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1. INTRODUCTION

Let ay,a,,...,a,_; (r >2) be real numbers with a,_, # 0. An r-generalized Fibonacci sequence

{V,} 220 is defined by the initial conditions (V;, V], ...,V,_;) and the following linear recurrence rela- .

tion of order 7,

Va=ay,+aV, ,+-+a_V, .. forn>r-1 (1)

In the sequel we shall refer to such sequences as sequences (1). When a; =1 for all j (0<j<

r-Dand Vy=---=V,_,=0,V,_, =1, sequence (1) defines the well-known r-generalized Fibonacci
numbers introduced by Miles in [9], which have been studied extensively in the literature. Let
P(X)=X"—ayX"'~---—a,_, be the characteristic polynomial of sequence (1) and set o =

{4 €C; P(4)=0}.

Let (E,(.,.)) be a unitary real vector space of finite dimension m, and consider A(E), the
space of linear self-adjoint operators on E. An operator S € A(E) is called simple if its spectrum
o(8) = {i, ty, ..., iy} is such that u, #u; forizj. Set A(E)={S e A(E); S is simple} and
A(E)={S e A(E); o(S)nop#0}. For any S € A(E), the sequence {V.}ogns, defined by
V,=(8"x,x) forn=0,1,..., p< oo, where x #0 is a vector of E, is called a sequence of moments
of § on the vector x. The linear moment problem associated to a sequence {V,}<,<, consists of
finding § € A,(E) such that

V,=(8"x,x) forn=0,1,...,p< oo, 2)

where x #0 is a vector of £ (see [5] and [6]). In expression (2), the vector x is considered as
fixed because it is not unique.

The aim of this paper is to study the linear moment problem for a given sequence (1). More
precisely, we give a necessary and sufficient condition for the sequence (1) to be a sequence of
moments of S € A,(E). Applications and examples are given. In particular, we can characterize
sequences (1) which are linear combinations of geometric sequences. We also consider an appli-
cation to the study of a linear system of Vandermonde type.
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r-GENERALIZED FIBONACCI SEQUENCES AND THE LINEAR MOMENT PROBLEM

2. LINEAR MOMENT PROBLEM FOR SEQUENCES (1)
2.1 Moments of an Operator and Sequences (1)

Let (E, (.,.)) be a unitary real vector space of dimension m and S € A (E) such that o(S) =
{A.s A} We have E=@7_|E,, where E; is the eigenspace E; = {x € E; Sx=A;x}. Let
{e, €, ..., ¢,} be an orthogonal basis of E, where ¢; € £;. Set {V,},», the sequence of moments
of § on a fixed (nonvanishing) vector x =27, ye; of E. Let P(X) =II"_,(X - 4,) be the char-
acteristic polynomial of S, and consider a polynomial Q(X)= X" —a,X"'~-.-—a, _, such that
P (X) is a divisor of Q(X); we derive from the Cayley-Hamilton theorem that Q(S)=0, and
then §™! = g)S" +---+a,_ S for any n>r -1 Thus, the sequence of moments V, = ($"x, x)
(n=0) of S on x is a sequence (1). If » <m—1, we suppose that o(S) "oy = {4, 4,, ..., 4;} and
set §; =5, where L= @’1‘.=1E ;. Itis clear that §; € A (L) and O(S;)=0. Then, for any x € L
(with x # 0), the sequence of moments V, = (S]'x, x) (n>0) is again a sequence (1).

In the sequel, we study the converse question. More precisely, we study the linear moment
problem (2) for a given sequence (1).

2.2 Reduction of the Linear Moment Problem for Sequences (1)

Let P(X)= X" —a,X" ' —-..-~a,_, be the characteristic polynomial of sequence (1) and let
o, ={A1, 3, ..., A} be the set of characteristic roots of the sequence (1).

Lemma 2.1: Let {V,},5, be a sequence (1). Suppose that there exists § € A (£) such that V, =
(8"x, x) for all n> 0, where x # 0 is a (fixed) vector of E. Then o(S)nop={4,,...,4;} #0 and

5l
X=2,,%;, where x;, e E .

Proof: Let S € A (E) and, for any n>r—1, set R, = §™ —q,S"—---—a,_,S""*. Then we
have Rx =27, u jﬂ'}“’“P(A e, for any x=3%""_, pe; € E. Using equation (2), we obtain the
following system of m linear equations in the unknown variables ,uf,' ,u%, o 1,

m
k 2_0 1 —
_ l/lj.P(/lj),uj =0, k=0,1..,m-1,
j=
by taking n=r—17,...,r +m—2. The determinant of this system of Vandermonde type is A =
P(Ay) ... P(A,)Thicicjem(A;— ;). The operator S is simple, so 4; = 4; for i # j, and because
x # 0 we must have A =0, which implies that o(S)Nop, ={4,,...,4;} #0 and x = 25.:1 He;. O

If P(X) does not have a real root, Lemma 2.1 shows that the sequence (1) is not a sequence
of moments of an operator S € AL(E). Let S € A(E); if 6(S) nop =0, then the sequence (1)
cannot be a sequence of moments of the operator S. A partial converse of Lemma 2.1 is given by
Lemma 2.2.

Lemma 2.2: Let {/,},, be a sequence (1). Suppose that there exists § € A°(E) with o(S)n
0p={Ay,...,4;}. Then there exists a vector x #0 in E such that ($""'x, x) = Z;;}, a,(S"x, x)

for all n>r—1. More precisely, we have x = Zj.=1 x;, where x; € E;.
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r-GENERALIZED FIBONACCI SEQUENCES AND THE LINEAR MOMENT PROBLEM

Proof: Let S € A(F) and set o(S)={4,,...,4,,}. Then we have the orthogonal decompo-
sition E=@7_,E;, where E; = {x € E; Sx=21,x}. Suppose that 6(S)op, ={4,,...,4,}. For
any 1; (0<j<s) and x; € E;, we have S, = Xx, (k=20) and 25" = a2, + - +a,_, 452 +
a,_ A7 (k2r—1). Thus, we have (S"™'x;, x,) = X/ a,(S"/x,, x;) for all n>7 1. Because
the decomposition E =®/_,E; is orthogonal, we derive (§™'x,x)=Y/_{a,(S"/x,x) for any

n>r -1, where x:Zi.:lxj (x;€E). O

Example 2.1—Characterization of geometric r-generalized Fibonacci sequences which are
sequences of moments: If E =R, a simple self-adjoint operator § on E is defined by S(x) = Ax,
where A =S8(1) and o(S)={1}. Let {V/,},», be a sequence (1). IfV, =(S"x, x) for all n>0, we
derive that x? = Voand V,, =, /V)"Vy, n=12,...,r—1. For n>r, expression (1) allows us to
have VY =37 2ba V™ W/~ Then {¥,},5, is a sequence of moments of S € A (R) on x#0 if
and only if x*>=V,, V,=F/Vy)"V,, n=1,2,....r—1, and Q(¥,,¥;)=0, where Q(X,V)=Y" -
¥ba, XY/ Geometrically, sequence (1) is a sequence of moments of § € A (R) on
x#0 if and only if x>=V,, V, =W, /V)V,, n=12,...,r—1, and (%,,¥,) is a point of the
algebraic curve of equation O(X,Y)=0. O

A subspace L of E is called invariant under S € A(E) (or S-invariant) if Sx € L for all
x € L, and we denote by §;, the restriction of S to L.

Lemma 2.3: Let § € A(E) and let L be a nontrivial S-invariant subspace of E. Then P(§,)=0
if and only if L € ®seo(5)no, Es-

The proof of this lemma my be deduced using the fact that any operator S € A,(E) defines a
basis of eigenvectors of £ and its restriction to any nontrivial S-invariant subspace L is an operator
of A,(L).

From Lemmas 2.1, 2.2, and 2.3, we can derive the following proposition.

Proposition 2.1: Let {V,},5, be a sequence (1). Suppose that there exists § € A (E) such that
V,=(8"x,x) for all n>0, where x#0 is a vector of an S-invariant subspace L of E. Then we
have V, = (§x, x) for any n>0.

With the aid of Lemma 2.2 and Proposition 2.1, the linear moment problem for a sequence
(1) may be reduced as follows: Find S € A(E) such that o(S)n o, #0 and V, =(S"x, x) for
n=0,1,..,7r-1, with x#0 in L=®jco(s)no,E1, Where E; ={x € E; Sx=Ax}. Thus, from
Lemmas 2.1-2.2 and Proposition 2.1, we derive the following result.
Theorem 2.1: Let {V,},5, be a sequence (1). Then {,},., is a sequence of moments of

S e A,(E) on a vector x =0 of E if and only if S € AL(E) and § is a solution of the reduced
moment problem
V,=(8"x,x) forn=0,1,..,r-1, ?3)
where x e L = QBAEa-(s)ﬁo-PEA.
Suppose the reduced linear moment problem (3) has a solution S € A (E) with x#0 in L,
an S-invariant subspace of E. If P(§,) = 0, then § is a solution of the linear moment problem (2).
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Proposition 2.2: Let {V,},>, be a sequence (1). Suppose that S € A,(E) is a solution of the
linear moment problem (3) with x # 0 in L, an S-invariant subspace of E, such that P(S§)=0.
Then any extension §; € A (E) of §;, to E satisfies V,, = (S{'x, x) for all n>0.

Example 2.2: Let {V,},, be a sequence (1) with 7, >0 and S € A (E). Suppose o(S)nop =
{4}; it is obvious that 1 #0 because a,_; #0. Let e, be a basis of E; with (¢, ¢)=1. Then
{V,}n20 is a sequence of moments of S on x =V, (or —[V},) if and only if ¥, = (S*x, x) = 2V,
forany £ =0,1,...,7—1. This example is an extension of Example 2.1. Thus, we have the same
geometrical interpretation. O

Example 2.3: Let (E,(.,.)) be a unitary real vector space of dimension m and let {V,},-, be a

sequence (1) with 7 >2. Suppose that the reduced linear moment problem, ¥, = (§*x, x) for & =
0,1,...,7—1, where x#0, has a solution § € A(E). Let o(S)nop={4,,4,}, with 4, <A4,.
Let e; be a basis of E; with (¢;,e;)=1 (j=1,2). It is obvious that (¢;,e,) =0. Then we have
V, = (S*x, x) = 2a® + 25b? for any k > 0, where x = ae, +be,. If r =2, we have

2 2’2]0_11 2 ]1__2‘1]0
a 17 >0 and b A, >0
If » > 3, we have
1_ 1 AV, Ve 2_ 1 V=4V
= 271"k o d PP=— k" Mkl
a A A,-4 > an A Q-4 >

for any £ =1,...,7 —1. These expressions imply that
1
V= m[(leo ~WA + - AP 2]
forall k>0. O

2.3 Sequences (1) and Associated Matrix §

For the construction of § € A (F) associated to a given sequence (1), it is more convenient
to consider a unitary real vector space (E,(.,.)) of dimension m=card{i; e Rnop}<r. In
this case, we set o(S)nop ={4,,...,4,} R and consider an orthogonal basis {e,,...,e,} of E,
where Se; =Ae; for j=1,..,I. Then S may be identified with the diagonal matrix D=
diag(A,,...,A;). f m>r+1, Theorem 2.1 and Proposition 2.2 allow us to see that we can con-
sider a self-adjoint extension S; of Sand x #0,x € L =®jeo(s))n0,E; -

3. REDUCED LINEAR MOMENT PROBLEM OF SEQUENCES (1)
AND HANKEL FORMS

3.1 Hankel Matrices and Hankel Forms

A real (or complex) matrix M =(a; )o<; 1<y, Where 0< p<+w, is called positive semi-
definite (resp. positive definite) if 2o ; 1<, @1, 20 (resp. >0) for any finite sequence 7=
{n,}0<;<m> Where Z denotes the complex conjugate of z. Let y ={y ;},,, be a sequence of real or
complex numbers. The family of matrices defined by H(m) = (¥ ;.4 )o<;, k<m1, Where m=1,2, ..,
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are called Hankel matrices associated with y = {y ;} ;>,, and the family of quadratic forms defined
by #,.(17, 1) = 2o, k<m-1 7 js271;7, Where 7= {1,}o<;<m1, are called Hankel forms. An infinite
Hankel matrix, H =(y ;,,); >0, 18 called positive semidefinite (resp. positive definite) if, for any
m, the Hankel form ¥, is positive semidefinite (resp. positive definite) or, equivalently, the
Hankel matrices H(m) = (¥ ;s4)o<; x<mt (M=1,2,...) are positive semidefinite (resp. positive
definite). Hankel matrices and forms play an important role in the theory of moment problems
(see, e.g., [1]-[6]).

3.2 Linear Moment Problem of Sequences (1) and Hankel Forms

Let (E, (.,.)) be a unitary real vector space of finite dimension m and fix an orthogonal basis
{ei,e,,....e,} of E. Let A=(V,,....V,_;) (r >2) be a sequence of real numbers, and consider the
real quadratic Hankel forms on E defined by #)(x,x)=Zoq; s<p 1Vl & (P21 for x=
27 &,e;. Suppose r =2m—1and that the Hankel form ¥4 is positive definite, and consider the
scalar product on the K-vector space K,,_[X] (K =R or C) of polynomials of degree <m—1,
defined by (P,0)=2o<; k<m17? il T, Where P = ZOSjSm—lé'ij and O=24g;cmy ﬂij-
Let S$:K,, [X]— K, _[X] be the linear operator defined by S(X’)= X’/*'. Then S is a simple
hermitian operator of defect 1 which satisfies ¥, = (S*x,x) for k=0,1,...,7r~1, where x=
P(X) =1 (see[5], pp. 348-51; [6], pp. 443-48). More generally, it was shown in [5] and [6] that
the linear moment problem ¥, = (§*x, x) for £ =0,1,...,7—1 has a solution § € A (E) on x#0
if and only if the Hankel form %, (z21] is positive semldeﬁmte and rk ¥ = min(p, m) for p=1,2,

. [#1], where rk¥; is the rank of %, and [z] is the integer defined by [z]<z <[z]+]1 for
zeR. Let Q, be the set of A=(},,...,V,_;) € R" such that ?C[H.] is positive semidefinite and
rk%ﬁ =min(p,m) for p=1,..,[%1]. Then, for a sequence (1), we derive the following result
from Theorem 2.1.

Theorem 3.1: Let {V,},-, be a sequence (1) and set 4=(V,,...,V,_;). Then the following state-
ments are equivalent:

(i) A= (I/O’ tee Vr—l) EQ,.
(i) The reduced linear moment problem (3), V,=(S"x,x) for 0<n<r-1, has a solution
S € A°(E) on a nonvanishing vector x € E .
(iii) The linear moment problem (2), ¥V, = (S™x, x) for n >0, has a solution S € AL(E) on a non-
vanishing vector x € E.

In (i) and (jii), we have x # 0 and x € L, an S-invariant subspace of E.
3.3 The Case of Fibonacci and Lucas Numbers

Let (E, (.,.)) be a unitary real vector space of dimension 2. Let {L,},,, be the sequence of
Lucas numbers defined by Ly,=2, L,=1,and L, =L, +L, , for n>2. Then the associated

Hankel matrix
(21
#=(1 3)
is positive semidefinite and has rank 2. Thus, the reduced linear moment problem,

3% Nov.



F-GENERALIZED FIBONACCI SEQUENCES AND THE LINEAR MOMENT PROBLEM

Ly=2=(x,x), L;=1=(8x,x), L,=3=(Sx, x),

is solvable. Then Theorem 2.1 implies that the linear moment problem is solvable for all L, =

(S"x, x), and because
o 1445 0 1-45
O-Pf{¢+_ 2 )¢—_ 9 }a

we derive from the method of construction of § (see Subsection 2.3) that we can choose
(¢+ q? ) and x=(1,1).

Let {F,},»o be the sequence of Fibonacci numbers defined by F; =0, F =1, and F,,, =
F,+F,_, for n>2. Then the associated Hankel matrix

_(0 1
A=t )
is not positive semidefinite. Therefore, even the reduced linear moment problem Fy=0=(x, x),
=1=(Sx, x), and F, = 1= (§x, x) is not solvable.

Because of Theorem 2.1 and Proposition 2.2, we can consider (E,(,.)) as a unitary real
vector space of dimension m > 2.

4. DEFINITE AND INDEFINITE LINEAR MOMENT PROBLEM
FOR SEQUENCES (1)

Let (E, (,.)) be a unitary real vector space of finite dimension »z, and consider a sequence of
real numbers (V,)o<,<,, Where p<co. The linear moment problem (2) is called definite if it has a
unique (up to conjugation by a unitary operator) solution § and indefinite if not. It was shown in
[5] and [6] that the linear moment problem (2) is definite if and only if p >2m—1. Let {V},., be
a sequence (1). Theorem 2.1 shows that if the linear moment problem (2) is solvable, it is
reduced to the linear moment problem (3), ¥, =(8"x, x) for n=0,1,..,r - 1.

Suppose that the reduced linear moment problem (3) has a solution § € A (£). Then the
Hankel form ¥, z1] is positive semidefinite, and rk ¥, = min(p,m) for p=1,2,...,[5] (see [5],
[6]), and from Theorem 2.1, we also have § e A” (E) Therefore, in this case, the definite or
indefinite reduced linear moment problem (3) depends on the cardinality / of the set o(S) o, =
{Ay, ..., A,}. Even more precisely, let S eAT(E) and {e,e,,...,¢;} be an orthogonal basis of
L= EDI 1£;, where ¢; € E;. Then the scalars &; of the vector x = 2 =1 & €, in the reduced linear
moment problem 3) satnsfy the following linear system of » equations,

My ++ My =V, j=0,.,r-1,

with y; = af. Using Propositions 2.1 and 2.2 and Theorem 3.1, we derive the following result.

Theorem 4.1: Let § e A(E) and (V,),>0 be a sequence (1) with » >3. Suppose o(S)n o, =
{A,..., 4,}, where />2. Then, if the linear moment problem (3) has a solution, it is definite if
1=m <[] and indefinite if / <[Z{]<m.
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Example 4.1: Let (V,),>o be a sequence (1) with » >3. Suppose that the Hankel form ‘9‘(5’[4%_,] is
positive semidefinite and rk%Ca = min(p, m) for p=1,2,...,[%!]. Then, by Theorem 3.1, the
reduced moment problem (3) has a solution § € A(E). If o(S)nop ={4,,1,} with 4, <4,, we
set L=E ®E, Then P(S;)=0, and we have V, = (S"x, x) = Xja® + }p* for n=0,1, where
x =ae; +be,. For m=2, Theorem 4.1 shows that the operator § is unique and that the linear
moment problem (2) for the sequence (1) is definite. If 3 <m <[Z}], Proposition 2.1 implies that,
for any self-adjoint extension S; of §; such that o(S)) o, = {4, 1,}, we also have that V, =
(S7'x, x) for n>0. Thus, the operator S is not a unique solution of the reduced linear moment
problem (2). Hence, the linear moment problem (2) for the sequence (1) is indefinite. [

S. APPLICATIONS AND CONCLUDING REMARKS
5.1 Application 1: Sequences (1) Which Are Linear Combinations of Geometric Sequences

Let {V,},0 be a sequence (1). It is well known that V, = ¥ 37! By, A}, where 4, 4,, ...,

j=0
A, are roots of the characteristic polynomial of the sequence (1), with multiplicities m, m,, ...,
m, respectively (m +m, +---+m, =r), and B, ; are obtained from the initial conditions (V;, V],

....V,_;) (see [7] and [8]). Then {V/,},, is a linear combination of real geometric sequences if and
only if
ﬂ[’j_—'o; j=1,...,m1—1, l=1,...,k, (4)

and S, , =0 if 4, is a complex root. The choice of the initial conditions (V;, 1, ...,V,_;) such that
the B, ; satisfies the system of equations (4) implies that V,, = P B oAl, with B, ,=01if 4, is a
complex root. It seems difficult to find such (V,,V,,...,V,_;) by a direct computation from the

system of equations (4). Meanwhile, Theorems 2.1 and 3.1 allow us to answer this question, as
was shown in Examples 2.1-2.3.

