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THE NUMBER OF SOLUTIONS TO ax + by = n 

Amitabha Tripathl 
Dept. of Mathematics, Indian Institute of Technology, New Delhi 110016, India 

atripath@maths.iitd. emet. in 
(Submitted August 1998-Final Revision May 1999) 

In this note we determine an exact formula for the number of solutions, N(a, ft; n) in non-
negative integer pairs (x,y) of the equation ax + by = n if gcd(a, b) = l. There is no loss of 
generality in this since ax + by = n is solvable if and only if d=gcd(a, b)\n, so that the number of 
solutions in general would be given by N(J,-J; •§•). It is well known that N(a, ft; n) is always one 
of the two consecutive integers [_ Ĵ or [-ĵ J + 1; see, for instance [3, page 214] or [4, page 90]. 
A history of this and related problems may be found in [2, pages 64-71]. In this note we shall 
henceforth assume that a, b are positive, relatively prime integers, that n is a nonnegative integer, 
and prove the following 

Theorem: 
AT/ i. x n + aa'(ri) + bbf(ri) % 
N(a, ft; n) = ^ L - z - 1 , 

ab 
where a'(n) = -na~l (mod ft), 1 < a\ri) < ft, A'(w) = ~nb~l ( m o d aX l ^ b'(n) ^ a • 

We observe that n + bh'(n) is a multiple of a and that n + aa'{n) is a multiple of ft. 
Therefore, n + aaf{n) + bb'(n) is a multiple of aft, and is at least /i + a + ft. It follows that the 
expression that represents N(a, ft; n) in the theorem is indeed a nonnegative integer. 

We prove our result in two ways. Our first method uses generating functions to determine 
the function N(a,h;ri), while the second method verifies the formula just obtained by showing 
that this function meets the characterizing properties that such a function should satisfy. 

We begin our first proof by observing that N(a, ft; n) equals the coefficient of xn in the ex-
pansion of (1 - xa)'\\ - xbyl. Also, since xm -1 = n jU(x - C), we have 

i-*w=n^=1(i-cf*), 
where Cm±e2*"m. 

We write 
1 M(x) = J^N(a,b;n)xn=-

fco x ' ' ' (l-xa)(l-xb) 
q=\ A M ft (1) 

i-x (i-x)2 ,4ii-c^ s i - ^ 
where £a = e27ti,a and £b = elnilh. 

In (1) and elsewhere, we adopt the usual convention of assigning the value 0 to any empty 
sum and the value 1 to any empty product. Comparing coefficients of xw, we have 

# ( a , M ) = c1 + c> + l) + X A C ^ l ! w ' - (2) 
k=\ k=i 
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THE NUMBER OF SOLUTIONS TO ax + by = n 

A simple calculation shows that q = (a + b-2)/2ab and c2 = l/ah. Evaluation of the 4^'s and 
the Bk'& is done by multiplying both sides of (1) by the corresponding 1 - £~kx and taking limits as 
*->£*• This yields Ak = 1 / a(l - £b

a
k), with a similar expression for the Bk 's. 

From (2), 

We observe that each sum on the right is periodic in n, the first with period a and the second with 
period b. Since a and b are coprime, the two sums together has a period ah, and the expression 
for N(a, b; n) is essentially determined modulo ab. The form that the function N(a, b; n) takes is 
well known; see [4, page 90] and [1, pages 113-14]. 
Notation: We set a'(ri) = -ra"1 (mod b), bf(n) = -nb~l (moda), with 1 <a'{n) <b,\<b'(n) ^ #. 

We note that iXX^f = £*=o£T* - 1 = -1 for any integer w that is not a multiple of a; it 
equals a - 1 otherwise. 

From £jfci**=njw(x-££), logarithmic differentiation at x = l gives Z £ i ( l - 0 " 1 = 

(a -1) /2 if a > 2. The equation is also trivially valid for a = 1. 
Since ( 1 - 0 ( 1 + ̂ * +C + -+C~1V*) = 1 - C * = 1-C"A> we have 

k=l l~ha k=l k=l l ha 

= 4(a-l)-(ft'-l)] + g - I 
k=l l ha 

= hf-a + ̂  = h>-~, where b' = b'(n). 

Putting all this into (3), we have 

abN(a,b-,n) = ^ + n + b^b'(n)-^ya[a'(n)-^j 

- aaf(ri) + bb'(ri) -ab + n, 

which completes the proof of our result. 

We now prove that the following four properties, stated in the Proposition below and which 
uniquely characterize the function N(a,h;n), are satisfied by the expression given in the 
Theorem, thus providing a second proof of the Theorem. It is well known that the function which 
counts the number of nonnegative integer solutions of ax + by = n must satisfy these properties; 
see, for instance, [4, pages 87-91]. 

Proposition: The function N(a, b; n) is the unique function satisfying the four conditions: 
N(a,b;n + k-ah) =N(a,b;n) + k ifk>0; 
N(a,b;n) = 1 i(ab-a-b<n<ab; 
N(a,b;p) + N(a,h;q) = 1 if p + q = ah-a-h,p,q >0; 
N(a,b;n) - 1 iff n = axQ+hy0 <ab-a-b,xQ,y0 >0. 

(4) 
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For convenience, we now use the notation 
\T,t \ \ n + aa'(ri) + hh'(ri) , 
N'(a,b;n) = ^ ^ - 1 . 

ab 
Lemma 1: N'{a,b;n + k-ab) - N'(a,b;ri) + k for all integers k > 0. 

Proof: Although this is an immediate consequence of (2), we also give a proof that involves 
the expression for N(a, b; ri) given by the Theorem. 

ah-N'(a,b;n + k-ab) = (n + k'ab) + aa'(n + kab) + bbf(n + kab)-ab 
= (n + aa'(ri) + bb'{n) -ab) + kab 
= ahN'(a,b\ri) + kab. • 

Lemma 2: N'(a, b; ri) = 1 if ab - a - b < n < ab. 

Proof: If ab~a-b<n<ab, then ab <n + a + b<n + aa'(ri)+hb'(n)^n + ab + ah <3ab, so 
that n + aaf(ri)+bbf(ri) = lab and N'(a, b; ri) =~1. D 

Lemma 3: If/? and q are nonnegative integers such that p + q = ab-a-b, then N'(a,b\p) + 
N'(a,b;q) = l. 

Proof: We note that a'(p)+a'(q) = 1 (mod h\ so that a'(p)+a'(q) = b +1 since each is at 
least 1; similarly, h'(p) + b'(q) = a +1. Therefore, 

ab • N'(a9 b; p)+ab • N'(a, b; q) = (aar(p) + aaf(q)) + (bb'(p) + bb'(q)) -2ab + (p + q) 
= a(b +1) + b(a +1) - (a& + a + b) 
= ab. • 

We observe that Lemma 3 asserts that exactly one of n and ab-a-b-n is of the form 
ax0 +by0 with x0,y0>0, if 0 < n < ab - a - b. Therefore, any n which is not representable by a 
and b is of the form ab-a-b-(axl+byl), with 0<xx <b-l, 0<y{ <a-\. 

Lemma 4: Forw such that 0<n<ab-a-b-l, 
f 1 if n = axQ + by0 for some x0, y0 > 0; 

N'(a, b; ri) =« 
[0 otherwise. 

Proof: If there exist nonnegative integers x0, y0 such that ax0 +by0 = n, then x0 < 6 - 1 and 
j 0 < a -1, and we have 

ab - N'(a, b; ri) - (ax0 + by0) + aa'(axQ + by0) + bbe(ax0 + 6y0) - a£ 
= (ax:0 -f 6y0) + a(b - x0) + b(a - yQ) - ab 
= ab. 

Otherwise, n = ab-a-b- (axx +byx) with 0 < xx < b -1, 0 < yx < a - 1 , and we have 

ab-N'(a, b; ri) = aa'(ah-a-b-axl -by])+hb'(ah-a-b-axl -byx) 
- ab + (ab - a -b - axx- byx) 

= aa'(-a-axl) + bh'(-b-byl)-(a + b+ax1+byl) 
= a(l + xl) + b(l+yl)-(a + h+axl+byl) = 0. D 
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Lemmas 1-4 together show that the formula given by our Theorem meets the conditions that 
N(a, h\ n) satisfies, thereby completing our second (and less direct) proof. 

An interesting consequence of our result is a solution of a special case of the Coin Exchange 
Problem. If we restrict x, y to be nonnegative, it is well known that the equation ax + by = n 
always has a solution for all sufficiently large n. This means that the set 

<f{a,h)±N\{ax + hy\x,y>Q) 
is finite. The two functions 

g(a, b) = m&xn and n(a,b) = \if\ 

can be evaluated readily from the function N(a, b;«), as we now show in the following 

Corollary: 
(a) g(a,h) = ab-a-h; 
(b) n(a,b) = (a-l)(b-l)/2. 

Proof: By Lemma 4, or directly, N(a, b; 0) = 1, so that N(a, h;ab-a-fo) = Q by Lemma 3, 
while N(ay h;ri)>l if n > ab - a - b by Lemmas 1 and 2. This establishes (a). 

Lemma 3 implies that there is a one-to-one correspondence between representable and non-
representable integers between 0 and ab-a-b, and (b) follows from (a). • 
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SUMMATION OF RECIPROCALS WHICH INVOLVE PRODUCTS OF 
TERMS FROM GENERALIZED FIBONACCI SEQUENCES 

R. S. Melham 
School of Mathematical Sciences, University of Technology, Sydney 

PO Box 123, Broadway, NSW 2007 Australia 
(Submitted August 1998-Final Revision November 1998) 

1. INTRODUCTION 

We consider the sequence {Wn} defined, for all integers n, by 

W„=pW„_^W„_2, W,=a,Wx = b. (1.1) 

Here a, h, and/? are real numbers with/? strictly positive. Write A = /?2+4. Then it is well 
known [5] that 

n a-ji ' { } 

where a = (/? + VA)/2, /?= (/?-VA)/2, A-h-aP, and B = b-aa. As in [5], we put ew = 
AB = h2-pah-a2. 

We define a companion sequence {Wn} of {Wn} by 

Wn = Aan + Bftn. (1.3) 

Aspects of this sequence have been treated, for example, in [6] and [7]. In the first of these refer-
ences {Wn} and {Wn} are denoted by {H„} and {Kn}, respectively. 

For (W09 Wx) = (0,1) we write {WJ = {£/„}, and for (W0, WY) = (2, /?) we write {Wn} = {F„}. 
The sequences {[/„} and {F„} are generalizations of the Fibonacci and Lucas sequences, respec-
tively. From (1.2) and (1.3), we see that Un=Vn and Vn = AUn. It is clear that eu = \ and 
ev = -A = -(a-P)2. 

The purpose of this paper is to investigate certain infinite sums. In Section 3 we investigate 
the sum 

00 W 
C - Y rrk(n+m) n 4x 

n=\ ^kJ^k{n^my^k(n+2m) 

and in Section 4 we investigate the sum 

*k,m Zrf ur W W W ' ' ' 
„=1 vvknV¥k(n+myvk{n+2my¥k{n+3m) 

where & and #i are taken to be odd positive integers. 
Now since /? > 0, then a > 1 and a > \fi\, so that 

Wn=-^—an and Wn = Aan. (1.6) 
cr-/? 

Hence, assuming that a and h are chosen so that no denominator vanishes, we see from the ratio 
test that Skm and Tkm are absolutely convergent. 
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2, PRELIMINARY RESULTS 

We require the following, in which k and m are taken to be odd integers. 
Wn+k+Wn_k = WnUk, (2.1) 

Wn+k-Wn_k = WnVk, (2.2) 

pWn + Wn_x = Bp\ (2.3) 

amWn+m + W„ = Aa»™Um, (2.4) 

™k(n+mffic(n+2m) ~ ̂ krWk(n+3m) = %(~0"^knPlkm> (2-5)" 

t-^T-^h-^^ "2-̂ odd, (2.6) 
ZLcrw*. Btr ' wk kn 

1 . 1 * UM 
« \ <xk{n+m)WKn+m) WJVklH¥m)-

Identities (2.1)-(2.5) are readily proved with the use of (1.2) and (1.3). Now, since k is odd, 
then a'^ = ( - 1 ) ^ " = (-1)"/?*". Hence, 

y _ L _ = vHXV^ 
n=nl

iA' rrkn n=nx kn 

i±i-rr<m.+»~\ by(2.3), 
D n=nx

 Wkn 

and since n1-nl-\-\ is even, this yields (2.6). Identity (2.7) is readily established with the use of 
(2.4). 

We also require the following theorem, which follows immediately from (2.7). 

Theorem 1: Ifk and m are odd positive integers, then 
o o - i co -J m -j 

„=\ V¥kn¥¥k(n+m) n=\ « ™kn n=\ a vvkn 

Since a > 1 and a > \fi\9 it follows from the ratio test that the infinite sums in (2.8) are abso-
lutely convergent. For similar infinite sums in which the denominator consists of products of two 
terms from the sequence {Wn}, see [2]. 

3. THE SUM 5 * ^ 

The first of two theorems in this section is 

Theorem 2: \fk and m are odd positive integers, then 
oo -j 2m -I m I 

AUL$k,m=4Jl knW " Z ~ W 2 S knW ' ^ A"> 
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Proof: Consider the expression 
1 

r/knW r/k^n+m^W ffHn+2m)W 
u YVkn u vvk(n+m) u rvk(n+2m) 

Using (2.7), we can write this as 
AU> km + - 1 

WMfn+rt ^WWl 

or as 

Now 

vknrrk{n+m) 

l 

k(n+2m) 

- + 
AU, km 

a Wkn ^k{n+my^k{n+2m) 

AU, km - + -
AUX km AU, km 

^kJ^k{n+m) ^k(n+m)^k(n+2m) "k(n+m) 

] - + , l 

"kn *^k{n+2m) 

_ AUkm ^k(n+2m)+^kn 

™k(n+m) ^krWk{n^2m) 

= AUl ^kjn+m) 

^kn^k(n+my^k(n+2m) 
by (2.1). 

But, from (3.2)-(3.4), we then have 

1 
• + - -+-aknW ryk(<n+m^W r/k(n+2m)W 

U Wfo, U ryk(n+m) a vyk(n+2m) 

- + -aknWkn a
k^Wk(n+2m) 

+ AUl km ' 
^k(n+m) 

so that 
W 

AJJ2 rrk(n+m) 
km WW W 

1 
-+-

^kn^k(n+mync(n+2m) 

1 . 2 
knyrk(n+m)rrk(n+2m) a vvkn a vvk(n+2m) a nk(n+m) 

Now, summing both sides, we obtain (3.1). D 

Our next theorem expresses 5 ^ in terms of Sktl. 

Theorem 3: Let k and m be odd positive integers with m > 1. Then 

AUkm$k,m~ AUkSkl — 
2SL w JL w 

w=3 rrkn n=2 vrkn 

Proof: From (3.1), we have 
co j 2 | 

In (3.7), we solve for 

and substitute in (3.1) to obtain 

^ak"Wk„ £a*Wfc„ akWk 

1 4Y-
*-> ryktW n=\" rrkn 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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2m -j m i 
AUkmSkm = AUkSkl-2^ £„ ~ 2 2^ 

n=3 a ^ L «=2 a ^kn 

From this, we arrive at (3.6) by using (2.6). • 
For an application of Theorem 3, take k = 1 and m = 3. Then, with Wn=Fn and Wn = Ln, 

(3.6) becomes, respectively, 

Z At+3 _ 1 y 4+i 143 . . 
f f J 7 „ A Z^ 17 17 J7 4 g n ' ^ ' 

„=1 rnrn+3rn+6 H «=1 rnrn+lrn+2 HOKJ 

and 
V _ ^ ± 2 _ J v /W, 115 
w=i AIAI+3AI+6 4 w=1 LnLn+lLn+2 11088 

4 THE SUM F ^ 

We denote the infinite sum on the left side of (2.8) by 
oo i 

Then, from (2.8), we see that 

l y 4-n 115 n Q v 

w=l ^w^Jk(yi+iw) 

oo -j 3w -j 

oo -I m -j 

Next, we solve for ^ 3m and ^ w and consider their difference. Then, making use of (2.2) to 
factor U3km - U^ and noting that U2n = UnV„, we obtain 

_ 2 J 7 2 °° 1 i m i 1 3 w 1 
A(tk,3m-tk,m)= TJ Li knW

 + 7 7 ~ Z ^ " 7 w 7 7 ~ ~ Z ^ W ' ( 4 1 ) 
U3ATW W =1 « " f c , Utow «=1 « ^foi U3fow «=1 « ĵfcw 

Our main result concerning Tk m can now be given in the following theorem. 

Theorem 4: Let k and m be odd positive integers. Then 

—2V2 °° 1 1 m 1 
eWAUkmU2kmTk,m^JJ~^ld knW

 + T j ~ ^ ~^W~ 
u3km n=l a Wkn Ukm w=l a ^kn 

1 3ffl i /w 

~7T 2^ ^kniir + ALa 

(4.2) 

^3*m *=1 a %n n=\ ^ktWk{n+m) 

Proof: Using (2.5), we see that 

*k(n+m)™k(n+2n 

If we now sum both sides, we obtain 

WjcJVk(n+m)™k(n+2m)™k(n+3m) ^kJ^k(n+3m) ™k(n+my*k(n+2m) 
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eW^knf^2km^k,m ~ *k,3m ' h,m ZL 
n=l ^kJ^k(n+m) 

and (4.2) follows from (4.1). D 

We mention that Tkm can be expressed in terms of Tkl. We simply write down (4.2) for the 
case m = l, solve for Z*=1(l/ akr2Wkn), and then substitute in (4.2). Since the result is rather 
lengthy, we do not give it here. 

As can be seen from Theorems 2 and 4, Skm and Tk^m can be expressed in terms of the infi-
nite sum Z^=i(l/ a^Wkn) together with certain finite sums. If we consider specializations Wn-Un 

orWn=Vn, this infinite sum can be expressed in terms of the Lambert series, which is defined as 

L(x) = V , |x| < 1. In this regard, see [1]. 
^ 1 - x " 

Remark: For the sake of definiteness, we have assumed throughout this paper that p > 0, so that 
Z*=i(l I' aknWkn) is absolutely convergent. However, we can immediately write down parallel 
results for p<0. For then we see that / ? < - ! and \j3\ > \a\, so that Wn =(-B/(a-{3))j3n and 
Wn = B/3n. It follows from the ratio test that lL™=i{llPknWkn) is absolutely convergent. We then 
obtain counterparts of Theorems 1 through 4 if in each theorem we replace a(]3) by P{a) and 
A(B) by B(A). Indeed, these substitutions are valid in (2.3), (2.4), (2.6), and (2.7), regardless of 
the sign of p. 

Finally, two early references that touch on a wide variety of infinite sums in which the 
denominators of the summands contain products of Fibonacci and Lucas numbers are [3] and [4]. 
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1. INTRODUCTION 

It is well known that the entries p(n9 0 = (?)> weN = {l,2,3,...}, 0<t<n, of Pascal's tri-
angle satisfy equal product and equal gcd {greatest common divisor) hexagonal properties: the 
two alternate triads arising from the six binomial coefficients surrounding any given entry in 
Pascal's array have equal product and equal gcd[7, 8,10,14,15] (see Fig. 1). Pascal's array fails to 
satisfy an equal 1cm {least common multiple) hexagonal property. 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 

FIGURE 1. A Typical Hexagon In Pascal's Array 
Notice: 5 • 6 • 20 = 4 • 10 • 15 and gcd(5,6,20) = 1 = gcd(4,10,15). 

These observations of the early 1970s initiated the search for and discovery of many beautiful 
configurations within Pascal's array satisfying equal product, equal gcd and even equal 1cm prop-
erties [2,4,5,12]. Similar properties have been discovered for other arrays, such as the Binomial 
triangle, and for higher-dimensional "pyramids" of multinomials, multi-Fibonomials, and the like 
[1,3,9,11,13]. 

Recently, R. P. Grimaldi [6] discovered hexagonal properties occurring within the array with 
entries g(n, t) = FtFn+l_t {n e N, 1 < / < n). This array arose from a study of generating sets, that 
is, subsets S of [«]= {1,2, ...,w} satisfying S*u(S + l) = [n + l], where S + l = {s + l:s e S } e 
[n +1]. Counting the number of such sets that contain the particular element t produces the quan-
tity g{n, t). It is a surprise to learn that this array satisfies both the equal product and equal gcd 
hexagonal properties. 

In this paper we study higher-order generating sets, that is, subsets S of [n] satisfying 
Su{S + k) = [n + k] for some k eN, 1< k <n (where S = k = {s + k\s e i ] ) . We call such a set 
a k^ -order generating set and say that S generates [n + k]. 

Setting gk{n, t) to be the number of such sets that contain the particular element t e N, we 
are thus given, for each i G N , new arrays with potential hexagonal properties. We will show 
that the entries gk{n, t) are products of k +1 Fibonacci numbers and explore the extent to which 
equal product and equal gcd hexagonal properties hold. 
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In this paper it is convenient to set Fn = 0 for n a nonpositive integer. For x G IR, we use [x] 
to denote the least integer greater than or equal to x and |_*J the greatest integer less than or 
equal to x. 

We begin by recalling some standard properties of the Fibonacci sequence that will be used 
throughout this work. 

2. THE FIBONACCI NUMBERS 

An easy inductive argument establishes: 
A. gcd(Ft, Ft+l) = 1 for all t > 0. 

Since gcd(Ff, Ft+2) = gcd(F„ Ft+l + Ft) = gcd(Ft, FM), we have: 
B. gcd(Ff,i^2) = l fora l l />0 . 

We also have the key relation: 
C. Ft+r = FrFt+l+Fr_xFt for all t>0,r> l. 

This is easily established by an induction argument on r. With A and B it has the following conse-
quences: 

D. Let r,t>0,d GN. If d\Ft and d\Ft+r9 then d\Fr. Consequently gcd(F„Ft+r)\Fr. 
.E. Let r, t > 0,d GN. Suppose d\Ft and d\Ft+r. If, for k GN, d\Fk, then d\Fk±r. 

[By D, d\Fr. A and C now show d\Fk+r. If r < k, then; Fk = FrFk+l_r +Fr_xFk_r, from which it 
follows that d\Fk_r. The result is trivial for r > k.] 

F. Letr,k>0,d G N . If d\Fr and d\Fk, then d\Fk±mr for any m eM. 
[This follows from repeated application of E with t - 0.] 

G. F , | F m , f o r # a e N . 
[Set r = k in F.] 

H. Let d GN and let i^ be the first Fibonacci number (a GN) SO that d\Fa. Let k >0. 
Then J|F^<^>a|A:. 

[(<=) follows from G. For (=>), write k = ma+b with 0 < i < a , /MGN. F shows d\Fb, a con-
tradiction unless i = 0.] 

L For r, ^ e N, gcd(Fr, i^) = Fgcd(r^ k). 
[That i^cd(r^) is a common divisor of Fr and i^ follows from G, F, and the Euclidean algorithm 
show that gcd(Fr, Fk) = Fgcd(rJc).] 

3. A CONSTRUCTIVE MODEL 

We have the following familiar model for constructing Fibonacci numbers: For n,k,t GN, let 
Sn = the set of all n bit sequences beginning and ending with 1 and containing no two 

consecutive 0's. 
S% = the subset of those sequences that contain precisely k l's. 

S„(i) = the subset of all those sequences containing a 1 in the /* place. 
We have: 

J. \S„\ = F„for*aneN. 
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Proof: Clearly |Si | = |iS21 = 1 and, by considering the choice of the penultimate term in an n 
bit sequence, we see that \Sn\- \Sn_x| + \8n_21 for n > 3. D 

K. \S*| = _ » J provided n-k<k-l. (It is zero otherwise.) 

Proof: There are w - & zeros "to be placed" in the k -1 spaces between the ones. • 
This yields: 

i / i - i I 

L' ^ = Z ( A: } yt=0 V / 

PWw/: As Sw is the disjoint union of the subsets 5* 0 < & < n, \Sn \ = Tn
k=0\Sn I- D 

M. 1̂ (01 = % H -
Proof: Clearly Sn(t) is isomorphic as a set to ^ x Sn+l_r D 

Later, we will denote \Sn(t)\ by ^(w, /). Observe that, by reversing the strings, we have the 
symmetry, g1(ny t) = gl(n, n +1 -1) . This symmetry appears in many of the tables presented later 
in this paper. 

