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SOME BASIC LINE-SEQUENTIAL PROPERTIES OF 
POLYNOMIAL LINE-SEQUENCES 

Jack Y. Lee 
280 86th Street, Brooklyn, NY 11209 

(Submitted February 1999-Final Revision April 1999) 

0. INTRODUCTION 

There have been many reports on the properties of various polynomial sequences and their 
generalizations (see, e.g., [1], [3], [4], [5], [6], and [9] and the references therein). In this paper 
we shall try to treat some polynomial sequences by virtue of the line-sequential formalism devel-
oped earlier. To this end? we choose [9] as the guide of our endeavor and obtain some results of 
a different variety supplementary to those appearing in the literature. In particular, we treat the 
Morgan-Voyce (MV) polynomial sequences in some detail (for the origination of the MV polyno-
mials, see the references in [1]) and then apply the method to the Jacobsthal (J) and the Vieta (V) 
polynomial sequences. Finally, we illustrate applications of these results with some examples. 
The line-sequential treatments of at least some of the other well-known polynomial sequences are 
somewhat more complicated, so these and other related matters will be discussed in a later report. 

1. MV-POLYNOMIAL LINE-SEQUENCES 

For convenience of reference, we recap here some of the basic conventions employed in the 
line-sequential formalism. A homogeneous second-order line-sequence is represented by 

\J(c9b):...9u_29u^l9[u09ul\9u29u39...9un9...9 nez9u„eR9 (1.1) 

where c and h9 neither zero, are the anharmonic coefficients of the recurrence relation, cun_2 + 
bun_x - un9 and the symbol [% wj denotes the generating pair of the line-sequence (see §4 in [7]). 

The set of line-sequences (1.1) spans a vector space with the pair of basis vectors: 
Uh0(c9hy...9(c + b2)/c\-b/c9[l90]9c9cb9c(c + h2)9.^ (1.2a) 

UQA(c9b):...9(c + b2)/c3
9-b/c2

9l/c9[09l]9b9c + b2
9... (1.2b) 

(see (4.2) and (4.3) in [7]). For convenience, we describe the pair as being "mutually comple-
mentary." A general line-sequence (1.1) is then decomposable into its basis components (see 
(2.9) in [7]) in the following manner: 

U(c,b) = u0UlQ(c9h) + ulU0A(c9h). (1.2c) 
«o»"i 

A word on the nomenclature: to comply to the line-sequential format established previously, 
the symbols and the names adopted here are necessarily somewhat different from some of the 
corresponding ones of the polynomial sequences as they appear in the literature. However, this 
will not cause any confusion, as we shall see. For convenience, we adopt the letter M to denote 
the MV polynomials that are characterized by the values b - x + 2 and c = - 1 . For the generating 
pair [1,0], we then have what we call the "complementary MV-Fibonacci line-sequence," or, for 
short, the M1>0 line-sequence: 
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M1>0(-l,x + 2):...3(x2+4x + 3)3x + 25[l30],-l3-(x4-2)?-(x2+4x + 3),.... (1.3a) 

Let mn[\ 0] denote the rfi1 term (or element) in Ml0, counting from the first member of the 
basis pair as the zeroth term, that is, w%[l, 0] = 1, and increasing toward the right as the positive 
direction. Then the parity relation will be shown later to be 

m_n[\0] = -mri+2[l,0l (1.3b) 

Let Mlj0(+) denote the positive branch, «>0, of the Ml0 line-sequence, which is denoted 
by {wn(\ 0; x + 2,1)} in Horadam's notation. Its coefficients table, adapted to the format employed 
in [9], is given in Table 1 below. The corresponding table for the negative branch can be inferred 
from Table 1 by means of the parity relation (1.3b). 

TABLE 1. The Coefficients Associated with the M1>0(+) Sequence 

n x° x1 x2 x3 x4 x5 

0 1 
1 0 
2 - 1 
3 -2 -1 
4 -3 -4 -1 
5 -4 -10 -6 -1 
6 -5 -20 -21 -8 -1 
7 -6 -35 -56 -36 -10 -1 

The complementary line-sequence of (1.3 a) is given by 
M0 j l (- l ,x + 2): . . . ,-(x2+4x + 3),-(x + 2),-l,[0,l],x + 2,x2+4x + 3,..., (1.4a) 

which is the MV-Fibonacci line-sequence, or the M0^ { line-sequence for short, the positive branch 
of which is called the MV Even Fibonacci polynomial sequence in [9]. Its parity relation, accord-
ing to (4.9) in [7], is given by 

«-„[0,l] = - /^[0, l ] . (1.4b) 
Clearly, PI0l is the negative of one order translation from M10, that is, 

M0A = -IMl0, (1.4c) 

where T denotes the translation operator. In terms of the elements, 

mn[0M = -mn+l[l,0l (l Ad) 

Definition 1: We say that a line-sequence B is "translationally dependent" on the line-sequence A 
if and only if 2? can be obtained from 4̂ by means of some (harmonic or anharmonic combinations 
of) translation operations on A. 

Substituting (1.4d) into (1.4b), we obtain the parity relation (1.3b) for Mlj0. 
The line-sequences Mx^ and M0j then form a pair of orthonormal bases spanning the 2D 

MV line-sequential vector space. Any line-sequence in this space can then be decomposed into its 
basis components in the manner according to (1.2c). 
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Combining the parity relations (1.3b) and (1.4b) with the translation relation (1.4d), we 
obtain the following set of basis relations between the elements of the two basis line-sequences: 

m_Jl,0]^w + 1[0,l] , (1.5a) 
m_n[l,0] = -m_{n+l)[0,l]; (1.5b) 

or 
m_n[0,l] = mn+1[l,0l (1.5c) 
m_n[0,l] = -m_(n_l)[l,0l (1.5d) 

The Mlx line-sequence, the positive branch of which is named the MV Odd Fibonacci poly-
nomial sequence in [9], is given by 

M1;1(-l?x + 2):...?x2 + 3x + l?x + l,[l?l],x + l,x2+3x + l,.... (1.6a) 

It decomposes into its basis components according to (1.2c): 
Mxl = Ml0 + M01. (1.6b) 

Or, in terms of the elements, 
mn[l,l] = mn[X0]+mn[0M (1.6c) 

It is seen that the sum of the corresponding coefficients in Table 1 for Ml0(+) above and Table 
2(a) for M0 j(+) in [9] equals the corresponding coefficient in Table 2(b) for M u (+) in [9], as 
can be deduced from (1.6c). 

Applying relation (1.4c) to the component equation (1.6b), we obtain the following transla-
tional expression of Mt x in terms of M1? 0: 

Mu = (I-T)Ml0, (1.6d) 

where / is the identity operator of translation. In terms of the elements, we have 
^ P J ] - ^ [ l ? 0 ] - ^ + 1 [ l , 0 ] . (1.6e) 

A look at the relevant terms in Table 1 and in Table 2(b) in [9] bears out this relationship. 
Since a line-sequence in the MV space can always be decomposed into its basis components, 

and since the pair of bases are translationally dependent, all MV line-sequences are translationally 
dependent on either of the basis line-sequences. Since the two bases (4.2) and (4.3) in [7] for the 
general case are translationally dependent, the above said property must hold in general. We state 
this in the form of a theorem. 

Theorem 1: All line-sequences defined in a line-sequential vector space are translationally depen-
dent on either basis line-sequence. 

Applying (1.5 a) and (1.5 c) to (1.6c), we obtain the parity rule for M u , 
m_n[l,l] = mn+l[\M (1.6f) 

a property clearly displayed in (1.6a). 
The MV-Lucas line-sequence, the positive branch of which is the MV Even Lucas polynomial 

sequence according to [9], is given by 

M2 j c + 2(-l,x + 2):...?x2+4x + 2,x + 2,[2?x-f2],x2+4x + 2,x3 + 6x2+9x + 2,.... (1.7a) 
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Applying the geometrical sequences (1.10a) and (1.10b) to the Binet formula (1.12d), see 
below, and noting that afi=l9 it is easy to show that the parity relation among the terms in 

x+2 *s given by 
m_n[2,x + 2] = mn[2,x + 2l (1.7b) 

which is clearly displayed in the line-sequence (1.7a). 
Decomposing (1.7a) into its basis components, we have 

Mx x+2 = 2Mh 0 + (x + 2)M0,! (1.7c) 

or, in terms of their elements, 
mri[2,x + 2] = 2mn[\0] + (x + 2)mn[0,ll (1.7d) 

Applying basis relation (1.5a) with parity relations (1.4b) and (1.7b) to (1.7d) above, we get 

mn{2, x + 2] = 2^+1[0, l ] -(x + 2K[0,1]. (1.7e) 

This is the MV-version of the well-known relation ln- 2fn+l-fn between the elements of the 
Lucas and the Fibonacci sequences. 

Applying relation (1.4c) to (1.7c), we obtain 
M2,x+2 = [2 / - (x + 2)7]Ml50. (1.7f) 

This is the translational representation of the MV-Lucas line-sequence in terms of its first basis. 
We say the line-sequence M2jX+2 is "anharmonically" translationally dependent on the basis M1>0. 

The line-sequential form of M_ u , the positive branch of which is called the MV Odd Lucas 
polynomial sequence in [9], is given by 

M_l5l(-l,x + 2):.. . ,-(x2+5x + 5),-(x + 3),[-l,l],x + 3,x2+5x + 5,.... (1.8a) 

Its decomposition is given by 

M_h! = -Ml o + M), i • (1 -8b) 
In terms of the elements, 

ml[-i,i] = -inl[i,o]+^[o,i]. (i.8c) 
It is seen that the sum of the negative of a term in Table 1 above and the corresponding term in 
Table 2(a) in [9] equals the corresponding term in Table 3(b) in [9], as can be deduced from 
(1.8c). 

Applying the relations (1.5a) and (1.5c) to (1.8c), we find the parity relation for the elements 
of M_4 j : 

m_n[-lA] = -mn+l[-lM (1.8d) 

which is clearly displayed in the line-sequence (1.8a). 
Applying the relation (1.4c) to (1.8b), we obtain the following translational representation of 

M_tj in terms of the first basis M1?0, 

M_hl = -(I + T)Ml0. (1.8e) 

The following set of interrelationships among the MV polynomials can be shown to hold: 
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M,o + M . u = Mo,i; (19a) 
M,i + M . U = 2M0>1; (1.9b) 
MlA+Ml0 = M2A, (1.9c) 
(x + 2)MX, - xMu 0 = Mx x+2; (1.9d) 

and so forth. 
The pair of geometrical line-sequences relating to Ml0 is given by 

Mx a(-l, x + 2):..., a'2, a~\ [1, a], a2, a3,..., (1.10a) 
and 

Mhp{-\,x + 2):...,pr\p-\[\,pip2,p\..., (1.10b) 
where 

a = [x + 2 + (x2+4x)1/2]/2, ^ = [x + 2-(x2+4x)1 / 2]/2 (1.11a) 

are the roots of the generating equation 

q2-(x + 2)q + l = 0. (1.11b) 

Since Mla and MXp also form a pair of orthogonal (but not normal) bases of the MV vector 
space (see §3 in [8]), any MV line-sequence can be expressed as a linear combination of its Mha 

and Ml/3 components, which, in a manner of speaking, is just its Binet formula. 
Generalizing relation (4.9) in [8] and applying basis decompositions in terms of M^a and 

MXp, we obtain the following set of Binet's formulas for the family of MV line-sequences: 
Ml0 = (-flMla + aMlfi)/(a-fi); (1.12a) 
M0J = (Mla~M^)/(a-^y, (1.12b) 
Mu=[(l-^Mla-(l-a)M^]/(a-^; (1.12c) 
M2,x+2 = Mla+MXp; (1.12d) 
M_u=[(l + ̂ Mla-(l + a)M^]/(a-/]). (1.12e) 

Notice that the form of the Binet formulas (1.12b) and (1.12d) justifies our identifying them 
as the MV-Fibonacci and MV-Lucas line-sequences, respectively, consistent with works in this 
area; and as a cross check, multiplying f( 1.12b) and (1.12d), we obtain, in terms of the elements, 

^ [ 0 , l K [ 2 , 2 + x ] - ^ J 0 , l ] , (1.13) 

which is the MV version of the well-known relation fjn = f2n between the Fibonacci and Lucas 
numbers. 

Since, by Theorem 1, a line-sequence can always be translationally represented in terms of 
either of its bases, and since its basis can always be expressed in terms of the geometrical line-
sequence, namely Binet's formula, a line-sequence can always be expressed in terms of the geo-
metrical line-sequence which, naturally, is referred to as its Binet formula. Formulas (1.12c) and 
(1.12e) are such examples. We state this in the form of a theorem. 

Theorem 2: All line-sequences defined in a line-sequential vector space are expressible by means 
of their respective Binet formulas. 
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2. THE JACOBSTHAL POLYNOMIAL LINE-SEQUENCES 
The Jacobsthal (J) polynomial sequence is characterized by the parameters b = l and c = x. 

(Here, we adopt the convention used in [9]; for another convention used by Horadam, see [4].) 
The basis pair is given by 

J0J(x, 1):..., - (2x~2 4- x~3), x"1 + x~2, - x"1, [0,1], x, x, x2 + x, 2x2 + x,..., (2.1 a) 

J0J(x, 1):..., -(2x~3 + x"4)? x"2 + x"3, -x~2, x~\[091], 1, x + 1, 2x +1,.. . , (2.1b) 

where the first one will be referred to as the "complementary J-Fibonacci line-sequence" or Jlj0 
line-sequence for short; the second one is the "J-Fibonacci line-sequence," or J0l line-sequence 
whose positive branch is called the J-Fibonacci sequence in [9]. The pair then span the 2D J line-
sequential vector space. Obviously, the two basis line-sequences are related translationally, 

TJl0 = xJ0A, (2.2a) 
or, in terms of the elements, 

7„+1[l,0] = x/„[0,l]. (2.2b) 

The parity relation of the terms in Jlj0 can be shown to be 

. U l , 0] = (-l)"+2x-("+l)jn+2ll, 0]. (2.3a) 

According to (4.9) in [7], the parity relation for terms in J0? x is given by 

i-w[0,l] = (-ir+ 1x-"jJ0,l] . (2.3b) 

Substituting the translation relation (2.2b) into (2.3b), we get (2.3a). 
Using these parity relations with the translation relation, we obtain the following set of rela-

tions between the elements of the two basis line-sequences: 

7-„[l,0] = (-*)-"7„+i[0,l], (2.4a) 
7_„[l,0] = x;L(„+1)[0,l]; (2.4b) 

or 
; -J0, l ] = (-x)-<"+1>y„+1[l,0], (2.4c) 
7-„[0,l] = x-1

7L(n_1)[l,0]. (2.4d) 

The coefficient table of Jx 0(+) is given in Table 2 below. 

TABLE 2. The Coefficients Associated with the / l i 0 (+) Sequence 

n 

0 
1 
2 
3 
4 
5 
6 
7 

x° 
1 
0 
0 
0 
0 
0 
0 
0 

xl 

1 
1 
1 
1 
1 
1 

x2 

1 
2 
3 
4 

x3 

1 
3 

2001] 199 



SOME BASIC LINE-SEQUENTIAL PROPERTIES OF POLYNOMIAL LINE-SEQUENCES 

The J-Lucas line-sequence is given by 
Jxx(x, 1):..., - 3x-2 - x~3,2x~l + x-2, - x"\ [2,1], 2x +1,3x +1,2x2 + 4x +1, . . . , (2.5a) 

which is a linear combination of the basis line-sequences (2.1a) and (2.1b), 

^2,1 = 2^1,0 + ̂ 0.1 (2.5b) 

or, in terms of the corresponding members in these line-sequences, 
jn[2,l] = 2j„[l,0]+j„[0,l]. (2.5c) 

It is seen that the sum of twice a term in Table 2 for Jlj0(+) above and a term in Table 4(a) for 
Jo9i(+) in [9] equals the corresponding term in Table 4(b) for J2,i(+) 'm [9], as can be deduced 
from relation (2.5c) above. 

From the Binet formula (2.8c) below, using (2.6a) and (2.6b), noting that afi = -x9 we 
obtain the following parity relation for the J-Lucas line-sequence: 

y_n[2,l] = (-l)"x-"/„[2,l]. (2.5d) 

Applying parity relation (2.5d) and relations (2.4a) and (2.4c) to the component equation 
(2.5c), using the translation equation (2.2b), we obtain 

7„[2,l] = 2x-V„+2[l,0]-7„[0,l], (2.5e) 

which is the J-version of the relation ln = 2/w+1 - / „ . 
Applying the translation relation (2.2a) to the basis component equation (2.5b), we obtain the 

translational representation of the J-Lucas line-sequence in terms of the J1?0 basis, 

J2A = (2I + x-lT)Jl0, (2.5f) 

a result consistent with the statement of Theorem 1 above. 
The pair of geometrical line-sequences relating to Jl0 is given by 

Jla(x, 1):.... a'2, a~\ [1, a], a2, a\..., (2.6a) 

jxfi(x,iy....,/r2,fi-l,[i,p\,fi2,fi3,..., (2.6b) 
where 

a = [l + (l + 4x)1/2]/2, ^ = [ l - ( l + 4x)1/2]/2 (2.7a) 

are the roots of the generating equation 
q2_q-x = 0 (2.7b) 

Here, considering the multitude of recurring polynomial sequences which may be treated in this 
manner, we retain the use of the same pair of letters a and (3 to represent the roots of the respec-
tive generating equation of each case, rather than adopt a new pair of letters each time for each 
case; while the pair of letters A and B remains reserved for representing the large and the (nega-
tive) small golden ratios. 

Then an arbitrary J line-sequence can be expressed in terms of J^a and JXp. In particular, 

Ao = (-/Vla + <*rifi)l(<*-P), (2-8a) 
which is Binet's formula for the complementary J-Fibonacci line-sequence, and 
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\l = (Aa-Ap)'(a-^ (2.8b) 
which is Billet's formula for the J-Fibonacci line-sequence, and 

J2,l = Jl,a + A/1> (2-8c) 
which is Binet's formula for the J-Lucas line-sequence. 

It is easy to see that 
7 jO, im2, l ] = A,[0,l], (2.9) 

which is the J-version of the basic relation fjn = f2n. 

3. THE VIETA POLYNOMIAL LINE-SEQUENCES 

The V-polynomial sequence is characterized by the parameters b = x and c = - 1 . Observing 
that, if we put x + 2 = x' for the MV-polynomials, then the latter will be line-sequentially equiva-
lent to the V-polynomials. Therefore, the line-sequential relations of the V-polynomials can be 
obtained directly from the corresponding ones of the MV-polynomials. For convenience of refer-
ence, however, we compile the following essential relations for the V-polynomials. 

The basis pair of the V line-sequences is given by 

F l 5 0 ( - l ,x ) : . . . , - (2x-x 3 ) , - ( l -x 2 ) ,x , [ l ,0 ] , - l , -x , l -x 2
? 2x-x 3 , . . . , (3.1a) 

F 0 5 l ( - l ,x ) : . . . , 2x-x 3 , l -x 2 , -x , - l , [0 , l ] ,x , - ( l -x 2 ) , - (2x-x 3 ) . . . , (3.1b) 

where the first one is the complementary V-Fibonacci line-sequence, or V^0 line-sequence for 
short; the second is the V-Fibonacci line-sequence, or V0j line-sequence for short. This pair spans 
the 2D V line-sequential vector space. 

Obviously, we have the following translational relation between the two basis line sequences: 
VOA = -TVl0 (3.2a) 

or, in terms of the elements, 
v„[0,l] = -vn+1[l,0]. (3.2b) 

The parity relation of the elements in Vl0 is found to be 

v_„[l,0] = -v„+2[l,0]. (3.3a) 

From (4.9) in [7], the parity relation for the elements in V0l is found to be 

v_„[0,l] = -v„[0,l], (3.3b) 

which is clearly borne out in (3.1b). Applying (3.2b) to (3.3b), we obtain (3.3a). 
Using these parity relations together with the translation relation (3.2b), we obtain the fol-

lowing set of relations between the elements of the two basis line-sequences: 
v_„[l,0] = v„+1[0,l], (3.4a) 
v_„[l,0] = -v_(„+1)[0,l]; (3.4b) 

or 
v_„[0,l] = v„+1[l,0], (3.4c) 
v_w[0,l] = -v_(„_1)[l,0]. (3.4d) 
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This set of relations parallels exactly the set for the MV line-sequences, namely, from (1.5a) to 
(1.5d), as it should be. 

The coefficient table of Vx 0(+) is given in Table 3. 

TABLE 3. The Coefficients Associated with the V1Q{-\-) Sequence 

0 
1 
2 
3 
4 
5 
6 
7 

1 
0 

- 1 
0 
1 
0 

- 1 
0 

-1 
0 
2 
0 

-3 

-1 
0 
3 
0 

-1 
0 
4 

-1 
0 - 1 

The coefficient table of xV0tl(+) = V0x(+) is given in Table 4. 

TABLE 4. The Coefficients Associated with the ^ x ( + ) Sequence 
n x° xl x2 x3 x4 x5 x6 x7 

0 
1 
2 
3 
4 
5 
6 
7 

0 
0 
0 
0 
0 
0 
0 
0 

1 
0 

-1 
0 
1 
0 

-1 

1 
0 

- 2 
0 
3 
0 

1 
0 

-3 
0 
6 

1 
0 

- 4 
0 

1 
0 

- 5 
1 
0 1 

The V-Lucas line-sequence is given by 

V2,x(-l,x): • x(3 - x2), - (2 - x2), x, [2, x], - (2 - x2), - x(3 - x2),. (3.5a) 

The coefficient table of V2 x(+) is given in Table 5. 

TABLE 5. The Coefficients Associated with the V2 x(+) Sequence 

0 
1 
2 
3 
4 
5 
6 
7 

2 
0 

- 2 
0 
2 
0 

- 2 
0 

1 
0 

- 3 
0 
5 
0 

- 7 

1 
0 

- 4 
0 
9 
0 

1 
0 

-5 
0 

14 

1 
0 

- 6 
0 

1 
0 

- 7 
1 
0 1 

The decomposition ofV2x into its basis components is given by 

V2,x-2Vl0+xV0A (3.5b) 
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or, in terms of the elements, 
vn[2, x] = 2vB[l, 0] + xvw[0,1]. (3.5c) 

It can be seen that the sum of twice a coefficient in Table 3 and the corresponding coefficient 
in Table 4 equals the corresponding coefficient in Table 5, as can be deduced from (3.5c). 

The parity relation among the terms of VXx is obtained from (1.7b): 

v_n[2,x] = vJ2,xl (3.6a) 
which is apparent in (3.5a). 

The V-version of the relation ln - 2fn+l - fn is obtained from (1.7e): 

vw[2,x] = 2vw+1[0,l]-xvJ0,l]. (3.6b) 

The translational expression of V2>x in terms of Vlf0 is obtained from (1.7f): 

V2,x = (2I-xT)Vl0. (3.6c) 

The pair of geometrical line-sequences relating to F10 is given by 

Vla(-l, x):...,-of2, a~\ [1, a] , a\ a\..., (3.7a) 

Vhp{-\x):.^[r\p-\l\Pl(]\p\..., (3.7b) 
where 

a = [x + (x2-4)1/2]/2, /? = [x-(x2-4)1 / 2 ] /2 (3.8a) 

are the roots of the generating equation 
q2-xq+ 1 = 0. (3.8b) 

Hence, the Binet formula for the Vl0 line-sequence is given by 

fi,o = (rfiVua + aV^/ia-fi), (3.9a) 

the Binet formula for the V0l line-sequence is given by 

V0,i = (Vla-Vlf})/(a-P), (3.9b) 

and the Binet formula for the V-Lucas line-sequence is given by 
V2.x = Vla+Vlfi. (3.9c) 

Obviously, 
v„[0,l]vll[2,x] = v2n[0,l], (3.9d) 

which is the V-version of the relation fnln = f2n. 

4* SOME APPLICATIONS 

We illustrate the application of the foregoing results with a few examples. 

Example 1: For the MV-Lucas line-sequence, by the rule of line-sequential addition, we have 

Using translation relation (1.4c), we obtain (T- T~l)M^ x = M 2 ? x+2. So, in general, we have 
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( r + i _ r - i ) H i = r M ^ + 2 ( 4 1 a ) 

This is the translationa! representation of the MV-Lucas line-sequence in terms of its second basis. 
In elements form, this becomes 

mn+l [0,1] - mn_l [0,1] = mJ2, x + 2], (4. lb) 

which is the MV-version of the well-known relation between the Fibonacci and the Lucas 
numbers/„+!+/„_!= ^. 

Applying parity relation (1.4b) to (4.1b), we obtain 
mKll-1)[0,l]-iWL(ltfl)[0,l] = inl[2,x + 2] (4:lc) 

or 
(T-^-r^)M0A = T"MXx+2, (4.1d) 

which is the negative translational representation of the MV-Lucas line-sequence. From (4. Id), it 
can easily be inferred that 

(7-<»-i) + T~in+l))F0J = (-lTTnFxly (4.1e) 

which is the negative translational representation of the Lucas line-sequence. Therefore, in terms 
of the elements, we obtain the expression of the Lucas numbers in terms of the Fibonacci numbers 
with negative indices, i.e., 

/_<„_,, +U+l) = (-l)"4, (4.1Q 
which is a particular case of equation (2.16) of Horadam [2]. 

Example 2: For the J-Lucas line-sequence, we have J u + ̂ o = ^2,1- Using translation relation 
(2.2a), we have [T+xT"1] J 0 J = J2 J . Hence, we obtain 

[r+1 + xTn~l] \ ! = r J%!. (4.2a) 

This is the translational expression of the J-Lucas line-sequence in terms of its second basis. In 
the elements form, we have 

jn+l [0,1] + xjn_x [0,1] = j,[2,1], (4.2b) 

which is the J-version of the relation fn+l +/„_! = /„ • 
Applying parity relation (2.3b) to (4.2b) and using the translation operation, we obtain 

(-l)nxn {xT~{n+l) + T~{n~l)) J0j j = TnJ2t h (4.2c) 

which is the negative translational expression of the J-Lucas line-sequence in terms of its second 
basis. 