5.2 Application 2: Sequences (1) and Linear Systems of Vandermonde Type

Consider the linear system of 7 equations and m unknowns y,, ..., y,, of Vandermonde type
P+ +H,y,=b;, j=0,1,.,r-], )

where 7 >mand 1; eR with 4,# 4, if i # j. The preceding results may be used to study this
system. More precisely, we can associate to this linear system of equations a sequence (1) such
that (7, ..., V,_;) = (b, ..., b,_;) and whose coefficients a,, ..., a,_, are given by the characteristic
polynomial P(X)=(X-4)):--(X-1,)0(X), where O(X) is a polynomial of degree r—m.
We now consider the linear moment problem (2) for {V/,},5, With S € A (E), where (E, (.,.)) is
a unitary real vector space of dimension m such that o(S)={4,,...,4,,}. Hence, if {V,},501s a

sequence of moments of an operator S € A (E), the linear system (5) has a solution (y,, ..., y,)
with y; >0. Conversely, suppose that the system (5) has a solution (3, ..., ¥,,) With y; 20. Let

(E,(.,.)) be a unitary real vector space of dimension m and set-S € A /(E) such that o(S) =
{A,.... 4.}. Let {e,e,...,¢e,} be an orthogonal basis of E, where Se; =4,e;. Then we can
verify that ¥, = (§"x,x) for all n>0, where x =27, u e, with p} = y,.
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5.3 Relation with Scalar Spectral Measures

Let (E,(.,.)) be a unitary real vector space of dimension m and set § € A (E) such that
o(8)={4,,..., 4,,}. Consider the spectral decomposition E = @, E; of E. Forall x=2%7,x;
and y =27, y; in E, where x; and y;are in E; (1< j<m), the scalar spectral measure v, , is
defined by

[/ OV, =(F$)x, ), ©)

where fis a continuous function on (), which may be identified with a finite sequence (a,, ...,
a,,). From expression (6), we derive v, , =", vy, , and it is easy to see that

[y T OV25, (0= (F$)%, %) = F (A ).

Thus, vy, ,, = (x;,;)04,, where &, is the Dirac measure. In particular, for f(z) =z", we have
(F ()%, y)=(x,, y)A. Let {#,},5o be a sequence (1) and suppose that it is a sequence of
moments of the operator S on a vector x = Y i me;. Then we have (x;,y,) = p5, i} satisfies
the linear system of equations of Vandermonde type (5), and {V,},>, is a sequence of moments of
the positive measure v, , =27, ;1?6 2, on o(S). This measure is unique if the moment problem
(2) (or (3)) is definite.
In general, we can consider the measure moment problem for sequences (1) on the interval
[0, 1]; it can be formulated as follows: Characterize sequences (1) that are sequences of moments
= j; t"dv(t) of a (unique) positive Borel measure v on [0, 1] (see, e.g., [1]-[4]). We have found
some results on this question using techniques presented in [1]-[4].

5.4 Complex Case

Suppose that (E,(.,.)) is a unitary complex vector space of finite dimension m. Then all
results still hold.
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IN MEMORIAM

Herta Taussig Freitag
December 1908-January 2000

Herta Taussig Freitag, long-time teacher, mathematician, and Fibonacci enthusiast, died January 25 at
the age of 91. Her radiant smile and articulate speech reflecting her native Austria were unforgettable
to hundreds of colleagues and friends. She remained an active participant in The Fibonacci Association
until shortly before her death, assisting in the presentation of four papers at its 8" International
Conference in 1998.

Herta's life story is one of triumph over adversity. Born in Vienna, she pursued her education there
with a major interest in mathematics. When Hitler took over Austria in 1938, an event for which she
had vivid memories, she began a six-year struggle to emigrate to the United States. It became clear that
the only way out of Nazi Austria without a financial guarantor was to obtain employment in England as
a domestic servant, an experience her brother describes as "Dickensian." A more complete account of
her journey to freedom is included in the book One-Way Ticket by former student Mary Ann Johnson.

Upon arrival in the United States in 1944, Herta first taught at Greer School in New York State where
she met her husband, Arthur H. Freitag. She began her long career at Hollins College in 1948 and
completed her Ph.D. at Columbia in 1953. Among her numerous teaching awards were the Hollins
Medal and the Virginia College Mathematics Teacher of the Year Award.

In her lifetime, Herta experienced prejudice in several forms but was never embittered by it. When she
received the Humanitarian Award from the National Conference of Christians and Jews in 1997, the
nomination read, in part: "What would have been a life-shattering experience for many set her on a
course of personal professional achievement directed toward helping everyone, regardless of race, sex,
color, ethnic background, religious persuasion or social class reach their maximum potential. And she
does it in such a way as to make one feel that she is traveling with you, rather than leading the way."

Herta is survived by a brother, Walter Taussig, an associate conductor with the Metropolitan Opera, and
a niece, Lynn Taussig. She will also be greatly missed by her Fibonacci "family" and a host of friends.

Margie Ribble
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1. INTRODUCTION

One of the central tools in enumerative combinatorics is that of generating functions. Gener-
ating functions can, e.g., be used to find the asymptotic behavior of the enumerating sequence
(e.g., the Hardy-Ramanujan estimate for the partition function P(n), see [3]) or even may yield an
explicit formula for the solution (e.g., Rademacher's famous explicit formula for P(n), see [6]).

Given a combinatorial problem, there are numerous ways to find the corresponding genera-
ting function. One possibility is to start with a recurrence relation, as, e.g., the recurrence for the
Fibonacci numbers (a,), «n, =(0,1,1,2,3,5,8,...), which we write in the following form:

a,=a, , +an_1+51’n Vnel,

i
,=0 Vi <0 M

(8., denotes the Kronecker symbol). The z-transformation method requires multiplying (1) by
z" and summing over ». This yields an algebraic equation for the generating function f(z)=
Yo 0@, z", namely,

f@=22f@)+2f (D) +z,

which is easily solved, giving f(z) = —= The Taylor expansion of this function yields

1-z-22 °

PRNSERNS |73 (e STEO

i.e., we obtain the explicit Euler-Binet" formula for the Fibonacci numbers

{5 )

A second way to find a generating function is to use Polya's index theorem. For example, let
M be the set of all syntactic bracket figures with index n equal to the number of bracket pairs. For
n =73, we have the set M, of three bracket pairs:

M, = {01100, 00, 100, T, 000

I-z- n=0

* This formula was derived by Jacques P. M. Binet in 1843, although the result was known to Euler and to Daniel
Bernoulli more than a century earlier.
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M — M, x M xMUM,
[alb ({1, a,b)
G- J

we have a bijection between the sets M and M, x M x M U M, which is additive, that is,
ind([a}b) = 1+ ind(a)+ ind(b). Then, by Polya's theorem, the relation between the sets trans-
lates directly into a relation for the generating function for the numbers ¢, = card(M, ), namely,

f@=22)+1.
Taylor expansion of the solution f(z)=A(1—+1-4z)=3X ;c,2z" yields the Catalan numbers

1 (2n
c”_n+l(n)'

A third way is to use methods from the theory of difference equations, which reach from
continued fractions to Laplace transformation. As an example, we mention a recent theorem of
Oberschelp (see [5]) that allows us to transform a difference equation into a differential equation
for the exponential generating function by a formal procedure. For example, the Sloane-Plouffe
sequence M1497 in [7], f,, which counts the number of ways to build a sequence without repeti-
tion with » variables satisfies the recurrence f,,, = (n+1)f, +1. Oberschelp's theorem requires
the exchange

k
n Z 5

i.e., to replace f,,; by f', nf, by zf’, f, by f, and 1 by ¢*. This procedure yields the ordinary
differential equation (1—z)f’— f =€ with the solution f(z) =& determined by f(0)=1. Since
f(2) is the exponential generating function, we get in fact f, =n!(1+4+---+).

Experience shows that the situation becomes considerably more delicate as soon as the prob-
lem requires solving partial difference equations. In this article we want to describe methods
which allow us to calculate the generating function from a recurrence relation. The idea is to link
the Laplace transform directly to generating functions by interpreting the Fourier formula for the
inverse Laplace transform as a residual integral. The reader who is not familiar with the Laplace
or Fourier transformation might consult [1] or [8]. The idea is certainly not new; however, we
would like to show that it applies also to more complicated (e.g., non-local) partial difference
equations.

2. AUXILIARY RESULTS
2.1 Laplace Transformation
Let (@,)n ez, @, =0 for n <0, be a sequence of real numbers with generating function f(z) =
Tnez@nz". Wecall
A(z) = Zanl[n, m-l[(z)

nel

the associated step-function. Here, 7, denotes the characteristic function of the set /. Then the
following theorem holds.

396 [Nov.



DUAL FORM OF COMBINATORIAL PROBLEMS AND LAPLACE TECHNIQUES

Theorem 1: If the Laplace transform £[A] of the associated step-function A exists; it is related

to the generating function f by

LLAS) =+ 1) f ).

Proof: Since we assume 4 to have at most exponential growth, we may transform term by
term and obtain

LLANS) = Yy Lt o]
n=0

Writing ¥, i = H(—n)— H(-— (n+1)), where H = y|q o denotes the Heaviside function, and
using the fact that L[H](s) =1, we obtain, by applying the basic rules for the Laplace trans-
formation,

LAY = Ya, (1=,

which is what we claimed. O

The following calculation provides a useful variant of Theorem 1: If 1 g(e~?) is the Laplace
transform of a piecewise smooth function G, we have by Fourier's formula for the inverse Laplace
transformation that, for every point x € R, where G is continuous,

1 | A
G(x)= PP pvJ‘rE gle™®)e™ dz.

Here, T is the curve T:R— C, #+> s+it, with s € R large enough, and "pv" denotes the princi-
pal value. If we denote I, :[0,27{— C, t > z :=s+i(t +2nx), we have

G(x) = 3%11— pv ZZ L_" % gle™edz. ¥)

Observe that, by the Fourier-series expansion, we have, for x ¢ Z,

e|'x](s+it)

Z 1 ex(s+i(r+2mr)) —
= s+i(t+2n7) et -1’

where [-] denotes the ceiling function, i.e., [x7] is the smallest integer larger than or equal to x.
Hence, by substituting # = e~?, we obtain from (2) with n=| x|,

_1 8@ du
Gx) = 27i J;' 1—u o™V ®)

where ¥ :[0,22]— C, > e~¢", and where | - | denotes the floor function, i.e., | x| is the largest
integer smaller than or equal to x. Thus, if g is analytic in a neighborhood of 0, we may interpret
the integral in (3) as the Cauchy residue integral for the n'™ Taylor coefficient of the function glf';) i
Thus, we have the following corollary.

Corollary 1: Assume fand g, are analytic functions in a neighborhood of 0 and a,, is given by

Le(ee=dz @

__1
In =27 PVl
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for some (and hence any) x €]n,n+1[ and I" as above. If lim, 90% =0 for all n e N,
then f;fzz) is the generating function of the sequence a,.

Let us briefly mention some advantages that the use of the Laplace transformation provides:
Suppose we are given a generating function f(#). Only in simple cases is it possible to use direct
Taylor expansion to obtain a formula for the coefficient a, of #”. Also, the Cauchy residue a, =
Res,_ {: @ or (in case of a meromorphic function f) a, =— ZResmtO %‘% is often difficult to cal-
culate. In such a situation, it may be helpful to split the residues via the Laplace transformation
(as in the calculation preceding Corollary 1) in order to obtain an expansion (or at least an asymp-
totic formula) for the a,. To illustrate this, let us consider the example of the generating function

of the Bernoulli numbers

_ 1 e (ED"2B,y,
f(u)—ucotu—l-an:l—(zn)!—zu.

According to Theorem 1, the Laplace transform of the associated step-function G is

),

g(s) =

and we may use the Fourier formula to invert g: £ '[g](f) = X Res g(s)e”. The singularities of
g(s)e” are located at s, ,, = mzi—log(kzn), k eN, m e Z. For t € Z we have

—% if m is even,
Res, glsper={ "7
o — 72— if mis odd.
Sk,m(—k)

Combining residues for m and —m, we can easily sum the residues for fixed k& over all m and
obtain
1
LN =~ 7
I; ( k )2|_r/2_]

(Notice that one obtains a formula for ¥,_ -1 by expanding e¢* on ]-z,z[ in a Fourier
series.) Since ¢t € Z (G jumps in Z), we ﬁnally get the zeta-function formula for the Bernoulli
numbers:

i 2020)1 & 1
B +1
2n = ) (2 )2n Zlan

A second benefit of the Laplace transformation are the various rules. For example, by the

rule L[f'1(s) = sL[f1(s) - f(0), we have, for f,(¢):=¢*, that
LLLAS) = sLLL16) = 2281 1110)-
Hence, for fixed s, the analytic function

h(z) =L = [ rear

solves the difference equation sh,(z) = zh(z —1). In particular, for s =1, we obtain Euler's integral
representation of the Gamma-function. It is a particular feature of the Laplace-transformation
method that it can be used to determine the analytic continuation of a discrete function. The
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Laplace transformation also yields a functional connection between the exponential generating
function e(x) and the ordinary generating function f(x) of a sequence a,. In fact, we have

N7 AN PR oA ey~ L[
Plel(s) = se[ngo Gy ](s) =Y i =1/ ()
ot

The translation-rule L[ f(z — c)(s) = e ** L[ £ (¢)](s) for ¢ >0 allows us to transform a (linear)
difference equation into an algebraic equation for the transformed function (this feature is similar
to the z-transformation). In particular, it is possible to reduce a linear partial difference equation
with 7 variables to an equation with n—1 variables. For an example, see Section 3.4 or 3.5.

Another virtue of the Laplace transformation appears when one looks for an asymptotic
expansion of a sequence or (which is a similar thing) when one treats difference equations which
show oscillation and damping effects. If one is only interested in the stationary state, one can
already, at the level of the transformed function, identify terms which lead to exponentially decay-
ing terms in the solution and drop them for the rest of the calculation.

2.2 The Dual of a Linear Difference Equation

Many combinatorial problems lead to partial difference equations. As a prototype example,
we investigate the two-dimensional case.

Let X — Z*>. Foramap p: X — R, we consider the linear equation

p@)= Y a)p©), (*)
{eX:fespta,}

where we assume that the cardinality of the support of a, (spt a,  X) is finite for all ze X, i.e,
that the sum in (*) is always finite. A set 4 X is called stable if for all maps f: 4 — R there
exists a unique solution p of (¥) such that p|,= f. Atriple (X, 4, %) is called #riangular if X can
be written as X = (x;), . in such a way that, for all i € N, there holds spta,, c AU{x,, ..., x_},
and for all z € 4: spta, ={z} and a,(z)=1. In particular we have that, for a triangular triple
(X, 4, *), the set 4 is stable.

Now, let (X, 4, ) be triangular and f : A — R be given. Then, for any fixed x = x; € X, the
solution p of (*) in x is a finite linear combination of the values of fon 4, i.e.,

p() =Y a (S
sed

In order to determine the weights «,({), we proceed as follows:
(1) Put ared mark on x.
(ii) Replace each red mark on y € X'\ 4 by a blue one on y and by a,({) many red marks on ¢

for all J e spta,.
(iii) Iterate (ii) until no more red marks on X'\ 4 exist.

If n denotes the maximum of the set {7: there is a red mark on x, }, then, in each iteration step, n
decreases at least by one due to the triangular structure. Hence, the iteration process terminates.
If we denote by §(¢) the number of red marks on £, the quantity

2. 7p&)

SeX
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is invariant during the iteration. Hence, we obtain the result that after the iteration is completed
the number of (red) marks on ' € 4, i.e., §({), equals the weight a,(¢).

- If we denote by g({) the final number of marks (blue or red) on ¢ (i.e., after termination of
the iteration), the iteration process described above translates into a partial difference equation for
the function ¢:

a@= 3 a(2q9©) (x%)
{Ced,:ze sptag}
with g(x) =1 and with 4, :=trx\ 4, where trx is the equivalence class of x with respect to the
transitive hull of the relation u ~v:<>u e spta,, v ¢ A. Notice that (4,, {x}, **) is triangular and
finite. Let us summarize this result in a theorem.

Theorem 2: If (X, A, ) is triangular with prescribed values f on 4, then the weights «_ in the
solution formula p(x) =>;c4 @.(£)f($) can be determined by the iteration scheme (i)-(iii) or,
equivalently, by solving the dual linear recursion (x*) with initial value g(x) =1.

Many transformation problems (for example, the Boustrophedon transformation in [4]) can
be described as follows: Let (X, 4, ) be triangular; then we fix sets 4’ ={a,,a,,...} © 4 and
X'={b,b,,...} © X and prescribe f(a)=¢;, and f =0 on A\A’. If we denote the solu-tion
v, =p(b,), the mapping ¥y y. , 4 .:(4) > (y,) is a linear transformation of sequences, the
associated linear mapping (ALM). The problem of finding its matrix (or the matrix of the inverse
transformation) can often be solved by using the Laplace transformation technique for the partial
difference equation for the weights (xx) even in cases where it is not possible to use directly the
Laplace transformation in the original partial difference equation (¥). We will see some examples
in the following section.

Before we discuss the examples, we will close this section by stating a simple path-counting
lemma.

Lemma 1: Suppose the coefficient functions a in (*) satisfy the following invariance property for
all z=(n, k) and z’' = (n, k') in X = Z*:

a,(n+i,k+j)=a,(n+ik'+j), Vi, jel. %)

Suppose, furthermore, that the column {(0, k) : k € Z} is stable and that p denotes the solution of
(*) with prescribed values @, on (0, k). Then the column {(N, k) : k € Z} is stable for
P@= Y ap©) )
{Cex}
@) :=a,(u+V) and (i, j) := (i, —j). Finally, if we prescribe the values a; on (N, k)
for the equation (1), then p(0, k) = p(N, k).

Proof of Lemma 1: We may interpret (x) as a directed graph G with a,(¢) many edges
from ¢ to z. If we set ay =0y y,, then p(N, k) is the number of paths in G from (0, &y) to
(N, k). If we flip the graph horizontally by z+> Z and invert the orientation of the edges, we
obtain a graph G’. Now, () describes G’ and p(0, k) is the number of paths in G’ from (N, k;)
to (0, k) which equals, by construction, the number of paths in G from (0, ky) to (N, k).

For general (), the claim follows by linearity. O

where @
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3. EXAMPLES AND APPLICATIONS
3.1 The Fibonacci Numbers and a Variant of Faulhaber's Formula
Let X ={(k,n):n>k>0} and A= {(k,n) € X :ne{k, k+1}}. Further, let

a )= 5k,i5n-1,j + 044105, for (k,n) & 4,
€&l = s 5 otherwise,

k,i%n,j
in the equation (*). This is easily seen to be triangular. For the sets A’ = {(k, k+1) € A} and
X'={(0,n) e X:n>0}, we have that the ALM ¥y . , 4. applied to the sequence (1 1,...)
yields the Fibonacci sequence (f(r)),. Let us calculate the weights via (x*):

qtk,m)y=qlk,n+D+qk-1L,n+1)

with g(0,/) =1. This is (up to renumbering) just the recursion for the binomial numbers, i.e., we
get the "shallow diagonal" sum formula connecting Pascal's triangle to the Fibonacci numbers:

The binomial weights always occur for this type of equation: For another example, let
p(k,n):=3" i*. Obviously, for fixed &, p is a polynomial in n of degree & +1. Faulhaber's
famous formula expresses this polynomial in the basis {1, 7, 7n%, 7, ...}, and the coefficients in this
basis involve the Bernoulli numbers. Here, we want to express the polynomial in the basis

BHEE)-

Consider again the "binomial" difference equation f(k,n)= f(k,n—1)+ f(k +1,n—1), this time
on X = N3, with initial data £(0,n) = p(k,n—1) for fixed k. The weights for the dual equation
clearly are, as above, the binomial coefficients; hence, p(k,n—1)= X" (7)f(,0), and it remains
to find £ (i, 0). Since f(1,n)=n*, we use
> (7)itsaeiy =, ©)
i=0
where S, denotes the Stirling number of the second kind (see next section). Indeed, each term in

the sum may be interpreted as the number of sequences in {1, ..., n}* with exactly / different num-
bers. Thus, f(+1,0)=i!S,(k,7) and we recover the well-known formula

- (n+1). .
Pl =3 (1) s,
i=1
which one also gets by summing (6).

