we have proved that the expression in the exponent of b given by (4) is a true Pierce 
expansion: a terminating one in the case xn+l - 1 or a nonterminating one in the case in which, for 
all n GN, xn+l > 1. In the latter instance, we have to prove that, for n -» oo? 
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fi—1_+...+ (-J)""1 ) (-1)" 

or, equivalently 
"Vf-1 ^ u 

(-D" 
r ax...a„ 

n—>oo 
limx„V»=l. (8) 
«-»oo 

It is clear that the sequence {x^ '("i-"*)}^ can be split into two subsequences, 

x?a\x?w\... and x2
a\ x4

aw,..., (9) 
and since V«, 1 < x„ < b, and aja2.. .a„ —> oo, both subsequences in (9) have limit 1, thus proving 
(8) along with 

x = b^-'a--}^logbx = (a1,...,an,...). D 

3. PRACTICAL USE OF THE ALGORITHM 

The present algorithm is purely theoretical and of little practical interest. The difficulties of 
carrying out the calculations involved are quire important due to the size of the integers appearing 
in them. In that sense, Shanks' algorithm is much easier to use, thanks mainly to the actual dis-
tribution of partial quotients in a continued fraction in which a given integer k occurs with the 
approximate probability, 

log2 
(1 + *)2 

(l + £ ) 2 - l 

(see [4], pp. 351-52), thus making small integers much more abundant and, consequently, calcula-
tions much simpler. Let us consider the following example. 

Example: Pierce expansion of log102 = 0.30102999... . We have 
5_. 
4 ' *!=2; aj = 3; x2=-\ a2 = 10; 

and 

_ 2097152 _ , , , _ 10195312532 

X 3 _ 1953125' a 3 " J A * 4 _ 209715232 ' "4 ' 

(3,10,32) = — = 0.30104...; <3,10,32,89) = - ^ = 0.30102996... . 

Using Shanks' algorithm, we would obtain 

log102 = [0;3,3,9,2,2,...] = -
3 + -

3 + -
9 + -

2 + - l 

2 + -
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In this case, the sixth convergent is 146/485 = 030103092783... . As Olds mentions (see [5], p. 
87), each convergent approximates log 2 to one more correct decimal place than the previous 
one. 

REFERENCES 

1. G. Brezinski. History of Continued Fractions and Fade Approximants. Springer Series on 
Computational Mathematics (12). Berlin: Springer-Verlag, 1991. 

2. G. Dahlquist & A. Bjorck. Numerical Methods. Tr. N. Anderson. New Jersey: Prentice-
Hall, 1974. 

3. P. Erdos, A. Renyi, & P. Szlisz. "On Engel's and Sylvester's Series." Ann. Univ. Sci. Buda-
pest. Sect. Math. 1 (1958):7-32. 

4. D. E. Knuth. The Art of Computer Programming. 2nd ed. Vol. 2. Reading, Mass.: Addison 
Wesley, 1973. 

5. C D . Olds. Continued Fractions. Washington, D.C.: The Mathematical Association of 
America, 1963. 

6. O. Perron. Irrazionahahlen. 2nd ed. Berlin & Leipzig: De Gruyter, 1939. 
7. T. A. Pierce. "On an Algorithm and Its Use in Approximating Roots of Algebraic Equations." 

Amer. Math. Monthly 36 (1929):532-35. 
8. E. Ya. Remez. "On Series with Alternating Signs, Which May Be Related to Two Algorithms 

ofM. V. Ostrogradski for the Approximation of Irrational Numbers." Uspekhi Matem. Nauk. 
(N.S.)6, 5, 45(1951):33-42. 

9. J. O. Shallit. "Metric Theory of Pierce Expansions." The Fibonacci Quarterly 24.1 (1986): 
22-40. 

10. Daniel Shanks. "A Logarithm Algorithm." Mathematical Tables and Other Aids to Computa-
tion 8.45 (1954):60-64. 

11. J. Stoer & R. Bulirsch. Introduction to Numerical Analysis. 2nd ed. Berlin: Springer-Verlag, 
1993. 

12. K. G. Valeyev & E. D. Zlebov. "The Metric Theory of an Algorithm of M. V. Ostrogradski." 
UkrainMat. Z. 27 (1975):64-69. 

AMS Classification Numbers: 11J70, 65D99 

Author and Title ledex^ 
The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for the first 30 volumes of 
The Fibonacci Quarterly have been completed by Dr. Charles K. Cook. Publication of the completed indices is on 
a 3.5-inch, high density disk. The price for a copyrighted version of the disk will be $40.00 plus postage for 
nonsubscribers, while subscribers to The Fibonacci Quarterly need only pay $20.00 plus postage. For additional 
information, or to order a disk copy of the indices, write to: 

PROFESSOR CHARLES K. COOK 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF SOUTH CAROLINA AT SUMTER 

1 LOUISE CIRCLE 

SUMTER, SC 29150 

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices for another 
wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. Cook when you place 
your order and he will try to accommodate you. DO NOT SEND PAYMENT WITH YOUR ORDER. You will 
be billed for the indices and postage by Dr. Cook when he sends you the disk. A star is used in the indices to 
indicate unsolved problems. Furthermore, Dr. Cook is working on a SUBJECT index and will also be classifying all 
articles by use of the AMS Classification Scheme. Those who purchase the indices will by given one free update 
of all indices when the SUBJECT index and the AMS Classification of all articles published in The Fibonacci Quar-
terly are completed. 

202 [AUG. 



GENERALIZED FIBONACCI SEQUENCES AND 
A GENERALIZATION OF THE g-MATRIX* 
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(Submitted August 1997-Final Revision April 1998) 

1. INTRODUCTION 

In the notation of Horadam [7], let Wn - W„(ayb; p, q), where 

w„=pwn-x-qw„_2 (»>2) 
W0=a, W, = b. 0) 

If a and /?, assumed distinct, are the roots of 

tf-pA + q = 0, (2) 

we have the Binet form 
Aa"-BB" 

a-fi K} 

in which A = b -a/3 and B = b -aa. 
The «* terms of the well-known Fibonacci and Lucas sequences are then F„ = Wn(0,1; 1, -1) 

and 4 - ^ ( 2 , 1 ; 1,-1). 
We also write 

Un = Wn(0,1; p, q) = ^ 5 | ^ , Vn = Wn(2, p; p, q) = a" +fi». 

Throughout this paper, d is a natural number. 
Define the Aitken transformation (see [1]) by 

«*™-7h£?- <4> 
In 1984, Phillips discovered the following relation between Fibonacci numbers and the Aitken 

transformation: A(rn_nrn,rn+t) = r2n, where rn=Fn+l/Fn and t <n is a positive integer, and an 
account of this work is also given by Vajda in [16]. Later, some articles discussed and extended 
Phillips' results. For example, McCabe and Phillips [11], Muskat [14], Jamieson [10]. More 
recently, Zhang [17] defined a generalized Fibonacci sequence as 

Ak^nk+d T>k ank+d 

K*l = <*&> b; p, q) = A<X
 a\y (5) 

and obtained 
A(%%%k\^]) = R?k\ (6) 

where i ^ ° = W%] I W$. This work generalizes the results of [11], [14], and [10]. 

* This research was supported by the Natural Science Foundation of Education Committee of Henan Province, P. 
R. China. 
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Applying the definition of W^k], we can easily prove that W$ satisfies the following recur-
rence relation: 

W£\d = (ak+/Jk)W<^-akfikW<^d, (7) 

which has the characteristic equation with roots ak and fik . 
In this article, Section 2 contains the relation between ratios of W*fy and other transforma-

tions and Section 3 gives a generalization of the g-matrix. 

2. THE SECANT, NEWTON-RAPHSON, AND HALLEY TRANSFORMATIONS 

If the roots of (2) are real when k tends to infinity, then the sequences of ratios 

ur= m\ 
converges to the dth power of a root of (2). In other words, the sequences of ratios {fi^ty 
converges to a root of 

x2-(ad +Pd)x + adf3d = x2-Vdx + qd = 0, (8) 

namely, I^k) -> ad or J3d as k -> oo. 
Define the Secant transformation S(x, x') (see [14]) for equation (8) by 

s(x rt=*x'2-vd*+tf)-xX*?-VdX+4d) = ™'-qd
 (9) 

V ' ; (x'2-Vdxf + qd)-(x2-Vdx + qd) x + x'-Vd* KJ 

Define the Newton-Raphson transformation N(x) (see [14]) for equation (8) by 

ATY \ x2-Vdx + qd x2-qd
 / i m 

N(X) = X~ 2x-Vd = 2 ^ ' ° 0 ) 

and the Halley transformation H{x) (see [4]) for equation (8) by 

H(x) = x x2-Vdx + qd
 = x'-^x + V^ 

(2X-Vd)-^^ 3x2-3Vdx + VJ-q« (11) 

Then we have the following result. 

Theorem 1: Let n and m be integers such that in+n is even, and assume that division by zero 
does not occur. Then: 

(i) S(%k\^) = B$l)l2, where 

Ri2k) _ K&V2,* _ A2ka^k+d-B2kpm+"^d , m . 
t\m+ri)l2 ~ yy{2k) ~ J2ka(nH-n)k _ glk o(m+n)k ' \ l Z ) 

(ii) N(^) = ̂ ; (13) 
(iii) H(^) = B£k\ ( 1 4 ) 
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Proof: We prove only part (i). The proofs of (ii) and (iii) are similar. Applying the defini-
tion and properties—see (3.1 )-(3.5) of [ 17]—of W$, we have 

d 

KW-tfK'Wo _ w^Kl-i^Kl 
(dd — Bd\( A2kQfim+ri)k+d — R2k n(m+n)k+d 

(ad-6d)(A2kaim+n)k-B2kftm+n)k) ' 

This completes the proof of Theorem 1. 

We define {^f]}, the conjugate sequence of {W%kJ}, by 
xVJ,kd = x¥Jt

k
d(a,b;p,q) = Akank+d+Bk6"k+d. (15) 

Using (15), it is easy to prove that {¥£*]} also satisfies the recurrence relation (7). If 
*F„(*3 *• 0, we use B^k) again to denote ¥£*] / ¥ $ , then this B^k) also satisfies the same four rela-
tions: (6), (12), (13), and (14). 

3. A GENERALIZATION OF THE ^-MATRIX 

Before proceeding, we state some results that will be used subsequently. These results can 
be proved using definitions (5) and (15): 

Vffi - 2AkBkqnk = A(0fo>)2, (16) 

( 0 2 V ( 0 2 = ̂ W (is) 
W^]^-qd^W^ld = UdW^k\ (19) 

Wim+k) _ AkBkqnkfffi-k) = w^W^}, (20) 

W^}-qdW^ld = UdX% (21) 

{^f-W^}W^}d = AkBkqnk-dUl (22) 

where A = p2 - Aq. 
Following Hoggatt (see [6]), the £>-rnatrix is defined by 

H 1 1 
0 

Generalizations of the gsrrratrix are to be found in Ivie [9], Filipponi and Horadam [3], Filipponi 
[2], and Etoradam and Filipponi [8]. For a comprehensive history, see Gould [5]. Recently, 
Melham and Shannon [12], [13], gave the following generalization of the g-matrix: 
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M: U, k+m 1 U/c 
Uk ~qmUk_t mj 

We now give a generalization of the matrix M. Associated with the recurrence relation (7) 
and with {#£*]} and {¥<*]} as in (5) and (15), respectively, define 

Kl = 
dmk^ 

where k, n, and d are integers. 
By induction and making use of (17) and (18), it can be shown that, for all integral /?, 

(M$r=u"d uKmk>> 
vyn,Q 

-ndW^mk^ 

Applying (16)-(20), we obtain the following theorem. 

Theorem 2: 
fuA™* k\ +mlkl) -nd lAA™^ +m2kl)\ 1 " M H- "n.O (^Tx(^2dT2 ^u?^-) 

"n.O H YYn,-d 
(23) 

4. A REMARK 

In fact, the sequences W$ and T^] may be regarded as two double sequences (in n and k, d 
being a parameter). The interesting properties of the sequences Wffy and T^] still need further 
research. 
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NEW PROBLEM WEB SITE 

Readers of The Fibonacci Quarterly will be pleased to know that many of its prob-
lems can now be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 
Over 23,000 problems from 42 journals and 22 contests are referenced by the site, 

which was developed by Stanley Robinowitz's MathPro Press. Ample hosting space 
for the site was generously provided by the Department of Mathematics and Statistics 
at the University of Missouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose 
solutions were published), and other relevant bibliographic information. Difficulty 
and subject matter vary widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal 
issues or their time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
1220 East West Highway #1010A 
Silver Spring, MD 290910 
(301) 587-0618 (Voice mail) 
bowron@compuserve.com (e-mail) 
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LAMBERT SERIES AND ELLIPTIC FUNCTIONS AND 
CERTAIN RECIPROCAL SUMS 

R. S. Melham 
School of Mathematical Sciences, University of Technology, Sydney 

PO Box 123, Broadway, NSW 2007, Australia 
(Submitted August 1997-Final Revision February 1998) 

1. INTRODUCTION 

For/? a strictly positive real number define, for all integers n, the sequences 

\u„ = Pun_l+un_2, u0 = o, ux = \, 
Vn=pVn.l+Vn_2, V0 = 2, Vx = p. 

Then U„ and V„ generalize F„ and L„, respectively. Their Binet forms are 

T =an-pn 

" a-p 
where 

a" -8" U„ = -—£- and V„ = a"+/3", 

a^p+4p± and p=PzJp± 
2 ^ 2 

We see that afi--\a>\ and - 1 < /? < 0. 
It is known that the infinite sums 

^ 1 00 i 

and £ — 
n=Q ^2n+l n=0 ^2n 

can be found by using certain constants associated with Jacobian elliptic functions, while the sums 
CO -. CO -j 

Zy and Z7— 
involve the Lambert series. For an introduction to these matters we recommend Horadam [6], 
which contains a wealth of references to original sources. Further excellent references are 
Bruckman [5], Almkvist [1], and Borwein and Borwein [3]. Other types of reciprocal sums 
which involve Lambert series can be found in Andre-Jeannin [2]. 

In the above four sums, the task of summation is shared equally between the Lambert series 
and the Jacobian elliptic functions. The purpose of this paper is to give further reciprocal sums in 
which the task of summation is similarly shared, thus exhibiting a pleasing symmetry of method. 

While the results in Section 3 are believed to be new, they are variations and extensions of 
known results, and so their proofs contain nothing truly innovative. For this reason we simply 
state each result and indicate where in the literature a similar proof can be found. In Section 4 we 
obtain results the like of which we have not seen, and which involve Lambert series. Interestingly, 
certain special cases of these results have known "dual" results which involve the Jacobian elliptic 
functions, further highlighting our comments above. 
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2, NOTATION AND PRELIMINARY RESULTS 

In the theory of Jacobian elliptic functions we have, in standard notation, 
f^2 dt A „ . tnl1 dt *-i 0 VTT^sm' ',2 - 2 - and K'=r . " . 

/ Jo Vl + £ ' 2 s inV 
where 0 < k, k' < 1, and £2 + A'2 = 1. See, for example, [5] and [7]. Write q = e-K'*'K {Q<q<\) 
Then (see [7]) 

2£ = i+ .JZT +J2l+J2l+ . . . , 
1 + ̂ 2 1-f-g4 l-hq6 7T 

2kK = 4 ^ " [ 4 ^ ^ 4 ^ ? ^ 

Thus, for a given q (0 < q < 1), we are able to find the unique values of K, k, K\ and kf. 
The Lambert series is defined as 

(2.1) 

(2.2) 

A*) = I 
«=1 l - x w ? ixi<i: 

For |x| < 1 we require the following three results, which occur as Lemma 1 in [2]: 
oo Y2"+* 

2-T 
n = 0 1 

Jln+l = L(x)-L(x2); 

f x" 2\. = L(x)-2L(x2) 

oo Y
2 n + l 

Ylrf-^ = L(x)-3L(x2) + 2L(x<). 
« = 0 1 + X 

Finally, we require the following lemma. 

Lemma 1: Let m be a positive integer. Then 

1 

1 

1 
(2«+lW (2n+l)2my 

a r (2«+l)w u r (2«+l)2w 

u, (2n+l)m 

^(2n+l)m^(2n+l)2m 
, /II even; 

(a-P) -+-( 2 / 7 + 1 W (2«+l)2mi7 
a F(2«+l)m a y(2n+l)2m 

u, ^ ^ , iff odd; 
^2«+l)/?r (2/7+l)2m 

(a - /?) ^ v nm ** r2nm. 

— nm 
ynrrf2 

-, w even. 
2ww 

Proof: We prove only (2.8) since the proofs of (2.6) and (2.7) are similar. 

1 
{a-P) 

1 1 
^ v nm w r2ww. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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(a 

(a 

(a 

(a 

1 
-P) 

1 
-P) 

1 
-P) 

1 
-P)\ 

nmy _ y 
** r 2nm v nm 
a

lnmV K nm 2nm 

anm^a2nm + glnm^ _ ^nm + ^ ) 

"**' ' nm' Turn 

a3nm_anm 

2nmy y 
** r nm 2nm. 

anm_pnm 

(since m is even and a/? = -1) 

Ynnf2 2nm 

u„ 
V V 
r nm 2nm 

. D 

3. RECIPROCAL SUMS I 

Using the notation in Section 2, we now state the results of this section in the following 
theorem. 

Theorem 1: Let m be a positive integer. Then 

Tijr-=(a-P)[mPm)-iw*m)i 
n=l U2nm 

y 1 = 1 
n=0 v 2nm ^ 

2K(p2m) | T 
TT 

n=0 "(2n+l)m 

(a - /?) W " ) - 2Z,(/?2m) + L09*")], w even, 
a-p)k(J32m)K(J32m) 

' 2;r 

k{p2m)K{p2m) 

m odd, 

w=0 r (2/i+l)/w 
2;r m even, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
-L( /n + 2L(fi2m) - L{ftm\ m odd. 

For a special case of (3.1) concerning the Fibonacci numbers, see the paper of Brady [4], 
where there is an obvious misprint (for 2m/? and Am/i read fl2m and J34m, respectively). Also of 
interest is (2.1) in Shannon and Horadam [8]. The proof of (3.2) proceeds along the same lines as 
the proof of (3.12) in Horadam [6]. The proofs of the first part of (3.3) and the second part of 
(3.4) are similar to the proof of (4.12) in Horadam [6]. For the proofs, one uses the identity 

,.2/1+1 J2n+l ..4/1+2 

l-X 4«+2 l - X .2/7+1 l - X ,4n+2 

together with (2.3). Finally, the proofs of the second part of (3.3) and the first part of (3.4) are 
similar to the proof on page 103 of the above-mentioned paper of Horadam. 
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4. RECIPROCAL SUMS H 

The results of this section are contained in the following theorem. 

Theorem 2: Let m be a positive integer. Then 

1 
OO JT 

Z unm 

n=lvnmy2 2nm 

ia-P) 
l 

[L(Ji2m) - 3L(jfm) + 2L(j3Sm)], m even, 

ia-P) 
1 

U, (2n+l)m 

n=Q ^(2n+l)m^(2n+l)2m 

(a-p) 
l 

[L(J32m) + L(j34m) - 6L(fm) + 4L(j316m)], m odd, 

[L(fi2m) - 4L(J?m) + 5L(JPm) - 2L(fi16m)], m even, 

(4.1) 

{(fl-P) 
Proof: If m is even we have, from (2.8), 

\L(fi2m) - 3L(pgm) + 2L(fil6m)l 
(4.2) 

m odd. 

1 CO JT 

1 
ia-P) 

1 
(a-p) 

GO 1 CO -I 

y I y L_ 
z-rf a

nmv ^ a2nmV I 
n=\ ** r nm «=1 "" r 2nm J 

o o - a co i 

y i y I 
/ rilm\n oo /• o4m\n 

%i+(pimy —Z— 4/w\« 094»>-
(since afi = -l), 

and the first part of (4.1) follows from (2.4). To prove (4.2) we begin with (2.6) and (2.7) and 
proceed in the same manner, making use of (2.3) and (2.5). Now to the second part of (4.1). In 
the first part of (4.1), we replace m by 2m to obtain 

1 CO JT 

y u2nm __ [L(fim) - 3L(fiSm) + 2ZG91*")], 

which is valid for all positive integers m. When we add this sum to the second sum in (4.2), we 
obtain the second sum in (4.1). This completes the proof. D 

5, THE DUAL RESULTS 

In the introduction we referred to known dual results of special cases of (4.1) and (4.2). To 
obtain these, we replace U(V) by V(U) in (4.1) and (4.2). Then, with the identity U2„ = Uy„ 
the summands become 1/U%m and 1 / f/(22w+1)w. Now if we take Un-Fn7 then the sums 

CO -J CO -j CO -0 

Z-rf. Z-̂ -> and Z-ET 
n=\ rn n=l r2n 

F2 

n=0 r2n+l 

are known. See, for example (44), (48), and (55) of Bruckman [5], where elliptic functions are 
used. See also (f) and (h) on page 320 of Almkvist [1], where theta functions are used. 
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We have not found the more general sums 
CO 1 CO -. 

