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SUMS O F CERTAIN PRODUCTS O F F I B O N A C C I 
AND LUCAS N U M B E R S - P A R T I I 

R. S* Melham 
School of Mathematical Sciences, University of Technology, Sydney 

PO Box 123, Broadway, NSW 2007 Australia 
(Submitted March 1998-Final Revision June 1998) 

1. I N T R O D U C T I O N 

The identities 

X4 2 = 44+i (i-i) 
*=i 

and 

Zj^k~ 4 4 + i ~ 2 - LnLn+l - LQLt (1.2) 

are well known. The right side of (1.2) suggests the notation [LjLj+llfo, which we use throughout 
this paper in order to conserve space. Each time we use this notation, we take j to be the dummy 
variable. 

In [2], motivated by (1.1) and (1.2), together with 

X FkFk+l = ^FnFn+lFn+2, C1 -3) 

we obtained several families of similar sums which involve longer products. For example, we 
obtained 

Z J7 TT I ? 2 17 — nrn+l'''rn+4m+l (1 A \ 

rkrk+v..Pk+2m^.Ii
k+4m- j , U - 4 ) 

for m a positive integer. By introducing a second parameter, s, we have managed to generalize all 
of the results in [2], while maintaining their elegance. The object of this paper is to present these 
generalizations, together with several results involving alternating sums, the like of which were 
not treated in [2]. In Section 2 we state our results, and in Section 3 we indicate the method of 
proof. We require the following identities: 

PfHrk + Fn-k = 4 4 > k eVen> (1 «5) 
Fn+k + Fn-k = LnFk, k odd, (1.6) 

Fn+k - Fn-k = Fnh> k °d d> 0 -7) 
Fn+k~Fn-k = 4 4 , k even, (1.8) 

4+^ + 4 - * = 4 4 , *®ven, (1.9) 
Ln+k + Ln__k=5FnFk, £odd, (1.10) 

4+* ~ 4 - * = 4 4 > k odd, (1.11) 

4+* - Ln-k = 5 4 4 > k even, (1.12) 
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L2
n-L2n=(-iy2 = (-iyL0, 

5F^L2ri = (-irl2 = (-lT+lL0, 
5F2n-L2n = - 4 = -L20-

(1.13) 

(1.14) 

(1.15) 

Identities (1.5)-(1.12) occur as (5)-(12) in Bergum and Hoggatt [1], while (1.13)-(1.15) can 
be proved with the use of the Binet forms. In some of the proofs we need to recall the well-
known identity F2rj = FnLn. 

2. THE RESULTS 

In this section we list our results in eight theorems, in which s > 0 and m > 0 are integers. In 
some of the theorems the parity of s is important, and the reasons for this become apparent in 
Section 3. Our numbering of Theorems 1-5 parallels that in [2], so that both sets of results can be 
easily compared. 

Theorem 1: 

2«i ^sk^s(k+l) '' • ^s(k+4m)^s(k+2m) ~ 
* 'sn*1s(n+l) •'' ^s{n+4m+i) 

k=l Fm 
, s even, 

s(2m+l) 

Z" F F2 F _ FsnFs{n+l) • • - Fs(n+4m+l) , , 

rsk"' rs(k+2m) •'' rs(k+4m) ~ j ' ** O U U -
k=l ^s(2m+l) 

Theorem 2: 

2-i ^sk^s(k+l) •' • ^s(k+4m)Fs(k+2m) : 

*=1 

LsjLs(J+l) '' • AsQ+4/w+l) 

SFm s(2m+l) 
s even, 

(2.1) 

(2.2) 

(2.3) 

2d ^sk^s(k+l) ' • • £Js(k+2m) '' • ^s(k+4m) ~ 
k=l 

^sj^s{j+l) •'' ^s(j+4m+l) 

^s(2m+l) 
, s odd. (2.4) 

Theorem 3: 

2 ^ ^sk^s(k+l) - - 1 's(k+4m+2)'us(k+2m+l) " .../v \^«./ 
£=1 

2 L ^sk^s(k+l) •' • ^s(k+4m+2ys(k+2m+l) : 

^sn^sjn+l) '• • ^s(fi+4tn+3) 

F 

A ; A( /+ l ) • • • AsQ+4ffl+3) 

k=l 5F. s(2m+2) 

(2.5) 

(2.6) 

Theorem 4: 

2d FskFs(k+l)• • • Fs(k+4m)Fs(2k+4m) 
*=1 

2^ ^sk^s(k+l) ' ' ' *Js(k+4m)Fs(2k+4m) ' 
k=l 

F2 F2 F2 
rsnrs(n+\) ''' rs(n+4m+l) 

F. s(4m+2) 

' r2 j2 j2 

5F. s(4m+2) 

(2.7) 

(2.8) 
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Theorem 5: 
n p2 F2 F2 

X rp2j72 rp2 rp _ J sn1 s(n+l) " A s(n+4m+3) 
rskrs(k+l) • • • rs(k+4m+2)rs(2k+4n k=l 

4m+2) ' 

2^ ^sk^s(k+l) • *' ^s(k+4m+2ys(2k+4m+2) : 

k=l 

s(4m+4) 

j2 j2 f2 
^sj^sjj+l) '' • Ljs{j+4m+3) 

5Kt s(4m+4) 

(2.9) 

(2.10) 

For jii = 0 we interpret the suramands in (2.2) and (2.4) as F}k and l£k, respectively. For s 
odd the corresponding sums are then 

k=l L. 1 ^ = ^ ^ and £ Z ? 'sk 
k=l 

4/4(/+l) (2.11) 

which generalize (1.1) and (1.2), respectively. 
Interestingly, for /w = 0, (2.1) and (2.3) provide alternative expressions for the same sum, 

namely, 
n p p 

Z rp s sn1 s(n+l) 
^2sk = " F L 

*=1 

LsjLs(j+l) 

5R s even. (2.12) 

Theorem 6: 

±(-dkFskFsik+iy..Fs{k+4m)Fs(k+2m) = (rVWwy'-F***** , 5 e v e t l ) ( 2 . 1 3 ) 
k=l us(2m+l) 

i(-l)kFskFs(k+ir..Fs(k+4m)Ls{k+2m) = ( ^-Vr-Wl f 5 o d d . ( 2 1 4 ) 
k=l 1 s(2m+l) 

Theorem 7: 

2-f V ^) 4fc4(Jfc+l) ' • ' 4(fc+4/w)4(fc+2m) ~ 
k=l 

n 

2 L v V 4 f c 4 ( * + l ) ' ' ' 4(fc+4m)4(fc+2m) ~ 

( 1) L„-Ls,j+ly..Ls,j. 'sj s(j+l) ''' -L,s(j+4m+l) 

-^s(2m+l) 

fc=l 

( 1) LSJLSQ+Iy . . Lsy+4m^ 
5F. s(2m+l) 

, s even, (2.15) 
) 
i 

, sodd. (2.16) 
Jo 

Theorem 8: 
n (-\YF F F 

W l\kJ7 17 17 J7 - l ' sn 5 ( w + 1 > " -y("+4m+3) 
2 L ^ ~ L' rskrs(k+l) • ' • rs(k+4m+2)rs(k+2m+l) ~ r 
k=l ^s(2m+2) 

2-»V V 4it4(it+l)---4(it+4iii+2)4(Jt+2»i+l) _ 

i f c = l 

( 1) LsjLs(j+ly..Ls(j+4m+3<) 

^(2m+2) 

(2.17) 

(2.18) 

Some special cases of these alternating sums are worthy of note. For m = 0 Theorem 6 yields 
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and 

n (~]YF F 
X ( - l ) f c ^ = ( l ) y ™ , 5 even, 

n (-1YF F 

An alternative formulation for (2.20) is provided by (2.16). For m - 0 (2.15) becomes 

i H)%=I 
&=i 

( 1) LSjLS(j+i) 
L. , s even. 

(2.19) 

(2.20) 

(2.21) 

3. THE METHOD OF PROOF 

Each result in Section 2 can be proved with the use of the method in [2]. However, the 
significance of the parity of s in some of our theorems becomes apparent only when we work 
through the proofs. For this reason, we illustrate the method of proof once more by proving 
(2.4). 

Proof of (2.4): Let /„ denote the sum on the left side of (2.4) and let 

_ ^sn^s(n+l) ''' ^s(n+4m+l) 

Then 

A«i A«f »+n • • • A«/ 
rn Tn-\ 

_ •L^sn1^s(n+l) • • • ^(w+4/w) r j 
- j m 

s(n+4m) 
us(2m+l) 

us(2m+l) 

us(2m+l) 

's(n+4m+l)~ Ls{n-l)\ 

'sn'Ljs(n+l) ' *' s(n+4m) r r _ 
T tL's(n+2m)+s(2m+l) ±Js(n+2m)-s(2m+l) ] 

= 4*4(n+i) • • • L]{n+2m)... Ls(n+4m) [by (1.11) since s(2m +1) is odd] 

Thus ln-rn=c, where c is a constant. 
Now 

— LsL2s...LS(4i lm+l) 

— LsL2s... As(4m+1) 

-Js{4m+2) 

^s(2m+l) J 
I2 - I 

LQLSL2S . . • A(4/w+l) 

^ ( 2 m + l ) 

[by (1.13)] 
^(2^1+1) 

= -n o> 
and this concludes the proof • 
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In contrast, when proving (2.3), we are required to factorize Ls{n+2m)+s(2m+l) - Ls{ri+2m)_s(2m+l) 

for s even, and this requires the use of (1.12). 
As in [2], we conclude by mentioning that the results of this paper translate immediately to 

the sequences defined by 

\Un = PUn-i + U^, Uo = 0, f/, = l, 
Wn=PVn-^Vn_2, V0 = 2, V,=p. 

We simply replace Fn by Un, Ln by Vn, and 5 by p2 + 4. 
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GENERALIZATIONS OF MODIFIED MORGAN-VOYCE 
POLYNOMIALS 

M. N. S. Swamy 
Concordia University, Montreal, Quebec, H3G 1M8, Canada 

{Submitted March 1998-Final Revision September 1998) 

1. INTRODUCTION 

In two recent articles [2] and [3], Ferri et al. introduced and studied the properties of two 
numerical triangles, which they called DFF and DFZ triangles. However, in a subsequent article, 
Andre-Jeannin [1] showed that the polynomials generated by the rows of these triangles are 
indeed the Morgan-Voyce polynomials Bn{x) and bn(x), whose properties are well known [10] 
and [11]; in fact, the polynomials Bn(x) and bn(x) have been used in the study of electrical net-
works since the 1960s (see, e.g., [8] and [9]). In the same article, Andre-Jeannin introduced a 
generalization of the Morgan-Voyce polynomials by defining the sequence of polynomials 
{i*r)(x)} by the relation 

Pf\x) = (x + 2)P$(x)-P&(xl {n>2\ (la) 
with 

P0
(r)(x) = l and Pl

(r\x) = x+r + l. (lb) 

Subsequently, Horadam [6] defined a closely related sequence of polynomials {Qjf\x)} by the 
relation 

$\x) = (x + 2)Q£l{x)-$}1(x), (»>2), (2a) 
with 

0>r)(x) = 2 and Q^(x) = x+r + 2, (2b) 

and studied some of its properties. 
The purpose of this article is first to generalize the two sequences of polynomials {P}r\x)} 

and {Q^\x)}, and to study some of their properties by first relating them to the parameters of 
electrical one-ports and then using the properties of such one-ports. Later, following Horadam 
[7], we will construct and study some of the properties of a composite polynomial which includes 
the two sets of generalized polynomials introduced in this article. 

2. POLYNOMIALS /*(,)(x) AND Qir)(x) 

Consider the generalized polynomial wn(a, h; x) defined by 
wn(x) = (x + p)wn_1(x)-wn_2(x\ {n>2\ (3a) 

with 
sW0(x) = a and wx(x) = h. (3b) 

We know that the solution of (3a) and (3b) is given by [5]: 

w„(x) = w^U^x) - w^U^ixl (4) 
where 

Un(x) = wn(0,Xx). (5) 
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Hence, we may observe that the modified Morgan-Voyce polynomials, Bn(x), bn(x), C„(x), and 
cn{x), defined in [12], may be written as 

Sn(x) = w„(l, x + p;x) = Un+l(x), (6a) 
b„(x) = wn(l, x + /> - 1 ; x) = Un+l(x) - U„(x) = B^-B^ix), (6b) 
C»(*) = w»(2> x + p;x) = Un+l(x) - U^x) = Sn(x) - Bn_2(x), (6c) 
^(x) = wnO.,x + p + l;x) = Un+1(x) + U„(x) = B„(x)+Bn_l(x). (6d) 

From (6b), (6c), and (6d), we see that 

C„(x) = b„(x) + $_,(*) = c„(x) - ?_,(*). (7) 

Let us now define the following two sets of generalized polynomials P^r\x) and Qff\x) as 
Pn

(r)(x) = wn(\x + p + r-l;x) (8a) 
and 

Hence, from (4), we have 

and 

QP(x) = wn(2,x+p+r; x). (8b) 

P„(r)(x) = Un+l(x)Hr-W„(x) (9a) 

QP(x) = U„+1(x)-U„_l(x) + rU„(x). (9b) 

Using the relations given in (6a)-(6d), the above may be written as 
P}r\x) = bn(x)+rB„_l(x) (10a) 

and 
QP(x) = C„(x)+rB„_1(x)- (10b) 

As a consequence of (10a), (10b), and (7), we also have the relation 

QP(x) = Pn(x)+b„_l(x). (10c) 

It is readily seen that 
pV\x) = b„(x), (l la) 

%*>(*) = Bn(x\ (Hb) 
pV\x) = c„(x\ (lie) 
Qf\x) = Cn{x). (lid) 

It is clear that these results are generalizations of those contained in [1] and [6]. 

3. Pw
(r)(x)9 Qir)(x) AND LADDER ONE-PORTS 

In this article we assume that p>2 andr >0. Consider now the ladder one-port network 
shown in Figure 1(a), which consists only of resistors and inductors, and thus is an RL-network 
(see Appendix A), where the series resistors rx = r2 = r3 - • • • = rn = (p - 2)a Ohms, the inductors 
Lx - L2 = L3 = - • • = Ln = a Henries, and the shunt resistors Rl = R2=R3 = -- = Rn = a Ohms. For 
such a network, the impedance zx of any of the series branches is given by 

zl = (s + p-2)a, (12) 
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where s is the complex frequency variable, while the impedance z2 of any of the shunt branches is 
given by 

z2 = a. (13) 

It is known [9] that the driving point impedance (DPI) Za of such a network is given by 

a 2Bn_M (14) 

where 

w = f, (15) 
Z 2 

and Bn(w) and bn(w) are the Morgan-Voyce polynomials [8]. Hence, 

bn(s+p-2) 
a B^is+p-iy 

However, bn(s+ p-2) = bn{s) and Bn{s+p-2) = Bn(s). Hence, the DPI of the RL-ladder net-
work of Figure 1(a) is given by 

Now consider the rational function P£r+k\s) / P£r\s)9 where k > 0. Then 

/*>(*) to+/-^_I(5) to+r^U*) r 1 f„(5) 
(17) 

Using (16) and (17), we see that P}r+fc\s) I P}r\s) may be realized as the driving point admit-
tance (DP A) Yb of the network shown in Figure 1(b). It is observed that this network also is com-
posed only of resistors and inductors. Thus, P}r+k\s) I P}r\$) can be realized as the DPA of an 
RL-network. 

Now consider the rational function C&r+k\s) I QnrKs)> where again k > 0. Then 

k k B^is) 
From the results given in [9], it is known that the function 

can be realized as the DPI of the RL-ladder network shown in Figure 2(a). Hence, from (18), we 
see that Q„+k){s) I Qir){s) can be realized as the DPA of an RL-network. 

Now consider P„(r+k\s) I Q^(s\ k>0. This may be expressed as 
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L> Ln 
O nCfXP ^L^ f l np ^u q^p y^u 

;R, R^ Rn 
Z a = a ^ L 

Eh-i (s) 

L^ - L 2 - .... — Ln— a Henries 

T!= l2= . . . =% = a(p-2) Ohms 

R 1 = R 2 = ... =Rn= a Ohms 

(a) 

r—> -

V, Yb 

r/k 

Hrrr 

^ l 
-̂ SB" 

_Lbn(s) 
k ~ 

Bh-i (s) 

] 

n - Section 
RL- Ladder 
of Fig.l (a) 

with ot= 4-
1 k 

(b> 

FIGURE 1 

~P(r+k)(s) 
b ~ (T) 

1 Pn %) 

Since both bn(s) I Bn_x{$) and Cn{s) I B^^s) are RL-impedance functions, we see from (19) that 
P}r+k\s)/QJjr\s) is a ratio of two RL4mpedance functions. Therefore, in general, it is only a 
positive real function (see Appendix B) and thus need R, L, and C (capacitors) for its realization 
[13]. 

Using the properties of RL-networks (see Appendix A), we may now draw some conclusions 
regarding the locations of the zeros of Pn

(r)(s) and QJr)($). Since P}r+k\s)/P}r)(s) (k>0) is 
realizable as the DP A of an RL-network, we see that the zeros of P£r\$) are real, simple, and 
negative; further, they interlace with those of ^(r+A:)(s), the zero closest to the origin being that of 
P}r)(s). Similar statements hold with regard to the zeros of Q^r)(s) and Q£*k){s) (k>0), since 
we have shown that (%^k\s) / Qff\s) is also a DPA of an RL-network. In addition, since 
P}r+k)(s)/Q(r)(s) (k>0) is a ratio of two RL-admittance functions, the zeros of P}r+k)(s) and 
Qjf\s) need not interlace; however, their zeros have a very interesting relationship on the 
negative real axis [4]. In this connection, it may be mentioned that the only known result is the 
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one regarding the zeros of P}°\s), P}l\s), P}2\s), and Qj;0\s), since these are the zeros of 
f>n(s), Bn($), cn(s), and Cn(s), respectively. 

Li r1 ID r 2 

o—nnp—i44s-nnp—W- —ncnon—i iHh 

= R, Ro 
R * - . & B -

H» (s) 

2 L^ -L2 - .... - L n - 2 a Henries 

2 r ! = ^ = . . . = r n = 2 a ( p - 2 ) Ohms 

R 1 = R 2 = ... =Rn= 2 a Ohms 

( a ) 

I — ^ -

I 
Vr 1 
*d 

r/k 
4/L4^ 
JWr 

f l 
rr-.^. 
^-j** 

1 Cq(s) 

k Bh-l (s) 

n - Section ! 

RL- Ladder 

of Fig.2 (a) 
with a= 4-

1 k 

(b) 

FIGURE 2 

Q„< r ><s, 

4. THE COMPOSITE POLYNOMIAL J^r'">(jc) 

Following Horadam [7], we now define the composite polynomial R^r'u)(x) by the relation 

^u\x) = (x+p)^l
u\x)-^2

u\x), (»>2), (20a) 
with 

I$r>u)(x) = u and R{r>u)(x) = x + p+r + u~2, 

where r and & are real numbers. It is clear that 
R<,r'l\x) = P^(x), 

3,(r-2)(*) = ®r)(x). 

(20b) 

(21) 
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Using the results of (3a), (3b), (4), and (5), we see that 
%£• u\x) = (x + p+r + u- 2)U„(x) - wC/„_i(x) 

= U„+1(x) + (r - l)U„(x) + (« - \){U„(x) - U„_&)}. 

Using (9a) and (6b), the above relation may be rewritten as 

R(^(X) = p(r)(x)Hu-l)bn_1(X). (22) 

Substituting for b^^x) from (10c), equation (22) reduces to 

j ^ ")(x) = (u- \W(x) - (u - 2)P}r\x). (23a) 

Now using (21), equation (23 a) may also be rewritten as 

^•")(x) = ( i i - l )^- 2 ) (x) - ( t t -2)^- 1 ) (x) . (23b) 

Let us now find the locations of the zeros of R^r,u\x) for r > 0 and u>\. For this purpose, 
we first consider the function E^r+k- u\s) I &£> u\s) for k > 0. Using (22), we may write 

Ify+Wty-Bjr^is) = P}r+k)(s)-P}r\s) = kB^s), using (10a). 

Using (22) and (10a), we get 

$ ' • u\s) h„(s)+rSU*) + (« - 1 ^ ( 5 ) 

r , 1 K(s) .u-1 ^ - I ( J ) ' 

* *£„-!(*) * ^U*) 
From the results given in [9], it is known that the function 

»-l Vife) 
* £„-i(*) 

may be realized as the DPI of the RL-ladder network shown in Figure 3(a), with a = (u-Y)/ k. 
Further, as already mentioned in Section 3, 

can be realized as the DPI of the RL-ladder network shown in Figure 1(a), with a = 1 / k. Hence, 
RJf+k'u)(s)/R^r'"\s) (k>0) may be realized as the DP A of the RL-network shown in Figure 
3(b). 

Again using the properties of RL-networks, we can state that the zeros of R^9U\s) are real, 
simple, and negative; further, the zeros of R^r,u\s) interlace with those of fijf*k'u\s)9 the zero 
closest to the origin being that of R^r,u\s). 

Mow we consider the function M^r+k'u+t)(s)/R(r'u)($), where k > 0 and t > 0. From (22) and 
(10a), we have 
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# 
(r+k, u+t) 

= to + (r + k)B„^(s) + (« + / - l)£„_,(s) 
6„(5)+/-5„_1(5) + ( « - l ) V 1 ( ^ ) 

(/• + *) + IT^TT + (« + ' -1 ) T T ^ T 

'+-J#7+(«-i)!4l 

(25) 

Since bn{s) I Bn_x{s) and bn_x(s) / B„_x(s) are both RL-impedance functions, we see from (25) 
that Rjir+k'u+t)(s)/^u\s) (k>0,t>0) is a ratio of two RL-impedance functions. In view of 
this, as mentioned earlier in Section 3, the zeros of Rff,u\$) and those of Rff+k'u+t\$) (k>0, 
t>0) need not interlace on the negative real axis [4]. 

Li v{ la r2 

w—^t^T-w1—WH— 

: R i :Ro 

Ln-1 rn_! 

V Rn Z e =a M s ) 
Bh-i (s) 

^1~^2 ~ — ~ ^n-1 = a Henries 

r !=r2= .... = r n.t = a (p-2) Ohms 

R1 =R2= ... =Rn= a Ohms 

(a) 

r/k 

1 bn(s) 
k ELi (S) 

1 

U-l bn-l (S) 
k iL-i(s) 

RL - network 
of Fig.l (a) 
with a= 4-k 

RL - network 
of Fig.3 (a) 

with a= 

~(r+k,u) 
Y f = 3 (5) 

in(f'U) (S) 

(b) 

FIGURE 3 
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5* CONCLUDING REMARKS 

In this article we have generalized the results of Andre-Jeannin [1] and Horadam [6] and [7] 
concerning the sequences Pw

(r)(x), Q^r)(x)? and i^r'w)(x). We have also shown that there exist 
close relationships between these generalized sequences and RL-networks or certain types of 
RLC-networks. Using these relationships and the properties of such networks, results concerning 
the locations of the zeros of these generalized sequences have been derived. In view of similar 
results recently obtained for another pair of polynomials, it is worthwhile exploring such rela-
tionships between polynomial sequences and network functions to derive properties of such 
sequences using the well-known properties of RL, RC, LC, and RLC network functions, and vice-
versa. 

APPENDIX A 
Properties of RL One-Port Networks [14] 

A one-port electrical network is a two-terminal network consisting only of two. kinds of 
elements, namely, resistors and inductors. 

