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SETS IN WHICH THE PRODUCT OF ANY K ELEMENTS 
INCREASED BY IIS A J^-POWER 

Abdelkrim Kihel 
Departement de Mathematiques et de Statistique, 

Universite de Montreal, Montreal, Quebec, Canada 

Omar Kihel 
Departement de Mathematiques et de Statistique, 

Pav. Vachon, Universite Laval, G1K 7P4, Quebec, Canada 
{Submitted January 1999-Final Revision October 1999) 

Let t be an integer. A /J-set of size n is a set A - {xl7 x2,..., xn) of distinct positive integers 
such that x^+t is a square of an integer whenever i&j. These /J-sets are said to verify 
Diophantus' property. In fact, Diophantus was the first to note that the product of any two 
elements of the set {^, f§, *%-, ^ } increased by 1 is a square of a rational number. We now 
introduce a more general definition. 

Definition 1: Let k > 1 be a positive integer, and let t be an integer. A i ^ - s e t of size n is a set 
A = {x1? x2?..., xn) of distinct positive integers such that n / e / xt +1 is a k^-power of an integer 
for each / c: {1,2,..., n) where card(7) = k. 

A i ^ - s e t A is said to be extendible if there exists an integer a &A such that A u {a} is a 
P/^-set. When k = 2, these sets are exactly the j^-sets. The problem of extending /J-sets is 
very old and dates back to the time of Diophantus (see Dickson [5], vol. II). The first famous 
result in this area is due to Baker and Davenport [3], who showed that the Prset {1, 3,8,120} is 
nonextendible by using Diophantine approximation. Several others have recently made efforts to 
characterize the i^-sets (see references). However, nothing is known about the i ^ - se t s when 
k>3. 

The purpose of this paper is to exhibit a f^(3)-set of size 4, and to show (Theorem 1) that this 
set is nonextendible. We also prove (Theorem 2) that the i ^ - s e t {1,2,3,4} and the P/4)-set 
{1,2,5, 8} are nonextendible. In Theorem 3 we show that any P^-set is finite. 

Example of a Pt
{3)-$et: The set {1,3,4,7} is a P_(

2
3 ŝet of size 4. 

Theorem 1: The Pi23o~set ft 3> 4>7) i s nonextendible. 
Proof: Suppose there exists an integer a such that {1,3,4,7, a) is a P^-set. Then the fol-

lowing system of equations 
[ 3a-20 = u3, 
|21a-20 = v3, (1) 
[ l2a-20 = w3, 

has an integral solution (u, v, w) e N3. One can derive more equations in the system (1) but this 
is not necessary for our proof. The system (1) yields 

u3 + v3 = 2w3 with (u, v, w) GN3. (2) 
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However, it Is well known from the work of Euler and Lagrange (see Dickson [5], vol. II, pp. 
572-73) that all solutions of equation (2) in positive integers are given by u = v = w, which is 
impossible in the system (1). • 

It would be interesting to know if there exists any P/^-set of size n > k > 4. For n = k, the 
problem is easy. In fact, there are two strategies for finding a P/^-set of size k. 

(1) Fix any k positive integers al9 a2,..., ak. Let A be an integer and t = Ak -Tlf=1 at. Then 
the set {al9 a2,...,%} is a P/^-set of size k. For example, let k = 4, ax - 1, a2 = 2, % = 3, a4 = 4, 
and ^ = 2. Then t = -8 and {1,2,3,4} is a P_(

8
4) -set of size 4. 

(2) Fix any t, and choose any integer A such that there exist k different factors ax, a2,..., ak 

nonnecessary primes and Ak -t- Tlf=i^-. Then the set {ah a2, ...,ak} is a 7}^-set of size &. For 
example, let & = 4, r = 1, and A = 2. Then A4 -t = 80 = 1-2-5-8 and {1,2,5, 8} is a P/4)-set of 
size 4. 

Theorem 2: 
(a) The P_(

8
4) -set {1,2,3,4} is nonextendible. 

(b) The ii(4)-set {1,2,5, 8} is nonextendible. 

Proof-
fa) Suppose there exists an integer a such that {1,2,3,4, a} is a P_(g} -set. Then the follow-

ing system of equations 
" 6a -8 = x4, 

8 a - 8 = / , 
12a-8 = z4, V j 

|24a-8 = w4, 

has an integral solution (x, >>, z, w) G N4. A congruence mod 16 shows that this is impossible. 
(b) Suppose there exists an integer a such that {1,2,5,8, a) is a P/4) -set. Then the following 

system of equations 
[l0a + l = x4, 
Il6a + 1 = / , (4) 
40a + l = z4, w 

|80a + l = w4, 
has an integral solution (x, y, z, w) G (N*)4. The system (4) yields 

w4 +1 = 2z4 with (z, w) G (N*)2. (5) 

But it is well known (see [13], pp. 17-18) that all solutions of (5) are given by w = z = 1, and this 
gives a = 0. • 

Theorem 3: Any i ^ - s e t is finite. 

Proof: Let {al9..., %, % b N} be a P/^-set. Let a = axa2 ...akakH, 

a = — - , p = , and r=-
axa2' ^ a ^ ' ' a2a3 

Then there exist integers x, >>, and z such that 
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aN + t = xk, f3N + t^yk, and yN + t = zk. 

Hence, we obtain a superelliptic curve 

(aN + i){fiN + t)tyN + t) = wk 

(for k = 2,3, this is an elliptic curve), and from Theorems 6.1 and 6.2 in [15] it follows that 
N < C for some computable number C depending only on k, a,J3,y, and t. D 
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DIVERGENT RATS SEQUENCES 

Steven Shattuek and Curtis Cooper 
Department of Mathematics, Central Missouri State University, Warrensburg, MO 64093 

(Submitted January 1999-Final Revision May 1999) 

1. INTRODUCTION 

In 1990 John Conway invented a digital game called RATS [1]. RATS is an acronym for 
Reverse, Add, Then Sort. A game of RATS produces a sequence of positive integers. Each posi-
tive integer in the sequence has its digits arranged in nondecreasing order. To play a "game" of 
RATS, we take a positive integer whose digits are arranged in nondecreasing order, Reverse the 
digits, Add the reversed digits to the number, delete the zero digits in the sum, and Then Sort the 
remaining digits of the sum in nondecreasing order. The resulting number is the next number in 
the sequence. 

For example, if we begin a game of RATS with 3, assuming base 10, the RATS sequence is 
3, 6, 12, 33, 66, 123, 444, 888, 1677, 3489, 12333, 44556, 
111, 222, 444, 888, 1677, 3489, 12333, 44556, ..., 

which exhibits a cycle of length 8 and least member 111. 
In [5], Curt McMullen gave a list of base 10 RATS cycles he had discovered. Computer 

searches were done by Curtis Cooper and Robert E. Kennedy (see [2] and [3]) to find more base 
10 cycles. A list of these cycles and the search techniques used can be found in the [2] and [3]. 

We also have sequences that diverge. The most fundamental one, in base 10, starts with 1. 
1, 2, 4, 8, 16, 77, 145, 668, 1345, 6677, 13444, 55778, 133345, 666677, 1333444, 
5567777, 12333445, 66666677, 133333444, 556667777, 1233334444, 5566667777, ... . 

Notice that in each successive number, the number of 3's and 6's both increase by 1. This is the 
mark of a divergent sequence. This sequence, in particular, is known as Conway's Divergent 
Sequence. 

Due to the size and repetitive nature of the digits in the RATS game, we will use superscripts 
to denote repeated digits in a number. For example, 11122223344444, will be represented as 
13243245. Using this notation, we can give the closed form of Conway's Divergent Sequence. 

Conway fs Divergent Sequence: Let m > 2. Then 

12 3m44, 526w74 

is a length 2 divergent sequence in base 10. Here, length 2 means that the sequence "comes back 
to itself" after the second iteration. 

This paper will emphasize divergent sequences for bases other than 10. Some preliminary 
work has already been done for bases 19, 37, and 50 by McMullen [5]. In bases larger than 10, 
the digits bigger than 10 will be denoted with parentheses around them. 

Lemma 1: Let m > 19. Then 
12 33 44 512 6m 740, 82 92 (10)6 (11)8 (12)w+5 (13)38 

is a length 2 divergent sequence in base 19. 
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Lemma 2: Let m > 1257. Then 
12 33 44 512 616 748 864 9192 (10)256 (11)768 (12)m (13)2616, 
(14)2 (15)2 (16)6 (17)8 (18)24 (19)32 (20)96 (21)128 (22)384 (23)512 (24)w+285 (25)2502 

is a length 2 divergent sequence in base 37. 
Cooper and Gentges [4] found a divergent sequence in base 55. 

Lemma 3: Let m> 80099. Then 

12 33 44 512 616 748 864 9192 (10)256 (11)768 (12)1024 (13)3072 

(14)4096 (15)12288 (16)16384 (17)49152 ^ g y * (19)167480? 

(20)2 (21)2 (22)6 (23)8 (24)24 (25)32 (26)96 (27)128 (28)384 (29)512 

(30)1536 (31)2048 (32)6144 (33)8192 (34)24576 (35)32768 (36)m+18205 (37)160198 

is a length 2 divergent sequence in base 55. 

Finally, Cooper and Gentges [4] found a closed form for the family of divergent sequences in 
bases 18« + 1, n>\. 

Theorem 4: Let wbea large positive integer and let 18w + 1 be the base, for n > 1. Then 

12 33 44 512 616 748 864...(6nT(6n + \ f ^ n - ^ \ 

(6n + 2)2(6n + 3)2(6n + 4)6(6n + 5f{6n + 6)24(6w + lf2(6n + S)96(6n + 9)128 

(l2n)mH5'64"+40)n2(l2n + i)(22*64n-40)/36 

is a length 2 divergent sequence. 

All of these divergent sequences have been of length 2. This paper will examine divergent 
RATS sequences of length t>2. First, we will show other divergent RATS sequences of length 
2. Next, we will show explicit divergent RATS sequences of lengths 3, 4, 5, and 6. In addition, 
we will prove that there are arbitrarily long divergent RATS sequences. 

2. DIVERGENT RATS SEQUENCES OF LENGTH 2 

Divergent sequences consisting of two elements were found for bases 28, 46, and 64. This 
led to finding a closed form for divergent sequences of length 2 in base 18/1 + 10, where n > 1. 

Lemma 5: Let m > 191. Then 
12 33 44 512 616 748 864 9m (10)312, 
(11)2 (12)2 (13)6 (14)8 (15)24 (16)32 (17)96 (18)m"35 (19)326 

is a length 2 divergent sequence in base 28. 

The interested reader can obtain the proof from the authors. 
By finding similar patterns for bases 46 and 64, we were led to the following closed form for 

a length 2 divergent RATS sequence in base 18ra + 10, where n e Z+. 
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Theorem 6: Let m be a large positive Integer. Then 
1 2 33 4 4 512 616 ... (6/1 + l)(3'64")/4(6w + 2)64« ( 6 / | + 3 ) „ ( & I + 4)(44.64"-8)/9? 

(6/i + 5)2(6/i + 6)2(6/i + 7)6(6/i + 8)8(6/i + 9)24(6/i +10)32 

... (12/i + 6)^5-64"-5)/9(12/i + 7)(46'64W-10)/9 

is a length 2 divergent sequence in base 18/1 + 10, w > 1. 

Again, the interested reader can obtain the proof from the authors. 

3. DIVERGENT RATS SEQUENCES 
OF LENGTH 3, 45 59 AND 6 

In this section, we set out to find divergent RATS sequences of length 3 and longer in dif-
ferent bases. McMullen [5] has discovered the following divergent sequence in base 50. The 
interested reader can obtain the proof from the authors. 

Lemma?: Let/w>55. Then 

1 3 47 68 T 840, 92 (11)2 (12)14 (14)w"7 (15)46, 
(24)4 (26)4 (27)28 (28)m"35 (29)56 

is a length 3 divergent sequence in base 50. 
Using the same proof technique as above, the following two lemmas can be proved. 

Lemma 8: Let m>2591. Then 

1 3 47 68 756 964 (10)448 (12)512 (13)3584 (14)w (15)7272, 
(16)2 (18)2 (19)14 (21)16 (22)112 (24)128 (25)896 (27)1024 (28)w+4577 (29)5182, 
(45)4 ( 4 ? ) 4 ( 4 8 ) 2 8 ( 5 Q ) 3 2 ( 5 1)224 ( 5 3 ) 2 5 6 ( 5 4 ) 1792 (56)m+3637 ( 5 7 ) 5976 

is a length 3 divergent sequence In base 99. 

Lemma 9: Let m> 797131. Then 

13 4768756964(10)448(12)512 

(13)3584 (15)4096 (16)28672 (18)32768 (19)229376 (2 l)m (22)765032, 
(23)2 (25)2 (26)14 (28)16 (29)112 (31)128 (32)896 (34)1024 

(35)7168 (37)8192 (38)57344 (40)65536 (41)458752 (42)w-465439 (43)930878
5 

(66)4 (68)4 (69)28 (71)32 (72)224 (74)256 (75)1792 (77)2048 

/7g\14336 /OQ\16384 /o i \ l 14688 /oo\131072 /g4\w+120373 /or\663384 

Is a length 3 divergent sequence in base 148. 

Searching next for a base with a length 4 divergent sequence, we found the following number 
in base 226. The proof of this lemma is similar to the previous proofs. 
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Lemma 10: Let m > 8683. Then 

14 515 816 9240 (12)256 (13)3840 (15)M (16)10176, 

(17)2 (20)2 (21)30 (24)32 (25)480 (28)512 (29)7680 (30)m~5807 (31)11614, 

(48)4 (51)4 (52)60 (55)64 (56)960 (59)1024 (60)w+6677 (6I)5752, 

(109)8 (112)8 (113)120 (116)128 (117)1920 (120r+5089 (121)7272 

is a length 4 divergent sequence in base 226. 

Searching next for a base with a length 5 divergent sequence we found the following number 
in base 962. 

Lemma 11: Let m> 1040187391. Then 

15 631 (10)32 (11)992 (15)1024 (16)31744 (20)32768 

(2f)1015808 (25V048576 f26)32505856 (30Y53554432 (3 l)m (32)213407584 

(33)2 (37)2 (38)62 (42)64 (43)1984 (47)2048 (48)63488 (52)65536 

/ ro\2031616 /^^\2097152 /rg\65011712 z ^ ^ - 7 8 0 1 0 7 4 5 5 / 6 3 ^ 2 9 0 4 3 2 6 3 8 

(96)4 (100)4 (101)124 (105)128 (106)3968 (110)4096 (111)126976 (115)131072 

(116'i4063232 fl'20"i4194304 (121V30023424 (i24)m-299266427 (\ 25^42317944 

(221)8 (225)8 (226)248 (230)256 (231)7936 (23 5)8192 (236)253952 (240)262144 

/ 9^ i \8126464 /2^ r \8388608 /9^^\260046848 ^Aft)™-603037029 f 2 4 9 ) 6 0 7 5 4 1 2 2 4 

(470)16 (474)16 (475)496 (479)512 (480)15872 (484)16384 (485)507904 (489)524288 

6490V6252928 (494)16117216 (495)520093696 (496)566516434 (497)w-933483599 (49g\66os93i2o 

is a length 5 divergent sequence in base 962. 

Lemma 12: Let m be a large positive integer. Then 

1 6 7 6 3 (12)64 (13)4032 (18)4096 (19)258048 (24)262144 

f25V6515072 f30V6777216ni)10569M608(36V07374I824f37)67645734912 

T 4 2 ) 6 8 7 1 9 4 7 6 7 3 6 C 4 3 ) 4 3 2 9 3 2 7 0 3 4 3 6 8 /4gY*398046511104 /4Q\277076930199552 

/^4\281474976710656 ,c^17732923532771328 / ^ Q \ 18014398509481984 

/ ^ i \ l 134907106097364992 ({ftY* /64)2472288970952097408 

is one of the six numbers in a length 6 divergent sequence in base 3970. 

4. ARBITRARILY LONG DIVERGENT RATS SEQUENCES 

The arbitrarily long divergent RATS sequences will follow the patterns of the divergent 
RATS sequences we have seen in the previous chapters. We will come as close to explicitly 
constructing divergent RATS sequences as possible. We will state the base of operation, the form 
of the smallest element in the divergent RATS sequence, and the exponents (repetition factors) of 
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each of the elements in the smallest element in the divergent sequence. The only part that will be 
left to the imagination is one of the exponents, which is a component solution to a particular linear 
system. 

The use of primes and pseudoprimes in the following came about by doing extensive trials on 
numerous different lengths and noticing a pattern for all lengths that were prime or pseudoprime. 
This pattern is best described as follows: Divergent sequences of length t, where t is prime or 
pseudoprime, have three consecutive integers at the end of the first term of the sequence. After 
one iteration of RATS is complete, there are only two consecutive integers at the end and the 
prior number is t - 1 smaller than the first consecutive integer. This "gap" shrinks by one at each 
successive iteration until in the (t + l)st iteration; the gap closes and we return to three consecu-
tive integers at the end. Then this pattern begins again. Other patterns may exist for lengths that 
are not prime or pseudoprime. 

Let t be a prime or a pseudoprime in base 2. A pseudoprime in base 2 [7] is a composite 
number n such that 

2n = 2 (mod n). 
The smallest pseudoprime in base 2 (psp) is 341. Since t is either a prime or a psp, it follows that 

2 ' s 2 (mod t). 
The preceding considerations lead to Theorem 13. 

Theorem 13: Let m be a large positive integer and t be a prime or a pseudoprime in base 2. Let 

a, = 1 +1 + (2r -1) + 2f + • • • + (22'"2"f - 22t-2~2t) + (22/"2"0 
a2=2(ai-22t-^) 
a3 = 2a2 

at = 2at_x 

and let 

V*fV 
be the solution to 

(2 
0 
0 
0 

l-l 

-1 
2 
0 
0 

0 

0 
-1 
2 
0 

0 

0 • 
0 • 

-1 • 
2 • 

0 • 

•• 0] 
•• 0 
•• 0 
.. o 

•• v 

IV 
X2 

h 

\XtJ 

(2al 
2a2 
2a, 

K2atJ 

Then the number 

lt{t + \f-\2tf' (2'-l-t)2 ~2 (2t-2f (2r-l)m(2f) m(nt\X\ 

is the start of a divergent RATS sequence of length t in base (2r -1)2 -h 1. 
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5. QUESTIONS 

As we continue to study the game of EATS, we are led to many questions. 
First of all, in the first section, the exponent on the next to last number in the sequence for the 

length 2 divergent sequence in base 19 is 19, the exponent on the next to last number in the 
sequence for the length 2 divergent sequence in base 37 is 1257, and the exponent on the next to 
last number in the sequence for the length 2 divergent sequence in base 55 was 80099. Is there a 
pattern to these exponents? Can an explicit formula be found for these exponents? What about 
these exponents for divergent sequences of other lengths or in other bases? 

Combining Theorem 6 and Lemma 12 gives the following result. That is, in base 3970, there 
are two different divergent RATS sequences of different lengths, one of length 2 and one of 
length 6. Can we find other bases with two or more divergent RATS sequences of different 
lengths? 

Theorem 13 proved the existence of length t divergent RATS sequences in base (2* -1)2 +1, 
where t is a prime or psp. What about the case when t is not a prime and is not a psp? 

John Conway has a simple sounding yet tremendously hard conjecture based on his RATS 
game in base 10. So far, every positive integer with digits in nondecreasing order (up to 15 
digits) which starts a RATS game either cycles or enters Conway's Divergent RATS Sequence. 
Conway conjectures that this is true for every positive integer. This is still an open problem. 

Finally we conjecture that there is only one divergent sequence of length t for each base. 
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1. INTRODUCTION 

Integer representations by forms are sources of a series of very interesting Diophantine equa-
tions. For instance, the cubic form x3 +y3+z3 represents 1 and 2 in an infinite number of ways, 
whereas only two representations (1,1,1) and (4,4, -5) are known for the number 3 and it is 
unknown whether there are other representations. Number 4 has no representations, as was 
proved using congruential arguments. But, in general, we do not know a definitive criterion for 
testing if a number is representable as a sum of three cubes, nor a method for finding such a 
representation (see [12]). For the quadratic forms, the situation is different; Gauss developed his 
theory of quadratic forms [7] and solved the related integer representation problem. In particular, 
quadratic forms, computed as first derived sequences using the Simson determinant, are invariant 
for some second-order linear recurrent sequence. Therefore, each representable integer admits an 
infinite number of representations deduced from the recurrent sequence (see [17], [6]). 

In this paper we discuss integer representations by a cubic form associated with a third-order 
recurrence known as the Tribonacci recurrence [9]. The technique of derived sequences is used 
to define an invariant cubic form, computed as second derived sequences [5] of a third-order 
linear recurrent sequence. Therefore, an infinite number of representations is produced whenever 
a representation exists. Before stating the problem, let us briefly review the properties of a third-
order linear recurrent sequence {TQ, Tl9T2,...} defined by the recurrence 

Tn+3 = pTn+2 + qTn+l +rTn, p,q,r e Z, (1) 
over Z, the ring of rational integers, with initial integer values T2 =c, Tx=b, and T0=a. The 
characteristic polynomial of recurrence (1) is A(x) = x3 - px2 -qx-r, and expressions that allow 
us to directly compute Tn are 

' Aan + B@n + Cr\ 
(A + Bn)a" + Cr\ (2) 
(A + Bn + Cn2)an, 

T = 

according to whether A(x) has three simple roots a, J3,y,& double root a = /? and y, or a triple 
root a = P = y. The second derived sequence T}2) (see [5], Vol. I, p. 410) of a third-order recur-
rent sequence is defined by 

T ( 2 ) _ 

The development of this determinant, using the recurrence (1) to eliminate Tn+3 and Tn+4> yields a 
cubic forai in three variables, T„, Tn+l, and Tn+2: 

T 
*n+\ 

*n+2 

*n+i 

^n+2 

*n+3 

*n+2 

^7+3 

"^7+4 
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-Ty -(pq+r)Tlx - T*+2 + (3r-pq)T„T„+1T„+2 -2qrTn
2Tn+1 -prT„2T„+2 

-(pr + q2)TX+x + qTX+2 +(S~ P2Kl,Tn+2 + 2pTn+lT2
+2. 

Whereas a closed-form expression for the sequence T^ as a function of n is obtained using (2) 
before expanding the determinant: 

-r»ABCl(a-{3)(p-y)(r-a)]\ 
T™ = \ -rnB2C[(a - yfa]2, (4) 

-r"8CV\ 

according to the three situations of simple, double, or triple roots. 
From expression (4) we can conclude that, whatever may be the root multiplicity of A(x), 

T^ satisfies the first-order recurrence T^ = rT®\. From the same equation (4) we can see that 
the cubic form (3) is an invariant for the sequence Tn if and only if r - 1. Rewriting expression (3) 
with r - 1, and substituting the variables x, y9 and z for Tn9 Tn+l9 and Tn+2, respectively, we obtain 
the invariant cubic form % (x, y, z): 

-x3 - y3(pq +1) - z3 + xyz(3 - pq) - Iqo^y - px*z -(p + q2) xy2 + qxz2 + (q-p2) zy2 + 2pyz2, (5) 

The integer representation problem consists of finding all triples (x0, y0, z0) e Z3 that are 
solutions of the Diophantine equation <€(% yQ, z0) = m Vw e Z. If a triple (x0, y09 zQ) exists, it is 
called a representation of m and c%(x9y9z) is said to represent m. Otherwise, it is said that 
^(x, y9 z) does not represent m. From the invariance of %{x9 y, z) it is evident that, using a triple 
(x0,yQ,z0) as an initial condition in the recurrence (1), we get an infinite number of repre-
sentations for m. 

When p = q = r = 1, expression (1) is known as the Tribonacci recurrence, and the sequences 
with initial conditions T2 = l, TJ = 1, T0 = Q, and T2=3, 7[ = 1 TQ = 3 are called the Tribonacci 
sequence Kn and the generalized Lucas sequence Sn, respectively (see [9]). 

In this paper we investigate the properties of the Tribonacci cubic form 2T(x, y, z)9 which we 
define as the opposite of the expression obtained by setting p = q = 1 in (5), namely, 

2T(x, y9 z) - x3 + 2y3 +z3- 2xyz + 2yx2 +zx2 + 2xy2 - xz2 - lyz2. (6) 

The related representation problem is fully solved. With this aim, the paper is organized as fol-
lows: Section 2 collects the main properties of the Tribonacci recurrence and a related ring that 
we will call the Tribonacci ring. Section 3 studies the Tribonacci cubic form; Section 4 solves the 
integer representation problem for the Tribonacci cubic form; Section 5 comments on related and 
open problems. 

2. THE TRIBONACCI RECURRENCE AND CUBIC MINGS 

Let ®(x) = x3 - x2 - x - 1 denote the characteristic polynomial, called Tribonacci polynomial, 
of the Tribonacci recurrence. The polynomial 0(x) is irreducible over the rational field Q with 
Galois group ^ 0 isomorphic to £f3, the symmetric group on three elements. Let us denote by r 
the real root and with rx and r2 the complex conjugate roots of 0(x). These roots, expressed by 
means of the Tartaglia-Lagrange formulas, are 
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r = l [ l + | l 9 + 3V33+^19-3V33]3 

^ = ̂ 1 + ̂ 1 9 + 3^33+£?2 #19-3^33] , 

T2 = j [ l + 6)2^19 + 3V33+^^/l9-3v^3"]? 

where OD = ~l
2 *s a primitive cube root of unity. 

Let Q[r] denote a cubic field generated by the real root r of the Tribonacci polynomial. The 
field Q[co, T] of complete reducibility for @(x) is obtained from Q[r] by the adjunction of m. 
Using (2) and the roots of the Tribonacci polynomial, we get the following explicit expressions 
for the Tribonacci and the generalized Lucas sequence, respectively: 

yJl+l „M+1 -w+1 

K=- -+- -+-(T - T^T - T2) (TX - T){tl - T2) (T2 - T)(T2 - TX) ' 

Notice that Sn is the w-power symmetric function of r, r1? and r2. 
In a ring, the solution of the representation problem for decomposable forms is based on ring 

factoring properties [1]. In the case of the Tribonacci cubic form, the solution depends on the 
integral ring of Q[r] that we will call the Tribonacci ring. 

2A The Tribonacci Ring 
In this section we will prove two main properties of the integral ring of Q[T] : 
i) the ring of integers in Q[r] is Z[r], the extension of Z by the adjunction of r; 

ii) Z[r] is a principal ideal domain (PDO). 
Let us recall that the norm in Q[r] is defined as 

Nr(a + bT + CT2) = (a + bT + CT2)(a + bTl+cr'l)(a+bT2+CTl) 
= a3+b3 + c3-4abc-c2(h+a)+h2(c-a)+a2(3c + bX 

(7) 

where the product expansion turns out to be an irreducible cubic form ([1], p. 80) over Z. 
A direct calculation shows that the basis discriminant is D[l, r, r2] = -44. Since the norm of 

T is unity, i.e., Nr(r) = T-T1-T2 = 1, then T is a unit, and the triple {1, r, r2}, hereinafter called 
polynomial basis, is an integral basis for Q[r]. 

