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SETS IN WHICH THE PRODUCT OF ANY K ELEMENTS
INCREASED BY ¢1IS A kth-POWER

Abdelkrim Kihel

Département de Mathématiques et de Statistique,
Université de Montréal, Montréal, Québec, Canada

Omar Kihel

Département de Mathématiques et de Statistique,
Pav. Vachon, Université Laval, G1K 7P4, Québec, Canada
(Submitted January 1999-Final Revision October 1999)

Let 7 be an integer. A F-set of size nis a set 4={x,, x,,..., x,} of distinct positive integers
such that x,;x; +7 is a square of an integer whenever i# j. These F-sets are said to verify
Diophantus' property. In fact, Diophantus was the first to note that the product of any two
elements of the set {{%, &, 17, 1%} increased by 1 is a square of a rational number. We now

introduce a more general definition.

Definition 1: Let k > 1 be a positive integer, and let 7 be an integer. A P®)-set of size » is a set
A={x,,x,...,x,} of distinct positive integers such that [T, x; +7 is a k®™-power of an integer
for each 7 — {1, 2, ..., n} where card(J) = k.

A P®_set A is said to be extendible if there exists an integer a ¢ 4 such that 4 U {a} isa _
P®_set. When k =2, these sets are exactly the P-sets. The problem of extending P -sets is
very old and dates back to the time of Diophantus (see Dickson [5], vol. II). The first famous
result in this area is due to Baker and Davenport [3], who showed that the £ -set {1, 3, 8,120} is
nonextendible by using Diophantine approximation. Several others have recently made efforts to
characterize the P,-sets (see references). However, nothing is known about the P*)-sets when
k>3.

The purpose of this paper is to exhibit a P®-set of size 4, and to show (Theorem 1) that this
set is nonextendible. We also prove (Theorem 2) that the P{-set {1,2,3,4} and the B -set
{1,2,5,8} are nonextendible. In Theorem 3 we show that any P*)-set is finite.

Example of a P®-set: The set {1,3,4,7} is a P$)-set of size 4.
Theorem 1: The P$)-set {1,3,4, 7} is nonextendible.

Proof: Suppose there exists an integer @ such that {1,3,4,7,a} is a P$)-set. Then the fol- -
lowing system of equations

3a-20=1u°,
2la—-20=4, ¢))
12a-20=w3,

has an integral solution (#,v,w) € N®. One can derive more equations in the system (1) but this
is not necessary for our proof. The system (1) yields

w+v° =2w with (u,v,w) e N°. 2)
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However, it is well known from the work of Euler and Lagrange (see Dickson [5], vol. II, pp.
572-73) that all solutions of equation (2) in positive integers are given by #=v=w, which is
impossible in the system (1). O

It would be interesting to know if there exists any P(¥)-set of size n>k >4. For n=k, the
problem is easy. In fact, there are two strategies for finding a P® -set of size .

(1) Fix any k positive integers a,,a,,...,a,. Let A be an integer and 7 = A 1% a,. Then
the set {a,,a,, ..., @} is a P®-set of size k. For example, let k=4, a,=1, a,=2,a,=3, a, =4,
and A=2. Then t=-8 and {1,2, 3,4} isa PY -set of size 4.

(2) Fix any ¢, and choose any integer 4 such that there exist & different factors a,,4,, ..., a,
nonnecessary primes and 4* —z=T1%,a,. Then the set {a,,q,,...,a,} is a B®-set of size k. For
example, let k=4, =1, and A=2. Then A*-1=80=1.2-5-8 and {1,2,5,8} is a B®¥-set of
size 4.

Theorem 2:
(@) The P -set {1,2,3,4} is nonextendible.
() The B™-set {1,2,5,8} is nonextendible.

Proof:
(@) Suppose there exists an integer @ such that {1, 2,3,4,a} is a P -set. Then the follow-
ing system of equations
6a—8=x*
8a—8=y*,
12a-8=2z*,
24a-8=w*

©)

3

has an integral solution (x, y, z, w) € N*. A congruence mod 16 shows that this is impossible.

(h) Suppose there exists an integer a such that {1, 2,5, 8, a} is a P¥-set. Then the following
system of equations
10a+1=x*,
16a+1=y*
40a+1=z4, )
80a+1=w*,

has an integral solution (x, y, z, w) € (\N*)*. The system (4) yields
w*+1=2z* with (z, w) e (N2 )

But it is well known (see [13], pp. 17-18) that all solutions of (5) are given by w =z =1, and this
givesa=0. O

Theorem 3: Any P®)-set is finite.
Proof: Let {a,, ..., a,,a,,, N} bea B9set. Let a=aga,..aa,,,

a

__a_ p__a _
*=aa, p= aa;’ and 7 Q'
Then there exist integers x, y, and z such that
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aN+t=x* pN+t=y* and yN+t=2z".
Hence, we obtain a superelliptic curve
(aN +1)(BN +1)(yN +1) = wk

(for k£ =2,3, this is an elliptic curve), and from Theorems 6.1 and 6.2 in [15] it follows that
N < C for some computable number C depending only on k, a, B, 7, and ¢. O
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DIVERGENT RATS SEQUENCES

Steven Shattuck and Curtis Cooper
Department of Mathematics, Central Missouri State University, Warrensburg, MO 64093
(Submitted January 1999-Final Revision May 1999)

1. INTRODUCTION

In 1990 John Conway invented a digital game called RATS [1]. RATS is an acronym for
Reverse, Add, Then Sort. ‘A game of RATS produces a sequence of positive integers. Each posi-
tive integer in the sequence has its digits arranged in nondecreasing order. To play a "game" of
RATS, we take a positive integer whose digits are arranged in nondecreasing order, Reverse the
digits, Add the reversed digits to the number, delete the zero digits in the sum, and Then Sort the
remaining digits of the sum in nondecreasing order. The resulting number is the next number in
the sequence.

For example, if we begin a game of RATS with 3, assuming base 10, the RATS sequence is

3,6, 12,33, 66, 123, 444, 888, 1677, 3489, 12333, 44556,
111, 222, 444, 888, 1677, 3489, 12333, 44556, ...,
which exhibits a cycle of length 8 and least member 111.
In [5], Curt McMullen gave a list of base 10 RATS cycles he had discovered. Computer
searches were done by Curtis Cooper and Robert E. Kennedy (see [2] and [3]) to find more base

10 cycles. A list of these cycles and the search techniques used can be found in the [2] and [3].
We also have sequences that diverge. The most fundamental one, in base 10, starts with 1.

1,2, 4, 8,16, 77, 145, 668, 1345, 6677, 13444, 55778, 133345, 666677, 1333444,

5567777, 12333445, 66666677, 133333444, 556667777, 1233334444, 5566667777, ... .
Notice that in each successive number, the number of 3's and 6's both increase by 1. This is the
mark of a divergent sequence. This sequence, in particular, is known as Conway's Divergent
Sequence.

Due to the size and repetitive nature of the digits in the RATS game, we will use superscripts

to denote repeated digits in a number. For example, 11122223344444, will be represented as
13243245 Using this notation, we can give the closed form of Conway's Divergent Sequence.

Conway's Divergent Sequence: Let m>2. Then
123m4% 52 em74
is a length 2 divergent sequence in base 10. Here, length 2 means that the sequence "comes back
to itself" after the second iteration.
This paper will emphasize divergent sequences for bases other than 10. Some preliminary

work has already been done for bases 19, 37, and 50 by McMullen [5]. In bases larger than 10,
the digits bigger than 10 will be denoted with parentheses around them.

Lemma I: Let m>19. Then
12334%5126m 7% 8292 (10)° (11)% (12)™ (13)°®

is a length 2 divergent sequence in base 19.
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Lemma 2: Let m>1257. Then

12 33 44 512 616 748 864 9192 (1 0)256 (1 1)768 (1 2)m (1 3)2616’

(1 4)2 (1 5)2 (1 6)6 (1 7)8 (1 8)24 (1 9)32 (20)96 (2 1)128 (22)384 (23)512 (24)m+285 (25)2502
is a length 2 divergent sequence in base 37.

Cooper and Gentges [4] found a divergent sequence in base 55.

Lemma 3: Let m>80099. Then
12 33 44 512 616 748 864 9192 (1 0)256 (1 1)768 (12)1024 (1 3)3072
(1 4)4096 (1 5)12288 (1 6)16384 (1 7)49152 (1 S)m (1 9)167480’
(20)% (21)? (22)® (23)% (24)* (25)°2 (26)°¢ (27)1%8 (28)°% (29)°12
1536 2048 6144 8192 24576 32768 m+18205 160198
BO P GH**(32) (33 (34) 35 (36) 37
is a length 2 divergent sequence in base 55.

Finally, Cooper and Gentges [4] found a closed form for the family of divergent sequences in
bases 18n+1, n>1.

Theorem 4: Let m be a large positive integer and let 187 +1 be the base, for n>1. Then
12 33 44 512 616 748 864 B (6n)m(6n + 1)(23~64"—32)/36,
(6n+2)(6n + 3)2(6n + 4)° (6n + 5)*(6n + 6)2*(6n + 7)*2(6n + 8)°¢ (6n + 9)!*®
. (127" SHHA0T2 () 9y | )(22:64"-40)36
is a length 2 divergent sequence.

All of these divergent sequences have been of length 2. This paper will examine divergent
RATS sequences of length 7 > 2. First, we will show other divergent RATS sequences of length
2. Next, we will show explicit divergent RATS sequences of lengths 3, 4, 5, and 6. In addition,
we will prove that there are arbitrarily long divergent RATS sequences.

2. DIVERGENT RATS SEQUENCES OF LENGTH 2

Divergent sequences consisting of two elements were found for bases 28, 46, and 64. This
led to finding a closed form for divergent sequences of length 2 in base 187 +10, where n 2> 1.

Lemma 5: Let m>191. Then
12 3%4*5'26'6 748 8% 9™ (10)*'2,
(11?2 (12)* (136 (142 (15)* (16)* (17)*¢ (18)™3° (19)**6
is a length 2 divergent sequence in base 28.
The interested reader can obtain the proof from the authors.

By finding similar patterns for bases 46 and 64, we were led to the following closed form for
a length 2 divergent RATS sequence in base 18n+10, where n € Z*.
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Theorem 6: Let m be a large positive integer. Then
1232445126 (6n+ 1) 4(6n+2)5" (6n+3)"(6n + 4)#+ 648/
(6n+5)*(6n+6)*(6n + 7)5(6n +8)¥ (61 + 9)** (61 + 10)*?
(12n+ 6)m—(5~64"-—5)/9 (127 + 7)(46-64"—10)/9
is a length 2 divergent sequence in base 18n+10, n>1.

Again, the interested reader can obtain the proof from the authors.

3. DIVERGENT RATS SEQUENCES
OF LENGTH 3, 4, 5, AND 6

In this section, we set out to find divergent RATS sequences of length 3 and longer in dif-
ferent bases. McMullen [5] has discovered the following divergent sequence in base 50. The
interested reader can obtain the proof from the authors.

Lemma 7: Let m>55. Then
134763778%, 92 (11)* (12)"* (14)™7 (15)*,
24)* (26)* (27)% (28)"* (29)

is a length 3 divergent sequence in base 50.

Using the same proof technique as above, the following two lemmas can be proved.

Lemma 8: Let m>2591. Then
1347 6875 9 (10)8 (12)°12 (13)5%¢ (14)" (15)7272,
(1 6)2 (1 8)2 (1 9)14 (2 1)16 (22)1 12 (24)128 (25)896 (27)1024 (28)m+4577 (29)5182’
(45)4 (47)4 (48)28 (50)32 (5 1)224 (53)256 (54)1792 (56)m+3637 (57)5976

is a length 3 divergent sequence in base 99.

