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REPORT ON THE NINTH INTERNATIONAL CONFERENCE ON 
FIBONACCI NUMBERS AND THEIR APPLICATIONS 

George M* Phillips 

The Ninth International Conference on Fibonacci Numbers and Their Applications was held in 
Luxembourg 17-22 July 2000. It was the first conference without our dear Herta Freitag, who died on 25 
January 2000. Herta graced every one of our previous eight conferences with her warm and friendly 
presence, and enlivened our sessions with her own contributions, all presented in her unique masterly 
fashion. In those eight conferences she was author or coauthor of sixteen papers, at least one at every 
conference, finishing on a high note at her last conference in Rochester with three papers. This previous 
and very special lady, whose humility was so natural that we took it for granted, loved mathematics and her 
fellow hunian beings, and brought out the best in us all. She was just as fascinated with those she met for 
the first time as those she had known longer, and her magical influence will remain with all who met her 
until the end of their days. Herta was already 75 years of age when she came to our first conference in 
Patras, Greece, accompanied by Debbie Harrell. We will always remember with gratitude that either 
Debbie or Adair Robertson, and usually both of them, came with Herta to every conference. No Ruth was 
more faithful to her Naomi than Debbie and Adair were to Herta, and these three friends shared many 
happy times together. 

It has often been said that these conferences keep getting better and better, and this monotonic 
property continued to hold for the Ninth Conference. The overall quality of the papers has surely 
improved, and there were several really outstanding papers at this conference. As at previous conferences, 
the greatest representation was from the USA, which contributed 18 to number of those attending. There 
were four from Japan, three each from Germany and Hungary, two each from Australia, England, and 
Luxembourg, and one each from Austria, Brazil, Brunei, Canada, Cyprus, Finland, France, Italy, Latvia, 
New Zealand, Poland, Romania, Russia, Scotland, and Ukraine. 

At our welcoming reception, we sampled some fine wines of Luxembourg, graciously provided by our 
main host. Professor Joseph Lahr. On the Tuesday evening we enjoyed a reception at the beautiful town 
hall of Luxembourg as guests of the Mayor, Mr. Paul Helminger. This was followed by a most interesting 
guided walking tour of the city. Our Wednesday afternoon and evening excursion took us on a journey 
through the Luxembourg countryside to the Castle of Vianden, followed by a visit to the nearby hydro-
electric power station and a splendid meal at the Hotel Victor Hugo, generously provided by the "Societe 
Electrique de l'Our" and its Director, Mr. Hubert Weis. The magnificent conference banquet, which was 
entirely sponsored by Madame Erna Hennicot-Schoebges, Minister for Culture, Higher Education and 
Research, was held in the stylish and elegant Castle of Bourglinster. After dinner, we had the especial 
pleasure of hearing an outstanding pianist, Matylda, daughter of our much respected colleague Andrzej 
Rotkiewicz, play pieces by Chopin and Magin. Following the conference, there was a find excursion to the 
German towns of Trier and Bernkastel along the river Moselle, including a visit to the library of the 
mathematician and theologian Nikolaus Cusanus. 

We are most deeply indebted to Dr. Prosper Schroeder and members of the Institut Superieur de 
Technologic of the Grand Duchy of Luxembourg and, in particular, to Professors Joseph Lahr and 
Massimo Malvetti, and to Mrs. Josiane Meissner. This was indeed a smooth-running conference, thanks to 
the organizers, the local support and, as at several previous conferences, the cheerful and efficient work of 
"our own"' Shirley Bergum and Patricia Solsaa. 

Since our last conference, Cal Long has demitted office as President of the Fibonacci Association, to 
be succeeded by Fred Howard. Our Association is indeed very fortunate: one could not reasonably have 
expected a Washington to be followed by a Jefferson. God willing, we look forward to accompanying Fred 
to Flagstaff, Arizona, for our Tenth Conference in 2002, and to being welcomed there by Cal. 
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HARMONIC SEEDS: ERRATA 

G. L. Cohen and R. M. Sorli 
Department of Mathematical Sciences, University of Technology, Sydney 

PO Box 123, Broadway, NSW 2007, Australia 

A natural number n is harmonic if its positive divisors have integral harmonic mean H{ri). In 
our paper [1], we gave an algorithm for determining all harmonic squarefree multiples of a given 
harmonic number, based on our concept of a harmonic seed, but our program to implement the 
algorithm was faulty. 

Table 1 in [1] listed all harmonic seeds less than 1012. The most prolific of these in producing 
harmonic squarefree multiples is 513480135168, as stated in [1], but there are 227 such multiples, 
not 216. The largest is Nl9 as given in [1]. 

We wrote also of the harmonic squarefree multiples of the largest known 4-perfect number, 

N2 = 2373107-ll-23-83-107-331- 3851-43691-174763-524287. 

This has 320 harmonic squarefree multiples (not 169 as given in [1]), the largest of which (replac-
ing the corresponding statement in [1]) is 

N3 = N2 -31-37-43- 61-487-3181-25447- 50893-49569781-99139561 
«1.93-1082, 

with H(N3) = 99139561. 

Reference 
1. G. L. Cohen & R. M. Sorli. "Harmonic Seeds." The Fibonacci Quarterly 36.5 (1998): 3 86-

90. 

Author and Title Index 
The TITLE, AUTHOR, ELEMENTARY PROBLEMS, ADVANCED PROBLEMS, and KEY-WORD 
indices for Volumes 1-38.3 (1963-My 2000) of The Fibonacci Quarterly have been completed by Dr. 
Charles K. Cook. It is planned that the indices will be available on The Fibonacci Web Page. Anyone 
wanting their own disc copy should send two 1.44 MB discs and a self-addressed stamped envelope with 
enough postage for two discs. PLEASE INDICATE WORDPERFECT 6.1 OR MS WORD 97. 

Send your request to: 

PROFESSOR CHARLES K. COOK 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 
1 LOUISE CIRCLE 
SUMTER, SC 29150-2498 
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ON f-GENERALIZED FIBONACCI SEQUENCES AND 
HAUSDORFF MOMENT PROBLEMS 

Boiistzza El Wahbi 
Departement de Mathematiques et Informatique 

Universite Abdelmalek Essaadi, Faculte des Sciences, B.P. 2121, Tetouan-Morocco 

Mustapha Rachidi 
Departement de Mathematiques et Informatique 

Universite Mohammed V, Faculte des Sciences, B.P. 1014, Rabat-Morocco 
(Submitted May 1998-Final Revision April 2000) 

1. INTRODUCTION 

Let aQ, ah..., ar_x with ar_x ̂  0 (r > 2) be fixed complex numbers. For any sequence of com-
plex numbers A = (a0,ah..., ar_i), we define the r-generalized Fibonacci sequence {YA(n)}„>0 as 
follows: YA(n) = an for n = 0,1,..., r -1 and 

YA(n + l) = a0YA(n)+alYA(n-l) + -~+ar_lYA(n-r + l) (1) 

for all n>r-\. Such sequences have been studied in the literature (see, e.g., [5], [6], and [8]-
[12]). 

Let y = {Yn)o<n<py where p < +oo? be a sequence of real numbers. The Hausdorff moment 
problem associated with Y consists of finding a positive Borel measure /i such that 

Yn = f tndju(t) for all n (0 < n < p) and Supp{ju) c [a, b\ (2) 

where Supp(ju) is the support of ju. If this problem has a solution JH , we say that ju is the repre-
senting measure of y = {Tn}o<n<P- Fof P = +00, problem (2) is called the full Hausdorff moment 
problem (see, e.g., [1] and [2]). When p<+oo, problem (2) is called the truncated Hausdorff 
moment problem, and it has been studied by Curto-Fialkow in [3], [4], and [7]. 

The aim of this paper is to study the Hausdorff moment problem on [a, b] associated with an 
r-generalized Fibonacci sequence y = {YA(n)}n>0. Some necessary and sufficient conditions for 
the existence of a positive Borel measure ju satisfying (2) are derived from those established for 
the full or truncated Hausdorff moment problem (see [l]-[4] and [7]). 

This paper is organized as follows: In Section 2 we study the connection between the dis-
crete positive measure and sequences (1). We also give two fundamental lemmas on representing 
measures of sequences (1). Section 3 deals with the Ml Hausdorff moment problem for sequen-
ces (1) using Cassier's method (see [2]). In Section 4 the Hausdorff moment problem for sequen-
ces (1) is studied using Curto-Fialkow's method (see [3]). Section 5 concerns the extension 
property of the truncated Hausdorff moment sequence to sequences (1). 

2. SEQUENCES (1) AND REPRESENTING MEASURES 

2.1. Discrete Positive Measure and Sequences (1) 
Let [a, b] be an interval of R and consider the following discrete positive measure 
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r-\ 

7=0 

where pj G R and Supp(ju) a [a, b]. Let {a„}n>0 be the sequence of moments of ju. Hence, 

r r- l 
t"dju(t) = Y,PjXj forallw>0. 

y=o 
Consider the polynomial PM(X) = IVj^{X - xj) = Xr - aQXr~l - axXr~2 ar^x. It is clear that 
x0, jcb..., xr_x are simple roots of PM(X). Thus, we have x]+l = a0xj + axxyl + • • • + ar_!Xj~r+1 

(0 < 7 < r -1) for any n>r-l. This implies that 

aw+1 = a0aw + axan_i + —h ar_!aw_r+1 for all n > r - 1 . 

Then the moment sequence {an}n>0 of // = Y,r/il
0PjSXj is sequence (1) with coefficients a0,..., ar_! 

and initial conditions A = (a0,..., <zr-i)-
We can see then that problem (2) for sequences (1) is nothing more than the converse of the 

preceding assertions. 

2.2. Two Fundamental Lemmas on Representing Measures of Sequences (1) 
Let {YA(ri)}n>0 be given by sequence (1) and suppose that /i is a representing measure of 

{YA(n)}0<n<2r' Then, for any n (0 < n < r), we have 

YA(n+r)= ttn+rdju(t) = ft" [a0tr~l + of-1 + • • • + ar_x]dju(ty 

Thus, we have jatnP(t)dju(t) = 0 for all n (0 < n < r), where i^X) is the characteristic polynomial 
of sequence (1). The preceding relation implies that faP{i)2dju(i) = 0. Since ju is a positive Borel 
measure, it follows that Supp(ju) e Z(P) = {* e[a, A]; P(x) - 0}. Hence, we have the following 
lemma. 

Lemma 2.1: Let {YA(ri)}n>0 be given by sequence (1). Suppose that // is a representing measure 
of {YA(ri)}0<n<2r. Then Supp(ju) e Z(P) = {x e [a, b]; P(x) = 0}, where P is the characteristic poly-
nomial of {YA(ri)}n>0. 

We note that the proof of Lemma 2.1 is identical to the proof of Lemma 3.6 of [3], but in our 
case P(X) is the characteristic polynomial of sequence (1). It follows from Lemma 2.1 that, if 
sequence (1) is a moment sequence of a positive Borel measure ju on [a, b], then ju is a discrete 
measure with Supp(ju) e Z(P). 

Using Lemma 2.1, we can prove the following property. 

Lemma 2.2 (Lemma of Reduction): Let {YA(ri)}„>0 be given by sequence (1) and let P(X) be its 
characteristic polynomial. Let pi be a Borel measure on [a, b\ Then the following statements are 
equivalent. 

(i) // is a representing measure of {YA(ri)}„>0 on [a, ft]. 
(ii) ju is a representing measure of {l̂ (w)}0<w<2r on [a, b]. 

(Hi) ju is a representing measure of 4̂ = (a0,..., ar.{) with 
%?/?(//) c Z(P) = {XG [a, b]; P(x) = 0}. 

6 [FEB. 
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Proof: It is easy to see that (/)=>(/7). From Lemma 2.1, we derive that (ii)=>(iii). If 
aj = fatJ'dju(t) for 0 < j <r-1 and Suppiju) <= Z(P), then 

YA(r) = [W- 1 +axtr-2 +... +ar_i]^(0 = fW/i(0-

By induction we have YA(ri) = Ja tndfi(t) for any w > r. Consequently, // is a representing measure 
of{7^)}w>0on[a,£]. • 

Lemma 2.2 has two important consequences. First, we can use it to see that the foil Haus-
dorff moment problem for sequences (1) may be reduced to the truncated Hausdorff moment 
problem studied in [3]. Second, we shall also see that the truncated Hausdorff moment problem 
for a sequence y = {y j}o<j<n can be extended to sequence (1). 

3* SEQUENCES (1) AND FULL HAUSDORFF MOMENT PROBLEM 

Let {YA(n)}n>Q be sequence (1) in [0,1] and R[X] the R-vector space of polynomials. Con-
sider the linear functional L: R[X] -> R defined by L{Xn) = YA(n) for n > 0. From relation (1), 
we derive that L(XkP(X)) = 0 for all k > 0, which implies that L(QP) = 0 for any Q in R[X]. 
Hence, / = (P) is an ideal of R[X] with (P) e ker L. Conversely, let (Fw}„>0 be a sequence of 
real numbers and L: R[X] -» R a linear functional defined by L{Xn) = Vn. If there exists P(X) = 
Xr - a0Xr~l ar_x such that L(XkP(X)) = 0 for all k > 0, then (F„}w>0 is given by sequence 
(1) with coefficients a0,..., ar„x and initial conditions A = (F0,..., Vr-{). 

Proposition 3.1: Let {F„}„>o be a sequence of real numbers and L: R[X] -> R a linear functional 
defined by L{Xn) =Vn£orn>0. Then: 
(i) If {F„}„>0 is given.by sequence (1) with characteristic polynomial P, we have / = (P) c ker L. 

(ii) If there exists a polynomial P = Xr-a0Xr~l ar_x (r>2) such that / = (P )dke rL , 
then (F„}„>0 is given by sequence (1) with coefficients a0>...,ar_i and initial conditions A = 

Let P(X) = Xr-a0Xr~l - — -ar_t (ar^ * 0) and let R(X) be in R[X] such that R(X) > 0 
for all x in [0,1]. It is well known that there exists A and B in R[Z] such that R(X) = ^(X)2 + 
X(1-X)£(X)2 (see, e.g., [2]). Since A = QXP + AX mdB = Q2P + Bu where Qh 02, Ah and Bx 

are in R[X], with deg Ax<r-l and deg2% < r - 1 , we derive the following lemma. 

I^iffina 3.2: Let P(X) = Xr -a0Xr~l ar_x {ar_x * 0) and R{X) e R[X] such that i?(x) > 0 
for all x in [0,1]. Then there exist Q, Ah A2 in R[X] such that R(X) = Q(X)P(X) + 4 2 + X(l -
X)B?, where deg Ax < r - 1 and deg^ < r -1. 

We recall that a real matrix M = [wfylo ,̂̂ * (* ̂  +°°) is positive if, for all (finite) real sequen-
ces {%j}0<j<p, we have 

Note that M > 0 . It was proved in [2] (see Theorem 1.2.3) that a real sequence {1̂ }„>0 is a 
moment sequence of Borel positive measure ju on [0,1] if and only if the two matrices 
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M=[Yi+Jlj>0 and N = [Yi+J+l-Yi+j+2]Ujw 

are positive. From Proposition 3.1 and Lemma 3.2, we derive the following result. 

Theorem 3.3: Let {YA(ri)}n>0 be given by sequence (1). Then {YA(n)}n>Q is a moment sequence 
of a unique positive Borel measure ju on [0,1] if and only if the following two matrices, 

H(r) = [rA(f+j)]ozUJ*r-i and ^(r) = [^ ( /+ j + l)-7i l ( i+7 + 2 ) ] 0 ^ u ^ 1 , (3) 
are positive. 

Proof: Suppose that the two matrices H(r) and K(r) as defined in (3) are positive. Let 
L: R[X] -» Rbe a linear functional defined by L(Xn) = Vn for n > 0. For any R GR[X] such 
that R(x) > 0 for any x e [0,1], Lemma 3.2 implies that R = QP + A^ + X(l - X)B\, where Q, Al9 

BXGR[X] with d e g ^ < r - l and degJS^ r - l . If AX{X) = S y l i V ^ and Bl{X) = U~=\PjXJ\ 
then 

0</,y<r-l 0</, ;<r-l 

Since i/(r) and Z(r) are positive, we obtain L(R) > 0. Consider the Banach space 

(C([0,1],R), ||-||[0>1]) 

of continuous functions on [0,1], where ||/||[0si] = sup.,.6[(U]|/(jt)|. Then \L(R)\ < \\R\\[0,i]£(l). 
This allows us to extend the linear functional L to a positive measure ju on [0,1], where L(f) -
\lf{i)dfx{t) for any / e C([0,1], R). Thus, we have YA(n) = f^fdjuit) for any « > 0. Conversely, 
if A(X) = Zpo^jXJ, then A{xf > 0 and x(l-x)A(xf > 0 for any x <= [0,1]. Thus, 

j W d W 0 = I YA(i+j)Wj>0 
0<i,j<r-l 

and 

jlt(l-t)A(t)2dM(t)= X [^(i+7 + l)-y^(i+7 + 2 ) ] ^ / ^ 0 . 

Therefore, the two matrices H(r) and K(r) are positive. D 

Using an affine transformation, it was established in [2] (see Corollary 1.2.4) that a real 
sequence {Yn}„>0 is a moment sequence of a positive Borel measure on [a, h] if and only if the 
two matrices 

M = [Yi+j]Uj>0 and N^{a^Y^^-Y^^-ahY^^ 

are positive. Thus, for sequences (1), we derive the following corollary from Theorem 3.3. 

Corollary 3.4: Let {YA(ri)}n>0 be given by sequence (1). Then {YA(ri)}n>0 is a moment sequence 
of a unique positive Borel measure ju on [a, b] if and only if the two matrices 

^ ) = K('+;)]o>i , ;<H and K(_r) = [(a+b)YA(i+j + l)-YA(i+j + 2)-abYA(i + j)]0^Jir_l 

are positive. 
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Theorem 3.3 and Corollary 3.4 allow us to see that the Ml Hausdorff moment problem for 
sequence (1) can be reduced to the truncated Hausdorff moment problem, which is conformable 
with the result of Lemma 2.2. 

4, SEQUENCES (1) AND TRUNCATED HAUSDORFF MOMENT PROBLEM 

The Hankel matrices associated with a given real sequence y = {/7}7>o are defined by 
H(n) = \yi+J]0^Uj^n9 where n>0. The (Hankel) rank of the Hankel matrix A = [yi+j\<uj<k9 

where (y0,..-,y2k) m R2^+1, denoted by rank(y) is defined as follows: If A is nonsingular, 
rank(y) = k +1, and if A is singular, rank(y) is the smallest integer i (1 < i < k) such that Vi e 
span{Fl9 . . . , ^ _ 1 } , where Vj - ( ŷ+/)f=0 is the j * column of A. Thus, if A is singular, there exists 
a unique ($0,...,^/_1) in RJ such that Vi = ̂ 7_î o + , , , + ^ / - i - The polynomial gr(X) = Xf -
fioX1'1 + • • • + ̂ /_1 is called the generating function ofy = (y0,..., y2k) (see [3]). 

Let YA = {YA(ri)}n>0 be given by the sequence (1) and consider the full Hausdorff moment 
problem (2) for YA on [a,b]. From Lemma 2.2, this problem may be reduced to the following 
truncated Hausdorff moment problem: Find necessary and sufficient conditions for the existence 
of a positive Borel measure ju such that 

YAri) = \btndiu(t\ (0<n<2r) and Supp(ju)c[a,b]. 

The general case for the truncated Hausdorff moment problem has been studied in [3]. Consider 
the two Hankel matrices 

A(r) = [YA(i+j)]0^^r and B(r) = [YA(i+j + l)]0^^r. 

Since YA(n + l) = U~}0a^A(n-j) for n>r-1, the column vector V(r +1,r) = (YA(r +1 + j))r
J=0 is 

an element of the range of A(r) and the (Hankel) rank(YA) is equal to rank(YJr)), where Y}r) -
(YA(0)9...9YA(2r)). Thus, we have s: = rank(YA)<r. Hence, for sequence (1), the preceding 
Lemma 2.2 and Theorem 4.3 of [3] imply that the following are equivalent. 
(i) There exists a Borel positive measure /! such that Supp(ju) e [a, b] and YA(n) = ljndju(t), 

0<n<2r. 
(ii) There exists an r-atomic representing measure // for YA such that Supp(/J) a [a, b]. 
(iii) A(r) > 0 and bA(r) > B(r) > aA(r). 

Consequently, we have the following result. 

Theorem 4.1: Let YA = {YA(n)}n>0 be given by sequence (1), where A = (a0,...9ar_x) with 
aQ > 0 and let s := rank(YA) = rank(Yjp). The following statements are equivalent. 
(i) There exists a Borel positive measure /u with Supp(fi)c:[a9b] such that YA(n) = lj"d/d(t) 

for all /2>0. 
(II) There exists an s-atomic representing measure ju for 1^ such that Supp(ju) e [a, b]. 

fiii) 4(r) > 0 and bA(r) > B(r) > aA(r). 
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Suppose that {YA(ri)}n>0 is a moment sequence of a positive Borel measure ju on [a,b]. 
Then, from Theorem 4.1, we derive that ju = Z ^ p ^ . , where pj > 0 and {xv..., xs} c [a, *] n 
Z(P). The real numbers p , are given by the following linear system of r equations 

x{pl + xip2 + -'- + xJ
sps = aJ, 0<j<r-l. 

5. FIBONACCI EXTENSION OF y 

Let y = (Y0,...,Ym) G R ^ 1 with (Y0 >0). In [3], Curto-Fialkow give necessary and sufficient 
conditions for the existence of a positive Borel measure ju such that 

Yj = fj'dtft) for 7 = 0,1,..., iw and Supp(ju)cz[aybl (4) 

Let Vt ={Yi+jX<j<k (J = 0, ...,£ + 1) be the Ith column vector of A{k) and r = rank(y). Thus, 
{F1? ...,^._1} are linearly independent, and there exists (30, ...,5r_1) e R r such that Vr = bjfr_x + 
.. - + Ar_î o • I f ^ > r -1) = (7r+y)^I1

0, then we have (60,..., br_x) = A(r - 1 ) ' 1 ^ , r -1). For m = 2* 
or 2& +1, Curto-Fialkow proved in [3] that there exists a positive Borel measure ju satisfying (4) 
and Supp(ju)cz [a,b] o Z{Py), where r = rank(y) and Py is the generating function of y (see 
Theorem 4.1 and 4.3 of [3]). Since Supp(ju) c Z(Py), we derive that 

3y+i = Vy + - + W - r + i forr-l<j<2^. 

Let {^(^)}«>o be given by sequence (1) defined by A = (Y0,...,Yr_x) and YA(n + l) = b0YA(n) + 
--+br_xYA(n-r + l) for /?>0. This sequence, called the Fibonacci extension of the truncated 
Hausdorff moment problem ofy, satisfies 

YAn) = ftndju(t) for all n > 0. 

Proposition 5.1: Let y = (I^,...,1^) with J^>0. Suppose that there exists a positive Borel 
measure // which is a representing measure of y. Then y owns an extension {YA(ri)}.„>0 which is 
a sequence (1), where r = rank(y), A = (YQ,..., 1^) and the coefficients b0,..., Ar_i a r e given by 
the characteristic polynomial P of / i . 
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1. INTRODUCTION 

A Lucas cube 3^ can be defined as the graph whose vertices are the binary strings of length 
n without either two consecutive l's or a 1 in the first and in the last position, and in which the 
vertices are adjacent when their Hamming distance is exactly 1. A Lucas cube 5E„ is very similar 
to the Fibonacci cube Tn which is the graph defined as 2J, except for the fact that the vertices are 
binary strings of length n without two consecutive ones. The Fibonacci cube has been introduced 
as a new topology for the interconnection of parallel multicomputers alternative to the classical 
one given by the Boolean cube [4]. An attractive property of the Lucas cube of order n is the 
decomposition, which can be carried out recursively into two disjoint subgraphs isomorphic to 
Fibonacci cubes of order n-\ and n-3; on the other hand, the Lucas cube of order n can be 
embedded in the Boolean cube of order n. This implies that certain topologies commonly used, as 
the linear array, particular types of meshes and trees and the Boolean cubes, directly embedded in 
the Fibonacci cube, can also be embedded in the Lucas cube. Thus, the Lucas cube can also be 
used as a topology for multiprocessor systems. 

Among many different interpretations, Fn+2 can be regarded as the cardinality of the set 
formed by the subsets of {1,...,«} which do not contain a pair of consecutive integers; i.e., the set 
of the binary strings of length n without two consecutive ones, the Fibonacci strings. 

If C„ is the set of the Fibonacci strings of order n, then Cn+2 = 0Cn+1 + \0Cn and \C„\ = Fn+2. 
A Lucas string is a Fibonacci string with the further condition that there is no 1 in the first 

and in the last position simultaneously. If C„ is the set of Lucas strings of order n, then \Cn\ = Ln, 
where Ln are the Lucas numbers for every n> 0. For n>\Ln can be regarded as the cardinality 
of the family of the subsets of {1, ...,n} without two consecutive integers and without the couple 
l,n. We have 

The Fibonacci cube Tn of order n is the bipartite graph whose vertices are the Fibonacci strings 
and two strings are adjacent when their Hamming distance is 1. Based on the decomposition of 
Cn9 a Fibonacci cube of order n can be decomposed into a subgraph F„_1? a subgraph Tn_2 and 
Fn_2 edges between the two subgraphs; this decomposition is represented by the relation Tn = 
Fw_! +TW_2. In a similar way, it is easy to decompose the set Cn+3 into the sum 0Cn+2 + 10Q0 
and, therefore, to write £„ = Tn_i +r„_3. 

In Figure 1, we draw £„ for the first values of n; the circled vertices denote the vertices in Yn 

that are not in <££,. 
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FIGUME 1 

In this paper we determine structural and enumerative properties of the Lucas cubes such as 
the independence, numbers of edges and vertices, the radius, the center, the generating function of 
a sequence of numbers connected to the partite sets, the asymptotic behavior of the ratio of the 
numbers of edges and vertices. A consequence of the properties on the independence numbers is 
that Xn is not Hamiltonian. Moreover, we obtain some identities involving Fibonacci and Lucas 
numbers which seem to be new. Finally, we introduce the Lucas semilattice and found its char-
acteristic polynomial. 

2* GENERAL PROPERTIES 

The following identities hold: Ln = Fn+l + Fn_l = Fn+2 - Fn_2. For each of them there exists an 
immediate combinatorial interpretation in terms of Lucas cubes. The first says that the Lucas 
strings of length n beginning with 0 consist of the element 0 followed by any Fibonacci string of 
length n-1, while the Lucas strings beginning with 1 must start with the couple 10 and end with 
0, and haive any Fibonacci string of length (n- 3) between 10 and 0. 

The second equality says that the Lucas w-strings are merely the Fibonacci 71-strings not 
beginning and ending with the couple 10 and 01 simultaneously, and consisting of any Fibonacci 
(n - 4) -string between these two extremal couples. 

Using the first construction, we notice that the edges of Xn connecting pairs of vertices of 
Tn_t (resp. r„_3) are just the edges ofTn_l (resp. Tn_3); moreover, for any vertex v ofTw_3 there is 
exactly one edge connecting it to a vertex of T„_l5 i.e., the edge connecting lOvO to OOvO. Let fn 

and /„ denote the cardinalities of the edge sets of Tn and <££„, respectively. Thus, 
ln=fn-l+fn-3+Fn-l 

for n > 3; moreover, by direct computation we have lx = 0, /2 = 2. 
Since /„ = fn_x + fn_2 + F„, where n > 2, f0 = 0, fx = 1, we have immediately fn_x <!„</„. 
We will prove the following properties, analogous to the ones proved in [6] for the Fibonacci 

cubes. 
The eccentricity of a vertex v in a connected graph G is the maximum distance between v and 

the other vertices, i.e., the number 
e(v):= max d{%v)\ 

veV(G) 

the diameter of G is the maximal eccentricity when v runs in G, i.e., 
diam(G):= max e(v)= max d(u, v) 

ueV(G) u,veV(G) 

the radius of G is the minimum eccentricity of the vertices of G, i.e., 
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rad(G):= min e(v). 
ueV(G) 

A vertex v is central if e(y) = rad(G); the center Z(G) of G is the set of all central vertices; a 
string a = [al9..., an] is said to be symmetric if a, = an_t for i = 1,..., n. 

