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SOME CONVERGENT RECURSIVE SEQUENCES, HOMEOMORPHSC IDENTITIES, 
AND INDUCTIVELY DEFINED COMPLEMENTARY SEQUENCES 

John C. Holladay 
Institute for Defense Analyses 

Washington, D.C. 

I. Consider the following r e c u r s i v e formula for generat ing s e -
quences , where A is a given posit ive number: 

(1.1) x = x - Ax 
' n+1 n-1 n 

It is well known that any sequence so generated is of the form 

(1. 2) x = C,R^ + C0R^ , 
n 1 1 2 2 

where C, and C ? a r e constants , and R and R a r e the roots of 

(1.3) x 2 = 1 - Ax . 

Let R, be the posit ive root which is less than one, and let R_ be 
the root that is less than minus one. Then this sequence converges 
if and only if C ? = 0; and when it does converge, it converges to ze ro . 
So given two posit ive numbers x , and x n , this sequence converges 
if and only if x / x = R . F u r t h e r m o r e , if A is an in teger , then 
R is i r r a t i ona l . 

It should be noted that sequences genera ted by a r e c u r s i v e form-
ula such as (1. 1) may be continued in the opposite d i rec t ion . If A= 1, 
then the r e c u r s i v e formula obtained for going in the opposite d i r e c -
tion is the formula used for generat ing Fibonacci n u m b e r s . 

Let P be a homeomorph i sm of |?0,oc ) onto itself. In other 
words , P(0) = 0 and P is a continuous, unbounded, s t r i c t ly i n c r e a s -
ing function of non-negat ive r e a l n u m b e r s . Then the quest ion a r i s e s 
as to the convergence of the sequence s tar t ing from two posit ive num-
b e r s x , and x n and genera ted by the formula 

(1.4). x ,. = x 1 - P(x ) . 
n+i n-1 ir 

Although the p rope r t i e s to be d i scussed will depend on the na ture 
of P on (_0,oo) only, to facil i tate the d i scuss ion it will be a s sumed 
that P is a homeomorph ism of the ent i re r ea l l ine. But for this 

1 



2 SOME CONVERGENT RECURSIVE SEQUENCES, Feb. 

exception, the word homeomorphism as used in this paper will refer to 

a homeomorphism of pO, oo) onto itself. Given two horneomorphisms 

h and g, their sum and products are defined as those horneomorphisms 

respectively satisfying 

( 1 . 5 ) (h ••+ g)(t) = h(t) + g(t) 

(hg)(t) = h [g(t)] and 

(gh)(t) = g[h(t)] for all t > 0. 

The inverse h of h is that homeomorphism such that 

(1. 6) hh"1 = h_1h = I , 

where I is the identity homeomorphism. The relation h < g is de-

fined to mean that h(t) < g(t) for all t > 0. Similarly, h < g means 

that h(t) < g(t) for ail t > 0. Note that h < g if and only if h~ > g~ 

and that h <_ g if and only if h > g 

Given two homeomorphisms h and g, define h(Jg as that 

homeomorphism such that (hljg)(t) is the largest of the two numbers 

h(t) and g(t) for all t > 0. Define hf)g as that homeomorphism 

such that 

(1.7) hHg +hUg- h + g . 

In other words, hflg is the minimum of g and h. Note that for any 

h and g, 

(1.8) hHg = gHh < h < hUg = gUh . 

Also note that for any homeomorphism h, 

(1. 9) hDh'1 < I < hUh"1 . 

The remainder of this first section of this paper is devoted to 
proving the following five interrelated theorems: 

Theorem 1: There exists a unique homeomorphism h such 
that 

( 1 . 1 0 ) h = P + h 
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T h e o r e m 2: Le t h and g be two h o m e o m o r p h i s m s s u c h t h a t 

( 1 . 11) h = P + g " 1 and 

g = P + h _ 1 . 

T h e n h = g = t he h o m e o m o r p h i s m of T h e o r e m 1* 

T h e o r e m 3: Le t g, be a n y h o m e o m o r p h i s m . T h e n the s e -
q u e n c e of h o m e o m o r p h i s m s | g I d e f i ned i n d u c t i v e l y by 

( 1 . 1 2 ) g _,_ = p + g " 1 

x ' Bn+1 & n 

c o n v e r g e s u n i f o r m l y on e v e r y b o u n d e d s u b s e t of [ 0 , oo) to the h o m e o -

m o r p h i s m h of T h e o r e m 1. 

T h e o r e m 4: The s e q u e n c e g e n e r a t e d by ( 1 . 4 ) f r o m two p o s i -

t i v e n u m b e r s x , and x c o n v e r g e s if and on ly if x = h(x ), w h e r e 

h i s the h o m e o m o r p h i s m of T h e o r e m 1. A l s o , w h e n e v e r t h i s s e -

q u e n c e c o n v e r g e s , i t c o n v e r g e s to z e r o . 

If h ( x n ) > x , t h e n a i l of the e l e m e n t s of the s e q u e n c e w i t h 

e v e n s u b s c r i p t s a r e p o s i t i v e , bu t a l l but a f in i te n u m b e r of t he e l e -

m e n t s w i t h odd s u b s c r i p t s a r e n e g a t i v e . 

If h (x ) < x , t h e n a l l of the odd s u b s c r i p t e d e l e m e n t s a r e 

p o s i t i v e a n d a l l but a f in i te n u m b e r of t h e e v e n s u b s c r i p t e d e l e m e n t s 

a r e n e g a t i v e . 

T h e o r e m 5: If P m a p s i n t e g e r s in to i n t e g e r s , t h e n the h of 

T h e o r e m 1 w i l l no t m a p a n y p o s i t i v e i n t e g e r in to a n i n t e g e r . 

P r o o f s : L e t h1 be a h o m e o m o r p h i s m s u c h t h a t h.. < P . By 

i n d u c t i o n , fo r n a p o s i t i v e i n t e g e r , de f ine 

( 1 . 13) h , . = P + h " 1 . 
v ; n+1 n 

T h e n n > 1 i m p l i e s t h a t 

( 1 . 1 4 ) h , < P < P + h " 1 . = h . 
1 n - 1 n 

By i n d u c t i o n on m , if 0 < m < n a n d m i s e v e n , t h e n 
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(1.15) h = P + h" 1 . •> P• + h " 1 , = h . 
m m - 1 • n-1 n 

and s imi la r ly , if m > 3 is odd, then 

(1 . 16) h = P + h"'1 , < P + 1 T 1 . ±'h . 
m m - 1 n-1 n 

So the inc reas ing sequence of homeomorph i sms With odd subsc r ip t s 

•(1. 17) h, < h . <: h_ < h_ < h n < 
I D D ( 7 

is bounded from above by the decreasing sequence 

(1.18) h 2 > h 4 > h 6 > h 8 > > 1 0 > — . 

Also, the dec reas ing sequence 

(1.19) h" 1 > h ' 1 > h~X> h~*> - - -

is bounded from below by the inc reas ing sequence 

(1.20) h " 1 < h" 1 < h" 1 < hg 1 < - - . 

Therefore , these four sequences mus t be pointwise convergent . 

Let us now prove that the homeomorph i sms h for n > 1 a r e 
uniformly equicontinuous on every bounded subset of [0 , oo). For any 
r > 0, [0 , r ] is compact and so for any t > 0, there exists ' a 8 > 0 
such that 0 < P ^ ) < P(tu) < r and P(t^) - P ( t . ) < 8 imply that 

Let t, , t ? and n > 1 be such that 

(1 . 21) 0 < h (t, ) < h (tv) < r and 
. *- n 1 ' n 2 ' - • . 

(1.22) h ( t j - h ( t . ) < 8 . 
. n 2 n 1 

Then 

(1.23) 0 < P ( t x ) < P( t 2 ) < P( t 2 ) + \ 5 1 ( t z ) = h n ( t 2 ) < r 
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Also 

(1.24) P( t 2 ) - P( t x ) < P ( t 2 ) - P ( t 1 ) + h " | 1 ( t 2 ) , - h ^ ( t 1 ) 

Therefore t. < t_ < t. + fe . Consequently the h a r e uniformly 
1 Z 1 x n J 

equicontinuous on any set |~0, r j . 
Since the pointwise convergent sequences (10 1 9) and (1.20) a r e 

uniformly equicontinuous on every bounded set | 0, r |, they con-
verge uniformly to continuous functions. However, sequences (1 . 17) 
and (1.18) a r e re la ted to (1 . 19) and (1 . 20) by (1 .13) . Therefore , these 
sequences a lso converge uniformly to continuous functions. But if a 
s e r i e s of homeomorph i sms and their i nve r se s both converge to con-
tinuous functions, then these continuous functions m u s t be homeo-
m o r p h i s m s . Therefore , there exist homeomorph i sms h and g such 
t h a t h , g, h"1. and g"1 ' a r e the l imits of (1 . 17), (1 . 18), (1.19), and 
(1.20) respec t ive ly . Also, (1.13) impl ies (1,11) . 

Let h and g be any pair of homeomorph i sms which satisfy 
(1 . 11). That at leas t one such pair exis ts has just been proven. Let 
x n be a posit ive r ea l number and let x . = h(x_). Then let the s e -
quence 

\l , c.0) X , , X _ , X . . , X _ , X-2, X , , - ' 

be defined inductively by (1.4)c Then it will be shown by induction 
that for n 2 0 

(1.26) x 2 n = ( h ^ g - 1 ) (x0) and 

-1 - l . n 

( l . ? 7 ) x ^ j = h ( h g ) (x0) 

. Equations (1.26) and (1.27) a r e obviously sat isf ied for n = 0 
since (h g ) is defined as I. If they a r e t rue for a given ,n, then 
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( 1 - 2 8 ) X2(n+1)-1 = X 2 n - l " P ( x2n> 

^Mh^g-V-Pth^g" 1 ) 1 1 ]^) 

= ( h - P X h ^ g - 1 ) (x0) 

-1 -1 -1 n 
= g > lg ') (xQ) 

-Hh'g-1) <xo> • 

and a lso 

( 1 ' 2 9 ) X 2 ( n + l ) = X 2 n - ^ ( n - H ) - ! * 

-1 -1 n -1*-1 n + 1 

= (h l
e
 l) (x0) - Ph(h x

g
 l) (x0) 

- l - l n + 1 

= (g-P)h(h V ) (xQ) 
- 1 - 1 n + 1 

= (h g l) (xQ) . 
However, (1.11) impl ies that 

(1.30) h " ^ " " 1 < h ' ^ P + g"1) = h"Xh = I .-

-1 -1 n 
Therefore , (h g ) (xn) converges to ze ro as n tends to infinity. 
Consequently, (1.25) a l so converges to z e r o . 

Let x , y , x and y be any posi t ive n u m b e r s such that 
x 0 = y 0 and y . - x , = $ > 0. Define the sequence j x J inductively 
by (1.4) and l ikewise the sequence j.y } inductively by 

<x-31> yn + i = y n - i - P < V • 

Equations (1.4) and (1. 31) yield 

(1.32) Y l - xx = y_x - P(yQ) - x ^ + P(xQ) = y ^ - x_x = £ . 

Then by induction, for n > 0, 
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( 1 . 3 3 ) 
/ 

a n d 

( 1 . 3 4 ) 

y~ - x_ 7 2 n 2n 

= y - x 0 - P ( y 0 , ) + P (x„ . ' 2 n - 2 2n~2 w 2 n - l 2 n - 1 

< y ' - x < 0 7 2 n - 2 2 n - 2 — 

y 2 n + l " X 2n+1 

= y0 , - x 9 , - P ( y , ) + P ( x - ) 7 2 n - l 2 n - l w 2 n ; v 2n ' 

> y 2 n - l •" X 2 n - 1 > B 8 

If x , = h(x~) , t h e n the y~ t e r m s d e c r e a s e to l e s s t h a n ' - 1 v 0 ' ' 2 n 
( 1 . 35) l i m x 0 = 0 

2n 
n~* oo 

bu t t h e v^ , , t e r m s a r e b o u n d e d a b o v e J 2n+l 
( 1 . 36) l i m x_ J_1 + 8 = e . 

2n+l 
n—» oo 

C o n v e r s e l y , if y = h ( y n ) , t h e n the x~ t e r m s s t a y a b o v e z e r o bu t 

the x~ , , t e r m s d e c r e a s e b e l o w - P . 2n+ l 
In v i e w of the s y m m e t r i c r o l e s of h and g in ( 1 . 1 1 ) , i t m a y 

be s i m i l a r l y s h o w n t h a t t h e s e q u e n c e de f i ned by ( 1 . 4 ) c o n v e r g e s if 

a n d on ly if x = g ( x n ) . S i n c e t h i s i s t r u e for a n y x > 0, i t f o l lows 

t h a t w h e n e v e r h and g s a t i s f y ( 1 . 11) t h e y a r e the s a m e . T h e r e f o r e , 

e x c e p t for the u n i q u e n e s s of h , T h e o r e m s 1 and 2 h a v e b e e n p r o v e n , 

But t he u n i q u e n e s s of h i s a l s o s i m i l a r l y p r o v e n s i n c e i t m a y l i k e -

w i s e be s h o w n t h a t if 
A A _ i 

( 1 . 3 7 ) h = P + h 
A 

for s o m e h o m e o m o r p h i s m h, t h e n (1„ 25) c o n v e r g e s if and on ly if 
A 

x _ l = h ( x o ) e 

Le t g, be a n y h o m e o m o r p h i s m fo r w h i c h T h e o r e m 3 i s to be 
t e s t e d , and c h o o s e 

( 1 . 3 8 ) \ = glng2np . 
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Then h < g implies by induction that for n > 0, 

(1. 39) g0 = P + g^1 i < P + h^1 i = ho 
x ' 6Zn 62n-l ~ 2n-l 2n 
and 

(1. 40) g, ^ ^ P + g ^ P + L ^ L ± 1 o 
v ' to2n+l s2n — 2n 2n+l 

Therefore, the sequence /g n . ,1 is bounded from below by<h0 . . I ' 4 ^ 2 n + l / / , y\ 2x1+1/ 
and <g_ > is bounded from above by < h~ > . However, h. < g^ sim-f 2 n / M 2n/ 1* 52 , 
ilarlyimplies that )g? . I is bounded from above by <h > and <g \ 

is bounded from below by Jh~ n 1 . h. < P implies that both { h_ ._> 
' \ 2n - l / 1 - r V 2n+lf 

and /h~ l converge uniformly to h on every bounded subset of i~0, oo). 
\ Znf ( ) 

Therefore, /g V also converges uniformly to h on every bounded sub-
r ' n ' ( "I \ 

set of |_0,oo). Identity (1.12) then implies that <|g > also converges 
uniformly on every such bounded subset. 

To prove Theorem 5, note that if P maps integers into integers 

and that if x and x . are positive integers such that h(x ) = x 1 , 

then the sequence defined inductively by (1. 4) must consist of integers. 

But 
-1 n 

(1.41) x^ = (h L) (x ) for n > 0 . 

implies a slow convergence of < x I which contradicts the assertion 

that the elements of the sequence are integers. 

II. Sequences defined by 

(2. 1) x , . = P(x ) - x 
x ' n+1 n n-1 

are considered in this section of the paper. The homeomorphic identity 

(2. 2) h + h"1 = P 

associated with (2.1) is also discussed here. In order to establish 

theorems concerning the unique convergence of sequences generated by 

(2.1) and concerning the existence of solutions • to (2.2), additional 

properties of P will need to be assumed. 
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Lemma 1: Let h and g be any two h o m e o m o r p h i s m s . Then 

(2.3) (hug)" 1 = h - 1 n g " 1 

and 

(2.4) (hHg)"1 = h - ^ u g " 1 •• 

Proof; To prove (2. 3), it is sufficient to show that (h(jg)(x) = y 
impl ies (h f)g )(y) = x. Whenever 

(2.5) g(x) < h(x) = y , 

then 

(2. 6) h _ 1 (y) = x = g_ 1g(x) < g_ 1h(x) = g ' V ) 

and so 

(2.7) (h" 1 n g " 1 ) (y ) .= h - 1 ( y ) = x . 

S imi lar ly , whenever 

(2.8) h(x) < g(x) = y , 

then (2. 6) and (2. 7) follow when h is rep laced by g and g is r e -
placed by h. Hence, {2. 3) ha s been proved,, 

Replacing h by h" and g by g and applying (2. 3) proves 
(2 .4) . 

Lemma 2: Let h and g be two homeomorph i sms such that 

(2.9) h + h _ 1 = g + g"1 . 

Then 

(2.10) hUg + (hUg)"1 = h + h " 1 

and 

(2.11) hHg + (hflg)"1 = h + I T 1 

Proof: The hypothesis (2. 9) impl ies that for eve ry x, 
• 1 ^ - l w \ , - 1 , (hUg)(x) = h(x) if and only if (h Dg )(x) = h (x). Therefore , 
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(2. 12) h + h " 1 

= (h + h^yn tg + g~1) 

<.hUg + h^Dg"" 1 

<(h + h " 1 ) U ( g H-g"1) 

= h + h~X . 

Since the middle t e r m of (2. 12) equals h + h , applicat ion of Lemma 
1 to it yields (2. 10). If h is rep laced by h and g by g , then 
(2. 9) r ema ins invar iant . Therefore , if these subst i tut ions a r e applied 
to (2. 10), the r e su l t is a l so valid. But in view of Lemma 1, this is 
equivalent to (2. 11). 

Lemma 3: Let h and g be any two homeomorph i sms such 
that h_> g > I. Then for any x > 0, 

x x 
(2. 13) j [h(t) + h_1(t)] dt> j [g(t) + g"*(t)] dt 

0 0 

and (2. 13) becomes an equality if and only if 

(2.14) g(t) = h(t) for all h ' ^ x ) ^ t < x . 

Proof: The set of al l points (s, t) such that 

(2.15) 0 < s < x , 

h~ ( s ) < t < g" ( s)" 

is the same as the set such that 

(2. 16) 0 < s <x , 

g(t) < s < h(t) and 

0 < t <g~l(x) 

Therefore (see F i g u r e s 1 and 2) 
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x x 
(2. 17) j [h(t) + h_1(t)] dt -J [g(t) + g_1(t)] dt 

0 0 

x x 
= f [h(t) - g(t)] dt - j [g_1(s) - h_1(S)] ds 

g~V) 
- f [h(t) - g(t)] dt - f [min(x, h(t)) - g(t)] dt 

0 0 

g (x) x . 

= r [h(t> - x] dt + c [h(t) - g(t)] dt > o 
h _ 1 (x) g_ 1(x) 

with equali ty if and only if h (x) = g" (x) and h(t) = g(t) for 
g" (x) < t < x. But these las t two conditions together a r e equivalent 
to (2 .14) . h 

F igure 1: I [h(t) - g(t)] dt for two typical homeomorph i sms h and 

0 
g such that h > g > I and h(x) > g(x). 
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x 

/
-1 -1 

[g (t) - h (t)] dt for two typical homeomorph i sms h 
0 

and g such that h_> g > I and h(x) > g(x). 
Theorem 6: Let h and g be any h o m e o m o r p h i s m s . Then 

(2.9) h + l T 1 = g + g"1 

if, and only if, 

(2.18) g(x) = e i ther h(x) or h (x) for a l l x > 0 . 

