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REPORT ON THE NINTH INTERNATIONAL CONFERENCE ON
FIBONACCI NUMBERS AND THEIR APPLICATIONS

George M. Phillips

The Ninth International Conference on Fibonacci Numbers and Their Applications was held in
Luxembourg 17-22 July 2000. It was the first conference without our dear Herta Freitag, who died on 25
January 2000. Herta graced every one of our previous eight conferences with her warm and friendly
presence, and enlivened our sessions with her own contributions, all presented in her unique masterly
fashion. In those eight conferences she was author or coauthor of sixteen papers, at least one at every
conference, finishing on a high note at her last conference in Rochester with three papers. This previous
and very special lady, whose humility was so natural that we took it for granted, loved mathematics and her
fellow human beings, and brought out the best in us all. She was just as fascinated with those she met for
the first time as those she had known longer, and her magical influence will remain with all who met her
until the end of their days. Herta was already 75 years of age when she came to our first conference in
Patras, Greece, accompanied by Debbie Harrell. We will always remember with gratitude that either
Debbie or Adair Robertson, and usually both of them, came with Herta to every conference. No Ruth was
more faithful to her Naomi than Debbie and Adair were to Herta, and these three friends shared many
happy times together.

It has often been said that these conferences keep getting better and better, and this monotonic
property continued to hold for the Ninth Conference. The overall quality of the papers has surely
improved, and there were several really outstanding papers at this conference. As at previous conferences,
the greatest representation was from the USA, which contributed 18 to number of those attending. There
were four from Japan, three each from Germany and Hungary, two each from Australia, England, and
Luxembourg, and one each from Austria, Brazil, Brunei, Canada, Cyprus, Finland, France, Italy, Latvia,
New Zealand, Poland, Romania, Russia, Scotland, and Ukraine.

At our welcoming reception, we sampled some fine wines of Luxembourg, graciously provided by our
main host, Professor Joseph Lahr. On the Tuesday evening we enjoyed a reception at the beautiful town
hall of Luxembourg as guests of the Mayor, Mr. Paul Helminger. This was followed by a most interesting
guided walking tour of the city. Our Wednesday afternoon and evening excursion took us on a journey
through the Luxembourg countryside to the Castle of Vianden, followed by a visit to the nearby hydro-
electric power station and a splendid meal at the Hotel Victor Hugo, generously provided by the "Société
Electrique de I'Our" and its Director, Mr. Hubert Weis. The magnificent conference banquet, which was
entirely sponsored by Madame Erna Hennicot-Schoebges, Minister for Culture, Higher Education and
Research, was held in the stylish and elegant Castle of Bourglinster. After dinner, we had the especial
pleasure of hearing an outstanding pianist, Matylda, daughter of our much respected colleague Andrzej
Rotkiewicz, play pieces by Chopin and Magin. Following the conference, there was a find excursion to the
German towns of Trier and Bernkastel along the river Moselle, including a visit to the library of the
mathematician and theologian Nikolaus Cusanus.

We are most deeply indebted to Dr. Prosper Schroeder and members of the Institut Superieur de
Technologie of the Grand Duchy of Luxembourg and, in particular, to Professors Joseph Lahr and
Massimo Malvetti, and to Mrs. Josiane Meissner. This was indeed a smooth-running conference, thanks to
the organizers, the local support and, as at several previous conferences, the cheerful and efficient work of
"our own" Shirley Bergum and Patricia Solsaa.

Since our last conference, Cal Long has demitted office as President of the Fibonacci Association, to
be succeeded by Fred Howard. Our Association is indeed very fortunate: one could not reasonably have
expected a Washington to be followed by a Jefferson. God willing, we look forward to accompanying Fred
to Flagstaff, Arizona, for our Tenth Conference in 2002, and to being welcomed there by Cal.
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HARMONIC SEEDS: ERRATA

G. L. Cohen and R. M. Sorli

Department of Mathematical Sciences, University of Technology, Sydney
PO Box 123, Broadway, NSW 2007, Australia

A natural number 7 is harmonic if its positive divisors have integral harmonic mean H(n). In
our paper [1], we gave an algorithm for determining all harmonic squarefree multiples of a given
harmonic number, based on our concept of a harmonic seed, but our program to implement the
algorithm was faulty.

Table 1 in [1] listed all harmonic seeds less than 10'2. The most prolific of these in producing
harmonic squarefree multiples is 513480135168, as stated in [1], but there are 227 such multiples,
not 216. The largest is N, as given in [1].

We wrote also of the harmonic squarefree multiples of the largest known 4-perfect number,

N, =2%73197.11.23.83.107-331-3851-43691-174763 - 524287.

This has 320 harmonic squarefree multiples (not 169 as given in [1]), the largest of which (replac-
ing the corresponding statement in [1]) is

N;=N,-31-37-43-61-487-3181-25447-50893-49569781- 99139561
~193-10%,
with H(N,;) =99139561.
Reference

1. G.L. Cohen & R. M. Sorli. "Harmonic Seeds." The Fibonacci Quarterly 36.5 (1998):386-
90.

Author and Title Index

The TITLE, AUTHOR, ELEMENTARY PROBLEMS, ADVANCED PROBLEMS, and KEY-WORD
indices for Volumes 1-38.3 (1963-July 2000) of The Fibonacci Quarterly have been completed by Dr.
Charles K. Cook. It is planned that the indices will be available on The Fibonacci Web Page. Anyone
wanting their own disc copy should send two 1.44 MB discs and a self-addressed stamped envelope with
enough postage for two discs. PLEASE INDICATE WORDPERFECT 6.1 OR MS WORD 97.

Send your request to:

PROFESSOR CHARLES K. COOK

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SOUTH CAROLINA AT SUMTER
1 LOUISE CIRCLE

SUMTER, SC 29150-2498
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ON r-GENERALIZED FIBONACCI SEQUENCES AND
HAUSDORFF MOMENT PROBLEMS

Bouazza EI Wahbi

Département de Mathématiques et Informatique
Université Abdelmalek Essaadi, Faculté des Sciences, B.P. 2121, Tétouan-Morocco

Mustapha Rachidi

Département de Mathématiques et Informatique
Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat-Morocco
(Submitted May 1998-Final Revision April 2000)

1. INTRODUCTION

Let ay, a, ..., a,; with a,_; #0 (r = 2) be fixed complex numbers. For any sequence of com-
plex numbers 4 = (ay, a4, ..., &,_;), we define the r-generalized Fibonacci sequence {¥,(1)},5 as
follows: Y (n)=a, forn=0,1,...,7r -1 and

Yin+D)=alym+aly(n—D+- +a,_Jm—-r+1) 1)

for all n>r—1. Such sequences have been studied in the literature (see, e.g., [5], [6], and [8]-
[12]).

