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SUMS OF CERTAIN PRODUCTS OF FIBONACCI
AND LUCAS NUMBERS-PART II

R. S. Melham

School of Mathematical Sciences, University of Technology, Sydney
PO Box 123, Broadway, NSW 2007 Australia
(Submitted March 1998-Final Revision June 1998)

1. INTRODUCTION

The identities
YR =FEF., (1.1)
k=1
and
n
Z Li =L,L,,-2=L,L,,,— L)L, (1.2)
k=1

are well known. The right side of (1.2) suggests the notation [Z;L,,];, which we use throughout
this paper in order to conserve space. Each time we use this notation, we take j to be the dummy
variable.
In [2], motivated by (1.1) and (1.2), together with
< 1
ZEEEH] = 5E1E1+1Fr‘1+2’ (1.3)
k=1
we obtained several families of similar sums which involve longer products. For example, we

obtained

= EFE,,, .. F,

Y FiFuser B Fopa = 22t Tnstms (1.4)

k=1 L2m+l
for m a positive integer. By introducing a second parameter, s, we have managed to generalize all
of the results in [2], while maintaining their elegance. The object of this paper is to present these
generalizations, together with several results involving alternating sums, the like of which were
not treated in [2]. In Section 2 we state our results, and in Section 3 we indicate the method of
proof. We require the following identities:

F . +F_.=FL, keven, (1.5)
E. . +F,_.=LF, kodd (1.6)
Fo—F_,=FlL, kodd, 1.7
E..—F_.=LF, keven, (1.8)
L..,+L, ,=LL, keven, (1.9)
Lw+L,, =5EF, kodd, (1.10)
L.—L. =LL, kodd, (1.11)
L..—L,,=5EF,, keven, (1.12)

2000] 3



SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS—PART I

L= Ly, = (D)2 = (=1L, (1.13)
SFy = Ly, = (-D)™12 = ()™ L, (1.14)
SE2~12 =-4=—I2. (1.15)

Identities (1.5)-(1.12) occur as (5)-(12) in Bergum and Hoggatt [1], while (1.13)-(1.15) can
be proved with the use of the Binet forms. In some of the proofs we need to recall the well-
known identity F,, = F,L,.

2. THE RESULTS

In this section we list our results in eight theorems, in which s> 0 and m > 0 are integers. In
some of the theorems the parity of s is important, and the reasons for this become apparent in
Section 3. Our numbering of Theorems 1-5 parallels that in [2], so that both sets of results can be
easily compared.

Theorem 1:

F_F JF
(n+1) * -+ L s(n+am1)
Z Foesny - FseramyLsgerzmy = =2 F) Amamtd) | s even, 2.1
s(2m+1y
1 FF I
2 +1) ** Ls(nram+1)
Zﬂk---ﬁ(k+2;n)---ﬂ(k+4m) s(nL —=2 s odd. (2.2)
k=1 's(2m+1)
Theorem 2:
L;L, g
s(j+1) (j+4m+1)
Z Lyessy - LogesamFsieramy = [ jSF Lapean } , S even, (23)
's(2m+1) o
L,L, L, g
2 s(j+1) * o “s(j+4m+l)
Z kLs(k+1)"'Ls(k+2m)"'Ls(k+4m) [ I } , §odd. 2.4
s(2m+1) o
Theorem 3:
FF )
(n+1) s(n+4m+3)
Z (k+l) ---Fs(k+4m+2)L s(k+2m+l) = =" F ) (2.5
s(2m+2)
LyL, i
Z (k+1) “ee Ls(k+4m+z)Fs(k+2m+1) W Lagramea (2.6)
5F s(2m+2) o
Theorem 4.
1 F2F F?
2 2 (+I) (n+4m+1)
Z‘Fs’kE?(k+l)""F:v(k+4m)F S(2k+am) — = F - H (27)
k=1 s(4m+2)

n

2
L L s(j+1) *° Ls(j+4m+l)]

2.8)
5Fam+2)

n
2
Z (k+1) ‘e Ls(k+4m)Fs(2k+4m) l:
0

4 [FEB.



SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS—PART I

Theorem 5:

2 F:vnFs%nH) ‘F;%n+4m+3)

E Ev(k+1) (k+4m+2)Fs(2k+4m+2) F > 2.9)

s(4m+4)

n LI N5 !

Z Ia s(j+1) - -+ Ls(j+4m+3) (2.10)
(k+1) s(k+4m+2) s(2k-+am+2) — 5E, . .

s(4m+4) 0

For m=0 we interpret the summands in (2.2) and (2.4) as F2 and I7,, respectively. For s
odd the corresponding sums are then

ﬁ: i: sn s(n+1) and Z [ sf S(j+l)] , (211)
0

k=1 s s

which generalize (1.1) and (1.2), respectively.
Interestingly, for m=0, (2.1) and (2.3) provide alternative expressions for the same sum,
namely,

L L
ZFM Fon s("“) [ S}Xff“)} , Seven. (2.12)
F 0
Theorem 6:
( 1) sn* s(n }Ts n+dm+l
Z( DFE, L5ty - FirramEsgramy = L(H) (rant) | s even, (2.13)
k=1 's(2m+1)
( l) s os(n E n Nt
2( l) sk s(k+l)""Fs(k+4m)Ls(k+2m) }(;‘H) ey > S odd. (214)
s(2m+1)

Theorem 7:

( 'Ly Ly - Lovamyy
Z( D*L iLsrny - LogeramyLsesam = Lj —= , seven, (2.15)
k=1 s(2m+1) do

( 1) s(j+1 Ls +4m+1
Z( D*L iLserty -+ LogeramyPsoramy = ng) D | s odd. (2.16)
k=1 L s(Zm+1) o

Theorem 8:

( 1)11 snt s(n+1 F;* n+4m+3
3 0 EaFiean - EasamFeramn = L‘” e, 2.17)
k=1 's(2m+2)
£ k (- 1)” Ly sy -- Ls( jHamt3) "
Z(“l) LskLs(k+1)---Ls(k+4m+2)Ls(k+2m+1) )3 . (2.18)
k=1 s(2m+2) 0 ’

Some special cases of these alternating sums are worthy of note. For m =0 Theorem 6 yields

20001 5



SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS—PART II

ul -)"F,F,
Y (-)FF:= E)—,L"’S(Jﬂ, s even, (2.19)
k=1 s
and
n -D)"F,F,
Y ()E,= w s odd. (2.20)
k=1 5

An alternative formulation for (2.20) is provided by (2.16). For m=0 (2.15) becomes

n

n -1)"L,L,.
S ()2 = [—(——M} , S even. (2.21)

k=1 Ls 0

3. THE METHOD OF PROOF

Each result in Section 2 can be proved with the use of the method in [2]. However, the
significance of the parity of s in some of our theorems becomes apparent only when we work
through the proofs. For this reason, we illustrate the method of proof once more by proving
(2.4).

Proof of (2.4): Let I, denote the sum on the left side of (2.4) and let

r = L_mLs(n-H) oo Ls(n+4m+l)

5 Lamyy
Then
L,Lpiry---Lnia
=Ty =— S(nL L [Ls(n+4m+l) - Ls(n—l)]
s(2m+1)
Lsan(n+1) oo Ls(n+4m) [ L - L ]
- L s(n+2m)+s(2m+1) 's(n+2m)—s(2m+1)
's(2m+1)
2 . .
=Ly, Lypiry--- Linsamy - Lonaamy [y (1.11) since s(2m+1) is odd]
=l -1,
Thus /, -7, = ¢, where c is a constant.
Now
c=hL-n
L 4m+2
— )
- LsLZ.v‘ . Ls(4m+l) [Ls(2m+l) - LS(
's(2m+1)

2
Ls(2m+l) - Ls(4m+2)

=LL,,... Ls(4m+l) :

Ls(2m+1)
- _ LOL.\'LZS"'LS(4m+l) [by (1 13)]
Ls(2m+l)

= —]b’

and this concludes the proof. O

6 [FEB.



SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS—PART II

In contrast, when proving (2.3), we are required to factorize L, ,2,s2me1) — Lstns2m)-szm+1)
for s even, and this requires the use of (1.12).
As in [2], we conclude by mentioning that the results of this paper translate immediately to
the sequences defined by
Un = pUn—l +Un—-2> UO = 0, Ul = L
{VﬁpV +7, W=2, "=p

n—-1 n-2»

We simply replace F, by U,, L, by V,, and 5 by p? +4.
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GENERALIZATIONS OF MODIFIED MORGAN-VOYCE
POLYNOMIALS

M. N. S. Swamy

Concordia University, Montreal, Quebec, H3G 1M8, Canada
(Submitted March 1998-Final Revision September 1998)

1. INTRODUCTION

In two recent articles [2] and [3], Ferri et al. introduced and studied the properties of two
numerical triangles, which they called DFF and DFZ triangles. However, in a subsequent article,
André-Jeannin [1] showed that the polynomials generated by the rows of these triangles are
indeed the Morgan-Voyce polynomials B,(x) and b,(x), whose properties are well known [10]
and [11]; in fact, the polynomials B,(x) and b,(x) have been used in the study of electrical net-
works since the 1960s (see, e.g., [8] and [9]). In the same article, André-Jeannin introduced a
generalization of the Morgan-Voyce polynomials by defining the sequence of polynomials
{P")(x)} by the relation

BO(x) = (x+2)B7(x) - BO(x), (n22), (1a)
with
BEO(x)=1 and BO(x)=x+r+1. (1b)

Subsequently, Horadam [6] defined a closely related sequence of polynomials {Q%(x)} by the
relation

O (x) = (x + 20 (x) - O (x), (n22), (22)

OP(x)=2 and O (x)=x+r+2, (2b)

with

and studied some of its properties.

The purpose of this article is first to generalize the two sequences of polynomials {P{(x)}
and {0 (x)}, and to study some of their properties by first relating them to the parameters of
electrical one-ports and then using the properties of such one-ports. Later, following Horadam
[71, we will construct and study some of the properties of a composite polynomial which includes
the two sets of generalized polynomials introduced in this article.

2. POLYNOMIALS P(x) AND 0¢(x)

Consider the generalized polynomial w,(a, b; x) defined by

w,(x) = (x+ pw, () =W, (), (22), (3a)
with
Wo(x)=a and w(x)=5b. (3b)
We know that the solution of (3a) and (3b) is given by [5]:
W, (x) = W ()U,,(x) = wo(x¥)U,.- (%), )
where
U,(x)=w,(0,1 x). )

8 [FEB.



GENERALIZATIONS OF MODIFIED MORGAN-VOYCE POLYNOMIALS

Hence, we may observe that the modified Morgan-Voyce polynomials, B, (x), 5,(x), C,(x), and
C,(x), defined in [12], may be written as

B,(x)=w,(L,x+p;x)=U, (%), (62)
b,(x)=w,(Lx+p-1x)=U,,(x)-U,(x) = B,(x)- B,_,(x), (6b)
én(x) = wn(za x+ D, x) = Un+l(x) - Un—l(x) = En(x) - En—Z(x)’ (6C)
2, () =w,(Lx+p+Lx) =U, () +U,(x) = B,(x) + B, (). (6d)
From (6b), (6¢), and (6d), we see that
Col(x) = b, (%) +b,,(%) = T,(x) - G, (¥). (M
Let us now define the following two sets of generalized polynomials 2”(x) and 0 (x) as
PO =w,(Lx+p+r-1x) (82)
and
O (x) =w,(2, x +p+7;X). (8b)
Hence, from (4), we have
BO(x) = Uy (x) +(r = DU, (x) (%a)
and
O (%) = U,y (¥) = U,y (0) +7U (%) (9b)
Using the relations given in (6a)-(6d), the above may be written as
PO(x) =5 (x)+rB,_(x) (102)
and
0N (x) = C (x)+rB,_,(x). (10b)
As a consequence of (10a), (10b), and (7), we also have the relation
00 (x) = B(x) +b,.,(x). (10c)
It is readily seen that 5
BO(x)=b,(x), (11a)
PO (x) = B,(x), (11b)
BP(x)=2,(%), (11¢)
0 (x) = Cy(x). (11d)

It is clear that these results are generalizations of those contained in [1] and [6].

3. PY(x), 0”(x) AND LADDER ONE-PORTS

In this article we assume that p>2 andr >0. Consider now the ladder one-port network
shown in Figure 1(a), which consists only of resistors and inductors, and thus is an RL-network

(see Appendix A), where the series resistors r, =7, =7, =---=r, = (p—2)a Ohms, the inductors
L =L,=Ly=--=L,=«a Henries, and the shunt resistors R, =R, = Ry == R, = @ Ohms. For
such a network, the impedance z, of any of the series branches is given by

5=(s+p-2a, 12)
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where s is the complex frequency variable, while the impedance z, of any of the shunt branches is
given by

z=a. (13)
It is known [9] that the driving point impedance (DPI) Z, of such a network is given by
b,(w)
Z,=z,—-" , 14
2 Bn~l(w) ( )
where
w=2 (15)
z,’

and B,(w) and b,(w) are the Morgan-Voyce polynomials [8]. Hence,
b(s+p-2)
Bn—l(s+p_2) .

However, b,(s+p-2)=4(s) and B,(s+p-2)= B (s). Hence, the DPI of the RL-ladder net-
work of Figure 1(a) is given by

Z,=a

b,(s)
7, = q-o9)_ (16)
B,(s)
Now consider the rational function 2*¥)(s) / P")(s), where k >0. Then
D(r+k) 1
P (s) b () +(r+k)B,_ (s) kB, ,(s)  _ 1 + 1 a7

BO(s) b,(s)+7B,,(s) b,(s)+1B, () w1 by(9)
’ "k B_(5

Using (16) and (17), we see that P9 (s)/ P)(s) may be realized as the driving point admit-
tance (DPA) ¥, of the network shown in Figure 1(b). It is observed that this network also is com-
posed only of resistors and inductors. Thus, P"*¥)(s)/ P(")(s) can be realized as the DPA of an
RL-network.

Now consider the rational function 0U*%)(s)/ 0\")(s), where again k > 0. Then

Q(r+k)(s) C,(s)+(r+k)B,_(s) 14— kB, (s) 1+ 1 (18)

09— C)+rB(s) G (s)+r © T 100
k  k B,_(s)
From the results given in [9], it is known that the function
Cu(s)
A=
Bn—l(s)

can be realized as the DPI of the RL-ladder network shown in Figure 2(a). Hence, from (18), we
see that U9 (s) / O)(s) can be realized as the DPA of an RL-network.

Now consider B*(s)/ 0{)(s), k >0. This may be expressed as

(r+k)+= b,(5)

P('+k)(S) b,(s)+(r+k)B,_(s ) _ B, () (19)
0D(s) C.(s)+rB,_,(s) e ~C (s
n——l(s)

10 [FEB.
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Ll rl I—Z I'2 Ln rn
% % % bBu(s)
Z,=0 -
‘ = R R R a =~
1 2 n 31‘1 (S)
o,

Z

a

Li=l=..= L,= o Henries
N=L=.. =L =a(p-2) Ohms

R;=Ry=...=R;= ¢ Ohms

(@)

n - Section
RL- Ladder Y’gﬁk) ©)
of Fig.1 (a)

- :‘L
with o i

(b)
FIGURE 1

Since both an(s)/ B_,(s) and C (s)/B,_,(s) are RL-impedance functions, we see from (19) that
Pr0(5)/ O0(s) is a ratio of two RL-impedance functions. Therefore, in general, it is only a
positive real function (see Appendix B) and thus need R, L, and C (capacitors) for its realization
[13]

Using the properties of RL-networks (see Appendix A), we may now draw some conclusions
regarding the locations of the zeros of P?)(s) and 0" (s). Since PU*F(s)/ BO(s) (k> 0) is
realizable as the DPA of an RL-network, we see that the zeros of P((s) are real, simple, and
negative; further, they interlace with those of PU**)(s), the zero closest to the origin being that of
PO(s). Similar statements hold with regard to the zeros of J0(s) and 0**)(s) (k > 0), since
we have shown that JU*)(s)/0((s) is also a DPA of an RL-network. In addition, since
}N’,,(’*k)(s)/ Q;(,’)(s) (k 2 0) is a ratio of two RL-admittance functions, the zeros of }N’n(’*k)(s) and
Qf’)(s) need not interlace; however, their zeros have a very interesting relationship on the
negative real axis [4]. In this connection, it may be mentioned that the only known result is the
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one regarding the zeros of PO(s), PV(s), P@(s), and O(s), since these are the zeros of
b,(s), B,(s), €,(s), and C,(s), respectively.