Proof: Define 

(2.19). fj = ( h U h ' ^ U g U g " 1 ) and 

f2= (huh'^nfgug"1) . 

Then (1 . 9) impl ies that 

(2 .20) . fn > f_ > I . 
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"Whenever (2. 9) holds. Lemma 2 may be applied four t imes to yield 

(2.21) fx + f"1 = f + £~z
l = h + h" 1 . 

But in tegrat ing (2.21) and applying Lemma 3 to L and f proves 
that f = f~. Therefore 

(2.22) hUh"1 = gUg^1 . 

Now Lemma 1 may be applied to obtain 

(2.23) h O h - 1 = (hUh" 1 )" 1 = (gUg"1)""1 = gHg"1 . 

But (2.22) and (2. 23) together imply (2. 18). 

To prove the converse , note that (2. 18) impl ies that h(x) = x 
if and only if g(x) = x. Therefore , the set jxlh(x) / x | i s the same 
set as | x | g ( x ) y x l . Since g and h a r e both homeomorph i sms , 
each component of this set is mapped homeomorphica l ly onto itself by 
h and a lso by g. F u r t h e r m o r e , nei ther h- I nor g-I changes sign 
on any such component. So (2. 18) impl ies that, on each component, 

- 1 - 1 -1 -1 
e i ther g = h and g = h or e lse g = h and g = h. T h e r e -
fore, (2.9) holds on each such component. But (2. 9) a l so holds wher -
ever h(x) = g(x) = x. 

Corol la ry : Given any homeomorph i sm h, there exis ts one 
and only one homeomorph i sm g such that g 2 /1 and (2. 9) 

= g + g • 

Theorem 7: Let h be any homeomorph i sm. Then for each 
x > 0, 

x 
2 (2.24) J [h(t) + h"X(t)] dt> x 

and (2. 24) becomes an equality if and only if 
(2.25) h(x) = x . 

Proof: Lemma 2 impl ies that 

(2.26) hUh"1 + ( h U i r V 1 = h + h"1 
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Inequality (1.9) impl ies that the two homeomorph i sms hUh and I 
satisfy the conditions of Lemma 3. Therefore , (2. 24) is es tabl ished, 
and (2. 24) becomes an equality if and only if 

(2.27) (hUn_1)(t) = t for all (hUh)"'1(x) < t <^x . 

But (2.27) is equivalent to (2 .25) . 

Definition: Given two functions f and g, let e i ther f jg or 
g^f be defined to mean that 

(2.28) f(t2) - f(t r) > g(t2) - g(tx) 

for al l t, and t on the domains of f and g such that t > t . 
Note that if f and g both have continuous de r iva t ives , then this is 
equivalent to 

(2. 29) g^f(t) > ^ - g(t) for a l l t . 

Remark : Let a be a posi t ive r ea l number and let f be a con-
tinuous function of [0,°°) . Then f(0) =? 0 and f fa I i f andon ly i f f is 
a homeomorph i sm and f J^a I. 

Theorem 8: Let a > 2 and P f a l . Define the sequence of 
homeomorph i sms j h | inductively by h = I and 

(2. 30) h -= P - h""1 n > 1 . 
n+1 n 

Then the sequence | h } converges to a homeomorph i sm h such 
that 

(2.2) h + h " 1 = P 

and 

(2.31) h t | a + Va2 + 4 | t 

F u r t h e r m o r e , the convergence is uniform on every bounded sub-
set of [0 , oo). 

Proof: Define by induction, r , = 1 and r ,. = a - r . Then 
— J 1 n+1 n 

h, I r , I and by induction, 
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(2.32) h ' U r " 1 I 
n n 

and 

(2.33) h ,, = P - h ' 1 f a I - r " 1 I = r ± 1 I 
n+1 n ' n n+1 

and the h a r e all h o m e o m o r p h i s m s , n r 

Also, 

(2.34) h 2 = P - I > I = hx 

and so by induction, 

(2. 35) h , 7 = P - h"J_. > P - h"1 = h , _ . 
n+2 n+1 n n+1 

Since for each x > 0, h (x) is a monotonic non-dec reas ing sequence 
of n u m b er s bounded above by P(x), the sequence j h J is pointwise 
convergent . Since the r a r e increas ing , (2. 32) impl ies that the 

-1 n 
h a r e uniformly equicontinuous on every bounded subset of [0,oo). 
But this combined with (2. 30) impl ies that the h a r e a l so uniformly 
equicontinuous on each such subset . Therefore , the sequence j h \ 
converges uniformly on every bounded subset of f0,oo) to some 
homeomorph i sm h. 

Since j r } is inc reas ing but bounded by a, it mus t converge to 
some number r such that 1 < r < a. By continuity, r = a - r 
Therefore , h f r I which is the same as (2.31). 

Theorem 9: In addition to the hypothesis to Theorem 8, let 
P-i- pi where p is some rea l number > a. 

Then 

(2.36) a ( j L ± ^ ± ± ) I ; 

where h is the homeomorph i sm to which the sequence of homeomor-
ph i sms of Theorem 8 converge . 

Proof: Define v, = 1 and by induction 

(2.37) V U ' P - ^ 1 • 
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T h e n by i n d u c t i o n 

( 2 . 3 8 ) h , . ^ P - h"14,(31 - v " 1 I = v ,_ I . 
n + 1 ^ n ^ n n+1 

T h e r e f o r e , h ^ v I , w h e r e 

(2.39) v = I i m v n = ( P + V f ^ - ) 

Corol lary: Let P = a L Then 

(2.40) ^/aWTTlV m 

L e m m a 4: Le t 

( 2 . 2 ) h + h " 1 = P 

a n d l e t x and x be two p o s i t i v e r e a l n u m b e r s s u c h t h a t 

( 2 . 4 1 ) x Q < h(x Q ) = x _ r 

T h e n the s e q u e n c e j x } de f i ned i n d u c t i v e l y by 

(2 . 1) x , 1 .= P ( x ) - x 
N ' n+1 n n - 1 

w i l l c o n v e r g e m o n o t o n i c a l l y to y, w h e r e y i s the l a r g e s t r e a l n u m b e r 

s u c h t h a t 

( 2 . 4 2 ) h(y) =? y ^ x Q . 

H o w e v e r , for no n > 0 i s x = y . 

P r o o f : F o r n = - | / o r 0, we h a v e t h a t x = h (xn)> w h e r e 
h i s de f ined a s I. T h e r e f o r e , by i n d u c t i o n , for n > 0, 

( 2 . 4 3 ) x , . = P ( x ) - x . . 
n+1 n n - 1 

'= h (x ) + h ' ^ x ) - x . x n ' x n ' n - 1 

, - n + l , v , , - n - l , . , - n + l . x = h (xQ) + h (X()) - h (xQ) 

= h (xQ) . 
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Since h (x ) <* x~, the sequence j x I mus t converge to y as de-
sc r ibed . 

Theorem 10: Let h be any homeomorph i sm such that h + h~ 
maps posit ive in tegers into i n t ege r s . Then h will never map any 
posi t ive in teger p into an in teger unless h(p) = p. 

Proof: If the theorem is false, then there exist posit ive in te-
gers p and q such that 

(2.44) h U h ' ^ p ) = q > p . 

Lemma 2 impl ies that 

(2.45) h U h ' 1 + (hUh"1)""1 = h + h" 1 . 

Define x n as p and x . as q and define the sequence j x }• induc-
tively by 

( 2 . 4 6 ) x ^ = h(x ) + h _ 1 ( x ) - x . . v ' n+1 n n n-1 

Then applying Lemma 4 to hUh , one may see that I x I mus t 
slowly converge as desc r ibed in the l emma. However, this con t ra -
dicts the fact, which m a y b e eas i ly verif ied by induction, that the s e -
quence j x I cons is t s of i n t e g e r s . 

Theorem 11: Let P f 2 I and P > 21 on (0,oo). Let xQ and 
x , be two posit ive r ea l n u m b e r s . 

Then a n e c e s s a r y and sufficient condition that the sequence de -
fined inductively by 

(2. 1) x ,, = P(x ) - x , 
x ' n+1 n' n-1 
converges is that h(x ) = x , where h is the unique homeomorph i sm 
such that h_> I and 

(2. 2) h + h" 1 = P . 

The sequence will contain a non-posi t ive e lement if and only if 
< x , . Also, x , _ > x for some -1 n+1 n 

h(x ) > x , , and this holds if and only if 

h(x^) < x , . Also, x ,_ > x for some element if and only if 0 -1 n+1 n 



18 SOME CONVERGENT RECURSIVE SEQUENCES, Feb . 

( 2 -47) lim x = + oo . 
n—* oo 

Proof: The exis tence and uniqueness of h is given by Theorem 
8 and the co ro l l a ry to Theorem 6. P > 21 and (2. 2) imply that h > I. 
If x , = h(x ), then Lemma 4 impl ies that x converges monotonical ly 
to z e r o . 

Let x , y , x , and y be posit ive numbers such that x = y 
and y , - x , = £ > 0. Define j x | inductively by (2. 1) and likewise 

<2-48> yn +i = p ^ n > - v i • 

If n = - 1 , then 

(2. 49) x - y > n e 
n yn — 

and 

(2.50) (x ,. - y ,_) - (x - y ) > £ . 
x n+1 ; n + r s n J n' - c 

Therefore , by induction, for n > 0, 

(2.50) (x ,. - y , . ) - (x - y ) 
n+1 'n+1 n n 

= P(x ) - P(y ) - (x - y ) - (x . - y . ) x n' w n n J n' n~1 7 n - l 

> (x - y y - ( x , - y , ) > £ 
n n n-1 7 n - l 

and 

x - y n n 

= ( x - y ) - ( x i - y T ) + ( x i - y i ) 
x n 3n' n-1 7 n -1 n-1 7 n - l ' 

> £+ (x , - y , ) — v n-1 ' n - l ' 

> e + ( n - i ) e = n e . 

If y 1 = h(y ), then (2.49) impl ies that x is always posi t ive for 
n > 0 and it converges to infinity. If x ,.= h(x ), then (2.49) impl ies 
that y is monotonic and will a t ta in negative va lues . 
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III. Let a and b be monotonic inc reas ing mappings of posit ive 
in tegers into posit ive i n t ege r s . Then the sequences { a(nj } and { b(n) } 
a r e said to be complementa ry if and only if each posit ive in teger is 
r ep re sen t ed in one and only one of these sequences . 

Given a r ea l number r, define f r l as the in teger pa r t of r, 
namely f r l is that in teger such that 

(3. 1) [ r ] < r < [ r ] + 1 0 

Define |~rl* as that in teger such that 

(3.2) [ r ] * < r < [ r ] * + 1 , 

or equivalently 

(3.3) [ r j * = -1 - [ - r ] . 

A r e su l t of S. Beatty, see Reference [ l J» is e ssen t i a l ly that 
given a posit ive i r r a t i o n a l number x, then the sequences |~(1 + x) n ] 

r -1 
and (_(1 + x ) n j a r e complementa ry . This r e su l t has since turned 
up many t imes in the l i t e r a tu r e , often in the form that if a and (3 

x - 1 - 1 
a r e two posit ive i r r a t i ona l number s such that a + (3 = 1, then the 
two sequences j an l and [Pn] a r e complementa ry . 

A genera l iza t ion of this r e su l t by Lambek and Moser s ta tes 
that the sequences |a(n) | and | b(n) \ a r e complementa ry if and only 
if for each pair of posit ive in tegers m and n, e i ther a(m) - m < n 
or e lse b(n) - n < m but never both. This r e su l t combined with Lem-
ma 5 may a lso be used to prove Theorem 12 instead of the proof given. 

Lemma 5: Let f and g be homeomorph i sms such that 

(3.4) f"1 + g"1 = I . 

Then f - I and g - I a r e homeomorph i sms and 

(3.5) <f - I) (g - I) = I . 

Conversely , let h be any homeomorph i sm. Then 

(3.6) (I + h ) _ 1 + (I + 1T 1 ) " 1 = I . 
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P r o o f : 

( 3 . 7 ) f - I = (I - f " 1 ) f = g " 1 f a n d 

g - I = (I - g" ) g = f" g . 

But g f and f g a r e h o m e o m o r p h i s m s w h i c h a r e i n v e r s e s of e a c h 

o t h e r . 

( 3 . 8 ) (I + h ) " 1 + (I + h " 1 ) " 1 

= (I + h ) " 1 + (I + h " 1 ) " " 1 (h + I) h~l h (I 4 - h ) " 1 

= (I + h ) " 1 + (I + h " 1 ) " 1 (I + h " 1 ) h (I + h ) " 1 

= (I + h ) " 1 + h (I + h f 1 

= (I + h) (I + h ) " 1 = I . 

T h e o r e m 12: L e t f and g be two h o m e o m o r p h i s m s s u c h t h a t 

( 3 . 4 ) f"1 + g " 1 = I . 

T h e n t h e two s e q u e n c e s { [~f(n)l J- a n d { [ " g ( n ) ] * | a r e c o m p l e m e n t a r y . 

P r o o f : G i v e n a n o n - n e g a t i v e i n t e g e r m , l e t n ] be the n u m -

b e r of e l e m e n t s of j [ f ( n ) l } w h i c h a r e l e s s t h a n o r e q u a l to m , a n d l e t 

n be t h e n u m b e r of s u c h e l e m e n t s of {["gin)"]*.} T h e n 

( 3 . 9) f (n ) < m + 1 <_f (n + 1) a n d 

g ; (n 2 ) < m + 1 < g ( n 2 + 1) . 

A p p l y i n g f and g to ( 3 . 9) y i e l d s 

( 3 . 10) nL = f"1 f (n x ) < f"1 (m + 1) < f" l f ( i ^ + 1) = i ^ + 1 

-1 - 1 -1 
n 2 = g g ^ - g ( m + X) < g g ( n 2 + 1) = n 2 + 1 . 

A d d i n g the two p a r t s of ( 3 . 10) t o g e t h e r y i e l d s 

(.3. 11) n + n , <; m + 1 < n + n + 2 . 
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Since n , n and m a r e al l i n t ege r s , it follows that 

(3.12) n, 4- n = m 

Therefore , each posit ive in teger is r ep re sen ted once and only once 
by the sequences , but only posit ive in tege r s a r e r ep re sen t ed . 

Corol la ry : Let h be any homeomorph i sm. Then the s e -
quences n + [h (n)]* and n + [h (n)] a r e complementa ry . 

Proof: Apply Lemma 5 to the theo rem. 
The ana lys i s of Wythoff's game (see Reference f 4"J) involves 

complementa ry sequences | a(n) I and | b(n) | such that 

(3. 13) b(n) = a(n) + n . 

In a la ter paper , a genera l iza t ion of Wythoff's game will be given for 
which the analys is will involve complementa ry sequences such that 

(3. 14) b(n) = a(n) + (k + 1) n , 

where k. is some non-negat ive in teger which defines the game. 
Beat ty ' s r e su l t is eas i ly used to show that the complemen ta ry s e -
quences satisfying (3. 14) a r e 

(3.15) a(n) 

b(n) = 

V k+ V(k+1) +4 

sh 3+k+ V(k+1) +4 
) -

a n d 

Theorem 13 may be thought of as a genera l iza t ion of this r e su l t . 

Theorem 13: Let P map in tegers into i n t e g e r s . Let the se-
quences be defined inductively as follows: 

(3.16) a( l ) = 1 

(3.17) b(n) = a(n) + P(n) n > 0 

a(n+l) = sma l l e s t in teger not 
r e p r e s e n t e d by e i ther a(i) 

(3.18) or b(i) for some i < n 
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Then 

(3.19) a(n) = n + [h"1(n)" | and 

b(n) = n + [h(n)"] ,. 

whe re h is the unique homeomorph i sm such that 

( i . io) h = p + h~l . 

Proof: Theorem. 5 impl ies that 

(3.20) [h(n)J* = [h(n)] . 

So the co ro l l a ry to Theorem 12 shows that the sequences defined by 
(3. 19) a r e complementa ry . Since (1 . 10) impl ies that h > h , (3. 18) 
and (3. 16), which is a special case of (3. 18), a r e sat isf ied. Equation 
(3.17) follows from (1.10) and (3.19) and the fact that the P(n) a r e 
i n t e g e r s . 

In Reference (~4J is p re sen ted the following resu l t : Let k be an 
in teger g r e a t e r than 4. Then the sequences defined by 

(3.21) a( 

b(n) = 

' k -
< 
•M 

\I7. 
2 

^ 

-4k 

-4k 

a n d 

a r e the sequences such that for n any posi t ive in teger , 

(3.22) a(n) + b(n) = nk-1 

and such that a(n) is the sma l l e s t posi t ive in teger not r e p r e s e n t e d by 
any a(i) or b(i) with i < n. 

The following theorem and i ts co ro l l a ry may be thought of as 
genera l iza t ions of this r e su l t s ince they imply it with the help of the 
co ro l l a ry to Theorem 9. 

Theorem 14: Let P map in tegers into i n t e g e r s . Let the re 
exis t a homeomorph i sm h satisfying 

(2.2) h + h"1 = P . 
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Let the sequences j a(n) | and | b(n) | be defined inductively as fol-
lows: a(n) is the sma l l e s t posit ive in teger not r ep re sen t ed by e a r l i e r 
e lements of a and b, and 

(3.23) b(n) = P(n) + 2n- l - a (n ) . 

Then no posit ive in teger will be r ep re sen ted twice by the two 
sequences and for each n ^ 0, 

(3. 24) a(n) = n + [ h ' ^ n ) ] * and 

b(n) - n + [h(n)] , 

where h is the unique homeomorph i sm such that h > I and (2.2) is 
valid. 

Pjrjoof: The sequences defined by (3. 24) a r e complementa ry by 
the co ro l l a ry to Theorem 12. Since h sat isf ies (2.2), the sequences 
defined by (3. 24) satisfy (3. 23). Finally, monotonici ty of the s e -
quences , their being complementa ry and the fact that h £ h imply 
that a(n) is the f i rs t such integer not previous ly r e p r e s e n t e d . 

Corol lary: Let P(n) / 2n for any integer n > 0. Then 

(3. 25) a(n) = n + [ h _ 1 ( n ) ] . 

Proof: Theorem 10 impl ies that [h (n)~]*=[~h (n)"| . 

Theorem 15: Let { a(n) } and j b(n) | be the sequences of 
Theorem 13. Let x and x be any two posit ive i n t e g e r s . Let 
the sequence j x I be inductively defined by 

(1.4) x x l = x . - P(x ) 
x ' n+1 n-1 n 

Then the f i rs t e lement of this sequence of in tegers to be non-
posi t ive will have an even subscr ip t if and only if 

(3.26) xQ £ a f x ^ ) - x ^ 

which in turn is equivalent to 

( 3 . 2 7 ) x _ 1 > b(xQ) - x Q . 
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Proof: Theorem 5 impl ies that h(x ) ^ x . Hence (3.19) i m -
pl ies that (3. 26) and (3. 27) a r e both equivalent to x > h(x ). The 
proof is now completed by applying Theorem 4. 

