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1. AIM OF THE PAPER

Here we extend a result established by Rabinowitz [6] by considering the fifth-degree polyno-
mials of the so-called Bring-Jerrard form g(x, b, k) := x° + h*x —k, where h is either 1 or a prime,
and k is an integer. More precisely, the principal aim of the paper is to find necessary and suffi-
cient conditions on & for q(x, h, k) to factor over Z.

Since g(x, h, k) factors trivially as

X’ £ h*x —(m’ £h*m) = (x—m)(x* +mx’ +m*x* +m’x +m* +h*) (1.1)
if k =m’ +h*m (m €Z), we are concerned with the factorizations of q(x, h, k) that have the form
q(x, h k)= (x* +ax+b)(x* —ax* +cx+d) (a,b,c,d €7). (12)

The case 4 =1 has been solved brilliantly by Rabinowitz in [6] (see also [3] and [9]), where
he shows that g(x, 1, k) has the factorization (1.2) iff ¥ assumes some special values depending on
square Fibonacci numbers. In the more general situation (7 a prime), certain properties of the
Fibonacci (and generalized Fibonacci) numbers play a crucial role as well.

After observing that changing the sign of & implies nothing but the sign change of @ and d in -
(1.2), we can assume that & >1 without loss of generality. Consequently, we shall confine our-
selves to studying the factorization (1.2) of the polynomials

{r(x, p.k)=x-p’x—k,

k =1, p a prime). 1.3
s(x, p,k)=x>+p*x—k, ( p @ prime) (1.3)

As will be shown in the sequel, it is necessary to distinguish three cases depending on
whether the prime p is either 5, or has the form 5j+2, or the form 5j+1. Our approach to this
problem will follow [3] and Rabinowitz' argumentation but, to render the paper self-contained, the
proofs will be given in full detail. For the sake of completeness, the most significant factorizations
will be explicitly shown. A brief discussion on the factorization of r(x, p, k) for certain special
primes p concludes our study.

It must be noted that some questions remain unsettled that are related to well-known open
problems in number theory. Namely, they concern the existence of infinitely many prime Fibo- -
nacci numbers, the occurrence of perfect squares in terms of Fibonacci-like sequences, and the
solution of a special Pell equation.

A preliminary version of this paper has been presented by the first author at the XIV Oster-
reichischer Mathematikerkongress [4].
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THE FACTORIZATION OF x° + pzx —k AND FIBONACCI NUMBERS

2. PRELIMINARY RESULTS

Given the factorization (1.2), by equating the coefficients of like powers of x we obtain the
system
b+c—a’=0,
a(b-c)-d =0,
ad +bc = +p?,
bd = -k,

2.1)

whence, by using the first two equations to eliminate a and d, we obtain the two equations

{bz +bc—c? = +p?,

b*(b-c)*(b+c)=k>. @2)

Equations (2.2) show that the couple (b, c) must be chosen among the couples that represent
+p? by means of the quadratic form Q(b,c) = b2 +bc—c?, subject to the condition that b+cis a
perfect square. Hence, finding the solutions of the quadratic equation Q(b,c) = £p? is clearly a
necessary step to solve our problem. From Gauss's general theory of the quadratic forms, it is
known (e.g., see [5]) that there is a finite number of classes of solutions. Each class consists of an
infinitude of solutions which are referred to as associated solutions, and is characterized by a
single solution called the fundamental solution. The classification of the solutions of Q(b,¢c) =M
is given by Dodd in [2]. It depends on the peculiar properties of Z(), the ring of integers in the
quadratic field Q(a) which is the extension of the rational field Q by means of the golden section
a=(1++/5)/2. Recall that Z(c) is a unique factorization domain.

Every solution (x,, y,) of Q(b, ¢) = M, associated to a given fundamental solution (x,, y,), is
obtained as

X, + ay, = a¥(xy+ay,). 2.3)

Equivalently, we can say that both the sequences {x,} and {y,} are generalized Fibonacci
sequences obeying the second-order recurrence
G,=G, +G,,, 2.4

with suitable initial conditions G, and G;. The number of classes of solutions is obtained as a con-
sequence of Theorem 3.12 and Corollary 3.13 of [2] that we quote as a single theorem for ease of
reference.

Theorem 1 (Dodd): The quadratic equation x2 +xy — y* = M is solvable in Z iff
M =+5pHi...p2fegfi...q% (1, f,, g nonnegative integers),
where p,=5j+2 (1<i<s) and ¢;=5j+1 (1<i<r) are primes. The number of fundamental
solutions is given by the product (g; +1)(g, +1):--(g, +1).
Consequently, for our special case M = +p? [see (2.2)], we can summarize the above results
as follows.
(i) If p=5or5j+2, then there is a unique fundamental solution

(%9, Yo) = {(p’ 0) if M= p?,

0, p) ifM=—p @3)
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(i) If p=5j+1, then there are three fundamental solutions, one of which is given by (2.5). The
additional solutions (x§", y§) and (x{?, y{?) can be derived from a solution (u,, v,) of the Pell
equation #?> —5v2 = p. Namely, we have

{x(()l) = uf = e, + 5V, {x(()z) = U +2ugvy + 53, if M = p?; (2.6)

1 ) 2
X5 = dugvy; 5 = ~4ugv,,

{x(()l) = duyy,, {x32> = —duyy,, £ = —p? @

A =+ 2 53, D = o 20+ 5,

Apparently, there is no direct technique for solving the Pell equation #? —5v2 = p; the best
known method (see [5], p. 206) is to check every u lying within the interval [\/p +5, \/5p].

3. THE FACTORIZATION OF r(x, p, k) WHEN p=5j+2
We state the following theorem.

Theorem 2: If p=5j+2, then the polynomial 7(x, p, k) given by (1.3) factors as (1.2) iff

_ |2, and k=96 or 11424, 31
P =13, and k =27 or 2808, G.1)

Proof: The system (2.2) becomes

{bc+b2 -t =-p?,

B2 (b - c)*(b+c) = k2. G.2)

Since the couple (0, p) is the fundamental solution [see (2.5)] of Q(b,c) = —p?, from (2.3)
we know that all the solutions are given by

(b’ C) = i(p‘FZn’ pEnH) (n € Z)a (33)

where F, is the n' Fibonacci number. We recall that F_, = (-1)""'F,.
From (3.3) and the second equation of (3.2), we see that

k* = P41:22r,52;1—1(iP172n+2) ) (3.4

where the minus sign in the last factor must occur iff n <—1. From (3.4), it is plain that, for kto
be an integer, pF,,,, must be a perfect square. In turn, this implies that we must have

By = PV (3.5

For p=2, Theorem 4 of [1] tells us that the only nonzero solution to (3.5) is F; =2-2? [i.e,
y=2andn=2 in (3.5)]. Consequently, letting n=p =2 in (3.4) yields

k= J16F?FX(2F;) = 96. (3.6)
Further, letting 7 = —4 in (3.4) (so that the last factor therein becomes —2F ) yields
k= JI6F%3F%(-2F ) =11424. 3.7

292 [NOV.
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For p >3, Theorem 1 of [8] tells us that the unique solution to (3.5) is F; =3-12 [i.e., p=3,
y=1 andn=1in (3.5)]. Hence, letting p=3 and n=1 in (3.4) yields

k = 81F2F*(3F,) =27. (3.8)
Further, letting 7» = -3 in (3.4) (so that the last factor therein becomes —3F,) yields

k= [BIFZF%(-3F.,) =2808. QED. (3.9)

By using (1.2), (2.1), and (3.3), the factorizations of r(x, 2, k) and r(x, 3, k) for the above
values of k are readily obtained. Namely, we get

x5 —4x —96 = (x* + 4x + 6)(x3 — 4x? +10x — 16), (3.10)
x> —4x —11424 = (x? — 4x + 42)(x3 +4x2 - 26x - 272), 3.11)
X5 —9x—27 = (x2 +3x + 3)(¢* — 3x% +6x—9), (.12)
x° —9x—2808 = (x% —3x +24)(x* +3x2 - 15x - 117). (3.13)

4. THE FACTORIZATION OF s(x, p, k) WHEN p=5j+2

We state the following theorem.