Lemma 9: Let m>797131. Then
13 47 68 756 964 (1 0)448 (1 2)512
3584 4096 28672 32768 229376 m 765032
135 A8 T A9 2" (22) 7,
2 2 14 16 112 128 896 1024
(23)°(25)7(260)°(28)° (29) “ (31 *(32)™" (34)
(3 5)7168 (3 7)8192 (3 8)57344 (40)65536 (4 1)458752 (42)m—465439 (43)930878
(66)4 (68)4 (69)28 (7 1)32 (72)224 (74)256 (7551792 (77)2048
(78)14336 (80)16384 (8 1)114688 (83)131072 (84)m+120373 (85)663384
is a length 3 divergent sequence in base 148.

Searching next for a base with a length 4 divergent sequence, we found the following number
in base 226. The proof of this lemma is similar to the previous proofs.
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Lemma 10: Let m>8683. Then
14 515 816 9240 (12)256 (133840 (1 5ym (16) 0176
(17)% (20) (21)%° (24)*2 (25)*° (28)°12 (29)76% (30)"~5%07 (3111614,
(48)* (51)* (52)%° (55)% (56)°5° (59)19%4 (60)™5577 (61)°7%2,
(109)® (112)% (113)12° (116)!28 (117)192° (120)™+50%? (121)7272
is a length 4 divergent sequence in base 226.

Searching next for a base with a length 5 divergent sequence we found the following number
in base 962.

Lemma 11: Let m>1040187391. Then
15 631 (10 32 (1 1)992 (l 5)1024 (16)31744 (20)32768
(2 1)1015808 (25)1048576 (26)32505856 (3 0)33554432 (3 1)m (32)213407584)
(3 3)2 (3 7)2 (3 8)62 (42)64 (43)1984 (47)2048 (48)63488 (52)65536
2031616 2097152 65011712 m-780107455 290432638
(53) (57) (5% (62) (63) ,
(96)4 (1 00)4 (101)124 (105)128 (1 06)3968 (1 10)4096 (l 1 1)126976 (l 15)131072
(1 16)4063232 (1‘20)4194304 (121)130023424 (1 24)m—299266427 (125)442317944
(22 1)8 (225)8 (226 248 (230 256 (23 1)7936 (23 5)8192 (23 6)253952 (240)262144
(24 1)8126464 (245)8388608 (246)260046848 (248)m—603037029 (249)607541224’
(470)16 (474)16 (475)496 (479)512 (480)15872 (484)16384 (485)507904 (489)524288
(490)16252928 (494)16777216 (495)520093696 (496)5665 16434 (497)m—933483599 (498)660893120

is a length 5 divergent sequence in base 962.

Lemma 12: Let m be a large positive integer. Then

16 763 (1 2)64 (1 3)4032 (1 8)4096 (1 9)258048 (24)262144
(2 5)165 15072 (3 0)16777216 (3 1)1056964608 (3 6)107374! 824 (3 7)676457349 12

(42)68719476736 (43)4329327034368 (48)43980465 111064 (49)277076930199552
(54)281474976710656 (55)17732923532771328 (60)18014398509481984

6 1)1134907106097364992 (63)" (6 4)2472288970952097408
is one of the six numbers in a length 6 divergent sequence in base 3970.
g q

4. ARBITRARILY LONG DIVERGENT RATS SEQUENCES

The arbitrarily long divergent RATS sequences will follow the patterns of the divergent
RATS sequences we have seen in the previous chapters. We will come as close to explicitly
constructing divergent RATS sequences as possible. We will state the base of operation, the form
of the smallest element in the divergent RATS sequence, and the exponents (repetition factors) of
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each of the elements in the smallest element in the divergent sequence. The only part that will be
left to the imagination is one of the exponents, which is a component solution to a particular linear
system.

The use of primes and pseudoprimes in the following came about by doing extensive trials on
numerous different lengths and noticing a pattern for all lengths that were prime or pseudoprime.
This pattern is best described as follows: Divergent sequences of length #, where ¢ is prime or
pseudoprime, have three consecutive integers at the end of the first term of the sequence. After
one iteration of RATS is complete, there are only two consecutive integers at the end and the
prior number is 7 —1 smaller than the first consecutive integer. This "gap" shrinks by one at each
successive iteration until in the (¢ +1)™ iteration; the gap closes and we return to three consecu-
tive integers at the end. Then this pattern begins again. Other patterns may exist for lengths that
are not prime or pseudoprime.

Let 7 be a prime or a pseudoprime in base 2. A pseudoprime in base 2 [7] is a composite
number 7 such that

2" =2 (mod n).
The smallest pseudoprime in base 2 (psp) is 341. Since ¢ is either a prime or a psp, it follows that
=2 (mod 7).

The preceding considerations lead to Theorem 13.
Theorem 13: Let m be a large positive integer and ¢ be a prime or a pseudoprime in base 2. Let

Cll—l+l+(2r 1)+2t+ +(22 —2-t 22‘ —2- 2r)+(22’ 2—-t)
a, =2(a,-27"*")

3'."2"2
a, =24, ,
and let
X
X
e
X,
be the solution to
0 2 00 olf®) (*
0 0 2 -1 oll ™ 2222
0 0 0 2 | I e
10 0 0 2 \x) \2a

Then the number
A +TPF QY @ =107 2 o — ) 2t — 12ty
is the start of a divergent RATS sequence of length ¢ in base (2 — 1) +1.
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5. QUESTIONS

As we continue to study the game of RATS, we are led to many questions.

First of all, in the first section, the exponent on the next to last number in the sequence for the
length 2 divergent sequence in base 19 is 19, the exponent on the next to last number in the
sequence for the length 2 divergent sequence in base 37 is 1257, and the exponent on the next to
last number in the sequence for the length 2 divergent sequence in base 55 was 80099. Is there a
pattern to these exponents? Can an explicit formula be found for these exponents? What about
these exponents for divergent sequences of other lengths or in other bases?

Combining Theorem 6 and Lemma 12 gives the following result. That is, in base 3970, there
are two different divergent RATS sequences of different lengths, one of length 2 and one of .
length 6. Can we find other bases with two or more divergent RATS sequences of different
lengths?

Theorem 13 proved the existence of length 7 divergent RATS sequences in base (2’ —1)2 +1,
where 7 is a prime or psp. What about the case when ¢ is not a prime and is not a psp?

John Conway has a simple sounding yet tremendously hard conjecture based on his RATS
game in base 10. So far, every positive integer with digits in nondecreasing order (up to 15
digits) which starts a RATS game either cycles or enters Conway's Divergent RATS Sequence.
Conway conjectures that this is true for every positive integer. This is still an open problem.

Finally we conjecture that there is only one divergent sequence of length ¢ for each base.
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1. INTRODUCTION

Integer representations by forms are sources of a series of very interesting Diophantine equa-
tions. For instance, the cubic form x>+ +2° represents 1 and 2 in an infinite number of ways,
whereas only two representations (1,1,1) and (4,4,—-5) are known for the number 3 and it is
unknown whether there are other representations. Number 4 has no representations, as was
proved using congruential arguments. But, in general, we do not know a definitive criterion for
testing if a number is representable as a sum of three cubes, nor a method for finding such a
representation (see [12]). For the quadratic forms, the situation is different; Gauss developed his
theory of quadratic forms [7] and solved the related integer representation problem. In particular,
quadratic forms, computed as first derived sequences using the Simson determinant, are invariant
for some second-order linear recurrent sequence. Therefore, each representable integer admits an
infinite number of representations deduced from the recurrent sequence (see [17], [6]).

In this paper we discuss integer representations by a cubic form associated with a third-order
recurrence known as the Tribonacci recurrence [9]. The technique of derived sequences is used
to define an invariant cubic form, computed as second derived sequences [5] of a third-order
linear recurrent sequence. Therefore, an infinite number of representations is produced whenever
a representation exists. Before stating the problem, let us briefly review the properties of a third-
order linear recurrent sequence {7y, 7}, 7,, ...} defined by the recurrence

:z;l+3: ];:+2+q];1+1+rz;: p:qar EZ: (1)

over Z, the ring of rational integers, with initial integer values 7, =c, 7, =5, and 7, =a. The
characteristic polynomial of recurrence (1) is A(x) = x* - px* —qx—r, and expressions that allow
us to directly compute 7, are
Aa”+Bp"+Cy",
I =4 (A+Bn)a"+Cy", )
(A+Bn+Cnha",

according to whether A(x) has three simple roots @, 3, ¥ , a double root @ = £ and y, or a triple
root @ = B=y. The second derived sequence 72 (see [5], Vol. I, p. 410) of a third-order recur-

rent sequence is defined by

T T, T

@ n n+l n+2
L7=Ty Ty Tl
T T T

The development of this determinant, using the recurrence (1) to eliminate 7., and 7, _,, yields a
cubic form in three variables, 7., T',,, and T ,,:

td
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—Lr = (pq+n0 15 - T+ Gr— p) L0 o1y —2qr T2 T, — prTPT,

3) -
—(pr+qOT 2 +qT T, +(q - P T, +2pT T2

Whereas a closed-form expression for the sequence 7® as a function.of 7 is obtained using (2)
before expanding the determinant:

~r"ABC[(a-p)(B-7)(r - )],
P =1 -r"B’Cl(@~7)*al’, C)
-r"8C%a?,

according to the three situations of simple, double, or triple roots.

From expression (4) we can conclude that, whatever may be the root multiplicity of A(x),
T satisfies the first-order recurrence 7® = rT% . From the same equation (4) we can see that
the cubic form (3) is an invariant for the sequence 7, if and only if » = 1. Rewriting expression (3)
with 7 =1, and substituting the variables x, y, and z for 7,, 7 ,,, and 7, _,, respectively, we obtain
the invariant cubic form €(x, y, z):

X’ =y (pg +1) - 2 + xyz(3— pg) —2qx*y — pX*z—(p+q*) x)* + qxz* + (g — p*) zy* +2pyz*. (5)

The integer representation problem consists of finding all triples (xy, ¥y, z,) € Z° that are
solutions of the Diophantine equation G (x,, ¥y, z,) =m VYm € Z. If a triple (x,, y,, z,) exists, it is
called a representation of m and 6(x, y,z) is said to represent m. Otherwise, it is said that
%(x, y, z) does not represent m. From the invariance of ‘6(x, y, z) it is evident that, using a triple
(%o, Yo> 2o) as an initial condition in the recurrence (1), we get an infinite number of repre-
sentations for m.

When p =q =r =1, expression (1) is known as the Tribonacci recurrence, and the sequences
with initial conditions 7, =1, /=1, 7)=0, and 7, =3, ;=1 7;=3 are called the Tribonacci
sequence K, and the generalized Lucas sequence S, respectively (see [9]).

In this paper we investigate the properties of the Tribonacci cubic form J(x, y, z), which we
define as the opposite of the expression obtained by setting p = g =1 in (5), namely,

J(x,y,2)= x3 +2y3 +2° —2xyz+2yx2 +zx? +2xjy2 —xz% - 2yzz, ©6)

The related representation problem is fully solved. With this aim, the paper is organized as fol-
lows: Section 2 collects the main properties of the Tribonacci recurrence and a related ring that
we will call the Tribonacci ring; Section 3 studies the Tribonacci cubic form; Section 4 solves the
integer representation problem for the Tribonacci cubic form; Section 5 comments on related and
open problems.

2. THE TRIBONACCI RECURRENCE AND CUBIC RINGS

Let ®(x)= x*—x?-x -1 denote the characteristic polynomial, called 7ribonacci polynomial,
of the Tribonacci recurrence. The polynomial ®(x) is irreducible over the rational field Q with
Galois group e isomorphic to &;, the symmetric group on three elements. Let us denote by 7
the real root and with 7, and 7, the complex conjugate roots of ®@(x). These roots, expressed by
means of the Tartaglia-Lagrange formulas, are
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r=1[1+ 194333 +¥19-333,
%{l+w\3/19+3\/§§ +a)2\3/19—3\/§§],
7, =31+ 0 ¥194333 +0319-3733 ],

3

where @ = —‘—%’ﬁ is a primitive cube root of unity.