This theorem may a l so be proven by the r e su l t s of Lambek and 
Moser (Reference [6J)„ 

Theorem 16: Let P map in tegers into in tegers and P ^ 2 I and 
P > 21 on fO, oo) and let a(n) and b(n) be the sequences of Theorem 
14. Let x and x , be any two posi t ive i n t e g e r s . Let the sequence 

x be inductively defined by n J J 

(2.1) x = P(x ) - x . 
n+1 n n-1 

Then the following four s ta tements a r e logically equivalent; 

(3.26) xQ < a(x_1) - x 1 

( 3 . 2 7 ) x _ x > b ( x Q ) - x Q 

(3.28) | x \ contains a non-posi t ive e lement 

j x {-is monotonic dec reas ing 

Proof: Theorem 10 impl ies that h(x ) / x . Hence (3. 24) 
impl ies that (3. 26) and (3.27) a r e both equivalent to x , > h(x ). The 
proof is now completed by applicat ion of Theorem 11. 

IV. In this section, r ep resen ta t ions a r e sought for homeomorph i sms 
and cor responding complementa ry sequences assoc ia ted with P ' s such 
that 

(4. 1) P(n) = 2an + 2(3 

for n a posi t ive in teger . The number s 2a and 2(3 a r e a s sumed to 
be in teger cons tan ts . The r equ i r emen t that P be a homeomorph i sm 
leads to the conditions that a > 0 and 

(4.2) a + p - I P( l ) > 0. 

Example 1: For this example , let the function F be defined as 

(4. 3) F(x) = ( Va2+1 - a) x - (3 + ( Va^f l - 1) (3/a . 
The inve r se of this function is 
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(4. 4) F - 1 ( x ) = ( Va 2 +1 + a) x + p + ( V ? + l - 1) p / a . 

Define 

(4.5) h~X(x) = xF( l ) 0 < x < 1 

h _ 1 (x) - F(x) x > 1 

For h to be a homeomorph i sm, it is n e c e s s a r y that F( l ) > 0. 
With some a lgebra ic manipulat ion, it is readi ly seen that this r e q u i r e -
ment is equivalent to 

(4.6) (a + 2p)( l-p)>: ap or 

. ta•+ p)( l-?P) > -P . 

By uti l izing (4. 2), it is seen that (4. 6) is sat isf ied if and only if p _< l / 2 . 
Condition (4. 2) and the r equ i r emen t that a > 0 imply tha t h (1) < 1. 
Therefore , 

(4. 7) h(x) = F _ 1 (x ) x > 1 

and so for n a posit ive in teger , 

(4.8) h(n) = 2an + 2p + h _ 1 (n) . 

So Theorems 5 and 13 give that the sequences 

(4, 9) a(n) = n + [ F ( n ) ] and 

b(n) = n + [ F _ 1 ( n ) ] 

a r e complemen ta ry and satisfy 

(4.10) b(n) = 2an + 2p + a(n) > a(n) 

un less p > 1. In the case where p > 1, other r ep resen ta t ions a r e 
needed. Setting P = 0 and a = (k+l) /2 yields (3. 15). 

For the next two examples , a homeomorph i sm h > I is sought 
such that for n a posi t ive in teger 

(4.11) h(n) + h ' V ) = 2an + 2p . 

However, in some c a s e s of Example 3, a homeomorph i sm is found 
that only genera tes the complemen ta ry sequences that would be gen-
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e ra t ed by a homeomorph i sm satisfying (4. 11). In these c a s e s , a r e -
p resen ta t ion of these sequences is obtained. 

Theorem 7 impl ies that a > 1. Since the sum of two unequal 
posi t ive in tegers is at leas t t h ree , Theorem 14 impl ies that 

(4. 12) a + p = ( [h ( l ) ] + [ h _ 1 ( l ) ] * + l ) / 2 > 1 

Example 2: For this example , let |3 < 0 and let the function 
F be defined as 

(4.13) F(x) = (a V a 2 - 1 ) x + (3 - (3 V a 2 - l / ( a - l ) . 

If a = 1, then P = 0 and let the las t t e r m of (4. 13), which would be 
inde te rmina te , be a s s u m e d to vanish. The inve r se of this function is 

(4.14) F 4 ( x ) = (a + V - l ) x + p + P V - l / ( a - l ) . 

Let h be defined according to (4.5) with this F being used ins tead 
of the F of Example 1 „ The conditions on a and (3 imply that 

(4. 15) 0 < F(x) < x x > 1 
Therefore , for x j> 1, h(x) = F (x) and so (4. 11) is sat isf ied for any 
posi t ive integer n. 

If a > 1 and (3 = 0, then applicat ion of the co ro l l a ry to Theorem 
14 yields Ky F a n ' s r e su l t s u m m a r i z e d by (3.21) and (3 .22) . If a = 1 
and p = 0, then h = I and the resu l t ing complemen ta ry sequences a r e 
r e p r e s e n t e d by 

(4. 16) a(n) = 2n - 1 and 

b(n) = 2n . 

Example 3: For this example , let P > 1/2 and let the function 
F be defined for x > 1 as 

(4. 17) F(x) = ax + P - ^ ( ax+p) 2 - (x -p) 2 - £ 

= ax + p - y ( a + l ) ( a x 2 - x 2 + 2|3x) - £ 

where £ is a constant to be appropr ia t e ly chosen. The inve r se to this 
function is often two-valued. Consider ing only the l a rge s t of these two 
values yields 
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(4. 18) F ' ^ x ) = ax +..(3 + ^ ( a x + ( 3 ) 2 - ( x - P ) 2 - £ 

It m a y b e . s h o w n t h a t d F ( x ) / d x > 0 if and on ly if 

( 4 . 1 9 ) (x+p) i ( a - l ) x + pa + p j > a 2 £ / ( a + l ) . 

F u r t h e r m o r e , if £ = 0, t h e n F(x) i s p o s i t i v e for a l l x > p . So for 

t he c a s e w h e r e p = •=-, s e t £ = 0 and de f ine h w i t h t h i s F a c -

c o r d i n g to (4. 5 ) . 

F o r t h i s c a s e , 0 < F ( l ) < 1. T h e r e f o r e 

(4. 20) h(x) = F _ 1 ( x ) x > 1 . 

A p p l i c a t i o n of T h e o r e m 1 4 a n d i t s c o r o l l a r y i m p l y t h a t the s e q u e n c e s 

de f ined by : 

(4 . 21) a(n) - [ ( a + l ) n + i- - \ ( a 2 - l ) n 2 + ( a + l ) n ] and 

b(n) = [ ( a + l ) n + \ + f ( a 2 - l ) n 2 + ( a + l ) n ] 
2 

a r e c o m p l e m e n t a r y a n d t h a t 

( 4 . 2 2 ) a(n) < b(n) = 2 ( a + l ) n - a(n) . 

In the p a p e r t h a t w i l l g e n e r a l i z e Wythof f ' s g a m e , r e l a t e d g a m e s w i l l 

be p r e s e n t e d w h o s e a n a l y s i s u t i l i z e s t h e s e two c o m p l e m e n t a r y s e -

q u e n c e s , 

F o r p = 1, c h o o s e £ > 0 bu t s u f f i c i e n t l y s m a l l t h a t 

( 4 . 2 3 ) 0 < F ( l ) < F(2) < 1 

a n d t h a t , ( 4 . 19) i s s a t i s f i e d for x > 2 . 

Def ine 

( 4 . 2 4 ) h - 1 ( x ) = x F ( x ) 0 ^ x < l 

h " 1 ( x ) = ( 2 - x ) F ( l ) + ( x - l ) F ( 2 ) 1 < x < 2 

h " 1 ( x ) = .F (x ) x > 2 . 

T h e n h(x) = F (x) for x > 1, C o n s e q u e n t l y , h w i l l s a t i s f y (4. 11) 
for t h i s c a s e . 
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If (3 > 1 4, then F( l ) > 0 impl ies that £ < ((3-1) . It may be 
shown that this in tu rn impl ies that F( l ) > F(2p~l) . Consequently, 
t he re does not exis t anyhomeomorph i sm which equals F for posi t ive 
i n t e g e r s . However, for ce r t a in c a s e s , homeomorph i sms will be de -
fined such that 

(4.25) [ h ' V ) ] * = [ F ( n ) ] * = [F(n)] and 

h(n) = F ' V ) . 
So in these c a s e s , the sequences defined by (4. 9) a r e complemen ta ry 
and satisfy 

(4.26) a(n) < b(n) = 2(a+l)n + 2p - 1 - a(n) . 

If 2p > 3 is odd, then the r equ i r emen t that F(P ± y) be posi t ive 
impl ies that 8 > - l / 4 . If 2p > 4 is even, then posi t ivi ty of F(p) 
impl ies that £ > 0. For the sequences defined by (4. 9) to be monotonic 
and complementary , it is n e c e s s a r y that 

( 4 . 2 7 ) [ F ( l ) ] = a ( l ) - 1 = 0 ' . 

The r equ i r emen t that F ( l ) < 1 is equivalent to 

(4.28) 2(CL+1) - (p -2) 2 > 8 . 

If 2p is odd, then the left side of (4.28) equals 3/4 modulo one, but 
if 2p is even, the left side is an in teger . Therefore , a n e c e s s a r y 
condition for the a t ta inment of the p r e s e n t objectives is that 

(4.29) 2(a+l) > (p-2) 2 

This condition will a l so turn out to be sufficient. F u r t h e r m o r e , to a t -
tain these objectives when (4. 29) is valid, it is sufficient that 

(4.30) 0 < £ < i . 

Condition (4. 30) impl ies that (4. 19) is sat isf ied whenever 
x > p +.-=•• Also , (4. 30) may be shown to imply that 

(4.31) F(p+1) < 1 . 
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Define 

(4.32) ' h" 1 ^ ) = xF([P+l])/[p+l] 0 < x < [ p + l ] 

h_1(x) = F(x) x> [p+ll . 

Then h ' is a homeomorphism, and since 

(4.33) h_1([p+l])< 1 , 

it follows that 

(4. 34) h(x) = F_1(x) x > 1 

Condition (4. 30) implies that F(n) can never be a multiple of •=-
-1 for any integer n. For any 1 < x < [(3+11, both h (x) and F(x) 

are between zero and one. Therefore, (4. 25) is satisfied for all 

positive integers as desired. 

V. The purpose of this section is to generalize the results of the 

first section. Whereas the proof of Theorem 17 uses ideas not found 

in the first section, the remainder of this section utilizes mostly 

straightforward generalizations of the techniques of Section I plus ap-

plications of Theorem 17. In this section, jtf always refers to a posi-

tive real number and Al to its reciprocal. 

Theorem 17: Let /I < 1 and let h and g be two homeomor-

phisms such that 

( 5 . 1 ) h + JLfg"1 = g + / / h _ 1 . 

Le t h(x) 4 g ( x ) f o r some x > 0. Then h(t) > t for all t > x. 

Proof: Given any point t > 0, if h(t) > g(t), then 

(5.2) h"lh(t) = g^gft) < g^Mt) 

which by (5. 1) implies that 

(5.3) hh(t) > gh(t) 

Similarly, h(t) < g(t) implies (5.3) with the inequality reversed. 
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If the theorem is false , then for some point x, h(x) ^ g(x) and 
e i ther 

(5.4) h(x) <_x 

or e lse 

(5.5) x < h(x) < xQ = h(xQ) 

for some point x . Define x as e i ther x or h(x), whichever s a t i s -
fies 

(5.6) h ( X l ) < g( X l ) . 

Fo r n > 1, define x as h (x, ). Then in case of (5.4) , the s e -
quence < x i is monotonic non- inc reas ing and bounded below by ze ro . 
In case of (5. 5), <x I is monotonic inc reas ing and bounded above by x . 

The f i r s t pa r ag raph of this proof impl ies that for n > 0, 

(5.7) h ( x 2n - l> < ^ Z n - l * a n d 

h ( x 2 n ) > g(x2 n) . 

m s x . n Let (y , z ) be the component of <t |h(t) ^ g(t) / w h i c h conta 
Then the f i rs t pa rag raph of this proof impl ies that the open in te rva l s 
(y , z ) a r e a l l disjoint and that for n > 0 w n n J 

(5.8) y n + 1 = h(yn) = g t y j and 

z n + l = . h ( z n ) = g ( z n ) ' 

When (5.4) holds, then 

( 5 . 9 ) z , , < y < x < z 
x ' n+1 7n n n 
and when (5.5) holds, then 

(5. 10) y < x < z < y 

Integrat ion by p a r t s and (5. 8) imply that 
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/ n + 1
( i 

(5.11) (-ju)n J g(t) - h(t) dt 
^n+1 

Zn+1 
(-^n y* jtdg(t) - tdh(t) j 

y n+l 

which replacing g(t) by u- and h(t) by v 

z z 
n n (-Uf if g~V)du - f h'^vjdv ! 

y y 

z n 
= (-/u)n_1 y jg(t) - h(t) j dt 

which by induction on n 

Z l 

/ J g(t) - h(t) j dt > 0 . 
*1 ' 

In case of (5.4) , define x 0 as z ] . Then for e i ther case , 

}"\ i 
(5. 12) J hUg - hHg (t) dt 

0 ' ' 
z n 

oo f | 

> Z J hUg" hng (t) dt 

n=ly 

1 1 
£ / i 1 _ n f j g(t) " h(t) { dt = oc 
n=l y i 

1 
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which is imposs ib le . 

Corol lary : Let Jl >. 1 and let h and g satisfy (5 .1) . Then 
h(x) ^ g(x) impl ies that h(t) < t for al l t > x. 

Proof: Replace h by h , g by g and /j by JJ and 
apply the t heo rem. 

Theorem 18: Let h and g be two-homeomorph i sms such that 

(5.13) h + g"1 = g +h" X . 

Then h = g. 

Proof: Use Theorem 17 and i ts co ro l l a ry . 

Theorem 19: Let h, be a homeomorph i sm such that h] £ P . 
Define by induction for n > 0, 

(5. 14) h ,. = P +/i h" 1 . 
n+1 n 

Then on each bounded subset of fO,00), <h„ . [ and { h0 > converge 
L ' I 2 n - l ) ( 2n I & 

uniformly to homeomorph i sms h and g respec t ive ly . F u r t h e r m o r e , 
h < g and 
(5. 15) h = P + fj g"1 and 

g = P + Vh~l . 

Proof: The a rgumen t s of (1 . 13) through (1 . 24) and the next p a r -
agraph r ema in unchanged except that h , is rep laced by /Lf h and 
h , is rep laced by o h . . m - 1 M m - 1 

Theorem 20: Let M £ 1 a n (3 x
n be a posi t ive number . Then 

the re cannot exis t m o r e than one posi t ive number x , suGh that the 
sequence x defined inductively by 

(5. 16) x , . = ~lx . - nlP(yi ) 
' n+1 /* n-1 ** n 

converges . 

Proof: Let yn , x . , £ and y be posi t ive number s such that 
yQ = xQ and y ^ - x ^ = 8 . 
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Define / y i inductively by 

< 5 - 1 7 ) y n + i = ^ ^ n - i - tf'lp<yn> 

Then analogous to (1 . 32), (1.33) and (1.34) a r e the s imi l a r l y obtained 
r e su l t s 

(5.18) Y l - X j = M _ 1 e 

and 

( 5" 1 9 ) ^Zn ' X2n < " " ^ Z n - Z " XZn-2> < ° 
and 

(5- 20) y2n+1 - x2n+1 > ^ " V ^ . ! - x2n_j) > /, - " ^ £ > e . 

So at m o s t one of the sequences may converge, 

Theorem 21: Let h and g b e t w o h o m e o m o r p h i s m s such tha t 

(5.21) h = P +/j- h." 1 

and 

(5.22) . g = P + / l g " 1 • 

Then h = g. 

Proof: Identi t ies (5. 21) and (5. 22) imply (5. 1). If /I > 1, then 
(5.21) impl ies that h > h . Therefore , h > I and the co ro l l a ry to 
Theorem 17 finishes the proof for fJ > 1. 

If /J < 1, then for any x > 0, e i ther h(x) <̂  x or g(x) < x or 
e lse h(x) > x and g(x) > x. In the f i rs t two cases Theorem 17 i m -
plies that h(x) = g(x)0 In the las t case , the sequences | x J = i h (x) } 
and i y 1 = I g (x)i a r e both convergent . But these sequences satisfy 
(5. 16) and (5. 17). Since x = y = x, Theorem 20 impl ies that 

(5.23) h(x) = x_x = y ^ = g(x) . 

Theorem 22: Let JJ < 1 and P + I > I. Let g be any 
homeomorph i sm. Then the sequence of homeomorph i sms defined 
inductively by 
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(5.24) g n + 1 = P + * g ^ 

converges uniformly on every bounded subset of j 0,oo) to a unique 
homeomorph ism h such that 

(5.21) h = P + Mh""1 . 

Proof: Choose 

(5.25) hx = ^ g l n g 2 ( M i ) n p . 

Then Theorem 19 is appl icable . For any x > 0, g(x) > x for if not, 
h(x) <. g(x) < x which impl ies that h (x) > x and hence that 

(5.26) g(x) = P(x) +/i h"X(x) > P ( x ) + / i x > - x . 

Therefore , 

(5.27) hg = (P +/i g"X)g = Pg + / l l > P +/i I > I . 

But hg > I impl ies that h > g which in tu rn impl ies that gh > I. 
For any point x„ > 0, define x as h(x ). Let the sequence 

{ x j be d lefined inductively by (5 0 l6 ) . Then a rgumen t s analogous to 
(1.28) and (1.29) imply (1.26) and (1 .27) . Since 

(5.28) h ^ g " 1 = (gh)"1 < I , 

the sequence y x \ converges to z e r o . By s imi l a r a rgumen t s , if x , 
is defined as g(x ), the sequence <x / will s t i l l converge . Theorem 
20 therefore impl ies that g(xn) = h(x )„ Since h = g, the convergence 
for g. , i n s e r t /j into the p rope r posi t ions of (1.39) and (1.40), and 
continue the a rgument of the p a r a g r a p h containing (1.39) and (1 .40) . 
Uniqueness of h is obtained from Theorem 21 . 

Corol la ry : Let h and g be two homeomorph i sms such that 

(5. 15) h = P + ^ g " 1 and 

P + Uh"1 

Let U < 1 and P + /I I > I. Then h 
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T h e o r e m 2 3 : L e t /l 4 1 and P +JJ I > I. T h e n a s e q u e n c e 

g e n e r a t e d by (5 . 16) w i l l c o n v e r g e if and on ly if x = h(x ) w h e r e 

h i s the h o m e o m o r p h i s m of T h e o r e m 22 . F u r t h e r m o r e , if i t d o e s 

c o n v e r g e , i t w i l l c o n v e r g e to z e r o . 

