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1. AIM OF THE PAPER 

Here we extend a result established by Rabinowitz [6] by considering the fifth-degree polyno-
mials of the so-called Bring-Jerrard form q(x, h,k): = x5 ±h2x -k, where h is either 1 or a prime, 
and k is an integer. More precisely, the principal aim of the paper is to find necessary and suffi-
cient conditions on k for q(x, h, k) to factor over Z. 

Since q(x, h, k) factors trivially as 

x5 ±h2x-(m5 ±h2m) = (x-m)(x4 +mx3 +m2x2 +m3x-+m4 ±h2) (1.1) 

if k - m5 ± h2m (weZ) , we are concerned with the factorizations of q(x, h, k) that have the form 

q(x,h,k) = (x2 +ax + b)(x3-ax2 +cx+d) (a,b,c,d eZ). 0-2) 

The case h- 1 has been solved brilliantly by Rabinowitz in [6] (see also [3] and [9]), where 
he shows that q(x,l, k) has the factorization (1.2) iff & assumes some special values depending on 
square Fibonacci numbers. In the more general situation (h a prime), certain properties of the 
Fibonacci (and generalized Fibonacci) numbers play a crucial role as well. 

After observing that changing the sign of k implies nothing but the sign change of a and d in 
(1.2), we can assume that k > 1 without loss of generality. Consequently, we shall confine our-
selves to studying the factorization (1.2) of the polynomials 

f r(x,p,k) = x5-p2x-fc, 
(k >1, /?a prime). (1.3) 

$(x, p, k) = x* + plx -k, 
As will be shown in the sequel, it is necessary to distinguish three cases depending on 

whether the prime p is either 5, or has the form 5/ ±2, or the form 5/ ± 1. Our approach to this 
problem will follow [3] and Rabinowitz' argumentation but, to render the paper self-contained, the 
proofs will be given in full detail. For the sake of completeness, the most significant factorizations 
will be explicitly shown. A brief discussion on the factorization of r(x, p, k) for certain special 
primes/? concludes our study. 

It must be noted that some questions remain unsettled that are related to well-known open 
problems in number theory. Namely, they concern the existence of infinitely many prime Fibo-
nacci numbers, the occurrence of perfect squares in terms of Fibonacci-like sequences, and the 
solution of a special Pell equation. 

A preliminary version of this paper has been presented by the first author at the XIV Oster-
reichischer Mathematikerkongress [4]. 
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.2. PRELIMINARY RESULTS 

Given the factorization (1.2), by equating the coefficients of like powers of x we obtain the 
system 

(b + c-a2 = Q, 
U-c)-^0, 
]ad+hc = ±p2, K ' } 

whence, by using the first two equations to eliminate a and d, we obtain the two equations 

(b2+hc-c2 = ±p2, 
\h2(h-c)2(h + c) = k2. K ' } 

Equations (2.2) show that the couple (&, c) must be chosen among the couples that represent 
±p2 by means of the quadratic form Q(b,c) = b2 + bc-c2, subject to the condition that b + c is a 
perfect square. Hence, finding the solutions of the quadratic equation Q(b,c) = ±p2 is clearly a 
necessary step to solve our problem. From Gauss's general theory of the quadratic forms, it is 
known (e.g., see [5]) that there is a finite number of classes of solutions. Each class consists of an 
infinitude of solutions which are referred to as associated solutions, and is characterized by a 
single solution called the fundamental solution. The classification of the solutions of Q(b, c)- M 
is given by Dodd in [2]. It depends on the peculiar properties of Z(a), the ring of integers in the 
quadratic field Q(a) which is the extension of the rational field Q by means of the golden section 
a = (1 + V5) / 2. Recall that Z(a) is a unique factorization domain. 

Every solution (x„, yn) of Q(h, c) = M, associated to a given fundamental solution (x0, y0), is 
obtained as 

xn + ayn = a2n(x0 + ay0). (2.3) 

Equivailently, we can say that both the sequences {xn} and {yn} are generalized Fibonacci 
sequences obeying the second-order recurrence 

GM = G„_1+G„_2, (2.4) 

with suitable initial conditions G0 and Gv The number of classes of solutions is obtained as a con-
sequence of Theorem 3.12 and Corollary 3.13 of [2] that we quote as a single theorem for ease of 
reference. 

Theorem 1 (Dodd): The quadratic equation x2 + xy- y2 = M is solvable in Z iff 

M = ±5fpYx - • • p2fsqfl --qfr (t,ft, gt nonnegative integers), 

where pt = Sj±2 (\<i <s) and qi =5j±l (1 </ <r) are primes. The number of fundamental 
solutions is given by the product (gx + l)(g2 +1) • • • (gr +1). 

Consequently, for our special case M = ±p2 [see (2.2)], we can summarize the above results 
as follows. 
(i) If p = 5 or 5j±2, then there is a unique fundamental solution 

( W o ) = W WM=-P\ (25) 
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(ii) If p = 5j±l, then there are three fundamental solutions, one of which is given by (2.5). The 
additional solutions (x$\yP) and (x^\y^) can be derived from a solution (uQ, v0) of the Pell 
equation u2 -5v2 = p. Namely, we have 

\4l) = «o ~2"ovo + 5vo, J4 2 ) = «o + 2w0v0 + 5vl M_n2. (~ * 
k } = 4Wov0; U2> = -4«0v0, *"-P, C2.6) 

l l n = 4r°' 2 K = -4W' ifM = -^. (2.7) 

Apparently, there is no direct technique for solving the Pell equation u2 -5v2 = p; the best 
known method (see [5], p. 206) is to check every u lying within the interval [yjp + 5, -Jfp]. 

3. THE FACTORIZATION OF r(x, p, k) WHEN p = 5j±2 

We state the following theorem. 

Theorem 2: If p = 5j±2, then the polynomial r(x, p, k) given by (1.3) factors as (1.2) iff 

_ | 2 , and k = 96 or 11424, 
P~\ 3, and k = 27 or 2808. * " ' 

(3.2) 

Proof: The system (2.2) becomes 

jbc + h2-c2 = -p2, 
\b2(b-c)2(b + c) = k2. 

Since the couple (0,p) is the fundamental solution [see (2.5)] of Q(b,c) = -p2, from (2.3) 
we know that all the solutions are given by 

(b,c) = ±(pFln,pF2n+l) (neZ), (3.3) 

where Fn is the 72th Fibonacci number. We recall that F_n - (-l)n+lFn. 
From (3.3) and the second equation of (3.2), we see that 

k2=p*F2
nF2

n_x{±pFln,2), (3.4) 

where the minus sign in the last factor must occur iff n < - 1 . From (3.4), it is plain that, for k to 
be an integer, pF2n+2 must be a perfect square. In turn, this implies that we must have 

F2n+2=Py2. (3.5) 

For p = 2, Theorem 4 of [1] tells us that the only nonzero solution to (3.5) is F6 = 2-22 [i.e., 
y = 2 and n - 2 in (3.5)]. Consequently, letting n - p - 2 in (3.4) yields 

k = ^\6F2F2(2F6) = 96. (3.6) 

Further, letting n = -4 in (3.4) (so that the last factor therein becomes -2F_6) yields 

k = ^\6F\F2
9(-2F_ 6) = 11424. (3.7) 
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For p > 3, Theorem 1 of [8] tells us that the unique solution to (3.5) is F4 = 3• l2 [i.e., p = 3, 
y = l, and n = 1 in (3.5)]. Hence, letting p = 3 and n = 1 in (3.4) yields 

k = ^\F2F2(3F4)=27. (3.8) 

Further, letting w = -3 in (3.4) (so that the last factor therein becomes -3F_4) yields 

k = ^81F2
6F2

7(-3F_4) = 2808. Q.E.D. (3.9) 

By using (1.2), (2.1), and (3.3), the factorizations of r(x, 2, k) and r(x, 3, &) for the above 
values of k are readily obtained. Namely, we get 

x 5 - 4 x - 9 6 = (x2 + 4x + 6)(x3-4x2 + 10x-16), (3.10) 

x5 - 4x -11424 = (x2 - 4x + 42)(x3 + 4x2 - 26x - 272), (3.11) 

x 5 - 9 x - 2 7 = (x2 + 3x + 3)(x3-3x2 + 6x-9) , (3.12) 

x 5 -9x-2808 = (x2-3x + 24)(x3+3x2-15x-117). (3.13) 

4. THE FACTORIZATION OF s(x, p, k) WHEN p = Sj ± 2 

We staite the following theorem. 
Theorem 3: If p = 5j ± 2, then the polynomial s(x9 p, k) given by (1.3) factors as (1.2) iff 

P - ^2n+ils a prime Fibonacci number, and k = < 3
 2" l 2" 2' (4.1) P3F2n-lF2n-2> 

P ^2n+3^2n+4' 

Remark 1: For F2n+l to be a prime, 2w + l must necessarily be a prime. The question of whether 
there exist infinitely many prime Fibonacci numbers is still unsolved ([7], p. 226). 

Proof: The system (2.2) becomes 

\bc + b2-c2 = p\ 
\h2(b-c)2(b + c) = k2. K ' } 

Since the couple (/?, 0) is the fundamental solution [see (2.5)] of Q(b, c) = p2, from (2.3) we 
know that all the solutions are given by 

(h,c) = ±(pF2„_l,pF2n) (neZ). (4.3) 

From (4.3) and the second equation of (4.2), we see that 

k2=P%UFl-2(pF2n+i), (4-4) 
where one can observe the absence of the minus sign in the last factor which is due to the fact that 
the odd-subscripted Fibonacci numbers are always positive. From (4.4), it is plain that, for k to be 
an integer, pF2n+l must be a perfect square. In turn, this implies that we must have 

F2n+i=py2- (4.5) 
Theorem 2 of [8] ensures us that, if p = 5j±2, then all the solutions to (4.5) are given 

(trivially) by 
F2n+i = P'l2- (4.6) 
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From (4.6), expression (4.4) becomes 

whence one immediately gets the first equality of (4.1). Since F_{2n+l) = F2rM, we can replace n 
by -(n +1) in (4.4), thus getting [see (4.6)] 

ki=p4F\n_,F}2n_A(pF2n+]) = p<>Fin+,Fl+A, (4.8) 

whence the second equality of (4.1) is readily obtained. Q.E.D. 

In the first and second cases of (4.1), the factorizations (1.2) of s(x, p, k) have the sets of 
coefficients 

a = P = F2„+v 
b = Pf- and 
d = ~P2F2n-2, 

a = -p, 
(4.9) 

b = PF2n+3, 
c = -pF2n+2, 

2n+4> d = -P% 

respectively. As a numerical example, the factorizations of s(x, 13, k) [n = 3 in (4.1)] are shown 
below. Namely, we have [cf. (4.9)]: 

x5 + 169x - 32955 = (x2 + 13x + 65)(x3-13x2+104x- 507), (4.10) 

X5 + 1 6 9 X - 4 1 0 8 3 9 0 = (X2-13JC + 442)(X3 + 1 3 X 2 - 2 7 3 X - 9 2 9 5 ) . (4.11) 

Remark 2: The case p - 5 is exceptional because 5 occurs in the definition of the quadratic 
extension ring Z(cr), but according to Theorem 1, it can be treated as the primes of the form 
5j±2. Equation Q(byc) = 52 has only one fundamental solution, and, according to the above 
discussion, we get the only possible factorizations: 

x5+25x-250=:(x2+5x + 10)(x3-5x2 + 15x-25), (4.12) 
x5+25x-34125 = (x2-5x + 65)(x3+5x2-40x-525). (4.13) 

5. THE FACTORIZATION OF r(x, p, k) WHEN p = 5j±l 

From Theorem 1, we know that, if p = 5j ± 1, then the equation Q(h, c) = -p2 has the three 
fundamental solutions 

l±(pF2n, pF2n+l\ 
(b,c)= ±(^w,^w + 1) , neZ, (5.1) 

l±(B2n,B2n+l), 
where the generalized Fibonacci sequences ( 4 J and {Bn} obey the recurrence (2.4) with initial 
conditions [AQ = x^; Ax - yfp] and [B0 = x^2); Bx =yQ2)] that can be obtained from (2.7). 

We now state the following theorem. 

Theorem 4: If p = 5j±l, then the polynomial r(x, p, k) given by (1.3) factors as (1.2) iff A2n 

and/or B2n are perfect squares for some n. 

Proof: On the basis of the previously used arguments [see (3.2)-(3.4)], from (5.1) it is clear 
that we must have 
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k2 = 

pAF2
nF2

n_x{±pF2n,2\ 

4,4*-i(±4«+2)> neZ. (5.2) 
B2nB2n-l(±B2n+2)> 

The equation ±F2n+2 = py2 [cf. (3.5)] has no solutions by virtue of Theorem 1 of [8]. There-
fore, the only possibilities for k to be an integer are that A2n+2 and/or B2n+2 are perfect squares for 
somew. Q.E.D. 

As a numerical example, let us find values of k for which r(x, 11, k) factors as (1.2). If 
p = 11, then (w0, v0) = (4,1) is a solution of the Pell equation at point (ii) of Section 2, so that 
expressions (2.7) give the initial conditions (4> = 16; Ax = 29] and [B0 = -16;B1 = 13]. From, (5.2) 
and the argument in the proof of Theorem 4 (namely, Theorem 1 of [8]), we have 

k2 = lA2n
AL-i(±A2n+2) (the minus sign when n < -3), 

\B2n
B2n-l(±B2n+2) ( t h e milUS s i g n w h e n n ^ °)-

For n = - 1 , we have that ^2W+2 = 4o = 16 is a perfect square. Letting ?i = -1 in the first 
equation of (5.3) yields 

* = A_2A_3^1% = 3 • 10-4 = 120. (5.4) 

For the same value of n, we see that B2n+2 = B0 = -16. Letting n = -1 in the second equation of 
(5.3) and choosing the proper signs yields 

* = -B_2B_3J-BQ= 45-74-4 = 13320. (5.5) 

Remark 3: The occurrence of further even-subscripted terms of {AJ and/or {Bn} that are per-
fect squares would allow us to find further values of k for which r(x, 11, k) factors as (1.2). 

The factorizations of r(x, 11, k) for the values of k given by (5.4) and (5.5) are 
x5-121x-120 = (x2+4x + 3)(x3-4x2 + 13x-40) (5.6) 

and 
x5-121x-13320 = (x2-4x + 45)(x3-f4x2-29x-296), (5.7) 

respectively. 

6. THE FACTORIZATION OF s(x9 p, k) WHEN p = 5j±l 

From Theorem 1, we know that, if p - 5/± 1, then the equation Q(b, c) = p2 has the three 
fundamental solutions 

l±(PF2n-l,PF2nl 
(hyc) = l±(A2^A2n+ll n e Z , (6.1) 

[H^m B2n+lX 

where the initial conditions for {An} and {BJ can be obtained from (2.6). 
Now, let us state the following theorem. 

Theorem 5: If p = 5j ± 1, then the polynomial s(x, p, k) given by (1.3) factors as (1.2) iff either 
(I) (4.1) is satisfied (with p = 5j±l) or (ii) Aln^l and/or B2n+l are perfect squares for some n. 
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N.B. There is a unique exception to point (i). Namely, s(x, 3001, k) factors as (1.2) for 
k = 68586998444168435635 or k = 8435643157247893914990. 

After observing that, on the basis of previously used arguments [see (4.2)-(4.4)], we must 
have 

[P^ln-lFln-lipFln+ll 

*2 = U2,4Li(±4,»2). " ^ (6.2) 

it is clear that the proofs of points (i) and (ii) are similar to those of Theorems 3 and 4, respec-
tively. Therefore, we shall confine ourselves to proving the exception to point (i) mentioned in 
the N.B. above. 

As an example of application of the last two equations of (6.2), we invite the reader to prove 
that s(x, 19, k) factors as (1.2) for k = 765 or 26390 or 37704147. 

Hint: After assuming that (% v0) = (12,5) is a solution to u2 -5v 2 = 19, use (2.6) to find 
[AQ = 149, 4 = 240] and [B0 = 389, Bx = -240], and observe that A_A =B6 = 25 and B20 = 2809 
are perfect squares. 

Proof of the Exception to Point (i): Theorem 2 of [8] tells us that the unique exception to 
(4.6) occurs when n = 12, p = 3001, and y = 5 in (4.5). If we let these values of n and p in the 
first equation of (6.2), then we get k2 = p^^F^ipF^) (p = 3001), whence 

k = 30012 F23F22 ̂ /300LF25 = 68586998444168435635. (6.3) 

Further, letting w = -13 and /? = 3001 in the same equation yields k2 = pAF2
21F2

2%(pF_25) 
(p = 3001), whence 

* = 30012F27F28^3001F25 = 8435643157247893914990. Q.E.D. (6.4) 

The factorizations of s(x, 3001, k) for the values of k given by (6.3) and (6.4) are: 

x 5 +9006001*- 68586998444168435635 
= ( X 2 + 1 5 0 0 5 X + 8 5 9 9 9 6 5 7 ) ( X 3 - 1 5 0 0 5 X 2 + 1 3 9 1 5 0 3 6 8 J C - 7 9 7 5 2 6 4 1 8 5 5 5 ) , 

and 

(6.5) 

x5 + 900600 lx - 8435643157247893914990 
= (x2-15005x + 589450418)(x3-fl5005x2-364300393x-14311030919055)? ( 6 6 ) 

respectively. 

7. CONCLUSIONS 

First, we wish to point out that the technique used in Sections 3-6 allows us to obtain the fac-
torization of fifth-degree polynomials that are similar to those considered in this paper. In every 
case, Fibonacci and Fibonacci-like sequences play a fundamental role, and suggest the existence of 
an even deeper connection between these sequences and the factorization of fifth-degree polyno-
mials. For example, it is not hard to prove that if 
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n5mF4F5, 
„5mi k = U2n>mF9Fw, (7.1) 

{\2n5mFl4F15, 

then the polynomials x5-n4mx-k (n,m eN) factor as (1.2) (for n = 1, cf. (3.8) of [3]). The 
proof of (7.1) is based on the well-known fact [1] that F2J is a perfect square iff j = 0,1, or 6. 
Further, the interested reader might enjoy using the above technique for proving that, if 

k = FfFJ±2FJ±3, (7.2) 

then the polynomials x5 - (-T)JF2x - k factor as (1.2). 
Then, let us conclude our study by considering a special class of primes p such that a couple 

(kx, k2) of values of k for which r(x, p , k) factors as (1.2) can be expressed merely in terms of/?. 
Namely, consider the set of all primes p such that p + 5 = z4 is a fourth power. Since z must be an 
even integer not divisible by 5, it can be readily proven that p has the form 5y + 1 . It is likely that 
there exist an infinitude of primes belonging to the above defined set. We found 15 of them 
within the interval [2,108], the smallest (resp. largest) being 11 (resp. 78074891). 

Theorem 6: If p > 251 is a prime such that 

p + 5 = z4 (7.3) 
is a fourth power, and 

kl2=4(j? + 5)l/4[p2+44p±lO(p + 5)m(p + lO) + 220l (7.4) 

then both r(x, p , kx) and r(x, p , k2) factor as (1.2). 

Remark 4: For p = 11, see (5.4) and (5.5). 

Proof (for k = k2): A solution to the Pell equation at point (ii) of Section 2 is clearly 
(u, v) = (z2, i ) . Hence, from the first system of (2.7), we have 

f41) = 4 J = 4z2 (a perfect square), 
U^A^z4^^ 

and, from (5.2), 
k = A2n A2n_iA2n+2. (7.6) 

Letting n = - 1 in (7.6) yields 
k2 = A*2A*3A0 = A*2A%4z2 [from (7.5)]. (7.7) 

On calculation, we get 
U 2 = -z4 + 6z2-5, 
\^_3 = 2z4-8z2 + 10. V ' ' 

From (7.7) and (7.8) above, on choosing the signs properly to ensure the positiveness of k, 
one gets 

| 2 z ( z 4 - 6 z 2 + 5 ) ( 2 z 4 - 8 z 2 + 10) fo rz>4 , 
[2z(-z4 + 6z 2 -5 ) (2z 4 -8z 2 + 10) = 120 forz = 2 (i.e., p = 11). ' 
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For z > 4 (i.e., p > 251), from (7.9) and (7.3), we obtain 

k = k2 = 4(p + 5)l/4[p2 + 44p -\0(p + S)ll2{p +10) + 220] 

as desired. By using the second system of (2.7), the proof for k-kx can be obtained in a similar 
way. Q.E.D. 

The factorizations (1.2) of r(x, p, k) have the sets of coefficients 

[a = -2(p + 5)l,\ [a = -2(p + 5f\ 
k^+etp+sr+ia and h^-p+eip+sfi-io, 
\c = -p-2(p + 5)l/2-l0, \c = p-2(p + 5)V2 + lO, 
[d = -k/b, [d = -k/b, 

for k-kx and k2, respectively. As a numerical example, the factorizations of r(x, 1291, kl2) are 
shown below. Namely, we have [cf. (7.10)] 

x5 -129 l2x - 52609560 = (x2 -12* +1517)(x3 + 12x2 -1373* - 34680), (7.11) 

x5 -129 l2x - 30128280 = (x2-\2x- 1085)(x3 + 12x2 -1229* + 27768). (7.12) 
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1. INTRODUCTION 

There are many rational termed convergent series in analysis that sum to an irrational number. 
One well-known example can be found via the Taylor expansion of the exponential function, 
where in particular the base of the natural logarithm is represented as an infinite sum of the 
reciprocals of n\. The irrationality of e can be deduced directly from this series via an argument of 
Euler's (see [2]). In recent times, a number of authors [3], [4] have noted that other irrational 
valued series may be constructed by replacing n\ in the series for e by the product vxv2. ..vw, where 
{vw} is a strictly monotone increasing sequence of positive integers. However, in such cases, one 
needed to impose the additional assumption that n\v$>2...vn for each n. In this paper we shall 
demonstrate that irrational valued series may similarly be constructed from the terms of a general-
ized Fibonacci sequence, which are generated via the recurrence relation 

where P, Q e Z with |P|> 1, \Q\ = 1, and U0 = 0, Ux = 1. The goal here is to establish the most 
general result possible by focusing attention on the following factorial-like expression 

I(n) = UkUk+l->Uk+m, 

where k eN\{0} and / :N—»N is an arbitrary strictly monotone increasing function. Such an 
expression will naturally reduce to the type of products considered above when k = l and 
f(n) = n-l. One advantage in dealing with the sequence {Un} is that we no longer need to 
impose the previous divisibility assumption, as this can be avoided by exploiting a fundamental 
property of generalized Fibonacci sequences that concerns the occurrence of a given prime factor 
in the sequence {£/„}. Unfortunately, the application of this property together with the argument 
used will require us to restrict the values of the ordered pairs (P, Q) to those prescribed above. 
To prove the desired result, we will employ here (as in [3]) an argument similar to that used by 
Euler in establishing the irrationality of e. However, before reaching this point, it will be neces-
sary in Section 2 to acquaint ourselves with a few preliminary results, beginning with the afore-
mentioned property of generalized Fibonacci sequences. 

2* MAIN RESULT 

In establishing the irrationality of the series in question, we shall need to invoke within our 
argument the following technical result: For any given m G N \ { 0 } , there exists a positive integer 
N(m) > 0 such that m \ I(n) whenever n > N(m). This result, which holds irrespectively of the 
choice of k and f(n)9 can be deduced directly from a divisibility property of generalized Fibonacci 
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sequences. In order to state this property succinctly, we shall employ a number-theoretic function 
Xrs(n) as introduced in [1], which is defined below. 

Let rs and r + s be the roots of any quadratic equation of the form x2 - ux + v = 0, where u 
and v are integers. Noting by the Symmetric Function Theorem that (r - s)p~~l is an integer for an 
odd prime/?, define the symbol (-^) by the congruence 

(r-sy-^^f^ modp, 

where it is understood that (^r) is the residue of least absolute value; whence {^f) = 0, +1, or -1 
according as (r - s)p~l is divisible hyp, is a quadratic residue of/?, or is a quadratic non-residue of 
/?. In the case p = 2, the symbol (•—•) is defined by: 

1 if rs is even, 
if rs is odd and r + s is even, 
if rs and r+s axe both odd. 

Now, if n- PilP22 "mPkk> where pl>p2, -,Pk a r e the different prime factors of n, define the 
functional value of Xrs(n) as the least common multiple of the numbers 

Pi . r,s 1 = 1,2,... ,*. 

The important divisibility property that appeared as Theorem XIII in [1] can now be stated as 
follows. 

Theorem 2.1: Suppose {£/„} is a generalized Fibonacci sequence generated with respect to the 
relatively prime pair (P, Q). If the number n = p?lp%2 •••/£*, where px, p2, . . . ,f t are the differ-
ent prime factors of n, is relatively prime to rs = Q and if X - Xrs{ri), then Ux=0 mod n. 

It is clear from Theorem 2.1, when {UJ is generated with respect to the relatively prime pair 
(P, Q) with |2I = 1, that given any m eN\{0} the sequence contains an element divisible by m. 
This fact does not allow us automatically to deduce the above technical result, since the product 
I(n) in certain cases may never contain the term Ux [i.e., when Xg(m) <k]. To deal with situa-
tions such as these, observe first from the above definition of Xr< that 

XQ{n)>Prl . r^s 
*-, Pi 

>rf'-\p,-\]>tf>-x. 

Now, if given any positive integer t that contains a prime factor pt >k with a7 >2, then 
X(J^m) > Z?/*'"1 >pt>k. So, provided that (tin, Q) = l, the product I(ri) will contain, for n large, 
a term divisible by tm, namely xQ(tm)- Thus, we can guarantee in the present case, as \Q\= 1, that 
I(n) is divisible by m for suitably chosen n. Indeed, if one formally sets 

t(m) = min {t e N\ {0}: XQ(tm) >k), 

then it is clear that m \ I(n) for n > N(m), where 

N(m) = min{n eN\ {0} | f(n) + k> XQ(t(m)m)}. 
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Having established the required divisibility property of /(«), we now need only introduce two 
further preliminary results before reaching the main theorem of this section. Both of these results 
will be used throughout the main argument of Theorem 2.2. 