4e GENERATING SETS 

An n bit sequence determines a subset S e [«] and vice versa (declare t eS if and only if the 
r* place of that sequence is a one). Subsets arising from binary sequences as described in the 
previous section are the generating sets (of order 1). By J there are Fn generating subsets of [n] 
of order 1. 

More generally, let hk(ri) be the number of subsets of [n] of order k that generate [n + k]. A 
table for hk(n) appears in Figure 2. 

hk(n) 1 

+ -

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

1 

2 

3 

5. 

8 

13 

21 

34 

55 

2 

1 

1 

1 

2 

4 

6 

9 

15 

25 

3 

1 

1 

1 

1 

2 

4 

8 

12 

4 5 6 7 

1 

1 1 

1 1 1 

1 1 1 1 

1 1 1 1 

2 1 1 1 

4 1 1 1 

FIGURE 2 

8 9 10 

1 

1 1 

1 1 1 
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Theorem 4.1: For n, k G N , hk(ri) is a product of & Fibonacci numbers. Precisely 

where n = r (mod k) with 1 < r < k. 
Proof: Clearly hk(n) = 0 if n < k and the theorem is true. Assume then that n > k. Write 

n = mk+r with 1 < r < k. (Here, m = [f]-1.) 
Let Hk(ri) be the set of all n bit sequences that correspond to a generating set of order k. 

Any such sequence must contain a 1 in the first and last k places. It also has the property that if 
the 7th place fails to be a 1 then the t-k^ place must be. Thus, we can partition the sequence 
into k intertwined subsequences corresponding to those place numbers congruent mod k. Each 
such subsequence corresponds to a first-order generating set. Counting the lengths of these sub-
sequences, we see that we have a set isomorphism 

Hk\n) ~ $m+i x * * ° x Sm+\ xSmx--xSm. 
k-r 

The theorem follows from J. • 

5. ARRAYS 

For n,t,k sN, let gk(n, t) be the number of generating subsets of [n] of order k that contain 
t. Figures 3, 4, and 5 give tables for gk(~, - ) for k = 1,2, and 3, respectively. 

g\nj) | 1 2 3 4 9 10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

t- -

1 

1 

2 

3 

5 

8 

13 

21 

34 

55 

1 

1 

2 

3 

5 

8 

13 

21 

34 

2 

2 

4 

6 

10 

16 

26 

42 

3 

3 

6 

9 

15 

24 

39 

5 

5 

10 

15 

25 

40 

8 

8 

16 

24 

40 

FIGURE 3 

13 

13 

26 

39 

21 

21 

42 

34 

34 55 
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g2(n,t) | 1 2 3 4 5 6 7 8 9 10 

- H 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

1 

1 

1 

2 

4 

6 

9 

15 

25 

1 

1 

1 

2 

4 

6 

9 

15 

25 

1 

1 

1 

2 

4 

6 

9 

15 

l 

2 

2 

2 

6 

10 

15 

2 

4 

4 

6 

12 

20 

4 

6 

6 

10 

20 

FIGURE 4 

6 

9 

9 

15 

9 

15 15 

15 25 25 

g\n, 

-

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 1 
+ 

1 

0 

0 

I 

l 

I 

l 

2 

4 

8 

11 

2 

0 

1 

1 

1 

1 

2 

4 

8 

11 

3 

1 

1 

1 

1 

2 

4 

8 

11 

4 

1 

1 

1 

1 

2 

4 

7 

5 6 7 

1 

1 1 

2 2 2 

2 4 4 

4 4 8 

5 5 7 

FIGURE 5 

8 9 10 

4 

8 8 

11 11 11 
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Observation M establishes gl(n, t) = FtFn+l_t (see also [6]). We now determine the general 
formula for gk(n, i). 

Theorem 5.1: For n,k,t e N, if n = r (mod k) and t = / (mod k) with 1 < r. i < k, then 
\r—\f \k-r 

gk(n,t) = 

WW^^rti^Lfj-rti+i i f / > r 

Proof: Let Hk(n,i) be the set of?? bit sequences arising from &*-order generating sets 
£ c [«] containing the element f. Thus, we are declaring that a 1 must always appear in the t^ 
place. This 1 occurs in the |"~"| place of the Ith subsequence corresponding to the ith congruent 
class of place numbers mod k. Writing n = mk+r,ws have a set isomophism 

j * place 

Hk(nJ) = Sm+lx--'xSm+l([jf\)x--.x$m 

if i > r. The result follows. • 

6. EQUAL PRODUCT HEXAGONAL PROPERTY 

In [6], R. P. Grimaldi observed and proved that the gl(-, - ) array (Fig. 3) satisfies the equal 
product hexagonal property. For example, the two alternate triads in the six entries 6,4, 3, 5,10, 9 
surrounding g1(6,4) = 6 in a (skewed) hexagon have equal products: 6-3-10 = 4-5-9. 

We call such a hexagon a hexagon of radius L It is centered about g\6,4). We observe 
here that Figure 3 satisfies the equal product property for all hexagons of greater radii. For exam-
ple, taking two steps outward from the same center gl(6,4) in the direction of the vertices of the 
original (skewed) hexagon yields six entries 5,2,3,8,16,15 whose alternate triads again satisfy 
5-3-16 = 2-8-15. We call such a configuration of six entries a hexagon of radius 2. The notion 
of a hexagon of general radius r is defined similarly. 

Although all hexagons of arbitrary radius in Figure 3 satisfy the equal product property, the 
same is not true for the arrays in Figures 4 and 5, or in a general array gk(-, - ) , k > 2. Only 
those hexagons with radius divisible by k can be guaranteed to satisfy the equal product property. 

Theorem 6.1 (Equal Product Hexagonal Property): For n, k,t,a e N, 

gk(n-akj-ak)-gk(nj+ak)-gk(n+akj) = gk(n-akj)-gk(n:>t-ak)'gk(n+akj+ak). 

Proof: Suppose n = r (modk), t = i (modk) with l<i,r<k. Then 
n - ak, n,n + ak = r (mod k), 
t-ak,aj + ak = i (modk). 

Assume i < r. Then, by Theorem 5.1, 
\r~\/ \k-r 

g\n, t±ak) = (Fftf% j f >m±„ ^ f H t l + W a. 
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g*(n±ak,t±ak) = fe J > L f J ± « f \ 1 ± « % _ m + , 

and the result is easy to establish. The case i > r is proved similarly. D 

7, EQUAL gccf HEXAGONAL PROPERTY 

7.1 The g\-, - ) Array 

As established by Grimaldi [6], ^ ( - , - ) also satisfies the equal gcd hexagonal property for 
radius 1 hexagons. Inspection of Figure 3 might encourage one to suspect that the equal gcd 
property also holds for higher sized hexagons but this turns out to be false. Consider the hexagon 
of radius 2 centered in row w = 23 about ^(23,10). Here the greatest common divisors of the 
alternate triads are: 

gcd(^(21,10), ^(23,8), g*(25,12)) = gcd(15-144,21-987,144 -377) = 9, 
gcd(^(21, 8), ^(25,10), g\2\ 12)) = gcd(21.377,55 • 987,144 • 144) = 3. 

(Incidentally, this is the first instance of failed equal gcd for this array.) Note, however, that both 
gcd's are composed of powers of the same prime. We will say an array satisfies a, weak gcd hexa-
gonal property for hexagons of radius r if the greatest common divisors of the alternate triads in 
any hexagon of that radius are composed of positive powers of the same primes. 

Lemma 7.1: The array gl(~, - ) satisfies the weak gcd hexagonal property for all hexagons of 
arbitrary size. That is, for nj,r GN, 

gcd(gl(n -rj- r\ g\n, t + r\ g\n+r, t)) 
and 

gcd(gl(n - r, t\ gl(n, t - r\ g\n+rj+ r)) 

are composed of positive powers of the same primes. 
Proof: By observation M, 

g\n-rJ-r) = Ft_rFn+l_t, 
g\n,t + r) = Ft+rFn+l_t_r, 
gl(n + r,t) = FtFn+l_t+n 

and 
gl(n-r,t) = FtF„+l_t_r, 
g\nJ-r) = Ft_rFn+l_t_n 

gl(n + r,t+r) = Ft+rFn+l„t. 

Suppose p, a prime, is a common divisor of the first triad. (The case where/? is a common divisor 
of the second triad is proved similarly.) We have four possibilities: 
i) p divides each of Ft_r, Ft+r, and Ft. 
ii) p divides each of Fn+l_t_r, Fn+1_t+r, and Fn+l_t. 
iii) p divides two of Ft_r, Ft+r, and Ft but not the third. 
iv) p divides two of Fn+l_t_r, Fn+l_t+r, and Fn+l_t but not the third. 
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It is clear that cases i) and ii) imply that/? is a common divisor of the second triad. 
Consider case iii). By observation, E, it must be the case that p\Ft_r and p\Ft+r but p\Ft. 

By D, p\F2r. Since p\gl(n + rj), we have p\Fn+l_t+r. Consequently, by E, p\Fn+l_t_r andp is a 
common divisor of the second triad. 

Case iv) is established similarly. D 
We can now quickly establish Grimaldi's result. 

Corollary 72: All alternate triads for radius 1 hexagons in the gl(~, - ) array have greatest 
common divisor equal to 1. Consequently, the equal gcd hexagonal property holds for such hexa-
gons. 

Proof: We see from the proof of Lemma 7.1 that any common prime divisor/? of a triad 
satisfies p\F2r (in some instances, we even have p\Fr). When r = 1, F2r = 1. • 

7.2 The g2(~, - ) Array 

Consider the g2(-, - ) array derived from generating sets of order 2 (Fig. 4). Hexagons 
of arbitrary size generally fail to satisfy the weak gcd property. Section 6 suggests we focus on 
those hexagons whose radii are divisible by k = 2. We have the following result. 

Lemma 7.3: Consider hexagons of radius r - 2a, a e N, in the g2(-, - ) array. If a = 1, then the 
equal gcd property always holds (and in fact all gcd's of alternate triads equal 1). If a > 2, the 
weak gcd property always holds. 

Proof: Consider a hexagon of radius r - 2 centered about g2(n, t). We will show that each 
alternate triad has gcd equal to 1. 

Consider first the case where both n and t are odd. Set u = fjf] and v = [y~|. By Theorem 
5.1, our alternate triads are: 

g2{n-2,t-2) = Fu_2Fv_xFu_v+l, 
g2(n,t + 2) = Fu+lFv+lFu_v, 
g2(n + 2,t) = FuFvFu_v+2, 

and 
g2(n-2,t) = Fu_2FvFu_v, 
g2(n,t + 2) = Fu„lFv_lFu_v+2, 

g2(n + 2,t + 2) = FuFv+lFu 

help be a common prime divisor for the first triad. By observations A and B, it is impossible 
forp to be a common divisor of any two of Fu_2, Fu_l9 or Fu. It must be the case that/? divides at 
least two of Fv_xFu_v+l, Fv+lFu_v, and FvFu_v+2. Again, noting A and B, this allows six possi-
bilities: 

i) p\Fv_x and p\Fu_v (and consequently p\Fu). 
ii) p\Fu_v+l and p\Fv+l (and consequently p\Fu). 
iii) p\Fv_x and p\Fu_v+2 (and consequently p\Fu_x). 
iv) P\Fu-v+i a n d P\Fv (a n d consequently p\Fu_x). 
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v) p\Fv+lmdp |i^_v+2 (&nd consequently p\Fu_2). 
v 0 PWu-v anc* P\K (and consequently p\Fu_2). 

Let Fm be the first Fibonacci number such that p\Fm9 and consider case i). By H we have 
v - l s O (mod/if), 
u-v = 0 (mod/if), 

u = 0 (mod/if). 

Consequently m-\ and p\Fm = l. 
Similarly, the remaining cases yield contradictions. Thus, the greatest common divisor of the 

first triad must be 1. Similarly for the second triad. 
The same argument applies to the cases n even, and n odd, t even. 
We will now establish the weak gcd property for hexagons of radius r = 2a, a GM. Again, 

set u - ff] and v = |~y] and consider the case n odd, t odd. The alternate triads are: 

g2(n -2a J- 2a) = Fu_x_aFv_aFu_v^ 
g2(n, t + 2a) = F^F^F^^, 
g2(n + 2a,t) = Fu_l+aFvFu 

and 
g2(n - 2a, t) = Fu_x_aFvFu_v+l_a, 
g2(n, t-2a) = Fu_xFv_aFu_v+l+a, 

g2{n + 2aj + 2a) = Fu_l+aFv+aFu_v+v 

Let p be a common prime divisor of the first triad. There are 27 possibilities as to which Fibo-
nacci factors it must divide. We must show that each scenario forces/? to be a common divisor of 
the second triad. We will illustrate the four typical arguments used to demonstrate this. We leave 
the details of applying these arguments to the remaining 23 cases to the diligent reader. 

Suppose p\Fu_x_a, p\Fv+a, and p\Fu_v+1+a. Then p is trivially a common divisor of the 
second triad. 

Suppose p\Fu_x_a, p\Fu_v Then, by E, p\Fu_l+a and sop is a common divisor of the second 
triad. 

Suppose p\Fu_x_a, p\Fv+a. Then, by D, p\F2a and, by E, p\Fv+a_2a = Fv_a and sop is a com-
mon divisor of the second triad. 

Suppose p\Fu_l+a, p\Fv+a, and p\Fu_v+l. Let Fm be the first Fibonacci number such that 
p\Fm. Then, by H, 

u-a + l = Q (modm), 
v+a = 0 (mod/if), 

u-v + l = 0 (mod/n).. 

This is possible only if m - 1 or m - 2. But p\Fm yields a contradiction. Therefore, this scenario 
cannot occur. 

The remaining cases n even, and n odd, t even, are proven similarly. • 
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The following example shows that the equal gcd hexagonal property fails even for the case 
a = 2. Consider the hexagon of radius 4 centered about g2(44,19). Then the alternate triads are: 

^(40,15) = F20FsFl3 = 6765-21-233, 
g2(44,23) = F22Fl2Fn = 17711-144-89, 
#2(48,19) = F24F10^15 = 46368-55-610, 

with gcd = 9, and 
^(40,19) = F20Fl0Fn = 6765-55-89, 
g2(44,15) = F22FsFl5 = 17711-21-610, 
g2(48,23) = F24Fl2Fl3 = 46368-144-233, 

with gcd = 3. 
(Challenge for the reader: Prove that any common prime divisor/? of an alternate triad from a 

hexagon of radius 4 in the g2(~, - ) array must be a divisor of Fs = 21. Consequently p = 3 or 7.) 

7.3 The £*(-, - ) Array, k > 3 

In general, not even the weak gcd hexagonal property holds for gk{-, - ) , k > 3, arrays, even 
if the hexagon is of radius divisible by k. One can easily find examples to illustrate this. A simple 
one is the hexagon of radius 3 in the g3(-, - ) array centered about n = 14, t = 5. Here the alter-
nate triads are: 

^ ( 1 1 , 2 ) ^ ^ 3 ^ = 18, 
^(14,8) = F5F4F3F3-60, 
^(17,5) = F6F5F2F5 = 200, 

with gcd = 2, and 
g\13,5) = F4F3F2F3 = 12, 
^(14,2) = ̂ 4 ^ = 75, 
^(17,8) = F6F5F3F4 = 240, 

with gcd = 3. 
This completes our analysis of the gk(-, - ) arrays. We summarize our results in the follow-

ing theorem. 

Theorem 7.4: Concerning gcd hexagonal properties for hexagons of radius r = ka in the array 
gk(-, - ) (with a, k sN)we have the following: 

1) For k-\ and k - 2: The equal gcd property folds for a = 1. The weak gcd property 
holds for a> 2. 

2) For k > 3: The weak gcd property fails. 

As a final comment, we note that the equal 1cm hexagonal property does not hold for the 
arrays #* ( - , - ) . 
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1. INTRODUCTION AND PRELIMINARIES 

This article deals with the generalized Fibonacci numbers Uk(m) and the generalized Lucas 
numbers Vk(m) which have already been considered in [9], [11], and elsewhere. These numbers 
satisfy the second-order recurrence relation 

Wk(m) = mWk_l(m) + Wk_2(m) (k>2) (1.1) 

where W stands for either U or V, and m is an arbitrary integer. The initial conditions in (1.1) are 
W0(m) - 0, Wx(m) = 1, or WQ(m) = 2, Wx{m) - m depending on whether Wis Uor V. Whenever no 
misunderstanding can arise, Uk(m) and Vk(m) will be denoted simply by Uk and Vk, respectively. 

Closed-form expressions (Binet forms) for these numbers are 

\Uk{m) = (ak
m-pk

m)lhm, 
\yk{m) = ak

m+pk
m, 

where 

lam = (m + Am)/2, (1.3) 
[fim = (m-Am)/2, 

so that 
<*mPm = -\ am+pm=m, and am-fim = Am. (1.4) 

It can be proved that the extension through negative values of the subscript leads to 

j ^ - 1 ' " " " (1.5) 

Observe that Uk(V) = Fk and Vk(l) = Lk (the kih Fibonacci and Lucas number, respectively), 
while £4(2) = Pk and Vk(2) - Qk (the kih Pell and Pell-Lucas number, respectively). 

The principal aim of this paper is to generalize [14], and some results established in [1], [4], 
and [12] (see also [5]), by finding an explicit form for the infinite series 

where Vk obviously stands for Vk(m) and h, r, and s are positive integers, the last two of which 
are subject to the restriction, 

rls<llam. (1.7) 
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By using the Binet form (1.2) for Vk, it can be proved readily (e.g., see [6], pp. 266-67]) that the 
inequality (1.7) is a necessary and sufficient condition for the sum (1.6) to converge. 

The paper is set out as follows. An explicit form for the sum (1.6) (the main result) is estab-
lished in Section 2, while special cases of it are considered in Section 3. A glimpse of some 
possible extensions is caught in Sections 4 and 5. 

2, THE MAIN RESULT 

The main result established in this paper reads as follows. 

Theorem 1:. 
h+l h 

J+Jr2h-i-j+2y 

Sh(r, s, m) = J- —z 
{^-srm-r2)h+l 

where 

(2.1) 

4y = I(-l)f^1V-»y' (2-2) 
n=Q V J 

are the Eulerian numbers (e.g., see [3]), and the inequality (1.7) is assume to be satisfied. We 
recall that the numbers AhJ may be expressed equivalently [2] as 

4/=Hy£(-iy(5-iy- (2-2f> 
Observe that (2.1) involves the use of (1.5). For illustration only, we show the first few 

numbers Ahj (AhJ *0 for 1 < j <h; AhJ = Ahth_J+l): 

Ahl = l, 
4,1~ 4,2 ~ 1> 
4,1 = 4,3 = *' 4,2 = *> 
A4^ i — A4^ 4 = 1 j A^ 2 — A4> 3 = 11, 

4,1 = 4,5 = 1; 4,2 = 4,4 = 2 6 ; 4,3 = 66> 
4,1 = 4,6 = i; 4,2 = 4,5 =57; 4,3 = 4,4 =302-

Proof of Theorem 1: First, recall (e.g., see [10]) that 

tkY=7r
J^t\Jyh-J+l (M<0- (2.3) 

Then use (1.2), (2.3), and (1.4) along with (1.6) to write 

Sh(r,s,m) =fjkh{ramls)k+fjk\rpmls)k 

k=l k=l 

(l-rajs)™ (1-rfiJs) 
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{ra J* + 1 £ AhJ(ram Isp W + 1 £ \j(rfim Isp 

h h 
(sram + r 2 ) * + T AhJ(ram Isp + (srfim +r2)h+^ 4.jWm Isp 

By using the binomial expansions of (sram +r2)h+1 and (sr/3m +r2)h+l, the equality (2.4) becomes 

~h+l h 

Sh(r, s, m) = 

+z1zf*?1K/+y'3fc**+-wl/(*2-
/=o/=iV J J 

whence, by using the Binet form (1.4), one gets the right-hand side of (2.1). Q.E.D. 

3. SPECIAL CASES 

In this section we consider ordered pairs (r, s) subject to (1.7) for which Sh(r, s, m), beyond 
being a positive integer, has a form that is much more compact than (2.1). First, we need the 
following two propositions. 

Proposition 1: Uln+l-mU2n+p2n-Uln = 1. (3 J ) 

Proposition 2: If we let S stand for either a or /?, then 

SmU2n+1+U2n = S2
m"+l. (3.2) 

Proof of Proposition 1: Rewrite the left-hand side of (3.1) as 

Ul„+l-U2n{mU2^+U2n) 

= U2„+l-U2nU2n+2 [by (1.1)] 

= -(-l)2"+1 = l {by the Simsonformula (e.g., see (2.18) of [9])}. Q.E.D. 

Proof of Proposition 2: For the sake of brevity, we shall prove only the case 8 = a. Using 
(1.2), rewrite the left-hand side of (3.2) as 

[(al»+l-pl"+l)am + ai»-pl"]/Am 

= (a2
m"+2

+a2:)/Am [by (1.4)] 
= a2"+\am + a-J)/Am 

= a2"+1(am-{3J/Am [by (1.4)] 

= a2n+lUl(m) = a2n+l'l = a2n+\ Q.E.D. 

Now, after observing that U2n I U2n+l < 1 / am for all m, we state the following theorem. 
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Theorem 2: 

SH<V2„ U2n+l, m) = X AKpin+lJ^-%n,l){h,iyj. (3.3) 

Proof: Replace r by U2n and s by C/2lf+1 in (2.4), and use Propositions 1 and 2 to write 

Sh(U2n, U2n+h m) = (U2„al»+irit AIT?2^"*) 
J=l \U2n+l J J=l 

y = l \u2n+l 

By using the Binet form (1.2), the right-hand side of (3.3) is immediately obtained. Observe 
that, by solving in integers the Pell equation (1) on page 100 in [13], it can be proved that the 
pairs (U2n9 U2rl+1) are the only pairs (r,s) for which the denominator of (2.1) equals 1. Q.E.D. 

A very special case (n = m=l) of (3.3) is 

Sh(l, 2,1) = £ * % /2* = £ AhJVLKh^j. (3.4) 
k=l j=\ 

The proof of the identity 

Sh(V2n_l,V2n,m) = / A 2
W ? (3.5) 

L/= 1 

which is the Lucas analog of (3.3), is left as an exercise for the interested reader. 

4. EXTENSIONS 

It is obvious that the result (2.1) allows us to evaluate the more general series 

where p(k) is a polynomial in k. As a minor example, we offer the following identity: 

S{n,m)^ft(k1+k)^-Vk =2U2nUi„+lV6n+l. (4.2) 
k=l U2n+\ 

Proof: By (3.3), write 
S(n, iff) = Sx{U2n, U2n+l, m) + S2(U2n, U2n+h m) 

Recalling that Ah x = A2f x = A2f 2 = 1, 

Sfo m) = UJJ^V^ + t/2„F6„+2 + f/2„+1F6n+1)- (4-3) 
After some tedious manipulations involving the use of (1.2), it can be proved that 
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Mn+1 + ^2tf6n+2 ~ ^2n+V6n+l • 

The identity (4.2) readily follows from (4.3) and (4.4). Q.E.D. 

We also tried to extend (1.6) to negative values of A. For h = -l, we get 

rl*""^* = ? (r-/s<l/am). 

Proof: By using (1.2), (1.4), and the identity 1.513.4 on page 44 in [7], 

f>-y=- ln( l - jO (\y\<ll 
k=\ 

the left-hand side of (4.5) can be rewritten as 
-ln(l - ram Is) - ln(l -rfijs)=- ln[(l - ram /s)(l - r/3m Is)] 

= _^-rsm-r\ Q E D 

Special cases of (4.5) are 

(4.4) 

(4.5) 

(4.6) 

Y 1 Utyk 
A=l k U', -In 1 

2n+l JJ2 
u2n+l 

= 2lnU2n+1. (4.7) 

For A = - 2 , we should have at our disposal a closed-form expression for T^=ik y . By 
(4.6), it can readily be seen that 

J r y = -jM^)^ (M<1). (4.8) 
fc=l 

Unfortunately, the right-hand side of (4.8) cannot be expressed in terms of elementary transcen-
dental functions. 