Let Qf7] denote a cubic field generated by the real root 7 of the Tribonacci polynomial. The
field Qfw, 7] of complete reducibility for ®(x) is obtained from Q[z] by the adjunction of w.
Using (2) and the roots of the Tribonacci polynomial, we get the following explicit expressions
for the Tribonacci and the generalized Lucas sequence, respectively:

,z_n+1 Trl1+1 Tg+1

R iy Ry e et G g A &

—_— n n
S,=1"+1{ +1,.

Notice that S, is the n-power symmetric function of 7, 7,, and 7,.
In a ring, the solution of the representation problem for decomposable forms is based on ring
factoring properties [1]. In the case of the Tribonacei cubic form, the solution depends on the
integral ring of (Q[¢] that we will call the Tribonacci ring.
2.1 The Tribonacci Ring
In this section we will prove two main properties of the integral ring of Q] z]:
i) the ring of integers in Q[7] is Z[r], the extension of Z by the adjunction of 7;
ii) Z[7] is a principal ideal domain (PID).
Let us recall that the norm in Q7] is defined as
Nr(a+br+ct?)=(a+br+ct?)(a+br,+ct?)(a+br, +c1h)

=a> +b* + —dabc - (b +a)+b*(c—a) +a*(3c+b),

(7

where the product expansion turns out to be an irreducible cubic form ([1], p. 80) over Z.

A direct calculation shows that the basis discriminant is D[1, 7, 7] = ~44. Since the norm of
7 is unity, i.e., Nr(r)=17-7,-7, =1, then 7 is a unit, and the triple {, 7, *}, hereinafter called
polynomial basis, is an integral basis for Q[z].

Theorem 1: The triple {1, 7, 72} is an integral basis for the integer ring of Q[].

Proof: Let us consider an integral basis {@,, ,, ®,} for the ring of integers in Q[z]. Since
7 is an integer, then a 3 x 3 matrix C = (c;,;) with ¢,; € Z exists such that

1=, +¢,0, +c30;,
T =0 @y +Cppy + 5303, (3)
2_

T = C31601 + 032012 + 0330)3.

The determinant det{C) is an integer, and (see [14], p. 67) we have
D[L % TZ] = det(C)ZD[wl, a)Z, 0)3] - _22 .1 1;
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hence, possible values for det(C) are 1 and +2. Let us first observe that it is sufficient to
consider positive values for det(C), since negative values only correspond to a different ordering
of the basis elements. Let Cj, € Z denote the cofactor of ¢,;. If det(C)=1, then, inverting (8),
we have

w,=C, - 1+C,t+Cp572,

@y = Cyy- 1+ Cypyt + Cyy?, 9

w5 =Cyy- 1+ Cyy1 + G372,

and {1, 7, 72} is evidently an integral basis for Q[z].
If det(C) = 2, then, inverting (8), we obtain

[ Gy 1+ Cpr+ Gyt
1~ 2 >
. 2
lo,= Cy 1+C2227+C23r , (10)
C31'1+C327+C33T2
CU3 = 2 s

\

where at least one of the coefficients Cy, is an odd number, otherwise det(C™) is an integer,
contrary to the assumption that det(C™1)=1/2.

To demonstrate that det(C)=2 is not possible, let us compute the norm Nr(w)) =10,
where Q is the cubic form

Since Nr(w;) is an integer, {2 must be a multiple of 8, which will turn out to be impossible unless
all Cj, are even, a case already excluded. In fact, taking the congruence modulo 2 of the expres-
sion between square brackets, we find the condition C;, +C;, +C;3=0, j=1,2,3, where, for at
least one j, one addend is even and two addends are odd. For instance, let C;; =2a, C;; =2b+1,
and Cj3=2c+1 be substituted in the above bracketed expression, then, taking the congruence
modulo 4 of the resulting expression, we have

@2b+1° +(2c+1)* - 2c+1)?(2b+1+2a) + (2b+1)*(2c+1-2a) =2 mod 4.

This result shows that Q is twice an odd number; hence, it cannot be a multiple of 8. The
other two cases, C;; =2a+1,C;; =2b,Cj3=2c+1and C;; =2a+1,Cj, =2b+1, Cj3 = 2c, respec-
tively, yield the same conclusion. Therefore, det(C) = 2 is not possible. Thus, the ring of integers
in Q[z] is the integral extension Z[r], and any integer in Q[] is of the form a+b7 +c7?, with
abceZ. O

It follows from the above proposition that the field discriminant is Dgy,q = —44. Moreover,
we have already observed that Nr(r)=1. Since ®(x) has one real root and two complex roots,
Dirichlet's theorem ([1], p. 112) allows us to conclude that the multiplicative group U[z] of the
units in Z[7] is an Abelian group generated by —1 and 7. In other terms, U[z]=C, x C,,, where
C, ={1,-1} and C,, is a cyclic group of infinite order isomorphic to the additive group of Z.

We end this section by showing that Z[r] is a principal ideal domain (PID), consequently,
Z[ 7] is a unique factorization domain. For this purpose, let us recall three basic concepts:
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e In Q[7], a notion of ideal equivalence is introduced by defining two ideals V; and V, as
equivalent if a rational number # € Q exists such that V| = u¥,.

e Given a nonzero ideal 3B of a ring R, we call the number card (R/®) (the cardinality of
the quotient R/%) the norm of & and denote it by Nr(%B) (see [15], p. 52).

e  /Z[7] is the only ideal with norm 1 in Q[].

Theorem 2: The ring Z[7] is a principal ideal domain.

Proof: The ring Z[7] is a Dedekind ring; hence, it is integrally closed and, by Corollary 1 on
page 58 of [15], every ideal class contains an integral ideal % such that

|
Nr(®B) < (%)% |-44|Y2<1877 <2,

and this means that Z[7] belongs to every ideal class, so that in Z[7] every ideal is principal (see
[1], p. 231). O

Remark 1: Dedekind gave a pictorial description of an ideal number in his masterful survey paper
on the theory of algebraic integers [4]. Ideal numbers were introduced by Dirichlet and Kummer
in order to recover unique factorization in algebraic number fields. A "true" ideal number "is
never defined in its own right, but only as a divisor of actual number @" ([4], p. 94) in the ring.
If the unique factorization holds in the ring of integers of an algebraic number field, then no ideal
number exists and all ideals belong to a single equivalence class. Whereas, if unique factorization
does not hold true, then a "true" ideal number of Kummer occurs. "True" ideal numbers produce
different classes of ideals in the algebraic number field, and these classes cannot contain the inte-
gral ring as an element.

3. THE TRIBONACCI CUBIC FORM

We defined the Tribonacci cubic form J(x, y, z) as having a positive x> coefficient. This
assumption is not restrictive, since a sign change of the three variables corresponds to a sign

change of the form, that is,
g(—xa =Y, —Z)z_g-(xay’z)' (11)

The transformation (11) belongs to a set of variable substitutions that specify the equivalence of
forms. This concept, together with the notions of reducibility and decomposability of forms, is
elemental to classify J(x, y, z). Let us recall, for the sake of reference, their definitions from [1].

Definition 1: Let all cubic forms considered have coefficients in Z:

i) Two cubic forms €'(y,, y,, y;) and €(x,, x,, x;) are called equivalent if there is a non-
singular linear change of variables which takes one form to the other. The transforma-
tion is characterized by a matrix with integer entries and its determinant is +1.

ij) A cubic form is said to be irreducible over Q if it cannot be written as a product of a
linear form and a quadratic form with coefficients in Q.

iii) A cubic form is said to be decomposable over Q if it can be written as a product of
linear forms with coefficients in some finite algebraic extension of Q; it is called non-
decomposable otherwise.
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The above definition has its nearly direct consequence in the following facts:

1. Equivalence of forms is an equivalence relation.

2. The variable transformation is invertible, and the matrix of the inverse transformation has
integer coefficients.

Equivalent forms represent the same set of integers.

Any cubic form is always equivalent to a form with at most eight nonzero coefficients.
Reducible cubic forms with integer coefficients are reducible over Z.

Cubic forms with integer coefficients, which are decomposable in a finite algebraic
extension 2. of (), are decomposable in the integral ring of 2.

e

Proposition 1: The Tribonacci cubic form J(x, y,z) is irreducible in Q, decomposable in
Q[r,w] and equivalent to a form 6(z, u, v) with eight nonzero coefficients.

Proof: The equivalent form €(¢, u, v) with eight nonzero coefficients,
0 +4v3 =76~ 2tuv + ut® 4+ 2vi% - Stu* — 4u?, (12)
is obtained performing on J(x, y, z) the variable substitution
x=—1+v,
Y=,
z=-2t+v+u
Irreducibility is easily proved by setting y =0 and z=-1 to obtain the irreducible polynomial
J(x,0,~1) = x> — x> — x —1 in a single variable.
Decomposability is proved by factoring J(x, y, z) into a linear and a quadratic form over the
real field Q[z]. The full decomposition into three linear forms over Q[w, 7] is obtained by taking

the conjugate of the linear factor under the Galois group 9e.
Let us consider the real decomposition

T(x, y, z) = (x+ay +bz)(x> +cy? + dz* +exy+ fyz + gxz); (13)

therefore, we obtain the following system of nine equations in seven variables from the compari-
son of the coefficients in their expanded version with the coefficients of equal monomials in (6):

ac=2 = c=2/a=a*-2a+2,

bd =1 = d=b-b-1
ag+be+f=-2 > f=-2-a-2b+2ab,
eta=2 = e=2-a,

Sctae=2 =  a-2a*+2a-2=0,

af +bc=0 =  f=-b@*-a),

ad +bf =-2 =  f==20"-b-1)-a(2b-b?),
d+bg=-1 = b -b-b-1=0,

(b+g=1 = g=1-b.

The system is compatible. Moreover, the factorization (13) takes place in Q7] because we can
express both b and a in terms of 7. Actually, we have b = v and, from the birational substitution
b=1/(a-1) that transforms the equation ®@(b) = b*—5*-b~1=0 into the equation @’ —~2a* +
2a-2=0, we get a=(1+b)/b=(1+7)/7. The coefficients of the decomposition (13) are
explicitly
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a=T e b=r c=2- T = 24000 ] d=?— 71,
T T+1

_z-1

e =—7'+7+2, f=-12-1, g=1-7.

Over the complex extension Qw, 7], I(x, y, z) decomposes into three linear factors as
T(x,y,2) =(m+ 1+ )y +22)(rpx + 1+ 1)y + 722) (7,0 + (1 + 1)y + 722). (14)

It is evident that the Tribonacci cubic is a norm in Q[z] with respect to the integral basis
{z,1+ 7, 7%}, hereinafter called Tribonacci basis.

Remark 2: Along with a cubic form, it is interesting to consider the cubic curve in a complex
projective plane with homogeneous coordinates x, y, and z, defined by the equation €(x, y,z)=0
(see [11]). Whenever the cubic curve has a singular point, a translation of the singular point into
the origin usually yields to a simpler expression of cubic form. However, the curve J(x, y,z)=0
has no singular point, in fact it is a degenerate curve which is the product of three straight lines
that are not concurrent in a single point. Since the Tribonacci cubic form cannot be simplified
using this artifice, it is likely that the reduced form (12) with eight coefficients is the simplest one
possible.

4. THE TRIBONACCI CUBIC AND REPRESENTATION OF INTEGERS

The Tribonacci cubic gives infinitely many representations for m=—1 and m=—44 by Tri-
bonacci and generalized Lucas sequences, respectively, and no representation for m=3. As a
consequence of (14), the representation problem for the Tribonacci cubic can be completely
solved, since Z[7] is a PID. In particular, it is evident that rational primes, which are still primes
in Z[z], are not represented by the Tribonacci cubic. The following theorem fully characterizes
the rational primes of Z[7].

Theorem 3: A prime p in Z is also prime in Z[7] if and only if @ (x) is irreducible over Z,.