]T —2~ and ^ — (for the two parities of m) 

in the literature available to us, and we suspect that their determination is much more difficult 
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1. INTRODUCTION 

Horadam [7], in a recent article, defined two sequences of polynomials Jn(x) and j„(x), the 
Jacobsthal and Jacobsthal-Lucas polynomials, respectively, and studied their properties. In the 
same article, he also defined and studied the properties of the rising and descending polynomials 
i^(x), rn(x), Dn(x)y and dn(x), which are fashioned in a manner similar to those for Chebyshev, 
Fermat, and other polynomials (see [2], [3], [4], [5], and [6]). 

The purpose of this article is to extend these results to the generalized Fibonacci and Lucas 
polynomials defined by 

U„(x,y) = xUn_l(x,y)+yU„-2(x,y) (»>2), (1.1a) 
with 

U0(x,y) = 0, Ul(x,y) = l, (l.lb) 

and 
V„(x,y) = xV„_l(x,y)+yV„_2(x,y) (n>2), (1.2a) 

with 
V0(x,y) = 2, Vl{x,y) = x: (1.2b) 

In Section 2, we will give some basic properties of the polynomials Un(x,y) and Vn(x, y), 
most of which are generalizations of those given in [7] for Jn(x) and jn(x). In Section 3, we will 
derive some new properties of Un(x, y) and Vn(x, y) concerning their derivatives, as well as the 
differential equations they satisfy. In the remaining sections, we will define and study the proper-
ties of the rising and descending diagonal polynomials associated with Un(x, y) and Vn(x, y), thus 
generalizing the results already known for Fibonacci, Lucas, Chebyshev, Fermat, and Jacobsthal 
polynomials. 

2. BASIC PROPERTIES OF UH(x, y) AND Vn(x, y) 
Binet Forms: 

Vn{x,y) = an
+(3\ 

where 
a+/? = x, aj3 = -y, 
a-ft = jA, A = x2 + 4y, 

2a = x + VA, 2/? = JC-VA. 
Simson Formulas: 

t/„+1(x, y)U„_x{x, y) - U2
n{x, y) = (-l)"/*"1, 

K+l(x, y)Vn_x{x, y) - V„\x, y) = (-\)"y"-lA. 

1999] 

(2.1) 

(2.2) 

(2.3a) 
(2.3b) 
(2.3c) 

(2.4) 
(2.5) 
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Summation Formulas: 

t u<(x> y)=7T7ri[t/"+i(x'y)+yU"(x>y) ~1]> (26) 

i , ^ y ) = —^Z\lVnH(x,y)+yV„{x,y) + {x-2)l (2.7) 
o x-i-y A 

Important Interrelations: 

K(x, y) = Un+l(x, y)+yU„_1(*, y), (2-8) 
Vn(x,y) + xUn(x,y) = 2Un+l(x,y), (2.9) 
V„(x,y)-xU„(x,y) = 2yUn_l(x,y), (2.10) 
AU„(x,y) = Vn+l(x,y)+yVn_i(x,y), (2.11) 
AUn(x,y) = 2Vn+1(x,y)-xV„(x,y), (2-12) 
U2n(x,y) = Un(x,y)V„(x,y), (2.13) 
V2n{x,y) = VZ{x,y)-2{-y)», (2.14) 
F2„(X,JO = AU2„(x,y) + 2(-y)", (2.15) 
At/„2(x, j)+V„2(x, y) = 2Vln(x, y), (2.16) 
2Um+„(x, y) = t/m(x, ̂ )F„(x, j)+Fffl(x, j;)t/„(x, y), (2.17) 
2^m+„(x, 7) = VJx, y)V„(x, y) + AUm(x, y)Un{x, y). (2.18) 

All the above results from (2.4)-(2.18) may be derived using the Binet forms (2.1) and (2.2) 
or, alternately, using the earlier results of Horadam [8]. Most of these results are to be found in 
Lucas ([10], Ch. 18). Now we let X = a and Y = (3 in the following identities, where a and /? 
are given by (2.3), X and Y arbitrary: 

yn _yn i(n-l)/2] /̂  _ ~ i \ 

^Y~T= E H ) ^ r yXY)r{X + Y)"~^ («>0), (2.19) 

Xn + Yn= Y(~lY-Z-[ / )(XY)r(X + Y)n-2r (n>0). (2.20) 

We can then easily establish the following expressions for Un(x, y) and Vn(x, y). 
Closed Form Expressions: 

[(w-l)/2] / . x 
Um(x,y)= I r~r)x"-2r-y, (2.21) 

r=0 
[if/2] 

F«^^)=S^:("/J^-V (it >0). (2.22) 

It is seen from (2.21) and (2.22) that U2n(x,y) and V2n_l(x9y) are odd polynomials in x of degree 
(2n-l) and polynomials my of degree (w-1), while ^w+iC^j) a n^ ̂ 2n(x^y) a r e e v e n P°'y~ 
nomials in a: of degree 2n and polynomials in j ; of degree n. It may be mentioned that expres-
sion (2.21) for Un(x,y) has already been established by Hoggatt and Long [3]; however, the 
expression for Vn(x, y) is new. By letting x = 1 and y - 2x, we obtain the results of Horadam [7] 
for the polynomials Jn{x) and jn(x). 
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Hoggatt and Long [3] have shown that 

Un(x,y) = flU-2^coI^7^ (n>2). (2.23) 

Using a similar procedure, or by using the technique used by Swamy [11] in obtaining the zeros of 
Morgan-Voyce polynomials, we can show that 

Vn(x,y) = T\^-2^co{^7^ («>2). (2.24) 

We may now rewrite expressions (2.23) and (2.24) to express the polynomials Un(x,y) and 
Vn(x, y) in the product form. 
Product Form: 

[(»-l)/2]r fh VI 

Un(x,y) = x** n {x2+4^co%^Jj ^>2), (2.25) 

F„(x,j) = x 1 - ^ n | x 2 + 4 j c o s 2 ^ ^ ^ | (n>2), (2.26) 

where 
fl if?? is even, 

S„ = \ (2.27) 
0 if n is odd. 

By letting x = 1 and y - 2x in (2.26) and (2.27), we get the zeros of the Jacobsthal polyno-
mials J„(x) and jn(x) to be, respectively, 

and 

x = - | s e c 2 f e j , k = l,2,...,(n-l\ (2.28) 

X = ~bQCi^br7r^ k = l,2,...,n. (2.29) 

The generating functions for U„(x9 y) and Vn(x, y) are given below. 
Generating Functions: 

U(x, y, t) = £ U,(x, y)rl = {1 - t(x+yt)yi, (2.30) 

V(x,y,t)=fiV,(x,yy=(2-xt){l-t(x+yt)}-1 (2.31) 
/=1 

= l + (l+ytz){l-t(x+yt)}-1 (2.32) 

3. DERIVATIVE PROPERTIES 

From (2.30), (2.31), and (2.32), a number of relations involving the derivatives of Un(x,y) 
and Vn(x,y) may be derived. However, only the following derivative relations are listed here. 
Throughout this section, where not explicitly mentioned, U, V, U„, and Vn stand for U(x,y,t), 
V(x, y, 0 y Un(x, y), and Vn(x, y), respectively. We can prove that 
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f=<fet/>, (3.0 

f-'f- C3.3, 
f"'f^- <"> 

*^— \-2y-z- = t—r-, (3.5) 
dx * dy dt" v ' 
dV^ dV tdV n ~ 

xl*+2ylf = t-a- (36) 

The above results are now established. From the generating function (2.30), we have 
IdU ^ 1 <37= 1 #U = U2 (37) 
t dx t2 dy x + 2yt dt ^ ' ' 

We see that (3.3) and (3.5) follow directly from (3.7). Now, from (2.32) and (2.31), we have 

W_ = t{\+yt2)U\ (3.8a) 

^ = t2(2-xt)U\ (3.8b) 

However, 
%U) = (l+yt2)U2, (3.9a) 
df 

-?-(t2U) = t(2-xt)U2. (3.9b) 

Relation (3.1) follows directly from (3.8a) and (3.9a), while (3.2) follows directly from (3.8b) and 
(3.9b). Also, from (3.8a) and (3.8b), we have 

x ^ + 2y^ = t(x-xyt2
+4yt)U2=t^, 

dx ' d y v * * J dt' 
thus establishing (3.6). Finally, we have, from (3.8a), 

t2U + t ^ = t2(l-xt-yt2)U2 + t2(l+yt2)U2 

= t2(2-xt)U2=^r, using(3.8b). 
dy 

Thus, relation (3.4) is established. Using the above relations (3.1) to (3.6) and the generating 
functions for U(x,y,t) and V{x,y,t) given by (2.30) to (2.32), we can obtain the following 
relationships, where the primes indicate partial derivatives with respect to x and dots those with 
respect to y: 

V>(x,y) = nUn(x,y), using (3.1), (2.30), and (2.31), (3.10) 
Vn(x,y) = nUn_l(x,y), using(3.2), (2.3), and (2.31), (3.11) 
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Un+l(x, y) = Ufa, y), using (3.3) and (2.30), 
or from (3.10) and (3.11), (3.12) 

nVnJ*,y) = {n + \)Vfa,y), using (3.10) and (3.11), (3.13) 
V„+l(x, y) = Vfa, y) + Ufa, y), using (3.4), (2.30), and (2.31), 

or from (3.10) and (3.13), (3.14) 
xUfa,y) + 2yUfa,y) = (n-l)Ufa,y), using (3.5) and (2.30), (3.15) 
xVfa,y) + 2yVfa,y) = nVfa,y), using (3.6) and (2.31). (3.16) 

We shall illustrate the procedure for proving the above results by establishing (3.12) and 
(3.16); the other results may be established in a similar manner. Substituting (2.30) and (2.31) in 
(3.3) and (3.6), respectively, we get: 

ftUlXx,y)f-l = tfiai(x,y)t'-1; 
1 1 

xfvfa, y)t + 2yfjVi{x, yY = tj^iVfa, y)t'-\ 
0 0 1 

Comparing the coefficients of like powers of t on both sides of the above equations, we obtain 
(3.12) and (3.16), respectively. 

Using the results of (3.12) and (3.13), we may now derive the following relations for the 
higher-order derivatives of Un(x, y) and Vn(x, y), where D^ and D^ denote the derivatives with 
respect to x mdy, respectively. 

DyUn+1(*, y) = D?Un_r+l{x, y), (3.17) 

(n~r + l)D^Vn+1(x,y) = (n + l)D^Vn_r+l(x,y). (3.18) 

We will now derive the linear differential equations satisfied by Ufa, y) and Vfa, y). From 
(2.12), we have MJn_x + 4Un_x = 2Vn - xV„_x. Hence, 

^AF„+4C/„_, =2nU„_l-x(n-l)U„_2, using (3.11), 

= 2nU„_l-(n-l)[2U„_l-V„_2], using (2.9) 

= 2U„_l + (n-l)(AUn_l-Vn)/y, using(2.11). 
Therefore, 

yAVn + ily-in-mnU^+nin-W^O. (3.19) 

Substituting (3.11) in (3.19), we see that V„(x, y) = z satisfies the differential equation given by 

y(x2+4y)z+{2y-(n-l)(x2+4y)}z+n(n-l)z=0. (3.20) 

Differentiating (3.19) again with respect toy and again making use of the result (3.11), we get 

y(x2 +4y)nU„_l + {6y-(n-2)(x2 + 4y)}nUn_l + (n-2){n-3)nUn_l = 0. 

Now, replacing (w-1) by n, we see that Un(x, y) = z satisfies the differential equation 

y(x2+4yYz+{6y-(n-l)(x2+4y)}z+(n-l)(n-2)z=0. (3.21) 
Since the Jacobsthal polynomials [7] J„(x) and jn(x) are given by 
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Jn{x) = Un{\ 2x) and jn(x) = Vn(\ 2x), (3.22) 

we see, from (3.21), that Jn(x) satisfies the differential equation 

x(Sx + l)z"-{4(2n-5)x + (n-l)}z' + 2(n-l)(n-2)z=0, (3.23) 

while, from (3.20), we see that jn(x) satisfies the equation 

x(8x + l)z"-{4(2n-3)x+(n-l)}z' + 2n(n-l)z = 0. (3.24) 

Recall that y = 2x implies that z = jz' and z-^z". 
In a similar way, differentiating both sides of (2.11) with respect to x, and utilizing (3.10), 

(2.8), and (1. la), we can show that Vn(x, y) satisfies the equation 

(x2+4y)z"+xz'-n2z = 0. (3.25) 

Differentiating (3.25) with respect to x once and making use of (3.10), we see that U„(x,y) 
satisfies the equation 

(x2+4y)z"+3xz' + (l-n2)z=0. (3.26) 

It should be noted that equations (3.25) and (3.26) appear in [1] as equations (1.11) and (2.6), 
respectively, in a slightly varied notation. It should also be noted that, after the submission of this 
article, an article by Horadam [9] appeared generalizing the results given in (3.20), (3.21), (3.25), 
and (3.26). 

Also, from (3.11) and (1.2), we can show that 

K(^y) = ^K-l(x,y)+-f^yK-2(^y) (»*3), (3.27a) 

while, from (3.10) and (1.2), we can prove that 

v&*>y)=^xVU*>y)+-^2yvu(*,y) («^3) (3 2 8 a) 
Thus, we see that both Vn(x, y) and VJ(x, y) satisfy the same recurrence relation, but with differ-
ent initial conditions as given by 

Vl(x,y) = 0, V2(x,y) = 2, (3.27b) 
V/(x,y) = l, V{(x,y) = 2x. (3.28b) 

4. RISING DIAGONAL POLYNOMIALS 

Let us first consider the rising diagonal polynomials R„(x, y) associated with U„(x,y); these 
polynomials are formed the same way as the rising diagonal polynomials associated with Fermat, 
Chebyshev, Jacobsthal, and other similar polynomials (see [2], [4], [5], [6], and [7]). Thus, from 
(2.21), we see that B0(x,y) = 0, Rl(x,y) = l, R2(x,y) = x,..., 

3 + -R.(x,y) = X-1
 + ( " - 3 ) x - v ( " 2 5 ) * - y +("3 ^ y 

The above may be rewritten as 

^ ( x , j ) = x"-1
 + ["-1

]-2-1]x«-1-3V + [ w - 1
2 - 2 - 2 ]x"- 1 - 3 V-f 
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+ fn-l-2-3\x„+>3y3+ + 

V it] J 
yU\ 

Hence, 

K(x,y)= Z • Y^y (n>\), Bo(x,y) = 0. (4.1) 

Similarly, starting with (2.22), we may show that the rising polynomials rw(x, y) associated with 
Vn(x, y) are given by 

[«/3] _ . / _n-\ 
rr,(x,y)=Tfzk{" i )x"~3<y' ( " ^ ) , r0(x,y) = 2. (4.2) 

We now derive some interesting relationships for these rising polynomials including the 
recurrence relations. From (4.1) and (4.2), we have 

/ \ , o / \ v n~J (n-2i\ n-3i i , \ ? 1(n-l-2i) „-3i i 

= 2Z(n 2l)x"-*y=2R„+l(x,y). 
/=o' 

Hence, 
rn(x, y) + x^(x, y) = 2i^+1(x, y). (4.3) 

Similarly, we can show that 
rn(x,y)-xRn(x,y) = 2yRn_2(x,y) (n>2). (4.4) 

Hence, from (4.3) and (4.4), 

rn(x, y) = ^+i<X y)+yRn-i(x, y) (n * 2l (4 5) 
i^+1(x, y) = xR„(x, y)+yRn.2(xy y) (n>2). 

Thus, we see that R„(x, y) satisfies the recurrence relation 

Rn{x9y) = xRn_l{x9y)+yRn_,{x9y) (n>3\ (4.6a) 
with 

Ro(x,y) = 0, Rl(x,y) = l, R2(x,y) = x. (4.6b) 

Similarly, using (4.3), (4.4), and (4.5), we can deduce that rn(x, y) satisfies the recurrence relation 

rn(x9 y) = xr„_x(x9 y)+yr„_3(x, y) (n > 3), (4.7a) 

with 
r0(x,y) = 29 rl(x,y) = x9 r2(x,y) = x2. (4.7b) 

It is interesting to compare the relations (4.6), (4.7), (4.5), (4.3), and (4.4) with their counter-
parts for Un(x,y) and V„(x,y) given, respectively, by (1.1), (1.2), (2.8), (2.9), and (2.10). 

The generating functions for R„(x, y) and rn(x, y) may be found by following the usual tech-
nique. They are given by 

R(*> y> 0 = i ^ t e - v y - 1 = {l-t(x + yt2)y\ (4.8) 
/=i 
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r(x,y, t) = %{x,yy = {2-xt){\-t{x+yt2)Yx (4.9) 
7=0 

= l + (l+yt3){l-t(x+yt2)}~\ (4.10) 

Using these generating functions, we may now derive a number of results concerning the 
derivatives of i?(x, y, i) and r (x, y, t) where, for the sake of convenience, R and r are used for 
i?(x, y, i) and r (x, y, i). A few of these results are: 

§-«•§• 

A3 j , f = ,f§, (4.13) 
dx * dy dt v ' 
dr ^ dr ^dr /A , .x x*+3j,7r'*- (414) 

The above results may be established in a way similar to those given in (3.1) to (3.6). From the 
above results, we may derive the following relationships for the derivatives of Rn(x,y) and 
rn(x, y), where again the primes indicate partial derivatives with respect to x and dots those with 
respect to y: 

r„+2(.x,y) = rXx,y) + Rt,(x,y), (4.16) 
xR&x, y) + 3yR„(x, y) = (n- l)R„(x, y) (4.17) 

*r»(*, y) + 3yt(x, y) = nr„(x, y). (4.18) 
Again, it is interesting to compare the relationships (4.11), (4.12), (4.13), (4.14), (4.15), 

(4.16), (4.17), and (4.18) with their counterparts for U„(x, y) and V„(x, y), namely, the relations 
(3.3), (3.4), (3.5), (3.6), (3.12), (3.14), (3.15), and (3.16), respectively. 

5. DESCENDING DIAGONAL POLYNOMIALS 

Let us now consider the descending diagonal polynomials Dn(x, y) and dn(x, y) associated 
with the polynomials Un(x,y) and Vn(x, y), respectively; these are formed the same way as the 
descending diagonal functions associated with Chebyshev, Fermat, Jacobsthal, and other similar 
polynomials (see [2], [4], [5], [6], and [7]). Thus, from (2.21), we see that the descending poly-
nomial Dn(x, y) associated with Un(x, y) is given by 

D0(x,y) = 0, Dl(x,y) = \, D2(x,y) = x + y,..., 

A(*,J') = (woV1 +(^1)x , r f j '+ '"+(»=Oy"1 = (x+J'rl-
Hence, 

D„(x,y) = "£(nTl)x"-l-y = (x+yrl (n>l), D0(x,y) = 0. (5.1) 
7=0 ^ ' 
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Similarly, starting with relation (2.22), we can obtain the descending polynomial dn(x, y) 
associated with the polynomial Vn(x, y) to be 

dn(x,y) = i~-(i)x"-y (n>\), d0(x,y) = 2. (5.2) 

Now consider 

Hence 
dn(x,y) = Dn+l(x,y)+yDH(x,y) (n>l). (5.3) 

Thus, 
dn(x,y) = (x + 2y)(x+yy-1 (n>l). (5.4) 

We also have, from (5.1) and (5.4), 

^A=d^x^=x } (55) 
D„(x,y) dn(x,y) 

d„+1(x,y)+yd„(x,y) = (x + 2y)2Dn(x,y) («>1). (5.6) 

We may also formulate the following generating functions for the descending polynomials 
Dn(x, y) and dn(x, y) by following the usual procedure: 

D(x, yj) = T Di(x> yy~l = il~ (x+yWl, (5-7) 

1=1 

d(x,y,t) = fjdi{x,y)t>-' = {x + 2y){\-{x+y)ty\ (5.8) 
From the above generating functions, we may deduce the following relations for the derivatives of 
D(x, y, t) and d(x, y, i) where, for the sake of convenience, D and d are used for D(x, y, t) and 
d(x,y,t): 

dD = dD 
dy~ dx' (5.9) 

f = f + Z>, (5.10) 
ay ox 

— + 
dx +y dy ' dt ' 
dd dd dd 
dx dy dt 

dD_ = 
dy {x+}jdx ' a 
dd_ dd_ 
dyX~ a 
dd dd 

i — = t-— 

dy a 
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x-*+y-&=tir' (511) 

dy a 
, .dD , .dD dD , . . . . 
(x+y)^ = (x+y)— = t—, (5.13) 

(x+y)^-x = t ^ + (x+y)D, (5.14) 

(x+y)™=t™+2(x+y)D. (5.15) 
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Using the above relations, we may write the corresponding interrelations for the derivatives 
of the polynomialsZ)n(x, y) and dn(x, y) with respect to x andy as has been done for i^(x, y) and 

6. CONCLUDING REMARKS 

We have generalized all the known results concerning the diagonal functions associated with 
Fibonacci, Lucas, Chebyshev, Fermat, Pell, and Jacobsthal polynomials to the case of diagonal 
functions associated with the generalized polynomials given by (1.1) and (1.2). We have also 
derived a number of new interesting results concerning the derivatives of Un(x, y) and Vn(x, y) 
with respect to y, the differential equations satisfied by these polynomials, as well as the inter-
relations between their derivatives with respect to x and y. Similar results have also been derived 
for both the rising and the descending diagonal polynomials associated with Un{x, y) and Vn(x, y); 
however, we have not been able to find the differential equations satisfied by i^(x, j /) , rn(x,y), 
and dn(x,y) with respect to either x or y. It may also be observed that the descending (rising) 
polynomials associated with the rising (descending) polynomials of Un(x, y) and Vn(x, y) are, 
respectively, Un(x,y) and Vn(x,y). This answers one of the questions raised by Horadam [7] 
regarding the rising polynomials of the descending polynomials of J„(x) and jn(x) as well as the 
descending polynomials of the rising polynomials of Jn(x) and jn(x). 
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1. INTRODUCTION 

Let aQ,au...,ar_x be arbitrary complex numbers with ar_l^0 ( l<r<oo) . For a given 
sequence of complex numbers A = (a_r+l, #_r+2, ...,<x0), we define the weighted r-gemeralized 
Fibonacci sequence {y (̂w)KJL_r+i by using a recurrence formula involving r +1 terms* as follows: 

yA(n) = an (n = -r + l,-r + 2,...,0); 
r 

yA(p)^Y*ai-iyA(n-i) (/i = 1,2,3,...). 
i=l 

When at = 1 for all / and A = (0,0, ...,0,1), we get the r-generalized Fibonacci numbers (see 
[4]). A Binet-type formula and a combinatorial expression of weighted r-generalized Fibonacci 
sequences are given in [3]. Furthermore, in [2], the convergence of the sequence { jVU^/^V 2 } 
has been studied, where q is a root of the characteristic polynomial P(x) -xr- a0xr~l 

-ar_2x-ar_l of multiplicity v. 
The purpose of this paper is to generalize the weighted r-generalized Fibonacci sequences 

with 1 < r < oo to a class of sequences which are defined by recurrence formulas involving infi-
nitely many terms, and to analyze their asymptotic behavior. We call such sequences ^-general-
ized Fibonacci sequences. This is a new generalization of the usual Fibonacci sequences and 
almost nothing has been known about such sequences until now. For example, there has been no 
theory of difference equations for such sequences. 

