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A RESULT ABOUT THE PRIMES DIVIDING FIBONACCI NUMBERS 

Manstir S. Boase 
Trinity College, Cambridge CB2 1TQ, England 

{Submitted March 1998-Final Revision February 2001) 

1. INTRODUCTION 

The following theorem arose from my correspondence with Dr. Peter Neumann of Queen's 
College, Oxford, concerning the number of ways of writing an integer of the form FnFn ...Fn as 
a sum of two squares. 
Theorem LI: If m>3, then with the exception of m = 6 and m = \2, Fm is divisible by some 
primep which does not divide any Fk9 k<m. 

Theorem 1.1 is similar to a theorem proved by K. Zsigmondy in 1892 (see [4]), which states 
that, for any natural number a and any m, there is a prime that divides am - 1 but does not divide 
ak - 1 for k < m with a small number of explicitly stated exceptions. A summary of Zsigmondy's 
article can be found in [2, Vol. 1, p. 195]. Since the arithmetic behavior of the sequence of Fibo-
nacci numbers Fn is very similar to that of the sequences an -hn (for fixed a and h\ Theorem 1.1 
can be regarded as an analog of Zsigmondy's theorem for the Fibonacci sequence. 

2. PRELIMINARY LEMMAS 

This section includes a few lemmas that are required for the proof of Theorem 1.1. 

Lemma 2.1: Let m, n be positive integers and let (a, b) denote the highest common factor of a 
and h. Then 

F 
37 ' n m. 

Proof: First, we prove by induction on m that 
F 
A mn _ M./ |7 \m-\ p - ^ i r (modFJ. 

The result holds for m = 1. Suppose the result holds for m = k. Then 

^^Wn-if-1 (modi*,). 

Now 
(see [1] or [3]), (1) 

so^+i)„=iW(„-i ) + i = ̂ V i + i w A - Therefore, 
b(k+l)n _FknT7 „ ,(Jf .k-u 

K n 
-kiF^+F^ (modFJ. 
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Using (1) again, 
Fkn+l = F(k-l)nFn + F(k-l)n+lFn+l s ^* - l )»4 - l^+ l ( m 0 d Fn) 

= F(k-i)n+\Fn-i (modFJ. 
Similarly, F(k_l)n+l » F^^F^ (modF„) giving us 

4 f i = ̂ (^1)^1^-1 s ^(^2)w+i(^-i)2 = • •' = (^-i)* (mod F J . 
Therefore, 

^^^KF^HF^i)k^{^lXF^ (modFJ. 

This completes the inductive step. 
Let us define 

d = ^,F„y (m(F„_ir1 + tF„, F„), 

where t is some integer. Then we have d\Fn and d\m{Fn_))m~l. However, {Fn,Fn_^) = 1, so d 
divides m and the lemma is proved. • 
Lemma 2.2: 

P\ Pi ~-Pn 
P P- P-

n<*l jfi na„ _ fcodd ^h^h-'-^k 
Pi Pi —Fn - ^axa2 ^an ' 

kevm "h"h '"Pik 

where the numerator is the product of all numbers of the form ffipfi2 ..-PS* divided by an odd 
number of distinct primes and the denominator is the product of all numbers of the form Pilp%2... 
p®n divided by an even nonzero number of distinct primes. 

Proof; The exponent of pr on the left-hand side is ar. The exponent of pr in the numerator 
of the right-hand side is 

£«*)-(*--!)> 
as there are (1) ways of choosing il9 ...9ik and, if is - r for some s, there are (j[_j) ways of choos-
ing the other ij. Similarly, the exponent of pr in the denominator of the right-hand side is 

£M0-(r-i)> 
so the exponent of pr on the right-hand side is 

= ar(l - (1 -1)")-(1-1)""1 = ar 
as required. • 

Lemma 2.3: If 0 < a < 1, then rC,( l - a") > (1 - a)&. 
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Proof; Equivalently, we must prove that 

f>(l-a«)>MiziO. 
«=i l a 

If |xI< 1, then the Taylor series expansion for Inx about x = 1 is ln(l + jnr) = jc--y-+-y----«. Thus, 

Therefore, 

f,Hl-an) = -^hak +a2k +a3k + - ) 

_ y l f ak V f i r a M = l n ( l - a ) 

Lemma 2.4: If a = (V5 -1) / (V5 +1), then 

no-o/no-^K2-wodd / weven 
w£l / ??>2 

Proof: Note that 1-x2 <1 and so, for x < l , we have 1 + X < ( 1 - J C ) l. Thus, 

no-^/no-«,i)<a+a)/n(i-«") 
wodd / weven / w=2 
w£l / n*2 

= {l-a2) f[(l-an)<{l-a2){l-a)^ <2, 
/ w=l 

where the penultimate inequality follows from Lemma 2.3, and the final inequality holds for the 
value of a given. D 

Lemma 2.5: Ifm = p^p®1 -.p%n, then the only solutions m,m>3, to the inequality 

/(w) = (1y5-J *2 f l . . . A = s0it) (2) 

are at = 3,4,5,6,10,12,14, and 30. 
We first prove the following three easy facts: 

(i) If f(m) > Cg(m); C> 1, and nt is formed from m by replacing pi in the prime factorization 
"of m by $ , where ^ > pt and ^ ^ pk for any A, then f(nf) > Cg{m'). 
(ii) If f(m) > g(m) and/?is an odd prime, then f(pm) > g(pm). 

(Hi) If f(m) > g(m) and m \s even, then f(2m) > g(2m). If f(m) > 2g(m) and m is odd, then 
f(2m)>g(2my 

Proof of (i): f(m) > Cg(m) > 4C so, in particular, f(m) > exp(l). Now 

ft >Pi=>%Pi -Pi>%Pt " f t = > f 3 ? > f " ? 

SO 
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f(m') > / ( « ) # > f(my = f(m)(/(m)r~l > /(m)exp| & - 1 
.Pi 

Since exp(x -1) > x for x > 1, we have 

f{mf) >[j/jf(m) > ̂ y&> = C^<> 
Proof of (ii): Note that /? > 2 and g(m) > 4 so 

Proof of (Hi): If m is even and /(m) > g(#f), then film) > f(m) > g(m) = g(2m). If m is 
odd and f(m) > 2g(m), then f(2m) = f(m) > 2g(m) = g(2m). 

Proof of Lemma 2.5: We call m "good" if f(m)> 2g(m) or if m is even and /(m) > ^(^i). 
Note that, by (ii) and (iii), if m is good, then no multiple of m may satisfy inequality (2). 

Standard calculations show that m = 11 is good. It then follows from (i) that every prime 
greater than 11 is good, so any solution m of (2) must only have 2, 3, 5, and 7 as prime divisors. 

It is easy to show that m = 32 and m = (3)(7) are good. So, by (i), except for m = (3)(5), 
m = j?2 and wi = /?,-/^ are good for odd primes pi9 pj. Hence, the only odd numbers whose multi-
ples may satisfy inequality (2) are 3, 5, 7, and 15. 

Now m = 23 is good, as is m = 22(5). Thus, m = 22(pi) is good for odd primes pi9 p >5. 
Therefore, the only possible solutions to inequality (2) are 2, 3, 5, 7, (3)(5), (2)(3), (2)(5), (2)(7), 
(2)(3)(5), 22, and 22(3). Of these, 7 and (3)(5) are not solutions and 2 < 3, so we obtain the list 
as stated in the lemma. D 

3. PROOF OF THE MAIN THEOREM 
Suppose we choose a Fibonacci number Fm, with m > 3 and m = Pilp%2 ---P%ny such that all 

prime factors of Fm divide some previous Fibonacci number. 
Then every prime dividing Fm must divide one of Fm[l],Fml2],-.-,Fm[n], where m[i] = m/pi, 

making use of the well-known fact that (Fm,Fn) = Fimny Now Fm< p&2...pJ?m{l]Fm[2]...Fm[n], 
for the left-hand side divides the right-hand side, using Lemma 2.1. However, some of the factors 
of Fm are being double counted, such as Fpai-\pa2-\ ^n% which divides both Fm^ and Fm[2y 

To remove repeats, the same Inclusion-Exclusion Principle idea of Lemma 2.2 can be used. 
This gives 

1 1 ^m[iui2*-»ik] 

^ , ^ f t A - P » - w - 5 , (3) 
1 1 rm[iui2l...Jk] 

A: even 

where m[il9 i2,...,ik] = m/ptp^ ...pik and the ij are all distinct. In fact, the left-hand side divides 
the right-hand side, but the inequality is sufficient for our purposes. 

It is now necessary to simplify (3) to obtain a weaker inequality that is easier to handle. 
Multiplying by the denominator in (3), 

n^^M-An^,^ (4> 
fceven A: odd 

where we have absorbed Fm into the product on the left-hand side. 
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Let us define F„ to equal 

By Binefs formula, 

\m -ffl) so, as n - » oo, i ^ - » /? ' . Furthermore, Fn>F£ for w odd and Fn<F„ for w even. 
All the Fibonacci numbers on the left-hand side of (4) are of the form Fmlk, k a product of an 

even number of distinct primes, and they are all distinct since, if Fmlk = FmIk,, then k = kf or a t / * 
and mlk' are 1 and 2 in some order, contradicting the fact that k and kf are both products of an 
even number of distinct primes. Let us define yx to equal 

n(£ 
where the product is taken over all even integers.n. The left-hand side of (4) would therefore be 
made even smaller, if all the Fn in it were replaced by F£ and the result were multiplied by y x . 
Similarly, the right-hand side of (4) would be made even larger if all the Fn in it were replaced by 
F£ and the result were multiplied by y 2 , where y 2 is equal to 

nfl 
nodd\ xn 

Thus, if we define s = y 2 ly\, we obtain from (4) the weaker inequality, 

f t F+h.h.-.h\ * £PlP2 ''Pn HFki.h.-.ikY <5> 
k even, £0 k odd 

The number of terms in the product on the left-hand side of (5) is In-C^ + CD*'" and on the 
right-hand side is (") + (3) + (5)+• • •, and these numbers are equal as their difference is (1 -1)" = 0. 
Therefore, the 1/ 45 factors ofF£ will cancel on both sides, leaving 

(i-iXi-i)-(i-i) 

m on rearranging. Since m = Pixp"2 —P%"> this simplifies to give 

( 2 J **PiPi~Pn- (6) 

Now, setting a = (S-1) / (V5 +1), 

r.-n^)-nf<1+i»-fc^)-no-^ 
n even \ n J n even \ l 1 T * J ; J n even 

Similarly, 

r.-nfe)-n(ffl±^^a)-no-^ 
nodd\rnJ noM\ (I + V3J 7 WOCM 
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Therefore, by Lemma 2.4, 
s = r2/ri<2. 

Now Lemma 2.5 gives us a list of possible m which may satisfy inequality (6). Thus, it only 
remains for us to check which of these m give rise to Fm, all of whose prime factors divide some 
previous Fibonacci number. The possible solutions, m, to (6), with m> 3, are 3, 4, 5, 6, 10, 12, 
14, and 30. 

Note that 2\F3, 3|F4, 5\F5, 11|F10, 29|F14, and 31\F30 and the respective primes do not 
divide any previous Fibonacci numbers. Thus, the only exceptions to the result are F6 = 8 and 
Fl2 = 144. Therefore, Theorem 1.1 is proved. • 

A similar result can also be proved for the Lucas numbers. 
Corollary 3.1: If m > 2, then, with the exception of m = 3 and m = 6, Lm is divisible by some 
prime p that does not divide any Lk, 0 < k < m. 

Proof: Suppose m>2 and m does not equal 3 or 6. Then, since 2m>3 and 2m does not 
equal 6 or 12, Theorem 1.1 implies the existence of a prime p such that/? divides F2m, but does 
not divide any smaller Fibonacci number. Now F2m = FmLm (see [3]), so p must divide Lm. We 
claim that|? does not divide any Lk for k < m, for p\Lk would imply p\F2k, and since 2k <2m, 
this contradicts our choice of p. Hence, the corollary. '• 

We end with the following conjecture for the general Fibonacci-type sequence. 
Conjecture 3.2: Suppose that Kt and K^ are positive integers and that Kn is defined recursively 
for n > 3 by Kn = Kn_x

:+Kn_2. Then, for all sufficiently large m9 there exists a primep that divides 
Km but does not divide any Kr,r < m. 
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SUMMATION OF CERTAIN RECIPROCAL SERIES RELATED TO 
THE GENERALIZED FIBONACCI AND LUCAS NUMBERS 

Fengzhen Zhao 
Department of Applied Mathematics, Dalian University of Technology, 116024 Dalian, China 

(Submitted November 1998-Final Revision March 2001) 

1. INTRODUCTION 

We are interested in the generalized Fibonacci and Lucas numbers defined by 

U„(P, q) = ̂ = | ^ , V„{p, q) = a" +/?", 

where 

a = £ ^ , P = ^ - , A = p>-4q,p>0, and*<0. 

It is well known that {Un(l, -1)} and {Vn(l, -1)} are the classical Fibonacci sequence \Fn} and the 
Lucas sequence {Ln}. There are many publications dealing with summation of reciprocal series 
related to the classical Fibonacci and Lucas numbers (see, e.g., [2]-[5]). Backstrom [3] obtained 

S ^ - i T p = # <^dd) (1) 

and Andre-Jeannin [2] proved that 

Are there results similar to (1) or (2) for the generalized Fibonacci and Lucas numbers? In this 
paper we will discuss the summation of reciprocal series related to the generalized Fibonacci and 
Lucas numbers. We will establish a series of identities involving the generalized Fibonacci and 
Lucas numbers and some identities of [2] and [3] will emerge as special cases of our results. In 
the final section, following the method introduced by Almkvist, we express four reciprocal series 
related to the generalized Fibonacci and Lucas numbers in terms of the theta functions and give 
their estimates. Some of the estimates obtained generalize the results of [1] and [2], respectively. 

2. MAIN RESULTS 

The following lemmas will be used later on. 

Lemma 1: Let t be a real number with \t \ > 1, s and a be positive integers, and h be a nonnegative 
integer. Then one has that 

y I = I y _ _ i o) 

and 
1 &1 1 y i = i y i 

JL*S flan+b , f-2arhb __ /^as , f~<*s\ fos — f-as dLi i __ f2an+b-as ' 
(4) 
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Proof; Because the proof of (4) is similar to that of (3), we only give the proof of (3). One 
can readily verify that 

1 1 ( 1 
flan+b , f-2an-b . ^as , j-as ^-as _ ^as I 1 i ^2an+b+as -j , -1 1 

flan+b-as I 

hplds for n > s. Hence, by the telescoping effect, one has that 

f 1 1 ( f 1 fr1 1 ) 
ZmJ f2an+b , f-2an-b , fas , 4-as f~as 4as L^ i , ^an+b+as 2Li i , J2an+b-as 

for all JV > s. Letting N -> +oo9 we obtain equality (3) (since |f | > 1). • 

Lemma 2: Let f be a real number with |f | > 1 and s be a positive integer. Then 
s~l 1 5 - 1 . 1 

w=0 

and 25-1 

Si+^"' 2 +i+r5? (5) 

5-1 1 V 

^ 1 _ L # 2 « - 5 + 1 = 9"> w 
11=0 1 _ S " r Z 

^5-1 i 

w=0 1 _ l 

Proof: We only show that equality (5) is valid. The proofs of (6)-(8) follow the same pat-
tern and therefore are omitted here. First, 

y i i i &r l l V l l 

^0 \+t2n~2m i+r2m 2 ^{i+t2n i+r2n) m 2 i+t~2m' 

On the other hand, 

^ i - 1 _ . L V 1 L__L. £ .1-^.a. 
- 2 w i - l * 

^ i i , y f i i V . L 
Zj 1 + / 2 W - 2 . - l 1 + f 2*̂ 1 +Zj ^ + ̂ -1 + 1 + r 2 W + l J W +

 1 + r2 

Therefore, equality (5) holds. D 
The above lemmas are used to find some equalities involving the generalized Fibonacci and 

Lucas numbers. Using the lemmas, we calculate some reciprocal series related to {Un(p, q)} and 
{V„ip,q)}. 

Theorem 1: Assume that a and h are integers with a > 1 and b > 0. Then 

f (-q)an+m (-q)an
 m 

hv2an+b(p,q)H-q)a"H,'-a)'2K(p,q) 4Kua{p,q){\H-ccipfb-a)ny 
f (-<ir+b/2 (-?)a/2VA 

f (-<?r+bn c-g)a/2
 n n 

h^u2an+b{p,q)+{-qy^b-a^vaip,q) 4£ua{p,qfc+(rccipf-a)ny K . 
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and 
y (-<f)an+bn (-<7)a/2

 ( m 
hv2an+b(p,q)+JK(-qTHb-a)llUa{p,q) Va(p,q)(l + (-a I fif-**)' K > 

where a is even in (9), (11) and odd in (10), (12), and b is even in (9), (12) and odd in (10), (11), 
respectively. 

Proof: Putting / = ^j-al fi in (3) and noticing that af} = q,we have 

y {-q)an+m 

(13) 

Let us examine different cases according to the values of a, 5, and 5. With 5 = 1 in (13), then 
(9) holds if both a and b are even and (10) holds if both a and b are odd. On the other hand, if a 
is even, b is odd, and s=\, then we have (11) from (13). If a is odd, b is even, and s=\, then 
we have (12) from (13). • 
Theorem 2: Suppose that a and b are integers with a > 1, b > 0, and a * b. Then 

y (-qr+m -i~q)an
 (u, 

h V2an+b(p, q) ~ (-q)a"Hb-a)/2Va(P, q) ^Ua{p, q)(\ - (-a I fif^2)' l > 

y (-q)a"+b/2 _ -4£(-q)°n
 n 5 , 

hu2an,bip,q)-{-qT^-a)l2Uaip,q) Va{p,qtl-(raipr-a^y K } 

and 
h <ttU2an+b(p, q) - (-qr+^nVa(p, q) 4EUa{p, q)(l - (-a I fif ~^2)' 

h V2a„+b(p,q)-(-qy^"-a)n^AUa(p,q) K(P,00"(~«IP)^'2)' 

(16) 

(17) 

where a is even in (14), (16) and odd in (15), (17) and b is even in (14), (17) and odd in (15), 
(16), respectively. 

The proof is similar to that of Theorem 1 except that (13) is replaced by 
f. {-q)m+bn 

-j-qT'2 *± 1 
J0l-(-a//?)' 

(18) 

aas - (-!)"'0<" S l - ( - a i py^f-asyi 

Equality (18) is valid by putting t = J-a/fi in (4). 

Theorem 3: Suppose that s is a positive integer. Then 

f (-<?)" _ ±-qY'2 (s-i. i } , . e v e n , (m 
h V2„(P,q)H-qy-"2Vs(p,q) ~ ^Us(p,q) { 2 + l + (-^/a)^J ( , e V "* (19 ) 
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£ U2n+1(p, q) + (-qr^/2Vs(p, q)l4E = 2Us(p, q) (" e v e o ' s* ° X ( 2 0 ) 

(rqf (-q)sn (s-\ lkv2n(p,<i)+^(-<iy-snus(p,q)~vs(p,q)l 2 +i+(-p/ay>) (5°dd)> (21) 

hu2n+1(p,q) + (-<ir(1-s)l2Us(p,qr 2Vs(p,q) {*°M)> ^ 
(-qf _ ( - g y / 2 f l - 5 (5 odd), (23) 

and 
%>V2n(p,q)-(-qrsl2^Us(p,q) Vs(p,q){2 ( - /?/a)* / 2- l 

5uM(p,q)-Hrwr.(p,q)/jA = wjki ('even- ^ 0 ) ' (24) 

Proof: Letting a = 1 and h = 0 In (13), we have 

Due to (5), we obtain equality (19). On the other hand, If a = h = 1 in (13), then 

f (-<?)"+1/2 ... (-q)sf2 y i ( , e v e n ) 
£'oU2n+l(p,q)H-qrHl-s)nVs(p,q)/JA U,(p, q) £0 1 + ( -a //J)"*1-)'2 

Noticing that (6), we have equality (20). 
Similarly, equalities (21) and (22) follow from (13), (5), and (6). Equalities (23) and (24) can 

be obtained from (18), (7), and (8). D 
From the above theorems, we can obtain some results of [2] and [3] according to the values 

ofp and q. For instance, If p - -q = 1 In (9), we obtain Theorem V of [3]. If p = -q = 1 In (22), 
we obtain equality (1). If p = -q = 1 In (20), we have (2). 

3. THE ESTIMATES OF FOUR SEMIE8 

In this section, the summation Ew Is over all Integers n. Using the method Introduced by 
Almkvlst [1], we give the estimates of four series related to the generalized Fibonacci and Lucas 
numbers. Putting s = 0 In the left-hand side of (20), we have 

f (-qrm
 =rry '2"+1 

ioU2n+l(p,q) + 2(-qrin/^ h(*2"+l + l)2' 
where t = (-/?/ a)112. By a classical formula (see [1] or [6]), we know that 

S(^+1 + l)2="8^"? 

where 
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and 

By simple computation, we can obtain 

£o U2n+1(p,q) + 2(-qy+iJ2/jA 2log(-a/fi) (logi-a/fi))2^!^^"2^-"1^)' 

Hence, 
y (-?ri/2 VA 4^2VA 

h U2n+i(P, q)+2(-qy+m /VA ~ 21og(-a//?) ( l o g(- a //?))2(2+e^/.og(-aW) • 

Using a similar method, we can obtain the estimates of some other series. We have that 
•+S72f \ 2 5 

£oV2n{p,q) + 2{-q)" 4 £ ( ' 2 " + l)2 

\w+l/2 co # 2w+I (-<?)" 
%>U2n+1(p,q)-2(-qr1/2/jA ^ (*2"+1 ~ I)2 ' 

and 
». *2?f y lz22 = y I 

where / = (-fi/a)in. From the following facts (see [1] or [6]), i.e., 

»2 I. s r + t f 2 r 

M_ 2»+l 

and 

where 

and 

24^ 

S4 "" £0(t2»+1-l)2' 

^-Viogr4-e 

we have that 
y (-<?)" , 1 , i + I*2 i 
hV2„(p,q)+2{-q)n 8 21og(-a//?) (log(-a/j0))2 f*n*-aii»_2* 

5 t W f c q ) - 1 h q T m / V A * 2(log(-a/^))2 " 21og(-a/$ ' 
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and 
f Hi)" ,. i i 
^ ( A f ) - 2 ( - ? r ~ 2 4 21og(-a//?) 

4TT2 ( 1 1 \ \ 
30Og(-a lp)f yel*2llo&-aip) + 2 e2K2l\og{-alf3) __ 2 8 

Clearly, some of the estimates obtained in this section are the generalizations of [1] and. [2], 
respectively. 
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{Submitted March 1999-Final Revision September 2000) 

1. INTRODUCTION 

A dynamical system is taken here to mean a homeomorphism 
f:X->X-

of a compact metric space X (though the observations here apply equally well to any bijection on 
a set). The number of points with period n under/is 

J>er„(f) = #{xeX\f"x = x}, 

and the number of points with least period n under/is 

U>er„(f) = #{xeX\#{fkx}keI=n}. 

There are two basic properties that the resulting sequences (PerB(/)) and (LPer„(/)) must satisfy 
if they are finite. First, the set of points with period n is the disjoint union of the sets of points 
with least period d for each divisor d ofn, so 

Per„(/) = l L P e r , ( / ) . (1) 
d\n 

Second, if x is a point with least period d, then the d distinct points x, f(x), f2(x),...,fd~l(x) are 
all points with least period d, so 

0<LPer^(/) = 0 modrf. (2) 

Equation (1) may be inverted via the Mobius inversion formula to give 
LPer„C/) = £M«/<OPerdC/-), 

d\n 

where ju( •) is the Mobius function defined by 

ju(n) = 
1 if/i = l, 
0 if n has a squared factor, and 
(-i)r if n is a product of r distinct primes. 

