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SOME BASIC LINE-SEQUENTIAL PROPERTIES OF
POLYNOMIAL LINE-SEQUENCES

Jack Y. Lee

280 86th Street, Brooklyn, NY 11209
(Submitted February 1999-Final Revision April 1999)

0. INTRODUCTION

There have been many reports on the properties of various polynomial sequences and their
generalizations (see, e.g., [1], [3], [4], [5], [6], and [9] and the references therein). In this paper
we shall try to treat some polynomial sequences by virtue of the line-sequential formalism devel-
oped earlier. To this end, we choose [9] as the guide of our endeavor and obtain some results of
a different variety supplementary to those appearing in the literature. In particular, we treat the
Morgan-Voyce (MV) polynomial sequences in some detail (for the origination of the MV polyno-
mials, see the references in [1]) and then apply the method to the Jacobsthal (J) and the Vieta (V)
polynomial sequences. Finally, we illustrate applications of these results with some examples.
The line-sequential treatments of at least some of the other well-known polynomial sequences are
somewhat more complicated, so these and other related matters will be discussed in a later report.

1. MV-POLYNOMIAL LINE-SEQUENCES

For convenience of reference, we recap here some of the basic conventions employed in the .
line-sequential formalism. A homogeneous second-order line-sequence is represented by
U@ b):...,uy, uy, [uy, ],y s, ..., 4,,..., n€z,u, €R, (1D
Up> ¥y
where ¢ and b, neither zero, are the anharmonic coefficients of the recurrence relation, cu,_, +
bu,_, = u,, and the symbol [u,, %] denotes the generating pair of the line-sequence (see §4 in [7]).
The set of line-sequences (1.1) spans a vector space with the pair of basis vectors:

U, o(c,b):...,(c+b%) /2, -b/c,[1,0],¢,¢h, c(c+b%), ... (1.2a)
Un 16, B):..., (c+B%) /&~ b1 3, 1/¢,[0,1], b,c+12, .. (1.2b)

(see (4.2) and (4.3) in [7]). For convenience, we describe the pair as being "mutually comple-
mentary." A general line-sequence (1.1) is then decomposable into its basis components (see
(2.9) in [7]) in the following manner:
U(e, b) =uyU, o(c, b) +u, Uy 1(c, b). (1.2¢)
LT |
A word on the nomenclature: to comply to the line-sequential format established previously,
the symbols and the names adopted here are necessarily somewhat different from some of the
corresponding ones of the polynomial sequences as they appear in the literature. However, this
will not cause any confusion, as we shall see. For convenience, we adopt the letter M to denote
the MV polynomials that are characterized by the values b = x+2 and ¢ =—1. For the generating
pair [1, 0], we then have what we call the "complementary MV-Fibonacci line-sequence," or, for
short, the M, , line-sequence:
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M o(-Lx+2):.,(x*+4x+3),x+2,[1,0], -1, - (x +2), - (x* +4x+3),....  (1.3a)

Let m,[1,0] denote the n™ term (or element) in M, 4, counting from the first member of the
basis pair as the zeroth term, that is, m[1, 0] =1, and increasing toward the right as the positive
direction. Then the parity relation will be shown later to be

m—n[lﬁ 0]= My 1, 0]. (1.3b)
Let M o(+) denote the positive branch, 720, of the M, , line-sequence, which is denoted
by {w,(1, 0; x+2, 1)} in Horadam's notation. Its coefficients table, adapted to the format employed

in [9], is given in Table 1 below. The corresponding table for the negative branch can be inferred
from Table 1 by means of the parity relation (1.3b).

TABLE 1. The Coefficients Associated with the M, ((+) Sequence

-4 -10 -6 -1
-5 =20 -21 -8 -1
-6 -35 -56 -36 -10 -1

n x* x ¥ x* x* ¥
0 ]

1 O

2 -1

3 -2 -1

4 -3 -4 -1

5

6

7

The complementary line-sequence of (1.3a) is given by
M, (-1, x+2): .., —(x*+4x+3), - (x+2),-1L,[0,1], x +2, x* +4x+3, ..., (1.4a)
which is the MV-Fibonacci line-sequence, or the M, | line-sequence for short, the positive branch
of which is called the MV Even Fibonacci polynomial sequence in [9]. Its parity relation, accord-

ing to (4.9) in [7], is given by
m_,[0, 1] = —m, [0, 1]. : (1.4b)

Clearly, M, , is the negative of one order translation from M, ,, that is,
My, =-TM, ,, (1.4¢c)
where T denotes the translation operator. In terms of the elements,
m,[0,1]= —m,,,[1, 0]. (1.4d)

Definition 1: We say that a line-sequence B is "translationally dependent” on the line-sequence 4
if and only if B can be obtained from A by means of some (harmonic or anharmonic combinations
of) translation operations on 4.

Substituting (1.4d) into (1.4b), we obtain the parity relation (1.3b) for M, .

The line-sequences M, o, and M, then form a pair of orthonormal bases spanning the 2D
MYV line-sequential vector space. Any line-sequence in this space can then be decomposed into its
basis components in the manner according to (1.2c).
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Combining the parity relations (1.3b) and (1.4b) with the translation relation (1.4d), we
obtain the following set of basis relations between the elements of the two basis line-sequences:

m_,[1,0]=m,,,[0, 1], (1.5a)

m_,[1,0] = -m_,,;)[0,1]; (1.5b)
or

m_,[0,1]=m,,[1, O], (1.5¢)

m_,[0,1] = —m_,_y[1, 0]. (1.5d)

The M, , line-sequence, the positive branch of which is named the MV Odd Fibonacci poly-
nomial sequence in [9], is given by

M, (-Lx+2):.., ¥243x+1L x+1L[L 1), x+1 x% +3x+1,.... (1.6a)
It decomposes into its basis components according to (1.2c):
Ml,l :MI,O +M0’1. (16b)
Or, in terms of the elements, '
m,[1,1]=m,[1, 0]+m,[0,1]. (1.6¢)

It is seen that the sum of the corresponding coefficients in Table 1 for M, ((+) above and Table
2(a) for M, ,(+) in [9] equals the corresponding coefficient in Table 2(b) for M, ;(+) in [9], as
can be deduced from (1.6c¢).

Applying relation (1.4c) to the component equation (1.6b), we obtain the following fransia-
tional expression of M, ; in terms of M, ,:

M,y = -T)My,, (1.6d)
where / is the identity operator of translation. In terms of the elements, we have
mn[la 1] =mn[la 0] _mn+1[1a 0] (1 66)
A look at the relevant terms in Table 1 and in Table 2(b) in [9] bears out this relationship.
Since a line-sequence in the MV space can always be decomposed into its basis components,
and since the pair of bases are translationally dependent, all MV line-sequences are translationally
dependent on either of the basis line-sequences. Since the two bases (4.2) and (4.3) in [7] for the

general case are translationally dependent, the above said property must hold in general. We state
this in the form of a theorem.

Theorem 1: All line-sequences defined in a line-sequential vector space are translationally depen-
dent on either basis line-sequence.