Theorem 3: If p=5j+2, then the polynomial s(x, p, k) given by (1.3) factors as (1.2) iff

3
p=F,,,, is a prime Fibonacci number, and k£ = {p Fyprbona, “.1

P’Fypabonis.
Remark 1: For F,,,, to be a prime, 2n+1 must necessarily be a prime. The question of whether
there exist infinitely many prime Fibonacci numbers is still unsolved ([7], p. 226).
Proof: The system (2.2) becomes
{bc+b2 -c?=p?,

b2 (b—c)*(b+c) = k2. (42)

Since the couple (p, 0) is the fundamental solution [see (2.5)] of Q(b, ¢) = p?, from (2.3) we
know that all the solutions are given by

®,¢) =H(ph,1, PR,) (ned). (43)
From (4.3) and the second equation of (4.2), we see that
k= p*F, \Ff y(PFyni) 4.4

where one can observe the absence of the minus sign in the last factor which is due to the fact that
the odd-subscripted Fibonacci numbers are always positive. From (4.4), it is plain that, for & to be
an integer, pF,,,, must be a perfect square. In turn, this implies that we must have

Fopn = pyZ- 4.5)

Theorem 2 of [8] ensures us that, if p=5;j+2, then all the solutions to (4.5) are given
(trivially) by

Fyu=p-1. (4.6)
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From (4.6), expression (4.4) becomes
k= p°F} \F3 o, (4.7)
whence one immediately gets the first equality of (4.1). Since F.,,.;) = F3,;, We can replace »
by —(+1) in (4.4), thus getting [see (4.6)]
k 2= p 41?_22,,_3]:_22,,_4@}:2,“.1) = p6‘F22n+3F‘22n+4a (48)
whence the second equality of (4.1) is readily obtained. Q.E.D.

In the first and second cases of (4.1), the factorizations (1.2) of s(x, p, k) have the sets of
coefficients

a:p:En+1a a=-p,
b= p‘Fén—l’ b = pp;n+3’

and 4.9
c:pI?Zm c= _pF‘2n+2’ ( )
d= _Pzen-z, d= _pz‘F;n-M’

respectively. As a numerical example, the factorizations of s(x, 13, k) [7=3 in (4.1)] are shown
below. Namely, we have [cf. (4.9)]:

x° +169x — 32955 = (x? +13x + 65)(x> — 13x2 +104x — 507), (4.10)
x° +169x — 4108390 = (x2 — 13x +442)(x> +13x% — 273x — 9295) . (4.11)

Remark 2: The case p=35is exceptional because 5 occurs in the definition of the quadratic
extension ring Z(«), but according to Theorem 1, it can be treated as the primes of the form
5j+2. Equation Q(b,c) =5 has only one fundamental solution, and, according to the above
discussion, we get the only possible factorizations:

X3 +25% —250 = (x% + 5x +10)(x® — 5x% +15x — 25), (4.12) ,

x° +25x — 34125 = (x? — 5x + 65)(x® + 5x2 — 40x — 525). (4.13)

5. THE FACTORIZATION OF r(x, p, k) WHEN p=5j+*1

From Theorem 1, we know that, if p =5/ +1, then the equation Q(b, c) = —p? has the three
fundamental solutions

H(pFap, PFypar);
0, 0) = (4, A1), MEL ' (.1
+(Byy> Brnsa)s
where the generalized Fibonacci sequences {4,} and {B,} obey the recurrence (2.4) with initial
conditions [ 4, = x{°; 4, = y§] and [ B, = x{?; B, = y{?] that can be obtained from (2.7).
We now state the following theorem.

Theorem 4: If p=5j+1, then the polynomial r(x, p, k) given by (1.3) factors as (1.2) iff 4,,
and/or B,, are perfect squares for some 7.

Proof: On the basis of the previously used arguments [see (3.2)-(3.4)], from (5.1) it is clear
that we must have
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P F (£PF3,.0),
k* = A22n 2n—l(i‘42n+2)’ nel (5~2)
B22nB22n—l(iB2n+2)a

The equation +F, ,, = py? [cf. (3.5)] has no solutions by virtue of Theorem 1 of [8]. There-
fore, the only possibilities for k to be an integer are that 4,,,, and/or B,,,, are perfect squares for
some n. QE.D.

As a numerical example, let us find values of & for which r(x,11, k) factors as (1.2). If
p =11, then (u4y, vy) = (4,1) is a solution of the Pell equation at point (ii) of Section 2, so that
expressions (2.7) give the initial conditions [ 4, =16; 4, =29] and [B, = -16; B, =13]. From (5.2)
and the argument in the proof of Theorem 4 (namely, Theorem 1 of [8]), we have
. {Aanzzn_l(iAZnﬂ) (the minus sign when n < -3),

~ |B2,B2,_,(+B,,,,) (the minus sign when n < 0).

(5.3)

For n=-1, we have that 4,,,, = 4,=16 is a perfect square. Letting n=—11in the first
equation of (5.3) yields
k=A,A44/4, =3-10-4=120. (5.4

For the same value of n, we see that B,,,, = B, =—16. Letting n=-11in the second equation of
(5.3) and choosing the proper signs yields

k =-B,B ,[-B, = 45-74-4=13320. (5.5)

Remark 3: The occurrence of further even-subscripted terms of {4,} and/or {B,} that are per-
fect squares would allow us to find further values of & for which r(x, 11, k) factors as (1.2).

The factorizations of r(x, 11, k) for the values of & given by (5.4) and (5.5) are

x° —121x— 120 = (x2 +4x +3)(x* — 4x? +13x — 40) (5.6)
and
x° ~121x~13320 = (x2 — 4x +45)(x3 + 4x% — 29x — 296), 5.7

respectively.

6. THE FACTORIZATION OF s(x, p, k) WHEN p=5j+1

From Theorem 1, we know that, if p =5j+1, then the equation Q(b, ¢) = p? has the three
fundamental solutions

i(p]:én—b pFén)’
(b) C) = i-(A'Zn’ A2n+1)’ ne Z7 (6 1)
i(BZrn B2n+1)’

where the initial conditions for {4,} and {B,} can be obtained from (2.6).
Now, let us state the following theorem.

Theorem 5: If p=5j+1, then the polynomial s(x, p, k) given by (1.3) factors as (1.2) iff either
(i) (4.1) is satisfied (with p=5j+1) or (ii) 4,,,, and/or B,,,, are perfect squares for some ».
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N.B. There is a unique exception to point (i). Namely, s(x, 3001, k) factors as (1.2) for
k =68586998444168435635 or k =8435643157247893914990.

After observing that, on the basis of previously used arguments [see (4.2)-(4.4)], we must
have
p 4}22)1—- 2n—2(pEn+l)7
k2 = A22n A2n—1(iA2n+2)’ he Z> (62)
B22nB22n—l(iB2n+2)a
it is clear that the proofs of points (i) and (ii) are similar to those of Theorems 3 and 4, respec-
tively. Therefore, we shall confine ourselves to proving the exception to point (i) mentioned in
the N.B. above.

As an example of application of the last two equations of (6.2), we invite the reader to prove
that s(x, 19, k) factors as (1.2) for k£ = 765 or 26390 or 37704147.

Hint: After assuming that (u,, v,) = (12, 5) is a solution to #?—5v2 =19, use (2.6) to find
[4, =149, 4, = 240] and [B, =389, B, = -240], and observe that 4 , = B, =25 and B,;,=2809
are perfect squares.

Proof of the Exception to Point (i): Theorem 2 of [8] tells us that the unique exception to
(4.6) occurs when n=12, p=3001, and y =5 in (4.5). If we let these values of » and p in the
first equation of (6.2), then we get k* = p*FAF3(pF,s) (p=3001), whence

k =30012F,;F,,,[3001F,; = 68586998444168435635. (6.3)

Further, letting 7=-13 and p=3001 in the same equation yields k* = p*F%,F54(pF ,5)
(p =3001), whence

k = 30012 F,, F,,[3001F,, = 8435643157247893914990. Q.E.D. (6.4)
The factorizations of s(x, 3001, k) for the values of k given by (6.3) and (6.4) are:
x> +9006001x — 68586998444168435635

= (x% +15005x +85999657)(x* — 15005x? +139150368x — 797526418555), (65)
and
x° +9006001x —8435643157247893914990
= (¥ ~15005x +589450418)(x* +15005x” —364300393x ~14311030919055)  (¢.6)
respectively.

7. CONCLUSIONS

First, we wish to point out that the technique used in Sections 3-6 allows us to obtain the fac-
torization of fifth-degree polynomials that are similar to those considered in this paper. In every
case, Fibonacci and Fibonacci-like sequences play a fundamental role, and suggest the existence of
an even deeper connection between these sequences and the factorization of fifth-degree polyno-
mials. For example, it is not hard to prove that if
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R,
k ={12n°"FF,,, (7.1)
120" F Fs,

then the polynomials x° —n*"x—k (n,m eN) factor as (1.2) (for n=1, cf. (3.8) of [3]). The
proof of (7.1) is based on the well-known fact [1] that F,; is a perfect square iff j=0,1, or 6.
Further, the interested reader might enjoy using the above technique for proving that, if

k= F,'3Fji2Fj-_+3, (7.2)

then the polynomials x° — (-1) szx — k factor as (1.2).

Then, let us conclude our study by considering a special class of primes p such that a couple
(k, k,) of values of k for which r(x, p, k) factors as (1.2) can be expressed merely in terms of p.
Namely, consider the set of all primes p such that p+5=z* is a fourth power. Since z must be an
even integer not divisible by 5, it can be readily proven that p has the form 57 +1. It is likely that
there exist an infinitude of primes belonging to the above defined set. We found 15 of them
within the interval [2, 10°®], the smallest (resp. largest) being 11 (resp. 78074891).