We conclude this paper by establishing the following identity: 

— ^ - 2 + ^ ( m l n t f 2 n + 1 - 2 « A > a J + 21n<y2„+1. 
k=lk +k U2n+i a In 

Proof: By using (1.2) and the identity 1.513.5 on page 45 of [7], 

, l_/ = i_ lzZ l n _ l_ 
£xk{k + \y y \-y 

(4.9) 

(4.10) 

first write 

k=l 

= 2 -

= 2 -

d e f ^ 1 rkVk _ 1 l-ram/st 1 
r a w / s -In l-ra„/s 

1 l-rfim/st 
+ 1 TP?—In 

1 
rfijs l-rfijs 

*m ln- J_+-£=^In * 
r a 
j In 

s-ra 
s + ^ l n 5 

m m s - m m /•/?„, s - r # + ln 
s2 

(s-ram)(s-r/3J 
After some manipulations involving the use of (1.4), one obtains 
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smt X(r,s) = 2 +—lns + ln S1 

r s^-rsm-r* ram 

Then, replace r by U2n and s by U2n+l in (4.11), thus getting 

X{U2n, U2n+l) = 2 + ̂ b ± L + ( 2 l n Uin+i _ l n 1} 

2 +-^-Hs-raJ + ~-ln(s-rfim). 

+ amU2n W mu2n 

Using (1.2) and (1.4), the expression within square brackets becomes 

-%^ln^"+4^1na2'1 
arPln fiM nrJ2n 

a 2n+l 

a In 
—In-^ + ^ - l n c e 
a„ a In A, 

- — ( / # - a~m) In a2: = - ^ - 2 « A m In a . . f/„ /̂W ^ W 
y2« w 2 « 

The right-hand side of (4.9) readily follows from (4.12) and (4.13). Q.E.D. 

(4.11) 

(4.12) 

(4.13) 

5, CONCLUDING COMMENTS 

For the sake of brevity, we confined ourselves to considering series involving only the num-
bers Vk(m). On the other hand, analogous results for Uk(m) cm readily be obtained by parallel-
ing the arguments in Sections 2, 3, and 4. This can be done as an exercise by the interested 
reader. 

The investigation of infinite series involving terms of the more general sequences {Wk(a,b; 
m, q)}^=0 (see [8]) seems to be a substantial extension of our study, and will be the object of a 
future work. For a = 0 and h = -q = 1, this investigation might lead to an interesting generaliza-
tion of Theorem 10 of [11]. 
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IN MEMORIAM—LEONARD CARLITZ 

Leonard Carlitz, a long-time friend and supporter of The Fibonacci Association, passed away on 
September 17, 1999. For many years Carlitz was on the editorial board of The Fibonacci Quarterly, and 
between 1963 and 1984 he published 72 articles in the Quarterly (including 19 joint papers and 7 short 
notes). 

Carlitz was born in 1907 in Philadelphia, and he grew up in that city. He won a scholarship to the 
University of Pennsylvania where he completed his AB degree in 1927, his MA degree in 1928, and his 
Ph.D. in 1930—all in mathematics. His Ph.D. thesis advisor was H. H. Mitchell, who had been a 
student of Oswald Veblen who, in turn, had studied under E. H. Moore. Inspired by earlier research of 
Emil Artin, Carlitz wrote his dissertation of "Galois Fields of Certain Types." This work appeared 
under the same title in the 1930 Transactions of the AMS (Vol. 32, pp. 451-472). 

Carlitz spent the 1930-1931 academic year as a National Research Council Fellow studying with E. 
T. Bell at the California Institute of Technology, and he spent the 1931-1932 academic year with G. H. 
Hardy in Cambridge, England, as an International Research Fellow. He taught at Duke University, 
where he was James B. Duke Professor of Mathematics, from 1932 until his retirement in 1977. At 
Duke he was research advisor to 44 Ph.D. students and 51 MS students. He was also involved in the 
early planning for the Duke Mathematical Journal (established 1935), and he served for many years as 
the managing editor.. He spent the year 1935-1936 at the Institute for Advanced Study. 

In the summer of 1931, between Caltech and Cambridge, Carlitz met and married Clara Skaler. 
They had two children: Michael (born 1939) and Robert (bora 1945). Mrs. Carlitz died in 1990. 

Carlitz was a prolific and insightful researcher, with 771 publications in many different areas of 
mathematics. He will be remembered as a first-class mathematician, an inspiring teacher, and a kind, 
generous man. More information about him, including some personal anecdotes, can be found in the 
excellent tribute by Joel Brawley: "Dedicated to Leonard Carlitz: The Man and His Work" [Finite Fields 
and Their Applications 1 (1995):135-151]. 

F. T. Howard 
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1. INTRODUCTION AND STATEMENT OF MAIN THEOREM 

Everyone knows that the familiar binomial coefficients are integers. But it is not so obvious 
that quotients of binomial coefficients whose parameters are linear in n by factors linear in n also 
sometimes yield sequences of integers. For example, 

llnU ={1,1,2,5,14,42,132,...} 
Tt + 1 v n ,, 

is the well-known sequence of Catalan numbers. In the same vein, 

{f(»2-3)}n>3 = ̂ 6'27'110'429'^ 
is sequence M4177 in Sloane and Plouffe's Encyclopedia of Integer Sequences [3], 

1~\f^2-l)i is s e c l u e n c e M 2 8 0 9 > 

— -— — n„ I > is sequence Ml 660, 
(3w + 2)(3w + l)V n J) 

is sequence M3904. 1/1 + 3 ^ - 1 / 
There are at least another dozen such sequences listed in the Encyclopedia, including Ml 782, 
M2243, M2926, M2946, M2997, M3483, M3542, M3587, M4198, M4214, M4529, M4721. 
Incidentally, the smallest-parameter such sequence of integers not listed seems to be 

{£(£,)} = K3",T O-frl)} = & ">•«, .98.1001. 
Why are these sequences integral while similar sequences such as 

k(2n^ and * f2n 

}• 

n\n) 2n + l\n, 
are not, no matter what the integer k is? Here we attempt to shed some light on this question. 
Each of the above sequences is an integer multiple of a sequence of the form 

1 fan+b^ 
P(n)\cn + dy 

where P(n) is a product of one or more factors linear in n with integral coefficients and a, b, c, d 
are integers with a>c>0. Let us call such a sequence w linear binomial. In this paper, we 
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establish a simple and intuitively appealing criterion for a linear binomial sequence w to have 
bounded denominators, equivalently, for the existence of an integer k such that Aw is a sequence 
of integers. Furthermore, when the criterion is met, the proof consists of verification of an 
algorithm that produces not only a suitable multiplier k, but also a "Certificate of Integrality" for 
kw in the form of an identity expressing it as an integral linear combination of binomial coeffi-
cients. For example, the algorithm yields that the Catalan number -~[{2^) is equal to 

For j;(*"3), the algorithm returns the identity 

3 / In \_(2n-\\_(2n-l\ 
n[n-3J~{n-3J [n-4J' 

A small Mathematica package, DecomposeBinomial, implementing this algorithm, is available 
from the author's home page at http://www.stat.wisc.edu/~caISan/. 

The criterion for bounded denominators revolves around cancellation of the factors in P(n) 
with factors in what might be called the symbolic numerator of ( " ^ ) . Here cancellation refers to 
proportional polynomials or, equivalently, division in the polynomial ring Q[ri\. Set e = a-c and 
f -b-d. Thus, for any particular n, 

[cn + dj (cn + d)\ ' K } 

Now define the numerator set N of this binomial coefficient (considered symbolically) to be N = 
U<uV, where U= {an + b-i}t>0 and V={en + f + j}j^x. Thus, N contains both "ends" of the 
range of factors in the numerator in (1) but not the "middle." For example, for (2"), the numera-
tor set consists of {6n, 6n -1,6n - 2,...} u {4n +1,4n + 2,...} (but not any term of the form 5n±i). 
Similarly, define the denominator set D = {cn + d-i}i>Q. The desired criterion can now be 
expressed as follows: Each linear factor in P(n) must divide a factor in N and if a factor in D is 
proportional to one in P(n), it too must divide a factor in N (always taking multiplicity into 
account). 

For example, 2^r(2
w

w) ^ s t 0 m e e t ^ s criterion because 2/1 + 1 does not divide any term in 
N= {2/?, 2n-l, ...}u{« + l,« + 2,...}. And -̂ (2„w) also fails to meet the criterion because D-
{n,n-\...} includes «, giving two w's that need to divide factors in N = {2n,2n-l, ...}u 
{n +1, n + 2,...} but only one term in N is divisible by n. On the other hand, •£ (2^+i) does meet the 
criterion because, although here again D includes a factor proportional to n, namely 2n, the num-
erator set N = {5w, 5w-l, ....}u {3w, 3« + l,...} contains two terms proportional to «, and so both 
offending factors can be canceled. Clearly, no two factors in C/(resp. V, resp. D) can be propor-
tional. It follows that the criterion cannot be met if P(n) has two proportional (or repeated) fac-
tors. This is because the only way N can contain two proportional factors is if one of them is in U 
(say in the ith position) and the other in V (say in the 7th position). But then a simple calculation 
shows that the (i+j)®1 term in D would also be proportional to both, and "three into two won't 
go." 
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To state the criterion (and our main result) succinctly, we make two definitions. Say a linear 
factor appears in a set if it is proportional to a term in the set. Thus, 2n +1 appears in the numer-
ator set of (4w*3). Also, say a linear binomial sequence p ^ y ( ^ ) is normalized if each linear 
factor gn + h in P(n) has relatively prime coefficients g, h. 

Using this terminology, our main result can be formulated as follows. 

Theorem 1: Suppose w = j^j{cn+d) °ls a normalized linear binomial sequence. Then w has 
bounded denominators if and only if P(ri) fs linear factors are distinct and each such factor appears 
in the numerator set N of the binomial coefficient (as defined above), and appears there twice if it 
also appears in the denominator set D. 

Furthermore, if a linear binomial sequence w has bounded denominators, then there is a 
positive integer k such that kw is an integral linear combination of a fixed number (independent of 
ri) of binomial coefficients with parameters linear in n. 
Remark: Bearing in mind that a factor can appear at most twice in N, an equivalent but more 
pithy formulation of the criterion for bounded denominators is: if and only if P(w)'s linear factors 
are distinct, and each appears more often in N than in D. 

The "only if part is proved in §2. It relies on Dirichlet's classic theorem on primes in arith-
metic progressions [1, Chap. 7], and Kummer's pretty rule for finding the exact power of a prime 
p that divides a binomial coefficient; the number of carries when its parameters are subtracted in 
base/?. See [2, Ex. 5.36, p. 245] for a proof of Kummer's rule (in an equivalent formulation in 
terms of addition in basep). The "if1 part is proved in §4. It relies on a neat determinant expan-
sion, of interest in its own right, that is presented in §3. Finally, §5 contains a mild extension of 
the main theorem, some further remarks, and a conjecture. 

2, MAIN THEOREM: PROOF OF ?fONLY IFf? 

We will show that infinitely many primes occur among the denominators in j5^(cn+d) when 
the criterion of Theorem 1 is not met. Let gn+h be a factor in P(n). Suppose p = gn + h is 
prime (as it will be for infinitely many n by Dirichlet's theorem, since g and h are relatively prime). 
Write a = qxg + rt with 0<rx<g and c = q2g + r2 with 0 < r2 < g (division algorithm). Expressed 
in base/?, the two parameters of the binomial coefficient are then (for sufficiently large ri) 

an + b-

1 
rpi + b-qji 

b-qxh 

and similarly, 

cn + d = 

p 
<h 
<J2 

12-1 

1 
r2n+d-q2h 

d-q2h 
p-(q2h-d) 

i f r^O, 
if/i = 0 and b>qxh, 
if/i = 0 mid b<qxh, 

ifr2*0, 
if r2 = 0 and d>q2h, 
if r2 = 0 mdd <q2h. 
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In particular, since an + b has only two digits in base/?, at most one carry can occur in subtract-
ing cn + d from an+b in base/?. Thus, p2t{™nXbd) a n 4 if gn + h is a repeated factor in P(n), then 
p will occur among the denominators in w (for infinitely many primes p) and w will have 
unbounded denominators. Also, no carries occur in subtraction, equivalently pJ(^J5) if and only 
if (an + h) mod p>(cn + d) mod p. It is straightforward to verify that gn+h appears (i) in [/iff 
rx = 0 and b>qxh, (ii) in Viff rx=r2 and (ql-q2)h>b-d, (iii) in D iff r2 = 0 and d>q2h. 
Except for one wrinkle, it is now simply a matter of checking cases to verify/? j(^+^) unless 
gn + h- p appears in the numerator set N at least once, and twice if it appears in the denominator 
set D. This will show that infinitely many primes occur among the denominators in w, as desired. 
The one wrinkle is that when 0<rx <r2 (a subcase where gn + h does not appear in N at all), p 
does divide (*£J5) and we proceed as follows. Set n = (g-l)m-h with m variable; thus, 

1 (an + b\ = _ J _ _]__fa(g-l)m- ah + b 
gn + h\fn + d) g-\ gm-h\c(g-l)m-ch + d 

Here r{\- (a(g-l)) mod g = g-rt and r2:=(c(g-l)) mod g = g-r2. Since r{>r2:> the case 
ri > r2 applies with m in place of n, a(g-1) in place of a, and the role ofp played by gm - h. This 
completes the proof of the "only if1 part. 

3. A DETERMINANT EXPANSION 

The following result is crucial for the "if part of the main theorem in the next section. Let 
coeff denote the function that produces the row vector of coefficients of a polynomial or the 
matrix of coefficients of a list of polynomials. Thus, 

c°efflzc/xj=(c/)r=o-
Let * denote convolution of sequences; thus, 

coeff (p(x)q(x)) = coeff (p(x)) * coeff (q(x)). 

Also, for a matrix N, let N° denote the column vector obtained by taking the Hadamard (entry-
wise) product of the columns in N. For example, for N = {\ 4), N° - (i2). 

Theorem 2: Let /wbea positive integer and let a} (l<j< m\ bjt (1 < 1 <j < m), c, e, x be inde-
terminates. Let Nbe the m +1 by m matrix with rows indexed [0, m] and columns indexed [1, m], 
and (/', j) entry 

[cx + Qj i£0<i<j<rn, 
)ex + K if \<j<i<m. 

Let Mbe the m +1 by m +1 matrix coeff(N°). For example, when m = 2, 

N = 
^cx+ax cx + a2 ^ 
ex+bn cx+a2 

Kex+b2l ey 

Then det M = Ui<i<J<m(eaj -cbfi) 

ex+b2l ex + b22j 

( > 

and M-
{ax+a2)c 
bnc + a2e 

.2 A c 
ce bna2 

P2A2 (K+b2i)e el 
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Proof: We first show, for \<i<j<m, that eaj-cbj{ divides detMin the polynomial ring 
Q(e, c)[a's, b' s]. To do so, suppose eaj = cbjt for some /, j . Let iV7- denote the submatrix of n 
consisting of rows 0 through/ Then pj '^tlj^^icx+a^ is a factor in each entry of JV}; we 
may write NJ = (^)0</<y^; with deg^ =j-l (0<i < j). Now rows 0 throughy ofMconstitute 
the submatrix My = coeflF(iy/-) = (coeflF(r/))0^ * coeff(>;) [convolution of each coeff (/;) with 
coeff (p,)]. Since Rjf :=(coeff(#j))0^ is a y' + l byy matrix, its rows are linearly dependent 
[over Q(e, c, a's, &'s)] and there exists a nonzero vector u = (^)o</<./ s u c^ * a t u ^ / - ® • Thus, 

uMj = u(Rj * coeff{pj)) = (uRj) * coeff (/?,.) = § * coeff (/>,) = 0 

and Mis singular. Hence, eay - c ^ is a factor of det M Since each eaj -cb^ is obviously prime 
in Q(e9c)[a\ A's], their product also divides det M and Theorem 2 follows by confirming the 
degrees agree and the coefficients of any one term agree. 

Corollary 3: Let TV" be an m + l by m matrix with linear polynomials in one indeterminate as 
entries. Partition N into offset row and column segments as indicated. (Each vertical column seg-
ment sits atop the last position in the corresponding row segment.) 

0 
1 
2 
3 

m 

Suppose, for l<j<m, that all entries in column segment j are equal and this common entry does 
not divide any of the entries in row segment j . 

Then the rn +1 by m +1 matrix M = coeff (N°) is invertible. 

Proof: The matrix TV is of the form in Theorem 2. Clearly, a factor eaj - cbjt (\<i<j< m) 
in det Mis 0 if and only if cx+a- is proportional to ex + bJi9 that is, divides ex + bjr But these 
polynomials lie in corresponding row and column segments and thus the hypothesis ensures that 
one does not divide the other. Hence det M * 0 and Mis invertible. 

4. MAIN THEOREM! PROOF OF tfIFf? 

We seek an expression for p73-(c«+S) a§ a rational-coefficient linear combination of binomial 
coefficients. Due to the basic identity (£) = ( ^^ (^ - l ) ? we can always reduce an upper param-
eter at the expense of increasing the number of terms in the linear combination. Thus, we look for 
a combination in which all the upper parameters are the same. It will turn out that a suitable 
upper parameter is determined by the factors in P(n) that appear in U (the upper range in the 

1 2 3 m 

D 
IZ 3 
lr~ 

... r-|\ 

1 
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numerator set). Specifically, it is an+b-u, where u is the location of the last term in [/that 
appears in P{ri) (and u = 0 if there is no such term). 

By hypothesis, each (linear) factor of P(n) appears in U or V or possibly both. Let 
(an+b + l-i)ieIKj(en + f + j)j€j 

be a complete listing of these appearances, where / and J are finite subsets (one of them may be 
empty) of the positive integers. Set u - max / and v = max J (with max 0: = 0). Let rx - an + 
b + l-i, sx -en + f +v + l - j , and tt -cn + d-u-v+i, so that 

fan + b}_rft^j$'"^„ an + h-u \ 
\cn+d) tu+vtu+v_l..Jir- nST^ \cn + d-(u + v))-

We claim that all appearances of P(n)'s factors in N<uD occur within the three groupings dis-
played in the middle expression. This is true for the numerator N by definition of u and v. And if 
a P(n) factor gn + h appears in D, then by hypothesis it appears in both U and V, say in the 7th 

position in U and the y* position in V. As noted earlier, a simple calculation then shows that the 
position in D at which gn + h appears is i+j. Since i <u and j < v, it follows that i+j<u+v 
and so the (i + j) term in D is one of the displayed fs. Hence, the claim. 

Next, we have to determine appropriate lower parameters for the binomial coefficients in the 
desired linear combination. This turns out to be a little tricky; rather than being consecutive 
as one might expect, they turn out to form an interval with a hole in it. To this end, define L = 
{i G[l,u + v]:tj\Sj in the ring Q[n] for somej with l<j<i). Since thej here is necessarily 
unique, we get a map ^:/,—»[!,u + v] satisfying ^|^(/) and </>(i) <i, i GL. Also, it is easy to 
check that L is either empty or an interval of integers. (The reader might like to look ahead to the 
illustrative example at the end of this section.) Suitable lower parameters are determined by 
removing L from the set [1, u + v] and adjoining 0. Thus, we set K: = [1, u + v] \ L and the rest of 
the proof is devoted to showing that there exist (unique) rational numbers (ci)ieKKj{0) such that 

y ( an + b-u \_ 1 (an + b\ ^ \ 
tJtlo) \cn+d-(u + v) + i)- P(n){cn + dJ- ^ > 

Factoring out (c«+^~(M+V))/n;e^ tj from each side, (2) is equivalent to 

jeK ieK ^jeLlj r\P)lljeLlj 

We will show that (i) both sides of (3) are polynomials in n, and (ii) equating coefficients of like 
powers of n in these polynomials yields a system of linear equations for the c7's with a coefficient 
matrix to which the Corollary to Theorem 2 applies (and which is therefore invertible). 

Consider the right side of (3). All the factors in P(n) appear in its numerator by definition of 
u and v. For ; G I , we have f. | ^ ) . If <j)(j) < v, then s^ is present in the numerator. If, on 
the other hand, (j>(j) > v, we claim: tj also divides some rt with 1 < / < u. In fact, i-u + (j>(j) - j 
works. First, i>\ since 7 > u + v - j > 0 and i < u since <j>(j) < j . Second, tj \s^ implies 

tj\tj+sM=(cn + d-(u + v) + j) + (en + f+v + l-0(j)) 
= an + b + l-u + j - <j)(j) = an + b + l-i = rr 
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Hence, the claim. Thus, every factor in the denominator divides a factor in the numerator. And if 
a factor in P(ri) also appears among {tj}JeL, then by hypothesis it appears twice in N and hence 
appears twice in the numerator. So the right side of (3) is indeed a polynomial Prhs(n) and its 
degree is u + v - d e g P - \L\ = | ^ | - d e g P . 

As for the left side of (3), it is clearly a polynomial if L = 0. Else, since K = [1, u + v] \ L and 
L consists of consecutive integers in [1, i/+v], K may be written as a disjoint union of intervals 
Ks u Kb (Ks for the smaller numbers, here one of Ks, Kb may be empty). For / GKS, summand / 
isq(J^jriSj)QlkeK9k>itk). Now suppose i eKb. As tJ\s4U) for j GL and <f>{j) <j < maxZ < /, 
each t in the denominator of summand i divides some s in the numerator, leaving a quotient 
q:=e/c (e and c being the coefficients of n in the s's and i*s, respectively). Hence, the left side of 
(3) is the polynomial 

( t \ f \ 

jeK ieKs 
Pijrt^coii'j+i,0!\USJ H'k + z ^ i nsJxtM^ 

^/=l keK,k>ij i*Kh 

u+v 
\Je[hi],J*mgt 

(4) 

and its degree is \K\. 
Equating coefficients of powers of n in these polynomials gives a linear system of equations 

for the linear combination coefficients ct. To apply Corollary 3 to the coefficient matrix of this 
system, arrange the factors in the products occurring in P]hs(n) into a (block) matrix 

K, Kb 
N = Ksu{0}(N1 N2\ Kb {N3 NJ 

with rows and columns indexed as indicated. For blocks Nx and N4, the ij entry is tj if / < j and 
Sj if i > j . For N2, the ij entry is tj for all i. For N3, each row is (Sj)jeKs^LJ^(L) (order im-
material). Thus, in matrix terms, Plhs(n)=cN°, where c = (c0,(c;.)/e^(qr,L,c/)/eJ^) incorporates 
the glL| factors. 

Nov/ equate coefficients of powers of n in Plhs(n) = PThs(n), that is, in cN° = PThs(n), by apply-
ing the coefF operator of §3, to obtain 

ccoeflF(J\T) = coeflF(Plhg(/i)). 

This is a linear system of | ^ | + 1 equations in the \K\ + l unknowns c. The coefficient matrix 
M = coeff(iV0) is invertible because Corollary 3 applies to N. The hypothesis of the Corollary is 
met because, for all j eK = Ks^Kb, all entries of Ndirectly above position (/', j) are equal to tj, 
and all entries at or to its left are of the form si with i<j. And tj does not divide any such st or 
else j would lie in L whereas, by the definition ofKJ does not lie in L. 