Ll I'l IJ)

2 r, La Iy
Gi(®
‘% R R R, =0T
1 2 n By1 (9
o

Zc

2Ly =l,=...=L,= 20 Henries

2rn=p=.. =L =2q(p-2) Ohms

Ri=R,=...=R =2 o Ohms

(2)

n - Section

RL- Ladder Q9 ()
Yq=-2 —

of Fig.2 (a) d 6n(r)(5)

with o= _ll(

(b)

FIGURE 2

4. THE COMPOSITE POLYNOMIAL R("*“(x)

Following Horadam [7], we now define the composite polynomial R("*(x) by the relation

RO9() = e+ PIRGO() - R (), (n22), (20)
with
I‘NQé”")(x) =u and E("“)(x) =x+p+r+u-2, (20b)

where 7 and u are real numbers. It is clear that
RCD () = PO(x
R = B0, .
R-D(x) = 09 (x).
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Using the results of (3a), (3b), (4), and (5), we see that
RO =(x+p+r+u-2)U,(x)-uU,_(x)
= U () + (= DU,(x) + (@ -D{U,(x) -U,,(x)}.
Using (9a) and (6b), the above relation may be rewritten as

RED(x) = PO+~ )b, (x). (22)
Substituting for 4,_,(x) from (10c), equation (22) reduces to
Rr9(x) = (u—DIP(x) - (u—2) BO(x). (232)
Now using (21), equation (23a) may also be rewritten as
R&D(x) = (u-1)R"D(x) - (u-2)R"D(x). (23b)

Let us now find the locations of the zeros of R"*)(x) for r >0 and #>1. For this purpose,
we first consider the function R"***(s)/ R“*(s) for k > 0. Using (22), we may write

RO+ (5)~ R-9(s) = Br(s) - BO(s) = kB, ,(s), using (10a).
Using (22) and (10a), we get

Rervkogs) kB,_,(s)
RE9(s) 7 B (9) +rB () + (= Db,(9)
: 24)

+ = = .
r + __1_ bn(s) + u—1 bn—l(s)
k k En-l(s) k En—l(s)

From the results given in [9], it is known that the function
u-1 b~n—1(s)
k En—l(s)
may be realized as the DPI of the RL-ladder network shown in Figure 3(a), with a = (u—-1)/%.
Further, as already mentioned in Section 3,

1 5,9
k En—l(s)

can be realized as the DPI of the RL-ladder network shown in Figure 1(a), with « =1/%. Hence,
Rr+E9(s)/ R*)(s) (k >0) may be realized as the DPA of the RL-network shown in Figure
3(b).

Again using the properties of RL-networks, we can state that the zeros of R*)(s) are real,
simple, and negative; further, the zeros of R"*)(s) interlace with those of RU*%*(s), the zero
closest to the origin being that of R"*)(s).

Now we consider the function B"*%*“*)(s)/ R("*(s), where k >0 and # > 0. From (22) and
(10a), we have
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1"2"Sr+k, u+t)(s) B ﬁn(r+k) (+@+1t- 1)5;1_1(5)
ROy  — BO(s)+u-Db,_(s)

b  (s)+(r+k)B )+ @+r- l)b ()
b . (5) +rB (&) +@— 1) (%)

b(s) NG 25
(r+k)+ nl()+(u+t~1)gn_ll(s) 25)

+.5a05) o

B VB

Since b,(s)/ B, ,(s) and b,_,(s)/ B,_,(s) are both RL-impedance functions, we see from (25)
that RU+h40(5)/ RC“(s) (k20,1>0) is a ratio of two RL-impedance functions. In view of

this, as mentioned earlier in Section 3, the zeros of R("*)(s) and those of RV*%*)(s) (k>0
t > 0) need not interlace on the negative real axis [4].

Loi 1o
R, R Ze=¢ ——E“‘l ©
-1 n B,.1 (5)

Li=lp=..=L 1 = & Henres

=I,=...=Thy = o(p-2) Ohms

Ry=Ry=...=R; = o Ohms
(a)
r/k
o——T W —— RL_network
1 En(s) = of Fig.1(a)
k= ith o=
L Bl.] (S) with o= "]k“ ~{(r+k,u)
i Yoo R, (s)
= == (r,u)
T 3 . Ry (9)
wl Bn-l © RL-n.etwor
v kK = —_— of Fig.3 (a)
f o El-l (S) with o= ui_(L
(b)
FIGURE 3
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5. CONCLUDING REMARKS

In this article we have generalized the results of André-Jeannin [1] and Horadam [6] and [7]
concerning the sequences P")(x), 0 (x), and R®(x). We have also shown that there exist
close relationships between these generalized sequences and RL-networks or certain types of
RLC-networks. Using these relationships and the properties of such networks, results concerning
the locations of the zeros of these generalized sequences have been derived. In view of similar
results recently obtained for another pair of polynomials, it is worthwhile exploring such rela-
tionships between polynomial sequences and network functions to derive properties of such
sequences using the well-known properties of RL, RC, LC, and RLC network functions, and vice-
versa.

APPENDIX A
Properties of RL One-Port Networks [14]

A one-port electrical network is a two-terminal network consisting only of two kinds of
elements, namely, resistors and inductors.

The driving point impedance Z(s) of such an RL network satisfies the following properties:

(a) All poles and zeros are simple, and are located on the negative real axis of the s-plane.

(b) Poles and zeros interlace.

(c) The lowest critical frequency is a zero which may be located at s=0.

(d) The highest critical frequency is a pole which may be at infinity.

(e) Z(0) < Z(x).

Also, the driving point admittance of an RL network satisfies the following properties:

(a) All poles and zeros are simple, and are located on the negative real axis of the s-plane.

(b) Poles and zeros interlace.

(c) The lowest critical frequency is a pole which may be located at s=0.

(d) The highest critical frequency is a zero which may be at infinity.

(e) Y(0)>Y(c).

APPENDIX B
Positive Real Functions [14]

A function F(s), s being a complex variable, is said to be a positive real function if it satisfies

the following two conditions:
ReF(s)>0 for Res>0

and
F(s) is real when s is real,
where Re 7" denotes the real part of 7.

A positive real function F(s) can always be realized as the driving point impedance or admit-
tance of a one-port RLC network, that is, a two-terminal network consisting only of resistors,
inductors, and capacitors. Conversely, the driving point impedance and admittance functions of
an RLC one-port network are always positive real.
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0. INTRODUCTION

In this paper, we consider fields determined by the n' roots of the zeros o and S of the
polynomial x> —x —1; & is the positive zero. The tools for studying these fields will include the
Fibonacci and Lucas polynomials. Generalized versions of Fibonacci and Lucas polynomials have
been studied in [1], [2], [3], [4], [5], [6], [7], and [12], among others. For the most part, these
generalizations consist of considering roots of more general quadratic equations that also satisfy
Binet identities. However, it is just the simplest version of these polynomials that we shall need
for the results in this paper. (For a far-reaching generalization of all of these generalizations in the
context of multiplicative arithmetic functions, see [9].) These polynomials determine many of the
properties of the root fields; e.g., they provide the defining polynomials for those fields; they yield
a collection of algebraic integers which behave like the Fibonacci numbers and the Lucas numbers
in the ring of rational integers; they determine the discriminants of these fields; and, they provide a
means of embedding which gives the lattice structure of the fields.

