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1. INTRODUCTION 

Let a0, aly ...,ar_x (r > 2) be real numbers with ar_x ^ 0. An r-generalized Fibonacci sequence 
^Fn)n>o ls defined by the initial conditions (VQ, Vx, ..., P ^ ) and the following linear recurrence rela-
tion of order r, 

K+l = aQVn +a¥n-l + • • • + ̂ -l^-r+l ** W > T ~ 1 (1) 

In the sequel we shall refer to such sequences as sequences (1). When Qj = 1 for all j (0 < j < 
r-1) and V0="-= Vr_2 = 0, Vr_x - 1, sequence (1) defines the well-known r-generalized Fibonacci 
numbers introduced by Miles in [9]? which have been studied extensively In the literature. Let 
P(X) = Xr-a0Xr~l ar_x be the characteristic polynomial of sequence (1) and set aP = 
{AGC;P(A) = 0}. 

Let (£,(.,.)) be a unitary real vector space of finite dimension m9 and consider A(E), the 
space of linear self-adjoint operators onE. An operator S e A(E) Is called simple if its spectrum 
<j(S) = {fih jU2,.-,Mm} is such that fit * jUj for i±j. Set AS(E) = {S e A(E); S is simple} and 
AF

S(E) = {S GAS(E); &(S)r\GP*%}. For any S G A ( £ ) , the sequence WX<n<? defined by 
Vn ~ (Snx, x) for n = 0, \..., p < oo ? where x * 0 is a vector of 2J, Is called a sequence of moments 
ofS on the vector x. The //wear moment problem associated to a sequence {Vn}Q^n^p consists of 
finding S e AS(E) such that 

FH = (5"x,x) for* = 0,1, •. . , />£», (2) 

where x * 0 is a vector of £ (see [5] and [6]), In expression (2), the vector x Is considered as 
fixed because It is not unique. 

The aim of this paper Is to study the linear moment problem for a given sequence (1). More 
precisely, we give a necessary and sufficient condition for the sequence (1) to be a sequence of 
moments of S e AS(E). Applications and examples are given. In particular, we can characterize 
sequences (1) which are linear combinations of geometric sequences. We also consider an appli-
cation to the study of a linear system of Vandermonde type. 
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2. LINEAR MOMENT PROBLEM FOR SEQUENCES (1) 

2.1 Moments of an Operator and Sequences (1) 
Let (E9 (.,.)) be a unitary real vector space of dimension m and S e A8(E) such that a(S) = 

{Xl9...,Xm}. We have E = ®J=lEj, where Ej is the eigenspace Ej = {x GE; SX = XJX}. Let 
{ev e2, ...,em} be an orthogonal basis of E, where e. e £".. Set {?̂ }w>o, the sequence of moments 
of 5 on a fixed (nonvanishing) vector x = Ey=1/i/y of E. Let PC(X) = W}=l{X- Xj) be the char-
acteristic polynomial of S, and consider a polynomial Q(X) = Xr - a0Xr~l - • - • - ar_x such that 
Pc (X) is a divisor of Q(X); we derive from the Cayley-Hamilton theorem that Q(S) = 0, and 
then Sn+l = a0£" + • • • + ar.1iS"I"r+1 for any n > r -1. Thus, the sequence of moments Fw = (£*x, x) 
(n > 0) of 5 on x is a sequence (1). If r <m-1, we suppose that a-.(iS)o cr^ = {A1? X2,...,Xk} and 
set Si = <%, where X = ®%xEj. It is clear that 5i e A,(£) and g(Si) = 0. Then, for any x e L 
(with x * 0), the sequence of moments Vn = (S"x, x) (n > 0) is again a sequence (1). 

In the sequel, we study the converse question. More precisely, we study the linear moment 
problem (2) for a given sequence (1). 

2*2 Reduction of the Linear Moment Problem for Sequences (1) 
Let P(X) = Xr -a0Xr~l -•"-ar_l be the characteristic polynomial of sequence (1) and let 

ap = {Xl9 X2, --,Xk} be the set of characteristic roots of the sequence (1). 

Lemma 2.1: Let {Vn}n>0 be a sequence (1). Suppose that there exists S e AS(E) such that Vn -
($nx, x) for all n > 0, where x * 0 is a (fixed) vector ofE. Then a(S) r\aP- {Xh..., Xt} * 0 and 
x = Zy=i Xj, where Xj e Ej. 

Proof: Let S e AS(E) and, for any n > r -1, set R„ = Sn+l - a0Sn a^1Sw~r+1. Then we 
have J^x = X%x jUjXy^PiXjfy for any x = ZJLi fijej e £ . Using equation (2), we obtain the 
following system of m linear equations in the unknown variables fi\,fi\, ...9Mm> 

m 
%#JP{XJ)tf = 0;k = 0,l9...,m-l9. 
/=i 

by taking w = r - 1 , r, ..., r + /w - 2. The determinant of this system of Vandermonde type is A = 
P{X^)...PiX^Yl^^j^Xj-Xt). The operator 5 is simple, so Xj ^Xt for i^j, and because 
x^Owe must have A = 0, which implies that a(S) r\aP = {Xl,...,Xl}^$ and x = Zy=i fifj • D 

If IX X) does not have a real root, Lemma 2.1 shows that the sequence (1) is not a sequence 
of moments of an operator S e AF

S(E). Let S e AS(E); if cr(S)r\ap = 0, then the sequence (1) 
cannot be a sequence of moments of the operator S. A partial converse of Lemma 2.1 is given by 
Lemma 2.2. 

Lemma 2.2: Let {Vn}n>0 be a sequence (1). Suppose that there exists S e AP
S(E) with a(S)n 

ap = {Xh..., Aj}. Then there exists a vector x i=- 0 in £ such that (ST*1*, x) = J^a^S^x, x ) 
for all w > r - 1 . More precisely, we have x = Y!J=l XJ , where Xj e 2^. 
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Proof: Let S G AS(E) and set cr(S) = {Xl9...9Xm). Then we have the orthogonal decompo-
sition E = @J=lEj9 where Ej = {x GE; SX = AJX}. Suppose that a(8)r\crp = {Al9...9As}. For 
any kj (0 < j < s) and Xj G £ , , we have SkXj = A*xy (* > 0) and A*+1 = aQXkj + • • • +ar_2^/ r + 2 + 
ar_^-r+1 (* > r -1) . Thus, we have (Sn+lxj9 xj) = Zrjl\ aj(Sn-jxj9 xj) for all n > r -1, Because 
the decomposition E-©J=1£y is orthogonal, we derive (Sn+lx9x) = JJ~}0aJ.(Sri~Jx:)x) for any 
n>r-1, where x = Ey=ix- (Xj G J^). D 

Example 2.1—Characterization of geometric r-generalized Fibonacci sequences which are 
sequences of moments: If E = R, a simple self-adjoint operator £ on E is defined by $(x) = Ax, 
where 1 = S(l) and a(5) = {1}. Let {FJn>0 be a sequence (1). TfVn = (S% x) for all n > 0, we 
derive that x2 = V0 and Vn = Q^/V0)nV09 n = l92,...,r-l. For n > r, expression (1) allows us to 
have P7 = 2y~o aj^^lV{~j~l. Then {Fw}n>0 is a sequence of moments of S G A,(R) on x * 0 if 
and only if x2 =V0, Vn^Q\/V0yV09 n = \29...9r-\9 and Q(VQ9Vj)^9 where g ( j r , l > r -
EyIoay^"/'+1^r~'/'~i- Geometrically, sequence (1) is a sequence of moments of S G A / R ) on 
x * 0 if and only if x2 = V0, Vn = Q\/V0yV09 w = l ,2 , . . . , r - l , and 0 ^ ) is a point of the 
algebraic curve of equation Q(X9 Y) - 0. D 

A subspace X of E is called invariant under 5 e A(2?) (or S-invariant) if Sx GL for all 
X E L ? and we denote by 5jL the restriction of S to L. 

Lemma 23: Let 5 G AS(E) and let Z be a nontrivial ^-invariant subspace of E. Then P(5j/,) = 0 
if and only if L c ffi^^na/^ 

The proof of this lemma my be deduced using the fact that any operator S G AS(E) defines a 
basis of eigenvectors of E and its restriction to any nontrivial ^-invariant subspace L is an operator 
ofA,(Z). 

From Lemmas 2.1, 2.2, and 2.3, we can derive the following proposition. 

Proposition 2.1: Let {VJn>0 be a sequence (1). Suppose that there exists S G AS(E) such that 
Vn = (Snx9 x) for all n > 0, where x * 0 is a vector of an ^-invariant subspace L ofE. Then we 
have Vn = (5j£x, x) for any w > 0. 

With the aid of Lemma 2.2 and Proposition 2.1, the linear moment problem for a sequence 
(1) may be reduced as follows: Find S G AS(E) such that a(S)nsaF * 0 and V„ = (Snx9 x) for 
#? = 0 , l , . . . , r - l , with x;&0 in l = ®xea{S)rsapEx, where EX = {x GE; Sx = Ax}. Thus, from 
Lemmas 2.1-2.2 and Proposition 2.1, we derive the following result. 

Theorem 2.1: Let {VJn^0 be a sequence (1). Then {VJn^0 is a sequence of moments of 
S G AS(E) on a vector x ^ 0 of E if and only if S G AP

M(E) and S is a solution of the reduced 
moment problem 

Vn = (S\ x) for H = 0 ,1 , . : . , r -1 , (3) 
where x GL = ®x€a(S)rsaPEx^ 

Suppose the reduced linear moment problem (3) has a solution S G AS(E) with x ^ 0 in X, 
an ^-invariant subspace ofE. If P(S^L) = 0, then S is a solution of the linear moment problem (2). 
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Proposition 12: Let {VJn>0 be a sequence (1). Suppose that S e A8(E) is a solution of the 
linear moment problem (3) with x * 0 in Z, an ^-invariant subspace of E, such that P(Su) = 0. 
Then any extension Sx e AS(E) of $jL to £ satisfies Vn = (S"x, x) for all n > 0. 

Example 2.2: Let { F J ^ Q be a sequence (1) with VQ > 0 and S e A,(£). Suppose <r(5)r> a> = 
{2}; it is obvious that 2 ^ 0 because ar_x * 0. Let ex be a basis of Ex with (e1? ^ ) = 1. Then 
{VJn>0 is a sequence of moments of S on x = JPQ (or - ^ " ) if and only i£Vk = ($kx, x) = XkV0 

for any k = 0,1,..., r -1. This example is an extension of Example 2.1. Thus, we have the same 
geometrical interpretation. D 

Example 23: Let (E, (.,.)) be a unitary real vector space of dimension m and let {Vn}n>0 be a 
sequence (1) with r > 2. Suppose that the reduced linear moment problem, Vk = (Skx, x) for k -
0,1,..., r - 1 , where x & 0, has a solution S e A5(Is). Let a(S) r\ap = {Xt, X2}, with Xl<X2. 
Let ej be a basis of Ej with (e,., e7-) = 1 (J = 1,2). It is obvious that (el9 e2) = 0. Then we have 
Vk - (Skx, x}= X\a2 + Xk

2b2 for any £ > 0, where x = aex +be2. If r = 2, we have 

a2 = 2 ° 1 > 0 and * =- i 3 > 0 -

If r > 3, wTe have 
2 _ 1 ^V^-Vjc 2_ 1 Vk-AiVk-i 0 

"IF* 2 2 ~ &-1 2-2 
A2 A"i ~~ A j A2 sl2 A*Y 

for any k = 1,..., r -1. These expressions imply that 

vk = y^i-K^o - ̂ + f t - W 4 ] 
for all ^ > 0 . D 

2,3 Sequences (1) and Associated Matrix S 
For the construction of S e AS(E) associated to a given sequence (1), it is more convenient 

to consider a unitary real vector space (E, (.,.)) of dimension m = card {A j G R O O>} < r. In 
this case, we set a(S)no> = {2 1 ? . . . ,^}cR and consider an orthogonal basis {ex,...,em} ofE9 

where SeJ. = XJeJ. for j = l9...9l. Then 5 may be identified with the diagonal matrix D-
diag(Xl9 ...,At). If m > r +1, Theorem 2.1 and Proposition 2.2 allow us to see that we can con-
sider a self-adjoint extension Sx ofS and x & 0, JC e Z = ©AC^O^O-J^ • 

3. REDUCED LINEAR MOMENT PROBLEM OF SEQUENCES (1) 
AND HANKEL FORMS 

3.1 Hankel Matrices and Hankei Forms 

A real (or complex) matrix M = (aJk)Q<j)k<p, where 0<p<+ao, is called positive semi-
definite (resp. positive definite) if To<j9k<maJkrij?jk >0 (resp. >0) for any finite sequence 17 = 
{ •̂lo^y^w, where z denotes the complex conjugate of z. Let y = {y J}J:>0 be a sequence of real or 
complex numbers. The family of matrices defined by H(m) = (Tju)o^j,k<m-h where m = 1,23..., 
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are called Hankel matrices associated with y = {y J}J>Q, and the family of quadratic forms defined 
by 3^07, rj) =Jlo<j,k<m-i rj+kijjrik, where t] = {*7/}o£/£m-i> a r e c a l l e d Hankel forms. An infinite 
Hankel matrix, H = (yry+jt)y,jt2i0> *s called positive semidefinite (resp. positive definite) if, for any 
iw, the Hankel form 3̂ OT is positive semidefinite (resp. positive definite) or, equivalently, the 
Hankel matrices H{m) = {yj+k\^jk^m_l (m=l,2,...) are positive semidefinite (resp. positive 
definite). Hankel matrices and forms play an important role in the theory of moment problems 
(see, e.g., [l]-[6]). 

3.2 Linear Moment Problem of Sequences (1) and Hankel Forms 

Let (E9 (.,.)) be'a unitary real vector space of finite dimension m and fix an orthogonal basis 
{el,e2, ...,em} ofE. Let A - (VQ,..., Vr_x) (r > 2) be a sequence of real numbers, and consider the 
real quadratic Hankel forms on E defined by 3^(x,^) = Ho<jik<p^iVJ.+k^J^k (p>T) for x = 
ZJ=i Zj4y Suppose r - 2m-1 and that the Hankel form K^ is positive definite, and consider the 
scalar product on the K-vector space K ^ J X J (K = R or Q of polynomials of degree < m -1, 
defined by ( i > , 0 = So</,jt<m-iry+^/%J where P = To<j<m-iCjXJ and Q = TsQ<j<m.l7]jXJ• 
Let S: K ^ J X ] -» K ^ X ] be the linear operator defined by S(XJ) = Xj+l. Then S is a simple 
hermitian operator of defect 1 which satisfies Vk = (Skx9x) for & = 0,1, . . . , r - l , where JC = 
P(X) = 1 (see [5], pp. 348-51; [6], pp. 443-48). More generally, it was shown in [5] and [6] that 
the linear moment problem Vk - (Skx, x) for k = 0,1,..., r -1 has a solution S G AS(E) on x * 0 
if and only if the Hankel form $Crt±n is positive semidefinite and rkDt* - min(/?, m) for /? = 1,2, 
..^Pf1]* where r&$C^ is the rank of 9^ and [z] is the integer defined by [z]<z<[z] + l for 
z G R. Let Or be the set of A = (V0,..., Vr_t) G Rr such that 9C ±̂i] is positive semidefinite and 
r^^Cp = min(/?, m) for p = 1,..., py1]. Then, for a sequence (1), we derive the following result 
from Theorem 2.1. 

Theorem 3.1: Let {^}„>o be a sequence (1) and set A - (VQ,..., Vr_^). Then the following state-
ments are equivalent: 

(i) i = ( F 0 , . . . / M ) E n r . 
(u) The reduced linear moment problem (3), Vn = (Snx9 x) for 0 < n < r -1, has a solution 

S G A^(E) on anonvanishing vector x GE. 
(iil) The linear moment problem (2), Vn = (S"x, x) for n > 0, has a solution 5 e A^(E) on a non-

vanishing vector x GE. 
In (ii) and (iii), we have x & 0 and j r e i , a n ^-invariant subspace ofE. 

3.3 The Case of Fibonacci and Lucas Numbers 
Let (JB, (.,.)) be a unitary real vector space of dimension 2. Let {LJn>o be the sequence of 

Lucas numbers defined by LQ = 2, Lt = l, and L„+l = I^ + I^^ for m>2. Then the associated 
Hankel matrix 

is positive semidefinite and has rank 2. Thus, the reduced linear moment problem, 
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L0 = 2 = (x,x), L, = l = (&,x), L2 = 3 = (S2x,x), 

is solvable. Then Theorem 2.1 implies that the linear moment problem is solvable for all Ln = 
(S"x, x), and because 

we derive from the method of construction of S (see Subsection 2.3) that we can choose 

Let {FJn>0 be the sequence of Fibonacci numbers defined by FQ = 0, Fx-1, and Fn+l = 
Fn +i^_! for n > 2. Then the associated Hankel matrix 

* • ( ? o 
is not positive semidefinite. Therefore, even the reduced linear moment problem F0 = 0 = (x, x), 
F1 = l = (&, x), and F2 = l = (S2x, x) is not solvable. 

Because of Theorem 2.1 and Proposition 2.2, we can consider (I?, (.,.)) as a unitary real 
vector space of dimension m > 2. 

4. DEFINITE AN© INDEFINITE LINEAR MOMENT PROBLEM 
FOR SEQUENCES (1) 

Let (E, (.,.)) be a unitary real vector space of finite dimension m, and consider a sequence of 
real numbers (Vn)o<n<p, where p < QO. The linear moment problem (2) is called definite if it has a 
unique (up to conjugation by a unitary operator) solution S and indefinite if not. It was shown in 
[5] and [6] that the linear moment problem (2) is definite if and only if p > 2m-1. Let {Vn}n>0 be 
a sequence (1). Theorem 2.1 shows that if the linear moment problem (2) is solvable, it is 
reduced to the linear moment problem (3), Vn = ($nx, x) for n = 0,1,..., r -1. 

Suppose that the reduced linear moment problem (3) has a solution S eAs(E). Then the 
Hankel form Wfr+n is positive semidefinite, and rkKp = rmn(p,m) for p = 1,2,...,pf1] (see [5], 
[6]), and from Theorem 2.1, we also have S GAP

S(E). Therefore, in this case, the definite or 
indefinite reduced linear moment problem (3) depends on the cardinality /• of the set a(S)r\aP -
{ l l 5 . . . , ! / } . Even more precisely, let S GAF

S(E) and {el9e29...9el} be an orthogonal basis of 
L = ®l

J=lEj, where ej GEJ . Then the scalars ai of the vector x = Zy=1 ajej in the reduced linear 
moment problem (3) satisfy the following linear system of r equations, 

X{yl + -^Xj
1yl=Vp 7 = 0 , . . . , r - l , 

with yj = a2j. Using Propositions 2.1 and 2.2 and Theorem 3.1, we derive the following result. 

Theorem 4.1: Let S GAS(E) and (V^^Q be a sequence (1) with r > 3. Suppose a(S)r\aP = 
{11? . . . ,2 r } , where l>2. Then, if the linear moment problem (3) has a solution, it is definite if 
/ = m < l*f-} and indefinite if / < [*£] < m. 
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Example 4.1: Let (Vn)n>0 be a sequence (1) with r > 3. Suppose that the Hankel form Kfr^j is 
positive semidefinite and rkfflp = win(p9m) for p = \29...9[L7J^\. Then, by Theorem 3.1, the 
reduced moment problem (3) has a solution S e AS(E). If a(S)naF = {Xh X2} with Xx<Xl9 we 
set L = Et®E2. Then P(5jL) = 0, and we have Vn = (8nx9x) = Xtf+Xlfl- for n = 0,1, where 
x = ae1+fte2. For JW = 2 , Theorem 4.1 shows that the operator S is unique and that the linear 
moment problem (2) for the sequence (1) is definite. If 3 < m < p ^ ] , Proposition 2.1 implies that, 
for any self-adjoint extension Sx of *S|L such that a^^r^o-p = {Xl9 X2}9 we also have that Vn = 
(SiX9 x) for n > 0. Thus, the operator S is not a unique solution of the reduced linear moment 
problem (2). Hence, the linear moment problem (2) for the sequence (1) is indefinite. D 

5. APPLICATIONS AND CONCLUDING REMARKS 

5.1 Application 1: Sequences (1) Which Are Linear Combinations of Geometric Sequences 

Let {f̂ }w>0 be a sequence (1). It is well known that V„ - Zf=1 EJio1 fti,j%i> where Xl9 Xl9 ..., 
Xk are roots of the characteristic polynomial of the sequence (1), with multiplicities i^,/%..., 
mk9 respectively (JI\ H-m̂  + •••+»% = r), and ptJ are obtained from the initial conditions (V09 Vl9 

..., Vr_x) (see [7] and [8]). Then {Vn}n>0 is a linear combination of real geometric sequences if and 
only if 

PlJ = 0;j = l9...9ml-l9 7=1,. . . ,*, (4) 

and Pt0 = 0 if Xl is a complex root. The choice of the initial conditions (F0, Vl9 . . . / M ) such that 
the ptj satisfies the system of equations (4) implies that Vn = Ef=i/?/,o^> w^h Pi,o ~ 0 if ^/ *s a 

complex root. It seems difficult to find such (y0,Vl9...9Vr_l) by a direct computation from the 
system of equations (4). Meanwhile, Theorems 2.1 and 3.1 allow us to answer this question, a£ 
was shown in Examples 2.1-2.3. 

5.2 Application 2: Sequences (1) and Linear Systems of Vandermonde Type 
Consider the linear system of r equations and m unknowns yl9 ...9ym of Vandermonde type 

^ + • • • + ^ = 6,, j = 0 , l , . . . , r - l , (5) 

where r >m and Xj e R with Xt & Xj if i*j. The preceding results may be used to study this 
system. More precisely, we can associate to this linear system of equations a sequence (1) such 
that (VQ9..., Vr_t) = (A0,...,hr_t) and whose coefficients aQ9...,ar_x are given by the characteristic 
polynomial P(X) = (X~-Xl)-°(X-Xm)Q(X)9 where Q(X) is a polynomial of degree r-m. 
We now consider the linear moment problem (2) for {VJ^Q with S e AS(E), where (E, (.,.)) is 
a unitary real vector space of dimension m such that a(S) = {Xh..., Xm). Hence, if {VJn^0 is a 
sequence of moments of an operator S G AS(E), the linear system (5) has a solution (yl9 ...,ym) 
with yj > 0. Conversely, suppose that the system (5) has a solution (yl9 ...9ym) with yj > 0. Let 
(£,(.,.)) be a unitary real vector space of dimension m and set S e AS(E) such that ®(S) = 
{Xl9...,Xm). Let {etye29...9em} he an orthogonal basis of E9 where Sei = ^ / y . Then we can 
verify that FM = (5"*x, x) for all w > 0, where x = EJLi /*/_,- with ^ = yj. 
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53 Relation with Scalar Spectral Measures 
Let (£, (.,.)) be a unitary real vector space of dimension m and set S e A,(£) such that 

a(S) = {l]b..., Xm). Consider the spectral decomposition E = ®J=iEj of E. For all x = Z ^ x • 
and j = LJLiJJy in-E, where Xj and j^-are in Ej (l<j<m), the scalar spectral measure vXt is 
defined by 

j^Mdv^t) = (f(S)x, y), (6) 

where/is a continuous function on o"(5), which may be identified with a finite sequence (al9..., 
aw). From expression (6), we derive vx^y - EJ=i v^^ , and it is easy to see that 

1^/(0^^,(0 = (f(S)Xi, yt) = Mfa, y,). 
Thus, vx.fy. = (x^y^Sx., where 5A is the Dirac measure. In particular, for f(z) = zn

y we have 
(f(S)Xj, y.) = (x.y yt)X^. Let ^Vn}n>Q be a sequence (1) and suppose that it is a sequence of 
moments of the operator 5 o i a vector x = Ej=i fifr. Then we have (Xj, y^) = //J, ju^- satisfies 
the linear system of equations of Vandermonde type (5), and {Vn}„>0 is a sequence of moments of 
the positive measure vXtX = EJ= 1/I^AS. on a(S). This measure is unique if the moment problem 
(2) (or (3)) is definite. 

In general, we can consider the measure moment problem for sequences (1) on the interval 
[0,1]; it can be formulated as follows': Characterize sequences (1) that are sequences of moments 

n = lltndv(t) of a (unique) positive Borel measure v on [0,1] (see, e.g., [l]-[4]). We have found 
some results on this question using techniques presented in [l]-[4]. 

5.4 Complex Case 

Suppose that (£,(.,.)) is a unitary complex vector space of finite dimension m. Then all 
results still hold. 
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IN MEMORIAM 

Herta Taussig Freitag 
December 1908-January 2000 

Herta Taussig Freitag, long-time teacher, mathematician, and Fibonacci enthusiast, died January 25 at 
the age of 91. Her radiant smile and articulate speech reflecting her native Austria were unforgettable 
to hundreds of colleagues and friends. She remained an active participant in The Fibonacci Association 
until shortly before her death, assisting in the presentation of four papers at its 8th International 
Conference in 1998. 