Applying (1.5a) and (1.5c) to (1.6¢c), we obtain the parity rule for M, ,,
m_,[L,1]=m,,[1,1], (1.6f)

_a property clearly displayed in (1.6a).
The MV-Lucas line-sequence, the positive branch of which is the MV Even Lucas polynomial
sequence according to [9], is given by

My o (FLx+2) ., ¥ +4x+2,x+2,[2,x+2], ¥’ +4x +2, X’ +6x* +9x+2, ... (1.7a)
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Applying the geometrical sequences (1.10a) and (1.10b) to the Binet formula (1.12d), see
below, and noting that aff =1, it is easy to show that the parity relation among the terms in
M, .., is given by

m_,[2,x+2]=m,[2, x +2], » (1.7b)
which is clearly displayed in the line-sequence (1.7a).

Decomposing (1.7a) into its basis components, we have

My o =2M, o +(x +2)M, (1.7¢c)
or, in terms of their elements,
m,[2, x+2]=2m,[1, 0]+ (x +2)m,[0,1]. (1.7d)
Applying basis relation (1.5a) with parity relations (1.4b) and (1.7b) to (1.7d) above, we get
m,[2, x+2]=2m, [0, 1]- (x+2)m,[0,1]. (1.7¢)
This is the MV-version of the well-known relation [, = 2f,,, - f, between the elements of the

Lucas and the Fibonacci sequences.
Applying relation (1.4c) to (1.7c), we obtain

My 2 =[21 = (x+2)TIM, . (L.79)

This is the translational representation of the MV-Lucas line-sequence in terms of its first basis.
We say the line-sequence M, ,,, is "anharmonically" translationally dependent on the basis M, ,.

The line-sequential form of M_, ;, the positive branch of which is called the MV Odd Lucas
polynomial sequence in [9], is given by

M_ (L x+2) ., = (P +5x+5), = (x+3), [-1, 1], x +3,x* +5x +5, ... (1.8a)
Its decomposition is given by
M_ 1 =-M o+ M. (1.8b)
In terms of the elements,
m,[-1, 1] = -m,[1, 0]+ m,[0, 1]. (1.8¢)

It is seen that the sum of the negative of a term in Table 1 above and the corresponding term in
Table 2(a) in [9] equals the corresponding term in Table 3(b) in [9], as can be deduced from
(1.8c).
Applying the relations (1.5a) and (1.5¢) to (1.8c), we find the parity relation for the elements
of M_;
m_ [-1,1]=-m,,[-11], (1.8d)

which is clearly displayed in the line-sequence (1.8a).
Applying the relation (1.4c) to (1.8b), we obtain the following translational representation of
M_, | in terms of the first basis M, ,,

M—'l,l = ——(I+T)Ml,0 (186)

The following set of interrelationships among the MV polynomials can be shown to hold:
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M o +M_ =M, (1.9a)
M+ My =2M, (1.9b)
My +M =M, (1.9¢)
(x+2)M, ,~xM, o= M, .,; (1.9d)
and so forth.
The pair of geometrical line-sequences relating to M, , is given by
M, ,(-Lx+2):..,a? a’\[Lal,a% a’, ..., (1.10a)
and
M, 4(-1,x+2): LBLBLILAL AP, (1.10b)
where
a=[x+2+(x2+4x)V?]/2, B=[x+2-(x*+4x)"?]/2 (1.11a)

are the roots of the generating equation
q*-(x+2)q+1=0. (1.11b)

Since M, , and M, z also form a pair of orthogonal (but not normal) bases of the MV vector
space (see §3 in [8]), any MV line-sequence can be expressed as a linear combination of its M, ,
and M, ; components, which, in a manner of speaking, is just its Binet formula.

Generalizing relation (4.9) in [8] and applying basis decompositions in terms of M, , and
M, g, we obtain the following set of Binet's formulas for the family of MV line-sequences:

M, =M, +aM, g)/(a-P); (1.12a)
My =M, o~ M, g)/ (a-p); (1.12b)
M, , :[(l—ﬁ)Ml,a—(l_a)Ml,ﬂ]/(a—,B); (1.12¢)
My i =My o+ M, g; (1.12d)
M_,, =[A+PHM, , - A+ )M, g]/(a-p). (1.12¢)

Notice that the form of the Binet formulas (1.12b) and (1.12d) justifies our identifying them
as the MV-Fibonacci and MV-Lucas line-sequences, respectively, consistent with works in this
area; and as a cross check, multiplying (1.12b) and (1.12d), we obtain, in terms of the elements,

m,[0,1]m,[2,2 +x]=m,,[0, 1], (1.13)

which is the MV version of the well-known relation f,/, = f,, between the Fibonacci and Lucas
numbers.

Since, by Theorem 1, a line-sequence can always be translationally represented in terms of
either of its bases, and since its basis can always be expressed in terms of the geometrical line-
sequence, namely Binet's formula, a line-sequence can always be expressed in terms of the geo-
metrical line-sequence which, naturally, is referred to as its Binet formula. Formulas (1.12¢) and
(1.12¢) are such examples. We state this in the form of a theorem.

Theorem 2: All line-sequences defined in a line-sequential vector space are expressible by means
of their respective Binet formulas.
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2. THE JACOBSTHAL POLYNOMIAL LINE-SEQUENCES

The Jacobsthal (J) polynomial sequence is characterized by the parameters =1 and c=x.
(Here, we adopt the convention used in [9]; for another convention used by Horadam, see [4].)
The basis pair is given by

o6, D, = 2x 7 +x ), x 7 x T - [0, 10, %, x, x4+ x, 26 4 (2.12)
JoaGe, Do, = @x7 +x7), x4 =7 w7 [0,1], L x +1, 2% + 1, ., (2.1b)
where the first one will be referred to as the "complementary J-Fibonacci line-sequence” or Jj ,
line-sequence for short; the second one is the "J-Fibonacci line-sequence," or J, ; line-sequence

whose positive branch is called the J-Fibonacci sequence in [9]. The pair then span the 2D J line-
sequential vector space. Obviously, the two basis line-sequences are related translationally,

) o=xJ 1, (2.2a)
or, in terms of the elements,
Junll, 01=x/,[0,1]. (2.2b)
The parity relation of the terms in J;  can be shown to be
Jo[L, 0] = (=1y™*2x~(+D; 11, 0]. (2.32)
According to (4.9) in [7], the parity relation for terms in .J; ; is given by
Ja[0,11=(=)""x"j [0,1]. (2.3b)

Substituting the translation relation (2.2b) into (2.3b), we get (2.3a).
Using these parity relations with the translation relation, we obtain the following set of rela-
tions between the elements of the two basis line-sequences:

j—n[ls O] = (_x)~njn+1[0’ 1]’ (243)

JonlL, 01 = %j_(p)[0, 1]; (2.4b)
or

Joal0, 1= (=)™, 01, 0], (2.4c)

.j-n [0) 1] = x_lj—(n—l)[l’ 0] (24d)

The coefficient table of J; o(+) is given in Table 2 below.

TABLE 2. The Coefficients Associated with the J; ((+) Sequence

0 1 2 3

n x x x x
0 1

1 0

2 0 1

3 0 1
4 0 1 1
5 0 1 2
6 0 1 3 1
7 0 1 4 3
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The J-Lucas line-sequence is given by
S, D, =37 =X 2 e x 7 [2, 1], 2% + L, 3x+ L, 2% +4x+1, .., (2.52)
which is a linear combination of the basis line-sequences (2.1a) and (2.1b),
Jr1=2J1 0+ (2.5b)
or, in terms of the corresponding members in these line-sequences,
Jal2, 1= 2,11, 0]+ /[0, 1]. (2.5¢)

It is seen that the sum of twice a term in Table 2 for J) o(+) above and a term in Table 4(a), for
Jo,1(+) in [9] equals the corresponding term in Table 4(b) for J, ;(+) in [9], as can be deduced
from relation (2.5¢) above.