Proof: First, let us assume that p is a rational prime in Z[7], then the set of residuesZ[7],
modulo p is a field isomorphic to GF(p®) with basis {1, 7, 7%}, so @ (x) is irreducible over Z,,.
Second, let us assume that @(x) is irreducible over Z,; therefore, the Galois field GF(p®) is
generated by a root of ®@(x). If we assume that p factors properly in Z[7], then we have a
decomposition
p=(a,+a;r +a,7?)[(a - a} +a,a,+3aa, —2aa,)
+(—a} +2a] — aa — a@,)r +(a] - a} —aga, + aa,)7?],

where a,,a,,a, € Z. Taking the congruence modulo p, we see that (a,+d;z+ad,r%), where
a,, a,, @, € Z,, is a zero divisor in GF (p*), a contradiction. Thus, p is a prime in Z[7]. O

Remark 3: Theorem 3 is a reformulation adapted to our cubic field of the well-known fact that
rational Gaussian primes are primes p (= 4k +3) for which —1 is a quadratic nonresidue; in other
words, the polynomial x? +1 is irreducible over Z,. Whereas, for primes p =4k +1, since -1 isa
quadratic residue, the polynomial x*+1 is reducible over Z,. Hence, p factors over Z[i], i.e.,
p = x*+y* has a solution in rational integers x and y (see [4]).
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Remark 4: 1t is easy to check whether an integral polynomial m(x) is irreducible over GF(p) by
computing the greatest common civisor (GCD), via the Euclidean algorithm, with x?™' —1. If the
GCD is 1, then m(x) is irreducible, otherwise we get the product of its linear irreducible factors,
possibly m(x) itself.

It follows from Theorem 3 that 3, 5, 23, 31, 37, ... are primes in Z[7]; therefore, they are not
represented by the Tribonacci cubic. In the next table, we summarize the representation of the
rational primes up to 29 that factor in Z[r]. The prime factors are explicitly written in the poly-
nomial basis, whereas the representing triples are given in the Tribonacci basis, which is useful to
initiate the Tribonacci recurrence generating an infinite number of representations. The rational
primes 2 and 11 are factors of the discriminant D; hence, they are the only primes that ramify in
Z[7] (see [15], Theorem 1, p. 58). In particular, they are the only rational primes divisible by a
square of a prime in Z[7].

2 = (1+70)(1-7)? = (0,1,0),
2° = (1+7)’d-0)% = (a,b,¢),
11 = (3+4r+47%)(3-21)° = (1,3,4),
7 = (1+27)(-1-67+472) = (1,1,0),
13 = B+r-1)@d-7+27%) = (-2,3,-1),
17 = (-1+27%)(-5+87-27%) = (1,-1,2),
19 = (2-7+2t)(3+77-172) = (1,-2,2),
29 = (2+37)(1-157+97%) = (1,2,0).

Finally, we give conditions that are necessary and sufficient to represent an integer M by the
Tribonacci form.

Theorem 4: A rational integer M < Z is represented by the Tribonacci form if and only if its
prime decomposition is
S r
M =421 H P gq;"h ,
where p; are distinct rational primes that factor in Z[r], and g, are distinct rational primes in
Z[r] witha,5=0.

Proof: From the norm product property, it follows that a representation for M is obtained as
a product of the prime power factor representations. Therefore, the conclusion stems from the
following facts:

a) Z[r]isaPID;

b) let (a;,b;,c;) be arepresentation of p;, then N(a, v +b,(z +1) +cjr2) =p;;

¢) any cube g, is represented as (g}, 0, 0), given that 1 is represented as (1, 0, 0);
3ny,+1 3n,+2

d) neither ¢,"*" nor g,
cube-powers. O

is represented, because ¢, is not represented, and they are not

5. REMARKS AND CONCLUSIONS

In this paper we have introduced the Tribonacci cubic form J(x, y, z) and solved the related
representation problem. To this end, we have described the Tribonacci ring, namely, the ring of
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integers in the real cubic field Q7] containing the real root 7 of the Tribonacci polynomial
x*—x*—x—1. In particular, we have computed the integral basis, the discriminant, the group of
the units, and we have shown that the integral ring Z[7] is a principal ideal ring.

The integer representation problem for cubic forms, in general, has unpredictable features,
unlike the one for binary quadratic forms. For instance, the equation z(x*+ ?) = m has a finite
number N (m) of solutions for every m, depending on the factorization of m, a solution being the
triple (1,0,m). In the Introduction we recalled that the cubic x*+3*+2z® despite numerous
attempts still remains unsolved (see [12]). Unfortunately, this cubic is neither a Tribonacci cubic
nor does it seem to be equivalent to any invariant cubic of a third-order recurrence. Therefore, in
this context, cubic forms like the Tribonacci cubic, yielding none or infinitely many representa-
tions for every integer, have a rather regular behavior.

In conclusion, although Gauss began the study of integer representations by cubic forms, the
theory is far from complete, unlike the theory of binary quadratic forms, but this is a challenging
source of beautiful problems.
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1. INTRODUCTION

The aim of this paper is to study the main properties of the derivatives B{(x) and CP(x) of
the Morgan-Voyce polynomials B,(x) and C,(x) (e.g., see [8]) described in the next section.
Here x is an indeterminate and the bracketed superscript symbolizes the first derivative with
respect to x. As done in previous papers, we shall confine ourselves to considering the case x =1
For notational convenience, the terms B{(1) and CP(1) will be denoted by R, and S, respec-
tively.

Various papers have dealt with this kind of polynomial pairs. For example, the polynomial
pairs (Fibonacci, Lucas), (Pell, Pell-Lucas), and (Jacobsthal, Jacobsthal-Lucas) have been studied
in [1], [2], [3], [4], [9], and [10].

The paper is set out as follows. After recalling some background material on the Morgan-
Voyce polynomials, we show first some basic properties of the numbers R, and §, the most
interesting of which are, perhaps, expressions for sums and differences involving subscript sums
and differences (see Section 3.3). In Section 4, we evaluate certain finite sums involving R, and
S,. We conclude the paper with some properties of divisibility and the primality of R, and .

1.1 Some Useful Results for Fibonacci and Lucas Numbers F,, L,
Binet forms are

F =(a"-b") /5, (1.1
L, =a"+b", 1.2
where a and b are the roots of the equation 2 —7-1=0, i.e.,
a=(1++5)/2, b=(1-5)/2 (so a+b=1 ab=-1 a-b=4/5). (1.3)
From (1.1)-(1.3), it follows readily that

Frsap+Fpnp =Foly,, (1.4)

Fsap = Fap = LpFaps (1.5)

LywaptLys,=L,Ly, {1.6)

Lysap=Logp=SEo15), (L.7)

Some relationships among Fibonacci, Lucas, and Morgan-Voyce polynomials that are appli-
cable to the development of our theme include

xB,(x*) = F,, (%), (1.8)
C, (x?) = Ly, (x). (1.9)
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These occur-as (4.1) and (4.3) of [8]. Substituting x =1 in this pair of relationships yields
B,=F,, (1.8a)

Cn = L2n: (lga)
where B, := B,(1), ....
Background information on the Fibonacci and Lucas numbers may be found in [11].

2. BACKGROUND MATERIAL

Consider the polynomial sequence {X,(x)} defined by the recurrence
X,(0) = (x+2)X,,(x) = X, ,(x) (n22) 2.1
with initial conditions
Xo(x)=a,, X|(x)=a, (a,,aq, integers). 2.2)

Special cases for the Morgan-Voyce polynomials B,(x) and C,(x) are:

@a)=0)  iX,()=B,), -
(aO: al) = (2’ 2 +x) lf/Yn(x) = Cn(x)' '
It has to be pointed out that, in the very special case x = 0, we have
B (0)=n and C,(0)=2Vn. 2.4
Combinatorial expressions for the above polynomials are
n=1
k
B,(x) = kg (§k++ 1) x* (n=0) [8,(2.20)], (2.5)
n—-1 A
C”(x)_,;n—k( 2% )x +x" (n=1) [8,(3.22)]. (2.6)

Observe that, if we assume that 0° =1 (see [5] for some considerations on this assumption),
then (2.5) and (2.6) hold also for x =0 [cf. (2.4)].
Binet forms are

B,(x)=(a"-p")/ A, 2.7)
Ci(x)=a"+p", (2.8)
where the roots @ := a(x), 8:= B(x) of the characteristic equation #2 — (x+2)t+1=0 are
a=(x+2+A)/2, f=(x+2-A)/2 (2.9)
so that
a+f=x+2, af=1 a-f=A:=Ax)=Jc(x+4). (2.10)

Clearly, (1.3) contrasted with (2.9) and (2.10) together reveals that a = (1), 5% = B(1).
Notice that
_da(x) _«a ap(x) __pB
.Y _ L p(). Y F
a® =22 =2, 0= 5 < (2.11)
leading to
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(@0 =22 gy -2, e
and
dA +2
AV :=—d§i)= Z(x). (2.13)

3. SOME ELEMENTARY PROPERTIES OF R, AND S,

3.1 Basics
From (2.5) and (2.6) we immediately obtain the derivatives

d = ;
BW(x):= 5 B0 = Sk (é’k++kl)xk U n20), (3.1)
k=0
n-1
O =Lc,m=3 2k (" k- 1) e (1), (32)
k=0

For example, B{P(x) = 3x? +12x+10 and C{’(x) = 4x> +24x? + 40x +16.
When x =1, the following table can be constructed [BP(1):= R, CP(1):=S5,] from (3.1)
and (3.2).
TABLE 1. Values of R, and §,, for 0<n <10

n {012 3 4 5 6 7 8 9 10
R, |0 0 1 6 25 90 300 954 2939 8850 26195

S, 10 1 6 24 84 275 864 2639 7896 23256 67650

n

Observe that the value of R can be obtained by letting x =1 in (3.1) with the assumption
that a sum vanishes whenever the upper range indicator is less than the lower one. The value of
S, comes from the fact that the initial condition Cy(x) =2 is independent of x.

Using the Binet forms (2.7) and (2.8) with (2.12) and (2.13), we deduce that

BP(x) = [1C,(x) - (x +2)B,(0)]/ &, (33)
CO(x)=nB,(x) asin[8, (3.24)], €X))
whence
R,:= BO() = (nL,,—3F,,)/5 [by (1.8a) and (1.9a)], (3.5
S, :=C,(1)=nE,, [by(1.10a)], (3.6)

results which are of subsequent application.

3.2 Negative Subscripts
Direct differentiation of B_,(x) = —-B,(x), C_,(x) =C,(x) [8, (5.1), (5.2)] yields

R,=-R, 3.7)
S, =S8, (3.8)

3.3 Sums and Differences Involving Subscript Sums and Differences

Routine algebraic computation applied to standard Fibonacci and Lucas number knowledge
[see (1.4)-(1.7)] with (3.5) produces the identities
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R”+P + ‘Rn—p = LZpRn + BnSp >

Rm—p - Rn—p = L2pRp + EpSn’
with special cases

(=1 Ry +R. 1 =3R, + By,
Rn+}i - Rn—-l = nI:Zn = Sn by (36)
(p = n): R2n = LZan +an’; = LZnR)n + FénSn

Furthermore, with (3.6),
Spip +Su-p = LopSy+ Ly,S,,
Spp = Sp-p = NLopFop+ PPy, Ly,
whence
Son =2L,,8,.