Example 3: For the V-Lucas line-sequence, we start with Vlx + Vl0 = V2iX. Using translation 
relation (3.2a), this becomes (T- T~~l)VQ1 = V2tX. Hence, we have 

(Tn+l- T"-l)Vo,i = TnV2iX. (4.3a) 

This is the translational representation of the V-Lucas line-sequence in terms of its second basis. 
In the elements form, we find that 
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v>l+1[0,l]-vfr.1[0,l] = vJI[2,x], (4.3b) 

which Is the V-version of the relation fn+l +/w-i = 4 • 
Applying parity relation (3.3b) to (4.3b) and using the translation operation, we have 

which is the negative translational expression of the V-Lucas line-sequence in terms of its second 
basis. 
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1. INTRODUCTION 

If an integer is not a prime, then it can, of course, be written as the product of two integers, 
say r and r + k. In the case of the Lucas numbers, Ln, it has been shown that the two factors may 
differ by 0 (that is, Ln is a square) only if n -1 or 3 [1], [3], may differ by 1 only if n = 0 [4], [5], 
and may differ by 2 only if n = ±2 [6]. 

It is well known that L2
n-5F2 = 4(-l)", where Fn is the rfi Fibonacci number, so if Ln = 

r(r + k), we have an equation of the form x4 + 2kx3 + x2k2 ±4 = 5y2. Since the left side has 3 
distinct zeros, the number of solutions of this equation is finite, by a theorem of Siegel [7]; 
further, by a theorem of Baker (see [2]), |JC| and \y\ are effectively bounded. Hence, for a given k, 
the number of integers n such that Ln = r(r + k) is finite, but the known bounds are extremely 
large. 

We shall show that, if Ln = r(r + k) for k = 1,6,7,8,17,18,19, or 24 (mod 25), the number of 
solutions is bounded by one-half the number of positive divisors of |Ar2 — 8| or |£2+8|, and we 
provide an algorithm for finding all solutions. In each case, 

21og((*2+9)/4) 
log((l + V5)/2) ' 

For certain infinite sets, e.g., k = 8 (mod 100), we show that no solutions exist. When k is even, 
Ln = r(r + k) is equivalent to Ln -x2 -{k /2)2, so our results extend Robbins' result [6] on the 
solutions of Ln = x2 -1 to the difference of two squares in infinitely many cases. 

We write • for "a square," r is the usual "number of divisors" function, (a\b) is the Jacobi 
symbol, and we will need the following familiar relations. Let g, my n, and t be integers, / odd. 

L2g = L2
g-2(-iy and F2g=FgLg, (1) 

L_n = (-lfLn and F_n = (-\rlF^ (2) 

^m+n ~ LmLn+5rmrn, (3) 

2 (mod8) if 3\m mdu>l, 
-1 (mod 8) if3|/w andn>2, L*.m*\ i ; „ J O ' _ L _ ^ . : ; w 

L2gt+m = ±L2g+m ( m o d L2g)' ( 5 ) 

2. Ln AS THE PRODUCT OF TWO FACTORS DIFFERING BY k 

We assume, without loss of generality, that k is positive, and note that Ln = r(r + k) for some 
r implies that 4Ln + k2 = • . 

Lemma 1: Let Ln = r{r + k). If ^ = ±11 (mod 3-25-41), then n = 0 (mod 4). 
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Proof: Let k = ±11 (mod 3-25-41). We find that 4Ln + k2 is a quadratic residue modulo 25 
only for n = 0,1, 4, 8, 9,12, or 16 (mod 20); if n is odd, then n = 1, 9,21, or 29 (mod 40). Now, 
the Lucas numbers are periodic modulo 41 with period of length 40, and 4Ln + k2 is a quadratic 
nonresidue modulo 41 for n = 9,21, and 29 (mod 40), and is a quadratic nonresidue modulo 3 for 
n = 1 (mod 8). It follows that 4ZW + k1 = • only if n = 0,4,8,12, or 16 (mod 20); that is, only if 
n = 0 (mod 4). 

Let 
Sx = {k | k = 1,6,19, or 24 (mod 25)}, 
52 = {k | * ss 7,8,17, or 18 (mod 25)}, 

and 
53 = {k |k = ±11 (mod 3-25-41)}. 

Theorem 1: Let k e Sl
{u$2^>S3. The number of nonnegative integers n for which Ln = r(r + k) 

is less than or equal to r(k2 -&)/2 if k eSxvS3, and less than or equal to r(k2 + 8) / 2 if k e S2. 
If Ln = r(r + k), then 

21og((F+9)/4) 
log((l + V5)/2) ' 

Proof: Assume that Ln = r(r + k); then 4Ln + k2 = D. The quadratic residues modulo 25 are 
the integers in T = {0,1,4, 6, 9,11,14,16,19,21,24}. 

We find that, for each integer k in 'Sl9 4Ln + k2 = an element of T (mod 25), precisely when 
n = 0,4,8,12, or 16 (mod 20); combining this with the result of Lemma 1, we have Ln - r{r + k) 
for each integer k in S1^JS2 only when n = 0 (mod 4). And, for each integer kin S2, 4Z,W + k2 == 
an element of 7 (mod 25), precisely when n = 2, 6,10,14, or 18 (mod 20), i.e., only when » = 2 
(mod 4). 

Let n-2t. Now, Z,„ = r(r + ̂ ) implies that there exists an x such that x2 = 4L2i + k2, so, by 
(1), we have x2 - (2Lt)2 -k2 - 8(-l)f. Hence, there exist divisors c and dofk2- 8(-l)r such that 
x + 2Lt -c and x-2Lt =d, implying that Lt =^. Since, for a given pair (c,d) of divisors of 
k2 -8(-l) ? , the system has at most one solution; there exist at most r{k2 -8(- l ) f ] /2 integers n 
for which Ln = r(r + k). Taking t even or odd for the two cases, respectively, proves the first 
statement of the theorem. 

It is well known that Ln = an+fi\ where a = (l + V5)/2 and /? = ( 1 - V5)/2. Let s = [k2-
8(-l)r -1] / 4 . Since a* -1 / af = a* ±^f = Lt = ̂ - < j , we readily obtain ar < ( J + V ^ + 4 ) /2 
If k = 1, it is easily seen that « = 0, and ifk&l, then a1 < [s + (s +1)]/ 2. One obtains a relatively 
simple bound upon taking the logarithm of each side of a1 <s + j , replacing t by nil and 
replacing s by the larger of its two values. 

Lemma 2: If k = 0 (mod 4), then Z,w = r(r + k) only if n is odd. 

Proof: Let k = 4t9 and assume that, for some /w, Z2w = r(r + k). Thee 

Z ^ + 4t2 = r2 + Art +4t2 = • , 

implying L2m = 0 or 1 (mod 4), contrary to (4). 
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We now exhibit several infinite sets of integers k such that Ln does not have the form r(r + k) 
for any n. 

Theorem 2: Let S = {k \ k = 8,24,32,44,56,68,76,92 (mod 100)}. If k e S, then 4 * r(r + k) 
for any n. 

Proof: Let A e S and assume, for some n > 0 and some integer r, that Z,„ = r(r + k). By 
Lemma 2, n is odd. However, each element of S is in Sx<uS2 and, as noted in the proof of 
Theorem 1, ALn + k2 is a quadratic nonresidue for w odd. 

Corollary: There exist infinitely many primes/? such that Ln does not have the form r(r + 4p) for 
any n. 

Proof: The sequence {2 + 256} contains infinitely many primes/? and, for p = 2 + 25b, we 
have 4p = 8 (mod 100). 

3. Ln AS THE DIFFERENCE OF TWO SQUARES 

The proof of the following theorem is immediate upon writing x2~m2 as r(r + k) with 
r = x-m and k -2m. 

Theorem 3: The equation Ln-x2 - m2 

a) is impossible for all n > 0 if m = 4,12,16,22,28,34,38, or 46 (mod 50), 

b) has at most r(4m2 - 8) / 2 solutions if 2m e Si, and 

cj has at most r(4m2 + 8) / 2 solutions if 2m e S2 ^ S3, 

and, if Ln = x2 -m2, then 
21og(m2 + 9/4) 

? l<log((l + V5)/2)' 

In practice, for a given #2, one may find the values of n such that Ln = x2~m2 by proceeding 
as in the proof of Theorem 1: simply write Ln/2 = ^- for all pairs (c,d), c = d (mod 4), of factors 
of \4m2 - 8(-l)w/21, and find n. We can now readily obtain the values of n for which Ln = x2-m2 

for all m such that 2m- k e Sj u S 2 uS 3 . Notice that L_n is the difference of two squares iff Ln 

is the difference of two squares, since L_n - ±Ln. 
By way of example, if m = 3, then 2m = 6eSl9 4m2-8(-l)w/2 =28, and Ln/2=^- for 

(c, d) = (14, 2); hence, Lnl2 - 3, and we conclude that Ln-x2 - 32 only when n = ±4 (L±4 = 7 = 
42-32) . 

It may be noted that we now know the values of n for which Ln = x2 - m2 for m = 1, 3, and 4, 
and can determine the n for many larger values of m. In order to close the gap between 1 and 3, 
we shall prove that Ln & x2 - 22 for any n. Unlike the cases considered above, this case presents a 
difficulty that precludes the possibility of establishing a bound on n for all k = 2m = 4 (mod M) for 
anyM. 

Lemma 3: If 3 jg , then Z,2«±3 = 5F2 (mod L2^). 
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Proof: We note first t h a t / ^ = 2. By (3), 
2L2g±3 = L2gL&+5F2gFi3 = \0F2g (mod L2g). 

Since 2\g9 L2g is odd, and the lemma follows. 

Lemma 4: If 31 g and t is odd, then (L2gt±3 + 4 | L2g) = (5F2g + 41 L2g). 
Proof: By (5) and Lemma 3, 

(L2gt±2+4\L2g) = (±L2g±3+4\L2g) = (5F2g +4\L2g) or(-5F2g + 41L2g). 

We prove that these latter two Jacobi symbols are equal by showing that their product is +1: 
(5F2g +4\L2g).(-5F2g +4\L2g) = (16-257% \L2g) 

= (l6-5(L\g-4)\L2g) = (36 \L2g) = +1. 

if u is odd and m = 1, or 
Lemma 5: Let u>4. Then 5Fyum + 2L0um = -1 (mod8) , 

2m 2m K J | if^isevenandw = 5. 
Proof: Letm>0. By (1) and (4), 

F2»m = F2«-2mL2"-2mL2«-lm = F2»~2m s F2"~4m ="°F4m®T F%m ( m ° d 8 ) , 

depending on whether u is even or odd, respectively. Using (4), Fs = '2l, and F20 = 6765 proves 
the lemma. 

Theorem 4: No term of the sequence {LJ is of the form x2 - 4 . 

Proof: Assume Ln - x2 - 4. By Lemma 2, we may assume that n is odd. Now • = Ln + 4 
modulo 25 only if w = 13 or 17 (mod 20), and modulo 11 only if n = 5, 7, 9 (mod 10). It follows 
that w = 1 (mod 4) and n = -3 (mod 5). For n = 1 (mod 4), • = Xw +4 modulo 7 and modulo 47 
only if n = -3 or 13 (mod 32). However Ln +4 has period of length 64 modulo 2207, and 13 and 
45 are quadratic nonresidues modulo 64; hence, n = -3 (mod 32). Combining this with n = -3 
(mod 5), we have n = -3 (mod 5-32). 

Let « = 2gf - 3 , with ^ odd, g = 2u if M is odd, and ^ = 2" • 5 if u is even (u > 4). We shall use 
(1), (4), Lemma 5, and the following observation: 

2L2g = 2{L2
g~2) = 2L2

g+5L\-L2
g = 5F2+L2

g. (6) 
By Lemma 4, 

(Ln + 4\L2g) = (5F2g+4\L2g) = (5F2g+2(Lg-L2g)\L2g) = (5F2g + 2L2
g\L2g) 

= (Lg | A^XSF, + 2 ^ |L2g) = -{L2g|Lg)(-l)(L2g \5Fg+2Lg) 
= (L2

g-2\Lg)(2\5Fg+2Lg)(2L2g\5Fg + 2Lg) 
= (-11 Lg)(5Fg

2+L2
g \5Fg +2Lg) [by (6)] 

= -(45Fg
2 - (25F2 - 4 I | ) 15Fg + 2Lg) = -(515Fg + 2Lg) 

= -(5Fg+2Lg\S) = -(2\5)(Lg\S) = (Lg\5). 
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Since Ls = 47 = 2 (mod 5), by (1), Ll6 = 2 (mod 5), and, by induction, LT = 2 (mod 5). 
Similarly, Z20 = 15127 = 2 (mod 5), implying Lr.5 = 2 (mod 5). Hence, (Lg\5) = (2\5) = -l, a 
contradiction. 
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1. INTRODUCTION 

Let MIS stand for the maximal independent set of vertices. Denote the number of MIS of G 
by MG. Sanders [1] exhibits a tree p(P„), called an extended path, formed by appending a single 
degree-one vertex to each vertex of a path on n vertices, and proves Mp^P) = Fn+2 • In this paper 
we Introduce a new class of graphs, called star-like ladders, and show that the number of MIS In 
star-like ladders has a connection to the Fibonacci numbers. In particular, we show that ML = 
2Fp+h where Lp Is the ladder with/? squares. 

Remember that the ladder Lp, p>\9 Is the graph with 2p + 2 vertices {%¥,-1/ = 0,1,...,p) 
and edges {utuM, vtvi+l \ i = 0,1,..., p -1} u {u^ | / = 0,1,..., /?}. Two end edges of the ladder Lp 

are the edges joining vertices of degree 2. 
The graph obtained by identifying an end edge of ladder Lp with an edge e of a graph G Is 

denoted by G[e, p]. For the sake of completeness, we will put G[e, 0] = G. If pi,..., pk e N and 
el9...9ek are the edges of G, then we will write G[(el9...,ek),(#,...,pk)] for G[ex,pj...[ek,pk]. 
The star-like ladder SL(pl9...,pk) is the graph K2[(e, ...,e),(pl,...,pky], where e Is the edge of 
K2. We have that Lp = SL(p) = K2 [e, p], p e N. 

2. MIS IN GRAPHS WITH PENDANT LADDERS 

Graph G Ms pendant ladders If there Is a graph G*, the edges ei of G* and pi G N , / = !,..., 
k, k>\9 such that G = G*[(eh ...,%),(ph...,pk)]. In the next lemma, we give the recurrence 
formula for MG when G has pendant ladders. 

A C E 
a m— 

#, t-
B D F 

G[e,p-3] 

FIGURE!. Tie Graph G[e, pj 

Lemma 1: lie is an edge of a graph G and p e N, p > 3, then 

M?[e, />] = M?[e , />-l] + Mo[e, p-2\ (1) 
Proof: Let M be MIS in G[e, p]. Then, for every vertex v of G[e, p\ either v e M o r v has 

a neighbor in M; otherwise, Mu{v} is the independent set of vertices properly containing M. 
Further, exactly one of vertices A and B (see Fig. 1) belongs to M. Obviously, M cannot contain 
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both A and B, but if M contains neither A nor B, then from above it must contain both C and D, 
which is a contradiction. 

Suppose that A e M. Then M- {A} is MIS in G[e, p-1] or G[e, p- 2], but not both. For 
every MIS Mr in G[e, p -1] containing D, we have that M' u {̂ 4} is MIS in G[£, p\. If D £M9 

then F GM and M - {̂ 4} is MIS in G[e,p-2]. Also, for every MIS Mf in G[e, p- 2] contain-
ing F, we have that A/' u {A} is MIS in G[e, p]. Similar holds if B e M. Since every MIS in 
G[e, p -1] contains exactly one of C and D, and every MIS in G[e, p - 2] contains exactly one of 
E and F, we conclude that (1) holds. D 

Let jj denote the Ith coordinate of the vector/ 

Theorem 1: If ev..., ek are the edges of a graph G and #, . . . , pk e N \ {1,2}, then 

MG[(eu...,ek),(pl,...,pk)]= Z 1 1 ^ - 3 + / , ^[(e, , . . . ,^) ,;] ' ( 2 ) 
ye{1,2}* V/=l 7 

Proof: First we prove (2) for k = 1 by induction on./^. If /?x = 3, then 

Afcfo, 3] = F2MG[eu 2] + W j f c . 1]' 

Supposing that (2) is true for k = 1 and all /?!</? for some/?, we have that 

= ( ^ - 2 ^ 0 ^ , 2 ] +F
P-iMG{ex A]) + (Fp_3MG[eu2] +Fp_4MG[eiJ]) 

= Fp-lMG[eu2] + i V - 2 ^ G h , l ] -

Now we prove (2) by induction on k. Suppose that (2) is true for some k-n and for all px,..., 
# , e N \ { l , 2 } . Letp = (pl,...,p„,pn+l), p' = (pl9...9pn),mde = (el,...9en,en¥l), ef = (el9...,en). 
We have that 

M G[e,p] = MG[(e>,p>][en+l,pn+l] = zl 1 1 ^ - 3 + y , \MG[e',j][en+l, Pn+l] 
je{l,2}n\J=l J 

/e{l,2}"V/=l / 

/e{l,2}"+1 V'=l J 

If we define i^ = F2 -Fl = 0 and E_l=Fl-F0 = l9 then we can drop the assumption that 
pi ^ 1,2, i = 1,..., k in the previous theorem. 

3. MIS IN STAR-LIKE LADDERS 

Theorem 2: If pl,..., pk G N, then 
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Proof: Let j e {1,2}k with y(1) coordinates equal to 1, and y(2) coordinates equal to 2. We 
prove that 

MK2l{e_elJ] = 2k
+2-2^-2y (3) 

where e is the edge of K^. LetMbe MIS of K2[(e, ...,e\ j] (see Fig. 2). I f l e M , then 4 e M 
for z = 1,..., j ( 1 ) , and either Q G M or Di9Et GM for / = 1,..., j ( 2 ) . Similar holds if Y GM, and 
this gives 2• 2/(2) MIS of K2[(e, ...,e),j\. If X, Y £M, then either 4 e M or j?, e M for / = 1, 
..., 7(!) and either Q,Ff GM or /}., £",. G M for J = 1,..., j ( 2 ) ? giving 2k possibilities. Here we must 
exclude sets {Al9..., AJ(l),DhEh...,DJ(2),EJ(2)}and {By ...,BJ(l),Q,F1?..., C/(2),F/(2)} which are 
not MIS, and so it follows that (3) holds. Now 

MSL(Pl,...,Pk)= Z , 1 1 ^ - 3 + ; / \MK2{{e,...,e),y] 
/e{l,2}* V=l J 

= I ffl^^V+2-2yo>-2) 
/e{l,2}*V/=l V 

= (2* -2) f l (F A _ 2 + V i ) + 2 f K ^ - 2 +2FPi_l) 
i=l 
k 

i = l 

= (2*-2)n^+2ll^+.- • 

£*2 

/=! 

it 

n 

FIGURE 2* The Graph K2[(e,..., e), (1 , . . . , 1, 2, . . . , 2)] 

As an immediate consequence, we get 
Corollary 1: If p G N, then ML - 2i^+1. 

•REFERENCE 

1. L. K. Sanders. "A Proof from Graph Theory for a Fibonacci Identity." The Fibonacci Quar-
terly 2*.l(1990):4&-55. 
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1. INTRODUCTION 

Let Z and IR (C) denote the ring of the integers and the field of real (complex) numbers, 
respectively. For a field F, we put i7* = F\{0}. Fix A GC and B G C*, and let X(A, B) consist 
of all those second-order recurrent sequences {wn}neZ of complex numbers satisfying the recur-
sion: 

wn+i = Aw„ ~ Bwn-i (i.e., Bwn_Y = Awn - wn+l) for n = 0, ± 1, ± 2,.... (1) 

For sequences in SE(A,B), the corresponding characteristic equation is x2 - Ax + B-Q, whose 
roots {A ± ̂ A2-4B) 12 are denoted by a and /?. If As R* and A = A2 - 4B > 0, then we let 

A-*e(AhfK and p=A + sgorhfA (2) 
2 r 2 w 

where sg(^l) = 1 if A > 0, and sg(A) = -1 if A < 0. In the case wx = ocw0, it is easy to see that 
wn = anw0 for any integer n. If A - 0, then w2n = (-B)nw0 and w2n+l = (~B)nwl for all n G Z. 
The Lucas sequences {u„}neZ

 a n^ {v«}«ez m ^(A B) ta^e special values at n = 0,1, namely, 

u0 = 0, ̂  = 1, v0 = 29vl = A. (3) 
It is well known that 

{a-P)un = an-pn and vn = an+pn forn G Z . (4) 

If ^ = 1 and B = - 1 , then those Fn = un and L„ = vn are called Fibonacci numbers and Lucas num-
bers, respectively. 

Let mbea positive integer. In 1974,1. J. Good [2] showed that 
i F m~l ( n2" F 
1 _ i 2W-1 : ^ V \~l) - 2" - j , i.e., 2* F - p 

n=0 J 2n 2m «=0 2"+1 2"1 

V. E. Hoggatt, Jr., and M. Bicknell [4] extended this by evaluating S ^ F ^ i , where k is a posi-
tive integer. In 1977, W. E. Greig [3] was able to determine the sum EJJLowjt2n w** B = -\/m 
1995, R. S. Melham and A. G. Shannon [5] gave analogous results in the case B = 1. In 1990, 
R. Andre-Jeannin [1] calculated Z^Li 1 /(%„%(„+!>) and Y%=il/(vknvk(n+i)) m t h e c a s e B = -l and 

* This author is responsible for all the communications, and was supported by the Teaching and Research Award 
Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, and the National Natural Science 
Foundation of the People's Republic of China. 
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2\k, using the Lambert series I(x) = Z^=1x"/(l-xw) (|x| < 1); in 1995, Melham and Shannon 
[5] computed the sums in the case B = 1, in terms of a and /?. 

In the present paper we obtain the following theorems that imply all of the above. 

Theorem 1: Let mbea positive integer, and/a function such that f(ri) e Z and wf{n) ^ 0 for all 
W = 0 ,1 , . . . , J ? I . Then 

y D UAf(n) _n Uf(m)-f(0) 
w=0 Wf(n)Wf(n+l) Wf(0)Wf(m) 

where Af (n) = f(n +1) - f(ri). If wx ̂  ow>0, then 

r C-l)w f 2 a m ^/(WV(.)1 1_ (a™ 
n=0 Wf(n) wx - awQ W /(»+!) wl-aw0 Vwf(0) 

-(-If 
yf(»>A 

W fMj 

(5) 

(6) 

Theorem 2: Suppose that A, B e R* and A = A2 - 4B > 0. Let / : {0,1,2,...} -» {k e Z: wk * 0} 
be a function such that lim„^+00 f{ri) = +oo. If Wj ^ ow0, then we have 

a /(0) y n utf{n) = 

£o W/(n)W/(«+l) (Wl ~ ^ ( > / ( 0 ) 

= y (-iff 2g**> ^/(WV(.) 
(7) 

*=0 Wf(n) wl-awQ f(n+l) 

In the next section we will derive several results from these theorems. Theorems 1 and 2 are 
proved in Section 3. 

2. CONSEQUENCES OF THEOREMS 1 AND 2 

Theorem 3: Let k and / be integers such that wkn+l * 0 for all n = 0,1,2,.... Then 
m-\ 

%s B >kn 
_ ukm 

n=0 Wkn+lWk(n+l)+l WlWkm+l 
forallw = l,2,3,... . 

If A, Be R*, A2 >4B,k> 0, and wx * aw0, then 

a 

and 

«=o 

»=0 Wkn+lWk(n+l)+l 

{-ak)n , , ai (-Bk)" 
w, kn+l ™kn+l™k(n+l)+l) Wl 

(8) 

(9) 

(10) 

Proof: Simply apply Theorems 1 and 2 with f{n) = kn + l. 

Remark 1: When 5 = 1, l = k, and {wj = {uj or {vw}, Melham and Shannon [5] obtained (8) 
with the right-hand side replaced by a complicated expression in terms of a and fi. 

Theorem 4: Let A,B GM* and A = A2 - 4B > 0. Then, for any positive integer k, we have 
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i^-S-<HSMi 2k \ 

and 
(-£*)" _sgQ4) 

n=l VinV4(n+l) VA 
V8A: 

a t-fHf-j-«(^l+i 4fc 

( l i ) 

(12) 

/ * » / : Clearly, \a\ < \fi\ and / ? - a = sg(^)VA. Thus, w„ = (fin- a")I (ft- a) and v„ = 
a" + P" are nonzero for all neZ\{0}. Obviously w, -au 0 = 1 and v} -av 0 = A-2a = fi-a = 
sg(A)yfK. Applying Theorem 3 with / = k and {w„}B6Z = {un}neI or {v„}„eZ, we then obtain, 

»=1 

(-fl*)" o (-aky k\n\ 

and 

Clearly, 
»=i 

i-B*y 
k 

V VknVk(n+l) 

V UknUk(n+l) 

>k\n 

-2-
Hkn 

a 

k\n oo i-ay _ 

2 (-«*)") g*/vt 

sg(̂ )VA vfcB J sg(̂ )VA-

(-akr _ ,„_ ̂ v (-i)"(«/^)to 

«=i "itn 
YOff-q) v ~ a ' =(B-d)Y y-W'P* hi V-«*" V a)h \-(aipt 

( \ 
f (aipf f (a I (If" 
±1 \-{aiP)kn ti \~(aipT 

= 0»-a) 

= 0?" a) 

V 2|« 

21,f a 

V V 
a 

r , i £ j =«MWSl*lla» 
,4* 2& 

5* 

I f |x |< l , then 
OO ft OC 

£ j l J l + x- £ 1 + *2" £ 1 + * 
00 f x2" 2x4w ^ °° ( xn 

= 2t[ [l-x2n ~ l-x4")^ [l-x" l-x2" 

Jin 

2x 

Thus, 
- 2L(x2) - 4L(x4) - L(x) + 2L(x2) = -4L(x4) + 4L(x2) - L(x). 

k^n -=- „ (aip)kn 

^ vta hak" + pk" ti l + (a/p)k" 

= -4Z 
„2fc 

a r<*l\+4L\£L-\-L 

= -4L 
B*k + 4L 

ra4k] (a2k 

Combining the above and noting that ukvk = tilk, we then obtain the desired (11) and (12). 
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Remark 2: If \x\ < 1 then 

= L(x2) - (L(x) - 2L(x2)) + (Z(x2) - 2£(x4)) = -2L(x4) + 4L(x2) - L(x). 

