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1. INTRODUCTION 

The general solution of Pythagoras' 3-square equation, namely x 2 + j 2 = z2, for integer 
triples (x, y9 z), has been known since Euclid in the 4th century B.C. In 1988, Georg Schaake and 
John Turner discovered a new way of finding all solutions, using the rational number tree to help 
find and classify them [5]. Their methods were heavily dependent on continued fractions, and 
hence closely related to the arithmetic of Fibonacci sequences. 

Recently, when considering properties of certain triangles in R3 in relation to Fibonacci 
sequences, Turner discovered solutions for the 4-square equation x2 +y2 +z2 -w2 in integer 
quadruples (x, y, z, w), with x, y, z, w each being a function of Fibonacci numbers. A simple num-
ber tree helped in this discovery too. The idea easily generalized (see Section 3, below), providing 
a two-variable identity which defined a more general class of integer solutions to the 4-square 
equation. 

The two-variable identity that we found turned out to be a special case of one given by 
Catalan in 1877; it was discovered independently by Dainelli, and published also in 1877 (see [1], 
[2], [3]). Modern treatments of the 4-square equation do not refer to these identities, and the 
general solutions of it do not point to or suggest relationships with Fibonacci numbers (see, e.g., 
Sierpinski's book [6]). 

We believe that our manner of finding such relationships may be new, and that the story of 
their discovery, from a triangle which we decided to call an F-triangle, will be found interesting. 
Moreover, we show how the vector geometric approach may be exploited, and discover further 
interesting results about sequences of F-triangles, presenting us with a variety of Fibonacci iden-
tities. 

Further study of the 4-square identity led to discovery of infinite classes of integer-solutions, 
in terms of Fn_x, Fn, and F„+1, for both the 3-square equation (Pythagoras') and the 5-square 
equation. Later we extended this process to provide solution-class formulas for the /w-square 
equation, with m = 6, 7,8,.... These formulas for the solutions of the infinite sequence of equa-
tions are presented in the final section of the paper. 

2, AREAS OF F-TRIANGLES AND 4-SQUARE SOLUTIONS 

A triple of positive integers (a,b,c) will be associated with the triangle ABC, where 
A = (a, 0,0), B = (0, b, 0), C = (0,0, c). The diagram below shows the arrangement of axes and 
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triangle. The area of the triangle, denoted by A, is easily computed from elementary vector 
analysis, thus: 

A = ±\ABxAC\ = ±\(-a,b,0)x(-a,0,c)\ = ±\(bc,ac,ab)\. 

Thus, A = ±y[S, where S = (ab)2 + (be)2 + (ca)2. Any choice of a, b, c for which S is a square 
provides a solution of the 4-square equation, with x = ab, y = bc, and z = ca. 

The case a — Fn_^1, b — Fn, c — Fn+l, where Fn is the /2th Fibonacci number, is of special inter-
est. It seems appropriate to call this an F-Triangle, where n = 2, 3,.... The area of the 72th F-
triangle is then: 

K = {&, with S„ = (F^F„)2 + (F„F„+1)2 + (F^F^f. 

As the following table indicates, Sn seems to be a perfect square. 
« 

^n 

2 
32 

3 
72 

4 
192 

5 
492 

The formula S„ = (F2n_l+Fn_lFn)2 (or, equivalently, Sn = (F^+l-FnFn_l)2) was found by 
inspection. This corresponds to the class of solutions 

x = Fn_lFrn y = F„Fn+l, z = Fn_lFn+h w = F2n_l+Fn_lFn 

of the 4-square equation x2 + y2 +z2 = w2. For w = 2,3,4, 5, the respective solutions (x, y, z, w) 
are (1,2,2, 3), (2,3, 6, 7), (6,10,15,19), and (15,24,40,49), all of which happen to be primitive. 

The formula given for Sn can be proved to be correct with algebraic manipulation and use of 
Fibonacci identities. This proof is omitted, however, since in the next section it will be discovered 
that the success of our approach owes to the fact that c = a + h, and not to the particular choice of 
a and b. This observation will lead to a simple proof of a useful theorem, and to additional classes 
of solutions of the 4-square equation. 

3. MORE GENERAL CLASSES OF SOLUTIONS OF THE 4-SQUARE EQUATION 

In Section 2, it was shown that the area A of the triangle ABC associated with the positive 
integer triple (a, 6, c) was A = -|<JS, where S = (ab)2 + (be)2 + (ca)2. If c = a + b, then: 
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S = (abf + (b(a + b))2 + ((a + Z>)a)2 

= a4 + A4 + 3a262 + 2(a3b+Z>3a)2 

= (a2+£2+a£)2. 

This calculation gives us the following theorem. 

Theorem: Let a and b be positive integers. Then 

x = aby y = b(a+b\ z-a{a+b\ w = (a2 +h2+ah) 

is a solution of the 4-square equation x2 +y2 + z2 = w2. • 

Any general Fibonacci-type sequence a,b,a+b,a + 2h,2a + 3b,... thereby generates an infi-
nite sequence of general F-triangles, and a corresponding infinite class of solutions of the 4-
square equation. 

Applications 
(i) The F-triangles of Section 2 give w = F2_x+F2+ Fn_lFn - F2n_l + FnFn_l, proving the result 

of Section 2. 
(ii) The area of the triangle corresponding to the triple (a,h, a + 6) is A = (a2 +b2 +ab)/2. 
Thus, the area is integral if and only if a and b are both even. Since no two consecutive Fibonacci 
numbers are even, the Fibonacci F-triangles of Section 2 all have half-integer areas; the first four 
of these are 3/2, 7/2, 19/2, 49/2. 
(iii) Another example, this time involving Lucas numbers, is the following. Using (a, b, c) = 
(4-i, 4* 4+i) 8ives: 

{Ln_xLn)2 + (4-i4+i)2 + (44+i)2 - (24„ + (-I)""1)2• 
Hence, x = Ln_xLn, y = Ln_xLn+l, z - 44+i> and w = 2L2n + (-l)n~l is another class of solutions to 
the 4-square equation. 
(iv) Yet another example, this time involving both Fibonacci and Lucas numbers, is the following 
triangle, and identity. Using (a, ft, c) = (Fn_h Fn+l, Ln) gives: 

(4- i4+i) 2 + (Fn+lLn)2 + ( V V i ) 2 = (42-i + 4 4 + i ) 2 • 

Hence, x = 4-i4+i> y - Fn+lLn, z = 44-i> and w = F„2_} + 44+i *s another class of solutions to 
the 4-square equation. 

4. SOME PROPERTIES OF F-TRIANGLES 

There are several interesting geometric properties of the Fibonacci F-triangles defined in 
Section 2. Similar procedures for the more general F-triangles would lead to other Fibonacci and 
Lucas identities. 

Area Differences: The area of the rfi" Fibonacci F-triangle is An = (F2n_l + Fn_xFn) 12. 

Then the difference of successive triangle-areas is given by the remarkably simple formula 

Area Ratio: The ratio of successive areas is: 
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K Fn-lFn+F2n-l' 

This ratio tends to a2 as n tends to infinity, where a is the golden ratio. 
An Application of Hero's Formula: Hero's well-known formula for the area of a triangle of 
sides u, v, w is ^Js(s-u)(s-v)(s-w), where s = (u + v + w)/2. For the nih Fibonacci triangle, 
the respective lengths are given (using the Pythagorean theorem and some Fibonacci number 
identities) by the formulas: 

But we have already derived another formula for Aw, so equating the two expressions for this area 
gives us the rather amazing identity: 

\{Fn-lFn +F2n-l) = ^ - fl^S- ^ L ^ " Pll + ̂ +l) , 

where s = (u + v + w)/2. 

Applying the Law of Cosines: Let 0 be the angle between AB and BC. Using the cosine for-
mula w2 = v2 +u2 -2vu cos$, and also direction ratios for AB and BC, we can find expressions 
for cos 0 in two ways. Equating these gives the following identity: 

Ln~L2n = 2(Fn-lFn+l ~F„). 

5* CLASSES OF SOLUTIONS FOR THE GENERAL iw-SQUARE EQUATIONS 

Further study of the 4-square identity found as described in Section 2, together with applica-
tion of formulas from [5, p. 97], led us to solutions, in terms of Fibonacci numbers, of both the 
ancient 3-square equation for sides of a right triangle (Pythagoras') and the 5-square equation. 
We then let m be the number of square terms in an equation, and sought general classes of solu-
tions for m GN, m>2. 

Having obtained solutions for case m = 5 from those of the case m = 4, it quickly became 
obvious how we might extend the process indefinitely; that is, give solution classes for m- 6, 7, 
8, and so on. 

We should point out that the solution to the 3-square equation was obtained from the 4-
square one by a backward deductive process, which is not worth spelling out here in detail. The 
solution's validity can be checked easily using elementary Fibonacci identities. Whereas the 
solutions for cases m = 5,6,7, ... follow in sequence, from the 4-square solution, using the method 
given below under solution (3).* 

* If this method were to be applied to the solution of the 3-square equation, another, different infinite list of 
equation solutions would result for m = 4, 5, 6, ... . We were concerned only to present one such list, and to con-
centrate on the m = 4 (geometric) case as pivotal. 
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We end the paper by showing these solution classes (or an algorithm to obtain them sequen-
tially), for the sequence of /w-square equations, all expressed in terms of three consecutive 
Fibonacci numbers. 

It must be pointed out that none of these solution classes constitutes a general solution for its 
equation—each is merely an interesting infinite subclass of the whole set of solutions. 

We invite the reader to share the authors' view that there is much poetry in the following list. 
Might we call the list An Infinite Ode on Square Equations, or perhaps, A Square Dance in Fibo-
nacci Numbers? 

Solutions to m-Square Equations 
(1) The equation: x2 +y2 = z2, m = 3. 

Solution: 
x = Fil+Fn

2 + F„_lFn, 

y = 2Fn_lF2Fn+i, 
z = 2Fn_lF2Fn+l + l = y + l 

(2) The equation: x2 + y2 + z2 - w2, m-A. 
Solution: 

X = Fn-lFm 

Z = r„rn+i9 

w = Fll + Fn
2+F„_lFn. 

(3) The equation: x2 +y2 + z2 + u2 - v2, m = 5, 
Solution: 

y = Fn-\Fn+h 
Z = AiAt+l> 

u = iKFll + Fn'+Fn.1F„)2-ll 

v = ±[(Fl1+F? + F„_lFny + l]. 
We can easily extend these solution classes so that, for any given m, we can compute a solution 
class for the m-square equation in terms of three consecutive Fibonacci numbers. The method is 
as follows: 

Suppose that we have a solution (x1? x2,..., xw_2, xm_j) for the (m- l)-square equation. 
Then take the function xm_l = /(i^_l5 Fm Fn+l) from this solution, and form the identity: 

4-i-[i(4-i+i)]2-[i(4-i-i)]2 

Then, if u = {(x2_! -1) and v = ±(x^ +1), we can state that (x1? x2,..., xm_2, u, v) is an 
integer solution of the w-square equation, provided that u and v are integers, which they 
are iff xm_l is odd. 
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Beginning with the proven case m- 4, applying this method supplies the solution to 
case m = 5 as shown above, since w = F„_x + F% + Fn_xFn in (2) is always odd. Then, 
applying the method again gives a solution for m - 6; and so on ad infinitum. 

Note that each of the above solutions is expressed in terms of the three consecutive Fibo-
nacci integers, Fn_x, Fn, and Fn+l. Of course, we could easily eliminate one of these from the 
formulas, since Fn_{+Fn = Fn+l; however, that would defeat one of the objectives of the 
paper—namely, to show how neat identities and solutions arise from consideration of three con-
secutive numbers taken from Fibonacci sequences. 

As a final comment, we note that the method we have just given to extend our classes of 
solutions to give a general solution for the w-square case uses precisely the same identity which 
gives that solution to Pythagoras' equation (case m = 3), which is credited to Pythagoras himself. 
This same solution was also found by Fibonacci in Proposition 1 of his book Liher Quadratorum 
[Book of Squares] published in 1225 [4]. We are somewhat surprised that Fibonacci did not 
make our extension to the w-square equation in his book of squares. Perhaps he regarded it as 
trivially obvious! We wonder whether he would have enjoyed our connection of the solutions 
with Fibonacci numbers. 
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The generalized Fibonacci sequence {Hn}, where Hn = Hn_l+Hn_2= Hn(a,h), Hx=a, 
H2=b, a and b integers, has been studied in the classic paper by Horadam [8], and by Hoggatt 
[7], and Brousseau [1], [2], among others. In this paper we approach the problem of representing 
a positive integer N as a term in one of these generalized sequences so that, for N = HR(A, B), 
the subscript R is as large as possible. 

Cohn [5] has solved a similar problem, but part of his theorem statement was omitted. 
Cohn's problem was: given a large positive integer N, find positive integers A, B such that the 
sequence {wn} defined by wx = A, w2=B, and wn+2 - wn+l +wn, n>\, contains N, and A + B is 
minimal. 

Cohn's Theorem (Restated): Let tn = (-IfiNF^-tFJ, where tk = A + 5 , tk+l = B, tk+2 = A. 
Then either t- [N/a] or t = [N/a] + l, where [x] is the greatest integer in x and a = (l + V5)/2, 
gives the smallest value for tk = A + B, depending upon n even or n odd. 

Our problem has a different approach and allows computation of subscripts. The number 
i^ax of this paper is related to a conjecture made by Hoggatt and proved by Klarner [9] that, for 
"n sufficiently large," R(Hn -1) = R(Hn+l -1), where R(N) is the number of representations of N 
as the sum of distinct Fibonacci numbers; Rm3iX gives the value for n to be "sufficiently large" [3]. 

1. INTRODUCTION 

In order to discuss maximal subscripts, we need a careful analysis of where we want the 
sequences {Hn(A, B)} to begin. The Lucas sequence has LQ = 2, with terms to the right strictly 
increasing, while L_x = -l is the first negative term in an alternating sequence to the left of LQ. A 
generalized Fibonacci sequence in which Hn+l = Hn + Hn_x, Hx=a>l, H2=h>l, has H0 = b-a, 
where we list terms to the right and the left of HQ as 

...,2b-3a, 2a-b, HQ=b-a, a, 6, a + b, a + 2b,.... 

If we want H_X<Q as the first negative term, we need b>2a; then (2a-b)<0 as well as 
(b-a)>a and b > a. Then, Hx = a is the smallest positive term in the generalized sequence and 
the terms to the right of H0 are strictly increasing. The Fibonacci sequence, however, has F0 - 0 
with strictly increasing terms to the right of Fx = 1, and the sequences {aFn} are the only sequen-
ces {Hn} which contain Hk = 0. We write H_x = 0, H0 = a > 1, Hx = a9 H2 -b-2a\ 

...,-3a, 2a, -a, a, 0, H0 = a, a, 2a, 3a, 5a,.... 

Notice that the sequence Hn = aFn+l has the same characteristics as the Lucas-like sequence 
Hx=a>l, H2>2a: H_x - 0 is the first nonpositive term in an alternating sequence moving left 
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of H0 = a, while terms to the right of H0 are strictly increasing. Hx-HQ = a are the smallest 
positive terms. 

Thus, we define the standardized generalized Fibonacci (S.G.F.) sequence {Hn{a, B)} by 

H^^H'n+H^ Ht = A>l, H2 = B>2A. 

We note that H0 = B-A>.A, and Hl = Ais the smallest term in the sequence. We will find that 
HQ will determine maximal subscripts for the sequence. If B - 2A, we will have a Fibonacci-like 
sequence in which Hn = AFn+l. Also, Fibonacci and Lucas numbers are numbered to be 
consistent with usage in this journal. 

We need this careful definition of the beginning terms so that we can identify Hl = A and 
H2=B given any two adjacent terms somewhere in the sequence. For example, 13 and 17 are 
adjacent in each of {13,17,30,47,...}, {4,13,17,30,...}, and {9,4,13,17, 30,...}. Note that the 
S.G.F. sequence will have A = 4, B = 13. We do not start with A = 9, B = 4, or with A = 13, 
5 = 17, since a S.G.F. sequence must have B > 2A. While N = Hx in an infinite number of such 
sequences, N = Hn9 n > 2, can appear only within a S.G.F. sequence for which 1 < Hn_l <N-\. 
When N = H2, take 1 <El < [ ( # - l ) / 2 ] , while N = Hn, w>3, has [N/2] + \<Hn_l<N-I. 
Thus, the maximal subscript for N can be found by listing possibilities. If N = 7 = H„, examine 
sequences for which 4 < Hn_x < 6, giving 1, 3,4, 7,11,...; 2,5, 7,12,...; and 1, 6, 7,13,.... The first 
sequence has 7 = H4, and 4 is the maximal subscript for 7. If N = 6 = Hn, examine 4 < Hn_l < 5: 
2,4, 6,10,..., and 1,5, 6,11,.... Both sequences have 6 = H3, but the first sequence has B - 2A 
so that H3 = 2F4; we take the larger subscript, and 4 is the maximal subscript for 6. 

Lemnna 1.1 gives a second way to compute maximal subscripts. 

Lemma 1.1: If Hn = Hn_2 +Hn_v Hx=a, H2=h,tbo equation 

N=Hn(a,b) = aFn_2+bF^1 (1.1) 
has a solution for any integer N. If (a0, b0) is a solution for (1.1), then a = a0- tFn_ly b = hQ + tFn_2 

is also a solution for (1.1) for any integer t. 
Proof: Equation (1.1), which can be proved by mathematical induction, always has solutions 

[10] for integers a, b as above since (Fn_2, Fn_{) = 1. D 

For our purposes in using (1.1), {Hn(a, b)} must be a S.G.F. sequence. Note that 

{i^(l,2)} = {Fw+1} and {H„(lv 3)} = {L„} 

are S.G.F. sequences since B > 2A, but while {H„(l, 1} = {FJ, this is not a S.G.F. sequence. If 
Fn_t <N <Fn, then (n - 2) is the largest possible subscript for N in a S.G.F. sequence by examin-
ing (1.1). If # = 31, since F8<31<F9, solve 31 = H7 = AF5 + BF6. We find 31 = H7 (3,2) but 
B < 2A, so we solve 31 = AF4 + BF5 = H6(2,5), where B>2A, obtaining 6 as the maximal sub-
script for 31. We now have two methods to compute a table of maximal subscripts. 

We will say that a natural number N reaches maximum expansion at R} denoted by 
p(N) = R, if R is the largest subscript possible for N as a member of a S.G.F. sequence or for N 
as a member of a Fibonacci-like sequence. Let R be the largest subscript such that 

N = HR(A,B) = AFR_2+BFR_l 
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for \<A and 2A<B. Then, if 2A<B, p(N) = R; if 2A = B, p(N) = R + l. We will find 
p(FR) = R = p(LR) for R > 3. For the reader's convenience, we list maximal subscripts p(N) in 
Table 1. 

TABLE 1. N = HR(A, B) with Maximal R = p(N) 
N 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

R 
2 
3 
4 
3 
5 
4 
4 
6 
4 
5 
5 
4 
7 
5 
5 
6 
5 
6 
5 
5 
8 
5 
6 
6 
5 

TV 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

R 
1 
5 
6 
7 
5 
6 
6 
6 
9 
5 
6 
7 
6 
7 
6 
6 
8 
6 
6 
7 
6 
8 
6 
6 
7 

TV 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

R 
6 
7 
7 
6 
10 
6 
6 
7 
6 
8 
7 
6 
8 
6 
7 
7 
6 
9 
7 
6 
7 
6 
8 
7 
6 

N 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

R 
9 
1 
1 
1 
6 
8 
7 
6 
8 
7 
8 
7 
6 
11 
7 
7 
7 
7 
8 
7 
6 
9 
7 
8 
7 

2. p(TV) FOR SOME SPECIAL INTEGERS TV 

We write p{N) for some specialized integers TV and consider how many integers TV have 
R = p(N) for a given subscript R. If p(TV) = R in exactly one sequence, TV is called a single; if in 
exactly two sequences, TV is called a double; if in exactly three sequences, TV is called a frvp/e. The 
smallest double occurs when R = 3, for TV = 4 = i/3(l, 3) = 2i^, while the smallest triple occurs 
when i? = 5, for JV = 35 = 7 ^ = ̂ ( 4 , 9 ) = ̂ ,(1,11). 

Theorem 2.1: For the Fibonacci sequence, p{AFR)-R when l < ^ < i ^ + 1 , R>2. Further, 
p(AFR) > R when A > FR+l. 

Proof: p(F2) = 2; p(F3) = 3. By Lemma 1.1, 

AFR = AFR_2 + AFR.X = HR(A + FR_h A - FR_2), 

where A + FR_2 >2(A-FR_l) when A<FR+l and p(AFR)>R. Further, AFR = 0FR_X + AFR = 
HR+I(FR,A-FR), but a S.G.F. sequence requires that B>2A, and A-FR_l>2FR only when 
A>FR+l. Thus, p(^4i^)<i? + l, making p(AFR) = R when ^4<i^+1, and p(AFR)>R when 
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Corollary 2.1.1: Let N = AFR, and p(N) = R, R>3. Then N is a single when A <FR_l9 is a 
double when FR_X < A < 2FR_X; and is a triple when 2FR_X < A < FR+l. For each value of R9 
p(N) - R in at most three sequences. 

Proof: If 1 < A < FR+l9 p(AFR) = Rby Theorem 2.1. By Lemma 1.1, any other solutions for 
p(N) = R. are found from N = HR(A - tFR_l9 A + tFR_2). If t < 0, {HR} is not a S.G.F. sequence. 
If t = 1, then S.G.F. sequence requirements dictate A - FR_X > 1, making N a single when 1 < A < 
FR_l9 and at least a double if A > FR_X. If t - 2, we must have A - 2FR_X > 1, so that N is a double 
when i^_! <^<2i^_ l 3 and a triple when 2FR_X <A<FR+1. If f >3, then A>l + tFR_x >l + FR+l, 
mdp(N)>R. D 

Corollary 2.1.2: For R > 2, p( /$) = i? and p(FR+lFR) = R +1; further, p(F^2 -1) = /? +1, R even, 
andp(F^2 + l) = i? + l, Rodd. 

/*w/ - Apply Theorem 2.1 to FR_XFR+X = Fg + (-1)*. • 

Corollary 2.1.3: p(FRLR_x) = R, R > 2; p(FRLR) = 2R9 R > 1. 

Proof: Since Z^_t = i^ +Z^_2 <i^+i? Theorem 2.1 gives p(FRLR_l) = R and p(FRLR) = 
p(F2R) = 2R. D 

Corollary 2.1.4: p{Ln+lFn) = n + 2, w > 3; and p{Ln+kFk) = n + k, k>2, n>l. 

Proof: Let N = Ln+xFn = (F„_2)Fn + (2FJFn+l = Hn^^ as B > 2 4 , p W > « + 2. 
Since # = Hn+3(F„+l9 Fn_2) has no other positive solutions and {^+3(^+1, ^V-2)} *s n o t a S.G.F. 
sequence, we have p(N) < n + 3, making p(7V) < ^ + 2. Next, let TV = Ln+kFk. One can derive 

# = Ln+kFk = (Fk)Fn+k-2 +QFk)Fn+k_l = Hn+k(Fk, 3Fk)9 

where B > 2a andp(N) > n + k. Also, since TV = Hn+k+x(2Fk9 Fk) has no other positive solutions 
for A and 5, and this solution cannot be used because A> B, we have p(7V) < w + k +1; thus, 
P(Ln+kFk) = n + k. D 

Corollary2.1.5: p(Fn+p + Fn_p) = n = p(Fn+p-Fn_p)9 p>29 n>2 + p 

Proof: Hoggatt (see [7], p. 59] gives 
Fn+p + Fn_p = FnLp9 p even; Fn+p + Fn_p = LnFp, p odd. 

If/? is even, Corollary 2.1.3 gives p(FnLp) = n; ifp is odd, Corollary 2.1.4 gives p{LnFp)-n. 
Similarly, Fn+p -Fn_p = FnLp9p odd, and Fn+p - Fn_p = LnFp9p even, yield p(Fn+p -Fn_p) = n. D 

Corollary 2. 1. 6: p(F2k -1) = p(F2k +1) = k +1, * > 2. 

If* is even, k > 4, p(F2,+1 +1) = p(F2, +1) = * +1; 
p ( ^ + 1 - l ) = p ( / ^ - l ) + l = * + 2. 

If/c is odd, k > 3, p(F2jt+1 -1) = p(F2^ -1) = k +1; 
p(F2ik+1 + l)=p(Fa b+!) + ! = *+2. 
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Proof: When k is odd, k > 1: 
F2k+l = Fk+lLk-h 

F2k+l~^ = Fk+l^k-

kis even, k>2: 
F2k+l = Fk-lLk+l> 

F2k+l ~^~ Fk^k+l-

F2k 1 - Fk-lLk+i> 
F2k+l + l:=FkLk+l-

F2k-l = Fk+\Lk-\> 
F2k+\^^-Fk+\Lk-

Each pair of identities, when summed vertically, gives F2k+2 = Fk+xLk+x, and each can be proved 
by mathematical induction. Then apply Corollaries 2.1.3 and 2.1.4, which give p(N) when 
N = FkLm. D 

Next, we investigate integers N, where p(N) - R and N is not a multiple of FR. The smallest 
such double is N = 83 = H6(\16) = H6(6913). 

Theorem 2.2: Let N = i ^ ( ^ , 5), where 5 > 2^ and p(JV) = R, R > 3. Then # i s a single when 
l< A <FR_X and B<A + FR. N is a double when FR_X < A < FR - 2 and 2A <B <2FR - 3 . 

Proof: Select the smallest integer ^ for which the hypothesis is met. Then 1 < A ^FR_X. 
Otherwise, from Lemma 1.1, N = HR(A-FR_X, B + FR_2), contrary to choice of A as smallest. 
{HR(A + FR_U B-FR_2)} is not a S.G.F. sequence when B<A + FR because then A+FR_X> 
B-FR_2; thus, the conditions A<FR_X and B<A + FR guarantee a single. When A>1 + FR_X 

and B < A + FR, {HR(A-FR_X, B + FR_2)} is a S.G.F. sequence. Since 2A < B, rewrite require-
ments for B as 2A + l£B<FR + A + l9 leading to a double when FR_x + \< A<FR-2 and 
2A + l<B<FR + A + l<2FR-3. • 

To illustrate Theorem 2.2, consider H6(l, 16) = H6(6,13) = 83. The smallest solution has 
A = 1, where 1 < A < F6_x, but B. = 16 > F6 + A = 9, allowing a double. Taking A = 6, F5 < 6 < 
F6-2 mdB = \3<2F6-3. 