From the Binet formula (2.8¢c) below, using (2.62) and (2.6b), noting that aff=—x, we
obtain the following parity relation for the J-Lucas line-sequence:

j—n[za 1] = (——l)nx_n.jn[za 1] (25d)

Applying parity relation (2.5d) and relations (2.4a) and (2.4¢) to the component equation
(2.5c), using the translation equation (2.2b), we obtain

jn[z’ 1] =2x" jn+2 [L O]_ jn[oa 1}, (258)

which is the J-version of the relation /, =2f,., - f,,.
Applying the translation relation (2.2a) to the basis component equation (2.5b), we obtain the
translational representation of the J-Lucas line-sequence in terms of the J, , basis,

a result consistent with the statement of Theorem 1 above.
The pair of geometrical line-sequences relating to J , is given by

S et o [Lal e o, (2.6a)
D6 ), B2 B7L1LBL BB (2.6b)

where
a=[1+1+4x)"?1/2, B=[1-(1+4x)V?]/2 (2.7a)

are the roots of the generating equation
g>-q-x=0. (2.7b)

Here, considering the muiltitude of recurring polynomial sequences which may be treated in this
manner, we retain the use of the same pair of letters « and # to represent the roots of the respec-
tive generating equation of each case, rather than adopt a new pair of letters each time for each |
case; while the pair of letters A and B remains reserved for representing the large and the (nega-
tive) small golden ratios.

Then an arbitrary J line-sequence can be expressed in terms of .J, , and J; 4. In particular,

Ji0=Ph o +ad g/ (a-pB), (2.82)

which is Binet's formula for the complementary J-Fibonacci line-sequence, and
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Jo1= e~ p) (@ P), (2.8b)
which is Binet's formula for the J-Fibonacci line-sequence, and
D=t p (2.8¢c)

which is Binet's formula for the J-Lucas line-sequence.
It is easy to see that

.jn[oa l] jn[za 1] = j2n[07 1}7 (29)
which is the J-version of the basic relation f,/, = f,,.

3. THE VIETA POLYNOMIAL LINE-SEQUENCES

The V-polynomial sequence is characterized by the parameters » = x and ¢=—1. Observing
that, if we put x+2 = x’ for the MV-polynomials, then the latter will be line-sequentially equiva-
lent to the V-polynomials. Therefore, the line-sequential relations of the V-polynomials can be
obtained directly from the corresponding ones of the MV-polynomials. For convenience of refer-
ence, however, we compile the following essential relations for the V-polynomials.

The basis pair of the V line-sequences is given by

VoL %), = (2x-x%), - (1-x%),%,[L 0], -1, -x,1-x*, 2x - x°, ., (3.1a)
Vor(-Lx):...,2x = x*, 1-x%, —x, - L[0, 1], x, - (1- x*), - (2x - x°) ..., (3.1b)
where the first one is the complementary V-Fibonacci line-sequence, or V|, line-sequence for

short; the second is the V-Fibonacci line-sequence, or V} | line-sequence for short. This pair spans

the 2D V line-sequential vector space.
Obviously, we have the following translational relation between the two basis line sequences:

Vor=—1", (3.2a)

or, in terms of the elements,
v.[0,1]=—v,.,[1, 0]. (3.2b)

The parity relation of the elements in ¥} , is found to be
v_,[1,0]=-v,,,[10]. (3.39)
From (4.9) in [7], the parity relation for the elements in V{, ; is found to be
v_,[0,1]=~-v,[0,1], (3.3b)

which is clearly borne out in (3.1b). Applying (3.2b) to (3.3b), we obtain (3.3a).
Using these parity relations together with the translation relation (3.2b), we obtain the fol-
lowing set of relations between the elements of the two basis line-sequences:

V_,[L 0] =v,,,[0, 1], (3.4a)

v_,[L, 0]=-v_,,y[0,1]; (3.4b)
or

v, [0, 1= 7,11, 0], (3.40)

v_,[0, 1] = —=v_,_[1, 0]. (3.4d)
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This set of relations parallels exactly the set for the MV line-sequences, namely, from (1.5a) to
(1.5d), as it should be.
The coefficient table of V| ((+) is given in Table 3.

TABLE 3. The Coefficients Associated with the V] ,(+) Sequence

n x* x x* ¥ x* ¥
0 1

1 O

2 -1

3 0 -1

4 1 0 -1

5 0 2 0 -1

6 -1 0 3 0 -1

7 0 -3 0 4 0 -1

The coefficient table of xV; ;(+) =V, (+) is given in Table 4.

TABLE 4. The Coefficients Associated with the V ,(+) Sequence
o L 2 3 4 5 6 7

n x x x* x x x x x
0 0

1 0 1

2 0 0 1

3 0 -1 0 1

4 O -2 0 1

5 0 1 0 3 0 1

6 0 0 3 0 -4 0 1
7 0 -1 0 6 0 -5 O 1

The V-Lucas line-sequence is given by
Va e (L %), —x(3— %), - (2= x%), x,[2, x], - (2— x?), - x(3 - x?), ... (3.52)
The coefficient table of V, . (+) is given in Table 5.

TABLE S. The Coefficients Associated with the V, .(+) Sequence

n xX* ¥ x ¥ x¥* x¥ x X

2
0 1
-2 0 1
0 -3 0 1

2 0 -4 0 1
0 5 0 -5 0 1
-2 0 9 0 -6 0 1
0 -7 014 0 -7 0 1

NA N EWDN O

The decomposition of V, , into its basis components is given by

Vax =20 + XV, (3.5b)
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or, in terms of the elements,
v,[2, x]=2v,[1,0]+xv,[0,1]. (3.5¢)
It can be seen that the sum of twice a coefficient in Table 3 and the corresponding coefficient

in Table 4 equals the corresponding coefficient in Table 5, as can be deduced from (3.5c).
The parity relation among the terms of 7, | is obtained from (1.7b):

v_[2,x]=v,[2,x], (3.62)
which is apparent in (3.5a).
The V-version of the relation /, =2 f,,, — f, is obtained from (1.7¢):

v,[2, x]=2v,,,[0,1]-xv,[0,1]. (3.6b)

The translational expression of V, , in terms of ¥} , is obtained from (1.7f):

Vo, x = @RI=xT)V,,. (3.6¢)
The pair of geometrical line-sequences relating to V] , is given by
K,a(_l’ x) cet a_z’ a_la [1, a]a a2, a3, AERS] (37a)
MpGLx), B2 B BL AL B (3.7b)
where
a=[x+(x*-4"21/2, B=[x-(@*-4"*]/2 (3.8a)
are the roots of the generating equation
q*—xq+1=0. (3.8b)
Hence, the Binet formula for the V|  line-sequence is given by
Voo=(PNataVp)/(a-p), (3.9a)
the Binet formula for the V{ ; line-sequence is given by
1= p)/(@=p), (3.9b)
and the Binet formula for the V-Lucas line-sequence is given by
Ve =Via Vg (3.9¢)
Obviously,
v,[0,1]1v,[2, x]=v,,[0, 1], (3.9d)

which is the V-version of the relation £,/ = f,,.