A short proof of the inversion formula may be found in Section 2.6 of [6], 
Equation (2) therefore implies that 

0<^/i(n/rf)Per^(/) = 0 mod* (3) 
d\n 

Indeed, (3) is the only condition on periodic points in dynamical systems: define a given sequence 
of nonnegative integers (Un) to be exactly realizable if there is a dynamical system / : X -> X 
with Un = Perw(/) for all n > 1. Then (Un) is exactly realizable if and only if 

0 < Y, fKn/d)Ud s 0 mod n for all n > 1, 

d\n 
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since the realizing map may be constructed as an infinite permutation using the quantities 

J-L*nld)Ud 
d\n 

to determine the number of cycles of length n. 
Our purpose here is to study sequences of the form 

Un+2 = Un+l+Urt,n>\, Ut = a, U2=b, a,b>0 (4) 

with the distinguished Fibonacci sequence denoted (Fn), so 

Un=aF^2+bF^x for«>3. (5) 

Theorem 1: The sequence (Un) defined by (4) is exactly realizable if and only if b = 3a. 

This result has two parts: the existence of the realizing dynamical system is described first, 
which gives many modular corollaries concerning the Fibonacci numbers. One of these is used 
later on in the obstruction part of the result. The realizing system is (essentially) a very familiar 
and well-known system, the golden-mean shift. 

The fact that (up to scalar multiples) the Lucas sequence (Ln) is the only exactly realizable 
sequence satisfying the Fibonacci recurrence relation to some extent explains the familiar observa-
tion that (L„) satisfies a great array of congruences. 

Throughout, n will denote a positive integer andp, q distinct prime numbers. 

2. EXISTENCE 

An excellent introduction to the family of dynamical systems from which the example comes 
is the recent book by Lind and Marcus [4]. Let 

J!T = {x = (x^)G{0,l}z|xik = l=>JcJt+1 = Ofor .an*eZ} . 

The set AT is a compact metric space in a natural metric (see [4], Ch. 6, for the details). The set X 
may also be thought of as the set of all (infinitely long in both past and future) itineraries of a jour-
ney involving two locations (0 and 1), obeying the rule that from 1 you must travel to 0, and from 
0 you must travel to either 0 or 1. Define the homeomorphism / : X -» X to be the left shift, 

(/(*))* = * w for all k eZ. 
The dynamical system / : X -» X is a simple example of a subshift of finite type. It is easy to 
check that the number of points of period n under this map is given by 

Perw(/)= t r a c e d ) , (6) 

where A = [} o] ( s e e t4L ProP- 2.2.12; the 0-1 entries in the matrix A correspond to the allowed 
transitions 0 -» 0 or 1; 1 -> 0 in the elements of X'thought of as infinitely long journeys in a graph 
with vertices 0 and 1). 

Lemma. 2: If b = 3a in (4), then the corresponding sequence is exactly realizable. 
Proof: A simple induction argument shows that (6) reduces to Perw(/) = Ln for n > 1, so the 

case a == 1 is realized using the golden mean shift itself. For the general case, let X = X x B, 
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where B is a set with a elements, and define / : X -» X by / (x , y) = (/(x), y). Then Perw(/) = 
a x Perw(/), so we are done. • 

The relation (3) must as a result hold for (Ln). 

Corollary 3: "Ld\n fi{n ld)Ld = 0 mod n for all n > 1. 

This has many consequences, a sample of which we list here. Many of these are, of course, 
well known (see [5], §2.IV) or follow easily from well-known congruences. 
(a) Taking n = p gives 

Lp = Fp_2 + 3Fp_l^lmodp. (7) 
(b) It follows from (a) that 

Fp_x = 1 mod p o Fp_2 = -2 modp, (8) 
which will be used below. 

(c) Taking n = pk gives 
lpk ^Lph-i modph (9) 

for all primes/? and k > 1. 
(d) Taking n = pq (a product of distinct primes) gives 

Lpq + l = Lp + Lg modpq. 

3. OBSTRUCTION 

The negative part of Theorem 1 is proved as follows. Using some simple modular results on 
the Fibonacci numbers, we show that, if the sequence (Un) defined by (4) is exactly realizable, 
then the property (3) forces the congruence b = 3a modp to hold for infinitely many primes/?, so 
(Un) is a multiple of (1^). 

Lemma 4: For any prime/?, F^ = 1 modp if p = 5m±2. 

Proof: From Hardy and Wright (see [2], Theorem 180), we have that Fp+t = 0 modp if p = 
5m±2. The identities i*p+1 = 2Jy_1 + i y . 2 - 0 modp and (7) imply that Fp_i&lmodp. D 

Assume now that the sequence (E/J defined by (4) is exactly realizable. Applying (3) for n a 
prime/? shows that t/^ - t/j = 0 mod/?, so by (5), ai^_2 +Wp-i = @ mod/?. If/? is 2 or 3 mod 5, 
Lemma 4 implies that 

( F H - 1 ) « + * B 0 mod/?. (10) 

On the other hand, for such/?, (8) implies that iy_2 = -2 mod/?, so (10) gives b = 3a mod/?. By 
Dirichlet's theorem (or simpler arguments), there are infinitely many primes/? with/? equal to 2 or 
3 mod 5, so b = 3a modp for arbitrarily large values of/?. We deduce that b = 3a, as required. 

4. MEMAKKS 
(a) Notice that the example of the golden mean shift plays a vital role here. If it were not to 

hand, exhibiting a dynamical system with the required properties would require proving Corollary 
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3, and a priori we have no way of guessing or proving this congruence without using the dynami-
cal system. 

(b) The congruence (7) gives a different proof that Fp_x E O or 1 mod p for p * 2,5. If 
Fp_i = a mod p, then (7) shows that Fp_2 = 1 - 3a modp, so Fp = 1 - 2a. On the other hand, the 
recurrence relation gives the well-known equality 

Fp-iFp^Fp-i + l 

(since p is odd), so 1 - 5a + 6a2 = a2 +1, hence 5(a2 - a) = 0 mod p. Since p&5, this requires 
that a2 == a modp, so a = 0 or 1. 

(c) The general picture of conditions on linear recurrence sequences that allow exact realiza-
tion is not clear, but a simple first step in the Fibonacci spirit is the following question: For each 
k > 1, define a recurrence sequence Qiffi) by 

with specified initial conditions Uf* = aj for 1 < j < k. The subshift of finite type associated to 
the 0-1 k x k matrix 

A^ = 

shows that the sequence (U^) is exactly realizable if a- = 2J -1 for 1 < j < k. If the sequence is 
exactly realizable, does it follow that a;. = C(2J -1) for 1 < j < k and some constant CI The spe-
cial case k = 1 is trivial, and k = 2 is the argument above. Just as in Corollary 3, an infinite family 
of congruences follows for each of these multiple Fibonacci sequences from the existence of the 
exact realization. 

(d) We are grateful to an anonymous referee for suggesting the following questions. Given 
a dynamical system / : X —» X for which the quantities Perw(/) are all finite, it is conventional to 
define the dynamical zeta function 

1 
1 
0 

0 
0 

1 
0 
1 

0 
0 

1 
0 
0 

0 . 0 

... 1 

... 0 

... 0 

1 0 
0 1 

1 
0 
0 

0 
0 

^ ( z ) = exp^ | ;^Per n C/ ) j , 

which defines a complex function on the disc of radius 

l/limsupPer„(/)1/n. 
ft->00 

It is a remarkable fact that for many dynamical systems—indeed, all "hyperbolic11 ones—the zeta 
function is a rational function. For example, the golden mean subshift of finite type used above 
has zeta function x_l_zl • There are also sharp results that determine exactly what rational func-
tions can arise as zeta functions of irreducible subshifts of finite type or of finitely presented 
systems—these are expansive quotients of subshifts of finite type. A simple application of Theo-
rem 6.1 in [1], which describes the possible shape of zeta functions for finitely presented systems 
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shows that the sequence a, 3a, 4a, 7 a,... can be exactly realized by an irreducible subshift of finite 
type if and only if a - 1. 

It is possible that the recent deep results of Kim, Ormes, and Roush [3] may eventually pro-
vide a complete description of linear recurrence sequences that are exactly realized by subshifts of 
finite type. 
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ON THE GENERALIZED LAGUERRE POLYNOMIALS 
Gospava B9 Djordjevic . 
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(Submitted March 1999) 

1. INTRODUCTION 

In this note we shall study two classes of polynomials {g%,m(x)}neN and {h^m(x)}neN. These 
polynomials are generalizations of Panda's polynomials (see [2], [3]). Also, these polynomials are 
special cases of the polynomials which were considered in [4] and [5]. For m = l, the polynomials 
iSn,m(x)} a r e ^ e well-knownLaguerre polynomials I%(x) (see [6]), i.e., 

*£,(*)-z-r'cx). (i.o) 
In this paper the polynomials {g^m(x}} and {h^m(x}} are given by 

F(x,t) = (l-n-ae ^ =£«£„(*)'" C1-1) 
«=0 

and 

G{x,t) = (\ + tmTae l+,m=ZhUxr- 0-2) 
«=o 

(2.1) 

Using (1.1) and (1.2), we shall prove a great number of interesting relations for {g£9m(x)} and 
{h^m(x)}y as well as some mixed relations. 

2. RECURRENCE RELATIONS AND EXPLICIT REPRESENTATIONS 

First we find two recurrence relations of the polynomials {g^m(x}}. 
Differentiating (1.1) with respect to t9 we get 

dF^f) = 0 _ tmy^le~i^(amtm-1 - amtlm'1 -x-x(m- l)tm) 

=(i-oi:<.(^"1-
«=i 

By (2.1) and from (1.1), we obtain the following recurrence relation: 

"& m(*) - ( " - m)^n-m, «(*) 

Again, from (1.1) and (2.1), we get 

+(m(a - 2) + 2n)ga„_mym(x) - (m(a - 2)+n)ga„_2m, Jx), n > 2m. 

(2.2) 

(2-3) 

Corollary 2.1: If m - 1, then (2.2) and (2.3) yield the corresponding relations for Laguerre poly-
nomials: 

nl£\x) - (* - l)Z£\(x) = (a - x ) I^ (x ) - < _ 2 ( x ) 
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and 
nLa

n(x) = (2n+a-2- x^^x) -(n+a- 2)La„_2(x), n>2. 

In a similar way, from (1.2), we get the following relations: 

"K, m(x) = (m- dxK-lm, Jx) - amff^l Jx) - xtCl Jx), n>m, 
and 

- (2/i+am - 2m)ha
n_m Jx) -{n+am- 2m)ha„_2m Jx), n>m. 

Starting from (1.1) and (1.2), we get the following explicit representations of the polynomials 
te£«(*)} and W,*(*)}> respectively: 

[^](-l)"-m'(a+«-7M/'), „_mi 

and 
1̂ »1 (- \y-(m-i)i (a+n_ mj\. 

K , W = X ••/ xi ™^y^« ' . (2.5) 
"'mV ' ^ i\{n-mi)\ x } 

Corollary 2.2: lfm = l, then (2.6) is the explicit representation of the Laguerre polynomials: 

Now, differentiating (1.1) with respect to x, we get 

D&m(x) = -gZlm<x)i n^\ (2.6) 

If we differentiate (2.6), with respect to x, k times, we obtain 

£*<*(*) = H)fcgfU*), «**• (2-7> 
Corollary 2.3: Using the idea in [1], from (2.2) and (2.6), we get 

(n-xD)&Jx) = (n-m + x(m-1)0)^w(x)+amD(g^+l_2m Jx)-g^^ Jx)). 

For m = 1 in the last equality and from (1.0), we get 

(n + (a-x)D)If-\x) = (n-l+aD)I£}l(x). 

In a similar way, from (1.2), we have 
DK,Jx) = -h£{Jx) 

and 

DXJ*)=(-dX-Uxl ^s-

3. SOME IDENTITIES OF THE CONVOLUTION TYPE 

In this section we shall prove some interesting identities related to {g^Jx)} and {h^ Jx)}. 
First, from (1.1), we find 
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F(x,t).F(y,t) = (l-ry2«e ^m = £«£,(*+;y)*1', (3.1) 

whence we get 

Tlga»-l.m(x)s?.m(y)=&m(x+yy 
7=0 

Theorem 3.1: The following identities hold: 
[n/m] n-mj yn-i-mj / _ • _ \ 

A w =£§ 'm->-J'**+* (32) 

£&g^.m(x)D'g?.m(y) = !g3lm(x+y), » ^ ; (3-3) 
7=0 

I ^ ^ . » ( * ) ^ ^ ) = ̂ . 2» , (2x ) , » > 2 * ; (3.4) 
i=0 

Z i7fL^-m,,2m(2^) = (- i ) tZ^- i ,mW^.W; (3-5) 
7=0 ' * 7=0 

[(w-fc)/»l] / Z A 71 

Z (-l)'i7r^t-»./.28,(2«) = (-l)kZ^*,«W«f.B1(x); (3.6) 
7=0 ' * 7=0 

S«t/,»(*)^»(*) = ^ (2* ) . (3-7) 
7=0 

Proof: From (3.1), we have 

whence 

I«£.(*y = Z ^ Z (-jTlc-o* I*£.<*+>y . 
»=o V«=o "• y \k=o v / A«=o y 

Multiplying the series on the right side, then comparing the coefficients to tn, by the last 
equality we get (3.2). 

If we differentiate (1.1) s times, with respect to x, we find 
d8F(x91) = fxft'il-rr^'e1^. (a) 

dxs From (a), we get 

Since 
^ X ^ J w=0 

^ X ^ J 77=0 7=0 
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and, from (i), it follows that 

The last identity is the desired identity (3.3). 
Differentiating (1.2) & times, with respect to x, we get 

dkG{xJ) -— 
dxl k -(-l)ktk(l + tmTa~ke 1+<m. (b) 

Then, from (a) and (b), we find 
dkF(x,t) dkG(x,t) _ A k 2k 

dxk ' dxk ~h> ' 
The left side of (ii) yields 

^ S ^ - ^ | F ^ = I £#&.JW*KJ?Y- Cm) 
OX OX n=0 / = 0 

So, from (ii) and (iii), we get (3.4). 
In a similar way, starting from (1.1) and (1.2), we can prove identity (3.5). From (1.1) and 

(b), we can prove identity (3.6). 
In the proof identity (3.7), we start from 

xt 

Fa(x, /) = ( 1 - tmTa e l-tm, by (1.1), 
and 

xt 

Fb(x,t) = {\-tmybei-'m, by(1.1). 
So, we obtain 

Fa(x,t)-Fb(x,t) = £ga„^(2x)t". 
w=G 

On the other side, we have 

(£ga
n,m(xy){£gbuxy)=£g£Q*y. 

\n=Q A«=0 J «=0 
Identity (3.7) follows by the last equality and the proof of Theorem 3.1 is completed. 

Corollary 3J: If m = 1 in (3.2), (3.3), and (3.7), then we get 

^-gi^-r-/^**-y=0 /=0 

£jyn^{x)DFnrl(y) = J%3r\x+y\ 
i=0 

and 
Yir-Ji(x)Lb-\x) = La„+b-\2x), 
i=0 

respectively. 
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Furthermore, we shall prove some more general results. 

Theorem 3.2: 

Z <!>i)-C^) = < , ™ ' + f l * ( ^ i + - + ^ ) ; 

Z Z <„(*)-<„(**)• Z ^,^i)-^,mfe) 
5=0 il + — +ik=n-s J\+---+Jk=s 
= Z <2»(2*i)-SS.2m(2*t). 

h+-~+'k = n 

Proof: From (1.1), we get 

Further, we have the following identity: 

(3.8) 

(3.9) 

(3.10) 

n=0 u + ••'+ik = n «=0 

Identity (3.8) follows immediately from the last equality. In a similar way, from (1.2), we can 
prove (3.9). 

Now we shall prove (3.10). From (1.1) and (1.2), we have 

So we get 

2(s1+-+xfc)f 
F(xlJ).--F(xkJ).G(xl,t).-.G(xk,t) = (l-t2myk«e ^ 2 - . 

(«, ^ f oo >\ 

^«=0 /,+ ••• +ik = n J \n=0 ji+ — +jk = n 

Comparing the coefficients to f in the last equality, we get (3.10) and the proof of Theorem 3.2 
is completed. 

Corollary 3.2: Ifm = l, using (1.0), then (3.8) becomes 

X i^\xy--i?-\x) = LY-'+o-Kxy + -+* , ) . 

Corollary 3.3: If xl = x2 = -> = xk=x and al=a2 = -- = ak=a, then (3.8) becomes 

Z <*(*)••• «£,*<*> = *£»<**>• (3.11) 
i|H— +ik=n 

Corollary 3.4: If /w = 1, then (3.11) yields 

/ 1 + . . . + / i k = w 
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On page 166, (10) should be 

Z UakUbkUck = "l ((n-l)(p-2)V?U„k 

-q%(4n>-6n-4)Ui„_1)k+q2k(4n2-4)U(n_2)k), n>2. 

Hence, on page 167, (13) should be 

Z FakFbkFclc = 2 1 ((n-\){n-2)llFnk 

-i-\)kLk{4n2-6n-4)F{n_l)k +(4n2 -4)F(n_2)k), n>2. 

In the meantime, line 14 and line 16 of page should be, respectively, 

Z F2aF2bF2c = ±(9(n-\)(n-2)F2n-3(4n2-6n-4)F2n_2+(4n2-4)F2„_4). 
a+b+c=n 

Z FTJWIC = l k ( 1 5 " 2 - 63« + 66)F2„_3 + (10«2 - 36»+44)F2„_4). 
a+b+c=n DV 

Line 19 of page 167 should be: + (An1 - 4)P(n_2)k), n>2. 
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L INTRODUCTION 

Functions defined by Dirichlet series J^=l a/fs are Interesting because they often code and 
link properties of an algebraic nature in analytic terms. This is most often the case when the coef-
ficients an are multiplicative arithmetic functions, such as the number or sum of the divisors of w, 
or group characters. Such series were the first to be studied, and are fundamental in many aspects 
of number theory. The most famous example of these is undoubtedly g(s) = S*=i n~s (Re(s) > 1), 
the Riemann zeta function. Initially studied by Euler, who wanted to know the values at the posi-
tive integers, it achieved prominence with Riemann, who clarified its intimate connection with the 
distribution of primes, and gave it lasting notoriety with his hypothesis about the location of its 
zeros. 

Another class of Dirichlet series arises in problems of Diophantine approximation, taking an 

to be the fractional part ofnO, where 0 is an irrational number. Their properties depend on how 
well one can approximate 9 by rational numbers, and how these fractional parts are distributed 
modulo 1. The latter is also a dynamical question about the Iterative behavior of the rotation by 
angle 0 of the unit circle. Such functions were defined and studied by Hardy and Littlewood in 
[3], and also by Hecke [5], Ostrowski and others. 

A Dirichlet series typically converges In a half-plane Re(s) > a0. The first step in retrieving 
the information contained In It Is to study Its possible analytic continuation. Even its existence is 
not usually something that can be deduced Immediately from the form of the coefficients, however 
simple their algebraic or analytic nature may be. For Instance, as Is well known, g(s) extends 
meromorphically to the whole complex plane, with only a simple pole at s = 1. In addition, it has 
an important symmetry around Re(s) = 1/2, in the form of a functional equation, a hallmark of 
many arithmetical Dirichlet series. It has "trivial" zeros at - 2 , - 4 , - 6 , . . . , and its values at the 
negative odd Integers are rational, essentially given by the Bernoulli numbers. 

The Diophantine series described above also extend to meromorphic functions on C, but 
there Is no reason to expect a symmetric functional equation. Indeed their poles form the half of a 
lattice in the left half-plane. Other series, more fancifully defined, are likely not to extend at all. 
For instance, it is known that Y>p~~\ where p runs over the primes, cannot extend beyond any 
point on the imaginary axis, even though It Is formed from terms of T^=\n~s (Chandrasekharan's 
book [1] Is a nice Introduction to these arithmetical connections, whereas Hardy and RIeszss book 
[4] Is a good source for the more analytical aspects of the general theory of Dirichlet series). 

The function <p(s) we study In this paper, defined by the Dirichlet series HF~S, where F„ is 
the w* Fibonacci number, shares properties with both types mentioned above. We will show that 
It extends to a meromorphic function on all of C and that It has, like the Riemann zeta function, 
"trivial111 zeros at -2, - 6, -10,.. . . However, it has trivial simple poles at 0, - 4, - 8,.... Again like 
C(s), we show that at the odd negative Integers Its values are rational numbers, in this case 
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naturally expressible by Fibonacci and Lucas numbers. In addition, we derive arithmetical expres-
sions for the values of <p(s) at positive integers. 

On the other hand, we also show that tp($) is analytically similar to the Diophantine series 
with the golden ratio as the irrational number 0. Indeed p(s) has the same "half-lattice" of poles. 
More recently, Grabner and Prodinger [2] describe a "Fibonacci" stochastic process in which 
there arise analytic continuations sharing yet again this kind of pole structure, thus adding a third 
interesting context in which similar analytic behavior arises. This can be explained by a formal 
similarity in the calculations in each case, but it would be interesting to study further if there are 
deeper connections between them. 

2* FIRST STEPS 
The Fibonacci numbers grow exponentially, and, in general, if a > 1 and vn are integers with 

vn > an, then for a = Re s > 0 we have the estimate 

I \y-„' i * I v? £ £ «_OT =(«CT - ir'• 
n=\ n—l n=l 

Hence, the Dirichlet series Z^=1 v~s defines an analytic function f(s) for a > 0, and furthermore, 

IsfWllsKa'-lT^ilogar^ + Oia) 

as a -> 0+, so that sf(s) is bounded in every angular sector with vertex at 0 opening into the half-
plane Res>0. 

Applying this to the Fibonacci numbers Fn, we get an analytic function <p{s) defined for a = 
Re 5 > 0 by the Dirichlet series Z^Li F~s. It is interesting to express this as a Mellin transform in 
the classical manner (see Ch. 4 of [4], for example). This is accomplished by the counting function 
#(x) =#{n>l:Fn <x}, which counts the number of Fibonacci numbers less than or equal to x, 
where we start with i*J and count Fl = F2 = l twice. Equivalently, #(x) = max{/i > 0: Fn <x) 
(but this is not the same as starting from F0 = 0 and counting distinct Fn). Then 

<p{s) = s\ ®(x)x~s~ldx. 

Note that #(x) = 0 for 0 < x < 1, so the integral actually starts at x = 1. 
Let N(x) = [log^ xV5], where log^ means the logarithm in base <p and [x] is the integer part 

of x. Then it is not hard to see that <l?(x) = N(x) + S(x), where S(x) = 0,1,-1 and, in fact, 
8{x) = 1 if and only if x is in an interval of the form [F2n, <p2n IV5), n > 1, and £(x) = -1 if and 
only if x is in an interval of the form [<p2n+l IV5, F2n+l). Let E c [1, oo) be the union of these 
intervals. Then m(E) < oo, where m is Lebesgue measure, and thus we have 

<p{s) = s U M ^ i \c-s-ldx + s\ES(x)x-s-ldx. (1) 

The first integral may be calculated explicitly, and defines a meromorphic function on the whole 
complex plane. The second integral converges at least for a > - 1 , since for such a, 

I \x~s-l\dx = J x~a-ldx <m(E) < oo. 
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In fact, we do not need to calculate the first integral once we realize that approximating O by N is 
equivalent to approximating Fn by <pn I-J5 in the Dirichlet series. Indeed, 

><p2niS Aw=zii"-*-+r dxT 
n=l 

= 5X ' +̂ 2 
n=l 

20+1 ' V 5 j ^V5 

^ ^ ( 5 ) - l - 5 - s / 2 - ^ 
-25 

\-9-
for a > 0. Thus, 

p(*) = A(s) + l+-? 
tf-V 

where c = log^(V5) - 1 . This is an analytic continuation of <p($) to a > - 1 , and we see that <p has 
a simple pole at s = 0 with residue 1 / log <p. In fact, the series expression 

A(*)=ixj-(p"/V5n 
71=2 

converges for a > - 2 , since by the mean value theorem, 

0rv5 

Note also that A(^)->1 as |s|—> oo and s lies in an angular sector at 0 opening onto Re5>0. 
This is consistent with <p(s) -> 2 as |5|—> oo in this manner. 