Lemma 2.1: Suppose / : N -» N is a strictly monotone increasing function, then for all r, m G N , 
we have f(m+r)-f(m) >r. 

Proof: Due to the strict monotonicity of/, it is clear that f(m+i)-f(rn+i-l)>l for 
J = 1, 2, ...,r. Adding these r inequalities together and noting that the left-hand side is a tele-
scoping sum equal to f(m+r)-f(r), one deduces the desired inequality. D 

Lemma 2.2: Suppose {£/„} is a generalized Fibonacci sequence generated with respect to the 
relatively prime pair (P, Q), where \P\> 1 and \Q\ = 1. Then the terms \Un| form a strictly mono-
tone increasing sequence of integers. 

Proof: We argue using induction. Clearly \U2\-\Ul\ = \P\-l>0. Now suppose the result 
holds for an integer n = m>l, that is, \Um\> \Um_11. Now, by an application of the reverse tri-
angle inequality, observe that 

V^inUJ^PUn-QU^HUJ 

= (\P\-\)\Um\-\Um_l\>0, 

noting here that the final inequality follows from the inductive assumption and the fact that 
\P\ - 1 > 1. Consequently, the result holds for n = m + l. • 

Remark 2.1: With the above restrictions placed on the values of the ordered pairs (P, 0 , it is 
clear from Lemma 2.2 that I(ri) ̂  0 for n > 1. Thus, the terms of the series in question are well 
defined. 

Theorem 2.2: Let {an} be a bounded sequence of integers with the property that an ^ 0 for 
infinitely many n. Suppose further that {Un} is a generalized Fibonacci sequence generated with 
respect to the relatively prime pair (P, Q), where |P | > 1 and \Q\ = 1. If I(n) = UkUk+l...Uk+f^, 
where k e N\ {0} and / : N -» N is a strictly monotone increasing function, then the resulting 
series J^=\Ctn II{ri) converges to an irrational sum. 

Proof: We first establish convergence of the series. Observe that by setting r - n -1 for 
»eN\{0} and m- 1 in Lemma 2.1, we have f{n) >n-1+/(1) > n - 1 . If k ^ 1, then each of 
the f(n) + l terms in the product |/(w)| are by Lemma 2.2 greater than or equal to \U2\ = \P\. 
Thus, |/(w)| > |P| / ( w ) + 1>|Pr, while, if k = l we have \I(n)\ = |C/2ll^3l-l^+/(i,)l ^ \p\f(n) * 
|P|W_1. In any case, we have |aj/|/(w)| < D/\P\n~l, where D is the upper bound for {an}\ 
consequently, the series is absolutely convergent. 

Suppose now, to the contrary, that the sum of the series is a rational number given by AIB, 
where A,BGZ with B^O. By the above technical result, there exists an N(\B\)>0, with 
B\I(m) whenever m>NQB\). Choose m>N(\B\) such that D + l< \Uk+f(m)+l\ and consider 
the following equality, 
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«,*i-wljh-Uffi-c. • 0 ) 

Since by definition I(n)\I(m) for n<m, it is clear that C E Z . We now determine upper and 
lower bounds for | C |. First, note that the modulus of I(m) I I(ri) for n > m +1 in the series on the 
right of (1) is given by 

I(m) 
I(m + r) = (\U> k+f(m)+l •Ut k+f(m+r )ir1, 

where r = 1,2,.... Now, by Lemma 2.2, each of the f(m+r)-f(m) terms in the denominator of 
the above expression are in modulus greater than or equal to \Uk+f^+l |, so by Lemma 2.1, 

Wk+f(m)+\"'Uk+f(m+r)\ - \^k+f(m)+l\ - Wk+f{m)+l\ • W 

Hence, using the triangle inequality and (2), we have 

my 
|C| = 2> m+rI(m+r) r=l 

^1 
I(m+r) 

D D 
^x\Ut k+f(m)+l I \ut k+f(m)+l - 1 <1, 

noting here that the last inequality follows from our initial choice of m. To obtain a lower bound 
for \C\ set p- min{« > w + 1 :a„ *• 0} so |ap | > . Then, by an application of the triangle and 
reverse triangle inequality, observe that 

\C\ = 
I(m) 

§ V r I(P+r) an 
m 
up) I« I(m) 

-YD 

p+r I(p+r) 

Km) 
I (p + r) 

= J. 

Clearly, from the definition, p>m + \>m, thus, as in (2), we have for each r > 1, 

HP) 
I (P + r) 

Consequently, 

\C\>J = Hm) 
HP) 

1-I.D 

- (\Uk+f(p)+l ' 

< L _ _ 
\Uk+f(p)+l\ 

HP) 

•u, k+f(p+r) ,)\rl 

< 
\u> k+f(m)+l I 

I(P+r) 
Hm) 
HP) 

Hm) 
HP) 

i -S D 

1-

r=l|f4+/(m)+ll 

D 1 
\Uk+f(m)+\\~^\ 

>o, 

where again the last inequality follows from the initial choice of m. Therefore, we have produced 
a C G Z such that 0 < \C\ < 1, this obvious contradiction implies that the original assumption is 
false. Hence, the sum of the series in question is irrational. • 
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Remark 2.2: It was noted in [1] that no simple analog of Theorem 2.1 exists for the sequence of 
generalized Lucas numbers; thus, the above argument cannot readily be extended to establish a 
similar result involving these number sequences. 

We now consider a simple consequence of Theorem 2.2. 

Corollary 2.1: The base of the natural logarithm e is a nonalgebraic number of degree two. 

Proof: Suppose that there exist a,b,c e Z with a & 0 such that ae2 + be + c = 0; then 

ae + ce'1 --b. (3) 

Now set (P, 0 = (2,1), k = 1, and/(/i) = /t in Theorem 2.2. If a„=a + c(-l)"+1 we deduce, as 
UM = 7i, that 

°0 ^ 00 1 CO / i \ 7 7 + l 
-1 £^§(^§p5T*-2 ) ' 

is an irrational number. Consequently, the number on the left of (3) is also irrational while the 
number on the right is clearly rational This obvious contradiction thus establishes the above 
result. D 

In view of Theorem. 2.2, one may suspect that a similar result may hold for such factorial-like 
expressions as I(n) = U^riy"U^n)+k, where i e N and / : N - » N \ { 0 } is a strictly monotone 
increasing function. At present, the author has been unable to supply an argument establishing, or 

. a counterexample refuting, this conjecture. However, in the case of f(n) = 2n and k = 0, the 
author has been able to verify the irrationality of the series sum by direct calculation. To conclude, 
we now outline the derivation of the sum of these series. 

Proposition 2.1: Suppose {Un} is a generalized Fibonacci sequence generated with respect to the 
relatively prime pair (P, 0 , where P > 1, Q = - 1 ; then 

Y 1 ^ P 2 + 4 - W P 2 + 4 
La TJ OP 
w=l U2" 

Proof: Consider the following telescoping sum 

^ xr A ( i y _^ = y _J i 

La 1 2n+l LJ I 1 2" i v2"+ 1 

„=i i-x n=i \i-x • i-x 
1 1 1-x2 i- •X 

If |x| > 1, then the above partial sums tend to a finite limit given by 
^ V 2 " 1 

,=i 1-x2 1-x2 

Now C/w = (aw - pn) I {a- P), where a and fi are the roots of x2 - Px -1 = 0. Consequently, as 
afi - - 1 , we have, for |/?| > 1, 

1 Y 1 = Y 1 =f P2" = l 

a-fi£iUr ^a2"-/?2" hl-P2n+X W 
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By setting a = (P--JP2 +4)12 and /3={P + ̂ P2 +4)12 in the above (noting that | a | < l and 
\P\>\) one obtains the desired sum. Note here that the irrationality of the series sum follows 
from the presence of the term ^P2 + 4, since P2 + 4 is never a perfect square for \P\ > 1. • 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems 

can now be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 
Over 23,000 problems from 42 journals and 22 contests are referenced by the site, 

which was developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for 
the site was generously provided by the Department of Mathematics and Statistics at the 
University of Mirrouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose 
solutions were published), and other relevant bibliographic information. Difficulty and 
subject matter vary widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues 
or their time is encouraged to do so. For further information, write to: 

Mr. Mark Brown 
Director of Operations, MathPro Press 
P.O. Box 44024 
Baltimore, MD 21236 
bowron@mathpropress.com (e-mail) 
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1. INTRODUCTION 

The charming identity 

i(-^\j\FnAl-j = * ...FkF(k+l){n+i) (1.1) 

is a special case of identity (5) of Torretto and Fuchs [7]. Here [*] is the Fibonomial coefficient 
defined for integers 0 < j < k by 

\k 

u 
According to H. W. Gould, generalized binomial coefficients were first suggested by Georges 

Fontene in 1915, and were rediscovered by Morgan Ward in 1936. These writers simply replaced 
the natural numbers by an arbitrary sequence {An\ of real or complex numbers. The idea of con-
sidering An = Fn seems to have originated with Dov Jarden in 1949. For an excellent discussion 
on these matters, and a comprehensive list of references, see Gould [3]. 

For k = 1,2,3, and 4, identity (1.1) becomes, respectively, 

# 1 + ^ = ^ 1 . (1-2) 

^ 2 + ^ 1 - ^ = ^ + 3 , 0-3) 
^ 3 + 2 ^ - 2 ^ - ^ = 2 ^ , , (1.4) 

FL+IFL-SFL-IFL+K5 = « W (1-5) 
To make the right sides of (1.3) and (1.5) more compact, we may replace n by n-\ and n-2, 
respectively. 

In this paper we present analogs of (1.2)—(1.5) for the so-called Tribonacci and Tetranacci 
sequences, which we define in Sections 3 and 4. We consider more general third- and fourth-order 
sequences, and identities associated with them, in Section 5. Our method of discovering these 
identities is outlined in Section 2, and generalizations and proofs are given in Section 6. 

2* THE METHOD 

To demonstrate our method, we use it to "discover" identities (1.2) and (1.3). To arrive at 
(1.2), we consider the sequence 

{^2-^iU? = {-u-u,-i,...}. 
This sequence satisfies the recurrence rn = -rn_p and so we have 

EK...R 
= 1. 
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+1 = F2n+l 

Ai ^n+l^n-l ~ V*Vl Ar «-2/ 
or 

F:+Fl^Fn+xFn_^FnFn_2. (2.1) 

Finally, we observe by trial that the right side of (2.1) is F2n_v and this yields (1.2). 
To obtain (1.3), we consider the sequence 

I ^ - V / H } ? ={0,1,-1,2,-3,5,-8, . . .}. 
This sequence satisfies the recurrence rn = -rn_x +rn_2, so that 

K3 -F^Ff^ = - { / t r V ^ J + ( ^ -Fn^Fn_2Fn_3) 
or 

A» + A i - 1 ~*in-2 = Ai+rn^n-l +^n^n-r «-2 ~ ^n-Fn-l^n-i- (2-2) 

Again, after making several substitutions, we see that the right side of (2.2) is F3n_3, and this 
yields (1.3). 

To obtain (1.4), we could consider the sequence generated by F4 -Fn+1F^Fn_1, or perhaps 
F4 -Fn+3FnFn_xFn_2, or many other such expressions. To decide which product to subtract, we 
consider two things. First, the product must have "degree" four. Second, the sum of the sub-
scripts of the terms which make up the product must be 4«. To obtain the analogous identities 
which involve higher powers, we proceed in a similar manner. 

3. THE TRIBONACCI SEQUENCE 

As a third-order analog of the Fibonacci sequence, Feinberg [2] considered the Tribonacci 
sequence, defined for all integers by 

Pn=Pn-l+Pn-2+Pn-3> Po = °> A = *> P2 = l 

Proceeding as in Section 2, and with the help of the computer algebra package Mathematica 3.0, 
we have obtained identities analogous to (1.2)—(1.5) for the Tribonacci sequence. We have found 
the following: 

PL3 + Pl+2 + PL ~ Pi = 2Pm + 3/Wi + 3/>2„+2 > (3-1) 

Pl+7 + 3Pl+6 + 7PLS + Pl*4 - PL$ - 7P3n+2 ~ 3Pl+l ~ Pi 
= 6758ftfl + 10432/73n+1 + 12430/73n+2; 

(3.2) 

Pin +4^4
+ii + 1 6^+io -26p„4

+9 -5p4
n+s ~ 128p„4

+7 

+ l00p4
+6 +4p4„+5 + 43p4

+4 -44p4
+3 + 4p4

n+2 -2p4
n+1+p4 (3.3) 

= 27720670104p4n + 42792093 864/?4n+1 + 50986261368/?4n+2, 

PLH + 8 ^ + i 7 + 59^5
+16 -126/,„5

+15 -154^ + 1 4 -2758/£1 3 

+ 2 1 4 2 ^ I 2 +2394/>„5
+n + 6552/>„5

+10 -7182^ + 9 -4284p„5
+8 - 2394^ + 7 

+1386^+6 +686^+ 5 + 322/>fl
5
+4 -98/^ + 3 - 9 ^ + 2 -2P

5
n+1 +p5„ (3.4) 

= 1252886775213004795584p5n + 1934067549043522783296/75n+1 

+ 2304418051432261675008/J5n+2. 
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We have found the next identity in this list. The left side has 26 sixth powers, and following 
the pattern of the previous identities the coefficients are 1, 15, 204,-724, -1946, -58710, 65968, 
182480, 921767, -1448495, -2215192, -2814392, 1090180, 2032604, 2528400, -9744, -25313, 
-238687, -15828, -4372, 9814, 1786, 224, -32, -7, - I . On the right side, the coefficients of 
P6«> / W a n d Pen+2 are> respectively, 

3211910334796649669373174107089155840, 
4958190693577716567222696970358499840, 

and 5907624137726959710208258726172348160. 

We have been unable to discern a pattern to the coefficients in the identities above. How-
ever, on the basis of our results, we predict that the next identity will involve 34 seventh powers. 
More generally, we conjecture that for k > 2 such identities for the Tribonacci sequence involve 
\ (k2 + 3k - 2) £* powers. 

4. THE TETRANACCI SEQUENCE 

As a fourth-order analog of the Fibonacci sequence, Feinberg [2] also considered the Tetra-
nacci sequence, defined for all integers by 

?„=?«-i+?»-2+9»-3+?„-4> %=0,ql=l,q2=l,q3=2-
In the same manner, for the Tetranacci sequence, we have found 

= 46q2n + 70q2n+l + 82 W + 88?2||+3-
and 

<7«+i6 + 3?„3
+i5 + 8 d i 4 +18<7„3

+i3 - 26</»+i2 - * 5 & i i - ^ + i o - 5613
n+9 

+ 36ql+,+^l7-2lql6+2lql5-l6ql4-6q3
n+3 + 2ql2-ql+l+q3

n (4.2) 
= 273507715816tf3n +415400801120^3n+1 + 489013523880^3n+2 +527203073008^3n+3. 

The next identity involves 32 fourth powers whose coefficients are 1, 7, 38, 174, -154, 
-1150, -1368, -7226, -1926, 32582, 22851, 56387, 36788, -34100, -23540, -78932, -56080, 
6372, 18724, 50476, 39447, 13621, 2822, -2234, -2290, -910, -280, -10, 34, 14, 5, 1. On the 
right side, the coefficients of q4n, q4n+l, q4n+2, and q4n+3 are, respectively, 

402934710032647317503725654362880, 
611973233907708364378185877905536, 
720420343019564129073011409939840, 

and 776681625661169345246132510366848. 

We have found that the next identity in this list involves 53 fifth powers. On the basis of our 
observations, we conjecture that for k > 2 such identities for the Tetranacci sequence involve 
{(A;3 + 6k2 +1 Ik -12) ** powers. 

5. MORE GENERAL SEQUENCES 

Consider now the more general sequence {Un} defined for all integers by 
Un=aUn_l+bUn_2+cUn_3, U0 = 0M{ = l,U2=a, (5.1) 
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where a, b, and c are complex numbers with c^G. The sequence {Un} is one of the three 
fundamental sequences (as in Bell [1]) generated by the recurrence in (5.1). We have found that 

U2„+3 +bU2
n+2 +acU2

+1-c2U2 = bU.U^ + U.U^. (5.2) 

We accomplished this by considering many instances of (a, h, c) and constructing the correspond-
ing identity. This process was tedious, to say the least. 

More generally, let {Rn} be any sequence generated by the recurrence in (5.1) and with arbi-
trary initial terms R0, Rl9 R^. Then, in the same manner, we have found that 

^+3^R2
n+2+acR2

+1-c2R2 

= ((ac-b^-abR, +bR2)R2n+2 +(-abR, + (b-a2)Rl ^aR2)R2n+3 +(bR„ + ^1)i?2w+4. 

It is interesting to note that the coefficients on the left side of (5.2) match those on the left side of 
(5.3). Horadam [5] proved the analog of (5.3) for second-order sequences very elegantly with the 
use of generating functions, but we have been unable to adapt his method to prove (5.3). How-
ever, we have discovered another method of proof which we demonstrate in the next section. 

As the fourth-order analog of {Un}, we define the sequence {Vn} by 

K=^K-1+bV„_2+cV„_3+dV„_4, V0=0,V1 = \,V2=a,V3=a2+b. (5.4) 

We have found that 

VL +WL H*c+d)V„\4 + {a2d-c2 +2bd)V„2
+3-(d2 +acd)V„2

+2 +bd2V2
+l -d3V2 

= (a2d-c2 +lbd)VxV2n,5 +(ac+d)V2V2n+6 + bV3V2n+7 +V4V2n+%. 

In (5.5), it is interesting to compare the coefficients of V2
+3, V2

+4, V2
+5, and V2

+6 with those of 
2̂w+5> 2̂w+6> 2̂«+7> anc* 2̂«+8> respectively. Similar comparisons should be made in (5.2), and also 

in the known identity 
Ul+l +bul = U2n+l = *¥Wl- ( 5 6 ) 

Here {un} is the second-order sequence defined by un = aun_x +bun_2, u0 = 0,ux = l. 
Our attempt to construct identities similar to those in this section for sequences of order five 

has proved fruitless. The polynomial coefficients became unwieldy, as can be appreciated when 
we compare (5.2) with (5.5). The same can be said for higher powers. However, our work with 
specific examples suggests that identities analogous to those that we have constructed in this 
paper exist for all sequences, and for all powers. We have looked only at sequences generated by 
linear recurrence relations with constant coefficients. 

We mention that further experimentation with specific examples suggests that, for linear 
recurrences of order m, identities analogous to (1.2) contain j(m2 -m + 2) squares, and identities 
analogous to (1.3) contain ±(m3 + 3m2 -4m+ 6) cubes. 

6. GENERALIZATIONS AND PROOFS 

At the beginning of Section 2 we started with the identity F2 -F^F^ = (-!)". Instead, 
suppose we consider the more general identity 

Fn,aFn+b-FnFn^b = {-\TFaFb. (6.1) 
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Then, considered as a function of w, the sequence {Fn+aFn+b -FnFn+a+b} satisfies the recurrence 
Tn = ~rn-r H e n C e

? 

^n+l+a^n+\+b ~~ n+r'n+l+a+b ~ y^n+a^n+b ~~ ^n^n+a+b' 
or 

Af+l+a Ai+1+6 + ^n+a^n+b = ^n+l^n+l+a+b + K^n+a+b' V>-2) 

With m in place of n+a9 and n in place of JI+h, the left side of (6.2) becomes Fm+lFn+l + FWFW. 
But, by I26 in [4], we know that 

(6.3) 
which generalizes (1.2). 

This suggests that to generalize (1.3) we might try 

which is indeed the case. In fact, this mode of generalization extends to (1.1), where the corre-
sponding generalization is a special case of identity (5) of Torretto and Fuchs [7]. 

Based on numerical evidence, the method of generalization we have just described seems to 
carry over to all the identities in Sections 3-5. For example, we now prove that 

Pm*Pn* +Pm+2Pn+2 + / W W ~ PmPn = 2Pm+n+3Pm+n+l+3Pm+n+2> ( 6 ' 5 ) 

which generalizes (3.1). 
Proof of (6.5): Fix m. Each of the sequences {pn+k}, where k G Z is fixed, satisfies the 

recurrence for the Tribonacci numbers. Hence, by linearity, the sequences 

{Pm+3Pn+3+Pm+2Pn+2+Pm+lPn+l-PmPj a n d i2Pm+n + 3Pm+n+l + 3A*+*+2> (66) 

also satisfy this recurrence. So, to prove that these sequences are identical, it suffices to prove 
that they have the same initial terms. That is, it suffices to show that 

Pm*Pz +Pm+2P2 + / W l ~ PmPo = 2Pm + 3A*+1 + 3 / V 2 > 

Pm+3P4 +Pm+2P3 + Pm+J>2 ~PmPl = 2Pm+l+3Pm+2 +3Pm+3> 

Pm*Pl +Pm+2P4+Pm+lP3 ~ PmP2 = 2Pm+2 + 3Pm+3 + ^ + 4 • 

We prove only the last of these, since the proofs of the others are similar. Using the recur-
rence satisfied by the Tribonacci numbers, we see that /?m+3 = Pm+2+Pm+i+Pm anu* Pm+4 = 

2Pm+2 +2Pm+\ +Pm- ^ s o> s*nce P2 ~ *> ft = 2, /?4 = 4, and p5 = 7, we substitute and observe 
that both sides reduce to H^OT+2 +9/?OT+1 +6/?OT. Since m is arbitrary, this proves (6.5) and hence 
also (3.1). • 

This method of proof applies also to identities (4.1), (5.2), (5.3), and (5.5), since they involve 
squares. As shown above, we proceed by proving the more general identities obtained by intro-
ducing the parameter m. The proof of the generalized version of (5.3), for example, is not much 
more complicated than the proof demonstrated above. With m fixed, we need to prove 

= ARm+n+2+BRm+n+3+CRm+n+4, (6.7) 
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where A, B, and C are as in (5.3). As in the proof of (6.5), our task is to show that (6.7) holds for 
n = 0,1, and 2. Thus, for n = 2, we need to show 

R9Rm,3 +bR4Rm+2 + acR3Rm+1 -c2R2Rm = ARm+4 +BRm+5 +CRm+6. (6.8) 

Using the recurrence in (5.1), we express R3,R4, and R5 in terms of i^, Rl9 and i^. Likewise, 
we express Rm+J for 3 < j < 6 in terms of Rm, Rm+1, and Rm+2. Finally, making these substitutions 
and using a suitable computer algebra package (in our case Mathematica 3.0), it is straightforward 
to verify the validity of (6.8). The verifications for n = 0 and 1 are treated similarly. 

Now to the identities which involve higher powers. We tried to prove (3.2) by first proving 
7 2 

7=0 7=0 

where the at and bi are given in (3.2). Our attempts failed because of the presence of an extra 
parameter. However, we found that we could prove the following "intermediate" identity: 

7 2 

Y<aiPm+iP2n+i=lLbiPm+2n+i' ( 6 1 0 ) 
7=0 7=0 

Our proof, which is similar to the proofs demonstrated previously, requires the following lemma 
which is contained in [6]. 

Lemma: Let {wn} be a sequence of complex numbers defined by 
k 

w
n=Tciw

n-i> (6-11) 
7 = 1 

where cl9..., ck and w0,..., wk_l are given complex numbers with ck > 0. Let h > 1 be an integer. 
Then {w^} is generated by a linear recurrence of order (/2+^~1). 

Using the lemma with h = 2 and k = 3, we see that {p^} satisfies a linear recurrence of order 
6, and, by solving a system of linear equations, we find that this recurrence is 

rn = 2 V l +K-2 + 6 V 3 -rn-A-rn-f C 6 ^ ) 
Furthermore, {p2n} satisfies the recurrence 

rr,=3rn-l+rn-2+rr,-3> ( 6 1 3 ) 

and, since the auxiliary polynomial of (6.13) divides the auxiliary polynomial of (6.12), the 
sequence {p2n} is also generated by (6.12). To complete the proof, we proceed as before. That 
is, we fix m and verify the validity of (6.10) for six consecutive values of n. 

By using this approach, we have also succeeded in proving (3.3), (3.4), and (4.2) by first 
proving the more general identities obtained by the introduction of the parameter m. From the 
lemma, the number of verifications required to prove each of these identities is 10, 15, and 10, 
respectively. 

While we acknowledge that this method of proof is tedious for identities that involve higher 
powers, given the nature of these identities, it seems unreasonable to expect anything else. 

310 [NOV. 



SOME ANALOGS OF THE IDENTITY F* + F„2
+1 = F2n+l 

ACKNOWLEDGMENT 

We are indebted to an anonymous referee whose suggestions led to the generalizations in 
Section 6, which in turn inspired us to discover our method of proof. 

REFERENCES 

1. E. T. Bell. "Notes on Recurring Series of the Third Order." The Tohoku Mathematical J. 
24.1, 2 (1924): 168-84. 

2. M. Feinberg. "Fibonacci-Tribonacci." The Fibonacci Quarterly 13 {\96T)\10-1 A. 
3. H. W. Gould. "The Bracket Function and Fontene-Ward Generalized Binomial Coefficients 

with Application to Fibonomial Coefficients." The Fibonacci Quarterly 7.1 (1969):23-40, 
55. 

4. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. 
The Fibonacci Association, 1979. 

5. A. F. Horadam. "Generating Functions for Powers of a Certain Generalized Sequence of 
Numbers." Duke Math J. 32 (1965):437-46. 