Corollary 2.2.1: Let N = HR(A,B), where B>2A. If \<A<FR-2 and B<A + FR9 then 
p(N) = R, R>3. 

Proof: By hypothesis, p(N) > R. 

N = AFR_2+BFR_X = (B-A)FR_X + AFR=HR+X(B-A,A), 

but {HR+l(B-A, A)} is not a S.G.F. sequence when B>2A, and neither are the other solutions 
from Lemma 1.1, N-HR+l(B- A + FR, A-FR_X) and N = HR+l(B- A-FR, A + FR_X). Thus, 
p(N)<R + l and p(N) = R. D 

Corollary 2.2.2: p(N) = R for ( F | + F^_3) /2 integers N, R > 3. 
JY00/; When 5 > 2A, Corollary 2.2.1 gives (FR -2 ) choices for A. Since 24 +1 < B < 

FR + A + l<2FR-3, when A = FR-2, there is one choice fori?; for A = FR - 3 , two choices; ..., 
£or A = FR-l-k, kchoices. So p(N) = R for 

( ^ - 2 ) 0 + 2 + 3+. >.+(FR-2)) = (FR-2)(FR-l)/2 

integers N which are not divisible by FR. If JV = AFR, Theorem 2.1 gives p(N) = R for 1 < A < 
FRU -1, so there are (FR+l -1) such integers N. Adding and simplifying, 
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(FR-2)(FR-l)/2 + (FR+l-l) = (FR
2+FR_3)/2 

as required. • 

Theorem 13: For the Lucas sequence, p(LR) = R, R>3. 

Proof: piL,) = 2 and p(L2) = 4. For R > 3, LR = HR(1,3) = IFR_2 + 3FR_l9 so p(LR) > R. 
The only positive solution for LR - HR+l(A, B) = AF^ + BFj^ is A = 2 and B = 1, but this solu-
tion cannot be used since A > B, so p(LR) <R + l, making p(LR) = R. Compare with Corollary 
2.1.4 for it = 2. D 

Corollary 2.3.1: The smallest integer such that p(N) = R is FR. The smallest integer not divis-
ible by FR such that p(N) = R\s LR. 

Theorem 14: The largest integer N for which p(N) = R is N = (FR+1 -l)FR, R>2. Also, 
N = (FR+l - T)FR, R > 5, is a triple, with the other two occurrences given by 

N = HR(FR-1),2FR-1) = HR(FR_2-\,2FR+FR_2-1). 

Proof: For R = 2, N = (F3 - \)F2 = 1. If HR = AFR_2 +BFR_U where B > 2A, then HR < 
BFR_2 + BF^ = BFR, R>3. p(BFR) = R when 1 <B<FR + l-1 by Theorem 2.1. By Corollary 
2.1.1, N - (i^+1 - l)i^ is a triple that can be calculated using Lemma 1.1. • 

Theorem 2.5: If F2k_2 < N < F2k, k > 2, then k < p(N) < 2k -1. 

Proof: By Theorem 2.1, the largest possible value for p(N) in the interval is p(F2k_^) = 
2k-I. We show that the smallest value is p(N) = k by applying Theorem 2.4. Now, take 
N = (Fk+i ~ Wk; *en N < (Fk+l + Fk_{)Fk = LkFk = F2k, while 

N = (Fk + {Fk_, - \))Fk > (Fk + F^F^ = Lk_,Fk_, = F2k_2 

for k > 4. Then, by examining k = 2 and k = 3, and putting this together, 

F2k_2 <N = (Fk+l-\)Fk <F2k, k>2, (2.5.1) 

where p(N) = k and#is the largest integer such that p(N) = k. Notice that taking R = k-l in 
Theorem 2.4, (Fk - l)Fk_l < F2{k_V) from (2.5.1), so that the largest integer N having p(N) -k-l 
is not in the interval of Theorem 2.5. D 

Theorem 2.6: In the interval Fm<N<Fm+l, [(m + 2)/2] <p(N) <m-1, m> 4; and p(Fm +1) < 
[(m + 2) / 2] +1, where [x] is the greatest integer in x. 

Proof: Since Fm is not in the interval, p(N) <m-l. If m is odd, take m = 2k-l; if m is 
even, m = 2k-2. Either F2k_2 <N<F^^ or i^^.j <N<F2k, so that p(7V) > k from Theorem 
2.5. Since either [(wf + 2)/2] = (2*- l + 2)/2] = * or [(m + 2)/2] = {2k-2 + 2)12} = k, p(N)> 
[0» + 2)/2]. 

The smallest integer in the interval is Fm + l, and, by Corollary 2.1.6, either p{Fm + V)-
[{m + 2)/2] or p(Fm +1) = [(m + 2)/2] +1. The largest value for p(N) is m-l, which occurs for 
N = 2Fm_lmdN=Lm_v D 
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Corollary 2.6.1: For m > 4, 

P(Fm + Fm-l) = PtfWl - ^m-2) = *» " t 
PĈ m + ̂ V-s) = P(Fm+l ~ Fm-3) = »» - 1. 

Proof: Since Z,w_j = i^ + i^_2 = ̂ «+i _^V-3, apply Theorem 2.3 in the first case. Similarly, 
use Theorem 2.1 with 2Fm_l - i^+1 - Fm_2 = Fm + Fm_v U 

3. THE MAXIMUM EXPANSION INDEX OF A S.G.F. SEQUENCE 

In this section, we determine when p(HK) = K for the S.G.F. sequence {H„(A, B)}. We 
will call the integer i?max the maximum expansion index of the S.G.F. sequence {Hn(A,B)} if 
p(HK(A, B)) = K whenever K = i?max. For example, the S.G.F. sequence 

{Hn{\ 7)} = 0,7,8,15,23,38, 61, 99,...} 

which has p(H6) = p(3S) = 6 has i?max = 6; p{HK) * K for 1 < K < 5, while /?(#7) =p(61) = 7 as 
well as p(HK) = Z for all ^ > 6. 

Theorem 3.1: If FR_X<B-A< FR for the S.G.F. sequence {#„(>4,5)}, then p(HR(A, B)) = R. 
Further, i? = i?max, and p(HK(A, B)) = K for all * > R. 

Proof: Since 2 ^ < 5 in a S.G.F. sequence, ^ ( < 5 - ^ < i ^ so \<A<FR and B<A + FR.. 
If B = 2A, then JV = ^4i^ and p(N) = R by Theorem 2.1. Also, B= A + FR gives a Fibonacci-
like case, since A = FR-k, B- 2FR - k give 

N = HR = (FR-k)Fr_2+(2FR-k)Fr_l = (FR+l-k)FR, \<k<FR-\, 

where p(N) - R by Theorem 2.1, and A: = 0 gives us B = 2A, already discussed. 
If B>2A, Corollary 2.2.1 gives p(N) = i? when l < ^ < i ^ » 2 , 5 < ,4 + i^ , leaving only 

the cases A = FR-l and A = FR. Since cases B-2A and B- A + FR were discussed above, we 
are finished, and p{N) = R when FR_X <B- A<FR. 

Let K>R. If 
N = HK(A,B) = AFK_2+BFK_X and £>2,4 , 

then/?(#)>£:. Thus, 

but this solution cannot be used since B- A> A when B>2A. Since FK > FR, (B - A) - FK < 0, 
and {B- A) + FK > A-FK_X when B>2A, Lemma 1.1 gives no other usable solutions for 
N = Hk+l. Thus, p(N) < K +1 and /?(#) = K. Putting these cases together, p(HK(A, B)) = K 
when K > R, and R = i?max • 

Corollary 3.1.1: If FR_{<2a<FR, a> 1, R>3, then p(aLn) = n for n>R. If FR_X<A<FR, 
then p(AFn) = n for n>R, R>2. 

Proof: Hn=aLn has HQ = 2a. If FR_x<B-A = 2a<FR, apply Theorem 3.1. If i ^ < 
2A-A<FR, then /i(fir

ll.1(i4,2i4)) = / f - l for n-\>R. Since £ = 2,4 and AFn = Hn_x{A,2A), 
p{AFn) -n for n>R. Compare with Theorem 2.1. D 

110 [MAY 



MAXIMAL SUBSCRIPTS WITHIN GENERALIZED FIBONACCI SEQUENCES 

Theorem3.2: For k>2, n>2, 

P(Fn+ik + Fn) = P(F„+2k -Fn) = n + t, 
P(Fr,+2k+l + Fn) = P(Fn+2k+l ~ Fn) + 1 = ft + k + 1, U tVt% 
P(Fn+2k+i + Fn) = p(Fn+2k+l -Fn)-l = n + k,k odd. 

Proof: p(Fn+2k + Fn) = p{Fn+2k -Fn) = n + k by taking n = n + k and p = k in Corollary 
2.1.5. Since JV = //„+* = AFn+k_2 + BFn+k_x, where p(Hn+k)>n + k if B>2A, we derive identi-
ties involving iv^+i fr°m the identity (see Eq. (8) in [11]) 

^+« = Fm_xFn + FmFn+l (2.7.1) 

to write N = Fn+Fn+2k+l = AF^^+BF^. Take m = n + k and n = k + l for F„+u+1 and 
m-n + k, and w = (-&) for Fn in (2.7.1) to write 

Fn+2k+i - F(n+k)+(k+\) ~ Fn+k-\Fk+i +Fn+kFk+2; 
Fn = F{n+k)+ir.k) = Fn+k_xF_k +Fn+kFl_k = (-l)k+lFkFn+k_l^(--l)kFk,lFn+k. 

Thus, 

N = F ^ + 1 + F„ = ( J w + (-l)*+1/i)FB+ik.1 +(F,+2 + ( - l )*F w ) /W 
= Hn+k+l(A, B). 

If A is even, A = J^+1 - i^ = J ^ , and B - Fk+2 + Fk_t = 2Fk+l, where B > 2 A. Since 5 - A = 
Fk+2, Rm&x = k + 2, where n + k + l>k + 2; p(N) = n + k + l by Theorem 3.1. If k is odd, then 
A = Fk+l + Fk= Fk+2 and B = i^+2 - i^„1 = 2i^ has A > B with no other positive solution, but we 
find that N = Hn+k(2Fk,4Fk+Fk_l), where Fk+l<B- A<Fk+2 so that Rmax-k + 2, and again 
p(N) = n + k,n>2.. 

Subtracting the quantities above, N = Fn+2k+l-Fn becomes Hn+k(2Fk, 4Fk +Fk_l), giving 
p(N) = m + k fork even; for k odd, N = Fn+2k+l - Fn becomes Hn+k+l{Fk_l92Fk+l), giving p(N) = 
n + k + l. D 

4„ SOLVING N = J^C A B) FOR i?5 A AND B 

Given JV, we find A, B, and i? so that N - HR(A9 B), where R = p(N). Our solution depends 
upon a greatest integer identity for the S.G.F. sequence {Hn(A, B)} which allows us to find Hn_l 

when we are given Hn. 

Lemma 4.1: Let {Hn(A9 B)} be a S.G.F. sequence, where -j^-i < B - A <Fk. For n<k, the 
term preceding H„(A,B) is [Hn/a] or [Hn/a] + l, where [x] is the greatest integer in x, and 
a = (l + V5)/2. 

Proof: From [4], use Theorem 3.3 when B>2A and Theorem 2.3 when 5 = 2^4. D 

Lemma 42: For the S.G.F. sequence {H„(A, B)} ,if D = B2 - AB-A2: 
(i) F^KHJJDZF^ 

(ii) Hl-H^-Hl^i-lfD; 
fd9 Wl-H^^-Hl^K^iWH^KF^n^l 
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Proof: (1) Since B>2A, D>0;'mfoct, D>B2 /4, and 4D>BI2. Thus, 
Hn = AF„_2 +BFn_x <(B/2)F„_2+BF„_l = (B/2)Fn+v 

Dividing by jD,Hn/jD<(B/ 2)Fn+l 14D < Fn+l, while 

Fn+l>Hn/jD = (AFn_2+BF„_l)/jD>AF„_2/jD+Fn_l>F„_l. 

For (ii), see [1], [7], and [8]. Lastly, in 1876, Lucas proved that rn2 -mn-n2 = ±1 is satis-
fied by consecutive Fibonacci numbers, and in 1902, Wasteels proved that there are no other 
solutions (see [6], p. 405). Since (Fn, Fn+l) = 1, (iii) follows. Note that (iii) is a test for a Fibo-
nacci sequence. • 

Lemma 43: Let N = Hn(A, B), where n is to be maximized. There are two cases: 
(i) Hn_x = [HJal n = nly 

(ii) Hn_l = [HJa] + l,n = n2. 

The maximal subscript value for N= HR occurs for R = max(/?1? r^). 

Proof: Lemma 4.3 actually is a blueprint for solving for R. By Lemma 4.1, cases (i) and (ii) 
give the only two possible choices for Hn_l. Take case (i). Compute H2 - HnHn_l - H2_x = {-VfD 
from Lemma 4.2 recalling that D > 0. Compute Hn I *JD and select n by Fn_l <Hnl 4D < Fn+l. 
There are two possibilities for n. if (-X)nD> 0, then n is the even possibility, while n is odd if 
(-l)nD < 0. Then n = nx is the solution from case (i). Now take case (ii). Make the same calcula-
tions with Hn_l = [Hn I a] +1 to find n-r^. Then choose n-R- max(% r^). D 

Lemma 4.4: If N = H„(A,B), then 

A^H^F^-NF^l and B=\Hn_xFn_2-NFn_,\. 

Proof: Refer to (1.1) and solve the equations H„ - AFn_2 +BFn_x and Hn_x = AFn_3 + BFn_2 

simultaneously for A and B. D 

Now we can use the four lemmas above to find the S.G.F. sequence {Hn(A, B)} with 
N - HR(A, B) such that R = p(N), given any positive integer N. It is important to note that, if 
B = 2A, {Hn} is a Fibonacci-like sequence and the maximal subscript R will increase by 1, since 
Hn = AFn+l. Lemma 4.2 gives a test for a Fibonacci-like sequence, and a shortened solution 
since, if \(-l)nD\= K2, then Hn = KFn n+l' 

Example 1: Let N = 200l = Hn. Compute case (i): [2001 / a ] = l236 = Hn_l9 and (-!)"/) = 
3069>0, so nl is even; next, F9 <2001/V3069 »36.1<F10? so nx = 10. Compute case (ii) using 
[2001/a] + l = 1237 = Hn_l and (-l)nD = -1405 <0, so ^ is odd; with F9 < 2001/Vl 405 * 
53.38 < F10, r^ = 9. Take R = max(10,9) = 10 = w, and use / / ^ = 1236 from case (i) to compute 
a = |1236F9 -2001F8| = 3 ,6= |1236F8 -2001F71 = 57. Since b > 2a, take tf = Hl0(3,57). 

Example 2: Let N = 357 = Hn. [357/a] = 220 = Hn_l and (-1)*D = 509> 0, so ^ is even. 
Then F7 < 357/ V509 « 15.8 <F8, so ^ = 8. Compute case (ii) for H^ = 221, obtaining (-1)"D = 
-289 <0, so r^ is odd; F7 < 357/7289 =21 <F8, so ^ = 7. We choose ^ = ̂  = 8 and use 
i4_! = 220 to compute a = |220F7 - 357F61 = 4 and h = |220F6 - 357F51 = 25. Therefore, R = 8, 
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A = 4, and B = 25 yields N = HS(4,25). Note that |(-1)"D|289 = 172 in case (ii) indicates a 
Fibonacci-like sequence, ^ + l = 8 = i?? giving a double, and Hn_x-22\ for r^-1 yields a = 
|221F6 -357F5\=17 = A and * = |221F5 - 357F41= 34 = B, or N = H7(17,34) = 17F8. 
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1. INTRODUCTION 

In a recent article [4], the author defined two sets of polynomials, un{x) and vn(x)y by the 
relations: 

u„(x) = (x + p)un_l(x)-qun_2(x\ n>2, (1.1a) 
with 

u0(x) = l, ul(x) = x + p-jq, (Lib) 
and 

vn(x) = {x + p)vn_l(x)-qvn_2{x\ n>2, (1.2a) 
with 

v0(*) = l, vi(*) = * + /> + V?> (L2b> 
where g > 0 , and showed that they are very closely related to two other sets of polynomials 
Un(x) and Vn{x) defined by Andre-Jeannin (see [1] and [2]) by the relations 

Un(x) = (x + p)Un_l^)-^Un_l(xX n>2, (1.3a) 
with 

U0(x) = Q,Ul(x) = l, (1.3b) 
and 

.Vm(x) = (x + pyn_1(,x)-qV^2(x), n>2, (1.4a) 
with 

V0(x) = 2,Vl(x) = x + p. (1.4b) 
In the same article, the author derived a few of the properties of the polynomials un(x) and vn(x), 
as well as some interesting interrelationships. The purpose of this article is to derive further 
properties of these polynomials and their interrelationships. Since the modified Morgan-Voyce 
polynomials Bn(x), bn(x), cn(x), and Cw(x) defined in [4] result when q = l, we thus derive a 
number of interesting properties of these modified Morgan-Voyce polynomials. 

Since the polynomials Un(x) and Vn(x) were defined and a number of their properties were 
studied for the first time by Andre-Jeannin, it is appropriate to refer to them as the Andre-Jeannin 
polynomials of the first and second kind. The polynomials un(x) and vw(x), which are closely 
related to the Andre-Jeannin polynomials, and which exist as real distinct polynomials only when 
q>0, will be referred to as the companion Andre-Jeannin polynomials of the first and second 
kind. We will now list a number of important properties of the polynomials Un(x), un(x), v„(x), 
and Vn(x) that are either known or easily derivable from the known properties, since these will be 
required in establishing the results of the remaining sections. 
Simple Interrelations: 

"„(*) = U^W-jjU^x), from [4]. (1.5) 
v„(*) = U„+1(x) + ̂ U„(x), from [4]. (1.6) 
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KM = U^(x) - qUn_x{x), from [2]. 
Vn(X) = Ur,(X) + ̂ Un-l(x), from [4]. 

K(*) = vn(x) ~ V?Vi(*)> from [4]. 
(x + p-2ylq)U„(x) = un(x)-4q»n-iix)> byinduction. 
(x + p-2jq)vn(x) = «„+i(x)-?«„_!(*), from (1.6) and (1.10). 
(x + p-2jq)v„(x) = V„+l(x)- JqVn(x), by induction. 

Simson Formulas: 
Un+l(x)Un_l(x)-U2„(x) = -q"-\ 

" » + i W v i W - ul (*) = q"~xl2K> 
v»+,Wv.,W-v„2(x) = - r t , 
^+i(*F„-i(*) - V„2(x) = q"~lAuAv, 

from [1], 
from [4], 
from [4], 
from [2], 

where 

Binet's Formulas: 

Au=x + p-2jq, 

Av=x + p + 2jq. 

U„(x) = 

un(x) = 

v„ (*) = 

a"-p" 
a-p ' 
n+l/2 , on+1/2 

a 
; + /?" 

jl /2 

a 

aU2+fiL 

n+l/2 __ fjn+l/2 

a1>2-p 

Vn(x) = a" + P", 

1/2 

from [1], 

from (1.5) and (1.15a), 

from (1.6) and (1.15a), 

from [2], 

where 
a+p = x + p, ap = q, 

a-p = jA, A = AuAv = (x+p)2-4q. 

(1.7) 
(1.8) 

(1.9) 
(1.10) 

(1.11) 
(1.12) 

(1.13a) 
(1.13b) 
(1.13c) 
(1.13d) 

(1.14a) 
(1.14b) 

(1.15a) 

(1.15b) 

(1.15c) 

(1.15d) 

(1.16a) 

(1.16b) 

2. NEW INTERRELATIONSHIPS 

In this section, we will give a number of interesting relations between the Andre-Jeannin 
polynomials Un(x), Vn(x), and their companions un(x), v„(x). In order to present the results in a 
compact form, we will denote by A„(x) any one of the polynomials U„(x), u„(x), v„(x), or 
V„(x). We will first establish the following Lemma concerning A„(x) that is extremely useful in 
establishing certain relations needed to derive the results given in Section 4. 

Lemma 1: A„(x)Ur_h+2(x) = 4(x)[/„_A+2(x) - qr~h+2 Ah_2(x)Un_r(x). (2.1) 

Proof: We confine ourselves to establishing the result when A„(x) = U„(x). Using (1.15a), 
we have 

2000] 115 



SOME FURTHER PROPERTIES OF ANDRE-JEANNIN AND THEIR COMPANION POLYNOMIALS 

U„(x)Ur_h+2(x)-Ur(x)Un_h+2(x) 

a -pn ar-h+2-pi or-h+2 
a' Pr an~h+2-p yn-h+2 

a-p 
= -(a/3)r-h+2 

{a-pf 

= -(aP) 

a~P a-p a-p 

[{a"-r+h-2 +p"-r+h-2} - {a"~rph-2 +P"~rah-2}] 

-P"-r vA-2 
h+2 a—-ph-2 a"~r 

a-p a-p 

= <lr~h+2Uh-2(x)U„-r(.x), using (1.16a) and (1.15a). 
In a similar manner, Lemma 1 can be established when A„(x) = u„(x), v«(*)> a°d K(x) by using 
(1.15a) along with (1.15b), (1.15c), and (1.15d), respectively. 

By letting r = n-h +1 and h-n-r + l in (2.1), we get the following result: 

4 (x)Ur_h+2(x) = 4_A+1(x)t/r+1(x) - f ^ ^ i W - i ( * ) . (2.2) 

Now, by equating the right-side expressions in (2.1) and (2.2) and rearranging, we get the 
determinantal relation 

Ur+l(X) U„_h+2(X) 
M*) ^n-h+l (*) = q' r-h+2 

A-2VX) At-r-\\X) 
(2.3) 

Now, letting r = m, h = m-r + 2, and n-m + n + \-r in (2.3), we get the interesting relation 

\Um+i(x) U„+l{x)\ \Um+l_r(x) U„+i_r(x)\ 
I 4»(*) A(X) I I An-ri*) 4,-rW | 

Now letting h = 2,n = n + l, and r = n in (2.1), we have 

Un+l(x)A„(x) - 4 + 1 (x)U„(x) = ?%(*) . 

Also, letting m - r - n -1 in (2.4), we get 

t/„+1(*H-,(*) - U„(x)A„(x) = q"~\(x + p)A0(x) - 4(x)]. 
It is observed that when ^(x) = Un{x), (2.6) reduces to (1.13a). Now, by letting n = m + n + l, 
h = n + 2, and r = n +1 in (2.1), we have the relation 

4IH-»+I(*) = y M i W 4 i W - ? ^ W A W • (2-7) 
Hence, 

A2„+1(x) = Un+i(x)Ar,+1(x)-qUn(x)An(x) (2.8) 

(2.4) 

(2.5) 

(2.6) 

and 
(2.9) 4„(x) = u„ W4, + iW - ^ „ - i (*H(*) = A (*)U„+l 00 - K - , (*)£/„ (*)-

We may derive a number of other interesting relations. However, we present only a few of 
these relations that will be useful in deriving the results of Section 4: 

un_x{x)v„{x) - «„(*) V,(*) = 2q"-1'2, (2.10a) 

M„_,(*F„(*)-*,,(*F„-,(*) = -<r 'A„, (2.10b) 
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Vi(*F„(*) - v„(x)F„_,(x) = -q"~\. (2.10c) 
n 

Z V"~rAir+l(x) = A+l(*)Un+l(x), (2.11a) 
r=0 

J ^ - ^ 2 r ( x ) = 4WC/„+iW, (2.11b) 
r=0 

X <T^2 r(*) = Un(x)An+l(x). (2.1 lc) 
r=l 

In passing, it may be mentioned that, if we let p = 2, g = 1, and x - 1, we have 

tf„0) = ̂ 2„> * „ 0 ) = ^ W v„(l) = Z,„+1, Vn{\) = Z,„. (2.12) 
Using identities (2.1)-(2.11), we may derive a number of interesting identities for Fibonacci and 
Lucas numbers. One such identity is the following, which may be obtained by letting 4,(1) = Vn(l) 
in (2.5): 

^2(«+l)^2w ~ F2n^2(n+l) = 2. (2.13) 

3. DERIVATIVES AND DIFFERENTIAL EQUATIONS 

We now derive formulas for the derivatives ofU„(x), un(x), v„(x)9 and V„(x) with respect to 
x. 

n-l 
Theorem 1: U!

n{x) = J^Ur(x)U„_r(x). (3.1) 
r=\ 

Proof: We establish the theorem by induction. The result is easily verified to be true for 
n = 1,2, and 3. Now, assuming the theorem to be true for n and n +1, we have 

UUiV) =(x + P)UUx)-tlU>(x) + Un+l(x), using (1.3a) 

= (* + P)1Lur{x)U^(x)-q^ 

= £ V i m * + PWn+U*) ~ ? ^ - r W l + ( * + P W ^ U ^ x ) + t / „ + 1 ( * ) 

« - l w+1 

= HUr{x)Un^_r{x) + U„(x)U2(x) + Un+1(x) ^Ur^)U„+2.r(x). 
r=\ r=l 

Hence the theorem. 

Corollary 1: u'„{x) = £ Ur(x)u„_r(x). (3.2) 
r=l 

«S(*) =U'^{x)-^U'M, using(1.5), 
n - l 

r=l r=l 
= Z ^ W ^ i - r W " V ? S U r ( ^ » - r W > f r o m Theorem 1, 
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n-1 
= Un{xWi{x) + X Ur(x)[Un+1_r(x) - 4qU„_r(x)] 

r=l 
n-\ 

= Un(x)u0(x) + £ Ur(x)u„_r(x), from (1.5), 
n 

Corollary2: **(*) = I OrtoVrC*)- (3.3) 

This corollary can be proved along the same lines as Corollary 1, using relation (1.6) and 
Theorem 1. 