For every «, we have that the diameter of 9n if equal to n; it is easy to prove that 

,,. . [n for n even, 
diam(<g„) = ' 

\n-l for n odd. 
Moreover, we have the following proposition. 

Proposition 1: The number of pairs of vertices at distance equal to the diameter is 1 for n even, 
n -1 for n odd. 

Proof: Let n be even. The strings having 1 in all the odd or even positions are clearly at 
distance n and they are the only possible strings at distance n. 

Let n be odd. We partition the strings having - ^ ones into two sets A and B, depending on 
whether the first element is 1 or 0. Assume that a string starts with 1; then it is possible to 
decompose it into - ^ subsequences 10 and one 0. This element 0 can be put after a subsequence 
10 into - ^ ways. Clearly, similar considerations hold for the strings starting with 0. The differ-
ence now is that there are ^ subsequences 01 and one 0 and the 0 can be put after the sub-
sequences 01 in - ^ positions and also before the first 01, i.e., into - ^ positions. In any case, 
every string contains only one substring 00. A string of the first set has two strings of the second 
set at distance w-1 , according to the position of 1 in the subsequence corresponding to 00. 
Thus, we obtain 2 • - ^ pairs of vertices at distance n - 1 . 

Theorem 1: For n > 1, any Lucas cube Xn satisfies the following properties: 

fi) rad(^)=[fJ-
(ii) Z(%n)={0}. 

Proof: (i) The distance d(v, 6) is the number of the elements 1 in the string v; hence, 
e(b) = j if n is even and e(0) = ^ if n is odd. 

If v & 6, let k denote the number of the elements 1 in the string v. The set of the 0's (with the 
order induced by v) can be regarded as a Lucas string of length n-k and precisely as the 
6 G Xn_k . In order to prove that e(v) > [ f j , we consider the string v* obtained by replacing the k 
elements 1 with 0 and the set of the 0*s with a Lucas string of length n-k at maximal distance 
from 0. Then v* e X„ and we have 

:LfJ n-kevmP 

:[fj n-k odd. —L¥>R2 
(ii) The previous construction of v* shows that e(v) > e(0) for k > 1 or for n odd. If k = 1 

and n is even, we replace v* with the string v** defined in the following way: let h be the number 
of 0's on the left of the element 1 and / the number of 0's on the right. Without loss of generality, 
we can assume that h is even and / is odd. Let us replace the /-sequence of 0*s, regarded as 0 e r/? 
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by a Fibonacci string /3 with maximal distance from 6 and replace the /i-sequence of O's, regarded 
as 0 G Xh , by the Lucas string a obtained by concatenating j couples 01. 

The sequence v** = (a0j3) is again a Lucas string whose distance from v is greater than [f J. 
Indeed, 

7~ «*(v,v-) = ! + l + 2 2 2 2 

We have already noticed that the distance d(v, 6) is the number of the l's in the string v. 
Thus, the summands in equality (I) can be regarded as the cardinalities of the sets of the w-strings 
at distance k from 6. Now, if n is odd, in % there are - ^ strings starting with 1 and - ^ strings 
starting with 0 at maximum distance - ^ from 6. Hence, the number N of Lucas strings of order 
n odd having maximal eccentricity is 

Ar n-l , n + \ 
2 2 

Then, in equality (1), the summand for k = - ^ becomes 2 

\ 
n 2 

n-l 
V 2 J 

n±i~n 

2 

and we obtain a new combinatorial interpretation of the well-known identity 

n-l 9 
V 2 J L 

Theorem 2: The number of symmetric Lucas strings of Xn is sim Xn =EtL L ^ , ^ * • 

Proof: Let n be even. In this case, we will write n = 2m + 2, m>0. Any symmetric string 
must begin and end with 0 and have in its center a couple 00; hence, sim ^2m+2 ~ Fm+v Now let n 
be odd, n = 2m + 3, m>0. The symmetric strings having at the center 1 must have as center the 
triple 010 and two other O's as extremal. The symmetric strings having at the center 0 satisfy the 
only condition of having two O's as extremals; hence, simS2OT+3 =Fm+l + Fm+2 = Fm+3. In both 
cases, the statement holds. D 

3, ENUMERATIVE PROPERTIES 

In [6] we denoted by En and On the sets of Fibonacci strings having an even or odd number 
of l's, the partite sets of Tn, and by en, on their cardinalities. Now we use analogous notations. 
Thus, we denote by En and On the sets of vertices of Xn having an even or odd number of ones. 
Their cardinalities en and 6n are 

k>0 V 

n-2k\ n 
2k )n-2k 

and (2) 
A . in i V fn-2k-l\ n 

k>0 

where n > 2 and obviously en+6n = Ln. 
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Remark: The Lucas cubes !£n are defined properly only for n > 1; however, we shall define also 
(?0 as the set formed by the string of length 0, i.e., the empty set. Since in an empty string there 
are no l's, we set e0 = 1 and oQ = 0. 

Using the construction related to the equality Ln =Fn+1+Fn_1, we see that the even (odd) 
vertices of Tn_x remain even (resp. odd) also in !£n. In fact, by adjoining 0 before the strings of 
rw_j, the number of l's is not changed. On the contrary, the vertices of Tn_3 becoming vertices of 
Xn change parity, because one element 1 is adjoined to their strings. 

Furthermore, we have immediately the following relations: 
en = en_l + on_3 and dn = on_l + en_3. (3) 

In [6] it was proved that 

K+2 = 4+i ~K K+3 = ~K and hn+6 = hn. (4) 

Consider hn:=en-6n. From (3) and (4), it follows immediately that 4+3 = K+2 ~K= ~ 4 m& 
4 = K-i ~ K-3 - 4 - i " 4-2 • Moreover, we have the following theorem. 

Theorem 3: The sequence {hn} satisfies the properties: 
(i) hn+6 =hn,n>\, and the repeated values are 1, - 1 , - 2, -1,1,2. 
(ii) The generating function of nn is H(x) = l

 2 . 

Proof: (i) 4+6 = ~4+3 = 4 - % direct computation, we have: et = l, 6l = 0; thus, J\ - 1. 
e2 = 1, c*2 = 2; thus, h2=-l. e3 = 1, Oj = 3; thus, /% = -2 . Also, h4 = -hx = - 1 , h5 = -h2 = 1, and 
h6 =—«3 = 2. From the settings in the Remark, we have h0 = 1. 

(ii) LetH(x):=i:™=0h„x". We have 

xH(x) = £ 4 * " + 1 and x2H(x) = J^h„x"+2. 
«=0 «=0 

Then it follows that 
oo 

(i-x+x2)#(x) = 4 + ( 4 - 4 ^ a 
«=2 

The first values of these sequences are 

n 

k 4 
e» 
o„ 

4 

0 

(1) 

(0) 

(1) 

1 

1 

1 

1 

0 

1 

2 

1 

3 

1 

2 

-1 

3 

2 

4 

1 

3 

-2 

4 

3 

7 

3 

4 

-1 

5 

5 

11 

6 

5 

1 

6 

8 

18 

10 

8 

2 

7 

13 

29 

15 

14 

1 

8 

21 
47 

23 

24 

-1 

9 

34 

76 

37 

39 

-2 

10 

55 

123 

61 

62 

-1 

Remark: A standard argument enables us to obtain identities concerning positive integers starting 
from generating functions. In fact, we have, identically, 
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A +-B 
1-x + x2 I-ax ' 1-fix' 

where 

which implies 
a — _ , / > - - ^ - , ^ = ̂ — > 5 = — — 

1 = ^ ( l + m + a2x2 + '..) + ̂ ( l + ^ + ^ 2 + '4") l - x + x2 

= l + ( ^a + 5^)x + ( ^ a 2 + ^ 2 ) x 2 + --s 

hence, hn = Aan + Bj3n for all /i. Thus, for any w e N, we have 

^a6 w + 1 + 5/?6w+1 = l, Aaen^2+B^m¥2 = -\ Aa6m+3+B/fm+3 = -2, 
Aa6m+4 + Bj36m+4 = -l, Aa6m+5+Bfm+5 = l, Aa6m+B06m =2 

(in accord with the fact that a3 = ft3 = -1). Combining the equalities hn = en-6n and en +6n = Ln, 
we obtain 

"\Y (5) 
un 2 • 

From (2) and (5), we have immediately the following identities concerning the Lucas numbers. 

Proposition 2: 

In [6] it was proved that 
h„ = 2e„-Fn+2.* (6) 

Furthermore, from (4) and (6) we can obtain the following proposition. 

Proposition 3: 
r\ J7 ^ (n + 3-2k\ n + 3 v (n + 3-2k\, v (n + l-2k^ (l) F"+2 = LV 2k J^3=2F"4l 2k ) + £.[ 2* , 

Proof: Let 

v_ V (n-2k\n_ v , _v ffl-2£ -A ft 
S = 4 l 2* J^Z2T' L =4l 2* + l J^2F^i-

* Indeed in [6] this equality is written hn =2en-Fn because in [6] the Fibonacci numbers are defined by the 
recurrence F0 = 1, Fx = 2, Fw+2 = Fn+l + Fn. 
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We have A, = 2 S - ^ _ 1 + ^ _ 3 = 2E-2e„_1+F„+1+2e„_3-F„_1, 

and so the first statement is proved; moreover, we have L„ =2£'+/^_1-/^_3 = 21' + 2en_l-
Fn+1-2en_3 +F„_U thus we have 

17 - y . ^ a - V (n-2k-l\ n , ^ (n-2k\ v (n-2-2k\ 

hence the second statement is proved. D 

4. INDEPENDENCE NUMBERS 

Recall that in a connected graph the vertex independence number J30(G) is the maximum 
among all cardinalities of independent sets of vertices of G, the edge independence number fii(G) 
is the maximum among all cardinalities of independent sets of edges of G. We have the following 
theorem. 

Theorem 4: Let P\{&n) be the edge independence number of Xn. Then 

4-1 
2 

Proof: Let Ln be odd. Since Ln = Fn+l + Fn_u then Fn+l and Fn_x have different parities. In 
[5] it was proved that the Fibonacci cubes have a Hamiltonian cycle in the case of an even number 
of vertices and a cycle containing all the vertices but one in the odd case [5]. Thus, it is possible 
to determine ^ - independent edges; since this is the maximum, the result holds. 

When Zft is even, it follows from the sequences of Fibonacci and Lucas numbers that Fn+l 

and Fn_x are both odd. In this case, the Fibonacci cubes Tn_x and Tw_3 have cycles of length 
Fn+i-l and Fn_x-\, respectively, and we can find ^f^ independent edges. By Theorem 3, we 
have \en-on\-2 when L„ is even. Then the order of one of the partite sets is ^^- , which coin-
cides with the maximal number of independent edges. Thus, the maximum number of independent 
edges is exactly ^y^-. • 

We immediately have the following. 

Corollary 1: Xn is not Hamiltonian. 

Proof: It is obvious in the case of L„ odd. In the even case, it follows from Theorem 4 that 
the maximum number of independent edges is ^f^. This excludes that Xn is Hamiltonian. D 

Corollary 2: /?i(££w) = min(e„, 6n). 

Proof: From Theorem 3, it follows that \en - 6n | is equal to 1 or 2, depending on whether Ẑ  
is odd or even. Since Ln = e„+6n, \Jljr-] coincides with min(e„,<3„). The result follows from 
Theorem 4. • 

We are now able to prove the following theorem, analogous to the one in [6]. 
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Theorem 5: Let fiQ{X„) b e t h e vertex Independence number of Xn. Then J3Q(£n) = max(ew, 6n). 

Proof: By Theorem 3, en and on are always distinct. Without loss of generality, we can 
assume en < 6n. Thus, by Theorem 4 and Corollary 2, Xn contains en independent edges and 
every vertex v e En can be paired with a vertex v e O r This implies that a set A of independent 
vertices cannot have cardinality greater than o„, because both v and v cannot belong to A. D 

5. ASYMPTOTIC BEHAVIOR 

For the applications, it seems to be useful to consider the indices 

and their asymptotic behavior. In order to prove that l i m ^ ^ X ^ ) =+oo, it is convenient to 
express /„ and /„ in a direct way instead of by recurrence, for instance, by writing 

Proposition 4: The following equalities hold: 
(i) fn="Fn+l+2(n+i)F„ f o r ^ 2 ; 

(ii) ln = nFn__x for n > 3. 

Proof: (i) Indeed, 

Now assume by induction that 
, _{n-\)Fn+2nFn_l . _ (w-2)F„_l + 2(»- l ) iy 2 

Jn+l ~ 5 a n a /n-2 - 5 • 
Then 

f - / +/• | F - (»+4)F„+»F W _ 1 + (2H-2)(F„_1 + F„_2) _ (2n + 2)Fn+n(F„ + Fn_l) 
Jn - Jn-l + Jn-2 +rn ~ 5 - 5 • 

(») ln = fn-l+fn-l+Fn-l 

^(n- \)F„ + 2nFn.l + {n - 3)F„_2 + 2(» - 2)F„_3 + 5Fn_, 
5 

= (3n + 4)F„_! + (2» - 4)F„_2 + (2» - 4) j y 3 = ^ D 

Furthermore, we recall that 

Fn = ̂ f- wd L„ = f + f, (7) 

(where ^ = (1 + V5) / 2 and $ = (1 - V5) / 2). Then we have 

Theorem 6: 
(i) /(r„_1)</(S„)</(r„). 

(ii) limnHh00/(S„) = +oo. 
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Proof: (i) We have to prove that fn-iLn < l„Fn+l and l„Fn+2 < fnLn and that these inequalities 
are part of an increasing sequence of positive integers: 

Now let an : = f„Fn+l -f„-iF„+2. We begin by showing that an > 0. Indeed, by direct computation 
we have ax = fxF2-fQF^ = l,a2 = f2F3-fxF4 = 1, and for n > 3, 

an = JU*Wl + ^ + 1 ^ " A - A = fn-2Fn-l ~ fn-3Fn + Fn = ®n-2 + * ? > ^ - 2 • 

In order to prove the first inequality, we have 

4^+1 -fn-lLn = (A-l + fn-3 + Fn-l)Fn+\ ~ fn-\(Fn+\ + ^ - l ) 
= (/„_3 + i^_!)i^+1 - fn-iF

n-\ 

= (A_3 + ^ i X ^ + ^ l ) - 0 , -2 +A-3 + ^ - l ) ^ - l 
= (/w-3 + Fn-l)Fn " 7„-2^-l = <**-! > 0. 

The second inequality is immediate for w<4; for w>4 we have 

ftAi - 4̂ w+2 ~ ~fn-\Fn-2 + /«-2 (^«+l + ̂ - l ) " fn-3Fn+2 + Fn+lFn-2 

= - 0 , - 2 +f„-3+Fn-iK-2 + / ^ 2 ( 3 ^ - i + ^ - 2 ) - A - 3 ( 3 ^ - i +2FW_2) + FW+1FW_2 

= (-3fn-3Fn-2 " ^fn-3Fn-\) + 3fn-2Fn-l + Fn+lFn-2 " Fn-\Fn-2 

= l(fn-2Fn-l-fn-3Fn)+F
n
Fn-2 = ̂ n-2 + FnFn-2 > 0-

fi# From (7) it follows that 

6. LUCAS SEMILATTICES 

In [3] we studied a poset connected to Tn. In a similar way, the set of Lucas strings can be 
partially ordered with respect to the relation < defined by [% . . . , a j < [bh..., bn] if and only if 
ai <bt for / = 1,..., n for all Lucas strings [al9..., an], [bu..., 5J. Moreover, 

[a1 , . . . ,ajv[61, . . . ,*j = [c1,...,cj, 

where q = max(a/,A/) for i = l,...,n if [c1?...,c„] exists. The minimal element is 6 = [0,...,0]. 
The poset (C„, <) is closed under inf, where [au ..., an] A [bl7..., 5J = [min(a1? Aj),..., min(aw, £„)] 
and 6 = [0,..., 0]. Thus, (Q, <) is a meet-semilattice Z„. 

By Theorem 1, the height of Z„, i.e., the maximum number of l's in a Lucas string of length n 
isLfJ-

Recall that in a semilattice # an atom is an element covering 0; the set of atoms is denoted by 
Atom(S). A semilattice is atomic if for each xeS there exists a subset A c Atom(5) such that 
x = vA; it is strictly atomic when for each element xeS there exists a unique 4̂ c: Atom(*S) such 
that x = vA. 

A semilattice is simplicial where every interval is isomorphic to a Boolean lattice. In [3] we 
proved that a finite semilattice S with 6 is strictly atomic if and only if it is simplicial. Moreover, 
every finite strictly atomic semilattice S is ranked, where the rank is the function r: S -> N 
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defined by r(x) = \A\ if and only ifx = vA. Finally, we proved that the characteristic polynomial 
of a finite strictly atomic semilattice S is%(S, x) = T(-l)kWk(S)'Xh^~k, where Wk is a Whitney 
number of the second kind (i.e., the number of elements of S of rank k) and h(S) is the height of 
S. All the properties of the Fibonacci semilattices also hold in this case. The difference concerns 
Wk and the height. Now it is 

0U4) = ( V } ^ and h(L") = 

then we have 
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1. INTRODUCTION 

Let a0, a1?..., ar_x (r > 2) be some real or complex numbers with ar_x ̂ 0 . An r-generalized 
Fibonacci sequence {Vn}n>0 is defined by the linear recurrence relation of order r, 

K+i=^n^aiK-i + '"+ar-iK-r+i forn>r-l, (1) 
where VQ,Vl9 ...9Vr_x are specified by the initial conditions. Such sequences are widely studied in 
the literature (see, e.g., [5], [6], [9], [10], [11], and [13]). We shall refer to them in the sequel as 
sequences (1). It is well known that, if the limit q = lim^+^^r1- exists, then q is a root of the 
characteristic equation xr = a0xr~l + • • • +ar_2x+ar_x. Hence, sequences (1) may also be used as a 
tool in the approximation of roots of algebraic equations (see [12]), like Newton's method or the 
secant method as it was considered in [7]. 

The Aitken acceleration {x*}n>0 associated with a convergent sequence {xn}n>Q is defined by 
2 

v* — Xn+lXn ~ %n o \ 
n~ x -2x +x ' K } 

xn+l AXn ^ xn-l 
For numerical analysis, this process is of practical interest in those cases in which {#*}«>o c o n° 
verges faster than {xn}n>0 to the same limit (see, e.g., [1], [2], [3], [4], and [8]). In the case of 
sequences (1) with r = 2, McCabe and Philips had considered a theoretical application of Aitken 
acceleration for the accelerability of convergence of {x„}n>0, where xn =^y± (see [12]). This is 
nothing more than the application of Aitken acceleration to the solution of the quadratic equation 
x2 - a0x - ax - 0 by an iterative method (see [12]). 

The main purpose of this paper is to apply the method of the e-algorithm (see [3], [4]), which 
generalizes the Aitken acceleration, to accelerate the convergence of {xn)n>0, where xn = ^-^ for 
any sequence (1). Hence, we extend the idea of McCabe and Philips [12] to the general case of 
sequences (1). Thus, we get the acceleration of the solution of algebraic equations. 

This paper is organized as follows. In Section 2 we give a preliminary connection between 
sequences (1) and the g-algorithm. In Section 3 we apply the s-algorithm to the sequence of the 
ratios xn = ^y±. Some concluding remarks are given in Section 4. 

2. SEQUENCES (1) AND THE e-ALGORITHM 

Let {xn}n>Q be a convergent sequence of real numbers with x = lim^ )l00 xn. The s-algorithm 
is a particular case of the extrapolation method (see [2], [3], [4]). The main idea is to consider a 
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sequence transformation T of {xn}n>0 into a sequence {Tn}n>0, which converges very quickly to 
the same limit x, this means that l i m ^ ^ J ^ t = 0 (see [3] and [4] for more details). The kernel of 
the transformation 7, defined by 

%T = {{xH}nM3N>0,Z = x,Vn>N}, 

is of great interest for an extrapolation method like Richardson or e-algorithm (see [3], [4]). In 
summary, the s-algorithm associated with the convergent sequence {x„}„>0 consists in considering 
the following sequence {s^)k>-i,n^0' where 

s^ = 0,s["^xn,n>0, (3) 

« & = «& + ^ D 1
 p{nyn,k>0. (4) 

bk ~bk 

This algorithm can be applied when s^ ^ s^+V) for any n, k. The s-algorithm theory also shows 
that the only interesting quantities are s^, the quantities s^k+i a r e usec^ onty f°r intermediate 
computations (see [2], [3], [4]). For k = 2, we can derive from expressions (3) and (4) that s^ 
is nothing but the Aitken acceleration associated with {xn}n>0 as defined by (2) (see [3], [4]). 

For any convergent sequence {xw}„>0 with x = limn_^+O0xn, Theorem 35 of [3] and Theorem 
2.18 of [4] show that there exists N > 0 such that £%$ = x for any n > N if and only if there exists 
a0,...,ak with Zy=0 «/ * 0 such that Zy=0

 aj(x
n+j - *) = 0 for any n>N. It is easy to see that we 

can suppose in the last preceding sum that a0 * 0 and ak ^ 0 . Hence, we derive the following 
property. 
Proposition 2.1: Let {xn}n>0 be a convergent sequence such that x - lim^ >l00 xn. Then the fol-
lowing are equivalent: 
(a) There exists N > 0 such that e^ = x for any n > N. 
(h) The sequence {Vn}n>0 defined by Vn = xn+N-x is a sequence (1) corresponding to r = k, 
whose coefficients and initial conditions are, respectively, 

^ = ~^>"-'^-i = ~ 3 L a n d Vo = xN-x>->Vk-i = xN+k-i-x-
ak ak 

(c) The sequence {x„}n>N is a sequence (1) corresponding to r = k +1 such that X = 1 is a simple 
characteristic root, V0 = xN,...,Vk= xN+k are its conditions, and its coefficients a0,...,ak are the 
coefficients of the characteristic polynomial P(X) - (X-l)Q(X), where Q(X) is the character-
istic polynomial of {Vn}„>0 defined in (b). 

Proposition 2.1 shows that, in the case of the s-algorithm, the kernel %T may be expressed 
using sequences (1). 

3. APPLICATION OF THE e-ALGORITHM TO l i m ^ ^ %*± 

Let {Vn}n>0 be a sequence (1) and 20,..., A; be the roots of the characteristic polynomial 
P(X) = Xr - a0Xr~l ar_x. Suppose that 2 0 is a simple root and 

0<|A/ |< |A/_1 |<- . .< |A1 |< |10 | . 
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Thus, the Binet formula of the sequence (1) is 

A" 

where the fijs are given by the initial conditions and Sj is the multiplicity of Xj (0 < j < /) (see, 
e.g., [9] and [10]). Suppose that VQ,...,Vrmml are such that pm^0. Then we can derive that 

It is known that if we applied the Aitken acceleration process to a convergent sequence 
R}*>o w i * x = timn^cc>xn and if l i m „ ^ ^ ^ = p * l , then the sequence {4°}«>o converges 
more quickly than {xn}n>0 to x (see [3], Theorem 32, p. 37). In the case of xn = ̂ y±, a direct 
computation using the Binet formula results in 

lim *»*-*>* =h*\ 

because \XX\ < |20 | . Hence, we have derived the following property. 

Proposition 3.1: Let {Vn}n>0 be a sequence (1). Suppose that the characteristic roots {Xj}l
J=0 are 

such that 0 < |yL/| < |AW| < ••• < \XX\ < \X0\ with XQ simple. Apply the Aitken acceleration to 

x =£* 
vn Jn>0 

Then, the sequence {4w)}«>o converges faster than {xn}n>0 to A0. 

Let {xn}n>0 be a convergent sequence with x - limy; >[00 xn. If x„ = f(xn_ly..., xn_k), where 
x0,..., xk_x are given and 

X|£(x,...,*)*!, 
/=0 uJi 

then l i m ^ ^ s$> = x (see [3], Theorem 52, p. 70). L e t / b e the function / : D c R M ^ R , 
where D = {(y1,...,yr_l) e R1"1; J,- *0, V/ ( l < y < r - l ) } , defined by 

Consider the ratio xn = ̂ r1. Then, from expression (1), we derive that xn = f(xn_ly..., xn_r+l). It 
is clear that/ is a class C1 on ©. By direct computation we obtain 

g — (;i0,...,A0) = l - ^ — ( A 0 ) . 

Then we have derived the following result. 

Proposition 3.2: Let {Vn}n>0 be a sequence (1). Suppose that the characteristic roots {/l;}y=0 

are such that X0 is simple and 0 < |A7| < |/LM| < • •< \XX\ < \A0\. Apply the s-algorithm to the 
sequence [xn = Y^]n^ Then we have l i m ^ ^ 4#-i) = A0. 
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More precisely, we have the following result. 

Proposition 3.3: Let {Vn}n>0 be a sequence (1). Suppose that the characteristic roots {Xj}l
J=0 

are such that X0 is simple and 0 < 11,1 < | A M | < ••• < \Xt\ < \X0\. Apply the e-algorithm to the 
sequence [xn = i^-}n>Q. Then the sequence {4"r-i)}w>o converges faster than {^w+r_i}w>0 to A 0 . 

Proof: Let bj = -§fr (A 0 , . . . , A0). Then there exists hf (1 < j < r -1) such that 

(4(U - ^ f - l + Z ^ l = f,^ -h^x^-A,)-^ (*) 
V ;=i J J=i 

where 
^ = (xn ~ ̂ o) " *i(**-i" ^o) " '" •" U V r + i " xol (**) 

The application (x„_r+1,..., jcw+r-1) -> (fl^,..., h^) is continuous (see [3] and [4]). Hence, for any 
8 > 0, there exists N > 0 such that |ijw) - fy,| < s for any w > N with y = 1,..., r -1. Then, from 
(*), we derive that 

Km- * % - D - A 0 = 1 . l i m 4. . 
»-»-h*> Xn+r_t ~XQ - 1 + ^ &y »-M<o X^.^! - AQ 

From expression (**) of i^, we obtain that 

i im -̂  = r v r _ j / ^ j 1 - ir_x I ^ 

A direct: computation using the expression 

results in lim,,^^ Xn+^-x0 = °- Thus, we have 

A n An A/i 

lim g ^ > 7 = 0. D 

The proof of Proposition 3.3 is nothing more than an adaptation of the proof of Theorem 52 
of [3] to the case in which 

/ ( % , . . . ^ r ) = flb+5L + - 2 L + . . . + _ 3 t L _ . 

4. CONCLUDING REMARKS 

Note that the e-algorithm may also be used to accelerate the convergence of sequences (1). 
More precisely, for a convergent sequence (1), the Binet formula results in |/L;| < 1 for any char-
acteristic root Xj (0<j<I). Suppose that 0 < \XX\ <••• < \XX\ < \X0\ < 1. Then the Binet formula 
and expression (1) imply that lim^^^F^ = 0 for \Xj\ < 1 for anyy or lim^^^F^ = fi00 if \Xj\ < 1 
for any j'& 0, and A 0 = 1 is a simple characteristic root. 
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For lim^+^F^ = 0, we show by direct computation that l i m ^ ^ ^ 1 - = Aj9 depending on the 
choice of the initial conditions {^}^V Then, by applying the e-algorithm, we can derive that 
(4p}«>o converges to 0 faster than {VJn>0, for any p = 1,..., r - j . 