The driving point impedance Z(s) of such an RL network satisfies the following properties: 
(a) .All poles and zeros are simple, and are located on the negative real axis of the s-plane. 
(b) Poles and zeros interlace. 
(c) The lowest critical frequency is a zero which may be located at s - 0. 
(d) The highest critical frequency is a pole which may be at infinity. 
(e) Z(0)<Z(oo). 
Also, the driving point admittance of an RL network satisfies the following properties: 
(a) All poles and zeros are simple, and are located on the negative real axis of the s-plane. 
(b) Poles and zeros interlace. 
(c) The lowest critical frequency is a pole which may be located at s = 0. 
(d) The highest critical frequency is a zero which may be at infinity. 
(e) 7(0) > 7(QO). 

APPENDIX B 
Positive Meal Functions [14] 

A function F(s), s being a complex variable, is said to be a positive real function if it satisfies 
the following two conditions: 

ReF(s)>0 for Res>0 
and 

F(s) is real when s is real, 

where Re T denotes the real part of T. 

A positive real function F(s) can always be realized as the driving point impedance or admit-
tance of a one-port RLC network, that is, a two-terminal network consisting only of resistors, 
inductors, and capacitors. Conversely, the driving point impedance and admittance functions of 
an RLC one-port network are always positive real 
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0* INTRODUCTION 

In this paper, we consider fields determined by the /1th roots of the zeros a and fi of the 
polynomial x2 - x - 1 ; a is the positive zero. The tools for studying these fields will include the 
Fibonacci and Lucas polynomials. Generalized versions of Fibonacci and Lucas polynomials have 
been studied in [1], [2], [3], [4], [5], [6], [7], and [12], among others. For the most part, these 
generalizations consist of considering roots of more general quadratic equations that also satisfy 
Binet identities. However, it is just the simplest version of these polynomials that we shall need 
for the results in this paper. (For a far-reaching generalization of all of these generalizations in the 
context of multiplicative arithmetic functions, see [9].) These polynomials determine many of the 
properties of the root fields; e.g., they provide the defining polynomials for those fields; they yield 
a collection of algebraic integers which behave like the Fibonacci numbers and the Lucas numbers 
in the ring of rational integers; they determine the discriminants of these fields; and, they provide a 
means of embedding which gives the lattice structure of the fields. 

In Part 1, we list properties of these polynomials which we shall need later. 
In Part 2, the (odd) m®1 roots of a and ft are discussed; the constant am which is, essentially, 

the sum of two conjugate roots, is introduced. One of two important theorems here is Theorem 
2.1, which tells us that the m^ Lucas polynomial evaluated at am is, up to sign, equal to 1. This 
will enable us to define a new set of polynomials (by adding a constant to the Lucas polynomial) 
which, in Part 4, will turn out to be irreducible over the rationals and, hence, will provide us with 
some useful extension fields (Theorem 4.2). The other important theorem in Part 2 is Theorem 
2.2, which tells us that the w* Lucas polynomial evaluated at amn is an. This theorem will lead to 
an embedding theorem for our fields in Part 4 (Lemma 4.2.2). 

In Part 3, we introduce numbers in our extension fields generalizing the Fibonacci numbers, 
which are algebraic integers in these fields and which turn out to have a peculiar quasi-periodic 
behavior (Theorem 3.4). (In a sequel to [9], this behavior will be seen to be one typically 
associated with arithmetic functions.) 

In Part 4, the lattice structure of this family of fields is investigated (Lemma 4.2.2, Corollary 
4.2.3, Theorem 4.3). Theorem 4.4 tells us that it is the Fibonacci polynomials which provide us 
with the discriminants of our fields. 

The remainder of the paper is occupied with some calculations using a well-known matrix 
representation of the fields, illustrating computations which produce units and primes in these 
fields. 

The author is indebted to the referee for many helpful suggestions for which he is grateful; 
especially, he would like to thank the referee for calling to his' attention the rich theory of 
quadratic fields of' Richaud-Degert type and of R. A. Mollin's book [10]. The fields studied here 
are extensions of a field of this type. 
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1. THE POLYNOMIALS Un(t) AND Vn(t) 

Here we list some of the well-known properties of the Fibonacci and Lucas polynomials, 
U„(t) and Vn(t), that we shall need to use in this paper (see, e.g., [3] and [4]). In [3], [2], and [5], 
these polynomials were defined explicitly by formulas equivalent to 

Um(t) = ±Pk(my»-2k-\ />t(w) = ( w - * - 1 J > * ^ | , (1.1) 

£rQm-2k [2, m even. 

u0(t) = o,ul(t) = i,v0(t) = 2,vl(t) = t. 
Equivalently, we could have defined Un{i) and V„(t) by letting A(t) and B{t) be the roots of 

the polynomial p(x) = x2-tx-l, and setting 

u(t)=A"(t)-B"(t) 
U"K) A(t)-B(t) ' ( } 

Vn(t) = A"(t)+B"(t), (1.4) 

i.e., the well-known Binet formulas (e.g., see [3] or [6]). From these formulas, it is easy to see 
that the recursion relation 

^ , (0 = ^(0+1^(0 (1-5) 
is satisfied by the Fibonacci and Lucas polynomials* [3]. In fact, theses identities provide a 
painless path for finding most of the identities involving the two sequences of polynomials. Such 
an identity, which we shall need below, is 

Vm(Vn(t)) = Vmn(tl ([3], 6.2(i)). (1-6) 

It is, however, equally easy to use the recursion (2.5) to prove that 
dldt{Vn{t)) = nUM (M, (2.4)), (1.7) 

which, in turn, gives a short proof using (2.6) of the fact (well known) that Uk divides Uks, with 
the additional feature of displaying the factors explicitly. To wit: 

d/dt[Vm(Vn(t))] = mnUn{t)Um(Vn(t)) = d I dt[Vmn(t)] = mnUmn(t). 
Thus, the other factor is Um(Vn(t)). 

2. THE NUMBERS ym, 8m, a„ 

Define ym and 8m up to roots of unity by 

* The first six polynomials in these two sequences are: 
U0(t) = 0 U2(t) = t U4(t) = t3 + 2t V2(t) = t2a = 2 V0(t) = 2 V4(t) = t4+4t2+2 
[7,(0 = 1 t/3(0 = f2+l £/5(0=*4+3'2+l V{(t) = t V3(t) = t3 + 3t V5(t) = t5+5t3+5t 
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Since (ymSm)m = a/3 = - 1 , we have that \ymSm - G)m, | where o)m is a primitive 2m-th root of unity. 
When m is odd, then at least one of the ym and Sm is real. Define am by \Ym + Sm

 = a
m

a)li-\ Note 
that ax = l. Clearly, yx - a = A(ax) and SX = J3 = B(a^. It follows that 

and 

So 

A(amm^2) = ®^/2A(amX B(am®^) = a>^B{aml 

Jm+l)/2( 

Sm = mm 

Thus, 

= Vm(am) = rZ + SZ = a + fi = l, 

and so 

Theorem 2.1: (-l)(m+1)/2Fm(aJ-l = 0, m odd. • 

Hence, am is a root of the polynomial DJt) = VJf) - {-\fm^12. 

Proposition 2.1.1: a = ±(l + R(am))Um(am), fi = ±(l-R(am))Um(am), R(t) = (t2 + 4)1'2, 

is implied by the next proposition. 

Proposition 2.1.2: Am(am) = a, Bm(am) = B. 

Proposition 2.1.3: Am(amn) = r„, Bm{amn) = S„. 

Proof: Am"(amn) = a"n = r"n. 

In particular, 

Theorem 2.2: Vm{amn) = an9 up to the roots of unity. 

Proof: Am\amn) + Bmn{amn) = Vm{amn) = yn + Sn=an (up to roots of unity). 

3. GENERALIZED FIBONACCI AND LUCAS NUMBERS 

The algebraic numbers Uk(am) can be thought of as a generalization of the Fibonacci num-
bers. However, we need an unambiguous notation for them, so remembering that m is odd in this 
paper, wre pick a fixed real am for each natural number m (there is a unique choice), and define 

K,k=^m(Uk(am)\ 
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where 

Thus, 
a 

kAk(am)-Bk{am) 
*">'« lm A(am)-B(aJ 

are the generalized Fibonacci numbers (GFN); they are located "between" the number fields 
Q(am,a)m) and Qiy^co^. However, first observe that Alk = Fk, i.e., the Amk are generaliza-
tions of Fibonacci numbers. From (1.5), we see that, for each choice of m, we have a family of 
GFNs which belong to the field Q(am) and which have a functional equation generalizing that in 
Q(ai)= Q> namely, one which generalizes the usual functional equation for the Fibonacci 
numbers. Moreover, we have the following interesting quasi-periodic behavior of these numbers, 
which is manifest only when m>\* 

Theorem3.4: Let Uhj{k) = Umk+J(am),0<j<m,m odd, then 

U^^F^UjiaJ + i-iyF.U^iaJ mod/?„(/), 

Fn9 the /2th Fibonacci number, and Dm is as defined in Theorem 2.1. 

Proof: Assume inductively that the theorem holds for k < n and for j - 1 > I. Assume that 
U^jik-l) satisfies the appropriate relation for y = 0,...,/w-l. We need to compute Um0(k), 
but 

Um9o(k) = Umk(t) = tUrt-iW + Urt-iif) 

=t{Fkum.x+(-ir-1F,_1t/1]+F,^-2+(-ir2/i-A] 
= Fk[tU^ +U^ + FU<rVrltUx +(-ir2C/2] 
= FkUm + Fk_l[tUl-U2] = FkUm9 

since U^t) = 1, Ut(t) = t. But, if the theorem is correct, UmQ(k) = Fk+lU0 + (-l)°FkUm = FkUm. 
Thus, we have shown what is required. Next, we must.show that the result holds for a fixed k and 
j = 1,2,..., iw-1. Notice that the theorem is correct for j = 0,..., m-1, k - 0, and for j = 09k = l. 
Suppose that it holds for k < n andj = 0,..., m -1 and for k = n and j = 0. We want to show that 
it holds for k = n, j = 1,..., m-1. So consider UmJ(k), k = n,l<j<m~l. 

UmJ(k) =tUmJ^(k) + UmJ_2(k) 

= ^+lS>^-l + ̂ y-2] + ( - l y ^ P ^ y + l ~ ^ - ; + 2 ] 
= ̂ ^ / + i - ^ m U ^ - U^j+t] 
= FMUj + ( - l y ^ F J p t ^ ^ - (rf/m„/+1 + U^j)] 
= Fk+]UJH~iyFkUm_r D 

* We should point out that this is a special case of a phenomenon which always occurs in the context of a certain 
class of multiplicative arithmetic functions' (see [9]). 
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The numbers for m = 3 are: 

UX3k = -Fk-i®3(l + ®3y, ^3,3^1 = ̂ - ^ - 1 ^ 3 ; UX3k+2=(Fka3+Fk_l)a)l 

4, THE ALGEBRAIC NUMBER FIELDS Q(yJ, Q{8m\ Q(am) 

We assume that m is odd and note that 

Proposition 4.1: ctp,yp,Sp,mp are units in the ring of integers of Q{ap). 

Proof: t2p - tp -1 is the minimum polynomial of Q(yp). Both yp and Sp satisfy this poly-
nomial Moreover, ap = -mp{yp + SP). Note that a and J3 clearly belong to Q(yp). • 

The most interesting result to come out of the ideas considered in this paper is the way in 
which the polynomials Um and Vm provide the structural framework for the algebraic number 
fields determined by the numbers ym, Sm, am. A first example of this fact is contained in the role 
that the polynomials Dm play. Dm(t) is irreducible over Q for m odd. This can be proved by 
using earlier propositions and Eisenstein's criterion; however, the following proof is instructive. 

Theorem 42: 3% = Q[t] I (Dm(t)) is a field for odd m. 

Proof: Letp be an odd prime. 

Lemma 4.2.1: (a) D (t) is a monic polynomial of degree/? with constant term ±1. 
(b) p divides all interior coefficients of Dp(t). 

Proof of Lemma: (a) follows from (1.5) by induction and definition. For (b), we need to 
know that the "interior" coefficients of D (t) are given by 

^ + D + p t - t ( p - i ) = ( ^ ^ i ) + ( / ' - i - 2 ) 

But this follows easily from (2.1), (2.2), and (2.5). Then it is straightforward to show that 

Since/? is prime, hence is relatively prime to the denominator, p divides Pk(p +1) + Pjc-iiP ~ 1) • D 

Thus, by a standard application of Eisenstein's lemma, Dp(t) is irreducible over Q9 so the 
theorem holds for the case m = p.pa, prime. Thus, 9P is a field. We want to show that 9np is a 
field for any odd prime p and any natural number n. First, we prove a lemma which is of interest 
in its own right. 
Lemma 4.2.2 (The Embedding Lemma): There is a natural embedding of the ring S^-i in the 
ring 3 ^ . 

Proof: It is convenient first to note that the ring 9m can be represented by elements of the 
form E^olw/aL mi G Q>taken m o d Ai(0- N o w w e consider (D k-\ °Vp)(a h). 
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(D^ o ^ X v ) = f>-,(Fp(flflO) + (-l)(pfl ) /2 =Vpkapk + (-l)^+1>/2 = Dpk(apk) = 0. 

Thus, Vp{apk)~ apk_x. Now, Vp{apk) e 9pk. Since apk e 9pk, so does a copy of apk-x. Since this 
element satisfies Dpk and 9y-i consists of elements of the form X/L0

 mia
pk-\, so we have an 

embedding of 9̂ &-i in 9^* determined by the polynomials Vk. So assume inductively that 9̂& is a 
field for * < n9 and let / be maximal ideal in the Noetherian ring 9^*. 9pkll is a field, one which 
contains a copy of S^-i, so the degree of 9y/7 (over Q) is >pP~~l\ Now a * is a unit, so 
a^ £ I; thus, apk +1 G Dpk II and is not trivial. And so the degree of Dpk 11 > pk~l, and thus 
the degree of Dpk 11 = pk. Therefore, the minimum polynomial of 9pkll is a multiple of Dpk, 
hence is equal to Dpk, and so / = 0 , and 3 ^ is a field. • 

Thus, we have proved the theorem for m an odd prime power. This argument applied to 
^mi^p^mpX (m> P) - 1> extends the result to $Fmp, (m, p) = l. Thus, 9^ is a field for all odd n. 

Corollary 4.2.3: Ifm divides n, m and n both odd, then 9m is (Isomorphic to) a subfield of 9^ 
under the embedding determined by (- l) ( w~1 ) / 2^(^(^)) = am, n = tnk. D 

Since Ym = co^,2A(am\ 8m = co^/2B(am), it follows that 9m < Q(am, a>m) < Q{ym9 a>m). 
The last two fields are splitting fields. We thus have the following degree relations. 

Theorem 4.3: [Q(am):Q] = [9m:Q\ = m, [Q(am,a)m):9m]= #m)9 [Q(rm,comyQ(am,(Dm)]= 2, 
where (/> is the Euler totient function. 

The following theorem is another illustration of how the polynomials Um and Vm are involved 
in the structure of the fields 9m. 

Theorem 4.4: A[l, am,..., < _ 1 ] = {-\)m{m-l)l2mmNUm{am\ is the norm of the algebraic number 
Um(am). 

Proof: In any case, since £(ym) = ^{Dm\ 

A[l, amy..., a-"1] = ( - i ) - ( - i ) / ^ ^ y j ( a j ? 

by(1.7), d/dtVm=mUm and N(mUm(aJ) = m™N(Um(am)). D 

Example: It follows from Theorem 4.4 that, when m = 3, A[l, a3, af ] = - 3 3 • 5. This can be com-
puted directly by using the representation of 9S determined by the minimal polynomial. Thus, 

0 
0 
1 

1 0 
0 1 

-3 0 
and so l + a | = 

1 0 
1 -2 
0 1 

NUVW 

from which it follows that 
j i \ 

= N(3F3(a3)) = 33 det(l + A2) = 33.5. 

So A = - 3 3 • 5 as promised by the theorem. We can write A[l • am,..., a%~1] explicitly. 

Theorem4.5: A[ham,...,a£-1] = (-l)^m-l)/2mm'5n, m = 2n + l. 
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Proof: By Theorem 4.4, we need only compute N(Um(am)) = 5n. To do this, let Al9...9An 
be the m distinct conjugates of am with am = Xx. Then 

Nnm(am) = I I — *' v *' 
k=i KVAk) 
m vm __Qm m m cm 

l\ wk) L\rm-8ik)' 
where y^ and <5(jk) are the conjugates of ym and <5m. 

fc=l X(fc) ~~ <?(*) i=i P(Jt) _ ^(*) 

i i 

n<rw-*«)=nr<*)-n<yw^ 
1 S>1 

Now, 

Since Y{k) satisfies xm-a = 0 and 8^ satisfies xm-j3 = 0, Hy^ = a and 118^=0, so 
YIY(V)-T18Q.} = a-0 = sfS. The remaining products are symmetric polynomials involving at 
least two symbols, but not all, so, from the equation satisfied by the y 's and 8% are 0. • 

The significance of the algebraic numbers am is now clear. To understand the fields Q(am) 
and Q(8m) and their normal extensions, it is sufficient to understand the fields 9^ (and their 
normal extensions), for Q(ym), for example, is an easily understood quadratic extension of ?Fm . 
The role that the polynomial sequences Um and Vm play in determining the structure in these fields 
is also clear, and surprising. The GFNs are integers in these fields, since am and a>m are. So we 
are left with the standard questions: the class numbers, the maximal orders, units, primes, etc., of 
these fields (see, e.g., [11]). It is tempting to believe that, linked as these nonquadratic extensions 
are to a "base" field which is of the Richaud-Degert (R-D) type, some adaptation of the elegant 
methods used for R-D type fields might be found. Of course, the periodic nature of continued 
fraction expansions of quadratic irrationalities is an intriguing obstacle in the cases of degree 
greater than 2. 

Some direct computations for small m are possible. We illustrate for m = 3. (When m = 1, 
the field is, of course, just Q(-J5)). Therefore, we should start at m = 3. (The theory for m even 
has much in common with the case of m odd, but also some significant differences that occur 
because the minimal polynomials need not have real roots. Moreover, the sequences {Um} and 
{Vm} are markedly different for m even and for m odd. We postpone this discussion.) 

A Computation for m = 3i Using the faithful representation p for a3 as in the illustration of 
Theorem 4.4, 

|0 1 0| 
P(a3) = 

0 
0 
1 

1 0 
0 1 

-3 0 
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kQ k2 

1 0 2 
k2 k± 

K 
K2 jfCi 

k0 — 3k2 

and letting 

p(k0 + k{a3 + k2a\) = &07 + kxM + &2M = 

Then, 

ILkfts G Z(am) is an algebraic integer iff M(£0, kl9 k2) is an integer matrix; 
TLkfts G Z(am) is a unit iff M(&0, &l3 k2) = #(Z*f-o£) = ±1. 
Z Va G ^(am) i s a P r i m e i f det M(k0, kl9 k2) is a rational prime (e.g., 1 -a is a prime in §F3 ). 

We know that either a prime ideal in Z is a prime ideal in SF3 or factors into two prime ideals. We 
can determine this for each prime ideal (p) by checking to see if t3 +1 +1 is irreducible mod p. 
For example, 2 is a prime in SF3 , while 3 and 5 factor, 7 is prime. Since A3(S£3) = - 3 3 5, 3 and 5 
ramify; 3 ramifies totally, <3> = (I-a)3. The ramification index is 3, and the relative degree is 1. 
For 5, (5) = (4 + a2)( l+a2) with ramification numbers el-l and e2-2 and relative degrees 
fi = l and f2 = l' Using Minkowski's theorem, we can compute 

4 3!1 A / r 7 r x ! l / 2 ^ 3 ) - ^ ^ | A ( ^ 3 ) | 1 / 2 < 2 , 

and so the class number of 3^ is 1. 
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1. INTRODUCTION AND STATEMENT OF RESULTS 

One of the most Important applications of continued fractions deals with the approximation 
of real numbers by rationals. The famous approximation theorem of A. Hurwitz [7] states that for 
every real irrational number £ there are infinitely many integers u and v > 0 such that 

. 1 
Sv ,2 • 

The constant 1 / V5 is well known to- be best-possible in general 
S. Hartman [6] was the first to introduce congruence conditions on u and v; the best approxi-

mation result of this type up until now is due to S. Uchiyama [12]: 

For any irrational number £, any s>\ and integers a and b, there are infinitely 
many integers u and v ̂  0 such that 

4v2 

and 

(i . i) 

(1.2) u = a mod s, v = b mod s, 

provided that a and b are not both divisible by s. 

A wTeaker theorem was proved by J. F. Koksma [9] in 1951. Recently, the author [2] has 
shown that the constant 1/4 in (1.1) is best-possible. 

But one expects that weaker arithmetical conditions in (1.2) on numerators and denominators 
will imply smaller constants in (1.1). A result of this kind is proved in [3]: 

Let 0 < s < 1, and let/? be a prime with 

P> P 
h denotes any integer that is not divisible by p. Then, for any real irrational number £, 
there are infinitely many integers u and v > 0 satisfying 

. (\ + e)pm 

V5v2 (1.3) 

and 
u = hv=£Q mod p. (1.4) 
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In this paper, we shall improve this result as far as possible, where additionally coprime inte-
gers u and v are considered. 

Theorem 1.1: Let s denote any positive integer having an odd prime divisor/? such that pa \ s for 
some positive integer a. Moreover, let h be any integer. Then, for every real irrational number 
^, there are infinitely many integers u and v > 0 satisfying 

Sv2 

and 

u == hv mod s, (u, v) < — . 
Pa 

In general, the constant 1 / 4s is best-possible. 

Corollary LI: Let $ = pa denote some prime power with an odd prime/?. Moreover, let h be 
any integer. Then, for every real irrational number £, there are infinitely many coprime integers 
u and v > 0 satisfying 

(1.5) 
Sv2 

and 
u = hv mod s. (1.6) 

By Theorem 3.2 in [1] with 8- 1/10 and £= 12 + V145, all fractions ulv with odd coprime 
integers u and v > 0 satisfy 

2 
Sv2 

Hence, Corollary 1.1 does not hold in the case s = 2 and h-l. Also, the bound on the right of 
(1.5) must be enlarged in the case of moduli s having more than one prime divisor. 

Theorem 1.2: Let s be some positive integer having at least two prime divisors. Moreover, h 
denotes any integer. Then there is a real quadratic irrational number £ with the following prop-
erty. For every pair u and v of coprime integers with |v| > 1 and u = hv mod $, the inequality 

2vl 

holds. 
It is suggested by the above-mentioned theorems that approximation results with an 

additional condition like (1.6) depend on arithmetic properties of the modulus s. A general result 
of this kind is expressed in our final Theorem 1.3. For an integer s > 1, the number 

p\s 

is the square-free kernel of s9 where p runs through the prime divisors of s. In what follows, p0 is 
the smallest prime divisor of s, and 
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Theorem 13: For arbitrary integers s>l and h and for every real irrational number £, there are 
infinitely many coprime integers u and v > 0 satisfying 

b v 
S 

and 
u = hv mod s. 