More precisely, an oo-generalized Fibonacci sequence is defined as follows. We suppose that 
two infinite sequences of complex numbers are given, one for the initial sequence and the other 
for the weight sequence. Then a member of the oo-generalized Fibonacci sequence is determined 
by the weighted series of its preceding members (for a precise definition, see §2). Since the 
recurrence formula always involves infinitely many terms, we always have to worry about the 
convergence of the series corresponding to the recurrence formula and hence we need auxiliary 
conditions on the initial sequence and the weight sequence. 

This is called an r-th order linear recurrence in [3]. 
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One of the striking results of this paper is that, under certain conditions, an oo-generalized 
Fibonacci sequence behaves very much like a weighted r-generalized Fibonacci sequence with r 
finite, as far as its asymptotic behavior is concerned. 

The paper is organized as follows. In §2 we give a precise definition of the oo-generalized 
Fibonacci sequences. In §3 we analyze their asymptotic behavior under certain conditions. In §4 
we give some explicit examples in order to illustrate our results. 

2. oo-GENERALIZED FIBONACCI SEQUENCES 

Take an infinite sequence {at}f=0 of complex numbers, which will later be the weight 
sequence of oo-generalized Fibonacci sequences. We set h(z) = T^=oaizl f°r ZGC and u(x) = 
£/Li \ai |x' for x e R. Let R denote the radius of convergence of the power series h, which coin-
cides with the radius of convergence of u. We assume the following condition: 

0<i?<oo. (2.1) 

Let X be the set of sequences {x,}*^ of complex numbers such that there exist C > 0 and 7" with 
0 < 7 <R satisfying |x. | < CT for all i. Note that X is an infinite dimensional vector space over 
C; it will be the set of initial sequences for oo-generalized Fibonacci sequences associated with 
the weight sequence {a,.}^. Define f:X->C by f(x0,xh...) = J^L0aixi. Since the series 
H^LQ^CT converges absolutely, the series defining/also converges absolutely. 

Lemma 2.2: If {yQ, y_l9y_2,...} eX, then the sequence {jm,JVi> Jm-2> •••> Ji> Jo, J-i, J-2?---} is 
an element of Xfor every finite sequence of complex numbers ym, ym_h ...,yx (m> 1). 

Proof: By our assumption, there exist C > 0 and T with 0 < T < R such that \y_t \ < CT for 
all i > 0. Then we have \y_t \ < (CT-m)Ti+m for all i > 0. On the other hand, there exists C" > 0 
such that \ym_j | < C'TJfor j = 0,1,..., m -1. Putting C" = max{C, CTm}, we have \ym_j \ < 
C"TJ for all j > 0. This completes the proof. • 

Now we define an oo-generalized Fibonacci sequence as follows. For a sequence {y0, y_u 

_y_2,...}eJ5we define the sequence {yx, y2, y3,...} by 
°° 

yn = /(yn_i,y„-2,JV3>•••) = Z ^ - i ^ - / (P = *>2>3>•••)• 

This is well defined by Lemma 2.2. The sequence {j7}/eZ is called an co-generalized Fibonacci 
sequence associated with the weight sequence {tfj^o- Note that if there exists an integer r > 1 
such that at = 0 for all i>r, then the sequence {^}^0 satisfies the condition (2.1) and the above 
definition coincides with that of weighted r-generalized Fibonacci sequences. Thus oo-generalized 
sequences generalize weighted r-generalized Fibonacci sequences with r finite. 

Lemma 23: 
(1) Suppose that each at is a nonnegative real number and that there exists an S with 

0<S<R satisfying 
a0 > S~l-u(S) (or, equivalently, Sh(S) > 1). (2.3.1) 

Then there exists a unique q e~R such that q > S~l, {q~(l+V)}Zo G X>m^ f(ffl? (f2^ #~3> • ••) = 1-
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(2) Suppose that there exists an S with 0<S <R satisfying 
\a0\>S-1 + u(S). (2.3.2) 

Then there exists a unique q GC such that \q\> S~\ {#~(,+1)},°Lo e X, and f(q~\ q~2, q~3,...) = l. 

Proof: 
(1) For JC > R~\ set <p(x) = f(x~\ x~2, x~\...) = x-xh(x~x). Note that <p is a difFerentiable 

function. Then we have l i m ^ ^ ^ x ^ O and <p'{x) = f(-x~2, -2x~3,.. .)<0 for all x>R~l. 
Furthermore, we have <p(S~l)> 1 by (2.3.1). Then the intermediate value theorem implies that 
there exists a unique q > S~l such that <p{q) = 1. 

(2) Define the holomorphic function v(z) by v(z) = 1- Y?=l atzl+l for z with |z| < R. Then, 
for z with \z\ = S, we have 

K ^ l ^ l + X K - H z r ^ l + M ^ ) < \a0\S=\a0z\ 
j = l 

by (2.3.2). Hence, by Rouche's theorem, a^z- v(z) and a0z have the same number of zeros in the 
region \z\ < S. Note that a{f-v{z) = 0 if and only if zA(z) = 1. Since a^z has a unique zero in 
the region, we have the conclusion. D 

Remark 2.4: For a weighted r-generalized Fibonacci sequence of nonnegative real numbers with 
r finite, condition (2.3.1) is always satisfied, and the real number q as in Lemma 2.3(1) is the 
unique positive real root of the characteristic polynomial (not necessarily asymptotically simple in 
the terminology of [2]). 

Remark 2.5: In the situation of the above lemma, if {y0, y_h y_2,...} = {1, q~l, q~2,q~3,.}, then 
we can check easily that yn - qn for all n e Z. 

Note that if condition (2.3.1) or (2.3.2) is not satisfied, then, in general, there exists no q ^ 0 
such that {q~(i+l)}Zo GX a n d / (^ _ 1

? ?~2,9~3,•••) = l- F o r example, consider at = -1 /(/ + !)!. 
The sequence {#,•}£<) satisfies condition (2.1) with R = oo. However, l-zh{z)-ez and there 
exists no q ^ 0 with q~lh(q~l) = 1. 

3. CONVERGENCE RESULT FOR limH^n yH/qn 

Our aim in this section is to prove a convergence theorem for the sequence {yn I qn) (Theo-
rem 3.10), where {yn} is an oo-generalized Fibonacci sequence as defined in §2 and q is as in 
Lemma 2.3. 

We first define the auxiliary sequence {gn} as follows. We set gQ = 1, gn = 0 for w < - 1 , and 
define {gn}™=i as the oo-generalized Fibonacci sequence associated with the weight sequence 
{af}f=0 and the initial sequence {gn}~=o> ie-? ft = /(go, g-i, g-2> •••), Si = / ( f t , go, g-i, •••), etc. 
Lemma 3.1: For all n > 1, we have 

oo f n 

J^&^o + E X&^+y-i 
z = l 

y-

Furthermore, the series on the right-hand side converges absolutely; i.e., the following series 
converges: 
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\sM + S Y\sn-j^+J-i\p-il 
/=i V;=i J 

Proof: Note that gt = a0. Then the equality for n = 1 together with the absolute conver-
gence is easily checked. Now assume that, for n, n-l,n-2,...,l, the right-hand side of the 
equality converges absolutely and that the equality is valid. Then we have 

oo 

i=0 
oo f n—i \ | oo 

= Z a . | Sn-^o+X Zfti-/-/»k+y-i \y-k +Za^«-. Z< 
j=0 k=i \j=i / J 

,/=0 /=0 fc=l \ ^ = 1 J Jfe=l 

oo / w - 1 w - i A 

k=l \i=0 j=\ j 
y-k 

y-k 

oo f n fn-j \ 

= g»+iy0 + Z Z Z a^«-y-- k+y-i+ £WH* 
t=lV;=l V'=0 J 

= S»+iy0 + 1 Z &H-1-A+y-i K-* • 

Note that we can change the order of addition, since each of the series appearing in the second 
line converges absolutely. Thus, the equality is valid also for n +1 and the right-hand side con-
verges absolutely. • 

Set 

*m = Z 4 r 0»*o), 
i=m H 

where q is as in Lemma 2.3. Note that b0 = f(q~l, q~2, q~3,...) = 1. By the previous lemma com-
bined with Remark 2.5, we have, for n > 1, 

oo f n \ 

'=1 v = 1 y 
Hence, we have 

1-&. + Y y ^"-j -^+/-i _ &i | y ( y q/+/-i ]&»-/ _ g» , y ^ &»-/ 
« ZL Z ^ »-y /+/ n Z-t\Lj ai+j an-j Qn La j Qn-j • 

H i=i j=\ H H H j=\ V/=l H JH H j=l H 

In other words, we have 1 = b0cn + ̂ c ^ + b2cn_2 + • • • + ftwc0 for all f? > 0, where cn- gn/qn. We 
will show that l im^^ cn exists. Set kn = cn - cn_x. 
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Lemma 3.2: For all n > 1, we have 

K= Z H ) V A > 
where ®Jf2 is the finite set defined by 

0 n = | ( i 1 , . . . , g : i / G Z , j y ^ l , 5 > l , 5 ; ' / = w L 

Proof: First, note that &0&0 = 1 and that kQbn + k}bn_l + • • • + &w50 = 0 (n > 1). The equality is 
easily checked for n = 1. Suppose that the equality is valid for «, /? - 1 , . . . , 1. We put ©0 = {0} and 
adopt the convention that the sum over 0O is equal to 1. Then we have 

H+i 

*,»i = -¥»-AA-i--"-**«*o = - I > Z H)^, - V 

On the other hand, we have 
w+l 

®»+l = U{(^ 'l> -> *r) : ft, ..., O ^ ©IH-1-/}-
1=1 

Then it follows that 

*n+i = Z H) r V"V 
(ij,. . . , Ir )€0 „ + 1 

This completes the proof. D 

Lemma 3J: If Z^=il#J < 1, then the series T^=0K converges absolutely and is equal to 

Proof: First, note that the series l^L^-Vfz1 converges absolutely for \z\<\ and is equal to 
(1+z)"1. Since E^i|ftOT| < 1 by our assumption, we see that the series E ^ - i y C ^ ^ U i O 1 c o n" 
verges absolutely and is equal to (l + EJJUO"1 = O^Z^oKJ • Hence, we can change the order of 
addition in the series Y^0(-iy(Il™=ibmy. Then, using Lemma 3.2, it is not hard to verify that, 
changing the order of addition appropriately, this series coincides with the series E^=0 kn. This 
completes the proof. D 

Note that Lemma 3.3 is an analog of Lemma 13 and Theorem 14 of [2]. However, the 
method in [2] cannot be applied directly to our case. 

Proposition 3.4: Suppose that there exists anS with 0<S<R satisfying (2.3.1) or (2.3.2), and 

S2u'(S)<l. (3.4.1) 

Then l i m ^ cn = l i m ^ gn I qn exists and is equal to (l + T2/f'(g-1))-1 = (Z^o bm)-\ 

Proof: Since k0b0 = 1 and k0bn + kfin_x + • • • + kjb0 = 0 for all n > 1, we see that 

y=o /=o 
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On the other hand, we have 
OO 00 

5X1=Z 
m=l m=l 

00 n 

Z ai 
. qi+1 

i=m%l 

* I Ikis'+1=I'k \sM = s2w(S) < i 
m=\ i-m i=\ 

by (3.4.1). Thus, lim^^c^ = T^oK converges absolutely by Lemma 3.3. Therefore, we have 
(5^=o O(£^=o K) - 1> s i n c e £w=o bm converges absolutely. On the other hand, we have 

V/=o ) i=\ 

and S*=o bm = 1 + E," i iatq (l+1). This completes the proof. D 

Note that the limit as in Proposition 3.4 does not always exist in general as is seen in [2] if we 
drop the condition (3.4.1). When there exists an r with at = 0 (i>r), the above lemma shows 
that the sequence is asymptotically simple with dominant root q and dominant multiplicity 1 in the 
terminology of [2]. 

Remark 3.5: Note that it is easy to construct sequences which satisfy condition (2.1) and which 
admit a real number S with 0 < S < R satisfying (2.3.1) or (2.3.2), and (3.4.1). For example, take 
an arbitrary holomorphic function hx{z) defined in a neighborhood of zero. Then the sequence 
appearing as the coefficients of the power series expansion of the holomorphic function A (z) = 
hx{z) + a at z = 0 satisfies the above conditions for all a e C with sufficiently large modulus \a\. 

Remark 3.6: Suppose that each at is a nonnegative real number and that there exists an S with 
0<S<R satisfying (2.3.1). Then the condition in Lemma 3.3 is equivalent to each of the follow-
ing: 

=1 <r 
(2) X(/-l)^<ao; 

(3) q-2u>(q-l) = q-2h>(q-l)<l; 

(4) e'(q-l)<2q, 

where e(x) = xh(x) for x > R~l. Note that h(q~l) = q and e(q~l) = 1. In particular, each of the 
above conditions is equivalent to (3.4.1). 

Problem 3.7: Suppose that the sequence {a7}^0 admits an S with 0 < S < R satisfying (2.3.1) or 
(2.3.2). If TZ=\\bm 1^1, what happens? Does it happen that l im^^ gn I q" exists and is not equal 
to the value as in Proposition 3.4? 

Remark 3.8; Suppose that each at is a nonnegative real number and that there exists an S with 
0<$ <R satisfying (2.3.1). If a = l im^^ gn I qn exists, then we have 1 < a Z*=0 bm<2. This is 
seen as follows. First, we see easily that 

n J f n \f n \ 2n j 

y=0 m=0 \m=0 J\l=0 J J=0 m=0 
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This implies that 

n + l<[£bjfcc]<2n + l, 
since HJ

m=obmCj-m = 1 (J > 0), as we have seen in the paragraph just before Lemma 3.2. Hence, 
we have 

Hm-mm Thus, if a = l im^^ cn = l im^^ gn I qn exists, then we have 1 <aj^bm ^ 2 • 

Now we proceed to the study of the asymptotic behavior of the sequence {yn}Z=i • ^Y 
Lemma 3.1, for all n > 1, we have 

on f „ \ 

y-i-

7hm, we Mve dn = c^ + JZi^y-i (n> I), where dn=yn/qn and e^ = H7
J=l(crl_Jui+J_l/qJ). 

Since the above series converges absolutely by Lemma 3.1, we have 
n £ f oo ^ n 

d„ = c„y0 + £ -^f-\ X«,+y-iJ-, = <y0 + EC»-/^> 

where p} = q~J TZiai+j-d>-i 0" ^ 0- Putting />0 = .y0, we have d„ = YPJ^C^JPJ (ra > 0). Set 
'» = ^» - < - l ( » ^ 1) a n d 'o = Jo = 4) • T h e n w e h a v e *, = PoK + PlK-l + - + Pn-A + PnK &* & 
w > 0. Thus, if the series Y^sPi converges absolutely, then the series Z™=0'H converges abso-
lutely and is equal to the product (E^o/OC^o*;) ' 

since the series 2z=o ̂  converges absolutely 
under the condition of Lemma 3.3. Note that Ef=0 tt = dn and that Hm^^ dn - X*0 h -
Lemma 3.9: If there exists an S with 0<S<R satisfying (2.3.1) or (2.3.2), and (3.4.1), then the 
series Z°L0 i7/ converges absolutely and is equal to X^o q%y-f-

Proof: First, consider the series Z^o f ̂ /J-i • Since the sequence {)>__, }*L0 *s a n element of X, 
there exist C > 0 and J with 0 < T < R satisfying \y_f \ < CT for all i. If JT|^| < 1, then we have 

and, hence, the series E^o^A/X-/ converges absolutely by the proof of Proposition 3.4. When 
T\q\ > 1, we have 

\q%y-i\ = M 

Now consider the series 

f_Oj_ Lv-JsW »+i 
\r 

\y^C\q);\T\q\yf}^. 

\aj\=f{(T\q\y+x-\ 
\M M T\q\-l 

The radius of convergence of the power series 

\ajK\iry-

(3.9.1) 

(3.9.2) 
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W(Z): ! 
7=0 

{{T\q\Tl-\ 
( m-i , \aAzJ 

is equal to 

lim sup A (^i^iy+1-i 
T\q\-\ 

V1 

ma.-
R 

T\q\ 

Since we always have \q[~l< R/(T\q\), we see that the series (3.9.2) converges (absolutely). 
Changing the order of the addition, we see that the series 

00 °° 1/7.1 

/=o j=i \q\ 

converges (absolutely). Thus, by (3.9.1), we see that the series Z^o tfhy-t converges absolutely. 
Then we have 

\M * J 1=1 V=1 q , /=1 i=\ 
y~t 

,«,-, 

Here we have changed the order of addition, which is allowed since the series in the first line 
converges absolutely as we have seen above. This completes the proof. D 

Thus, we have proved the following. 

Theorem 3.10: Let {^}*0 be a sequence of complex numbers which satisfies (2.1) and which 
admits an S with 0<S<R satisfying (2.3.1) or (2.3.2), and (3.4.1). Then limn_>o0yn/qn exists 
and is equal to 

m=0 J j=0 

where q is as in Lemma 2.3. 

Note that the above limiting value can be calculated by using only at (i > 1), y_j (J > 0), and 
q. We also note that the above result coincides with the results in [2] concerning the case where 
there exists an integer r such that af -0 for all i>r. Furthermore, we note that, using our 
results of this section, we can obtain convergence results for the ratio of two oo-generalized Fibo-
nacci sequences and for the ratio of successive terms of an oo-generalized Fibonacci sequence. 
For details, see [2, §3]. As to the ratio of two successive terms Dence [1] has obtained a similar 
result for weighted r-generalized Fibonacci sequences with r finite; however, Dence uses all the 
roots of the characteristic polynomial, while we obtain a formula in terms of only one root q. 

Problem 3.11: For a given sequence {aJJo as above, characterize those sequences {yn}n GZ such 
that yn - f(y„_i, JV-2,yn-3> ..) for all n GZ (not just for n > 1). Note that yn - qn is such an 
example. When a0 = ax = 1 and at - 0 for all 1* > 2, then the sequence {y„}„ GZ defined by 
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\F„ n>\, 
y„ = \o n = 0, 

[(-1)"+1F„ n<-\, 

is also such an example, where {Fn}™=l is the usual Fibonacci sequence. 

4. EXAMPLES 

In this section we give some examples that will help us to understand general phenomena. 

Example 4.1: Let b and a be positive real numbers and consider the sequence {a7-}^0 defined by 
af = bal. Then it is not difficult to see that q = b + a, l^=lbm = alb, g0 = 1, gx = b, and that 
Sn+i = ^Sn f°r all 7i> 1. Thus, we see that l im^^g n lq n exists and is equal to blq-bl{b + a) = 
(l + E ^ U O - 1 . This shows that, even if condition (3.4.1) is not satisfied, the conclusion of 
Proposition 3.4 holds in this case. In fact, condition (3.4.1) is equivalent to alb<\ in this 
example. (When alb<\, choose r > 1 with r -1 < b I a < (r -1)2 and set R - a~l and 
S = (ray1. Then condition (3.4.1) is satisfied.) 