Thus, Theorem 2 of Andre-Jeannin [1] is essentially our (11) and (12) in the special case B = -1 
and 2\k. 

Theorem 5: Let k, 7, m e Z and 7, m > 0. If w(/fc+w) * 0 for all n = 0,1,..., m, then 

*H-1 ,6 7 U(k+„\ B l U,k+m\ (k\ 
Z = LLJlkl. (13) 
„=o w(*j,,)M;(*+7+1) w(f)w(*Tm) 

Aw/* Let /(/!) = (*+") for n e Z. It is well known that A/(/i) = (*+?+1) - (*^) = (£?). So 
Theorem 5 follows from Theorem 1. 

Remark 3: In the case k = 0 and 7 = 2, (13) says that 

y 1^0 _ ^( f f l - l ) /2 . j 4 v 

«=0 Wn(n-l)/2Wn(n+l)/2 W0Wm(m-l)/2 

Theorem 6: Let a, k be integers, and m a positive integer. Suppose that wka„ ^ 0 for each n = 0, 
1,..., /w. Then 

5=1 5 t o V n „ B\, m n 
V fc(a-l)a" _ k(am-l) ^ 5 ) 

Proof: Just put / (») = Aa" in Theorem 1. 

Remark 4: In the case a = 2 and (w„} = {«„}, (15) becomes 

»=1 BkT _ tfu^^ 

« = 0 Mjfc2"+1 UkUk2m 

(16) 

This was obtained by Melham and Shannon [5] in the case B = l and k > 0. In the case a = 3 and 
{wj = {v„}, (15) turns out to be 

m-l r>k3" Jpu 

w = 0 KAr3"+1 ^ fc3m 

since w^ = w ^ for A e Z. 

Theorem 7: Let £ be an integer and m a positive integer. If wJt(2
n-i) * ° ^or e a c ' 1 « = 0,1,..., m, 

then 

w=0 W ^(2"- l ) W fc(2 n + 1 - l ) W 0 W ^ ( 2 ' " - l ) 

Proof: Just apply Theorem 1 with / («) = *(2'f -1). 
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3. PROOFS OF THEOREMS 1 AND 2 
Lemma 1: For kj,m e Z, we have 

and 

Proof: (i) Fix fc, I e Z. Observe that 

(19) 

(20) 

w 
>4i+i 

wt k _ w^ wk_x)( A 1 
wz ui-\ -B 0 

A l v 

-B 0 

Taking the determinants, we then get that 
W: k+1 Wfr w. fc-z+1 wk-l 

1 0 
4 1 

-B 0 

i.e., Wfcf//+1 - Wk+iui ~ ^wk-i • Thus, (19) holds for m = 0,1 
Each side of (19) can be viewed as a sequence in ££(A, B) with respect to the index m. By 

induction, (19) is valid for every m- 0,1,2,...; also (19) holds for each m- - 1 , - 2 , - 3 , . . . . Thus, 
(19) holds for any msZ. 

(ii) By induction on /, we find that wl+l - awl = (wx - aw^/31. Clearly, both sides of (20) lie 
in £(A9 B) with respect to the index k. Note that, if k = /, then both sides of (20) are zero. As 

(wx - aw0)Bl = (wx - aw0)j3lQl = (wM - aw^a1 = alwl+l - al+lwh 

(20) also holds for k = / +1. Therefore, (20) is always valid and we are done. 
Proof of Theorem 1: Let d e Z. In view of Lemma 1, for n - 0,1,..., m — 1, we have 

% + / ( w + l ) Ud+f(n) _ Ud+f(n+l)Wf(n) ~ Ud+f(n)Wf(n+l) 

W / (n+1) W /(«) Wf{n)Wf(n+\) 

Wf(n)Ud+f(n)+Af(n) ~ Wf(n)+Af(n)Ud+f(n) _ B " W-dU£f(n) 

Wf(n)Wf(n+l) Wf{n)Wf(n+l) 

It follows that 

and that 
m-l 

«-i Bd+mw_,u, 
n=0 Wf(n)Wf(n+l) 

m-l 
du£f(n) _ y> U, ld+f(n+l) ud+f(n) UA 

\ 

\ Wf(n+l) W /(«) 

Ud+f(m) Ud+f(0) 

W f(m) W /(0) 

Rd+f(n)w 11 rn-\ f ii 11 
V (_1)«+1 W~dUAf(n) = y , ^ 1 *W(ft+l) + / jy, tfi/+/(w) 
w=0 W/(«)W/(»+l) 

m-l 

W / ( »+ l ) W /(») y 

= 2 Y (-l)w Ud+f(n) + (-l)m Ud+fW _ (_i)0 *W(°) 
„_n W/v„\ W/-/w\ W/vm «=0 /(«) / ( H I ) /(0) 

Putting d = - / ( 0 ) , we then obtain (5) and 
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m-l 

2<-i> n+U 
Bmu, m-l BfW. BK%< 

V(0) 
»=0 r r / (« ) r r / (w+l ) «=0 ^ / ( » ) "'/(ifi) 

Now suppose that wx * aw0. By Lemma 1, for each w = 0,1,..., m, 

i.e., 

Thus, 

a'<°>ff / (w ) - / ( 0 ) a/(w)w / (0 ) CT / (0 ) 

w / (a) ( ^ l - ^ o ) W / ( W ) WI-CMQ' 

m-l 

w / ( 0 ) 
w=0 w / ( » ) w / ( » + l ) 

« - l f 
=2i;(-i)" 

H=0 

*V(0)<* /(«) 
a-/ ( 0 ) 

(Wi-aw0)w/(/l) w r w 0 
+Hy 

W / ( 0 ) a a / ( 0 ) ^ 

( w j - a w o ) ^ ^ wx-awQ 

and hence 
W - l / -i\/l (-1)" 
« = 0 W / ( » ) 

2am B^\f(n)) 
w* - awa w 

m-l 

0 vf(n+l) 

f/y/(°) /y/W 
wx-aw0^ wm wx-aw0 

a aJ 

y W m Wf(mK 

1 f 
I ^ - O W Q 

a' / ( 0 ) 

Kwm 
-i-iy 

yfW \ 

w f{m)J 
This proves (6). 

Lemma 2: Let 4 5 e R* and A = A2 -4B > 0. Then 

11m — - 0 
77-»+oO W „ 

and 
hm —— = — for any me£. 

(21) 

(22) 

Proof: When A = 0 (i.e., a = /?)* by induction ww = «(^/2)w-1 for all /? e Z; thus, ww * 0 for 
w = ±l,±2,±3,. . . , 

lim — = lim ; j , l~j = 0 

and 

iim ^= Mm ( » ^ / 2 r 1
= r j r r 

In the case A > 0, | a | < |/? |; hence, un = (an - j3n) I {a~ p) is zero if and only if n = 0. Thus, 

lim — = (a - (3) lim = 0. 
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Also 

lim [**-„)= lim ^ - ^ - P { a " - n = H m _«zA_ = 0 . 

Ifm<E{0,1,2,...}, then 
l i H L ^ L = Uf? I I ^fn±L = pm 

and 
^ + 0 0 U„ "-*+»Q<k<m % + „ 

lim ^»=2L= lim J^ = @-™. 

In view of the above, (21) always holds and l im^.^ um+n/un = pm for all m e Z. 
By Lemma 1, w^-w^ = i ^ w ^ for « e Z. Therefore, 

and hence (22) is valid. 
Proof of Theorem 2: Assume that wt & awQ. In view of Lemma 2, 

lim * / ( 0 V o - / ( Q ) = i ? ^ /r / ( 0 )
 = g/(0) 

and 

lim — = lim — x lim -^- = 0. 

Applying Theorem 1, we immediately get (7). 
Remark 5: On the condition of Theorem 2, if wt = aw0, then by checking the proof of Theorem 
2 we find that 

„=o W/X«)W/(H+I) 
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1. INTRODUCTION 

We denote the set of positive integers by N. Consider a , J e N with 

a < 6 , (a,ft) = l. (1.1) 

Fibonacci, in 1202 ([8], see also [1], [7]) introduced the greedy algorithm: we take the greatest 
Egyptian fraction 1 / xx with l/xl < a/b, form the difference a/b-l/xl=:al/bl [where (ax, bx) = 
1] and, if allbl is not zero, continue similarly. It is easily seen that the sequence of numerators 
aQ: = a, al9 a2,... is strictly decreasing, from which it follows that after finitely many, say s, steps 
(s<a), the process will stop. This gives us a representation 

| = ±+...+J_, ,<„<...<,,. (,.2) 

If b is odd, the greedy odd algorithm is defined as follows: we take the greatest Egyptian 
fraction l/xl with xx odd, l/x1 < alb, and continue similarly. We have (see [4], [3], [5]) the 
interesting 

Open Problem 1.1: Does the greedy odd algorithm (for b odd) always stop after finitely many 
steps? 

In this paper, using elementary methods, we study some properties of the greedy odd algo-
rithm. In Section 2 we fix the notation and record some obvious facts. In Section 3, the main 
part of this paper, we prove some results on the possibility of occurrence of certain initial sequen-
ces of the sequence aQ: = a, ah a2,... of numerators connected with the greedy odd algorithm. We 
hope that at least some of our results are new. 

2. THE GREEDY ODD ALGORITHM 

We suppose that in (1.1) b Is odd and sometimes we write b = 2k +1, where k e N. Now, 
since only odd denominators are used in the Egyptian fractions, we agree to write x = 2n + l, 
where n G N. To start the greedy odd algorithm, we take the unique nx e N satisfying the condi-
tion 

_L_<-^<-!_ 
2»! + l 2k+ 1 2 ^ - 1 ' 

and then we write 

(2.1) 

a a ' a ' with (a1,2ifc1 + l) = l. (2.2) 
2& + 1 2«j + l , (2* + l)(2^ + l) '2A, + 1 
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Case A) If 

2£ + l 2nx + Y 2nxy 

then 0<a{<a and so 0 < ax < a (this case corresponds to the normal greedy algorithm). 
CaseB) If 

a \_l 1_ 
2& + 1 [2^ 1 '2 / i 1 - l / 

then it is easily seen that a < a[ < 2a. 
Case Bl) If d:= (a{, (2k +l)(2nx +1)) > 1, we cancel and find that 0<ax <a. (In fact, 

as dis odd, d>39 and therefore a[ = dax<2a implies that ax < 2aId < 2a13 <a.) 
Case B2) If d - 1, then ax - a{ and so a < ax < 2a. 

We find that A) and Bl) are "good" cases (numerator decreases), while B2) is a Mbadlf case 
(numerator increases). 

We form the sequence of numerators a0 : = a, ax,a2,.... If as = 0 for some s GN, then the 
greedy odd algorithm stops and we get 

h 2k +1 xx xs
 x J 

with xx = 2 ^ + 1, ...,xs = 2ns + l. It is clear that as = 0 if and only if as_x = 1. 
From (2.2), it follows immediately that 

at * ai+x (mod 2) for i = 0,1,2,.... (2.4) 

Example 2.1: The sequence of numerators aQ, ...,as_x with 5 = 19, corresponding to the greedy 
odd algorithm for the fraction 5/139, is 

5, 6, 7,8, 9,10,11,12,13,14,15,16,17,26,51,2, 3,4,1. 

Here, all cases are either Bl) (occurs two times) or B2). The reader can find more examples in 
[4] (see also Examples 3.9 below). 

Remark 2.2: Take any a e N, a > 1. Then take any J G N , A odd, such that (1.1) holds and form 
the sequence of numerators a0 : = a, al,a29... connected with the greedy odd algorithm for the 
fraction alb. The question "Does 1 occur in this sequence?" is equivalent to Open Problem 1.1 
and shows some similarity to the well-known (or "infamous" [4]) "3x + l"-problem (see, e.g., [6]). 

If the greedy odd algorithm for the fraction a /Estops with as = 0, we write 

J>) Uifc + 1 
for the number of steps. Otherwise, we write 

a 
,2* + l, 

If h(a Ib) < oo, then a trivial consequence of (2.3) is that 

h(alb)^a (mod 2). (2.5) 
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Theorem 2.3: Suppose that s e N is given. There are infinitely many fractions alb, b odd, satis-
fying (1.1) such that 

h(a/b) = s. (2.6) 

Proof: Take any sequence xl9...,xs satisfying 

xi>l, xi+l>xf-xt+l, i = l,...,$-l, (2.7) 

such that xt is odd for i = 1,..., s. (For example, we can take xl := 2n + l for « E N and then 
define xi+1 := JC* -*,. +1 for / = 1,..., J - 1.) According to a result of J. J. Sylvester [9], the right-
hand side of the definition alb := 1/j^ H i-l/jc,-is the result of applying the normal greedy 
algorithm to the fraction alb. Note that b is odd since xl9..., xs are all odd. (We take, of course, 
(a, b) = 1.) Moreover, a < b. (We have, in fact, alb < 112, see (2.9) below.) But it is obvious 
that, if the normal greedy algorithm produces only odd denominators xh...,xs, then the greedy 
odd algorithm, applied to alb, is identical to the normal greedy algorithm (all cases are A)), and 
so h(a/b) = s. Since different sequences xt,.,.,xs satisfying (2.7) produce different fractions 
alb, and since we have indicated how to choose infinitely many such sequences (with all xt odd), 
the theorem follows. • 

We close this section with two remarks. 

Remark 2.4: We saw in (1.2) that x2 > xx for the normal greedy algorithm (supposing, of course, 
that a > 1). It is easily seen that, in the case of the greedy odd algorithm for the fraction alb, b 
odd, satisfying (1.1), the only possibility for x2 = xx is xt = x2 = 3, and it occurs if and only if 

M <28> 
For example, the greedy odd algorithm gives 

1 = 1+1 i = I+I+! + JL A = I+I+_L A i = I + i + I + _ L 
3 3 3 ' 5 3 3 9 45' 7 3 3 21 ' m l 3 3 7 21' 

Remark 2.5: If (1.1) holds and b is even, then it is clear that the greedy odd algorithm never 
stops. It is easily seen, for example, that 

lrh~=U- <29) J U I + 1 • l 

2 3 , -^ i=l ^ 
where xx:=3, xi+l: = xf - xt +1 for i = 1,2,..., is the result of applying the greedy odd algorithm 
to the fraction 1/2. The equation (2.9) is, of course, well known (indeed, "famous" [2]). 

3. ON SOME INITIAL SEQUENCES OF NUMERATORS 

We are interested in the case B) of the greedy odd algorithm (see the beginning of Section 2). 
We suppose that a > 1 and a<c<2a with C G N . We search for odd b = 2k + l, such that in the 
first step of the greedy odd algorithm for the fraction alb, we have c - a[ (see (2.2)). Here we 
must suppose that a^c (mod 2) (see (2.4)). 
Theorem 3.1: Let a>\ and a<c<2a, where l-hc-a:=2t (t E N ) . Let i e N satisfy k + t = 0 
(mod a) and (a, 2k + l) = l. Take nt: = (k +1) I a e N. Then a < 2k +1, and in the first step of the 
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greedy odd algorithm for the fraction a/(2k + l), we have the case B). Moreover, xt = 2nx +1, 
and 

- 2 ! _ = £ (3 1) 
2£ + l 2^ + 1 (2*+ 1X21̂  + 1)' l ' ' 

Proof: We have, by assumption, 
2r = l + c - a < l + 2 a - a = l + a . (3.2) 

Since A: + r = 0 (mod a), we have k-\-t>ay implying by (3.2) that k>a-t>a-(a + l)/2 = 
(a -1) 12. Therefore, a < 2k +1. 

We prove next that 
^ ^ ] = 2nl, (3.3) 

from which it immediately follows that x\ = 2nx +1. 
We have 2n1 = (2k + 2t)/a = (2k + T)/a + (2t-l)/a, where, by (3.2), 0 < ( 2 f - l ) / a < l . 

This proves (3.3). 
A simple calculation shows that (3.1) holds. Since a( = c > a , w e must have the case B). • 

Remark 3.2: In some cases, it is impossible to satisfy the condition (a,2£ + l) = 1 in Theorem 
3.1. Take, for example, a:= 6 and c:= 9. Now l + c-a = 1 + 9 - 6 = 4 =:2f, so that f = 2. If 
^ + 2 = 0 (mod 6), then 2k +1 = 3 (mod 6), and so (a,2* + l) = 3. 

Corollary 33: Let a > 1 and c := a +1. If £ +1 = 0 (mod a), then (a, 2A +1) = 1 and, for nx : = 
(A: +1) /a , the conclusions of Theorem 3.1 hold. 

Proof: In this case, l + c - a = 2=:2^, so that t-l. We need only prove that (a,2k + l) = 1. 
This follows immediately from 2k +1 = 2(nxa -1) +1 = 2j\a -1. • 

For the rest of this paper, we consider the following problem. Let a > 1 be given. We search 
for such numbers k G~N that the greedy odd algorithm, applied to the fraction a/(2k + l)9 starts 
with some cases B2) in such a way that the sequence of numerators aQ: = a,al7a2,... starts with 
a, a + 1, a + 2,.... Our main tool is Corollary 3.3 and our main achievement (see Theorem 3.7) is 
the following. For any a> 1, we give explicitly infinitely many numbers k such that the greedy 
odd algorithm for the fraction a I (2k +1) starts with two cases B2), the numerator increasing by 
one in both steps. 

Suppose now that we have used Corollary 3.3 once and that the first step corresponded to 
the case B2). We consider the fraction 

~v^—^h 7T = • ^, l ,, where a,: = a +1, 
(2A + l)(2w1 + l) 2 ^ + 1' l 

and use Corollary 3.3 again. Now, 
(2* + l)(2„1 + l ) - l = 4fa ,+2* + 2 . 

1 2 2 1 l 

so that we should have 
2knx + £ + ^ + 1 = 0 (mod a +1). (3.4) 

224 [JUNE-JULY 



REMARKS ON THE "GREEDY ODD18 EGYPTIAN FRACTION ALGORITHM 

But 2Aw1 + £+w1 + l = 2(^a-l)w1 + (w1a-l)+^ and 2nxa + 
a-l = (a + l) + 2k, so that (3.4) will be satisfied if k = 0 (mod a + 1). We use the Chinese 
Remainder Theorem to solve the pair of simultaneous congruences 

(k = -1 (mod a) 
\k = 0 (mod a + 1) 

and get the (unique) solution k = ~{a +1) (mod a(a +1)). Now let r^ : = (kt +1) / (a +1). Then 
both steps correspond to the case B2) if and only if the conditions 

(I) (a +1, (2k + l)(2w1 +1)) = 1 and 
(II) (a + 2, (2*i + 1 ) ^ +1)) = 1 

hold. 

Lemma 3.4: Let A : = -(a +1) + ja(a +1) with j G N. Condition (I) holds for every j G N. 

Proof: We have 2* +1 = (a + 1)(2 j a - 2 ) +1 (of course, 2k +1 = 1 (mod a + 1) since k = 0 
(mod a +1)) and therefore (a +1,2* +1) = 1. We have nl = (k + l)/a = j(a +1) -1 , so 2nx +1 = 
2 y(a +1)-1 and therefore (a +1,2wt +1) = 1. It follows that (I) holds for every ; e N . • 

We have 2* + l = (a + 2)(2ja-2~2j) + 4j + 3? 2^ + 1 = (a + 2)2 j - (2 j + l), and 

2W2 + l = (a + 2 ) ( 4 / a - 4 / - 6 j ) + (2j + l)(4j + 3)9 (3.5) 

from which it follows, since 2kt +1 = (2* + T)(2nl +1), that 

(II) holds if and only if (a + 2, (2j +1)(4/ + 3)) = 1. (3.6) 

Theorem 3.5: Let a > 1 and define A by k:= -(a +1) + ya(a +1), j G N. A necessary and suffi-
cient condition for the greedy odd algorithm for all the fractions a / (2^ + 1), j = 1,2,..., to start 
with two cases B2), the numerators increasing by one, is that a - 2r - 2, r > 2. 

Proof: 1° Suppose that a = 2 r - 2 for some r e N , r > 2 . By Lemma 3.4, (I) holds for 
every j G N. Condition (II) is now trivially satisfied, since a + 2 = 2r and (2^ +1)(2«2 +1) is odd. 

2° Suppose that a £ {2r - 2: r G N, r > 2}. Then there exists an odd prime p such that 
p | (a + 2). Let j be such that /? = 2} +1. Then p\(a + 2, (2j +1)(4 j + 3)), so that, by (3.6), (II) is 
not valid. D 

By a similar argument, we can show the existence of certain short sequences of numerators of 
the form a, a +1,1, where one case B2) and one case Bl) are involved. More precisely, we have 
Theorem 3.6: Let a > 1 be odd. Let 

fa3 + 4a2+5a + 2" * : = - + /rar(a + l)(a + 2), where h = l,2,.... (3.7) 

Then the sequence of numerators, corresponding to the greedy odd algorithm for all the fractions 
a/(2k + l), is a,a + l, 1. 

Proof: We write k : = -(a +1) + ja(a +1) with j G N as before. By Lemma 3.4, (I) holds for 
every j G N . By assumption, a + 2 is odd, so we can find j0 G N such that 2j0 + l: = a + 2. If 
j = j0 (mod a + 2), then 2y + l = 0 (mod a + 2), and so, by (3.5), 2/^ + 1 = 0 (mod a + 2). It 
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follows that (a + 2, (2kx +1)(2^2 +1)) = a + 2, implying a2 = 1, for all such j . Writing j : = jQ + 
(/i-l)(a + 2),weget(3.7). D 

Theorem 3.5 gives, for some special numbers a, infinitely many numbers k such that the 
greedy odd algorithm, applied to the fraction a/(2& + l), behaves in a certain manner. The first 
part of the next theorem is completely general, but the form of the numbers k is slightly more 
complicated. 

Theorem 3.7: Let a>\ and define k by k :=-(a + l)2+ha(a + l)(a + 2), /r = 1,2, Then the 
greedy odd algorithm for all the fractions a I (2k +1) starts with two cases B2), the numerators 
increasing by one. Moreover, if a = 2r - 3 (r > 3), then the same holds for the third step. 

Proof: We consider k :=-(a + l) + ya(a + l), J E N . By Lemma 3.4, (I) holds for every 
j G N . If J = - 1 (mod a + 2), then 2j + l = 4/ + 3 = - l (mod a + 2), and therefore, by (3.6), 
condition (II) holds. Writing j := -l+/?(a + 2) with A e N, we get the first part of the theorem. 

Consider now the third step. Defining (2kx +1)(2?^ +1) =: 2k2 +1, we should have 

&2+l = 0 (moda + 2) (3.8) 

and then we will take n^ : = (k2 +1) / (a + 2). By a straightforward calculation, 

^ ^ = (-l + h+ah)-(-l-2a + 4ah + 2a2h)-(4 + l5a^ 

- 60a2h~3%a3h-$a4h + l6ah2 +4$a2h2 +52a3h2 +24a4h2 +4a5h2), 

proving (3.8). The last part of the theorem follows now exactly as in the proof of Theorem 
3.5. • 

Taking a\- 2, starting from Theorem 3.5, and using Corollary 3.3 two times, we obtained 
the following result. 
Theorem 3.8: Let k := 180^-51, g = 1,2,.... The greedy odd algorithm for all the fractions 
2 / (2k +1) starts with four cases B2), the numerators increasing by one. 

Since we have suppressed the "dirty" details, we would like to give some examples of 
Theorem 3.8. 
Examples 3.9: Using ten smallest values of g in Theorem 3.8, we get the following fractions with 
corresponding sequences of numerators (which should all start with 2,3,4,5,6). 

J ^ ; 2,3,4,5,6,1. ^ ; 2,3,4,5,6,7,8,9,2,3,4,1. 

2 -; 2,3,4,5,6,7,8,9,2,3,4,1. - £ - ; 2,3,4, 5,6, 7,2,1. 

^ ; 2,3,4,5, 6,7,8,9,10,1. ^ ; 2,3,4,5,6,7,8,9,10,11,12,13,2,1. 

;2.3,4,5,6.1. - J - ; 2 , 3 4 5,6,1. , Arf, ~ * , » , ^ , V , J.. ^ — — ^ , < « , -"•, " , ^ , W , 2419' ' ' ' ' ' 2779 
^ ; 2,3,4,5, 6,7,8,9,10,11,12,1. ^ ; 2,3,4,5,6,7,8, 9,10,11,12,1. 
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Using g:= 19, we get 
2 

6739 ; 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1. 

We notice here that different fractions may have the same sequence of numerators connected 
with the greedy odd algorithm. The corresponding representations (2.3) are, of course, all 
different. Here, in the case of Theorem 3.8, we may note that, according to Corollary 3.3, xx = 
k + 2. The first fraction 2/259, for example, has the representation (2.3) with 5 = 6, where 

jq = 131, 
x2 = 11311, 
x3 = 95942731, 
x4 = 7364006009447959, 
x5 =45190487089321370649970598273443, 
x6 = 1750440105745818416860853998376462544613686713278571057343790199. 

We remark, finally, that the sequence of numerators 2,3,4,5,6,1 occurs whenever g-=09l 
(mod 7) in Theorem 3.8. 
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1. INTRODUCTION 
Factoring large integers into primes is one of the most important and most difficult problems 

of computational number theory (the twin problem is primality testing [13]). Trial division, Fer-
mat's algorithm [1], [3], [8], Pollard's p-\ method [6], Williams' p + \ method [11], Lenstra's 
elliptic curve method (ECM) [5], Pomerance's quadratic sieve (QS) [7], [10], and Pollard's num-
ber field sieve (NFS) [4] are commonly used methods for factorization, 

Trial division and Fermat's method are two of the oldest systematic methods of factoring 
integers. Although, in general, both methods are not very efficient, it is worthwhile attempting 
them before other methods. Trial division consists of making trial divisions of the integer N by 
the small primes; it.succeeds when 

N = pq, prime/? is small. (1.1) 

The practical limit for trial division to locate a prime factor of large N is about 8-10 digits. 
Fermat's algorithm works in the opposite direction from trial division. It works quickly when Nis 
the product of two almost equal factors, i.e., 

N - P4> \q-p\ is small. (1.2) 
Integers whose largest prime factor is small are called smooth. The p-\ method succeeds 

when 
p-\\s smooth for some prime divisor/? of N. (1.3) 

The method is based on the consequence of Fermat's Little Theorem: if M is a multiple of p-1 
and if p does not divide a, then p divides gcd(iV, aM -1). • If p -1 is smooth, then we can find a 
suitable M by taking the product of small primes and powers of very small primes. 