4. EVALUATION OF SOME FINITE SUMS FOR R, AND S,

(3.9)
(3.10)

(3.11)
(3.12)

(3.13)

(3.14)
(3.15)

(3.16)

As a calculational aid in the ensuing investigations, we need the following identities [1], [7]

which are valid for arbitrary y:

Sy = 42 — (k4 Dy 4 31/ (r— D2,
r=0

> (F)y =00,

Il
(=1

r

M=

(K)o = or+1-.

r=0

Proposition 1:
k
Z R =1+ (kLyjs1— Loy —3F5111) /5.

r=0

Proposition 2:
k
Z(:)Sr = kFy— Py

4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Proof of Proposition 1: Taking (3.5) into account, rewrite the left-hand side of (4.4) as

1 k k
g[erz,—az F]
r=0 r=0

1S o a2 3 &, 0
=1 by~ @ by | by (1.1), (1.2
SLZO’(" )= F @ -5 by (11, (1)
= [kLyppy— (k + D)Ly +2~3(Fypn = D1/S by (4.1) with y = a2, b2
= (kLyp1 = Loy =3F5n +5) /5. 0

Identity (4.5) can be proved in a way similar to that for (4.4).
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Proposition 3:
S (k SED2 (ks ~3F,)  (keven),
27 )R = (4.6)
r=0 SE2(kLy ~3L,) (K odd).
Proposition 4:
k 522y, k even
Z(I;)Sr _ w1 (keven), 4.7
=0 SED2kE - (k odd).
To prove Propositions 3 and 4, we need the following lemmas.
Lemma 1: |
k 5k/2F k
=o\" 56=D21  (k odd).
Lemma 2:
k 52k k
z (k)rL2r+m _ e+m+1 (k even), (4.9)
AU sk-D2pr, o (kodd).
Lemma 3:
x 5(k-2)/2, &
Z (k)rFZHm _ Ly ims1 (K even), (4.10)
i sED2gR o (kodd).

To prove these three lemmas, use (1.1)-(1.2) along with (4.2)-(4.3) while recalling the key
relationships a® +1=a+/5 and b* + 1= —-b+/5 deduced from (1.3).

Proof of Proposition 3 (a sketch): From (3.5), rewrite the left-hand side of (4.6) as
1 (k
gz (r)(rl’lr - 3};?2r);
r=0

whence the right-hand side of (4.6) can be obtained after some algebraic enterprises involving
(4.8), and (4.9) withm=0. O

With the aid of Lemma 3, Proposition 4 can be proved in a similar way.

5. SOME DIVISIBILITY PROPERTIES OF R, AND §,

In this section, the divisibility of R, and S, by the first three primes is investigated. To save
space, only Proposition 7 is proved in detail. A glimpse to the primality of the integers under
study is caught at the end of the section.

Proposition 5: (i) R, is odd iff n=2(3k £ 1), while (i) S, isodd iff n =06k £ 1.

Proposition 6: (i) R, is divisible by 3 iff either n= 3k or n= 6k + 1, while (i) S, is divisible by 3
iff either n=2k or n=3k.

Corollary to Propositions 5 and 6: Both R, and S, are divisible by 3 iff they are even.

Proposition 7: (i) R, is divisible by 5 iff either n =5k or n=5k 1, while (i) S, is divisible by 5
iffn=>5k.
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Proof: The proof of (i) is trivial as it is based on (3.6) and the well-known fact that F, is
divisible by 5 iff n is. As for (i), from (ii) and (3.12) we can say that

R, =R, _, (mod5)<n=0 (mod>5). 5.1

Further, from the recurrence R,=3R,_,—R,_,+F,, , [that is readily obtained by calculating at
x =1 the first derivative with respect to x of both sides of (2.1) with X = B, and using (1.8a)],
and from the conditions on » for F, to be divisible by 5, we have that

R,.,=3R,—R,_, (mod 5) <> n=0 (mod 5). (5.2)
From (5.1)-(5.2) we can write 2R ,, = 3R,, (mod 5) = n =0 (mod 5), that is,
R,.,=-R, (mod 5) =n=0 (mod 5). (5.3)
From (5.3) and (5.1), it remains to prove that
n=0 (mod 5) = R, =0 (mod 5). 5.4)
Put n =5k in (3.5) thus getting
Ry, = kLyo = 3Fyg;. /5. (5-5)

On using (2.4)-(2.4") of [6], we can express F, /5 (for k even) as
k2

Z (Foor-17 + Faor-1a + Faor_s + Foopq + Fogr—g + Fior_11) (5.6)
r=1
and (for k£ odd)
(k=1)/2
1+ Y (For—7 + Faora *+ Faoras + Froras + Faoraa + Fror1) - (5.7
r=1

For r =1, expression (5.6) is congruent to 3 modulo 5. Since the repetition period of the Fibo-
nacci sequence reduced modulo 5 is 20, the congruence above holds for all » <k/2. It follows
that Fo, /5=3k/2 (mod 5) if k is even. Analogously, it can be seen from (5.7) that F,, /5=k
(mod 5) if kis odd. Summarizing, we found that

2k (mod5) (k even),

3hoe /5= {3k (mod5) (k odd). (>-8)

Finally, the inspection of the sequence {kL,,,} reduced modulo 5 shows that

2k (mod5) (keven),
kLo = {

(5.9)
3k (mod5) (k odd).

Identity (5.5) along with congruences (5.8) and (5.9) prove (5.4) and the proposition. O

5.1 On the Primality of R, and S,

Since S, =0 (mod n) for n>1 [see (3.6)], these integers cannot be prime. From Proposi-
tions 5-7, we see that a necessary condition for R, to be a prime is that n=2, or 8, or 22, or 28
(mod 60). By using the function "nextprime" of the software package DERIVE, we found only two
prime R, for n <248, namely,

Ry=2939 and Rg=352,536,175,722,757,107,150,131,558,879.
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6. CONCLUSIONS

What has been presented in the preceding theory provides us with some feeling for the flow

of ideas emanating from the initial sources.

Future directions of related research studies could lead to the investigation of partial deriva-

tive aspects of the Morgan-Voyce polynomials and, perhaps more importantly, to the integration
sequences associated with these mathematically fertile polynomials.

ACKNOWLEDGMENTS

The contribution of the second author (P.F.) has been given within the framework of an

agreement between the Italian PT Administration and the Fondazione Ugo Bordoni. The authors
are deeply indebted to the anonymous referee whose valuable suggestions led to a substantial
improvement of the presentation of this paper.

1.

5.

6.

7.

8.

9.

10.

11.

REFERENCES

P. Filipponi & A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials."
In Applications of Fibonacci Numbers 4:99-108. Ed. G. E. Bergum, A. N. Philippou, &
A. F. Horadam. Dordrecht: Kluwer, 1991.

. P. Filipponi & A. F. Horadam. "Second Derivative Sequences of Fibonacci and Lucas Poly-

nomials." The Fibonacci Quarterly 31.3 (1993):194-204.

. P. Filipponi & A. F. Horadam. "Addendum to 'Second Derivative Sequences of Fibonacci

and Lucas Polynomials'." The Fibonacci Quarterly 32.2 (1994):110.

P. Filipponi & A. F. Horadam. "Partial Derivative Sequences of Second-Order Recurrence
Polynomials." In Applications of Fibonacci Numbers 6:105-22. Ed. G. E. Bergum, A. N.
Philippou, & A. F. Horadam. Dordrecht: Kluwer, 1996.

P. Filipponi. "On a Useful Assumption." Int. J. Math. Educ. Sci. Technol. 28.6 (1997):917-
21.

H. T. Freitag & P. Filipponi. "Division of Fibonacci Numbers by £." The Fibonacci Quarterly
37.2 (1999):128-34.

N. Gauthier. "Derivation of a Formula for Xr*x"." The Fibonacci Quarterly 27.5 (1989):
402-08.

A. F. Horadam. "New Aspects of Morgan-Voyce Polynomials." In Applications of Fibo-
nacci Numbers 7:161-76. Ed. G. E. Bergum, A. N. Philippou, & A. F. Horadam. Dordrecht:
Kluwer, 1998.

A. F. Horadam & P. Filipponi. "Derivative Sequences of Jacobsthal and Jacobsthal-Lucas
Polynomials." The Fibonacci Quarterly 35.4 (1997):352-57.

A. F. Horadam, B. Swita, & P. Filipponi. "Integration and Derivative Sequences for Pell and
Pell-Lucas Polynomials." The Fibonacci Quarterly 32.2 (1994):130-35.

S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood
Ltd., 1989.

AMS Classification Numbers: 11B37, 11B83, 26A06

122

®s o% o2
EXE <2 x4

[MAY



ON THE FREQUENCY OF OCCURRENCE OF & IN THE
a-EXPANSIONS OF THE POSITIVE INTEGERS

Gabriela R. Sanchis

Department of Mathematical Sciences, Elizabethtown College, Elizabethtown, PA 17022

Laura A. Sanchis
Department of Computer Science, Colgate University, Hamilton, NY 13346
(Submitted January 1999-Final Revision August 2000)

1. INTRODUCTION

Most students are familiar with representations of integers using various integral bases. In
[1], George Bergman introduced a system using the irrational base o = % The number « is of
course the well-known golden ratio,* often defined as the limit of the sequence {F, /F,_,}, where
F, is the n™ Fibonacci number. Under this system, we can represent any natural number 7
(uniquely) as the sum of nonconsecutive powers of a. This means that, for any natural number #,
there exists a unique sequence {¢}, where ¢ € {0,1} for all i, such that n=3, _ea' and
ee;,; =0 for each i. The a-expansion of n is ...e_ye_jepese, ..., where we adopt the convention of
underlining the zero® coordinate and omitting leading and trailing zeros when convenient. For
example, 5= a * +a™! +a?, so the base-a representation of 5 is 10010001. Table 1 shows the a-
expansions of the first 30 natural numbers. Table 2 shows the base 2 representations.

If we look down any column of the base 2 representations, it is easy to detect the patterns,
which involve strings of Os and 1s of equal length, so that the ratio of 1s to Os is almost 1. The
situation for other positive integral bases is analogous. In contrast, the columns in the a-expan-
sions also exhibit patterns, but these are not so easy to detect or describe. The purpose of this
paper is to explore some of these patterns. For each positive integer n, let Ratio,(n) be the ratio
of the numbers & < that do have ' in their a-expansions to those that do not. In other words,
Ratio,(n) is the ratio of 1s to Os in the i column (i.e., the column corresponding to a') of the a-
expansions of the integers 1 through n.

Hart and Sanchis showed in [6] that Ratioy(n) — &% as n— o, thus proving Conjecture 1
from [2], as well as answering a question posed by Bergman in [1]. In this paper, we generalize
the techniques used in [6] to derive the behavior of Ratio,(n) for all other values of i. It should
come as no surprise that a-expansions are closely related to the Fibonacci sequence. Indeed, any
natural number 7 can be expressed uniquely as the sum of Fibonacci numbers F, (here F;=0,
F =1,and F, = F,_,+F,_,). Thisis the well-known Zeckendorf decomposition of n. Grabner et
al. ([3], [4]) showed that, for m > log,, k, the Zeckendorf decomposition of kF,, can be produced
by replacing each @' in the a-expansion of k with F,,,. Thus, our results also provide informa-
tion about the occurrence of F; in the Zeckendorf decomposition of kF, .

* In [5] and [6], the symbol S was used for this quantity; we have decided to change to the more commonly used a:
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TABLE 1. a-Expansions of the Integers 1-30 TABLE 2. Base 2 Expansions

n n

1 1 11000 0 1
2 1 00 1 20 0 0 1 0
3 1 00 01 3{0 0 0 1 1
4 1 01 01 410 01 0 0
5 1 0010001 5/0 01 0 1
6 1 000010 1 6{0 0 1 1 0
7 1 000000 TO01 710 0 1 1 1
8 10 0 0 1 0 0 01 810 1 0 0 O
9 101001001 910 1 0 0 1
10 1 01000101 100/0 1 0 1 0
11 101010101 110 1 0 1 1
12 10010100000 1 12/0 1 1 0 0
13 100100010001 13/0 1 1 0 1
14 1001000010 01 140 1 1 1 0
15 100100101001 500 1 1 1 1
16 100001000101 6/1 0 0 0 O
17 100000010101 7|1 0 0 0 1
18 1 0000O0O0O0OO0O0O0O0 1 8|1 0 0 1 0
19 100 0 0 0 1 00 O0O0TO0OT1 1911 0 0 1 1
20 1000100100001 2001 0 1 0 0
21 1000100010001 2001 0 1 0 1
22 1000101010001 2211 0 1 1 0
23 1010010001001 2301 0 1 1 1
24 1010000101001 2401 1 0 0 0
25 1 01 00 0 Q0 O0O0OO0OT1TO01 251 1 0 0 1
26 1 01 0001 0O0O0T1O0T1 2601 1 0 1 0
27 1010100100101 2701 1 0 1 1
28 1010100010101 281 1 1 0 0
29 1010101010101 291 1 1 0 1
30{1 00 1010100000001 301 1 110

Definition 1.1: For each integer r, define R. as follows:

a. R():

2

b. R = ’“+ for odd r >0,

r

c Rr— " 1forevenr>0,

for r <0,

< Rr aL—r+l

where L,=2, L,=1, and L, = L;+I,_, are the Lucas numbers for i >0. Alternatively, I, =
F_,+F,,. It was shown in [6] that lim,_,,, Ratioy(n) = R,. In this paper we show that, for each
r# O, lim, _,,, Ratio,(n) = R,. Note also the interesting fact that, as 7 — o and as r — -0, R,
approaches the limit R,. Our strategy is to first establish some recursive patterns along each
column (these are established in Lemma 3.5) which will allow us to obtain precise expressions for
Ratio,(m,) and Ratio(m,), where {n,} and {m,} are two subsequences of the natural numbers.
The limits of these subsequences can then easily be obtained from known limit results about Fibo-
nacci and Lucas numbers. We then show that, as 7 — o, members of the full sequence Ratio,(n)
must be caught between these two subsequences and hence the full sequence converges. Our
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proofs use only combinatorial and algorithmic techniques and do not require any specialized
number theory background.