Example 4.2: We consider the sequence {a,.}*^ defined by a0 - 0 and at =ba* for / > 1 for some 
positive real numbers b and a, which is a slight modification of Example 4.1. It is easy to see that 
q = (a + ̂ a2+4ba)ll, Z ^ A = ba/(q-a)2 = b(b-(q-a))~l > 1, g0 = l, gl = 0,mdgn+l = 
agn+bag^ forn>l. Set^n=grH.l: Then we see that %_x = 1, ^0 = 0, and ^wfl = a^„+a^lf_1 

(n > 0), where a'0 - amida[-ba. Note that the number associated with the finite sequence 
{a'0, a[} as in Lemma 2.3 coincides with the number q associated with {ay}z*0. Since conditions 
(2.1), (2.3.1), and (3.4.1) are satisfied for the sequence {â , a{}, we see that ]imn_>o0^n/qn exists 
and is equal to qbal (q2 +ba) by Theorem 3.10. Thus, we see that X\mn_^mgn Iqn exists and is 
equal to ba/(q2 +ba). (This can also be obtained by a direct computation as in the previous 
example.) Note that we always have TZ=\ K - HP ~ (S ~ a))~l > 1 anc^ ^ ^ (^ + ^Z=\K)~l = 

bal'(q2 +ba). In other words, although condition (3.4.1) is not satisfied, the conclusion of 
Proposition 3.4 holds in this case. 

Example 43: We consider the sequence {at}f=0 defined by at -aal -hhft1 for some positive real 
numbers a,b,a, and/?. Then we see that q>a,p and that q2-(a+/3 + a + b)q + (ba + aj3 + 
aj3) = 0. Furthermore, we see that #0 = 1, g1=a+b, g2 = (a + h) +(aa + gj3), and gf «+i 

(a+fi + a + b)gn -(ba + ap + afJ)gn_x for n > 2. Therefore, we have gn - Aqn + Brn (n >. 1) for 
some real numbers A and 5, where r is the solution of the equation r 2 - ( a + / ? + a + d)r + 
(ba + aj3 + a(3) = 0 with r ^ q. Since \r\< q, we see that hmn_>O0gn/qn exists and is equal to A. 
The value of A can be calculated by using gl and g2. After tedious but elementary computations, 
we see that A = (l + aa/(q-a)2 +b/31'(1-P)2)'1 = (l + Z ^ i O " 1 - N o t e t h a t t h e v a I u e ^L\K 
can be greater than 1. For example, for (a, fi, a, b) = (1,1/2,1,1), the sum is smaller than 1 while, 
for (a, /?, a, b) = (3,1,1,1), it is greater than 1. 

Example 4.4: Consider the sequence {at }* 0 with at = ll (i +1)!. Note that, for this sequence, we 
have h(x) - (ex -1) / x and e(x) - ex - 1 . Hence, the radius of convergence R is equal to oo. In 
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this case, we can easily check that q = (log 2)"1. Hence, we have e'(q~l)~2< 2(log 2)"1 = 2g, 
which implies that the condition in Lemma 3.3 is satisfied by Remark 3.6. Thus, by an easy 
calculation, we see that the sequence { g „ C behaves like (log2)"<"+1)/2 when n goes to oo. 
More generally, the sequence {yn}^x behaves like 6(log2)"w, where 

Problem 4.5: For an oo-generalized Fibonacci sequence, the function H(z) - z~lh(z~l)-l seems 
to be the analog to the characteristic polynomial in the finite case. This raises the question as to a 
possible analog to Binet-type formulas for the finite case (see [3] and [2, Th. 1], for example). If 
H{z) has finitely many zeros, Examples 4.1 through 4.3 seem to suggest that Binet-type formulas 
hold as in the finite case. If H(z) has infinitely many zeros, as in Example 4.4, then will there be a 
Binet-type formula that is an infinite series involving powers of the zeros? 
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The aim of this paper is to prove the existence of inverse pairs for a certain class of number-
theoretic functions. An application of the result is also illustrated. The motivation comes from 
the study of functions such as 

Ck(n)= £ l and **(»)= I 1 • 
a>\ (ah...,ak) = l 

Gould [1] showed that Ck(n) = Hd\nRk(d) and that i^(/0 has an inverse. In [5] a pair of func-
tions similarly related is also studied and similar results obtained. 

We start our investigation by giving the following theorem due to Gould [2]. 

Theorem 1 (The Bracket Function Transform): Define 

fr=lL*J j=l d\J 

>*(*) = f>"4, (2) 
«=1 

and 

S(x) = fys„. (3) 
Then 

S(*) = 7 ^ t 4 T ^ . (4) 
1 - x ^ 1 - x 

From this it follows that 

(l-x)S(x) = f V S w -f>"+ 1S„ = t(Sn -Sn_x)x\ whereS0 = 0. (5) 
n=l n=l n=\ 

That is 

I(^-^-i)^=Z4-
M=l «=1 (1 X ) 

a result equivalent to 

$,-£„-, = 1 4 / (see Hardy & Wright [4], p. 257). (6) 
d\n 

But relation (6), in turn, implies that 

A(n) = X(S(d)-S(d-l))M[^y (7) 
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A result also obtained by Gould [2], albeit through an entirely different argument. For complete-
ness, we also include here Gould's [2] elegant formulation of the above result. 

Theorem 2: 

if and only if 

a{n,k) = £ 2 \b(J, k) = X %Kd,k) 

b(n,k) = ^(a(d,k)-a(d-\,k))M[^ 
d\n V ^ 

We now prove our next result. 

Lemma 3: Define 

H(x) = Ydx"H„, where ^ = 2 ) 4 -
n=l d\n 

Then 
S(x) = H(x) 

l-x' 
Proof: 

n=\ j=\ d\j «=1 y=l w=l 

co co oo co I7fv\ 

= Itf/E^ = £VE^'=T?^ |X|<L 

Next, we prove our main result. 

Theorem 4: Define 

H(n,k) = ^A(d,kl 
d\n 

S(n, k) = t |Y| AU, k) = t I ^ > *)> and 

j=kU-l j=kd\j 

where A (n, k) = B(n, k) = 0 if n < k and A (k, k) = B(k, k) = 1. 
Then the functions A(n, k) and B(n, k) satisfy the orthogonality relations 

j^AiJ, k)B(n, j) = S"k and j^BiJ, k)A(n, j) = S"k, where 8\ = {*' rf" = *' 
,t£ ;t£ l°> otherwise. 

Proof: Consider 
oo n-\ 

«=1 /=£ 

(8) 

W=l « = l l 
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k oo oo n 

+ J^BU, W - 5>"5>(#i, MU, k), 
(l-x)(l-^) pk - £ £ 

since S(k, k) = 1 by hypothesis. 
That is, 

y x" y s(«, yw/, * ) = — - — * -
or 

CO CO CO fc 

X * a *)X ̂ («. /) = E*(/, k)s(x)=-
H £ H ( 1"*X1-* ) 

From the last equality in (10) and Theorem 1, we have 

±B{j,k)tA{n,J)T^T=± ±B(j,k)A(n,fi-*^=* 
J=k n-j n=k j=k 

from which it follows that 

Also, from H(n, k) - TJd^nA(d, k), Theorem 1, and Lemma 3, we have that 

fdA{n,k)-?~ = fjH(n,k)x", 

and, hence, that 

V ^ x" H(x) 

We may now use relation (9) and rewrite this last equation in the form 

f> (» , * ) f y £ S ( i , j)B(J,n) = ts(n, k)x", 
w=l i=n j-n n=l 

that is, 

£ j^B(J,n)A{n,k)fjxiS{iJ) = fjfjSS(iJ)YB(J,ri)A(r,,k) 
y=l n=l i=j j=\ / = ; «=1 

= fdS(rt,k)x", 

which implies that HJ
n=lB(j, n)A(n, k) = S{9 and, hence, the result Z"=1 A(j, k)B(n, j) = Sn

k. 

Theorem 4, in turn, implies the following result. 

Theorem 5: For any ordered pair of functions {f(n, k), g(n, k)), the following holds: 

f(n, k) = £ g ( « , j)A(J, k) if and only if g(n, k) = £ / ( » , j)B(J, *), 
j=k j=k 
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where A(n, k) and B(n, k) are as defined in Theorem 4. 

Of interest are the function pairs (f(n, k), g(n, k)) satisfying Theorem 5. One such class may 
be obtained from the following result. 

Theorem 6: Let 

[h(n,k\ if kin, _ 
g(n,k) = \ K ' h \ and f(n,k) = Y,h(n,d)A(d,k). 

[0, otherwise, ^ 
Then (f(n, k\ g(n, k)) satisfies Theorem 5, where h(n, k) is any number-theoretic function. 

Proof: If f(n, k) = Zd]nh(ny d)A{d, k), then 

Sin, k) = X 5>fod)A(d, j)B(j, *) = Z L % , < 0 ^ . / W , *) 

= J fjh(n,d)A{d,j;)B<J,k)=±h{n,d)8i 

h{nyk\ if kin, 
v0, otherwise. 

The converse is trivial. 
Similarly, it may be shown that the functions 

\h(n, k), if kin, 
/ ( * , k ) = i 

[0, otherwise, 
and 

d\n 

satisfy Theorem 5. 
As an application, we shall consider some of the results in [5]. There it was established that 

(fHim en) 
V s d\n 

where 
£(n)= £ l > n*k- 02) 

l<al<a2< •••<ak<n 
(al,a2,...,ak,n)=l 

It follows from equation (11) that 

Therefore, by Theorem 2, 
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Further, if A{n,k) = Tk
n(ri) and H(n,k) = Il^„Tk

d(d) = ("k), we may also apply Theorem 1 and 
Lemma 3 to find the equivalent S(x) and H(x). 

And, by Theorem 4, the function 7^(») has an inverse given by 

Kk(n) = WVK'U) (15) 

Clearly, 

and 
*«* )= wMl+fflrYfrffi 

Kk{fe + 2) - ^ + 3 J [ — J - ^ + 2)[-r\ 

yfc+2 Ar + 3 
ifc+2 

+ 

+ : + 3] 

=2p;5 (it+2)+i (-1)<* +2)-/ 

We may,, therefore, generalize and obtain the following explicit form for Kk{ri). 

Theorem 7: 

^(»)=i(-iry^;; where Kk(ri) = 0 if n<k. 

Proof: We prove the result by induction on n. We shall assume the result holds for k, k +1 , 
..., n and consider 

Kk(n + l) = ~n + l~ 
. k 

~n + l~ 
. * 

~»+r 
. * 

"n + 1" 
. * 

by the inductive hypothesis 

i=k j=i 

r ,• 1 «+2 ^]-i[i]|i("r)(,i1)(-.y--|[i](»:1
2)Hr 

n+1 

= g(_irwg+2j 
where we have used the identity 

?("1)y v J [ / J = ^ (see Gould [3? (3119)L p-36)-
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And, from Theorem 5, it follows that 

The functions 

f(n,k) = Yg(n>J)Ti!0) ifandonlyif g(p,k)=±f(n,j)KkU). 
j=k J=k 

- ^ * ) = (* + l) and «<"'*>= [f] 

(16) 

are particular cases of this result. 
Also, from Theorem 6, we may obtain other such function pairs for given h(n, k); in particu-

lar, with h(n, k) = 1, we obtain the functions 

fl, if k/n, 

and 

g(n, k)--
[0, otherwise, 

d\n ^ 

Further, using the techniques in [6], we may prove the following result. 

Theorem 8: Let 

f(n,k) k + \ 
and 

n + \ 
i + l 

i=k / ^ 1 

Then (f(n, k), g(n, k)) satisfies Theorem 5, where A(n, k) = T^(n) and B(n, k) = Kk{n). 

Proof: Suppose / (« , k) = -̂ —-, then 

-r-w-'lJ + f 
j=k i=k v / L J i=k L ->y=/ •/ v 

y(-l)Tilym = y<-iy 
& / + i U £ l ' J £ / + i 

Conversely, assuming this form for g(n, k), we obtain that 

n + lV 
i + l ' 

™--imm™-ww+% ^c-iy.r»+iK Tj(j) 

riz^r»+iY?+n__!_vr_ivr»+iY! -z^^iir.y^zc-^Jli. 
from equation (13). We now use the relation 

AJn + 1 ?(jj = [ "+ l j (see Gould [3, (1.52)]) 

to obtain that 
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=i(-i)*t(-irf/lfi)=(-i)* 
j=k i=k \ / \ / 

and, hence, the result. 

Clearly, many more such function pairs can be found by use of the right Binomial Identities. 
And, as in [6], generalizations of such functions are also possible. 
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0. INTRODUCTION 

The well-known Lucas formula 

connects the Fibonacci numbers with binomial coefficients. Our interest is to find out what kind 
of numbers are obtained by taking every number r in (1) from a fixed residue class modulo m 
(m = 2,3,...). As a result, a new family of sequences is introduced: the partial, or 1/m-Fibonacci 
numbers. We give here a primary description of these numbers and their generating functions. By 
a similar construction, partial Lucas, Pell, and other specialized Fibonacci-type sequences can be 
obtained. Properties of these number systems will be explained in many respects. 

1. THE BASIC RECURSION 

Given a modulo m (m = 1,2,3,...), we define the (m, k)-Fibonacci numbers as follows: 

F^ = t[n
m7+lck) (* = <U...,*-0, (2) 

wheref = L(»--2ifc)/2iifJ;/i = 2*,2* + l,... . For/? = 1, ...,2&, F^k) = 0 (k>0). Irrespective of 
the value of k or even of m, these numbers may be called \im-Fibonacci numbers or partial Fibo-
nacci numbers. For every natural w, according to (1), 

m - l 

!/***> = FB = /2W>. (3) 

For n<2m, there is F^m,k) = (n~l~l) for all k. We usually disregard (except in §4) the all-zero case 
n = 0. 

Theorem 1: For every m, the sequence {F^m,k^} is the difference sequence of {F^m,k+l^} over k in 
cyclic order, i.e., 

F%k) = F&™> - F^+l) (k<m-1), 
(4) 

Proof: As (jjlj) = (jt) - ("*')» for the r* summand in (2) there obviously is 

(n-mr-k\_(n + 2-mr-k-\\_(n + \-mr-k-\\ ,, _ n 
^ mr + k )-{ mr + k + 1 ) { mr + k + 1 ) K"<m l)> 

(n-mr-m + \\(n + 2-m(r + \)\Jn + \-m{r + \f\ ,t_m_u 
{ mr+m-l )-{ m(r + l) ) { /w(r + l) ) KK~m l) 
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In the last case, for r - 0 the right side is 

(n + 2\ (n + \ o f{ o »-°- D 

Thus, all m sequences {F^k)} form a cyclic set with respect to the difference operator A2 
(see [3]).. 

Theorem 2: For every m and k, the recurrence 

F^=±(-iy(mM:£_s (5) 
5=0 V J 

of order 2m holds. 

Proof: From (4), with n instead of « +1, by consecutive forward substitutions 

and with k - 0 instead of k = m for the transition step (addition modulo m\ we have 

rn ~ rn+4 jLrn+3 "*" rn+2 
_ ^(m^+S) _2J7(m,k+3) 1J7(m,k+3) _ t</w,&+3) _ 
_ rn+6 jrn+5 "*" jrn+4 rn+3 ~ ''' ? 

so that (5) follows after tn-l steps. This can be proved easily by induction. • 

2* FIBONACCI CYCLOTOMIC POLYNOMIALS 

From the recurrence (5), we obtain the characteristic polynomial 

t (-i)'W*2"" -1=(x2 - *r -1=pm(*) (6) 
5=0 V / 

of degree 2m. The polynomials (6) can be called Fibonacci cyclotomic polynomials, as the sub-
stitution u = x(x-1) turns them into the classical cyclotomic polynomials (see [4]). Hence, they 
admit the following factorization over C: 

m-1 

#»(*) = II(*2-*-*/)> (?) 
7=0 

where sJ = cos-^- + / sin ^ - are the values of ^T. The factor x2 - x - 1 (for 7 = 0) whose zeros 
are a = y (1 + V5), fi = 1 - a , is present in all pm(x). The quotient polynomial 

? „ ( * ) = - # B ^ = ! > 2 - * y (8) 

has the first wi lower terms ( - f ^ i ^x^ (h = 0,1,..., m-1) and its (pairwise conjugate) zeros are 

^ , ^ = i(i±VT^); 
(9) 

\(l\-f^M o.u...-» 
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Examples: 
ql(x) = l; q2(x) = x2-x + l; q3(x) - x4 -2x3 + 2x2 - x + 1; 

q4(x) = x6- 3x5 + 4x4 - 3x3 + 2x2 - x +1 = g2(x)(x4 -2x 3 + x2 +1); 

q5(x) = x8-4x7 + 7x6-7x5 +5x4-3x3 + 2x2 - x + 1; 

q6(x) = x10 - 5x9 +1 lx8 -14x7 + 12x6 - 8x5 + 5x4 - 3x3 + 2x2 - x +1 

- ^2(X)%(X)(x4 ~ ^X3 + X + 1). 

The final factorization to quadratic trinomials over R is more difficult: 

q3(x) = (x2 - (1 + A)x 4- M)(x2 - (1 - A)x +1 / M), 

q2(x) 
where 

A = J±(Ji3-l)9 M = ±(jL3+ 1 + ^2(^13-1)); 

B = J±(<Jl7+l), # = ! (Vl7+l + V2(Vl7+l)). 

Solutions of the equation gw(x) = 0 for w < 6 involve radicals V3, V5, VB, V n , and V2l. 

3. GENERATING FUNCTIONS 

Theorem 3: The generating function of the sequence {F^m,k^}, 

/""•*>(x) = X f f l x " ^ (1 p , (10) 
n=2k rm\X) 

where 
rm(x) = x2"1pm(l/x) = (\-xr-x2"'. 

Proof: In the case k =m-l, 

/ ( m , m - . ) ( ^ * ( n ) 

i.e., the series H™=0 
F2m+7+i^ w i t h shifted coefficient sequence (with F£™£[ X) = 1 being the first 

one) is the inverse for rw(x): 
_L_f^-i)(xym(x) = h 

as can be seen from the convolution formulas (see [2], [3]) 

pr U A w - 1 J [o (^=i,...,w). 
Further, it follows from (4) that 
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/<«.*)(,) = l_*/(«.k+i)( x ) (k = 0,\,...,m-2). (12) 

From this, we obtain (10). In particular, 

J { ) rm(x) • 

Now we can verify the identity (3) in terms of generating functions. Indeed, 
rm(x) = (l-x-x2)sm(x), 

where 
m-\ 

sm(x) = x""qm(\lx) = X ^ O - x ) - * - 1 

is exactly the sum of numerators in (10) over all k. Hence, 

(13) 

m-l -1 oo 

I / ( f f a ) ( * ) = r - 7 T = I F„+lx" = f{x). 

4. EXPLICIT EXPRESSIONS: m = 2 

In some simplest cases, it is possible to express the numbers F^m,k^ directly as functions of/?, 
thus giving generalizations of the Binet formula 

F„=±(a"-n- (H) 
For m = 2, denote 

r=Q V / 

and 
L(""I)/4VW 9 nr\ 

r=0 V ' 

(the even and odd semi-Fibonacci numbers). Then, from (6) and (7), the characteristic equation 

p2(x) = (x2-x- l)(x2 - x +1) = 0 

is obtained, whose roots are a, J3 - 1 - a, and £, £ = j - (1 ±ij3). As £6 = 1, there is 

e2-g-\ s3 = -l, g4 = -ey g5 = \-s-~e. 

Using the (extended) initial conditions E0 = D0 = Dx = D2 = 0 and Ex = E2 = E3 = D3 = l in the 
general solution 

£„,/)„ = ^a w + 5 ( l - a f + C ^ + D ( l - ^ , 

we obtain for both En and Dw, 

2a-l 1 1 ^ = - 5 = - 10 2(2a- l ) 2V5' 
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and for En and Dn, respectively (instead of C and D), 

C = -D' = —J-— and C" = -D"= l 

2(2*-1) 2(2*-1)" 
Hence, 

and, in accordance to (3), En + Dn = Fn. The first summand in (15) is exactly F„ 12, whereas the 
differences 

Lc»-i)/2j r , \ , 

S„ = E„-D„= X (-!)r(" ^ ^ ^ i ^ - ^ 1 - ^ " ) 

form a periodic sequence (0,1,1,0, - 1 , -1) modulo 6. (See also [1].) 
The generating functions (11) and (13) are 

fV>°\x) = fiEn+lx" = (l-x)/r2(x) = e(x) 

and 

f^\x) = £i)„+1x" = x2 lr2(x) = d(x), 
n=0 

where r2(x) = (1 - x - x2)(l - x + x2). Then 

l-x-xz e(x) + d(x)=i
 x

 2 = / (») , 

e(x)-d(x) = l—^r=Y(x-x2)" = l + x-x3-x4 + x6 + x7----. 
l-x + x2 £0 

5. PARTIAL LUCAS NUMBERS 

Next we apply our approach to the Lucas numbers 

4=F„_1+Fn+1 = i+
L ( | / 2 J((";:71)+(";'')) . (i6) 

Then a definition of the (m, k) -Lucas numbers, parallel to (2), is 

W'--^-Jik%n
m7^\V)) e*=<u-.-o. (.7) 

where I = l(n-2k)/2m],n= 2k,2k+ 1,.... For n = 0,1,..., 2k, ti™-k) = 0 (k >0), and 4"""0) = 2, 
I%'k) = 0 (* > 0). The formula 

m-l 

k=0 
corresponds to (3). 
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The numbers L(™'k) satisfy conditions analogous to (4) and, consequently, also the basic 
recursion (5). The particular solutions differ from the previous Fibonacci case only because of 
another initial conditions. Thus, for m = 2 (the semi-Lucas numbers), we obtain, instead of (15), 

The differences 8'n = I%>0) - L^ form a periodic sequence (2,1, - 1 , - 2, -1,1) modulo 6. The 
generating functions are 

2-3x + x2 

and 

and their sum (18) is 

r2(x) 

2x2-x3 

„=o r2(x) 

2-x 
Ji I4«*" = ̂ ). I X X n=0 

The general formula that corresponds to (10) here is 

^k\x) = X ffi?*' = x 2"( 1~X )Tt1 ( 2"X ) • (20) 
n=2k rm\X) 

6. N U M E R I C A L R E S U L T S 

We give the values of F^m,k) and l(™,k) for m < 4 in Tables 1 and 2 below. For the negative 
subscripts (in Table 1), formulas (4) were used. 