Theorem 1: The triple {1, r, r2} is an integral basis for the integer ring of Q[r]. 

Proof: Let us consider an integral basis {o)x, m2, a)3} for the ring of integers in Q[r]. Since 
T is an integer, then a 3 x 3 matrix C - (chj) with chj e Z exists such that 

1 = CnO)l + Cl20)2 + ^ i 3 ^ 3 ? 

T = c21a)1+c22a)2+c23w3, (8) 
r 2 = i : C31^1+ C32^2+ C33^3-

The determinant det(C) is an integer, and (see [14], p. 67) we have 

D[l, r, T2} - det(C)2D[a)h m2, w3] = -22 • 11; 
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hence, possible values for det(C) are ±1 and ±2. Let us first observe that it is sufficient to 
consider positive values for det(C), since negative values only correspond to a different ordering 
of the basis elements. Let Cjh e Z denote the cofactor of chj. If det(C)= 1, then, inverting (8), 
we have 

0)2=C2l'l + C22T + C23T2, (9) 
^^C^'l + C^T + C^T2, 

and {1, r, r2} is evidently an integral basis for Q[r]. 
If det(C) = 2, then, inverting (8), we obtain 

/si - CH'I + CUT + CJST 
0)1 ~ 2 ' 
^2 = Qi±t^I+Q3^? ( 1 0 ) 

/>i _ Q r ^ + Q 2 r + Q 3 r 
0)3" 2 5 

where at least one of the coefficients Cjh is an odd number, otherwise det(C-1) is an integer, 
contrary to the assumption that det(C_1) = 112. 

To demonstrate that det(C) = 2 is not possible, let us compute the norm Nr(6)j) = ±Q, 
where fi is the cubic form 

q,+q2+c% - 4cjlLcj2cjZ - q3(cJ2+cyl)+q2(cJ3 - cn)+q^q,+cj2). 
Since Nr(o)j) is an integer, fi must be a multiple of 8, which will turn out to be impossible unless 
all Cjh are even, a case already excluded. In fact, taking the congruence modulo 2 of the expres-
sion between square brackets, we find the condition CjX + Cj2 + Cj3 = 0, j = 1,2,3, where, for at 
least one j , one addend is even and two addends are odd. For instance, let CjX = 2a, CJ2 =26 + 1, 
and CJ3 = 2c + l be substituted in the above bracketed expression, then, taking the congruence 
modulo 4 of the resulting expression, we have 

(2b +1)3 + (2c +1)3 - (2c +1)2(26 +1 + 2a) + (2b + l)2(2c +1 - 2a) = 2 mod 4. 

This result shows that O is twice an odd number; hence, it cannot be a multiple of 8. The 
other two cases, CjX = 2a + l, Cj2 = 2b, Cj3 = 2c + l and CjX = 2a + l, Cj2 = 26 + 1, CJ3 = 2c, respec-
tively, yield the same conclusion. Therefore, det(C) = 2 is not possible. Thus, the ring of integers 
in Q[r] is the integral extension Z[r], and any integer in Q[T] is of the form a + hr + cr2, with 
a,b,c G Z . • 

It follows from the above proposition that the field discriminant is A^TJ/Q = -44. Moreover, 
we have already observed that Nr(r) = 1. Since @(x) has one real root and two complex roots, 
Dirichlet's theorem ([1], p. 112) allows us to conclude that the multiplicative group U[r] of the 
units in Z[r] is an Abelian group generated by -1 and r. In other terms, U[r] = C2 x C^, where 
C2 = {1, -1} and Coo is a cyclic group of infinite order isomorphic to the additive group of Z. 

We end this section by showing that Z[r] is a principal ideal domain (PID), consequently, 
Z[r] is a unique factorization domain. For this purpose, let us recall three basic concepts: 
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• In Q[r], a notion of ideal equivalence is introduced by defining two ideals Yx and T2 as 
equivalent if a rational number u eQ exists such that V{ = uY2> 

• Given a nonzero ideal 3S of a ring R, we call the number card (R/28) (the cardinality of 
the quotient R/S8) the norm of 2S and denote it by Nr(9&) (see [15], p. 52). 

• Z[T] is the only ideal with norm 1 in Q[r]. 

Theorem 2: The ring Z[r] is a principal ideal domain. 

Proof: The ring Z[r] is a Dedekind ring; hence, it is integrally closed and, by Corollary 1 on 
page 58 of [15], every ideal class contains an integral ideal 28 such that 

Nr(») < f£)4J-44|1 / 2< 1.877 <2, 

and this means that Z[r] belongs to every ideal class, so that in Z[r] every ideal is principal (see 
[l],p.231). D 

Remark 1: Dedekind gave a pictorial description of an ideal number in his masterful survey paper 
on the theory of algebraic integers [4]. Ideal numbers were introduced by Dirichlet and Kummer 
in order to recover unique factorization in algebraic number fields. A "true" ideal number "is 
never defined in its own right, but only as a divisor of actual number co" ([4], p. 94) in the ring. 
If the unique factorization holds in the ring of integers of an algebraic number field, then no ideal 
number exists and all ideals belong to a single equivalence class. Whereas, if unique factorization 
does not hold true, then a "true" ideal number of Kummer occurs. "True" ideal numbers produce 
different classes of ideals in the algebraic number field, and these classes cannot contain the inte-
gral ring as an element. 

3. THE TRIBONACCI CUBIC FORM 

We defined the Tribonacci cubic form 2T(x, y9 z) as having a positive x3 coefficient. This 
assumption is not restrictive, since a sign change of the three variables corresponds to a sign 
change of the,form, that is, 

°r(-x,-y9-z) = -°r(x9y,z). (11) 

The transformation (11) belongs to a set of variable substitutions that specify the equivalence of 
forms. This concept, together with the notions of reducibility and decomposability of forms, is 
elemental to classify 2T(x, yy z). Let us recall, for the sake of reference, their definitions from [1]. 

Definition 1: Let all cubic forms considered have coefficients in Z: 
i) Two cubic forms %'{yx, y2, y3) and %(xh x2, x3) are called equivalent if there is a non-

singular linear change of variables which takes one form to the other. The transforma-
tion is characterized by a matrix with integer entries and its determinant is ±1. 

ii) A cubic form is said to be irreducible over Q if it cannot be written as a product of a 
linear form and a quadratic form with coefficients in Q. 

Hi) A cubic form is said to be decomposable over Q if it can be written as a product of 
linear forms with coefficients in some finite algebraic extension of Q; it is called non-
decomposable otherwise. 
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The above definition has its nearly direct consequence in the following facts: 
1. Equivalence of forms is an equivalence relation. 
2. The variable transformation is invertible, and the matrix of the inverse transformation has 

integer coefficients. 
3. Equivalent forms represent the same set of integers. 
4. Any cubic form is always equivalent to a form with at most eight nonzero coefficients. 
5. Reducible cubic forms with integer coefficients are reducible over Z. 
6. Cubic forms with integer coefficients, which are decomposable in a finite algebraic 

extension 21 of Q, are decomposable in the integral ring of 2,. 

Proposition 1: The Tribonacci cubic form ?T(x,y,z) is irreducible in Q, decomposable in 
Q[T,<»] and equivalent to a form %(t, u, v) with eight nonzero coefficients. 

Proof: The equivalent form %(t,u,v) with eight nonzero coefficients, 

u3 + 4v3 - It3 - 2tuv + 9ut2 + 2vt2 - Stu2 - 4uv2, (12) 
is obtained performing on 2T(x, y9 z) the variable substitution 

(x = -t + v9 

[z = -2t + v + u. 

Irreducibility is easily proved by setting y = 0 and z--\ to obtain the irreducible polynomial 
2T(x, 0, -1) = x3 - x2 - x - 1 in a single variable. 

Decomposability is proved by factoring 2T(x, y, z) into a linear and a quadratic form over the 
real field Q[r]. The full decomposition into three linear forms over Q[o), T] is obtained by taking 
the conjugate of the linear factor under the Galois group <§©. 

Let us consider the real decomposition 

&(x,y,z) = (x+ay+hz)(x2+cy2+dz2+exy+fyz + gxz); (13) 

therefore, we obtain the following system of nine equations in seven variables from the compari-
son of the coefficients in their expanded version with the coefficients of equal monomials in (6): 

ac = 2 
hd = l 
ag+be + f = -2 
e+a = 2 
c+ae = 2 
af+hc = 0 
ad+bf = -2 
d + hg = -l 
b + g = l 

=> 
=> 
=> 
=> 
=> 
=> '" 
=> 
=> 
=> 

c = 2/a = a2-2a + 2, 
d^b2-b-\ 
f = ~2-a-2b + 2ab, 
e = 2-a, 
a3-2a2+2a~2 = Q, 
f = -b{a2-al 
f = -2(b2-b-l)~a(2b-b2X 
i 3 _ ^ 2 _ A „ l r : : 0 ? 

g=l-b. 
The system is compatible. Moreover, the factorization (13) takes place in Q[r] because we can 
express both b and a in terms of r. Actually, we have b-x and, from the birational substitution 
b = i /(a-1) that transforms the equation Q(b) = b3 -b2 -b-1' = 0 into the equation a3 -2a 2 + 
2a-2 = 0, we get a = (l+b)/b = (l + r)/r. The coefficients of the decomposition (13) are 
explicitly 
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a = I±! = ( r _ l ) r j b = t, C = 2-*- = -T2+2T + 1, d = T2-r-l 
T T+l 

£ = - ^ - U - T 2 + r + 2, f = -r2-l, g=l-r. 

Over the complex extension Qpy, r]9 2T(x, y, z) decomposes Into three linear factors as 

2T(x, y, z) = (zx + (1 + r)y + r ^X^x + (1 + rx)y + T\Z) (T2X + (1 + r2) y + T\Z) . (14) 

It Is evident that the Tribonacci cubic Is a norm in Q[r] with respect to the Integral basis 
{Y, 1 + r, r2}, hereinafter called Tribonacci basis. 

Remark 2: Along with a cubic form, it is interesting to consider the cubic curve in a complex 
projective plane with homogeneous coordinates x, y, and z, defined by the equation %{x, y,z) = 0 
(see [11]). Whenever the cubic curve has a singular point, a translation of the singular point into 
the origin usually yields to a simpler expression of cubic form. However, the curve 9~(x, y,z) = Q 
has no singular point, in fact It is a degenerate curve which is the product of three straight lines 
that are not concurrent In a single point. Since the Tribonacci cubic form cannot be simplified 
using this artifice, It Is likely that the reduced form (12) with eight coefficients is the simplest one 
possible. 

4. THE TRIBONACCI CUBIC AND REPRESENTATION OF INTEGERS 

The Tribonacci cubic gives infinitely many representations for m = -l and m- -44 by Tri-
bonacci and generalized Lucas sequences, respectively, and no representation for m = 3. As a 
consequence of (14), the representation problem for the Tribonacci cubic can be completely 
solved, since Z[r] is a PID. In particular, It Is evident that rational primes, which are still primes 
in Z[r], are not represented by the Tribonacci- cubic. The following theorem folly characterizes 
the rational primes of Z[r]. 

Theorem 8: A prime/? in Z is also prime In Z[r] If and only if ®(x) is irreducible over Zp. 

Proof: First, let us assume that/? Is a rational prime in Z[r], then the set of residues Z[T]P 

modulo/? is a field isomorphic to GF(p3) with basis {1, r, r2}, so 0(x) is Irreducible over Zp. 
Second, let us assume that &(x) is irreducible over Zp; therefore, the Galois field GF(p3) is 

generated by a root of ©(x). If we assume that p factors properly in Z[r], then we have a 
decomposition 

p = (aQ + axr + a2r2) \(al - af + a^ + 3a</i2 - la^) 
+ (-a2 + 2a2 - a0aj - a^Jr 4- (a2 -a\- a^ + a ^ ) ^ ] , 

where aQ.,aha2 e Z. Taking the congruence modulo p, we see that (a0+oir + a2r2), where 
a0, ah a2 e Zp Is a zero divisor in GF(p3), a contradiction. Thus, p is a prime in Z[r]. • 

Remark 3: Theorem 3 Is a reformulation adapted to our cubic field of the well-known fact that 
rational Gaussian primes are primes p(=4k + 3) for which -1 is a quadratic nonresidue; in other 
words, the polynomial x2 +1 is Irreducible over Zp. Whereas, for primes p = 4k + l, since -1 is a 
quadratic residue, the polynomial x2 + l is reducible over Zp. Hence, p factors over Zp], I.e., 
p-x2 + y2 has a solution in rational integers x and y (see [4]). 
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Remark 4: It is easy to check whether an integral polynomial m(x) is irreducible over GF(p) by 
computing the greatest common civisor (GCD), via the Euclidean algorithm, with xp~l - 1 . If the 
GCD is 1, then m(x) is irreducible, otherwise we get the product of its linear irreducible factors, 
possibly m(x) itself. 

It follows from Theorem 3 that 3, 5, 23, 31, 37, ... are primes in Z[r]; therefore, they are not 
represented by the Tribonacci cubic. In the next table, we summarize the representation of the 
rational primes up to 29 that factor in Z[r]. The prime factors are explicitly written in the poly-
nomial basis, whereas the representing triples are given in the Tribonacci basis, which is useful to 
initiate the Tribonacci recurrence generating an infinite number of representations. The rational 
primes 2 and 11 are factors of the discriminant D; hence, they are the only primes that ramify in 
Z[r] (see [15], Theorem 1, p. 58). In particular, they are the only rational primes divisible by a 
square of a prime in Z[r]. 

2 = 
2s = 
11 = 
7 = 

13 = 
17 = 
19 = 
29 = 

(1 + rXl-T)2 

(1 + TY(1-T)2S 

(3 + 4r+4r2)(3-2r)2 

(l + 2 r ) ( - l -6 r + 4r2) 
(3 + r - r 2 ) ( 4 - r + 2r2) 
(-l + 2r2)(-5 + 8 r -2 r 2 ) 
( - 2 - r + 2r2)(-3 + 7 r - l r 2 ) 
(2 + 3r)(l-15r + 9r2) 

=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 

(0,1,0), 
(a,b,c), 
0,3,4), 
0,1,0), 
(-2,3,-1), 
0,-1,2), 
0,-2,2), 
0,2,0). 

Finally, we give conditions that are necessary and sufficient to represent an integer M by the 
Tribonacci form. 

Theorem 4: A rational integer M e Z is represented by the Tribonacci form if and only if its 
prime decomposition is 

M = ±2"\\bf{p^Y{qf\ 
;=1 h=l 

where /? are distinct rational primes that factor in Z[r], and qh are distinct rational primes in 
Z[r] with a,b >0. 

Proof: From the norm product property, it follows that a representation for M is obtained as 
a product of the prime power factor representations. Therefore, the conclusion stems from the 
following facts: 

a) Z[r]isaPID; 
b) let (aj,bj,Cj) be a representation of pj,, then JV(ayr+^(r + l) + cyr2) = /?y; 
c) any cube c^h is represented as (q%h, 0,0), given that 1 is represented as (1,0,0); 
d) neither ql"h+l nor ql"h+2 is represented, because qh is not represented, and they are not 

cube-powers. D 

5. REMARKS AND CONCLUSIONS 

In this paper we have introduced the Tribonacci cubic form 2T(x, y, z) and solved the related 
representation problem. To this end, we have described the Tribonacci ring, namely, the ring of 
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Integers in the real cubic field Q[r] containing the real root r of the Tribonacci polynomial 
x3 -x2 -x-l. In particular, we have computed the integral basis, the discriminant, the group of 
the units, and we have shown that the integral ring Z[r] is a principal ideal ring. 

The integer representation problem for cubic forms, in general, has unpredictable features, 
unlike the one for binary quadratic forms. For instance, the equation z(x2 + y2) = m has a finite 
number N(m) of solutions for every m, depending on the factorization of m, a solution being the 
triple (1,0,/w). In the Introduction we recalled that the cubic x3+y3+z3 despite numerous 
attempts still remains unsolved (see [12]). Unfortunately, this cubic is neither a Tribonacci cubic 
nor does it seem to be equivalent to any invariant cubic of a third-order recurrence. Therefore, in 
this context, cubic forms like the Tribonacci cubic, yielding none or infinitely many representa-
tions for every integer, have a rather regular behavior. 

In conclusion, although Gauss began the study of integer representations by cubic forms, the 
theory is far from complete, unlike the theory of binary quadratic forms, but this is a challenging 
source of beautiful problems. 
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1. INTRODUCTION 

The aim of this paper is to study the main properties of the derivatives B$p(x) and Cjp(x) of 
the Morgan-Voyce polynomials Bn(x) and Cn(x) (e.g., see [8]) described in the next section. 
Here x is an indeterminate and the bracketed superscript symbolizes the first derivative with 
respect to x. As done in previous papers, we shall confine ourselves to considering the case x = l. 
For notational convenience, the terms Bjp(l) and Cjp(l) will be denoted by Rn and Sn, respec-
tively. 

Various papers have dealt with this kind of polynomial pairs. For example, the polynomial 
pairs (Fibonacci, Lucas), (Pell, Pell-Lucas), and (Jacobsthal, Jacobsthal-Lucas) have been studied 
in [1], [2], [3], [4], [9], and [10]. 

The paper is set out as follows. After recalling some background material on the Morgan-
Voyce polynomials, we show first some basic properties of the numbers Rn and Sn the most 
interesting of which are5 perhaps, expressions for sums and differences involving subscript sums 
and differences (see Section 3.3). In Section 4, we evaluate certain finite sums involving Rn and 
Sn. We conclude the paper with some properties of divisibility and the primality of Rn and S„. 

1.1 Some Useful Results for Fibonacci and Lucas Numbers Fn, Ln 

Binet forms are 
F„ = (a"-b")/j5, (1.1) 
L„=a" + b", (1.2) 

where a and h are the roots of the equation t2 -1 - 1 = 0, i.e., 
a = (l + V5)/2, ft = ( l -V§)/2 (soa + ft = l, ab = -\ a~b = <S). (1.3) 

From (1.1)-(1.3), it follows readily that 
(1.4) 
(1.5) 
(1.6) 
(1.7) 

Some relationships among Fibonacci, Lucas, and Morgan-Voyce polynomials that are appli-
cable to the development of our theme include 

xB„(x2) = F2n(x), (1.8) 
C„(x2) = L2n(x). (1.9) 

Fn+2p+Fn-2p 

f'n+lp ~ ^n-2p 

Ln+2p + Ln-2p 

^n+2p ~ ^n~2p : 

= FnL2p> 

= LnF2p> 

~ LnL2p, 

=$mP-
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These occur as (4.1) and (4.3) of [8]. Substituting x = 1 in this pair of relationships yields 
B„ = F2n, (1.8a) 
C„ = L2„, (1.9a) 

where B„:=B„(1),.... 
Background information on the Fibonacci and Lucas numbers may be found in [11]. 

2. BACKGROUND MATERIAL 

Consider the polynomial sequence {Xn(x)} denned by the recurrence 
X„(x) = (x + 2)X„.l(x)-Xn_2(x) (»>2) (2.1) 

with initial conditions 
X0(x) = a0, Xx(x) - ax (a0, ax integers). (2.2) 

Special cases for the Morgan-Voyce polynomials Bn(x) and C„(x) are: 

J(a0, a,) = (0,1) ifXn(x) = B„(x), 
\(a0, a,) = (2,2 + x) i£X„(x) - C„(x)-

It has to be pointed out that, in the very special case x = 0, we have 
Bn(G) = n and Cn(0) = 2\/n. (2.4) 

Combinatorial expressions for the above polynomials are 

C»(x>"t-^l(n+2k~l)xk+x" ("Sl> t8'(3-22)]- (26> 
k=0 n K v. y 

Observe that, if we assume that 0° = 1 (see [5] for some considerations on this assumption), 
then (2.5) and (2.6) hold also for x = 0 [cf. (2.4)]. 

Binet forms are 
5„(x) = («"-/?")/A, (2.7) 
Cn(x) = a" + S", (2.8) 

where the roots a : = a(x), /?: = J3(x) of the characteristic equation t2 - (x + 2)/ +1 = 0 are 

a = (x + 2 + A)/2, /? = (x + 2 - A ) / 2 (2.9) 
so that 

a +/? = x + 2, a/?=l, a-fi = A: = A(x) = ^/x(x + 4). (2.10) 

Clearly, (1.3) contrasted with (2.9) and (2.10) together reveals that a2 = a(l)? b2 =p{\). 
Notice that 

a(D.=£foW * flm^g&^l (2.n) 
dx A dx A 

leading to 
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and 

dx A(x)' 

(2.12) 

(2.13) 

3. SOME ELEMENTARY PROPERTIES OF R„ AND S„ 
3.1 Basics 

From (2.5) and (2.6) we immediately obtain the derivatives 
n- l 

^)w:=^w=IMST+irI ("-0)-
n-l 

n + k 

q?>(x) := ̂ Q ( x ) = "± | ^ ( " + / ^ i y ~ > +nx^ („ > 1). 

(3.1) 

(3.2) 

For example, B?\x) = 3x2 +12x +10 and C ^ x ) = 4x3 + 24x2 + 40x +16. 
When x = l, the following table can be constructed [5^(1): = R„, C^\l): = S„] from (3.1) 

and (3.2). 
TABLE 1. Values of Rn and SH for 0 < n < 10 

n 

K 
sn 

0 1 2 3 4 5 6 

0 0 1 6 25 90 300 

0 1 6 24 84 275 864 

7 8 

954 2939 

2639 7896 

9 10 

8850 26195 

23256 67650 

(3.3) 
(3.4) 

(3.5) 
(3.6) 

Observe that the value of RQ can be obtained by letting x = 1 in (3.1) with the assumption 
that a sum vanishes whenever the upper range indicator is less than the lower one. The value of 
S0 comes from the fact that the initial condition C0(x) = 2 is independent of x. 

Using the Binet forms (2.7) and (2.8) with (2.12) and (2.13), we deduce that 

B£\x) = [nCn{x)-(x + 2)Bn{x)]l A2, 
C^\x) = nBn{x) as in [8, (3.24)], 

whence 
R„ := B$\\) = (nL2„-3F2n)/5 [by (1.8a) and (1.9a)], 
S„:=C„(\) = nF2n [by(1.10a)], 

results which are of subsequent application. 
3.2 Negative Subscripts 

Direct differentiation of B_„(x) = -Bn(x), G_n(x) = C„(x) [8, (5.1), (5.2)] yields 

R-„ = -Rn, (3-7) 
S-„ = SH. (3.8) 

3.3 Sums and Differences Involving Subscript Sums and Differences 
Routine algebraic computation applied to standard Fibonacci and Lucas number knowledge 

[see (1,4)-(l .7)] with (3.5) produces the identities 
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with special cases 

(p = l): 

(p = n): 

Furthermore, with (3.6), 

Rn+p + Rn-p ~ L2pRn + F2nSp> 

Rn+p " Rn-p = ^2/T^p + Flffin > 

whence 

^4+1 + ^7-1 - 3 i ^ +F2n, 

i^+i ~ Ki-i = ^ 2 » = ^ by (3.6). 

^ = L2nRn+nFl = I 2 A + ̂ A -

Sn+p ~ S„_p = nL2„F2p + pFinLip, 

$2n = 2L2„S„. 

4. EVALUATION OF SOME FINITE SUMS FOR i?„ AND &. 

(3.9) 
(3.10) 

(3.11) 
(3.12) 

(3.13) 

(3.14) 
(3.15) 

(3.16) 

As a calculational aid in the ensuing investigations, we need the following identities [1], [7] 
which are valid for arbitrary y\ 

f,ryr=[kyk+2-(k + l)yM+y]/(y-l)\ 
r=Q 

k 

ZfjV = (y+i)fc, 

Proposition 1: 

Proposition 2: 

k 

I 
r=0 

y£Rr = l + (kL2k+l-L2k-3F2k+l)/5. 

k 

I 
r=0 

^Sr = kF2k+l-F2 '2k-

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Proof of Proposition 1: Taking (3.5) into account, rewrite the left-hand side of (4.4) as 
k k 

Z r Z 2 r - 3 X F 2 r 
r=0 r=0 

by (l.i), (1.2) X,Vr+*2'")-^X(«2r-z>2'') 
[r=0 V3 r = 0 J 

= [t t2 j k + 2-(* + l)I2jk+2-3(F2ik+1-l)]/5 by(4.1)withy = a\h2 

= (kL2k+i-L2k-3F2k+l + 5)/5. D 

Identity (4.5) can be proved in a way similar to that for (4.4). 
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Proposition 3: 
(5(k-2)/2(kpk+i _ Wk) (J, e v e n ) j 

{5^y\kLk+1-3Lk) (kodd). r=Q\ J 
(4.6) 

Proposition 4: 
y (H\ - l5ik~2)>2kLk+i (k e v e n)> 
hv)r" l * * - ^ * / ^ (* odd). (4,7) 

To prove Propositions 3 and 4, we need the following lemmas. 

Lemma 1: 

S ' f ' l r ^ <*odd). (48) 

Lemma 2: 

f(k\L -\5k'2kFk+m+1 {keVenX (49) 
hv)rL^ \s^kLk+m+1 (.odd). ( 4 9 ) 

±(*]rF7 J 5 ( " 2 ) / 2 ^ - <*ev»>« (4 10) 
£ 0 W ^ \s^kFk+m+l (kodd). ( 4 1 0 ) 

To prove these three lemmas, use (1.1)-(1.2) along with (4.2)-(4.3) while recalling the key 
relationships a2 +1 = aV5 and A2 +1 = -&V5 deduced from (1.3). 

Proof of Proposition 3 (a sketch): From (3.5), rewrite the left-hand side of (4.6) as 

-3F2r), 

Lemma 3: 

mh' whence the right-hand side of (4.6) can be obtained after some algebraic enterprises involving 
(4.8), and (4.9) with m = 0. D 

With the aid of Lemma 3, Proposition 4 can be proved in a similar way. 

5. SOME DIVISIBILITY PROPERTIES OF RH AND SH 

In this section, the divisibility of Rn and Sn by the first three primes is investigated. To save 
space, only Proposition 7 is proved in detail. A glimpse to the primality of the integers under 
study is caught at the end of the section. 

Proposition 5: (i) Rn is odd iff n = 2(3& ± 1), while (ii) Sn is odd iff n = 6k ± 1. 

Proposition 6: (i) Rn is divisible by 3 iff either n = 3k or n = 6k ± 1, while (ii) Sn is divisible by 3 
iff either n-2k or n = 3k. 

Corollary to Propositions 5 and 6: Both Rn and Sn are divisible by 3 iff they are even. 