In Part 1, we list properties of these polynomials which we shall need later.

In Part 2, the (odd) m™ roots of @ and B are discussed; the constant a,, which is, essentially,
the sum of two conjugate roots, is introduced. One of two important theorems here is Theorem
2.1, which tells us that the m™ Lucas polynomial evaluated at a,, is, up to sign, equal to 1. This
will enable us to define a new set of polynomials (by adding a constant to the Lucas polynomial)
which, in Part 4, will turn out to be irreducible over the rationals and, hence, will provide us with
some useful extension fields (Theorem 4.2). The other important theorem in Part 2 is Theorem
2.2, which tells us that the m™ Lucas polynomial evaluated at a,, is a,. This theorem will lead to
an embedding theorem for our fields in Part 4 (Lemma 4.2.2).

In Part 3, we introduce numbers in our extension fields generalizing the Fibonacci numbers,
which are algebraic integers in these fields and which turn out to have a peculiar quasi-periodic
behavior (Theorem 3.4). (In a sequel to [9], this behavior will be seen to be one typically
associated with arithmetic functions.)

In Part 4, the lattice structure of this family of fields is investigated (Lemma 4.2.2, Corollary
4.2.3, Theorem 4.3). Theorem 4.4 telis us that it is the Fibonacci polynomials which provide us
with the discriminants of our fields.

The remainder of the paper is occupied with some calculations using a well-known matrix
representation of the fields, illustrating computations which produce units and primes in these
fields.

The author is indebted to the referee for many helpful suggestions for which he is grateful;
especially, he would like to thank the referee for calling to his attention the rich theory of
quadratic fields of Richaud-Degert type and of R. A. Mollin's book [10]. The fields studied here
are extensions of a field of this type.
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1. THE POLYNOMIALS U,(f) AND V,(?)

Here we list some of the well-known properties of the Fibonacci and Lucas polynomials,
U,(®) and V, (1), that we shall need to use ir this paper (see, e.g., [3] and [4]). In [3], [2], and [5],
these polynomials were defined explicitly by formulas equivalent to

Up()= LR, B =(" ), k<, (11)

il 0 dd
e (12

k=M= 2, meven.

Up®) =0, Uy()) =1, Vo)) =2, (1) =1.

Equivalently, we could have defined U, (¢) and V,(¢) by letting A(¢) and B(?) be the roots of
the polynomial p(x) = x*—#x -1, and setting

4"() - B"(t)
AN)-B@) °

V.0 =4"(0)+B"(@), (14)

U, = (13)

i.e., the well-known Binet formulas (e.g., see [3] or [6]). From these formulas, it is easy to see
that the recursion relation

Y1) = 1E,(1) +,.,(t) (1.5)

is satisfied by the Fibonacci and Lucas polynomials® [3]. In fact, theses identities provide a
painless path for finding most of the identities involving the two sequences of polynomials. Such
an identity, which we shall need below, is

VaVu®©) =Vor(®), (3], 6.2(D). (1.6)
It is, however, equally easy to use the recursion (2.5) to prove that
d/diV, () =nU,@®), (4], (24), (1.7)

which, in turn, gives a short proof using (2.6) of the fact (well known) that U, divides U,,, with
the additional feature of displaying the factors explicitly. To wit:

d/atlv,, v, )= mnU,(OU, V(1) =d | dfV,, ()] = mnU,,,(t).
Thus, the other factor is U,,,(V,(1)).

2. THE NUMBERS 7,,.5,, 4,

Define y,, and &,, up to roots of unity by
Ym=a 6,=5.

* The first six polynomials in these two sequences are:
U®=0 U,()=t u@®=£+2t V()=ta=2 Vy(H)=2 V() =t*+4> +2
U@ =1 U@t)=£+1 Ust)=t"+32+1 V() =t V() =8+3t V()= +52+5t
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Since (y,,6,,)" = aff = —1, we have that where @, is a primitive 2”-th root of unity.

When m is odd, then at least one of the y,, and &, is real. Define a, by [ ¥, +8, =a,m% | Note
that g, =1. Clearly, ¥, = a = A(a,) and &, = f= B(a,). It follows that

7/

=5 (@ + @+ 90T = A(a,0 ),

5m — %(am _ (ar2n +4)1/2)a}$nm+1)/2 — B(amwsnm+l)/2)

and
A(a, 0™V = ™V2 4(q y  B(a p™D/2) = o D12B(g ),
So
¥m= 0y (a,),
5m — wgln-rl)/Z (am).
Thus,
A"(a,05"") + B"(a,0§""?) = (-1)""V(4"(a,) + B"(a,))
=V @a,)=yp+ton=a+f=1
and so

Theorem 2.1: (-1)™V2) (a y—1=0,modd. O

Hence, a,, is a root of the polynomial D, (¢) = V() — (-1)(™V’2.
Proposition 2.1.1: a= %(1 +R(@,)U,(a,), B= %(1 ~R@, ), (a,), R@t)=(+4)",
is implied by the next proposition.
Proposition 2.1.2: A"(a,)=a, B™a,)=p.
Proposition 2.1.3: A™(a,,) =7, B"(a,,) =97,
Proof: A™(a,,)=a,=7,.
In particular,

Theorem 2.2: V, (a,,) = a,, up to the roots of unity.
Proof: A™(a,,)+B"™(a,,) =V, (a,,)=7,+35,=a, (up to roots of unity).

3. GENERALIZED FIBONACCI AND LUCAS NUMBERS

The algebraic numbers U,(a,,) can be thought of as a generalization of the Fibonacci num-
bers. However, we need an unambiguous notation for them, so remembering that m is odd in this
paper, we pick a fixed real a,, for each natural number m (there is a unique choice), and define

| At = O (Up(a,)), |
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where
_ (m+])/2

Thus,

_ Ak (am) - Bk(am)
A= Ba)

are the generalized Fibonacci numbers (GFN); they are located "between" the number fields
0(a,,w,) and O(y,,®,). However, first observe that A, , = F;, i.e, the A, , are generaliza-
tions of Fibonacci numbers. From (1.5), we see that, for each choice of m, we have a family of
GFNs which belong to the field O(a,,) and which have a functional equation generalizing that in
O(a)) = Q, namely, one which generalizes the usual functional equation for the Fibonacci
numbers. Moreover, we have the following interesting quasi-periodic behavior of these numbers,
which is manifest only when m>1." 4

Theorem 3.4: Let U, (k) =U,.;(a,),0< j<m,m odd, then
|U,, (k) = F,,,U/(@a,) + (1) KU,,_,(a,) mod D,(),]

F,, the n™ Fibonacci number, and D,, is as defined in Theorem 2.1.

Proof: Assume inductively that the theorem holds for k¥ <7 and for j—1>1. Assume that
U,, ;(k—1) satisfies the appropriate relation for j=0,..,m—1. We need to compute U, o(k),

but
Uy, (k) = U,y (8) = tU, () + U 5 (1)
= tUm, m—-1 (k - l) + dUm, m-2 (k - 1)
=fFU,_, + ()" E_U WU, , +(-)"?F_U,]
= F[tU, . +U, )+ F_l(- 1)m_ltU1 +(- ™2 U,]

= RU, + E_[tU, - Uy 1= BU,,

since Uy(#) =1, U,(f) =¢. But, if the theorem is correct, U, o(k) = F,.,,U, +(-)°EU, = FU,,.
Thus, we have shown what is required. Next, we must show that the result holds for a fixed & and
j=12,...,m—1. Notice that the theorem is correct for j=0,...,m-1 k=0, and for j =0,k =1.
Suppose that it holds for ¥ <nandj=0,...,m—1 and for k =nand j =0. We want to show that
itholds for k=n, j=1,...,m-1. So consider U, (k),k=n,1<j<m-1.
Umj(k) = tUm,j—l(k) + Um,j—Z(k)

= Uy + (Y U, 14 iU + CIY 2 FU, 0]

=FaltU; 1 +U ]+ Y TRIU, 0= Up jial

= Byl + O U, 1y = Up ]

= k+1Uj + ("l)j_le[[t U, T (U, juT Up- 1)]

=R U, +(YEU,.,. O

* We should point out that this is a special case of a phenomenon which always occurs in the context of a certain
class of multiplicative arithmetic functions (see [9]).
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The numbers for m =3 are:

— 2y. . . — 2
Us 3 = —Fpoo3(+a3); Us 3 = F = Bty Us g4y = (Bay + F_Dos.