7* S O M E P R O P E R T I E S 

We mention here without proof the following appealing properties of F^m,k) and I$™'k\ 
discovered after short observations: 

1) F%-k) = (-l)n+lFn
(m>ker); (21) 

2) L^k) = (-l)nL^kQr) (n = mq + r>0, r = 0,1,..., w-1), (22) 
where © is subtraction modulo m; 

3) 4m^ = Fn
(™{kel) + F%ik); (23) 

4) li-m'k) = F(m,k) - F^m,k®(m~2^ (24) 
where © is addition modulo m; 

5) YF^-fi^ (k = 0>l> >m-V> (25) 
} hJ k(

+
mi0)-i (*=*-0; 

6) Z4"H 
y=i 

'r(/w,l) o 
^ « + 2 ^ 
r(/W,ik+l) 

f(m,0) 1 

(* = 0); 
(k = l,...,m-
(k = m-l). 

-2) (26) 
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These examples reveal a remarkable variety of repetition patterns, including the "rotation" 
(twisting) phenomenon. The usual Fibonacci-type formulas are obtained by summation over all k. 

TABLE 1. Numbers F^k) 

n 

-10 

-9 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

FH 

-55 

34 

-21 

13 

-8 

5 

-3 

2 

-1 

1 

0 

1 

1 

2 

3 

5 

8 

13 

21 

34 

55 

89 

144 

233 

377 

610 

987 

1597 

m = 

k=0 

-27 

17 

-11 

6 

-4 

3 

-1 

1 

-1 

0 

0 

1 

1 

1 

1 

2 

4 

7 

11 

17 

27 

44 

72 

117 

189 

305 

493 

798 

:2 

1 

-28 

17 

-10 

7 

-4 

2 

-2 

1 

0 

1 

0 

0 

0 

1 

2 

3 

4 

6 

10 

17 

28 

45 

72 

116 

188 

305 

494 

799 

s* 

1 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

-1 

-1 

k = 0 

-13 

11 

-10 

5 

-1 

1 

-2 

1 

0 

0 

0 

1 

1 

1 

1 

1 

1 

2 

5 

11 

21 

36 

57 

86 

128 

194 

305 

497 

m = 3 

1 

-21 

8 

-5 

6 

-4 

1 

0 

1 

-1 

0 

0 

0 

0 

1 

2 

3 

4 

5 

6 

8 

13 

24 

45 

81 

138 

224 

352 

546 

2 

-21 

15 

-6 

2 

-3 

3 

-1 

0 

0 

1 

0 

0 

0 

0 

0 

1 

3 

6 

10 

15 

21 

29 

42 

66 

111 

192 

330 

554 

k = 0 

-21 

7 

-1 

1 

-3 

3 

-1 

0 

0 

0 

0 

2 

6 

16 

36 

71 

127 

211 

331 

497 

m = 

1 

-20 

15 

-6 

1 

0 

1 

-2 

1 

0 

0 

0 

0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

10 

16 

32 

68 

139 

266 

477 

:4 

2 

-6 

10 

-10 

5 

-1 

0 

0 

1 

-1 

0 

0 

0 

0 

0 

0 

1 

3 

6 

10 

15 

21 

28 

36 

46 

62 

94 

162 

301 

3 

-8 

2 

-4 

6 

-4 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

4 

10 

20 

35 

56 

84 

120 

166 

228 

322 
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TABLE 2. Numbers .!<«•*> 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Fn 

2 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

322 

521 

843 

1364 

m-

k = 0 

2~ 

1 

1 

1 

3 

6 

10 

15 

23 

37 

61 

100 

162 

261 

421 

681 

--2 

1 

0 

0 

2 

3 

4 

5 

8 

14 

24 

39 

62 

99 

160 

260 

422 

683 

»n 

2 

-1 

-2 

-1 

2 

-1 

-2 

-1 

2 

-1 

-2 

k = 0 

2 

3 

8 

17 

31 

51 

78 

115 

170 

260 

416 

m- 3 

1 

0 

0 

2 

3 

4 

5 

6 

7 

10 

18 

35 

66 

117 

195 

310 

480 

2 

0 

0 

0 

0 

2 

5 

9 

14 

20 

27 

37 

55 

90 

156 

273 

468 

Je = 0 

2 

3 

10 

26 

56 

106 

183 

295 

451 

m -

1 

0 

0 

2 

3 

4 

5 

6 

7 

8 

9 

12 

22 

48 

104 

210 

393 

= 4 

2 

0 

0 

0 

0 

2 

5 

9 

14 

20 

27 

35 

44 

56 

78 

126 

230 

3 

0 

0 

0 

0 

0 

0 

2 

7 

16 

30 

50 

77 

112 

156 

212 

290 
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SUMS OF CERTAIN PRODUCTS OF FIBONACCI 
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R. S. Melham 
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PO box 123, Broadway, NSW 2007, Australia 
(Submitted September 1997-Final Revision February 1998) 

1. INTRODUCTION 

Inspired by the charming result 

tdPi=FnFn¥l, (1.1) 
k=l 

Clary and Hemenway [3] discovered factored closed-form expressions for all sums of the form 
Z/Ui FX > where r is an integer. One of their main aims was to find sums that could be expressed 
neatly as products of Fibonacci and Lucas numbers. At the end of their paper they mentioned the 
result 

n i 

X FkFk+\ = ̂ 44+l4+2 > 0 -2) 
k=\ L 

published by Block [2] in 1953. 
Motivated by (1.1) and (1.2), we have discovered an infinity of similar identities which we 

believe are new. For example, we have found 
n i 

X FkFk+lFk+2Fk+3Fk+4 = -JFnFn+lFn+2Fn+3Fn+4Fn+5^ 0 - 3 ) ^ 
and 

n i 

X FkFk+lFk+2Fk+3Fk+4Fk+5Fk+6Fk+lFk+S = TT 4 4 + 1 • • • Fn+9 • (1 - 4 ) 
i(r=l 11 

In Section 2 we prove a theorem involving a sum of products of Fibonacci numbers, and in 
Section 3 we prove the corresponding theorem for the Lucas numbers. In Section 4 we present 
three additional theorems, two of which involve sums of products of squares of Fibonacci and 
Lucas numbers. 

We require the following identities: 
Fn+k + Fn-k = 4 4 , * even, (1.5) 
Fn+k+Fn_k = LnFk, *odd, (1.6) 
Fn+k-Fn_k=F„Lk, kodd, (1.7) 
Fn+k-Fn_k = LnFk, £even, (1.8) 
4+* + Ln-k = 4 4 , * even, (1.9) 
Ln+Jc + Ln_k=5F„Fk, £odd, (1.10) 
4+*-4-* = 44> *odd, (l.ii) 
4+jk - 4-* = 5 4 4 , k even, (1.12) 
L2

n-I^n = -2 = -L0, nodd, (1.13) 
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5 /2-4, =-4 = -/?, (1.14) 
5F£1-L4n = -2 = -L0. (1.15) 

Identities (1.5)-(1.8) occur on page 59 of Hoggatt [4], while (1.9)-(1.12) occur as (9)-(12), 
respectively, in Bergum and Hoggatt [1]. Identities (1.13)-(1.15) can be proved with the use of 
the Binet forms. 

2. A FAMILY OF SUMS FOR THE FIBONACCI NUMBERS 

Theorem 1: Let mbea positive integer. Then 

Z J7 17 J72 J7 - AiAi+1 • - • Ai+4/w+l (2 -1) 
rkrk+l' • • rk+2m • * • rk+4m ~ j • k=l ^2m+l 

Proof: We use the elegant method described on page 135 in [3] to prove (1.2). Let ln and 
rn denote the left and right sides, respectively, of (2.1). Then ln -l„_x = FnFn+l...F*+2m...Fn+4m. 
Also, 

FT* lh 
r —r — n n+l''' n+4m r 17 — J7 1 
fn rn-\ j lrn+4m+l rn-\\ 

_ rnrn+l' * ° rn+4m r 17 _ 17 1 
~ r lr(n+2m)+(2m+l) r{n+2m)-{2m+l)l 

^2m+\ 

= 4-4-1 using (1.7). 

Hence, to prove that ln - rn it suffices to show that ll = rl. But 
(since F2n = FnLn) rxr2 . . . Mm+P2ffl+1^2ffi+l 

1 / 

= ll, and this completes the proof. D 

When m-\ and 2, identity (2.1) reduces to (1.3) and (1.4), respectively. However, while 
(1.1) and (1.2) can be proved in a similar way, they are not special cases of (2.1). 

3. CORRESPONDING RESULTS FOR THE LUCAS NUMBERS 

Corresponding to (1.1) we have 

X 4 = 44+,-2, (3.i) 

which occurs as I4 in Hoggatt [4]. The Lucas counterpart to (1.2) is 

2L A A + I = x A? AH-IAH-2 "" 3- (3.2) 
k=i z 

The constants on the right sides of (3.1) and (3.2) can be obtained by trial, and also in the same 
manner as in our next theorem, demonstrating a certain unity. 

Theorem 2: Let m be a positive integer. Then 
n I I I 

\* T T T2 J — " n+1 '' ° ^n+Am+l o / o o \ 
AjI^kI^k+l-"H+2m"-£jk+4m ~ r ^Hh \J.J) 
k=l ^2m+l 
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where 

^2m+l 

Proof: Again, let ln denote the left side of (3.3). Then 

D D _ ^n^n+l''' ^n+4m r T _J 1 

^2m+l 

_ ^n^n+l' • ' ^n+4m r T _T 1 
~ T lJ^(n+2m)+(2m+l) n(n+2m)-(2m+l) J 

^2m+l 

~ ^n^n+l'•' Ln+2m • • • A?+4m V^Y \ \ •*•*•)] 
= 4 ~ Vl-

From this we see that ln-Rn=c, where c is a constant. Now, 
c = Il-Rl 

- LXL2.. 

- A^2 * • 

• Aw+1 

• ^4m+l 

r ^4w+2 
^ 2 w + l r 

^ 2 w + l _ 

r2 - T 

^2m+l 

= _L0LlL2..-.L4m.l [ b y ( 1 1 3 ) ] 

This concludes the proof. • 
Since this method of proof applies to (3.1) and (3.2), we see that the appropriate constants 

on the right sides are -2 = -LQLX and -3 = -\L^^2, respectively. Accordingly, we write (3.1), 
for example, as 

£u^k -LA:M:+lJo-
A;=0 

We use this notation throughout the remainder of the paper. 

Remark: If for m-Q we interpret the summands in (2.1) and (3.3) to be F£ and l | , 
respectively, then we can realize (1.1) and (3.1) within the framework of our two theorems. 
However, the same cannot be said for (1.2) and (3.2). 

4. MORE SUMS OF PRODUCTS 

In this section we state three additional theorems, two of which involve sums of products of 
squares. Using (1.5)-(1.15), they can be proved in the same manner as Theorems 1 and 2, and so 
we leave this task to the reader. In each theorem, m is assumed to be a nonnegative integer. 

Theorem 3: 
n 77 17 17 

Z T7 T7 T? I _ rnrn+\ '•' rn+4m+3 SA 1\ 
rkrJc+l•'• rk+4m+2^k+2m+\ ~ ^ ~ > V*-l) 
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4: 

n 

2a AA+1 • 
k=l 

'' ^k+4m+2^k+2m+l ~ 
^k-^k+1 '•• ^k+4m+3 

^2m+2 

n 7^2 772 172 

Z Tj2~p2 172 77 _ rn rn+l • • • rn+4m+l 
rk rk+\''' rk+4mr2k+4m ~ ^ , 

k=l P4m+2 

V j2 j2 j2 77 
Z^d ^k^k+1''' JLk+4mr2k+4m 
k=l 

J2 J2 r2 

5K 4m+2 

(4.2) 

(4.3) 

(4.4) 

In the proof of (4.3), when finding rn -rn_1, we obtain the expression F*+4m+1 - F?_u which by 
(1.6) and (1.7) can be written as 

~~ Pn+2m^2m+l ' ^n+2m*>2m+\ ~ P2n+4m^4m+2• 

l-^(n+2m)+(2m+l) ^(n+2m)-(2m+l) J l^(n+2 w)+(2/w+l) + ^{n+2m)-{2m+\) J 

Similar expressions that arise in the proof of (4.4), and in the proof of the next theorem, can be 
treated in the same manner. 

A simple special case of (4.3), which occurs for m = 0, is E£=1 F2F2k - F2F2
+l. 

Theorem 5: 

2a**k **k+l • • • Pk+4m+2^2k+4m+2 ' 
k=l 

r?2 E-2 r?2 
rn rn+\ ''' rn+4m+3 

1 4w+4 

2u ^k^k+l '•' ^k+4m+2^2 2k+4m+2 
k=\ 

' r2 72 i2 
^h^h-^A • • • -M uk^k+\ • 'k+4m+3 

5F 4m+4 

(4.5) 

(4.6) 

wby 
To conclude we mention that, for/? real, the sequences {£/„} and {Vn}, defined for all integers 

U„ = pU„„l + Un_2, C/0 = 0, C/I = l, 
Vn=pK_l+Vn_2, V0 = 2, Vv=p, 

generalize the Fibonacci and Lucas numbers, respectively. The results contained in Theorems 1-5 
translate immediately to Un and V„. The reason is that if we replace Fn by Un, Ln by Vn9 and 5 by 
p2 +4, then Un and V„ satisfy (1.5)-(1.15). 
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FIBONACCI NUMBERS AND HARMONIC QUADRUPLES 

Georg Johann Rieger 
Institut fur Mathematik, Universitat Hannover, Welfengarten 1, 30167 Hannover, Germany 

(Submitted September 1997-Final Revision May 1998) 

Here, we combine number theory (Fibonacci numbers) and projective geometry (harmonic 
fourth). 

Let the real numbers 
A<B<C<D (1) 

form a harmonic quadruple (see [1], pp. 159-60), i.e., 

B-C D-C , ,. v . 
B^A : ̂ A ( c r o s s r a t l ° ) =~l 

or 
D(2B -A-C) = BC-2CA + AB. (2) 

The number D is also called a harmonic fourth. The affine map xh-»ax + /? with real 
numbers a>0 and /? does not change equations (1) and (2). Especially, with a = 2/(C-A) 
and /3 = -(C+A)/(C-A), we get Ax = -l, Q = l and, therefore, Bfi^l, 0<B1<l<Dv 

Then, Bl = (2B-A-C)/(C-A)>0 implies, from(1), that 

2B>A + C. (3) 

It is easy to find harmonic quadruples of squares and also of primes like 

l2 <32 <42 <112, l2 <112 <152 <412, 
32 < l l 2 < 132 <172, 42 <92 < l l 2 < 172, 

and 
3<11<17<59, 3<23<41<383, 
5<13<19<61, 7<19<29<139; 

also, the number 0 together with any three consecutive terms (n + 2)~l, (« + l)-1, n~l of the har-
monic series form a harmonic quadruple. 

Theorem: There are no harmonic quadruples of Fibonacci numbers. 
Proof (by contradiction): For integers 2<a<b<c<d,we replace (1) by 

Fa<Fb<Fc<Fd (4) 
and (2) by 

Fd{2Fb-Fa-Fc) = FbFc-2FcFa +FaFb. (5) 

By (3), we must have 2Fb >Fa+Fc > l + Fc and, hence, c = b + l; however, 2Fb>2 + Fb+l or 
Fb_2 > 2 holds exactly for b > 5. Inequality (3) now says Fb_2 >l + Fa. By b > 5, this is satisfied 
exactly for 2 < a < b - 3. Consequently, instead of (5), we have to look at 

Fd{Fb-2-Fa) = FbFb+l-2FaFM+FaFb (6) 
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or 

m-2 - FbFM = Fa(Fd - 2FM + Fb) (7) 

for b > 5, 2 < a < b- 3, d > b + 2. We observe that 

Fd - 2FM + Fb> Fb+2 - 2Fb+l + Fb = Fb_2 > 0. 

For a = 2 and a = b - 3, we obtain ">" and "<", respectively, in (7) and thus in (6). This means 

Fd(Fb_2 -1) > FbFb+l - 2Fb+l + Fb, (8) 

and 
FdFb_4<FbFb+1-2Fb_3Fb+l+Fb_3Fb. (9) 

But 
FbFb+i - 2FM +Fb + Fb+3{\ - Fb_2) = 2(Fb + (-1)") > 0 (b > 3) 

and (8) imply d > b + 4. Furthermore, 

Fb+5Fb_4 - FbFb+l + 2Fb_3FM - Fb_3Fb = (1 $Fb - 1 lFM)Fb+2 > 0 (b > 5) 

and (9) imply d < b + 4. This leaves d = b + 4. 
We found that £ > 5, and 2 < a < b - 3, and that (4) and (7) can be replaced, respectively, by 

Fa<Fb< Fb+\ < Fb+4 a n d 

W V 2 " FbFb+l - W + 4 " 2F,+1 + Fb) 
or, equivalently, 

(Ffl - UFb + 3FW)(3F, + F,+1) = -32if. 

This implies (3/£ +F6+1)|32F/. Since 1 = (Fb+l, Fb) = (3F6 +F6+1, Fb), we obtain 

(3F,+FW)|32. (10) 

But, 3F5 +F6 = 23 and 3Fb +Fb+l > 37 (b > 6). Hence (10) is impossible. D 

REFERENCE 

1. Oswald Veblen & John Wesley Young. Projective Geometry. New York-Toronto-London: 
Blaisdell Publishing Company, 1910, 1938. 

AMS Classification Numbers: 11B39, 51M04 
• • > • > 

1999] 253 



NOTES ON RECIPROCAL SERIES RELATED TO 
FIBONACCI AND LUCAS NUMBERS 
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1. INTRODUCTION 

As usual, the Fibonacci and Lucas numbers are defined by 

F„ = a"-^"a~", Ln = a" + (-l)"a-", 

where a = (V5 +1) / 2. Sums of the form X1 / (Fan+b +c) or S1 / (Lan+b + c) have been computed 
in many publications for certain values of a, h, and c (see, for instance, [2]-[5]). For example: 
Backstrom [3] obtained 

y 1 ^2^5+1 y 1 = V5 

Andre-Jeannin [2] proved that 

• = - y -

1 V5 Sn2 

^O^2IH-I + 2 / V 5 41oga (log a)2 ( ^ 2 ^ ^ + 2 ) ' 

and Almkvist [1] also gave an estimate of another series, i.e., 

1 1 , 1 ' n1 

'<- + ^ 0 4 „ + 2 8 41oga ( loga) 2 (^ 2 ( l o g a r l -2) ' 

In this paper, we continue this work and obtain some new results of similar kinds. 
In Section 2, some identities related to Fibonacci and Lucas numbers, which may be com-

pared with the ones of [2] and [3], are established. In Section 3, following Almkvist's method, we 
express the series J^=01 / (F2n+l -21V5) and E^=11 / {Lln - 2) in terms of the theta functions and 
give their estimates. 

2. MAIN RESULTS 

The following lemma will be used later. 

Lemma: Let q be a real number with \q\ > 1, s and a be positive integers, and h be a nonnegative 
integer. Then one has that 

f l =
 1 y I m 

n=o<j + q -{q +q ) q -q n=o{-q 
(b & as, 2a\{as-h)). 
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Proof: One can readily verify that 
i i ( i !___? 

i _ J2an+b+as i _ 2an+b-as q2n+b + q-2an~b - (qas + q~as) qas - q~as 

holds for n>s. Hence, by the telescoping effect, one has that 
f N | s-i \ A ] i f JL i £i 

Z»a „2an+b , ^-2an-b /„as , „-as\ ~ ~as „-as\ Z^j -j Jlan+b+as Z^ i 
n=0 H ^H ~\H +H ) H ~H \n=N-s+l i~Cl n=0 l 

. —, . _ *.„...„.„., _ . _ 2an+b-as 
\n=N-s+\ L H n=Q l H 

for all N > s. Letting N -> +oo ? we obtain the equality (1). D 

From the Lemma, some reciprocal series related to Fibonacci and Lucas numbers can be 
computed. 