Now we proceed to determine the analytic continuation of <p(s) to a meromorphic function 
on C, and determine its poles. From this we will see the reason for this first "jump" from a = 0 
too-= - 2 . 

3. ANALYTIC CONTINUATION 

Proposition 1: The Dirichlet series T^=lF~s can be continued analytically to a meromorphic 
function <p(s) on C whose singularities are simple poles at s - -2k + *l^*®9 k > 0, n e Z, with 
residue (-1)^55/2(7)/log(^> 

Proof: We obtain the full analytic continuation of <p(s) by refining the approximation to Fn 

to a full binomial series 

i^=| i^y=5~p/v1 i -
f .V>V 
SL 

<P 

: s-^v'f l-Hr^T=5_p/2Eo(f) H)(" +iykmn(p~2k\ 

(2) 
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This expansion is valid for any p GC and principal powers since then (xy)p = xpyp for x,y > 0, 
and the binomial series converges since q>>\. Substituting this into the Dirichlet series for <p(s), 
we get 

<p(s) = I F - = 5 s / 2 i I r / k-r/<"+v1 -n(2+lk) (3) 
M=l «=1 fc=0V 

The double series (3) is absolutely convergent for a > 0, for we have the estimate 

(s)(-s-l)---(-s-k + l) 
k\ 

\s\(\s\ + l)...(\s\+k-l) 

and then 

I 
«>1, k>0 

ZS\-.lf(ri+l)m-n(s+2k) * I (-V 
n>L k>0 

"Y-'Mt, 
k( -\S\) -n(*+2k) 

(4) 

= £ <pn<J(l - <p~2ny^ < (1 - ^ " 2 ) H , , £ ^ < oo„ 

Interchanging the order of summation, we get, since \(p~{s+2k>)\ = ^~(or+2^ < 1 for a > 0, £ > 0, 
OO / \ CO 

rt*)=s^ZfI5 (-!)'!((-i)>-(s+2A))" 
k=0\ J n=l 

&UJ(_1) I - ( - D V - ^ (5) 

. &UV"+H)*+I" 
This series converges uniformly and absolutely on compact subsets of C not containing any of the 
poles of the functions 

r-s\ 1 /*(*) = k J (ps+u+(-!)' k+i> 

which are at the points s = -2k + xi^k) for k > 0 and n e Z. Thus, they lie on the lines cr = -2k 
spaced at intervals of -^; s = -2k is a pole when k is even, and s = -2k +-^ is a pole when k is 
odd. Here we see the reason for our initial jump from a - 0 to a = -2 . For any s e C, we have 
|̂ *+2* +(_i)*+i| > p<"2* _ x > 9^k for £ > 0 . h e n C 6 ) 

k>k0 4=0 
I IA(5)|<^SH)M £lkrk=p-*0-p-1r,'l<«> 

for ^ 0 » 0 , and this bound is uniform when 5 varies in a compact set. Hence, (5) defines the 
analytic continuation of <p(s) to a meromorphic function on C with simple poles at s^ = -2k + 
^(2ri+k\ k>Q,nGZ. The residue at s^ is easily seen to be 
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9Ji( O (-l)k9*l2(~sf\ 
±±J = V * J D (6) 

®-(0
s+™ +(- tf+r\ log(<p) 

4 VALUES AT NEGATIVE INTEGERS 

Next, we discuss the values of <p(s) at the negative integers. We already know that 0, - 4 , 
-8 , . . . are simple poles. 

Proposition 2: <p($) has "trivial" zeros at —m, where m > 0, m = 2 mod 4, and the values at other 
negative integers are rational numbers, which can be expressed in terms of Fibonacci and Lucas 
numbers. 

Proof: Let m > 0 be an integer not a multiple of 4. By (5), 
fm\ L 

(p-m+2k+^k+l--

and since m e Z+, all terms with k >m are 0, so that this is really a finite sum belonging to 
Q(V5). Let ak = (JX?""*2* +(-l)"+1)"1 and ak = ak+am_k, so that ak = a m ^ and 

with 
z >t=o 

m-L 

fc=0 
if w is odd. We compute 

(m) 1 , ( m ) 1 
« t = 

witf 1 +_ 1 
m+k+\ k){<p2k-m + (-\)k+1 (-l)m^2*-m) + (-1) 

i\{ I + un 1 
* \<p2k-m+(-i)fc+1 <p*<-2k-"»+(-i)fc+1 y 

so that a*k -ak\im is even, and a*h - -ak if m is odd, where a* denotes the Galois conjugate in 
Q(V5). Thus, if m is even, we have a t e Q for all k, and since also 5~m/2 e Q , we see that 
#>(-7w) e Q in this case. If m is odd, then ak if of the form ak4l, where ak e Q, as is also S"™'2, 
so that again <p(-ni) e Q. We get further information by carrying through the computation of ak: 

^ (m\ {-\)m<p2k-m + (-l)m+k+i + ̂ 2*-m> + (-1)A+1 

"fc U J {<P<p*Yk-m + (-l)k+l(q>2k-m + <p*(2k -m) + i) 
(7) 

= H( n ^ i (-^)2t"m+^(2fc"ffl)+(-i)*+1(i+(-i)ffl) 
W l J <p2k-m+<p*2k-mH(-if+1(i+(-i)m) ' 
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If m = 2 mod 4, then this simplifies to ak = (/t)(-l)*+l, and then 

^(-w) = l r ^ | ; ^ ( - l ) * + 1 = 0 ( in^0 even). (8) 

These may be considered the "trivial" zeros of <p($). 
Ifm is odd, then 

92k-m+ *(2k-m) «. = (7)H>* 
\k+l ^m~2k 

Aw-2£ 

where Ln = (p" + q>*n is the Lucas sequence 2,1,3,4,7,..., and both F„ and Ln are extended to all 
n e Z, so that i^ , = (-1)"+1F„ and L_„ = (-1)"4; hence, JF„ IL_„ = -J? /Z„ for all n * 0. Then 

^ ( -^ ) = 7 ( ^ Z f T ) ( - l ) i + 1 ^ (/»>lodd). D (9) 

All that has been done for the Dirichlet series T^=iF~s may be carried out in an entirely anal-
ogous manner for Z*=i(-1),,/^"J. Carrying out the corresponding calculations, which amounts to 
chasing sign changes in the previous ones, yields the following result. 

Theorem 1: The Dirichlet series Y%=i(-l)nF~s can be analytically continued to a meromorphic 
function y/(s) on C by the series 

The singularities of y/(s) are simple poles at 

with residue 

„y m(2n + k + l) , ^. -. 
S = -2& +—^- - , &>0, weZ, 

log<z? 

( - l / y / 2 ^ j / l o g ( ^ ) . 

These are "complementary" to the poles of <p($). Thus, -m is a simple pole for integers m > 0, 
wis2 mod 4. Similarly, ^(s) has trivial zeros at -m, where w>0 , wi = 0 mod 4 (note that 
y/(0)=-l/2). Finally, 

<K-»0 - 9(-m) = r ^ ' l f A - l ) * 

for m > 0, #i = 1 mod 2. 

In particular, \{q>{s)-<p{s)) analytically continues the series Z^Lo^+i t 0 a function with 
simple poles at 

s = -2k+-^~> k>0, neZ, 
log^ 

\k+lZMz2L 
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hence, at all even negative integers. The odd negative integers are trivial zeros of this function. 
Similarly, j(<p(s)-tp($y) analytically continues the series E ^ i ^ " 5 to a function with the same 
singularities, and rational values at the odd negative integers. 

5. VALUES AT POSITIVE INTEGERS 

Theorem 2: For W G N , <p(m)-5m/2E/licfl>~\ where the coefficients ct are combinations of 
sums of powers of divisors of/. In particular, we have the formulas 

<p(2) = 5 X (-l^Wt/fc)?-', 
/=0mod2 

^(3)=^X(^(o-^(o+(-i)K<o-^(o))^ 8 
25 

/=i 

° fe2mod4 

(ii) 

+ 25 I 
/s0mod4 

^m)+w^ia3m <p 

where df (w) - Td]rl,«(4) </*, 4 = 4 <**(*) = 5^,»dk, [/]2 - 2OTd^> is the 2-part of /, and [/£ is 
the part of / prime to 2. 

Proof: Starting from (2) and 

we have, for m e N, (-u'r-n-1 

j7-iii _ 5^/2 y f W + k - A / ^kn -n(m+2k) 
k=o\ ' 

Let d = m + 2k, which ranges over Sm = {d>m:d^m mod 2}, so 

F-m = 5n,,2 £ - T - ^.jy^y*^ 
deSm\ 

LQtS^ = {d>m:s = m mod 4} and Sm = {d>m:s = m + 2 mod 4}. Then 

-m __ cml2 
d+m-2 

&w-irH-tr£.w-& deS~ 

d+m-2 
-nd 

To sum over w, we will collect like powers l = ndx so that / runs over all natural numbers and we 
restrict to d | /, obtaining 

n=l 1=1 ̂ M e ^ V T 1 V d\l,deS~ 

fd+m-2\\ 

U-Or (12) 
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Similarly, we may sum over subsets S of the natural numbers, letting / run over multiples of Sm by 
n G S. For example, if m is odd, then the divisors d GSm are odd, so if we wish to sum over odd 
n, then we let / run over odd numbers. If we wish to sum over even n, then / runs over even 
numbers. If m is even, then the divisors d eSm are even, so / runs over even numbers. In the 
case m = 1, we have ^ = {d > 1, d = 1 mod 4} and S{ = {d > 1, d s 3 mod 4}. The binomial coef-
ficients reduce to 1. Noting that 2^d=i(4 )(-l) l /d = {-V)ldt(l)y this gives us the formulas: 

(13) 
1 ^ 1 = ̂ 5 X to©-^©)^1; 
w=0 /=lmod2 

n-\ / s0mod2 

Horadam [6] treats other approaches to these and other sums of reciprocals {s-1) of quadratic 
recurrence sequences involving elliptic functions (see Proposition 3 below). 

In general, , 

is a polynomial in x of degree m - 1 , divisible by x if #i is even. Write 

^00 = !«**/", 
where a^ e Q. Then »̂(/w) = 5m/2 E£, c$> ', where 

* 
{.d\l,deS+ k\l,de!% ) 

(14) 

This observation proves the theorem. D 

To get the specific formulas for fixed /, m, let sklm denote the expression in parentheses. 
Note that, for odd m, we have sums over divisor classes d= 1, 3 mod 4, so the signs do not 
bother us: 

m-l 

'lLakm\ 
k=0 

( \ 

and the greater difficulty is the size restriction on divisors, d > m. For even m, the signs are more 
of a nuisance. The classes S*, S~ are of divisors d = 0,2 mod 4. We are summing over even /, 
and we write / = 2rX with r > 1 and X odd. Then the divisors d\l with d = 2 mod 4 are of the 
form d-28 with J|>1. Thus, forgetting for the moment about the restrictions on the size of d, 
we note that Z^ds2moi4dk = 2kak(Z) and Xdll,ds2mod4(-l)"ddk = {-\)in2kuk{X), since lld = 
XI8 is odd or even according to whether X = 111 is odd or even. 
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The divisors d\l with d = 0 mod 4 are nonexistent if r = 1; otherwise, they are of the form 
d = 2PS, with 2 < p < r and J | l . Thus, 

2 ^ZE(2^^ 2 7f^w 
rfM=2mod4 5|.l p=2 Z - 1 

and 
\2r'^ 2 (-iy^=2Z(2^(-i)2 

rf|/,d=2mod4 8\X p=2 

S\X 5\X p=2 

Putting it all together, we obtain the formulas 
fo& 

Sklm ~ i 

2*^)- 5>\ 7^2 (4), 
c?s=2 mod 4 

d<m 

(2k-2u)ak(A)- £ < / * - Y,(-V>llddk, / - 0 ( 4 ) , 
«/|Z d|Z 

d=2 mod 4 cN2 mod 4 
d<m d<m 

if m = 2 mod 4, and 

\-2kak(X)+ £</*, 

%w ~ ^ 

7^2 (4), 
<i=2 mod 4 

d<m 

nk(r+l) _n2k 
2kcrk(A) + 2

 k
 2 a t (A)- £ < / * - £«/*, 7^0 (4), 

Z A </|Z d\l 
d=2 mod 4 d=2 mod 4 

d<m d<m 

if m = 0 mod 4, from which we get the formulas in the theorem. 
A curious result may be derived from these formulas in the case m-\ which is probably the 

subject of Landau's centenary paper [7], to which, unfortunately, the author did not have access. 
Let &(z) = Zwez e™nlz denote Jacobi's theta function. We write also ®(q) = S„e Z qnl, for q = e™ 
with Im z>0 . Then, 

Proposition 3: The following formula holds for S = -^: 

-!_V5 S ^1 = 
rm\ mod 2 

0 0 (15) 

Proof: Note that q = <p~l for z = -l/S (S is the minimum difference of the poles of q>(s) 
along the vertical lines a - -2k). We have &(q)2 = H*Ur2{l)ql, where r2(/) is the number of 
representations of/ as a sum of two integer squares. Since r2(l) = 4(^(7) -d3(l)), we have shown 

«s lmod2 /=lmod2 

and the formula follows from noting that r2(2l) = r2(l) since dt(2l) = dl(l)9 hence 

2001] 417 



ANALYTIC CONTINUATION OF THE FIBONACCI DIRICHLET SERIES 

e(?2)2=Ir2(/)^ = Xr2(2/)^ 
1=0 1=0 

and so 

Z r2{i)ql = ®{qf-®{q1)2. • 
1=1 mod 2 

6. DIOPHANTINE APPROXIMATION 

The "Fibonacci zeta function" tp(s} has much in common with the meromorphic function 
obtained by analytic continuation of the Dirichlet series 

/ C ^ E ^ i ^ (where {x} is the 
fractional part of x) studied by (among others) Hecke in [5] and Hardy and Littlewood in [3] and 
related papers. Indeed, they show that this function has the same singularities as <p(s), namely, 
simple poles at -2k + ( j ^ ^ . They work with any reduced quadratic irrational a , and it is easily 
seen that we have analogous results in that case also. In particular, f(s) and <p(s) differ by an 
entire function. The function <p(s) is not in those papers, which have in mind the study of the 
distribution of the fractional parts {no] (see also Lang [8]). Hecke mentions that lLn^sn"s also 
has an analytic continuation when S is the set of positive integers satisfying {no} < s for a given 
£>0. Note that F2n+l eS except for finitely many n, but by Weyl's equidistribution theorem 
there are infinitely more numbers in S, making these continued functions have an additional pole at 
5 = 1. Comparing (5) with formulas in [5] and [3], we find similar summands multiplied by zeta-
like functions. It would be interesting to obtain more qualitative information. Further questions 
about (p(s) might involve finding nontrivial zeros and studying their distribution, and more prop-
erties of the values <p(m) at integers m. 
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In our previous report [5], we developed some methods ie the study of the line-sequential 
properties of the polynomial sequences treated in Shannon and Horadam [9]. In this report, we 
work out the properties for the general case and apply them to the Pell polynomial line-sequence 
as an example. Some known results are included for completeness, but only new aspects will be 
presented in some detail. 

1. THE BASIC FORMULAS 

Recall that the linear homogeneous second-order recurrence relation is given by 
cun+bun+l = un+29 c,b*0, W E Z ; (1.0a) 

and a general line-sequence is expressed as 
\J(cJh):...,u_3,u_2,u_l,[uQ,uJ,u2,u3,u4,...yunGm., (1.0b) 

where [% t/J denotes the generating pair of the line-sequence. 

1. Basis Paii°o The basis pair for the general case, that is, without specifying the parametric coef-
ficients b and c, is given by (4.2) and (4.3) in [8]: 

Gl50(c,*):...?(c + A2)/c2,-6/c,[l,0],c,ci,c(c+fe2),..., (1.1a) 

G05l(c,5):...,(c+52)/c3,-&/c2,l/c,[0,l],6,(c + 62),.... (Lib) 

Definition 1: Two line-sequences are said to be complementary if they are orthogonal. 

Obviously, the pair (1.1a) and (Lib) are orthogonal and form a set of basis. When c = b = 1, 
they reduce to the complementary Fibonacci and the Fibonacci line-sequences, Fl0 and F0tl, 
respectively. It is clear that all the line-sequential properties of either a number line-sequence or a 
polynomial line-sequence given by the recurrence relation (1.0a) originate from the properties of 
this pair. Following are some of the main properties. 

2„ Translation* The translational relation between the basic pair is given by: 
TGl0 = cG0,h (1.2a) 

where J denotes the translation operation, see (3.1) in [8]. Let gn[i9j] denote the ifi1 term in the 
line-sequence Guj9 then, in terms of the elements, (1.2a) becomes 

«H.A0] = cgl[0,l]. (1.2b) 

3. Parity, The parity relation of the elements in Glj0 is found to be 

g-im = (~lTc-(n+l)gn+2l\0l (1.3a) 
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From (4.9) in [8], the parity relation of the elements in G0 x is given by 

«LjO,l] = (-ir1c-w&[0,l]. (1.3b) 

Applying translational relation (1.2b) to (1.3b), we get (1.3a). In the nomenclature of Shannon 
and Horadam [9], parity relation (1.3b) reduces to (1.7) in [1] for c = -1 in the case of Morgan-
Voyce even Fibonacci polynomials. 

4. Cross Relations. Combining the translational and parity relations, we obtain the following set 
of cross relations among the elements of the two basis polynomial line-sequences: 

^ [ l , 0 ] = ( - i rc -^ + 1 [0 , l ] , (1.4a) 

^ 0 1 = ̂ 4 0 , 1 ] ; (1.4b) 
or 

g-JLO, 1] = ( - l r ' c -^&N. i t l , 0], (1.4c) 
^n[0 ) l ] = c-V-(„-1)[l,0]. (1.4d) 

5. Geometrical Line-Sequences. The pair of geometrical iine-sequences relating to Gx 0 is 
given by: 

Gha(c,b):..., a2, a'\ [1, a], a2, a3,..., (1.5a) 

Glfi(c,b):...,p-2,/r\ll,/]l/]2,p\..., (1.5b) 

where a and fi are the roots of the generating equation 

q2-bq-c = 0 (1.5c) 

(ref. (1.7) in [4], with # = 0 ) . 

6. Binet's Formula. Binet's formula for the G10 basis is given by 

Gl0 = (-/3Gla+aGlfi)/(<a-P), (1.6a) 

and for the G0 j basis is given by 

G^ = (G^a-Ghp)l(a-p) (1.6b) 

(ref. (4.9) in [7]). 

7. (General) Lucas Pain Recall that the line-sequence "conjugate" to G0 j is the "general" Lucas 
line-sequence generated by [2, b], see (4.12) in [8]: 

G2J)(c,b):...,(2c+b2)/c\-b/c,[2,bl2c + b\b(3c-hb2X..., (1.7a) 

which reduces to the Lucas line-sequence L2li(c = b = l. Its complement is 

^,_2(c,£):...,% + 2 + £ W (1.7b) 
For c = b = 1, it reduces to the complementary Lucas line-sequence, 

^ _ 2 a i ) : . . . ? - 7 ? 4 , - 3 , [ l , - 2 ] , - l , - 3 , - 4 , - 7 , . . . . (1.7c) 
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The orthogonal pair (1.7a) and (1.7b) then form a "(general) Lucas basis" spanning the same 
2D space as does the basis pair G10 and G0 b but with a normalization factor (b2 +4)~1/2. 

8, Decomposition Schemes. Thus, we have the following different ways of decomposing a 
given line-sequence, G; j(c,b): The first is the "basic decomposition" resulting in the basic com-
ponent expression, see (2.9) in [8]: 

GiJ(c,b) = iGl0(c,b)+jG0A(c,by (1.8a) 

The second is the "Binet decomposition" the general formula of which is 
G,j(c,b) = [-(fii-j)Gha + (ai-j)Gi,fl/(a-fi). (1.8b) 

Note that the Binet pair Gx a and Gx $ does not form an orthogonal pair unless c = 1, see (2.8) in 
PL 

The third is the "Lucas decomposition," which produces the Lucas component expression, 
the formula of which is given by 

Gy,/c,6) = [(2/+J/)G2i4 + (W-27)G4f_2]/(ft2+4)) (1.8c) 

where the denominator accounts for the normalization factor. 
Since line-sequences Gx^y and Gy^_x are complementary, by repeated application of the 

vector addition and the scalar multiplication rules, see [8], we obtain the general orthogonal 
decomposition formula: 

G,f/c,ft) = [ ( x i > j y ^ (L8d) 

Putting x - 1 and y - - 1 , and applying the rule for scalar multiplication by - 1 , we obtain (1.8a); 
if we put x = 2 and y = b, we obtain (1.8c). 

Similarly, for an arbitrary pair of line-sequences Gx%y and Gz?w, we find 

This is the general decomposition formula. For convenience, we call GXty and GZtW the pair of 
coordinate line-sequences, and their coefficients the respective components. Putting z = y and 
w = - x , we get (1.8d); if we put * = z = l, y = a, and w = fi, we get (1.8b). Wang and Zhang 
[11] adopted a very special pair of coordinates based on their conjugation property: G0i and 
G2f£. Putting x - 0, y = 1, z = 2, and w - b, we obtain 

GUj{cM = {-{hi-2j)G,A+iG2ib\l2, (1.8Q 

which is equivalent to equation (2) in [11]. This decomposition scheme is particularly convenient 
to use in treating products of terms because of the conjugation property. 

9. Translations! Representation* By applying the translational relation (1.2a) to (1.8a), we 
obtain the translational representation of a general line-sequence in terms of the first basis, 

GUj(c, b) = (U+jc-lT)Gh0(c, 6), (1.9a) 

where ir denotes the identity translation; or, in terms of the elements, in the second basis: 

&P,7] = rf&.i[0,l]+7al[0,l]. (1.9b) 
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10. Biiiet's Product* Consistent with the multiplication of the corresponding terms in two line-
sequences to obtain their product, we present the following definition. 

Definition 2: The product of two line-sequences is defined as the product of the two respective 
Binet formulas, and shall be referred to as "Binet's Product." Also, for convenience, exponen-
tiation notation is adopted when it applies. 

Note that, except for some special cases, Binet's product does not, in general, constitute a 
line-sequence governed by (1.0a). This question will be discussed in a later paper. 

In the line-sequential format, we then have 

Gh0G0il = (^Gla+aGl^b(-cf)/(b2+4c) (1.10a) 

or, in terms of the elements, 

^a0]g„[0 , l ] = (c<?2„_1[2,*]+*(-^)")/(*2 + 4c). (1.10c) 

The conjugation of G0l and G2^ (r®f- H-7) and (4.8) in [8]) is then given by 

G0AGXb = (Gla-GlP)l{a-P) (1.10c) 

or, in terms of the elements, 

&[0,1]&[2,*] = &II[0,1]. (LlOd) 

This is the general conjugation formula relating the Fibonacci and the Lucas elements. For 
c = h = 1, it reduces to the basic conjugation relation, fjn = f2n. 

The Binet product of G10 and Gb _2 is somewhat more complex, that is, 

61.0(^2 = { I W + ̂ ^ ( U O e ) 
or, in terms of the elements, 

&D,0]sJA,-2] = c{ fc^^ (I.IOQ 

When c = ft = 1, it reduces to the more easily recognizable relation, 
/„[1,0]/„[l, - 2] = (/2n_2[2,1]- 2/2n_,[2,1]) / 5, (1. lOg) 

which is a set of even terms in the negative Fibonacci line-sequence, 
F o ^ ! : . . . ^ , - ^ ^ - ^ ! , - ! , ^ , - ! ] , - ! , - ^ - ^ - ^ - ^ . . . . (l.lOh) 

11. Summation. From the recurrence relation, it is easy to show that the general consecutive 
terms summation formula is given by 

(ft+c - 1 ) ^ ^=«%+„+«*+w+i + (* - IK-« i t + i , 0- l la) 

where i>k,n>0;i,k,n(=Z. We stress that this formula, like (4.3u) in [6], is translationally 
covariant In the harmonic case, ft = c = 1, it reduces to the latter. In the case of Jacobsthal num-
bers, it reduces to (2.7) and (2.8) in [3], respectively; in the case of Jacobsthal polynomials, it 
reduces to (3.7) and (3.8) in [2], respectively, and so forth. 
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A word about the convention. In (4.3u) in [6], the translational degree of freedom is implicit 
in that the zeroth element uQ may be assigned to any element in the line-sequence. In the current 
case, however, we want to assign the zero* element in the formula to the zeroth element of the 
line-sequence in question; for example, in the Pell line-sequence, we want to assign u0 = p0, so the 
translational degree of freedom lies explicitly in the value of the parameter k chosen. 