Let ¥ = {¥ u}ozncp» Where p <+oo, be a sequence of real numbers. The Hausdorff moment
problem associated with » consists of finding a positive Borel measure 4 such that

¥ = [ t7dp(t) for all n 0<n < p) and Supp(u) < [a, b], @

where Supp(u) is the support of g . If this problem has a solution g, we say that u is the repre-
senting measure of y = {¥ ,}o<n<p. For p=-+oo, problem (2) is called the full Hausdorff moment
problem (see, e.g., [1] and [2]). When p <+, problem (2) is called the fruncated Hausdorff
moment problem, and it has been studied by Curto-Fialkow in [3], [4], and [7].

The aim of this paper is to study the Hausdorff moment problem on [a, 5] associated with an
r-generalized Fibonacci sequence y = {Y,(n)},50. Some necessary and sufficient conditions for
the existence of a positive Borel measure u satisfying (2) are derived from those established for
the full or truncated Hausdorff moment problem (see [1]-[4] and [7]).

This paper is organized as follows: In Section 2 we study the connection between the dis-
crete positive measure and sequences (1). We also give two fundamental lemmas on representing
measures of sequences (1). Section 3 deals with the full Hausdorff moment problem for sequen-
ces (1) using Cassier's method (see [2]). In Section 4 the Hausdorff moment problem for sequen-
ces (1) is studied using Curto-Fialkow's method (see [3]). Section 5 concerns the extension
property of the truncated Hausdorff moment sequence to sequences (1).

2. SEQUENCES (1) AND REPRESENTING MEASURES

2.1. Discrete Positive Measure and Sequences (1)
Let [a, b] be an interval of R and consider the following discrete positive measure

2001] 5



ON r-GENERALIZED FIBONACCI SEQUENCES AND HAUSDORFF MOMENT PROBLEMS

r=1

:u = ijax, >
Jj=0

where p; €R and Supp(1) C[a, b]. Let {a,},o be the sequence of moments of u. Hence,

r-1

a, = rt"dp(t) =Y p;x; forallnz0.
'a _]=0

Consider the polynomial F,(X) =IT/zh(X ~x;) = X" —ap X" ! =y X™2 — ... —aq,_,. Itis clear that

Xo, X1, ..., X,_1 are simple roots of F,(X). Thus, we have x/*' = apx +ayx7-1 + -+ +a,_x7"+

(0<j<r-1) forany n>r—1. This implies that

Oy =000, + QA+ + 0,y forallnzr—1.

Then the moment sequence {c,},»o of u= 27} p;0x, is sequence (1) with coefficients ay, ..., a,,
and initial conditions 4 = (e, ..., @,_1).

We can see then that problem (2) for sequences (1) is nothing more than the converse of the
preceding assertions.

2.2. Two Fundamental Lemmas on Representing Measures of Sequences (1)

Let {¥,(n)},»0 be given by sequence (1) and suppose that u is a representing measure of
{¥4(") }o<n<a,- Then, for any n (0<n <r), we have

Yy(n+r)= Et"*’dp(t) = j:t" [agt™ 1+ a2 + - +a,_ du(?).

Thus, we have ]: 1"P()du(t) = 0 for all n (0<n <r), where P(X) is the characteristic polynomial
of sequence (1). The preceding relation implies that j: P()*du(t)=0. Since u is a positive Borel
measure, it follows that Supp(u) < Z(P) = {x €[a, b]; P(x) =0}. Hence, we have the following
lemma.

Lemma 2.1: Let {Y,(n)},5, be given by sequence (1). Suppose that u is a representing measure
of {¥,(n) }o<ns<zr- Then Supp(u) < Z(P) = {x €[a, b]; P(x) = 0}, where P is the characteristic poly-
nomial of {¥,(1)},»0-

We note that the proof of Lemma 2.1 is identical to the proof of Lemma 3.6 of [3], but in our
case P(X) is the characteristic polynomial of sequence (1). It follows from Lemma 2.1 that, if
sequence (1) is a moment sequence of a positive Borel measure x4 on [a, b], then u is a discrete
measure with Supp(u) c Z(P).

Using Lemma 2.1, we can prove the following property.

Lemma 2.2 (Lemma of Reduction): Let {¥,(n)},o be given by sequence (1) and let P(X) be its
characteristic polynomial. Let u be a Borel measure on [a, b]. Then the following statements are
equivalent.
(i) u is a representing measure of {¥,(n)},» on [a, b].
(i) u is a representing measure of {¥,(7)}o<<2- ON [a, B].
(iii) u is a representing measure of 4 = (ay, ..., &,_;) with
Supp(u) c Z(P) = {x €[a, b];, P(x) = 0}.

6 [FEB.



ON r~GENERALIZED FIBONACCI SEQUENCES AND HAUSDORFF MOMENT PROBLEMS

Proof: 1t is easy to see that (i)= (#). From Lemma 2.1, we derive that (i) = (ii). If
a;= jjtfd,u(t) for 0< j <r—1 and Supp(u) = Z(P), then

Vi) = [Taut + a2 + -+ a,_1du(t) = [ (o)

By induction we have Y,(n) = j: 1"du(t) for any n>r. Consequently, u is a representing measure
of {¥y(m)} 20 on[a, b]. O

Lemma 2.2 has two important consequences. First, we can use it to see that the full Haus-
dorff moment problem for sequences (1) may be reduced to the truncated Hausdorff moment
problem studied in [3]. Second, we shall also see that the truncated Hausdorff moment problem
for a sequence y = {y ;}o<;<. can be extended to sequence (1).

3. SEQUENCES (1) AND FULL HAUSDORFF MOMENT PROBLEM

Let {¥,4(n)}.»0 be sequence (1) in [0, 1] and R[.X] the R-vector space of polynomials. Con-
sider the linear functional L:R[X]— R defined by L(X")=1Y,(n) for n=0. From relation (1),
we derive that L(X*P(X))=0 for all £ >0, which implies that L(QOP) =0 for any Q in R[.X].
Hence, 7 =(P) is an ideal of R[.X] with (P) c ker L. Conversely, let {¥,},2¢ be a sequence of
real numbers and L: R[X]-—> R alinear functional defined by L(X") =V,. Ifthere exists P(X)=
X" —ag X1 —...—a,_; such that L(X*P(X))=0 for all £ >0, then {V,},» is given by sequence
(1) with coefficients ay, ..., a,_; and initial conditions 4 = (5, ...,V,.}).

Proposition 3.1: Let {V,},, be a sequence of real numbers and L:R[X]— R a linear functional
defined by L{X") =V, for n=0. Then:
(i) If {V,},s0 is given by sequence (1) with characteristic polynomial P, we have I = (P) cker L.
(i) If there exists a polynomial P= X" —ayX"'~.--—a,; (r=2) such that / =(P)ckerl,
then {,},50 is given by sequence (1) with coefficients ay, ..., a,_; and initial conditions 4=

(V;) ERRES K‘—l) .

Let P(X)=X"—ay X" —+--—a,; (a,_; #0) and let R(X) be in R[X] such that R(X) =0
for all x in [0,1]. It is well known that there exists A and B in R[.X] such that R(X) = A(X)* +
X(1—- X)B(X)? (see, e.g., [2]). Since A=QP+ 4, and B=0,P + B}, where O, (), 4, and B,
are in R[ X7, with deg 4, <7 —1 and deg B, <r —1, we derive the following lemma.