6. A. G. Shannon. "Explicit Expressions for Powers of Linear Recursive Sequences." The 
Fibonacci Quarterly 12.3 (1974):281-87. 

7. R. F. Torretto & J. A. Fuchs. "Generalized Binomial Coefficients." The Fibonacci Quarterly 
2.4 (1964):296-302. 

AMS Classification Numbers: 11B37, 11B39 

1999] 311 



AN EXTENSION OF AN OLD PROBLEM OF 
DIOPHANTUS AND EULER 

And rej Dujella 
Dept. of Math., University of Zagreb, Bijenicka cesta 30,10000 Zagreb, Croatia 

(Submitted January 1998) 

Diophantus studied the following problem: Find three (rational) numbers such that the 
product of any two increased by the sum of those two gives a square. He obtained the solutions 
{4,9,28} and {jl,,-y, ̂ } (see [3]). Euler treated the same problem with four numbers (see [2]). 
He found the solution {^, ^ , ^ , y}. Indeed, we have 

65 9 | 65 } 9 = f l 3 l Y _6f>_._9_+ 65 . 9 (79 
224 224 224 224 \22AJ ' 224 56 224 56 V.H2 

65 .5 65 { 5 f l 5 V _?_._?_ + . 9 9 ( 5 1 

224 2 224 2 1,8 J ' 224 56 224 56 U12 

9 5 , 9 5
= f 1 3 T _ 9 _ .A + A+. 5 Z"7"12 -(?J-224 2 224 2 V 8 ; ? 56 2 56 2 V4 

In the present paper we will construct the set of five numbers with the above property. 
Let {xh ..., xm) be the set of rational numbers such that xtXj +xi-hxJ is a perfect square for 

all \<i <j<m. Since 
XjXj + Xi + Xj = (Xf +l)(Xj + 1 ) - 1 , 

if we put xtr + 1 = axf, / = 1,..., m, we obtain the set {a/r,..., am} with the property that the product of 
its any two distinct elements diminished by 1 is a perfect square. Such a set is called a (rational) 
Diophantine m-tuple with the property D(-l) (see [4], p. 75). If az's are positive integers, such a 
set is also called a P_x-set of size m. The conjecture is that there does not exist a P^-set of size 4. 
Let us mention that in [1], [6], and [7] it was proved that some particular P_rsets of size 3 cannot 
be extended to a P^-set of size 4. In [5], some consequences of the above conjecture were 
considered. 

We will derive a two-parametric formula for Diophantine quintuples and, as a consequence, 
we will obtain a rational Diophantine quintuple with the property D(-l). 

We will consider quintuples of the form {A, B, C, D, x2} with the property D(ax2), where A, 
B, C, D, x, and a axe integers. Furthermore, we will use the following simple result known 
already to Euler: If BC+n = k2, then the set {B, C, B + C ± 2k} has the property D(n). 

Therefore, if we assume that 

BC + ccx2 = k2, A = B + C-2k, D = B + C + 2k, 

then the set {A, B, C, D, x2} has the property D(ax2) if and only if AD + ax2 is a perfect square. 
Hence, we reduced the original (2) = 10 conditions to only two conditions: 

(b2-a)(c2~a) + ax2 = k2, (1) 

(a2-a)(d2-a) + ax2=y2. (2) 
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Our assumptions 
(b2 -a) + (c2 - a)-2k = a2 -a, (b2 - a) + (c2 - a) + 2k = d2 - a 

imply that 4k = (d + a)(d - a). Let d + a = 2p and d - a = 2r. This implies that k-pr and 

b2 +c2-a = | ( a 2 +d2) = p2 +r2. (3) 

Let us rewrite condition (2) in the form (ad - a)2 - aid - a)2 -y2 - ax2. Thus, we may take 
y-ad-a, x-d-a-2r. (4) 

Substituting (3) and (4) into (1), we obtain 

p2r2 - b2c2 - Aar2 - a(b2 + c2 - a) = a(3r2 -p2). (5) 

At this point we make the further assumption [motivated by (3) and (5)]: 
h + c = p+r. (6) 

Now (3) implies 

and (5) implies 

Adding (7) and (8) yields 

pr-hc = f, (7) 

pr + bc = 2(3r2-p2). (8) 

a = 4p2 + 4pr-l2r2. (9) 

From (6) and (7), we conclude that b and c are the solutions of the quadratic equation 

z2-(p+r)z + (pr-^j = 0. 

The discriminant of this equation has to be a perfect square. Thus, 

(p-r)2 + 2a = q2. (10) 

Substituting (9) into (10) we have, finally, 
(3p+r)2-24r2 = q2. (11) 

Hence, we reduce our problem to the solving of (11). However, the general solution of 
the equation u2 - 24v2 = w2 with (u, v,w) = l is given by 

u = e2+6f2, v = ef, w = \e2-6f2\ 

or 

u = 2e2+3f2, v = ef, w = \2e2-3f2\ 

(see [8], p. 225). Thus, we have proved 

Theorem 1: If e = 0 (mod 3) or e = f (mod 3), then the set 

{l(e2 + 6 * / - 1 8 / 2 ) ^ 

f\e-2f)(5e + 6f)^(e2
+4ef-6f2)(6f2

+4ef-e2X4e2/2} 
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has the property D(fe2f2(e2-ef-3f2)(e2+2ef-l2f2)), andtheset 

{±(9f2+6ef-2e2)(2e2
+2ef-f2),±e2(5f-2e)(2e + 3f), 

f2(e+f)(5e - 3/), 1 (3 / 2 + 4ef - 2e2)(2e2 +4ef - 3f2), 4e2f} 

has the property D(fe2f2(e2 -ef- 3/2)(4e2 + 2ef - 3/2)) . 

Substituting e = 5 and / = 2 in (12), we obtain the following two corollaries. 

Corollary 1: The set {^,^-,j^,^,^} ls a rational Diophantine quintuple with the property 
£>(-l). 

Corollary 2: The five numbers —jjj, ^ , ^J, 9, ^ have the property that the product of any two of 
them increased by the sum of those two gives a perfect square. 
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The well-known identity 

has as its Lucas counterpart 

1. INTRODUCTION 

&!+*? = F*»i 0-1) 

Ll^ + L2
n = 5F2n+l. (1.2) 

Indeed, since Ln+1 = Fn+2 + F„ = F„+1 + 2F„ and Lk=Fn¥l + F^l = 2Fn+1-F„, (1.2) follows from 
(1.1). 

As analogs of (1.1) and (1.2) we have 

Fli + Fn~Fli = F3n (see [7], p. 11), (1.3) 
and 

^ + 1 + 4 - ^ - i = 5Z3w (see [4], p. 165). (1.4) 

One aim of this paper is to generalize (l.l)-(l.4). These identities belong to a family of 
similar identities that involve sums of w* powers (meZ, m>2) of Fibonacci (Lucas) numbers. 
As usual, Z denotes the set of integers. Our second aim is to state a conjecture that proposes a 
generalization of this family of identities. We state our conjecture in Section 4. 

2. PRELIMINARY RESULTS 

We require some preliminary results. For m,neZ, 

F_n = (-irlF„, (2.1) 

Z,_„ = ( - l ) "4 , (2.2) 

AW+AI+1 = AiH4 Ai+1 + A»Ai> ' (2-4) 

F3(n+2) = 4F3(n+l) + F3n > (2-5) 

Fl^Wl^eFl^Fl.-Fl (2.6) 

Identities (2.1)-(2.4) can be found on pages 28 and 59 in Hoggatt [3]. Identity (2.5) is a 
special case of (2.3) in Shannon and Horadam [5], and (2.6) occurs as (40) in Long [4]. The 
recurrences in (2.5) and (2.6) are also satisfied by the Lucas numbers. 

We also require the following lemmas. 

Lemma 1: 3F3(m+3) + 6F3(m+2) - 3F3(m+l) - F3m 
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Proof: By (2.5) we have 
^F3(m+3) + ^F3(m+2) - 3 i^ ( w + 1 ) - F3m 

~ 3j^3(m+3) + ^ ( w + 2 ) ~ 3^(>w+l) ~ (^(w+2) ~~ 4 i ^ ( w + 1 ^ ) 
= 3j^3(m+3) + ^ ( w + 2 ) + ^3(/w+l) 

~ 3j^3(>w+3) + 5^3(>w+2) + ^ w + 3 ) ~~ ̂ ^(m+2) 
= ^^(w+3) + J^3(m+2) = ^(w+4)- • 

Lemma2: Let k,neZ with 0 < w < 3. Then 

^3£+l^W+l + F3k+2Fn+k ~ Fn-2k-\ ~ F3k+lF3k+2F3n • (2 -7) 

Proof: We give the proof only for « = 3, since the proofs of the remaining cases are similar. 
For the case n - 3, identity (2.1) shows that we need to prove 

F3k+lFk+A + F3k+2Fk+3 + ^2£-2 ~ 3 4 F3k+lF3k+2 = ° • ( 2 « 8 ) 

This is easily proved by using a powerful technique developed recently by Dresel [1]. Following 
Dresel, we see that (2.8) is a homogeneous equation of degree 6 in the variable k Therefore, to 
prove its validity for all integers ky it suffices to verify its validity for seven different values of k, 
say 0 < k < 6. But (2.8) is easily verified for these values, and so it is true for all integers k. D 

3. THE MAIN RESULTS 

Our generalizations of (1.1) and (1.2) are contained in the following theorem. 

Theorem!: For k,neZ, 

Fn+k+l+Fn-k=F2k+lF2n+l ( 3 1 ) 
and 

Ln+k+l + ^n-k ~ 5F2k+lF2n+l • ( 3 ^) 

Proof: Using (2.1) and (2.3), we obtain Fn+k+l = FnFk + Fn+lFk+l and Fn_k = Fn_{M)+l = 
(-l)k(FnFk+l-Fn+lFk),soth&t 

Ff+k+l + Fn-k - FkFn + FkFn+\ + Fk+\Fn + Fk+lFn+l 

= (Fk+l+Fk)(Fn+l+Fn ) = F2k+lF2n+l-

To prove (3.2), we use (2.4) to show that Ln+k+l = LnFk + Ln+lFk+l and Ln_k = L_(k+l)+n+l = 
(-l)k(LnFk+l - Ln+lFk), and proceed similarly. D 

When k - 0, (3.1) and (3.2) reduce to (1.1) and (1.2), respectively. For our next theorem, 
we use a "traditional" approach to prove the first part and, in contrast, the method of Dresel to 
prove the second part. 

Theorem2: For i ^ e Z , 

^Jfc+l̂ H-Jfc+l + F3k+2Fn+k ~ Fn-2k-l = F3k+lF3k+2F3n ( 3 3 ) 
and 

F3k+l^n+k+l + F3k+2^n+k ~ ^n-2k-l ~ ^F3k+lF3k+2^3n • ( 3 ^) 
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Proof: We proceed by induction on n. Suppose identity (3.3) holds for n - m, m +1, m + 2, 
andm + 3. Then 

"(%+A+fe+l + ^3k+2^m+k ~ ^m-2k-V ~ ~^3k+lF3k+2F3m^ 

~3(F3k+lF(m+l)+k+l + F3k+2F(m+l)+k - F^m+l)_2k-i) - ~3F3k+lF3k+2F3(m+V), 

^\^3k+lF(m+2)+k+l + F3k+2F(m+2)+k ~ F(m+2)-2k-l) ~ ^F3k+lF3k+2F3{m+2y 

HF3k+lF(m+3)+k+l + F3k+2F(m+3)+k ~ F(m+3)-2k-l) ~ ^F3k+lF3k+2F3(m+3y 

Adding, and making use of (2.6), we obtain 

F3k+lF(m+4)+k+l + F3k+2F(m+4)+k ~ F(m+4)-2k-l 

~ F3k+\F?>k+2 i^3(m+3) + ^F3(m+2) ~ 37^(OT+1) - F3m] 

= F3k+\F3k+2F3{m+4) (by L e m m a 1), 

and so (3.3) is true for n = m + 4. But Lemma 2 shows that (3.3) holds for n = 0,1,2, and 3, and 
so it holds for n = 4 and, by induction, for all integers n > 0. 

To establish (3.3) for all integers n<0, it suffices to replace n by -n, and to prove that the 
resulting identity holds for all integers n > 0. That is, it suffices to prove that 

FLlk+l + ( " 0 F3k+2Fn-k + ( " 0 +lF3k+lFn-k-l = F3k+lF3k+2F3n (3 •5) 

holds for all integers n > 0. After making use of (2.1) to simplify (3.5) for 0 < n < 3, the equiva-
lent of Lemma 2 is established as before, and the proof proceeds as above. 

Following Dresel, we see that (3.4) is a homogeneous equation of degree 3 in the variable n. 
Therefore, to prove its validity for all integers n, it suffices to verify its validity for four different 
values ofn, say 0 < n < 3 . For n-3, (3.4)becomes 

F3k+l^k+4 +F3k+2^k+3 ~ ^2k-2 ~ ^^F3k+lF3k+2 
[by (2.2)]. (3.6) 

But (3.6) is a homogeneous equation of degree 6 in the variable k. Therefore, to prove its validity 
for all integers fe, it suffices to verify its validity for seven different values of k, say 0 < k < 6. This 
is easy to verify. We proceed similarly for the other three values of n, and this completes the 
proof of Theorem 2. D 

When k = 0, (3.3) and (3.4) reduce to (1.3) and (1.4), respectively. 

4. A CONJECTURE FOR HIGHER POWERS 

The identity 

K-i) 
7Q+3) 

2 

7=0 
Fm+i . = E F F , v (4 i) 

is a special case of identity (5) of Torretto and Fuchs [6]. Here [j] is the Fibonomial coefficient 
defined for integers m > 0 by 

&]• 
0 / < 0 or / > m, 
1 j = 0,m, 
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For an excellent discussion on generalized binomial coefficients, and a comprehensive list of refer-
ences, see Gould [2]. 

In identity (4.1), m = \ yields (1.1) and m = 2 yields an identity equivalent to (1.3). For 
m = 3 and m = 4, identity (4.1) becomes, respectively, 

# 3 + 2 / & 2 - 2 # i - # = 2 / W (4.2) 
and 

/ & + 3 /&3-«&2-3#i+/V, 5 = 6 J w (4.3) 

Our generalizations in Theorems 1 and 2 prompted us to search for similar generalizations of 
(4.2) and (4.3) and their Lucas counterparts. We accomplished this by introducing the parameter 
k, assuming the existence of an identity of the required shape, and solving systems of simultaneous 
equations to find the coefficients. Indeed, after employing this constructive approach on several 
more instances of (4.1), we were led to a conjecture on a generalization of (4.1). First, we need 
some notation. Write, for example, (F5\4^ = F5F4F3F2 and (F4\6) - F4F3F2FlF_lF_2. In general, 
we take (Fn\m) to be the "falling" factorial, which begins at F„ for n * 0, and is the product of m 
Fibonacci numbers excluding F0. Define (F0\0y= 1 and, for m> 1, (F0\m^ =F_l.,.F_m. We now 
state our conjecture in two parts. 

Conjecture: Let k,m,neZ with m> 1. Then: 

/n\ \" n+k+m-j . / i \ % A n-mk _ p 

/=0 \rm-l-j)(m-l)r(m+l)k+m-j f l J7 
llr(m+l)k+j 

(h) To obtain the Lucas counterpart of (a), we first replace each occurrence of F in the numer-
ators on the left by L. Then, if m is even, we replace the right side by 

52^+i)(»+f)-
If m is odd, we replace the right side by 

tff-p 
r{m+\){n+fj 

When m-\ our conjecture yields (3.1) and (3.2), and when m-2 it yields (3.3) and (3.4). 
For i = 0we claim that part (a) of our conjecture reduces to (4.1), but this is not obvious. It is 
useful to consider an example. If we take m - 4, part (a) becomes 

p5 p5 p5 p5 p5 
rn+k+4 , rn+k+3 rn+k+2 rn+k+\ , rn-4k _ rr (A A\ 
z'r5k+4 r5k+3 r5k+2 jLr5k+l r5k+l"'r5k+4 

Now putting k - 0 we see that (4.4) reduces to (4.3). Indeed, we have performed similar verifica-
tions for 1 < m < 9. With these values of m we have verified that our conjecture is true for a wide 
selection of the parameters k and n. 
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REPRESENTATION GRIDS FOR CERTAIN 
MORGAN-VOYCE NUMBERS 
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1. BACKGROUND 

Properties of representation number sequences {2S„}, {%,} associated with the Morgan-
Voyce polynomials Bn(x) and the related polynomials Cn(x) were recently investigated in [1]. 
Hopefully, the notation and references in [1] will be accessible to the reader. 

Complementary properties of the number sequences {bn}, {cn} associated with the Morgan-
Voyce polynomials hn(x) and the related polynomials cn{x) are now explored. 

With x = 1 in these just-mentioned polynomials, we define the resulting numbers by 

K^K-x-K-i, h = \,bx = \, (i.i) 
and 

c « = 3 ^ r V 2 » % = -\ <i = l. (1-2) 
Accordingly, these numbers are 

H = 0 1 2 3 4 5 6 7 8 . . . , 
bn = 1 1 1 5 13 34 89 233 610 ..., (1.3) 
cn = -1 1 4 11 29 76 199 521 1364 .... 

Consider now the unit coefficient representation sums for bn, cn analogous to those for Bn, 
Cn [1]. Irrespective of the uniqueness or otherwise of the representations (and of questions of 
minimality or maximality), we may assert that, for the representation number sequences {fo„}, 

K = tJK=F2n = FnLn (1.4) 
7 = 1 

and 

/=i 

^ XyM n uuu, 
i, = Z ^ = ^ . - 2 = i " (1-5) 

in terms of the Fibonacci and Lucas numbers F„, Ln. 
Elements of {b„}, {c„} are thus 

1 3 4 5 6 7 8 ..., 
(1.6) 

Why, we may ask, are these numbers worthy of our consideration? Firstly, as mathematical 
constructs they have an inherent interest to the inquiring mind ("because they are there"!). 
Secondly, as the theory—necessarily compact—unfolds, they add a little, however modest, to our 
knowledge of number relationships. Moreover, they complete the theme initiated in [1]. 

n = 0 
b„ = 0 
c„ = 0 

1 2 
1 3 
1 5 

3 4 
8 21 
16 45 

5 
55 
121 

6 7 
144 377 
320 841 

8 
987 
2205 
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2. PROPERTIES OF h , cn 
W ? ft 

One may readily establish the fundamental infrastructure of these two number systems, details 
of which are herewith reported (in pairs, for comparison). 
Recurrences: 

K=3K-i-^n-2, (2.1 
cn = 3c^1-c l_2+2. (2.2 

Binet forms: 

Generating functions: 

Simson formulas: 

Summations: 

In _ oln 
K= a_P

p {ap = \ap=-l\ (2.3 

cn = a2n+j32n-2. (2.4 

J^b^-^ll-iSx-x2)]-1, (2.5 

f ] c^7"1 = (1 + x)[l - (4x - 4x2 + X3)]"1. (2.6; 
7 = 1 

b ^ i b ^ - b ^ - 1 , (2.7; 

c„+ic„-i-c^ = l-2c„. (2.8 

I b ( = F M - l , (2.9; 
7 = 1 

I c , = Z2„+1-(2« + l), (2.10; 
7=1 

i b 2 , = | ( i | „ + 1 - 5 ) , (2.11 
7=1 

I c 2 / = F4n+2-(2« + l), (2.12; 
7 = 1 

2 X - i = ^ , (2.13 
7 = 1 

Zc2,_1 = F4„-2», (2.14; 
7 = 1 

i(-tf+%=jv-(-iri*»iL (2.i5 
7 = 1 

I(- l) / + 1c ,=(-l)"[ l-F2„+ 1] . (2.16; 
7 = 1 
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Other simple properties: 
(2.17) 
(2.18) 

(2.19) 
(2.20) 

(2.21) 
(2.22) 

(2.23) 
(2.24) 

^ - ^ 1 = ^4-2 = ^ 2 - 1 ^ 1 - (2-25) 

K 
c„ 

C-„ = 

-K-i 
- c - i 

b«+b«+l = 

«n + c - i = 

K 
<v 

b - 2 

~ C - 2 

«»» 

= F2n-
= L2„-

: ^ 2 w - l 

5^2n-l 

= ^ „ -
= 5F2„. 

-1? 

1> 

also, 

" 4 , 

-2? 

-2? 

3. THE REPRESENTATION GRIDS 

Next, we introduce the concepts 
b n = b » + l + b - l 

= 3b„ = 3F2„ = wn-®>„_l, 
and 

(3.1) 

(3.2) 

on invoking [1]. 
Repeating the summation process developed in [1], i.e., bj,' = hf

n+l +bf
rl_l, we eventually arrive 

at the more general notations 

b<"> = b£>1+b<3 (b f=b„ ) , (3.3) 
and 

ciffl) = « + cW (<f = c„). (3.4) 

As in [1], these data can be organized in (representation) grids for b ^ and c^\ where m 
denotes columns and n rows. 

Various approaches allow us to validate the properties recorded below, some of which are 
readily obtainable from the patterns in the rectangular grids, which the reader should construct for 
visual emphasis and clarification of the theory. 
Zero subscripts: 

bW = 0 = S8(
0
0), (3.5) 

c(m) = 2(3W -2™) = 288(
0
7w) = -2%^ by [1]. (3.6) 

Negative subscripts: 
b ^ = -b lm ) , (3.7) 
c£? = c£»>. (3.8) 

322 [Nov. 



REPRESENTATION GRIDS FOR CERTAIN MORGAN-VOYCE NUMBERS 

Recurrences: 

(columns) 

(rows) \ 

fbS">=3bS3-b&, 
{cW = 3cW-cW+2'"+1, 

b™ = 3»'bn = 3'»F2„ <=1h<T\ 
cim) = 3mc„ + clm). 

Binetforms: 

Generating functions: 

b{^ = y{a2n-p2n)l{a-P), 

c(™) = 3m(a2"+J32")-2m+l. 

£ bf "V - 1 = 3m[l - (3x - x2)]-1, 
;=1 

£ CWJC'-I = 3»(3 _ 2JC)[1 - (3x - x2)]"1 - 2m+1. 
;=1 

Simson formulas: 

Summations: 

bl:),b(-),-(b(„w))2=-32m
) 

c & a - l c ^ ) 2 = 3m{3m-5-2^L2n). 

Ib<")=3»(F2 B r t - l ) , 
1=1 

Xc,(m) = 3m(Z2„+1-l)-2'"+1». 

O f̂ter simple properties: 
1=1 

b ^ + b ^ - Z ^ also, 
c « + c«=3m-5F2„_1-2(3'" + 2'"), 

c W_ b (m) = 2 aW. 

4. FOREGROUND 

1. Augmented Sequence 
Let us now recall, as in [1], the augmented sequence {2S* (a, 6, k) = 2S*} defined by 

2T„+2 (a, 6, A) = 3SC+1 (a, *, *) - % (a, *,*) + *. (4.1) 
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Initially, assume 

®*(a,b,k) = a, ®*2(a,b,k) = b. (4.2) 

Hence, 

2C+1(l,3,0) = b„, (4.3) 
and 

8S;+1(l,5,2) = c„, (4.4) 
while 

®>*n+l(l,2,0) = bn, (4.5) 

and 

a;+1(l,4,0) = c„. (4.6) 

2. Brahmagupta Polynomials 
Very recently, Suryanarayan showed in [4] and [5] how, by means of the Brahmagupta 

matrix, to generate polynomials xn and yn (Brahmagupta polynomials) which include inter alia 
Fibonacci, Pell, and Pell-Lucas polynomials, as well as the Morgan-Voyce polynomials Bn(x) - xn 

and bn(x) - yn described in [1] and [2]. 
Suppose we express the vital difference equations [4, eqn. (8)], [5, eqn. (9)] in a slightly 

varied notation as 
xn+i = Px„ - Q v i , yn+i = Pyn - Qyn-i • (4.7) 

Selecting P = x + 2, Q = 1, xx -2, x2 = P, and yx = - 1 , y2 -\ (so y3 = x + 3) in (4.7), we readily 
come to the polynomials Cn(x) = xn and cn(x) = yn, which [1], [2] are adjunct to Bn(x) and bn(x). 

3. Further Developments 
These might profitably include, for instance, 
a) properties of b_m c_n (n > 0), 
b) extension of the theory to polynomials b„(x), c„(x) (and also ^„(x), ^^(x) [1]), 
c) construction of a representation table of sufficient scope to afford numerical enhance-

ment of the patterns contained therein, 
d) uniqueness or otherwise of the representation, and 
e) any additional Brahmagupta properties. 