It is easy to show that the following two equations hold: 
k+n k+n 

(C - 1 )£ U2j + * X M2,-l = C(M2(fc+n) - «2(i-l)X (1.11b) 
i=k i=k 
k+n k+n 

(c-l)^%+i + ftSM2, = c(M2(fc+n)+l-"2fc-l)- 0-11C) 
i~k i=k 

In the harmonic case, (1.11b) reduces to the odd terms summation formula (4.4u), and (1.11c) 
reduces to the even terms summation formula (4.5u) in [6], respectively. 

Combining (1.11b) and (1.11c), we obtain the general even terms summation formula, 
k+n 
X % = KC - ^(^(k+ny+l - «2k) - bc&2(k+n)+l ~ *hk-l)\ ' KC ~ lf ~ b \ (1.11 d) 
i=k 

and the general odd terms summation formula, 
k+n 

X *2/+l = l°2 (^(k+^+l ~ «2*-l) ~ (^2(k+n)+3 ~ *hk+l)\ ' KC ~ lf ~ b ^ ' (l'llQ) 
i=k 

12. Translational Operators, By the dual relation of Section 4 in [6], corresponding to for-
mulas (1.11a) through (l.lle), we have the following set of covariant equations of the transla-
tional operators: 

k+n 

(6+c-i)X^ = crt+„ + rt+„+I+(*-i)r,-rfc+1, (1.12a) 
i=k 

k+n k+n 

(p- i ) I T2i +*>£ 4-i = c(T2(k+n) - V D ) , 0- 12b) 
i=k i=k 
k+n k+n 

(c - l )Z^ + i+6Zr a ,=c(T 2 i k + n ) + l - r 2 H ) , (1.12c) 
i—k i=k 

k+n 

E^-Kc-ix^^-^j-MV^-ui/Kc-i)2^2], (i.i2d) 
i=k 
k+n 
E T2M = [c2(T2{k+n)+l - T2k_x) - (T2(k+n)+3 - Tu+1)] I [(c -1)2 - b2]. (1.12e) 

13. Sirasonfs Formula. The general Simson formula is found to be 

gn^j}gn-ilhj]-{gn[i,j])2=(-cy-\bij+ci2-f). (1.13) 

In particular, for the general Fibonacci and the general Lucas pairs, 

&+iD,0]^,[l,0]-(gB[l,0])2 = ̂ ) V (113a) 
g„+i[0,11&J0, l]-(&[0, l])2 = -{-cT\ (1.13b) 
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gn+l[2, b]gn_x[2, * ] - (&P, h]f = (-cy-l(b2 + 4c\ (1.13c) 

gn¥l[b, -2]gn_x[h, -2]-(gn[b, -2])2 = -{-cy~\2b2 -b2c + 4). (1.13d) 

In the case of Jacobsthal numbers, (1.13b) and (1.13c) above reduce to (2.5) and (2.6) in [3], 
respectively. In the case of Jacobsthal polynomials, they reduce to (3.5) and (3.6) in [2], respec-
tively, and so forth. From (1.13), it is clear that the significance of Simson's formula lies in its 
independence of the index n, apart from a sign correction. 

2. THE GENERAL LUCAS PAIR 

The general Lucas line-sequence G2b is particularly interesting, mainly owing to its being 
conjugate to the second basis line-sequence G01. In addition to the aforementioned properties, a 
few more basic properties are given below. 

The basis component expression of G2b, according to (1.8a), is given by 
G2,b = 2Gl0+bG0tl (2.1a) 

or, in terms of the elements, 
&[2,ft] = 2&[l,0]+A&[0,l]. (2.1b) 

Substitution of the translational relation (1.2a) into (2.1a) produces the translational representa-
tion of G2b

 m terms of the first basis, 

G2fb = (2I+bc-lT)Gl0, (2.1c) 

which can also be obtained from (1.9a) by putting i = 2 and j = b. 
The basis component expression of Gb _2 is given by 

Gb,-2 = bGi,o-2GOA (2.2a) 

or, in terms of the elements, 
&[*, -2 ] = bg„[l, 0]-2&[0,1]. (2.2b) 

The translational representation in terms of the first basis is then given by 

Gbt_2 = (bI-2c-lT)GU0, (2.2c) 

which can again be obtained from (1.9a) by putting i-b and J = - 2 . 
Binet's formula for G2tb, according to (1.8b), is 

G2.fab) = Gla + Gufi9 (2.3a) 

and Binet's formula for its complement is 
^,_2(c,*) = h0ffft+2)G1>a + ( a f t + 2 ) G ^ ] / ( a - ^ . (2.3b) 

Substituting the geometrical line-sequences (1.5a) and (1.5b) into (2.3a) and noting that 
afi = -c, we obtain the parity relation of the elements in G2tb, that is, 

g-n[2,b] = (-crgn[2,b]. 

Again in the nomenclature of Shannon and Horadam [9], the parity relation (2.4) reduces to 
(1.9) in [1] for c = -1 in the case of Morgan-Voyce even Lucas polynomials. 
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Applying the cross relation (1.4a) and the parity relation (1.3b) to the component expression 
(1.13b), using the parity relation (2.4), we obtain 

gn[2,b] = 2gn+llQ,l]-bgn[0M (2.5) 

which is the general version of the basis representation of the Lucas elements (for c = h = l): 
*„ — 4/«+l ~ Jn-

Similarly, from the component expression (2.2b), we obtain 
gm[b, - 2] = bcg^JO, 1] - 2&[0,1], (2.6a) 

which is the basis representation of the complementary Lucas elements in terms of the second 
basis. Note that if we choose to express the elements in terms of the first basis, using the trans-
lational relation (1.2b), we would obtain 

gn[b,-2] = -2c-V„+1[l, 0]+bgn[l, 0], (2.6b) 

which is more symmetrical with (2.5). 

3. THE PELL POLYNOMIAL LINE-SEQUENCES 

We now apply the formulas obtained in the previous sections to the Pell polynomials and, for 
the sake of checking, we also calculate the results independently, that is, without using those 
formulas. The results are found to agree in each and every case. The order of development fol-
lows largely that of the previous sections with some minor variations. 

The Pell polynomials line-sequence is defined by b = 2x, c = l. The basic pair is given by 
P1)0(l,2x):...,-4x(H-2x2),(l + 4x2),-2x,[l,0],l,2x,(l + 4x2),..., (3.1a) 

P0J(1,2x):..., -4x(l + 2x2), l + 4x2, -2x, 1, [0,1], 2x, (l + 4x2),..., (3.1b) 

where the first one is referred to as the complementary P-Fibonacci line-sequence, or the P10 line-
sequence for short; the second is referred to as the P-Fibonacci line-sequence, or the P0l line-
sequence for short. 

Obviously, they are translationally related, in agreement with (1.2a), that is, 

2Plf0 = P0fi. (3-2a) 
In terms of the elements, this becomes 

/WiP.0] = />n[0,l]. (3.2b) 
The parity relation of the elements in Pl0 is given by (1.3 a), 

P-ntt,0] = (-l)"p„+2[l,0], (3.3a) 

and the parity relation of the elements in P0l is given by (1.3b), 

/'-„[0,l] = ( - i r 1
A [ 0 J l ] . (3.3b) 

Or, by applying (3.2b) to (3.3b), we also obtain (3.3a). 
Combining the translational relations with the parity ones, we obtain the following set of 

cross relations among the elements of the two basis polynomial line-sequences, in agreement with 
relations (1.4a) through (1.4d): 
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/ a i , 0 ] = (-l)V„+1[0,l] (3.4a) 
P-J},0] = p<n¥l)[0,ll (3.4b) 

or 
\n+l P-„[0,l] = ( - i r W l , 0 ] , (3.4c) 

P-niO,i\ = P^y^O]. (3.4d) 

From (1.5 a) and (1.5b), the pair of geometrical line-sequences relating to Pl 0 is given by 

Pla(l,2xy....,a-2,a-\[l,a],a2,a3,..., (3.5a) 

Px,p{\2xy...,pr\p-\\\,p\f?,f}\..., (3.5b) 

respectively, where a and fi are the roots of the generating equation 

q2-2xq-l = Q. (3.5c) 

By formulas (1.6a) and (1.6b), Binet's formula for Pl0 is 

PXQ = {-pPha + aPh(3)l(a-p), (3.6a) 
and for the P0l is 

Po.i = (Pua-Pifi)Ka-fi)- (3-6b) 

From (1.7a) and (1.7b), the P-Lucas line-sequence is given by 

Pi, 2*0,2x): - 2x(3 + 4x2), 2(1 + 2x2), - 2x, [2,2x], 2(1 + 2x2), 2x(3 + 4x2),.... (3.7a) 

Its complement is then 
P2,5_2(l, 2x):..., 2x(3 + 4x2), - 2(1-f 2x2), [2x, - 2 ] , -2x, ~2(l + 2x2),.... (3.7b) 

These two line-sequences are clearly orthogonal, with a normalization factor [2(l + x2)1/2]_1. 
The basis component expression for an arbitrary Pell polynomial line-sequence, according to 

(1.8a), is given by 
PUJ{\ 2x) =iPl0(l, 2x) +jP0J(l, 2x), (3.8) 

so we have, for the P-Lucas pair: 

PlixQ*2x) = 2^i,oO? 2x) + 2xP0>1(l, 2x), (3.8a) 

P2*.-2<X 2x) = 2xPl0(l3 2x) - 2P(U(1, 2x). (3.8b) 

It can be easily shown that the general formula of Binet decomposition, in the simpler appli-
cable form for the Pell polynomial line-sequences, is given by 

PiJ(l,2x) = [-i(pPha-aP1^) + j(Pla-Pl^)]/(a-P). (3.9) 
Thus, we have 

P22x(l,2x) = 2 [ - ( / ^ (3.9a) 

^ , - 2 a 2 x ) = 2 [ - x ( / ? P ^ (3.9b) 

The formula for the Lucas decomposition of an arbitrary Pell polynomial line-sequence, 
according to (1.8c), is given by 
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Pi,J(l,2x) = [(i + xj)P2,2x + (xi-j)P2x,_2]/2(l + x2), (3.10) 

so the component formulas of the basis pair with respect to the Lucas bases are 

Pi,oQ,2x) = [P2,2x+xP2x>_2]/2(l + x2), (3.10a) 

P0,1(l,2x) = [xPX2x-P2x_2]/2(l + x2). (3.10b) 

The conjugation of P0l and P2b, by (1.10c), produces 

Po.A2x = (fua-fup)Ka-fi). (3.11a) 

In terms of the elements, this becomes 
pn[0,l]pn[2,2x] = p2„[0,l], (3.11b) 

which is the P-version of the conjugation relation fjn = f2n. 
The Binet product of P^ 0 and P2Xt _2? by (1. lOe), is found to be 

P1,oP2X,-2 = 2[fi(fix + l)P'a + a(ax + l)P^]/(a-^2. (3.12a) 

In terms of the elements, with afi = -l, this becomes 

pn[l,0]pr![2x,-2] = (xp2„_2[2,2x]-p2„_1[2,2x])/2(l + x2). (3.12b) 

From Binet's formula (3.9a), we obtain the following parity relation between the elements of 
the P-Lucas line-sequence (3. 7a), 

p^[292x] = (riypn[292xl (3.13) 
which apparently holds true. 

The component expression of the P-Lucas line-sequence is given by 

^2.2, = 2/lo + 2xP0tl. (3.14a) 

In terms of the elements, this becomes 
pn[2,2x]=2p„[l,0]+2xp„[0,l]. (3.14b) 

Applying (3.3b) and (3.4a) and using the parity relation (3.13), we obtain 

Pr}[2,2x} = 2pn+l[0,l]-2xpn[0,ll (3.14c) 
which is the P-version of the relation ln = 2fn+l - fn. 

Substituting the translation relation (3.2a) to the component expression (3.14a), we obtain 
the translational representation of the P-Lucas line-sequence, 

PX2x=2(I + xT)Pl0. (3.15) 

The component expression of the complementary P-Lucas line-sequence is 

^ - 2 = ^ 0 - 2 ^ , 1 . (3.16a) 
In terms of the elements, this becomes 

pn[2x, - 2 ] = 2xpn[l, 0]-2pn[0,1]. (3.16b) 

Applying parity relation (3.3b) and cross relation (3.4a), we obtain 
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pn[2x, - 2] = -2p„[0,1] + 2xpn_l[0,1], (3.16c) 
which is the complement of the relation (3.14c) in terms of the second basis. Its equivalence in 
terms of the first basis is obtained by applying the translational relation (3.2b), 

pn[2x, - 2 ] = -2Pn¥l[\0]+2x#,[l, 0], (3.16d) 

which is more symmetrical with (3.14c). 
Substituting the translation relation (3.2a) into the component expression (3.16a), we obtain 

the translational representation of the complementary P-Lucas line-sequence, 
P2x,-2 = 2(xI-T)Pl0. (3.17) 

The following summation formulas can be verified easily: 
k+n 
Z f l = [ A + » » + A + I I + I + ( 2 X " 1 ) A - A + I ] / 2 X , (3.18a) 
i=k 

k+n 

X A/-i = (ftoH-n) - A(*-i))/2x, (3.18b) 
i=k 

k+n 

Z PH = (P2(k+n)+l ~ Plk-l) / 2X. (3.18C) 

Formulas (1.11b) and (1.11 c) in the general case reduce to (3.18b) and (3.18c), respectively. 
The dual relation then gives the corresponding operators equations of translation: 

k+n 

HTl=[Tk+n + Tk+n+l+(2x-i)Tk-Tk+l]/2x, (3.19a) 
i=k 

k+n 

I?/-I = (V)-VD)/ 2* ' <3-1 9 b) 
i=k 

k+n 

Z 4 = (^ + n ) + i -^ - i ) /2x . (3.19c) 
For example, let k = -3 and n = 5, then the left-hand side (l.h.s.) of (3.19a) gives 

(k+n \ 

\i=k J 

and its right-hand side (r.h.s.) gives [T2 + T3 + (2x - l)T_3 - ZL2] fl[0,1]/ 2x = 3 + 4x2; hence, l.h.s. = 
r.h.s. 

Simson's formulas for the Pell polynomial line-sequence are found to be: 

fl»iP, OJ/ViU 0]-(pn[l, 0])2 = ( - l r 1 , (3.20a) 

/WifO, 1]/Vi[<>, 1]-(PJP, l])2 = (-1)", (3.20b) 
pn+l[2,2x]pn_l{2,2x] - (p„[2,2x])2 = (-l)"-x(4)(l + x2), (3.20c) 
pn+l[2x, -2-\Vn_i2x, -2]-(p„[2x, -2])2 =(-l)"(4)(l + x2). (3.20d) 

For example, let n = -1 in (3.20d), then l.h.s. = r.h.s. = -4(1 + x2). 
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Remark: A number of specific problems in this work need to be addressed. For example, as of 
this writing, we have not yet found the parity relation of the elements in Gb^_2, as compared to 
those in G2tb, see (2.4). Also, as far as this author is aware of, the relation (3.12b) does not seem 
to relate to any known line-sequential relation, in contradistinguishing to relation (3.11b), which 
relates to the well-known conjugation relation fnln - f2n. It is also interesting to see, as is pointed 
out by the referee, that viewing from the bigger picture, so to say, how this piece of 2D work 
relates to the work in the 3D case, as, for example, in the context of [10]. 
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1. INTRODUCTION 

We study certain paths In the first quadrant from (0,0) to (/', j). These paths consist of 
segments from (x0, y0) = (0,0) to (xl3 yt) to ... to {xk, yk) = (f, j). If we write 

then ph > 0, qh > 0, and 

Thus, the ^ form a composition of/, the % a composition of/. 
The paths we shaM study will have some restrictions on the ph and qh. For exairole, in Sec-

tion 3, we shall enumerate paths for which 

<*x*>Ph^hx> ay^9h^by9 *=1,2,. . . ,*, * ^ 1 , 
where o ^ l , a >\. 

2. COMPOSITIONS 

A composition of a nonnegative integer n is a vector (p1?..., /^) for which 

Note that the order in which the ph are listed matters. Each ph is called a, part, and £, the number 
of parts. Let c(#f, £, a, h) be the number of compositions of n into A parts ph with a<ph<b. It 
is well known that 

On subtracting a from each part, it is easy to see that 

c{n, k,a,oo) = c(n-ka,k,0,») = T ~ * *i " J- 0 ) 

With a = 1, this gives the number of compositions of n into k positive parts, 

c(n,k,l*>) = ^Z1^ 

and the number of compositions of n into positive parts, 
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3, SOME MESULTS ON PATHS 

Theorem 1: Suppose aX9 bx, ay9 by are integers satisfying \<ax<bx and \<ay<b . Let 
T(09 0) = 1, and for i > 0 and j > 0 but not i = j = 0, let T(i, j) be the number of paths satisfying 

®x^Ph^K and ay<qh<by (2) 

for h = \2,...,k and fc-=l,2,...,min(/,7). Then 
min(i, j) 

T(j> J) = X <#> *> Qx> bx)CU> k> ay* by) • (3) 

Proof: Suppose 1 < k < min(z, j). Corresponding to each path of the sort described in the 
introduction satisfying (2) is a composition of i into k parts and a composition of j into k parts 
satisfying (2), and conversely. 

There are c(i,k,ax,bx) such compositions of i and c(J,k,ay,by) such compositions of j , 
hence c(i, k, aX9 bx)c(j, k, ay9 b) such paths consisting of k segments. Summing over all possible 
numbers of segments yields (3). • 

Corollary LI: The number of paths T(i9 j) with ph>ax, qh> ay (where ax > 1, ay > 1) is 

Proof: Let bx = oo and iy = ao in Theorem 1. D . 

Lemma LI: If I and */ are nonnegative integers, then 

Proof: The assertions clearly hold for / = J = 0. Suppose that / + J > 1 and that both iden-
tities hold for all / ' and J' satisfying P + Jf<I + J. Then 

-C#,M/+/~,M';J) 
and 

Although both of the identities in Lemma 1.1 are needed inductively In the foregoing proof, 
only the Irst Identity will be used below. 

Corollary L2: The number T(i9 j) of paths satisfying ph > 1, qh > 1 Is given by 
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Proof: Put ah = l, ay = 1 in Corollary 1.1, and apply Lemma 1.1. D 

Theorem 2: The number T(i, j) of paths satisfying ph > 1, qh > 0 is given by 

^,y)=s^*A»K/,*^oo)=t(i:1
1)(-/j!71} 

Proof: The method of proof is essentially the same as for Theorem 1. Here, however, the 
greatest & for which there is a path for which all ph > 1 is /, rather than min(j, j ) . D 

The array of Theorem 2 is of particular interest; for example: 
(A) r(7,0) = 2 / - 1 for />l ; 
(B) r(i, 1) = (# +1)2'"2 for / > 1; 

( Q X (̂J> i ) = ^ w ^or n -*> *e> antidiagonal sums are Fibonacci numbers; 
/>0,/>0 

(D) ^ (~0J T̂'V J)~Pn for w > 1, i.e., alternating antidiagonal sums are Fibonacci numbers; 
i+j-n 

i>0,j>0 

(E) the diagonal T(n,n-l) = (1,3,13,63,321,...) is the Delannoy sequence, A001850 in [1]; 
(F) the diagonal T(n, n) = (1,1,4,19,96,501,...) is the sequence A047781 in [1]. 

We leave proofs of (A)-(F) to the reader, along with the determination of the position and magni-
tude of the maximum number Mn in the rfi" antidiagonal of T. The first fourteen values of Mn 

are 1, 2, 4, 8, 20, 48, 112, 272, 688, 1696, 4096, 10496, 26624, 66304. One wonders what can 
be said about limw_̂ 00 Mn IFln. Initial terms of the sequences in (A)-(F) appear in Figure 1. 

The T(i9 j) given in Theorem 2 are determined recursively by T(0,0) = 1, 7(0, j) = 0 for 
j > 1, T(i, 0) = 2'"1 for i > 1, and 

iv,j)='tin*>i)- (4) 
To verify (4), note that each path with final segment terminating on (/, j) has penultimate seg-
ment terminating on a lattice point (A, s) in the rectangle 

RiJ:={0,l,...,i-l}x{0,l,...J}. 

Therefore, the number of relevant paths from (0,0) to (/, j) is the sum of the numbers of such 
paths from (0,0) to a point in i^;J. 

More generally, all arrays as in Theorems 1 and 2 are determined recursively by 

TQJ)= Z r ( M ) f o r / > 2 a n d . / > l , 

where initial values and lattice point sets % j are determined by (2) or other conditions. 
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FIGURE 1. ph > 1, qh > 0 (see Theorem 2) 

4. RESTRICTED HORIZONTAL COMPONENTS 

Suppose m > 2. In this section, we determine T(i, j) when \<ph<rn and qh > 0. By the 
argument of Theorem 2, 

where c(i, k, 1, m) is the number of compositions of/ into k positive parts, all < rn. By the remarks 
at the end of Section 3, the numbers T(i9 j) are determined recursively by T(0,0) = 1, J(0, j) = 0 
for j > 1, T(i, 0) = 2'"1 for i = 1,2,..., w, and 

TQJ)= Z Z ^ , 0 . (5) 

Values of r(i, 7) for m - 2 are shown in Figure 2. 
In Figure 2, the antidiagonal sums (1,1,3,7,17,41,99,...) comprise a sequence that appears 

in many guises, such as the numerators of the continued-fraction convergents to V2, (See the 
sequence A001333 in [1].) 

Also in Figure 2, the numbers in the bottom row, T(i, 0), are the Fibonacci numbers. Since 
the other rows are easily obtained via (5) from these, it is natural to inquire about the bottom row 
when m > 3; we shall see, as a corollary to Theorem 3, that the w-Fibonacci numbers then occupy 
the bottom row. 
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o a cp cp cp — c p cp cp cp 

0 1 10 63 309 1290 4797 16335 

0 | 1 9 52 236 918 3198 10248 

0 1 8 42 175 630 2044 6132 
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1 

1 

1 

1 
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7 

6 

5 
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25 85 255 701 

18 54 145 361 

12 31 7 3 1 6 2 

3458 

1806 

850 

344 

7 15 30 58 109 

1 1 2 3 5 8 13 
o — c- o —o—•• o — o 6 c 

21 

S 6 

FIGURE 2. Enumeration of Paths Consisting of Segments 
with Horizontal Components of Lengths 1 or 2 

Lemma 3.1: Suppose m>\. The number F(m9 ri) = Ej[=1 c(n, k, 1, m) of compositions of n into 
positive parts < m is given by: 

F{\n) = lioim>X 
F(m,n) = 2n~l forl<n<m, m>2; 
F(m,n) = F(m9n-l) + F(m9n-2) + "'+F(m,n--m) forn>m + l>3. 

Proof: For row 1 of the array F, there is only one composition of n into positive parts all 
< 1, namely, the w-dimensional vector (1,1,..., 1), so that F(\ n) = 1 for n > 1. Now suppose that 
the row number m is >2 and \<n<m. Then every composition of n has all parts <m, and 
F(m,ri) = 2"-1. 

