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T R I A N G L E AND T H E M O D I F I E D PASCAL TRIANGLE* 

Sfairo Ando 
5-29-10 Honda Kokubunji-shi, Tokyo 185-0011, Japan 

Daihachlro Sato 
Department of mathematics and Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada 

(Submitted July 1996-Final Revision January 2000) 

1. MTROBUCTION 

For any entry X inside Pascal's triangle, there are six entries next to and surrounding X which 
form a hexagon AlA2A3A4A5A6 (taken counterclockwise in this order). 

A2 A 
/ \ / \ 

A3 X \ 

A4 y% 

FIGURE 1 

H. W. Gould [3] conjectured that an equal GCD property of the values of the binomial coeffi-
cients, namely 

GCD(Al9 A3y A,) = GCD(^? A4, A,), 

is tine for all choices of the central entry X on Pascal's triangle. Gould called this conjecture a 
Star of David equality. 

This equality was proved /radically first by A. P. Hillman and V. E. Hoggatt, Jr. [4], and then 
by many others. A simple non-̂ p-acid proof for the Star of David equality is given by S. Hitotu-
matu and D. Sato [5]. 

It is clear that an analogous equal LCM property for the Star of David configuration, namely 
LCM(4, A3, 4 ) = LCM(^? A4, AJ9 

does not hold on Pascal's triangle. 
In order to obtain an analogous LCM equality for two triplets {Al9 A3, A^} and {A^, A4, A$}, 

S. Ando [1] proposed a modified number array that has modified binomial coefficients 
X' = (n +1)!/ k I (n - k)! as its entries instead of binomial coefficients X = n M k! (n - k)! and called 
it the modified Pascal triangle. The beginning parts of Pascal's triangle and the modified Pascal 
triangle corresponding to 0 < n < 6 are shown in Figure 2. 

This modified Pascal triangle consists of the reciprocals of the entries on the harmonic 
triangle of Leibniz which has been studied by G. W. Leibniz as a method of summing up an 
infinite telescopic sequence. 

* The content of this paper was presented to The Fibonacci Association under the title "On p-adic Duality between 
Pascal's Triangle and the Harmonic Triangle I" at the Seventh International Research Conference on Fibonacci 
Numbers and Their Applications held at the Technische UniversitSt in Graz, Austria, on My 15-19, 1996. 
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1 1 
1 1 2 2 

1 2 1 3 6 3 
1 3 3 1 4 12 12 4 

1 4 6 4 1 5 20 30 20 5 
1 5 10 10 5 1 6 30 60 60 30 6 

1 6 15 20 15 6 1 7 42 105 140 105 42 7 

(a) Pascal's Triangle A (13) (b) Modified Pascal Triangle A(M) 

FIGURE 2 

On the modified Pascal triangle, the equal LCM property of the new Star of David configura-
tion, namely 

LCM(A{, 4, 4 ) = LCM(4, 4, At), 

always holds, no matter where we take the center Xp. 
While the equal LCM property holds on this modified Pascal triangle, it is easy to see that the 

equal GCD property of two triplets {A[, A$, A$ and {A^y Af
A, A$, namely 

GCD(4, A;, AS) = GCD(4, Al 4 ) , 

no longer holds there. 
Moreover, we studied in [2] a necessary and sufficient condition that rays of a star configura-

tion on Pascal's triangle or on the modified Pascal triangle cover its center with respect to GCD 
and LCM. We do not want to repeat the results here, but the conditions for GCD and LCM on 
Pascal's triangle correspond to those for LCM and GCD on the modified Pascal triangle, respec-
tively, although on the modified Pascal triangle we have to take the reflection of configurations on 
Pascal's triangle with respect to the horizontal line (see item (i) of Section 2 and the Corollary in 
Section 4). 

The purpose of this paper is to clarify the reason why such a phenomenon occurs between 
these triangular arrays of numbers by showing a j?-adic complementary relation of binomial coeffi-
cients and modified binomial coefficients. 

2. DEFINITIONS, NOTATIONS, AND CLARIFICATIONS 

(a) We denote the value of binomial coefficients as 

x(n\_n\__ 
\k) k\{n-k)\ 

for 0<k <n. The triangular array of binomial coefficients is Pascal's triangle, which we denote 
byA(5). 

(b) We call 
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the modified binomial coefficients, and we refer to a similar triangular array of these coefficients 
as the modified Pascal triangle, which we denote by A(M). 

(c) Given a prime number/? and an integery, the additivep-adic valuation ofy, denoted by 
fi = vp(y),is the largest /? such that pP dividesy. 

Let the symbols (£) and {£} represent both their numerical values and their positions on 
A(B) and A(M), respectively. The inequality 0 < k < n is assumed throughout the arguments. 

(d) The set of both triangular arrays of nonnegative integers defined in (a) and (b) is denoted 
by A(7). Thus, A(7) = {A(5), A(M)}, and 7 G A ( J ) means that 7 is one of these two triangular 
arrays. 

(e) A finite subset C of 7 e A( J) is called a configuration on Y. 
(f) We introduce an equivalence relation to the set of all the configurations on Y such that 

two configurations on Y are equivalent to each other if and only if one is obtained by a parallel 
translation of the other. Then an equivalence class of the set of all configurations on Y by this 
equivalence relation is called a translatable configuration on Y. Unless otherwise stated, we simply 
call it a configuration C even if it is actually referring to the translatable configuration to which the 
configuration C belongs. There will not be a danger of misinterpretation since we are discussing 
only the GCD and LCM properties that hold on C independent of the location of C on Y. 

(g) Let Sx and S2 be two nonempty finite subsets of Y e A(J) and put C = S1^JS2. Then C 
is a configuration on Y. We do not claim Slr\S2 = <f>. 

If the equality 
GCD(^) = GCD(£2) (1) 

holds independent of the location of C on 7, we call (1) a GCD equality on Y. In the case 
Sx = {Ax, A3, As) and S2 = (4*, A49 4$}? 0 ) t u m s o u t t 0 be the original Star of David equality. In 
the same manner, if 

LCM(Sl) = LCM(S2) (2) 

holds instead of (1), we call (2) a LCM equality in Y. 
(h) The central symmetric axis of Y e A(7) is the straight line of entries with n = 2k, where 

k = 0,1,2,..., on Y. Any line of entries that is parallel to it on y is called a vertical line of Y. Y is 
supposed to be placed in the traditional way so that these lines are vertical. A set of entries with 
n = constant on Y is called a horizontal line of Y. It is perpendicular to a vertical line of Y. 

(i) We consider a group K = {I, V, H, R} of transformations that operate on the configura-
tion C on 7. 7* is the identity transformation by which each entry in C stays unchanged. V is the 
vertical reflection of C by which each entry in C moves to its symmetrical point with respect to a 
vertical line. H is the horizontal reflection of C by which each entry in C moves to its symmetrical 
point with respect to a horizontal line. R is a 180° rotation about a point X by which each entry in 
C moves to its symmetrical point with respect to X. Xis not always a point in C, but sometimes is 
a midpoint of two entries on Y. 

Notice that each transformation in K operates on C, not on 7, and we do not have to locate 
the reflection axis or the center of symmetry since we assume that configuration C on which each 
element of K operates is translatable. 
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(j) Group K is Klein's four group with unit I, and its elements satisfy the relations 

The images of a configuration C under the transformations V, H, and R are also called a 
vertical (or right-left) reflection of C, a horizontal (or upside-down) reflection of C and a 180° 
rotation of C, and are denoted by V(C)9 H(C)9 and R(C), respectively. 

3* J I -ADIC COMPLEMENTARY THEOREM BETWEEN BINOMIAL 
AND MODIFIED BINOMIAL COEFFICIENTS 

First, we will write a preparatory lemma concerning binomial coefficients. 

Lemma 1: Let p be a given prime number and r be a nonnegative integer. Then we have 

= 0 k 
f o r O < i < p r - l 3 a n d 

2f-l = 0 

for0<k<2pr-l. 

Proof: Both equalities are special cases of Theorem 8 in C. T. Long [6]. Notice that, for 
p = 2, the second equality is reduced to the first one. 

Now, we will show our main result. 

Theorem 1: Letp be a prime number and r be a nonnegative integer. Then, for any integers m9 

w, h, and k satisfying 
m + n = 2pr-29 h + k = pr-\ 0<k<n and 0<h<m, 

we have 

Vpllj l l + l • • $ } ) - -
Proof: Using given conditions (3) and Lemma 1, we can easily show that 

(3) 

(4) 

\h\(m-h)\ k\{n-k)\ 

(h + k + l)x(m+n + l)\ (h + k)\ (m+n-h-k)\ . (ni + n + 1)! 
~Vp[(h + k + l)\(m+n-h-k)\X h\k\ * (m-h)\(n-k)\ ' m\(n + \)\ 

-v,(»+t+o+v^:;;;j))+^(*+/))+^(-+;:*-*))-4-+
1:+' 

-•voo^u î WV )H\i:l - A Kx 
= r + 0 + 0 + 0 - 0 = r. 
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4. GCD-LCM DUALITY BETWEEN PASCAL'S TRIANGLE 
AND THE MODIFIED PASCAL TRIANGLE 

As an application of the/?-adic complementary theorem between the binomial coefficients and 
the modified binomial coefficients that was established in the previous section, we now prove a 
duality between Pascal's triangle A(J5) and the modified Pascal triangle A{M) concerning the 
GCD and the LCM. 

Let Sx and S2 be two nonempty finite subsets of A(B) and put C = S1>uS2. Then C is a 
configuration in A(B). First, we assume that 

GCD(Sl) = GCD(S2) (5) 

holds independent of the location of C in A(B). 
Define rmn{vp(S)} to be rmn{vp(A) \ A eS}. Then the GCD equality (5) is equivalent to 

tmn{vp(Sl)} = mm{vp(S2)} for all primes/?. (6) 

Let R be a 180° rotation about a point X defined in item (i) in Section 2. Since we are dis-
cussing the translatable properties of the configurations, we can take any point X such that, for 
any entry A e A(B), R(A) is also an entry of A(B) as long as R(A) e A(B). 

We overlap two triangles A(B) and A(M) in such a way that (g) and {£} fall on the same 
point. Then a configuration C in A(B) is also considered to be one in A(M), which is geometri-
cally the same as C in A(B) although they are different as sets of integers. If R(C) a A(M), we 
put C = R(C). Then C' = $i'uSj, where Sl = R(Sx) and ££ = !?($) are subsets of C. 

Let/? be an arbitrary, but fixed prime. If we take the midpoint of 

and O ' - 2 
\oj {P'-I 

where r is a sufficiently large positive integer, as the center X of rotation R, then the configuration 
C corresponding to C by R is contained in A(B). Any entry A' e C and the corresponding entry 
A GC satisfies condition (3) of Theorem 1 if we let 

A. ft) and , . { - } . 
Therefore, we have vp(A) + vp(A') = r by Theorem 1, so that 

min{ vp(S)} + max{vp(,S')} = r (7) 

for any Sf e C and corresponding S eC. 
Since we assume the GCD equality (5) on A{B), equality (6) holds so that, using (7), we 

have 
max{vp(iSi)} = max{Vp(iSj)} for all primes/?, (8) 

which is equivalent to 
LCM(5J) = LCM(S{). (9) 

Thus, (9) holds independent of the location of C on A(M). 
In a similar manner, we can prove that if (9) holds independent of the location of C on 

A(M), then (5) holds independent of the location of C on A(B). If we exchange min and max in 
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(6), (7), and (8), then GCD and LCM In (5) and (9) must be exchanged. Summarizing these 
arguments, we have the following results. 

Theorem 2: Let C = Sx uS2 be a configuration on A(B) and C = iSi'uSj be the configuration on 
A(M) corresponding to C by a 180° rotation R about a point X. Then GCD equality (5) holds 
independent of the location of C on A(B) if and only if LCM equality (9) holds independent of the 
location of C* = R(C) on A(M). Similarly, the LCM equality holds for C on A(B) if and only if 
the corresponding GCD equality for C holds on A{M). 

Corollary: Let C = S1^JS2 be as above and C" be the configuration on A(M) corresponding to 
C by horizontal reflection H with respect to a horizontal line. If we put H(SX) = $", #(£2) = S2, 
then C" = ${f{u$2 . GCD equality (5) holds independent of the location of C on A(B) if and only 
if LCM equality LCM(5J0 = LCM(SJ') holds independent of the location of C" = #(C) on 
A(M). Similarly, the LCM equality holds for C on A(B) If and only if the corresponding GCD 
equality for C" holds on A(M). 

Proof: A horizontal reflection if can be expressed as H - RV by a vertical reflection F and a 
180° rotation R. If we remember that the equality 

l»-*H*J 
holds for nonnegative integers w, £ with £ < «, it Is clear that a GCD equality or an LCM equality 
holds for C If and only if it holds for V(C). Combining this fact with Theorem 2, we have the 
stated conclusion. 

5* p-ADIC COMPLEMENTARY THEOREMS BETWEEN GENERALIZED BINOMIAL 
COEFFICIENTS AND GENERALIZED MODIFIED BINOMIAL COEFFICIENTS 

WHICH ARE DEFINED BY A STRONG DIVISIBILITY SEQUENCE 

A sequence of Integers A = {an} = {a1?a2,a3,.,.} is called a strong divisibility sequence if 
{ak?ah)-a{hh) ^or every k, /* = 1,2,3,..., where {ak,ah) and (k,h) are the greatest common 
divisors of the two numbers. 

The sequence of natural numbers N = {1,2,3,...} and the sequence of Fibonacci numbers 
F = {Fh F2,F3y...} are two examples of strong divisibility sequences. 

For any strong divisibility sequence A = {an}9 if we generalize the binomial coefficients (I) 
and modified binomial coefficients {jf} by replacing n and k In 2(a) and 2(b) by a„ and ak 

throughout, then we have A -binomial coefficients 

(A a\<h-~<*n 
{k)A "" (ala2...ak)(ala2...an_k) 

and ̂ 4-modified binomial coefficients 

\k}A (ap2...ak)(ap2...a^k) W + W / 

It is not difficult to obtain generalizations of the p-adlc complementary theorem and the 
GCD-LCM duality theorem between analogous two-dimensional number arrays of ,4-binomial 
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coefficients and ^-modified binomial coefficients, both of which are defined by the same strong 
divisibility sequence A = {an}. 

Those generalizations, other extensions, and their applications will be reported in subsequent 
papers in due course. 
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1. INTRODUCTION 

Let a, b be integers with b>0. If we perform the Euclidean algorithm to find (a,b)y the 
greatest common divisor of a and b, we get 

a 
h 
ro 

= <lob+r0 

= Wo +.n 
= <Wi+r2 

(0<r0<b) 
(0<r,<r0) 
(0£r2<#i) 

until we finally find the least n>0 such that rn -0. Note that for this value of n we get qn>\. 
We will define E(a, b) to be this value n. We now let a, q be any pair of coprime integers with 
q>0 and set m - co(a9 q) to be the multiplicative order of a modulo q; that is, OD is the least posi-
tive value of m such that am = 1 (mod q). We define the number theoretic function W(a, q) by 

CO 

W{a,q) = 2Y)LE(ai,q)l2\. (1.1) 
1 = 1 

We next let N be any positive non-square integer and define 

v(N) = ( a - l + VF)/<7, 
where 

[2 when# = l (mod 4), 
0" = ' 

11 otherwise. 
Now consider 

N = (a(qran + ju(®k + X)lq)l 2)2 - a2fiXanr9 

where /i,X e{1,-1}, gr |a* + X, (n,k) = l, n>k>l, and 

_ fl if 2\qran +ju(ak + X)/q, 
[2 if2\qran + ju{ak+X)lq. 

It was shown in Williams [16] that W(a, q) is a very important function for determining a priori 
the period, length p(N) of the simple continued fraction expansion of v(N). For example, in the 
simple case of r = ju = -X = 1, we get 

p(N) = 2n + k + kW(a, q) I m{a9 q). 

Indeed, as shown in Mollin and Williams [6], we get the simple continued fraction expansion for 
v(N) as 

viN) = (q0,ql9q29...,qp), 
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where we can actually provide formulas for qi (i = 0,1,2,..., p = p(N)) in terms of q, a, n, k. In 
order to do this, we first need to define for 1 < j < n - 1 the symbols: 

Xj - jk-\kj/njn, 
Sj^U + dk/nj-lJk/ni 
Pj^k-n + Aj, 

_ [l\E{a\q)l2\ + l when s}. = 1, 
m 

II when €j = 0, 
and y/(i), where ^(1) = 3 and y/{j +1) = y/(J) + ejmj + 2. With these in mind we get 

q0=(qa» + (ak-l)/q)/2 + (a-l)/a, 

f qa J when Sj = 0, 

qa j + (aPj - yj) I q when Sj = 1. 

for \<i <m•, 

n—k—A, 

Also, if 8jr = 0, then fy^i = 9a 7, and if £,- = 1, then 

^ 0 ) + / | g a 2 w - ^ + ( a w - ^ - ^ ) / ^ fori = iify + L 
Here, 

aPj /q = (h0tPblp...,hmjtJ\ 

yj = aPJ(modq), 8'. = an~Xj{mo&q\ an(* ®<yJ> $j <cl-

We have p(N) = 2 + y/(n -1) = 2n + k + kW(a, q) I co(a, q). 
Some properties of W(a, q) were developed by Mollin and Williams [7]; for example, 

(ft>-l)/2 
W(a,q) = 4 X [E{a\q)l2\ when 2\m (1.2) 

and 
<y/2- l 

W(a,q) = 4j] [E{a\q)l2\ + 2\_E{a0),2,q)l2\ when2|^. (1.3) 

Thus, if co is odd, we always have 41 W(a, q), but if co is even, the value of W(a, q) is always 
even, of course, but its value modulo 4 is determined by 2\E{am'2,q)l2\. In the simple case of 
am/2=-l (mod q\ we have E(a6)/2,q) = 2, but we see that co(29,35) = 2 and £(29,35) = 4. 
Thus, it appears that W(a, q) = 2,0 (mod 4) when 21 co. This raises the question of exactly what 
values can be assumed by W(a,q). In this paper we will find values that can be assumed by 
W(a, q) when CD = 1,2,3,4,6. In particular, we show that if co = 2 or o> = 3 then ff (a, g) can 
assume all possible positive values that are allowable under the above conditions, i.e., W(a, q)l2 
or W(a, q)/4 can be any given positive integer when m = 2 or co - 3, respectively. We will then 
apply our results to the problem of determining values of N such that the period of the continued 
fraction expansion of v(N) has a cyclic structure. 
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Bernstein [1], [2] seems to have been the first individual to examine the cycle structure 
of periodic continued fractions to any great extent. He developed a rather complicated definition 
of a cycle, which resulted from his investigation of the continued fraction expansion of 4W for 
certain parametric families of values ofN. However, Nyberg [9], Shanks [11], [12], Yamomoto 
[18], and Hendy [4] had essentially discovered cycle structures for certain <JW or v(N) earlier. 
For example, a result of Hendy is that if N = (qan + (a -1) / q)2 + 4an, where a = 1 (mod q) and 
2lqan + (a~l)/q,thm 

where 

qQ = (qan+(a~l)/q + l)/2, q2i+l=qa\ q2i+2=qan^~l 

for i = 0,1,2,..., n -1, qp- 2qQ - 1 , p = p(N) = 2n + l. Bernstein considered pairs like {qal, 
aqn~1"1} (i = 0,1,2, ...,w-l) to be cycles in the period ft, #2> •••>?/> of the continued fraction 
expansion of v(N). For the purpose of this paper we will provide a somewhat more restrictive 
definition of cycles than that of Bernstein. 

Let ^ , ? 2 , . . . , ^ c Z and 2P = 9\ x<5>2 x — xg^ be infinite. Let F be some function 
defined on SP such that F: 9 -» Z and let 

AT not a perfect square}. 

We say that the simple continued fraction expansions of the values of v(N) in the family M have 
the structure of cycles of length c if the periodic part qh q2y..., qp (p = p(N)) of these continued 
fractions can, for some fixed value of b > 0, be given by 

<li(*j+b = fj(i>l\>P2>-->Pk) (f = o,i ,2, . . . , r- i) , 

where p(iV) = & (mod c), f > 2, and fj (/ = 0,1,2,..., c -1) are c fixed fiinctions such that 

/ i . : { 0 , l , 2 , . . . , / - l } x ^ ^ Z . 

A cycle in the period of the continued fraction of v(N) GM k any set 

The restriction that f > 2 ensures that there are at least two cycles in the period; otherwise, all 
continued fractions could be considered to have a cycle structure. In the case of Hendy's 
example, we get b = 1, c = 2, /0(i, a, ft #?) = qa\ f{i, a, 9, n) = ^ a ^ ' 1 . 

In the families considered by Nyberg, Shanks, Yamomoto, and Hendy, the values of c are 
either 2 or 6, but Bernstein discovered families for which c = 4,5,6,8,10,11,12. Later, his results 
were extended by Williams [15] and Halter-Koch [3], but no new values of c were found except 
for c = 3. Bernstein expressed surprise that cycles with c as large as 12 exist, but we will show 
here that even under our more restrictive definition of cycle structure there always exist infinite 
families JV* such that any v(N) e M has the structure of cycles of length c for any preselected 
value of c>0. 
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2. SOME PRELIMINARY RESULTS 

In order to determine values for W(a, q), we must find values of a, q such that a® = 1 (mod 
q) for a given co and such that we can predict the values of E(a\ q). We will do this by making 
use of some elementary properties of the continued fraction expansion of quadratic irrationals. In 
developing the material in this action, it is assumed that the reader is familiar with basic results 
concerning continued fractions which can be found in Perron [10] and Mollin [5] or Stephens and 
Williams [13], [14], and Williams and Wunderlich [17]. 

Consider the continued fraction (q0, ql9..., qrt9...). For a fixed / and./, define Ajt and BJti by 

Bj+i,i = 4j+i+iBj,i +sj-i,i> 

where A_2J = 0, A_Xi = 1, B_2i = 1, B_Xi = 0. Then 

An 

Bn 

- ^ - = <«f+y> ft+y-i, • • •, ft+iX (2-2) 

and 
AJtlBJ_H-AJ_itlBJtl={-\y+l. (2.3) 

Put ^ = ^ 0 , Bj=BJr0. IfP, Q, Del, 0 = (P + jD)/Q, where D is any positive non-
square integer and Q \ D - P2, we put P0 = P, Q> = Q, <j>0 = <f>, q0 = [>J . Compute P„, Q„, f„, q„ 
recursively by P„ = q^Q^ - P„.u Q„ =(D-P„2)/Q_„ </>n = (P„+jD)lQ„, *„ = !>„J, and 
define 

" * J' ' ' ' (2.4) 
Gy = G;,o. 

Then ^0 can be written in a continued fraction as ̂ 0 = (q0, ft,. ., <7„_i, </>„) and, in general, ^, can 
be written as $fr, = (qt, qi+l,..., q„_{, $„). If we define 0k = n i l 1 #"', then 

^ = ( - l ) i - 1 ( 4 _ 2 - ^ _ 2 ) = (-l)*-1(G,_2-VD^_2)/Q). (2.5) 

Denote by # ( a ) the norm of a. Since 

m ) = (-l)*_1ft-i/G>, (2-6) 
we can show that 

= (-l)'(Q-i -JDB^G^j + VD3+y)/(&0+y+1); 
hence, 

GJtl+jDBJfl = (-1)'(GM - VD^_,XG/+y + JDB^IQ,. (2.7) 

Since ,̂. = <#, $+1,..., ?,+y, #/+/rt>, we get 
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on equating rational and irrational parts, we find that 

Gj,t = Pi+j+lBj,i+Q+J+lBj-l,n 

Let Q, be selected such that QQ\2D. Since G, = -PQBt (mod Q,) for any i>-2, we get 

(G„ - 4DBn){Gm - 4DBm) = GnGm + DB„Bm - (G„Bm + GmBn)4D - 0 (mod &); 

therefore, (G„ - jDBn)(Gm - -JDBJIQ, e Z[VZ>] for n,m>-2. Now let I J e Z and put w = 
JV(X + VZ5T). We have the following theorem. 

Theorem 2.1: Let U,TeZ such that U + JDT = (Gt_x - JDB^fiX + -JDY) IQQ (i > 0); then 
S = (U + PjT)/Q&ZandS2 = m (modJ). 

Pinoo/I- Put 
R + jDS = -(G,_2 - yfDB^XG,^ - JDB^XX + 4DY) I &, 

i?' + V#S' = (G,_2 - JDB^fiX + 4DY) IQ,, 

where i?, 5, R', 5 ' e Z . We get 

i? + Vff S = G,_2 - -jDBt_2 =R' + JDS' (29) 

U + jDT GM—ySflf,.! i? + V£S ' 
Now, by (2.5), 

G,_2-Vfl£,_2 = i>+V£. 
G^-JDB^ Q ' 

hence, by equating rational and irrational parts in (2.9), we get U + RT = QS, UPt + TD = QR, 
R + PtS = QS'. It follows that 

Q2S' ^UPi + TD + Pt(U + PtT) = 2P&S + QQ^T 
and 

S' = (2PiS + Q_lT)/Qi. 

By (2.6), we have U2 - DT2 = Q2m; therefore, (QtS- PtT)2 - DT2 = Q2m, which can be written 
as S2-TS'=m. 0 

We next consider the special cases of m -1, - 1 , - 3. As before, we let P0, Q be selected 
such that Qo\2D and Q)\D-PQ. Denote by n the period length of the continued fraction 
expansion of 0O = (P0 + 4D)I QQ. We know (see, e.g., [13]) that there must exist some minimal 
h > 0 such that either Ph = Ph+l or Qh = Qh+l; in the former case, we get n = 2h and in the latter, 
n = 2h + l. If n = h (mod n), put 

X + Y4D = (G^+jDB^f/iaQ,) (2.10) 
when 7r~2h, and put 

X+YJD=(ph+l+VDXG^+v^)2 / caaa+i) (2.11> 
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when n: = 2h + l. It Is well known (see, e.g., [10]) that 

N(X + YjD) = (-iy. (2.12) 

From results In Mollin, van der Poorten, and Williams [8], we know that if the Diophantine 
equation x2- Dy2 = -3 is solvable for X J G Z , then we must get Qh+l = Ph+l + Qh for some choice 
of QQ, where Q, 12D. We will assume that Q) has been so selected. Let n = h (mod n), then if 

X + Y^D^(2Qh-QM+2,fD)(Gn + jDBn)2/(aQL), (2.13) 
we have X,Y eZ and 

N(X + Y-jD) = -3. (2.14) 

If, for example, we have X, Y given by (2.13), we get 

U + 4DT = (G,_, - jDB^fiX+Y4D) IQ, 
= ((G^,,+VD5fM>/)/a+i)2(2a-GLi + 2VD) 

by (2.7). It can be verified after some manipulation involving the identities in (2.8) and the condi-
tion GU = P/H-i + Qh that 

U = 2Gn„iJBn_ii+Gn_hiBn_i_li+Gn_i_lJBn_ii +2G/I_/_U2?/I_J-_U, 
T = 2{Bl_u t + 5 ^ A-,-i,,. + B2_f_h i). 

On using (2.4) and (2.3), we get 
S = (U + PtT)/Q 

= 2A„_i9iBn_t i + A^^ /$„_/_!,/ + At-i-\,iBn-i, i + ^Ai-i-U iBn-i-l, i (2-16) 
= 2(4,_,,5„-M + 4-,-i, A-,,, + 4,-,-!, A-,-u)+(-ir'+I. 

Similarly, we get 
T = Bn_t_^ tBn_u j + Bn_i_29 /^-/-i,,-, 
$ ~ Bn-i-liAi-i,i + ®n-i-2,iAi-i-\,i> 

when Jf, 7 are given by (2.10), and 
T = Bl-Ui+Bl-i-l,i> 

(2.17) 

(2.18) 

when X, 7 are given by (2.11). 

3. VALUES ASSUMED BY W(a, q) 

We now need to find a, q such that we can easily compute E(al, q) for i = 1,2,..., [co/2J. 
We first note that jE(a, #) = 1 if and only if q \a, and E(a, q) = l if and only if a = 1 (mod g); thus, 
W(a, q) = 0 whenever co = 1 and fF(a, ^) * 0 whenever <y > 1. Indeed, the story concerning the 
values that W(a, q) can assume when co = 2 is very different from that when co = 1. For let T and 
£ be given by (2.17). We have S2 = 1 (mod 7) by Theorem 2.1, and 

S = (4,-,-u /4-,-2,/H-/,/ + 4i-/-u 
r (£„-/-!, / / Bn-i-2,i)Bn-i,i + ^ - i - l , / 
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= <?/> 9/+l> •••> ? w , Bn-i-l,i IBn-i-2,i> 

by (2.1) and (2.2). Thus, E(S, t) = 2w - 2i - 1 - #/+1, where ^ Is defined by 

f 0 when q^ > 1, 
7 11 when f;- = 1. 

Thus, ifq=T and a = S (mod f), then 
W(a, q) = 2[£(a, g) / 2j = 2(w -1 -1). 