3.2 The Stirling Numbers

The Stirling numbers of the first kind §;(», £) count the permutations of » distinct objects
that can be written with exactly & disjoint cycles (cf. [2]). They can be computed recursively as
follows: S (n+1, k) :=n-S8,(n, k) +8,(n, k- 1), where S;(1, k) := &, ;.
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Let S,(k):=S,(n, k); then S,(k) satisfies the recurrence S, (k)=nS (k)+S (k—1). Let
L,(s) denote the Laplace transform of the associated step-function of S (k). Then we get
L,..(s)=nL(s)+e*L,(s)= L,(s)(n+e*), with L,(s) =1(1-e*). Hence,

1 _s n-1 i _s
L) =50-e)[]G+e™).
j=1
Thus, by Theorem 1, we find that
n-1
L@ =T1G+w

j=1
is the generating function for (S,(n, k)), .

“The Stirling numbers of the second kind §,(n, k) count the number of groupings of n dis-
tinct objects into & disjoint (nonempty) groups. They can be computed recursively as follows:
S,(n+1,k):=k-S,(n, k) +S,(n, k1), where S,(1,k):=35, ;.

Let S,(n) := S,(n, k); then §,(n) satisfies the recurrence S, (n) = kS, (n—1)+S,_,(n—1). Let
L,(s) denote the Laplace transform of the associated step-function of (). Then we obtain
L,(s)=ke L, (s)+e°L,_,(s). Therefore,

-5 k -5
L(s)=1L, (s)—4—=1L €
(= La® 1 = LT

with Ly(s) =1. Thus, by Theorem 1, we get that

u
11— Jju

k
Se@) =

J=

is the generating function for (S,(n, k)),.
It is well known that the matrix of the Stirling numbers of the first and second kind are
inverse in the sense that

£0) =35, 1)e®
if and only if N
e(n)= Z (1) 8,(m, 1) £ (7).

Instead of proving this rather special formula, we now investigate more general conditions
which still imply an inversion formula of the above type.

3.3 An Inversion Formula

We consider the following situation: Given a linear equation (*) with X =N, x Z, which sat-
isfies the invariance property (5), we suppose that with 4:= {(0, k) : k € Z} the triple (X, 4, ) is
triangular. We set A":={(0,k):k eNy} and X’:={(n,0):n Ny} and consider the mapping
Wy x4+ (@) (w,;). Notice that the equation (xx) for the weights inherits the invariance
property (5), and hence we can apply Lemma 1 to () and obtain

p@= X 3P, (1

{{ex}
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with p(n, 0) =6, ,, where a,,,(4) :=a,,,(4). Then we have

!//n:gﬁ(n, 0, ™)

Now we invert the previous equation: Let ¥ :=NyxN, and ¥":={(0,k):k €Ny}. For any
fixed z € X, we can replace (*) equivalently by the equation

PC)=—p- Y Epn= T a0 ()

%60 gema %60 €ewia)

for arbitrary ¢, € spta,. Assume that for any z € X we can—by choosing a suitable {;—replace
(*) by (*) in such a way that

e the coefficients a; respect the invariance relation (5),

e the triple (¥, ¥, ') is triangular.

The equation for the weights for (*') is

q(2) = > a;(2)9(9), ()

{{ e, zespt a}

with initial condition ¢(0, 0) =1 (because (x ") satisfies (5)). Then we have
$n =290, ~n)y;. ®
i=0

Hence, in view of (8) and (7), ¢ and P are inverse matrices, where g and P satisfy certain differ-
ence equations which are related in the described manner. Notice also that, by choosing £, (see
above), there is a certain freedom in the coefficients a’ which can be useful sometimes.
As an example of the previous result, we investigate a generalization of the Stirling numbers.
Let us define a, 4,(, j):=c()3; ,.10; s +d(@)S; ,10; y+1, Where ¢ and d are nonvanishing
functions. Then the procedure described above yields the following proposition.

Proposition 1: The numbers s,(n, k) and s,(n, k) for (n, k) € Zx Z, defined by

s(n, k)y=c(n-Ds(n-1Lk)+dn-Ds(n-1,k-1)
and

s(n, k)= —;—((:%sz(n, k—1)+ d(nl_ pae-Lk-D

with (0, m) = s,(m, 0) = 6, , are inverse in the sense that

o= 5010 4, = sG.mv,
i=0 i=0

For special choices of the functions ¢ and d, one easily gets, e.g., the inversion formulas for the
Stirling numbers (c(n) =n,d(n) =1), the binomial numbers (c(n)=1,d(n)=1), or the numbers
O,(n) := (1)!! counting the number of ways to build sequences of length / with » objects without
repetitions (c(/) = -4,d(D)= %) —guess what the inverse numbers are!

2000] 403



DUAL FORM OF COMBINATORIAL PROBLEMS AND LAPLACE TECHNIQUES

3.4 The Partition Numbers

As a further example, we consider the number p(n, k) of partitions of an integer » into parts
larger than or equal to £. This leads to the (non-local) partial difference equation

p(,k)y=pn—k, k)+pm k+1), ®
with p(n, k) =0 for k >n>0 and p(n,n) =1. Inthe above setting, the problem reads as follows:
X=N?, A={(n k):k>n}, A'={(mn):neN}, X'={(n1):neN}. Also, for (n, k) eX\A4,

we have

p(na k) = Z (5i,n—k§j,k +5i,n5j,k+l)p(ia .]) (10)
i,jeN

The ALM ¥y x4 40 (10) Maps the sequence (1,1,...) into the sequence p(n,1) = P(n) of the
partition numbers. The equation for the weights is given by q(n, k) =q(m, k-1)+q(n+k, k)
with initial conditions g(n,1)=1 for n< N and g(n, k) =0 for n > N. Then we have P(N)=
>N q(i,i). By renumbering, this is equivalent to saying

g, k) =q(n,k-1)+q(n+k, k) an
with §(n,1) =1 for all n, §(n, k) =0 for n<0, and P(N)=XY G, N —-i+1). Note that §(n, k)
no longer depends on NV. Laplace transformation of (11) with respect to the first variable with &
fixed yields

1
r.(s)= T e_sk‘rk-l(s)

with initial value 7 (s) =1 (since §(1, k) =1 for k €N). Thus, we have

r(s)= 1T
A

Jj=2

and, by Theorem 1, the generating function g, (u) of (7, (n)), is given by

b1
gk(u):H 7

j=1 1"”

From this, it is easy to derive Euler's classical generating function E(u) of the partition numbers
P(N). But, by interpreting §(n, k) as the number of partitions of #—1 into & or less parts (and
hence P(n—1)=g(n,n—1)=g(n,n)), we immediately get from the above calculation together

with Corollary 1 that

-
E(u)—gl_uj. (12)

Also, if f(s) denotes the Laplace transform of E, it follows from (12) that

La-en[a-e") = f@X le,
j=1

J=1

where 7, =0,1,2,5,7,... are the pentagonal numbers. Laplace inversion of the last equation yields
Euler's formula T2, (- P(n—1,)= 6, .
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What about counting weighted partitions? Let f:N—R be a weight function with the
meaning that we count partitions into 7 parts f(/) many times, or—what is the same thing by
considering Ferrers diagram—count partitions which largest part of size i, f(7) many times. Then
the calculation above gives the generating function for this problem:

i f @y

i 1.7
i=1 j=11 u

So, choosing, e.g., f as the characteristic function of the even numbers, we compute (e(n)), =
(0,1,1,3,3,6,7,12,14, ...).

To conclude this section, let us compute the inverse of the ALM ¥y v, 4 4, 10)- Let us put a
red mark on (L, L). In view of (10), we can replace a red mark on (n, k) (for n>% >1) by a red
mark on (n, £ —1), a negative red mark on (n—k +1, k—1), and a blue mark on (n, £). This game
terminates when all red marks are in 4\ 4’ (these marks are multiplied by 0) or in X’ (where a
mark on (7,1) is multiplied by y,). Hence, ¢, =L v, &(L,n), where o(L,n) denotes the
number of red marks on (#, 1).

To compute @ (L, n), we consider the directed, finite graph G, with vertices {(n,k): L>n2>
k >1} and an edge from (n, k) to (n', k') if &’ =k —1 and »' =n (these edges are called v-edges)
orif X’ =k and n' =n—k (these edges are called h-edges of length k). Now let W, (n) be the
number of paths through the graph G, from the vertex (L, L) to (n, 1), such that all h-edges have
different length and each path is weighted by +1 if the number of h-edges contained in the path is
even, otherwise it is weighted by —1. It is easy to see that W, (n) = @(L,n). To compute W, (n),
let us first define the function w(m, [, s), which is the number of weighted paths from (m, m) to
(m—1,1), such that the maximum of the lengths of h-edges contained in the path equals s (where
s =0 means that the path contains no h-edge). For the function w(m, /, s), we have

1 ifl=5=0,
w(m, [, s)=40 ifs>lors>|_%J,
—2iaqw(m—s,1-s,s—j) otherwise.
Now, by construction, we obtain

15
W, (n) = ZW(L, L-n,s).
5=0
For example, for L =12, we get (W,(n)), =(1,-1,-2,0,2,0,1,0,0,—1,—1,1) and, in fact,
P(12)-P(11)- P(10)+ P(7)+2P(5)-2P(3)- P(2)+ P(1)
=77-56-42+15+2-7-2-3-2+1=1
3.5 A Path Counting Problem

We consider paths in a three-dimensional lattice: The starting point of the paths is a point
(x,0,0), x eNy, on the x-axis. If (x, y, z) is a point on the path, then a unit step in the positive y
or z direction is allowed or a step of length y+z+1 in the negative x direction. We want to
count the number H,,(x) of allowed paths starting in (x, 0, 0) which end in a given set M < Z°.
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The dual of this problem is given by the non-local linear difference equation
qz,y(x) = qz-l,y(x) + qz,y—l(x) + qz,y(x —y—-z- l) (13)

with g, ,(x):= 0 if one of the numbers x, y, or z is negative and g, ,(0):=1. We already used an
index notation because we want to Laplace-transform equation (13) with respect to the variable x.
First, we have Q, ,(s) =1, since g, o(x) =1 for x> 0. Laplace transformation of (13) yields

Qz, y(s) = Qz—l, y(S) + Qz, y-l(s) + e—s(y+z+l)Qz, y(s)'

Considering s as a parameter, the solution of this difference equation in y and z is given by

0,03 )i

Thus, the generating function of g, ,(x) is
z+y+1 1

S = (Hy) [ 1

J=1

—ul

Hence, using the notation of Section 3.4,
- z+
R ) (ed

Finally, the solution to our path counting problem is given by the formula
zZ+
HM (5) = Z rz+y+1(x)( y)
(6-x.y,2)eM

For example, let us count the paths starting in (£, 0, 0) with at most 4 unit steps in the z direction
and such that the total number of unit steps in the negative x and in the positive y direction equals
£. This corresponds to the set M = {(x, y,z) € Z°: x = y, z < h}, and the solution formula yields

H®= Y r:+¢..x+1<x)(“5 |

z<h,x<¢

3.6 Local Linear Difference Equations

For X ={(k,0):0<k<l}and A={(k,]):] € {k, k+1,k+2}}, we consider the model equa-
tion

z(tk,)=az(k, I -D+ayz(k+1,1-1)+ayz(k+2,1-1). (149)
(X, 4, (14)) is triangular and, for X’ = {(0, /) :/ >3}, the equation for the weights is
qk,D)=aq(k, I+ ) +a,qk-2,1+D)+aq(k-1,1+1) (15)

with initial condition g(k, L) = 8, , for a fixed L >0. Laplace transformation of (15) with respect
to the variable k with / fixed gives Q,(s) = O,,,(s)(a; +a,e™* +aze>*) with initial condition O, (s) =
L1(1-e*). The solution is

0= (- +are +ag ),
and Theorem 1 gives, for the generating function of the sequence (q(k,/)),, the function (a; +

a,u +au*)*~!. Multinomial expansion yields
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an= Y (L . kL Ilc3,k2,k)alle2 faghrgh

ky+2ky=k
Since (15) does not stop the iteration when a mark lies on 4, we have to compensate by setting
gk, k+2)=qk, k+2),
gk, k+)=q(k,k+1)—agq(k, k+2), and
gk, k)y=qk,k)y—aqk,k+1)—aqk -1,k +1).

Then, if «r, is given on z € A as initial data for (14), we get the solution

] 2
Z(O,l)———z Za(i—j,i)q(i_j> i). (16)

i=2 j=0

In particular, if @, ) = x; (for j=0,1,2), 2(0,]) is the solution of x, = ayx,_; +a,x, , +a3%,_
with initial values x,, x;, x, and (16) is a root-free representation of the solution.
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1. INTRODUCTION AND SUMMARY

Catalan's sequence of numbers {C,}7 ={1,1,2,5,14,42,...} (nr.1459 and 4000108 of [14])
emerges in the solution of many combinatorial problems (see [2], [4], [5], and [16] for further
references). The moments x,, of the normalized weight function of Chebyshev's polynomials of
the second kind are given by C, /2* (see, e.g., [3], Lemma 4.3, p. 160 for /=0, and [17], p. II-
3). This sequence also shows up in the asymptotic moments of zeros of scaled Laguerre and
Hermite polynomials (see [9], eqs. (3.34) and (3.35)). The generating function c(x) = 2>, C,x"
is the solution of the quadratic equation xc?(x) —c(x)+1=0 with c(0) = 1. Therefore, every posi-
tive integer power of ¢(x) can be written as

¢"(¥) = P ()14, (x)c(x), )

with certain polynomials p,_, and g,_;, both of degree (n—1), in 1/x. In Section 2, they are
shown to be related to Chebyshev polynomials of the second kind:

pea={ 5 30a(F5 ) am=(F) S0 (F5) =m0, )

with S,(y) =U,(y/2). Therefore, it is possible to extend the range of the power » to negative
integers (or to real or complex numbers). Tables for the U,(x) polynomials can be found, e.g.,
in [1]. Because powers of a generating function correspond to convolutions of the generated
number sequence, the given decomposition of ¢”(x) will determine convolutions of the Catalan
sequence. In passing, an explicit expression for general convolutions in the form of nested sums
will also be given. Contact with the works of [6], [12], [18], and [5] will be made.

Together with the known (e.g., [4], [11]) result (valid for real n),

PN S koo __n (n+2k\__n (n—1+2k) 3
c (x)—kz:;)Ck(n)x , with Ck(n)—n+2k( X ) T n & , 3)
one finds, from the alternative expression (1) for positive #, two sets of identities:
- -p+l n-
Pl _pyrHl-pt )c=( P) 4
@y ey (" a=(, @

forneN,, p E{O, L2, ,[_%_]}, and

15 )
GO i ST )
1=0
forn eN, k eN,.
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For negative powers in (1), two other sets of identities result:

min( 251} -1

P3) 7y ("= o (A ©)

=0

forn eN, k e{O, L2 .., ]_%J} (for k£ =0, both sides are by definition zero), and

(P4) Lij ("= —Gem = () ©

for n eN, k €N with k > L§J+l. These identities can be continued for appropriate values of
real n.
Another expression for the coefficients of negative powers of c(x) is

min(n, k

)
Gem=3 V(])Ceat ®)

I=1
for n,k e N, and Cy(-n)=1, C,(0)=0,,. Also, from (3), C,(-n)=-C,_,(n) for n,k € N with
k>n.

The remainder of this paper provides proofs for the above given statements. Section 2 deals
with integer (and real) powers of the generating function c(x). Convolutions of general sequences
are expressed there in terms of nested sums. In Section 3 some families of integer sequences
related to the polynomials g,(x) (2) evaluated for x=1/m for m=4,5, ... and (-1)"q,(x) evalu-
ated at x =—1/m, m € N, are considered.

2. POWERS

The equation xc?(x)—c(x)+1= 0 whose solution defines the generating function of Catalan's
numbers if ¢(0) =1 can be considered as a characteristic equation for the recursion relation

Xy =1y +1,,=0, n=0,1,.., )

with arbitrary inputs r_,(x) and 7y(x). A basis of two linearly independent solutions is given by
the Lucas-type polynomials {#,} and {V,} with standard inputs #_, =0, ¥, =1, (¥_, = —x), and
V=1 V,=2, (¥, =1/x), in the Binet form

ci(x)—cl(x)

o= e’

(10)

V,0) = €100) + €2(5) = (U, (¥) = 204, (), (11)

with the two solutions of the characteristic equation, viz ¢,(x) := (1 v1-4x)/(2x). c(x):=c_(x)
satisfies ¢(0) =1, and ¢, (x) =1/ (xc(x)), as well as ¢, (x) +c(x) =1/x. From the recurrence (9), it
is clear that, for positive n# 0, %, is a polynomial in 1/x of degree n—1. If c,(x)—c_(x) =0,
i.e.,, x=1/4, equation (10) is replaced by #,(1/4) =2"(n+1). The second equation in (11) holds
because both sides of the equation satisfy recurrence (9) and the inputs for V, and v, match. One
may associate with the recurrence relation (9) a transfer matrix
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T(x) = (”1" ‘10/"), detT(x)=1/x. (12)

With this matrix, one can rewrite (9) as

(2 )-m) oo 29)

Because T” = TT"! with input T! = T(x) given by (12), one finds from the recurrence relation
(9) with r, = U, that

14
Upa(0) —L24,_,(0) 9

Note that, for x =1, one has ¢,(1) = (1+i+/3)/2, which are 6" roots of unity, and the related
period 6 sequences are {14,(1)}", ={0,1,1,0,-1,—1}, as well as {V,()}5 ={2,1,-1,-2,- 1 1}.
This follows from equations (10) and (11). It is convenient to map the recursion relation (9) to
the familiar one for Chebyshev's S, (x) = U, (x/ 2) polynomials of the second kind, viz

Su(x) = xS, 1 (¥) = §,,(x), $,=0,8=1, (15)

with characteristic equation 22 —xA+1=0 and solutions A.(x)=%£(1+4/1-(2/x)?), satisfying
A (x)A_(x)=1and A,(x)+A_(x)=x. The relation to c,(x) is
Vx e (x)= 2,(1/%). (16)
The Binet form of the corresponding two independent polynomial systems is
2(0) ~ A(x)
1,604
27,(x/2) = X,(x¥) + 21(), (18)
and 7 (x/2)=(S,(x)—S,_,(x))/2 are Chebyshev polynomials of the first kind. Tables of Cheby-
shev polynomials can be found in [1]. The coefficient triangles of the §,(x), U,(x), and T (x)
polynomials can also be viewed under the numbers A049310, A053117, and A053120, respec-

tively, in the on-line database [14].
The extension to negative indices runs as follows:

u—n(x) = _xn—lun——Z(x)’ (19)
S_(ni2)(X) = =5,(x). (20)

This follows from (10) and (17). Note that from (9), %, is for positive » a monic polynomial in
1/x of degree n, and for negative » in general, a nonmonic polynomial in x of degree | -4 |. It is
possible to extend the range of #» to complex numbers using the Binet forms.

A connection between both systems of polynomials is made, using (10), (16), and (17), by

U (x)= (71_;)"5”(1/&). @1)

This holds for » € Z in accordance with (19) and (20).

Tn(x):(unm ﬁu,,_l(x)}

Sn—l(x) = (17)
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After these preliminaries, we are ready to state the following proposition.

Proposition 1: The n™ power of c(x), the generating function of Catalan numbers can, for
n € Z, be written as

(x) == U, () +U,_(x)c(x), (22)

- —(ﬁj $ L (1/F)+ (TX—)HSH_I(I /J)e(x). 23)
Proof: Due to c*(x) = (c(x)—1)/x and ¢”}(x) = 1-xc(x), one can write

cn(x) = pn—-l(x) + qn—l(x)c(x)
for neZ. From c"(x)=c(x)c"'(x), one is led to g,y =p, ,++q,, and p,_,=-1q,,, or

91 = (9nz —9,—3)/x withinput ¢_, =0, g, =1. So g, ,(x) =4, ,(x) and p,_,(x) =¥, ,(x)/x.
Equation (23) then follows from (21). O

Note 1: Because
3] .
s,00= 2" o,
j=0 J

the explicit form of these polynomials (2) is

Bl
2 —(r—1—7
pn l(x)_ Z ( 1)j+l(n J) (=t j)a p—l = 17 pO :Oa

and

Gn1(¥) = f( 1)1(” 1= J) ¥ D g =0

J=

For negative index one has, due to (20),

3] »
Petnany@) = (EY'S,(1/ ) =Y (_1)1-(" ; J) o
j=0

and

71

‘I-(n+1)(x)Z—(\/;)"HS,,_I(I/\/;)__ ﬁ: l)](n 1- J)

In the Table, one can find the coefficient triangle for the polynomials {p,(x)}!3 with column
m corresponding to (1), m>0.