Corollary 3: V^x) = YUr(x)V„_r(x)-U„(x). (3.4) 
r=l 

This corollary can be established using (1.9) and Corollary 2. 

It is also known that (see [2]) 
VXx) = nUn(x). (3.5) 

By induction, we may derive the following similar results for the derivatives of un(x) and vn(x) in 
terms ofUn(x). 

Theorem 2: (x + p + 2^)u'n(x) = nUn+l(x) + Jj(n + l)[/„(x). (3.6) 

Theorem 3: (x + p- 2^)v'n{x) = nUn+l(x) - ^{n + l)Un{x). (3.7) 

In passing, it may be observed that, from (3.4) and (3.5), we have the following interesting 
relation: 

±Ur(x)V„_r(x) = (n + l)U„(x)- (38) 
r=l 

Andre-Jeannin [3] has shown that t/„(x) and Un(x) satisfy, respectively, the differential 
equations 

Un(x): Ay" + 3(x + p)y - (n2 -l)y = 0 (3.9) 
and 

Vn(x)\ Ay" + (x + p)y'-n2y = 0, (3.10) 

where A is given by (1.16b). We now establish similar differential equations satisfied by un{x) 
andvw(x). 

Theorem 4: The polynomial un(x) satisfies the differential equation 

Ay"+2(x+p- 4^)y'~n(n+l)y = °-
Proof: Since Un(x) satisfies the differential equation given by (3.9), we have 

AU^(x) + 3(x + pyUU*) ~ <n + 2)t/w+1(x) = 0 (3.11) 
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and 
AU>>(x) + 3(x + p)U>(x) - {n2 - l)Un{x) = 0. (3.12) 

Multiplying (3.12) by Jq9 then subtracting it from (3.11) and making use of relation (1.5) in the 
resulting equation, we get 

A<(x) + 3(x + pX(x) - n(n + l)un(x) - [nUn+l(x) + (n + l)JqUn(x)] = 0. (3.13) 

Use of Theorem 2 reduces (3.13) to 

Au'nXx) + 2(x + p-^)u'n(x)-n(n + l)un(x) = 0. (3-14) 

Hence the theorem. 
Similarly, by using (1.6), (3.9), and Theorem 3, we can prove the following result regarding 

v„(x). 

Theorem 5: The polynomial vn(x) satisfies the differential equation 

Ay" + 2(x + p + Jq)y -n(n + l)y = 0. (3.15) 

Andre-Jeannin [3] has further shown that Ujf\x) and V$k\x), k = 0,1,2,..., where the 
superscript (k) stands for the k^ derivative with respect to x, satisfies the following differential 
equations: 

Uik)(x): Ay" + (2k + 3)(x+p)y' + {(k + l)2-n2}y = 0, (3.16a) 

V^\x): Ay" + (2k + l)(x + p)y + (k2-n2)y = 0. (3.16b) 

Using a similar procedure, and using Theorems 4 and 5, we may also establish that wj^(x) and 
v^k\x) satisfy the following differential equations: 

u^\x)\ Ay" + 2(£ + l)(x + p- Jq)y' + {k{k + l)-n(n + l)}y = 0, (3.16c) 

v<*>(x): Ay" + 2(k + l)(x + p + 4q)y + {k(k + l)-n(n + l)}y = 0. (3.16d) 

It may be pointed out that the above two differential equations are, respectively, the generaliza-
tions of the corresponding ones for the modified Morgan-Voyce polynomials bn(x) and cn(x) 
given in [4]. 

4. INTEGRAL PROPERTIES 

From (3.5), we have the result 

\Un(x)dx = ?*& + K. (4.1) 

Hence, 

and 

\un{x)dx=J^^-^}-^ + K, from (1.5) and (4.1), (4.2) 

lv^x)dx=J^^ + ̂ ^ ^ + K, from (1.6) and (4.1), (4.3) 

jv„(x)dx = V"+i^-q
Vri-i(x^ +K, from (1.7) and (4.1). (4.4) 
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Let us denote 
a = -p-2jq, h = -p + 2jq. (4.5) 

Then we can establish by induction that 

V„(a) = (-lf2q"/2, V„(b) = 2q"/2. (4.6) 

Using (4.6) in (4.1), (4.2), (3.3), and (4.4), we have the following results: 

jb
aU2„(x)dx = 0, (4.7a) 

faU2n+l(x)dx = ^ - i g ^ \ (4.7b) 

iy2n(x)dx = -(u2n+l(x)dx = ^ q " + l , (4.8) 

fav2n(x)dx = fav2n+l(x)dx = ^-xq"+l, (4.9) 

?Mx)dx=-^h-l<i"+U2> (410a> 
jbV2n+l(x)dx = 0. (4.10b) 

Letting A„(x) = U„(x) in (2.1 lb) and using (4.7a), we see that 

j"aU„+l(x)U„(x)dx = 0. (4.11a) 

Also, by letting A„(x) = U„(x) in (2.1 la) and using (4.7b), we have 

Hence, 

jynix)dx^4q"-^±-^-. (4.11b) 

Now, integrating (1.13a) and using (4.11b), we have 

\bUn+l{x)U„-X{x)dx = 4 9 " - 1 / 2 | ; ^ T . (4.1 lc) 

Similarly, by successively letting An(x) = un(x), vn(x), and Vn(x) in (2.11c), (2.11a), and 
(2.11b) and using (4.8), (4.9), (4.10a), and (4.10b), we can derive the following relations: 

\bu„+l(x)Un{x)dx = jb
aV„+l(x)U„(x)dx = 4<7" + 1 / 2 £^- T , (4.12a) 

f/U*)Un(x)dx = -^Y<7 n + 1 / 2 , (4.12b) 

faU„(x)U„(x)dx = -jb
aV„(x)U„(x)dx = - V Z 2 ^ Y , (4.13a) 

\byn(x)Un(x)dx = 0, (4.13b) 
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\bun{x)Un+l{x) dx = \bvn(x)Un+x(x)dx = 4q"+i,2±-±-, (4.14a) 
r = 0 Z r _ , _ 1 

J / ,X^)^ + iW^-^fr 1 / 2 . (4.14b) 
Corresponding to the relations (4.11a), (4.11b)5 and (4.11c) for U„(x), we may derive rela-

tions for the polynomials un(x), vn(x), and Vn(x). Substituting (1.5) and (1.6), respectively, for 
un(x) and vn(x) in the expressions un+l(x)un(x) and vn+l(x)v„(x), and utilizing the relations 
(4.12a) and (4.13a), we have 

laun+l(x)un(x)dx =. -javn+l(x)v„(x)dx = ~4qn~l 1 + 2 ^ ^ — [ (4.15a) 

Substituting (1.5) and (1.6) in the expressions uj;'(x) and \%(x) and using (4.11a) and (4.11b), we 
get 

f b „ . . . eb 

Now, integrating both sides of (1.13b) and (1.13c) and using (4.15b), we derive 

1 o r 1 n+l/2 

2« + l ^ 2 r + l 

(4.15b) 

(4.15c) 

The corresponding expressions involving V„(x) may be derived using (1.8), (1.9), (1.13d), 
(4.15a), (4.15b), and (4.15c). These are: 

[vn+l(x)Vn(x)dx = 0, 

fvUxWn_l(x)dx = - ^ ± f , 

(4.16a) 

(4.16b) 

(4.16c) 

In a similar manner, we can derive relations regarding integrals involving un(x) and vn(x), un(x) 
and Vn(x), and vn(x) and Vn(x). These correspond to relations (4.12a), (4.12b), and (4.12c) 
which, respectively, involve un(x) and Un(x), vn(x) and Un(x), and Vn{x) and Un(x). These are: 

f »n(x)v„+1(x)dx = -jv„(x)u„+l(x)dx = 4g"+1, 
4Q *»a 

jb
aU„(x)v„(x)dx = ^ r i r V 2 , 

[un(xWn+i(x)dx = -faV„(x)Vn+l(x)dx = ~ r i r l , 

faU„(x)Vn(x)dx = faV„(x)V„(x)dx = ^ V 1 / 2 , 

[u„+l(x)V„(x)dx = -faVn+l(x)Vn(x)dx = ̂ > q»+ 

(4.17a) 

(4.17b) 

(4.18a) 

(4.18b) 

(4.18c) 
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1. INTRODUCTION 

Define the sequences {Un} and {Vn} for all integers n by 
U„ = pU^-qU^2, C/0 = 0 , ^ = 1, 
Vn = pV„_l-qV„_2, V0 = 2, V^p, 

where p and q are real numbers with q(p2-4q) * 0. These sequences were studied originally by 
Lucas [4], and have subsequently been the subject of much attention. 

The Binet forms of Un and Vn are 
u"=^=f and F"=a"+ '̂ 

where 

a nJHR and p=EzJHR 
2 ^ 2 

are the roots, assumed distinct, of x2 - px + q = 0. We assume further that a IJ3 is not an 12th root 
of unity for any n. 

For n greater than or equal to 1, let S{n) be the n x n matrix defined by 

S(n) = 

0 0 0 

0 0 (IW 
0 -®q -(DPI 

(S) (DP (DP2 

n-l/n-l\„n-l\ Hr'izftr 

("DP-Y 
-{"-?)p"-2q 

The element in its Ith row and j * column is 

The matrix S(n) is the general term in a sequence of matrices {S(n)}^=h where the first few 
terms are 
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5(1) = (1), S(2) = 
1 P 

(0 0 a2 } 
, and S(3) = 0 -q 

1 P 
2pq 

It can be proved by induction that 

s"H"uu:' t: 
and 

S"(3) = 
<izuu <?Un_xUn 

-2qUn_xUn -q{Ul+Un_xUn+l) 
Ul u„u„+1 

Jul 
-2qUnU„+l 

w+1 

with similar results for the higher-order matrices in the sequence {S(n)}™=l. When p--q-\, 
S(2) becomes essentially the ^-Matrix for the Fibonacci numbers. For applications of £(3) and 
S(4) to the derivation of certain infinite series, and for more background information on these 
matrices, see [6] and [7]. 

Carlitz [1] considered the matrix S(n)T for the special case p--q-\. Among other things, 
he found its eigenvalues and its characteristic polynomial, and stated that its eigenvectors were 
not evident. 

Mahon and Horadam [5] worked with the matrix £(/?) for the case q = - 1 and put forward a 
conjecture stating its characteristic polynomial. This conjecture was later proved by Duvall and 
Vaughan [3]. 

More recently, Cooper and Kennedy [2] considered the matrix S(n)T and proved a result of 
Jarden by generalizing the work of Carlitz [1]. If we translate their results to our matrix S(ri), 
they proved, among other things: 

(i) The eigenvalues of S(n) are an~\ an~% a^p2,..., aJ3n~\ J3n~l. 
(ii) The characteristic equation of S(ri) is 

k=0 

where 

K k) = 1 
1, 

nr-it// 
{uLu^u^uy 

for k = 0, n, 

for 0 < k < n. 

There remains the question of the eigenvectors of S{n). The purpose of this paper is to 
answer that question. 

2. EIGENVECTORS OF S{n) 

Let 0<k <n-lhe& fixed integer, 

f(x) = (x-a)\x-py 
n-l 

and 
v = (v0,v1,.. . ,v^1)7 
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Lemma 1: Let m>0. Then 

Proof: We will use Leibniz's formula for the m^ derivative of a product, i.e., 

-^g(x)h(x) = £ (JJ^-'W^*). 
Using the notation xn to denote the falling factorial, it follows that 

f»(x) = £ W k"^(x - a)k-m+J{n - 1 - k)J-(x - py-l~k-J 

m
{x-ay{x-py^Xm-JA J A n P) • 

Lemma 2: Let 0</w<«-lbeafixed integer. Then 

and 
n-\ (5(/i)vwm=|;(-^rfM/^"vr. 
r=m ^ ' 

Proof: The first result follows by computing the coefficient of x" 1 m in f(x) by multiplying 
(x - df times (x - p)"~l~k. The second result follows by computing the product of S(ri) and v. 

Theorem: S(n)\ = «"-'-*/?*¥. 

(^(»)v)„-1_m=Z(-?)mfcl/-mvr 

- (~?) V v rmvr-m _ \~H) W/w)/ \ 

/If! 

. * /« o\n-\-k (-iy(a-py (p-ay(p-py 
m\ (p-a)m(p-P) m 

m 

= a""1"W-irI(w* 7)(" "}" *)/? V"' 

= a-'-^X(-!)"(„* _,•)(""}" kym-]PJ 

= a"~x~kBkv , . 
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1. INTRODUCTION AND BACKGROUND 

Fibonacci trees and exhaustive generalized Fibonacci trees have been introduced and studied 
in connection with a particular unequal costs coding application by Horibe [6], Chang [2], and the 
author [1], The k^ exhaustive generalized Fibonacci tree, S(k), by definition has S(k-c(i)) as 
its Ith leftmost subtree descending from the root, i = 1,2,..., r, where the c(i) are relatively prime 
positive integers ordered in monotonically nondecreasing order in i, and the initialization is that 
S(k), k = 1,2,..., c(r), are all single root nodes. The term "exhaustive" indicates that each interior 
node of the r-ary tree has exactly r descendants, and is referred to as a "full" node. For r - 2, 
c(l) = l, c(2) = 2, these trees are Horibe's Fibonacci trees [6]. Throughout this paper, the 
notation S(k) will refer to the k^ exhaustive generalized Fibonacci tree for some fixed set of 
c(i), / = 1,2,..., r, and g(k) will refer to the number of leaf nodes in $(k). 

The exhaustive generalized Fibonacci trees when interpreted as code trees solve Varn's [10] 
unequal costs coding problem under the requirement that the code trees be exhaustive [1]. In 
particular, each of the c(i), now interpreted as the cost of the corresponding code symbol, is 
associated with one of the r code symbols which label the code tree branches successively in left 
to right order. The Ith leftmost branch is labeled with the Ith least costly code symbol. A path 
from the root to a leaf node describes the sequence of code symbols, or, that is, the codeword, 
which represents the source symbol associated with that leaf node. The cost of a (leaf or interior) 
node is the sum of the costs of the branches contained in the path from the root to the node. It is 
assumed that each source symbol arises with equal probability, and Varn's problem is to find the 
code tree which minimizes the average codeword cost. 

A number of authors in addition to Varn have addressed the nonexhaustive unequal costs 
coding problem for equiprobable source symbols from the algorithmic point of view for general 
sets of costs [3], [4], [5], [8], or for specific cost assignments [7] or have obtained bounds on the 
resulting minimum average cost [9]. The term "nonexhaustive" indicates that each interior node 
of the tree has at least 2 and at most r descendants. The descendant branches which are present 
are the leftmost or least costly descendants. An interior node with fewer than r descendants is 
referred to as a "nonfull" node. A nonexhaustive code tree can have lower average codeword 
cost than if the exhaustive requirement is imposed, hence the interest in the nonexhaustive case. 
However, the algorithms to construct optimal nonexhaustive code trees are much more compli-
cated than Vam's simple algorithm for the exhaustive case. 

Because recognizing the exhaustive generalized Fibonacci trees as Varn code trees for the 
exhaustive case reveals an elegant structure underlying the sequence of Varn code trees, it would 
be of interest to identify a similar recursive tree construction for the nonexhaustive case. It turns 
out that it is possible to do this not for Varn's original problem, but for a close variant of it. While 
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Vam looks for optimum codes in the minimum average codeword cost sense, the problem of 
interest here will be to look for optimum codes in the sense of minimizing the maximum 
codeword cost, called the minimax cost. It is not hard to see that in the exhaustive case, Varn's 
algorithm finds optimum code trees in both senses, that is, the minimum average codeword cost 
tree is also the minimax tree. But this is not the case for nonexhaustive codes. Perl et al. [8] give 
a simple algorithm for the nonexhaustive minimax problem as a "remark" in their paper otherwise 
concerned with the minimum average codeword cost case. So, as we'll see, it is the minimax 
version of Varn's problem which has the Fibonacci-like structure. 

In the exhaustive case, Varn's [10] algorithm constructs the minimum average codeword cost 
tree of N leaf nodes, where (N-l)/(r~l) is an integer, M, the number of interior nodes in the 
tree including the root. Starting with an r-ary tree from whose root node descend r leaf nodes 
labeled from left to right by c(l), c(2),..., c(r), the costs corresponding to the code symbols, select 
the lowest cost leaf node, say c, and let descend from it r leaf nodes assigned costs from left to 
right of c + c(l),c + c(2), ...,c + c(r). Continue by selecting the lowest cost leaf node from the 
new tree until there are N leaf nodes. (Ties are broken by first selecting leftmost leaf nodes with 
respect to their equal cost sibling leaf nodes and otherwise arbitrarily.) Clearly the resulting tree 
is also a minimax exhaustive tree because splitting any other node besides the least cost node will 
create a leaf node of greater cost. 

The nonexhaustive algorithms for the minimum average cost trees of Varn [10], Perl et al. 
[8], Cot [4], Golin and Young [5], and Choi and Golin [3] are all rather complicated. Perl, Garey, 
and Even's [8] algorithm for the minimax tree is simpler than any of the minimum average cost 
algorithms. A new leaf node can be added to a tree by either "branching" or "adding." In branch-
ing, a leaf node of least cost, say c, gets descending from it 2 leaf nodes assigned costs from left 
to right of c + c(l) and c + c(2). In adding, a nonfull interior node of some cost c which has 
2 < / < r leaf nodes descending from it gets an additional descendant leaf node of cost c + c(i +1). 
The minimax algorithm is to branch or add, creating the least cost next leaf node at each stage. 

While Varn's [10] original problem statement and algorithms assumed arbitrary positive costs, 
the recursive method described here applies to arbitrary positive integer code symbol costs 
c(l) < c(2) <>•< c(r), ordered without loss of generality, whose greatest common divisor is 1. In 
the binary case, all code trees are exhaustive, and the exhaustive case for all r has been treated 
previously by the author [1]. The nonexhaustive approach reduces to the exhaustive approach for 
binary problems. We can permit r to be arbitrarily large and thus include the case of r infinite in 
the limit although the limiting case will never be achieved. Since common factors shared by all 
costs do not affect the form of the optimal code tree, the costs considered here are essentially all 
rational costs or all sets of rational costs with a common irrational multiplier. 

2, CONSTRUCTING NONEXHAUSTIVE GENERALIZED 
FIBONACCI TREES RECURSIVELY 

First, let's define nonexhaustive generalized Fibonacci trees through a recursive construction. 
Then, in Theorem 1, an equivalent construction, based on the method of "types" for constructing 
exhaustive generalized Fibonacci trees, will be given. As in the exhaustive case, the k^ tree in the 
constructed sequence of nonexhaustive trees, T(k), will have T(k-c(i)) as its Ith leftmost sub-
tree. However, now the initialization will be 7(1)'= 7(2) = • • • = T(c(2)) each consisting of a 
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single root node. Define the k^ nonexhaustive generalized Fibonacci tree, T(k), by this recursive 
construction. Throughout this paper, the notation T{k) will refer to the k**1 nonexhaustive gener-
alized Fibonacci tree for some fixed set of c(i), / = 1,2,..., r, and f(fc) will refer to the number of 
leaf nodes in T(k). 

An example follows in which the cQ) are interpreted as costs and assigned corresponding to 
the branches present in the tree. Let c(l)•= c(2) = 2, c(3) = 5. The same example will be used 
throughout the paper. The trees are described by labeling leaf nodes with their costs, listing them 
in left to right order with sibling nodes separated by + signs, and using parentheses to indicate 
depth in the tree from the root. Thus, for example, ((4 + 4) + (4 + 4) + 5) denotes a nonexhaustive 
3-ary tree with 5 leaves; in left to right order, with the root at the top, they are at depths 2, 2, 2, 
2, 1, respectively, and labeled as 4, 4, 4, 4, 5 from left to right. The root node is full but the two 
non-root interior nodes do not have a rightmost descendant. The first few trees for the example 
are given in Table 1. The initializing trees, represented by 0 in this notation, do not appear. 

TABLE 1. Recursively generated trees for the example* c(t) = c(2) = 2, c(3) = 5 

k 

3 

4 

5 

6 

7 

T(k) 
(2 + 2) 1 

(2 + 2) 

( ( 4 + 4) + (4 + 4)) 

((4 + 4) + (4 + 4)+5) 

(((6 + 6) + (6 + 6)) + ((6 + 6) + (6 + 6))+5) 

Note that the subsequence of trees is not indexed by the number of leaf nodes which it has 
and that not every tree is distinct in form. The number of leaf nodes in T{k\ f(k) is given by 

/(*)= Z/(*-<#)), 
l</<r 

where 
/ ( l ) = / (2) = - = /(c(l)) = l. 

By the method of generating functions, 

F(X)= ^xvw=(x+x2+-.-+x<i))/fi- ]»y(7) 
l<fc<oo ^ \<i<r ) 

and the f(k) can be read off as coefficients of xk. For the example, 

F(x) = (x + x 2 ) / ( l -2x 2 -x 5 ) = x + x2 + 2x3+2x4+4x5 + 5x6+9x7 + ---. 

The nonexhaustive generalized Fibonacci trees can also be generated by a second method 
which makes use of the method of "types" for generating the exhaustive generalized Fibonacci 
trees. The k^ exhaustive generalized Fibonacci tree S(k) is also obtained in [1] by using the con-
cept of leaf node "types," essentially a mechanism for keeping track of the relative cost of each 
leaf node until it is one of the lowest cost leaf nodes and one of the next possible leaf nodes to 
split in Yarn's exhaustive algorithm. (All tied leaf nodes "split" at once in the method of types, but 
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split serially in Varris algorithm. Thus, the set of values for number of leaf nodes in a tree 
obtained by Vam's algorithm, N = M{r -1) +1, can include values of N not equal to g(k) for any 
k.) Each exhaustive tree will have c(r) "types" of leaf nodes, denoted by a(l),a(2), ...,a(c(r)). 
The tree S(k +1) is obtained from S(k) by replacing leaf nodes in S(k) of type a(l) by r 
descendant nodes of types a{c(\)\a(c(2)\ ...,a(c(r)) in left to right order and by replacing leaf 
nodes in S(k) of type a(J) by leaf nodes of type a(J -1), j = 2,3,..., c(r). The construction starts 
with S(l) which consists of a single root node of type a(c(r)). The equivalence between the 
recursive construction used to define the exhaustive generalized Fibonacci tree S(k) and the con-
struction by the method of types, as well as the fact that the type associated with a leaf node in 
S(k-c(i)) is unchanged in S(k)9 was proved by Horibe [6] for r - 2, c(l) = 1, c(2) = 2, and the 
argument goes through to the general case straightforwardly. The exhaustive generalized Fibo-
nacci trees corresponding to the nonexhaustive generalized Fibonacci example of Table 1 are 
given in Table 2, with leaf nodes labeled by type rather than cost. 

TABLE 2. Exhaustive trees for the example, c(l) = c(2) = 2, c(3) = 5 

k 

6 

7 

8 

9 

10 

S{k) 

(a(2)+a(2) + a(5)) 

( a ( l )+ a ( l )+ a (4 ) ) 

((a(2) + a(2) + a(5)) + (a(2) + a(2)+a(5)) +a(3)) 

((a(l) + a(l) + <J(4)) + (a(l)+a(l) +a(4)) +a(2)) 

(((a(2)+a(2)+a(5)) + (a(2)+a(2)+a(5))+aW) + ^ 

Theorem 1: The nonexhaustive generalized Fibonacci tree T(k) is given by the corresponding 
exhaustive generalized Fibonacci tree S(k + c(r)-c(2)) from which all leaf nodes except those of 
types #(!), a(2),..., a(c(2)) have been deleted. 

Proof of Theorem 1: This correspondence can be proved by induction. The induction 
initialization is immediate from the initialization of the recursively constructed generalized Fibo-
nacci tree sequences {T(k)} and {S(k)}. Let S*{k) denote S(k) from which all leaf nodes 
except those of types a(l),a(2), ...,a(c(2)) have been deleted. Assuming that T(k-c(i)) = 
S*(k-c(i) + c(r)-c(2)) for i = l,...,r, we need to show that T(k) = S*(k + c(r)-c(2)). First, 
note that T(k) has T(k~c(i)) as its Ith leftmost subtree by definition of {T(k)} as a recursively 
generated sequence of trees so that it has S*(k - c(i) + c{r) - c(2)) as its /th leftmost subtree by the 
induction hypothesis. Then, note that S*{k + c(f) - c(2)) has S*(k - c(i) + c(r) - c(2)) as its Ith 

leftmost subtree by definition of {£(£)} as a recursively generated sequence of trees and because 
deleting leaf nodes of type a(J) from S(k + c(r) - c(2)) corresponds to deleting leaf nodes of type 
a(J) from S(k-c(i) + c(r)-c(2)), / = l,...,r. Therefore, T(k) and ST(k + c{r)-c{2)) both have 
S\k - c(i) + c(r) - c(2)) as their Ith leftmost subtrees and T(k) = S\k + c{r) - c{2)). D 

The maximum codeword cost in the nonexhaustive generalized Fibonacci tree T(k) will be 
given by the cost of a leaf of type a(c(2)) in the corresponding exhaustive generalized Fibonacci 
tree S(k + c(r) - c(2)) if it appears. In the exhaustive tree S(k), a leaf of type a(J) will cost 
k+j-(c(r) + l). Thus, the maximum codeword cost for T(k) will be k-\ assuming a leaf of 
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type a(c(2)) appears in S(k + c(r) - c(2)). If no leaf of type a(c(2)) appears in S(k + c(r) - c(2)), 
as in the example for S(7), then the maximum codeword cost will be given by the cost of a leaf of 
type a(c(2)-l) ora(c(2)-2) or ... or a(2) whichever is the leaf of type of highest index less than 
or equal to c(2) which appears. Therefore, the maximum codeword cost for T(k) is in the range 
[k - c{2) +1, k -1] for k > c(2). For sufficiently large k, there will always be a leaf of type a(c(2)) 
in T(k) and the maximum codeword cost will be k -1. 