If h(x ) > x , , t h e n a l l of t he e v e n l y s u b s c r i p t e d e l e m e n t s of the 

s e q u e n c e a r e p o s i t i v e , but a l l bu t a f in i te n u m b e r of t he e l e m e n t s 

w i t h odd s u b s c r i p t s a r e n e g a t i v e . 

If h(x ) < x . , t h e n a l l of the odd s u b s c r i p t e d e l e m e n t s a r e 

p o s i t i v e a n d a l l bu t a f in i te n u m b e r of t he e v e n s u b s c r i p t e d e l e m e n t s 

a r e n e g a t i v e . 

P r o o f : P +u I > I a n d (5 . 21) i m p l y t h a t h > I. If h(xQ) = x , 

t h e n < x \ = s h (x n ) 1 and the s e q u e n c e c o n v e r g e s to z e r o . When 

h(x ) / x , , t h e n (5 . 19) and (5 . 20) m a y r e p l a c e ( 1 . 33) and ( 1 . 34) in 

o r d e r to c o n t i n u e the a r g u m e n t s of the p a r a g r a p h s c o n t a i n i n g ( 1 . 33) 

t h r o u g h ( 1 . 36) . 

T h e o r e m 24: L e t /* be a n i n t e g e r , l e t P m a p i n t e g e r s 

in to i n t e g e r m u l t i p l e s of \X a n d le t P +/I I > I. T h e n t he h s a t i s -

fying 

(5 . 21) h = P +/I h " 1 

w i l l n e v e r m a p a p o s i t i v e i n t e g e r i n to a n i n t e g e r . 

P r o o f : U s e the p r o o f p r e s e n t e d in the l a s t p a r a g r a p h of S e c -

t i o n I. 
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EXTENSIONS OF RECURRENCE RELATIONS 
Raymond E. Whitney 

Lock Haven State College 

The purpose of this a r t i c l e is to invest igate analytic extensions 
of F and L to the complex plane. We shall begin by consider ing 
a pa r t i cu la r extension. Later we will consider a l t e rna te ex tens ions . 
We begin with the following notation 

a = ( l + i / 5 ) / 2 and (3 = (1 - V ? ) / 2 . 

Since (3 < 0 we adopt the convention (3 = e (-P). 
With these conventions, we shall make the following definitions: 

The Fibonacci Function, F(z) = 1 / i/5~ (aZ - pZ) 

The Lucas Function3 M z ) = a + P 

Note that F(n) = F and L(n) = L , where n denotes an in teger . 
\ n n a 

I Pe r iod ic P r o p e r t i e s of F(z) and L(z) 

Theorem 1. a is per iodic with per iod Z?Ti/lna = p 0 

_ z + p a z Ziri z 
Proof. a J r u = a e .= a . 

? 2 
Theorem 2. p is per iodic with period 2 7T/(ln a + ?r )( 7T - i l na ) = p . 
Proof. Since - lna = ln( -p) , we have 

pz + PP = p z e 2 7 r i = pZ . 

Theorem 3. F(z) and L(z) a r e not periodic0 

Proof. Deny! Assume F(z) has per iod o> . F(0) = 0 = F(co) 
impl ies a ^ = p w . 
Thus F ( z + 0 ) ) = 1 / / ? Q W ( Q Z - PZ) . 

Hence a w = 1, so Re(co) = 0. Then p w / 1 unless a> = 0. 
The proof for L(z) is s i m i l a r , 

II Zeroes of F(z) and L(z). 
Theorem 4. The ze roes of F(z) a r e 

4k7Tlna/(41n2a + 7T2)( - ?r/21na + i ) . 

37 
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P r o o f . Note t h a t t h i s t h e o r e m i m p l i e s t he on ly r e a l z e r o of 

F (z ) i s 0 . 

F(z ) = 0 i m p l i e s (a/(3) = 1 = e , k a n i n t e g e r . 

S e t t i n g z = x + iy and c o l l e c t i n g r e a l and i m a g i n a r y p a r t s and 

e q u a t i n g , the r e s u l t f o l l o w s . 

The m o d u l i of t he z e r o e s a r e | Z k | 7 r / v / 4 1 n a + V 

T h e o r e m 5 . The z e r o e s of L(z) a r e 

2(2k + 1) l n a / ( 4 1 n 2 a + 7T2)( - 7 r /21na + i) = z^, 

w h e r e k i s a n i n t e g e r . 

P r o o f . Note t h a t t h i s t h e o r e m i m p l i e s , L(z) h a s no r e a l z e r o e s 0 

i»r -4- i (2k+l)7r i , , , 
W r i t e - 1 = ev ' and p r o c e e d a s a b o v e . 
The m o d u l i of the z e r o e s a r e | 2k+ l | TT/ 

O b s e r v e t h a t a l l of t he z e r o e s of L(z) a n d F ( z ) a r e on the r a y 

® = A r c t a n ( ( -21na ) /7 r ) ~ - 2 0 ° . 

III Behavior of F(z) and L(z) on the real axis. 

Theorem 6. On the real axis, the only real values of F(z) and L(z) 

are at z = n (an integer), that is, F and L . \ to /> n n 

_. r „. _ z x Qz -xlna + TTxi 
Proofo Since y = 0, a = a , p = e ; 

Im F(z) = Im L(z) = 0 yields 

i / /T -xlna . - 1/ y5 e sm TT x = 0 or 

-xlna . ~ 
e sm 7Tx = 0. 
Hence x = k, k an integer. 

(It is not too difficult to show that the only lattice points with real im-

ages for F(z) are on the real axis. ) 

IV Identities Satisfied by F(z) and L(z). 

Many of the identities of F and L carry over to F(z) and 

L(z). We shall list a few of them. They are easy to verify, 

a. F(z+2) = F(z+1) + F(z) c. F(z+1 )F(z-1) - F2(z) = eW1Z 

b. L(z+2) = L(z+1) + L(z) d. L2(z) - 5 F2(z) = 4e?r iZ 
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e. F(-z) = -eWlZ F(z) 

f. F(z)L(z) = F(2z) 

g. F(z+w) = F(z - l )F(w) + F(z)F(w+l) 

h. F(3z) = F3(z+1) + F3(z) - F 3 (z -1 ) 
i. L imF(x) /F(x+l ) = 

X—> 00 

LimF( iy) /F( iy+l ) = - p 
y->oo 

In genera l , (-1) in an identity for F and L c a r r i e s over to 
7T iz 

e . The ident i t ies which do not c a r r y over to F(z) and L(z) a r e 
those which only make sense for in tegra l a rgument . That i s , those 
which involve binomial coefficients, e tc . 
V Analytic P r o p e r t i e s of F(z) and L(z). 

Note that our convention for (3 impl ies ln(3.= Wi 4- ln(-(3). It 
is thus immedia te that F(z) and L(z) a r e holomorphic in the plane 
(entire functions). 

F r o m the Taylor formula, we have for any finite z, 

oo 
F(z) = 1 / / 5 2 j [ ( l n k a ) a W - ( l n k p ) p W ] / k l j ( z -w) k and 

k=0 

L(z)' = I | [ ( l n k a ) a W + ( l n k p ) p W ] /k! } ( z -w) k . 
k=0 

Note the r e su l t s when these a r e used with w = 0 and z = n or with 
w = n-1 and z = n. 

F n = I A / 5 X [ ( l n k a ) a n - 1 - ( I n ^ P ^ 1 ] /k ! . 
k=0 

This i s , I bel ieve, a new rep resen ta t ion for F . The Hadamard 
n 

Fac tor iza t ion theorem can be used to exp re s s L(z) as a canonical 
producto As in theorem 5, let z, r e p r e s e n t a ze ro of L(z). Renum-
ber z, as follows: 

k 
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k = - 1 , 0, - 2 , 1, - 3 , 2, . . . 
n = 1, 2, 3, 4, 5, 6, . . . 

Now z < z ,, and z = 0(n). It is easy to see that L(z) is 1 n ' ~" ' n+1 ' ' n ' 
of o rde r and genus 1 and we have 

L(z) = e fl (1 - z / z ) e n , where 
n=l 

oo 
c = - 2 l~lnd - l / z ) + l / z 1 . L ' n n J 

n= l 

We s h a l l now d i s c u s s e x c e p t i o n a l v a l u e s of F (z ) a n d L ( z ) . S ince F (z ) 

a n d L(z) a r e e n t i r e f u n c t i o n s w i t h e s s e n t i a l s i n g u l a r i t i e s a t oo, by 

P i c a r d ' s t h e o r e m , t h e y m u s t t a k e on e v e r y v a l u e , e x c e p t p o s s i b l y o n e , 

and in f in i t e n u m b e r of t i m e s . 

L i m L ( x - i x ) = L i m F ( x - i x ) = 0 

x -£> oo ' x '-> oo 

T h u s 0 i s a n a s y m p t o t i c v a l u e for F (z ) a n d L(z ) . 

L i m L(x) = L i m F(x) =ooand oo 
X - > 0 0 X - > 00 

is an asymptot ic value for F(z) and L(z). 
Ahl fo r shas shown that en t i re functions of o rder P have at mos t 

2P asymptot ic values [ l ] . F u r t h e r , if an in tegra l function has z as 
an exceptional value, then z is an asymptot ic value [2~] . Now 0 is 
not an exceptional value for F(z) or L(z); P a r t II, Hence F(z) and 
L(z) have no finite exceptional va lues . 

Thus the Fibonacci P r i m e Conjecture is t r iv ia l in the complex 
plane; that i s , there a r e an infinite number of Fibonacci images which 
a r e dis t inct p r i m e s . It is conceivable that a knowledge of the d i s t r i -
bution of p r i m e images might yield a resolu t ion of this conjecture , a l -
though this p roblem is probably m o r e difficult than the conjecture itself. 
P o i s s o n ' s formulae for r ea l and imag ina ry p a r t s of F(z) might be 
useful, but the in tegra l s a r e ho r r ib l e F r e s n e l type in tegra l s ("3] . 

A cha rac te r i za t ion of the point set cor responding to Im F(z) = 0 
should p re sen t an in te res t ing problerru Graphs of | z | R e F ( z ) = 0. |. , 
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| z I ImF(z) = 0 | , | z I I F(z) I = M J in some neighborhood of the origin 
should yield in te res t ing d i a g r a m s . 

VI Al ternate Extens ions . 
There a r e an infinite number of extensions of F and L to 

n n 
en t i re functions in the complex plane. If the functional equation 

G(z+2) = G(z+1) + G(z); G(0) = 0, G(l) = 1 , 

is used as a s tar t ing point, it appea r s that ve ry little can be e s t a b -
l ished. However it is poss ible to obtain extensions which a r e r ea l at 
eve ry point of the r e a l ax i s . Consider , for example , 

F x ( z ) = 1 / \ / 5 [ a Z - s i n ( ^ ± i 7 r ) ( -P)2] . 

Note that F , (z) sa t isf ies the re la t ion, 

F ^ z + l J F ^ z - l ) - F1
2(:z) = sin (2z + l) ir /Z . 

F , (z) is an en t i re function and has ze roes on the negative r ea l axis 
and F , (n) = F , n an in teger . 

Another type of extension i s , 

„ . . Zwiz _ . x . 
F ? (z) = e F(z) + sm ir z 

P r ac t i c a l l ynone of the above t h e o r e m s hold for a r b i t r a r y extens ions . 
The following const ruct ion s e e m s to indicate that F could be ex-
tended to a per iodic ent i re function in the complex plane. Consider 
the rec tangle , R, in the complex plane bounded by 

(1,0) , (1 ,1) , ( -1 ,1) , (-1,0) . 

Select a function, F-(z) , subject to the following conditions: 

a. F3(0) = 0 . 

b . F 3 ( - l+ iy ) + F3(iy) = F 3 ( l+ iy) ; . y e [0 , l ] 

c. F3(x) = F3(x+i); x e [ - 1 , 1 ] 

d. F 3 ( - l ) = F 3 ( l ) = 1 

e. F^(z) , analytic on R . 
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Extend F3(z) ver t ica l ly by per iodic i ty and hor izontal ly by the func-
tional equation, F~(z+2) = F~(z+1) + F~(z)0 The extension would be an 
en t i re function with per iod i and F~(n) = F , n an in teger . 

REMARKS 

Selection of a p roper extension for F(n) should, via the mach -
inery of Analytic Function theory, put a powerful wrench on the F ib -
onacci P r i m e Conjecture . 

REFERENCES 

1. E. T i t chmarsh , The Theory of Funct ions, 2nd ed. (1952), p. 284b. 
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CORRECTIONS 

"Binomial Coefficients, the Bracke t Function, and Composit ions with 
Relat ively P r i m e Summands" by H„ W. Gould, Fibonacci Quar te r ly , 
2(1964), pp. 241-260„ 

Page 241. The second p a r a g r a p h should begin: "Indeed this r e su l t is 
equivalent to the ident ical congruence (1 - x ) P = 1 - x P ( m o d p ) 

! I 

Page 245. In Theorem 3 it is n e c e s s a r y to r equ i r e a. > 0. 

Page 257. Line after re la t ion (48), r ep lace "out" by "our" . 

Page 251o Line 9 from bottom, for " a s " read "an". 

XXXXXXXXXXXXXXX 



SOME ORTHOGONAL POLYNOMIALS RELATED TO FIBONACCI NUMBERS 
L Carlitz 

Duke University, Durham, North Carolina 

1. We cons ider polynomials f (x) such that 
n 

(1) fn + 2(x) = (x+2n+p + l ) f n + 1 (x ) - (n2+pn+q)fn(x) (n = 0, 1, 2, . . . ), 

where 

(2) fQ(x) = 0, f^x) = 1 . 

It foLlows at once that f (x) is a polynomial in x of degree n-1 for 
n k 1. The p a r a m e t e r s p, q a r e a r b i t r a r y but we shall a s s u m e that 

(3) p 2 - 4q / 0 . 

Let a, p denote the roots of the equation 
2 

(4) x - px + q = 0 . 
In view of (3), the roots a, p a r e dis t inct and 

(5) a+P = p, ap = q . 

We shall cons t ruc t a generat ing function for f (x): 

(6) F(t) = F(t,x) = 2 f
n ( x ) t n /n i 

n=0 
It is eas i ly verif ied that (1), (2) and (6) imply 

(7) ( l - t ) 2 F " ( t ) - [ (x+(p+l) ( l - t ) ]F '{ t ) + qF(t) = 0 , 

where the p r i m e s indicate differentiation with r e s p e c t to t. 
It is convenient to define an ope ra to r . 

(8) A = ( l - t ) 2 D 2 - (p+l)D + q (D = d/dt) . 

Thus (7) becomes 

(9) A F(t) = xF ' ( t ) . 

Supported in pa r t by NSF grant GP 15930 
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C o n s i d e r 

A ( l - t ) ~ a ~ k = | ( a + k ) ( a + k + l ) - ( p + l ) ( a + k ) + q [ ( l - t ) " a " k . 

M a k i n g u s e of (4) we find t h a t t h i s r e d u c e s to 

(10) / \ ( l - t f a ~ k = k ( 2 a - p + k ) ( l - t ) - a " k . 

T h u s , if we pu t 

00 (aKxk 

< H > *" < ' • * > * ! k i ( 2 a - P + n V-* 
k=0 k 

w h e r e 

(a), = a ( a + l ) . . . ( a+k-1 ) , 

we g e t 

oo (a) x k + 1 

A * . ( t . a ) = 2 - kKZa-p + lK ( 1 - t } 

k=0 k 

We h a v e t h e r e f o r e 

(12) A 4> (t, a) = x <D «(t, a) 

and in e x a c t l y t he s a m e w a y 

(13) A <t> ( t , p) = x <&'(t, P) . 

It fo l lows f r o m (11) t h a t 

oo ^ (a) x k » ( a + k ) n 

* ( t ' a ) = E ' kTTZa^TT)- E - H T ^ t R 

k=0 n=0 

, v k 
00 ^n j c ( a) M x 

E t V ^ v ; n + k 

nT Z-f k ! ( 2 a - p + l ) 
n=0 k=0 

If we put ^ 
~ ( a ) . i x 

n+k (14) * n ( x . a ) = ^ k ! ( 2 a - p + l ) , 
k=o k 
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then we have 

(15) * (t, a) = £ $ n ( x , a ) t n / n : . 
n=0 

Note that (14) impl ies 

(16) 0 n (x , a) = (a ) n • jF j l a+n ; 2a-p+l ; x) , 

where F , denotes a hype rgeomet r i c function in the usual notation. 

2. If we make use of (12) and (15) we find without much difficulty 
that 4> (x, a) sa t isf ies the r e c u r r e n c e 

( 1 7 ) 0 n+2(Xs a ) = ( x + 2 n + P + 1 ) $ n + 1 ( x > a)-(nZ+pn+q)^n(x, a) (n > 0) . 

C lear ly $ (x, p) sa t isf ies the same r e c u r r e n c e . Thus any l inear 
combination 

q, (x) = A $ (x, a) + B ^ (x, p) , 

where A, B, a r e independent of n but may depend on x, a, p, will 
a l so satisfy (17). 

We choose A, B so that 

(18) ip Q(x) = 0, ^ ( x ) = 1 . 

This r e q u i r e s 

AC = 0 Q (x , P), BC - - $ 0 ( x , a) , 

where 

(19) C = * 1 ( x , a)0Q(x, P) - ^ 1 ( x J p ) < ^ 0 ( x , a) . 

It is c lea r by compar i son of (17) and (18) with (1) and (2) that 

* n ( x ) = f n ( x ) (n= 0, 1, 2, . . . ) • 

We have therefore 

A (x, a )« (x, p) - A (x, P)*n(x, a) 
(20) y x ) = T-B y ^ y — 
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with C defined by (19). 
Thus by (6) and (15) 

(21) F(t) = C"1 U ( t , Q ) ^ 0 ( X , (3) -cD(t ,P)^ 0 (x , a) J , 

so that we have obtained a generat ing function for f (x). 

3. In addition to the polynomial f (x) we may cons t ruc t a second 
solution g (x) of (1) such that 

(22) g()(x) - 1, gx(x) = x+p + 1 . 

Thus g (x) is a polynomial in x of degree n. By exact ly the same 
method we have used above, we find that 

<£ (x, a) A (x, P) - A (x, P)0 (x, a) 
(23) g (x) = - 2 - B i 2 i + (x+p)f (x) . 

n c 

If we put 

(24) G(t) = G(t, x) = J2 gn<x) t n A ! 
n=0 

it follows that 

(25) G(t) = -2 
# ( t , ^ ( x , P) - <D(t, P)</)1(x,a) 

x+p 
C 

U ( t , a)*Q(x, P) - cj>(t,p)^0(x, a) 1 

2 If the coefficient n '+pn+q occur r ing in (1) is posit ive for all 
n > 0 then by a known r e s u l t [ l ] we can a s s e r t that the polynomials 
g (x) a r e orthogonal on the r ea l line with r e spec t to some weight func-
tion. The same r e m a r k appl ies to the f (x). It would be of i n t e r e s t 
to explicit ly de te rmine these weight functions. 