4. SOME APPLICATIONS
We illustrate the application of the foregoing results with a few examples.

Example 1: For the MV-Lucas line-sequence, by the rule of line-sequential addition, we have
My o+ My g =M, 5.

Using translation relation (1.4c), we obtain (T'—T"")M, , = M, ,,. So, in general, we have
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(I™'=T"YMy ,=T"M, .., (4.1a)

This is the translational representation of the MV-Lucas line-sequence in terms of its second basis.
In elements form, this becomes

M1 [0, 11— m, [0, 1= m,[2, x +2], {4.1b)

which is the MV-version of the well-known relation between the Fibonacci and the Lucas

numbers f,, + £, =1,.
Applying parity relation (1.4b) to (4.1b), we obtain

m_(n__l) [O, l] - m_(n_H) {0, 1] - mn [2, X+ 2] (4' 10)
or
(DTN, | = TM, s, @.1d)
which is the negative transiational representation of the MV-Lucas line-sequence. From (4.1d), it
can easily be inferred that
(IO + TR = ()T, (4.1¢)
which is the negative translational representation of the Lucas line-sequence. Therefore, in terms
of the elements, we obtain the expression of the Lucas numbers in terms of the Fibonacci numbers

with negative indices, i.e.,

Sonery + Sy = (D7, (4.19)
which is a particular case of equation (2.16) of Horadam [2].

Example 2: For the J-Lucas line-sequence, we have J; ;+J; o = ./, ;. Using translation relation
(2.2a), we have [T+xT"']J, , = J, ;. Hence, we obtain

[Tn+l+xTn-l]J0’1 = TﬂJ2’l. (42a)

This is the translational expression of the J-Lucas line-sequence in terms of its second basis. In

the elements form, we have
'jn+l [O’ 1] + xjn—-l [09 1] = jn[2: 1]7 (42b)

which is the J-version of the relation f,, + f,_, =/,.
Applying parity relation (2.3b) to (4.2b) and using the translation operation, we obtain

)" (T D4 Ty Jo =T, (4.2¢)

which is the negative translational expression of the J-Lucas line-sequence in terms of its second
basis.

Example 3: For the V-Lucas line-sequence, we start with V]  +V] =V, .. Using translation
relation (3.2a), this becomes (7' — 7Y, ; =V, ,. Hence, we have

(=T, = T, . (4:32)
This is the translational representation of the V-Lucas line-sequence in terms of its second basis.

In the elements form, we find that
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vn+l [07 1] - vn—l [Oa 1] = Vn[27 X], (43b)

which is the V-version of the relation f,,, + f,_, =1, .
Applying parity relation (3.3b) to (4.3b) and using the translation operation, we have

(T 70D =TV, (4.3¢)

which is the negative translational expression of the V-Lucas line-sequence in terms of its second
basis.
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ON THE FACTORIZATION OF LUCAS NUMBERS
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1. INTRODUCTION

If an integer is not a prime, then it can, of course, be written as the product of two integers,
say r and r + k. In the case of the Lucas numbers, Z,, it has been shown that the two factors may
differ by O (that is, , is a square) only if »=1 or 3 [1], [3], may differ by 1 only if n=0 [4], [5],
and may differ by 2 only if n =42 [6].

It is well known that I2—5F? =4(-1)", where F, is the n™ Fibonacci number, so if L, =
r(r +k), we have an equation of the form x*+2kx® +x?%k%+4 =5y%. Since the left side has 3
distinct zeros, the number of solutions of this equation is finite, by a theorem of Siegel [7];
further, by a theorem of Baker (see [2]), |x| and |y| are effectively bounded. Hence, for a given £,
the number of integers » such that L, =r(r + k) is finite, but the known bounds are extremely
large.

We shall show that, if L, =r(r + k) for £ =1,6,7,8,17,18, 19, or 24 (mod 25), the number of
solutions is bounded by one-half the number of positive divisors of [£2—8| or |k? +8|, and we
provide an algorithm for finding all solutions. In each case,

- 2log((k2 +9)/4)
log((1++/5)/2)

For certain infinite sets, e.g., ¥ =8 (mod 100), we show that no solutions exist. When £ is even,
L, =r(r+k) is equivalent to L, =x*—(k/2)?, so our results extend Robbins' result [6] on the
solutions of , = x* — 1 to the difference of two squares in infinitely many cases.

We write O for "a square," 7 is the usual "number of divisors" function, (a|b) is the Jacobi
symbol, and we will need the following familiar relations. Let g, m, n, and 7 be integers, 7 odd.

Ly,=L-2(-1)% and F,,=F,|L, €))

L—n =(- l)nLn and E—n = (_1)n+lF;” )

2L, = L,L,+5F,F, (©))

L. = 2 (mod?8) ?f3|m and u > 1, @
Z'm -1 (mod8) if 3fm and u>2,

L2g1+m = iL2g+m (mOd LZg)- (5)

2. L, AS THE PRODUCT OF TWO FACTORS DIFFERING BY &

We assume, without loss of generality, that £ is positive, and note that L, = r(r + k) for some
r implies that 41, +k* =01

Lemmal: Let L =r(r+k). If k =+11 (mod 3-25-41), then n= 0 (mod 4).
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Proof: Let k =+11 (mod 3-25-41). We find that 4L+ is a quadratic residue modulo 25
only for n=0,1,4,8,9,12, or 16 (mod 20); if 7 is odd, then n=1,9,21, or 29 (mod 40). ‘Now,
the Lucas numbers are periodic modulo 41 with period of length 40, and 4L, +k? is a quadratic
nonresidue modulo 41 for n=9, 21, and 29 (mod 40), and is a quadratic nonresidue modulo 3 for
n=1(mod 8). It follows that 4L+ 4% =0 only if n=0,4, 8,12, or 16 (mod 20); that is, only if
n=0 (mod 4).

Let

S, ={k|k=1619, or 24 (mod 25)},

S, ={k|k=7,8,17, or 18 (mod 25)},
and

S ={k |k ==£11(mod 3-25-41)}.

Theorem 1: Let k € §; U S, US;. The number of nonnegative integers » for which Z, = r(r + k)
is less than or equal to 7(k*—8)/2 if k € §;US,, and less than or equal to (k> +8)/2 if k € S,.
If L,=r(r+k), then
< 2log((k*+9)/4)
log((1++/5)/2)

Proof: Assume that I, = r(r +k); then 4, + k% = 0. The quadratic residues modulo 25 are
the integers in 7= {0, 1,4, 6,9,11, 14,16,19, 21, 24}.

We find that, for each integer & in S,, 4L, +k* = an element of 7 (mod 25), precisely when
n=0,4,8,12, or 16 (mod 20); combining this with the result of Lemma 1, we have L, =r(r +k)
for each integer k in S; U S, only when n=0 (mod 4). And, for each integer kin S, 4L, +k?=
an element of T (mod 25), precisely when n=2,6,10,14, or 18 (mod 20), i.e., only when n=2
(mod 4).