Herta's life story is one of triumph over adversity. Bora in Vienna, she pursued her education there 
with a major interest in mathematics. When Hitler took over Austria in 1938, an event for which she 
had vivid memories, she began a six-year struggle to emigrate to the United States. It became clear that 
the only way out of Nazi Austria without a financial guarantor was to obtain employment in England as 
a domestic servant, an experience her brother describes as "Dickensian." A more complete account of 
her journey to freedom is included in the book One-Way Ticket by former student Mary Ann Johnson. 

Upon arrival in the United States in 1944, Herta first taught at Greer School in New York State where 
she met her husband, Arthur H. Freitag. She began her long career at Hollins College in 1948 and 
completed her Ph.D. at Columbia in 1953. Among her numerous teaching awards were the Hollins 
Medal and the Virginia College Mathematics Teacher of the Year Award. 

In her lifetime, Herta experienced prejudice in several forms but was never embittered by it. When she 
received the Humanitarian Award from the National Conference of Christians and Jews in 1997, the 
nomination read, in part: "What would have been a life-shattering experience for many set her on a 
course of personal professional achievement directed toward helping everyone, regardless of race, sex, 
color, ethnic background, religious persuasion or social class reach their maximum potential. And she 
does it in such a way as to make one feel that she is traveling with you, rather than leading the way." 

Herta is survived by a brother, Walter Taussig, an associate conductor with the Metropolitan Opera, and 
a niece, Lynn Taussig. She will also be greatly missed by her Fibonacci "family" and a host of friends. 

Margie Rihble 
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1. INTRODUCTION 

One of the centra! tools in enumeratlve combinatorics is that of generating functions. Gener-
ating functions can, e.g., be used to find the asymptotic behavior of the enumerating sequence 
(e.g., the Hardy-Ramanujan estimate for the partition function P(ri), see [3]) or even may yield an 
explicit formula for the solution (e.g., Rademacher's famous explicit formula for P(n), see [6]). 

Given a combinatorial problem, there are numerous ways to find the corresponding genera-
ting function. One possibility is to start with a recurrence relation, as, e.g., the recurrence for the 
Fibonacci numbers (an)neNo = (0,1,1,2,3,5,8,...), which we write in the following form: 

an = an_2 + an„x + 8h n Vw e Z, 
an = 0 \/n < 0 W 

(5k n denotes the Kronecker symbol). The z-transformation method requires multiplying (1) by 
zn and summing over n. This yields an algebraic equation for the generating function f{z) = 
I ^ f l / , n a m e l y , 

f(z) = Z2f(z) + zf(z) + Z, 

which is easily solved, giving f(z) = * 2 . The Taylor expansion of this function yields 

/(z) - J^? - hw vi 
i.e., we obtain the explicit Euler-Binet* formula for the Fibonacci numbers 

a" = V5 

A second way to find a generating function is to use Polya's index theorem. For example, let 
Mbe the set of all syntactic bracket figures with index n equal to the number of bracket pairs. For 
n - 3, we have the set M3 of three bracket pairs: 

M3 = {[][][], [[[]]],[[][]], [[]][! [][[]]}. 

* This formula was derived by Jacques P. M. Binet in 1843, although the result was known to Euler and to Daniel 
Bernoulli more than a century earlier. 
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By 
M->M1XMXM^JMQ 

we have a bijection between the sets M and MtxMxMKjMQ which Is additive, that is, 
ind([a]5) = 1+ ind(a) + ind(i). Then, by Polya's theorem, the relation between the sets trans-
lates directly into a relation for the generating function for the numbers cn = card(Mw), namely, 

f(z) = zf2(z) + l. 

Taylor expansion of the solution f(z) = ̂ ( 1 - Vl-4z) = TZ=o c^n yields the Catalan numbers 

" n + iynf 

A third way is to use methods from the theory of difference equations, which reach from 
continued fractions to Laplace transformation. As an example, we mention a recent theorem of 
Oberschelp (see [5]) that allows us to transform a difference equation into a differential equation 
for the exponential generating function by a formal procedure. For example, the Sloane-Plouffe 
sequence M1497 in [7], fn9 which counts the number of ways to build a sequence without repeti-
tion with n variables satisfies the recurrence /ra+1 = (n+l)fn + l. Oberschelp's theorem requires 
the exchange 

© zk *{?) 

i.e., to replace fn+l by / ' , nfn by zf\ fn hyf9 and 1 by e2. This procedure yields the ordinary 
differential equation (1 - z)f - / = e2 with the solution f(z) = -f^ determined by f(G) = 1. Since 
f(z) is the exponential generating function, we get in fact fn - n\(l+^+• • • + ^ ) . 

Experience shows that the situation becomes considerably more delicate as soon as the prob-
lem requires solving partial difference equations. In this article we want to describe methods 
which allow us to calculate the generating function'from a recurrence relation. The idea is to link 
the Laplace transform directly to generating functions by interpreting the Fourier formula for the 
inverse Laplace transform as a residual integral. The reader who is not familiar with the Laplace 
or Fourier transformation might consult [1] or [8]. The idea is certainly not new; however, we 
would like to show that it applies also to more complicated (e.g., non-local) partial difference 
equations. 

2. AUXILIARY RESULTS 

2.1 Laplace Transfomiatien 
Let (an)n €z, an = 0 for n< 0, be a sequence of real numbers with generating function f(z) = 

Sucz^i^". We call 

ncZ 

the associated ^ep-function. Here, Xi denotes the characteristic function of the set /. Then the 
following theorem holds. 
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Theorem 1: If the Laplace transform X[A] of the associated step-fiinction A exists; it is related 
to the generating function/by 

2[A\(s)=\{i-e-)f(e-). 

Proof: Since we assume A to have at most exponential growth, we may transform term by 
term and obtain 

Writing X[n, «+i[ = ^(' ~ n) ~ ̂ (' ~ (n + W > where H = X[o, oo[ denotes the Heaviside function, and 
using the fact that «££[//] (5) = 7, we obtain, by applying the basic rules for the Laplace trans-
formation, 

aM(*)=£ailie-»*(i-o, 
n=0 

which is what we claimed. D 

The following calculation provides a useful variant of Theorem 1: If jg(e~z) is the Laplace 
transform of a piecewise smooth function G, we have by Fourier's formula for the inverse Laplace 
transformation that, for every point x e R+ where G is continuous, 

G(x) = ±^g(e-^d, 
Here, T is the curve T : IR —> C, th-^ s + it, with s e U large enough, and "pv" denotes the princi-
pal value. If we denote Tn : [0,2;r[-> C, tY->z\ = s + i(t + Imt), we have 

G(x) = - L p v X Jp \g{e->y**dz. (2) 
2m 

Observe that, by the Fourier-series expansion, we have, for x g Z, 

V _ ex{s+i{t+2rm)) _ & 

where \°~\ denotes the ceiling function, i.e., \x~\ is the smallest integer larger than or equal to x. 
Hence, by substituting u = e~z, we obtain from (2) with n = [xj, 

where y: [0,2;r[—» C, t f-> e~Vr, and where |_*J denotes the floor function, i.e., |_ Ĵ is the largest 
integer smaller than or equal to x. Thus, if g is analytic in a neighborhood of 0, we may interpret 
the integral in (3) as the Cauchy residue integral for the rfi1 Taylor coefficient of the function -f̂ -. 
Thus, we have the following corollary. 

Corollary 1: Assume/and gn are analytic functions in a neighborhood of 0 and an is given by 

a»=2^pwLjgn(e~z^eXZdz (4) 
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for some (and hence any) x e]n,n + l[ andT as above. If limz_>0
 / ( z ) ^ ( z ) = o for all n e N0, 

then ^p§- is the generating function of the sequence an. 

Let us briefly mention some advantages that the use of the Laplace transformation provides: 
Suppose we are given a generating function f(u). Only in simple cases is it possible to use direct 
Taylor expansion to obtain a formula for the coefficient an of un. Also, the Cauchy residue an = 
ResM=0^r or (in case of a meromorphic function / ) an = -EResM?£0^^- is often difficult to cal-
culate. In such a situation, it may be helpful to split the residues via the Laplace transformation 
(as in the calculation preceding Corollary 1) in order to obtain an expansion (or at least an asymp-
totic formula) for the an. To illustrate this, let us consider the example of the generating function 
of the Bernoulli numbers 

f(u) = ucotu = \ + YK L\,2"u". 

According to Theorem 1, the Laplace transform of the associated step-function G is 

and we may use the Fourier formula to invert g: ST^KO = ZR.es g(s)e's. The singularities of 
g(s)ets are located at sk m = nmi-log(kx), k eN, m eZ . For t e Z we have 

Res g{sy tS _ 

1-far if m is even, 

—l+k7r , if/wisodd. 

Combining residues for m and —m, we can easily sum the residues for fixed k over all in and 
obtain 

^™--£«&*•• 
(Notice that one obtains a formula for Z^U al\ml by expanding e** on ] - n, /r[ in a Fourier 
series.) Since t e Z (G jumps in Z), we finally get the zeta-function formula for the Bernoulli 
numbers: 

_ + 12(2»)!y 1 
2"~{ } {Inffck2"-

A second benefit of the Laplace transformation are the various rules. For example, by the 
rule W ] ( J ) = s£[f](s)-f(0), we have, for fz(t) := f, that 

Hence, for fixed s, the analytic function 

solves the difference equation shs{z) = zhs{z -1). In particular, for s = 1, we obtain Euler's integral 
representation of the Gamma-function. It is a particular feature of the Laplace-transformation 
method that it can be used to determine the analytic continuation of a discrete function. The 
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Laplace transformation also yields a functional connection between the exponential generating 
function e(x) and the ordinary generating function f(x) of a sequence an. In fact, we have 

£[e](s) = £\ Y %LX" \(s) = Y 3»- £[X"](S) = -f(-

The translation-rule £\f(t-c)(s) = e~scX[f(t)](s) for c > 0 allows us to transform a (linear) 
difference equation into an algebraic equation for the transformed function (this feature is similar 
to the z-transformation). In particular, it is possible to reduce a linear partial difference equation 
with n variables to an equation with n~ 1 variables. For an example, see Section 3.4 or 3.5. 

Another virtue of the Laplace transformation appears when one looks for an asymptotic 
expansion of a sequence or (which is a similar thing) when one treats difference equations which 
show oscillation and damping effects. If one is only interested in the stationary state, one can 
already, at the level of the transformed function, identify terms which lead to exponentially decay-
ing terms in the solution and drop them for the rest of the calculation. 

2*2 The Dual of a Linear Difference Equation 

Many combinatorial problems lead to partial difference equations.' As a prototype example, 
we investigate the two-dimensional case. 

L e t X c Z 2 . For a map p\ X—> R, we consider the linear equation 

&)= X °Z(OP(0, (*) 
{CeX:£esplas} 

where we assume that the cardinality of the support of az (spt az c X) is finite for all z e X, i.e., 
that the sum in (*) is always finite. A set A a X is called stable if for all maps / : A —» R there 
exists a unique solution^ of (*) such that p\A = / . A triple (X, A, *) is called triangular if Xcan 
be written as X = (xi)i eNm such a way that, for all / G N , there holds spt aXi CZAKJ {xl9..., x^}, 
and for all z e A: spt az = {z} and az(z) = 1. In particular we have that, for a triangular triple 
(X, A, *), the set A is stable. 

Now, let (X, A, *) be triangular and / : A —> R be given. Then, for any fixed x = xt eX, the 
solution/? of (*) in x is a finite linear combination of the values off on A, i.e., 

/<*)=X«x(£)/(£>-

In order to determine the weights ax(g), we proceed as follows: 
(i) Put a red mark on x. 
(ii) Replace each red mark on y eX\A by a blue one ony and by ay(Q many red marks on g 

for all £ e spto^. 
(iii) Iterate (ii) until no more red marks o n I \ i exist. 
If n denotes the maximum of the set {/: there is a red mark on xt}, then, in each iteration step, n 
decreases at least by one due to the triangular structure. Hence, the iteration process terminates. 
If we denote by q(£) the number of red marks on £, the quantity 

CeX 
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is invariant during the iteration. Hence, we obtain the result that after the iteration is completed 
the number of (red) marks on £ e A, i.e., q(Q, equals the weight ax(Q. 

If we denote by q(Q the final number of marks (blue or red) on £ (i.e., after termination of 
the iteration), the iteration process described above translates into a partial difference equation for 
the function q: 

{£eAx -.zespta^} 

with q{x) = 1 and with Ax: = trx\A9 where trx is the equivalence class of x with respect to the 
transitive hull of the relation U~V:<=>UG sptav, v £ A. Notice that {Ax, {x}, **) is triangular and 
finite. Let us summarize this result in a theorem. 

Theorem 2: If (X, A,*) is triangular with prescribed values fori A, then the weights ax in the 
solution formula p(x) = T^EA &x(Qf(Q c a n be determined by the iteration scheme (i)-(iii) or, 
equivalently, by solving the dual linear recursion (* *) with initial value q(x) - 1. 

Many transformation problems (for example, the Boustrophedon transformation in [4]) can 
be described as follows: Let (X, A, *) be triangular; then we fix sets A' = {ax,a2,...} c A and 
Xf = {bh b2,...} cz X and prescribe f(at) = <j)i and / = 0 on A \ Af. If we denote the solu-tion 
y/j-pip^, the mapping xIV,xu,/4',*:(^/)h^(^/) *s a l 'near transformation of sequences, the 
associated linear mapping (ALM). The problem of finding its matrix (or the matrix of the inverse 
transformation) can often be solved by using the Laplace transformation technique for the partial 
difference equation for the weights (* *) even in cases where it is not possible to use directly the 
Laplace transformation in the original partial difference equation (*). We will see some examples 
in the following section. 

Before we discuss the examples, we will close this section by stating a simple path-counting 
lemma. 

Lemma 1: Suppose the coefficient functions a in (*) satisfy the following invariance property for 
all z = (n, k) and z' = (n, kf)inX = I2: 

az(n+i9k+j) = az.{n + i,k'+j\ V / , ; e Z . (5) 

Suppose, furthermore, that the column {(0, k): k e Z} is stable and that/? denotes the solution of 
(*) with prescribed values ak on (0, k). Then the column {{N, k): k e Z} is stable for 

p(*)= 5>z(0J>(0 (t) 

where au+v(u) \=au{u + v) and (/77) '•= (h ~j)- Finally, if we prescribe the values ak on (N, k) 
for the equation (f), then ^(0, k) = p(N, k). 

Proof of Lemma 1: We may interpret (*) as a directed graph G with az(Q many edges 
from £ to z. If we set ak :=Skfko, then p(N,k) is the number of paths in G from (0, k0) to 
(N,k). If we flip the graph horizontally by Z H Z and invert the orientation of the edges, we 
obtain a graph G'. Now, (f) describes G' and j?(Q, k) is the number of paths in G' from (N, k0) 
to (0, k) which equals, by construction, the number of paths in G from (0, kQ) to (N, k). 

For general (ak), the claim follows by linearity. D 
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3. EXAMPLES AND APPLICATIONS 

3.1 The Fibonacci Numbers and a Variant of Faulhaber's Formula 
Let X = {(k,n):n>k>0} md A = {(k,n) eX:n e{k,k + l}}. Further, let 

C \- M - W + W H ; for (£,«)£ 4 
' l^fc.A,; otherwise, 

in the equation (*). This is easily seen to be triangular. For the sets A' = {(k, k + l) eA} and 
X' = {(0,n)eX:n>0}, we have that the ALM W^- x* A A * &pphed to the sequence (1, 1,...) 
yields the Fibonacci sequence (f(n))n. Let us calculate the weights via (* *): 

q(k, n) = q(k, n +1) + q(k - 1 , w +1) 

with ^(0, l) = l. This is (up to renumbering) just the recursion for the binomial numbers, i.e., we 
get the "shallow diagonal" sum formula connecting Pascal's triangle to the Fibonacci numbers: 

The binomial weights always occur for this type of equation: For another example, let 
p(k,n);=Y,"=lik. Obviously, for fixed k, p is a polynomial in n of degree k + l. Faulhaber's 
famous formula expresses this polynomial in the basis {1, n, n2,n3,...}, and the coefficients in this 
basis involve the Bernoulli numbers. Here, we want to express the polynomial in the basis 

o) (")(") (?)-
Consider again the "binomial" difference equation f(k, n) = f(k, n-l) +f(k +1, n -1), this time 
on X-NQ, with initial data /(0,n) = p(k,n-l) for fixed k. The weights for the dual equation 
clearly are, as above, the binomial coefficients; hence, p(k,n-l) = ZJLi(7)/(/, 0), and it remains 
to find / ( / , 0). Since / ( I , n) = nk, we use 

i(f\i\S2(k,i) = nk, (6) 

where S2 denotes the Stirling number of the second kind (see next section). Indeed, each term in 
the sum may be interpreted as the number of sequences in {1,..., n}k with exactly / different num-
bers. Thus, / ( / +1, 0) = i! S2(k, i) and we recover the well-known formula 

/K*,») = £(7+i1)^(*.0, 
which one also gets by summing (6). 

3*2 The Stirling Numbers 

The Stirling numbers of the first kind Sx(n9 k) count the permutations of n distinct objects 
that can be written with exactly k disjoint cycles (cf. [2]). They can be computed recursively as 
follows: Sx(n +1, k): = n• Sx(n9 k) + ̂ (w, k-1), where ^(1, k):=Slk. 
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Let Sn(k):=Sx(n,k); then Sn(k) satisfies the recurrence Sn+l(k) = nSn(k) + Sn(k-l). Let 
Ln(s) denote the Laplace transform of the associated step-function of Sn(k). Then we get 
Ln+l(s) = nLri(s) + e-sLn(s) = Ln(s)(n + e-sl with/,(*) = j ( l - 0 - Hence, 

4(')=^o-ono'+*-'). 
Thus, by Theorem 1, we find that 

7=1 

is the generating function for (S^n, k))k. 
The Stirling numbers of the second kind S2(n,k) count the number of groupings of n dis-

tinct objects into k disjoint (nonempty) groups. They can be computed recursively as follows: 
52(w + l,k): = k-S2(n,k) + S2(n,k-l), where S2(l,k):=Shk. 

Let Sk(n) := S2(n, k); then Sk(ri) satisfies the recurrence Sk{n) - kSk(n-1) + Sk_i(n-1). Let 
Lk(s) denote the Laplace transform of the associated step-function of Sk(n). Then we obtain 
Lk($) = ke~sLk(s) + e~sLk_x{s). Therefore, 

e~s A- e~s 
LJs) = Lk Js)— = Us)Yl— 

with L^s) = 7. Thus, by Theorem 1, we get that 

is the generating function for (S2(n, k))n. 
It is well known that the matrix of the Stirling numbers of the first and second kind are 

inverse in the sense that 

/(») = ISi(/i,/M0 
ifandonlyif 

e(n) = fj(-iriS2(n,i)f(i). 

Instead of proving this rather special formula, we now investigate more general conditions 
which still imply an inversion formula of the above type. 

3.3 An Inversion Formula 
We consider the following situation: Given a linear equation (*) with Jf = N0 x Z, which sat-

isfies the invariance property (5), we suppose that with A := {(0, k) : k eZ} the triple (X, A, *) is 
triangular. We set A':= {(0,k)\k eM0} and X':={(n90):neN0} and consider the mapping 
*¥xX>,A,A',*:(0i)f_>(Wi)• Notice that the equation (**) for the weights inherits the invariance 
property (5), and hence we can apply Lemma 1 to (* *) and obtain 

?«= i W M a (ft) 
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with p(n,0)-dn0, where au+v(u) : = au+v(u). Then we have 
CO 

7=0 

Now we invert the previous equation: Let Y := M0 x N0 and Yf := {(0, A:): k e N0}- For any 
fixed z e X, we can replace (*) equivalently by the equation 

for arbitrary <̂ 0 e spt az. Assume that for any z e l w e can—by choosing a suitable ^0—replace 
(*) by (*') in such a way that 

• the coefficients a'z respect the invariance relation (5), 
• the triple (7, 7', *') is triangular. 

The equation for the weights for (*') is 

with initial condition g(0,0) = 1 (because (**') satisfies (5)). Then we have 
CO 

A.=E?(|">-/,)w (8) 

Hence, in view of (8) and (7), q and /? are inverse matrices, where q and p satisfy certain differ-
ence equations which are related in the described manner. Notice also that, by choosing <̂ 0 (see 
above), there is a certain freedom in the coefficients af which can be useful sometimes. 

As an example of the previous result, we investigate a generalization of the Stirling numbers. 
Let us define ci^nk)Q,j)\=c(f)Sin_l8jk+dQ)8in_l8jjc+l, where c and d are nonvanishing 

functions. Then the procedure described above yields the following proposition. 

Proposition 1: The numbers st(n, k) and $2(n, k) for («, k) eZx Z, defined by 
^(n, k) = c(w - !)*%(« -l,k) + d(n -l).$i(« -1, k -1) 

and 

«k*> = -3$*fc*- '>+J0^- ' - * - ,> 
with 5i(0,/w) = s2(m, 0) = <5w0, are inverse in the sense that 

00 00 

j=0 i=0 

For special choices of the functions c and d, one easily gets, e.g., the inversion formulas for the 
Stirling numbers (c(n) = n, d{n) - 1), the binomial numbers (c(n) = 1, d(n) = 1), or the numbers 
Q(ri): = (/)/! counting the number of ways to build sequences of length / with n objects without 
repetitions (c(J) - - j , d(l) - })—guess what the inverse numbers are! 
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3.4 The Partition Numbers 
As a further example, we consider the number p(n, k) of partitions of an integer n into parts 

larger than or equal to k. This leads to the (non-local) partial difference equation 
p(n,k)=p(n-k,k) + p(n,k + l), (9) 

with p(n, k) - 0 for k > n > 0 and p(n, n)=l. In the above setting, the problem reads as follows: 
X = N2, A = {(n,k):k>n}, Af = {{n,n)\n E N } , X'= {(n, l):n GN}. Also, for (n,k) eX\A, 
we have 

Pfak) = X Vun-k#j,k +8iJjMi)P<!>^ (10) 

The ALM ^ x u ^ a o ) maps the sequence (1,1,...) into the sequence p(n, 1) = P(n) of the 
partition numbers. The equation for the weights is given by q(n,k) = q(n,k-l) + q(n + k,k) 
with initial conditions q(n, 1) = 1 for n < N and q(n, k) = 0 for n> N. Then we have P(N) = 
Z^i q(i, 0 • By renumbering, this is equivalent to saying 

q(n, k) = q(n, k -1) -f q{n + kyk) (11) 

with q{n, 1) = 1 for all n, q(n, k) = 0forn< 0, and P(N) = Z^i q (i, N-i + l). Note that g (w, £) 
no longer depends on N. Laplace transformation of (11) with respect to the first variable with k 
fixed yields 

with initial value rx(s) = j (since q(l, k) - 1 for k e N). Thus, we have 

and, by Theorem 1, the generating function gk(u) of (rk(n))ri is given by 

From this, it is easy to derive Euler's classical generating function E(u) of the partition numbers 
P(N). But, by interpreting q (n, k) as the number of partitions of n -1 into k or less parts (and 
hence P(n-i) = q(n,n-l) = q(n,ri)), we immediately get from the above calculation together 
with Corollary 1 that 

y = l A u 

Also, if f(s) denotes the Laplace transform of E, it follows from (12) that 

7(1- o f t (i - O)=/(*)£ (_i)L*Jc-*o, 
5 y-i y-i 

where /, = 0,1,2,5,7,... are the pentagonal numbers. Laplace inversion of the last equation yields 
Euler's formula Tf^-lpl-Pin-tj) = S„0. 
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What about counting weighted partitions? Let / : N -> R be a weight function with the 
meaning that we count partitions into / parts / ( / ) many times, or—what is the same thing by 
considering Ferrers diagram—count partitions which largest part of size z, f(i) many times. Then 
the calculation above gives the generating function for this problem: 

So, choosing, e.g.,/as the characteristic function of the even numbers, we compute (e(ri))n = 
(0,1,1,3,3,6,7,12,14,...). 

To conclude this section, let us compute the inverse of the AIM ^ x u ^ c i o ) - Let us put a 
red mark on (Z, L). In view of (10), we can replace a red mark on (n, k) (for n>k>l)by & red 
mark on (n, k -1) , a negative red mark on (n - k +1, k -1), and a blue mark on (n, k). This game 
terminates when all red marks are in A \ Af (these marks are multiplied by 0) or in X' (where a 
mark on (/, 1) is multiplied by y/f). Hence, <f>i = T/%=iijfnG)(L,ri), where co(L,n) denotes the 
number of red marks on (n, 1). 

To compute co(L, n), we consider the directed, finite graph GL with vertices {(«, k): L > n > 
k>\) and an edge from (n, k) to (n\ k!) if k' = k - 1 and n' = n (these edges are called v-edges) 
or if kf = k and nf -n-k (these edges are called h-edges of length k). Now let WL(n) be the 
number of paths through the graph GL from the vertex (L, L) to (n, 1), such that all h-edges have 
different length and each path is weighted by +1 if the number of h-edges contained in the path is 
even, otherwise it is weighted by - 1 . It is easy to see that WL(n) = m{L, n). To compute WL(ri), 
let us first define the function w(m, /, s), which is the number of weighted paths from (m, m) to 
(m-l, 1), such that the maximum of the lengths of h-edges contained in the path equals s (where 
s = 0 means that the path contains no h-edge). For the function w(m, /, s), we have 

w(m, /, s) 

Now, by construction, we obtain 

1 if/ = s=0, 
0 ifs>/ors>[_fJ, 
- Yfj=i w(m -s,l-s,s-j) otherwise. 