Lemma 3.2: Let P(X)=X"—ay X1~ ---~a,; (a,., #0) and R(X) € R[X] such that R(x)>0
for all x in [0,1]. Then there exist O, 4;, 4, in R[X] such that R(X)=Q(X)P(X)+ A2+ X(1-
X)B?, where deg 4, <r—1 and deg B, <r —1.
We recall that a real matrix M =[m; ]y ;< (k < +o0) is positive if, for all (finite) real sequen-
ces {&;}o<;<p, We have
k
Zrnijgif ;2 0.
i, j=0

Note that A 20. It was proved in [2] (see Theorem 1.2.3) that a real sequence {¥},., is a
moment sequence of Borel positive measure ¢ on [0, 1] if and only if the two matrices
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ON 7-GENERALIZED FIBONACCI SEQUENCES AND HAUSDORFF MOMENT PROBLEMS

M= [Yi+j]i,j20 and N = [Yi+j+l _Y;+j+2]z',j20
are positive. From Proposition 3.1 and Lemma 3.2, we derive the following result.

Theorem 3.3: Let {¥,(n)},, be given by sequence (1). Then {¥,(n)},, is 2 moment sequence
of a unique positive Borel measure 4 on [0, 1] if and only if the following two matrices,

HE) =[YyG + Nlogi, j<r and K@) =[XyG+j+D=YyG + j+2)]ogs, j<r15 ©)
are positive.

Proof: Suppose that the two matrices H(r) and K(r) as defined in (3) are positive. Let
L:R[X]— Rbe a linear functional defined by L(X")=V, for n>0. For any R eR[X] such
that R(x) >0 for any x €[0, 1], Lemma 3.2 implies that R = QP + A2+ X(1- X)B?, where 0, 4,,
B, e R[ X] with deg 4, <r—1 and degB,<r-1. If 4,(X)= Z;;%, A,X7 and B(X) =22 B, X/,
then

LR = Y YG+piA,+ Y [LG+j+D)-Y,G+j+2)]B8,.

0<i, j<r-1 0<i, j<r-1

Since H(r) and K(r) are positive, we obtain L(R) >0. Consider the Banach space
(C([O’ 1]7 R)a ”'”[0, 1])

of continuous functions on [0, 1], where || £ [|jo, ;= sup,. o,y |/ (*)|. Then |L(R)| < || Rllo, ;; L(Y).
This allows us to extend the linear functional L to a positive measure x4 on [0, 1], where L(f)=
f& S(@®du(t) for any f € C([0, 1], R). Thus, we have Y,(n) = j; t"du(t) for any n>0. Conversely,
if A(X)=2%254,X’, then A(x)> >0 and x(1-x)A(x)* 2 0 for any x €[0,1]. Thus,

l . *

[A@du = Y Y6+ Aa, =0

0<i, j<r-1

and

[f0-0DA@Pdut) = ¥ GG+ j+D-YG+j+2)] A4, 0.

0<i, j<n
Therefore, the two matrices H(r) and K(r) are positive. O

Using an affine transformation, it was established in [2] (see Corollary 1.2.4) that a real
sequence {¥ },-, is a moment sequence of a positive Borel measure on [a, b] if and only if the

two matrices
M=[Y,;]; ;20 and N=[(a+d)Y, ., —Y,1,—abY]; ;50
are positive. Thus, for sequences (1), we derive the following corollary from Theorem 3.3.

Corollary 3.4: Let {Y,(n)},>, be given by sequence (1). Then {¥,(n)},-, is a moment sequence
of a unique positive Borel measure g on [a, b] if and only if the two matrices

H@)=[Y,G+ Nlosi, j<r1 and K@) =[(@+d)Y,(+j+)-Y,(i+j+2)- abY (i + Nlo<i, j<r

are positive.
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ON 7-GENERALIZED FIBONACCI SEQUENCES AND HAUSDORFF MOMENT PROBLEMS

Theorem 3.3 and Corollary 3.4-allow us to see that the full Hausdorff moment problem for
sequence (1) can be reduced to the truncated Hausdorff moment problem, which is conformable
with the result of Lemma 2.2.

4. SEQUENCES (1) AND TRUNCATED HAUSDORFF MOMENT PROBLEM

The Hankel matrices associated with a given real sequence y ={y;},5, are defined by
H(n) =[74;lo<i, j<n» Where n20. The (Hankel) rank of the Hankel matrix A=[y;, ;o< j<k>
where (g, ...,7,;) in R*¥* denoted by rank(y) is defined as follows: If A is nonsingular,
rank(y) =k +1, and if 4 is singular, rank(y) is the smallest integer i (1<i <k) such that V; e

span{V, ...,V,_1}, where V, = (y j+,)f‘=0 is the j™ column of 4. Thus, if 4 is singular, there exists

a unique (@,,...,4,_;) in R’ such that V,=¢, Vy+---+@J,_,. The polynomial gX)=X -
G X'+ +¢,_, is called the generating function of y = (y, ..., ¥;) (see [31).

Let Y, ={Y,(n)},>, be given by the sequence (1) and consider the full Hausdorff moment
problem (2) for ¥, on [a,b]. From Lemma 2.2, this problem may be reduced to the following
truncated Hausdorff moment problem: Find necessary and sufficient conditions for the existence
of a positive Borel measure g such that

Yy(n) = [ "dp(@), (0sn<2r) and Supp(p) [a,b].

The general case for the truncated Hausdorff moment problem has been studied in [3]. Consider
the two Hankel matrices

A(r)=[Y4G+ Do, j<» and B(r)=[Y4G +Jj+Dlo<;, j<r-
Since Y,(n+1) = Z;;}) a;¥,(n— j) for nzr -1, the column vector V'(r +1,r) = Xyr +1+ 1)) is
an element of the range of A(r) and the (Hankel) rank(¥,) is equal to rank(Y{?), where ¥’ =

(¥4(0), ..., ¥,(2r)). Thus, we have s:=rank(¥,)<r. Hence, for sequence (1), the preceding
Lemma 2.2 and Theorem 4.3 of [3] imply that the following are equivalent.

(i) There exists a Borel positive measure g such that Supp(u) c[a,b] and Y,(n) = j:t"d,u(t),
0<n<2r.
(i) There exists an r-atomic representing measure 4 for ¥, such that Supp(u) c|[a, b].
(iii) A(r) =0 and bA(r) = B(r) = aA(r).

Consequently, we have the following result.

Theorem 4.1: Let Y, ={V,(n)},>o be given by sequence (1), where 4=(a,,...,a,_;) with
a, >0 and let s:=rank(Y,) = rank(Y, (M) . The following statements are equivalent.
(i) There exists a Borel positive measure y with Supp(u) c[a, b] such that Y,(n) = j:t"dy(t)
for all n>0.
(ii) There exists an s-atomic representing measure u for ¥, such that Supp(u) c[a, b].
(iii) A(r) 20 and bA(r) > B(r) > aA(r).
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ON r-GENERALIZED FIBONACCI SEQUENCES AND HAUSDORFF MOMENT PROBLEMS

Suppose that {Y,(n)},, is a moment sequence of a positive Borel measure u on [a,b].
Then, from Theorem 4.1, we derive that u=%7_, p jé'xj , where p, >0 and {x,,...,x,} c[a,b]
Z(P). The real numbers p; are given by the following linear system of 7 equations

X{py+xipy++xjp,=a;, 0< j<r-1.