Theorem 1: Assume that a and ft are integers with a > 1 and b > 0. Then 

^ 1 1 

y 1 = 1 

(a even, £ odd), (2) 

(a odd, ft even), (3) 

and 

00 | i 

S T r = /Fir/ 6-* n (a> * even, a*ft, and 2aj(a-ft)), (4) 

Y ^ (a, ft odd, a * ft, and 2a\(a - ft)). (5) 

Proof: Set q-a. It follows from (1) that 

f 1 1 ^ 1 
n=0 

a2an+b + ^-2^-ft _ ^ + a ~ ^ ^ _ a « 2j j _ ^ - ^ " 

Examine different cases according to the values of a, ft, and s. If a is even, ft is odd, and s= 1, 
then we have (2) from (6). If a is odd, ft is even, and 5= 1 in (6), then (3) holds. On the other 
hand, assume that 5 = 1, 2a\(a-b), and a*b in (6), then we have the equalities (4) and (5) if 
both a and ft are even or odd, respectively. D 

Theorem 2: Suppose that s is a positive integer. Then 

1 * r i "^ + - f ^ l (*odd) (7) 

and 

(s even). (8) 

Proof: Letting a - 1 and ft = 0 in (6), we have 

S r 1 / F F - - ^ S 1 L-s (*°dd). 
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Due to 
2m 

we obtain the equality (7). On the other hand, if a = h = 1 in (6), then 

Noticing that 
2m-l •% m f i i 2m-l i w / i 

5 l-a2^-2"=|jlr^ - + - ^ZT \ = m, ~2n+l 1-a2""1 

we have the equality (8). D 

Remark: Consider the recurrence relation W„ = pW„_x + W„_2, n>2, p>0, and the solutions 

U„ = a"-(^"a~", Vn=a" + {-\)na-\ 

where A = />2 + 4, a = (p + VA)/2>l . . {£/„} and {Vn} are the generalizations of {Fn} and {!,„}. 
Clearly, the conclusions of Theorems 1 and 2 can be generalized to the case in which Fn, Z„, and 
A/5 are replaced by Un, Vn, and VA , respectively. 

The identities given in the above theorems may be compared with the ones in [2]. In addition, 
we can also obtain some interesting equalities. For example, letting a = 2, b = 1 in (2) and s = 1 in 
(7), respectively, we have 

oo -j oo -i 

S^+i-3/V5=„?0Z7„-V5=_1_a' 
and letting s = 2 in (8), we have 

oo 1 

£ - = -1. 
n=0 F2n+l - 3 / V 5 

3. ESTIMATES OF TWO SERIES 

In this section, the summation £„ is over all integers n. 
Putting a-b-\ and s - 0 in the left-hand side of (6), we have 

oo -. oo / y 2 w + 1 

S^+i-2/V5=Vf„?0(^+1-l)2' 
where q-a~l. From a classical result (see, e.g., [1] or [6]), we know that 

„4-o(<72"+1-l)2 8**54' 
where 

34= l- n y ^ ^-°-5>2 ̂  *>• - i 

logger 
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Through simple computation, we obtain 

« = o ^ + i - 2 / V 5 8(loga)2 41oga 2 ( l o g a ) 2 ^ ^ C - o ^ O o g a ) - ' ' 

Thus, a good estimate of the series £"=01 / (F2n+l - 21S) is given by 

7T245 S 

8(logcr)2 4 log a ' 

Using a similar method, we obtain an estimate of another series. From the following results, 
-I CO 

£ ^ - 2 S(?2"-l)2' 
where q = a l, and 

where (see [1] or [6]) 

H.2W £" 1 / 

^ ( < 7 2 " - l ) 2 24,r2 

q ^ o / f Qft 

v^2 ^3 S j 24' 

V l o § ^ V l o § ^ 

we obtain 

1 1 . n2 ( 1 1 1 
^ Z 2 w -2 24 41oga 3(loga)2 ^f log")"1 +2 e ^ 0 8 ^ _ 2 8 

1 1 n2 

- + . 24 4 log a 24(loga)2 ' 
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1. INTRODUCTION 

M. Davis proved in [1] that, if the Diophantine equation 
9(u2 + 7v2)2-7(r2 + 7s2)2 = 2 (1) 

had no nontrivial solutions other than u-v-\ r - s=0, in nonnegative integers, then Hilbert's 
Tenth Problem would be unsolvable. J. Robinson proved that Hilbert's Tenth Problem would be 
unsolvable if (1) had only finitely many solutions. 

In [3], O. Herrmann proved the existence of nontrivial solutions of (1) and D. Shanks [5] 
solved (1) explicitly. 

D. Shanks and S. S. Wagstaff [6] found 48 more solutions of (1). They also conjectured that 
this equation has infinitely many solutions and gave an elaborate argument in this direction. 

In this note, it is proved that solutions of (1) are members of a certain Lucas sequence and its 
form is described. 

2. REPRESENTATION OF AnBn AS A MEMBER OF 
A RECURRENCE OF ORDER TWO 

Herrmann [2] considered the Pell-like equation 

9At-7B2
n=2. (2) 

He proved that, if A$ = 1, B0 = 1, then 

An+^%An + lBn and Bn+l = 9Ari + SBn (3) 

give all positive solutions of (2). 
If 4? has the form u2 +7v2 and Bn has the form r2 +7S2, then every solution of (2) is a solu-

tion of (1). 
By the first equation of (3), we have 

™„ = 4*i-H a n d 1Bn+i = 4»2-*4n , (4) 
while, by the second equation of (3), we see that 7Bn+l = 63An+S-7Bn and, by (4), that 

4 , +2-H+i = 634,+8(4f i -H) 
or 

4*2 = 164*1-4,, 4>-i. 4 = 15. (5) 
Analogously, 

Bn+2 = \6Bn+1-Bn, B0 = \, 5, = 17. (6) 
Now, consider the recurrence 

£4+2 = 16^+1-£/„, ^ = 0 , ^ = 1. (7) 
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By the theory of integer linear recurrences of order two, An = Un+l ~Un, Bn = Un+l + Un, and 

A,Bn = U2
n+l-U2

n=U2n+l. (8) 

Let S be the set of all odd positive numbers that have the form x2 + ly2 for any integers x, y. 
The criterion for an odd z G S is: 

(9) 

(10) 

z GS if and only if, for some prime/?, pk\\z, then pk G S; 

pk GS if and only i f / = 0,1,2, or 4 (mod 7). 

By the criterion for integer z G S, we have 

if Zj e 5, z2 G 5, then zxz2 G 5, 

if z = z^j, (z1? z2) = 1, and z G 5, then ^ G ^, z2 G 5. 

It is clear that a solution An, Bn of (2) is a solution of (1) if and only if A„ G 5, Bn G S. 
Since (4,, #„) = 1, we see by (8) that 4,, 5„ is a solution of (2) if and only if U2n+l GS . 

Later on, we shall say that U2n+l - AnBn is a solution of (2), and accordingly of (1), if An, Bn 

is a solution of (2). The notations Un and U(n) are considered to be equivalent. 
It is known that {Ut} is periodic modulo 7 and its period is {1, 2, 3,4, 5, 6, 0}. By (9) and 

(10), if Um G S and m is odd, then 
/w = l,7,9,ll (mod 14). (11) 

3. SOME PROPERTIES OF U(m) 

In what follows, we shall need some properties of recurrence (7), which we give here without 
proofs, since they can be found in [2] and [4]. 

Let ml and m2 be positive integers. Then 
UWmm/nJ,! = 1,2, (A) 

(Uim.m,)/ U(m2), U(m2)) = (mx, U(m2)). (B) 

If pl mdp2 are primes not equal to 3 or 7 and pl<p2, then, for k > 0, 

(jh,u<A)) = i- (Q 
If the prime q has the form q = 2-N + (71 q), where (7 / q) is the Legendre symbol, then 

q\U(N). (D) 

4 ?fPRJME?f AND "COMPOSITE" SOLUTIONS 

Let Um be a solution of (1). We say that m is a "prime" solution if m is prime and a "com-
posite" solution if m is a composite number. By the properties of integer linear recurring 
sequences of order two, if m is a "composite" solution, then there exists a "prime" solution. 

Theorem 1: Let m be an odd composite number, m = p\l • • • pk
d
d, 2 < px < p2 < • • • < pd, kt > 0. If 

d = l, then kx>\. Let U(m)eS. Then, for all i = l,2,...,rf, # GS, and for all *, \<k<kt, 
U(P!)GS. 
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Proof: We shall prove the theorem by induction on d. 
(i) Let d = 1 and m = p\\ kx >1. For 0 < k < kx, by (A) we have 

U(tf*) = U(tf)/U(rf)-U(rf). 
By(B), 

(t/fa*') / t/(A*), U<tf)) = (/>,*'~\ C/(A"» = 1 for A ^ 3 or 7. 

Since £/(«) e 5, we have U(rf) eS for k = l, 2,..., kx - 1 . So, for A: = 1, C/(A) e S and, by 
(U),PleS. 

If /J, = 3 or 7 and t/(>f') e S, then 

U(rf>) = PlU(rt)/U(plyU(pl)/pl and (fltfCrf1)/tf(fl), U(Pl)/Pl) = 1. 

Therefore, U(pl)/ px G £, which is impossible since 

U(3)/3 = 5-17eS and C/(7)/7 = 13-293-617 g£. 
(II? Let </ = 2, m = $pfc9 px<p2, and U(m)eS. Then, U(rn) = U(m)/U(p*2)'U(p*2). 

Since {U{m)IU{pk
2

2)'U{pk
2

2)) = {pk\U{pk
2

2)) = 1 by (C), we have£/(^2) G 5 and, by (i), A G 5, 

Furthermore, t/(wi) - C/(w) / £/(fl*') • £/(#*»). Let 

Then, £/(/») = p2-U(m)/U(pki)-U(pki)/pc
2 and M = U(pk')lpc

2 GS. Since / ? 2 G S , /?2
CGS, 

and M/?£ = £/(#*») G 5. By (i), we have £/(#) GS, pxGS. 

(Hi) Assume that the statements of Theorem 1 are true for \<t <d. Then, for t - d, let 
m = Pil'P22 Pdd> A <Pi <"'<Pd> andC/(/w)GiS. Also, let w = w ^ . By(ii),/?^>7. Fur-
thermore, U(m) = U(m)/U(pk/)-U(pk/y 

Since ( ^ ( w ) / ^ ( p H ^ O ) = K t / ( ^ 0 ) = l by (C), we have U(pk/)GS and, by (i), 

Consider U(m) = U(m)/U(ml)-U(ml). Let D = (U(m)/U(rnl\U(ml)) = (pk/,U(m)) = Pa, 
where 0 < c < ^ . Then, U(m) = D'U(m)/U(mlyU(mi)/D and M = U(mi)/DeS. Since 
D G S, we have f / ^ ) = M-D GS and, by the induction statements, for all /, 0<i <d, pt G £, 
U(pk) GS, 0<k <kt, and the theorem is proved. 

In [6], Daniel Shanks and Samuel S. Wagstaff conjectured that equation (1) has infinitely 
many solutions. Theorem 2 gives some information on the form of these solutions. 

Theorem 2: If there are infinitely many solutions of (1), but only finitely many "prime" solutions, 
then there is at least one prime q GS such that U(qk) G S for all k > 0. 

Inversely, if there are infinitely many solutions of (1) and, for each prime p G S, there exists 
k = k(p) such that U{pk) € S, then there are infinitely many "prime" solutions. 

Proof: Let {m,}, / = 1,2,... be the set of solutions of (1). If php2,. ..,pd is the finite set of 
"prime" solutions of (1), then, by Theorem 1, mi = pklip2

2'--pk
d

di. Since n^ -»oo, there exists 
at least one Pj,0<j <d such that kjt -> oo as /'-» oo. By Theorem 1, U(j?j) G S for all k > 1. 
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Inversely, if for each prime peS there exists k = k(q) and U(pk) £ S, then, by Theorem 1, 
U(pd) <£ S for d>k(p). If there are finitely many "prime" solutions, then, by Theorem 1, there 
exist finitely many "composite" solutions only. 

It is more probable that there exist infinitely many "prime" solutions. Indeed, if for each 
prime p eS there exists at least one prime q of the form q = 2p" + (7 I q), where (11 q) is the 
Legendre symbol, then (q/7) = -1 and so q £ S. By (D), q\U{pn) and (pn) <£ S. 

5. ON "COMPOSITE" SOLUTIONS 

In [6], the solution px = 53 was given and two new solutions of equation (1) were found: 
p2 = 67 and p3 = 7l. By Theorem 1, the corresponding "composite" solutions have the form 
m~PiPiPh ®,h,c>0. To test whether there are "composite" solutions, it is sufficient to con-
sider mx = P?,m2= PiPi,™!^ PiP3>m4 = Pi>ms = P2P31 a n d "% = P\-

A computer examination produced the following: 
For ml = 532 = 2809, Ufa) has no prime divisors up to 1 • 109. 
For /^ = 53-67 = 3551, l\03\Ufa), and 7103 £ S, so Ufa) £ S. 
For w% =53-71 = 3763, \919339\Ufa), and 1979339 eS, so Ufa)<£S. 
For m4 = 672 = 4489, 673349|| Ufa), and 673349 g S, so Ufa) £ S. 
For /^ = 67-71 = 4757, 332989|| Ufa), and 332989 g S, so Ufa) <£S. 
For m6 = 712 = 5041, 46427611|| Ufa), and 46427611 € S, so Ufa) £ S. 

Note that: 
For mj = 533 = 148877, 89326l|| Ufa), and 893261 £ S, so Ufa) <£ S. 

Perhaps the only "composite" solution of (1) of the form m = P1P2P3 is ml = 532 = 2809, and 
it is the least "composite" solution. 
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1. AIM OF THE NOTE 

The principal aim of this short note is to put into evidence a quite interesting property of the 
integers Mn given by the left-hand side of the Fibonacci characteristic equation 

x 2 - x - l = 0 (1.1) 
taken at integers. More precisely, let us define the odd numbers Mn as 

Mn : = n(n-l)-l = n2 -n-l (n> 2 an integer). (1.2) 

After establishing two marginal properties of the numbers Mn, we prove their main property: 
namely, for n > 3, their canonical decomposition does not contain primes of the form 10/i±3. A 
brief discussion on which numbers Mn are also Fibonacci or Lucas numbers concludes our note. 

2. MARGINAL PROPERTIES OF THE NUMBERS Mn 

Proposition 1: 
1 (mod 10) 
5 (mod 10) if « = 
9 (mod 10) 

2,4,7, or 9 (mod 10) 
3 or 8 (mod 10) (2.1) 
0,1,5, or 6 (mod 10). 

Proposition 1 can be proved by simply computing (1.2) modulo 10. 

Proposition 2: For n > 2, Mn is not divisible by 25. 

Proof: From (2.1), we see that, for Mn to be divisible by 5, one must have n = 5h + 3 (h=0, 
1, 2, ...). Consequently, from (1.2), we have M5h+3 = 25h2 + 25h + 5 = 5 (mod 25). 

3. MAIN RESULT 

Proposition 3: For n > 3, the canonical decomposition of Mn has the form 

M„ = 5'fltf, (3.1) 
fc=l 

where t is either 0 or 1 and pk is a prime of the form I0h±l with sk a nonnegative integer. In 
particular, the canonical decomposition of Mn does not contain primes of the form 10/? ±3. 

Remark: If Mn is a prime, then the statement of Proposition 3 and that of Proposition 1 coincide. 

Proof of Proposition 3: From (1.2) and Proposition 2, it is sufficient to prove that the 
incongruence 

n2-n-l^0 (mod 10A + 3) (10A + 3 a prime) (3.2) 
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holds true for all n. Let D (= 5) be the discriminant of the equation x2 - x -1 = 0. In [3, p. 223] 
it is shown how the solution of the congruence x2 - x -1 = 0 (mod q) (q a prime) is given by the 
solution of the congruence z2 = D (mod q). It follows that a sufficient condition for the incon-
gruence (3.2) to be satisfied is that the congruence z2 = 5 (mod 10/?±3) has no solutions. In 
other words, denoting by (ml p) (p an odd prime, /wan integer not divisible by p) the Legendre 
symbol, to prove (3.2) we have to prove that 

(5/10/i + 3) = - l . (3.3) 

To obtain (3.3), first use the reciprocity law for (mlp) (e.g., see [3, p. 322]), thus getting 

f(5/10/l + 3)(10/f+ 3/5) = (_l)(5-D/2-(10 +̂2)/2 = (_}y0h+2 
[(5/10/f-3)(10//-3/5) = (_l)(5-D/2<10A-4)/2 = (_lf0h-4 

whence 

(5/10/?±3)(10/? + 3/5) = l. (3.4) 

Then, on using the property (mlp) = m^p~1^2 (mod/?) (see [3, p. 315]), write 

(10// + 3/5) EE(10/I+3) ( 5 - 1 ) / 2 (mod 5) 

= (±3)2 = 9 = - l (mod 5) 

whence 

(10/i±3/5) = - 1 . (3.5) 

The validity of (3.3) follows necessarily from (3.5) and (3.4). • 

An Observation: At first sight, we were amazed at the relatively large number of prime Mn (cf. 
Sequences 179 and 1558 of [4]): we found 48 of them for 3</?<100 and 311 of them for 
3 <n < 1000, whereas it can be seen readily [2] that the expected number of primes in a set of 
1000 odd numbers randomly chosen in [3, 106] is 157. Actually, the fact that there are so many 
prime Mn is not surprising, for we know, from Proposition 3, that Mn is not divisible by 3 (or by 
7), and that most of the composite numbers are. 

4. A QUESTION ABOUT THE NUMBERS Mn 

(4.1) 

A computer experiment allows us to ascertain that, for 11</?<1010, no numbers Mn are 
Fibonacci or Lucas numbers. This experiment was carried out by seeking values of k for which 
the discriminant 4 i ^ + 5 (resp. 41^+5) of the equation n2 -n-l = Fk (resp. = Lk) is a perfect 
square. 

observed that 
M 2 = FX = F2 = Ly, 
M3 = F5, 
M, = L„ 

M6 = Lj, 

Ms = F\o> 
M10 = Fn 
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Question: Do there exist numbers Mn that are Fibonacci or Lucas numbers besides those given 
in (4.1)? 

Remark: By virtue of the identity 4L2£ + (-l)*8 = (2Lk)2 (see identities I15 and I18 of [1]), it is 
not hard to prove that Mn cannot equal an even-subscripted Lucas number. 
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For any integers n > 1 and k > G, let tj){n) and crk(n) be the Euler totient function of n and 
the sum of the kth powers of the divisors of w, respectively. In this note, we present the following 
inequalities. 

Theorem: 
(1) $(Fn) > Ff^ for all n > 1. Equality is obtained only if n - 1,2, 3. 
(2) crk(Fn) < Fa^n) for all n > 1 and k>\. Equality is obtained only if n = 1 or (k, n) = (1,3). 
(3) cr0(Fn) > iV0(„) for all n > 1. Equality is obtained only if n - 1,2, 4. 

(1) See [2] for a more general result. • 
(2) Let k > 1. Notice that o ^ ) = f̂ (1) = 1 for all k > 1. Moreover, as ak(2)=l + 2k >3 

for £ > 1, it follows that Fak{2) = Fl+2k >F3 = 2>l = ak(l) = ak(F2). Now let n = 3. Notice that 
F = F4 = 3 = c-^2) = cr1(F3). However, if k > 2, then a*(3) = 1 + 3* > 10. Since F„ > w for 
n > 6, it follows that i^ ( 3 ) = F1+3* > 1+-3* > 1 + 2* = crfc(2) = a^(F3)- for k > 2. From this point 
on, we assume that n>4. 

Moreover, assume that 
ak(Fn)>Fak(n) (1) 

for some n > 4 and some k>\. First, we show that if inequality (1) holds, then n is prime. In-
deed, assume that n is not prime. 

Since nk >nk for all n>4 and k>l, and since Fu+V >FU-FV for all integers u and v, it 
follows that 

Fnk>Fnk>Fn
k fo rw>4and*>l . (2) 

Clearly 
jn>aj£(ml form>2mdk>l. (3) 
(p(m) trt 

If w < 41, then Fn < F4l < 2 • 109. By Lemma 4.2 in [3], it follows that 

and by inequalities (l)-(4), it follows that 

F"-%>6>m)>~~w~ ~^~ - ^ () 
Hence, 6 > ak(n) - nh. Since n is not prime, it follows that 

ak(n)-nh>^i\ (6) 
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Therefore, 6 > 4nk. Since n > 4, it follows that 6 > V4* = 2k or k < 3. The only pairs (k, n) 
satisfying the inequality 6> y/nk for which 4<n<40 is not prime are (k,ri) = (2,4) and (1,«), 
where 4<n<35 is not prime. One can check using Mathematika, for example, that i^oo > 
<Jk{Fn) for all the above pairs (k, ri). 

Suppose now that inequality (1) holds for some k>\ and some w>42 that is not a prime. 
Since Fn > F42 > 2 •109, it follows by Lemma 4.1 in [3] that 

log(F„)> 

By inequalities (1), (2), (3), and (7), it follows that 
my 

log(Fw)> 
Fn > GkJFf)^ F°k(") > p 

<l>(Fn) 

Since 

it follows from inequalities (6) and (9) that 
J 

ak{n)-nK ' 

for all « > 1 , 

(7) 

(8) 

(9) 

»iog[-^-j>iog^>Ft(„)_„t > v s - n - y - (10) 

If k > 2, then -Jnk > n, and inequality (10) implies that 

r i 1 + S) 1 
» » ° 8 | — > ^ 

1+V5T 1 ( i i ) 

Inequality (11) implies that n < 3, which contradicts the fact that « > 42. Hence k = 1. Inequality 
(10) becomes 

wlog 1 + V5 (( •ft \ 

L¥T-
which implies that n<92. One can check using Mathematika, for example, that F ^ > <Ji(Fn) 
for all 42 <n< 91. 