4. Associated Legendre Polynomials 
The author has become aware that the Morgan-Voyce polynomials bn(x) defined in (1.1) are 

essentially the associated Legendre polynomials pn(x) described by Riordan [3, p. 85]. In fact, 
K+i(x)~Pn(x)'-> e8> b3(x) = p2(x) = l + 3x + x2. Properties of pn(x) listed in [3] may then be 
cast in the bn(x) notation. Essential links for the equality of pn(x) and bn+l(x) are the closed 
forms and Chebyshev polynomials results in [3, p. 85] and [2, (2.21) and (4.14)]. 
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1. INTRODUCTION 

A colleague of ours who needed to evaluate the computational complexity of certain algo-
rithms for optimal traffic routing on multi-service networks asked us for a closed-form expression 
for the sum of the first N terms of the sequences {Xn} and {Yn} obeying the second-order non-
homogeneous recurrence relations 

Xn = Xn_x + Xn_2 + k (k, X0, and Xx arbitrary) (1.1) 
and 

Yn = Yn-x+Yn-2+" K = 0 ; i ; = l], (1-2) 
respectively. His request led us to investigate the main properties of the more general sequences 
{Tn(h, k; a, b)} (or simply {7̂ } if no misunderstanding can arise) defined as 

Tn = Tn_l + Tn_2+hn + k [T0=a,T1=b], (1.3) 

where h, k, a, and b are arbitrary integers. In doing so, beyond answering the question posed by 
our colleague, we generalize some results established in [1] and [7]. It is worth pointing out that 
Tn can be expressed either as the third-order inhomogeneous recurrence relation 

Tn=2T„_l-T„_3+h (1.4) 
with initial conditions 

T09TX, andr2 = r0 + 7J+2/i + A:, (1.4«j 

or as the fourth-order homogeneous recurrence relation 
T„ = 3T„_l-2T„_2-Tn_3 + T„_4 (1.5) 

with initial conditions given by (1 A*) and the additional condition T3 - T0 + 27J + 5h + 2k. 
As usual, throughout the paper, Fn and Ln will denote the nxh Fibonacci and Lucas number, 

respectively. 
2. CLOSED-FORM EXPRESSION FOR Tn 

The closed-form expression for Tn is, quite obviously, a powerful tool for discovering proper-
ties of these numbers. From the definition (1.3), by using standard methods (e.g., see [4]), we 
found that 

T„ = AF„_1+BF„-h(n + 3)-k (2.1) 
where 

(A = 3h + k + a, ( . 
\B = 4h + k+b. K } 

The reader can immediately check that (2.1) and (2.2) satisfy both the recurrence and the 
initial conditions in (1.3). This fact proves the validity of the above expressions. 
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By using (1.3) or (2.1) and the well-known identity F_n = {-Tf~lFn, the extension of Tn 

through negative values of the subscript n is readily obtained. Namely, we get 

T-n = Tn+2hn-\fh
+l + 2b-a^ J"ev;;>' (2.3) 

n n [(3h + k+a)Ln (n odd). v } 

Observe that the second identity of (2.3) is formally independent of b. 
Special eases: 

rrt(0,O;O,l) = F„, (2.4) 
£(0,0; 2,1) = 4 , (2-5) 
%(P,k;a9b) = Xn (see (1.1) and [1]), (2.6) 
Tn(i, 0; 0, l) = Yn = Fn+4-n-3 (see (1.2) and Seq. 1053 of [5]), (2.7) 
Tn(h,h;h,h) = h(Ln+3-F„_2-n-4), (2.8) 
TMk0,0) = k(Fn+l-l). (2.9) 

3. SOME SPECIAL PROPERTIES OF THE SEQUENCES {TJ 

Here we point out three properties of the sequences {Tn} that seem especially interesting to 
us. Their proofs are given in foil detail. Let us state the following. 
Proposition 1: For an arbitrarily given integer m, we have 

Tn{K k; a, b) = Tn_m{K k+mh; Tm(h, k; a, ft), Tm+l(K k; a, b)). (3.1) 

Proof: Use (2.1) and (2.2) to rewrite the right-hand side of (3.1) as 
[3h + k+Mh + AFm_l + BFm-h(m + 3)-k]FM 

+ [4h +k +mh + AFm +• BFm+l - h(m + 4) - k] Fn_m -h(n-m + 3) -k - mh 
^[AF^ + BFJF^+iAF^B 

= MFm-lF*-m-\ + FmFn-m) + B(FmF
n-m-l + Fm+lFr,-m) " K" + 3) - & 

= AFn_l+BF„-h(n + 3)-k = T„(h,k;a,b) [from I26 of [3] and (2.1)]. D 

Proposition 2: For given integers h, k, a, b, hh and all n, we have 

Tn(h,k;a,b) = Tn(hl,k-(n + 3)s;a + ns,b + (n-l)s), (3.2) 
where s = hl-h. 

Proof: From (2.1), it is patent that identity (3.2) can be obtained by solving the system 

fj4 = 3/i1 + £1+a1, 
1^ = 4*! + ̂ +*!, (3.3) 
[h(n + 3) + k = hx(n + 3) + kv 

Put hx = h + s in (3.3) and use the third equation to obtain kl-k-{n + 3)s. Then use (2.2), 
and replace the above expression for kx in the first two equations of (3.3) to get al=a+ns and 
^ = ft + (fi-l)$. D 

Finally, we observe [see (2.7)] that there exist values of the parameters (/?, k\ a, b) for which 
Tn has the form 
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Tn=Fm+p(n): (3.4) 

where p(n) is a first-degree polynomial in n. Whereas such a problem is put forward: find condi-
tions on {h, k; a, b) for Tn to have the form (3.4). We give the following proposition. 

Proposition 3: For arbitrarily given integers a, b, and s, we have 
TM-i+^~^b-Ls_2--4a;a,b) = Fn+s-n(Fs_l+a-b)-Fs+a. (3.5) 

Proof: From (2.1), (2.2), and I26 of [3], it is evident that (3.4) can be obtained if 

\A = 3h + k+a = Fs, 
[B = 4h + k+b = Fs+l. 

(3.6) 

Subtracting the first equation of (3.6) from the second equation, one obtains 
h = Fs_l+a-b, (3.7) 

and from the first equation, 
k = Fs-3h-a = Fs-3Fs_l-4a + 3h [from(3.7)] 

= 3Z>-4_2-4a. (3.8) 

Expressions (3.7) and (3.8) give the left-hand side of (3.5). Its right-hand side can be 
obtained from (2.1) and (2.2), after some manipulation involving the use of the identities 
3iVi ~ 4-2 = 4 , 4 4 - i " 4-2 = 4+i> and I26 of [3]. D 

Examples: The right-hand side of (2.7) emerges from the choice (a,b,s) = (0,1,4). As a further 
example, the choice (a, b, s) = (10,7,8) yields the numbers 2 (̂16, - 37; 10,7) = 4+8 - 16w-11. 

4. BASIC IDENTITIES INVOLVING THE NUMBERS Tn 

Here we give a brief account of the basic identities involving the numbers Tn. To save space, 
the number of detailed proofs will be kept to a minimum (Subsection 4.2). 

4.1 Results 
Generating function 

By using (2.1), (2.2), and [6, p. 53], we get 

y „ T _ (h + k+a-b)x3-(2h + k + 3a-2b)x2+(3a-h)x-a ' (4 U 
^0

X n" x4-x3-2x2+3x-l .- ' ) 

Observe that, for Tn = Yn [see (1.2)], the numerator on the right-hand side of (4.1) collapses 
to -x . 
Simson formula analog 

= (-l)"C + (/tf* + £ ) ( ^ ^ 

where 
C=A2 + AB-B2 = 5h(h + k + 2a-b) + k(k + 3a-h)+a2+ab-h2. (4.3) 
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From (4.2), (4.3), and (2.7), we see that 

a(Yn) = nFn+l-2Fn + l-(-iy. (4.4) 
Sums and differences 

[4 , [T„ + h(n + 3) + k] - 2[/?(w + 3) + k] (m even), 
Fw K + 2Tn_x + A(3» + 7) + 3*] - 2[h(n + 3) + k] (m odd). Tn+m + T„„m = ,, r „ . „^ . ,.,„.. . m . „ t l „,,.,„ . „ . t l ,_.. , , (4.5) 

[Fm[T„ + 2T„_X + h(3n + 7) + 3£]-2hm {m even), 
7"+m_:?"-'M = {zm[r„+%+3)+/t]-2/?/M (j» odd). ( 4 ' 6 ) 

Duplication formula 
For « even (resp. odd), let m = « in the first (resp. second) identity of (4.5) [resp. (4.6)] to 

obtain 

Observe that (4.7) is formally independent of h. 
Finite sums 

71=0 Z 

From (4.8), (1.1), (1.2), (2.1), and (2.2), we obtain the special identities 
$N(T^X) = fc(FN+3-N-2) + X0FN+l + Xl(FN+2-l) (4.9) 

and 
SN(T=Y) = FN+6-(N2 + 7N + l6)/2, (4.10) 

which answer the questions that gave rise to our study. 
Further, we get the identities: 

JL USATl.il M2 n AT 1 C* hS AT2 V T ATT T h(N3 + 3N2-7N-l5) k(N2-N-4) , _, / / l i n 
2 ^ ^ = ^ 7 ^ + 2 - 4 + 3 - 1 . "—~ 7> l + a + 2h, (4.11) 
«=o J z 

l f ^ V „ = ^ - ^ [ 2 W - 1 ( ^ + 6)-2iV-3]-A:(2Ar-l), (4.12) 

i f ^ ( - i ) w - " 2 " r 2 n = r3„ -hN, (4.i3) 

the last of which generalizes (19) of [7]. 

Convolution (for Tn = Yn) 

±Y„YN_, , * W ^ - W * ' + ' ^ ' + " W + 6 s (4,4) 

-H8.-*Hl~ + »'*X"Z + aW+<* (414') 
where J^(1) denotes the rfi1 term of the Fibonacci first derivative sequence [2]. 
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4.2 Proofs 
Proof of (4.2) (a sketch): From (2.1) and (2.2), after a good deal of calculation involving 

the use of some well-known Fibonacci identities ([3], [6]), one gets 

cr(Tn) = (-iyC+h2
 + A[(hn + k)Fn_4-2hF„_5] + B[(hn + k)Fn_3-2hF„_4] 

= (-iyC+h2 + (hn + k)(AF„_4 + BF„_3)-2h(AFn_5 + BFn_4) 
= (-1)"C + (hn + k) Tn_3 - 2hT„_4 + h2 + (hn + kf - 2h2(n -1) - 2hk, 

whence (4.2) is immediately obtained. • 

Proof of (4.6) (for m even): By using (2.1) and (2.2), rewrite the left-hand side of (4.6) as 
A(F„+m_l - F„_m_!) + B(Fn+m - F„_J - 2hm 

= AL„_xFm + BL„Fm - 2hm (from I24 of [3]) 
= Fm(AL„_y + BL») - 2hm = Fm(AF„_2 + BF„_, + AF„ + BFn+l) - 2hm 
= Fm{Tn_, + Tn+1+2[h(n + 3) + k]}-2hm 
= Fm[T„ + 2T„_1+h(3n + 7) + 3k]-2hm [from (1.3)]. D 

Proofs of (4.8), (4.11), and (4.12): From (4.8) and the recurrence (1.3), write 

«=0 w=0 w=0 
N-l N-2 ( N > 

= yZT„+y£i; + H \H:=Y,(hn + k) 
n=-l n=-2 V »=0 J 

= SN(T)-TN + Tl + SN(T)-TN-TN_1 + T_1 + T2+H, 
whence 

SN(T) = 2TN + TN_, - 27_, - T_2 - h 
= TN + TN+l-h(N + l)-k-(T_1 + T0-k)-H [from (1.3)] 
= TN+2-h(N + 2)-k-h(N + \)-k-(Tl-h-2k)-H 
= TN+2-2h(N + l)-b-H. (4.15) 

Take the meaning of H into account and use (4.15) to obtain (4.8). The identities (4.11) and 
(4.12) can be proved by means of a similar technique. • 

Proof of (4.13) (Hint): 
(i) Identity (4.13) can be proved by means of the technique used by Zhang [7] after replac-

ing (18) of [7] by the identity Tn = 2Tn_x - Tn_3 +h, which can be obtained readily from (1.3). 
(ii) Alternatively, use (2.1) to rewrite the left-hand side of (4.13) as 

(-1)" \4L{^) (-2)"^-, + Bjjfy (-2)"F2„ - f (f) (-2)" [h(2n + 3) + *] j , 

and use the Binet form for Fibonacci numbers along with (3.3) and (3.4) of [2]. • 
Proofs of (4.14) and (4.14f): First, use (2.7) and the Binet form for Fibonacci numbers to 

get 
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Y„YN-„ = (Fn+4 -n- 3)[FN_n+4 + „ - (tf + 3)] 

~5 
_LN+S ( l)"LN_2n+nF^_{N + w ^ _ n F ^ ( 4_16) 

-n2+nN-3FN_„+4+3(N + 3). 

Then, after denoting the left-hand side of (4.14) by CN and letting S[x(ri)]:= T,%=0x(ri) for 
notational convenience, use (4.16) to write 

CN = ±S[LN+S] - \S[(-\)"LN_2 „]+S[nFn+4] - (N + 3)S[F„+4] 

-S[nFN_n+4]-S[n2]+NS[n]-3S[FN_n+4]+3(N + 3)S[l] (4.17) 
! — Ul U j "T OTJ U4 Oe Ug ~T Oj ~ Ug 4" Op. 

By using the Binet forms for Fibonacci and Lucas numbers, the geometric series formula and 
some well-known identities (I: and I40 of [3] inclusive), one obtains the partial results, 

(i) SX = (N + \)LN+%I5, (vi) S6 = N(N + l)(2N + l)/ 6, 
(it) S2=2FN+l/5, (vii) S7 = N2(N + l)/2, 

(iii) S3 = NFN+6-FN+7 +13, (viii) Sg = 3(FN+6-5), 
(iv) S4 = (N + 3)(FN+6 -5), (ix) S9 = 3(N + 3)(N +1), 
(v) S5 = FN+1-5(N + 4) + 7, 

among which (ii) is quite interesting per se. Finally, from (4.17) and (i)-(ix), one finds 
^(N + l)LN+s-2FN+l _ N3 + 1W2 + 131N 

from which, by applying properties of Fibonacci-Lucas sequences, (4.14) can be obtained immedi-
ately. The right-hand side of (4.141) can be found by using (2.5) of [2] to rewrite the first two 
addends on the right-hand side of (4.14) as 

FNI& + CV+8 + V̂+IO ~ 8ZW+8 - 5LN+9) / 5 = FNI% ~ 4(LN+10 + LN+s) /5 

= F(%-4FN+9 (from I9 of [3]). D 

"5. FURTHER WORK 

From (4.14), one may observe that 
Q,:=(nLn+g + F„+l0)/5 (5.1) 

is an integer for all n. In fact, it is immediate to check that Qn obeys the recurrence 

a=Gu+&-2+Jw7 [&=n;a=33]. (5.2) 
This fact suggests the idea of studying properties of the more general sequences {£?„(£)}, 

defined by 

a(*)=a-i(*)+a-2(*)+^ [&(*)=«; ac*)=*L (5.3) 
the elements of which have the closed-form expression 

Qn(k) = aFn_l+hFn + (nLn+k+l-Lk+2Fn)/5. (5.4) 
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Much more generally, one might investigate properties of the sequences {R„}, defined by 

Rn^K-i+Rn-i+f* [Ro = a-Rx=bl (5.5) 

where fn is any integer-valued function of n. This study will be the aim of a future paper. For 
the time being, we confine ourselves to showing a compact form for R^. Namely, we get 

Rn = aFn_l+bFrj^frFn_rH. (5.6) 
r=2 

Observe that, as special cases, Rn = Q„(k) (resp. Tn) for /„ = Fn+k (resp. hn + k). It can be 
noted that letting fn = hn + k in (5.6) yields the expression 

^ = Tn=aFn_l+bFn+h(Ln+2-n-3)+k(F^ (5.7) 

which can be proved easily to be an equivalent form for (2.1). As further special cases, we urge 
the interested reader to prove that, if fn = Xn, then 

R„ = (a-l)Fn_l + (b-X-l)Fn+
A

 X2 "x^i- ( 5 8 ) 

whereas, if /„ = F„ (resp. L„) and (a, b) = (0,1), then 

^ = Qn(0) = "L"+1 + 2F" = (p + 1)Z,"+1" F"+l = /%j (5.9) 

(see (5.4) and [2]), and 
R„ = nF„+1, (5.10) 

respectively. 
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In [1], Dazheng studies Fibonacci matrices, namely matrices M such that every entry of every 
positive power of M is either 0 or plus or minus a Fibonacci number. He gives 40 such four-by-
four matrices. In the following, we give an interpretation of these matrices, from which we give 
simpler proofs of several of his theorems. We also determine all two-by-two Fibonacci matrices. 

Let £ = e2mls be a primitive fifth root of unity. Then £" is a root of the irreducible polynomial 
X4 + X3 + X2 + X + l, so the field Q(Q is a vector space of dimension 4 over Q with basis 
B = {1, Cj, ^2, C3} • The ring of algebraic integers in Q(£) is Z[£]. The units of this ring are of the 
fo rm( -£T^ , 0<m<9, TIGZ, where ^ = (1 + V5)/2 = H^ 2 +C 2 ) -

If a G Q ( ^ ) , then multiplication by a gives a linear transformation of Q(£), regarded as a 
vector space over Q, and hence a matrix M{a) with respect to the basis B. For example, let 
a = 0 = -(C2+<;3). Then 

f ^ - ^ - C 4 = i-i+K+K2, 

<K3 = - M - K . 
Therefore, 

M ( 0 = 
(0 

0 
-1 
-1 

1 
1 
1 
0 

-1 

This is the transpose of the matrix Fl0 of [1]. Similarly, we have the following matrices: 

m&)= i 
- i <n 
- i - i 
0 -1 

0 1 0 0 
M(?f) = 

(0 -1 0 
1 -1 -1 
1 0 -1 

v l 0 0 

0 
-1 
-1 

M(<rv) *A\ -

(0 0 1 0̂ 1 
- 1 0 1 1 
- 1 1 0 0 
- 1 0 1 - 1 

M{<jTl) = 
f-\ 1 0 - ] 

0 0 1 - ] 
- 1 1 0 0 
-1 -1 0 -1 

M(<rV)= 

Mitf1) 

- 1 0 0 
-1 -1 0 
0 -1 -1 
0 0 - 1 

n 
1 
1 
0 

M(£2f1) = 
(Q -1 1 -\\ 

1 - 1 0 0 
0 0 0 - 1 
1. -1 1 - 1 , 

, M(£Y1) = 
'f-\ l - l O 
- 1 0 0 0 
0 0 - 1 1 

.-1 1 -1 Oj 

(\ 0 - 1 \\ 
0 1 - 1 0 
1 0 0 0 
0 1 - 1 1 

M(CYl) = 
(\ -1 1 0\ 
0 0 0 1 
0 - 1 1 0 
1 -1 0 \j 

In the notation of [1], these are the transposes of the matrices F20, FH, F3, F%, F4, Fl6, Fn, F2, 
and Fl5, respectively. Letting F2l_j = -Ft gives a set of 20 matrices corresponding to the numbers 
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±Cm<f>n, 0<m<4, n = ±l. Note that any one of these numbers (often called fundamental units), 
together with - £ , generates the group of units of Z[£]. 

Various properties of the matrices Fi follow immediately from the above. The following four 
propositions can be proved by straightforward calculations, but it is perhaps more interesting to 
see "conceptual" proofs. 

Proposition 1 (= Proposition 4 offlj): Let 1 < i < 20. There exists k such that F~l - Fk. 

Proof: Let Ft correspond to s = ±C"f- Let Fk correspond to s~l = ±Cmfn. Then FtFk 

corresponds to multiplication by e~ls - 1, so FtFk -1... D 

Proposition 2 (= Proposition 5 offlj): Let 1 < i < 20. Then det(^) = 1. 

Proof: The determinant is the norm of the corresponding number (see [3]). It is well known 
that the norm of a unit (of the ring of algebraic integers) is ±1. Since the norm of a number from 
Q(0 can be expressed as a product of two numbers times the product of their complex con-
jugates, the norm must be nonnegative. Therefore, the norm of a unit is 1. Since the numbers 
±^n<j>n are units, the determinants of the corresponding matrices must be 1. • • 

Proposition 3 (= Proposition 6 of[lJ): Let 1 < /, j < 20. Then FjFj =FJFi. 

Proof: Multiplication in Q(£) is commutative; therefore, multiplication of the corresponding 
matrices is commutative. D 

(i i i n 
-1 0 0 0 
0 - 1 0 0 ' 

[o o - l o) 

An easy calculation shows that A is the transpose of M(-^4). Note that the powers of -<^4 give 
all ten tenth roots of unity in Q(Q. 

Proposition 4 (= Proposition 7 of [1]): Let 9X = {Fk \ k = 1, 3, 7,8,10,11,13,14,18,20} and let 
&2 = {Fk | * = 2,4,5,6,9,12,15,16,17,19}. 
(a) Let i = 1 or 2. Given Fh, Fk <E % there exists Fn e 9t such that FhFk = ±Fn

2. 
(h) If Fh G 3\ and Fk G 3F2, then there exists n such that FhFk - An. 
(c) Let/ = 1 or2. If^,/% GS^, then ^10w = ̂ 10w for all WGZ. 

Proof: The matrices in Ŝ  correspond to numbers of the form ±C"<f> and those in 3*2 corre-
spond to numbers of the form ±(£m<f>~1. The properties of the matrices now follow from the form 
of these numbers. D 

We now come to the main theorem. It was proved in [1] by fixing indices 1 < h<20 and 
0</ < 9 and expressing the entries of F™k+1 in terms of Fibonacci numbers of the form ±Fak+b or 
0 for k = 0,1,2,.... This gives the additional information that, for each index h, each Fibonacci 
number occurs in F£ for some n (in fact, this property was included in the definition of a Fibo-
nacci matrix in [1]). With a little more care, this can be deduced from the following proof. 

Define the matrix 

A = 
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Theorem 1 (= Proposition 1 of[lJ): Let 1 < h < 20 and let n be a positive integer. Every entry 
of F£ is either 0 or ±Fm for some Fibonacci number Fm9 where m = n -1, n, or n +1. 

Proof: Fix ?i > 1. For each a mod 5, let 

sM= £ ("X 
/sfl (mod 5) 

Lemma 1: 5g„{a) = ^UCa\^C)n-
Proof: The right side is 

y=oV /̂ /=o 

Since Zf=0 Ch = 0 when £ # 0 (mod 5) and equals 5 when h = 0 (mod 5), the result follows. D 

Lemma 2: For any values of a and h, the difference gn(a)-gn(h) is either 0 or ±i^ for some 
Fibonacci number Fm, where m = n - 1 , w, or w +1. 

flrw/- Using the fact that l + £ = -C~V, l + ̂ 2 = ̂ " 1 , 1 + £ 3 = C V ~ \ and l + £4 = -<V, 
we find that 

5s,(«)-5&(6)=tro,(i+r)" - £<r*'(i+<rr 
— / _ //%\n (/"a+^n 4- f~a~2n _ fb+2n _ f—b—2n\ 

Since a + 2w = 2(fi - 2d) (mod 5), we find that we have the following cases: 

(1) Ca+2n+Ca~2n = £+Cl = fl and C~2a+Cn+2a = C2 + C3 = -0, 
(2) £a+2w + Ca~2n = C2 + C = "^ and ^~2 a + Cw+2a = £+<T* = ^_1, 
(3) Ca+2n+C"-2* = 2 and C~2a + C"+2* = 2. 
Similarly, we have three cases for the terms involving h. 

The coefficient of (-f)n is therefore 0 or one of the following: 
(a) ±(r1-(-^))-±V5, 

.(b) ±(r1-2)==FV5r1, 
(c) ±(-0-2) = Wty. 

The corresponding coefficients of $~n are 0 and +^5, + ̂ 5^ , and +J5$~l, respectively. 
Putting everything together, we find that 5gn(a) -5gn(b) is, up to sign, either 0 or one of the 

following: 

V5((-^-rn)=(-i)"5F„, 
V5((-^r1-r"+1)=(-ir15JF„_„ 
V5((_^ri_r«-i) = ( _ i r i 5 F n + i . 

This proves the lemma. D 
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We can now prove Theorem 1. The matrix Fh
n corresponds to a number of the form 

{±Cn<t>±l)n, which is of the form ±<^(l + £»w or of the form ± ^ ( l + ̂ 2)w. We may ignore the + . 
Consider first Ca(l + Qn. We must multiply this times a power of ^ and then express the 

result as a linear combination of elements of the basis J5. Since the exponent a is already arbitrary, 
we need only show that when we express a number of the form a(\ + Qn in terms of B the coef-
ficients are Fibonacci numbers (up to sign) or 0. By the binomial theorem, we have 

CQ + O" = t("j]CJ+a = i>„('-«)<r=t(Sn(i-a)-g„(4-a))C. 
j=Q\Jy / = o 1=0 

Lemma 2 yields the result in this case. 
Now consider <^(l + ̂ 2)w, which equals 

1L(i)t2j+a = E & ( 3 - 3 a t f [since 2j+a = i (mod 5) =>73=3-3a] 

= i(S,(3» ,-3fl)-«,(2-3a))^. 
1=0 

The result again follows from Lemma 2. D 
The Two-by-Two Case 

Theorem 2: Let M be a two-by-two matrix such that each entry of Mn for n = 1,2, 3,... is either 
0 or plus or minus a Fibonacci number. Suppose in addition that not all of the entries of Mn are 
bounded as n —> 00. Then ±M is a power of one of the following matrices: 

(0 ± 1 W 1 ± 1 W 2 ±1) (-1 ±1) 
{±1 i )> [±\ o)> [+\ -\y \+\ 2)-

Remark: It is well known, and will follow from the proof of the theorem, that 

and that 

From the point of view used above, the first matrix arises from multiplication by <j> with respect to 
the basis {1, (/)} of Q(V5), and the second matrix arises from multiplication by (f> with respect to 
the basis {l,</>2}. 

Proof: We start with the following. 

Lemma 3: Suppose an, n - 1,2,..., is a sequence of nonzero integers such that each an is plus or 
minus a Fibonacci number and such that X = lim an+l I an exists. Then X is of the form ±<j>r for 
some integer r > 0. If the sequence an is unbounded, r > 1. 

Proof: Let aw = ± i ^ . The limit 2 cannot be of absolute value less than 1 since the an are 
integers. Clearly, X = ±l is equivalent to the boundedness of a„, so henceforth assume the 
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sequence an is unbounded. It follows easily that limF^ =oo? hence X\mmn = oo. Therefore, 
l i m i ^ / ^ = l / V 5 , s o 

lA|=lim m"+l
m <j)m^-mn =lim^»+i-^. 