Theorem 6: 1If p >251 is a prime such that

p+5=2* (7.3)
is a fourth power, and

ky,, = 4(p+5)"*[p* +44p£10(p +5)"*(p+10) +220], (7.4)
then both r(x, p, k,) and r(x, p, k,) factor as (1.2).
Remark 4: For p=11, see (5.4) and (5.5).

Proof (for k=k,): A solution to the Pell equation at point (ii) of Section 2 is clearly
(u,v) =(z%,1). Hence, from the first system of (2.7), we have

x{V = 4, =4z* (a perfect square), 7.5)
Y0 = 4 =24 +222 +5, '
and, from (5.2),
k2 = A22nA22n—1A2n+2‘ (76)
Letting 7 =—1in (7.6) yields
k% = A%, A% A4, = A% A%42%  [from (7.5)]. (7.7
On calculation, we get
A, =-2"+62*-5 (71.8)
A5 =224 -822 +10. '

From (7.7) and (7.8) above, on choosing the signs properly to ensure the positiveness of %,
one gets

P {22(24 - 62% +5)(2z* -8z +10) forz >4, (7.9)

|22(=z* + 622 - 5)(2z* 822 +10) =120 forz=2 (i.e., p=11).
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For z >4 (i.e., p>251), from (7.9) and (7.3), we othain
k=k,=4(p+5)""[p* +44p-10(p+5)"*(p+10) +220]

as desired. By using the second system of (2.7), the proof for k¥ = &, can be obtained in a similar
way. Q.E.D.

The factorizations (1.2) of r(x, p, k) have the sets of coefficients

(1=—2(p+5)1/4, a=—2(p+5)”4,

- 172 - V2 _

b=p+6(p+5) 1/;1—10, and b= p+6(p+532 10, (7.10)
c=—-p-2(p+5)'*-10, c=p-2(p+5)"“+10,

d=-k/b, d=-k/b,

for k =k, and k,, respectively. As a numerical example, the factorizations of r(x, 1291, k, ,) are
shown below. Namely, we have [cf. (7.10)]

x° —1291%x — 52609560 = (x? — 12x +1517)(x® + 12x2 — 1373x — 34680), (7.11D)
x°—1291%x ~30128280 = (x? ~ 12x — 1085)(x° +12x2 ~1229x +27768). (7.12)
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GENERALIZED FIBONACCI NUMBERS

M. A. Nyblom

Department of Mathematics, Royal Melbourne Institute of Technology
GPO Box 2476V, Melbourne, Victoria 3001, Australia
(Submitted November 1997-Final Revision June 1998)

1. INTRODUCTION

There are many rational termed convergent series in analysis that sum to an irrational number.
One well-known example can be found via the Taylor expansion of the exponential function,
where in particular the base of the natural logarithm is represented as an infinite sum of the
reciprocals of n!. The irrationality of e can be deduced directly from this series via an argument of
Euler's (see [2]). In recent times, a number of authors [3], [4] have noted that other irrational
valued series may be constructed by replacing #! in the series for e by the product wyv, ...v,, where
{v,} is a strictly monotone increasing sequence of positive integers. However, in such cases, one
needed to impose the additional assumption that n|wy,...v, for each n. In this paper we shall
demonstrate that irrational valued series may similarly be constructed from the terms of a general-
ized Fibonacci sequence, which are generated via the recurrence relation

Un = PUn—l - QUn-—Z’
where P,Q €Z with |P|>1, |Q|=1, and U;=0, U, =1. The goal here is to establish the most
general result possible by focusing attention on the following factorial-like expression
In)=UUpy Uy, 1(n)>

where k£ e N\{0} and f:N — N is an arbitrary strictly monotone increasing function. Such an
expression will naturally reduce to the type -of products considered above when k=1 and
f(m)=n—-1. One advantage in dealing with the sequence {U,} is that we no longer need to
impose the previous divisibility assumption, as this can be avoided by exploiting a fundamental
property of generalized Fibonacci sequences that concerns the occurrence of a given prime factor
in the sequence {U,}. Unfortunately, the application of this property together with the argument
used will require us to restrict the values of the ordered pairs (P, Q) to those prescribed above.
To prove the desired result, we will employ here (as in [3]) an argument similar to that used by
Euler in establishing the irrationality of e. However, before reaching this point, it will be neces-
sary in Section 2 to acquaint ourselves with a few preliminary results, beginning with the afore-
mentioned property of generalized Fibonacci sequences.

2. MAIN RESULT

In establishing the irrationality of the series in question, we shall need to invoke within our
argument the following technical result: For any given m € N\ {0}, there exists a positive integer
N(m) >0 such that m|I(n) whenever n> N(m). This result, which holds irrespectively of the
choice of ¥ and f(n), can be deduced directly from a divisibility property of generalized Fibonacci
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sequences. In order to state this property succinctly, we shall employ a number-theoretic function
A,,(n) as introduced in [1], which is defined below.

Let s and r +s be the roots of any quadratic equation of the form x? —ux +v =0, where u
and v are integers. Noting by the Symmetric Function Theorem that (» —s)”~! is an integer for an
odd prime p, define the symbol (%) by the congruence

5, S) mod p,

(r-s)! E( >

where it is understood that (%) is the residue of least absolute value; whence (%) =0, +1, or —1
according as (r —s)?! is divisible by p, is a quadratic residue of p, or is a quadratic non-residue of
p. Inthe case p =2, the symbol (5°) is defined by:

1 if rs is even,

(r—’zf) =40 if rsis odd and » + s is even,
-1 if rs and 7 + s are both odd.

Now, if n=p{"'p;? - pi*, where p, p,,..., p, are the different prime factors of », define the
functional value of A,,(n) as the least common multiple of the numbers

p:"“‘[p,- —(f;s-)] i=12,.k.

The important divisibility property that appeared as Theorem XIII in [1] can now be stated as
follows.

Theorem 2.1: Suppose {U,} is a generalized Fibonacci sequence generated with respect to the
relatively prime pair (P, Q). If the number n= p py?--- p*, where p,, p,, ..., p, are the differ-
ent prime factors of n, is relatively prime to rs=Q and if 1 = 4,,(n), then U, =0 mod n.

It is clear from Theorem 2.1, when {U,} is generated with respect to the relatively prime pair
(P, Q) with |Q|=1, that given any m € N\ {0} the sequence contains an element divisible by m.
This fact does not allow us automatically to deduce the above technical result, since the product
I(n) in certain cases may never contain the term U, [i.e., when Ap(m) <k]. To deal with situa-

tions such as these, observe first from the above definition of 4, that

_ r,s
Agn) = p ‘[pf—(—

> paYp 11> p&l.
P,-)] pip-1zp

Now, if given any positive integer ¢ that contains a prime factor p, >k with o, >2, then
A(tm) > p%'>p >k. So, provided that (tm, Q) =1, the product /(n) will contain, for n large,
a term divisible by #m, namely ; ). Thus, we can guarantee in the present case, as |Q|=1, that
I(n) is divisible by m for suitably chosen #. Indeed, if one formally sets

t(m) = min {t € N\ {0} : 1 5(tm) > k},
then it is clear that m|I(n) for n > N(m), where

N(m) = min{n eN\{0} | £(n)+k > A (t(m)m)}.
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Having established the required divisibility property of /(#), we now need only introduce two
further preliminary results before reaching the main theorem of this section. Both of these results
will be used throughout the main argument of Theorem 2.2.

Lemma 2.1: Suppose f:N — N is a strictly monotone increasing function, then for all », m N,
we have f(m+r)—f(m)=r.

Proof: Due to the strict monotonicity of f, it is clear that f(m+i)— f(m+i—1)>1 for
i=12,...,r. Adding these r inequalities together and noting that the left-hand side is a tele-
scoping sum equal to f(m+r)— f(r), one deduces the desired inequality. [

Lemma 2.2: Suppose {U,} is a generalized Fibonacci sequence generated with respect to the
relatively prime pair (P, 0), where |P|>1 and |Q|=1. Then the terms |U,| form a strictly mono-
tone increasing sequence of integers.

Proof: We argue using induction. Clearly |U,|—|U,|=|P|-1>0. Now suppose the result
holds for an integer n=m>1, that is, (U, |>|U,,_;|. Now, by an application of the reverse tri-
angle inequality, observe that

|Um+1|_|Uml=|PUm_QUm-—1|—|Um[
2|P|Uy = Uyt | = U, |
=(P|=-DIU,|-1U,41>0,

noting here that the final inequality follows from the inductive assumption and the fact that
|P| — 1> 1. Consequently, the result holds for n=m+1. O

Remark 2.1: With the above restrictions placed on the values of the ordered pairs (P, (), it is
clear from Lemma 2.2 that /(#) #0 for n>1. Thus, the terms of the series in question are well
defined.