Finally, suppose n>m +1 >3. Each composition (pl9pl9...9pk) of n into parts all <m has a 
final part pk that will serve our purposes. For u = 1? 2,..., m, the set 

Su = \(pl9p2,...9pk):l<p.<m£ori = X29...9k; 2 /%=i? pk=u 
i = i 

is an obvious one-to-one correspondence with the set of compositions (p1? />2> •••> A-i) f°r which 
l<pr<m for # = 1,2,...,*-1 and TfZiPt =n-u, of which, by the induction hypothesis, there 
are F(m, n-u). The sets Sl9S2,...9 Sm partition the set of compositions to be enumerated, so that 
thetotdcountm F(m,n-l) + F(m9n~2) + °--+F(m,n-m). D 
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Theorem 3: Suppose m > 1. Thee the bottom row of array T is given by T(i, 0) = F(m, i +1) for 
i > 0 . 

Proof: We have T(0,0) = F(m91) = 1. Suppose now that / > 1. The sum In (5) and Initial 
values given with (5) yield 

J ( | . 0 ) [2'"1 If l<i<M? 

[r(/-m,o)+r(/-wf+i,o)+ —+r(#-i,o) ifi>#w+i3 
and by Lemma 3.1, 

17/ • , i \ J2' IfO<J<W~l? 
F(wi, i +1) = < ? 

[F(w, i) + F(m, / -1) + • • • + F(m, i + \-m) If i > m. 
Thus, the Initial values and recurrences of the sequences {T(i, 0)} and {F{mJ + t}} are Identical, 
so that the sequences are equal. 

REFERENCE 
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NEW PROBLEM WEB SITE 

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 
be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 
Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 

developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included In most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site Is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For farther Information, write to: 

Mr. Mark Bowron 
Director of Operations? MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowroe@my-deja.com 
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1. INTRODUCTION 

In this paper, we consider the generalized Fibonacci and Lucas functions, which may be 
defined by 

ryX _ pinXOX 

and 
V(x) = ax+e?*xflx, (2) 

where a = (p + -/E)/2, f5=(p-JK)l2> 0, A = p2-4q,p and q are integers with q> 0, andx 
is an arbitrary real number. It is clear that U(x) = F(2x) and V(x) = L(2x) when p = 3 and q = 1, 
where F(x) and L(x) are the Fibonacci and Lucas functions, respectively (see [2]). 

In [2], R. Andre-Jeannin proved that well-known identities for Fibonacci and Lucas numbers 
are again true for F(x) and L(x). Basic results regarding these topics can be found in [1]. Some 
special cases of the functioits U(x) and V(x) are treated in [4] and referred to in the Remark in 
[8]. The aim of this paper is to establish some identities for U(x) and V(x). We are interested in 
calculating the summation of reciprocals of products of U(x) and V(x). 

2. MAIN RESULTS 

From the definitions of the generalized Fibonacci and Lucas functions, we can obtain the 
main results of this paper. 

Theorem: Assume that n, r, and s are positive integers, and x is an arbitrary real number. Then 
« ei„{k-l)rxq{k-l)rx ^ Ujnrx) ( ) 

£"! U(krx -rx + sx)U(krx + sx) U(rx)U($x)U(sx+nrx) ) 

and 

£- V(sx + krx- rx)V{sx + krx) U(rx)V(sx)V(sx + nrx)' { } 

Proof: From (1) and (2), it is easy to verify that U(x) and V(x) satisfy 

V(sx) V(sx+rx)= 2einsxqsxU(rx) ( . 
U(sx) U(sx+rx) U{sx)U(sx+rx) { ) 

and 
U(sx) U(sx+rx) = -2eiKSXqsxU{rx) 
V(sx) V(sx+rx) V(sx)V(sx+rx)' W 

In (5) and (6), replacing s by s, s + r, s+2r,..., s + (n - l)r, and adding the results we can obtain 
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f g ' W > V ^ =e-<*'xq-a(V(sx) Vjsx+nrxV 
^Uisx + krx-rx^isx + krx) 2U(rx) [u(sx) U(sx+mx) 

and 
^ ei<K-i)™q(k-i)rx =e^'xq'a(U{sx) U(sx+nrx)) 
^V(sx + knc-rx)V(sx + krx) 2U(rx) {V(sx) V(sx+nrx))' 

From (5) and (6), we can prove that the equalities (3) and (4) hold. • 
Remark: From (1) and (2), we can show that the following relations are valid: 

V(2rx) - ei7t{r-^xq{r-^xV(2sx) = AU(rx - sx)U(rx + sx); (7) 

V(2rx) + ein{r~^xq^ xV(2$x) = V{rx - sx)V(rx + sx); (8) 

U2(rx) - ei7r(r~s^r^xU2(sx) = U(rx - sx)U(rx + sx); (9) 

V\rx) - ei7l{r-s^xq{r-^xV2{sx) = AU(rx - sx)U(rx + sx). (10) 

From (7) and (8), we have 
n Jitkrxrskrx n Jnkrx^krx 
y e ? = y e <1 
S V(2krx+rx + 2sx)- ein{sx+knc)qsx+krxV{rx) £J AU{krx + sx)U(krx + rx + sx) 

and 
n Jnkrx^krx n Jnkrx^krx 

y e g _y e g 
£J F(2Jbr + rx + 2sx) + ̂ ^5X+^V^+teF(^c) £j> V(krx + ^)F(ATT+rx + « ) " 

By the method used to obtain (3) and (4), we obtain the equalities 
A g/jfaxgto = U(nrx + rx) 
^ 0 F(2An:+nc + 2 5 x ) - e / ^ + ^ ) g ^ + t e F ( ^ ) " W(rx)U(sx)U(sx+nrx+rx) 

and 
A g ' « * y * U(nrx + rx) 
^ 0 F(2Aro+rr + 2sr)+ein{sx+krx)qsx+krxV{rx) U(rx)V(sx)V(sx+nrx+rx)' 

Using (9) and (10) and applying the method used to obtain (3), we obtain the equalities 
& 1

 e2mkrxq2krx ^ U(2mx) 

^ 0 U2(2krx+rx + at) - ^ + 2 ^ V * + 2 ^ 2 ( o ; ) U(2rx)U(sx)U(sx + 2wx) 
and 

A e2inkrxq2krx t/(2llfy) 

^ 0 F2(2Ao: + o: + ̂ ) - e ^ ( ^ + 2 ^ V x + 2 ^ ' / 2 ( ^ : ) AI7(2o:)C/(5x)C/(5x + 2/io:). 

Letting x be a positive real number and | ~ | < 1, due to 

lim TT/ ^m' x =—— and lim ^ = 
n++*>U(px+rx) a™ r,-»+x>V(nx+rx) VAa^ 

we immediately have the following corollary. 

Corollary: Suppose that r and s are positive integers, and x is a positive real number. If | § | < 1, 
then we have 
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* ein{k-\)rx {k-\)rx j 

£ ! U(sx + krx- rx)U(sx + knc)~ asxU(rx)U(sx) 
and 

°o ein(h-\)rxq{k-l)rx j 

~ V(sx + krx- rx)V(sx + krx)~~ ^AasxU(rx)V(sx)' 

We note that formulas (3.3), (3.4), (3.5), (3.6), (3.9), and (3.10) in [6] are special cases of 
the Theorem and the Corollary. 

Valuable references connected with the main results of this paper are [3], [5], and [7]. 
Finally, we give some special cases of the Theorem and the Corollary. If p - 3 and q = 1 in 

(3) and (4), we obtain 
A e^-V™ F(2nrx) 
^ F(2krx -2rx + 2sx)F(2krx + 2sx) F(2rx)F(2sx + 2nrx) 

and 
^ e^-V™ = F(2nrx) 
;£i L(2krx -2rx + 2sx)L(2krx + 2sx) F(2rx)L(2sx)L(2sx + 2nrx) ' 

If p = 3, q = l, and x - 1 in the Corollary, we have 

^lF(2$ + 2kr-2r)F(2$+2Jcr) ~ (3 + S)sF(2r)F(2s) 
and 

A (-i)<*-1>r r 
£J L(2s + 2kr- 2r)L{2s + 2kr) ~ ̂ 5(3 4- S)sF{2r)L{2s)' 
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1. INTRODUCTION 

For arbitrary positive integer «, numbers of the form Dn = {an-pn)l{a-fJ) are called the 
Lucas numbers, where a and fi are distinct roots of the polynomial f(z) = z2 -Lz + M, and L 
and Mare integers that are nonzero. The Lucas sequence (D): Dh D2, D3,... is called real when 
a and ft are real. Throughout this paper, we assume that L and M are coprime. Each Dn is an 
integer. A prime p is called a primitive divisor of Dn ifp divides Dn but does not divide Dm for 
0<m<n. Carmichael [2] calls it a characteristic factor and Ward [9] an intrinsic divisor. As 
Durst [4] observed, in the study of primitive divisors, it suffices to take L>0. Therefore, we 
assume L > 0 in this paper. 

In 1913, Carmichael [2] established the following. 

Theorem 1 (Carmichael): If a and /} are real and n & 1,2,6, then Dn contains at least one primi-
tive divisor except when « = 12, L = \ M = -l, 

In 1974, Schinzel [6] proved that if the roots off are complex and their quotient is not a root 
of unity and if n is sufficiently large then the w* term in the associated Lucas sequence has a 
primitive divisor. In 1976, Stewart [7] proved that if n - 5 or n > 6 there are only finitely many 
Lucas sequences that do not have a primitive divisor, and they may be determined. In 1995, 
Voutier [8] determined all the exceptional Lucas sequences with n at most 30. Finally, Bilu, 
Hanrot, and Voutier [1] have recently shown that there are no other exceptional sequences that 
do not have a primitive divisor for the w* term with n larger than 30. 

The aim of this paper is to give an elementary and simple proof of Theorem 1. To prove that 
Theorem 1 is true for all real Lucas sequences, it is sufficient to discuss the two special sequences, 
namely, the Fibonacci sequence and the so-called Fermat sequence. 

2* A SUFFICIENT CONDITION THAT Dn HAS A PRIMITIVE DIVISOR 

Let n > 1 be an integer. Following Ward [9], we call the numbers 

\<>r<>n 
(r,n)=l 

the cyclotomic numbers associated with the Lucas sequence, where a, fi are the roots of the 
polynomial f(z) = z2-Lz + M and the product is extended over all positive integers less than n 
and prime to n. Each Qn is an integer, and Dn = Hd\n Qm where the product is extended over all 
divisors d of n. Hence, p is a primitive divisor of Dn if and only lip is a primitive divisor of Qn. 

Lemma 1 below was shown by several authors (Carmichael, Durst, Ward, and others). 
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Lemma 1: Let/? be prime and let k be the least positive value of the index i such that/? divides 
Dr If n ^ 1,2,6 and if/? divides Qn and some Qm with 0<m<n, then /?2 does not divide gw and 
n~prk with r >1. 

Now suppose that n has a prime-power factorization n = p*lp2
2..*Pil, where Pi,p2,---,Pi a r e 

distinct primes and £1? e2,...,el are positive integers. Lemma 1 leads us to the following lemma 
(cf. Halton [5], Ward [9]). 

Lemma 2: Let n & 1,2,6. A sufficient condition that Dn contains at least one primitive divisor is 
that \Qn\>plp2--Pi-

Proof: We prove the contraposition. Suppose that Dn has no primitive divisors. lip is an 
arbitrary prime factor of Qn, thenp divides some Qm with 0<m<n. Therefore, p divides n and 
p2 does not divide Q,. Hence, Qn divides PiP2...ph so \Qn\ < p\P2—Pi- • 

Our proof of CarmichaePs theorem is based on the following. 

Theorem 2: If n * 1,2,6 and if both the rfi1 cyclotornic number associated with z2 - z -1 and that 
associated with z2-3z + 2 are greater than the product of all prime factors of n, then, for every 
real Lucas sequence, Dn contains at least one primitive divisor. 

Now assume that n is an integer greater than 2 and that a and fi are real, that is, I? - AM is 
positive. As Ward observed, 

Q,(a,fi) =X\(a-?P){a-CrP) (1) 

= U((cc+fi)2-am + Cr + C% (2) 
where C,-e2mln and the products are extended over all posjtive integers less than nil and prime 
ton. Since a -\-p~L and aj3 = M, by putting 0r = 2 + gr + £~r, we have 

Qn = Qn(a^) = Il(L2-M0ry (3) 

Fix an arbitrary n > 2. Then Qn can be considered as the function of variables L and M. We shall 
discuss for what values ofZ and M the 71th cyclotornic number Qn has its least value. 

Lemma 3: Let /1 > 2 be an arbitrary fixed integer. If a and J3 are real, then gw has its least value 
either when L = 1 and M = -1 or when Z = 3 and M = 2. 

Proof: Take an arbitrary #r and fix it. Since n > 2, we have 0 < 0r < 4. Thus, if M < 0, we 
have L2 - M0r >l + 0r, with equality holding only in the case L = 1, M = - 1 . When M > 0, con-
sider the cases M = 1, M > 1. In the first case we have L > 3, so that 

Z 2 - M 0 r > 9 - 0 r > 9 - 2 l 9 r . 

Now assume M > 1. Then, since L2 > 4M+1, we have 

Z 2 - M ^ r > 4 M + l - M i 9 r = 9 - 2 ^ r + ( M - 2 ) ( 4 - ^ r ) > 9 - 2 ^ r 

with equality holding only in the case M = 2, L.= 3. Hence, by formula (3), we have completed 
the proof. D 

Combining Lemma 2 with Lemma 3, we complete the proof of Theorem 2. 
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3, CAMMICHAELfS THEOREM 
We call the Lucas sequence generated by z2~z-l the Fibonacci sequence and that gener-

ated by z 2 -3z + 2 the Fermat sequence.- Theorem 2 implies that to prove Carmichael's theorem 
it is sufficient to discuss the Fibonacci sequence and the Fermat sequence. 

Now we suppose that n has a prime-power factorization n = p*lp*2 ...p?, and let <b„(x) 
denote the /2th cyclotomic polynomial 

Lemma 4: Ifn>2 and if a is real with \a\ < 1/2, then ®„(a) > 1 - \a\ - \a\2. 

Proof: We have 

d\n 

where ju denotes the Mobius function and the product is extended over all divisors d ofn. Since 
\a\ < 1/2 and Q.-aM)*d> > 1 - \a\"/d, 

0„(a)>n( l - | a | ' )>( l - | a | ) ( l - | a | 2 - | a | 3 - | a | 4 —•) 
1=1 

UI2 \ 
= ( l - | a | ) 1 

l - | a | = l - | a | - | a |2 

Here we have used the fact that if 0< x< 1 and 0<y < 1 then (1 -x) ( l -y ) > 1 - x - y . We have 
thus proved the lemma. D 

Theorem 3: If n & 1,2,6,12, then the /1th term of the Fibonacci sequence contains at least one 
primitive divisor. 

Proof: Assume n>2. We shall determine for what n the inequality \Qn\>P\P2.../*/ is satis-
fied, where Qn is the n^ cyclotomic number associated with the Fibonacci sequence. The roots of 
the polynomial z2-z-l are a = (1 +V5)/2 and fl = ( 1 - S ) I 2 . Since \fi/a\ = ( 3 - S ) I 2 < 1/2, 
Lemma 4 gives 

®n{f}la)>l-\pia\-\pia\2^2S-4>2l5. 
In addition, since a > 3 /2 , we have 

Qn(a, ft) = a^®n(J$la) > (2 /5)(3 /2)*">, 

where ^(/i) denotes the Euler function: ^(fi) = ri-=i P?~l{Pi ~ 1). Thus, |g„ | > /y?2.../?/ is true for 
n satisfying 

(2/5)(3/2)^>Plp2...Pl. (4) 

We first suppose px > 7 without loss of generality. Then (2/5)(3/2)^(/?l) > 2px is true, and conse-
quently (2 /5)(312)^n) > PiP2-Pi' Here we have used the fact that if x, y are real with x > y > 3 
and if m is integral with m> 2 then x^"1 > my. We next suppose p*1 = 24

? 33
? 52, or 72 without 

loss of generality. Therefore, (2/5)(3/2)*rf> >2px is true, and consequently (2/5)(3/2)^(w) > 
PiPi-' Pi - Hence, inequality (4) is true unless n is of the form 

n = 2a3b5c7d, (5) 

2001] 441 



A SIMPLE PROOF OF CARMICHAEL'S THEOREM ON PRIMITIVE DIVISORS 

where 0 < a < 3, 0<b<2, 0 < c < 1, and 0 < <i < 1. By substituting (5) into (4), we verify that 
inequality (4) is true for w * 1,2,3,4,5,6,7,8,9,10,12,14,15,18,30. However, by direct compu-
tation, we have 

a=i, a=2, a=3, a=* &=<*, 
a=13, a=7, a=17, a0=n, a2=6, 
fi4 = 29, a3 = 61, ft8 = 19, fto = 31. 

Hence, \Qn\> P\P2 -Pi holds for n * 1,2,3,5,6,12. It follows from Lemma 2 that if n ^ 1,2,3,5, 
6,12 then the /1th Fibonacci number i^ contains at least one primitive divisor. In addition, since 
Fx-\9 F2 = l, F3 = 2, F4 = 3, F5 = 5, F6 = 23, Fl2 = 24-32, the numbers F3 and F5 have a primi-
tive divisor, and Ft,F2,F6, and Fl2 do not. D 

Theorem 4: If/i * 1,2,6, then the «* term of the Fermat sequence contains at least one primitive 
divisor. 

Proof: The roots of the polynomial z2-3z + 2 are a = 2 and /? = 1. By Lemma 4, 

Qn(fi/a) > 1- |£/a | - \ft/a\2= 1/4. 
Therefore, 

a(a , )8) = a«»Qn(fi/a) > (1/4) -2*">. 

Now the inequality (l/4)-2<*(w) >(2/5)(3/2)^} is true for all n>2. As shown in the proof of 
Theorem3, the inequality (2/S)(3/2)^n) >plp2...pi is true for n* 1,2,3,4,5,6,7,8,9,10,12,14, 
15,18,30. Moreover, by direct computation, we observe that (l/4)-2^n) > PiP2-Pi is true for 
n - 7? 8,9,14,15,18,30, and furthermore, we have 

•a=7, a=s, a=3i, a=3, ao=n,a2=i3.. 
Hence, \Qn\> P\P2-Pi holds for n ^ 1,2,6. It follows from Lemma 2 that if n * 1,2,6 then the 
72th term of the Fermat sequence contains at least one primitive divisor. • 

Now we are ready to prove Carmichael's theorem. 

Proof of CarmichaeVs Theorem: As observed previously, for n ^ 1,2,3,5,6,12, both the 
72th cyclotomic number associated with the Fibonacci sequence and that associated with the 
Fermat sequence are greater than pj)2 ...pt. It follows from Theorem 2 that if n ^ 1,2, 3,5,6,12 
then Dn contains at least one primitive divisor. In addition, Q3 = L-M> 3 except when L-1, 
M = - 1 . Moreover, since Q5 = 5 and Ql2 = 6 when L = 1, M = - 1 , and Q5 = 31 and (212 - 13 
when Z = 3, M = 2, Lemma 3 gives Q5 > 5 and g12 > 6 except for the Fibonacci sequence. 

Therefore, by Lemma 2, if n * 1,2,6 then DM contains at least one primitive divisor except 
when L = 1, M - - 1 . Combining with Theorem 3, we complete the proof D 

4. APPENDIX 

In 1955, Ward [9] proved the theorem below for the Lehmer numbers defined by 

pUan-ni(a-P\ n odd, 
" \{an-pn)l{a2-l32\ weven, 
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where a and 0 are distinct roots of the polynomial z2 - 4hz + M, and L and M are coprime inte-
gers with L positive and M nonzero. Here a sufficient condition n * 6 was pointed out by Durst 
[3]. 

Theorem 5 (Ward): If a and fi are real and n * 1,2,6, then Pn contains at least one primitive 
divisor except when n = 12, L = 1, M = -1 and when n = 12, L = 5, M = 1. 

We can also give an elementary proof of this theorem. It parallels the proof of Carmichaefs 
theorem. The essential observation is that if n * 1,2,6 and if both the /1th cyclotomic number 
associated with z2 - z -1 and that associated with z2 - 4Sz +1 are greater than the product of all 
prime factors of n then, for all real Lehmer sequences, Pn contains at least one primitive divisor. 
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1. INTRODUCTION 

We prove that the order of divisibility by prime/? of k\S(a(p-l)pq, k) does not depend on a 
and q is sufficiently large and kip is not an odd integer. Here S(n, k) denotes the Stirling num-
ber of the second kind; i.e., the number of partitions of a set of n objects into k nonempty subsets. 
The proof is based on divisibility results for /?-sected alternating binomial coefficient sums. A 
fairly general criterion is also given to obtain divisibility properties of recurrent sequences when 
the coefficients follow some divisibility patterns. 

The motivation of the paper is to generalize the identity [8] 
v2(k\S{n,k)) = k-\ \<k<n, (1) 

where S(n, k) denotes the Stirling number of the second kind, and n = alq, a is odd, and q is suf-
ficiently large (for example, q>k-2 suffices). Here vp(m) denotes the order of divisibility by 
prime/? of m, i.e., the greatest integer e such that pe divides m. It is worth noting the remarkable 
fact that the order of divisibility by 2 does not depend on a and q if q is sufficiently large. We will 
clarify later what value is large enough. 

Our objective in this paper is to analyze vp(k\S(n, k)) for an arbitrary prime/?. It turns out 
that identity (1) can be generalized to calculate the exact value of v (k! S(n, k)) ifn = a(p - l)pq 

and k is divisible by /? - 1 . The main result of this paper is 

Theorem 1: If n = a(p - l)pq, 1 < k < n, a and q are positive integers such that (a, /?) = 1, q is 
sufficiently large, and kip is not an odd integer, then 

vp(k\S(n,k)) = k-l + *„(*), 

where rp(k) is a nonnegative integer. Moreover, if k is a multiple of /?-1 , then rp(k) = 0. 

Here |_*J denotes the greatest integer function. Note that the order of divisibility by /? of 
k\S(a(p-l)pq, k) does not depend on a and q if q is sufficiently large. For instance, we may 
choose q such that q > -pj- 2 in this case. Numerical evidence suggests that the condition on the 
magnitude of q may be relaxed and it appears that n > k suffices in many cases (cf. [8]). 

The case excluded by Theorem 1, in which kip is an odd integer, behaves somewhat differ-
ently. 

* Partially supported by NSF grant DMS-9622456. 
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Theorem 2: For any odd prime p, If kip Is an odd Integer, then vp{k\S{a{p- l)pq, k)) > q. 

In Section 2 we prove a fundamental lemma: If n - a(p - l)pq, then 

(-l)k+lk\S(n,k) = Gp(k) (mod/^1), (2) 
where 

G,(*)=iffl(-iy. 
p\i ^ J 

All of our divisibility results for the Stirling numbers are consequences of divisibility results for the 
alternating binomial coefficient sums Gp(k), which are of independent Interest. Theorem 2 is an 
immediaite consequence of (2) since, If kip Is an odd integer, the corresponding binomial coeffi-
cient sum is 0. 

To prove Theorem 1, we prove the analogous divisibility result for Gp(k). The proof is pre-
sented in Section 2, and it combines number-theoretical, combinatorial, and analytical arguments. 
By an application of Euler's theorem, we prove (2). We then apply p-section of the binomial 
expansion of (1 - x)k to express Gp(k) as a sum of p -1 terms involving roots of unity. We take 
a closer look at this sum from different perspectives In Sections 3 and 4 and give a comprehensive 
study of the special cases p - 3 and 5. We choose two different approaches in these sections: we 
illustrate the use of roots of unity In the case In which p = 3, and for p = 5 we use known results 
relating G5(k) to Fibonacci and Lucas numbers. 

We outline a generating function based method to analyze the sum In terms of a recurrent 
sequence in Section 2. A fairly general lemma (Lemma 7) is also given in order to provide the 
framework for proving divisibility properties. The reader may find it a helpful tool In obtaining 
divisibility properties of recurrent sequences when the coefficients follow some divisibility pat-
terns (e.g., [1]). The lemma complements previous results that can be found, for example, in [11] 
and [13]. Theorem 1 follows by an application of Lemma 7. A similar approach yields 

Theorem 3: For any odd prime/? and any integer t, 
k _ | _J j / k \ 

(-l)p-1 pp~l (mod/J^M, if k is divisible hyp-1, 

/s t (mod /?)v'y I o I mod p-1^J), otherwise. 
Fleck [4] and Kapferer [7] proved the second part of Theorem 3, and Lundell [10] obtained 

the first part (Theorem 1.1 (ii)). Lundell has only Indicated that the proof is based on a tedious 
induction on [-^-J. The case / = 0, k = p(p-l) of Theorem 3 was proposed as an American 
Mathematical Monthly problem by Evans [3]. 