5. FIBONACCI EXTENSION OF y

Let y =(¥,, ..., ¥,) eR™! with (¥, >0). In [3], Curto-Fialkow give necessary and sufficient
conditions for the existence of a positive Borel measure x4 such that

Y= [[Pdu(t) for j=0,1,..,m and Supp(ss)c [a,b]. )

Let V; = (¥, )o<;<i @=0,...,k+1) be the i column vector of A(k) and r =rank(y). Thus,
{,...,V,_1} are linearly independent, and there exists (§,,...,5,;) € R” such that V, =5}, +
o+b Yy V(@ r-)=(,, ;;},, then we have (&, ...,b,_;) = A - 1)V (r,r-1). For m=2k
or 2k +1, Curto-Fialkow proved in [3] that there exists a positive Borel measure u satisfying (4)
and Supp(u) < [a,b] N Z(F,), where r =rank(y) and F, is the generating function of y (see
Theorem 4.1 and 4.3 of [3]). Since Supp(1) = Z(F,), we derive that

Y_vj+l=b01,j+“-+b—ly_vj—r+l for r—IS_]S2k

Let {Y,(n)},>o be given by sequence (1) defined by 4=(X,,...,Y_,) and Y,(n+1)=5,Y,(n)+
vo4b,_Y,(n—r+1) for n>0. This sequence, called the Fibonacci extension of the truncated
Hausdorff moment problem of y , satisfies

Yy(n) = [ £"du(t) for all n>0.

Proposition 5.1: Let y =(Y,,...,Y,) with };>0. Suppose that there exists a positive Borel
measure ¢ which is a representing measure of ¥ . Then y owns an extension {¥,(n)},, Which is
a sequence (1), where r =rank(y), A=(Y,,...,Y_,) and the coefficients ,,...,b,_, are given by
the characteristic polynomial P, of u.
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NEW PROBLEM WEB SITE

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now
be searched electronically (at no charge) on the World Wide Web at

http://problems.math.umr.edu

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair.

Problem statements are included in most cases, along with proposers, solvers (whose solutions
were published), and other relevant bibliographic information. Difficulty and subject matter vary
widely; almost any mathematical topic can be found.

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their
time is encouraged to do so. For further information, write to:

Mr. Mark Bowron

Director of Operations, MathPro Press
P.0.Box 713

Westford, MA 01886 USA
bowron@my-deja.com
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1. INTRODUCTION

A Lucas cube &, can be defined as the graph whose vertices are the binary strings of length
n without either two consecutive 1's or a 1 in the first and in the last position, and in which the
vertices are adjacent when their Hamming distance is exactly 1. A Lucas cube &, is very similar
to the Fibonacci cube I, which is the graph defined as &, except for the fact that the vertices are
binary strings of length » without two consecutive ones. The Fibonacci cube has been introduced
as a new topology for the interconnection of parallel multicomputers alternative to the classical
one given by the Boolean cube [4]. An attractive property of the Lucas cube of order » is the
decomposition, which can be carried out recursively into two disjoint subgraphs isomorphic to
Fibonacci cubes of order n—1 and n—3; on the other hand, the Lucas cube of order » can be
embedded in the Boolean cube of order n. This implies that certain topologies commonly used, as
the linear array, particular types of meshes and trees and the Boolean cubes, directly embedded in
the Fibonacci cube, can also be embedded in the Lucas cube. Thus, the Lucas cube can also be
used as a topology for multiprocessor systems.

Among many different interpretations, F,,, can be regarded as the cardinality of the set
formed by the subsets of {1, ...,n} which do not contain a pair of consecutive integers; i.e., the set
of the binary strings of length n without two consecutive ones, the Fibonacci strings.

If C, is the set of the Fibonacci strings of order n, then C,,, =0C,,; +10C, and |C,| = F,,,.

A Lucas string is a Fibonacci string with the further condition that there is no 1 in the first
and in the last position simultaneously. If C, is the set of Lucas strings of order », then |C’,,l =L,
where L, are the Lucas numbers for every n>0. For n>1, L, can be regarded as the cardinality
of the family of the subsets of {1,...,n} without two consecutive integers and without the couple

1,n. We have
-k n
L= (” ) . (1)
kzzo k ) n—k

The Fibonacci cube I, of order » is the bipartite graph whose vertices are the Fibonacci strings
and two strings are adjacent when their Hamming distance is 1. Based on the decomposition of
C,, a Fibonacci cube of order n can be decomposed into a subgraph I',_;, a subgraph I',_, and
E,_, edges between the two subgraphs; this decomposition is represented by the relation I, =
I,,3+T,,. In a similar way, it is easy to decompose the set C,.5 into the sum 0C,,, +10C,0
and, therefore, to write &, =T,_; +T,_3.

In Figure 1, we draw &, for the first values of n; the circled vertices denote the vertices in I,
that arenotin &, .
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ON THE LUCAS CUBES

£y Ly L3 L4

FIGURE 1

In this paper we determine structural and enumerative properties of the Lucas cubes such as
the independence numbers of edges and vertices, the radius, the center, the generating function of
a sequence of numbers connected to the partite sets, the asymptotic behavior of the ratio of the
numbers of edges and vertices. A consequence of the properties on the independence numbers is
that &£, is not Hamiltonian. Moreover, we obtain some identities involving Fibonacci and Lucas
numbers which seem to be new. Finally, we introduce the Lucas semilattice and found its char-
acteristic polynomial.

2. GENERAL PROPERTIES

The following identities hold: L, =F,,,+F,_, =F,,,— F,_,. For each of them there exists an
immediate combinatorial interpretation in terms of Lucas cubes. The first says that the Lucas
strings of length » beginning with 0 consist of the element 0 followed by any Fibonacci string of
length n—1, while the Lucas strings beginning with 1 must start with the couple 10 and end with
0, and have any Fibonacci string of length (n—3) between 10 and 0.

The second equality says that the Lucas n-strings are merely the Fibonacci n-strings not
beginning and ending with the couple 10 and 01 simultaneously, and consisting of any Fibonacci
(n—4)-string between these two extremal couples.

Using the first construction, we notice that the edges of &£, connecting pairs of vertices of
T, (resp. I,,_;) are just the edges of I, _; (resp. I',_;); moreover, for any vertex v of T, _; there is
exactly one edge connecting it to a vertex of I',_,, i.e., the edge connecting 10v0 to 00v0. Let f,
and /, denote the cardinalities of the edge sets of I', and &, respectively. Thus,

L= fo+ fus tFpy

for n = 3; moreover, by direct computation we have /, =0, [, =2.

Since f, = f,_;+ f,.o + F,, where n 22, f, =0, f, =1, we have immediately f,_, </, < f,.