Theorem 2.2: Let {a,} be a bounded sequence of integers with the property that a, #0 for
infinitely many n. Suppose further that {U,} is a generalized Fibonacci sequence generated with
respect to the relatively prime pair (P, 0), where |P| >1and |Q| =1. If /() =U U,y ... Upspnys
where £k e N\{0} and f:N — N is a strictly monotone increasing function, then the resulting
series 2., a,/ I(n) converges to an irrational sum.

Proof: We first establish convergence of the series. Observe that by setting » =n—1 for
neN\{0} and m=1in Lemma 2.1, we have f(n) 2n—1+ f(1) 2n—-1. If k #1, then each of
the f(n)+1 terms in the product [I(n)| are by Lemma 2.2 greater than or equal to |U,| = |P]|.
Thus, |I(n)| = |P/"* > |P[, while, if k =1we have |I(n)| = U, 1U3] Uy pmy | 2 |PYP® >
|PP'. In any case, we have |a,|/|I(n)| < D/|P["", where D is the upper bound for {a,};
consequently, the series is absolutely convergent.

Suppose now, to the contrary, that the sum of the series is a rational number given by 4/B,
where 4, B €Z with B#0. By the above technical result, there exists an N(|B|) >0, with
B|I(m) whenever m> N(|B|). Choose m> N(|B|) such that D+1< |U, +7(my+1| and consider
the following equality,
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— _ I(m)
a,——+=C. 1
T 2 ) o
Since by definition /(n)|I(m) for n<m, it is clear that C € Z. We now determine upper and
lower bounds for |C|. First, note that the modulus of I(m)/I(n) for n>m+1in the series on the
right of (1) is given by

I(m)—~1(m)z

I(m) |_ 1
‘ I(m +r) - (IUk+f(m)+1 e Uk+f(m+r) I) >
where r =1,2,.... Now, by Lemma 2.2, each of the f(m+7)— f(m) terms in the denominator of
the above expression are in modulus greater than or equal to Uy, (.1, so by Lemma 2.1,
lUk+f(m)+1 o Uk+f(m+r) I 2 lUk+f(m)+1 If(m+r)_f(m) 2 |Uk+f(m)+1 |r . (2)
Hence, using the triangle inequality and (2), we have
N I(m) _I(m)
Cl = <
€] ;"'"" I(m+r) Z I(m+r)

i D <1,

r=1 ’Uk+f(m)+1 | IUk+f(m)+1 I -1
noting here that the last inequality follows from our initial choice of m. To obtain a lower bound
for |C| set p=min{n > m+1:a,# 0} so |a,| > . Then, by an application of the triangle and
reverse triangle inequality, observe that

AN I(m) I(m| |5 1(m)
€= 2 ey | 2| 1600 | ~ |2 Tper
I(m)| _<~ p|_L0m)
> |=—=| - ) D|l—/—"" =
‘ I(p) ; I(p+r)
Clearly, from the definition, p >m+1>m, thus, as in (2), we have for each r > 1,
I(p) |_ -
‘I_(-p:r—) = (ka+f(p)+1 "'Uk+f(p+r)l) !
1 1
< - < =
| Uk+f(p)+1 I lUk+f(m)+1 l
Consequently,
I(m) o I(p) I(m) - D
|C|2J=‘~———‘{1— D }2‘ 1-) ————
1(p) E I(p+r) I(p) §|Uk+f(m)+1|

_ Im)|), D
4 1(p) Hl [ 1} =

where again the last inequality follows from the initial choice of m. Therefore, we have produced
a C € Z such that 0< |C| < 1, this obvious contradiction implies that the original assumption is
false. Hence, the sum of the series in question is irrational. O
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Remark 2.2: Tt was noted in [1] that no simple analog of Theorem 2.1 exists for the sequence of
generalized Lucas numbers; thus, the above argument cannot readily be extended to establish a
similar result involving these number sequences.

We now consider a simple consequence of Theorem 2.2.
Corollary 2.1: The base of the natural logarithm e is a nonalgebraic number of degree two.
Proof: Suppose that there exist a,b, ¢ € Z with a # 0 such that ae? +be +c = 0; then
ae+cel =-b. 3)

Now set (P,0)=(2,1), k=1, and f(n)=n in Theorem 2.2. If a,=a+c(-1)"" we deduce, as
U, =n, that

i I az z 0™ =a(e-2)+ce’!
= 1(n) 1(n+1)' n+1)!
is an irrational number. Consequently, the number on the left of (3) is also irrational while the
number on the right is clearly rational. This obvious contradiction thus establishes the above
result. O

In view of Theorem.2.2, one may suspect that a similar result may hold for such factorial-like
expressions as 1(n) = Uy, - Uy, Where k €N and f:N-—>N\{0} is a strictly monotone
increasing function. At present, the author has been unable to supply an argument establishing, or
~a counterexample refuting, this conjecture. However, in the case of f(7)=2" and k =0, the
author has been able to verify the irrationality of the series sum by direct calculation. To conclude,
we now outline the derivation of the sum of these series.

Proposition 2.1: Suppose {U,} is a generalized Fibonacci sequence generated with respect to the
relatively prime pair (P, Q), where P >1, O =—1; then

i P2+4- PP+

- U 2P

S

Proof: Consider the following telescopmg sum

N

& 1
Z 2n+l —Z( » ]_xanJ

n—l1 X

1 1

T e

1-x* 1-x

If [x| > 1, then the above partial sums tend to a finite limit given by

5!
n+l T 2
n=1 l—xz 1._x

Now U, =(a" - ")/ (- ), where aand f3 are the roots of x*— Px—1=0. Consequently, as
aff =—1, we have, for |f]| > 1,

1 &1 e 1 & B 1
nzﬂ Uz,. ’;Z:] azn _ﬂzn nz=1 1———ﬂ2n+1 l—ﬂz
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By setting @ = (P—+P?+4)/2 and f=(P++P*+4)/2 in the above (noting that |@|<1 and
|#|>1) one obtains the desired sum. Note here that the irrationality of the series sum follows
from the presence of the term v/ P? +4, since P> +4 is never a perfect square for |P| >1. O
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NEW PROBLEM WEB SITE

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems
can now be searched electronically (at no charge) on the World Wide Web at

http://problems.math.umr.edu

Over 23,000 problems from 42 journals and 22 contests are referenced by the site,
which was developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for
the site was generously provided by the Department of Mathematics and Statistics at the
University of Mirrouri-Rolla, through Leon M. Hall, Chair.

Problem statements are included in most cases, along with proposers, solvers (whose
solutions were published), and other relevant bibliographic information. Difficulty and
subject matter vary widely; almost any mathematical topic can be found.

The site is being operated on a volunteer basis. Anyone who can donate journal issues
or their time is encouraged to do so. For further information, write to:

Mr. Mark Brown

Director of Operations, MathPro Press
P.O. Box 44024

Baltimore, MD 21236
bowron@mathpropress.com (e-mail)
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1. INTRODUCTION

The charming identity

k 13k
S0 A B = K B (L)

is a special case of identity (5) of Torretto and Fuchs [7]. Here [’,‘] is the Fibonomial coefficient
defined for integers 0< j <k by

[k]:FkEc—l"'Fk—j+1 [k]:l
J EF,..F, ~ [0]

According to H. W. Gould, generalized binomial coefficients were first suggested by Georges
Fontené in 1915, and were rediscovered by Morgan Ward in 1936. These writers simply replaced
the natural numbers by an arbitrary sequence {4,} of real or complex numbers. The idea of con-
sidering 4, = F,, seems to have originated with Dov Jarden in 1949. For an excellent discussion
on these matters, and a comprehensive list of references, see Gould [3].

For k£ =1,2, 3, and 4, identity (1.1) becomes, respectively,

B4R =Fy, (12)

F;13+2 +Fn3+1 - Fn3 =Ly, (1.3)

F;:H Nl 21;;:#-2 - ZF:H - Fn4 =2F 6 (1.4)
Fns+4 + 3Fns+3 - 6Fns+2 - 3}':111 +Fn5 =06F5, 10- (1.5)

To make the right sides of (1.3) and (1.5) more compact, we may replace 7 by n—1 and n—-2,
respectively.

In this paper we present analogs of (1.2)—(1.5) for the so-called Tribonacci and Tetranacci
sequences, which we define in Sections 3 and 4. We consider more general third- and fourth-order
sequences, and identities associated with them, in Section 5. Our method of discovering these
identities is outlinedin Section 2, and generalizations and proofs are given in Section 6.

2. THE METHOD

To demonstrate our method, we use it to "discover” identities (1.2) and (1.3). To arrive at
(1.2), we consider the sequence

{(FP=F F )o={-1,1,-11-1..}

This sequence satisfies the recurrence r, = —r,_,, and so we have
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n 2n+1

F}-FF,  =~F., -FF,,)
or

‘F;t2+Fn2—l:F E+EFE, 2.1)

n+l" n
Finally, we observe by trial that the right side of (2.1) is F,,_,, and this yields (1.2).