It is evident that if we put n = k7i + h then, for any given positive integer x, we can find k, i such 
that W(a, q) = 2x when m = 2. Hence, FF(a, qr) can assume all possible even positive values 
when o = 2. 

We next consider the case of m = 4. We let T and £ be given by (2.18); we have S2 = -1 
(mod J) and 

iS = (ffi-/,i f Bn-i-ldA-Ui +An-i-l,i 
T (Bn-i,i,Bn-i-li)Bn-i,i+Bn-i-li 

Hence, E($, T) = 2n-2i- %i+l. On putting g = J and a s 5 (mod g), we get 
W(a,q)=4lE(S,T)/2} + 2 = 4(n-i-Xi+l) + 2. 

For D = (4fc2 + c + ff + 4/c+1, we get VJD = (ft, 2c, 2c, 26) with ft = 4/c2 + c + / . In this case, 
we have h = l,K = 3,n = 3r + l,Xj=0 for allj; hence, FF(a,gr) = 4(3r +1 - /') + 2. Thus, given any 
positive x = 2 (mod 4), we can find values of a, q such that m(a, q) = 4 and W(a9 q) = x. 

The case of m = 3 is a little more difficult. We let T and 5 be given by (2.15) and (2.16) and 
note that S2 = -3 (mod I). Thus, since 2\\T, we have S = 1 (mod 2) and 

( (£ - l ) /2 ) 2 + ( S - l ) / 2 + 1^0 (mod 77 2); 
it follows that 

( ( £ - 1 ) / 2 ) 3 S E 1 (mod 77 2) 

anda>((S-l)/2,7) = 3. Let n = h (mod n) and put q'n = qn + l-?], <f^qn^r\, where r\ 6{0,1}. 
Then 

< * ? 9 / + i ? - - - 5 ^ - i ? ^ > = 
* » - # . / + 0 - ? ) 3 M - U ' 

< C ^ - i ? ^ - 2 5 - ^ / + i > = C + - s — - = •» +*?; 
nn-i-l,i nn-i-l,i 

hence 
(772X*„ 
= K-uiK-ui + 4,-M, A-,,,+4-,-L A-,-u + /K-ir(+1 

= (S + (-l)n-'+1(27/-l))/2 

by (2.3) and (2.16). Putting 2r\-1 = (-1)""', we get 
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and £( (5-1) /2 , T/2) = 2n-2i-zM. If we put 9 = 7 /2 and a = ( 5 - l ) / 2 (mod g), we see by 
(1.2) that 

»r(fl,^)=4L£(a^)/2j = 4 ( i i - / - ^ + 1 ) . 

We should also observe that, since Qh+i=Qh + Ph+i, w e h a v e D = PL\ + Ph+\Qh + 2 l and 

v o < p A f l + a . it follows that %+1=i? ^ 2 = 0 ^ 1 - ^ 1 = a , a n d a+2=Afi; hence> a+i= 
GU2 + ̂ +2 • B y the symmetry rules Q^ = Q and P^ = PM, we get Qn_h_x = Pn_h_x + Q , . ^ . 
Thus, we can replace hby n-h-2 and still have Qh+l = Qh + Ph+l. It follows that n-i- %i+1 can 
be = h -1 - jf/+1 or = -/? - 2 - J - j / + 1 (mod ;r). For example, in the simple case of D = 21, j ^ , = 0, 
Q, = 1, we get 

V2l = (4,1,1,2,1,1,8) 
with Qi = Qo + Pi and 2s = QA + ^5- W e have ;r = 6 and n = 6m or n = 6?n + 4, %\ = ^ Z2 = ^ 
#3 = 0, Z4 = l ? 2r5 = l ? ^ 6 = 0- The values of n-i-%M can be 6m-1, 6m-2, 6m-4, 6m-5, 
6m-3, 6#i-6, where in the last case w> 1; that is, n-i-%M can take on any positive integral 
value and therefore W(a, q) 14 can take on any positive integral value. 

For 7, 5 given by (2.15), (2.16), we also have 

((£ + l ) /2 ) 2 - (S + l)/2 + l = 0 (modJ/2); 

hence, ((S + l)/2)6 = 1 (mod 7/2) and ((£ + l)/2)3 » - 1 , ((S + l)/2)2 # 1, (5, + l ) / 2 ^ 1 (mod 
7/2) . Weget<y((S + l ) /2 ,7 /2 ) = 6and 

JP(a, 0 = 4[£(a, ? ) / 2 j + 4 j£(a 2 , 9 ) /2 j + 2 

by (1.3) when # = 7 /2 and a = (£ +1)/2 (mod 7/2). Since a2 = (S-l)/2 (mod 7/2) , the 
continued fraction expansion for alq and a2lq are identical except that the values of q'n and q% 
are interchanged. We get 

W(a,q)=S(n-i-XM) + 2 

and W(a, q) can therefore assume any positive value which is 2 (mod 8), but these need not be 
the only values that W(a, q) is capable of assuming when 0 = 6. 

4. CYCLE STRUCTURES 

We will now use our earlier results to establish the existence of cycle structures of arbitrary 
length in the continued fraction period of v(N) for N = (a(qan + (ak -1) / q))2 + a2an with cer-
tain values of a, q, n, k. We put n = sk +1 (s > 1), k = cot, where c$ = w(a,q). Then 

/>(JV) = 2(s* + l) + a>f+rtr=/c + 2, 

where FF = W(a, q) and c = (2s+1)^ + W. 
Let7 be any nonnegative integer <n-l = sk = cost, and suppose j = us+r (1 <r <s). We 

get kj = un + a)tr-u and 0<a)tr-u<o)st + l = n; thus, A7 =6^r -#<(s - ! )# ; /+1 when r <& It 
follows that Xj<n-k \f r<s\ hence, by Lemma 4.5 of [6], ^ = 0ifr <5 or, equivalently, 
8j = 0\fslj. lSs\j,t\itnr-smdu = jls-l<k-l. Inthiscase, 
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Xj = mrt-u > mt-(k -1) = (s- l)o)t+1 -n-k\ 

thus, €j = 1 if and only ifs\j. 
We next assume that j + gsoo <n-1. We get k(j + gsco) = n(u + cog)-u-oog+oort. Now, 

cort<mt = n-l and mt>j + gsco or o)t>u + gco+r/s; hence, w + g#) <o)tr<n and 

L*0' + #^ ) /wJ = H + a#. 
It follows that 

f/+g*» = ̂ " ^ • 
If j - gs® + is, then A, = Xis = -i +1 (mod o>) and pi = -i (mod ©). 

Consider 
V(g) = W((g + l)sa> +1) - K«sa> +1) 

(g+l)5fi> (g+l)s<y 

- I>o+i)-K/) = £ (w+ 2 ) 

1=1 

a value independent of the value of g as long as (g + l)sw <n-l- stco or g + l<t. From this, 
we can easily establish by induction that y/(g$a) +1) = gc + 3, and since 6j = sgsG}Jrj, ntj = ntgsa}+J, 
we can use induction to show that y/(g$co + j) = gc + y/(j) whenever g+l<t and j <cos. 

We now see that the continued fraction expansion of v(N) given in Section 1 with n = sk + l 
(s > 1) has 

q0 = (qan+(ak-l)/q)/2 + (a-l)/a, 
% = %, % = ^n~k-

l£0<g<t~l, \<h<sm, then 

_ [qaXh~gQ} when s\h, 
%{h)+gc - yaxh-ga> + (j-n+Arga, -Sh)/q when s I A; 

furthermore, when s\h, 
n - ann-k-Xh+go) 
%{h)+gc+l - Ha > 

and when s\h, 

f buh whenl<i <mh, 

qa2n-k-Xh+g<o + {an-g.-Xh _ gj , q w h e n f = % + ^ 
where 

fl/,*/?=(^A* *%*)• 
That is, there are c functions fj(g, a, q,n,k) (j = 0,1,2,..., c -1) such that 

qg^j^^fj{g9a9q9n9k) 

for g=0,l,...,t-l. This means that the period of v(N) has f cycles of length c - (2s + t)co + 
JF(a, q) whenever « = 5# +1 > 1. 
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We next show that, given any positive integer c, we can find s, a9 q such that 
c = (2s + l)a)(a9 q) + W(a9 q). 

When c is odd, this is very easy because W = 0 whenever m = 1; thus, we need only put 
s = (c -1) / 2, a- mq +1. For example, if we have c = 7 (a cycle length not previously known), 
we can put j = 3,t = /,» = 3i + l , a s l (mod g) and 

/o(& ft 0, *) = go*"*, fi(g, ft ft *) = ft^+g+\ 
/2(g, a, ?, *) = qa2k~g

9 f3(g, a, qr, k) = ga^+1, 

/4fe, ft 9, *) = V * + (P*-*-1 -1) / ft 
f5(g, ft ft *) = ft /6te, ft ft *) = ^2"+g+2 + (®8+l -1) / ft 

We get for iV = (^a3^+1 + (a* -1) / q)2 + 4a3k+l (21 a) that the periodic part of the continued frac-
tion expansion of v(N) is given by q*jg+J+3 = fj(g9 ft q, k) for g = 0,1,2,..., £ - 1 . 

It is also easy to handle this problem when c is even. Since 21W(a, q), we must have 2\W. 
If we put m = 29 we get c = 2(25 + l) + FF(a, 9), but we can find a, f such that W(a9q) = 
c-2(25 + 1) for any s> 1 such that c-2(25 + l)>0. Thus, if c>8, we can always produce by 
this technique cycles of length c. We have already seen that examples exist of cycles of length 2, 
4,6. 

When, in the case of odd c, we put m = 1, we are compelled to make s large in order to 
produce a large cycle length. We can also do this in another way by using a> = 3. In this case, we 
have c = 3(25 +1) + W. Thus, we can keep s small and try to find W = c-3(25 +1). For example, 
consider the case of c = 13; we put 5 = 1 and must find a, q such that W(a, q) = 4. If we use 
Z> = 2 U = 5,Jt = 6, we get n-i-%i+l = l and ( 5 - l ) / r = <l,9,8>. Hence, ( S - l ) / 2 = 81 and 
T/2 = 73; and if a = 8 (mod 73), q - 73, we get o)(q, q)~A. It follows that if 2\a and a = 8 
(mod 73), then v(N)9 where 

N = (73a3f+1 + (a3r -1) / 73)2 + 4a3t+1 

has a cycle length of 13. This cycle is given by qug+j+3 = ./}(#, ft t)9 where 

/ofe, a, 0 = 73a*-3* + (a3'"1"3* - 64) / 73, 
fi(g,®J) = l fi(g,a9t) = l9 f3(g,a,t) = 9, 

f4(g,ft 0 = ^38+2 + C*3**1 - «) / A 
/5(g, a, 0 = 73a*-*-1 + (a*"3*"2 - 8) / 73, 
/ 6 f e " , 0 = 9, f,(g,a,t) = 7, fg(g,a,t) = l9 

f9(g, ft 0 = 73a3*+3 + (a3*+2 - 64) / 73, 
/iofe ft 0 = 73a*"3*-2 + (a*"3*"3 -1) / 73, 
/ l i f e ft /) = 73, /12fe, a, /) = 73a3**4 + (a3*+3 -1 ) / 73. 

A more extreme example is provided by putting i = 0, n = 12. We get w - i - j / + 1 = 11, rj = l, 
(S-l)/T = (49l91,2,1,1,8,1,1,2,1,1,8,9,1,1,2,1,1,8,1,1,2,2) 

= 664670164/1450042921. 
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Thus, if 
N = (145004292la6t+l + (a3t -1)/1450042921)2 + 4a6t+\ 

where a = 84498480 (mod 1450042921) and 2|a? then v(N) has a cycle structure with cycle 
length 

c = W+(2s+l)a) = 44 + 15 = 59. 
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1. MORGAN-VOYCE NUMBERS 

Consider the recurrence 

Xn+2 = ^ , , + 1 - %n (1-1) 

with 

X0 = a, Xx = b (a, * integers). (1.2) 

Morgan-Voyce numbers Bn, hn, and their related numbers Cn9 cn are then generated accord-
ing to the following scheme in which Fn9 Ln symbolize the rfi Fibonacci and 72th Lucas numbers, 
respectively: 

(1.3) 

Readers are encouraged to determine the first few members of each of these sequences. In 
particular, {BJ = 0,1,3,8,21,55,.... 

The sets of numbers (1.3) are special cases of the corresponding sets of polynomials Bn(x), 
h„(x),Cn(x),cn(x)[2]whenx = L 

2. REPRESENTATIONS BY Bm 

Next, consider the representation of positive integers N by means of Bn: 

# = 2 > / f l (^=0,1,2) . (2.1) 
/=i 

Of special interest is the case as in [3] in which all the at in (2.1) are 1, giving rise to the 
numbers 1, 4, 12, 33,..., i.e., 

! 3 = i W - l . (2-2) 
/=1 

A minimal representation is indicated in the abbreviated table (Table 1) in which an empty 
space signifies 0 (zero). This table has already appeared in [3]. An essential feature of this repre-
sentation proved in [3] is that no two successive terms in the summation have coefficient 2. 

(B) 
(*) 
( Q 
(c) 

x„ 
B„ 
K 
c„ 
cn 

a 
~6~ 

1 
2 
-1 

b 
~T 

1 
3 
1 

II " w ^m 

~K, 
Pln-l 

L2n 

^2n-\ 
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TABLE 1. Minima! Representation for {BJ: n = 1, 2 ,3 ,4 

AT 

"T 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

lB> 
ii_ 

1 
2 

1 
2 

1 

1 
2 

1 

222 

3 

1 
1 
1 
2 
2 

1 
1 

B3 

8 

1 
1 
1 
1 
1 

£4 
21 

N 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

fe 
t 2 

1 

1 
2 

1 

1 
2 

£2 
3 

~T 
2 
2 

1 
1 

# 3 
8 

~T 
1 
1 
2 
2 
2 
2 
2 

£4 
21 

1 
1 
1 

# 

~24~ 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

to 
L 

1 
2 

1 

1 
2 

1 
2 

B2 

3 

~~r 
1 
1 
2 
2 

1 
1 
1 
2 

53 s4 

8 21 

Is this representation unique? 

Write Sk for the set of digits 0, 1, 2 of length £ in the representation. Let 

/jt1"1 = the smallest integer in Sky 

j-m&x _ ^ e i a rge s t integer in 5^, 
I i ^ = the range of integers in Sk, 
\Ik = the number of integers in Sk. 

Then we readily construct the following scheme (Table 2). 

TABLE 2* Bn Representation Summary 

k 
1 
2 
3 
4 

Jfc 

sk 
S, 
s2 
S3 

s4 

sk Fit 

Rt 
U 

3,...,7 
8, ...,20 
21, ...,54 

,...,FM+1-l 

Nf1 

B, 
B> 
B3 

B4 

Bt =Fit BM 

N?°* 
B 2 - l 
5 3 - l 
5 , - 1 
B5-l 

~ 1 = ^2*+2 _ 1 

'* 
2 = F3 

5 = F5 

13 = F7 

34 = F9 

Flk+\ 

Clearly, Ik = JVp» - # P +1 = ^ - 2 - F2k = F2,+ 1. 
In each block of length k in Table 1, 

(the smallest number is necessarily (0, 0, 0, ..., 1), and 
the largest number is necessarily (0, 0, 0, ..., 2). 

Lemma 1: Bn<N<Bn+l-l. 
E.g., Bs(= 987 )<N = 1000<5^-1(= 2583). 

2000] 



UNIQUENESS OF REPRESENTATIONS BY MORGAN-VOYCE NUMBERS 

Lemma 2: k is uniquely determined by N. 
E.g., N = \000=>k = 5. 

Combining the above information, we deduce that 

Theorem 1: Every positive integer N has a unique representation of the form 

where [3] two successive values ah ai+l cannot both be 2. 
The distinctive pattern fixed in Tables 1 and 2 determines the uniqueness of the repre-

sentation. 
A tabular schedule similar to that in Table 1 (but suppressed here for the sake of brevity) 

ought now to be constructed for maximal representations by B„. The embargo on the appearance 
of two successive coefficients in the summation with the value 2, as in the enunciation of Theorem 
1, naturally does not apply for maximality. A fixed pattern of the coefficients emerges in the tabu-
lation of maximal representations for Bm leading to the conviction that the maximal representation 
is unique. Where this situation differs from that, say, for Pell numbers [1], is that, while (2.2) in 
which all coefficients are 1 is there common to both minimal and maximal representations, other 
summations here are common to both which do not belong to (2.2), e.g., 5 = 2Bl+B2. Also see 
[3] in this context. 

3. OTHER REPRESENTATIONS 

(i) CH (lacunary) 
Coming now to the companion number set {CJ = 2,3,7,18,47,... to {B„}, i.e., (1.3)(C), we 
find that the even tenor of our progress is disrupted. For a start, C0 = 2, Q = 3, so that there 
is no possible representation of 1 (unity). Thus, any representation is necessarily lacunary. It 
is no good appealing to C j as an accommodating adjunct to the set {Cn} since C_t = 3 
(indeed, C_„ = Cn). 
Because of this hiatus, there is also no member in the pattern of the minimal representation 
of, say, 8 though it can be represented maximally as 8 = 2C0 +2Q, in which there occur two 
successive coefficients equal to 2. Except for the lacuna at N = l, the potentially fixed 
minimal pattern is negated in a regular way at Cn = 1, n > 2. The nature of the representation 
is therefore hybrid. 

(ii) K 
Turning now to the Morgan-Voyce numbers {bn}: 1,2,5,13,34,..., we encounter a similar set 
of circumstances to those for {BJ. Arguments paralleling those employed in the previous 
section are likewise applicable to this context. Analogously to Table 1, a minimal 
representation table may be constructed (an entertaining and instructive pastime). As for Bn, 
the proscription of two successive coefficients equal to 2 in a minimal representation applies 
here also. 
For comparison with the Table 2 Summary for JJn,-we here append a Summary (Table 3) for 
hn, in which non-capital symbols correspond to the capital symbols specified in (2.3). 

214 [JUNE-JULY 



UNIQUENESS OF REPRESENTATIONS BY MORGAN-VOYCE NUMBERS 

TABLE 3* bu Representation Summary 
k 
1 
2 
3 
4 

k 

% 
si 

S2 

S3 

S4 

h F2k 

h 
1 

2,...,4 
5,..., 12 
13,..., 33 

-i? •••» Mjt+i ~~ 

r̂" 
*. 
K 
b3 

K 

i 6* 

„max 

b2-i 
* 3 " 1 

* 4 " 1 

6 5 - l 

* * + • - ! 

'* 
^ 2 

^ 4 

^ 
^ 8 

^ 2 * 

Observe that, by (1.3), ik = (^+1 -1) - (^) +1 = bk+l -bk = F2k+l - F^ = F2k. Uniqueness of 
the minimal representation is determined by the fixedness of the pattern. 

(iii) cn 
Some initial comfort is offered here by the fact that 1 = c1? 2 = 2cl. But to represent the num-
ber 3, we need to revert to the subterfuge of including -1 = c_x (c_n = cn in fact) in our set 
{cn}. This implies that a representation exists which is non-lacunary. There is a purpose-
fulness about the coefficients which then suggests minimality and uniqueness. 

4. CONCLUDING OBSERVATIONS 

Write 
n-l 

&„ = ££,. (2.2), b„ = 5> , %, = XC,, c„ = £c,.. 
1=1 J=l j = 0 J=l 

Then we discover the following schedule (cf. (1.3)): 

mn 
K 
^n 

c„ 

Fibonacci Equivalence 
F2n+l~l 

F2n 

^2n+l ~~ 1 
^2w~2 

Recurrence Relation 

^ 2 = 3 ^ 1 - 8 * - 1 
K+2=3K+\-hn 
%H-2 = 3 % i + l " ~ % i _ 1 

Crc+2 = 3C«+1~~CH + 2 

Aspects of 3SW and %n are discussed in [3], while features of bn and cn are analyzed in [4]. 

Peripherally of import to this paper, but also to provide some publicity for the concept, we 
mention Brahmagupta polynomials [5] which relate to Bn(x) and bn(x) [5], and to C„(x) and 
cn(x) Nl- Historical information on Brahmagupta and his mathematics is given in some detail in 
[6]. 
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1. INTRODUCTION 

In [8], Lin Introduced a well-known result (i.e., Theorem 3.1) from discrete dynamical 
systems theory (which he called "iterated maps") concerning the number of period-/? points. As 
applications, Lin computed the number N(n) of period-w points of the maps B(ju, x) for some 
suitably chosen /i and obtained some interesting dividing formulas n\N(n) (i.e., formulas (4.23) 
in [8]) which had already been obtained in [6, Theorem 3] from different maps. As mentioned in 
[8], each iterated map contributes an N(n) and, hence, in principle, infinitely many N(n) can be 
obtained. However, in practice, to actually compute N(n) is not so easy as was demonstrated in 
[8]. Lin did not mention how to compute explicit formulas for N(n) other than the one for the 
special maps B(ju, x), where the method he used does not seem to apply to other maps easily. In 
this note, we want to point out that a simple systematic way of constructing functions Q(n) such 
that n\Q(n) has already been introduced in [2]-[7] (see also [9]) for a large class of continuous 
maps from a compact interval into itself and examples of various Q(ri) can also be found in [4]-
[7]. Furthermore, we want to present a few methods (Theorems 1-3) from discrete dynamical 
systems theory of obtaining new functions Q(n) from the known ones so that many more Q(n) 
can be constructed (see, e.g., Theorem 4). Finally, in [8], Lin only considered the numbers of 
period-/! points for iterated maps. He did not mention the numbers of symmetric period-(2«) 
points. Therefore, we also include such examples in Theorem 5. 

2. SOME DEFINITIONS 

Since our main results are taken from discrete dynamical systems theory, we shall use the 
notations commonly used there (see also [4]-[7]). For completeness, we include the definitions of 
<E>.(̂ ,«), i - 1,2, below. Let (j>(n) be an integer-valued function defined on the set of all positive 
integers. If n = p\xp% -~Prr, where the p.'s are distinct prime numbers, r and the £.'s are posi-
tive integers, we let O ^ , 1) = ^(1) and let 

/=1 Vr/ J /j</2 \FhFh J /,</2</3 \FhFhFhJ 

+ ...+(-iy>[—n-—I 

where the summation 2/, </2 <...</. is taken over all integers ix, i2,..., i. with 1 < ix < i2 < - • • < i. < r. 
If n = 2k°Pilp2

2 -'Prr, where the ^/s are distinct odd prime numbers and k0 > 0,r > 1, and the 
kt

 f s > 1 are integers, we let 
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*M,n)=m-tA$VY,*{irA- I 
Pi PuPu 

n 
,Pi,PhPh 

(PlPl-Pr) 

Ifn = 2k, where k > 0 is an integer, we let ®2(^, ri) = (j>(ri) -1. 

3. MAIN RESULTS 

Let S be a nonempty set and let / b e a function from S into itself. In the sequel, for every 
positive integer n, we let QAri) denote the number (if finite) of distinct solutions of the equation 
fn{x) = x in S9 where fn denotes the rP iterate of / : fx = / and / " = / ofn~l for w > 1. By 
standard inclusion-exclusion arguments, it is easy to see that, for each positive integer n9 

O^^p/ i ) is the number of periodic points off with least period n. On the other hand, if S 
contains the origin and g is an odd function from S into itself, we let ¥g(ri) denote the number (if 
finite) of distinct solutions of the equation gn(x) = -x. In this case, if gn{y) = -y, then gkn(y) = 
(gn)k(y) = -y for every odd integer k>\ and gmn(y) = (g")m(y) = y for every even integer 
m> 1. So, it is again easy to see, by the same inclusion-exclusion arguments, that ^>2{y/g, n) is 
the number of symmetric periodic points (i.e., periodic points whose orbits are symmetric with 
respect to the origin) of g with least period 2n. Consequently, we have ^ ( ^ n) = 0 (mod n) 
and ®2{y/g,ri) = 0 (mod 2ri) for all positive integers n. Therefore, by letting Q{n) = ^ ( ^ p n) or 
Q(n) = ®2(y/

g>n)> w e obtain that n\Q(n) for all positive integers n. In the following, we shall 
present a few methods (Theorems 1-3) from discrete dynamical systems theory of obtaining new 
functions Q(n) from the known ones so that many more Q(n) can be constructed. 

Since ^ ( ^ T I ) is linear in (/> [note that $>2(y/,ri) is not linear in y/ because of its definition 
on n = 2k\ we easily obtain the following result. 

Theorem 1: Let <pn i = l, 2, be integer-valued functions defined on the set of all positive 
integers. If, for all positive integers n, OxQpl9 n) = 0 (mod n) and ^ ( ^ n) = 0 (mod ri), then, 
for any fixed integers k and m, ^l{k(pl^m<p2,n)=k^l{q)l,n) + m^l{(p2,n) = 0 (mod ri) for all 
positive integers n. 

Let/and ft, 1 < i < j , be functions from S into itself and let (]l/=i ^ )(ri) = U{=1 $/t (ri) for all 
positive integers n. If h is a function from S into itself defined by h(x) = fk(x), then, since 
hn(y) = y if and only if fkn(y) = y, we obtain that (/>h(ri) = $f(kri). On the other hand, if if is 
a function from the Cartesian product set SJ into itself defined by H(xl9x29...9Xj) = (fl(xl), 

f2(x2),..;fj(*j)), then> s i n c e (yuy2,...,yj) = F{yl9y29...9yj)^ 
if and only lfyi = /fty) for all 1 < i < j9 we obtain that #H(ri) = (Il/=1 $/()(ri). If 5 contains the 
origin and all/and fi9 \<i<j9 are also odd functions, then so are h (when k is odd) and H. 
Arguments similar to the above also show that ytH(ri) = (n/=1 Wf()(n) = n/=1 ^/, (w). Therefore, 
we obtain the following results. 
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Theorem 2: Let/and fi9 1 < i < j , be functions from S into itself. Then the following hold: 
(a) For any fixed positive integer k9 let <pk(ri) = $f(kri). Then $ j ( ^ , « ) = 0 (mod it) for all 

positive integers n. 
(b) Ol(Xljssl <f>f., #) = 0 (mod /i) for all positive integers n. 

Theorem 3: Assume that the set S contains the origin and let g and gi9 1 < i < j , be odd functions 
from S into itself. Then the following hold: 
(a) For any fixed odd integer k > 0, let y/k(n) = y/g(kri). Then <S>2(y/k,n) = 0 (mod 2ri) for all 

positive integers n. 
(h) <J>2 (n/=1 y/g., w) s 0 (mod 2fi) for all positive integers n. 

Remark: Note that in Theorem 1 we only require <pf to satisfy <bx(<pi9ri) = 0 (mod ri)y while in 
Theorems 2 and 3 we require them to be the numbers of (symmetric, respectively) periodic points 
of all periods for some (odd, respectively) maps. It would be interesting to know if these stronger 
requirements in Theorems 2 and 3 can be loosened. 

4. SOME EXAMPLES 

In [6] we show that, for any fixed integer j>2, if q>j{n) = 2n - 1 for \<n<j and <Pj(n)-
S,4i<Pj(n-i) for j < n, then <pj satisfies the congruence identities &i(<pj9 n) = Q (mod n) for all 
positive integers n. Since the constant functions also satisfy the same congruence identities, 
it follows from Theorem 1 that, for any fixed integers j , k9 and m with j > 2 , if </>j^m(n)=-
m(pj{n) + k for all positive integers n, then ®i(^ysit,i»>w)s0 (moc* n) ^or a^ positive integers n. 
Since it is easy to see that ^ - ^ m also satisfies the recursive formula <j>jki m(n) = rn(T -1) + k for 
1 < n < j and ^y kt m(n) = (Z/=1 ̂ y K m(n - i)) - (j'- l)k for j < n, we have the following result. 

Theorem 4: For any fixed integers j , k9 and wi with j > 2, let 

tj,k,m(ti = ' 
Jm(2n-!) + £, forl<n<j9 

l(i:/=i^.,>-o)-0"-i)^ feu<* 
Then <&i( f̂ *t „ , , w ) 5 " (mod w) for all positive integers n. 

The following is an example of #2(^, n) = 0 (mod 2w). For other examples see [5] and [7]. 
By Theorem 3 above, many more examples can be generated easily from these known ones. 

Theorem 5: Let j > 2 be a fixed integer and let gj(x) be the continuous map from [-j, j] onto 
itself defined by 

fx + 1, for -j<x<-29 
\j9 forx = - l , 

gj(*) = \-j> fOYX = l9 

\x - 1 , for 2 < x < j9 
[linear, on each of the intervals [-2, -1], [-1,1], [1,2]. 

We let $j(ri) be defined by 
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#/<") = 

y/j(n) = 

3\ 

3w-2, forl<n<j, 
3n-2-4n-3"-J-\ forj + l<n<2j-l, 

[Z/=1(2i - T#j(n - 0 + 1 ^ ( 4 / - 2/ -1)0j(n -i), for 2/ < *. 