To illustrate, for (6n+u^l3){62n!il w ^ have u = 2, v = 6, r,=&i + 16- i , $=4w + 14- i , 
tt = 2n+i. Since t3 \%, t4 |s6, t5 \s4, and t61^, we have L = {5, 6} with ^(5) = 4, </>(6) = 2. This 
makes Ks = [1,4] and Kb = [7,8]. The common factor in (2) is 

6n2n3) / ^2n + 1 ) ( 2 ^ + 2^2n + 3 ) ( 2 w + 4 ) ( 2 / l + 7 ) ( 2 ^ + 8 ) ) ' 

After dividing this out, the polynomial remaining on the right side is 

2000] 323 



CERTIFICATES OF INTEGRALITY FOR LINEAR BINOMIALS 

while that on the left side is 

where N = 

22(6n +1 5)(4/2 + 8)(4/2 + 9)(4n +11) 

(c0, c1? c2, c3, c4,4c^, 4 ^ ) ^ ° , 

0 
1 
2 
3 
4 
7 
8 

1 2 
r2n + l 2/2 + 2 
4/1 + 13 2/2 + 2 
4/1 + 13 4/1 + 12 

3 

2/1 + 3 
2/1 + 3 
2/1 + 3 

4/1 + 13 4// + 12 4// + 11 

4 
2/2 + 4 
2/1 + 4 
2/1 + 4 
2/1 + 4 

7 8 
2/1 + 7 2/2 + 8A 

2/1 + 7 2/1 + 8 
2/1 + 7 2/1 + 8 
2/1 + 7 2/1 + 8 

4/1 + 13 4/2 + 12 4/i + H 4/1 + 10 2/1 + 7 2/2 + 8 
4/1 + 13 4/2 + 8 4/? + l l 4/? + 9 4/2 + 7 2/2 + 8 

v4/2 + 13 4/2 + 8 4/2 + 11 4/2 + 9 4/2 + 7 4/2 + 6̂  

5. CONCLUDING REMARKS 

Theorem 1 enables one to tell by inspection if a linear binomial sequence -p7~j(cn+d) has 
bounded denominators. The theorem readily extends to sequences of the form j^(c"td)> where 
both/? and Q have linear factors. Indeed, if gn+h is a factor in P(n) with g and h relatively 
prime, and if g'n + h' is a factor in Q(ri), then the prime values of gn + h can divide g'n + h' for 
only finitely many values of n unless gn+h divides g'n + h' (as polynomials in n over Q), in 
which case they can be canceled. Thus, the criterion of Theorem 1 also applies to j^(c"+d)-

The algorithm of Theorem 1 often yields the "smallest" sequence of integers among all multi-
ples of the original sequence that are integral. But it does not always do so. It does not neces-
sarily even yield the smallest sequence expressible as an integral linear combination of binomials. 
For example, (^) will be returned unchanged, whereas 

U5n)_(5n-l\(5n-l 
5{2n)-{ 2/2 J 1,2/2-1 

Here is another phenomenon: (2t-i) is also returned unchanged, while 

i f 4/2 ) _ , 4/2-1 
812 /2- l j~^ 12/2-1 

4/2-1 
2/2-_ * - ( 4 / 2 - 0 ( 4 / 2 - 3 ) — 4/2-5 

is clearly a sequence of integers. We conjecture that every such rational multiple of a linear 
binomial that yields a sequence of integers is similarly expressible as a linear combination of 
binomial coefficients with polynomial coefficients in Z[n]. It would be interesting to characterize 
those cases where the coefficients can be taken to be constants, to extend the algorithm of 
Theorem 1 to sums 

y P^fap + b^ 

and to sharpen it to yield "smallest" sequences. 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my-deja.com 
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1. INTRODUCTION 

In [4], the authors have defined oo-generalized Fibonacci sequences, which are defined by 
recurrence formulas involving infinitely many terms and which are generalizations of weighted 
r-generalized Fibonacci sequences with r finite as defined in [1]. In this paper we study the con-
vergence property of such sequences and their associated series. 

Let us first recall the definition of oo-generalized Fibonacci sequences. Take an infinite 
sequence {oj},^, of complex numbers. We set h{z) - J^Lo®*2' for z eC and u(x) - lL*L\\ai lx' f°r 

x G R . Let R denote the radius of convergence of the power series /?, which coincides with that 
ofw. We assume the following: 

0<Z?<oo. (1.1) 

Let X be the set of the sequences {^}*0 of complex numbers such that there exist C> 0 and T 
with 0<T<R satisfying | Jty | <CT for all /'. Note thatXis an infinite dimensional vector space 
over C, which will be the set of initial sequences for oo-generalized Fibonacci sequences associ-
ated with the weight sequence {^}*0. Define / : X -> C by f(x0, xh...) = T^=oaixt- Since the 
series J^LQ^CT converges absolutely, the series defining/ also converges absolutely. Then, for 
a sequence {yQ, y_x,y_2,...} e X, we define the sequence {yh y2,y$9..-} by 

00 

J V = /Ov-i,yn-i,yn-^-..)-Y.ai-\yn-i (n = \2> \-•), 
/=i 

which is well defined as is shown in [4]. The sequence {>>/}, GZ is called an oo-generalized 
Fibonacci sequence associated with the weight sequence {a;}^0. Note that if there exists an inte-
ger r > 1 such that at = 0 for all i >r , then the sequence {a,}*^ satisfies condition (1.1) and the 
above definition coincides with that of weighted r-generalized Fibonacci sequences with r finite 
(see[l]). 

Note that, as far as the authors know, this is a new generalization of the usual Fibonacci 
sequences and almost nothing has been known about such sequences until now, except those 
results obtained in [4]. For example, the following questions naturally arise. 
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(Ql) Are they combinations of geometric progressions, as in the finite case? 
(Q2) Are they asymptotically geometric? 
(Q3) Do they converge to limits? 
(Q4) Do their sums converge to limits? 
(Q5) Is it possible to express the /1th term of such a sequence as a function of n in some 

nice way? 

We briefly recall the results obtained in [4], which are fundamental for the present paper and 
which give an answer to (Q2) above. 
Lemma 1.2 ([4], Lemma 23): (1) Suppose that each at is a nonnegative real number and that 
there exists anS with 0<S<R satisfying 

a0 > $~l - u(S) (or, equivalent^, Sh(S) > 1). (1.2.1) 

Then there exists a unique q GH such that q > S~l, {?~(z+1)}J0
 G %-> a n d fiff1* ~̂2> ̂ ~3> ...) = 1. 

(2) Suppose there exists an Swith 0<S <R satisfying 

\a0\>S-l+u(S). (1.2.2) 

Then there exists a unique q GC such that \q\ > S~\ {q~{i+l)}Zo G x , a n d f(^~\ 9~2> 9~3> •••) = l-

Note that, in the finite case [1], the above q corresponds to the root of the characteristic 
polynomial of maximal modulus. As has been seen in [4], the existence of such a q plays an 
important role in studying the asymptotic behavior of oo-generalized Fibonacci sequences [see 
(Q2) above] and hence in exploring questions (Q3) and (Q4) above (see §5). More precisely, the 
following has been proved in [4]. 

Theorem 1.3 ([4], Theorem 3.10): Let {a,.}*^ be a sequence of complex numbers that satisfies 
(1.1) and admits an S with 0 < S < R satisfying (1.2.1) or (1.2.2), and 

S2u'(S)<\. (1.3.1) 
Then X\mn^O0ynl qn exists and is equal to 

00 

Yfinffy-m oo n 

^ with bm = Y.^k-
Y.K ,=m q 
m=Q 

In the following, we always assume that the conditions of Theorem 1.3 are satisfied. These 
conditions demand that the modulus of the leading weight coefficient a0 should be sufficiently 
large (see also §5). There are many sequences that satisfy these conditions. For example, take an 
arbitrary holomorphic function hx(z) defined in a neighborhood of zero. Then the sequence 
appearing as the coefficients of the power series expansion of the holomorphic function h(z) = 
hx(z) + a at z - 0 satisfies the above conditions for all a eC with sufficiently large modulus \a\. 

In this paper we consider questions (Q3) and (Q4) mentioned above and prove the following 
results, which give answers to the questions in certain situations. 

Theorem 1.4: Suppose that each at is a nonnegative real number and that E^=0 hmqmy_m ^ 0. 
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1. The following three are equivalent. 
(a) The sequence {y„}*=1 does not converge. 
(b) sr=o«,>i-
(e) q>\. 

2. The following three are equivalent. 
(a) The sequence {y„}"=1 converges to a nonzero real number. 

(e) q = \. 

Furthermore, in case 2(a), we have 
00 

2-4 ^ms-m oo 

l i m J n = - < L w i t h bm = Yjai. 

/w=0 

3. The following three are equivalent. 
(a) The sequence {y„}J|Li converges to zero. 
(b) sr=0^<i. 
(c) q<l. 

Theorem 1.5: Suppose that each at is a nonnegative real number and that Y£^bmqmy_m * 0. 
L The following three are equivalent. 

(a) The series S*=1 >>„ does not converge. 
(b) zr=o«^i-
ft) <7>1. 

2. The following three are equivalent. 
(a) The series Z*=iJ>w converges. 
(b) zr=0^<i-

Furthermore, in case 2(a), we have 
oo oo oo / oo \ 

Z v _ y=o >=y w=o V/=m y 
•^ « OO 0 0 

When a, are general complex numbers, we have the following theorem. 

Theorem 1.6: Suppose that Z*=0 K^y-m * °-
1. We have the implications (b) => fcj <=> fa) among the following: 

(a) The sequence {\yn |}^=1 converges to oo. 
(b) Ki-zr=iKi>i. 
(c) \q\>l. 
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2 The following two are equivalent. 
(a) The sequence {\yn |}^=1 converges to a nonzero real number. 
(h) |*| = 1. 

Furthermore, in case 2(a), we have 

lim[)/J= 
2XO-
m=Q 

TK 
m=0 

J. We have the implications (b) => (c) <=> f a) among the following: 
(a) The sequence {yn}™=i converges to zero. 

m sr=oKi<i-
(c) \q\<\. 

Theorem 1.7: Suppose that S L o ^ > - m * °-
/. The following two are equivalent. 

(a) The series Z"=il.y„ | does not converge. 
(b) \q\>\. 

2. The following two are equivalent. 
(a) The series Y%=1\yn | converges. 
(b) \q\<h 

Furthermore, in case 2(a), we have 
oo oo oo f oo A 

Z y _ 7=0 *=J m=0 \i=m J 
°° oo 

i-5> i-5> 
/=0 /=0 

Note that the above results generalize some of the results of Gerdes [2], [3], concerning 
weighted r-generalized Fibonacci sequences with r = 2 and 3. 

The paper is organized as follows: In §2 we prove the convergence result, Theorem 1.4, for 
the nonnegative real case. In §3 we prove the convergence result, Theorem 1.6, for the general 
case. In §4 we give an explicit formula for the generating functions of oo-generalized Fibonacci 
sequences that generalize a result of Raphael [5], and prove the convergence results for the series, 
i.e., Theorems 1.5 and 1.7. Finally, in §5 we give some remarks concerning questions (Q1)-(Q5) 
mentioned above. 

2. CONVERGENCE OF SEQUENCE—NONNEGATIVE MEAL CASE 

In this section, we prove Theorem 1.4. 

Lemma 2.1: J£K = TZ=obnflmy-m * 0 and |^| > 1, then lim^Jj/,,| = oo. 

Proof: By Theorem 1.3, there exists an integer N such that, for all n > N, we have 

2000] 329 



CONVERGENT oo-GENERALIZED FIBONACCI SEQUENCES 

\{ynlq")-K\<\K\l2. 
In particular, we have 

\yn\>\K\\q"\-\K-{ynlq")\\q"\>\K\\q\"l2 

for all n> N. Then the result is obvious. • 

Lemma 2.2: If \q\ < 1, then l im^Jy n | = 0. 

Proof: By Theorem 1.3, there exists an integer N such that, for all n> TV, we have 

IO„/<7")-*l<l-
Then we have 

hence, \yn \ < (\K\ + l)\q\n for all n> N. Then the result is obvious. • 

Lemma 2.3: Suppose that each at is a nonnegative real number. 
(1) IfZSo^ >l,then?>l. 
(2) lfZT=o^i=^,thmq = l. 
(3) I fZ^o^ < l , t h e n ^ < l . 
Proof: Let #>: [0, R) -> R be the function defined by #?(x) = x/?(x), which is strictly increas-

ing. Note that <p(x) = 1 if and only if f(x, x2, x3,...) = 1. 
(1) When S < 1, we have nothing to prove, since q > S~l. When S > 1, we have 1 < S < R 

by our assumption and 

<p(l) = K\) = fdai>\ = <p(q-i) 
/=0 

by Lemma 1.2. Thus, we have 1 > q~l, which implies that q > 1. 
(2) Since Hf=oai converges, we have i? > 1. If R > 1, then x = 1 is the unique solution of 

the equation <p(x) = 1 on the interval [0, R). Thus, q~l = 1 by Lemma 1.2. If R - 1, then #? can be 
extended to a strictly increasing function on [0, R] with (p(l) = 1. This contradicts the assumption 
that <p(S) > 1 for some 5 e [0, R). 

(3) Since ZJ 0
a i converges, we have i? > 1. By the same argument as in (2), we have 

R > 1. Then we have #>(1) < 1 = <p(q~l) by Lemma 1.2. Thus, we have 1 < q~l, which implies 
that q < 1. D 

Theorem 1.4 follows from the above lemmas together with Theorem 1.3. 
The condition that Y^n=^bmqmy_m ^ 0 is satisfied, for example, for yt = g, where {gz}7 e Z is 

the sequence as defined in [4, §3]. Thus, we have the following corollary. 

Corollary 2.4: Let {g^L\ be the oo-generalized Fibonacci sequence associated with the initial 
sequence {g.j}^=0, where g0 = l and g_t = 0 for i > 1. If all at are nonnegative real numbers and if 
SJloa/ = 1> *hen ̂ e sequence {&•},*! converges to 
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3, CONVERGENCE OF SEQUENCE—GENERAL CASE 
In this section we prove Theorem 1.6. 

Lemma3.1: If |a0| - I ^ a , . | > 1, then \q\>\. 

Proof; When S < 1, we have \q\ > 1 by Lemma 1.2. When S > 1, we have 1 < 5 < i?. Con-
sider the function t: [0, i?) -» R defined by f(x) = xV(x), which is strictly increasing. Then we 
have r(l) < t(S) < 1 by condition (1.3.1). Furthermore, by our assumption, we have \a0 |> 1 + u(l). 
Hence, in (1.2.2) and (1.3.1), we may assume that £ = 1. Thus, we have \q\ > 1 by Lemma 1.2. 
This completes the proof. • 

Lemma 3.2: If Z^oK-1 < 1> then \q\ < 1. 

Proof; We have 
oo oo 

i = 0 

0+1) 

/=o 
^IM^Y - i i/+i 

Thus, we have \q l \ > 1. This completes the proof. • 
Theorem 1.6 follows from the above lemmas together with the lemmas in §2 and Theorem 

1.3. 

Corollary 3.3: Let {g^fLi be the oo-generalized Fibonacci sequence associated with the initial 
sequence {giJJo* where g0 = l and g_t = 0 for / > 1. Then the sequence {g}^ converges to a 
nonzero complex number if and only if | q | = 1. 

4 GENERATING FUNCTION AND CONVERGENT SERIES 

First, we prove the following formula for the generating function of oo-generalized Fibonacci 
sequences, which generalizes a result of Raphael [5]. 

Theorem 4.1: Suppose that the sequence m ^ 0 satisfies the condition in Lemma 1.2. Then the 
generating function of the sequence \y^=\ is equal to 

where h(z) = J^L^a^1 and 
•zh(zY 

(, \ 

More precisely, the above equality holds for all z e C with \z\ < \q\~l. 

Proof: First, consider the power series k(z). Let the radius of convergence of k be denoted 
by R!. Then we have 

( 
R! lim sup n I>/^-/ 

'=; 

V1 

Since the sequence {y0, y-i, y-2> • •-} *s a n element of X, there exist C > 0 and T with 0< T <R 
such that y_t < CT for all i > 0. Thus, we have 
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lim sup j \ 
/->oo y 

< lim sup y EK|C7*-> = lim sup l ^ W ? 
y->oo y i=j y-»oo y i /=y 

< lim sup ̂ -{/u(T) = —. 

Thus, we have R' >T. Since we can choose Tas close to R as we want, we have R > R. Thus, 
in particular, for z G C with \z\ < R, the series k(z) converges absolutely. 

Therefore, for z with | z\ < R, we have 

V/=o ) V. ;=o A<=o 

= Ji + O2 - %Vi)* + O s " ^ 2 - " l ^ y 
+ 0>4 - «oJ3 - «i J2 - a2^i)z3 + • • • 

y=0 ^1=/ 

\ 
k(z), 

where we have changed the order of addition appropriately, which is allowed since all the series 
above converge absolutely. Thus, as long as 1 -zh(z) * 0, we have 

yy ^- m 
On the other hand, we have q~lh(q~l) = 1 and that q~l is the solution for zh(z) - 1 which has the 
smallest modulus by Lemma 1.2. Hence, for \z\ < \q\~l, we have (4.1.1). This completes the proof 
of Theorem 4.1. D 

Now Theorem 1.5 follows from Theorems 1.4 and 4.1. 

Proof of Theorem 1.7: By Theorem 1.3 and Lemma 2.1, if\q\ > 1, then the series EJJLiLyJ 
does not converge. Suppose that \q\ < 1. The radius of convergence of the power series 

7=0 

is equal to the radius of convergence R" of the power series 

i=0 

By Theorem 4.1 together with our assumption, we have R" > \q\~l > 1. Thus, the series c(z) for 
z-\ converges. Then the rest of Theorem 1.7 follows from Theorem 4.1. This completes the 
proof. • 
Corollary 4.2: Let { g } ^ be the oo-generalized Fibonacci sequence associated with the initial se-
quence {&_;}*()> where g0 = 1 and g_t = 0 for / > 1. If \q\ < 1, then the series T*=l gf converges to 

00 / / 00 

z=o / V 1=0 
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5, CONCLUDING REMARKS 

In this section we give some remarks about questions (Q1)-(Q5) raised in §1. 
About (Ql), in the finite case, the answer to this question is given by a Binet-type formula 

(e.g., see [1]). The question in the infinite case is also posed in [4, Problem 4.5]. In a forth-
coming paper we will consider approximation of oo-generalized Fibonacci sequences by finitely 
generalized ones and will give an asymptotic Binet formula which will give an answer to the ques-
tion in a certain sense. This study is also closely related to question (Q2). 

About (Q2), in the finite case, it has been shown that if the characteristic polynomial has a 
simple root of maximal modulus then the sequence is asymptotically geometric (see [1]). This 
condition is satisfied as long as the leading weight coefficient a0 has sufficiently large modulus 
(see Theorem 15 and Remark 16 of [1]). In [4], the authors have shown that a statement similar 
to this also holds in the infinite case as well, which is nothing but Theorem 1.3 of the present 
paper. 

About (Q3) and (Q4), Theorems 1.4 and 1.5, respectively, give satisfactory answers in the 
nonnegative real coefficient case under our assumption. In the general case, Theorems 1.6 and 
1.7, respectively, give partial answers to the questions. 

About (Q5), in a forthcoming paper, combinatorial expressions for the general terms of an 
oo-generalized Fibonacci sequence will be studied. 
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University of Nis, Faculty of Technology, 16000 Leskovac, Yugoslavia 

(Submitted October 1998-Final Revision March 1999) 

1. INTRODUCTION 

In this note we define two sequences {Jn,m(x)}—the generalized Jacobsthal polynomials, and 
Un,m(x)}—the generalized Jacobsthal-Lucas polynomials, by the following recurrence relations: 

JnAX) = Jn-\,m(X) + 2xJn-mAX)> n^m> 0-1) 

with starting polynomials \m(x) = 0, J„tm(x) = 1, n = 1,2, ...,m-1, and 

A»W = M » W + 2 9 ^ » ( 4 n^m> 0.2) 
with starting polynomials y0,m(x) = 2, jrWjOT(x) = 1, « = 1,2,..., m-1. 

For m = 2, these polynomials are studied in [1], [2], and [3]. 
From (1.1) and (1.2), using the standard method, we find that the polynomials {Jn,m{x)} and 

{jn,m(x)} have, respectively, the following generating functions: 

F(x, 0 = 0 - / - 2xry1 = £ J„, „(*)*-i (i.3) 
and 

G(x' °=l-t-ixl=P--m(x)/n_i • ° -4) 
From (1.3) and (1.4), we find the following explicit representations for the polynomials 

{JnAx)) a n d (A «(*)}: 

^ ^ ) = T 1 ("" 1 ~ i W ~ 1 ) * ) (2^ (1-5) 
and 

Differentiating (1.5) and (1.6) with respect to x, we get 

• « * ) = I 2*("-1-<w"1>*)(2*)" (1.7) 
and 

•#-<*>='g^^ff (w_("~ 1)")(2x)"' (L8) 

with 
4JI(x) = A%(x) = 0, n = 0,1,..., m - 1 (1.9) 

For x = l in (1.5), (1.6), (1.7), and (1.8), we have, respectively: {/WjOT(l)}—the general-
ized Jacobsthal numbers, {jw,w(l)}—the generalized Jacobsthal-Lucas numbers, {J^%(1)}—the 
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generalized Jacobsthal derivative sequence, and {j$m(l)}—the generalized Jacobsthal-Lucas 
derivative sequence. 

The aim of this note is to study some characteristic properties of the sequences of numbers 
{JfPmQ)} a n d UfPmQ)}- W e s h a l i u s e t h e notations H\ m instead of J<Pm(l) and K\ m instead of 

mi)-
The first few members of the sequences {Jn,m(x)}, {Jjt%(x)}9 and {Hl

nm} are presented in 
Table 1, and the first few members of the sequences {/w,w(x)}, {/$«(*)}> a n d iKim} a r e g i v e n m 

Table 2. 
TABLE 1 

n 

0 
1 
2 

m-l 
m 

m + l 
m + 2 
m + 3 

2m-1 
2m 

2m + l 
2m + 2 

^.«W 
0 
i 
i 

i 
i 

l + 2x 
l + 4x 
l + 6x 

l + 2(m-l)x 
l + 2mx 

l + 2(m + l)x + 4x2 

l + 2(m + 2)x + l2x2 

n,m\ J 

0 
0 
0 

0 
0 
2 
4 
6 

2(m-l) 
2m 

2(m + l) + Sx 
2(m + 2) + 24x 

Hn m 

0 
0 
0 

0 
0 
2 
4 
6 

2(fw-l) 
2m 

2m + l0 
2m + 2S 

TABLE 2 

n 
0 
1 
2 

m - l 
m 

m + l 
m + 2 
m + 3 

2/«- l 
2m 

2m + l 

4.W 
2 
1 
1 

1 
1 + 4* 
l + 6x 
l + 8x 
l + 10x 

l + 2(m + l)x 
l + 2(m + 2)x + 8x2 

l + 2(m + 3)x + 20x2 

;£.(*) 
0 
0 
0 

0 
4 
6 
8 
10 

2(m + l) 
2(m + 2) + 16x 
2(m + 3) + 40x 

Kn,m 1 
0 
0 
0 

0 
0 
0 
0 
0 

2(m + l) 
2m+ 20 
2m + 46 
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From Table 1 and Table 2, we can prove by induction and (1.1) the following relation: 

= 4 1 ) m W + 24+l_m)W(4 [by (1.1)]. ( • 

Observe that the first equation in (1.10) is a direct consequence of (1.3) and (1.4). 

2. SOME PROPERTIES OF H^ m AND JE* m 

Differentiating (1.3) and (1.4) with respect to x, we get the following generating functions, 
respectively: 

ls"(xy=«^f <21) 
and 

Y .-(1) (xyn = 2tm(2-t) (2 . 

Hence, for x = l in (2.1) and (2.2), we get the generating functions for Hl
nm and Kl

nm, 
respectively: 

2 X . / , = (1_,_2/»)2 (2-3) 
and 

h - {\-t-itmf K > 
If we substitute x = 1 in (1.1) and (1.2), we get the sequences of numbers {/„,„} and {j^m}, 

which satisfy the following relations: 

Jn,m = Jn,m+*Jn+l-m,m = ̂ n+l,m^^n+l-m,m tbY ( 1 1 0 ) L (2-5) 

Jn+l, m ~*~ Jn, m 
= 3J„+1,m + 4J„+ 2_m > m-J„j m [by (2.5), (1.1)], (2.6) 

7^i,m-7„,m = 4/„+2-m,m + ^ , m - ^ + i , m [by (2.5), (1.1)], (2.7) 

jn+i,m-2j„,m = 4Jn+2-m,m + 2J„,m-3J„+lm [by (2.5), (1.1)], (2.8) 

For m = 2, relations (2.5)-(2.9) yield the following relations: 
jn = Jn+x+2Jn_x ((2.10) in [2]), 

7n+i+7„ = 3(/„+1 + J„) ((2.12) in [2]), 

Jn+l ~ Jn~ ^n ~~ J «+!> 

Jn+l-2j„ = X2J„-J„+l) ((2.14) in [2]), 

J„+j„ = 2Jn+l ((2.20) in [2]), 

where J„t2 = J„ and j„,2 = j„. 
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Differentiating (1.1) and (1.2) with respect to x, and substituting x = 1. we get the following 
recurrence relations: 

Km = Hllm+2Hl^m+2Jn__mtn}, n>m, (2.10) 

with H\m = 0, n = 0,1,..., m-1 and 

K,m = K-l,m+%K-m,m+yn-m,m, * * »*, (2.11) 

with K\m = 0, w = 0,1,..., m-1. 
In a similar way, from (1.10), we get 

< « = <«+4fi2+i-WfWI+4Jr
wfl.OTflfl, w > w - l . (2.12) 

For wi = 2, relations (2.10)-(2.12) become 

Hl2 = Hlx + 2Hl
n+2Jn ((3.3) in [1]), 

^ = ̂  + 2 ^ + 2 ^ ((3.4) in [1]), 

Kl
n+l=Hl

n+l+4Hl
n + 4Jn. 