4. We have a s sumed in the above d i scuss ion that a and p a r e d i s -
tinct. When a and p a r e equal we may rep lace (1) by 

(26) f ^.(x) = (x+2n+2a+l)f , _ (x) - (n+a)2f (a) (n = 0, 1, 2, 
n+2 n+1 n 
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We now put 

(27) *n(x) = £ -^ 
00 <Q>n+k k 

ITET x 

k=0 

00 00 ( a ) x 

(28) <&(t)=£ *n(x)t / n i = E ~k^T~ t1"1)" 
n=0 k=0 

It i s e a s i l y v e r i f i e d t h a t 

(29) 4> , , ( x ) = ( x + 2 n + 2 a + l ) 0 (x) - ( n + a ) 2 0 (x) (n = 0, 1 
n+c. n+1 n 

and t h a t 

(30) A * ( t ) = x4) l( t) . 

A s a s e c o n d s o l u t i o n of (26) we t a k e 

(31) *nW=f; T ^ ( W a > - 2 ° k ) x 

w h e r e 

(32) cr /Q) = 1 + 1 + . . . + X 
kx ' a a+1 " " # a + k - 1 

<r = cr' (U 1 1 + — + . . o + — . 
k k* ' 2 * ° k " 

We o m i t the p roo f t h a t $ (x) d o e s i n d e e d s a t i s f y (26) . 

It i s c o n v e n i e n t to put 

(33) V ( t ) - ^ ^ n ( x ) ^ ^ • 
n=0 

It c a n be v e r i f i e d t h a t ^ ( t ) a l s o s a t i s f i e s (30) . 

If we now put 

* ( x ) * (x) - 0\,(x)<f (x) 
(34) f (x) = - J ^ J l - ^ -. J n (n = 0, 1, 2, . . . ) 

t h e n we h a v e 
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(35) fQ(x) =.0, fx(x) = 1 . 

Thus f (x) is a polynomial of degree n-1 in x for n > 1 and is the 
unique solution of (26) that sa t i s f ies (35). 

S imi lar ly if we put 

0 (x)$ (x) - iff (xU (x) 
(36) g (x) = 2 \ . ' * Y _ ^ L _ ^ + (x+2a+l)f (x) 

then 

(37) gQ(x) = 2, g l ( x ) = x + 2a+l . 

Thus g (x) is a polynomial of degree n in x and is the unique solu-
tion of (26) that sat isf ies (37). 

Explicit formulas for the generat ing functions <t>(t) and ¥ ( t ) can 
now be stated without any difficulty,, 

Here again it would be of i n t e r e s t to explici t ly de te rmine the 
weight functions connected with }f (x) f and |g (x) \ , r e spec t ive ly . 

REFERENCE 
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A NOTE ON ORTHOGONAL POLYNOMIALS 
J.C. Ahuja and S.W. Nash 

University of Alberta, Calgary, Canada 

1. INTRODUCTION 

The r e c u r r e n c e re la t ion for orthogonal polynomials q (x) 
(leading coefficient one) a s soc ia ted with the densi ty function f(x) over 
the in te rva l a, b is der ived explici t ly in t e r m s of the moments of f(x). 
Fu r the r , an a l te rna t ive proof is given of the theorem that if f(x) is 
s y m m e t r i c a l about x = 0, then the polynomials q (x) a r e even or 
odd functions according as n is even or odd. 

2. RESULTS 

Let f(x) denote the densi ty of a d is t r ibut ion function F(x) with 
infinitely many points of i n c r e a s e in the finite or infinite in te rva l 

a, b , and let the moments 

I = I x f(x)dx 

exist for r = 0, 1, 2, o e e 

It is well known, see S z e g o f l ] , that the re exis ts a sequence 
of polynomials p0(x), p (x), p2(x) , o e e uniquely de te rmined by the 
following conditions: 

(a) p (x) is a polynomial of p r ec i s e degree n in which the 
coefficient of x is posi t ive. 

(b) the sys tem p (x) is o r thonormal , that is 

/ 
Pm(x)pn(x)f(x)dx = 

1 for m = n 

0 for m -f 

If, on the other hand, F(x) has only N points of i n c r e a s e , then 
the p (x) exist and a r e uniquely de te rmined for n = 0, 1, . . . , N - 1 ; 
and if F(x) has only finitely many finite momen t s , say ro71 or 

49 
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r r u , in e x i s t , t h e n the p (x) e x i s t a n d a r e u n i q u e l y d e t e r m i n e d fo r Zk+1 n 
n = 0, 1, . . . , k . 

The p o l y n o m i a l s p (x) s a t i s f y i n g c o n d i t i o n s (a) a n d (b) a b o v e a r e 

of the f o r m 

( i ) 

w h e r e 

p n M ^ 
D . D 

i i - 1 n 

D 

m Q mx m z 

m 1 m z m 3 , 

m , m m 
n - 1 n n + l 

m Q n ^ m 2 

m , m~ m~ 

n+ l 

2 n - l 

n+ l 

m , m m ,, . . . . m n , 
n - 1 n n+ l Zn-1 

m m . , m . 0 . . . . m n 
n n+ l n+Z Zn 

a n d w h e r e t he l e a d i n g c o e f f i c i e n t s of p (x) a r e 

v 
D n - 1 

D 

If we now de f ine the p o l y n o m i a l s q (x) a s 

(2) q (x) 
n 

• ^ p„w • 

t h e n the q (x) a r e o r t h o g o n a l p o l y n o m i a l s w h o s e l e a d i n g c o e f f i c i e n t s 

a r e a l w a y s o n e . 

" r T A c c o r d i n g to S z e g o | _ l ] , t h e fo l lowing r e l a t i o n h o l d s for a n y 
t h r e e c o n s e c u t i v e o r t h o n o r m a l p o l y n o m i a l s : 
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(3) Pn(x) = (Anx+Bn)pn_l(x) - Cnpn_2(x), n = 2, 3, . . . 

where A , B and C are constants, A > 0 and C > 0, If the n n n n n 
highest coefficient of p (x) is denoted by k , then 

k A k k ^ 
A _ 5_ n

 n _ n n-2 
n ~ TT~T J U n ~ A ; 72 

Since k =\l—^ , we shall have k J3-17" 
n-1 n-1 k , 

n-1 

n n-2 

The relation (3) then becomes 

,4> p » M = f o f e i + v K ' M - V ^ ? f t O p-*w 

Multiplying both sides of (4) by 

V D n 

n- 1 

and using (2), we get 

To find B , let us suppose that k! is the coefficient of x " n r r n 
in p (x), w h i l e k i s the c o e f f i c i e n t of x in p (x)e By e q u a t i n g 

t he c o e f f i c i e n t s of x on bo th s i d e s of (3), w e g e t 

k ' = A k ' + B k . n n n - 1 n n - 1 

w h i c h g i v e s 

k» k1 , 
(6) B = * - A *tl 

n kn- l n kn- l 
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But 

A = n 

so that (6) can be wr i t t en as 

(7) B 
n - 1 

n - 1 

k1 
n n-1 

n- 1 

Let D* denote the de te rminan t obtained by deleting the (n+l)th 
row and the nth column of D Then 

kf = -n 
D* n 

J lDD ^ n n-1 

Substituting for k , k' and k' . in (7), we get ° n n n-1 
D 

(8) B n - 1 

J D D 
yj n n-

n 

n - 1 
+ - i l l 

D 7 \ 

n-2 

Using the value of B given by (8) in (5), we obtain 

(9) <Ux> 
D* D* , \ 

D , D , I 
n-J. n-Z I 

d n - l 
( x ) n-1 n -3 

D V 2 ( X ) 

n - 2 

Thus (9) gives the r e c u r r e n c e re la t ion for orthogonal polynom-
ials a s soc ia ted with the densi ty function f(x) explici t ly in t e r m s of the 
moment s of f(x). The r e c u r r e n c e re la t ion (9) is valid a l so for n = 1 
if we set DJT = 0, D , 1 and D = 0. 

If the densi ty function f(x) is s y m m e t r i c a l about x = 0, that i s , 
if f(-x) = f(x) and a = -b , then 

= 0 " 1 " 3 ' ° i iA2r+l ' * 
If the odd o rde r momen t s a r e al l ze ro , we shall prove below in 

Theorem 1 that D* vanishes for n = 1, 2, . . . which will imply that 
B = 0 for n = 1, 2, . . . . n 

We shall a l so prove below in Theorem 2 that, in this case , the 
polynomials q (x) a r e even or odd function according as n is even 
or odd. 
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The r e c u r r e n c e re la t ion for orthogonal polynomials a ssoc ia ted 
with the s y m m e t r i c a l densi ty function f(x) is then obtained as 

(10) q (x) = xq (x) -^n n-1 
D D -n-1 n - i 

D V 2 ( X ) 

n - 2 

In pa r t i cu la r , for n = 0, 1, 2, 3, and 4, the orthogonal poly-
nomia ls a ssoc ia ted with the s y m m e t r i c a l densi ty function f(x) a r e 
obtained as foLlows: 

q0(x) = 1 

qx(x) = x 

q2(x) = x' 

q3(x) = x~ 

4 m 6 ' m Z m 4 q4(x) = x 2_ 
m 4 " ' m 2 

2 A
 m 2 m 6 ' m 4 

x + z _ 
m 4 - m 2 

We now prove the following two Theo rems : 
Theorem 1. Let D d.. b e a n (n x n) m a t r i x where d.. = 0 for 
i+j odd, and d.. is a r b i t r a r y for i+j even. Let D* b e a n (n- l)x(n-1) < 
m a t r i x obtained by delet ing the uth row and the vth column of D 
such that u+v is odd. Then the de te rminan t of D* is z e r o . 

Proof. To prove the theo rem we cons ider two cases : (1) n even and 
(2) n odd. 

Case 1 n = 2k (even) 

Let us a s s u m e that we get D* by deleting an odd row and an 
even column. Then by shifting rows and columns of D*, we obtain 

1 A. 

D** = 

A . 
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where D## is a m a t r i x of (2k- l )x (2k- l ) e l ements and 

A, = k x k m a t r i x with ze ro e lements 

A ? = k x (k-1) m a t r i x with a r b i t r a r y e lements 

A~ = (k-1) x k m a t r i x with a r b i t r a r y e lements 

A . = (k-1) x (k-1) m a t r i x with ze ro e l emen t s . 

If we now take the Laplace expansion of D#* by (k x k) m i n o r s , 
then it can be eas i ly seen that the de te rminan t of D## is ze ro , which 
will imply that the de te rminan t of D* is z e r o . 

The r e s u l t a l so follows if we take D* by deleting an even row 
and an odd column. 

Case 2 n = 2k+l (odd) 
In this case , we obtain 

D## = 

B l B 2 

B 3 B 4 
L 

where D## is a m a t r i x of (2k x 2k) e lements and 
B1 = k x (k+1) m a t r i x with ze ro e lements 

B ? = k x (k-1) m a t r i x with a r b i t r a r y e lements 

B~ = k x (k+1) m a t r i x with a r b i t r a r y e lements 

B A - k x (k-1) m a t r i x with ze ro e l emen t s . 

If we take the Laplace expansion of D** by (k x k) m i n o r s , 
then we shall have the de te rminan t of D*# equal to ze ro , which will 
imply that the de te rminan t of D* is z e r o . 

Theo rem 2 Let q (x), defined by (2), be the orthogonal polynomials 
a s soc ia t ed with the densi ty function f(x) s y m m e t r i c a l about x = 0. 
Then the polynomials q (x) a r e even or odd functions according as n 
is even or odd. 
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Proof If the densi ty function f(x) is s y m m e t r i c a l about x = 0, then 
al l the odd o r d e r moment s a r e ze ro , that is 

1 3 Zr+1 

The proof of the theorem follows immedia te ly by expanding p (x), 
defined by (1), in t e r m s of the las t row of the de te rminan t and making 
use of the r e su l t of Theorem 1. 

REFERENCE 
I ! 

1. Szego, G. , Orthogonal Polynomia ls , r ev . ed. , A m e r . Math. 
Soc. Colloquium Publ ica t ions , Vol. 23, New York, 1959. 
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These booklets a r e now avai lable for p u r c h a s e . Send al l o r d e r s to: 
Bro ther U. Alfred, Managing Edi tor , St. M a r y ' s College, Calif. 94575 
(Note. This a d d r e s s is sufficient, since St. Mary ' s College is a post 
office. ) 

Fibonacci Discovery $1.50 

Fibonacci Ent ry Points I $1.00 

Fibonacci En t ry Points II $1.50 

Construct ions with Bi -Rule r & Double Ruler 
by Dov Ja rden $5.00 

P a t t e r n s in Space by Re S. Beard $5.00 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by Verner E. Hoggatt, Jr. 

San Jose State College, San Jose, California 

Send al l communicat ions concerning Advanced P r o b l e m s and 
Solutions to Verner E. Hoggatt, J r . , Mathemat ics Depar tment , San 
Jose State College, San Jose , California. This depar tment espec ia l ly 
welcomes p rob lems believed to be new or extending old r e s u l t s . P r o -
p o s e r s should submit solutions or other information that will a s s i s t 
the edi tor . To facil i tate their considera t ion, solutions should be sub-
mit ted on sepa ra te signed sheets within two months after publication 
of the p r o b l e m s . 

H - 7 8 \Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 
00 

(i) show — = > ( m , ) x m , (n> 1) 
11 x ; m=0 

where ( n ) a r e the binomial coefficients. See "Diagonals of P a s c a l ' s 
Tr iangle" , D. C. Duncan, pg 1115, AMM, Dec. 1965. 

(ii) Show ^—~ = 7 [Xia] x m 

2—3 
l - 2 x - 2 x +x_ „ 

m=0 

0 

- £ [?] 
00 

1-x-x A 
m=0 

x \ '• r1^! ion 

3 ^ , 
x X rm- i m 

l - 3 x - 6 x +3x +x ^ 
m=0 

x 

where [ ] a r e the Fibonomial coefficients as in H-63, Apri l 1965, 
FQJ and H-72 of Dec. 1965, FQJ. 

The, genera l iza t ion i s : 

y > (_1}h(h+i)/2 j-k. ^h 
Let f(x) =2^ , ( - l r ' " 1 * " " L J * 

h=0 

56 
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then show 

k-1 
x X r m -i ' m xT = Z [kmiJ x^> <k^ D f( 

m=0 

H - 7 9 Proposed by J.A.H. Hunter, Toronto, Ontario, Canada 

Show 

4 4 4 . - 2 n̂ > 
F _,, + F + F . = 2 f 2 F + ( - 1 ) 1 

n+1 n n-1 *- n J 

H - 8 0 Proposed by J.A.H. Hunter, Toronto, Ontario, Canada and Max Rumney, London, England 

Show 

L o *?« - E <";'' t r 2 
J 2 r + 5 ' 

r = 0 r = 0 

H - 8 1 Proposed by Vassili Daiev, Sea Cliff, N.Y. 

Find the nth term of the sequence 

1 , 1 , 3 , 1 , 5 , 3 , 7 , 1 , 9 , 5 , 1 1 , 3 , 1 3 , 7 , 1 5 , 1 , 1 7 , 9 , 1 9 , 5 , . . . 

H - 8 2 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

If fn(x) = 0 and f. (x) = 1, f ,~(x) = xf , . (x) + f (x) then show 0 1 n+2v .n+1 n 

T a n 
1 I = V Tan'1 (f * ..) . 

H - 8 3 Proposed by Mrs. William Squire, Morgantown, West Va. 

Show 

i - m + I -i 
L ~2"J 

\ " ^ . i x t - l .m-t , «m+l-2t 

t=i 

where [x j is the greatest integer functionc 
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S O L U T I O N S 

T H E L O S T IS F O U N D 

H - 4 2 Proposed by J.D.E. Konhauser, State College, Pa. 

A set of nine in tegers having the p roper ty that no two pa i r s have 
the same sum is the set consis t ing of the nine consecut ive Fibonacci 
n u m b e r s , 1, 2, 3, 5, 8, 13, 21, 34, 55 with total sum 142. Start ing with 
1, and annexing at each step the sma l l e s t posit ive in teger which p r o -
duces a set with the stated p rope r ty yields the set 1, 2, 3, 5, 8, 13, 21, 
30, 39 with sum 122„ Is this the bes t r e s u l t ? Can a set with lower 
total sum be found? 

Solution by Frank Urbanija, Student, St. Joseph High School, Cleveland, Ohio 

The following solution is submitted: 
1, 2, 3, 5 ,7 , 15, 20, 2 5 , 4 1 , 

the sum of which is 121„ 
Edi tor ia l Comment: This is the m i s s i n g solution and the bes t r e -
ceived to date . 

A BETTER PROBLEM SOLUTION 

H - 7 4 Proposed by Douglas hind, University of Virginia, Charlottesville, Va. 

Let f(n) denote the number of posi t ive Fibonacci number s not 
g r e a t e r than a specified in teger n. Show that for n > 1 

f(ii) = [ K l n ( n A + j ] ' 

where j x l denotes g r e a t e s t in teger not exceeding x, and K is a 
constant nea r ly equal to 2.078086943. (See H. W. Gould's Non-F ib -
onacci Numbers , Oct. 1965, FQJ) . 

Comments by John D. Cloud, Manhattan Beach, California 

Prob lem H-74 in the Dec. 1965 i s sue of the Fibonacci Qua r t e r l y 
is not new. I proposed the same problem in the Nov. 1963 i s sue of 
the Amer i can Mathemat ica l Monthly (Vol. 70, No. 9, p. 1005, prob . 
E l 636). A m o r e p r e c i s e solution than the one indicated by Mr. Lind 
in the FQ appea r s onp . 798 of the AMMfor Sept. 1964 (Vol. 71, No. 7). 
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The s o l u t i o n by W i l l i a m D* J a c k s o n a l l u d e d to s h o w s : 

The n u m b e r of F i b o n a c c i n u m b e r s n o t g r e a t e r t h a n N i s t he 
g r e a t e s t i n t e g e r l e s s t h a n 

log[(N + ~ ) / 3 ] 

i / i + VST 
log ( — — ) 

I 

xxxxxxxxxxxxxxx 

A FIBONACCI CROSSWORD PUZZLE 
H.W. Gould 

West Virginia University 
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ACROSS 

2 A kind of n u m b e r d i s c o v e r e d by 1 7 Down of 22 Down w h i l e s t u d y -

ing 50 A c r o s s . 
8 S e r i e s ( F r e n c h ) . 

9 A r i v e r i n K a n s a s and M i s s o u r i . 

12 S m a l l e s t n u m b e r i n to w h i c h e a c h of two n u m b e r s w i l l d i v i d e . 

14 The s m a l l e s t n a t u r a l n u m b e r ( F r e n c h ) . 

15 One m o r e t h a n a p e r f e c t s q u a r e . 

16 O c c u r r e n c e of F i b o n a c c i n u m b e r s in n a t u r e . 

20 l i m (1 + l / n ) n . 

n—*- oo 
21 D e v i c e s o m e t i m e s u s e d to g e n e r a t e r a n d o m n u m b e r s . 