Note 2: An alternative proof of Proposition 1 can be given starting with (17) and (18) which
show, together with 1,(x)—A_(x) =+x* -4, that

A4(x) = T(e/2) £4J(x/2)* = 1.8, (), (24)
or, from +4/(x/2)* -1 = A,(x) — x/2 and the S, recurrence relation (15),

F0) = T06/2) = (5,(0)+ 82 (D) + 8,4 (A40) (25)
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= =850 () +8,1() A 4(x). (26)
Now (23) follows from (16). This also proves that, in Proposition 1, one may replace c(x) by
¢,(x) =1/(xc(x)), from which one recovers the ¢ formula for #» € N in accordance with (19)
and (20).
TABLE. p(n, m)=[1/x"]p_{n}(x) Coefficient Matrix
n=-1,...,12, m=0,...,12

n\m| 0 2 3 4 5 6 7 8 9 101112
=111 o0 0 0 O O O O o0O00O0
0jo0 0 0000 0 O O O O0O0DO
110-1 06 06 00 0 0 0 O O0O00O
2106 60-1 0 06 0 0 O O O o0 0 O
3(0 0 1-1 0 06 0 O O O O OO
410 0 0 2-1 0 0 O O O O O O
5(0 0 0-1 3-1 0 O O O O O O
6/0 0 0034 -1 0 0 0 0 0O
7M70 6 0 016 5 -1 0 0 00 O
8/0 0 0 0 0 4-10 6 -1 0 0 0 O
990 60 0 0 0 -1 10-15 7 -1 O O O
o0 0o 0 0 0 06 -5 20-21 8 -1 0 O
1110 0 0 0 0 O 1-15 35-28 9 -1 0
12{0 0 0 0 0 0 0O 6 -35 56 -36 10 -1

Note 3: For the transfer matrix T(x), defined in (12), one can prove for » € N, in an analogous
manner, that

T = —(%)nSn_z(l N1+ (%)HS,,_](] /%) T(), 27)

by employing the Cayley-Hamilton theorem for the 2 x2 matrix T with tr T =1 = detT, which
states that T satisfies the characteristic equation T2—1T+11=0.

Powers of a function which generates a sequence generate convolutions of this sequence.
Therefore, Proposition 1 implies that convolutions of the Catalan sequence can be expressed in
terms of Catalan numbers and binomial coefficients. Before giving this result, we shall present an
explicit formula for the 7' convolution of a general sequence {C;} generated by c(x) = X7, Cx'.
Usually, the convolution coefficients Cy(n), defined by ¢”(x) = 212, C, (n)x!, are written as

Cm= Y CC, -C , withi;eNy. (28)

i} 1y
Zhai=l
An explicit formula with (/ —1) nested sums is the content of the next lemma.

Lemma 1-General convolutions: For [=23, ..,

CJ -1\,
Cz(")=C6'"lCII(1LI f\(n L] ( ] il 29

k=2 1k—ak
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with

k=1
b,=1/2, kaLI—ZjijJ/k, (30)

j=2
l .
a,=0 fork=2,3,..,1-1 a,:max(O [l i Zl 1(] l)lj—'\J, €2))
|
1,4}y = — : 32
T2 (n=1+ 32, (- Di V1= 2, Jji))! G2

The first product in (29) is understood to be ordered such that the sums have indices i,, 7, ...,
when written from the left to the right. In addition: Cy(n) = CJ and Cy(n) =nCy™'C,.

Proof: C,(n) of (28) is rewritten first as

Cn)=2(n, 1, {i}o)CeCil -+ ', i; €Ny, (33)
where the sum is restricted by
! !
@): ), ji;=1 and (i) )i, =n. (34)
Jj=0 Jj=0

(n,1,{i;}3) is a combinatorial factor to be determined later on. (E.g., for n=3,/=5, one has five
termsinthe sum: is=1i,=2; iy, =L =Liy=1 k=L, =Liy=1, i3 =1L#=2; i, =2,i; =1, with
other indices vanishing, and the combinatorial factors are 3, 6, 6, 3, 3, respectively.) (i) restricts
the sum to terms with » factors, and (i) produces the correct weight /. These restrictions are
solved by ‘
@) i=1- Z]z and (ii'): iy =n—i— z: =n- l+2(1 i .
Jj=2

From i, >0, ie, /- X', ji, >0, one infers i, <| £ |; thus, i, € [O, lj_” For given i, in this range,

< I_Z—_.?—Z-J, etc. In general, ‘

0<i, < Kl ZJI)J for k=2,3,...,1

with the sum replaced by zero for £ =2. This accounts for the upper boundaries | b, | in (30).
Now, because #, > 0, (ii") implies a lower bound for 7;, the index of the last sum, viz

> Kl—n—i(j—l)iJ/(l—l)]
=2

with the ceiling function [-]. In any case i, > 0; therefore, the lower boundary for the i, -sum is g,
as given in (31). All restrictions have then been solved and the lower boundaries of the other
sums are given by a, =0 for £k =2,...,/—1. As to the combinatorial factor, it now depends only
on n,1,{i;}, and is written as (n, I, i ;}4). It counts the number of possibilities for the occurrence
of the considered term of the sum which is given by

B R e B (1) B )]
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Inserting i, and i; from (ji") and (i'), respectively, remembering (ii), produces {(n,! A 1Y as
given in (32). Finally, >(n, I, {z'j.};)(,'(i,"C’1 -C}! is transformed into (/—1) nested sums with
boundaries a, and | b, | after replacement of #; and i,. This completes the proof of (29) for the
nontrivial /> 2 cases. 0

Corollary 1-Catalan convolutions: For Catalan's sequence {C,};, the n™ convolution sequence
for n e N is given by Cy(n) =1, C;(n) =n and, for /=2,3, ..., by

I
G = [H z)wa mn{ ] 65)

k=2 ip=ay

with (30), (31), and (32).
Proof: Thisis Lemma 1 with C;=1=C,. O
Example 1: C,(3) =3C, +5C; +3C%+3C, = 90.
Corollary 2: With the Catalan generating function ¢(x) and the definition, one has, for n €N,
c(x) =: T2y C(—n)x', for [=2,3, ...,
I L

. (- 1)<k Dig
GEm=CD ] 2 (n,1,{i, b)HC’“ (36)

k=2 ip=q;
with (30), (31), (32), and Catalan numbers C,. In addition, Cy,(-n) =1, C|(-n) =-n.
Proof: Lemma 1 is used for powers of c(x) replaced by those of ¢7!(x) = 1—xc(x), with the
Catalan generating function c(x). Hence, ¢c™}(x) = X7, C,(~1)x* with

Ged={" . ™% Then in Lemma 1, G, is replaced by G,(-1). O
k - “Ckl fork=12 eén, i r.emma i, C; 1S replace y Cy )

Example 2: C,(-3)=-3C;+6C,-3+3=-3.

Convolutions of Catalan's sequence have been encountered in various contexts, for example,
in the enumeration of nonintersecting path pairs on a square lattice (see [12], [18], [5]), and in the
problem of inverting triangular matrices with Pascal triangle entries (see [6] and earlier works
cited there; they also appear in [15], p. 148).

Note 4: Shapiro's Catalan triangle has entries

k(2 A0k A
B, ;= 7(’1 _nk) forn>k 21, and B, , =[x J(x*¢*(x)),

with [x"] £ (x) denoting the coefficient of x” in the expansion of f(x) around x=0. In this case,
&(x) =(c(x)-1)/x =c*(x). (See [12], Propositions (2.1) and (3.3), with i, € N, not N;.) In [18]
this triangle of numbers from [12] reappears as b(n, k), and it is shown there that B, , =b(n, k) =
[x"](xc?(x))*, in accordance with the identity &(x) = ¢?(x). Therefore, only even powers of ¢(x)
appear in Shapiro's Catalan triangle. In [5], C;(n) appears as special case ,d,_, ;,,. In [6], all
powers of c¢(x) show up as convolutions for the special case of the S, sequence there. The
entries of the §,-array ([6], p. 397) are [x"]c**!(x) for n, k € N,
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The anonymous referee of this paper noticed that the inverse of the lower triangular matrix
Suk = [x*1S,(x), for n, k € N,, with Chebyshev's S,(x) =U,(x/2) polynomials is the lower tri-
angular convolution matrix obtained from its first (k = 0) column sequence generated by c(x?)
(Catalan numbers alternating with zeros). This follows from the fact that the S-matrix is also a
lower triangular convolution matrix with generating function 1/(1+x?) of its first column. See
[13] for such type of matrices M and the relation between the generating functions of the first
columns of M and M™'. The head of this Catalan triangle can be viewed under number A053121
in the on-line database [14]. See also [6] for inverses of Pascal-type arrays.

Lemma 2—Explicit form of Catalan convolutions [12], [18], [6], [4], [11], and [5]:
ForneR, [ eN:

n(2l+n-1\_ n (n+2l\_ n (2l+n-1
o =5 )i () ) G

Proof: Three equivalent expressions have been given for convenience. See [4], page 201,
equation (5.60), with B,(z) =c(z), t > 2,k — I,y > n. The proof of (5.60) appears as (7.69)
on page 349 of [4], withm=2, n=/eR.

The same formula occurs as Exercise 213 in Vol. 1 of [11] for =2 as a special instance of
Exercises 211 and 212. Put o =n and n =1 in the solution of Exercise 213 on page 301.

In order to prove this lemma from [12] or [18], one can use

G = mf) (7)ew

obtained from c(x) = 1+¢&(x) with
&"(x) =Y. Co(m)x*™.
k=n

The result in [12] and [18] is, with this notation,

AL _ ~_J( 2

o=, =0a.n=4})
Inserting this in the given sum, making use of the identity j(7)=n(’}) and the Vandermonde
convolution identity, leads to Lemma 2 at least for positive integer 7, but one can continue this
formula to real (or complex) n.

In [6], one finds this result as equation (3.1), page 402, for i = 1. 5,(/, n) = C,(n).
In [5], ,d,_,, 1,1 = C,(n), with the result given in Theorem 2.3, equation (2.6), page 71. O

Note 5: As a side remark we mention that, from (37), E;(x):=/!C/(x) (with real n=x) is a

L (x+I+1+j). These polynomials, which are not the subject of

polynomial of degree /, viz [T/,

this work, are known (see [8] and references given there) as exponential convolution polynomials
satisfying E; (x+) = Zioo( ) E () E, ().

We now compute the coefficients C,(n) =[x’]c"(x) (see Note 4 for this notation) from our
formula given in Proposition 1. This can be done for n e Z.

First, consider n eN,. For n=0 and n =1, there is nothing new due to the inputs S_, = -1,
S ,=0,and S, =1. C(n)=0 for negative integer /. Therefore, terms proportional to 1/x' with
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I €N have to cancel in (23), or in (1). For n=2,3, ..., terms of the type 1/x"/ occur for j
{1,2,..,|2}. The coefficient of 1/x"/ in p,_,(x) is (-1)(";};) (see Note 1 for the explicit
form of p,_,). For the 1/x"/ coefficient in g,_,(x)c(x), one finds the convolution

j-1 ,
_w-fn=0G =10
zer (4 D)a
Compensation of both coefficients leads to identity (P1) given in (4) after (j—1) has been traded

for p. Thus, after a shit n—>n+2,

Proposition 2-Identity (P1): For neN,and p=0,1, ..., I_%_], identity (P1), given in equation (4),
holds.

Example 3: n=2(k-1), p=k-1l,andn=2k-1, p=k—1for k eN;
k-1
i k+1 _ k+1+1
Sen(giast Zev(5ily)ax
e.g., k=3:3C,-4C, +1C, =1, 6C, - 5C, +1C, =3.

k

For n=2,3,..., terms in (1), or in"(23), proportional to x* with £ €N, arise only from

q,-1(x)c(x), and they are given by the convolution (cf. Note 1),

2(»@ 1) Curmr

For n=1, thisis C;. The left-hand side of (1) contributes C,(n), and C,(1) = C,. Therefore,

Proposition 3—Identity (P3): For neN, k eN,, identity (P2), given in equation (5) with (3)
holds.

Example 4: k=0, (n—-1) > n:
1)

wl:

/
( l)l+1(n )C'n—l= n_l;
=1
eg,n=3:2C,=C-1, n=4: 3C3~1C2 =C,-1

Now consider negative powers in (1), i.e.,, ¢™"(x), n € N. No negative powers of x appear
(cf. Note 1 for the explicit form of p_,,;,(x) and g_,,;,(x)). The coefficient of x*, k € N, of

the right-hand side of (1) is
L2
-k -1-1
()2 ("
1=0

where the first term, arising from p_,,)(x), contributes only for £ €{0,1,...,| 5]}. In the sum-
mation, one also needs /< k —1 because no Catalan numbers with negative index occur in (1).
The lefi-hand side of (1) has [x*]c™"(x) = C,(—n). From the last equation in (37), one finds

e ey
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In the last equation, the upper index in the binomial has been negated (cf. [4], (5.14)). Two sets
of identities follow, depending on the range of k.

Proposition 4—Identity (P3): FornelN, ke {0, 1, ,L—’zl_]}, identity (P3), given in equation (6),
holds.

Example 5: k=3,n>6 C,—(n-2)C,+("3)C, = ("34).

Proposition 5—Identity (P4): For neN, k eN, with &k 2 | 2]+1, identity (P4), given in equa-
tion (7), holds. )

In (P4), only the g_,,1y(x)c(x) part of (1) contributed, and we used the first expression for
Ci(-n) in (37). In (P3), where p_,,;)(x) also contributed, we used the negated binomial coeffi-
cient for C;(—n) and absorption in the resulting one.

Note that (37) implies C,(-n) =~C,_,(n) for k,neN, k 2n, and C,(0) =6, ,.

Example 6: n=5k >3

5(2k—6
G =3C 2 +C 5= ;( i—1 );
eg., k=7 C;-3Cs+C,=20.
If one uses the binomial formula for ¢™(x)=(1-xc(x))" and ¢"(x)= X7, C,(n)x*, one
arrives at equation (8). '

3. SOME FAMILIES OF INTEGER SEQUENCES

In this section we present some sequences of positive integers which are defined with the help
of the #, polynomials (10).

u, (m):=U,(1/m) = (m)"S (Vm). - (3®)
The last equation is due to (21). It will be shown that u,(m) is a nonnegative integer for each
m=45 .. and n=-10,.... Also negative integers —m, m € N are of interest. In this case, we
add a sign factor:

v, (m) = (=1)"U,(~1/m) = (~ifm)" S (ix/m). (39)

From the §, recursion relation (15), one infers those for the u,(m) and v,(m) sequences:
u,(m) =m(u,_(m)—u, ,(m)), u_(my=0, u,(m)=1, ' (40)
v, (m) = m(v,_(m) +v, o (m)), v_(m)=0, vy(m)=1. (41)

This shows that v,(m) constitutes a nonnegative integer sequence for positive integer m. It
describes certain generalized Fibonacci sequences (see, e.g., [7] with v,(m) =W,,,(0, 1, m, m)).
For example, v, (m) counts the length of the binary word W(m; n) obtained at step n from the sub-
stitution rule 1> 170, 0— 17, starting at step n=0 with 0. The number of 1's, resp. 0's, in
W(m;n) is mv,_(m), resp. mv,_,(m). E.g., W(2;3) = 110)*1(110)*1* and v,(2) = 16, 2,(2) =12,
and 2v,(2)=4. For m=1, this substitution rule produces the well-known Fibonacci-tree. Of
course, one can define in a similar manner generalized Lucas sequences using the polynomials
{v,} given in (11). Each u,(m) sequence (which is identified with W, _,(0, 1;m, —m) of [7]) turns
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out to be composed of two simpler sequences, viz u,, (m) = m*c,(m) and u,, ,(m) = m*B,(m),
k €N,. These new sequences, which are due to (38), given by a, = S,,(v/m) and B,(m)=
Szk_l(\/E) / Jm | satisfy therefore the following relations:

Brn(m)=(m=2)B,(m) - B,_,(m), Bo(m) =0, py(m)=1, (42)

and
() = B (m) + B,y (m). (43)
From (42) it is now clear that f,(m) is a nonnegative integer sequence for m=4,5,.... (In [7],

B,(m)=W, (0,1,m—2,-1).) This property is then inherited by the «,(m) sequences due to (43),
and then by the composed sequence u,(m).
The ordinary generating functions are:

Z X - 1+x
X) =Y By = g mx):=Y a,mx = (44
gmix)i= L' = e T g )= Y = e s ()
; = n "= > v 3 = n n:—‘ 4
8u(m; %) ng;)u (m)x 1—mx + mx? 8(m, x) nz:;)v (m)x 1—mx — mx? “5)

Note 6: The {f3,(m)} sequences for m=4,5,6,7,8,10 appear in the book [14]. The case m=4
produces the sequence of nonnegative integers; m =35 are the even-indexed Fibonacci numbers.
The m =9 sequence appears in Sloane's "On-Line-Encyclopedia" [14] as A004187. The {«,(m)}
sequences for m=4,5, 6,8 also appear in the book [14]. The case m =4 yields the positive odd
integer sequence; m =5 is the odd-indexed Lucas number sequence. The m =7 sequence appears
in the database [14] as A030221. The composed sequences {u,(m)} do not appear in the book
[14], but some of them are found in the database [14]. m =4 is the sequence (n+1)2", A001787,
and m=5,6,7 appear as A030191, A030192, and A030140, respectively. As mentioned above,
{v,;(1)} is the Fibonacci sequence. The instances m =2 and 3 appear as A002605 and A030195,
respectively, in the database [14].
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1. INTRODUCTION
Consider a sequence {i,} defined by the recurrence relation
W,=pW,,—qW, 5, n22, Wy=a, W =b,

where a, b, p, and q are integers with p>0, g#0, and A = p>—4g >0. We are interested in the
following two special cases of {,}: {U,} is defined by U, =0, U, =1, and {V,} is defined by
Vo=2,V,=p. Itis well known that {U,} and {/,,} can be expressed in the form

U, =0 Ve (L)
where a = (p++/A)/2, B=(p—+A)/2. Especially, if p=—g=1, {U,} and {/,} are the usual
Fibonacci and Lucas sequences.

Recently, André-Jeannin studied the infinite sum (see [1])

N
S =80p.9 =2, o
n=0

At the end of his paper, he presented a problem to study the integrity of an infinite sum
];c(x)szL:, k>0.
-0 X

In this paper, we solve this problem completely for the case in which £ >2 and g = +1.
By using the Binet forms (1.1) and the geometric series formula, we have
x(2x —V;)

T.(x)= x|> a*.
(0= 1

In what follows, we shall make use of the identities:

Unat =4"Un = U i (1.2)
Ui +9°U, = ViU (1.3)
Vau+2q" =V2, (1.4)
Van=24" = AU, (1.5)

Uy =UJV,, (1.6)

ViVaknaty + AUk nary = 2Vigane3): (1.7)

All the identities can be obtained by the Binet form (1.1).
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2. MAIN RESULTS

Let
akn —ﬂkn 3 Ukn

V= =ak kn /= =
n I/kn a +ﬂ 2 Un ak——ﬂk Uk (21)

In fact, the sequences {U!} and {V} satisfy the recurrence relation W, =V, W, —q*W, ,. From
(2.1) and applying Theorems 2-4 in [1] to the sequence {//}, we can obtain the main results of
this paper.

Theorem 1: If q=+1 and k > 2, there do not exist negative rational values such that 7, (x) is an
integer.

Theorem 1 is a direct consequence of Theorem 2 in [1], and its proof is omitted.
Theorem 2: If g =—1 and r > 0, the positive rational values of x for which 7, ,,(x) is integral are
given by
/ U(2r+1)(2m+1)
—2 (m=1,2,..)

g bty oo

U2m(2r+1)
and
v
_Qriham?) gy =0,1,2,...).

x=
V(2r+l)(2m+1)

The corresponding values of 7,,.,(x) are given by

T U(2r+l)(2m+1) _ U(2r+1)(2m+1)V2m(2r+1)
2r+l U. - U
2m(2r+1) 2r+1

and

T (V(2r+l)(2m+2)j _ U(2r+1)(2m+1)V(2r+1)(2m+2)
2r+l - .