To obtain (1.3), we consider the sequence

{F’-F_FF, ) ={0,1,-12,-3,5-8,..}.

n+l

n—1>

This sequence satisfies the recurrence 7, = —7,_, +7,_,, so that

E? —-F . FF = —(Els—l -FF,_F, )+ (F n3—2 —F_F, . F, )
or
F: +Fn3—1 _F;?—Z = Fn+1‘FnFn—1 +FnFn—1Fn—2 _F;x—an—ZFn—S' (22)

Again, after making several substitutions, we see that the right side of (2.2) is F;, ;, and this
yields (1.3).

To obtain (1.4), we could consider the sequence generated by Fn4 ~-F, +1Fn2E,_1, or perhaps
F!-F, .FF, _F,,, ormany other such expressions. To decide which product to subtract, we
consider two things. First, the product must have "degree" four. Second, the sum of the sub-
scripts of the terms which make up the product must be 4n. To obtain the analogous identities

which involve higher powers, we proceed in a similar manner.

3. THE TRIBONACCI SEQUENCE

As a third-order analog of the Fibonacci sequence, Feinberg [2] considered the Tribonacci
sequence, defined for all integers by

Py=Ppat Pyt Pps Po=0p=1p=1
Proceeding as in Section 2, and with the help of the computer algebra package Mathematica 3.0,
we have obtained identities analogous to (1.2)—(1.5) for the Tribonacci sequence. We have found
the following:
p:+3 +p:+2 + Dot = P = 2P +3D201 + 3P20005 (3.1

3 3 3 3 3 3 3 3
pn+7 +3p,,+6 +7pn+5 +pn+4 _pn+3 _7pn+2 —3pn+l —pn (3 2)
=6758p,, +10432p, +12430p3n+2’ .

P:+12 + 4P:+11 + 16p:+10 - 26P:+9 ~5Ds — 128P:+7
+ 1OOP:+6 + 4P:+5 + 43P:+4 - 44P:+3 + 4P:+2 - 2P:+1 + P: (3.3)
=27720670104p,  +42792093864p, ., +50986261368p,,,.,,

p:+18 + 8p§+17 +5 9P3+16 - 126P:+15 - 154pr51+14 -275 8P3+13
+2142p),,, +2394p> | +6552p . ~7182p), —4284p> . —2394p>
+1386p,, +686p] s +322p.,, ~ 98D, s~ 9P, — 2D, + P, (3.4)
=1252886775213004795584 p,, +1934067549043522783296ps,,,
+2304418051432261675008p;, .
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We have found the next identity in this list. The left side has 26 sixth powers, and following
the pattern of the previous identities the coefficients are 1, 15, 204, 724, —1946, —58710, 65968,
182480, 921767, —1448495, 2215192, -2814392, 1090180, 2032604, 2528400, -9744, 25313,
—238687, —15828, 4372, 9814, 1786, 224, -32, -7, —1. On the right side, the coefficients of

Pén> Pensy» a0d P, are, respectively,
3211910334796649669373174107089155840,

4958190693577716567222696970358499840,
and 5907624137726959710208258726172348160.

We have been unable to discern a pattern to the coefficients in the identities above. How-
ever, on the basis of our results, we predict that the next identity will involve 34 seventh powers.
More generally, we conjecture that for £ >2 such identities for the Tribonacci sequence involve
(k% +3k—2) k* powers.

4. THE TETRANACCI SEQUENCE

As a fourth-order analog of the Fibonacci sequence, Feinberg [2] also considered the Tetra-
nacci sequence, defined for all integers by

qn = qn—l +qn—2 + qn—3 + qn—4’ qO = O’ ql = 1: q2 = 17 q3 =2.

In the same manner, for the Tetranacci sequence, we have found

Dovs + Dnas + 214 + 203 = 241z + D~ @.1)
=46q,, +70q,,,, +824,,,, +884,,,,
and
qr3.+16 + 3q:+15 + 8q3+14 + 18q3+13 - 26‘13“2 - 35q3+11 - qzuo -3 6q3+9
+ 36q3+8 + 88q3+7 - 21q:+6 + 21q3+5 - 16qj+4 - 6q3+3 + 2q3+2 - q3+1 + ‘13 (4'2)
= 273507715816, +415400801120g, ., +489013523880q;,,, +527203073008,,,,.

The next identity involves 32 fourth powers whose coefficients are 1, 7, 38, 174, —154,
-1150, —1368, —7226, —1926, 32582, 22851, 56387, 36788, —34100, 23540, —78932, —56080,
6372, 18724, 50476, 39447, 13621, 2822, —2234, 2290, -910, —280, —10, 34, 14, 5, 1. On the
right side, the coefficients of q,,,, 941> Qunsz> 80d 44,5 are, respectively,

402934710032647317503725654362880,
611973233907708364378185877905536,
720420343019564129073011409939840,
and 776681625661169345246132510366848.

We have found that the next identity in this list involves 53 fifth powers. On the basis of our
observations, we conjecture that for k£ >2 such identities for the Tetranacci sequence involve
L(k*+6k*+11k —12) k™ powers.

5. MORE GENERAL SEQUENCES
Consider now the more general sequence {U,} defined for all integers by

U,=aU,_ +bU,_, +cU Uy=0,U,=LU,=a, 5.1

n-3>
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where a, b, and ¢ are complex numbers with c#0. The sequence {U,} is one of the three
Jundamental sequences (as in Bell [1]) generated by the recurrence in (5.1). We have found that

U3+3 +b U3+z + aCUZH - czU: =bUU,,3+U,Uy 4 5.2)

We accomplished this by considering many instances of (a, b, ¢) and constructing the correspond-
ing identity. This process was tedious, to say the least.

More generally, let {R } be any sequence generated by the recurrence in (5.1) and with arbi-
trary initial terms R, R, R,. Then, in the same manner, we have found that

I€+3 +bR3+2 +aCR:+l - CZR: (5.3)

= ((ac~b")Ry — abR, +BR,)R, ,, +(~abRy+(b—a")R, +aR,)R,, ; + (bR, +aR)R,, ..
It is interesting to note that the coefficients on the left side of (5.2) match those on the left side of
(5.3). Horadam [5] proved the analog of (5.3) for second-order sequences very elegantly with the
use of generating functions, but we have been unable to adapt his method to prove (5.3). How-
ever, we have discovered another method of proof which we demonstrate in the next section.

As the fourth-order analog of {U,}, we define the sequence {V/,} by

V,=aV,_  +bV, ,+cV, ,+dV, ,, V,=0,V;=1V,=a,V,=a"+b. (5.4)
We have found that
Viss +bV s+ (ac+ )V, +(@d—c* +26d)V 5y ~ (@ +acd)V ), +bd’V ), - dV) (5.5)
= (@’d~* +2bdW Vs +(@c+ AWV, 0V iy Vi s

In (5.5), it is interesting to compare the coefficients of V., V.2,, V7, and V>, with those of
Voness Vonses Vansr» and V,, o, respectively. Similar comparisons should be made in (5.2), and also
in the known identity

2
un+1

+bu§ = Ugpyy = Uillppyy- (5.6)
Here {u,} is the second-order sequence defined by u, =au,_, +bu,_,, u;=0,u, =1.

Our attempt to construct identities similar to those in this section for sequences of order five
has proved fruitless. The polynomial coefficients became unwieldy, as can be appreciated when
we compare (5.2) with (5.5). The same can be said for higher powers. However, our work with
specific examples suggests that identities analogous to those that we have constructed in this
paper exist for all sequences, and for all powers. We have looked only at sequences generated by
linear recurrence relations with constant coefficients.

We mention that further experimentation with specific examples suggests that, for linear
recurrences of order m, identities analogous to (1.2) contain %(m2 —m+2) squares, and identities
analogous to (1.3) contain %(m3 +3m* —4m+6) cubes.

6. GENERALIZATIONS AND PROOFS

At the beginning of Section 2 we started with the identity F” —F,,,F, , =(-1)". Instead,
suppose we consider the more general identity

F,F.-FF

n+a’ n+b n+a+b

=(-D"F.F, (6.1)
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Then, considered as a function of n, the sequence {F,,  F, , —

F,F,

wasp) Satisfies the recurrence

r, =-r,_,. Hence,

F;1+1+aF;1+l+b —F;:+1Fn+1+a+b =—(F, n+a‘F;1+b - FnFn+a+b)

or

F;:+1+aF;1+l+b +F, n+aF ntb = E1+1F;1+1+a+b + FnF nt+a+b* (6-2)
With m in place of n+a, and n in place of n+b, the left side of (6.2) becomes F | F. . +F F,.
But, by 1, in [4], we know that

Fm+1E1+l + Fm‘F;t = Fm+n+l’ (63)
which generalizes (1.2).
This suggests that to generalize (1.3) we might try
Ec+2Fm+2F;1+2 + F;c+lFm+1Fn+1 - FkaFn = Fk+m+n+3’ 6.4

which is indeed the case. In fact, this mode of generalization extends to (1.1), where the corre-
sponding generalization is a special case of identity (5) of Torretto and Fuchs [7].