Let n=2¢. Now, L, = r(r + k) implies that there exists an x such that x> =4L, + k2, so, by
(1), we have x? — (2L,)* = k> —8(-1)'. Hence, there exist divisors ¢ and d of k* —8(~1)’ such that
x+2L =c and x—2I, =d, implying that L, =<<. Since, for a given pair (c,d) of divisors of
k% —8(-1)', the system has at most one solution; there exist at most z[k*—8(~1)']/2 integers n
for which L, =r(r +k). Taking ¢ even or odd for the two cases, respectively, proves the first
statement of the theorem.

It is well known that I = " + 8", where o= (1++/5)/2 and B=(1-+/5)/2. Let s=[k*-
8(—1)' —1]/4. Since a'-1/a' =o'+ = L, =<2 <s, we readily obtain a' < (s++/s>+4)/2
If k =1, it is easily seen that n=0, and if £ # 1, then &’ <[s+(s+1)]/2. One obtains a relatively
simple bound upon taking the logarithm of each side of a' <s+21, replacing # by n/2 and
replacing s by the larger of its two values.

Lemma 2: If k =0 (mod 4), then L, =r{r + k) only if  is odd.
Proof: Let k =4t, and assume that, for some m, L,,, =r(r+4k). Then
L, +4t* =r? +4rt + 442 =00,

implying ,,, =0 or 1 (mod 4), contrary to (4).
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We now exhibit several infinite sets of integers & such that L, does not have the form r(r + k)
for any n.

Theorem 2: Let S ={k|k =8,24,32,44,56,68,76,92 (mod 100)}. If k €8, then L, #r(r+k)
for any n.

Proof: Let k € § and assume, for some #>0 and some integer r, that L, =r(r+%k). By
Lemma 2, n is odd. However, each element of S is in S, .S, and, as noted in the proof of
Theorem 1, 4L, +k? is a quadratic nonresidue for 7 odd.

Corollary: There exist infinitely many primes p such that L, does not have the form r(r +4p) for
any n.

Proof: The sequence {2+25b} contains infinitely many primes p and, for p =2+25b, we
have 4p = 8 (mod 100).

3. L, AS THE DIFFERENCE OF TWO SQUARES

The proof of the following theorem is immediate upon writing x* —m? as r(r +k) with
r=x—mand k =2m.

Theorem 3: The equation L, = x* —m?
a) isimpossible forall n>0if m=4,12,16,22 28,34, 38, or 46 (mod 50),
b) has at most 7(4m”> —8)/2 solutions if 2m € §,, and
c¢) has at most t(4m? +8)/2 solutions if 2m e S, U S,

and, if L, = x> —m?, then
ne 2log(m? +9/4)
log((1+~/5)/2)"

In practice, for a given m, one may find the values of » such that L, = x* —m? by proceeding
as in the proof of Theorem 1: simply write L, , = << for all pairs (c,d), c=d (mod 4), of factors
of |4m? —8(~1)"?|, and find n. We can now readily obtain the values of » for which _=x?—m?
for all m such that 2m =k € §; U S, US,;. Notice that L_, is the difference of two squares iff L,
is the difference of two squares, since L_, =+, .

By way of example, if m=3, then 2m=6¢€S,, 4m* -8(-1)"*=28, and L,, =< for
(c,d) = (14,2); hence, L, =3, and we conclude that L, = x> 3% only when n=+4 (L,=7=
42 -3%),

It may be noted that we now know the values of n for which L, = x? —m? for m=1,3, and 4,
and can determine the n for many larger values of m. In order to close the gap between 1 and 3,
we shall prove that L, # x* — 2% for any n. Unlike the cases considered above, this case presents a
difficulty that precludes the possibility of establishing a bound on 7 for all £ =2m =4 (mod M) for
any M.

Lemma 3: 1f 3] g, then Ly 3= 5F,, (mod L,,).
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Proof: We note first that Fi; =2. By (3),
209043 = LogLia+ 5K Fin = 10F,, (mod L,,).
Since 3/ g, L,, is odd, and the lemma follows.
Lemma 4: 1f 3| g and tis odd, then (Lyy43+4 | Ly,) = 5Fy, +4| Ly,).
Proof: By (5) and Lemma 3,
(L2g1i3+4 [LZg) = (iLZgi'3+ 4 ILZg) = (SF‘Zg +4 ILZg) or (—.SF‘Zg +4 !LZg) .
We prove that these latter two Jacobi symbols are equal by showing that their product is +1:
(5Fyg +4|Lyg) (-5F;5 +4|Lyg) = (16-25F, |Ly,)
= (16—5(L22g—4) [Ly)=(36]L,)=+1
ifuisoddandm=1, or

Lemma 5: Let u=>4. Then 5Fyu, +2Lu,=~1 (mod8) 5. .
ifuisevenand m=5.

Proof: Let m>0. By (1) and (4),
E

2%m

= szu-sz2u~2 m‘Lz”"m = Lyu-,, = F2u-4m A E;m or .E;m (mod 8),

depending on whether u is even or odd, respectively. Using (4), F; =21, and F,, = 6765 proves
the lemma.

Theorem 4: No term of the sequence {L,} is of the form x* - 4.

Proof: Assume L, =x*-4. By Lemma 2, we may assume that 7 is odd. Now 0= L, +4
modulo 25 only if #=13 or 17 (mod 20), and modulo 11 only if n=5,7,9 (mod 10). It follows
that n=1 (mod 4) and n= -3 (mod 5). For n=1 (mod 4), 0= L, +4 modulo 7 and modulo 47
only if n= -3 or 13 (mod 32). However L, +4 has period of length 64 modulo 2207, and 13 and
45 are quadratic nonresidues modulo 64; hence, n=-3 (mod 32). Combining this with n= -3
(mod 5), we have n= -3 (mod 5-32).

Letn=2gr—3, withfodd, g=2"ifuis odd, and g=2"-5 ifuis even (u > 4). We shall use
(1), (4), Lemma 5, and the following observation:

2Ly, =L} ~2) =20, +50, - [, =5F} + I, (6)
By Lemma 4,
(Z’n +4 l ng) = (SF‘Zg +4 ] ng) = (SFég +2(L2g_ LZg) | L2g) = (S‘Fég + 2ng |L2g)
= (Lg | L2g)(5F:g +2Lg !LZg) = _(LZg | Lg)(_l)(L2g |5'F:g +2Lg)
= (L - 2| L)(2|5F, +2L,)(2L,, |5F, +2L,)
= (-1|L)(SF} + L% |5F, +2L,) [by (6)]
= —(45F7 —(25F; —4L}) |5F, +2L,) = —(5|5F, +2L,)
= ~(5F, +2L, 19 =~ |S)(L 19 = (L, 19).
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Since Lg=47=2 (mod 5), by (1), L=2 (mod 5), and, by induction, L,.=2 (mod 5).

Similarly, L,,=15127=2 (mod 5), implying L,.;=2 (mod 5). Hence, (L |5)=(2]|5)=-1, a
contradiction.
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1. INTRODUCTION

Let MIS stand for the maximal independent set of vertices. Denote the number of MIS of G
by M. Sanders [1] exhibits a tree p(P,), called an extended path, formed by appending a single
degree-one vertex to each vertex of a path on n vertices, and proves M,p)=F,,,. In this paper
we introduce a new class of graphs, called star-like ladders, and show that the number of MIS in
star-like ladders has a connection to the Fibonacci numbers. In particular, we show that M, =
2F,,;, where L, is the ladder with p squares.