We will prove the following properties, analogous to the ones proved in [6] for the Fibonacci
cubes.

The eccentricity of a vertex v in a connected graph G is the maximum distance between v and
the other vertices, i.e., the number

= d ;
e(v) [max, (u,v);

the diameter of G is the maximal eccentricity when v runs in G, i.e.,

diam(G) := max e(v)= max d(u,v);
( ) ueV(G) ( ) u,veV(G) ( )

the radius of G is the minimum eccentricity of the vertices of G, i.e.,
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ON THE LUCAS CUBES

rad(G):= min e(v).
(G):= mi n ™)
A vertex v is central if e(v) = rad(G); the center Z(G) of G is the set of all central vertices; a
string @ =[a,, ..., a,] is said to be symmetricif a,=a,_, fori=1,...,n.
For every n, we have that the diameter of %, if equal to »; it is easy to prove that

n for n even
diam(£) = ’
tam(,) {n -1 fornodd.

Moreover, we have the following proposition.

Proposition 1: The number of pairs of vertices at distance equal to the diameter is 1 for » even,
n-1 for n odd.

Proof: Let n be even. The strings having 1 in all the odd or even positions are clearly at
distance # and they are the only possible strings at distance ».

Let 7 be odd. We partition the strings having %1 ones into two sets 4 and B, depending on
whether the first element is 1 or 0. Assume that a string starts with 1; then it is possible to
decompose it into % subsequences 10 and one 0. This element O can be put after a subsequence
10 into %! ways. Clearly, similar considerations hold for the strings starting with 0. The differ-
ence now is that there are Z51 subsequences 01 and one 0 and the O can be put after the sub-
sequences 01 in 2! positions and also before the first 01, i.e., into 24l positions. In any case,
every string contains only one substring 00. A string of the first set has two strings of the second
set at distance n—1, according to the position of 1 in the subsequence corresponding to 00.
Thus, we obtain 2- %! pairs of vertices at distance n—1.

Theorem 1: For n>1, any Lucas cube &, satisfies the following properties:
O rad(&,) =|2].
() Z(%,) = {0}

Proof: (i) The distance d(v,0) is the number of the elements 1 in the string v; hence,
e(0) =2 if nis even and e(0) = 5L if nis odd.

If v #0, let k denote the number of the elements 1 in the string v. The set of the 0's (with the
order induced by v) can be regarded as a Lucas string of length »—k and precisely as the
0e &, ,. Inorder to prove that e(v) > | 2 |, we consider the string v* obtained by replacing the &

elements 1 with 0 and the set of the 0's with a Lucas string of length »— k& at maximal distance
from 0. Then v*€ &, and we have

ntk
n-k 2 7
szt {3

(ii) The previous construction of v* shows that e(v) > e(0) for k>1 or fornodd. Ifk=1
and 7 is even, we replace v* with the string v** defined in the following way: let # be the number
of 0's on the left of the element 1 and / the number of 0's on the right. Without loss of generality,
we can assume that /4 is even and / is odd. Let us replace the /-sequence of 0's, regarded as 0e I,

> l_l n—k even,

7
>2>|2| n-kodd.
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ON THE LUCAS CUBES

by a Fibonacci string 8 with maximal distance from 0 and replace the h-sequence of 0's, regarded
as O e £, , by the Lucas string & obtained by concatenating % couples 01.

The sequence v** = (a0p) is again a Lucas string whose distance from v is greater than | £ ].
Indeed,

ho o [I1_h., 1+1_h+l+l_. »n
H =

d,v?)=Z+1+| 5 |= +1=241. O

We have already noticed that the distance d(v,0) is the number of the 1's in the string v.
Thus, the summands in equality (1) can be regarded as the cardinalities of the sets of the n-strings
at distance k from 0. Now, ifnis odd in &, there are %51 strings starting with 1 and 2 strings
starting with 0 at maximum distance 2! from 0. Hence the number N of Lucas strmgs of order
n odd having maximal eccentricity is

1 n+1
N=—1,
2 2

Then, in equality (1), the summand for £ = 2! becomes

a1 | T
2/ 2
and we obtain a new combinatorial interpretation of the well-known identity
(”—ZH-J _n+l
—1 - .
=) 2

Theorem 2: The number of symmetric Lucas strings of &, is sim &, = Fl_ﬂ 1y
2

Proof: Let n be even. In this case, we will write n=2m+2, m>0. Any symmetric string
must begin and end with 0 and have in its center a couple 00; hence, sim &,,.,, = F,,,;. Now letn
be odd, n=2m+3, m>0. The symmetric strings having at the center 1 must have as center the
triple 010 and two other 0's as extremal. The symmetric strings having at the center O satisfy the
only condition of having two 0's as extremals; hence, sim¥,,,; =F,,+F,,,=F,,;. In both

cases, the statement holds. O

3. ENUMERATIVE PROPERTIES

In [6] we denoted by £, and On the sets of Fibonacci strings having an even or odd number
of 1's, the partite sets of I',, and by e,, o, their cardinalities. Now we use analogous notations.
Thus, we denote by E and O the sets of vertices of &, having an even or odd number of ones.
Their cardinalities é, and 6, are

s 1 n-2k\ n
é,:=| nI—Z( 2% )m
and @

where n>2 and obviously é,+0,=L,.
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Remark: The Lucas cubes &£, are defined properly only for n > 1; however, we shall define also

éo as the set formed by the string of length 0, i.e., the empty set. Since in an empty string there
areno 1's, we set &, =1and §,=0.

Using the construction related to the equality L, = F,,, + F,_;, we see that the even (odd)

vertices of I,_, remain even (resp. odd) also in &,. In fact, by adjoining O before the strings of
I, the number of 1's is not changed. On the contrary, the vertices of I,_, becoming vertices of
&, change parity, because one element 1 is adjoined to their strings.
Furthermore, we have immediately the following relations:
é,=e,_ +0,; and 6,=o0, ;+e¢, ;. 3)
In [6] it was proved that
hn+2 = hn+1 _hn’ hn+3 = _hm and hn+6 = hn (4)
6,. From (3) and (4), it follows immediately that 4., =h,,, —h, =—h, and
~h,_,. Moreover, we have the following theorem.

Theorem 3: The sequence {I;,,} satisfies the properties:
@) il;, 6= 12,,, n>1, and the repeated valuesare 1, ~1,-2,-1,1,2.
(i) The generating function of A, is A(x) = —!

1-x+x?