For lim^ )|00Vn = J300 = £ * 0, we can derive by direct computation that lim,,^^Vy*~$ = A>j9 

depending on the choice of the initial conditions {f*}£j). Then, by applying the s-algorithm, we 
also derive that {s^}n>0 converges to Sfaster than {Vn}n>0 for any p = l,...,r-j. In particular, 
this case may be used to accelerate the convergence of the ratios -p- when the ay- are nonnegative 
and CGD{j +1; a, > 0} = 1 (see [6] and [14]). 
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For the tridiagonal matrix 

A = 

1. INTRODUCTION 

2 -1 
-1 2 -1 

-1 2 -1 
-1 2 (n-l)x(n-l) 

it is known (see [1]) that A l = [afJ.] has elements 

f'("-;) 
a, 
" ' ^ , i>J-

We will find the inverse of the matrix A , p e N, where 

2 -1 
0 2 - 1 

AP = 

0 • - 0 2 - 1 
- 1 0 • • 0 2 -1 

- 1 0 - - 0 2 - 1 

-1 0 • 
-1 0 

0 2 - 1 
• 0 2 (n-l)x(„-l) 

P-\ 

It is evident that, for p = 1, Ap = A. 
Let Fj-P\ p e N, j s N V.J {0}, be the Zeckendorf numbers given in [2] with 

/ g » = 0,/>elM, 
F1

(/') = l, p e N , 

and 
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if> = 

and let us define 

1, /> = W e N , 
2 y ~ 2 , p>2,JG{2,3,...,p}, 

[F}E}+F}El + -+F}El, p*2,j>p, 

tt(0) = ^ i r (P) j / e { i ; 2 , . . . , « } , 

i4p) = o, ?<o. 
( i ) 

Theorem (Main Result): If the numbers ujp) are as in (1), define the matrix A'p = [ay], p > 2, by 

a*' = ̂ ( 4 P ^ - # V 3 ) . U G{I,2,...,«-I}. (2) 
Then 4 = ^;'. 

It is important to mention that, since p>2,n must not be less than 4. 

2. PROOF OF THE MAIN RESULT 

First, we will establish some properties of the numbers ujp^. 

Lemma 1: For /, p G N, p > 2, and / < p +1, 

«P>=-2M. 
Proof: If/ < /?, then 

^ ) = Z^) = 1 + ( 1 + 2 + , > , + 2 / " 2 ) = 1+^ZT^ = 2/"1' 
y=l 2 ! 

and if /= /? + !, then 

Lemma 2: IfSkl is the Kronecker delta symbol, then 

for/?,£ eN \ { l } and /eNu {0 } . 
Proof: Let us consider two different cases: (a) l>k; (h) l<k. 
(a) For /> £mwehave k-p-l<0, k-l<0, and £ + l - / < l . Hence, by(l), 

uk-P-i - uk-i - u> 

tt0» _ J 0 ' *<'> 

(3) 

and (3) is valid. 
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(b) For l<k, first let 2<k<p. Then k-p-l<0 and k-1 <k + l-~l< p + l. Hence, by 
(1) and Lemma 1, 

4 ^ = 0, M$ = 2*-'-\ and i£L = 2 w . 
It follows that (3) is true. 

If & >/? + !, then for: (i) 0<k-I<p, 

4^-/ -241 +41 / = 0-2- 2k-j-1 + 2k~l = 0; 
(M) k-l>p, let k-l = p + t, f> l , then 

r p+t p+t+i 

;=i y=i ;=i 
/H-f 

J=t+l 

Proof of the Main Result: Since Ap is a square matrix, it is sufficient to prove that Af
p is a 

right sided inverse. Using Lemma 2, we will prove statement (2). If we set A = [c^], then 

ty = < 
2, 7 = /, 
- 1 , j = i + lorj = i-p, 
0, otherwise. 

For ^ = 1 and j G {1,2, . . . ,w-l}, we have 

Using (1) and the definition of i^p), 

2«i(rt - 4 P ) = 2F/p) - (Fp> + Fp)) = 0 
and 

- 2 I 4 ? ) + I # > = I # > = 
f ^ = l, 7 = 1, 
0, 7 e{2,...,«-!}. 

Therefore, {ApA'p\ = £,_, for 7 e (1,2,..., w -1}. 
For k G {2,..., />} and 7 e {1,2,..., w-1}, we have 

1=1 
LP) 

=^(24 '>-^>)+( -24V^l , ) , 

and from (1) and (3) it follows that 
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and 
Hp) -4% = - « , -Hp)+«&) = s* = o 

- 2 ^ + ^ = ^ _ y - 2 ^ ) + ^ . y = ^ . 

For£ €{/? + !,. ..,n-2} and j e{l,2,. . . , « - ! } , let k = p + t, t>\. Then 

w-l 
(ApApJfy - /^Ckfllj - Cp+t,tatj + Ckkakj +Ck,k+lak+l,J 

= - ^ . + la^ - ak+l j = -ak_Pi j + 2a^ - ak+l y 

,//>) 
_ n-J 8^+8^ = 8^-. (p) ukQ'TUkj-uki-

For k -n-\ and j e {1,2,...,w-l}, we have 

(ApA'p)n_lfJ = -an_p_lf j;+2an_Xj 

_ L (UP) U(P) _ HOOJX/O ^ 4. _A_ (MuM - iMhi^ ) 

„(/>) - _ : z z i fw(p) _ OfiCp) "1+ifo>) - 2 i / ^ 

Using the previous theorem, we can now easily find inverses for the following band matrices 
A, with A~l = [«/,]: 

Fortf le matrix 

A = 

p-i 

" 2 0 - • 
- 1 2 0 

-1 

0 

2 
-1 

-1 
0 

0 
2 

-1 

-1 

0 
2 0 

0 

-1 

-1 
0 

2 
-1 

-1 
0 

0 
2_ (B-l)x(n-l) 

av=^(^H^-4P)^\ hi ett2>...,»-l>. 
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For the matrix 
p-i 

A = 
-1 0 • 

-1 0 • • 
0 • • 0 

0 2 - 1 
2 -1 

-1 0 
•1 0 • 

• 0 2 
0 2 - 1 
2 -1 

• 0 2 
0 2 - 1 

J (n-l)x(»-l) 

a*=4r(M'pMp)-^)M$4 w'6{u..,"-i}. 
• For the matrix 

A = 

-1 2 
- 1 2 0 

-1 
2 

-1 
2 
0 

2 0 
0 • 0 

-1 

- 1 2 0 
2 0 • 

0 -1 
0 -1 J («-l)x(„-l) 

p-\ 

^=4r(^X-«^M54 u6{i,2,...,»-i}. 
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1. INTRODUCTION 

In this paper we will consider geometric representations of the iteration of quadratic polyno-
mials modulo p. This is a discrete analog of the classical quadratic Mia sets which have been the 
subject of much study (e.g., [3], [4]). In particular let fdw(u(jt)) denote the function digraph 
which has Xm as vertices and edges of the form (x, u(x)), where x is an element of Zw. This 
digraph geometrically represents the function u(x) and paths correspond to iteration of u(x). 
The function digraphs resulting from squaring mod m, fdOT(x2), have been studied when m is 
prime or has a primitive root (see [1], [2], [5], [10]). In particular, the cycle and tree structures 
have been classified. In [8], these results were generalized from £dp(x2\ to fdp(x^) and a corre-
spondence between geometric subsets of the function digraph and subgroups of the group of units 
was established. Subsequently, most of the results were generalized to general moduli in [12]. 

The aim of our paper is to explore these same ideas for the iteration of general quadratic 
functions instead of powers. In other words, we will consider £d p(aQ •}• atx s-a2x2), where a0, 
ax e Z p and a 2 eZ* . It is easy to enumerate the four function digraphs for p = 29 so we will 
study the case when p is an odd prime. Although these digraphs do not contain nearly as much 
symmetry as the previously studied cases, it is possible to observe some aspects of their structure. 
Consider Figure 1 which shows the digraphs resulting from the iteration of x2 and x2 +1 mod 13. 

u 4 -
r 5 ~ 

1 
0 -

s 1 
§ 1 § 

1 
L 2 -

| L J ° : 

9 

11 

8 

- 12 

- 3 

-c:| 
,u° 

L1-
r 9" 
L 3 „ 

1 r-w— 

L. 8 

L 7 

L- 11 

FIGURE 1. The Function Digraphs for x2 smdx2 + 1 Modulo 13 
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Each of those digraphs breaks into three components. In reading the digraphs, note that the cycle 
contained in each component appears at the left and the cycles progress clockwise; that is, u(x) 
appears below x, except for the lowest cycle element where u(x) appears at the top. For 
noncycle elements, u(x) appears to the left of x in accordance with the indicated tree structure. 
Notice that the trees associated with each cycle element are uniform for x2 but not for x2 + l. 
While it seems very difficult to completely determine the tree and cycle structure without enumer-
ating the entire digraph, we can determine various things about the structure. 

In particular, basic results for general function digraphs are given in Section 2. There it is 
established that, from the p2(p-l) function digraphs there are at mostp digraphs distinct up to 
isomorphism. In Section 3 we investigate what appear to be tight bounds on number of cycles of 
a given length. The occurrence of cycles containing exactly one and two elements is completely 
classified. In Section 4 we empirically compare these quadratic digraphs to "random" digraphs 
and this motivates our conjecture that there are exactly p distinct quadratic digraphs mod p 
except, remarkably, for p = 17. The quadratic function x2 - 2 plays a special role in real dyna-
mics [4] and in the theory of Mersenne primes [7], [9]. In Section 5 we investigate the corre-
sponding family of function digraphs fdp(x2 - 2 ) . The geometric form of these digraphs is very 
structured. We will see there are remarkable identities involving geometric position, addition, and 
multiplication for these digraphs that lead to that rich structure. 

2. BASIC RESULTS 

We begin by discussing properties that are common to function digraphs on Zm, and then 
turn to our quadratic function digraphs. 

Proposition 1: Let u:Zm -> Zm be a function. 
(a) The out-degree of any vertex fdm(u(x)) is exactly one. 
(h) The path in fdTO(u(x)) resulting from repeated iteration of any given element will eventually 
lead to a cycle. 
(c) Every component of fdw(u(x)) contains exactly one cycle. 

Proof: 
(a) This follows from the fact that u(x) is a function. 
(b) Since the function maps points in a finite set, any path must eventually return to a pre-

viously visited vertex. 
(c) If a component has more than one cycle, then somewhere on the undirected path 

connecting two cycles there would need to be a vertex with out-degree 2, contradicting (a). D 

Theorem 2: The function digraphs fdm(u(x)) and fdm(v(x)) are isomorphic if and only if there 
exists a permutation r such that r"1 o u o r = v mod m. 

Proof: (=>) Let r denote an isomorphism between fdw(v(x)) and fdw(u(x)); r gives a bi-
jection between the vertices. The isomorphism of edges implies that, for all x eZ m , the edge 
(x, v(x)) in fdw(v(x)) is mapped by r to the edge (r(x),u(r(x))) in fdm(u(x)); hence, u(r(x)) = 
r(v(x)) mod m, which gives r"1 o u o r = v. 
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(<=) Let r denote a permutation such that r_1ouor = v. Now r gives a bijection between 
the vertices; hence, we need to check this bijection respects the edges. Since r"1 o u o r(x) = v(x) 
for all x e Z w , we have u(r(x)) = r(v(x)), which implies that the edge (x, v(x)) in fdm(v(x)) is 
mapped to the edge (r(x), u(r(x))) in fdw(u(x)) as required. D 

Theorem 3: Let m > 3 be odd, and gcd(a2, m) = 1. The quadratic function digraph fdw(a0 + 
ap+ajyp) is isomorphic to the function digraph of the canonical form quadratic f&m(x2+y), 
where y = a^ + 2~1a1 - 2~2a2. 

Proof: First note that since m is odd, 2"1 exists and hence y is well defined. Let u(x) = 
dQ+ciiX+fyx2, v(x) = x2+y, and x{x)-a^x-2~laxa^. Note that a^1 is well defined since 
gcd(a2, rn) = l. By direct computation, we can check r"1 ouQr(x) = v{x) mod m as required. • 

Corollary 4: Let m > 3 be odd. There are, up to isomorphism, at most m quadratic function 
digraphs mod m with leading coefficient relatively prime to m. 

Proof: By Theorem 3, every quadratic function digraph with gcd(a2, m) = 1 in Zm is isomor-
phic to that of a quadratic in the canonical form x2+y. Since there are m distinct quadratics in 
the canonical form, up to isomorphism, there are no more than m quadratic function digraphs mod 
m with leading coefficient relatively prime to m. D 

The proviso on leading coefficients is necessary. For example, when m = 4, the eight poly-
nomials x2, x2 + l, 2x2, 2x2 + x, 2x2+2x, 2x2+3x, 2x2+x + l, 2x2+3x + l all have non-
isomorphic function digraphs. Our interest lies primarily with odd prime moduli. Of course, 
Theorem 3 and Corollary 4 hold for odd prime moduli, p. Hereafter in the paper, we will let p 
denote an odd prime. 

There is a situation when, up to isomorphism, there are fewer than p quadratic function 
digraphs mod p. Figure 2 shows two canonical form function digraphs that are isomorphic mod 
17. However, we conjecture that this is the only example where there are fewer than/? quadratic 
function digraphs; this will be discussed further in Section 4 after we have established certain facts 
about arbitrary digraphs that satisfy the conclusion of the next theorem. This theorem is the first 
that requires the modulus to be an odd prime. 

L 3 ~ 14 

r 9 - 10 — 

7 - 8 

L i s - 2 -

r 4 I 
L- l i - o 

1 6 1 

^ 1 3 - 4 

r 15 - 16 -

k - 2 ^ 
L s - 1 2 -

r 6^3 1 
«— 14 - 0 

— 11 

r— 7 

9 • 

FIGURE 2, The Function Digraph fd17(*2 +11) Is Isomorphic to fd17(*2 +14) 
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Theorem 5: Let u(x) be a quadratic function modulo p. In the function digraph fd (u(x)), there 
are exactly ( p - l ) / 2 vertices of in-degree 0, one vertex of in-degree 1, and ( p - l ) / 2 vertices of 
in-degree 2. 

Prtoof: There are (/?-!)/2 quadratic residues and nonresidues mod/?. Note that we need 
only consider the digraphs of quadratics in canonical form. In order to determine the in-degree of 
a vertex y we need to know the number of solutions to y = x2 + y. Note that a vertex has in-
degree 2 if and only \fy-y is a quadratic residue, it has in-degree 0 if and only if y - y is a quad-
ratic nonresidue, and it has in-degree 1 if and only if y - y = 0. Thus, there are exactly (p -1) / 2 
vertices of in-degree 0, 1 vertex of in-degree 1, and (p-l)/2 vertices of in-degree 2. D 

3. CYCLES 

Notice that each element in an w-cycle of fdp(u(x)) must be a solution to the congruence 
uw(x) = x modp, where uw(x) denotes the composition of the function u(x) with itself n times. 
In contrast, we will use u(x)w to denote the w* power of the function u(x). Since the congruence 
un(x) = x has degree 2n when u(x) is quadratic, it is a standard result that there can be at most 
2n solutions since the modulus is prime [11]. Thus, there are at most 2n In cycles of length n. It 
turns out that we can establish a better bound on the number of cycles of length n when n = pe as 
we will see in Corollary 8. A heuristic argument suggests this bound works for general n, and 
empirical evidence indicates the bound is tight. In order to establish the bound, we use the follow-
ing lemma and theorem. We will then consider our heuristic and empirical evidence and finish this 
section by classifying the number of one and two cycles that appear. 

Lemma 6: Let v(x) = x 2 +^ , y G R , and P„(x) = vM(x)-x. Then Pw(x) divides P^(x) as a 
polynomial in R[x]. Moreover, the quotient is in Z[x] if y e Z. 

Proof: Since both Pw(x) and P^(x) are monic, it suffices to show that every complex root of 
P„(x) is also a root of P^x ) with at least as high a multiplicity. Note that if x0 is a root of P„(x) 
then vn(x0) = x0, and hence vkn(x0) = x0, which implies that x0 is a root of P^(x); this takes care 
of the single roots. Note that x0 is a root of P„(x) of multiplicity m if and only if it is a root of 
i^(x)and a root of the derivative of Pw(x) with mul-tiplicity m-l. Using the chain rule repeat-
edly and the fact that v'(x) = 2x, we see that 

Yn(x) = 2nvn"1(x)vw-2(x) ... v(x)x - 1 , 
and hence, 

Pj^(x) = 2knvkn-l(x)vkn-2(x) ...v(x)x-l. 

Now we want to consider the derivative P^Cx) modulo P„(x). Note that by definition vw(x) = x 
mod P„(x)> and hence vjn+i(x) = v'(x) mod P„(x), so that 

P^(x) HE (2nvn-l(x)vn~2(x)... v(x)x)* - 1 mod Pw(x). 

If we let w(x) = 2*vw-1(x)vw-2(x)... v(x)x, then P„'(x) = w(x) - 1 and 

P£X*) s w(x)* - 1 = (w(x) - i)(w(xf-1 + w(x)*-2 + • • • + w(x) +1) 
= ¥&x)(w(x)k-1 + • • • +1) mod P„(x). 
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Now suppose x0 is a root of P„(x) of multiplicity m, and hence is also a root of P„'(#) of multi-
plicity i n - 1 . By the above, it is also a root of P^(x) of multiplicity m-1 and hence is a root of 
i^w(x) of multiplicity m. Thus, P„(x) divides P^OO-

To see that the quotient is in Z[x] if y e Z, consider the following. Since Pw(x) e Z[x] is 
monic of degree 2W, we can write Pw(x) = b0 + ftpr + • • • + i ^ * 2 " - 1 + xr, where 5 , G Z . Since 
PJfew(jc) G Z[x] is also monic, we can also write the quotient in the form 

f (x) = a0 +axx + • • • +aK„\Xlc~l + xK, 

where K = 2kn-2n is the degree of the quotient. Suppose f(x) gZ[x]. Let #J be the largest 
integer such that am g Z . Now the coefficient of x2"+m in the product P^(x) = Pw(x)f(x) is 
a finite sum of the form cim+am+]h2n_l+am^J)2n^2 + t" • This coefficient is an integer because 
P^(x) G Z[x] and each factor in the second and higher terms of the finite sum are integers; thus, 
am is also an integer that contradicts am <£ Z and proves the claim. D 

The elements x 0 e R such that vw(x0) = x0 are said to be cyclic of period n. Any root of 
Pw(x) which is of period n and not of any shorter period is said to be of prime period n. Any 
complex root with nonprime period n will be a root of some P^(x), where d divides n though it is 
possible that P„(x) does not have roots of prime period n. For example, when y = - 3 / 4 , then 
Pj(x) = (x +1 / 2)(x - 3 / 2 ) and P2(x) = (x +1 / 2)3(x - 3 /2) which has no new roots; hence, there 
are no points of prime period 2 for this y. 

The following theorem and conjecture involve a factorization similar to the classical 
factorization of x " - l in terms of cyclotomic polynomials [10], yet it is quite different in that 
P„(x) = vw(x) - x involves function iteration, not ordinary powers. 

Theorem 7: Let P„(x) = vw(x) - x be as above and let n = qk be a power of a prime. Also let 

Q&) = P,(x) and Q„(x) = ^ ( y ) . 
d\n,d<n 

then Qn(x) is a polynomial in R[x] for y e R and it is in Z[x] for y e Z . 

Proof: Since n - qk is a power of a prime, it is easy to check that 

Q„(*) = C>*(*) = -Qg*-,WQgt-2(x)...Q9(x)Q1(x) P9 t , (x) ' 

which is a polynomial by Lemma 6. The remark about the quotient being in Z[x] for y e Z fol-
lows as in the previous Lemma. D 

We conjecture that this property holds for general n. 

Conjecture A: Let P„(x) = vw(x) - x be as above and let 

Q1(x) = P1(x) andQ„(*)= ^ ( y ) , 
d\n,d<n 

then Q„(x) is a polynomial in R[x] for y G R and it is in Z[x] for y e Z. 
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Consider the following heuristic argument in favor of the conjecture. Solving for Pw(x), we 
see that Pw(x) = n^|„ Qd(x)- We can obtain a sum over the divisors of n by taking logarithms and 
then we can apply the Mobius inversion formula. On rewriting the result as a product, we see that 
Qn(x) = Hd\n ¥d(x)M(n/d), where //(n) is the Mobius function. In the case when n = q^lq2

2 is the 
product of powers of two primes, this amounts to 

Now, if ¥n/q (x) and ¥n/q (x) have no roots in common, then all their roots with all their multi-
plicity are also roots of Pw(x), and hence Q„(x) is a polynomial. If they have a common root x0 

and it is a single root of at least one factor of the denominator, then the factor with the higher 
multiplicity divides Pw(x) by Lemma 6. Since xQ is a root of Pw/g (x) and Pn/q (x), it has period 
n/ql and also has period n lq2; hence, it has period 

(n_ n\_ n gcd 

That is, it is a root of ¥„, (x). Thus, the factors arising from the root x0 will cancel except 
possibly some factors in the numerator. As long as common roots of factors appearing in the 
denominator do not have common multiplicity over 1, this argument would generalize to any 
number of prime factors. We expect that, for a generic choice of y, the roots of P„(x) would all 
be single roots. Thus, common multiplicity would be one, so the above argument would work. 
However, once the result is true for some generic y, it should be true for the formal parameter y 
as well. 

We can formally compute Q„(x) for small n. Notice that these are polynomials in x and y. 

Ql(x) = x2 -x + y, 
Q2(x) = x2 + x + y + l, 
Q3(x) = x6 + x5 + (1 + 3y)x4 + (1 + 2^)x3 + (1 + 3y + 3y2)x2 + (1 + yfx + y3 +2y2+y + l, 
Q4(x) = x12 + 6yx10 + x9 + (15y2 + 3y)x% 

+ °- + (2y + y2 + 2y3 + y4)x + (l + 2y2 + 3y3 + 3y4 + 3y5 + y6). 

Using symbolic manipulation software, we have verified that Q6(x) is a formal polynomial in x 
and y. 

Corollary 8: Let u(x) be a quadratic function and n = qk be a power of a prime. In fdp(u(x)), 
the number of cycles of length n is less than or equal to 

ideg(Qn(x)) = l | 2 " - X deg(Qd(x))|. 
V d\n,d<n J 

Proof: The number of elements with prime period n is less than or equal to the degree of 
Q„(x), which can be computed recursively from its definition given in Theorem 7. D 

Of course, if Conjecture A is true, we would have also established Corollary 8 for general n. 
Hence, we have the following conjecture. 
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Conjecture B: Let u(x) be a quadratic function and n be a positive integer. In fdp(u(jt)), the 
number of cycles of length n is less than or equal to 

Ideg(Q„(x)) = I | 2 " - £ deg(Q.W)| 
V d\n,d<n J 

Note that the bounds given in the corollary and conjecture may be ugly in the sense that they 
are recursively defined, but they are easy to compute. Table 1 gives some examples illustrating 
primes where these bounds are achieved. Notice the bounds seem to be tight even though they 
get large. It seems remarkable that the theoretic bound on 11-cycles is 186 occurrences and this 
happens for a relatively small prime. The fact that these bounds are indeed the maximal number 
of occurrences we found for some additional cases where n is not a prime power provides 
additional evidence for the correctness of Conjectures A and B. It is also interesting to compare 
these bounds which are computed algebraically here with the number of orbits of prime period 
arising from the genealogy of periodic points in classical real dynamics [3]. The next theorems 
allow us to determine when there are 1-cycles and 2-cycles. 

TABLE 1. Minimal Odd Prime p Such that the Function Digraph 
fdpCx2) Achieves the Maximal Repetition of Cycle Lengths 

Cycle 
Length 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Bound on 
Repetitions 

2 
1 
2 
3 
6 
9 

18 
30 
56 
99 

186 
335 

Odd Prime 
P 

3 
7 

29 
31 

311 
127 
509 

1,021 
3,067 
4,093 

36,847 
8,191 

Theorem 9: The number of 1-cycles in fdp(x2 + y) is 1 + P rY 

Proof: Recall that since/? is an odd prime, 2"1 exists modulo/?. By completing the square of 
Qj(x) = x2 - x + y = 0, we have (x - 2"1)2 = 2"2 - y. Thus, fdp(x2 + y) has two, one, or zero 1-
cycles if and only if 2"2 - y is a quadratic residue, 0, or a nonresidue, respectively. • 

Theorem 10: There is exactly one 2-cycle in fd^x2 +y) if and only if r I ) = 1. 

Proof: Notice that if Q2(x) has a repeated root mod/?, the root is a 1-cycle; moreover, if 
Qj(x) and Q2(x) have a shared root, then Q2(x)-Q1(x) = 2x + 1 = 0, from which we see that 
x = -2"1 is the only possible shared root. In such a case, the other root of Q2(x) must be a 
1-cycle, hence both roots must be -2"1. Thus, the function digraph fdp(x2 +y) has exactly one 
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2-cycle if and only if Q2(x) = x2 + x + y +1 = 0 has two distinct solutions in Zp. Completing the 
square in that congruence yields (x + 2-1)2 = 2~2 -y - which has two distinct solutions in Zp if 
and only if 2 ~ 2 - y - l is a quadratic residue mod/?. • . 

4. RANDOM QUASIQFADMATIC DIGRAPHS 

We have seen that it is difficult to predict the structure of fd/7(u(x)) for quadratic functions 
u(x), yet we have been able to give some restrictions on the behavior of these function digraphs. 
In this section we will compare the structure of the quadratic function digraphs fdp(u(x)) with 
those of "random" functions whose function digraphs have the same number of vertices with in-
degree 0, 1, and 2 as have the quadratic function digraphs. In particular, we will call a function 
q:Zp ->Z p quasi-quadratic if it is 2-to-l for all of its domain except that it is 1-to-l for one 
element in its domain; e.g., Figure 3 shows a randomly chosen quasiquadatic function digraph on 
Z17. Notice it has the same random appearance of the quadratic function digraphs modulo 17 but 
it has two 2-cycles, which is impossible for a quadratic function digraph by Corollary 8. 
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3 
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-> 
-> 
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-> 
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-> 
-> 
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-> 
-> 
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91 
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L j l _ l ° 1 
[ | , _ 2 J 
L 4 _ 15 _ 

r- 3 

Q 

r 8 

r " L»-H 
L- 16 [ i 2 ! 

L 7 - 0 

FIGURE 3e A Random Quasiquadratic Function and Its Digraph 
Which Contains Two 2-Cydes 

We begin our investigation by counting the number of quasiquadratic functions. 

Theorem 11: Given a prime modulus p > 3, 
(a) the number of quasiquadratic functions is ̂ ((^+1)72X2 2.̂ 2 21) anc^ 
(b) the number of quasiquadratic digraphs that are nonisomorphic is ((/7^)/2). 

Proof: (a) There are ((P+iy2) waYs to choose the ^ - range elements of the quasiquadratic 
functions and there are -^-(22.^221) permutations what would result in distinct rearrangements 
since the multinomial (22.̂ 221) IPves t n e number of ways to partition p elements into classes of 
size 2, 2, ..., 2, 1 and there are ^ ~ ways to position the 1. 