Remember that the ladder L,, p 21, is the graph with 2p+2 vertices {u,,v,|i=0,1,..., p}
and edges {wu,,vv,,|1=0,1,..., p-13u{uy,[i=0,1,.., p}. Two end edges of the ladder L,
are the edges joining vertices of degree 2.

The graph obtained by identifying an end edge of ladder L, with an edge e of a graph G is
denoted by G[e, p]. For the sake of completeness, we will put Gle,0]=G. If p,, ..., p, €N and
e, ..., ¢, are the edges of G, then we will write G[(e,, ..., e,), (p,, ..., ;)] for Gle,, pi1...1e;, p.].
The star-like ladder SL(p,, ..., p,) is the graph K, [(e, ..., ), (p,; ..., D;)], where e is the edge of
K,. We have that L, = SL(p)=K,[e, p], peN.

2. MIS IN GRAPHS WITH PENDANT LADDERS

Graph G has pendant ladders if there is a graph G*, the edges ¢, of G* and p, €N, i=1, ...,
k, k=1, such that G=G"[(e,,..., ), (P, ..., p,)]. In the next lemma, we give the recurrence
formula for M; when G has pendant ladders.

G[eap - 3]

B D F |

FIGURE 1. The Graph Gle, p]

Lemma 1: If e is an edge of a graph G and p e N, p >3, then

Mpe, ) = Mo, piy + Maye, p-2)- 1)

Proof: Let Mbe MIS in Gle, p]. Then, for every vertex v of G[e, p], either v € M or v has
a neighbor in M, otherwise, M U {v} is the independent set of vertices properly containing A7,
Further, exactly one of vertices 4 and B (see Fig. 1) belongs to M. Obviously, M cannot contain
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both 4 and B, but if M contains neither 4 nor B, then from above it must contain both C and D,
which is a contradiction.

Suppose that A € M. Then M —{A} is MIS in G[e, p—1] or G[e, p—2], but not both. For
every MIS M’ in G[e, p—1] containing D, we have that M’ U {4} is MIS in G[e, p]. If D¢ M,
then ' e M and M —{A} is MIS in GJ[e, p—2]. Also, for every MIS M’ in G[e, p— 2] contain-
ing F, we have that M’ U {4} is MIS in G[e, p]. Similar holds if B € M. Since every MIS in
Gle, p—1] contains exactly one of C and D, and every MIS in G[e, p— 2] contains exactly one of
E and F, we conclude that (1) holds. O

Let j; denote the i coordinate of the vector j.

Theorem 1: If e, ..., e, are the edges of a graph G and p,, ..., p, € N\{1, 2}, then

k
MG [(el 5 € )’ (pl s Pk )] = Z [H Fpi -3+ji ) MG [(el 5w €f )’ J] . (2)

jef1,23% \i=1
Proof: First we prove (2) for k =1 by induction on p,. If p, =3, then
Moo, 3 = FoMgpe, 2+ FiMgy,, -
Supposing that (2) is true for k =1 and all p; < p for some p, we have that
Maie, p1 = Maie, p-11 + Mote, p-2)
= (FpyMgie, 0 + FpsMgpe, 1) + (FpasMgie, 2y + FpeaM1e, 1)
=By Mo, 2+ FpaMora, 11
Now we prove (2) by induction on k. Suppose that (2) is true for some k¥ =7 and for all p,, ...,

pn EN\{L 2} Let p=(pl"":pm pn+1)’ plz(pl""’pn)’ and €= (eb""en’enﬂ): e,=(el’ ""en)'
We have that

n
Mg, 1= Moo, pltenn poi1 = 22 (HFP,—%J;)MGtezﬂlem,pM,]

jef 2y \i=l

n
= > (H@i-w)@m—lMG[eujneM..zl+ E, -2Maie, e, 1)

je{l, 23" \i=1

n+l ,
= X (155 | Mo o
jef, 23! =1

If we define Fy=F,—F, =0 and F,=F —F,=1, then we can drop the assumption that
p;#1,2,i=1,..., k in the previous theorem.

3. MIS IN STAR-LIKE LADDERS

Theorem 2: If p,, ..., p, €N, then

k k
Mg .. = @ =D F, +2
i=1

Fpi+l
1

i=
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Proof: Let j €{1,2}* with j, coordinates equal to 1, and jj,, coordinates equal to 2. We
prove that
My e =2 +2:2'0 -2, ®3)

where e is the edge of K,. Let M be MIS of K,[(e, ..., e), j] (see Fig. 2). If X e M, then 4 e M
fori=1,..., jq, and either C; e M or D, E; e M fori=], -.» Jzy- Similar holds if ¥ € M, and
this gives 2-2’® MIS of K,[(e, ..., e), j1. If X,¥ ¢ M, then either 4 € M or B, e M for i =1,
...» Joy and either C,, F; e M or D,, E; e M fori=1,..., ji,), giving 2* possibilities. Here we must
exclude sets {4,,...,4,,,D,E,,...,D;,, E;, }and {Bl,...,Bj(l),Cl,Fl,...,C F; } which are

Jay? Jay> T J@ Vi
not MIS, and so it follows that (3) holds. Now

k
Mg p,, .0 = z (HF i-3+fi]MKz[(e,...,e>,fl

Jjeft,25% \i=1

- z (ﬁFpi—3+j,.)(2k+2'2j(z)—2)

jefl, 23 \i=1

k k
i=1 i=1

k k
=@ -)[1IF, +2[1F,.. o
i=1 i=1

FIGURE 2. The Graph K,[(e,...,€),(1,...,1,2,...,2)]
As an immediate consequence, we get
Corollary 1: 1If p €N, then MLp =2F,,.
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1. INTRODUCTION

Let Z and R (C) denote the ring of the integers and the field of real (complex) numbers,
respectively. For a field F, we put F* = F\{0}. Fix 4 € C and B € C*, and let £(4, B) consist
of all those second-order recurrent sequences {w,},.y of complex numbers satisfying the recur-
sion:

W =Aw,—Bw,_, (ie, Bw,_ = Aw,-w,,,) forn=0+1,%2, ... )

For sequences in $(4, B), the corresponding characteristic equation is x? — Ax+ B =0, whose
roots (A++ A*—~4B)/2 are denoted by czand 5. If 4 € R* and A = 4>~ 4B >0, then we let

_ A-sg(HVA A+sg(AVA
2 2

and f= 2

where sg(A)=1 if A>0, and sg(4)=-1 if 4<0. In the case w, = aw,, it is easy to see that
w, = a"w, for any integer n. If 4=0, then w,, =(-B)"w, and w,,; = (-B)"w, for all neZ.
The Lucas sequences {u,},.7 and {v,},.7 in L(4, B) take special values at n =0, 1, namely,
=0, =1, vy=2,v,=4. 3)
It is well known that
(a-Pu,=a"-p" and v,=a"+p" fornel. €
If A=1 and B =-1, then those F, =u, and L, =v, are called Fibonacci numbers and Lucas num-

bers, respectively.
Let m be a positive integer. In 1974, L. J. Good [2] showed that

i 1 _ 3~——Fz"'*‘ ie. mz—l———(ﬁl)y = Py
n=0 F;n P;,,, n=0 F‘2n+1 F‘Zm

V. E. Hoggatt, Jr., and M. Bicknell [4] extended this by evaluating >, Fk”;,, , where k is a posi-

tive integer. In 1977, W. E. Greig [3] was able to determine the sum 2], u]:;,, with B=-1; in
1995, R. S. Melham and A. G. Shannon [5] gave analogous results in the case B=1. In 1990,
R. André-Jeannin [1] calculated X, 1/ (uy,,¢,41y) and X711/ (Ve (nery) in the case B=-1 and

* This author is responsible for all the communications, and was supported by the Teaching and Research Award
Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, and the National Natural Science
Foundation of the People's Republic of China.
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2k, using the Lambert series L(x) =2, x"/(1-x") (|x|<1); in 1995, Melham and Shannon
[5] computed the sums in the case B =1, in terms of « and S.