3. MINIMAX OPTIMALITY 

Now, let's show that nonexhaustive generalized Fibonacci trees are optimal nonexhaustive 
minimax trees of the same number of leaf nodes. We will use the characterization of the 
nonexhaustive generalized Fibonacci tree T(k) as the exhaustive generalized Fibonacci tree 
S{k + c(r)-c(Tj) with leaf nodes of type of index greater than e(2) deleted, given in Theorem 1. 
The demonstration does not use Perl, Garey, and Even's optimal nonexhaustive minimax algo-
rithm [8]; instead, we'll use a new optimal nonexhaustive minimax algorithm which is in the same 
spirit as Varn's original nonexhaustive algorithm [10] for optimality in the sense of minimum aver-
age cost. The algorithm will follow from Theorem 2, and is contained in the corollary to 
Theorem 2. 

In the following, the notation SQ will refer to an optimal exhaustive minimax code tree, T0 an 
optimal nonexhaustive minimax code tree, Sx some other exhaustive code tree, and Tx some other 
nonexhaustive code tree, all for the same fixed set of costs c(i), i = 1,2,..., r. 

Theorem 2: An exhaustive tree S0 with Ns = M(r -1) +1 leaf nodes and M interior nodes 
including the root is an optimal code tree in the sense of minimizing the maximum codeword cost 
if it is obtained from an optimal minimax nonexhaustive tree T0 with NT < Ns leaf nodes by 
adding r-i descendant leaf nodes to each interior node of T0 from which i leftmost nodes 
descend, 2<i<r. 

Lemma (Varn [10]): Let *Si be an exhaustive tree with Ns leaf nodes and M interior nodes 
including the root where Ns = M(r -1) +1. Denote the costs of the M interior nodes of Sx by 
zx < z2 < • • • < zM. Let $0 be an optimal exhaustive tree with Ns leaf nodes and M interior nodes 
including the root. Denote the costs of the M interior nodes of S0 by yY < y2 < • • • < yM • Then 
ym<zmform = l,...,M. 

Proof of Theorem 2: The proof is by contradiction. Suppose the exhaustive code tree SQ 

with Ns leaf nodes, obtained from the optimal nonexhaustive code tree T0 by adding descendant 
leaf nodes to nonfull interior nodes of T0, is not optimal but there is another exhaustive tree S{ 

with Ns leaf nodes which is optimal. Construct a nonexhaustive tree Tx from Sx by retaining all 
of the interior nodes of Sx and only the two leftmost or least cost descendants of each of the 
interior nodes. Then the maximum codeword cost of Tx is wM + c(2) where wM is the most 
costly interior node of Sx. If 5i is optimal, then wM +c(2) < xM +c(i) for 2 <i <r , from the 
lemma, where xM is the most costly interior node of S0, and because c(2) < c(i). But the maxi-
mum codeword cost of T0y where S0 is exhaustive and obtained from T0 by adding descendant 
leaf nodes to nonfull interior nodes of T0, is xM+c(i) for some i, where 2<i<r. Therefore, the 
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maximum codeword cost of 7J is less than or equal to the maximum codeword cost of T0, contra-
dicting the given optimality of TQ. Therefore, it must be that S0 is optimal. D 

Corollary: A nonexhaustive tree T0 with NT leaf nodes is an optimal code tree in the sense of 
minimizing the maximum codeword cost if it is obtained from an optimal exhaustive tree SQ with 
Ns > NT leaf nodes by deleting r-im rightmost descendant leaf nodes from each of the M interior 
nodes including the root of SQ for some im, 2 < im < r, m - 1,..., M. 

Proof of Corollary: Since by Theorem 2 it is possible to obtain exhaustive SQ from non-
exhaustive TQ by adding descendant leaf nodes to nonfiill interior nodes of T0, it is also possible to 
obtain T0 from S0 by deleting rightmost or greatest cost descendant leaf nodes from full interior 
nodes of S0, repeating until the desired number of leaf nodes NT is left. Note that no more than 
r - 2 leaf nodes from any interior node of S0 can be deleted because, as in Theorem 2, SQ has the 
same set of interior nodes as T0. D 

The algorithm implicit in the corollary for optimal nonexhaustive code trees in the minimax 
sense is completely analogous to Vam's algorithm for optimal nonexhaustive code trees in the 
minimum average cost sense. In each case, the algorithm is to examine all candidate optimal 
exhaustive code trees such that deleting leaf nodes, while maintaining each interior node with at 
least two descendants, leads to a nonexhaustive tree with NT leaf nodes, and to select the least 
costly of these. In each case, the question is to determine the appropriate value for Ns, the 
number of leaf nodes in the optimal exhaustive code tree from which the optimal nonexhaustive 
tree is constructed. In fact, a search over many candidate optimal exhaustive trees, S0, is neces-
sary to identify Ns in the minimum average codeword cost problem in Varn's algorithm for the 
nonexhaustive case. However, in the minimax codeword cost problem, as we'll see in Theorem 3, 
such a search is not necessary. 

Theorem 3: If NT = f(k), where f(k) is the number of leaf nodes in a nonexhaustive general-
ized Fibonacci tree T(k) for some k, then a nonexhaustive code tree TQ with NT leaf nodes is an 
optimal code tree in the sense of minimizing the maximum codeword cost if it is obtained from an 
exhaustive generalized Fibonacci tree S(k + c(r) - c(2)) with Ns = g(k + c(r)-c(2))>NT leaf 
nodes, by deleting all leaf nodes except those of types a(l),a(2),...,a(c(2)) from S(k+c(r)-c(2)). 

Proof of Theorem 3: Construct T0 by the algorithm of the corollary, that is, consider as 
candidates all optimal exhaustive trees S0, such that deleting Ns- NT rightmost leaf nodes from 
S0, where SQ has Ns leaf nodes, leaves a nonexhaustive tree T with the same set of interior nodes 
as S0 and with NT leaf nodes, and select the least costly of the resulting trees J a s T0. Suppose 
we start with an optimal exhaustive tree S0 which is not S(k+ c(r)-c(2)). The number of leaf 
nodes in SQ is Ns and either Ns > g(k + c(r)-c(2))> NT or g(k + c(r) - c(2)) > Ns > NT. (If 
Ns - g(kf) for some k', then S0 is an exhaustive generalized Fibonacci tree, but, for other values 
of Ns = M{r -1) +1, S0 is obtained by using Varn's algorithm but is not an exhaustive Fibonacci 
tree. For example, ((4+ 4+ 7)+ 2+ 5) is an optimal exhaustive tree, but not an exhaustive gen-
eralized Fibonacci tree, for the example.) 

Suppose first that Ns > g(k + c(r) - c(2)). We will show that the resulting cost of deleting 
Ns - NT most costly leaf nodes from SQ is greater than the resulting cost of deleting g(k + c(r) -
c(2))-NT most costly leaf nodes from S(k + c(r) - c{2)). For S(Jc + c(r) - c{2)), let n be the 
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number of leaf nodes of types of index < c(2), and let s be the number of non-root interior nodes. 
Then S(k + c(r) - c(2)) has g(k + c(r) - c(2)) = r - s+ sr leaf nodes of which r-s + sr-n are of 
types of index > c(2). Then S0 has Ns = r - s + sr + v(r - 1) leaf nodes and s + v non-root interior 
nodes for some 'v which is >1 since Ns > gtfc + c(r)-c(2)). Of these leaf nodes, r-s + sr + 
v(r-l)-n need to be deleted from S0 in order to leave n leaf nodes. Compare this with the 
r-s-sr-n leaf nodes of types of index >c(2) which need to be deleted from S(k + c(r)-c(2)) 
in order to leave n leaf nodes. But S(k + c{r)-c(2)) and S0 have r-s + sr-v leaf nodes in 
common which have the same costs in both trees, and S0 has vr expensive leaf nodes which do 
not appear in S(k+c(r)-c(2)), and S(k + c(r)-c(2)) has v inexpensive leaf nodes which do not 
appear in SQ. This is because v leaf nodes in S(k + c(r) - c(2)) are instead full interior nodes in SQ 

and the two trees are otherwise the same since they are both optimal exhaustive trees generated 
by splitting least cost leaf nodes as in Yarn's algorithm. Deleting r - s + sr + v(r -1) - n leaf nodes 
from SQ and r-s-sr-n leaf nodes from S(k + c(f) - c(2)), we can only delete at most v(r - 2) 
of the expensive leaf nodes from $0 while maintaining all the interior nodes of S0. Since we need 
to delete v ( r - l ) more leaf nodes from SQ than from S(k + c(r)-c(2)) and only v(r-2) of them 
can be expensive5 we must delete v of the leaf nodes of common cost (or inexpensive leaf nodes). 
Thus, the resulting cost obtained from S(k+c(r)-c(2)) is less than or equal to the resulting cost 
obtained from SQ. 

Similarly, if g(k + c(r) - c(2)) > Ns, the resulting cost of deleting g(k + c(r) - c(2)) - NT 

most costly leaf nodes from S(k +c(r)~c(2)) is less than the resulting cost of deleting Ns - NT 

most costly leaf nodes from S0. For S(k+c(r)-c(2))9 let n be the number of leaf nodes of types 
of index <c(2), and let s be the number of non-root interior nodes. Then S(k + c(r)-c(2)) has 
g(k + c(r)-c(2)) = r — s + sr leaf nodes of which r-s + sr-n are of types of index >c(2). 
Then S0 has Ns=r-s + sr-v(r-l) leaf nodes and s—v non-root interior nodes for some v 
which is > 1 since g(k + c(r) - c(2)) > Ns. Of these leaf nodes, r-s + sr-v(r-l)-n need to be 
deleted from SQ in order to leave n leaf nodes. Compare this with the r-s + sr-n leaf nodes of 
types of index >c(2) which need to be deleted from S(k + c(r)-c(2)) in order to leave n leaf 
nodes. Thus, v ( r - l ) fewer leaf nodes need to be deleted from S0 than from S(k+c(r)-c(2)) 
in order to leave n leaf nodes in each case. But S(k + c{r)-c(2)) and S0 have r-s + sr-
v(r -1) - v leaf nodes in common which have the same costs in both trees, and £0 has v inexpen-
sive leaf nodes which do not appear in S(k + c(r)-c(2)), and S{k + c(r) - c{2)) has vr expensive 
leaf nodes which do not appear in SQ. This is because v leaf nodes in SQ are instead full interior 
nodes in 8(k + c(r)-c(2)) and the two trees are otherwise the same since they are both optimal 
exhaustive trees generated by splitting least cost leaf nodes as in Vam's algorithm. Deleting 
v( r - l ) more leaf nodes from S(k + c(r)-c(2)) than from SQ, we delete fewer than v(r-2) of 
the vr expensive leaf nodes and more than v of the leaf nodes of common cost (or inexpensive leaf 
nodes), thus resulting in a tree obtained from S(k + c(r)-c(2)) with maximum codeword cost 
less than or equal to that obtained from S0, and Theorem 3 follows. • 

Note that the corresponding argument breaks down for minimum average cost codes, for 
which all leaf node costs, not just the maximum leaf node cost, enter into the resulting tree cost 
calculation, and the argument in the proof of Theorem 3 does not hold. For the example, S(S) = 
((4 + 4 + 7) + (4 + 4 + 7) + 5) = ((a(2) + a(2) + a(5)) + (a(2) + a{2) + a(5)) + a(3)). We can select 
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w = 4 so that deleting the r - s + st - n = 3 leaf nodes of type of index > 2 leaves T0 = ((4 + 4) + 
(4 + 4)), an optimal minimax tree of n = 4 leaf nodes. It has maximum codeword cost 4, the 
minimax optimal value. In contrast, consider S0 - ((4 + 4 + 7) + 2 + 5), an optimal exhaustive tree 
generated by splitting least cost leaf nodes as in Varn's algorithm, but not an exhaustive general-
ized Fibonacci tree. Theorem 3 says that T0 cannot be obtained from SQ by deleting leaf nodes. 
In particular, the v = 1 leaf node in SQ of cost 2 is a full interior node (4 + 4 + 7) in S(S) of vr = 3 
leaf nodes. Deleting v( r - l ) = 2 fewer leaf nodes from S0 than from S(S) generates the tree 
((4+ 4)+ 2+ 5) which, with a maximum codeword cost of 5, is not minimax optimal. However, 
((4 + 4) + 2 + 5) is the optimal tree in the minimum average cost sense [8], with an average cost of 
15/4, and compare this with T0, with an average cost of 4. 

Theorem 4: The nonexhaustive generalized Fibonacci trees are the optimal nonexhaustive code 
trees for the minimax cost problem for the same number of leaf nodes. 

Proof of Theorem 4: The proof is an immediate consequence of Theorems 1 and 3. D 

Theorem 4 provides an elegant characterization of optimal nonexhaustive minimax code trees 
in terms of nonexhaustive generalized Fibonacci trees. Its proof makes use of three intermediate 
results of independent interest: the equivalence between the recursive construction and the con-
struction by the method of types for nonexhaustive generalized Fibonacci trees in Theorem 1; the 
new Varn-like algorithm for optimal nonexhaustive minimax code trees in the Corollary to 
Theorem 2; and the result from Theorem 3 that a search over a set of candidate optimal exhaus-
tive code trees from which to generate the optimal nonexhaustive tree is not necessary in the 
Varn-like algorithm for the minimax codeword cost problem (although it is necessary in the Varn 
algorithm for the minimum average codeword cost problem). Instead, from Theorem 3 we know 
exactly which highest cost leaf nodes, those of type of index > c(2), are to be deleted from exactly 
which optimal exhaustive minimax tree, S(k + c(r) - c(2)), in order to obtain the optimal non-
exhaustive minimax tree T0 (when the desired number of leaf nodes in T0 is f(k)). 

Under certain conditions, minimax code trees are also minimum average cost code trees, and 
in these cases the generalized Fibonacci structure of the minimax code trees applies to the 
minimum average cost code trees as well. The algorithm of Perl et al. [8] for minimum average 
cost trees involves two stages, extension and mending, and their algorithm for minimax trees is a 
variant of the extension stage. Thus, whenever mending is unnecessary and whenever the 
extension stages give the same tree for both problems, the minimax code tree is also the minimum 
average cost code tree. A sufficient condition on the code symbol costs for the mending stage to 
be unnecessary in the minimum average cost problem is that any of the following three 
(inequalities holds [8]: (i) r < 3; (ii) c(l) + c(2) < c(3); (iii) c(3) = c(4) =... = c(r). In the exten-
sion algorithm for minimum average cost trees, a comparison is made between c(a) + c(l) + c(2) 
and c(b) + c(i) for some i > 2, where c(a) is the cost of a least cost leaf node a and c(b) is the 
cost of some nonful! interior node b, in order to choose the next leaf node to introduce in forming 
the tree of N +1 leaf nodes from the tree of TV leaf nodes. If c(a) + c(l) + c(2) is least, we branch 
a, and otherwise we add to b. In the variant of the extension algorithm for minimax cost trees, 
the equivalent comparison is made between c(a) + c(2) and c(b) + c(i). Thus, whenever any of 
these sufficient conditions is satisfied by the costs, and the costs are such that the variant of the 
extension algorithm for minimax codes and the original extension algorithm for minimum average 
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cost codes both yield the same results from their respective comparison stages, that is, whenever 
c(a) + c(l) + c(2) and c(a) + c(2) are both either less than or greater than all candidate c(b) + c(i) 
expressions, minimax and minimum average cost code trees are the same, and the minimum 
average cost tree sequence shares the nice recursive structure of the minimax tree sequence. This 
is the case for Part's [7] costs, c(i) - /, / = 1,2,..., when Nis an integer power of 2, and his paper 
includes the recursive tree sequence structure. The example costs of c(l) = c(2) = 2, c(3) = 5 
satisfy the sufficient conditions (i) or (ii), however not the comparison conditions even for small 
N. The tree ((4 + 4) + 2 + 5) is minimum average cost [8] but ((4 + 4) + (4 + 4)) is minimax. Both 
are obtained by extending ((4 + 4) + 2), in the former by noting that c(a) + c(l) + c(2) > c(b) + c(i), 
and in the latter, c(a) + c(2) < c(b) + c(i)9 where c(a) = 2, c(b) = 0, and c(i) = c(3) in both cases. 
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1. INTRODUCTION 

For an irrational real number a, the Lagrange (often called the Markoff) constant for a, 
ju(a), is defined by 

ju(a) = limm£ q\\aq\\, 
q-*co 

where || || denotes the distance to the nearest integer function (see [3], although there the 
Lagrange constant is defined to be //(a)"1). Thus, for any c, 0 < c<ju{a\ it follows that there 
are only finitely many positive integer solutions q to the inequality 

q\\aq\\<c. (1.1) 

We define A(a) by X{a) = Mq>0q\\aq\\. 
Given a, two natural and fundamental problems are to compute X(a) and, for a given c, 

A (a) < c < //(#), t 0 explicitly determine the complete set of solutions to (1.1). In a series of 
three papers ([8], [9], [10]), Winley, Tognetti, and Van Ravenstein address these problems for the 
case in which a equals a generalized golden ratio <pa, that is, 

a W a 2 + 4 
a = 9a= 5 , 

where a is a positive integer. Not surprisingly, their solution involves generalized Fibonacci 
numbers. We write (§n - 9n (a) for the n^ generalized Fibonacci number. That is, 90 = 0, 9X = 1 
and, for n>\9 9^= ^n-\+^n-2- Using a well-known connection between /j(a) and the con-
tinued fraction expansion of a (see [3]), one can, for these generalized golden ratios, explicitly 
compute ju(<pa) = l/ Given this, we may state the main result of Winley et al. [10] as 

Theorem 1: For a positive integer a, X{q>a) -al (p\. Moreover, for X{<pa) <c<\l Ja2 + 4, an 
integer q > 0 is a solution to 

q\\<pa<i\\<c (i-2) 
if and only if q = S^m-i* where m is any positive integer satisfying 

l - e V a 2 + 4 < ^ - 4 m (1.3) 

The key to the proof of Theorem 1 is the observation that the numerators and denominators 
of the convergents of q>a, which are the generalized Fibonacci numbers, enjoy a simple second-
order recurrence relation. 

In this paper we extend Theorem 1 to arbitrary real quadratic irrationals. Fundamental to our 
method is an important, but not widely known, result on the arithmetical structure of the 
sequences of numerators and denominators of the convergents of quadratic irrationals. In 
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particular, each sequence may be partitioned into a finite number of simple second-order linear 
recurrence sequences all of which satisfy the same recurrence relation. We state this result 
explicitly as Theorem 3 in Section 2. A pleasant consequence of this result is a very simple 
method for computing the Lagrange constant for quadratic irrationals. This fundamental result is 
stated in Section 4 as Lemma 7. 

As our generalization of inequality (1.3) for arbitrary quadratic irrationals requires the coeffi-
cients occurring in the recurrence relations given in Theorem 3, we postpone stating our main 
results, Theorems 5 and 6, until Section 3. However, below we illustrate our results with a simple 
extension of Theorem 1. We recall that the continued fraction expansion for <pa is [a,a,a,...] = 
[a]. Thus, it is natural to next examine quadratic irrationals having a purely periodic continued 
fraction expansion of period length 2. In particular, we consider 

, ,v ab + ̂ a2b2+4ab r—n a(a, b) = — [a, b\ 

It follows by either a direct calculation or an application of Lemma 7, that 
mm{a,b} ju(a(a, b)) = b(a(a,b)-a(a,b))' 

where a(a, b) denotes the algebraic conjugate of a (a, b). If we let pn lqn be the rfi" convergent 
of a(a, b), then the following is a special case of Theorem 5. 

Theorem 2: For positive integers a and b, let a = a(a9 b). Then 1(a) = min{i2a +Z>, ju(a)}-
Moreover, for X(a) <c<//(a), an integer q> 0 is a solution to #||ar#|| < c if and only if q-
q2n+i, where n > 0 is any integer satisfying 

((ab + 2)(1 + ba) - If < ((ab + 2)(1 + ba) -1)(1 - c(a - a)). 

Acknowledgment: The authors wish to thank Professor T. W. Cusick for his useful comments 
regarding this work. 

2, RECURRENCE SEQUENCES AND QUADRATIC IRRATIONALS 

For a real number a, we denote its simple continued fraction expansion by \a^ax,...]. We 
define the sequence of convergents, pn/qn, w = l,2,..., by pnlqn =K)>ai>--->a»L where gcd 
(Pn> 9«) = 1- If we declare p_2 = 0, p_x - 1, and q_2 = 1, q_x = 0, then it follows that, for all n > 0, 
pn=anp„-i+pn-2 and qn=anqn_l+qn_2. By the well-known result of Lagrange, a G R is a 
quadratic irrational if and only if the continued fraction expansion for a is eventually periodic (see 
[4]). For the remainder of this paper, a is assumed to be a real quadratic irrational and thus we 
may denote its continued fraction as 

a = |a0, ah ...,ak_h ak, c*k+i>--'>ak+T-i\-

Hence, for each t9 0 < f < T7-1, we have 

PTn+t+k ~ at+kPTn+t+k-l + PTn+t+k-2 a n C^ ^Tn+t+k = af+fc<?7>m+&-l + ^Tn+t+k-2 

for all n - 0,1,2,.... We will require the following result which shows that the sequences {pn} 
and {qn} may be partitioned into J7 simple second-order linear recurrence sequences all satisfying 
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the same recurrence relation. Such a result was also noted by Cusick [2] and again by van der 
Poorten [7] (see the related work of Kiss [5]), and is of some independent interest (see [1]). 

TheoremS: If 
a = [a0,al,...,ak_l,ak,ak+l,...,ak+T_l] and r(a) = [ak,ak+l,...,ak+T_l]9 

then, for each t, 0 < t < T-1, 

PTn+t+k ~ Wi^PTin-iy+t+lc + ( "* ) PT(n-2)+t+k> 

%Tn+t+k ~ ® (a)^T(n-l)+t+k + (~ 1) ^T{n-2)+t+k > 

for all n = 2,3,..., where the constant co(a) = Px-i+qr-i anc* Pn IQn denotes the rfi* convergent 
of P(a). Furthermore, if rl = F(a) and r2 = P(a), then rl>\, T1T2 = (-1)T and, for each t, 
0 < t < T-1, there exist real numbers ut,vt,rt,st, with rt > 0, such that pTn+t+k = utT\ + vtr2 and 
Vitet+k = r*r" + *^2 f o r all rc = 0,1,2,.... 

As it is difficult to find a proof of Theorem 3 in the literature, we include one here. We begin 
with the following elementary but useful lemma from linear algebra. The authors wish to thank 
the referee for suggesting the following elegant proof of Lemma 4. 

Lemma 4: Let A, B, C, D be nonnegative integers satisfying AD-BC = (-l)T for some fixed 
integer T. If the sequences of integers {an}, {bn}, {cn}, {dn} are defined by 

(a„ bn\(A B)" 
U dj-{c D)> 

then each of the four sequences, {an}, {bn}, {cn}, and {dn}, satisfies the same second-order linear 
recurrence relation. In particular, 

fe: fc)-<"+K2 *)+ ( -^fe fc) (22) 
forw>2, 

Proof: If we write 

He D\ 
then we note that the characteristic polynomial associated with Mis given by 

det(M - l2x) = x2 - (A + D)x + AD - BC, 

where 12 denotes the 2 x 2 identity matrix. By the Cayley-Hamilton Theorem, a matrix is a zero 
of its associated characteristic polynomial. Specifically, we have 

M2 = (A + D)M - (AD - BQl2. 

Multiplying the previous identity by Mn~l yields 

Mn+l = (A + D)Mn - (AD - BC)Mn-1. 

In view of our assumption that AD - BC = (- l)T, the above equality becomes 
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Mn+l = (A + D)Mn + ( - l ) m M " - \ 

which completes the proof of the lemma. 

Proof of Theorem 3: It is enough to prove that the identities in (2.1) hold, as the subse-
quent assertions of the theorem follow from (2.1) and the basic theory of Enear recurrences. We 
first prove (2.1) in the case when t = 0 and then indicate how to modify the argument for t > 1. 

By a well-known correspondence between partial quotients and convergents, if pnlqn = 
[a0,al3.. , ,aj,then 

da l V * i 1 CL l\JPn Pn-l 

1 0A1 0 / {l 0) [qn qn_t 

(see, for example, [6]). Thus, given that P(a) = [%, cik+ly..., ak+T_X we have 
Ufa 

i o 1 0 
*k+T-l 

0 
A-\ PT-I PT-2 

QT-1 ^T-2 
(2.3) 

where we recall that p*/q* denotes the nth convergent of P(a). Hence, as P(a) has a purely 
periodic continued fraction expansion of period length T, we see that, for all n > 1, 

PTn-l PTYI-2 
QTn-1 ^Tn-2 

PT-I PT-2 

qT-i qT-2 

Taking determinants of both sides of (2.3), we see fT_iq^2~ PT-2(JT-I = (~~^)T- Therefore, we 
may apply Lemma 4 and deduce that, for all n > 2, 

QTn-\ ^Tn-2 

FT(n-\)-l PT(n-l)-2 

^T{n-l)-l ? r ( n - l ) - 2 
H-(-l) T+l PT{n-2)-l PT{n-2)-2 

Q T(n-2)-\ ^T{n-2)-2 

where a>(a) = p}_x + ?7_2-
Finally, turning our attention to the partial quotients of a , we note that, for all n > 1, 

(PTn+k PTn+k-l aQ 1 
1 0 

Pk-l Pk-2 
Qk-1 4k-2 

a, tft 
1 

PT-I PT-2 

\9T-I 9r-2 

f 0 a, 
1 

= f f t - 1 A-2] / ^ - l î n-2 

Thus, the pair (pTn+k,qTn+k) i s a nonsingular, linear transformation of (pTn-i> QTn-i) • Hence, 
both/?rn+it and gr„+^ each must satisfy the same second-order linear recurrence enjoyed by Pxn_x 

and q^n_.t. Specifically, for all n > 2, 

ftfc+ifc ~ ^ ( a ) P r ( « - l ) + ^ + ( - 1 ) + PT(n-2)+k> 

tJTn+k ~ ^ ( a ) ? r ( « - l ) + i t + ( ~ 1) ^T(n-2)+k > 

which proves the theorem when t = 0. 
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For t > 1, we note that 

[ PTn+t+k PTn+k+t-l J = (Pk-l Ple-2 | [ Pfn-1 PTYI-2 ] | A*-l A*-2 

Since both the first and third matrices appearing on the right-hand side of this identity are inde-
pendent of n, we see that pTn+t+k and qTn+t+k are each linear combinations of p^„_l9 p}n-2> QTn-u 
and qTn-2- Thus, pTn+t+k and qTn+t+k must satisfy the same linear recurrence as p^n-u PTn-2> 
QTn-i> anc* QTn-2' This fact establishes (2.1) for any t, 0 < t < T-1, and completes the proof. 