In 1982, Hugh Williams [11] showed how to use the structure of Lucas sequences to factor 
TV" when 

p +1 is smooth for some prime divisor/? of N. (1.4) 

His method is based on the following fact about Lucas sequences (Theorem 12.8, [1]). If we 
choose an integer u and define a pair of Lucas sequences Un = U„(u) and Vn = Vn{u) by 

fl/0 = 0, ^ = 1 , ^ = 2 , ^ = *, 
[U^uU^-U^ Vn = uV^-V^2 for^>2, 

and, if D = u2 -4, then, for any odd prime/?, p divides both gcd{N,UM) and gcd(N,VM -2 ) 
whenever Mis a multiple of p-(D/p), where {Dip) is the Legendre symbol. If {Dip) - -1 

* Supported by the China State Educational Commission Science Foundation and by NSF of China Grant 
10071001. 
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and p + \ Is smooth, then we can find a suitable M by taking the product of small primes and 
powers of very small primes. 

So far, either textbooks [1], [3], [8] or survey papers [2], [12] on factorization treated the 
above four methods separately. In this paper we present algorithms not only to unify but also to 
enhance these four methods. We state our main results as the following two theorems. 

Theorem 1: There exists an algorithm (Algorithm 1) for finding prime divisors p<q of N'm 
O (log3 N + | r | log2 N) bit operations, provided 

N = pq withq = k{p-l) + r and \r\ < (p-3)/2. (1.6) 

Theorem 2: There exists an algorithm (Algorithm 2) for finding prime divisors p < q of N in 
0(log3 N + | r | log2 N) bit operations, provided 

N = pq with q = k(p + X) + r and \r\ < {p + l) 12. (1.7) 

Remark LI: Clearly, Algorithm 1 finds prime factors/? and q of Nquickly when 
N = pq with q = k(p -1)+r and | r | small, (1.8) 

and Algorithm 2 finds prime factors/? and q of TV" quickly when 
N = pq with q = k{p +1)+r and | r | small. (1.9) 

We remark that condition (1.8) can be relaxed to 
N = pq with q-kfd + r', \r'\ small, and (p-l)/d smooth, (1.10) 

where d is a divisor of p - 1 ; whereas condition (1.9) can be relaxed to 
N = pq with q = kfd + rf, \r'\ small, and (p + T)/d smooth, (1.11) 

where d is a divisor of p + l. We see that conditions (1.1), (1.2), and (1.3) are contained in 
condition (1.10); whereas conditions (1.1), (1.2), and (1.4) are contained in condition (1.11). 
Thus, we have a unified approach for trial division, Fermat's method, and Pollard's p-\ method; 
and a unified approach for trial division, Fermat's method, and Williams' p + l method. 

2, PROOF OF THEOREM 1 
To prove Theorem 1 we need two lemmas. 

Lemma 2.1: Let N = pq be the product of two primes p<q with q = k(p-l) + r, where \r \ < 
(p - 3) / 2. Let M be the number of positive integers a modulo N with 

gcd(a,N) = l and aNW mod#. (2.1) 
Then we have M < N12. 

Proof: Since p<q = k(p-l) + r and \r\< (p-3)/2, we have k >2, or k - 1 and r >2 . In 
both cases, we have p - r < q -1. Thus, 

gcd(N-r,q-l) = gcd(p(q-l) + p-r,q-l) = gcd(p-r,q-l)<(q-l)/2. 
The number of such bases a satisfying (2.1) is the number of solutions (mod N) of the congruence 
f(x) = x^"r - 1 = 0 mod N. It is well known that congruence f(x) = 0 mod p has gcd(7V" - r , 
P~ 1) -gcd((p-l)(q + k),p-l) = p-l distinct solutions (mod/?), and congruence f(x) = 0 mod 
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q has gcd(# - r, q -1) < (q -1) 12 distinct solutions (mod q). According to the Chinese Remain-
der Theorem, we have 

M = gcd(N-r,p-l)gcd(N-r,q-l)<(p-l)(q-l)/2<N/2. • 

Lemma 2.2: Let N = pq with/? prime and q = k(p-1)+r not necessarily prime. Let a > 1 with 
gcd(a, # ) = 1 and u = aN -ar mod # Then we have: 
faj p|gcd(i#,JV); 
(b) Ifq is prime and u* 0, then gcd(&, N) = p. 

Proof: 
(a) This follows from the fact that a* = apq =aq = ak{p~l)+r = ar mod p. 
(h) Since & ̂  0 mod#and ^ = 0 modp,u^0 mod g. Thus, we have gcd(*#, # ) = p. D 

Example 2.1: Let # = 26544669. Then 

2^ = 19445336 mod#, and gcd(l 9445336-29,#) -2823 = 941-3. 

In fact, # = 941-28209, where 941 is prime, whereas 28209 = 30(941-1)+ 9 = 3-9403 is not 
prime. 

Example 2.2: Let # = 8848223. Then 

2N = 864787 mod #, and gcd(864787 - 23, # ) = 941. 

Thus, # = 941 • 9403, where both 941 and 9403 = 10(941 -1) + 3 are primes. 

Example 23: Let # = 8836931. Then 

2N =4892191 mod#, 2"1 s 4418466 mod#, 

2~9 = 2571685 mod #, and gcd(4892191 - 2571685, # ) = 941. 

Thus, # = 941-9391, where both 941 and 9391 = 10(941-1)-9 are primes. 

Now we are ready to prove Theorem 1. 
Proof of Theorem 1: Suppose condition (1.6) holds. We present Algorithm 1 as follows: 
We first select a random integer a with 1 <a < N and gcd(a, # ) = 1; and do the modular 

exponentiation b = aN mod # and calculate a-1 mod # via the Euclidean algorithm. Then, for 
/ = 1,2,..., calculate a1 = d~la mod # and a~l = a~^~l^a~l mod # by recurrence, and calculate 
gcd(b -a\ # ) and gcd(h-a~\ # ) via the Euclidean algorithm. 

By Lemma 2.1, the probability that a random integer a modulo # satisfies 
aN*ar mod# (2.2) 

is at least 1 / 2. Suppose (2.2) holds for the chosen a. By Lemma 2.2, we have 
gcd(a^ - ar, # ) = p and q = # I p. 

It is well known that it takes 0(log3 # ) bit operations for modular exponentiation [9] and 
0( log2#) bit operations to do a gcd with naive arithmetic (Euclidean algorithm) [3]. Thus, in 
total, it takes 0(log3 # + \r | log2 # ) bit operations to find prime divisors p < q of #. This com-
pletes the proof. D 
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Example 14: Let # = 89603-10198 + 5170109640" + 7457884581 (203 digits). Using Algo-
rithm 1, we obtain N = pq9 where both 

p = gcd(2^ -2165
3 N) = 10" +289 (100 digits) 

and 
q = N/p = 89603(p -1) +165 = 89603 • 10" + 25805829 (104 digits) 

are primes. Our Pascal program (with multi-precision package partially written in Assembly lan-
guage) ran about eighteen seconds on my PC 486/66 to get the desired results. 

3. COMBINED WITH POLLAMD5S|i-l METHOD 

The following Extended Algorithm 1 combines Algorithm 1 presented in the proof of Theo-
rem 1 with Pollard's p-l algorithm, thus it unifies trial division, Fermafs method, and the p-l 
method. 

Extended Algorithm 1: We first select a random integer g with \<g<N and gcd(g, N) = l. 
Then calculate a = gM mod N, where M is the product of all small primes and some powers of 
very small primes. If 1 <gcd(a-1, N) < JV ? then a nontrivial factor is found (the p-l algorithm 
ends up here); otherwise, calculate b = aN mod N. If condition (1.10) holds, then the prime divi-
sor p could be found quickly, since in this case we would most likely have gcd(b -ar\ N) = p. 

Example 3.1: Let N = 

21599677 4125459698 7880191329 6573463347 1444517931 6954707436 
3533196547 4958078521 1295059800 6895461157 4586337662 0125667872 
2212935015 1101826633 4121506661 8644391868 2033158453 4956423476 
3200995905 4369044649 0215558908 4213065793 (218 digits). 

Let a = 2M mod N? where M is the product of the first 120 primes. W e obtain N - pq, where 
p = gcd(aN-a*,N) = 

2912 4205259383 1345758783 9106248908 4606333874 4736995720 
6878160308 4991206875 7497656678 0499080822 1052741991 (104 digits) 

and q- NI p -
7416 4006262753 0801524787 1419019374 7405994078 1097519023 

9058213161 4441575950 4705008092 8187116939 4073700000 0000000023 
(114 digits). 

The whole calculation took about twenty seconds on my PC 486. We find that 

q = k(p~-l) + r = lOl5d + 23, 

where (p-l)/d =2-3-5-7-11-17 is smooth, and r' = 23 is small, although r = 245...39493 (103 
digits) is large. 

4 PROOF OF THEOREM 2 

In this section and the following section, we need the pair of Lucas sequences Un = Un{u) 
and Vn = Vn(ti) to the parameter u as defined by (1.5). When there is no doubt as to the values of 
the parameter i#3 we often omit it. Moreover, the U's and P s are calculated modulo N, and the 
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words "mod N" are often omitted, where N is the integer to be factored. We shall use both | | 
and # to denote cardinality of a set, reserving the latter symbol for a set written with braces. 
Legendre's symbol is denoted by (j) of (*//?) with/? an odd prime. 

To prove Theorem 2 and describe Algorithm 2, we need four lemmas. 

Lemma 4.1: Let N = pq, with/? an odd prime and q not necessarily prime. Then we have 

*{.:0"<*(̂ ) = -.} = ̂ -£ 
Proof: It is well known that 

M=0 P 
Since 

we have 

#\u:0<u<pA^-^\ = 0\ = 2, 

and 

Thus, 

#{u\0<u<py\^—^\^-l\ = {p-l)l2, 

#\u:0<u<pA^—^\ = l\ = (p-3)/2. 

[ F\ p ) J 2 p P 2 D 

Lemma 4.2: (Lemma 12.15 of [1], see also Section 2 of [11].) If/? is an odd prime, /WGZ+, and 
8 = (^f*)*then w e h a v e Um{P-s) = ° m o d A and Vm{p_£) = 2 mod/?. 

Lemma 4.3: Let N = pq with p an odd prime and q = k(p +1) + r not necessarily prime. Let 
integer u be such that (i£y1) = - 1 . Then we have UN+r = 0 mod/?, and VN+r = 2 mod/?. 

Proof: Since N+r = pq + r = (p + l)(pk + r), the lemma follows by Lemma 4.2. D 

In Lemma 4.4 below we investigate the number of integers u satisfying 

U " 4 ' 1, £ V » ^ O m o d g , and ^ + » ^ 2 m o d g ; (4.1) 

= - 1 , C/^+r(w) = 0modg, and F ^ + ^ ) = 2 m o d # - (4-2) 

Lemma 4.4: Let TV, /?, g, A, and r be as given in Theorem 2, with k > 7, 
Sl = {u\0<u<N,u satisfies (4.1)}, and S2 = {u:0<u <N,u satisfies (4.2)}. 

Then we have \SX^JS2 \<N/4. 
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Proof: It is easy to see that condition (4.1) is equivalent to 

V-4^ = 1, there exists a w e GF*(q) with w2 - uw +1 = 0 and wN+r = 1, (4.1 *) 

and condition (4.2) is equivalent to 
2 _ _ 

= - 1 , there exists a £ e GF*(g2) with £2 - u £ + 1 = 0 and g*+r = 1. (4.2') 

Since qr = Ar(/? + l) + r >(*-l /2)( /? + l), we have P + l<-^72". 
In the group GF*(q), the number of solutions of the equation xN+r = 1 is 

gcd(iVr + r , 9 - l ) = gcd(>H-r?^-l)<jp + r<3(>-f l ) /2<3^/(2A:- l )<^/4 . 

Since every u (mod g) of the set Sx corresponds to two different w's, and different u (mod g)'s 
correspond to different pairs of w's, we have 

\Sl\<(l/2)-(q/4).(N/q) = N/$. 
In the group GF*(q2), if £ is such that 

4*-w£+l = 0with| frH 
then ^ + 1 = 1. The number of solutions of the system of equations 

|x«+1 = 1, 
\xN+r = l, 

is 
gcd(N + r,q + l) = gcd(p-r,q + 1)<p-r <3(p + l)/2<q/4. 

Since every u (mod g) of the set S2 corresponds to two different £'s, and different ^ (mod g)'s 
correspond to different pairs of £ 's, we have 

| A S ' 2 |< ( l /2 ) - (g /4 ) . (# /g ) -# /8 . 

Therefore, we have |5iuiS2| < (N/S) + (N/$) = N/4. D 

Now we are ready to prove Theorem 2. 
Proof of Theorem 2: Suppose condition (1.7) holds. We present Algorithm 2 as follows: 
Select a random integer u with 0<u<N, u^2, u^N -2 and 

gcd(w, # ) = 1 and gcd(Z>, JV) = 1, where D = u2 - 4. (4.3) 

If (4.3) does not hold, then a nontrivial factor of TV is found. Suppose (4.3) holds. 
By Lemma 4.1, for a random integer u, the probability that (Dlp) - -1 is about 1/2. Sup-

pose (Dip) = -1 with the chosen u. 
We first calculate the pair UN and VN via the formulas (cf. Lemma 12.5 of [1]): 

u2i = uy, v2i=v?-i, 
u2i+1 = ui+y-i, v2i+l = vi+y-u. 

2001] 233 



USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS 

(This is something like doing modular exponentiation in Algorithm 1.) Then calculate 
UN+l = (uUN+VN)/29 VN+l = (uVN+DUN)/29 

UN_X = uUN - UN+l9 VN_X = uVN - VN+l. 

For / = 2,3,..., calculate by recurrence, 
UN+i = uUN+i__x -UN+i_2, VN+j = uVN+i_x -VN+i_29 

UN_j = uuN_i+l - UN_i+2, VN_j = uVN_M ~ VN_j+2. 
By Lemma 4.3, we have p \ UN+r and p | (VN+r - 2). 
Suppose k>l. (If k <7, then N = pq with q = k(p + T)+r = k(p-l) + 2k+r can be easily 

factored by Algorithm 1.) By Lemma 4.4, for a random u9 the probability that 

q\UN+r(u) and q\(VN+r(u)-2) (4.4) 
is less than 1 /4. Suppose (4.4) does not hold for the chosen u. Then we have gcd(UN+r9 N) = p 
and/or gcd(yN+r -29N) = p9 and N/p = q. 

The time taken by computer for the calculation of UN (mod N) and VN (mod N) as explained 
above and for the calculation of aN (mod N) are the same order of magnitude for large values of 
N. So, as analyzed in Theorem 1, bit operations used here is also 0(!og3 N + \r \ log2 N)9 but with 
a larger constant related to the big 0-notation than that in Theorem 1. D 

Example 4.1: Let N = 525837811, w = 6, and D = u2 - 4 = 32. Then 
UN = 128529829, VN =365916885, UN_9 = 154978947, and VN_9 =215276907. 

We have N - pq9 where 
p = gcd{UN_„99N) = gcd(VN„9~~29N) = l62\ and q = N/p = 32A39l. 

We find that q = 200(p + l ) - 9 , •(£>//?) = - 1 , and (Dlq) = 1. 

Example 42: Let tf = 262940789, it = 6, and D - f#2 - 4 = 32. Then 
[7^ = 90848206, ^=211151910, [ 7 ^ = 256455168, and VN+9 = 78409393. 

We have N - pq9 where 
/> = gcd(UN^9 N) = gcd(F^+9 - 2, N) = 1621, and q = N/p = 162209. 

We find that g = 100(p + l) + 9, (£)//?)' = - 1 , and (D/?) = 1. 

Remark 4.1: In Algorithm 2, if the integer u happens to be selected with (D/p) = l (with proba-
bility about 1/2), then p\Up_x and p | ( F ^ - 2), instead of p\Up+i and p\(Vp+l-2). If k in 
(1.7) is small or condition (1.6) holds, we would have gcd(UN_r9N)=gcd(VN_r~29N) = p9 

where r satisfies (1.6). In this case, Algorithm 2 acts essentially as Algorithm 1 does. 

Example4.3: Let N = 13157657, u = 6, and Z> = i/2-4 = 32. Then 
£/„ =2945491, F^ = 1183255, 

[/^+7 = 3350607, J^+7 = 6668796. 
We have N = pq9 where 

/? = gcd(C/iV+7,#) = gcd(Fis,+7-2,#) = 1621, and q = N/p=*M. 
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We find that q = 5(p + l) + 7? {Dip) = (D/q) = - 1 . 
If M = 3 is selected, then D = u2 - 4 = 5 and 

UN = 6604163, VN = 281690, 
UN_l7 = 12418481, VN_l7 = 3076660. 

We have N = pq, where 

p = gcd(UN_l7,N)=:gcd(VN_l7~2,N) = l62l and q = N/p = Ul7. 

We find that g = 5(p -1) +17, (D/p) = l, and (D/q) = -l. This example explains Remark 4.1. 

Example 4.4: Let 

# = 10224 + 6740198 + 579.10125 + 3905240"+8381-1027 + 5690121 (225 digits), 

M = 4, and D = w2 - 4 = 12. Then we have N = pq, where 
p = gcd(UN+259, N) = gcd(^+259 - 2, N) = 10" + 289 

and 
q = N/p = 10125 + 6 7 4 0 " + 29-1027 +19689. 

The entire calculation took about forty seconds on my PC 486. We find that 

q = (l026 + 67)(p + l) + 259, (D/p) = -\ and (D/q) = l 

Remark 4.2: One may calculate only the Ffs using Algorithm 8.3 of [1]. It takes a little less time 
than calculating both t/'s and F's. However, it might happen that gcd(N,VN+r-2) = N, but 
gcd(Ny UN+r) = p (cf. Lemma 4.4). So we prefer to calculate both t/'s and P s . 

5, COMBINED WITH WILLIAMS5 p + l METHOD 

The following Extended Algorithm 2 combines Algorithm 2 presented in the proof of Theo-
rem 2 with Williams' p + l method, thus it unifies trial division, Fermat's method, and the p + l 
method. 

Extended Algorithm 2: Let u, D be as given in the proof of Theorem 2. Calculate a = UM{u) 
and b - VM(u), where Mis the product of all small primes and some powers of very small primes. 
If 1 <gcd(a,N)<N or 1 <gcd(b-2,N)<N, then a nontrivial factor of N is found (the p + l 
algorithm ends up here). Otherwise, calculate (cf. Lemma 12.14 of [1]) UMN{u) = a-UN(b) and 
VMN(u) = VN (b). Then, for / = 1,2,..., calculate 

UM(N-o(u) = Ub 

If condition (1.11) holds, even though 

UM(N+i-i)(»)+a • F j ^ «_i)(«)), 

VM(NM-\)^) + D-a- £/W(W+,_i)(w)), 

VM{N-M){u) -Da- UM(N_i+l)(u)). 

r\ in (1.9) is large, the prime divisor p could be found 
quickly, since in this case we would most likely have 

8«K£W+r)(«),N^ = P a n d / o r Scd(VM(N+r)(u)-2,N) = p. 
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Example 5.1: Let 
N = 3041465128 • 10219 + 355851419976-10198 + 1757966843983 • 10120 

+ 206120091724443• 10" + 254026208955399000029847640060548387 (229 digits), 

u=9, and D = u2-4 = 77. Let 

M= n pmp-
p prime, pmp< 32768 

Then we have N = pq, where 

P = &d(UMiN+lA4)(!i), N) = gcd(VM(N+m(u) -2,N) 

= 3041465128-10" +878983421991 (109 digits) 

and 

g = 7Vr//? = 10120 + 117-10" + 289.1021 + 33957 (121 digits). 

The entire calculation took about twenty minutes on my PC 486. We found that 
q = k(p + l)+r = (l02l + ll7)d + U4 and (Dip) = (Dlq) = - 1 , 

where rf=1099+289, (p + l)/d = 23-13-19-47-32749, which is smooth and divides M, and 
r} = 144 is small, whereas \r\ = -r - 1369...51187 (109 digits) is large. 

Remark 5.1: As mentioned in Remark 4.1, if the integer u happens to be selected with (Dip) = 1, 
then Extended Algorithm 2 acts essentially as Extended Algorithm 1 does. Thus, Extended Algo-
rithm 2 not only unifies trial division, Fermat's method, Pollard's p-\ method, and Williams' 
p +1 method, but also enhances these four methods. 

6. CONCLUSIONS 

The algorithms we have presented each operate in an Abelian group. Algorithm 1 uses the 
multiplicative group GF*(p) of nonzero elements of GF(p). The work on Lucas sequences in 
Algorithm 2 is really arithmetic done in a subgroup, with order p + l, of the multiplicative group 
GF*(p2) of nonzero elements of GF(p2). The prime factor/? of N can be found quickly when 
N - pq satisfies one of the four conditions (1.8), (1.9), (1.10), and (1.11) or, in other words, 
when N = pq is near the related group orders p±\. Moreover, it is easy to see that the "factor-
ing large integers near group orders" idea can be used to Lenstra's Elliptic Curve Method [5] to 
enhance the ability of ECM for factoring more large integers near the order dp of the group Ep, 
elliptic curve E modulo p. 

Our algorithms not only unify trial division, Fermat's method, Pollard's p-\ method, and 
Williams' p +1 method, but also can quickly factor a class of large integers, which could not be 
factored by other available methods (such as QS or NFS) within a reasonable amount of time. 
Thus, such integers should be excluded from RS A moduli candidates. 
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1. INTRODUCTION 

The Idea for this article was given by a problem in real analysis. We wanted to determine the 
one-dimensional Lebesgue-measure of the set fl(C)9 where C stands for the classical triadic 
Cantor set and/is the Cantor-function, which is also known as "devil's staircase." We could see 
immediately that to determine the above measure we needed to know which dyadic rationals were 
contained in C. We soon found that the solution is well known; namely, there are only two such 
fractions: \ and j . This inspired a question: Are there any other primes such that only finitely 
many fractions are contained in the classical triadic Cantor set, where the denominator is a power 
of/?? The aim of this paper is to verify the surprising result: every p&3 prime fulfills the condi-
tion. Charles R. Wall showed in [2] that the Cantor set contains only 14 terminating decimals. 
His article gave very important information regarding the proof. We may ask if the quality of 
containing "very few" rational numbers and that of having zero Lebesgue measure are in close 
connection for a Cantor set. The answer seems to be "yes" at first sight, but in [1] Duane Boes, 
Richard Darst, and Paul Erdos showed a symmetric Cantor set family which, for each X e [0,1], 
has a member of Lebesgue measure 1-A, but the sets of the family typically do not contain "any" 
rational numbers. 

2. DEFINITIONS, NOTATIONS, AND LEMMAS 

Definition 1: Let n be a positive integer and m a positive integer relatively prime to n. The order 
of n modulo m is the smallest positive exponent g such that ng = 1 (mod m). 

Notation 1: Since our proofs require only the case n = 3, for the reason of simplicity we omit n 
and denote the order of 3 modulo m by ord{m). 

Lemma 1: If/ and m are relatively prime to 3 and / divides m, then ord(/) divides ord(m). 

Proof: This follows immediately from the definition of the order. D 

Lemma 2: Let p > 3 be prime and ord(p) = d. If ord{pb) = d for an integer 4, then ovd(pb+l) 
either equals d, orp divides ord(pb+l). 

Proof: (We denote a divides b in the usual way by a\b and denote a does not divide b by 
a\b.) We observe that d\p-\. It is enough to verify that if p%ord(pb+l) then ord(pb+l) = d. 

It is well known that if m is relatively prime to 3 then ord(m) divides $(m)9 where (j> is 
Euler's function; hence, ord(pb+l)\0(pb+l) = (p-l)'pb and, furthermore, ord(pb+l)\p-l, since 
plord(pb+l). 

From Lemma 1, it follows that d\ord(pb+l); hence, there exists a positive integer t such that 
ordCp6*1) = </•/. 
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Now, 3d = 1 (mod pb) gives 3d'p = 1 (mod pb+l\ which Implies that d-t\d-p. But, since 
d-t divides both p-l mdd-p/it also divides their greatest common divisor d. Therefore t = 1, 
which completes the proof. D 

Lemma 3: Let p > 3 be a prime. If ord(p) = d, then there exists a unique positive integer n, for 
which otd(pk) = d whenever 1 < k < n and ord(pn+t) = d-pf whenever t is a positive integer. 

Proof: By Lemma 1 and Lemma 2, there exists a maximal exponent n such that ord(p") = d. 
We use mathematical induction on t. 

Let f = 1. We show that ord(pn+l) = d-p. 
From 3d = 1 (mod pn\ it follows that 3d'p = 1 (mod pn+l); hence, ord(>n+1)| £?•/?. On the 

other hand, using the first two lemmas, d\ord(pn+l) and p\ord(pn+l); therefore, J-^lord^""*"1). 
Next, supposing ord(pn+t) = d-p\wQ prove that ord(pn+t+l)\d-pt+l for any positive integer t. 

1. Let y denote 3d'p\ Then 

3d-pt+l-l = (3d'pt)p--l = yp-l = A'B, (1) 
where A = y-1 and B = yp~l +yp~2 + • • • + y +1. From y = 1 (mod /?*")> it follows that pn+t \A 
and p\B, since j = 1 (mod/?). Thus, 3^ / + 1 = 1 (mod pn+1+l), which implies ord(pn+t+l)\d-pt+l 

2. Next, we prove d-pt+l\ord(pn+t+l). First, rf-^|ordOw+/+1) and ord(^ ' + 1 ) | t f -y + 1 by 
Lemma 1 and the previous result. So ord(pn+t+l) can only be d-p* or d-pt+l. 