For further improvements of the bound on the right-hand side of (1.5) in Corollary 1.1 for all 
numbers £ from a certain set of measure 1, the author [4] applies the mean value theorem of 
Gauss-Kusmin-Levy [10] from the metric theory of continued fractions. This set depends on p. 
To prove our theorems, we shall need some well-known elementary facts from the theoiy of con-
tinued fractions (see [11] or [5]). By 

1 £; = [a0;aha2,...] = a0+- 1 
1 a2 + • • • 

we denote the continued fraction expansion of a real number £. 

2. PROOFS OF THEOREMS 1.1 AN© 1.2 

Proof of Theorem 1.1: The proof of Theorem 1.1 is based on the following proposition. 

Proposition 2.1: Let p > 2 b e a prime number. Among any six consecutive convergents 
Pn+i I ̂ n+t (n - ®> ' ~ ®> ^ ^, 3,4, 5) of a real irrational number 77 there is at least one fraction, say 
pvl qv, such that 

Pv 

9v Sq\ 
(2.1) 

holds and qv is not divisible by p. 

Proof: We denote the set effractions from "fj-,...,-f|~ satisfying (2.1) by sln. From a 
famous theorem of A. Hurwitz which asserts that at least one of three consecutive convergents 
satisfies (2.1) (see, e.g., Satz 15, ch. 2 in [11]), we know that 2 < \sin\ < 6. In what follows, we 
consider several cases according to the distribution of fractions from $l„. 

Case L There is an integer m such that ^- , ~^- ^An. 
It is a well-known fact that qm and qm+l represent coprime integers and, therefore, the prime 

number/? cannot divide both of the numbers qm and qmH. 

Case 2, There are no consecutive convergents of 77 in $l„. 

Case 2. L It is •§=-, ^—^ e si„ for some integer m. 

Let us assume that/? divides both qm and qm+2. Then the recurrence formula of the q'$ yields 
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<*m*Am*\ = ?m+2 ~ <Jm = 0 m o d p . 

From (qm, qm+l) = 1, we know that qm+l is not divisible by p. Therefore, p divides aw+2, and we 
have am¥2 > p > V5. It follows that 

n- Pm+l 

' ^ + 2 ^ + i Vs$ ,2
 : 

m+1 

hence ~^- ^sin. But we know that —- e,sz£w from the hypothesis of Case 2.1, which is incompat-
ible with the hypothesis of Case 2. We have proved that p\qm and p\qm+2 cannot hold simul-
taneously. 

Case 2.2. It is —^, | ^ - e ̂  for some integer m. 

As in the preceding case, we assume that/? divides both of the denominators qm and^ + 3 . 
We have 

Qm+3 = am+3^lm+2 + {7ro+l> 

*Im+2 ~ am+2(Jm+l+9my 

for some positive integers am+2,am+3 from the continued fraction expansion of r/. Putting the 
second equation into the first one, we obtain the identity 

^m+3~am+3^m ~ \am+2am+3 + vftw+l* 

Our assumption on p implies that the integer (am+2am+3
+ OflWn *s divisible by p. Since qm and 

qm+l are coprime, p | ̂ /M+1 is impossible. It follows that p divides am+2am+3 +1 anc^ consequently, 
we have am+2am+3 +1 > /? > 3. Hence, it is impossible to have am+2 - am+3 = 1. We discuss the 
remaining cases. 

Case 2.2. J. am+2 > 3 or am+3 > 3. 
From 

n-
weget 

Pm Pm+l g oj 
9m 9m+l 

«„+l?n 
(»>1) , 

(if am+2 > 3), 

& ± i 5 ^ ± i e ^ n (ifaro+3>3). 

Again there is a contradiction to the hypothesis of Case 2. 
Case 2.2. 
We have 
Case 2.2.2. am+2=am+3 = 2. 

^m+2:=[2;2,a/w+4,aw+5,...]>2 + 1 = 7 
2 + 1 3: 

and finally, it follows that 

fj- Pm+l 

lm+l ®m+2<l2m+l 1(ll+l J*lLl ' 
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Hence, it is 

9m 9m+l 

Case 2.2.3. am+2 = 2, am+3 = 1. 
a contradiction, 

Cas 
It is 

and 

Again we get 

Case 2.2.4. am+2 = 1, am+3 = 2. 

®m+2:=i2>l>am+4>am+5>-]>2 + 

1 + 1 2 

Pm+1 

9m+l 

2 1 
<___—<_ 5?i+i ^ 9 i m+l 

9m 9m+l 

First, note that am+3 : = [2; am+4, am+5,....] > 2. We get 

7]- Pm+2 

9m+2 

1 
9m+2(am+3?m+2 + 9m+l) ^2 [ 2 + ^ m + 1 ] 

V 9m+2 / 
1 

1 < 
tf m+2 M2+fc«w..,«j 

by [1; aw+1,..., a j < 2. The contradiction arises from 

Pm+2 Pm+3 ^ ^ 

9m+2 9m+3 

Hence, it is proved that p \ qm and p | ̂ m+3 cannot ho!d simultaneously. Since for every integer 
m > 0 there is at least one fraction among the convergents | ^ - , ~^-, and | ^ - satisfying (2.1) by 
Hurwitz's theorem, we have finished the proof of Proposition 2.1. 

By the hypotheses of Theorem 1.1 on £, h, and s, we may choose r/:=(%-h)/s. From 
Proposition 2.1, we know that there are infinitely many convergents pm I qm of rj with 

izA„FzL 
S 9m 

1 
V§£' 

where /? and ^w are coprime integers. Put u: = %m + spm and v: = qm. Then, it is w = /iv mod s 
and 

£ - 1 
V5v2 

To estimate the greatest common divisor of u and v, we conclude from (pm9 qm) = 1, p|fm, and 
p^l^ that 
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(spm,qm) = (s,qj<-

By (u, v) = (hqm+$pm, qm) = (spm, qm)9 the first assertion of Theorem 1.1 follows. 
The corresponding assertion of Corollary 1.1 follows immediately. But it remains to show 

that Theorem 1.1 cannot be improved in general. For this purpose, let $> 0 and h be integers. 
Put £:=/f + s(l + V5)/2. In what follows, we shall show that for every s>0 there are at most 
finitely many fractions u I v, where v > 0, 

u = hv mods (2.2) 
and 

* V V5v2 ' 
(2.3) 

There is nothing to prove in the case in which no fractions ulv satisfy (2.2) and (2.3) simul-
taneously. Otherwise, we conclude from (2.2) that u = hv+w$ holds for a certain integer w. 
Then we have, by (2.3), 

V5v2 >S 

which yields 
1 + V5 

1 + V5 w 
2 v 

1 \-e 
rvsv2-

(2.4) 

It is a well-known fact from the theory of continued fractions that there are at most finitely many 
solutions w/v in (2.4) (see, e.g., Th. 194 in [5]). One knows that every solution of (2.4) satisfies 

— = - ^ for some integer /i, and v2 < —. 

Our assertion follows from the inequality \v%-u\ < s/S, which has at most finitely many solu-
tions for every integer v, 

Proof of Theorem 1.2: Let p and q be different primes with pq\s. Moreover, we define 
a sequence (an)n>o of nonnegative integers as follows. Put a0 := 0 and ax := p. Let a2 be the 
unique solution of the congruence 

a2p = -l mod g, (2.5) 

where 1 < a2 < q. Since (/?, q) = 1, solutions of (2.5) do exist. Finally, put av := p for v =3, 5, 7, 
... and av := q for v =4, 6, 8, ... . Then we have q0 = 1, qx = p, q2 = a2p + 1 = 0 mod q. Applying 
mathematical induction, we conclude that 

[0 mod p, if v = 1 mod 2 
(2.6) qv = < ~ (v > 1). 

[0 mod q, if v = 0 mod 2 
Obviously, r/: = [a0; a1? a2,...] and ^: = h + s?j represent real quadratic irrational numbers. 

Now we assume that integers u and v do exist such that \v\>l9u = hv mod s, and 

u\ 
v 2v ,2 ' 
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Hence, there is an integer w such that u - hv + ws and 

n- w 
2v ,2 ' 

It follows from the elementary theory of continued fractions (e.g., see Th. 184 in [5]) that the 
fraction w/v satisfies 

v % 
(2.7) 

for some convergent pnlqn of 77. One may exclude the case where n = 0, since otherwise it fol-
lows from (2.7) and q0 = l that v\w. The integer w was defined by ws = u-hv, hence v divides 
u. This is a contradiction to the hypothesis on it and v, because we have deduced from n - 0 that 
(w,v)= |v| >1 . Therefore, we may assume n>0 in (2.7). By (2.6), either/? or q divides qn. 
Since pn and qn are coprime, (2.7) implies that v is divisible by the same primes that also divide 
qn. From pq | s and u = hv mod s, it follows that (u, v) > 1, a contradiction. It is proved that the 
integers 11 and v cannot exist, and the proof of Theorem 1.2 is complete. 

3e PROOF OF THEOREM 1.3 

Let a and b be integers with a > 0, h * 0. 77 denotes any real irrational number. In what 
follows, we consider two consecutive convergents -^J- and -^ of r/. For every integer n > 1 
satisfying aqn+bqn_l ^ 0 , we define 

ft 
*": 1 + K, + 1 -a */*„+*' (3.1) 

where an+l :=[a„+1;aw+2,aw+3,...] and /?„ \=laman^an_^...,a^. From aw+1 £<Q, we have 
fta„+1 - a ^ 0; it follows from 

Pn = <lr, 
<ln-\ 

(«>1) 

and aqn + bqn_x * 0 that a/?„ + 6 * 0 . 

Proposition 3.1: Let n > 1 and y := sign(ft/l„). Then we have 

f]-
apn+t>P„-i 
Wn+bqn-i 

yab 
K(a(ln+b<ln-l) 

This is Proposition 2.1 in [2] apart from different notations concerning an, /?„, and rj. 

At the beginning of the proof of Theorem 1.3, we apply Uchiyama's result mentioned in the 
Introduction. By (1.1) and (1.2), there are infinitely many integers u0 and v0 * 0 such that 

£_!5L 
4v0

2 

and 
UQ = h mod s, v0 = l mod s. 

(3.2) 

(3.3) 
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Let d := (% v0) > 0. Every common prime divisor p of d and s is a divisor of v0, too. This is 
impossible, because v0 = 1 mod s. Hence, d and s are coprime, and therefore an integer d0 exists 
such that 

d-dQ = l mods. (3.4) 

Moreover, there are coprime integers u and v * 0 satisfying #0 = du and v0 = <i»>. Therefore, 
we have d0UQ = ddQu or u = M0 mod 5 by (3.3) and (3.4). Similarly, we conclude v = dQ mod s. 
Collecting together, we have proved the existence of infinitely many coprime integers u and v & 0 
with u = hv mod s and, by (3.2), 

s-- < —=- < —=-. 4v2 4v2 

If it is v < 0, this result is also true for —u and -v, and the assertion of the theorem is proved for 
S = s2/4. 

Now let TJ:= £ - = [a0;aj,a2,...], and let j - (» > 0) denote the convergents of rj. In what 
follows, we assume n > 1. 

Caw 7. (q„-i,s) = l. 
Put P„ := /?„_!, Q„ := 9„_!. Then we have 

P, 
(Pn,Qn) = \ (Qn,s) = \ 7" a a2 i2 ' (3.5) 

Case 2. (qn_x, s) > 1 and S(s) \qn_v 

Let 
a:= Y\p, Pn:=apn+pn^ Qn: = aqn+qn_v 

p\s 
Pkn-\ 

From the hypothesis of Case 2, we conclude that 
a>l 

By straightforward computations, one gets qnPn-pnQn - (~*)w> which implies that 

(^,a)=i-

(3.6) 

(3.7) 

Let/? denote any prime divisor of s. Ifp divides qn_x, we conclude that a is not divisible by p. 
Moreover, p does not divide g„ because qn and g ^ are coprime. Finally, we get p\Qn. 

Now, let/? and q ^ be coprime. Then we have p\a, and again/? does not divide Qn. Since 
p is an arbitrary prime divisor of s, we have proved that 

( & , * ) = !• (3-8) 
From the hypothesis (#„_,, ,s) > 1, we know that a certain common prime divisor of q„_1 and s 
exists. This and (3.6) imply that 

\<a<—^-J-, 
Po 

(3.9) 

where p0 denotes the smallest prime divisor of s. We apply Proposition 3.1 with h = l: 
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a 
Qn\ \K\Qn |2 ' (3.10) 

where 
1 

2+aPn- . ««+l 

i + a^+A 

(3.11) 

\l~Pn\ 

We are looking for a suitable upper bound of \Xn\ *. For this purpose, we separate the argu-
ments into three cases. 

Case 2.1. 2+af)n- a. n+l <0. 

For n > 1, it is clear that an+l > 1 and fin>l. It follows from (3.11) that 

\Anri=i-Pn<i+ a n+\ 
a(l + a„+1p„) 

< 1 + a*+i < l + l < 2 . 
«(1 + «„+i) a 

(3.12) 

a Case 2.2. 0 < 2+a^„ - •=** < 1 + an+l($n. 
a 

Then we have 0 < pn < 1, and consequently 

IV1 si. (3.13) 

Case 2.3. 2+a0„-

We conclude that 

a «±L > ! + «„+lAr 

1 "' " » l + a„ + A !+/?„ 1 + 1 1+fl, 
(3.14) 

We know that a > 2, from (3.6). Collecting together from (3.12) through (3.14) we have proved 
that | A J - 1 < a holds for every integer n > 1. Hence, (3.10) yields 

"a 
a (3.15) 

Case 3. S(s)\q„_v 

Since qn_x and qn are coprime, it follows from the hypothesis that (qn, s) = l. Put Pn: = pn 
and Q, := qn. Obviously, the assertions for Pn and Q, from (3.5) hold. 

We collect together the results from (3.5), (3.7), (3.8), and (3.15): For a certain sequence of 
increasing integers n> 1, we get a sequence of rationals (PvIQv)v>i with coprime integers Pv and 
&, such that (gv,s) = l ( v £ l ) , 

and 
4-h Pv < ^ (v , l ) . 
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Let u: = hQv + sPv, v\-Qv. Then, by the upper bound for a from (3.9), we have 

' v 
c ^2(s) 

2 2 ' P> 
where u = hv mod s. We conclude from (gv, sPv) = 1 that f/ and v are coprime. Since Qv can be 
chosen as large as possible, the assertion of Theorem 1.3 is also proved for S - S>S2(S)-PQ2. 

4. CONCLUDING REMARK 

Using the well-known continued fraction expansion of Euler's number e, the author obtained the 
following result. 

Theorem: For every integer s> 2 there are infinitely many fractions PIQ with coprime integers 
P,Q>0 satisfying P = Qs 1 modsand Q-\Qe-P\ = o(l) for Q->oo. 
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In [2], Cooper and Kennedy considered the following question: If {[/„} is a sequence satisfy-
ing a third-order linear recurrence, what is the degree of the recurrence satisfied by the sequence 
{(£4)2}? They gave the answer as 6. They then asked if there is a similar result for the sequence 
{(Unf), tossing this question out as a research problem. 

In [4], Prodinger answered this latter question in the affirmative, along with the more gen-
eral question dealing with linear recurrences of any order and arbitrary powers of the original 
sequence. In the case of the familiar Fibonacci (or Lucas) sequence (where the original sequence 
satisfies a second-order linear recurrence), Prodinger displayed the recurrences satisfied by 
{{Fn)k} (or {(Ln)k}) for # = 1,2,3,4,5,6, showing that such recurrences are all linear and of 
order (k +1). As Cooper and Kennedy had observed in [2], these latter recurrences had been 
obtained by D. Jarden [3] and are special cases of the following formula: 

k+i 
Y,(-l)jV+l)/2[k +1, JUK-jf = 0, k = l,2,...;n any integer. (1) 
y=o 

In this formula, the quantities [k, j]F are the Fihonomial coefficients defined by: 

[k,j]F = [k\]F/{[j\U(k-j)\]F}, 

where 0<j<k, with [m\]F = FlF2F3...Fnn m>l, and [0!]F = l. A table of Fibonomial coeffi-
cients is provided in Brother Alfred Brousseaufs compendium [1]. The formula in (1) is a special 
case of a more general formula (omitted here) due to Jarden and given in [3], involving certain 
sequences satisfying a second-order linear recurrence. 

It should be added that although Prodinger demonstrated the existence of the order of certain 
linear recurrences in more general cases than was explored by Cooper and Kennedy, he did not 
actually derive an exact expression for such order. We rectify this omission in this paper, and 
extend such result to an even more general situation. 

It seems natural to ask whether we can find similar results for the most general type of 
sequence satisfying a linear recurrence. It will be noted from recurrence theory that any sequence 
satisfying a linear recurrence possesses a characteristic polynomial of a certain degree with eigen-
values (also known as characteristic roots) of possibly multiple order. In general, such sequence 
is nonlinear. More specifically, we consider a sequence {[/„} of the following known form: 

m 

Un^WitXjr, (2) 
7=1 

where the 0j(n) are given polynomials in n of degree fj (with fj > 0), and the a -'s are distinct 
given constants. Such sequences are denoted as polynomial sequences. Incidentally, we note 
that, from the known expression for U„9 we may immediately write the characteristic polynomial 
Px(z) of the sequence, namely: 
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Pl(z) = fl(z-aJ)
l+r;. (3) 

/=i 

Observe that the sequence {(Un)k} (k = 1,2,3,...) also possesses a characteristic polynomial, 
which we denote by Pk(z). We let i^ represent the degree of Pk(z). By definition of the charac-
teristic polynomial, Pk(z) is the minimum polynomial such that Pk(E)(U^) = 0 (where E is the 
unit shift operator, i.e., Exn = xn+l). In other words, i^ is the order of the recurrence satisfied by 
the &* power of the original sequence. Our task is thus to determine k^ for k = 1,2,3,.... 

Indeed (given (3)), we immediately determine that 
m 

*i = Y(l + rj)- (4) 

We claim the following main result: 

Theorem: 
D /D \(k+m-l\ , (k+m-l\ / c x 

R* = ̂ -™\ k-i J+[ k )• (5) 
In particular, if ri = 0 for j -1,2,..., m, then the characteristic roots are of order one and 

Rx - m; in this case, 

This latter result is clearly a corollary of the Theorem. If the original recurrence has characteristic 
roots of single order, then the characteristic roots of the "power recurrence" are also of single 
order. For the particular case where Rl=m = 2.we obtain Prodinger's implied result: Rk - k +1. 

Proof of (5): We begin by expanding the k^ power of the given expression for Un, using the 
multinomial theorem: 

(u»)k= Z (,- ,•k i ]^i(»)(«i)n}"{^(»)(«2r}'2-{^(»)K)"}'"> 

where S(m, k) = {(/„i2,...,ij:ix +i2 + ••• +im = k, 0<,ij < k, j = 1,2,....m}, and (,„,2,fc..,,J is the 
multinomial coefficient evaluated as k\l {(/1)!(/2)!---0m)!} • Note that 

degree[{^(»)}'- {02(«)}" • • • {0ffl(»)H = 2>/y • 

We see that Pk(z) = ^ . ^ - ( a , ) ' 1 ^ ) ' 2 - (a J - } ^ " - ' - * , where 
m 

E{h,h,...,im) = \ + Y,rjij- (7) 

Therefore, 
^= Z£ft»^-.o- (8) 

It remains to evaluate the last expression. Towards this end, we employ a pair of lemmas. For 
convenience, we let UQn, k) denote 
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\S(m,k)\= £ l , 
S(m, k) 

the cardinality of S(m, k), and 

V(m,k)= £ / , . 
S(m,k) 

It follows (by symmetry) that 

V(m,k)= X J/3 7 = l,2,...,wf. 
S(iw,Jfc) 

Therefore, we see from (7) and (8) that Rk = C/(/w, k)+V(m, k)T!J=lrj, or 

/^=J7(ift,*) + (l^-m)K(m,*). (9) 

Lemma 1: 

U(m,k) = {^+™-iy (10) 

Proof (by induction on m): Let K denote the set of wi > 1 such that (10) is true (k being 
treated as fixed). Since S(l, k) = {k}, we see that t/(l, k) = 1 = ( |); therefore, 1 e JT. Suppose 
1 ,2 , . . . , /WG^. Now S(m + l, k) consists of those vectors in sm+l which have their first compo-
nent equal to ix and the remaining vector (an element of sm) equal to a vector in S(m,k-i^). 
Since ix varies from 0 to k, inclusive, it follows that 

U(m + \k) = ^U(mJ). (11) 

By the inductive hypothesis, 

We see that this result is the statement of (10) for (m +1). Thus, 
l929...,mGK=>l,2,...,m,m + leK. 

Induction completes the proof. • 

Lemma 2: 

V{m,k) = {^+
k
m_-iy (12) 

Proof: Reasoning as in the proof of Lemma 1, 

V(m,k) = fd(k-j)U(m-lJ). 
j=0 

Using the result of Lemma 1 and standard combinatorial manipulations, 

J=0 \ -* / j=m-2 V s j=m-l V / 

Then 
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after simplification. Substituting the results of Lemmas 1 and 2 into (9) yields the Theorem. • 

As an illustration of our formula, consider the original sequence to be {U„} = {n2}. In this 
case, Px(z) = (z-1)3; hence, m = 1, ax = 1, rx - 2, Rt = 3. In other words, Un satisfies the third-
order linear recurrence: Un+3-3Un+2 +3Un+l-Un = 0. Then (Un)k = n2k, for which the charac-
teristic polynomial Pk(z) = (z- l)2k+l, and Rk = 2k + 1. In particular, R2 = 5 * 6. Thus, the result 
of Cooper and Kennedy [2] needs to be modified somewhat. Although it is true that the square of 
a sequence satisfying a third-order linear recurrence satisfies a linear recurrence of order 6, it may 
happen that such square sequence in fact satisfies a linear recurrence of order 5; in such case, its 
characteristic (i.e., minimal) polynomial has degree 5, rather than 6, Similar anomalies occur 
when the original recurrence has characteristic roots or multiplicity greater than one. The main 
theorem given in this paper treats all such cases with full generality, giving the minimum order of 
the appropriate recurrence. It needs to be emphasized, however, that this order is known only if 
the characteristic roots of the original sequence and their multiplicities are known in advance (or, 
equivalently, if the characteristic polynomial is known in advance, along with all of its factors). 
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1. INTRODUCTION 

Consider the partition of the natural number n given by 
n = nl+n2 + ->+ns, (I) 

where s > 1 and nl>n2>'">ns. The Young diagram of this partition consists of the nodes 
(f, j), where l<i<s, and for each fixed i, 1 < j < nt. The rightmost node in row i, namely (i,«,.), 
is called a hand. The lowest node in a given column is called a foot. At least one node, namely 
($, ns) is both a hand and a foot. 

A hand (/,«;•) and a foot (k,j)- may be connected by what is known as a hook as follows. 
Let an arm consist of the nodes (/, m) such that j < m < ni; let a leg consist of the nodes (h, j) 
such that i <h<k. The hook is the union of all nodes in*the arm and leg. The corresponding 
hook number (or hook length) is the number of nodes in the hook, namely ni - j + k - i +1. 

Let the integer t>2. We say that a partition is Pcore if none of the hook numbers are divis-
ible by t. Note that /-core partitions arise in the representation theory of the symmetric group (see 
[5]); such partitions have also been used to provide new proofs of some well-known results of 
Ramianujan (see [1]). Let ct(n) denote the number of/-core partitions of n. It is well known that 

f l if n = jjn(m + l\ 
0 otherwise. 