From (2.10) and (2.12), we get K\m + < m = 2 ^ + l w . 
For m = 2, the last equality yields the known relation (3.8) in [1]. 
Again, from (2.10) and (2.12), we find 

K„t m — "n9 m = 2Hn+l^ m - ^H^ m . (2.13) 

For m = 2, (2.13) becomes (3.9) in [1]. 

Theorem 2.1: The polynomials {J„tm(x)} and {j„ifn(x)} satisfy the following relations, respec-
tively, 

n I (x\-\ 
•//,,»(*) = — ^ — . (2-14) 

/=0 Z X 

and 

Proof: From (1.1) and (1.2), by induction on n, we can prove (2.14) and (2.15). 

Corollary 2.1: For m = 2 in (2.14) and (2.15), we get the known relations (2.7) and (2.8) in [2]. 

Theorem 12: The numbers i ^ m and Kl
n^m satisfy the following relations, respectively, 

M « = l / 2 ( ^ « - ^ « . - , + l) (2.16) 
j=0 

and 

£ ^ f f l = l /2(Cm > m-;„+ m,m + l). (217) 
i=0 

Proof: Differentiating (2.14) and (2.15), respectively, with respect to x, and substituting 
x = 1, we get (2.16) and (2.17). 
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Corollary 2.2: For m = 2, from (2.16) and (2.17), we have 

1 ^ = 1 / 2 ( ^ 2 - ^ + 1) and ±K} = l/2(Kl
n+2-jn+2 + l). 

Furthermore, from (1.7), we get 

C + 2 ( » - l ) < 1 . - H r (2-18) 
For m = 2 in (2.18), we have ((3.6') in [1]), Hx

n+2 + 2Hx
n = 2nJ„. 

In a similar way, from (1.8), we get 

< m = 2{n + 2 - m)J„+l^m - 2{m - 2)#*+1_m> m. (2.19) 

For m = 2 in (2.19), we obtain ((2.4) in [1]), Kl„ = 2nJn_l. 

GENERALIZATION 

Differentiating (1.1), (1.2), and (1.10) A: times with respect to x, we get 

4%(x) = 4i{m(x) + 2kJtJU^^4kl,m(x), k>\, n>m, 

^ W = ̂ l J ^ ) + 2^rm:)
n,(x) + 2x^Jffl,m(x), k>\, n>m, 

A*iW = ^ l m ( x ) + 4*JJ*^m(x) + 4 x e U m ( « ) , k>\, n>m, 
respectively. 

From the last equalities, using the notations J^f^(l) = Hk
m and j^m(l) = K^m, we can prove 

the following relations: 

Km = HLlm + 2kH^m+2HLm9m9 k>l,n>m, 

< m = ^ u » + 2 ^ i * + 2 ^ « » k>l,n>m-l, 

Klm = Hk
n_x,m + 4*HJtiUm + 4#£fi-m,m, * > 1," > "* - 1 . 

The sequences {Hk
 m} and { ^ w} have the following generating functions: 

f k 2*k\r°*+l
 d fRk n^2kk\(2-t)f 

h ' ( i - / - 2 r ) * + 1
 wfo ' ( 1 - / - 2 H * -
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A REMARK ON THE PAPER OF A. SIMALARIDES: 
"CONGRUENCES MOD JI^ FOR THE BERNOULLI NUMBERS" 

I. Slavutskii 
4 Hamarva Str., P.O.B. 23393, Akko, Israel 

{Submitted October 11998-Final Revision June 1999) 

In the paper under discussion, the author presented interesting /^-divisibility criteria for 
Bernoulli numbers (B.n.) of the form B^2k-i)P

n+h w'lt^ a n °dd prime/?, k = 1,2,...,(/?- 3)/ 2, and 
» G N . However, the central part of the work (Theorem 2) can be proved directly in a short and 
elementary way by relying on the classical methods of G. F. Voronoi. In [2] the author first 
proves ap-adic analog of Voronoi's congruence (Theorem 1) using Fourier analysis, then derives 
Theorem 2 from this proof as a corollary by reducing mod pn the Teichmiiller character involved 
in Theorem 1. 

Theorem ([2]): Let/? be a prime > 3. If a is an integer with (a, p) = I, then 

{a-a""-'^^}B(2k_l)pn+l = f V ' ^ - V / / * ] (mod/?") 
/=1 

for every k>l such that p-\ does not divide 2k. Here [x] is the greatest integer < x. 

Remark: By von Staudt-Clausen's theorem and Rummer's congruence for B.n., we will rewrite 
the above congruence in the equivalent form 

p-i 
{a-aP"~ ^-2k^)Bzlz = ^iz'l[ai/p] (modpn) (1) 

/=i 

withz = (2A-l)/?w-1 + l, p>3. 
Indeed, (2k-l)pn+ l = (2k-l)p"-l(p-l) + zy and p-l does not divide (2k-\)pm +1 = 

2kpm~(pm-l) for an integer m> 0. Hence, B{2k_l)pn+l = ((2k-l)pn + l)Bz/z = Bz/z (modpn). 
Thus, we can give the proof of the theorem in the form (1). 

Proof: Let S: = Hf'i iz with z = (2k- T)pn~l +1, n eN. Then, by Voronoi's idea (see, e.g., 
[8] or [3]), we have 

S = %(ai-[ailp]pY 
i=\ 

/=1 i = l j=2 ^JJ i = l 

or 

S(a*-l)/z = / ^ 
i = l ; = 2 ^J ' i = l 

Consequently, 
P-I 

S(az-i)/z = pY(aif-\aiIp] (modpn+l), (2) 
/=i 
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because 

^{(jliy/^^Kji^-D^/oa-i))} 
> ordp{p"+1pJ~21 (j(J -1))} > n +1 forj > 2 andp > 3. 

On the other hand, S = (Bz+l(p) - Bz+l) I (z +1) or 

S(az -l)/z = (az- \)Bzp I z + pBz_x(az -1) / 2 

+ g {az - \){z - I^Z])PJBZ+1-J IUU ~ W ~ 2)), 

if we assume that Q = 1 and that an empty sum is equal to zero. 
Further, since by the Staudt-Clausen theorem, pBz+l_j is ̂ -integral, we obtain 

o i d / , { ( z - V ^ + w / 0 - ( / - l ) ( / - 2 ) ) } ^ o n i / , { ^ - 3 / ( y a - l X / - 2 ) ) } + / i + l^ i i + l 

for j > 3 and p > 3. Hence, it follows that 

S(az-\)lz^(a2-l)B2pIz (modpn+l). (3) 

With the help of ap"~1(p~l) = 1 (mod/?"), (a, p) = 1, we conclude that 

(ff-\)l(f-1 ^a-aPn~^-^2k-l^n~l ^a-aPn~l^-2k^ (mod/?*). (4) 

Note that the above transformation is useful for applications considered by the author (in the case 
l < £ < ( / ? - 3 ) / 2 , p>3). 

Congruences (2), (3), and (4) yield the interesting form (1) of Voronoi's congruence (with a 
short interval of summation in the right-hand side part). 

Remark 1: It should be noted that Voronoi has proved his famous congruence (a) for an 
arbitrary modulus > 1 (not only prime power!) and (b) without the restriction that p-1 does not 
divide 2k (see [8] and [3]). 

Remark 2: There is an interesting equivalent variant of Voronoi's congruence due to Vandiver 
(see [7] and [5]). 

Remark 3: It is clear from what has been said here that a congruence similar to (1) can be 
obtained for generalized Bernoulli numbers Bn belonging to a Dirichlet character (with the cor-
responding conductor). For relevant facts, see [4], and [9, chs. 4 and 5]. 

Remark 4: Finally, for more information on the history of the Voronoi congruence, see [6] or 
[1]. 
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1. INTRODUCTION 

Hypergeometric functions are an important tool in many branches of pure and applied mathe-
matics, and they encompass most special functions, including the Chebyshev polynomials. There 
are also well-known connections between Chebyshev polynomials and sequences of numbers and 
polynomials related to Fibonacci numbers. However, to my knowledge and with one small excep-
tion, direct connections between Fibonacci numbers and hypergeometric functions have not been 
established or exploited before. 

It is the purpose of this paper to give a brief exposition of hypergeometric functions, as far as 
is relevant to the Fibonacci and allied sequences. A variety of representations in terms of finite 
sums and infinite series involving binomial coefficients are obtained. While many of them are well 
known, some identities appear to be new. 

The method of hypergeometric functions works just as well for other sequences, especially 
the Lucas, Pell, and associated Pell numbers and polynomials, and also for more general second-
order linear recursion sequences. However, apart from the final section, we will restrict our 
attention to Fibonacci numbers as the most prominent example of a second-order recurrence. 

The idea and "philosophy" behind this paper is similar to that of R. Roy in [42] concerning 
binomial identities, though somewhat more limited in scope. It can be seen as an attempt to bring 
some partial order into the confusing abundance of formulas satisfied by Fibonacci numbers. For 
reasons of brevity and clarity, no attempt has been made to be complete, or to classify the many 
identities in the literature that are similar to, but still different from, those obtained in this paper. 
After each hypergeometric transformation, only the most immediate Fibonacci formula is given. 

Statements that a certain identity is apparently new should be taken with the necessary 
caution. Only The Fibonacci Quarterly has been checked to any degree of completeness, and 
even there it may be possible for some identities to have been overlooked. The author apologizes 
in advance for any missed or incomplete references. 

In spite of the relative absence of hypergeometric series from the pages of The Fibonacci 
Quarterly or related papers published elsewhere, it should be mentioned that they were occasion-
ally used in somewhat different connections. The four papers that make most extensive use of 
hypergeometric functions are, to the best of my knowledge, by P. S. Bruckman [8], L. Carlitz 
[12], [13], and H. W. Gould [25]. To this we should add the article-length solution [44] by P. S. 
Bruckman to a problem in The Fibonacci Quarterly. The one direct connection to Fibonacci 
numbers that I could find is in the solution (by the proposer) of a problem by H.-J. Seiffert [43]. 

2. HYPERGEOMETRIC FUNCTIONS 

Almost all of the most common special functions in mathematics and mathematical physics 
are particular cases of the Gauss hypergeometric series defined by 
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^.^^flMtf, (2.1) 
k=Q \C)k K] 

where the rising factorial (a\ is defined by (a)Q = 1 and 

(a)k=a(a + l)-(a + k-l) (k > 1), (2.2) 

for arbitrary a GC. The series (2.1) is not defined when c = -m, with m = 0,1,2,..., unless a or 
ft are equal to -w,« = 0,1,2,..., and w</w. It is also easy to see that the series (2.1) reduces to a 
polynomial of degree n in z when a or h is equal to -w,« = 0,1,2,.... In all other cases, the-series 
has radius of convergence 1; this follows from the ratio test and (2.2). The function defined by 
the series (2.1) is called the Gauss hypergeometric function. When there is no danger of confu-
sion with other types of hypergeometric series, (2.1) is commonly denoted simply by F{a, b; c; z) 
and called the hypergeometric series, resp. function. 

Most properties of the hypergeometric series can be found in the well-known reference 
works [1], [37], and [19] (in increasing order of completeness). Proofs of many of the more 
important properties can be found, e.g., in [40]; see also the important works [5] and [47]. 

At this point we mention only the special case 

F(a,b;b;z) = (l-zr, (2.3) 

the binomial formula. The case a = 1 yields the geometric series; this gave rise to the term hyper-
geometric. 

More properties will be introduced in later sections, as the need arises. 

3. FIBONACCI NUMBERS 

We will use two different (but related) connections between Fibonacci numbers and hyper-
geometric functions. The first one is Binet's formula 

F- l 1+V5Y fi-VsY 

which allows us to use the identity 

1 . „ 3 . 7 ! _ 1 |Y1 i ~\l~2a n ^ \1 -2G1 

(3.1) 

FH+"-i-n--ur^[{x+z) {,-1} ] <3'2) 
(see, e.g., [1], (15.1.10)). If we take a = ( l-w)/2, z = V5, and compare (3.2) with (3.1), we 
obtain 

F=JL_F(lzIL IzIL-l-s] 
n 2n~l { 2 ? 2 ? 2 ' ) ' 

Note that one of the numbers (1 - n) i 2, (2 - n) 12 is always a negative integer (or zero) for n > 1, 
so (3.3) is in fact a finite sum and we need not worry about convergence (see, however, the 
remark following (4.28)). 

Our second approach will be via the well-known connection between Fibonacci numbers and 
the Chebyshev polynomials of the second kind, namely, 
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Fn = {-iy-lUn_xy-j (3.4) 

This follows directly from the recurrence relation for the polynomials Un(x) (see, e.g., [1], [19], 
or [37]). But also 

J7n(x)==(/i + l )F^/ i , W + 2 ; | ; ^ (3.5) 

(see, e.g., [1], (22.5.48), or any of the other books mentioned above; but note that identity (25) in 
[19], p. 186 is incorrect). Comparing (3.4) and (3.5), we get 

Fn = {-ir'nF[\-n,\+n;^,^-y (3.6) 

again, this hypergeometric series is a finite sum. 
It is worth mentioning that the Chebyshev polynomials Un{x) are special cases of the ultra-

spherical (or Gegenbauer) polynomials C„ (x) and the Jacobi polynomials P£a,^(x), namely, 

U„(x) = Cl„(x) = - ^ ^ ^ \ x ) (3.7) 

(see, e.g., [1], Ch. 22). Now, there is a variety of known representations by hypergeometric series 
for the Gegenbauer and Jacobi polynomials; see, e.g., [37], pp. 212, 220. These, in combination 
with (3.7) and (3.4), can be used to obtain more representations for the Fibonacci numbers by 
hypergeometric series. However, all of these can be obtained from (3.3) and (3.6) by way of 
linear and quadratic transformations, as in the following section. 

Before continuing, we rewrite the representations (3.3) and (3.6) as combinatorial sums. The 
rising factorials involved are easily seen to be 

3̂ 1 _ (2* + l)! r 3 g , 
2)k- 4kk\ ' ( 3 8 ) 

l-n\ (2-n\ _ (n-\)\ 
2 h\ 2 A 4*(«-l-2*)!' ( 3 9 ) 

0-">* = <-*o£l3l)r (310) 

and with (2.1), the representation (3.3) becomes 

^^f{2k"+iy, (3.i2) 
L k=o v / 

which is a well-known formula due to Catalan (see, e.g., [29], p. 150). Formula (3.6) can be 
rewritten as 
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4 LINEAR AND QUADRATIC TRANSFORMATIONS 

In this section we will use the well-known linear and quadratic transformations for the hyper-
geometric functions to derive a large number of representations from (3.3) and (3.6). In each 
case we will obtain, as immediate consequences, combinatorial sums (or series) of the form (3.12) 
or (3.13). 

We begin with the pair of linear transformation formulas, 

and 

F(a, b; c- z) = (l-z)-aF^c-b; c; - f J (4.1) 

F{a9b; c;z) = (l-z)-bF^c-a;c;^-j, (4.2) 

that are linked together by the relation 

F(a, b; c; z) = (l- zf^F (c-a,c-b; c; z), (4.3) 

which is due to Euler (see, e.g., [1], p. 559). We also have the obvious relationship F(a, b; c; z) = 
F(b, a; c; z) which will be invoked without special mention; it follows from the definition (2.1). 

Some case must be taken on the question of convergence and the range of validity of the 
transformation formulas used, especially since the argument of the hypergeometric function in 
(3.3) is larger than 1. If we apply (4.1) to (3.3), then the right-hand side is a finite sum only when 
n is odd. In this case, we get 

2 ' 4 , F2n+l={-m2n + \)F\ -n,n + \ - ^ \ . (4.4) 

In general, (4.1) is valid only when both \z\ < 1 and | z / ( z - l ) | < 1 (see, e.g., [40], p. 59]), but 
when both sides are finite sums, then by analytic continuation, (4.1) is valid on all of C, with the 
possible exception of z - 1. (In this case, there is a removable singularity at z - 1). The situation 
is, of course, similar for all other transformation formulas. 

We get a companion relationship to (4.4) by applying (4.2) to (3.3). In this case, n has to be 
even: 

1 £ 
2 ' 4 , F2n=(~lfnF\l-nJ + n;^4). (4.5) 

The next linear transformation formula in the list in [1], p. 559, is 

F ( a ^ ; c ; , ) 4 ^ - - : g F ( a , M ^ - c + l ; l -z ) ^ 

+ (l_zy-a-bT(c)T(a+b-c)F(c_ac_b.c_a_b + ll_zy 
r(a)l(b) 

However, since a + b-c = -n in (3.3), one of the gamma terms in the numerator is not defined. 
Instead, we have to use formula (15.3.11) in [1], p. 559, which in the special case where a or b is 
a negative integer and m is a nonnegative integer becomes 

F ( ^ , f l + i ^ r ) = y y ( y H ' » ) % i ! M 1 - z ) , (4.7) 
r(a + m)T(b + m) 
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(For the general case, see [1], (15.3.11), p. 559.) This, applied to (3.3), gives 

F„ = F ( ^ , ^ ; l - « ; - 4 ) . (4.8) 

Here we have evaluated the gamma terms in (4.7) as follows, using the duplication formula for 
T(z) (see, e.g., [1], p. 256): 

T(m)r(a + b + m) _ T(n) r ( | ) 
T(a+m)r(b+m) r ( f+ ±)r(f + l) 

_ (2^-)-1/22"-1/2r(f)r(f+i){V^ _ 2"-1 

~~ r(f+|)fr(f) " n • 
Another transformation formula similar to (4.6) is 

T{c)T{b-a), ._aJ , , , 1 

T(c)T(p-b), _^bl7fL , _ _ , . ! _ _ , ! + - — \:{-zybF(b,\-c+b;\-a + h;^. 
(4.9) 

T{a)T{c-b) 
We apply this to (3.3) and note that b is a negative integer or 0 when n > 2 is even, and a is a 
negative integer or 0 when n is odd, while c = 3/2 and b-a = 1/2 are not integers. Using the 
fact that T(z) has poles at the nonpositive integers, we see that one of the two terms in (4.9) 
always disappears. The gamma terms in the remaining expression can be evaluated as above, and 
we obtain 

F>"="(!r'K'-">R;H) (4n) 
Euler's formula (4.3) can be applied to both, and we get 

4Y+ 1r.ri . , . 1 1 

iw.= 7 k - « . - f ^ ; 7 (41°) 

F^ = {V F{rnMn'rV' (412) 

F -KfrFGH1 +";H} (4i3) 
These two formulas are interesting because they give us the first infinite series representations for 
the Fibonacci numbers; see the following section. 

Next we note that (4.10) and (4.11) satisfy the hypotheses of the transformation formula 
(4.7), which gives 

F*»x = 5 " F ( - « , - 1 - » ; - 2 H ; 0 (4.14) 

F2„ = 5"-1F^l-«,I-»;l-2»;0 (4.15) 
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The next transformation formula, 

+ (!-*) T-V ^ r / E\^ \b,c-a;b-a + \;-
(4.16) 

r ( a ) r ( c -6 )* C " " ' " " ' * ' l - z j ' 
applied to (3.3), gives the representations 

F2n+i = F{-n,\+n;±;=^, (4.17) 

F 2 „ = ^ l - » , l + » ; | ; - l j , (4.18) 

and (4.3) applied to these, 
F^TsF{bn>-\-n>bi\ ( 4 1 9 > 

j-, 2 » r f l , 1 3 - A , , OAN 
F 2 « = ^ F l 2 + W ' 2 - n ; 2 ; T j - ( 4 2 0 ) 

Identity (4.17) was explicitly stated in the solution of [43]. 
To obtain further representations with rational arguments of the hypergeometric function, we 

have to use quadratic transformations. The first such formula we need is 

a a I , - 4z 
2 ' 2 + 2 ; f l - * + 1 : o T 7 ) > 

F(a,b-,a-b + l,z) = (\+zrF\Z,^ + i;a-b + l,7^-T\ (4.21) 

(see, e.g., [1], (15.3.26), p. 561). This, applied to (4.10) and (4.11), gives, respectively 

Again we can apply (4.3) and obtain 

_ U2T*F(3 + 2n 1 + 2/t. l.£\ , 4 2 4 ) 
2n+I_ V5UJ 1 4 ' 4 ' 2 ' 9 > l V 

j? (2Yli?(2+n l + n 3 5>1 (Ann 

We can now apply linear transformation formulas again to obtain further representations. It 
is easy to see that (4.6) applies to (4.24) and (4.7) to (4.25). The gamma function terms can be 
evaluated as before, and we obtain 

3W+2 ,-,(-1-2/1 l-2/i 1 4] 1 „f 3 + 2/f l + 2/i 3 , 4 ^=^K^f^^^'4-^)+^F[^'^'i+^)' (426) 
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Euler's formula (4.3) can be applied to (4.26) to give 

^ i - - * *{ 4 > 4 >2 " . 9 J +
 3 „ + i^^ 4 - 4 > 2

+ " ' 9 j - < 4 ^ 
Remark: A word of caution is in order at this point. As was the case with several other identities 
before, (4.27) cannot be transformed by (4.3), even though \z\ < 1 and both sides of (4.3) would 
be finite sums (either the first or the second parameter is a negative integer in this and the other 
cases). The reason for this lies in the fact that the proof of (4.1) (see, e.g., [40], pp. 58ff.) breaks 
down when a and c and negative integers with c<a, while h is not a negative integer. This can 
be remedied by simply interchanging the order of the two parameters a and h, which means that 
one of the identities (4.1), (4.2) is true, while the other is not. Since (4.3) and (4.1) imply (4.2) 
(and similarly, (4.2) and (4.1) imply (4.3)), the identity (4.3) cannot be used under the circum-
stances in question. 

That (4.3) is actually false in this case can be seen as follows. If a and c are nonpositive 
integers, c < a, then the hypergeometric series on both sides of (4.3) are actually polynomials in z. 
However, (\-z)c~a~b is an infinite series since c-a-b cannot be a positive integer or zero. This 
is a contradiction. 

To obtain further hypergeometric series representations, we apply (4.1) to (4.26): 

^ 2 n + i -5 ^ 4 - 4 , 2 n, 5 J + 5 ? + ! ^ 4 . 4 > 2 +" . 5 ) • (*•&) 

To transform (4.27), we have to distinguish between even and odd n. For n odd, we apply (4.1), 
and (4.2) when n is even, to obtain 

K+i = 5"F(-n,-±-n;-2n; -fj, (4.30) 

F4„ = 3 - 5 " - 1 F ^ l - » , l - » ; l - 2 n ; - | j . (4.31) 

In accordance with the remark following (4.28), identity (4.29) can be further transformed by 
formula (4.3), while this is not possible for (4.30) and (4.31). We get 

J5--3-5Hf(2^.1^;i-,^j + S+»/p(l^.l^:l+,^} (432) 
Next we apply (4.16) to identity (4.23). We have to distinguish between the cases n even and n 
odd. If we determine the gamma function terms as before, we obtain 

4̂„+2 = ( - l ) ^ ( - ^ 1 +*; \\ f ) , (4.33) 

FAn = ( - l r ^ l - * , l + n;|; | j . (4.34) 

Transformed with formula (4.1), these two identities lead to 
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^ = K?P?HHM} (4.36) 
We note that the last four formulas are all for even-Index Fibonacci numbers. The transformation 
formula (4.16), and other appropriate transformations, will only give rise to divergent series. It 
appears doubtful that there exist simple expressions for odd-index Fibonacci numbers in terms of 
hypergeometric series (necessarily finite sums) with arguments 9/4, 9/5, or -5 /4 (below). 