Proposition 7: (i) Rn is divisible by 5 iff either n = 5k or n = 5k ± 1, while (ii) Sn is divisible by 5 
iffn = 5k. 
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Proof; The- proof of (ii) is trivial as it is based on (3.6) and the well-known fact that Fn is 
divisible by 5 iff n is. As for (i), from (ii) and (3.12) we can say that 

Rnu s i^_! (mod 5) <=> n = 0 (mod 5). (5.1) 

Further, from the recurrence Rn = 3Rn_l-Rn_2 + F2n_2 [that is readily obtained by calculating at 
x = l the first derivative with respect to x of both sides of (2.1) with X = B9 and using (1.8a)], 
and from the conditions on n for Fn to be divisible by 5, we have that 

Rn+l s 3Rn -Rn_x (mod 5) <̂> n = 0 (mod 5). (5.2) 

From (5. l)-(5.2) we can write 2Rn+l = 3Rn (mod 5) => n = 0 (mod 5), that is, 

Rn+l = -Rn (mod 5) => n = 0 (mod 5). (5.3) 

From (5.3) and (5.1), it remains to prove that 
n = 0 (mod 5) => Rn = 0 (mod 5). (5.4) 

Put n = 5k in (3.5) thus getting 
R5k = kLm-3Fm/5. (5.5) 

On using (2.4)-(2.4/) of [6], we can express Fm 15 (for k even) as 
k/2 

I X (̂ 20r-17 + ̂ 20r-14 + F20r-4 + F20r-7 + F20r-9 + F20r-l l) (5 •6) 

and (for k odd) 
(k-l)/2 

1 1 + X C^0r-7 + ^20r-4 + F20r+6 + ^20r+3 + ^20r+l + ^20r- l ) • ( 5 • 7 ) 
r=l 

For r = 1, expression (5.6) is congruent to 3 modulo 5. Since the repetition period of the Fibo-
nacci sequence reduced modulo 5 is 20, the congruence above holds for all r < k 12. It follows 
that Fm /5 = 3k 12 (mod 5) if k is even. Analogously, it can be seen from (5.7) that Fm /5 = k 
(mod 5) if & is odd. Summarizing, we found that 

(2k (mod 5) (&even), 
3 i w / 5 H (5.8) 

10* [3k (mod 5) (it odd). 
Finally, the inspection of the sequence {kLm} reduced modulo 5 shows that 

(2k (mod 5) (k even), 
10* |3* (mod5) (kodd). v ' 

Identity (5.5) along with congruences (5.8) and (5.9) prove (5.4) and the proposition. D 

5.1 On the Primality of Rn and SH 

Since Sn = 0 (mod w) for n> 1 [see (3.6)], these integers cannot be prime. From Proposi-
tions 5-7, we see that a necessary condition for Rn to be a prime is that n = 2, or 8, or 22, or 28 
(mod 60). By using the function "nextprime" of the software package DERIVE, we found only two 
prime Rn for n < 248, namely, 

i?8 = 2939 and i?68 = 352,536,175,722,757,107,150,131,558,879. 
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6. CONCLUSIONS 
What has been presented in the preceding theory provides us with some feeling for the flow 

of ideas emanating from the initial sources. 
Future directions of related research studies could lead to the investigation of partial deriva-

tive aspects of the Morgan- Voyce polynomials and, perhaps more importantly, to the integration 
sequences associated with these mathematically fertile polynomials. 
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1. INTRODUCTION 

Most students are familiar with representations of integers using various integral bases. In 
[1], George Bergman introduced a system using the irrational base a = ̂ ~-. The number a is of 
course the well-known golden ratio,* often defined as the limit of the sequence {Fn I Fn_x), where 
Fn is the /2th Fibonacci number. Under this system, we can represent any natural number n 
(uniquety) as the sum of nonconsecutive powers of a. This means that, for any natural number n, 
there exists a unique sequence {^}, where ei e {0,1} for all i, such that n-Y^=-ooeial anc* 
eiei+i - 0 f ° r e a °k '• The a-expansion of n is ...e_2e_le0ele2..., where we adopt the convention of 
underlining the zero* coordinate and omitting leading and trailing zeros when convenient. For 
example, 5 = a"4 + a'1 + a3, so the base-a representation of 5 is 10010001. Table 1 shows the a-
expansions of the first 30 natural numbers. Table 2 shows the base 2 representations. 

If we look down any column of the base 2 representations, it is easy to detect the patterns, 
which involve strings of 0s and Is of equal length, so that the ratio of Is to 0s is almost 1. The 
situation for other positive integral bases is analogous. In contrast, the columns in the a-expan-
sions also exhibit patterns, but these are not so easy to detect or describe. The purpose of this 
paper is to explore some of these patterns. For each positive integer n, let Ratio^n) be the ratio 
of the numbers k <n that do have a1 in their a-expansions to those that do not. In other words, 
Ratioi(ri) is the ratio of Is to 0s in the Ith column (i.e., the column corresponding to a1) of the a-
expansions of the integers 1 through n. 

Hart and Sanchis showed in [6] that Ratio0(n) -^ a~2 as n -> QO, thus proving Conjecture 1 
from [2], as well as answering a question posed by Bergman in [1]. In this paper, we generalize 
the techniques used in [6] to derive the behavior of Ratio^n) for all other values of/'. It should 
come as no surprise that a-expansions are closely related to the Fibonacci sequence. Indeed, any 
natural number n can be expressed uniquely as the sum of Fibonacci numbers Fk (here F0 = 0, 
Fl = l, and Fk = Flc_l+Fk_2). This is the well-known Zeckendorf decomposition of n. Grabner et 
a'- ([3], [4]) showed that, for m > log,„ k, the Zeckendorf decomposition of kFm can be produced 
by replacing each a1 in the a-expansion of k with Fm+i. Thus, our results also provide informa-
tion about the occurrence of Fk+i in the Zeckendorf decomposition of kFk. 

* In [5] and [6], the symbol p was used for this quantity; we have decided to change to the more commonly used a: 

2001] 123 



ON THE FREQUENCY OF OCCURRENCE OF a1 IN THE tf-EXPANSIONS OF THE POSITIVE INTEGERS 

TABLE 1. a-Expansions of the Integers 1-30 TABLE 2. Base 2 Expansions 

n 
~T~ 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 

1 0 0 1 

1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
0 1 
0 1 
0 1 
0 1 
0 0 
o o 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
0 1 

1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 

I 
0 
0 
I 
0 
0 
0 
I 
0 
0 
I 
0 
0 
0 
I 
0 
0 
0 
1 
0 
0 
I 
0 
0 
0 
1 
0 
0 
1 
0 

1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 

1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 

1 
1 • 

0 1 
0 1 
0 1 . 
0 1 
0 1 
o o i ! 
o o i ! 
0 0 1 
0 0 1 
1 0 1 
1 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 
0 0 0 1 
1 0 0 1 
1 0 0 1 
0 1 0 1 
0 1 0 1 
0 1 0 1 
0 1 0 1 
0 1 0 1 
0 0 0 0 1 

1 n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 

0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 ! 
0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 
0 0 1 
0 1 1 
1 0 
1 1 
0 0 
0 1 
1 0 1 

Definition LI: For each integer r, define Rr as follows: 
a. R0=a~2, 

b. Rr = Lr;1~} foroddr>0, 

a R=-r=1—-for even r > 0 , aL-\ 

& R, 
aL 

for r < 0, 
'-r+l 

where L0 = 2, Lx=l, and Z +̂1 = Zy + L^ are the Lucas numbers for / >0. Alternatively, Li = 
Fi-i+Fi+v It was shown in [6] that limWH>00 Ratio0(ri) = R0. In this paper we show that, for each 
r*0, l im^^ Ratior{n) = Rr. Note also the interesting fact that, as r -» oo and as r -> -QO, Rr 

approaches the limit R0. Our strategy is to first establish some recursive patterns along each 
column (these are established in Lemma 3.5) which will allow us to obtain precise expressions for 
Ratiot{nk) and Ratio^), where {nk} and {mk} are two subsequences of the natural numbers. 
The limits of these subsequences can then easily be obtained from known limit results about Fibo-
nacci and Lucas numbers. We then show that, as n -» oo? members of the foil sequence Ratiofo) 
must be caught between these two subsequences and hence the foil sequence converges. Our 
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proofs use only combinatorial and algorithmic techniques and do not require any specialized 
number theory background. 

2. DEFINITIONS AND PRELIMINARIES 

We use definitions and notation similar to those used in [5] and [6], In particular, £(n) 
denotes the absolute value of the smallest power of a in the a-expansion of w, and u{ri) denotes 
the largest such power. The following is a restatement of Theorem 1 from [4] in terms of the a-
expansion. 

Theorem 2.1 (Grabmer, Nernes3 Petho, Tichy): For k>l, we have £(n) = u(ri) = 2k whenever 
L2k <n< L2k+l, and we have £(n) = 2k + 2 and u{n) = 2k + l whenever L2k+l <n< L2k+2. 

The following definitions are from [6]. 

Definition 2.2: We define F to be the infinite dimensional vector space over Z given by V = 
{(..., V-i, v0, vh v2,...): vi GZ\/I, with at most finitely many vi nonzero}. For clarity, we under-
line the zero* coordinate. 

Definition 23: Define Fto be the subset of V consisting of all vectors whose entries are in the 
set {0,1} and which have no two consecutive ones. We will call the elements of V totally reduced 
vectors. When convenient, we omit trailing and leading zeros, so for example, 

(...,0,...,0,0,1,0,1,0,1,0?0,...,03...) = (1,0,130,1). 
As in [5], we represent a-expansions by vectors in V, where a one in the j * coordinate represents 

Definition 2.4: We define the function a:N->V so that, when the or-expansion of n is 
£,* _oo efal, a(n) is the vector in V with vt =er 

It follows from Theorem 2.1 that, if L2k<n< L2k+l, we can write 

2fc-2 

i=-2k+2 

and, if L2k+l <n< L2k+2, then we can write 
2 J k - l 

n = a~2k~2+ Y,eiai+a2k+l s o t h a t a(n) = (^^e-2^e-2k+h-^e-h%eh''^e2k-^0^1)- (2) 
i=-2Jc 

Definition 2.5: The function a: V -> N is defined as follows: a((..., v_1? v0, vl9...)) = ZJLoo via*• 

Thus a(a(n)) = n for all natural numbers n. (Note that the definition of a in [5] is in terms 
of Fibonacci numbers, and is not equivalent to the one given here. Specifically, the two functions 
are only guaranteed to be equal when applied to a(n) where n eN.) The following definitions 
are generalizations of definitions in [6]. (The definitions in [6] correspond to the case / = 0.) 

Definition 2.6: We say that n has property 8Py if a1 appears in the a-expansion of n. 

Definition 2.7: For natural numbers n, m: 
a* Onest{n,m]= \{k e N : n <k <m, k has property 3̂ . }|; 
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k Zeros^n,m]=\{k GN :n<k <m, k does not have property 9*. }|; 
n ,- / -j Ones,(n, m] 

c. Ratio, (n, m] - ^—LV1-Jr • 
By abuse of notation, we also define Ratiot{n) = Ratio^O, ri\. We will call a finite sequence 

of Os and Is & pattern. We use patterns to describe values of [a(n)\ for fixed i and a sequence of 
consecutive natural numbers n. Recall that [a(w)]f- = 1 if a1 occurs in the a-expansion of n, and 
that [a(/2)], = 0 otherwise. Thus, for n < m, we can define the pattern 

Patt(n, m] = [a(n + l)\[a{n +2)], • • • [a(m)]r 

Patterns can be concatenated. We will denote the concatenation operation with the operator +, 
but will omit it when convenient. So, for example, for n < m < p, 

PatjQi, p] = Patt{n, m] + Pat^m, p] = Patf(n, mjPat^m, p]. 

In addition, we use the notation Pin to denote the prefix of a pattern P obtained by deleting the 
rightmost n digits. So, for example, 11001/2 = 110. By abuse of notation, if P is a pattern, we 
define Ones(P) and Zeros(P) to be the number of Is and the number of 0s, respectively, appear-
ing in the pattern P. We also define Ratio(P) = Ones(P)/ Zeros(P). We will be using the fol-
lowing known facts about Fibonacci and Lucas numbers: For any h > 0, the sequence F2n+h IF2n is 
decreasing, the sequence F2n+uhIF2n+l is increasing, the sequence L2n+h/L2n is increasing, the 
sequence L2n+l+h/L2n+l is decreasing, and 

Hm(Fn+h/Fn) = a\ (3) 
«-»oo 

\im(Ln+h/L„) = a», (4) 

Fn+hLn+k ~ FnLn+h+k = (~ lTFhLk > ( 5 ) 

Fn+hFn+k ~ FnFn+h+k = (~lTFhFky ( 6 ) 

tFi = FM-h 0) 
7=0 

h 

X Fk+2i = Ffc+2h+l ~ Fk-l > ( 8 ) 

ak + ak+2 = aLM + Lk. (9) 

Formulas (5) and (6) are from [7], page 177, (19b and 20a). The following Lemma will be 
used repeatedly. 

Lemma 2.8: Let a,b,c,d e N, and x,y eR. If f < x and f <y, then f±£.< max{x,y). When 
each < is replaced by >, the result holds with max replaced by min. 

3. SOME USEFUL RESULTS 

In the sequence of a-expansions of the natural numbers, the Lucas numbers play a special 
role. First, note that 

a(L2,) = 102^-1002^1l and a(L2k+l) = (10)*1(01)*. 
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(Readers may derive these formulas themselves, or refer to [2].) In Table 1, compare the expan-
sions found between LA = 7 and L5 -11 with those found between L6 = 18 and 2L5 = 22. The 
two sequences of expansions are identical if we restrict our attention to powers of a between a~3 

and a3. Similar observations can be made, for large enough k, by comparing the expansions of 
the numbers found between L2k_2 and L2k_x, and those between L2k and 2L2k__1: the expansions 
are identical for those powers of a between a~k and ak. It can be proved that this is always the 
case, using an algorithmic technique presented in [5]. In fact, a full recursive pattern in the 
sequence of a-expansions can be established. This was shown in [6], and we merely restate the 
relevant results here. Note that, for n>4, Ln< 2Ln_x < Ln_2 + Ln< Ln+l. Thus, we can partition 
the a-expansions between Ln and Ln+l into three segments: the first from Ln to 2ZW_1, the second 
from 2Lrl_l to Z,„_2 + Zw, and the third from Ln_2 + Ln to Z„+1. As partly indicated above (for 
even ri), the sequence of a-expansions between Ln and 2Ln_l is similar to that between Ln_2 and 
Ln_v In addition, the sequence of a-expansions between 2Ln_x and Ln_2 + Ln is similar to that 
between Ln_3 and Ln_2, and the sequence of a-expansions between Ln_2 + Ln and L„+l is again 
similar to that between Ln_2 and Ln_v The exact ways in which the sequences are similar (or 
dissimilar) vary for each of the three segments, and also vary depending on whether n is even or 
odd. The full result is expressed in the following propositions, and was proved in Lemma 3.8 of 
[6]. 

Proposition 5.1: Let k>2. If Q<m<L2k_2 and a{L2k_x+m) - 0> 0, £_(2£_2)? • • • > e - i ? % eh • • • ? 
^ .3 ,0 ,1) , then: 

°* e-(2k-2)=®' 
0,0,0,1). 

c. a(Ln_x + L2k+l+m) = (1,0,0,0, eH2k_2),..., e_h e±, eu..., e2k_3,0,1,0,1). 
d. a(2L2k+l+m) = (1,0,1,0, e_(2k_2),..., e_h e1,el,..., e2k_3,0,1,0,0,1). 

Proposition 3.2: Let k>2. If §<m<L2k_x and a(L2k+m) = (l,0,e_(2k_2),...,e_i,eo,el,..., 
e2k-2> 0,1), then: 

a. a(L2k+2+m) = (1,0,0,0, e<2k_2), ...,e_x,eA,eh..., e2k_2,0,0,0,1). 
h. a(L2k + L2k+2+m) = (1,0,1,0, e_^k_2y ...,e_x,e^,ex,..., e2k_2, 0,1,0,1). 
c a(2L2k+2+iw) = (1,0,0,1,0,0,e_(2k_2),...,e_heQ,eh...,e2k_2,0,1,0, 0,1). 

From Propositions 3.1 and 3.2, the following may be deduced. 

Corollary 3J: Let&>2. 
a. For L2k+l <n< 2L2k, a(n) begins with 10010 and ends in 0001. 
h For L2k_x + L2k+l <n< L2k+2, a(n) begins with 10000 and ends in 0101. 
a For 2L2k+l = L2k_t + L2k+2 <n<L2k + L2k+2, a(n) begins with 10100 and ends in 01001. 
d For L2k+2 <n<2L2k+h a(n) begins with 1000 and ends in 0001. 
e. For L2k + L2k+2 <n< L2k+3, a{n) begins with 1010 and ends in 0101. 
/ For 2L2k+2 = L2k + L2k+3 <n< L2k+l + L2k+3, a(ri) begins with 100100 and ends in 01001. 
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Definition 3.4: For k > 1, Pk = Patr(Lk_h Lk]. 
From the above propositions, recursive formulas for Pk easily follow. 

Lemma 3.5: Let k > 2. 
a. If-2k + 3<r <2k-2ythm P2k+2 = P2kP2k~lP2k. 
h. lf-2k + 4<r <2k-3, then Pr

2k+l = P2k-lP2k~2P2k-\ 

Proof: Fix k and r as above and define the following maps: 
/ i : [L2k-i + \ L2k -1] -> [Z,2jt+1 +1,2L2k -1], /i(x) = x + L2k; 
J 2 : L^2fc-2> ^2J t - J " ^ P - ^ f c , Ck-l + ^2fc+lL / 2 W ~ X + ^2Jt+li 

/ 3 : l^k-l+ 1> ̂ 2fc ~ 1] ~> [^2Jfc-l+ ^2Jt+l + 1> ̂ 2£+2 " ^L / s ( X ) = X + ^2Jfc+l-

Clearly, these maps are one-to-one and onto. Moreover, by Propositions 3.1 and 3.2, [a(x)]r = 
[a(/(x))] r for any x in the domain of ft, if -2k + 3<r<2k-2. It follows that 

Patr(L2k_h L2k -l] = Patr(L2k+h 2L2k -1], 
Patr(L2k_2 - 1, i2A:-l] - Patr(^^2k ~ \ ^2k-\ + ^2/t+lL 

Patri^k-l' Ck ~ 1] " Patr\^2k-l + ^2£+l> ^2£+2 ~~ ! ] • 

Then 
Patr(L2k_h L2k -1] + Patr(L2k_2 -1, L^.J + Patr(L2k_h L2k -1] 
= PaUL2k+b 2L2k -1] + Patr{2L2k -1, I 2 M + Z2 M] + Patr{L2k_x + Z^+1, Z2^+2 -1]. 

Using the fact that [a(Z,2it)]r = 0 for every &, this simplifies to P2kP2k~lP2k = P2k+2. Simi-
larly, we define the following maps: 

Si: i^2k-2y Ck-i] -* [̂2&> 2Z2fc_j], ^j(x) = x + Z^^ ; 
#2 • iL2k-3 + 1, ^2*-2 - 1] - > E2Z-2^-l + *> ̂ 2Jfc-2 + Z2fc ~ 1], & ( * ) = * + ^ 

& ! t^2ife-2> Ajfc-J ""* t^2fc-2 + ^2Jb ^2Jfc+lL & ( * ) ~ X + Llk • 

Again by Propositions 3.1 and 3.2, these maps are bijections which leave the rth term of the 
a-expansion of x fixed for -2k+ 4 < r < 2k - 3. So, by concatenating the domains and ranges as 
above, we again obtain p2k-ip2k-2p2k-i = p2k+y Q 

4. SOME SPECIAL SUBSEQUENCES OF Matior(n) 

Here we show that, for each r, there exist two subsequences of Ratior(n) that converge to 
Rr. These subsequences are related to the odd and even Lucas numbers. One is increasing and 
the other is decreasing. In Section 5 we show that the sequence Raiior(n) is trapped between 
these two monotone convergent subsequences, and therefore Raiior(n) must also converge to Rr. 

4A Positive Powers of a 
We consider even and odd powers separately. For even powers, let r = 2/ where / > 1; for 

odd powers, let r = 21 +1 where / > 0. Using the recursive formulas derived in the previous sec-
tion, it is straightforward to obtain closed formulas for Ones{Pk). 
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Lemma 4.1: For k>2, 
fo. 

OnesiPfo = • 1, 
k<2l, 
k = 2l, 

2̂M> k — 2l + l, 
Oms(P2

k
M) = 

0, k<2l+l, 
L2l~\, k = 2l+2, 

l(L2l-l)Fk_2l_3, k>2I + 3. 

Proof: The proof is by induction on k. The base cases are somewhat numerous but straight-
forward. We use Theorem 2.1 and Corollary 3.3 to compute the entries of the middle two 
columns of the following table, then compute the last column by simple counting. 

k<2l 

k = 2l 

k = 2I + l 

k = 2l + 2 

4-i<"<4 
u(n) = k-l 
[a(n)]2l=0 
[a(n)]2M = 0 
u(n) = 21-1 
[a(n)]2l = 0 
[a(n)]2M = 0 
u{n) = 21 
[a(n)]2l = 1 
[a(n)]21+l = 0 
u(n) = 21 + 1 
[a(n)]2l=0 
[a(n)]2l+l = 1 

n = Lk 

u(n) = k-lotk 
[a(n)]2l = 0 
[a(n)]2M = 0 

u(n) = 21 
[a(n)]2l = 1 
Mn)]2M = 0 
u{n) = 21 
[a(n)]2l = 1 
[a(n)]2l+l = 0 
u(n) = 2l + 2 
[a(n)]2l = 0 
[a(n)]2M = 0 

Ones(Pk) 
Ones(P2

k) = 0 
Oms(P2

k
M) = 0 

Ones{P2
k
l) = l 

Oms(P2
k
M) = 0 

Ones(Pk
l) = Lk-Lk_x = L2l_l 

Ones(Pk
M) = 0 

Ones(P2
k) = 0 

Ones(P2
k
M) = Lk- Lk_} -1 = L2l_x 

If k = 21 + 3 and L2l+2 <n< L2l+3, then u{n) = 21+2 again by Theorem 2.1. Corollary 3.3 
again helps us to complete the following table: 

L2l+2 <n< 2L2!+l I 2L2/+1 < n < L2l + L2l+2 L2l + L2l+2 <n<L. Ones(P2l+3) 

[a(n)]2l = 0 
[a(w)]2l+1=0 

[a(n)]2l = 0 

N»] 2 / + i=0 
[a(n)]2l = 1 

Mn)]2l+l=0 
Ones(P2

2r) = L2l+3-(L2l + L2l+2) + l = L2/_1 + l 
021+ 3 
2/+1 • 

If k = 2/ + 4, then u(n) = 21 + 3 for L2l+3 < n < L2l+4 and u(ri) = 21+4 for n = L2l+4. We again 
invoke Corollary 3.3 to complete the table: 

^21+3 < n <^^2/+2 
2L2l+2<n 

- ^21+1 + ^21+3 
J-"JIA.\ + 1* 2/+1 "T ^21+3 
<n< L, n = L0 Oms(P2l+4) 

[a(n)]2l = 0 [a(n)]2l = 1 

[«(«)]2/+i = ° 

[a(n)]2l = 0 

Mn)]2M = 1 

[a(n)]21 = 0 Ones(P%+4) 

For the inductive step, assume that k > 2/ + 5. By Lemma 3.5, 

Ones{P^) = 20ms(P2
k
l-2) + Ones{P^) 

= 2(Z2M + l)Fk_2l_4 + (L2l_x + l)Fk_2l_5 = ( L ^ + l)i^_2/_2-

Similarly, 

Owes(ig+1) - 20nes(P^l) + Ones(P^) 
= 2(L2l - l)Fk_2l_5 + (L2l - l)Fk_2l_6 = (L2l - l)Fk_2l_3. D 
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Now that we have formulas for Ones(Pr
k) for positive r, closed formulas for Ratior{Ln) for 

all Lucas numbers L„ may be obtained by straightforward calculations. However, the sub-
sequences of the Ratior(m) sequence in which we are interested happen to occur not at the Lucas 
numbers themselves but at points close to the Lucas numbers. Specifically, we will show that (for 
positive odd powers of a ) the values Ratio2l+l(L2k+l - L2l+l -1) form a decreasing subsequence at 
which local maxima occur; and that the values Ratio2i+l(L2k- L2i) form an increasing sub-
sequence at which local minima occur. Similar subsequences occur for even positive powers of 
a, and for negative powers. To obtain formulas for these ratios, we need to first nail down the 
patterns occurring between these points and the Lucas numbers that they are close to. This is 
done in the following Lemma for positive powers of a. The proof, which is omitted, uses induc-
tion on k combined with results from Propositions 3.1 and 3.2, as well as Corollary 3.3. 

Lemma 4.2: If k > /+1 , then: 
a. Pat2l+l(L2k+l - L2M -1, L2k+l] = 0 W 1 . 
h. Pat2M(L2k+l - L2l+2, L2k+l - L2l+l -1] = 1 2/ . 
c. Pat2l+l(L2k-L2hL2k] = l^-l0. 
d. Pat2M{L2k+2 - L2M -1, L2k+2 - L2l] = 02Z^i+1. 
e. Pat2l(L2k-L2hL2k] = 0L*. 
f Pat2l{L2k_x - Z 2 M - 1 , L2k_x] = 1 W i . 

The main results of this section are given in Theorems 4.3 and 4.4. 

Theorem 4.3: For / > 0 and large enough k: 
a, R®tio2l+l(L2k+l - L2l+l -1) decreases to i?2/+i as k increases. 
h. Ratio2M(L2k - L2i) increases to R2l+l as k increases. 

Proof: By Lemmas 4.1 and 4.2, if k > I +1, then using Formula (7), 
2k+l 

One^^iO, Z^+1 - 4 / + 1 -1] = One$2M(0, L ^ ] - £ Ones{P2
J
M) 

2fc+l 

= L2l ~ 1 + X (^2/ ~ Wj-2l-3 = L2l - * + (L2l ~ l)(F2k-2l ~ 0 = (L2l ~ fyF2k-2l-
j=2l+3 

It follows that 

E W T V I ( J T W- (^2/ ~ 0^A:-2/ L 2 l - \ 
nano2l+l\^2k+l~ ^21+1 ~ V - 7 j i 71 ivF ~ T - T 1 

^2k+\ ~>2/+l ~ l ~ l L 2 l ~ L)r2k-2l ^2k+\ ^21+1 l _ n -\) 
^2k-2l 

Part (a) follows from the fact that (L2k+l - L2l+l -1) / F2k_2l is increasing for large enough k 
(which can be deduced from Formula (5)) and has limjt a2/+2 + a11 = aL2l+l + L2l (from Formulas 
(3) and (9)). Similarly, if k >/ + 2, then 

Ones2l+l(Q, L2k - L2l] = Ones2l+l(0, L2k\- Ones2l+l(L2k - L2h L2k] 
2k 2k 

= X Ones{PlM)~ (L2l -1) = (L2l -1) £*}-2/-3 = (L2l- \){F2k_2l_x -1). 
J=l j=2l+3 
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It follows that 

Ratw2l+l(L2k-L2l) = (L2/-l)(F2fe_2/_1-l) 1 , 7 - 1 

Part (b) follows from the fact that Lu~Ll1 

^2k ~ ^2/ ~ (^2/ " l)(^Jt-2M ~ 1) 

F2k_2l_l-T *s decreasing (for large enough k, again by For-

r2k-2l-l~l 

mula (5)) and has limit a2l+2 + a21. D 

Theorem 4.4: For / > 1 and large enough k\ 
a. Ratid2i(L2k - L2i) decreases to R2l as k increases. 
h Ratio2i(L2k+i - Z2/_i -1) increases to R2l as k increases. 