(b) An isomorphism between quasiquadratic digraphs must map each pair of the range of the 
first digraph to a pair in the range of the second digraph; the isomorphism must also map the 
singleton of the range of the first digraph to the singleton in the range of the second digraph. 
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Since the re a re (22.^221) w a y s t o pick the pairs and singleton and -^- w a y s t o p lace t h e single-
ton , the re a re -^-(22.^221) s u c h permutat ions . Dividing into this total n u m b e r o f quas iquadra t ic 
d igraphs , w e see t he n u m b e r o f quasiquadrat ic digraphs that a re nonisomorphic is ((P+iy2)-

Notice that we really only used the fact that the modulus is odd, not that it is prime. D 

We can easily generate random quasiquadratic digraphs and compare their structure with the 
structure of quadratic digraphs. Figure 4 shows the frequency that cycles of specified length 
appear in 10,000 random choices of quasiquadratic digraphs modulo 1009. These quasiquadratic 
frequencies are shown with the connected lines. The isolated points show the same information 
for the 1009 quadratic function digraphs. Likewise, Figure 5 shows the average frequency that 
specified numbers of components occur for quasiquadratic and quadratic function digraphs mod-
ulo 1009. While the fits are not perfect, they are remarkably good and this provides empirical 
support for the heuristic view that the quadratic function digraphs are nearly "random." 

1. 

0 . 6 

0 . 4 

0 . 2 

20 40 60 80 100 

FIGURE 4. The Average Frequency of Cycle Lengths for Quadratic 
and Quasiquadratic Digraphs Modulo 1009 

0 . 2 

0 .15 

0 . 1 

0 . 0 5 

FIGURE 5. The Average Number of Components for Quadratic 
and Quasiquadratic Digraphs Modulo 1009 
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In Section 2 we noted an example of quadratic function digraphs in canonical form that are 
isomorphic: fd17(x2 + 11) = fd17(x2 +14). If we assume that the/? quadratic function digraphs are 
randomly distributed over the quasiquadratic function digraphs, then we can estimate the expected 
number of pairs of quadratic function digraphs that will be isomorphic by multiplying the number 
of pairs (£) by the reciprocal of the number of distinct quasiquadratic function digraphs. Table 2 
shows the expected number of isomorphic pairs implied by that estimate. One might choose to 
use (P22) instead of (£) since fdp(x2) and fdp(x2-2) are special; see [8] and Section 5, respec-
tively, for how those digraphs are special. Using (P22) would reduce the expected numbers, 
especially for small p. However, the main point is that these expected numbers approach 0 very 
quickly since the number of pairs is quadratic but the number of quasiquadratic functions is expo-
nential in p. Hence, we make the following conjecture. 

TABLE 2. The Expected Number of Isomorphic Quadratic Function 
Digraphs for Small Odd Primes 

p 

3 
5 
7 
11 
13 
17 
19 
23 
29 

j 31 

Expected 
Isomorphisms 

10 
1.0 
0.6 | 
0.119 
0.0455 
0.00559 
0.00185 j 
0.000187 
0.00000523 | 
0.00000154 

Conjecture C-Quadratic Digraph Isomorphism Conjecture: The only occurrence of isomor-
phic quadratic function digraphs in canonical form is fd17(x2 + 11) = fd17(x2 +14). 

In addition to the heuristic argument in favor of this conjecture given above, we have compu-
tationally verified the conjecture for all primes up to 1009. 

5. FUNCTION DIGRAPHS fdp(x2 - 2) 

In classical dynamics, the dynamics of the function x2 - 2 are special (see [4]) because the 
Julia set is unusually simple. A similar statement can be made in the theory of numbers where 
iteration of this function plays a role in whether Mersenne numbers p = 2q~l - 1 are prime (see 
[7] and [9]). We investigate the family of function digraphs fdp(x2-2) for general odd prime 
modulus which has far more structure than typical quadratic function digraphs. This structure 
seems to be as deep as, but more complicated than, the structure of fdp(x2). Indeed, we will see 
that the identities we use involve both multiplication and addition. Figure 6 shows fd239(x2 - 2 ) . 
This example is rather large but serves to illustrate all the properties that we want to observe 
without requiring several examples. We see that all the cycle elements have one leaf or a binary 
tree attached. The nonleaf trees all have the same depth and are isomorphic except for one vertex 
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of in-degree one. Our goal in this section is to show that those claims are true in general. Also 
notice that the cycle lengths seem to have some coherence. Readers who would like to see exam-
ples of the remarkable arithmetic/structure identities before considering the general theory may 
preview the examples that follow Theorem 19. 
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FIGURE 6. The Function Digraph fd239(x2 - 2) 

In this section we will let s(x) = x2 - 2. The level of a vertex x measured from its cycle is 
given by the smallest k such that sk(x) is a cycle element. Thus, cycle elements are at level 0. 
Components with at least one vertex at level 2 are called branched components. Other compo-
nents are called stumpy components. We say that two distinct vertices M and N are k-ancestors if 
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k is the smallest positive integer such that $k(M) = sk(N). For example, M and N are 1-ancestors 
if and only if M = -N and they are 2-ancestors if and only if s(M) = -s(JV); namely, M2 -2 = 
2-N2. ' 

Our first lemma in this section shows that multiplying two 2-ancestors gives a nearby vertex. 
We think of this theorem as giving enough structure to the digraphs so that we can establish a 
base case for our eventual induction. It also establishes enough structure so that in the subse-
quent lemma we can discuss leaves and cycles and distinguish two fundamentally different types 
of digraph components: those that reach level two and those that do not. 

Lemma 12: IfMandiV are 2-ancestors in fdp(s(x)), then MN and s(M) are 2-ancestors andMV 
and $(N) are 2-ancestors as well. 

Proof: Since M and N are 2-ancestors, s(M) = -s(JV) so M2 - 2 = 2 - N2 and, therefore, 
N2=4-M2. Now 

s2(M) = M4 -AM2 +2 = 2-M2(4-M2) = 2-{MN)2 = -s(MN). 

Thus, MN and s(M) are 2-ancestors and by symmetry so are MN and s(N). • 

As an aside, we notice that if we try to generalize this to v(x) = x2 + y, we see that M and N 
are 2-ancestors means M2 + y = -y - N2, and hence -2y - N2 + M2. Thus, 

v2(M) = M4 + 2yM2 + y2 + y = M4 + (-N2 - M2)M2 +y2 +y =-v(MN) + y2 + 2y, 

and hence, v2(M) = -v{MN) if and only if y2 + 2y = 0. This gives the special cases y = 0 and 
y = -2 mentioned in Section 4. 

We will refer to Figure 6 to provide an illustration of Lemma 12 in fd239(s(x)). Notice that 
M = 230 and N = 65 are 2-ancestors appearing in the component of fd239(s(x)) that has a 4-
cycle. We see that s(Af) = s(230) = 79 while MN = 230*65 = 132 mod 239. We can observe 
that 79 and 132 are also 2-ancestors. 

If x is a noncycle element, we define the tree leading to x to be the union of all paths leading 
to x. More precisely, the tree leading to x is {y e Zp \sP(y) = x for some k > 0}. Notice that, for 
each/?, the function digraph fdp(s(x)) contains a component where 0 maps to -2 which maps to 
2 and where 2 maps back onto itself The vertex x = -2 is the single vertex of in-degree 1 and it 
is at level one. Therefore, all cycle elements have in-degree 2. Thus, each cycle element has a 
unique noncycle parent. If c is a cycle element, we define the tree associated with c to be the tree 
leading to the noncycle parent of c. In particular, x is an element of the tree leading to x but c is 
not an element of the tree associated with c. 

A vertex x * -2 has parents if and only if there are two solutions y to y1 - 2 = x, and this 
occurs exactly when the Legendre symbol (%&) = 1. In particular, the tree leading to 0 contains 
more than the vertex 0 if and only if p = 1, 7 mod 8, since those are the cases when 2 is a quad-
ratic residue. We call this component the 0-component. Eventually, we will see that the existence 
and depth of the three leading to 0 influences the structure of the branched components. 

We say a tree is a complete binary tree up to level k if the tree has a root and each vertex at 
level less than k from the root has exactly two parents. 

The next lemma describes the structure of the components up to level 2 which gives a 
starting point for our structure theorem. 
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Lemma 13: In fdp(s(jc)): 
(a) the tree associated with a cycle element in a stumpy component consists of one leaf at level 
one; 
(b) the tree associated with a cycle element in a branched component, except the vertex 2, is a 
tree structure that is a complete binary tree up to level 2. 

Proof: Recall that -2 is the only vertex of in-degree one and it is not a cycle element. Thus, 
every cycle element has in-degree 2. 

(a) By definition, stumpy components cannot have any elements at level 2 or higher and we 
have noted every cycle element in a stumpy component will have in-degree 2; this gives the result. 

(h) We know that each cycle element has a single noncycle parent. By definition, in every 
branched component there is some vertex M at level 2. Let N be the cycle element such that M 
and N are 2-ancestors. Lemma 12 implies that A ^ i s at level 2 leading to the cycle element after 
s2(M). Repeating the process on MN and proceeding around the entire cycle implies there is a 
vertex at level 2 in the tree associated with every cycle element. Since the in-degree of all the 
level 1 vertices must be 2, except for at -2 in the 0-component, we see the trees associated with 
such a cycle element from a branched component must be a complete binary tree up to level 2. D 

We now show that, in the branched components, any vertex has parents if and only if its 
additive inverse has parents. We already noted that ±2 both have parents. 

Lemma 14: If x is a vertex other than ±2 in a branched component, then x has parents if and 
only if -x has parents. That is, if {^f) = {*f). 

Proof: We have seen that this is true for levels 0 and 1 since all such vertices have parents 
[Lemma 13(b)], and it is trivially true for x = 0. Suppose that this lemma is not true in general. 
Assume x is a vertex at the lowest level such that (—-) ̂  i^y-\ Now 

2 + x\{2-x\ (4-x2^ f 2 - S ( J C ) 

Since s(x) is at a lower level, the result it true for s(x); hence, 

i^rHTHih 
Therefore, (^r) = (2LJL), which contradicts the supposition and completes the proof. D 

Note that, if any vertex x appears at level 3 or higher, then s(x) and -s(x) will both have 
parents; hence, we get at least four vertices at the level of x. 

We already know that 2 is a 1-cycle element and -2 is a nonleaf leading to that cycle. Thus, 
±2 are nonleaves in a branched component. The next theorem shows that we can use the two 
Legendre symbols from Lemma 14 to classify all the other vertices into four geometric classes. 

Theorem 15: Suppose x is a vertex other than ±2 in fdp(s(x)). 
(a) If (~r) = 1 and ( ^ ) = 1, then x is a nonleaf in a branched component. 
(b) If (^~) = 1 and (2jL) = - 1 , then x is a cycle element in a stumpy component. 
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(c) If (^jp) = -1 and (~^) = 1, then x is a leaf in a stumpy component. 
(d) If (^r) = -1 and ( ^ ) = - 1 , then x is a leaf in a branched component. 

Proof: Lemma 14 showed that the vertices in the branched components have equal Legendre 
symbols. We saw that, for x * - 2 , ( ^ ) = if and only if x has parents; hence, ( ^ ) = -1 if and 
only if x is a leaf. Checking the Legendre symbol values for the leaf and nonleaf positions gives 
the results. • 

To count the actual number of vertices in each of the geometric classes, we use the following 
results on sums of the Jacobi symbol on quadratic forms. 

Lemma 16: 
(a) Let p > 2 and a2 -4b * 0 mod/?, then If^^f^) = -I 

(b) L e t p > 2 , t h e n Z £ B l ( ^ ) = - l ( f ) . 

Proof: Part (a) is Theorem 8.2 in [6] and (b) is (-y) times a special case. D 

Theorem 17: In the function digraph fd/7(s(x)): 
(a) the total number of nonleaf vertices in the branched components is 1 + \ [p - (-y)); 
(b) the total number of cycle vertices in the stumpy components is \{p - 2 + (^)); 
(c) the total number of leaf vertices in the stumpy components is -J (p - 2 + (^)); 
(d) the total number of leaf vertices in the branched components is j{p - (^)). 

Proof: First consider (d). The total number of leaf vertices in the branched components is 

where we take care to notice that the terms are zero for x = ±2 and those vertices are not leaves. 
Expanding, we see 

where we use Theorem 16(b) and the fact that ZJU(-f) = 0. Next consider (a). The total number 
of nonleaf vertices in the branched components is 

where we take care to notice that the terms of the sum are 2 for x = ±2 and those vertices are not 
leaves, hence we need to add 1 to get the correct count. Expanding as above gives the desired 
result. We can handle (b) and (c) in a similar way or note that we already know from Lemma 
13(a) that these numbers must be equal and thus are half of the vertices not accounted for in (a) 
and(d). D 

For example, consider p = 239. Since ( ^ ) = - 1 , we see that by Theorem 17(d) the number 
of leaves in the branched components is ̂ [239 - (-1)] = 60 
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The next lemma gives a technical identity that provides the key inductive step in the theorem 
that follows the lemma. Informally speaking, it shows that we can follow a chain of sums of paths 
multiplied by inverses of elements in the tree leading to 0 to get a path in the "next" tree of the 
appropriate size. 

Lemma 18: Suppose r, s(r), and s2(r) are nonzero elements in fdp(s(x)). If ^ ( s ( M ) + s(W)) 
is aparent of ^(s 2 (M)+s 2 (JV)) , then either }(M+N) or }(M-N) is a parent of ^-(s(M) + 
s(N)). 

Proof: Notice that a vertex x is a parent ofy if and only if s(x) - y is zero. Direct computa-
tion verifies that 

r 4 ^ ± ( M + A 0 ) - ^ ( s ( A ^ + s ( ; ^ 

is 
4(M2 + 2MN + N2-4r2- MNr2 + r 4)(Af -2MN+N2-4r2+ MNr2 + r4) 

<r)2 

which is identical to 

-2s2(r)[s^(s(M) + S(N))y^(s2(M)W(N))^ 

Now the last expression is zero by the hypothesis; hence, one of the factors of the first expression 
is zero. This gives the claim. D 

Lemma 12 gave a multiplicative relationship between vertices that were 2-ancestors. The fol-
lowing result involves both addition of ^-ancestors and multiplication by inverses of tree elements 
in the 0-component. This connects the existence of tree elements in the 0-component to the exis-
tence of vertices with higher ancestry. 

Theorem 19: If M and N are ^-ancestors in fd/7(s(x)) for some k > 2 and if r is a predecessor of 
0 such that s*-1(r) = 0, then M and something of the form j{M + Nf) are k + 1-ancestors, where 
N' is a vertex such that N' and M are ^-ancestors. Moreover, if M is at level k + 2 or higher, 
then there are 2k vertices that are k + 1-ancestors withM 

Proof: Proceed by induction on k. When k = 2, we claim that }(M + N) is a 3-ancestor of 
M. We are assuming s(r) = 0 and hence r2 = 2; from Lemma 12, we saw that MN is a 2-ancestor 
of s(M) and hence we need only show s(j(M+N)) = MN. Notice that 

s(i(M + A0) = 4 ( M 2 + 2 ^ 
where the last equality holds since M and N are 2-ancestors implies that M2 + N2 = 4. Also, if M 
is at level 4 or higher, we know that j(M + N) is also at level 4 or higher since s3(M) is not a 
cycle element. Therefore, j(M + N) is its own "0-ancestor," it has one 1-ancestor (its additive 
inverse) and two 2-ancestors from the reasoning in the remark after Lemma 14. All of those are 
3-ancestors of M; hence, we have four 3-ancestors of M. 
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When k = 3, we know that Ad and N are 3-ancestors means s(M) and s(N) are 2-ancestors. 
By the k = 2 induction step, we can assume that s(M) has a 3-ancestor of the form ^~-(s(M) + 
s(N)). Now we need to show that 

s(^(M + A 0 ) ~ ( s ( M ) + s(A0) or s ( £ ( M - ^ ) = ̂ ( s ( J t f ) + s(JV)). 

First, note that M and N are 3-ancestors if and only if s2(M) = -s2(iV), which is true if and only if 
M4 - AM2 + 4 - 4N2 + N4 = 0. Now direct computation using the fact that r4 = 4r2 - 2 gives 

j^ s [ l ( M + ^ 

r s(r)z 

which is zero since M and JV are 3-ancestors. Hence, one of the two conditions required must 
hold. Thus, we have found a 4-ancestor A = j(M±N) of M and we can rename N if desired to 
avoid the minus sign. Now suppose Mis at level at least k + 2. We see that A must be at the same 
level since sk+l(A4) is not a cycle element. We know that A is its own "0-ancestor," it has one 1-
ancestor, two 2-ancestors, and four 3-ancestors by induction. All of those are 4-ancestors of M, 
and hence M has eight 4-ancestors. 

Now suppose we have shown the theorem up to k-\ and want to show it for k. By renam-
ing N if need be (to avoid minus signs), we can assume that s(M) and ~r(s(M) + s(N)) are k-
ancestors and s2(M) and •^z(s2(M)-\-s2(N)) are k - 1-ancestors with 

{ ^ ) ( S ( M ) + S(N))) = J^{*2(M) + S' {N))' 
We can now apply Lemma 18 to get a k + 1-ancestor of M of the desired form. When M is at 
level at least k + 2, using the induction steps to complete the tree surrounding this new vertex 
gives the desired 2k vertices which are k + 1-ancestors withM. D 

We will refer to Figure 6 to provide some illustrations of this theorem in fd239(s(x)). Notice 
that s(99) = 0 and the multiplicative inverse of r = 99 is 169. Now M = 112 and N = 102 are 
2-ancestors appearing at level 4 in the branched component containing a 4-cycle. Note that 
}(M + N) = 169(112 + 102) = 77, which is a 3-ancestor withM Also, 65, which appears at level 
2 and 230, which is a cycle element, are 2-ancestors. Note that }(M+N) = 169(230 + 65) = 143 
is at level 3 in the next tree; hence, 65 and 143 are 3-ancestors. Also,, s2(36) = 0 and the multi-
plicative inverse of r = 36 is 166. Therefore, we are now able to lift to level 4 via j(M + N) = 
166(230 + 143) = 17; hence, 17 and 143 are 4-ancestors. 

Observe that we are able to use Theorem 19 to find elements at the same level in a tree asso-
ciated with a cycle element and we are also able to use the theorem to find elements at a higher 
level in the next tree associated with a cycle element having more distant ancestry. Thus, it can be 
used both to complete trees and to lift levels. We put these ideas together in our main theorem 
about the tree structure in fdp(s(x)). 
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Theorem 20: The tree leading to any vertex at level 2 in fd/?(s(x)) is a complete binary tree and 
is isomorphic to the tree leading to the vertex 0. 

Proof: Suppose the leaves in the 0-component reach level d. Then, if r is such a leaf in that 
component, $d~2(r) = 0. Now, if d> 3, we can use Theorem 19 on vertices at height 2 with a 
cycle element that gives a 2-ancestor to produce a 3-ancestor at level 3. If d > 4, we can use this 
vertex and a cycle vertex to get a vertex at level 4. We can repeat this d-2 times resulting in a 
vertex at height d. We can then use Theorem 19 and the vertices at height d to see that all the 
trees in the branched components are complete binary trees from level 2 up to height d. 

Lastly, we need to show that, if any component has reached level d + 1, then we can reverse 
the identity used to raise to level d +1 (in Lemma 18) to solve for an r that leads to 0 in one more 
step, contradicting our choice of d. In particular, we can assume that r is at level d in the tree 
leading to 0 and that there is a vertex R at level d +1 in some other branched component. By the 
induction to level d, we know the trees to level d are complete; in fact, trees rooted to depth d or 
less from any vertex are complete. Now s(i?) is at level d and the trees are complete to that level. 
Thus, s(i?) must be obtainable from the process of lifting described in Theorem 19. In particular, 
we can find a cycle vertex M and a vertex N at level d so that s(M) and s(N) are ^-ancestors lift-
ing to s(i?). That is, 

^(s(M) + s(A0) = s(i?) (*) 

and 
-±r)(s2(M) + s2(N)) = s2(R), 

from which it follows that 

s^(s(M)+s(A0)) = ̂ ( s 2 ( A * ) + s2 (JV)). 

We need only show that s(±(M+N)) = r or s(j(M-N)) = r to show that the tree leading to 0 
rises to level d +1. Now an identity similar to that appearing in Lemma 18 is 

s ^ C s C ^ H - s C ^ j - ^ C s ^ A ^ + s 2 ^ ) ) 

= ^^(4-M2-N2-rMN-r2)(-4 + M2 + N2-rMN^r2y 
rls(r) 

We noted above that the left-hand side must be zero. If we assume the first factor of the right-
hand side is zero and simplify using (*), we get s(j(M + N)) = r and the other possibility arises 
from the other factor. In this way, we see that all the trees in branched components have the same 
height; this completes the proof. D 

Notice that knowing the trees are uniform complete binary trees, along with the knowledge 
of the number of leaves in the branched components, now allows us to compute the number of 
branched cycle elements, c, and the depth, d, of the trees. For example, when p = 239, we 
checked that there are 60 leaves in the branched components. Since there are 2c -1 trees asso-
ciated with level 2 vertices each of which will have 2d~2 leaves, we see that 

(2c-l)2*-2 = 60 = 15(22); 
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by equating the odd factors and powers of two, we see that 2c-1 = 15 and 2d~2 = 22, so c = 8 
and d = 4, which is correct. 
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1. INTRODUCTION 

For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B„(t), are defined by means of 
the generating function 

7=S5«(0fr, 1*1 < 2*. (1) 

Some of the more important properties of these polynomials include 
Bn(t + \)-Bn(t) = nt»-\ (2) 

B„(l-t) = (-iyBM (3) 

each of which follows from (1). From (2) we can derive 
m-\ 

holding for all positive integers m. We define the Bernoulli numbers, Bn, by Bn = Bn(0), from 
which (1) allows us to write 

Note that we obtain the values B0 = 1, Bl = - 1 / 2 , i?2 = 1/6, ..., and 5„ = 0 for odd n>3. For 
even w>2, we have 

» + i £ s v m ) 
Perhaps the most fundamental property of Bernoulli numbers is the von Staudt-Clausen theorem 
which states that, for even positive n, the quantity 

p prime r 

is an integer. This implies that, for such n, the denominator of Bn is square-free. 
The Euler polynomials, En(t), « G N , are defined by means of the generating function 

^ = J X « > S UK,. (4) 
Each can be expanded in terms of Bernoulli numbers according to 
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m=o\ J m + i 

Euler polynomials satisfy the identities 

Em(t + 1)+En(t) = 2f, (5) 

^0-0 = (-1)^(0, (6) 
each following from (4). From (5) we see that, for positive integers m, 

m-l 
En(m) - (-l)mEn(0) = 2]T (- ly-^f. 

The Euler numbers, En, are defined by En = 2nEn(l/2). Each En E Z (see [10], p. 53), and as a 
result of (6) we must have En = 0 whenever n is odd. 

There are three particular identities, known as multiplication identities, associated with the 
Bernoulli and Euler polynomials. They enable one to rewrite a particular value of one of these 
polynomials in terms of a sum of a variety of values of either the same or another such polyno-
mial. We present them as follows with the assumption that, for each, q is a positive integer. For 
the Bernoulli polynomials, we have Raabe's identity [12], 

Bn{qt) = q"-lYJBn[t+^, (7) 

which follows from (1). For q odd, the Euler polynomials satisfy 

E„(qt) = q"9fji-iyEn[tUy (8) 

which follows from (4). Finally, for q even, 

En-1^t)=-^fyyBn[tUy (9> 
which follows from (1) and (4). 

The problem of studying Bernoulli and Euler polynomials at values in R is tantamount to that 
of considering the polynomials in certain intervals of R. From (2) and (5) we see that we can 
reduce this problem to that of considering the polynomials in [0,1). Utilizing (3) and (6) allows 
us further to reduce this to the interval [0,1/2]. Because of this it becomes a point of interest to 
consider the polynomials at various "special" values oft in [0,1/2], especially at rational /. Appli-
cations of (7), (8), and (9) enable us to find relations between values of these polynomials at 
several rationals within this interval. 

Let us now consider the known values of these polynomials. As we have seen, Bn(0) = Bn 

and EJl 12) = 2~nEn for each n > 0. The following can be derived from (7)-(9) for all n > 0: 

£w(0) = ""^TT ( 2 W + 2 " 2 ) 5 w + 1 ' 

Bn{^y<l-2l-»)Bn. 
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In addition, for even n > 0, the following can also be derived from (7)-(9): 

*„(})=4(i-3l~")5"' 
B„fy = -2-"(l-2l-»)B„, 

4 ( | ) = |(l-21-")(l-31-")5„) 

En{^ = 2-"-\\ + T")En. 

Also, for odd n > 1, we have 

En^y~-^ri(2n+l-l)(l-3-")B„+l, 

Each of these can be found in [11]. Similar expressions have been found for each of Bn(l/3) and 
Bn(l/6) when n is odd, but these are in terms of a sequence of rational values /„, whose denomi-
nators consist of certain powers of 3 (see [5], [6]). 

Bernoulli and Euler numbers and polynomials have numerous applications in mathematics. 
Because of this, they have been studied quite extensively. Besides the study of these polynomials 
at specific rational points, efforts have also been made to find congruence relations that describe 
specific Bernoulli polynomials at arbitrary rational points. A. Granville and Z.-W. Sun [7] have 
shown that if an integer q > 3 is odd and 1 < a < q, with (a, q) = 1, then for/? prime, 

Bp-^-Bp_^2-lp-lq(JJp-\) (mod/;), 

where Up is a linear recurrence of order [q/2] depending only on a, q, and the least positive resi-
due of/? modulo q. Their work extended a list of congruences given by E. Lehmer [9]. 

In this note we illustrate a means of finding congruence relations among Bernoulli and Euler 
polynomials evaluated at various rational numbers. We do this by considering the polynomials at 
values that have not been discussed previously. By applying (7)-(9), we build linear relationships 
among certain rational evaluations. Some recent results concerning the values of Bernoulli and 
Euler polynomials at rational points at rational points then enable us to obtain congruences based 
on the coefficients of these relations. Before proceeding with the derivation of the congruences, 
we shall present these results. 

2. SOME RECENT RESULTS 

The following result concerning Bernoulli polynomials was recently presented by G. Almkvist 
and A. Meurman in [1]. Other versions of the proof of this are given in [2], [3], and [13]. 

Theorem 2.1: Let r, s e Z, s * 0. Then sP(Bn{r Is) - Bn(0)) e Z. 
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Since Euler polynomials satisfy many properties that are similar to those that Bernoulli poly-
nomials satisfy, we would expect a result similar to Theorem 2.1 for Euler polynomials. In fact, 
we have such a result, presented in [4]. 

Theorem2.2: Let r, s e Z, s * 0. Then sT(En(r/s)-(-l)rsEn(0)) eZ. 

Note that Theorems 2.1 and 2.2 will be the key components that enable us to derive the con-
gruences that we intend to illustrate. They imply that, whenever k is a positive integer, for all 
r, s G Z, s & 0, the Bernoulli polynomials satisfy 

k^Bn^ksnBn (mod*), 

and for the Euler polynomials, 

ks^E^yi-ir^EM (mod*). 

Note that this last congruence can be written in terms of Bn since we can also express En(0) in 
such manner. 

3. SOME EXAMPLES 

The multiplication identities (7)-(9) provide a linear relationship among a set of values of 
particular Bernoulli and Euler polynomials at various rational numbers, these numbers also satisfy-
ing their own linear relationship. Varying the parameters t and q in (7)-(9) may provide several 
distinct linear relationships among these values. By a partial reduction of such a system, the coef-
ficients of these values are modified so that, by applying Theorems 2.1 and 2.2, a congruence 
relationship can be obtained modulo one of these coefficients. 

3.1 A Congruence Relating Bn(2r/s) and En_t(2r/s) 
This example gives a congruence relation, modulo a power of 2, between Bernoulli and Euler 

polynomials evaluated at the same rational number. 

Theorem 3.1: Let r, s e Z such that (2r, s) = 1. Then for positive integers w, 

2Bn{^ynEn.l{^y2^Bn (mod2"+1). 