If n = ~m(m +1), then the unique 2-core partition of n is given by 

W = /II + (WI-1) + ( / I I -2 ) + - - - + 2 + 1. (II) 

Recently, Granville and Ono [2] have shown that if t > 4, then ct(n) > 0 for all n. 
In this note, we completely characterize 3-core partitions. We show that they are linked to 

the quadratic form x2 + 3y2. As a result, we obtain an independent- derivation of Granville and 
Ono's formula for c3(n) (see [2]). Finally, we derive recurrences that permit the evaluation of 
c4(n) ajid c5(n). Note that whereas the formula for c5(n) given by Garvan et al. [1] requires the 
canonical factorization of w +1, our method for computing c5(n) does not. We also tabulate these 
three functions, as well as some related functions, in the ranges 1 < n < 100 and 1 < n < 50. 

2* PRELIMINARIES 

Let the integer n > 0, let the integer t>2,letp denote an odd prime, and let x be a complex 
variable with |x |<l . 
Definition 1: Let ct(n) denote the number of/-core partitions of n. 

Definition 2: Let bt(ri) denote the number of partitions of n such that no part is divisible by t. 
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n* - •*• * T w / x (Legendre symbol if/? fa, Definition 3: Let (a //?) = < 
[0 ifp|a. 

Definition^ Let E(n) = ±n(3n-1). 

Lemma: 

(1) f^cMx" = f\(\-xt"yli\-x"); 
71=0 «=1 

p; X*r(»K=f[0-O/(i-^); 

p; 6 ( («)=/K»)+I(-I)*0<«-«E(*))+P(»-^(-*))) ; 
Ar>l 

ft) f[(\-x»? = ±{-\?{2k + \)x^-
n=l A:=0 

(5) If .71 = 4 (mod 5), then p(n) = 0 (mod 5). 

Remarks: The identities (1) and (2) are well known (see [1], [2], and [7]). Note that (3) follows 
from (2), (4) is due to Jacobi, and (5) is due to Ramanujan. 
Notation: Suppose that a partition of n has r distinct parts and that the summand nt occurs kt 
times, where 1 < i < r. Then we occasionally write 

r 

Theorem 1: Conjugate partitions have the same hook numbers. 
Proof: If n > 1, consider the map that sends each partition of n to its conjugate. Thus, hands 

are interchanged with feet, arms with legs, and hooks with hooks having the same hook numbers. 

\p{n) ifw<f, 
Theorem 2: cf(n) = i 

1/KO-f Xn = t. 
Proof: We define cf(0) = p(0) = 1. If 1 < « < / - 1 , then each hook in a partition of n has 

length at most / - 1 , so every partition of n is /-core, so ct(n) = p{n). Now let n = t. Each parti-
tion t = (t- j)V, where 0 < j < t -1, has a /-hook and thus is not /-core. On the other hand, if the 
least part in a partition of t is strictly between 1 and t, then each hook number is at most / - 1 , so 
the partition is /-core. Therefore, ct(t) = p(t) - 1 . 

% 3-COME PARTITIONS 

By means of Theorems 3 through 8 below, we characterize all 3-core partitions. 

Theorem 3: Each of the following partitions is 3-core: 
(a) n = 2m(2m-2)(2m-4)-'(4)(2); (c) n = m2(m-l)2 . . .2212; 
(b) n = (2m-l)(2m-3)(2m-S)...(3)(l); (d) n = m(m-l)2(m-2)2..,22l2. 
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Proof: Since the partitions in (c) and (d) are the conjugates of those in (a) and (b), it 
suffices, by virtue of Theorem 1, to prove (a) and (b). We first prove (a) by induction on m. The 
statement is true by Theorem 2 when m = l. Let n' = (2m + 2)(2m)(2m - 2).. . (4)(2). If we omit 
the first row or the first two columns in the Young diagram for nf, we obtain the Young diagram 
for n. Therefore, by the induction hypothesis, it suffices to show that all hooks from the new 
hand, namely (1,2m+ 2), to the feet in the last row, namely (/w + 1,1) and (wi + 1,2), have hook 
numbers not divisible by 3. These hook numbers are 3/w + 2 and 3/w + l, respectively, so we are 
done. 

We sketch the proof of (b), which is similar. Again, the statement is true for m-\ by 
Theorem 2. Let n" = (2m + l)(2m -1) . . . (3)(1). We need only note that the hook from the new 
hand, namely (1,2m +1), to the lowest foot, namely (m +1,1), has hook number = 3/w +1. 

Theorem. 4: Let r>\ and m>\. Then each of the following partitions is 3-core: 
(a) n = (m-h2r)(m + 2r-2)...(m + 2)m2(m-l)2 ...2212; 
(b) n = (m-h2r-l)(m + 2r-3)...(m-hl)m2(m~l)2...22l2. 

Proof: For (a), look at the corresponding Young diagram. By Theorem 3, any hook that 
occurs entirely in the first r rows or in the last 2m rows has length not divisible by 3. Therefore, it 
suffices to consider hooks from a hand in the first r rows to a foot in the last 2m rows. Such 
a hand has coordinates (i,m + 2r + 2~2i), where l<i<r; such a foot has coordinates (r + 2j, 
m + \-j), where \<j<m. The corresponding hook has length 3(r-i + j) + 2, so we are done. 

The proof for (b) is similar. A hand from the first r rows has coordinates (/, m + 2r + l-2i), 
where \<i<r. Again, a foot from the last 2m rows has coordinates (r + 2j,m + \-j), where 
1 < j < m, so the corresponding hook has length 3(r - / + j) +1. 

Theorem. 5: Let n-r\ + r^ + • - + ns be a 3-core partition of n, where s>\. Then the following 
must hold: 

(a) ns<2. 
(b) I f«>3, then s> 2. 
(c) rtj -ni+l < 2 for all i such that 1 < i < s-1. 
(d) Each part occurs at most twice. 
(e) If ni+l = nt, then either (i) 1 <i < s - 2 and ni+2 = nj+l-1 or (ii) i = s-l and ns_x = 1. 
(f) If ni+l = nt -1, then 1 < i < s-2 and nj+2 = ni+l. 

Proof: A partition such that any of (a) through (f) fails to hold has a hook of length 3. 

Theorem 6: c3(n) is the number of distinct ways that n can be represented in the form 

n = r(r + m + k) + m(m + l), 

where k = 0 or 1, r>0 ,m>0, and rm>0. For each such representation, the corresponding 
3-core partition of n is given by 

n = (m + 2r + k-l)(m + 2r + k-3) ...(m + k + l)m2(m-T)2 . . .2212. 

Proof: The conclusion follows from Theorems 4 and 5, and from the hypothesis. 
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Remark: Note that m is the number of parts that occur twice, while r is the number of parts that 
occur once. 

Theorem 7: n has a self-conjugate 3-core partition iff there exists r>\ such that n = 3(3r + 2). 
If such a self-conjugate 3-core partition of r exists, then it is unique. 

Proof: If n has a self-conjugate 3-core partition, then the number of parts must equal the 
largest part. Therefore, by Theorem 6, we must have r + 2m = m + 2r + k-l, with k, m, and r as 
in the hypothesis of Theorem 6. Thus, m = r + k-l. If A = 0, then n = r(2r-1) +r(r-1) = 
r(3r - 2); if k = 1, then n = r(2r +1) + r(r +1) = r(3r + 2). Conversely, the partitions 

n = (3r-2)(3r-4)...(r + 2)(r(r-l)2(r-2)2...l2 

a n d „ „ * • „ 
^ = 3r(3r»2). . . (r-f2)r2(r-l)2(r-2)2 . . . l 2 

are 3-core by Theorem 4, and are self-conjugate. Uniqueness follows from the fact that n has at 
most a single representation, n - r(3r ±2). 

Jl(mod2) if/i = r(3r±2), 
Corollary 1: c3(n) = < 

[0 (mod 2) otherwise. 
Proof: This follows from Theorems 1 and 7. 

Corollary 2: c3(n) changes parity infinitely often as n tends to infinity. 

Proof: This follows from Corollary 1. 

Theorem 8: c3(n) is the number of solutions of the equation x2 + 3 j 2 = 12« + 4 such that x > 1 
and j>[/f1/2]if/?>G. 

Proof: By Theorem 6, each 3-core partition of/? corresponds to a solution of 
71 = r(r + m + k) + m{m +1), 

where £ = 0 or 1, r >0, /w>0, and/vw>0. Let v = /w + £, so v>0. Then n = r(r+v) + v(y±X), 
so that 12/i + 4 = (3v ± 2)2 + 3(v + 2r)2. Let x = 3v + 2(-1)* and y = v + 2r. This yields 

x2 + 3 j 2 ^ 12/1 + 4. 

If v = 0, then m = k = 0, so x = 2. If v > 1, thenx > 3v-2 > 1. Thus, in all cases, x > 1. Now 
suppose that y < [nV2\ Since y = v + 2r and r > 0, this implies that v < [/?1/2], so v< [/i1/2]-1. 
Since j < [«1/2]? we must have x>3/i1/2, that is, 3v±2>3/i1/2, hence v>w1/2-- | . This implies 
that w1/2-[w1/2]<-}, an impossibility. Thus, y> [w1/2]. Conversely, suppose that x2 + 3 j 2 = 
12/1 + 4, where x > 1 andy > [w1/2]. Since 3|x, we may let x = 3v + 2(-l)^, where v is an integer 
and k = 0 or 1. Since x = j = v (mod 2), we may let y = v -:•• 2r, where r is an integer. 

If £ = 0, then v = (x - 2) / 3, so v > -™. Since v is an integer, we have v > 0. If k = 1, then 
v = (x + 2) /3 , so v> 1. Let/w = v - £ . In either case, we have /w> 0. Since y > [/i1/2], we have 
x2 < 12/i - 3[>1/2]2 + 4, that is, x2 < 9« + 3(w - [w1/2]2) + 4. But w - [/i1/2]2 < 2[/i1/2], so we have 
x2<9/i + 6[/i1/2] + 4. Hence x2 < (3«1/2 +1)2 + 3, so that x<((3/i1/2 + l)2 + 3)1/2, which implies 
x<3/i1 /2+l. 
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If k = 0, we have 3v + 2<3nm + 1, hence v<nm -±. Now r = ±(y-v), so 
r > l ( [ « 1 / 2 ] - » 1 / 2

+ i ) > i ( - f ) = - l . 

If k = 1, we have 3v - 2 < 3«1/2 +1, hence v < nm + l,v< [nm] +1. Thus, 

r>l([»1 / 2 ]-[«1 / 2 ]- l ) , 

that is, r > - y. In either case, since r is an integer, we must have r > 0. 
Finally, if we let x = 3v ± 2 and y - v + 2r, and substitute into x2 + 3 j 2 = 12w + 4, then, after 

simplifying, we obtain 
« = v(v±l) + r(> + v). 

If k = 0, then v = w, so 

If A: = 1, then v = m +1, so 

Thus, w e have 

n = w(m +1) + r (r + m). 

n = /w(/w +1)+r(r + /W +1). 

w = /W(TW +1) + r(r + w + k). 

Since « > 0, we must have rm > 0. 

Lemma 1: Consider the equation 
x2 + 3y2 = \2n + 4. (*) 

The number of solutions of (*) such that \y \ > [nl/2] is 4a(3n +1), where a(ri) = H{(d/3):d\n}. 
(Here we are following the notation of [2].) 

Proof: Let 12??+ 4 = 2krn, where k > 2 and 2\m. According to [4] (p. 308, Ex. 3), if j is 
the number of solutions of (*), then j = 6a(3n +1). We must show that if f is the number of 
solutions of (*) such that \y\ > [w1/2], then f = 4a(3n +1). 

Suppose that x = a, y = 6 is a solution of (*). Let ty = exp(2^f / 3). Passing to Q(a>), we 
have 

(a + b«f^)(a-hJ^3) = l2n + 4. 

Let zx = (a + h) + 2ba> = a+ftV^. Then ^(z^ = a2 + 3ft2 = 12w + 4. However, g(o>) has 6 units, 
namely, ±1, ±G>, ±G)2, SO we obtain additional solutions of (*) corresponding to 

z2 = a)zh z3 = 0) zh z4 = -zh z5 = -z2, z6 = -z3. 

Now z2 = -2h + (a-b)o) and z3 - (b - a) - (a + 6)cy, so it suffices to show that if \y \ < [nl/2], then 
\x±y\ > 2[nl/2]. By hypothesis, we have |x|2 +3\y\2=l2n + 4, so 

|x|2=12^ + 4-3|>y|2>12«-3[^/2]2-f4>9^ + 4. 

Thus|x|>3fi1/2. Now 

|x±j; | > |x| - \y\ > 3nl/2- [nm] > 2\nl,\ 

so we are done. 

2000] 43 



ON f-CORE PARTITIONS 

Theorem 9: ^(n) = a(3n + l) = S{(rf/3) :d|(3w + l)}. 

Proof: This follows from Theorem 8 and Lemma 1, omitting solutions of (8) such that 
x < 0 or y < 0. 

Remark: An alternate proof of Theorem 9, based on the theory of modular forms, was given in 
[2]. 

Theorem 10: If there exists k > 1 such that In = 22k~l -1 (mod 22k), then c,(w) = 0. 

Proof: By Theorem 8 and [4] (p. 308, Ex. 3), we have c3(n) = 0 if \2n + 4 = 22*+V where 
& > 1 and 2/JII. That is, c,(/t) = 0 if 3n = 22k~l - 1 (mod 22*) for some k > 1. 

Corollary 3: (^{n) = 0 if w = 3 (mod 4), w = 13 (mod 16), w = 53 (mod 64), etc. 

Proof: This follows from Theorem 10. 

Theorem 11: (^{n) is unbounded as n tends to infinity. 

Proof: Let n = (7k~l-l)/3. 7hm ^(n) = a(7k~l) = k. Since £ is arbitrary, we are done. 

Table 1 below lists (^{n) for all n such that 1 < n < 100. 

TABLE 1 
n c3(n) n c^iri) n (^(n) n c^Qi) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1 
2 
0 
2 
1 
2 
0 
1 
2 
2 
0 
2 
0 
2 
0 
3 
2 
0 
0 
2 
1 
2 
0 
2 
2 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

2 
0 
0 
0 
4 
0 
2 
1 
2 
0 
2 
2 
0 
0 
1 
2 
2 
0 
4 
0 
2 
0 
0 
2 
2 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

0 
2 
0 
0 
0 
3 
2 
2 
0 
2 
0 
0 
0 
2 
3 
2 
0 
0 
2 
2 
0 
4 
0 
2 
0 

16 
11 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

2 
0 
0 
0 
2 
2 
4 
0 
0 
1 
4 
0 
0 
2 
2 
0 
2 
0 
2 
0 
1 
2 
0 
0 
4 
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4. 4-CORE PARTITIONS 

This subject has recently been explored in some detail (see [3] and [8]). The following 
theorem permits the evaluation of c4(ri). 

Theorem 12: c4(n) = £ (l)*(2Jfc + T)b4(n- 2k(k +1)). 

Proof: Equation (1) implies 

£ c4(n)xn = f [ (1 - x4nf I (1 - xn) 
w = l 

= n o - x4") / a - x^na - x4")3 
n=l n=l 

=fx*4(»)x«Yn(i-x4")3 

n=0 

\n=0 n=l 

by (2). Let 

Then (4) implies 

gM = 
\{~l)m{2m +1) if n = 2wi(/w +1), 
0 otherwise. 

f>4(#i)*" = (£^(/i)x»Yf>4(/i)x"l 

= l[lUn-k)g<{k)\x". 

Matching coefficients of like powers of x, we get 
oo 

C4(n)=Y*b4(n-k)g4(k)> 
k=Q 

from which the conclusion follows. 

5. 5-CORE PARTITIONS 

Garvan, Kim, and Stanton [1] have shown that 

<*(")= X (d/S) 71 + 1 

d\{n+l) 

In order to use this formula, one needs to know the divisors (or, equivalently, the canonical 
factorization) of w + 1. We now present an alternative method of computing c5(n) that does not 
require factorization. 

Theorem 13: Let 

/,(/!) = b5(n) + X (-lf(b5(n - 5E(k))+b5(n - 5E(-k))). 
k>\ 
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Then 

^ ) = Z H y ( 2 7 + l)/5(/t-57C/ + l)/2). 

Proof: Equation (1) implies 

]T c5(n)xn = fl (1 - JC5W)5 / (1 - xn) 
«=0 n=l 

= f[(l-x5w)2/(l-xw)f[(l-jc5"): 

Now 

3 

n o - ^5w)2 / (i - *w) ^ n o - *5w) / o - x")Ti(i -x5n) 
«=1 n=l n=l 

by (2) and the definition of f5(n). Also, by (4), we have 

«=1 n=0 

where 

Thus, we have-

_ j(-l)*(2* + 1) if n = 5k(k +1)/ 2, 
[o otherwise. 

S^K=f s/5(»)*" Yift(»)*"l 

Matching coefficients of like powers of x, we obtain 

n 

A:=0 

from which the conclusion follows. 
Table 2 below lists b4(n\ c4(ri), b5{n\ f5(n\ and c5(n) for each n such that 1 < « < 50. 

Our final theorem is inspired by examination of Table 2. 
Theorem 16: If n = 4 (mod 5), then A5(̂ ) = /5(w) = c5(w) = 0 (mod 5). 

Proof: By virtue of Theorem 15 and the definition of f5(n), it suffices to show that h5(n) = 0 
(mod 5) when n = 4 (mod 5). This follows from (3) and (5). 
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n 
l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Un) 
1 
2 
3 
4 
6 
9 
12 
16 
22 
29 
38 
50 
64 
82 
105 
132 
166 
208 
258 
320 
395 
484 
592 
722 
876 
1060 
1280 
1539 
1846 
2210 
2636 
3138 
3728 
4416 
5222 
6163 
7256 
8528 
10006 
11716 
13696 
15986 
18624 
21666 
25169 
29190 
33808 
39104 
45164 
52098 

TABLE 2 

cM 
i 
2 
3 
1 
3 
3 
3 
4 
4 
2 
2 
7 
3 
5 
6 
2 
4 
7 
3 
4 
7 
5 
8 
5 
4 
4 
8 
5 
6 
7 
2 
9 
11 
3 
8 
9 
4 
6 
5 
7 
5 
14 
7 
4 
10 
5 
10 
11 
3 
9 

b5(n) 
l 
2 
3 
5 
6 
10 
13 
19 
25 
34 
44 
60 
76 
100 
127 
164 
205 
262 
325 
409 
505 
628 
769 
950 
1156 
1414 
1713 
2081 
2505 
3026 
3625 
4352 
5192 
6200 
7364 
8756 
10357 
12258 
14450 
17034 
20006 
23500 
27510 
32200 
37582 
43846 
51022 
59353 
68875 
79888 

fs(n) 
l 
2 
3 
5 
5 
9 
11 
16 
20 
27 
33 
45 
54 
70 
87 
110 
132 
167 
200 
248 
297 
363 
431 
525 
621 
746 
882 
1053 
1235 
1467 
1716 
2024 
2361 
2770 
3217 
3762 
4354 
5064 
5850 
6777 
7799 
9009 
10341 
11900 
13627 
15633 
17583 
20430 
23275 
26555 

q$(") 

1 
2 
3 
5 
2 
6 
5 
7 
5 
12 
6 
12 
6 
10 
11 
16 
7 
20 
15 
12 
12 
22 
10 
25 
12 
20 
18 
30 
10 
32 
21 
24 
16 
30 
21 
36 
20 
24 
25 
42 
12 
42 
36 
35 
22 
46 
22 
43 
25 
32 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 23,000 problems from 42 journals and 22 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was 
generously provided by the Department of Mathematics and Statistics at the University of 
Mirrouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 44024 
Baltimore, MD 21236 
bowron@mathpropress.com (e-mail) 
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For any positive integer k, let <f>(k) and a(k) be the number of positive integers less than or 
equal to k and relatively prime to k and the sum of divisors ofk, respectively. 

In [6] we have shown that 0(Fn) > F^n) and that a(Fn) < Fa{ri) and we have also determined 
all the cases in which the above inequalities become equalities. A more general inequality of this 
type was proved in [7]. 

In [8] we have determined all the positive solutions of the equation $(xm - ym) = x" + y" and 
in [9] we have determined all the integer solutions of the equation $(\xm + ym |) = \xn + yn\. 

In this paper, we present the following theorem. 

Theorem: 
(1) The only solutions of the equation 

H\Fn\) = 2m, (1) 
are obtained for n = +1, ± 2, ± 3, + 4, ± 5, ± 6, ± 9. 

(2) The only solutions of the equation 

*(l4l) = 2m, (2) 
are obtained for n = 0, ± 1, ± 2, ± 3. 

(3) The only solutions of the equation 

^( |FJ) = 2"-, (3) 
are obtained for n = ±1, ± 2, ± 4, ± 8. 

(4) The only solutions of the equation 

^(I4l) = 2m, (4) 
are obtained for n = ±1, ± 2, ± 4. 

Let n > 3 be a positive integer. It is well known that the regular polygon with n sides can be 
constructed with the ruler and the compass if and only if $(n) is a power of 2. Hence, the above 
theorem has the following immediate corollary. 
Comllaiy: 

(1) The only regular polygons that can be constructed with the ruler and the compass and 
whose number of sides is a Fibonacci number are the ones with 3, 5, 8, and 34 sides, respectively. 

(2) The only regular polygons that can be constructed with the ruler and the compass and 
whose number of sides is a Lucas number are the ones with 3 and 4 sides, respectively. 

The question of finding all the regular polygons that can be constructed with the ruler and the 
compass and whose number of sides n has various special forms has been considered by us 
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previously. For example, in [10] we found all such regular polygons whose number of sides n 
belongs to the Pascal triangle and in [11] we found all such regular polygons whose number of 
sides n is a difference of two equal powers. 

We begin with the following lemmas. 

Lemma 1: 
(1) F_n = (-\rlFn and L_n = (-1)"4. 
(2) 2Fm+n = FmK + LnFm and 2Lm+n = 5FmF„ + LmLn. 
(3) F2n=FnLnmdL2n = 4 + 2(-irl. 
(4) L2

n-5Fn
2 = 4(-iy. 

Proof: See [2]. • 

Lemma 2: 
(1) Let p > 5 be a prime number. If (7) = 1, then p \ Fp_x. Otherwise, p \ Fp+l. 
(2) (Fm, Fn) = i ^ W) for all positive integers m and n. 
(3) If rn \n and nlm is odd, then Lm \Ln. 
(4) Let p and n be positive integers such that p is an odd prime. Then ( i Fn)>^ if and 

only if /? I w and nl pis even. 

Proof: (1) follows from Theorem XXII in [1]. 
(2) follows either from Theorem VI in [1] or from Theorem 2.5 in [3] or from the Main 

Theorem in [12]. 
(3) follows either from Theorem VII in [1] or from Theorem 2.7 in [3] or from the Main 

Theorem in [12]. 
(4) follows either from Theorem 2.9 in [3] or from the Main Theorem in [12]. • 

Lemma 3: Let k > 3 be an integer. 
(1) The period of {Fn)n>o modulo 2k is 2k'1 -3. 
(2) F2k_2.3 = 2k (mod 2k+l). Moreover, if Fn s 0 (mod 2k\ then n = 0 (mod 2k~2 • 3). 

fjj Assume that n is an odd integer such that Fn = ±l (mod 2k). Then i^ = 1 (mod 2k) and 
w = ±l(mod2^1-3). 