L~J 
WL(n) = £w(L,L-n,s). 

s=0 

For example, for L = 12, we get (Wn(n))n = (1, -1,-2,0,2,0,1,0,0, - 1 , -1,1) and, in fact, 

P(12) - P(l 1) - P(10) + P(7) + 2P(5) - 2P(3) - P(2) + P(l) 
= 77-56-42 + 15 + 2 - 7 - 2 - 3 - 2 + l = L 

3.5 A Path Counting Problem 

We consider paths in a three-dimensional lattice: The starting point of the paths is a point 
(x, 0, 0), x G N0, on the x-axis. If (x, y, z) is a point on the path, then a unit step in the positive y 
or z direction is allowed or a step of length y + z +1 in the negative x direction. We want to 
count the number HM(x) of allowed paths starting in (x, 0,0) which end in a given set M c I?, 

2000] 405 



DUAL FORM OF COMBINATORIAL PROBLEMS AND LAPLACE TECHNIQUES 

The dual of this problem is given by the non-local linear difference equation 

?ZJW = W X ) + V I W H > - J ' - ^ - 1 ) (13) 
with q^y(x) := 0 if one of the numbers x9 y, or z is negative and qo9o(0):=l. We already used an 
index notation because we want to Laplace-transform equation (13) with respect to the variable x. 
First, we have QQ^S) = 7, since q0,o(x) = 1 .for x>0. Laplace transformation of (13) yields 

Considering s as a parameter, the solution of this difference equation in y and z is given by 

a-yis)-s{z+zy)u%^(i 
Thus, the generating function of qz^y{x) is 

'z,y\"/-\ z ^ Z + - % T ^ 
Hence, using the notation of Section 3.4, 

Finally, the solution to our path counting problem is given by the formula 

HM(&= Z rz+y+l{x){z+y\ 
{%-x,y,z)eM V / 

For example, let us count the paths starting in (£ 0,0) with at most h unit steps in the z direction 
and such that the total number of unit steps in the negative x and in the positive^ direction equals 
£. This corresponds to the set M = {(x,y,z) e Z3: x = y, z < /?}, and the solution formula yields 

HM(Q= I rzH_^(x)(z+l x 
'z+£-x+l\ 

z<h,x<4 

3.6 Local Linear Difference Equations 
For X = {(£, /) : 0 < k < /} and A = {(£, /): / e {k, k +1, k +2}}, we consider the model equa-

tion 
z(k,l) = alz(k,l-l) + a2z(k + l,!-l) + a3z(k + 2J-l). (14) 

(X, A, (14)) is triangular and, for X' = {(0, /) : / > 3}, the equation for the weights is 
q(k, 1) = axq(k, I + l) + a2q(k -2,1 + 1) + ̂ ^ -I,! + 1) (15) 

with initial condition q(k, L) = Sk0 for a fixed L > 0. Laplace transformation of (15) with respect 
to the variable k with / fixed gives Q(s) - Qi^i{s){ax +a2e~s +a2e~2s) with initial condition QL(s) -
7 (1 - e~s). The solution is 

Ql(S) = l(l-e-s)(al+a2e-s+a3e-2s)L-1, 

and Theorem 1 gives, for the generating function of the sequence (q(k,l))k, the function (al + 
a2u + a3u2)L~l. Multinomial expansion yields 
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Since (15) does not stop the iteration when a mark lies on A, we have to compensate by setting 
q(k,k+2) = q(k,k + 2\ 
q(k, k +1) = q(k, k +1) - axq(k, k + 2), and 
q(k, k) = q(k, k) - axq(k9 k +1) - a2q(k - 1 , k +1). 

Then, if az is given on z e ̂  as initial data for (14), we get the solution 

^ . ^ t I«H,o?l-i.O. (16) 

In particular, if 0C(k+j,k) ~ Xj (f°r J = 0> 1> 2), z(Q, /) is the solution of xn = a$tn_x +a2
xn-2+a3xn-k 

with initial values x0, x1? x2 and (16) is a root-free representation of the solution. 
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1. INTRODUCTION AND SUMMARY 

Catalan's sequence of numbers {C„}% = {1,1,2,5,14,42,...} (nr.1459 and ,4000108 of [14]) 
emerges in the solution of many combinatorial problems (see [2], [4], [5], and [16] for further 
references). The moments ju2k of the normalized weight function of Chebyshev's polynomials of 
the second kind are given by Ck /2k (see, e.g., [3], Lemma 4.3, p. 160 for /= 0, and [17], p. II-
3). This sequence also shows up in the asymptotic moments of zeros of scaled Laguerre and 
Hermite polynomials (see [9], eqs. (3.34) and (3.35)). The generating function c(x) - Z^=0 Cnxn 

is the solution of the quadratic equation xc2(x) - c(x) + 1 = 0 with c(0) = 1. Therefore, every posi-
tive integer power of c(x) can be written as 

c"(*) = Pn-i(x)1 + ?«-i(*M*), 0 ) 
with certain polynomials pn_x and qn_x, both of degree (n-l), in IIx. In Section 2, they are 
shown to be related to Chebyshev polynomials of the second kind: 

'"-'w=-(iMi) ̂ Kir^-'B^-^' (2) 
with Sn(y) = Un(y 12). Therefore, it is possible to extend the range of the power n to negative 
integers (or to real or complex numbers). Tables for the Un(x) polynomials can be found, e.g., 
in [1]. Because powers of a generating function correspond to convolutions of the generated 
number sequence, the given decomposition of cn{x) will determine convolutions of the Catalan 
sequence. In passing, an explicit expression for general convolutions in the form of nested sums 
will also be given. Contact with the works of [6], [12], [18], and [5] will be made. 

Together with the known (e.g., [4], [11]) result (valid for real /?), 

one finds, from the alternative expression (1) for positive n, two sets of identities: 

(pi) p-^iz^y,={"-/) (4) 
for n e N0, p e {o, 1,2,..., |_f J}, and 

(P2) J (-1)' ( " " / ~ ' k ^ , = Ck(n) (5) 

for n eN , k E N 0 . 
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For negative powers in (1), two other sets of identities result: 
min([*jlJ,A:-l) , . . 

(«) i i-^~Yl)ck_^{-\r^t-x
l) (6) 

for n e N, k e{o, 1,2,..., |_f J} (ft>r £ = 0, both sides are by definition zero), and 

for « G N , & e N with & ^ [ f j + l- These identities can be continued for appropriate values of 
real n. 

Another expression for the coefficients of negative powers of c(x) is 
min(«, k) s \ 

for f i , iGN, and C0(-n) = 1, C„(0) = 8n^. Also, from (3), Ck{-n) = -Ck_n{n) for n,k e N with 

The remainder of this paper provides proofs for the above given statements. Section 2 deals 
with integer (and real) powers of the generating function c(x). Convolutions of general sequences 
are expressed there in terms of nested sums. In Section 3 some families of integer sequences 
related to the polynomials qn(x) (2) evaluated for x - IIm for m = 4, 5,... and (-V)nqn(x) evalu-
ated at x = -Urn, m e N, are considered. 

2* POWERS ' 

The equation xc2(x) - c(x) + 1 = 0 whose solution defines the generating function of Catalan's 
numbers if c(0) = 1 can be considered as a characteristic equation for the recursion relation 

xrn+i ~rn +r«-i = 0, n = 0,1,..., (9) 
with arbitrary inputs r_x{x) and r0(x). A basis of two linearly independent solutions is given by 
the Lucas-type polynomials {Un} and {Vn} with standard inputs U_x - 0, U§ = 1, (U_2 - -x) , and 
V_j = 1, V0 = 2, (Vx = 1 /x), in the Binet form 

u"-l{x)-c+(x)-c_(xy (10) 

Vn(x) = <(x) + cn_{x) = 1 ( ^ ( x ) - 2^_2(x)), (11) 

with the two solutions of the characteristic equation, viz c±(x) := (l±Vl-4x)/(2x). c(x) := c_(x) 
satisfies c(0) = 1, and c+(x) -II(xc(x)), as well as c+(x) + c(x) = 1 Ix. From the recurrence (9), it 
is clear that, for positive n ̂  0, Un is a polynomial in 1 Ix of degree « - 1 . If c+(x) - c_(x) = 0, 
i.e., x = 1 /4 , equation (10) is replaced by Un(l 14) = 2n{n +1). The second equation in (11) holds 
because both sides of the equation satisfy recurrence (9) and the inputs for V0 and Vx match. One 
may associate with the recurrence relation (9) a transfer matrix 
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T(x 

With this matrix, one can rewrite (9) as 

^ ( " l * 0 * ) <ktT(*) = l/*. (12) 

£W&)-rw($)} <i3) 
Because T" = TT"_1 with input T1 = T(x) given by (12), one finds from the recurrence relation 
(9) with rn = U„ that 

T»(*) = (Un(x) -iU^ix)^ 
(14) 

Note that, for x = 1, one has c±(l) = (l+/'V3)/2, which are 6th roots of unity, and the related 
period 6 sequences are {1 ,̂(1)}" = {0,1,1,0,-1,-1}, as well as {V„(l)}™ = {2,1 , -1 , -2 , -1 ,1} . 
This follows from equations (10) and (11). It is convenient to map the recursion relation (9) to 
the familiar one for Chebyshev's S„(x) = U„(x/2) polynomials of the second kind, viz 

S„(x) = *$_,(*)-S„_2(x), S.t = 0,S0 = l, (15) 

with characteristic equation /P-xA + l = 0 and solutions X±{x) = f(l±yjl-(2/x)2), satisfying 
A+(x)A_(x) = 1 and A+(x) + X_(x) = x. The relation to c±(x) is 

-s[xc±(x) = X±{\l4x). (16) 

The Binet form of the corresponding two independent polynomial systems is 

Xn
+{x)-Xn_{x) 

V l W " A + ( x ) - A _ ( x ) ' ( } 

2Tn(xl2) = X\(x) + Xn_{x), (18) 

and Tn(x/2) = ($„(x) - Sn_2(x)) 12 are Chebyshev polynomials of the first kind. Tables of Cheby-
shev polynomials can be found in [1]. The coefficient triangles of the Sn(x), U„(x), and Tn(x) 
polynomials can also be viewed under the numbers A049310, A053117, and A053120, respec-
tively, in the on-line database [14]. 

The extension to negative indices runs as follows: 

U_„(x) = -xn-lU„_2(x), (19) 

SHn+2)(x) = -$n(x). (20) 

This follows from (10) and (17). Note that from (9), Un is for positive n a monic polynomial in 
l/x of degree n, and for negative n in general, a nonmonic polynomial in x of degree |_-f J. It is 
possible to extend the range of n to complex numbers using the Binet forms. 

A connection between both systems of polynomials is made, using (10), (16), and (17), by 

2 
h 

This holds for n e Z in accordance with (19) and (20) 

Un(x) = \^=\Sn(lI^y (21) 
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After these preliminaries, we are ready to state the following proposition. 

Proposition 1: The rfi1 power of c(x), the generating function of Catalan numbers can, for 
n E Z, be written as 

c\x) = ~U^2(x) + ̂ (x)c(4 (22) 

Proof: Due to c2(x) = (c(x) -1) Ix and c~l(x) = 1- xc(x), one can write 

cn(x)=pn_l(x) + qn_l(x)c(x) 

for n e Z. From cn(x) = c(x)cn~l(x), one is led to qn_x = p„_2 +^gw_2 and pn_x = ~qn^ or 
^_! = {qn.2 - qn-3)/x w i t h inPu* tf-i = 0, % = ! • S o ^-i(x) = Un-i(x) a n d /V-iO) = ~K-2(X) /x • 
Equation (23) then follows from (21). D 

Note 1: Because 
LfJ 

uy)=i(-iy^jjy <n-J)„»-2j 

the explicit form of these polynomials (2) is 

and 

^.W = LI(-i){n _)~J')^(-1-^ *-. = o. 
For negative index one has, due to (20), 

pHn+l)(X)=(^ys„(\/^)=tyy^yy 
and 

qHn+1)(x)=~(^ris^(i/^)=-x ± (-ly^-yiy. 
In the Table, one can find the coefficient triangle for the polynomials {pn(x)}]\ with column 

m corresponding to {\)m, m>0. 
Note 2: An alternative proof of Proposition 1 can be given starting with (17) and (18) which 
show, together with A+(x) - A_(x) = Vx2 - 4, that 

X\{x) = Tn(xl2) ±J(x/2)2-lSn_l(x), (24) 

or, from ±^J(x I If -1 = X±(x) -x/2 and the <$„ recurrence relation (15), 

X\{x) = T„(x/2) - j(5fI(x) + 5'II_2(x)) + 5B_1(x)A±(x) (25) 
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= -^2W+U^±(4 (26) 

Now (23) follows from (16). This also proves that, in Proposition 1, one may replace c(x) by 
c+(x) = l/(xc(x)), from which one recovers the c~n formula for n e N in accordance with (19) 
and (20). 

TABLE. p(n,m) = [l/xm]p_{n}(x) Coefficient Matrix 
it = -! , .• . ,12, m = 0,..., 12 

n\m 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0 

~T 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 

~o~ 
0 

-1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 

~o~ 
0 
0 

-1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
~0~ 

0 
0 
0 

-1 
2 

-1 
0 
0 
0 
0 
0 
0 
0 

4 
~0~ 

0 
0 
0 
0 

-1 
3 

-3 
1 
0 
0 
0 
0 
0 

5 
~0~ 

0 
0 
0 
0 
0 

-1 
4 

-6 
4 

-1 
0 
0 
0 

6 
0 
0 
0 
0 
0 
0 
0 

-1 
5 

-10 
10 
-5 

1 
0 

7 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
6 

-15 
20 

-15 
6 

8 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
7 

-21 
35 

-35 

9 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
8 

-28 
56 

10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
9 

-36 

11 
~0~ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
10 

12 
~0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 

Note 3: For the transfer matrix T(x), defined in (12), one can prove for n e N? in an analogous 
manner, that 

T" = -(-^jVaO/^l + ̂ J'^O./^TCx), (27) 

by employing the Cayley-Hamilton theorem for the 2x2 matrix T with t rT = ^ = detT, which 
states that T satisfies the characteristic equation T 2 - ^ T + ̂ 1 = 0. 

Powers of a function which generates a sequence generate convolutions of this sequence. 
Therefore, Proposition 1 implies that convolutions of the Catalan sequence can be expressed in 
terms of Catalan numbers and binomial coefficients. Before giving this result, we shall present an 
explicit formula for the nih convolution of a general sequence {Q} generated by c(x) = £/=0 Qxl. 
Usually, the convolution coefficients Q(w), defined by cn(x) = Tf=o Q (n)xl, are written as 

CM = I Qfi2 ''' Q. > with h G N<>- (28) 

An explicit formula with (/-I) nested sums is the content of the next lemma. 

Lemma 1—General convolutions: For / = 2,3,..., 

( i IAJ ^ / 
Q(n) = Cg-'QMl Z I<">'> W I I 

U=2 ik=ak) ;=2 
. ci 

- 1 \ 
(29) 
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with 

b2 = l/2, bk = 

ak-0 for k -2,3,...,/-1; a, = max 

U-I.Jij\/k, 
V 7=2 J 

( 
0. 

71! 

(30) 

(31) 

(32) 
(«-/+^=2o-i>;)!(/-2:;=2^)!' 

The first product in (29) is understood to be ordered such that the sums have indices i2J3, ...Jl 

when written from the left to the right. In addition: C0(n) = C$ and Q(w) = nC%~lCv 

Proof: Q(w) of (28) is rewritten first as 

Q(») = 5X«,', O y / o ) W • • • C{, ij e N0, (33) 

where the sum is restricted by 
/ i 

(0: Z^/ = / and ("): Z'y="- (34) 

.(/?, /, {iy} )̂ is a combinatorial factor to be determined later on. (E.g., for n - 3, / = 5, one has five 
terms in the sum: i5 = 1, i0 - 2; i4 = 1, ^ = 1, i0 = 1; i3 = 1, i2 - 1, ?0 = 1; '3 = ^ '1 = 2> h = 2> '1 = 1 > w i t h 

other indices vanishing, and the combinatorial factors are 3, 6, 6, 3, 3, respectively.) (ii) restricts 
the sum to terms with n factors, and (i) produces the correct weight /. These restrictions are 
solved by 

j=2 j=2 J=2 

From ix > 0, i.e., / - T!j=2 jij ^ 0, one infers i2 < |J-]; thus, i2 e [O, |J-J]. For given i2 in this range, 
J3 < L^T2-]. etc- In general, 

o<4< 
7=2 y 

for it = 2:3,..'.,/ , ~ » , ... , « 

with the sum replaced by zero for k-2. This accounts for the upper boundaries \hk\ m (30). 
Now, because i0 > 0, (//') implies a lower bound for il, the index of the last sum, viz 

h> ^-^-Sa-iyyl/c-1) 
y=2 y 

with the ceiling function ["-"I- In any case /z > 0; therefore, the lower boundary for the ix -sum is ax 

as given in (31). All restrictions have then been solved and the lower boundaries of the other 
sums are given by ak - 0 for k = 2 , . . . , / - 1 . As to the combinatorial factor, it now depends only 
on n, /, {ij}l

2 and is written as (n, /, {ij}2) • It counts the number of possibilities for the occurrence 
of the considered term of the sum which is given by 

mH"-T')AH-t'' 
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Inserting /0 and ix from (//') and (/'), respectively, remembering (//), produces {nj,{ij}l
2) as 

given in (32). Finally, Z<w,/, {ij)l
2)C^Q ->Q is transformed into ( /-I) nested sums with 

boundaries ak and [bkJ after replacement of ix and /0. This completes the proof of (29) for the 
nontrivial / > 2 cases. • 

Corollary 1-Catalan convolutions: For Catalan's sequence {C„}J, the nth convolution sequence 
for n G N is given by C0(n) = 1, Q(») = n and, for / = 2,3,..., by 

( i IAJY i (ri 

\k=2 ik=ak) J=2 v'A 
(35) Q(») = 

with (30), (31), and (32). 

Proof: This is Lemma 1 with CQ = 1 = Cv • 

Example 1: C4(3) = 3C4 + 5C3 + 3C| + 3C2 = 90. 

Corollary 2: With the Catalan generating function c(x) and the definition, one has, for n e N, 
c-"(x) =: Sr=0 QC-H)^, for / = 2,3,..., 

'niHT-N^n^1. (36> ci(-/i)=(-iy " 

with (30), (31), (32), and Catalan numbers Ck. In addition, CQ(-n) = 1, Cx(-n) = -n. 

Proof: Lemma 1 is used for powers of c(x) replaced by those of c~l(x) = 1- xc{x), with the 
Catalan generating function c{x). Hence, c~\x) - T^=o Q(~~l)x* w^h 

[I for£ = 0, 
QC"1) = I n n 7 , 0 T h e n , m Lemma 1, Ck is replaced by Q ( - l ) . D [-Q.j for A = 1,2,.... 

Example 2: C4(-3) = -3C3 + 6C2 - 3 + 3 = -3. 

Convolutions of Catalan's sequence have been encountered in various contexts, for example, 
in the enumeration of nonintersecting path pairs on a square lattice (see [12], [18], [5]), and in the 
problem of inverting triangular matrices with Pascal triangle entries (see [6] and earlier works 
cited there; they also appear in [15], p. 148). 

Note 4: Shapiro's Catalan triangle has entries 

3 u = ! ( „ ? * ) forn>k>\, and B„,*=[*"](****(*)), 

with [xn]f(x) denoting the coefficient of xn in the expansion of f(x) around x - 0. In this case, 
c(x) = (c(x)-l)/x = c2(x). (See [12], Propositions (2.1) and (3.3), with ij eN,/?ctfN0.) In [18] 
this triangle of numbers from [12] reappears as h(n, k), and it is shown there that Bn k = b(n, k) = 
[xn](xc2(x))k, in accordance with the identity c(x) - c2(x). Therefore, only even powers of c(x) 
appear in Shapiro's Catalan triangle. In [5], Q(/?) appears as special case 2^2-n,i+v ^n t^I all 
powers of c(x) show up as convolutions for the special case of the Sx sequence there. The 
entries of the Sx -array ([6], p. 397) are [xn]ck+l(x) for w , i e N 0 . 
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The anonymous referee of this paper noticed that the inverse of the lower triangular matrix 
sn,k =[xk]$n(x), for n,k e N 0 , with Chebyshev's Sn(x) = Un(x/2) polynomials is the lower tri-
angular convolution matrix obtained from its first (k = 0) column sequence generated by c(x2) 
(Catalan numbers alternating with zeros). This follows from the fact that the S-matrix is also a 
lower triangular convolution matrix with generating function l / ( l + x2) of its first column. See 
[13] for such type of matrices M and the relation between the generating functions of the first 
columns of M and M"1. The head of this Catalan triangle can be viewed under number A053121 
in the on-line database [14]. See also [6] for inverses of Pascal-type arrays. 

Lemma 2—Explicit form of Catalan convolutions [12], [18], [6], [4], [11], and [5]: 
For « G R , / eN0: 

n , x n(21 + n-l\ n (n + 2f\ n (2l + n-l\ ^^ 
Cl(n) = j[ ,_! J = ̂  j ) = -n^[ / J- (37) 

Proof: Three equivalent expressions have been given for convenience. See [4], page 201, 
equation (5.60), with %2(z) - c(z)> t—>2,k->l,r->n. The proof of (5.60) appears as (7.69) 
on page 349 of [4], with m = 2, n = I e R. 

The same formula occurs as Exercise 213 in Vol. 1 of [11] for p = 2 as a special instance of 
Exercises 211 and 212. Put a = n and n-l in the solution of Exercise 213 on page 301. 

In order to prove this lemma from [12] or [18], one can use 
min(/, ri) s \ 

obtained from c(x) =: l+c(x) with 

k=n 

The result in [12] and [18] is, with this notation, 

Cl(j) = Bu = Ki,j) = j[i2!J). 

Inserting this in the given sum, making use of the identity j(nj) = n("z\) and the Vandermonde 
convolution identity, leads to Lemma 2 at least for positive integer n, but one can continue this 
formula to real (or complex) n. 

In [6], one finds this result as equation (3.1), page 402, for i = 1: sx{l, ri) = Ct(n). 
In [5], 2^2-11,1+1 - Q(w)> w ^ n t n e result given in Theorem 2.3, equation (2.6), page 71. • 

Note 5* As a side remark we mention that, from (37), Et(x) :=/!Q(x) (with real n = x) is a 
polynomial of degree /, viz Ul~}Q(x + l + l±j). These polynomials, which are not the subject of 
this work, are known (see [8] and references given there) as exponential convolution polynomials 
satisfying Et (x + y) = Z L 0 ( D ^ W £ / ^ O ) -

We now compute the coefficients Q(w) = [xl]cn(x) (see Note 4 for this notation) from our 
formula given in Proposition 1. This can be done for n e Z. 

First, consider / ?GN 0 . For n = 0 and n = 1, there is nothing new due to the inputs S_2 = - 1 , 
S__x = 0, and S0 - 1. Cl(n) = 0 for negative integer /. Therefore, terms proportional to l/xl with 
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/ e N have to cancel in (23), or in (1). For w = 2,3,..., terms of the type l/xn~J occur for j e 
{l,2,...,[fj}. The coefficient of l/xn-J in p„^(x) is (- lyC^V) (see Note 1 for the explicit 
form of /Vi)- F o r ^ e 1/x""7 coefficient in ^ ( ^ M * ) , one finds the convolution 

Compensation of both coefficients leads to identity (PI) given in (4) after (j'-1) has been traded 
for p. Thus, after a shift n -> /? + 2, 

Proposition 2-Identify (PI): For TI <EN0 and /? = 0,1,...,[fJ, identity (PI), given in equation (4), 
holds. 

Example 3: n = 2(k -1), p - k - 1 , and n = 2* - 1 , p = A - 1 for & e N; 

e.g., A = 3: 3C0 - 4 Q + 1C2 = 1, 6C0-5Q + 1Q - 3 . 

For w = 2,3,..., terms in (1), or in (23), proportional to x* with & GN 0 arise only from 
qn-\{x)c{x)y and they are given by the convolution (cf. Note 1), 

For n - 1, this is Ck. The left-hand side of (1) contributes Ck(n), and Q(l) = Q . Therefore, 

Proposition 3-Identity (P3): For « E N , & eN0, identity (P2), given in equation (5) with (3) 
holds. 

Example4: k = 0, («-l)—»/i: 

S(-0,+1(w7/)clM = (;-i; 
e.g., 7i = 3 : 2 C 2 = C 3 - l , #i = 4: 3C3-1C2 = C 4 - 1 . 

Now consider negative powers in (1), i.e., c~n{x\ n G N . NO negative powers of x appear 
(cf. Note 1 for the explicit form of p_^n+V)(x) and q_^n+r){x)). The coefficient of xk, k e N0, of 
the right-hand side of (1) is 

where the first term, arising from p^„+\)(x)9 contributes only for k e {0,1, ...,[f J}- ^n the subo-
rnation, one also needs l<k-l because no Catalan numbers with negative index occur in (1). 
The left-hand side of (1) has [xk]c~n(x) = Ck(-n). From the last equation in (37), one finds 
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In the last equation, the upper index in the binomial has been negated (cf. [4], (5.14)). Two sets 
of identities follow, depending on the range ofl. 