23 C o m b i n i n g f o r m of " C h i n e s e " . 

26 L e t t e r u s e d to d e n o t e a f a m o u s n u m b e r s e q u e n c e . 

27 Sign of d i f f e r e n t i a t i o n . 

28 B r o t h e r of A b e l . 

29 I r o n . 
31 The numbers 1, 3, 4, 7, 1.1, ... are numbers. 

32 G i r l ' s n a m e . 

33 M e a s u r e of i n t e l l i g e n c e ( t h e y s a y ) . 

35 C h e m i c a l e l e m e n t . 
36 F , , = F + F i s a n e x a m p l e . 

n+1 n n - 1 
39 R o m a n e m p e r o r . 
41 ( e X + e " x ) / 2 . 
43 A m a t e u r . 

44 L a t i n c o n n e c t i v e . 

45 U t i l i z e s . 

46 S q u a r e r o o t of m i n u s o n e . 

47 If n i s a n a t u r a l n u m b e r , t h e n n+1 i s the n a t u r a l 

n u m b e r o 

49 B i t t e r Ve tch 0 

50 S tud i ed in 1202 A D by 2 A c r o s s . 

51 T h r o w s ou t . 
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DOWN 

1 T h e f i r s t d e g r e e . 

2 B a t t l e . 

3 F a m o u s m a t h e m a t i c i a n w h o w r o t e n o v e l s u n d e r the n o m de p l u m e 

J o h n T a i n e . 

4 Def in i t e a r t i c l e ( A r a b i c ) . 

5 C o n e - s h a p e d . 

6 A f o r m of the c o p u l a . 

7 B a s e of the d e c i m a l s y s t e m . 

10 P r e p o s i t i o n . 
2 - 1 

11 The func t ion x ( l - x - x ) " " the F i b o n a c c i n u m b e r s . 
13 In fac t , a F i b o n a c c i n u m b e r i s the of x in the p o w e r 

2 - 1 s e r i e s e x p a n s i o n of x ( l - x - x ) 

16 D i s c o v e r e d a f a m o u s t r i a n g l e n a m e d a f t e r h i m . Known e a r l i e r 

to the C h i n e s e . 

17 A n o t h e r n a m e of 2 A c r o s s . 

18 One of the s i m p l e s t w a y s to c o m b i n e n u m b e r s . 

19 The n u m b e r s 1, 1, 2, 3, 5, 8, . . . f o r m a . 

22 A town in I t a l y . 

24 An a d j e c t i v a l suff ix . 
25 A f a m o u s g a m e w h o s e t h e o r y i s b a s e d on the b i n a r y s y s t e m . 

30 What one u s u a l l y d o e s w i t h 13 Down in o r d e r to d i s c o v e r a r e l a -

t i o n . 

34 C i ty in a n c i e n t S u m e r . 
37 C h e m i c a l e l e m e n t d i s c o v e r e d in Y t t e r b y , S w e d e n . 
38 A b b r e v i a t i o n for a t r i g o n o m e t r i c a l func t ion ; c o u n t e r p a r t of 41 

A c r o s s , 

39 M a n ' s n i c k n a m e 0 

40 A p e r s o n w h o m i g h t l ive n e a r 40 E . L o n g . , 22 N. L a t . 

42 To m a k e a s h a r p s i b i l a n t s o u n d . 

43 B l a c k s u b s t a n c e o b t a i n e d f r o m c o a l . 
45 A n I n d i a n of t he S h o s h o n e a n t r i b e s D 

48 The Unknown Quanti ty . , 

XXXXXXXXXXXXXXX 
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CORRECTIONS 

"A Variant of Pascal's Triangle" by H. W. Gould, FQJ Vol. 3, Dec. 

1965: 

Page 265, line 6, for (6.7) read (6.6). 

Page 268, relation (7. 14): Left-hand member should read 

n+1 n+b n n+b+1 

Page 268, line 5 up from bottom: Right-hand member should read 

(~l)n(K K - KnK , J ' x a b 0 a+b 

and line 3 up from bottom: Right-hand member should read 

Page 269, line 1: Right-hand member should read 

and line at bottom of page 269: In right-hand member for K , 

read K . ,, . n+a+b 

n 
"Power Identities for Sequences Defined by W , ? = dW . -c 

by David Zeitlin, FQJ Vol. 3, No. 4, 1965 

Page 245. Line 2 of (3# 1) should read 
rn + (mq(4r-q-l)/2) 2 ? q-r 

c ° r / ) (4c-d2) 

Page 246. The factor, c ^ , was omitted from the first line of the 
page. 

Page 247. The factor, p , was omitted from the last line (on the 
right hand side) at the bottom of the page. 

Page 250. In line (1) of (3.16), the exponent of c should read 
(r-l)nQ + i 2 r _ 1 . 

Page 250. In line (2) of (4.3), (-5)q should read (-5)q"r . 

Page 251. In (4. 8), +4 should read -4. 

Page 254. The second line in (5. 9) begins with a + sign. 

XXXXXXXXXXXXXXX 



ON THE INTEGER SOLUTION OF THE EQUATION 
Sx^ + 6x + 1 = y2 

AND SOME RELATED OBSERVATIONS 
Edgar I. Emerson 
Boulder, Colorado 

The integer solution of the equation 

(1) 5x2±6x+l = y2 

is interesting because of the Fibonacci and Lucas relationships that 

appear. 

One method of solving the problem involves the solution of the 

Pythagorean* (Py)» equation 

? 2 ? 
(2) X + Y = 2T , 

2 2 2 2 
where X = 2ab, Y = a - b , Z = a + b s and a > b. Since no other 
restrictions are placed on a and b this solution of (2) is not neces-

sarily primitive. 
When 4x is added to both sides of (1) we obtain 

(3) 9xZ±6x+l = y2+4x2 or 

(4) (3x±l)2 = y2+(2x)2 . Now let 

(5a) 3x±l = Z =• a2 + b2 , 

(5b) y•= Y = a2 - b2 and 

(5c) 2x = X = 2ab or 

(5d) x = ab. 

Substituting this value of x in (5a) we get 
2 2 

3ab ± 1 = a + b or 

(6) a2 - 3ab + (b2 ± 1) = 0 . 

Solving this equation for a > b we have 

3b + / 9 b 2 - 4(b2±l) 3b +V5b2±4 (7) a = 2 * L = 2 

63 
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2 / 2 
If the values of b a r e such that 5b ± 4 = Q then 3b + * 5b ±4 is a l -
ways even and there fore a is always in tegra l . Changing equation (7) 
to 
(8) 2a = 3b + V5b2±4 

we p r e p a r e Table I by filling in the column under b with the Fibonacci 
n u m b e r s , F , and the column beneath the rad ica l sign with the Lucas 
number 's , L. The r e s t of the table is then calculated. 

Table I Showing Fibonacci and Lucas Relat ionships 
Involved in the Solution of 

2 2 
5x ±6x+l = y 

n, 
0, 

1, 
2, 

3 , 
4 , 

5, 

6, 

a, 
1, 
2, 

3, 

5 , 
8, 

13 , 

2 1 , 

3b+ V5b2±4; x = a b ; y = a 2 - b 2 2a 
2 = 0 + 2 
4 = 3 + 1 
6 = 3 + 3 

10 = 6 + 4 
1 6 = 9 + 7 
26 = 15 + 11; 
42 = 24 + 18; 

0 
2 
3 

10 
24 
65 

168 

1 
3 
8 

21 
55 

144 
377 

n ' F n + 2 ' F n ; 2 F n + 2 = 3 F n + L n ; ^ l " * " 1 >"= F n F n + 2 ; F ! + 2 " F n = F 2 n + 2 

= < L n + l - F n + l ) / 4 ; = L n + l F n + l 

Note that x +x ,. = F 9 ,~ = F 2 + F 2 

n n+1 2n+3 n+1 n+2 
The solution to equation (1) is 

(9) 

(10) 

x = F 2 , , - ( - l ) n = F F n n+1 
*. ,~ = 2(x , +x 9) - x « n n+2 n-1 n - 2 ' n -3 

y = F ±?~F = F 9 4-9 = L 4 . 1 F 4.1 = 3 y i - y 9 
7n n+2 n 2n+2 n+1 n+1 7 n - l 7 n -2 

F r o m (9) we have the in te res t ing r e c u r r e n t equation 

x = 2(x +x ) - x , 
n n-1 n-2 n -3 
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w h i c h c a n be e x p r e s s e d w i t h F i b o n a c c i t e r m s a s : 

( I D F 2 + 1 - ( - l ) n = 2 [ F 2 - ( - l ) n - 1
+ F 2 _ r ( . 1 ) n - 2 ] . [ F 2 ^ _ ( _ 1 ) n - 3 ] _ 

The (-1) t e r m s d i s a p p e a r so t h a t 

(12) F 2
X 1 = 2 F 2 + 2 F 2 _ - F 2 , o r 

n+1 n n - 1 n - 2 

F 2 - F 2 , = ( F 2 - F 2
 9 ) + ( F 2 + F 2 . ) o r 

n+1 n - 1 n n - 2 7 x n n - 1 7 

F 9 = F 9 - + F 0 , o r 
Zn Zn-Z Zn-1 

F = F 2n 2n 

a n d t h u s w e h a v e p r o v e d (11) a n d (1 2) . E q u a t i o n (12) c a n be w r i t t e n a s 

2 ( F 2 + F 2 . ) = F 2 _ u l + F 2
 9 o r 

x n n - 1 n+1 n - 2 

(13) 2 F 9 . = F 2 , . + F 2
 ? , 

2 n - 1 n+1 n - 2 

a n i n t e r e s t i n g F i b o n a c c i i d e n t i t y - A n o t h e r i n t e r e s t i n g F i b o n a c c i 

i d e n t i t y t u r n s up w h e n t h e a p p r o p r i a t e F and L t e r m s a r e s u b s t i -

t u t e d in e q u a t i o n (8), 2a = 3b + ^ 5 b ±4 . We h a v e 

(14) 2 F , - = 3 F +L 
x n+Z n n 

T h i s i d e n t i t y i s p r o v e d by a d d i n g 3 F to e a c h s i d e of t he i d e n t i t y 

F , + F , , = L a s f o l l o w s : n - 1 n+1 n 

F . + F , , = L n - 1 n+1 n 

F + F + F = 3 F n n n n 

F +(F + F , ) + ( F , . + F ) = 3 F +L n n n - 1 n+1 n n n 

( F + F ± 1 ) + F , 9 = 3 F +L n n+17 n+2 n n 

F ^ . ,+F ^ = 3 F +L n+2 n+2 n n 

2 F ^ 9 = 3 F +L n+Z n n 
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Equation (1) can be written as 

(14) 5x2 + 6(-l)nx + 1 = y2 
v ' n n Jn 

and when the appropriate F terms are substituted, this equation be-
comes 

(15) 5F F + 6( - l ) n F F + 1 = F 
K D) n n+2 K ' n n+2 2n+2 

which equation is equivalent to 

(16) 5F2 , F 2 , - 6( - l ) n F . F x l + 1 = F 2 or N ' n-1 n+1 n-1 n+1 2n 

(17) 5 rF 2 +( - l ) n l -6(™l)nfF2 + (-l)n1 + 1 = F 2 = L 2 F 2 . 1 L n J l , L n
x / J 2n n n 

When the indicated operations are performed we have successively 

5 rF 4 +2( - l ) n F 2 +( - l ) 2 n ] -6 ( - l ) n rF 2 +( - l ) n l + 1 = L 2 F 2 

L n ' n s ' J . ' L n * ' -J n *n 

5F 4 + lQ(- l ) n F 2 + 5 -6 ( - l ) n F 2 - 6 ( - l ) 2 n + 1 = L 2 F 2 
n ' n n n n 

5F 4 + 4 ( - l ) n F 2 = L 2 F 2 
n n n n 

5F2 + 4 ( - l ) n = L2 

n n 

and thus we have proved the identities (16) and (17). 
2 2 2 

Now we examine the solution of equation (2), X + Y = Z , where 
F and L terms are used for (a) and (b). For this purpose we first 

prepare Table II where the a's and b's are transferred from Table I. 
The rest of Table II is then calculatedo 

The solution of X2 + Y2 = Z2 is 

(18a) X = 2ab = 2F F IO 
n n+2 

Y = a 2 - b 2 = F 2 - F 2 = F 9 , 9 n+2 n Lxi-rL 

Z = a2+b2 = F 2 +F2 = 3F2
X 1 -2 ( - l ) n . n+2 n n+1 ' 
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Table II Showing Fibonacci and Lucas Relat ionships 
Involved in the Solution of X2+Y2 = Z 2 

X = 2ab, Y = a 2 - b 2 , Z = a 2 +b 2 , a = F , 0 , and b = F . 

n, 

o, 
• 1 , 

2, 
3, 

4, 

5, 

6, 

n, 

a, 

1 

2 

3 

5 

8 

13 
21 

F , F , n+2 n 

b, 
0 

•1 

1 

2 

3 

5 

8 

2[ 

2ab=X, 
1 

4 

6 
20 

48 

130 
336 

2F F n n 

Fln-^ 
+2' 

n l 

-a2-b2=Y, 
1 

3 

8 
21 

55 
144 

• 377 

F 2 - F 2 , n n+2 

F 2n+2 ' 

a +b = 
1 

5 

10 

29 
73 

194 

505 

2 2 
F^+F^ 

n n 

z, 

+25 

n+1 n 

a-b, 
1 

1 

2 

3 

5 

8 

13 

F n + 1 ' 

+ 1 ) A 

a+b 
1 

3 

4 

7 

11 

18 

29 

n-

« L i + l - F n + l ) / 2 ' ' L n + l F n + r ^ I v 2 ^ 

The identi ty (18c), F .?+F = 3F ,, - 2 ( - l ) , is equivalent to 

(19) F 2 + F 2 , = 3 F 2 + 2 ( - l ) n but 
n+1 n-1 n 

F . ± 1 F . 1 = F 2 + ( - l ) n and 
n+1 n-1 n 

2F t l F , = 2 F 2 + 2 ( - l ) n and therefore 
n+1 n~1 n 

F 2 + F 2 . = 2F , . F . + F 2 or 
n+1 n-1 n+1 n-1 n 

F 2 - 2 F , . F , + F 2 = F 2 or 
n+1 n+1 n-1 n-1 n 

(F , . - F , ) 2 = F 2 or 
n+1 n-1 n 

F - F , = F or 
n+1 n-1 n 

F ,. = F +F . n+1 n n-1 
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a n d t h u s w e h a v e p r o v e d t h e F i b o n a c c i i d e n t i t y for Z in (18c ) . 
2 • 2 2 

A n e q u i v a l e n t e q u a t i o n fo r X + Y = Z i s t h e fo l lowing F i b -

o n a c c i i d e n t i t y : 

<2o> 4 c ^ + i - < " M n ] 2 + FL+2 = i^+i-^nz • 
When the i n d i c a t e d o p e r a t i o n s a r e p e r f o r m e d a n d t h e t e r m s a r e c o l -

l e c t e d t h i s e q u a t i o n b e c o m e s 

5 F 4 _ 4 ( _ i ) n F 2 ••= F 2 o r 
n+1 l } ^ n + 1 2n+2 

5 F 4 + 4 ( - l ) n F 2 = F 2 = L 2 F 2 o r 
' n n 2n n n 

5 F 2 + 4 ( - l ) n = L 2 
n N n 

a n d t h u s we h a v e p r o v e d the F i b o n a c c i i d e n t i t y e x p r e s s e d by e q u a t i o n 

(20) . 

The fo l lowing e q u a t i o n s r e p r e s e n t f u r t h e r o b s e r v a t i o n s . 

(21) Z+X = a 2 + 2 a b + b 2 = ( a + b ) 2 = ( F , - + F ) 2 = L 2 , a n d x ' ' x n+2 n n+1 

(22) Z - X = a 2 - 2 a b + b 2 = ( a - b ) 2 = ( F ^-F ) 2 = F 2 .. x ' ' n+2 n n+1 

A d d i n g t h e s e e q u a t i o n s a n d d i v i d i n g by 2 w e h a v e 

(23) Z = ( L 2 + F 2 ) / 2 v ' v n+1 n + 1 " 

a n d s u b t r a c t i n g t he e q u a t i o n s a n d d i v i d i n g by 2 we ge t 

(24) X = ( L ^ - F 2 , , ) / ^ 
n+1 n+1 ' 

a n d m u l t i p l y i n g (21) by (22) w e o b t a i n 

(25) Z 2 - X 2
= L ^ + 1 F 2 + 1 = Y 2 

<26> Y = L n + l F n + l ' 

The a r e a , A, of the P y t r i a n g l e i s 

(27) A = a b ( a 2 - b 2 ) 
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2 2 In genera l , the module, ab(a -b ), is divisible by 6, consequently 
when the appropr ia t e F a n d / o r L t e r m s a r e subst i tuted in the mod-
ule the resul t ing express ion mus t l ikewise be divisible by 6. Thus 
the following express ions a r e al l divisible by 6: 

F F , , ( F 2 -F?) ; [ F 2 - ( - l ) n l ["F2 - F 2 T ; n n+2% n+2 n L n+1 J L n+2 n J 

F F F L • F F F • 
n n+1 n+2 n+1 ' n n+2 r 2n+2 ' 

CFn+r<-^n]F2n+2 ; 0 ^ + 1 - ( - l ) n ] F n + l L n + 1 

and (L 2 - F 2 ) L , . F ,, 
n+1 n+1 n+1 n+1 

( L n + l - F n + l ) F 2 n + 2 

( L n + r F n + l ^ F n + 2 - F n ) 

a r e al l divisible by 24 since ab = (L ,, - F . ,, ) /4 ; y s n+1 n+1 ' 
In the foregoing cons idera t ions the values of a and b were 

r e s t r i c t e d by equation (1) to a = F ~, b = F . If now, in the solu-
tion of a Py t r i ang le , we subst i tute for a and b any a r b i t r a r y F 
a n d / o r L t e r m s then Fibonacci and /o r Lucas number ident i t ies a r e 
eas i ly produced in infinite va r i e ty and divis ibi l i ty expres s ions a r e 
eas i ly produced and proved. 

XXXXXXXXXXXXXXX 



STAR GEOMETRY 
Pythagoras, Fibonacci and Beard 

R.S. Beard 

The diagonal of the pentagon is made the unit of length in the 
upper left c i r c l e of the accompanying drawings . K is the ra t io of the 
side of the pentagon to i ts diagonal. 

Line 4. 3 is the shor t side of t r iangle 1-4-3 and the long side of 
t r iangle 3 -4-6 . 

Line 4. 6 is the shor t side of t r iangle 3-4-6 and the long side of 
t r iangle 4 - 6 - 7 . 

Therefore the s ides of these th ree s imi l a r i so see l e s t r i ang les 
2 2 3 

a r e respec t ive ly 1 and K, K and K , K and K . Lines 1-6 and 
3-6 have the same length, K, as they a r e the equal s ides of the i s o -
sce les t r iangle 1-3-6. Diagonal 1-4 of unit length is thus divided into 

2 2 
segments K and K , that is K + K = 1. 