Proof: (1) follows from Theorem 5 in [13]. 
(2) The first congruence is Lemma 1 in [4]. The second assertion follows from Lemma 2 in 

[5]. 
(3) We first show that Fn£-\ (mod 2k). Indeed, by (1) above and the Main Theorem in [4], 

it follows that the congruence Fn = -1 (mod 2k) has only one solution n (mod2X:~1-3). Since 
F_2 = - 1 , it follows that n = -2 (mod 2k~l • 3). This contradicts the fact that n is odd. 

We now look at the congruence Fn = 1 (mod 2k). By (1) above and the Main Theorem in [4], 
it follows that this congruence has exactly three solutions n (mod2*-1 -3). Since F_l=Fl = F2 = l, 
it follows that n = ±1,2 (mod 2k~l • 3). Since n is odd, it follows that n = ±1 (mod 2k~l -3). • 
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Lemma 4: Let k > 3 be a positive integer. Then 

[2*+13-l(mod2*+4) if k = 1 (mod 2), 
2* " [2*+15-1 (mod2k+4) ifk^O(mod2). 

Proof: One can check that the asserted congruences hold for k = 3 and 4. We proceed by 
induction on k. Assume that the asserted congruence holds for some k > 3. 

Suppose that k is odd. Then L2k = 2*+13 - 1 + 2k+4l for some integer /. Using Lemma 1(3), it 
follows that 

L2k+l = L\k - 2 = ((2fc+13 -1)2 + 2*+5/(2*+13 -1)2 + 22*+8/2) - 2 

Es(2*+13-l)2-2(mod2*+5). 
Hence, 

L2k+l SE22*+29-2*+23 + 1-2E2 2 * + 2 9 + 2*+2(-3)-1 (mod2k+5). 

Since k>3. it follows that 2k + 2 > k + 5. Moreover, since -3 = 5(mod23), the above congru-
ence becomes 

L2&+1=2fc+25-l(mod2^5). 

The case k even can be dealt with similarly. D 

Proof of the Theorem: In what follows, we will always assume that n > 0. 
(1) We first show that if $(Fn) = 2m, then the only prime divisors of n are among the 

elements of the set {2,3,5}. Indeed, assume that this is not the case. Let p> 5 be a prime 
number dividing n. Since Fp\Fm it follows that <f>(Fp)\</>(Fn) = 2m. Hence, <f>{Fp) = 2mK It 
follows that 

Fp = 2l
Pl A , (5) 

where / > 0, k > 0, and pi < p2 < • *• < pk are Fermat primes. 
Notice that / = 0 and pl > 5. Indeed, since p > 5 is a prime, it follows, by Lemma 2(2), that 

Fp is coprime to Fm for l<m<5. Since F3 = 2,F4 = 3, and F5 = 5, it follows that 1 = 0 and 
Pl>5. 

Hence, pi > 5 for all i = 1,..., *. Write pf = 22"' + for some at > 2. It follows that 

A = 42a,-1+l = 2(mod5). 

Since (%f) = (f) = - 1 , it follows, by the quadratic reciprocity law, that (-^) = - 1 . It follows, by 
Lemma 2(1), that px \Fpi+l. Hence, 

Pi\(Fp,Fpi+l) = FiPfPi+iy 

The above divisibility relation and the fact that p is prime, forces p \ px +1 = 2(22a,_1 +1). Hence, 

/ ? |2 2 a , - 1 + l. Thus, 
p<22°x'l^l (6) 

On the other hand, since 

^ = fl(22a' +D-l(mod22a'), 
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it follows, by Lemma 3(3), that p = ±1 (mod 22"1 *3). In particular, 
p>22a'-l3-l (7) 

From inequalities (6) and (7), it follows that 22*'~13 - 1 < 22"'"1 +1 or 22"1 < 2. This implies that 
ax - 0 which contradicts the fact that al>2. 

Now write n = 2a3bSc. We show that a < 2. Indeed, if a > 3, then 21 = Fs \ Fn, therefore 
3|12=0(21)|0(FJ = 2'», 

which is a contradiction. We show that b < 2. Indeed, if b > 3, then 531F27 | i^, therefore 

13|52 = *(53) |r t /y = 2», 
which is a contradiction. Finally, we show that c < 1. Indeed, if c > 2, then 30011F251 i^, there-
fore 

313000 = 0(3001) |0(FJ = 2W, 

which is again a contradiction. In conclusion, w |22 -32 -5 = 180. One may easily check that the 
only divisors n of 180 for which (f>{Fn) is a power of 2 are indeed the announced ones. 

(2) Since 0(2) = 0(1) = 1 = 2° and 0(3) = 0(4) = 21, it follows that n = 0,1,2,3 lead to 
solutions of equation (2). We now show that these are the only ones. One may easily check that 
n * 4,5. Assume that n>6. Since </>(Ln) = 2W, it follows that 

Ln = 2l-Pl—pk, (8) 

where / > 0 and P\<"'<Pk &re Fermat primes. Write pi=22°Ci -hi. Clearly, pt>3. The 
sequence {Ln)n>0 is periodic modulo 8 with period 12. Moreover, analyzing the terms Ls for 
5 = 0,1,..., 11, one notices that Ls^0 (mod 8) for any 5 = 0,1,..., 11. It follows that / < 2 in 
equation (8). Since /i>6, it follows that Zw>18. In particular, p>5 for some / = 1,...,£. 
From the equation 

L2
n-5F„2 = (-l)"-4, (9) 

it follows easily that 5|ZW. Thus, pi > 5. Hence, pi = 22"' +1 for some af>2. It follows that 
pt = 1 (mod 4) and 

Pi EE 42ai~l +1 EE (-I)2"1"1 +1 EE 2 (mod 5). 

In particular, f~j = (y) = - 1 . Hence, by the quadratic reciprocity law, it follows that (-~j = -1 as 
well. On the other hand, reducing equation (9) modulo pf, it follows that 

5F„2^(-irl-4(modPi). (10) 

Since pt = 1 (mod 4), it follows that r"^" J = 1. From congruence (10), it follows that iy\ = 1, 
which contradicts the fact that (~J = - 1 . 

(3) Since a{\) = 1 = 2°, a(3) = 4 = 22, and a(21) = 32 = 25, it follows that n = 1,2,4,8 are 
solutions of equation (3). We show that these are the only ones. One can easily check that 
/t*3,5,6,7. Assume now that there exists a solution of equation (3) with n>$. Since 
a(Fn) = 2m, it follows easily that Frj = ql--'-qky where qx <-<qk are Mersenne primes. Let 

52 [FEB. 



EQUATIONS INVOLVING ARITHMETIC FUNCTIONS OF FIBONACCI AND LUCAS NUMBERS 

qi = 2Pi - 1 , where pi > 2 is prime. In particular, qt = 3 (mod 4). Reducing equation (9) modulo 
qi9 it follows that 

Z*==(-l)M(modft). (11) 

Since qi s 3 (mod 4), it follows that (^-) = - l . From congruence 11, it follows that 2|w. Let 
n-2nv Since Fn = F2f7i = FniLni and since Fn is a square free product of Mersenne primes, it 
follows that Fni is a square free product of Mersenne primes as well. In particular, a(Fn ) = 2m*. 
Inductively, it follows easily that n is a power of 2. Let n - 2', where t>4. Then, nx - 2 M . 
Moreover, since LWj |i^LWi =i^ , it follows that L is a square free product of Mersenne primes 
as well. Write 

Lki=q[..:.qi9 (12) 

where qj < • • • < q[. Let g/ = 2P* - 1 for some prime number pj. The sequence (L„)w>0 is periodic 
modulo 3 with period 8. Moreover, analyzing Ls for s = 0,1,..., 7, one concludes that 3| L5 only 
for s = 2, 6. Hence, 31L5 if and only if j = 2 (mod 4). Since t > 4, it follows that 812'"1 = wr. 
Hence, 3|L„ and 3\L /2. In particular, p[>2. We conclude that all p/ are odd and q\-2p>i-\ 
= 2 — 1 = 1 (mod 3). From equation (12), it follows that L =1 (mod 3). Reducing relation 
Ln = L^/2 - 2 modulo 3, it follows that 1 = 1 — 2 = —1 (mod 3), which is a contradiction. 

(4) We first show that equation (4) has no solutions for which n > 1 is odd. Indeed, assume 
that d(Ln) = 2m for some odd integer n. Let p \ n be a prime. By Lemma 2(2), we conclude that 
Lp \Ln. Since cr(Zw) is a power of 2, it follows that Ln is a square free product of Mersenne 
primes. Since Lp is a divisor of Ln, it follows that Lp is a square free product of Mersenne 
primes as well. Write Lp=ql---qk, where qx<--<qk are prime numbers such that qi - 2Pi - 1 
for some prime pi>2. We show that px>2. Indeed, assume that px = 2. In this case, qx = 3. It 
follows that 31 Lp. However, from the proof of (3), we know that 31 Ls if and only if s = 2 (mod 
4). This shows that pl > 3. 

Notice that Lp = ±l(mod2^). It follows that L2
p-l = 0(mod2/?1+1). Since/? is odd, it 

follows, by Lemma 1(4), that 
L2

p-5F* = -4 (13) 

or 4 - 1 = 5(Fp
2 -1) . It follows that F2 - 1 = 0 (mod 2^+1). Hence, Fp = ±1 (mod 2*). From 

Lemma 3(3), we conclude that p = ±l (mod 2A~13). In particular, 
p > 2 ^ - ! 3 - l . (14) 

On the other hand, reducing equation (13) modulo ql9 we conclude that 5Fp = 4 (mod qx\ there-
fore (̂ -) = 1. By; Lemma 2(1), it follows that qx \ Fqx_x. Since qx \ Lp and F2p = FpLp, it follows 
that qx\F2p. Hence, ft|(/r

2p,Fft.1) = F(2pfft.1). Since F2 = l, we conclude that p | f t = l = 
2(2/?1"1-l). In particular, 

^ < 2 ^ ~ 1 - 1 . (15) 

From inequalities (14) and (15), it follows that 2Pl"13 - 1 < 2Pl~l -1, which is a contradiction. 
Assume now that n > 4 is even. Write n = 2fnl9 where nx is odd. Let 

4 = * • - • * > (16) 
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where qx <-<qk are prime numbers of the Mersenne type. Let qt -2Pi - 1 . Clearly, qi =3 
(mod 4) for all / = !,...,&. Reducing the equation l}n-SF^-4 modulo qi9 we obtain that 
-5F% = 4 (mod qt). Since {—-^ = - 1 , it follows that (jfy = - 1 . From Lemma 2(1), we conclude 
that qi |i^.+1 = i ^ . We now show that t <px-l. Indeed, assume that this is not the case. Since 
t > ply it follows that 2Pl |2r/?j = n. Hence, qx \F2Pl \Fn. Since qx \ Ln, it follows, by Lemma 1(4), 
that qx\4, which is a contradiction. So, t<px-l. We now show that nx = l. Indeed, since 
t + l<px<pi, qi\Ln\F2n, and qt\F2R9 it follows, by Lemma 2(2), that qt,\(F2n,F2Pl) =F{2n2Pi) = 
F2,+l. Hence, qt \ F2,+l = F2tL2t. We show that nx = 1. Indeed, since * +1 < px < pi? qt\Ln\F2ri, 
and qi \ F2P), it follows, by Lemma 2(2), that qt | (F2„, F2fl.) = F(2w 2fl) = F2,+l. Hence, g71 F2,+l = 
F2,L2,. We show that qt \L2,. Indeed, for if not, then qi \F2,. Since 2' \n, it follows that 
qi\F2,\F„. Since ^ |Z„, it follows, by Lemma 1(4), that qf |4, which is a contradiction. In 
conclusion, qt \ L2, for all / = 1,..., k. Since #, are distinct primes, it follows that 

In particular, Z2/ >Ln-L2tn . This shows that ^ = 1. Hence, n = 2f. 
Since w> 4; it follows that / > 3. It is apparent that qx * 3, since, as previously noted, 31Z5 

if and only is s = 2 (mod 4), whereas w = 2r = 0 (mod 4). Hence, pt > 3 for all / = 1,..., k. More-
over, since q{ - 2Pi - 1 are quadratic nonresidues modulo 5, it follows easily that pi = 3 (mod 4). 
In particular, if k > 2, then p2 > px + 4. 

Now since t > 3, it follows, by Lemma 4, that 
Z2 /^2'+ 1tf-l (mod2'+4), (17) 

where a e {3,5}. On the other hand, from formula (16) and the fact that p2 > px +4 whenever 
k > 2, it follows that 

k 
Li* = r i ( 2 A - 1 ) = H)* - ( -2 A +1)^2^6 ±1 (mod2^+4). (18) 

/=i 

where A e{l, 7}. One can notice easily that congruences (17) and (18) cannot hold simultane-
ously for any t < px -1. This argument takes care of the situation k > 2. The case k-\ follows 
from Lemma 3 and the fact that t < px -1 by noticing that 

2* - 1 = L2, SE 2'+1 -3-1 (mod 2f+4) 

implies 2/?1~'~1 = 3 (mod23), which is impossible. 
The above arguments show that equation (4) has no even solutions n > 4. Hence, the only 

solutions are the announced ones. D 
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1. INTRODUCTION 

As is known, various methods have been proposed for finding summation formulas for the 
so-called arithmetic-geometric progression of the form 

S,»:=5>**', (1) 
k=Q 

where a is a real or complex number with a*0 and a* l9 and n and/? are nonnegative integers. 
For some recent papers, see, e.g., de Bruyn [1], Gauthier [4], and Hsu [5]. The object of this 
note is to show that de Bruyn's formulas expressed in terms of determinants could be given con-
cise explicit forms in terms of Eulerian polynomials. In fact, it is found that the recurrence rela-
tions (recursive equations) obtained by de Bruyn for those determinants used in his formulas can 
be solved by means of Eulerian polynomials. 

Let us recall de Bruynfs work briefly. De Bruyn made use of Cramer's rule to develop some 
explicit formulas for expressing Sa^p(n) as (/? +1) x (/? +1) determinants. He then gave two 
formulas for Sap(n), one in powers of (w + 1), the other in powers of n, in which all the coeffi-
cients are also expressed as determinants. More precisely, de Bruyn's first formula in powers of 
(n +1) takes the form 

^.P(»)=^s(fU(a)(»+irr+/^)i 
r=0 

,n+l 1 

where fJa) = 1, and fr(a) (r = 1,2,. • P-

f 

fr(a) = r\(j^J det 

1) are given by 

0 a-l 

JL 
2! 

(r-1)! 
J_ 
r! 

1 

a-l 

0 

0 

(r-2)! 

1 
(r-l)l 

a - l 

0 

0 

(2) 

j _ 
2! 

0 

0 

a-l 

1 
1! J 

(3) 

and fo(a), fi(a), f2{a), ••• satisfy the recurrence relations 

Ua) = \, aS(yV/(«)-/r(«) = 0, (r = l,2,...). 
y=0 

(4) 

De Bruyn observed that if the fj's are denoted as the Bernoulli numbers Bj9 and we put a = 1, 
equation (4) just gives the well-known recurrence formula for the Bernoulli numbers. This led 
him to call the numbers fr(a) (r = 0,1,2,...) the a-Bernoulli numbers. In the next section, we 
shall show that fr(a) a r e closely related to Eulerian polynomials. 
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2. SOLUTION OF RECURSIVE EQUATIONS 

Evidently the system of equations given by (4) determines /r(a)fs uniquely with f0(a) = 1. 
Using (4) recursively one may write 

r r„\ _ 1 f / „ \ q_ , , . a + a2 -f . a + 4a2+a3 

/ o ( a ) - ( T ^ ' / l ( a ) = ( T ^ ' / 2 ( a ) ^ ( T ^ ' Ma)= (i-af ' etc-
Here it may be verified that the numerators of the / r ( a ) ' s (V = 0,1,2,...) are precisely the Eulerian 
polynomials, 4.(a) (r = 0,1,2,...). In fact, it is known that (cf. Comtet [3], § 6.5) 

4,(a) = l, 4(a) = cr, A2(a) = a + a2, A3(a) = a + 4a2 +a3, etc. 

Thus, one may reasonably conjecture that 

/ r(«) = ̂ ^ r ( r = 0,l,2,...) (5) 

are the solutions to the recursive equations given by (4). We will prove this below as a lemma. 
The historical origin of Eulerian polynomials A (a) is the following summation formula for 

the infinite arithmetic-geometric series 

Takkp = — ^ 4 r , | a |< l , a * 0 , (6) 

where A (a) is a polynomial of degree/? in a, p > 0, and 0° := 1 (see, e.g., Carlitz [2] and Comtet 
[3; p. 245]). We shall utilize (6) to prove our preceding conjecture given in the following lemma. 

Lemma: The functions fr(a) given by (5) satisfy the recursive equations displayed in (4) for all 
complex numbers a ̂  0,1. 

Proof: Since A^(a) - 1 = f0(a), it suffices to consider equation (4) for r > 1. Clearly these 
equations may be equivalently replaced by the following: 

-2(^-^-0 <. = !.«...). 

Substituting (5) into (7) and using the representation (6) for Aj(a)/(l-a)J+l with \a\ < 1, it is 
easily found that the left-hand side (LHS) of (7) becomes 

j=0\J/k=Q k=0 k=0 j=0^Js k=l 

=£^+ l(^+ i ) r-Za^r = o ; 
fc=Q k=l 

This shows that (7) holds for the /;(«)fs given by (5) with \a\ < 1, a * 0. Now the LHS of (7) 
[with fj(a) given by (5)] is a rational function of a that vanishes for infinitely many values of a; 
thus, it should vanish identically with the only restrictions a * 0, a * 1. This completes the proof 
of the Lemma. 
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3. REFINEMENT OF FORMULA (2) 

It is known that the Eulerian polynomial ^(a) (r > 1) may be written in the form (cf. 
Comtet [3; §6.5]) 

4 (a ) = £.4(r,£)afc, 
k=\ 

where A(r, k) are called Eulerian numbers given explicitly by 
k 

^*)=l(-iy(r)1)(*-./)r (!<*</•). 

(8) 

(9) 

Using the Lemma, one can express de Bruyn 's formula (2) in a refined form. This is given by the 
following theorem. 

Theorem: For any given integer p > 0, there holds the summation formula 

Sa.P(») = 
i 

a-\ f^V)(\-aJ (I-a) (10) 

where 4-(a) a r e given by (8) and (9), a ^ 0, a ^ 1. 

Remark: De Bruyn's second formula for Sa^p(n) in powers of n given by 
VH-I „n Pz}fm\ fan — \\ 

s°-»(n)=^inP+^^r(a)nP'r+fp{a^ , p>h 

can likewise be refined to the form 

a"+1 1 
a-\ a-\ « - z ; r=l 

p\JML 
(l-af' 

nP-r . AM 
(i-ay 

( i i ) 

This is obtained by means of the Lemma. Surely, both (10) and (11) are useful for practical com-
putations whenever n is much larger than/?, say n »p3. Moreover, it may be worth mentioning 
that the sum Sa^p{n) can also be expressed using Stirling numbers of the second kind, and the 
formula is also available for n »p3 (cf. [5]). 

4. A DIRECT PROOF OF THE THEOREM 

Here we shall give a direct computational proof of (10) with the aid of (6). Since (10) is 
obvious for p = 0, it suffices to consider the case p > 1. 

For a given real or complex number a with a * 1, a * 0, we shall make use of the simple 
exponential function ae0, 0 real or complex. Since ae° —»a;* 1 as 0—»0, we can find a suffi-
ciently small positive number 8 such that ae9 ^ 1 for \0\ < 8. 

Let us consider the sum 

S(n,0):=^(ae*)k = l a % , (\0\<S). 

For given p > 1, we have the /7th derivative with respect to 0: 
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dp 

d0p ${n,e) = Y^akkPeke. 
k=\ 

Thus, it follows that 

$,»=5>**' = 
k=i 

dp 

d0p S(n,0) 

dp 

d0p)o
l [{\-a"+W+W)(\-aee)-x], 

(12) 

where the derivatives are evaluated at 0 = 0. Using Leibniz's product formula for differentiation, 
we easily find that the RHS of (12) equals 

| ( f ) ( -^X-D-^) o ( i - ^r.+ ( 1_a«+i) | JL|( 1_a e*ri (13) 

It remains to compute 

dff {l-aeey\ (0<r<p). 
70 

This can be done easily by using (6) with \a\ < 1, a ^ 0, as follows: 

(14) 

Here it may be noted that the series T^=Qakeke in (14) can be term-wise differentiated any number 
of times in a neighborhood of 9 = 0, say \0\ < 5, provided that S is sufficiently small such that 
\aee\ < p=constant< 1 for \0\ < 8, which obviously implies the uniform convergence condition 
for the related series. 

Now, recalling (12) and substituting (14) into (13), we obtain 
.P=}/„\ Atn\ . Ap(a) 

if S„,M = l 
a-\ £i\.r)(l-ayK \\-a) (15) 

This is precisely equivalent to (10). 
Finally, note that (15) is an equality between rational functions of a, valid for infinitely many 

values of a (|a| < 1, a*0 ) so that it must be an identity valid for all values of a with the only 
restrictions a -*• 1, a * 0. This completes the proof of (10). 

5e AN EXAMPLE 

Consider a pair of trigonometric sums as follows: 

c(n) = J akkp cosk0, s(n) = £ akkp sin k0, 
k=Q k=0 

where a is a positive real number, a ^ l ^ a positive integer, and 0 a real number, 0 < 0 < In. 
These sums can be computed precisely using the explicit formulas (10) or (11). Indeed, taking 
a = aew (i2 = -1) in (1), we have 
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J^(akeike)kp = c(n)+is(n). 
k=0 

Denoting the RHS of (10) or of (11) by <D(a, p, ri), we get 

c{n) = Re ®(aew, p, n), s(n) = Im <&(aew, p, n), 

where R e O and Im® denote the real part and imaginary part of <D, respectively. Obviously, this 
follows from the fact that (aew)k = ak coskO+iak sin k9. 
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1. INTRODUCTION 

Diagonal polynomials have been defined for Chebyshev, Fermat, Fibonacci, Lucas, Jacobsthal 
and other polynomials, and their properties have been studied (see, e.g., [9]. [5], and [7]). How-
ever, these are not applicable to the diagonal polynomials associated with the Morgan-Voyce 
polynomials (hereafter denoted as MVPs) B„{x),b„{x), c„(x), and Cn(x), defined by: 

Bn(x) = (x + 2)B„_l(x)-B„_2(x) («>2), (1.1a) 
with 

B0(x) = l, Bl(x) = x + 2; ( l i b ) 
hn(x) = (x + 2)b„_l(x)-b„_2(x) (»>2), (1.2a) 

with 
b0(x) = l, bl(x) = x + \; (1.2b) 

c„(x) = (x + 2)c„_1(x)-c„_2(x) (n>2), (1.3a) 
with 

c0(x)-l, Cj(x) = x + 3; (1.3b) 
C„(x) = (x + 2)C„_i(x)-Cn_2(x) (»>2), (1.4a) 

with 
C0(x) = 2, Q(x) = x + 2. (1.4b) 

Many interesting results have been proved regarding these MVPs (see [10], [11], [14], [12], 
[1], [2], [6], and [8]), and some of the important known results are listed in Section 2 for ready 
reference as well as for establishing the results regarding their associated diagonal polynomials. 