We also let y/j{n) be defined by 

f o r l < w < j - l , 
forn = j , 
forj + l<n<2j-l, 

Then, for any integer j > 2, the following hold: 
faj For any positive integer n, (f>j{n) is the number of distinct solutions of the equation g"(x) = x 

in [-j, j]. Consequently, O^p-n) = 0 (mod n) for all positive integers n. 
(b) For any positive integer «, y/j(ri) is the number of distinct solutions of the equation g"j{x) = 

—x in [- j , y]. Consequently ^(^j*«) s 0 (mod 2ra) for all positive integers w. 

Remark: Numerical computations suggest that the functions y/j{n) in Theorem 5 also satisfy 
*&\{y/j, ri) = 0 (mod n) for all positive integers n. However, we are unable to verify this. 

5. OUTLINE OF THE PROOF OF THEOREM 5 

The proof of Theorem 5 is based on the method of symbolic representations which is simple 
and easy to use. For a description of this method, we refer the reader to, say, Section 2 of [6], 
Here we only give an outline of the proof. We shall also use the terminology introduced there. In 
the following, we shall assume that j > 2. The case j - 2 can be proved similarly. 

Lemma 6: Under gj9 we have: 

(-7)1 -> (-0 ' - l)X-(7 - 2)) • • • (-3)(-2)(-l)X-7), 
K-j) -+ i-j)j(- 1X-2X-3) •••(-(/- 2)X-0' -9 ) , 

(/ -1)/ -> /'(/ +1) and i(i -1) -»(/" +1)/, for - (/ - 2) < /" < -2, 
(-2)(-l)->(-l)7 and (-l)(-2)->./(-1), 

(rjV -> i-U ~ !))(-(/• - 2)) • • • (-3)(-2)(-l)X-7)l 23 • • • (j - 2)0' -1), 
JH) -> 0 - 1 ) 0 - 2 ) - 321(-y)X-l)(-2)(-3) - ( - 0 - 2 ) ) ( - 0 - 1 ) ) , 

12 ->( - / ) low/21->K- / ) , 
;(;' +1)->(/'-1)/ and (/ +1)/->/'(/'-1) for 2<i<j-2, 
y(-l)->C/-lX/-2)-321(-yU 
H)y->X-/)i23-(/-2X/-i). 

In the following, when we say the representation for y = g"j (x), we mean the representation 
obtained, following the procedure as described in Section 2 of [6], by applying Lemma 6 to the 
representation ( - ( / - l ) ) ( -0 ' -2) ) - ( -3) ( -2X- l )7( -y)123--0 ' -2)0 ' - l ) for y = gj(x) succes-
sively until we get to the one for y = g^(x). 
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For every positive integer n and all integers k, i with -(J -1) < k < j -1 and -(j -1) < i < 
j -1, let a„9k,ij denote the number of wv's and vi/s in the representation for y = g"(x) whose cor-
responding x-coordinates are in the interval [»%, tk], where 

[k-l,k], 
[-1,1], 
[ M + l ] , 

for - 0 - 1 ) ^ * ^ - 1 , 
forA: = 0, 
forl<k <j-l, 

[SkSkY-

We also define cnj and dnJ by letting 
-i y-i 

f(-j)l, for/ = - a - l ) , 
(i-l)i, for-( j ' -2)<?<-l3 

and uv = < (-j)j, for i - 0, 
I(I + 1), forl<i<j-2, 

[/(-I), fori = y - l . 

/ - I y-l ; -2 
'«,/ = z L an,k,k,J +Zl?(aw,-it,0,y + aw,fc,0,/) + iL( a w, -&, - ( / - l ) , / + an,k,J-l,j) 

k=-(j-l) k=l k=Q 

J-2 

fc=o 
and 

j-l j-l j-2 

dnj ~ La an,k,-k,j + Zu (an,-k,0,j + an,k,0,j) + 2 ^ (a«,fc,-(/-l),/ + an,-k,j-l,j)' 
k=-(j-l) k=l k=0 

It is easy to see that, for every positive integer /i, cWjy is the number of distinct solutions of 
the equation gJJ(x) = x and dnj is the number of distinct solutions of the equation g*(x) = -x . 

Now, from Lemma 6 above, we find that these sequences (a„tktij) can be computed recur-
sively. 

Lemma 7: For every positive integer n and all integers k with -{j -1) < k < j -1, we have 

a«+l,Jfc,-(/-l),/ ~ an,k,Q,j + Qn,kXj + Cin,k,j-l,j> 
an+l,k,-(J-2)J ~ an,k,0,j + aw,fc,-(/-l),/> 
an+l,k,i,j - an,k,i-lJ +an,k,0J+an,k,-(J-l)>J> 

a n+l,k,0,j : an,k,-{j-l),j +an,k,0,j + an,k,j-l,j> 
an+l,k,i,j ~ an,k,Q,j + an,k,i+l,j + an,k,j-l,j> 

- ( / - 3 ) < / < - l , 

l < / < 7 - 3 , 
an+\,kJ-2,j 

lan+l,k,j-l,j '' 

zan,k,0,j+an,k,j-l,j> 
z an,k,-(j-l)J +an,k,-hj+an,k,0,j' 

The initial values ofa^kJJ can be found easily as follows: 

" ai,k,k+ij = l f o r - ( / - l ) < £ < - 2 , 

a, 

a l , - l , / - l , / ~~ ^? 

= 1, 
= 1, 

a l , 0 , 0 , / ~~ 1? 

l,l,-(/-l),7 

a U*-W = 1> for2<k<j-\ 

XKUj • 0, elsewhere. 

Since the initial values of the @ntk,t,/s a r e known, it follows from Lemma 7, by direct but 
somewhat tedious computations for n ranging from 1 to 2/, that we can find explicit expressions 
(omitted) for the sequences {ankjj\ ~(j -l)<k<j-l, -(J -1) < 1 < j -1, 1 < n < 2j, and from 
there we obtain the following two results: 
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(a) cmJ = <t>j(m) and dmJ = y/j(m) for 1 < m < 2j -1. 
(b) <hj,k,i,j = £Ll(2w " ty*2j-m,kj,j + £m=~Al(4./ - 2t» ~ ty*2j-m,k,i,j 

forz\\-(J-\)<h<j-\, -{j-\)<i<j-l 

Since, for fixed integers k and / with -(J -\)<k<j-l, -(J -1) < / < j -1, a ^ , ^ is a linear 
combination of a„_lk mj, -(J -l)<m<j-l,\t follows from part (b) above that 

J 2>-l 
a»,k,i,j = Z (2Ttl ~ ̂ Pn-mXUi + X W - 2/M - 1K-«.t./.y for a11 n * 2 J • 

m=l m=J+l 

Since both cnj and dnJ are linear combinations of the anXiJ§, we obtain that 

C«,; = Z (2m - l)Cn-mJ + E (4J ~ 2 m ~ l)Cn-mJ > 
m=l m=j+l 

J 2J-1 

and dnJ = £ (2w -IK-.,,- + £ (4/ - 2m - 1 ) ^ y 
m=l m=j+l 

for all n>2j. This completes the proof of Theorem 5. 
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1. INTRODUCTION 

As usual, the Fibonacci sequence F = (F„) is defined by F0 = 0, Fx = 1, and by the second-
order linear recurrence sequence Fn+2 =Fn+l+Fn for n>0. This sequence has many important 
properties, and it has been investigated by many authors. In this paper we shall attempt to study 
the distribution problem of Dedekind sums for Fibonacci numbers and obtain some interesting 
results. For convenience, we first introduce the definition of the Dedekind sum S(h, q). For a 
positive integer q and an arbitrary integer h, we define 

s™4M) ah 
9 

where «*»= 
[x -[*]-•£ if x is not an integer; 
lo ifxis an integer. 

The various arithmetical properties of S(h9 k) can be found in [3], [4], and [6]. About Dedekind 
sums and uniform distribution, Myerson [5] and Zheng [7] have obtained some meaningful 
conclusions. However, it seems that no one has yet studied the mean value distribution of 
$(FmFn+l), at least we have not found expressions such as HS(Fn,Fn+l) in the literature. The 
main purpose of this paper is to study the mean value distribution of S(Fn,Fn+l) and present a 
sharper asymptotic formula. That is, we shall prove the following main theorem. 

Theorem; Let m be a positive integer, then we have 

n=l 48 
1 

a 
2m 

where a = ^~-, C(m) is a constant depending only on the parity of m, i.e., 

i +_Ly(iT 
C(«) = 

1 °° 
To" 2«i 

\«+l 

1 ^2n^2n+l 12 
if m is an even number; 

n=l 

1 
1 ^2n+l^2n+2 

,_Ly< 
12 a 

^ 
w+l 

if m is an odd number. 

2* SOME LEMMAS 

To complete the proof of the theorem, we need the following two lemmas. 

Lemma 1: Let m be a positive integer, then we have 

S(Fm> Fm+l) + 
1 m-l 

UFn m+l 12 
1 1 

rmrm+l F F 
• + ( - ! > m-2 1 

^ 3 . 
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Proof: It is clear that (Fm, Fm+l) = 1, iw = 1,2,3,..., so, from the reciprocity formula of 
Dedekind sums (see [2] or [3]), we get 

$(Fm,Fm+d+S(Fm+hFm) = F™+F^ + l-± 
l2FmFm+l 

(1) 

By the recursion relationship Fm+l = Fm + Fm_l for /w>0, we have S(Fm+l,Fm) = S(Fm_uFm). 
Thus, 

s(Fm> Fm+i) + S(Fm_h Fm) 
F2+F2 , + 1 1 \ ( F F 

l2FmFm+l 

m+l | L. 
4 12 { rm+l tm ^m^m+i 

= 1 (F*-i , ^ , • 1 1 1 = 

4 
Fm-\ 1 m-2 

l 2 \ F m Fm+l FmFm+l) 6 12^*A+1 12^+1 12^n ' 

so that 

1 

S(F^,Fm) + T ^ 

1 
l 2 i E w^+l l2Fm-lFm 

1 1 

S(Fm-2> Fm-l) + 1 0 ^ 3 

1 
l^mKn-l ^2Fm-lFm l2Fm-2Fm-l 

It is clear that S(Fl9 F2) = S(l, 1) = 0 and F0 = 0, so we obtain 

(-1) m-2 S(FUF2) + 12F2 

S(Fm,Fm+1) + Fm-i 1 1 

This concludes the proof of Lemma 1. 

Lemma 2: Let m be a positive integer, then we have 

• + • •• + (-!)' m-2 1 
12F2F3 

where a = ^^-. 

Proof: From the second recursion relationship for F„, we can easily deduce that 

1 ''i+V5Y fi-VT^ 

From these identities, we get 

and aFm = Fm+l + ® 
f F„ \^aFn l^F^+gy 
" F * a^F , a^ f 
W = l "* W + l *"* W = l J M+l ^ «=1 •* «+l 

\W+I 

= ±m+Y a *-> ar.s-i 
n=\ Ai+1 

tn + (i)1 «+i 

«=i A?+i -te> 
This completes the proof of Lemma 2. 
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3. PROOF OF THE THEOREM 

In this section we shall complete the proof of-the theorem. First, let m b e a positive integer, 
then from (1) we have 

S(Fm> Fm+l) + S(Fm+h Fm) = 
F 1 

m+l I •* m . *_ 12 I F ' F ' F F 1 4 
or 

and 

^ . , F „ 1 ) + ^ „ ^ 4 ( ^ + A _ + ^ - ) - I 

Id[S(Fn,F„+l) + S(F„_l,F„)] = ±Y, 
n=l 12: 17 F F F «=1 L w+l « - 'w'/H-l . 6 ' 

Noting that 

so that 

hence, 

S(F0,Fl) = S(0,l) = 0 and F0 = 0 

m 1 m F 1 -m F 1 m 1 fti 
' w=2 * » ' w=i x w+l x ^ w=i -* n* n+l 

2ZS(F„,Fn+l) = S(Fm,Fm+l) + 
«=1 w+1 v «=1 J w+1 

Applying (2), Lemma 1, and Lemma 2, we obtain 

2£S(Fn,Fn+l) = ± 

, i y _ L + l f F„ 2m + l 1 ^,-1 , 1 
12 F_, 6±{Frtl ' 12f-/^F. ' W = l z »-* «+l 12 

M=I 12 

+ -

1 __ 1 j |_ / _ i \ m - 2 1 

\w+l 4zlw+|;(iL+0r i 
«=1 Ai+1 a' 2/w 12„=1F„FW+1 

2m + l 
12 ' 

Ifm is an even number, then from the above we have 

„=\ Z ^ 1 Z
 n=\r2nr2n+l ljL n=\ rn+\ \ a 

Jim 

\n+l 
- (V5-D2

mlif i , i f ( r l C , f n 
- 48 W +12£lF2„F2 n + 1

 + 12^F„+I
 +C'U2'"J' 

If HI is an odd number, then 

w = l ^ ^ 1 Z
 w=l r2n+lr2n+2 1 Z , n = l ^w+1 V a 

48 W + 12^F2n+1F2„+2
 + 12 £ F„+1

 + t y U 2 m J ' 
This completes the proof of the theorem. 

(2) 
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1. INTRODUCTION 

A remarkable theorem of E. Lucas [10] provides a simple way to compute the binomial coef-
ficient (^ modulo a prime p in terms of the binomial coefficients of the base-/? digits of N and m: 
If N = ZNjPJ and m = JlmjpJ\ where 0<Nj, Mj < p, then 

ffl-n (mod/?). 

^ » ) = ( ™ r ) -
This paper will generalize the following alternative version of Lucas's theorem: Let 

(jfg + 7l)!. 
m\n\ ? 

then 
B(m, ri) = B(m + p,n + p)B(m mod p, n mod /?) (mod p), 

where JW-J-/? is the integer quotient of m byp, and /w mod/? is the remainder. It follows that if 
m = Ytfttj-pJ and n = TnjpJ\ where 0 < /»,., wy- < /?, then 

B(m, ri) = J^^/iiy, rij) (mod /?). 

As a corollary, p \ B{m, ri) if and only if Mj +nj>p for some j . 
This theorem also implies that the residues of Pascal's triangle modulo p have a self-similar 

structure; see, e.g., [12], [2], [4], [5], [9], [17], and [1]. For example, if p = 3, then [B(m,n) 
mod/?] for 0 < iw, n< 9 is given as follows: 

1 1 1 1 1 1 1 1 f 
12 0 1 2 0 1 2 0 
10 0 1 0 0 1 0 0 
1 1 1 2 2 2 0 0 01 [IB IB IB 
1 2 0 2 1 0 0 0 0 = IB 2B 0B | (mod/?), 
10 0 2 0 0 0 0 01 I IB 0B 0B 
1 1 1 0 0 0 0 0 0 
1 2 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 

where 

B = 
1 1 1 
1 2 3 
1 3 6 

= 
1 1 ll 
1 2 0| 
1 0 Oj 

(mod/?), 

so this matrix is the tensor (or Kronecker) product B®B mod/?. Generally, as noted in [11], 
modulo/? we have that [B(m,ri)mod/?] for 0<m9 n <pk will be B®k, the Mold tensor product 
of B = [BQ, j) mod /?], where 0 < i, j < p. Note that matrix indices start at index pair (0,0). 
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Generalized binomial coefficients are defined corresponding to a given sequence {un) by 
replacing n\ by the product of ux through un. This paper uses recurrence-relation techniques 
to deduce generalizations of Lucas's theorem for generalized binomial coefficients based on a 
sequence generated by a second-order recurrence relation (see Theorems 1 and 3). One resulting 
generalization is equivalent to the theorem (Theorem 4 below) obtained by Wells [13] by an intri-
cate analysis. The new approach to the proof clarifies and explains the complexities of Wells's 
formula. 

2. THE UNDERLYING SEQUENCE (un) 

Definition 1: Let a, b G Z . Let/? be a prime. Define the sequence (un) recursively as follows: 
u0 = 0; ux = 1; un = aun_x + bun_2 for n = 2,3,4,... 

(or ux = 1; U2 = a; un = aun_x +bun_2 for n = 3,4,5,...). 
For example, when a = 2 and b = - 1 , then un = n; when a = 1 + q and b - -q, then un -1 + 

q + q2 + • • • + qn~l; and when a = 1 and b = l, then un = Fn, the 71th Fibonacci number. 

Definition 2: Let r denote the rank of apparition of/?; thus, r = rmn{n eN:un = 0 (mod/?)}. 
Let t denote the (least) period of (un mod /?>, if it exists. Let s = t Ir. 

From now on, consider the prime /? and the integers a and A fixed, and assume a and b are 
not both zero. We shall usually assume that p\b. If p\b, then ww =aw_1 (mod/?), and so either 
/?|a and un = 0 (mod/?) for w > 2 while 14 = 1 so that t is undefined, or p\a and r = 00. In any 
case, the recurrence relation ww = aun_l+bun_2 (mod/?) defines a transformation 

frM? o l d <m°d'> 
mapping {0,...,/?-1}2 to itself. If pl[b, then the transformation is invertible, and consequently it 
must be periodic with period t<p2, and, since u0 = 0 and 0 repeats, r < t. 

The following basic addition formula, which appears, e.g., in [7], may be proved by induction. 

Lemma 1 (ExtendedRecurrence): For m>\ and n>0, wm+w = wmw„+1 +bum_lun. 

Many basic properties of the sequence (un) follow immediately from this lemma. 

Corollary 0: Let z-min{w eN:un = 0}. Then z > l , and if z<oo, then {n eN:un = 0} = 
{z,2z,3z,...}. 

Proof: If z < 00, Lemma 1 implies that wfe+w - %w„+1 +hukz_lun, from which the conclusion 
easily follows by induction if b * 0. If b = 0, then i/w = a""1 for n > 0, where a * 0 (by the assump-
tion above), so z = 00. • 
Corollary 1: If /?|d, then {n eN:un=0 (mod/?)} = {r,2r,3r,...}. 

Corollary 2: If pfb, then 5 (defined as * Ir) is an integer. 

Corollary 3: If r < 00, then, for & = 1,2,3,..., hukr_x = %+1 = w +̂1 (mod /?). 

Corollary 4: If /?|A, then 14 = 1, wr+1, w2r+1,..., #(5_1)r+1—or, equivalently, u*+l for 0 < & < 5—are 
all distinct modulo /?. 
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Corollary 5: Ifpjb, then the sequence <î +1 modp)^0 has period s: u"+l = u"™ods (mod/?). 

Corollary 6: If p\b9 then s\p-\. 

Definition 3: The rank of apparition o(k9 denoted r(k)9 is the least index n for which k divides 
un: r(k) = min{n e N: k \un). (If ^ does not divide any un9 then r(k) = oo.) Note that r = r(p). 

Definition 4: The sequence (f#w> is regularly divisible by p if, for every positive integer i, 
{/iGN:/?'K} = {*r(/y):* eN}. 

Corollary 7 (Wells): If p\b9 then the sequence (i^> is regularly divisible hyp. 

3» GENERALIZED BINOMIAL COEFFICIENTS 

Definition 5: Given (un)9 define the generalized, or bracket, factorial [n]\ for n - 0,1,2,... by 

[H]! = fl«y 
;=1 

For m > 0 and w > 0, define the generalized binomial coefficient C(m9 n) by 

C(#l,#l): [iw + w]! 

If some factors are zero, then it is to be understood that zeros in the numerator and denominator 
are to be canceled in pairs. By Corollary 0, if there are some zero factors uj9 their indices j are 
multiples of some z>\. so the number of zero factors in the numerator will either equal the 
number in the denominator or exceed it by 1. 

When a = 2 and b = - 1 , then un~n and the generalized binomial coefficients become the 
ordinary binomial coefficients: C(m9 n) = B(m9 n). When a = l + q and b = -q9 then un = 1 + q + 
q2 + "' + qn~l and the generalized binomial coefficients are the Gauss ^-binomial coefficients. 
When a = 1 and b -1, then u„ - Fn and the generalized binomial coefficients become the Fibono-
mial coefficients. 

Obviously, the generalized binomial coefficients are symmetric: C(m9n) = C(n9m). Also, 
they satisfy the following boundary conditions: 

C(m,0) = l and C(0,/i) = l for m>09 n>0. 

Lemma 2 (Basic Recurrence): For m>\9 n>\9 C(m9 n) = um+lC(m, n-1) + bu^CQn-l9n). 

Proof: 
um+ic(m> * -1) + H - A w - !>w) 

= nllri.1[iit + yi^l]li^ n ^ . J i f f - 1 + n ] ! 
[m]![n- l]!n„ ttjjif-l]![ii]! 

_ [m + n - l]l(um+lun + buji^) _ 

because l y ^ i + bu^^ = nw+WJ, by Lemma 1. D 

Corollary: If a and 6 are integers, then the generalized binomial coefficients are all integers. 
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4. GENERALIZED BINOMIAL COEFFICIENTS MODULO p 

When p\b, the generalized binomial coefficients modulo p are very simple. If p\h, then 
un s an~l (mod /?), and by Lemma 2, C(#?, /?) = um+lC(m,n~l) (mod /?). Also, C(w, 0) = 1 for 
#* > 0. Therefore, for m9 n > 0, 

if p 16, then C(m, n) = a7™ (mod/?). 
Here0° = l. 

When p\b, the pattern of the residues is more complex. There may be a self-similar pattern, 
as in the case of binomial coefficients presented above. But the pattern may be more complicated. 
For example, see Table 1 for the layout of Fibonomial coefficients modulo 3. 

When p\b, a formula for the mod-/? residues of C(m,n) may be derived in three steps: (1) 
Show that C(m, ri) = 0 (mod p) when m mod r + n mod r > r; (2) find a recurrence for C'(m, n), 
defined as C(rnr,nr), and solve it; and (3) complete the solution by using the basic recurrence 
relation in Lemma 2. This procedure parallels and extends that given in [6], which may be con-
sulted for further details. 

Notation: If r < oo, then, for each nonnegative integer n, let 
nQ = n mod r, 
n*-n^-r9 

rf -n mod ty 

n" = n* + r = n' mods. 

Lemma 3: If p\b, then C(m, ri) = 0 (mod/?) when n% +n$ > r. 

Proof: This result is a consequence of Knuth and Wilf s generalization of Kummer's theorem: 
According to [8], C(m, n) will be divisible by/? if there is a carry across the radix point when mlr 
and n I r are added in base /?; this happens when m^ + % > r. D 

Lemma 4 (r-Step Recurrence): If p\b9 then, for every m > 1 and n > 1, 

C(mr, nr) = u™xC(mr, (n - l)r) + <^C((w - l)r, /tr) (mod /?). 

Proof: For /i = 1,2,..., r -1, we have, by Lemma 2, 
C(flir,(#i-l)r+A) 
s umr+lC(mr9 (w- l)r + A-1) +^(w_1)r^.1C((w- l)r+r - 1 , (w- l)r + A) 
s ^ * C ( » i r , ( / i - l ) r + A--l) (mod/?), 

because C((m- t)r+r - 1 , (w- l)r +A) = 0, by Lemma 3. Together with Corollary 3, this implies 
that 

C(mr,(n-l)r + r - 1 ) s ^ l ) C ( m r 9 ( n - l ) r ) (mod/?). (1) 

Similarly, 

C((?*f-l)r +r-1,wr) su%-l)C({m-l)r,nr) (mod/?). (2) 

Again by Lemma 2, C(mr, w) = umr+lC(mr, nr -1)+bunr_xC{mr -1, w) (mod /?). Equations (1) 
and (2) and Corollary 3 transform this result into the desired conclusion. D 
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TABLE 1. The Fibonomial Coefficients Modulo 3 

1111 m i i m n i l m i m i n i l m i i i i i 
1120 2210 1120 2210 1120 2210 1120 2210 1120 
1200 1200 120 0 1200 1200 1200 1200 1200 1200 
1000 2000 1000 2000 1000 2000 1000 2000 1000 

1212 2121 0000 1212 2121 0000 1212 2121 0000 
1220 1220 0000 2110 2110 0000 1220 1220 0000 
1100 2200 0000 1100 2200 0000 1100 2200 0000 
1000 1000 0000 2000 20-00 0000 1000 1000 0000 

1111 0000 0000 1111 0000 0000 1111 0000 0000 
1120 0000 0000 2210 0000 0000 1120 0000 0000 
1200 0000 0000 1200 0000 0000 1200 0000 0000 
1000 0000 0000 2000 0000 0000 1000 0000 0000 

1212 1212 1212 2121 2121 2121 0000 0000 0000 
1220 2110 1220 122 0 2110 1220 0000 0000 0000 
1100 1100 1100 2200 2200 2200 0000 0000 0000 
1000 2000 1 0 0 0 1 0 0 0 2000 1000 0000 0000 0000 

1111 2222 0000 2222 1111 0 0 00 0000 0000 0000 
1120 1120 0000 1120 1120 0000 0000 0000 0000 
1200 2100 0000 2100 1200 0 00 0 0000 0000 0000 
1000 1000 0000 1000 1000 0000 0000 0000 0000 

1212 0 0 00 0000 2121 0000 0000 0000 0000 0000 
1220 0000 000 0 1220 0000 0000 0000 0000 0000 
1100 0000 0000 2200 0000 0000 0000 0000 0000 
1000 0000 0000 1000 0000 0000 0000 000 0 0000 

1111 1111 1111 0000 0000 0000 0000 0000 0000 
112 0 2210 1120 0000 0000 0000 0000 0000 0000 
1200 1200 1200 0000 0000 0000 0000 0000 0000 
1000 2000 1000 0000 0000 0000 0000 000 0 0000 

1212 2121 0000 0000 0000 00 0 0 0000 0000 0000 
1220 1220 0000 0000 0000 0000 0000 0000 0000 
110 0 2200 0000 0 0 0 0 0 0 0 0 0000 0000 0000 0000 
1000 1000 0000 0000 0000 0000 0000 0000 0000 

1111 0000 0000 0000 0000 0000 0000 0000 0000 
1120 0000 0000 0000 0000 0000 0000 0000 0000 
1200 0000 0000 0000 0000 0000 0000 00 0 0 0000 
1000 0000 0000 0000 0000 0 0 00 0000 0000 0000 

Introduce C'(m9 n) = C(mr, nr). By Lemma 4, 

C(m, n) s uZC(m - 1 ? n) + i&C"0» - \ n) (mod p). (3) 

Also 
C(m,0) = l and 0(0,n) = 1 (mod p) form,n>0. (4) 

One may check that the unique solution of congruence (3) satisfying the boundary conditions (4) 
is given by the following formula. This step involves the Pascal triangle rule, 

B(m, n) = B(m,n-X) + B(m-\ n). 

Lemma 5: If p\b, then, for every m > 0 and n > 0, C(mr, nr) = B(m9 n)u™i (mod p). 
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Definition 6: For /', j > 0 and for 0 < k9 l<r9 let AitJ(k91) denote the solution of the modulo-/? 
recurrence relation 

4 t j(k, I) = *W+i4,#> I-tt + btijr+^jik - 1 , /) 
for 0<k9l<r together with the boundary conditions Af9j(k9 -1) = 0 (mod/?) for 1 < k <r and 
4 J 7 ( - 1 , /) = 0 (mod/?) for 1 < / < r and 4 y (0 ? 0) = 1 (mod/?). 

If Q,j) = (m'9n') and (k9l) = (mQ9nQ)9 and if the final boundary condition in this definition 
were A,,,, n,(09Q) = C(m'r9n'r)9 then these would be the congruences satisfied by C(#?'r+/% 
«'r+%) for 0 < / % n^<r. Because um,r+mQ+l = nmf,r+mQ+l (mod/?) where m"-mf mod s9 and 
similarly for un,r+n _1? these congruences imply that 

4*,Amo> %) = 4*.A»b>*%) (mod/?). (5) 

and so C(m9 n) mod/? is given as follows. 

Lemma 6: If p\h9 then, for m>0 and n>09 C(m,ri) = Cim'r.n'r)^,,,„»(*%%) (mod/?). 

Definition 7: If r < oo, then, for i, j > 0 and 0 < k, I < r, define i ^ y(Jfc, /) = t/XiA9 j(k> 0 • BY 
Corollary 5 and equation (5), Hm,^(m^9 r^) = Hm,^„(/%/%) (mod/?). 

5. THE PATTERN OF THE RESIDUES 

Recall that n^ = n mod r, n' = n + r, n* =n mod ?, and n" - n' mod 5, where r is the rank of 
apparition of the prime/? in {un)9 t is the period of (un mod/?), and s = t Ir. Lemmas 5 and 6 
yield the following formula. 

Theorem 1: If p\b9 then, for m,n>0, C(m9n) = B{m\n')Hm„n,,{ti%91\) (mod/?). 

This result simplifies nicely when 5 = 1. Then m" = n" = Q, and Ho,o(^>rb) = ^(mo^no) 
(mod/?) for 0 < / % i%<r. Thus, in this case, as in the Pascal "triangle" case, the pattern of 
residues exhibits self-similarity upon scaling by/?. 
Corollary: If p\b and 5=1, then, for m9n> 0, C(m,n) = B(m'9n')C(m09n$) (mod/?) or, letting 
B denote the matrix [B(i, j)] with 0<i, j</?, and Ck = [C(m9ri)] with 0<m9n<rpk

9 we have 
C^B®*®C0(mod/?). 