It follows from this equation that 
K = \\HT- i = 0.618034 

and that Kn = K n + 1 + K n + 2 . 
Since each power of K is the sum of i ts next two higher powers , 

these powers form a Fibonacci s e r i e s when a r r anged in thei r descend-
ing o r d e r . 

The radius is made the unit of length in the upper r ight c i r c l e . 
2 

Simi lar t r i ang les divide radius O- l into segments K and K . This 
const ruct ion demons t r a t e s that each side of a r egu la r decagon has the 
golden sect ion ra t io to the rad ius of its c i r cumsc r ib ing c i r c l e . 

The r ight t r iangle in the lower c i rc le has s ides of 1, 1/2 and 
1 /2V57 The dimension K with the value of 1 / 2 V 5 - 1 / 2 is the length 
of the side of the inscr ibed decagon. 

The leaf shaped figure shows one s imple way to cons t ruc t a five 
pointed s ta r of a given width. 

The Fibonacci s t a r of s t a r s is proport ioned in the ten success ive 
0 9 

powers of the golden sect ion from K to K . 
70 
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AB is made the unit of length or K . 
AC, the side of the bounding pentagon has the length of K. 
The side of each ray of the m a s t e r s t a r is K long. 

3 The bounding pentagon of the cen t ra l s ta r has s ides of K length. 
Since one diagonal of each of the sma l l e r s t a r s is a side of the 

bounding pentagon of the next l a rge r s t a r al l of the cor responding di -
mens ions of these success ive s t a r s a r e in golden section r a t io . 

The bounding pentagons of the success ive s t a r s have s ides of 
K , K , K and K respec t ive ly . 

8 The rays of the sma l l e s t s t a r s have K edges and base widths 
of K9. 

This figure can be used to demons t ra t e that any power of the 
golden sect ion K , is the sum of ai l of i ts higher powers from K 
to K°°. 

The lines connecting the tips of the cen t ra l s t a r and the cen t e r s 
of the five next s m a l l e r s t a r s form a decagon. 

XXXXXXXXXXXXXXX 
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All subscr ip t ion cor respondence should be a d d r e s s e d to Brother U. 
Alfred, St. M a r y ' s College, Calif. All checks ($4.00 per year) should 
be made out to the Fibonacci Associa t ion or the Fibonacci Quar t e r ly . 
Manuscr ip ts intended for publication in the Quar t e r ly should be sent 
to Verner E. Hoggatt, J r . , Mathemat ics Depar tment , San Jose State 
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bond paper . Authors should keep a copy of the manusc r ip t sent to the 
ed i t o r s . 



PROPERTIES OF THE POLYNOMIALS DEFINED BY MORGAN-VOYCE 
M.N.S. Swamy 

Nova Scotia Technical College, Halifax, Canada 

1. Introduction 

In dealing with e l ec t r i ca l ladder ne tworks , A. M. Morgan-Voyce 
defined a set of polynomials by: 

bn(x) = x Bn_1(x) + bn_x(x) (n > 1) 

Bn(x) = (x + 1) B n - 1 ( x ) + b n - 1 ( x ) (n> 1) 

(1) 

(2) 

with, 
(3) bQ(x) = BQ(x) = 1 

These polynomials b and B have a number of very fasc i -J n n J 

nating and in te res t ing p r o p e r t i e s , and is the subject m a t t e r of this 
a r t i c l e . A few p rope r t i e s of these have been studied by Basin. 

F r o m (1) and (2) we see that 

(4) b = B - B . 
n n n~l 

(5) and, x B = b ,, - b 
n n+1 n 

Substituting (4)'in (1) we have that B sat isf ies the difference equa-
tion, 

Bn(x) = (x + 2) Bn_x(x) - Bn_2(x) (n > 2) 

with 

(6) BQ(x) = 1, and B ^ x ) = x + 2 

F r o m (1) and (2) it can eas i ly be der ived that b (x) a l so sat isf ies the 
same difference equation, namely, 

b (x) = (x + 2) b , (x) - b ?(x) (n > 2) 
n n-1 n-2 

with 

(7) b (x) = 1, and b ^ x ) = x + 1 

73 
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The d i f f e r e n c e e q u a t i o n (6) m a y be e x p r e s s e d a s the c o n t i n u a n t , 

x+2 1 0 . . . 0 

(8) B (x) n 

1 x+2 1 0 

0 1 x+2 1 

0 

0 

1 

0 1 x+2 n (n > 1) 

a n d h e n c e we m a y s t u d y the p r o p e r t i e s of B by u s i n g t h o s e of the 

c o n t i n u a n t s . We s h a l l l i s t b e l o w on ly s u c h of t h o s e p r o p e r t i e s of B (x) 

w h i c h we w i l l u s e in s t u d y i n g b (x) a n d in d e r i v i n g r e l a t i o n s b e t w e e n 

the p o l y n o m i a l s b (x) and B (x): sr j n n 

(9) B , = B m + n m B - B , n m - 1 B n - 1 

(10) 

(11) 

B , = B 2 - B 2 . 2n n n - 1 

J 2 n - 1 B , (B - B 7 ) n - 1 x n n - 2 ' 

(12) 

(13) 

(14) 

(x + 2) B 9 , = B~ - B" 9 v ' 2 n - l n n - 2 3 2 

n 
B B , x l 

n r - h + 1 
B B 

n - 1 

n - h + 1 

B , , - B n+1 n 

B h - 2 

1 

B n - r - 1 

(15) 
n - 1 

E Bn( x ) = E (B 
dx 

B i ) r n - l - r ' 

2 . R e l a t i o n s b e t w e e n b (x) a n d B (x), a n d p r o p e r t i e s of b (x): 
n n n 

F r o m (5) a n d (7), 

(16) x B (x + 1) b - b • n n n - 1 

A l s o we h a v e , 
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(17) B ,. - B . = b \ _ + b 
n+1 n-1 n+1 n 

F r o m (4) and (5), 

(18) b - b = x (B + B _) 
n+1 n-1 n n-1 

By success ive ly subst i tut ing 0, 1, 2, . . . for n in (5) and 
adding we have, 

n 

< 1 9 > X £Br= bn+l - 1 

0 

S imi lar ly from (4) we may deduce that, 

(20) V b = B 
L»J r n 

0 
Now, 

b ,_ = B , -B , 1 = (B B - B , B , ) - ( B B . -B , B J) m+n m+n m+n~l m n m - 1 n-1 m n-1 m - 1 n-Z 

= B (B - B J - (B , - B 9) B , 
m n n-1 n-1 n-2 m - 1 

Hence, 

(21a) b •= B b - B . b -
m+n m n m - 1 n-1 

Interchanging m and n we have, 

(21b) b , = b B - b . B . 
m+n m n m - 1 n - i 

Hence, 

(22) b B - B b = b , B , - B , b , x ' m n m n m - I n-1 m - 1 n-1 

We will see la ter that this is a pa r t i cu la r case of the m o r e genera l 
re la t ionship (29). 
Putting m = n in (21), 

(23) b^ = b B - b ..B , 
Zn n n n-1 n-1 

Putt ing m = n+1 in (21), 
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(24a) b 9 x l = b X 1 B - b B ' 
x ' 2n+l n+1 n n n - 1 

(24b) = B . . b - B b . 
n+1 n n n - 1 

F r o m (7) we h a v e 

(x + 2) b 9 , , = b 9 , 9 + b 9 2n+l 2n+2 2n 

b ^ B L1 - b B + b B - b _B , n+1 n+1 n n n n n - 1 n - 1 

H e n c e , 

(24c) (x + 2) b 9 , . = b , _ B , . - b B , 
x ' - x ' 2n+l n+1 n+1 n - 1 n - 1 

A l s o f r o m (12), 

(x + 2) B 9 , , = B 2 , , - B 2 , ' 2n+l n+1 n - 1 

H e n c e , 

(x + 2 ) ( B ? , 1 - b 9 , , ) •= B , , (B , . - b , , ) - B , (B , - b • ) ' 2n+l 2n+l n+1 n+1 n+1 n - 1 n - 1 n - 1 

H e n c e , 

(25) (x + 2) B 0 = B._ L 1 B - B . B -' 2n n+1 n n - 1 n - 2 

F r o m (23) and (24) we d e d u c e t h a t , 

(26) b 9 - b 9 . = b 2 - b 2 

2n 2 n - l n n - 1 

S u b t r a c t i n g (12) f r o m (25), 

(x + 2 ) ( B 9 - B 9 J = B (B , , - B ) - B 9 ( B . - B 9 ) v /v 2n 2 n - l n n+1 n n - 2 ' n - 1 n - 2 ' 

H e n c e , 

(27a) (x + 2) b 0 = B b _,__ - B 9 b . 
2n n n+1 n - 2 n - 1 

(27b) = b B - b _B 
n n+1 n - 2 n - 1 

We w i l l now d e r i v e a r e l a t i o n s h i p b e t w e e n the p o l y n o m i a l s b (x) 

a n d B (x), c o r r e s p o n d i n g to t h e r e l a t i o n (13) for B : 

C o n s i d e r t he e x p r e s s i o n , 
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b B - B, 9 b 
n-h+1 r h-Z n - r - 1 

(B , x l - B . )B - (B , 
x n-h+1 n -h ' r x n - r - 1 n ~ r - 2 ' h-2 

(B , , , B - B B, 9) 
n-h+1 r n - r - 1 h-2 

= B n B r - h + l ' B n - l B r - h + l 

(B B - B B, 9) 
n -h r n - r - Z h-Z 

from (13) 

= (B - B , )B , , . = b B , x l n n - 1 ' r -h+1 n r-h+1 

Hence, 

(28a) b B , ,. = b , , , B - B, 9 b n r-h+1 n-h+1 r h-2 n - r - 1 

Simi lar ly , 

(28b) 

Hence from (28a) and (28b) we get the re la t ion, 

r n-h+1 h-2 n - r - 1 

Changing r to m, h-2 to m - 4 , and n to m + n + l - r in the above 
re la t ion, 

(29a) 

b B , x l = B , , . b - b, 9 B , 
n r-h+1 n-h+1 r h-Z n - r - 1 

B b n ,, - B, 0 b n = b B , .- - b, 0 B , 
r n-h+1 h-Z n - r - 1 

B b - B b = b B - b B 
m n m - r n - r m n m - r n - r 

Using the re la t ion (4) in (29a) we der ive the cor responding re la t ion 
for B (x) a s , n 

(30a) B B , m n-1 B B T = B B , 
m - r n - r - 1 n m - 1 

B B 1 
n - r m - r - 1 

These re la t ions may be wr i t t en neat ly in the form of de t e rminan t s : 

(29b) 

(30b) 

and 

B 

B 

B 

B 

n 
B m - 1 

n- 1 

B 
m - r 

b m - r 
B m - r 
B n - r 

B i n - r 
b 

n - r 
m - 1 - r 

n - 1 - r ! 
Now putting h = 2, and n = r+1 in equation (28) we get, 

(31) b B - b , . B . = 1 r r r+1 r - i 
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Putt ing m = n - 1 , and r = n-1 in (29b) we get, 

(32) B b . - b B , = 1 
x ' n n-1 n n-1 

F r o m (31) and (32) we see that b (x) is p r ime to b , (x), B (x) 
n ^ n-1 n 

and B , (x) for in tegra l value's of x. Also, for in tegra l values of x, 
B (x) is p r i m e to B , (x), b (x) and b .-.(x). 

n
x ' ^ n - l x ' nx ' n+1 

By success ive ly substi tuting 1, 2, 3, . .„ for n in (10) and add-
ing, we have 

n 

1 

V B ? = B2 - B2 = B2 - Bf L-J 2r n 0 n C 

Hence, 
(33) 

(34) 

(35) 

(36) 

(37) 

b ' (x) n 

Simi 

Le t 

= B1 
n 

= B n 

.larly, , using ( 1 1 ) , 

n - 1 

£ 
0 
n E 
0 

n-1 E 
0 
2n E 
0 

EB2r 
0 

= B 2 

n 

(23), (24) and (26) we der ive : 

B 2 r+1 

B 9 
2r 

b 2 r+ l 

( " l ) r b r 

us now find an express ion 

- B' n-

- 1 B 0 

n - 1 

. i - L 
0 

n-2 *EB 
0 

B : 
r 

(B 
r n 

B i n- 1 - r 

= B B . n n-1 

= b B n n 

= b B , n n-1 

= b 2 

n 

for the der ivat ive of 
n - 2 

y B B , 
A—t r n - Z - r 

0 
n-2 

, - B o) = B , b n + Y^ - r - 1 n - r - 2 ' n-1 0 L*t 
0 

b (x): n 

B b . r n - r - 1 
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n - 1 
(38) ,w = E B b 

3 . E x p l i c i t p o l y n o m i a l e x p r e s s i o n s for B (x) a n d b (x): 

We c a n e s t a b l i s h by i n d u c t i o n t h a t , 

n 

B (x) = V ( c k x k ) , 
n -*—̂  n 

k=0 
w h e r e , 

(39) k , n + k + l , 
c = ( i ) n n - k ' 

Now 

(39) b (x) = B (x) - B , (x) = V nx nv n - 1 L»J 
, n+k+ l . * n+k . 
{ n - k ' ' * n - k - l ' 

n+k, k x - z a> 
0 

T h e r e f o r e w e h a v e 

b (x) = V (dk 
n L-J n 

k k, x ) 

k=0 
w h e r e , 

(40) k /n+kx d = ( , ) n n - k * 

The e q u a t i o n s (39) a n d (40 a r e e x p l i c i t p o l y n o m i a l e x p r e s s i o n s 
for b and B , and show t h a t t h e y a r e of d e g r e e n . n n J 

We s h a l l now d e r i v e a f o r m u l a for 

/ 
B (x) dx : 
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F r o m (39), 

\l3n(x) dx = ^2 <cn x k + V k + 1 ) + c / > 
n 

k k+1 

0 
k+1 Now the coefficient of x for the express ion B ,, - B , i s , 

r n+1 n-1 
k+1 k+1 ,n+k+3. ,n+k+L . , , x k 

- J_i " c i = ( i ) " ( i ->) - ( n + l ) c 

n+1 n-1 n -k xn-k-2 n 
k+1 - (n + 1)(coefficient of x in j B (x) dx . ) / • 

Hence, 

/ « (41) / B„(x) dx = n + i ^ 1
n " 1 + c 

It may a l so be es tabl ished that over the in te rva l (-4, 0), B (x) 
n 

and b (x) a r e orthogonal polynomials with r e spec t to the weight func-
tions V4 - <x + 2>2 and V { x + 4)/-x respectively-

It may a lso be seen from (6) that, 
(42a) B (x) = S (x+2) 

n n 
and hence, 
(42b) b (x) = S (x+2) - S . (x+2) , 

n n n-1 

where S (x) is the Chebyshev polynomial . 

4. Conclusions: 

The a r t i c l e deals with the p r o p e r t i e s of a set of polynomials b (x) 
and B (x) defined by (1), (2) and (3)„ Even though they a r e re la ted to 
the Chebyshev polynomials , the author bel ieves that B (x) and b (x) 
a r e of use in the study of ladder networks and hence dese rve a study of 
this na tu re . 
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PERFECT NUMBER "ENDINGS" 
J.A.H. Hunter 

Toronto, Ontario, Canada 

Helen A. Mer r i l l , in her book Mathemat ica l Excurs ions , (Dover 
Publ ica t ions , Inc. ; New York) outlined the main fea tures of Pe r fec t 
Number s . After stating that 6, 28, and 396 a r e Per fec t Numbers , she 
continued: 

"The next Pe r fec t Number is 8128, and the next contains eight 
d igi ts . All these Per fec t Numbers end in 6 or 28, but no one 
knows whether this is t rue of all such n u m b e r s . " 
The 1st edition of that book was published in 1933. It is poss ible 

that an e l emen ta ry proof for the noted "endings" has been published 
somewhere since then, but if so it has escaped my not ice . 

Accordingly I venture to lay out the n e c e s s a r y but quite e l emen-
t a r y proof that all e v e n P e r f e c t Numbers end in 6 or 28; the non-ex i s t -
ence of any odd Pe r fec t Number has not yet been proven. 

Every even Per fec t Number is known to be of genera l form: 
2 n - V - l ) . 

The mod 100, by actual calculat ion for success ive values of n 
(n > 1), we see that 2 ( 2 - 1 ) has success ive values 6, 28, 0, 6; 
this sequence of 4 values being repeated for all c a se s up to n - 22. 
Still to mod 100, each of 2 - 2 - 1 has a period of 20, repeat ing 
the r e m a i n d e r s . Hence, the "6, 28, 0, 6" sequence of endings for the 
product 2 (2 - 1) m u s t continue for al l values of n.o 

It will be noted, the proof being t r iv ia l , that ze ro endings occur 
only when n = 4k. 

Now, the actual pa r t i cu la r form for all even Per fec t Numbers 
r e q u i r e s n to be p r i m e . Hence, with n = 4k, we can have no Pe r fec t 
Number . 

So, for all e v e n P e r f e c t Numbers we mus t have 6 or 28 as "ending. " 

xxxxxxxxxxxxxxx 
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A DIVISIBILITY PROPERTY OF FIBONACCI NUMBERS 
Lenard Weinstein 

Massachusetts Institute of Technology 

The following is an in te res t ing theorem concerning the f i rs t 2n 
Fibonacci n u m b e r s : 

Theorem 
Give any set of . n + 1 Fibonacci numbers se lected from the set 

F , , F~, . . . , F~ , it is always poss ible to choose two e lements from 
the n + 1 Fibonacci number s such that one divides the o ther . 

This theorem will be proved using the following two theo rems : 
Theorem 1: 
Give any set of n + 1 in tege r s se lected from the set 1, 2, . . . , 

2n, it is always possible to choose two e lements from the n..+ 1 in te -
ge r s such that one divides the o ther . 

Proof: 

We shall use induction. The theorem is t r iv ia l ly t rue for the 
case n = 1. Assume it t rue for n = k. If n = k+1, we m u s t prove 
that any set of k+2 in tegers selected from the set 1, 2, . . . , 2(k+l) 
contains two e lements such that one divides the o ther . If the k+2 in-
t e g e r s a r e contained in the set 1, 2, . . . , 2k, then by the inductive 
hypothesis , the theorem is t r u e . Similar ly , if k+1 of the in t ege r s 
a r e contained in the set 1, 2, . . • , 2k, and the other in teger is e i ther 
2k+l or 2(k+l), the same reasoning applies as above. If only k of 
the in tegers belong to the set 1, 2, . . . , 2k, then the other two in te -
g e r s mus t be the numbers 2k+l and 2(k+l). Consider any set of k 
number s from the set 1, 2, . . . , 2k and the in teger k+1. By the 
inductive hypothes is , we can find two number s from this set such that 
one number divides the other . Since k+1 does not divide any number 
but itself, in the set 1, 2, . . . , 2k, at best it is divisible by another 
e lement of the set . Any number that divides k+1, though, divides 
2(k+l). Thus, any set of k e lements chosen from the set j 1, 2, . . . , 
2k | and the e lement 2(k+l), contains two numbers such that one num-
ber divides the other . Therefore , the set of any k in tegers from the 
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set 1, 2, . . . , 2k , plus the number s 2k+l and 2(k+l), a l so con-
tains two e lements such that one divides the o ther . 