We now show that d • pt is impossible, that is, pw+f+1 j3J'^' - 1 . Let z denote 3d'pt~l. Then 

3d.P> _ j = (3^-i)P _ j = ZP _ j = ^ . B ^ (2) 

where ^ = z-1 and J?* = zp~l + zp~2 + • • • + z4-1. From the condition ord(pn+t) = d-pt follows 
/?w+/1 ̂ , so it Is enough to show that p2 \B+. To obtain this, we write B+- p as a product: 

B.-p = (zp~l-1) + (zp~2 -1) + (zp~3-1) +-... + (z-1) 
= (z-l)'(z/?-2+2-z/?-3 + . --+(p-2) .z + (>-a)). ~ 

We have z = \ (mod/?) and thus z^~2+2-z^~2 + —+(/?-2)-z + (/?-l) = (1 + 2 + --- +p-l) (mod 
/?). Since l + 2 + ~-+p-l = p--^ and - ^ is an integer, we obtain 

/?|z^2+2-z/7-2 + ---+(^-2).z + ( jp-l). (3) 

On the other hand, we have p\z-l; hence, p2 \B* - p. Then p2 cannot divide B*. • 

Notation 2: Given a positive Integer L relatively prime to 3, let 
N(L) = {K:l<K<L-l and (£,L) = 1}. (4) 

Remark 1: Observe that N(L) consists of all the possible numerators of simplified fractions in 
[0,1] with denominator L. It is also clear that N(L) has exactly </>{L) many elements. Recall 
from Charles Wall's article [2] that N(L) decomposes Into -~^ equivalence classes, each of 
which has ord(Z) many elements. These can be written In the form 

lk(L)] = {k,k-3>...,k-3ord(L)-1 : modZ}, (5) 
where k is an element of N(L). 
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Definition 2: We call the [k(L)] equivalence classes briefly the classes of N(L). 

Remark 2: In addition, we recall that, for each k e N(L)> either all the elements of a [k(L)] 
class, or none of them, are numerators of fractions in the Cantor set, so it is enough to find a 
k' G [k(L)] such that ^ £ C, that is, -j- was eliminated during the construction of the Cantor set. 
This guarantees that all the elements of [k(L)] are numerators of eliminated fractions. 

Definition 3: We call the class [k(L)] "eliminated" if there exists a k' e [k(L)] such that -^ <£ C. 

Remark 3: Now, let n be the positive integer determined in Lemma 3. Then N{pn) has 

or&(pn) d 

classes and, for each positive integer t, the set N{pnJtt) has 

0(Pn+t) = (P ~ 1) • Pn+t~l
 = (P -1) • Pn~l 

ord(pn+t) d-pf d 
classes. 

3. THE MAM RESULTS 

Theorem 1: Let p > 3 be a prime such that 3 is a primitive root modulo p2. Then there are no 
fractions f e C (where a and b are relatively prime numbers) such that h is a power of p. 

Proof: First, ord(/?2) = p-(p-l) immediately implies ord(p) = p -1. Thus, Lemma 3 with 
d = p -1 gives n = 1, so ord(pi+l) = (p-l)pt for each positive integer t. Then ^{p1) = ord(/?r), 
so JV(pf) consists of one class, for example, N(pt) = [l(pt)]. Therefore, N(pl) has (p-l)-p{~1 

elements and, for each prime p > 3 and positive integer t, 

(p-\yP^>2 3 
(6) 

(where [-£-] denotes the integer part of the real number —-). Thus, there exists an i e [!(/?')] s u ch 
that \ < -V < §, hence, #(/?') is eliminated. D 

Next, we show that if n is the largest integer for which ord(/?) = ord(/?w) then w is also the 
largest exponent such that the rfr power of/? can be the denominator of a fraction in C. 

Theorem 2: For each prime p > 3, there are finitely many fractions f e C such that 6 is a power 
Of/7. 

Proof: Let A: e N(pn+t) for any positive integer *. We show that [&(/?w+0] is eliminated. 
Suppose 

[*(/>-<- 1)]=fe...,Xcnl(p—>}. (7) 

Then 

[ ^ ^ ) ] = { ^ + J - J P w + / - 1 : / ^ . . . o r d O ^ ' - 1 ) , 7 = 0,1,... ,/?-!}. (8) 
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This can be seen easily concerning the following. For each number of the form k-3y, there exists 
a 1 < i < ordOw+/_1) such that # • y = xf (mod pn+t~l). Hence, there is a y e {0,1,...,/?-1} such 
that k-y = xf + j - / j * " - 1 (mod />»«). This implies 

[k(p^)]^{xi +j-p"+t-1 : / = 1,...,ordQ?*"-1), y -0 ,1 , . . . ,p-1}. (9) 

On the other hand, the two sets have the same number of elements, so they are equal. 
What does this mean? 

Take any element xi of[k(pn+t~1)] and observe the situation of the fractions 

x, x,+pn+t-1 x,+2«i?w+f-1 x ,+(i?- l ) .o"+ M 

pn+t pn+t pn+t pn+t V ' 

in the interval [0,1]. Writing them, respectively, in the form 

*—< ~ + —< f— + — <•••< ~ + - , (11) 
pn+t pn+t p pn+t p pn+t p > V > 

we can see that the difference of each neighboring fraction is j and, as p> 3, there must be at 
least one of them in the middle open third of [0,1]. Therefore, [k(pn+t)] is eliminated. D 
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1. INTRODUCTION 

A Diophantine triplet is a set of three positive integers (a,h,c) such that a<b <c and 
ah - 1, hc +1, and ac +1 are integer squares. Examples of such triplets are (1,3,8), (2,4,12), 
and (2990,22428,41796). 

The following four families of Diophantine triplets are well known: 
^i = mn,F2n+2,F2n+4):n>l}y 
F2 = {{Fin, ^W5F2 n ¥ 2) :/?>!}, 
^{{P2n,2P2n,P2n+2yn>l}, 
^2 = {(P2n,P2r1+2,2P2n+2):n>l}. 

We refer readers to [2], [3], and [4] for these families. Here, Fk and Pk denote the kth element of 
the Fibonacci sequence and the Pell sequence, respectively. In [1], the first author posed the 
problem of finding infinitely many such Diophantine triplets. 

The aim of this paper is to construct several different infinite families of Diophantine triplets 
using elements of the Pell sequence. We then formulate and prove a general result which gives 
formulas for a doubly infinite family of Diophantine triples. We conclude with a result on Dio-
phantine quadruplets. 

2. THE PELL SEQUENCE 

Although the Pell sequence is quite well known, we describe it here for the sake of complete-
ness. The Pell sequence is the sequence {Pn}, where Px = l, P2 = 2, and Pn+2 =2Pn+l + Pn for 
n > 1. That is, the Pell sequence is the sequence {1,2,5,12,29, 70,169,408,...}. (We note that 
this is the sequence of denominators for the successive convergents to the continued fraction 
expansion of 42 .) The following two properties of the Pell sequence are used in this paper: 

Property 1: Pn is even if n is even. 

Property 2: For all n > 1, 2P2\ +1 = (3P2""/2"-2)2. 

3. SOME FAMILIES OF DIOPHANTINE TRIPLETS 

For convenience, we shall use the following notation. FP(k) denotes the kth family obtained 
by using the Pell sequence. The /1th element of FP(k) is a triple denoted by Tn(k), whose ele-
ments in turn are denoted by An^k, B^k, and C„tk. That is, 

FP(k) = {Tn(k):n = l,2,...l and r„(*) = (4lfik,5llfjt,CJIfife). 
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Theorem 1: Let ^ , = %•, B„,, = 4P2„, and C„_l = fP2n-P2n_2. Then 

FP(l) = {Tn(l):n = l,2,...} = {(An!l,B„A,Cn,i):n = l,2,...} 

Is a family of DIophantine triplets. 

Proof: For each n > 1, using the definition of the Pell sequence and Property 2 leads to the 
equations 

4 , ^ + 1 = 2 /*+1 = 1 ^ ^ ^ * * 

P2n=2_)2_2p2 

A,,lC„\ + \- "I -2"^2„-^2„-2 1+1 

= 4P2 - 2P„?,„_, + i*a=L = ( 2 R - ^=1 l2n ^I2n12n-2^' A -\^I2n 4 { In 2 

2n 

2 

and 

Jn,Y^n,l 2n\ n 2n 2n~2 
15 

& I C H , + 1 = 4 P J T ^ - ^ +1 

- ^ f ^ - ^ l + P^/2-2! -2/& 
^21 p2 __ j j - p p , p2 

A r2n 2 2n 2n~2 2n-2 

11 P *2n-2 
2 2n 2 

By Property 1, since P2n and P2n_2 are even, each of the above squared expressions is an integer 
square, and the result follows. 

We list a few elements of FP(l): 
n Triple 
1 Ti(l) = (l,8,15) 
2 5(1) = (6,48,88) 
3 ^(l) = (35,280,513) 
4 T4(l) = (204,1632,2990) 

Theorem 2: Let ATJf2=2P2n, Bna = l5P2n-2P2n_2, and Cllf2 = 28P2lI-3P2n.2. Then FP(2) = 
(5(2) : w = 1,2,...} = {(4,^2, B„t2, Cna) : w = 1,2,...} is a family of Diophantine triplets. 

Proof: Noting that 4i,2^»,2 = 4 , iQ,b w e s e e ^rom Theorem 1 that 

4,.2^,,2 + l = ( y ^ . -
p \2 
/ 2n-2 
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Using algebraic techniques similar to those used in the proof of Theorem 1, we also obtain 

4,,2Q,2 + l = ( y ^ - ^ - 2 ) 2 and 5„J2C„;2 + 1 = ^ P 2 „ - | P 2 „ _ 2 J . 

Again, since the subscripts are even, these squares are integer squares, and the result follows. 

A few triples in the family FP(2) are listed here: 

n Triple 
1 T,(2)=(4,.30,56) 
2 r2(2) = (24,176,330) 
3 7;(2) = (140,1026,1924) 
4 T4(2) = (816,5980,11214) 

Theorem 3: Let 4 , > 3 = f P2n-P2n_2, B„,3 = 56P2n-6P2n_2, and C„>3 = f P2n-\2P2n_2. Then 
FP(3) = {T„(3) : n = 1,2,...} = {(4, 3, B„ 3, Q 3 ) : « = 1,2,...} is a family of Diophantine triplets. 

Proof: Noting that A„ 3B„3 = B„2C„2, we see from Theorem 2 that 

Using algebraic techniques similar to those used in the proof of Theorem 1, we also obtain 

A>3Q,3 + 1 = (28P2„-|P2„_2J and 5nj3C„;3 + l = ̂ P 2 „ - ^ P 2 „ _ 2 J . 

As before, since the subscripts are even, these squares are integer squares, and the result follows. 

Here are a few triples in the family FP(3): 

n Triple 
1 ^(3) = (15,112,209) 
2 ^(3) = (88, 660,1230) 
3 T3(3) = (513,3848,7171) 
4 T4(3) = (2990,22428,41796) 

4. A DOUBLY INFINITE FAMILY OF DIOPHANTINE TRIPLETS 

It is apparent from the previous section that the families FP(l), FP(2), and FP(3) fit into an 
infinite family of such families. In this section we will derive formulas for such a double infinite 
family. 

First, we define the auxiliary sequences {Gn : n > 1}, {Hn : n > 1}, and {Sn:n> 1} by 

G1 = 1,G2=4, mdGn+2 = 4Gn+l-Gn forn>\; 
Hx = H2 = 09 mdHn+2 = 4Hn+l-Hn-2(-iy forn>l; 
S,=4,S2 = 14, andSw+2 = 4 ^ - ^ forn> 1. 
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Thus, (G„) = (1,4,15,56,209,780,2911,...), (H„) = (0, 0,2, 6,24,88, 330,1230,...), and (Sn) = 
(4,14,52,194,724,....). 

Our main result is the following. 

Theorem 4: Let n and k be positive integers, and let 

E(n,k)=GkP2n~HkP2"-2. 

Then (E(n, k\ 2E{nJ k +1), E(n, k + 2)) is a Diophantine triplet. 

If we now define FP(k) = {(E(n, k\ 2E(n, k +1), E{n, k + 2)) : n = 1,2,...}, then the cases 
k = 1,2, and 3 agree with our previous definitions. Hence, this is the doubly infinite family we 
seek. 

Proof of Theorem 4 uses the properties of the Gn, Hn, and S„ contained in Propositions G, 
H, and S; their proofs use only induction and some tedious but straightforward algebra. 

Define the algebraic integers y and 8 by y - 2 + V3 and 8 = 2 - V3 . 

Proposition G: For n a positive integer: 
yn -8n 

(2) G
n+2Gr, + l = Gn+l> 

(3) 2G„G„+1 + 1 = (G„+1-G„)2, 
(4) G„+3+G„ = 3(G„+1 + G„+2). 

Proposition H: For « a positive integer: 

(3) H„ + H„+1 = 2G„_l, 
(4) Hn+3 + H„=3(Hn+l+Hn+2). 

Proposition S: For n a positive integer: 
(1) Sn = y"+S", 
(2) S„ + (-1)" is divisible by 3, 
(3) Sn+3 + Sn = 3(Sn+l + 

Remark: The reader will note that (G„) and (£„) are related in the same way as the Fibonacci 
and Lucas sequences are related. 

The following lemmas are quite useful in deriving the main result. We give the proof of 
Lemma 1 here; proofs of Lemmas 2 and 3 are similar but longer, and we have relegated them to 
the appendix. 

"~S
 3 1 . 
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Lemma 2: For every positive integer #i, GnHn+2 + Gn+2Hn + 6 = 2Gn+l(Hn+l + (-1)'2+1). 

Lemma 3: For every positive integer n, GnHn+l + Gn+lHn + 3 = \ (Gn+l - Gn) (Sn_l + (-l)n+l). 

Proof of Lemma 1: Using Proposition H(l), we see that 

6 2 ) 

=^((i+V3)V2"-3+(V3-i)2<52"-3-2(r+^))-|+i 

-^((V3+i)rn-2(r-i)-(V3-i)<5"-2(^-i))(-ir2, 

since y£= 1. Now we know that ^ - 1 = 73+1, £ - l = l - V 3 , j / + £ = 4, (1 + V3)2 = 2^, and 
(V3-1)2 = 2J. Hence, 

» n+i 9 9 9 9 9 

= (r"+1 + <?"+1)2-2 6 n 2(-l)"'1(^"-1 + ^"'1) 
9 

3 3 
y- i + < ^- i | ( _ i r - iV = p„_ 1 + ( - i ) -^ 2 

as claimed. 
We note that defining PQ = 0 is consistent with the Pell sequence recurrence and allows the 

proofs to go through in the case n - 1. 
Proof of the Main Result: For w, & positive integers, it suffices to show that 

E(n,k)E{n,k + 2) + \ and 2£(TI,&)£(«,* +1) +1 

are integer squares. The proof breaks into two parts: First, we expand E(n, k)E(n, k + 2) +1 and 
find that 

E(n, k)E(n, k + 2) +1 = 1 (G,P2w - HkP2n_2){Gk+2P2n - Hk,2P2n_2) +1 

= ~^{GkGk+2P2n + HA+2P2n-2 ~ P2nP2n-2iGkHk+2 + Gk+2^k)) + 1-

Now, by Property 2, 

2/& + 1 - ' - 2" ^2w-2 

i.e., 

1 _ ^2w • P2n-2 6 p p 
4 4 4

/ 2 W ^ 2 n - 2 -

Using Propositions G(2) and H(2), we find that in the expansion of E(n9 k)E(n9 k + 2) +1 the 
coefficients of P2n and P2n_2 are 
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% and fcHTl 
4 4 

respectively. By Lemma 2, we find that the coefficient of P2nP2n_2 is 

-1G Hk+i + (-lf+l 

Hence, 

E{n, k)E(n, k + 2) + 1 = \(Gk+lP2n - (HM + (-1)*+I)P2„_2)2, 

which—since the Pell sequence subscripts are even—is an integer square, as desired. Next, we 
expand E(n, k)E(n, k +1) +1 and find that 

E(n, k)E(n, k +1) +1 = \(2GkP2n - HkP2n_2)(Gk+1P2„ ~ HMP2n_2) +1 

= \&GkGk+xP2
2

n +2HkHk+lP2
2
n_2 - 2P2„P2n_2{GkHM + Gk+lHk)) +1. 

As before, recall that 
1 _ r2n t r2n-2 ° p p 
l~~ 4 + 4 4 ^2^21,-2-

Using Proposition G(3) and Lemma 1, we find that in the expansion of 2E(n, k)E(n, k +1) +1 the 
coefficients of P2n and P2n-2 are 

.«*+.-C*)' and l f ( ^ . + ( - r i V 

2 1 
2«-2 

4 4^ 3 
respectively. By Lemma 3, we find that the coefficient of P2nP2r}-2 'ls 

2(Gk+l-Gk)(Sk_1+(-lf-1) 
4 3 

Hence, 

2E(n,k)E{n,* +1) +1 = ±((Gk+l-Gk)P2n-S^+^ ' P2 

which—by Proposition S(2) and the fact that the Pell sequence subscripts are even—is an integer 
square, as desired. 

Diophantine Quadruples: Let us recall that a Diophantine quadruple is an ordered quadruple 
(a,b,c,d) of positive integers such that ab + ly ac + l9 atf + 1, bc + l,.bd + l, and of+ 1 are all 
integer squares. A recent result on Diophantine quadruples is the following (see [2]). 

Theorem 5: If (a, b, c) is a Diophantine triplet for which ab = 1 = x2, ac +1 = y2, be +1 = z2, and 
d=a+b+c+ 2abc + 2xyz, then (a, b, c, d) is a Diophantine quadruple. 

This result and our Theorem 4 produce an infinite family of Diophantine quadruples, namely, 
a = E(n,k), A = 2£(/i, * +1), 
c = E(n, k + 2\ d = a+b + c + 2abc + 2xyz, 

where 
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* = \{iGM -Gk)P2n - S" + <fl)k+l P2n_2) , 

y = \(GMp2n -(Hk+l+(-i)^)P2n_2y, 

For example, if we let n - 4 and k = 3, we obtain the Diophantine quadruple 
(2990,22428,41796,11211312362908); 

the six relevant squares are p2, q2, r2, s2, t2, and u2, where (p, q, r, s, t, u) is the sextuple 
(8189,11179,30617,183089661,501445225,684534886). 

APPENDIX 

In this appendix, we give proofs of Lemmas 2 and 3. 

Lemma 2: For every positive integer n, GnHn+2 + Gn+2Hn + 6 = 2Gn+l(Hn+l + (-l)w+1). 

Proof: Let us abbreviate GnHn+2+Gn+2Hn+6 by LHS. From Propositions G and H, we see 
that 

us*=?"-*" a+V3)r--(V3-i)^ (-ir2 

y-8 6 3 
Y n+2 _ Sn+2 Q + ^ y n - l _ ^ _ ggn-2 ^y-2 

+ y-8 6 3 + ' 
Using the facts that y8 = 1, (1 + V3)£4 + (V3 -1)^4 = 82V3, y -8 = iji, and a little algebra, we 
find that 

LHS = rt
 l fa(l + S)y2n + 2(V3 -\)82n -2V3 -8(- l )>"+ 1 + 8(-l)"<T+1 -82V3) + 6 

6(y -o)K ' 

-Gn+1(-1)"-1. = 2(1 + -J3)y2" + 2(V3 -1)82" 8 ( 

6fr-<5) 6( 

On the other hand, abbreviating 2G„+i(Hn+i + (-l)"+1) by RHS, we similarly see that 

RHS - 1 r _5 ((1+S)y"~x -(V3 - \ y r l -2(-l)"-1) + 2(- 1)"+1G„+1 

_2((l + V3)r
2"+(V3-l)^"-(l + ^ ) J 2 - (V3- l ) r

2 ) f4 o y 1X„+1(7 L(H<->" 6(y-5) 16 *7V v n+1' 

But 2((1 + V3)<52 + (V3 - \)y2) = 6(y - 8) = 12^3 and (-1)" = -(-1)"+1, so 

2(l + V3)r
2"H-2(V3-l)<?2" 8 , n „ r 

Hence, LHS = RHS and the lemma is proved. 

Lemma 3: For every positive integer n, GnHn+l + G„+lHn + 3 = ± (Gw+1 - G„) ( S ^ + (-l)w+1). 
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Proof: Let us abbreviate GnHn+l + Gn+lHn + 3 by LHS. Using Propositions G and H and the 
equalities cited in the proof of Lemma 2, we see that 

L H S = yn-sn (i+V3)r
w-1-(V3-i)^-1-2(-ir1 

y - 8 6 
Yn+l-8n+l {l + S)yn-2-{43-l)8n-2-2{-l)n-2

 | 3 
j / - J 6 

A little more algebra leads to the equation: 

LHS = —1—(2(1 + V3)r
2n~l + 2(V3 -1)^""1 - (V3 - l)4r

 2 

6 ( f - J ) v 

- (V3 +1)4^2 + 2(- i rXr" (y ~ 1) - Sn(S -1))) + 3. 

We use the facts that (73 -1)4^2 + (V3 +1)4£2 = 24^3 and 6(y -8) = 12^3 and arrive at 

LHS = r, 1
 cx (2(1 + V3>2n~l + 2(V3 - l ) ^ " 1 + 2(-l)w((l + V3)r" + (V3 -!)£")) +1. 

On the other hand, abbreviating j(Gw+1 - G J ( ^ _ j + (-l)"~l) by KHS, we similarly see by Propo-
sition S that 

RHS = „, ! ^(yn+l-8n+l-yn+8n)(yn-l+8n-l+(-l)n-1) 
3(y-8) 

= i r ^ ( ^ I ( 1 + ^ ) + < 5 2 , l " 1 ^ - 1 ) + ( 1 + ^ 
3(^-£) v 

+ (V3 -1)J + (-l)w"l(r"0 + V3) + <S"(V3 -1))). 
Since y - 1 = 1 +V3, 8-1 = -(V3 -1), and (1 + V3)r +(Vf -1)5 = 6^3, we find that 

p j i s = - ^ ( ( i + V 3 ) r
2 ^ 

3(y-8) 
Hence, LHS = RHS and this proves Lemma 3. 
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1. INTRODUCTION 

Let R{N) be the number of representations of the positive integer N as the sum of distinct 
Fibonacci numbers. # has a unique Zeckendorf representation [4], [3], in which no two consecu-
tive Fibonacci numbers appear in the sum. Several methods have been developed for determining 
R(N), many of which involve recursive formulas based on the number of representations of 
smaller integers [1]. In this paper we present an algorithm for determining R(N) solely from the 
subscripts of the Zeckendorf representation of N. Carlitz [2, p. 210] has given a similar algorithm 
that can be used in the special case in which the subscripts in the Zeckendorf representation have 
the same parity. 

2, STATEMENT OF THE ALGORITHM 

Algorithm for R(N): Write the Zeckendorf representation of N with the subscripts in descending 
order as follows: 

N = i > ( S , + w ) = F(St) + F(S,_l) + F(St_2) + -+F(SJ) + F(SJ_l) + -+F(S1), 
i=l 

where Sj > 5/_1 + 2 and Sx > 2, and F(k) = Fk. Define: 

2o = i; 
Tx - [Sx 12] (where [ ] is the greatest integer function). Let 
Tj - [(Sj -Sj_i + 2)/2]TJ_l if Sj and Sj_t are of opposite parity; 
Tj - [{Sj - Sj_{ + 2) /2] Tj_x - JT-_2 if Sj and Sj_x are of the same parity. 

Theni?(AT)=7;. 
Example 1: Find i?(63). The Zeckendorf representation of 63 = FlQ +F6. Thus: 

T0 = l (by definition); 
2J = [6/2] = 3; 
T2 = [(10-6 + 2)/2]2J- T0 = (3)(3)-1 = 8 = i?(63). 

Example 2: Find J? (824). The Zeckendorf representation of 824 = Fl5 + Fl2 + Fl0 + F7 + F3. Thus: 
T0 ~ 1 (by definition); 
3J = [3/2] = 1; 
5 = [ ( 7 - 3 + 2)/2]3;-r0 = (3)(l)-l = 2; 
5 = [ ( 1 0 - 7 + 2)/2]J2 = (2X2) = 4; 
^=[(12"10 + 2)/2]r3™r2 = (2)(4)-»2 = 6; 
T5 = [(15- 12 + 2)/2]J4 = (2)(6) = 12 = i?(824). 
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Remark; In the special case In which all Sf are even, the validity of the present algorithm follows 
easily from the algorithm of Carlitz [2, p. 210]. (Alternatively, the validity of the algorithm of 
Carlitz follows from the validity of the present algorithm.) Suppose that all St are even. We write 
St = 2kly £,_! = 2k2,..., 5i = 2kt, and js = ks - ks+l, s = 1?... 9t -1, jt = kt. Still following Carlitz, 
we define C0 = 1, Cx = jx +1, and Cs = (js +1)Cs_t ~ Cs_2, s = 2,..., t. Slightly modifying the last 
step, we define Q = 7rCr-1 - Q_2. Writing 

Ixj -1 0 ... 0 | 

I 0 0 0 .«» x t \ 

for the continuant, we have [2, p. 212] 

R(N) = Ct~Ct_l = Q 

= C(jtJt_l + lJt„2 + l...Jl + t)=Tt. 
For example, if N = Fl6 + Fs + F4 = 1011, then (/j +1, j2 +1, j3) = (5, 3,2) and the (modified) 

Carlitz algorithm gives: 
C0 = 1; 
C, = 5; 
C2 = (3)(5)-l = 14; 
Q = (2X14)-5 = 23 =/?(iV)-

Using the present algorithm, we obtain: 
r0 = i; 
3i=2; 
r2=(3)(2)-l = 5; 
ZJ = (5)(5)-2 = 23 = £ ( # ) . 

3. PROOF OF THE ALGORITHM 

Lemma: Following the steps of the algorithm set forth in Section 2, if N - Fm -1 {m > 3), then 
r0 = 7j = ... = 7; = i. 

Proof: This follows immediately from the formulas [3] 
F3 + F5 + -+F2 / f_1 = F 2 n - l (w>2) and F2+F4 + - + F 2 n = F2n+1-l («>1). 