4. THE ALGEBRAIC NUMBER FIELDS (7 ,,), 0(,,), 0(a,,)
We assume that m is odd and note that
Proposition 4.1: a,, y,, 5,, ®, are units in the ring of integers of ((a,,).
Proof: 1?7 —t* —1 is the minimum polynomial of Q(y »). Both y, and &, satisfy this poly-
nomial. Moreover, a, =-®,(y, +5,). Note that a and f clearly belong to O(y,). U

The most interesting result to come out of the ideas considered in this paper is the way in
which the polynomials U,, and V,, provide the structural framework for the algebraic number
fields determined by the numbers y,,,5,,,a,. A first example of this fact is contained in the role
that the polynomials D, play. D, (¢) is irreducible over O for m odd. This can be proved by
using earlier propositions and Eisenstein's criterion; however, the following proof is instructive.

Theorem 4.2: F,,= Q[r]/(D,(t)) is a field for odd m.
Proof: Let p be an odd prime.

Lemma 4.2.1: (@) D,(¢) is a monic polynomial of degree p with constant term +1.

(b} p divides all interior coefficients of D, (7).

Proof of Lemma: (a) follows from (1.5) by induction and definition. For (b), we need to
know that the "interior” coefficients of D, (f) are given by

Bo+y+Bo@-0=(P 4P 7

But this follows easily from (2.1), (2.2}, and (2.5). Then it is straightforward to show that

Bpih+ bap-D=7 —(fk-—];;!?f)c!+ ke

Since p is prime, hence is relatively prime to the denominator, p divides F,(p+1D)+ F_(p-1. O

Thus, by a standard application of Eisenstein's lemma, D, (f) is irreducible over , so the
theorem holds for the case m= p, p a prime. Thus, &, isafield. We want to show that &,, isa
field for any odd prime p and any natural number »n. First, we prove a lemma which is of interest
in its own right.

Lemma 4.2.2 (The Embedding Lemma): There is a natural embedding of the ring %,. in the
ring ..

Proof: It is convenient first to note that the ring %, can be represented by elements of the
form X !mal,, m e, taken mod D, (f). Now we consider (D oVpXa,n).
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(D V) @pe) = Vs Up(ag ) + (D)2 =V ya 4 + (D)7 = D 4 (a,) =0.

Thus, Vy(a,e)=a,. Now, Vy(a,) € F,r. Since a,. € Fy, so does a copy of a,... Since this
element satisfies D, and F,-1 consists of elements of the form Py ma,., so we have an
embedding of F,e1 in F,x determined by the polynomials V. So assume inductively that &, is a
field for £ <n, and let / be maximal ideal in the Noetherian ring %,.. %,./I is a field, one which
contains a copy of %1, so the degree of %,/I (over Q) is > p*!. Now a, is a unit, so
a, ¢ 1;thus, a,+1eD, /I and is not trivial. And so the degree of D, /I > p*~', and thus
the degree of D, /I = p*. Therefore, the minimum polynomial of %,/ is a multiple of Dy,

hence is equal to D, and so / =0, and F, is a field. [

Thus, we have proved the theorem for m an odd prime power. This argument applied to
V,i(V(amp), (m, p) =1, extends the result to %,,, (m, p) =1. Thus, &, is a field for all odd n.

Corollary 4.2.3: 1If m divides n, m and n both odd, then %, is (isomorphic to) a subfield of %,
under the embedding determined by (-1)"""'2) (V,(a,,)) = a,, n=mk. O

Since ¥, = 0™Y24(a,), 5, = 0™Y2B(a,), it follows that %, < O(a,, ®,) < O ,, @,,)-
The last two fields are splitting fields. We thus have the following degree relations.

Theorem 4.3: [((a,):Q]=[Fn:01=m, [O(a,, @,): Fnl= $(m), [Q(V ,, @,):O(@,, @,)] = 2,

where ¢ is the Euler totient function.

The following theorem is another illustration of how the polynomials U,, and V,, are involved
in the structure of the fields %,,.

Theorem 4.4: A[l,a,,...,a"']= (-1)"™ V2" NU (a,), is the norm of the algebraic number
Un(a,).

Proof: In any case, since 4(¥,,) = 4(D,),
AlL . 1= DN (20 @),
by (1.7), d/dtV,, =mU,, and N(mU ,(a,))=m"N(U,(a,)). O

Example: Tt follows from Theorem 4.4 that, when m =3, A[l, a;, a;f] =-33.5. This can be com-
puted directly by using the representation of #; determined by the minimal polynomial. Thus,

0 1 O 1 0 1
a;=|0 0 1|, andso l+ai=[1 -2 0],
1 -3 0 0o 1 -2
from which it follows that
N (-g; V() ) = N(F(a;)) = 3B det(1+ A32) =33.5
t=ay

So A =-3-5 as promised by the theorem. We can write A[l-a,, ..., a'] explicitly.
Theorem 4.5: A[l-a,,...,a" = (=1)""D2m".5" m=2n+1.

m
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Proof: By Theorem 4.4, we need only compute N(U,(a,))=5". To do this, let 4,, ...
be the m distinct conjugates of a,, with a,, = 1,. Then
m A" (A,) - B"(y)
k=1 R(Ap)

where y ) and &y, are the conjugates of y, and J,,,.

"V =% _ Yy e=p)"
k=17 (k) —5(k) k=17 (%) _§(k)

_ (‘/g)m _ 5"\/5 .
1:[(7(10 - 5(k)) ];I(}’(k) - 5(k))

Now,

m
H(7(k) =0y =11y 4y ~ 116, +Zm,,> ¥ )Py Ok, -
1 521

Since y, satisfies x" —a=0 and J, satisfies x"-f=0, [1yy =a and [16y, =4, so
My -ég =a-B= V5. The remaining products are symmetric polynomials involving at
least two symbols, but not all, so, from the equation satisfied by the ¥ 's and J's, are 0. O

The significance of the algebraic numbers a,, is now clear. To understand the fields O(«,,)
and ((5,) and their normal extensions, it is sufficient to understand the fields %, (and their
normal extensions), for Q(y,,), for example, is an easily understood quadratic extension of %, .
The role that the polynomial sequences U,, and V,, play in determining the structure in these fields
is also clear, and surprising. The GFNs are integers in these fields, since a,, and w,, are. So we
are left with the standard questions: the class numbers, the maximal orders, units, primes, etc., of
these fields (see, e.g., [11]). It is tempting to believe that, linked as these nonquadratic extensions
are to a "base" field which is of the Richaud-Degert (R-D) type, some adaptation of the elegant
methods used for R-D type fields might be found. Of course, the periodic nature of continued
fraction expansions of quadratic irrationalities is an intriguing obstacle in the cases of degree
greater than 2.

Some direct computations for small m are possible. We illustrate for m=3. (When m=1,
the field is, of course, just O(+/5)). Therefore, we should start at m=3. (The theory for m even
has much in common with the case of m odd, but also some significant differences that occur
because the minimal polynomials need not have real roots. Moreover, the sequences {U,} and
{V.,} are markedly different for m even and for m odd. We postpone this discussion.)

A Computation for m=3: Using the faithful representation p for a; as in the illustration of
Theorem 4.4,

0 1 0
pla)=(0 0 1|=M,
1 -3 0
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and letting
kO k2 k 1
plho+kay+k,al) =k +kM+k,M =k k,—3k, k,~3k]|.
k, k, ky— 3k,
Then,

> kai € Z(a,,) is an algebraic integer iff M(ky, k,, k,) is an integer matrix;
2 ka; € Z(a,) is a unit iff M(ky, k, k) = N(Tkal) = £1.
> kd, € Z(a,,) is a prime if det M(k,, k,, k,) is a rational prime (e.g., 1-a isa prime in %3 ).