Proof: Letting q = 2 and t = r Is in (7) and (9) yields 

Combining these two relations so as to eliminate Bn((s+2r)/(2s)), we obtain 

and thus, by Theorem 2.1, 
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2^B„^fj-mrE„_0y2"^Bn (mod2"+1). 

This then yields the theorem, since (2, s) = 1. • 
This result implies that, for odd n > 3, we have 

IB^ynE^^fj (mod2"+1), 
since Bn = 0, and for all n > 1, 

IB^ynE^^fj (mod2"), 

by the von Staudt-Clausen theorem. 
3.2 Congruences for Bn{t) and En_t(t) at Multiples of 1/10 for n Even 

This additional example concerns the values of Bn{t), at 1/10 and 3/10, and En_x{i), at 1/5 
and 2/5, for even n > 2. 
Lemma 3.2: Let be an even positive integer. Then 

10"4fe)+10"5"(^)=(2''"1~1X5""5)5'" (10) 
»5"JE„_1^-»5"£;I_1^ = -(2''-lX5''-5)5n) (11) 

(2" +1)10-5,, ̂  + (2-1 + 1)»5" £_, Q) = -2"-»(5" - 5)5„, (12) 

2(2" + l)5"JBn^+»5"JEn_I^j = -2"(5''-5)5„. (13) 

Proof: In view of (3), by letting q = 2 and f = 1/5,1/10 in (7) and (9), we obtain 

2".5»Bn^y2-5»B„[fj + \0»B„(j^ = 0, (14) 

2".5"5fl[|J-l(f^J+»5"JE„.1[|j = 0, (15) 

-2 • 5"B„ Q j + 2" • 5"B„(fj + 1 0 " ^ ^ = 0, (16) 

-2".5"B„[^j + l(fB„ij^+n5«E„_l^yO. (17) 

The case of q = 5 and f = 0 in (7), yields 

5^Qj + 5 «5^ |^-I (5"-5)5 w . (18) 
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Note that, by adding corresponding left-hand and right-hand sides of each equation, the combina-
tion (14) + (16)-(2W-2)(18) yields (10). Also, (17) + 2(2M-1)(18)-(14)-(15)-(16) yields (11). 
From 2W~1(16) + (2W"1 + 1)(17) + 2"(18), we obtain (12), and (17) + 2W+1(18)-(16) yields (13). D 

Now, from (10)-(13), we can derive congruences related to each of the values l0"Bn(l/lO), 
10^(3/10) , T&E^QLIS), and nSn En_x{215). We shall first focus on those for the Euler poly-
nomials. 

Theorem 3.3: For n an even positive integer, 

n5nEn_x (|1 - -(2"(5W - 5) + 5"(2W+1 + 2))Bn (mod2n+l + 2), (19) 

n5nEn_x (|1 = -(5* - 5 + 5W(2W+1 + 2))Bn (mod 2"+1 + 2). (20) 

Proof: If we use Theorem 2.1 to reduce (13) modulo 2n+1 + 2, we obtain (19). Now reduce 
(11) modulo 2n+l + 2, utilizing (19) to represent n5n En_x{\ IS), and we obtain (20). • 

Corollary 3.4: Let n be an even positive integer, and let/? be prime such that p\{2n +1). Then 

/ I ? ^ 1 Q ) S - I I 5 - J S ^ 1 ^ S ( 5 - - 5 ) ^ I (mod/?). 

Proof: If p|(2" +1), then (p -1) \n since, otherwise, 2n +1 = 2 (mod /?). Thus, by the von 
Staudt-Clausen theorem, p is not in the denominator of Bn, and so 5"(2"+1 +2)Bn = 0 (mod /?). 
Therefore, (19) and (20) reduce to yield the result. D 

Corollary 3.5: Let/? be prime such that p = 5 (mod 8). Then 

50^£(p_3)/2(T) = -5^E(p_m(fj = -2(5^^ -5)V1)/2 (mod/.). 

Proof: Note that /? = 5 (mod 8) implies that (p-1)/2 is even and that (Jr) = - 1 , where (-̂ ) 
is the Legendre symbol corresponding to p. Euler's criterion states that (j) = - 1 if and only if 
2(/>-*)/2 + 1 = 0 (mod p). Therefore, by taking n = (p -1) / 2, the result follows. D 

Corollary 3.6: Let /? be prime such that /? = 13 (mod 24). If there exist integers C and D for 
which p = C2+27D2, then 

5^y%p_7)/6^j=-50-V6V7)/6(f) - -6(5(*-1)/6 - 5)Viv« ( m o d p)-

Proof: In [8], page 119, we see that-there are integers C and D such that p = C2 + 27D2 if 
and only if 2 is a cubic residue modulo p. Now, 2 is a cubic residue modulo p if and only if 
2(/?-1)/3 == 1 (mod/?), and since (p-1) /6 must be an (even) integer, we can write 

2(P-W -1 = ( 2 ^ / 6 - 1 ) ( 2 ^ / 6 +1), 

where either 2(^1) /6 = -1 (mod/?) or 2(^1) /6 = 1 (mod/?). 
I f 2(/>-i)/6 = 1 (mod/?)3 then 2(jM)/2 = 1 (mod/?); thus, by Euler's criterion, (•£) = 1. However, 

/? = 13 (mod 24) implies that (£) = - 1 . Therefore, 2(p"1)/6 = -1 (mod/?), yielding the result. • 
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Now we consider congruences for 10"£w(l/10) and 10w£w(3/10). 

Theorem 3.7: Let n be an even positive integer. Then 

(T + l)lO"Bn(j-\ = -(5"(22n + 2"-2) + 2"-\5"-5))Bn (mod5w(2w"1 + 1)), (21) 

(2n +1)10"Bn(j-\EE(5"(22w + 2n-2) + (22"'1 - 1)(5W-5))Bn (modS^""1 +1)). (22) 

Proof: By Theorem 2.2, we can reduce (12) modulo 5n(2"~l +1) to obtain 

(2" +1)10"B„(j-\-(2"~l + lynFE^iO) = - ^ ( S " - 5 ) B n (mod5n(2"-1 +1)). 

Since -nEn_x{0) = (2"+l-2)Bn, this yields (21). Now multiply (10) through by 2" +1 and reduce 
modulo 5n(2"~l +1), utilizing (21) to represent (2" +1)10"5„(1/10), and we obtain (22). • 

Corollary 3.8: Let/? be prime, p > 3, and let n be an even positive integer such that p\(2"~l +1). 
Then 

1 0 W 4(io)"1 0^(l l)""( 5 W""5 )^ (mod/?) 

Proof: If p|(2W + 2), then (/? -1) Jn since, otherwise, 2W + 2 = 3 (mod p). Thus, /? is not in 
the denominator of Bn. This implies that we can reduce (21) to the form 

(2" + l )10"JB„^^(5"-5)5„ (mod/;). 

Also, from Theorem 2.1, 

(2" +1)10-5, (±y (2» + 2)10"B„ - WB„ ^ (mod 2" + 2) 

- -10"5 f l (^ ) (mod/ ; ) . 

Thus, we have the congruence for lVBn(l/lO). By incorporating this into the reduction of (10) 
modulo /?, we can obtain the congruence for 1(FBn(3 /10). D 

Corollary 3.9: Let/? be prime, p > 3, such that p = 3 (mod 8). Then 

l O ^ l W ^ ) - UP*" V > 4 ) - - ( 5 ^ / 2 -5)5(p+1)/2 (mod/,). 

Proof: If /? = 3 (mod 8), then (/? +1) / 2 is even and (^) = - 1 . By Euler's criterion, we then 
have 2(/?"1)/2 + 1 = 0 (mod/?). The result follows by taking n = (p +1) / 2. • 

Corollary 3.10: Let/? be prime such that /? = 11 or 19 (mod 40). Then/? divides the numerators 
of %+1)/2(l/10) and B{p+l)/2(3/\0). 

Proof: If /? s 11 or 19 (mod 40), then p = 3 (mod 8) and (f) = 1. By Euler's criterion, 
(D = l implies that 5ip+l)/2~-5 = 0 (mod/?). Since these conditions also imply that /?|10, the 
result follows. D 
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Corollary 3.11: Let p be prime such that p = 19 (mod 24). If there exist integers C and D for 
which p = C2 + 27£>2, then 

10('+5)/%+5)/6 (-L) - l O ^ ' l W ( ^ ) = ~(5(;,+5)/6 " 5 ) W (™d /» • 

jRro^ Recall that there are integers C and D such that p = C2 + 27D2 if and only if 
2(p-i)/3 s i ( m o d ^ s i n c e (p _ i) / 6 is an integer, this implies that either 2(p"1)/6 = -1 (mod p) or 
2 ( p - i ) / 6 ^ 1 ( m o d / ? ) 

If 2<*"1>/6 = 1 (mod/?), then 2<^1>/2 EE 1 (modp); thus, (£) = 1. However, p ^ 19 (mod 24) 
implies that (£) = - l . Therefore, 2(^"1)/6 = -1 (mod/?), and so p\(2ip+5)/6 + 2). D 

4. CONCLUSION 

We have illustrated how some simple properties of Bernoulli and Euler polynomials can be 
utilized to construct congruences for certain rational evaluations of these polynomials. Congru-
ences involving more terms can be easily obtained, but the difficulty to interpret their meaning 
increases with the number of terms involved. The examples given here are simple, but they are 
quite effective at illustrating how this method provides an opportunity to obtain previously 
unknown divisibility properties of rational values of Bernoulli and Euler polynomials. 
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1. INTRODUCTION 

A frequently occurring problem in the theory of binary quadratic forms is to determine, for a 
given integer m, the existence of solutions to the Diophantine equation 

f(x, y): = ax2 + hxy + cy2 = m, 

having discriminant A = b2 - 4ac. In the case of a strictly positive nonsquare discriminant, it is 
well known that the occurrence of one solution to f(x,y) = m implies the existence of infinitely 
many other solutions. Using this fact, one may attempt to investigate the solvability of the follow-
ing family of binomial Diophantine equations, 

where d e N\{0}, as they can be recast into a quadratic form by completion of the square to 
obtain the following Pell-like equation 

X2-dY2 = l-d, (2) 

where X = 2x +1 and Y = 2y + 1. Indeed, as (1, 1) is a solution of (2), there will exist infinitely 
many solutions (X, Y) when A = Ad > 0 and is nonsquare. Unfortunately, in order to relate this 
to the solvability of our family of Diophantine equations, we must demonstrate that within the 
solution set of (2) there exists an infinite subset of solutions (X, Y) for which both X and Y are 
odd integers. To address such a problem, it will be necessary here to exploit a group action on 
the solution set SP: = {(x, y) e Z2 : f(x, y) = m}, which allows one to generate an infinite subset of 
elements in 5f from a given solution in SP. In the case of (2) for a nonsquare d e N\{0}, an 
infinite subset of odd solutions can be generated from (1, 1). Although the solvability of (1) has 
been proved using elementary arguments (see [1]), the approach taken here is more direct and can 
be applied to a wider class of Diophantine equations. To illustrate, the above method will be used 
to establish, for each m e Z\{0}, the existence of infinitely many integer solutions to the more 
general family of equations 

x(x+m) = dy(y + fn), (3) 

when d e N \ {0} is nonsquare. The subset of solutions generated from the above group action 
are often referred to within the literature as orbits since they are closed with respect to the group 
action. It is well known (see [2]) that the solution set £P, when nonempty, is equal to a finite 
union of distinct orbits, each generated from a unique solution in &). Consequently, in addition to 
proving the solvability of (3), we shall derive an asymptotic formula for the maximum number of 
distinct orbits that are required to completely describe £P in the case of (3) as d -> oo through 
nonsquare values. Despite the reliance in this paper on algebraic methods, it is possible to 
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demonstrate the solvability of the original class of Diophantine equations, for d = 2,3, by a more 
elementary argument than that used in [1]. This method, which has already been applied to the 
case d = 2 in connection with the study of Pythagorean triples (see [3]), will result here in an 
algorithm for generating all positive integer solutions for the case d = 3. As an interesting aside, 
we further provide what the authors believe to be an unknown characterization for the solutions 
of the "negative Pell equation" X2 -2Y2 = -1 in terms of the set of square triangular numbers; 
this follows as a direct consequence of the analysis in [3]. 

2. MAWMESULT 

We begin in this section by introducing some well-known concepts and results from the 
theory of binary quadratic forms that will be required in describing the group action on the set 
^ = {<X y) e Z2 : f(x, y) = m}. The background material that follows has been taken from [2], 
where quadratic forms are treated from the perspective of quadratic number fields and their rings 
of integers. In what follows, assume A is a positive, nonsquare integer with A = 0 (mod 4). 

Definition 2.1: Let Q(-jA) be the quadratic extension of Q obtained by adjoining VA . Define 
conjugation a and norm N as follows: For x9y eQ and a = x+jVA, set a(a) = x-y^fK and 
N(a) = aa(a) = x2-Ay2eQ. 

Using the well-known fact that a:Q(-J&) —»<2(VA) is an automorphism, it is easily deduced 
that the norm map N is multiplicative. In the theory of binary quadratic forms, the Pell equation 
plays a central role. We now introduce this equation and briefly examine the algebraic structure 
of its solution set. 
Definition 12: The Pell equation is given by /A(x, y) = l, where fA is an integral binary form as 
follows: 

fA(x,y) = x2-jy2, 

with discriminant A. The negative Pell equation is /A(x, y) = -l. One also defines Pell±(A) = 
{(x, y) e Z2 : /A(x, y) = ±1} and Pell(A) = {(x, y) e Z2 : /A(x, y) = 1}. 

For the above values of the discriminant A, it is known that Pell(A) has infinitely many 
elements. More importantly, all solutions with positive x and y can be generated as a power of a 
minimal "fundamental" solution. These results can be deduced by analyzing the Pell equation 
from the context of the subring 0A of Q(-jA) having the underlying set {x+ypA:x,y eZ} , 
where pA = VA/4. We expand here a little on this analysis, which not only leads to the group 
structure of Pell(A) but will also help to effect the desired group action of SP. 

As every ordered pair (x, y) e Pe//±(A) can be uniquely represented as an element x+ypA e 
0A, one sees from the calculation N(x+ypA) = /A(x, y) that solving the positive or negative Pell 
equation is equivalent to finding the elements in ©A having norm equal to ±1. However, from the 
multiplicativity of N, it is easily established that N(a) = ±1 for a e ©A if and only if a is a unit in 
the ring ©A, Consequently, if one denotes the group of units in 0A by 0 A , then y/:=x+ypA 

defines a bijection y/: Pell^iA) -> 0A. Hence, Pe//±(A) is a group, as it is in bijection with the 
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commutative group ©A. Moreover, by using y/ to map the group law from ©A, it is easily seen 
that the product of solutions in Pell±(A) is given by 

(u,v)-(U9V) = (uU+jvV9uV + vu\ (4) 

If we further define ©AJ = {a G ©A : N(a) = 1} and ©A + = {a G ©A : a > 0}, then restricting 
y/ to the subgroup 6A>1 of ©A gives an isomorphism Pell(A) = GAl. The cyclic nature of the 
group Pell(A) can be deduced by first noting that ©A>+ contains a minimal element s over all ele-
ments in ©A> + that are greater than unity (see [2]). Using this fact, it can be easily shown, as 
©A,+ £ (°> °°) = UW€Z|>W, sn+l), that any a G©A>+ is of the form a = s" for some neZ. Since 
any ft - +&1 for some n GZ. Thus, if one formally defines 

is if#(s) = l, 
TA~[S2 if N(s) =-I, 

then Glx = {±rm
A :meZ} = Pell(A). 

Remark 2.1: Note that, if a = ©A \GX
A>+, then as -1 = - l + 0pA G ©A and -a G©A> + , one must 

have -a = +£w or a - +8" for some neZ. Consequently, if s = a+bpA, then from the bijection 
V^:Pell±(A)-^Gl it is clear that Pell±(A) = {±(xrnyn):n EZ}, where xn+ynpA = (a+bpA)n. 
Similarly, the solutions in Pell(A) = {±(xn,yn):n eZ} can be calculated from xn+ynpA = rn

A. 
While in the case in which N(e) = -l the solutions in Pell~(A) are obtained from the subset 
{±(x2n+hy2n+i):n eZ} of Pell±(A) as they are the only ordered pairs in Pell±(A) for which 
N(y,) = -l. 

To help define the group action on &), we proceed in a similar manner to the above, by first 
generalizing the construction of the ring ©A. The definition given below is motivated by the 
factorization 

f(x,y) = -^a+y-^j^a+y-^-J. 

Definition 2.3: The module Mf of an integral binary quadratic form f(x,y), which has discrim-
inant A, is the ©A module having the underlying set {xa +y(b + VA) /2:x,yeZ}c: Q{4A). 

It is the closure of Mf under multiplication by elements in ©A that most interests us here. 
The important calculation is {u + vpA)(xa+y(b + VA) 12) = (x'a+y'(b + VA ) / 2), where 

[yr[ ai u+$v)w (5) 

Equation (5) can be used to define an action of the group ©A x on SP, which, given an (x, y) G $, 
one can generate an infinite set )or orbit) of solutions in ^ by repeated application of (5). To see 
this, first observe that any (x,y) G ̂  is uniquely represented as an element ax+y(b + 4A)l2 G 
Mf. Now, as in the case of the Pell form, one can set y/(x,y):=xa+y(b + jA)/2, from 
which it is immediate that N(y/(x, y)) = af(x, y). Hence, y/ defines a bijection y/: $P -» {y G 
Mf : N(y) = am}. If we formally define the action of an element a G©A?1 on the set ^ by 
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a'(x>y):=V^\aV(x>y))> t h e n from t h e multiplicity of N it is clear that N(y/(a• (x,y))) = 
N(ay/(x, y)) = am, consequently, a • (x, y) e SP. As ©A> ! is a cyclic group of infinite order, the 
set y , when nonempty, will at least contain the infinite subset of solutions in the orbit given by 
®A, 1' (*> f) = i±Tl' (x> y\ ri GZ}. Also, from the bijection y/(x, y), the elements in ©A> x • (x, y) 
can be calculated explicitly by repeated application of (5). We now apply the above group action 
to establish the solvability of the general Diophantine equation in (3). 

Theorem 2.1: Suppose d>lis a nonsquare integer and m eZ\{0}, then there exist infinitely 
many solutions to the Diophantine equation 

x(x+m) = dy(y + m). (6) 

Proof: By completing the square, the Diophantine equation in question can be rewritten in 
the form 

X2-dY2=m2(l-d), (7) 

where X = 2x + nt and Y = 2y+m. When m = 2s, equation (7) can be reduced further to the 
quadratic form 

Z2-dW2 = s2(l-d), (8) 

where Z = x + s and W = y + s. Now, for the assumed values of-d, equation (8) has the non-
square discriminant A = 4d and so an infinite number of solutions can be generated from the orbit 
®A, i" (s> s) = {(Z,W) = ±r"A -(s9s):n GZ}. Hence, the original Diophantine equation in (6) will 
have at least the infinite subset of solutions given by {(x, y) = (Z - s,W - s): (Z,W) G ©^ x • ($, $)}. 
Ifm is odd, then the question of solvability of (6) is reduced to knowing whether there exist infi-
nitely many odd solutions to (7). We now examine the orbit of solutions generated by the action 
of ©^! on (m, m). If rA = u + vpA, then, by (5), the sequence of elements {rA • (m, m)}^=0 can be 
generated using 

faM" ?£) <9> 
with (x0, yQ) = (m, m). We claim that, for all nonsquare d > 1, the sequence {(xn, Jw)}^0 contains 
infinitely many odd ordered pairs. To demonstrate this by induction it will be convenient, since 
u2 = 1 + dv2, to deal with the following cases separately. For brevity, one need only attend to the 
inductive step in each case. 
Cascl. 2|rf 

In this instance, u and v will be of opposite parity. If, for some n>0, it is assumed that 
(x„, yn) is an odd ordered pair, then by (9) both xw+1 and yn+l are the sum of an odd and even 
number and so must be odd. 

Case2„ 2\d 
Now u will always be odd irrespective of the parity of v. If v is even, then the oddness of the 

ordered pair (x„, yn) follows by an analogous argument to the one above. For v odd, we shall 
establish that all the odd solutions are contained in the subsequence {(x2w, j^JK^o- Therefore, 
suppose x2n and y2n are odd for some n>0, then by (9) x2w+1 is odd while y2n+i is even. 
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However, by another application of (9), one finds that both x2n+2 and y2n+2 are the sum of an odd 
and an even integer and so must be odd. D 

Corollary 2.1: Suppose d>\ is a nonsquare integer and Tn denoted the 71th triangular number, 
then there exist infinitely many pairs of positive integers (m, n) such that Tm = dTn. If d is a per-
fect square then, in general, only at most finitely many solutions (m, n) can be found while, in 
particular, non exist when d = p2s for p a prime. 

Proof: The first statement follows from setting m = 1 in Theorem 2.1. Suppose n o w i is a 
perfect square, with m = 4d. Clearly, the equation f(X, Y) = l-d, where f(X, Y) = X2 -dY2 

can have only finitely many integer solutions due to the factorization f(X, Y) = {X-mY)(X + 
mY). In the case of d = p2s, consider equation (1) given here as JC(JC + 1) = dy(y + 1). If one 
assumes to the contrary that a positive integer solution (JC, y) exists, then p2s | x(x +1). However, 
this can only be true if either p2s | x or p2s j (JC +1) as (x, x +1) = 1. Suppose JC = mp2s for some 
fixed m GN\{0}, then y must be a root of the quadratic 0 = y2 +y - (m2p2s +m). However, as 
the discriminant of this equation satisfies the inequality 

(2psm)2 < 4p2sm2 + Am +1 < (2psm+l)2 

and so cannot be a square, one deduces that y &N'. A similar contradiction follows if x + l = 
mp2s, as the discriminant of the resulting quadratic satisfies the inequality 

(2psm -1)2 < 4p2sm2 -4m + l< (2psm)2. • 

Remark 2.2: One can use the above argument to compute an infinite subset of solutions to the 
Diophantine equation x(x+m) = dy(y + m) for nonsquare d via (5). All that is required is the 
determination of the element TA = u + vpA, which will result upon finding the unit f e O ^ + . This 
can be achieved by applying the following method taken from [2]. Consider the quadratic form 
f4d(x>y) = x2-cty2, which has a nonsquare discriminant 4d>0. If y is the smallest positive 
integer such that one of the dy2 +1 or dy2 - 1 is a square and JC is the positive integer root, then 
e = x+y*Jd. 

When determining the full solution set one will, of course, have to find all the distinct orbits 
that comprise Sf. This can be achieved because a finite list containing the generators of each such 
orbit can be constructed using the following result (see [2]). 

Proposition 2.1: Let /(JC,y) be an integral form with discriminant A and suppose m&O GZ. If 
r = TA is the smallest unit in ©^ x that is greater than unity, then: 

(i) Every orbit of integral solutions of /(JC, y) = m contains a solution (x, y) e Z2 such that 
0<;;<tf , where tf=|awr/A|1/2(l-^ 

(a) Two distinct solutions (JC1? yx) * (x2, y2) E Z2 of the equation /(JC, y) = m such that 
0 < y< U belong to the same orbit if and only if yx = y2 = 0 or yt =y2=U. 

Since every orbit of solutions to /(JC, y) = m contains an element in the finite set 
&>' = {(x,y):0<y<U}, 
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any (x, y) e SP' can be listed and sorted into orbits using Proposition 2.1. The set SP' which con-
tains the representatives of the orbits can be viewed as a finite list from which the solutions in if 
can be generated from the group action. In the case of (6), it is of interest to estimate the maxi-
mum number of distinct orbits needed to describe SP as d -> oo. Using the following result, which 
is taken from [4], we can obtain an asymptotic bound for the maximum number of possible orbits 
for the Diophantine equation in (6). 

Lemma 2.1: If rA = u+pAv is the smallest unit in ©A? t that is greater than unity with A = Ad, 
then u ~ as d -> oo through nonsquare values. 

Theorem 2.2: For a given m e Z\{0), the maximum number of distinct orbits for the equation 
x(x+m) = dy{y + rri) is given by [M(d)], where 

M(d)~ V2 
as d -> oo through nonsquare values where k - m 12 form even and k = m for k odd. 

Proof: We first note that no proper orbit can be generated from the solution (0,0). Thus, 
from Proposition 2.1, the maximum number of distinct orbits is equal to the total number of posi-
tive integers less than or equal to U, that is, [U]. Now when m = 2s and d is nonsquare, the 
solutions of the Diophantine equation in (2) arise, directly from the orbits of Z2 -dW2 =s1(l-d) 
via a translation of these orbits by subtraction of the ordered pair (s, $). Consequently, we have 
by Lemma 2.1 that 

M(d)-. Ad 

1*1 
V2 

l-d 
d 

1/2 

1/2 

i+-L 
1/2 

_l*l 
2 

l-d 
d 

111 
| r A +2 + o-(rA)| 1/2 

M | M + 1 | i / 2 ^ ( ^ yfd+0(l)y/2 

as d-^oo. When m is odd, the solutions are derived from the odd solutions in the orbits of 
X2-dY2 =m2(l-d). Thus, if in each of these orbits there exists an infinite subset of odd solu-
tions, then the maximum number of distinct orbits is again [U] and the asymptotic bound will 
result as in the above by replacing s by m. • 

3. AN ELEMENTARY APPROACH 

In contrast to the algebraic methods used previously, we present in this section an alternate 
technique for demonstrating the solvability of (1) for the cases d = 2,3. Although of interest on 
its own, the elementary approach employed here has the advantage of allowing one to deduce a 
characterization for the solutions of the negative Pell equation in terms of square triangular 
numbers. We first observe that, if 0 < x < y, then x(x +1) < dy(y +1), while, if x > dy > 0, then 
x(x +1) > dy{y +1). Consequently, for an arbitrary y e N \ {0}, the only integer values which x 
may possibly assume in order that x(x +1) = dy(y +1) are those in which y < x < dy. So, if (x, y) 
is a solution, then there must exist a fixed t e N\{0} such that x = y + t and (y + t)(y + t + l) = 
dy(y + X). With the introduction of the parameter t9 one can then solve for y in terms of t and so 
the question of solvability is necessarily reduced to knowing whether the discriminant of the 
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associated quadratic is a square for infinitely many t. We now apply this method of the case 
d - 3. The following technical lemma will be required to establish the necessary condition for the 
existence of integer solutions. 

Lemma 3.1: Suppose (v, u) is a positive integer solution of the Pell equation v2 - 3u2 = 1. Then 
(v, u) = (2, l)w, for some n > 1, where the product of solutions is taken in the sense of (4). 

Proof: Applying the method in Remark 2.2, one deduces for A = 12 that the element 
e G©A,+ ls given by s = 2 + V3. As N{s)-\, we have rl2 = s and so Pell(A) = {±(xn,yn): 
n GZ}, where (xn +.y„V3) = (2 + J3)n. Thus, the positive solutions are given by (xn,yn), where 
n e N\{0}. Now, since (xw+1,yn+i-j3) = (xn +ynj3)(2 + j3), one sees that xn+l = 2xn + 3yn and 
yn+l = xn+ 2yn. Consequently, via the product formula for solutions in (4) we have (xw+1, yn+1) = 
(x„, yn) • (2,1), from which it is deduced that (xw, yn) = (2, If as (x1? yx) = (2,1). • 

Theorem 3.1: There are infinitely many positive integer solutions to (1) in the case d = 3. More-
over, all such solutions (x, y) are given by 

2 ' 2 

where the ordered pair (vw, un) is generated recursively using 

teM> * : ) • <"•> 
with (^,1^) = (2,1). 