Since the powers of <f> are discrete in the positive reals, mn+l-mn must eventually be constant, say 
r. Since mn-^co> r > 1. This proves the lemma. D 

Since the elements of the powers of a matrix satisfy a second-order recursion, we need the 
following result. Recall that we can define Fibonacci numbers for negative indices by F_n = 

Lemma 4: Let aha2,... be an unbounded sequence of integers satisfying a second-order linear 
recursion with constant coefficients: an+2 - uan+l+van. Suppose each an is either 0 or ±Fm for 
some Fibonacci numbers F . Then there are integers r and s (possibly negative) and a choice 
8 - ±1 of sign, independent of n, such that an - SFrn+s for all n (we allow Fibonacci numbers with 
negative indices; see above). 

Remark: This result follows, for example, from work of van der Poorten (see the remarks at the 
end of this article). However, it seems reasonable to give a self-contained proof. 

Proof: We have not assumed that the coefficients u, v of the recursion are rational numbers, 
so we first show that this must be the case. The recursion shows that each vector (an+l, an) is a 
linear combination of (a2,aj) and (a3,a2). Suppose detfj j l = 0. If a{=0, then a2 = 0, so 
an - 0 for all n, contrary to our assumptions. Therefore, assume ax ^ o. Then all these vectors 
are multiples of (a2, ax), which implies that 

for all n>\. Therefore, \an\ ->oo (otherwise l ^ / a j < 1 and the sequence is bounded) and 
an+\lan I= a2 Ia\- Since \an \ is a Fibonacci number [it cannot be 0 by (1)], Lemma 3 implies that 
a2lax~ ±<t>r for some r > 1. Since all positive powers of ^ are irrational, this is impossible. This 
contradiction shows that the determinant is nonzero. 

Since 

2)(" 
and the matrix is invertible, the rationality of ax, a2, a3, a4 implies that u and v are rational. 

Remark: The recursion an+2 = 7mn+l + (4-27r)an, which is satisfied by the rational numbers 
an - 2W, shows that the rationality of the numbers an is not sufficient to guarantee that u, v are 
rational. 

Let a and fi be the two roots of X2 - uX - v. If a * ft, then there are constants A and B 
such that an- Aan + Bf3n. There are several cases to consider, depending on the relative 
magnitudes of a and p. 
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Casel. \a\ > \fi\ 
If A = 0, we can replace the pair (a, /?) by (fi, 0) in the following argument (and eventually 

conclude that A ^ 0). Therefore, assume A & 0, so lim an+l/an = a. Since the sequence is un-
bounded, \a\ > 1, so an * 0 for all sufficiently large «, and each a„ is plus or minus a Fibonacci 
number. By Lemma 3, a-±(j>r for some r > l . Therefore, a is irrational, so the polynomial 
X2 - uX - v is irreducible in Q[X]. Since J3 is also a root, it must be the conjugate ±(-$)~r of 
a. 

Let a - sign(a), so a - a<j>r. Let 5n be the sign of an. Note that 

A = lim -

This implies that <5W = sign(>4)<jw for w sufficiently large. Also, an - SnFm , so 

Therefore, 
dT" V5 

A = lim ̂ Sna-n(j>mn-nr = s i g ^ l i m ^ 

Since the powers of ^ are discrete, eventually /ww - wr must stabilize: there exists 5 G Z such that 
mn-nr -s for all sufficiently large n. This also yields A = ±</>s 145. Since the terms with ™̂ 
cancel in the equation 

^ T +*(o( -0 - r ) " = «„ = « „ = sign(^)a"Fra+J 

_ Slgn(^4)q- /Arn+s _ f_A-lyn+s\ 

it follows that B - -sign(A)(-<f>)~s IV5. We have proved that an - ±(±l)nFrrj+s. By changing the 
signs of r, s if necessary, we can absorb the (+l)w. This yields the result of the lemma in Case 1. 

It remains to show that the other cases do not occur. 
Case 2. a--p 

In this case, u = a+/3 = 0, so the recursion is an+2 -van. Since the sequence is assumed to 
be unbounded, |v| > 1 and some a * 0. Therefore, a +2k+21a^+ik = v2 e Q. Since the numbers 
anQ+2k - an^lk a r e nonzero, they are Fibonacci numbers up to sign. Lemma 3 implies that v2 - <jf 
for some r > 1. This is impossible. 
Case 3. a = /? 

In this case, an- Aan + Bnan. Hence, an * 0 for sufficiently large n, and lim an+l/an = a. 
By Lemma 3, a = ±(/>r for some r > 1. Since a = u 12 e Q, this is impossible. 

Cme 4. a = /3, a * ft 
Since an = Aan+Ban^ Q for all n, we must have B=A. Write A = Reiy and a = pew. 

Then 

an = Rpnein9Mr +Rpne~in0-ir = 2Rpncos(n0 + y). 
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Suppose first that 012K £ Q. By a theorem of Weyl (see [2], Theorem 445), the sequence of 
fractional parts of ndlln is uniformly distributed in the interval [0,1]. In particular, there is a 
sequence of integers nf such that nfi I 2K + {0 + 2y) I 4K -kt is very small for some integers kf, 
and the limit is 0 as i -» oo. Therefore, cos{nt0 + y) is very close to cos(2^t;. -0/2) = cos(-0/ 2) 
and cos((n+l)0 + p) is very close to cos(0/2) = cos(-0/2). Therefore, lima„.+11an = p. 
Lemma 3 shows that p-f for some r > 0. But v = afi = p2 , so ^2r e Q>, which implies r = 0. 
Therefore, the sequence an is bounded, contrary to assumption. 

Now suppose that 0/2K = WIz G Q , where w,z-eZ. Choose . j % such that an * 0. Then 
a«o+(fc+i)z / a«0+fe - Pz for £ = 0,1,2,.... Lemma 3 implies that pz = (jf for some r > 0. Therefore, 
^2r = p2z = vz G Q, so r - 0, which is impossible. 

It is easy to see that Cases 1-4 exhaust all possibilities for a, /?. This concludes the proof of 
Lemma 4. D 

Corollary: Suppose A,B, a,/? are complex numbers such that for each n>\ the number an = 
Aan+B(5n is either 0 or plus or minus a Fibonacci number, and such that the sequence an is 
unbounded. Then there are integers r > 1 and s such that (assume \a | > |/?|) 

a = ±f, P = ±(-<t>Tr 

and 

Proof: This is a restatement of what was proved above, combined with the fact that the 
sequence an uniquely determines the numbers A,B,a,J3.D 

We can now prove Theorem 2. Suppose the matrix Mis as in the statement of the theorem, 
and let a,fi be the roots of the characteristic polynomial ofM The case a = ft corresponds to 
Case 3 in the proof of Lemma 4, and the reasoning below shows that it cannot occur, so we 
assume a ^ ft. Then M is diagonalizable, so there are complex numbers a, b, c, and d with 
ad = bc^0 such that 

w _ _ ! _ ( * b\(a 0\(d -b M~ad-bc{c d){0 ft){-e a 
Therefore, 

Mn = ada"-bcftn -ab{an - ft") 
ed(a"-ft") adftn-bean ad-bc\ 

We assume \a\ > \ft\. By the Corollary, 

for some integer r. Since not all entries are bounded, r > 1. If ad = 0 then be * 0; looking at 
the first entry in the matrix yields /T e Z for all w, which is impossible. Similarly, be * 0. By the 
Corollary, 

-4*C = ±-C and - ^ - = Ti ad-be 4S ad-be V5 
for some integer 5. Therefore, 
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ad be 
be - S ad-be ad-

SO 5=±1,±2. 
Consider the upper right corner of Mn. Since ab^O, the only possibility allowed by the 

Corollary is ab I {ad -bc) = ±l/j5. Similarly, cd I {ad - be) - ±1 / V5. Therefore, ab = ±cd. 
Since the matrix (l/

Q
a jjO commutes with (<% ®\ we can replace the matrix (a

c %\ with 
(a

c jYl/
0

a ^ l and, therefore, assume a = d = l. This makes the calculations simpler. We now 
have the following equations (the choices of signs are independent): 

1 _ ad/{ad-be) 
be b = ±c, {-<j)2)\ s = ±l ,±2. bcl {ad-bc) 

Since a,/3 G Q ( V 5 ) , the diagonalizing matrix (a
c %\ may be assumed to have entries in Q(V5). 

Therefore, the case b = c, s=±l and the case b = -e, s = ±2 cannot occur. Checking all solu-
tions in the remaining cases and substituting into the formula for M shows that ±M is the r* 
power of one of the matrices in the statement of the theorem. The same calculation yields that 
each entry of the powers of the matrices in the theorem is plus or minus a Fibonacci number. This 
completes the proof of Theorem 2. • 

In [1], the problem is posed to find all four-by-four Fibonacci matrices. This can be attacked 
by the above method. One difficulty is proving the analog of Lemma 4 for fourth-order recur-
rences. A result of van der Poorten ([4], pp. 514-15) says that if an infinite sequence of elements 
{ho,h, •••} chosen from the members of a nondegenerate (i.e., no ratio of characteristic roots of 
the recurrence is a root of unity) recurrent sequence {a0, ah...} again forms a recurrent sequence, 
then there is an integer d > 0, and a set R of integers r with 0 < r <d, such that for all h we have 
bh = a^+hd and rh e R is periodic mod d. Since the entries in the powers of a matrix form a recur-
rent sequence, and the Fibonacci numbers form a nondegenerate sequence, this result applies, and 
we find that the eigenvalues of the matrix must be roots of unity times powers of </>. This reduces 
the problem to the consideration of several cases for the characteristic roots. 

The other difficulty is the calculation involving the matrix (° %\, since it must be replaced by 
a four-by-four matrix. The calculations are probably possible, but surely would be more difficult. 

To conclude, we give a few more four-by-four Fibonacci matrices. They are not as good 
examples as Fh...,F2o since they all have powers that are reducible. However, they indicate vari-
ous possibilities that can arise. They were chosen using the fact that their eigenvalues must be 
roots of unity times powers of (j>. 

Let 
M = 

(0 
0 
0 
1 

0 
0 
1 
1 

0 
- 1 
1 
0 

-I) 
- 1 
0 j 
1 

This is obtained by considering multiplication by C,<j> on the basis ({1, ^,.£ £#}. 
almost reducible in the sense that 

^3 5 0 0^ 
M5 = 

This matrix is 

5 
0 
0 

8 
0 
0 

0 
3 
5 

0 
5 
8 
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This of course can be predicted from the fact that (^) 5 = (j>5 

2. The matrix 
(0 0 1 \\ 

0 
- 1 
1 

0 
- 1 
2 

- 1 
1 
0 

- 2 
0 
1 

is obtained from multiplication by 0 on the basis {1, (f1, £ £<f>2}. The fifth power of this matrix is 
reducible. 

3. The matrix (0 
0 
0 
1 

0 
0 
1 
1 

0 
-1 
0 

-1 

- 1 
-1 
-1 

is obtained from multiplication by £3$ on the basis { l , ^ , ' ^ , ^ } o f Q(^^3)> where £3 is a 
primitive third root of unity. The third power of this matrix is reducible. 

4. The matrix -
(o o i 0 

0 0 - 1 2 
-1 -1 0 0 1 

v l 2 0 0) 
is obtained from multiplication by i<f> on the basis {1, <j>y /', i<j>) of Q(^, /'). More generally, any Fibo-
nacci matrix tensored with a permutation matrix, in this case f\ XX will give a Fibonacci matrix. 
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1. INTRODUCTION 

Sequences of integers satisfying linear recurrence relations have been studied extensively 
since the time of Lucas [5], notable contributions being made by Carmichael [2], Lehmer [4], 
Ward [11], and more recently by many others. In this paper we obtain a unified theory of the 
structure of recurrence sequences by examining the ratios of recurrence sequences that satisfy the 
same recurrence relation. Results of previous authors usually derived from many complicated 
identities. Evidently, our method is simple and more conceptual. 

The method of using ratios modulo/? or over a finite ring has been used in several papers 
including [1], [3], [6], and [7] among several others. Many known results due to Lucas [5], 
Lehmer [4], Vinson [9], Wall [10], and Wyler [13] can be derived easily from the well-known 
method of utilizing ratios. However, our point of view is really different from that of previous 
authors, so that we obtain our main result (Theorem 3.6(iii)), which improves on a result of Wyler 
[13], and we also get new information (Corollary 4.3) concerning Wall's question [10]. 

2. PRELIMINARIES AND CONVENTIONAL NOTATIONS 

Given a and b in the ring 2/1 with h a unit, we consider all the second-order linear recurrence 
sequences {un} in 2/1 satisfying un = aun_l+bun_2. (However, in this paper we exclude the case 
un = 0 for all"WGZ.) We call the sequence {un} a second-order recurrence sequence with 
parameters (a, b). 

Our idea comes from the following observation: Let {un} and {u'n} be a pair of sequences in 
2/1 that satisfy the same recurrence relation defined above. Suppose that there exists a unit c in 2/1 
such that ut = cu't+s and ut+l = cu't+s+l for some integers t and s. Then, since b e 27T, by the recur-
rence formula, we have that un -cu'n+s for all n GZ. Recall that the two elements (x0,XX) and 
(y0, yx) in the projective space P*(2/l) are the same if x0 = cy0 and xx - cyx for some c e 2/1*. 
Hence, if we consider (un, un+l) as in the projective space P1(2/l), then (ut, ut+l) = (tif+s, Uf+s+l) in 
Pl(<3t) for some t implies (un,un+l) = (u^+s,w^+1) in .P 1 ^) for all n. We have the following 
definition. 

Definition: Let {un} be a second-order linear recurrence sequence defined over 2/1. Consider 
rn - (um un+l) as an element in the projective space P1(2/l). We call rn the /1th ratio of {un} and we 
call the sequence {rn} the ratio sequence of {un}. 

We say that two sequences {un} and {u'n} which both satisfy the same recurrence relation are 
equivalent if there is c e 2ft* and an integer s such that un+s - cu's for all n. Let {rn} and {rw'} be 
the ratio sequences of {un} and {u'n}, respectively. Then {un} and {rn} are equivalent if and only if 
there exist integers s and / such that rs = r/ in Pl(*3l). 
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In pztrticular, suppose that ut = ut+s and ut+l = ut+s+x for some integers t and s. Then we have 
that un =un+s for all n. In this case, we say that {un} is periodic and the least positive integer 
k such that u0 = nk and ux=uk+l is called the period of {un}. . When {un} is periodic, the ratio 
sequence {rn} of {un} is also periodic. The least positive integer z such that r0 = rz in Pl(Qk) is 
called the rank of {un}. Suppose that the period of {un} is k and the rank of {uj is z. It is clear 
that z | AT andr^rj in P 1 ^ ) for all 1 < I > j < z . 

We remark that, If 2ft, Is a finite ring, then the linear recurrence sequence {un} is periodic. 

3, RECURRENCE SEQUENCE MODULO p 

In this section, we will extend our method to treat general second-order linear recurrence 
sequences. Results in Lucas [5], Lehmer [4], and Wyler [13] can be derived easily using our 
method. 

Fix a and b e Z. We consider second-order recurrence sequences of parameters (a, b). 
Thus, we consider the sequences of integers {ww}̂ =0 defined by un = aun_x+hun_2 for all integers 
n > 2, where u0 and ux are given integers. In the case in which u0 = 0 and ux = 1, the sequence 
{tt„}*=0 is called the generalized Fibonacci sequence and we denote its terms by f0, f x , . . . . 

Fix a prime number p. We consider the recurrence sequence of parameters (a, b) modulo p. 
Suppose that p\b. Then it is easy to see that un = an~lux (modp). Therefore, for the remainder 
of this section, we always assume that p\b and, hence, {un} is periodic modulo/?. 

The positive integer z is called the rank of apparition of the generalized Fibonacci sequence 
modulo p if it is the smallest positive integer such that fz = 0 (mod p). Let /; =(fi,fi+i) in 
Pl(l/pZ) be the Ith ratio of {/„} modulo p. Since r0 = (0,1) = rz in Pl(Z/pZ) and z is the least 
positive integer such that rz = (0,1) in P\Z/pZ), it is clear that the rank of apparition of the gen-
eralized Fibonacci sequence modulo p is equal to the rank of the generalized Fibonacci sequence 
modulo p. 

Given a sequence {un}9 there exists r eZ such that {un} modulo p is equivalent to the 
sequence {u'n} modulo p with «g = 1 and u[ = r. Therefore, without loss of generality, we only 
consider the sequence with uQ = 1 and ut = r. 

Lemma 3J Let {un} be the recurrence sequence with parameters (a, b) and u0 = 1, I/J = r. Then 
the rank of {un} modulo p' equals the rank of {fj modulo pi if p\r2 -ar~b. 

Proof: Suppose that the rank of {un} modulo pi is t and the rank of {/„} modulo pj is z. 
Set u'„ = bfn_x +rfn. We have that uf

n=auf
n_x +bu'n_2 (mod pj) and UQ = 1 and u[ = r (mod /?''). 

Thus, MjJ = i/n (mod /?7') for all n. Hence, MZ+1 = f/z+1 = ruz (mod /71') because fz = 0 (mod /?'') and 
A/z-1 = /z+1 (mod pj). This says that (wz, i/z+1) = (n0, i/^ in Pl(Z/pjI) and, hence, / |z. On the 
other hand, we have that bft+rft+l=r(bft_x+rft) (mod p;'X by the assumption that ut+x=rut 

(mod pj). Substituting ft+l = aft +bft_l9 we have that (r2-ar~b)ft = 0 (mod py)- Therefore, 
(r2 - ar - ft, p) = 1 implies that ft = 0 (mod /;''). This says that z 11. D 

Remark: Suppose that r2-ar-b = 0 (mod/?) and {un} is the sequence with parameters (a,Z?) 
and i^ = l, ux=r. Then we can easily obtain un = rnu0 (mod/?). Hence, the rank of {un} modulo 
pis 1. 
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Proposition 3.2 (Lucas): Let z be the rank of the generalized Fibonacci sequence with param-
eters (a, b) modulo/?. Let D - a2 +4b and denote (/) to be the Legendre symbol. Then 

(i) z\p + l,if(D/p) = -l. 
(ii) z | /?-l,if(Z)//?) = l. 

(Hi) z = p,ifp\D. 

Proof: (i) Suppose that {Dip) - - 1 . Then x2 -ax-b = 0 (mod/?) has no solution. Thus, by 
Lemma 3.1, every recurrence sequence with parameters (a, b) has the same rank modulo/?. Let t 
be the number of distinct equivalence classes of recurrence sequence of parameters (a, b) modulo 
p. Let {{uin} 11 < / < f} be a representative of these equivalence classes and {{rjn} 11 < / < *} be 
their ratio sequences in Pl(Z/pI). By definition, we have that ris^rit in Pl(Z/pZ) for all 
\<s^t<z and, if i *j, {rt n) and {rjn} are disjoint. Since, for any r ePl(I/ pi), {u0ru^) = r 
gives a sequence {un}, we have that {rll,...,riz}<j>--Kj{rhl,...,rtz} = Pl(I/ pi). It follows that 
zt - p +1 because the number of elements in Pl(ZIpi) is p +1. 

(ii) For (D/p) = l, there exist two distinct solutions to x2-ax-b = 0 (mod p). By the 
Remark following Lemma 3.1, these two solutions give us sequences of rank 1. Consider all the 
distinct equivalence classes of sequences that have the same rank as the Fibonacci sequence mod-
ulo p. As in the above argument, their ratio sequences form disjoint subsets of equal numbers of 
elements of l(Z/ pZ). Since the number of these ratios is p +1 - 2, our claim follows. 

(Hi) Since, for p/D, there exists exactly one solution to x2-ax-b = 0 (mod/?), by the 
above argument, our claim follows. • 

Remark: From the proof of Proposition 3.2, the number of distinct equivalence classes of recur-
rence sequences with parameters (a, b) that have the same rank z as the generalized Fibonacci 
sequence modulo p is (/? +1) / z (resp. (p -1) / z, 1) if (DIp) = -1 (resp. (DI/?) = 1, p \ D). 

Lemma 33: Let {un} and {u'n} be two recurrence sequences with parameters (a, b). Then 

buruf
s + ur+lu'+l = bur+lu's_x + ur+2u>s. 

Proof: By the recurrence formula, we have that 
bur+luf

s_x 4- ur+2u> = ur+l(u's+l - au's) + (aur+l + bur)u's = ur+luf
s+l + buru[. • 

Let r = (a,b) and rf - (a\ b') be two elements in Pl(Z/pZ) with a, a\ b, and bf ^ 0 (mod/?). 
Then we define r-rf - (aaf,bbf) in Pl{Z I pZ). Let {rn} be the ratio sequence of the generalized 
Fibonacci sequence modulo/? and let z be the rank of the generalized Fibonacci sequence modulo 
/?. Since bfz_2 +afz_{ =fz = 0 (mod /?) and fy = 1, f2 = a, we have that bfjz^_x +/+1/z_/ s 0 
(mod/?) by Lemma 3.3 and by induction. This says that /••rz_l-_1 = (1,-J) in P\Z/pi) for 
1 < i < z - 2. Because ^ • r2 rz_2 = (/j, /^ j ) in P^Z /p i ) , we have the following Lemma. 

Lemma 3.4: Let {fn} be the generalized Fibonacci sequence with parameters (a, b) and let z be 
the rank of {fn} modulo/?. 
(i) Ifz is even, then / ^ = (-ft)(*-2>/2 (mod/?). 

fii) If z is odd, then /2_j = r(-ft)(z_3)/2 (mod/?), where r2 = -6 (mod/?). 
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We remark that in Lemma 3.4(ii), r = /(z+1)/2 / f(z-iy2 (mod/?). 
Since /z+1 = afz + bfz_Y s bfz_Jx (mod /?) and fz s 0 s ft/^ (mod /?), it follows that /„+z = 

¥z-i/w (mod /?) for all fi and, hence, fn+Az = (pfz_^xfn (mod /?). Suppose that {i/n} is a recur-
rence sequence with parameters (a,b). Then, since un = bu^f^+uj^ we also have that un+z = 
%-ittn (mod/?) for all w. Furthermore, suppose that {uj modulo/? is not equivalent to {fn} 
modulo p and suppose that {rn'} is the ratio sequence of {un} modulo /?. Since un # 0 (mod /?) 
(otherwise {un} is equivalent to {/„}), it follows that r{-r{"-"rz' = (ul9uz+l) in Pl(Z/pi) and, by 
the above argument, (ul9 uz+l) = (1, A/^) in Pl(Z/pi). 

Now we consider the product of all the ratios of nonequivalent sequences modulo p with the 
exception of (/z_1? fz) and (/z, / z + 1 ) . By Proposition 3.2, we have the following: 

(i) If x2 - ax - b = 0 (mod /?) is not solvable, then 

(l,rWz-i)(p+1)/z) = a ( p - l ) ! ) = (l,-l) inP'CZ/pZ). 
Hence,(6/^1)(/M-1)/* = ^6(mod/>). 

(ii) If x2 - ax - b = 0 (mod p) is solvable with a double root y, then 

a/P-i)-(i ,r) = (i,0>-i)D = 0,- i) inPV/^Z) . 
Notice that y2 - ~b (mod/?). 

(iii) If x2 - ax - b = 0 (mod /?) is solvable with two distinct solutions a and /?, then 

(1, b-\bfz_x)^lz)• (1, a)• (1, p) = (1, (/?-1)!) = (1, -1) in P^Z//?Z). 

Since a/3 = -A (mod/?), it follows that {hfz_x){p-l)lz = 1 (mod/?). 
Notice that in (ii), since z = p is odd, by Lemma 3.4, fp-i = (-b)(p~3)/2r (mod/?), where 

r = /(z+1)/2 / f{z-iyi (m°d Z7) and r2 = -6 (mod /?). We have that r = -y or r = y (mod /?). Since 
- I s / ^ = rp~2y (mod/?), it follows that y= - r (mod/?). Thus, -/(/7+1)/2I f{p-\)ii is. the double 
root to x2 - or - 6 = 0 (mod/?). 

Using a similar argument, by considering (i) and (iii), we can improve the results in Proposi-
tion 3.2. 

Proposition 3.5 (Lehmer): Let z be the rank of the generalized Fibonacci sequence with param-
etrs (a, b) modulo/? and let D = a2 +4b. Suppose that /? is an odd prime such that p\D. Then 
{-b //?) = 1 if and only if z | ^ » . 

Proof: If z is odd, then, by Lemma 3.4(ii), we have that (~b/p) = l. Since /?-(/)//?) is 
even, we have that 2z\p-{DTp). Suppose that z is even. Then, by (i) and (iii) above, and by 
Lemma 3.4, we have that 

p-(D/p) p-\ 

(_1)—T-(-4)T- = i (mod/?). 

Our proof is complete because (-b I p) = (-&)(/7"1)/2 (mod /?). D 
From Lemma 3.4, we realize that the relation between the period and the rank of {fn} 

modulo/? depends on the order of ~b modulo/?. Denote ordp(d) to be the least positive integer 
x such that dx = 1 (mod/?). We begin with the following easy observation. For n e N , w e have 
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ordJd) 
ordp(d") = P\\A\Y 

p gcd(rc, ord Jd)) It is also easy to check that 

ord J-d) = \ 
ordp(d), -i£oTdp(d) = 0 (mod 4), 
±ordp(d), ifordp(d)^2 (mod4), 
2ord Jd), if ord Jd) = 1 (mod 2). p 

Furthermore, suppose that x2 = d (mod/?) is solvable and suppose that X is one of its solutions. 
Then 

f2ordp(<f), i f o r d ^ ^ O (mod 2), 
° r p^ ' " [2ordp(d) or otdp(d), ifordp(d) = 1 (mod 2). 