V(2r+1)(2m+1) Uz

Proof: Since g =-1, we can apply Theorem 3 in [1] to the sequence {V,; =V(y,,y),}. There-

fore, the positive rational values of x for which 7,,,(x) is integral are given by
% m=12,.)

2m

xXx=
and

x:I/—zl"’L2 (m=0,1,2,..).
2m+1

The corresponding values of 7,,,,(x) are given by

UI
Tr 2m+l) — U’m v
2 +l[ Uz’m 2m+1" 2m
and
V,m ’ ’
By (_Vz_, +'2") = UitV msa-
2m+1
From (2.1), we can obtain the results. O
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Theorem 3: If g=1, p>3, and r > 0, the positive rational values of x for which 7,,,(x) is inte-
gral are given by
x=M m=12,..)
Uniarsy
and

X
x =G0 gy 01,2, ..),
Xm(2r+1)

where X, 5,11y = Ugratyomsty * Unmar1y- The corresponding values of 7,,,,(x) are given by

T (U(2r+l)(m+l) ) — U(2r+l)(m+l)Vm(2r+l)

2r+l

Um(2r+l) U2r+1

and

T ( X(2r+l)(m+1) } _ (U(2r+l)(m+l) B Um(2r+l))X(2r+l)(m+1)
2r+l - 2 .
U2r+1

X m(2r+1)

Proof: By q=1 and p >3, we have that

Vi =2 4@ >3,

Similarly to the proof of the last theorem, we can prove the conclusion from Theorem 4 in [1]. O

Theorem 4: 1If g =-1 and r 21, the positive rational values of x for which 7,,(x) is integral are
given by

U,
x=—"U2  (r or m even and m>1)
rm

and

V
x =2 (4 odd and m > 0).
r(2m+1)

The corresponding values of 7,,(x) are given by

T Ur( m+2) — Ur(m+2)Vrm
2r U U2,-

rm

and

T (Vr(2m+3)} _ Ur(2m+1)Vr(2m+3)
2r - .

Vr(2 m+1) UZ r

Proof: Apply Theorem 4 in [1] to the sequence {V)=V,,,}. Therefore, the positive rational
values of x for which 7,,(x) is integral are given by

x==1 (m=1,2,..)

U,
and
x=7’"":i (m=0,1,..),
where X! =U! ., +U}. The corresponding values of 7, (x) are given by
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Z;G%¥)=ML%;
and

XI
E{j%}wa&—%)

From (2.1), we have

Ui Usrimey o Usimizy Y Unpomany
= and X[, = :
Um U2rm U2r

It follows from (1.2) and (1.3) that

X = UnVarimary TVarUnrimery + 200 (mary
m+l ™ 2U .
2r

From (1.2)-(1.7), we have

Xf

Ur(2m+3) :
_ —Ur—"" F1s even,
+1 7 ) Veamey .
V—r r is odd.

Using a similar method, we have

Uramn 145 even
X =4 Y ’
"o femy s odd

r

It follows from (1.2) and (1.6) that
U2r(m+1) - U2rm - UrVr(lm—l—l) + ((_ l)r - 1) U2rm
U2r UZ

Ve@amey
vV,

r

4 [ S—
Um+1 —Um -

r

7 is even,

- UrVr(2m+1)_2U2rm P2 iS Odd
UZr ’

When g = -1 and r is odd, from (1.2) and (1.3) we have

Ve@amsny
Ut =Upy =4y
m+1 m Ur(2m+1)
UI“

¥ is even,

ris odd.

Therefore, the positive rational values of x for which 7;,(x) is integral are given by

x = Jarn (m=1), (2.2)
U2rm
U,
x =22 even and m > 0), (23)
Ur(Zm-I—l)

and

V
x =223 (7 odd and m > 0).
Vizmin
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The corresponding values of 7,,(x) are given by

T UZr(m+1) - U2r(m+l)I/2rm (2 4)

2r U2rm U2r ' .
U, U V.

7, [Uram | Uramaeamn, (. qyom. @.5)

2 Ur(2m+l) Uy

and

V U v
];r Vr(2m+3)j - r(2m48 r(2m+3) (7' Odd)
r(2m+1) 2r

It is.clear that (2.2) and (2.3) can be rewritten as

— Ur(m+2)
Urm

Similarly, (2.4) and (2.5) can be rewritten as

T Ur(m+2) — Ur(m+2)Vrm
2r U Uzr 4

rm

Urmi2)

2 > a* holds when m or r is even. Hence, the conclusions

On the other hand, since g = -1,
are valid. [J

Theorem 5: If g=1, p >3, and r 2 1, the positive rational values of x for which 7,,(x) is integral
are given by

U,
=D (4 =12,..),
rm

and the corresponding values of 7,,(x) are given by

T Ur(m+2) - Ur(m+2)Vrm
2r U Uzr .

i

Proof: Since g=1 and V,, >3, we can apply Theorem 4 in [1] to the sequence {V]=V,,,}.
The proof'is similar to the one of the last theorem. [0

Clearly, André-Jeannin's results are special cases of Theorems 2 and 3.
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1. INTRODUCTION

Let 4 be an alphabet and let 4" be the free monoid over 4. Let A* = A"\ {¢}, where &
denotes the empty word. For w € A", let |w| denote the length of w. Let |¢|=0. A word x is
said to be a prefix of a finite or infinite word w over 4 if x € A* and there is a word y such that
w =xy. The finite or infinite word y is called a suffix of w. Let R be the reversion operator on
A* defined by R(cc, ...c,) =c,...c,c;, where ¢, € A, 1<i<n, n>1.

Let o be an irrational number between 0 and 1. The characteristic sequence (or word) of o
is an infinite binary sequence f whose n' term is [(n+ 1)a]—[na], n>1. It will be regarded as an
infinite word over the alphabet {0, 1}. Let s,, denote the prefix of f of length m and let f,, denote
the suffix of f with f =s,f,, m>0. Let f,=f. The characteristic sequence of (v/5—1)/2
(resp., /2 —1) is called the golden sequence (resp., Pell sequence).

Hofstadter [9] introduced the concept of aligning two words # and v over 4 (see also [3],
[8]). The idea is to try to match each term (letter) in v with a term in ». After a term in v has
been matched with a term in #%, one looks for the earliest match to the next term in v. Those terms
in u that are skipped over form the extracted word (u, v). The following example illustrates this
concept.

#u:01110100110
v: 11 0 0 1 0

{u,vy: 0 1 1 0 1

Originally, Hofstadter considered the problem of aligning f,, with f, where fis the character-
istic sequence of an irrational number . He conjectured that {f,,, /)= f,_,, m=2. For a=
(~/5—1)/2, Hendel and Monteferrante [8] solved this problem completely. They determined the
set M of all integers m>2 for which (f,,, )= f,_, and they proved that, if m>2 and m¢ M,
then {f,,, /)=0f,,_,. For example, (fs, )= f; and {f,, f)=0f; # f,. The extraction problems
f, [,y and (f,,, f,» were first considered by Chuan [3] who proved that {f, £,,)= R(s,,), m>1,
and that (f,,, f,) differs either from (f,,_,, /) (if m>n) or from (f, f,_,) (if m <n) by at most
the first letter. Using a concatenation lemma (Lemma 3 of [8]) and some representation theorems
(Section IV of [7]), Hendel [7] also formulated and proved an extraction conjecture for {f,,, f)
and {f, f,,) when a = J2 =1, for an infinite set of m.

In this paper, we shall use a special case of a powerful representation theorem that Chuan
discovered recently [5] to prove that the following conjecture is true when o = /2 — 1.

Conjecture: Let abe an irrational number between 0 and 1 and let f be its characteristic
sequence. Then (f, f,,)=R(s,), m=>1.
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It follows from the representation lemmas in Section 2 that this conjecture has an equivalent
formulation described below. Let [0,a,+1,a,,...] be the continued fraction expansion of «.
Define the sequence {u,} of words over the alphabet {0, 1} by

— _ a _ a
=0,y =10" u, =u, ;u;", (n=2).

Equivalent Formulation (Subtraction Rule of Exponents): If n>1, r,r,, ... is an infinite
sequence of integers with 0<7 <a, (i21) and , =0 (i >n), then

2,2 1-n 2=y, 2-r3 B ) 7,
<u0ulu2 LUy Uy Uy L) = Uyt LU

2. PRELIMINARIES

Let u=aa,...a,, v=>5bb,..b,, and e=c¢c,...c,, where a;, b;, ¢, € 4, n, m>0, p>0, and
n=m+p. Asin [8], we say that u aligns with v with extraction e if there are integers j, j,, ...,
J, such that

u=(..0,)c(;....b;)c, ...cp(bjp+l ..b,),

where 0< ji<j, <---<j,<mand ¢ #b,,, for 1<i<p. Here b...5, =¢ if k<i. This rela-
tionship is called an alignment and is denoted by (u, v) = e. Clearly, we have (u,u) = ¢.

Let », v, and e be (possibly infinite) words over 4. If {u,}, {v,}, and {e,} are sequences of
finite words such that (u,,v,)=e,, lim,_  u,=u,lim, v, =v, and lim,_, e, = e, we say that u

aligns with v with extraction e. This alignment is also denoted by {u,v) =e.
The goal of this paper is to prove the following theorem.

Theorem 2.1: (a) Let a=+/2 -1 and let fbe the characteristic sequence of . Then (f, f,)=
R(s,) forallm>1.

(b) (Subtraction rule of exponents) If n>1, #,r,, ... is an infinite sequence of integers with
0<r<1,0<r<2(2<i<nm),and r,=0 (i >n), then

2,2 I-n, 2-ry, 2-nr3 [ Y ,
(uouluz...,uo Uy Uy G )= Uyl LU

To prove this theorem, we need the following concatenation lemma and three basic represen-
tation lemmas (Lemmas 2.3-2.5).
Lemma 2.2 (see [8]): If p>1, u,, v,, e, A" and (u,,v,)=e,, |<n<p, then
p

< ﬁu an>:£[1en.

n=1

Here [172_, x, denotes x;x, ...x,, where x;,x,,...,x, € A". The result also holds if , and v, are
infinite words:
Throughout the rest of this section, let @ be an irrational number between 0 and 1 with con-
tinued fraction & =[0,a, +1,a,,...] and let f be its characteristic sequence. Let
Q=L q=a+l, q,=a4g, ,+q,,,
=0, =011, x,=x"x,_,,

Uy =0, w, =10, w,=u,_,u;,, n>2.
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Note that {g,} is a sequence of positive integers and {x,} and {u,} are sequences of a-words
over the alphabet {0, 1} (see [4] for a definition of a-word) and u, = R(x,), n>0.

Lemma 2.3 (see [6]): Every positive integer m can be expressed uniquely as m= X" rq, |,
where 0<r, <q; (1<i<n),r,#0,and r,_, =0 whenever r, =q, (2<i <n).

The expression of m in Lemma 2.3 is called the generalized Zeckendorf representation of m
in the ¢;'s. When a=(/5-1)/2=[0,1,1,...], it is the Zeckendorf representation and q=F

i+l
When a =+/2 -1=[0,2,2,...], it is also called the Pellian representation of m in the Pell numbers
[2,10,11]. If m=3]_ rq,_,, where 0<r, <a, (1<i <n), the sequence ry,...7, is called a code of
m with respect to « (or the g;'s).

A representation of prefixes s,, of fin terms of the x;'s is given in the following lemma.
Lemma 2.4 (see [5]): Let m=2%_rq,_;, where 0<r, <a, (1<i<n). Then
8, =X xpxg = R(ugu ..ur ).

We remark that a special case of Lemma 2.4 in which the representation of m is the general-
ized Zeckendorf representation has been obtained by Brown [1].
In the following lemma, f and its suffixes f,, are expressed in terms of the u,'s.

Lemma 2.5 (see [5]): Let m=3Y. rq,_,, where 0<r, <a, (i>1). Then

f=uguug?
S =g U
Note that when a = (/5 —1)/2, the representations of fand f,, given here reduce to the ones
used in [3] and [8].
3. PROOF OF THEOREM 2.1

In this section we restrict our attention to the irrational number o =+/2 -1=[0,2,2,...]. The
sequences {q,}, {x,}, and {u,} defined in Section 2 now become
q0=1’ ql':z’ qn“zqn l+qr1 2>
x,=0, x=01, x, —x X, _2, ey
uy=0, w=10, w,=u, ju’  n>2

We first prove some alignments that involve the u,'s.

Lemma 3.1:

(@) {(u,u)= ¢ for all finite or infinite word u over {0,1}.

®) —lun’ U,)=u,, (n 21).

(© @2 ,,, n-1” Y=u, U, (n=2).

@ n> ”—1 (n>2)

(e (uou1 u2 . n—-lun> =gy ..U, (n=1).

(N (uu n+1 n-l—p’ U, .. un+p—lu:+p> =S Uy Uy (W21, p21).

2 2 — 2
(g) < U, n+1 n+p’ Upyy - un+p—lun+p> = Uy - n+p—l (n 2 1’ p 2 2)
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Proof:
(a) By definition.

(b)-(d) Clearly, the results hold for n<3. Let £ >3. Suppose that (b)-(d) hold for all n< k.
Then:

W) gy, tyy)
=ty _y, Uy ) Uyttt ) [by (1) and Lemma 2.2]
=u,_,u,_,_; [by the inductive hypothesis of (b) and (d)]
= uk .
(CY RN Y
= (g, W) ity oy, e,y [by (1) and Lemma 2.2]
=u,_yu, [by (i) and the inductive hypothesis of (b)].
(i) Cugug,, ug)
=yt _y, Wy YUy, 4, YRy, w1 [by (1) and Lemma 2.2]
= u,_uy_ U, [by the inductive hypothesis of (b) and (ii)]
— 2.
Therefore, (b)-(d) hold.

(@) ughi ...u5, iy ..., i)
= Cugtty, uy) gy, wy )+~ -y, u, ), u,) [by (1) and Lemma 2.2]
= uyly ...u,_; [by (b)and (a)].

(f) <u Upi1- n+p’ Ul - un+p-lun+p>

‘( n? n>< un+1’ n+1><un+lun+23 n+2>
* Uy ottt o Ut ) Uy > U ) [bY (1) and Lemma 2.2]

= Uy Uy, [by (2) and (b)].

(g) < U, n+l n+p’ Upyr - un+p—1un+p>

n+p-2
n7 U, 4, >[ H(< -1 l’ul>< U1, U, +1>))< n+p> n+p-—1 n+p> [by (1) and Lemma 2. 2]

n+p-2
:.X'( Huz lJun+p—2 n+p-1 [by (a) (b) and (C)]

i=n
a2
- unun+1 "'un+p—1'
Here
1 ifn=1,
x= .
u, u, , ifn>1

n

Lemma 3.2: Let n>1. Let 0<r <1, 0<r<2 (2<i<n), r,#0, and 7_; =0 whenever 7, =2
(2<i<m). Then

2 2 1,2~ “h .y 2-r, 2
<”ou1~--”m”o L] U, ) = ugu? .
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Proof: Write ryr, .1, = 01C,02C,...0"C,,, where 5,20, 5; 21 (2< j<m), each C, is of the
form 17, 2, or 21 (t;=z1) and G, = 1" if s, =0. We proceed by induction on m.
Let m=1. For simplicity, write s for s, and # for #,. There are four cases according to the
values of s and 7.
() nry..r,, =0T (s>0,7>0):

2 2

<”o”1 e Mgy Ul T 1” Usyr +r>

a2

= QUi . >y, ugi? P l)(u wl,,u,.. u,, k) [by Lemma2.2]
=UU ..Uy, [bY (a) and (f) of Lemma 3.1].

@) nry..r,; =02 (s>0):

<”0ul2 ”s2+1’ ”0”12 s2 1”s+1>
= <”0”1 s2—1’ ”0”1 s—l> <”s us+l7 s+1> [by Lemma 2.2]
=u? [by (a) and (d) of Lemma 3.1].

(i) 7ry...7, 0y =021 (5>0,7>0):

2 2

<”o”1 Ui uoul ”s i1 us+!us+l+l>

_ 2,2 2

- <u0ul s us—1> uoul s 1> (u s+1+1’ 5+1 S+Ius+t+l> [by Lemma 22]

=u’u,,,...u,, [by (a) and (g) of Lemma 3.1].
(v) np..r,=1 (t>0):

Cugt? 2,y u_ut)
=ugy, ...u,_, [by (e) of Lemma 3.1].

Thus, the result holds for m=1. Now, suppose that the result holds for m =k, that is,
ny,...r, =01C02C,...0%C, and

2-r, 2r2> rr2 un

2 1-7
(ugt? .. w2 uy ur,,

where C,, ..., C, satisfy the above-mentioned conditions. Let s,,,>1 and let C,,, =1, 2, or 21
for some ¢ > 1. There are three cases to consider:

() Cpp=1: Letr,,7,,,..1,=0%1, where p=n+s,,,+7. Then

2 -n,,2-n 2-7,..2 2 2
(uguy .. p,uo O T T s up_lup>
2-ry, 2-r, 2 2 2 2
ST ><un+1 Upt15 U "'up—t——l>

Wl u, . .u, u) [by Lemma22]

- -1
= (ugu .. 2, uy "y

=ugup ..ureu, ..., [by (a), (f) of Lemma 3.1 and the inductive hypothesis]

— 219,72 p
=g Ul

() Cuy=2: Letr, iy, .1, =0%12, where p=n+s,,,+1. Then

2rz

2 2 2-r,,2 2 2
(uoty ... u,, uy "l Uyl y)

_ 2 2 2 2-r, 2 2 2 2 2 2,2
= (ug? . ? g ul Tty Uy gy Uy Uy oYU g, W)
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= ugup ...ul" gu* | [by (a), (d) of Lemma 3.1 and the inductive hypothesis]
=ugup . u? .

(iii) Cuyy =21 Let 1,14, .7, = 021", where p=n-+s,,,+¢+1. Then

2 2 1-n, 2- r2 2-r,. 2 2 2
gty .., Uy U U U U U, U, )
_ 2 l—rl 2-r 2-r, 2 2 2
= (uou1 U, w n)(un+1 Uy g5 Uiy ...up_,_z)

? Uy 1 u SUpye p_lup> [by Lemma 2.2]
=uju ..U .a‘up_,_lu 4,1 [by(a), (g) of Lemma 3.1 and the inductive hypothesis]

— 1 p
—uoul . up,I

This completes the proof.

Proof of Theorem 2.1: (a) Let m=3_ rq,_, be the generalized Zeckendorf representation
of minthe g;'s. Define r, =0 (k >n). Then

SoSw

= Ul . ug "2 L) [by Lemma 2.5]

= (ug? 2wy Ml <Huk, Huk> [by Lemma 2.2]
k=n+l  k=n+l

=ugu? ...ur e [by Lemma 3.2 and (a) of Lemma 3.1]

=R0r, . xpxg) [u, =R(x;), i > 0]

=R(s,) [by Lemma 2.4].

(b) Let m=2>"rq,_;. Then, by Lemmas 2.4-2.5 and the fact that u, = R(x;) for all i, we
have that
2— r3

—uur U
Ly=udul ur

rl 2-7,
<”0u1”2 U T,

is another way of writing (f, f,,) = R(sm).

Example: If m is a positive integer having a code 0211020111 with respect to +/2 —1, then
{f, £y = utuyusutusuguy, in view of part (b) of Theorem 2.1. Thus, the extracted word (f, f,,)
can be found by computing u,, u,, ..., #,. There is no need to compute m, f, and f,,.

ACKNOWLEDGMENT
The first author gratefully acknowledges that this research was supported in part by Grant
NSC-87-2115-M033-004, the National Science Council, Republic of China.
REFERENCES

1. T. C. Brown. "Descriptions of the Characteristic Sequence of an Irrational." Canad. Math.
Bull. 36 (1993):15-21.

2. L. Carlitz, R. Scoville, & V. E. Hoggatt, Jr. "Pellian Representations." The Fibonacci Quar-
terly 10.5 (1972):449-88.

430 [NOV.



4.

10.

11.