Proposition 4-Identity (P3): For n G N , k e {0,.1, ...,|_f j}3 identity (P3), given in equation (6), 
holds. 

Example 5; k = 3, n > 6: C2 - (n - 2)Q + (n
2
3)CQ = ( V ) • 

Proposition 5-Identity (P4): For n G N , i e N , with k > j_f ] + l, identity (P4), given in equa-
tion (7), holds. 

In (P4), only the q-(n+i)(x)c(x) part of (1) contributed, and we used the first expression for 
Ck(-n) in (37). In (P3), where p^n^{x) also contributed, we used the negated binomial coeffi-
cient for Ct(-n) and absorption in the resulting one. 

Note that (37) implies Ck(-n) = -Ck_n(n) for k, n e N, k > n, and Q(0) = Sk0. 
Example 6: n = 5, k > 3: 

Q~i ~ 3Ck-2+Q-3 = ̂ ( ^ _ i y 
e.g., * = 7: C 6 -3Q + C4 = 20. 

If one uses the binomial formula for c~n(x) = (l-xc(x))n wad cn(x) = T^=0Ck(n)xk, one 
arrives at equation (8). 

3. SOME FAMILIES OF INTEGER SEQUENCES 

In this section we present some sequences of positive integers which are defined with the help 
of the Un polynomials (10). 

un(m)^Un(\lm) = (4m)"Sn(4m). (38) 

The last equation is due to (21). It will be shown that un(m) is a nonnegative integer for each 
m = 4, 5,... and n - -1,0,.... Also negative integers -m, W G N are of interest. In this case, we 
add a sign factor: 

v » := {-\)"Un{-\lm) = {-i^)"Sn(iM- (39) 
From the S„ recursion relation (15), one infers those for the un(m) and vn(m) sequences: 

un(m) = in(un_l(m)-un_2(m))9 u^Qn) = 0, u0(m) = 1; (40) 

vn(m) = m(vn_1(m) + vn_2(m)l v_x(m) s0 , vQ(m) = 1. (41) 

This shows that vn(m) constitutes a nonnegative integer sequence for positive integer m. It 
describes certain generalized Fibonacci sequences (see, e.g., [7] with vn(m) = Wn+1(0, l;m, m)). 
For example, vn(m) counts the length of the binary word W(m; n) obtained at step n from the sub-
stitution rule 1-»1W0, 0->lm, starting at step w = 0 with 0. The number of l's, resp. 0's, in 
W(m;n) is wv^/w), resp. mvn_2{m). E.g., W(2;3) = (110)212(110)212 and v3(2) = 16, 2v2(2) = 12, 
and 2vx (2) = 4. For m - 1, this substitution rule produces the well-known Fibonacci-tree. Of 
course, one can define in a similar manner generalized Lucas sequences using the polynomials 
{Vn} given in (11). Each un{m) sequence (which is identified with Wn+1(0, l;m9-m) of [7]) turns 
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out to be composed of two simpler sequences, viz u2k(m)-.mkak(m) and u2k_l(m) =: mkfik(m), 
k G N 0 . These new sequences, which are due to (38), given by ak = S2k{4m) and f3k{m)~ 
S2k-\{slfn) 14m, satisfy therefore the following relations: 

Pk+l(m) = (m- 2)[3k(m) - fik^(m)9 f3Q{m) - 0, fix{m) = 1, (42) 
and 

ak-i(m) = Mm) + Pk-i(m)- (43) 
From (42) it is now clear that Pn(m) is a nonnegative integer sequence for m- 4, 5,.... (In [7], 
Pn(m) = Wn (0,1; m- 2, -1).) This property is then inherited by the an(m) sequences due to (43), 
and then by the composed sequence un(m). 

The ordinary generating functions are: 

^ ; * ) : = | / ^ ) * " % 2 _ { m
X _ 1 ) x + r sArn;xy. = gaM)X" = x2_(l+_\)x + v (44) 

OO -j 00 -j 

gu(m;x):=J^un(m)xn = • j9 gv(m; x):= X V « ( ^ K = ~, J- (45) 
%r0 l-inx + mxz ££ l-mx-mx1 

Note 6: The \J3n{m)} sequences for rn - 4,5,6, 7,8,10 appear in the book [14]. The case rn = 4 
produces the sequence of nonnegative integers; m = 5 are the even-indexed Fibonacci numbers. 
The m- 9 sequence appears in Sloane's "On-Line-Encyclopedia" [14] as A004187. The {an(m)} 
sequences for m - 4,5, 6, 8 also appear in the book [14]. The case m - 4 yields the positive odd 
integer sequence; m - 5 is the odd-indexed Lucas number sequence. The rn - 1 sequence appears 
in the database [14] as A03022L The composed sequences {un{m)} do not appear in the book 
[14], but some of them are found in the database [14]. m = 4 is the sequence (« + 1)2W, A001787, 
and m = 5,6,7 appear as A030191, A030192, and A030140, respectively. As mentioned above, 
{vw_i(l)} is the Fibonacci sequence. The instances m = 2 and 3 appear as A002605 and A030195, 
respectively, in the database [14]. 
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1. INTRODUCTION 

Consider a sequence {Wn} defined by the recurrence relation 

K = pW„_, - qW„_2, n^W^cW^b, 
where a, b, p, and q are integers with p > 0, q & 0, and A = p2 - 4q > 0. We are interested in the 
following two special cases of {WJ: {UJ is defined by U0 = 0, Ux = l, and {Vn} is defined by 
VQ = 2, Vx = p. It is well known that {£/„} and {î J can be expressed in the form 

Un = ^^-,Vn = a"+P", (1.1) 

where a = (p + VA) /2 , p=(p- VA") /2 . Especially, if p = -q = 1, {£/„} and {F„} are the usual 
Fibonacci and Lucas sequences. 

Recently, Andre-Jeannin studied the infinite sum (see [1]) 

Sv(x) = Sv(x;p,q) = fj^. 

At the end of his paper, he presented a problem to study the integrity of an infinite sum 

„=o x 

In this paper, we solve this problem completely for the case in which k > 2 and q = ±l. 
By using the Binet forms (1.1) and the geometric series formula, we have 

T(x\- X(2x"Vk) |v|>tt* 
Tk{X)-xi-VkX + qk'lX]>a' 

In what follows, we shall make use of the identities: 
Un+2k-qkUn = UkVn+k, (1.2) 

Un+2k+qkUn=VkUn+k, (1.3) 

V2„+2q"=V„\ (1.4) 

V2n-2q" = AU2„, (1.5) 

VkV2k(n+X) + AUkU2k(n+l) = 2Vk(2n+3y (1.7) 

All the identities can be obtained by the Binet form (1.1). 

420 [NOV. 



THE INTEGRITY OF SOME INFINITE SERIES 

2. MAIN RESULTS 

Let 

V> = Vkn = a«»+/3*", U'„ Tl_ak"-Pk" J]*, 
ak-pk Uk ' 

(2.1) 

In fact, the sequences {U'n} and {V$ satisfy the recurrence relation Wn = VkWn_l- qkWn_2. From 
(2.1) and applying Theorems 2-4 in [1] to the sequence {Fw'}, we can obtain the main results of 
this paper. 

Theorem 1: If q - ±1 and k > 2, there do not exist negative rational values such that Tk(x) is an 
integer. 

Theorem 1 is a direct consequence of Theorem 2 in [1], and its proof is omitted. 

Theorem 2: If q = -1 and r > 0, the positive rational values of x for which T2r+l(x) is integral are 
given by 

Ut 
x = -

(2r+l)(2m+l) 

a 
(m = l,2,...)' 

2m(2r+l) 

and 

y = ^ 1 x 2 ^ 2 ) ( w = o,l,2,...). 
r (2r+l)(2w+l) 

The corresponding values of T2r+l(x) are given by 

and 

T 

hr+l 

Ut 
\ 

(2r+l)(2m+l) 

\ &2m(2r+l) J 

\ 

&(2r+l)(2m+iy2m(2r+l) 

a 2r+l 

• (2r+l)(2m+2) 

Y(2r+lX2m+l) J 

__ U(2r+lX2m+iy(2r+lX2m+2) 

a 2r+l 

Proof: Since q = - 1 , we can apply Theorem 3 in [1] to the sequence {V^ = F(2r+1)„}. There-
fore, the positive rational values of x for which T2r+l(x) is integral are given by 

_ ^2 /n+ l 

a 
(in =1,2,...) 

2m 

and 
x = ite±2. (,,, = 0,1,2,...). 

r 2m+l 

The corresponding values of T2r+l(x) are given by 

^2r+l 
II9 
u2m+l 

V Uttm J 
- 77' V 
- U2m+V2m 

and 
T I ^2m+2 | _ ri> yr J2r+l I T / f I - u 2 w + F 2 w + 2 -

r2m-fl 

From (2.1), we can obtain the results. • 
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Theorem 3: If q = 1, p > 3, and r > 0, the positive rational values of x for which T2r+l(x) is inte-
gral are given by 

= %±B£!5±!I(OT=1,2,...) 

and 
m(2r+l) 

y _ ^(2r+l)(m+l) 

X. (/» = 0,1,2,...), 
m(2r+l) 

w h e r e X w ( 2 r + 1 ) = f/(2r+i)(m+i) + Um(2r+\) • T h e corresponding values of T2r+l(x) are given by 

T 
J2r+l 

ut 
\ 

and 

(2r+l)(m+l) 

\ Um(2r+1) J 

xt, 

_ "(2r+l)(m+iym(2r+l) 

a 
T I -1(2r+l)(m+l) 
hr+l \ y I ~ 

V yLm(2r+l) J 

Proof: By q = 1 and /? > 3, we have that 

(f(2. 

2r+l 

r+l)(ffl+l) ^m(2r+I) )^(2r+l) ( /H+l) 

f/2 
u 2 r + l 

K 2r+l ' a 
2 r + l + a-(2r+l)>3 

Similarly to the proof of the last theorem, we can prove the conclusion from Theorem 4 in [1]. D 

Theorem 4: If q = - 1 and r > 1, the positive rational values of x for which Z^r(x) is integral are 
given by 

77, ... 
(r or w even and /w > 1) x __ Ur(m+2) 

u„ 
and 

K r(2m+3) 

K(2m+1) 
(r odd and # i>0) . 

The corresponding values of T2r(x) are given by 

j i Ur(m+2) 

and 

J 2 r 

T2r 

^r(m+2yrm 

un 

(v 
yr(2m+3) 

\yr{2m+\)J 

a 2r 

U r(2m+\yr(2m+3) 

a 2r 

Proof: Apply Theorem 4 in [1] to the sequence {VJ = V2rn). Therefore, the positive rational 
values of x for which T2r{%) is integral are given by 

and 

x = - ^ L ( « = l , 2 , . . . ) 

^ (at = 0,1,...), 

where X'm = U'm+l + U'm. The corresponding values of T2r(x) are given by 
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A2r I Tjf J - Um+Ym 

and 

From (2.1), we have 

Tlr 
X: m+l 

V ^m 
f - ^-m+lV^m+l U'nJ. 

Um+l =
 U2r(m+1) ^ g , =

 U2r(m+2) + U2r(m+l) 

&2r IF 11 
w m ^ 2rm 

It follows from (1.2) and (1.3) that 

v , _ ^2r^2r(m+l) + ^2r^2r(m+l) + ^2r(m+l) 
L/w+l 2U, 2r 

From (1.2)-(1.7), we have 

Using a similar method, we have 

X: 
f C % ^ r is even, 

^ + 1 I r̂(2m+3) 

XL, — 

un (2w+l) 

K(2m+3) 

r is odd. 

r is even, 

r is odd. 

It follows from (1.2) and (1.6) that 

TJt -JJ' -, _ ^2r(m+l) ^2rm _ ^rK(2m+l) + ( ( V V ^ 2rm 

a 2r 

K(2m+l) 
K 

| UrVr(2m+l)-2U2rm 

a 2r 

r is even, 

r is odd. 

When q = -l and r is odd, from (1.2) and (1.3) we have 
(v. 

uf
m+l-u^\ 

(2w+l) 

Jr{2m+\) 

r is even, 
r is odd. 

Therefore, the positive rational values of x for which T2r(x) is integral are given by 

a 2rm 

f/w 
x = r(2m+V , ( r e v e n and m > 0 ) ? 

^r(2/w+l) 

and 
_ K(2m+3) 

K(2m+1) 
(r odd and m>0). 
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The corresponding values of T2r(x) are given by 

hr I - 7 7 - "77 , (2-4) 
u2rm J u2r 

T2r 
"r(2m+3) j ^^om^\K 

V Ur(2m+1) J 
and 

= "wyrd^i) (/-even)) ( 2 5 ) 

It is clear that (2.2) and (2.3) can be rewritten as 

_ Ur(m+2) 
U ' 

rm 
Similarly, (2.4) and (2.5) can be rewritten as 

T | ^>Q+2) )_^r(m+2)Km 

H um r u2r • 
On the other hand, since q = -l, r//"+2) > a2r holds when m or r is even. Hence, the conclusions 
are valid. D 

Theorem 5: If q = 1, /? > 3, and r > 1, the positive rational values of x for which T2r(x) is integral 
are given by 

* = % ^ (m = l,2,...), 

and the corresponding values of T2r(x) are given by 

hr 
fir \ "r(m+2yrm 

u2r 
Proof: Since g = 1 and F2r > 3, we can apply Theorem 4 in [1] to the sequence {V^ = F2rw}. 

The proof is similar to the one of the last theorem. • 
Clearly, Andre-Jeannin's results are special cases of Theorems 2 and 3. 
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1. INTRODUCTION 

Let A be an alphabet and let A* be the free monoid over A. Let A+ = A* \{e}, where s 
denotes the empty word. For w e A*, let \w\ denote the length of w. Let \s\= 0. A word x is 
said to be & prefix of a finite or infinite word w over A if x e A+ and there is a word y such that 
w — xy. The finite or infinite word y is called a suffix of w. Let R be the reversion operator on 
A+ defined by R(cxc2 ...cn) = cn...c2cv where cf e A, 1 < / < w, « > 1. 

Let a be an irrational number between 0 and 1. The characteristic sequence (or word) of a 
is an infinite binary sequence/whose nth term is [(n + l)a] - [na], n>\. It will be regarded as an 
Infinite word over the alphabet {0,1}. Let sm denote the prefix of/of length m and let fm denote 
the suffix of/with / = smfm? m>0. Let / 0 = / . The characteristic sequence of (V5- l ) /2 
(resp., V2 -1 ) is called the golden sequence (resp., Pell sequence). 

Hofstadter [9] introduced the concept of aligning two words u and v over A (see also [3], 
[8]). The Idea is to try to match each term (letter) in v with a term in u. After a term in v has 
been matched with a term in u, one looks for the earliest match to the next term In v. Those terms 
in u that are skipped over form the extracted word (u, v). The following example illustrates this 
concept. 

u: 0 1 1 1 0 1 0 0 1 1 0 
v: 1 1 0 0 1 0 

<ii,v>: 0 1 1 0 1 

Originally, Hofstadter considered the problem of aligning fm with/ where/is the character-
istic sequence of an irrational number a. He conjectured that (fm,f) = fm-2, m>2. For a-
(V5 -1) /2 , Hendel and Monteferrante [8] solved this problem completely. They determined the 
set M of all Integers m > 2 for which (fm,f) = fm_2 and they proved that, if m > 2 and m^M, 
then (fm9 /> = 0 / ^ . For example, </5, / ) = f3 and </4, / ) = 0/3 * f2. The extraction problems 
</, fm) and </w, /„> were first considered by Chuan [3] who proved that </, fm) = R(sm), m > I, 
and that (fm,f„) differs either from (fm_n,f) (If m>n) or from </,/„_m> (if/w<w) by at most 
the first letter. Using a concatenation lemma (Lemma 3 of [8]) and some representation theorems 
(Section IV of [7]), Hendel [7] also formulated and proved an extraction conjecture for (fm,f) 
and ( / , fm) when a = 42 -1, for an Infinite set of m. 

In this paper, we shall use a special case of a powerful representation theorem that Chuan 
discovered recently [5] to prove that the following conjecture is true when a = j2-l. 

Conjecture: Let a be an irrational number between 0 and 1 and let / be its characteristic 
sequence. Then (f,fm) = R(sm\ m>\. 
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It follows from the representation lemmas in Section 2 that this conjecture has an equivalent 
formulation described below. Let [0,al + l,a2,...] be the continued fraction expansion of a. 
Define the sequence {un} of words over the alphabet {0,1} by 

«b = 0, iil = 10fl«, un = un_2ua^x (n>2). 

Equivalent Formulation (Subtraction Rule of Exponents): If n > 1, r1? r2,... is an infinite 
sequence of integers with 0 < rt < ai (z > 1) and r}; = 0 (z > «), then 

2. PRELIMINARIES 

Let u = a]a2...an, v = b1b2...bm, and e = clc2...cp, where at, bJy ck GA, n, m>®, p>0, and 
n-m + p. As in [8], we say that u aligns with v with extraction e if there are integers yl3 j 2 , ..., 
jp such that 

where 0< jx< j2<--<jp <rn and ct ^ bj+l for 1 < i < p. Here \.. .bk = s if k < i. This rela-
tionship is called an alignment and is denoted by (u, v) = e. Clearly, we have (u,u) = s. 

Let zz, v, and e be (possibly infinite) words over A. If {zz„}, {vn}, and {en} are sequences of 
finite words such that (un, vn) - en, l im^^ un - zz, lim^^, vn = v, and X\mn_>o0en = e, we say that u 
aligns with v with extraction e. This alignment is also denoted by (zz, v) - e. 

The goal of this paper is to prove the following theorem. 

Theorem 2.1: (a) Let a-^Jl-X and let/be the characteristic sequence of a. Then (/*, fm) = 
i? (s j for all in £1 . 

(b) (Subtraction rule of exponents) If n> 1, rx,r2,... is an infinite sequence of integers with 
0 < rx < 1, 0 < /; < 2 (2 < z < w), and /;; = 0 (z > zz), then 

To prove this theorem, we need the following concatenation lemma and three basic represen-
tation lemmas (Lemmas 2.3-2.5). 

Lemma2.2 (see[8]): If p> 1, un, vn, en eA+ and (un, vn) = en, l<n<p, then 
I p p \ p 

(IKEk =IK 
\ «=i »=i / «=i 

Here n^=i#„ denotes x^...:*^, where xux2,...,xp GA+. The result also holds if up and vp are 
infinite words. 

Throughout the rest of this section, let a be an irrational number between 0 and 1 with con-
tinued fraction a - [0, ax +1, a2,...] and let/ be its characteristic sequence. Let 

0O = 1, ^ = ^ + 1, qn=anqn_x+qn_2, 
XQ = 0, Xl = 0 l \ Xn=Xn-lXn-2> 

zz0 = 0, iil = 10fl>, un = u„_2i£Ll9 n>2. 
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Note that {qn} is a sequence of positive integers and {xn} and {un} are sequences of a-words 
over the alphabet {0,1} (see [4] for a definition of a-word) and un = R(xn), n>0. 

Lemma 23 (see [6]): Every positive integer m can be expressed uniquely as ?n = 'X?=iriqi_l, 
where 0 < /;. < aj (1 < / < ri), r„ * 0, and rt_x - 0 whenever /;. = ai (2 < / < ri). 

The expression of m in Lemma 2.3 is called the generalized Zeckendorf representation ofm 
in the qi

 fs. When a = (V5 -1) / 2 = [0,1,1,... ], it is the Zeckendorf representation and ̂  = i?+1. 
When a = Jl-l = [0, 2,2,...], it is also called the Pellian representation ofm in the Pell numbers 
[2,10,11]. If m = Sf=iJ#i_i, where 0<rt <at (1 </ <ri), the sequence r/2 ...rn is called a code of 
m with respect to a (or the g/s). 

A representation of prefixes sm of/in terms of the x/s is given in the following lemma. 

Lemma 2.4 (see [5]): Let m = ZJLi Wz-i> where 0 < /;. < a, (1 < / < ri). Then 

*m=*k •••*?*? = i ? ( ^ [ 2 . -.<-l)-
We remark that a special case of Lemma 2.4 in which the representation ofm is the general-

ized Zeckendorf representation has been obtained by Brown [1]. 
In the following lemma,/and its suffixes fm are expressed in terms of the ww's. 

Lemma 2.5 (see[5]): Let m = HZi^i-h where 0 < rt < ai (i > 1). Then 

/w = ^-V2~X3-r 3 .---
Note that when a - (V5 -1) / 2, the representations of/and fm given here reduce to the ones 

used in [3] and [8]. 

3* PROOF OF THEOREM 2.1 

In this section we restrict our attention to the irrational number a - 42 - 1 = [0,2,2,... ]. The 
sequences {qn}, {x„}, and {un} defined in Section 2 now become 

q0 = l, qx = 2, qn = 2qn_l+qn_2, 
xb = 0, ^ = 01, x„ = x*_lx„_2, (1) 
w0 = 0, ux = l09 un= un_2ul_l9 n>2. 

We first prove some alignments that involve the wn's. 

Lemma J. i ; 
(a) (u, u)-s for all finite or infinite word u over {0,1}. 
(b) {Un-lUn>Un)=Un-l O 1 ^ ! ) • 
(c) (niun_lun) = ufJ_2un_l (n>2). 
(d) (i£.1i£,i£) = i£.l (n>2). 
(e) (u0uf..M*,ul...un_lut) = uQul..Mn_l (w>l). 
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Proof: 
(a) By definition. 
(b)-(d) Clearly, the results hold for n < 3. Let k > 3. Suppose that (b)-(d) hold for all n < k. 

Then: 

0) <%%+!> %+l> 
= (uk_2uk_l9 %_i><%_ft_i%%, ukuk) [by (1) and Lemma 2.2] 
- uk-2uk-\uk-\ [by the inductive hypothesis of (b) and (d)] 
= **• 

(ii) (uk+luk+l,ukuk+l) 
= <%-i%> %><%%+!> %+i> [by (1) and Lemma 2.2] 
= %_i% [by (i) and the inductive hypothesis of (b)]. 

(iii) <i^+1,n|+1> 
= <%-2%-i> %-i><%-i%> %><^+i? %%+i> [by ( 0 a n d Lemma 2.2] 
- uk-2uk-\uk-\uk [by the inductive hypothesis of (b) and (ii)] 
= uf. 

Therefore, (b)-(d) hold. 
(e) (u0u?...ululu2...u„_luZ) 

= <"oMi. " i X " ^ ":)• ••<"„-!"», "„><"„, "„) [by (1) and Lemma 2.2] 
= M0M,...M„_J [by (b) and (a)]. 

69 <"X+i • • • *&.,, W n • • • un+p-iu2
n+p) 

= (un, un)(u„un+l, un+1){un+lun+2, un+2) 
• • • (un+p-iu„+p, u„+p){un+P, un+P) l>y C1) and Lemma 2.2] 

= "A+i • • • «„+P-i [by (a) and (b)]. 

(g) < " X + 1 • • • M»+p> M„+l • • • Un+p-lUn+p> 
fn+p-2 \ 

= <"«> "„-iM»> Il(<M/-iM" M,)M+i. M,M;+i» <M»+p> %+P-i«„+p) [by (1) and Lemma 2.2] 
V i=n ) 

fn+p-2 \ 
= X Yiui-i \un+p-2u

n+p-\ [by (a), (b), and (c)] 

-unun+l-un+p-l-

Here 
fl if« = l, 

x-< 
K_2MB_1 lf»>l. 

Lemma 3.2: Let n > 1. Let 0 < ^ < 1, 0 < /; < 2 (2 < /' < n), r„*0, and /;_j = 0 whenever rt; = 2 
(2</'<»). Then 

<«^...a*,i4-y-,i...i^:^>=«ga?...i^1. 
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Proof: Write rxr2 ...r„ = 0Sl QO*2 C2... 0s- Cm, where sx > 0, Sj > 1 (2 < j < m), each C,. is of the 
form f-7', 2, or 2fy (^ > 1) and Q = I*1 if ^ = 0. We proceed by induction on m. 

Let m-\. For simplicity, write s for ^ and t for ^ . There are four cases according to the 
values of s and t. 

(i) rxr2...rs+l = osi< (S>o,t>oy. 
\M0M1 • • • Us+t' M0M1 •••'Us-lUs---Us+t-lUs+t) 

= {uQu2...u2_x, uQul
2...u2_x){u2...u2

+1, us...us+t_xu2
+l) [by Lemma 2.2] 

= usus+x... us+t_ j [by (a) and (f) of Lemma 3.1]. 

(ii) rxr2...rs+x = 0*2 (s>0): 

<«o M i 2 - M , 2
+ i , M o" i 2 - M , 2 A 2 + i> 

= (u0uf...uj_x,u0uf...u2_x)(u2u2
+x,u2

+x) [byLemma2.2] 

= u2 [by (a) and (d) of Lemma 3.1]. 

(iii) rf1...r„m = V2V (s>0,t>0): 
/ 2 2 2 2 2 \ 
{u0ux ...us+t+l, u0ux ...us_xus+x...us+tus+t+l) 
= (u0u2... u2_x, u0ux

2... u2_x) (u2...u2
+t+x, us+x...us+tu2

+l+x) [by Lemma 2.2] 
= u2us+l... us+t [by (a) and (g) of Lemma 3.1]. 