Proof: We first prove existence. Suppose (x, y) satisfies the Diophantine equation, then by 
the above method there must exist a fixed t > 0 such that x = y + t. Substituting this expression 
into the Diophantine equation and simplifying yields the quadratic 0 = 2y2 +2(1- t)y-(t2 + t). 
Remembering that j is assumed positive, one finds upon solving this equation that 

y-J-^f^. („) 
However, from Lemma 3.1, there are infinitely many sj GN such that 3t2 +1 = s1; moreover, by 
a simple parity argument, the numerator in (11) can be shown to be an even integer for all such t. 
Consequently, there are infinitely many integers (x, y) that satisfy 5(5 + 1) = 3y(y +1), all of which 
may be determined via (11). It is now a simple task to construct the accompanying algorithm. 
Set t = vn and s = un as in Lemma 3.1, then, clearly, from (11) we have 

v w - l + J^" vn+u„-l 3v„+w - 1 
V = —— v " = — g VL X = V + V = ^ 
y 2 2 ' n y 2 

Finally, as (vn+h un+l) = (2,1) • (2,1)" = (2,1) • (vn, un), one deduces from the product formula in (4) 
the recurrence relation of (10). D 

For larger values of d, the above method cannot be applied due to the increased difficulty 
in verifying the existence of infinitely many t for which the discriminant of (y + t)(y + t + T) = 
dy(y + \) is a square. To conclude, we examine an application of our elementary method to 
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uncover a curious connection between the solutions of the Diophantine equation X2 ~2Y2 = -1 
and the sequence of square triangular numbers. Following the above analysis it is easily seen, in 
the case d = 2, that for (x, y) to be a positive integer solution of x(x +1) = 2y(y +1) there must 
exist a t > 0 such that x = y +1 with 

2 f - l + V8? + l 
y- 1 
7 2 

Since y is an integer, %t2 +1 must be an odd perfect square. Consequently, we require 8/2 -f 1 = 
(2/w + l)2 for some m e JV\{0}, so that t and m satisfy 2t2 =m(m + f). Thus, by denoting Tn 
as the square root of the /1th square triangular number, of which there are infinitely many, one 
deduces for some n e N\{0} that 

2 ? J ~ 2 " l j 

Using these relations, one can deduce the following characterization. 

Theorem 3.2: All positive integer solutions (X, Y) of the negative Pell equation X2 -2Y2 = -1 
are of the form 

(4r„+V8tf+i,2r„+V82*TI), 
where Tn denotes the positive square root of the rfi" square triangular number. 

Proof: Recall that the negative Pell equation X2 ~ 2Y2 - - ! , where X = 2x +1, F = 2 j +1, 
can be derived by completing the square on x(x +1) = 2y(y +1). The result will follow from (12) 
if one can show that all the positive solutions (X, Y) consist only of odd integers. To establish 
this, we first observe from Remark 2.2 that, for A = 8, the element e GO^,+ ^S given by e = 1 + 
42 . Therefore, PelPfi) = {±(xn,yn):n GZ}, where xn + yn42 = (1 + ̂ 2)w. However, since 
Nil+ 42) = - 1 , the positive solutions of the negative Pell equation must be given by (Xn9 YJ = 
(*2H+I^2II+I)» w h e r e n^N. Moreover, since x2n+3+y2n+342 ^(l + 42)2(x2n+l+y2n+l42), one 
can see that the solutions (Xn9 Yn) satisfy the recurrence relation 

The desired conclusion follows now by a simple inductive argument. D 
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INTRODUCTION 

A palindrome is a finite sequence (xh x2,...,xn) of numbers satisfying 

\Xl> X2> • • • 9 Xn) ~ \Xn> Xn-\y • • • > Xl)' 

Let A„ = \jiaj-\_(n-l)aj for some positive irrational a, and # = 1,2,.... In [2], Kimberling 
shows that there are infinitely many palindromes (A1?..., Az) in the infinite A-sequence (or the 
characteristic word of the Beatty sequence). For example, for a = (l + V5)/2, the A-sequence 
begins 1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,1,2,.... So (A1?..., A,) is a palindrome 
for 

/ e {1,3,8,21,55,144,377,987,...}, 
and (A2,..., AM) is a palindrome for 

/ e {3,5,8,13,21,34,55,89,144,233,377,610,987,...}. 

(The examples in [2] only partly match this observation.) In [1] Droubay proves that, if a = 
(1 +V5)/2, the number of palindromes of length n is exactly 1 if n is even, and 2 if n is odd (see 
also [3], e.g.). Then, how can we describe all the palindromes in the A-sequence? This paper 
gives an answer to this question. 

MAIN RESULTS 

As usual, we denote the continued fraction expansion of a by a = [a0;ax,a2,...]. Then its 
w* (total) convergent p„/qn= [a0; ah..., an] is given by the recurrence relations 

Pn=<*»Pn-l+Pn-2 (" = 0,1,...), f_2 = 0, P_x = l, 
<ln=a

n<ln-i+<ln-2 (" = 0,1,...), q_2 = l, q.x = 0. 

Define the /2th intermediate (or partial) convergents by pnrr/q„tr (r = 0,1,2, . . . ,a„-l) , where 
Pn,r =rpn+l + pn and qn,r=rqn+l + qn ([3], cf [5]). So, pn^ = pn+2 and qn^ =qn+2. 

We define the fractional part of x by {x} = x-\_xj. 

Lemma 1: Let / and m be integers satisfying l>2m-l. Then (Am, AOT+1,..., A^^+j) is a palin-
drome if and only if {ka} + {(/ - k)a} is invariant of £ for k = m -1, m,..., |J7 +1) / 2 J. 

Proof: By definition, (Aw, Aw+1,..., A/-w+1) is a palindrome if and only if, for k = m-l, m, 
...,L(/+i)/2j, 

[(* + l)aJ+LC - * -1)«J = LteJ + LC - * ) a J> 
or 

{(^ + l)a} + { ( / -* - l ) a} = {to} + {(/-Jt)a}. 

Of course, this also holds for k = |_(/ + l ) /2j + l, [(/ + l ) /2 j + 2, . . . , / - /«. 
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Lemma 2 (cf. Theorem 1, [2]): Let q be an integer with q > ql. There are integers n and r with 
n = 0,l,... and r = 1,2, ...,a„+2 such that # = ?„,. if and only if, for A: = 1,2, . . . , # - 1 , the sum 
{ka} + {(q - k)a) is invariant of k, that is, 

iir x^tt v\ x \^a) + l if" is even, {ka] + {(q-k)a} = \ . . . . . 
{{qa} if n is odd. 

Sublemma (Theorem 3.3, [5]): Let q = 1,2,..., N - 1 . If qnr_x<N <qnr (2<r< a„+2, n > 0), 
then 

{9n,r-i«}^{9a}^ {?„+!«} ifwiseven, 
(9„+ia} * {?«} * {?„,,-!«} if" is odd. 

I f 9 „ + 1 <^< ? „ ; 1 (»>0) , then 

{q„a\ < {qa} < {q„+la} if n is even, 
{9„+ia} ̂  (?«} £ {?»«} if " is odd. 

If tf <qly then {«}<{2a}<•••<{(#-l)a}. 

Proof of Lemma 2: If 9 = </„ r for some integers n and r, then by the Sublemma for k = 1, 2, 
...,<7-l, 

{&a} > {qa} if ft is even, 
{ka} < {qa} if ft is odd. 

Thus, for * = 1,2,...,0-1, 
{ka} + {(q - k)a} > {qa} if n is even, 
{ka} + {(q-k)a}<{qa} + l iff? is odd. 

Therefore, for k = 1,2,..., q -1, 

f{ga} + l if ft is even, 
{ka} + {(q - k)a} . ^ .„ . i f 

[{ga} if ft is odd. 
Because {&a} + {(#-£)a} takes only the values {qa} or {ga} + l, the sum {ka} + {{q - k)a) is 
invariant of k. 

On the other hand, if q * qnr for some integers ft and r, then there exist integers k' and k" 
with *' * k" and 0 < £', k" < q such that {k'a} < {qa} < {k"a}. Hence, 

{k'a} + {(q-kf)a}<{qa} + \ and {&"a} + {(9-£")a}> {^}-

Since {ka} + {(# - k)a} takes only the values {qa} or {^a} +1, the sum is not invariant of* for 
& = 1,2,...,#-!,. 

When m = 2, we have the first main theorem by using Lemmas 1 and 2. 

Theorem 1: Let the continued fraction expansion of an irrational a be 
a = [a0;al5a2?...,aw,...]. 

Then (A2,..., A^ ) is a palindrome only for 
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/e{1,2,.••,?!, ql + \2ql+\...yq2, q2 + qi,2q2 + ql9:..,q3,...9 

?»-i + &-2> 2g„_i + gH_2, • • •, q„,...} - {1,2}. 
an 

Proof: Since 1/(^ + 1) < {a} = [0;aha2, . . . ]< ! /% we have, for ax >2, 

yielding A2 = ••• = A^ = [aJ because Aw = [aJ or \_a} +1. Hence, (A2,..., A ^ ) is a palindrome 
for I = 3949...9ql + l. For ̂  = 1, it is trivial that / = 3 . 

Set n = 0,1,2,.... By Lemma 2 for & = 1,2,..., ̂ r - 2 (r = 1,2, ...,aw+2), 

{(* + l)a} + { ( ^ r - ( * + l))a} = {te} + { ( ^ r - * ) a } -
Thus, by Lemma 1, (A2,..., AM) is a palindrome for l = qnr (r = 1,2,..., aw+2). Lemma 2 also 
shows that there is no other possibility for /. 
Example 1: Let a = e - [2; 1,2,1,1,4,1,1,6,1,1,8,1,...]. Then the denominators of its conver-
gents are 

( ^ 9 2 ^ 3 ? - ^ i o ? - . ) = a3,4,7,32,39,71,465,536,1001,...). 

Hence, (A2,..., AM) is a palindrome for 

/ e { 1 ,2,3, 4 , 7,11,18,25,32, 39, 
1 2 1 1 4 1 

71,110,181,252,323,394,465, 536, 1001,...}-{1,2} 

= {3,4, 7,11,18,25,32,39, 71,110,181,252,323,394,465,536,1001,...}. 

In fact, A begins with 2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,.... One 
can see the palindromes between v and * (included). 

Next, we put m = 1 to obtain the following result. 

Theorem 2: (A1?..., A7) is a palindrome only for 
/ G { 1 , 2 , . . . , 9 1 ? q2+ql,2q2+ql,...,q3, q4+q3,2q4 + q3,...,q5,...y 

v v ' v v ' N v ' 
a\ «3 a5 

gin + *72w-l? 2ff2„ + qin-h • • • > ff2w+l? •*} • 
a2/i+l 

Proof: Since A2 = A2 = • • • = Agi = \jxJ, (A1?..., A7) is a palindrome for / = 1,2,..., qx. Set 
w = 0,1,2,.... By Lemma 2 for £ = 2,3,..., #w r - 1 (r = 1,2, ...,aw+2), 

{ka} + {(qntr-k)a} = {(k-l)a} + {(qnir-k^l)a}. 

And for & = 1, {a} + {(#„ r - l)a} = {q^ra} is true only when n is odd. Therefore, (A2,..., AM) 
is a palindrome for / = qln_u (r = 1,2, ..., a2/l+1; w = 1,2,...). By Lemma 2, all the possibilities for 
/ appear here. 
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MORE PALINDROMES 

There are infinitely many palindromes that do not start from Ax or A2 in the A-sequence. In 
other words, for any integer in, there exist infinitely many integers / with l>2tn-l such that 

is palindromic. Defining A0 = [OaJ - [-aJ, we have the following theorem. 

Theorem 3: (A0, A1?..., A/+1) is a palindrome only for 

/ £{?!> % +ffl , 2 g 2 +ffl> ••> %; ?4 + %> 2 ? 4 +?3> •••> %>>•••> 

*?2n + ?2w-b 2?2w + ?2»-b • • • > *?2w+b - } • 
<*2/i+l 

JRTYWJ/: Since A0 = - |_-a] = [ a j +1 = Agi+1 and Ax = A2 = • • • = A^ = [aJ, (A0,..., A/+1) is a 
palindrome for / = qv By Lemma 2, 

{(*-l)a} + { ( ^ r - * + l)a} = {(*-2)a} + { ( ^ r - * + 2)a} 

holds for k = 3,4,..., gw r - 1 . For k = 2, {a} + {(?„ r - l)a} = {qn^ra} is true only when n is odd. 
Consider the case k = 1. When TI is odd, 

Therefore, {q„t ra) + {a} = { (q„9 r + l)a} +1 or {gw ra} = {-a} + {{qUi r + l)a}. Of course, there are 
no other possibilities for /. 

Next, we shall consider the cases where m > 3. From Theorem 1, we immediately obtain the 
following. 

Corollary: For m = 3,4,..., (Aw, Am+1,..., A ^ ^ ) is a palindrome for 
le{ly2,...,ql,ql + l,2ql + l,...,q2,q2+ql,2q2+ql,...,q3r.., 

V ^ / V : . ^ * V : Y— ' 

Vn-1 + ?*-2> 2%n-\ +<ln-2, - > g y - } 

with/>2/w-l . 
However, this does not necessarily show all the palindromes. If {ka} + {(/ - k)a} is invari-

ant of Jtjust for k = m-l ,m,. . . , L(/+1)/2J, ( A ^ A ^ , . . . ^ . ^ ) already becomes a palindrome. ' 
For example, when m = 3, all the palindromes are described as follows. 

Theorem 4: (A3, A4,..., A M ) is a palindrome only for 
/e{l,2,... ,ft,ft + l,2^1 + l,...,ft,g2+ft,2g2+ft,...,ft,..., 

V „ / V — : „ / > : ^ ^ 

ax a2 «3 

qn.X + g„_ 2 , 2 g w - l + g»-2> • • • > &f> •) 
V v 

On 
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with / > 5, or 
l = qx+2 if ax>3; l = q2+2ifax = lmda2<2. 

Proof: Let n be even. By Lemma 2, if {a} + {{q-l)a} = {qa} and, for k=2,3,...,q-2, 
{ka} + {{q- k)a} = {qa} + \, then (A3, A4,..., Aq_2) is a palindrome. Therefore, {a} < {qa} or 
{{q-\)a} < {qa}, and {ha} > {qa} (k == 2,3,..., ? - 2 ) . 

If ^ < qu this is clearly impossible. 
If <ln+\ <<1<9n,i> then> by t h e Sublemma, {#„a}<{qa} <{qn+la}. So, ?w = l o r ? M = q-l. 

But #„ = 1 is impossible because q > 5. The case # = qn +1 does not satisfy # > #w+1. 
If #*, r-\<cl< Qn, r f°r s o m e integers w and r > 2, then, by the Sublemma, {#w r_i<z} < {qa} < 

{qn ra]. So, qn r_x = 1 or qn(M = 9 - 1 . But #w r_j = 1 is impossible because q > 5. Suppose that 

?*r-i = 0 - l . S i n c e 

{<ln,r-ia} <{((r-2)qn+l+qn)a} <{{qn^x + \)a} = {qa}, 

we must have (r-2)qn+l + qn = 1, yielding r = 2. Hence, « = 0. Similarly, we have n = l and 
ax = 1 when n is odd. Therefore, q = qox +1 = qx + 2 if ax > 3; 9 = ̂  r +1 = q2 + 2 if ^ = 1 and 
a 2 >2 . 

But it is not so easy to describe all the palindromes for general m > 3. It is convenient to use 
the following Lemma to find the extra palindromes in addition to those appearing in the Corollary. 

Lemma 3: Let q^q„tr for any integers n and r. Suppose that the sequence {a}, {2a}, ..., {qa} 
is sorted as 

{uxa} < {u2a} < • - • < {uka} < {qa} < {uk+xa} < • < {uq_xa}, 

where {ux,u2,...,uk,uk+x,...,uq_x} = {l,2,...,q-l}. Put 

M= max min(w;,q-uf) and M '= max mm(u^q-u)). 
i<j<k J J k+l<j<q-l J J 

Ifq> 2M + 3, then (Am,..., A _̂OT+1) is palindromic with m = M + 2, M + 3, ...,L(tf + 1) / 2J-
If q > 2M' + 3, then (AOT,..., A^ ,^ ) is palindromic with w = M' + 2, M' + 3,..., \_{q +1) / 2j. 

Remark: The conditions q>2M + 3 and q>2Mf + 3 do not hold simultaneously. For, either 
M-ql2 or M'-ql2 when 9 is even; either M = (q-l)/2 or M' = {q-\)l2 when 9 is odd. 
It is possible that both conditions fail for some #'s. 

Proof: First of all, notice that {ka} and {{q-k)a} lie on the same side of {qa}. If {&a} < 
{qa} <{(q- k)a}, then {qa} < {ka} + {(q- k)a} < {qa} +1, yielding a contradiction because 
{ka} + {(# - k)a) must be either {qa} or {#a} +1. Now, since {Ma} < {qa} < {ka} (k = M + l, 
M + 2,...,|_(? + 1)/2J, we have 

{Ma} + {(q-M)a}<{qa} + l and 
{ka} + {(q-k)a} > {qa} (k = M+l , M + 2,..., [(? + l)/2j) , 

yielding 
{Ma} + {(#-M)a} = {#a} and 

{*a} + {to-*)a} = tea} + l ( * = A/+l,A/+2,...,Lfe + l) /2j) . 
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Together with Lemma 1 we have the desired result. The proof for M' is similar and is omitted 
here. 

Example 2: Let a = (V29+5)/2 = [5;5,5,5,...]. Then the sequence {a}, {2a}, ..., {483a} is 
sorted as 

{43 la} < {296a} < {161a} < {26a} < {457a} < {322a} 
< {187a} < {52a} < {483a} < <{462a} 

v- v * 
all the others 

< {327a} < {192a} < {57a} < {353a} < {218a} < {83a} 
< {379a} < {244a} < {109a} < {405a} < {270a} < 135a}. 

When q = 483, M = max(52,187,161,26) = 187, and q > 2M + 3. By Lemma 3, (Affl, Am+1, 
Ag_m+1) is palindromic for # = 483 with zn = 189,190, ...,242 only. Of course, M' = 241 does 
not satisfy the condition q > 2M' + 3. 

When g = 462, M = max(135,192,57,109,218,83) = 218, and q>2M + 3. By Lemma 3, 
(Am, Am+1, Ag_m+1) is palindromic only for q = 462 with m = 220,221,..., 231. 

HOW TO FIND M OR M' IN LEMMA 3 

Lemma 3 shows that once M or M' is given for an arbitrary positive integer q with q^q„r, 
all the palindromes (Am,..., Aq_m+l) can be discovered without omission. It is, however, tiresome 
to sort the sequence {a},{2a},..., {qa} as seen in Example 2. In fact, M or M' can be deter-
mined without any real sorting. 

Consider the general integer q with q*q„yi for arbitrary integers n and /'. For example, put 
? = ̂ „+i + fan (r = l,2,...,an+2; j = 2,3,...,an+l). Then, since 

{fa**+fc» < • • • < {(?„+i+qn)a) <{q„a} 
< {(rq„+1 + 2q„)a} <• • • < {(q„+1 + 2q„)a} < {2q„a} <••• 
< {(rq„+i+fan)a) <•••< {(?»+i+fan)a) < Uqna} <•• 

when n is even (the order is reversed, and M' replaces M, when « is odd; cf. [5]). M in Lemma 3 
can be determined by 

[(>'-%,+i/2 + 0'-l)tf„ if r is odd, 
M = \ (rq„+i + (J~ Ofti) / 2 if r is even andy is odd, 

[(rqn+i + jq„) / 2 if r is even andy is even. 

The condition in Lemma 3, q > 2M + 3, is satisfied if q„+l > (J-2)q„ + 3 (r: odd); q„ > 3 
(r: even, j : odd). But this condition is never satisfied if r is even andy is even. 

Similarly, for q = rq„+l + jq„ -iq„_x (r = 1,2,...,a„_2; j = 2,3,...,an+l; i = 1,2,...,a„), we have , 

f(rq^i + far, ~ (f + !)^-i) / 2 if r: odd, j+a„+l = 0 (mod 2), /': even; 
(rqn+1 + fa„ - iq„-i) / 2 if r: odd, j+a„+1 = 0 (mod 2), i: odd; 

| (rqn+l + (j- l)q„ - ?„_,) / 2 if r: odd, y +a„+1 S 1 (mod 2); 
(^«+i + 0' ~ 1)?„) / 2 if r: even, y: odd; 
(r<l»+i + ./'?„ - *?„-i) / 2 if r: even, j : even, /: even; 

[(r<ln+i + fan ~ 0' + l)«i-i) / 2 if r: even, y: even, /': odd. 
And the condition q £ 2M + 3 is satisfied when 

M = 
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never satisfied 
^ ( ' ' - l ) ? w - i + 3 

never satisfied 
#1-1 >3 

Next, put q = rqn+l-jqn (r = 1,2, 
determined by 

if r: odd, j+an+l = 0 (mod 2), /: even; 
if r: odd, y+an+l = 0 (mod 2), /: odd; 
if r: odd, 7 + an+l = 1 (mod 2); 
ifr: even, y: odd; 
ifr: even, j : even, /: even; 
ifr: even, j : even, /: odd. 

• • > a«+2 +1• 7 = 0> 1> • • • > a«+i)- Then M in Lemma 3 can be 

Af = 
(r-l)^w+1/2 if r is odd, 

if r is even and 7 is odd, 
if r is even and 7 is even, 

because 
tan-itf} < {2?w+i#} < • • • < frw*} 

< (fe+i ~ *,>*} < {(2?w+i - q„)a} < • • • < {(r#„+1 - gw)a} 
< (fe+i ~ 2ft,)a} < {(2#„+1 - 2qn)a) < • • • < {(r#„+1 - 2 ? , » < • • • 
< {(«H-I ~ 7 £ » < {(2?w+i - jq„)a) < • • • < {(r?M+1 - 7?„)a} < • • • 

when «is odd (the order is reversed, and M9 replaces M> when n is even). 
The condition q > 2M + 3 is satisfied when 

fan+i*J4n+3 iff is odd, 
< #w > 3 if r is even andy* is odd, 
[never satisfied if r is even andy is even. 

Similarly, for q = rqn+x-jqn+iqn_x (r = l,2,...,aw+2 +1; 7 = 0, l,...,aw+1; 1 = 0, l,...,aw), we have 

[(^*+i - 7?« + (f ~ tyfn-i) / 2 if r: odd, y + a„+1 = 0 (mod 2), /: even; 
( ^ w + i - 7 ^ + % - i ) / 2 ifr: odd,y+aw+1 = 0(mod2), 1: odd; 

) faa+i" (7 + ton + (2* - l)?w-i) / 2 if r: odd, y + an+l = 1 (mod 2); 
( ^ + i - ( 7 + l )^+2/^_i) /2 
(^w +i-7ft,+^»-i)/2 

l ( ^ + i - 7 ^ + 0 ' - l ) ^ - i ) / 2 

The condition q > 2M + 3 is satisfied when 

M = 
if r: even, y: odd; 
ifr: even, y": even, /: 
ifr: even, y': even, /': 

even; 
odd. 

<7„-i^3 
never satisfied 
qn>(i-1)4^ + 3 
ft.^^+3 
never satisfied 

l ^ - i ^ 3 

if r: even, y + an+l = 0 (mod 2), 1: 
if r: even, j+an+1 = 0 (mod 2), /: 
if r: even, j+an+1 = 1 (mod 2); 
if r: odd,y': odd; 
if r: odd,y': even, /: even; 
ifr: odd,y': even, /: odd. 

even; 
odd; 

Generally speaking, M (or M') in Lemma 3 can be determined as follows. 

Lemma 4: If M = ( tiqN+l-h(s-l)qN)/2 for q = tiqN+l+sqN, then M = ( uqN+l + 
(s-l)qN)/2forq = ---uqN+l+$qN-tqN„l(t = l,2,...,aN). 

If M = ( t4qN+l+sqN)/2 for q = uqN+l + sqN, then 
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M 
-%--

uqN+l + sqN - tqN_x) / 2 if t is even, 
'U<1N+I + S9N ~(f + Oftsr-i) l2 i f ^ i s odd> 

forqr = — - w ^ ^ + 5 ^ - ^ . ! . 
I f M = (---(*/ + l ) ^ + 1 + ( 2 s - ^ 

f( uqN+1 + sqN - tqN_x) / 2 if s 4- <%+1 = 1 (mod 2) and t is odd, 
M = < ( w ^ + 1 + 5 ^ - (t + l ) ^ _ i ) / 2 if s+aN+l = 1 (mod 2) and f is even, 

[ ( - - U$N+I + 0 ~ 1)% - 4W-i) / 2 if J+a N + l s 0 (mod 2), 

for g = - - - - ^ + 1 + ^ - % , _ ! . 
If M = ( . . . - (u + 1 ) ^ + 1 + 2 5 ^ ) /2 for gr = • • • - wg^+1 + sg^, then 

M = 
(• • • - wg^+i+ S4N ~ t(lN~i) 12 if ^ + %+i = 0 ( m o d 2) and f is odd, 
( uqN+l + sqN -(t + l)qN-i) / 2 if s + % + 1 = 0 (mod 2) and f is even, 

[(•••- uqN+l + ($- l)qN - qN_x) / 2 tts + aN+l = l (mod 2), 

Lemma 49: Tf M = (*--+uqN+l-(s + l)qN)/2 for q = -- + uqN+l-$qN, then M = ('-+uqN+l-
(s + l)qN + 2tqN_l)/2 for g = — + uqN+l-sqN +tqN_x (t = 1,2,...,a^). 

If M = (--+uqN+1-sqN)/2 for q = --- + uqN+1-sqN, then 

[(•••+ w ^ + 1 - ^ + ty^) / 2 if r is even, 
Af = (• • • + i / ^ + 1 - ^ + (* - 1 ) ^ - 0 / 2 if r is odd, 

forg = — + w ^ + 1 - 5 ^ + ^ J V _ 1 . 
If M = (--- + (u-l)qN+l~qN)/2 for q = -- + uqN+l-sqN, thm 

f(• • • + uqN+l - sqN + ^JV-I) / 2 if s + % + 1 = 1 (mod 2) and t is odd, 
M = < (• • • + uqN+l - sqN + (t- l)qN-X) 12 Mfs + aN+1 = 1 (mod 2) and t is even, 

[(•••+ uqN+l - (s + 1 ) ^ + (2/ - 1 ) ^ ) / 2 if 5 + aN+l s 0 (mod 2), 

for g = - + ^ + 1 - ^ + % , _ ! . 
If M = ( • • •+ ( ! / - l ) ^+ i ) /2 for q = ~- + uqN+l-sqN> then 

((•••+ W4W+i "" ^ t f + *?AM) / 2 if $ + %+i = 0 (mod 2) and f is odd, 
(• • • + uqN+l - sqN +(t- l)qN_i) 12 ifs+aN+l = 0 (mod 2) and t is even, 

[ ( - + mN+i ~is + 1)9N + (2t - lteto-i) / 2 if 5 + aN+l = 1 (mod 2), 
M = 

forq = — + uqN+l-sqN+tqN_v 

Example 3: There is a reason for our providing two alternative expressions for each integer q. 
For instance, let 

V29+5 
« = — j — = [5;5>5A...]. 