We remark that, if {dip) = 1 and ordp(<f) is odd, then the order of one of the roots of x2 = d 
(mod/?) is odd and the order of another root is even. 

Theorem 3.6: Let {fn} be the generalized Fibonacci sequence with parameters (a, b) and let z be 
the rank and k be the period of \fn} modulo p, respectively. Let z = 2 V and ordp(-b) - 2Mh, 
where z9 and h are odd integers. 

(i) If v^ / / , then £ = 21cm[z, ordp(-A)]. 
(i# If v = // > 0, then k - lcm[z, ord^-i)] . 

(Hi) In the case v = /u = 0. 

f21cm[z, ordp(-b)l if ordp(/(z+1)/2 //(z_1)/2) is odd, 
jlcmfz, ordp(-6)], if ordp(/(2+1) /2//(z. iy2) is even. 

Proof: First, we consider the case v > 0. Since z is even, by Lemma 3.4 and the discussion 
following Lemma 3.4, we have that k Iz = ordp(b{-bfz~~2)l2) = ordp(-(-b)z/2). Suppose v > ju. 
Thenordp((-b)z/2) = h/gcd(z',h) = l (mod 2). Hence,k /z = 2hIgcd(z',h). Therefore, £ = 
2lcm[z, ordp(-6)]. On the other hand, suppose // = v. Then ordp((-b)zf2) = 2h Igcd(z', h) = 2 
(mod 4). Thus, k/z = hI gcd(z', h), and hence, A: = lcm[z, ovdp{-b)]. Similarly, suppose ju > v. 
Then ordp((-b)z/2) = 2^~v+lh I gcd(z', h) = 0 (mod 4). Therefore, k/z = 2^~v+lh I gcd(z', h), and 
hence, k = 21cm[z, ordp(-h)]. Now we consider the case v = 0. Since z is odd, we have k /z = 
ordp(h(-h)(z~3)/2r), where r =/(z+1)/2 //(z_1)/2 and r2 = -b (mod /?). Hence, i / z ^ o r d ^ - r * ) . 
Suppose /i > v. Then ord^(r) = 2ordp(-b); hence, ordp(rz) = 2ordp(-Z>)/gcd(z,h) = 0 (mod 4). 
Therefore, £ Iz - 2ord/?(-£)/gcd(z, A); hence, k = 21cm[z, ordp(-b)]. Finally, suppose ju = v = 0. 
Then either ord^r) = ordp(-b) or ordp(r) = 2ordp(-h). Suppose ordp(r) = ordp(-b) (that is, 
ord^r) is odd). Then ordp(rz) = ord^-6) / gcd (z, h) = 1 (mod 2). Therefore, £ / z = 2ord/7(-Z>) / 
gcd(z, h); hence, A: = 21cm[z, ordp(-b)]. On the other hand, suppose ordp(r) = 2ordp(-b) (that 
is, ordp(r) is even). Then ovdp(rz) = 2ordp(~b) I gcd (z, h) = 2 (mod 4). Thus, A: / z = ordp(-Z>) / 
gcd(z, h) and hence, A: = lcm[z, ordp(-ft)]. D 

346 [NOV. 



ON SECOND-ORDER LINEAR RECURRENCE SEQUENCES: WALL AND WYLER REVISITED 

Remark: Cases (i) and (ii) of Theorem 3.6 above are stated as Wyler's main theorem in [13]. 
However., our approach is different and Wyler does not settle the case in which both z and 
ordp(-£) are odd (that is, case (iii) of our theorem). 

4. RECURRENCE SEQUENCE MODULO pt 

We now treat the case of the generalized Fibonacci sequence modulo p* for t > 2. 
Let us denote by z(pj) the rank of {fn} modulo /?'. We begin with an easy observation: If 

{uj is equivalent to {/„} modulo p\ then the number of possible ratios of {uj modulo p1+l is 
z(p') or pz(pt). By Lemma 3.1, the rank of such a sequence modulo pt+l equals z(pt+l). 
Therefore, the rank of z(pt+l) divides pz(pf). Since zip1) \z(pt+l), it follows that either 
z(p^)=z(p') or z(p^) = pz(p<). 

Theorem 4.1: The rank of apparition of the generalized Fibonacci sequence modulo p* equals 
the rank of apparition of the generalized Fibonacci sequence modulo pt+l if and only if there 
exists a sequence which is equivalent to {fn} modulo pt but is not equivalent to {/„} modulo 
p1+l. 

Proof: {un} is equivalent to {fj modulo p* if and only if (ul9 u^) = (fi9 fi+l) in Pl(Z/p'Z) 
for some /'. On the other hand, by the above argument, z(pt+l) =z(pt) if and only if there exists 
r e Z such that (l,r) = (fi9fM) in P\Z/p?Z) for some / but (l,r)*(fj9fJ+l) in Pl(Z/pt+lZ) 
for all j E Z. Combining these two statements, our proof is complete. D 

We remark that {un} is equivalent to {/„} modulo p* if and only if ui = 0 (mod pl) for some 
?'. 

Example: Consider the Fibonacci sequence 
{Fn}f - {1,1,2,3,5,0,5,5,2,7,1,0,1,1,...} (mod 8) 

and the Lucas sequence 
{ZX ^ {1,3,4,7,3,2,5,7,4,3,7,2,1,3,...} (mod 8). 

The rank of apparition of the Fibonacci sequence modulo 2, 4, and 8 is 3, 6, and 6, respectively. 
We have that {Ln} is equivalent to {FJ modulo 4 because L, = 0 (mod 4) but {LJ is not equiva-
lent to {FJ modulo 8 because Ln 4 0 (mod 8) for all n. 

For every t GM,WQ denote k(pf) to be the period of {/„} modulo pl. By considering the 
"Binet form" of {/„}, Lehmer [4] proves that, for p * 2, if k(pl) = k(p) but k(pl+l) * kip), then 
k(pt) - pl"lk{p) for all t > I. Let z(p') denote the rank of apparition of {/„} modulo pt. By a 
similar method, we can prove that, for p*2, if z(pl)=z(p) but z(pl+l)*z(p)9 then z(p') = 
p*~lz(p) for all / > /. We note that this result was also proved by Lucas [5] and by Carmichael 
[2]. We remark that z(pM) *z(pl) implies k(pl+l) * k(pl), but the converse is not always true. 

Corollary 4.2: Let {/„} be the generalized Fibonacci sequence with parameters (a, b). Let/? be 
an odd prime and, for every t e N, denote zip1) to be the rank of {fj modulo pl. Suppose that 
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z(pl) *z(pl+l). If {//„} is a recurrence sequence with parameters (a, b) such that u{ = 0 (mod./?7) 
for some /, then, for every t > /, there exists jt such that Uj = 0 (mod /?')• 

Proof: z(pl)*z(pl+l) implies zip') * z(pt+l) for all t > I. Therefore, according to Theorem 
4.1, every sequence that is equivalent to {/„} modulo pl is also equivalent to {/„} modulo pt for 
all r > /. D 

Now we restrict ourselves to considering only the Fibonacci sequence {Fn}. For every t e N, 
we denote Kip') to be the period of {Fn} modulo p'. In [10], Wall asked whether K(p) = K(p2) 
is always impossible; until this day, it remains an open question. According to Williams [12], 
K(p) & K(p2) for every odd prime/? less than 109. Z.-H. Sun and Z.-W. Sun [8] proved that the 
affirmative answer to Wall's question implies the first case of Fermat's last theorem. 

Let Zip1) denote the rank of apparition of the Fibonacci sequence modulo p' for every 
t GN. We have that, for p *2, Kip') = Kip'+l) if and only if Zip') = Z(/?f+1). What makes 
Theorem 4.1 so interesting is the following Corollary. 

Corollary 43: Let/? be an odd prime and, for every t GM, denote Kip') to be the period of 
{Fn} modulo /?'. Suppose that Kip1) * K(j>l+l). Let {un} be a sequence satisfying the same 
recurrence relation as {Fn} such that ui =0 (mod pl) for some /'. Then, for every t>l, there 
exists jt such that uJt = 0 (mod p'). 

Remark: In particular, let/? be an odd prime such that Kip) & Kip2). Suppose that {un} is a 
recurrence sequence with parameters (1,1) and ut =0 (mod/?) for some'/. Then Corollary 4.3 
implies that, for every positive integer /, there exists jt such that ujt = 0 (mod p'). This is true 
for /? < 109 according to Williams [12]. 

Unlike the Fibonacci case, we have examples for which k(j?) - kip2) and zip) ^ zip2). 

Example: Let a - 8 and b = - 7 . Then {/X=o s {0,1,3,2,0,1,...} (mod 5) and {/X=o - {0,1,8, 
7,0,1,...} (mod 25). Consider the sequence {un} with u0 = 5, and ^ = 1 which satisfies un -
Su^-lu^. We have that {uj^o - {0,1,3,2,0,1,...} (mod 5) and {un}™=0 s {5,1,23,2,5,1,...} 
(mod 25). 

One might ask for what kind of parameters (a, 5) the generalized Fibonacci sequence has 
kip) = kip2), and whether or not k(p) = i(/?2) for infinitely many primes. From our construc-
tion above, we understand that this question is related to: "For a given integer x, does there exist a 
prime/? such that ord/7(x) = ord 2(^)?!S and "Are there infinitely many primesp such that, for a 
given integer x, ordp(x) = ord/?2(x)?fl. Of course, we can suppose that fix) = x2 -ax-b is irre-
ducible over the integers. Then we have to consider our question over the ring of integers of 
Q[^a2+4bj. We have not taken up in this paper the question of whether a given recurrence {un} 
has zeros modulo a given integer m or not. Ward [11] has shown that {un} has zeros modulo p 
for infinitely many primes p. For given parameters (a, h), suppose that we know there are only 
finitely many primes such that z(p) =z(/?2). Then, by Corollary 4.2, it follows that there exist 
infinitely many primes/? such that {uj has zeros modulo p{ for every t e N. 
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1. INTRODUCTION 

Ladder networks have been studied extensively using Fibonacci numbers, Chebyshev poly-
nomials, Morgan-Voyce polynomials, Jacobsthal polynomials, etc. ([10], [11], [2], [14], [9]. [5], 
[3], and [4]). All these polynomials are, in fact, particular cases of the generalized polynomials 
defined by 

U„(x,y) = xU„_l(x,y)+yU„_2(x,y), (»>2) (la) 
with 

U0(x,y) = 0, Ul(x,y) = l, (lb) 
and 

V„(x, y) = xV^ix, y)+yV„_2(x, y), (» > 2) (2a) 
with 

V0(x,y) = 2, Vl(x,y) = x. (2b) 

We first show that rational functions derived from the ratios of these polynomials may in fact 
be synthesized using two-element-kind electrical networks. As particular cases, we will show that 
the networks realized using Fibonacci and Lucas polynomials, or Pell and Pell-Lucas polynomials 
are reactance of LC-networks, while those using Jacobsthal polynomials are RC or RL networks. 
Based on these results, we will establish some elegant relations among the various polynomials, as 
well as some results regarding the location of the zeros of these polynomials, and also their 
derivative polynomials. One of the results we need for our development is the following: 

V„(x, y) = Un+l(x, y)+yU^x, y) = xU„(x, y) + 2yU^(x, y\ (n>\), (3) 

which can be established easily by induction. We may also show that U2n(x, y) is an odd poly-
nomial in x of degree (2n-l) and a polynomial iny of degree (n-1), while U2n+l(x, y) is an even 
polynomial in x of degree 2n and a polynomial in y of degree n. Further, V2n(x, y) is an even 
polynomial in x of degree In and a polynomial in y of degree n, while V2n+l(x, y) is an odd 
polynomial in x of degree (2w +1) and a polynomial in y of degree n. 

2. SYNTHESIS WITH Un(x, y) AND VH(x, y) 

Consider the function U^+i}*'y?; we will express this as a continued fraction. 

U7n+\(x>y) =xU2n(x>y)+yUm-\(x>y) 
U2n(x,y) U2n(x,y) 

= X-\ TT—7 ^— = X + Um&y) xU2n_l(x,y)+yU2n_2(x,y) 
yu^ifay) yu2n^\(x9y) 
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= X + * , 1 = — X+x 1 (4) 

U2„-2(x,y) x + 
y 

+ 
l 

X 

If we now consider i"+f^^ as the driving point impedance (DPI) of a one-port network con-
sisting of two kinds of elements, whose impedances are proportional to x and (ylx\ then the 
function - u{x^y) giy e n by (4) may be realized by the network of Fig. 1(a), where there are n 
elements whose impedances are proportional to x, and n other elements whose impedances are 
proportional to (y/x). It is observed that, ify equals a positive constant, say a , and x = s (the 
complex frequency variable), then the element x corresponds to an inductor of value 1H, while the 
element (y/x) corresponds to a capacitor of value (1 / a)F. On the other hand, if y - s and x is a 
positive constant, say /?, then they correspond, respectively, to a resistor of f$ Ohms and an 
inductor of value(l / fi)H. 

We may similarly express 

u2U^yy v2n(x,y) 3 vln_x(^y) 
by continued fractions, and realize them as the DPIs of the one-ports shown in Figs. 1(b), 1(c), 
and 1(d), respectively. Now let us synthesize J ^yi as the DPI of a ladder network. We have, 
from (3), 

7 _ v%n(x,y) _xUin(x,y)+2yU2n-i(^y) 
U2„(x,y) U2„(x,y) 

1 =x+ 
Uin{x,y) xU2„_l(x,y)+yU2n_2(x,y) _£_ = x+ rr } ,A =x+ __TT ,,. , . , ? , . „ — - = x + - ^ . (5) 

+ -
2yU2„-i(x,y) 2^C/2lf_,(x,.y) 2y 2 ^ ( s , j) 

U2H-2(x,y) 

It is observed that 2t/
2"~ £yl is an impedance and may be realized by the network of Fig. 1(a), 

where all the impedances are now scaled by a factor of 2. Thus, J ^yi may be realized as the 
DPI of the ladder network shown in Fig. 1(e). Similarly, ,}"* ,'yl may be realized as the DPI of 
the two-element-kind network of Fig. 1(f). 

3. FIBONACCI, LUCAS, PELL? AND PELL-LUCAS POLYNOMIALS 
AND LADDER NETWORKS 

Let us first consider the case when x = s and y - a, a positive constant; that is, we are deal-
ing with Un(s, a) and Vn(s, a). When a = 1, they reduce to the Fibonacci and Lucas polynomials 
F„(s) and Ln($), respectively. Hence, we shall call Un(s, a) and Vn(s, a) modified Fibonacci and 
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Lucas polynomials, and denote them by Fn(s) and Ln(s), respectively. It is then evident from the 
results of the previous section that F2n+l(s) / F2n(s) may be realized as the DPI of the reactance 
network given by Fig. 1(a), where each of the series elements corresponds to an inductor of 
value 1H and each of the shunt elements corresponds to a capacitor of value ( l / a )F . Similarly, 
^2>)/^2„-i<>)> ^i(s)/T^(s)9 I ^ ( S ) / 4 M ( J ) , L2n(s)/F2n(s), and ^(s) / F2n+l(s) may all 
be realized by low-pass LC-ladder networks corresponding to Figs. 1(b), 1(c), 1(d), 1(e), and 
1(f), respectively. Thus, we have the interesting result that Fn+l($)/Fn(s), Ln+l(s)/ Ln(s), and 
Ln(s) I Fn{s) are all reactance functions. It is well known that the zeros and poles of a reactance 
function are simple, purely imaginary, and interlace [1]. Hence, the zeros of the polynomials 
Fn(s) and Ln(s) lie on the imaginary axis and are simple; further, the zeros of Fn(s) and Ln(s) 
interlace. Similar statements hold true for the zeros of Fn+l(s) and Fn(s), as well as those of 

Since, for the Pell and Pell-Lucas polynomials, we have 
P„(s) = Fn(2s) (6a) 

and 
Qn(s) = Ln(2s), (6b) 

it is obvious that P„+i(s) I Pn(s), Q„+i(s) / Qn(s), and Qn(s)l Pn(s) are all reactance functions. In 
fact, using the frequency scaling theorem [1], it is seen that their realizations are the same as those 
of Fn+l(s)/ Fn(s), Ln+l($)/ Ln($), and Ln{s)l Fn(s), respectively, except for a scaling of the values 
of the elements. 

We now consider the case when x = J3, a positive constant, and y - s\ that is, we are dealing 
with Un(j3, s) and Vn(ft, s). It is observed that when J3 = 1 they reduce to the Jacobsthal polyno-
mials [7]. Hence, we shall call Un(fi, s) and Vn(J3, s) modified Jacobsthal polynomials and denote 
them by Jn(s) and Jn($), respectively. It is then evident from the results of the previous section 
that J2n+i(s) I ̂ 2n(s) maY be realized as the DPI of the RL-network given by Fig. 1(a), where each 
of the series elements is a resistor of value J3 Ohms and each of the shunt elements is an induc-
tor of value (1//T)H. Similarly, we can realize the functions J2n(s) IJ2n-\{$), J2n+i(s)/J2n(s)> 
72*0) ^ H - I O ) , Jini^/Jinis), a n d 72n+i(s) ' J2n+i(s) a s D P I s o f t h e RL-networks corresponding 
to Figs. 1(b), 1(c), 1(d), 1(e), and 1(f), respectively, where all the series elements are resistors and 
all the shunt elements are inductors. Thus, we have the result that Jn+i(s)/Jn(s), Jn+i(s)/ Jn($), 
and Jn(s)l Jn{s) are all RL-impedance or RC-admittance functions. It is well known that the 
zeros and poles of an RL-impedance (or an RC-admittance) function lie on the negative real axis, 
are simple, and interlace; further, the one closest to the origin is a zero of the function [1]. Thus, 
the zeros of the polynomials Jn(s) and Jn{s) are real and negative; further, the zeros of Jn($) and 
Jn(s) interlace, with the zero closest to the origin being that of Jn(s). Similar statements hold 
true for the zeros of Jn+i($) and Jn(s), as well as those of Jn+l(s) and Jn(s). It is also interesting 
to observe that Jn+l(s) / Jn(s) is a ratio of two RC-admittance functions and hence, in general, is 
not realizable by two-element-kind networks; however, it is a positive real function (PRF), and so 
is always realizable by an RLC network. In fact, the zeros of Jn+X(s) and Jn(s) have a very inter-
esting pairwise alternative relationship on the negative real axis [6]. 
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zin = z i \ 
U2n+1^ 

U2n(x,y) II 
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00 

1 
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11 U2n-1 (x>y) 

x 2 

II ]I II 
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1 

^m - y 
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FIGURE 1. Various two-element-kind ladder networks. 
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4. LADDER TWO-PORTS 

We will now express the chain parameters (see [2] and [14] for a definition of the chain 
parameters) of the six ladder two-port networks shown in Figs. 1(a)-1(f) in terms of the polyno-
mials Un(x,y) and Vn(x,y). First, consider the network of Fig. 1(a). We will now prove by 
induction that the chain matrix of this n-section ladder two-port is given by 

1 
[«i]« 

y" 
u2n+i(x>y) yu2n(x,y) 
u2„(x,y) yu^fay) 

It is seen that, for n = 1, (7) holds since the chain matrix for one section [see Fig. 2(a)] is 

["ill = 
l + (x2/y) x 

(x/y) 
x] = l\U3(x,y) yU2(x,y) 
lj y[U2(x,y) yU^y) 

(V) 

(8) 

The (« +1)-section ladder corresponding to Fig. 1(a) is shown in Fig. 2(b). Its chain matrix is 

r T 1 
[ a l J n + l = -

x2+y xy 
y fair (9) 

Hence, 

[«i]»+i = ,n+l 

x(xU2n+l +yU2„)+yU2n+l xy(xU2„ +yU2n_l)+y2U: In 
xU2n+l +yU: In xUln+yUjn-l 

y n+l 
xU2n+2 +yU2n+1 y(xU2n+1 +yU2„j 

a 2n+2 yu: 2«+l 

1 
y ,n+l 

2/H-3 
2«+2 

yu2n+2 

where, for brevity, we have used Un and Vn for Un(x,y) and V„(x,y). Hence, the result is true 
for (n +1) -sections; thus, the result given by (7) is established. 

(a) 

/I - section 
Ladder of 
Fig. 1 (a) 

(b) 

FIGURE 2* (a) One section of the ladder network of Fig. 1(a). 
(b) An (n + Insertion of the ladder of Fig. 1(a) considered 

as a cascade of the Insertion of Fig. 2(a) and the it-
section Sadder of Fig. 1(a). 

We will now obtain the chain matrix for the two-port of Fig. 1(b). This may be considered as 
a cascade of an (w-1)-section ladder of Fig. 1(a) and a single series element shown in Fig. 3. 
Hence, its chain matrix is given by 

K L = [ « i L - i 
1 x 
0 1 / 

'u2n-i(x,y) yu2n-2(x,y) 
u2n-2(x,y) yu2n_3(x,y)^ 

Thus, the chain matrix of the two-port of Fig. 1(b) is given by 
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[Oil 
y 

, 7 7 - 1 Pzn-ii^y) U2n_l(x,y)_ (10) 

Similarly, we can show that the chain matrix of the two-ports shown in Figs. 1(c) and 1(d) 
are, respectively, given by 

and 

fal = y 

y 

U2n+i(x,y) \V2n+l(x,y)\ 
U2„(x,y) ^V2n{x,y)\ 

W2n{x,y) yu2„(x,y)' 
\V2n_y{x,y) yU^ipcy) 

(11) 

(12) 

where relation (3) has been used. 
The network of Fig. 1(e) can be considered as a cascade of an L-section and an ( « - l ) -

section ladder of the type shown in Fig. 1(a), except that all the impedances are scaled by a factor 
of 2, as shown in Fig. 4. Hence, its chain matrix is given by 

las\ = 
(x2/2)+y xy 1 

, , n - l 
u2n-i(x,y) 2yu2„-2(x,y) 

^U2n_2{x,y) yU2„_3(x,y) ( x / 2 ) • yjy 

Thus, the chain matrix of the two-port of Fig. 1(e) may be expressed as 

1 
[«5L = 

\v2n(x,y) yv^-^y) 
iU2n(x,y) yu2n-i(*,y) 

Similarly, we can show that the chain matrix corresponding to the two-port of Fig. 1(f) is 

[<*el=-
y" 

jV2„(x,y) V2n+1(x,y) 
\U2n(x,y) U2n+l(x,y) 

(13) 

(14) 

(n-1) -section 
Ladder of 
Fig. 1 (a) 

FIGURE 3. The ladder of Fig. 1(b) considered as a cascade of the it-section 
ladder of Fig. 1(a) and a series element 

(n-1) -section 
Ladder of Fig. 1 (a) 
with all impedance 

scaled by a factor of 2 

FIGURE 4. The ladder of Fig, 1(e) considered as a cascade of an JL-section 
ladder of'Fig. 1(a), which is suitably impedance-scaled. 
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As a consequence of the reciprocity property of these ladders, the determinants of the chain 
matrices given by (7), (10), (11), (12), (13), and (14) are all unity. Hence, we get the following 
interesting results: 

U^(x, y)Un_x(*, y) - U2
n(x, y) = ( - i y y - \ (15a) 

U^(x, y)V„(x, y) - Vn+l(x, y)Un(x, y) = (-l)"2y". (15b) 

As special cases, we also have 

K+i(s)K-i(s) - Fn\s) = i-lfa"-1, (16a) 

Fn+1(s)Ln(s) - Ln+l(s)Fn(s) = (-X)"2a", (16b) 
and 

^ i ( ^ - i ( * ) - ^ ( * ) = ( - l ) "^ 1 , (17a) 
Jn+1(s)j„(^-7„+i(s)J„(s) = (-lT2^. (17b) 

5. RELATIONS AMONG THE VARIOUS POLYNOMIALS 

We first relate the two-variable polynomials U„(x, y) and V„(x, y) to the Morgan-Voyce 
polynomials B„(x), bn(x), c„(x), and C„(x) (see [10], [14], [9], [8], [13]). It is known from [14] 
that the chain matrix of the network of Fig. 1(a) in terms of the Morgan-Voyce polynomials is 
given by 

b„(w) xB^wj 
B^iw) b„_x(w) 

where 

(18a) 

w = x2/y. (18b) „• - v-2 

Now, comparing (18a) and (5), we get 

U2n+X{x,y) = ynbn(x2ly) (19a) 
and 

U2n(x,y) = xy"-1B„_l(x2/y). (19b) 

Also, from (3), (19b), and (19a), we get 

V2„+l(x,y) = xy"{B„(x2/y) + B„_l(x2/y)} 

and 
v2n{x, y)=y"{b„(x2 ly)+b„_l(x2 ly)}. 