(iv) rxr2...rt = V (t>0): 

(u0u2 ...u2,ux... ut_xu2 ) 

= u0ux... ut_x [by (e) of Lemma 3.1]. 

Thus, the result holds for m - 1. Now, suppose that the result holds for m = k, that is, 

rxr2...r„ = 0s>Cl0s*C2...0s*Ck, and 

(U0U2...U2, I^y-"* .-utr{U2
n) = l#B* ...<"_!, 

where Cx,..., Ck satisfy the above-mentioned conditions. Let sk+l > 1 and let Ck+X = lr, 2, or 21' 
for some t > 1. There are three cases to consider: 

(i) Ck+X = l': Let rn+xrn+2.. .rp = 0*^1', where p = n + sk+x + t. Then 

(u0u2 ...u2
p, ul~r'u2-r2 ...u2'_r{u2

n...u2
p_t_xup_t ...up_xu2

p) 

= (u0u2...u2„,u^u2^ ••••u2Zr{u2
n)(u2

n+x...u2
p_t_x,u2

n+x...u2
p_t_x) 

{u2
p_t...u2

p,up_,...up_xu2
p) [byLemma2.2] 

= u^ux
2... urj_xsu t... u x [by (a), (f) of Lemma 3.1 and the inductive hypothesis] 

= u^...ur;_x. 

(ii) Ck+X = 2: Let rn+xrn+2...rp = 0s^2, where p = n + sk+l + l. Then 

(u0u2 ...u2
p, a j - y ^ -ulZl-ul ...u2

p_2u2
p) 

= (U0U2...U2„, U^U^ ...M„2:["M„2)<^+1 ...UJ_2, ll2
+x...U2

p_2)(ll2
p_xU2

p, U2
p) 

2000] 429 



EXTRACTION PROBLEM OF THE PELL SEQUENCE 

= UQ1 U[2 ... u^su2
 x [by (a), (d) of Lemma 3.1 and the inductive hypothesis] 

-U^U? ...U iQux ...<*p_v 

(iii) Ck+l = 2V: Let rn+lrn+2...rp = 0**+121f, where p = n + sk+l + t + l. Then 

(u0u2 ..M2
p, u^u2'"2...u2

n:[»u2„ ...u2
p_t_2up_t...up_xu2

p) 

= (u0u2...u2,u^u2'"2 ..M2:?u2)(u2
+l...u2

p_t_2,u2
+1...u2

p_t_2) 
(u2

p_t_l..M2
p,up_t..Mp_lu2

p) [byLemma2.2] 

= UQ1U[2 ... ti^_lsiPp_t_^ip_t... u x [by (a), (g) of Lemma 3.1 and the inductive hypothesis] 

This completes the proof. 

Proof of Theorem 2.1: (a) Let m = E f = 1 ^_ i be the generalized Zeckendorf representation 
of m in the qi 's. Define rk = 0 (k>n). Then 

= (UQU\U\...,ul~r'Ui~r2ul~r3...) [byLemma2.5] 

= (u0u2...ulu^'u2^ ...u2
nZ^u2)l f[u2, flu2) [by Lemma2.2] 

= UQ1U[2 ... u%_xe [by Lemma 3.2 and (a) of Lemma 3.1] 

= R(x^l...x'2x2)[ui=R(xiXi>0] 

= R(sm) [by Lemma 2.4]. 

(b) Let m = E^i J#/_i. Then, by Lemmas 2.4-2.5 and the fact that ui = R(xt) for all i, we 
have that 

(u0u2u2..., u^u^u^ ...) = uX2 - < - i 

is another way of writing (f,fm) = R(sm). 

Example: If rn is a positive integer having a code 0211020111 with respect to V 2 - 1 , then 
( / , / w ) = u2u2u3u2UjU%u9, in view of part (b) of Theorem 2.1. Thus, the extracted word (/*, fm) 
can be found by computing ul9 u2,..., w9. There is no need to compute m,f and / w . 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my-deja.com 
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1. INTRODUCTION 

Let si be an alphabet. Let st be the monoid of all words over si. Let s denote the empty 
word, and let si+ = si* \{s}. Ifw = axa2 ...an, where at esi, the positive integer n is called the 
length of w, denoted by \w\. Let |£|=0. A word x is said to be & prefix (resp., suffix) of w, 
denoted by x <p w (resp., x <s w), if there is a word yesi+ such that w = xy (resp., w = yx). 
We write x <p w (resp., x <s w) if x <p w (resp., x <s w) or x = w. Prefixes and suffixes of an 
infinite word are defined similarly. 

Let/be an infinite word over si. For j > 0, let SJf denote the suffix off obtained from/by 
deleting the first 7 letters off For simplicity we write Sf for Slf. This defines an operator S act-
ing on infinite words over si. The cyclic shift operator T on si+ is given by T(ala2...an) = 
a2--'anai> where ai esl. For j > 1, let P - T(P~l), where T° denotes the identity operator on 
sl+. Clearly, each operator TJ has an inverse T~J. 

Let u,v esi+, xx-u^ x2= v, and xn - xn_2xn_x (n > 3). The infinite word x1x2x3... is called a 
Fibonacci word pattern generated by u and v and is denoted by F(i/, v). The words u and v are 
called the seed words of F(u, v). Let 3*m,n denote the set of all Fibonacci word patterns F(u, v) 
with \u\ - m and |v| = n. Let SF denote the set of all Fibonacci word patterns. 

Given u, vssi+, \u\ = m, \v\ = n, Turner [17] proved that F(u, v) G^r,s, where (r, s) = 
(F2i_lm-\-F2iny F2im + F2j+Iri) for all i > 1. In Section 2 of this paper we find necessary and suffi-
cient conditions for F(u, v) to be a member of ^m+n (resp., ^-m,m ^2m-n,n-m^ ( T h e o r e m s 22-
2.4). We also find necessary and sufficient conditions for SF(u, v) to be a member of <3;m,n (resp., 
gp,m+«̂  (Theorems 2.5-2.6). The fact that 9 is invariant under S is a consequence of Theorem 
2.7, which asserts that SF(u, v) always belongs to <$m+n>m+2ri_ The Fibonacci word patterns over 
{0,1} are called Fibonacci binary patterns (see [5], [17]). The most famous Fibonacci binary 
pattern is the golden sequence F(l, 01), which is identical to the binary word cxc2..., where cn -
[(« + l)a]-[wa], n > 1, and a = (S-1)/2. See, for example, [2], [3], and [5]-[18]. In Section 
3 we use the above results and Lemma 3.1 to compute the possible lengths of the seed words of 
the suffixes SJF(l, 01), j > 0 (Theorem 3.2 and Table 1). It turns out that all these possible pairs 
of seed words of SJF(l, 01) have Fibonacci lengths and are pairs of Fibonacci words, the notion 
of which was introduced by Chuan [4] (see Definition in Section 4). They can be determined by 
different representations of/ in Fibonacci numbers (Theorems 4.5 and 4.6). This gives another 
proof of Corollary 3.3 of [9] for the case a = (V5 -1) / 2. 

2. FIBONACCI WORD PATTERNS AND THEIR SUFFIXES 

Throughout this section, let u, v G ^ + , \u\ = m, \v\ = n. 

Theorem 2 1 (see [17]): F(u, v) = F(uv, ww) e %m+n>m+2n. 
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Theorem 2.2: 
(a) Let m<n. Then F(u9 v) E &">m+n If and only if u <s v. Moreover, F(u9 JCW) = F(i*x, rax) for 

all x e^J*. 
f6> Let m>n, u = xy9 where x,jE,9i+, \x\ = n. Then F(», v) E 3 P ' ^ if and only if xy = yv. 

In this case, F(i/, v) = F(x, xyx). 

Proof: (a) (m < n) Suppose that F(u9 v) E SP'w+?1. Let v = xy, where x, y E,sf, | j | = m. 
Then 

F(w, v) = F(u9 xy) = (u)(xy)(uxy)(xyuxy) • • • 
= (ux)(yux)(yxyux) 

Since F(i#, v) E 3^' m+n, it follows that 
F(w, v) = F(mr, jwx) = (ux)(yux)(tixyux) 

By comparing the two expressions of F(u,v) and using the assumption that | j | = \u\ = m, we 
have u- y. This proves that u <s v, v = xw, and F(w, xw) = F(wx, rax) . 

Conversely, let v = xu, where x e$&*. We claim that F(u, xu) = F(uxy uux). Let 
Xi=U, X2 = V = X£#, Xn = XW_2XW_1? 

Clearly, w <5 xn, n > 1. Write x„ = znu9 where zn ed*. Since xw = xn_2x„_l9 we have z„ = r ^ i / r ^ , 
n > 3. Now it is easy to see that yn_x ~uzn9n>2. Therefore, 

F(u, v) = F(w, xw) = xlx2x3- • • = u(z2u)(z3u) • • • 
= (uz2)(uz3)(uz4) •. • = >y/2j3 • • • = F(wx, rax). 

(b) (m > n) The proof is similar to part (a). • 

We note that the condition xy = yv holds if and only if there are words zhz2 esi* and an 
integer r > 0 such that x = zxzl9 y = (zlz2)rzl, and v = z2zx (see [15]). 

Corollary: Let u <s v and let uk9 vk esi+ be such that \uk | = 7^/w + iyi , |v^ | = Fkm + Fk+ln, and 
w*v* <p F(i/, v), £ > 0. Then F(w, v) - F(uk9 vk) E g?l"*Hv*l and uk <s vk. Here F_x = 1, F0 = 0. 

Theorem 2 J: Let m<n<2m. Then F(w, v) E SP""1'w if and only if i# and v have a common 
prefix of length n—m and w <5 v. 

Proof: Suppose that F(n, v) = F(x, z), where \x\=n-m and |z| = m. It follows from part 
(a) of Theorem 2.2 that x <s z, i.e., z = yx for some j e,s4*. Also, u = xy and v = xxy. Hence, x 
is a common prefix of u and v of length n—m and u<sv. 

Conversely, suppose that u and v have a common prefix x of length n—m and u<s v. Then 
M = xy? v = xxy, where j / e i * . Then, according to part (a) of Theorem 2.2, we have F(x9yx) = 
F(xy9 xxy). Hence, F(u, v) E <&n~m*m. • 

Theorem 2.4 follows from Theorem 2.1. 

Theorem 24: Let m < n < 2m. Then F(u, v) E <§lm-n*n-m if and only if u and v have a common 
suffix of length n-m and u <p v. 
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Theorem 2.5: Let 1 < k < min(>, n). Then SJF(u, v) e 8F*n for all j , 0 < j < k, if and only if u 
and v have a common prefix of length k. In this case, SJF(u, v) = F(P(u), P(v)). If, in addition, 
^<,v,then P{u)<sP{v). 

Proof: Suppose that SkF(u,v) G^m,n. Let u = wx, v = wxy, where w, w1? x, and y are 
words and |w| = |wx| = &. Then it is clear that SkF(u, v) = F(xwhyw) and w -wx. Thus, w is a 
common prefix of both u and v. 

Conversely, suppose that u and v have a common prefix az, where a esi, z e i * . Write 
u = azx, v - azy, where x, y e M*. Then SF(u, v) = F(zxa, zyd) e 3 ^ w . Moreover, z is a com-
mon prefix of the seed words zxa, zya of SF(u, v), \z\-k-\, zxa = JT(¥), and zya = T(v). If 
x/ <_y v, then clearly zxa < ̂  zya. Now the result follows by inductive argument. • 

The following theorem can be proved in a similar way. 

Theorem 2.6: 
(a) Let rn<n. Then SF(u, v) e gp'w+w if and only if u and v have a common suffix of length 

#i ̂  1. Moreover, F(ax, zx) = aF(xz, xaxz) for all a Gsi, x, z G si+. 
(h) Let m>n, u-axy, where a esl, x, j est, \x\ =n. Then SF(u,v) ^^m+n if and only if 

xy = yv. In this case, F(axy, v) = aF(x, yvax). 

Corollary: Let y>0 , ^., v;. e,s$+, UJVJ <p $JF(u,v), \Uj\=Fj_lm + Fjn, \Vj\ = Fjfn + Fj+ln. If 
i/ <, v, then SJF(u, v) = Ffy, vy) e S^1'1^1 and ar, <, v,. 

Theorem 2 J: $F(u,v) e&m+n>m+2n. 

Proof: According to Theorem 2.1, F(u,v) = F(uv,uvv) e3*m+n-m+2n. Since uv and ww 
have the same first letter, it follows from Theorem 2.5 that SF(u, v) = 8F(uv, uvv) e &™+">™+2\ n 

Corollary: All suffixes of F(u,v) belong to 8?. More precisely, for j > 0 , SJF(u,v) GW,S, 
where (r, 5) = {F2j_lm + F2/i, F 2 / I I + F2y+1^). 

3. THE GOLDEN SEQUENCE F{% 01) 

Let si = {0,1}. Consider the golden sequence / = F(\, 01). For each j > 0, we shall show 
how to compute pairs of positive integers (r, s) for which Sjf G9T,S , A key observation is the 
following lemma. 

Lemma 3.1: Let n > 2 and Fn - 1 < j < Fn+l - 2. Then SJf = F(u-, v.), where uj9 v • G {0,1}+, 
l ^ / l " ^ I V . / I = J'VI-I> uj<svj> &nd w.,v. have a common prefix of largest length Fn+l-2-j. 
(When n-2 and 7 = 0, % v0 have different first letters.) 

Proof: The result clearly holds when n = 2, 3. Suppose that it holds for n = k. Let i = 
Fk+l-2. It follows from Theorems 2.5 and 2.6 that Si+lf E ^ ^ ' ^ A ^ ' ^ 1 . Moreover, 
5,/+1/ = F(iff+1,v/+1), where |n+1| = Ffc+1, |v/+1| = F^+2, n+1<,v/+1, and ui+hvi+l have a common 
prefix of largest length Fk -I. According to Theorem 2.5, if \<m<Fk and j = i+m, then 
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SJf = F(Uj,Vj), where \Uj\=Fk+u 1̂ 1 = ̂ +2, Uj<svj9 and uj9Vj have a common prefix of 
largest length Fk-m = Fk+2 -2- j . Thus, the result holds for all n> 2. D 

Theorem 3,2: Let n>2 and Fn-l<j<Fn+1-2. Then SJf e 9F^F^ If k >n, and ^ ' / £ 
g t t . V i f i < ^ < w - L 

Proof: The first part Is a consequence of Lemma 3.1, Theorem 2.5, and the Corollary to 
Theorem 2.2. The second part follows from Lemma 3.1 and Theorems 2.1, 2.3, and 2.4. D 

For example, when w = 6 and 7 < J < 1 1 , Theorem 3.2 implies that Sjf e 3F'*, where 
(r,j) = (8,13), (13,21), (21,34),... and &f*W-°, where (r, 5) = (1,2), (2,3), (3,5), (5,8). This 
completes the part of Table 1 corresponding to 7 < j < 11. 

TABLE 1 

j 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

(r, J) for which ^ / e ^ * 
(1,2), (2,3), (3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(2,3), (3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(13,21), (21,34), (34,55), (55,89), (89,144) 
(13,21), (21,34), (34,55), (55,89), (89,144) 

4. SEED WORDS OF SjF(t, 01) ARE FIBONACCI WORDS 

Again we let / = F(1,01). We have seen in Theorem 3.2 that, if n>2 and Fn-l<j< 
Fn+l-2, then Sjf e^F^F^\ for all k >n. Now let (uJk,vJk) denote the pair of seed words of 
Sjf such that \ujk\ = Fk and \vjk[=Fk+l. We shall show in Theorem 4.5 that ujk and vJk are 
Fibonacci words, as defined below, whose labels can be determined. Special cases can be found 
in [5]. 

Fibonacci words over the alphabet {0,1} are defined as follows: Let 
w(0) = 10, w(l) = 01, 

w(00) = 101, w(01) = 110, w(10) = 011, w(ll) = 101. 

For any binary sequence rh % ..., r„, n > 3, the word w(rf2 ...r„) is defined recursively by 

(w(rf2..^k-i)w(rlr2...rk_2) if r* - 0, 
w(rf2...rk) = 

HV2---h-2Mm..-rk-i) if/i = l, 
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3<k<n. The word w(rxr2 .../•„) is called a Fibonacci word generated by the pair of words (0,1). 
The sequence rhr2,...,rh is called a label of w(rf2..,rn). It describes how the Fibonacci word 
w(r\r2-'rn) is generated. A Fibonacci word may have several different labels. For example, 
10101101 = w(0010) = w{\ 100) = w(l 111). The words 0 and 1 are also Fibonacci words. For 
convenience, we write 1 = w(X), where X denotes the empty label. The above notion of Fibonacci 
word was introduced by Chuan [4] and was later generalized to the notion of a-word by her [8]. 
:Many known results in the literature involve Fibonacci words (see, e.g., [4]-[12], [16]-[18]). 

We need the following properties of Fibonacci words, the proofs of which can be found in 
[4]. Letyx = 0, y2 = 1, yn=yn-2yn.x (i.e., yn = w(ll...l)), n>3. 

Lemma4.1: Let n>\, rhr2,...,r„, shs2,...,sn e{0,1}. Then: 

(a) \w(rlr2...r„)\ = Fn+2. 
n 

Q>) KJ = TiriFi+i>then w(r\r2-r„) = T-k(y^2)9 where k = Fn+3-2- j . 
/=! 

n n 
(c) If ]T ^ + i = X ^ + 1 ( m o d Fn+2 X then w(rxr2... rn) = wfa^ ...$n). 

7=1 / = ! 

Let u, x GS&+. Then 

F(u, xu) = F(ux, uux) - uF(xu9 uxu) = uxF(uux, uxuux). 

The first equality follows from part (a) of Theorem 2.2; the second one is trivial; the third one can 
be proved in a similar way as Theorem 2.2(a). It follows that, if \u\ -m and \x\ -1, then 

SmF(u, xu) - F(xu9 uxu), 
$m+tF(u, xu) = F(uux, uxuux). 

In particular, we have the following lemma. Part (d) follows from Theorem 2.1. 

Lemma 4.2: Let n > 1, rh r2,...,rn, rn+l e{0,1}. Let u = w(rxr2 ...rn), v = w(rxr2 ...rnl). Then: 
(a) F(u,v) = F(w(rlr2...rn0\w(rlr2...rn0l)). 
(b) SF^F(u,v) = F(w(rf2...r„l),wfa...rn\ 1)). 
(c) SF^F(uyv) = F(w(rf2..Tn0l)Mrir2^rn0l^ 
(d) F(w(rlr2...rn),w{rxr2...rw+1)) = F(w(r\...rw+1l)?w(rx...rw+110)). 

Lemma 43 (see [1]): Each positive integer j is uniquely expressed as j = Sf=i^+i, where rn = 1, 
rt G{0,1}, and max(/-, ri+1) = 1 (1 <i < n-1). 

The representation y = Z?=i Tjî +i in Lemma 4.3 is called the maximal representation of j . 
The code (jy2.. .r„) is called the maximal code of/. The number n is called the length of the maxi-
mal code of/. For convenience, the maximal code of the integer 0 is defined to be the empty code 
X. It has length 0. We note that Fn+2 -\<j< Fn+3 - 2 if and only if the length of the maximal 
code of/' is n. 

Lemma 4.4: For each j >0, let (rf2...rn) be the maximal code of/'. Then Sjf - F(w(r\r2...rn), 
w(rf2--rnl)). 
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Proof; The result clearly holds for 0 < j < 3. Now suppose that k > 3 and that the result is 
true for all j , 0<j<k. We show that it is also true for j = k. Let n > 3 be such that Fn+2 -1 < 
k<Fn+3~2. 

(a) If Fn+2 -\<k< 2Fn+l - 2, then Fn -1 < k - Fn+l < Fn+l - 2. By the inductive hypothesis, 
$k-Fn+lj = F{w(jy2... rn_2\ w(rxr2... rn_21)), 

where (/ft ...r„_2) is the maximal code of k-Fn+l. Clearly, (jy2...rn^201) is the maximal code of 
k. Also, 

Skf = SF^Sk'F^f = SF^F{w{m...rn.2\ w(nr2 ...r„_2l)) 
= F(w(rf2.. .r„_201), w f e . . .r„_2011)), 

according to part (c) of Lemma 4.2. 
(&j If 2Fn+1-l<k<Fn+3-2 and if (^---Vi) is the maximal code of k-F„+l, then the 

inductive hypothesis implies that 

Sk-Fn+]f = F(w(r!r2... v O , Hrf2-rn-M 

Therefore, (/ft . . .r^l) is the maximal code of k and 

Skf = F(w(r!r2... r^ l ) , ^ ^ . . . . r ^ l 1)), 

according to part (b) of Lemma 4.2. D 
Using Lemma 4.4 and part (a) of Lemma 4.2, the seed words of Sj f can now be determined. 

Theorem 4.5: Let j>0 and let (/ft...r„) be the maximal code of/. Let k>n + 2. Then w^ = 
w(r1r2...r„0...0) and v^ = w(r1r2...rw0...01) (there are k-n-2 zeros right after r„). 

For example, since 3 = i^+i^ is the maximal representation of 3, we have w36 = w(1100)5 

v36 = w(l 1001). As observed before, the labels for ujk and vjk may not be unique. 

Corollary: Let j > 0 and let n be the smallest integer > 2 such that j < Fn+l - 2. If k > n, then 
SJf = F(7^*(%), ^ 0 ^ i ) X where 4 = Fk+1-2-j. 

Proof: The result follows from Theorem 4.5 and part (b) of Lemma 4.1. D 

Note that this corollary contains part (b) of Theorem 8 of [5]. 

Theorem 4.6: Let j = Efci2 ̂ + 1 , where sf e {0,1} (1 < / < k - 2) and k > 3, then 

SJf = F(w(^2 ...^_2), w(Sls2 ...sk_2l)). 

Proof: If j = 0, then the result is contained in Theorem 4.5. Now let j > 1 and let (/ft ...rw) 
be the maximal code of j . Clearly, n<k-2. Define rt = 0 if n < i < k - 2. Then 

k-2 k-2 

/=! i=l 
fc-2 fc-2 

Hence, 
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(ujk,vjk) =(Hm-rk-2XHm-rk-2d) [by Theorem 4.5] 
= (wfafy . . . ^_ 2 ) , w(sis2...sk_2l)) [by part (c) of Lemma 4.1]. 

This completes the proof. • 

For example, since 3 = F2 + F3 = F4, we have u36 = w(l 100) = w(0010) and v36 = w(l 1001) = 
w(00101). It also follows from Theorem 4.6 that the Fibonacci word pattern generated by a pair 
of Fibonacci words of the form w(rxr2 ...r„), w(r\r2 •. • r„ 1) is a suffix off. 

Corollary: For every binary sequence rhr2,...,r„, the Fibonacci word pattern F(w(r1r2...rn), 
w(j\r2> • -r«l)) *s a suffix off. More precisely, 

F(w(rlr2...rn)Mm,-rJ)) = S'f, 

where 7 = Zf=i/;-/?+i. 

We remark that Theorem 4.6 is a special case of Corollary 3.3 of [9], which was proved by a 
general representation theorem. In our proof given here, only elementary properties of Fibonacci 
word patterns and Fibonacci words are used. 

Seed words of the Fibonacci word pattern F(0,1) can also be obtained easily. Let wx = 0, 
w2 = l, and for n > 3, let wn = w„_2w„_1 if n is odd and wn =wn_lwn_2 if n is even [that is, wn = 
w(rlr2...rn_2), where rt equals 1 if n is odd and equals 0 if n is even (n> 3)]. It follows immedi-
ately from part (d) of Lemma 4.2 that F(0,1) = F C H ^ - I , w2n) G ^n-ufin (w > 1). Since w2„_1 and 
the suffix of w2n having length \w2n-\\ (= i^„_i) have different first letters (see [6]), it follows that 
F(0,1) ^ g^F2n^n+i (n>l), according to part (c) of Theorem 2.2. 
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L INTRODUCTION 

A divisor d of n is said to be a unitary divisor of n if the greatest common divisor of d and 
nld is 1 (see [4], [9]), and a divisor d of n is said to be a biunitary divisor of n if the greatest 
common unitary divisor of d and nld is 1 (see [11], [12]). It is easy to see that the unitary divi-
sors of a prime power pa (a > 1) are 1 and pa, and the biunitary divisors of pa {a > 1) are 1, p, 
p2, ...,pa, except for pa/2 when a is even. Cohen [5] extends the above notions inductively. 

Definition LI: If d |n , then dis a 0-ary divisor of n. For k > 1, a divisor d of n is a &-ary divisor 
of n if the greatest common (k - l)-ary divisor of d and nld is 1. 

Remark: Different extensions of the concept of a unitary divisor have been developed by Suryan-
arayana [10] (who also used the term &-ary divisor) and Alladi [1]. We do not consider these 
extensions here. 

We write d\kn to mean that d is a &-ary divisor of n, and (m, n)k to stand for the greatest 
common &-ary divisor of m and n. Thus, for k > 1, d \k n if and only if d \ n and (d, nld)k_l = 1 
with the convention that (d, n/d)0 =(d,n/d). In particular, d\xn (resp. d\2n) means that d is a 
unitary (resp. biunitary) divisor of n. 