2. SOME IMPORTANT PROPERTIES OF THE MORGAN-VOYCE POLYNOMIALS 

Interrelations: 

b^^B^-B^x) (n>\), 
xB„(x) = bn+1(x)-b„(x), 

C„(x) = Bn(x)-B„_2(x) (n>2), 

*c„(x) = bn+1(x) - bn_x{x) (n > 1), 
Cn(x) = c„(x)-c„„l(x) (»>1), 
xcn(x) = Cn+l(x)-C„(x), 
c„(x) = B„(x) + B„_l(x) (n>l), 

from [10]. 
from [10]. 
from [14], [13]. 
from [14], [13]. 
from [6]. 
from [6], [13]. 
from (2.4) and (2.5). 
from [13]. 

(2.1) 
(2.2) 
(2.3) 
(2.4) 
(2.5) 

(2.6) 
(2.7) 
(2.8) 
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Closed-Form Expressions: 

Bn(x) = t { " l l - i i y , from [11]. (2.9 

*»(*) = X f c j f c V ' from [11]. (2.10 

c»w=£jjrri{"-k)xk' from < 2 - 8 ) a n d <2-9)- < 2 1 1 

Q W = 2 + E f { , I ^ A 1 ) * * ' from (2.4) and (2.10). (2.12 

It should be noted that (2.12) has been derived earlier (see [2]). 
Zeros: 

5„(*):x„ = - 4 s i n 2 | ^ y - | j J i - = l,2,...,ii, from [12]. (2.13 

b„(x): ^ = - 4 s i n 2 | ^ - | ] , r = l,2,...,n, from [12]. (2.14 

c„(x): ^ = _ 4 s i n 2 | ^ - T - | | , r = 1,2,...,n, from [1]. (2.15 

C„(x): xr = - 4 s m 2 { ^ - - | J , r = l,2,...,«, from [14]. (2.16 

Generating Functions: 
00 

B(x,t) = J]Bn(x)tn = [l-(xt + 2t-t2)yl, from (1.1a). (2.17 
o 

b(x, t) = ££„(*)/" = (1 - t)B(x, t), from (2.1) and (2.17). (2.18 
o 
00 

<tx, 0 = Y*cn(x)fn = (l + *)B(x, t), from (2.8) and (2.17). (2.19 
o 

c(*> 0 = £ C*(*)'w = 1 + (1 - *2)£(*> 0, from (2.3) and (2.17). (2.20 
o 

Differential Equations: 
Bn(x): x(x + 4)y" + 3(x + 2)yf-n(n + 2)y = 0, from [12]. (2.21 

bn(x): x(x + 4)y" + 2(x + l)y'-n(n + l)y = 0, from [12]. (2.22 

c„(x): x(x + 4)y"+ 2(x + 3)y'-n(n + l)y = 0, from [13]. (2.23 

Cn(x)\ x(x + 4)y" + (* + 2 ) / - w2)/ = 0, from [3]. (2.24 
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Orthogonality Property: 
Bn(x): Orthogonal over (-4,0) with respect 

to the weight function ^-x(x + 4)? from [11]. (2.25) 

bn(x): Orthogonal over (-4,0) with respect 
to the weight function ^J-(x + 4)/x, from [11]. (2.26) 

cn(x)\ Orthogonal over (-4,0) with respect 
to the weight function ^/-x/(x + 4), from [13]. (2.27) 

Cn(x): Orthogonal over (-4,0) with respect 
to the weight function l/^/-x(x + 4), from [2]. (2.28) 

Simson Formulas: 

5,+1(x)5w_1(x)-^(x) - - 1 , from [11]. (2.29) 

6w+1(x)V1(x)-^(x) - x, from [12]. (2.30) 

«Wi(x)cll.1(x)-c2(x) = -(x + 4), from [13]. (2.31) 

Q+1(x)Q.1(x)-Q2(x) = x(x + 4), from [13]. (2.32) 

3. MSWG DIAGONAL POLYNOMIALS 

In order to define the diagonal polynomials associated with the Morgan™Voyce polynomials 
in a manner similar to the diagonal polynomials defined for Chebyshev, Fermat, Fibonacci, and 
other polynomials (see [9], [5], [7]), we first need to express the MTVTs Bn(x), bn(x)y cn(x), and 
Cn(x) in descending powers of x. By letting i = n~k in (2.9), (2.10), (2.11), and (2.12), we get 
the following expressions for the MVPs: 

r2m + l-i 

" f 2n-i 

j 
n_1 - f2n-\-i 

4M=ir7"'r; (3-D 

w=Xf2Y'V'; (32) 

c " { x ) = x " % - ^ i \ i )x""+2- <3-4) 

We now rearrange C„(x) into a form that will help in formulating a closed-form expression for the 
corresponding rising diagonal polynomial. It can be shown that 

n (2n~l-i\^2n (2n-l-i 
n~i\ i ) i \ '"-1 

Hence, (3.4) can be rewritten as 
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or 
cn(x) = x»+£f-(2"r_\-iy-i. 0.5) 

Let us first consider the rising diagonal polynomial R„(x) associated with the MVP Bn(x). 
We see from (3.1) that 

Ro(x) = 1, R^x) = x, R2(x) = x2 + 2, R3(x) = x3 + 4x,..., 

R„(X)=X-+[2"j-2]^-2
+^2n~5y~4

+^n-*y-<+.... 
The above may be rewritten as 

2n + \\„ J2n-2\ „-i ,(2n-5] „_4 

Hence, 
[n/2l 

[?] V L2J J 

Similarly, starting with (3.2), (3.3), and (3.5), we may derive the following polynomial 
expressions for the rising diagonal polynomials r„(x), p„(x), and P„(x) associated, respectively, 
with the MVPs hn{x), cn(x), and C„(x): 

7=0 V J 

<*>-tm3{,"T*y*: (3,, 
P,W = *" • •&!!f!l.(2»7^*y->: (3.9) 

Z: 
[if/2],. 

/=! 
It is readily seen that all the four sets of diagonal polynomials are even for even values of n and 
odd for odd values of n. Table 1 lists the diagonal polynomials up to n = 8. 

4. SOME INTERRELATIONS AMONG J^(JC), I;(JC), /^(JC) AND PW(JC) 

Consider the expression R„{x) -i^_2(*) • Then, from (3.6), we have 
l"4](2n + 1-3(1..,-» '"«1-Y2» - 3 - SAy^-a 

= « " + ! 
[—]2»-4/ + l (2»-3Q... (2» - 4/ + 2) „. x"-2/ 

M ' ('"1)1 
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= rn(x), using (3.7). 

Hence, we have the result that 

rn(x) = Rn(x)-RrI_2(x) («>2). (4.1) 

It is interesting to compare this result with the corresponding one relating the respective MVPs, 
namely, 

bn(x) = B„(x)-B„_1(x) (»>1). 

We now prove that 
xRn(x) = rn+l(x)-r„_l(x) (n>l), (4.2) 

a result which corresponds to (2.2) with respect to the original MVPs Bn(x) and hn(x). First, 
consider r2n+l(x) - r2n-i(x) • Then, from (3.7), 

y (4n + 2 - 3A x2n+i-2i _ y(4n - 2 - 3i} ^n-\-n 
7=0V l ' ;=0^ rM(x)-r l̂(x) = s r7 -»w- + i - 2 i - z r " r x 

=^+xi(^+j-*^»-x£^+*-*}*»-» 
.2/H-l , ^ ^ + 1 -31^2 /7 -2 / 

I 
= z x "" 1 + x Z | "*,; ~|r 

7=1 

7=0 V ' 

= xR2n(x), using (3.6). 

Similarly, we can show that 

r2n+2(X)-r2n(X) = xR2n+l(X)-

Hence, the result (4.2). 
Again, from (3.7), we have 

•xi^+f-*)x™ + xp^+^x*>-» 

= x2«+i + y 2(2w + l-2Q Un + l-3A 2„+i-2/ 

= Eta+1(x), using (3.9). (4.3a) 
Similarly, 

^ 2 W + ̂ W = P2«+2(*) • ( 4 3 b ) 

Combining (4.3a) and (4.3b), we get 
P„(x) = r„(x)+r„_2(x) (»>2), (4.4) 
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a result to be compared with (2.4). Using (4.1), the above relation may be rewritten as 
?„(x) = JR„(x)-Rri_4(x) (»>4), (4.5) 

the corresponding result for the MVPs being (2.3). 
Again starting with i^(x) + Rn_2{x) and using (3.6), we can show that 

p„(x) = Rn(x) + Rei_2(x) («>2), (4.6) 

which should be compared with relation (2.8) for the corresponding MVPs. Now, using (4.6), we 
have 

Pn(*) - Pn-2(X) = R*(X) - K-4(*) • 
Hence, from (4.5), we get 

J>„(x) = p„(x)-pn_2(x) (n>2), (4.7) 

the corresponding relation for the MVPs being (2.6). Further, using (4.4), we have 
p*+i (*) ~ p„-i (*) = fo+i(*) ~ Vi(*M + fa-i (x) ~ rn.3(x)} 

= xRn(x) + xRn_2(x), using (4.2), 

= xpn(x), using (4.6). 

Hence, 
xpn(x) = ?n+l(x)-Fn_l(x) (n>l), (4.8) 

a relation corresponding to (2.7) for the original MVPs. 
We may derive a number of such interrelationships among the diagonal polynomials R„(x), 

rn(x), pn{x), and Pw(x) corresponding to those of the MVPs Bn(x), bn(x), cn(x), and Cn(x). We 
will only list the following: 

$irl(x) = BH(x)+RH_1(xy, (4.9) 
7=0 

xfiRi(x) = rn+1(x)+rn(x)-l; (4.10) 
/=0 

it?i(x) = pn(x) + p„_1(x) + l; (4.11) 

* Z A ( * ) = P»+I(*) + P , , ( * ) - 2 . (4.12) 
/=o 

5. RECURRENCE RELATIONS AND GENERATING FUNCTIONS 

From relation (4.2), we have 

*R*(x) = r„+i(x) ~ r„-i(x) in > 1) 
= l^+i(*) - /?_,(*)} - {^-t(x) - /$_3(*)} (» * 3), using (4.1). 

Hence, 
Rn+l(x) = xRn(x) + 2Rn_l(x)-Rrl_3(x) (n>3). 

66 [FEB. 



RISING DIAGONAL POLYNOMIALS ASSOCIATED WITH MORGAN-VOYCE POLYNOMIALS 

Therefore, i^(x) satisfies the recurrence relation 
Rrl(x) = xRn_l(x) + 2Rn_2(x)-Rn_4(x) (w2>4), (5.1a) 

with 
Ro(x) = 1, Rt(x) = x, R2(x) = x2 + 2, R3(x) = x3 + 4x. (5.1b) 

Similarly, we can deduce that rn(x), pn(x), and Pw(x) satisfy the following recurrence relations: 

rn(x) = xrri_l(x) + 2rn_2(x)-rn_4(x) (/i>4), (5.2a) 
with 

r0(x) = 1, ^(x) = x, r2(x) = x2 +1, r3(x) = x3 + 3x; (5.2b) 

Pn(x) = xPn-l(x) + 2Pn-2(x)-Pn-4(x) ( ^ 4 ) > (5'3*0 
with 

p0(x) = 1? /^(x) = x, p2(x) = x2 +3, p3(x) = x3 +5x; (5.3b) 
P„(x) = xPw_1(x) + 2P,_2(x)-P„_4(x) (n>4), (5.4a) 

with 
P0(x) = 2, Pt(x) = x, P2(x) = x2 +2, P3(x) = x3 +4x. (5.4b) 

It is interesting to compare the above recurrence relations with those of the corresponding MVPs 
B„(x), bn(x), c„(x), and C„(x) given by (1.1), (1.2), (1.3), and (1.4), respectively. 

We shall now derive generating functions for these diagonal polynomials using the standard 
technique. Let gn(x) represent any one of the diagonal polynomials R„(x), rn(x), p„(x), or 
P„(x), and let G(x, i) be the corresponding generating function. Then, from [4], we have 

r\G(x, 0 - gQ(x) - gl(x)t - g2(x)t2 - g3(x)t3] 
= xr"3[G(x, 0 - gQ(x) - gl(x) t - g2(x)t2] 

+ 2r2[G(x, 0 - g0(x) - gl(x)t] - G(x, 0-
Hence, 

(1 - xt - 2*2 + t4)G(x, t) = g0(x) + {&(*) - xgQ(x)}t 

+ {&(*) - xgi(*) - 2go i*))*2 + {&(*) - *&(*) - 2Si (x)}t4-
Therefore, R(x91), the generating function for the diagonal polynomial Rn(x), is given by 

(l-xt- It2 + t4)R(x, t)=l + (x-x)t + (x2+2-x2- 2)t2 

+ (x3+4x-x3 -2x-2x>4 = l. 
Hence, 

R(xJ) = fdRi(x)ti=[l-(xt + 2t2-t4)Yl. (5.6) 
o 

Similarly, by substituting for gn(x) the diagonal polynomials r„(x), p„(x), and P„(x) in (5.5), 
we can derive the following generating functions for these polynomials: 

r(xJ) = fdri(xy=(l-t2)R(x,t); (5.7) 
o 

f*x, 0 = Z A W ' = 0+'2)*(*, 0; (5.8) 

(5.5) 
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P(x, 0 = £ P , ( X ) / ' = l + (l~t4)R(x, t). (5.9) 
0 

It is interesting to compare the generating functions (5.6), (5.7), (5.8), and (5.9) of the diagonal 
polynomials with those of the corresponding MVPs Bn(x), hn(x), cn(x), and Cn(x), namely, those 
given by (2.17), (2.18), (2.19), and (2.20). 

Using the generating function (5.6), we will now derive an interesting relation among the 
derivatives. From (5.6), 

and 

Hence, 

M&£ = t&(x,0 

0R(*,Q-,-..A...A^*l, 
a 

• {x + 4t-4ti)R1(x,t). 

(x + 4t-4^)^l = t^Jl. (5.10) 
ox ot 

Thus, from (5.6), 
x^(x) + 4^_1(x)-4^_3(x) = /i^(x). (5.11) 

However, from (5.1), we have 

RUM = x%(x) + R„(x) + 2/£_,(x) - %_3(x). (5.12) 

Substituting for xRI,(x) from (5.12) in (5.11) and rearranging the terms, we get 

(» + l)K(x) = W+1(x) - ^_,(x)} + 3{^_,(*) - R^_3(x)}. 

Using (4. i) in the above expression, we have the result 

(n + l)R„(x) = rU*) + X-iW • (5.13) 

Apart from the above result, it has not been possible to derive any other simple derivative relation 
for the rising diagonal polynomials. 

6, CONCLUDING REMARKS 

We have thus defined and obtained polynomial expressions for the four sets of diagonal 
polynomials associated with the four sets of Morgan-Voyce polynomials Bn(x), bn(x)y cn(x)P and 
Cn{x). We have also obtained a number of interesting properties of these diagonal polynomials, 
including the recurrence relations they satisfy. It appears that these diagonal polynomials have a 
number of other interesting properties. 

We would like to mention one such interesting property regarding the location of the zeros of 
these diagonal polynomials. Using the network properties of two-element-kind electrical net-
works, it is possible to show that, for n = 1,2,..., 8, the following results hold: 

(a) The zeros of i^(jc), rn(x), pn(x), and Pw(x) are all simple and lie on the imaginary axis, 
that is, all the zeros are purely imaginary. 
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(b) The zeros of i^+1(x) interlace on the imaginary axis with those of R„(x), rn(x), pn(x)7 

and P„(x). Also, the zeros of rw+1(x) interlace on the imaginary axis with those of R„(x), rn(x), 
and Pn(x), the zeros of pn+l(x) interlace on the imaginary axis with those of R„(x), r„(x), pn(x), 
and Pw(x), and those of Pw+1(x) interlace on the imaginary axis with those of R„(x), rn(x), pn(x), 
and P„(x). 

(c) Htowever, the zeros of rn+l(x) and those of p„(x) do not interlace, except for the case of 
w = l. 

We conjecture that the above results are true for any value of n. 

TABLE 1 

Rising Diagonal Polynomials for n = 0,1, 29 .*,9 8 

Ro(x) = l 
Rx{x) = x 

R2{x) = x2+2 

R3(x) = x3+4x 

RA(x) = x4 + 6x2+3 

R5(x) = x5+%x3+l0x ! 

/^(JC) = JC6 + 1 0 J C 4 + 2 1 J C 2 + 4 ' 

R1(x) = x1 +12*5 + 36x3 + 20x 

R^(x) = x8 + 14x6 + 55JC4 + 56x2 + 5 

PoW = 1 

p,(*) = * 

p2(x) = jc2+3 

p3(x) = jc3 + 5x 

p4(x) = ;x 4 +7; t 2 +5 

p5(x) = ^: 5 +9x 3 +14x 

P 6 ( X ) = X6 + 1 1 J C 4 + 2 7 J C 2 + 7 

p7(,x) = x7 + 13.x5 + 44x3 + 30x 

p 8 U) = / + 15.x6 + 65.x4 + 77x2 + 9 

r0(x) = l 
rx(x) = x 

r2(x) = x2+l 

r3(jc) = x3 + 3;t 

r4(;t) = jc4+5jc2+l 

r5(;t) = ;C 5 +7 ;C 3 +6JC 

r6(jc) = Jt6+9;t4 + 15;c2+l 

r7 (JC) = JC7 +1 IJC5 + 28x3 +10* 

r8(jc) = x8 + 13JC6 + 4 5 / + 35JC2 +1 

, P 0 W = 2 
P,(*) = * 
P2(x) = ;c2+2 

P 3 ( X ) = J C 3 + 4 X 

P4(x) = x 4 + 6 x 2 + 2 

P5(x) = x 5 + 8 x 3 + 9 x 

P 6 U ) = ;C6 + 1 0 J C 4 + 2 Q ; C 2 + 2 

P7(x) = x7 + \2x5 + 35.x3 + 16* 

P8(x) = x% + 14.x6 + 54x4 + 50x2 + 2 
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It is well known that primes can occur in the Fibonacci sequence only for prime indices, the 
only exception being F4 = 3. This follows from the fact that for any two positive integers k and n, 
Fn divides Fkn. I could not locate the earliest reference to that result, but page 111 in [1] contains 
several proofs of this. Of course, if/? is a prime, Fp may very well be composite; the first example 
of this is F19 =4181 = 37-113. Here is the list of the next few terms Fp that are composite: 

F31 = 1346269 = 557-2471, 
F37 = 24157817 = 73-149-2221, 
F41 = 165580141 = 2789-59369, 
F53 = 53316291173 = 953-55945741 

In this note we show that in fact Fp is composite for certain primes /?. We prove the 
following result. 

Theorem: Let p > 7 be a prime satisfying the following two conditions: 
L p = 2 (mod 5) or p = 4 (mod 5); 

II. 2/7 - 1 is also a prime. 

Then F is composite, in fact, (2/? ~-l)\Fp. 

Proof: We start with the explicit formula for Fp: 

Multiplying out by 45 and squaring, we get 

5 ^ = ̂ { ( l H - V 5 ) 2 ^ ( l - V 5 n + 2 

or 
2 ^ . 5 ^ = l{(l + V5)2/, + (l-V5)2p} + 22". 

When we expand the powers inside the braces, the terms involving V5 will cancel out and we get 

2*-' .*?=i+(2f )5+(*f )*+-+[2l i2y i+y+*'• 
Since 2p -1 is a prime, 22p~l = 2 (mod 2p -1) and (2/) = 0 (mod 2/? -1) for k < 2/? - 1 , so 

5Fl -2 = 1 + 5̂  +4 (mod 2p-1) 
or 
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2F* s 5P-1 +1 (mod Ip -1). (1) 

Now let (f) denote the Legendre symbol. By Euler's theorem, 

S ^ - ^ ^ r y ] (mod 2/7-1). (2) 

Suppose p = 2 (mod 5) so that p = 5k + 2 for some integer k. Since 2/? - 1 is a prime, by Gauss's 
reciprocity theorem, 

9 / 5 - 1 A 4 2j7-2 

f£_LI = (_l)rT- = i 

so that 

Hence, by (1) and (2), 

2/?- l 

2 H V fldi 
2 / 7 - n ^ 5 *m-

2Fl = -1 +1 = 0 (mod 2/j -1 ) . 
p 

This means that 2/7 - 1 divides Fp, and since Fp > 2/7 - 1 for p > 7, i^, is composite. 
In a similar way, if p = 4 (mod 5), p = 5& + 4 for some £, and 

5 ) _ ("2/7-1) _ flOk + 7) _ / T 

^TJ - e r r e r r {-5)=-1' 
and again, as before, 2p-1 divides i y 

Here is the list of the first 21 prime indices/? for whiph the above Theorem guarantees F to 
be composite: 19, 37, 79, 97, 139,157, 199, 229, 307, 337, 367, 379, 439, 499, 547, 577, 607, 
619, 727, 329, 839. 
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1. INTRODUCTION 

Let N denote the nonnegative integers, and let P denote the positive integers. Define T: 
2N +1 -» 2N +1 by T(x) = ^ - , where 2J 13x +1 and 2j+l \ 3x +1. The famous 3x +1 Conjecture 
asserts that, for any x e2N+l , there exists I : G N satisfying Tk(x) = 1. Define the least whole 
number k for which Tk(x) = 1 as the total stopping time a(x) of x, and call the sequence of iter-
ates (x, T(x)9 T2(x\...) the trajectory of x. Note that a(x) = oo if the trajectory of x diverges, 
and that cr(l) = 0. Furthermore, if k e P is fixed, and x is the smallest positive odd integer satisfy-
ing Tk{x) = 1, we say that x is minimal of level k. In this paper, we employ a specific partition of 
the positive odd integers to show that if x is minimal of level k > 3, then a(x) = a(2x +1). In 
addition, a set of positive integers satisfying <r(x) = cr(2x +1) is characterized. Using a related 
partition, wre then show that the arithmetic progression (1 mod 16) is a "sufficient set," in other 
words, to prove the 3x + l Conjecture, it suffices to prove it for all x = 1 mod 16. In [4], Korec 
and Znam proved that the arithmetic progressions (a mod pn\ where 2 is a primitive root (mod 
p2) and (a, p) = 1, are sufficient sets; however, this result does not apply when/? is a power of 2. 

A thorough summary of some known results on the 3x + l Conjecture is given in Lagarias [5] 
and Wirschlng [6]. It is important to observe that our formulation of the function T(x) differs 
from that in [3], in which T: P -> P is given by T(x) ~\ if x is even and T(x) = •2^hI is x is odd. 
As a consequence, our total stopping times are different. For example, (j(27) = 41 under our 
formulation, whereas a(27) = 70 in [3]. 

It is the authors hope that the results of this paper, or perhaps the techniques used in proving 
the results, will be useful in computing na(x), which counts the number of positive integers y < x 
such that Tk(y) = a for some nonnegative integer k. The strongest known results along this line 
are given in Applegate and Lagarias [1]. 

2* TOTAL STOPPING TIMES OF MINIMAL NUMBERS 

We begin by constructing a partition of the positive odd integers. For a, A G P , denote the 
arithmetic progression (am + b)^=0 by (am + b). Next, define subsets of 2N +1 as follows: 

Sl={j(22n+lm + 22n"l-ll 

S2 = {j(22n+2m + 22n+l + 2ln -1), 
neP 

S3={J(22n+lm + 22" + 22"-l-l), 

S4=\J(22n+2m + 22"-i). 
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It is easy to verify that [Sh S2, S3, S4] is a partition of 2N +1. We will also need the following 
two preliminary lemmas, both of which follow directly from the definition of T(x). 

Lemma 1: Let x e 2N +1, and let k e N satisfy k < a{x). Then a(Tk(x)) = a(x) - k. 