EXTRACTION PROBLEM OF THE PELL SEQUENCE

W. Chuan. "Extraction Property of the Golden Sequence." 7he Fibonacci Quarterly 33.2
(1995):113-22.

W. Chuan. "a-Words and Factors of Characteristic Sequences." Discrete Math. 177 (1997):
33-50.

. W. Chuan. "A Representation Theorem of the Suffixes of Characteristic Sequences." Dis-

crete Applied Math. 85 (1998):47-57.

A. S. Fraenkel. "Systems of Numeration." Amer. Math. Monthly 92 (1985):105-14.

R. J. Hendel. "Hofstadter's Conjecture for & = /2 —1." In Applications of Fibonacci Num-
bers 6:173-99. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.

. R.J. Hendel & S. A. Monteferrante. "Hofstadter's Extraction Conjecture." 7he Fibonacci

Quarterly 32.2 (1994):98-107.

. D. R. Hofstadter. "Eta-Lore." First presented at the Stanford Math. Club, Stanford, Cali-

fornia, 1963.

V. E. Hoggatt, Jr. "Generalized Zeckendorf Theorem." The Fibonacci Quarterly 10.1
(1972):89-93.

T. J. Keller. "Generalizations of Zeckendorf's Theorem." 7The Fibonacci Quarterly 10.1
(1972):95-102, 111.

AMS Classification Numbers: 11B83, 68R15

%o %
EXT X2

°

o

D>

NEW PROBLEM WEB SITE

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now
be searched electronically (at no charge) on the World Wide Web at

http://problems.math.umr.edu

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair.

Problem statements are included in most cases, along with proposers, solvers (whose solutions
were published), and other relevant bibliographic information. Difficulty and subject matter vary
widely; almost any mathematical topic can be found.

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their
time is encouraged to do so. For further information, write to:

Mr. Mark Bowron

Director of Operations, MathPro Press
P.O. Box 713

Westford, MA 01886 USA
bowron@my-deja.com

2000] 431




SUFFIXES OF FIBONACCI WORD PATTERNS

Wai-Fong Chuan, Chih-Hao Chang, and Yen-Liang Chang

Department of Mathematics, Chung-yuan Christian University, Chung Li, Taiwan 320623, R.O.C.
(Submitted November 1998-Final Revision June 1999)

1. INTRODUCTION

Let o be an alphabet. Let #* be the monoid of all words over f. Let & denote the empty
word, and let 4" =" \{¢}. If w=a,...a,, where a, €4, the positive integer 7 is called the
length of w, denoted by |w|. Let |¢|]=0. A word x is said to be a prefix (resp., suffix) of w,
denoted by x <, w (resp., x <, w), if there is a word y e s{* such that w=xy (resp., w = yx).
We write x <, w (resp., x <, w) if x <, w (resp., x <, w) or x=w. Prefixes and suffixes of an
infinite word are defined similarly.

Let fbe an infinite word over #. For j >0, let S/ f denote the suffix of f obtained from /by
deleting the first j letters of /. For simplicity we write Sf for S'f. This defines an operator S act-
ing on infinite words over . The cyclic shift operator T on si* is given by T(aa,...a,)=
a,..a,a, where o, esd. For j>1,let T/ = T(I'™"), where T° denotes the identity operator on
A*. Clearly, each operator 77 has an inverse 77/ .

Letu,ved”, x,=u, x,=v, and x, = x,_,x,_; (n=3). The infinite word x,x,x;... is called a
Fibonacci word pattern generated by » and v and is denoted by F(u,v). The words # and v are
called the seed words of F(u,v). Let ™" denote the set of all Fibonacci word patterns F(u, v)
with |u| =m and [v|=n. Let & denote the set of all Fibonacci word patterns.

Given u,ved”, |u|=m, |v|=n, Turner [17] proved that F(u,v) € ¥"°, where (r,s)=
(Fy_m+Fyn, Fm+F, n) for all i >1. In Section 2 of this paper we find necessary and suffi-
cient conditions for F(u, v) to be a member of %™ ™" (resp., F"™™ F2m "~ (Theorems 2.2-
2.4). We also find necessary and sufficient conditions for SF(u, v) to be a member of ™" (resp.,
F"™ ™M) (Theorems 2.5-2.6). The fact that F is invariant under § is a consequence of Theorem
2.7, which asserts that SF(u, v) always belongs to %™"™2"  The Fibonacci word patterns over
{0,1} are called Fibonacci binary patterns (see [5], [17]). The most famous Fibonacci binary
pattern is the golden sequence F(1,01), which is identical to the binary word ¢, ..., where ¢, =
[(n+Dal-[na], n=1, and a =(/5-1)/2. See, for example, [2], [3], and [5]-[18]. In Section
3 we use the above results and Lemma 3.1 to compute the possible lengths of the seed words of
the suffixes S/F(1,01), j >0 (Theorem 3.2 and Table 1). It turns out that all these possible pairs
of seed words of §/F(1, 01) have Fibonacci lengths and are pairs of Fibonacci words, the notion
of which was introduced by Chuan [4] (see Definition in Section 4). They can be determined by
different representations of j in Fibonacci numbers (Theorems 4.5 and 4.6). This gives another
proof of Corollary 3.3 of [9] for the case o = (/5-1)/2.

2. FIBONACCI WORD PATTERNS AND THEIR SUFFIXES
Throughout this section, let ,v e A*, |u|=m, |v|=n.

Theorem 2.1 (see [17]): F(u,v)= F(uv, uvv) € Fmr-mn
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Theorem 2.2:
(@) Let m<n. Then F(u,v) € #*™" if and only if u < v. Moreover, F(u, xu) = F (ux, uux) for
all x esd”.
(b) Let m>n, u=xy, where x,y ed*, |x|=n. Then F(u,v) € ™" if and only if xy = yv.
In this case, F(u,v) = F(x, xyx).
Proof: (a) (m<n) Suppose that F(u,v) e F*™" Let v=xy, where x,y ed", |y|=m.
Then ’
F(u,v) = F(u, xp) = () (ey)(uxy)Ceyuxy) - -
= (1) (yux) ey -+
Since F(u,v) € ™™ it follows that
F(u,v) = F(ux, yux) = (ux)(yux)(uxyux) - .
By comparing the two expressions of F(u,v) and using the assumption that |y|= |u|=m, we
have u = y. This proves that u < v, v=xu, and F(u, xu) = F(ux, uux).
Conversely, let v=xu, where x e 4*. We claim that F(u, xu) = F(ux, uux). Let

X =U,  Xy=V=XU, X, =X, %,
N =Ux, Y, =uux, Vo= VooVn1, B23.
Clearly, u <, x,, n>1. Write x, = z,u, where z, e 4". Since x, =x,_,x,_,, we have z, =z, juz, |,

n>3. Now it is easy to see that y, , =uz,, n>2. Therefore,
F(u,v) = F(u, xu) = x,x,%5 - = u(zyu)(z5u) «--
= (uzy)(uz5)(uzy) = Yyoys = F(ux, uux).
(b) (m>n) The proofis similar to part (a). O

We note that the condition xy = yv holds if and only if there are words z;,z, € 4" and an
integer 7 > 0 such that x = z,z,, ¥y =(2,2,)"z,, and v = 2,2, (see [15]).

Corollary: Let u<_v and let u,,v, esd* be such that |u, | = F,_m+En, |v,| = Fm+F, n, and
v, <p F(u,v), k>0. Then F(u,v)=F(u,v,) € Gl and u, <, v,. Here F, =1, F,=0.

Theorem 2.3: Let m<n<2m. Then F(u,v) e F"™™ if and only if # and v have a common
prefix of length n—m and u < v.

Proof: Suppose that F(u,v) = F(x,z), where |x|=n-m and |z| =m. It follows from part
(a) of Theorem 2.2 that x <, z, i.e., z = yx for some y e 4*. Also, #=xy and v=xxy. Hence, x
is a common prefix of # and v of length #n—m and u < v.

Conversely, suppose that # and v have a common prefix x of length #—m and u <, v. Then
u=xy, v=xxy, where y € 4*. Then, according to part (a) of Theorem 2.2, we have F(x, yx) =
F(xy, xxy). Hence, F(u,v) e&"™™" 0O

Theorem 2.4 follows from Theorem 2.1.

Theorem 2.4: Let m<n<2m. Then F(u,v) € F*™™"™ if and only if # and v have a common
suffix of length n—m and u <, v.
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Theorem 2.5: Let 1<k <min(m,n). Then S'F(u,v) e F™" for all j, 0< j<k, if and only if u
and v have a common prefix of length &. In this case, $'F(u,v) = F(T’(u), T/ (v)). If, in addition,
u<,v,then T/ (u) <, T/ (v).

Proof: Suppose that S*F(u,v) e ¥™". Let u=wx, v=w,y, where w, w,, x, and y are
words and |w|= |w,| = k. Then it is clear that S¥F(u, v) = F(ew,, yw) and w =w,. Thus, wis a
common prefix of both # and v.

Conversely, suppose that # and v have a common prefix az, where a e, z ed*. Write
u=azx, v=azy, where x,y €4*. Then SF(u,v) = F(zxa, zya) € ¥™". Moreover, z is a com-
mon prefix of the seed words zxa, zya of SF(u,v), |z| =k -1, zxa = T(u), and zya=T(v). If
u <, v, then clearly zxa <, zya. Now the result follows by inductive argument. O

The following theorem can be proved in a similar way.

Theorem 2.6:

(@) Let m<n. Then SF(u,v) € ¥>™" if and only if # and v have a common suffix of length
m-=1. Moreover, F(ax, zx) = aF(xz, xaxz) foralla e A, x, z e A",

(b)) Let m>n, u=axy, where acd, x, yed*, |x| =n. Then SF(u,v) € F>"" if and only if
xy = yv. In this case, F(axy, v) = aF(x, yvax).

Corollary: Let j>0, u, v, ed*, uy, <, S’F(u,v), |u;|=F,_ym+Fn, |v,|= FEm+F,n. If

u<, v, then S'F(u,v)=F(u,v,) e gl and u; <, v,

Theorem 2.7: SF(u,v) € Fm™mmn,

Proof: According to Theorem 2.1, F(u,v)= F(uv,uvv) € F™"™2  Since uv and uvv
have the same first letter, it follows from Theorem 2.5 that SF(u, v) = SF(uv, uwv) € F™-m2n

Corollary: All suffixes of F(u,v) belong to %. More precisely, for j >0, S/F(u,v) e ¥"*,
where (7, 5) = (Iy;_ym+ Fyn, By m+ By 4n).

3. THE GOLDEN SEQUENCE F(1, 01)

Let o ={0,1}. Consider the golden sequence f = F(1,01). For each j >0, we shall show
how to compute pairs of positive integers (r, s) for which S’ f € %™*. A key observation is the
following lemma.

Lemma 3.1: Let n>2 and F,—-1<j<F,,-2. Then §/f =F(u;,v;), where u,, v, €{0, I,
lu;| = F,, |v;|=Fy, u;<;v,, and u;,v; have a common prefix of largest length F,,
(When n=2 and j =0, u,, v, have different first letters.)

—2-j.

Proof: The result clearly holds when #n=2,3. Suppose that it holds for n=%. Let i=
F,,,—2. Tt follows from Theorems 2.5 and 2.6 that S™f e Ffen:F2\GFiFini . Moreover,
Si“.f :F(ui+b Vz‘+1): where lui+1| =Fes Vil = Feaas Uiy <s Vit and Ui Vit have a common
prefix of largest length F, —1. According to Theorem 2.5, if 1<m<F, and j=i+m, then
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Sfsz(uj,vj), where |u;| = Fpy, |[v;|= Fiyy, 4 < v;, and u;,v; have a common prefix of

largest length F, —m=F,, =2~ j. Thus, the result holds forall n>2. O

Theorem 3.2: Let n>2 and F,-1<j<F, —-2. Then §/f € F% % if k>n, and S/f ¢
Flefen if 1<k <n-1.

Proof: The first part is a consequence of Lemma 3.1, Theorem 2.5, and the Corollary to
Theorem 2.2. The second part follows from Lemma 3.1 and Theorems 2.1, 2.3, and 2.4. O

For example, when n=6 and 7<;<11, Theorem 3.2 implies that S’/f € F"* where
(r,s)=(8,13),(13,21),(21,34),... and S’/f ¢ F~*, where (r,s)=(1,2),(2,3),(3,5),(58). This
completes the part of Table 1 corresponding to 7< j <11.

TABLE 1

(r, s) for which S’ f € F"*
1,2),(2,3), (3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(2,3), (3,9), (5.8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(5,8), (8,13), (13,21), 2 1,34), (34,55), (55,89), (89,144)
(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(5,9, (8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144)
(13,21), (21,34), (34,55), (55,89), (89,144)
(13,21), (21,34), (34,55), (55,89), (89,144)
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4. SEED WORDS OF S/F(1,01) ARE FIBONACCI WORDS

Again we let f = F(1,01). We have seen in Theorem 3.2 that, if n>2 and F,-1< ;<
F., -2, then S/f € %% %+ for all k>n. Now let (u;,v;) denote the pair of seed words of
S/ f such that |u, |=F, and |v,|=F,,;. We shall show in Theorem 4.5 that u; and v, are
Fibonacci words, as defined below, whose labels can be determined. Special cases can be found
in [5].

Fibonacci words over the alphabet {0, 1} are defined as follows: Let

w(0) =10, w(1) =01,
w(00) =101, w(01)=110, w(10)=011, w(11)=101

For any binary sequence #, 73, ..., 7,, n > 3, the word w(rr, ...1;,) is defined recursively by

W(rlrz ...rk_l)W(rlr2 ...rk_z) if n, = O,

w(nry ...1n) :{

W(rlr2 ...rk_2)W(r1r2 .‘.rk_l) if I, = 1,
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3<k<n. The word w(rp, ...r,) is called a Fibonacci word generated by the pair of words (0, 1).
The sequence 7,1, ...,7, is called a label of w(nr,...r,). It describes how the Fibonacci word
w(nr,...r,) is generated. A Fibonacci word may have several different labels. For example,
10101101 =w(0010) =w(1100) =w(1111). The words O and 1 are also Fibonacci words. For
convenience, we write 1 =w(4), where A denotes the empty label. The above notion of Fibonacci
word was introduced by Chuan [4] and was later generalized to the notion of a-word by her [8].
:Many known results in the literature involve Fibonacci words (see, e.g., [4]-[12], [16]-[18]).

We need the following properties of Fibonacci words, the proofs of which can be found in

[4]. Let »,=0, y, =1, ¥, = Vyo¥u (€, y,=w(11..1)), n>3.
Lemma4.1: Letn>1,n,1,...,7, 5,8,,...,5, €{0,1}. Then:
(@ |wnry..n)| = Fuy.

®) I j =Y rF, then w(iry...r,) = T(3,,), where k = Fyy —2 - J.

i=1

(0 If Z §F =
i=1

=

"l RF (mod F,.,), then w(rpy...1,) = w(s;$, ...5,).
=
Let u,x e A*. Then
F(u, xu) = F(ux, uux) = uF (xu, uxu) = uxF (uux, uxuux) .
The first equality follows from part (a) of Theorem 2.2; the second one is trivial; the third one can
be proved in a similar way as Theorem 2.2(a). It follows that, if |u| = m and |x| =1, then
S™F(u, xu) = F(xu, uxu),

S™F (u, xu) = F(uux, uxuux).
In particular, we have the following lemma. Part (d) follows from Theorem 2.1.
Lemma 4.2: Letn=1,n,n,....1, g €{0,1}. Let u=wrr,...r,), v=w(r,...r,1). Then:
(@ F(u,v)=F(wp,...r,0), w(nr,...r,01)).
() St2F(u,v)= F(w(rr,...r,)), w(nr,...r,11).
() SHsF®u,v)=Fwp,...r,01),wr,...r,011).
(@ FOr(iry...1,), Wity .. 1) = FOVG . 1y 1), W . 7,1 10).
Lemma 4.3 (see [1]): Each positive integer j is uniquely expressed as j = >, rF,;, where r, =1,
r, €{0,1}, and max(r, 7)) =1 (1<i<n-1).

The representation j =27 ,7F,; in Lemma 4.3 is called the maximal representation of j.
The code (1, ...r,) is called the maximal code of j. The number n is called the length of the maxi-
mal code of j. For convenience, the maximal code of the integer 0 is defined to be the empty code
A. It has length 0. We note that F,,, —1< j<F, ;-2 if and only if the length of the maximal
code of j is n.

Lemma 4.4: For each j=0, let (nr,...r,) be the maximal code of j. Then S/ f = F(w(nr,...r,),
w(nry ...r,1)).
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Proof: The result clearly holds for 0< j <3. Now suppose that & >3 and that the result is

true for all j, 0< j <k. We show that it is also true for j=4%. Let n>3 be such that F,,, —1<
kSEH-?)_Z'

(@ X F,,-1<k<2F, -2 then F,-1<k-F,, <F,,—2. By theinductive hypothesis,
SEtun f = F(w(rry .. 1), Wiy .. g )),

where {17, ...7,_,) is the maximal code of £ — F,,,. Clearly, (rr,...7,_,01) is the maximal code of
k. Also,
Skf = ShaSk-Fua f = SEaF(w(rn, .. .15,_y), Wi, ... 7,5 1)
= F(w(nr, ... 1r,,00), w(nr, ...7,_,011)),
according to part (c) of Lemma 4.2.

() If 2F, 1<k <F, ;-2 and if (n7;...7,_;) is the maximal code of k —F, ;, then the
inductive hypothesis implies that

Sk f = Fw(rry ... 1), W(iHs .. T, D).
Therefore, (17, ...7,_;1) is the maximal code of £ and

Skf = F(w(nr, ..., 1), wlnn,.... 1, 1D),
according to part (b) of Lemma 4.2. O

Using Lemma 4.4 and part (a) of Lemma 4.2, the seed words of S/ f can now be determined.

Theorem 4.5: Let j >0 and let (57, ...7;,) be the maximal code of j. Let k >n+2. Then uy =
w(npy ...1,0...0) and v = w(rry...1,0...01) (there are k —n—2 zeros right after 7,).

For example, since 3= F; + F; is the maximal representation of 3, we have u;5 = w(1100),
vy6 = w(11001). As observed before, the labels for u; and v, may not be unique.

Corollary: Let j >0 and let n be the smallest integer >2 such that j<F, ,~2. If k >n, then
SIf = F(T7% (), T (Ves)), where iy = Frpy =2 - .
Proof: The result follows from Theorem 4.5 and part (b) of Lemma 4.1. O
Note that this corollary contains part (b) of Theorem 8 of [5].
Theorem 4.6: Let j=Y2sF,,, wheres €{0,1} (1<i<k-2) and k >3, then
SIf = FW(s5; ... Sp_2), W15, ... 8,2 ).

Proof: 1f j =0, then the result is contained in Theorem 4.5. Now let j >1 and let {7 ...7;,)
be the maximal code of j. Clearly, n<k—2. Definer, =0if n<i<k-2. Then

i=1 i=1

Hence,
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(Ui, vie) =Wr...n_p), w(tir; ...1n.21)) [by Theorem 4.5]
=(W(s8$, ... 852), W(8,5, ...5¢_,1)) [by part (c) of Lemma 4.1].
This completes the proof. [

For example, since 3 = F, + F5 = F;, we have w5 = w(1100) = w(0010) and vy =w(11001) =
w(00101). It also follows from Theorem 4.6 that the Fibonacci word pattern generated by a pair
of Fibonacci words of the form w(nr, ...r,), w(nr, ...r,1) is a suffix of /.

Corollary: For every binary sequence A, 1, ...,r,, the Fibonacci word pattern F(w(rr;...r,),
w(nry,...r,1)) is a suffix of /. More precisely,

Fw(ry...1,),w(ins,..1,0) = S/ f
where j=2L5F,.

We remark that Theorem 4.6 is a special case of Corollary 3.3 of [9], which was proved by a
general representation theorem. In our proof given here, only elementary properties of Fibonacci
word patterns and Fibonacci words are used.