3. OUR MAIN RESULTS ON DIOPHANTINE APPROXIMATION 

Given a as in Theorem 3, it will be convenient to define several new but natural constants 
that will allow us explicitly to determine X{a). For each t, 0 <t< T-1, we let dt = rtvt - stut and 
define 

\\dt\(\+$), ifsf<0; 

lt(a) = <\dt |, if st > 0 and J is even; 

| 4 | ( l - - ^ ) , if st > 0 and Tis odd. 

We now state our main result in the case when the continued fraction expansion for a is purely 
periodic. 

Theorem 5: Suppose that a = \a0, al:i...,aT_A; rt and st are as in Theorem 3, and dt and Xt{a) 
are as defined above. Then A(a) = rmn{At (a) :0>t<T-l}. Moreover, for X(a) <c< ju(a), an 
integer q > 0 is a solution to 

q\\aq\\<c (3.1) 

if and only if q = qTn+t, where 0 < t < T-1, {-l)Tn$t < 0, At(a) < c, and n > 0 satisfies 

<a2\ (3.2) 

We remark that upon first inspection it may appear undesirable to have n occur in the bound 
(-l)7"^ < 0. However, as T and t are known, it is only the parity ofn that is necessary in com-
puting this inequality. Hence, given c and t, one needs to find all even integers n that satisfy the 
conditions of the theorem and then all such odd integers. That is, implicit in the inequalities of 
Theorem 5 are the cases of n even and n odd. 

Plainly, if the continued fraction expansion for the quadratic irrational a is not purely peri-
odic, then there is no control on the size of the partial quotients occurring before the period; thus, 
one must examine each of the associated convergents individually. In particular, if 

a = ja0, <*!,...,%_!, ak, ak+l,..., ak+T_^, 

then there may be solutions to (3.1) among the first k convergents. With this unavoidable possi-
bility understood, one has 
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Theorem 6: Suppose that a = [% ah . . . , a w , ak, ak+l9 ...,ak+T_{]; P(a), r,, s, are all as in Theo-
rem 3, and dt and A,(a) are as defined above. Let Aj(a) = min{ At(a) : 0 < f < T-1}. Then 

X(a) = min {A^a), $, \\aqn\\:0<n<k}. 

Moreover, for /l*(a) <c< / / (a) , an integer q>qk is a solution to 

?HI|<<? (3.3) 
if and only if g = qTrl+t+k, where 0 < t < T-1, (-l)7w^ < 0, l f ( a ) < c> anc* n ^ ° satisfies 

JL i__£. 
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A 2« <P(a ) . 

As an illustration, we return to a = <pa= [a]. In this case, we have T=\ and may verify that 
— <P„ —0„ 

Va +4 Va +4 

M0 = afa , v0 = I?" , and thus rf0 = . ~ • 
Va +4 Va +4 Va +4 

As 50 > 0 and J is odd, it follows that 

^fa.) = ̂ ofa.) = • 1- -a + Va2 + 4 1 
P2. 

flS~l_ a 

as was stated in Theorem 1. We assume now that A(<pa) <c< fi(<pa). For qn to be a solution to 
(3.1), we must have n > 0 odd. If we write n = 2m-l, then (3.2) becomes 

^ ( l - c V a 2 + 4 ) < ^ - 2 . 

Noting that <pjpa = -1 and ^a/|$?a |= ^ , the previous inequality is seen to be equivalent to 

l-c^]a2+4<(p-4m. (3.4) 

Therefore, all the solutions to (3.1) are given by q - q2m-\, where m > 0 satisfies (3.4) which, in 
view of the fact that q2m-\ = 9W-i> yields the result of Winley, Tognetti, and Van Ravenstein. 

An Illustrative Collection of Examples: We briefly consider various numbers a equivalent to 
^ - = [1,2]. For all such numbers, it follows that fi(a) -jTf. 

1. Let a = [1^2]. It follows that X0(a) = -^ = ju{a) « .288 and Xx{a) = 4-2V3 « .535, so 
2(a) = ju(a). Hence, there are no solutions to (3.1) for any c, 0 < c < /j(a). 

2. a = [2/i} = 1 + V3. We find that A0(a) = -j= and Xx{a) = 2 - V3 « .267. Thus, there are 
no solutions to (3.1) for 0 < c < 2 - J3; and for 2 - V3 < c < ju(a) we have that q2n+l is a solution 
to (3.1) for all integers n > 0 satisfying (7 + W3)(l - c2^3) < (7 - 4V3)W. 

3. Let a = [3,3,2^1] = -^=^. For / = 1, we have (-l)7*^ = sx = 3 ° - ^ > 0. Thus, for* = 1, 
qTn+t+k is not a solution to (3.3). For / = 0, we note that AQ(a) - 91~1

4
1
9 « .557 > //(a) > c. 

Thus, there are no solutions to (3.3) in this case either. A straightforward calculation shows that 
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qQ = 1 and qx = 3 are never solutions to (3.3). Hence, for this a, there are no solutions to (3.3) 
for any c < ju(a). 

4. Let a = [3,3,1,2] = 5 - V3. As in the previous example, sx - 33-1
6

9^ » .015 > 0 so there 
are no solutions to (3.3) for t = 1. Here, Xx{a) = -^ « .577, A0(a) = 28-16^3 « .287; hence, 
/L*(a) = 28-16^/3, while A(cr) = l||al|| = 2 - V3 « .267. Therefore, after a calculation, we con-
clude that solutions to (3.3) for 28-16^3 <c<ju(a) are p2n+il^2n+2 f°r a " integers n>0 
satisfying (97 + 56V3)(l-c2V3) <(7-4V3)w. We also note that q0 = l is the only solution to 
(3.1) for 0<c<28-16V3. 

4. THE PROOF OF THEOREMS 5 AND 6 

Before proceeding with our proof, we recall some elementary facts from the theory of con-
tinued fractions (see [4] or [6] for details). For an irrational real number a, the convergents 
Pn /(Jn

 s a t i s f y 
Pn - (-1)" a-
<ln <l„{an+fln+Cln-lY 

(4.1) 

where an = [aw, an+l,an+2,...] is the 71th complete quotient. We recall Hurwitz's celebrated result 
that /u{a) <\l4s and Legendre's theorem that any rational solution piq to 

a- 2 < 7 2 ' 
must be a convergent of a. 

We will make use of the following basic lemma which may be of some independent interest. 

Lemma 7: Suppose that a - [a0, ai> • • • > ak-i> ak> ak+\> -•> ak+T-i] and rl9 r2,ut,vt,rt, st are all as 
Theorem 3. For each 0 < t < T -1, let dt - rtvt - stut. Then a-utlrt for each t and 

fi{a)= min {\dt\}. 
0<t<T-l 

Proof: By Theorem 3 we have, for each t, 

PTn+t+k =
 UA + VA =

 Ut + Vf(̂ 2 / ̂ l)" 

In view of the fact that \r21 rx \ < 1, as n —» oo the above identity becomes a-utlrt. 
Next, we observe that 

//(a) = liminfqr||aq\\= lim qn\aqn-pj = lim qn+k\aqn+k-pn+k\. 

Finally, the first part of this lemma, together with a simple calculation, reveals 

in 

^Tn+t+k l^Tn+t+k Pln+t+k I ~ 
1 for? + ^ ) 2 -(i^r? + v,rf)(rfT? + ^ ) 

.2w (-iy-(w-w)+*2 # ) - « = 14 (- l) i w + 1-Tw+l *t L.2w 
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Since | T2 \ < 1, we have 
l i m ^Tn+t+k I ̂ Tn+t+k ~ PTn+t+k 1 = 1 4 1 ; n—>oo 

hence, 
ju{a)= min {K |} , 

0<t<T-l * 
as desired. 

Proof of Theorems 5 and 6: In view of the results of Hurwitz and Legendre, it is clear that 
any solution q to (3.3) for 0 < c < ju(a) must be a denominator of a convergent. We thus con-
sider an arbitrary convergent pmlqm and, for a fixed t, 0 < r < T - 1 , we examine all m such that 
m-k = t modT. Thatis, we write m = Tn + t + k. 

Plainly, qTn+t+k is a solution of (3.3) if and only if 

0 < a PTn+t+k 

^Tn+t+k ^Tn+t+k 

In view of Theorem 3, identity (4.1), and the fact that a = utlrt, the above is equivalent to 

0<(-l)Tn+t+kdt (-Ifw+1 - i z ? < c , 

which may be simplified to 

0 < (-l)t+k+ldt [ 1 + (-l)Tn 5- T2
2" I < c. (4.2) 

rt 

We note that the left side of the inequality (4.2) holds for all choices of n. Therefore, if we let n 
approach infinity, then as |r21 < 1, we conclude that (-l)t+k+ldt > 0. Thus, (4.2) becomes 

o<K|\i+(-ifn^-T2
2
n <c 

The right side of this inequality holds if and only if 

H ) T ^ T 2 r , c ( 4 3 ) 

Moreover, as c<fi(a), Lemma 6 reveals c< \dt\. Thus, the upper bound in (4.3) is negative. 
Since both rf1 and rt are positive, there are no solutions to (4.3) if {-X)Tns{ > 0. Thus, n is a 
solution to (4.3) if and only if {-Vfnst < 0 and n satisfies (3.2). 

Finally, we show that, for each t, 0<t<T-l, there are no solutions q>qk to (3.3) for 
c < Xt{a). As we have already seen, 

VTr,+t+k\\c«lTn+t+k\\ = K l[l + H f " | ^ " j . (4.4) 

If st < 0, then as 0 < r\ < 1, (4.4) is minimized when n = 0. If sr > 0 and T is even, the Minimum 
of (4.4), |41, is approached from above as n -> oo. Finally, if st > 0 and T is odd, it is easy to see 
that (4.4) is minimized when n = 1, thus giving a minimum value of 
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These observations yield 

At(a) = inf {qTn+t+k \\aqTn+t+k | |} . 
«>0 

Hence, it follows that X{a) = min{/t,(a),qn^aqn | |:0<n<k}, and there are no solutions to (3.3) 
for c<Xt{a) and q>qk. This observation completes the proof 
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1. INTRODUCTION 

Let 
\<xx <x2 <"<xr <n (1.1) 

be an r combination from n, Moser and Abramson [17] used the terms differences for the quanti-
ties dj = xJ+l -Xj, j = 1, 2,..., r -1, span for d = xr-xl, and cospan for n -d. It is clear that 
dj-l is, for j - 1,2, . . . , r - l , the number of integers, from {1,2,...,«}, which lie "between" Xj 
and xJ+l. Similarly, (n-d)-l is the number of integers from xr clockwise to xY. 

To the r-combination (1.1) there corresponds a unique place-indicator vector (sl9 e2,..., sn) 
defined by 

(1 if/ = *!,...,*,., 
[0 otherwise. 

Assume that ei9 i = 1,2,..., n are generated by a random process in which the outcome of the t^ 
trial depends on the outcomes of the previous trials in a first-order Markovian fashion. Moreover, 
let 

pj(l) = P(sl = Jl 7 = 0,1, (1.2) 

denote the initial probabilities and 

Pv(t) = P(£t=j\et-l=i\ /,7 G{0,1}, / = 2,...,/i, (1.3) 

denote the first-order transition probabilities of the process. By the term random combination we 
shall refer to the combination associated with (el9e29...9sr)9 i.e., integer j (\<j<n) will be 
selected if and only if Sj = 1. 

Let 4i(A, k'\ /, /') denote the event that the random combination associated with the 
sequence (ex, e2,..., £n) satisfies the conditions 

k<dj<k\ j = 1,2,...,r-I and I <n-d<I', 

where k, k\ I, V are pre-specified integers (\<k<k\ !< /< / ' ) and r is the number of nonzero 
entities in (ex, s2*-~>€n)-

The probability of the event ^{k, k!; I, lf) is, in certain special cases, very closely related to 
some problems of interest in combinatorial analysis, statistical theory of runs and reliability theory. 
Thus, for the symmetric i.i.d. case, viz., 
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PjQ) = P„(t) = \ , ije{0,\},t = 2,...,n, 

the quantity 

2"P[4,(*, *';/,/')] 

enumerates the (nonrandom) combinations from n whose differences and cospan satisfy the 
conditions k <dud2, ...,dr_l<kf and l<n-d<V. More specifically, if Cw r(&,£';/,/') is the 
number of r-combinations (1.1) with k<dj<k', j = l ,2 , . . . , r - l , and l<n-d<V (see [17]), 
then 

r=0 

Now let us consider the first-order Markov dependence model and assume that /' is sufficiently 
large so that n-d<V poses no restriction on the cospan. Then, P[4*(l? *'; \ '')] turns out to be 
the probability that the longest run1 of 0fs, in n Markov dependent trials eu e2,...,en does not 
exceed k'-l; for related problems, see [1], [2], [8], [16], and the references therein. Similarly, 
P[A„(l9 kr; 1, k')] turns out to be the corresponding probability for the longest circular run, i.e., 
when the trials £l,e2,...,£n are arranged in a circular fashion so that sx becomes adjacent to sn 

(see [13], [21]). In the i.i.d. case, 

A)0) = Ptoif) = q, A(l) = pn(t) = />, i e {0,1}, / = 2,..., w, (1.4) 

the probabilities mentioned above are closely related to the reliability of a linear/circular consecu-
tive-^ -out-of-#:F reliability system with component failure probabilities q; for a review on this 
topic, one may refer to Chao et al.. [3]. 

Finally, let us assume that both k! and /' are sufficiently large so that dj <kf and n- d < V are 
practically no restrictions. Then, the occurrence of the event ^(&, k'; 1, /') implies that the length 
of the shortest run of 0's in the sequence sl,s2,...,£n is at least k -1 or, equivalently, there exists 
no pair of l's separated by k -2 or less 0's. A related waiting time problem was recently studied 
by Koutras [10]. In the i.i.d. case, Pl^k, k'; 1, /')] coincides with the reliability of a 2-within-
consecutive-&-out-of-j?:F system with component failure probabilities/? (see [3], [19], and [20]); 
it is also related to sliding window probabilities [18] and scan statistics [5]. 

The purpose of the present paper is to conduct a detailed study of the probability of the event 
A„{k, k'; k, /') when k' and /' are sufficiently large. In this case, we shall use the notation ^(k) 
for the event. It is clear that the occurrence of ^(k) implies that the length of the shortest 
circular run of 0fs in the sequence el9 £2,..., sn is at least k-l. 

In Section 2, we introduce the necessary notations and develop formulas for the evaluation of 
Pl^k)] in the general case of Markov dependent trials. In Section 3, we restrict ourselves to a 
homogeneous Markov-dependence model and derive the generating function of the sequence 
{P[,4W(&)]}„>£. In addition, a set of recurrence relations is established which offers a computa-
tionally efficient scheme for the calculation of P[An{k)]. In Section 4, we focus our attention on 
the circular 2-withm-consecutive-£-out-of-«:F system. Finally, in Section 5, we express P[An(k)] 
in terms of appropriate generalizations of Lucas polynomials and numbers. 

1 Here, by the term "run of 0's" we mean a string of consecutive 0's preceded and followed by l 's. 
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2* GENERAL MODEL 

Let % e29..., £n be a finite sequence of Markov dependent random variables with initial dis-
tribution. (1.2) and first-order transition probabilities (1.3). By R„(k), or simply J^, if no 
confusion is likely to arise, we shall denote the probability that the differences and cospan of the 
associated random r-combinations (r = 0,1,..., n) are at least k, i.e., d} > k7 j = 1,2,..., r - 1, and 
n~d>k. By convention, for r = 0, we assume that there is only one r-combination satisfying the 
aforementioned conditions (the one that corresponds to the place indicator (0, 0,..., 0)). On the 
other hand, for r = l, we treat all 1-combinations (i.e., the ones associated with the place 
indicators (1,0,..., 0), (0,1,..., 0),..., (0,0,..., 1)) as valid choices for A„(k). It is worth stressing 
that this setup is slightly different from the one used by Moser and Abramson [17], who assumed 
that the 1-combinations are acceptable choices for n > k and nonacceptable for n < k. 

Employing the notation of the last section, we may write 
R„ = R„{k) = P[A„(k)] = P[A„(k, /; *, /')] 

with /, /' being sufficiently large. 
In order to evaluate i^, we will employ a Markov chain approach similar to the one used by 

Koutras [10] for the study of several reliability systems; see also [4] and [12] for additional appli-
cations of the same method to success runs enumeration problems. 

Observe first that, for n< k, we have 
^ = 1 for « = 0,1, 
/<l = l-fl(l)fl1(2) forW = 2, 

K = /%0)Z Poo® + flO)flo(2)Z Ao(0 + to(ti£ ft A)o(0 
t=2 

xPoi^PioQ + ̂  + Poi1)] 

t=3 
n-\ 
OAOCO 
7=2 

i=2 |_f=2, t*i, i+l 

p0l(n) for 3 < n < k. 

(2.1) 

The first two expressions are obvious. For the third one, it is enough to observe that the occur-
rence of A„(k)9 3<n<k, secures that at most one trial among el9e2,..-9en resulted in 1. The 
required formula is then easily gained by conditioning on the position where 1 should be placed. 

Next, assume that n>k. By introducing the events 
B0 : sx = e2 = - • - - £k - 0, 
£,:**-,+i = l and Sj = 0, j e{l,2, . . . ,*}\{*-/ + l} 

fori = 1,2,..., k9 we may write 

I '=0 

where /?, = P(Bt) are given by 

(A>(l)n?=2A,o(0 for/ = 0, 
\po(V[nUp0o(0]Poi(k) for/ = l, 

Pi = | Pb0)[nf=2^*-/+Ur#t-/+2 fto(0] 
xp0l(k-i + l)pl0(k-i + 2) for2<i<k-l, 

fl(l)flo(2)nf=3Ao(0 fori = *. 

(2.2) 

(2.3) 
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For the evaluation of the conditional probabilities P[An{k)\Bi\ i = 0,1,..., £, we introduce a 
Markov chain {Yt, t = 1,2,...} defined on the finite state space O = {1,2,..., k + 2} as follows: 

}J = l if£. = Oformax(l,f--* + l ) £ / < / ; 
j ; = J if'£t-j+2 = l a n d si = 0 f o r i * r - 7 +2, max(l,t-k + \)<i<t (2<j<k +1); 
1J = k + 2 if there exist indices fl9 72 with max(l, t - A: +1) < tY ̂  £2 < t such that £, - st = 1. 

(Note that states y, 2 < j < k +1, are only reachable after time t>j-l.) Let us denote by At the 
transition probability of the aforementioned Markov chain, i.e., 

\ = (p(^=J\Yt-i=0\k+2Mk+2y 

From the description of the states, we may immediately verify that A, is given by 

A,= 

Poo(0 
0 
0 
0 

0 
0 
Poo(0 
0 

A>i 
0 
0 
0 

0 
0 
Poi 
0 

(0 

(0 

0 
flo 
0 
0 

0 
0 
0 
0 

(0 
0 
0 
Poo 
0 

0 
0 
0 
0 

(0 • 
• 

• 

•• 0 
•• 0 
•• 0 
•• 0 

•• 0 
•• 0 
•• 0 
•• 0 

0 
0 
0 
0 

Poo 
0 
0 
0 

(0 

0 
0 
0 
0 

0 
Poo(0 
0 
0 

0 
fli(0 
Poi(0 
Poi(0 

PoiiO 
Poi(0 
0 
1 

The conditional probabilities P[A(k) \ Bf], / = 0,1,..., &, can now be expressed by means of higher 
order transition probability matrices or, equivalently, products of Ar 's. Thus, denoting by e. the 
7th unit (row) vector of the space Rk+2, u = (1,1,..., 1,0) = Z)t\ cy, and uy = u - Zy=2 ey, / = 2,..., 
& + 1, we obtain 

P(A„(k)\Bi) = P(Yn*k + 2\Yk=i + \) = eJ JJAAU' 
\I=k+l 

for / = 0,1, 

P(An(k) + Bi) = P(Y„e{l,i + l,...,k + l}\Yk=i + l) = ei+1\ n A r | u ; fo r2</<* . 
(2.4) 

A combined use of formulas (2.2), (2.3), and (2.4) offer a compact computational scheme for the 
evaluation of i^. 

It is worth mentioning that, on introducing the convention u0 = ux = u, we may write a uni-
fied formula for i^, 

3, = l M + l F R K 
7=0 t=k+l 

(2.5) 

Note also that, for n < 2k - 1 , one does not have to use (2.5) for the evaluation of i^, since the 
third part of (2.1) is valid for k < n < 2k - 1 as well. 

In closing, we mention that the technique employed here for the study of the event A„(k) = 
4,(k, kf\ k, /') can be modified effortlessly to capture the probability of the more general event 
AJJi, kf; /, / '). The consideration of the special case was for typographical convenience only. 
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3. HOMOGENEOUS MARKOV-DEPENDENCE MODEL 

In this section, we study in some detail the special case in which sl9 sl9...9en form a homoge-
neous first-order Markov sequence, i.e., pv(t) are independent oft. Using the notation pj -pj(l), 
Ptj - Pij{f\ f = 2,3,..., w, for i, j G {0,1}, we may write (2.1) as follows: 

^ , = 1 if* = 0,1; 
K = l-PiPn if» = 2; (3.1) 

K = (Po + PiPio)Poo2 + (fl - ^)PoPoiPmPoo3 if 3 £ w< *. 
Since A, = A for all / = 2,3,..., w, we have P(A„(k) \Bf) = e/+1Aw^u;, n > k, and (2.5) leads to 
the expression 

^ = IA*V^*U/', "**, (3-2) 

with the /?,- 's given by 

r 

A 
\PoPool i£i = 0, 
\PoPw2Poi «f' = l, 
|/>o/4~VoiAo i f2</<£- l , 
lAAoPoo"2 ifi = A. 

From (2), we can easily obtain an explicit expression for the generating function 

G*(*) = I ^ - (3.3) 
n=k 

Now, using (3.2) in (3.3), interchanging the order of summation and then substituting the result-
ing geometric (matrix) series, we obtain the final expression for the generating function as 

Gt(2) = 2* tM + i ( / -A2) - I u ; . 
/=0 

After somewhat lengthy but straightforward algebraic calculations on the matrix / - Az, we get 

c /,) = i(Po + PiPio)Poo2 + (* ~2)PoPoiPioPoo3}zk + PoPoiPioZ£kliPw3z" (34) 
* l-Pooz-PoiPioPoo2zk 

From (3.4), we can easily derive a recursive scheme for the evaluation of i^. Multiplying both 
sides of (3.4) by the denominator, using (3.3) on the left-hand side, and equating the coefficients 
of z" on both sides, we obtain 

Rk = PoPoo1 + Poo3lPoPoiPoo + (* - Z)PoPoiPio + AAoA)ol 
^ = AxA-i + PoPoiPioPoo3 iork + \<n<2k-\ (3.5) 

K = PQoK,-i+PoiPioPoQ2Rn-k forn>2k. 

Evaluation of i^ through (3.5) is preferable, instead of through (3.2), due to simplicity (no matrix 
multiplications are necessary) as well as accuracy (less round-off errors). It may also be noted 
that, for 2 < n < 2k -1, one can use the exact formula 
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K = PoPoo1 + Pw\PoPoiPoo + (w " 2)PoPoiPio + flAoAol 
and employ the recursive scheme in (3.5) only for n > 2£. 

4. CIRCULAR 2 - W I T H I N - C O N S E C I J T I V E - * - O U T - O F - I I : F SYSTEM 
An r-within-consecutive-£-out-of-??:F system fails if and only if there exist k consecutive 

components which include among them at least r failed ones. Applications of such structures 
have been well documented in the literature, which include applications to telecommunications, 
design of integrated circuits, quality control, and sliding window detectors (see, e.g., [5], [6], [9], 
[18], [19], [20], and [24]). 

Even for the case of linearly arranged components, the evaluation of system's reliability is a 
very difficult task, and is mainly performed through approximating formulas. A Markov chain 
approach for this problem can be found in [10] along with recurrence relations for the special case 
r = 2. 

The results of Section 2 can be used for the reliability evaluation of a circular 2-within-
consecutive-^-out-of-^F system. Let us assume that the n components of the system work inde-
pendently and denote by p = l-q their failure probabilities (i.i.d. model). It is clear, from the 
definition of the event ^(k), that in the special case px - pQl - pn = p, pQ = p00 - pl0 = q, Rn is 
exactly the same as the reliability of a circular 2-within-consecutive-£-out-of-/i:F system. Recur-
rence relations in (3.5) reduce in this case to 

Rn = qRn_l+pqn-1 ifk + l<n<2k, 4 

Rn=qRn_l+pqk-lRn_k \fn>2k, 

with initial conditions R$ = Rx = 1, Rn-qn +npqn~l, 2 < n < k. Note again that instead of the first 
recurrence relation in (4.1), one could use the exact formula Rn = qn +npqn~l for all 2<n<2k. 
Another interesting observation to be made here is that, for n>2k, the reliability of both linear 
and circular 2-within-consecutive-£-out-of-?i:i7 systems satisfy exactly the same recurrence 
relation. This is not surprising since, when the system becomes sufficiently large (n>2k), the 
transition from Rn_l to Rn is not affected by the topological arrangement (adjacent or not) of 
components 1, n. 

Recurrence relations in (4.1) can be used in conjunction with the obvious inequality Rn_k > 
Rrl_l, k>\, in order to establish some simple lower bounds for Rn. Thus, for n>2k, we have 
Rn>(q + pqk~l)Rn_i; repeated application of this argument yields Rri>(q+pqk~l)n~2k+lR2k_l, 
n>2k, which, when used with the result that R2k_x = qlh~l + (2k - \)pq2k~2, gives a lower bound 
for Rn as 

Rn > (q + pqk-ly-2M{q2k-1 + (2k - l)pq2k-2}, n > 2k. (4.2) 

This bound is very useful when addressing the problem of specifying the (maximum) size n of the 
system warrantying a prespecified level a (0 < a < 1) of reliability. In view of (4.2), the condition 
Rn>a will be met if we force the right-hand side of (4.2) to exceed a; upon then solving for n, 
we obtain 
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It needs to be mentioned here that if R2k_l <a then appropriate values of/? should be sought with 
the aid of the exact formula Rn-qn + npqn~\ 2 < n < 2k. 