Lemma 2: Let x e 2N +1 with x ^ 1. Then a(x) - o(4x +1). 

The following two lemmas give total stopping time properties of certain subsets of the posi-
tive integers obtained from our partition. For notational convenience in the upcoming proofs and 
throughout this paper, we write 2j || n (2J exactly divides n) if 2j \ n but 2j+l \ n. 

Lemma 3: If x e Sx u S2 - (1), then <r(x) = a(2x +1). 

Proof: First, consider the case in which x e Sx with x * 1. By the definition of Sl9 x is of the 
form 22n+lm + 22n~l -1. Application of the function 7 yields: 

where 2J || 32""1 • Am + 32""1 - 1 . Note that 32""1 - 1 = 2 mod 4, therefore j = 1. Furthermore, 
r2w"1(2x +1) = 32"-1 • 8m + 32""1 • 2 - 1 . Thus, 4 • T2n~\x) +1 = T2n~\2x +1). Applying Lemma 2, 
we obtain a(T2n-\x)) = a(T2"-l(2x +1)). Hence, by Lemma 1, it follows that <r(x) = a(2x +1). 

Next, consider the case xeS2. By definition of S2, x is of the form 22n+2m + 22n+l + 22" - 1 . 
Application of the function T yields: 

^n(x) = 32n-4m + 32n
;2 + 32n-l^ 

where 2y || 32w • Am + 32n • 2 + 32" - 1 . Since 32w - 1 = 0 mod 4 and 32w • 2 = 2 mod 4, we see that 
7 = 1. Furthermore, 72/2(2x +1) = 32w - 8m + 32w • 4 4- 32w • 2 - 1 . Hence, 4 • r2w(x) +1 = T2n(2x +1). 
Applying Lemma 2 yields a(T2n(x)) = a(T2n(2x + l)), so, using Lemma 1, we conclude that 
<T(X) = <T(2X + 1). D 

Lemma 4: If x e AŜ  U IS4 - (3), then there exists j ; < x satisfying cr^y) = a(x). 

Proof: First, consider the case in which x GS3. By definition of £3, we have x = 22w+1m + 
22w +22""1 - 1 . If /i = l, x = 8m + 5, so choosing j = 2m + l and applying Lemma 2 gives the 
result. If n>l, we can choose y e2N + l satisfying 2 j + l = x. Note that y GS2, SO using a 
computation similar to that in the proof of Lemma 3, we see that 4>T2n~2(y) + l = T2n~2(x). 
Applying Lemmas 2 and 1, we obtain a(y) - a(x). Now consider the case in which x GS4 with 
x ^ 3 . By definition of S4, we have x = 22n+2m + 2 2 n - 1 . Again, choose >> so that 2j/ + l = x. 
Clearly, yeSl9 so again by the proof of Lemma 3, it follows that 4• T2n~l(y) +1 = r2w_1(x). 
Noting that y±\ and applying Lemmas 1 and 2, we obtain o{y) - <r(x). D 

The following result pertaining to total stopping times of minimal numbers can now be 
proved. 

Theorem 1: If x is minimal of level k > 3, then a(x) - a(2x +1). 
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Proof: Let x e 2N +1 be minimal of level k > 3. Note that x * 1 and x * 3. Using the defi-
nition of minimality and Lemma 4, we see that x <£S3^JS4. Therefore x e ^ u ^ , so Lemma 3 
implies that a(x) - a(2x +1). • 

Remark: The arguments in Lemmas 3 and 4 actually show that the appropriate trajectories 
coalesce after a certain number of steps, irrespective of whether or not they converge to 1. This 
is in part due to the fact that if f(x) = 4x +1 and x is odd, then T(f(x)) = T(x). Note also that if 
g(x) = 2x4-1, the relation T(g(x)) = g(T(x)) holds true for x odd. Furthermore, it can be 
demonstrated by straightforward computation that if gatb(x) = ax + b with a-b = 1 and x is of 
the form 2wiw + 2"- 2 - l or 2nm + 2n~l + 2n~2-1 with n>3, then ga,b(Tk(x)) = Tk(ga^b(x)) for 
k <n-3. A study of the interaction of various linear functions ga,b(x) with T(x) under com-
position deserves further exploration. 

3* A SUFFICIENT CONDITION FOR TRUTH OF THE 3x + 1 CONJECTURE 

By use of a similar technique, it can now be demonstrated that to prove the 3x + l Conjec-
ture, it suffices to prove it for all positive x = 1 mod 16. This improves a result given in Cadogan 
[2]. 

Lemma 5: Suppose that for all positive x = 1 mod 8 there exists i e N such that Tk(x) = 1. 
Then, for all x e 2N +1. we can find k e N such that 7* (x) = 1. 

Proof: For 1 = 1,2,3,4, define 3£ = £, n (&w + 7), where [ShS2,S3,S4] is the partition of 
2N +1 used in Lemmas 3 and 4. We repartition the positive odd integers as follows: 

2 N + 1 = (8W + 1)U(16W + 3)W(16W + 11)U(8W + 5 ) U 7 ; ^ ^ W ^ L J 7 ; . 

NOW let x G 2N +1 be given. We can assume that x * 1 and x * 3, as the theorem follows trivi-
ally for these values of x. We examine the following cases: 

Case 1. If xe(8&! + l), by the hypothesis of Lemma 5, there exists k e¥ such that 
7*(x) = l. 

Case 2. Let x e (16m + 3). Then x = 2y +1 for y e (8/w +1). A simple computation shows 
that r2(x) = T2(y). By the hypothesis of Lemma 5, there exists k e¥ such that 7*(y) = l, hence 
7*(x) = l. 

Case 3. Let x e (16/w +11). Then T(x) e (8m 4-1), so the hypothesis of Lemma 5 guarantees 
that there exists k e P satisfying Tk(T(x)) = 1. Thus, Tk+\x) = 1. 

Case 4. Let x e Tx u 7 .̂ If x e 3J, we can write x = 22w+1m + 22""1 - 1 , where n > 2. Then 
r2w-2(x) = 32n-2-8w + 32w-2-2-l, and since 32""2 = 1 mod 8, we see that T2n~2{x) e(8m + l). If 
x GT2, we can write x = 22"+2m + 22M+1+22*-l, where w£2. Then r2w-1(x) = 32w-1-8m + 32"-1 

• 4 + 32""1 - 2 - 1 , which simplifies to ^ ( x ) = 32""1 • 8m + 2(32" -1) +1, and since 32w - 1 = 0 mod 
4, we obtain T2n~l(x) e(8m + l). Invoking our hypothesis yields Tk(x) = 1 for some k. 

CaseS. L e t x e J 3 ^ r 4 . If x G73, thenx is of the form 2 2 n + W2 2 "+2 2 " - 1 - l , where n>2. 
Choose y satisfying 2y +1 = x. By a computation similar to that used in the proof of Lemma 4, 
we see that 4- T2n'2(y) +1 = T2n~2(x), hence T2n~l(y) = T2"-l(x). If n = 2, j e(16m +11), and if 
w>2, )> G2J, so by the proofs of Case 3 and Case 4, respectively, there exists k satisfying 
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7*00 = 1, hence 7*(x) = l. If x eT4, then x is of the form 22n+2m + 22n - 1 , where ?i>2. Le t j 
satisfy 2y +1 = x. Again, 4 • T2""1^) +1 = P^-^x), so T2n(y) = T2n{x). But j e 3J, so by Case 
4, there exists k satisfying Tk(y) = 1, hence 7*(JC) = 1. 

Case 6. Finally, let x e(8w + 5). Define /(w) = 4w +1. Choose the smallest positive^ satis-
fying f(y) = x for n e P. Note that j £(8w + 5), since/(2m + l) = 8??i + 5. I f j ^ l and j ^ 3 , 
we can invoke the previous cases to obtain k satisfying Tk(y) = 1. Since T(f"(y)) = T(y), we 
obtain 7(y) = J(x), and therefore Tk(y) = 7*(x) = 1. If j = 3, then T(fn(yj) = 7(3/) = 7(3) = 5, 
hence T2(fn(y)) = 1, so J2(x) = 1. If y = 1, we have / * ( » = 1 + 4 + ••• +4W = (4W+1 - 1 ) / 3 , hence 
T(fn(y)) = 1, so T(x) = 1. Thus, in all cases, we have displayed k eN for which Tk(x) = 1. D 

According to Lemma 5, the arithmetic progression (8m +1) constitutes a sufficient set. The 
next theorem improves the sufficient set. 

Theorem 2: Suppose that for all positive x = l mod 16, there exists i e N such that Tk(x) = 1. 
Then, for all x e 2N +1, we can find i €N such that Tk(x) = 1. 

Proof: Let x = 8w+1 be given. A straightforward computation yields 
7^ /^ ^m 9x + 7 72w + 16 9w + 2 
7z (64x + 49) = — = —— = — r - ^ - , 

2J 2J 2J~3 

where 2j || 9x + 7, and hence 2-;~31| 9m + 2. Also, 

7fl(x) = 7fl(8ni + l) = - ^ , 

where 2^||9#i + 2. By unique factorization, k=j-3, and hence T2(x) = 72(64x + 49). Since 
64x + 49 is in the arithmetic progression (16wi + l), we can invoke the hypothesis of Theorem 2; 
therefore, there exists k satisfying Tk(T2(x)) = 1. Thus, J*+2(x) = l, and since x was chosen 
arbitrarily from (8/w +1), we can apply Lemma 5 to obtain the result. • 

Further strengthening of the result given in Theorem 2 certainly seems possible. An inter™ 
esting question concerns which progressions of the form (2nm + l) constitute "sufficient sets" 
whose convergence to 1 guarantees the truth of the 3x + l Conjecture. Perhaps it can be proved 
that convergence of the set of numbers of the form {2n +1: n = 1,2,3,...} is sufficient. 

4. OTHER NUMBERS WITH EQUAL TOTAL STOPPING TIMES 

We now characterize an additional set of positive odd integers satisfying cr(x) = cr(2x + l). 
Let Lk={xe2N + l\cr(x) = k}, and define Gx = {fn(x)\n eN} KJ {/*(2x + l) |« G N } , where 
f(w)=4w + l. For convenience, we set Gx_x =0. We inductively define the j * exceptional 
number of level k to be the smallest positive integer Xj satisfying x. ^Lk- U/=0 G^_,. 

Note that for j = 0, Xj is simply the minimal number of level k. Also observe that Lemma 2 
and Theorem 1 tell us that all numbers in G^ are of level k, hence xx is the smallest positive inte-
ger of level k not accounted for by G^, x2 is the smallest positive integer of level k not accounted 
for by GXQ U GXl, and so forth. It turns out that the exceptional numbers share the same total 
stopping time property as the minimal numbers. 
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Theorem 3: Let Xj denote the j * exceptional number of level k with k >2 and x- > 3. Then 
cr(Xj)=cr(2xj+V). 

To prove Theorem 3, we need the following two preliminary lemmas. 

Lemma 6: Let Xj denote the j * exceptional number of level k with k > 2 and x • > 3. Then 
Xj £(16iw + 3)u(8m + 5) 

Proof: Since x0 is minimal of level k with A:>2 and x- >3 , we have x0 £(16m + 3)<u 
(&w + 5), hence the Lemma holds for j - 0. Let j > 1. We prove that x- £(16w + 3) by contra-
diction. If x, e(l&m-3), pick J satisfying 2y + l = x/. Clearly a(y) = o-(x/), hence y Ghk. 
Since j> <x- and x̂  is the smallest number in Lk -UL0G^_,, we see that j eG*^ for some i < 
j - 1 . Hence y = fp(xj) or y = fp(2xt + 1) for some /?eN. Since /?>1 yields j e(8/w + 5), 
which is impossible, we have p = O. Hence j = xt or y = 2xt +1. But y = x,- yields 2xz- +1 = x •, 
so Xj G Gx. with i < j - 1 , contradicting the definition of x.. Hence j = 2xt +1. But j G (8iw +1) 
forces x,. to be even, again a contradiction. If Xj = 8w + 5, then select j = 2iw +1. Since <7Q>) = 
a(Xj) and y<*j, we see that j GGX/ for some i <j-l. But xy- = f(y), hence xy- GGX., contra-
dicting the definition of x̂ -. Hence Xj <£ (&w + 5) D 

Lemma 7: Let 53 and $4 be subsets of 2N + 1 as defined in Section 2. Let x- be the j * excep-
tional number of level A" with k > 2 and x • > 3. Then x • ^ 5 3 u 5 4 . 

Am/* Suppose xy e ^ u ^ . Then x, is of the form 22n¥lm + 22n + 22""1 - 1 or 22"+2m + 
22" - 1 . Furthermore, by Lemma 6, we have n>2. Choosey satisfying 2y +1 = x.. As in the 
proof of Lemma 4, we have a(y) = <J(XJ), therefore, by definition of xjy we must have y eGXj 
for some i < j - 1 . Therefore, y = fp(xt) or y = fp(2xi +1) for some p e N . If p > 1, we have 
J G ( 8 W + 5), hence Xj e(16wi + l l) , which contradicts the fact that S3<uS4 and (l&w + ll) are 
disjoint. Thus p = 0, so either y = xt or y = 2xt +1. But y = xf. yields 2xy +1 = Xj, hence x,- G GXj 
for i < j - 1 , contradicting the definition of x^. Thus, we have y - 2xt +1, so 4x,- + 3 = x7-. 

A simple computation shows that xt must be in S3<uS4. We therefore have proven that Xj G 
S3<u$4 implies there exists xt GS3*US4 with xf- <x/-. Applying a simple induction and using the 
definition of S3 and $4 yields xp G(8w + 5)u(16w-f 3) for some p. But this contradicts Lemma 6, 
hence x̂  G S3 u 5^ is impossible. • 

Proof of Theorem 3: Consider the partition of 2N +1 as defined in the proof of Lemma 5. 
By Lemmas 6 and 7, we see that Xj ^(16#i-f3)u(8/w + 5 ) u ^ u l ^ . Hence Xj e(&w + l)u(16wf + 
H)u2Ju2^. Applying Lemma 3, we obtain a(Xj) = cr(2Xj+l). 0 

Our final theorem enables us to conclude that there exists an exceptional number x. of level k 
for all k > 2 and for all j > 0. 

Theorem 4: For all j > 0 and k > 2, Lk - U/=0 Gx._x * 0. 

Proof: We proceed by induction on j . Since Lk * 0 is well known [3], the result holds true 
for 7 = 0. Now assume Lk -U/=0 GXi_x * 0 for all j<n. We wish to show that Lk -UJL0

 G*,-i ^ 0• 
For all j<n, let xy be the smallest integer in Lk -U/=0Gx._x. Note that the sequence {xy-} is 
strictly increasing, and that Xj £ GXi for i < j - 1 . 

2000] 77 



ON TOTAL STOPPING TIMES UNDER 3x + 1 ITERATION 

Consider the number w = 64x„_1 + 49. We first prove that w £Gx. for all i <n-l by contra-
diction. If w GGx. for some i < n - 1 , then w = fp(xi) or w = fp(2xt +1) for some /? e N. Since 
M> G(8#I + 1), we must have p = 0. Therefore, w = x,- or w = 2xt +1, and since the latter contra-
dicts oddness of xi9 we have w = xr But this implies that xn_l < xt, contradicting the fact that 
{Xj} is strictly increasing. Hence w gGx. for all / <n-1. Furthermore, as seen in the proof of 
Theorem 3, we have <J(W) = cr(x/7-i) = k, hence w is in Lk - {J"=0 Gx._x, so Lk- U^o Gxt_{ ^ 0. • 

Remark: An interesting question concerns whether a// numbers x satisfying a(x) = a(2x +1) can 
be identified. The general question of finding all numbers x satisfying a(x) = a(ax-l-b) for arbi-
trary whole numbers a and b looks difficult. Development of functions such as f(w) = 64w + 49 
which satisfy the condition a(x) = cr(f(x)) appears to be a promising approach. 
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0. INTRODUCTION 

In this note we deal with several combinatorial sums and series involving inverses of binomial 
coefficients. Some of them have already been considered by other authors (see, e.g., [3], [4]), but 
it should be noted that our approach is different. It is based on Euler's well-known Beta function 
defined by 

B(m,n) = ll
otm-\l-t)n-ldt 

for all positive integers m and n. Since 
mm ,rt-r(m)r(fi) = (iH-i)i(/i-i)! 

we get 
[^]l={n+\)itk{\-trkdt (i) 

for all nonnegative integersn andkwith n>k. 

1. SUMS INVOLVING INVERSES OF BINOMIAL COEFFICIENTS 

Theorem 1.1 ([4], Theorem 1): If n is a nonnegative integer, then 

-i *i _i_ i Et1 2* 

fc=(A s L k=l 

Proof: Let Sn be the sum of inverses of binomial coefficients. From (1) we get 

Making the substitution 1 - It = x, we obtain 
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Theorem 1.2: If n is a positive integer, then 
In &, n * (2nY4/ iY_ 4/f + l 
Ly){k){2k) -2^i-

Proof: Formula (1) yields 

|(-»'(?)(21J'=|(-i)'5")(4»+i)j>"a-'r-^ 

= (4#i + l)jJ(l-/)4 
(i-02 

Theorem 1.3 (fSJ): If n is a positive integer, then 

Proof: Let iSw be the sum to evaluate. From (1) we get 

s„=i(-i)*(^)(2«+i)j;V(i-o^*dif 

=(2»+D£|S (g)(-i)*/*o - o2-*}<# 

Since 

it follows that 

VT-7±/'VF = cos arctanJ-— ±/'sin arctanJ— 

£w = (2/i + 1)J cos 4/i arctan./-— 

Making the substitution arc tan^^ = x, we obtain 

5„ = (2/i +1) J* cos(4/ir) sin (2x) rf*; 

<*. 

2/1 + 1 f*/2, . J* {sin(4/2 + 2)x-sin(4/i-2)x}tf&: = -. 

Theorem 1.4 (f2J): Ifm, /?, and/? are nonnegative integers with p<n, then 

^(m\(n+mYl _ n±m±l(n\l 
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Proof: Formula (1) yields 

= («+/« + l)jV(l - t)"+"-p(\ + j^-Xdt 

= („ + B f + i ) fV( i - / ) -PA=^±^ i r , , w 

Remark: In the special case /> = «, from the above theorem we get 

Y fm\ (n + m\~l _ n + nt+l 

Theorem 1.5: If m and n are nonnegative integers, then 

fc=0 

m+m\ l m + n + l \ (m + n + l^ l 

+ (-1)" 

Proof: We have 

= (m+n + \)Utm{\-t)n+ldt + {-\)nfotm+n+ldt 

_ m+n + l(fm+n + lY1 i f . i y 1 
~ m + n + 2\y m ) K }j 

Remark: In the special case m = n we get 

while in the special case m = 0 we obtain 

iMr-Ei 0 ^ 
Consequently (see [3], p. 343), 

W + l 
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Theorem 1.6: If n is a positive integer, then 

i v ^ y i yfsi+rr1, i r̂3»+2V1 

3« + l £ 0 W 3n + 2L{3k + l) +3n + 3^0{3k+2J 

Proof: We have 

1 L_V(3»Y ! i v -^+ iy 1 , i ^r3»+2v 
3» + l £ j W 3»+2£0l3* + 1J 3n + 3^0l3* + 2j 

k=oJo 

i.? I w /" /3 V l „i ^1 /\3w+3 / 

= ' (i-/)3"(i-?+/2)y —UJ U.= '(k^)—=i 
J o [ 6lo-03Jj Jo 1-2/ 

3/?+3 _ *3«+3 
dt. 

On the other hand 
3«+2 /%>,„ , 0 v l 3»+2 

3/?"~~ t J f c=oV / it=o 

. i f 3«+2 / , \fc] i n A3«+3 ,3w+3 

' i r ^sG^H' .-2. *• 
completing the proof. 

2. SERIES INVOLVING INVERSES OF BINOMIAL COEFFICIENTS 

Theorem 2.1: If m and » are positive integers with m > n, then 

ffmky = fii+fri-iva-rr-" 
4-\nk) Jo n _ /"n _ /Y»-« V " ' • £r0vwv Jo (i-/"(i-om"")2 

Proof: From (1) we get 

Z 3f =S(^+i)J0^o-o("'-")^ 
= mf] fk(t"(l - t)m-nfdt + f ] J V ( l - t)m-nfdt. 

Let / : [0 ,1 ] -*R be the function defined by f{t) = tn{\-t)m~n. It is immediately seen tha t / 
attains its maximum at the point t0=n/m. Since f(t0) < 1, it follows that 

yMtn{i-t)m-"y = /
 {{i~t}—-=-

ti {\-tn{\-t)m-nf 
and 
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X0"(i-0m"")* = - 1 
£ T \-t"{\-ty-" 

uniformly on [0, 1]. Therefore, we obtain 

Y (mkY = f1 t"(l-t)m~" df ft dt 
t^Knk ) /MJo (1 -1"{\ - t)m-")2 J" 1 - tn{\ - t)m~" ' 

completing the proof. 

Remark: As special cases of Theorem 2.1 we get 

Indeed, according to Theorem 2.1, we have 
00 / o 7 , V l »i 1 i ^ *2 

£oV*J io(l-t + t2)2 3<>(\-t + t2)2 hl-t + t2 

tX2k) ~Jo(l-^2(l-02)2 ' 

and 
, 2 /1 , \ 2 

£=0 
respectively. Since 

l + 3x2 1 + x , 1-x 
(1-x2)2 2(1-x)2 2(1 + x) 2 ' 

we obtain 

jL\2k) -lo2(l-t + t2)2 Jo2(l + / - r 2 ) 2 

- f1 dt 1 r1 aft r1 <ft 1 r1 dt 
-3o(\-t + ty 2'o\-t + t2 *o(\ + t-t2)2 2lo\ + t-t 

Taking into account that 

f L ^ = 2 * £ and f _ ^ = M l n i ± ^ 5 hl-t + t2 9 hl+t-t2 5 2 
and that (see, e.g., [1]) 

dt b + 2ct 2c r Jr r dr fl + zc? zc t at 
-I (a-f&r + c*2)2 ~ (4ac-&2)(a+6r + cl2) 4ac-62 J a + bt + ct2 ' 

from (4) and (5) one can easily obtain (2) and (3). 

Theorem 2.2 ([4], Theorem 2): If n > 2 is an integer, then 

(5) 
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Proof: For each positive integer/?, we have 
JL /™ • t v i P 

SP :=ifwI*r=f;(«+*+i)j;>o-o"* 

k=o\ J k=o 

= (« +1) |j(l - ifdt - (n +1) JV+1(1 - 0""1* + J / 0 - t)n~2dt 

~{p+i)jV+1(i - ty~2dt+pjl
Qtp+2(i - ty~2dt. 

Formula (1) yields n-l- ; (p+n + l)\ x A ' (p+n + l) 

Taking into account that n>2,we conclude that sp-^-^ when p~>co. 
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Starting May 1, 2000, all solutions to others' proposals must be submitted to the Solutions' Editor: 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowlte 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, AM 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to stanley@tlac.net on the Internet. All 
correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+l+Fn> F0 = °> Fl = t 

A1+2 = Ai+i+ A** A) = 2, A - 1 -

Also, a = (l + V5)/2, £ = ( l -V5)/2 , Fn = ( a M - ^ ) / V ^ a n d Ln = a"+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-889 Proposed by Mario DeNobili, Vaduz9 Lichtemtein 
Find 17 consecutive Fibonacci numbers whose average is a Lucas number. 