The proof of this theorem is omitted as it is similar to the proof of Theorem 4.3. 

4.2 Negative Powers of a 
We state here the results for the subsequences of Ratior(n) where r <0. The proofs are 

completely analogous to those from the previous subsection. 

Lemma 4.5: For k > 1: 

Ones{P*2l) = { 

J2J-2> 
L '21-U 

k<2l, 
k = 2l, 
k = 2l + \, 

0, £ = 2/+2, 
L2i(Fk-2i-3 + 0, ^odd, 

k>2l+3, 
L2i(Fk_2l_3-l), keven, 

k>2l + 3; 

Ones(P_\2M))-. 

0, k<2l + 3, 
L2M(Fk_2l_4-l), *odd, 

£>2/ + 4, 
L2M(FIC-21-4 + 1X ^even, 

&>2/ + 4. 

Lemma4.6: If & > / +1, then: 

(A h. Pat-(2l+\)y±J2k+2 ^21+2' ^2k+2. 

Pat. (2/+l)(-^2A+3 

•LTIJ-T, •L">lrJ-'>\ — 1 + « 

2^2/ + 2 ? ^ + 3 ] = 02L2/+2-
<£ Pat_2l(L2h L2k + L2M] - 0^-i. 
e. Pat_2l(L2k+l - L2h L2k+l] = 1^. 
/ Pat_2l(L2k+2 - L2l+2, L2k+2] = 0 2/+2. 

Theorem 4.7: Let / be a nonnegative integer. For large enough k: 
a. If / > 0, then Ratio_^2l+V)(L2k - L2i) decreases to R-^i+i) a s * increases. 
6. If / > 0, then Ratio_(2i+V}(L2k+^) increases to R^y+i) a s ̂  increases. 
c. If / > 1, then Ratio_2l(L2k+{) decreases to i?_(2/) as k increases. 
d. If / > 1, then Ratio_2l{L2k + Z^j) increases to i?_(2/) as & increases. 
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5. THE MAIN RESULT 

In this section we show that, as w-»oo, members of the Ml sequence Ratior{n) must be 
caught between the two subsequences examined in the previous section. In order to do this, we 
bound the ratios of prefixes of patterns originating at members of the subsequences, and then use 
Lemma 2.8. 

5.1 The Case r > 0 Odd 
We start by examining in more detail the patterns appearing between Lucas numbers. The 

base cases are taken care of in the following corollary. 

Corollary 5.1: Fo r />0 : 
3] = 0L2M. 

4] = o^z+ii^o. 
_1 = QL2M\L2rlQL2M+l 

5J 
J = QL2M\L2rlQ2L2l+l+llL2rlQ 

_1 — QL21+\\L2rlQ2L2l+\+llL2rlQL2l+l+llL2rlQL2l+l+l 

Proof: Parts (a)-(c) follow from Corollary 3.3 and Theorem 2.1. Parts (d) and (e) follow 
from (a)-(c) using Lemma 3.5. D 

Lemma 5.2: For k>l+2\ 
a. RatioiPi^)<R2l+l. 
b. RatioiPitfPiti^R^. 
c. Ratio{P^+l)>R2M. 
d RatiotP^Ptfc^R^. 

Proof: By Lemma 4.1, if k > 1+2, then 

Katio(P2M ) - - — — —j . 
^2k-3 \^2l l)r2k-2I-4 ^2k-3 U - \ \ 

(L 

b. 
c. 
d 
e. 

^a*2/+l(^2/+2> ^21+3. 

P^U+li^lM' ^21+4. 

Pa^2/+1(Z2/+4, X2/+5. 

^at2l+l(^2l+5y L2l+6\ 

PQtWl(^2/+6> ^2/+7-

^2k-2l-4 

Since F
 2k~3 is decreasing with limit a2l+2 + a21, 

j2k-l\ ^ ^ 2 / ~ 1 

which proves (a). We also have 
OmsiPltfPlh) = OmsiP^ + OmsiP^) 

~ \^2l ~ 0^2A:-2/-4 + (^2/ ~~ ̂ )^2k-2l-3 ~ (^21 " ^)^2k-2l-2^ 

and hence, by part (a), 

RatHP^P^) = ^2l-X)F2,_v_2 = Raij0(p2k++l) < Ri 

^2k-l ~ V^2/ l)r2k-2l--2 
Similarly, 
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RatioiP^) = (L2l'mk-^ = T
 L»~l . 

^Ik-l \^2l l)P2k-2l-3 ^2k-2 n _ J\ 
^2k-2l-3 

L Since F
 2k 2 is increasing with limit a 2 + a 2/+2 , ^ 2 / 

L, , - l 

which proves (c). For part (d), the reader may check that 
RatioiP^Pifc1) = RatioiPHf) > R2M 

using part (c). D 

We intend to show that, for L2k+l-L2l+l-\<n<L2k+3-L2l+l-1, limsup^^Ratio2l+l{n)< 
i?2/+i- By Theorem 4.3 and Lemma 2.8, it is sufficient to show that, if P is any prefix of 
^ahi+i(^2k+i ~~ A2/+1 ~ \ ^2k+3 ~^21+1 ~~2], then Ratio(P) < R2M. However, this last statement is 
not true for the largest prefixes unless k is sufficiently large. We therefore first prove a partial 
result applicable to prefixes P which do not include the tail end of ones found in Pat2l+l(L2k+1 -
^21+1 ~~ 1> ^2k+3 ~ ^21+1 ~ 2 ] -

Lemma §.3: For / > 0 and k > /+1 , if P is any prefix of P^t2l+l(L2k+l - L2l+l -1, L2k+3 - L2l+2], 
then Ratio(P) < R2t+1. 

Proof: We use repeatedly the fact that, by Lemma 2.8, the pattern obtained by concatenating 
two patterns whose ratios are < R2M also has ratio < R2M. If k = 1 +1, then by Lemma 4.2 and 
Corollary 5.1, 

Pat2l+l(L2i+3 - L2l+1 -1, L2l+5 - L2l+2] 

= P^2l+l(^2l-h3 ~ ^21+1 ~ \ ^ 2 / + 3 l + ^2/+l ^2/+l ' ^2 /+2 

- 0 2 L 2 / + 1 + 1 1 L 2 / ~ 1 0 J L 2 / + 1 + 1 . 

The prefix yielding the highest ratio is P - Q2L2i+\+\Liri g 0 t h a t 

2X2/+1 + l"oL2 / + 1 + l Ratio(P) = - ^ ^ < - ^ ± - = R •21+1-

If k = I + 2, the pattern in question is 

Pat2l+l (^21+5 ~~ Lll+1 ~ 1» ^21+7 ~ L2I+2I 

- Pahl+l\^2l+5 ~ ^21+1 ~~ 1> ^2l+s\ + *2M *2l+l ' ^2f+2 
= 02L2/+l+^L2/-l02I2/+l+ll^2/-l0L2/+l+1^2/-102L2/+l+1lL2/-l()^2/+l+l 

by Lemma 4.2 and Corollary 5.1. We need only consider the prefixes ending in lLirl, since these 
yield the highest ratios. We have: 

a. Ratio(02L^+1lLv-1) = n^2l~\ <-^~l 

2L2l+l + l aL2M + l' 
.X+UL21-\\ _ 2£2/ - 2 _ L2l-l L2l - 1 k Ratio(02L^+hL^-l02L^+hL'1-1) = *pl \ = o"~2/ \ < 

4L2M + 2 2L2l+l + l oL2/+1 + l ' 
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c. i?ar/o(02Z'2/+1+1lL2/"102L2/+1+1lL2/"10z'2/+1+1lL2/"1) = 3^2/ 3 = Ll1 1 <. Ll1 1 

5i2/+1 + 3 (5 / 3)L2l+l +1 aL2l+l +1 ' 

^ ]{ati0(p2L2M+llL2l-^^2M+^2r^2l+^ - 4 i"2/ 
7Z2/+1 + 4 

^2/ ~ 1 < ^2/ ~ 1 
(7/4)Z2/+1 + l aL2/+1 + l ' 

For the inductive step, assume k > / + 3. By Lemmas 3.5 and 4.2, 
Pai2l+l\^2k+l ~ ^21+1 ~ 1, ^2fc+3 ~" ^2/+2J 
— A^2/+i+1 p2£+2p2fc+3 / r _ A £ 2 / + I + 1 p2fc p 2 £ - l p2fc p2£+lp2A: p2fc+l / j 
~ u ^ Z + l ^27+1 ' ^ 2 / + 2 ~ U r2l+\r2l+\ r2l+lr2l+l r2l+lr2l+l ' ^21+2-

Suppose P is a prefix of this pattern. 

Case 1: If P is a prefix of O^'+^P,2/^, the result follows by the induction hypothesis. 

Case 2: P = 0^+lP2f+lQ = &«+lPfa2PZ£?P£?Q9 where 2 is a prefix of P2f+?/L2l+2. By 
the induction hypothesis, Ratio(QL*M+lP^Q) < P2/+i> and RatioiP^fP^3) < R2M by Lemma 
5.2. Hence, Ratio{P)<R2M. 

Case 3:- P = 0^*«+1/^1(/g*71/Z2/+2)j2, where 0 is a prefix of Pat2M{L2k_x-L2M, L2k_x] = 
1̂ 2/-ioL2/+i+i by Lemma 4.2. The prefix yielding the largest ratio is 

But this is a permutation of P' = ̂ l C ^ + I 1 / ^2/+2)lL2/"1()L2/+!+1 = P2il\F2ik+\l > so that Ratio(P) = 
Ratio(P') < R2M by Lemma 5.2. 

Case 4: P = O ^ ' + ^ P ^ P j ^ g , where 0 is a prefix of P2ik
+lP2^ / 2̂/+2 • BY t h e induction hy-

pothesis, iJatfo(O^'+,+10 < P2/+1. By Lemma 5.2, Ratio(P2l
k
+lP^1) < P2/+1, so Ratio(P) < R2M. 

Case 5: P = o W ^ f ^ w h e r e g i s a 

prefix of P®t2M{L2k+l - L2l+2, L2k+l] = \L2rlQL2M+l As in Case 4, the prefix yielding the highest 
ratio is 

p _ f)L2M+l p2k+2/p2k+l I r \]L2l-\ 
r - u "+1 r2/+1 ^r2/+1 / i ^ ^ ; 1 

which is a permutation of P' = P2
2/+t1 2̂2/+i"2> SO t h a t Ratio(P) = Ratio{P') < R2M by Lemma 5.2. 

Case 6: P = O ^ ^ P ^ f P ^ g , where g is a prefix of P2L\PIM < L2M- B Y t h e induction 
hypothesis, Ratio(0^M+lQ) < R2M. By Lemma 5.2, Ratio(P2J£2P$£l) < P2/+1; thus, Ratio(P) < 
R2l+l' D 

The result for all prefixes can now be proved as follows. 

Lemma 5.4: For / > 0 , there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat2l+l{L2k+l - L2M -1, L2k+3- L2M - 2], then Ratio(P) < R2M. 

Proof: Note that, by Lemma 4.2, 

Pat2M(L2k+l - L2l+l - 1 , L2k+3 - L2l+l - 2] - Pat2l+l(L2k+l - L2l+l -1, L2k+3 - L2l+2] +1 2/ , 

so, in view of Lemma 5.3, we need only show that, for large enough k, 
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Ratio2M{L2k+l L2M -1, L2k+3 - L2M - 2] < R2l+l. 

Now, by Lemmas 4.2 and 4.1, 
Ones2l+l(L2ku - L2l+l - 1 , L2k+3 - L2l+l - 2] 
= Q ^ ^ ! - 4 / + 1 - 1 , Z^+J + One^^L^, L2k+3] 

- Ones2l+l(L2k+3 - L2l+l - 2, L2k+3] = (Z^ - fyF2k_2M - 1 . 
So 

/?/y/7>> (T - T - 1 7 " - f - 9 1 - (^2/ V-^2fc-2/+l 1 
^o2 / + 1(Z2,+ 1 L2M l,L2k+3 L2l+l ^ - ( ^ ^ D . ^ . ! ) ^ ^ ^ ! ) 

1 ^ 1 
4 . + 2 - l - a 2 l + a 2 ^ _ 1 

(^2/ - l)F2k-2l+l ~ l hi-1 

since (L _$2~_ ^ is decreasing for k larger than some Kh by Formula (5), with limit a2+a21*2. 
Now 

i r . . - i r . _ i 
"~^2/+l-

1 
a2'+a2l+2 

L2l-\ 

L2i~\ 
_j a2' + a2/+2-L2; + r 

_ £2/-l 
az:2W+i 

This proves the lemma. • 

The next step consists of showing that, for L2k -L2l<n< L2k+2 - L2h 

limMn^Ratio2M(n)>R2l+v 

Again, it is sufficient to consider proper prefixes of Pat2l+l(L2k - L2b L2k+2 - L2l]. The results and 
proofs are analogous to the ones just presented. We present only the statements of the results. 

Lemma 5.5: For / > 0 and k > 1+1, if P is any prefix of Pat2l+l(L2k -L2b L2k+2 -L2l+3-1], then 
Ratio{P)>R2M. 

Lemma 5.6: For /> 0, there exists an integer Kt such that, if k >Kt and P is any prefix of 
Pat2l+l(L2k - L2b L2k+2 - L2l -1], then Ratio(P) > R2M. 

We can now state the final result for positive odd powers of a. 

Theorem 5.7: For any / > 0, l im^^ Ratio2M(n) = R2l+l. 

Proof: If Lu+l -L2l+l -\<n< L2k+3 - L2M - 2, then 

P ^ 2 / + 1 ( 0 , H ] = P O ^ 2 / + 1 ( 0 , Z ^ + 1 - Z 2 / + 1 - 1 ] + P , 

where P is a prefix of Pat2l+l(L2k+1- L2l+l-l, L2k+3- L2l+1-2]. & k ls l a r 8 e enough, then by 
Lemma 5.4, Ratio(P) <R2i+i, and by Theorem 4.3, Ratio(L2k+l-L2l+l-l) decreases to the limit 
R2M. So 

Rati^^n) < max{Ratio2l+l(L2k+l - L2l+l -1), Ratio(P)}. 

Letting n -> oo, we obtain 
lim s u p , ^ Ratio2l+l(n) < R2M. 
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Similarly, if L2k -L2l<n< L2k+2 -L2l-l, then 

Pat2l+l(0, n] = Pat2M(Q, L2k - L2l] + P, 

where P is a prefix of Pat2l+l(L2k - L2b L2k+2 - L2l -1]. If k is large enough, then by Lemma 5.6, 
Ratio(P) > R2M, and by Theorem 4.3, Ratio(L2k - L2l) increases to the limit R2l+l. Therefore, 

Ratio2l+l(n) > mm{Ratio2l+l(L2k - L2l\ Ratio(P)}. 

Now, letting n -> oo? we obtain 
lim i n f ^ Ratio2M(n) > R2l+l. D 

5.2 Other Cases 
We state the results for the cases r > 0 even and r < 0 without proof. The proofs are very 

similar to those in the previous subsection. 

Lemma 5.8: For / > 1 , there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat2l{L2k - L2b L2kJt2 - L2l -1], then Ratio(P) < R2l. 

Lemma 5.9: For / > 1 , there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat2l(L2k+l - L2l_x -1, L2k+3 - L2l_x - 2], then Ratio(P) > R2l. 

Theorem 4.4 together with Lemmas 5.8 and 5.9 leads to the following theorem. 

Theorem 5.10: For any / > 1, l im^^ Ratio2l(ri) - R2l. 

Lemma 5.11: For /> 0, there exists an integer Kt such that, for k >Kh if P is any prefix of 
P^-iiM^Lik ~hu hk+2'hi-llthen Ratio{P) <i?_(2/+1). 

Lemma 5.12: For / > 0 , there exists an integer Kt such that, for k >Kh if P is any prefix of 
Pat-(2M)(L2k+h LIM~ 1 ] , t h e n Ratio{P) > R_(2My 

Theorem 4.7 together with Lemmas 5.11 and 5.12 leads to the following theorem. 

Theorem 5.13: For any / > 0, lim^^^ Ratio_^2l+l)(n) = R^2i+i) • 

Lemma 5.14: For /> 1, there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat_(2l)(L2k+h L2k+3 -1], then Ratio{P) < R_(2l). 

Lemma 5.15: For /> 1, there exists an integer Kt such that, for k>Kh if P is any prefix of 
Pat_(2i)(L2k + L2l_h L2k+2 + L2l_x -1], then Ratio{P) > R_(2l). 

Theorem 4.7 together with Lemmas 5.14 and 5.15 leads to the following theorem. 

Theorem 5.16: For any / > 1, l im^^ Ratio_^2[){n) = R^2iy 

6. CONCLUSION 

We have characterized the frequency of occurrence of a1 in the a-expansions of the positive 
integers, for both positive and negative powers of a, using a recursive pattern found in these 
expansions. These results complete the characterization of the frequency of occurrence of the 
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powers of a in the a-expansions of the positive integers, which was started in [6], Other charac-
teristics, such as the frequency of occurrence of certain specific patterns in the expansions, might 
be capable of being derived using similar methods. 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark'Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my-deja.com 
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1. INTRODUCTION 

In [5], Hongquan Yu and Chuanguang Liang considered the partial derivative sequences of 
the bivariate Fibonacci polynomials Un(x9 y) and the bivariate Lucas polynomials V„(x, y). Some 
properties involving second-order derivative sequences of the Fibonacci polynomials Un(x) and 
Lucas polynomials Vn(x) are established in [1] and [2]. These results may be extended to the k^ 
derivative case (see [4]). 

In this paper we shall consider the partial derivative sequences of the generalized bivariate 
Fibonacci polynomials C/„ m(x, y) and the generalized bivariate Lucas polynomials V„9 m(x, y). We 
shall use the notation U„tm and VntM instead of U„tm(x, y) and Vn^m{x9y), respectively. These 
polynomials are defined by 

Un,m = xUn_lm-hyUn_m^ n>m, (1.1) 

with U0tm = 09 Unm = xn~\ w = 1,2,..., m - l , and 

K,m = xK-l,m+yK-m,m, ***», (1 -2) 

withF0jW = 2, Vn^ = x\ n = l,2,...,rn-l. 
For p = 0 and q = -y, the polynomials Un%m are the known polynomials ^w(0, -y; x) [3]. 
From (1.1) and (1.2), we find some first members of the sequences U^m and Vnm, respec-

tively. These polynomials are given in the following table. 

TABLE 1 
n 

0 ~~ 

1 
2 
3 

m - l 

m 

m + l 

2m-I 

2m 

0 
1 
X 

x2 

xm~2 

xm~x 

xm + 

unm 

y 

x2m~2+(m-
x2m-\ + mxm' 

l)xm 

~ly 
~2y 

V 
n,m _ 

X 

x2 

x3 

xm~l 

xm+2y 

xm+1 + 3xy 

x2m-l+(m + l)xm-ly 

x2m+(m + 2)xmy + 2y2 
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The partial derivatives of Un^m and Vn>m are defined by 

Also, we find that Unm and Vrum possess the following generating functions: 

F=(i-xt-yn-l = tunJn~l (i.3) 
and 

G={2-xtm-l)(i-xt-yryl = fynjn. (i.4) 
n=0 

From (1.3) and (1.4), we get the following representations ofUnm and V^my respectively: 

un,m=(T\n-l-t-l)kYl-mv (i.5) 
and 

F _1Y n-(m- 2)k (n-(m- \)k\ n-mk k n ^ 
n'm~ h n-(m~l)k\ k ) x y • W 

Ifm = 2, then polynomials Unm and Vn^m are the known polynomials Un and Vn ([5]), respec-
tively. 

From Table 1, using induction on n, we can prove that 

K,m = U»*hm+yUn*.l-m,m> n>m~l. (1.7) 

2. SOME PROPERTIES OF C/^> AND Vgip 

We shall consider the partial derivatives U^'mj) and V^J). Namely, we shall prove the fol-
lowing theorem. 

Theorem 2.1: The polynomials Uf^ and V^j) (n>0,k>0J>0) satisfy the following iden-
tities: 

y(k,j) _ rr(*,y) , jTjikJ-l) , V [K^ / ) • /o 1) 

^V m ~ ̂ n-l, m + X^n-\, m + j^n-m, m + y^n-m, m ? (2.2) 

^V"} - w^J*+xv££ +jv2%-» +yv^m, (2.3) 
p(*./) = "~ym (n-(m-2)i) (n-(m-l)f)1 jf-k-mi i-j / 2 4y 

Proof: Differentiating (1.7), (1.1), and (1.2), first Mimes with respect to x, theny-times with 
respect to y, we get (2.1), (2.2), and (2.3), respectively. 

Also, if we differentiate (1.6) with respect to x, then with respect t o j , we get (2.4). 

Remark 2.1: Ifm = 2, then identities (2.1)-(2.4) become identities (i)-(iv) in [5]. 
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Theorem 2.2: Let k > 0, j > 0. Then, we have: 

Z /7(*. J)jr - l r/(*+i, /) • /o *\ 
i=0 / C i - J i - I 

2XW-°^ = (<*+./+1) (* }7')) '(2 - jO*(2r» - *-3 +y~') t^/>; (2.6) 

I t ^ 1 ^ = ((/+*) p ) ! 1 iyfv&r>; (2.7) 

Proof: Differentiating (1.3) &-times with respect to x, thenj-times with respect toy, we get 

/r(*.j) = <?k+J
 F = (k + j)\tk+mj y JJ{Kj)n.x ... 

axkayj (\-xt-ytm)k+j+l t i >m ' 
From (i), we have 

F(o, o)F{k9 j) _ (& + ./)i^+; /w _ y y r7(*f y)r/ /W-2 
yi-xi-yi ) n=l /=0 

Hence, we conclude that 

flfrftU (k + .j)\tk+l+jm 

£& Km "~''m (l-xt-ytm)k+J+2 

= (k+j + l)\tk+1+»» = 1 u(M,n 

(k + j + l)(l-xt-ytm)k+J+2 k+j + l "'m ' 

By the last equalities, we get (2.5) 
In a similar way, we can obtain (2.6), (2.7), and (2.8). 

Corollary 2.1: If k = I, j = p, from (2.8) we get 

Furthermore, we are going to prove the following general result. 

Theorem 23: Let k >0, j > 0 , s > 0 . Then 

Proof: From (i), i.e., 

h+h+:.+is=n (Sk+Sj + S~l)\ 

f(k, j) _ ( ^ + j ) ! ^ + m - /
 = Y Tj{k, j)tn-\ 

(l-xt-ytmf+J+l t i , m ' 
we find: 
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(l-xt-ytmyk+SJ+s 

E V TT(k,j)n(k,J) Tj{k,j)fn-s 

»=1 l1+/2 + -"+7J=W 

Hence, we get 

La La i\,m ^i2,m '"uiSfm /% _ f _ ,,fm\sk+sj+s 
n=l il+i2+---+is=n \ l Xl J1 ) 

- ((k+jyy TT(sk+s-i, sj) 
(sk + sj + s-l)\ ">m 

The equality (2.10) follows from the last equalities. 

Remark 2.2: We can prove that 

, (sk + sj + s-l)\ ,=2, 

where a = k + j +1. So (2.10) takes the following form, 

s ^x^.-.^=nf(to-i)fa:i2)T1w*-i-*), 
/'j +/2 +•••+/,= « 7=2 V V / / 

where a = k+j + l. 
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INTRODUCTION 

In a recent note in Mathematics Magazine [1], D. F. Bailey developed a formula for the num-
ber of sequences al,a2,...,an+r comprised of n l's and r -l 's such that Z/=1a; >0 for each 
7 = 1,2,.,.,/i+r. 

He denoted the number of such sequences as {"} and noted that 

{-}= + 
n-l 

foxl<r<n and 

for each n > 1. From these facts, it is easy to build the following table of values for {"}. 

TABLE 1. Values for {?} 

(1) 

(2) 

n\r 
0 
1 
2 
3 
4 
5 
6 
7 
8 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
2 
3 
4 
5 
6 
7 
8 

2 

2 
5 
9 
14 
20 
27 
35 

3 

5 
14 
28 
48 
75 
110 

4 

14 
42 
90 
165 
275 

5 

42 
132 
297 
572 

6 

132 
429 
1001 

7 

429 
1430 

8 

1430 

Indeed, Bailey obtains the identity 

{-}-
(n + l-r)(n + 2)(n + 3)...(n+r) 

r! 
whenever n>r>2. Bailey closes the paper by noting that 

& 
1 (In 

n + \\n 
the nm Catalan number Cn. This is not surprising, as one of the classical combinatorial interpreta-
tions of Cn is the number of sequences of n l's and n -l 's that satisfy the subsequence sum 
restriction mentioned above. In this context, Bailey provided a very nice generalization of the 
classical Catalan numbers. 
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In this paper we generalize Bailey's work by considering sequences comprised of n (w-l) 's 
and r - l 's (where m > 2) with the sum of each subsequence of the first/ terms nonnegative. We 
will denote the number of such sequences as {"}OT_,. 

It is clear that the recurrences similar to (1) and (2) are satisfied for general values of m. 
Namely, 

{"lA"rtAr"L <3> 
for 1 < r < n and 

{m-\)n-(m-\)]ml 

(4) 

for each n>\. The recurrence in (3) is seen in a straightforward manner. Take a sequence of n 
(m- l)'s and r - l 's that is counted by {?},„_,. The last element in the sequence is either a n m - 1 
or a - 1 . If it is an m-1, then the preceding subsequence is one of those counted by {VL-i- On 
the other hand, if the last element of our original sequence is a - 1 , then the preceding sub-
sequence is one of those enumerated in (AL-i. 

To establish (4), consider a sequence of n (m-l)fs and (m-l)n - l 's counted by {(W_i)W}m_y 

It must be the case that the last element in this sequence is - 1 . (If not, then one of the sub-
sequence sums would have to be negative, which is contradictory.) Hence, the subsequence 
preceding this final -1 will also satisfy the property that all of its subsequence sums are positive. 
Therefore, this preceding subsequence will be enumerated by {(W-f)„-i}m_r In more general terms, 
it is clear that the last m-\ elements of our sequence of n (m-l)'s and n(m-l)n - l 's must be 
- 1 . Thus, the same argument as that above can be used to prove the fiill set of equalities in (4). 

We include here a table comparable to Table 1 above in the case of m = 3. 