Example 1: q-Binomial Coefficients. Take w„ = Z^o #* to obtain the g-binomial coefficients. If 
p\q9 then un = 1 for7?>l, so C(m9n) = l (mod/?) for m9n>0. So assume /?/[#. Then !+# + ••• 
+ ^r_1 = #r = 0 (mod /?), so qr - 1 = #wr - wr = 0 (mod /?), whence i/r+i = ur+qr = 0 + 1 = 1 (mod 
/?). Thus, (wr, wr+1) = (u09 UX)9 and so the period, t9 equals r, and so s = 1. Therefore, the corollary 
covers the case of ^-binomial coefficients when p\q9 yielding a result given originally by Fray [3]. 

For a numerical example, take q = 2 and /? = 5. Then ^ = 1, ^ = 3, 2*3 = 7, #4 = 15, w5 = .31, 
..., whence r = 4 and 

C0 = 

1 1 1 r 
1 3 7 15 
1 7 35 155 
1 15 155 1395 

" 1 1 1 1 " 
1 3 2 0 
1 2 0 01 
1 0 0 Oj 

(mod5), 
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SO 

Q s B ® q , s . 

1C0 1C0 1C0 1G0 1C0 
1C0 2 C 0 3 C 0 4 C 0 0 C 0 
1 C _ ^ Q 3 C Q I C Q OC/Q OCQ 
1C0 4 C 0 0 C 0 0 C 0 0 C 0 

_iq, oc0 oc0 oc0 oc0 

(mod5). 

Individual residues may be calculated easily by the Corollary to Theorem 1. For example, 

C(222, 161) s B(55,40)C(2,1) - B(2,1)5(1, 3)5(0,0)C(2,1) s 3 • 4 • 1 • 2 s 4 (mod 5). 

Example 2: Fibonomial Coefficients Modulo p. Let a = b = 1 so that un=Fn and, for illustra-
tion, let p = 3. Then r = 4, t = 8, and 5 = 2. The initial part of the table of Fibonomial coeffi-
cients modulo 3 were given in Table 1 above. Submatrices of the Fibonomial coefficients modulo 
3 are shown in Table 2. 

TABLE 2. Submatrices of t ie Fibonomial Coefficients Modulo 3 

ByDefi 

lH^o 
1H1 J 0 

1H 0 J 0 

1H1?0 

1H 0 J 0 

1H1 J 0 

1Ho,o 
mh0 
1H 0 J 0 

IHOLI 
2H W 

0H0jl 

1HU 

2 H 0 , 1 
0 H U 

1H0,, 
2 H U 

OH*,,! 

inition 7, 

!H0,o 
0H,,0 

OHo,o 
^ 1 , 0 
OHao 

0H1>0 

1 H 0 ,0 

0H,,0 

0H0)0 

Mo,! 
tf*U 
1HO,I 
2 H U 

2 H 0 , 1 
2 H U 

0H04 

0 H U 

0H0,, 

1 H 0 ,0 

2Hi,o 
0H0>0 

2 H 1 , 0 

IHo.o 
0H,,0 

0H0,0 

OH,,o 
0H0,0 

IHo,! 
0 H U 

0H0,i 
2 H U 

0H0,, 
0 H U 

0H0sl 

0 H U 

0H0,! 

HIo.o 
1HI J 0 

1Ho,0 
0Hlj0 

OH0,0 

0H,,0 

0H0,0 

0H,,0 

OH0,o 

1H0,, 
2 H U 

0H0>1 

0 H U 

OHo,, 
0 H U 

0H0jl 

0 H U 

0H0;1 

iHo.o 
0H,,0 

OH0,o 
0H1>0 

OH0,o 
0H1>0 

0H 0 0 

0H,,0 

OH0,o 

H, 0,0 

"i i i r 
1 1 2 0 
1 2 0 0 
1 0 0 0 

; H 0 I = 
1 1 1 1 
2 2 1 0 
1 2 0 0 
2 0 0 0 

> H1>0 = 

" 1 2 1 2 
1 2 2 0 
1 1 0 0 
1 0 0 0 

; H i , i -

1 2 1 2 
2 1 1 0 
1 1 0 0 
2 0 0 0 

Wells [16] also gives a formula for these residues, one that is a special case of her Theorem 
4, given below, and she provides a detailed description of the pattern of these sub-matrices from a 
"triangular" perspective. 

Modulo p = 29 the Fibonacci sequence has r = t = 3, so $ = l and, in accordance with the 
corollary, the Fibonomial coefficients modulo 2 exhibit a pattern similar to that of the binomial 
coefficients, but with a different C0. Wells [15] presents the equivalent of this result in an inter-
esting context. The pattern of Fibonomial coefficients modulo any prime is treated in [6]. 

Theorem 1 and the Examples show that the infinite matrix [C(i, j) mod p] may be partitioned 
into rxr submatrices which form basic, natural "tiling units.11 The pattern of the residues is 
obtained by superimposing the self-similar array of binomial coefficients modulo p upon the 
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doubly periodic "tiling" of the plane by "hidden" rxrM matrices. The binomial structure is self-
similar upon scaling by the factor/?. The r x r tiling structure has period s both horizontally and 
vertically, and so the period is t at the element level. 

When s = 1, there are p - 1 different nonzero r x r sub matrices, one for each nonzero residue 
value of B(mf

9nf) modp times C0. In the general case, by Corollary 4, there are also s-s differ-
ent Hm„n,t-matrices. This suggests that there may be (p-tys2 different nonzero "tiles." In the 
case of the Fibonomial coefficients modulo 3, the exhibited matrix shows these seven submatrices: 

1H0 J 0, 1H0J1, 1H1J0, 1HU, 2H01, 2Hlj0, 2HU. 

The missing case, 2H0 0, must be sought farther out. The places of the missing 2H0?0 are (5,11), 
(11,5), (5, 13), (13,5)... in Table 2. 

Theorem 2: Assume p\b. The number of different nonzero rxr submatrices of the infinite 
matrix [C(i, j) mod p] is (p - l)^2 . 

Proof: The proof is trivial for s = 1, so assume $>l. First, we verify that the tiles pB.MfV are 
distinct for different (p, p, v)'s with 1 < p < p and 0 < p, v<s. By Definition 6 and Corollary 3, 
A

M, v(°> °) = h A
M, v(°> 0 s u

Mr+\ = u&i> md An, vft °) s buvr-i = < u (mod P), s o bY Definition 7, 
# * v ( 0 , 0 ) S | # r , ^ , , ( 0 5 l ) - < ^ 5 and HMJl,0)^uZ+v (mod p). Note that p\urU. If 
pWMV s pB.pv (mod p), where 1 < p , p < p , and 0 < p, v, p, v < $, or B.^v = p^%v (mod p), 
where A - p ^ p , then iffi^ptffi, C S A ^ ^nd < r ^ A < ^ (mod p), so 
if^i = uf+l and w^ = i /^ (modp), whence, by Corollary 4, p = p and v = v, and therefore going 
back one finds px = 1, i.e., p = p. This proves that the mapping (p, p, v) H-» p H ^ is one to one. 

It remains to show that, given (p, p, v) with 1 < p < p and 0 < p, y<s9 one can find (m, n) 
such that 2?(wi', w') = p (mod p) and mt! = p and w" = v. Let iw = r(1 + ip) and n = r(p - 1 + jp2), 
choosing i and j so that i = p - 1 (mod 5), 7 = v - (p-1) (mod s)9 and 0 < i, j < p . Since p = 1 
and p 2 = 1 (mod 5), by Corollary 6, we have 

/u" = (m + r) mod s = (1 +ip) mod .s = (1 + /) mod s = p , 

«" = ( p - l + jp2)modss, = ( p - l + j)mod5= v, 

and, by Lucas's theorem, 

B(m\n<) = 5(0, j)B(i, 0)5(1,p-1) 3 p (modp). 

(Modification of this construction can yield infinitely many occurrences of each possible tile.). D 

6, GENERALIZATION OF LUCAS'S THEOREM 

Using Theorem 1, one may express Hm,,fn„ (7% /%) in terms of C(m9ri) for small values of 
(m9n). The tricky part is to work around the cases when B(m\nf) = 0 (mod p). Here is one 
approach. 

Given (m9 ri), let p = rn* and v = n* + At, where X will be chosen later. By Theorem 1, 

C(M, V) - B(M>, vyH^Ob, "0) (modp). (6) 
Now, 
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JUQ = nf mod r = (mmod t) mod r = m mod r = m0, 

u" = li mod s = /w" mod s = mf\ 
(7) vQ = (rf + Ai)modr = jfmodr = nQ9 

V = (n* + M) + r = (nmodt) + r + As = n" + As9 and 
'v" = ((«* + 2f)modt) + r = n* (modt) + r = n*+r = n". 

Thus, equation (6) becomes C(/w*, «* + At) = 5(w", w" + As)Hm,%n„ (#%, /%) (mod /?). Now, if 2 Is 
chosen so that p\B(m'\ nff + As), then 

F ^ i % / % ) = ̂ ^ {modp). (8) 

Theorem 3: Assume /?|i . Let 2 = max{0, mff + n" -{p-T)}. Then 

C(m,«) s 5(m', rf)B(m"9 n" + As)-lC(pf9 n* + At) (mod p). 

Proof: By Corollary 6, 5|/?-l. If j < j p - l , then actually s < ( p - l ) / 2 , so mff+ nft <p-l9 

whence 2 = 0 and p\B(nf\n" + As). If s = p-l and m" + wf' </?, then again we have 2 = 0 and 
p\B(m"9 m*f + As). Assume that s = p-1 and m" + n">p. Now n" + As = «f' + 2(p-1) = Ap + 
(w" - 2) and 0 < n" - 2 < p - 1 . By Lucas's theorem, 5(iw", w" + 2s) = 5(0, A)B(m", rf' - A) (mod 
I?), and this is not congruent to 0 as long as m" + n" - A < p - 1 . Therefore, A = m" + n"-(p-1) 
is actually the minimum value that works. Now, in every case, equation (8) and Theorem 1 imply 
the desired conclusion. • 

Thus, except when s = p-l and mff + nff>p9 the residue C{m9n) mod p Is given by this 
simple, symmetric expression: 

C(m9 n) = B{nf9 n')B(m"9 n"ylC(m*9 rf) (mod p). 

Example 3: Consider the FIbonomial coefficient C(6,29) mod 3. It appears in the 7th row and 
30th column of Table 1. Since un = Fn and p = 3, then r = 4, t = 8, and s = 2. Let m = 6 and 
n = 29. Then raj, = 2, m' = 1, w* = 6, and nf' = 1, while ^ = 1, rf = 7, w* = 5, and «" = 1. Here 
m"+«"-( />- l ) = l + l - 2 = 0, so2 = 0. Now 

B{m\ nl) = 5(1,7) = 5(1,2x3 + 1) = 5(0,2)5(1,1) = 2 (mod 3), 
5(m", n" + As) = 5(1,1) = 2 and 2"1 = 2 (mod 3), 

and 
C{m\ rf + 20 = C(6,5) = 2 (mod 3) 

so 
Q>f, w) = 5(n/, #t')2?(m", n")"lC(nf9 n*) = 2-2-2 = 2 (mod 3). 

Theorem 3 may also be used to go back and extend Lemma 4 to a Ml r-step recurrence 
formula. The result is stated in the following tidy formula. 

Corollary: If p\ b, then for m, n > r, 

C(m, w) s u™+lC(m9 n~r) + u?+lC(m - r, w) (mod p). 
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In terms of the rxrmatrices GitJ :=[C(ir+h,jr + k)], where 0</?, k <r, and i,j>0, and 
the diagonal matrix D = diag{u^+h ul

r+h..., ur
r~l), the conclusion of the corollary may be rewritten 

as 
G,y s ^ D G , ^ + u?+lGi_ljB (mod/?). 

For binomial coefficients, ur+1 = /? + ! = ! (modp) and O = fl, so Gz j = G7 ̂  + G M j (mod /?), the 
pxp generalization of the Pascal triangle rule noted by Long [9]. For Fibonomial coefficients 
modulo 2, ur+l = F4 = l (mod 2) and again 0 = 0, so GitJ = G,-^ + 6 ^ ^ (mod 2), as noted by 
Wells [15]. For Fibonomial coefficients modulo 3, which were considered in Example 2, ur+l = 
F5 = 2 (mod 3) and 0= diag{l,2,l,2}, so that G ^ s D G ^ + G ^ B . (mod 3), which the 
reader may see illustrated in Table 2. [Note first that DH U = HiJ±l and H,-JD> = H / ± u (mod 3).] 

7. WELLS'S THEOREM 

By means of a bit of translation, Theorem 3 may be transformed into Wells's theorem. Let 
N = m+n and, correspondingly, N0 = N mod r, N' = N + r, and N" = N9 mod 5. Then, 

and 

Let JV' = lLj>\NjPj l and #i' = Zy>! ft*,/?-7 ! be the base-/? representations of N' and #?'. By the 
original Lucas theorem, 

(mod/?). ( « 

The result of Wells [14] is as follows. 

Theorem 4 (Wells): If p\b, then, for N" > m", 

and, for N"<m", 

where N0 = N mod r, JV' = N+r, and iV" = JV' mod s. 

Proof: Let n = N-m. First, assume that #% + /^ >r . Then [^] = C(m, n) = 0 (mod/?), by 
Lemma3. Also, N0 = mQ+nQ-r, so, for Kr = N"r, t + N"r, or (N" + l)t + N"r, we have 

C(/w"r +/% (^~ 1 ~w)r+*%) s 0 (mod/?), 
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again by Lemma 3, and so all congruences in the theorem's conclusion reduce to 0 = 0 when 
WQ +/% > r. Next, assume WQ +J% < r. Theorem 3 and the theorem of Lucas imply that 

-1 'N, \N~\ = (mT +ri> + ti)ri\NJ 
[m\-{ mr ) n[mj 

m* + n* + lt 
m* 

(mod/?), 

where 1 - max{0, m" +ntf -{p-1)}. Refer to the mixed-radix addition 
m = m'"t+m"r+mQ 

+ n = n'"t + n"r + «b 
N = N"'t+Nffr + N0 

where 0 < # % % N0<r9 0<nf'9n"9 N"<s, and Q<nf"9n'"9 N"'<<x>. Since ^ ) H-^ ) <r , 
there is no carry out of the rightmost column. If N" > mf\ then m" +nff - N!f < s < p-1, so 
1 = 0 and m"+nn + ls = N" and m*+n"" + lt = mffr + mQ+nffr + nd = N,er + N09 so the first for-
mula is correct. Now assume N" < m". Then there is a carry out of the second column, so 
N" = mff+ntf-s. If s<p-l9 then nf'+n" <2s<p-l, so 1 = 0 and /w"+/i" + As = 5 + 7V" + 0 
and iif* + #i*+/ii = #f"r + #ii)+«"r+^ = (s+Nef)r + (m0+n0) = t + Nffr + N0, and the formula for 
this case follows. Finally, if s = p-l9 then l = m"+n"-(p-l) = N" and m" + n" + ls = 
s + N" + N"s = s + Nff(i + s) = p-l + Nffp9 whence 

and 

mff + mtf + ls\(p-l\(Nff\( s \ 
m?f )-{m" ){0 )-{rn") 

nf+n* + At = N"r + NQ + it + N"t9 

and the final case follows. D 
Example 4: Let us find the value of the Fibonomial coefficient [36

5] modulo 3. This is equivalent 
to Example 3. Here p = 3, r = 4, f = 8, and s = 2. Corresponding to m = 69 we have n% = 2, 
nf = 1, and mT = 1. Similarly, for N = 35, we have NQ = 39 Nf = 8, and JV" = 0. Also, ml = 1, 
m2=09 Nt = 29 and # 2 = 2. Here JV" < m" and 5 = p-1, so 

-1 

m, m"r+mQ 

-rat "(0 + 1)8 + 0-4 + 3" 
1-4 + 2 

= 2-2-l-2 = 2 (mod3). 

This result is consistent, of course, with the calculation based on Theorem 3. 
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1. INTRODUCTION 

In this paper we study two classes of polynomials: the generalized Jacobsthal polynomials 
{Jn,m(x)} and the generalized Jacobsthal-Lucas polynomials {jn,m(x)} defined, respectively, by 

with J"0,m(x) -"0> Jn,m(x) = ^ n = \2,...,m-1, and 

Jn,m(X) = Jn-lAX) + 2xJn-m,m(Xl W ^ ? C1-2) 

with J0J m(x) = % JWJ m(x) = 1, w = 1,2,..., m - 1 . In this paper we call these polynomials the gener-
alized Jacobsthal polynomials. 

The polynomials Jnf2(x) and Jw,2(x) a r e studied in [4]. 
For m = 2 and x = 1, we get the Jacobsthal numbers {Jnf2Q)} and Jacobsthal-Lucas numbers 

Un,20)1? which are studied in [3]. 
Here we shall prove the list of characteristic properties of the polynomials {J„tm(x)} and 

{Jn,m(x)}' Also, we are going to introduce two classes of polynomials: {F^m(x)} and {f„tm(x)}. 
For m = 2, these polynomials are studied in [4]. Namely, we are going to exhibit some basic 
properties of the polynomials {J„>m(x)}9 {j„im(x)}? {J^m(x)}, and {fn,m(x)}, to generalize the 
properties of the corresponding polynomials in [4]. 

2. POLYNOMIALS J^Jx) ANDj^x) 

Using (1.1) and (1.2), we find the first w + 3-members of the sequences {J„9m(x)} and 
Un,m(x)}5 which are given in Table 1. 

TABLE 1 

n 
0 
1 
2 

n i - 1 
m 

w + 1 
w + 2 
w-f-3 

U) -
0 
1 
1 

1 
1 

1 + 2* ». 
l+4x .» 
l + 6 x ••• 

J«,m(x) '" 
2 
1 
1 

1 
l+4x •" 
1 + 6* ••• 
l+8x - . 
1+lOx ... 
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Using the standard method, we find that the polynomials {JniJx)} have the following gen-
erating function, 

F(X, t)=(\-t- 2xtmy=£ Jn.m{*y*-\ (2. i) 

and the polynomials {Jn,m(x)} have the generating function 
+00 

G(x, t) = (\ + 4xt"'-'){\-t-2xt'»r = SA-W"-1. (2.2) 

From (2.1) and (2.2), we get the following explicit representations: 
[(if-i)/i«] 

•/„«= f ("- 1 l" , - 1 ) *) (^; (23) 

For TW = 2 in (2.3) and (2.4), we get the known polynomials {J„(x)} and OnC*)} ( s e e M), 
respectively. 

We can prove the following theorem. 

Theorem 2.1: The polynomials Jn>m(x) and j„,m(x) satisfy the following equalities, where the 
superscript (k) denotes the &* derivative with respect to x: 

k mix) = J„y m(x)+4xywl_m> m(x); (2.5) 

^l(x) = 4%m(x) + 2kJ(jtJ}m(x) + 2x4ilm(xl k>\, (2.6) 

&x) = Ji%(x) + 4k4^a(x)+4XJ^_m^(xy, (2.7) 

jmx) = ji%m(x)+2kj(i-j}m(x) + 2xj^m(x), k>\; (2.8) 

Z^(*wa.»W = (2/'-1(*+j+i)(*it5)) V r 1 ^ ) ; (2.9) 

g«*)./£U*)=2(f+I+ix"r) J-'r')(*); (210) 

g ^ ( ^ m W = 2 r + 1 ( f^1 ) m^->(x) ; (2.11) 

£ ^ ( » ) = J U ^ : g ) " 1 ; (2i2) 

l A ^ ^ ^ f " 1 (2-13) 

Proof: From Table 1, we can see that (2.5) is true. 
To prove the relations (2.6), (2.7), and (2.8), we will use (1.1), (2.5), and (1.2), respectively. 

Namely, differentiating (1.1), (2.5), and (1.2) k times with respect to x, we obtain equalities (2.6), 
(2.7), and (2.8), respectively. 
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From (2.1), we get 
dkF{x,t) _ 2kk\tmk ^° 

dxk (l-t-2xtmy m\k+l = H4%(x)t"-K 
n=\ 

Since 

we have 

From (2.2), we get 
dsG(x,t) = Ts\(2-t)r-1

 = « (s) ! 
dxs (l-t-2xtm)s+l ti ' ' 

Using (1), we obtain 
dkF(x,t) dsF{x,t) _ 2k+sk\s\tm{k+s) 

dxk ' dxs ~ (l-t-2xtm)k+s+2' 

OX OX w=2 J = 0 

2k+s+l(k + s+1)! k 15! j"**4**1) 
~ 2(k + 5 +1)! / ^ ( l - / - 2x/m)*+*+2 

= *L*L V /(*+*+i)CvVn-i 
2(*+*+i)!r-1£j w'm w " 

By the last equalities, we find 

i^(x)^.«w=(2/^*+*+i)(*r))!-/?»*t,)w. 
which is the desired equality (2.9). 

In a similar way, from 

dkF{x,t) d°G(x,t) __ 2k*'k\s\{2-ty**^ rbvrnand^l 
& fa* - (\-t-2xtm)k+M IDyUJana^j, 

we get (2.10): 
^ w \̂ / \ 2t~m — t^~m 

X4m(*)j^,m(x) = 2 ( ^ + 5 + 1 ) ( t r )* / »^ + I ) ( X ) -

Again, from (2), we get the equality (2.11). Using the recurrence relations 
we can prove equalities (2.12) and (2.13), respectively. 

Corollary 2.1: For m-\, m = 2, and m = 3, we obtain (see [4]): 
Jn,i(x) = Dn(x), j„,i(x) = d„(x), 
J»,2(X) = Jn(X)> Jn.2(x) = Jn(x), 

Jn, 3 (*) = R„(.x), jn> 3(x) = r„(x). 

Corollary 2.2: For 5 = 0 in (2.9) and for k = 0 in (2.10), we have 

± 4%(x)j„„um(x) = &"<-\k+i))-lJ^Hx), 
1=0 

and 
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m _ fl-m 

where Ji%(.x) = J„,m(x). 

3. POLYNOMIALS F„m(jc)AND/„,m(jc) 

First, we are going to introduce the polynomials {F„ m(x)} and {/„,„,(*)} by 

Fn,m(X) = Fn-l,m(X) + 2xFn-m,m(X) + 3> "»»> ( 3 1 ) 

with F0m(x) = 0, F„m(x) = 1, n = 1,2,..., m-1, and 

fn,m(x) = f„-lm(x) + 2xf„_mm(x) + 5, n>m, (3.2) 

with /0>m(X) = 0, f„m(x) = 1, » = 1,2,..., / » -1 . So, by (3.1), we find the first m + 2-members of 
the sequence {F„m(x)}: 

F0, m(X) = 0. Fl, m(x) = l , - , Fm_h m(x) = 1, 

Fm,m(X) = 4> Fm+l,m(X) = 7 + 2X> Fm+2,m(X) = 1 0 + 4 * ' 

By (3.2), we find: 

/o,»W = 0. fl,mix) = 1, ..., /„,_! m{X) = 1, 
/m,m(*) = 6, / m + l m ( x ) = l l + 2x , fm+2,m(x) = l6 + 4x. 

For m = 2, the polynomials {/^>m(x)} and {/„,„,(*)} are studied in [4]. 

Theorem 3.1: The polynomials F„ m(x) and /„,„,(*) have, respectively, the following explicit 
representations: 

^-i+ m,wW = ^-i+m,fflW + 3["fY"~^1 )''>l(2x)''; (3.3) 

/„-i+m,mW = ^-i+m>mW + 5 t " f 1 f " - ^ T 1 ) r > | ( 2 ^ . (3.4) 

Proof: From (1.1) and (3.1)? we see that (3.3) is true for n = 1. Suppose that (3.3) is true 
for w? i.e., 

^-i+m,mw=-/n-1+m(n,w+3lzfn~^1)r)(2xr. 
r=0 V J 

Then 
(x) + 2xF„tm(x) + 3 

[nlm] 

f [(n-m+l)/m] f - , n \ 

+2x j„)ffl(x)+3 x r + 1 _ 7 ; { w - 1 ) r W 
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= 4 ^ W + 3 2. I r+i JO) 

By induction on w, we conclude that (3.3) is true for all n. 
Similarly, we can prove that equality (3.4) is true for all n. 

The polynomials i^2( x ) m^ fn,i(x) a r e studied in [4]. 

Theorem 3.2: The polynomials {F„tm(x)} and {f„tm(x)} satisfy the following relations: 
m-2 

2xF„9m(x) = Jn+^m(x) + 2J^lm(x)-2x^J^i9m(x)-3; (3.5) 

m-2 

2 ^ » W = ^ w W + 4^+1, w(x)-2xX^,./,«W-5- (3.6) 
/=i 

Proof: From (1.1) and (1.2), we see that (3.5) is true for n = 0,1,.... Assume (3.5) is true 
for w = £, i.e., 

in—A 

2xF^ w(x) = 4+ w ? w (x) + 2 J^1? w(x) - 2x X •/*-/, «W ~ 3-
Then 

m-2 

! • 
1=1 

Fk+lAX) = FkAX) + 2xFM~m,m(X) + 3 [% (3-1)] 

_ Jjfc+m, m(X) + 2*4+1, m(X) ~ 2x^/=1 ^k-i,m(X) ~ 3 
2x 

2x 

_ Jk+l+m, m(X) + ^»4+2,m(X) " ^ X ^ /=0 *4+l-?, m(X) ~ 3 
2x 

By induction on «, we conclude that (3.5) is true for all n. In a similar way, we can prove that 
(3.6) is true for all n. 

From (3.5) and (3.6), we get 

f (x\-F M=Jn+hm^~l 

Jn,m\A'/ rn,m\xJ 

For m = 2 in the last equality, we obtain the known equality (6.11) in [4]. 
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1. INTRODUCTION 

Consider sequences of integers {Un}™=0 defined by U„ = aUn_x +bUn_2 for all integers n > 2, 
where U0 = 0, C/j = 1, a and b are given integers. We call these sequences generalized Fibonacci 
sequences with parameters a and b. In the case where a = b = 1, the sequence {Un}™=0 is called 
the Fibonacci sequence, and we denote its terms by F0,Fl9.... 

The polynomial f(x) = x2-ax-h with discriminant D = a2+4h is called the characteristic 
polynomial of the sequence {Un}^0. Suppose that / (x) = 0 has two distinct solutions crand/?. 
Then we can express U„ in the Binetform, 

This and its relative Vn = an+fin are known as Lucas functions as well and have a rich history. 
Please see the pioneering work of the late D. Lehmer [2] for more detail. Let p be a prime 
number. lfx = g satisfies the congruence f(x) = x2-ax-b = 0 (modp), then by setting WQ = 1, 
Wt = g, and Wn = aWn_x + bWn_2, we have that Wn = g" (modp). We have given particular atten-
tion to those cases having the longest possible cycles, i.e., the number g being a primitive root 
modulo p; these are the most important cases in practical applications of the theory. We call g 
a generalized Fibonacci primitive root modulo p with parameters a and b if g is a root of 
x2 - ax - b = 0 (mod p) and g is a primitive root modulo p. In particular, in the case a - b = 1, we 
call g a Fibonacci primitive root. 

Fibonacci primitive roots modulo/? have an extensive literature (see, e.g., [1], [3], [4], [7], 
[8], and [9]). For generalized Fibonacci primitive roots modulo/?, R. A. Mollin [5] dealt with the 
case a-\ and B. M. Phong [6] dealt with the case b = ±1. Mollin's work was the first to intro-
duce the notion of a generalized Fibonacci primitive root based upon the pioneering work of the 
last D. Shanks [8]. In this paper we consider even more general cases, i.e., with arbitrary a and b. 
Our main theorem generalizes the results of Mollin and Phong. 

2. NOTATIONS AND PRELIMINARY RESULTS 

Let {Un}™=0 be the generalized Fibonacci sequence with parameters a and b. In this section 
we always suppose that b is relatively prime to m and suppose that x2 -ax-b = 0 (mod rri) has 
two distinct solutions modulo m. 

For convenience, we introduce some notations: 
(1) Let a be an integer relatively prime to m. Denote ordm(a) the least positive integer x 

such that ax = 1 (mod m). 
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(2) k(m) is called the period of the sequence (C/X=0 modulo m if it is the smallest positive 
integer for which Uk{m) = 0 (mod m) and Uk(m)+l = 1 (mod m). 

(3) [x, y] is the least common multiple of x and y. 
(4) For an odd prime/?, (flip) denotes the Legendre symbol; i.e., {pip) - 1 if and only if 

y2 = P (mod/?) is solvable. 

We now state some elementary results that will be useful later. 

Suppose that a and/? are distinct solutions to x2-ax-b = 0 (mod m). Let / = [ordw(a), 
ord^O?)]. Since a/3 = -b (mod m\ we have that 1 = {a/5)1 = {-b)1 (mod m). This implies that 

ordm(-A)|[ordm(a),ordmOff)]. 

By a similar argument, we have that 

ordm{a)\[oiAm{-b\ovAm{P)} 

and 
ordmOff)|[ordw(a),ordm(-A)]. 

In particular, if ordw(-A) |ordm(a), then ordm(/?) | ordm(a) and vice versa. We have the follow-
ing lemma. 