Papastavridis and Koutras [19] derived upper and lower bounds for both linear and circular r-
witWn-consecutive-&-out-of-n:F systems. In the special case in which r = 2, their lower bound 
for the circular system becomes 

Rn>(q + pqk-ly-l(qk+kpqk-1), n>2. (4.3) 

These authors also established a Weibull limit theorem for system's lifetime under quite general 
assumptions on components1 lifetime distributions. A simple adjustment to their proof yields the 
following asymptotic result: If/? depends on n in such a way that l im^^ np2 - X > 0, then 

limi^=£T(*-1)A. (4.4) 
n-»oo 

Simple algebraic calculations on the lower bounds in (4.2) and (4.3) reveal that, under the condi-
tion l im^^ np2 = X, they converge to the limiting value given in (4.4). 

In Table 1, a numerical comparison of the lower bounds in (4.2) and (4.3) is performed for 
selected values of n, k, and /?. The exact value of Rn and the limiting value e~^k~^np are also 
provided for comparison purposes. 

5. LUCAS POLYNOMIALS AND NUMBERS 

Let 0k\x)}n>o be the sequence of polynomials defined recursively as follows: 
4*>(x) = l + nx for0<n<2k, 

n W (5.1) 
Lik\x) = Lik]l(x) + xlik\(x) forn>2k. 

It may be seen readily that the degree of I$\x) for 0 < n< 2k is 1; moreover, if sk < n < (s + l)k, 
s = 2, 3,..., the degree of L{k)(x) is s. 

Next, let us denote by Z^} the integers I$\l\ n>0. Then {L(k)}„>0 will satisfy the recur-
rence relation 

L^ = Lik\ + Lik\, n>2k, (5.2) 
with initial conditions 

4*) =w + l, 0<n<2k. (5.3) 

It is clear that, for k = 2, the corresponding numbers I$2\ n>2, coincide with the well-known 
Lucas numbers Ln. Hence, an appropriate name for the numbers 1$ seems to be k-step Lucas 
numbers. Likewise, l£\x) may aptly be called k-step Lucas polynomials. 

It is worth noting that the recurrence relation in (5.2), under different initial conditions, gives 
rise to analogous generalizations of Fibonacci numbers. However, they have been studied in the 
literature under many different names. For example, Mohanty [15] termed them generalized 
Fibonacci numbers (see also Roselle [23] and Moser and Abramson [17]) and proved the exis-
tence of minimal and maximal representations of positive integers as sums of such numbers; 
Hasunuma and Shibata [7] used the name k^ interspaced Fibonacci numbers, while Koutras [11] 
employed the term k-step Fibonacci numbers. 

Hasunuma and Shibata [7] defined a Lucas number analogue as well, by considering the 
sequence lSk) satisfying the recurrence L(k) = L(k]t + L(k]k, n>2, with initial conditions I^k) = k, 
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I$P = 1, and L^ = 0 for n<0. The numbers Lf\ names as k^ interspaced Lucas numbers by 
them, arise in a very natural way in an interesting graph theoretic problem. Specifically, in [7], 
Hasunuma and Shibata proved that the number of labeled graphs which are &-placeable by a given 
permutation is a product of interspaced k^ Lucas numbers. It can be shown that the &-step Lucas 
numbers L^ (defined above) and the k^ interspaced Lucas numbers 1$ (just defined) coincide 
for^>^, that is ,Z^) = L<f>forall^ = A:^ + l,.... 

The generating function of the sequence 0k\x)}n>k given by 

G(z;x)=fd%\x)z" 

is readily determined from (5.1) to be 

„ f . zk[l + kx + xz(l + z+-'+zk~~2)] 
G(z; x) = —i —* -k ^ . 

\-z-xzr 
Comparing G(z; x) to the generating function of R^ for the i.i.d. case, we obtain the relationship 

~ n_(qzfll + kr + pz(\ + qz+-+(<iz)k-2)]_r( 

Hence, 

n=k n=k V*V 

and the reliability B^ of a 2-within-consecutive-&-out-of-w:F system can be expressed in terms of 
&-step Lucas polynomials as follows: 

R„ = q"^y n>k. 

This formula yields an interesting combinatorial interpretation for the &-step numbers 1$. More 
specifically, considering the symmetric case p = q = 1/2, we note from the above relation that 
jit) _ 2 « ^ = 2"P[An(k)], which simply proves that L{k) is the total number of "circular" combi-
nations whose differences and cospan are at least k. Moser and Abramson [17] arrived at the 
same conclusion by first computing the number Cr(k,kf;k,l') of r-combinations with differences 
and cospan at least k {k' and /' are assumed sufficiently large so that the differences and cospan are 
practically unbounded from above) and then noting that 

LV^Cr(Kk",kJ>) (5.4) 
r=0 

satisfies (5.2) and (5.3). It should be stressed that, due to the different conventions used here for 
the 1-combinations (c.f. first paragraph of Section 2), our numbers L^ coincide with the ones 
appearing in [17] only for n > k. Analogous results can be found in [22] and [25]. 

In closing, we note that the generating function of the &-step Lucas numbers l£\ n>k, is 
given by 

±^z" = G(z;l) = zk[l + k + < l + z+
k-+zk~2)]. 

n=k l-Z-Z 
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Expanding the right-hand side in a power series around 0, we easily get an explicit expression for 
4*} as 

z<*> = i + x ^ w " r ^ _ " 1
1 ) " 1 (5.5) 

This formula was also derived by Moser and Abramson [17] using direct combinatorial argu-
ments. In fact, they first proved that 

and then employed (5.4) in order to derive the explicit expression in (5.5). 

TABLE 1. Comparison of Lower Bounds of Section 4 and Exact 
and Limiting Values of Rn 

n k p 

4 2 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 
0.99 

n k p 

6 2 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 
0.99 

3 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 

Exact Value 
Rn 

0.99-96 
0.9905 
0.9639 
0.8704 
0.4375 
0.0784 
0.0199 
0.0050 
0.0002 

Exact Value 
Rn 

0.9994 
0.9858 
0.9462 
0.8110 
0.2813 
0.0190 
0.0022 
0.0003 
0.0000 

0.9988 
0.9733 
0.9054 
0.7045 
0.1563 
0.0047 
0.0003 
0.0000 

e - (*- l )np* 

0.9996 
0.9900 
0.9608 
0.8521 
0.3679 
0.0773 
0.0392 
0.0271 
0.0198 

e-(*-i)V 

0.9994 
0.9851 
0.9418 
0.7866 
0.2231 
0.0215 
0.0078 
0.0044 
0.0028 

0.9988 
0.9704 
0.8869 
0.6188 
0.0498 
0.0005 
0.0001 
0.0000 

Lower Bound 
(2) 

0.9996 
0.9903 
0.9623 
0.8602 
0.3750 
0.0374 
0.0053 
0.0007 
0.0000 

Lower Bound 
(2) 

0.9994 
0.9853 
0.9431 
0.7927 
0.2109 
0.0049 
0.0002 
0.0000 
0.0000 

0.9988 
0.9726 
0.9011 
0.6842 
0.1172 
0.0016 
0.0001 
0.0000 

Lower Bound 
(3) 

0.9996 
0.9900 
0.9606 
0.8493 
0.3164 
0.0168 
0.0013 
0.0001 
0.0000 

Lower Bound 
(3) 

0.9994 
0.9851 
0.9415 
0.7828 
0.1780 
0.0022 
0.0000 
0.0000 
0.0000 

0.9987 
0.9688 
0.8831 
0.6167 
0.0477 
0.0001 
0.0000 
0.0000 
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TABLE 1 (continued) 

n k p 

10 2 0.01 

n 

100 

0.05 
0.10 
0.20 
0.50 
0.80 
0.90 

3 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 

5 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 

k p 

2 0.001 
0.002 
0.005 
0.009 
0.010 
0.050 
0.100 
0.200 
0.500 

10 0.001 
0.002 
0.005 
0.009 
0.010 
0.050 
0.100 
0.200 
0.500 

Exact Value 
Rn 

0.9990 
0.9764 
0.9120 
0.7053 
0.1201 
0.0013 
0.0000 

0.9981 
0.9562 
0.8485 
0.5604 
0.0449 
0.0001 
0.0000 

0.9962 
0.9222 
0.7576 
0.4094 
0.0156 
0.0000 

Exact Value 
Rn 

0.9999 
0.9996 
0.9975 
0.9920 
0.9901 
0.7875 
0.3981 
0.0304 
0.0000 

0.9991 
0.9965 
0.9791 
0.9366 
0.9232 
0.2400 
0.0128 
0.0000 
0.0000 

e - ( * - W 

0.9990 
0.9753 
0.9048 
0.6703 
0.0821 
0.0017 
0.0003 

0.9980 
0.9512 
0.8187 
0.4493 
0.0067 
0.0000 
0.0000 

0.9960 
0.9048 
0.6703 
0.2019 
0.0000 
0.0000 

e - ( * - l ) n p 2 

0.9999 
0.9996 
0.9975 
0.9919 
0.9900 
0.7788 
0.3679 
0.0183 
0.0000 

0.9991 
0.9964 
0.9778 
0.9297 
0.9139 
0.1054 
0.0001 
0.0000 
0.0000 

Lower Bound 
(2) 

0.9990 
0.9755 
0.9060 
0.6733 
0.0667 
0.0001 
0.0000 

0.9980 
0.9538 
0.8345 
0.5074 
0.0179 
0.0000 
0.0000 

0.9962 
0.9202 
0.7482 
0.3847 
0.0104 
0.0000 

Lower Bound 
(2) 

0.9999 
0.9996 
0.9975 
0.9919 
0.9901 
0.7787 
0.3667 
0.0171 
0.0000 

0.9991 
0.9964 
0.9783 
0.9328 
0.9181 
0.1665 
0.0025 
0.0000 
0.0000 

Lower Bound 
(3) 

0.9990 
0.9753 
0.9044 
0.6648 
0.0563 
0.0000 
0.0000 

0.9979 
0.9500 
0.8179 
0.4573 
0.0073 
0.0000 
0.0000 

0.9955 
0.8988 
0.6704 
0.2380 
0.0006 
0.0000 

Lower Bound 
(3) 

0.9999 
0.9996 
0.9975 
0.9919 
0.9901 
0.7786 
0.3660 
0.0169 
0.0000 

0.9991 
0.9963 
0.9773 
0.9295 
0.9140 
0.1441 
0.0014 
0.0000 
0.0000 
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TABLE 1 (continued) 

n k 

100 20 

P 

0.001 
0.002 
0.005 
0.009 
0.010 
0.050 
0.100 
0.200 
0.500 

Exact Value 
Rn 

0.9982 
0.9928 
0.9591 
0.8833 
0.8607 
0.1139 
0.0025 
0.0000 
0.0000 

e - (&-l )np 2 

0.9981 
0.9924 
0.9536 
0.8574 
0.8270 
0.0087 
0.0000 
0.0000 
0.0000 

Lower Bound 
(2) 

0.9981 
0.9927 
0.9567 
0.8728 
0.8471 
0.0600 
0.0004 
0.0000 
0.0000 

Lower Bon 
(3) 

0.9980 
0.9919 
0.9517 
0.8567 
0.8276 
0.0321 
0.0001 
0.0000 
0.0000 
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1. SEQUENCES OF CUMULATIVE CONNECTION CONSTANTS 

Let us briefly introduce the notion of cumulative connection constants. For more details and 
related topics, the reader is referred to [2], [4], and [5]. 

Suppose two sequences {rn}n>l and {sn}n>l of complex numbers are given. Then one can 
introduce two associated sequences of polynomials {qn(x)}n>0 and {/?„(*) }„>o as follows. 

9 <!o(x) = PoOO = 1, and 
• for any n > 1: 

ft,(*) = &-i(*)-(*-0> 
A(*) = /Vi(*) •(*"*,,) • 

For any n > 0, the connection constants (or generalized Lah numbers) relating the (root) 
sequence {rn}n^ to {sn}„^ (or, equivalently, relating {q„(x)}„>0 to {pn(x)}„>0) are the complex 
numbers Zw k uniquely defined via the relationship 

n 

k=0 

where we limit the sum to n since, clearly, L k = 0 for any k>n. It is also easy to verify that 
Lnn = \ for any n > 0, our polynomials being monic. Moreover, we stipulate that Ln k-0 for 
negative values ofk. 

For any n>0, the /1th cumulative connection constant (ccc, for short) is defined as 
n 

%i = X4,*-
k=0 

We say that {<€„ }n>l is the sequence of ccc's relating { r j ,^ to {sn}n>l. Notice that we stipu-
late not to start the sequence of ccc's with %0 which always equals 1, as one may easily see. 

The following examples provide very well-known sequences of ccc's. For the sake of com-
pleteness, in the tables at the end of the paper we sketch the number sequences involved in these 
examples,, 
(i) Let {rn)n>_x = 0, 0,0,..., and {sn)n>_x = - 1 , - 1 , - 1 , . . . . Here we have 

(x+D- = S(j)v 
which clearly yields %n - 2n (see Table 1). 

Martially supported by MURST, under the project "Modelli di calcolo innovativi: metodi sintattici e combinatori." 
2Corresponding author. 
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(ii) Let {!•„}„« = .0,1,2,.... and {*„}„>, - 0,0,0,.... Here we have 

k=0 

where (x)0 = 1, (x)k - Il^~o(x-i) for k>\, are the falling (or lower) factorials, and 5(w> A:) are 
the Stirling numbers of the second kind. Then %n is the ft* Bell number 2&w (see Table 2). 
(iii) Conversely, let {/;}„>! = 0,0,0,..., and {sn}n>l = 0,1,2,.... Here we have 

n 

fc=0 

where s(«, £) are the Stirling numbers of the first kind. Then % = 1 and <€„ = 0 for each n > 2 
(see Table 3). 
(iv) Let {/•„}„>, = 0, 0,0,..., and {*„}„>, = 0,-1,-2, . . . . Here we have 

k=0 

where (x)0 = 1, <x)w = H"Io(x+i) for ft > 1, are the rising (or *//?per) factorials, and c(ft, &) = 
(-1)""* • s(n, k) are the signless Stirling numbers of the first kind. Then %n = ft! (see Table 4). 
(v) Let {rw}w>! = 1, q, q2,..., and { s j , ^ = 0,0,0,.... Here we have 

where g0(x) = 1> £*(*) = n f ^ x - ^ ' ) for A: > 1, are the Gaussian polynomials, and (JJ) are the 
Gaussian binomial coefficients. In this case, <€„ is the ft* Galois number relative to q, namely, 
*%n,q* which is known to count the number of subspaces of an ft-dimensional vector space over 
GF(<7) (see, e.g., [1], Ch. II, Sec. 4). This example for q = 2 is sketched in Table 5. 

These and other relevant examples may be found, e.g., in [1], [3], and [6]. In the sequel, we 
give instances of the notion of ccc that involve Fibonacci, Lucas, and other more general 
sequences. 

2. CCC VERSUS FIBONACCI 

We are now going to show that Fibonacci numbers can be seen as the sequence of ccc's 
relating two specific integer sequences. A generalization of this statement is then provided in 
Proposition 2.3. 

To prove our results, we need the following recurrence on the connection constants Lnk 
relating {rn}n^ to {sn}n^. 

Theorem 2.1 [5, Prop. 2J: For any ft, k, 

Ai, k ~ Az-1, k-\ + (rk+l ~ Sn) ' Ai-1, k- 0) 

This theorem allows us to obtain a nice recurrence relation for the sequence {^n}n>i of ccc's 
relating {rn}n^ to {sn}„>i-
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Proposition 2.1: For any n > 1, 

^ = ( l ^ ) ' t i + E 4 - u ' ^ i . (2) 
it=0 

Proof: Just put "ZjjLo" on both sides of recurrence (1) in Theorem 2.1. Then the claimed 
result follows by easy computation. D 

We can now state our first result. 

Proposition 2.2: Let {rn)n>l be the sequence 0,0,1,0,1,0,1,..., i.e., ^ - 0 and, for any k>\, 
r2-k - 0 and r2.k+l = 1. Moreover, let {sn}n>{ be the null sequence 0,0, 0,.... Then the sequence 
{̂ «}«>i of cce's relating {rw}w>j to {sjn>l is the Fibonacci sequence. 

Proof: By applying recurrence (1) to the connection constants relating our two sequences, 
we easily obtain Ll0 = L2^0 = L2j = 0. By recalling that Ln^n - 1 for any n > 0, and by the defini-
tion of ccc, we get 

Wo — ^1 0 2 1 2 2 — 

Let us compute %n for w > 3. Since {$„}„>! is the null sequence, recurrence (2) becomes 
n-\ 

k=0 

where we can expand Ln_lk according to recurrence (1), and get 
n- l 

^ n =<^w-l+2-» ( 4 - 2 , *-l + rk+\ ' 4 - 2 , k) ' rk+\ • P ) 

Now, note that our sequence {rn}n>x satisfies r„2 = rn for any n > 1. We can use this fact in (3) 
to obtain 

n-l n-\ 

^n =C^n-l+Z^^n-2,k-l'rk+l + Zw A i - 2 , k ' rk+V ( V 
k=0 k=Q 

The first sum in (4) gives 4-2, t + 4-2,3 + 4-2,5 + • • • + 4-2, «-2' rn> w h i l e t h e second expands 
to 4,-2,2 + Ln-2,4 + 4-2,6 +"" * + 4-2, n-2' Vi • Moreover, Ln_x 0 = 0, as one may easily verify by 
using recurrence (1). Therefore, (4) becomes 

n-2 

^n -^n-\ + i A i - 2 , k -^n-\ +<^>n-2 > 
k=0 

and our claim follows. D 

Indeed, this proposition (as well as the others we shall prove) can also be seen in terms of 
sequences of polynomials. As stated in Section 1, the two root sequences {rn}n>l and {srj}n>l 

in Proposition 2.2 originate two sequences of polynomials. The former gives {$n(x)}n>0 with 
0o(x) = l, fa(x) = x, and ^(x) = ^_1(x).x(w+1)mod2.(x-l)wmod2 for n>2. The latter yields 
{xn}n>0. Thus, for any n > 1, we have 
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*" = 1LLn.k'h(x) and ^ = ZAa> 
k=0 k=0 

where cF„ is the 72th Fibonacci number. 
In Table 6 we summarize the sequences we have just coped with in Proposition 2.2. The 

result in Proposition 2.2 can be generalized as follows. 

Proposition 2.3: For fixed integers d>\ and m> 1, let {rw}w>! be the sequence 

0 ^ ^ , 1 , ^ 0 ^ , 1 , 0 0 ^ 0 , 1 , . . . , 
d-\ m-\ m-\ 

i.e., rn = 1 whenever n=d+hm for h>0, and r„ = 0 otherwise. Moreover, let {s„}„>i be the 
null sequence. Then the sequence { ^ H } ^ of ccc's relating {rn}n>l to {»?„}„>! is 

(a) %=%2 = ...=%d_l = ly 

(b) %+i = 2 + i for0<i<m-l, 
(c) <€„ =<€„_!+<€„_„, for n>d + m. 

Proof: For (a), it is enough to verify via recurrence (1) that, for 0 < k < n < d - 1 , we have 
Ai,k ~ $n,k (Kronecker's symbol). For (b), again recurrence (1) says that, for 0 < i < rn-1, we get 
Ld+ik=6 for0<k<d-2, while Ld+Uk = 1 for d-l< k <d + i. 

Let us now turn to (c). For n>d + m, recurrence (2) is easily seen to be equivalent to 

/j=0 

By considering the structure of {/;}„>!, and by repeatedly applying recurrence (1), we can 
write Ln_hd+h.m_x in (5) as 

m 

^n-\, d+hm-l ~~ 2~i n-m, d+h-m-j • 
7=1 

We use this in (5) to obtain 

^n -^n-l + /I X Ln-m, d+hm-j • ( 6 ) 
/i=0 y=l 

It is easy to see that the double sum in (6) actually is T^-m Ln-m,k- Furthermore, by recall-
ing that d> 1, m>\, and that we are considering the case n>d+m, it is also easy to see that 
Ln-m, £ = 0for£<<i- /w- l . In conclusion, we can write (6) as 

n-m 

A:=0 

whence the result. D 
Needless to remark, Proposition 2.2 is just a special case of Proposition 2.3, up to setting 

d = 3 and w = 2. More interesting is the case d = m=l, which yields the constant sequence 
W«>i = 1,1,1, — By Proposition 2.3, the sequence {%,}„>! of ccc's relating such {rn}n>l to the 
null sequence is c€1 = 2, C€„ = 2C€„_1, i.e., %n = 2n. This is in perfect accordance with the well-
known identity 
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(x-lf 

As a further example, in Table 7 we display the case d = rn = 3. 

3* CCC VERSUS LUCAS 

In this section we provide a further interesting generalization of the result in Proposition 2.2. 
As a simple consequence, we obtain two specific integer sequences whose associated sequence of 
ccc!s is exactly the Lucas sequence. 

Proposition 3.1: Given two complex numbers a and b, let {rn}n>l be the sequence defined as 
rl=a,r2=b, and rn = l- tf_x for any n > 3. Moreover, let {sjn>{ be the null sequence. Then the 
sequence {<&„}„& of ccc's relating {rj^ to {s„}n^ is 

[\ + a ifw = l, 
%n = \\ + a + a2+b if « = 2, 

[^_1+^_2 if it ^3 . 

Proof: The first two values of {%,}„>>! are derived at once by definition of ccc. Let us 
compute %n for n > 3. Since {s„}n>x is the null sequence, recurrence (2) reads 

k=0 

Now, we use recurrence (1) to expand Ln_lik. We obtain 
n-\ 

^>n =<^>n-l + 2^ \Ln-2, k-\' rk+l + Ai-2, k ' rk+\) > 
k=0 

which, via the relation rn = 1 - rjj_l9 changes to 
n-l n-\ n-\ 

^>n -^n-l + Z^ ^ w - 2 , k-\' rk+l + 2 ^ A i - 2 , k~Z^ ^n-2, k ' rk+2 • 
k=0 k=Q k=Q 

All terms of the first and the third sum cancel out, except the two terms ^_2,-r^i and 
Ln_2 „_!'/;+1 that both equal 0, as noticed in Section 1. Since the second sum coincides with 
c€„_2, our claim follows. D 

It is easy to observe that Proposition 3.1 has Proposition 2.2 as a simple consequence, up to 
setting a = b = 0. Furthermore, it enables us to immediately get our claim on Lucas numbers as a 
sequence of ccc's. 

Corollary 3 J: Let {rn}n>i be the sequence defined as in Proposition 3.1, up to setting a = 0 and 
b-2. Moreover, let {sn}n^x be the null sequence. Then the sequence {^n}n>i of ccc's relating 
{rn)n>\ t 0 isn)n>\ °ls ̂ e Lucas sequence. 