TABLE 2. Values for {J?}2 

n\r 
0 
1 
2 
3 
4 
5 
6 
7 
8 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
2 
3 
4 
5 
6 
7 
8 

2 

1 
3 
6 
10 
15 
21 
28 
36 

3 

3 
9 
19 
34 
55 
83 
119 

4 

3 
12 
31 
65 
120 
203 
322 

5 

12 
43 
108 
228 
431 
753 

6 

12 
55 
163 
391 
822 
1575 

7 

55 
218 
609 
1431 
3006 

8 

55 
273 
882 
2313 
5319 

Our goal is to present various results involving {l}m_x, including an interpretation of the 
sequences counted by {" L_i which truly generalizes the proof that 

G. 
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which appears in [2]. In particular, we pay special attention to the case when r = (m-l)n (the 
largest allowable value of r for fixed m) and prove that 

{("»- lMm_, = (m-l)n + l{mn} (5) 

This is a clear generalization of Cn. Indeed, these quantities also enjoy a rich history and back-
ground, and can be found in the works of Raney [6] and others. See [5] and [7] for additional 
discussion. 

THE MAIN GENERALIZATION OF THE CATALAN NUMBERS 

We now consider sequences of the form ax,a2,..., an+r containing n (m- l)!s and r -1's for a 
fixed value of m larger than 1. Note that the total number of such sequences (with no restrictions) 
is {n+

n
r). We wish to count, in a natural way, the number of such sequences that satisfy 

al+a2 + --+aj>Q (6) 

for each j - 1,2, ...,/n-r. We will do so by subtracting from {n+
n
r) the number of sequences 

(")„_, that violate (6) above for at least one value of/. (These sequences will be referred to affec-
tionately as "bad.") This use of inclusion/exclusion is, in essence, the approach taken in [2] to 
prove the formula for C„, although the proof in [2] is not directly generalizable. 

For simplicity, we first focus our attention on the case r = {m-l)n. We pick up the more 
general case in the next section. 

On our way to a closed form for {(W-i)W}OT_,, we first state the following lemma. 

Lemma 1: 

^ w (p-hk\fq+hk\ 
£?0w+dk{n-k){ k ) 

I n VhX n~k ) {w + d)(w + 2d)-'(w + kd) 

for all values ofpy q, wy n, h and d for which the terms are defined. 

Proof: This result is proved by H. Gould and J. Kaucky in [4]. • 

Using Lemma 1, we can prove the following corollary. 

Corollary 1: For all m > 2, 

v 1 (mk\(mn-mk-i\ , ,x(' mn\ 

Proof: We apply Lemma 1 with b = m, p = mn-l, q = 09 w = l9 and d = m~l. Then we 
have, following (see [4]), 

Y -1 (mn~l-mk\(mk\ 
£Si+(w-i)*l n~k Ak) 

k 
, d I n 

+ S l n-k 
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_ Y (mn-l-k 
iL 1 n-k 

-mn + k + l+n-k-l 
k=Q V *=o * n~k using (3.4) of [4] 

= Z ( - i y ( ~ 7 ) using y = n - * 

n-h(m- 1)/A u g i n g i d e n t i t y j >49 o f p j 

(mn\ 

Thus, we know that 
w - l 

I-
(mk\(m{n -k)-\\_ (mn\ 1 fmn\ (-1 

k _ 0 (m-l )* + lV* A n~k ) \ n J (m-l)n + l\n A ° 

(mn\ 1 f/»»^ , 
V n y (m-\)n + \\n ) 

We are now in position to state the main result for {(m~\)n}m_y 

Theorem 1: For all n > 1 and m > 2, 

j w 1 _ 1 fmri\ 
\(m-~l)njm^ ~~ ( w - l ) w + ll, w J' 

Proof: We will prove this theorem by induction on.w. First, we recall that 

and focus on the "bad" sequences counted by ((m~t)n)m-i- Let a = (aha2, ...,amn) be a bad se-
quence of n (m-iys and (m-l)n -l's and letj be the first subscript for which the partial sum 
S. = E/=i«/ < 0. (The existence of/ is guaranteed since a is a bad sequence.) Then Sj = -1 and 
a j = -1 (by the minimality of/) so that iS^ = 0. Therefore, j = 1 (mod /if). 

We now set k = ^~. Then there are k (m- l)fs in the partial sequence a ^ = <% ..., a;„j)3 so 
a7_j is a !Sgoodl? sequence with k (m- l)fs and (m- l)t -l's by the minimality of k. Moreover, the 
subsequence 
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*j=(aj+l>aj+2>->amn) 

is an arbitrary sequence of (n-k) (m- l)'s and ((m- l)(n-k)-1) -lfs. (Remember that a • = -1.) 
Since there are {(m-i)k}m^ ways to choose a good sequence with k (m- l)'s and (m- l)k -l 's and 
(mnn-k~l) ways to choose an arbitrary sequence of (n-k) (m-iy$ and ((m - l)(n - k) -1) -l's, 
then the number of bad sequences with n (w-l)'s and (m-l)n -l 's with the first bad partial 
sequence having length mk +1 is {(W î)jt}m_, (m"n-k~1)- Hence, 

/ n \ _ v / ^ 1 fmn-mk-l) {Ti 

\(»-i)"Lr6i(«-i)*Lil »-* J- ( ) 

A quick comment is in order regarding the index of summation in (7). Since j = 1 mod m, the 
smallest possible value of/ is 1, whence & = 0 is the smallest value of k (since k = ̂ -). Since the 
whole sequence has length mn, the largest value of/ is mn-m + 1; hence, the largest value of k is 
mn-m+\-lz=:n_l 

m 
Now, by induction, 

J * I 1 (mk) 
1(^-1)*;^ (^-i)^+iUJ? 

so 
n 

n-\ 1 (mk\(mn - mk - 1 

Now Corollary 1 can be applied: 
n \ V 1 (mkVmn -mk-i\ 

£o(/M-l)* + l U A »"* J 

Our result is now in reach. 

Therefore, we see that 

J n \ _(n + (m-\)n\_l n \ 

L yi(nf-l) ] | W | 

_ J #*w
 af̂ er simplification. 

(w-l)w + l V w y 

f « 1 1 (mn) n 
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As noted in the introductory section, the values (m_L+1(T) have appeared in the past. 
However, we are unaware of their interpretation as the number of sequences described above. 
Moreover, the proof technique utilized in Theorem 1 does not seem readily available in the 
literature. 

THE GENERAL CASE 

Our initial motivation in this study (in the spirit of Bailey) was to find a closed form for {J?}m_, 
for all r satisfying \<r<(m-l)n. The completion of this task has proved elusive. However, we 
can generalize (7) above to determine C)m_,. Then it is clear that 

\rh-i V n n+r] In 
r m-l 

We now look at the generalization of (7). 

Theorem 2: 

Z
l"x i imn \in + r-mK~ i \ , R x 

A*f_i\^-i_i k n-Ic " ^ ' 

n\ _ ^ 1 (mkYn + r-mk-
rL-i h (w-i)*+iv*A n~k 

Proof: The proof of this is essentially the same as that in Theorem 1. The major difference is 
that the index of summation must be modified. To determine the extreme values of k we analyze 
as before. Since j = \ mod m, the smallest possible value of/ is 1, whence k - 0 is the smallest 
value of k (since k = ^ - ) . Now, any "good" subsequence of a has km terms and so will have 
(km-k) —1 's in it. But if km- k >r , there are no -l's left to make the sequence bad. That is, we 
may not have k > ^ 9 so the maximum value ofk is ["^rJ if r is n o t a n integer multiple of m-1, 
and -™j ~ 1 if r is an integer multiple of m - 1 . A more efficient way of expressing the maximum 
value of k is as ["^rl ~ 1 • D 

Unfortunately, we have been unable to determine a closed formula for (8). However, we 
note that this is still a useful insight, at least in a computational sense. Indeed, if one wants to 
determine (for example) {i

4
040}4 with m = 5, n = 100, and r ~ 44, then (8) provides a very feasible 

way to calculate (44 >4, so that 
JlOOl _fl44^_/100\ 
I44 j 4 - [44 j ^ 4 4 ^ 

In this example, the sum in (8) only contains f x l o r 1 * terms, each of which is simply a weighted 
product of two binomial coefficients. This is much quicker than calculating {44 }4 from the 
recurrences (3) and (4). 

CONCLUDING THOUGHTS AND QUESTIONS 

While we have not fully reached our initial goal, we are satisfied with the results obtained, 
especially since the approach seems quite novel. We now share two thoughts in closing. 

First, we covet a closed formula for the sum in (8). It is unclear how to accomplish this task. 
Second, we note a fairly interesting residual result from Bailey's work. Bailey proved that 

in\ _ (n + l-r)(n+r)\ __ n + l-rfn+i 
W i ~ (n + l)n\r\ ~ w + 1 V n 
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Thus, it is clear that 
!n\ (n + r\ n + l-r fn+r 
r U \ r ) n + \ V r 

_ . , / i + l - r V » + r l r fn+r 
w + 1 A r J w + l 

By (8) above, we then have 

y 1 (2kVn + r-2k-f\= r fn+r 
£o* + 1 U A n~k J n + \\ r 

The proof of this summation result does not appear to be within reach via known tools such 
as Lemma 1, and we have been unable to prove this identity directly. A direct combinatorial 
proof of this result would be nice to see. If found, such a proof might allow us to better see a 
closed formula for the sum in (8). 
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1. INTRODUCTION 

In the predecessor to this paper (see [7]) a family of rational termed series having irrational 
sums was constructed. These series whose terms, for a fixed k e7V\{0}, were formed from 
the reciprocal of the factorial-like product of generalized Fibonacci numbers UkUk+l...Uk+n, in 
addition exhibited irrational limits when summed over arbitrary infinite subsequences of N, by 
replacing n with a strictly monotone increasing function f:N->N. Owing to this factorial-like 
form, the argument employed in [7] was closely modeled on that of Euler's for establishing the 
irrationality of e. However, as a consequence of the approach taken, one needed to restrict atten-
tion to those sequences {£/„}, generated with respect to the relatively prime pair (P,Q) with 
121 = 1 and |P | > 1. In view of these results it was later conjectured in [7] whether other irrational 
valued series could be constructed having terms formed from the reciprocal of such products as 
[//(„)... C//(W)+jt, where again / : N —» N \ {0} was a strictly monotone increasing function. In this 
paper we shall provide evidence to support the conjecture by examining two disparate cases, 
namely, when / ( • ) satisfies a linear and an exponential growth condition. To help establish the 
result in the later case, a sufficient condition for irrationality will be derived. This condition, which 
is similar but slightly more restrictive than that employed in [2] and [6], will be demonstrated, for 
interest's sake, by an alternate proof based on the following well-known criterion for irrationality 
(see [8]): If there exists a 8 > 0 and a nonconstant infinite sequence {pnl qn) of rational approxi-
mations to 0, with (pn, qn) = l, and such that, for all n sufficiently large, 

I 9n\ qX;S 

then 6 is irrational. In addition, the above sufficiency condition will allow us to prove that the 
conjecture also holds for generalized Lucas sequences {FJ, when / ( • ) has exponential growth. 
One notable feature of these results compared to those obtained in [7] is that they apply to a much 
wider family of sequences, namely, those which are generated with respect to the relatively prime 
pair (P, 0 with \Q\ > 1 and P > \Q +1|. Unfortunately, in the linear case (i.e., when f(n) = n\ 
we cannot achieve the same level of generality, as irrational sums can only be deduced for those 
series involving generalized Fibonacci numbers where Q = 1 and P > 2. This restriction is due to 
the fact that (for k even) the sum of the series in question is given as a linear expression in s over 
the rationals, where s = 1EZsll/U„ is at present only known to be irrational for \Q\ = 1. In the 
final part of the paper, we return to the family of series first considered in [7] and, by applying the 
above criterion for irrationality, we extend the results there to encompass those series involving 
both the generalized Fibonacci and Lucas numbers where Q * 0 and P>\Q + l\. 
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2. SERIES WITH TERMS (Uf(n)... Uf(n)+k )~l 

We will first address the case of / ( • ) satisfying an exponential growth condition. To help 
motivate the required sufficient condition for irrationality, let us consider the following result 
which was first stated (without proof) in [3] but later proved by Badea in [2]. 

Theorem 2.1: Let {a„}, for n > 1, be a sequence of integers such that an+l >a*-an + l holds for 
all n. Then the sum of the series Z^Li 1 lan is an irrational number. 

This criterion, which is based on a sufficient condition for irrationality of Bran [3], is best 
possible, in the sense that rational valued series can occur if the strict inequality is replaced by 
equality. It is clear from Theorem 2.1 that, if ax > 1 and an+l > a* for n > 1, then the series of 
reciprocals {llan} must also sum to an irrational number. Such a weaker version of the above 
criterion was proved indirectly by McDaniel in [6] via a descent method and later was used to 
establish the irrationality of S*=11 /C//(W>, where f:N—>N satisfied the inequality f{n + X)> 
2f(ri). In a similar manner, by using the more restrictive condition of MneN{an+1/a%} > 1, 
we can now extend the results obtained in [6] to those series involving the reciprocal of such 
products as an = Uf^...Uf^+k. Although not essential, the advantage in using this alternate 
condition is that we can demonstrate irrationality via a direct proof, as opposed to the indirect 
arguments employed in [6]. To this end, consider now the following technical lemma. 

Lemma 2.1: If Z^=1 IIan is a series of rationals with an GN\{0} and inf„e^{a„+1 Id*} > 1, then 
the series converges to an irrational sum. 

Proof: From the above inequality, the series is clearly convergent. Denoting the sum of the 
series by 0, we examine the sequence of rational approximations pnlqn to 6 generated from 
the 71th partial sums, expressed in reduced form. As an > 0, for n > 1, the terms pn lqn must be 
strictly monotone increasing and so the sequence is nonconstant. To prove the irrationality of 6 
it is sufficient, in view of the aforementioned criterion, to demonstrate that \q„0-p„\ = o(l) as 
n-^oo. Since (pm,qm) = l, the lowest common denominator of the m fractions in the set 
{l/aw}^=1 must be greater than or equal to qm but, as axa2 ...am is one common denominator, we 
deduce that qm<al...am. Thus, again by the above inequality, 

n=m+l n n=m+l n n=m+l n 

<»«fi+i^]<*Ji+z^]<*«(i+^ 
\ r=\am+r+lj \ r=i "m+r J 

where hm = (ax...am) lam+l. The result will follow after showing that bm -> 0 as m -> oo. To this 
end, we consider log(l / bm). Via assumption, there must exist a 8 > 0 such that an+l /a*>(l + S) 
for all n, and so 

m m 
log(l/6w) = ^(logar + 1 - loga^ + log^ - ^ l o g a r 

r=l r=\ 
m / a \ 

= ^ l o g - ^ H-loga^/w log(l + J)-^ooasm->oo. • 
r=l \ a r ) 
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In the case of an = C/y(w) ...C/y(w)+jt, the condition of the previous lemma can be satisfied when 
/ ( • ) has exponential growth. We demonstrate this using the following well-known identities: 

U2m = UJm> U2m_^U2
m-QU2

m_h Vm>Um. (1) 

Theorem 2.2: Suppose {UJ is a generalized Fibonacci sequence generated with respect to 
the relatively prime pair (P, Q) with Q*0 and P > |Q +1|. If, for a given k eN, the function 
/ : N-> N\{0} has the property /(w + 1) > 2f(n) + 2k for all n > 1, then the series E"=1 l/tf„ 
converges to an irrational sum, where an = Uf^... £//(„)+*. 

Proof: We first note that, for the prescribed values of P and 0, {C/w} and {FJ are strictly 
monotone increasing sequences of positive integers. To demonstrate the irrationality of the series 
sum, it will suffice in view of Lemma 2.1 to show that infneJV{aw+11 al) > 1. Now, since 

2 I I ill 
an r=0 uf{n)+r 

observe from the assumption on / ( • ) and the identities in (1) that, for r = 0,1,..., k and n e N, 

Uf(n+l)+r &2f(n)+2k+r+l &2f(n)+2r+l _ *^f{n)+r^f{n)+r ~ Q^2f(n)+2r-l 

Uf(n)+r ^f(n)+r &f(n)+r Uf(n)+r 

PU}{n)+r~QU2f{n)+2r-l _ Uf (n)+riP ~ Q) + Q Uf(n)+r-l 
> TJ2 jjl 

Consequently, as P-Q>2, one deduces from the previous inequality that infneN{an+l/a%} > 
2*+1>l. D 

Via a similar application of Lemma 2.1, one can prove the irrationality of the above series 
when U„ is replaced with the terms of a generalized Lucas sequence {Vn}. 

Theorem 23: Suppose {Vn} is a generalized Lucas sequence generated with respect to the rela-
tively prime pair (P, Q) with Q * 0 and P > | Q +11. If, for a given k e N, the function / : N -> 
N\{0} has the property that f(n + l)>2f(ri) + 2k for all w>l, then the series E^=1l/^w con-
verges to an irrational sum, where an = Vf^ ...Vf^+k -

Proof: For the prescribed values of P and Q, it is readily seen that l im^^ V2n+l I V% = a > 1. 
Thus, for an 0<e<a-l, there must exist an N(e) > 0 such that V2n+l/V* > a-s> 1, when 
n > N{s). Let N' := rmn{s GN : /(/?) > iV(^) for all w > 5} and consider the remainder of the 
series given here by Y^=N, Van. To demonstrate the irrationality of the above series, it will suf-
fice to prove that i n f ^ K ^ left) > 1. Now, for n > Nf and r =. 0,1,..., k, one clearly must 
have f(n) + r> N{s) and so, from the assumption on / ( • ) , observe that 

Vf(n+l)+r > ^2f(n)+2k+r+l > *2/(n)+2r+l > a _ g 

V2 ~ V2 ~ V2 

Consequently, \x£n7>N.{an+l la2
n) >(a-s)k+l > 1. D 
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Turning now to the case of f(ri) = n, it is readily apparent that one cannot apply Lemma 2.1 
to prove irrationality as an+l /a* = Ilf=o(̂ H+i+r / Un+r) -> 0 as « -» oo and so the infimum over the 
natural numbers of the associated sequence must be equal to zero. In spite of this, one can still 
reach the desired conclusion for the series in question by an application of two existing results 
within the literature. The first of these, which is due to Andre-Jeannin (see [1]), asserted that the 
series E*=i 1/C/W sums to an irrational number when {Un} is generated with respect to the ordered 
pair (P, 0 , where \Q\ = 1 and P > 2. By then combining this with the well-known reduction for-
mula of Carlitz for Fibonacci summations, we can write the sum of E^Lil/tfw (for any fixed 
k G N) in terms of a linear expression in 9 over the rationals, where 9 is an irrational number to 
be determined. Thus, consider now the following Lemma which forms the basis of the reduction 
formula that shall be used directly. 

Lemma 2.2: Suppose that the sequences {U„} and {Vn} are generated with respect to the 
ordered pair (P, 1) with P&1,2 and let a and ft be the roots of x2 - Px +1 = 0. If we denote 
{m

r} = (U)m I(U)r(U)m_r, where (U)m = Uv..Um and (U)0 = 1, then 

i(-iy{2j,V=n[i-^_,x+x2], (2) 
j=o l J J ; = i 

I * ("iy \2mtl) ai+lx' = (a - am+2/Tmx) f [ [ l - V2J_xx + x2], (3) 
7=0 V J ) j=\ 

2m+l 

I 
j=0 

1 
^n^n+l •' • ^n+2m 

The above restriction on the value of P is required in order that the Binet formula for U„ is 
not indeterminant. For a proof of the above identities, interested readers should consult [4]. 

Theorem 2.4: Suppose the sequence {£/„} is generated with respect to the ordered pair (P, 0 , 
where P>2 and Q = 1, then the series Z^=1\lan sums to an irrational number where an = U„... 
Un+k and k G N. 

Proof: For the prescribed values of P and Q, all series under consideration are clearly con-
vergent. Addressing the case in which k is even, observe from Lemma 2.2 when x = l that 

00 -J 1 I ? , l W f 2 » i l f 1 
ic-iy 7 1 «„ (u)2m^ UJ±JO; n=l n X^ Jim j=Q v. J ) w==i ^ « + ; 

2/w r « ^ oo 1 1 2w 

Consequently, the sum of the series in question is of the form a9 + b, where a,b GQ and 9 is an 
irrational number. However, as {VJ is a monotone increasing sequence and Vx = P > 2, one must 
have a ^ 0. Hence, the result is established for k even. Suppose now that k = 2m +1, then as in 
[4] we multiply (4) by 1 / Un+2m+\ and upon summing we find 
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= _L.y(-iyft»V£ i L_yr_iyJHf ?• 
(tf)2»# ; U J t ! ^ ^ i (0)2* £T ; \J)ku„un+.. 

(5) 

y n+2m-J+l 

Now, dividing both sides of the standard identity Un+rUn_l-UnUn+r_l = ~{a(3)n~lUr by the term 
UnUn+r, with r = 2m-j + l, and summing to JVterms, where N >r, observe that 

IT V ! - V un+2nt-J y Uw_1 
u2m~j+l£ai IT IT JLjT ZJ IT 

n=\ kyn^Jn+2m-j+l »=1 LJn+2m-j+l n=l u n 
(6) 

2/W-/+1 r r 2/W-/+1 r r X ' 

_ y uN+n-i y ^w-i 
Z^ IT JLd IT ' 
n=l UN+n n=\ Un 

By assumption, \a\ > |/?|, and so UN+rl_l/UN+n ->l/a as N —» GO. Thus, combining the limiting 
value of (6) with (5), we obtain 

( f / ) 2 , § ( ! ) l i j § ^ ^ + 2 ^ 

where a\ bf eQ and a l is an algebraic irrational. It remains only to show that the constant 
af ^ 0. From the definition of the generalized binomial coefficient in Lemma 2.2, we see that 

2m h ™ l 0 » * , _ r_i_1 1 2w 

2m+l 

'hmj=0 {*J} U2m-j+l \Uhm+lj=0 l J J u2m-j+l 

hm+\ y=0 V J J 

Thus, if we denote the polynomial function in (3) by R(x), then 

\Uhm+\ \Uhm¥\ M 

However, by Lemma 2.2, R(x) contains the quadratic factor \-Vxx + x2 = (I - fix)(l - ax) and so 
R(a~l)~0, Moreover, 

^ ( a " 1 ) = (l-V.a-1
 + a - 2 ) ^ | ( a - a ^ 2 ^ x ) n [ l - ^ x + ^ l K O 

/» 
+ (2a"1 - Vx)(a - ara+1^-m) H O - Vv_xcTx + a'2) (7) 

m 
= (2a"1 - ^Xa - am+lp~m) J\{\- V^cT1 + a"2). 

y=2 
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Now, since a ;*/?, it is immediate that the first two factors in (7) must be nonzero, while as the 
quadratic factor l-V2j_lx + x2 for j = 2,...,m has the roots aj~l IJ3J, (3j~l I aj of which neither 
is equal to a"1, we can finally conclude that R'{aTl) & 0 and so a' & 0. D 

Remark 2.1: The inequality P > 2 in Theorem 2.4 cannot be weakened as the series in question 
will sum to a rational value when (P, Q) = (2,1). To demonstrate this, we first consider as Un -n 
in the present case, the function f(x) = (xn+k(n-!)!)/(«+ k)\. Applying Taylor's theorem to 
f(x) about the point a = 0, observe that, for x > 0, 

#1=0 

Now, as fm(0) = 0 for m = 0,..., k, it is clear after setting x = 1 in (8) and applying Lebesgue's 
Dominated Convergence Theorem that 

£j/Kit+i)-(n+*) £tJo k\ 

. Jo^J k\ Jo k\ kk\ 

It still remains an open problem as to whether the series having terms of the above form con-
tinue to exhibit irrational sums when f(n) is replaced by an arbitrary strictly monotone increasing 
integer valued function, such as a polynomial in n over the positive integers. Such a problem may 
be impossible to resolve, as it is difficult in general to predict the nature of a series sum. To 
illustrate this difficulty, we shall show that it is possible to construct a pair of infinite series having 
positive rational terms asymptotic to each other, with one summing to a rational number and the 
other to an irrational number. Consider X^=il/tfw, where an is generated from the recurrence 
relation an+l =a%-an + l with ax - 2. Then, as 1 / (an+l -1) = 1 / (an -1) - 1 lan9 one deduces that 
Z^Li 1 lan =4 - (aN+l -1)"1 and so the series converges to 1. However, if we define bn = an -1 In, 
then clearly 1 / bn ~ 1 lan as n -> oo with 

K^ =al-a„ + l 

n n2 n n + \ 

where the inequality follows from the fact that 2bn In +1 In2 - 1 In -1 l(n +1) > 0, which is easily 
deduced via the simple inequalities 2bn >2 and 2>l+nl(n + T)-lln. Thus, via Theorem 2.1, 
Z*=i 1 lbn will sum to an irrational number. 

3. SERIES WITH TERMS (UkUk+1...Uk+fin))-1 

In this section we shall again apply the criterion mentioned in the Introduction to establish 
irrational sums for the family of series considered in [7] but now involving the larger class of 
sequences {£/„}, {Vn} generated with respect to the relatively prime pair (P, Q), where Q^0 and 
P > 1. As in the previous section, it will be convenient to first demonstrate irrationality for a gen-
eral family of series having terms of the form (xkxk+l...xk+f{n))~l, where {xn} is an arbitrary 
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strictly Increasing sequence of positive integers. Although a similar result was established in [5] 
via an indirect argument, the version proved here is far stronger in comparison because we do not 
need to impose the restrictive divisibility assumption that for any mGN\{0} there exists an n 
such that m\xlx2...xn. However, it should be noted that this condition, which was also used in 
[7], was the source for the restriction on the parameter Q that was needed to argue in a similar 
manner as in [5]. 

Theorem 3.1: Let {xn} be a strictly increasing sequence of positive integers and g:N->N Y{0} 
a strictly monotone increasing function. If, in addition, {bn} is a bounded sequence of nonzero 
integers, then T^=\bnIan converges to an irrational number, where an = xxx2...x ^ny 

Proof: From the assumption, it is immediate that the series in question are absolutely con-
vergent. Denoting the sum of the series by 0, we again consider the sequence of rational approxi-
mations pn lqnto 9 generated from the 17th partial sums expressed in reduced form. As pn lqn are 
clearly nonconstant, the result will follow upon showing that \qn9- pn | = o(l) as n->oo. Since 
(pn, qn) = 1, the lowest common denominator of the m fractions {bn lan)™=l must be greater than 
or equal to qm, but as xxx2...x ^ is one common denominator, we deduce that qm < xxx2...xg^my 
Thus, if \bn | < M for all w, then 

>M±^ = M±± (9) kmd~Pm 
00 h 

Z um+r 
a r=l am+r r=l Q-

where af
r = xg{m)+l... xg(m+r). Now, by the strict monotonicity of xn, all g(m + r)- g(m) terms in 

the definition of a'r are greater than or equal to xg(m)+l. Consequently, as g(m 4- r) - g(m) > r, one 
deduces a'r > x^(w)+1, and so 

I ^ Z ^ H . - ^ - T T - (10) 

r = l ar r=l Xg(m)+l L 

Thus, by combining (9) with (10) together with the monotonicity of xn and g(-), it is readily 
apparent that \qm9-pm | -»0asm->oo. D 

Corollary 3.1: Suppose {[/„} and {Vn} are generated with respect to the relatively prime pair 
(P9 0 , with Q * 0 and P > \Q +1|. If, in addition, f:N.-+N\ {0} is a strictly monotone increas-
ing function and {bn} is a bounded sequence of nonzero integers, then J^=ibn/an converges to an 
irrational number, where an = Uk...Uk+f(n) oran=Vk...Vk+m. 