Hence, 
Vln+l(xyy) = xyncn(x2ly) (19c) 

and 
V2n(x,y) = y»C„{x2ly). (19d) 

Using the above relations, (19a)-(19d), many interesting results for the two-variable polyno-
mials U„(x,y) and Vn(x,y)—including the summation, product, and other formulas—may be 
derived from the properties of the Morgan-Voyce polynomials. However, we will not pursue it 
here. Instead, we establish the following relations among the various polynomials. 
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Case 1: Modified Fibonacci and Lucas Polynomials 
Let y = a > 0. Then, Un(x, a) = Fn{x) and Vn(x, a) = Ln(x). Hence, from (19a)-(19d), we 

have 
4H-I (* ) = a\(x2 / «), pm (*) = ocn-lxBn_x{x21 a), (20a) 
L2n+1(x) = a"xcn(x2/a\ Zjx) = anCn{x21 a). (20b) 

Of course, when a -1, the above reduce to the known relations between the Fibonacci, Lucas, 
and Morgan-Voyce polynomials. 
Case 2: Modified Jacobsthal Polynomials 

Let P > 0. Then Un(/3, x) = Jn(x) and Vn(fi, x) = Jn(x). Hence, from (19a)-(19d), we have 

J2n+l(x) = x%(p21 x\ J2n{x) = (kn-xBn_x{fi21 x), (21a) 

J2n+i(x) = Px\(/32/xl J2n = xnC„(/J2/x). (21b) 
It is clear from (20) and (21) that the modified Fibonacci and Lucas polynomials and, hence, the 
Fibonacci and Lucas polynomials are directly related to the Jacobsthal polynomials by the simple 
relations 

F„(x) = x"-lJ„(a/x2), Ln(x) = x"j„(a/x2), (22a) 
and 

F„(x) = x"-'jn{\ I x \ L„(x) = x"j„(l I x2). (22b) 

The above result could have been obtained from the networks of Figs. 1(e) and 1(f) which, 
respectively, realize j2n(s)^2n(s) anc^ J2n+i(s) ^2n+\(s) when x = l andj = s, by first transform-
ing the complex frequency from s to a / s2, and then multiplying all the resulting impedances by s. 

Case 3: Modified Chebyshev Polynomials 
We define Gn(x) and H„(x), the modified Chebyshev polynomials of the first and second 

kind, respectively, by 
Gn(x) = Un(x,-a), Bn(x) = Vn(x,-a), (23a) 

where 
a > 0 . (23b) 

Then, from (19a)-( 19d), we have 
G2n+1(x) = (-iya"b„(-x2/a), Gn(x) = {-\y-'a"-ixB„_l{x21 a) (24a) 

and 
H2n+l{x) = {-\)nanxcn{-x21 a\ H2n(x) = (-\fa

nCn(-x21 a). (24b) 

Now, using (21a) and (21b), we may relate the modified Chebyshev polynomials directly to the 
Jacobsthal polynomials by 

Gn(x) = x"-lJn(-a I x \ Hn(x) = x»jn(-a I x2). (25) 

Now Off(jc) and ©„(x), the Fermat polynomials of the first and second kinds, respectively, 
are obtained by letting a = 2 in (23). Hence, 
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<D„(x) = x"-1J„(-2/x2), ®„(x) = x"U-2/x2). (26) 

Also, the Chebyshev polynomials Sn(x) and Tn(x) are given by 

Sn(x) = Un(2x, -1) = (2*)"-1 J„(-l / Ax2) (27a) 

and 
T„(x) = \Vn{2x, -1) = r-^U-l/Ax2). 27b) 

Case 4: Brahmagupta's Polynomials 
Brahmagupta's polynomials xn(x9 y) and yn(x, y) are defined as follows (see [12]): 

xn+i(x> y) = 2x^(x, j/) - Xxn_x{x, y), x0 = l9xi = x, (28a) 
and 

>Wi(*> JO = 2%(*> y) - tyn-i(x> y), yQ = \yi=y- (28b) 
It is known that if (x1? y{) is a positive integer set satisfying the relation 

x\-ty\ = X (29a) 

where Ms a square-free integer, then the positive integer set (xn,yn) is a solution of Brahma-
gupta-Bhaskara's equation given by [15]: 

x2-ty2 = A". (29b) 
The Brahmagupta polynomials are related to Un(x, y) and Vn(x, y) by 

*n(x, y) = i^ (2x , - X), ^ (x , J) = yUn(2x, - X), (30a) 

and to the Jacobsthal polynomials by 

xn(x,y) = 2n-lx"j„(-A/4x2), yn(x,y) = y(2xy-lJn(-A/4x2). (30b) 

If X > 0, and say = a, then 

*„(*,>;) = l#„(2x), ^(x>>) = >GL(2x). (31) 

However, if X < 0, say = - a , a > 0, then 

xn(x,y) = ±Ln(2x), y„(x,y) = yFn(2x). (32) 

Of course, the polynomials G„(x), Hn(x), Fn(x), and Ln(x) are related to the Jacobsthal and 
Morgan-Voyce polynomials, and hence we may relate the Brahmagupta polynomials also to these 
polynomials. Finally, it is seen that, when X = 1, 

x„(x,y)=T„(x), y„(x,y) = yS„(x), (33) 
while, when X = - 1 , 

xn(x,y) = iQ,(x), yn(x,y)=yP„(x). (34) 
As a consequence of (33) and (34), we can show that 

Q2n(x) = 2Tn(2x2 + l\ P2n(x) = 2xS„(2x2 + l). (35) 
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6. DERIVATIVE POLYNOMIALS AND THEIR ZEROS 

In this section we will show that we can get information about the location of the zeros of the 
derivative polynomials using the following known results about the nature of the impedance func-
tions of two-element-kind networks. 

Property 1: If the driving point impedance Z(s) = N(s)/D(s) is a reactance function, then 
so is Zx(s) = N'($)/ D'(s), where the prime indicates the derivative with respect to s. 

Property 2: If Z(s) = N(s)/D(s) is an RL-impedance (or an RC-admittance) function, then 
so is Zl(s) = N'(s)/Df(s). 

Let us first consider the function, Z(s) - Ln{s)l Fn{s), a ratio of the modified Fibonacci and 
Lucas polynomials. We have shown in Section 3 that Z(s) is a reactance function. Hence, from 
Property 1, the function Zx(s) = L^(s)/ F^s) is also a reactance function. By successively apply-
ing Property 1 k times, we see that the function Zk{s) = L^\s) I F^h\s), where (k) represents the 
k^ derivative with respect to s, is also a reactance function. Using the property of reactance 
functions, we see that the zeros of L^\s) and F^k\s) are simple and lie on the imaginary axis, 
with the two sets of zeros interlacing with each other. Similar statements hold for the zeros of 
L^s) and L{k\s), as well as for those of Fn

(k}(s) and F%k\s). 
We also proved in Section 3 that the ratios Jn(s)l'J„(s)9 Jn+\(s)/ Jn(s), and Jn+i(s) / Jn(s) are 

all RL-impedance functions. Thus, from Property 2, we see thatJ^Cs) / Jj;k)(s), 7i+i}<>) /7„k)(s), 
and JJiii(s) / Jj;k\s) are also RL-impedance functions. Using the property of RL-impedance func-
tions, we see that the zeros of J^k\$) and J£k\s) are real and negative. Further, the zeros of 
Jj;k\s) interlace with those of J„k\$)> with the zeros closest to the origin being that of J£k\s). 
Similar statements hold true for the zeros of J£\(s) and Jf;k\s), as well as those of 7i+i(5) a n^ 
7„(i)(s). 

Similar results may be established regarding the zeros of the derivatives of the Morgan-Voyce 
polynomials. 

7, CONCLUDING REMARKS 

It is shown that there exists a close relationship between the network functions of LC, RL, 
and RC ladder networks and certain generalized polynomials. In view of this, many interesting 
properties of these polynomials may be derived using the well-known properties of two-element-
kind ladder networks, and vice-versa. A few elegant results regarding the location of the zeros of 
the polynomials such as the Fibonacci, Lucas, Jacobsthal, as well as their derivative polynomials 
have been derived. Also, the interrelations among these various polynomials and the Morgan-
Voyce polynomials have been derived. 
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We present here two sieve-type explicit formulas for r-Fibonacci and r-Lucas numbers 
(r = 2,3,...) that connect them with families of well-defined combinatorial numbers, and discuss 
some particular cases. 

1. DEFINITIONS 

We consider the two main families of sequences {F„(r)} and {L^} (r = 2,3,...), determined 
by the simplest general r*-order linear recursion 

&r ) = E G & («*/•) (i) 

(<2^ denotes either F^ or 1$) with initial conditions 

F^ = 0, FW = 1,..., F/> = 2'-2 (2 < j < r -1); (2) 

W=r,W = \,...,Lf = 2J-l (l<j<r-l). (3) 

F^ and 1$ are r-Fibonacci and r-Lucas numbers, respectively (cf. [2], [6], [8], [9]; also [7] 
with ai -1 for all i)—or the "fundamental" and "primordial" sequences named by Lucas. The 
sequences {F^} and {L^} differ from the known Tribonacci, Tetranacci, etc., sequences in 
having a shift r - 2 places backwards. 

The recursion (1) implies a fundamental property—the subtraction law 

Q[r) = 2QW1-QW_i {n>r + 2) (4) 

for sequences of both kinds. 
Our aim is to evaluate the differences 2n~2 - Fw

(r) and 2" - 1 - 1$ caused by this subtraction. 
We propose a method of exact calculation of Fw

(r) and Z^r). 
As a result, explicit formulas (12) and (18) are obtained, which generalize the known for-

mulas in the particular case r = 2 (Section 4). 

2* THE r-FIBONACCI SEQUENCES 

The evaluation of 2n~2 - F^r) involves a family of numbers 
d(m,l) = l, 

d(m,n)= n i ^ n_2 J2 (5) 

_ 2fn + n-3(in+n-3\0„-2 
m-l {mm-23)2"'2 (^2>-
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The numbers d(m, n) and c(m, n) = d(m, n)l2n 2 for particular values of m and n are well known. 
For fixed n, c(m, n) are the («-1) -dimensional square pyramidal numbers [3] (sequences M3356, 
M3844, M4135, M4387 in [10]—for n = 2,3,4,5). There is also 

c(n-l,n) = (3n-5)C„_2, (6) 

where Cn is the 11th Catalan number (M2814). 
As c(m,2) = d(m,2) = 2m-l, the array {c(m,n)} with m>2 may be considered as the 

"Pascal product" of the sequences (1,3,5,..., 2m-1,...) [or (2,2,..., 2,...), beginning from n - 1] 
and (1,1,..., 1,...) with the addition law 

c(m,n) = c(m,n-l) + c(m-l,ri) (7) 

of the Pascal triangle array {(T)} . 
The numbers c(m, n) appear also as coefficients in the Lucas polynomials Ln(x): 

|_«/2j+l 

4 ( x ) = ]^c(iif + l,/i-2i»f + l)jcw-2m.' (8) 
m=0 

The numbers d(m, n) enter as coefficients in the Chebyshev polynomials Tn(x) [1]: 
[«/2j+l 

^ ( x ) = Y,(-l)m~ld(m,n-2m + 3)xn-2m+2 (9) 

(see M2739, M3881, M4405, M4631, M4796, M4907 for m = 2,..., 7). 

Proposition 1: 
d(m,n) = 2d(m,n-l) + d(m-l,n). (10) 

2 r f ( ^ - l ) + ^ - l ^ 

?+fl-4 2/if + yi-5Y/w+y?-4>\?w-
w _ l +

 w _ ! ^ 1,-2 )l 
2m-

m-

2/M2 + 3mfl+/?2 -9/y?-6n + 9 m - 1 (m+n-3\n„-2 \2n 

(m-\)(n-\) m+n-3{ n-2 

= 2 ^ ^ ^ + » - 3 ^ 2 = ^ | | ) B Q 

Theorem 1: 

# r ) = 2 (-l)"</(»t +1, /i - (r + \)m) (» > 2). (11) 

Proof: By induction. We see from (2) that the assertion is true for n = 2,..., r +1 because 
2W_2 = d(l, n). Also, for n = r + 2, it follows from (4) that 

FZl = 2FZl-F{r) = 2r-l = d(l,r + 2)-d(2,l). 

362 [NOV. 



SIEVE FORMULAS FOR THE GENERALIZED FIBONACCI AND LUCAS NUMBERS 

Suppose that (11) holds for all r previous values w-1, . . . , w - r - l . Then, from (4) and (10), we 
obtain: 

1 n jLrn-\ rn-r-\ 

( L^J 
= 2 2"-3 + £(-\)md(m +1, n- (r + \)m-1) 

V m=l j 

~ Yti-Wdim + Xn-ir + lXm+l)) 
ro=0 

= 2n"2 + 2 £ (-l)m J(w +1, n - (r + \)m -1) 
m=l 

L?rfJ 
~ X (-1)W_1^K w - (r + l)w) 

= rf(l,/i)+ 2(-irrf(i if + l , / i-(r + l)ifi). D 

From (5) and (11), we obtain the resulting formula. 

Corollary 1: 
I n-\ I 

^ ) = 2 » - 2 . J ( q ) . - i ! [ j ( [ ± l f " - w - 2 j 2 - - . w („>2). (12) 

.Eca/npfe; 
Fgy = d(l,22)-d(2,l6)+d(3,10)-d(4,4) 

= 1048576-278528 + 16640-120 = 786568. 

3. THE r-LUCAS SEQUENCES 

To evaluate the difference 2" - 1 - Z^, we introduce in a similar way the numbers 
e(r;m,\) = r + l, 

(13) , x (r + l)m + n-\(m + n-2\~„-

The array {e(r;m,n)/2n~1} for the given r is a Pascal product of the sequences (r + 1, r 4-1, 
..., r + 1, ...) and (1,1,..., 1,...) with the addition law analogous to (7). For the case r = 2, we find 
in [10] two sequences from here: M2835 (m = 3), M3011 (m = 5), explained as coefficients in the 
expansion of (1 - x - x2)~n. The numbers e(r;m, ri) show almost no connection with the previous 
ones; the only common values we can notice are 

d(2, ri) = e(2; 1, n -1) = (n + 1)2W"2. (14) 

However, their addition properties are the same. 
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Proposition 2: 
e(r;m, n) = 2e(r; m, n -1) + e(r; m - 1 , n). (15) 

2e{r\rn, n-l) + e(r;m-l,ri) 

_n(r + l)m+n-2(m+n-'$\n-2 , (r + l)(m-l)+/?-l/Ww--3>\,Vf.-i 
~ 2 m l n-2 J2 +

 OT-i I n-l )Z 

= (((r + l)m+n-2)(n-l) (r + l ) (m- l )+ /? - lY/K+f t -3Wi 
I m(m-l) m-l ) \ n-l ) 

_ (r + \)m2 +(r + 2)mn + n2-{2r + 3)m-3n + 2 m-l fm+n-2\2„-i 
m(m-l) 'm+n-2\ n-l ) 

(r + l)m+n-l(m+n-2\on-i , \ n 
= i >- (̂  n_l J2 l = e(r;m,n). D 

For the initial value m-\, there obviously is 

e(r;\,n) = 2e(r;l,n-\) + 2"-1. (16) 

Theorem 2: 
LTTTJ 

4 r ) = 2" - l+£( - l ) m e ( r ; /w ,« - ( r + l)»i + l) («>1). (17) 

Proof: By induction (as in Theorem 1). The assertion is true for the r initial values (3) (for 
n > 1) and I%> = 2r - 1 . We also can see that 

Z& = 24r> - 4 r ) = 2r+1 - 1 - (r +1) = 2r+1 - 1 - e{r; 1,1). 

Performing the induction step n-1 -» w, and using (4), (15), and (16), we obtain: 
T(r) - 2 / W - / W 

f 
= 2 

LAJ 
2""1 - 1 + X ( " i r ^ ; m,n-(r + l)/w) 

v m-l ' , 
l-^-J-l 

_ 2 „ _ r - i + j _ r ^ (_iye^ myn-(r + l)m-r) 

= 2n -1 + £ ( - i r < r ; /w, w - (r + l)m) 
L_n_J_l 

-e(r;l,n-r)- J^(-l)me(r;m,n-(r + l)(m + l) + i) 
L7+TJ L7+rJ 

= 2 " - l + £( - l ) m e( r ;/«,«-(>• + !)/«)+ £ ( - l ) "e ( ' - ; ' » - l , / i - ( r + l)»i + l) 
|_-a_J 

= 2"-l+Y,(-l)me(r;m,n-(r + l)m + l). D 

From (13), (17) follows 
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Corollary 2: 

Example: 

l_£L_J 

4 r ) =2" -1 -»£( - l r 1 Mn-™r_~] V ^ + D (n> 1} 
m=l m V / 

45
0> = 220 - 1 - e(5; 1,15) + e(5; 2,9) - e(5; 3,3) 

= 2--l-2(((1
0

4)2"-lQ2s + ^4J2 2 j 

= 1048575-20(16384-1152 + 8) = 743775. 

(18) 

4. FORMULASINTHECASEr = 2 

In the particular case r = 2, i.e., for the usual Fibonacci and Lucas numbers Fn = F^2), 
L„ = 4 2 ) (" * 3), the following formulas are obtained from (5), (12), (13), and (18). 

Corollary 3: 
F„ = d(X n)-d(2, n - 3)+d(3, n - 6) -

L(«-1)/3J 

Z,„=2"-1-l-e(2;l ,n-2) + e(2;2,n-5)----

=2-1 -» L | J ( - i r i ^ f " - 2 w r 1 l2" 
m-\ 

(19) 

(20) 

Formula (20) in an equivalent form was discovered by Filipponi ([4], formula (2.1)), using a 
simpler formula of Jaiswal [5], which (with n instead of w + 3 in the original notation) has the form 

L«/3J / o i\ 

^ = i + I ( - i r r » i _ 1
 2""3ffl- (21) 

This is perhaps the first known example of Fibonacci sieve formulas. 
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8817 Lake Sheen Ct, Orlando, FL 32836 

e-mail: woltman@magicnet.net 
{Submitted July 1999-Final Revision September 1999) 

1. INTRODUCTION 

There is a long, rich history in the search for primes of the form Mp = 2P - 1 , named 
Mersenne primes. In the early years the study of Mersenne primes led to several important 
advances in number theory. In recent decades the computer has become instrumental in the 
search for large primes leading to several algorithmic advances. This paper provides an overview 
of the history (see [6]) and techniques used in finding the currently largest known explicit 
Mersenne prime. 

It is helpful to tour briefly some known properties of Mersenne primes. The possible 
exponents/? are restricted by an elementary theorem that says: if Mp is prime, thenp is prime. 
Furthermore, known factors of Mp must of necessity be of the form q = 2kp + \\ also, when 
p > 2 we must have q = 1 or 7 (mod 8). These properties can be used effectively to quickly sieve 
out many composite Mp, thus eliminating the need for the comparatively expensive Lucas-
Lehmer test, a definitive and rigorous primality test described below. There is also the ancient 
connection with perfect numbers. A perfect number equals the sum of its positive divisors 
excluding itself. The first two examples are 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14. The Euclid-
Euler theorem states that an even number n is perfect if and only if it is of the form n - 2p~lMp, 
where Mp is prime. Therefore, one can say that every new Mersenne prime discovery immedi-
ately begets a new perfect number. 

Beyond these proven facts there has been a great deal of conjecture and mystery pertaining to 
the Mersenne primes. Two widely-believed heuristic arguments (see [3] and [8]) say that the 
probability that Mp be prime is 

(er logap)lp log2), where a = 2 if p = 3 (mod 4) and a - 6 if p = 1 (mod 4) 

and the number of Mersenne primes less than or equal to x is about 

(er/log2) * log log x, 

where y « 0.577 is the Euler constant. It is interesting to compare this heuristic with the occur-
rence of the currently known Mersenne primes. Chris Caldwell has done just that, providing 
several graphs examining these conjectures at 

http ://www. utm.edu/research/primes/notes/faq/NextMersenne. html. 

Since 1952, Robinson, Riesel, Hurwitz, Gillies, Tuckerman, and Noll & Nickel all used the 
most powerful computers of their day to find new Mersenne primes. In 1979, Slowinski, some-
times partnering with Nelson or Gage, began a 17-year reign finding seven ever larger Mersenne 
primes with Cray supercomputers. Colquitt and Welsh found an overlooked Mersenne prime in 
1988. In 1996, Woltman and Kurowski developed a kind of "Internet supercomputer" that has 
found the last 4 Mersenne primes. Once again, Caldwell's 
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http://www.utm.edu/research/primes/mersenne.shtml 

web page provides a superb and more complete history. 

2. RESULTS 

On June 1, 1999, the Mersenne prime 26972593 - 1 was discovered by Nayan Hajratwala on his 
personal computer using software developed by the author and Scott Kurowski. Hajratwala is 
one of over 12,000 participants in the Great Internet Mersenne Prime Search (GIMPS). As of 
this writing, the prime is the largest known explicit prime of any type. 

The new prime number is 2098960 decimal digits long. It took 111 days running part-time 
on a 350 MHz Pentium II computer to prove this number prime. Running non-stop the test 
would have taken just over three weeks. 

The number was subsequently verified as prime by three independent parties, each party 
employing different hardware and software. Gerardo Cisneros used David Slowinski and Paul 
Gage's program on the 4-CPU CRAY Y-MP at the National Autonomous University of Mexico's 
General Directorate of Academic Computing Services (DGSCA/UNAM). David Willimore used 
a program by Ernst Mayer on an Aerial Communications 500 MHz Alpha workstation. Cornelius 
Caesar used a program by John Sweeney on an IBM RS/6000. 

There are now 38 known Mersenne primes. Mp is prime for /?=2, 3, 5, 7, 13, 17, 19, 31, 
61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 
2976221, 3021377, 6972593. As we will see later, the new prime number may not be the 38th 

Mersenne prime by size. In fact, there could be exponents below 2976221 that yield a new Mer-
senne prime. The current status of the search is frequently updated at 

http://www.mersenne.org/status.htm. 

3. IMPLEMENTATION OF THE LUCAS-LEHMER TEST 

One requirement for finding such gargantuan Mersenne primes is a fast and efficient imple-
mentation. The search program uses the celebrated Lucas-Lehmer primality test (see [4] and [5]), 
a convenient variant of which is to define the sequence starting with xx := 4, and iterate 

xn+l:=x2
n-2(modMp) 

through the index n - p -1. Mp is prime if and only if x x = 0 (mod Mp). It is clear that the 
main operation in this rigorous test is that of squaring of numbers of size/? bits. Schonhage and 
Strassen [7] showed that a Fast Fourier Transform (FFT) can be used to square a p-h\t number in 
0(p logp log log/?) bit operations. A very rough description of the procedure is as follows. 
Because multiplication is essentially what is called "acyclic" convolution, and since acyclic convo-
lution is a cyclic convolution of zero-padded sequences, and since the cyclic case can be handled 
by Fourier transforms, one may zero-pad a p-hit number x to be squared, resulting in a number 
with about 2p bits, followed by FFT-based convolution to get the desired integer product. In the 
early 1990s, Richard Crandall [2] observed that, since squaring modulo Mp is a length-/? cyclic 
convolution of the bits of x, it is possible to expand x into approximate digits in an irrational base 
2r, where r = q/2k, and thereby, via cyclic convolution, accomplish two things: eliminate the 
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zero-padding entirely, and allow power-of-two run lengths in the Fourier transforms. In this 
fashion, the search time for large Mersenne primes was effectively halved. The present author 
implemented this "irrational base discrete weighted transform" (IBDWT) algorithm in assembly 
language to take advantage of the pipelining capabilities of the Intel architecture. One extension 
of the algorithm was to allow convenient, but non-power-of-two run lengths, which further 
increased search efficiency. The author also used an in-place variant of a David Bailey [1] idea on 
avoiding power-of-two memory strides that have a devastating impact on memory caches. 

The second ingredient for a successful search is a great deal of computing power. Tradi-
tionally this involved the use of supercomputers. Today, there is a better alternative—distributed 
computing. Distributed computing uses the idle cycles on thousands of ordinary computers con-
nected to the Internet. Scott Kurowski, founder ofEntropia.com, developed software that makes 
this easy. An Internet user runs the prime search program which automatically contacts a central 
server to get a work assignment. The computer works on this assignment off-line at low priority. 
When the assignment completes the program contacts the server to report its results and get a 
new work assignment. 

The Great Internet Mersenne Prime Search (GIMPS), which was founded in 1996, has a goal 
of methodically testing all Mersenne numbers up to achievable limits. Slower machines look for 
small factors of Mersenne numbers, and so perform the kind of sieving mentioned in the Introduc-
tion. Faster machines run the Lucas-Lehmer primality tests. Medium speed machines rerun 
primality tests to make sure the first test ran properly (the last 64 bits of the last Lucas-Lehmer 
iteration are compared). The distributed nature of the search process means that there are always 
"gaps" in the testing and double-checking process. There are over 12000 exponents below 
6972593 that have not finished testing and over 60000 exponents that have not been double-
checked including some below 2976221. 

To run a successful distributed project, the central server must do more than hand out assign-
ments and track results. The Entropia.com server must reassign work that is not completed in a 
timely manner. To help users running on several computers, the server provides reports so the 
user can keep track of each computer's progress. Finally, many users enjoy seeing where they or 
their team stand in a "top producers" report. The server also sends out periodic newsletters to 
interested users. It is important to provide these "extras" to keep an all-volunteer work force 
enthused and up-to-date on current events. 

4. THE FUTURE 

The Electronic Frontier Foundation, www.eff.org, is offering awards of $100,000 and up for 
the discovery of primes with 10 million, 100 million, and 1 billion digits. While the 10 million 
digit award may be within GIMPS reach—it is "only" 125 times more difficult than finding a 2 
million digit prime—the larger primes will require significant breakthroughs in primality testing or 
multiplication algorithms. 

There are several factors that affect when the next Mersenne prime will be found. Obviously, 
the size of the exponent is one. Based on past percentage distances between Mersenne primes, 
the next exponent could be as high as 28.6 million! The number of computers participating in 
GIMPS is always growing and the speed of the average computer gets faster every year. While 
the next Mersenne prime could be found tomorrow, the chances are GIMPS will find the next one 
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sometime during the next 2 years. It will be hard to sustain GIMPS' track record of 4 Mersenne 
primes found in less than 4 years. 

5. CONCLUSIONS 

It would appear that many supercomputing chores of the future will no doubt be performed 
by vast networks of computers. Many other fields of computation—ranging from medical data 
processing to searches for extraterrestrial intelligence—may well benefit from such massive 
parallelism. It is hoped that this Mersenne discovery serves as a kind of example of what is 
possible using these techniques. 