Seed words of the Fibonacci word pattern (0, 1) can also be obtained easily. Let w; =0,
w, =1, and for n>3, let w, =w,_,w,_; if nis odd and w, =w,_w,_, if n is even [that is, w, =
w(rr, ...1,_,), where r; equals 1 if n is odd and equals 0 if n is even (7> 3)]. It follows immedi-
ately from part (d) of Lemma 4.2 that F(0, 1) = F(w,,_;, W,,) € F»1/m (n>1). Since w,,_,; and
the suffix of w,, having length |w,, | (= F;,_,) have different first letters (see [6]), it follows that
F(0,1) ¢ o Fann (n> 1), according to part (c) of Theorem 2.2.
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1. INTRODUCTION

A divisor d of n is said to be a unitary divisor of » if the greatest common divisor of d and
n/d is 1 (see [4], [9]), and a divisor d of » is said to be a biunitary divisor of » if the greatest
common unitary divisor of d and n/d is 1 (see [11], [12]). It is easy to see that the unitary divi-
sors of a prime power p? (a>1) are 1 and p?, and the biunitary divisors of p? (a>1) are 1, p,
P2, ..., p?, except for p¥’> when a is even. Cohen [5] extends the above notions inductively.

Definition 1.1: 1f d |n, then d is a O-ary divisor of n. For k 21, a divisor d of n is a k-ary divisor
of n if the greatest common (k — 1)-ary divisor of dand n/d is 1.

Remark: Different extensions of the concept of a unitary divisor have been developed by Suryan-
arayana [10] (who also used the term k-ary divisor) and Alladi [1]. We do not consider these
extensions here.

We write d |, n to mean that d is a k-ary divisor of n, and (m, n), to stand for the greatest
common k-ary divisor of m and n. Thus, for £>1, d|,» if and only if d |n and (d,n/d),_, =1
with the convention that (d,n/d), =(d,n/d). In particular, d |;n (resp. d |,n) means that dis a
unitary (resp. biunitary) divisor of n.

Definition 1.2: We say that p® is an infinitary divisor of p® (a>1) (written as p®|, p?) if
P, p?. In addition, 1 is the only infinitary divisor of 1. Further, d | n if p¥®| p"® for all
primes p, where d =TT, p9®” and n =], p"» are the canonical forms of d and n.

The justification for Definition 1.2 is that, for k >a-1>0, p?|, p® < pb|,_, p* (see [5)).
Thus, for £k >a-12>0,
Pl p® < plap”. (L.1)
This means that, for a=0,1,2,...,k+1, the k-ary divisors of p? are the same as the infinitary
divisors of p®. For example, for a=0,1,2,...,101, the 100-ary divisors of p? are the infinitary
divisors of p?.
Cohen and Hagis ([5], [6], [7]) give an elegant method for determining infinitary divisors.
Let [ ={p**|p is a prime, & is a nonnegative integer}. It follows from the fundamental theorem
of arithmetic and the binary representation that every n (> 1) can be written in exactly one way
(except for the order of factors) as the product of distinct elements of /. Each element of / in this
product is called an /-component of n. Cohen and Hagis ([5], [6], [7]) also note that d |_#» if and
only if every /-component of d is also an /-component of » with the convention that 1|_# for all ».
For example, if 7 =2%3°=2-22.3.3% then the J-components of n are 2, 2% 3,3*. Note that this
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method makes it possible to compute the k-ary divisors of the prime powers 1, p, p?, ..., p**l. A
general formula for the k-ary divisors of p?® for @ >k +2 is not known.

The concept of divisor is related to the Dirichlet convolution of arithmetical functions. The
concepts of unitary and biunitary divisor lead to the unitary and biunitary convolution. This sug-
gests we define the k-ary convolution of arithmetical functions f and g as

U * g)m) = ;f (d)g(n/d)
dign
for k>0. In particular, the O-ary, l-ary, and 2-ary convolution is the Dirichlet, unitary, and
biunitary convolution, respectively.

The purpose of this paper is to represent the basic algebraic properties of the k-ary convolu-

tion and to study the Mobius function under the %-ary convolution.

2. BASIC PROPERTIES OF THE £-ARY CONVOLUTION

In this section we represent the basic algebraic properties of the k-ary convolution. Particular
attention is paid to multiplicative functions. An arithmetical function f'is said to be multiplicative
if f(1)=1and f(mn)= f(m)f(n) whenever (m,n) =1, and an arithmetical function fis said to be
completely multiplicative if (1) =1 and f(mn) = f(m) f () for all m and n. Cohen and Hagis [6]
say that an arithmetical function £ is J-multiplicative if /(1)=1 and f(mn) = f(m)f(n) whenever
(m, n),, =1, where (m, n)_, is the greatest common infinitary divisor of m and n. It is easy to see

that
fis completely multiplicative = fis I-multiplicative

= fis multiplicative. 2.1

Theorem 2.1: Let £k 20.
I) The k-ary convolution is commutative.
2) The function & serves as the identity under the k-ary convolution, where 6(1) =1 and
S(n)=0forn=2.
3) An arithmetical function f possesses an inverse under the k-ary convolution if and only if
F(1)#0. Theinverse ('), is given recursively as (fH,(M=1/f() and, for n>2,

-1 —1 -
) =—= > F@(f (/). (2.2)
PAU
da>1
4) The k-ary convolution preserves multiplicativity, that is, if f and g are multiplicative, so is

their k-ary convolution.
5) Iffis multiplicative, sois (f 7).
Proof: Theorem 2.1 can be proved by adopting the standard argument (see, e.g., [2], [9]).
As part 5 is needed later, we present the details of the proof of part 5. Assume that (m,n)=1. If
mn=1, then (f 1), (mn)=1= (Y. m)( ™, (n). Assume that mn =1 and that ()=
(Y, m)(F ), (') whenever (m',n')=1 and m'n’ <mn. If m=1orn=1, then (f ), (mn) =
(D, (), (). Assume that m,n=1. With the aid of (2.2), we obtain
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fDlmm) == 3 f@f N (mnid) = = 3 f(dd)(f )/ dy)(n! dy))

dmn dyym
d>1 dy Jyn
dydy>1
= = D f@F @) Nlm/d)f(n/d,)
dylgm
dy |y n
=~(f"m) 3, F@)f Nl dy)-(f ”l)k(n)d; S @)D (ml d)
dylyn L lem
dy>1 dp>1

= 2 f@)S T mldy) Y (@)l dy)

dylpm dylyn
di>1 dy>1

I

e ™)+ (Dm0 = (D) ()
= (Dm0,

This completes the proof. O

Remark: The k-ary convolution is not associative in general. For example, the biunitary convo-
lution is not associative (see [8]).

The infinitary convolution [6] of arithmetical functions f and g is defined as

(f*8)m) = Y. f(d)g(n/d).

dlen

The infinitary convolution possesses the properties given in Theorem 2.1. In addition, it is asso-
ciative and possesses basic properties with respect to I-multiplicative functions. We present these
results in the following theorem.

Theorem 2.2:

1) The infinitary convolution is associative.

2) The infinitary convolution is commutative.

3) The function & serves as the identity under the infimtary convolution, where §(1) =1 and
o(my=0forn=2.

4) An arithmetical function f possesses an inverse under the infinitary convolution if and
only if £(1)#0. The inverse (™), is given recursively as (f ), (1) =1/ f(1) and, for
nx=2,

- -1 -
Dt == 2@ o(n/d). (23)
AU Jgh
d>1

5) The infinitary convolution preserves multiplicativity.

6) If fis multiplicative, so is (f 7).

7)  The infinitary convolution preserves /-multiplicativity.

8) If fis I-multiplicative, so is (f),,.
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Theorem 2.2 is given in Cohen and Hagis [6] except for equation (2.3) and parts 5 and 6.
Cohen and Hagis [6] do not prove their results. We do not prove these results either, since the
standard argument (see, e.g., [2], [9]) can be applied.

Remark: 1t is easy to see that the k-ary convolution for all £ and the infinitary convolution do not
preserve complete multiplicativity.

Remark: Theorem 2.2 shows that /-multiplicative functions possess two basic properties under
the infinitary convolution. This leads us to propose the following unsolved research problem.
Define k-ary multiplicative functions so that they possess basic properties under the k-ary
convolution.

3. THE k-ARY MOBIUS FUNCTION

We define the k-ary Mobius function 4, as the inverse of the constant function 1, denoted by
¢, under the k-ary convolution. In particular, g, is the classical number-theoretic Mobius func-
tion and g is the unitary Mobius function (see [4], [9]). Since ¢ is a multiplicative function, so is
4. Therefore, y, is completely determined by its values at prime powers. The values of y, at
prime powers are obtained recursively as g, (1)=1 and, for a> 1,

He(p) = —PbZﬂk(Pb)- (.1
Ik p?

0<b<a

A general explicit formula for g, is not known.

We define the infinitary Mobius function g as the inverse of the function ¢ under the
infinitary convolution. An explicit formula for g is known. Let s,(a@) denote the number of
nonzero terms in the binary representation of a with the convention that s5,(0)=0, and let J(n)
denote the arithmetical function defined as J(1)=0 and, for n>2, J(n) =X, s,(n(p)), where
n=TII, p"» is the canonical form of n. Note that J(n) is the number of J-components of 7.

Cohen and Hagis [6] show that
Ho(1) = (=1)7). (3.2)

It follows from (1.1) that
1 (p?) = (p?) fora=0,1,2,. . k+1. (3.3)

Therefore, in a sense, x4, comes closer to x,, as & increases.

It is interesting that
By = He. (3.4)

This is a consequence of Theorem 3.1 given below and equation (3.2).

Theorem 3.1: If fis completely multiplicative, then
(falm) = (=D f (). (3.5)
Proof: Since both sides of (3.5) are multiplicative functions in 7, we may confine ourselves
to prime powers p®. By (2.2), and knowing the biunitary divisors of p?, we have (f H,MH=1
and, foraz=1,
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Za) UH,P)f(pH=0 if @ is odd,
i=0

i U H,@f @) -, f(p**) =0 ifaiseven.
i=0

Therefore, for a >0,

2a+1

2 U@ P =0,
i=0

g D@ @)= (DS (P*) =0.

This shows that the function ('), at prime powers is completely determined by the recurrence
relation

{(f")z(p““) + £ ("N M) =0,
0@ - FEH D™ =0,
for a > 0, with the initial condition (f™),(1)=1.

We show that the function g(n) = (=1)’" f(n) satisfies the same recurrence relation at prime
powers. In fact,

g™ N+ f(p*Ng(p®) = (DD f (P> + (™D £ (p%)
- (_l)s2(a)+1f(p)2a+1 +f(p)a+1(_l)52(a)f(p)a =0

g(p2a+2) _ f(pa+l)g(pa+l) — (_l)s2(2a+2)f(p2a+2) _f(pa+l)(_l)s2(a+1)f(pa+1)
— (_ 1)s2(a+l)f(p)20+2 _ f(p)a+l(_ l)sz(a+l)f(p)a+l — O,

for a > 0, with initial condition g(1) =1. This completes the proof. 0

and

Remark: The idea for the recurrence relation in the proof of Theorem 3.1 is developed from [3].
Cohen and Hagis [6] show that, if fis /-multiplicative, then
(F Nalm) = (=)' f ().
On the basis of equations (2.1) and (3.5), we see that, if /is completely multiplicative, then
UD2= (e (3.6)
Since the function ¢ is completely multiplicative, we obtain equation (3.4).
Remark: 1t is an open question whether (3.6) holds for all /-multiplicative functions f.

It is known [5] that the 3-ary divisors of p® are 1 and p®, except for the cases @ =3 and
a=6. The 3-ary divisors of p’ are 1, p, p?, p°, and the 3-ary divisors of p® are 1, p?, p*, p°.
Using this result and (3.1), we conclude that
1 ifa=0,3,6,

-1 otherwise.

1(P7) ={
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Thus, in the case £ =3, we have u,(p?)=pu (p*) for a=0,12 .., k+1 (cf (3.3)), but
(P = = (P**?) or puy(p°) = -1=—p,(p°). Further evaluations of 4, for small values of
k could be derived using the results on k-ary divisors given in [5].

10.

11.

12.
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1. INTRODUCTION

Following the notation in [3], we consider the sequence {W,} = {W, (a, b; p,q)} defined, for

all integers n, by
W, =pW, =W, o, Wo=a, W =b. (1.1)

Throughout this paper we take a, b, p, and g to be arbitrary integers with g # 0.

Distinguished among all the sequences generated by the recurrence in (1.1) is the pair
U,=W,0,1; p,q) and V, =W,(2, p; p, q), whose importance was first recognized by Lucas [4].
The sequences {U,} and {V/,} are often referred to as the fundamental and primordial sequences,
respectively [13]. Because of their special properties, {U,} and {/,} continue to be the focus of
much attention [2], [5], [9], [12]. Our interest in this paper is in a property of {U,} which,
according to Dickson ([1], p. 409), was first observed by D'Ocagne. D'Ocagne observed that
there exist integers ¢, and ¢, independent of n, such that

W,=cU,+qU,,;, nelk. (1.2)
Indeed, it can be proved by induction that
W, =W = pW)U, +WU,py, nel. (1.3)

In this sense {U,} can be regarded as a "basis" for the sequences generated by the recurrence in
(1.1). In fact, as stated in the reference of Dickson mentioned above, D'Ocagne observed this
property for the higher-order analogs of {U,}.

It is natural to ask if there are other sequences generated by the recurrence in (1.1) which
also possess this property of {U,}. To be more precise, we make the following definition.

Property of D'Ocagne: An integer sequence {S,} = {W,(Sy, S;; p, q)} is said to have the property
of D'Ocagne if there exist integers ¢, and ¢, independent of n, such that W, =¢,S,+¢,S,,,, n€ Z.

For g = +£1 we have characterized all sequences which have the property of D'Ocagne. The
object of this paper is to present our results.
2. PRELIMINARY RESULTS

For the remainder of the paper we take {S,} = {W,(S,, S;; p, )} to be an integer sequence. In
order to make the paper self-contained, we now list several known results which will be required
in the sequel.

m Sn Sn+1
Lemma 1: D,=\W 8§ §,|=0, nelZ.
Wo S S
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Lemma 2: The points with integer coordinates on the conics y* —3xy + x% = %1 are precisely the
pairs (x, y) = H(F,, F,.,).

Lemma 3: In (1.1) suppose p#0 and g=—1. Then the points with integer coordinates on the
conics y* — pxy —x? = +1 are precisely the pairs (x, y) = +(U,,U,,,,).

Lemma 4: In (1.1) suppose |p|>2 and g=1. Then the points with integer coordinates on the
conic y* — pxy +x? =1 are precisely the pairs (x, y) = +U,,U,.)).
Lemma 1 is a special case of Theorem 1 in [7]. Lemmas 2, 3, and 4 are special cases of Theorems
1, 2, and 5, respectively, in [6].
We also require several well-known theorems concerning the integer solutions of the Pell

equation

x-dy? =1, 2.1
and its generalization

xI-dy*=N. (2.2)

Here we assume that d is a positive integer that is not a perfect square and N is an integer.

Theorem 1 (see Theorem 11.5 in [11]): Let h,/k, denote the m™ convergent of the simple
continued fraction of +/d, m=0,1,2, ..., and let / be the period length of this continued fraction.
If /is even, then (x, y) = (4_,, k,_,) is a solution of (2.1).

Theorem 2 (see Theorem 11.3 in [11]): Suppose |[N| < /d . If (x, y), with x and y positive, is a
solution of (2.2), then x/y is a convergent of the simple continued fraction of NED

Theorem 3 (see Theorem 3.3, p. 128, in [10]): If (2.2) has a solution, then it has infinitely many
solutions. At least one of these solutions satisfies

0<x <((x,+D|N2),
where (x,, y,) is the fundamental solution of (2.1).

Finally, we requiré the following lemma. For part (), see page 389 of [11]. Indeed, both
parts can be established with the use of the standard method for developing a surd as a continued
fraction. See, for example, page 176 of [8].

Lemma 5: Let d be a positive integer.
(a) If d >3 is odd, the simple continued fraction of Vd*-4 is

[d-11,@-3)/2,2,(d-3)/2,1,2d-2]

(b) If d > 4 is even, the simple continued fraction of Nd*-4 is
[d-11,d-4)/2,], 2d-2)

3. THE MAIN RESULTS

Our first theorem gives necessary and sufficient conditions for the sequence {S,} to have the
property of D'Ocagne.
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Theorem 4: Suppose SE—S,S,#0. Then {S,} has the property of D'Ocagne if and only if
SZ— 8,8, = *1. '
Proof: From Lemma 1 we have
(SF = SoS )W, = (S, = Sp) S, + (S = S S, n € L. (3.1
Hence, if S7 - S5, = +1, then {S} has the property of D'Ocagne.
Conversely, suppose {S,} has the property of D'Ocagne. Then there exist integers ¢, and ¢

such that
Un = COSn +C1Sn+1a nelZ. (32)

Putting »=0 and n=1, we see from Cramer's rule that ¢, and ¢, are unique. Now, by (3.1), we
have

S S,
U, = g — L9 Z. 3.3).
n Sf"'SOSz n Slz_SOS2 ntl, N € (3.3)

But, by the uniqueness of ¢, and ¢, we have
So
S12 - SOS2 ’

Sy

which means that S? - S,S, divides S,, »>0. Consequently, putting 7n=1 in (3.2), we see that
SE — 8,8, divides 1, and this completes the proof. O

= and ¢ =-

Our next theorem characterizes those sequences {S,}={W,(S,, S;; p,—1)} that have the
property of D'Ocagne.

Theorem 5: 1If p#0, then {S,} = {W,(S,, S;; p,—1)} has the property of D'Ocagne if and only if
Sy, 8) ==, U,,,,) for some integer m.

Proof: We first prove that S% - S,S, #0. On the contrary, suppose SZ - S,S, =0. If one of
Sy, 8, or S, is zero, one of the others must be zero, which means that {S,} is the zero sequence.
So we can assume that 55,5, #0. Now

§1_Z§2____PS1+S0:p+S0

S S S, S’
and this implies that
N 2 NP +4
R R

But since p?+4 is not a perfect square, S, /S, is irrational, which is a contradiction. Hence,
SE—S,S, #0. Then, by Theorem 4, {S,} has the property of D'Ocagne if and only if S? — 5,S, =
SE - pS,S, — S = +1. Theorem 5 now follows from Lemma 3. [

Our final theorem characterizes those sequences {S,} = {W,(S,, S;; p, 1)} that have the prop-
erty of D'Ocagne.

Theorem 6: Let |p|> 2 and let {S,} = {W,(S,, S; p, D}.

(a) If p=3, then {§,} has the property of D'Ocagne if and only if (S, S,) = £(F,, F,,,,) for
some integer m.
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(b) If p=-3, then {S,} has the property of D'Ocagne if and only if (S,, S,) = +(F,,, -F,.,) for

some integer m.
(¢) If |p|> 3, then {S,} has the property of D'Ocagne if and only if (S, S =+, U,,,,) for

some integer m.

Proof: As in the proof of Theorem 5, it is straightforward to prove that S? — 8,5, #0. Since
SE — 858y — S% — pSyS, + S3, we see from Theorem 4 that {S,} has the property of D'Ocagne if and
only if

SE— pSyS; + 82 = +1. (3.9

Now part (a) follows immediately from Lemma 2. Writing S7 + 35,5, +SZ as (=5)) - 35,(=S,) +
SZ, we see that part (b) also follows from Lemma 2.

To prove part (c), we consider first the equation

SE-pS,S,+S2 =1, |p|>3. (3.5)

By Lemma 4, the solutions of (3.5) are precisely the pairs (S, S}) = +(U,,, U,,,,). Next we con-
sider the equation

SIZ_pSOSl+Sg :_1: 'p] > 37 (36)
and solve for S, to obtain
Sy + /(2 —4)S2—4
5 =2 (p2 )54 s G.7)

To complete the proof of (c), it is enough to prove that (3.7) yields no integer pairs (§,, S;). We
accomplish this by proving that the generalized Pell equation

= (p*-4)y*=-4, |p|>3, (3.8)
has no solutions. It suffices to consider only p > 3.
To begin we assume that p is odd. Using Lemma 5, part (a), we find the convergents A,/ k,,,

0<m<5, of the continued fraction expansion of 4/p2 —4 from the following table. In the table,
the a,, are the partial quotients.