In the present paper we obtain the following theorems that imply all of the above.

Theorem 1: Let m be a positive integer, and f a function such that f(#) € Z and w 7y = 0 for all
n=0,1,...,m. Then
-1 RS f(0)
B Uy _ B -1

W, W W W ? ®)
m=0 WrmWr(n+1) F@Yf(m)
where Af (n) = f(n+1)— f(n). If w, # aw,, then
ey 220 By 1 (o0 aaf®) ©)
=0 Wrmy \ W1~ o Wy W1 = OWo\ Wy (o) W (m)

Theorem 2: Suppose that A, BeR" and A= A4*-4B>0. Let f:{0,1,2,..} > {keZ:w, #0}
be a function such that lim,_, ., f(n) =+0. If w; # aw,, then we have

) f(n)
$ B Puyy _ af©
=0 WrmWr(n+1) (W1"awo)wf(0) )
_ [ 207 B Puy,
n=0 Wr(m \ W1~ QW We(n+1)

In the next section we will derive several results from these theorems. Theorems 1 and 2 are
proved in Section 3.

2. CONSEQUENCES OF THEOREMS 1 AND 2
Theorem 3: Let k and / be integers such that w,,,, #0 forall #=0,1,2,.... Then

m-1 Bkn u
wy =—Mm _ forallm=1,2,3,.... ®)
1=0 WinttWkne)+t  WiWim+i
If A,BeR", A>>4B, k>0, and w, # aw,, then

© uk Bkn+l B al

= ©)
20 WenstWrmeys (W1 — W)W,
and
© k\n k\n
- -B 1
> (255 - g p L |- (10)
7=0 Winti Wine Wi (n+1)+1 W,

Proof: Simply apply Theorems 1 and 2 with f(n) =kn+1.

Remark 1: When B=1, I=k, and {w,} ={u,} or {v,}, Melham and Shannon [5] obtained (8)
with the right-hand side replaced by a complicated expression in terms of « and /.

Theorem 4: Let A, B cR* and A= A*>—4B>0. Then, for any positive integer k, we have
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& (-BYy JA o 2%
z=: Uiy (nv1) Z +se(4) _(4L (B”‘ ) 2L (01;_")) (11)
and
S _(___Eklf_ _sg(4) 8k ot el
nz=1 VinVk(n+1) - JA (u2k u, (4L(B4k) 4L (BZk )+ L( )D (12)

Proof: Clearly, |a|<|B| and B-a =sg(AWA. Thus, u,=(f"-a")/(f~a) and v, =
a” + " are nonzero for all ne Z\{0}. Obviously 4, —auy=1 and vj—avy=A-2a=pf-a=
sg(A)VA . Applying Theorem 3 with /= k and Wotnez = {U,} ez OF {V,},e7, We then obtain |

i (u (_Bk)n 2(__ak)n):gli

m=1 \ Utk (nan) Ui L
and
i(u (-Bty" 2 (- )Jz A
n=1 ¢ VienVk(n+1) sg(A)JK Vin sg(A)\/K
Clearly, :
S (a = a) _ (@HCTT)
I I e e T
_ (a/p)” (alp)”
e ? Ty ey
ol el 45)
Ifjx| <1, then
o0 n n xn
;(—1) 1+ Z 1+x*" ; 1+x"
x4n 0 x" 2x2n
—22(1 ¥ 1-x* )_El(l—x”_l—xz")
=2L(x?) - 4L(x*) - L(x) + 2 L(x?) = -4 L(x*) + 4 L(x*) - L(x).
Thus, Z( &Y S ety ié])" @/ By
n xak”+ﬂ’°" o 1+(a/py*

4k 2k ak
-ar{ e Jear{ )15
8 4k 2k
4L(B4k)+4L(B2k) L(%—k).

Combining the above and noting that #,v, = u,, , we then obtain the desired (11) and (12).
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Remark 2: 1f |x| <1 then

o 2n 0 n 0 2n
L) =S X" 3 X S x
) nzdl—xz" ,,Z=11+x” ,;11+x2"

= L(x*) = (L(x) - 2L(x*)) + (L(x*) - 2L(x*)) = -2 L(x*) + 4L(x?) - L(x).

Thus, Theorem 2 of André-Jeannin [1] is essentially our (11) and (12) in the special case B = —1
and 2/k.

Theorem 5: Letk,l meZ andl, m>0. Ifw(ky,.) #0 foralln=0,1,...,m, then

me1 B("T")u(m B(f)u(
1 —

i Fm-(h

m=0 Wiy Wi Wikim)

(13)

Proof: Let f(n)=(*") for neZ. 1t is well known that Af(n) = (**7*1)— (/") = (¥*"). So
Theorem 5 follows from Theorem 1.

Remark 3: Inthe case £ =0 and /=2, (13) says that

m—1 uan(n—l)/2

— _Ymem-n2 (14)
1=0 Wnin-012Wney2  WoWmm-1y/2

Theorem 6: Let a, k be integers, and m a positive integer. Suppose that w, , # 0 for each n=0,
1,...,m. Then

ka" k
-1
wl B Uatyan B Ueam-y (15)
n=0 wka"‘vka"+l wkwka"’

Proof: Just put f(n)=ka” in Theorem 1.
Remark 4: Inthe case a=2 and {w,} = {u,}, (15) becomes

m1 gkt Blu

m_
k@r-1) (16)
n=0 uk2n+l ukuk2"'

This was obtained by Melham and Shannon [5] in the case B=1and k¥ >0. In the case a=3 and
{w,} ={v,}, (15) turns out to be

-1 Rk3" k

By Bt 17
v R an

n=0 k3n+| k k3™

since u,, =u,v, forhe Z.

Theorem 7: Let k be an integer and m a positive integer. If wy,»_;) # 0 for each n=0,1,..., m,
then

n_
m—-1 Bk(z l)uk2" ~ uk(2”‘—1)

(18)

n=0 wk(z"—l)wk(z"“—l) wOWk(z'"—l)

Proof: Just apply Theorem 1 with f(n) = k(2" -1).
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3. PROOFS OF THEOREMS 1 AND 2
Lemma 1: For k,I,m € Z, we have
Willyy = Wity = BW,_ju,, (19

and
wya! —wat = (w, - awy)Bu,_,. (20)

Proof: (i) Fix k,l € Z. Observe that
(Wk+l wk):(wk wk—l)(A 1)
Uy Y w wy \-B 0
_(Wer Wi \( A AV (W Wi (4 1Y
Ny, w, \-B 0) T T y u, \-B 0)"
Taking the determinants, we then get that

I
Wit1 Wi

Uy U

xAl
-B 0

Wit Wi
1 0

b

i.e., Wy, —w,, 4 = B'w,_,. Thus, (19) holds for m=0, 1.