Definition 1.2: We say that pb is an infinitary divisor of pa (a>l) (written as pb\QOpa) if 
Pb\a-\Pa• In addition, 1 is the only infinitary divisor of 1. Further, d\^n if pd^\^pn^ for all 
primes/?, where d = JJp pd^ and n~Wp pn^ are the canonical forms of d and n. 

The justification for Definition 1.2 is that, for & > a - l > 0 , ph\kpa o pb\a„xpa (see [5]). 
Thus, f o r & > a - l > 0 , 

pb\kpaophLpa. 0-1) 
This means that, for a = 0,1,2,..., A +1, the A>ary divisors of pa are the same as the infinitary 
divisors of pa. For example, for a = 0,1,2,..., 101, the 100-ary divisors of /?a are the infinitary 
divisors of pa. 

Cohen and Hagis ([5], [6], [7]) give an elegant method for determining infinitary divisors. 
Let / = {pia \p is a prime, a is a nonnegative integer}. It follows from the fundamental theorem 
of arithmetic and the binary representation that every n (> 1) can be written in exactly one way 
(except for the order of factors) as the product of distinct elements of/. Each element of/ in this 
product is called an /-component of n. Cohen and Hagis ([5], [6], [7]) also note that d \^n if and 
only if every /-component ofd is also an /-component of n with the convention that \\^n for all n. 
For example, if n = 2335 = 2 • 22 • 3 • 34, then the /-components of n are 2,22, 3,34. Note that this 
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method makes It possible to compute the k-ary divisors of the prime powers 1, p, p2,..., pk+l. A 
general formula for the Ar-ary divisors of pa for a > k + 2 is not known. 

The concept of divisor is related to the Dirichlet convolution of arithmetical functions. The 
concepts of unitary and biunitary divisor lead to the unitary and biunitary convolution. This sug-
gests we define the £-ary convolution of arithmetical functions/and g as 

d\kn 

for k>0. In particular, the Q~ary, l~ary, and 2-ary convolution is the Dirichlet, unitary, and 
biunitary convolution, respectively. 

The purpose of this paper is to represent the basic algebraic properties of the A-ary convolu-
tion and to study the Mobius function under the ^-aiy convolution. 

X BASIC PROPERTIES OF TBE.Jfc-ARY CONVOLUTION 

In this section we represent the basic algebraic properties of the £-ary convolution. Particular 
attention is paid to multiplicative functions. An arithmetical function/is said to be multiplicative 
if /(I) = 1 and f{mn) - f(m)f(n) whenever (m, ri) = l, and an arithmetical function/is said to be 
completely multiplicative if / ( I ) = 1 and f(mn) = fQn)f(ri) for all m and n. Cohen and Hagis [6] 
say that an arithmetical function/is /-multiplicative if / ( I ) = 1 and f{mn) - f(m)f(n) whenever 
(m, ri)^ - 1, where (m, n)^ is the greatest common infinitary divisor ofm and n. It is easy to see 
that 

/ i s completely multiplicative => / i s /-multiplicative 
=> / i s multiplicative. (2.1) 

Theorem 2.1: Let k>0. 
1) The k-ary convolution is commutative. 
2) The function 8 serves as the identity under the £-ary convolution, where 8(1) = 1 and 

8{n) = 0 for n > 2. 
3) An arithmetical function/possesses an inverse under the k-ary convolution if and only if 

/ ( I ) * 0. The inverse (f~l)k is given recursively as (f~l)k(l) = 1//(1) and, for n > 2, 

J(l)d\kn 
d>\ 

4) The k-ary convolution preserves multiplicativity, that is, if/and g are multiplicative, so is 
their k-ary convolution. 

5) If/is multiplicative, so is (f~l)k. 

Proof: Theorem 2.1 can be proved by adopting the standard argument (see, e.g., [2], [9]). 
As part 5 is needed later, we present the details of the proof of part 5. Assume that (m, ri) = 1. If 
mn = 1, then (f~l)k(mn) = 1 = (f~l)k(m)(f~l)k(n). Assume that mn * 1 and that (f~\(m'nf) = 
(f~l)k(mf)(f~l)k(n') whenever (m\ nf) = 1 and m'n' < mn. If m = 1 or n = 1, then (f~l)k(mn) = 
(f~l)k(m)(f~l)k(n). Assume that m,n±\. With the aid of (2.2), we obtain 
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d\kmn dx\km 
d>\ ^2\kn 

dxd2>\ 

d\\km 
dl\kn 

d\d2>l 

= -(f-\(.m) £ fid2){J-\(nld2)-{f-\{ri) ZfViXrXfa'dJ 
d2\kn dx\km 
d2>\ dx>\ 

- X /(dXf-'Um/d,) E / C W V " / ^ ) 
dx\km d2\kn 
dx>\ d2>\ 

= if-\{m)<J-\{n) + {f-\{m){f--\{n) - (f-\(m)(f-\(n) 

This completes the proof. D 

Remark: The &-ary convolution is not associative in general. For example, the biunitary convo-
lution is not associative (see [8]). 

The infmitary convolution [6] of arithmetical functions/and g is defined as 

<J*-g)(ri)=YJf{d)g{nld). 
d\«>n 

The infmitary convolution possesses the properties given in Theorem 2.1. In addition, it is asso-
ciative and possesses basic properties with respect to /-multiplicative functions. We present these 
results in the following theorem. 

Theorem 2.2: 
1) The infmitary convolution is associative. 
2) The infmitary convolution is commutative. 
3) The function S serves as the identity under the infmitary convolution, where 8(1) = 1 and 

£(w) = 0for / i>2 . 
4) An arithmetical function / possesses an inverse under the infmitary convolution if and 

only if / ( I ) ^ 0 . The inverse (f1)^ is given recursively as ( / " ^ ( l ) = 1 / /0) and, for 
w>2, 

(f-lU") = 7^ Hfi^r'Un/d). (2.3) 
JWdUn 

d>\ 

5) The infmitary convolution preserves multiplicativity. 
6) If/is multiplicative, so is (f'1)^. 
7) The infmitary convolution preserves /-multiplicativity. 
8) Iff is /-multiplicative, so is (f'1)^. 
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Theorem 2.2 is given in Cohen and Hagis [6] except for equation (2.3) and parts 5 and 6. 
Cohen and Hagis [6] do not prove their results. We do not prove these results either, since the 
standard argument (see, e.g., [2], [9]) can be applied. 

Remark: It is easy to see that the k-ary convolution for all k and the infmitary convolution do not 
preserve complete multiplicativity. 

Remark: Theorem 2.2 shows that /-multiplicative functions possess two basic properties under 
the infmitary convolution. This leads us to propose the following unsolved research problem. 
Define £-ary multiplicative functions so that they possess basic properties under the &-ary 
convolution. 

3e THE Jt»ARY MOBUJS FUNCTION 

We define the &-ary Mobius function juk as the inverse of the constant function 1, denoted by 
g, under the k-ary convolution. In particular, ju0 is the classical number-theoretic Mobius func-
tion and jux is the unitary Mobius function (see [4], [9]). Since £ is a multiplicative function, so is 
juk. Therefore, juk is completely determined by its values at prime powers. The values of juk at 
prime powers are obtained recursively as juk(\) = 1 and, for a > 1, 

Mk(P
a)=~ ]•>*(/>*). (3-1) 

0<b<a 

A general explicit formula for juk is not known. 
We define the infmitary Mobius function ju^ as the inverse of the function £ under the 

infmitary convolution. An explicit formula for ju^ is known. Let s2(a) denote the number of 
nonzero terms in the binary representation of a with the convention that ^(O) = 0, and let J{n) 
denote the arithmetical function defined as 7(1) = 0 and, for n>2, J(n) = Hps2(n(p)), where 
n = Ilp pn^p) is the canonical form of n. Note that J(n) is the number of /-components of n. 
Cohen and Hagis [6] show that 

K(») = (-l)'(n)- (3-2) 
It follows from (1.1) that 

Mk(Pa) = Moo(Pa) fora = 0,l,2,...,* + l. (3.3) 

Therefore, in a sense, juk comes closer to //^ as k increases. 
It is interesting that 

fh = M~- (3 -4) 
This is a consequence of Theorem 3.1 given below and equation (3.2). 

Theorem 3.1: If/is completely multiplicative, then 
(/-')2(») = (-l)JW/(«). (3.5) 

Proof: Since both sides of (3.5) are multiplicative functions in n, we may confine ourselves 
to prime powers pa. By (2.2), and knowing the biunitary divisors of pa, we have (f~l)2(l) = 1 
and, for a> 1, 
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£ CT1 W l / O ^ ' ) = 0 if a is odd, 
7=0 

E (/'WW') - (f-l)2(Pa/2)f(Pa/2) = 0 if a is even. 
l/=o 

Therefore, for a > 0, 
2a+l 

2a 

This shows that the function (f~l)2 at prime powers is completely determined by the recurrence 
relation 

\(f-lUp2a+x)+f(pa+l)(f-\(pa) = Q, 
1(T Wa+V/0>a+1)tr W+1) = o, 

for a > 0, with the initial condition (f~l)2(l) = 1. 
We show that the function g(n) = (-l)J^f(n) satisfies the same recurrence relation at prime 

powers. In fact, 

g(p2a+1)+Apa+1)g(pa)=(-iy^a+1)f(p2a+1)+f(pa+1)(-dS2(a)/(pa) 
= (-iyiW+if(pfa+1+f(j,y+\-iy2(a)f(j,y = o 

and 
g(P2a+2)~f(pa+1)g(pa+l) = ( - i y 2 ( 2 a + 2 ) / ^ + 2 ) - / ^ + 1 x - i ) ^^v^ + 1 ) 

for a > 0, with initial condition g(l) = 1. This completes the proof. D 

Remark: The idea for the recurrence relation in the proof of Theorem 3.1 is developed from [3]. 
Cohen and Hagis [6] show that, iff is /-multiplicative, then 

( /- ! ) . (")=(-i)y (" ) / (») . 
On the basis of equations (2.1) and (3.5), we see that, if/is completely multiplicative, then 

(f-l)2 = (f-\- (3.6) 
Since the function t, is completely multiplicative, we obtain equation (3.4). 

Remark: It is an open question whether (3.6) holds for all /-multiplicative functions/ 

It is known [5] that the 3-ary divisors of pa are 1 and pa, except for the cases a = 3 and 
a = 6. The 3-ary divisors of p3 are l,p,p2,p3, and the 3-ary divisors of p6 are l,p2,p4,p6. 
Using this result and (3.1), we conclude that 

fl ifa = 0,16, 
1-1 otherwise. 
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Thus, in the case k = 3, we have juk(pa) = Mao(pa) for a = 0,l,2,...,£ + l (cf. (3.3)), but 
juk(pk+2) = -fioo(pk+2) o r MsiP5) = -1 = -MooiP5) • Further evaluations of juk for small values of 
k could be derived using the results on k-axy divisors given in [5]. 
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1. INTRODUCTION 

Following the notation in [3], we consider the sequence {Wn} = {Wn(a, b; p, q)} defined, for 
all integers n, by 

Wn = PK-x-<lWn-2, W0=a, W1 = b. (1.1) 

Throughout this paper we take a, b, p, and q to be arbitrary integers with q ^ 0. 
Distinguished among all the sequences generated by the recurrence in (1.1) is the pair 

Un = Wn(0,1; p, q) and Vn = Wn(2, p; p, q), whose importance was first recognized by Lucas [4]. 
The sequences {Un} and {Vn} are often referred to as the fundamental and primordial sequences, 
respectively [13]. Because of their special properties, {Un} and {Vn} continue to be the focus of 
much attention [2], [5], [9], [12]. Our interest in this paper is in a property of {Un} which, 
according to Dickson ([1], p. 409), was first observed by D'Ocagne. D'Ocagne observed that 
there exist integers cQ and ch independent of % such that 

W^^+cfJ^, »eZ. (1.2) 

Indeed, it can be proved by induction that 

W„ = (Wi-pWQ)Un + WJJ^, T I G Z . (1.3) 

In this sense {Un} can be regarded as a "basis'8 for the sequences generated by the recurrence in 
(1.1). In fact, as stated in the reference of Dickson mentioned above, D'Ocagne observed this 
property for the higher-order analogs of {Un}. 

It is natural to ask if there are other sequences generated by the recurrence in (1.1) which 
also possess this property of {UJ. To be more precise, we make the following definition. 

Property of D'Ocagne: An integer sequence {Sn} = {Wn(S0, Sx; /?, q)} is said to have the property 
of D'Ocagne if there exist integers c0 and cx, independent of w, such that W„ = c0Sn + clSn+l, n e Z. 

For q = ±l we have characterized all sequences which have the property of D'Ocagne. The 
object of this paper is to present our results. 

2, PRELIMINARY RESULTS 

For the remainder of the paper we take {SJ = {Wn(S0, Sx; p, q)} to be an integer sequence. In 
order to make the paper self-contained, we now list several known results which will be required 
in the sequel. 

Lemma 1: Z) = 
K 
wx 
% 

s„ 
Si 
So 

$n+l 

s2 
Si 

= 0, 

446 [NOV. 



ON AN OBSERVATION OF D'OCAGNE CONCERNING THE FUNDAMENTAL SEQUENCE 

Lemma 2: The points with integer coordinates on the conies y2 - 3xy + x2 - ±1 are precisely the 
pairs (x,y) = ±(Fn,Fn+2). 

Lemma 3: In (1.1) suppose p * 0 and q = - 1 . Then the points with integer coordinates on the 
conies y1 - pxy - x2 = ±1 are precisely the pairs (x, y) = ±(Un, Un+l). 

Lemma 4: In (1.1) suppose |/?| > 2 and g = 1. Then the points with integer coordinates on the 
conic y2 -pxy + x2 = 1 are precisely the pairs (x, y) =±(Un, Un+l). 

Lemma 1 is a special case of Theorem 1 in [7]. Lemmas 2, 3, and 4 are special cases of Theorems 
1, 2, and 5, respectively, in [6]. 

We also require several well-known theorems concerning the integer solutions of the Pell 
equation 

x2-dy2 = l, (2.1) 
and its generalization 

x2-dy2 = N. (2.2) 

Here we assume that d is a positive integer that is not a perfect square and N is an integer. 

Theorem 1 (see Theorem 11,5 In [11]): Let hm/km denote the mih convergent of the simple 
continued fraction of yfd-, m = 0,1,2,..., and let / be the period length of this continued fraction. 
If / is even, then (x, y) - (AM, £M) is a solution of (2.1). 

Theorem 2 (see Theorem 11.3 in [11]): Suppose |N\ < 4d . If (x, y), with x and y positive, is a 
solution of (2.2), then xly is a convergent of the simple continued fraction of 4d . 

Theorem 3 (see Theorem 33, p. 128, in [10]): If (2.2) has a solution, then it has infinitely many 
solutions. At least one of these solutions satisfies 

0.<x<V((*b + 1)IW), 
where (x0, y0) is the fundamental solution of (2.1). 

Finally, we require the following lemma. For part (a), see page 389 of [11]. Indeed, both 
parts can be established with the use of the standard method for developing a surd as a continued 
fraction. See, for example, page 176 of [8]. 

Lemma 5: Let d be a positive integer. 
(a) If d > 3 is odd, the simple continued fraction of IS 

[d-1; l ,(rf-3)/2,2,(rf-3)/2,l,2rf-2]. 

(b) If d > 4 is even, the simple continued fraction of 4d2 - 4 is 

[d-1; l ,(rf-4)/2,l,2rf-2]. 

3* THE MAIN RESULTS 

Our first theorem gives necessary and sufficient conditions for the sequence {£„} to have the 
property of D'Ocagne. 
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Theorem 4: Suppose Sf-SQS2 ^ 0 . Then {SJ has the property of D'Ocagne if and only if 

Proof: From Lemma 1 we have 

(S?-S0S2Wn = (SlWl-S2W0)S„ + (SlW^ n eZ. (3.1) 

Hence, if 5f - S0S2 = ±1, then {SJ has the property of D'Ocagne. 
Conversely, suppose {S„} has the property of D'Ocagne. Then there exist integers c0 and q 

such that 
^ = ̂ + ^ i , w e Z . (3.2) 

Putting fi = 0 and w = 1, we see from Cramer's rule that c0 and q are unique. Now, by (3.1), we 
have 

U"=^WSn--T\-Stl+1, neZ. (3.3). 

But, by the uniqueness of c0 and cx we have 

- - — ^ and c,=- ^ — 
oi -S0S2 SI -S0S2 

which means that iSf -S0S2 divides Sn, n>0. Consequently, putting n = 1 in (3.2), we see that 
Si - S0S2 divides 1, and this completes the proof. D 

Our next theorem characterizes those sequences {Sn} = Wn(S0, Sx; p,-l)} that have the 
property of D'Ocagne. 

Theorem 5: If p ̂  0, then {SJ - {Wn(S0, Sx; p, -1)} has the property of D'Ocagne if and only if 
(So, -Si) = ±(Um, Um+l) for some integer m. 

Proof: We first prove that S* - S0S2 ̂  0. On the contrary, suppose S? - S0S2 = 0. If one of 
S0, Sl9 or S2 is zero, one of the others must be zero, which means that {Sn} is the zero sequence. 
So we can assume that SQS^ & 0. Now 

Sl _ ^ 2 „PSl+$0 _ 
'• p+ , 

SQ SX iSj i j 

and this implies that 
Sl^p±^7^A 
S0 2 " 

But since p2-h4 is not a perfect square, S1/S0 is irrational, which is a contradiction. Hence, 
Si - S0S2 & 0. Then, by Theorem 4, {SJ has the property of D'Ocagne if and only if S? - S0S2 = 
iŜ  - p^iSi - £o = ±1. Theorem 5 now follows from Lemma 3. D 

Our final theorem characterizes those sequences {Sn} = {Wn(S0, S{, p, 1)} that have the prop-
erty of D'Ocagne. 

Theorem 6: Let \p\ > 2 and let {Sn} = {^(£0, Sx; p, 1)}. 
fa) If p = 3, then {£„} has the property of D'Ocagne if and only if (S0, Sx) = ±(Fm, Fm+2) for 

some integer m. 
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(b) If p = - 3 , then {SJ has the property of D'Ocagne if and only if (S0, Sx) = ±{Fm, -Fm+2) for 
some integer m. 

(c) If \p\ > 3, then {£„} has the property of DfOcagne if and only if (S0, Sx) = ±(Um, Um+l) for 
some integer m. 

Proof: As in the proof of Theorem 5, it is straightforward to prove that S2 - S0S2 * 0. Since 
$i ~ ̂ 0^2 ~ $\ ~ P$osi + ̂ o, we see from Theorem 4 that {$„} has the property of D'Ocagne if and 
only if 

S2-pS0Sl + S2 = ±l. (3.4) 

Now part (a) follows immediately from Lemma 2. Writing 5? + 3S0S{ + SQ as (-*S\)2 - 3S0(-Sl) + 
SQ , we see that part (b) also follows from Lemma 2. 

To prove part (c), we consider first the equation 

S2-pS0Sl + S2 = X \P\>3. (3.5) 
By Lemma 4, the solutions of (3.5) are precisely the pairs (S09SX) = ±(Um, Um+l). Next we con-
sider the equation 

S?-pS0S1 + SZ = -\, \p\>3, (3.6) 
and solve for Sx to obtain 

Si = p^MEMH, |J>I>3. (37) 

To complete the proof of (c), it is enough to prove that (3.7) yields no integer pairs (SQ, Sx). We 
accomplish this by proving that the generalized Pell equation 

x2-(p2-4)y2 = -4, \p\>3, (3.8) 

has no solutions. It suffices to consider only p > 3. 
To begin we assume that/? is odd. Using Lemma 5, part (a), we find the convergents hmlkm, 

0<m<5, of the continued fraction expansion of -y/?2 - 4 from the following table. In the table, 
the am are the partial quotients. 

TABLE 1 

m 
0 
1 
2 
3 
4 
5 

am 

p-\ 
1 

(p-3)/2 
2 

(p-3)/2 
1 

K 
P-I 

p 
(p2-p-2)/2 

p*-2 
(p3-2p2-3p + 4)/2 

(p3-3p)/2 

K 
i 
i 

(p- l ) /2 
P 

(p2-2p-l)/2 
(p2-l)/2 

Now by Theorem 1 and Lemma 5, part (a), and as is easily verified by substitution, (h5, k5) is 
a solution of x2-(p2- 4)y2 = 1. For integers x0 > 3, (x0 -1)2 > 3. This implies x2 > 2(xQ 4-1) 
which in turn implies x0 > ^2(x0 +1). Consequently, taking x0 = (p3 - 3/?) / 2 > 3, we can replace 
the inequality in Theorem 3 by the more generous inequality 0 < x < xQ. But by trial we find that 
none of the pairs (hm,km), 0<m<4, is a solution of (3.8). Hence, by Theorems 2 and 3, (3.8) 
has no solutions. 
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To complete the proof, we consider (3.8) for p>4, p even. For p = 4 , equation (3.8) has 
no solutions since it has no solutions modulo 3. For p>4,p even, we use Lemma 5, part (b), to 
construct the following table for the continued fraction expansion of y p2 - 4. 

TABLE 2 

m 
0 
1 
2 
3 

am 

p-i 
i 

(p-4)/2 
1 

K 
P-I 

p 
(p2-2p-2)/2 

(p2-2)/2 

K 
1 
1 

(p-2)/2 
pll 

Now (A3, k3) is a solution of x2 - (p2 -4)y2 = 1, but, as is easily verified, none of the pairs 
(hm,km), 0 < m < 2 , is a solution of (3.8). Hence, by the same reasoning as before, (3.8) has no 
solutions for p > 4, p even. This completes the proof of Theorem 6. • 

Our attempts to obtain analogs of Theorems 5 and 6 for q*±\ have, to this point, been 
unsuccessful. This will continue to be the subject of our endeavors. 
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1. RATIONALE 

Pel! and Pell-Lucas Convolution Numbers 
Pell and Pell-Lucas polynomials Pn(x) and Q„(x), respectively, were investigated in some 

detail in [3], which was followed up with a study of the properties [4] of the nfi1 convolution 
polynomials P£m)(x) and Q^m\x). 

These convolution polynomials may be defined [4] by generating functions, thus: 

YlPgkx)y» = (l-2xy-?)<"»*> 
n=Q 

and 

HQftlwy-- 2x + 2y m+l 

(1.1) 

(1.2) 
n=o Kl-2xy-y 

Putting x-\ yields the mth convolution Pell and Pell-Lucas numbers /$w)(l) and Q$F\l), respec-
tively. Furthermore, if also m = Q, then we have the Pell numbers P„(0)(l) = P„ and the Pell-Lucas 
numbers Qj®(l) = & . 

Recurrence relations are given in (2.1) and (2.2) for i*»>, and in (3.1) with (3.2) for Q&> 
(m > 1 in both cases). Further specific work on Pn and Qn was related to Morgan-Voyce numbers 
in [2]. 
Morgan-Voyce and Quasi Morgan-Voyce Polynomials 

Morgan-Voyce polynomials X„(x) = B„(x), bn(x), C„(x), and c„(x)9 and the four associated 
quasi Morgan-Voyce polynomials Y„(x) = %,(x), b„(x), %n(x)9 and c„(x) are defined [1], [2] 
recursively by 

Xn+2(x) = Xn+l(x)-3X„(x)9 X0(x) = a, Xx{x) = ft, (1.3) 

and 
Yn+2(x) = Y„+l(x) + 37w(x), Y0(x) = a, Y^x) = b, (1.4) 

(a, b integers), in accordance with the following tabulation: 

(1.5) 

Xn{x) 
B„(x) 

*„(*) 
CM 
C»(X) 

a 
0 
1 
2 
-1 

b 
1 
1 

2 + x 
1 

Yn(x) 
%»i(x) 

K+i(x) 
%(*) 
C»+lW 

Only 2S„ (x) is required in this paper. 
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Our Challenge 
Yet remaining for attention are some additional data to be obtained for P^m\x) in Section 2, 

to be complemented by a corresponding, and slightly more thorough, analysis of properties of 
Q^\x) in Section 3. 

In particular, our study of the row sums and column sums of P£m) and Q^\ as well as the 
rising diagonal sums 2^=ii^w_/w) and Z^=1Qm'^ will reveal some pleasing features. 

For ease of reference and calculation, the short table of Pell number convolutions P£m\l) 
which appeared in [4] will necessarily have to be repeated here as Table 1. Furthermore, a new 
table for Pell-Lucas number convolutions Qj^(l), not previously recorded, will have to be incor-
porated as Table 2. Extensions of Tables 1 and 2 may be effected by employing the recurrence 
relations (2.1) and (3.1). 

2. NEW PROPERTIES OF PELL CONVOLUTIONS 

Prompted by an observation made by a colleague at the Rochester, New York State, meeting 
of the Fibonacci Association (July 1998)—an observation actually covered in [2]—we begin an 
investigation of certain summation properties of the Pell convolutions (Table 1). 

Crucial to our presentation is the recurrence relation [4] for Pell convolutions, 

P « - 2 P « + i ) « + ̂ - 1 ) {m>\\ (2.1) 
with 

P0
im) = 0. (2.2) 

An abbreviated table for these convolutions, given in [2] and [4], is repeated here for the 
reader's convenience. 