The proofs of Lemma 7 and Theorem 3 are given in Section 5 in which an application of 
Theorem 3 is also presented to prove its generalization. 
Theorem 4: help be an odd prime and let m be an Integer with 0<m<nin(k,p) such that 
r = £=a Is an integer. We set r = rp (modp) with l<rf <p. I£rp>m, then for any integer t, 

/=f(modp)^ ^ \ / \ J 
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For example, It follows that 

I (U
t
5Viy/W^Vin7 (modi?8), 

independently of t. Here we have m = 7 and r' = r = 8. 
Theorem 4 is a generalization of Theorem 1.7 of [10]. Note that the conditions of Theorem 

4 are always satisfied for rn- 0 and 1 provided p-l\k-m. The theorem can be generalized to 
the case in which p = 2 and #f = 0 or 1, also (see [8]), e.g., 

Some conjectures on T"p(£) are discussed at the end of the paper. 

2. TOOLS AND THE GENERAL CASE 

Lemma 5: If n = a(p - l)pq, then 

(rl?+1k\S(n,k) = rt*\-iy ( m o d / O - (3) 
p\i V J 

Proof: By a well-known identity for the Stirling numbers (see [2], p. 204), we have 

*!5(/i,i) = tf*V(-l)k-'S2f*y(-l)t-' (modp"). 
For n - a(p - l)pq and (/, p) = 1, we have 

f s l (mod/?**1) 

by Euler's theorem. Notice that /i > q +1. By the binomial theorem, we obtain 

o-i)*=i(J](-iy+Eff)(-iy; 
piA y w / v y 

therefore, we have 

k\S(n, k) - iffV-l)^ = (-l)'lff l(-l)1 
PI/ v / Pj(i V y 

= ("l)fc+1EfJl(-1) / (mod^+1). D 
PI/V y 

Lemma 6: For any odd prime p, if £ is an odd multiple ofp, then 

z(Jl(-iy=o. 
PI* v / 

flw/' The terms (*)(-iy and (**,)(-!)*-' cancel in (3). • 

Theorem 2 is an immediate consequence of Lemmas 5 and 6. We note that by multisection 
identities (see [12], p. 131, or [2], p. 84), 
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sffy-iy=i£a-«')*. (4) 
m]iVJ m tsl 

where co = exp(2m/m) is a primitive irfi1 wot of unity. To illustrate the use of this identity, we 
note that identity (1) follows immediately if we set m = p = 2; identities (3) and (4) with w = - 1 , 
imply that 

i ! 5(11, *) s ( - l ) * ^ " 1 (mod 2^+1) 

if q > k -- 2. The ways of improving this lower bound on q have been discussed in [8]. 
In the general case, we set 

G.,(*)=s(f)(-iy. (5) 
m\i V ' 

For example, for any prime p, we have Gp{k) = 1 for 0 < i < p9 and G^Cp) = 0. By identity (3), 
we get that 

*! S(a(p- l)pi, k) ^ (-lf+lGp(k) (mod pf*1) (6) 

holds for all q > 0. 
Now we are going to determine the generating function of Gp(k) in identity (8) and deduce 

recurrence (9). An application of Lemma 7 to this recurrence will imply the required divisibility 
properties. For any odd m, we obtain 

Jfc=0 ml/ ^ ' 
=E(-iy-»i/ o-*)'+1 

•i 
V m' %mJ 1 I (-X)m J 

= | r 0
( ~ i r " o ^ ^ (7) 

(1 - x)m~l
 = 1 ( 1 - *Y~l ~ %m~l 

(l-x)m4-xm X (l-x)m+xm ' 

We note that an alternative derivation of identity (7) follows by binomial inversion [5]. 
From now on p denotes an odd prime. In some cases, the discussion can be extended to 

p = 2, as will be pointed out. 
We sQtm = p and subtract 1 from both sides of (7), to yield 

We adopt the usual notation [xk]f(x) to denote the coefficient of x^in the formal power series 
f(x). If we multiply both sides of (8) by the denominator of the right-hand side and equate coef-
ficients, we get a useful recurrence that helps us in deriving divisibility properties. Note that the 
right side is a polynomial of degree p-\. For k>p?we obtain that the coefficient of xk is zero; 
i.e., 

lxk]((l-xy + xP)fdGp(i)xi=0. 

It follows.that 
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p-l 

/=0 
K-iy f \Gp(k-i)=o, 

i.e., 

G,(*) = -£(-iy(?)G>(*-i). 

Remark: Note that, for /? = 2, identity (8) has a slightly different form as it becomes 

ZGi(*)j i 

(9) 

^ - 1 

1-2*' 

and we can easily deduce that G2(k) = 2 , which agrees with v2(k!S(n, k)) = k-l. 
The calculation of Gp(k) is more complicated for p>2. However, we can find a lower 

bound on vp(Gp(k)) and effectively compute Gp(k) (mod pVp^Gp(-k^+l) if p-l\k by making 
some observations about identity (9). We shall need the following general result. 

Lemma 7: Let p be an arbitrary prime. Assume that the integral sequence ak satisfies the 
recurrence 

d 
ak=lLbiak-n k>d + l, 

and that, for some nonnegativem, vp(ad) = m>0 and the initial values ax,, i = 1,2,...,d-1, are all 
divisible by pm. Let vp(hd) = r>l and suppose that the coefficients &,, i = 1,2,...,d-1, are all 
divisible by pr. We write ad = apm and Ẑ  = ]3pr, and set 

Then vp(ak) > f(k), and equality holds if d | k. Moreover, for any integer f > 1, we have 

a^ap^p"*^ (mod p"**). 
According to the lemma, there is a transparent relation between the lower bound f(k) on vp(ak) 
and the parameters vp(a^), vp(hd), and a? provided vp(at) ^ *w and vp(bt) >r for i = 1,2, ...9d-l. 

We prove Lemma 7 in Section 5. With its help, we can now prove Theorem 1. 

Proof of Theorem 1: By identity (5), we have at = Gp(i) = 1 for i = 1,2,...,/?-1, and by 
identity (9), 6,. = (-l)/+1(f) for 1 = 1,2,...,/?-!; therefore, vp(ai) = 0 and vp(ft/) = l. We apply 
Lemma 7 with rf = / ? - 1 , wi = 0, r = 1, a = 1, J3 = - 1 , and 5 = 2, and get 

r _k | __* | / k \ 
(-\y~l pp~l (modp"-11, if k is divisible by p - 1 , 

I 0 (mod/j^-h otherwise. 

It follows that vp(ak) >~^~l, and equality holds if and only if p-11 k. We define T (k) by 

k-\ 

GJk) = ak^ (10) 

**(*)= fpfa)- .P-l] 
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By identities (6) and (10), it follows that, for all q > vp(ak)-l, vp(k\S(n,k)) = vp(ak), which 
concludes the proof of Theorem 1. D 

In the next two sections, we study the cases p = 3 and p = 5 in detail. 

3. AN APPLICATION, p = 3 

We set m = p = 3 and CD3 = 1. By identities (3) and (4), we have 

Sp)(-i)'=|(a-^+(i-«2)t)=}o-«)Ao+(i+0- en) 
Note that 1 + m = -co2, and (1 - a)2 = l-2a) + a>2 = -3co. Therefore, identity (11) implies 

l ( f ) ( - l ) ' = y ( l - f l ' ) k ( l + (-^2)k) = |(-3«)t/2(H-(-fl»2)*). (12) 

For 61 A:, we get ±(-3a))k,22 = (-l)*/22• 3 t / 2 - \ yielding v3(k!S(n, k)) = k 12-1 for q > k 12 - 2. 
For k even and 3 \ k, by identity (12) we have 

(_1)tA23t/2-la,t/2(1 + fl,2») = ( _ 1 ) * /2 3 t /2- l ( a , tA2 + a , -* /2 ) 

= (-\\k/2+l2k/2~l 

since cok/2 +o)~kn = co +&T1 = -1 in this case. 
We are left with cases in which k is odd. For k odd and 3\k, we have two cases. If k = 1 

(mod 6), say k = 61+1 for some integer / > 0, then by identity (11) we obtain 

| ( 1 - cof(l - a))(l + (-co2fl+l) = |(~3ey)3/(l - co)(l - a)2) 

= ( -3f = ( - 3 ) * . - -

If k = 5 (mod 6), say k = 6l+5 for some integer />0 , then by identity (11) we obtain 

| ( 1 - o)6 ' ( l - (0)\\ + {-(o2)6M) = |(-3e»)3 '( l - 0))\\ - <y) 

= I(-3)3<(-3«03 = ( - l ) ¥ 3 ^ . 

In summary, we get 

Theorem 8: For q > \^\-1, k > 0, and k # 3 (mod 6), we have 

v3(*!5(2£iy,*)) = [ ^ | 

Recall that, if k 13 is an odd integer, then v3(k! S(n, k)) > q by Theorem 2. 

4, AN APPLICATION, p = 5 

For p = 5, we can use the fact that G5(k) can be expressed explicitly in terms of Fibonacci or 
Lucas numbers, with the formula depending on k modulo 20, as shown by Howard and Witt [6]. 
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(The Fibonacci numbers F„ are given by F0 - 0, Fx = 1, and Fn = Fn_l+Fn_2 for n > 2. The Lucas 
numbers Ln satisfy the same recurrence, but with the initial conditions L0 = 2 and Lx=l.) 

The power of 5 dividing a Fibonacci or Lucas number is determined by the following result 
[9]. 
Lemma 9: For all n > 0, we have v5(Z^) = v5(ri). On the other hand, Ln is not divisible by 5 for 
anyw. 

Theorem 10: If k = 5 (mod 10), then G5{k) = 0. If* # 5 (mod 10), then 

v5(G5(k)) = it —1 
4 

+ T5(k% 

where 

*,(*) = 

v5(k + l\ if k = 9 (mod 20), 
v5(k), if £ = 10 (mod 20), 
v5(k + 2), if* = 18(mod 20), 
0, otherwise. 

(13) 

Proof: From a result of Howard and Witt (see [6], Theorem 3.2), we find that the value of 
5-L<*-0/4J(j5(£) is given by the following table: 

A; mod 20 
5-L<*-i)/4J<s5(]fe) 

A; mod 20 
5-L(*-D/4JG?6(Jb) 

A; mod 20 
5-L(*-D/4JG5(ife) 

k mod 20 
5-L(fc-D/4JG5W 

0 
2£fc/2 

5 
0 

10 
-IFk/2 

15 
0 

1 
F(k+l)/2 

6 
- ^ f e / 2 - l 

11 
- £ ( f c + l ) / 2 

16 
£ / e / 2 - l 

2 
•Ffc/2+1 

7 
- £ ( f c - l ) / 2 

12 
- £ f c / 2 + l 

17 
F ( * - l ) / 2 

3 
Z/(fc-l)/2 

8 
- £ f c / 2 + l 

13 
-F{k-l)/2 

18 
Fk/2+l 

4 
£fc /2 - l 

9 
- ^ ( f c + l ) / 2 

14 

"•Pfc/2-l 

19 
L(k+l)/2 

The result then follows easily from Lemma 9. • 

We can now derive our main result on the divisibility of Stirling numbers by powers of 5. 

Theorem 11: Ifn is divisible by 4-5*, where q is sufficiently large, and k ^ 5 (mod 10), then 
k-l v5(k\S(n,k)) = v5(G5(k)): \ + T5(k), 

where r5(k) is given by (13). 

Proof: Apply Lemma 5 to Theorem 10. • 
Note that in Theorem 11 ony.q exceeding v5(k\S(n, k))-1 will suffice; for instance, we can 

select the lower bound [-™1] + r5(k) -1. 
Our proof of Theorem 10 does not generalize to other primes, so we mention another 

approach that in principle does generalize, though it is not easy to apply it to primes larger than 5. 
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The basic Idea Is to p-sect the generating functions TkGp(k)xk. If A(x) = N(x)/D(x), 
where N(x) and D(x) are polynomials, then we can determine all of the p-sectlons of A(x) by 
multiplying the numerator and denominator,of A(x) by D(mx)D(m2x) • •• D(a)p~lx), where co is a 
primitive p^ root of unity; since D(x)D(mx) • • • D(a)p~lx) is Invariant under substituting cox for x, 
It must be a polynomial In xp. For example, we find In this way that 

and 

£1 5V ' ( l -x) 5 + x5 l + 5V° + 55x20' V } 

where 

^ 5 ( X ) = JC + X2 + X3 + X 4 - 5 X 6 - 2 0 X 7 - 5 5 X 8 - 1 2 5 X 9 - 2 5 0 X 1 0 + 175X11 

- lOOx12 - 375x13 - 375x14 + 500x16 + 625x17 - 1250*19 - 2500*20. 
(16) 

Of course, once we have found these formulas, by whatever method, they may be Immediately 
verified. 

We note that In both of these generating functions the denominator Is actually a polynomial In 
x2p rather than just In xp, and It is not difficult to show that this is true In general 

From (14), we can Immediately derive a formula for G3(k). With somewhat more difficulty, 
one can use (15) and (16) to determine the exact power of 5 dividing G5(k) and thereby give a 
different proof of Theorem 10. 

5. THE PROOFS OF LEMMA 79 THEOREM 3, AND THEOREM 4 

We present the proofs of a lemma and two theorems that were stated In Section 2. 

Proof of Lemma 7: We prove that the following two assertions hold, by induction on k: 
(i) vp{ak)>f{k). 

(ii) lfk = td, where t is a positive integer, then ak = a/?~yt+(/~1)r (mod pm+tr). 
Note that (ii) implies that vp{ak) = f(k). 

If 1 < k <d, then these assertions are consequences of the initial conditions. Now suppose 
that (i) and (ii) hold for ak_d, ...,ak_l. Then the induction hypothesis implies that bflk_t Is divisi-
ble by pr+f(k-j) for i = 1,2,...,d. We have r + f(k-1) >r + f(k~d) = f{k), so bflk^ is divisible 
by pf(k\ and thus so is ak = bpkmml + • • • + bdak_d. This proves (i). 

For (II), suppose that k = td. By the Induction hypothesis, we have 

%-iw s a^-2pm^-2)r (modpm+(t-l)r) \t-\)d 
and 

/ w ,1 td-i-l r = m + (t-l)r forl<i<d. 
d 

Thus, 
b<fl(t-i)d s PPr ' ^~2pm+(t~2)r = a^lpm+(t-l)r (mod pm+tr) 

and 
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vpQ)iatd-i)^tn + fr forl'<i<d. 

Then (ii) follows from the recurrence for ak. D 

We note that the lemma extends the study of situations discussed in [11] and [13] by relaxing 
the condition that the coefficient bd be relatively prime to the modulus. 

We can further generalize identity (10) and obtain the 
Proof of Theorem 3: Analogously to the definition of (5), we set 

GJk,t)= £ (/)H)' 
i = t(modm)^ ' 

for 0 < t < m-1. In a manner similar to the derivation of identity (7), for every odd in, we obtain 
that 

(l-x)m + xm 

Note that the degree of the numerator is m-1. It is fairly easy to modify identities (8) and (9) for 
Gm(k, t). An application of Lemma 7 to Gp(k, t) yields Theorem 3. We note that here 

hence, a = 1 (mod/?). The congruence follows from the two identities 

( ? ) . 0 ( m o d „ ) , l £ , S , - l , and ( f H f r J M V ) . 

(We note that, for every prime/? and positive integer n, 

^ _ 1 ) s ( - l ) ' i^dp) 

also holds.) • 

The interested reader may try another application of Lemma 7 to prove the following identity 
(cf. [1]): 

v2\^n
2ky) = n-l,n = l,2,.... 

Finally, we note that it would be interesting to find an upper bound on yp(ak)-f(k) as a function 
of k. The case p = 5 and k = 9, 10, or 18 (mod 20) shows that the difference can be as big as C 
log k with some positive constant C 

We conclude this section with the 

Proof of Theorem 4: Theorem 3 deals with the case in which m = 0, thus we may assume that 
m>\. Using the identities 

r = f**fl(})/l and (?XO-(*X'-0 
for / < i < k, we have 

z 
A:=0 

(mad ni\ V / i & t (mod m) 
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i = t (mod p) 
( • 

i=t(modp)\ ' Z=0 V / 

/=0 V J j = t(modp)^ s 
(17) 

/=0 V / i~t-l(modp)^ / 

Observe that Theorem 3 applies to the last sum. 
We shall show that under the conditions of Theorem 4, the term with l = m has the smallest 

exponent ofp on the right side of (17). If / = 0, then S(m9 /) = 0 in identity (17), so we need only 
consider the terms in which / > 1. Let xy(x) -1 if and only if y \ x. We shall show that 

^^/ i^J-^^-^v^^o-v^-oO+^j-^iC*- / ) , i^' </w, 

assumes its unique minimum at / = m\ this fact, together with Theorem 3, implies Theorem 4. 
By a well-known formula, we have 

vMk-l)\) = k-l 
. P . 

+ k-l 
.P2 . + • 

The hypotheses of Theorem 4 imply that k-m = r(p-l) = ~rf (mod p\ where \<rf <p and 
m<rf. It follows that [ ^ + / ] is constant for i = 0,1,. . . ,r'-1; i.e., \^~\ is constant for l = m, 
m-l,...,m-r' + l. Since r' > /w, this implies that [-^-J is constant for 1 < / < m. Similarly, I *0-1 
is constant for 1 < / < m. Therefore, vp((k - /)!) is constant for 1 < / < /w. 

Next, we show that 

* - / 
.P-1J 

-XP-i(k-I)> k-m 
P-IJ 

•Xp-i(k-m), \<l<m. (18) 

Since / ? - l divides £ - /« , A - / is not divisible by p-\ for l-m-l, tn-2, ..., m-p + 2, and 
since m < p, this implies all cases of (18) except m = p, 1=1. In this case, we have 

k-l 
p-y 

.Z(k-!) = ! + k-p 
.P-l. -Zp-itf-p), 

and thus (18) holds in this case also. The proof is now complete. • 

We note that the generating function of the sum on the left-hand side of (17) can be derived 
by binomial inversion [5] in terms of Eulerian polynomials. 

6. CONJECTURES 

Empirical evidence suggests that formulas for rp(k) exist based on the residue of k modulo 
p(p -1) . The following conjectures have been proved only in the cases p = 3 and p = S. 

Conjecture 1: 
(a) Ifk is divisible by 2p but not by p(p -1), then rp(k) = vp(k). 
(h) Ifk+'l is divisible by 2p but not by p(p -1), then rp(k) = vp(k +1). 
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Conjecture 2: For each odd prime p, there is a set A c {1,2,..., p(p -1) -1} such that, if k ^ 0 
or -1 (mod 2p) and k is not an odd multiple of/?, then rp(k) > 0 if and only if k is congruent mod-
ulo p(p -1) to an element of A . 

It usually seems to be true under the conditions of Conjecture 2 that, for each / eAp, there 
exists some integer w . such that, if k=i (mod p(p-1)), then rp{k) s v (£ + ̂  f). 

For example, Theorem 7 asserts that the conjectures hold for p = 3, with ^43=0, and 
Theorem 8 asserts that the conjectures hold for p = 5 with A5 = {18} and u518 = 2. Empirical 
evidence suggests that A1 = {16}, with ull6 = 75. Here are the empirical values of Ap for primes 
/? from 11 to 23. 

4 1 = {14,18,73,81,93}, 
Al3 = {82,126,148}, 
Al7 = {37,39,62,121,179,230,234}, 
Al9 = {85,117,119,156,196,201,203,244,279,295,299,316,320,337}, 
A23 = {72,128,130,145,148,170,171,188,201,210,211,232,233,234,317,325,378,466}. 
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1. INTRODUCTION 

Let 4 be the least number having exactly n representations as a sum of distinct Fibonacci 
numbers. Let R(N) denote the number of representations of N as sums of distinct Fibonacci 
numbers., and let Zeck N denote the Zeckendorf representation of N, which is the unique repre-
sentation of JVas a sum of distinct, nonconsecutive Fibonacci Numbers. The sequence {4} is 
sequence A013583 studied earlier [7], [9], where we list the first 330 terms; here, we extend our 
computer results by pencil and logic to calculate A33l and other "missing values." We list some 
pertinent background information. 

Theorem 1: The least integer having Fk representations is (Fk)2 - 1 , and Fk is the largest value 
for R(N) for N in the interval F2k_2 < N < F2k_l. 

Theorem 2: Let iVbe an integer written in Zeckendorf form; if N = Fn+k +K, Fn<K < Fn+l, we 
can write R(N) by using the appropriate formula: 

R(N)=R(Fn+2p+K) = pR(K)+R(Fn+l-k-2l k = 2p; (1.1) 

R(N) = R(Fn+2p+l +K) = (p + l)R(K), k = 2p + l; (1.2) 

R(N)=R(N-F2w)+R(F2w+l~N-2lF2w<N<F2w+l. (1.3) 

Theorem 3: Zeck 4 ends in .. .+F2c, c > 2. If Zeck N ends in .. .+F2c+2k+i + F2c, c > 2, then 

R(N)=R(N -l)R(F2c) = cR(N ~l). 

If Zeck 4 , = Fm +K, then Fm<An<Fm -f Fm„2. 

Lemma 1: If {bj is a seqitence of natural numbers such that bn+2 = bn+l +bn9 then 

R(hr}-i)=R(hn+l-i) = k 
for all sufficiently large n (see [8]). 

Lemma 1 and Theorem 3 are usefiil in calculating 4 when n is composite. Theorems 2 and 
3 are proved in [2] and [3], while Theorem 1 is the main result of [1]. 

Theorem 4: If n = R(An) is a prime, then Zeck 4 'M the sum of even-subscripted Fibonacci 
numbers only. If Zeck 4 begins with /^+ 1 , then n - R(AJ cannot be prime. 
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Proof: Theorem 3 and (1.2) show that a change in parity in subscripts indicates that at least 
one pair of factors exists for R(N). 

Lemma 2: For integers N such that F2k< A„<N < F2k+l and R(N) - n, 

F^R^-F^RiF^-N-l^RiF^-An-l)^. (1.4) 

Proof: The pair of exterior endpoints are a consequence of Theorem 1. The pair of interior 
endpoints reflect symmetry about the center of the interval, since R(N) is a palindromic sequence 
within each such interval F2k<N < F2k+l - 2. 

If Zeck n = Fk+K9 0<K<Fk_2, then 4, >F2k_t, where we note that we are relating the 
Zeckendorf representations of A^ and of RiA^). In our extensive tables, Zeck An begins with 
F2k-u F2k> Fik+v o r Fik+2> w h i l e a11 v a l u e s f o r n> l<n = R(N)<Fk, appear for N<F2k+l, but 
this has not been proved. The first 330 values for An are listed in [7], too long a table to repeat 
here. Our computer results conclude with A466 = 229971; there are 69 "missing values'1 for ri 
between 330 and 466. We also have complete tables for R(N) for all N <F22, not included here, 
which shorten the work but are not essential to follow the logic in solving for An given n. 

2* THE CALCULATION OF ^331 

Since An '1S known for all n < 330 and, for all n such that An < F2%, and since 331 is prime, we 
can find A33l by listing successive addends for Zeck An, and choosing the smallest possibility at 
each step. Let N = F2S+lC, for F2%_2q <K<F29_2q. Then 

R(N) = qR(K)+R(F29„2q-K~2) (2.1) 

by (1.1), and the maximum possible value for R(N) is 
max R(N) = qFl5_g+Fl4_g 

by Theorem 1. Since F2k< A„<F2k + F2k_2,2<q. We summarize in Table 1. 

<7 = 2: 
q = 3: 
q = 4: 
q = 5: 

Notice that maximum values for R(N) for q>5 are smaller than 331. For our purposes, the 
smallest possibility is q = 4, or N = F2g +F20 + K. We write Table 2 to determine the third pos-
sible even subscript in Zeck N when q = 4. 