In many fields, new research will be needed to develop algorithms that can be run on such a 
massively parallel network using a minimum of bandwidth. Many businesses and universities will 
eventually harness power of the many small computers they own to do computationally intensive 
research more economically. 

ACKNOWLEDGMENTS 

While there are far too many people to list here, the author wishes to thank the huge number 
of people that have contributed to the GIMPS project. While most have contributed computer 
time, many have also contributed by writing software, recruiting others, running mailing lists, 
helping new users, and hosting web pages. 

REFERENCES 

1. D. H. Bailey. "FFTs in External or Hierarchical Memory." NAS Technical Reports RNR-89-
004, 1989. 

2. R. Crandall & B. Fagin. "Discrete Weighted Transforms and Large-Integer Arithmetic." 
Mathematics of Computation 62 (1994):305-24. 

3. R. Crandall & C. Pomerance. Prime Numbers: A Computational Perspective. New York: 
Springer-Verlag, 2000. 

4. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 5th ed. Oxford: 
Clarendon Press 1979. 

5. D. E. Knuth. Seminumerical Algorithms. Vol. 2: The Art of Computer Programming. 3rd 
ed. Reading, MA: Addison-Wesley, 1998. 

6. P. Ribenboim. The New Book of Prime Number Records. New York: Springer, 1996. 
7. A. Schonhage & V. Strassen. "Schnelle Multiplikatioin groBer Zahlen." Computing 7 (1971): 

208-13. 
8. S. Wagstaff, Jr. "Divisors of Mersenne Numbers." Mathematics of Computation 40 (1983): 

385-97. 
AMS Classification Numbers: 11 -04, 11A41 

370 [NOV. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stan ley Rabinowlfz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to stanley@tiac.net on the Internet. All 
correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

^ + 2 = ^ + 1 + ^ , , ^ 0 = 0 , ^ = 1 ; 
A?+2 ~ A i + i + Ai> L 0 = 2 , L X - i. 

Also, a = (l + V5)/2 , /? = ( l - V 5 ) / 2 , F„ = (an-0")/ JT, and Ln = a"+j8". 

PROBLEMS PROPOSED IN THIS ISSUE 

B-884 Proposed by M N. Deshpande, Aurangabad, India 
Find an integer k such that the expression 

Fn
2Fn

2
+2+kFn

2
+lFn

2
+2 + F^Fn

2
+3 

is a constant independent ofn. 

B-885 Proposed by A, J. Starn, Winsum, The Netherlands 
For n > 0, evaluate 

B-886 Proposed by Peter J. Ferraro, Roselle Park, NJ 
For n>9, show that 

B-887 Proposed by A. J. Siam, Winsum, The Netherlands 
Show that 
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B-888 Proposed by A. Arya, J. Fellingham, and D. Schroeder, Ohio State University, OH, 
and J. Glover, Carnegie Mellon University, PA 

For n > 1, let An - [a, .] denote the symmetric matrix with atJ = j +1 and atj = min[j, j] for 
all integers / and j with i*j. 

(a) Find the determinant of An. 
(b) Find the inverse of An. 

SOLUTIONS 
nth Derivative 

B-865 Proposed hy Alexandra Lupas, University Lucian Blaga, Sibiu, Romania 
(Vol 36, no. 5, November 1998) 

Let f(x) = (x2+4)"~1/2, where wis a positive integer. Let 

5V J dxn 

Express g(l) in terms of Fibonacci and/or Lucas numbers. 

Solution by Richard Andre-Jeannin, Cosnes etRomain, France 
It is known (Theorem 2 from [1]) that 

From this, we get 

Ln(x) = 2-^Jxr74g(x). 

(2»)!4 
8W 2V5»!' 

Reference 
1. Richard Andre-Jeannin. "Differential Properties of a General Class of Polynomials." The 

Fibonacci Quarterly 33.5 (1995):453-458. 
Solutions also received by Paul S. Bruckman, H.-J. Seiffert, and the proposer. 

Divisibility by 25 

B-866 Proposed by the editor 
(Vol 37, no. 1, February 1999) 

For n an integer, show that LSn+4+Ll2n+6 is always divisible by 25. 

Solution 1 by Pentti Haukkanen, University of Tampere, Tampere, Finland 
It is known [1, (17b)] that 

Therefore, 

It is well known that a\b => Fa \Fb. Therefore, 5\Fl0n+5 and, further, 

25\5Fl0n+5F2n+l OI* 25IA2n+6 + 4«+4-
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Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood 

Ltd, 1989. 

Solution 2 by Calvin T. Long, Northern Arizona University, Flagstaff, AZ 
More generally, we show that Lr + Lr+2s is divisible by 25 if and only if 5 \s or 5 \r + s. If we 

then take r = &n + 4 and s = In +1, we have r + s = 1 On + 5 and the above result follows. 
It is well known (see, e.g., [1], p. 222) that 

T . T _i5F
s
Fr+s for ^ odd, 

. ^ + ^ + 2 , \LsLr+s forseven. 

Since 5\Ln for any n and 5\Fn if and only if 5|w, it follows that 25|Zr +Lr+S if and only if 5\s or 
5\r + s. 

Reference 
1. C.Long. "On a Fibonacci Arithmetical Trick." The Fibonacci Quarterly 23.3 (1985):221-31. 
Seiffert showed that L^ = (-1)*_1(5&2 - 2) (mod 25). 

Solutions also received by Richard Andre-Jeannin, Brian D. Beasley, Paul S. Bruckman, 
Kathleen E. Lewis, Steve Scarborough, H.-J. Seiffert, Indulis Strazdins, and the proposer 

1999 Beiongs 

B-867 Proposed by the editor 
(Vol 37, no. 1, February 1999) 

Find small positive integers a and b so that 1999 is a member of the sequence (un), defined by 
u0 = 0, ux = 1, un - aun_x +bun_2 for n > 1. 

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC 
Since u2 = a and u3=a2 +b, we may find a and b so that a2 +b = 1999. The solution in 

positive integers that yields the largest a and hence the smallest b is (a, b) = (44, 63). Such solu-
tions range from (44, 63) and (43,150) to (1,1998). 

We note that since 1999 is prime and u4 = a(a2 + 2b), the only way to achieve u4 = 1999 is to 
take (a, b) = (1,999). Also, since u5 = a4 + 3a2h + h2, achieving u5 = 1999 would force a4 < 1999 
or a G {1, 2, 3,4, 5, 6}, none of which produces an integer value for b. 

Solutions also received by Indulis Strazdins and the proposer. 

Congruence Mod 25 

B-868 Based on a proposal by Richard Andre-Jeannin, Longwy, France 
(Vol 37, no. 1, February 1999) 

Find an integer a > 1 such that, for all integers w, Fan = aFn (mod 25). 

Solution 1 by Pentti Haukkanen, University of Tampere, Finland 
Note that F25 = 75025 is divisible by 25. By the well-known property c\b => Fc \Fb, we have 

25\{Fan-aFn) when a = 25k. 
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Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC 
We use induction to show that a = 9 is a solution. 
For n = 0, F0 = 9F0 = 0. For n = 1, F9 = 34 = 9 = 9FX (mod 25). Given « > 2, we assume 

^9(n-\) = 9Fn_x (mod 25) and F9^n_2) = 9i^_2 (mod 25). For /? an integer, it is straightforward to 
verify the identity Fn = l6Fn_9+Fn_n. Then 

-675FW_1 + 9(FM_1+Fn_2)-9FW (mod25). 

Solution 3 (and generalization) by Richard Andre-Jeannin, Longwy, France 
We shall prove that Fan = aFn (mod 25) for all integers n if and only if a = 0 (mod 25) or 

a = r (mod 20), where r e {1,5,9}. 
First, if a = 0 (mod 25), it is well known that Fan = 0 (mod 25) and the two members are 

divisible by 25. 
Assuming now that a is not divisible by 25, and putting n = 1 and n = 2 in the relation 

i^, s ai^ (mod 25), we get that 
[Fa=a (mod 25), 
[FaLa = F2a=aF2=a = Fa (mod25). 

From the last relation, we get that Fa(La-l) = 0 (mod 25), and thus that La = 1 (mod 5) (recall 
that Fa is divisible by 25 only if a is divisible by 25). It is not hard to prove that the last rela-
tion holds if and only if a = l (mod 4) or, equivalently, if and only if a = 2Qk+r, where 
r €0,5,9,13,17}. 

We now need the following lemma. 
Lemma: F20lc+r = 20* + r (mod 25) only if r e {1,5,9}. 

Proof: The sequence Xk - F2Qk+r satisfies the recurrence relation 

*k = ^.^k-x-^)2°Xk_2 = \S\21Xk_l-Xk_2^2Xk_l-Xk_2 (mod25). 

Any sequence of the form (ck + d) is another solution of the recurrence 

From this, we see that, for every integer k, F20k+r = (F20+r - Fr)k + Fr (mod 25), since the two 
members satisfy the same recurrence and take the same value for k - 0 and for k - 1. Thus, we 
have to see that F20+r -Fr=20 (mod 25) and that Fr=r (mod 25). 

It is readily proven that 4 is the period (mod 25) of the sequence Zr = F20+r - Fr and that 
Zr = 20 (mod 25) if and only if r = 1 (mod 4) and, particularly, for r e {1, 5, 9,13,17}. On the 
other hand, we have Fr=r (mod 25) for r = 1,5,9 when Fl3 = 8 (mod 25) and Fl7 = 22 (mod 
25). This concludes the proof of the lemma. 

Now, we have to distinguish two cases. Assuming first that r = 1 or r = 9, we see that 20 is 
the period of the sequence Ln (mod 25) and that L20lc+r = 1 (mod 25) for r = 1 and r = 9. Now 
the sequence Yn - î 2o£+7> satisfies the recurrence 

Yn = W ^ - i " (-l)m+rrn-2 - Yn_x + Yn_2 (mod 25), 
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since r is odd. Thus, the two sequences Y„ and (20k +r)Fn satisfy the same recurrence and they 
take the same value (mod 25) for n = 0 and for n = 1 (by the lemma). We deduce from this that 
F(20k+r)n - (20£ +r)Fn (mod 25) for every integer n. 

Finally, assuming that r = 5, we see that L2Qk+5 = 1 (mod 5) [since 20k+ 5 = 1 (mod 4)] and 
that the sequence Un = F^20k+5^n / 5 is a sequence of integers, since 5 divides 20^ + 5. Now, the 
sequence U„ satisfies the recurrence 

U„ = i W - i - ( - l ) m + 5 ^ -2 - U„_, + U„_2 (mod 5). 
Thus, the two sequences U„ and (4k + X)Fn satisfy the same recurrence mod (5), and they take the 
same values (mod 5) for w = 0andw = l, since, by the lemma, we can write F20k+515 = 4k +1 
(mod 5). We deduce from this that, for every integer w, F(20k+5)n 15 = (4k + \)Fn (mod 5) and thus 
that î 2o*+5)n = (20^ + 5)Fn (mod 25). This concludes the proof 

Another Generalization of B-868 
Consider the general recurrence W„ - PWn_x-QWn_2 with the solutions U„ (£/0 = 0, Ux = 1) 

and Vn (V0 = 2, Vx = P). The sequence of integers 

satisfies the recurrence 
X„ = VpXn-\-QpXn_2. 

lip is an odd prime, it is well known that Vp = P (mod p) and that Qp = Q (mod /?). From this, 
we see that 

X^PX^-QX^^oAp). 

Reasoning as in the solution of the problem, we get that, for every integer n\ 

-j^^Un (mod/?) or that Upn - UPU„ (mod pUp). 

Solutions also received by H.-J. Seiffert and Indulis Stmzdins. 

A Polynomial for F 

B-869 Based on a communication by Larry Taylor, Rego Park, NY 
(Vol 37, no. 1, February 1999) 

Find a polynomial f(x) such that, for all integers n, 2nFn = f(n) (mod 5). 
Solution by Indulis Stmzdins, Riga Technical University, Riga, Latvia 

For n = 0,1,2,3,4 (mod 5), the period of 2nFn is (0,2,4,1,3), which coincides with the 
period of 2w. Hence, f(x) - (5m + 2)x for any integer m. 
Seiffert showed that, for n a nonnegative integer, 

2nFn^~ (5n2 -15w +16) (mod 50). 

Solutions also received by Richard Andre-Jeannim, Brian D. Beasley, Don Redmond, H.-J. 
Seiffert, and the proposer. 
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Trigonometric Diophantine Equation 
B-870 Proposed by Richard Andre- Jeannin, Longwy, France 

(Vol 37, no. 1, February 1999) 
Solve the equation 

tan-1 y - tan-1 x = tan-1 

x+y 
in nonnegative integers x and y, expressing your answer in terms of Fibonacci and/or Lucas 
numbers. 
Solution by the proposer 

Let 0 = tm~l y-tm~lx. It is clear that -nl2<0<nl2y since x and y are nonnegative. 
Thus, the original equation is equivalent to 

x+y l + xy 

which can be written as y2 - x2 - 1 + xy or 

(2y-x)2-5x2=4. (1) 
It is well known that the nonnegative solutions of the Diophantine equation Y2 - 5X2 - 4 are 
given by X-Fln and Y = Lln. From this, we see that the solutions of (1) are given by x = F2n 
and y = (F2n + L2„)/2 = F2n+l. 

Solutions also received by Charles K Cook, H.-J. Seiffert, andlndulis Strazdins. 
Errata: In the solution to problem B-864 (August 1999), in the line after display (2), insert "and 
n- j " at the end of the line. In the next display after display (2), "since Qa = 1" should read 
-since & s i - . 
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editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-556 Proposed by N. Gauthier, Dept of Physics, Royal Military College of Canada 
Let f(x) and g(x) be continuous and differentiable in the immediate vicinity of x - a(& 0) 

and assume that, for some positive integer k, 
f(n\a) = g(n\a) = 0; 0<n<k-l. 

By definition, 

for any continuous and differentiable function f(x). Further, assume that one of the following 
conditions holds for n = k: 

a. fk\a)*0, g(k\a) = 0; 
b. / w ( a ) = 0, g(k)(a)±0; 
c. f(k\a)*0, g(k)(a)*0; 

Introduce the differential operator D:=x-^ and define, for m a nonnegative integer, 

fjx):=irf{x\ gm{x):=]Tg{x). 
Prove that 

hm J y - k a^O. 
*-»" g(x) gkia) 

H-557 Proposed by Stanley Rabinowitz, Westford, MA 
Let (wn) be any sequence satisfying the second-order linear recurrence wn = Pw„_x - Qw„_2, 

and let (vn) denote the specific sequence satisfying the same recurrence but with the initial condi-
tions vQ = 2, vx = P. 

Ifk is an integer larger than 1, and m = \kl2\, prove that, for all integers n9 

v v rm\t ( nn\m K> if £ is even, 

Note: This generalizes problem H-453. 
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H-558 Proposed by Paul S. Bruckman, Berkeley, CA 
Prove the following: 

00 

n = Z H ) " (fe10«+l - fe10«+3 - 4^10n+5 - 6£lOn+l + 6^10»+9}3 (*) 

where em = a~m/m. 
SOLUTIONS 
Count on It! 

H-540 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 36, no. 2, May 1998) 

Consider the sequence U = {u(n)}™=h where u(n) = [na], its characteristic function 8u{n), 
and its counting function nv(n) = T/k=\8u(k), representing the number of elements of U that are 
<n. Prove the following relationships: 

(a) 8u(n) = u(n + l)-u(n)-l, n>l; 
(b) xu(F„) = Fn_l, n>\. 

Solution by H.-J. Seiffert, Berlin, Germany 
Let v(ri) = [na2], nGN,mdV = {v(n)}™=1. It is known (see [1], p. 472) that f / o V = $ and 

UKJV" = N'. In [1] it is proved that, for all « e JV, 

I<«(/I) + 1)-I#(I/(/I)) = 2 , (1) 

I<V(/I) + 1)-I<V(W)) = 1. (2) 
The equation 

u(Fn + l) = Fn+l + l, nzN, n>l, (3) 

is established on page 311 in [2]. 
Proof of (a): Let nsN, If n eU, then there exists k GN such that n - u(k). From (1), 

we get 
u(n +1) - i/(/i) - 1 = u(u(k) +1) - i<if(*)) - 1 = 1 = ^ ( / i ) . 

If n <£U, then W G F and n = v(k), where k GN. Hence, by (2), 
u(n +1) - i/(w) - 1 = u(y(k) +1) - f<v(Jfc)) - 1 = 0 = 8U in). 

Proof of (b): Summing the equations 8u(k) = u(k +1) - u(k) -1 over k = l9...,n and using 
u(l) -1 gives 

7ru(n) = u(n + l)-n-l, nsN. (4) 

If n > 1, then by (3) and (4), TT^FJ = u(Fn +1) - Fn - 1 = F„+1 - F„ = i ^ . 

References: 
1. V. E. Hoggatt, Jr. & A. P. Hillman. ,fA Property of Wythoff Pairs.,f The Fibonacci Quarterly 

16.5(1978):472. 
2. V. E. Hoggatt, Jr., & M. Bicknell-Johnson. "Representations of Integers in Terms of Greatest 

Integer Functions and the Golden Section Ratio." The Fibonacci Quarterly 17'.4 (1979):306-
18. 

Also solved by the proposer. 
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Just Continue 
H-541 Proposed by Stanley Rabinowitz, Westford, MA 

(Vol 36, no. 2, May 1998) 
The simple continued fraction expansion for F^/F^ is 

1 . 
11 + -

11 +• 
375131 +• 

1 + -
1 + -

1 + -
1 + -

1 + -
1 + • 

1 + -
1 + -

1 + 
2 + - L 

•+£ 
which can be written more compactly using the notation [11,11,3.75131,1,1,1,1,1,1,1,1,1,2,9,11]. 
To be even more concise, we can write this as 112,375131,19,2,9,11], where the superscript 
denotes the number of consecutive occurrences of the associated number in the list. 

If «>0 , prove that the simple continued fraction expansion for (Fl0n+3 / Fl0n+2)5 is 112/7, x, 
l0n~\2,9,1 l2w_1], where x is an integer, and find x. 

Solution by PaulS. Bruckman, Berkeley, CA 
We begin with the well-known isomorphism between simple continued fractions and 2x2 

matrices, namely: 
(<h l\(ai \\((h'\\m(am l)(pm Pm-i 
[l OXl 0 ^ 1 0) [l 0) [qm qm_K 

where pm I qm is the m^ convergent of the simple continued fraction denoted as [di,a2,a3,:..,am]. 
Normally, we will restrict the a/s to be positive integers. As a particular case, if all the a/s are 
equal (say to a), this result simplifies to 

r = r(a) = y2{a + 0}, s = s(a) = Y2{a-G}, and 6 = 6{a) = (a2 +4)#. 

It is also true that Om+2 = aOm+l + <X>m, m = 0,1,2,..., with 0»0 = 0, O, = 1. We note that 
0>m(l) = Fm, and also that r(l 1) = X 0 * + */5) = a\ s(\ 1) = )£(11 - S»/5) = p5; therefore, 

<S>m(U) = \l5F5m. (1) 

We will also utilize the following common identities: 
5FuFv = Lu+v-(-iyLv_u; FULV = Fu+V-(-IfFv_u; LULV = Lu+V + (-IfLv_u; 

and 
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25(FJ5 = F5m - 5(-l)mF3m 4- lOFm. (2) 

For brevity, let p n = (Fl0n+31 Fl0n+2)5, n - 1,2,.... Also, we assume that p n = [1 l2w, £], where 
£ = t,n is not necessarily an integer. This implies that x = xn - |_£J (here " |_ J" denotes the "great-
est integer" function). Using the formula in (2), we find that 

Pn = (^50/7+15 + 5 ^30»+9 + 10F\0n+3) ! (^50/7+10 ~ 5 ^30»+6 + 10F10n+2) • ( 3 ) 

Also 

Thus, 

K^FlOn + FlOn-5 F\0n J 

Then we require that p n = (^Fl0n+5 + Fl0n) I (^Fl0rl + Fl0n_5). Now we substitute the formula in 
(3), cross-multiply, and simplify, using the multiplication identities previously indicated. After a 
tedious but straightforward computation, we obtain the following result: 

£ i = 5F20*+5 + 6 + (F20n+4 + 2 ) 7 ^Ow+5 • (4) 
Note that, if n > 0, the fractional part of %n lies in the interval (0,1), as we would expect. 

Thus, our earlier assumption is justified, and we conclude that 

*w = 5F20„+5 + 6. (5) 
By comparison with the desired expression, it remains to verify that 

^o n + 5 / (^o n + 4+2) = [l1 0"-1
)2,9,ll2"-1]. (6) 

In turn, it suffices to show the following: 

! JH iX? iXv T M f e :)• 
where C is some constant independent of n and the "*" matrix entries are not important to know. 
Based on our previous results, the left member of (7) is expanded as follows, 

M0« MO/2-5 
M 0 « - 5 MO/7-10 

* J' = 1 / 51 10" + lOw-l M0/?+2 J f MO/; AOn-5 | = 1 / 251 ^ 
V19^10»-l+9^10/7-2 1̂0»+1 J V^0«-5 ^lOit-loJ \Bn 

where (after simplification): 

A - l9L20n + 9L20n_l + L20n_3 = 5i^0„+5, 
4 = 1 9 / ^ + 9Z20„_2 + L20„_4 +19 - 27 +18 = 5F20n+4 +10. 

Thus, (7) is verified (with C = 1 / 5) and the proof is complete. • 

Note: This result invites generalizations. If rn = Fn+l/ Fn, we would like to find similar results 
involving (rn)k for various values of n and k. The following result (using the proposer's notation) 
is well known: 
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'»= [!"]• (8) 
The following may also be shown: 

(rn)2 = [2,r-\ir-2l ifn>3. (9) 
Also, we may derive the following relations, valid for n > 1: 

(y3=[4-,m,4"-U2,in 
(^+ 2)3 = [4W, 10,4""1,2,2, l3""1]; (10) 
(r3n+3? =[4",\2,3,4"-\2,2,l3"l 

These kinds of expressions become more complicated for increasing values of k, and apparently 
require separate treatment for the different values of n (mod k). The matrix method indicated 
above seems to be the most efficient way to handle such problems. D 

Sum Problem! 

H-542 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 36, no. 4, August 1998) 

Define the sequence (ck)k>l by 
[1 if k = 2 (mod 5), 

ch=\-\ if k = 3 (mod 5), 
0 otherwise. 

Show that, for all positive integers n: 

\%^n-kY*=F^ o> 
1 2^K „kJ 4n-2 

2"-!*=. bXH)*M2;-r-ih=5^- <2> 

^ I H ) ^ 2 W % > * = ^ - , - (3) 
Solution by the proposer 

We consider the Fibonacci polynomials defined by F0(x) - 0, Fx(x) - 1, Fn+2(x) = xFn+l{x) + 
Fn{x), for n > 0. It is known that 

oo 

VFJx)zk = ^, for small \z\ 
h l-xz-z2 k=\ 

Replacing z by iz, i = ^/(-l), and taking x-ia, resp. x = i/3, gives 

£^(/aXfe)* = IZ
 2 , resp. ^F , ( ^ ( f e )* = — f — - . 

^ l + az + z2 £ i l + /fe + zz 

Subtracting the first from the second equation and dividing the resulting equation by iyfs yields 

fl^(Fk(m~Fk(ia))zk=- l + z + z2 +z3 +z4 ' 
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The sequence {ck)k>x has the generating function 

fc=l ; = 0 l Z 

Since l+z+z2 + z*+z4 = (l-z5)/(l-z), comparing coefficients gives 

ck=^(FkQfi)-Fk(ia)), k eN. (4) 

From H-518, we know that, for all complex numbers x mdy and all positive integers n, 

Taking y - 2/ and using Fk(2i) = kik~\ we find 

tk(n
2-kY~lF*M="(2+^r1. (5) 

From (4) and (5), we obtain 

Using 2 - P = a2 and 2 - a = J32 and the Binet form of F2n_2 gives the first desired identity (1). 
Since Fk(-x) = (~l)k~lFk(x), we also find 

k=l V / 

_ (2 + a)"-1-(2+^r1 

V5 ' 
Since 2 + a = j5a and 2 + /? = -4Sf3, if we replace ^ by 2fi - 1 and /? by 2/?, we easily obtain (2) 
and (3), respectively. 
Also solved by P. Bruckman 

•!• •!• * » 
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BOOKS AVAILABLE 
THROUGH THE FIBONACCI ASSOCIATION 

Introduction to Fibonacci Discovery by Brother Alfred Brousseau, Fibonacci Association 
(FA), 1965. $18.00 

Fibonacci and Lucas Numbers by Verner E. Hoggatt. Jr. FA, 1972. $23.00 

A Primer for the Fibonacci Numbers. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1972. $32.00 

Fibonacci's Problem Book, Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1974. $19.00 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from the 
French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. $6.00 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971. $6.00 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. 
FA, 1972. $30.00 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. $39.00 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Volume. 
Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. $38.00 

Applications of Fibonacci Numbers, Volumes 1-7. Edited by G.E. Bergum, A.F. Horadam and 
A.N. Philippou. Contact Kluewer Academic Publisher for price. 

Generalized Pascal Triangles and Pyramids Their Fractals, Graphs and Applications by Boris 
A. Bondarenko. Translated from the Russian and edited by Richard C. Bollinger. 
FA, 1993. $37.00 

Fibonacci Entry Points and Periods for Primes 100,003 through 415,993 by Daniel C. Fielder 
and Paul S. Bruckman. $20.00 

Handling charges will be $4.00 for the first book and $1.00 for each additional book in the 
United States and Canada. For foreign orders, the handling charge will be $8.00 for the first 
book and $3.00 for each additional book. 

Please write to the Fibonacci Association, P.O. Box 320, Aurora, S.D. 57002-0320, U.S.A., for 
more information. 