Proof: In Theorem 3.1, substitute xn for either U„ or V„, which are strictly monotone in-
creasing sequences of positive integers. If g(n) = f(n) + k, then Z^=! hn lan sums to an irrational 
number. In the case in which k>l9 the result will follow upon multiplying the series by the 
product xx ...xk_x. U 

To conclude, we shall prove, as in [5], a companion result to Theorem 3.1 in which a class of 
irrational valued alternating series were constructed. Again one can dispense with the divisibility 
condition that was required in [5]; however, in its place we have imposed an order condition. 

Theorem 3.2: Let {xn} and {yn} be two strictly increasing sequences of positive integers such 
that yn = o(x„) as n -> oo and for all n sufficiently large, 
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y„+i <y„<x„. (11) 
*-n+l 

If, in addition, g: N-> N\{0} is a strictly monotone increasing function, then JZ=i{~~Wyn^an 
converges to an irrational number where an - X\*2-~xg{ny 

Proof: Using (11) and the fact that g(ri) > n, observe that, for n sufficiently large, 

yn+i qn _ yn+\ i ^ >Wi ^ J W 
an+l y» yn Xg(n)+l'-'Xg(n+l) J V ^ / H - l ) .Vw^w+l 

<1 

and 

0 < ^ = (xP..xg(n)_0-1-^L-<(xI...xg(„)_1)-1^<(x1...xg(n)_1)-1^0 

as n—>oo. So, by Leibniz1 criterion, the alternating series converges. Denoting the sum of the 
series by #, we again consider the sequence of rational approximations pn/q„ to 0 generated 
from the 17th partial sums expressed in reduced form. As pn lqn are clearly nonconstant, the result 
will follow upon showing that \qn0- pn |= o(l) as n -> oo. Since (pn,qn) = 1, the lowest common 
denominators of the m fractions {(-l)n y„ / ®n}™=i niust be greater than or equal to qm, but since 
xxx2 '••%g(m) is one common denominator, we deduce that qm<am. Now 

\qm0-Pm\ = q» Z H)' «y» 

n=m+l 
= q» Z(-D ,r+i y* <an ZH> • + 1 ^ 

r=l a„ 
(12) 

furthermore, by standard bounds from the theory of alternating series, we also have that 

o < ^m+i y™+i < v* (—\Y+i ^m+r < ^m+i 

Am+\ Am+2 r = i 

Thus, we can, obtain, from (12), the upper bound 

\qme-pm\<am^ = ym+i 

Am+l 

< y?n+l < Jm+1 
am+l Xg(m)+l • • • Xg(m+l) X. g(m+l) -*m+l 

Hence, the result is established since, by assumption, ym+l I xm+l -> 0 as m -> oo. D 

As an application, we can now construct the following class of irrational valued series involv-
ing generalized Fibonacci numbers and the Euler totient function. 

Corollary 3.2: Suppose {£/„} is generated with respect to the relatively prime pair (P, Q) with 
Q < 0 and P > 0, then 

f y iv* Pi") 

where <p{ri) is Euler's totient function, will converge to an irrational number. 
Proof: In Theorem 3.2, substitute xn for Un, which is a strictly monotone increasing 

sequence of positive integers. If, in addition, we set g(ri) = n and yn -<p{n), then the irrationality 
of the series sum will follow if the inequality in (11) holds for n large and <p(ri) - o(Un). To this 
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end, we first note that, for the prescribed ( P , 0 values, one must have n = o(Un)9 and since 
<p(n)<n for all n9 we deduce that 0<<p(ri)/Un <nlUn -^0 as w-»oo. Consequently, for n 
sufficiently large, 

^-<l^(n)<n<Un, 
un+\ 

as required. D 
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1. INTRODUCTION 
We consider a generalization of Fibonacci sequence, which is called the ^-generalized Fibo-

nacci sequence for a positive integer k>2. The k-generalized Fibonacci sequence {g^} is 
defined as 

and, for n>k>2, 
2(k) ^ £(k) (k) (k) 
Sn £w-l ^ £«-2 ^ T 8n-k • 

We call g^ the n^ k-generalized Fibonacci number. For example, if k = 2, then {g^} is a 
Fibonacci sequence and, if k - 5, then g[5) = g^ = g^5) = 0, g/jp = g^ = 1, and then the 5-general-
ized Fibonacci sequence is 

0, 0, 0,1,1,2,4,8,16, 31,61,120, 236,464, 912,1793,.... 

Let 4_! be the identity matrix of order k-\ and let E be a 1 x (k -1) matrix whose entries 
are l's. For any k > 2, the fundamental recurrence relation g^ - g^\ + gn% "•— + Sn

k-k c a n be 
defined by the vector recurrence relation 

where 

&n+\ 
2(k\ Sn+2 

Sn+k _ 

Qk = 

= Qk 

ro i 
l . 

g 
g 

(k) 
n 
(k) 
P>+1 

Jbn+k-\ 

fe-1 
E 7, ~ h 

(1) 
kx.k 

The matrix Qk is said to be a k-generalized Fibonacci matrix. In [4] and [5], we gave the rela-
tionships between the ^-generalized Fibonacci sequences and their associated matrices. 

In 1843, Binet found a formula giving Fn in terms of n. It is a very complicated-looking 
expression, and the formula is 

F = V5 
1-V5Y fi-VsY an-(5n 

a-p ' 
where a and/? are eigenvalues of Q2. In [6], Levesque gave a Binet formula for the Fibonacci 
sequence by using a generating function. 
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In this paper, we derive a generalized Binet formula for the ^-generalized Fibonacci sequence 
by using the determinant and we give several combinatorial representations of /t-generalized 
Fibonacci numbers. 

2. GENERALIZED BINET FORMULA 

Let {g^} be a ^-generalized Fibonacci sequence. Throughout the paper we will use gn = 
gn+k-2> « = 1,2,..., and Gk = (gu g2, g3,...) for notational convenience. 

For example, if k = 2, G2 = (1,1,2,3,...), and if k>3, Gk = (1,1,2,4,...). For Gk9 k>2, 
since gx = g2 - 1, we can replace the matrix Qk in (1) with 

& = 

0 
0 

6 
.S\ 

Then we can find the following matrix in [3] 

Q? = 

gn-(k-l) g\,2 

gn-(k-T) gl, 2 

gn-l gk-l, 2 

g» gk ,2 

gi 0 
0 Si 

0 •'•• 

gl ••• 

gU 
gh 

gk-l, 3 

8k,3 

... o 

... o 

••• gi 
gl g2_ 

•• glk 
•• gh 

•• gk-l 

•• g\j 

:-\ gn-(k-2) 

c-l gn-(k-3) 

k-l gn 

i-l gn+l 

(2) 

where 
Si, 2 ~ Sn-{k-i)+ Sn-(k-{i-l)) 

Si, 3 = Sn-(k-i)+Sn-(k-(i-l)) +Sn-{k-{i-2)) 

Si, k-l - Sn-(k-i) + Sn-(k-(i-l)) + Sn-(k-{i-2)) + ' ' ' + gn-(k-(i-{k-2)))> 

/ = 1,2,...,&. Since Qtfif = Qt+w, Sn+m = (Qk+lk,u ^nce, we have the following theorem. 

Theorem 2.1 (see [3]): Let Gk =(gl7g2,...). Then, for any positive integers n and m, 

gn+m ~ SnSm-(k-l) + (Sn + Sn-l)Sm-(k-2) 

+ (gn + &,-l + Sn-2)Sm-(k-3) + '~ 

+ (&, + &.-1 + S«-2 + " ' ' + ^ - ( ^ " 2 ) ) ^ - l + Sn+\Sm-

Note that ^ + w = (Qk
+m)Kl = (GT,")*-u • T h e n w e h a v e t h e following corollary. 

Corollary 2.2: Let Gk = (ft, g2,...). Then, for any positive integers w and m, 

Sn+m - Sn-lSm-(k-2) + (Sn-\ + gn-l)gm-(k-3) 

+ (gn-l + Sn-2 + ^«-3km-(^-4) + ' ' ' 

+ (Sn-l + &.-2 + £ . - 3 + *' * + Sn-{k-l))Sm + ft^m+1-

Now we are going to find the generalized Binet formula for the ^-generalized Fibonacci 
sequence. 
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Lemma 2.3: Let bk = %£{•£$. Then bk < bk+l for * > 2. 

Proof: Since |^->I | randA:>2, 

k + l 
k + 2 

k+l 
and 

tk+2 

k + 2 

7*+l 

Therefore, 

h - lk+1 (k + l 
k+l k + 2{k + 2 

k+l lk+1 

= h 
for each positive integer k. • 

Lemma 2.4: The equation zk+1 - 2zk + 1 = 0 does not have multiple roots for k > 2. 

Proof: Let f(z) = zk-z £-1 -z-1 and let g(z) = (z-l)/(z). Then g(z) = zM ~2zk + l. 
So 1 is a root but not a multiple root of g(z) = 0, since k > 2 and / ( l ) * 0. Suppose that a is a 
multiple root of g(z) = 0. Note that a * 0 and a •*• 1. Since a is a multiple root, g(z) = ak+l -
2ak +1 = 0 and g'(a) = (k + \)ak - 2kak~l = ak~\{k + \)a - 2k) = 0. Thus, a = •£?, and hence 

0 = -a*+1 + 2 a * - l = a * ( 2 - a ) - l 
2k 

k + l 

2k+1( k 

2k 
k + l 1 = 2k 

k + l 
2k + 2-2k 

k + l 

* + l U + l 
•l = k - l 

Since, by Lemma 2.3, b2 = (~) x 2 = ̂ 5- > 1 and bk < bk+l for k > 2, bk * 1, a contradiction. 
Therefore, the equation g(z) = 0 does not have multiple roots. • 
Let /( /I) be the characteristic polynomial of the ^-generalized Fibonacci matrix Qk. Then 

f(X) = Xk - Ak~l X - 1 , which is a well-known fact. Let AhX2,...,Xk be the eigenvalues of 
Qk. Then, by Lemma 2.4, Xl,X2,...,Xk are distinct. Let A be a k x k Vandermonde matrix as 
follows: 

SetF = Ar. Let 

1 
x} 

if1 

d, 

1 
A2 

/ i 2 

= 
X"2

+h 

A"t 

.. 

.. 

•• 

-f 
-1 

-1 

1 
h 
4~l 

and let Vj}) be a A: x k matrix obtained from Fby replacing the y* column of Fby d,. Then we 
have the generalized Binet formula as the following theorem. 
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Theorem 2J; Let {g(
n

k)} be a ^-generalized Fibonacci sequence. Then 

Sn = 
_ det(i>f}) 

det(F) ' (3) 

where g„ = g$k_2. 

Proof: Since the eigenvalues of Qk are distinct, Qk is diagonalizable. It is easy to show that 
QkA = AD, where D = diag(21? A2,..., Xk). Since A is invertible, A7lQkA -D. Thus, Qk is sim-
ilar to D. So we have QkA = ADn. Let Qk = [^]fcxjk. Then we have the following linear system 
of equations: 

And, for each j = 1,2,..., k, we get 

Therefore, by (2), we have the explicit form 

det(F,(,)) 
det(F) ' 

_ detff?**) 
* « - * » - det(F) • U 

We note that, if k = 2, then (3) is the Binet formula for the Fibonacci sequence. 

3. COMBINATORIAL REPRESENTATIONS OF 
^-GENERALIZED FIBONACCI NUMBERS 

In this section, we consider some combinatorial representations of g„ = g„k+k-.2 f°r * - 2-
Let Sk be a k x & (0, l)-matrix as follows: 

" E 1' 
4-i o. 

Then, by (2), 

SZ=[ty] = 

In [1], we can find the following lemma. 

Lemma 3.1 (see [1]): 

8n+l 

gn 

8n-(k-3) 

gn-(k-2) 

8k, k-l 

8k-l, k-l ' 

62, k-l 

8i, k-l • 

- gh 
•• gt-1,3 

•• gh 
•• gh 

gh 
gk-l, 2 

gh 
gl,2 

gn 

gn-l 

8n-(k-2) 

8n-(k-l) 

, . = V ^ 3 j ± l Z l ^ x I "i 
(mu...,mk) ml + '"+mk 

ml,...>mk 

(4) 
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where the summation is over nonnegative integers satisfying jnl + 2m2 + --+krnk = n-i + j and 
defined to be 1 if n = i - j . 

Corollary 3.2: Let {ffi} be the ^-generalized Fibonacci sequence. Then 

gn mh /!%+ • • •+ / !% 
ml,...,mk 

where the summation is over nonnegative integers satisfying mx + Im^ + • • • + kmk =n-l + k. 

Proof: From Lemma 3.1, if / = 1 and j = k, then the conclusion can be derived directly from 
(4). D 

Let A = [afJ] hemnxn (0, l)-matrix. The permanent of A is defined by 

n 

aeSn i=l 

where a runs over all permutations of the set {1,2,...,«}. A matrix >4 is called convertible if 
there is an « x n (1, -1)-matrix ff such that pen4 = det(̂ 4 o H), where 4̂ o f̂ denotes the Hada-
mard product of A and H. Such a matrix H is called a converter of A. 

Let ^ " ' ^ = [ftj] = Tn+Bn, where 2; = [ttj] is the /? x n (0, l)-matrix defined by ty = 1 if and 
only if |/ - j | < 1, and i?„ = [by] is the n x n (0, l)-matrix defined by by - 1 if and only if 2 < j - i < 
k-l. In [4] and [5], the following theorem gave a representation of g^. 

Theorem 3.3 (see [4], [5]): Let {g^} be the ^-generalized Fibonacci sequence. Then 

g^per^"-1-*) , 
where gn = g(„%_2. 

Let H be a (1, -1) -matrix of order « - 1 , defined by 

H = 

1 
1 
: 
1 
1 

-1 
1 
: 
1 
1 

1 • 
-1 • 

: * 
1 • 
1 • 

•• 1 
•• 1 
•. : 
.. _i 
•• 1 

where gn = g(
n^ 

Then the following theorem holds. 

Theorem 3.4: Let {g^} be the ^-generalized Fibonacci sequence. Then 

Proof: Since the matrix 9^~ u ) is a convertible matrix with converter H, we have 

and, by Theorem 3.3, the proof is complete. • 

Now we consider the generating function of the ^-generalized Fibonacci sequence. We can 
easily find the characteristic polynomial, xk - xk~l x -1, of the ^-Fibonacci matrix Qk. It 
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(5) 

follows that all of the eigenvalues of Qk satisfy xk -xk l + xk 2 + • • • + x +1. And we can find the 
following fact in [5]: 

*" = gn-k+ixk~l + (&-*+i + gn-k + - + gn-2k+z)*k~2 

+ (gn-k+l+g„-k +—+g„-21c+4)xk~'3 

+ -+(g„-k+i + g„-k)x + gn 
-Jfc + 1 ' 

Let Gk(x) = gl + g2x + g3x2 + °>°+gn+lxn + - . Then 

Gk(x) - xGk(x) - x2Gk(x) - - . - xkGk(x) = (l-x-x2--- xk)Gk(x). 

Using equation (5), we have (1 - x- x2 - -• • - xk)Gk(x) = gt = l. Thus, 

G^(x) = ( l - x - x 2 xk)~l 

forO<JC + Jt2 + - - - + x * < l . 
Let fk(x) = x + x2 +»• • + xk. Then 0<fk(x)<l and we have the following lemma. 

Lemma 3.5: For positive integers/? and n, the coefficient of xn in (fk(x))p is 

Mflra n-kl-py k 

Proof: 
(fk (x))p = (x+x2 + • • • + xky = xp(\+x+x2 + • • •+xk~ly 

= * ' 
l-x 
l-x 

.k V 
= yP Xp ( 1 - * * J 

l-x 

im-^nny)) 
In the above equation, we consider the coefficient of x". Since the first term on the right is xp, 
we have kl+i = n-p, that is, i = n-kl-p. If l = q for any q = 0,1,...,/?, then the second term 
on the right is 

(-if p\(n-kq-\ 
q)\n-kq-p 

r»~P 

So the coefficient of x" is 

Theorem J.6: For positive integers/? and w, 

•kl-p (6) 

Proof: Since 
Qt(x) = gx + g2x + g3x2 +... - f ^ x " + • 

1-x-x2 Jfc ' 
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the coefficient of x" is the (n+k- l)st Fibonacci number, that is, gn+l in Gk. And 
1 1 Gk{x) = l-x-x2 xk l-fk(x) 

= i+fk(x)+(/k(x))2+-+(/k(x)y+-

?)(-iy^lr/+lV-' (7) 
1=0 \£J i=0 

=i+/tw+xal(?)(-iyxBi(^1)x' 

+-+*"Sf7l(-iy^if"+/-1V 
1=0 \ S i=Q\ / 

Since we need the coefficient of xw, we only need the first n + \ terms on the right and the 
(p + l)st term in (7) such that 

So kl+i - n - p, as we see in (6), and f<p<n. Thus, by Lemma 3.5, we have the theorem. • 

From the above theorems, we have five representations for g„, g„ = g%+n-2- That is, 

gn = perS*"-1^ = det(^(""U) off) = ~ ^ ~ 

^<p<n-l 1=0 V / V r J 

= I 
where the summation is over nonnegative integers satisfying ml + Im^ -\ hkmk = n-l + k. 
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The generalized Fibonacci and Lucas numbers are defined by 

an -Bn 

^ ^ z f - > K = ""+fin (i) 

where a = P+^P
2 ~4q , (3 = P~^P

2 ~4q , p > 0, q^O, and p2 -4q > 0. It is obvious that {£/„} and 
{VJ are the usual Fibonacci and Lucas sequences {FJ and {LJ when p = -q = l. Recently, for 
the Fibonacci numbers, Zhang established the following identities in [2]: 

lF a F 6 = i ( (» - l )F ,+2nF B _ I ) , «*1 , (2) 

Z F
aFbFc = ^:((5»2 - 9n - 2)F„_, + (5«2 - 3/i - 2)F„_2), « > 2, (3) 

and when n> 3, 

X FaFiFcJFd=-l-((4n3-12n2-4n + 12)Fn_2+(3«3-6»2-3n + 6)F„_3). (4) 
a+h+c+d=n 1 3 U 

In this paper, we extend the above conclusions. We establish some identities related to {Un} and 
{VJ. The equalities (2)-(4) emerge as special cases of our results. 

Consider the generating function of {Unk}: Gk(x) = E^L0 Unit*"* where k is a positive integer. 
Clearly, by (1) and the geometric formula, 

fcV ' l-Vkx + qkx2 ' 

LetFfc(x) = ^ . Then 

«=i 1-r^x + f x 

For i^(x), we have the following lemma. 

Lemma: If Fk(x) is defined by (5), then Fk(x) satisfies 

Fi(A=•z&rriF&xWk - %r~x) - V^(*)X (6) 

F&) = ̂  * j ^ W * - V*)2 - ^Fi^Wk ~ tf*) + 32q2kFk(x)), (7) Uf 

and 
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F*{X) = 6{V^qkf{mxWk ~ ̂ ^ ~ 30qkFk"(xW« ~ 2qkx)2
 ( 8 ) 

+ 22Sq2kFk%x)(Vk - 2qkx) - 3Mq*Fk(x)). 

Proof: Noticing that 

^ . x Uk(Vk-2qkx) _(Vk-2qkx)Fk(x) 
A ) (l-Vkx + qkx2)2 l-Vkx + qkx2 ' 

we have 

l-Vkx + qkx2 Ut 

and hence (6) holds. Differentiating in (6), we get 

2Fk{x)Fk\x) = Ut-T(Fk%xWt ~ V * ) - 6qkFkXx)). 

Therefore, 

2Fk(x)Fk'(x)(Vk - 2qkx) = -^—(Fk"(x)(Vk - 2qkx)2 - 6qkFk\x)(Vk - 2qkx)). 

Using (6), we have 
fl/2 AJc 

2Fk{x)[YM_^F2{X) + 4qkFM = Uj^_(mxWk _2qkxf _6^'(x)(^ -2qkx)). 

Using (6) again, we can prove that (7) holds. Similarly, differentiating in (6) and applying (6) and 
(7), we can obtain identity (8). • 

From the above lemma, we have the main results of this paper. 

Theorem: Suppose that k and n are positive integers. Then 

Z UakUbk=-fi^{{n-\)UnkVk-2qknU{n_l)k\ n>\, (9) 

u2 
UakUbkUck ~ ^ / 

a+b+c=n 
„2 

Z UakUbkUck = 2(V2_4qk)2 ( ("-1)("-m2Un k -qkVk(4n2 -6n-4)U(n_l)k 

+ {An2 - 28w + 28(» - 3)Vk + 80)[/(„_2),), n > 2, 

and 

Z UakUbkUckUdk = ̂ . ^ (Vk\n -1)(» - 2)(» - 3)Unk 
a+b+c+d=n °Vk ^H ) 

-6q%2(n-2)(n-3)(n + l)U(n_l)k ( 1 1 ) 

+ l2q2%(n-3)(n2+n-l)U{n_2)k 

-Sq3kn(n2-4)Uin_3)kln>3. 

Proof: To show that this theorem is valid, comparing the coefficients of xn~2, x"~3, and xn~4 

on both sides of the Lemma, we have identities (9)-(l 1). • 
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Corollary. Assume that k and n are positive integers. Then 

I FakFbk= F* ((n-\)FnkLk-2(-l)knF(n_l)kl n>\, (12) 

I FakFbkFck = F' ((n-l)(n-2)LlF„k-(-l?Lk(4n2-6n--4)F(n_l)k 
a+b+c=n 2kLk-*\-1) ) (13) 

+ (4«2-28« + 28(«-3)4+80)^„_2)A), n>2, 
and 

I FakFbkFckFdk= Fl . ((/i-l)(W-2)(/i-3)4FBt 
a+b+c+d=n °(Afc-4(_1) J 

- 6(-l)fc(» - 2)(/i - 3)(» + l)ZjF((_1)k (14) 
+ 124(«-3)(»2 + »-l)F(„_2)fc -8(-l)*"(»2 -4)F(„_3)i), n > 3. 

From the Corollary, it is very easy to obtain (2)-(4). If k = 1 in (14), then 

+ 12(«-3)(«2 +w-l)Fw_2 +8w(w2 -4)i^_3). 

750 

By using JF„ = Fn_l+F„_2 (n > 2), we can obtain (4). Similarly, from (12), (13), and Fn = Fn_x + 
Fn_2, we have identities (2) and (3). In addition, we can work out other sums from the Corollary. 
For example, when k = 2 and q = -l in (13), we have 

Z F2aF2bF2c = ±-(?(n - IX* - 2)F2n - 3(4^2 -6n~ 4)F2n_2 + (4«2 + 56n -112)F2n_4). 
a+b+c=n D U 

Applying F„ = Fn_l + Frl_2 (n > 2) again and again, we get 

Z f
2 A 4 = ̂ ( C * ! 2 -63« + 66)F2n_3 -f (10/i2 +20/1- 124)F2„_4). 

When p~2 and # = -1 in (10), we obtain 

I MA = ̂  1 n̂ ft" -1)(w ~ 2)a2/>»* - ( " ^ a C ^ - 6» - 4)P(„_1)t a +6+ c=„ 2 (g f c -4 ( - l ) ) 
+ (4w2 - 28* + 28(» - 3)Qk + 80)J»(I1_2)jt), » > 2, 

where i^ and Qk denote the A:* Pell and Pell-Lucas numbers (see [1]). 
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1. INTRODUCTION 

The notion of an oo-generalized Fibonacci sequence has been introduced and studied in [8], 
[9], and [11]. In fact, such a notion goes back to Euler. In his book [4], he discusses Bernoulli's 
method of using linear recurrences to approximate roots of (mainly polynomial) equations. At the 
very end, in Article 355 [4, p. 301], there is a brief example of the use of an oo-generalized 
Fibonacci sequence for the approximation of a root of a power series equation.* 

The class of sequences defined by linear recurrences of infinite order is an extension of the 
class of ordinary r-generalized Fibonacci sequences (r-GFS, for short) with r finite defined by 
linear recurrences of r^ order (for example, see [1], [2], [3], [6], [7], [10], etc.). More precisely, 
let {(*J}J>Q and {a -}7.>0 be two sequences of real or complex numbers, where Gj ^ 0 for somej. 
The former is called the coefficient sequence and the latter the initial sequence. The associated 
co-generalized Fibonacci sequence (oo-GFS, for short) {Vn}n€Z is defined as follows: 

Vn = a„ (n<0), (1.1) 

Vn-%Fn-j-x (**!)•• 0-2) 

As is easily observed, the general terms Vn may not necessarily exist. In [8], a sufficient condition 
for the existence of the general terms has been given. 

In this paper, we first give a necessary and sufficient condition for the existence of the general 
terms Vn (n>l) of an oo-GFS (see Section 2). We will see that the condition in [8] satisfies our 
condition, but not vice versa. We then consider a process of approximating a given oo-GFS by a 
sequence of r-GFS's, where r < oo varies (see Section 3). As is well known, there is a Binet-type 

* The authors would like to thank the referee for kindly pointing out Euler's work. 
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formula for the general terms of an r-GFS (for example, see Theorem 1 in [3]). In Section 4, we 
use such a formula together with the approximation result in Section 3 to obtain an asymptotic 
Binet formula for an oo-GFS. In Section 5, we study the asymptotic behavior of oo-GFS's using 
the results in'the previous, sections. In Section 6, we concentrate on the case in which a. > 0 and 
obtain some sharp results about the asymptotic behavior of oo-GFS's. Finally, in Section 7, we 
give an explicit example of our main theorem of Section 6. 

2* EXISTENCE OF GENERAL TERMS 

Let {aj}j>Q and {CC_J}J>0 be as in Section 1 and {Vn}nEZ be the associated QO-GFS defined by 
(1.1) and (1.2). Equation (1.2) can be rewritten as follows: 

«-2 oo rt-2 oo 
Vn = HajVn-J-l + YajK-j-l = £ * / " - / - ! + X>/-H,-l<*-/ • (2.1) 

/=0 y=n-l ;=0 /=0 

Then it is easy to see that we have the following necessary and sufficient condition for the exist-
ence of the general terms Vn (n > 1). 

Proposition 2.1: The genera! term Vn exists for all n>\ if and only if the following condition 
(Q,) is satisfied. 

(Q,): The series E7=0
 aj+n-\a-j converges for all n > 1. 

Condition (Q,) is trivially satisfied in the case of an r-GFS with r finite, since ctj = 0 for all 
j>r. 