We know that either a prime ideal in Z is a prime ideal in &; or factors into two prime ideals. We
can determine this for each prime ideal (p) by checking to see if #* +¢+1 is irreducible mod p.
For example, 2 is a prime in %; , while 3 and 5 factor, 7 is prime. Since A;(%;)=-3%5, 3 and 5
ramify; 3 ramifies totally, (3)= (1-a)*. The ramification index is 3, and the relative degree is 1.
For 5, (5)={(4+a*){1+a?*) with ramification numbers e,=1 and e, =2 and relative degrees
Ji=1and f, =1. Using Minkowski's theorem, we can compute

hF)= 2 S IAG" <2,

and so the class number of &; is 1.
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1. INTRODUCTION AND STATEMENT OF RESULTS

One of the most important applications of continued fractions deals with the approximation
of real numbers by rationals. The famous approximation theorem of A. Hurwitz [7] states that for
every real irrational number £ there are infinitely many integers # and v > 0 such that

u 1
l &y Vv
The constant 1/+/5 is well known to be best-possible in general.

S. Hartman [6] was the first to introduce congruence conditions on # and v; the best approxi-
mation result of this type up until now is due to S. Uchiyama [12]:

<

For any irrational number &, any s>1, and integers a and b, there are infinitely
many integers # and v # 0 such that

ul &
and
#u=a mods, v=b mods, (1.2)

provided that a and b are not both divisible by s.

A weaker theorem was proved by J. F. Koksma [9] in 1951. Recently, the author [2] has
shown that the constant 1/4 in (1.1) is best-possible.

But one expects that weaker arithmetical conditions in (1.2) on numerators and denominators
will imply smaller constants in (1.1). A result of this kind is proved in [3]:

Let 0< £ <1, and let p be a prime with

22
p>(;)a

h denotes any integer that is not divisible by p. Then, for any real irrational number &,
there are infinitely many integers # and v > 0 satisfying

3/2
_ul  (1+ep”
] I 752 1.3)
and
u=hv#0 mod p. (1.4)
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In this paper, we shall improve this result as far as possible, where additionally coprime inte-
gers u and v are considered.

Theorem 1.1: Let s denote any positive integer having an odd prime divisor p such that p®|s for
some positive integer &. Moreover, let s be any integer. Then, for every real irrational number
£, there are infinitely many integers # and v > 0 satisfying

o

A

NG

<

and

u=hv mods, (u,v)< —;7
In general, the constant 1/+/5 is best-possible.
Corollary 1.1: Let s= p® denote some prime power with an odd prime p. Moreover, let s be
any integer. Then, for every real irrational number &, there are infinitely many coprime integers
u and v > O satisfying

u s
‘5—; < T (1.5)
and
u=hv mod s. (1.6)

By Theorem 3.2 in [1] with § =1/10 and £=12++/145, all fractions # /v with odd coprime
integers » and v > 0 satisfy

2

o2
NG

Hence, Corollary 1.1 does not hold in the case s=2 and A=1. Also, the bound on the right of
(1.5) must be enlarged in the case of moduli s having more than one prime divisor.

Theorem 1.2: Let s be some positive integer having at least two prime divisors. Moreover, A
denotes any integer. Then there is a real quadratic irrational number £ with the following prop-

erty. For every pair # and v of coprime integers with |v| > 1 and # = v mod s, the inequality

x

s
> 52

holds.

It is suggested by the above-mentioned theorems that approximation results with an
additional condition like (1.6) depend on arithmetic properties of the modulus s. A general result
of this kind is expressed in our final Theorem 1.3. For an integer s> 1, the number

s :=[1r

pls

is the square-free kernel of s, where p runs through the prime divisors of s. In what follows, p, is
the smallest prime divisor of s, and
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2
S:= min{f—, 59 Z(S)}.
4 P
Theorem 1.3: For arbitrary integers s> 1 and / and for every real irrational number £, there are

infinitely many coprime integers # and v > 0 satisfying

and

u=hv mod s.

For further improvements of the bound on the right-hand side of (1.5) in Corollary 1.1 for all
numbers £ from a certain set of measure 1, the author [4] applies the mean value theorem of
Gauss-Kusmin-Lévy [10] from the metric theory of continued fractions. This set depends on p.
To prove our theorems, we shall need some well-known elementary facts from the theory of con-
tinued fractions (see [11] or [5]). By

&=lay; ay,a,, "']:a0+——7—1"_’

we denote the continued fraction expansion of a real number £.

2. PROOFS OF THEOQOREMS 1.1 AND 1.2

Proof of Theorem 1.1: The proof of Theorem 1.1 is based on the following proposition.

Proposition 2.1: Let p>2be a prime number. Among any six consecutive convergents
Posi | Gy 1 20,i=0,1,2,3,4,5) of a real irrational number 7 there is at least one fraction, say
p.!q,, such that

1
’ —7‘3— < Fa @1

holds and g, is not divisible by p.
Proof: We denote the set of fractions from £, ..., 222 satisfying (2.1) by #,. From a

qn LA qn+5
famous theorem of A. Hurwitz which asserts that at least one of three consecutive convergents
satisfies (2.1) (see, e.g., Satz 15, ch. 2 in [11]), we know that 2 < || <6. In what follows, we

consider several cases according to the distribution of fractions from &4, .

Case 1. There is an integer m such that J=, 2=l e o,
m m

It is a well-known fact that g,, and g,,,, represent coprime integers and, therefore, the prime
number p cannot divide both of the numbers g, and g,,,,.

Case 2. There are no consecutive convergents of 77 in &,,.
Case 2.1. Ttis 2= P2 c of  for some integer m.

Let us assume that p divides both g, and ¢,,,,. Then the recurrence formula of the ¢'s yields
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Bpsdms1 = Am2 — 4 =0 mod p.
From (q,, 9,,,;) =1, we know that ¢g,,,, is not divisible by p. Therefore, p divides a,,,,, and we
have a,,,, > p>+/5. It follows that

1 1

b m+1 <
2 2
am+2qm+l ‘/gqm-i-l

qm+1

<

-

hence £=1 e of, . But we know that 2= € s{,, from the hypothesis of Case 2.1, which is incompat-
ible with the hypothesis of Case 2. We have proved that p|g, and p|q,,,, cannot hold simul-
taneously.

Case 2.2. Ttis 2=, 22 e ¢, for some integer m.

As in the preceding case, we assume that p divides both of the denominators g, and g,,, ;.
We have
Dv3 = OisDmez T I
D2 = Ans29me1 T G
for some positive integers a,,,,, g,,,; from the continued fraction expansion of 7. Putting the
second equation into the first one, we obtain the identity
T3 ~ Ui 3 = @Bz + Dy

Our assumption on p implies that the integer (a,,,,4,,.; +1)q,,,, is divisible by p. Since g,, and
g, are coprime, p|q,.,, is impossible. It follows that p divides a,,,,a,,; +1 and, consequently,
we have @,,,,0,.3+12> p>3. Hence, it is impossible to have g a,.; =1. We discuss the
remaining cases.

Case 2.2.1. a,,, 23 or a,,;>3.

From
Pn
2| <l e,
we get
1;’: s ::: ed, (fa,,23),
gy < 0D

Again there is a contradiction to the hypothesis of Case 2.
Case 2.2.2. a,,,=4a,,;=2.