Proof: (i) h, =-h,,,=h, By direct computation, we have: & =1, 4, = 0; thus, h=1.
é, =1, 6, =2; thus, l;z =-1. & =1, 0, =3; thus, 123 =-2. Also, ﬁ4=—ﬁ1=—l, I;s=—A2= 1, and
hg=—h,=2. From the settings in the Remark, we have hy=1.
() Let A(x):=3X° hx". We have
xA(x)=Y hx™ and ¥*A(x)= hx™2

n=0 n=0

Then it follows that
(1"‘ X+ xz)ﬁ(x) = ﬁo'i"(il\l —ﬁo)x + z (hAn _}; -1 +i;n_2)xn = il\o + (};l —ﬁo)x = 1 D

n=2

The first values of these sequences are

nlol1|2]|3(4]5]|6[7][8]9]10
F, 1112|358 |13|21|34]55
L, 11314 (7 |11]18129(47 76123
e (M |1| 1|1 [3]6]10]15[23]37] 6l
5, 1|0 2|3 ]4|5][8][14[24(39]62
A @ 1] -1|=2|-1]1]2|1]-1]|-2]-1

Remark: A standard argument enables us to obtain identities concerning positive integers starting
from generating functions. In fact, we have, identically,
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1 __4 + B
I-x+x* l-ax 1-px’
where
a=1+‘/3,/3=1“/3, A=3—\/3’ B=3+\/3’
2 2 6 6
which implies
1

= A(l+ox+a’x* +---)+ B+ fx+ f2x* +-++)

=1+(4a+Bp)x+(4a® + BF)x* +---;

1-x+x2

hence, };n = Aa" + Bf" for all n. Thus, for any n € N, we have

A a6m+l +B ﬂ6m+l =1 Aa 6m+2 +B ﬂ6m+2 1 A a6m+3 +B ﬂ6m+3
Aa6m+4+B 6m+4=__1 Aa6m+5+B m+5=1 Aa6m+Bﬂ6m=2
(in accord with the fact that & = #* = —1). Combining the equalities l;,, =é,-0,and é,+0,=L

we obtain
~ _ L,+h,

2 >
_ Lk )

:Q’

From (2) and (5), we have immediately the following identities concerning the Lucas numbers.

Proposition 2:
2k n n-2k-1 n A
L =2 n- L,=2 —_—+h
Z( )n—2k > Z( 2k +1 )n—2k—l+ &

k20 k20

_ n—2k " n-2k-1 n n n
Ln—ZZ( 2% )n 2k—(Aa +Bﬂ) L 22( 2%k +1 )m*‘A(Z +Bﬂ

In [6] it was proved that

hn:2en_F;1+2'* (6)
Furthermore, from (4) and (6) we can obtain the following proposition.
Proposition 3:
. _ n+3-2k\_n+3 n+3-2k n+1-2k
0 g (5 ) 5 ()
.. _ n-2k\ n+l n+1-2k -1-
(i) Fn+2—,§0(2k+1)n 2k+2( ) Z( 2 )
Proof: Let
_ n—2k n-2k-1 n
Z‘,;O( 2k )n 2k’ Z( 2k +1 )n—2k—1'

* Indeed in [6] this equality is written 4, =2e, — F, because in [6] the Fibonacci numbers are defined by the
recurrence Fy =1, F,=2, F _,=F,  +F,.

n+2 — < n+l
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We have Ln = 22 - hn—l +hn-3 - 22 —2e -1 +F;l+l +2€n_3 _F;I'-l’

Foy=S-tpitea=Y (nZng)n n2k Z (n Zk) 3 (n—%k—Zk)

k20 k20

and so the first statement is proved; moreover, we have L, =23%'+h,_—h, 3;=2%"+2e, ,~
E, ., —2e, 5+ F,_,, thus we have

_ n-2k-1 n n—2k n-2-2k
B =2+ e en—a—kZ;O( 2k +1 )n 2% — ﬁZ( ) Z( 2k )

k=0 k20

hence the second statement is proved. [

4. INDEPENDENCE NUMBERS

Recall that in a connected graph the vertex independence number By(G) is the maximum
among all cardinalities of independent sets of vertices of G, the edge independence number f(G)
is the maximum among all cardinalities of independent sets of edges of G. We have the following
theorem.

Theorem 4: Let 3,(<,) be the edge independence number of &,. Then
1
pi) =| |

Proof: Let L, be odd. Since I,=F,,,+F,,, then F,,, and F,_,; have different parities. In
[5] it was proved that the Fibonacci cubes have a Hamiltonian cycle in the case of an even number
of vertices and a cycle containing all the vertices but one in the odd case [5]. Thus, it is possible
to determine £z independent edges; since this is the maximum, the result holds.

When L, 1s even, it follows from the sequences of Fibonacci and Lucas numbers that F,,
and F,_, are both odd. In this case, the Fibonacci cubes I, , and I,_; have cycles of length
E,,—1and F,_; -1, respectively, and we can find &2 independent edges. By Theorem 3, we
have |é,—0,| = 2 when L, is even. Then the order of one of the partite sets is 22, which coin-
cides with the maximal number of independent edges. Thus, the maximum number of independent
edges is exactly 2. O

We immediately have the following.
Corollary 1: <, is not Hamiltonian.

Proof: 1t is obvious in the case of L, odd. In the even case, it follows from Theorem 4 that
the maximum number of independent edges is Z27%. This excludes that &, is Hamiltonian. O
Corollary 2: [(£,) = min(é,,5,).

Proof: From Theorem 3, it follows that |é, — 8, | is equal to 1 or 2, depending on whether L,

is odd or even. Since L, =¢,+0,, | %5~ coincides with min(é,,8,). The result follows from
Theorem 4. O

We are now able to prove the following theorem, analogous to the one in [6].

18 [FEB.



ON THE LUCAS CUBES

Theorem 5: Let Bo(£,) be the vertex independence number of &,,. Then B,(<£,) = max(é,, 5,).

Proof: By Theorem 3, é, and 6, are always distinct. Without loss of generality, we can
assume é, <0,. Thus, by Theorem 4 and Corollary 2, &, contains &, independent edges and
every vertex v € £, can be paired with a vertex v’ € O,. This implies that a set 4 of independent
vertices cannot have cardinality greater than 6,, because both v and v' cannot belong to 4. O

S. ASYMPTOTIC BEHAVIOR

For the applications, it seems to be useful to consider the indices

i(T,):= an i(?in)::—é’:

and their asymptotic behavior. In order to prove that lim,_.i(&£,) = +oo, it is convenient to
express f, and /, in a direct way instead of by recurrence, for instance, by writing

Proposition 4: The following equalities hold:
(i) fo= nF + 25(n +1DF,

@ii) l,=nF,_, forn=3.
Proof: (i) Indeed,

2F,+22+1)F,
5

Now assume by induction that
(n-1F, +2nk,
5

forn>2;

:2:f2 and

3F,+2(B+1)F
4 g )3:5=f3-

n+l =

and f,,= (n-2)E,_, 22(n—1)F_2 .

Then
n+4 E,+nF- +@2n-2)F,_+FE,_ 2n+2E,+nF,,+F_
f;1—:fnl‘f;12 F;r_( ) 1 ( )( 1 2)_( ) ( 1).