Lemma 2.1: Let a and /? be the two distinct solutions to x2 -ax-b = 0 (mod m). Suppose that 
ordm(-6) | ordm(a). Then we have ordm(/?) | ordm(a). Furthermore, ordm(/?) = ordm{a) if and 
onlyifordw(-d)|ordm(/?). 

Lemma 2.2: Let a and /? be the two distinct solutions to x2 -ax-b s 0 (mod m) and let k{m) 
be the period of the generalized Fibonacci sequence with parameters a and b modulo m. Then 

k{m) = [ordm{a\ordm{P)l 

Proof: Since a and /? are the two distinct solutions to x2 - ax - b = 0 (mod m), 

an = aan"1 +ban~2 (mod m) and pn = a/?""1+bpn~2 (mod m). 

Consider the sequence {An}<^=0, where An-baUn„2-Jta2Un_l. Since {4Jn=o and {aw}^0 both 
satisfy the same recurrence relation modulo m and A2 = a2, A3 = a3 (mod m). Therefore, we 
have that An = an (mod m) for all n > 2. Thus, a" = baUn_2 + a2Un_x (mod m) and, similarly, we 
have ftn = b(5Un_2 +/?2£4-i ( m o d m)- T h i s t e l l s u s t h a t i f ^(m) i s t h e Peri°d of the generalized 
Fibonacci sequence modulo m then 

ak^2 ^ baUk(m) + a2C/,(w)+1 (mod m). 

Hence, ordw(a) | k{m) and ordm{fi) | *(/w). On the other hand, consider the Binet form 
an-Bn 

Un^—Tf (modw). 

Let / = [ordm(a),otdm{P)\ a1 ~pl = 0 (mod m) and aM -f$M = a-(i (mod m). This implies 
that t/, s 0 (mod m) and t//+1 s 1 (mod m). Thus, #(wi) | [ordw(a), otdjji)}. D 
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3. GENERALIZED FIBONACCI PRIMITIVE ROOTS MODULO p 

The conditions for the existence of Fibonacci primitive roots modulo p and their properties 
were studied by several authors. In this section we will generalize their results to generalized 
Fibonacci primitive roots. Again {Un}™=0 is the generalized Fibonacci sequence with parameters a 
and b. For completeness, we begin with special cases. Since the argument is quite straight-
forward, we omit the proofs. 

Proposition 3J: Let/? be an odd prime and let {Un}™=0 be the generalized Fibonacci sequence 
with parameters a and b. 
(1) Suppose that p\b but p\a. Then there exists a generalized Fibonacci primitive root for 
{UJ™=0 modulo p if and only if z = p is the least integer greater than 1 such that Uz = l (mod/?). 
Moreover, in this case, a is the unique generalized Fibonacci primitive root for {Un}™=0 modulo/?. 
(2) Suppose that p\a2 +4b. Then there exists a generalized Fibonacci primitive root for {UJ™=0 

modulo p if and only if k(p) = p(p -1). Moreover, in this case, a = a!2 (mod p) is the unique 
generalized Fibonacci primitive root for {Un}™=0 modulo/?. 

For the remainder of this section we assume that p is an odd prime with {Dip) = 1, where 
D = a2+4bmdplh. 

In the Fibonacci case, {Fn}™=0 possesses a Fibonacci primitive root modulo/? if and only if the 
period of {FJ^Q modulo/? equals p-l (for results on Fibonacci primitive roots, we refer to [6]). 
This is not always true for generalized Fibonacci primitive roots. We have the following example. 

Example: Let a = 1, b = 2, and p = 7. {t/X=0
 s {°> \ \ 3> 5,4,0,1,...} (mod 7). The period of 

{Un}™=0 modulo pis p-l. x = 2 and 6 (mod 7) are distinct roots to x2 - x - 2 = 0 (mod 7) but 
neither 2 nor 6 is a primitive root modulo 7. Hence, there is no generalized Fibonacci primitive 
root modulo 7 for {Un}™=0 with parameters 1 and 2. 

However, by Lemma 2.2, there is no generalized Fibonacci primitive root modulo p if 
k(p)*p-l. 

Lemma 3.2: Let a and p be two distinct roots of x2 -ax-b = 0 (mod/?). Then there exists a 
generalized Fibonacci primitive root modulo/? for {f/n}^=0 with parameters a and b if and only if 
k{p) = p-l and either ordp{-b) |ordp(a) or ordp{-b) \ordp{P). 

Proof: Suppose that a is a primitive root modulo p. Then ordp{-h)\ordp{a) by Euler's 
theorem, and k{p) = p-l by Lemma 2.2. Conversely, suppose that ord/7(-A) |ord/7(a). Then 
ordp{P) | ordp(a) by Lemma 2.1, and hence k{p) = ordp(a) by Lemma 2.2. By the assumption, 
k{p) = p-l, and our proof is complete. D 

Theorem 3.3: Suppose that oxdp{-b) = q, where q is a prime power of 1. Then there exists a 
generalized Fibonacci root modulo p for {Un}™=0 with parameters a and b if and only if 
k{p) = p-l 

Proof: Let a and /? be two distinct roots of x2 - ax - b = 0 (mod /?). Since q = ordp{-b) \ 
[ordp{a\ ordp{P)] and q is a prime power, this implies ovdp{-b) \ ord^a) or ord^-6) | ordp{P). 
By Lemma 3.2, our claim follows. D 
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Example: Consider the Fibonacci sequence. Since 6 = 1, ord (-ft) = 2. We have that there 
exists a Fibonacci primitive root modulo p if and only if the period of the Fibonacci sequence 
modulo/? is p-l. 

Naturally, we ask if anything more can be said about the existence of generalized Fibonacci 
primitive roots modulo p with parameters a and 6, for ordp(-b) not a prime power. The follow-
ing example shows that nothing more can be said in this case. 

Example: 
(1) We have that a = 1, 6 = 2, and p = 7. ord7(™2) = 2-3, and there is no generalized Fibonacci 
primitive root modulo 7 with parameters 1 and 2. 
(2) Let a = - l , 6 = 2, and |? = 7.Then {Un)Zo = {0,1,6,3,2,4,0,1,...} (mod 7). The period of 
{Un}%4 modulo p is p - 1 , and x = 5 and 1 (mod 7) are distinct roots of x2 - x - 2 = 0 (mod 7). 
5 is a primitive root modulo 7. Hence, there is a general-ized Fibonacci primitive root modulo 7 
for {UJ™=0 with parameters -1 and 2. 

Suppose that ord p ( -6) -q . Let a and ft be two distinct roots of x2~ax-b = 0 (modp). 
Let ord^(a) = nx and let ord^^) = n2. Suppose that q\nv Then, by Lemma 2.1, we have that 
/ij | Wj. Moreover, since (a)*"1 = (aft)qri2 s (-b)qrh = 1 (mod p\ we have that itj | nx and n^qr^. 

Theorem 3.4: Suppose that ordp(-6) = q (hence q\p~l\ where q is a prime power. Suppose 
also that the period of the generalized Fibonacci sequence with parameters a and b modulo p is 
p-l. Then we have the following: 
(1) Suppose that q2 \ p -1. Then there exist two distinct general Fibonacci primitive roots mod-
ulo p with parameters a and b. 
(2) Suppose that q\{p-X)l2. Then there exists exactly one generalized Fibonacci primitive root 
modulo p with parameters a and b. 

Proof: 
(1) Let a and ft be two distinct roots of x2-ax-h = Q (mod p). By Theorem 3.3, the 

assumption implies that either a or ft is a primitive root modulo p\ let us say that a is a primitive 
root. By Lemma 2.1, q\ox&p{J$) if and only if ft is a primitive root modulo p. Suppose that 
qlordpift). By the assumption q2 \p-l9 it follows that p-l\qordp(fl). This contradicts the 
argument above which says that ordp(a) = p-l\qordp(JJ). Therefore, ft is also a primitive root 
modulo p. 

(2) ordp(~b)l(p-l)/2 is equivalent to (-b/p) = - 1 . Since afi = -b9 it is impossible that 
(a Ip) = -1 and (ft/p)=-l. Our claim follows. D 

Remark: Theorems 3.3 and 3.4 generalize Phong ([6], Theorem 1). In his case, b = 1, and hence 
ordp(~b) = 2. Therefore, suppose k(p) -p-l. / ? s l (mod 4) (i.e., 41p-1) implies the exist-
ence of two distinct generalized Fibonacci primitive roots modulo p, and p = -l (mod 4) (i.e., 
2 | ( p - l ) / 2 ) implies the existence of exactly one generalized Fibonacci primitive root modulo p. 

Suppose that q2fp-1. There may be two or only one generalized Fibonacci primitive root 
modulo p. Our next example illustrates these cases. 
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Example: 
(1) Considera = l,£ = 2,and/? = l l . ordp(-h) = 5 and 52f/?-l. {^X=o = {°>UA5,0,10,10, 
8,6,0,1,...} (mod 11). The period {t/„KJL0 modulo/? is p-l, and x = 2 and -1 (mod 11) are 
distinct roots of x2 - x - 2 = 0 (mod 11). 2 is a primitive root modulo 11 and -1 is not a primitive 
root modulo 11. Hence, there is a generalized Fibonacci primitive root modulo 11 for {Un}™=0 

with parameters 1 and 2. 
(2) Consider a = -l, b = 6, and p = ll. ordp{-b) = 5 and 52j/?-l. {£/X=o = {0,1,10,7,9,0, 
10,1,4,2,0,1,...} (mod 11). The period {t/„}*=o modulo pis p-l, and x = 2 and 8 (mod 7) are 
distinct roots of x2 + x - 6 = 0 (mod 11). Both 2 and 8 are primitive roots modulo 11. Hence, 
there are two generalized Fibonacci primitive roots modulo 11 for {C/w} =̂0

 wl^ parameters -1 
and 6. 

4. SOME INTERESTING EXAMPLES 

In [8], D. Shanks asked whether there exist infinitely many primes possessing Fibonacci 
primitive roots. For generalized Fibonacci primitive roots similar questions can be asked. In [4], 
Mays proved that if p = 60k-l and q = 30k-l are both prime, then there exists a Fibonacci 
primitive root modulo p. Phong ( see [6], Corollary 3) generalized Mays' result for a generalized 
Fibonacci sequence with parameters a and b = 1, which says that if a is an integer and both q and 
p = 2q +1 are primes with (DIp) = 1, where D = a2 + 4, then there exists exactly one generalized 
Fibonacci primitive root modulo/? with parameters a and b ~ 1. Mollin (see [5], Theorem 1), fol-
lowing Mays1 method, proved the following: Suppose that p>b>2 and {Dip) = 1, where 
D = 4b +1 and p = 2q + l is a prime with q an odd prime. Furthermore, suppose that b has order 
q modulo p. Then there exists a generalized Fibonacci primitive root modulo p with parameters 
a = 1 and b. Our next theorem generalizes Phong and Mollin's results. 

Theorem 4.1: Suppose that p = 2q + l is a prime with q an odd prime and suppose that 
{Dip) = 1, where D = a2 + 4b. Furthermore, suppose that 1+a-b # 0 (modp) and ord^ft) = 1 
or q. Then there exists exactly one generalized Fibonacci primitive root modulo p with parameters 
a and b. 

Proof: Suppose that ordp{-b) = q. Then bq = -1 (mod/?). This contradicts our assumption 
that ordp(6) = 1 or qr. Our assumption also says that ordp(-6) & 1, because otherwise ordp(6) = 2. 
Therefore, the possible order for -b modulo p is 2 or 2g. Let a and /? be two distinct roots of 
x2~ax~b = 0 (mod/?). Since ordp(-6)|[ordp(a),ord^)], this implies that either ord^(a) is 
even or ordp(flf) is even; say that ordp{a) is even. Now, since -1 is not a root of x2 -ax-b = 0 
(mod/?), by the assumption, it follows that ordp{a) = 2q = p-l, and by the same reasoning as in 
Theorem 3.4(2), there exists exactly one generalized Fibonacci primitive root modulo/?. 

Remark: Suppose that p = 2q + \ is a prime with q an odd prime and suppose that {Dip) = 1, 
where D = a2 + 4b. Furthermore, suppose that l+a-b^0 (mod/?) and 6 ^ - 1 (modp). Let a 
and fl be two roots of x2 -ax-b = 0 (mod/?). Then Theorem 4.1 says that among a, ($, and 
-a/3 there exists one primitive root modulo/?. Unfortunately, we do not know whether or not 
there exist infinitely many such/?. 
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In [10], Wall asked whether, for a Fibonacci sequence, k(p) = k(p2) is always impossible; up 
to now, this is still an open question. According to Williams [11], k(p)^k(p2) for every odd 
prime/? less than 109. Our next proposition states that, for a generalized Fibonacci sequence, it is 
possible that k(p) = k(p2). 

Proposition 4.2: For any odd prime/?, there exists a generalized Fibonacci sequence with par-
ameters a and b such that k(p) = k(p2). 

Proof: For any odd prime/?, choose a £ 0 (mod/?) and fi # 0 (mod/?) such that a # fi (mod 
p). By Hensel's lemma, there exist ae^a (mod p) and /?' = /? (mod/?) such that ordpi(a') = 
ordp(a) and ordp2(f)') = or A p(Jf). Choose a = a' + ftf and b = -ay?'. Consider the generalized 
Fibonacci sequence {Un}™=0 with parameters a and b. Then, by Lemma 2.2, 

k(p) = [ovdp(a% ordp(/?')] = [ordp2 (a% ord^ (/?')] = k(p2). D 

Example: For p = 5, consider a = 2 and fi=l. We have that ord25(7) = ord5(2) = 4 and 
ord23(l) = ord3(l) = l. Let a = 7 + l = 8 and i = - 7 . Then {f/J^0 = {0,1,3,2,0,1,...} (mod 5) 
and {OXo - (°> *> ^ 7,0,1,...} (mod 25). 
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This study started with an unusual advertisement which appeared (January 6, 1996) in The 
Globe and Mail, Canada's national newspaper. Vivikanand Kadamauth (of Toronto) presented 
the "first few cases" in a family of solutions to the "cubic version of the Pythagorean equation" 

a3+h3 + c3 = d3 (1) 
as 

43 + 53+33 = 63, 43 + 173+223 = 253, 
163+233+413=443, 163+473 + 1083 = l l l 3 , 

643 + 1073+4053 = 4083, 643 + 1553 + 6643 = 6673. 

Mr. Kadamauth then asked the reader to find the general pattern. Some of the patterns indicate 
that the general solution is 

( a , 6 , c , ^ = (22^2.22 w-3-2m + 3,23w-2-22m + 3.2w-3?23w-2.22w-f3-2/w) 

and 
(a,A,c,<> = (22^2.22 w + 3-2w + 3,23'w + 2-22/w + 3-2'w,23w + 2-22w + 3'2,w + 3)5 

where m varies over the positive integers. One may generalize this by replacing 2m with x, thus 
yielding the one-parameter polynomial families of solutions 

(a,b,c,d) = (x2,2x2-3x + 3,x3-2x2 + 3x-3,x3-2x2+3x) (2) 

and 

(a, h,c,d) = (x2,2x2 + 3x + 3, x3 + 2x2 + 3x, x3 + 2x2 + 3x + 3). (3) 

The second family (3) is equivalent to (2). This is seen by replacing x with —x in (2) and re-
arranging the terms, since a3 +b3 + c3 = d3 implies a3 + b3 + {-df = (~c)3. By letting x-vlu in 
(3) and multiplying by u3 gives the family of solutions listed by Jandasek (see [3], p. 559): 

(a, b9c,d) = (uv2,3u2v + 2uv2 + v3,3u3 + 3^2v + 2uv2,3u3 + 3u2v + 2uv2 + v3). (4) 

The cubic Diophantine equation (1) has been studied for over 400 years. In 1591, P. Bungus 
(see [3], p. 550) found the smallest positive solution mentioned above, namely 

43 + 53 + 33 = 63, (5) 

the same year that Vieta found a family of solutions. (Perelman writes on page 139 in [7]: "It is 
said that [equation (5)] highly intrigued Plato.") Almost 200 years later, Euler (see [3], p. 552) 
found that the general rational solution to equation (1) may be represented (see [6], p. 292) as 
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(a, b,c,d) = (a(-({-3t])(? + 3rf) +1), 
<r((£2 + 3^)2-(£+377)), 
C7((^+3? 7)(^+377

2)- l) , 

c r ^ + S / ^ - ^ - S / ? ) ) ) , 
where a9 ^, and TJ are rationals. The variable a is simply a scaling factor reflecting the homo-
geneity of equation (1). Ramanujan [2] also gave a general solution as 

(a9b9c9d) = {a + #y9ty + y9-Xa-Y9P + #Y) (7) 

whenever a2 + a/?+/?2 = 3 Ay2 (Raeianujanss result was slightly pre-dated by a very similar gen-
eral solution due to Schwering (see [3], p. 557).) 

Despite these results, however, there is no known formula characterizing the integral solu-
tions to equation (1). In this light, considering various families of solutions is of value. This 
paper categorizes and extends various families of solutions to equation (1). Many of the results 
may be found in Dickson [3] and Barbeau [1]. 

There are many other one-parameter families of solutions to equation (1) besides (2) and (3). 
Examples are: 

(a, b9c9d) = ((2x - l)(2x3 - 6x2 -1), (x + l)(5x3 - 9x2 + 3x -1), 
(8) 

3x(x + l)(x2 - x +1), 3x(2x - l)(x2 - x +1)); 
(a, b9 c9 d) = (x3 +1,2x3 - 1 , x(x3 - 2), x(x3 +1)); (9) 

(a, b9c9d) = (3x2,6x2 ± 3x +1,3x(3x2 ± 2x +1), c +1). (10) 

As before, one may let x be a rational number vlu and multiply through by an appropriate power 
of u to obtain a two-parameter family of Integral solutions. 

A strikingly dissimilar one-parameter family of solutions is due to Ramanujan. Letting 

l-f53x + 9x2 y „ 
l~82x~82x2 + x3~ Tr^ X ? 

2-26x-12x2 

l-82x-82x2-fx3 Zv, nZQ 

2 + 8x-10x2 ^ n 
l-82x-82x2-fx3

 n^ 
yields 

This result produces "near misses11 when considering Fermat's Last Theorem. Hirschhom [4] has 
observed that Ramanujanfs solutions are contained in 

(a, b9c,d) = (u2 + luv ~ 9v2
9 - w2 -f 9uv + v2,2w2 - 4uv + 12v2,2u2 + 10v2). (11) 

Some authors have given two-parameter families of solutions to equation (1) that could have 
been generated from a one-parameter solutions (as we have done earlier). Examples are: 

(a, b9c?d) = (3w2 + 5wv - 5v2,4w2 - 4uv + 6v2,5w2 - $uv - 3v2
? 6u2 - 4uv + 4v2); (12) 
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(a, h,cid) = (3s*2 + 16wv - 7v2, 6u2 - 4uv + 14v2, - 3u2 + 16wv + 7v2, 6*/2 + 4i#v + 14v2). (13) 

Two-parameter solutions of (1) which do not arise from one-parameter solutions are not so 
plentiful. Ramanujan (see [1], pp. 35, 48) discovered 

(a, b,c,d) = (u1 - 3(v +\)u4 + (3v2 + 6v + 2>, 2u6 - 3(2v + 1>3 + 3v2 + 3v +1, 
u6 - 3v2 - 3v - 1 , u1 - 3vu4 + (3v2 - l)i/). 

In comparing the different families of solutions previously mentioned, one notices that the 
coefficients in the solution represented by (12) are the same as the values in equation (5). This 
generalizes to 

Theorem 1: If 
a3+b3 + c3 = d3 (15) 

and 
c(e3-a2) = b(d2-b2\ (16) 

then 
(ax2 + ex - c)3 + (bx2 -hx+df + (ex2 -ex- a)3 - (dx2 -bx + b)3. 

This theorem may be proved directly by expansion. It shows that a one-parameter family of 
solutions may sometimes be constructed from one solution. The next theorem shows exactly 
where Theorem 1 applies. 

Theorem 2: The only solutions of equations (15)-(16) are: 
(a) (trivial) solutions of the form (a, b,e,d) = (a, h, -a,b); 
(b) (scaled) solutions of the one-parameter system represented by (9), namely 

(a,b,c9d) = (l + u*,u4 -2u92u* -l,uA +u). 

Proof: Substituting Euler's general solution (6) of (15) into (16) gives (after dividing by a3) 

0 = 36?/2(£ - ?])(f + 3?f-1)(£4 + 6 £ V + £2 + 9if + 3rf +1). 

If rj = 0 or ^ + 3if - 1 = 0, one falls into the first class of solutions. The only other possibility is 
if % = ij9 which yields 

(a,b,e,d) = (S?f + 1,16?74-4^ 16^ -1,16?]4 + 2rj). 

Setting u = 2t] shows that this case falls into the second class of solutions. D 
Note that the second class of solutions is the same as (9). This solution is due to Vieta. 

Combining Theorems 1 and 2 generates a new two-parameter family of solutions to (1), namely 

(a,b,e,d) = ((l + u3)x2+(2u3-l)(x-ll(u4-2u)x(x-l) + u4 + 
(2u3 - l)x(x -l)-u3 - 1 , (a4 + u)x2 - (u4 - 2u)(x -1)). 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http ://problems. math, umr. edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my~deja.com 
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(Submitted August 1998-Final Revision December 1998) 

1. INTRODUCTION 

The Fibonacci and Lucas numbers are defined for all integers n as 

lFr,+l = F
n+Fn-l> ^ 1 = ^ 2 = 1, 

[AH-I - Ai + A?-i> A = i> ̂ 2 = 3-

Their Binet forms are F„ = ~if- and Z,„ = a"+J3n, where a and /? are the roots of x2 - x -1 = 0. 
Inspired by the well-known sum 

t ^ = FnFn+l, (1.1) 

Clary and Hemenway [2] obtained factored closed-form expressions for all sums of the form 
2^=i Fmk> where m is an integer. For example, they discovered 

A ^3 fi^24+iAi-i4+2 if w is even, 
2^2* =1 j _2|72 . . . (1.2) 
*-l U LnFnULn-lFn+2 l f » « odd, 

and 
« 1 

Y,F4k = -ZF2nF2n+2(L4n+2 + 6 ) - O 3 ) 

Motivated by the results of Clary and Hemenway, we turned to fourth powers to see if similar 
factorizations could be obtained. In the case of nonalternating sums, we could find nothing to 
compare with the beautiful formulas of Clary and Hemenway. However, by experimenting with 
many numerical examples, we found the most interesting results when we considered alternating 
sums. We present these results in Section 3, and indicate our method of proof in Section 4. As 
noted in [2], once such identities are discovered, it is usually a comparatively routine matter to 
prove them. However, to assist us in the proofs, we have discovered a number of striking sums 
that involve the Lucas numbers, and we present these in Section 2. 

2. PRELIMINARY RESULTS 

We require the following results. 
Fn+k + Fn-k = FnLk> k ^en, (2.1) 

Fn+k+Fn_k = LnFk, £odd, (2.2) 
Fn+k-Fn_k=FnLk, kodd, (2.3) 
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un+k 'n-k -^n^k? 

A?+ifc ~ A?-£ = ^n^k? 

J _ 7 - J2 

L2m + 2 = LmJ 

L2m + (-i)m+12 = 5Fl 

k even, 
k even, 
k odd, 
A: odd, 
k even, 
m odd, 
m even, 

(2.4) 
(2.5) 
(2.6) 
(2.7) 
(2.8) 
(2.9) 

(2.10) 
(2.11) 

Identities (2. l)-(2.8) appear as (5)-(12) in Bergum and Hoggatt [1], while (2.9)-(2.11) can be 
proved with the aid of the Binet forms for Fn and Ln. 

Throughout this paper m * 0 is an integer. To assist in our proofs, we also make use of four 
sums which involve Lucas numbers with even subscripts. If m is odd, we have 

2 ^ ^2mk -
k=\ 

jrmnrm(n+\) 

Aw»A»(>i+l) 

and 

2^^-mk -
k=0 

(L I 

^^mn^m(n+\) 

n even, 

wodd, 

n even, 

n odd. 

(2.12) 

(2.13) 

On the right sides of (2.12) and (2.13), the even and odd cases are reversed. Equally surprising, 
we have found that for m even 

K-i)%m*= 
k=l 

e r r J7 
jrmnrm{n+\) 

and 

2H)t^,*=i 
k=0 

^mn^mjn+l) 

^mn^m(n+l) 

n even, 

fiodd, 

n even, 

(2.14) 

(2.15) 

Lm 
^ - , yiodd.-

The proofs of (2.12)-(2.15) are similar. We illustrate the method by proving (2.13). 

Proof'of'(2.13): Expressing L2mk in Binet form and summing the resulting geometric pro-
gressions, we obtain 
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2^^1mk ~ 
fy2mn+2m _ i n2mn+2m _ i 

a2m-\ + p2m-\ 
_ ±J2mn+2m J^2mn ^ JU2m 

— (2mn+m)+m ~ *\2mn+m)-m ~*~ ^m ri •« Q\-J 

Aw 

=
 L2mn+mLm + Lm [by (2.7)] 

An 

Since m is odd, (2.13) follows from (2.5) and (2.6). D 

3. THE MAIN RESULTS 

We now present our main results. If m is even, then 

\(-X\kF* - FmnF^n+l)[LmLmnLm(n+l) - 4L2m] 
k=\ ~>LmL2m 

£(-i)*C = 5^A(n+i)[ymA(n+i)+44J; weven; (32) 
k=\ LmL2m 

X(-1)*C = -5F™F™W[Lfm
r"LnKn+l) +4Llm], "odd. (3.3) 

W e mention that (3.2) and (3.3) can be combined in a single sum as 

k=\ LmL2m 

On the other hand, if m is odd, then 

V (-l)kF4 = ^mn^m{n+\){^m^mn^m{n-^\)+^\^) ^2m\ • - ^ 

k=i *LmL2m 

I ( - l ) % = ̂ ^ ^ L Lm(n+l) + 4L2m]^ w e v e ^ ( 3 5 ) 
k=i LmL2m 

Zi-ifil, = - 5 ^ 4 ^ V D ~4L2*\ „odd (36) 
k=0 Aw^2m 

As before, (3 ,5) and (3.6) can be expressed as a single sum, but w e choose to wri te them 
separately in order t o present the right sides in factored form. This is the reason for the appear-
ance o f the zero lower limit. 
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4. THE METHOD OF PROOF 

To illustrate the method, we prove (3.4). First, let n be even. In what follows, we note that 
since m is odd and a/3 = - 1 , then {ap)mk = (-1)*. Now 

J f c = l Z D k=l 

= ̂ Z(- 1 ) t (^-4( - l )^ 2 f f l t + 6) 
25 t=l 

1 x-= ^ E ( ( - l ) ^ 4 M * - 4 Z 2 ^ + 6 ( - l ) * ) 
25 <t=i 

1 " = ^? Z ((- 0* Umk ~ ̂ Limk), since " is even. 
ZD k=l 

With the use of (2.12) and (2.14), this becomes 

J_ 
25 

^2mn^2m(n+l) ^^mn^m(n+l) 

**, ^2m Aw 

5LmL2m 

Ifn is odd, then we have 

! ( - ! ) * / & = Z ( - l ) * ^ (since ^ = 0) 
k=l k=0 

1 V = ̂ S(H)*^*-4Zt a f c + 6(-l)*) 
25 Jk=0 

25 

With the aid of (2.13) and (2.15), this sum becomes 

1 
K Z ( H ) * 4 m * - 44m*)> since «is odd. 
•->k=0 

25 
*F2mnF2m(n+\) 2 0 / ^ n / ^ l ( n + 1 ) 

-"2m 

^W^W(W+1)LAIIAII»AII(W+1) + ^ 2 m J 

^Aw^2m 
and this completes the proof. D 

We remark that the proof of (3.1) is similar since the parities of n must be considered separ-
ately, but the proofs of the other results in Section 3 are more straightforward. 

S. CONCLUSION 

During the course of our investigation we discovered two further pairs of sums similar in 
character to (2.12)-(2.15) which we include here. If m is odd, then 
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and 

If m is even, then 

n (-1YF T 

k=\ rm 

n (-\\nJ F 

Z ( - i ) ^ ^ -c J r ("+1) • (5-2> F 

and 

t^mk = FmnI?"+\ (5-3) 

I^mfc = ̂ 4 ^ . (5-4) 
The Lucas counterpart of (1.1), which appears as I4 in [3], is 

n 
2^,1% = LnLn+l -2 = LnLn+l -LQL^ (5.5) 
k=\ 

The right side of (5.5) suggests the notation [LjLJ+lf^. 
We now make an observation about identity (3.4) and its Lucas counterpart. We have found 

that for m = 1 they can be expressed as 
n 

and 

K - l ) ^ 4 =-4^" F„_2FnF„+lF„+3, (5.6) 

K-Dfc4 = t$LL LL L 
2 Llj-2LljL'j+lL,J+i 

(5.7) 

They can be proved quite effectively using the method outlined on page 135 of [2]. We illustrate 
by proving (5.7). 