Start with w = 3 in Table 2, the smallest possibility, with F14 < K < F15. Solve the Diophan-
tine equation 14^ + 55 = 331, 13<^<21 , which has 14(19) + 5(13) = 331. By Lemma 2, since 
A19 = F14 + A1,7<B = R(Fl5-K-2)<\9-7 = 12. Thus, 5*13 andw*3 . 

TABLE 1 
N = F2S+K,F2S„2q<K<F29 

max R(N): qFl5_q+Fu_q 

2FU+Fn =466 + 144 = 610 
3F12+F„ = 432 + 89 = 521 
4Fn+F10 = 356+55 = 411 
5F10 + F9 =275 + 34 = 309 
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TABLE 2 
^20-2w ^ % < F2l-2w 

R(N) = (5w-l)R(K) + 5R(F2l_2w-K-2) 
maxR(Ny(5w-l)Fn_w+5Fl0„w 

w = 1: 4Fl0 + 5F9 = 220 +170 = 390 
w = 2: 9F9+5F8 = 306 + 105 = 411 
w = 3: 14F8+5F7 = 294 + 65 = 359 
w = 4: 19F7+5F6 = 247 + 40 = 287 

Next take w = 2 in Table 2, with Fl6 < K < F17, and solve 9A + 5B = 331, 21 < A < 34, which 
has 9(34) + 5(5) = 331, but A34 = Fl6 + Al3, so that we must have 13 < B < 21; B = 5 is too small. 
We also find 9(29)+ 5(14) = 331, which is plausible since A29 = 1050 = F16 + ̂ , and 8 < 5 = 
14 < 21. However, this combination of values does not appear in the computer printouts; only 
# = 1050, 1152, 1189 have R(N) = 29 for N<Fl6 + 'Fl4, so B = 8, 21, 18, 11, 17, or 12, but not 
14. However, we can verify that 2? ** 14 either by assuming that the next term is Fl4 and calculat-
ing one more step, or by noting that we are solving A = R(K) = 29 for some K which also has 
R(Fl7-K-2) = l4 and R(K~Fl6) = 29-\4 = l5. We must have K-F16 >Al5 =F1 3+F8+F4 
or K = Fl6+Fl4 + K\ Then, because Fl7-K-2 = Fl3-Kf-2< Al4 = Fu + 16, we cannot have 
R(Fl7 -K-2) = 14 = B, a contradiction. The last viable solution 9(24) + 5(23) = 331 has B too 
large. Thus, w ^ 2 . 

Finally, take w = 1, with Fls<K<Fl9. Solve 4.4 + 55 = 331 for 3 4 < ^ < 5 5 , obtaining 
4(49)+ 5(27) = 331 and 4(44)+ 5(31) = 331, where 4(39)+ 5(35) = 331 has 5 too large. From the 
computer printout, A44 = Fls + 4 2 = 2744, but R(Fl9 - 2744 - 2) = 32, not 31. The next occur-
rence of R(K) = 44 in our computer table is for K= 2791 for which 31 = R(Fl9 - 2791 - 2); and 
since 2791 is the smallest integer that satisfies all of the parameters, we have a solution. Without 
such a table, one could assume that" Fls is the next term, and compute the term following Fls. We 
now have 

4 3 1 = F28 + F20 + 2791 = 327367. 

Let us make use of our work thus far. In Table 2, w = 3 has 14Fs + 5F7 = 359, one of the 
"missing values." Since we cannot write a smaller solution, 

4*59 = 2̂8 + ^ o + 42i = 317811 + 6765 + 440 = 325016. 
Also, Table 1, q = 4, N = F2S + (F20 + K) has R(N) = 359 for 4(76) + 55 = 359, or for N = F2% + 
A76 = 317811 + 7205, which gives the same result. 

3, THE CALCULATION OF A339 

The second missing value on our list is 339. We can find A339 with very little effort, although 
339 = 3• 113 is not a prime. Since All3 = F24+K, N = F2B + F23 + • • • has R(N) = 3i?(F23 + • • •), 
and AU3 is too large to appear as the second factor. Now, taking q = 4, for N = F2S + (F20+K), 
4(74) + 43 = 339, and ,474 = 8187 while R(F2l-8187-2) = J?(2757) = 43; in fact, 2757 = A43. 
Then 

N=A,39=Fin + A7d = 317811 + 8187 = 325998. 
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We have also generated 
^ = ^ + 4 ^ =317811 + 7920 = 325731 

which has i?(JV) = 411 from Table 1, q = 4, while Table 2, w = 2, gives A4ll = F2S + F20 +A34 

which is the same result. Just as for 339, while we can factor 411 = 3-137, Al37 is too large! 
Again from Table 2, w = 2, changing A and B slightly, we find 9F9 + 5F7 = 371, also on our list. 
If we take K = 1427=F16+F14+F10+F6, then R(K) = 34, R(F21-K-2) = 13; the only other 
value for K in this interval such that R(K) = 34 is A34 but R(F2l- 434 - 2 ) = 21, so 1427 is the 
smallest we can take for K. Thus, we write 

4m = 2̂8 + ̂ 20 + 1 4 2 7 = 326003. 
We next illustrate how to use factoring to find 4* when n is composite, using Lemma 1 and 

Theorem 3. Let n = 410 = 41-10: 

4 0 = 105 = FU + F7+F4, 
4 i = 2736 = F18+F12+F6, 
41 = R(Fls + Fl2+F6+Fl-l)=R(F2S + F22+Fl6+Fn-l), 
4h\0 = R(F2S + F22+F16 + Al0). 

N = F2S+F22 +Fl6+Fn+F7 +F4 = 336614 has R(N) = 410. Writing R(N) as 205-2 gives 
the same solution, while 82 • 5 gives a slightly larger solution. N = A4l0 if there is no smaller 
solution using the even subscript formula. We can easily see that N^F2S+F2Q+K from our 
earlier work, so we test out N = F2S + F22 + K in Table 3. 

TABLES 
N = F2S+F22+K, F22_2p<K<F23_2p 

R(N) = (4p-l)R(K)+4R(F23_2p-K-2) 
tmxR(Ny(4p-l)Fl2_p+4Fn_p 

p = l: 3Fn + 4F10 = 267 + 220 = 487 
p = 2: 7F10 +4F9 = 385 +136 = 521 
p = 3: 1LF9 + 4F8 = 374 + 84 = 458 
p = 4: 15F8+4F7 = 315 + 52 = 367 
p = 5: \9Fj+4F6 = 247 + 24 = 271 

The smallest choice to generate 410 is p-3 for Fl6<K<Fl7 which requires that we solve 
114+45 = 410 for ^ < 3 4 which, in turn, gives us 11(30)+ 4(20) = 410; 430 = 1092 = F16 +105 
and R(Fl7 - A30 - 2) = 20, so that 

4^0=^28+^22+^16+ 105, 

the same result as by factoring. 
Note that Table 3 provides more "missing values" on our list. Here, p = 4 gives R(N) = 367 

for N- F2% + F22 + 4n> which easily demonstrates that N&F2S+F20+K, so 4367 = 335962, the 
same result as A367 = F2g + A$7 by working with Table 1, q = 3. Furthermore, 
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^458= i 728 + 4 2 3 = 3 1 7 8 1 1 + 1 8 8 6 6 = 3 36677 

comes from q = 3 of Table 1, and Am = F2% + F22 + A34 comes from p = 3 above. 
We expect to see all "missing values'1 n < Fl4 = 377 appearing for N = F2S+K based on our 

previous experience, but we have been unable to prove that all n=R(N), \<n<Fk, will appear 
for N = F2k+K. Generating some of them will take patience, especially for a value such as 
w = 421 which has no solution for An = F28 +K. One can generate more tables such as Table 4 
similarly to Tables 1 through 3, or one can list possible successive subscripts for Zeck An and 
evaluate each case. 

Some results, verifiable in other ways, can be read from the tables. From Table 4. below, we 
have 

^610=^28+^24 + ̂ 9 a n d 4)42 = ̂ 28+^24+ 4>5-

However, A555 = A6l0 + 5 < 2̂8 + 2̂4 + 4 44- Table 1 gives 

4*10 = 2̂8 + 4>33 ( t h e S a m e r eSu l t) a n d 4>21 = -̂ 28 + 1̂44 • 
Table 3 gives 

4*87 ~ ^8 + ^ 2 + AP a n d 42 I ~ ^8 + ^2 + 4 s ( ^ same result). 
Table 4 gives R(N) = 333 for N-F2S+ F24 + A2l, where Zeck N uses only even-subscripted 
Fibonacci numbers, but A333 = 209668<N. One must verify that N is the smallest possible, 
especially if R(N) is composite. 

TABLE 4 
N = F2% + F24 + K, F24_2p <K<F25_2p 

R(N) = (3p - l)R(K) + 3R(F25_2p -K-2) 
maxi?(#): (3p-l)Fl3_p + 3Fl2_p 

p = l: 2F12+3FU = 288 + 267 = 555 
p = 2: 5F1S + 3F10 = 445 + 165 = 610 
p = 3: 8F10 + 3F9 = 440 +102 = 542 
p = 4: 11F9 +43F8 = 374 + 63 = 437 
p = 5: 14F8 + 3F7 = 294 + 39 = 333 

By constructing N taking one even-subscripted Fibonacci number at a time, one can find An 

for n prime, ?i<466; some solutions are very short, while others take patience. Prime values 
for n in Table 5 can be found for N = F2$ + K except for n = 421, 439, and 461, which need 
N = F30+K. The composites n for which An >F2% + K, found by considering factors of n, need 
N = F29+K. Note that only the subscripts in Zeck An are listed in Table 5. 

The calculations of An for n prime and of An9 where Zeck An has even subscripts only agree 
with D. Englund [4], [5], and with computations using "Microsoft Excel" by M. Johnson. Of the 
composites n = R(A„), where An contains an odd-subscripted term, there are very many cases to 
consider and thus checking is more difficult. Each composite n starred in the table can be com-
puted from its factors and has An<N, where R(N) = n and Zeck N contains even-subscripted 
Fibonacci numbers only. 
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TABLE 5. "Missing Values" for JI, 331 < n = R(N) < 465 

n prime n composite 
n 
331 
347 
349 
353 
359 
367 
373 
379 
383 
389 
397 
401 
409 
419 
421 
431 
433 
439 
443 
449 
457 
461 
463 

An 
327367 
336067 
339528 
338185 
325016 
335962 
336588 
338690 
338638 
336944 
342688 
338648 
343476 
338656 
839994 
343714 
343426 
841557 
343447 
367292 
367923 
851181 
338562 

ZeckAn 
28,20,18,12,10,6 
28,22,14,12,8,4 
28,22,18,16,14,10,4 
28,22,18,10,8,4 
28,20,14,10,6 
28,22,14,10,6 
28,22,16,10,8,4 
28,22,18,14,12,10,6 
28,22,18,14,12,6,4 
28,22,16,14,10,4 
28,22,20,14,8,4 
28,22,18,14,12,8 
28,22,20,16,12,10,4 
28,22,18,14,12,8,6 
30,20,16,12,10,4 
28,22,20,16,14,10,8 
28,22,20,16,12,6 
30,20,18,12,8,4 
28,22,20,16,12,8,6 
28,24,18,14,12,6 
28,24,18,16,12,8,6 
30,22,16,14,10,6,4 
28,22,18,14,10,8,4 

n 
339 
371 
381 
391 
394 
396* 
402* 
404* 
406 
407 
410* 
411 
412* 
413 
415 
417 
422 
423* 
425 
426 
427 
428* 
429* 
430 
434 
435* 
436* 
437 
438 
444* 
446 
447* 
448* 
450* 
451* 
452* 
453 
454* 
455* 
456* 
458 
459* 
460* 
462* 
464* 
465 

4. 
325998 
326003 
339533 
336674 
343709 
337224 
336690 
343722 
336661 
338258 
336614 
325731 
365326 
336716 
339300 
336682 
371960 
338580 
338279 
336949 
372015 
372468 
337287 
338635 
339156 
338363 
338266 
343337 
338512 
339253 
367957 
530063 
338643 
338829 
544635 
527110 
371350 
526877 
340426 
338520 
336677 
544580 
343434 
337389 
338376 
338274 

ZeckAn 
28,20,16,14,10,4 
28,20,16,14,10,6 
28,22,18,16,14,10,6 
28,22,16,12,8 
28,22,20,16,14,10,4 
28,22,17,11,7,4 
28,22,16,12,9,4 
28,22,20,16,14,10,7,4 
28,22,16,12,6 
28,22,18,12,6 
28,22,16,11,7,4 
28,20,16,12,8,4 
28,24,16,12,7,4 
28,22,16,12,10,6 
28,22,18,16,12,10,6 
28,22,16,12,8,6 
28,24,20,16,8,6 
28,22,18,14,11,6 
28,22,18,12,8,6 
28,22,16,14,10,6 
28,24,20,16,10,8,6 
28,24,20,16,14,12,7,4 
28,22,17,12,8,4 
28,22,18,14,12,6 
28,22,18,16,10,6 
28,22,18,13,8,4 
28,22,18,12,7,4 
28,22,20,16,10,6 
28,22,18,14,8,6 
28,22,18,16,12,7,4 
28,24,18,16,12,10,6 
29,21,19,15,11,6 
28,22,18,14,12,7,4 
28,22,18,15,11,8,4 
29,23,17,12,6 
29,21,17,13,11,7,4 
28,24,20,14,8,6 
29,21,17,11,7,4 
28,22,19,15,11,8,4 
28,22,18,14,9,4 
28,22,16,12,8,4 
29,23,17,11,6 
28,22,20,16,12,7,4 
28,22,17,13,9,4 
28,22,18,13,9,4 
28,22,18,12,8,4 
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1. HAPPY NUMBERS 

Let S2 : Z+ -> Z+ denote the function that takes a positive integer to the sum of the squares 
of its digits. More generally, for e > 2 and 0 < at < 9, define Se by 

( n \ n 

V/=o / /=o 
A positive integer a is a happy number if, when 82 is applied to a iteratively, the resulting 

sequence of integers (which we will call the S2-sequence of a) eventually reaches 1. Thus a is a 
happy number if and only if there exists some m>0 such that S2(a) = 1. For example, 13 is a 
happy number since *Sf (13) = 1. 

Notice that 4 is not a happy number. Its S2 -sequence is periodic with 5f (4) = 4. It is simple 
to verify that every positive integer less than 100 either is a happy number or has an $2-sequence 
that enters the cyclic £2-sequence of 4. It can further be shown that, for each positive integer 
a> 100, S2(a) <a. This leads to the following well-known theorem. (See [2] for a complete 
proof.) 

Theorem 1: Given a e Z+, there exists n > 0 such that S2(a) = 1 or 4. 

Generalizing the concept of a happy number, we say that a positive integer a is a cubic happy 
number if its ^-sequence eventually reaches 1. We note that a positive integer can be a cubic 
happy number only if it is congruent to 1 modulo 3. This follows immediately from the following 
lemma. 

Lemma 2: Given a e Z+, for all m, $3
m(a) = a (mod 3). 

Proof: Let a - Zf=0a|.10/, 0 < at < 9. Using the fact that, for each i, af = at (mod 3) and 
Iff = 1 (mod 3), we get 

V=o J /=o /=o /=o 
Thus, by a simple induction argument, we get that, for all M G Z + , S™(a) = a (mod 3). • 

The fixed points and cycles of S3 are characterized in Theorem 3, which can be found without 
proof in [1]. 

Theorem 3: The fixed points of ^3 are 1, 153, 370, 371, and 407; the cycles are 136 -> 244 -» 
136, 919-> 1459 -> 919, 55 -> 250 -> 133 -> 55, and 160-» 217 -> 352 ->160. Further, for any 
positive integer a: 
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• If a s 0 (mod 3), then there exists an m such that S™(a) = 153. 
• If a = 1 (mod 3), then there exists an m such that S™(a) = 1,55,136,160,370, or 919. 
• If a = 2 (mod 3), then there exists an m such that ^ ( a ) = 371 or 407. 

Note that the second part of the theorem follows from the first half and Lemma 2. Rather 
than prove the first part here, we state and prove a generalization of Theorems 1 and 3 in the 
following section. 

2. VARIATIONS OF BASE 
By expressing numbers in different bases, we can generalize happy numbers even further. 
Fix h>2. Let a = ZU^ with 0<a,<b~l. Let e>2. We then define the function 

^ : Z + ~ » Z + b y 

V/=o J /=o 
If an Se^b sequence reaches 1, we call a an e-power Chappy number. 

Theorem. 4: For all e > 2, every positive integer is an e-power 2-happy number. 

Proof: Fix e. Let a - Zf=0 at2\ 0 < at < 1, an > 0. Then 

/=o J = 0 /=0 1=0 /=0 

Note that none of the terms can be negative. Thus, if «>1 , a-Sea{a)>Q. So, for a * l , 
$e,i^a)<a- w i t h tWs fact> il: i s easy to prove by induction that every positive integer is an 
e-power 2-happy number. D 

Again, we ask: What are the fixed points and cycles generated when these functions are 
iterated? We give the answers for S2tb, 2 < b < 10, in Table 1 and for SXb9 2 < b < 10, in Table 2. 

TABLE 1. Fixed points und cycles of S2$b$2<b< 10 
Base 

2 
3 

4 
5 

6 

i 7 

8 

9 

10 

Fixed Points and Cycles | 
1 1 
1, 12, 22 
2 - 4 11 -4 2 
1 
1, 23, 33 
4 -4 31 -4 20 -4 4 
1 
32 -4 21 -* 5 -4 41 -4 25 -4 45 -4 105 -4 42-4 32 
1, 13, 34, 44, 63 
2 - 4 4 - 4 2 2 - 4 1 1 - 4 2 
16 -> 52 -4 41 -4 23 -4 16 
1, 24, 64 
4 -4 20 -4 4 
5 -4 31 -4 12 -4 5 
15 -4 32 -4 15 
1, 45, 55 
58 -4 108 -4 72-* 58 
82 -4 75 -4 82 
1 
4 -4 16 -4 37 -4 58 - i 89 -4 145 -4 42 -4 20 -4 4 
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TABLE 2. Fixed points and cycles of S3jb$2<b< 10 

| Base | Fixed Points and Cycles 
~2 
3 

4 i 
5 

6 

7 

8 

9 

10 

1 1 
1, 122 
2 -> 22 -> 121 -> 101 -» 2 
1, 20, 21, 203, 313, 130, 131, 223, 332 
1, 103, 433 
14 -* 230 -> 120 -^ 14 
1, 243, 514, 1055 
13 -» 44 -» 332 -> 142 -+ 201 -+ 13 
1, 12, 22, 250, 251, 305, 505 
2 -> 11 -» 2 
13 -> 40 -> 121 -» 13 
23 -> 50 -+ 236 -> 506 -» 665 -» 1424 -4 254 -+ 401 -> 122 -* 23 
51 -» 240 -» 132 -» 51 
160 -» 430 -• 160 
161 -• 431 -• 161 
466 -• 1306 -* 466 
516 -> 666 -» 1614 -» 552 -> 516 
1, 134, 205, 463, 660, 661 
662 -+ 670 -> 1057 -> 725 -> 734 -» 662 
1,3.0,31, 150, 151,. 570, 571, 1388 
38 -> 658 -> 1147 -> 504 -• 230 -• 38 
152 -¥ 158 -* 778 -> 1571 -» 572 -> 578 -+ 1308 -> 660 -+ 530 -> 

178 -» 1151 -¥ 152 
638 -> 1028 -f 638 
818 -» 1358 -+ 818 
| 1, 153, 371, 407, 370 
55 -» 250 -* 133 -> 55 
136 -> 244 -» 136 
160 -» 217 -» 352 -> 160 
919 -> 1459 -» 919 

It is easy to verify that each entry in the tables above is, indeed, a fixed point or cycle. Theorem 5 
asserts that the tables are, in fact, complete. 

Theorem 5: Tables 1 and 2 give all of the fixed points and cycles of S2fb and S3J), respectively, 
for2<6<10. 

The proof of Theorem 5 uses the same techniques as the proof of Theorem 1 given in [2]. 
First, we find a value Nfor which Setb(a) < a for all a > N. This implies that, for each a e Z+, 
there exists some MGZ+ such that S%b(a) < N. Then a direct calculation for each a < N com-
pletes the process and Theorem 5 is proven. Lemma 6 provides an Nfoi e = 2 and all bases b > 2 
while Lemma 8 does the same for e = 3. 

Lemma 6: Ifb>2 and a>b2, then S2 b(a)< a. 

Proof: Let a = Z?=0 off. We have 

i=0 1=0 /=0 

Every term in the final sum is positive with the possible exception of the / = 0 term which is at 
least (b -1)(1 -(b-1)). It is not difficult to show that the i = n term is minimal if an = 1. From 
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a>b2 = I00(b), It follows that n>2. So the i = n term Is at least 1 (ft2~ 1). Thus, a-S2 b(a)> 
b2-l + (b-l)(l-(b-l))=3b-3>0y$mc®b>2. Hence, forall a>ft2, Sxb(a) <a. D 

Using Induction, Corollary 7 is Immediate. 

Corollary 7: For each a e Z*, there is an m e Z+ such that S£ft(a) < *2 • 

This completes the argument for e = 2. Now we consider e = 3. 

Lemmm 8: If b > 2 and a > 2b3, then 5 ^ (a) < a. 

Proof: The proof of Theorem 4 gives an even stronger result for b = 2, so we will assume 
b > 2. Using the notation from above, we have 

j=0 1=0 J = 0 

The / = 0 term is at least (b -1)(1 - (ft -1)2) and the i = 1 term is at least (b -l)(ft - (b -1)2). 
The remaining terms are all nonnegative. Since a > 2b3 = 2000(^, n > 3 and if n = 3, then a3 > 2. 
So, if w = 3, the an term is at least 2(ft3-4). If w>3, then the an term is at least 
ft4-l>2(ft3-4). Thus, 

a - ^ & ( a ) ^ ^ ( ^ - a g ) + o i ( f t - ^ ) + a b ( l - f l g ) 
>2(i3~4) + (*-l)(&-(*-l)2) + (A~l)( l~(i- l)2) 
= 7ft2-6ft--7>0 

since 5 > 2. Hence, for all a > 2ft3, 5^ 6(a) < a. D 

Corollary* 9: For each a e Z+, there Is an m e Z* such that S™b(a) < 2h3. 

Theorem 5 now follows from a direct calculation of the 52^-sequences for all a <b2 and the 
£3> 4-sequences for all a < 2b3. These calculations are easily completed with a computer. 

• We conclude with two general theorems concerning congruences. If, for given e9 ft, and 4 
S™b(a) s a (mod d) for all a and m, then, as in Lemma -2, all e-power ft-happy numbers must be 
congruent to 1 modulo d. Thus, the following theorems yield a great deal of information con-
cerning generalized happy numbers. In particular, bounds on the densities of the numbers are 
immediate. 

Theorem 10: Let/? be prime and let ft s 1 (mod/?). Then, for any a e Z* and m e Z4", Sptb(a) s 
a (mod/?). 

Proof: Let a = Zfs0<*$• % Format, af s a, (mod/?) for all i. Thus, 

\ /SQ / /«o /«o /«o 

Using Induction, we see that, for all m e Z4", Sptb(a) a a (mod/?). • 

Corollary 11: If a is a (2-power) ft-happy number with ft odd, then a must be odd. In general, if 
a Is a/y-power ft-happy number with ft s 1 (mod/?) for some prime/?, then a s 1 (mod/?). 
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Theorem 12: Let b = l (mod gcd(6,6-l)). Then, for any A G Z + and / M G Z + , Sgb(a) = a 
(mod gcd(6, * - ! ) ) . 