Finally in this section, we use the following two related quadratic transformation formulas: 

F ( a , M - f t + t z ) = ( l - ^ ^ (4.37) 

rv -L L i \ l + z r^ll + a a , - , - -4Z 
F(a9 b;a-b + l;z) = —r F —— — -b + l;a-b + l; T 

J (l-r)f l+1 { 2 ' 2 ' (1-z)2 

(4.38) 

The first one of these is formula (15.3.28) in [1], p. 561, and both can be found in [19], p. 113. 
We apply them to (3.3) with the first two parameters interchanged, i.e., with a = (2-n)/2 and 
b = (l-n)/2. For the right-hand sides of (4.37) and (4.38) to be convergent, the series have to 
be terminating, and this occurs when n = 2 (mod 4), resp. n = 0 (mod 4). Thus, we get 

F4n+2 = (2/i + i)F^-n, n +1; | ; - | j , (4.39) 

F 4 „ = 3 H F ( I - W , 1 + »; ! ; - £ ) . (4.40) 

We have thus obtained numerous representations of Fibonacci numbers in terms of hypergeo-
metric functions with rational arguments. In fact, twelve different rational arguments occurred, 
and in Section 9 below we will discuss the question of whether these are all. 

5. EXPLICIT FORMULAS 

In this section we will simply rewrite the formulas obtained above in terms of combinatorial 
sums, using (2.1) and (2.2). The easy identities (3.8)-(3.11) will help with this task; other similar 
such identities which may be required below will not be stated explicitly. 

It should be noted that the same formula may come in different 'guises. First, there is the 
obvious relationship (£) = (n"k between binomial coefficients. Then, reversing the order of sum-
mation (in finite sums) leads to a new sum that is a bit different in appearance, but in most cases is 
easily seen to be equivalent. As a rule, we will state below only one of these obviously equivalent 
forms. For a general discussion of this lack of uniqueness in combinatorial sums, see the 
introductions of [42] and [28]. 

We begin with finite sums, ordered according to powers that may occur. Many of these for-
mulas are well known; in these cases only one or two easily accessible references will be given. 
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Identities (4.8), (4.17), and (4.18), respectively, lead to the sums 

Formula (5.1) is probably the best known of all. It is the "rising diagonal sum" property that links 
the Fibonacci sequence closely to the Pascal triangle; it can be found in most references on Fibo-
nacci numbers, e.g., [31], p. 50. Formula (5.2) is listed in [24] as identity (1.76), and both (5.2) 
and (5.3) can be found in [17]. For generalizations of (5.2) and (5.3), see [18]. 

Identities (3.3), (4.40), and (4.5) give rise to 

^f{2k\^^ (5.4) 
k=0 V / 

^(-ir'lWfcVl5*- (5-6) 
k=o V J 

Catalan's well-known identity (5.4), repeated here for completeness, was already mentioned in 
(3.12). Identities (4.10) and (4.11) give only special cases (even, resp. odd ri) of (5.4). While 
(5.6) appears in [11], the author was unable to find (5.5) in the literature. Identities (4.31) and 
(4.15) also lead to (5.5) and (5.6), respectively. 

Both (4.4) and (4.14) lead to the second, and (4.30) and (4.39) to the first of the following 
identities: 

F1M =(-»"<2» + » | / - l ) ' ( " 2 + / ) 2 f r i - (5-8) 

Identity (5.8) can be found in [11], while (5.7) appears to be new. 
Next, we obtain from (4.23) and (4.27), respectively, 

F2n=y-ilZ(-l)k{"~lk){l)k- (5.10) 
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Identity (5.9) follows from formula (1.95) in [24]; for references on (5.10), see [26]. Special 
cases of (5.9) for n even, resp. odd, follow from (4.35) and (4.36). If we distinguish between the 
cases n even and odd also in (5.10) and reverse the orders of summation, we obtain 

n~lX" (-V\k( n + b = 3(-ir1X(-l)M27+i \9k, (5.11) 
k=0 V ' 

^ + 2 = (-l)"I(-l)if"2
+/)9i. (5.12) 

k=o V J 

These last two identities also follow from (4.34) and (4.33), respectively. 
Numerous other identities of types (5.1)-(5.12) can be found in the literature, especially in 

articles and problems in The Fibonacci Quarterly. Among the multitude of different methods 
used to obtain and prove these results, only a few general methods seem to have emerged. One of 
them can be found in [34]; see also the discussion at the end of that article concerning discovering 
as opposed to proving identities. 

In the second half of this section we list infinite series representations for Fibonacci numbers 
as direct consequences of the remaining hypergeometric identities in Section 4. We will make use 
of the generalized binomial coefficient which, for arbitrary real or complex a and positive integer 
k, is defined by 

'a\_a(a-l)---(a-k + l) _(a-k + l)k _ ! > + !) 
* ; k\ k\ r(flr-* + i ) r ( * + i)" 

(5.13) 

The restriction on k could actually be relaxed, but in what follows, k will always be a positive 
integer. 

Using, as before, (3.8)-(3.11) and other similar relationships, we obtain from (4.19), (4.20), 
(4.12), and (4.13), respectively, 

2 f, f l}^(n + k-±\ 1 A *-*('-H)g(' 2/c- l 2k 
(5.14) 

17 _ 2ft y» fn + * - f | _ J _ (515) 
2k m + r l ; 

While (5.14) and (5.15) appear to be new, (5.16) and (5.17) follow immediately from the identity 

^+1=Zf2^2"+15-", (5.18) 
2k>n^ J 

which is an exercise in [41], p. 240. 
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The next three identities follow from (4.22), (4.24), and (4.25), respectively: 

^+1=(|J^|o["2
+/j(fj' 

F2n+l - /c I i I 2 , 
*=0 

n + 2k-±\(5 
2k 

Mirirafr-

(5.19) 

(5.20) 

(5.21) 

Identity (5.19) could be considered the odd-index analog of (5.9). None of (5.19)-(5.21) seem to 
have occurred before in the literature. 

The last four identities in this section involve two infinite series each; they follow from (4.26), 
(4.28), (4.29), and (4.32), respectively. 

r -3^1 n-k-\\U-\^k 

k-\ )k\9 

+ -
yn-\ 

(5.22) 

1 °° 
r2n+l - J Za 

k=0 k=0 * 'M • 

^ • • = 5 ' :_1 '*"*E '"-*-fl±[T* 
k=\ k-\ )k\5 

+3.rHffl,+2*+i^-1 
si-

+ 5 2 " 

(5.23) 

(5.24) 

(5.25) 

Again, these four identities appear to be new. 

6. MORE TRANSFORMATIONS: IRRATIONAL ARGUMENTS 

In this section we will use the linear and quadratic transformations of Section 4, and a few 
new ones, to derive more representations of Fibonacci numbers in terms of hypergeometric func-
tions. Here the arguments will all be irrational. 
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We will need the additional quadratic transformation formulas: 

F J ^ ^ ^ (6J) 

F ^ , a + | ; C ; ^ (6.2) 

they are listed as formulas (15.3.24), resp. (15.3.20) in [1], p. 560f. Formula (6.1) applied to 
(4.17) and (4.18) immediately gives 

F2^=^F{-l-2n,\ + 2n;\-^^\, (6.3) 

±2Hc-f, 0„ , , - 3.2 + V5 ^ = ^ V - 2 » , l + 2»;f; — (6.4) 

Originally, we obtain the "upper signs" in the ± or + pairs. However, since the Fibonacci num-
bers are integers, the hypergeometric functions are rational multiples of -J5 . Therefore, changing 
the sign of V5 in the argument will also change the sign of the function value. 

Now, applying the linear transformation (4.1) to (6.3) and (6.4), we get, respectively, 

^i^fM-1-2"^-2^"4^) (65) 

Euler's transformation (4.3) can be applied to (6.3)-(6.5), and we obtain, respectively, 

ii„.^(>-H;^ (67) 

o4w+3 / O I \ 
^ + i = ± ^ ( - 2 ± V 5 ) 2 " + 1 F ^ + 2»,l + 2«;^;9 + 4V5j, (6.9) 

F 2 „ = ± ^ ^ ( - 2 ± V 5 ) 2 " + 1 F ^ + 2»,1 + 2 » ; | ; 9 + 4V5J. (6.10) 

Next, we note that (6.5) and (6.6) satisfy the hypothesis of the linear transformation (4.7). 
We easily obtain 

F2n+l=^(2 + SfuF(-^-2n,-\-2rr,-l-4n;-S + 4Sy (6.11) 

J F 2 „ = ^ ( 2 + V5) 2 " - 1 Ff l -2« , l -2» ; l -4» ; -8 + 4V5J. (6.12) 
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It is interesting to note that the six different arguments above relate to each other as the six 
rational arguments in Section 4 (up to (4.20)) relate to each other, and so do the six further argu-
ments in the second half of Section 4. More on this in Section 9 below. 

To obtain another set of hypergeometric representations, we apply (6.2) to (3.3), 

F„=n 1+VsY J, ,.0.5+Vs 
V 2 

F 1 - M ; 2 ; ^ H ; (6.13) 

then we apply (4.7) to this, and get 

Finally, we apply (4.1) to (6.14) to obtain 

F„ = (±yf5rlF(l-n,n;l-n;^-\ (6.15) 

Neither one of these three identities allows the use of Euler's transformation (4.3): the identity 
(6.13) would lead to a divergent series, and (6.14), (6.15) have nonpositive integers as first and 
third parameters (for n > 1). 

Finally in this section, we use the following quadratic transformation: 

F(ab.i.z)=J^zMHLz-i 
T ' S ' M 2T{-\)Y{a + b-\)Z 

V 2I V 2 / (6.16) 
x\F\2a-l,2b-l-a + b-^-^^)-F\2a-l,2b-V,a+b-^-^ + ^ 2' 2 J ^ ' ' 2 ' 2 

(This is formula (9) in [19], p. 111.) We apply this to (3.3); the gamma functions term is easily 
evaluated to be 2"_1 In, and we get 

F„^JF^,l-»;l-W;l^j-F^»,l-»;l-»;i^|. (6.17) 

7. RELATIONSHIPS AMONG FIBONACCI NUMBERS 
Just as we did in Section 5, we can rewrite the various hypergeometric representations from 

the previous section in terms of finite combinatorial sums and infinite series. For example, (6.3) 
leads to 

F _ , 2(2» +1) 2 f (2n + k + j] (±J5 - 2)k
 ( 

2n+1 S hX lk ) 2 n + k + \- ( / 1 ) 

We will not explicitly write down the remaining such series (with the exception of four infinite 
series), but instead use Binet's formulas (3.1) and 

K^l±A]Jl^Ll (,2) 
and the obvious relations 
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2±V5 = [ ^ # t 9±4V5 = f l M | , (7.3) 

to express Fibonacci numbers as sums of other Fibonacci or Lucas numbers. (Recall that the 
Lucas numbers L„, which could be defined by (7.2), satisfy the recursion L0 = 2, LY = l, and 
4+i = 4 + 4 - i for/! £1.) 

We simply add the two versions of (7.1) and use (7.3) and (3.1) to obtain 

^ e ^ s W ^ r 1 ) ^ . (7.4) 
In a similar fashion, the companion relation (6.4) gives 

We note that (6.11) and (6.12) also lead to (7.4) and (7.5), respectively. Similarly, the pair of 
relations (6.5) and (6.6) is easily transformed into 

F2n+l = 2~4n~l X 2k )F6n+6k+3 > C7-6) 
v 2k 

w_1/ An 

What is probably the simplest such formula follows directly from (6.17): 

(Here, the term Fn also occurs on the right-hand side, with coefficient (-1)""1"1). 
Next, we obtain a few formulas that involve both Fibonacci and Lucas numbers. Once (6.14) 

has been rewritten as a finite sum, we have to distinguish between the cases n odd and n even. 
Using (7.3) and (7.2), we easily obtain 

JWi = H)" + lHr%*. (7-9) 
k=l 

^=X(-ir%*-.- (7.io) 
k=l 

To obtain the last formula of this kind, we write (6.15) as a sum, reverse the order of sum-
mation, and separate even and odd indices of summation; (3.1), (7.2), and (7.3) then give 

'H^tAl)5'^- .-f^)5'^- (7.11) 
^ k=0 V / * Jc=l v J 

The same formula is also obtained from (6.13). 
As is to be expected, not all of the formulas (7.4)-(7.11) are new. In fact, (7.4) is, up to an 

easy transformation, identical with a formula in [46], p. 190. Identity (7.8) was a problem in The 
Fibonacci Quarterly [7]; it also follows from an earlier, more general result in [23], p. 13. Identi-
ties (7.9) and (7.10) follow from formula (97) in [48], p. 183; there, use is made of negative-index 
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Lucas numbers which allow for the two cases to be written as one. Identities (7.6) and (7.7) 
follow easily from one of the three identities in [45]; they are also very similar to some general 
formulas in [32], but do not appear to be special cases of these formulas. Many more formulas of 
this type appear in [50], [6], [21], [36], [15], [30], [14], and throughout the problem sections of 
The Fibonacci Quarterly. 

Finally in this section, we rewrite the representations (6.7)-(6.10) as infinite series involving 
binomial coefficients: 

The conjugates of these expressions would be divergent, so (7.12)-(7.15) will not lead to any 
obvious formulas involving Fibonacci or Lucas numbers on the right-hand side, as in the finite 
cases. However, a formula of that type occurs in [20] as identity (4.19). 

A different type of identity can be derived as follows. Using formula (7.2), we see that for 
odd integers n we have 

-ifi-VsY i (T16) 

vn 2 j -5Fn+s{±ff 
This leads in a natural way to a continued fraction and, from (7.14), for example, we obtain the 
curious expansion 

F™ = 44"+3Z ^ ^ 4 • (717) 
17 

r6n+6Jc+3 ci? _ 
jr6n+6k+3 '" 

By truncating the continued fraction, or the infinite series (or both), one obtains approximate 
expressions with easily quantifiable error terms. 

8. COMPLEX ARGUMENTS 

It will now be clear that the transformations in Sections 4 and 6 lead to a variety of hyper-
geometric representations with complex arguments. One such formula, namely (3.6), has already 
been encountered, and it was rewritten as a combinatorial sum in (3.13). While it will be left to 
the reader to derive other formulas, we examine (3.13) a little further. 

First, we use the fact that (2 + i) IV5 = exp(tan_1(l / 2)). Adding (3.13) to its complex conju-
gate, we obtain 
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1 2n+l ( -> ) " | ( 2 " 2 n H i t )< -V5) ' co{ i , a „ - . ( l ) ) 
^=0 

F» = (~lT £[flft \y-^ ^ t a n ^ i 

(8.1) 

(8.2) 

The cosine and sine terms in these expressions show that there is a connection with Chebyshev 
polynomials; this will not be taken further at this point. 

Second, we define the sequences uk = (i-2)k +(-i-2)k and vk =i[(i-2)k-(-i-2)k] for 
integers k>0. Using standard methods for dealing with second-order recurrences, we find that 
the characteristic polynomial for both sequences is (x - (/ - 2))(x - (-/ - 2)) = x2 + 4x + 5, so that 
we have 

uk+l = - 4 u k - 5uk_l9 u0 = 2, ux = - 4 ; (8.3) 
vk+i = ~4vk ~ 5v^i, v0 = 0, vx = -2. (8.4) 

The first few terms of these sequences are 2, - 4,6, - 4, -14 and 0, - 2,8, - 22,48, respectively. 
The sign behaviors, by the way, are explained by the cosine and sine terms in (8.1) and (8.2). 
Again adding (3.13) to its complex conjugate, we finally obtain 

i4-.=*£2r*i**'* 
*=0 2A + 1 

E, In 

Numerous other related formulas can be obtained in this way. 

(8.5) 

(8.6) 

9. THE SET OF POSSIBLE ARGUMENTS 

TABLE 1. Possible Arguments 

z 

5 
5 
9 

I+V5 
2 

2-V5 
4 

-3+V5 
2 

-5+3^5 
2 

2-i 
4 

2+iS 
4 

z 
z-1 

5 
4 

5 
4 

3+V5 
2 

9-4^5 
5 ^ 

10 

-5-3V5 
2 

-3+4/ 
5 

1-4/ S 
9 

l-z 

-4 
4 
9 

1-V5 
2 

2+V5 
4 

5-V5 
2 

7-3V5 
2 

2+i 
4 

2-iS 
4 

i - l 
4 
5 

4 
5 

3-V5 
2 

9 + 4^5 
5+V5 

2 

5-3^5 
10 

-3 -4 / 
5 

1+4/V5 
9 

z 

1 
5 

9 
5 

-1+V5 
2 

-8-4V5 
-3-V5 

2 

5+3^5 
10 

8+4/ 
5 

8-4/V5 
9 

1 
l -z 

1 
4 

9 
4 

- 1 - / 5 
2 

-8 + 4V5 
5+V5 

10 

7+3V5 
2 

8-4/ 
5 

8+4/V5 1 
9 1 
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It will be interesting to know whether the set of twelve rational arguments considered in 
Section 4 is exhaustive, and what would be the complete set of real irrational and of complex 
arguments. First we note that, starting with the argument z, all linear transformations lead to the 
set of arguments (z ,z / (z- l ) , 1-z, 1-1/z, 1/z, l / ( l - z )} ; see e.g., [19], pp. 105ff. This means 
that, given one argument, linear transformations will lead to at most five more arguments. 

Things are somewhat more complicated in the case of quadratic transformations. However, 
since not all parameter triples (a,b,c) are permissible (see, e.g., [19], pp. HOff), the number of 
possible arguments remains quite limited. It is possible to find them all by inspection; they are 
listed in Table 1 above. 

The arguments listed in the rows of Table 1 can be obtained from each other by linear trans-
formations. To go to different rows, appropriate quadratic transformations have to be used. The 
entries in the "z" column are arbitrary; only the entry "5", as the "original" argument of (3.3), has 
been placed in the upper left corner. 

10. FURTHER APPLICATIONS 

Hypergeometric functions have long been part of a well-developed theory, and they have 
been generalized in several important directions. Therefore, it is not surprising that further prop-
erties of Fibonacci numbers and related numbers and functions can be obtained rather easily by 
applying classical results on hypergeometric functions. However, in the confines of this article, it 
is not possible (or even desirable) to give a full account. Instead, I will conclude this paper by 
making brief remarks on a number of topics not yet considered. 

1. Integral representations: While it does not appear possible to apply Euler's integral or 
other related integrals (see, e.g., [19], pp. 114ff.) directly to the representation in Sections 4 and 
6, the transformed integral representation 

valid when Re b > 0 and \z | < 1 (see [19], p. 81) can be applied to (4.9). We get immediately 

F t o = f ( t r x ( i + : ^ c o s * ) s i n w (ia2) 
This integral, of course, can be verified easily by a simple substitution and reduction to the com-
binatorial identity (5.9). 

2. Double sums: Whenever the argument of the hypergeometric representation is of the 
form a + byf5 or a + hi, with rational a, b (see Section 9), we can use a binomial expansion of 
(a + W5)*, resp. (a+bi)k to obtain a double sum for F„. For example, (3.13) easily leads to 

^2/7+1 = £ £ [2n2k\\k){l)^rk+J2k-2\ (10.3) 
k=Q y=o v J\ J J 

with an analogous identity for F2n. Such formulas have occurred in the problem sections of The 
Fibonacci Quarterly; see, e.g., [9]. Mostly they involve the product of two binomial coefficients, 
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as In (10.3). However, a double sum expansion for F* with a single binomial coefficient can be 
found in [35]. 

J. Contiguous hypergeometric functions: An important set of relations between hypergeo-
metric functions, totally neglected so far in this article, are the eighteen possible relations between 
contiguous functions; see, e.g., [1], p. 558, or [19], p 103. As an illustration of their use, we take 
the following two: 

(c-a- l)F(a, b; c; z) + aF(a +1, b; c; z)-(c- l)F(a, b;c-1; z) = 0, 
(c-a- b)F(a9 b; c; z)-{c- a)F(a -1, b; c; z) + b{\ - z)F(a, b + l;c;z) = 0. 

With a = -n, b = -1 / 2 - n, c = 1 / 2, and z = 1 / 5, we obtain, from (10.4), 

F(-«,-I-»;I;l) = (2» + l)F(-„,-I-W;f;l)-2«F(l-«,-I-«;|;I 

and (10.5) with a-\-n,c = 3 / 2, and b, z as before gives 

1 F\\-n,- 3 1 1 J 1 3 1 , 2 J , 1 3 1 
2 - " ' 2 ; 5 j = 2 i 7 t - " ' - 2 - W ; 2 ; 5 j + 5 j F t 1 - ' J ' 2 - ; 7 ; 2 ; 5 

Combining (10.6) and (10.7), we obtain 

^-i-^i;i)=(»-^(-».-^-'nf;}J-Mi-«.j-^|;j 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

(10.8) 

and this, by way of (4.10) and (4.11), is just the recurrence F2n+i - F2n+2 -F„. In general, rela-
tions such as (10.4) and (10.5) are often useful in obtaining recurrence relations. 

4. Generalized hypergeometric functions: In direct analogy to (2.1), the generalized hyper-
geometric functions are defined by 

F 
p1 q 

au...,ap; m =z (<Xl)k~'(<*p)k Zk 

$A(fii)k-(Pq)k *"' 
(10.9) 

with the rising factorials as defined in (2.2). For convergence and other properties, see, e.g., [19], 
pp. 182ff., [40], pp. 73ff., or [5]. Many relations and transformations are known; most of them 
are analogous to those satisfied by the Gaussian hypergeometric functions. Among those rela-
tions that connect 2Fl functions with generalized hypergeometric functions, we quote only the 
following identity due to T. Clausen: 

v l2 

F\ a,b;a + b + ~;z -3 ^2 
2a,a + b,2b; 
a + b + },2a + 2h; (10.10) 

Note that this is incorrectly stated in [19], p. 185, and in [37], p. 63; it is correct in [27], p. 253. 
While this identity in itself is interesting and very important (for instance, it helped provide the 
final step in the proof of the famous Bieberbach conjecture, see, e.g., [4]), we give only a brief 
application to Fibonacci numbers. 

First, if we take a = -n, A = w + 1, and z = 5/4, then (4.4) and (10.10) give 

F i _ ^ , n 2 
1 2n+l ••(2n + lf3F2 

-2/i,l,2w + 2; (10.11) 
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Similarly, with a = 1 / 2 + n, b = 1 / 2 - n , and z = -1 / 4, we get with (4.20), 

, ~l + 2« ,U-2« ; 
5 ^=T»V2 1 

2 9- 4 
9. ' ^ ' 

(10.12) 

Both are easily rewritten, by way of (10.9), as 
In 

Formula (10.13) is a special case of an identity in [46], p. 190. It is not so surprising that these 
formulas resemble those in Section 5; the identities 5i^+1 = L4n+2 + 2 and 5F}n = LAn-2 (see, 
e-g-> [31], P- 59), show a close connection to Lucas numbers which can be treated very much like 
the Fibonacci numbers in Sections 4 and 5. 

5. Other generalizations: These include a double hypergeometric function, used in [2] in 
connection with Lucas numbers and a/?-adic version which can be found in [49]. Although there 
exist several definitions of ^-analogs of Fibonacci and Lucas numbers, one of the most important 
extensions of hypergeometric functions, namely, basic hypergeometric functions (see, e.g., [22] 
or [47]), have not been encountered in connection with Fibonacci and Lucas numbers. 