Based on numerical evidence, the method of generalization we have just described seems to
carry over to all the identities in Sections 3-5. For example, we now prove that

pm+3pn+3 + pm+2pn+2 + pm+lpn+l - pmpn = 2pm+n + 3pm-i—n+1 + 3pm+n+2’ (65)
which generalizes (3.1).

Proof of (6.5): Fix m. Each of the sequences {p,,,}, where k €Z is fixed, satisfies the
recurrence for the Tribonacci numbers. Hence, by linearity, the sequences

{pm+3pn+3 +Pm+2pn+2 +pm+1pn+1 - pmpn} and {zpm+n + 3pm+n+1 + 3pm+n+2} (66)

also satisfy this recurrence. So, to prove that these sequences are identical, it suffices to prove
that they have the same initial terms. That is, it suffices to show that

Pm3P3 + Py Py + PpiaPr = PuPo = 2Py + 3P i1 + 3P a2
PmiaPs + PrmsaPs + PiiPr = PPy = 2P sy 3P iz 3P s3>
Prs3Ps + PrusaPs+ PryiaP3 = PPy = 2Ppis +3Ppa3 + 3P s

We prove only the last of these, since the proofs of the others are similar. Using the recur-
rence satisfied by the Tribonacci numbers, we see that p, ,=p ., +p,.. ,+p, and p, . , =
2Dps0 ¥ 2Dpsy + D,y Also, since p, =1, p;=2, p, =4, and p; =7, we substitute and observe
that both sides reduce to 11p,,,, +9p,..; +6p,,. Since m is arbitrary, this proves (6.5) and hence
also (3.1). O

This method of proof applies also to identities (4.1), (5.2), (5.3), and (5.5), since they involve
squares. As shown above, we proceed by proving the more general identities obtained by intro-
ducing the parameter m. The proof of the generalized version of (5.3), for example, is not much
more complicated than the proof demonstrated above. With m fixed, we need to prove

Rm+3Rn+3 +me+2Rn+2 + acRm+1Rn+l - cszRn
= AR + BR +CR

m+n+2 m+n+3 m+n+4>

6.7
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where 4, B, and C are as in (5.3). As in the proof of (6.5), our task is to show that (6.7) holds for
n=0,1, and 2. Thus, for n=2, we need to show

RR, .. +bRR, ., +acRR . ~c*RR =AR ., +BR +CR ... (6.8)

m+2

Using the recurrence in (5.1), we express R;, R,, and R, in terms of R, R,, and R,. Likewise,
we express R, . for3<j<6intermsof R ,R . ,and R ,,. Finally, making these substitutions
and using a suitable computer algebra package (in our case Mathematica 3.0), it is straightforward
to verify the validity of (6.8). The verifications for =0 and 1 are treated similarly.

Now to the identities which involve higher powers. We tried to prove (3.2) by first proving

7 2
Zaipk+ipm+ipn+i = Zbipk+m+n+i: (69)
i=0 i=0
where the a, and b, are given in (3.2). Our attempts failed because of the presence of an extra
parameter. However, we found that we could prove the following "intermediate" identity:

7 2
Zaipm+ipn2+i = Zbipm+2n+i . (6.10)
i=0 i=0
Our proof, which is similar to the proofs demonstrated previously, requires the following lemma
which is contained in [6].

Lemma: Let {w,} be a sequence of complex numbers defined by
k
W= Cw, ., o (6.11)
i=1

where ¢, ..., ¢, and w,,...,w,_, are given complex numbers with ¢, # 0. Let s >1 be an integer.
Then {w"} is generated by a linear recurrence of order ("*y%).

Using the lemma with =2 and & =3, we see that {p?} satisfies a linear recurrence of order
6, and, by solving a system of linear equations, we find that this recurrence is

r,=2r,_ +3r,_,+6r,_s—r,_, 1, ¢ (6.12)
Furthermore, {p,,} satisfies the recurrence

F, =30, +r, T, s, (6.13)

and, since the auxiliary polynomial of (6.13) divides the auxiliary polynomial of (6.12), the
sequence {p,,} is also generated by (6.12). To complete the proof, we proceed as before. That
is, we fix m and verify the validity of (6.10) for six consecutive values of ».

By using this approach, we have also succeeded in proving (3.3), (3.4), and (4.2) by first
proving the more general identities obtained by the introduction of the parameter m. From the
lemma, the number of verifications required to prove each of these identities is 10, 15, and 10,
respectively.

While we acknowledge that this method of proof is tedious for identities that involve higher
powers, given the nature of these identities, it seems unreasonable to expect anything else.
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Diophantus studied the following problem: Find three (rational) numbers such that the
product of any two increased by the sum of those two gives a square. He obtained the solutions
{4,9,28} and {-3,%, %} (see [3]). Euler treated the same problem with four numbers (see [2]).
He found the solution {£%, 727,2,3}. Indeed, we have

2 2
65 9 65, 9 (12) 65 9,65 09 (79)

224 224 224 224 \224 224 56 224 56 \112)°
65 5 65 5 (15) 9 9 9 9 (51)
—_ == Z L 4 Z 4 7 | =—
224 2 7224 2 (8) 224 56 224 56 (112)’
9 5 9 5 (13} 9 5 9 5 (7V
2422 — 2422,
224 27224 2 (8) 5627562 (4)

In the present paper we will construct the set of five numbers with the above property.
Let {x,, ..., x,,} be the set of rational numbers such that x,x; +x, +x; is a perfect square for
all 1<i< j<m. Since

Xx;+%+X; :(x,.+1)(xj+1)—l,

ifweput x, +1=a,, i =1,...,m, we obtain the set {a,, ..., a,,} with the property that the product of
its any two distinct elements diminished by 1 is a perfect square. Such a set is called a (rational)
Diophantine m-tuple with the property D(-1) (see [4], p. 75). If a,'s are positive integers, such a
set is also called a P_,-set of size m. The conjecture is that there does not exist a P -set of size 4.
Let us mention that in [1], [6], and [7] it was proved that some particular P -sets of size 3 cannot
be extended to a P ,-set of size 4. In [5], some consequences of the above conjecture were
considered.

We will derive a two-parametric formula for Diophantine quintuples and, as a consequence,
we will obtain a rational Diophantine quintuple with the property D(-1).

We will consider quintuples of the form {4, B, C, D, x*} with the property D(ax?), where 4,
B, C, D, x, and a are integers. Furthermore, we will use the following simple result known
already to Euler: If BC +n = k2, then the set {B, C, B+ C +2k} has the property D(n).

Therefore, if we assume that

BC+ax*=k* A=B+C-2k, D=B+C+2k,

then the set {4, B, C, D, x*} has the property D(ax?) if and only if AD+ ax? is a perfect square.
Hence, we reduced the original () =10 conditions to only two conditions:

B -a)(?-a)+ax? = k?, €))
(@* - a)(d?* - a)+ax? = ). )
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Our assumptions
@*-a)+(*-a)-2k=a*-a, @G*-a)+(t-a)+2k=d*—a
imply that 4k =(d +a)(d —a). Letd+a=2p and d —a =2r. This implies that ¥ = pr and

b2+cz—a=%(a2+a’2):p2+r2. 3)
Let us rewrite condition (2) in the form (ad — @)* - a(d —a)* = y* — ax®. Thus, we may take
y=ad-a, x=d-a=2r. @
Substituting (3) and (4) into (1), we obtain
Pt —b*c? =dart— a®® +c? —a) = a(3r? - ph). )
At this point we make the further assumption [motivated by (3) and (5)]:
btc=p+r. ©)
Now (3) implies
pr—bc= % , @)
and (5) implies
pr+be=2(3r* - p?). (8)
Adding (7) and (8) yields
a=4p*+4pr—12r*. 9)

From (6) and (7), we conclude that b and c are the solutions of the quadratic equation
22— (p+r)z +(pr—%—) =0.

The discriminant of this equation has to be a perfect square. Thus,

(p-r)+2a=q* (10)
Substituting (9) into (10) we have, finally,
Gp+r)*-24r’=¢*. (11)

Hence, we reduce our problem to the solving of (11). However, the general solution of
the equation #? — 24v* = w? with (u, v, w) = 1 is given by

u=e*+6f% v=ef, w=|e?-6f2|
or
u=2e2+3f2 v=ef, w=|2%-3f?|
(see [8], p. 225). Thus, we have proved
Theorem 1: If e =0 (mod 3) or e= f (mod 3), then the set
{1(? +6ef —18/2)(2f2 +2ef —€*), Le* (e +51)(3f —e),

FAe-21)(Be+61),L(e? +4ef —6f7)(6f% +4ef —e), 42 f 2} 2
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has the property D(38e?f2(e? —ef —3f%)(e? +2¢f —12£?)), and the set
{3(9f? +6ef —2e*)(2¢* +2¢f — f2),1*(5f —2e)(2e +3 /),
FHe+ f)Se—31), L1 +4ef —2e)(2e* +4ef —3f%),4e’f7}
has the property D(8e?f2(e? —ef —31%)(4e® +2¢f —3f2)).