2. DEFINITIONS AND PRELIMINARIES

We use definitions and notation similar to those used in [5] and [6]. In particular, £(n)
denotes the absolute value of the smallest power of « in the a-expansion of 7, and u(n) denotes
the largest such power. The following is a restatement of Theorem 1 from [4] in terms of the a-
expansion.

Theorem 2.1 (Grabner, Nemes, Petho, Tichy): For k >1, we have £(n) = u(n) = 2k whenever
L,,<n<L,,,,, and we have {(n) =2k +2 and u(n) =2k +1 whenever L,,,, <n<L,,,,.

The following definitions are from [6].
Definition 2.2: We define V' to be the infinite dimensional vector space over Z given by V =
{(-., Vo1, Vo, Vi, v, ...) 1V, €Z V1, with at most finitely many v, nonzero}. For clarity, we under-

line the zero™ coordinate.

Definition 2.3: Define V to be the subset of ¥ consisting of all vectors whose entries are in the
set {0, 1} and which have no two consecutive ones. We will call the elements of V totally reduced
vectors. When convenient, we omit trailing and leading zeros, so for example,
(...,0,...,0,0,1,0,1,0,1,0,0,...,0,...) = (1,0, 1,0, 1).
As in [5], we represent a-expansions by vectors in ¥, where a one in the j™ coordinate represents
al.
Definition 2.4: We define the function a:N—V so that, when the a-expansion of n is
>2 e, a(n) is the vector in ¥ with v, = ¢;.
It follows from Theorem 2.1 that, if L,, <n<L,,,,, we can write
2%-2

n=a*+ Y ea +a’sothat a(m)=(1,0, e 545, € 443> €1, €0, €15 -r €242, 0, ) (1)
i=22k+2

and, if L,,,, <n < L,;,,, then we can write
2k-1
n=a*7%+ Y ea' +a**! sothat a(m)=(1,0,e_5,€ 5541 €1, €, € €1, 0, D). (2)
=2k
Definition 2.5: The function o :V — N is defined as follows: (..., V_;, Vo, V1, ---)) = Zie_ oo ;&'
Thus o(a(n)) =n for all natural numbers n. (Note that the definition of o in [5] is in terms
of Fibonacci numbers, and is not equivalent to the one given here. Specifically, the two functions

are only guaranteed to be equal when applied to a(n) where n € N.) The following definitions
are generalizations of definitions in [6]. (The definitions in [6] correspond to the case i =0.)

Definition 2.6: We say that n has property %, if a' appears in the a-expansion of n.

1

Definition 2.7: For natural numbers n, m:
a. Ones(n,m]=|{k € N:n<k <m, k has property %, }|;
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b. Zeros(n,m]=|{k € N:n<k <m, k does not have property %, }|;

Ones;(n, m]

C RatiO,- (n,m]= Zeros;(n,m]

By abuse of notation, we also define Ratio,(n) = Ratio(0,n]. We will call a finite sequence
of Os and 1s a pattern. We use patterns to describe values of [a(n)], for fixed 7 and a sequence of
consecutive natural numbers n. Recall that [a(n)]; =1 if &' occurs in the a-expansion of n, and
that [a(n)]; = O otherwise. Thus, for n <m, we can define the pattern

Pat,(n, m)=[a(n+ D] [a(n+2)], - [a(m)],.

Patterns can be concatenated. We will denote the concatenation operation with the operator +,
but will omit it when convenient. So, for example, for n<m< p,

FPat,(n, p}= Pat,(n, m}+ Pat,(m, p]= Pat,(n, mPat,(m, p].

In addition, we use the notation P /n to denote the prefix of a pattern P obtained by deleting the
rightmost » digits. So, for example, 11001/2 =110. By abuse of notation, if P is a pattern, we
define Ones(P) and Zeros(P) to be the number of 1s and the number of Os, respectively, appear-
ing in the pattern P. We also define Ratio(P) = Ones(P)/ Zeros(P). We will be using the fol-
lowing known facts about Fibonacci and Lucas numbers: For any 4> 0, the sequence F,,,,/F,, is
decreasing, the sequence F,,,,,,/F,,,, is increasing, the sequence L,,,,/L,, is increasing, the
sequence L,,, 1,4/ Ly, is decreasing, and

lim (F,.,/ F) = a", 3)
n-->o
lim(L,,,/L)=a" 4
n—yco
FoonLnrk = FyLyper = (“1)"F11Lk’ )
Fn+hEz+k - E1E1+h+k = (—l)nEzE{:: (6)
h
Y FE=F,,-1, @
i=0
h
Z Ec+2i = F;c+2h+l - Ec-l, (8)
i=0
o +a**t=al,,+ L, 9)

Formulas (5) and (6) are from [7], page 177, (19b and 20a). The following Lemma will be
used repeatedly.

Lemma 2.8: Let a,b,c,d €N, and x,y e R. If { <x and £<y, then {75 <max{x, y}. When
each < is replaced by >, the result holds with max replaced by min.
3. SOME USEFUL RESULTS

In the sequence of a-expansions of the natural numbers, the Lucas numbers play a special

role. First, note that
a(Lyy) = 10%7100%71 and - a(Ly.,y) = (10)1(0D).
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(Readers may derive these formulas themselves, or refer to [2].) In Table 1, compare the expan-
sions found between L, =7 and L= 11 with those found between L;=18 and 2L;=22. The
two sequences of expansions are identical if we restrict our attention to powers of a between o™
and . Similar observations can be made, for large enough k, by comparing the expansions of
the numbers found between L,, , and L,,_;, and those between L,, and 2L,, ,: the expansions
are identical for those powers of & between a=* and a*. It can be proved that this is always the
case, using an algorithmic technique presented in [S]. In fact, a full recursive pattern in the
sequence of a-expansions can be established. This was shown in [6], and we merely restate the
relevant results here. Note that, for n>4, L, <2L, <L, ,+L,<L,,,. Thus, we can partition
the a-expansions between L, and L,,, into three segments: the first from L, to 2L,,_;, the second
from 2L, , to L, ,+L,, and the third from L, ,+ L, to L,,,. As partly indicated above (for
even n), the sequence of a-expansions between L, and 2L,_, is similar to that between L,_, and
L, ,. In addition, the sequence of a-expansions between 2L, , and L, ,+ L, is similar to that
between L, ; and L,_,, and the sequence of a-expansions between L, ,+ L, and L,,, is again
similar to that between L, , and L, ;. The exact ways in which the sequences are similar (or
dissimilar) vary for each of the three segments, and also vary depending on whether » is even or
odd. The full result is expressed in the following propositions, and was proved in Lemma 3.8 of

[6].
Proposition 3.1: Let k>2. If 0<m<Ly,_, and a(Ly_;+m)=(1,0,e_ 5 ),...,€_1,€, €.,
€3, 0, 1), then:
a. e—(2k—2) = O
b. a(L2k+1 +m) = (1, 0, O’ 1, e_(zk_z)’ ceey e_l, EQ, el, aery ezk_3, O, 0, 0, 1) .
e oLy g+ Lyy+m)=(1,0,0,0,e_5_5),..., e, €, €, -+ €243,0,1, 0, 1).
d (Z(2L2k+l +m) = (1, O, 1, 0, e_(2k_2), “eey e_l, EQ.’ el) cees e2k_3, O, 1, 0, O, 1) .
Proposition 3.2: Let k>2. If 0<sm< L, , and a(Ly+m)=(1,0,e_p; ),....,€_1,€,8;,...,
€2, 0, 1), then:
a  a(Ly,,+m)=(1,0,0,0,e_ 5 ), ..., €1, €€, ., €342, 0,0,0, 1).
b. a(sz + L2k+2 +m) = (1, O, 1, 0’ e_(zk_z), ceey e_l, e_o, el, ceey ezk_z, O, 1, O, 1)
C. a(2L2k+2 +m) = (l, O, 0, 1, O, 0, e_(2k_2), ceey e—l’ i)', el’ ceey eZk_z, 0, 1, O, O, 1) .
From Propositions 3.1 and 3.2, the following may be deduced.

Corollary 3.3: Let k >2.

For L,,,, <n<2L,,, a(n) begins with 10010 and ends in 0001.

For L,,_;+ Ly <n < Ly,,,, a(n) begins with 10000 and ends in 0101.

For 2L, .= Loy + Ly <1 < Ly, + Ly, ,,, (n) begins with 10100 and ends in 01001.
For L,;,,<n<2L,.,,, a(n) begins with 1000 and ends in 0001.

For Ly, + Ly, <n< Ly, .5, a(n) begins with 1010 and ends in 0101.

For 2L, =Ly + Ly 3<n< Ly + L, .3 a(®) begins with 100100 and ends in 01001.

MR ™R
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Definition 3.4: For k>1, P* = Pat (L,_,, L,].

From the above propositions, recursive formulas for P* easily follow.

Lemma 3.5: Let k>2.
a. ¥ -2k+3<r<2k-2,then P2+2 = p2% pZ-ip2k
b. If 2k+4<r <2k-3, then P2*1 = p2-1p2k-2p2k-1
Proof: Fix k and r as above and define the following maps:
Sii g+, Ly =11 [ Ly +1, 2Ly, - 1], Si(x)=x+Lyy;
Jo i [gpas Log i1 > [2 Ly, Loy + Lygals So() =x+ Loy
Sa i gpq ¥ L, Ly =1 > [Lyp g+ Loy +1, Lo =11, /() =X+ Loy
Clearly, these maps are one-to-one and onto. Moreover, by Propositions 3.1 and 3.2, [a(x)], =
[a(f(x))], for any x in the domain of f,, if -2k +3<r <2k -2. It follows that
Pat,(Ly_y, Ly — 1) = Pat, (L, 2Ly - 1],
Pat,(Ly, 5 —1, Ly )= Pat,(2Ly, — 1, Loy 1+ Lyp ],
Pat,(Ly,_y, Ly — 1= Pat,(Ly, s+ Loy, Ly — 11
Then
Pat (Lo, Lyp =11+ Pat,(Ly, =1, Ly )+ Pat,(Ly,y, Ly~ 1]
= Pat, (L1, 2Ly, =1+ Pat, 2Ly, =1, Ly + Loyl + Pat (Lo + Loy, Lygsz = 1]
Using the fact that [ex(Ly,)], = 0 for every £, this simplifies to P% p2%-1p2% = p2+2  Gim;
larly, we define the following maps:

& Loz Logoil > [Lgp, 2Ly, 4], g(x)=x+Ly_;;
& g3+, Ly o= [2Ly 1 +1, Ly 5+ Ly —1], g(x)=x+ Ly,
& [Log—as Lypad 2 [Loga + Loy, Lypisl, &(x)=x+Ly,.