Each side of (19) can be viewed as a sequence in £(A4, B) with respect to the index m. By
induction, (19) is valid for every m=0,1,2, ...; also (19) holds for each m=-1,-2,-3,.... Thus,
(19) holds for any me Z.

(ii) By induction on /, we find that w,,, — aw, = (w, —aw,)f'. Clearly, both sides of (20) lie
in £(A, B) with respect to the index k. Note that, if £ =/, then both sides of (20) are zero. As

(W~ aw)B' = (w, —awp)f'a’ = (W, —aw)a’ = a'w,, - a'*'w,,
(20) also holds for £ =/+1. Therefore, (20) is always valid and we are done.

Proof of Theorem 1: Let d € Z. Inview of Lemma 1, for n=0,1,..., m—1, we have

Yarfoner) _Yarsmy _ UarsounWre ~ Uars o romn

Wr(n+1) Wemy WrmW r(n+n)

d
_ Y rotharsoyearey = Wroparmtarson _ BT W ity )

YrmWr o+ WrmW ron
It follows that
S R O {ud+f(n+l) _ ud+f(n)J _Yaigom _ Yarr)
n=0  WrmWrm+ n=0 \ Wre+y — Wrem Yrom  Yr©
and that
Sy B Ow_ i) _ $ ((_ py+ Bst o) | pyo "d+f(n)]
n=0 WrmWrms  n=0 Wrnn) Wi

_ 2""21(_ 1y Yarren 1" Uarrom _ (-1)° Yarr©)
=0 Wrm W (m Yr

Putting d = —f(0), we then obtain (5) and
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Bf(n)y, -1 7(0) 7 (0).
Z(‘l) ntly,, Unreny '"Z(_l)n B s pym BT Uron-r)
TOw_  w w =D '
=0 FeWrm o £ Wi (my
Now suppose that w, # aw,. By Lemma 1, for each n=0, 1, . ,
@
& Ow iy = al Owp gy = Wy —aw) B Cugey_ o),
ie,
1 (0). f(n)
B0 g a®
Wemy (w, - awO)wf(n) W) —aw,
Thus,
Dy
W l)n Af (n)
110)223( I
WrmW )
-1 f(n) S (m)
_ ZmZ -1y W& B al©® LDy W& al©
=0 (W —awp)wpy Wi—aw, (W —aweW s,y Wi —aw,
and hence
w20/ B Puy,
=0 Wrmy \W1—CWy  Wray
m QO] J(m)
Z (-1y" a’ ( 1) "V «a
AW =0 wf(O) AW\ Wry Wrom
1) S (m)
=1 _Ja e
W= aWo Wr(o) W (m)
This proves (6).

Lemma 2: Let A,B <R and A= A>~4B>0. Then

n

.a
lim =—=0
n—>+e0 U,
and
.w W, —aw,
lim —2-=—1_—"2 foranyme Z.
n—>+oollm+n ﬂm

21

(22)

Proof: When A=0 (i.e., @ = f8), by induction u, = n(4/2)"" for all n € Z; thus, u, # 0 for

n==x1,%+2,+3 ..,
lim %= = lim —-———~—(A/2)_ =
4o U, n—>+°on(A/2)"
and

U, (m+n)(A/2)m+"-1_(4_)m: .
A u, = m n(4/2)~t 2 £

In the case A> 0, || < |f]; hence, u, = (a" — ")/ (@ — p) is zero if and only if n =

n‘i‘?wu_“(“ P im ey (ﬁ/ ay

2001]
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Also

lim (yﬁl —ﬂ) = lim & - - pla” ﬂn) _a-p
n—>+to\ U, n—+w o ﬂ" n—>+oo] (,B/a)"

Ifme{0,1,2,...}, then

lim Uprin = lim H Yernr _ ﬂm

n—>+wo u,, "_>+°°0<k<m uk+n
and
.ou,_
lim 2= = =g
n—>+wo un n—>+wo u

In view of the above, (21) always holds and lim,, yico Uy [, = " forallme Z.

By Lemma 1, wyu, —w,u, = Bwyu,_, for n € Z. Therefore,

lim Bw, Bw,

im 2=w-——————=w—-—2=w,—aw,,
>+ U, lim,  u,/u,, B

and hence (22) is valid.

Proof of Theorem 2: Assume that w, # aw,. In view of Lemma 2,

7 (0)
im 210 _ groy B0 _ /@
m—>+c0 wf(m) W —aw, W, —aw,

and
m m
. .« . u
lim —= lim —x lim 2 =0.
m—>+0 Wm m—>+o0 um m—>+0 Wm

Applying Theorem 1, we immediately get (7).

Remark 5: On the condition of Theorem 2, if w, = aw,, then by checking the proof of Theorem
2 we find that

$ 5 My g, 23)
n=0 WrmWsn+)
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1. INTRODUCTION
We denote the set of positive integers by N. Consider a,b € N with
a<b, (a,b)=1. (1.1

Fibonacci, in 1202 ([8], see also [1], [7]) introduced the greedy algorithm: we take the greatest
Egyptian fraction 1/ x; with 1/ x; < a/b, form the difference a/b—1/x, =:a,/ b, [where (a;, b)) =
1] and, if a;/ b, is not zero, continue similarly. It is easily seen that the sequence of numerators
a,:=a,aq,a,, ... is strictly decreasing, from which it follows that after finitely many, say s, steps
(s <a), the process will stop. This gives us a representation

g:i-*—....{-._!_
X

57, , I<x <oo<x,. (1.2)

If b is odd, the greedy odd algorithm is defined as follows: we take the greatest Egyptian
fraction 1/x, with x; odd, 1/x; <a/b, and continue similarly. We have (see [4], [3], [5]) the
interesting

Open Problem 1.1: Does the greedy odd algorithm (for 4 odd) always stop after finitely many
steps?

In this paper, using elementary methods, we study some properties of the greedy odd algo-
rithm. In Section 2 we fix the notation and record some obvious facts. In Section 3, the main
part of this paper, we prove some results on the possibility of occurrence of certain initial sequen-
ces of the sequence a, :=a, a,, a,, ... of numerators connected with the greedy odd algorithm. We
hope that at least some of our results are new.

2. THE GREEDY ODD ALGORITHM

We suppose that in (1.1) b is odd and sometimes we write b =2k + 1, where £ e N. Now,
since only odd denominators are used in the Egyptian fractions, we agree to write x =2n+1,
where n € N. To start the greedy odd algorithm, we take the unique 7, € N satisfying the condi-
tion

1 a 1
< 2.1
2+l 2k+1 2m -1’ @1)

and then we write

a 1 _. aj _._ 9%
2k+1 2m+1 ~Qk+1D)2nm+1) 2k +1

with (a,, 2k +1)=1. (2.2)
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Case A) If

a [ 1 1
2k+1 " | 2m+172n )
then 0 < af <a and so 0<q, <a (this case corresponds to the normal greedy algorithm).
Case B) If

_a L1
2k+1 | 2n <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>