Proof: Let a = EJLo aff and <i = gcd(6, b -1). If rf = 1, then the theorem is vacuous. For 
d = 2, note that a3 = a (mod 2). Since & = 1 (mod 2), we have 

<M«)= s3JiaA=z ̂  * i > * 2><*j=a ( m o d 2>> 
Vi=o y i=o /=o i=o 

and induction completes the argument. The case d = 3 is immediate from Theorem 10. Finally, 
d = 6 follows from the cases d = 2 and d = 3. • 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Russ Eider and Jawai Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others'proposals must be sub-
mitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by May 15, 2002. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l +Fn, ^0 = 0, Fx = 1; 

AH-2 = AH-I + An A ) = 2, Lt = i. 

Also, a = (l + V5)/2, £ = ( l -V5)/2 , Fn=(an-fin)/^md Ln = an+@\ 

PROBLEMS PROPOSED IN THIS ISSUE 

B-925 Proposed by Jose Luis Diaz & Juan J. Egozcue, Universitat Politecnica de Catahutya, 
Terrassa, Spain 

Prove that XLo^+i divides 

Z^il^+H)*^] forn>0. 
6-926 Proposed by Ovidiu Furdui, Western Michigan University, Kalamawo, Michigan 

If l<a<a9 evaluate 
Bm(fl*4*+-+t_fl*+t+-ifc). 

B-927 Proposed by R S. Melhamf University of Technology, Sydney, Australia 
G. Candido [stA Relationship between the Fourth Powers of the Terms of the Fibonacci 

Series," Scripta Mathematica 17.3-4 (1951):230] gave the following fourth-power relation: 

2(F:+/&+/&>=(Fn
2+/&+e2>2. 

Generalize this relation to the sequence defined for all integers n by 
W^pW^-qW^W^a^b, 
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B-928 Proposed by K-J. Seiffert, Berlin, Germany 
The Fibonacci polynomials are defined by F0(x) = 0, Fx(x) = 1, Fn+2(x) = xFn+l(x) + Fn(x) for 

n > 0. Show that, for all complex numbers x and all nonnegative integers n9 

where |/J and p i denote the floor- and ceiling-function, respectively. 
B-929 Proposed hy Harvey J. Hindin, Huntington Station, NY 

Prove that: 
2N-1 

A) F2N=(l/5m)'£PK(5V2/2)P2N_1_K(5V2/2) for N>1 

and 
2N 

B) L,N+l= SP , (5 1 / 2 /2 )P M . , (5 w /2 ) for tf >0, 
where PK(x) is the Legendre polynomial given by PQ(x) = 1, Pt(x) = x, and the recurrence rela-
tion (^ + l)/>r+1(x) = (2K + l)xPK(x)-KPK^(xl 

SOLUTIONS 
Divisible @r Not Divisible; That Is, by 5 

B-911 Proposed by M. N. Deshpande, Institute of Science, Nagpur, India 
(Vol 39, no. 1, February 2001) 

Determine whether Ln + 2{-T)mLn_2m_l is divisible by 5 for all positive integers m and n. 

Solution by Pantelimon Stanica, Montgomery, AL 
We prove that the expression is divisible by 5 for all positive integers m, n. Formula (17b) 

on page 177 in S. Vajda'a Fibonacci & Lucas Numbers, and the Golden Section (Ellis Horwood) 
states: Lp+k-(-l)kLp_k -5FpFk. Taking p = n-m, k = m + l, and p = n-m-l, k = m, we get 
^ + i - ( ~ 0 ^ 1 V 2 m - i = 5i7

w--miWi and I w . r ( - i r 4 „ 2 w i . 1 = 5Fw_ra_1Fm. Subtracting the second 
formula from the first, and using the definition of Ln9 we obtain 

Z„+2(-irZ„_2m_1 = 5(Fn_,„Fm+1 -F^FJ, 

which implies the claim. 
Also solved by Brian D. Beasley, Paul Bruckman, L. A. G Dresel, Ovidiu Furdui, Russell 
Hendel, Walther Janous, Harris Kwong, Carl Libis, H.-J. Seiffert, James Sellers, and the 
proposer. 

From m Prodtiet to a Sum 

B-912 Proposed by the editor 
(Vol 39, no. 1, February 2001) 

Express FnHnmod2)°Ln+l_{nmod2) as a sum of Fibonacci numbers. 
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Solution by Charles K Cook, University of South Carolina at Sumter, Sumter, SC 
The following formulas from [1] will be used: 

n 

(W I X - ^ ^ H - I - I and (I23) Fn+p-Fn„p = FnLp ifpisodd. 

Case 1: n even => n mod2 = 0. So 
n 

Fn ' Af+1 = Fn+n+1 ~Fn-n-l = F2nU ~F-l = ^,+1 ~l = ^F2j' 
i=l 

Case 2: w odd =>n mod2 = 1. So 
n 

Fn+1' At = ^L+1"" ^1 = ^IM-1 " ! = S ^2 / • 

Thus, 

r̂n-(w mod 2) ' Ai+l-(n mod 2) = JL V' 

Reference 
1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers.' Santa Clara, CA: The Fibonacci Associa-

tion, 1979. 

Also solved by Brian D. Beasley (3 solutions), Paul Bmekman, L. A G Dresel, Ovidiu Furdui, 
Pentti Haukkanen, Russell Hendel, Steve Hennagin, Walther Janous, Harris Kwomg, Carl 
Libis, H.-J.-Seiffert, James Sellers, Pantelimon Stanica, and the proposer. 

A "Constant" Search 

B-913 Proposed by Herbert & Wilf, University of Pennsylvania, Philadelphia, PA 
(Vol 39, no. 1, February 2001) 

Fix an integer k > 1. The Fibonacci numbers satisfy an "accelerated" recurrence of the form 
Fn2k = akF(n-i)2k ~ F(n-2)2k (^ = 2

?
 3> •••) with FQ = 0 and F2& to start the recurrence. For example, 

when * = 1, we have F2n = 3F2(r^l) - F ^ 2 ) (n = 2,3,....; F0 = 0; F2 = 1). 
a. Find the constant ak by identifying it as a certain member of a sequence that is. known 

by readers of these pages. 
h Generalize'this result by similarly identifying the constant fim for which the accelerated 

recurrence / ^ = )9J l^ l l . i)^ + (-l)^1ii(Jl.2)+*> with appropriate initial conditions, 
holds. 

Solution by K Gauihier, Kingston, ON 
Case a is deduced from Case b by setting h = 0 and m = 2k for * a positive integer, so we 

solve Case b only. The sought answer is flm = Lm for values of n such that m{n -1)+A * 0; for 
m(n - 1 )+h = 0, fim can be arbitrary but finite, since F0 = 0. The former is of interest and we 
have, from the definition, that 
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^ [am(n-l)+h(am + ( . y ^ ) _ fim(n-l)+h^m + (-1)"^)] 

since a~m = (-l)mJ3m and vice versa. This completes the proof. 

Also solved by Brian D. Beasley9 Paul Bruckman, L. A. G. Dresel9 Ovidiu Furdui9 Walther 
Janous9 Harris Kwong, H.-J. Seiffert9 Pantelimon Stanica, and the proposer. 

A "Product and a Snmy9 Inequality 

B-914 Proposed by Jose Luis Diaz, Universitat Politecnica de Catalunya9 Terrassa9 Spain 
(Vol 3% no. 19 February 2001) 

Let n > 2 be an integer. Prove that 

Q 1 §(F,+2-Fy-l)2]- F^i^ZFJ • 
Solution by H.-J. Seiffert, Berlin, Germany 

We first prove that 
kFkFM>{Fk+2-\f f o r*> l . (!) 

For k = 1,2,3,4,5,6, and 7, this can be verified directly. If k > 8, then /^+2 < 2/%+1 < 4Fk, and 
therefore *FtFi+1 > (* /8)Ft

2
+2 > Ft

2
+2 > (Ft+2 -1)2. 

Let k > 2. The fiinction 
J_ 

is convex, as is seen from its second derivative. Applying Jensen's Inequality gives 
k (% k \ 

From (Ij) of [1], we know that Z*=1 Fj = Fk+2 - 1 . Hence, 

- i . > r * " 

/ W = 7? i—^". ° ^ * ^ > 

niF^-Fj-lf-yk-l) (F,+2-l)2' 
which, by (1), may be weakened to 

Taking the product over * = 2,3,..., n, n > 2, we obtain the desired inequality. 

Reference 
1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci Associa-

tion, 1979. 

Also solved by Paul Bruekman9 Walther Janous9 and the proposer. 
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Editor's Comment: Walther Janous actually improved the inequality by elementary means and 
showed the right-hand side to be greater than nil 22(n~l) n^=2(^+i ~~ ^)2 • 

A "Double Smnff Inequality 

B-915 Proposed by Mohammad K Azarian, University of Evansville, Evansville, IN 
(Vol 39, no. 1, February 2001) 

If |x| <1, prove that 

n i r ^ x ' " 1 \<n3. 

Solution by Paul Bruckman, Sacramento, CA 
A stronger result is actually true, namely: 

1=1 ;=1 
<n(n + l)/2, whenever \x\ <1. 

Let G(x, ri) denote the quantity within the absolute value bars. Then 

iG(x,ii)i^|Ga/i)i=2;Z/-2^-1F/s5:i'I2"y"1^ 
i=l y=i i=l y=i 

Now HJ^u^Fj = (l-u-u2y\ provided |ii | <a"1. Setting u = 1/2, we obtain TJ^l'^Fj = 1 
Thus, 

|G(X,II)|^JI = W(» + 1)/2. 
i=i 

Note that n(n + l)/2<n3, with equality iff w = l. Since G(x,l) = l /4 , we see that the result 
indicated in the statement of the problem is certainly true. 

Also solved by Ovidim Furdui, JBT.-J. Sdffert, and the proposer. 

A-Response to Gairthierf8 Comments on the Brackman Conjecture 

A Comment by Paul Bruckman 
First, I would like to make a slight correction. Although I appreciate being referred to as 

"Professor Bruckman,ff I must regretfully inform the world that I am no longer teaching math, 
having returned to consulting work for a private firm. 

Secondly, I am sincerely flattered to have my name associated with a certain set of polyno-
mials (the Pr(ri) of Dr. Gauthierfs note). Before accepting this honor, however, I would like to be 
sure that these polynomials are indeed new in the literature; I would be loath to usurp someone 
elsess rightful niche in mathematical history. 

1 am grateful to Dr. Gauthier for pointing out the corrected version of my conjecture. 1 
might have discovered this for myself, had 1 taken the time and effort to develop the correct poly-
nomial expressions, as Dr. Gauthier has obviously done. 

It should be mentioned that there is an advanced problem proposed by Dr. Gauthier (H-568) 
in the last issue [Hie Fibonacci Quarterly 38.5 (2000):473; corrected 39.1 (2001):91-92] which 
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is highly interesting and bears some superficial resemblance to my problem B-871 [37*1 (1999): 
85]. However, unlike the polynomials Pr(n)9 the "Gauthier functions" fm(n) are rational func-
tions. I have submitted my solution for Problem H-568 to the Advanced Problems Editor. 

The remainder of this letter is devoted to indicating some of my subsequent research in 
response to Dr. Gauthier's comments. 

Following Gauthier's notation, we may define the functions Pr(ri) as follows: 

w-ffitfty-tr1. (i) 
As Dr. Gauthier correctly pointed out, what I should have originally conjectures was: 

Pr(n) is a polynomial in n of degree r (2) 
(that is, leaving out the erroneous modifier "monic"). 

Actually, we can prove a somewhat stronger result than (2), namely: Pr{n) is a polynomial in 
n of degree r, with its first two leading terms given by 

Pr(ii) = ( r - l ) ! ^ - ( r - 2 ) ( ; j i r 1 + .... (3) 

Towards this end, we first demonstrate that the Pr(n)%s satisfy the recurrence relation: 
Pr+l&) = n2(Pr(n)-Pr(n-l)\ r = l,2,.... (4) 

By means of (4), with Pt(n) = n, we readily obtain the expressions for Pr(n) indicated by 
Gauthier in his note, for r = 1,2,3,4,5. The proof of (4) is straightforward, following from the 
definition of the Pr(ri). In turn, (4) implies (3), as can be demonstrated by induction. 

What appears to be a more difficult problem is to obtain a general expansion (for all the 
terms) of Pr(n). Once obtained, this might reveal other properties of the Pr(n), and may possibly 
demonstrate that they are special cases of well-studied polynomials with known properties. 

If it should turn out that these are indeed new polynomials, they may be expected to yield 
additional research and should generate further interest in their properties. It already seems inter-
esting enough that the special form given in the definitions of the polynomials Pr(n) and fm{ri) (as 
given in Dr. Gauthier's note and in H-568, respectively) should yield polynomial functions and 
rational functions, respectively. 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

Raymond E. Whitney 
Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 

to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745, This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 
H-577 Proposed by Paul & Bruckman, Sacramento, CA 

Define the following constant: C = Up{l-l /p(p -1)} as an infinite product over all primes p. 
(A) Show that 

n=l 

where //(«) and ^(w) are the Mobius and Euler functions, respectively. 
(B) Let 

P(ri) = Y,»(nld)Ld. 
d\n 

It was shown in the solution to H-517 (see Vol. 35, no. 4 (1997), pp. 381-82) that n\P{n\ 
Show that 

c=fi{mrm/n, 
where £ is the Riemann zeta function. 
Notes C is the conjectured density of primes p such that Z(p) = p - (5 / p); see P. G. Anderson & 
P. S. Bruckman, "On the a-Densities of the Fibonacci Sequence," NNTDM 6.1 (2000): 1-13. 
Approximately, C = 0.37395581. 

H-578 Proposed by N. Gauthier &J.R Gmselm, Royal Military College of Canada 
In Problem B-863, S. Rabinowitz gave a set of four 2 x 2 matrices which are particular solu-

tions of the matrix equation 
X2 = X + J , (1) 

where / is the unit matrix [The Fibonacci Quarterly 36.5 (1998); solved by H. Kappus, 373 
(1999)]. The matrices presented by Rabinowitz are not diagonal (i.e., they are nontrivial), have 
determinant -1 and trace +1. 
a. Find the complete set {X} of the nontrivial solutions of (1) and establish whether the proper-
ties det(X) = -1 and tt{X) = +1 hold generally. 
k Determine the complete set {X} of the nontrivial solutions of the generalized characteristic 
equation 
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X2 = xX+yI, (2) 

for the 2 x 2 Fibonacci matrix sequence Xn*2 = xXn+l + yXn, /i = 0,1,2,..., where x and y are 
arbitrary parameters such that x2 /4+y*0; obtain expressions for the determinant and for the 
trace. 

H-579 Proposed'by Paul & Bruckman, Sacramento, CA 
Prove or disprove that, for all odd primes/?, 

V2(p-1), 

«=1 V ' 

Each quantity IIn is to be interpreted as n l (modp). 

H-580 Proposed by Jose Diaz-Barrero, Politechnic University ofCataluya, Barcelona, Spain 
Let 

A(z) = ±akzk 

be a monic complex polynomial. Show that all its zeros lie in the disk C = {z G C: \z | < r}, where 

r=Eg f^fe i a - r = o ' u > 

SOLUTIONS 
Sum Problem 

H-566 Proposed by K Gauthier, Royal Military College of Canada 
(Vol 38, mo. 4, August 2000) 

Let $n:=w/2n, where n is a positive integer, and set Ln = an+bn, Fn-{an -bn)l'(a-b), 
where a = ^ ( n W ^ 2 - 4 ) , b = ^(M-^U2-4), u & ±2, and show that, for n > 2, 

w—1 | I n 

Solution by Paul & Bruckman, Berkeley, CA 
The notation "l^2" in the statement of the problem evidently means "tan2". We make use of 

a general identity which was derived in this solver's solution of Problem H-559, Part (a) (Feb. 
2000) by the proposer of this problem. This identity is the following, valid for all integers n > 1, 
complex x and y with x1 * y2: 

tf ^ V * ^ rt = f ( * - 2 y «*2*» '" -»y)- 1 - (1) 
l x " J Ax "~J J &=i 

If we set x = a and j = b in (1), we obtain (using the proposer's notation): 

nL* / {u(u2 - 4)Fn} = ]T (w2 ~ 2 -- 2 cos2Jbr / w)"1. (2) 
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We may transform the sum in the right member of (2) as follows: 

so the sum becomes: 
n 

1 / 2i/]T {(u - 2 cosfor / n)~l + (u + 2 coskn: I n)~l). 
k=l 

Therefore, 

2nLnIFn = (u2 - 4)]£ {(u - 2 cosfor / n)"1 + (u + 2 cos ATT / w)"1} 

= (w2 - 4) J {(« + 2 - 4 cos2 jty,)-! + (u - 2+4 cos2 i ^ ) " 1 } . 

Let Z\ denote 1 + {(I/ + 2) / ( i / -2)}tan2^n . We note that the transformation k~*n-k trans-
forms tmk(j)n to l/tan&^„. Then using standard trigonometric manipulations, we obtain after 
some effort: 

w-l 
2 / i 4 / ^ = ^ { M - 2 + 4 / D J + X{ii + 2-4(ii + 2)/(ii-»2)tan2%/Dfc} 

= («-2)n + | ; 4 / Z \ + ( « + 2 > i - 4 § ( A - l ) / A . 

since the terms for k = 0 and £ = » involving Dk vanish. Then nLnIFn =un-2(n-l)+4S„(u). 
Hence, 4S„(u) = nL„ I F„ - (u - 2)n - 2, or 

S„(«) = - l / 2 + « { 4 - ( « - 2 ) F „ } / 4 i v (3) 

We note that a2 = au -1, b2 = bit -1, which implies (a +1)2 = a(« + 2), (b +1)2 = ft(« + 2), so 
(a +1)3 = a(a +1)(«+2),(b +1)3 = A(ft + l)(w + 2). The sum Ln+^ + 3ZW + 3X^14- Z/n_2 reduces to: 

a"~2(a3 +3a2 +3a + l)+Jn-2(£3 +3*2 +36 + 1) = a"-2(a + l)3 +b"-\b + l)3 

= an~\a +!)(« + 2)+ft""1^ +l)(w + 2) = (K +2)(L„ + Z„_i)-

Therefore, letting R„(u) denote the expression in the right member of the statement of the 
problem, we have 

R„(u) = n(L„ + L„^/{2(u + 2)Fn}-l/2. (4) 
We next prove the following identity: 

uL„ = 2L„_1 + (u2-4)F„. (5) 

Proof of (S): Let 0 = («2 - 4)1/2. Note that a -b = 0, ab = 1. Hence, 

2I„_, + (a2 - 4)FH = an~\2 +0a)+b"~l(2-0b) 

= a"-\l+a2)+b"-1(l+b2) = Ln+l + L„_l = uL„, 

since the characteristic equation of the L„'& (and of the F„'s) is C/B+1 = uU„ - U„_t. 0 

Comparing the results of (3) and (4), we see that it suffices to prove the following: 
(L„ + Ln_^!(ti+2) = (ln-(u-2)F„}/2, 
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which (after simplification) reduces to (5). Thus, Sn{u)-Rn{u), which completes the proof. 
Incidentally, although not required, we could also express the result as follows: 

Sn{u)^an-ax, whereaw=«(Fw-Fw_1)/2F„. (6) 

Also solved by H.-J. Seiffert and the proposer. 

Am UfiEqimi Problem 

H-567 Proposed by Ernst Herrmann, Siegburg, Germany 
(Vol 38, no. 5, November 2000) 

Let Fn denote the 11th Fibonacci number. For any natural number n > 3, the four inequalities 

K+ 1 <. 1 
17 27 37 
"n rn+a%

 rn-l 

• 1 ( 1 ) 

F F 

1 , 1 , 1 1 
- + -= + "= <" P P P P 

<-L+- ! - +—L^, ( > 

P P P 

determine uniquely two natural numbers ax and a2. Find the numbers ax and a2 dependent on n. 

Solution by H.-J. Seiffert, Berlin, Germany 
It is known [see A. F. Horadam & Bro. J. M. Mahon, "Pell and Pell-Lucas Polynomials," The 

Fibonacci Quarterly 23.1 (1985):7-20, Identity (3.32)] that 

With (m,h,k) = (n,-1,1), (n-1,1,2), ( « - l , - l , 4 ) , (n-1,-1,5), (n-l,-l,2), (n,-2,2), we 
obtain, respectively: 

F^F^-Ff = (-l)», (3) 

^ i - ^ W 2 = ( - i r ! , (4) 
^ - 2 ^ + 3 - ^ - i ^ + 2 = 3 ( - i r 1 , (5) 
F^2Fn+4-F^F„+3 = 5(-l)"-1, (6) 

F^2F^-F^F„ = (~irl, (7) 
F„-2Fn+2-F^{-\y-\ (8) 

valid for all integers n. Also, the easily verifiable identity 
F3n=5F* + 3(-irF„,neZ, (9) 

and the following inequalities are needed below. 

Lemma 1: For all integers n > 3, it holds that 

F3n_4 < Fn^FnFn+l < F3n„3. 
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Proof: From (3) and (9), we have 
Fn-iFnFn+i = K3 +(-l)»FB = |(F3?I +2(-iyFn\ 

showing that the left side Is equivalent to 5F3n_4 < F3n + 2(-l)nFn. But this inequality follows from 
F3n = 5F3n~4+3F3n_5 and, by n>3, F3n_5 >F„. Using (9) withn replaced by n-1, we see that the 
right side is equivalent to FnFn^ <$F^l-3{-tf> so that, in view of (4), we must show that 
Fn-iFn+i < 5^-i - 2(-l)n. Since Fn+2 = 3 / ^ + 2Fn_2, this inequality becomes Fn_2Fn_x < Fn

2_t -
(-If. Clearly, this holds for.it = 3. For #f>4, the latter inequality follows from \<Fn_2< 
Fn.t-1 Q.E.D. 

Lemma 2: For all integers n > 5, it holds that 

*+3 F _ F M - 1 < 1 W 

Proof: After multiplying the left side by Fw_2i^-1>0? we see that we must prove the 
inequality Fn(Fn_2Fn+3 -Fn_xFn+2) < Fn+3 which, by (5), reduces to 3(-l)nFn < Fn+3. However, this 
follows from Fn+3 = 2Fn+l + Fn> 3Fn. Similarly, the right side is equivalent to 

Fn+4 <Fn(Fn-2Fn+4-Fn-lFn+2)' 

Using Fw+2 = Fn+3-Fn+t and (6), we see that we must prove that Fn¥A < 5(-iy~lFn+Fn_lFnFn+h 

which follows from Fn+4 = 5F„ + 3Fn_t < %Fn and 13 < F^F^; note that n > 5. Q.E.D. 

Let n > 3 be an integer. Since Fn - F„mml = Fn_2> it is easily verified that (1) is equivalent to 

We claim that 
(l ifwisodd, 
[2 ifwiseven. 

For odd », we must show that Fn_2Fn <Fn^Fn <Fn_2Fn+v The left side is obviously true, while 
the right side follows from (7). If n is even, we must show that Fn_2Fn^ <FnmlFn < Fn„2Fn+2, 
whose left side again follows from (7). To prove the right side, observe that 1 < Fn„t < Fn - 1 , so 
that i v ^ F ^ - F n ^ F n >Fn„2Fn+2-F* + Fn=F^l>09 where we have used (8). This proves the 
above claim. Next, we shall prove that 

cu = 

2w-4 ifnisodd, 
3 ifw = 4, 
2 ifw>4iseven. 

If n > 3 is odd, thee ^ = 1, and based on Fn+Fn+l = Fn+2 and (4), it is easily seen that (2) 
becomes F^ < /V-i^Wi < Fn+^+v Applying Lemma 1, it follows that % = 2n-4. If n £ 4 is 
even, then at = 2 and, since Fn - Fn_t = F^2, (2) is equivalent to 

^w+ao+l — 17 17 17 17 1 ^ + a 2 + 2 ' 
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Since, by (8), Fn^2Fn^2 = F„ - 1 , and since Fn - Fn_l = Fn_2, these inequalities are equivalent to 

J7 < VrA+2 f E* 
rn-2rn l 

Direct computation shows that a2 •= 3 if n = 4. For even # > 6? from Lemma 2, we find a^ - 2 . 
This completes the solution. 

.4fe0 solved by P. Bruckman, JL A. G. Dresei, R Martin, and the proposer. 
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