We have
1 7

S ST _[2 2’ 4> Amess - ]>2+2+1 E’

and finally, it follows that

1 3 1

pm+1
< < < .
2 2 2
Cpirdons 190w V59hn

Gmn1

-
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Hence, it is
Pm Pm1 ed
b n»s
qm qm+l
a contradiction.
Case2.2.3. a,,,=2,0a,,;=1
Itis
1 5
—[2 1, Q> Vs -+ ]>2+1—+—125
and
pm+l 2 1
n—-E < <=
i Im+1 Sqr2n+1 \/§‘Ir2n+1
Again we get
Er_rg_ pm+l ..ﬂ .
q qm+1

Case 2.2.4. a,.,=1,4a,,;=2.
First, note that «,,,5 :=[2; a,,.4, G5, ...] >2. We get |

1 < 1
G2 @i 3Gmsz + Gnsr) q31+2(2 n qm+1)

m+2

P2 —
qm+2

7]_

1 2

1 ~5g
24— qm+2'
qm+2( [1) m1> - al])

by [L; a1, ..., 4] < 2. The contradiction arises from

pm+2 pm+3 Eﬂ
Gniz It

Hence, it is proved that p|q, and p|q,.; cannot hold simultaneously. Since for every integer
m=0 there is at least one fraction among the convergents 2= P2 and Znc satisfying (2.1) by
Hurwitz's theorem, we have finished the proof of Proposition 2.1.

By the hypotheses of Theorem 1.1 on &, A, and s, we may choose 7:=(&—-h)/s. From
Proposition 2.1, we know that there are infinitely many convergents p,, / q,, of 7 with

§h£zz,1 1
S J_q

where p and ¢, are coprime integers. Put u:=hg, +sp, and v:=gq,. Then, it is u=hv mod s
and

1
V5
To estimate the greatest common divisor of # and v, we conclude from (p,, q,) =1, plg,, and
p”|s that

1 u
5197V <
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(P> @) = (5, @) S~
p

By (u,v) = (hq,, + sp,,, 9,,) = (SP» 4,,), the first assertion of Theorem 1.1 follows.

The corresponding assertion of Corollary 1.1 follows immediately. But it remains to show
that Theorem 1.1 cannot be improved in general. For this purpose, let s> 0 and # be integers.
Put £:=h+s(1++/5)/2. In what follows, we shall show that for every £>0 there are at most
finitely many fractions # /v, where v >0,

u=hv mod s 22
and
l:—% < %__5% (2.3)

There is nothing to prove in the case in which no fractions #/v satisfy (2.2) and (2.3) simul-
taneously. Otherwise, we conclude from (2.2) that u =hAv+ws holds for a certain integer w.
Then we have, by (2.3),

(l—g)s>s_ l+«/§_LV_
J5v? 2 v
which yields
1+45 w| 1-¢
¥ ) 2.4
2 v <J§v2 (2.4)

It is a well-known fact from the theory of continued fractions that there are at most finitely many
solutions w /v in (2.4) (see, e.g., Th. 194 in [5]). One knows that every solution of (2.4) satisfies

1

w_ Fru —
5¢

v F

n

for some integer n, and v? <

Our assertion follows from the inequality |vE—u| < s/+/5, which has at most finitely many solu-
tions for every integer v.

Proof of Theorem 1.2: Let p and g be different primes with pg|s. Moreover, we define
a sequence (a,),»o of nonnegative integers as follows. Put g,:=0 and a,:= p. Let a, be the

unique solution of the congruence
a,p=-1 mod g, 2.5)

where 1< a, <q. Since (p, q) =1, solutions of (2.5) do exist. Finally, put a,:= p for v=3,5, 7,
..anda,:=q forv=4,6,8,... Thenwehave g,=1, q,=p, q,=a,p+1=0mod g. Applying
mathematical induction, we conclude that

ifv=1l d2
VE{O mod p, if v=1 mo v 21) 2.6)

0 modg, if v=0 mod2
Obviously, 7:=[ay; a,, a,,...] and &:=h+sn represent real quadratic irrational numbers.
Now we assume that integers # and v do exist such that |[v| >1, u=hv mod s, and

U S
&y

<.
2v?
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Hence, there is an integer w such that = Av+ws and

w|_ 1
Y 202

It follows from the elementary theory of continued fractions (e.g., see Th. 184 in [5]) that the
fraction w /v satisfies

<|=s

_ P

q, 2.7
for some convergent p,/q, of 7. One may exclude the case where n =0, since otherwise it fol-
lows from (2.7) and g, =1 that v|w. The integer w was defined by ws = u—Av, hence v divides
u. This is a contradiction to the hypothesis on # and v, because we have deduced from » = 0 that
(u,v)=|v| >1. Therefore, we may assume n>0 in (2.7). By (2.6), either p or g divides g,,.
Since p, and g, are coprime, (2.7) implies that v is divisible by the same primes that also divide
q,. From pq|s and u = hv mod s, it follows that (u, v) > 1, a contradiction. It is proved that the
integers # and v cannot exist, and the proof of Theorem 1.2 is complete.

3. PROOF OF THEOREM 1.3

Let a and b be integers with a>0,6#0. 7 denotes any real irrational number. In what

follows, we consider two consecutive convergents 221 and 2= of 1. For every integer n>1
satisfying aq, +bq,_, # 0, we define
a b
A, =1+ - , 3.1
" ban+1 —a aﬂn + b ( )

where o, :=[a,.1; Bzs Gpass -1 and B, :=[a,;a, ,,a,,,..,4]. From a,,, ¢Q, we have
ba,,,—a #0; it follows from

B, = qq" n=1)

n-1

and aq, +bq,_, # 0 that af, +b #0.

Proposition 3.1: Let n>1and y := sign(b4,). Then we have

_ yab
ﬂ'n(aqn + bqn——l)2 .

_ ap,, +bpn—1
aqn + bqn—l

This is Proposition 2.1 in [2] apart from different notations concerning ¢, f,, and 7.

At the beginning of the proof of Theorem 1.3, we apply Uchiyama's result mentioned in the
Introduction. By (1.1) and (1.2), there are infinitely many integers #, and v, # 0 such that

u|
02 3.
Vo 4vg (3.2)
and
uy=h mods, v,=1 mods. 3.3)
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Let d:= (4, v,) > 0. Every common prime divisor p of d and s is a divisor of v,, too. This is
impossible, because vy =1 mod s. Hence, d and s are coprime, and therefore an integer dj, exists
such that

d-dy=1 mods. 3.4

Moreover, there are coprime integers # and v # 0 satisfying u, = du and v, =dv. Therefore,
we have dyu, =ddyu or u= hd, mod s by (3.3) and (3.4). Similarly, we conclude v=d, mod s.
Collecting together, we have proved the existence of infinitely many coprime integers # and v # 0
with # = Av mod s and, by (3.2),
s s

< <.
4v;  4v

2

v

Ifit is v < 0, this result is also true for —u and —v, and the assertion of the theorem is proved for
S=s5%/4.

Now let 7:= 5—? =[ay; a;,a,,...], and let fl’—: (n > 0) denote the convergents of 7. In what
follows, we assume n>1.

Case 1. (q,_,,5)=1.

Put P,:=p, ,, 0,:=q,;. Then we have

5. 0)=1 (©,9)=1, ’nJQ'?; <G (3.5)
Case 2. (q,.,,5)>1 and 6(s) |q,_,.
Let
a=[]p, Bi=ap,+p Q=04+,
o
From the hypothesis of Case 2, we conclude that
a>1 (3.6)
By straightforward computations, one gets g,F, — p,0, = (=1)", which implies that
(F,0,)=1 (3.7

Let p denote any prime divisor of s. If p divides g,_,, we conclude that a is not divisible by p.
Moreover, p does not divide g, because ¢, and g,_, are coprime. Finally, we get p/Q,.

Now, let p and g,_, be coprime. Then we have p|a, and again p does not divide 0,. Since
p is an arbitrary prime divisor of s, we have proved that

@,9=1 (3.8)
From the hypothesis (g,_,, §) >1, we know that a certain common prime divisor of ¢,_, and s
exists. This and (3.6) imply that

) 3.9
l<a< b (3.9)

where p, denotes the smallest prime divisor of s. We apply Proposition 3.1 with & = 1:
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a
p-tnlo A (3.10)
| O 12,102
where
1 _ a(1+an+lﬂn)_a2ﬂn+an+l_2a
|4, al+a,.f,)
G.11)
2"'aan”"%clzirl
I & R
l+a,,8,

We are looking for a suitable upper bound of |4 [*. For this purpose, we separate the argu-
ments into three cases.