TABLE 1. Pell Convolution Numbers P„(m) 

> ^ 
1 
2 

3 
4 
5 

0 

~T 
2 

5 
12 
29 

1 
1 
4 
14 
44 
131 

2 
1 
6 

27 
104 
366 

3 
1 
8 

44 
200 
810 

4 
1 
10 

65 
340 
1555 

When required for formal algebraic purposes, values of P„(m) could be extended for negative n 
in (2.1). 

Basically, our concern is with three summation formulas, namely, those for rows, columns, 
and rising diagonals, in Table 1. 

Row Sums 
m 1 f m ] 

Theorem 1: £ i f > = \ J # ? - £ ^ (»fixed). 
k=0 Z L Ar=0 J 

Proof: Write out (2.1) for successive values of m (=0,1,..., k) with n fixed. Add (the 
columns) to obtain 
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m m m m-l 

k=0 k=0 k=0 k=0 
m-l m m m-l 

k=0 k=0 k=0 k=0 

whence the result enunciated for k follows on replacing n by n +1. 

Example (n = 3,m = 4): Theorem 1 ->2 x 155 = 340-30(= 310). 

Column Sums 
n - i f n+l 1 

Theorem 2: £ / J ( w ) = ̂ j P Ĵ? + ̂ w ) -X^ ( w " 1 } [ (^ fixed). 

Proof: Proceed as In Theorem 1 (m fixed). Quickly it follows that 
n+2 

2V pw - pw - pw - y p(m_i) 

n+2 

= # ? + Pn
(m) + ̂ 2l) - 1 P^X) by (2.1) 

n+l 

Hence, the theorem is demonstrated. 
Example (m = 3,m = 4): Theorem 2 -» 253 = ̂ {810 + 200- 504}. 

Note: For m = 0 (excluded from Theorem 2), we have [3, (2.11)] where x = 1, 

L^jtf^ + ̂ -l)- (2-3) 
7=0 L 

Rising Diagonal Sums 
Upward slanting (i.e., rising) diagonals are to be imagined in the mind's eye in Table 1. 

Accordingly, we seek E^=i P^~m)'. Specifically, these convolution number sums TTm=\ P^~m) turn 
out empirically to be the sequence 

(0), 1, 3,10, 33,109, 360, ...= F„(3), (2.4) 

where Fn(x) = xFn_x{x) + Fn_2(x) (FQ(x) = 0, Fx(x) = 1) are the Fibonacci polynomials. 
Why is this so? 

Theorems: f>iw~w ) = F„(3). 
m=l 

Proof (by induction): For small values n = 1,2, 3,4 (say), the validity of the theorem is 
clearly verifiable. Suppose it is true for n = N (fixed). That is, assume 

p(N-l) _, piN-2) + p(N-3) + . . . + p(2)2 + p ^ + p(®) = jr ( 3 ) . (A) 

Apply the recurrence relation (2.1) repeatedly for m = 1,2,..., N +1. Arrange the summations 
in three columns, in accordance with (2.1). Then 
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X P^1^ = P[N) + If-* + P3
(N~2) + - + Ptf\ + PJP + Ptfll 

= 2FN(3) + FN_l(3) + FN(3) by (2.1) and (A) 
= 3FN(3) + FN_l(3) 
- FN+l(3) by the definition of Fn(x) above. 

Hence, the theorem is valid for n - N +1. 
Consequently, Theorem 3 has been demonstrated for all n. 
Indeed [2] 

Fn(3) = mn(l)^„, (2.5) 

where (3^n are quasi Morgan-Voyce numbers (of one kind) formed from the quasi Morgan-Voyce 
polynomials 2S„ (x) when x - 1. 

Now the Binetform for these quasi Morgan-Voyce numbers is [2] 

% = {a"-P")IA, (2.6) 

where a, J3 are the roots of the characteristic quasi Morgan-Voyce equation 

A2 - 3 1 - 1 = 0, (2.7) 
whence 

a=3+^, jff^3 ^ , ajff = - l , a + /? = 3, a-j3 = A = Vl3. (2.8) 

Combining these ideas, we deduce that 

Theorem 3a: £ i^""0 = 9^ = a" ~^\ where a, /?, A are defined in (2.8). 
m=l ^ 

5 ^ 5 _ /?5 
Example (n = S): Y<Pm~m)'s _ o = 109 = 885. 

As an extension, the sum of the 2S„ (i.e., the sum of the sums of the rising diagonal convolu-
tions) reduces, after algebraic maneuvering, to 

Theorem* ^ X =4(»* + i+»*- l ) . 

Example (k = 5): Theorem 4 -» 156 = ̂ (360 + 109-1). 

Properties of the quasi Morgan-Voyce numbers 26w which are well documented in [2] may, 
because of Theorem 3 a, be conceived in terms of sums of rising diagonal Pell convolutions. 
Recall that % = % (x) when x = l. 

One might compare the forms on the right-hand side in Theorem 4 and equation (2.3). 

3. NEW PROPERTIES OF PELL-LUCAS CONVOLUTIONS 

Recurrence Relation 
Coming now to the Pell-Lucas convolution polynomials Q^m\ we must first discover their 

recurrence relation, a fundamental requirement which was not incorporated into [4]. 
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Ordinarily, one might reasonably anticipate that the form of this recurrence relation would 
closely resemble that in (2.1). However, there is an unexpected scorpion-like twist to the tail, of 
this formula. 

Empirical evidence enables us to spot the following recurrence relation, cf. (2.1), 

a(w)=2e&^e^^2(^i>+o&1)) (m>\) p.i) 
with 

Q)W = 2. (3.2) 

Substituting m = 1 in (3.1) reduces the bracketed "tail" to 4Pn. 
On the basis of (3.1) and (3.2), we can construct a shortened convolution array for Q^ 

(Table 2). Recall that a few simple values (m = 1,2; n = 1,2,3,4,5) could readily have been cal-
culated from the data in the table on page 68 in [4]. 

TABLE 2* Pell-Lucas Convolution Numbers Q(
n

m) 

1 
2 
3 

4 
5 

0 
2 
6 
14 

34 
82 

1 
4 
24 
92 

304 
932 

2 
8 

72 
384 

1632 

6120 

3 
16 
192 

1312 

6848 

30512 

4 
32 
480 

4004 

24810 

128344 

Extension Example: <$> = 2g5
(1) + g f + 2(g6 + Q5) = 1864 + 304 + 2(198 + 82) = 2728. 

Paralleling the triad of Theorems 1-3 in Section 2, we now explore the new territory for Q^\ 
Not unexpectedly, the forms of the corresponding enunciations are not quite so pleasing to the 
eye, because of (3.1). 

Row Sums 

Theorems: £ ^ } = ^ 1 ) - 2 Q ^ 1 ) - 4 £ ^ 1 - 2 ( 2 ' W + 1 - 1 ) (n fixed). 
k=0 k=0 

Proof: Proceed as for Theorem 1. 
3 

Example (m = 3,n = 3): J^Q^ = 4004-964-1176-62(= 1802). 
k=0 

Column Sums 
Aesthetically, we are blessed with no more joy here than we were in Theorem 5. 

Theorem 6: £££"> = UQim) - ^ } - 2 § Q [ ' " - 1 > -Q^-2m+2\ m fixed, n>2. 
k=2 2 k=2 J 

Proof: As for Theorem 2. 
Example (m = 2$n = 5): 456 = ^-{6120-1632}-840-932-16. 

The requirements of realism necessitate the lower summation bound to be at k = 2. This is 
because k = 0 and k = 1, from (3.1), will yield terms Q^m) and g i f w h i c h d o n o t e x i s t i n T a b l e 2-
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Rising Diagonal Sums 
Upward slanting (rising) diagonal sums are of the form 5^=i 

Q^-m) Denote this by % so 
that % = 2. Then Table 2 reveals that 

{£„} = 2,10,46,214,994,4618,..., (3.3) 
whence one can spot the recurrence relation 

&„+2 = 4&„+1 + 3&„. (3.4) 

What can we know about this new sequence? Elementary procedures enable us to establish 
the relation 

% = Zn + ̂ i (3-5) 
where the Binetform for Zn is 

Z„=f(y"-S"), (3.6) 

in which y, 8 are the roots of the characteristic equation for (3.4), namely, 

t2- At - 3 = 0, (3.7) 
so that 

y+S = 4, y$ = -3, y-S = 2^ = Av (3.8) 

Consequently, we have (Z0 = 0) 

{Z„} = 2,8,38,176,818,..., (3.9) 

with the same form of the recurrence relation for Zn as that for 2,w, i.e., 

^+2=4Zfl+1+3Z„. (3.10) 

Since 2,„ is a composite of two Z-numbers, it is simpler to concentrate our energies on Zn. 

Generating Functions 
One may readily obtain the generating function for the Z-numbers, to wit, 

fiZkxk=2(\-4x-3x*T\ (3.11) 
k=,\ 

thence (3.5) engenders 

2X** =(2 + 2x)(l-4x-3x2yl. (3.12) 
k=l 

Summations 
The Binet form (3.6) leads to 

£zk=Uzn+l + 3Zn-2} (3.13) 

which, by (3.5) with (3.8), produces 

l%=kz„+i-2). (3.14) 
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5 1 

Example: £ % = ± (3 800 - 2) = 1266. 
k=l 3 

Simson Formulas 
Invoking the application of (3.6) with (3.8), we derive the Simson formula 

Z^Z^-Z^-^-Sy-1 (3.15) 

while employing (3.5) with (3.8) yields the Simson formula 

a w + 1 V i - a 2 ^ - 8 ( - 3 r 2 . (3.16) 

Example (n = 4); Both sides of (3.14) have the value -72. 

Observe, in passing, that 
°^n+l ~~ ^ n ~ Zn+\ — Zn_x. (3.17) 

Limits 
From (3.6) and (3.5), 

l i m % ± = l i m % ^ = y = 2 + V7(«4.646), (3.18) 

whereas by (2.6) and (2.8), 

]im^± = a = 3±M^3303y (3J9) 

Merely for curiosity we record that 

— « 1.4 (one decimal place). (3.20) 
a 

4. END-PIECE 

Though the properties of the Q^ will, by their very nature, be necessarily more complicated 
than those for P^m\ it is nevertheless pleasing to unearth the rather unexpected conjunction of the 
Zs in (3.5). While other facets of the convolution numbers P£m) and Q(

n
m) might be pursued, it 

seems reasonable to halt at this stage. 
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1. INTRODUCTION 

In this note we shall study a class of polynomials {B^^(x)}, where r and u are integers, n 
and m are nonnegative integers. The polynomials {^[^(x)} and {R^r,^\x)} were studied in [2]. 
Furthermore, the class of polynomials {R^^ix}} involve a great number of known polynomials. 
Some of these polynomials are (see [2]): 

^ i 1 ) W = c„+1(x), 
Bi°'12\x) = C„(x), 
Ri°f\x) = xBn(x), 
^!20)(x) = ^ ( 2 , - l ; x ) (see [3]), 
< ^ ( * ) = 0 * ) (see [4]), 

where Bn{x) and bn(x) are Morgan-Voyce polynomials (see [1]). In this paper we also consider 
the sequence of numbers {^'^(l)}. 

2, POLYNOMIALS {R(
n

r;^(x)} 

First, we define the polynomials {R^^\x)} by the following recurrence relation: 

Rir
::\x) = 21&*m{x)-#_&(*) + xR££m(x), n>m, (2.1) 

with 

Fl££\x) = (n + l)r + 'u, n = 0,1,..., m - 2, B^m(x) = mr + u-hx. (2.2) 

From (2.1) and (2.2), we get 

B%$(x) = u + (m + iy + (2 + u + r)x, 

^iiUx) = u + (rn + 2y + (3 + 3u + 4r)x, (2.3) 

R^^m{x) = u + (m + 3)r + (4 + 6u + 10r)x,.... 

Hence, we see that there is a sequence of numbers {c^'fy such that 
[(n+l)/m\ 

^ } W = I * i V , (2.4) 

where c£\M) = 0 for k < 0 or£ >[(n + l)/m\. 
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If we take x = 0 in (2.4), then we have 

Furthermore, from (2.1), (2.2), and (2.4), we get 

Cn+l, k ~ Z 6 « , 0 Cn-\, 0> n - h m ^ L , 

with 
#0

u)=u + r;c£'0u)=u + 2r. 

The solution of the difference equation (2.6), using (2.7), is 

c(„[f =u + (n + l)r, n>0. 

Again from (2.1) and (2.4), we have 
Jr, u) __ 9 (r, u) _ (r, u) (r, u) i > -, > 
V Jfc - LCn-\ k Cn-2, k + Cn-m, k-h K ^ ^ n ~ m-

3. COEFFICIENTS c(
n
rjk

u) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The main purpose in this section is to determinate the coefficients {c^J^} for k > 1. First of 
all, we shall write the coefficients {c^'jf*} in the following form: 