(@) 1= foa+ fostFi
_ (n - I)E, + 2nF_1 + (n - 3)F -2 + 2(n - Z)F;,_3 + 5F;1_1
B 5

_Gn+AE, 1 +@n-4E,_, +2n-4)F,;
- S

= nF;,_l . D
Furthermore, we recall that

ﬁ;=¢"g§5’" and L,=¢"+9", )

(where ¢ =(1++/5)/2 and ¢ =(1-+/5)/2). Then we have

Theorem 6:
(i) i n—l) < 1(§£n) < l(rn)
@) 1im, i (L,) = +e0.
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Proof: (i) We have to prove that f, L, <l,F,,, and I,F,,, < f,L, and that these inequalities
are part of an increasing sequence of positive integers:

v Jooiln <l Foy <BFrpg < fuly < foLlpi <liFria < hinFous < fraLpire - -

Now let a, := f,F,.1 ~ fu-1Fuz. We begin by showing that a, > 0. Indeed, by direct computation
. wehave a, = fiF, - f)F5=1,a,=f,F;- f,F,=1,and forn>3,

a, = fooFi + FpsFo= foiFy = fooFy = fuaFy + B =a, , +Fl >a, .

n

In order to prove the first inequality, we have

LFa = foily = foa + fos + B By — frea (P + Fy)
= (fo3 + BBy — foaFn
=(fos t B)E A EL) ~ (fia + frs t B Fry
=(fos +E)F, - fuaFr = a,,>0.
The second inequality is immediate for n <4; for n>4 we have
Joln =8 Fnin = —forFrg + fra (B + Frs)) = fresFoia + Fri By
=~(fia+ fos H BB+ [u2GF, + F ) = [, 3GBF,  +2F, )+ F,uF,
= (B3fusba =3 usbn) 43 b H BBy — F By
=3(foakpr — fusB) + B F, =30, , + B F, ,>0.

(i) From (7) it follows that

oy _nE . n
1(58,,)—Ln— L " O

6. LUCAS SEMILATTICES

In [3] we studied a poset connected to I',. In a similar way, the set of Lucas strings can be
partially ordered with respect to the relation < defined by [a,,...,a,]1<[b,,...,b,] if and only if
a,<b fori=1,...,n for all Lucas strings [a,, ..., qa,], [4,, ..., b,]. Moreover,

[a,...,a,]V [b,...b]=]c,....c,],

where ¢, = max(a;, ) for i=1,...,n if [c,...,c,] exists. The minimal element is 0=[o,...,0].
The poset (C'n, <) is closed under in f, where [a,, ...,a,] A [b,, ..., b,] =[min(a,, b)), ..., min(a,, b,)]
and 0=[0, ..., 0]. Thus, (C',,, <) is a meet-semilattice L,.

By Theorem 1, the height of L, i.e., the maximum number of 1's in a Lucas string of length »
is 4],

Recall that in a semilattice § an afom is an element covering 0 ; the set of atoms is denoted by
Atom(S). A semilattice is atomic if for each x € § there exists a subset 4 — Atom(S) such that
x = VA, it is strictly atomic when for each element x € S there exists a unique 4 — Atom(S) such
that x =VvA4.

A semilattice is simplicial where every interval is isomorphic to a Boolean lattice. In [3] we
proved that a finite semilattice S with 0 is strictly atomic if and only if it is simplicial. Moreover,
every finite strictly atomic semilattice S is ranked, where the rank is the function r: S —> N
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defined by r(x) = | 4| if and only if x =vA4. Finally, we proved that the characteristic polynomial
of a finite strictly atomic semilattice S is ¥(S, x) = Z(~)*W,(S)- x"*  where W, is a Whitney
number of the second kind (i.e., the number of elements of S of rank k) and A(S) is the height of
S. All the properties of the Fibonacci semilattices also hold in this case. The difference concerns
W, and the height. Now it is

m)=(" ") and =[]

then we have

4 n-k\ n z
= LA\ A
l(l’na x)‘];]( k ) n—k ( l)k X k.
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1. INTRODUCTION

Let ay, a,, ...,a,_; (r >2) be some real or complex numbers with a,_, #0. An r-generalized
Fibonacci sequence {V,},, is defined by the linear recurrence relation of order 7,

Von=ay,+ay, +-+a,_V, .., fornzr-1, 1)

where Vy, 1, ..., V,_, are specified by the initial conditions. Such sequences are widely studied in

the literature (see, e.g., [5], [6], [9], [10], [11], and [13]). We shall refer to them in the sequel as
Vasl

sequences (1). It is well known that, if the limit g =lim,,_, ., exists, then g is a root of the
characteristic equation x” =agx"! +---+a,_,x+a,_,. Hence, sequences (1) may also be used as a
tool in the approximation of roots of algebraic equations (see [12]), like Newton's method or the
secant method as it was considered in [7].

The Aitken acceleration {x,},., associated with a convergent sequence {x,},-, is defined by

2
* Xn41%n — %,

X, :—L—, 2
g Xp41— 2xn +X, ( )

For numerical analysis, this process is of practical interest in those cases in which {x}},., con-
verges faster than {x,},., to the same limit (see, e.g., [1], [2], [3], [4], and [8]). In the case of
sequences (1) with 7 =2, McCabe and Philips had considered a theoretical application of Aitken
acceleration for the accelerability of convergence of {x,},.,, where x, = V,’}—:‘ (see [12]). This is
nothing more than the application of Aitken acceleration to the solution of the quadratic equation
x? —ayx —a, = 0 by an iterative method (see [12]).

The main purpose of this paper is to apply the method of the e-algorithm (see [3], [4]), which
generalizes the Aitken acceleration, to accelerate the convergence of {x,},-,, where x, = V;};' , for
any sequence (1). Hence, we extend the idea of McCabe and Philips [12] to the general case of
sequences (1). Thus, we get the acceleration of the solution of algebraic equations.

This paper is organized as follows. In Section 2 we give a preliminary connection between
sequences (1) and the e-algorithm. In Section 3 we apply the e-algorithm to the sequence of the

ratios x,, = V,’;:‘ . Some concluding remarks are given in Section 4.

2. SEQUENCES (1) AND THE e-ALGORITHM

Let {x,},>0 be a convergent sequence of real numbers with x =lim,_, . x,. The e-algorithm
is a particular case of the extrapolation method (see [2], [3], [4]). The main idea is to consider a
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sequence transformation T of {x,},», into a sequence {7,},>,, Which converges very quickly to
-x

the same limit x, this means that lim,,_, ,{i’l_x =0 (see [3] and [4] for more details). The kernel of
the transformation 7, defined by

%T = {{xn}nZO; 3N>O, -7;, =X, Vn>N},

is of great interest for an extrapolation method like Richardson or g-algorithm (see [3], [4]). In
summary, the e-algorithm associated with the convergent sequence {x,},, consists in considering
the following sequence {£{"},,_, ,so, Where

eN=0eM=x,;n>0, 3)

60 = 60+~ k20, )
el —¢gf

This algorithm can be applied when &{” # £{"*) for any n, k. The g-algorithm theory also shows
that the only interesting quantities are £57, the quantities £57,, are used only for intermediate
computations (see [2], [3], [4]). For k =2, we can derive from expressions (3) and (4) that £J”
is nothing but the Aitken acceleration associated with {x,},-, as defined by (2) (see [3], [4]).