(13)

Substituting e =5 and f =2 in (12), we obtain the following two corollaries.

Corollary 1: The set {33,%,31 10,33} is a rational Diophantine quintuple with the property

D(-1).

Corollary 2: The five numbers —2%, 17 21 9 433 have the property that the product of any two of
them increased by the sum of those two gives a perfect square.
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1. INTRODUCTION

The well-known identity

F;12+1+E12 :Fén+1 (1-1)
has as its Lucas counterpart
L+ fo =5F04- (1.2)
Indeed, since L,,,=F, ,+F,=F,,+2F, and L, =F,  +F, =2F,  —F, (12) follows from
(1.1).
As analogs of (1.1) and (1.2) we have
Fu+F-F=F, (see[7]p.11), (13)
and
B +L-L_ =51, (see[4],p.165). (1.4

One aim of this paper is to generalize (1.1)-(1.4). These identities belong to a family of
similar identities that involve sums of m™ powers (meZ, m > 2) of Fibonacci (Lucas) numbers.
As usual, Z denotes the set of integers. Our second aim is to state a conjecture that proposes a
generalization of this family of identities. We state our conjecture in Section 4.

2. PRELIMINARY RESULTS

We require some preliminary results. For m,neZ,

E,=(C)"™F, 2.1)
L,=(-D"L, (22)

Foini1 = BB + B F (2.3)
L...=F.L.,+F,L, 2.4
Fynaz) = 4Fy iy + B3, 2.5)
Fy=3F};+6F,,-3F), - F,. (2.6

Identities (2.1)-(2.4) can be found on pages 28 and 59 in Hoggatt [3]. Identity (2.5) is a
special case of (2.3) in Shannon and Horadam [5], and (2.6) occurs as (40) in Long [4]. The
recurrences in (2.5) and (2.6) are also satisfied by the Lucas numbers.

We also require the following lemmas.

Lemma 1: 3Fy,,3) + 6F3m40) = 3F3m11) = B3 = Fyia), meZ.
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Proof: By (2.5) we have
3F0ne3) + 6F30ma2y = 3F30me1y — Fa

=3Fy 3y + 63042y = 3F50nen) — (Fs(m+2) - 4F3(m+1))
=3F5m13) + 5F30ma) + By
=3Fy 3y + 5F30me2y + Fyomesy — 4F50me2)

=4F, 3y + Bgnizy = Bygmeay O
Lemma 2: Let k,neZ with 0<n<3. Then
3
By aFoin + FaaFrs = Froe s = By FagaaFan. 2.7

Proof: We give the proof only for n =3, since the proofs of the remaining cases are similar.
For the case n =3, identity (2.1) shows that we need to prove

BB+ BpaaFies + By~ 38F Fyp = 0. (2.8)
This is easily proved by using a powerful technique developed recently by Dresel [1]. Following
Dresel, we see that (2.8) is a homogeneous equation of degree 6 in the variable k. Therefore, to
prove its validity for all integers £, it suffices to verify its validity for seven different values of £,
say 0 < k < 6. But (2.8) is easily verified for these values, and so it is true for all integers £. []
3. THE MAIN RESULTS

Our generalizations of (1.1) and (1.2) are contained in the following theorem.

Theorem 1: For k,ncZ,

Fnz+k+1 + Fz—k = FypiFonn 3.1
and
L§+k+1 + Li-k = 5F2k+1F2n+1 . (3-2)

Proof: Using (2.1) and (2.3), we obtain F, ., = FF +F F,, and F_, =F,_ .., =
(_l)k(F Fies1— Frafy), so that

2 2 22 2 2 2 2 2 12
E1+k+l+Ex—k _EcF;w +EcF+l+Ec+lE1 +Fk+1F;:+1

n

= (B + B FL +FD = By

To prove (3.2), we use (2.4) to show that L., =L F + L, Fyand L, =L ;.0 =
(-D¥(L,F,,, — L,.1F3.), and proceed similarly. O
When k =0, (3.1) and (3.2) reduce to (1.1) and (1.2), respectively. For our next theorem,

we use a "traditional" approach to prove the first part and, in contrast, the method of Dresel to
prove the second part.

Theorem 2: For k,neZ,
FyiFoen + BpoFok = F ai = FyaFapaaFs, (3.3)

n n

and
Fualoern+ Fpsaloei = Dy aiey = SFynFaaa s, B34
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Proof: We proceed by induction on n. Suppose identity (3.3) holds for n=m, m+1, m+2,
and m+3. Then
~(FeniFsion + B = F i) = ~Fap P ia P
—3(Ek+11*23n+1)+k+1 + Fak+2F3n+1)+k - ()3n+1)—2k—1) = 3 b B50me
6(F:;k+11:(?n+2)+k+1 +P§k+2F(3n+2)+k - P3n+2)—2k—1) =65y 1 B Fyminy
3(F;k+1pgn+3)+k+l + ‘F:'ik+2F(vr3n+3)+k - an+3)—2k~1) = 3F§k+lE&k+2Ei(m+3)-
Adding, and making use of (2.6), we obtain

FpniFmayrent + FesaFonayee = Fomeay-2i-1
= BeF3a2 [3Fsmey + OF3maz) = 3F3(meny ~ 3]
= BpufapaFamesy (by Lemma 1),

and so (3.3) is true for n=m+4. But Lemma 2 shows that (3.3) holds for n=0,1,2, and 3, and
so it holds for n =4 and, by induction, for all integers > 0.

To establish (3.3) for all integers n <0, it suffices to replace n by —n, and to prove that the
resulting identity holds for all integers n > 0. That is, it suffices to prove that

Fn3+2k+1 +(= l)kI%IHZE?— +(- 1)k+11%k+1F;13—k—1 = FypFopealsn (3.5)

holds for all integers n>0. After making use of (2.1) to simplify (3.5) for 0 <7 <3, the equiva-
lent of Lemma 2 is established as before, and the proof proceeds as above.

Following Dresel, we see that (3.4) is a homogeneous equation of degree 3 in the variable 7.
Therefore, to prove its validity for all integers n, it suffices to verify its validity for four different
values of n, say 0<n<3. For n=3, (3.4) becomes

Fypulisa+Fpalis— Dy o= 380K 42 [by (2.2)] (3.6)

But (3.6) is a homogeneous equation of degree 6 in the variable k. Therefore, to prove its validity
for all integers £, it suffices to verify its validity for seven different values of &, say 0 < k£ <6. This
is easy to verify. We proceed similarly for the other three values of », and this completes the
proof of Theorem 2. O

When k =0, (3.3) and (3.4) reduce to (1.3) and (1.4), respectively.

4. A CONJECTURE FOR HIGHER POWERS
The identity

j+3)
2

Z’"o - l)jo

is a special case of identity (5) of Torretto and Fuchs [6]. Here [;”] is the Fibonomial coefficient

m m _ »
[,-]FMZL, =B By (o) @1

defined for integers m>0 by

0 Jj<0orj>m,
m .
[ .]: 1 Jj=0,m,
J FmFm-l"'Fm—jH O .
“RELF, <j<m
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For an excellent discussion on generalized binomial coefficients, and a comprehensive list of refer-
ences, see Gould [2].

In identity (4.1), m=1 yields (1.1) and m=2 yields an identity equivalent to (1.3). For
m=3 and m= 4, identity (4.1) becomes, respectively,

Fy+2F) = 2F, — F} =2F,,, 4.2)
and
FRy+3F —6F) = 3F3 + Fy = 6F5,. (4.3)

Our generalizations in Theorems 1 and 2 prompted us to search for similar generalizations of
(4.2) and (4.3) and their Lucas counterparts. We accomplished this by introducing the parameter
k, assuming the existence of an identity of the required shape, and solving systems of simultaneous
equations to find the coefficients. Indeed, after employing this constructive approach on several
more instances of (4.1), we were led to a conjecture on a generalization of (4.1). First, we need
some notation. Write, for example, (5)4) = FsF5F, and (F)e) = FlsFF L F ;. In general,
we take (F,)(») to be the "falling" factorial, which begins at F, for n+ 0, and is the product of m
Fibonacci numbers excluding F,. Define (Fy)qy =1 and, for m>1, (Fy)imy = F,...F,,. We now
state our conjecture in two parts.