Let ln denote the sum on the left side of (5.7), and let rn = ^-y-Ln_2LnLn+lLn+3t. Then 

Tn ~ Tn-\ ~ ^ AI(AI-2Af+lAi+3 + Af-3 Ai-1 Ai+2/- \?• °) 

Now, by using the recurrence satisfied by the Lucas numbers, we express Z„_2, Zw+3, Ln_3, Ln_x, 
and Ln+2 in terms of 1^ and Z^+1, and substitute in (5.8) to obtain 

r _r - / _/ - (~lf r* 
fn fn-\-ln V-l ~ ^ "' 

Thus, ln-rn = -r0, and this proves (5.7). 
To conclude, we mention that for/? real the sequences {£/„} and {Vn} defined for all integers 

n by 
lUn = PU„_l + U„_2, tf0 = 0 , ^ = 1, 

generalize the Fibonacci and Lucas numbers, respectively. Identities (2.12)-(2.15), together with 
the results in Section 3, and (5.1)-(5.4) translate immediately to Un and Vn. The reason is that if 
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we replace Fn by Un, Ln by Vm and 5 by p2 + 4, then Un and Vn satisfy (2.1)-(2.11), upon which 
all our proofs are based. For example, if m is odd, (3.4) and (3.5) become, respectively, 

U }Umk = WTwK, ' (59) 

and 

£ {-ifV^ = &+WmU«ny[WJ'«n+l)+W2Jt n eyen (5 1Q) 
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COMPLETION OF NUMERICAL VALUES OF GENERALIZED 
MORGAN-VOYCE AND RELATED POLYNOMIALS 

A. F. Horadam 
The University of New England, Armidale, Australia 2351 
(Submitted August 1998-Final Revision February 1999) 

1. MOTIVATION 

Two recent publications [2], [3] examined some of the properties of the related polynomial 
sequences {i^r,M)(x)} and {Sj[,u)(x)} defined recursively by 

&"\x) = (x + 2)F£?\x)-I$:?(x) (»>2), (1.1) 
S^\x) = (x + 2)S^(x) + Stt\x) (»>2). (1.2) 

with identical initial conditions 
R0(x) = u, Rl(x) = x+r + u, (1.3) 
S0(x) = u, Sl(x) = x + r + u. (1.4) 

Papers [2] and [3] dealt only with the five values of the subscript pairs, and the notation, 
indicated immediately below: 

(1.5) 

where Bn(x), hn(x), Cn(x), and cn(x) in thei?-column are the Morgan-Voyce polynomials speci-
fied by the following tabulation (a, h being initial conditions for n = 0,1, respectively) 

%r'u)(x) 
xB„(x) 
K+i(x) 
C„(x) 

B„+l(x) 
cn+i(x) 

r 
0 
0 
0 
1 
2 

u 
0 
1 
2 
1 
1 

#•">(*) 
x%(x) 
CflW 
<€„(*) 

®„+i(x) 
b„+iO) 

%'u\x) 
Bn(x) 
Kix) 
C„(x) 
cn(x) 

a 
0 
1 
2 
-1 

b 
1 
1 

2 + x 
1 

(1.6) 

and 26„(x), b„(x), %j(x), and c„(x) in the ^-column are the corresponding polynomials (the 
quasi-Morgan-Voyce polynomials) relating to Sjjr,u\x). 

Let us now examine the consequence of considering the remaining 3 2 - 5 = 4 superscript pairs 
(r,ir) = a0),(2,0),( l ,2) ,(2,2). (1.7) 

Readers are encouraged to construct sets of polynomial expressions for i^rw)(x) and 
*S£r'w)(x) for the cases listed in (1.7). Particular usage is made of these polynomials when x = 1. 

(/) # - " > ( l ) s # ' " \ so £„(1) = £„ , • . , } ( 1 

(it) #•">(!) ^ #•">, so 2^(1) = %n,... J ' 
Conventions: Write 
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Observe that by (1.2), (1.5), and (1.8), 

% = 3%.l+%. (1.9) 

It is known from [1] that 

while (see [3]) 

Moreover (see [1]), 

2. REFERENCE DATA 

*>„(*) = 5„(x)-£„_,(*), (2.1) 

c„(x) = B„(x) + B„_1(x), (2.2) 

Q(*) = 2U(x)-*„_,(*), (2-3) 

b„(x) = 2&n(x)+SB„+1(x), (2.4) 

c„(x) = m„(x)-%-i(x), (2.5) 

%,(*)= 2&„+i(*) + ^,,-iM. <2 6) 

B„=F2n, (2.7) 
bn=Fin-x, (2-8) 
C„=L2„, (2.9) 
cn=L2„_x, (2.10) 

where J^ and Ln are the /1th Fibonacci and Lucas numbers, respectively. For basic information on 
Fn and Ln, one might consult [4]. 

Fibonacci and Lucas polynomials are defined recursively by 
F„(x) = xFn_l(x) + F„_2(x), F0(x) = 0, F,(x) = l; (2.11) 

4(x) = xL^x) + Z,n_2(x), L0(x) = 2, Lt(x) = x. (2.12) 

Particular Cases: x = l: F„(\) = F„, L„(l) = L„; (2.13) 
x = 2: F„(2) = P„,L„(2) = Q, (2.14) 

(the w* Pe// and Pell-Lucas numbers, respectively); 

x = 3: {FW(3)}S {0,1,3,10,33,109,...} = {»„}, (2.15) 

{4(3)}S {2,3,11,36,119,393,...} = {<«„}, (2.16) 

as one may readily verify. 
Keep in mind the recurrence (x = 3 in (2.11)) 

Fn(3) = 3F^(3) + Fn_2(3). (2.17) 

Knowledge of the facts from [1] 
hn = Bn-Bn_„ (2.18) 
cn = Bn+Bn_x, (2 1 9> 

and from [3] 
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bn = %+®n_h (2.20) 
c„ = 28„ -$U, (2.21) 

is applicable to the "crossing" correspondence vis-a-vis bn and cn, and cn and bw in relation to + 
and - in (2.18)-(2.21), which appears schematically in [3, (4.33)]. 

Two Useful Theorems: 
I. I$>u)(x) = p(r\x) + (u-l)hn(x) [2, Theorem 1], (2.22) 

in which 
P?\x) = bn+l(x), (2.23) 
f?>(x) = Bn¥l(x), (2.24) 

$2)(x) = cn+l(x). (2.25) 
From (2.23)-(2.25) were derived the results for I$-u)(x) in (1.5). 

H. S(„r-u\x) = (x+r + u)®„(x)+u°Jln-i(x) [3,(4.14)]. (2.26) 

3. NUMERICAL COMPLETION 

A critical elementary question to ask is: Considering the basic property Bn = i^°'0) = F2n, 
derived from (1.5), (1.8), and (2.7), what number plays the corresponding role in %n = iS^0,0)? 
^(0 ,0 ) 

Comparison of (1.9) and (2.17) quickly reveals that 

-Sf0) = ̂ (3)(=2&„) (3.1) 
since both relevant sequences have initial conditions 0, 1 at n = 0,1. Therefore, we would expect 
F„0) = 9BB could effect a role for Sj,r'u\x) analogous to Fto = «„ = ^ ° - 0 ) for F$-U\x). Then it 
remains for us to discover whether our expectations are fully realized. 

Values of B*,r'tt) in (1.5) and (1.8) are known (see [2]), so we need only to enquire into the 
corresponding situation appropriate to (1.7). 

Pairs of values of (r,u) in (1.7) with x = l now lead by (2.22), (2.24), (2.25), and (2.7)-
(2.10), to 

^ = P?-bn = Bn+l-bn = 2F2n, (3.2) 
B?-V=l*V-bn=cn+l-bn = 3F2n, (3.3) 
^ 2 ) = i*> +b„ = Bn+1 +b„ = 2F2n+l, (3.4) 
F£'V=lf)+bn = cnn + cn = Fln+v (3.5) 

Pairs of values of (r, u) in (1.5) with x = 1 disclose that by (2.26), (3.1), (2.17), and (1.5), 

S$>- »> = 22S„+ 28„_, = Fn+1(3)- F„(3) (= cn+1), (3.6) 
S<°>2> = 3S8„+22S„_1 = FB+1(3) + Fn_1(3) = 4(3) =<€„, (3.7) 

262 [JUNE-JULY 



COMPLETION OF NUMERICAL VALUES OF GENERALIZED MORGAN-VOYCE AND RELATED POLYNOMIALS 

S<U) - m „ + 28„_, = 28„+1 = Fn+1(3), (3.8) 
^ 1 )=42S„+28 n _ 1 = JF„+1(3)+Fn(3) = b„+1. (3.9) 

Turning next to (1.7), we determine by (2.26), (3.1), and (2.17) that 

S^ =2®„ = 2F„(3), (3.10) 
,Sf0> = 3 ^ n = 3Fn(3), (3.11) 

S^=2(2®„+%_1)=2(F„+10)-FnQ)), (3.12) 
S<2- 2> = 528„+228„_1 = 2F„+1(3) - F„(3). (3.13) 

Proofs of all the numerical properties stated above are quite straightforward, as the reader 
may readily verify. 

4. SUMMARY AND CONCLUSION 

Assembling together all the 2 x 32 = 18 exhibited superscript values of r, u in Rj,r-u) and S%-u) 

for convenience and visual comparison, we have the following attractive compact correlation 
pattern, which thus completes our objective. 

TABLE 1. R£<a) and S(„r'u) for r, u = 0,1,2 

r,u 
00~ 
01 
02 
11 
21 
10 
20 
12 
22 

&H) 

F2n(=B„) 
F2n+l 

^2n 

-^2n+2 

^2n+l 
2F2n 

3F2n 
2 ^ n + l 
F2n+i 

gjr.o 
FnO)(=mn) 
F„+1(3)-F„(3) 
LJP) 
F„+l0) 
FnH(3) + F„(3) 
2F„(3) 
3F„(3) 
2F„+l(3)-2Fn(3) 
2F„+1(3)-Fn(3) 

Thus, for example, 
ffi°> fflQ) 3 
^ 1 , 0 ) ^(i,o) 2 " 
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For an integer n > 2, let Tn be the unique set of positive integers such that: 
0) lern ; 
(2) if t > 1, then t e Tn iff exactly one of f -1 , t-n is in Tn. 

Condition (2) can be rephrased as 

The Triple Criterion: If t* 1, then | {* - w, f - 1 , f} n 2; | e {0,2}. 

If n = 2, then the set j£ is closely related to the Fibonacci sequence; specifically, t GT2 iff the 
7th term of the Fibonacci sequence is odd. 

We ask, for each w, which numbers are uniquely expressible as the sum of two distinct ele-
ments of Tn. In general, for any given w, one can determine exactly which numbers are uniquely 
expressible. If w = 2, it is easy to see that there are five such numbers: 3 = 1 + 2, 5 = 1 + 4, 
7 = 2 + 5, 8 = 1 + 7, and 10 = 2 + 8. If w = 3, then there are exactly eight uniquely expressible 
numbers: 3 = 1 + 2, 4 = 1 + 3, 5 = 2 + 3, 6 = 1 + 5, 7 = 2 + 5, 8 = 3 + 5, 9 = 1 + 8, and 16 = 1 + 15. If 
w = 4, then there are exactly five uniquely expressible numbers: 3 = 1 + 2, 4 = 1 + 3, 6 = 2 + 4, 
8 = 2 + 6, and 16 = 4 + 12. If w>3, then 1,2,3 e Tn, so that 3 and 4 are uniquely expressible. 

The principal theorem of this note answers this question for all other situations. Let U„ be 
the set of all integers which are uniquely expressible as the sum of two distinct elements of Tn. 
Thus, we have just observed that 

U2 = {3,5,7,8,10}, U3 = {3,4,5,6,7,8,9,16}, and U4 = {3,4,6,8,16}. 

The following principal theorem characterizes Un for n > 5. 

Theorem: Let n > 5. Then U„ = {3,4, n2 - n + 3, In1 - In + 4} if n = 2k +1 for some 1, and Un = 
{3,4} otherwise. 

The remainder of this paper consists of two sections. The first contains a discussion of the 
motivation for the principal theorem, and the second contains its proof. The second section can 
be read independently of the first. 

h MOTIVATION 
For an integer n > 2, let fl9 f2, f 3 , . . . be the sequence defined by the initial conditions 

and the recurrence relation 
Jn+j ~ Jj "^Jn+j-l 

for j>\. If, in particular, » = 2, then the Fibonacci sequence has just been defined, and, as 
another example, if n = 5, then we get the sequence 

1,1,1,1,1,2,3,4,5,6,8,11,15,20,26,34,45,60,80,106,.... 
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From this sequence, we define another sequence tht2>t3>--, which we will call the nth parity 
sequence: we set tt = j iff the Ith odd term in the sequence fhf2,f3,... is / / . For example, the 
5th parity sequence is 

1,2,3,4,5,7,9,12,13,17,22,23,24,.... 
Then £ = &,*,, * , , . . .} . 

The principal theorem extends the result of [4] but in a somewhat disguised form. What is 
essentially proved in [4] is this theorem weakened by requiring that n be an even number, thereby 
eliminating any exceptional cases. 

We next discuss some background for the result of [4] and, consequently, of the above 
theorem. For positive integers u < v, the J-additive sequence based on u, v is the sequence 
sn si> •%>•••> where sx=u, ^ = v, and sn+2 is the least a> sn+l for which there is a unique pair of 
integers ij such that 1 < i < j < n +1 and a = sf + Sj. For example, the 1-additive sequence based 
on 1,2 is the sequence 

1,2, 3,4, 6,8,11,13,16,18,26,28,..., 
which was introduced by Ulam [5]. This sequence is still not well understood, but it appears to 
have a quite erratic behavior. Other 1-additive sequences, such as the one based on 2,3 also 
exhibit a similar erratic behavior. In contrast to this, the 1-additive sequence based on 2, v, where 
v > 5 is an odd number, has a much more predictable behavior. 

Finch made the definition in [2] that the (increasing) sequence sh.% s3,... is regular if there 
are positive integers m9 p, and d such that whenever i >m, then si+p = st+d. (He refers to the 
least such/? as the period of the sequence and to the least such d as the fundamental difference.) 
He observed in [2] that a 1-additive sequence having only finitely many even terms is regular. He 
then went on to make the conjecture, based on extensive numerical evidence, that for relatively 
prime u< v, the 1-additive sequence based on w, v has only finitely many even terms iff one of the 
following holds: 

(i) i/ = 2 and v > 5 is odd; 
(ii) u - 4 and v > 5 is odd; 
(iii) u = 5 and v = 6; 
(iv) u > 6 is even; 
(v) M > 7 is odd and v is even. 

For each of the cases (i)-(v), he made a conjecture as to what the finite sets are. For example, in 
(i) the set of even terms is {2,2v + 2}, and in (ii) the set is {4,2v + 4,4v + 4} provided that 
v ^ 2 m - l for any m>3. The conjecture for (i) was proved correct in [4], and for (ii) it was 
proved correct in [1] in the case v = 1 (mod 4). For (iii) the set is 

{6,16,26,36,80,124,144,172,184,196,238,416,448}, 

and in this case the truth of the conjecture can be verified by direct computation. 
Now suppose that D = {dhd2,...,dk} is a finite set of integers, where dl<d2<°-<djc. Let 

us say for now that the sequence th t2> l3,... is the 1-incremental sequence based on D if tx = 1 
and tn+l is the least a>tn for which there is a unique pair of integers i9j such that 1 <i <n, 
l<j<k, and a = tt +dj. For example, the 1-incremental sequence based on {1,5} is 

1,2,3,4,5,7, 9,12,13,17,22,23,24,.... 
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Notice that this sequence is identical to the 5th parity sequence. In general, the 71th parity 
sequence is identical to the 1-incremental sequence based on {1, n}. 

The connection between 1-incremental sequences and the regularity of 1-additive sequences, 
elaborating on Finch's observation [2], will be discussed next. 

Consider the 1-additive sequence sx, $2, $3,... based on u, v, where u = 2dl is even and v is 
odd. Suppose that 2dh 2d2,..., 2dk are all the even terms that are no greater than 2(dk_l +dk) 
occurring in the 1-additive sequence, where dl<d2<-><dk. Let tl9 t2y t3,... be the 1-incremental 
sequence based on D = {dx, d2, ...,dk} and let T= {th t2> t3,...}. It is easy to check that 

{sh$2,s3,...} = {2t + v-2:te7r}^j{2dli2d2,...,2dk}. 

Now consider 1-additive sequences based on 2, v, where v > 5 is an odd integer. The result of [4] 
is thus seen to be equivalent to the principal theorem restricted to even n > 6. This leads naturally 
to the question that this theorem answers. 

Every w* parity sequence is regular. (In fact, it is obvious that every 1-incremental sequence 
is regular.) However, even a little more is true for these sequences (and for all 1-incremental 
sequences based on 2-element sets, as well). Let P(n) be the period of the rfi1 parity sequence 
h> h? h-> •••> an£^ ^et D(n) be the fundamental difference. Then, it follows from the Triple Criterion 
that, for each i > 1, ti+P^ = /,- +D(ri). Also D(n) is the least d>\ for which none of d, d-l, 
d-2, ..., d-n + 2 is in Tn. Tabulation of 2D(n) and P(n) for many even n > 6 can be found in 
[3]. 

2. THE PROOF 

We will need an analysis of the (2*+l)lh parity sequence. An analysis of the (2*)* parity 
sequence was given in [4]. As a comparison, we summarize that analysis here. 

Proposition 1 ([4]): Let k>\ and let n-2k. Let 1 </ <An2 and suppose that t = 2in + j , where 
0<i<2n mdl<j<2n. Then: 

(1) if 1 <n andj <n, then t eT2n iffin+j e Tn\ 
(2) if 1 <nmdj>n, then t e T2n iffin + j-n e Tn\ 
(3) if i>nmdj<n, then / e T2n iff(i-n)n+j e Tn andj <n; 
(4) if 1 > n andy > w, then / G T2n iff j = 2n. D 

The following notation from Section 1 will be used. Recall from Section 1 that, for each 
n > 2, there is d > 1 such that, for any t>l, t eTnifft+d sTn. We let D(ri) be the least such d. 
Clearly, D(n) is the least d> 1 such that rf + 1, <i + 2, rf + 3, ..., rf+w e 2 ,̂ and also it is the least 
d>l such that d, d-l, d~2, ..., d-(n-2) £Tn. 

Using Proposition 1, we can easily prove by induction that, if n - 2k, then the following hold: 
if \<i<n, then in G Tn; if l<j<n, then (n-T)j e Tn; if i<nmdn-i<j<n, then in + j <£ Tn. 
From this it follows that n2-1 is the least rf>l such that {rf,rf-l,rf~2,...,£/-w + 2}n2^ = 0. 
Thus, D{n) = 4k-l = n2-l. It can also be shown that P(w) = 3* - 1 . 

There is another way to characterize the elements of T2k. We introduce some notation. For 
nonnegative integers t and 1, we let bf(t) be the Ith digit in the binary expansion of t. For example, 
since 37 = 1 + 4 + 32, we get that £,(37) = 1 if i = 0,2,5 and 6,(37) = 0 for all other nonnegative 
integers 1. 
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Proposition 2: Suppose * > 1 and n = 2k, and let 1 < t < n2 = 22fc. Then t e Tn Iff whenever 
0 < r < k, then *r(0 * **+r (0 = ° • 

Proof: Let us first consider the special case of the proposition when bk_x(t) = 1, b2k_t(t) = 0, 
and 6r(r) = 0 for all r < A - l . Clearly, ftr(0A+r(0 = ° for al1 r < * - It is easily checked by 
induction on k that Proposition 1 implies that all such / are in Tn. 

We now turn to the proof of the proposition in general. The proof is by induction on k. For 
k = 1, it is easily checked. Let n = 2k; we will prove it for the case In - 2k+l. Let 1 < t < 4«2, 
and (as In Proposition 1) let t = 2in + j , where 0 < i < 2n and \<]<2n. The proof splits natur-
ally into the same four cases as does Proposition 1. Since each one Is routine, we will do just case 
(1), where i <n andj < n. Notice that these restrictions on / and 7 are equivalent to the condition 
that bk(t - 1) = b2k+l(t -1) = 0, and this condition splits Into two subcases. 

Subcase 1: bk(t) = b2k+l(t) = 0 and br(t) = 1 for some r < k. Since bk(t) = 0, we need only 
be concerned with 6r(0'*(*+i)+r(0 ^m r<^- For such r, br(t) = br(in + j) and b(k+l)+r(t) = 
bk+r(in+j), so the result easily follows from the Inductive hypothesis. 

Subcase 2: bk(t) = 1, b2k+l(t) = 0, and br(t) = 0 for all r < k. But this is just the special case 
that was noted at the beginning of the proof. D 

In ways analogous to those in Propositions 1 and 2, the sets T2k+l can be analyzed. This Is 
done In Propositions 3 and 4, respectively. 

Proposition 3: Let k > 0 and let n = 2k. Let 1 < t < (2n +1)2 and suppose that / = i{2n +1) + 7, 
where 0<i <2n and 1 < j < 2n +1. Then: 

(1) i£i<nmdj<n + l, then / e T2n+l Iff i(n + l) + j G Tn+l; 
(2) If i <n and 7 > « + l, then / G Z^+l iff i(w + l) + j - « G 7 +̂1 and / * « ; 
(J) I f i>wandj<« + 1, then t e ZJW+1 iff (/- w)(w +1) + 7 eTn+l; 
(4) if / > n andj > n +1, then / G Z ^ Iff i = 2w. 

Proof: The proof Is by induction on £. For A = 0, it Is easily checked. Consider some k > 0, 
and assume, as the inductive hypothesis, that the proposition holds for all smaller values of k. Let 
n = 2k, and let / = i(2w +1) + 7, where 0 < 1 < 2n and 1 < 7 < 2« +1. We proceed by Induction on 
t. The proof splits naturally Into four cases. Since each Is routine, we will show only case (1), 
where i<n and j <n + \. This case splits Into three subcases. 

Subcase 1: i = 0. Then t = j9 and it Is clear that 7 G T2n+l and 7 G 2^+!. 
Subcase 2: 1 > 0 audi > 1. Then, using the Triple Criterion and the Inductive hypothesis on 

f, we see that t G 2 ^ Iff 
i - i e r 2 H + l o i - ( 2 « + i ) ^ 2 w + 1 

iff 
/(2w + l) + 7 - l Gr2,+1o(i™l)(2w + l) + 7 e 

iff 
/(» + l ) + ; - l e r„+1 O ( / - ! ) ( « +1)+j € T„+l 

iff 
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Subcase 3: i > 0 and j = 1. Then, again using the Triple Criterion and the inductive hypothe-
sis on t, we see that t G T2n+l iff 

hn+l 
iff 

(i -1)(2« +1) + (2/i +1) e T2n+l o (/ -1)(2« +1) +1 «s T2n+i 

iff 

iff 
i(n + l) + leTn+v D 

Proposition 4: Suppose k>l and n = 2k, and let 2<t<n2 + \. Then / G ^ + 1 iff whenever 
0 < r < k, then br(t - 2 ) > ^ + r (* ~ 2 ) . 

Proof: The proof is by induction on &. For small values of k, say & = 1,2, it is easily checked. 
Let « = 2*; we will prove it for the case 2w = 2k+l. Let 2 < t < 4n2 +1, and (as in Proposition 3) 
let t = i(2n + l) + j , where 0<i<2n and l<y<2w + l. As r>2, it is obvious that 2<i+j. The 
proof splits naturally into the same four cases as does Proposition 3. Since each one is routine, 
we will show just case (1), where/ <n and j <n +1. Thus, 2<i + j <2n + l = 2*+1 + l. 

Subcase 1: i+y < 2*. Since / = i2k+l + (i + j), where 2 < / + y < 2*, it is clear that bk (t-2) = 
**+i(' - 2) = 0 and also that £r(r - 2) = br(in + (? + y) - 2) and ^+(r+1)(? - 2) = ^+r(wt + (/ + y) - 2) 
for r < k. Therefore, from the inductive hypothesis, 

r e r 2 n + 1 «* ( / i + l) + y ^ 
for r <& obr(t-2)>h(k+l)+r(t- 2) for r < &. 

Subcase 2: i +y = 2*. Then bQ(t-2) = bk(t-2) = &2A:+1(r -2 ) = 0, and br(t-2)= 1 if 1 <r <£. 
Also, \ + 1 ( r - 2 ) = 0 iff i is even. Therefore, we have that br(t~2)>b^k+V)+r(t-2) whenever 
0 < r < k iff i is even. On the other hand, 

t G T2n+l oi(n +1) + y e Tn+l <=> (/ + l)n e Tn+l obk(( i + l)«-2) = 0 o i is even. 
Subcase 3: i +y = 2* +1. Then bk(t - 2 ) = b2k+l(t-2) = 0 and br(t -2) = 1 if 0 < r < k. Thus, 

we have that br(t - 2) > b^k+l^+rQ - 2) whenever 0 < r < k. On the other hand, 

/2*+1+2* + l Er 2 w + 1 o( / + l)/i + l GT„+1, 

which is the case since br(Q + l)w -1) = 1 for all r < k. 
Subcase 4: 2* + 2 < i+y < 2*+1. As in Subcase 1, it is clear that ^( r -2 ) = 1 and also that 

Ar(r - 2) = br(in + (/ + y) - 2) and bk+(r+l)(t -2) = bk+rQn + (' + i ) -2 ) for r < k. Therefore, from 
the inductive hypothesis, 

/ G 4 l + 1 o i ( i t + l)+y e ^ 1 o i r ( / , ( » + l ) + ; - 2 ) ^ U ' ( « + l ) + ; - 2 ) 
for r < £ o &r(r - 2) > 6(it+1)+r(f - 2) for r < &. 

Subcase 5: i +y = 2*+1. (This subcase is similar to Subcase 2.) Then b0(t - 2) = ̂ ( / - 2) = 0 
and br(t - 2) = 1 if 1 < r < k. Also, bk+l(t - 2) = 0 iff i is even. Therefore, we have that br(t - 2) > 
&(£+i)+r(* - 2) whenever 0 < r < k iff i is even. On the other hand, 
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/ eT2n+l<=>i(n + l)+j eTn+l<z>(i + l)n eTn+l obk((i + l)n-2) = 0oi is even. 
Subcase 61 i+j = 2*+1 + L Therefore, we have i = n, j = n + l, and t = 22k+l+ 2k+l + l. 

Then br(t - 2) = 1 for all r < k. Thus, we have that br(t - 2) > *(*+1)+r(f - 2) whenever 0 < r < k. 
On the other hand, 

* eJi^onC&t+iMH+i) er2„+1o/i(«+i)+(.+i)rw+1o22^2w
+iErM+1, 

which is the case by the inductive hypothesis since hr(22k + 2k+l -1) = 1 for all r < k. • 

Proposition 5: Suppose that w >2 and s = in + j , where 0<i <n and 0<j<n. Then: 
(1) if / < w - l andy < w - i - l , then D{n)-s <£ Tn; 
(2) if * <wandy = / i - i"- l , then D(n)-s e 3 ;̂ 
fJ| if i < J I - 1 andy = #t- l , then D(n)-s sTn. 

Proof: The proof is by induction on 5. We provide the details. We let s = in + j , where 
0<i <n and either 0< j<n-i-1 or y = n-1. Suppose the proposition is true for all smaller 
values of s. Let a = D(n)-$, so a might be negative. We will determine whether or not a e Tn 

by seeing whether or not each of a + n and a + n-l is in ^ , and then use the Triple Criterion 
applied to {a,a + n-1, a + n). To do so, it is necessary to know that a + n*\. In each case, it 
will be clear that a+n -*• 1 since there will be A such that a<b<a+n and 6^3^. 

Case 1: i = 0, 0<y <#f-L Then a+n = n + D(ri)-j e Tn since w-y eTn, and a + « - l = 
n+D(n)~j-l e 3̂  since w - y - 1 e 3 .̂ Therefore, a £ 3 .̂ 

Case 2s i = 0, y = n - L Then a+/i = D(w) + l sTn since 1 e3^, and a + n-l = D(ri) £Tn by 
the inductive hypothesis. Therefore, a GTn. 

CaseSi 0 < I < # I - 1 , y = 0. Then a+n = D(n) = (i-l)n £Tn and a + n-1 = £>(/i)-((/'- l)n 
4-1) tf 3̂  by the inductive hypothesis. Therefore, a £ T„. 

Case 4; i = #i- l , y = 0* Then a+n = D(n)-(n-2)n &Tn and"a + w- l = D(w)-((w-2)w+l) 
G 3̂  by the inductive hypothesis. Therefore, a e T r 

Case 5: 0 < i < # i - l , 0<y < # t - i - L Then a+n = D(n)-((i-l)n + j) <£Tn and a + / i - l = 
D(w) - ((i - l)w + (y +1)) £ ̂  by the inductive hypothesis. Therefore, a <£ Tn. 

Case 6: 0 < i < # i - l , y = « - I - L Then a+n = D(n)-((i-l)n + j) £Tn and a + / t - l = 
Z)(w) - ((/ - l)w + (y + 1)) G Tn by the inductive hypothesis. Therefore, a eTn. 