From the above arguments, it follows that if inequality (1) holds for some n>4 and some 
k > 1, then n is prime. In particular, n > 5, 

Write Fn - q{x qf*9 where qi<--<qt are prime numbers, and yt > 1 for /' = 1,...,/. We 
show that qx, q2, and t satisfy the following conditions: 

(a) qx>n\ 

(b) I f f> l , then0 2 >2w-1; 

(c) t-l>2{n-\)\og(^2 l.e-V(n-» 
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Indeed, let q be one of the primes dividing F„, From Lemma II and Theorem XII in [1], it 
follows that q\Fq2'Fq2_v 

Suppose first that q\Fql. We conclude that q\(F„, Fql) = F(nq2). Since Fx = 1, we conclude 
that (n, q2)^l. Since both q and n are prime, it follows that q-n. 

Suppose now that q\Fq2_v We conclude that q\(F„, Fq2_^ = F{nq2_xyq = ±1 (mod n). Then, 
clearly, q ^ n ± 1 because q and n are both prime and n > 5. Hence, q > In - 1 in this case. 

Now (a) and (b) follow immediately from the above arguments. 
For (c), notice that by inequalities (1), (2), and (3), 

i K 1 % / - l J - ^ ) > Ft ~ /? " F* ~ Fnk -2> (12) 

because Fm+ll Fm > 312 for all w > 3. Taking logarithms in inequality (12), and using the fact that 
log(l + x) < x for all x > 0, we conclude that 

$TTM1 
From (a) and (b), it follows that 

1 - + ̂ T>'°g(T | . (13) n-\ 2(«-l) °V2 

Inequality (13) is obviously equivalent to the inequality asserted at (c) above. 
From inequality (10) and inequalities (a)-(c) above, it follows that 

n log f ̂ ^ J > log F„ > X log q, > log n + (t -1) log(2/i -1) 

> ( / - ! ) log(2« -1) > 2(/i -1) log(2« -1) log (| • e-ll{"-X) 

Hence, 

a ^ - D . o V - i ) - ' 0 8 ^ ) - ' 0 8 ^ ) ^ ^ < 1 4 ) 

Inequality (14) implies that « < 5, which contradicts the fact that n > 5. D 

(3) Let k = 0. For any positive integer /w, let r(/w) and v(/w) be the number of divisors of m 
and the number of prime divisors of m, respectively. Notice that r(m) = crQ(m). Therefore, the 
inequality asserted at (3) is equivalent to r(Fn) > Fr(w) for n > 1. 

Let n be a positive integer. Recall that a primitive divisor of Fn is a prime number qy such 
that ^|F„, but q\Fm for any \<m<n. From Theorem XXIII in [1], we know that Fn has a 
primitive divisor for all ft > 1 except n = 1,2,6, 12. We distinguish the following cases. 

Case 1. 6In. Since Fd\F„ for all d\n9 and i^ has a primitive divisor for all dexcept d-\ 
2, it follov^s that v{Fn) > r{n) - 2. Hence, 

r(i^)>2v/(F«)>2r(/2)-2. (15) 
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Since 2k~2 > Fk for all k > 4, it follows that the inequality asserted by (3) holds for all n such that 
r{n)>4. 

If r(n) - 1, then n = 1 and T(F^) - FT^ = 1. 
If r(n) = 2, then w = p is a prime and r ( i^) >l = F2 = FT^py Obviously, equality holds only if 

p = 2. 
If r(n) = 3, then n = p2, where/? is a prime. Moreover, r ( i y ) >2 = F3 = Fr(Piy a n d equality 

certainly holds for /? = 2. If p > 2, then both Z^ and i y have a primitive divisor; therefore, 

r(Fp2)>4>2 = F3 = FT(p2). 

Case 2. 6 | « , b u t l 2 | « . Inthis case, v{Fn)> r(n)-3. Moreover, since F6 = 8\Fn, it follows 
that the exponent at which 2 appears in the prime factor decomposition of Fn is at least 3. Hence, 

T(F„) > 2v{n)-x • (3 +1) > 2T(n)"4 • 4 = 2t(n)~2 > Fm, 

because r(n) >4 = r(6). 

Case 3. 12 \n. In this case, v(Fn) > r(n)-4. Moreover, since 2 4 -3 2 =Fl2\Fn, it follows 
that the exponents at which 2 and 3 appear in the prime factor decomposition of Fn are at least 4 
and 2, respectively. Thus, 

r{Fn) > 2v{n)~2 • (4 +1) • (2 +1) > 2r(w)"6 • 15. (16) 

Moreover, since 12 \n, it follows that r(n) >6= r(12). By inequality (15), it follows that it suf-
fices to show that 

\5-2k-6>Fk f o r £ > 6 . (17) 

This can be proved easily by induction. D 
This completes the proof of the Theorem. D 
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1. INTRODUCTION 

Define the sequences {UJ and {VJ for all integers n by 

K = PK-I-IK_2, V0 = 2, vx = P, ( 1 1 ) 

where/? and q are real numbers with q(p2-4q) ^ 0 . These sequences were studied originally by 
Lucas [6], and have subsequently been the subject of much attention. 

The Binet forms for H and V„ are 

where 

u„ 

p+ 

a" 
a-

> 2 -

-P" 
-p 

-Aq 

and Vn = an + ft\ (1.2) 

a = "-"2 - and p^EzJZER ( 1 .3) 

are the roots, assumed distinct, of x2 - px + q = 0. We assume further that a I j3 is not an n^ root 
of unity for any n. 

A well-known relationship between Un and Vn is 

K = Un+i-qUn_u (1.4) 

which we use subsequently. 
Recently, Melham [7] considered functions of a 3-by-3 matrix and obtained infinite sums 

involving squares of terms from the sequences (1.1). Here, using a similarly defined 4-by-4 
matrix, we obtain new infinite sums involving cubes, and other terms of degree three, from the 
sequences (1.1). For example, closed expressions for 

y^- and y ^ ^ -

arise as special cases of results in Section 3 [see (3.4) and (3.5)]. Since the above mentioned 
paper of Melham contains a comprehensive list of references, we have chosen not to repeat them 
here. 

Unfortunately, one of the matrices which we need to record does not fit comfortably on a 
standard page. We overcome this difficulty by simply listing elements in a table. Following con-
vention, the (i, j) element is the element in the /* row and j * column. 
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2. THE MATRIX Ak x 

By lengthy but straightforward induction on n, it can be shown that the 4-by-4 matrix 

A = 

' o 0 0 -q3 ^ 
0 0 q2 3pq2 

0 -q -2pq -3p2q 
1 p p2 p3 , 

(2.1) 

is such that, for nonnegative integers n, An is as follows: 

-fUlPn -fu^u* 3TT3 \ 
-1 

WUl-Pn qKlUtU^+U^UU) q\Ul + 2U„^U„Un+l) 3qWnU„+1 

-q'Ul 
•,2TT2 

-3qUn_xUl -q(U3„+2Un_lUnUn+l) -q(2U2U„+l+Un_lU2
+1) 

Ul u2„un+1 unul+l 

-Wnut+l 
un+l J 

To complete the proof by induction, we make repeated use of the recurrence for {U„}. For exam-
ple, performing the inductive step for the (2, 2) position, we have 

-q\Ul + 2t/„_1t/„£/„+i) + 3pq2U2„U„+1 

= q2Un[Un(-qUn) + 2Un+l(-qU„_l) + 3pUnUn+1] 

= q2Un[U„(Un+2 - pUn+l) + 2U„+l(Un+l ~pUn) + 3pUnUn+l] 

= q2U„[2U2+l + UnU„+2] 

= q2[2U2
+lUn + Un+2U2], which is the required expression. 

When p = 1 and q - - 1 , the matrix A becomes 

fo o o O 
0 0 1 3 
0 1 2 3 
1 1 1 1 ^ 

which is a 4-by-4 Fibonacci matrix. Other 4-by-4 Fibonacci matrices have been studied, for 
example, in [3] and [4]. 

The characteristic equation of A is 

X* -p(p2 _2q)X3 + q(p2 -2q)(p2 -q)X2 -pq3(p2 -2q)X + q6 = 0. 

Since p = a + (3 and q-a^, it is readily verified that a3, a2/?, a/32, and J33 are the eigenvalues 
A j (J = 1, 2, 3,4) of A. These eigenvalues are nonzero and distinct because of our assumptions in 
Section 1. 

Associated with ,4, we define the matrix AktX by 

A, x - XA , (2.2) 
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where x is an arbitrary real number and k is a nonnegative integer. From the definition of an 
eigenvalue, it follows immediately that xa3k, xa2k(3k, xakj32k, and xj33k are the eigenvalues of 
Akx. Again, they are nonzero and distinct. 

3. THE MAIN RESULTS 

Let f{z)-T^=Qanzn be a power series whose domain of convergence includes the eigen-
values of Akt x. Then we have, from (2.2), 

f(AJ = ZX4" * = %n*nAk\ (3.1) 
w=0 n=0 

The final sum in (3.1) can be expressed as a 4-by-4 matrix whose entries we record in the follow-
ing table. 

if, f) 
(ID 

1 (1,2) 

1 (1,3) 

(1,4) 

(2,1) 

(2,2) 

(2,3) 

(2,4) 

(3,1) 

(3,2) 

(3,3) 

(3,4) 

(4,1) 

(4,2) 

(4,3) 

(4,4) 

(/, j) element of f(Ak x) 
00 

n=0 
00 

w=0 

n=Q 
00 

n=0 

3q2±anx"U2
kn.xUkn 

#1=0 

q2±anx"(2UlUkn_,+Ukn+Vl_x)\ 
n=0 

00 I 

^Zvn(^+2t/,„_,C/t„C/,„+1) 
«=0 

3q2tanx"UlUkn+] 
n=0 

-3q±anx"Uk^Ul 
n=0 

-qic,nx"(Ul+2Ukn_xUknUk^) 
n=0 

M=0 

M=0 

w=0 
00 1 

n=0 
00 1 

Ya„x"UknUi+] 
w=0 

00 1 

n=0 1 
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On the other hand, from the theory of functions of matrices ([2] and [5]), it is known that 

where / is the 4-by-4 identity matrix, and where cQ, cx, c2, and c$ can be obtained by solving the 
system 

\cQ + cxxa3k + c2x2a6k + c3x3a9k = f(xA\) = f(xa3k), 
c0 + clxalkfik + c2x2a4kp2k + c3x3a6kp3k = f{xX\) = f(xa2kj3k), 
cQ + cxxakp2k + c2x2a2kp4k + c3x3a3kj36k = f(xXk

3) = f{xakp2k\ 
CQ + cytjff3* + C2*2^6* + C,*3^* = / (x^4) = /(*/?3*). 

With the use of Cramer's rule, and making use of the Binet form for Un, we obtain, after much 
tedious algebra, 

-f{xa3k)(?>k f(xa2kpk)akp3k 

C° UkU2kU3k{a-P)3+ U2U2k(a-P)3 

• + 
f(xp3k)a( 3k\~6k f{xakp2k)a3kp 

U2U2lc(a-P)3 ' UkU2kU3k(a-p) 3 ' 

f(xa3k)P3k(a2k +p2k +akpk) f(xa2kpk)(a3k +p3k +a2kpk) 
xa2kUkU2kU3k(a-py xa2kU2U2k(a - /J)3 

+ 
f(xakp2k)(a3k +P3k+akP2k) f(xp3k)a3k(a2k +p2k+akpk) 

xp2ku2u2k(a-py xp2kuku2ku3k(a-py 
-f(xaik)pk{a2k +p2k+akpk) f(xa2kpk)(a3k +p3k + akp2k) 

x2a3kUkU2kU3k{a-pf x2a3kp2kU2U2k(a- pf 

f(xakp2k)(a3k+p3k+a2kpk) f{xp3k)ak(a2k +p2k + akpk) 
x2a2kp3kUlU2k{a-pf + x2p3kUkU2kU3k(a-P)3 : 

<3 
f(xa3k) f(xa2kpk) 

x3a3kUkU2kU3k(a-P)3 x3a3kp2kU2U2k(a-p)3 

f(xakp2k) f(xp3k) 
+ x3a2kp3kU2

kU2k(a-pf x3p3kUkU2kU3k(a-P)3' 

The symmetry in these expressions emerges if we compare the coefficients of f(xa3k) and 
f{xp3k) and the coefficients of f(xa2kpk) and f(xakp2k). 

Now, if we consider (3.1) and (3.2) and the expressions for the entries of A", and equate 
entries in the (4, 1) position, we obtain 

Y,anxnU3
kn = cxxU3+c2x2U3

2k +c3x3a (3.3) 
H=0 

Finally, with the values of chc2, and c3 obtained above, we obtain, with much needed help from 
the software package "Mathematica": 
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fa xnU3 _ f(xa3k)-3f(xa2kPk) + 3f(xakp2k)-f(xP3k) 

In precisely the same manner, we equate appropriate entries in (3.1) and (3.2) to obtain 

'kn+\ 
«=0 

_ qf(xa3k) - (2a+p)f(xa2kpk) + (a + 2p)f(xakp2k) - Pf(xp3k) 
(a-fif 

00 

2_,anX"'~'krfJkn+\ 
n=0 

a2f(xa3k)- (a2 + 2ap)f(xa2kpk) + (J32 + 2ap)f(xakp2k) - P1f{x0ik) 
(a-py 

(3.5) 

(3.6) 

H<*n*?Ul P 
'kn+\ 

«=0 
a3f(xa3k) - 3a2p/(xa2kpk) + 3aplf(xakp2k) - p3f(xp3k) 

(a-P)3 

(3.7) 

2_janX *~>kn-Y~>kn 

Pf(xa3k) - (a + 2P)f(xa2kpk) + (2a+P)f(xakp2k)-af(xp3k) 
(3.8) 

aP(a-pf 

fJc*„x»(U3
n + 2Ukn_lUknUkn+]) 

^ 3aP(f(xa3k) - f(xp3k)) - (a + 2/?)(2a + P)(f(xa2kpk) - f(xak02k)) 
ap(a-pf 

00 

2_,anX (2UknUkn+l + U/cn-lUkn+l) 
n=0 

3a2pf(xa3k) - a(a + 2P)2f(xa2kpk)+p(2a+P)2f(xakp2k) - 3ap2f(xp3k) 
ap(a-pf 

(3.9) 

(3.10) 

"=0 (3.11) 
= P2f(xa3k) - p(2a + p)f(xa2kpk) + a(a + 2p)f(xakp2k) - a2f(xp3k) 

a2p2(a-pf 

f,anx"(2U2
knUkn_l + Ukn+lUl-d 

"=0 (3.12) 
3ap2f(xa3k) - p(2a + pff(xa2kpk) + a(a + 2pf f (xak p2k) - 3a2pf(Xp3k) 

a2p2(a-pf 
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P3f{xa3k) - 3aJ32f(xa2kpk) + 3a2Pf(xakp2k) - a3f(xj33k) 
(3.13) 

a3p3{a-P)3 

From (3.4) and (3.9), we obtain 
00 

2^ anxnukn-iUknukn+l 

= aj3(f(xa3k) - f{xp3k)) - {a2 + ap+p2)(f {xa2k pk) -f(xakj32k)) 
aP(a-/3)3 

Similarly, (3.5) and (3.10) and then (3.8) and (3.12) yield, respectively, 
CO 

«=0 

_ a2pf(xa3k)- a(a2 + 2p2)f{xa2kpk)+P(2a2 + 02)f{xakp2k) - ap2f(xp3k) 

(3.14) 

(3.15) 

ap(a-p)3 

00 

Z J anX"^kn+V^kn-l 
n=0 (3.16) 

= ap2f(xa3k) - p(2a2 + p2)f{xa2kpk) + a(a2 + 2p2)f(xakp2k) - a2Pf(Xp3k) 
a2p2(a-pf 

Finally, from (1.2), we have V3„ = U3
kn+l - 3qU2

kn^Ukn_x + 3q2Ukn+lU2
kn^ - q3U3

kn^. This, to-
gether with (3.7), (3.13), (3.15), and (3.16), yields 

fja„x"V3, = f(xa3k) + 3f(xa2kpk) + 3f(xakp2k)+f(xp3k) (3.17) 

after some tedious manipulation involving the use of the equality aP-q. 

4. APPLICATIONS 

We now specialize (3.4) and (3.17) to the Chebyshev polynomials to obtain some attractive 
sums involving third powers of the sine and cosine functions. 

Let {^(0}»=o and {̂ (OK?=o denote the Chebyshev polynomials of the first and second 
kinds, respectively. Then 

S„(t)=^"e] 

sin# 
Tn{i) = cosnO 

, t = cos9, n>Q. 

Indeed, {Sw(0}*=o and {2Tn(t)}™=0 are the sequences {Un}™=0 and {Vn}™=0, respectively, generated 
by (1.1), where p - 2 cosO and q - 1. Thus, 

a = cos$ + isin9 = e10 and P = cos0-isin0 = e~w, 
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which are obtained from (1.3). Further information about Chebyshev polynomials can be found, 
for example, in [1]. 

We use the following well-known power series, each of which has the complex plane as its 
domain of convergence: 

S m 2 = Z Vo^lM > ( 4 1 ) 
«=0 (2w + l)! ' 

™*=?LtMr> (4.2) ti (2«)i ' 
°° 72w+l s i n h z =5<^r <43) 

« * x - £ ^ j . (4.4) 

Now, in (3.4), taking U„ = sin?i0/sin# and replacing/by the functions in (4.1)-(4.4), we 
obtain , after replacing all occurrences of k0 by ft 

V (~^Tx2n+l $in3(2n +1)# _ 3cos(xcos^)sinh(x sin ft) - cos(xcos3^) sinh(xsin 3ft) (. . 
„+0 (2n + l)! " 4 . C -^ 

^ (-l)"x2wsin32/?^ _ -3 sin(xcos^) sinh(x sin ft) + sin(xcos3^) sinh(x sin 3ft) ( . . 
% <2*ji " 5 ' ( ' } 

yn x2n+l sin3(2/2 +X)(j) _ 3 cosh(x cos^) sin(x sin ft) - cosh(x cos3^) sin(x sin 3ft) ( . 
£ 0 (2» + l)! " 4 ' { • } 

^ x2wsin32/^ _ 3sinh(xcos^)sin(xsin^)-sinh(xcos3^)sin(xsin3^) ( . 
n + 0 - ( 2 ^ r - = -A • ( 4 8 ) 

Similarly, in (3.17), taking Vn = 2cosn0 and replacing/by the functions in (4.1)-(4.4), we 
obtain, respectively, 

V (~l)Wy2w+1 cos3(2/? +1)^ _ 3 sin(xcos^) cosh(x sin ft) + sin(xcos3^)cosh(x sin 3ft) , . 
„f0 (2^Tl)! - 4 ' ( • j 

Ŷ  (-l)"x2/7cos32?i^ _ 3 cos(x cos^) cosh(x sin ft) + cos(x cos3^) cosh(x sin 3ft) ( . 
„+0 (2n)\ = 4 ' ( - > 

^ x2"+1 cos3(2/i +1)^ 3 sinh(x cos^) cos(x sin ft) + sinh(x cos3^) cos(x sin 3 ft) / / j 1 A 

S (2* + l)! = 4" ' ( 4 H ) 

y, x2" cos3 2/?^ _ 3 cosh(x cos^) cos(x sin ft) + cosh(x cos3^) cos(x sin 3ft) ( . 
k (2»)i = 4 • ( 4 1 2 ) 

Finally, we mention that much of the tedious algebra in this paper was accomplished with the 
help of ,!Mathematica". 
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is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1+Fm F0 = °> ^1 = ^ 
AH-2 - Ai+i + 4 ^ LQ-2, LX- l. 

Also, a = (l + V5) /2 , /? = ( l - V 5 ) / 2 , Fn = (an-(Jn)I^and Ln = an+[3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-878 Proposed by L. A. G Dresel, Reading, England 
Show that, for positive integers n, the harmonic mean of Fn and Ln can be expressed as the 

ratio of two Fibonacci numbers, and that it is equal to Ln_l + Rn where | i ^ | < 1. Find a simple 
formula for i^ . 

Note: If h is the harmonic mean of x and j , then 2/h=l/x + \/y. 

B-879 Proposed by Mario DeNobili, Vaduz, Lichtenstein 

Let (cn) be defined by the recurrence cn+4=2cn+3+cn+2-2cn+l-cn with initial conditions 
cQ - 0, cx = 1, c2 = 2 , and c3 = 6. Express cn in terms of Fibonacci and/or Lucas numbers. 

B-880 Proposed by A. J. Stam, Winston, The Netherlands 

Express T pY'V-iys-" 
in terms of Fibonacci and/or Lucas numbers. 