For ^ = 3 ^ 2 - ^ 1 + 4 ^ 0 = 3 -26-5 + 4-l = 77, we have M = (3q2-ql + 3q0)/2 = 3&, not satisfying 
q>2M + 3. However, for q = 2q2 + 5q1 = 77, we obtain M' = (2q2+4q1)/2 = 36, satisfying 
q>2M' + 3 and leading to the conclusion that (Am,...,Aq_m+l) is palindromic for ^ = 77 with 
w = 38 and 39. 
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SUMMARY 

When q = qnr, the palindromic sequences (Am,..., Aq_m+l) can be found by Theorem 1, 2, 3, 
4, or the Corollary! When q^qnr, all the other palindromes can be discovered by Lemma 3 with 
Lemma 4 and Lemma 4'. 
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1. INTRODUCTION 

Let R(N) be the number of representations of the natural number N as the sum of distinct 
Fibonacci numbers. The values of R(N) are well recognized as the coefficient of xN in the 
infinite product Titii1 + *F|) = 0 + *)(1 + *2)(1 + x3)(l + x5) — = 

l + lx1+x2+2x3+x4-f2x54-2x6+x7+3x8+2x9+2x1 0 + ---. (1) 

Combinatorially, each term R(N)xN counts the R(N) partitions of N into distinct Fibonacci 
numbers. Some of the recursion properties of this sequence are investigated in [2]. The diffi-
culties in producing this sequence are more computational than analytic in that usual generation 
methods quickly consume computer resources. 

Our major interest is in the related sequence 1, 3, 8, 16, 24, 37, ..., An^ whose rfi term is the 
least N such that n = R(N), emphasized in boldface in (1) above. The general term of this 
sequence (see [8]), designated A013583 in Sloane's' on-line database of sequences, is still 
unknown. The 330 terms found in this note almost triple the 112 terms reported by Shallit [8]. 
Carlitz [3, 4], Klamer [7], and Hoggatt [4, 6], among others, have studied the representation of 
integers as sums of Fibonacci numbers and particularly Zeckendorf representations. The Zecken-
dorf representation of a natural number N uses only positive-subscripted, distinct, and non-
consecutive Fibonacci numbers and is unique. We have used the Zeckendorf representation of N 
to write R(N) in [1] and [2]. 

2. APEEKATA013583FIRST 

Let us begin by listing the terms of A013583 that we have computed. We will note very 
quickly why this sequence is so intractable. Table 1 lists 46 complete rows with 10 entries per 
row. The first 33 rows have no missing sequence terms; hence, 330 complete sequence terms. 
The first missing entry appears in the 34th row as the yet unknown 331st term. While there are 
necessarily missing terms in at least some of the remaining rows, there are also many useful cal-
culated sequence terms. Our computer output concluded with a partial 47th row with 5 unknown 
entries followed by the 446th sequence term, 229971. 

OO 

3. SOME OBSERVED AND COMPUTATIONAL PROPERTIES OF J"](l +JCF') 

When n*L2(1 + x F 0 'ls expanded, the terms are partitioned according to sets of palindromi-
cally arranged, successive R(N) coefficients. For this reason, we refer to it as the palindromic 
sequence. The first few terms are given in (2) below. 
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TABLE 1, Terms of Sequence A013583 (Index 1 through 330 complete) 
1 

152 
440 
1160 
2736 
4511 
7218 
7310 
7925 
11724 
19154 
18905 
20701 
20730 
30529 
53712 
49502 
50002 
49387 
54555 
79481 
124506 
80971 
79646 
125132 
129551 
129242 
129347 
142877 
201306 
131182 
140531 
217174 

208524 
212323 
227107 

229696 

3 
160 
647 
1147 
1867 
3032 
4917 
7213 
11593 
12669 
12101 
18871 
30579 
30414 
30969 
30524 
33574 
49489 
49667 
51222 
81141 
54293 
80086 
79879 
87694 
82937 
87817 
87126 
129326 
140539 
140298 
134104 
129313 
212192 
209396 
208511 
209210 
212260 
231102 
226968 

217153 
230034 

8 
168 
1011 
1694 
2757 
6967 
4621 
7831 
18154 
12106 
20358 
46913 
18866 
30689 
30422 
49104 
49159 
53683 
53534 
56152 
79874 
81078 
131203 
54288 
82950 
128614 
128703 
87736 
128598 
129318 
142238 
141895 
211980 
209668 
142123 

217119 

217148 
230416 

16 
249 
673 
1155 
2744 
4456 
4854 
8187 
7912 
11661 
12711 
19557 
20832 
30359 
20735 
49201 
49112 
49366 
53670 
54521 
51264 
87927 
79942 
79984 
129538 
124417 
128831 
131177 
131190 
130025 
129305 
201314 
142225 
209087 
209634 
209299 
210396 
208519 
216881 

226942 
229992 

24 
257 
723 
1710 
2841 
3024 
4904 
7488 
11813 
12656 
12800 
19138 
21018 
30977 
30511 
33705 
31681 
49120 
53589 
51272 
79463 
80073 
82513 
79929 
86694 
130999 
129224 
87825 
134049 
140154 
140264 
134193 
142411 
140259 
209074 
212268 
227395 
217436 
210388 
226929 
230123 

229979 

37 
270 
715 
1702 
2990 
4477 
7179 
7205 
11682 
12093 
19099 
18858 
19578 
20743 
33176 
31689 
50091 
49222 
50107 
53581 
86241 
79476 
124433 
129221 
79921 
86686 
130004 
129216 
128873 
146927 
133494 
140251 
208244 
140971 
227408 
142136 
226777 
209257 
237867 

228107 

229971 

58 
406 
1066 
2647 
2752 
4616 
7166 
11614 
11653 
18151 
20756 
19476 
47434 
47418 
30694 
47523 
49358 
49408 
54178 
124519 
53573 
80366 

124378 
82840 
86749 
128593 
82945 
130910 
129208 
140243 
142848 
142094 
209058 
141856 

211985 

142128 
217114 

63 
401 
1058 
1846 
2854 
4451 
4896 
7480 
11619 
12648 
18761 
31134 
20463 
30503 
34684 
33108 
33278 
33553 
49400 
79607 
53848 
79853 
79913 
80361 
87131 
87673 
128606 
201246 
87838 
202466 
141861 
209286 
208037 
142089 
209121 
209676 
227345 
209401 
230958 
209231 
217161 
230136 

97 
435 
1050 
1765 
2985 
7349 
7200 
7815 
7920 
18795 
18850 
20502 
20696 
47507 
47795 
49405 
33616 
49497 
50989 
49392 
54327 
82856 
124522 
129292 
131897 
142699 
129546 
133499 
129352 
142882 
216776 
208414 
209252 

209236 

227112 

105 
448 
1092 
1854 
3019 
4629 
7247 
7857 
11669 
12792 
12813 
19565 
20777 
30702 
31676 
33286 
33561 
49434 
53615 
53856 
54225 
54280 
81073 
82882 
87681 
88016 
129402 
130012 
129250 
134185 
142780 
140958 
134206 
142170 
208079 
209409 
227010 
209218 
217195 
228094 

229704 

228099 
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[Ix1] + x2 + [2x3] + x4 + [2x5 + 2x6] + x7 + [3x8 + 2x9 + 2x10 + 3xl l] + x12 

+ [3x13 + 3x14 + 2x15 + 4x16 + 2x17 + 3x18 + 3x19] + x20 + [4x21 + 3x22 + 3x23 

+ 5x24 + 2x25 + 4x26 + 4x27 + 2x28 + 5x29 + 3x30 + 3x31 -l- 4x32] + x33 + [4x34 (2) 
+ 4x35 + 3x36 + 6x37 + 3x38 + 5x39 + 5x40 + 2x41 + 6x42 + 4x43 + 4x44 + 6x45 

+ 2x46 + 5x47 + 5x48 + 3x49 + 6x50 + 3x51 + 4x52 + 4x53] + x54 + [5x55 +. . . 

Throughout this paper, we use the floor symbol L*J to denote the greatest integer < x and 
the ceiling symbol [x] to denote the least integer > x. 

Square brackets identify coefficient palindromes. Palindromic sections share external boun-
daries of the form lxN, N = Fn-l9 consistent with R(Fn -1) = 1 given in [3]. For data-handling 
and computation, we omitted the overlapping terms with unit coefficients and partitioned the 
expansion into palindromic sections which we call ^-sections. The first term of a Ar-section is 
l(k + 2)/2jxN,N = Fk+2, and the last term is l(k + 2)/2]xN, N = Fk+3-2. In (2), observe 
coefficients [3 2 2 3] (for k = 4) starting with x8. 

Since the second half of a ^-section adds no new coefficients but merely repeats those of the 
first half in reverse order, we use yi-sections. If the number of terms is odd, we include the 
center term, which becomes the last term of the y^-section. The coefficient of the last term of the 
yA>section is always a power of 2. 

The value of these central coefficients can be established using identity (3), which can be 
proved using mathematical induction. 

IX-+1 = F3p+l + i v 2 + . - +F7 + F4 = (F3p+3 - 2 ) 12. (3) 

Thus, 

4t F*A = 2P~lR(F4) = 2P = R((F3P+3" 2 ) / 2 ) W 
by repeatedly applying R(Fn+3+K) = 2R(K), Fn<K< Fn+l, and R(F4) = 2 from [2]. 

Take k = 3p-l. The powers of x on the left and right internal boundaries of the ^-section 
become F3p+l and F3p+2-2, and the central term has exponent (F3p+l + F3p+2-2)/2 = (F3p+3-
2) / 2, which is an integer since 21 F3p, and the coefficient is 2P by (3) and (4). 

Next, take k = 3p. The central pair of terms have exponents of x given by (F3p+4 - 2 -1) / 2 
and (F3p+4 - 2 +1) / 2, which are integers since F3p+4 is odd. We can establish the values of A and 
B below by mathematical induction: 

^ + 2 + V l + ""+F^^5 = (i73p+4-3)/2=: Ĵ (5) 

V + V l + ,"+i78+f5+^2 = ( V 4 - 1 ) / 2 = 5 ' (6) 
By again applying R(Fn+3 + K) = 2R(K) and R(F4) = 2 to (5) and (6), 

R(A) = 2p~lR(F5) = 2^1(2) = 2P, (7) 
R(B) = 2pR(F2) = 2'(1) = 2p, (8) 

sothati?{^) = i?(5) = 2^. 
In the same way, when k = 3p + l, the two central terms have equal coefficients given by 2P. 

This establishes 2 ^ as the coefficient of the right boundary of a -j^-section for all k. 
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Also from [2], we can apply R(Fn) = [n/2] = R(Fn+1-2) to the first and last terms of the 
bracketed palindromic sequences, and R(Fn -1) = 1 explains the overlapping external boundaries 
of the ^-sections. 

The only practical way available at present to find the y* term of A013583 is to search for 
the first appearance of j as a coefficient in the palindromic sequence and to record the corre-
sponding exponent of x as the 7* term in A013583. Table 2 lists numerical properties of k-
sections useful for setting up and checking our computational procedures. 

TABLE 2, Numerical Parameters of Palindrome Sequence (1 < k < 26) 

m E H H H H m H H 10 11 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

4 
7 
12 
20 
33 
54 
88 
143 
232 
376 
609 
986 
1596 
2583 
4180 
6764 
10945 
17710 
28656 
46367 
75024 

1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 
11 
11 
12 
12 

2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 
2584 
4181 
6765 
10946 
17711 
28657 
46368 
75025 

1 
2 
2 
2 
4 
4 
4 
8 
8 
8 
16 
16 
16 
32 
32 
32 
64 
64 
64 
128 
128 
128 
256 

2 
3 
5 
9 
16 
26 
43 
71 

115 
187 
304 
492 
797 
1291 
2089 
3381 
5472 
8854 
14327 
23183 
37511 
60695 
98208 

1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 
11 
11 
12 
12 

2 
3 
6 
11 
19 
32 
53 
87 
142 
231 
375 
608 
985 
1595 
2582 
4179 
6763 
10944 
17709 
28655 
46366 
75023 
121391 

2 
4 
7 
12 
20 
33 
54 
88 
143 
232 
376 
609 
986 
1596 
2583 
4180 
6764 
10945 
17710 
28656 
46367 
75024 
121392 

0 
1 
2 
4 
7 
12 
20 
33 
54 
88 
143 
232 
376 
609 
986 
1596 
2583 
4180 
6764 
10945 
17710 
28656 
46367 

0 
1* 
1 
2 
4* 
6 
10 
17* 
27 
44 
72* 
166 
188 
305* 
493 
798 
1292* 
2090 
3382 
5973* 
8855 
14328 
23184* 

24 121392 13 121393 256 158904 13 196416 196417 75024 37512 
25 196417 13 196418 256 257113 13 317809 317810 121392 60696 
^6 317810 14 317811 512 416019 14 514227 514228 196417 98209 
J_ 
T 

Value of fc. k 
Power of x of left external boundary of k- or | ^-sections. F*+2 — 1 
Integer coefficient of left interior boundary of k- or | A;-sections. | _ ^ J 

10 

Power of x of left interior boundary of fc- or |&-sections. 
Integer coefficient of right boundary of |fc-section. 
Power of x of right interior boundary of |&-section. 
Integer coefficient of right interior boundary of fc-section. 
Power of x of right interior boundary of ^-section. 
Power of x of right exterior boundary of fc-section. 
Number of terms in fc-section. 

11 J Number of terms in |&-section. When I 10 I is odd, * indicates 
|fc-section ends with unique center term of the ^-section. 

Ffc+2 
2L^J 

F*+3 - 2 
F/t+3 — 1 
Ft+i - 1 
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4. SUCCESSIVELY BETTER WAYS OF GETTING DATA FROM J J (1 + xF*) 
i=2 

For small ^-sections we inspected each successive printout by hand to select the first occur-
rence of each coefficient value. We found the first 112 terms in computing for k < 18. 

For further reduction in data handling we described the entries of ^-sections as {coefficient, 
power of x) pairs. Since only the unique {coefficient, smallest power of x for that coefficient} 
pairs from each ^-section qualify as potential pairs for A013583, we eliminated all pairs with 
duplicate "coefficient" portions except that pair with the least power of x. At the same time, the 
surviving pairs per y^-section emerge sorted by increasing coefficient size. 

As an example, each line of (9) contains ^-section data, reduced and sorted as suggested. 
By suppressing the pairs that do not qualify, the highlighted {coefficient, powers of x} pairs for 
A013583 aire immediately evident. 

{ { M » , * = l 
«293}},£ = 2 
{{2,5}}, k = 3 
{{2,9}, {3,8}}, k = 4 
{{2,15},{3,13},{4916}},^5 (9) 
{{2,25},{3,22},{4,21},{5924}},* = 6 
{{2,41}, {3,36}, {4,34}, {5,39}, {6? 37} }, k = 7 
{{2, 67}, {3,59}, {4,56}, {5,55}, {6,60}, {75 58}? {% 63} }, k = 8 
{{2,109}, {3, 96}, {4, 91}, {5,89}, {6,98}, {7,94}, {8, 92}, |99 97}9 {10,105}}, k = 9 

Howerver, we were at the memory limit of our personal computer. We had to find new Fibo-
nacci approaches to continue. When we found a way to let the indices of the Fibonacci numbers 
guide the computations in place of the Fibonacci numbers themselves, we had a fresh start with 
tremendously reduced computational requirements. The interaction between the Fibonacci num-
bers and their integer indices here is not the same as the divisibility properties noted in the many 
past studies of Fibonacci entry points and their periods. We needed formulas developed in [2] 
relating R{N) to the Zeckendorf representation of N. By looking deeper into the structure of 
Fibonacci indices, we removed a core of redundancy to speed up and shorten our calculations and 
developed, an improved way of assembling data and discarding duplicate data. We proceeded to 
calculate the remainder of the 330 terms of A013583 that you see in this paper. Even with our 
best available computation techniques, described below, we found size and time requirements to 
be impracticable for calculations beyond k = 25. 

5. EXPLORING NEW WAYS TO FIND COEFFICIENTS OF ^-SECTIONS 

Since the combinatorial interpretation of the coefficients of the palindromic sequence is the 
number of partitions of the power of x into distinct Fibonacci members, we explore that point of 
view. We will use results of selected numerical examples to imply a general case. In the partial 
expansion of I I ^ O + xF0 'm (2)> w e observe the term 4x43, which tells us there are 4 partitions of 
43 into distinct Fibonacci numbers. As is well known, 43 has the unique Zeckendorf representa-
tion, 43 = F9 + F6 + F2 = 34 + 8 +1, where we rule out adjacent Fibonacci indices. As additional 
visual information, F9 = 34 is the power of x of the left boundary of the ^-section to which 43 
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34 
13 21 

5 8 21 
2 3 8 21 

Fn 
F5 F6 

F3 F4 F6 

F9 
F* 
Fs 
Fs 

7 
5 6 

3 4 6 

9 
8 
8 
8 

belongs, and Fk+2 =F9 = 34 is the only Fibonacci power of x in its ^-section, thus, k = 7. In 
general, we can represent any power in a ^-section by its Zeckendorf representation which starts 
withi^+2. 

In [5], Fielder developed new Mathematica-oriented algorithms and programs for calculating 
and tabulating Zeckendorf representations and calculated the first 12,000 representations. We im-
bedded the algorithms in our work where needed. Reference [5] and Mathematica programs are 
available from Daniel C. Fielder. The indices in the Zeckendorf representation of an integer N 
give formulas for finding R(N), as reported in [2]. We next describe how the indices are applied 
to our computer programs. 

We noted earlier that the power of x of the first term of a ^-section is not only a predictable 
Fibonacci number, but is the only power of x in that ^-section which is a Fibonacci number. 
Because of the Fibonacci recursion, Fn+2 = Fn+l+Fn, it is very easy to partition any Fibonacci 
number into distinct Fibonacci members. As an example, we represent the partition of F9 = 34 as 
successive triangular arrays in (10): 

(10) 

The first array consists of the partition integers, the second consists of the Fibonacci number sym-
bols with subscripts, and the third consists of Fibonacci indices only. 

The enumeration of sequence subscripts for powers in general involves interaction among the 
restricted partitions of the several Fibonacci numbers used in the Zeckendorf representation. 
Computations controlled by the indices of the right array have advantages of symmetry. For 
example, the left-descending diagonal will always consist of all the consecutive odd or even inte-
gers starting with the index of the Fibonacci number to be partitioned. (Recall that we do not 
admit a 1 index.) Once the diagonal of odd (or even) indices is in place, the remaining column 
lower entries are all one less than their diagonal entry. The number of restricted partitions is the 
floor of half the largest index. In the example, |_f J = 4 partitions. If the power of x were the 
single Fk+2, the number of partitions and, thereby, the coefficient would be [ ^ J -

When we consider our example 43 = F9+F6 + F2, we represent the individual partitions as 
three triangles of Fibonacci indices with the Zeckendorf Fibonacci indices as apexes. (The order 
from low to high is a computational preference.) 

2 6 9 
4 5 7 8 (11) 

2 3 5 5 6 8 u i ; 

3 4 6 8 
By distributing each set of rows over the others, 12 sets of indices are found as the Mathematica 
string: 

{9, 6,2}, {9,4,5,2}, {9,2,3,5,2}, {7,8,6,2}, {7, 8,4,5,2}, {7,8,2, 3,5,2}, 
{5,6,8,6,2}, {5,6,8,4,5,2}, {5,6,8,2,3,5,2}, {3,4,6,8,6,2}, (12) 
{3,4, 6,8,4,5,2}, {3,4,6,8,2,3,5,2}. 
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Each set of indices of (12) evokes a partition of 43 into Fibonacci numbers having those indices. 
There are 1x3x4 = 12 such partitions. Thus, we can use Zeckendorf representations both to 
count and to name partitions consisting solely of nonzero Fibonacci numbers. The results in (12) 
also suggest a very simple way to find the coefficients of the expansion n^ 2 t 1 / (1 - *^)]. 

Our first computational improvement over direct expansion of (1) is given by our Mathemat-
ica program 10229601.ma. This program accepts 43, the power of x, and returns the coefficient 
4 by using the equivalent of (11) to find (12) and then discarding sets with duplicate indices. The 
4 sets of indices counted by 10229601.ma in the example are: 

{2, 6, 9}, {2,4,5, 9}, {2, 6, 7,8}, {2,4,5, 7, 8} (13) 

By using 10229601.ma in a loop, selected ranges of powers can be probed for power-coefficient 
pairs. 

As the size of the powers increased, however, even 10229601.ma could not match the 
demands on it. This is because the distribution of indices in 10229601.ma takes place over all 
triangles, and memory is not released to be used again until the end of the computations. As an 
improvement, we distributed the index integers over the first two triangles on the right and elimi-
nated sets with repeated integers. We applied this result to the next triangle alone, make the 
reductions, and repeated the process over the remaining triangles one at a time. The memory and 
time savings were substantial. In spite of the new computational advantages, the distribution was 
still over all of each triangle. With full triangle distribution, however, it is possible that there may 
be partitions with arbitrary length runs of repeating index integers. Since we want to count parti-
tions with no repeating members, producing partitions through full distribution is not an optimum 
strategy. 

Our next improvement restricted repeating members to a fixed and predictable limit per parti-
tion. We retained our earlier size order of the index triangles and eliminated enough lower rows 
so that the smallest member of a higher-order triangle is either equal to or just greater than the 
largest (or apex) member of its immediate lower-order neighbor. For illustration, we show the set 
of'partial index triangles obtained from suitable modification of (11): 

2 6 9 
4 5 7 8 (14) 

2 3 5 
Now, when distribution is made over all partial triangles, triple or higher repeats of individual 

integers cannot occur. The only possibility of a repeated integer lies between the least integer of a 
triangle and the greatest integer of its immediate left neighbor. This means that when repeats 
occur, there is at most one pair of those integers per partition. In fact, if each Zeckendorf repre-
sentation index differed from the preceding index by an odd integer, there would be no repeating 
partition members, and the distribution operation on the partial triangles would immediately yield 
the integer indices of the desired set of Fibonacci partitions. 

As proved in [2], R(N) can be written immediately by repeatedly applying the formulas: 
R(Fn+2k+l+K) = (k + l)R(K), Fn<K<Fn^ (15) 

R(Fn+2k+K) = kRW + RiF^-K-l). (16) 

In our example, the distribution and reduction process yield integer sets {2,6}, {2,4,5} from 
the first two reduced triangles. The process continues to the third partial triangle and produces 
the final {2,6,9}, {2,4,5,9}, {2,6,7,8}, {2,4,5,7,8}. Our program 10229601 .ma incorporates 

2001] 81 



THE FIRST 330 TERMS OF SEQUENCE A013583 

the concept of partial triangles along with previous improvements. It was the first sufficiently 
robust program for handling k values of 24 and especially 25, necessary to obtain coefficients 
from the palindromic sequence to complete the last of the 330 terms of A013 583. Next we study 
the 330 terms from Table 1. 

16 
17 
18 
19 
20 
21 
22 
23 

987 
1597 
2584 
4181 
6765 
10946 
17711 
28657 

8 
7 
12 
11 
19 
19 
28 
27 

23 
33 
37 
51 
53 
77 
83 
118 

32 
36 
50 
52 
76 
82 
112 
112 

34 
42 
55 
68 
89 
110 
144 
178 

1 
2 
3 
5 
7 
9 
15 
22 

6. THE 330 PAIRS {#f, AJ SORTED BY INTERVALS 

Returning to Table 1 which lists {n, An} and also gives all known values of An < F2S, we sort 
the data by intervals as given in our ^-sections. In Table 3 we select all {n, A„} such that Fm < 
Ai <Fm+\ anc^ sort by increasing index values. For consistency with the terminology of [1] and 
[2], we take m = k + 2. 

TABLE 3. Indices n for {#*, A^ Sorted by Intervals 
Fm<An<Fm+vU<m<27 

| T ] [ T ] [ T ] [ T ] [ T ] [ T ] \T] Missing values for n (partial list) 

33 
37,41 
51,53,54 
53, 59, 61, 66, 67 
77, 82, 83, 85-88 
83,97,99, 101, 103, 106-109 
113, 118, 122, 127, 132-135,137-143 
113,127,137, 139,149,151,153, 
154, 157, 159, 161, 163-164, 
166-167, 171-177 
197, 198, 201-203, 205, 206, 211, 213-219 
221-232 
197, 211, 223, 226, 227, 229, 236, 239, 241, 
244, 249, 251, 253-255, 257, 259, 261, 
263-266, 268-271, 274, 276-287 
278, 291, 298, 309, 314, 318, 319, 
321, 323, 326-329, 331-334, 339, 
341, 342, 344-355, 357-376 
331, 339, 347, 349, 353, 359, 367, 
371, 373, 379, 381, 383, 389, 391, 
394, 396, 397, 401, 402, 404, 406, 407, 
409-413, 415, 417, 419, 421-423, 425-431, 
433-439, 443, 444, 446-465 

Column descriptions: 
1 | Value of rn which defines the interval. 
2 ] Fm 

3 | Number of pairs of {n, An } in interval. 
4 | Smallest index n appearing in interval. 
5 | Every index n less than or equal to this number has appeared by interval's end. 
6 J Largest index n appearing in interval. 

[_7j Number of missing indices less than the largest n in the interval. 

24 

25 

46368 50 113 196 233 27 

75025 43 198 196 288 39 

26 121393 76 197 277 377 52 

27 196418 72 278 330 466 69 
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Notice that the largest index n in each interval is a Fibonacci number or twice a Fibonacci 
number. Ifm = 2p, the largest index is n = Fp+l; if m = 2p +1, n = 2F . 

In every ^-section that we computed beyond k = 12, some indices were missing and appear 
for the first time in a later ^-section. However, the "missing values" appear in an orderly way. 
The indices n = Fp+l -1 and n = 2Fp - 1 always are missing values for the respective intervals 
m = 2p and m = 2p-l. (We note in passing that n = 112 was the highest index available before 
the disclosures of this paper, and m = 20 is complete for n through 112.) 

Putting this all together, the first appearance of n = Fp+l is for An = Fp+i - 1 in the interval 
F2p <An< F2p+l, and the list of indices is complete for n<Fp. The first appearance of n = 2Fp is 
for An =^+3^V_l + (-l)/7+3 in the interval F2p+l < An<F2p+2, and the indices are complete for 
n < 2Fp_2. The first appearances of Fk and 2Fk are discussed in [1]. 

We notice that, if n is the largest index which appears for An in the interval Fm < A^ < Fm+l, 
then the indices n-1, n-2, n-3,...,/?-(Frmi_5-1) are missing values. 

The values for 4 a r e n o t a strictly increasing sequence if sorted by index, as can be seen 
from Table 1. However, if Fp < n < Fp+l, then F2p^ <An< F2p+4. If n is prime, then F2p <An< 
F2p+l or F2p+2 <An< F2p+3. In fact, if n is prime, the Fibonacci numbers used in the Zeckendorf 
representation of An are all even subscripted. 

We found palindromic subsequences and fractal-like recursions in tables of {n,An}. We 
developed many formulas relating R(N) and the Zeckendorf representation ofN, but we still can-
not describe a general term for {w, 4 1 - ^he formulas we developed and the programming data 
we generated each extended our knowledge while suggesting new approaches. Theory and appli-
cation worked hand-in-glove throughout this entire project. 

7. POSTSCRIPT AND AFTERMATH 

After all the 330 consecutive terms and many other nonconsecutive terms of A013583 were 
calculated and recorded, and much of the paper completed, we stumbled onto a very simple 
Ma^fe/waifica-implemented algorithm which uses the combinatorial principle of Inclusion-Exclu-
sion to find the coefficients of Uf=2(l + xF') for powers of x. While too late to help us gather data 
for the 330 terms, it provides a reassuring check on the work already completed, and should 
prove an invaluable aid in our continuing assault on sequence A013583. The Mathematica algo-
rithm implementation is many times faster than that used for getting the 330 terms of A013583. 
Would you believe that a preliminary trial program with the new algorithm verified the coefficient 
of 

961531714240472069833557386959154606040263 

as 147573952589676412928 in 2.62 seconds on a 133-Mhz PowerMac 7200 running Mathe-
matica, version 2.2? Table 2 verifies this result because the power of x is that of column [6] 
for k = 200, while the coefficient matches the known value in column [5] for k = 200 in Table 2. 
Our paper describing the algorithm and its application has been reviewed and accepted for 
presentation at, and inclusion in, the proceedings of SOCO'99, Genoa, Italy, June 1-4, 1999. 