Again by Propositions 3.1 and 3.2, these maps are bijections which leave the ™ term of the
a-expansion of x fixed for -2k +4 <r <2k -3. So, by concatenating the domains and ranges as
above, we again obtain P2-1p2-2p2-1 - pZk+l

4. SOME SPECIAL SUBSEQUENCES OF Ratio (n)

Here we show that, for each 7, there exist two subsequences of Rafio,(r7) that converge to
R,. These subsequences are related to the odd and even Lucas numbers. One is increasing and
the other is decreasing. In Section 5 we show that the sequence Ratio,(n) is trapped between
these two monotone convergent subsequences, and therefore Rafio,(n) must also converge to R,.

4.1 Positive Powers of o

We consider even and odd powers separately. For even powers, let 7 =2/ where /2> 1; for
odd powers, let r =2/+1 where / > 0. Using the recursive formulas derived in the previous sec-
tion, it is straightforward to obtain closed formulas for Ones(P¥).

128 [MAY



ON THE FREQUENCY OF OCCURRENCE OF @' IN THE -EXPANSIONS OF THE POSITIVE INTEGERS

Lemma 4.1: For k=2,

0, k<2, 0
1 k=21, ’
Ones(B}) = Ly k=20+1, Ones(Pf;,)) =Ly ~1,

(Lypa+ DF gy, k22142, (La=DFears, k22143

Proof: The proof'is by induction on k. The base cases are somewhat numerous but straight-
forward. We use Theorem 2.1 and Corollary 3.3 to compute the entries of the middle two
columns of the following table, then compute the last column by simple counting.

L, ,<n<L, n=1L, Ones(P*)
umy=k-1 |u(m)y=k-lork kY _
k<2l |[a®l =0 |[a(m];=0 Ones(Fan) =0
[y, =0 | [a(")],, =0 Ones(Py,,) =0
um)=21-1 | un)=2I Ones(PE) =1
k=21 |[a®]y=0 | [a@],=1 "
[}, =0 [a(®)],,, =0 Ones(Py;,,) =0
u(n) =21 u(n) =21 kY 7 _ -
k=241 |[alily =1 | [a@l=1 | OU=ho b=l
[a(®)],;,, =0 [a(n)],., =0 Ones(F,;,,) =0
u(n) =21 +1 u(n)=21+2 Ones(P%) =0
k=21+2 [a(m)], =0 | [a()],=0 , ”
l[a@]y, =1 | [a®], =0 Ones(By,)=L,— L, ,—1=1L,,

If k=21+3 and L,,,, <n<L,,,, then u(n) =2/+2 again by Theorem 2.1. Corollary 3.3
again helps us to complete the following table:

Ones(P**?)

Ly, <n<2L,,, | 2Ly, <n<Ly+Ly, | Ly+Ly,Sns Ly, l -
(@] =0 l [a()]y =0 l (@l =1 | Ones(Bi™) = L= Lo+ Lyup) +1= Ly +1
[a@],,, =0 [a)],,, =0 [a@®@)],,, =0 Ones(Pzzll:lg) =0

If k =2/+4, then u(n) =2/+3 for L,,;<n< Ly, and u(n) =2/+4 for n=L,,,,. We again
invoke Corollary 3.3 to complete the table:

2Ly, <n

SLyntLys
Ones(P2+%)
=1 =0 =0 21
[a®)], [a(®)],; [a(m]y =L+ Lyys—2Ly,+1= Ly +1
=0 OneS(PZZIiT‘)
=Ly Lyn—Lys—1= Ly-1

Lyja+ Ly

21+4
n< Lo Ones(P***)

Lys<n<2Ly,,

n=1Ly,, t

[a(m)]; =0

[a(m)]y,, =0 [a(M]y, =0 | [e@)y, =1 | @@,

For the inductive step, assume that £ >2/+5. By Lemma 3.5,
Ones(P}) = 20nes(B}?) + Ones(B™
= 2Ly + DEFgoa + Ly + D5 = Ly + DE s
Similarly,
Ones(By,y) = 20nes(By;7) + Ones(B3
=2(Ly—DF s+ (Ly=DEF g6 = (Ly=DF 513 O
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Now that we have formulas for Ones(P*) for positive r, closed formulas for Ratio.(L,) for
all Lucas numbers L, may be obtained by straightforward calculations. However, the sub-
sequences of the Ratio,(m) sequence in which we are interested happen to occur not at the Lucas
numbers themselves but at points close to the Lucas numbers. Specifically, we will show that (for
positive odd powers of «) the values Ratio,; (L, — Ly — 1) form a decreasing subsequence at
which local maxima occur; and that the values Ratio,, (L, — L,) form an increasing sub-
sequence at which local minima occur. Similar subsequences occur for even positive powers of
o, and for negative powers. To obtain formulas for these ratios, we need to first nail down the
patterns occurring between these points and the Lucas numbers that they are close to. This is
done in the following Lemma for positive powers of &. The proof, which is omitted, uses induc-
tion on & combined with results from Propositions 3.1 and 3.2, as well as Corollary 3.3.

Lemma 4.2: If k >1+1, then:

Paty(Lop— Ly =1, Lypl = OLartl

Paty, ((Lypss = Lotz Lopsy = Lypy = 11= 1727
Paty(Ly, — Ly, Ly ]=12710.

Paty (Lopyo— Lotz —1, Lyjyy — Lyj] = 021,
Paty(Ly, — Ly, Ly, ] = 0%,

Paty(Lyy_1— Loy =1, Ly, ] = 15111,

8 R D ™R

The main results of this section are given in Theorems 4.3 and 4.4.

Theorem 4.3: For />0 and large enough £:
a.  Ratioy(Lygs— Ly —1) decreases to Ry, as k increases.
b.  Ratioy (L, — L,;) increases to R,;,; as k increases.

Proof: By Lemmas 4.1 and 4.2, if £ > /+1, then using Formula (7),
2k+1

Onesy;1(0, Lygyy — Lpjeg — 1] = Onesy (0, Lypnl= zl Ones(PﬁH)
i=

2k+1

=Ly-1+ Xz: (Lo = DF g3 = Ly =1+ (Lyy = Doy = ) = (Lyy = DFyny-
J=20+3

It follows that
. Ly — D)y, Ly—-1
Ratiog(Lyjs— Ly —1) = (L k=2 = 2 .
Lo = Lo =1) Lojor—Lopry = 1= (Lyy=DFy_or  Lypy— Loy —1 (Ly-1)

Fae-n

Part (a) follows from the fact that (Ly,;— Ly — 1)/ Fy_y; is increasing for large enough &
(which can be deduced from Formula (5)) and has limit @**2 + ¥ = al,;,, + Ly (from Formulas
(3) and (9)). Similarly, if £ > /+2, then

Onesy;,1(0, Ly, — Ly] = Onesy (0, Ly, ]1— Onesy (Lo, — Lzl,,sz]

2k 2k -
=Y Ones(Bh)~ Ly =(Ly~1 X Fry 3= Ly~ DFpp - .

j=1 j=21+3
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It follows that

| N s i e Ly-1
Ratioy(Lak = La) = T DD~ Ly La

F‘Zk—Zl—l -

LD

Part (b) follows from the fact that 222 s decreasing (for large enough £, again by For-

Fak-11-1
mula (5)) and has limit a?+2 + 2. O
Theorem 4.4: For [ >1 and large enough £:
a.  Ratio,(L,, — L,;) decreasesto R,; as k increases.
b. Ratioy(L,p,— Ly —1) increases to Ry, as k increases.

The proof of this theorem is omitted as it is similar to the proof of Theorem 4.3.

4.2 Negative Powers of o

We state here the results for the subsequences of Ratio.(n) where r <0. The proofs are

completely analogous to those from the previous subsection.

Lemma 4.5: Fork>1:

0, k<2l
Ly_,, k=21 0
L,_,, k=20+1, ’
Ones(Piy) = {* K22 Ones(Pu) =
Ly(Fy-p-3+1), kodd,
k>21+3,
Ly(Fez3—1), keven, )
k>21+3;

Lemma 4.6: If k >1+1, then:
a  Pat_gq)(Ly— Ly, Lyi] = 0,

b.  Pat_y,(Lokss— Lotis, Logsal = 1haQhar,
¢ Pat_giy(Lokss— 2Lt Lopas] = 021202,
d. Pat_y(Ly, Ly + Ly_q]= 0",

e.  Pat_y(Lypi— Ly, Lyp] =17

o Paty(Lypsy— Ly, Lyyg] = 07222,

Theorem 4.7: Let [ be a nonnegative integer. For large enough £:

a. If />0, then Ratio_g,1y(Ly, — Ly) decreases to R_,y,) as k increases.
b. If1>0, then Ratio_;,1)(Lyksy) increases to R_y,y) as k increases.

c. If/>1, then Ratio_5/(Ly,,) decreasesto R_ as k increases.

d. Ifl>1, then Ratio_,(L,, + Ly,_,) increases to R_; as k increases.

2001]

k<21+3,

L21+1(Fk—21-4 -1), kodd,

k>21+4,

Ly(Fi_g14 +1), keven,

k=2l+4.
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5. THE MAIN RESULT

In this section we show that, as n— oo, members of the full sequence Ratio,(n) must be
caught between the two subsequences examined in the previous section: In order to do this, we
bound the ratios of prefixes of patterns originating at members of the subsequences, and then use
Lemma 2.8.

5.1 The Case r>0 Odd

We start by examining in more detail the patterns appearing between Lucas numbers. The

base cases are taken care of in the following corollary.

Corollary 5.1: For [>0: '

a.  Paty, (Lo, Lyl = 074,

Paty, (Lyyys, Lyjg] = 072415270,

Paty;,\(Lysyg, Lojys] = 07211 - tobaratl,

Paty,(Lyes, Lol = ofuaila1g2lamtl Lol

Paty, (Lo Lyl = 0Lz Lo 102Lant Ly~ Lot Lyl Lyt

Proof: Parts (a)-(c) follow from Corollary 3.3 and Theorem 2.1. Parts (d) and (e) follow
from (a)-(c) using Lemma 3.5. O

8RN S

Lemma 5.2: For k>1+2:

a.  Ratio(Pi") < Ry,

b. Ratio(Pii' Bl < Ry
¢ Ratio(Fj) > Ry

d. Ratio( B\ BlT") 2 Ry,

Proof: By Lemma4.1,if k >/+2, then

Ratio(P¥1) = Ly=DEF s _ Ly-1 ‘
LZk—3 - (L2l - 1)14215—21—4 ﬁ — —
(Ly-D
Fooa1-a
Since 22— is decreasing with limit a®*? + a*,
Fk-21-4
L21 - 1

Ratio( P21 < =Ry,
0( 21+1 ) a21+2 +a2’—L2,+1 20+1

which proves (a). We also have
Ones(Bj;1' Biiy) = Ones(Bi") + Ones(P5,)
=(Ly —DFygra+ Ly = DFyg13 = (Ly = DFy 1,
and hence, by part (a),

. _ L,—DF,,_,,_ .
Ratiol 5 Biy) = 72 VAt — = Ratol B < Ra,

Similarly, :
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Ratio(PX) = Lu—-DFyg3 Ly -1 _
B e (AR
Fik—21—3
Since FLZH is increasing with limit ¢?** + o%,
2k-21-3
Ly -1

Ratio(P%)) > =R
2041) 2
Ve gt L, 41 D

which proves (c). For part (d), the reader may check that
Ratio( B\ Pi") = Ratio(Bj1?) = Ry,
using part (c). O
We intend to show that, for Ly, ,,— L, —1<n< Ly, 3— Ly, —1, limsup,_,, Ratio,,,  (n) <
R,,,,. By Theorem 4.3 and Lemma 2.8, it is sufficient to show that, if P is any prefix of
Paty (Lypy = Ly — L, Ly s — Ly — 2], then Ratio(P) < R,,,,. However, this last statement is
not true for the largest prefixes unless £ is sufficiently large. We therefore first prove a partial

result applicable to prefixes P which do not include the tail end of ones found in Pat,;, (L,;,;—
L21+1 -1 L2k+3 - L21+1 -2].
Lemma 5.3: For 120 and k >1+1, if P is any prefix of Paty(Lypi1— Lo =1 Lopis— Laiial,
then Ratio(P)<R,,,,.