In Table 8 we outline the sequences singled out in this corollary. 
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4. A FINAL REMARK 

For the sake of precision, it is worth noticing that all sequences of ccc's are meant to be 
determined up to translation of the related root sequences. More precisely: if ^>n}n>i relates 
{rn)n>\ t 0 {sn)n>\> ^en {%,}„>! also relates the translated sequences {rn + %}n>i and {s„ + £}„>i for 
any complex number £. In fact, from Theorem 2.1, it is easy to verify that the connection 
constants relating {rn}n>l to {s„}„^ll are the same that relate {rn + £}„>! and {sn + £}„>!• 

TABLE 1. Number of Subsets as Sequences of ccc's Arising from 
Binomial Coefficients (j) (Ex. (i)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
0 
0 
0 
0 
0 
0 

$, 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

k=0 1 
1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 

2 

1 
3 
6 

10 
15 
21 

CD 
3 

1 
4 

10 
20 
35 

4 5 6 7 

1 
5 1 

15 6 1 
35 21 7 1 

%, = 2" 

2 
4 
8 

16 
32 
64 

128 

TABLE 2. Bell Numbers 9iw as Sequences of cccfs Arising from 
Stirling Numbers of the Second Kind S(n, k) (Ex. (ii)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
1 
2 
3 
4 
5 
6 

*n 

0 
0 
0 
0 
0 
0 
0 

S(n9 k) 
k=0 1 2 3 4 5 6 7 

0 1 
0 1 3 
0 1 3 1 
0 1 7 6 1 
0 1 15 25 10 1 
0 1 31 90 65 15 1 
0 1 63 301 350 140 21 1 

^n=% 

1 
2 
5 

15 
52 

203 
877 

TABLE 3. The Sequence of ccc's Arising from Stirling Numbers 
of the First Kind s(#t, k) (Ex. (Hi)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
0 
0 
0 
0 
0 
0 

Sn 

0 
1 
2 
3 
4 
5 
6 

fc = 0 
0 
0 
0 
0 
0 
0 
0 

1 
1 

- 1 
2 

- 6 
24 

-120 
720 

2 

1 
- 3 
11 

-50 
274 

-1764 

s(n, k) 
3 

1 
- 6 
35 

-225 
1624 

4 

1 
-10 

85 
-735 

5 

1 
-15 
175 

6 7 

1 
-21 1 

<€» 
1 
0 
0 
0 
0 
0 
0 
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TABLE 4. Factorial Numbers as Sequences of cccfs Arising from Signless Stirling 
Numbers of the First Kind c(n9 k) = {-t)n~k - s(«, k) (Ex. (iv)) 

n 

1 
2 
3 
4 
5 
6 
7 

?n 

0 
0 
0 
0 
0 
0 
0 

Sn 

0 
-1 
-2 
-3 
-4 
-5 
-6 

c(ny k) 
k=0 1 2 3 4 5 6 7 

0 1 
0 1 1 
0 2 3 1 
0 6 11 6 1 
0 24 50 35 10 1 
0 120 274 225 85 15 1 
0 720 1764 1624 735 175 21 1 

%n = n\ 

1 
2 
6 

24 
120 
720 

5040 

TABLE 5. Galois Numbers ^ 2 as Sequences of ccc's Arising from 
Gaussian Binomial Coefficients (j) (Ex. (v)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

1 
2 
4 
8 

16 
32 
64 

5, 
0 
0 
0 
0 
0 
0 
0 

k = 0 1 
1 1 
1 3 
1 7 
1 15 
1 31 
1 63 
1 127 

2 

1 
7 

35 
155 
651 

2667 

(!), 
3 

1 
15 

155 
1395 

11811 

4 5 6 7 

1 
31 1 

651 63 1 
11811 2667 127 1 

%=%,2 
2 
5 

16 
67 

374 
2825 

29212 

TABLE 6. Fibonacci Numbers 9n as Sequences of ccc's (Prop. 2.2) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
0 
1 
0 
1 
0 
1 

Sn 

0 
0 
0 
0 
0 
0 
0 

Kk 
k=Q 1 2 3 4 5 6 7 

0 1 
0 0 1 
0 0 1 1 
0 0 1 1 1 
0 0 1 1 2 1 
0 0 1 1 3 2 1 
0 0 1 1 4 3 3 1 

%=%, 
1 
1 
2 
3 
5 
8 

13 

TABLE 7. The Sequence of cccfs Arising from Prop. 2.39 for d = m = 3 

n 

1 
2 
3 
4 
5 
6 
7 

r« 

0 
0 
1 
0 
0 
1 
0 

Sn 

0 
0 
0 
0 
0 
0 
0 

4a 
£ = 0 1 2 3 4 5 6 7 

0 1 
0 0 1 
0 0 1 1 
0 0 1 1 1 
0 0 1 1 1 1 
0 0 1 1 1 2 1 
0 0 1 1 1 3 2 1 

<«„ 
1 
1 
2 
3 
4 
6 
9 
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TABLE 8. Lucas Numbers %n as Sequences of ccc's (Cor. 3.1) 

n 
1 
2 
3 
4 
5 
6 
7 

Vn 

0 
2 
-3 
-8 
-63 

-3968 

-15745023 

*n 

0 
0 
0 
0 
0 
0 
0 

k = o 
0 
0 
0 
0 
0 
0 
0 

1 
1 
2 
4 
8 
16 
32 
64 

2 

1 
-1 
7 

-13 
55 

-133 

3 

1 
-9 
79 

-645 

5215 

Kk 
4 

1 
-72 
4615 

-291390 

5 

1 
-4040 

16035335 

6 7 

1 
-15749063 1 

10,2 — o£„ 

1 
3 
4 
7 
11 
18 
29 
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In a recent paper [1], Filipponi presented, without proof, a formula for odd-subscripted 
Lucas numbers which can be equivalently rewritten as 

0<y'<f \ J J n J 

This form is better suited for our treatment, and we can observe that, for even n, the summand for 
7 = f is (-l)w/2, explaining the extra term in [1]. The aim of this note is to give two distinct 
proofs of (1). 
First proof of (1). We use the standard forms 

G„00= i f V V - (2) 
0<k<nV / 

They are studied very well in [2], and we have, for n > 0, 

X ( - i y ( " - ^ 3 " - ' - ^ ^ = 3''G„(-i)+r-1G„_1(-i). 
0<;<f \ J J n J 

In Exercise 7.34 of [2] we find also the generating function 

„>0 i-Z-WZ 

Hence, 
X(3»GnB) + 3»->G„_1(-l)k 
«>o 

= lG„B)(3z)"+zXG„(- i ) (3zr 

Since a trivial computation gives 

n>0 

1-fz 
1-3Z4-Z2 ' 

2-» ^2n+V 
n>0 

n>0 

l + 'Z 
z" = -1 - 3 Z 4 - Z 2 ' 

the proof is finished. D 
We can even get a general formula for Lsn+t with nonnegative integers 0 < t < s; for that, we 

set up generating functions: 

2000] 165 



TWO PROOFS OF FILIPPONl'S FORMULA FOR ODD-SUBSCRIPTED LUCAS NUMBERS 

(3) 

(4) 

i7M(z)=Z4n+^=«'Z(«^)"+/ffrZ^)n = « ,
T Z^-+^— l -

n>0 n>0 n>0 I (X Z 1 p . 

= at(\-p*z) + PX\-a'z) = a'+fi'-g-iya-' + (-l)'/3s-')z 
{\-asz)(\-psz) ~ \-{as+ps)z+{-\Yz2 

= L,-(-l)%_,z 
\-Lsz+(-\yz2-

By using (2), (3) can be written as 

FSJ{z) = (Lt - (-l)%_,z)G (LSZ, t ^ 1 

and, therefore, we get the formula: 

0<k<nV ' 

-(-D'4-f I ( " - ^ W - ' ^ r 1 

We do not know whether this formula is new, but it is easy to prove and generates infinitely 
many "Filipponi formulas." 

Second proof of (1). For the second (mechanical) proof ("ZeilbergerV algorithm"), we note the 
following (see [3] and [2] for the underlying theory): Set 

/(/a):=(-i)*(V)3"_1~2*^rf and m-=Yf(n,k). 
Furthermore, set 

, j , 9k(n-k)(4n-5k + 5) ,, y. 
^ k) '= -{n-2k + 2){n-2k + l){An-5k)f{n' *>' 

then 
f(n + 2,k)-3f(n + l,k) + f(n,k) = g(n,k + l)-g(n,k) 

(check!!), thus we get, on summing over k, F(n + 2)-3F(n + l) + F(ri) = 0. Since the odd-
subscripted Lucas numbers also satisfy the recursion L2n+5 - 3L2n+3 + L2n+l = 0 and two initial 
values match as well, the proof is finished. D 
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INTRODUCTION 

In [7], two families of polynomials {Fk J and {Gk „} in k indeterminates were defined: 

^,o(0 = 0, 
FM(t) = l, 
FkJt) = Fk_ln(t),\<n<k, 

P'k,„(t) = fdtJ.Fk„_J(t),n>k, 
y=i 

whereto (/„..., tk). 

Gk,o-k> 
Gk,i = h, 

GKn = Gk_ln,\<n<k, 
k 

Gk,n = Y.tjGk,n-j,n^k, 
j=i 

There it was pointed out that these two families generalize the Fibonacci and Lucas polynomials 
(see [3], e.g.). In the course of [7], they arose in a natural way in the context of a subgroup of the 
group of multiplicative arithmetic functions (see [8], e.g.); the group operation is the convolution 
product. The subgroup in question is sometimes called the rational subgroup of the group of 
multiplicative functions (RMF) (e.g., see [1]). It is the subgroup generated, under convolution by 
the completely multiplicative functions (CMF), those multiplicative functions y which satisfy the 
identity y{m)y{n)-y(mri) Vm,nGN9 where the product, this time, is the pointwise product. 
These CMF can also be described as those multiplicative functions which are completely deter-
mined by their values at primes. The RMF can be described as those multiplicative functions 
which are completely determined by their values on a finite number of prime powers for each 
prime p. 

In [7], Corollary 1.3.2, it is shown that the rational group RMF is a(n uncountably generated) 
free abelian group.1 The group minus the identity thus splits into two disjoint subsets, the free 
semigroup generated by the CMF's—call these the positive functions, and the set of their 
inverses—call these the negative functions. It is a consequence of the fact that elements are 
determined locally by their values on finitely many prime powers for each prime p, that there is 
associated with each pair consisting of a positive function x a n^ its inverse x~l a unique monk 
polynomial of degree k9 PTtP(t)9 t = (tl9...9tk)9 with complex coefficients, and that k can be 
chosen to be the same for all primes/? [7]; that is, the set of ks is bounded. Moreover, every such 
polynomial determines such a pair of rational MP's. An RMF determined in this way will be said 
to be of degree k. It is then clear that the positive functions form a graded semigroup. 

lA consequence of this result and a result of Carroll and Gioia [2] is that the rational group is embedded in a 
torsion-free divisible group in the group of multiplicative arithmetic functions. 
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The role of the (recursive) family of polynomials {Fk n} is that, when evaluated at the coeffi-
cients (1, al9 ...,ak) of Pr,p(t), they give the values of y at the /1th powers of the prime p. Thus, 
the set {Fk n(t)} yields every possible positive RMF of degree k under the evaluation map on k-
tuples of complex numbers. A negative RMF (i.e., an inverse of a positive RMF) has a value 0 for 
all powers ofp greater than k, and for powers ofp less than or equal to k, the values are just the 
coefficients of P (t). 

The polynomials {Gk n(i)} are somewhat more elusive, but are closely related to the Fkt„. 
When k = 2 and Py p(t) = x2 -tx-l, then Fk n and Gktn are just the Fibonacci and Lucas poly-
nomials, respectively. In general, dGknldtl = nFkt„. From [7], we have the following generaliza-
tion of the Binet formulas which, moreover, gives relations among the roots of Pr,p(x; th . 
the values in the sequence y(pn) and the polynomials Fk n(t). Thus, letting 

. , ' * ) , 

A,=A(A„. 

we have that 

•,4)= 
i • 

4 • 
•• 1 

•• 4 
• 4-

&k,n~ &k,n(^h--

rW) = Fk,n*(Q = ̂ r-> 

-,4) = 

l 

4 • 
x\~2 • 

yt+k-2 

1 
•• 4 
•• 4-2 

in+k-2 

-txxl k-\ where the A7(t) = Xj are the k roots of the polynomial PrtP(x; tl9..., tk) = x' 
This is clearly a pleasant generalization of the Binet equations for k = 2; but more is true 

A 1k,n = CS¥(k,n) = ZXi • 4 

-U 

where YAj =w. These are just the complete symmetric polynomials of degree n in the Xt ([6], 
pp. 21 ffi). The Gk^n now become transparent: Gkt„(t(X)) = X[ + ...+An

k= PSP(A:, n). These are 
just the power symmetric polynomials of degree n in the Xj (see [6]). 

In Section 1, Theorem 2, it is shown that each Fki„+l can be rewritten as a sum of products of 
the GktJ with rational coefficients; this rewriting process has an inverse which rewrites each of the 
Gkn as sums of products of the FkJ with integer coefficients (Theorem 3). There is also a map 
which sends Fk^n+l and Gkn to symmetric polynomials in the roots of Py{x\ t), in the first case, a 
CSP(&, n\ in the second, a PSP(£, n). 

Fh k,n+l 

I 
Gk,n 

CSP(M) 
4 

PSP(M) 

All of these maps are invertible. This gives an effective process for rewriting the elements of the 
ring A" of symmetric polynomials of degree N regarded as the Z-algebra generated by CPS's as 
elements in A" regarded as the Q-algehm generated by the PSP's, and vice versa. In this way, the 
Fkn and the Gkn are identified with Schur polynomials in A". 
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There is also a number of relations among the two sets of polynomials Fktn and the Gkt„ 
which generalize the well-known relations among the Fibonacci and Lucas polynomials (e.g., see 
[4], or more conveniently [10], pp. 44-46). Those which have appeared in [7] will be listed for 
reference merely as Result without proof. 

In 1995, Glasson [5] showed that the Fibonacci and Lucas polynomials satisfy second-order 
partial differential equations. We generalize this result in Theorem 4, Section 2. Here we show 
that the partial differential equation Dx 1 - Z tjDj2 = mD2, where j = 1,..., k, is satisfied by Fkt n if 
JW = 2, and by Gkt„ ifm= 1. 

In Section 3, Theorem 5, we show that the RMF's are just those arithmetic functions which 
are locally recursive of finite degree. 

1. IDENTITIES 

Result 1 ([7], Theorem 3.4): — ^ - = nFK „, n > 0. D 

Result 2 ([7], Corollary 3.4.1): £ - ^ = * £ F*t „_y. D 
dtt 

Result3 ([71 Corollary 3.4.2): E ^ ' / ^ E ' y ^ . " - / = * f w D 
y=l Olj j=Q 

Result 4 ([7], Corollary 2.1.3 and Theorem 3.2): If the F-polynomials and G-polynomials are 
regarded as functions of the zeros of the defining monic polynomial Py(x) of y, then 

(a) F4fJI(t(X)) = Z ^ - ^ , w h e r e 5 : i 7 = / i . 
(h) GM(t(X)) = A-1 + - + ^ , 

where t = (tu...,tk) and X = (Al,...,Ak). D 
n 

Theorem 1: nFk „+1 = £ GK rFk 
r=l 

First we prove 
J f c - 1 

Lemma LI: Gk0 = k, G M = F M + 1 + £y7y + 1^f l^y, n>\. 
7=1 

Proof of Lemma 1.1: By definition, we can write 
k 

Gk,n=lLtjGk,n-j = Z 0 
7=1 7=1 

J f c - 1 

X UMFkt n-j-i + Fk, n-j+l 

k J f c - 1 k 

, = i /=i 7=1 
Ar—1 /̂  fc ^ 

and again by definition, = Fkt n+l + £ fy+i X ^ («-/)-y 
M \j=l J 
k-l 

= Fk,n+l + JlitMFk,n-i- D 
/ = 1 
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Proof of Theorem 1: Again, we proceed by induction noting that the result holds when 
n = l. We need to show that (n + l)Fkn+2 = E?iiG^ri^„_r4.2. With the understanding that 
Fk m - 0 when m < 0, we have 

n+l n k 

2-f Gjct r
Fk, n-r+2 - 2-» ^k, r 2-» *JFk, w-r-y+2 + ^ i t , «+l 

r=l r=l ;=1 
k n 

= 2 ^ f /2-r ^k, rFk, n-r-j+2 + Q t , »+l 
y=l r=l 
it it-1 k 

= 2-f ( T V "+W + 2-. 2-( ti/i+Vk, n-j-i 
y=i /=i y=i 

it-1 f it "\ 
~ Fk, n+l + 2-» '*/+l 2^ *rV ("-0-; 

,=1 V/=1 

= Z (/(" - J + ^ -7+2 + G*, «+i 
it i t - i 

so by Lemma 1.1 = £ / , (*- . / ' + 1)̂ *, „-/+2 + X ^ V A «-/+i+ F*. »+2 
/=! y=i 

i t - i 

k 

y=i 

The following two theorems give an effective rewriting process for writing products of PSP's 
in terms of CSP's and vice versa, that is, they will do so once it is explained how to write the 
PSP's and the CSP's in terms of the F- and G-polynomials. We shall state the theorems first. 

Theorem 2: 
Fk,„+, = I ±Gkih...Gk,, zdj = n/;(0)v(/;)! 

dtedZdi 

where d = {dx,...,ds} is the set of partitions of n, v(/.)= number of times /• occurs in dt = 

Proof: Noting that the F-polynomials, when regarded as functions of the roots of the 
defining polynomial Pr(x) are just the complete symmetric polynomials; the G-polynomials are 
the power symmetric polynomials (Result 4), each of which is a basis for the space of symmetric 
polynomials. In particular, each polynomial F^r can be written uniquely as a polynomial in the G-
polynomials. So if the theorem is correct, it is just a statement of this representation. Now, 
Fk,n+i regarded as a polynomial in the roots Ah...yAk,i§ complete symmetric of degree n; hence, 
each monomial summand is obtained as a partition of n; so in the language of Polya's Counting 
Theorem [9], we let the figure inventory consist of Xx H h Xk and then the cycle index is given 
by (l/zdi)GkJr..GkJsj> where Gk%r = (A\ + -+Ar*). Since/j+ •••+/„ =" , ( l / ^ X ^ - . - . G ^ is 
just a monomial of total degree n and so the sum is, indeed, Fktn+l. Here, of course, zd. = # con-
jugates of the element in Sn whose cycle structure is given by dt. D 
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Theorem 3: 

using the notation of Theorem 2, and where l(dt) = length of 4 . • 

The expressions in Theorems 2 and 3 are inverses of one another, which can be shown by 
direct computation, providing a proof of Theorem 3. Now, to get back and forth between the 
two sequences of polynomials, we identify the symbols /. which appear in Gkn and Fkt„+l with 
the elementary symmetric polynomials in the Ah..., Xk as follows: /; = {-\)i+laKj, where akJ -
ak,j(^i>-->^k)= thej* symmetric polynomial in the roots of the polynomial P p(x;t). This 
identification is the basis of the proof of Lemma 4 in [7]. The substitution of the cr's for the fs 
yields the horizontal maps in the diagram in the introduction. The left-hand vertical arrows are 
just the maps implied by Theorems 1 and 2, Theorem 1 going downhill, Theorem 2 going uphill. 
For example, A2

l + AlA2+J^2 "ls" 

dx = [2], d2=[l,ll 

2. PARTIAL DIFFERENTIAL EQUATIONS 

Define a differential operator by A,™ - Ai ~h^\2 "h^hi ~ WA> m ~ \ 2, and, more gener-
ally, Lkm - Dn-T%itjDj2 -mD2. The following theorem states that the polynomials Gnk and 
F„ k are solutions of second-order partial differential equations, with the exceptions of the cases 
for£ = l. 
Theorem 4: (a) LkAGkt„ = 09 k>l, 

(h) 4.2^M = °> k>l-
Proof: We proceed by induction. 

Lemma: (a) L2tiG2f„ = 09 

(b) A,2A,„ = 0. 

(These identities were proved in [5]; however, we shall give a proof here that is self-contained 
using the methods of this paper.) Assuming the result for 1 <r <n + \9 we can write G2)W+1 = 
¥^2,w + ^2 ,w-i ,andthus 

A, \(G2, «+l) = A, \{hG2, n + ̂ 2G2, »-l) 
= 'iA,i(G2, J + ̂ A , i ( ( W + 2AG2,, -hD2GXn -hDfi^ -IhDfi^-G^ 
= 2 1 ^ ^ ( 2 1 1 - 1 ) ^ ^ -2{n-\)t2Fn_2 -F2tn-t2F2^_2 

= (2n-l)F2,n-(2n-l)F2^ = Q, 

equalities which follow from the induction hypothesis, definition of the F- and G- polynomials, 
and Result 1 and Lemma 1.1. D 
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The proof of part (b) follows from (a) and Result 1 as follows. 

Ll,2iFXn) = (Al " '1A2 - *zA» - 2A)^2,„ 
= ( l / /1XA1 - '1A2 - '2A12 - 2A)AG 2 , „ 
= \in AA, A.„+(A, - A2)G2,„ = 0, 

using part (a). • 

To complete the proof of the theorem, we assume that the result of the theorem holds for all 
Gs n for which 1 < s < k -1, and note that Gk>n = Gk_ln for 1 < n < fc. Assume the result for GktS 

for l<s<n, and consider LklGkn+l = LGkn+l, n>k. A straightforward, but rather tedious, 
computation, as in the proof of the lemma, using the inductive definition of Gk>w+1, which takes 
hold for this range of w's, and again using Result 1 and Lemma 1.1, and Theorems 2 and 3, we 
complete the induction. Part (b) now follows by a similar argument. • 

3. CONCLUDING REMARKS 

Theorem 5: Given the recursion uJ+l = axUj + • • • +akUj_k with u0 = 0,u{ = 1, then 

uJ+i = FkJ+l(a). 

Proof: The theorem follows by induction and the definition. D 

Notice that this result can be applied to any linear recursion formula, for if the coefficient of 
Uj+l is any nonzero (complex) number, we can divide through by it and apply the theorem. 

We define a sequence to be locally linearly recursive of degree fc if at each prime/? the prime 
powers of the sequence are given by a linear recursive relation involving k independent unknowns, 
the same k for each prime/?. 

Corollary 5.1: A sequence is locally linearly recursive of degree k if and only if when regarded as 
an arithmetic function, it belongs to the positive semigroup of the group of rational multiplicative 
functions. • 

We define a positive rational multiplicative sequence to be uniform if at each prime it is deter-
mined by the same polynomial, Prp(x) - Prp>(x) for all primes p and /?'. It is clear that the 
uniform sequences form a sub-semigroup of the semigroup of positive rational functions. It is 
also clear from the above corollary that 

Corollary 5.2: A sequence is linearly recursive of degree k if and only if it is, as an arithmetic 
function, uniform. • 

Here, linear recursive of degree k has the obvious meaning; the same relation holds for all 
primes. 
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1. INTRODUCTION 

We introduce a way to construct generalized golden sections, and demonstrate a geometric 
connection between these sections and generalized Fibonacci sequences of the form un+l =k-un + 
un_l9 where u0 = 0, ux = 1. for k > 1. We let $ = (1 +V5)/2, the golden ratio, and F^h) represent 
the 71th term of the k^ generalized Fibonacci sequence, defined above. Our method will employ a 
geometric version of the Euclidean Algorithm. 

For k = 1, the key fact is that if two line segments with lengths x andj satisfy xly - <j>9 then 
x = y + Rl9 where Rx<y and ylRx is itself equal to </>. This follows from the definition of the 
golden section. See Figure 1 and the mathematical argument given in [3, pp. 9-10]. 

y _ AB _AC 

B C 

FIGURE 1 

Since x = y + Rl9 and Rx<y9 we can approximate x (badly) by ignoring the remainder Rl9 and 
estimate x / y = (y + Rx) I y « 1. To refine this estimate, we should use a smaller unit with which 
to measure. Hence, we now choose R{. This is shown in Figure 2. 

Rl i?2 ^ l 
1 ' -v " ' ' 

v B C 

FIGURE 2 

Ri _ y _ x _ , 
R2 ~ Rt ~ y ~ * 

From Figure 2, a new estimate of xl y, ignoring the remainder R2, is 

>2. x _2Rl + R2 

y Ri+R2 

If we now lay off R2 against each Ru we have the construct in Figure 3. 
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R2 __ Ri _ y __ x _ 
J?3 R2 R\ y 

FIGURE 3 

From Figure 3, a new estimate, this time ignoring the remainder R3, is 

y 2R2 + R3 ~ 

If we continue this process, it is easy to see and to prove by induction that 

</> 
_ x _ F„+2 • R„ + Fn+X • R„+l _ F „ + 2 

n+l 

This gives a geometric flavor to the well-known identity 

lim4ri = ' 

2e NEARLY GOLDEN SECTIONS 

We generalize the golden section in a manner not entirely unlike Philip Engstrom's general-
ization in [2]. We do so by giving a ruler and compass method of locating point B, between A 
and C, as in Figure 4 below. 

Let k be a fixed positive integer. Given a line segment AC, first bisect the segment. Con-
struct a perpendicular EC at point C of length y- AC. By striking arcs, locate points D and 5, as 
shown in Figure 4, so that DE - CE and AB - AD. 

EC LlC 
EC= I-AC 
DE = CE, AB = AD 
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By the Pythagorean Theorem, 

AE = yl(AQ2+(EQ2=J(AC)2+!j(AC)2=^k2 + 4-AC. 

So we have 
AB = AD = AE - DE = AE - CE 

=1JFT4.AC-LAC = =±±J£±±-AC. 
2 2 2 

It follows that 
AC _ 2 _k + ylk2+4 
AB - * W * 2 + 4 2 

We shall call this ratio $k, the kA generalized golden ratio. That is, 
, k + Jk2+4 

+* = 2 
Letting tk=-l/$k,the other root of the equation t2 - kt -1 = 0, it is now a simple exercise 

to follow the reasoning in Hoggatt's book [3, pp. 10-11], to establish the Binet form 

p{k) _ ¥k^^k 

Using the notation of Horadam [4, p. 161], F^ = w(0,1; k, -1), a generalized Fibonacci 
sequence of the form mentioned in the introduction. In [4] and a large number of other articles 
appearing in this journal, one can find many formulas for the sequences F^k) and the related 
generalized Lucas sequences given by L^ = ffi+t%. However, one formula we did not find is 
(̂ 2w+i ~ m)2 ~ (m2 +1) + $2m+i • This formula is easy to prove by using the formula for the value of 
(j>k given above. This identity implies that, for odd k, the decimal part of $k is the decimal part of 
a number which differs from its square by a positive integer. The table below gives some 
examples to illustrate this. 

TABLE 1. A Squaring Property 

m 
0 
1 
2 
3 

&-H-1-™ 
1.6180339887... 
2.3027756377... 
3.1925824036... 
4.1400549446... 

{<t>2m+l-mf 
2.6180339887... 
5.3027756377... 

10.1925824036... 
17.1400549446... 

3. THE GEOMETRIC CONNECTION FOR GENERALIZED 
FIBONACCI SEQUENCES 

We now use the construction of Section 2 to emulate the geometric process of Section 1 for 
approximating </>k for k > 2. The goal is to demonstrate a geometric connection, similar to the 
one shown in Section 1, between ratios of generalized Fibonacci numbers and generalized golden 
ratios. 
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Definition: To form the k^ nearly golden section, cut a line segment into k +1 pieces such that 
1. k of the pieces have equal length, 
2 the remaining piece is shorter than the first k pieces, and 
3. the ratio of the length of a single larger piece to the smaller piece is equal to the length of the 

whole segment to that of the larger piece. 

The construction of Section 2 tells us how to cut a line segment in this way. A few comments are 
in order. 

With lengths as described in Figure 4, we have 

AC-k-AB=AC , - £ W £ 2 + 4 
AB AB 2 

and so, 
AB _ 2 _ * + V*2+4 = AC = , 

AC-k-AB _^ + V ^ 7 ^ 2 AB (pk' 

From this calculation, we deduce first that when AC I AB-(j)k, as in the construction, then 
k-AB<AC. So, by duplicating the length AB an additional k-\ times on the segment AC, 
beginning at point B, we can cut the line segment AC in the manner illustrated for k-2 and 
k = 3 below. (These are generalizations of the cut made in Figure 1.) 

fc = 2 : | _ 4 _ . f. 1 AB = BB' 

A B Bf C 

k = 3: | _ | 1 | | 

A B B" B' C AB = BB" = B"Bf 

FIGURE 5 

Said another way, if A, B, and C are as in Figure 4, with AC I AB = $k, then AC = k • AB + B'C 
(as in Figure 5). Moreover, 

AB = AC = , 

These facts allow us to emulate the geometric process, we described in the introduction. 
The key fact now, obtained from the preceding discussion, is that if two line segments with 

lengths x andy satisfy x/y = $k then x = k-y + Rl9 where Rx < y and yIRx = $k. (In the defini-
tion, x is the length of the original segment, y that of one of the larger pieces, and Rx that of the 
shorter piece. In Figure 5, x = AC, y = AB, and Rx - BfC = AC-k° AB.) Thus, geometrically, 
y can be laid off A: times against x, with a remainder of length Rx, and the ratio y I Rx is the same 
as the original ratio xly. This means that now Rx can be laid off k times against each y, with 
remainder R2 = y-k-Rx, and Rx/R2= y/Rx = x/y = $k. This process can be repeated indefi-
nitely. 
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We now estimate $k. Our first estimate (ignoring the remainder 7?,) is 

A, =
 x

 =
 k-y + Ri = F^-y + F^-R, F2

(k) 

** y y F^-y + F^ * F}<*>-

Now, as we said above, y/Rl is also equal to <j>k. So y = k-Rt+R2, where R2 < i?, and 
Rl/R2 = y/Rl = $k. We can lay off./?, k times against eacfty. We illustrate for & = 2 in Figure 
6 below. 

fix ' fix fe^ S T 4 ^ t " 1 ^ H ^ 2/ 
2/ a; 

- = <f>2 

fk 

FIGURE 6 
By substitution, we have 

x = ky + R1 = k(k-R1 + R2)+R1 = (k2 + l)R1 + k-R2, 
y = k-Rl + R2. 