2001] 83 



THE FIRST 330 TERMS OF SEQUENCE A013583 

A short paper outlining the Fibonacci and Zeckendorf algorithms of [5] has been accepted for 
presentation at the Southeastern MAA annual regional meeting in Memphis, TN, March 12-13, 
1999. 

We are also very optimistic about the ongoing development of an algorithm, hopefully with 
Mathematica implementation, which will generate terms of A013583 directly. Preliminary results 
have been most encouraging. The algorithm is based on ideas gathered from this note and refer-
ence [2]. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others1 proposals must be sub-
mittedto the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by August 15, 2001. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results1'. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

^ 2 = ^ + 1 + ^ . ^ 0 = 0 , ^ = 1; 

A1+2 = A+i + A > A = A A = *• 

Also, a = (l+V5)/2, £ = ( l -V5)/2 , Fn = (an-^)/^md Ln = an+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 
B-911 Proposed by M K Deshpande, Institute of Science, Nagpur, India 

Determine whether Ln +2(-l)mLn_2m_l is divisible by 5 for all positive integers m and n. 

B-912 Proposed by the editor 
Express FnHnmod2yLn+l_(nmod2) as a sum of Fibonacci numbers. 

B-913 Proposed by Herbert S. Wilf University of Pennsylvania, Philadelphia, PA 
Fix an integer k > 1. The Fibonacci numbers satisfy an "accelerated" recurrence of the form 

Fn2> = ^ - 1 ) 2 * - ^ - 2 ) 2 * (n = 2> 3> - ) 

with FQ = 0 and Flk to start the recurrence. For example, when k = 1, we have 

F2n = 3F2(n_1} -F2(w_2) (ii = 2,3,...; F0 = 0; F2 = 1). 

a. Find the constant ak by identifying it as a certain member of a sequence that is known 
by readers of these pages. 

k Generalize this result by similarly identifying the constant pm for which the accelerated 
recurrence 

Fmn+h ~ PmFm{n-l)+h + (^T Fm(n-2)+h> 

with appropriate initial conditions, holds. 
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B-914 Proposed by Jose Luis Diaz, Universitat Politecnica de Catalunya, Terrassa, Spain 
Let n > 2 be an integer. Prove that 

flit • l»^_(_»_v 

B-915 Proposed by Mohammad K Azarian, University ofEvansville, Evansville, IN 
If |x| < 1, prove that 

2 s ^ v 1 3 

< n . 

SOLUTIONS 
An Exponential Equation with Fibonacci Base 

B-894 Proposed by the editor 
(Vol 38, no. 1, February 2000) 

Solve for x: Fx
l0 + 442Fl

x
l5 +13Fx

l9 = 22IFX
U + 255Fx

l7. 

Solution by PaulS. Bruckman, Berkeley CA 
The desired value of x must clearly be rational, if it exists at all. We may deduce the appro-

priate value of x by an approximation technique. If we replace Fno by u, say, then it is approxi-
mately true that Fll4 = ua4, Fn5 = ua5, Fnl = ua7, and Fll9 = ua9. Therefore, the desired 
equation is replaced by the following approximate equation: 

I3a9x -255a7x +442a5* -22la4x +1« 0. (1) 

Let G(x) represent the expression in the left member of (1). It is easily found that G(0) = -20. 
We may also compute the following approximate values: G(l) « -3027.513, G(2) « -95869.589, 
G(3) = 0 (exactly), G(4)« 2.5 8992*108. Clearly, G(x) increases without bound for all x>4 , 
since the term 13a9* dominates G(x). Therefore, it appears that x = 3 is the unique desired solu-
tion; however, this must be verified in the exact (original) equation. 

The cubes of the Fibonacci numbers have a characteristic polynomial of degree 4; if P3(z) is 
this polynomial, it is easily seen that 

P3(x) = (z-a3)(z-a2fi)(z-afi2)(z-/J3) = (z2-4z-l)(z2+z-^ 
= (z2-l)2-3z(z2-l)-4z2 = z4-6z2 + l-3z3 + 3z 

or 
P3(z) = z4-3z3-6z2+3z + l. (2) 

That is, we have the following recurrence relation for the cubes of the Fibonacci numbers, valid 
for all n. 

(Fn+4y - 3(Fn+3f - 6{Fn+2f + 3(Fn+1)3 + (F„)3 = 0. (3) 

Using (3), we need to verify the following relation: 
13(F119)3 -255(F117)3 + 442(FU5)3 ̂ 221(FU4)3 + (F110)3 = 0. (4) 

From (3), we gather that 
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(^iio)3 = -(^ii4)3 +3(^n3)3 + 6(^„2)3 - 3(Fm)3. 
Also, 

(F119)3 = 3(F118)3 + 6(FU7f - 3(F116)3 - (F115)3; 

thus, if S represents the expression in the left member of (4), we obtain (after some 
simplification): 

S = 39(F118)3 - 177(F117)3 - 39(F116)3 + 429(F115)3 

-222(F114)3 + 3(F113)3 + 6(F112)3 -3(Fm)3 . 
Also, 

(^ii,)3 = -(*Ii5)3 + 3 ( W +<<Fm? ~ Win? 
and 

(F m ) 3 = 3(F117)3 + 6(FU6)3 -3(F115)3 -(F114)3. 

After further simplification, we obtain: 

S = -60(F117)3 + 195(F116)3 + 315(F115)3 - 270(FU4)3 - 15(F113)3 + 15(Fm)3. 

Finally, we make the substitutions: 

(^m)3 = -(^,i6)3 + 3(FU5)3 + 6(F114)3 - 3(F113)3 

and 
(FU7)3 = 3(F116)3 + 6(FU5)3 - 3(F114)3 - (FU5)3. 

Then, after further simplification, we obtain 5 = 0, identically. This establishes (4) and shows that 
x = 3 is the unique solution to the problem. 

Brian D. Beasley noted that the solution x = 3 works for n, n + 5, n + 9, « + 4, w + 7 in place of 
110, 115, 119, 114, and 117, respectively. 
Also solved by Brian D. Beasley, Indulis Strazdins, and the proposer. 

A Recurrence for Fnl 

B-895 Proposed by Indulis Strazdins, Riga Technical University, Latvia 
(Vol 38, no. 2, May 2000) 

Find a recurrence for Fn2. 

Solution by Paul S. Bruckman, Berkeley CA 
For brevity, write Qn = Fn2. We may easily demonstrate that the following recurrence rela-

tion is satisfied: 
Qn+X-Qn-l=FlnLn%+l. (1) 

We may verify (1), using the identity, 

FuL, = F^-{-\YF„9 (2) 

by setting u = 2n, v = n2 +1. Also, setting u - An, v = n2 + 4 yields 

G»2-GU = ̂ W (3) 
Now we note (or easily verify) the following identities: 
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Lm+4 = 7Lm+l-lOFm (4) 
and 

F4n=F2nL2n- ( 5 ) 

Then, setting m = n2 in (4) we obtain, from (1) and (3): 

0*2 ~ 0,-2 - 7£2„(G,+i - O-i) +10^ ,0 , = 0. (6) 
Since Q_n = Qn, we see that (6) is valid for all integral n. We may also express (6) in the 

asymmetric form: 
Gi+4 ~ 7L2n+4Qn+3 - 10^+801+2 ~ 7Z2„+42n+l + Qn • (7) 

It does not appear that we can obtain a linear recurrence for the Q/s that contains constant 
coefficients. 

H-J. Seiffert gave the formula 
r< _ \F2n+l^J2n+3 ~ V ^ H + l + Fln+y^n 

Jn+2 K_ 
where Gn = Fn2, andL. A. G. Dresel gave the formula 

Fn+\ ~ 2"(^« + ^ ) ^ 2 « ~ ^- l> 

where Sn = Fn2 and Tn = Ln2. He also noted that the factor L2n occurring in the above formula 
can be obtained from the formula L2^+V) = 3L2n - £20-1) • 

Also solved by L. A. G. Dresel, If.-/. Seiffert, and the proposer. 

An Independent Constant Fibonacci Sum 

B-896 Proposed by Andrew Cusumano, Great Neck, NY 
(Vol 38, no. 2, May 2000) 

Find an integer k such that the expression F* + 2F*Fn+l + kF2F2
+l -2FnF*+l+F*+l is a con-

stant independent of n. 

Solution by Kee- Wai Lau, Hong Kong, China 
We show that, for k - 1, the given expression equals 1. This amounts to proving that 

F„4
+2F^F„+1-F„2F„2

+1-2F^+l+F:+l-l = 0. (1) 

In fact, the left-hand side of (1) equals 

Fn(Fn + Fn+l)(Fn - Fn+l)(Fn+l + (Fn+l + Fn)) + (Fn
2
+l + 1)(F„2

+1 -1) 
= -Fn

Fr,+2F
n-lFn+3 + 0^+1 + l)(Fn+l ~ *)• 

Hence, to prove (1), it suffices to show that 

# i - ^ 2 = ( - i r (2) 
and 

/ ^ i - ^ i / w 3 = H r 1 . (3) 
However, both (2) and (3) can be established readily by using the relation 
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an - Bn 

Fn-—jd—, where a > 0 , a + /? = !, and afi = -l. 

This completes the solution. 
R. J. Hendel noted that the result follows from the "verification theorem" in L. A. G. Dresel's 
article "Transformation of Fibonacci-Lucas Identities" in Application of Fibonacci Numbers 5, 
ed. G. E. Bergum et al (Dordrecht: Kluwer, 1993), after one trivially verifies that, for k = -l, 
the expression evaluates to 1 for n--2 ton-2. 

Also solved by P. Bruckman, C Cook, L. A. G. Dresel, R J. Hendel, H. Kwong, K. Lewis, 
H.-J. Seiffert, and J, Sellers. 

An Initial Value Problem 

B-897 Proposed by Brian D. Beasley, Presbyterian College, Clinton, SC 
(Vol 38, no. 2, May 2000) 

Define (an) by an+3 = 2an+2+2an+l-an for n > 0 with initial conditions a0 = 4, al = 2, and 
a2 = 10. Express an in terms of Fibonacci and/or Lucas numbers. 

Solution by Richard Andre-Jeannin, Cosnes etRomain, France 
The characteristic polynomial of the proposed recurrence can be easily factorized: 

X3-2X2-2X + l = (X-a2)(X~/32)(X + l). 

From this, we see that there exist constants A, B, and C such that an - Aa2n + Bfl2n + C(-l)n. 
Considering the initial conditions, we obtain the linear system: 

U + B + C = 4, 
lAa2+B/32-C = 2, 
{Aa4+B/34 + C = 10. 

After some calculations, we get A = B = | and C = | ; thus, 

_ 6(a 2 "+/P) + 8(-iy 6Z2„ + 8(-l)" 
Qn~ 5 5 

:^H-2(-ir+^"?("i r-^+Fw
2. -"In 5 

Also solved by P Bruckman, J. Cigler, C Cook, K. Davenport, L. A. G Dresel, H. Kwong, 
K. Lewis, D. Redmond, M. Rose, H.-J. Seiffert, J. Sellers, I. Strazdins, and the proposer. 

Some Fibonacci Sum 

B-S98 Proposed by Alexandm Lupa^, Sibiu, Romania 
(Vol 38, no. 2, May 2000) 

Evaluate 

k=0 v J 
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Solution by L. A. G Dresel, Reading, England 
Denoting the given expression by E(s,ri), consider the 2s+ 2 terms of the expansion of 

(an - fin)2s+l. The two central terms combine to give 

Then proceeding outward and combining pairs of terms equidistant from the center, we obtain 
(an - pnfs+l = (fi)E(s, n). Therefore, since (an - pn) = (J5)Fn, we have E{s, n) = 5s(Fn)2s+l. 

Note: The result corresponds to equation (80) in Fibonacci & Lucas Numbers, and the Golden 
Section, by S. Vajda (Chichester: Ellis Horwood Ltd., 1989). 

Don Redmond obtained a similar result for a Lucas analog to the problem. He showed that 

fc=o V / 

Also solved by P. Bruckman, J. Cigler, D. Redmond, H.-J. Seiffert, L Strazdins, and the 
proposer. 

On a Bruckman Conjecture 

A Comment by N. Gauthier, Canada 
In the Feb. 2000 issue of this quarterly, Dr. Rabinowitz published the solution to Elementary Problem 

B-871 by Paul S. Bruckman ["Absolute Sums," The Fibonacci Quarterly 38.1 (2000):86-87]. In a foot-
note to Indulis Strazdin's solution, Dr. Rabinowitz then commented that "Bruckman noted that 

and conjectured that 

for some monic polynomial Pr(n) of degree r." Here, n > 0 and r > 1 are integers. 
Professor Bruckman's conjecture about the general form of the latter sum seems to be correct based on 

evidence I collected with MAPLE V^ \ but contrary to the conjecture, Pr{n) is generally not a monic poly-
nomial in n. From the evidence collected, the leading coefficient of Pr(n) appears to be equal to (r -1)!; 
for r = 1 and r = 2, one then finds the leading terms to be n and n2, respectively, in agreement with the 
values presented in the solution of problem B-871. But, for r > 3, the leading term of Pr(n) is (r - l)\nr. 

The Bruckman polynomials Pr(n) were obtained for 1 < r < 20, using MAPLE V ^ , by noting that 

and by asking MAPLE for Pr(n). For easy reference, here are the values of Pr(n) for r = 3, 4, 5, and 6: 

P3(n) = 2n3 - n2; P4(n) = 6n4 - 8«3 + 3n2; 
P5(n) = 24n5 - 60n4 +54n3 - lln2; P6(n) = I20n6 - 480«5 + 762n4 - 556n3 + I55n2. 

(I will gladly provide the polynomials for 7 < r < 20 on request for interested readers who might not have 
access to MAPLE.) 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E, WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-570 Proposed by H.-J. Seiffert, Berlin? Germany 
Show that, for all positive integers n: 

2n-l 

(a) ?-%„_,= £ i-V[\2\ 
5j(2n-k-l 

(b) ?-%„= t (-Ht\ 
k=0 

5\2n-k 

Two closely related identities were given in H-518. 
H-571 Proposed by D. Tsedenbayar, Mongolian Pedagogical University, Warsaw, Poland 

Prove: If (Taf)(t) = talt
Qf(s)ds with a e R, then 

(3?/)(0 = 7^ f V + 1 -^x+lT~lf(s)ds> for a * - l , 

and 

<xm=i^wX HTf(s)ds'for a=-1-
Remark: If a = - 1 , then T_x is a Cesaro operator; if a = 0, then T0 is a Volterra operator. 

A Correction: 
H-568 Proposed by N. Gauthier, Royal Military College of Canada, Kingston, Ontario 

The following was inspired by Paul S. Brackman's Problem B-871 (Vol. 37, no. 1, February 
1999; solved Vol. 38, no. 1, February 2000). 

"For integers n,m>l, prove or disprove that 

^ • ^ j ! ^ 1 " - ^ 1 

is the ratio of two polynomials with integer coefficients, 
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fm{n) = Pm{n)IQM, 
where Pm(n) is of degree [^f J in n and Qm(n) is of degree [_f J; determine Pm(ri) and Qm(n) for 
l<w<5 . " 

SOLUTIONS 
A Piece of Pi 

H-558 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 37, no. 4, November 1999) 

Prove the following: 

* = Z(-1)w{6^iow+i-6^1ow+3-4^ow+5-6^1o+7 + 6^0„+9}, where £m = a~m/m. (*) 

Solution by the proposer 
Looking at the form of the series expression, it is evidently composed of decisections of the 

logarithmic series. We begin with the definitions: 

Fr{z)^fJzw"^l{\0n+r), r = 1,2,...,10, \z\ < 1. (1) 
/?=0 

Note that Fr(0) = 0 and Fr'(z) = Zto ^°"+r~l = ^ ' (l ~ ̂ °) - Luting 0 = exp(/> / 5) (a tenth root 
of unity), we find, using residue theory (or otherwise), that Fr'(z) = l / 1 0 Z J t i i ^ ( r " 1 ) ( l - ^ ) " 1 ; 
then, by integration, 

10 
Fr(z) = -l/loY,0~krlog(l-x0k). (2) 

k=\ 

The following transformation is implemented, valid for all complex z = re1*: 
Logz = logr+i<f>. (3) 

Here, "Log" designates the "principal" logarithm, with -n<<h<n\ r = \z\, <f> = Argz. We also 
note that 2cos(;r/5) = a, 2cos(2/r/5) = -fi = l/a, and we let Sj denote sin(JK/5), j = 1,2. We 
readily find that 2sx = (V5 / a)112 and 2s2 = (aj5)m = 2asx. After a trite but straightforward com-
putation, we obtain the following expressions: 

Fx{z) = aA(x, a) + fiA(x, fi) + B(x) + ̂ C(x) + «%£>(*), (4) 
where 

A(x,c) = l/20log{(l + cx + xz)/(l-cx + x1)}, 5(x) = l/101og{(l + x ) / ( l -x )} , 
C(x) = l/5tnn~l{2xsl/(l-x2)}, D(x) = l/5tm~1{2xs2/(l-x2)}; 

F2(x) = aP(x, a) + fiP(x, fi) + Q(x) + ̂ ( x ) + ̂ ( x ) , (5) 
where 

P(x, c) = l/201og(l + cx2 + x4), Q(x) = - 1 / 101og(l-x2), 
U(x) = l/5tan"1{2x251 /(2 + ax2)}, V(x) = II 5t^nl{2x2s2 1(2+fix2)}; 

F3(z) = fiA(x9 a) + a A(x, fi) + B(x) + s2C(x) - sxD(x); (6) 

F4(x) = fiP(x, a) + aP(x, fi) + Q(x) -s2U(x) + SlV(x); (7) 
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F5(z) = -2A(x,a)-2A(x,B) + B(x) = V10\og{(l + x5)/(l-x5)}; (8) 
F6(x) = fiP(x, a) + aP(x, B) + Q(x) + s2U(x) - SlV(x); (9) 
F7(z) = BA(x, a) + aA(x,B) + B(x)-s2C(x) + slD(x); (10) 
Fs(x) = aP(x, a) + BP{x, B) + Q(x) - SlU(x) - s^(x); (11) 
F9(z) = aA(x, a) + BA(x, B) + B(x) - ^C(x) - %D(x); (12) 
Fw(x) = -2P(x, a)-2P(x, B) + Q(x) = -1 / 101og(l - x10). (13) 

Next, we note the following: Fl(x) + F3(x) + F1(x) + F9(x)=2A(x, a)+2A(x,B) + 4B(x). Then, 
using (8): 

G(x) = 6{F!(JC) + F3(x) + F7(x) + F9(x)} - 4F5(x) 
= 12A(x, a) + l2A(x, B) + 24B(x) + SA(x, a) + SA(x, B) - 4B(x) 
= 20{A{x, a) + A(x, B)+B(x)} 
= log{ {(1 + ax + x2)(l+j3x + x2)(l + x)2} I {(1 - ax + x2)(l - Bx + x2){\ - x)2}} 
= log{{(l + x + x2 +x3 + x4)(l + x)2}/ {(l-x + x2 + x3 -x4)/(l-x)2}} 
= log{(l-x5)(l + x)3/[(l-x5)(l-x)3]}. 

Thus, G(ix) = -\og{(\+ix5)/(l-ix5)} + 3\og{(l+ix)/(l-ix)}, i.e., 

SiF^ix) + F3(ix) + F,(ix) + F9(ix)} - 4F5(ix) = -2 / tan-1 x5 + 6/ tan-1 x. (14) 

The left side of (14), employing the series definitions, becomes 
oo 

' Z (-WitelOn+lix) ~ 6£10n+3 (X) ~ ^Hto+sOO + 6*10«+7 (*) " 6e 1Qn+9 (x)}, 

where em(x) -xm Im. We see that, in order to prove the desired identity (*), it suffices to show: 
-\m'\a'5) + 3wr\a"1) = nil. (15) 

If> = tan"1^- 1), then 
tan(3p) = (3 tan<p - tan3 <p) I (1 - 3 tan2 q>) = (3a2 -1) / (a3 - 3a) = (3a + 2) / (1 - a) = -a 5 . 

Thus, 3<p - n- tan_1(a5) = zr-(^/2-tan-1(a"5))? which is (15). Q.E.D. 

Also solved by R Martin amdH.-J. Seiffert 

SUM Formulae 

H-559 Proposed by K Gauthier, Royal Military College of Canada 
(Vol 38, no. 1, February 2000) 

Let n and q be nonnegative integers and show that: 

„ f v = f 1 H)q+1nLq„. 
a ' *"W- fc412cos(2^/») + (-ir1Z2 ( ? SF2qFqn ' 

n | 

^ 0 . 8 s i n 2 ( 2 ; * / ^ + i ^ 

Z,„ and F„ are Lucas and Fibonacci numbers. 

lq 

"kg, -, wodd, 
FlqLlqFqnLqn ' 

nL„„ 
n even. {FlqLvqFqn ' 
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Solution by K-J. Seiffert, Berlin, Germany 
Let n be a positive integer. Differentiating the known identity [ see I.S. Gradshteyn & I. M. 

Ryzhik, Table of Integrals, Series, and Products, 5th ed., p. 41, eqn. 1.394 (New York: Acad. 
Press, 1994)] 

J\(x2 +l-2xcos{27tk In)) ={xn -If 
k=l 

logarithmically gives 
y 2x - 2 cos(2;zfc / n) = 2nxn~l 

t?lx2 + \-2xcos(2nkln) xn-l ' 

Multiplying by x and then subtracting n from both sides of the resulting equation yields 
^ x2-l xn + l 
> —= -n . 
^ x 2 + l-2xcos(2;z&//2) xn - 1 

It now easily follows that 
y 1 = nxQf + 1) m 
^l2cos(27rk/n)-x-l/x (1 -x2)(xn-1)? V ; 

valid for all real numbers x such that x ^ 0 and x ^ 1. 
Taking x = (a I@)q, q eZ, and q * 0, and using the known Binet forms of the Fibonacci and 

the Lucas numbers, we easily obtain the desired equation of the first part. 
Replacing x by —x in (1) and subtracting the so obtained identity from (1) gives 

^ 2x + 2/x nx [ V + l [ {-x)n + i\ 
^lAco^(27ikln)-{x + llx)2~ l-x2\xn-l ( - x ) w - l / 

Since cos2(2^fcIn) - 1- sin2(2;r&In), after some simple manipulations, we find that 

T(xV=f I = ™* (jf+i c-xy+i) 
nK }' £t0.8sin2(2^//i) + 0.2(x-l/x)2 0.4(x4-l)l,xw-l ( - x ) " - l / 

valid for all real numbers x such that x ^ 0 and x ^ 1. Hence: 

rpf x nx2(x2" + l) .~ . , , rpf v /ix2(xw + l) .~ . 
m ) = — , A w ?„—r if^isodd; Z,m = — , , v

 w / — - if» is even. nX J 0.2(x4-l)(x2w-l) "K J 02(x4-l)(xn-l) 
Taking x = (-al fi)q, q eZ, and q^O, one easily deduces the requested equations of the 

second part. Q.E.D. 
Also solved by P. Bruckman and the proposer, 

A Complex Problem 

H-560 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 38, no. 1, February 2000) 

Define the sequences of Fibonacci and Lucas polynomials by 
F0(x) = 0, Fl(x) = l, Fn+l(x) = xFn(x) + Fn_l(x), neN, 

and 
L0(x) = 2, Ll(x) = x, Ln+1(x) = xLn(x) + Ln_1(x), neN, 

94 [FEB. 



ADVANCED PROBLEMS AND SOLUTIONS 

respectively. Show that, for all complex numbers x and all positive integers n, 
[it/2] 

k=0 
and 

[nil] / _ , x 

Solution by Paul S. Bruckman, Berkeley, CA 
We begin with the following well-known explicit expressions for Fn(x) and Ln(x), namely, 

FH(x) = (aH-n/(<z-fi), LjLx) = a»+fi», « = 0,1,2,..., (1) 
where 

a = a(x) = (x + 6)l2, fi = fi(x) = (x - 0) 12, (2) 
6=0(x) = (x2 + 4)1/2 = a-/3. (3) 

Next, we make the following definitions: 
[n/2] 

Gn{y)=YJr,l(n-kyn_kCk-yk, (4) 

where rCs is the combinatorial symbol commonly known as V choose 5," i.e., (£). 
Then, if C/M(x) and Fw(x) denote the first and second sum expressions, respectively, given in 

the statement of the problem, we obtain 
[n/2] 

U„(x) = d-lYdn/(n-k).„_kCk-xk(a3k-f}3k),or 

U„(x) = e-\Gn(a3x) - G„(J33x)). (5) 
Similarly, 

V„(x) = G„(a3x) + G„(P3x), (6) 

where we also make the following definitions: U0(x) = 0, V0(x) = 2. 
Next, we form the following generating functions: 

R(z,x) = ftU„(xy, S(*,x) = i X ( * y , (7) 

nz,y) = fjG„(y)z". (8) 

We see that 
R(z, x) = (Tl{T(z, xa3) - T(z, xfi3)}, 
S(z, x) = T(z, xa3) + T(z, xfi3). 

We obtain a closed form expression for T{z, y) as follows: 

T(z,y)= fd{n + 2k)l{n + k)n¥kCiz^7ky* 
n,k=0 

= t r,+kCkz"(z2yf + f) £ ^Ct.ftfyf 
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= 0+*V) I n+kCkz\z2y)k = (\+z2y) I-„-iQz"(-zV)fc 

w, Ar=0 n, k=0 

= {\+z2y)^(\-z2yr-l = (\ + z2y)(\-z2yr\\-zl(\-z2y)Y\ 
n=0 

or 
T(z,y) = (l + z2y)/(l-z-z2y). (10) 

Then 
7(z,a3x) = (l + z 2 a 3 x) / ( l -z-z 2 a 3 x) ; (11) 

T(z, 03x) = (1 + z2/?3*) / (1 - z - z2p2x). (12) 

We now note that (1 -za2)( l + zax) -1 + za(x-a)-z2a3x = 1+zafi-z2a3x = 1 - z - z 2 a 3 x . 
Similarly, we find that (1 - zj32)(\ + z/?x) = 1 - z - z2/33x. We may also verify the following: 

T{z,a2z) = -\ + {\-za2yl + {\ + zaxTl; (13) 

T{z,p2z) = -1 + 0-z/?2)-1 +(l+zyfo)-1. (14) 

Then, by expansion in (13) and (14): 

T(z, a3x) = 1 + X ("2" + (-x)"a")z"; 
n=l 

7(z, y93x) = 1 + £ (yf?2" + (-xy/}")z". 

Now, using (9), we see that R(z, x) = 0~l Y?n^zn{a2n -J32" + (-x)"(a" -0")}, or 

R(z,x) = fiz"{F2n + (-x)"Fn}. (15) 
n=0 

Likewise, S(z, x) = 2 + 2 £ , z"{a2n ->02" + (-x)"(a" +/?")}, or 

S(z,x) = 2 + fjz"{L2„ + (-xyLn}. (16) 

Comparing the coefficients of z" in (15) and (16) with those in (7) yields the desired results: 

U„(x) = F2n+(-xyF„, Vn(x) = L2n + (-xyL„, 71 = 1,2,... Q.E.D. (17) 

Note: The Fibonacci polynomials are defined provided x 2 + 4 ^ 0 , i.e., x^+2i. However, we 
may extend the definition of these polynomials to such exceptional values using continuity, i.e., by 
defining F„(2i) = ni"-1, Fn{-2i) = n{-if-1. We also obtain Ln(2i) = 2i", Ln(-2i) = 2{-i)n. With 
such definitions, we find that the results of the problem are indeed true for all complex x, includ-
ing these exceptional values. 
Also solved by A. J. Stam and the proposer. 

•!• • ! • • ! • 
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