Proof: We use repeatedly the fact that, by Lemma 2.8, the pattern obtained by concatenating

two patterns whose ratios are < R,,,, also has ratio <R,,,,. If k£ =/+1, then by Lemma 4.2 and

Corollary 5.1,
Paty(Lyys— Lyryr =1, Lyjys— Lyjys)

= Paty(Lyiys— Loy = 1, Lyysl+ PR PRSI Lyyy
= 0?Larat il 1gLora 1
The prefix yielding the highest ratio is P = 0*L2+*11L2! g0 that
Lzl - 1 < L21 - l

Ratio(F) = 2Ly 1 alyy+1 B

If k = 1+2, the pattern in question is
Paty\(Lyys— Lo =1 Ly — Ly
1+6 D2l
= Paty,;(Lyys= Ly =1, Lypys)+ B B Lysg
= 2Lt Lo 102 Lot Ly= 1o Lo Lo =12 Lo+l Lo=1g Lo+
by Lemma 4.2 and Corollary 5.1. We need only consider the prefixes ending in 1%, since these
yield the highest ratios. We have:
L2 1 - ] < Lz 1 - 1
2Ly 1 alyy+10
2L21_2 _ LZI_]' < Lzl‘-l
4Ly +2  2Lyg+1  alyy,+1

a.  Ratio(0*fntilahy =

b. Rati0(02Lzl+|+11L21—102L21+|+11L21—1) -
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. _ 3L,,-3 L,,—1 L, —1
¢ Ratio(Q* il ig2la+ib-lghas Lty - 3o - 21 <L .
SLyy+3  (5/3)Lyy+1  adyy,+1

d Rati0(02L21+1+11—"21-102L21+1+11L2l'10L21+1+11L21-1()2L21+1+11L21'1) =
7Ly, +4

_ L, -1 < Ly, -1
(7189 Lyy+1 ol +1

For the inductive step, assume k¥ >/+3. By Lemmas 3.5 and 4.2,
Paty (L1 = Ly =1, Lygas— Lol
=0l PRI B | Ly = 0P B PR B BT B B | Loy
Suppose P is a prefix of this pattern.
Case 1: If P is a prefix of 0t Pzz/jl, the result follows by the induction hypothesis.
Case 2: P =0"*1Ph0 = 0" PET2PIP P20, where Q is a prefix of P/ Ly,,. By

the induction hypothesis, Ratio(07+*1P220)< R, .. and Ratio(P¥72P21%) < R,;,, by Lemma
5.2. Hence, Ratio(P)< R,,,,.

Case 3: P =02 BJ (B Ly, )0, where Q is a prefix of Paty,(Ly = Ly, Ly 4] =
172710f21*! by Lemma 4.2. The prefix yielding the largest ratio is

P =00 B B Lyt
But this is a permutation of P’ = P2% (P3*11/ Ly )1F'0tam¥t = P2 PZETL 5o that Ratio(P) =
Ratio(P') < R,;,, by Lemma 5.2.

Case 4: P =0l 2 p210) where Q is a prefix of P2 P23/ L,,,,. By the induction hy-
pothesis, Ratio(0%+*'Q)< R,,,,. By Lemma 5.2, Ratio(P2t,PF ) < R,;,,, so Ratio(P) < R,,,,.

Case 50 P =00 PR P PG (BT | Ly, p)Q = 0 BB ] Ly, )0, where O is a
prefix of Paty,;(Lyp.1— Lajgs Loper] = 1527100%1 - As in Case 4, the prefix yielding the highest
ratio is

P =0 B Ly 1

which is a permutation of P’ = P2*1P2+2 5o that Ratio(P) = Ratio(P') < R,;,, by Lemma 5.2.

Case 6: P =0l p2+2plily \where Q is a prefix of P2 P21/ L,,,. By the induction
hypothesis, Ratio(0X+*1Q) < R,,,,. By Lemma 5.2, Ratio(P:t*P21) < R,,,,; thus, Ratio(P) <
Rya- O

The result for all prefixes can now be proved as follows.

Lemma 5.4: For >0, there exists an integer K; such that, for £ > K|, if P is any prefix of
Paty(Lygsr— Ly =1, Lopss— Ly — 2], then Ratio(P) < Ry,

Proof: Note that, by Lemma 4.2,
Paty,\(Lyp— Ly =1, Lopz— Loy —21= Paty (Lypy = Lopi = 1, Lyjys— Lypiol + 1f2,

so, in view of Lemma 5.3, we need only show that, for large enough £,
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Ratioy (Lo~ Lyjy =1, Lypes — L2,17+1 =2]< Ry
Now, by Lemmas 4.2 and 4.1, ;
Onesy(Loygsr— Ly =1, Lygyz— Ly — 2]
= Onesy;(Lypsy = Lypy = 1, Ly g1+ Onesyy (L, Lyl
~Onesy(Logss = Loy =2, Lyl = (Lz; DRy g -1

So
. Ly—DEy 5,1
Ratioy,, (Lyy,oy— Lyjoi =1, Lyyon— Ly — 2] = (Ly 2k=21+1
21l = Lot ak+3~ Lo — 2] Toera—D) —((Ly-DF, D)
_ ! S .
Loy —1 o +a*t? ]
_ (Ly = DFy g1 —1 L,-1
since TEP Y Y Lzz—LlikF::zlm—l is decreasing for % larger than some K, by Formula (5), with limit ﬁ%—l‘?‘fl’i
Now , '
a2[ +a21+2 -1 aZZ +a2l+2 _ L21+1 aL21+1+1 21+1°
Ly-1 : ‘

This proves the lemma. 0
The next step consists of showing that, for L,, — L), <n< Ly, ,,~L,;,
lim inf,

n—»o

Ratioy,,(n) 2 Ry,

Again, it is sufficient to consider proper prefixes of Pat,;, (L, — L,;, Ly, — Ly;]. The results and
proofs are analogous to the ones just presented. We present only the statements of the results.

Lemma 5.5: For [>0 and k >[+1, if P is any prefix of Pat,, (L, — L,;, Ly — Loy —1], then
Ratio(P) = R,,,,.

Lemma 5.6: For >0, there exists an integer K, such that, if £>K, and P is any prefix of
Paty(Ly, = Loy, Ly o= Ly~ 1], then Ratio(P) 2 Ry,

We can now state the final result for positive odd powers of a.

Theorem 5.7: For any [ >0, lim,_,, Ratio, (n) = R,,,,.

n—»o
Proof: 1f Ly, ., — Ly, —1<n< Ly, 35— Ly, —2, then
Paty (0, n]= Paty(0, Ly~ Loy, ~ 1]+ P,
where P is a prefix of Paty,,(Lypii—Loia— 1 Logss— Ly —2]. If k is large enough, then by
Lemma 5.4, Ratio(P) < R,,,,, and by Theorem 4.3, Ratio(L,;,,— L,;,,—1) decreases to the limit
Ry So
Ratioy,(n) < max{Ratioy,,(Lypyy = Ly — 1), Ratio(P)}.

Letting » — o, we obtain

lim sup,,_, ., Ratio, (n) < Ry,
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Similarly, if L,, — L, <n< L, ,,— L, —1, then
Paty,,(0,n]= Paty, (0, Ly, — Ly]+ P,

where P is a prefix of Paty;,,(L,; — Ly, Lygy — Ly —1]. If kis large enough, then by Lemma 5.6,
Ratio(P) = R,,,,, and by Theorem 4.3, Ratio(L,, — L,;) increases to the limit R,,,,. Therefore,
Ratio,;,,(n) > min{ Ratio,,,,(L,, — L,), Ratio(P)}.
Now, letting » — oo, we obtain
lim inf]

n—>o

Ratioy,,(n) 2 Ryy,,. O

5.2 Other Cases
We state the results for the cases >0 even and r <0 without proof. The proofs are very
similar to those in the previous subsection.

Lemma 5.8: For [>1, there exists an integer K, such that, for £ > X, if P is any prefix of
Paty (L, — Ly, Ly, ., — Ly —1], then Ratio(P) < R,,.

Lemma 5.9: For [>1, there exists an integer K, such that, for k > K, if P is any prefix of
Paty(Ly sy = Loy =1, Lygys— Ly = 2], then Ratio(P) 2 Ry,

Theorem 4.4 together with Lemmas 5.8 and 5.9 leads to the following theorem.

Theorem 5.10: For any [>1, lim,_, , Ratio,(n) = R,,.

n—»

Lemma 5.11: For [>0, there exists an integer K, such that, for k¥ > K|, if P is any prefix of
Pat_p0) (Lo = Ly, Lygyz = Ly — 1], then Ratio(P) < R 314y

Lemma 5.12: For [>0, there exists an integer K, such that, for k > K, if P is any prefix of

Theorem 4.7 together with Lemmas 5.11 and 5.12 leads to the following theorem.
Theorem 5.13: For any />0, lim,_,, Ratio_,,y(n) = R_g31,y).-

Lemma 5.14: For [>1, there exists an integer K, such that, for k¥ > K|, if P is any prefix of
Pat_(zl)(LZk+l, L2k+3 - l], then RatIO(P) S R(zl) .

Lemma 5.15: For 1>1, there exists an integer K, such that, for k£ > K, if P is any prefix of
Pat_(ZI)(LZk + Lz[_l, L2k+2 + Lzz_l - 1], then RatIO(P) 2 R__(z[) .

Theorem 4.7 together with Lemmas 5.14 and 5.15 leads to the following theorem.

Theorem 5.16: For any [>1, lim,_,,, Ratio_,n(n) = R_),.

6. CONCLUSION

We have characterized the frequency of occurrence of ' in the a-expansions of the positive
integers, for both positive and negative powers of @, using a recursive pattern found in these
expansions. These results complete the characterization of the frequency of occurrence of the
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powers of « in the a-expansions of the positive integers, which was started in [6]. Other charac-
teristics, such as the frequency of occurrence of certain specific patterns in the expansions, might
be capable of being derived using similar methods.

1.
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NEW PROBLEM WEB SITE

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now
be searched electronically (at no charge) on the World Wide Web at

http://problems.math.umr.edu

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair.

Problem statements are included in most cases, along with proposers, solvers (whose solutions
were published), and other relevant bibliographic information. Difficulty and subject matter vary
widely; almost any mathematical topic can be found.

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their
time is encouraged to do so. For further information, write to:

Mr. Mark Bowron

Director of Operations, MathPro Press
P.0. Box 713

Westford, MA 01886 USA
bowron@my-deja.com
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1. INTRODUCTION

In [5], Hongquan Yu and Chuanguang Liang considered the partial derivative sequences of
the bivariate Fibonacci polynomials U, (x, y) and the bivariate Lucas polynomials V, (x, y). Some
properties involving second-order derivative sequences of the Fibonacci polynomials U,(x) and
Lucas polynomials ¥ (x) are established in [1] and [2]. These results may be extended to the &A™
derivative case (see [4]).

In this paper we shall consider the partial derivative sequences of the generalized bivariate
Fibonacci polynomials U, ,,(x; y) and the generalized bivariate Lucas polynomials V, , (x, y). We
shall use the notation U, ,, and V, ,, instead of U, ,(x,y) and V, ,(x, ), respectively. These

polynomials are defined by
Un,mszn—l,m+yU nzm: (11)

n—m, m>
with Uy ,,=0,U, ,,=x"", n=12,..,m-1, and

Viom =XV, m+ )V, nxzm, (1.2)

n—m, m>

withV, ,=2,V, ,=x",n=12,.. m-1
For p=0 and g = -y, the polynomials U, ,, are the known polynomials ¢, (0, — y; x) [3].
From (1.1) and (1.2), we find some first members of the sequences U,,andV, . respec-

tively. These polynomials are given in the following table.
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