Theorem: Following the steps of the algorithm set forth in Section 2, R(N) = Tt. 

Proof: We use induction on t, the number of terms in the Zeckendorf representation of N. 
(Note that, if t > 1, then the Zeckendorf representation of N - F(St) is clearly F(St_x) + F(St_2) + 
..-+F(SJ) + F(SJ_l) + - + F(Sl).) 
L The cases / = 1 and t = 2 follow immediately from the formula [1, p. 53] R(Fn) = [n/2] and 
from [1, Theorem 7, p. 58], respectively. 
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2. We suppose now that t > 3 and that the theorem is valid for t -1 and f - 2. Let St=m and 
St_x = n, so that m-n>2 and n>4. We write 

^ ' = A T - F ( 5 / ) = F(5'/_1) + F ( 5 ( _ 2 ) H - . . + F ( 5 / ) + F ( 5 / _ 1 ) + - + F ( 1 S ' 1 ) . 

Then we have Fn<N'< Fn+l - 1 . 
a) If Fn <N'< Fn+l-2, we use [1, Corollary 3.1, p. 53]. 

a-1) Suppose that m-n is odd. Then 
R(n) = [(rn-n + l)/2]R(N') = [(m-n + 2)/2]Tt_l = Tt, 

using the induction hypothesis. 
a-2) Suppose that rn-n is even. Using [1, Theorem 2, p. 48] and the induction hypoth-

esis, we get 
R(N) = [(m-n + l)/2]R(N')+R(Fn+l-2-N') 

= [(m-n + 2)f 2]R(N') - (R(N') -R(F„+l -2- N')) 
= [(m-n + 2)/2]R(N,)-R(Nf-Fn) = [(m-n + 2)/2]Tt_1-Tt_2 = Tt. 

b) Suppose now that N'= Fn+l-l = Fn+Fn_2 + -- . By [1, Theorem 7, p. 58], we have 
R (N) - [(m - n +1) / 2]. On the other hand, using the Lemma, we have 

^ = ([(/if-7t + 2)/2])(l) = [(»i-/f + l)/2] 
if m—n is odd, while 

3? = ([(/if-w + 2)/2]Xl)-l = [(w-w + l)/2] 

if rn—n is even. So we have R(N) - Tt in this case also. This completes the proof. 
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1. INTRODUCTION 

For a positive integer a and w>2, define sn(a) to be the sum of the digits in the base n 
expansion of a. If sn is applied recursively, it clearly stabilizes at some value. Let S„(a) = s£(a) 
for all sufficiently large k. 

A Niven number [3] is a positive integer a that is divisible by $m(a). We define a riven num-
ber (short for recursive Niven number) to be a positive integer a that is divisible by Sl0(q). As in 
[2], these concepts are generalized to w-Miven numbers and w-riven numbers, using the functions 
sn and S„, respectively. 

In [1], Cooper and Kennedy proved that there does not exist a sequence of more than 20 
consecutive Niven numbers and that this bound is optimal. Wilson [4] determined the digit sum 
of the smallest number initiating a maximal Niven number sequence. The author [2] proved that, 
for each n>2, there does not exist a sequence of more than 2n consecutive w-Niven numbers and 
Wilson [5] proved that this bound is optimal. 

This paper presents general properties of w-riven numbers and examines the maximal possible 
lengths of sequences of consecutive w-riven numbers. We begin with a basic lemma character-
izing the value of Sn(a), which leads to many general facts about n-r'wm numbers. In Section 3 
we determine the maximal lengths of sequences of consecutive «-riven numbers. We construct 
examples of sequences of maximal length for each n including ones that are provably as small as 
possible in terms of the values of the numbers in them. 

2. BASIC PROPERTIES 

Lemma 1: Fix n > 2 and a > 0. Then Sn(a) is the unique integer such that 0 < Sn(a) < n and 
Sn(a) = a (mod w-1). 

Proof: Let a-YJ^^ap1. Then ^(^) = E[=0^/- Since n=\ (mod n-1) , sn(a) = a (mod 
Ti-1). Hence, for all k, s^(a) = a (mod w-1), and so Sn(a) = a (mod w-1). From this, the 
lemma easily follows. 

Corollary 2: Every positive integer is 2-riven. 
Proof: It follows from Lemma 1 that, for every a, S2(a) = 1. 

Corollary 3: Every positive integer is 3-riven. 
Proof: It follows from Lemma 1 that, for every a, S3(a) = a (mod 2). So S3(a) = 1 if a is 

odd and S3(a) = 2 if a is even. Clearly, in either case, a is divisible by S3(a). 

Corollary 4: For each n > 2, if a is divisible by n -1, then a is an w-riven number. 

* The author wishes to acknowledge the support of the Science Scholars Fellowship Program at the Bunting 
Institute of Radcliffe College. 
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Proof: If a is divisible by n ~ 1, then by Lemma 1, Sn(a) = n-l. So a is an w-riven number. 

Corollary 5: For each n > 2, there are infinitely many w-riven numbers. 

3. CONSECUTIVE n-RIVEN NUMBERS 
We now examine sequences of consecutive /i-riven numbers. In light of Corollaries 2 and 3, 

WQJIX a positive integer n>4. 

Lemma 6: Let a < b be numbers in a sequence of consecutive /i-riven numbers. If a = b (mod 
n-l),thenSn(a)\(n-l). 

Proof: Since a < 6 and a = b (mod /?-!), n-l< b-a. Therefore, a+n-l<b and so 
a + n -1 is also in the sequence of w-riven numbers. Hence, Sn(a) \ a and Sn(a+n -1) | (a+w -1). 
By Lemma 1, Sn (a + n -1) = Sn(a). Therefore, £„(a) | (a + n -1) and so Sn (a) \(n-l). 

Corollary 7: At most one number in a sequence of consecutive /2-riven numbers is congruent to 
-1 modulo n-l. 

Proof: Let a < b be numbers in a sequence of consecutive driven numbers with a = b = -1 
(mod fi-1). By Lemma 6, £w(a)\(n-l). But this means that («-2)|(w-1), which is impossible 
for n > 4. Thus, by contradiction, no such distinct a and b can exist. 

Corollary 8: There does not exist an infinitely long sequence of ̂ -riven numbers. Equivalently, 
there are infinitely many numbers which are not w-riven. 

Fix mn = min{& e rL+\k\{n-1)}. In Theorem 9, we prove that there do not exist more than 
n + mn-\ consecutive w-riven numbers. In Theorem 10, we prove that this bound is the best 
possible. Further, we find the smallest number initiating an w-riven number sequence of maximal 
length. 

In Table 1 we present the maximal lengths of sequences of consecutive «-riven numbers for 
various values of w, along with the maximal sequences of minimal values. 

TABLE 1. Maxima! Sequences for 4 < n < 10 

n 
4 
5 
6 
7 
8 
9 
10 

Length 

5 
7 
7 
10 
9 
11 
11 

Minimal Sequence of Maximal Length 

6,7,8,9,10 
12,13,14,15,16,17,18 
60,61,62,63,64,65,66 
60,61,62,63,64,65,66,67,68,69 
420,421,422,423,424,425,426,427,428 
840,841,842,843,844,845,846,847,848,849,850 
2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530 

Theorem 9: A sequence of consecutive w-riven numbers consists of at most n+mn-l numbers. 
Further, any such sequence of maximal length must start with a number congruent to zero modulo 
n-l. 

Proof: Let a, a + l, a + 2, ..., a + n + mn-2 be a sequence of consecutive «-rivee numbers 
and suppose S„(a) = k*n-l. 
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CaseL \<k<n-mn. Modulo TI-1, we have a = a+n-l = k, a + l = a + n = k + \ ..., 
a+mn -1 = a + n + mn-2 = k + mri -1. Since each of these Is an w-riven number and k +mn -1 < 
n -1, we can apply Lemma 6 to get that each ofk,k + \...,k+mn-\ divides n -1. There are mn 

consecutive numbers in this list. Therefore, mn divides one of them, and thus mn divides n-\. 
But this contradicts the definition of mn. 

Case 2. n-mn<k <n-l. Since i + l < « - l , a + ( /?- l)-(* + l) is in the sequence, and 
since 2n- k -3 <n+mn-2, a + 2(n-l)-(k + l) is in the sequence. But each of these in con-
gruent to -1 modulo n-1, so we have a contradiction to Corollary 7. 

Therefore, Sn(a) = n-l. 

Now, suppose that a+n+mn -1 is also w-riven. Then a+mn and a+m„ + (n-l) are both in 
the sequence. So, S„(a+mn) = ̂  divides w - 1 , by Lemma 6, contradicting the definition of mn. 

We now construct an infinite family of sequences of w-riven numbers that are of length 
n + mn-\, thus proving that the bound in Theorem 9 is optimal. One of these sequences, we will 
prove, is minimal in that there exist no smaller numbers forming an w-riven number sequence of 
maximal length. 

Theorem 10: Fix £ = lcm(l, 2,3,...,«-1) and let a be any integral multiple of £ . Then a, a +1, 
a + 2,...,a+n + m„-2 is a sequence of consecutive w-riven numbers of maximal length. Further, 
£ is minimal such that £, £ + \ £ + 2,..., £+n + mn -2 is a sequence of consecutive w-riven num-
bers of maximal length. 

Proof: We first show that each of these numbers is w-riven. Since (n -1) | a, it is w-riven, by 
Corollary 4. For 1 < / < n-1, S„(a + t) = t, which divides a and therefore a +1 Thus, a + / is w-
riven. Finally, for l<t<mn-l9 S„(a + n-l + t) = t which, as above, divides a + t. Further, by 
definition of mn, /divides n-\. Hence, t\(a + n-\ + i) and soa+w-1 + f is an w-riven number. 

It remains to show that £ is the smallest number initiating a maximal sequence of consecutive 
w-riven numbers. Let a,a + l,a + 2,...,a+n + mn-2 be such a sequence. Then, by Theorem 9, 
a = 0 (mod n-1) and so Sn(a) = n-l. For all 1 <t <n-1, a +1 is an w-riven number, implying 
that 11 (a 4- f) and so f \a. Thus, lcm(l, 2,3,..., n -1) \a. The result now follows trivially. 
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1. INTRODUCTION 

The problem of determining the set of integer solutions of a polynomial equation, over Z, 
occurs frequently throughout much of the theory of numbers. Typically, the most common form 
of these problems involves quadratic functions in several variables, such as those dealing with the 
polygonal representation of the integers. The n^ polygonal number of order k is defined as the 
«* partial sum of a sequence of integers in arithmetic progression, having a first term of one and a 
common difference of k - 2, and so is given by j[(k - 2)n2 -{k- 4)ri\. One of the earliest results 
in connection with representing the positive integers as sums of polygonal numbers was due to 
Gauss, who proved that every positive integer could be expressed as a sum of three triangular 
numbers. Despite these classical origins, many difficult and interesting problems dealing with 
polygonal representations of the integers are still unresolved at present (see [1]). In this paper we 
shall continue with the theme of polygonal representation but in a slightly different direction by 
examining the following problem involving the differences of triangular numbers denoted here by 
T(x) = ±x(x + l). 

Problem: Given any M e Z \{0}, for what values x, y GN is it possible that M = T(x)- T(y) 
such that \x-y\ > 1, and how many such representations can be found? 

The fact that a number can be represented as a difference of triangular number is not at all 
surprising since, by definition, M = T(M)-T(M-l); hence, the restriction | X - J | > 1 in the 
problem statement. To establish the existence or otherwise of a representation for M, we will see 
that the problem can be reduced to solving the diophantine equation X1 - Y2 - %M in odd 
integers. Although this equation is solvable for all M G Z \ { 0 } , there is a subset of Z\{0}, 
namely, {±2m : m e N}, for which the consecutive triangular number difference is the only possible 
representation. Apart from the set mentioned, all other M G Z \ { 0 } will have a nonconsecutive 
triangular representation and, moreover, the exact number will be shown to equal D - 1 , where D 
is the number of odd divisors of M, which will require a combinatorial type argument to establish. 
We note that a somewhat similar problem to the one above was studied in [3] where, for a given 
s eN, it was asked for what r e N\{0} could T(r + s)-T(s) be a triangular number. However, 
unlike our result, for every r E N \ { 0 } ? there corresponded an infinite number IWGN\{0} such 
that T(m) was expressible as a difference of triangular numbers indicated. In addition to the 
above, we shall provide an alternate proof of a result of E. Lucas dated around 1873, namely, that 
all triangular numbers greater than one can never be a perfect cube. This result, as we shall see, 
will follow as a corollary of the main representation theorem. 
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2. MAIN RESULT 

We begin In this section by introducing a preliminary definition and lemma which will be 
required later in developing a formula for the total number of nonconsecutive triangular number 
representations of the integers. 

Definition 21: For a given M e N \ { 0 } , a factorization M = ab with a,b e N\{0} is said to be 
nontrivial if a & 1, M. Two such factorizations, aj\ - a2b2 = M, are distinct if ax * a2, h2. 

The following result, which concerns counting the total number of distinct nontrivial factor-
izations ab = M, may be known, but it is included here for completeness. Note that in the sub-
sequent definition for d(M) we include both 1 and M when counting the total number of divisors 
ofM 

Lemma 2.1: Let M be an integer greater than unity and d(M) be the number of divisors of M. 
Then the total number N(M) of nontrivial distinct factorizations of Mis given by 

for nonsquare M, 

for square M. 

Proof: Suppose M = p^p™1 ° * ° P„n, then the total number of divisors of M is 

d(M) = (l + ml)(l + m2)'"(l + mrl). 

Clearly, if d\M, then (M/d)\M; thus, the required factorization ab = M will be given by 
(a, b) = (d9 Mid) provided d*\9 M. Excluding d = 1 and d = M9 we have d(M) - 2 divisors 
di of M such that 1 < 4 <M for I = 1,2, ...,(d(A4)-2). Arrange these divisors in ascending 
order and consider the set of ordered pairs 

/ - {(4, M / 4 ) : i = 1,2,..., (d(M)-2)}. 

If Mis not a perfect square, then 2\d(M) and so there will be an even number of elements in 
I. Consider for each / - 1,2,..., (d(M)-2)/2 the subset /, = {(4, M / 4 ) , (M/di94)} and note 
that It r\Ij = 0 for / ^ j together with 

(d(M)-2)/2 

i = U /, 
As both ordered pairs in each particular If correspond to the same nontrivial factorization of M, 
which must be distinct from that in Ij for i*j9 one can conclude that N(M) = (d(M)-2)/2. 
Suppose now that M is a square, then d(M) will be odd, and so / contains an odd number of 
elements. Furthermore, there must exist a unique j e{l, 2,..., (d(M)-2)} such that dj = Mldj9 

from which it is clear that Ij = {(dj9 dj)}. Considering now the set / ' = I\Ij which contains only 
d(M) - 3 elements, one again has 

(d(M)-3)/2 

/'= U ',. 
from which we can count (d(M)~3)/2 nontrivial distinct factorizations of Mtogether with the 
one from Ij to obtain N(M) = 1 + (d(M) -3)12 = (d(M) -1) / 2. • 

N(M) = 
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Using Lemma 2.1, we can now establish the required representation theorem. 

Theorem 2.1: Let M e Z \ {0}, then the number of distinct representations of M as a difference 
of nonconsecutive triangular numbers is given by NA(Ad) = D-1, where D is the number of odd 
divisors of M. 

Proof: Without loss of generality, we may assume that Mis a positive integer. Our aim here 
will be to determine whether there exists x , j eN\{0} such that M=T(x)-T(y). By 
completing the square, observe that the previous equation can be recast in the form 
8M' = X2 -Y2, where X = 2x + 1 and Y = 2y + l.. To analyze the solvability of this equation, 
suppose ab - 8M, where a, b e N\ {0} and consider the following system of simultaneous linear 
equations: 

X-Y = a 
X + Y = b K } 

whose general solution is given by 

(X Y) = ^a+b b~a 

Now, for there to exist a representation of M as a difference of nonconsecutive triangular 
numbers, one must be able to find factorizations ab = 8M for which the system (1) will yield a 
solution (X, Y) in odd integers. 

Remark 2.1: We note that it is sufficient to consider only (1), since if for a chosen factorization 
ab = 8M an odd solution pair (X, Y) is found, then the corresponding representation M= T(x)-
T(y) is also obtained if the right-hand side of (1) is interchanged. Indeed, one finds upon solving 

X'-Y' = b 
X' + Y' = a 

where Xf = 2x' + 1,7' = 2 / +1 that 

j r = £±* and F = ̂ ± = -Y. 
2 2 

Thus, x' = x whiley = ( - 7 - l ) / 2 = - < y- l , so 

T ^ = tZz3tA=T(y) and T(x')-T(y') = T(x)-T(y) = M. 

We deal with the existence or otherwise of those factorizations ab = %M which give rise to 
an odd solution pair (X, Y) of (1). It is clear from the general solution of (1) that, for X to be an 
odd positive integer a, b must be at least chosen so that a + b = 2(2^ -h 1) for some s e N \ {0}. As 
ab is even, this can only be achieved if a and b are also both even. Furthermore, such a choice of 
a and b will also ensure that Y = X-a is odd. With this reasoning in mind, it will be convenient 
to consider the following cases separately. 

Cascl. M = 2n, « E N \ { 0 } . 

In this instance, consider $M = 2W+3 = ab, where (a, b) = (2\ 2n+3~~f) for i = 0,1,..., n + 3 with 
a + b = 2(21"1 + 2w+2"/) = 2(2s +1) only when / = 1, n + 2. However, since both factorizations are 
equivalent, we need only investigate the solution of (1) when (a, b) = (2,2W+2). Thus, one finds 
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that (X, J > ( 1 + 2W+1
32W+1-1) and so (x,y) = (2n,2n-l). Hence, there exists only the trivial 

representation M = T(M) - T(M-1). 

Case 2. M*2n. 
Clearly, M=2m(2n +1) for an n eN\{0} and/ueN. However, as there are more available 

factorizations of 8M, due to the presence of the term 2w + l, it will be necessary to consider the 
following subcases based on the possible factorizations cd = 2n +1. 

Subcase 1. (c, d) = (1,2n +1) . 
Here consider 8M = 2m+3(2n +1) = ab, where (a, b) = (2\ 2m+3~j(2n +1)) for / = 0,1,..., m + 3 

with a + * = 2(2/-1+2w+2-J'(2« + l)) = 2(2s + l) only when i = \m + 2. Solving (1) with (a, 4) = 
(2,2w+2(2/i + l)), one finds that (x,y)-(2m(2n + l\2m{2n + l)-l), which corresponds to a con-
secutive triangular number difference of A/, while for (a9b) = (2w+2,2(2« + l)) we have (x, j/) = 
(2OT+w,/i-2w)and so 

M=T(2m+n)-T(y'), (2) 

where y' = 2m - n -1 if y < 0 and y' = y otherwise. In either situation, one has | x - y'\ > 1, giving 
a nonconsecutive triangular number representation of M. 

Subcase 2e (c,d),c*l,2n + l. 
Here consider 8M = 2m+3cd = ab, where (a,b) = (2ic,2m+y~id) for / = 0,1,...,m + 2 with 

a + b = 2(2i~lc-i-2m+2-id) = 2(2s + l) when i = l,/w + 2. Solving (1) with (a,6) = (2c,2W+2J), one 
has (X, 7) = (c + 2*24"1 J, 2m+ld ~ c), from which it is immediate that 

and so 

(JC, j ) = [ ^-l + 2mdy 2md-^-

M^Tl ^ + 2md I- T(y')9 (3) 

where j / = - ^ - 2WJ - 1 if y < 0 and y' = y otherwise. Alternatively, when (a, b) = (2w+2c, 2d), 
one has (X, F) = (2w+1c -4- d, d - 2"* !c), from which we obtain 

(x,j)-[2-c + ̂ i,^i-2-c 

M= T\ 2mc + ̂ —- \-T(yr), (4) 
and again 

where y' = 2mc - ^ - 1 if y < 0 and y = j otherwise. In either of the representations in (3) and 
(4), it is again easily seen that |x-y'\ > 1. Consequently, for every distinct factorization cd-
2n + l with c * 1, (2w +1), we can expect at most two representations of M - 2m(2n +1) as a dif-
ference of two nonconsecutive triangular numbers. 

We now address the problem of finding the exact number NA(Af) of representations for an 
M in Case 2. Primarily, this will entail determining whether any duplication occurs between the 
various representations given in (2), (3), and (4). Recall that two factorizations af>t - aftj = %M 
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are said to be distinct if at & a., ft. for i*j. First, it will be necessary to show that any two dis-
tinct factorizations of 8M considered in Case 2 will always produce two different triangular repre-
sentations for M. To this end, we need to demonstrate that if in Z \ {0} afa = afy, with at ^ aj9 
hj for i ^ y, then one has af +£>. ^Qj + bJm Suppose to the contrary that at +bf =aj +bj9 then 
there must exist an r e Z \{0} such that a- =af+r and bt =bj+r. Substituting these equations 
into the equality atbt -app one finds a,.(ft. +r) = {at +r)ft.. Hence, r must be a nonzero integer 
solution of 

r(ai-hj) = 0. (5) 

However, this is impossible because r = 0 is the only possible solution of (5) since at - ft. =£ 0; a 
contradiction. Consequently, if for two distinct factorizations afy = o^- = 8M, one solves (1) to 
produce corresponding odd solution pairs (Xf, Yt) and (XJ? Yj), then we must have 

^ = (a,+6, . ) /2^(a7 +5,) /2 = X/. 

and so xt ^ xy-. Moreover, as xi9 Xj>0, we immediately see that T(xf) ^ T(Xj), hence 

7 ' (y / )=r (x i ) -M^7 ' (x 7 ) -M=r(y y ) . 

Thus, in order to calculate NA(M) for M = 2m(2n + l), one must determine the total number of 
distinct factorizations aft = 8M examined in Case 2. Recall that in Subcase 2 the only triangular 
representation of M was found by the factorization (a, ft) = (2W+2,2(2« +1)). Clearly, this cannot 
be repeated by the factorizations (a, ft) = (2c, 2m+2d) or (a, ft) = (2^+2c, 2J) in Subcase 2 since 
c^l, 2n + l. Now, if 2w +1 is not a perfect square, that is, c * d, then 2c ̂  2w+2c, 2J and so, by 
the above, each factorization cd = 2w +1 with c&l,2n + l will produce two unique representa-
tions of M as a difference of two nonconsecutive triangular numbers. Consequently, in this 
instance, by combining both subcases we see that NA(M) must be one more than twice the total 
number of nontrivial distinct factorizations cd = 2n + \. Thus, if one denotes by D the total num-
ber of divisors of 2w +1, then by Lemma 2.1, 

NA(M) = l + 2(^^) = D-l. 

However, if 2n +1 is a perfect square, then (2c, 2m+2d) and (2w+2c, 2d) will be equivalent factor-
izations when c = d. So by Lemma 2.1 only -f1-! of the factorizations in Subcase 2 will pro-
duce two distinct triangular representations of M. Hence, counting the remaining factorization 
(2c, 2m+2c) together with the one in Subcase 1, we find that 

NA(M) = 2(^-^~l\ + 2 = D-~l. 

To conclude, we note that the formula NA(M) = D-\ also holds for all integers 2W, where 
m = 0,1,..., since by Case 1, NA(2m) = 0 while, clearly, D~ 1 = 0 because 1 is the only odd divi-
sor of 2W. D 

Example 2.1: For a given integer M whose prime factorization is known, one can use equations 
(2), (3), and (4) to determine all of the D - l representations of Mas a difference of triangular 
numbers. To illustrate this, we shall calculate the representations in the case of a square and non-
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square number. Beginning with, say M = 22• 5• 72
? we have NA(9S0) = 5. So, if erf = 5 • 72 and 

m = 2, then apart from (c, d) = (1, 5- 72) each of the factorizations (c, d) e {(5, 72), (5-7, 7)} will 
produce two distinct representations via (3) and (4). The remaining representation can be calcu-
lated using (2), with n = (5 • 72 -1) / 2. Consequently, one obtains that 

980 = 7(126) - 7(1 18) = 7(198) - 7(193) 
- 7(45) - 7(10) = 7(143) - 7(136) = 7(44) - 7(4). 

If, on the other hand, M = (2 • 5 • 7)2, then; #A(4900) = 8. So again, for (c, d) = (1, (2 • 5 • 7)2) and 
m = 2, there corresponds one representation calculated via (2) with n = ((2 • 5 • 7)2 -1) / 2. Apart 
from (c, J ) = (5-7,5-7), all of the factorizations (c9d) e{(5,5-72),(52, 72),(52-7, 7)} will each 
produce two distinct representations via (3) and (4). However, for (c, d) - (5- 7,5* 7), the repre-
sentations given in (3) and (4) are identical as c = d. Thus, we obtain 

4900 = 7(616) - 7(608) = 7(982) - 7(977) = 7(142) - 7(102) = 7(208) - 7(183) 
= 7(124) - 7(75) = 7(115) - 7(59) = 7(703) - 7(696) = 7(157) - 7(122). 

We now use Theorem 2.1 to deduce that all triangular numbers greater than unity cannot be a 
perfect cube. To achieve this end, the following two technical lemmas will be required, the first of 
which gives a necessary and sufficient condition for a positive integer to be a triangular number. 

Lemma 2.2: An integer M greater than unity is triangular if and only if out of the D-1 distinct 
representations of M - T(x)-T(y'), with | x - j / | > 1, there exists one in which y - 0. 

Proof: Clearly, if M=T(x)-T(0) for some x e N , then M is triangular. Conversely, 
assume M is a triangular number. To show there exists a representation of the above form, with 
y - 0, it will be sufficient to find a factorization ah = 8A# such that the system of equations in (1) 
has a solution (X, 7) with 7 = 1. From the general solution 

this is equivalent to finding positive integers a, b which simultaneously satisfy b-a-2 and 
ab = SM. Solving for b in terms of a from the first equation and substituting the result into the 
second, one finds upon simplifying that 0 = a2 4-2a-8M. Hence, a = - l W l + 8M; however, 
this must be a positive integer since 1+ 8M is a perfect square greater than unity. Consequently, 
b = 2 + a is also a positive integer. • 

Lemma 2J: If c is an odd cube greater than unity, then neither (c + l) /2 nor ( c - l ) / 2 can be 
perfect cubes. 