Remark 2.2: As particular cases of Proposition 2.1, we can easily prove the following. 
(a) If the series EJ=0 oc_j converges absolutely and the sequence {^l^o *s bounded, then Vn 

exists for all n>\. 
(b) If the series Zy=oay converges absolutely and the sequence {a_j}j^0 is bounded, then Vn 

exists for all n > 1. 
For another existence result, see Lemma 6.6. Compare Remark 2.2 with Section 2.1 in [11]. 
Now let us compare our condition (Cro) with the sufficient condition considered in [8] for 

the existence of the genera! terms Vn (w>l). Let h{z) be the power series defined by h(z) = 
J^=QGjZJ. The conditions considered in [8] are the following. 

(CI): The radius of convergence R of the power series h(z) is positive. 
(C2): There exist C> 0 and T> 0 with 0<T<R satisfying |a„y | < CP for all j > 0. 

It was established in [8] that, if conditions (CI) and (C2) are satisfied, then the general term Vn of 
the associated oo-GFS exists for all « > 1. 

It is easy to see that, if conditions (CI) and (C2) are satisfied, then (Q,) is also satisfied. On 
the other hand, the examples a. = (] + ^)~3? a-j = j> m^ aj = (J + ^)~\ a-j = (-l)J both satisfy 
condition (CI), but not (C2), while (C^) is satisfied in both cases. Therefore, condition (Cw) is 
strictly weaker than (CI) and (C2). 
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3. APPROXIMATION BY r-GFS's WITH r FINITE 
Let {cij}j>o and {a_j}j>0 be sequences of complex numbers as before. For each r >1, let 

{F„(r)}„>_r+1 be the r-GFS defined as follows: 

VP = an (n = -r + l,-r + 2,...,0), (3.1) 

^ r ) = Z " / # - i in>\). (3.2) 

Note that here we allow the case where ar_x = 0, while ar_x ̂  0 is assumed in [3]. 
In this section, we prove the following approximation theorem. 

Theorem 3.1: The general term Vn exists for all n> 1 if and only if the sequence {V^}r>l con-
verges for all n > 1. Furthermore, in this case, for all n > 1, we have 

Vn = XxmV". (3.3) 
r-»oo 

Proof: We prove, by induction on k, that the terms Vx,...,Vk exist if and only if, for all n with 
1 < n < k, the sequence {V^}r>l converges and (3.3) holds. When k = 1, we have 

Vi = taja-j a n d Vi(r) = rfaja-j 

for all r > 1. Thus, Fj exists if and only if the sequence {F1
(r)}r>1 converges. Furthermore, in this 

case, we have Vx = limr_^00F1
(r). 

Now suppose £ > 2 and that the induction hypothesis holds for k -1. For r > &, we have 
Jfc-2 oo 

Vk = X * /w- i + Z a/**-/-i 
and 

Then, by our induction hypothesis, we see that the sequence {J^(r)}r>i converges for all n with 
\<n<k if and only if the terms Vh...,Vk exist. Furthermore, in this case, using our induction 
hypothesis, we see that (3.3) holds for n = k by sending r —» oo in (3.4). D 

4. ASYMPTOTIC BINET FORMULA 

Let {dj}j>Q and {GC-J}J>0 be sequences of complex numbers. For each r >1, consider the 
polynomial Qr{z) defined by 

a(*)=i-£V+1- (4.i) 
Note that the characteristic polynomial Pr(z) of the r-GFS {F„(r)}„>_r+1 defined by (3.1) and (3.2) 
is given by 

Pr(z) = zrQr{z~l), (4.2) 
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which Is a polynomial of degree r. Let &[),...>2iQr) be the complex roots of Pr(z), whose respec-
tive multiplicities are n%r\...,m$.y Note that m{r) + — +m$>r) =r . The classical Binet-type 
formula for the r-GFS {J7„(r)}„>_r+1 is given by the following: 

«(r) n£k)-\ 

Kr) = I, TtiWWr, (4.3) 
k=l j=0 

where the complex numbers / ^ are determined by the initial sequence {&:_,• }0<7<r-i (e-§-> s e e t5, 
Theorem 3.7]; [3, Theorem 1]). 

Remark 4.1: In [5] and [3] it is assumed that ar_x 5*0. When this condition is not satisfied, the 
polynomial Qr{z) m&y n^t necessarily be of degree r. On the other hand, the characteristic poly-
nomial Pr(z) is always of degree r, which may have zero as a root of some multiplicity. Hence, 
the above Binet-type formula (4.3) holds even if ar_x - 0. 

By Proposition 2.1, Theorem 3.1, and (4.3), we have the following asymptotic Binet formula. 
Theorem 4.2: If condition (QJ is satisfied, then we have, for all n > 1, 

u{r) 4 r ) - i 

Compare the above results with Problem 4.5 in [8]. 

Example 43: Consider the oo-GFS {Vn}neZ associated with the coefficient sequence a- = -yJ+l 

and the initial sequence a_} - S0J (J > 0), where y is a nonzero complex number, S0j = 0 if 
j * 0, and 50Q = 1. Note that condition (C^) is. trivially satisfied. By a straightforward calcula-
tion, we see that 

[0 (n * 0,1), 
Vn = \l (/i = 0), (4.5) 

[-r (n = l). 
On the other hand, we have Pr(z) = zr + yzr~l + • • • + ̂ r_1z 4-^r. Thus, all the roots are simple and 
they are of the form X{£ = y£?r+l (A = 1,2,..., r) for a primitive (r + l)st root £r+1 of unity. Then 
we have* 

t,fii%(.4yr = S0n (-r + l<»<0). (4.6) 

We multiply each of the equations of (4.6) by y~n and sum them up for 'n - -r +1,..., 0. Then we 
obtain 

Z^ 0 (4 r ) r = -r-% (4.7) 
jfc=i 

since 

i(4r))"r-" = -(4r)rrr-

* Using (4.6), we can obtain explicit values of flfy, although we do not need them here. 
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By successively multiplying (4.6) and (4.7) by yr+1 = 0p)r+l, we see that 

fO, w^0,l (mod r + 1), 
V^ = l yn

y w = 0 (mod r + 1), (4.8) 
-yn, n^l (mod r +1), 

by (4.3). Hence, we have limr_>00 F„(r) = Vn in view of (4.5). 

5. ASYMPTOTIC BEHAVIOR OF oo-GFSfs 

Let {dj}j>o and {CC-J}J>O be sequences of complex numbers. For each r>l, consider the 
characteristic polynomial Pr(z) of the r-GFS {Vn

(r)}n>_r+l as in (4.2). Let r0 > 1 be an integer such 
that arQ_i ^ 0 and let us assume that, for each r > r0, there exists a nonzero dominant root qr of 
Pr(z) with dominant multiplicity 1 (for these terminologies, refer to Section 3 in [3]). In [3], it 
has been shown that Lr = hmn_>aoV^/q" exists and its explicit value has been obtained in terms 
of qr together with the coefficient and the initial sequences. 

Let us assume that the sequence {qr}r>rQ converges to a nonzero complex number q. If one 
looks at Theorem 4.2, then it might seem easy to obtain a convergence result for the sequence 
{Vn/qn}n>l. However, since equation (4.4) is given by the limit for r -> oo, we have to be careful 
with the relationship between the convergence with respect to r and that with respect to n. For 
this reason, we need the following definition. 

Definition 5.1: Let {4r)}„>no?r>^) be a doubly-indexed sequence of real or complex numbers. We 
say that the sequences {x^r)}n>^ are uniformly convergent for r>r0 if there exists a sequence 
{Lr}r>r0 of real or complex numbers such that, for every s >0, there exists an N>n0 satisfying 
\x^ -Lr\< s for all n>N and all r>r0. It is easy to see that in this case, if the sequence 
{j4r)}r>ro converges to xn for each n > /^, and if L = limr^00 Lr exists, then lim^^^ xn exists and 
is equal to L. 

Then, combining the results of [3], Theorem 3.1 of the present paper, and the above defini-
tion, we obtain the following (for an explicit example, see Section 7). 

Theorem 5.2: Suppose that 
(a) Pr(z) has a nonzero dominant root qr of dominant multiplicity 1 for each r > r0, 
(h) q- lim,.^^ qr exists and is nonzero, 
(c) the general term Vn exists for all n > 1, 
(d) the sequences {4r)}/i>o = {^(r)/$r}«>o are uniformly convergent for r>rQ with Lr = 

l i m w ^ ^ ) / ^ , a n d 
(e) L = limr_>00 Lr exists. 

Then the limit l im^^ Vnlqn exists and is equal to L. 

Proof: By Theorem 3.1 and our assumptions, we have Vnlqn =limr_^c0F„(rVg^ for each 
n > 1. Then, by the observation given in Definition 5.1 together with our assumptions, we have 
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Remark S3: As In the above theorem, let us assume (a)-(c) and, instead of (d) and (e), let us 
assume that L = lim^r^O0x<f'> exists, where we write H m ^ ^ x ^ = L if, for every e>0, there 
exists an N > r0 such that \x^-L\<s for all w, r > N. Then we have 

L=lim-a-=limZr. (5.1) 

The following lemma is easy to prove. 

Lemma 5.4; Let {y^}„>n^r>rQ be a doubly-indexed sequence of real or complex numbers such 
that, for every n > w0, limr^00 y(

n
r) = yn exists and lim^^ yn = y exists. Then, for every n > «0, 

there exists an r(n)>rQ such that r(ri)<r(n + l) for all n>nQ and that the sequence {yir(n^}n>n 

converges to y. 
Let us assume conditions (a)-(c) of Theorem 5.2 and, for n > 1 and r>rQ, set y^ = VnIqn -

VPIq1}. Then, for every n > 1, we have l i m ^ ^ j ^ = yn = 0. Then l im^^ yn = 0 trivially exists. 
Thus, Lemma 5.4 implies that, for every n>l, there exists an r(n)>r0 such that r(l)<r(2)< 
r(3) < • • • and lim^*, ̂ r(77)) = 0. Therefore, we have the following theorem. 

Theorem 5«5: Suppose that 
(a) Pr(z) has a nonzero dominant root qr of dominant multiplicity 1 for each r > r0, 
(b) q- limr_>00 qr exists and is nonzero, and 
(c) the general term Vn exists for all n > 1. 

Then Z, = l im^^ Vn iqn exists if and only if l im^^ V^^Iq^ exists. Furthermore, in this case, 
we have 

Z = l i m - ^ = l i m ^ . (5.2) 
~^q* »->«o qn{n) 
n-*oo * 

In (5.1) and (5.2), we did not give the limiting value L explicitly. In the following section, we 
determine the explicit value in the case where a7- are nonnegative real numbers. 

6S THE CASE OF NONNEGATIVE COEFFICIENTS 

In this section, we assume that all the coefficients a} are nonnegative real numbers and 
consider the same problem as in the previous section. We use the same notations. 

It is not difficult to see that, for each r > r0, there always exists a unique real number qr > 0 
such that Pr(qr) = Qr(q7l) = 0 (for example, see Lemma 2 in [2], Lemma 8 in [3], and Section 12 
in [12]), where Q. is the polynomial defined by (4.1). Set pr = q~l. Define the power series Q(z) 
by Q(z) = 1 - zh(z) = 1 - X7=o QjZJ'+l and let R be the radius of convergence of Q(z), which coin-
cides with that of h(z). The following will be proved later in this section. 

Theorem 6.1: The sequence {qrl}r>r0 = iPr}r>rQ always converges and the following conditions 
are equivalent: 

(a) Condition (CI) is satisfied (i.e., R>0) and iim^^QQ(x) <0. 
(b) The limiting value / = limr_>00 pr > 0 and Q(l) = 0. 
(c) There exists a unique positive real number p such that Q(p) - 0. 

Furthermore, if (c) is satisfied, then we have p = limr_ 0̂0 pr. 
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The main result of this section is the following theorem. 
Theorem 6.2: Assume that one of the three conditions of Theorem 6.1 is satisfied. Suppose that 
drx = 1 for some rx > r0, 0<p< R, and 

qJ\a.j\<K ( />0) (6.1) 

for some constant K> 0, where dri = gcd{j -hl\aJ>0,0<j<rl-l} and q = p~\ If the sequences 
{V^ lq?)n>\ are uniformly convergent for r>rXj then Vn exists for all n and we have 

A 

1 ™ ^ = ̂  "— • (6.2) 
a.j 

W-»co 

y=o 

Let us begin by proving Theorem 6.1. 

Proof of Theorem 6.1: Suppose that r0<r<rf. Then we have Qr,(pr) = -arpr
r
+l 

ar'-\Pr' -0- Furthermore, we have 2r,(/v) = 0. Since £?r,(x) *s a decreasing function on (0, oo), 
we have pr > pr,\ i.e., the sequence {pr}r>ro of positive real numbers is nonincreasing. Hence, it is 
convergent. In the following, we set / = limr^00 pr > 0. 

For every r > r0 , we have 0<l<pr. Since Qr(x) is a decreasing function on (0, oo), we have 
0 < Qr(l) < 1. On the other hand, since Qr,(l) - Qr(l) = -arlr+l ar,_£r' < 0 for r, r' > r0 with 
r <r ' , we see that the sequence {Qr{I)}r>r is nonincreasing. Thus, l im^^g^ / ) exists and is 
equal to Q(l). Furthermore, we have 

0<Q(l)<h (6.3) 

(a) => (b): First, note that since Q(l) exists we have 0<1<R. 
Suppose 0 < / < R and Q(l) > 0. Since Q(x) is a continuous function on the interval (-R, R), 

there exists a sufficiently small positive real number rj such that Q(x) > 0 for all x e (/ - % 
l+rj)a (-R, R). Since / = lim,._»«> pr, there exists an rf > r0 such that pr e [/, / + rj) for all r > r'. 
Thus, Q{pr) > 0 for all r > r'. However, since Q(pr) = - HJ=r djp/+l < 0, this is a contradiction. 
Therefore, we have Q(l) = 0. 

If / = i?, then we have 0 < Q(R) < 1 by (6.3). Thus, we have Q(R) = Q(l) = 0, since Q(R) = 
lim;c_>^_0 Q(x) < 0 by our assumption. 

Therefore, we have Q(l) = 0, and this implies that / > 0, since, if / = 0, we would have Q(l) = 
1>0. 

(b) => (c): Setting p = I, we have Q(p) = 0. The uniqueness follows from the fact that Q(x) 
is a strictly decreasing function. 

(c) => (a): Since p>0 and Q(p) - 0, we see that 0<p<R, which implies condition (Cl). 
Furthermore, since Q(x) is a decreasing function on (0,i?), we have litnx_^R_0Q(x) < Q(p) = 0. 
This completes the proof. D 

Remark 6.3: When some a, is not a nonnegative real number, there does not always exist a root 
p of Q(z). For instance, in Example 4.3 of Section 4, we have Q{z) = l/(l-yz), which never 
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takes the value zero inside the convergence range. Compare this observation with Problem 4.5 in 
[8]. 

Since qr is a root of the characteristic polynomial Pr, we have 

q r q2
r qr

r +3-+-+f£L=i- (64> 
Combining this with Theorems 3, 5, and 9 of [3], we have the following lemma. 

Lemma 6.4: For each r > r0, we have: 
(a) Lr = \imn_^o0V^/q" exists for any initial values {oc-j}o<j<r-i and is nonzero for some 

initial values if and only ifdr = l. 
(b) If there exists an rx > r0 such that dn - 1, then Lr = lim^^, V^lq" exists for all r>rx. 

Furthermore, this limit is given by 
\ r - l / r -1 

I I^*-1 a_j 

1 , = ^ ^ < — . (6.5) 

7=0 

Lemma 6.5: Assume that one of the three conditions of Theorem 6.1 is satisfied. Suppose that 
dn = l for some /"!>r0, 0<p<R, and (6.1) holds for some constant A^>0. Then, for Lr = 
lim„_>00F„(r)/#r" (r > ?i), we have 

co / co 

l i m Z ^ ^ ^ l <+oo. (6.6) 

y=o 

Proof: Set Sr(x) = Sy=o(/ + l)a/x/+1. Since 0<p = q~l<pr = q;1 for all r > r0, we have 

sr(rl) = Z(i>iHr°'+1) * Z0>iH^-°'+1) = $Ml) (6.7) 
y=o y=o 

for all r > r0. On the other hand, consider the function S defined by 

S(x) = X 0" + l)ajx'+l = -xQ>(x). (6.8) 

Note that 5 is continuous on the interval [0, R) and, hence, at x = p = q~l by our assumption. 
Thus, we have 

Mm S(q;1) = S(q~l) = £ (/ +l**/^*1* < +°°. (6.9) 

Furthermore, 

W ) = 2 0" + l ) ^ + 1 ) * ̂ r"1) (6.10) 
;=0 
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for all r>rQ. Thus, by (6.7) arid (6.10), we have 8r{q~l) < S(q~l) for all sufficiently large r and, 
hence, using (6.9) we see that limr_>00 Sr(q7l) = S(q~l) < +oo. In other words, the denominator of 
(6.5) converges to that of (6.6) as r tends to oo. Note that this value is not zero. 

Let Br denote the numerator of (6.5); i.e., 
r - l f r-l r-l 

j=Q \k=J J k=0 \J=0 J 

Furthermore, set 

£=0 \j=Q J &=G \J=0 
so that w e have 

\Br-Cr\<\Br~Hr\ + \Hr-Cr\. 

First, let us consider Dr =\Br-Hr\. We have 

r - l 

I 
£=0 

Dr<T^r(k+1) 1-
-(*+l) 

,-(*+!) 
( k > 

I>/l"-/ 

(6.11) 

(6.12) 

It is easy to see that 11 - q^k+1) / q^k+l) | = 11 - (qr Iq)k+l \<(k +1)(1 - (qr Iq)) for all k > 0, since 
$. < q. Thus, Z)r < (1 - qr Iq) l£0(k + l)akq;{k+l)(T,%0 qJ

r\a_j |) by (6.12). Furthermore, since 
qr<q,we have q[ \a_j \ < q1 \a_j \ < K for all j > 0 by our assumption. Hence, w e obtain Dr < 
K{\ -qrlq) ££}>(* + l)2akq^k+i). Consider the function T defined by 7"(x) = Z%0(J + ifa^1, 
which is continuous on the interval [0, R), since T(x) = x$'(x), where S is the function defined by 
(6.8). Since Q<q~l < R by our assumption and l im^^g, . = q, there exists an r2>r0 such that 
0 < q~l < q~l < R for all r > r2. As qr < qr, whenever r < r', we obtain 

Dr <K^l-^W(k + lfakqf +!> = A T ( # ) ( l - & ) = ^ ( l - ^ j (6.13) 

for all r > r2, where Mx - KT(q~l) is a positive constant. 
For Er = \Hr - Cr |, we have Er < Z ^ 0 a k q - ( k + l \ Z % 0 \qJ

r -qs \\a_j |). Therefore, 

2>/-<7;'!l«-,l=I<?; 
j=0 j=o 

1- a_ (6.14) 

for every k > 0. Furthermore, since 0 < <yr < q, we have 11 - (qr I q)J \ < j(\ - qr I q). Hence, (6.1) 
together with (6.14) implies 

I ltf-̂ lla-,1 * (l- |)t^l«-;l < f (^02(l-|). 
Then we have 

E> - f (! ~ f"l?0
(*+1)2a^"("+1)=M* [l - 7 ) 

where M 2 = KT{q~l) 12 is a positive constant. 

(6.15) 
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By (6.11), (6.13), and (6.15), we have 

\Br-Cr\<M^l-^y 

where M = MX + M2>Q. On the other hand, since 
r - l 

£=0 V = 

r - l 

I«*<f(*+1) Z^l«-/I ^^K* + l)«W"(*+I)^^(r,)<-K» 
&=Q 

by our assumptions, limr_>00 Cr exists and is equal to 

it=0 

.-(*+i) a. -y? 

(6.16) 

(6.17) 

(6.18) 

since (6.17) shows that the above series converges absolutely. Thus, by (6.16) together with the 
fact that q = limr_^O0qr\ we see that limr_>o0Br exists and is equal to the value as in (6.18), which 
is nothing but the numerator of (6.6). D 

Lemma 6.6: Assume that one of the three conditions of Theorem 6.1 is satisfied. Then (6.1) 
implies condition (Q,). 

-U+n-l) <Kq\ 

Proof: By (6.1), for all n > 1, we have 
00 00 00 

5>7+*-i \a_j\< K%aJ+n_iq-J = Kq^^a^q 
;=0 ;=Q ;=0 

since we have Z J=0 ̂ /?~(;+1) = 1 • Thus, condition (C^) is satisfied. D 

Combining Theorem 5.2, Lemma 6.5, and Lemma 6.6, we obtain Theorem 6.2. 
When p~ R, we have a partial result as follows. 

Proposition 6,7: Assume that one of the three conditions of Theorem 6.1 is satisfied, that dh - 1 
for some rx > rQ, that Z*L0(j + l)afl~0+l) = +°o, and that the series EJ=0 qJ I <*_/ I converges. If the 
sequences {^(r)/g"}n>1 are uniformly convergent for r>ru then Fw exists for all n and we have 

Note that the above condition implies that p = i? [see (6.9)]. 

Proof of Proposition 6.7: Since we have g > gr, we see easily that the numerator Br of (6.5) 
satisfies 

r - l r - l 

I^I^Z?/ |a-yl^Z? y |a-yl^S^l a -yl < + 0 °-
y=0 7=0 ;=0 

(6.19) 

The result now follows from Theorem 5.2, (6.5), Lemma 6.6, and (6.19). D 

Remark 6.8: Results similar to Theorem 6.2 and Proposition 6.7 were obtained in Theorem 3.2 
of [ 11 ] by using the Markov chain method. See, also, Theorem 3.10 of [8]. 

Problem 6,9: We do not know if d„ = gcd{/ +1: at > 0} = 1 ( o dri = 1 for some rx > r0) implies 
that L = hmn^aoV„/qn exists in general Note that in some special cases dn = 1 if and only if 
l im^^ Vn lqn exists, as was shown in [11]. 
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7. EXAMPLE 
Let us give an explicit example of our main theorem of the previous section. 
Fix a real number a~l = /3 > 1 and set a~l = fir = ^1_(1/r!) for r > 1. Consider the sequence of 

real polynomials {Ur(x)}r>x defined inductively by 

Ul(x) = 2x-2/3l, (7.1) 

Ur+l(x) = xUr(x)-fir+fIr(fir+0 (r*l). (7.2) 
Therefore, we have Ur(x) = 2xr -a0xr~l ar_2x-ar_l for some strictly positive real numbers 
aj (j > 0). Note that Pr is the unique positive real root of Ur(x). Set Wr(x) = 2-a0x 
ar_2xr~l -ar_xxr = xrUr(x~l). Then we have Wr(0) = 2 and Wr(ar) = 0. Furthermore, we set 
W(x) = 2-Z%aJx'+l. 

Lemma 7.1: We have W(a) = 0 and 0 < a < R, where R is the radius of convergence of W. 

Proof: Since Wr(ar) = 0 and a, = fiJ+lUj(fiJ+l) < 2fifi\ < 2/3J+l = 2a~(i+X), we get Wr{a) = 
Wr(a)-Wr(ar) = a0(ar-a)+al(a2

r-a2) + — +ar_1(ar
r-ar). Thus, 

Wr(a) < 2(ar - a)/a+2(a2
r-a2)/a2 + ••• +2(ar

r -ar)lar 

= 2(j3Vr'-l) + 2(jl2/rl-l) + "-+2(fir/rl-Y). 
Therefore, we have 

Wr(a) <2r(J3V(r~xy-\) = (2rl{r-l)!)(r-l)!091/(r-1)!-1)-> 0 (r ->• oo). 

Thus, W(a) = l i m ^ Wr(a) = 0. • 

Set Q.(x) = Wr(x) -1 and Q(x) = W(x) -1. Then, for each r > 1, there exists a unique posi-
tive real root pr of Qr. Furthermore, by Theorem 6.1, p = limr^00 pr exists and Q(p) = 0. Set 
qr - p~x and q - p~l and note that 0<p<R, where R coincides with the radius of convergence 
ofQ. 

Lemma 7.2: 
lim £-1 = 0. (7.3) 

Proof: Let us fix an r > 1 for the moment. The functions W(x) and Wr(x) defined on the 
intervals [0, d) and [0, oo), respectively, are differentiate with strictly negative derivatives. Let us 
denote by g: (0,2] -> [0, d) and gr: (-oo, 2] -> [0, oo), respectively, their inverse functions. Then 
define the differentiate function / : ( 0 , 2 ] - > R by f(y) = g(y)r-gr(y)r. For ys(0,2), set 
x = g(y) and xr = g"r(y). Then we obtain xr > x> 0 and 

T7 4) 

xr xr xr x
r 

Hence, by (7.4), we have / ' (y ) = n r r - 1 ^ ' ( ^ ) " 1 - < " 1 ^ W 1 ^ 0- Thus, the function/is non-
decreasing and we obtain ar -ar

r = lim^+o f(y) < / ( l ) = pr -pr
r. Therefore, 
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for all r > 1. Then we have 
\pr-pr

r\ = pr
r-pr<\ar-ar

r\ 

Pr
r <\<± ar = |f|l^-I) !-l| = 1 | ^ r - ' > ! - l l 

p) (r-1)! l / ( r - l ) ! 
' « v 

(7.5) 

Since \imr^(alp)r /(r-1)1 = 0 and l im^ i f i 'W- - l\(r-1)! = In/?, equation (7.3) holds. D 

Let {F„}„eZ be the QO-GFS defined by V„ = q". Let us show that the conditions of Theorem 
6.2 are satisfied for this sequence. Recall that we denoted x£r) = V^r)/q"; see Theorem 5.2. 

Lemma 7.3: The sequences {x£r)}„>i are uniformly convergent for r > 1. 

Proof: By Lemma 7.2, for a given s > 0, there exists an r2 > 0 such that | / / /p^ - 1 | < f/2 
for all r > r2. Let us fix an r with r > r2. Then, by (3.1), for every n with -r +1 < n < 0, we have 

l * i r ) - l | = la 1 £ - 1 - 1 
# 

(7.6) 

Suppose \x^ -11 < s12 for all A: with - r +1 < k < n, where n > 0. Then, by (6.4) and the rela-
tion 4r

+\ = (a0 / ? r ) x « + (a, /9?)x*?i + • • • + (ar_l I qr
r)x£r+i, we have 

1^.-11 = *<*$'>-1) 4(^.-1) + ••• + a, 
2" 

(7.7) 

Thus, by induction, we see that |x£r) -11 < £ / 2 for all /?, provided that r > r2. 
On the other hand, by Lemma 6.4, Z,r = lim „_><„, x^r) exists for all r > 1 and we can check that 

lim,.^ Z,r = 1 by using (6.5). Hence, there exists an r3 > r2 such that \Lr-l\< s/2 for all r > r3. 
Therefore, for all r>r3 and all w>l, we have \x^r) - Lr\<\x(

n
r) ~l\ + \l- Lr\< € /2 + s /2 = g. 