0 Xn, Theorem 35 of [3] and Theorem
2.18 of [4] show that there exists N >0 such that {2 = x for any 7n> N if and only if there exists
ay, ..., @, with Z’]‘.=0 a; # 0 such that Z’J‘-=0aj(xn+j —x)=0 forany n> N. Itis easy to see that we
can suppose in the last preceding sum that a,#0 and a, #0. Hence, we derive the following
property.

For any convergent sequence {x,},>, With x =lim

Proposition 2.1: Let {x,},>, be a convergent sequence such that x =lim,_ . x,. Then the fol-
lowing are equivalent:

(@) There exists N >0 such that £ = x forany n> N.

(b) The sequence {V,},, defined by V, =x,,, —x is a sequence (1) corresponding to r =k,

whose coefficients and initial conditions are, respectively,

| -_% - -
by = > oy = o and Vy=xy-x,... Vi =Xyua—X.
% 3

(c) The sequence {x,},> is a sequence (1) corresponding to 7 = k +1 such that 1 =1 is a simple

characteristic root, V, = xy, ..., V; = xy,, are its conditions, and its coefficients ay, ..., a, are the
coefficients of the characteristic polynomial P(X) = (X -1)Q(X), where Q(X) is the character-
istic polynomial of {V,},, defined in (b).

Proposition 2.1 shows that, in the case of the g-algorithm, the kernel &; may be expressed
using sequences (1).

3. APPLICATION OF THE e-ALGORITHM TO lim,,_, ., “21

Let {V,},50 be a sequence (1) and A,,..., 4, be the roots of the characteristic polynomial
P(X)=X"-ayX"'—.--—a,_,. Suppose that 1, is a simple root and

0 < |4 |2yl << |Ay] < |Aq)
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Thus, the Binet formula of the sequence (1) is

1 s;-1
V= B+ Y, (Zﬂﬁn"]m;
s=1 \ j=0
where the f3;; are given by the initial conditions and s; is the multiplicity of 1; (0<j</) (see,
e.g., [9] and [10]). Suppose that V;,...,V,_, are such that S, #0. Then we can derive that

V-

Vsl —
lim, , %= 4,.
It is known that if we applied the Aitken acceleration process to a convergent sequence

{X,}n20 With x =lim,_, x, and if lim,_, “212% = p#1, then the sequence {£{"},,, converges

more quickly than {x,},., to x (see [3], Theorem 32, p. 37). In the case of x, =-2, a direct
computation using the Binet formula results in

X, —Ay A
li n+l 0_71
nlgloo x —'ﬂ,o ﬂ‘O

=

#1

because |1, < |4,|. Hence, we have derived the following property.

Proposition 3.1: Let {V,},>, be a sequence (1). Suppose that the characteristic roots {4 j}§=0 are
such that 0 < |4;| < |4,| << |4,] <|Ao| with 4, simple. Apply the Aitken acceleration to

Vi
{x”.‘ V" }nZO.

Then, the sequence {£{"},, converges faster than {x,},s, to 4,.

Let {x,},>o be a convergent sequence with x =lim,__  x,. If x,= f(x,,..., x,_;), where

Xo, ..., X_; are given and

r=1 5f
—-—(x,...,x)#1,
Z.O 2y, %)
then lim,,_,,. &0? = x (see [3], Theorem 52, p. 70). Let f be the function f:DcR™!' >R,
where D={(,,...,¥,.)) € R, y; #0,Vj (1< j<r-1)}, defined by
a

) -1
ST T Jr .. . B .
SO Y1) = g Nh I Y-V

Consider the ratio x, . Then, from expression (1), we derive that x, = f(x,_;, ..., X,_,41). It
is clear that fis a class C1 on D. By direct computation we obtain

$a 1 dP
> Lo 10=1-75 G0

Then we have derived the following result.
Proposition 3.2: Let {V,},, be a sequence (1). Suppose that the characteristic roots {1 f}5=0

are such that 4, is simple and 0 <|4;| < |4, 4| <:--<|4,| <|4o|. Apply the e-algorithm to the

sequence {x ,'}:‘} »0- Then we have lim,,_, ., 8(22_1) = A,
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More precisely, we have the following result.

Proposition 3.3: Let {V,},5, be a sequence (1). Suppose that the characteristic roots {1 j}§=0
are such that 1, is simple and 0 < |4;| < |A,;| <---< |4, <|4y|. Apply the g-algorithm to the

sequence {x, =21} . Then the sequence {£0)_,},>, converges faster than {x,.,_;},so to 4.

Proof: Letb; = %(/10, ..., A¢). Then there exists 5 (1< j <r—1) such that

(50—~ A0) (—1 + rZ-I b}")J = rf @M -b)(x, ;- A -R,, (*)
j=1 =1
where ’
R, =(x,—¢)=b(%,_1—A9) =+ =B,y (X i1 — A0)- (%)

The application (x,_,,,, ..., X,s,—) = (B, ..., b)) is continuous (see [3] and [4]). Hence, for any

00

£>0, there exists N >0 such that |b{” -b| < & for any n> N with j=1,...,r—1. Then, from
(*), we derive that

lim 3(2'('2—1) —Ao _ 1 B R,
= —— lim R
noteo X~ Ao 1+ e Xy, — A

From expression (¥x) of R,, we obtain that

. —Rn___ 4—0_ r— hrﬂ_.“_ iq 2r-2
"li’m*“xnw—l_'lo_— Ay b 4 b Z '

A direct computation using the expression

7 +1 +2
o A
resultsin lim,_, 7”_%; =0. Thus, we have

ki 65’&» )
m —— e
n>4 Xpip1 A‘O

=0. O

The proof of Proposition 3.3 is nothing more than an adaptation of the proof of Theorem 52
of [3] to the case in which
a

) -1
e V) =Ap =2t )
TOn ¥))=do N N N

4. CONCLUDING REMARKS

Note that the g-algorithm may also be used to accelerate the convergence of sequences (1).
More precisely, for a convergent sequence (1), the Binet formula results in |4,/ <1 for any char-

acteristic root 4; (0< j</). Suppose that 0 <|4,| <:--<|4;|<|4¢| <1 Then the Binet formula
and expression (1) imply that lim,_,, .V, =0 for |1,/ <1 for any j or lim, ...V, = Bg if |[1;| <1
for any j#0, and A1,=1 is a simple characteristic root.
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For lim,_,, .V, = 0, we show by direct computation that lim,_, . V,’}*' = A, depending on the

r-1

choice of the initial conditions {V,};Z,. Then, by applying the e-algorithm, we can derive that
{g )}450 converges to O faster than {V,} ., forany p=1...,7 - j.

For lim,_, .V, = Byy=S8 %0, we can derive by direct computation that lim,_ V,’}*‘;S =1,
depending on the choice of the initial conditions {¥;};Z,. Then, by applying the e-algorithm, we
also derive that {{’ f )},>0 converges to S faster than {V,} ., for any p=1,..,r—j. Inparticular,
this case may be used to accelerate the convergence of the ratios 2= 7 2 when the a; are nonnegative
and CGD{j+1,a; >0} =1 (see [6] and [14]).
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