Since F^ = i? /£*> = k, and /£*> = k2 +1, we may write 

x = Ffk)-Ri + F2
{k)-R2, 

y = F2W-Rl+FlW-R2. 

So our second estimate, this time ignoring the remainder R2, is 

x _F^-Rl + FP-R2F^k) 

y F^-R^F^-R^ F}ky 

These are the first steps of an iterative process in which, at each step, Rn is laid off k times 
against each ^,_, (since ^,_, =k-Rn+ i^,+1), and 

^ = i = A= =
 Rn 

y *i R2 K+i 

At the «* step we have 
x = an+lR„_l+an-Rn, 

y = a„-Rn-l+a„_lRn. 

By substitution into (1), since ^,_, = k-Rn+Rn+l, we have 

* = «n +i(*A+^,+i)+«,, A 

an+2 

j = a„(*^+J^+ ))+an_1.^ 
= (kan+an_1)Rn+anRn+1. 
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We see that the sequence an Is defined by the rule an+2 = k• an+l + an for all n>\. That is, 
an = Fnk\ a n d 

This is the desired generalization of the geometric approximation in the introduction. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Missouri State University, 800 
University Drive, Maryville, MO 64468. All solutions to others9proposals must be submitted to 
the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, Missouri 
State University, 800 University Drive, Maryville, MO 64468. 

Proposers of problems should normally include solutions. Although this Elementary Problem 
section does not insist on original problems, we do ask that proposers inform us of the history of 
the problem, if it is not original. A problem should not be submitted elsewhere while it is under 
consideration for publication in this column. Each solution should be on a separate sheet (or 
sheets) and must be received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. 

B A S I C F O R M U L A S 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F*+2 = Fn+1 +Fn> F0 =0, Fx= 1; 

Ai+2 ~ Ai+1 + An M) = 2, Lx = 1. 

Also, a = (l + V5)/2, fi = (l-j5)/2, Fn = (an - fin) / fil md Ln = a"+fln. 

P R O B L E M S P R O P O S E D IN T H I S ISSUE 

B-895 Proposed by Indulis Strazdins, Riga Tech Univ., Latvia 
Find a recurrence for Fn2. 

B-896 Proposed by Andrew Cusumano, Great Neck, NY 
Find an integer k such that the expression F„ + 2F*Fn+l + kF^F^x - 2FnF^+l + F*+l is a con-

stant independent of n. 

B-897 Proposed by Brian D. Beasley, Presbyterian College, Clinton, SC 
Define (an) by an+3 = 2an+2 +2an+l-an for n > 0 with initial conditions a0 - 4 , ax = 29 and 

a2 - 10. Express an in terms of Fibonacci and/or Lucas numbers. 

B-898 Proposed by Alexandra Lupa§, Sibiu, Romania 
Evaluate 

k=o v / 

B-899 Pi°oposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY 
In a.sequence of coin tosses, a single is a term (H or T) that is not the same as any adjacent 

term. For example, in the sequence HHTHHHTH, the singles are the terms in positions 3, 7, and 
8. Let S(n, r) be the number of sequences of n coin tosses that contain exactly r singles. If n > 0 
andp is a prime, find the value modulop of ~S(n + p-l,p-l). 
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SOLUTIONS 
A Recurrence for nFn 

B-879 Proposed by Mario DeNobili, Vaduz, Lichtenstein 
(Vol 37, no. 3, August 1999) 

Let (cn) be defined by the recurrence cw+4 = 2cn+3 + cn+2 - 2cn+l - cn with initial conditions 
c0 = 0, cx - 1, Cj = 2, and c$ = 6. Express cn in terms of Fibonacci and/or Lucas numbers. 

Solution by H.-J. Seiffert, Berlin, Germany 
Let (cn) satisfy the given recurrence, but with initial conditions c0 = 0, cx=a, c2 = 2b, and 

c3 = 3(a + b), where a and ft are any fixed numbers. We shall prove that cn =nHn, where the 
sequence (H„) satisfies the recurrence Hn+2 = Hn+l + Hn with initial values Hx=a and H2-b. 
Direct computation shows that the equation cn - nHn holds for w = 0,1,2, and 3. Suppose that it 
is true for all k e {0,1,..., n + 3}, where n > 0. We then have 

Cn+4 = 2cn+3 + Cn+2 - 2cn+l - Cn 

= 2{n + 3)Hn+3 + (n + 2)Hn+2 - 2{n + l)Hn+l - nHn 

= {n + 4)(#w+3 + Hn+2) + K^ w + 3" 2#w+1 - #„) + 2(#w+3 - Hn+2 - Hn+l) 
= (n + 4)Hn+4; 

note that Hn+3 - Hn+2+Hn+l = 2JF/W+1 + #„. This completes the induction proof. It can be shown 
that this equation holds for negative n as well. 

To solve the present proposal, take a-b-\. Then cn - nFn. With a - 1 and b = 3, we have 
(Hn) ~{Ln), and therefore, cn = nLn. 

Solutions also received by Paul S. Bruckman, Charles K. Cook, Leonard A. G. Dresel, N. 
Gauthier, Joe Howard, Harris Kwong, James A. Sellers, Indulis Strazdins, and the proposer. 

A Sum for F2m+2 

B-880 Proposed by A. J. Stam, Winsum, The Netherlands 
(Vol 37, no. 3, August 1999) 

Express 

2/<wA ' 

in terms of Fibonacci and/or Lucas numbers. 

Solution by Harris Kwong, SUNY College at Fredonia, NY 
Denote the given sum by sm. The generating function of the sequence (sm) is 

1 / _ IV ik-i „k+i 

m=Q m=0 2 / < m v " ^ k=0 2i<k+i' wi=0 2i<»A ' fc=0 2/<fc+A ' 

= I if*1(-1)'(3^2' = Z(3z-z2)* = —1 + z2 

Since 1 - 3x2 + x4 = (1 - x2)2 - x2, we find 
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m=0 

„ Y2m+2 _ X2 _ 1 [ X X 1 
( l - X 2 ) 2 - X 2 " 2 l l - x - X 2 1 + X - X 2 / 2 ) 2 

= i l l F»x"+1 ^ ( - * ) 4 = I *̂2n-
Therefore, ^,=F2l l t f2 . 

Redmond showed that 

2/</w ' 

where Um(x) is the /wr/l Chebyshev polynomial of the second kind. 
Cook noted that the problem is a slight variation of a problem posed by Mrs. William Squire 

in [1], solved byM. N. S. Swamy in [2], and further explored by H. W. Gould in [3J. 

References 
1. Mrs. W. Squire. "Problem H-83." The Fibonacci Quarterly 4.1 (1966):57'. 
2. M. N. S. Swamy. "Solution of H-83." The Fibonacci Quarterly 6.1 (1968): 54-55. 
3. H. W. Gould. "A Fibonacci Formula of Lucas and Its Subsequent Manifestations and Redis-

coveries." The Fibonacci Quarterly 15.1 (1977):25-29. 
Seiffert reported that the identities 

and x -£h{m7i)(-xyy(x+yT~2i = *"+y, "i>\, 
2i<mm l^ J 

are due to E. Lucas (Theorie des Nombres [Paris: Blanchard, 1961], Ch. 18). 

Solutions also received by Paul S. Bruckman, Charles K. Cook, Leonard A. G Dresel, Don 
Redmond, H.-J. Seiffert, Indulis Strazdins, and the proposer. 

Diophantine Pair 

B-881 Proposed by Mohammad K. Azarian, University of Evansville, IN 
(Vol 37, no. 3, August 1999) 

Consider the two equations 
n n 

Z A ^ = ^ + 3 and I^^-^i-

Show that the number of positive integer solutions of the first equation is equal to the number of 
nonnegative integer solutions of the second equation. 
Solution by L. A. G. Dresel, Reading, England 

We have (Ll + L2 + -~ + Ln) = E(£/+2~^/+i) = Ai+2~^2- Subtracting this from the first of 
the given equations and using the identity Ln+2 = Fn+3-\-Fn+l, we obtain HLj(xj -1) = L2-Fn+l. 
Putting yt = Xj - 1 , it follows that yt is a nonnegative integer whenever xt is a positive integer. 
Similarly, starting with the second of the given equations, we can obtain the first given equation. 
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Thus, the two given equations are equivalent and have the same number of solutions of the speci-
fied kinds. 
Generalization by Harris Kwong, SUNY College at Fredonia9 NY 

We give a generalization. Let (un) be a sequence that satisfies the recurrence un - un_x + un_2. 
It can be proved, for instance, by induction, that Ef=1 ut = un+2 - u2. Let (vn) be another sequence. 
Consider the equations 

n n 

JlUiXi=Vn+3 ^ d E ^ = V « + 3 - ^ + 2 + % -
/=! ;=1 

Every positive integer solution (aha2,...,an) of the first equation yields a nonnegative solution 
(a{- l ,a2-1, ...,aw-1) of the second equation. Conversely, any nonnegative solution (bx, b2,..., bn) 
of the second equation leads to a positive solution (bx + \b2 + \,...,bn + \) of the first equation. 
Therefore, the positive solutions of the first equation and the nonnegative solutions of the second 
equation are in one-to-one correspondence. In particular, when un-Ln and vn-Fn^ the two 
equations reduce to the ones in the problem statement, because Ln+2 - Fn+3 + Fn+l. 
Solutions also received by Paul S. Bruckman, H.-J. Seiffert, Indulis Strazdins, and the 
proposer. 

A Multiple of Fn+1 

B-882 Proposed by A. J. Stain, Winsum,-The Netherlands 
(Vol 37, no. 3, August 1999) 

Suppose the sequence (An) satisfies the recurrence An = An_l + An_2. Let 

k=Q 

Prove that Bn = A$Fn+l for all nonnegative integers n, 

Solution by H.-J. Seiffert, Berlin, Germany 
Let x be any complex number and suppose that the sequence (An(x)) satisfies the recurrence 

An(x) = xAn_x{x) + An_2{x). Define 

*„(*) = I H ) * 4,-2*00-
k=0 

We shall prove that B„(x) = A0(x)Fri+l(x) for all nonnegative integers n, where (F„(x)) denotes 
the sequence of Fibonacci polynomials which satisfies the same recurrence as (An(x))y but with 
given initial conditions F0(x) = 0 and FX (x) = 1. 

If n>2, then 

k=0 k=0 

= xg(-l)*A-I-2t(*) + Z( - l )*^2-2 t (* ) 
k=0 k=Q 

+ {-inxA_n_x{x) + A_n_2{x) - A_n{x)) 
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or Bn(x) = xB„_l(x) + Bn_2(x). Since B0(x) = AQ(x) = A^F^x) and ^(x) = Ax(x)- A_x(x) = 
xA0(x) = A0(x)F2(x), the desired equation now follows by a simple induction argument. 

The proposal's result is obtained when taking x = l. 
Solutions also received by Paul S. Bruckman, Charles K Cook, Leonard A, G Dresel, K 
Gauthier, Pentti Haukkanen, Joe Howard, Harris Kwong, Don Redmond, James A. Sellers, 
Indulis Strazdins, and the proposer. 

Property of a Periodic Sequence 

B-8S3 Proposed by L. A, G Dresel, Reading, England 
(VoL 37, no. 3, August 1999) 

Let {fn) be the Fibonacci sequence Fn modulop, wherep is a prime, so that we have fn = Fn 
(mod/?) and 0 < fn <p for all n > 0. The sequence (fn) is known to be periodic. Prove that, for 
a given integer c in the range 0 < c < p, there can be at most four values of n for which f„ = c 
within any one cycle of this period. 
Solution by the proposer 

From the identities Fn+l + Fn_x = Ln and Fn+l-Fn_l = Fn, we obtain 2Fn+l - Ln + Fn, and we 
also have ]}n -5(Fn)2 +4(-l)w. We shall assume first that p*2, and that Fn = c (mod p) for 
some even value of n. Then it follows that Ln = ±^j(5c2 + 4) and 2Fn+l = c±^(Sc2 + 4) (modp); 
this gives two possible values for fn+l, say sl and ^ . It Is possible that we also have fn = c occur-
ring for some odd value of w, so that we have fn+l = c±^J(5c2 -4 ) (mod p\ giving two further 
possible values .% and s4, say. These values may not all be distinct, but clearly there are at most 
four different values of s which can follow c in the sequence </>. But if a given consecutive pair 
of values c, s were to occur a second time, the sequence (f) would repeat itself because of the 
recurrence relation. Hence, the value c can occur at most four times in (J) within one cycle of 
the period, namely, at most twice for an even value of n and at most twice for an odd value of n. 

For the special case p = 2, we see that a complete cycle is (/> = 0,1,1 (mod 2). 
Corollary: Since there are only p values of c in the range 0 < c < p-1, it follows that the period 
K(p) of the sequence Fn modulo/? satisfies K(p) <4p. In the special case p = 5, we do in fact 
obtain #(5) = 20. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARIMENT, LOCK HAVEN UNIVERSITY, 
LOCK HA VEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-561 Proposed by TV. Gauthier, Dept of Physics, Royal Military College of Canada 
Let n be an integer and set 

sn+l = an + an~lp + • • • + apn~l + p\ 

where a + fi = a, ap-b, with a * 0, b ̂  0 two arbitrary parameters. Then prove that: 

C) ^Lp+qSqr+n ~ 2-r I / P *P SP+qS( X2p+q)£-pr+n> 

where r > 0, n, p(^ 0), and q(± 0, ±p) are arbitrary integers. 

H-562 Proposed by H.-J. Seiffert, Berlin, Germany 
Show that, for all nonnegative integers n, 

\»=r\ 

k=0 V / 

where [ ] denotes the greatest integer function. 
H-563 Proposed by N. Gauthier, Dept of Physics, Royal Military College of Canada 

Let m>0, n>0, p^O, q^ -/?, 0, and s be integers and, for 1 < k <n, let (n)k :=n(n-1) 
... (n - k +1) and S^ be a Stirling number of the second kind. 

Prove the following identity for Fibonacci numbers: 

r=0 V s 
m 

= (-iy[F91 Fp+J X i-iy^W^ [Fp I FqfF(p+q)k_np+s. 
k=\ 
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SOLUTIONS 

An Odd Problem 

H-545 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 369 no. 5, November 1998) 

Prove that, for all odd primes/?, 

(a) ^ . r ^ - f ^ - l ) (mod/?); 
k=l P 

0>) (ZFk-k-l = 0(modp). 

Solution by the proposer 
We first observe that L =\ (mod/?) for all primes/?; thus, all the expressions indicated in (a) 

and (b) are well-defined integers (mod/?). Now 
P-\ 

' = 0-/^ = £$)<rtf = 1-^ + £f (*-l)(-̂ * 
Hence, 

Now 

Thus, 

>,-i)=iKr!>-^ 

IK*-1^0-1^1 (modp) 

p^p 

Similarly, it is also true that 

k=\ 

Adding and subtracting the last two congruences yields (a) and (b), respectively. 

Note: From (a) and (b), it follows that a necessary and sufficient condition for p2 | (Lp -1) is that 
p-\ 
X^k+n -k l = 0 (mod/?), for all integers n. 
k=l 

Equivalently, 
P-\ 
]T Lk+n • k~l = 0 (mod /?), for all n. 
k=\ 

Other equivalent forms of such conditions are: 

YFk-k-l^fFM-k-l^O(modp) 
k=l k=l 

or 
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PfLk-k-l^Lk+1-k-^0(modp). 
k=\ k=\ 

In turn, these conditions are equivalent to the condition that Z(p2) = Z(p), where Z(m) is the 
"Fibonacci entry-point" of m (i.e., the smallest positive integer n such that m \ Fn ). 

Also solved by H.-J. Seiffert 
A Strange Triangle 

H-546 Proposed by Andre-Jeannin, Longwy, France 
(Vol 36, no, 5, November, 1998) 

Find the triangular Mersenne numbers. (The sequence of Mersenne numbers is defined by 
M„ = 2" - l . ) 

Solution by the proposer 
We shall prove that the only Mersenne triangular numbers are M0, Ml9 M29M4, and M12. In 

fact, the equation 

M = 2 W - 1 = * ( * + 1) 

2 
is clearly equivalent to the equation 

x2 = 2"+3-7, (1) 
where x = 2k + l. 

It is known [1] that (1) admits the only positive solutions (n-0,x=V), (n = l,x = 3), (n = 2, 
x = 5), (n = 4, x = 11), and (n = 12, x = 181). The result follows. 

Reference 
1. Th. Skolem, P. Chowla, & D. J. Lewis. "The Diophantine Equation 2n+2 -7 = x2 and Related 

Problems." Proa Amer. Math Soc. 10 (1959):663-69. 
Also solved by P. Bruckman andH.-J. Seiffert 

A Prime Problem 

H-547 Proposed by T. V* Padmakumar, Thycaud, India 
(Vol 37, no. 1, February 1999) 

Ifp is a prime number, then 
12 r j i i i 

0 (mod/?). 
1 

£ ( 2 / 1 - 0 
1 

ti(2n-lf 

Solution by L* A. G. Dresel, Reading, England 

Note: The result is clearly true for p = 2. However, when p is an odd prime, each summation 
contains the undefined term p~l (mod p). Therefore, we shall assume that these terms are to be 
omitted (or, possibly, consider then as formally canceling each other). The result is then true for 
p > 5 but false for p = 3. 
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Proof for p>5: For 1 < n < p, the sequence of odd numbers In -1 (mod p) reproduces the 
residues 0, 1, 2, ..., / ? - l in a different order. Omitting the residue 0, as explained above, consider 
the summations over 1 < s < /? - 1 , A = Xs~\ and B = Es~2 (modp). 

Now consider the reciprocals modulo/? of two residues s and t. Then it is easily shown that 
s~l = t~l (mod/?) if and only if s = t (mod/?). Hence, all the terms in the summation A are distinct 
(mod/?), so that we have A = I > and, similarly, we obtain B = J^s2 (mod/?). 

Finally consider the equation xp~l - 1 = 0 (mod /?). By Fermat's theorem, this is satisfied for 
x = 1,2,...,/?-!, so we can write x p _ 1 - l = (x-l)(x-2). . . (x-/? + l) (mod/?). If /?>2, it fol-
lows that the sum of the roots is zero, and if /? > 3, we also have the sum of the products of the 
roots taken two at a time is zero (mod /?). Hence, we have A = 0, and also A2 - B = 0 (mod /?) 
for/?>5. 

Also solved by P. Bruckman, H. Kwong, and the proposer. 

Pell-Mcll 

H-548 Proposed by if.-J. Seiffert, Berlin, Germany 
(Vol 37, no. 1, February 1999) 

Define the sequence of Pell numbers by P0 - 0, Px = 1, and Pn+2 = 2i^+1 + Ĵ  for n > 0. Show 
that, if q is a prime such that q = 1 (mod 8), then 

q\Piq-l)/4 ifandonlyif 2(^-1)/4 = (-l)(^1)/8 (mod q). 

Solution by the proposer 
Consider the Lucas polynomials defined by LQ(x) = 2, Ll(x) = x, and Ln+2{x) = xLn+l(x) + 

L„(x) for n > 0. It is well known that 

Ln(*) = 
V 

th 

, w>0. (1) 

Let Qn = L„(2)9 n>0, denote the rr Pell-Lucas number. 
Proposition: For all n > 0, it holds that 

Jin 
k=0 

4%n+2k+2 

where [ ] denotes the greatest integer function. 
Proof: If / * 1 is any complex number, then by (1), 

Z"(2 /T^)=(ir7r( ( 1 + V 7 ) 2"+ ( 1-V F ) 2")' 
where i = ^(-1). Applying the binomial theorem gives 

k 
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Now we take / = -;'. Since (1-/)/(l+/') = -/, l/(/ + l) = ( l - 0 / 2 , -/' = Hi, and L„{2) = Q„, we 
find 

4=0 V J 

Using / = e"'2 and 1 - i = -fie-**1* yields 

a=2»^l(2»)exp(/(»-2*)f). 
Equating the real parts gives 

k=0 V / 

where ^ : = COS(JTT 14), j e Z. An elementary calculation shows that 

f(»1)[(y+i)/4]2iy/2W/2 if7- # 2 (mod 4), 
y ~ | 0 if7 = 2 (mod4). 

The stated identity easily follows. Q.E.D. 
The next result is known. 

Lemma: If q is a prime, then 

( ^ 1 ) s ( - l ) * ( n » o d 9 ) f o r * = l , . . . ^ - l 

Proof: Since g is a prime, 9 divides (f) for & = 1,..., q -1. Hence, the equation 

(!MM-(i:{) 
implies that 

[qkiy-{q
klfj(^dq){ork = l,...,q-l, 

so that the desired congruence can be proved by a simple induction argument. Q.E.D. 

If q is a prime such that q = 1 (mod 8), then q = Sj + l for some positive integer j . Using the 
identity of the proposition with n = (q-l)/2 and applying the Lemma, modulo q we find that 

2(*-5)/4GU/2 - ic- iy^-^^xc-iy-^c- iy (mod?) 
£=0 r=0 

&even 
or 

^ - ^ ^ - ^ - ( - ^ - ^ ( m o d ? ) . (2) 

The well-known identity 8P„2 = Q2n - 2(-l)" with w = (q -1) / 4 and (2) imply that 
2 ( , + 7 ) / 4 / , 2 _ i ) / 4 s ( _ 1 ) ( 9 -1) /S _ 2(9- l ) /4 ( m o d < ? ) 

This proves the desired criterion. 
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Remark; The two smallest such primes are q = 41 and q = 113. In fact, we have PlQ = 2378 = 
41-58 and P2S = 18457556052 = 113-163341204. 

Also solved by P. Bruckman 

Resurrection 

H-549 Proposed by Paul SL Bruckman, Berkeley, CA 
(Vol 37, no. 1, February 1999) 

Evaluate the expression: H^-lf'1 tan-1(l / F2n). (1) 
Note: A number of readers have pointed out that this problem appeared in the Quarterly (Vol. 1, 
no. 4, 1963) on page 71 as Theorem 5. 
Solution by Charles K Cook, University of South Carolina Sumter, Sumter, SC 

Note first that this problem was presented as a theorem by Hoggatt and Ruggles in [2]. 

Lemma 1: tan" -ii K 
n+l 

•tan -11 rn+l 

n+2 J 
- tan' - i 

(( X\n-W (-1) 
, F 
V rn+2 J 

Proof: Using (I10), F2n = F„2
+1 - i £ „ and (I13), F^F^ - F„2 = (-1)", see Hoggatt [1], 

(-1)""' = (-1)""' = (-1)"'' = (-1)""' 
^ " ^ /*/- . IM i _ i ' ( r t + n_ i Ai+2 ~ -*w V/ i+2 ~ ^n/X^n+l ' **n) 1 (w+l)+l J (n+l)-

17 77 — 77^ 
rnrn+2 rn+l 

F„ n+l 

±n±\_£n±2 — 
1 n _ J n+l 

AH-1 Ai+2 
Fn+\(Fn+l+Fn) \ + J L U( Fn )( K 

K n+2 

1 n+l 

^n+l J \^n+2 

--M^Hfe 
The lemma follows by taking inverse tangents. 

»-U F 
Lemma 2: Y (-1)"1"1 tan"1 [ - j - ) = tan" 

n+l 

Proof: Using Lemma 1, it is seen that the series telescopes: 

X(-ir_1tan-
m=\ \F2m 

1 1 * -1 1 • -
- tan — - tan 

-p- + tan"1 - 1 - - tan"1 -±- +•••+(-l)""1 tan"1 - | -
^ 4 F6 FS F2m 

- tan —r - tan L + tan"15- - t an" 1 4 + tan" 1 4 - tan"' K -1 ^ 1 _ + o „ - l ^ . j . t o r , - l i ] 2 _ t c , „ - l i l J . * c r . - l i j _ _ t o „ - l i j _ 

F, F4 F, 
17 J7 F 

+ tan-1 - ^ - tan-1 - f + • • • + tan-1 ̂ ^ — tan-1 -a=L 
F5 

tan'1 - 5 - - tan"1 § = tan'1 - ^ 

4 

_, F^ 
'n+l 

**n+l 

This completes the proof of Lemma 2. 
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Note that the arctangent function is continuous and increasing on the interval (0, 1), so 

tan-U-Wf 
\r2n+2 J \r2n 

and that the series 

is alternating with l i m ^ ^ l / F2n) = 0, and thus converges to some value A, say. Therefore, 

m=l \r2mJ m=\ \r2m+2, 

for /i an odd integer. So, by Lemma 2, 

t a n - M ^ - U y l ^ t a n - 1 ' - ^ 
A?+2 y V A?+i 

Taking limits and using the well-known result that limri^O0(Frl I Fn+l) - ± = (V5 -1) / 2, the golden 
number (see Hoggatt, [3]), it follows that 

lim t a n - l l ^ U ^ lim t a n ~ i ^ W tan _ 1 -< ^ < tan"1- . 

Thus, 
*-*«> \Fn+2) «->«> v w j a a 

A similar argument works for the case in which n is an even integer. In either case, the value 
of the given expression is 

Z ( - l ) ^ t a n - f ^ l = tan-
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