Proof: To demonstrate the result, it is equivalent to show that the diophantine equations 
X3 - 2Y3 = 1 and X3 - 273 = -1 have no solutions (X, 7) with X > 1. By Theorem 5 of [2], we 
have that x3+dy3 = 1 (d>\) has at most one integer solution (x,y) with xy^O. Now, since 
(x, y) = (-1,1) is such a solution of x3 + 2y3 - 1, it can be the only one with xy * 0. Making the 
substitution X = x, 7 = -y, we deduce that (X, 7) = (-1, -1) is the only integer solution X3 -
2Y3 = 1 while, if we take X = -x, Y = y, then (X, 7) = (1,1) can be the only integer solution of 
X3 - 2Y3 = - 1 . Hence, in either case, no other integer solutions (X, 7) exists where X > 1. • 
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Combining the previous two lemmas, we can now prove the desired result, which is stated 
here in terms of the solvability of a diophantine equation. 

Corollary 2.1: The only solutions of the diophantine equation x(x +1) = 2y3 are given by (x, y) = 
(1,1), (-2,1), (-1,0), (0,0). 

Proof: Note that, as x(x + l) > 0 for all x e Z , one may assume, without loss of generality, 
that x and y are positive integers. We shall first establish that no integer solution (x, y) exists for 
x > 1. To this end, let M be a triangular number greater than unity and assume it is a perfect cube. 
In order to derive the necessary contradiction, we will show that all of the D-\ representations 
of M - T(x) - T(y') have y' ^ 0, which is in violation of Lemma 2.2. Now, since M = 2m(2n +1) 
for some « G N \ { 0 } and /MGN, 2m and 2w + l must be perfect cubes because (2m,2n + T) = 1. 
Considering the representation given in (2), suppose yf = 0, then either n-2m or n-2m-\. 
Taking n = 2m = 73 > 1, we then have 2n +1 = 273 +1 = X3 for some I G N \ { 0 } , which is impos-
sible by the argument used to establish Lemma 2.3. Similarly, if n = 2m - 1 , then 2n +1 = 2Y3 -1 = 
X3 for some X e N \ {0}, which again is impossible. Hence, for the representation in (2), y' ^ 0. 
Writing now M = 2mcd, where c * 1, 2w + l and setting y' = 0 in the representation given in (3), 
we must have either 2"W = ̂  or 2"W = £=i-. Multiplying both sides of these equations by c, one 
deduces M-T{c) or M = T(c-l). Now, since ( c , ^ ) ^ ! and (c,-e=i) = l,we conclude that 
either c and ̂  or c and ̂ ~ are a pair of perfect cubes; a contradiction by Lemma 2.3. Thus, for 
the representation in (3), yr ^ 0. By setting y' = 0 in the remaining representation given in (4), 
one can similarly arrive at the contradictory conclusion that either d and —^ or d and - ^ are a 
pair of perfect cubes. Thus, for the representation in (4), y' * 0. Consequently, via Lemma 2.2, 
M is not a triangular number; a contradiction. Therefore, M cannot be a perfect cube and so 
x(x + l) = 2y3 has no integer solutions (x,y) with x > l . The solutions indicated can now be 
found upon inspecting the solvability for the remaining integers x e [-2,1]. D 

Remark 2.2: The above argument could be applied in exactly the same manner to investigate the 
solvability of the diophantine equation x(x + l) = 2y" for n>4, provided one could ascertain for 
each such n the solvability of Xn - 27" = ±1 in integers (X, 7). 

In conclusion, we consider some further consequences of Theorem 2.1. The first of these 
gives a necessary and sufficient condition for a positive integer to be an odd prime and follows 
directly from the fact that a number p e N is an odd prime if and only if D = 2. 

Corollary 2.2: An integer p e N \ {0} is prime if and only if NA(p) - 1. 

In connection with the representation of primes as a difference of the polygonal numbers of 
order k = 6, namely, the hexagonal numbers, we have the following. 

Corollary 2.3: Let / ? G N \ { 0 } be a prime number. If p = 1 (mod 4), then there exists exactly one 
representation of p as a difference of hexagonal numbers, while no such representation exists if 
p = 3 (mod 4). 

Proof: By definition, the w* hexagonal number is equal to T(2n-l). Thus, the problem of 
representing an integer as a hexagonal number difference is equivalent to finding a triangular num-
ber difference T(ml)-T(m2)9 where both ml andi^ are odd integers. For a prime/?, the only 

262 [JUNE-JULY 



ON THE REPRESENTATION OF THE INTEGERS AS A DIFFERENCE OF NONCONSECUTIVE TRIANGULAR NUMBERS 

possible triangular representations are those of the form given in Case 2 Subcase 1; that is, if 
/? = 2°(2#i + l) for some «eN\{0}, then p = T(l+n)~T(n-l). Now, If p = \ (mod 4), then 
clearly 2|/i, and so both l+n and n-l are odd Integers. However, for p = 3 (mod 4), one must 
have n = 2s+1 for some 5 G N \ { 0 } ? and so 1 + n and n-l are even integers. • 

Clearly, in comparison with the triangular case, a larger subset of Z \ {0} fails to have a repre-
sentation as a difference of hexagonal numbers. Consequently, In view of this, one might consider 
the following conjecture. 

Conjecture 2.1: Denote the /1th polygonal number of order k by Pk{n) and consider the set Ak = 
{M e Z \ {0}: M - Pk(n^) - P^r^) for some nl7 n^ e N}. Does the set Inclusion Ak+l c; Ak hold 
for all k = 3,4,..., and, if so, Is f)t=3 Ak * 0? 
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1. INTRODUCTION 

We consider the sequence {WJ defined, for all integers n, by 

W^PK-i+K-i* W0=a,Wl = b. (1.1) 
Here a, b, and/? are real numbers with p * 0. Write A = p2 + 4. Then it is known [3] that 

W = Aam-BF (12) 

where a = (p + J~K)/2, /?=(/?-VA)/2, A=h-afl, and B-b-aa. As in [3], we will put 
ew - AB = b2- pab - a2. 

We define a companion sequence {Wn} of {Wn} by 

Wn = Aa" + BJ3". (1.3) 

Aspects of this sequence have been treated, for example, in [2] and [4]. 
For (W0, Wx) = (0,1), we write {WJ = {£/„} and, for QV0, Wx) = (2, p), we write {WJ = {F„}. 

The sequences {Un} and {Vn} are generalizations of the Fibonacci and Lucas sequences, respec-
tively. From (1.2) and (1.3) we see that Un-Vn and Vn- AUn. Thus, it is clear that eu = 1 and 
ev=-A = -(a-/3)2. 

The purpose of this paper is to investigate the infinite sums 
00 W 

C = y nk(n+m) {} 4 x 
uk,m L«i w W W ' V ' 

n=\ nknvrk(n+myvk(n+2m) 
and 

OO j 

1k,m~ ZJ Tir W W W ' ' ^ 
n=\ nknnk(n+myrk(n+2myrk(n+3m) 

where k and m are positive integers with k even. Indeed, Skm and the alternating sum derived 
from Tkm have been studied in [5], where k and m were assumed to be odd positive integers. 
Both sums were expressed in terms of an infinite sum, and certain finite sums. Here, however, 
with the altered constraints on k and m, we express Skm and Tkm in terms of finite sums only. 

Now, if p > 0, then a > 1 and a > |/?|, so that 

Wn=-~^—an and Wn = Aan. (1.6) 

On the other hand, if p < 0, then /? < -1 and \fi\ > \a|, and so 
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Wn=-^P" and W„ = BP". (1.7) 

Hence, assuming that a and h are chosen so that no denominator vanishes, we see from the ratio 
test that Sk^m and TkiJn are absolutely convergent. 

2. PRELIMINARY RESULTS 

We require the following, in which k and m are taken to be integers with k even. 
>kn jk(n+m) AU, km I 

^kn ^k(n+m) "kn"k(n+m) 

^k(n+m)^k(n+2m) ~ ^kJ^k(n+3m) ~ eW^knP2km> 

w^k-w^k = wnuk9 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Identities (2.1) and (2.2) are readily proved with the use of (1.2) and (1.3). Identity (2.3) is a 
special case of (75) in [2], while (2.4) can be obtained from (3.2) in [1]. 

We will also make use of the following lemma. 

ma 

Lemma 1: Let k and m be positive integers with k even. Then 

^ 1 1 l~A Wi i 
y l __ ___£___ y rfkn+l 
n=\ ^krWk{n+m) 6W^km |_n=l "kn 

Proof: If we sum both sides of (2.1), we obtain 
oo -| i m nkn 

y l l y P 
n=l ^kJ^k(n+m) ^&km n=l ^kn 

and (2.5) follows from (2.4) and the fact that ew = AB. • 

In fact, under the hypotheses of Lemma 1, Theorem T of [1] yields 

^ 1 1 

(2.5) 

n=\ ^foWk{n+m) eW^k^km 

m W 

Z ¥¥k(n+l) 
W 

-ma (2.6) 

To see that (2.6) reduces to (2.5), we use the identities ak = Uka + Uk_l and Wk{n+l) = UkWkn+l + 
Uk_xWkrl. From the first of these, which is easily proved by induction, we obtain the second if we 
first note that akn+k = Ukakn+l + [ / H ^ , and write down the corresponding result involving /?. 

3. THE MAIN RESULTS 

Our main results can now be given in two theorems. 

Theorem 1: Let k and m be positive integers with k even. Then 
1 m 1 

^k,m-Jf 2L* ur jxr ' ^ ' ' 
ukm n=\ rrknvrk(n+m) 
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Proof: Consider the expression 
okn nk(n+m) ok(n+2m) 

"kn "k(n+m) "k(n+2m) 

Using (2.1), we can write this as 

AU, km ,/?*("+2*° 
"to"k(n+m) ^k{n+2m) 

or as 

Now 

okn 

wkn 

pK n+m) P >k(n+2m) 

"k(n+m) "k(n+2m) 
-I >kn AU, km 

"kn ^k(n+myh(n+2m) 

AU, km AU, km AU, km 

"to"k(n+m) "k(n+m)"k(n+2m) "k(n+m) 

AU km 

m k(n+m) 

1 1 
"to ^k(n+2m) 

"k(n+2m) ~ "to 

"to"k(n+2m) 

Au2jvk(n+m) ^ b y ( 2 3 ) 

"to"k(n+m)Wk(n+2m) 

But from (3.2)-(3.4), we then have 
okn okn ok(n+m) ok(n+2m) 

Wkn "k(n+m) "k(n+2m) 

/?*" , ygfc ("+2m) , AU2
kmWk(n+m) 

**kn ^k(n+2m) "to^"k(n+m)"k(n+2m) 

so that 

WkrTk{n+my*k{n+2m) 

okn ok(n+m) 

™kn "k(n+m) 

ok(n+m) ok(n+2m) 

"k(n+m) "k(n+2m) 

Finally, summing both sides of (3.6), we obtain 
m nkn m pk(n+m) 

ATJ2 a _ y P Y P 
/iUkm^k,m- 2^, W ZJ W 

n=\ "to n=l "k(n+m) 
and (3.1) follows from (2.1). • 

If we put Wn-Fn and Wn- Ln, and take k = 2 and m = 1, (3.1) becomes, respectively, 
^2n+2 

n=l ^2n^2n+2^2n+4 

and 

Si F, 2w+2 

2n-^2n+2-^2n+4 

3' 

1 
105' 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Theorem 2: Let k and m be positive integers with k even. Then 

eW^kJ^2krtJk,m 
1 

^W 

1 y ^ + 1 1 f 
• AJ W J J La 

kn+l 

^3km n=l "to 

Wto+i 

&km w=l ^to 
+ 

1 ma 
n=\Wkn"k(n+m) eW \Pkm &3km 

(3.9) 
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Proof: From (2.2), we see that 

Vr^kny^k(n+m)vrk(n+2m)y¥k(n+3m) v¥knrrk(n+3m) ^k(n+mffic(n+2m) 

Summing both sides we obtain, with the aid of (2.5), 

eW^kJ^2km^k,m ~ 
1 

eW^3km 

2m w 
n=l Wkn 

1 
ewUl W^km 

Y* ¥¥kn+l 
JL TIT 
n=\ ^kn 

-ma -i 1 
n=l Wkn^kin+m) 

which is (3.9). D 
If we put Wn=Fn and Wn- Ln, and take k = 2 and m = 1, (3.9) becomes, respectively, 

^ 1 60V5-133 

and 
n=\ ^2n^2n+2^2n+4^2n+6 

n=\ ^2n^2n+2^2n+4^2n+6 

576 

9^5-20 
2160 ' 

(3.10) 

(3.11) 
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1. INTRODUCTION 

The nxn Hilbert matrix is the n x n matrix whose (/, j)-entry is j^p\. In [1], Man-Duen 
Choi explores many fascinating properties of the Hilbert matrix, including the fact that the (/, j)-
entry of its inverse is 

•»-c-r'<w-i)(\VX"#,X,*-72)' (1) 

Choi asks what sort of coincidence it is if the inverse of a matrix of reciprocals of integers has 
integer entries. In this paper we show that the inverses of the Hankel matrices based on the 
reciprocals of the Fibonacci numbers, the reciprocals of the binomial coefficients (*%'), and the 
reciprocals of the binomial coefficients (/+3+2) all have integer entries. We also find formulas for 
the entries of the inverses of these matrices and related matrices. 

Definition 1.1: Let {ak} be an integer sequence with ak ^ 0 for k > 1. A reciprocal Hankel 
matrix based on {ak} is a matrix whose (7,7)-entry is IIai+j_x. We denote the n x n reciprocal 
Hankel matrix based on {ak} by R„(ak). 

The formula for the entries of the inverse of R„(Fk) bears a striking resemblance to the for-
mula for the entries of the inverse of the Hilbert matrix. Therefore, we call a reciprocal Hankel 
matrix based on the Fibonacci numbers a Filbert matrix. 

2. FILBERT MATRICES 

We need the Fibonomial coefficients to describe the inverse of the Filbert matrix. See [2] for 
more information on the Fibonomial coefficients. 

Definition 2.1: The Fibonomial coefficients are 

where n and k are nonnegative integers. 

Theorem 2.1: Let e(n9i, j) = n(i + j + l) + (2) + (J
2) + l? and let W(n) be the nxn matrix whose 

(/,y)-entryis 

Then the n x n matrix W(n) is the inverse of the Filbert matrix ^(F^, and W(n) is an integer 
matrix. 

268 [JUNE-JULY 



THE FILBERT MATRIX 

This theorem is a special case of Theorem 2.2, which we prove below. The formula for the 
entries of the inverse closely corresponds to the formula for the entries of the inverse of the nxn 
Hilbert matrix. It results from (1) by changing all binomial coefficients to Fibonomial coefficients 
and changing the exponent of - 1 . The pattern of the signs of entries the inverse of R„(Fk) is that 
they are constant on 2 x 2 blocks, and alternate between blocks. 

The Fibonacci polynomials fn(x) are defined by /0(x) = 0, fl(x) = l9 fn(x) = xf„_l(x) + 
fn-iix) for ^ > 2. We also use fn to denote the Fibonacci polynomial f„(x), especially when we 
want to reduce the clutter in some equations. The x-Fibonomial coefficients are the obvious gen-
eralization of the Fibonomial coefficients. 

Definition 2.2: The x-Fibonomial coefficients are 

where n and k are nonnegative integers. 
To form the (i, 7)-entry of the inverse of R„(fk(x)), replace each Fibonacci number and 

Fibonomial coefficient in W^{n) with the corresponding Fibonacci polynomial and x-Fibonomial 
coefficient. 

Theorem 2.2: Let V(n) be the n x n matrix whose (1, j)-entry is 

Then the n x n matrix V(n) is the inverse of the Filbert matrix i^C4(x)), and the entries of V(n) 
are integer polynomials. 

The recurrence 

shows that the Fibonomial coefficients are integer polynomials, which implies that the entries of 
V(n) are integer polynomials. 

3. TECHNOLOGY 

The proof of Theorem 2.2 and proofs of succeeding theorems amount to proving various 
identities involving sums of products of Fibonomial coefficients and binomial coefficients. We 
supply computer proofs of these identities. In some cases, the computer cannot do the entire 
proof directly, and human intervention is required to separate the proof into smaller pieces that 
can be done by computer. 

The program and packages used to produce the proofs for this paper include Maple V 
Release 5, the Maple package EKHAD written by Doron Zeilberger, and the Mathematica package 
MultiSum written by Kurt Wegschaider. EKHAD is described in [3] and is available through the 
web site www.math.temple.edu/~zeilberg. MultiSum is described in [4] and is available through 
the web site www.risc.uni-linz.ac.at/software/. The particular functions that we use from these 
packages are z e i l from EKHAD and FindRecurrentce from MultiSum. 
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Both of these functions find a telescoped recurrence for a summand F(n, k), where k is the 
summation variable. The function z e i l uses Zeilberger's algorithm to find a rational function 
R(n, k) and a recurrence operator P(n, N), where Nis the shift operator in n such that 

P(n9 N)(F(n, k)) = R(n, k + l)F(#i, * +1) -R(n, k)F(n, k). (2) 

Let f(n) be the unrestricted sum HkF(n,k). In many situations, equation (2) implies that 
P(n, N)f{n) = 0, making it easy to verify that / («) is constant. 

The function F indRecur rence gives similar results with summands of the form F(n, k), 
where n and k are vectors. 

Maple V Release 5 also includes an implementation of Zeilberger's algorithm as the function 
s u m r e c u r s i o n of the package sumtools . However, s u m r e c u r s i o n only gives the recur-
rence operator P(n, N), and not the rational function R(n, k), which will be essential when we 
prove identities involving a restricted sum. 

The sums involved in the proof of Theorem 2.2 are of products of Fibonomials not binomials, 
so these procedures do not apply. However, we obtained recurrences for sums of products of 
Fibonomials by modifying recurrences found by these procedures for the corresponding sums of 
products of binomials. 

4. PROOF OF THEOREM 2.2 

The (/, m)- entry of the product V{n)Rn{fk{x)) is p(n, i, rri) - Ey=1-P(w, /, m, j ) , where 

The summand satisfies the following recurrence relation that is related to a recurrence produced 
by F i n d R e c u r r e n c e for an entry of the product of the Hilbert matrix and its inverse. 

Lemma 4.1: The summand P(n, i, m, j) satisfies the recurrence relation 

-fci+ifn+i-iiPfaf' !> m> J) ~P(p-\i-\ m, j)) 
+ (-iy+if^(P(nJ,mJ)-P(n-lJ^mJ)) = 0, 

and the sum p(n, /, m) satisfies the recurrence relation 

(4) 
+ {-\y™£x{p(p,i,m)-p(n-\,i,m)) = 0. 

Proof: Write each of the terms in (3) as a multiple of P{n -1, i -1, m, j) to get the equation 

-fn-i+]fn«-2(p(n>l" *> m> j)~P{n~\ i ~ 1, m9 j)) 
+ (rVrfUnn, U m, j)-P(n -1, i, m, j)) (5) 

- M(n9 i, j)P(n - 1 , i - 1 , m, j), Jn+i-2 

Jn-i+lJn-jJi+j'-l 

where 
M(n9 J, j) - (- l) f ' +V,+/Vw + /-JW-2 +fn-ifn-jfi+j-2 

+ V V JnH-2Jn+j-\Ji+j-l+Jn-i+h/n-jJi+j-l' 
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It suffices to show that M(nJ,j) = Q. But this follows from the standard Fibonacci identities 
fn-ifi+j-2+ fn-i+lfi+j-l = fn+j-l a n c ^ fn+i-lfi+j-l ~ fn+i-lfi+j~2 = (~ty1+J fn-j- ^ 

If we can establish p(n91,1) = 1, p(n9 1, iw) = 0 if iw * 1, and p(n, n,ri) = l, then (4) shows that 
p(n9i9m) = lifi = m and p(n9i9m) = 0 ifi*m, for 1 <i9rn<n. 

Case p(n31, m). The summand P(n9 1, AW, j) satisfies the recurrence 

(- i r 7 n - i / ^ ^ , 1, w - 1 , j ) - fJn.m+lP(n -1,1, AW - 1 , j) 

+ (-iTfn-lfn+n-lPin, \ ^ i ) + / J U A " " 1, U **, J) = 0, 

and this implies a similar recurrence for p(n, 1, AW). The proof of (7) is similar to the proof of 
Lemma 4.1. The initial values of this recurrence are p(m,l,m) and p(n,\,l). The summand 
P(m9 1, m9 j) satisfies the recurrence 

(-ir/mfm-iPfa L«, / ) = GM J +1) - G,(/», y) 
where G^AW, y) = (-1)-7"1 fjfj-_lP{m9 1, m9 j). Since the support of Gt is 2<j< m9 this equation 
implies that {-X)m fmfm_lp(m9 1, AW) = 0. Therefore, when AW > 1 we get p(m,1, AW) = 0. Finally, the 
summand P(w, 1,1, j) satisfies 

(~l)"f„2P(n, 1,1, j) = G2(», 7 +1) - G2(n, j), 

where G2(n9 j) = (-l)J~lf?P(n, 1,1, j). In this case, the support of G2 is 1 < j <n9 so summing 
overy from. 1 to n gives (-l)nf^p(n9 1,1) = -G2(AI, 1) = (-l)"//?* implying p(n, 1,1) = 1. 

Case p(n, w, if). The summand P(n, n9 n, j) satisfies the recurrence 
P(n +1, ii +1, H +1, j ) - P(w, w, if, j) = G3(n9 j +1) - G3(if, j \ 

where 
\2 

^^>)=(-1)^^(^+^-1)")((^7+
1l))x((,,) 2/1-1 11 ((n + j-2 

When we sum over j , the right-hand side telescopes to 0 and the left-hand side is p(n + l,n + \, 
n +1) - p(n, n, n). This completes the proof of Theorem 2.2. 

5. RECIPROCAL HANKEL MATRICES BASED ON 
BINOMIAL COEFFICIENTS 

In this section we will prove that certain reciprocal matrices based on binomial coefficients 
have integer entries. We will give formulas for the entries of the inverses of these matrices. 

Let a t =(*£') • 

Theorem 5.1: Let A(ri) be the n x n matrix whose (/', _/')-entry is 

w-|(-irM(;-+iX"-tX'+*"1X'**)i-
Then 4y(w) °ls a n integer, and A(n) is the inverse of the matrix R„{ak). 
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Proof: First, we show that Aij{n) is a n integer. We use the well-known fact that, if a is even 
and b is odd, then (£) is even. If/ is even, then obviously Aij{n) ls a n integer, so assume that / is 
odd. Now, if k is also odd, then (1+

k
k) is even, so we may assume that k is even. Now, one of 

O ^ d (,^) ^ even. 
Theorem 5.2 below shows that A{n) is the inverse of the matrix Rn{ak). D 

Let bk = bk(r) be the binomial coefficient (k+^~l). Suppose that r is a positive integer and 
r > 3. Then the inverse of ^(b^r)) does not always have integer entries, but the values of n for 
which the inverse does have integer entries seem to occur periodically. Further, when the entries 
are not integers, the denominators are divisors of r. The following conjecture is true for n < 20, 
r < 10, and r an integer. 

Conjecture 5.1: Suppose that r is a positive integer. The inverse of the matrix i^(^(r)) has 
integer entries if and only if n = 0 (mod q) or n = 1 (mod q) for all prime powers q that divide r. 

We do have an explicit formula for the entries of the inverse. 

Theorem 5.2: Let B(n, r) be the n x n matrix whose (/, j) -entry is 

Then B(n, r) is the inverse of the matrix R„(bk). 

The theorem is valid if r is an indeterminate, not just if it is a positive integer. Also note that 
Bjj(n,l) simplifies to aij9 the (i,j) -entry of the inverse of the Hilbert matrix, and JB^(«, 2) is 
equal to A^iri). 

Proof: Let 

2 TTr-3 ; (n + k+r-2Yny2Ylr
l:oi + j + I 1 

so that h(n, /, w) = Z"=1 Z£=o H(n9 /, w, j , £) is the (/', m)-entry of B(n, r)i^(A^). Then H satisfies 
the recurrence 

n2{i-m + r- \){n-i+r - \){n+i' + r -3)H(n-1, i-\m-\ y, k) 
- n2(i-m-l){n-i+r- l)(n + i + r- 3)H(n -1, / - 1 , w, y, &) 
+ ^2( i - 1 ) 2 ( / - /w +l) jy( / i - 1 , /, m -1, j , &) 

- w2(/ - l)2(i - m - r + l)H(n -1, /, m, j , k) 
- {n + r-2)2{i-m + r-\){n-i + l)(/i + / -l)i?(/i,/-1,/w-1, j , k) /g\ 
+ (w+r - 2)2(i - m- \){n~i + l)(w+/ - l)#(w, i - 1 , w, J , k) 
-(n+r-2)\i-l)\i-m + l)H(n9i,m-lJ9k) 
+ (n + r- 2)2(i ~l)2(i-m-r + l)H(n, /, /w, j , it) = 0. 
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The preceding recurrence was found by FindRecurrence. The theorem will follow if we 
can establish the correct values of A(w, 1, m), h(n, n,if), and h(n, z, 1). 

Case h{n, % m). Maple computes h(n, 1,1) = 1, and it computes 

Hfa 1, m, j) = £ H(n, 1, m, j , k) = K } AJ Aj). 
£=0 r{ r ) 

Now h(n, 1, m) = Zy- H^n, 1, m, j)9 and with /^(w, 1, m, j) as input, the function s u m r e c u r s i o n 
gives the recurrence (if - l)(w - 2 + iw + r)A(if, 1, m) - (n + r - l)(w - m)h(n -1,1, iw) = 0, and Maple 
gives the initial value h(m, l,m) = 0 for #w > 1 

Case h(m9 #t, «). Maple computes 

k=0 r{ r ) 

Similarly to the previous case, sumrecu r s ion gives the recurrence h(n,n,ri)-(n-l,n-l, 
n -1) = 0 and, obviously, /i(l, 1,1) = 1. 