Since we have only a finite number of fs with r3 > r > 1, there exists an JV such that |x£r) ~ Lr | < e 
for all w > N and all r with r2 > r > 1. Thus, we have proved that the sequences {^(r)}w î are 
uniformly convergent for r > 1. • 

Therefore, we have shown that all the conditions in Theorem 6.2 are satisfied. On the other 
hand, we see easily that 

X 2>W j-k-i 

limV^zi • = 1 . (7.8) 
EO'+i)^"0+1) 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Muss Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others9proposals must be sub-
mitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by November 15, 2001. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem, A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Also, a = (l + V5)/2, jff = ( l -V5)/2 , Fn = (an-0")/&md Ln^an+iin. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-916 Proposed by Walther Jamouss Ursulinengymnasium, Innsbruck, Austria 
n 

Determine the value of ]~J (L2^k -1). 

B-917 Proposed by Jose Luis Blaz? Universitat Politecnica de Catalmnya9 Terrassa, Spain 
Find the following sums: 

where Lk is the k^ Lucas number. 

B-918 Proposed by M K Deshpamde9 Institute of Science, Nagpur, India 
Let / andj* be positive integers such that 1 < j <i. Let 

T(i, j) = FjFf_J+l + FjFM+2 + Fj+lFf_J+l. 

Determine whether or not 
maximum T(iy j) ~ minimum T(iy j) 

j j 

is divisible by 2 for all / > 3. 
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B-919 Proposed by Richard Andre- Jeannin, Cosnes et Romain, France 
Solve the equation LnFn+l = pm(pm -1), where m and n are natural numbers and p is a prime 

number. 
B-920 Proposed by N Gauthier, Royal Military College of Canada 

Prove that 

for/? an arbitrary integer. 
l-f-^W-^J-0 

SOLUTIONS 
It's A Toss 

B-899 Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY 
(Vol 38, no. 2, May 2000) 

In a sequence of coin tosses, a single is a term (H or T) that is not the same as any adjacent 
term. For example, in the sequence HHTHHHTH, the singles are the terms in positions 3, 7, and 
8. Let S(n, r) be the number of sequences of n coin tosses that contain exactly r singles. If n > 0 
andp is a prime, find the value modulop of yS(n + / ? - ! , p-l). 

Solution by the proposer 

Answer: ls(n + p-l,p-l)^\°' ?/*"' (modp). 

Proof (with a few omissions): For n - 0, both sides equal 1; for n = 1, both sides are zero. 
Assuming n > 2, the n nonsingles in the sequence must appear in k blocks of lengths > 2, where 
1 < k < n 12. For fixed k, the number of ways to choose the corresponding sequence of k block 
lengths each > 2 (with sum n) equals the number of ways to partition a string of length n-k into 
k nonempty blocks, namely, [^-\\ ^ n c e ^ e * block lengths are given, the sequence of tosses is 
determined by (1) our choice of which p-1 of the k +p-1 blocks (including the singles) are sin-
gles, and (2) whether the sequence begins with H or T. Hence, 

A \<k<nl2 ^ F ^ v J 

In what follows, it will be convenient to use the notation [a, b] for the product a(a - l)(a - 2) 
• • • (b) when a > b. 

If p\k, the factor (k^-il)= [k+ZZl{i^1] m 0 ) is divisible by/?, since/? divides the numerator 
but not the denominator. If p\k but p\n (say k-jp,n-k-l = qp-r where 2 <r <p), then 

gp-^==to-7>-Q?(g-i>-(^-2)]rgp-i 
JP-U tap-asp-cr-i)]- UP-1 
(multiple of/?) ,. >. g u . , „ . 

(nonmultiple or/?) 
Our conclusion follows in the case p\n\ for the case n = mp, we need consider only those sum-
mands in (1) for which k=jp. Thus, we must show that 
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Both sides of (2) are zero when m = 1, so assume m > 2. First, note that (Jp+%~1) = lJP\£\'*+l] = 1 
(mod p) since corresponding factors of numerator and denominator are congruent (mod p) and 
are all nonzero (mod/?). A more complicated argument of similar character (omitted here) shows 
that ((m~^Ji~l) = (m~lil) (mod/?). Hence, (2) reduces to 

w o 2 H w r 3 ) + " ' s F - i ( m o d p ) ' (3) 

But the left side of (3) in fact equals Fm_l (well known and easily shown by induction). Q.E.D. 
Also solved by Paul S. Bruckman and Kathleen Lewis. 

Always Rational 

B-900 Proposed by Richard Amdre-Jeannin9 Cosmes ei Romain, France 
(Vol 38, no. 4, August 2000) 

Show that tan(2«arctan(a)) is a rational number for every n > 0. 
Solution by the proposer 

We will use the well-known relation 
x / x tanx + tanv 
tan(x + v) = —, 

1-tanx-tanj 
where the values x, y, x + y are different from an odd multiple of f. Further, it is clear that 
tan(arctana) = a. 

Now we will prove the given statement by induction. Denote D„ = tan(2w arctan a) for every 
w>0. 

It is easy to see that D0 - 0 and 
i _ 2 tan(arctan a) _ 2a _ 2a 

1 - tan2 (arctan a) I-a2 1 - (1 + a) 
A - tan(2 arctan a) = / ZTZZ^L = T^J = i _ n l ^ = ~2' 

Suppose that Dn is a rational number, then we will show that Dn+l is also a rational number. We 
can write 

D„+l = tan(2(n +1) arctan a) = tan(2« arctan a + 2 arctan a) 
_ tan(2w arctan a) + tan(2 arctan a) _ Dn+Di _ Dn-2 

1 - tan(2n arctan a) • tan(2 arctan a) l-Dn-Dl 1 + 2Dn ' 

But this means that Dn+l is also a rational number and the proof is finished. Moreover, we have 
found the recurrence for Dn. 

It still remains to show that, for all natural w, the condition Dn*-\ holds. If n is even, then 
n = 2k, where k is a natural number. Then we have the relation 

a 
2Dk _ _ ! 

2k~l-D2
k 

which can be rewritten as a quadratic equation D\-ADk - 1 = 0. But its roots are irrational num-
bers Dk - 2 + S and Dk = 2 - ^ 5 . This contradicts the fact that Dk must be a rational number. 
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If n is odd, then « = 4£ + l or « = 4£ + 3, where k is a natural number. Similarly, we can 
show that, if D4k+l = - \ or D4£+3 = - y , then Z\ is an irrational number. 

Also solved by Paul S. Bruckman, M. Deshpande, L. A. G* Dresel, Sieve Edwards, Walther 
Janous, Harris Kwong, Kee-Wai Lam, Reiner Martin, Don Redmond, H.-J. Seiffert, and 
Indulis Strazdins. 

Back to Enter 

B-90I Proposed by Richard Andre- Jeannin, Cosnes et Romain, France 
(Vol 38, no. 4, August 2000) 

Let An be the sequence defined by A0 = 1, Ax = 0, An~{n~ t){An_l + An_2) for n > 2. Find 

lim 41-
Solution by Paul S. Bruckmam, Berkeley, CA 

This problem is an old one, and occurs in the study of the number of derangements of n 
objects. We may express this in the following manner: In how many ways can the ordered set of 
integers {1,2, 3,...,«} be permuted so that, in the new arrangement, none of these integers lies in 
its natural order? The answer turns out to be An, and an interesting explicit expression for An 

may be derived, which follows: 

4, = /i!£(-l)*/*! (1) 
k=0 

In the older literature, this expression is denoted n\\. Here, we simply verify that the expres-
sion for An in (1) satisfies the conditions of the problem. By a change in variable, the given 
recurrence relation becomes An+l = n(An + An_x). Note that the initial conditions are satisfied by 
(1) for n = 0 and 1. Now, assuming that (1) is true for n and n - 1 , we have 

^(A + A-i) = ^ ^ ! Z ( ~ 1 ) ^ / ^ ! + ? | - ( ; | - 1 ) ! Z ( - 1 ) ^ / ^ ! ={n + l)-n\Yi{~l)k lk\-n\{-l)nln\ 
Ar=0 Ar=G Ar=0 

n «+l 
= {n + l)\Yd(-lf lk\+{n + l)\{-\)n+l l{n + l)\ = (/i + l)!]T(--l)*/Jfc! = AnirV 

Ar=0 k=0 

Applying induction establishes (1). We then see that 

lim An/n\ = Y(rl)k/k\ = e-\ 

The featured solution sums up all comments and solutions of the other solvers. Several solvers 
gave references as to where equality (I) can be found. Harris Kwong cited Combinatorial Mathe-
matics by H. J. Ryser, Kee-Wai Lau listed The Encyclopedia of Integer Sequences, by N. J. A. 
Shane and Simon Plouffe, H.-J. Seiffert included Discrete and Combinatorial Mathematics, 2nd 
Edition, Exercise 9 on page 402, and Indulis Strazdins (to whom we owe the title of this problem) 
mentioned Introduction to Combinatorial Analysis by J. Riordan, Chapter 3, and Exercise B-853. 
He also mentioned that the recursion can be traced back to Euler. 

Also solved by Michael SL Becker, M. Deshpande, L. A, G* Dresel, Walther Jamous, Harris 
Kwong, Kee-Wai Lau, Reiner Martin, Helmut Prodinger, H.-J. Seiffert, Indulis Strazdins, and 
the proposer. 
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A Pell Polynomials Identity 

B-902 Proposed by H.-J. Seiffert, Bedim, Germany 
(Vol 38, no. 4, August 2000) 

The Pell polynomials are defined by P0(x) = 0, /}(*) = 1, and P„(x) = 2xP„_1(x) + P„_2(x) for 
n > 2. Show that, for all nonzero real numbers x and all positive integers n, 

i(f\(i-xrkpk(.x)=x"-ip„(i/x). 
k=i V / 

Solution by Reiner Martin, New York, NY 
It is well known (and can also easily be verified using induction) that 

Thus, 
2VX2 + 1-PW(JC) = (X + V?+T) ' , - (JC->/JC2 + I)B. 

= (i+V?7T)W - (i - V?Tif = 2^?Ti • xn-lpn(\ix). 

Almost all other solvers used a similar method to prove the equality. 
Also solved by Richard Andre-Jeannin, Paul S« Bruckman, Johan Cigler, L. A. G. Dresel, 
Walther Janous, Harris Kwong, Kee-Wai Lam, Helmut Prodinger, and the proposer. 

AM Old Generation Function 

B-903 Proposed by the editor 
(Vol 38, no. 4, August 2000) 

Find a closed form for Z^=0 F2xn. 

Solution by Walther Janous, Innsbruck, Austria 
Because of F„2 = \(an -pnf - \{a2n +/?2n-2(-l)"), we infer 

Z ^ V 4 Z ((a2xy+(p2xy-2(-xy) 
n=Q ** n=Q 

If 1 , + 1 2 X 

5{l-a2x l-p2x l + x 

x(l - x) 
(x-fl)(x2-3x-}-l) 

1 --80x(x-!) 
5' l6(x-f l)(x2-3x4-1) 
2 

x3 - 2x2 - 2x 4-1 

(The domain of convergence of this expression is {x/|x| < -^-}.) 

The problem is well known, as some solvers pointed out. Harris Kwong mentioned some refer-
ences where the problem had been generalized to any power of Fn [see J. Riordan, "Generating 
Functions for Powers of Fibonacci Numbers,'1 Duke Math. J. 29 (1962):5-12] and even extended 
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to greater generality [see L. Carlitz, "Generating Functions for Powers of Certain Sequences of 
Numbers," Duke Math J. 29 (1962):521-38.] Some solvers used Maple to produce solutions for 
up to the 10th power of F„. Richard Andre-Jeannin mentioned an article by Verner E. Hoggatt, 
Jr. ["Some Special Fibonacci and Lucas Generating Functions," The Fibonacci Quarterly 9,2 
(1971): 121-23] and H.-J. Seiffert commented that the answer to this problem was given in the 
solution to B-452 [The Fibonacci Quarterly 20.3(1982):280-81]. Pentti Haukkanen also cited 
three additional references. 
Also solved by Richard Andre-Jeannin, Paul S. Bruckman, Charles K Cook, M. Deshpande, 
L. A. G Dresel, Pentti Haukkanen, Harris Kwong, Joe Lewis, Reiner Martin, Jalis Morrison, 
Helmut Prodinger, Maitland Rose, Don Redmond, H.-J. Seiffert, Pantetimon Stanicd, Indulis 
Strazdins, and the proposer. 

A Fibonacci-Lucas Equality 

B-904 Proposed by Richard Andre-Jeannin, Cosnes et Romain, France 
(Vol 38, no. 4, August 2000) 

Find the positive integers n and m such that Fn- Lm. 

Solution by Harris Kwong, Fredonia, NY 
For m > 3, we have Fm+l <Lm< Fm+2y because 

Lm = Fm+l + Fm-\ ^ Fm+l + ^2 > Fm+l a n d Lm = Fm+l + Fm-l < Fm+1 + Fm = Fm+2 • 

Therefore, Fn-Lm only when m < 3. The only solutions are (n, m) = (1,1), (2,1), (4,2). 
Also solved by Richard Andre- Jeannin, Brian D. Beasley, PaulS. Bruckman, L. A. G. Dresel, 
Walther Janous, Lake Superior Problem Solving Group, Reiner Martin, Ibrahim Al-Pasari, 
H.-J. Seiffert, Indulis Strazdins, and the proposer. 

A Three-Term Sum 

B-905 Proposed by Jose Luis Diaz, Universitat Politecnica de Catalunya, Terrassa, Spain 
(Vol 38, no. 4, August 2000) 

Let n be a positive integer greater than or equal to 2. Determine 

(F„2 + l)Fw+1F„+2 | F„(Ft+l + \)F„+2 | F„Fn+l(F^2 + l) 
(Ai+1 " AiXAi+2 ~ Ai) (Ai ~ AI+IXAH-2 ~~ Ai+l) (At ~~ A1+2XA1+I ~ AH-2/ 

Solution by Maitland A. Rose, Sumter, SC 
If we replace (Fn+2-Fn) by Fn+l, (Fn+2-Fn+l) by Fn9 and simplify, the expression becomes 

(Fn + OAt+2 iFn+\ + l)Fn+2 , {F2 , n _ (Fn+l~Fn)Fn+2 • ,p>2 , n 

IAH-1-AI) (AH-I" A*) (Ai+l-Ai) 
= "(A+l + A)A+2 + (A+2 + 0 = ~FZ+2 + Fn+2 + 1 = 1-

Abo solved by Richard Andre-Jeannin, Brian D. Beasley, Scott H. Brown, PaulS. Bruckman, 
Julie Clark, Charles K. Cook, M. Deshpande, L. A. G Dresel, Walther Janous, Harris Kwong, 
Carl Libis, Reiner Martin, H.-J. Seiffert, James Sellers, Pantetimon Stanicd, Indulis Straz-
dins, and the proposer. 

•!• • !• • !• 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HA VEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-572 Proposed by Paul S* Bruckman, Berkeley\ CA 
Prove the following, where <p - a~l: 

£ {<p5n+ll (5/i +1) + <p5n+3/ (5n + 2) - tp5n+41 (5n + 3) - <p5n+4/ (5/i + 4)} = (x/25)(50-l0j5)y2. 

H-573 Proposed by N. Gauthier, Royal Military College of Canada 
"By definition, a magic matrix is a square matrix whose lines, columns, and two main diag-

onals all add up to the same sum. Consider a 3 x 3 magic matrix O whose elements are the 
following combinations of the rfi1 and (w + l)* Fibonacci numbers: 

Oll = 3Fn+l+Fn; %2 = Fn+h ®l3 = 2Fn+l+2F„; 
* 2 1 = Fn+1 + 2Fn> ^ 2 2 = 2FW + 1 + F„; d>23 = 3Fn+h 

*3i=2/Wi; ^32 = 3Fn+l + 2Fn; <D33 - Fn+l+Fn. 

Find a closed-form expression for <PW, where m is a positive Integer, and determine all the values 
of m for which it too is a magic matrix." 

SOLUTIONS 
Geometric? 

H-561 Proposed by K Gauthier, Dept of Physics, Royal Military College of Canada 
(Vol 38, no. 2, May 2000) 

Let n be an integer and set sn+l = an + an~lfi+ — + a$n~l+fin
y where a + $ = a, a$ = b, 

with a & 0, b * o two arbitrary parameters. Then prove that: 

(b) ffa = £(-l){ 'M^W+pr+n, 

(C) Sip+qSqr+n= 2^\£r P Sp+qS{2p+q)t-pr+m 

where r > 0, w, p(* 0), and q(* 0,±p) are arbitrary integers. 
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Solution by Paul S. Bruckman^ Berkeley9 CA 
Let the sums indicated in the right-hand members of parts (a), (b), and (c) be denoted by 

$& = <9&(p,q,r,ri), <3b = (3b(p,q,r,n), %-%{p,q,r,n), respectively, We distinguish two possi-
bilities: Case 1, where a2 ^4b, i.e., a^jB; Case 2, where a2 = 4b, i.e., a-(i. For Case 1, the 
Binet formula holds: sn - (an- j3n)/(a-/J); for Case 2, we have: sn = nan~l

P in either case for all 
integers n. We first deal with Case 1; we also make the substitution 0-a-p. The sums may be 
evaluated by application of the appropriate formula for sn and the Binomial theorem. We will also 
employ some auxiliary results, given in the form of lemmas. 

Lemma 1: hqsp_q + apsq = aqsp; bqsp_q +/?% = /?%. 
Proof: 

bq$p_q+apsq = {{ap)q{ap-q ~ pp~q) + ap{aq - fi*)}/0=ap(aq -fiq)/0^aqsp; 
also, 

bqsp_q+@p$q = {(a/3)q(ap-q-pp-q)+@p(aq- • 

Lemma 2: sp+q - aqsp = @psq; sp+q -pqsp = apsq. 

Proof: In Lemma 1, replace/? by p + q, then divide by aq (or J3q). D 

Lemma 3: 0p+% + apsp+q = ap+qsp +/Jpsp+q = s,^. 

Proof: Replace q by p + q in Lemma 2. • 

We may now proceed to the proof of the problem, at least for Case 1. 

(a) si = £ rCkb^-k\sq)k(sp_qyk(apk+"-j3pk+")/0 
k=0 

= (a"/0WSp_q + aPSqY-(P"/0)(b%_q+^sqy 

= (a* /6)(aqsp)r - {fi" 16)(fiqsp)r (using Lemma 1) 

= (spna"r+"-p^")l0 = (spYsqr+n. D 

(t) % = £(-i)fcrCk(Sp)k(Sp+qy-k(agk+pr+"-^k+pr+n)/e 

= (apr+"/0)(sp+q - a%)r - (fipr+"/0)(sp+q - P"spy 

= apr+" 10)ppr{sq)r -(J3pr+n 10)apr(sq)r (usingLemma2) 

= bpr(sqy{a"-pn)i0 = bpr{SqySn. • 

(c) ^tc^^'^'^^^/tafW^"-/;^)^")/^ 
k=Q 

= (a~pr+"/0)(bp+qsp + a2p+qsp+qy-(p-pr+"/0)(bp+'1sp + p2p+q
Sp+qy 

= (a-pr+n+pr+qr 10)(fip+qsp + apsp+q)r - (fi-pr^pr^r / ff)^^ + Ppsp+q)r; 

hence, using Lemma 3, ^ = (aqr+"/0)(s2p+qy-(fiqr+"/0)(s2p+qy =(s2p+qYsqr+„. D 
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It remains to prove (a), (b), and (c) for Case 2. We first show that Lemmas 1, 2, and 3 are 
valid for this case as well; the modified versions of these lemmas are denoted by a "prime" punctu-
ation. 

Lemma 1f: bqsp_q + apsq = aqsp. 

Proof: bqsp_q + apsq = (p- q)a2q (ap-q~l) + qap(aq~l) = pap+q~l = pap~laq = aqsp. D 

Lemma 2f: sp+q - aqsp = apsq. 

Proof: Replace p by p + q in Lemma V and divide by aq. D 

Lemma 3f: ap+qsp + apsp+q = &lp¥q. 

Proof: Replace qby p + q'mLemma T. 

= PrZ r-iCkb^-x-k\sqr\sp_J-x-ka^^"-x
+nt rCkb^-k\sqf(sp_qy-kapk+"-1 

k=0 k=0 

- pr$qap+n~l{bq$p_q + apsqY~l +nan~l{hqsp_q + apsq}r 

= prap+n-l+q{r-l)s(sj-1 +nan-l+qr(sj (usingLemma 1') q\»p, """ \ p/ 

/?/ qr+n' = a^"-2+ir(sY-l(pqr + np) = pap~\qr + n)a*r+»-\spTl = (sJSqr+„. D 

(*>)' ®=T(-i)krCk(Sp)k(sp+qy-k(qk + pr+n)a<>k+rr+"-1 

+ 0 ' / -+ / i ) a^ - , X ( - l ) k rC t ( ^ )* (* p + , r t a» t 

= -qrspa"+pr+"-\sp+q - a*spTx + {pr + n)apr+"-\sp+q - a«spJ 

= -qrspaq+pr+"-\apsqy-1 + {pr+ ri)apr+"-\apsq)r (using Lemma 2') 

= { - r a ^ a ^ " + (pr + n)sqapr+n-1+p}(apsqy-1 

= {-rapa2pr+n-;' + (pr + «)a2pr+"-!}(s?)r = {-pra2^"-' + (pr + n)a2pr+"~l}(sqy 

= na2pr+"-\sqy = a2pr(sqys„ = S ^ ) ' * , , . • 

(c)': % = 2 r Q ^ + ^ - t ) ( 5 ; , ) r - * ( V g ) i {(2p + ?)* - pr+n) CPP+IV-P""-* 
k=0 

= (2/? + ?)m2^-^+"- V , Z r-iQ A ^ ^ ' - ^ ^ r 1 - * ^ ) * ^ 2 ^ ^ + 
ifc=0 
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+ {-pr + n)a'pr+n~lY, rCkb(p+^r-k\spJ-k(sp+q)kai2p+q)k 

k=0 

= (2p + q)ra2p+q-pr+"'\+q(bp+% + a2p+%+qy~l 

+ (-pr + n)a-pr+H-1(bp**sp + a2p+qsp+q)r 

= (2p + q)ra2p+q-pr+n-la(p^r-X)sp+q(ap+qsp + apsp+q)r-1 

+ (-pr + n)a-pr+"-la(p+'l)r(ap+'}sp+apsp+qy 

= (2p + qyao-^s^i^j-1 + (-pr+n)a^^\s2pHiy 

= r a ^ ^ - ^ ^ s ^ i ^ J + (-pr+nW^i^J 

= r(p + q)a-p+qr+"-q+p+q-\s2p+qY + (-pr+^a^'X^J 

= r(p + q)aqr+'-\S2p+qy+(-pr +r,)aqr+"-l(s2p+qy 

= (qr + n)a^"-l(s2p+qy = (^Jsqr+n. • 

This completes the proof of the problem. 
Also solved by H. Kwong, H.-J. Seiffert, and the proposer. 

Greatest ProbSem 

H-562 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 38, no. 2, May 2000)-corrected 

Show that, for all nonnegative integers n, 

where [•] denotes the greatest integer function. 

Solution by the proposer 
Define the Fibonacci polynomials by F0(x) - 0, Fx(x) - 1, and F„+2(x) = xFn+l(x) + Fn(x), for 

n GN0 (natural numbers). 
Let An: = in~lFn(ia)9 neN0, where i = ^/(-l). Writing n = 5m + r, where meNQ and re 

{0,1,2,3,4}, a simple induction proof on m yields 

A, 

0 ifn = 0(mod5), 
1 if w = 1 (mod 5), 
-a ifn = 2 (mod 5), (1) 
a ifn = 3 (mod 5), 

[-1 if« = 4(mod5). 

From H-518 [identity (8)], we know that, for all complex numbers x and all nonnegative 
integers n, 

t c -^W-^ 
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With x = / a , this gives 

Since 1 / (4 - a2) = a IJ5 ,. we have 
; ? 0 U 2 - J 4 2 - ^ •cr 

•ax 
(2) 

n _ „2n 4 " - a 1 
A-a2 S (4"a-a2n+1). 

or, by ar = (Lr + j5Fr)/2, r eZ, 

4 - a 2 10 

On the other hand, from (1), it follows that 

[¥] 

4 " _ a2n /c i 

- — - = £ (4" - ̂ i ) 4 ( 4 " ~ ̂ i ) - (3) 

[?], 

j=o \ Jy 4=0v y fc=o v 

Us inga 2 = (3 + V5)/2, we then obtain 

J=0 ±U?,)4-
[fV In \W( In 
L{n-5k-2)+^o{n-5k- + *,, 

where qn is a rational number. Since V5 is irrational, (2), (3), and the latter equation imply that 

XL-5^-2)+XL-5i-3)"5( 4"~^+i> 
fc=0 V J k=Q V y J 

w-2' 
This proves the desired identity, because 

{n-5k-2y{n~5k-3) = {n-%-2J> °-k~ 

where we set (2/) = 0 for j < G. 

^4/so solved by H. Kwong and P. Bruckmait 

A Stirling Problem 

H-563 Proposed by N. Gauthier, Dept of Physics, Royal Military College of Canada 
(Vol 38, mo. 2, May 2000) 

Let /w>0, n>0, p&Q, q*-p,0, and s be integers and, for \<k<n, let {ri)k :=n(n~l) 
... (n - k +1) and S^ be a Stirling number of the second kind. 

Prove the following identity for Fibonacci numbers: 

r=0 
I(-l)r ; ^[F/Fp+JrF9r+^(-ir[^/Fp+J"X(-l)^fc(«)fc^>[Fp/FJfeV^ •np+s-

k=\ 
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Solution hy the proposer 
For x an arbitrary variable, consider the binomial expansion identity 

z(;V=o-x)-, 
r = 0 V / 

and apply the operator D := x~ to it m times (m > 0) to get 

^rm(n
f\xr=Dm(l + x)n. 

r=0 

By a well-known result, 

where {8^ : 1 < k < m; \<m} are the Stirling numbers of the second kind. Consequently, 

Next, for integers p (^ 0), q(^09-p), solve the following for w and w: 

1 + tfa^vc"^; l + ufiq=w/Tp. 

One readily finds 

« = -lFp/Fp+q]; w = (-\y[FqIFp,ql (**) 

Inserting x = i/ag, 1 + x = wa~p in (*) and multipying the resulting equation by as then gives 
n f \ m 

X r U )uraqr+s = £S%\n)k i ta#+^kcf i>-n p . 

Finally, replace a and /? in this result, subtract from the above, and divide by V5 to get 
n f \ m 

I ' " r « r / V" = l^\n)kukw"-%+q)k_np+s. 
r=0 V / lc=l 

Inserting the values for u and w from (**) then establishes the result claimed in the problem 
statement. 

The case m = 0 is readily dealt with, and one gets 

r=0 A y F Qr+S K ' \ F -pn+s-
\Jp+gJ VP+QJ 
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