Case 7: 0 < / < n - l , j = n-l. Then fl+/i = D(»)-((/-l)w + ( » - l ) ) e r w and a + « - l = 
£>{w)-in &Tn by the inductive hypothesis. Therefore, a.eTn. D 

Two special instances of Proposition 5 will be used later on. If i = 1, then (2) shows that 
D(n) - 2n + 2 G 3; and (3) shows that D(w) - 2n +1 G 7W . 

Corollary 6: Let w > 2. 
flj ThenD(n)>^i2-fi-fl. 
f2| Iffi = 2* + 1, then Z)(w) = w2-/f + l. 

Phw/> It follows from Proposition 5(2) (letting i =w- l , jf = 0) that D(n)-(n-l)n eTn, so 
that Z)(/i) > w2 - w +1. For n = 2* +1, it follows from Proposition 4 that, if n2 - n + 2 < I < n2 +1, 
then / G3^, so that D(w)<w2»w + 1. D 
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It can be shown that, if n = 2k +1, then P(n) = 3k +1. 
It follows that, if n = 2k +1, then fi2 -n + 2 = l+D(n) e Tn and In2 -2n + 3 = l + 2D(w) E 2 .̂ 

We can now deduce a part of the principal theorem. 

Corollary 7: Suppose k>\ and n - 2k +1. Let a, & E 2̂  be such that a < b. 
(1) If a + b = n2-n + 3, t henar 1 and b = n2-n + 2. 
(2) Ifa + b = 2n2-2n+4,thena = lmdh = 2n2-2n + 3. 
Proof: Let a,b GTn such that a < b. 
(1) Suppose a + b = n2-n + 3 but a> 1. Let c-a-2, d = b-2, and e = c+d = n2-n-l. 

Then ^ ( e ) = 1 and, for 0<* <2* = / i - l , *,(*) = 1 iff i<2*"1. Since A e ^ and * < / I 2 - / I + 1, it 
must be that b < n2 - 2 n +1, so that d < n2 - 2 n . Therefore, there is j < k such that bk+j(c) - 1 
and then, also, bj(d) = 1. Consider some suchj. Clearly, for each i < k, b^c) * bt(d). It is also 
clear that, if k<i <2k, then b^c) = bt(d). But then 1 = bk+J(c) -bk+j{d) = bj(d) *bj(c), contra-
dicting Proposition 4. 

(2) Suppose a + b = 2n2-2n + 4, but a>1. Then b>n2 -n + 3. Let c = h-(n2-n + 1), so 
that c > 2 , c E 2̂  by Corollary 6(2), and a + c = n2-n + 3. It follows from (1) that a = c, which 
is impossible because a + c is odd. D 

With the assistance of Proposition 3 or Proposition 4 we can, in general, determine a large 
initial segment of any rfi parity sequence. 

Proposition 8: Let k > 0, q > 1,, n = q2k +1, and m = 2k +1. Suppose 1 < t < n(m-1), and let 
t = in + j , where 0<i < m - l and \<j<n. Let j = r2k +s, where 0 < r <g and 1<S'<JW. Then 
f E 2̂  iff im + 5 E Tm. 

Proof: The proof is a straightforward induction on t. D 

Proof of the Theorem: Suppose that n > 5. As previously observed, 3,4 E £/„. It follows 
from Corollary 7 that, if w = 2* +1, then ra2 - /i + 3 and 2w2 - 2« + 4 are in U„. 

For the reverse inclusion, suppose that a,b GTn are such that a<b, a + h>5, and for no 
a\b* E 2̂  is it the case that a*a'<b'*b and a' + 6' = a + 6. 

We can assume that a + h>2n. (For, as is easy to check, if s < 2n, then the number of pairs 
a,b E Tn such that a<b and a + 6 = s is [yC?-!)] if s<ny is j(n-l) if s>n is odd, is f if 4$*>/i 
and n is even, and is y (/? - 2) if s > n is even and w is even.) Since {1,2,3,...,#} c Tn and since 
{a+A-l ,a+A-2,a+A-3 J . . . , a + A-«} n r w ^ 0 , it must be that \<a<n. Also, b<2D(n) + n, 
as other-wise setting a' = a + D(n) and b' = b-D(n) yields a contradiction. 

Now let fi = q2k +1, where q is odd. We consider two cases. 
a = fc Then {6-1 ,6-2 ,6-3 , . . . ,6 - / i + l}n2; = 0. Thus, h = l + pD(n) for some /?>!, 

and also /? < 2, as otherwise a' = 1 + Z)(w), 6' = 1 + (/? -!)/)(«) would yield a contradiction. By 
Corollary 7, we can suppose that q > 1. Then, from Proposition 8, we get that 2k +1 E 2̂  and, 
from Proposition 5, that D(T?) - 2 * +1 e 3£. It follows from Corollary 6 that D(w) - 2* +1 > 2* +1 
Thus, setting a' = 2* +1 and 6' = 6 - 2k +1 yields a contradiction. 

270 [JUNE-JULY 



A REMARK ON PARITY SEQUENCES 

t<a<n: Then {a+b-i:l<i<n and i*a}nT„ = <b. Thus, Proposition 5 implies that 
b = pD(n) - w +1 for some p > 0. Either a + ri eTn or a + n-1 e Tn.. Let a' be whichever one is 
in Tn, and let b'= b-(a'-a). Then, by Proposition 5, b' e Ĵ ? thereby arriving at a contradic-
tion. • 
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1. INTRODUCTION 

Fix a prime/?. We say that a set S forms a complete residue system modulop if, for all i such 
that 0 < i < p - 1 , there exists s GS such that s = J (mod /?). We say that a set S forms a reduced 
residue system modulo p if, for all / such that 1 < i < p -1, there exists s GS such that s = i (mod 
p). In [9], Shah showed that, ifp is a prime and p = 1,9 (mod 10), then the Fibonacci sequence 
does not form a complete residue system modulo p. For p > 7, Bruckner [2] proved this result 
for the remaining case. Thus, ifp is a prime and p > 7, then the Fibonacci sequence {Fn} has an 
incomplete system of residues modulo/?. Somer [11] generalized these results by considering all 
linear recurrence sequences with parameters (a, 1), i.e., linear recurrences of the form 

Un=aUn-l+Un-2-

He proved that, if p > 7 and p # 1 or 9 (mod 20), then all recurrence sequences with parameters 
(a, 1), for which /? |a2+4, have an incomplete system of residues modulo/?. For the remaining 
primes, this result has been proved by Schinzel in [8]. 

In this paper we obtain a unified theory of the structure of recurrence sequences by examin-
ing the ratios of recurrence sequences. We can apply our method to prove that, if p > 7, then all 
recurrence sequences with parameters (a, 1), for which /? |a2+4, have an incomplete system of 
residues modulo /?. To explain our idea more clearly, we include our proof here. However, our 
idea is totally different from Schinzel's. Finally, we apply our method to determine for which 
primes /? a second-order recurrence sequence forms a reduced residue system modulo /?. Our 
main result is that, if p > 17 and a2 + 4 is not a quadratic residue modulo /?, then all the recur-
rence sequences with parameters (a, 1) do not form a reduced residue system modulo/?. 

2. PRELIMINARIES AND CONVENTIONAL NOTATIONS 

Given a, b e Z, we consider all the second-order linear recurrence sequences {un} in Z satis-
fying un - aun_1-^bun_2. However, in this paper we exclude the case un = 0 for all n e Z. We 
also exclude the case in which b = 0 (mod /?) since, in this case, {un} is not purely periodic 
modulo/?. We call the sequence {un} a second-order recurrence sequence with parameters (a, b). 
In particu-lar, the sequence with uQ = 0 and ux -1 is called the generalized Fibonacci sequence 
and we denote it by {/„}. The sequence with uQ = 2 and ux = a is called the generalized Lucas 
sequence and we denote it by {/„}. 

Definition: Let {un} be a second-order linear recurrence sequence. Consider rn - (un, un+l) as an 
element in the projective space P!(Z//?Z). We call rn the /i* ratio of {un} modulo/? and we call 
the sequence {rj the ratio sequence of {un} modulo/?. 
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We say that two sequences {un} and {ul
n} which both satisfy the same recurrence relation are 

equivalent modulo p if there is c # 0 (modp) and an integer s such that un+s = cu\ (modp) for all 
n. Let {rj and {/*„'} be the ratio sequences of {un} and {t^} modulo p, respectively. Then {uj 
and {u'n} are equivalent modulo p if and only if there exist integers s and / such that rs = /•/ in 
^ (Z /pZ) . 

Since {ww} is periodic modulo p, the ratio sequence {rn} of {ww} modulo p is also periodic. 
The least positive integer z such that rQ = rz in PX(Z /pZ) is called the rank of {un} modulo p. We 
remark that the rank of apparition of {fn} modulo p (i.e., the smallest positive integer z such that 
fz = 0 (modp)), by our definition, equals the rank of {/„} modulo p. 

For convenience, we introduce some notation: 
(1) (flip) denotes the Legendre symbol; i.e., for p\fl, (flip) = 1 if y2 = fl (modp) is solv-

able and {flip) = -1 if j 2 = /? (modp) is not solvable. 
(2) For an integer m # 0 (modp), we denote m~l to be the solution ofmx = l (modp). 
(3) We denote the least positive integer t such that d* s 1 (modp) by oidp(d). 

Given a sequence {un}, there exists an r e Z such that {un} modulo p is equivalent to the 
sequence {ufi modulo p with «J = 1 and u{ = r. Therefore, without loss of generality, we only 
consider the sequence with uQ = 1 and ux = r. 

The following lemmas are not new. However, for some of the lemmas, we include proofs 
because these ideas will be used for the proof of our main theorems. 

Lemma 2.1: Let {un} be the recurrence sequence with parameters (a, b) and u0 = l, ux-r. Then 
the rank of {uj modulo p equals the rank of {fj modulo pi£r2-ar-h£0 (mod p). 

Proof: Suppose the the rank of {uj modulo p is t and the rank of {/„} modulo p is z. Since 
% = Wn-1 +rfn> w e h a v e t h a t wz+i s rfz+i = mz ( m o d P) because fz = 0 (mod p) and bfz_x =fz+l 

(modp). This says that (uz,uz+l) = (%ut) in Pl(Z IpZ) and hence t\z. On the other hand, we 
have that bft +rfM = r(bft^+fft) (mod p) by the assumption that uM = rut (mod p). Substitut-
ing /r+i = aft+ ¥t-v w e h a v e t h a t (f2 ~ a r ~~b)ft ~ ° ( m o d P)- Therefore, p\r2-ar-b implies 
that ft=0 (modp). This says that z\t. D 

Lemma 12: Let p be an odd prime and let z be the rank of the generalized Fibonacci sequence 
with parameters (a, b) modulo p. Let D = a2 +4b. Then 

(i) z | p + l i f ( D / p ) = - l ? 

(ii) z = p if p\D9 

(Hi) z\p-l if {Dip) = 1. 

Proof: (i) Suppose that (D/p) = - 1 . Then x2 -ax-b = 0 (modp) has no solution. Thus, 
by Lemma 2.1, every recurrence sequence with parameters (a, b) has the same rank modulo p. 
Let t be the number of distinct equivalence classes of recurrence sequences of parameters (a, b) 
modulo p. Further, let {{f^„} 11 < i < 4 be a representative of these equivalence classes and let 
{{rf n} 11 < i < *} be their ratio sequences in P!(Z/pZ), respectively. By definition, we then have 
rUs±ruX in P!(Z/pZ) for all l<s*X<z and, if i*y , {r/fll} and {rJt„} are disjoint. Since, for 
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any r eP!(Z//?Z), (w03n1) = r gives a sequence {uj, we have {ru?...?r1?z}u—Aj{ru? ...,1fZ} = 
P1 (Z I pi). It follows that tz = p + l because the number of elements In P!(Z IpJ) Is p +1. 

(ii) For /? |D, x2 - ax -b = 0 (mod /?) has a double root. By Lemma 2.1, the number of 
ratios that give the same rank as the generalized Fibonacci sequence does is p + l-l = p. Our 
claim follows by a similar argument as in (i) above. 

(Hi) For {Dip) = 1, there exist two distinct solutions to x2 -ax-b = 0 (mod/?). Our claim 
follows by a similar argument as in (i) above. D 
Remark: From the proof above, we have that the number of distinct equivalence classes of recur-
rence sequences with parameters (a, b) modulo p is (p +1) / z (resp. 2 + (p -1) / z\ if (D Ip) = -1 
(resp. (D//?)=!). 

Lemma 2.3: Let z be the rank of the generalized Fibonacci sequence with parameters (a, 6) mod-
ulo p and let D - a2 +4b. Suppose that p is an odd prime such that p\D. Then {-b Ip) - 1 if 
and only if z | p"2 . 

Proof: For the proof, please see Lehmer [5]. • 

Lemma 2.4: Let {/„} be the generalized Fibonacci sequence with parameters (a, 6) and let z be 
the rank and k be the period of {/„} modulo /?, respectively. Let z = 2 V and ordp(-i) = 2^/r, 
where z' and h are odd integers. 
(i) Tfv*ju, then* = 21cm[z,ordp(-£)].' 

fii) If v = ju > 0, then k = lcm[z, ordp(-J)]. 

Proof: For the proof, please see Wyler [13]. • 
In the following, we concentrate on recurrence sequences with parameters (a, 1). 

Lemma 2.5: Let {un} and {u'n} be two recurrence sequences with parameters (a, 1). Then 

Proof: By the recurrence formula, we have that 

Lemma 2.6: Let z be the rank of apparition of the generalized Fibonacci sequence modulo/?. 
(i) fifz_i.l+fi+lfz.i^0(modPy 

r\ f = V**M ( m o d ^ ) i f ^sodd, 
W J**-*-}-fte+t (mod/?) if t is even. 

..... T , . ,u , J"/z/2+r (mod/?) if /is odd, 
fin) If z is even, then fz/2_t si ,1 V -r, • 

[fz/2+t ( m o d P) l f ^ 1S e v e n-
Proof: (i) Since lfz_2 +qfz_x = fz = 0 (mod /?) and fx = 1, / 2 = a by Lemma 2.5, we have 

that f2fz-3 + f-Jz-i = 0 (mod/?). By induction, our claim follows. 
(ii) Since fkz = 0 (mod /?), we have that f^f^-i + fte+\fxz = ° (mod /?). It follows from 

Lemma 2.5 that f^J^i +fte+zfte-i = ° (mod/?). We have that f^_2 = -/^+2 (mod/?) because 
fxz-i = /b+i (mod/?). By induction, our claim follows. 
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(Mi) Substitute i = z 12 in (I). We have fz/2fz,2-i + fzn+ifzn s ° (m»d PY Since fzl2 # 0 
(mod/?), it follows that /z/2_! == -/z /2+1 (mod/?). By induction, our claim follows. D 

Since /z+1 s /Z+L/; (mod /?) and fz = fz+lfQ (mod p), it follows that /w+z = fz+lfn (mod /?) for 
all n. Suppose that {uj is a recurrence sequence with parameters (a, 1). Then, as un = %/n_i + 
f/i/w, we also have i^+z = fz+lun (mod/?) for all w and, hence, un+Az = / ^ ^ (mod/?). 

Lemma 2.7: Let z be the rank of apparition of the generalized Fibonacci sequence modulo p. 
Then 
(i) 4-i4-/ + //4-/+i s 0 (mod/?), 

(Hi ={" / ^ + f ( m o d ^ ) if ' is odd, 
^r-r - h^+t (mod /?) if f is even. 

Proof: (i) Since z is the rank of {/J modulo p, by the argument above it follows that 
(4? 4+i) - 0o> A) ~ (2?«) in P!(Z//?Z). By the recurrence relation, we have that (/z-1, lz) = (-a, 2) 
in Pl(Z/pi). Therefore, we have that /04-i + 44 = ° (mo^ PY BY Lemma 2.5, it follows that 
44-2 +44- i = 0 (mod/?). By induction, our claim follows. 

(if) Since l^_x = -/fc+1 (mod/?), we have that ^xz-i + 4z+i4z = 0 (mod/?). By Lemma 2.5 it 
follows that /fe+idz-2 + 4b+24b-i s 0 (mod/?). Therefore, /^_2 = /^+2 (mod/?). By induction, our 
claim follows. D 

3* COMPLETE RESIDUE SYSTEMS OF SECOND-ORDER 
RECURRENCES MODULO p 

Somer [11] proved that, if/?>7, /?|a2 + 4, and /?#1 or 9 (mod 20), then all recurrence 
sequences with parameters (a, 1) have an incomplete system of residues modulo p. In Theorem 
3.3 we will improve Somer's results to all primes p>l by substantially extending the methods 
used in Somer's paper. As remarked earlier, Schinzel [8] proved this result by a different method. 

We remark that, if ut = 0 (mod/?) for some i, then the recurrence sequence {un} is equivalent 
to {/„} modulo/?. Therefore, we only have to consider the sequence that is equivalent to the gen-
eralized Fibonacci sequence modulo p. Hence, we reduce our problem to considering whether or 
not {fn} forms a complete residue system modulo/?. 

First, we consider the case where pi a2 + 4 and x2 -ax-1 = 0 (mod /?) is solvable. In this 
case, it follows by Lemmas 2.2, 2.3, and 2.4 that the period of {/„} divides p-\. Thus, the 
number of distinct residues of {fj modulo/? is less than/? and we conclude that {/„} does not 
form a complete residue system modulo p. 

Now we consider the case where x2 - ax -1 = 0 (mod /?) is not solvable. 

Lemma 3d: Suppose that x2 - ax -1 = 0 (mod /?) is not solvable. Let z be the rank of apparition 
of the generalized Fibonacci sequence modulo/?. Consider all recurrence sequences with param-
eters (a, 1) modulo p. Fix an integer e with \<e<z. Then, given an integer A, up to the 
equivalence relation, there exists a unique {%} and there exists a unique integer i depending on 
{nj with 1 < i < z such that ut+e = Xut (mod /?). 

Proof: Suppose (ui9 aj+1) = (1, r) in Pl(I/pI). Then we see by induction that (14, u^e) = 
(1, rfe + fe„t) in Pl(I I pi). Since f9 # 0 (mod /?), for 1 < e < z, there exists a unique r modulo p 

2000] 275 



COMPLETE AND REDUCED RESIDUE SYSTEMS OF SECOND-ORDER RECURRENCES MODULO/? 

such that rf9 + /e_i = ^ (mod/?). For the ratio (1, r) e Pl(Z/pZ), this gives a unique equivalence 
class of recurrence sequences modulo/?. Let {uj be a representative of such a class. Since there 
is no solution for x2 -ax-1 = 0 (mod p), the rank of {un} modulo p is equal to z. Therefore, 
there exists a unique i with 1 < / < z such that (14, ui+l) = (1, r) in P*(Z I pi). D 

Example: We are particularly interested in the case A = ±l (mod p). Consider the recurrence 
sequences satisfying u„ = 3un_l + un__2 modulo p = 7. We have the generalized Fibonacci sequence 

(/»}? - (°> \ 3> 3> 5> 4> 3> 6> °> 6> 4> 4> 2> 3,4,1,0,...} (mod 7). 
Since z = 8 = p 4-1, every recurrence sequence with parameters (3,1) is equivalent to {/„} modulo 
7. For e = 3, we have / 3 = / 3 + 3 and / 2 = ~/2+3 (m°d 7). For £ = 5? we have / 5 = /5+5 and 
A ^ - ^ - s (mod 7). 

Since Somer has treated the case p = 3 (mod 4) completely, in the following we only con-
sider the case / ? s l (mod4). 

For the case /? = 1 (mod 4), by Lemma 2.3, we have that z \ (p +1) /2; hence, by Lemma 2.4, 
k = 4z. Thus, k>p occurs only if z = (p + l)/2; hence, we have to consider only the case 
z = (p + l)/2. In this case, by the Remark following Lemma 2.2, there are exactly two distinct 
equivalence classes of recurrence sequences with parameters (a, 1) modulo p. One is equivalent 
to {fn} modulo p and the other is equivalent to {/„} because of the following. 

Lemma 3.2: Let /? = 1 (mod 4) be a prime such that x2 - ax -1 == 0 (mod p) is not solvable. 
(i) The generalized Lucas sequence with parameters (a, 1) is not equivalent to the generalized 

Fibonacci sequence with parameters (a, 1) modulo/?. 
(ii) Let z be the rank of {fj modulo/?. Then, for every t,A e Z, ltIz_t+x = {-l)xlt_xh-t (mod/?). 

Proof: (I) For {/„}, we have f*-fn^fn+l = (-If "I Suppose that {un} is equivalent to {/„} 
modulo p. Then there exist r and y such that un = r/w+y- (mod p) for all w. Thus, w2 - un__$in+l = 
( - f ^ - V 2 (mod/?); hence, it is a quadratic residue modulo/? for all n because -1 is a quadratic 
residue modulo p. On the other hand, /2 -/n_i4+i = (-l)w(a2 +4) which, by assumption, is not a 
quadratic residue modulo/?. Our first claim follows. 

fill Since {/„} is not equivalent to {fj modulo/?, it follows that /„ # 0 (mod/?) for all n. By 
Lemma 2.7(i), we have that ltl^\ = -lz_J~ls+l, /,_i£!2 - -4-/+i£i+2> ••• (m°d P)- Multiplying on 
both sides, our proof is complete. D 

From the proof above we know that, if z = (/? + !) / 2, then {un} is equivalent to {/„} modulo 
p if and only if f#2 - un_lun+l is a quadratic residue modulo/? for all n. 

By Lemma 2.6(ii), for each t with 1 < t < k = 2(/? + l), we have that ft = ±ft (mod /?) for 
some /, where 1 < J <z = (/?-*-1)/2. Thus, if we can find one pair (/,/), where 1</, j < z - l , 
such that ft s ±y^ (mod/?), then the number of distinct residues of {fj modulo/? is less than or 
equal to 2(z-2) + l = /?-2 since fQ = fz~Q (mod/?); hence, {fj does not form a complete resi-
due system modulo p. We only have to claim that there exists an odd integer e such that 1 < e < 
(/? +1) / 2 and f s ±fj+e (mod /?) for some i such that 1 < i < z -1. This claim is sufficient because 
in this case, if i+e>z, then by Lemma 2.6(ii), we have that f = ±f2z^i+e) (modp) and \<2z-
(i + e)< z. (Notice that 2z-(i + e)-i is also odd.) Now, for a fixed odd integer e9 consider the 
sequence {un} such that un = fn- fn+e. Since e is odd, it follows by the Binet formulas that 
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Since p = 1 (mod 4), it follows that there exists i with 1 < i < z-1 such that f = fi+e (mod p) if 
and only if {un} is equivalent to {/J modulo p if and only if le is a quadratic residue modulo p. 
Similarly, using the Binet formulas to show that, if u'n = fn +fn+e, then (u'J2 - u^u'^ =(-lf-lley 

we find that there exists j such that 1 < j < z -1 and such that fj = -fJ+e (mod p) if and only if le 

is a quadratic residue modulo p. We remark that lz is a quadratic residue modulo p since, for 
e^z,u0 = f0-fz = 0(modp). 

Theorem 3 J: Let {/„} be the generalized Fibonacci sequence with parameters (a, 1) and letp be 
a prime such that p = 1 (mod 4) and (D/p) = -l9 where D = a2 +4. Then, for p > 5, {/J does 
not form a complete residue system modulo/?. 

Proof: Assume that le is not a quadratic residue modulo p for all odd integers e such that 
1 < e < z. We shall get a contradiction. 

First, we consider the case p = 5 (mod 8). By substituting / = (z -1) / 2 in Lemma 2.6(1) and 
j = (z + l ) /2 in Lemma 2.7(i), we have that {z+iy2l(Z-iy2

 anc* f(Z+i)nf^-i)/2 a r e solutions to 
x2 = -1 (mod p); hence, neither is a quadratic residue modulo p. Note that /0 = 2 is not a 
quadratic residue modulo /?, either. By assumption, lx = a is not a quadratic residue modulo p. 
By Lemma 2.7(1), IXIQ1 = -lz^l~l (mod p); hence, lz_t is a quadratic residue modulo p. By the 
assumption (/z_2 //?) = - 1 , we have that (/21p) - 1 because /2/fl = -4-2^7-1 (mod/?). By induction, 
we have that (JJI p) = -1 for odd i, but (/,- //?) = 1 for even j , where 1 < i, j <z-l. This means 
that /fijl\ is not a quadratic residue modulo p for every t such that 2 < t < z -1. Note that every 
element of {/r/rl\ 12 < t < z -1} is in a distinct residue class modulo p and that there are z - 2 = 
(p-3)/2 of them. Because {/w} and {/w} are not equivalent modulo py {lfi\ \2<t< z-\) and 
{/r//-i 12 < / < z -1} are disjoint modulo p. It follows that among {ftftz\ 12 < / < z -1} there is 
only one which is not a quadratic residue modulo p. But we know that neither f^+^nf^-^n n o r 

f2ffl -a-lx is a quadratic residue modulo p. We get a contradiction because, by the assump-
tion, p>5, (z + l) /2 = 0 + 3) /4>2. 

For the case p = \ (mod 8), {z+l)i2^z-m a n d f(z+mf{z-\)i2 a r e r o o t s of x2 = -1 (mod p); 
hence, both are quadratic residues modulo p. Note that /0 = 2 is also a quadratic residue modulo 
p. By the same reasoning as above, we have that (lt Ip) = -1 for every integer i such that 1 < / < 
z - l ; hence, ltt^\ is a quadratic residue modulop for every / such that 2 < t <z-1. Therefore, 
among {ftftZ\ | 2 < t < z -1}, f(Z+iy2f(z'-i)/2 *s the only quadratic residue modulo p. However, 
since / 2 = a = lt is not a quadratic residue modulo p, it follows that f4 = f2l2 is a quadratic residue 
modulo p. Hence, one of f3f2

l or f4ffl is a quadratic residue modulo p. We get a contradic-
tion because, by the assumption, p > 17, (z -f 1) / 2 = (p + 3) / 4 > 4. D 

4 REDUCED RESIDUE SYSTEMS OF SECOND-ORDER 
RECURRENCES MODULO p 

From the previous section, we conclude that, if p>l and /? |a2+4, then every recurrence 
sequence {un} with parameters (a, 1) does not form a complete residue system modulo p. 
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It would be Interesting to know whether or not the recurrence sequence {un} forms a reduced 
residue system modulo/?. 

For the prime p such that p \a2 + 4, since z = p, there are exactly two distinct equivalence 
classes modulo/?. One is the equivalence class of {/J modulo/? and the other is the equivalence 
class of {vj which satisfies v0 = 1 and vx = a, where a is the double root of x2 - ax - 1 = 0 (mod 
p). We already know, by [3], [11], and [12], that {fn} forms a complete residue system modulo 
p. Moreover, {vj also forms a reduced residue system modulo/? if and only if a is a primitive 
root modulo/?, since vn = an (mod/?). 

Definition: Let a be a root of x2 - ax -1 = 0 (mod /?). We call a a generalized Fibonacci primi-
tive root with parameters (a, 1) modulo p if a is a primitive root modulo p. For the case a = 1, 
we call It a Fibonacci primitive root modulo p. 

Brison [1], using Hermite's criterion for a permutation polynomial over a finite field (see [6]), 
proved that, for p > 7, a recurrence sequence {u„} with parameters (1,1) has the property that 
{111,112,..., wp„i} is a reduced residue system modulo p if and only if {uj is equivalent to the 
sequence {vn} modulo py where v0 = 1 and vt is a Fibonacci primitive root modulo p. Brisonfs 
method can be applied directly to recurrence sequences with parameters (a, 1). Therefore, we 
have the following lemma. 

Lemmm 4.1: Let p > 7 be a prime. Thee a recurrence sequence {un} with parameters (a, 1) has 
the property that {tsh % ..., up^} is a reduced residue system modulo p if and only if UJU[X mod-
ulo/? is a generalized Fibonacci primitive root with parameters (a, 1) modulo/?. 

For a prime p > 7 such that a2 +4 Is a quadratic residue modulo/?, the period of every recur-
rence sequence with parameters (a, 1) modulo p divides p-l. Therefore, we rephrase Lemma 
4.1 as follows. 

Proposition 4.2: Let p > 7 be a prime such that a2 + 4 Is a quadratic residue modulo/?. Then a 
recurrence sequence {ztj with parameters (a, 1) forms a reduced residue system modulo/? If and 
only If u2Uil modulo/? Is a generalized Fibonacci primitive root with parameters (a, 1) modulo/?. 

Fibonacci primitive roots and related topics have an extensive literature. Here, we refer to 
Shanks [10] and Phong [7]. 

Lemma 4.1 does not answer our question for primes p such that a2 + 4 is not a quadratic 
residue modulo /?, because in this case the period of the recurrence sequence with parameters 
(a, 1) modulo/? may be greater than p-l. We have the following example. 