Case h(m?i91). We need to do something different in this case. First, we show that our 
conjectured inverse is symmetric. Let 

so that By(n, r) = Z£lo S(n, z, j , k). Now z e i l produces the recurrence 

S(n +1, /, j , *) - S(n, /, j , *) = T(/i, i, j , * +1) - T(n, /, j , A) 
where 

(w + r -1) (if -1 + l)(w - A +1) 

This implies that 2 .̂ (if +1, r) - 5 (̂if, r) = /'(if, /, j , j) - T{n, /, j , 0). Now Maple tells us that 

T(n91, J, j) - T(n9 i, j , 0) - T(n9 j , /, /) + 7(if, j , z, 0) = 0, 

which means that 2̂ .(if +1, r) - 5 .̂ (if +1, r) = Î -(/f, r) - 2̂ ,. (if, r). Maple also tells us that 

(n+iY~2)i(n + i+r-3)\r(2-r)T(2-n-i-r)(-iy 
Bm(n,r)-Bm(n,r) = r(if+i-l)!(/ + r - 2 ) ! r ( 2 - i f - r ) r ( 2 - / - r ) r ( l - / y 

which implies 23>.w(if, r) - Bni{n9 r) = 0. 
Since R„(bk) and B{n9r) are symmetric, the (1,/)-entry of Rn(hk)B(n,r) equals the (/, 1)-

entry of 2?(if, r) R„(bk). The former is Zy=1 Z^ii ^(w>', 2, *), where 

U(nJJ,k) = \j + r
r
 l) S(n,j,i,k). 

The function z e i l produces 
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which satisfies 

Then we have 

Yin,i, j,k) = f " ^ U^r-Vu(n,i, j,k) 
(n+r - iy(n - j + l)(n - k +1) 

U(n +1, /, j , k) - U(n, i, j , k) = Y{n, i, j , k +1) - Y(n, i, j , k). 

§ U{n +1, /, 7, k) - g £/(», /, y, *) = 7(«, /, j , /) - 7(», /, j , 0), 
J f c = l A r = l 

and Maple tells us that Z"=1 Y(n, f, j , i) - Y(n, z, 7,0) = 0. All that remains is to check the initial 
value Zy=i lL'k=i U(i, z, 7, k) - 0. Maple also tells us that 

Y YlUi i i /A = T(l-r)T(2i-r)T(2i+r + \)T(2i+r-1) (-1)' 
£i£i "/' ' r(-r-ifr(i+r+ifr(i+r) (/-i)r(-/)' 

which implies that T!J=l E^ i C^O",', 7, k) = 0 when / > 1. D 

We consider reciprocal Hankel matrices based on one more sequence of binomial coeffi-
cients. Let ck = (ki3). 

Theorem 5.3: Let C{n) be the n x n matrix whose (z, j)-entry is 

C^)-2.(-l) [/ + * + i^/ + * + iJ|k ,- J[ ,- J - 1 — . 
Then Cy(«) is an integer, and C(>2) is the inverse of the matrix RJf^. 

Proof: First, we show that each surnmand of the sum that defines each entry is an integer. It 
is well known that, if a = 0 (mod 3), b = 1 (mod 3), and c = 2 (mod 3), then (£), (*), and (b

c) are 
all divisible by 3. Using this fact, we find that one of the terms (/+f+1), C"}*), or z is divisible by 3 
unless i = l (mod 3) and & = 0 (mod 3). But now n+i + 2 = n (mod 3), w+t + l = « + l (mod 3), 
and i -f A: +1 = 2 (mod 3). Thus, 3 divides one of the terms (Jl^i) or (££#). 

The proof that C(n) is the inverse of R„(ck) is similar to the proof of Theorem 5.2. Let 

^^/*)=(-o^(r:^)(7;f;I
iX'+i+i)('^)|ta. 

so that z(n9 z, m) = Z"=1 Zi=0 Z(w,*, wi, 7, £) is the (i, /u)-entry of C(w) i^(%). Then Z satisfies the 
recurrence 

(/i-/ + l)(w+i + iXZ(w-l,/-l ,/if,7,*)-Z(/i,i-l ,m,7,*)) 
+ /(/ - l)(Z(w - 1 , i, w, 7, i ) - Z(w, /, m, 7, A:)) = 0. 

Now the proof proceeds similarly to the proof of Theorem 5.2, except that we do not have to do 
the difficult initial value m = 1. • 

One might wonder whether there is not a simpler formula than the one we give for BJn, r). 
If we fix / and 7 and consider Btj as a polynomial of w, then it usually has an irreducible factor of 

274 [JUNE-JULY 



THE FILBERT MATRIX 

degree min{2/-2,2j-2}. Thus, it seems unlikely that one could avoid the sum in the given 
formula. The next section suggests that the given sum is the "right" way to describe Br(n, r). 

6„ RECIPROCAL HANKEL MATRICES BASED ON 
FIBONOMIAL COEFFICIENTS 

Remarkably, by changing the exponent of -1 and changing the binomial coefficients to Fibo-
nomial coefficients in the formula for Bij9 we get a formula for the entries of the inverses of recip-
rocal Hankel matrices based on Fibonomial coefficients. 

Let dk = dk(f) be the Fibonomial coefficient ((^+
r
r_1)). 

Conjecture 6.1: Let D(«, r) be the n x n matrix whose (/, 7)-entry is 

^=^<".--)=i(-i)*'-"(("+'r"2))((")) 

Then the D(n, r) is the inverse of the matrix Rn(dk). 

We have verified this conjecture for w<16 and r<10. (We assume that r is a positive 
integer.) We also observe that the inverse of a reciprocal Hankel matrix based on Fibonomial 
coefficients has integer entries exactly when the corresponding reciprocal Hankel matrix based on 
binomial coefficients has integer entries. This may just be a consequence of known divisibility 
properties of the Fibonomials. It seems likely that this conjecture may be proved by combining 
the methods of the proofs of Theorem 2.2 and Theorem 5.2, and that it may be extended to the 
corresponding sequence of x-Fibonomial coefficients. 
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1. INTRODUCTION 

In order to lend greater precision to statements of results and methods of proof, we begin our 
discussion with a definition. 

Definition 1.1: As usual, P:= {1,2,3,...}, N:=Pu{0}, and Z:= {0, + l,+2,...}. Then, for each 
»€N , 

r3(/i): = 2 2 2 

and q(ri) := the number of partitions of n into distinct parts. We define ^(0) : = 1 and q(ri) := 0 for 
n< 0. The function #(«), ^ e N, is generated by the infinite product expansion 

no+*")=i>(")*''> 
1 0 

which is valid for each complex number x such that \x\ < 1. 
As so many arithmetical discussions do, our discussion begins with Gauss, who first proved 

the following theorem. (The result was conjectured by Fermat about 150 years earlier.) 

Theorem 1.2: Every natural number can be represented by a sum of three triangular numbers, 
i.e., for each nsN, t3(ri) > 0. 

In this paper our major objective is to give an algorithmic procedure for computing t3(ri), 
n G N . This is accomplished by the following two results. 

Theorem 1.3: For each n e N, 

k e p [0, otherwise. 

Theorem 1.4: For each n GN, 

t3(n) = q(n)- £(- l)kq(n -3k2 + 2k)(3k-1) + X(-l)*?(w-3*2 -2Jfc)(3* + l). (1.2) 
keP keP 

For a proof of Theorem 1.3, see [1, pp. 1-2]. Section 2 is dedicated to the proof of Theorem 
1.4. 

2. PROOFS 

In our development we require the following three identities: 

no+^Xi-*2*"1)^; (2.1) 
i 
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nf^I*"^2; (2.2) 
! i x 0 

f r (1 - x2")(l - a V "-2)(1 - a-h2") f (3n+» ,„ 3n+2 

Identities (2.1) and (2.2) are valid for all complex numbers x such that |x| < 1, while (2.3) is 
valid for each pair of complex numbers a, x such that a ^ 0 and \x\ < 1. For proofs of (2.1) and 
(2.2), see [2, pp. 277-84]; for a proof of (2.3), see [3, pp. 23-27]. In passing, we observe that the 
cube of the right-hand side of (2.2) generates the sequence t3(n), n G N . Proof of Theorem 1.4 is 
facilitated by the following lemma. 

Lemma 2.1: For each complex number x such that | JC | < 1, 

ft^£& = £ (3» + lK(3"+2). (2-4) 
I {i + X ) ^ 

Proof: Multiply (2.3) by -a"1 to get 

(a - a ^ n ^ 1 1 ^ - f x^+2)(a3"+1 - a"3""1). 

Now we operate on both sides of the foregoing identity with aDa> Da denoting differentiation with 
respect to a, subsequently, let a -> 1 and cancel a factor of 2 to draw the desired conclusion. 

Returning to the proof of Theorem 1.4, we multiply both sides of (2.4) by 

na+x2-1)-1, 

and appeal to (2.1), where we let x -> -x, to get 

Q-x2")3 

S ( - i ) -^)x-=n^pb 
n=0 1 \ l ^ x ) 

=n o+(-*)")£ (3/?+1);<:"(3"+2) 
w = l - c o 

= Z ( - ^ ^ K X (3w+IK(3W+2)-
n=0 

Now we expand the product of the two series and, subsequently, equate coefficients of like 
powers of x to prove Theorem 1.4. 

Our algorithm proceeds in two steps: 
(i) Use the recursive determination of q in Theorem 1.3 to compile a table of values off, as 

in Table 1. 
(ii) Utilizing Theorem 1.4 and the values off computed in Table 1, we then compile a list of 

values of f3, as shown in Table 2. 
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TABLE 1 TABLE 2 

n 
0 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

q{n) 
1 
1 
2 
2 
3 
4 
5 
6 
8 
10 
12 
15 

n 
13 
14 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

q(n) 
18 
22 
32 
38 
46 
54 
64 
76 
89 
104 
122 
142 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

',(») 

1 
3 
3 
4 
6 
3 
6 
9 
3 
7 

7J 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

/3(#i> 

9 
6 
9 
9 
6 
6 
15 
9 
7 
12 

3. CONCLUDING REMARKS 

The brief tables above are compiled to show the effectiveness of the algorithm. For a fixed 
but arbitrary choice of n e P, we observe that: (1) to compute q(n) we need about -Jn of the 
values q(k), 0<k <n; and then (2) to compute t3(ri) we need q(n) and about «j4n/3 of the 
values q(k), 0<k <n. Doubtless, the formulas (1.1) and (1.2) can be adapted to machine com-
putation, and the corresponding tables can then be extended indefinitely. 

For given « G P , there are formulas that express t3(n) in terms of certain divisor functions. 
But, for each divisor function/, evaluation of f(k), k GP, requires factorization of k. By com-
parison we observe that our algorithm is entirely additive in character. In a word, no factorization 
is required. 
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Giiodong Liu 
Dept. of Mathematics, Huizhou University, Huizhou, Guangdong 516015, People's Republic of China 

{Submitted May 1999-Final Revision April 2000) 

1. INTRODUCTION 

Let / be a complex number with \t\ < f and let the Euler numbers E2n (w = 0,1, 2,...) be 
defined by the coefficients in the expansion of 

00 t2n 

sect = YiE2 „-— 
n=0 (2«)! 

That is, E0 = 1, E2 = 1, E4 = 5,E6 = 6l,E8 = 1385, E10 = 50521, ... . 
We denote 

where the summation is over all ^-dimensional nonnegative integer coordinates (aha2,...,ak) 
such that ax + a2 + • • • + ak - n and k is any positive integer. Recently, several researchers have 
studied the numbers E(n,k). In [3], Wenpeng Zhang obtained an expression for E(n,2m + l) 
(m > 1) as a linear combination of Euler numbers and obtained some interesting congruence ex-
pressions for Euler numbers. The main purpose of this paper is to express E(n, 2m) as a linear 
combination of second-order Euler numbers, so that some congruence expressions are obtained 
correspondingly. The two identities, 

±i-iy (j)^> = P"±(-iy (j)#> (2) 
and 

Ic-iy ffl^co)=/>"i(-iy ("W^o), (3) 
which were obtained by David Zeitlin (see [2], p. 238) are deduced, and some more common 
results than (2) and (3) are achieved. 

2. DEFINITIONS AND LEMMAS 

Definition 1: If (AJ is any sequence with AQ = 1 and if f(t) = Z*=0 Ajnln\ is its generating 
function, then the "umbral" sequence A{k) of order k and the associated Appel sequence of 
polynomials A^k\x) of order k are defined, respectively, by 

00 

/W* = £^"/«! (4) 
and oo 

e*'/(0*=I4*)(*K/»l. (5) 
«=0 

2001] 279 



IDENTITIES AND CONGRUENCES INVOLVING HIGHER-ORDER EULER-BERNOULLINUMERS AND POLYNOMIALS 

where k is any Integer. Clearly, A^k\G) = A^k) and A^p = An. It is also easy to see that 

4k)(x) = Y,(n^Af)xn~J and that ^~4k\x) = n4k_\(x). 

Remark 1: (a) When f(t) - sec t, \t| < n/2, (4) becomes 

( secO*= |>fV7w! 3 (6) 

where 2 ^ are called Euler numbers of order k; 
(b) Whmf(t) = t/(ei-lX \t\ < In, (4)becomes 

(t/(et-l)f = f^Bik¥/n\, (7) 
n=0 

where Bj,k) are called Bernoulli numbers of order k (cf. [1], [2]); 
(c) When /(*) - 2 / (er +1), | /1 < n, (5) becomes 

£xr(2/(er + 1))* = f]£j*>(jc)/,,/7f!, (8) 
»=o 

where Eff\x) are called Euler polynomials of order A: (cf. [1], [2]); 
frfj When /(f) = 11 (ef -1), 11 \ < In, (5) becomes 

e*(f / (ef -1))* = £ ^ ( x ) * " /w!, (9) 

where B$f\x) are called Bernoulli polynomials of order A (cf. [1], [2]). 

Clearly, the usual Euler numbers En = Ejp, Bernoulli numbers Bn = B^l\ Euler polynomials 
E„(x) = Eil)(x), and Bernoulli polynomials Bn(x) = B®(x). Using (6), (7), (8), and (9), we have 
E£U = 0 (it > 1), Eft = (-l)"22"^)(f) , and 2#> = Z£*>(0). 

Definition 2: Uj{xh JC2, ..., x j (/ = 0,1,2,..., w) are defined as the coefficients of the polynomial 
n 

(x + x,)(x + x2) • • • (x + x„) = Xo-y(^, *a. • • •, ̂ ,)«""y• 

Le«,mal: £ W = _ _ l - _ £ ( ^ ) + ^ £ ( ^ ( * > 2 ) ( 1 0 ) 

Proof: By (6), we have 
Y | I „F(k-2)>k~2 F(k-2) | *2W 

= i V ir(*-2)_J , * ~ 2 V r(t-2) J 
(*- l ) (*-2)£< 2" (2»-2)! * - l £ 2" (2»)! 

= ( ^ I ^ ^ ( - 0 - H | 5 f ( s e c 0 - = ( s e c 0 ^ | ^ ^ , (11) 

and comparing the coefficient of t2n on both sides of (11), we immediately obtain (10). D 
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Lemma 2: Eg = ( 1} 2 J] l±B2n+2. (12) 

Proof: By (6) and (7), we have 

» 2 t2" °° 2 t2n~2 

S ^ n ( 2 " 1)52"+2Mi=§«(22""l)B2nw^y-
= 4Y (2/i -1)(22" -1) &_ 4-— = 4 4 Y (22n -1)&„ 4-— ^1 • 2"(2«)! dt^ ' 2"(2n)\ 

d (.-!<& o (2t)2" ._,<£ D fJ" ^ Ad f^f 2t , . ̂  ^i( t , . 1 _ * (2r)2" _ ^ /2" ̂  
dt{ ^[ 2" (2n)\ £i2"(2n)\) dt{ {e2t-I J W-1 2 

- ^' f ^V v F ( 2 )M"-YV_ n»_LF(2)j!" ~(e' + l)2'~rC2j " J ^ (2/i)! _ § ( 1)"2
2"JE2")(2«)!' ° 3 ) 

and comparing the coefTicient of t2n on both sides of (13), we immediately obtain (12). D 

Remark 2: By (12), we have £$2> = 1, Eg* = 2, £j2> = 16, E^ = 272, £8
(2) = 7936, E$ = 353792, 

£ff> = 22368256,.... 

3. MAIN RESULTS 

Theorem 1: Eg^ =-^^Y,amJEg\2m_2_2J, (14) 

where <r . = cr.(22,42
3 62,..., (2/n™2)2)? and m is a positive integer. 

Proof: We prove Theorem 1 using mathematical induction. 
(a) When m - 1, (14) is clearly true. 
(S) Suppose (14) is true for some natural number m. By the supposition and (10), we have 

17(2^+2) _ 1 F{2m) , 2/11 F(2m) 

**" ~(2m + l)(2m)^+2 + 2m^l2n 

(2w+1)! Zf^+tn-V + (2m +1)! Zja^2*+2m-2y-2 

1 m_1 Om)2 m~l 

{2m+\)^0
amjE2"+2m-2i + (2m+ 1)! JfxJ-V^&^V 

' £ g k * + E K ; +(2^)Vw0„1))£f22w_2/ H2mfam(m_l)E^ 
(2/w + l)! 

1 f m-l 

^2n+2m + 2^ a(m+l)j^2n+2m-2j + a(m+l)m^2n (2m+ 1)! 
1 m 

— I — y , 
(2m + l)! £S 

7=1 y 

7(m+l)j^2n+2m~2j* v * "V 
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and (15) shows that (14) is also true for the natural number wi + 1. From (a) and (b), we know 
that (14) Is true. D 

1 m-\ 
Corollary 1: E(n, 2m) = ( 2 w _ 1 ) | ( 2 | g ) ! X ̂ Allim-i-ij• (16) 

Proof: From formulas (1) and (6), we have 
oo ( oo f2n \2m °o fin 

YE{n,2m)?"= I X ^ = (sec 02" = I 2 ^ 7 ^ - (17) 

Comparing the coefficients of t2n on both sides of (17), we have 

E(n,2m) = -^Eiy. (18) 

By (14) and (18), we immediately obtain (16). • 

Corollary 2: For any odd prime p, we have the congruence 

£(2) = fl (mod p) if p s 1 (mod 4), 
P " 1 "{-1 (mod/?) if/? = 3 (mod 4). 

Proof: Taking n- 0 and 2m-l = p in Corollary 1, and noting that JE"0 = £^2) = 1, (p-1)! = 
-1 (mod/?), we can get 

;=0 2 7 2 2 

= ^ > 1 + 22-42-62.82. .-(^-l)2
s£^>1+(-l) iT1 (mod/?), 

where we have used the congruence 

0 - ^ = 0 (mod/?), 7 = 1,2,...,^^-. 

Therefore, 

£(2) = j 1 (mod ^) i f P = * (mod 4) ' 
P " 1 "{-1 (mod/?) if/? = 3 (mod 4). 

This completes the proof. D 

Corollary 3: For any odd prime/?, we have the congruence 

p + l
 }Bp^l{mo&p). 

Proof: By Corollary 2 and (12). D 

Remark 3: For p = 3, the preceding congruence says that 60B4 = 1 (mod 3) while, for /?>3, 
using Fermat's little theorem, i.e., 2^ = 2 (mod/?), the congruence says that \2Bp+l == 1 (mod/?). 
These facts can be derived directly from the standard recursion for Bernoulli numbers. 
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Theorem 2: Ifp is any integer, then 

£ ( - i y ( j j ^ O ) = n\{-x-pAx)\ (19) 

where A^k\x) are defined as in Definition 1. 

Proof: We use the notation [f]h(t) to denote the coefficient of f in the power series expan-
sion at 0 of hit). Then, by the definition of A^k\x) and the binomial expansion, 

Z(-iy (j)4py)c/*)=n\[ni(-iy {^yx/(tr 
=n\[n(i-e'*f(tyy. 

If g(t) = l-e*f(ty, then #(0) = 0 and g'(t) = -ete(x/(0" + />/(0p~7'(0), so that #'(0) = 
-(x + pAx). Thus, g-(0 = -(x + pAx)t + 0(t2) and g(t)" = (-x - pAx)ntn + 0(t"+l). 

Corollary 4: lip is any integer, then 

(a) Z(-iy(5)^(^) = »!(f-*J; (20) 

(b) i(-iy(j)^o)=»!(f-*J. (2i) 
Proof: By formula (19), we immediately obtain (20) and (21), since in the Euler case 

f(t) = 21 (et +1) and in the Bernoulli case f(t) = / / (e' -1). In both cases, AQ = / (0) = 1 and 
4 = / ' ( 0 ) = - l / 2 . D 

Corollary 5: Ifp is any integer, then 

& iyy{$B^=P"-§, 

Proof: Taking x = 0 in Corollary 4, we immediately obtain Corollary 5. D 

Remark 4: By Corollary 5, we immediately obtain (2) and (3) (see [2], p. 238). 

Corollary 6: £ ( - 1 ) ' f 2 w W } - 0. (23) 

Proof: Taking x = p/2 in Corollary 4(a) and noting that Etfp = ( - I f 22nE^J){f), we 
immediately obtain (23). D 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my~dej a. com 
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1. INTRODUCTION 

Let B„ be the Bernoulli numbers defined by the expansion 

Kaneko [3] proved a recurrence formula for BnJ 

i["y)(n+j + l)B„+J = 0 (»>1), (1) 

which needs only half the number of terms to calculate B2n in comparison with the usual recur-
rence (cf. [5], §15, Lemma 1): 

Z ^ 1 ) * , ^ (»*0. (2) 

The aim of this paper is to prove the following recurrence formula that yields Kaneko's 
formula when m = n and also the usual one. 

Theorem: For nonnegative integers m and n with m + n>0,we have the formula 

± (m + l\n + J + t)B„+JH-ir"i {n+
k
l\m + k + l)Bm+k=0. 

As an application of our theorem, we can derive the Kummer congruence. The proof of our 
theorem uses the Volkenborn integral (whose properties are found in [4]). 

2. PROOF OF THE THEOREM 

Let p be a prime number and let Zp and Qp denote the ring of p-adic integers and the field 
ofp-adic numbers, respectively. For any uniformly differentiable function / : Zp —> Qp, we define 
the Volkenborn integral of/by 

J f(x)dx:=\imp-"PfjfU)-

In particular, the Bernoulli number Bn is given by the formula 

Bn = \^x"dx. (3) 

Let m and n be nonnegative integers with m + n>0. If we define the polynomial function 
G(x) on Zp by 
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G(x): = xm+l(x - \)n+l + (-l)n+mxn+l(x - l)m+\ 

then we have G'(x +1) = -G'(-x). Therefore, we have 

J G'(x + l)dx = Q 

(see [4], Proposition 55.7). To calculate the left-hand side of this equation, we writeG(x + l) in 
the form 

m± rm +1^ n+j+i / -i\w+» v (n + ^ vw+^+1 G(x+i)=2f'";1W,+(-ir-si,,if1V 
y=o \ J J k=o V / 

Applying formula (3) to the derivative G'(JC +1), we obtain 

lfM;1l(» + J>l)^y+(-l)^Zf"if1W* + l)̂ «* = 0. 
y=o \ J y k=o ^ ' 

Since J5 • = 0 for odd 7 > 1 and, hence, the terms involving Bn+m+l vanish, this gives the formula of 
our theorem. 

Remark: For a positive integer s, we consider the polynomial function 

F(x) : - xm+l(x-s- l)n+l + (-l)n+mxn+l(x-s- l)m+l 

on Zp. Then we have F(x + s + l) = F(-x). It follows from Propositions 55.5 and 55.7 in [4] 
that 

= I *"'(/) + £, F'(-x)dx 

= t.F"U)-i F'(x+s+l)dx. 
7=1 

Therefore, we obtain 

+(-irni;K+1l(^ir"(»+^+i)^+,=^^"0)-
If 5 = 1 and rn = n, then we have the formula 

fjf" + l)2^-k(n + k + l)B„+k=(-l)"(n + r) (»>1), 

which resembles the well-known formula (see [2], §15, Theorem 1) 

t(n+
k

l)r^kBk=n + \. 
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3* SEVERAL CONSEQUENCES 

We shall derive the usual formula (2) from our theorem. If m - 0, we obtain 

t-W%nil\k + l)Bk = -{n + l)Bn (n>\y (4) 

For convenience, we put 

C„:=(-inn + 2)tHl)Bk. 

It is obvious that the usual formula is equivalent to Cn = 0 for n>\. Substituting the identity 

(* + l)(»t
+') = („+2)(»;')-(„+1)(») 

into equation (4) yields 

CB + Q_1 = -(ii + l X l - ( - l ) n ) ^ . 
Since Bj = 0 for odd n>l, the right-hand side of this equation vanishes for n > 2. It is clear that 
Q = 0, hence C„ = 0 for n > 1. 

We next show Kummer's congruence 

Bn __ Sn+(p-l) 
n n + (p -1) F (mod pZp) 

whenp is a prime number with p>5 and w is an integer with 1 < n < p - 2 . Our argument is 
similar to Agoh's argument [1]. 

If m = p - 1 , the formula of our theorem is 

fl(P\n+j + l)B„JH-w£["ll)(P + l<)Bp-l+k = 0. (5) 

Note that \<n + j <2(p-X) for 0<j<p-l. From the well-known fact (see von Staudt and 
Clausen [2], §15, Corollary to Theorem 3) that 

f-1 (mod pT) ifn + j = p-l, 
pB _>_• = { ( 6 ) 
F n+J [0 (mod plp) otherwise, 

we have 

^ ( n + j + l)Bn+J^0 (modpZp) 

for 7 ^ 0 . Thus, equation (5) yields 

Applying congruence (6) to the above, we have 

(/i + l)5„ + (-l)"£ (nil)kBp_M=(-iy (modpZp). 
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We remark that combining equation (2) with (4) gives 

(tt+i)Bn=(-irift("^)(k+P-i)Bk+(-iri(p-i)B0. 

Since B0 = 1, we have 

£ Hl)(kBp_l+k-(k + p-l)Bk)^0 (modpZp). 
k=l V / 

From these congruences, we have by induction on./? that 
nBp_l+ns(j> + n-l)B„ ( m o d / ^ ) 

for 1 < n < p - 2. This yields Rummer's congruence as desired. 
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