6. Other second-order recurrences: The most important one of these is the Lucas sequence, 
already used in Section 7. A companion identity to (3.2) is 

K a ^ + a ; 2 ; z 2 ) = 2 [ ( 1 + Zr2a+(1"Z)"2a]; ( 1 ° - 1 5 ) 

see, e.g., [1], (15.1.9). If we set a - -nil, z = V5, and compare (10.15) with (7.2), we obtain 

4 = 2 - F ( - f , I - f ; i ; 5 ) , (10.16) 

a direct analog to (3.3). Using the transformations and other hypergeometric formulas mentioned 
in this paper, a large number of identities for the Ln, as well as identities connecting Lucas and 
Fibonacci numbers, can be obtained. The only identity of the type (10.16) which the author was 
able to find in the literature (see [16], p. 427) is 

L2n = 2F^-2n, 2n; | ; ^ ^ j . (10.17) 

More generally, a second-order linear recurrence with constant coefficients has a Binet-type 
representation and can thus be rewritten in terms of hypergeometric functions, via (3.2) or (10.15) 
or a combination of both. Finally, the same is true for many polynomial sequences, such as the 
Fibonacci and Lucas polynomials which are, in any case, closely related to the Chebyshev polyno-
mials of both kinds. 

7. Fibonacci function: Many authors have extended the Fibonacci sequence to arbitrary 
real or complex subscripts or, in other words, defined a Fibonacci function. A discussion of 
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earlier results can be found in [10]; later papers include [3] and [33]. The most natural way to 
define such a function is by 

F<aH 1+V5V fi-Vs (10.18) 

and similarly for a Lucas function and various generalizations. Some care has to be taken in the 
use of (3.2) because, in general, all the hypergeometric series will now be infinite and conver-
gence is more of an issue than before. Numerous identities and series representations for the 
F(a) and related functions can be obtained. 

8. Computer algebra: Most modern computer algebra systems are capable of manipulating 
and evaluating hypergeometric functions, sometimes in closed form. The author used "Maple" to 
check the hypergeometric identities in this paper for misprints (and did find and correct a few). 
Also, numerical experimentation is easy; new (and not so new) identities are easily discovered and 
can then be proved by standard methods. For example, the identity 

(_irM^2±»,4+ii.2+ii.4J = 4 _ ^ ( 1 0 1 9 ) 

was discovered as a result of a misprint. It can be proved, for example, by using the fact that the 
left-hand side of (10.19) has to satisfy the same recurrence as the Fibonacci and Lucas numbers. 
Using properties of the binomial coefficients will probably be easier than the use of contiguous 
relations such as (10.4) and (10.5). 

In this connection, it should be mentioned that S. Rabinowitz has developed algorithms for 
manipulating Fibonacci identities as well as identities for other, more general sequences. These 
algorithms have been implemented and are available as "Mathematica" programs (see [39]). 

Finally, the powerful algorithms of Gosper, of Wilf and Zeilberger, and other related ones 
must be mentioned here. For general as well as more detailed discussions, see [27] and especially 
[38]. 
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1. INTRODUCTION 

Let {tf/}y=o (r>2,ar_!^0) be a sequence of real numbers. An r-generalized Fibonacci 
sequence {Vn}~^0 is defined by the following linear recurrence relation of order r: 

Vn+l=a0Vn+alVn_l + --+ar_lVn_r+l forn>r-l, 

where VQ, ...,Vr_x are specified by the initial conditions. Such sequences are largely studied in the 
literature (see, e.g., [2], [3], [6], and [7]). Let {dj}j>0 be a sequence of real numbers and 
consider the sequence {Vn}neZ defined by the following linear recurrence relation of order oo: 

^ + l = V " n + ^ - l + - - - + « i ^ - m + ' -S for/! £ 0 , (1 ) 

where {V_J}J>0 are specified by the initial conditions. Such sequences, called ^-generalized 
Fibonacci sequences, were introduced and studied in [8]. We shall refer to them in the sequel as 
sequences (1). 

The aim of this paper, motivated by [8] and [10], is to study the connection between 
sequences (1) and Markov chains when the coefficients {^}y>o a r e nonnegative. Such a connec-
tion is a generalization of those considered in [9] for r-generalized Fibonacci sequences. As in 
[8], we consider some hypotheses on {aj}j>0 and {V_J}J>0 in order to ensure the existence of the 
general term Vn for any n > 1, and then we extend results of [3] and [9] to the case of sequences 
(1). More precisely, using some Markov chain properties (see [1], [4], and [5]), we give a neces-
sary and sufficient condition on the convergence of the ratio -p-, where q > 0 is a specified real 
number. This result extends the sufficient conditions of [8], under the hypotheses considered on 
the two sequences {aj}j>0 and {V_J}J>0. We also give the expression lim^+^-p-. 

This paper is organized as follows. In Section 2 we study the case of sequences (1) in con-
nection with Markov chains, when the coefficients {#,}, >o a r e nonnegative with Z7>0^, = 1- We 
also give a necessary and sufficient condition for the convergence of Vn and the expression of 
l im^^f^. In Section 3 we extend the results of Section 2 to the case of arbitrary nonnegative 
coefficients. 

2. SEQUENCES (1) AND MARKOV CHAINS 

2.1 Fundamental Hypotheses and Existence of the General Term 
Let {V„}neZ be a sequence (1). Its general term Vn does not exist in general for any n > 1. 

For example, suppose that {a^j;>0 and {V_J}J>0 are defined by 

a0 = 1, aj = / forj > 1 and V0 = 1, V_j = /^+ 2> for/ > 1. 

Then, by a direct computation, we obtain 
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^ 1 + E l and V2=V1+V0^Y m • = +oo . 
—if - * - ^lim-iy 

Thus, to ensure the existence of Vn for any n > 0, we need some hypotheses on the two sequences 
iaj}j>o a nd {V-j}j>o- More precisely, suppose that the following hypotheses are satisfied: 
(H.1) For any m > 0, there exists k > m such that ak > 0. 
(H.2) There exists C > 0 such that ak<C. 
(H.3) The series Zw>0| Hw | is convergent. 

The two hypotheses (H.2) and (H.3) are trivially satisfied in the case of r-generalized Fibo-
nacci sequences. These three hypotheses are more convenient with a Markov chain formulation 
of sequences (1). They are not necessary for the existence of the general term V„. Other condi-
tions are considered in [8]. 

2.2 Sequences (1) Whose Coefficients Are Nonnegative with Sum 1 
Suppose that the coefficients {aj}j>0 of the sequence (1) satisfy hypothesis (H.l) and the 

following condition: 
2>y = l- (2) 

It is obvious that identity (2) implies (H.2) is trivially satisfied. Consider the following matrix: 

P = 

aQ 

1 
0 

a\ 
0 
1 

0 
0 0 

0 
(3) 

Condition (2) shows that the matrix P defined by (3) is a stochastic matrix. Then P is a transition 
matrix of a Markov chain (JT), whose state space is N = {0, 1,...}. Set P = (P(n, m))^meN, then 
^(0, m) = am and Pin, m) = 8n_lm for n > 1, where SkfS is the Kronecker symbol. Set Pk = P- • • P 
(k times), then Pk =(P^k)(n,rn))^meN for any k>l, where P^k\n,m) is the probability to go 
from the state n to the state m after k transitions. Since P(n, n -1) = 1, we derive 

P(n'm\n9m) = l for my m<n. (4) 

Then we have the following proposition. 

Proposition 2.1: Let {®J}J>O be a sequence of nonnegative real numbers such that hypothesis 
(H.l) and condition (2) are satisfied. Let (2T) be the Markov chain associated to the matrix P 
defined by (3). Then: 
(i) The chain (2T) is irreducible. 

(ii) The chain (2T) is recurrent positive if Tm>0(m + l)am <+oo and it is recurrent null if 
Hm>o(m + i)am = +oo. 

Proof: (i) Let n and m be two states of (9"). Suppose, for example, that m<n. Hypothesis 
(H. 1) and relation (4) imply that there exists nQ > n such that a„0 > 0 and thus 
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pCm+Ko+l-*)^ W ) > pW(m, 0)P(0, ^)P( W°-W )(«0, W) 

which implies that jp(m+wo+1-")(w? m)>an > 0. Hence, the Markov chain (2T) is irreducible. 

(ii) To study the nature of (9~), it is sufficient to study the nature of the state 0. Starting 
from 0, the Markov process associated to (9~) will go at the first transition to a state m with prob-
ability am. And it will be back to 0 with probability 1 after m transitions. Therefore, am is the 
probability of going from 0 and coming back to this state after m + \ transitions. The probability 
of coming back to 0 is Z*=0

am = *• Therefore, (2T) is recurrent. Let TQ be the real random 
variable which defines the first instant of return of the process to 0. We have established that 
am - Pr{7^ = m +1}; thus, the mean value of T0 is E(T0) = Hmlo(m-hl)am. Then (2T) is recurrent 
positive if SOT > o (m + ̂ )a

m < +00 and it is recurrent null if Ew > 0("* + ̂ )a
m = +00 • 0 

Remark 2.1: Let R be the radius of convergence of the series Hm>0amXm. Hypothesis (H.2) 
implies that R>1. R is also the radius of convergence of the series Hm>QtnamXm. Hence, if , 
R > 1, we have Sm>o ma

m < +0° • Then (2T) is recurrent positive. 

Recall that the period d{m) of a given state m of (2T) is defined by 

rf(w) = CGD{k e N; P(/r)(w, m) > 0}. 

It is well known that, for an irreducible Markov chain (2T), we have d(rn) = d(0) = rf for any m in 
(2T) (see, e.g., [4]). We recall here a very well-known theorem on the asymptotic behavior of a 
Markov chain. 

Theorem 2.2: (See, e.g., [4].) Let P = (P(n,m))n mGN be the transition matrix of an irreducible 
Markov chain (9"). Then: 
(i) The sequence of matrices {Pk}k>0 converges if and only if the Markov chain (2T) is 

aperiodic or identically d-\. 
(ii) If (2T) is recurrent null, then l im^^, P^h\n, m) = Q for any states n and m in (2T). 
(Hi) If (2T) is recurrent positive, then limk_J>+co P^k)(n, m) does not depend on n and we have 
limk_>^0 P^k\n, m) = U(m), where TL(m)>0 for any m. And the stationary distribution vector 
n = (n(0), 11(1),..., U(m),...) is the solution of the following matrix equation 

n = n-p, (5) 
where Z^on(nf) = l. 

Let {Vn}neZ be a sequence (1) and consider the infinite column vector Xn = (Vn,Vn_l,..., 
Vn_k,...)', where Rl means the transpose of R. We can show easily that expression (1) may be 
written as follows: 

X„+l = PX„ or X„+l = P"+iX0 (6) 

for any n > 0, where X0 = (V0, V_h..., V_k,...)' is the infinite vector of the initial conditions. With 
the use of (6), Proposition 2.1, and Theorem 2.2, we can extend the necessary and sufficient 
condition of convergence established in [3] and [9] for r-generalized Fibonacci sequences to the 
case of sequences (1) as follows. 
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Theorem 23: Let {aj}Jk0 and {V_J}J>0 be two sequences of real numbers such that hypotheses 
(H.l) and (H.3) and condition (2) are satisfied. Then the associated sequence (1) converges if 
and only if the following condition (%): CGD{y +1; a} > 0} = 1 is satisfied, where CGD means the 
common great divisor. 

Proof: From (6), we derive that the sequence (1) converges for any choice of the initial 
conditions {V_J}J>0 if and only if the sequence of matrices {Ph}k>0 converges. Then, let us study 
the aperiodicity of the Markov chain (2T) associated with the matrix P. We search the period of 
the state 0. Starting from state 0, the process will go at the first transition to a state m with prob-
ability am > 0. And it comes back to 0 after m transitions with probability 1. Hence, the process 
returns to 0 after m + l transitions. Starting from the state 0 after crossing kx times the state mx, 
k2 times the state /% ... . Then the process has made kl{ml +1) + ̂ (mj +1) + • • • transitions. Thus, 
P(n)(0,0) > 0 if and only if n is of the following form: n — kl(ml +1) + k^m, +1) H — , where kx, 
k2,... are in N. Hence, we have {n; P(n)(0, 0) > 0} = {«; n - kx{jnx +1) + k^rr^ +1) + • • •; kx, k2y... 
GN} , which implies that CGD{«; P(w)(0,0) > 0} = CGD{m +1; am > 0}. Then (T) is aperiodic if 
and only if condition (%) is satisfied. Thus, the sequence (1) converges if and only if condition 
(<€) is satisfied. D 

The following corollary is an immediate consequence of Theorem 2.3. 

Corollary 2.4: Under the hypotheses of Theorem 2.3 and if aQ > 0, then the sequence (1) con-
verges. 

Now we shall find the expression of the limit of the sequence (1) when condition (%) is 
satisfied. 

Lemma 2.5: Let {dj}j>0 be a sequence of real numbers such that hypothesis (H.l) and the two 
conditions (2) and (<€) are verified. Let P = (P(n, m))„tm^0 be the stochastic matrix (3). Then 
we have: 
(i) l i m „ ^ J**>(n, /«) = 0 if E£ 0 ( / +1)«, = +°° • 

(ii) l i m ^ ^ P(k)(n, m) = U(m) if Z%(J + l ty < +°°, where 

Proof: Proposition 2.1 shows that (9") is irreducible. And condition (%) implies that (2T) is 
aperiodic and limn_^^X)P(k\n,m) exists. Proposition 2.1, Theorem 2.2, and condition (%) allow 
us to see that (i) ( J ) is recurrent null with l i m ^ ^ P(k)(n, m) = 0 if TZoim + l)am = +°°> a n d 00 
(2T) is recurrent positive with lim^^ P(k)(n,m) = Tl(m) if Z^0C/ + 1 H <+00> w h e r e n(m) i s 

the (/w + l)* component of the stationary distribution vector U = (0(0), 11(1),..., 11(A),...) which 
satisfies 

+00 

n = H P and Xn(w) = 1- (8) 

The first equation of (8) is equivalent to an infinite system of equations whose unknown variables 
are Il(m). By taking into consideration the second equation of (8), we derive 
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U(m)= Z!=m~l . U ^l=m al 

Theorem 2.6: Under the hypotheses of Theorem 2.3 and if condition (c6) is satisfied, we have: 
(i) l i m ^ F ; - 0 if Z ^ O ' + I H = +00-

(fi) l i m ^ ^ F„ = Z p 0 n(w)F w if Z%(j + l)ay < +oo, where the U(m) are given by (7). 

Proof: Expression (6) shows that Vk = Z ^ 0 i**>(0, m)V_m. The inequality |J**>(0,m)H M | < 
\V_m | and hypothesis (H.3) imply that 

+O0 

UmKt = £ ( l i m ^ ( O , ™ ) ) ^ . 
fc-»+oo *--* fc-H-oo 

Hence, using Lemma 2.5, we derive the result. D 

Theorem 2.6 is a generalization of Theorem 2.4 of [9] to the case of sequences (1) under 
hypotheses (H.l), (H.2), and (H.3). 

2.3 The Case of CGD{w +1; am > 0} > 2 
Let {c*j}j>o be a sequence of nonnegative real numbers which satisfies hypothesis (H.l) and 

condition (2). Suppose that CGD{w +1; am > 0} > 2. Let P be the stochastic matrix (3), and con-
sider the Markov chain (9~) associated with P. Then we have the following proposition. 

Proposition 2.7: (See, e.g., [5].) Let (2T) be an irreducible recurrent positive Markov chain. Let 
dbe the period of the states of (2T). Suppose that d > 2. Then the state space E of (2T) may be 
written as follows: E = Dl^uD2^j"-KjDd, where Dt r\Dj = 0 for i&j, such that if the process 
is in the class Dt at the instant n, then it can go to the class Dj+l after one transition, with prob-
ability 1 (for / = d, it goes from Dd to Dx). Each class Z> (1 < / < d) is called a cyclic class. For 
any k, I with k<l<d and i,j in E, the following limit, l im^.^ P(m/+/)(/, 7), exists and for any 
/ G Z\ we have 

l i m pi»i+i)(jj)={dUU)> ifJeD*+> ( m o d r f )> 
"->+<*> ' | o , if not, 

where H(j) is the (7+ 1)* component of the stationary distribution vector of P. 

In our case, we have P(i +1, /) = 1; hence, the cyclic classes are given by Dj = {nd + j ; n > 0}, 
j = 0,l,...,d. We derive the following result from Proposition 2.7. 

Theorem 2.8: Under the hypotheses of Theorem 2.3, suppose that the Markov chain (2T) associ-
ated with P is irreducible recurrent positive. Suppose that CGD{m +1; am > 0} > 2. Then {Vn}n e Z, 
the sequence (1) has d subsequences defined by {Vnd+i}neZ, where / = 0,1, ...,d-l, and each of 
these subsequences, which is also a sequence (1), is convergent. More precisely, for any arbitrary 
initial conditions and a fixed / (0 < / < d -1), we have 

KmVnd+l=d2Tl(kd + l)V_(kd+l), 

where the U(m) are given by expression (7). 
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Proof: We have Vnd+l = Z ; : 0 P<"d+l\o, m)V_m. Hypothesis (H.3) implies that 

Mm ^ + / = S ( « m P<"d+l\0,m))V_m, 

and the result is derived from Proposition 2.7. • 

Theorem 2.8 is an extension of Theorem 4.2 of [9] to sequences (1), whose nonnegative 
coefficients satisfy condition (2), under hypotheses (H.l) and (H.3). 

3* SEQUENCES (1) WHOSE COEFFICIENTS ARE NONNEGATIVE 

In this section we consider that the nonnegative coefficients {aj}j>0 are of arbitrary finite 
sum. 

Let {VJneZ be a sequence (1) such that hypotheses (H.l), (H.2), and (H.3) are satisfied. Let 
R be the radius of convergence of the power series 

+00 

/ W = Z V " ' . (9) 

Hypothesis (H.2) implies that R > 1. 
Consider the following limit L - lim _ / ( * ) . The study of sequences (1) depends on the 

following three cases: L < 1, L = l, and L > 1. 

Study of the Case L < 1. In this case, we have J^0am < 1 because R > 1 and the function/is 
not decreasing. Then we have the following result. 

Proposition 3J: Let {Vn}neZ be a sequence (1) such that hypotheses (H.l), (H.2), and (H.3) are 
satisfied. Then, if Y^0am < 1, we have lim^^f^ = 0 for any choice of the initial conditions. 

Proof: Let SN = £^ |F„ |. We have SN = Zl^Zo "mK-m-i I * 2 £ i E^o " J ^ - i I, which 
implies that SN ^l^am{I^\V_k\ +SN). Thus, SN £ ( ! £ „ «»)(££>F-tlX1 - 2 T o « J _ 1 - And 
from hypothesis (H.3), we derive l im^.^ Vn = 0. D 

Study of t ie Case L = 1. In this case, we have the following two subcases: Y^Qam = 1 if R - 1 
and Z^=0

aw < 1 if /? > 1 - The first one is studied in Section 2 and the second one is nothing but 
the preceding case. 

Study of the Case L > 1. In this case, the analytic power series of/defined by (9) is a continu-
ous and not decreasing function on ]0,i?[ that satisfies /(G) = 0. Then there exists x0 G ]0,i?[ 
such that f(xQ) = 1. Set q = 1 /x0 and hm = am /^w+1 for anymeN. Then we have 

6m>0, ^bm = l, and CGD{/w + l; am >0} = CGD{/w + l; ftM >0}. (10) 

Now consider the sequence {Wn}neZ defined by Wn = ~. From relation (1), we derive 

m=0 
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for any n>0. Thus, {Wn}neZ is also a sequence (1) that satisfies the two hypotheses (H.l) and 
(H.2) and condition (2). Hypothesis (H.3) is not satisfied in general by the initial conditions 
W-m)m>0' From Theorems 2.3 and 2.6 and expressions (10) and (11), we can formulate the 
extension of Theorems 5 and 9 of [3] and Theorems 3.1 and 3.3 of [9] as follows. 

Theorem 3.2: Let {Vn}neZ be a sequence (1) such that hypotheses (H.l), (H.2), and (H.3) are 
satisfied. Let {Wn}neZ be the sequence defined by (11) and suppose that the initial conditions 
W-m}m>o satisfy hypothesis (H.3). Then: 

(a) lim,^.^ Wn = l im^.^ -^ exists if and only if condition (c€) is satisfied. 

(b) If condition (<€) is satisfied, we have: 
(i) l i n v ^ ^ O if ^ : 0 ( m + l ) ^ = +oo; 

(ii) lim„_^ J = TZo ^(m)V_mqm if E£>(HI + 1)^ < +oo, where 

n < r a ) = z i l ^ (,2) 
The second expression of l i m ^ ^ - ^ given in Theorem 3.2 is identical to the expression of 

Theorem 3.10 in [8]. 
For q < 1 or ££> < 1, we have \WJ = \Vmqm\< \Vm\. Thus, hypothesis (H.3) is satisfied by 

{W_m}m>0. But for q > 1 or Z^>fl5 > 1, such hypothesis is not satisfied in general by {W_m}m>0. 

Case d = CGD{m +1; am > 0} > 2. In this case, we derive from expression (10) that CGD{m +1; 
bm > 0} > 2. Thus, we can extend Theorem 4.2 of [9] as follows. 

Theorem 33: Under the hypotheses of Theorem 3.2, suppose that d - CGD{m +1; am > 0} > 2. 
Then {Wn}n e Z has d subsequences defined by {Wnd+l}neZ, I - 0,1,..., d -1 that are also sequences 
(1). And each subsequence {Wnd+l}neZ converges for any choice of those initial conditions with 

Km ^ + / = lim ^ = ^ In ( f e / + /)^_(W+0, 

where the n(fci + /) are given by expression (12). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others' proposals must be sub-
mitted to the Solutions Editor, DR. J A WAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by February 15, 2001. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

Dedication: The problems in this issue are dedicated to Dr. Stanley Rabinowitz in recognition of 
his nine years of devoted service as Editor of the Elementary Problems Section. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+l+Fn> F0 = °> ^1 = ^ 

At+2 = Ai+1 + Ai> A) = 2, L\ = 1. 

Also, a = (l + V5)/2, J3 = (l-j5)/2, Fn = ( a w - /T) /V^and Ln = a"+J3n. 

PROBLEMS PROPOSED IN THIS ISSUE 
B-900 Proposed by Richard Andre-Jeannin, Cosnes et Romain, France 

Show that tan(2warctan(a)) is a rational number for every n > 0. 

B-901 Proposed by Richard Andre-Jeannin, Cosnes et Romain, France 
Let An be the sequence defined by A^ = 1, Ax - 0, Ari = (n-1)^^ + ̂ -2) f°r n - 2- Find 

lim -^L 
«-»+oo n\ 

B-902 Proposed by H.-J. Seiffert, Berlin, Germany 
The Pell polynomials are defined by P0(x) = 0, Px(x) = 1, and Pn(x) = 2xP„_l(x) + P„_2(x) for 

n > 2. Show that, for all nonzero real numbers x and all positive integers n, 

th)(\-xrkPk(x) = x"-lPn(Vx). 

B-903 Proposed by the editor 
Find a closed form for Z*=0 F^xn. 
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B-904 Proposed by Richard Andre-Jeannin, Cosnes et Romain, France 
Find the positive integers n and m such that Fn-Lm. 

B°905 Proposed by Jose Luis Diaz, Universitat Politecnica de Catalunya, Terrassa, Spain 
Let n be a positive integer greater than or equal to 2. Determine 

(Fn
2 + l)Fn+lFn+2 Fn(Fn\l + l)Fn+2 F„Fn+1(F„\2 + l) 

(Fntl-FnWn+2-fn) Fn ~ K+lWn+2 ~ F
n+l) iFn ~ K^Wn.l ~ K^Y 

SOLUTIONS 
A Constant Summation 

B-884 Proposed by M. N. Deshpande, Aurangabad, India 
(Vol 37, no. 4, November 1999) 

Find an integer k such that the expression F*F*+2 + kF*+lF*+2 + F*+lF*+3 is a constant inde-
pendent of n. 
Composite solution by L. A. G. Dresel, Reading, England, and Maitland A. Rose, University of 
South Carolina (independently) 

Denoting the given expression by Qn, we have 

O+i ~Qn = KFn+2)2{(Fn+3)2 -(F„+1)2} + (Fn+2?{{Fn+tf - (F„)2}. 
Now 

(Fn+3)2 ~ (Fn+l)2 = (Fn+3 ~ Fn+l)(Fn+3 + ^ + l ) = Fn+2Ln+2 
and 

(Fn+A? ~ {Fnf = ( ^ + 4 " Fn)(Fn+4 + Fn) = (Fn+3 + Fn+l)0Fn+l) = ^n+lK+n 

so that Qn+\-Qn = (k + 3)(Fn+2)3Ln+2. Since we require Qn+i-Qn = 0 for all w, we must have 
k = - 3 , giving the identity 

(F„F„+2)2 - 3(F„+1F„+2)2 + (F„+1F„+3)2 = 1 for all n. 