TABLE 1

m a, h, k,

0 p-1 p-1 1

1 1 ¥4 1

2 [(p=3)/2 (P -p-2)/2 (p-11/2

3 2 =2 p

4 [(p=3)/2|(F-2p—3p+8)/2 | (P -2p-D/2
5 1 (P*-3p)/2 (P -D/2

Now by Theorem 1 and Lemma 5, part (a), and as is easily verified by substitution, (s, k) is
a solution of x2—(p?—-4)y* =1. For integers x, >3, (x,—1)?>>3. This implies xZ > 2(x,+1)
which in turn implies x, > \/2(x, +1). Consequently, taking x, = (p* —3p)/2 >3, we can replace
the inequality in Theorem 3 by the more generous inequality 0 < x < x,. But by trial we find that
none of the pairs (4, k,,), 0<m <4, is a solution of (3.8). Hence, by Theorems 2 and 3, (3.8)
has no solutions.
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To complete the proof, we consider (3.8) for p >4, p even. For p =4, equation (3.8) has

no solutions since it has no solutions modulo 3. For p >4, p even, we use Lemma 5, part (b), to
construct the following table for the continued fraction expansion of 4/p? —4.

(hm >

TABLE 2
m a, h, k,
0 r-1 p-1 1
1 1 P 1
2 [ (p=-9/2| (P -2p-2)/2|(p-2)/2
3 1 (P*-2/2 pl2

Now (h;, k;) is a solution of x?—(p*-4)y? =1, but, as is easily verified, none of the pairs
k,), 0<m<2, is a solution of (3.8). Hence, by the same reasoning as before, (3.8) has no

solutions for p >4, p even. This completes the proof of Theorem 6. O

Our attempts to obtain analogs of Theorems 5 and 6 for g #=*1 have, to this point, been

unsuccessful. This will continue to be the subject of our endeavors.

N —
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1. RATIONALE

Pell and Pell-Lucas Convolution Numbers

Pell and Pell-Lucas polynomials F,(x) and (,(x), respectively, were investigated in some
detail in [3], which was followed up with a study of the properties [4] of the m™ convolution
polynomials B (x) and O/(x).

These convolution polynomials may be defined [4] by generating functions, thus:

> By = (1= 2xy - y2) 0mD (1.1)
n=0
and
m+1
= 2x +2
My = | —2 =X 12

Putting x =1 yields the mt convolution Pell and Pell-Lucas numbers B{™(1) and O{™ (1), respec-
tively. Furthermore, if also m = 0, then we have the Pell numbers P{®(1) = £, and the Pell-Lucas
numbers Q1) = Q,.

Recurrence relations are given in (2.1) and (2.2) for 2, and in (3.1) with (3.2) for Q{™
(m >1 in both cases). Further specific work on £, and O, was related to Morgan-Voyce numbers
in [2].
Morgan-Voyce and Quasi Morgan-Voyce Polynomials

Morgan-Voyce polynomials X,,(x) = B,(x), b,(x), C,(x), and c,(x), and the four associated
quasi Morgan-Voyce polynomials ¥,(x) =%, (x), b,(x), 6,(x), and ¢,(x) are defined [1], [2]
recursively by

Xo2(¥) = Xpa (%) = 3X,(x), Xo(x)=a, X(x)=0, (13)
and
Lia(¥) = 1,(0) +31,(x), L(x) =a, h(x) =b, (1.4)
(a, b integers), in accordance with the following tabulation:
X,x)|a b | KX
B(x)| 0 1 | R
B [ 1 1| by (1.5)
C(x)|2 2+x| 6,(x)
() -1 1 | ¢ux)

Only &, (x) is required in this paper.
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Our Challenge

Yet remaining for attention are some additional data to be obtained for P (x) in Section 2,
to be complemented by a corresponding, and slightly more thorough, analysis of properties of
0% (x) in Section 3.

In particular, our study of the row sums and column sums of 2™ and Q{™, as well as the
rising diagonal sums X"_, P"™ and ¥ _, O™ will reveal some pleasing features. ;

For ease of reference and calculation, the short table of Pell number convolutions P™ (1)
which appeared in [4] will necessarily have to be repeated here as Table 1. Furthermore, a new
table for Pell-Lucas number convolutions O¢™(1), not previously recorded, will have to be incor-
porated as Table 2. Extensions of Tables 1 and 2 may be effected by employing the recurrence

relations (2.1) and (3.1).

2. NEW PROPERTIES OF PELL CONVOLUTIONS

Prompted by an observation made by a colleague at the Rochester, New York State, meeting
of the Fibonacci Association (July 1998)-—an cbservation actually covered in [2]—we begin an
investigation of certain summation properties of the Pell convolutions (Table 1).

Crucial to our presentation is the recurrence relation [4] for Pell convolutions,

P =2 pm 4 pm) 4 pmD - (> 1), (2.1)
with
PM=0. (2.2)
An abbreviated table for these convolutions, given in [2] and [4], is repeated here for the
reader's convenience.

TABLE 1. Pell Convolution Numbers P™

o 1 2 3 4
1] 1 1 1
212 4 6 8 10
3| 5 14 27 44 65
4 112 44 104 200 340
5129 131 366 810 1555

When required for formal algebraic purposes, values of P{™ could be extended for negative
in (2.1).

Basically, our concern is with three summation formulas, namely, those for rows, columns,
and rising diagonals.in Table 1.

Row Sums

Theorem 1: Z P® = l{]’,,(ﬁ) - Z P,,(fl)} (n fixed).
k=0

2 k=0

Proof: Write out (2.1) for successive values of m (=0,1,..., k) with n fixed. Add (the
columns) to obtain
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m m m m—1
> PO =23 P+ 3+ S R,
k=0 k=0 k=0 k=0

m=1 m m m—1
k) _ k
B+ S PO =23 PR+ 3 P+ S o)
k=0 k=0 k=0 k=0

whence the result enunciated for & follows on replacing 7 by n+1.
Example (n=3, m=4): Theorem 1—2x155=340-30(=310).
Column Sums
n 1 n+l
Theorem 2: ) P™ = 5 B4+ pm %" R(’”“‘)} (m fixed).
i=1 i=1
Proof: Proceed as in Theorem 1 (m fixed). Quickly it follows that
n n+2
OW-LI R I Wl
i=1 i=1
n+2
= BR+B™+ B -3 B0 by @)
i=1
n+l
= R+ B0 -3 P
i=1
Hence, the theorem is demonstrated.
Example (m =3, n=4): Theorem 2 — 253 =1{810+200~504}.

Note: For m=0 (excluded from Theorem 2), we have [3, (2.11)] where x =1,

B=2{Bu+B=1} 23)
=0

Rising Diagonal Sums

Upward slanting (i.e., rising) diagonals are to be imagined in the mind's eye in Table 1.
Accordingly, we seek X" _, PU*™  Specifically, these convolution number sums X7_; P turn
out empirically to be the sequence

(0),1,3,10,33,109, 360, ...= F,(3), (2.4)
where F,(x) = xF,_(x)+F,_,(x) (Fy(x) =0, Fj(x)=1) are the Fibonacci polynomials.
Why is this so?
Theorem 3: Z Pimm = F (3).
m=1

Proof (by induction): For small values n=1,2,3,4 (say), the validity of the theorem is
clearly verifiable. Suppose it is true for n= N (fixed). That is, assume

BOD 4 B0 4 B 4 B, 4 B 4 BY = ). @
Apply the recurrence relation (2.1) repeatedly for m=1,2,..., N +1. Arrange the summations

in three columns, in accordance with (2.1). Then
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NZHP’S'NH—m) = B 4 VD 4 pN=D) 4Ly PO 4 PO 4 pO)
m=1
=2F,(3)+ Fy_,(3)+ Fy(3) by (2.1) and (A)
=3F,()+Fy,0)
= Fy,,(3) by the definition of F,(x) above.

Hence, the theorem is valid for n= N +1.
Consequently, Theorem 3 has been demonstrated for all ».
Indeed [2]
EQ)=%,0)=%,, (2.5)

where %, are quasi Morgan-Voyce numbers (of one kind) formed from the quasi Morgan-Voyce
polynomials %, (x) when x=1.
Now the Binet form for these quasi Morgan-Voyce numbers is [2]

RB,=(a"-p"/A, (2.6)
where ¢, § are the roots of the characteristic quasi Morgan-Voyce equation
2-31-1=0, 2.7
whence
a=3+;/1—5,ﬂ=3“;/ﬁ,aﬁ:—l,a+ﬂ=3,a~/3=A=m‘. 2.8)

Combining these ideas, we deduce that

Theorem 3a: Y P =% =% ;ﬁ , where @, B3, A are defined in (2.8).

m=1
5 a’ __'35
Example (n=5): Y P{™ = P 109 = %;.
m=1 -

As an extension, the sum of the %, (i.e., the sum of the sums of the rising diagonal convolu-
tions) reduces, after algebraic maneuvering, to

k
Theorem 4: Y B, = %(%Hﬁ%k—l).
n=1

Example (k =5): Theorem 4 — 156 =4 (360+109-1).

Properties of the quasi Morgan-Voyce numbers %, which are well documented in [2] may,
because of Theorem 3a, be conceived in terms of sums of rising diagonal Pell convolutions.
Recall that %, =%, (x) when x =1.

One might compare the forms on the right-hand side in Theorem 4 and equation (2.3).

3. NEW PROPERTIES OF PELL-LUCAS CONVOLUTIONS
Recurrence Relation

n o

Coming now to the Pell-Lucas convolution polynomials O™, we must first discover their
recurrence relation, a fundamental requirement which was not incorporated into [4].
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Ordinarily, one might reasonably anticipate that the form of this recurrence relation would
closely resemble that in (2.1). However, there is an unexpected scorpion-like twist to the tail of
this formula.

Empirical evidence enables us to spot the following recurrence relation, cf. (2.1),
7 = 200 + Q) +2(0 D+ Q0TY) (= 1) 3.1)
with
om =12, (3.2)
Substituting m =1 in (3.1) reduces the bracketed "tail" to 4F,.
On the basis of (3.1) and (3.2), we can construct a shortened convolution array for Q™

(Table 2). Recall that a few simple values (m=1,2; n=1,2,3,4,5) could readily have been cal-
culated from the data in the table on page 68 in [4].

TABLE 2. Pell-Lucas Convolution Numbers Q™

S0 1 2 3 4
1|2 4 8 16 32
2 24 72 192 480
3014 92 384 1312 4004
4 134 304 1632 6848 24810
582 932 6120 30512 128344

Extension Example: O =200 + O +2(Q +Q5) = 1864 + 304 + 2(198 + 82) = 2728

Paralleling the triad of Theorems 1-3 in Section 2, we now explore the new territory for o,
Not unexpectedly, the forms of the corresponding enunciations are not quite so pleasing to the
eye, because of (3.1).

Row Sums

Theorem 5: Y OF = Q0D - 200D — 4% OF) - 22" = 1)  (n fixed).

=0 k=0
Proof: Proceed as for Theorem 1.
3
Example (m=3,n=3): Y O =4004-964-1176-62(=1802).
k=0

Column Sums
Aesthetically, we are blessed with no more joy here than we were in Theorem 5.

n=2 n—1
Theorem 6: Y O = %{Qf,’") QMY =23 0D - oD - 2’"*2} m fixed, n>2.
k=2 k=2
Proof: As for Theorem 2.
Example (m=2,n=5): 456=1{6120-1632} -840-932-16.

The requirements of realism necessitate the lower summation bound to be at k =2. This is
because & =0 and k =1, from (3.1), will yield terms O§™ and Q% which do not exist in Table 2.
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Rising Diagonal Sums
Upward slanting (rising) diagonal sums are of the form X"_, Q"™ Denote this by 9, so
that 9, =2. Then Table 2 reveals that

{9,}=2,10,46,214,994, 4618, ..., (3.3)
whence one can spot the recurrence relation
92 =42,,,+32,. (3.4

What can we know about this new sequence? Elementary procedures enable us to establish
the relation

9’n = Zn —|—Zn_1 (35)
where the Binet form for Z, is
2 n 1
Z,=5-("=9"), (3.6)
1
in which y, & are the roots of the characteristic equation for (3.4), namely,
2 —4t-3=0; (3.7
so that
y+8=4y5=-3y-8=2JT=A, (3.8)
Consequently, we have (Z, = 0)
{Z}=2,8,38,176,818, .., (3.9)
with the same form of the recurrence relation for Z, as that for 2, i.e,,
Z,,,=4Z, ,+3Z,. (3.10)

Since 2, is a composite of two Z-numbers, it is simpler to concentrate our energies on Z,.

Generating Functions
One may readily obtain the generating function for the Z-numbers, to wit,

> ZxF =2(1-4x-3x%)7, (3.11)
k=1
thence (3.5) engenders
> 9,xF =(2+2x)(1-4x-3x?)7" (3.12)
k=1
Summations
The Binet form (3.6) leads to
n
S Z, = {2, +3Z, -2} (3.13)
k=1 6

which, by (3.5) with (3.8), produces

n

1
% =2 (Zys~2). (3.14)
k=1 3
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5
Example: 39, = %(3 800 2) = 1266.
k=1

Simson Formulas
Invoking the application of (3.6) with (3.8), we derive the Simson formula

Zn+IZn—1 - er = -4(_3)71_1 (3.15)
while employing (3.5) with (3.8) yields the Simson formula
9‘n-§~19)‘r1—-1 - 937 = —8(_3)n_2- (3 16)

Example (n=4): Both sides of (3.14) have the value -72.

Observe, in passing, that

Q'nﬂ - Q‘n = Zn+l - Zn—l' (317)
Limits
From (3.6) and (3.5),
1imga+—1=1im9—"ﬂ=y=2+ﬁ(z4646) (3.18)
n>w L, n—»o0 9,” ’ > ’
whereas by (2.6) and (2.8),
fim Peet _ o 3413 5503 (3.19)
n—»w n 2
Merely for curiosity we record that
%z 14 (one decimal place). (3.20)
4. END-PIECE

Though the properties of the O™ will, by their very nature, be necessarily more complicated
than those for P it is nevertheless pleasing to unearth the rather unexpected conjunction of the
Z's in (3.5). While other facets of the convolution numbers P(™ and O™ might be pursued, it
seems reasonable to halt at this stage.
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1. INTRODUCTION

In this note we shall study a class of polynomials {R{;\(x)}, where 7 and u are integers, n
and m are nonnegative integers. The polynomials {R,(,,”l")(x)} and {R,(,’ »9(x)} were studied in [2].
Furthermore, the class of polynomials {R,(,”;,;‘)(x)} involve a great number of known polynomials.
Some of these polynomials are (see [2]):

Rr(lo V(x) = b (%),

R{3’(x) = B, (%),

Rr(12 1)(x) Crar(%),

R (x) = C,(x),

R%0(x) = xB, (),

R (x)=4,(2,-1;x) (see [3]),

R (x) = B (x) (see [4]),
where B,(x) and b,(x) are Morgan-Voyce polynomials (see [1]). In this paper we also consider
the sequence of numbers {R( “(2)}.

2. POLYNOMIALS {R{;(x)}

First, we define the polynomials {R,(,’;:)(x)} by the following recurrence relation:

RE9(x) = 2R (%) = RT3 () +xRED (x), n>m, 2.1
with
REO(x)=(n+r+u, n=0,1,...,m=2, R0P (x)=mr+u+x. (2.2

From (2.1) and (2.2), we get
R,(,,”")(x) =u+(m+D)r+Q2+u+r)x,
RED () = u+(m+2)r +(3+3u+4r)x, 2.3)
RO () =u+(m+3)r +(4+6u+10r)x, ...

Hence, we see that there is a sequence of numbers {c;} such that

[(n+1)/m]

R{D(x) = Z e, 24
where c(' 2 =0 for k <0 ork >[(n+1)/m).
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If we take x = 0 in (2.4), then we have

RED(0) =655, 2.5)
Furthermore, from (2.1), (2.2), and (2.4), we get
e =200 =, > m>2, (2.6)
with
c((]f’o") =u+r, cl(,’;)“) =u+2r. 2.7

The solution of the difference equation (2.6), using (2.7), is
) =u+@m+r, n20. (2.3)

Again from (2.1) and (2.4), we have
0 =2 B LD k> nzm (2.9)

n-Lk n—m, k—1>

3. COEFFICIENTS ("

The main purpose in this section is to determinate the coefficients {c(’ “)} for k21. First of
all, we shall write the coefficients {c(r 29} in the following form:

TABLE 1
n\k 0 1 2
0 r+u .
1 2r+u
2 3r+u
m—1 mr+u 1

m | (m+Dr+u  2+u+r
m+l | (m+2r+u  3+3u+dr
m+2 | (m+3pr+u 4+6u+10r

Now we shall prove the following thecrem, using induction.

Theorem 3.1: The coefficients ¢ are given by

T G re s I G el BT

where n>0 and 0<k <[(n+1)/m].

Proof: For n=0,1,...,m—2, we obtain £ =0. Then, from (2.8), we see that (3.1) is true.

We shall assume that (3.1) is true for n (n > 1). Then, by (2.9) and (3.1), we get
=2l -l el 62
- an,k +ran,k +u}/n,k;

2000] 459



A COMPOSITE OF GENERALIZED MORGAN-VOYCE POLYNOMIALS

wher
ere . :2(,,_15’((,:1;2)/{)*(n—22—k(;1,1—2)k)+(n—m—g;::§)(k—1))’
B, :2(n—2(Z;12)k)_(n—12—16(7111—2)k)+(n+l—m;lgnizz)(k—l)), 3.3)

_9 n—1-(m-2)k\ (n-2-(m-2)k + n—-m—(m-2)k-1)
Yk = 2k 2% 2k -2 '
Using the known equality (})+(,”;) = ("¢'), by equalities (3.3) we have
—(m-2k +1-(m-2)k —(m-2)k
an,k:(n 2(,21—1) )> ﬂn,k:(n 2k(’:ll ) ); 7n,k:(n (gzk ) ) (34)

Hence, (3.1) is true for all n> 0.
Corollary 3.1: 1f m=1, then (3.1) becomes (see [2], eq. (2.11)):
ith=(5 5 o (5 (5
Corollary 3.2: 1If m=2 and n is even, then by (3.1) we have (see [2], eq. (6.3)):
D = u+T 0. (3.5)
Using the standard methods, from (2.1) and (2.2), we can prove the following theorem.

Theorem 3.2: The polynomials {Rf,”;f(x)}, for m> 2, possess the following generating function:

u+r—ut+xt™!

5" RO "= . 3.6
;Rﬁ"’ ) 1-2t+1% —xt™ (3.6)

Corollary 3.3: For m=2 in (3.6), we get the generating function of the polynomials {R{"*(x)},
- 0 ()" = u+r+(x—u)t 37
,;R* ) 1-2t+1*(1-x)’ S

(see [2]).
The Binet Form for R} (x)

For m=3 in (2.1) and (2.2), we get the polynomials {R"3(x)} such that

Rr(x,r’z»u)(x) = 2Rr(111u%(x) - (lej)a(x) +X (:’31,‘)3(35), nz3, (3.8)
with
R(({’;‘)(x) =r+u, R{3"(x)=2r+u, RYO(x)=3r +u+x. (3.9)

Using the known methods, by (3.8) and (3.9), we find the Binet form for {Rggu)(x)}. That is,
we can prove the following theorem.

Theorem 3.3: The Binet form for {Rﬁfg”)(x)} is given by
RO() = A+ Gy + G5, (3.10)
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where
=243+ ),
Ao =242 a@+5p()
2 =2+ 20+ ),
and

()= ( A +/AX)? -4 ]"3,

2

B 7\

ﬂ(x)=(A(x) Vo) 4) ,
A(x)=27x-2,
R S A
1™ 2 >

for (A(x))*-4>0.
The coefficients C,, C,, and C; are the solutions of the equation
A-22+1-x=0,
with starting values (3.9). Namely, we get
Ax+(r +u)(2+x— 1) +rk

G = ;
2x+ A - 4,

L i=12,3.

4. SEQUENCE OF NUMBERS

(3.11)

(3.12)

(3.13)

(3.14)

The sequence of numbers {R,(,,’g")(l)} was studied in [2]. In this section we shall consider the
sequence of numbers {R,(,”’;‘)(Z)}. Namely, for m=3 and x =2, from (2.1) and (2.2), we get the

following difference equation,
3= 2an+2 —0p4 +2an> nz 0,
with
ay=r+u, a,=2r+u, ay=3r+u+2,
where R'3”(2) = a,.
The characteristic equation for (4.1) is
B-22+1-2=0,
whose roots are
A =2, Ay =i, A=,
with

A Ay + 23 =2, Ay +Adg+ Agh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>