Case 2.1. 2+af, -2 <0,

For n>1, it is clear that «,,, >1 and §, >1. It follows from (3.11) that

A =1-p, < 1+ Tl <14lc. (3.12)

an+l <1
Gl(l + an+lﬁn) a(l + an+l)

Case 2.2. Os2+a‘,ﬁ’n—g—?"—+—1 <l+a,,f,

Then we have 0< p, <1, and consequently

4,M<1. (3.13)
Case 2.3. 2+aﬁn—a:l” >1+a,,8,.
We conclude that
2+af 2+af 2 af
A, =p, -1 o z_ 1 ) 1
|A. "= P, <1+an+1/Bn 1< 55, 1<1+1+1+ﬂn I<a (3.149)

We know that a>2, from (3.6). Collecting together from (3.12) through (3.14) we have proved
that |A,|™ < a holds for every integer 7 >1. Hence, (3.10) yields

P 2

n--n| <2
0,

< (3.15)

Case 3. 8(s)|q,_;.

Since ¢,_; and g, are coprime, it follows from the hypothesis that (g,,s)=1. Put B,:=p,
and Q, :=¢q,. Obviously, the assertions for P, and 0, from (3.5) hold.

We collect together the results from (3.5), (3.7), (3.8), and (3.15): For a certain sequence of
increasing integers 7> 1, we get a sequence of rationals (P, /(,),»; with coprime integers P, and
Q, such that (Q,,s)=1 (v21),

and
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Let u:=hQ, +sP,, v:=(,. Then, by the upper bound for a from (3.9), we have
58%(s)

2.2

PV

where u = kv mod s. We conclude from (Q,, sP,) =1 that u and v are coprime. Since 0, can be
chosen as large as possible, the assertion of Theorem 1.3 is also proved for § = s-52(s)- py2.

<

-

4. CONCLUDING REMARK

Using the well-known continued fraction expansion of Euler's number e, the author obtained the
following result.

Theorem: For every integer s> 2 there are infinitely many fractions P/ with coprime integers
P, 0 >0 satisfying P=0=1mod sand Q0-|Qe— P|=0(1) for 0 — .
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In [2], Cooper and Kennedy considered the following question: If {U,} is a sequence satisfy-
ing a third-order linear recurrence, what is the degree of the recurrence satisfied by the sequence
{(U,)*}? They gave the answer as 6. They then asked if there is a similar result for the sequence
{(U,)*}, tossing this question out as a research problem.

In [4], Prodinger answered this latter question in the affirmative, along with the more gen-
eral question dealing with linear recurrences of any order and arbitrary powers of the original
sequence. In the case of the familiar Fibonacci (or Lucas) sequence (where the original sequence
satisfies a second-order linear recurrence), Prodinger displayed the recurrences satisfied by
{(E)*} (or {(L,)*}) for k=1,2,3,4,5,6, showing that such recurrences are all linear and of
order (k+1). As Cooper and Kennedy had observed in [2], these latter recurrences had been
obtained by D. Jarden [3] and are special cases of the following formula:

k+1
YUk +1, jle(F,_)f =0, k=1,2,..;n any integer. )
7=0

In this formula, the quantities [k, j], are the Fibonomial coefficients defined by:

Lk, j1r = ke /{171l = DNe}

where 0< j <k, with [m!], = FEF,...F,, m>1, and [0!] =1. A table of Fibonomial coeffi-
cients is provided in Brother Alfred Brousseau's compendium [1]. The formula in (1) is a special
case of a more general formula (omitted here) due to Jarden and given in [3], involving certain
sequences satisfying a second-order linear recurrence.

It should be added that although Prodinger demonstrated the existence of the order of certain
linear recurrences in more general cases than was explored by Cooper and Kennedy, he did not
actually derive an exact expression for such order. We rectify this omission in this paper, and
extend such result to an even more general situation.

It seems natural to ask whether we can find similar results for the most general type of
sequence satisfying a linear recurrence. It will be noted from recurrence theory that any sequence
satisfying a linear recurrence possesses a characteristic polynomial of a certain degree with eigen-
values (also known as characteristic roots) of possibly multiple order. In general, such sequence
is nonlinear. More specifically, we consider a sequence {U,} of the following known form:

U, =i10,(n>(a,)", @
j=

where the §;(n) are given polynomials in » of degree r; (with 7; > 0), and the ,'s are distinct
given constants. Such sequences are denoted as polynomial sequences. Incidentally, we note
that, from the known expression for U,, we may immediately write the characteristic polynomial
F(2) of the sequence, namely:
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P(2)= ﬁ(z —a)*n. ©)
Jj=

Observe that the sequence {(U,)F} (k=1,2,3,...) also possesses a characteristic polynomial,

which we denote by F,(z). We let R, represent the degree of P, (z). By definition of the charac-

teristic polynomial, P,(z) is the minimum polynomial such that B,(E)U¥)=0 (where E is the

unit shift operator, i.e., Ex, = x,,,). In other words, R, is the order of the recurrence satisfied by

the k™ power of the original sequence. Our task is thus to determine k" for £ =1,2,3,....
Indeed (given (3)), we immediately determine that

R :i(mj). @
We claim the following main result:
Theorem:
Re=@-m(* 3 e(FH ) ©
In particular, if 7, =0 for j=1,2,...,m, then the characteristic roots are of order one and
R, = m; in this case,
sz(k+;cn—l). ©6)

This latter result is clearly a corollary of the Theorem. If the original recurrence has characteristic
roots of single order, then the characteristic roots of the "power recurrence" are also of single
order. For the particular case where R, = m = 2. we obtain Prodinger's implied result: R, =k +1.

Proof of (5): We begin by expanding the k™ power of the given expression for U,, using the
multinomial theorem:

G = 3 (kL)oo .oy - @)

S(m, k)
where S(m, k) = {(iy, iy, ..., i) iy +iy +- +i, =k, 0<i; <k, j=1,2,..,m}, and (; ,* ) is the
multinomial coefficient evaluated as k!/ {(#)!(3,)!...(,)!}. Note that

degree[ (6,()} (B,(m))? -+ (6, (Y= 3.1
j=1

We see that F,(2) = [Lg, 1) {z — (@) (@,)"2 -+ (@)=}, where

Ey, by, ..., 5,) =1+ Y 1. @)
J=1
Therefore,
R.= Y E(,iy,....0,). 8)
S(m, k)

It remains to evaluate the last expression. Towards this end, we employ a pair of lemmas. For
convenience, we let U(m, k) denote.
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|Stm, B)|= 3 1,
S(m, k)
the cardinality of S(m, k), and
V(m, k)= Z .
S(m, k)

It follows (by symmetry) that

Vimk)y= 3 i, j=12,.,m.
S(m, k)

Therefore, we see from (7) and (8) that R, =U(m, k) +V (m, k)X'_,r;, or

j=1"j>
R =U(m, k)+ (R —m)V(m,k).
Lemma 1:
Um, k):(“;c”‘l).

®

(10)

Proof (by induction on m): Let K denote the set of m>1 such that (10) is true (k being
treated as fixed). Since S(1, k) = {k}, we see that U(1, k) =1=(£); therefore, 1€K. Suppose
1,2,..,meK. Now S(m+1, k) consists of those vectors in £”*! which have their first compo-
nent equal to i, and the remaining vector (an element of &™) equal to a vector in S(m, k—i,).

Since i, varies from 0 to £, inclusive, it follows that

k
Um+1,k)=>Y U(m, j).
Jj=0
By the inductive hypothesis,

s $ (55 () (8)
j=0 j=m-1
We see that this result is the statement of (10) for (m+1). Thus,

L2,. . meK=>12, ....mm+lek.
Induction completes the proof. O

Lemma 2:
V(m, k) = (" ;’fl‘l).
Proof: Reasoning as in the proof <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>