Theorem 2: 
If F is the n Fibonacci number (F , = 1 , F = 1), then n l L 

F , ,v = (F , F ) [ l ] „ ( (a, b) is the g r ea t e s t common divisor of the 
in tegers a and b. ) This is a widely known theorem, eas i ly proved. 

It follows that if any set of n+1 Fibonacci num ber s F , F , 
a l a 2 

. . . F , is chosen from the set F , , F 9 , . . . , F 9 , the re exis t two 
a n+ l l L Z n 

e l ements of the n+1 Fibonacci number s such that one number divides 
the other . Fo r cons ider the number s a , , a~, . . . , a ,, . By theorem 
1, we can find two number s a., a, from these n+1 in tegers such that , J k & 

a. a, . Thus (a., a, ) = a.. It follows that F , , = F = (F , F ) 
j ' k j ' k' j (aj9 ak) a.. a..' a ^ 

by theorem 2. This means F | F , and the theorem is proved. 
a . 3.1 
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A LETTER TO THE EDITOR 
Enrico T. Federighi and Ronald G. Roll 

The Johns Hopkins University 
Silver Spring, Maryland 

A careful study of the Tables of Fibonacci En t ry Points has 
led . us to make some observa t ions regard ing the factors of Fibonacci 
n u m b e r s . 

I t i s read i ly seen that Z(p) divides p-1 whenever p = ±1 (mod 
10) and divides p-fl whenever p = ±3 (mod 10). 

Our problem is to de t e rmine , if poss ible , the p r i m e s p for 
which Z(p) divides p(k) = (p±l ) /k for k > 1. We conjecture the 
following solut ions. 

k=2: Z(p) divides p(2) if and only if p=4n+l. 

2 2 
k=3: Z(p) divides p(3) if and only if p=x +135y 

or p = 5x + 27y . 
2 2 

k=4: Z(p) divides p(4) if and only if p=x + 80y 
or p = 5x + 16y . 

The rule is m o r e complicated but is st i l l r easonab le if k is a 
smal l p r i m e . Let k be such a p r i m e and define (3 = ( k - l ) / 2 . 

Let p(k,-€) = 2 cos (2 7T^/k) and y . . = g1 J " , where g is a 
1J i-1 p r imi t ive root of k. Also let c = 2 - p(k, gJ ). Define 

C(k,x, y) = n 

P 
i = l 

2 " P 1 E bip(k' yJ 
_i=l J 

E 26-2r 2r c Z r x y 
r=0 

k > 4: Z(p) divides p(k) if and only if mp = C(k, s /5 , 1) or 
mp = C(k, 1, \s5) where c^g = 0 (mod k ). The na tu re of m is un-

|3 xi 
ce r t a in but it will usual ly be unity or a power of 2 . If 5 = 1 (mod 
k) for n < p, m may a l so contain an even power of 5. 
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To i l l u s t r a t e how the formulat ions look in p rac t i ce , a table of a l l 
p r i m e s under 1000 with k > 3 is l is ted. It is a s sumed that x=y=l. 
Type 1 means that 

P 
mp = L c2r51 . r 

r=0 

and type 2 means that 

47 
61 
89 

107 
109 
113 
139 
149 
151 
199 

211 
233 

263 
269 
281 
307 
331 
347 
353 
389 
401 
421 

3 
4 
4 
8 
3 
4 
3 
3 
4 
3 
3 
9 
5 
3 
9 
3 
4 
5 
7 
3 
3 
3 
4 
4 
4 

1 
1 
2 
2 
1 
1 
1 
2 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
1 
2 
1 
1 
1 
2 
1 

p 
P-r m p = E C2r5 

r = 0 

type m cQ c 2 c 4 c&-

1 4 27 
1 9 16 
1 9 16 
1 1 12 4 
1 16 27 
1 9 64 
1 1 108 
1 4 27 
1 1 144 
1 16 27 
1 64 27 
64 361 585 243 27 
16 1 50 125 
1 25 108 
64 1 153 2187 27 
1 4 243 
1 25 144 
16 121 250 125 
64 1 581 931 343 
1 196 27 
1 64 27 
1 49 108 
1 49 144 
1 81 64 
1 81 16 
16 361 650 125 
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ktype m 
10 '12 

461 
521 

541 
557 

563 
619 
661 

677 
691 
701 
709 
743 
761 

769 

797 
809 
811 
821 
829 

859 
881 
911 
919 

5 
4 
5 
3 
3 
9 
3 
3 
3 
4 
3 
5 
4 
3 
3 
4 
8 
4 
8 
7 
4 
3 
4 
3 
4 
11 
5 
13 
3 
9 

2 
2 
2 
2 
1 
1 
1 
2 
2 
1 
1 
2 
1 
2 
1 
2 
2 
2 
1 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 

16 
1 
16 

64 

16 

64 

1024 
16 

102400 
1 

64 

1 
441 
961 
1 

25 
1 

64 
484 
121 
81 
49 

1681 
25 

169 
100 
441 

1 
49 
289 
169 
729 
67 6 
49 
289 
9 
1 

3721 
1 

784 
1 

850 
16 

850 
108 
432 
15 3 
243 
27 
108 
256 
432 
1250 
576 
108 
243 
64 
96 
144 
76 
917 
16 
27 

576 
108 
784 
319 

1450 
182 
27 
153 

125 

125 

4779 

125 

256 

4 
1323 

3146 
125 

10595 

2187 

78.03 

343 

9438 9317 1331 

222404 1595191 3405350 1373125 

27 

953 3 1 1 169 108 
9 1 64 361 585 243 27 

967 11 1 32768 1 1551 105754 642510 286165 1331 
977 3 1 1 1 972 
991 5 2 16 3481 1850 125 

Comments on Table: 

1) As can be seen whenever k is an odd prime c, , is divisible by 

2) If k is an odd p r ime / b. = 0 (mod k) wilL ensu re that c, , be 

divisible by k~ 
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3) If one sums the coefficients in the table without f i rs t multiplying by 
powers of five one obtains k- th power r e s idues of two. 

Some of this has undoubtedly been observed before and even 
probably proved but we have no idea how much. 

We have enjoyed playing around with these concepts and actual ly 
suspect much m o r e than we have indicated h e r e . If anyone is i n t e r -
es ted in pursuing this fur ther , we shall be glad to hear from h im. 

XXXXXXXXXXXXXXX 

LETTER TO THE EDITOR 
Lenard Weinstein 

Massachusetts Institute of Technology 

Conjecture 2 . , made by Mr . Thoro, on page 186 of the October 
i s sue , follows immedia te ly from the following theorem found on page 
126 of W. J. Leveque, Topics in Number Theory, Vol. I: 

Definition 

A rep resen ta t ion of a posi t ive in teger n as a sum of two s q u a r e s , 
2 2 

say n = x + y is t e r m e d p rope r if (x, y) = 1. 
Theorem 

If p is a p r i m e of the form 4k + 3 and p |n, then n has no 
p rope r r ep resen ta t ion . 

Since F 0 , . = F + F ,_ , and (F , F , . ) = 1, F - ,. a lways 2n+l n n+1 n n+1 2n+l J 

has a p rope r r ep resen ta t ion . Therefore , by the above theorem, no 
p r i m e of the form 4k + 3 can divide F - ,, . c 2n+l 

XXXXXXXXXXXXXXX 



A LOGARITHMIC FORMULA FOR FIBONACCI NUMBERS 
Gerard R, Deiiy 

United States Department of Defense 
Washington, D.C. 

If the logar i thm of the Fibonacci number F is plotted agains t 
n, it can be seen that for l a rge n the graph is a s t ra ight l ine. Thus 
one might expect that Fibonacci n u m b e r s could be computed from a 
formula of the form 

( i ) log F = m n + b & n 

where m is the slope of the line and b i ts in te r sec t ion with the 
ve r t i ca l ax i s . That this is so can eas i ly be shown by manipulat ing 
Binet ' s formula 

(2) F =l-
n V§" (̂ )" - i^J 

into the following form: 

(3) -^M' i-m) For la rge n, the second t e r m within the b racke t becomes negligible, 
and hence (3) becomes 

(4) a(^r Taking logar i thms then gives 

(5) log F n n[ log (1. +V5) - log 2] - ~ log 5 

which is of the form (1). If base 10 is used, the c h a r a c t e r i s t i c of the 
logar i thm computed in (5) then gives the o rde r of magnitude of F „ 
This knowledge is useful in de te rmin ing requ i red s izes of r e g i s t e r s 
when sett ing up Fibonacci p rob lems for computat ion. 

xxxxxxxxxxxxxxx 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by A.P. Hillman 

University of New Mexico, Albuquerque, New Mexico 

Send all communicat ions regard ing E l emen ta ry P r o b l e m s and 
Solutions to P r o f e s s o r A. P . Hil lman, Depar tment of Mathemat ics 
and Sta t i s t ics , Univers i ty of New Mexico, Albuquerque, New Mexico. 
Each problem or solution should be submitted in legible form, p r e f e r -
ably typed in double spacing, on a separa te sheet or sheets in the for-
ma t used below. Solutions should be rece ived within two months of 
publication. 

B - 8 2 Proposed by Nanci Smith, University of New Mexico, Albuquerque, N.M. 

Descr ibe a function g(n) having the table: 

n | 

g (n) | 

I 0 1 2 3 4 5 6 7 8 9 10 
| 0 1 1 2 1 2 2 3 1 2 2 

11 

3 

12 . . . 
2 . . . 

B - 8 3 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada 

Show that F2 + F2_,_. = F2 , + F2 + 4F2 . n n+4 n+1 n+3 n+2 

B - 8 4 Proposed by M.N.S. Sivamy, Nova Scotia Technical College, Halifax, Canada 

The Fibonacci polynomials a r e defined by f. (x) = 1, f^x) = x, 

f n + 1 (x) = x f n ( x ) + f n _ 1 ( x ) J n > 1 . 

If z = f (x) + f (y), show that z sat isf ies r r r J r 
z , A - (x+y)z l o + (xy-2)z l 0 + (x+y)z + z = 0 . 

n+4 v y' n+3 3 n+2 J n+1 n 

B - 8 5 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Find compact expres s ions for: 

(a) FZ
2+rZ

4 + Tl+... + F * n 

(b) F^ + F2 + F 2 + . . . + r 2 n _ 1 
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B - 8 6 , Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Show that the squa res of every thi rd Fibonacci number satisfy 

y n + 3 - 1 7 y n + 2
 + 1 7 Vu -y n

 = 0 • 

B - 8 7 Proposed by A.P. Hillman, University of New Mexico, Albuquerque, N.M. 

Prove the identi ty in 

n n n 

r [ ^ r - n (Vk)] v<n
2
+1> + £Xj • 

k=0 j = 0 _ ^ j=0 

S O L U T I O N S 

A N N- T U P L E I N T E G R A L 

B - 7 0 Proposed by Douglas hind, University of Virginia, Charlottesville, Va. 

Denote x by ex(a). Show that the following express ion , con-
taining n in t eg ra l s , 

1 1 1 1 1 
I ex ( I ex( I ex(. o . i ex( / x dx)dx). . . dx)dx)dx 
0 0 0 0 0 

equals F , , / F 1OJ where F is the n- th Fibonacci number . n n+1 ' n+2 n 
Solution by John Wessner, Melbourne, Florida . • . 

Let I denote the n- th such in teg ra l . Then 
n 

I r = J x dx = 1/2 '. 
0 

Let us a s s u m e that I , = F / F L1, in which case n-1 n n+1 

I n = / x F » / F » + 1 d x = { ( F n / F n + 1 , + l } - 1 

0 

IP 4- TT \ /XT \ ~ - TT /T, 

n+1 * = | ( F + F 4-1 ) / F 4-1 f = F _L7/F 

{ n n + 1 " n + 1 ; n+2' r 
which was to be shown. 

Also solved by R.J. Hursey, Jr; M.N.S. Swamy; Howard L. Walton; David Zeitlin; and the proposer 
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B - 7 1 Proposed by Douglas hind, University of Virginia, Charlottesville, Va. 

- 2 ' - 3 - 4 Find a + a + a + . . . , where a = (1 - 5) /2 . 

Solution by John W. Milsom, Slippery Rock State College, Slippery Rock, Penna. 

- 2 - 3 - 4 2 - 1 - 2 
If S = a + a, + a + . . . , then a S - 1 + a + a + . . « . - . 

Subtracting the f i rs t equation from the second, 

a 2 S - S = 1. + a"1 

S = ( l + a " r ) / ( a 2 - 1) 

S= l/[a(a - 1)] . 

Using a - (1 +V5T/2, we find that S = 1. If you use a = (1 + 5)/2 = 
= 6/2 = 3, as the problem r e a d s , the r e su l t is S = l / 6 . 

Also solved by R.J, Hursey, Jr; Sidney Kravitz; M.N.S. Swamy; C.W. Trigg; Howard L. Walton; 
John Wessner; David Zeitlin; and the proposer. 

A D D I N G R A B B I T S ? 

B - 7 2 Proposed by J.AM. Hunter, Toronto, Canada 

Each dis t inct Letter in this s imple a lphamet ic s tands for a p a r -
t icu lar and different digit. We al l know how rabbi t s link up with the 
Fibonacci s e r i e s , so now evaluate our RABBITS. 

RABBITS 
BEAR 

RABBITS 
AS 

A SERIES 

Solution by Charles W. Trigg, San Diego, California 

By the f i r s t column from the left, 0 < R < 5. By the seventh 
column, 2S + R = 10k, so S / 0, and R is even. That i s , Jl = 2 or 
4. 

By the fourth column, 3B + .1 = R, so B is odd. 
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With these and the obvious re la t ions from the other columns we 
can proceed to es tab l i sh the values of the l e t t e r s in the o rde r given in 
the table below: 

R B A S E T I 
2 7 4 9 6 3 3 

8 2 
4 1 9 8 2 6 5 

Since the f i r s t two se t s contain duplicate digi ts , the third set is 
the unique solution. Thus 

4 9 1 1 5 6 8 
1 2 9 4 

4 9 1 1 5 6 8 
9 8 

9 8 2 4 5 2 8 

That i s , RABBITS = 4911568, which j u s t g o e s to show what 2 rabbi ts 
can do. 
Also solved by Murray Berg; Rudolph W. C as town; Sidney Kravitz; John W. Milsom; 
Azriel Rosenfeld; and the proposer. 

D O U B L E SUMS 

B - 7 3 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Prove that 
n n 2n+r-2 m 

k=0 j=0 m=0 p=0 

where ( ) = 0 for n < r„ 

Solution by David Zeitlin, Minneapolis, Minnesota 

The given identi ty is valid only for r < n '+ 1. Since 

[n/2] n n 
Fn_! = 2 f'ih. £ Fk= F n + 2 - 1, and £ £ ) F k + m = F 2 n + m . 

j=0 k=0 k=0 
we have 

2n+r-2 

i + £ 
m=0 

2n+r-2 

p=0 rri=0 
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while for r <_ n + 1, we have 

k=0 j=0 k=0 

Also solved by the proposer. 

F I B O N A C C I P O L Y N O M I A L S 

B - 7 4 Proposed by M.N.S. Swamy, University of Saskatchewan, Regina, Canada 

The Fibonacci polynomial f (x) is defined by f, = 1 , £? - x, 
and f (x) = xf 1 (x) + f ~(x) for n > 2. Show the following: n n-1 n-2 te 

n 
(a) x Y f (x) = f M + f - 1 . 

r = l 

(b) f , , . = f ,. f ,. + f f . 
m+n+1 m+1 n+1 m n 

[ ( n - l ) / 2 ] 
n - j - l ^ x n - 2 j - l 

j=o. 

Donacci numbe 

[(n-l)/2] 

where k is the g rea t e s t in teger not exceeding k. Hence show that 
the n - th Fibonacci number 

j=0 

Solution by David Zeitlin, Minneapolis, Minnesota 

(a) Assuming the re la t ion to be t rue for n = n, we have 

n+1 

" L r w " ^ n + 1 ' Vin+1 ' x
n 

x J ] f (x) = xf ,. + (f ,, + f - 1) 
r = l 

W ^ n - f l " 1 • 

and the r e su l t now follows by ma themat i ca l induction. 
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(b) Using formula (6) in my paper , "On summat ion formulas for 
Fibonacci and Lucas n u m b e r s , " this Quar te r ly , vol. 2, 1964, No. 2, 
p„ 105, we have (since L = 0) 

f' + f • y oo 
/, v m+1 m J v^ r n 
( 1 ) z— = E f

m + n + i y > 
1 - xy - y n^o 

f °° 
{ 2 ) T = E f

m + i f
n + 1 y > 

1 - x y - y n=o 

f • y £ 
(3) 2 L J _ = E f f y11 • 

, 2 M m n J 

1 " Xy " y n=0 
Since (1) = (2) + (3), the r e su l t follows by equating coefficients of y 
(c) We note that 

oo 
_ y - v 4 /^w11 

n 

2 - E y*>y 
U x y - y n=o 

and r eca l l that 

1 
oo 

1-2tz+z ~ 
n=0 

E U (t)zn , 

where U (t) is the Chebyshevpolynomial of the second kind defined by 

[n /2] 
(4) Un(t) = £ (-1)J ( y ) ( 2 t ) 

j=o 
2 

with i = - 1 , we see that for z = iy and t = x /2 i , we have 

oo 1 T-̂  .n TT ,x . n 
x - x y -y n=o 

and thus f (x) = i U (x/2i) , the des i r ed resu l t , using (4). 
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Since F = f (1), we obtain n n 

|>-l)/2l 
*n = £ ("t1). • 

/1/so solved by the proposer. 

D E R I V A T I V E S O F F I B O N A C C I P O L Y N O M I A L S 

B - 7 5 Proposed by M.N.S. Swamy, University of Saskatchewan, Regina, Canada 

Let f (x) be as defined in B-74. Show that the der ivat ive n 
n-1 

f (x) = Y\ f (x) f (x) for n > 1. n " r n - r 
r=l 

Solution by David Zeitlin, Minneapolis, Minnesota 

If we differentiate with r e spec t to x the identity 

oo 

-2 = E f
n(-)y . 

l-x?-y n=o 
we obtain 

52 ^ = 1 - ^ ) ^ 1 1 : yx)yn) 
n=0 1-xy-y n = Q 

n 

= Z [ £ fr(x)fn-rW] y" 
n=0 r=0 

If we equate coefficients of y , we obtain 
n 

f (x) = L f (x)f (x) 
n A-' r n - r 

r=0 
n-1 

= Z f r (x)fn_r(x) (since fQ(x) = 0) . 
r=l 

Also solved by Lawrence D. Gould and the proposer. 

XXXXXXXXXXXXXXXX 