Example: Consider the Lucas sequence {LJ (I.e., LQ = 2, 2̂  = 1, and Ln = Ln_x + 4-2) modulo 
13 and 17. We have that 

{4)Lo ^(2,1,3,4,7,11,5,3} (mod 13), 
(4}'Ii4 * P1,12,10,9,6,2,8,10} (mod 13), 

and 
{4)lo s & !> 14> 7> 1 \ \ l2> 13>8) (mod 17), 

(4}'li8 = 05,16,14,13,10,6,16,5,4,9} (mod 17). 
Therefore, the Lucas sequence forms a reduced residue system modulo 13 and 17. 
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We now claim that, for a prime p > 17 such that a2 +4 is not a quadratic residue modulo p, 
every recurrence sequence with parameters (a, 1) does not form a reduced residue system modulo 
P> 

Let {uj be a recurrence sequence with parameters (a, 1). Since un = u0fn_l+ulfn9 we have 
that the period of {uj modulo p divides the period of {/„} modulo p. Therefore, as before, we 
only have to consider the cases where the rank of the generalized Fibonacci sequence modulo/? is 
(p + l)/2 or p + l. If the rank is p +1, then, since every sequence is equivalent to {/„} modulo p, 
it follows that none of the recurrence sequences with parameters (a, 1) forms a reduced residue 
system modulo p. For the case in which the rank is (p + l)/2, by Theorem 3.3, {/„} does not 
form a complete residue system modulo p. Therefore, we only have to consider the generalized 
Lucas sequence {/„} modulo p. By Lemma 2.7(ii), for every t with l<t<k = 2(p +1), we have 
that lt = ±lt for some i, where 0<i<z = (p + T)/2. Thus, if we can find three distinct pairs (/, j) 
such that 0 < i < j <(/? + !) / 2 and lt s± / . (mod/?), then the number of distinct residues of {/„} 
modulo p is less than or equal to 2(z +1 - 3) = p - 3; hence, {/„} does not form a reduced residue 
system modulo/?. 

For a fixed odd integer e9 consider the sequence {vn} such that vn = In-In+e. Since e is odd, 
we see by the Binet formulas that v2 - vw_jVw+1 = (-l)n~l(a2 + 4)4• Since z - (/? +1) /2 , by Lemma 
2.3, /? = 1 (mod 4). Because a 2 +4 is not a quadratic residue modulo/?, it follows that there 
exists 0<i <(/? + !) 12 such that \ = lj+e (mod/?) if and only if {vj is equivalent to {/„} modulo 
p if and only if le is not a quadratic residue modulo /?. Similarly, by using the Binet formulas to 
show that, if Vn - l„+ln+e, then (v£)2 - v ^ v ^ = (~l)n(a2 + 4)4, we have that there exists j such 
that 0 < j < z and such that lj = -IJ+e (mod/?) if and only if le is not a quadratic residue modulo p. 
If there exist three distinct odd integers e such that 0 < e < z and le is not a quadratic residue 
modulo /?, then, by the routine argument given in the last section, we can find three distinct pairs 
(i, j) such that 0<i <j<z and lt = ±Ij (mod/?). 

Suppose that there are at most two odd integers e such that 0 < e < z and le is not a quadratic 
residue modulo/?. Then, for/? large enough, we claim this leads to a contradiction. 

First, we consider the case p = 1 (mod 8). Recall that z = (/? +1) 12 and lz must be a quad-
ratic residue modulo /?. Since 4 = 2 in this case, we have (/0//?) = (4/ /?)=!; hence, (lt //?) = 
(4-i IP) % Lemma 2.7(i). Again, by Lemma 2.7(1) and by induction, it follows that (lt Ip) = 
(4-i lp) f°r a11 0 < i < (z +1) / 2. Note that i is odd if and only if z - i is even. By assumption, 
there are at most two odd integers e such that 0 < e < z and (le //?) = - ! ; hence, there are also at 
most two even integers e such that 0<e<z and (4lp) = - 1 . Therefore, among {lfl~\\\<i<z} 
modulo p, there are at most eight quadratic nonresidues modulo /?. Hence, there are at least 
(/? +1) 12 - 8 nonzero quadratic residues modulo p in {ltl~\ \ 1 < i < z). Since {ftf~\ 11 < i < z) and 
{j^"1! \\<i<z) modulo p form a reduced residue system modulo p, we get a contradiction if we 
find eight nonzero quadratic residues modulo p among {ftfj~\ |1 <i <z). Let 5 = (z +1) /2. By 
Lemma 2.6(i), we have that fsHf~+)^i - -/^/-i/^lj (mod/?). Therefore, for 5 large enough, if we 
can prove that there exist four integers i with l<i<s = (p + 3)/4 such that j ^ - l ! is a nonzero 
quadratic residue modulo/?, then our claim follows. Recall that f2n = lnfn. Suppose that e is odd 
and (4 lp) = 1. Then we have (fe lp) = (f2e lp) and, since e is odd, it follows that there exists i 
with e<i<2e such that (Jt lp) = (ft_x lp). Thus, fj~\ is a quadratic residue modulo/?. Hence, 
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our strategy is finding s large enough so that we can find four positive odd integers e(i) with 
2e(i) < e(i +1) for 1 < i < 3 and 2e(4) < s such that (4(l) Ip) = 1 for all 1 < i < 4. Since, by assump-
tion, we have at most two odd integers e such that (le /p) = - 1 , the worst case is that {lxl p) -
(l3/p) = - 1 . In this case, we can choose e(l) = 5, e(2) = 11, e(3) = 23, and e(4) = 47. Therefore, 
for s > 94 (i.e., p > 373), we get a contradiction. 

Next we consider the case p = 5 (mod 8). Since /0 = 2 in this case, we have that (/01p) -
-(41p) - - 1 ; hence, (lt Ip) = -(/z_i Ip) by Lemma 2.7(i). Again, by Lemma 2.7(i) and by induc-
tion, it follows that (/, I p) - -(/z_y Ip) for all 0 < / < (z +1) / 2. By assumption, there are at most 
two odd integers e such that 0 < e < z and (le Ip) = - 1 ; hence, there are at most two positive even 
integers e such that 0<e <z and (leIp) = 1. Thus, among {ltl~}i\l <i <z} modulop, there are at 
most eight quadratic residues modulo/?, so there are at least (/? + l ) / 2 - 8 quadratic nonresidues 
modulo/? in {^l\ |1 <i <z}. Therefore, by the same argument as above for s large enough, if we 
can prove that- there exist four integers i with 1 < / < s = (p + 3) / 4 such that ftf~\ is a quadratic 
nonresidue modulo p, then our claim follows. Suppose that e is even and (le Ip) = - 1 . Then we 
have (fe/p) =-(/2«//0> anc^ ft follows that there exists an integer i with e<i<2e such that 
(ifi IP) ~ ~(fi-i Ip)- Thus, fifil\ is a quadratic nonresidue modulo p. Hence, our strategy is 
finding s large enough so that we are able to discover four positive even integers e(i) with 2e(i) < 
e(I -f 1) for 1 < i < 3 and 2e(4) < s such that (4(/) Ip)~-~l for all 1 < i < 4. The worst case is that 
(4Ip) = (4 / /0 = !• I n t h i s c a s e

?
 w e c a n choose e(l) = 6, <2) = 12, e(3) = 24, and e(4) = 48. 

Therefore, for s > 96 (i.e., /? > 381), we get a contradiction. 
We remark that, by more detailed investigation, the argument can be narrowed down to the 

case ,y> 13 (i.e., p> 49). However, in order to avoid this complication, we omit the proof here. 
For the cases p = 29, p = 37, and p = 4l, by direct computation, we have that the generalized 
Lucas sequence with parameters (a, 1) does not form a reduced residue system modulo p. Thus, 
we have the following theorem. 

Theorem 43: Let/? be a prime such that a2 +4 is not a quadratic residue modulo/?. Then, for 
/?> 17, every recurrence sequence {un} with parameters (a, 1) does not form a reduced residue 
system modulo/?. 

In conclusion, we remark that in [11] Somer mentions that, for a more general recurrence 
sequence (i.e., a recurrence with parameters (a, b), where b * 1) our results are not always true. 
The following proposition tells us that, given any prime /?, there exists a generalized Fibonacci 
sequence that forms a complete residue system modulo /?. 

Proposition 4.4: Suppose that either /? = 2 or that/? is an odd prime, -b is a primitive root mod-
ulo/?, and a2 +4b is not a quadratic residue modulo/?. Then the generalized Fibonacci sequence 
if J w'1^ parameters (a, b) forms a complete residue system modulo /?. Furthermore, every 
recurrence sequence with parameters (a, b) which is not equivalent to {/„} forms a reduced resi-
due system modulo/?. 

Proof: The proposition is true by inspection for p = 2. Assume /? > 2. Let z and k be the 
rank and period of {fj modulo/?, respectively. Since a2 +4b is not a quadratic residue modulo 
/?, then z | p +1 by Lemma 2.2. Furthermore, since -b is not a quadratic residue modulo /?, then 
z\{p +1) / 2 by Lemma 2.3. Suppose that p = 1 (mod 4). Then z = 2 (mod 4) and, by Theorem 
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2.4, It follows that k = 2 gcd[z, p -1] = z(p -1). Suppose that p s 3 (mod 4). Then z = 0 (mod 
4) and, by Theorem 2.4, it follows that k = 2gcd[z,p-l] = z(p-Y). This shows that fz+l is a 
primitive root modulo/? in both cases. Since, for every recurrence sequence {uj with parameters 
(a, b)9 Ujz+i = /zii% (mod/?), our proof is complete. D 

Remark: Regarding the statement of Proposition 4.4, we note that, for any odd prime p, one can 
always find residues a and b modulo p such that -b is a primitive root modulo p and a2 +4b is a 
quadratic nonresidue modulo p. It was proved in [4] that, for a fixed residue b modulo p, one can 
always find a residue a such that a2 4-4$ is a quadratic nonresidue modulo/?. 
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1. INTRODUCTION 

Fibonacci numbers arise in the solution of many combinatorial problems. They count the 
number of binary sequences with no consecutive zeros, the number of sequences of l's and 2fs 
which sum to a given number, and the number of independent sets of a path graph. Similar inter-
pretations exist for Lucas numbers. Using these interpretations, it is possible to provide combina-
torial proofs that shed light on many interesting Fibonacci and Lucas identities (see [1], [3]). In 
this paper we extend the combinatorial approach to understand relationships among generalized 
Fibonacci numbers. 

Given GQ and Gl9 a generalized Fibonacci sequence G09Gl9G2,... is defined recursively by 
Gn = Gn_l + Gn_2 for î > 2. Two important special cases are the classical Fibonacci sequence Fn 

(FQ = 0 and FX = T) and the Lucas sequence Ln (LQ = 2 and Lx = 1). 
These sequences satisfy numerous relationships. Many are documented in Vajda [6], where, 

they are proved by algebraic means. Our goal is to recount these identities by combinatorial 
means. We introduce several combinatorial techniques which allow us to provide new proofs df 
nearly all the identities in [6] involving generalized Fibonacci numbers. We show that in the 
framework of'phased tilings, these identities follow naturally as the tilings are counted, repre-
sented, and transformed in clever ways. These techniques are developed in the next several 
sections. In the final section, we discuss possible extensions. 

2. COMBINATORIAL INTERPRETATION 

Recall that Fn+l counts the number of sequences of lfs and 2fs which sum to n. Equivaleetly, 
Fn+l counts the number of ways to tile a Ixn rectangle (called an n-board consisting of cells 
labeled 1,...,ri) with 1x1 squares and 1x2 dominoes. For combinatorial convenience, we define 
fn = Fn+l. Then f„ is the number of ways to tile an w-board with squares and dominoes. 

When G0 and Gx are nonnegative integers, we shall obtain an analogous combinatorial inter-
pretation of the generalized Fibonacci numbers Gn. Define a phased n-tiling to be a tiling of an 
#i-board by squares and dominoes in which the last tile is distinguished in a certain way. Specifi-
cally, if the last tile is a domino, it can be assigned one of G0 possible phases, and if the last tile is 
a square, it can be assigned one of Gx possible phases. For example, when G0 = 5 and Gx = 17, 
there are G3 = 39 phased tilings of length 3 as follows: There are 5 of the form (square, phased 
domino); 17 of the form (domino, phased square); and 17 of the form (square, square, phased 
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square). In general, let g0 = GQ, gx = Gx, and, for « > 2 , let gn count the number of phased 
ft-tilings. By conditioning on whether the first tile is a square or domino, we obtain the identity 
Sn = Sn-i +Sn-2 f o r n ^ 2 • Hence, gn = Gn, giving the desired interpretation. 

This combinatorial definition can be extended to n = 1 and n = 0. Clearly Gx counts the num-
ber of phased 1-tilings. It will be convenient to assign the "last" tile of a 0-board one of the G0 
domino phases. 

Notice when there exists only one domino phase and only one square phase, we recover our 
original interpretation of/,. 

Previous interpretations of the Lucas numbers Ln (see [1], [4], [5]) counted the number of 
ways to tile a "circular" n-board by squares or dominoes. Since L0 = 2 and Lx = l, a phased 
7?-board tiling can end with a phase one domino, a phase two domino, or a phase one square. In 
all three cases, the corresponding circular w-board tiling arises by first gluing cells n and 1 
together. Tilings that end in a phase two domino are then rotated one cell to obtain a circular 
tiling with a domino covering cells n and 1. 

3. ELEMENTARY IDENTITIES 

Before launching into more sophisticated techniques, we demonstrate how our combinatorial 
interpretation of Gn yields quick proofs of some basic identities. For instance, by conditioning on 
whether the last tile is a phased domino or a phased square, we immediately obtain, for w>2, 
Gn = Gofn-2+Glfn-V 

More identities are obtained by conditioning on other events. Consider 
n 

Identity 1 [Vajda (33)]: ^Gk= Gn+2 - Gx. 
k=0 

The right-hand side of this equality counts all phased (/i + 2)-tilings containing at least one dom-
ino (there are Gx phased tilings consisting of all squares). The left-hand side is obtained by 
conditioning on the position of the first domino. If the first domino covers cells n-k + l and 
n-fc + 2 (0<k<n)y then the preceding cells are covered by squares and the remaining cells can 
be covered Gk ways. 

Similarly, there are G2n - G0 phased 2n-tilings with at least one square. By conditioning on 
the position of the first square, we obtain 

Identity 2 [Vajda (34)]: J G2*-i = G2n - G0. 

A phased (2n +1)-tiling must contain a first square, which leads to 

Identity 3 [Vajda (35)]: Gx + £ G2k = G2nU. 

The Gx term on the left-hand side counts those boards that begin with n dominoes followed by a 
phased square. 

To prove 

Identity 4[Vajda (8)J: Gm+n = fmGn +/W_1GII_1, 

2000] 283 



PHASED TILINGS AND GENERALIZED FIBONACCI IDENTITIES 

we consider whether or not a phased (m+ri) -tiling can be separated into an (unphased) nf-tiling 
followed by a phased rz-tiling. There are fmGn tilings breakable at cell m. The unbreakable tilings 
must contain a domino covering cells m and m +1; the remaining board can be covered fm-iGn_x 

ways. 
4. BINOMIAL IDENTITIES 

Vajda contains several identities involving generalized Fibonacci numbers and binomial coef-
ficients. All of these are special cases of the following two identities. 

Identity 5 [Vajda (46)]: Gn+p = £ frV,. 
i=o V / 

Identity 6 [Vajda (66)]: G^,+1)p = £ ( f W # C w 
1=0 V / 

When n>p, Identity 5 counts phased (n + p)-tilings by conditioning on the number of dom-
inoes that appear among the first/? tiles. Given an initial segment of i dominoes and p-i squares, 
(f) counts the number of ways to select the i positions for the dominoes among the first p tiles. , 
Gn_t counts the number of ways the remaining n-i cells can be given a phased tiling. 

Identity 6 can be seen as trying to break a phased (m + (t + l)p) -tiling into p unphased seg-
ments of length t followed by a phased remainder. The first segment consists of the tiles covering 
cells 1 through j l 9 where Ji = t if the tiling is breakable at cell t and j \ - 1 +1 otherwise. The next 
segment consists of the tiles covering cells j \ + l through Ji+j2> where j2 = t if the tiling is 
breakable at cell jx+t and j2 = t +1 otherwise. Continuing in this fashion, we decompose our 
phased tiling into/? tiled segments of length t or f+ 1 followed by a phased remainder of length at 
least m. Since the length t + \ segments must end with a domino, the term (f) flft-^Gm+i counts 
the number of phased (/w + (t +1)/?)-tilings with exactly i segments of length t. 

5. SIMULTANEOUS TILINGS 

Identities involving squares of generalized Fibonacci numbers suggest investigating pairs of 
phased tilings. The right-hand side of 

Identity 7[Vajdm (39)]: f^G^G^Gl-Gl 

counts ordered pairs (A9B) of phased 2n-tilings, where A or B contains at least one square. To 
interpret the left-hand side, we define the parameter kx to be the first cell of the phased tiling X 
covered by a square. If AT is all dominoes, we set kx equal to infinity. Since, in this case, at 
least one square exists in (A9B), the minimum of kA and kB must be finite and odd. Let k = 
min{kA,kB +1}. When k is odd, A andB have dominoes covering cells 1 through k-l and A has 
a square covering cell k. Hence, the number of phased pairs (A, B) with odd k is G2n„kG2n-k+\' 
When k is even, A has dominoes covering cells 1 through k and B has dominoes covering cells 1 
through k-2 with a square covering cell k-l. Hence, the number of phased pairs (A,B) with 
even k is also G2n_kG2n_k+l. Setting i = In +1 - k gives the desired identity. 

Similarly, the next identity counts ordered pairs of phased (2^ + 1)-tilings that contain an " 
unphased square. Conditioning on the first unphased square yields 
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2«+l 

Identity 8 [Vmjda (41)]: E Q - i Q = G%n+l ~ G?. 
i=2 

In the same spirit, our next Identity conditions on the location of the first domino in a pair of 
phased tilings. 

Identity 9 [Vmjdm (43)]: J GMGM - G2
n+l - G2 . 

i=i 

The right-hand side counts the number of pairs (A9B) of phased (ft+ 1)-tilings, where A or B 
contains at least one domino. Here we define the parameter £x to be the first cell of the phased 
tiling X covered by a domino. IfXis all squares, we set £x equal to Infinity. Let £ = min{^, 4 } . 
The number of phased (w + 1)-tiling pairs (A, B)9 where the Ith cell of A is covered by a domino 
Is Gn_eGn_M and the number of such pairs where the Ith cell of A Is covered by a square Is 
Gn_MGn_e. This Implies 

n 
ZJ Gn-£(Gn_e+2 + Gn_M) = Gn+l - Gj 
£=l 

Substituting Gn_e+3 for Gn_i+2 + Gn_M and letting i = n-£ + l yields the desired Identity. 

6. A TRANSFER PROCEDURE 

The Identities proved In this section all take advantage of the same technique. Before pro-
ceeding, we introduce helpful notation. For m>0, define *%m to be the set of all phased #i-tilings 
with GQ domino phases and Gx square phases. An element A € <%m created from a sequence of ex 

dominoes, e2 squares, e3 dominoes, ..., and ending with a phased tile can be expressed uniquely as 
A = deif2de3fA '"d^sftp, where/? represents the phase of the last tile. All exponents are posi-
tive except that ex or et may be 0, and 2el + e2 + 2e3 + e4 + • • • + 2et_x +et=m. When et = 0, the 
last tile Is a domino and p e{l, ...,G0}; when et >1, the last tile is a square and p e{l, ...9GX}. 
Likewise, for n > 0, define Kn to be the set of all phased n-tilings with H0 domino phases and Hx 

square phases. Notice that the sizes of *%m and K„ are Gm and Hn9 respectively. 
We Introduce a transfer procedure T to map an ordered pair (A, B) ^%m x *Rn to an ordered 

pair (A'9 B') ^m-ix ^n+u where l<m<n. J has the effect of shrinking the smaller tiling and 
growing the larger tiling by one unit. For such a pair (A, B)9 define k - mn{kA9 kB], the first cell 
in A or B that Is covered by a square. If the £* cell of A Is covered by a square and 1 < k < m - 1 , 
then we transfer that square from A to the k^ cell of B. Formally, before the transfer, we have 
A = d<k-l>/2sa, B^dP-Wb, where a e ^ 5 * e 3 ^ + 1 . The transfer yields A' = dSk-Wa9 

Bf = d&'^sb. If the k^ cell of A Is covered by a domino and 1 < k <m-29 then we exchange 
that domino with the square In the k^ cell of B. Formally, before the exchange, A = d(k+l>na9 

B = d^l2sb, where a €«„_*_!, beW^. The exchange yields A' = d^k'l^2sa9 B' = d^/2b. 
We abbreviate this transformation by T(A9 B) = (Ar

9 B'). Notice that our rules do not allow for a 
phased tile to be transferred or exchanged. 

Lemma 1: For l<m<n9 Testablishes an almost one-to-one correspondence between ĝOTx Kn 

and (iSlll_1 x 9^+1. The difference of their sizes satisfies 
Gnfln ™ GmmlHn+l = (-1)W[G0^_^2 - G ^ . ^ ] . 
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Proof; Notice that when 7 is defined, T(A, B) has the same k value as (A, B), which makes 
T easy to reverse. It remains to enumerate (A,B) G ^ X 1 „ for which T is undefined and 
{A\ B') G SS^ x %tn+i that do not appear in the image of T. 

When m is odd, T is undefined whenever k = m. Here A = d^m~l^/2ay B = d(m~X),2b, where 
a €<§!, h GKn-m+i. Hence, the domain of Tcontains GmHn-GlHn_m+l elements. The elements 
of (Sm_i x $4+1 that do not appear in the image of T have k > m and are therefore of the form 
A> = dfvWp, B' = d^-W2!)', where p e {1,..., G0}, b' e K„_m+2. Hence, the image of T consists 
of Gm_xHn+l - G0Hn_m+2 elements. Since T is one-to-one we have, when m is odd, 

^nP-n ~~ ^"n-m+l = ^m-l^n+l ~~ ^O^n-m+2-

When m is even, Tis undefined whenever k >m and sometimes undefined when k -m-\. 
Specifically, T is undefined when A = dm/2p, B = d(m~2V2b, where p e{l,...,G0}, iG^ n _ w + 2 . 
Hence, the domain of T contains GmHn - GQHn_m+2 elements. The elements of ^%m-\ x 9^+1 that do 
not appear in the image are of the form A'= d^m-2^l2a\ B' = dm/2b>, where a' £ % bf GWn.m+l. 
Hence, the image of T consists of Gm_xHn+l - GxHn_m+l elements. Thus, when m is even, we have 

We specialize Lemma 1 by setting m = ?i and choosing the same initial conditions for <§„ and 
%£n to obtain 

Identity 10 [Vajda (28)]: Gw+1G„-i- G2
n = (-1)"(Gf - G0G2). 

Alternately, setting Gm = Fm and evaluating lemma 1 at rn +1, we obtain 

Identity 11 [Vajda (9)J: Hn_m = ( - l n ^ t f , - FJI^) for 0 < m < n. 

A slightly different transfer process is used to prove 

Identity 12[Vajda (10a)]: Gn+m + (-l)mGn_m = LmGn forO<m<n. 

We construct an almost one-to-one correspondence from Xm xcS„ to ^m +„, where Xm 
denotes the set of Lucas tilings of length m. Let (A,B) eXmxc@n. If A ends in a (phase 1) 
square or a phase 1 domino, then we simply append A to the front of B to create an (m+ri) -tiling 
that is breakable at m. Otherwise, A ends in a phase 2 domino. In this case, before appending A 
to the front of B, we transfer a unit from B to A by a similar process. (If the first square occurs in 
B, then transfer it into the corresponding cell of A. Otherwise, the first square of A is exchanged 
with the corresponding domino in B.) This creates a tiling of cSm+n that is unbreakable at m. 
When m is even, the transfer is undefined for the Gn_m elements of !£m x c§„, where A contains 
only dominoes, ending with a phase 2 domino, and B begins with mil dominoes. Otherwise, the 
transfer is one-to-one and onto *§„!+„. When m is odd, the transfer is always defined but misses 
the Gw_m elements of *%„,+» that begin with m dominoes. Identity 12 follows. 

A similar argument establishes 

Identity 13 [Vajda (10b)]: Gn+m - {-l)mGn_m = F^G^ + Gw+1) for 0 < m < n. 

The transfer process Jean be refined to allow us to shrink and grow pairs of phased tilings by 
more than one unit. Specifically, we construct an almost one-to-one correspondence between 
*%m x Kn and ^^.^ x K„+h, where \<h<m-\<n. Let §F„ denote the set of (unphased) w-tilings. 
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So 19̂ 1 = fn. Given (A, B) e ̂  x 3KW, define a transfer process Th as follows: if A is breakable at 
cell h, i.e., 4 = a ^ , where ax e 9)> and a2 e ^ ^ , then we append segment ax to the beginning of 
B. That is to say, Ih(A, B) = (A\ Be), where A' = a2 and Bs = atB. If A is unbreakable at cell h, 
i.e., A = atda2, where ^ e ^ . , and a2 = %_h_l, then let (A"9 B") = T(da2, B) and (A\Bf) = 
(A", axB"). Notice that B", when defined, will necessarily begin with a domino and, therefore, 
B' will be unbreakable at h. 

Discrepancies in Th mapping <§„, x %n to cSm^h x $4+/l, are proportional (by a factor of f^) 
to the discrepancies in T mapping ^^h+i x ̂  to c%m_h x 3^,+1. Hence, for 1 < A < m -1, Lemma 
1 implies 

GmHn - Gm_hHn+h = (™l)m~ + fh-\{&QHn_m+h+l - Gji4_m+^). (1) 

Notice that fh_lHn_m+h^rl counts the number of phased (n-m + 2h) -tilings that are breakable at 
h-l Hence, fh-tHn_m+h+l = Hn_m+2h ~ fh_2Hn_m+h. Similarly, f^fo = Gh-fh_2G0. So equation 
(1) can be rewritten as 

Gnfln " Gm-hHn+h = (" 1 ) W "^" 1 (G 0 f l^ O T + 2 A ~ GhHn-m+h) • 

Reindexing, this is equivalent to 

Jfe»% M /Kydi (2«J/- G ^ A + , - GnHn,h+k = ( - I f ( G ^ " G ^ * ) • 
This identity is applied, directly or indirectly, by Vajda to obtain identities (19a) through (32). 

7. BINARY SEQUENCES 

There are identities involving generalized Fibonacci numbers and powers of 2. This leads us 
to investigate the relationship between binary sequences and Fibonacci tilings. 

A binary sequence x = xtx2 ...xw can be viewed as a set of instructions for creating a Fibo-
nacci tiling of length less than or equal to n. Reading x from left to right, we interpret Ts and Ol's 
as squares and dominoes, respectively. The construction halts on encountering a 00 or the end of 
the sequence. For example, 111010110101 represents the 12-tiling s^d2sd2, 1110101110 repre-
sents the 9-tiling sid2s2, and 0111001011 represents the 4-tiling ds1. Binary sequences that begin 
with 00 denote the 0-tiling. 

Given #1, tilings of length n and n-1 are represented uniquely by binary sequences of length n 
that end with a 1 or 0, respectively. For k<n-2, a ^-tiling is represented by 2n~k~2 binary 
sequences of length n since the first k + 2 bits are determined by the ^-tiling followed by 00; the 
remaining n - (k + 2) bits may be chosen freely. This yields the following identity: 

/ B + / M + I / * 2 " - * - 2 = 2". (2) 

By dividing by 2", reindexing, and employing fn+l = fn +/^„1? we obtain 

Identity 15 [Vajda (37a)]: E 4 E 2 " = 1 " % L -

The same strategy can be applied to phased tilings. Here, for convenience, we assume the phase 
is determined by the first tile (rather than the last). The phased identity corresponding to equation 
(2) is 
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G„+l + G„ + "£Gk2"-k-1 = 2"(G0 + G1). (3) 
k=0 

The right-hand side counts the number of ways to select a length n binary sequence x and a phase 
p. From this, we construct a length n +1 binary sequence, lip is a domino phase, construct the 
sequence Ox; \ip is a square phase, construct the sequence Ix. Interpret this new w + 1 -sequence 
as a Fibonacci tiling in the manner discussed previously, and assign the tiling the phase/?. By con-
struction, the phase is compatible with the first tile. (Recall that empty tilings are assigned a 
domino phase.) A phased tiling of length w + 1 or n has a unique (x, p) representation. For 
0 < & < w - l , a phased A-tiling has 2n~k~l representations. This establishes equation (3). Dividing 
by 2n gives 

Identity 16 [Vajda (37)]: f ) J&- = (G0 + G,) - G"+' + G" . 

8. DISCUSSION 

The techniques presented in this paper are simple but powerful—counting phased tilings 
enables us to give visual interpretations to expressions involving generalized Fibonacci numbers. 
This approach facilitates a clearer understanding of existing identities, and can be extended in a 
number of ways. 

For instance, by allowing tiles of length 3 or longer, we can give combinatorial interpretation 
to higher-order recurrences; however, the initial conditions do not work out so neatly, since the 
number of phases that the last tile admits do not correspond with the initial conditions of the 
recurrence. 

Another possibility is to allow every square and domino to possess a number of phases, 
depending on its location. This leads-to recurrences of the form xn = anxn_x + bnxn_2. The special 
case where bn = 1 for all n provides a tiling interpretation of the numerators and denominators of 
simple finite continued fractions and is treated in [2]. 
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