Conjecture: Let k, mneZ with m>1. Then:

m-1 Fmil o mmey ]
ntk+m—j ‘n—mk _
+(-D)T ——mmke
(a) Z;) (F —1—j)(m—1)Em+l)k+m—-j ( ) . F (m+1)(n+7).
H (m+D)k+j
J=1

(b) To obtain the Lucas counterpart of (a), we first replace each occurrence of ' in the numer-
ators on the left by L. Then, if m is even, we replace the right side by
52 L(m+l) (n+3)
If m is odd, we replace the right side by

ST E

(m+1)(n+3)

When m =1 our conjecture yields (3.1) and (3.2), and when m =2 it yields (3.3) and (3.4).
For k =0 we claim that part (a) of our conjecture reduces to (4.1), but this is not obvious. It is
useful to consider an example. If we take m = 4, part (a) becomes

5 5 5 5 5
En+k+4 + E1+k+3 _ E1+k+2 _ F;+k+1 + E1—4k =F (4 4)
2F, F, F, 2F, F, F, S0 '
Sk+4 5k+3 Sk+2 Sk+1 Sk+1°°"* 5k+4

Now putting k£ = 0 we see that (4.4) reduces to (4.3). Indeed, we have performed similar verifica-
tions for 1 <m <9. With these values of m we have verified that our conjecture is true for a wide
selection of the parameters & and »n.
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REPRESENTATION GRIDS FOR CERTAIN
MORGAN-VOYCE NUMBERS
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The University of New England, Armidale, 2351, Australia
(Submitted February 1998)

1. BACKGROUND

Properties of representation number sequences {%,}, {%6,} associated with the Morgan-
Voyce polynomials B,(x) and the related polynomials C,(x) were recently investigated in [1].
Hopefully, the notation and references in [1] will be accessible to the reader.

Complementary properties of the number sequences {b,}, {c,} associated with the Morgan-
Voyce polynomials b,(x) and the related polynomials c,(x) are now explored.

With x =1 in these just-mentioned polynomials, we define the resulting numbers by

b,=3b,_,-b,,, by=1, b=1, (1.1)
and
¢,=3¢c, ,~¢,_,, g=-1 ¢g=1 (1.2)

Accordingly, these numbers are

n = 012 3 4 5 6 7 8 ...,
b, = 1 1 2 5 13 34 89 233 610 .., (1.3)
c, = -1 1 4 11 29 76 199 521 1364 ....

Consider now the unit coefficient representation sums for b,, ¢, analogous to those for B,,

C, [1]. Irrespective of the uniqueness or otherwise of the representations (and of questions of
minimality or maximality), we may assert that, for the representation number sequences {b,},

{c.},

b,=2 b, =F,=FL, (1.4)
i=1
and
n I n odd
¢, =Y c,=1L,-2=4" ’ (15
én & {SF,,2 n even, )

in terms of the Fibonacci and Lucas numbers F,, L.
Elements of {b,}, {c,} are thus

n =012 3 4 5 6 7 8 ...,
b, = 01 3 8 21 55 144 377 987 .., (1.6)
¢, = 0 1 5 16 45 121 320 841 2205 ....

Why, we may ask, are these numbers worthy of our consideration? Firstly, as mathematical
constructs they have an inherent interest to the inquiring mind ("because they are there"!).
Secondly, as the theory—necessarily compact—unfolds, they add a little, however modest, to our
knowledge of number relationships. Moreover, they complete the theme initiated in [1].
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2. PROPERTIES OF b, ¢,

One may readily establish the fundamental infrastructure of these two number systems, details
of which are herewith reported (in pairs, for comparison).

Recurrences:
bn = 3bn—-l - bn—2> (2 1)
€, = 3cn—l €t 2 (22)
Binet forms:
aZn _ ﬁZn
bﬁ*j;qf—@$=LQﬂ=4% 2.3)
¢, =+ -2 24
Generating functions:
> bt =[1-Bx—xH)I, (2.5)
i=1
Yex ™ =(1+x)[1- (dx—4x* + ). (2.6)
i=1
Simson formulas:
b;'1+lbn—l _b% =-1, (27)
i€y — €2 =1-2¢,. (2.8)
Summations:
2.0 =Byl (2.9)
i=1
2.6 =Ly~ 2n+1), (2.10)
i=1
= 1
2y =< (Gpn =), (2.11)
i=1
2.8 = Fipuy =@ +1), (2.12)
i=1
Y by = B, @.13)
i=1
Zcﬁ—l :‘F;In_zn’ (214)
i=1
n X 1
Z(“l)H—lbi = g[l_(-‘l)nl’lrﬁl]n (215)
i=1
2 DM = (D)1= B,, ). (2.16)
i=1
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Other simple properties:

b_,=-b,, 2.17)
c,=¢,, (2.18)

b, - bn—l = Fén—l’ (2 19)

€= Cpy = L2n—l’ (220)
b,+b,,, =L,,  also, (2.21)

¢, +¢,,,=5L,, ,—4, (2.22)

bn _bn—2 = L2n—2’ (223)
¢,—¢,,=5F, ,, (2.24)

b, -b=F, = FoprLpy- (2.25)

3. THE REPRESENTATION GRIDS

Next, we introduce the concepts
b;r = bn+1 +bn—1

3.1
=3bn:3Fin:%;l_%;l—l’ ( )
and
c;l = cn+1 +cn—l
3.
:3cn+2=3l,2n—4=%;+%;'+1’ ( 2)
on invoking [1].

’

Repeating the summation process developed in [1], i.e., b’ =b.,, +b;_,, we eventually arrive
at the more general notations
b{” =b{7} +b () =b,), (3.3)
and
& =+ (@ =c) G4)

As in [1], these data can be organized in (representation) grids for b{™ and ¢(™, where m
denotes columns and 7 rows.

Various approaches allow us to validate the properties recorded below, some of which are
readily obtainable from the patterns in the rectangular grids, which the reader should construct for
visual emphasis and clarification of the theory.

Zero subscripts:

b¢™ = 0= A, (3.5)
™ =2(3"—2™) = 2% = 26 by [1]. (3.6)

Negative subscripts:
b = b (3.7
¢ =l (3-8)
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Recurrences:
b{™ = 3pm _pim) ,
(columns) " rl T2
™ =3¢lm — e + 27
(rows) {bg”') =3"b, =3"F, (=3b{"™),
¢ =3"¢, +c{m.
Binet forms:

b = 3" - ) (@~ ),
cszm) - 3m(a2n +ﬁ2n) _ 2m+l‘
Generating functions:

> bMx ™ =3"1-(Bx - xH)],

i=1

Y eyt =3"(3-2x)[1- Bx —x*)[ ' -2

i=1

Simson _formulas:

b - (o) =37,

ce — () = 335210},
Summations:

Zbl(m) =3"(Fpn— D),

i=1

e =3"(L,, —)-2""n.

i=1

Other simple properties:
BB =3,

c§” — e =3"Ly, 4,

b™ +b™ =3"L,, , also,
™ 4™ =3"-5F, | -2(3"+2™),

b{™ + (™ =2

e i) <2080,

4. FOREGROUND

1. Augmented Sequence

Let us now recall, as in [1], the augmented sequence {%, (a, b, k) = B, } defined by

12(@, b, k) = 3%,,,,(a, b, k)~ F; (a,b, k) + .

1999]

(3.9)
(3.10)

(3.11)
(3.12)

(3.13)
(3.14)

(3.15)

(3.16)

(3.17)
(3.18)

(3.19)

(3.20)

(3.21)
(3.22)

(3.23)
(3.24)

(3.25)
(3.26)

(@.1)
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Initially, assume

B (a,b,ky=a, B,(a, b, k)=>b. 4.2
Hence,

By (13,0)=b, (4.3)

and
wn(15,2)=¢,, (4.4

while

RB..(1,2,00=5, 4.5)

and
B (1,4,0)=c,. (4.6)

2. Brahmagvita Polynomials

Very recently, Suryanarayan showed in [4] and [5] how, by means of the Brahmagupta
mairix, to generate polynomials x, and y, (Brahmagupta polynomials) which include inter alia
Fibonacci, Pell, and Pell-Lucas polynomials, as well as the Morgan-Voyce polynomials B,(x) = x,,
and b,(x) = y, described in [1] and [2].

Suppose we express the vital difference equations [4, eqn. (8)], [5, eqn. (9)] in a slightly
varied notation as

Xpp1 = P, = 0%, 1, Vo1 = Py = Oy (4.7

Selecting P=x+2,0=1,x=2,x,=P,and y,=-1, y, =1 (so y; = x+3) in (4.7), we readily
come to the polynomials C,(x) = x, and ¢,(x) = y,, which [1], [2] are adjunct to B,(x) and b,(x).

3. Further Developments
These might profitably include, for instance,

a) propertiesof b_,,c_, (n>0),

b) extension of the theory to polynomials b,(x), ¢,(x) (and also &, (x), €,(x) [1]),

¢) construction of a representation table of sufficient scope to afford numerical enhance-
ment of the patterns contained therein,

d) uniqueness or otherwise of the representation, and

e) any additional Brahmagupta properties.

4. Associated Legendre Polynomials

The author has become aware that the Morgan-Voyce polynomials b,(x) defined in (1.1) are
essentially the associated Legendre polynomials p,(x) described by Riordan [3, p. 85]. In fact,
B,(x) = p,(x), g, by(x)=py(x)=1+3x+x?. Properties of p,(x) listed in [3] may then be
cast in the b,(x) notation. Essential links for the equality of p,(x) and b,,,(x) are the closed
forms and Chebyshev polynomials results in [3, p. 85] and [2, (2.21) and (4.14)].
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