The proposer noted that a similar result holds for the Lucas numbers. The constant k would still 
be -3 but the value of the analogous expression would be 25. 
Also solved by Gerald Heuer, H.-J. Seiffert, James A. Sellers, Indulis Strazdins, and the 
proposer. 

A Unit Summation 

B-885 Proposed by A. J. Stam, Winsum, The Netherlands 
(Vol 37, no. 4, November 1999) 

For n > 0, evaluate 

£<-'>--'^ ( V K 
Solution 1 by Kuo-Jye Chen, National Changhua University of Education, Taiwan 

We rewrite the sum as 
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and claim that 4 = 1 for n > 0. 
It is readily seen that 

4 = 1. (l) 
Next, we show that 

4 ~ 4 _ 1 = 0 forw>l. (2) 
Write 

4 - 4 _ 1 = j 0 +r f 1 + j 2 + ...+rf„_1, (3) 
where 

We compute the following partial sums of (3): 

and, in general, 

^ + rf1+d, + . . . + r f J k = ( - l ) * ^ ^ + *^H_jt_I, f o r 0 < * < « - l . (4) 

In particular, when A: = n -1, formula (4) reduces to dQ +dl +d2 + —^dn_l = 0, which completes 
the proof of (2). 

Combining (1) and (2), we obtain, for n > 0, 

Solution 2 by H.-J. Seiffert, Berlin, Germany 
Define the Fibonacci polynomials and the Lucas polynomials by 

F0(x) = 0, /?(*) = 1, F„+1(x) = xFw(x) + i ^ x ) , n>\ 
and 

Z0(x) = 2, Z^x) = x, 4+1(x) = xZ,„(x) + / ^ ( x ) , n > 1, 
respectively. Differentiating the known identity (see [1]) 

i(-w-fn^kyh(x)=x2 

with respect to x, using the fact that L'k(x) = kFk{x) and Z^(x) + xi^(x) = 2i^+1(x), and multi-
plying by x/2 gives 

±{-W-k(2n;X_\k)kxkFM(x) = nx>». 
k=l ^ / 
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H«nce,byCa*) = 5 £ F ( V ) , 

Now, take x = 1 to see that the value of the sum in question is 1. 
Reference 
1. R. Andre-Jeannin & Paul S. Bruckman. "Problem H-479." The Fibonacci Quarterly 32.5 

(1994):477-78. 

Also solved by Indulis Strazdins and the proposer. One incomplete solution was received 

Some Sum 

B-887 Proposed by A. J. Stan% Winsum, The Netherlands 
(Vol 37, no. 49 November 1999) 

Show that 

f(y-"-\-k\F _f(y-n-2-k) _f(y-j 

Solution by H.-J. Seiffert, Berlin, Germany 
Define the Fibonacci polynomials by FQ(x) = 0, Ft(x) = 1, and Fn+l(x) = xFn(x) + Fn_l(x) for 

n G Z. It is known (see [1], identity (60)) that 
L*/2J / _ .\ 

/=o v J 
and (see [1], identity (39)) 

xmFr{x) = j:(-iy[mj)Fm+r_2j(x\ meNQ,reI. (2) 

For the nonnegative integer n, consider the polynomials 
L«/2j , x L«/2J/ _ _ \ 

^)=ZH)yyj/V2y+iW ^d e(r)=X(" * Jf~2j-
If z = /w is an integer such that 0 < m < \nl2\, then by (1) and (2), P(m) = xmFn_m+l{x) = <g(/w). 
Since P(z) and g(z) a r e both polynomials in z of degree not greater than \nll\, we then must 
have P(z) = Q(z) for all complex numbers z. This proves the identity 

Z (-iy{Zj)Fn-y+M)= Z ("-J"-7)^, O) 

valid for all w e N0 and all complex numbers x and z. 
To deduce the desired identities, we will use the well-known relation 

(-V{-"j-1) = {a+jJ)>Je"o,<'eC-
Now, using (3) with n replaced by In and z - In-y and then reindexing on the left-hand side 
j = n-k gives 
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k=0 

y-n-l-
n-k F2k+\(X) -ttA^'-

y» [y-n-2-k 

Similarly, using (3) with n replaced by In +1 and then taking z = In +1 - y yields 

k=o v y j=o \ J s 
Finally, take x = 1. 
Reference 
1. S. Rabinowitz. "Algorithmic Manipulation of Second-Order Linear Recurrences." The Fibo-

nacci Quarterly 37.2 (1999): 162-77. 

Also solved by the proposer. 

Determine the Determinant 

B-888 Proposed by A. Arya, J. Fellingham, and D. Schroeder, Ohio State University, OH, 
and J. Glover, Carnegie Mellon University, PA 
(Vol 37, no. 4, November 1999) 

For n > 1, let An = [atj] denote the symmetric matrix with ati = i' +1 and aUj = min[/, j] for 
all integers / andy with i; * j . 

(a) Find the determinant of A^. 
(b) Find the inverse of An. 

Composite solution to part (a) by L. A. G. Dresel, C Libis, I. Strazdins, and the proposers. 
Let Dn denote the determinant of An. Then we have Dx - 2 and D2 = 5, and for n > 2 , 

A, 

1 1 

n n-\ 
n-\ n+\ 

1 

1 • • 
0 0 0 

n n-\ 
-1 2 

1 • • 
0 0 0 

1 0 
• 0 
• 0 
n - 1 
- 1 3 

since the determinant is unchanged if we first subtract the penultimate row from the last row, and 
then subtract the penultimate column from the last column. Expanding the resulting determinant 
by its last row, we obtain Dn = 3Dn_{ - Dn_2. But we have D{ = 2 = F3 and D2 = 5 = F5 so that, if 

: 3F2N+i F2N_l - F2 2N+3-we assume that Dn = F2n+l for n<N, we obtain DN+l = 3DN -DN_X 

Hence, by induction, we have Dn = F2n+l for all n > 1. 

No detailed solution to part (b) was received. The proposers stated that the inverse of An is [by], 
where 

K = 1 
(^2(«- / ) + i^2 / - i+^2 ( w -o^2/ ) and btj I2n+\J \r2n+l 

1 
V2(n-m&x{i, j})+l)V2mm{i, j}p * ^ j -

However, showing that [a^by] = In involves tedious algebra. 

Addenda: We wish to belatedly acknowledge solutions from the following solvers: 
Charlie Cook—Problems B-873, B-875, and B-877; Maitland A. Rose—Problem B-878. 
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Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-564 Proposed by Stanley Rabinowitz, Westford^ MA 
Let k be a positive integer and let a0 = 1. Find integers alya2,...,ak and b0, bl9 b2,...,bk such 

that 

1=0 /=o 

is true for all integers n. Prove that your answer is unique. 
For example, when k = 4, we have the identity 

Ll + 2lLl+l + 56L&„+2 + 2\Ll+3 + Ll+4 = 625(F„8 + 21F„8
+1 + 56F„8

+2 + 21/ft3 +F*+4). 

H-565 Proposed by Paul S, Bruckman, Berkeley\ CA 
Lttp be a prime with p = -1 (mod 2m), where m > 3 is an odd integer. Prove that all resi-

dues are m®1 powers (mod/?). 

H-566 Proposed by N. Gauthier, Dept of Physics, Royal Military College of Canada 
Let 0n:=x/2n9 where n is a positive integer, and set Ln = an+bn, Fn = (an-bn)/(a-b), 

where a = ±(u + ̂ u2-4), b = ^(u-^/u2-4), u * ±2, and show that, for n > 2, 
n-l j 

2 2(u + 2)2F„ "+1 " n_1 "2J 

SOLUTIONS 

A Very Odd Problem 

H-550 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 37, no. 2, May 1999) 

Suppose n is an odd integer, p an odd prime * 5. Prove that Ln = 1 (mod p) if and only if 
(i) an = a,pn = p (mod/;), or (ii) a" = p,P" = a (mod/?). 
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Solution by H.-J. Seiffert, Berlin, Germany 
Recall that the integers of Q(^5) have the form (a + V5Z>)/2, where a,b e Z such that 

a = h (mod 2). 
Since n is odd, we have L2

n-5F2 = -4 . Clearly, Ln = Fn (mod 2). 
Suppose that Ln = 1 (mod/?). Then i^2 = 1 (mod/?), because/? is a prime =£ 5. Hence, since 

p is an odd prime, either Fn = 1 (mod/?) or i^ = -1 (mod/?). If i^ = 1 (mod/?), then 

an=iLn+^Fnsl±A = a (modp) and /?"= L»-fF»=±^[ = {1 (modp). 

Similarly, if Fn = -1 (mod/?), then 

an = Ln+^FnslzA = fi ( m o d p ) and /?" = Ln~^F« sl±A = a (modpy 

Conversely, suppose that either (i) or (ii) holds, then in each case Ln - an + (3n = a+/? = 1 
(mod/?). 

/Ifeo solved by L. A. G Dresel and the proposer. 

Some Restriction! 

H-551 Proposed by N. Gauthier, Royal Military College of Canada 
(Vol 37, no. 2, May 1999) 

Let k be a nonnegative integer and define the following restricted double-sum, 

a - l b-\ 

br+as<ab 

where a and b are relatively prime positive integers. 
~b-\ k 

a. Show that Sk_x = -77- Jk-m for £ > 1. 
.r=0 m=2^ ' 

The convention that (£) = o ifrn> k is adopted. 

b. Show that S2 = —[3a2b2 + 2a2h + 2ah2 -a2 -b2 -9ab + a + b + 2] 

Solution by Paul S. Bruckman, Berkeley, CA 
In the rs-plane, letZ, denote the line segment br+as = ab (i.e., r/a+s/b = l), with 0 < r <a, 

0<s<b. Also, let T denote the triangular first-quadrant region bounded by the axes and L, 
including points on the axes that are not on L, and excluding points on L. 

Note that Sk considers only the lattice points {r, s) that are elements of T. The only lattice 
points that lie on L are the points {a, 0} and {0, &}, a consequence of the fact that gcd(a, b) = l. 
For brevity, we write 

S*=EI(ftr+ay)*, 
T 

where {r, s} are lattice points of T. 
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We will first derive the following identity: 
a-\ b-\ b-\ {{b-l)la} 

r=0 s=Q m=0 w=0 W 

Proof of (1): Concentrating on the left member of (1), we see that the value of the variable 
br + as, subject to the indicated restriction, is ah + rn, where m is an element of the set {0,1,2,..., 
b -1}. Since a and b are coprime, there exist positive integers w and v such that aw - bv = 1. 
Assuming that m > 0 is given and not a multiple of a, the equation br+as = ah + tn has solutions 
{r, s} given by: r -a-rnv + at, s = mu-bt, where / is an arbitrary integer. However, since we 
require 0 < r < a - 1 , 0<s<b-l, this forces / to have a unique value, and the solutions {r, $} are 
therefore unique. 

On the other hand, if m - amf is given, the equation hr+a$ = ah + arnf implies br == 0 (mod 
a), hence a\r. This, in turn, can only occur if r = 0, in which case br+as<ab, falling outside of 
the range of restricted values allowed. Thus, m assumes each value in {0,1,2,..., b-1} exactly 
once, with the exception of the multiples of a, which do not occur at all (it is seen at once that m, 
likewise, cannot be a multiple of b). These latter values of m to be excluded therefore comprise 
the set {0, a, 2a,..., [(b -1) / a]}. Putting these facts together establishes the identity in (1). D 

Next, consider the sum Hk
m=QkCmbmSk_m, which may also be written symbolically as (b + S)k, 

it being understood that, in such a binomial expansion, "exponents" of S are translated to sub-
scripts. We see that, provided k > 2, such sum equals 

(b + S)k =Sk+ kbS^ + £ kCmbmSk^. (2) 
m=2 

Note that this is also true for k = 1 if we define the sum in (2) to vanish for k = l. Also, however, 

T 

= fj
hf(br+as)k=af b£(br + as)k + b£(ab+as)k -b£(as)k 

r=l s=0 r=0 5=0 5=0 s=0 
br+as<ab+b br+as<ab+b as<b as<ab+b 

l(b-l)/a] b-l 
= $k+Uk+ ^(ab + asf-J^iasf, 

s=0 s=0 

where Uk is the sum indicated in the left member of (1). Then, using the result of (1), we obtain 
the following: 

(b + S)k = Sk + §(aft + i»)* - 'tiamf. 
m=0 m=0 

Now, substituting the result in (2) and simplifying yields the result of Part a. D 

We simply substitute k - 1,2, or 3 in the recurrence formula just derived in order to compute 
Sk_v Incidentally, it is to be noted that although this recurrence is not symmetric in a and b, it 
should be evident that the expression for Sk must be symmetric in a and b. Thus, a comparable 
recurrence, with a and b switched, is also true. For k = 1, we obtain 
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b-l 
bSQ = Y,{ab-(a-l)m} = ab2-(a-l)b(b-l)/2; 

hence, S0 = ab-(a- l)(b -1) / 2 or 

S0 = (ab+a+b-l)/2. (3) 

Next, setting k = 2, we have 
b-l 

2bSx = J]{a2b2 +2abm-(a2 -l)m2}-b2SQ 

= a2b3+ab2(b-l)-(a2-l)b(b-l)(2b-l)/6-b2(ab+a+b-l)/2; 
hence, 

125, = 6a2b2 + 6ab2 -fab- 2a2b2 + 3a2b - a2 + 2b2 - 3b +1 - 3ab2 -3ab-3b2 + 3b 
= Aa2b2 + 3ab2 + 3a2b - a2 - 9ab -b2 + \ 

or 
S, = (4a2b2 + 3ab2 + 3a2b -a2- 9ab -b2 + l)/12. (4) 

Finally, setting k = 3, we obtain 
b-l 

3bS2 = X {a3b3 + 3a2b2m + 3abm2 - (a3 - \)m3} - 3b2S1 - b% 

= a3b4 + 3a2b\b -1) / 2 + 3ab2(b - 1)(2A -1) / 6 - (a3 - l)b2(b -1)2 / 4 
-h2(4a2b2+3ah2+3a2b-a2-9ab-b2 + l)/4-b\ab + a + b-l)/2, 

which, after simplification, reduces to the expression in Part b. D 
Also solved by H.-J. Seiffert and the proposer. 

Be Determinant 

H-552 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 37, no. 2, May 1999) 

Given m > 2, let {Un}™=0 denote a sequence of the following form: 
m 

where the a/s and 0/s are constants, with the 0/s distinct, and the C/„'s satisfy the initial 
conditions Un = 0, n = 0,1, . . . ,m-2; Um_l = l. 

Part A. Prove the following formula for the Un's: 

U„= I ( W ^ •••(*>, (a) 
S(w-/W+1, /w) 

where 
S(J^m) = { ( / b / 2 , . . . , i J : ^ (b) 

Part B. Prove the following determinant formula for the C/„'s: 

380 [AUG. 



ADVANCED PROBLEMS AND SOLUTIONS 

U = 

1 
<>x 

(0>)2 

1 
02 

(o2y 

i 
e, • 

( 0 3 ) 3 • 

i 
•• om 
•• (OJ2 

m-2 (91y~2 {e2)m-2 {9,y-2 - (oj 
(<?,)" (02y (e3f - {ej 

l l I ••• i 
01 ^2 03 - 0„ 

(exf (e2f {e3f - {Gmy 

{e.y-2 {02y-2 (03r~2 ... (^j'"-2 

wr 1 (02rJ (^r1 - (0jm-' 
Solution by H.-J. Seiffert, Berlin, Germany 

If V(xl,...,xm) = det((xk)J~1)jk=lm denotes the Vandermonde determinant of m distinct 
numbers xx,..., xm, then, as is well known, 

V(xu...,xm) = Y\ (xk-Xj). 
i<j<k<m 

From U„ = 0,n = 0,...,m-2, and Um_l = 1, we have the following system of linear equations: 

(i) 

+ o, + •••+«„ = 0, 
0,(6,) + a2{92) +... + aJ0m) = 0, 

« i W - 2 +a2(92T-2
 + - + am(0my-2 = 0, 

a^r 1 +a2(^ri
 +...+am(^r-1 =1. 

Solving by Cramer's rule and expanding the nominator determinant occurring there by the Ith 

column gives 

where 0i indicates that 9t is released. Hence, by (1), 

;=.0.-0> 
,/w. 

For sufficiently small |x|, we consider the generating functions 

U(x) = %Unx" and W(*) = I X WiOj*-{Oj-x». 
«=0 S(n-m+l,m) n=0 

Then, 

or 

and 

n=0 i=l J=1 n=0 

;=1 A ^/'^ 

W = Z I (Opno^•••(9mxy»x»-l = x'»-lYi\Z(0jxy|, 
«=0 S(«-/w+l, *») ;=1 V=0 

(2) 

(3) 

(4) 
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or 
W(X) = X ^ U T ^ ~ - (5) 

From Lagrange's interpolation formula, we have 
m m Y — f) 

J** 

Replacing x by 1 Ix and then multiplying by xm~l IIJLiO - 0,-*)"1 yields 

valid for all sufficiently small \x\. Now, from (3), (4), and (5), we see that U(x) = W(x) for all 
sufficiently small \x\. Comparing coefficients of these generating functions gives the desired equa-
tion (a) of Part A. 

Expanding the nominator determinant of the requested equation of Part B by the last row, we 
see that we must show: 

However, this holds by (2) and the definition of [/ This completes the solution. 

Also solved by the proposer. 
Lotsa Terms 

H-554 Proposed by N. Gauthier, Royal Military College of Canada 
(Vol 37, no. 3, August 1999) 

Let £, a, and b be positive integers with a and b relatively prime to each other, and define 
-l 

^:=(i+(- i )»-4)- i=r". I t r i f*iseven' 
x-Lu if kis odd. 

a. Show that 
a-\ b-\ 
I I Lq(br+as) = NqaNqb[2 + Lq{a+b) - Lqa - Lqb - Lqab + ( - l F Z ^ . , , 

*'*a''<ab +(-i)'6A,*(a-i) + (-i) , (a4*>r tAf(-6-^)]+^[(-i) 'AKflw)-V]. 
where q is a positive integer. 
b. Show that 

a-\ b-\ 
£ ^Fq(br +as) = NqaNqb[(-\ra+b^Fq(ab_a.b) + Fqa + Fqb -Fqab + (-l)«"F,a(6_1) 

+ (-l)9%(*-» - F««*{\ + ^ [ ( - O ^ ^ ^ - i ) - Fqab\, 

r-0 s=0 
br+as<ab 

where q is a positive integer. 
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Solution by Paul So Eruckmam^ Berkeley•, CA 
In the rs-plane, let L denote the line segment br+as = ab (i.e., r/a + s/b = l), with 0 < r < a, 

()<>$*< A. Let «y denote the set of lattice points included in the triangular first-quadrant region 
bounded by the axes and L, including points on the axes, but excluding points on L. Also, let T 
denote the triangular "mirror-image" of S about L, and let R = S^J JTU(0, b)Kj(a, 0). Thus, R is 
the set of all lattice points included in the rectangular region with 0 < r < a, 0<s<b. Since 
gcd(o, b) = 1, we see that the only lattice points of Rr\L are at the end-points of L, namely, at 
(0, b) and (a, 0); moreover, these end-points are neither in S nor in T. 

For brevity, write N = br + as, and N e S to mean (r, s) e S, with similar notation for T and 
for R. Make the following definitions, valid for arbitrary x & 1: 

s(*)=5>". 7-(*)=5>", /?(*)=2>". (i) 
NeS NeT NeR 

We see that 

R(x) = (l + xa+x2a + --- + xba)(l-}-xb-hx2b + '-' + xab) 
= (1 - x(*+1)*)(l - x("+1)*) / {(1 + x")(l - xb)}. 

We also see that R(x) = S(x) + T(x) + 2xa* and, moreover, that T(x) = ZNe s x2ab~N = x2abS(x~l). 
This yields the following symmetrical relation (upon division by xab): 

x-abS(x) + xabS(x-l) + 2 = x-abR(x) = U(x) (say). (2) 

As we may verify, U(x) = x"^(l - x{b+l)a)(l - x(a+l)b) I {'(1 - xa){\ -xb)} = U(x~l). 
We also observe, due to the fact that gcd(a, b) = 1, that each value of N occurring as an 

exponent in the sum S(x) occurs but once. 
We may evaluate the sum S(x) by means of certain manipulations. Thus, 

a-l b-l a b-l 

s(X) = z *" = Z Z x"r+as=Z Z*6(r~1)+as 
We S r=0 5=0 r=l 5=0 

br+as<ab b{r-\)+as<ab 
a-l b-\ b-l [(b-l)/a] 

=x~*x xxbr+as - x _ 6 x x°s+x~b x x'a+a^ 
r=0 5=0 5=0 5=0 

6r+o5<Z)(a+l) 

a-l b-l a-l b-l 
ab 

assuming that a > b, then 

x ^ ( x ) = X X x*r+°*+X X x*r+a* - (x°* - ! ) 7 (x* - ! ) + x < 
r=0 5=0 r=0 5=0 

br+as<ab ab<br+as<ab+b 
ab+b-l 

= S(x)+ £ xk-(xab-l)/(xa-l) + xab 

k=ab+l 

= £(*) + (xab+b - x^+1) / (x -1) - (xa* -1) / (xa -1) + xab. 

After simplification, we obtain the symmetric expression (valid also if a < b)\ 
S(x) = (l-xab)/{(l-xa)(l-xb)}-xab/(l-x). (3) 

Now the sums given in the problem are seen to equal the following expressions: 
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XLqN=S(a<) + S(J?>y, X ^ = 5-1/2{^(«9)-5(^)}- (4) 
NeS WeS 

Therefore, it remains to show that the expressions in (4) may be simplified to the expressions 
given in the statement of the problem. 

Note that (aqk - \)(J3qk -1) = {-\)qk +1 - Lqk = 1 /Nqk. Then 

S{aq) = ( 1 - aqab)l {(1- aqa){\- aqb)}- aqab / ( l - aq) 
= NqaNqb(l - aqab)(\ - pqa){\ - pqb) - Nqaqab(\ - pq) 

= UqaNqb(\-aqab){\-pqa -p^b +p<*a+l» - Nqaqab(\-pq) 

or 
S(aq) = NqaNqb{\-pqa -pqb +p^a+V -ai°b +(ri^agab-qa 

+ {-\fb
a
qab-qb - (- \)qa+qb

 a
qab-qa-qb} - Nq(aqab - (-l)qaqab'q). 

Likewise, 

(5) 

(6) 
S(/F) = NqaNqb {1 - aqa - aqb + aq(a+b) - J3qab + (-\y° pi**-** 

_j_ f-iyb nqab-qb _ /fiqa+qb nqab-qa-qb^ _ jy (Rqab _ f]\q ftqab-q\ 

Now, adding the expressions in (5) and (6) (and using (4)), we obtain 

2*, LqN ~ Nqa Nqb {2 - Lqa - Lqb + Lq(a+b) - Lqab + (-1) Lqa^b_^ 
NeS 

+ ( - 1 ) Lqb(a_^ ~ ( - 1 ) Lq{ab-a-b) )~^q X^qab ~ (~ V ^q(ab-l) J > 

which is seen to be equivalent to the result of Part a. 
Subtracting the two expressions in (5) and (6) and dividing by 51/2 yields 

X FqN = NqaNqb{Fqa + Fqb " Fq{a+b) " Fqab + (TW Fqa{b-\) 

+ ( - i r ^ - 1 ) " (-W^Pqiab-a-b)) ~ Nq{Fqab ~ ( - l )^ ( a 6_1 }} , 

which is seen to be equivalent to the result of Part b, except for a small error. 
We note that the statement of the problem in the August 1999 issue of this journal contains a 

typographical error: the term in Part b that reads "+Fqbia_{)" should read " + (-l)qb F^^". The 
problem is stated correctly above. D 

Also solved by H. -J. Seiffert and the proposer. 
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