B-890 Proposed by Stanley Rabinowitz, Westford, MA 
If F_aFbFa_b + F_bFcFb_c + F_cFaFc_a = 0, show that either a = b, b = c, or c = a. 

B-891 Proposed by Aloysius Dorp, Brooklyn, NY 
Let <P„> be the Pell numbers defined by PQ = 0, Px = 1, and Pn+2 = 2Pn+l + Pn for n > 0. Find 

integers a, b, and m such that Ln = Pan+b (mod m) for all integers n. 

B-892 Proposed by Stanley Rabinowitz, Westford, MA 
Show that, modulo 47, F„ - 1 is a perfect square if n is not divisible by 16. 

B-893 Proposed by Aloysius Dorp, Brooklyn, NY 
Find integers a, b, c, and d so that 

FxFyFz +aFx+lFy+lFz+x+foFx+2Fy^^ +dFx+4Fy+4Fz+4 = 0 

is true for all x, y, and z. 
B-894 Proposed by the editor 

Solve for x: 
F^0 + 442F^ + 13F^9 = 221F^4 + 255^ 7 . 
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SOLUTIONS 
Absolute Sum 

B-871 Proposed by Paul SL Bruckman, Berkeley, CA 
(Vol 37, no. 1, February 1999) 

Prove that 
In 

se?>-«-'Cr} 
Solution by Indulis Strazdins, Riga Technical University, Latvia 

The sum is equal to 

S(n) = 2]T (n - kf (2H = 2n\ - 6n2sl + 6 ^ - 2%, 

where the expressions 

^ = I*'"f?) (« = 0,1,2,3) 
fc=0 

can be derived from the known formulas 

The results are 

£<*>"'2""' 

A:=0 V J 

* - * " - $ > 
2n-i 12n * = » l 2 . „ 

Thus, 

S(ri) = (4n3 -12n3 + 6rc2(2n +1) - 2w2(2n + 3))22"-2 - (w3 - 6n3 + 9rc3 - «2(4rc +1)) M = n2 (2%). 
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Bruckman noted that 

and conjectures that 

k= 

for some monic polynomial Pr(n) of degree r. 

Solutions also received by H.-J. Seiffert and the proposer. 

Rational Recurrence 

B-872 Proposed by Murray S. Klamkin, University of Alberta, Canada 
(Vol 37, no. 2, May 1999) 

Let rn = Fn+l I Fn for n > 0. Find a recurrence for tn - r2. 

Solution 1 by MaitlandA. Rose, University of South Carolina, Sumter, SC 
F2 F2+2F F +F2 2F F2 ? 1 

f __ rn+l - rn ^jLrnrn-\ ^rn-\ _ | | *rn-\ {
 rn-\ - \ \ I 

Solution 2 by Kathleen E. Lewis, SUNY, Oswego, NY 
The identity F2

+l = IF2 + 2F2_l-F2_2 is straightforward to prove. Dividing by F2 gives 

Klamkin, Morrison, and Seiffert all found the corresponding recurrence for an arbitrary second-
order linear recurrence wn+2 = Pwn+l - Qwn .Iftn = (wn+l I wn)2, then 

t . ( f ._a.i£Ljae+_e 
^ w - 1 ^n-4n-2 

Solutions also received by Brian D. Beasley, Paul S. Bruckman, Leonard A. G. Dresel, John 
F. Morrison, Jaroslav Seibert, H.-J. Seiffert, and the proposer. 

A Property of 3 

B-873 Proposed by Herta Freitag, Roanoke, VA 
(Vol 37, no. 2, May 1999) 

Prove that 3 is the only positive integer that is both a prime number and of the form L3n + 
(-i)"4-
Solution by L. A. G. Dresel, Readng, England 

Put Tn - L3n + (-l)nLn. Since the Binet forms for L3n and Ln give the identity L3n~ I?n-
3(-lfLn, we have Tn = Ln(L2

n-2(-lf) = LnL2n. Now Ln = 1 only if n = 1, so that Tx = 3. But 
when n * 1, T„ is the product of two integers, each greater than 1. Hence, 3 is the only prime of 
the form T„. 
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Solutions also received by Paul S. Bruckman, Kathleen E. Lewis, John F. Morrison, Jaroslav 
Seihert, H.-J. Seiffert, Indulis Strazdins, and the proposer. 

Another Property of 3 

B-874 Proposed by DavidM. Bloom, Brooklyn College, NY 
(Vol 37, no. 2, May 1999) 

Prove that 3 is the only positive integer that is both a Fibonacci number and a Mersenne 
number. [A Mersenne number is a number of the form 2a -1.] 
Solution by the proposer 

If Fn = 2a -1 with a > 2, then Fn +1 = 2a. But the general identity Fa+b + {-l)bFa_b = FaLb 

shows that 
n~4k 
n = 4k + l 
n = 4k + 2 
n = 4k + 3 

implies 
implies 
implies 
implies 

Fn + l=zF2k-lL2k+l> 

Fn + l = F2k+lL2k> 

Fn + l = F2k+2L2k> 

Fn-hl = F2k+lL2k+2. 

Thus, if Fn +1 = 2a, the Z-factor on the right must be a power of 2. But it must also be less than 
or equal to 4 since no Lucas number is divisible by 8. Thus, in all cases, L^ ^ 4 and k > 1 since 
Fn > 3. Hence, k = 1 and the result follows. 

Solutions also received by Paul S. Bruckman, Leonard A. G. Dresel, and H.-J. Seiffert. 

A Third Property of 3 

B-875 Proposed by Richard Andre- Jeannin, Cosnes et Romain, France 
(Vol 37, no. 2, May 1999) 

Prove that 3 is the only positive integer that is both a triangular number and a Fermat num-
ber. [A triangular number is a number of the form «(w +1) / 2. A Fermat number is a number of 
the form 2°+ 1.] 

Solution by H.-J. Seiffert, Berlin 
Let n be a positive integer and a a nonnegative integer such that n(n +1) / 2 = 2a +1. Multi-

plying by 2 and then subtracting 2 on both sides yields (w-l)(/f + 2)=-2a+1. Hence, n>2, and 
n-l and n + 2 both must be powers of 2. Since n-\ and n + 2 are of opposite parity, we then 
must have n-l = 2° or n = 2. This gives w(w + l)/2 = 3 = 21 + 1. 
Solutions also received by Paul S. Bruckman, Leonard A. G. Dresel, Jaroslav Seihert, and the 
proposer. 

Trigonometric Sum 

B-876 Proposed by N. Gauthier, Royal Military College of Canada 
(Vol 37, no. 2, May 1999) 

Evaluate 

jfc=i \FkFk+i) \FkFk+i) 
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Solution by Jaroslav Seibert, University of Education, Czech Republic 
For all real numbers x and y, we have 

Therefore, 

. x+y . x-y 1 , x 
sin „ J sin „ ̂  = -—(cosx - cos y). 

2 2 2V •" 

sin 
k=\ 

7*Fu 

FkFk+l bij \rkrk+ij k=i 

Fu.i + Fh 

FkFk+i 

]T cos2;r „ t t 1—cos2/r—-
k=l V FkFk+l FkFk+l 

1 n 

^ J f c = l 

cos2;r-—-cos2;r—-
[ jfc+l 

= -— cos2/r—-cos2;r-
^ [ w+l 

If 2/r J . 2 ^ 
2 C 0 S ^ - T - s m T̂ [ n + l w+l 

Solutions also received by Paul S* Bruckman, Charles K Cook, Mario DeNobili, Leonard A. 
G. Dresel, John F. Morrison, MaitlandA* Rose, H.-J. Seiffert, and the proposer. 

Determining the Determinant 

B-877 Proposed by Indulis Strazdims, Riga Technical University, Latvia 
(Vol 37, no. 2, May 1999) 

Evaluate 
FnFn+l Fn+lFn+2 

A1+4A1+5 ^n+5^n+6 

At+2^n+3 

^Vs-6^1+7 

rn+3rn+4 

Fn+§Fn+9 ^n+9^n+lQ Ai+loAi+1 1 Ai+ l lAi+12 

^ 1 + 1 2 ^ + 1 3 ^ 1 + 1 3 ^ + 1 4 ^ + 1 4 ^ 1 + 1 5 ^ + 1 5 ^ + 1 6 

Solution by the proposer 
Let Pn = FJFn+l. It is straightforward to prove the identity 

^i+3 = ^Fn+2 + 2Pn+l - Fn . 

Hence, the 4th column is a linear combination of the first three ones, and therefore the determinant 
isO. 
Most of the solvers pointed out analogous results for larger determinants. If the determinant 
contains the product ofk Fibonacci numbers, FnFrH.l...Fn+k_l, then the determinant is 0 when the 
order of the determinant is at least k+2. 
Solutions also received by Paul S* Bruckman, Leonard A. G. Dresel, Jaroslav Seibert, H.-J. 
Seiffert, and the proposer. 
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Harmonic Inequality 

B-878 Proposed by L. A. G. Dresel, Reading, England 
(Vol 37, no. 3, August 1999) 

Show that, for positive integers n, the harmonic mean of Fn and Ln can be expressed as the 
ratio of two Fibonacci numbers, and that it is equal to Ln_1 + Rn, where \R„\< 1. Find a simple 
formula for Rn. 

Note: If h is the harmonic mean of x and y, then 2 Ih = 1 Ix +1 / y . 

Solution by Harris Kwong, SUNY College at Fredonia, NY 
The harmonic mean ofFn and Ln is given by 

2FnLn = 2F2„ =F*>=Ln 1 i ( ~ i y ' , 

in which F2n = Fn+lLn_x + (-1)" follows from Binet's formulas. 

Solutions also received by Paul S. Bruckman, Charles K Cook, Don Redmond, H.-J. Seiffert, 
James A. Sellers, Indulis Strazdins, and the proposer, 

Addenda. We wish to belatedly acknowledge solutions from the following solvers: 

Brian Beasley solved B-854, 855, 857, 860, 862, 863, and 864. 
L. A. G. Dresel solved B-866, 867, 868, 869, and 870. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HA VEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSES IN THIS ISSUE 

H-559 Proposed by N. Gauthier, Royal Military College of Canada 
Let n and q be nonnegative integers and show that: 

n | 

a. S„(gr):=g 2cos(2^/») + (-l)«+%g 

= (-\y+1nLqn 

5F2qFqn 

" 1 

-rrf-r- "odd-
nLqn 

- n even. ^Iq^lq^qn 

Ln and F„ are Lucas and Fibonacci numbers. 

H-560 .Proposed by H.-J. Seiffert, Berlin, Germany 
Define the sequences of Fibonacci and Lucas polynomials by 

F0(x) = 0, Fl(x) = l, and Fn+l(x) = xFn(x) + F^x), n GN, 
and 

LQ(x) = 2, Lx(x) = xy and Ln+l(x) = xLn(x) + Ln_x{x\ neN, 

respectively. Show that, for all complex numbers x and all positive integers «, 

Z ^ r r r I VF*W = F2n(x)H-x)"Fn(x) 
k=Qn K\ j 

and 
[nil] I^Zl(" i t f 1 ^ = L2n(x) + (-xTL„(x)-
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SOLUTIONS 
Continuing... 

H-543 Proposed by David M Bloom, Brooklyn College of CUNY, Brooklyn, NY 
(Vol 36, no. 4, August 1998) 

Find all positive nonsquare integers d such that, in the continued fraction expansion 

^d = [n;ah...,ar_h2n], 

we have ax = • • • = ar_x = 1. (This includes the case r = 1 in which there are no a's.) 

Solution by Charles K Cook, University of South Carolina Sumter, Sumter, SC 
For the case [n; 2n ], it is known (see [1], p. 80) that x = [2n] satisfies x2 = 2nx +1. Thus, 

x - n + «Jn2 +1 and so 
4d = n + - 1 

which simplifies to d - n2 +1. 
Setting y equal to the periodic expansion and recovering a relationship for y using the usual 

formal manipulations on the continued fraction representation 
1 

y = l + -
1 + - 1 

1 + 

+ -
2n + -

y 
yields the following equations iory: 

y = 

y = 

y = 
y = 
y = 

0;V2S] 

0;Ul2^] 
0 ; U U > ] 
0;l,l,l,l,l,2w] (10w + 3).y2-16w>>-8 = 0 

2 / iy 2 -2 / iy - l = 0 

(2n + T)y2-4ny-2 = 0 
(4n + l)y2-6n-3 = 0 

(6n + 2)y2-\0ny-5 = 0 

and, in general, if Fm is the rrfi1 Fibonacci number, then y = [0; m-ones, 2n\ and y satisfies 
~ Fm¥\ - °> which can be shown by a routine inductive argument. 

Thus, 
n2l(2n-l)Fm+Fm+l 

m+l 
must be integral. So both 

„2 + 1 + (2„-l)Fm ^ (2»-l)Fm 

[ m+l m+l 

are integral. 
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However, gcd(Fm, Fm+l). = 1, so 2w = 1 (mod Fm+1). Hence, Fm+l must b,e odd. Therefore, 
gcd(2, Fm+l) = 1, and the linear congruence In = 1 (modFw+1) always has a solution. Thus, if m is 
the number of ones in the continued fraction expansion, it follows that 

, 2 , (2n-l)Fm 

provided Fm+l is odd. 
A few solutions are shown in the table below. 

m 
0 

| 1 
2 
3 
4 
5 
6 
7 
8 

Fm 

1 
1 
2 
3 
5 
8 
13 
21 
34 

n = n(k), k > 1 
k 
k 

None 
3 f c - l 
5k-2 
None 

13*-6 
21*-10 

None 

n values 
1,2,3,... 
1,2,3,... 

None 
2,5,8,... 
3,8,13,... 

None 
7,20,33,... 
H 32,53,... 

None 

d = d(k) 
* 2 + l 

k2+2k 
k2+k + y2 

9k2 -2k 
25k2-Uk+2 

£2+(10& + 3)/8 
169Jfc2-140& + 29 
441*2-394fc+88 
*2+(42& + 13)/34 

d values 
2,5,10,... 
3,8,15,... 

None 
7,32,75,... 

13,74,185,... 
None 

58,425,1130,... 
135,1064,2875,... 

None 

Reference 
1. C. D. Olds. Continued Fractions. Washington, D.C.: The Mathematical Association of 
America, 1963. 
Also solved by P. Bruckman, A. Tuyl, and the proposer. 

Primes and FPPfs 

B-544 Proposed by Paul S. Bruckman, Berkeley», CA 
(Vol 36, mo. 49 August 1998) 

Given a prime p > 5 such that Z(p) = p + l, suppose that q = \{p2 - 3) and r = p2 - p -1 are 
primes with Z(q) = q +1, Z(r) = -|(r -1). Prove that n = pgr is a FPP (see previous proposals 
for definitions of the Z-function and of FPP's). 
Solution by the proposer 

For all natural m such that gcd(w, 10) = 1, let sm denote the Jacobi symbol (5/m), and 
mf = m- sm. If s is any prime * 2,5, it is well known that Z{s) \ sf. We then see that sp-sq--\, 
sr = gn = spsq8r = +1. Thus, |? = ±3, q & ±3, r = ±1, n = ±1 (mod 10). 

Now, if J is any prime * 2,5 and a(s) = W Z(s), then a(s) and ^-(J -1) have the same parity 
(see this journal, Problem H-494, Vol. 33, no. 1, Feb. 1995; solution in Vol. 34, no. 2, Aug. 1996, 
pp. 190-91). Since a(p) = a{q) = 1, a(r) = 2, it follows that p = q = 3, r = n = l (mod 4). Also, 
32 _ 3 _ 1 = 5? which shows that r cannot be prime if p = 3 (mod 20). Therefore, p = 7 (mod 20); 
this in turn implies that # = 3, r = w s 1 (mod 20). 

Next, we see that Z(?) = ̂ 0 2 - 1 ) , Z(r) = £(p + l)(p-2). Then 

Z(n) = lcm{Z(/>), Z(q\ Z(r)} = \(p2 - \){p - 2). 

In order to show that n is a FPP, it suffices to show that n - 1 = nf = 0 (mod Z(w)). Now 
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pq-r = ±(p3-2p2-p + 2) = ±(p2-i)(j>-2) = Z(ny, 

hence, pq = r (mod Z(n)). Then/i = r2 (mod Z(n)). Next? r + l-p(p-t), r-l = (p + l)(p-2), 
whence r2 - 1 = p(p2 - l)(p - 2) = 2pZ(n) = 0 (mod Z(n)). Thus, n' = n-l = r2 - 1 = 0 (mod 
Z(w)), which shows that n is a FPP. Q.E.D. 

Note: The smallest FPP satisfying the above conditions is 7 • 23 • 41 (p = 7). 
y4&0 solved by If.-/. Seiffert 

An Interesting Equation 

H-553 Proposed by Paul & Bruckman, Berkeley, CA 
(Vol 37, no. 3, August 1999) 

The following Diophantine equation has the trivial solution (A, B, C, D) - (A, A, A, 0): 
A3 + B3 + C3 - 3 ABC = Dk, where k is a positive integer. (1) 

Find nontrivial solutions of (1), i.e., with all quantities positive integers. 
Solution (1) by the proposer 

Let 
0=exp(fwr), (2) 

K(a, b, c) = a3 +A3 + c3 -3a*c. (3) 

As we may easily verify: 
K(a, b, c) = $(a, b, c) • s(a, b09 c02) • s(a, £02, cff), (4) 

where 
s(a,Z>,c) = a + Z> + c. (5) 

Given U, V, W positive integers, where at least two of them are distinct, let 
x = (s(u, v, W))\Y=(s(u, ve9 we2))\ z = (s(u, vd2, we))k. (6) 

From (4), it follows that 
X¥Z = (K(U,V,W))k. (7) 

Now define the following quantities: 
A = ±s(X, Y, Z), B = ±s(X, Y02, Z0), C = }s(X, Yd, Z02). (8) 

Again using (4), we see that 
27ABC = K(X,Y,Z). (9) 

We now employ the following well-known expression: 

w+^+^lJ fell: o°) 
By trinomial expansion of the quantities defined in (8), implementing (6) and (10), we obtain the 
following expressions: 

A = F0(U,V,W), B = Fl(U,V,W), C = F2(U,V,W), (11) 

where 
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Fj(U,V,W)= X { k ^U'VW, j = 0,1,2, (12) 
f+g+h=k V > 5 > ' V 

g-h&j (mod 3) 

and I * ^ 1 is a trinomial coefficient = ' 

From (12), it is clear that A, B, and C are positive integers. We may also easily verify the follow-
ing inverse relations: 

X = s(A, B,Q,Y = s(A, B0, C02\ Z = s(A, B02, CO). (13) 
Again using (4), this implies 

XYZ = K(A,B,Q. (14) 

From (7) and (14), it follows that 

K{A,B9Q = (K(U,V,W))k. (15) 
Thus, by reference to (1), we see that we may set 

D = K(U,V,W). (16) 

Accordingly, solutions (A,B,C,D) of (1) are given by (11) and (16); alternatively, A, B, and C 
may be obtained indirectly from (8) and (6). 

Note that the restriction that U, V, and W be not all identical ensures that Y and Z are 
positive, as of course is X. Then, from (7) and (16), it follows that D> 0, which avoids trivial 
solutions. 
Solution (2) by John Jaroma andRajih Rahntan, Gettysburg College, Gettysburg, PA 

After a brief historical background, we will show that, in fact, there are an infinite number of 
solutions of (1), subject to (2): 

A3 + B3+C3-3ABC = Dk; (1) 
A$,C,De{l ,2 , . . .} and Jfce{2,3,...}. (2) 

First, in terms of a historical perspective, it appears that Diophantine equations involving 
cubic terms have generated considerable interest. For example, in 1847, J. J. Sylvester provided 
sufficient conditions for the insolubility in integers of the equation 

Ax3 + By3 + Cz3=:Dxyz. (3) 
Moreover, Sylvester was able to prove that whenever (3) is insoluble, there must exist an 

entire family of related equations equally insoluble. His motivation for studying such equations 
was to break ground in the area of third-degree equations. Ultimately, Sylvester had hoped to 
open a new field in connection with Fermat's Last Theorem. 

Today, cubic equations continue to command a great deal of attention. For instance, 
although we know that every number (with the possible exception of those in the form 9«±4) 
can be expressed as the sum of four cubes, it is still not known whether every number can be 
expressed as the sum of four cubes with two of the cubes equal. Stated algebraically, we would 
like to know, if given any k, do integral solutions exist for the Diophantine equation 

,43 + 53+2C3 = Jfc. (4) 
(k - 76 is the first of many values of* for which an integral solution is not known.) 
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Perhaps an even more difficult problem exists in the question whether numbers not of the 
form 9n±4 can be expressed as the sum of three cubes; that is, does the equation 

A3 + B3 + C3 = k (5) 
have a solution in integers \/k *9n±4f? The first known value of k for which the problem 
becomes open is k - 30. Furthermore, even if we restrict ourselves to the specific case k = 3, we 
do not know whether (151,1) and (4,4, - 5) are the only two solutions of (5). 

It is likely that Diophantine equations will continue to be an area of research for some time to 
come, for we know that, given an arbitrary Diophantine equation, there cannot exist an algorithm 
which in a finite number of steps will decide its solvability. Hilbert's Tenth Problem was demon-
strated to be unsolvable by Yuri Matiyasevich in 1970. 

Consider the following infinite sets: 
(I) pe{l ,2, . . .} , * = 3/> + l, % ^ G { 1 , 2 ? . . . } : ^ / ^ G { 2 , 3 , . . . } , 

D = 1 + n\ + (nl It^f -30?! In^n^ 
A = Dp, B = (nl/n2)A, C = nlA = (n2B). 

(II) * = 2, w e f t 2,...}, 
B = D = 9n2, A = D-n, C = D+n. 

Remark: We have ignored the case where p = 0, for this would imply that k = 1 and it would 
then be trivial to produce infinitely many solutions of (1). 

Proposition: Sets (I) and (II) represent disjoint families of solutions of (1) satisfying (2). 
Proof: We first prove that (I) and (II) are disjoint families of solutions of (1). Since 

elements of (I) and (II) are ordered 4-tuples of the form (A, B, C, D) and p e {1,2,...}, it follows 
immediately that (I) and (II) are disjoint as 3p +1 ^ 2. 

Now, to show that (I) represents an infinite set of solutions of (1), we let n-r^. Hence, 
nx = bn for some b e{2,3,...} and 

D = l + b3+h3n3-3b\ B = bA, C = nbA = nB. (6) 
Substituting (6) into (1), we get 

D3p + b3D3p+n3b3D3p-3nb2D3p = D3p+\ (7) 
Rewriting (7), we obtain 

D3p{\ + b3 +n3b3 - 3nb2) = D3p+l. (8) 

Thus, (8) is true if and only if 1+b3 +h3n3 - 3b2n = D. By (6), the result follows immediately. 
Finally to show that (II) is also an infinite family of solutions of (1), we infer from (II) that 

B = D = n + A and C = In + A. 
Substituting these quantities and the hypothesis that k - 2 into (1), we obtain 

A3 + (n + A)3 +(2n + A)3 -3A(n + A)(2n + A) = (n + A)2. (9) 

Simplifying (9), we obtain 9n2(n + A) = (n + A)2. It now follows that (II) is a set of solutions of 
(1) if and only if 9n2 - n - A = 0. But, by hypothesis, A-D-n- 9n2 -n, and this produces the 
desired result. 
Also solved by B. Beasley, C Cook, andH.-J. Seiffert 
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