TABLE 1 
n\k 

~~~Q 

1 
2 

m-\ 
m 

m + \ 
m + 2 

0 
r + u 
2r + u 
3r + u 

mr + u 
(m + l)r + u 
(m + 2)r + u 
(m + 3)r + u 

1 2 ... 

1 
2+u+r 

3 + 3u + 4r 
4 + 6z/ + 10r 

Now we shall prove the following theorem, using induction. 

Theorem 3J: The coefficients c£\M) are given by 

r(r,u) _Jn-(m-2)k) (n + l-(m-2)k) (n-(m-2)k 
cn+hk-u\ 2k r [ 2k + l r{ 2k-l (3.1) 

where n > 0 and 0<k<[(n + X)lm\. 

Proof: For n = 0,1, ...,m-2, we obtain k = 0. Then, from (2.8), we see that (3.1) is true. 
We shall assume that (3.1) is true for n(n>\). Then, by (2.9) and (3.1), we get 

cn, k ~ z c « - l , k cn-2, k ^ vn-m, k-l 

^®n,k+rPn,k+UYn,k> 
(3.2) 
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where 
_Jn-\-{m-2)k\_(n-2-(m-2)k\ (n-m-(m-2)(k-V)\ 

a».k-\ 2k-\ ) \ 2k-l ) + { 2k-3 J ' 

a -n(n-im-2)1{\ (n-\-{m-2)k\Jn + \-m-(m-2)(k-\)\ n x . 
p»,k-z[ 2k+\ )~{ 2k+\ ) \ 2k-\ y v-*> 

_Jn-\-{m-2)k\ (n-2-{m-2)k~\Jn-m-{m-2)(k-\)\ 
r»-k-2{ 2k )-{ 2k ) + { 2k-2 ) • 

Using the known equality ("k) + {k1i) = ("£')> by equalities (3.3) we have 

a"^-y 2k-i yp^-y 2k+\ yr*,k-y 2k y vA) 

Hence, (3.1) is true for all n > 0. 

Corollary 3.1: If m= 1, then (3.1) becomes (see [2], eq. (2.11)): 

<r,u) _(n + k] (n + k + 1) (n + k) 
c„+i,k-[2k-i)+r{ 2k+i )+u{ 2k y 

Corollary 3.2: lfm = 2 and n is even, then by (3.1) we have (see [2], eq. (6.3)): 

<W2"l„/2 = f + r+n. (3.5) 

Using the standard methods, from (2.1) and (2.2), we can prove the following theorem. 

Theorem 3.2: The polynomials {i^w)(x)}, for m>2, possess the following generating function: 

±*w*=';:»?;£• <>•*> 
Corollary 3.3: For m = 2 in (3.6), we get the generating function of the polynomials {i^r,M)(x)}3 

±%'\xY="+'l$-U\, 0.7) 
n=Q i — Zl + t{{ — X) 

(see [2]). 

The Binet Form for B%'3u)(x) 
For m - 3 in (2.1) and (2.2), we get the polynomials {R^3

u\x)} such that 

< 3 * V ) = 2/£#(x)-B£Z\(x) + * # £ ( * ) , n>3, (3.8) 
with 

R%3
u\x) = r + u, R[rf\x) = 2r + u, R^f(x) = 3r + u + x. (3.9) 

Using the known methods, by (3.8) and (3.9), we find the Binet form for {B%'3u)(x)}. That is, 
we can prove the following theorem. 

Theorem 3.3: The Binet form for {R^r
3

u\x)} is given by 

<3M)(x) = CXX\ + C2X\ + C3X\ (3.10) 
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where 

and 

*2 = f + §-(«(*) + *,£(*)), (3.11) 

a(x)jm±JMI±T\ 

(3.12) 

A(x) = 27x-2, 

2 ' 
fbr(A(x))2-4>0. 

The coefficients C1; C2, and C3 are the solutions of the equation 

A3-2A2+A-x = 0, (3.13) 
with starting values (3.9). Namely, we get 

X^+u^+x-X^rX] 
2x + X3

j-XJ ' V ; 

4. SEQUENCE OF NUMBERS 

The sequence of numbers {i^3
M)(l)} was studied in [2]. In this section we shall consider the 

sequence of numbers {R%'3u)(2)}. Namely, for m = 3 and x = 2, from (2.1) and (2.2), we get the 
following difference equation, 

with 
a0 = r + u, ax-2r + u, a2 = 3r + u + 2, (4.2) 

where ^;3M)(2) = a„. 
The characteristic equation for (4.1) is 

X3-2X2 + X-2 = 0y (4.3) 
whose roots are 

Xt = 2, X2=i, X3 = ~i, (4.4) 
with 

Ai + A 2̂ "I" -A-3 — 2 , ^ 2 ^ 2 ~̂~ X\X^ + ^ 2 ^ 3 — 1, ^ 1 ^ 2 3 ^ 2 . ( 4 . 5 ) 

Hence, we have the following representation: 
a„ = Cr2w + C2-r + C3-(-i7. (4.6) 
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From (4.6) and (4.2), we get the following system of linear equations: 
C1 + C2+C3 = r + u, 
2Q +i-C2-i-C3-2r+u, 
4Cl-C2-C3 = 3r + u + 2, 

whose solutions are 
Q = | (2r + tt + l), 

C2=±(r + 3u-2-i(2r + u-4)), (4.7) 

Q = -L(r + 3a-2 + /(2r + tt-4)). 

Hence, from (4.6), it follows that 

an = ^—-(2r + u + i) + y-(r + 3u-2-i(2r + u-4))+^JJ-(r + 3u-2+i(2r + u-4y). (4.8) 

Using (4.8), we find that 

a4n = | (24n+1(2r + u +1)+r + 3u - 2), 

a4„+l = \(24"+2(2r + u + l) + 2r + u-4), 
(4.9) 

a4n+2 = j (24"+3(2r + u +1) - r - 3w + 2), 

< W = j(2«»'>(2, + „ + ,)-2r-„ + 4). 

Remark: It is interesting to consider a generalized numerical sequence {E^ m(2m~2)}, m>2, For 
example, if w = 4, we have 

^ 4(4) = Cl(-1)« + C2T + C3 ( ^ J + Q ( ^ J, 

where the coefficients Q, / = 1,2, 3,4, are the solutions of the following system: 

Cl + C2+C3 + C4=r + u9 

-Cl+2C2+^-C3 + ^^C4 = 2r + u, 

Cl+4C2+cS^^ + cSl-^\=3r+u, 

Q + 8 C 2 + C 3 | A ± ^ l f + C 4 f ^ | = 4(r + l) + «. 
2 2 
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LETTER TO THE EDITOR 

February 14, 2000 

Professor Cooper, 
I would like to bring your attention to an error in Paul S. Bruckman's article entitled "On the Degree of the 

Characteristic Polynomial of Powers of Sequences," The Fibonacci Quarterly 38.1 (2000):35-38. In particular, the 
following counterexample illustrates the error. In the notation of the article, let Un = 1 + 2" + 4" with the character-
istic polynomial Px(z) = (z - l)(z - 2)(z - 4) of degree Rx = 3 with m = 3 roots. The main theorem then predicts 

R3 = {f)= 10. 
However, on expanding (Unf we get (Un)3 = 1 +3 * 2" +6 * 4" +7 * 8" +6 * 16" +3 * 32" +64" with a characteristic 
polynomial of degree only 7, namely, P3(z) = (z - l)(z - 2)(z - 4)(z - 8)(z - 16)(z - 32)(z - 64). 

The particular reasoning error in Bruckman's article revolves around the assumption that the products of the 
powers of the original eigenvalues are all distinct, indicated implicitly in the equation for Pk(z) right before equa-
tion (7) on page 36 of the article. I brought attention to this issue in my recent article in your quarterly, noting that 
if each root has a unique prime divisor that distinguishes it from the other roots, then the final order of the power 
(Un)k can be determined easily. 

Regrettably, the general result stated in Bruckman's paper is erroneous. 

For your careful consideration. 

Adam Stinchcombe 
Adirondack Community College 
640 Bay Road 
Queensbury, NY 12804 
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ON THE EXTENDIBILITY OF THE SET {1, 2, 5} 

Omar Kihel 
Departement de mathematiques de statistiques, Pav. Vachon, Universite Laval, G1K7P4, Quebec, Canada 

(Submitted January 1999-Final Revision July 1999) 

Let / be a nonzero integer and S a set of positive integers. We say that S is a i^-set if, for any 
two distinct elements x mdy of 5, the integer xy + t is a perfect square. A /J-set is extendible if 
there exists a positive integer a gS such that S^J {a} is still a i^-set. 

The problem of extending i^-sets is very old and dates back to the time of Diophantus (see 
Dickson [5], p. 513). The most spectacular result in this area is due to Baker and Davenport [3] 
who showed that the Prset {1,3,8,120} is nonextendible. Since then, several authors have made 
efforts to give a characterization of the i^-sets (see references). 

The P^-set {1,2,5} was studied by Brown [4] who proved that this set is nonextendible. His 
method is based on deep results of Baker [3] and techniques of Grinstead [10]. In this paper we 
give another proof of the nonextendibility of the P^-set {1,2,5} using only elementary number 
theory. 

Suppose that there exists an integer a such that {1,2,5, a} is a P_rset. Then the following 
system of equations 

[ a-l = Y\ 
<2a-l = Z2, (1) 
[5a-l = X2, 

has integral solutions X, 7, Z, in Z. Without loss of generality, we can suppose X, 7, Z are in N*. 
Elimination of a in system (1) yields 

[2X 2 -5Z 2 -3 . V) 

Lemma 1: If system (1) admits a solution a, then there exists an integer k such that a = \2k +1. 

Proof: From system (1), it is clear that a = 1 (mod 4). The first equation in system (1) 
implies that a = ±\ (mod 3). If a = -1 (mod 3), then the second and third equations in system (1) 
imply that X and Z are both divisible by 3, which is impossible from the second equation in system 
(2). This gives a == 1 (mod 3). Then there exists an integer k such that a - 12k +1. • 

After replacing a by 12k +1 in system (1), we obtain 

[ 12* = 72, 
| 24* + l - Z 2 , (3) 
|60* + 4 = X2. 

System (3) yields 

( 3 * = / , 
J24* + l = z2, (4) 

15* + l = x2, 
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where X = 2x, Y = 2y, and Z = z. Therefore, 

x2 + 3 j 2 = z2, where (x, 7, z) = 1. (5) 

It is well known that the solutions of equation (5) are x = ±{n2 - 3m2), y = 2«m, z = n2 + 3m2, 
with « and m two relatively prime integers. 

The equation y2 - 3k implies 4n2m2 = 3k and n2 = j ~ . Therefore, 

24& +1 = z2 = (n2 + 3m2)2 = (~ + 3m2 Y 

and 

(24£ + l)16m4 = 9k2 + 144m8 + 72m4&. 

Hence, 
9k2 - 312m4k - 16m4(l - 9m4) = 0. (6) 

Equation (6) is of the second degree in k with Integer coefficients. Since k is an integer, the 
discriminant 122132m8+ 144m4(l-9m4) = 144m4 (160m4+ 1) of the left side In (6) should be the 
square of an integer. That is, 160m4 + l = i2 for some t e M. 

Lemma 2: The only solution of 160m4 +1 = t2 is (m, t) - (0, ± 1). 

Proof: Clearly m = 0, t - ±1 is a solution for the equation 160m4 +1 = t2. Without loss of 
generality, we can suppose m > 0 and t > 0 [of course, if (m, t) is a solution, (±m,±t) is also a 
solution for our equation]. Put M - 2m, then we obtain the equation 

10M4 + l = f2, M > 0 , r > 0 . (7) 

From (t - T)(t +1) = 10M4, we have either 

r - l = 2a4, r + l = 80£4, M = 2ab 
or (8) 

/ - 1 = 80£4, / + l = 2a4, M = 2ab 

or 

r - l = 10a4, / + 1 = 1664, M = 2ab 
or (9) 

r - l = 1654, f + l = lQar4, M = 2ab, 

where a and J are two positive integers. 
System (8) gives 

a 4 - 4 0 6 4 = ± l . (10) 

A congruence mod 4 shows that the minus sign on the left side of equation (10) can be rejected, 
and from ( a 2 - l ) ( a 2 + 1) = 40b4, since a2 + l and a 2 - l are not squares in N and a2 +1 Is not 
divisible by 4, we have a2 +1 = 2c4, a2 -1 = 20rf4, and b = cd, which gives 

\0d4 + 1 = C2
V where C = c2. (11) 

Equation (11) is of the same type as equation (7), and since d <a<M, one can apply the method 
of descent. 

2000] 465 



ON THE EXTENDIBILITY OF THE SET {1, 2, 5} 

System (9) gives 
5a4-8J4 = ±l. (12) 

A congruence mod 8 shows that this is impossible. D 

Theorem 1: The P_rset {1, 2,5} is nonextendible. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others' proposals must be sub-
mitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by May 15, 2001. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results1'. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

^ + 2 = ^ 1 + ^ , ^ 0 = 0, F, = l; 

^n+2 Ln+l + Ln L0 — 2, Lj — 1. 

Also, a = (l + V5)/2, fi = (lS)/2, F„ = (a"-p")l^S, and L„ = a"+0H. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-906 Proposed by N. Gauthier, Royal Military College of Canada 
Consider the following n x n determinants, 

A,(«): = 

A2("): = 

2 
-1 
0 

0 
0 

1 
0 
0 

0 
0 

-1 
3 
-1 

0 
0 

-1 
3 
-1 

0 
0 

0 
-1 
3 

0 
0 

0 
-1 
3 

0 
0 

0 •• 
0 •• 
-1 •• 

0 •• 
0 •• 

0 ••• 
0 ••• 

_1 ... 

0 ••• 
0 ••• 

0 
0 
0 

-1 
0 

0 
0 
0 

-1 
0 

0 
0 
0 

3 
-1 

0 
0 
0 

3 
-1 

0 
0 
0 

-1 
3 

ol 
0 
0 

-1 
3 
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n is taken to be a positive integer and Aj(0) = 1, A2(0) = 0, by definition. Prove the following: 
a. Ax(n) = F2rj+u 

b. A2(n) = F2n. 

6-907 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 
Prove that 

]7Fi .J7F2.pF3 fFn < e(F„-l)(F„+l-l) 

B-908 Proposed by Indulis Strazdim, Riga Tech. University, Latvia 
The Fibonacci polynomials, Fn(x), are defined by 

FQ(x) = 0, F^x) - 1, and F„+2(x) = xFn+l(x) + Fn(x) for n > 0. 

Prove the identity 

F2
+l(x) - 4xFn(x)Fn_1(x) = x2F2_2(x) + (x2 - l ) ^ * ) ^ * ) - F„_3(x)). 

B-909 Proposed by J. Cigler, Universitat Wien, Austria 
Consider an arbitrary sequence of polynomials pk(x) of the form pk(x) = xak(x- l)bk, where 

ak and bk are integers satisfying ak+bk =k and ak>bk+l>0. Let Ln^k be the uniquely deter-
mined numbers such that xn - X Ln kpk(x). Show that 

rn = 2-,Ln^krak„bk, 

where Fn are the Fibonacci numbers. 
If all ak -bk e{l, 2}, then we have Fn-YJLn^k. This generalizes Proposition 2.2 of the paper 

"Fibonacci and Lucas Numbers as Cumulative Connection Constants" in The Fibonacci Quarterly 
38.2 (2000): 157-64. 

B-910 Proposed by Richard Andre- Jeannin, Cosnes et Romain, France 
Solve the equation /?" +1 = k(k

2
l), where p is a prime number and & is a positive integer. 

Remark: The case p - 2 is Problem B-875 (The Fibonacci Quarterly, May 1999; see February 
2000 for the solution). 

SOLUTIONS 
A Fibonacci Average Which Is a Lucas Number 

B-889 Proposed by Mario DeNobili, Vaduz, Lichtenstein 
(Vol 38, no. 1, February 2000) 

Find 17 consecutive Fibonacci numbers whose average is a Lucas number. 
Solution by Richard Andre-Jeannin, Cosnes et Romain, France 

The identity S„ = Fn + ••• +FW+16 = Fn+ls-Fn+l follows easily from Binet's formulas. There-
fore, we have to find integers n and m such that Fn+ls-Fn+l = YILm. This relation implies that 
Fn+ls - Fn+l = 0 (mod 17). By induction, one can verify that Fn+l% = -Fn (mod 17); thus, we have 
Fw+18 - Fn+l = -Fn - Fn+l = -Fn+2 = 0 (mod 17), which implies that n + 2 = 0 (mod 9), since 9 is the 
rank of apparition of 17. 

Let us define the sequence Tk by 
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Then we have 

J - \K-2 _ ^9k+l6 F9k-l 
k 17 17 

T = ^ - n ^Fi~F-iQ -Fi+Fw - 4 - 1 
-1 17 17 " 17 " - 4 - ^ 3 -

We shall prove that this is the only solution. It is straightforward to see that sequences such 
that F9k+r, L9k+r, or Tk satisfy the recurrence 

Xk=16Xk_^Xk_2. (1) 

Assuming first that k > 0, we see that L^<TQ<L9 ami that Ll7<Tl< Lm. By this and (1), it 
is clear that L9k+% <Tk< L9k+9 for every k > 0. Thus, Tk is not a Lucas number for k > 0. 

On the other hand, we have 

J = (~f\k+l\ F9k~l6 + F9k+l J 

by the formula F_k = (-l)MFk. From this, we have 

I T I - F9k~l6+F9k-¥l 
\Lk\- Vl 

for k > 1, and one can verify that Ln < | ZL21 < £# and that L2Q < | H31 < i2i- Using this and (1), 
it is clear that L9k_7 < \ T_k | < X9^„6 for k>2. This concludes the proof. 

Abo solved by Brian D. Beasley, David M. Bloom9 Paul & Bmckmam, L. A. G. Dresel$ H.-J. 
Seiffert, Indulis StrazMnsf and the proposer. 

A Sum of Products Equals Zero 

B-890 Proposed by Stanley Rabinomtz, Westford, MA 
(Vol 38, no. 1, February 20&§) 

Jf F^J^F^+F^J^+F^J^ = 0, show that either a = b9 b = c9 or c = a. 

Solution by PauIS* Bmckwmm$ Berkeley9 CA 
Let U(a9 b, c) denote the expression given in the statement of the problem. We prove the 

following identity: 
U(a,b,c) = Fa_bFb_cFc_a. (1) 

Note that F„ = 0 iff n = 0; hence (assuming (1) is true), U(a, h, c) = 0 iff a = b, b = c, or c = a. 
Therefore, it suffices to prove (1). 

The following known identities are employed: 
SFJ-^L^-i-lfL^, (2) 

FJ.^F^H-lfF^. (3) 
These lead to the following* (symmetric) identity: 

SFff, = F w - (-lfF_x+nz - (-IYFX^Z - {-WFx+y_z. (4) 

In particular, SF_JtfU = - ( - I f i ^ + H ) % - {-ff^F^. 
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Combining similar terms and simplifying, we obtain several cancellations, along with the 
following result: 

5U(a, b, c) = - ( - i r * / ^ - ( - 1 ) ^ ^ - ( - i r c ^ _ 2 c . (5) 

On the other hand, SFa_bFb_c = La_c - (-l)b+cLa_2b+C; hence, 

^a-b^b-Jc-a = Fc-a\La-c ~ ( _ 1 ) Ai-26+c) 

=F0+(-iy+cF2c_2a - (-irc{F2c_2b+i-ircF2b_2z} 
= -(-\rbF2b_2a - (-\f+cF2c_2b - (-iy+cF2a_2c, 

which is seen to be the same expression as in (5). This establishes (1), hence the desired result. 
L. A. G. Dresel gave a solution similar to the featured one. However, he had a different 

proof for identity (1) based on his paper "Transformations of Fibonacci-Lucas Identities" in 
Applications of Fibonacci Numbers 5:169-84. 

Also solved by Brian D. Beasley, L. A. G. Dresel Hradec Krdlove, and the proposer. 

A Lucas-Pell Congruence 

B-891 Proposed by Aloysius Dorp, Brooklyn, NY 
(Vol 38, no. 1, February 2000) 

Let (P„) be the Pell numbers defined by P0 = 0, Px = 1, and Pn+2 = 2Pn+l + Pn for n>0. Find 
integers a, h, and m such that Ln = Pan+b (mod m) for all integers n. 

Solution by H.-J. Seiffert, Berlin, Germany 
Extend the recursion of the Pell numbers to n e Z, and define the Pell-Lucas numbers by 

QQ = 2, Qx = 2, and Qn+2 - 2Qn+l + Qn for n G Z . For the integers a and b, where a is odd, let 
m = gcd(Qa-\Pb-2,Pa+b-l). 

We claim that 

Ln = Pan+b (mod m) for all n e Z. 

Since a is odd, we have [see A. F. Horadam & Bro. J. M. Mahon, "Pell and Pell-Lucas Polyno-
mials," The Fibonacci Quarterly 23.1 (1985):7-20, equation (3.29)] 

Pa(n+2)+b ~ Qa^a(n+l)+b + Pan+b> ^ ^ Z , 

which by Qa = 1 (mod m) implies that 

Pa(n+2)+b = Pa{n+l)+b + Kn+b ( m ° d /If), ft G Z . 

Hence, if 4r = 4~^w+&> w G z > t h e n 4?+2 = 4i+i+ 4i (moc* 4 W G Z - §in c e 4) = 2 ~ ^ - ° 
(mod m) and 4 = 1 - Pa+b = 0 (mod m\ it now easily follows that An = 0 (mod w) for all n e Z. 
This proves the above stated congruence. 
Examples: 
(a) With a = -3 and 6 = 2, we have /w = gcd(-15, 0,0) = 15. The above result gives Ln = P.3n+2 
for all /? G Z. 
(Z>) Taking a = 5 and b = 2, we have w = gcd(81, 0,168) = 3. Hence, Z„ = P5n+2 (mod 3) for all 
n e Z . 
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(c) With a = 5 and b = -6 , we have m = gcd(81, - 72, 0) = 9, so that L„ = P5„_6 (mod 9) for all 
n e Z . 
frfj Take a = 7 and b = -6 . Then, m = gcd(477, - 72, 0) = 9. Hence, Z,„ = P7rj_6 (mod 9) for all 
n G Z . 
fe) With a = 9 and 5 = -8 , we have m = gcd(2785, -410,0) = 5, so that Ln = P9„_s (mod 5) for 
all n G Z. 

The featured solution contains the solutions given by the other solvers. 

Also solved by Richard Andre-Jeannin, Brian D. Beasley, Paul S.'Bruckman, L. A. G Dresel, 
and the proposer. 

A Perfect Square Only When Modulo 47 

B-892 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 38, no, 1, February 2000) 

Show that, modulo 47, F2 - 1 is a perfect square if n is not divisible by 16. 
Solution by L. A. G. Dresel, Reading, England 

We note that for n = 1 to 8, {Fnf -1 is given successively by 0, 0, 3, 8, 24, 63, 168, 440, and 
that modulo 47 these numbers are congruent to the squares of 0, 0, 12, 14, 20, 4, 11, and 8, 
respectively. The identity (15b) of [1] gives Fs+m - (-l)mF%_m = FmL%, and since Ls = 47 this 
gives (FUm)2 = (Fs_m)2 (mod 47). Hence, modulo 47, we have (Fn)2 - as a perfect square for 
n = 1 to 15. Finally, the identity (15a) of [1] gives Fl6+m + (-l)mFl6_m = LmFl6 = 0 (mod 47), since 
Fl6 = FSLS. This completes the proof that (Fn)2 - is a perfect square modulo 47 ifn is not divisi-
ble by 16. When n is divisible by 16, Fn = 0 (mod 47), and -1 is not a perfect square modulo 47. 
Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood 

Ltd., 1989. 
Also solved by Richard Andre-Jeannin, Brian D. Beasley, Paul S. Bruckman, H.-J. Seiffert, 
and the proposer. 

A Sum of Product of Fibonacci Numbers That Is Identically Zero 

B-893 Proposed by Aloysius Dorp, Brooklyn, NY 
(Vol 38, no. 1, February 2000) 

Find integers a, b, c, and d so that 
FxFyFz + aFx+lFy+lFz+l+bFx+2Fy+2Fz+2+cFx+3Fy+3Fz^^ = 0 

is true for all x, y, and z. 
Solution by L. A. G. Dresel, Reading, England 

Let 
T(x9 y, z) = FxFyFz + aFx+lFy+lFz+l + bFx+2Fy+2Fz+2 + cFx+3Fy+3Fz+3 + dFx+4Fy+4Fz+4, 

giving 
T(x, y, - 4) = ~3FxFy + 2aFx+lFy+l - bFx+2Fy+2 + cFx+3Fy+3 
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and 
T(x, y9-3) = 2FxFy - aFx+lFy+l + bFx+2Fy+2 + dFx+4Fy+4. 

But, from the recurrences for Fx and Fy, we obtain 
Fx+3Fy+3 = ( ^ + 2 + ^x+lX^H-2 + Fy+l) 

and 
^ j ; = (Fx+2 - Fx+l)(Fy+2 ~ Fy+l) • 

Adding these together gives the identity 
Fx+3Fy+3 ~ 2Fx+2Fy+2 ~ 2Fx+lFy+l + ^ V = °' 

Denoting the left side of this by D(x9 y)9 we have D(x, y) = Q for all x and y. We can now choose 
values for a9 b, and c to make T(x, y9-4) = -3D(x, y) identically, namely a = 3, b = - 6 , c = -3. 
If, in addition, we choose d = 1, we find that T(x, y9 - 3) = 2Z>(x, j ) +D(x +1, y +1). It follows 
that with these values of a, h, c9 and rf we have T(x9 y9 - 4) = 0 and J(jr, y9-3) = 0. Furthermore, 
since the recurrence for Fz gives 

T(x9y9z + 2) = T(x9y%z + l) + T(x9y9z)9 

we can prove by induction on z that T(x9 y9 z) = 0 for all x, j , and z. Hence, we have the identity 

F^^ + 3Fx+lFy+lFz+l - 6Fx+2Fy+2Fz+2 ~ 3Fx+3Fy+3Fz+3 + ̂ +4^+4^+4 = ° • 

Paul Bruckman noted that the coefficients 3, -6, -3, and J correspond to the coefficients 
appearing in the recurrence relation satisfied by the cubes of the Fibonacci numbers. This is 
also seen by setting x = y-z in the equation. 

Also solved by Brian D. Beasley, Paul & BrmckMan, Hradec Krilowe, H.-J. Seiffert, and the 
proposer. 

Addendum: We wish to belatedly acknowledge solutions from Paul S. Bruckman to Problems 
B-884, B-885, B-887, and B-888, and from H.-J. Seiffert to Problems B-878, B-879, B-880, 
B-881, andB-882. 
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PROBLEMS PROPOSED IN THIS ISSUE 

B-567 Proposed by Ernst Herrmann^ Siegburg^ Germany 
Let Fn denote the 11th Fibonacci number. For any natural number n > 3, the four inequalities 

1 1 1 
- + -=—< **n ^n+a, ^V-l (i) 

<_L+_L_, 

i . + 1 + . * 1 
r r 17 17 
"n rm-k-ax

 rn-¥ax-¥a2
 rn~\ . - . 

F "F F 
rn rn+ax

 rn-¥ai-¥a2~l 

determine uniquely two natural numbers ax and a2. 
Find the numbers at and a2 dependent on n. 

H-568 Proposed by N. Gauthier, Royal Military College of Canada, Kingstom, Ontario 
The following was inspired by Paul S. Bruckmanfs Problem B-871 in The Fibonacci Quar-

terly (proposed in Vol 37, no. 1, February 1999; solved in Vol. 38, no. 1, February 2000). 
"For integers n,m>\, prove or disprove that 

^ - ^ j K " ) ' - ^ ' 
is the ratio of two polynomials with integer coefficients 

where Pm(n) is of degree [^J in n and QJp) is of degree [ f J; determine Pm(n) and QJp) for 
l<fw<5.fl 
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H-569 Proposed hy Paul S. Bruckman, Berkeley, CA 
Let r(ri) and a(n) denote, respectively, the number of divisors of the positive integer n and 

the sum of such divisors. Let e2(n) denote the highest exponent of 2 dividing n. help be any odd 
prime, and suppose e2(p +1) = h. Prove the following for all odd positive integers a: 

e2(a(p°y) = e2(T(p«))+h-l. (*) 

SOLUTIONS 

Bi-Nomial 

H-555 Proposed hy Paul $. Bruckman, Berkeley, CA 
(Vol 37, no. 3, August 1999) 

Prove the following identity: 

(xn+yn)(x+y)n 

[n/3] 

= ~{-xy)n + Yd(-l)kCnJxy(x+y)fk(x2^xy^y2r3^ (1) 
k=0 

n = 1,2,..., 

where 

0u=("~/*}»/(»-2*). 
Using (1), prove the following: 

[n/3] 

(a) 5 w / 2 4 - i + X ( - l f Q , 5 ^ , " = 2,4,6,...; 

[n/3] 

(h) ^ F ^ l + j H ^ r 3 * , " = 1,3,5,...; 

[n/3] 

(c) 4 = - I+EH)*C^ k 2" - 3 * , * = 1,2,3,.... 
k=Q 

Solution by Reiner Martin, New York, NY 
Let us write 

pn(*> y) = (*"+yn)(x+yf+(-xyT • 
We have 

^ 3 ( * , y) = P^iix, y)(*2+xy+y2)- />(*, y)[xy(x+y)f. 
Our goal is to show that the corresponding recursion holds for the sum in (1). 

Next, note that 
0+3, k - 0+2, k + O, k-l• 

Using this identity, we get 
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[<n+3)/3] 
2 H ) * Q * k[xy(x + y)fk(x2 + a y + / r 3 " 3 * 
fc=Q 

[(n+2)/3] 
= tf+xy+y*) Jd{-lfCn^klxy(x^y)f\x2

+xy+yy^k 

k=Q 
[w/31+1 

+ [*K* +J)]" £(-l)*Q,*-i[*K* +jOf* - V + xV+yr3( t- I ) . 

So, the sum in (1) satisfies the same recursion as Pn(x9 y). Since the cases n - 1, 2, 3 are trivial, 
identity (1) follows for all n > 1. 

Finally, (a) and (b) follow from (1) by specializing to x = a and y = -/?, while (c) follows by 
using x = a and y = fi. 

Also solved by H» -/. Seijfert and the proposer. 

Some Operator 

H-556 Proposed by N. Gauthier, Dept of Physics, Royal Military College of Canada 
(Vol 37, No. 4, November 1999) 

Let f(x) and g(x) be continuous and differentiate in the immediate vicinity of x = a{^ 0) 
and assume that, for some positive integer k9 

/<">(*) = ̂ ">(a) = 0; 0<#?<JS;-L 
By definition, 

for any continuous and differentiable function f{x). Further, assume that one of the following 
conditions holds for n = k: 

a. /<*>(a)*0, g?\a) = 0-
b. fik\a) = 0, &k\a)*0; 
c. /<*>(a)*0, gW(a)*0; 

Introduce the differential operator D:=x-jj- and define, for m a nonnegative integer, 

fm(x)=ITf(x), gm{x):=irg(x). 

Prove that 

x-»a g(x) gk(fl) ? 

Solution by the proposer 
Note first that 

the general term being, for m > 1, 
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D™ = Zas(m)x°j-, (1) 
s=l ax 

as can readily be shown by induction on m. The set of coefficients {as(m) :l<s<m;l<m} can be 
determined recursively, as follows. Consider 

m+l is 
l?»1 = Yia,(m+l)x'j-, (2) 

which follows from (1) with m replaced by m + l. But one also has that Dm+l -D{Dm), where 
Dm is given by (1), so 

m is 

D"»l = DY,as(m)xsj-

= £«,(»») ds . ,,+1 ds+l 
sx* — + xs+l 

dxs " dxs+1 

= TJ[sas(m)+as_l(m)]xi 

s=l 

dxs 

(3) 

S=l 

The third line follows by introducing the definitions 
as(m) = 0:s>m; aQ(m)-0:1 <m. 

Equating the last line of (3) to (2) then gives the desired recurrence: 

as(m + X) = SGs(wi)+as-i(m) -l^s<m-\-l,l<m; (4) 
aQ(m) = am+l(m) = 0, ax(l) = 1; as{m) is thus a Stirling number of the second kind. Putting s = 
m+l gives 

am+l(m + 1) = an»l(m)+am(m) = ^(m)> (5) 

so that am(m) = 1 by induction on m, since ax{\) = 1. Now consider, for k > 1, 

fk(x) : = Dkf(x) = j:as(k)x°^-f(x) = j^as{k)xsf{s){x) 
S=l M

 S=l 

and, similarly, 

5=1 

Evaluating at x = a (* 0) and using f{n){a) = g(n\a) - 0: n - 0,1,..., k - 1 for some k, with either 
one of conditions (a), (b), or (c) in the statement of the problem assumed to hold, then gives 

/*(«) = 2 > , ( * K / W ( « ) = ak(k)akfk\a) = a*/<*>(a); a*0, 
5=1 

with an equivalent result for gk(a): 
gk(a) = akg(kXa);a*0. 

Finally, invoke FHopitaPs rule to find the limit of fig as x -> a to get 

x-*ag(x) g(*)(a) gk(a)' 
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This completes the required proof. Note, in passing, that this new formulation of FHopitaFs rule 
makes it much easier to resolve indeterminate forms when f(x) and g(x) are polynomials. This 
is due to the fact that Dkxv = vkxv for v arbitrary and k a nonnegative integer. 
Also solved by P. Bruckman andH.-J. Seiffert 

Generalize 

H-557 Proposed by Stanley Mablnowitz? Westford, MA 
(Vol 37, no. 4, November 1999) 

Let (wn) be any sequence satisfying the second-order linear recurrence wn = Pwn_i - Qwn-2? 
and let (vn) denote the specific sequence satisfying the same recurrence but with the initial condi-
tions vQ = 2, Vj -P. 

If k is an integer larger than 1, and m = [k/2], prove that, for all integers w, 

if k is even, 
if k is odd. 

m~ 1 jf-y. 

i=0 lWn* 

Note: This generalizes problem H-453. 
Solution by Paul S. Bruckman, Berkeley, CA 

Let 
iw-i 

F(x; M ) = £ (-en)/jc(*"1-2#>m, where w = [* / 2]. (1) 
i=0 

Then, after simplification, 
F(x; jfc, ii) = x(^w>l{xWFI - {~l)mQmnx~mn)l {xn +Qnx~n}. (2) 

Let (un) denote the fundamental sequence associated with the given recurrence, that is, the 
sequence satisfying this same recurrence but with initial conditions f% = 0, ut = l. Then un = 
(an-($n)l(a~P), vn = an + p\ where a = (P + 0)/2, ft = (P-0)/2, and # = ( P 2 - 4 0 1 / 2 . „ 
Note that a+/? = P and afi = 0 . 

We readily determine the following results: 
F(a; k, n) = a{k~m)n(amn - (-l)"?"") / vn; ' (3) 

F(fi; k9 n) = H ) w + 1 ^ ^ ( « ^ - (rl)mfimw) I vn. (4) ' 

Next, we define the following sums: 

Gw(k,n) = v„Yl(-0,yw(k_l.2i)n, (5) 

cw*.»)=v„ 2; (-fi"yv(* -1 - 2i>, (6> 
1=0 

Note that Gv(k,n) = vn{F(a;k,n) + F(p;kM={a(k-m}n-Hr^k~m)l{^m"^ or, 
after simplification, 

G W M ) = v t e - ( - i r g » V 2 » > K (7> 
Note that Jfc = 2m if k is even, while & = 27!t + lif&is odd. Thus, we see that (7) is a special case 
of the statement of the problem, with (wn) = (vn). 
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where 

Note that 

We now use the following relation between the general sequence (wn) and the particular 
sequence <vw>: 

WN = iWnUN ~ 2 X % - J / %• (8) 
This may be verified by noting that u_N = -Q~NuN. In particular, we obtain 

^ = K ^ - 2 X ^ - i ) J / ^ - (9) 
Substituting the expression from (8) into the sum in (5), we obtain 

unGw(k, w) = vn £ ( - 2 7 K ^ - i - 2 z > ~ 6X^-2-2 / )« or 

u„Gw(k, n) = wnGu{k, n) - Q"w0Gu(k -1,»), (10) 

GH(k,n) = v„Z(-Q")%_i_2i)„. (11) 
j=0 

Gu(k,n) = vn{F{a;k,n)-F(J3;k,n)}l{a-P) 
= {a(k-m)n + {-\)mftk-m'>n} {amn - (-l)m/rn} / {a - p) 
= {a1™ - / ?*" - (-\)mQm»(aQc-'lm)n -^*-2m>")} /(a-fi) or 

Gu{k,n) = ukn-(-\TQ"'\k_2m)n. (12) 

We observe that (12) is another special case of the statement of the problem, with (w„> = <w„). 
Now, substituting the result of (12) into the expression in (10), we obtain the following: 

u„Gw(k, n) = w„Mte - (-i)mQm"wnu{k_2m)n 

- Q>oK-iy» ~ H)m'Qm\k-i-2m-}„h 
where m' = [(k-\)/2]. 

(a) If k = 2m, then/w' = /M-l and k = 2m' + 2. Then 

u„Gw(k, n) = w„%, - Q"w0u(k_1)n - (-l)fflgmX«„ 
= «nwh,-(-l)mQm"w0un, 

using the result in (9). Hence, Gw(Jc, n) = w^ - (-T)mQmnw0 ifk is even. 

(b) If k = 2m +1, then mf = m and k = 2mf +1. Then 

^Gw,(£, n) = wnUkn - QnwQu{k_l)n - {-l)mQmnwnun 

using the result in (9). Hence, GJk, rty^w^- (-l)mQmnwn ifk is odd. 

We may combine both formulas into one, as follows: 

Gw(k, n) = wkn- (-ir0""V(yt_2m)n. (13) 

Also solved by H. -J. Seiffert and the proposer. 
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