B-881 Proposed by Mohammad K Azarian, University of Evansville, IN 
Consider the two equations 

n n 
HLixi = Fn+3 and YdLiyi = L2-Fn+l. 
i=\ 7=1 
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Show that the number of positive integer solutions of the first equation is equal to the number of 
nonnegative integer solutions of the second equation. 

B-882 Proposed by A. J. Stain, Winsum, The Netherlands 
Suppose the sequence (A^) satisfies the recurrence An = An_l + 4,-2 • Let 

3,=i(-iM-2*-
fc=o 

Prove that Bn = AQFn+l for all nonnegative integers n. 
B-883 Proposed by L. A. G. Dresel, Reading, England 

Let (/„> be the Fibonacci sequence Fn modulo/?, where/? is a prime, so that we have fn = Fn 

(mod/?) and 0<fn<p for all n > 0. The sequence (fn) is known to be periodic. Prove that, for 
a given integer c in the range 0 < c < /?, there can be at most four values of n for which f„ = c 
within any one cycle of this period. 

SOLUTIONS 
A Perfect Square 

B-860 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 36, no. 5, November 1998) 

Let & be a positive integer. The sequence (A^) is defined by the recurrence 4*+2 = ^A+\ ~ A 
for n > 0 with initial conditions A0 = 0 and Al = l. Prove that (k2 -l)A% +1 is a perfect square 
forallw>0. 

Solution by Don Redmond, Southern Illinois University, Carbondale, IL 
We give a generalization. Let /? and q be integers and let A$ = 0 and Ax = \. Define, for 

n > 0, the sequence (AQ by 4r+2 = ^PA+i ~VA- Then, for n > 0, 

qn+{p2-q)^ 
is a perfect square. If we let q = 1 and p = k, we obtain the desired result. 

Let s and t be the roots of the polynomial x2 -2px + q = 0. Then we know that we can 
write, for n > 0, 

Now $ + t = 2p, st-q, and s-t = 2^jp2 -q. Thus, 

4qn+4(p*-q)AZ =4(st)n+(s-tf\ ^—^- | = 4(5/)" +($" -tn? = (sT+tn)2. 
v 

Hence 

^ ( / - . / K H ^ 
Finally, (Y2 + tn)/2 is indeed an integer because it satisfies the same recurrence as An but with 
initial values 1 and/?. 
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Seiffert also found this generalization. Lord showed that, for the original sequence, 

( ^ - l K ' + i ^ - ^ - i ) 2 -
Redmond noted that another generalization can be found on page 501 of [1]: If a0 is any 
integer, a^ka^+p and, for n>0, an+2=2kan+l-an, then (k2-l)(a2-a$) + p2 is a perfect 
square. The problem at hand is the case aQ = 0 and p = l. 

Reference:: 
1. Don Redmond. Number Theory: An Introduction. New York: Marcel Dekker, 1996. 

Solutions also received by. Richard Andre-Jeannin, Paul S. Bruckman, Charles K Cook, 
Leonard A. G. Dresel, Steve. Edwards, K Gauthier, Joe Howard, Hans Kappus, Harris 
Kwong, Graham Lord, Maitland A. Rose, H-J. Seiffert, Indulis Strazdins, Andras Szilard, 
and the proposer. 

Integer Coefficients? 

B-861 Proposed by the editor 
(Vol 36, no. 5, November 1998) 

The sequence w0, wly w2, w3, w4,... satisfies the recurrence wn = Pwn_x -Qwn_2 for « > 1. If 
every term of the sequence is an integer, must P and Q both be integers? 

Counterexample by Steve Edwards, Southern Polytechnic State University, Marietta, GA 
The sequence wn = k, where k is an integer, is a counterexample when/? is not an integer and 

P-Q = L 

Solution by JL A. G. Dresel, Reading, England 
We shall prove that P and Q must both be integers provided that w2 - w0w2 ^ 0. 
Let Dn = ̂ l+i-^n^+2- Eliminating P from the equations wn+2 = Pwn+l - Qwn and wn+3 = 

Pwn+2 - Qwn+1, we have Dn+l = QDn for n > 0. Therefore, Dx = QD0, and by induction/),, = QnD0 

fo rw>0. 
If D 0 * 0 , then Q = Dl/D0 is the ratio of two integers, and then Dn = QnD0 for all n>\ 

implies that Q must be an integer. 
It remains to prove that P must also be an integer in this case. Suppose, on the contrary, that 

P is a rational fraction, P-pld, where gcd(Jp,rf) = l. Consider the recurrence in the form 
Pwn = Wn+l + Qwn_l for n > 1. It follows that ddivides wn, so that d divides wuw2,w3,.... There-
fore, for n > 2 , the right side of the recurrence is divisible by d, and we have d2 divides w2, w3, 
w4,.... Continuing in this way (let us call it the escalator principle), we find that for each w, dn 

divides w„. Hence d2n+2 divides Dn = QnD0 for all n, and it follows that Q is divisible by d2. 
Returning again to the recurrence Pwn = wn+l + Qwn_f for n> 1, we see that the right side is 

divisible by d2
y and therefore d3 divides wl9w2,w3,...-. Then, for w > 2 , the right side of the 

recurrence is divisible by d5
y so that d6 divides w2, w3, w4,.... Continuing with this escalator 

principle, we find that, for each n, d3n divides wn. Hence, d6n+6 divides Dn = QnD0 for all n, and 
it follows that Q is divisible by d6. Returning again (and again) to the recurrence formula and 
applying the escalator principle, we require even higher powers of d dividing both Q and DQ, so 
that we cannot construct the sequence of integers unless d-\. 

This implies that when DQ * 0, both P and Q must be integers. 
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Counterexamples also received by Richard Andre-Jeannin, Paul S. Bruckman, H.-J. Seiffert, 
andAndras Szilard 

Large LCM 

B-862 Proposed by Charles K. Cook, University of South Carolina, Sumter, SC 
(Vol 36, no. 5, November 1998) 

Find a Fibonacci number and a Lucas number whose sum is 114,628 and whose least 
common multiple is 567,451,586. 
Solution by Scott H. Brown, Auburn University at Montgomery, Montgomery, AL 

Since the sum of the two numbers ends in 8, we test the combinations in the one's digits: 
0 + 8, 1 + 7, 2 + 6, 3 + 5, and 4 + 4. Testing these combinations and observing that they must add 
up to 114,628, many of these combinations are eliminated with the exception of the following: 

(a) F2l = 10,946 L^ = 103,682; 
(b) F25 = 75,025 4 2 = 39,603. 

These values were found on pages 83 and 84 in [1]. 
Factoring the integers in question, we find 10946 = 2 • 13 • 421, 103682 = 2 • 47 • 1103, 75025 = 

52 -3001, and 39603 = 3-43-307. 
Checking the LCM we find, incase(a), lcm(F21,ZM) = 2-13-421-47-1103 = 567451586 and, 

in case (b), lcm(i^5, L^)- 2971215075. Case (b) does not give the desired LCM. 
Hence, the answer is F2l and L^. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
Solutions also received by Richard Andre- J eannin, Paul S. Bruckman, Leonard A. G. Dresel, 
Steve Edwards, Daina Krigens, Carl Libis, H.-J. Seiffert, Lndulis Strazdins, Andras Szilard 
and the proposer. 

Matrix Lucas Sequence 

B-863 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 36, no. 5, November 1998) 

Let 

HZ ••)• '=(-i» »)• c=(-"" 3- - D=(=i 5} 
and let n be a positive integer. Simplify 30^" - 245" - 5C" + Dn. 
Solution by Hans Kappus, Rodersdorf, Switzerland 

It is easily checked that the matrix equation X2 = X + 1, where / is the identity matrix, is true 
for X=A,B, C, and D. Hence, the matrices Mn = 30An- 24Bn -5Cn+Dn, n = 0,1,2,..., sat-
isfy the recurrence Mn+2 - Mn+l + Mn. Furthermore, M0 = 21 and Mx= 1. Therefore, 

M„ = LJ = [L^L) " = (U2,.... 
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Solutions also received by Richard Andre-Jeannin, Paul S. Bruckman, Charles K. Cook, 
Leonard A. G. Dresel, Carl Libis, Maitland A. Rose, H.-J. Seiffert, Andras Szilard, and the 
proposer. 

Confound Those Congruences 

B-864 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 36, no. 5, November 1998) 

The sequence (Qn) is defined by Qn - 2Qn_l+Qri_2 for n > 1 with initial conditions QQ = 2 and 

(a) Show that Qln = Ln (mod 159) for all n. 
(b) Find an integer m > 1 such that QUn = Ln (mod m) for all n. 
(c) Find an integer a such that Q^ = Ln (mod 31) for all n. 
(d) Show that there is no integer a such that Qan = Ln (mod 7) for all n. 
(e) Extra credit: Find an integer m>\ such that Ql9n = Ln (mod m) for all n. 

Solution by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY 
For k > 0, we have 

a**+(-i)*a-*=a,& o) 
by induction on k. (The cases k - 0 and k - 1 are easy.) Next, we show the following: 

If a is odd and m\(Qa -1), then g^ = Ln (mod /w) for all n. (2) 

Indeed, (2) holds for n = 0 trivially and for w = 1 by hypothesis on m, and, if true for n = j-l, 
then 

^Qa(j-i)+Qaj (modw) (since a = 1) 
= Z._! + L. (mod /w) (by the induction hypothesis) 
= LJ+l (mod iw), 

so that (2) holdsfor n = j + l. Hence, (2) holds for all n by induction. 
Part (a) of the problem now follows from (2) with a = 7 since Q7 -1 = 477 is divisible by 159. 
Part (b) holds with m = \3 since 13 divides Qn - 1 . 
Part (c) holds with a - 17 since 31 divides Ql7 -1. 
Part (e) holds with m = Ql9-l = 18738637. 

Finally, if g ^ = Ln (mod 7) for all n, then, in particular, Q, = Z, = 1 (mod 7). However, this is 
impossible since we have (mod 7) 

(Q,, a a . - ) - ( 2 , 2 , 6,0,6,5,2,2,...), 
which clearly repeats with period 6 and never assumes the value 1. Thus, part (d) is proved. 
Solutions also received by Richard Andre-Jeannin, Paul S. Bmckman, Leonard A. G. Dresel, 
H.-J. Seifferi, Andras Szilard, and the proposer. 
Belated Acknowledgment; Brian Beasley was inadvertently omitted as a solver of Problems B-
854, B-855, and B-857. 

< • < • < • 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HA VEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-553 Proposed by Paul Bruckman, Berkeley, CA 
The following Diophantine equation has the trivial solution {A, 5, C, D) - (A, A, A, 0): 

A3 + B3 + C3 - 3 ABC = Dk, where k is a positive integer. (1) 
Find nontrivial solutions of (1), i.e., with all quantities positive integers. 

H-554 Proposed by N. Gauthier, Royal Military College of Canada 
Let &, a, and b be positive integers, with a and b relatively prime to each other, and define 

Nk:=(l + (-l)k-Lkr 
= (2-Lk)~\ k even; 
= -L~k\ k odd. 

a. Show that 
a-\ b-l 

r=0 .y=0 
br+as<ab 

2^ 2L Lq(br+as) ~ NqaNqb[2 + Z^(a+6) ^qa ^qb ^qab + ( V Lqa(b-1) 

-f (-1) Lqb(a_y + (-1) ^q(ab-a-b)] 

+ Nq[{-\fLq(ab_l)-Lqab\, 

where q is a positive integer. 
b. Show that 

I I ^ + f l s ) = NqaNqb\_{-\ra^Fq,ab_a_b) +Fqa +Fqb 
r=0 s=0 
br+as<ab 

~Fqab + \ V Fqa(b-l) + *qb(a-l) ~ ^q(a+b)] 

+ Nq[{-lfFq{ab_X)-Fqabl 

where q is a positive integer. 
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H-555 Proposed by Paul S. Bruckman, Berkeley, CA 
Prove the following identity: 

[n/3] 

(x» + y ) ( * +J/)" = -(-xyy + Y(-l?Cn,k[xy{x + y)ik{x2
 +xy + / ) - " , „ = 1, 2,..., (1) 

it=o 
where 

'"•<t = (" / J-"^"-2*)-
Using (1), prove the following: 

(a) 5" / 2 4=- l + X(-r /C n > ,5*4"- 3 * , ,, = 2,4,6,...; (2) 
A:=0 

[n/3] 

(b) S ^ ^ F ^ l + X C - O ' Q . S M ^ , ^ 1 , 3 , 5 , . . . ; (3) 
k=0 

[n/3] 

(c) A,=-1+Z(- 1 )*C I I ^2- 3 * , /i = l,2,3,.„. (4) 

SOLUTIONS 
An Odd Problem 

H-536 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 36, no. 1, February 1998) 

Given an odd prime/?, integers n and r with n > 1, let m = 2[^n) — 1, 

°n,r,p Z-J rn h. > n,r,p Z=a ™ ' h-
k=\ K k=\ K 

Prove the following congruences: 
ppp A - F ^ F M + F 

(a) £ , . , * ' " rop+r ," "P+r"r (modp); 

pPT _ J7PJ + J 
(b) 7 ^ ^ n mp+r ^ - ^ r- (modp). 

Solution by the proposer 
Proof: We begin with the following identity: 

Fnam = Fma"-\. (*) 

We may verify (*) by dealing with the cases n even or n odd separately, then expanding the Binet 
formulas. A similar identity holds with the a's replaced by /?'s. 

Raising each side of (*) to the power/?, we obtain: 

FPof* = F£oP'-l + i ; ^ - ^ ^ 
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For 1< k < / ? - ! , 

Then, multiplying throughout by ar, we obtain: 
/?— 1 nk+r 

FPa™P+r _ FPanp+r + ^ r E ^ ^ 0 _ ( m o ( j ^ 

Note that the quantities "! /£" are the uniquely determined inverses k~l (mod/?2); upon division 
throughout by p, these become the uniquely determined inverses k~l (mod p). A similar con-
gruence holds with the a's replaced by /?'s. Subtracting these two congruences and dividing 
throughout by p«j5 yields the result in (a). Adding these two congruences and dividing through-
out hyp yields (b). 

Note: Using these results, it may be shown that a necessary and sufficient condition for 
Z{p2) = Z{p) is that 

k=\ K 

Also solved by H.-J. Seiffert 

A Recurrent Theme 

H-537 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 36, no. 1, February 1998) 

Let (wn) be any sequence satisfying the recurrence 

Let e = w0w2 - wf and assume e * 0 and Q ̂  0. 
Computer experiments suggest the following formula, where k is an integer larger than 1: 

"ta = 4ric*wf?l(-i)X*ft, 
e ;=o V / 

where 

^=z(*;2)(H2-'oy<2-Vy 

Prove or disprove this conjecture. 

Solution by Paul S. Bruckman, Berkeley, CA 
We may express the wn's in terms of the "fundamental" sequence {(/>„), defined as follows: 

4, = («"-v") / (a-v) , (1) 
where 

u = y2(p+0i v = y2(p-0), e=(P2-4Q)l/i. (2) 
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Note that w + v = P, u-v-6^ and uv = Q. Also note that the ^w's satisfy the same recurrence 
relation as the wn9s, but have the initial values: 

^o = °> 01 = 1. (3) 
Also, ^_1 = -1 / g , ^2 = P. The formula for ww is then as follows: 

Wn=WA-Q*o4n-V (4) 
We proceed to obtain closed form expressions for the indicated sums. First, we obtain a closed 
formula for the ct 's, substituting the expressions in (4): 

Ci = ff~i(uWi _ ̂ y -^f^QXwo^-^-o^o i*y 

7=0 

= 6r\uwl - Qw0)ii'\wx - vw0f-2 - erXvw, - Qw^'\wx - uw0f~2 

or 
ci = r V (wx - vw0)k-1 - 0~lvi(wl - wwo)*"1. (5) 

Next, let 
k 

Note that this last expression differs from the sum given in the statement of the problem (with the 
roles of wn and wn+l interchanged). Substituting the expression in (5) yields: 

Sn,k = P't *QK)*-'(-"W,y («*~>i - vwo)*"1 - vk-'(w, - uwrf-1} 

or 
sn,k = r'^-^fK-^f-r'^-^fK-^,)4. (6) 

The problem (as corrected) asks us to verify or refute the relation 

^ = ^ H n - (7) 
Next, we employ the following relations [easily verified from the preceding relations, including 
(4)]: 

Wn - Wn+l = (^0 ~ WlV', (8) 
w» - w„+1 = (vw0 - wx)un. (9) 

It is also easily verified that 
(uw0 - Wi)(vw0 - Wj) = -e. (10) 

Putting these facts together, we obtain (after simplification): 

S„, k = 0 "V, - vwtf-\uwH - w„+1)k - 6r\wx - uw0)k-\vw„ - w„+lf 

= ek-\w4kn - g u ^ - i ) = ek-\n- Q- E.D. 
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Thus, there is a typographical error in the statement of the problem; the result is true only if the 
quantities wn and wn+l occurring in the first sum given are interchanged. 
Also solved by H.-J. Seiffert 

An Elementary Result 

H-538 Proposed by Paul S. Bruckrnan, Highwood, IL 
(Vol 36, no. 1, February 1998) 

Define the sequence of integers (Bk)k>0 by the generating function: 

(l-xy\l + xyi = Y,Bk&^, \x\<l (see[l]). 
k>0 Kl 

Show that 

YBk-^r
 l ^ , = ^ r - T » o g 2 ^ where i# = l + V2. 

p?0
 k (2*+ 2)! 8 4 B ' 

Reference 
1. P. S. Bruckrnan. "An Interesting Sequence of Numbers Derived from Various Generating 

Functions." The Fibonacci Quarterly 10.2 (1972):169-81. 
Solution by the proposer 

In [1], it is shown that 

tan"1 x • (1 - x2ym = £ Bf X 

**> *(2* + l)!' 
The following result is Elementary Problem E3140, Part (b)(ii), proposed by Khristo Boyadzhiev 
in The American Math Monthly 93.3 (1986):216: 

\\m-xx-{\-x2)-V2dx = 7T2 l%-\\og2u. 

(The notation is modified to conform to our own.) The result follows immediately, by integrating 
the series given in [1] term by term and evaluating it at the integral's limits. 

Beta Version 
H-539 Proposed by H.-J. Seiffert, Berlin, Germany 

(Vol 36, no. 2, May 1998) 

Let Hm(p) = fjB^PymGN,p>0, 

where 

denotes the Beta function. Show that for all positive reals/? and all positive integers n, 

±(-lf-i(n)H2k(p) = 4"+r-iB(n + p,n + p-l) + — ^ . (1) 
k=\ V J n-tp i 

From (1), deduce the identities 
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t^-'imyurj k=\ 
and 

Solution by the proposer 
Since 

I ( -^) / (?) = ̂ T-

B{ vp)=itu~2)i2{i - t)p~idt=2iyiv - ui^du> 

\-u> HJj>) = 2\ ^-{X-uy-'du, meN. 

it easily follows that 

r0 \-U 

If S„(p) denotes the left side of the stated identity (1), then, by the Binomial theorem, 

fV « 
S„(P) = 2 ( l - I f 2 ) ^ 1 

du 

k{ n \„2k 

v * / # 

Vi-^-'^.^f. ^ o - ^ - 1 
tfw = 2 ( l - » 0 " '—du 

\-U Jo 1-H 
or 

Substituting w = 1 - 2v yields 

^»=j o
I o-«r' - 2 ( i+i ir^ i di i . 

-S„(p) = 4"+p-x\V2vn+p-2(\-v)"+p-xdv. 

Integrating (4) by parts, we find 

-SJp) = - + 4"+p-1 f'2 vn+p-l(l - v)n+p-2dv. 
2 " n + p-l }o 

Replacing v by 1 - v in the latter integral, we get 

1 
itf)- ^ — + 4«+p-i f' v»+P-2(\ - v)n+p-]dv. 

- 1 Jl/2 k ' 

(2) 

(3) 

(4) 

(5) 

Now, the desired identity (1) follows by adding (4) and (5). 
Interestingly, (2) and (3) will follow from (1), simultaneously, when taking p = l/2. Since, 

as is well known, 

'i"HH»"w--"H)-7/(^'^-
we have 

*_1 1 (lA . •& 4r l(2r ^-l'H^W^'l^)%rnr 
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Each of the equations 

S^)-^)-*--|f^H^H4-*-
can be proved by a simple induction argument. Hence. 

'O 2k(2k\_t JAkl(2k 

Using 
^m-yitMvi*!-1!-*'* 

D, , 1 M 2;r 
5 « + — ,w 

In (2n-2\ 
2 ' " 2 j 42n~ 

and observing that ;r is an irrational number, from (1) with p = 1 / 2, we find the two equations 

!<-^f(zX*)-4M-"2) (6) 
and 

i^I'M")-1)^ (7) 
Obviously, (2) is equivalent to (6). Dividing (7) by 2 and adding 

l(-r(j)=i 
to both sides of the resulting equation gives (3). 

With p = l, identity (1), after dividing by 2, gives 

U W • " (2w)» 2*' 
where i/^ = /^ ( l ) 12- ZJ=1 1 / / is the rrfi" harmonic number. This equation (including a general-
ization in another direction) was obtained in [1]. 
Reference 
1. L. C. Hsu & H. Kappus. Problem B-818. The Fibonacci Quarterly 35.3 (1997):280-81. 
Also solved by P. Bruckman and partially by A. Stam. 
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