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INTRODUCTION

The Fibonacci sequence {FJ} = 0,1,1,2, ... , with F. +
Fj+1 = Fj+2, j2 0, may be regarded as one element of a certain
space of sequences associated with the quadratic polynomial f(x) =
-1 -x+ xz, from which its remarkable properties derive. In the
following pages, we present first, in modern algebraic terminology,
an exposition of those parts of the general theory of such spaces of
linear recurring sequences which form a background for this point of
view. The spaces arising from quadratic polynomials are then con-
sidered in this setting, with some applications to number theory, in
particular to various tests for primality of the Mersenne and Fermat
numbers.

It is hoped that the paper maythus serveas an introduction and

source of reference for these aspects of the subject. [1] B

1. THE SPACE OF A POLYNOMIAL

n—1+Xn

Let f£(x) = mag-agX-...-ma

an arbitrary monic polynomial of degree n in Z[x] , i.e., with

X :(x—rl)...(x-rn) be
coefficients a, in the domain Z of rational integers, its (complex)
zeros beingtherefore algebraicintegers. With f(x) weassociate the
set C(f) of all sequences S = {SO’ 819 % with components sj in
the complex field LZ] C, in which Spreve28,.1 are arbitrary but

having

(R) aOSj +alsj+1 +... + an-lsj+n-1 = Sj+n

for all j> 0. Clearly, C(f) is a vector space of order n over C.
An obvious basis consists of the integral sequences [3] (i.e., with
components in Z):

Up= fogih = f1een0iagins e U= fu g o e

*Worked performed under the auspices of the United States Atomic
Energy Commission.

"f*R_efer to footnotes at end of article.
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of C(f), in terms of which every sequence S of the space may be ex-

pressed uniquely, in the form

S = SOUO +...t Sn-lUn—l’ sJ.E,C

A "Geometric'' sequence {1, T, rZ, . } with r&C is in C(f) if

and only if f(r) = 0.- Thus
R. = {131'.:1‘.2,...% 3 i:].,.--,n
i i’ 71

constitute the geometric sequences of C(f). Every element

ClRl +...+ can, ciéc s

of the space they span is therefore in C(f), in particular the integral
= = = 1 = J
sequence V= R1 +o..F Rn {vj% {n, a 1o } , with Vj Ty +

vt ? j2 0. Being in C({), its components Vv, satisfy the re-

n’ jtn
lations (R); these, together with the less obvious recursions

(a ym + a +...+ta

2 1 <
n-m n—m+1vl v m<n

n—lvm—l " Vm =

are '"Newton's formulas''.

The geometric sequences R’i also form a basis for C(f) over
C if and only if the zeros of f(x) are distinct. For, the matrix
R = [ri‘]] , i=1,...,n;j=0,..., n-1, has the Vandermonde deter-
minant Ar, - r.). When the latter is not zero, the inverse ma-

L k> ik i o 1

= [rij] exists [4] (over C) with I =R "R, from which it
follows that

trix R~

(B) U =r.,R, +...+1r. R, i=0, «e., n-1

By means of these equations, which may be regarded as the '"Binet

formulas'' for the general case, every sequence
= ‘ = + 2
S {Sjg {SOUO Sn-lun—lf of - C(f)
is expressible uniquely in the form

S=c,R, t...tc R, c.€C
171 n n i



1966 FIBONACCI SPACES 99

when the r, are distinct. This underlying structure of the sequences
of C(f), particularly of the integral sequences, is one of the most
curious features of the subject.

For example, if all zeros of f(x) are h-th roots of unity, it
is clear that every S= Ic.R, is pure periodic, with period ]:5]*52—
viding h. When aO 7! 0 and the r, are distinct, the existence of a
sequence S, withall the c; # 0, of period k, implies that all r, are
k-th roots of unity. For, 2, # 0 insures, via (R), t}%at S 1is pure
periodic, and we should then have a linear system Iri“"(r.k—l)ci =0,
j=0, ..., n -1, with determinant det R # 0. Thus (ri - l)ci =0
for each i, and either c; = 0 or r, is a k-th root of unity. Con-
sequently, if f(x) has distinctzeros which are roots of unity, and h
is the least positive integer for which all rih =1, then every
S = ZciRi of C(f) withall ¢ # 0 ispureperiodic of period k equal
to h. For, by the first remark, klh, and by the second, h £k,
hence, every period k = h.

Note: The following generalization of the '"geometric basis''
theorem was suggested by the referee: If r isa zeroof multiplicity
m for f(x), then r is a zero of the first m-1 derivatives of f(x).

From this one may show that the m sequences

are in C(f), where (}Jl) =1 for h=0, and (}31) = (j)(j-1). .. (j-h+1) /h!
for h 2 1. Moreover, if f(x) has the distinct zeros TiseeesTys

1 £ k £ n, of multiplicities m ..,m, respectively, thenthe set of

n sequences consisting of k slubsets sﬁchas thatabove, one for each
zero r., are linearly independent, and so form a basis for C(f) in
the genleral case, provided only that zero, if it occurs among the T
has multiplicity 1. The linear independence follows from the non-

singularity of the ''confluent Vandermonde matrix." Cf. ref. [1]

2. LIMIT THEOREMS

If lim Sj+l/sj = r exists for a terminally non-zero sequence

S of C(f), then r must be one of the zeros of f(x). For, the
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n-l(sj+n-1/sj) J+n/S i
/sj), and so on, we have f(r) =0 in

recursion (R)implies ag +a1(sj+1/sj) ...t a
Since Sj+2/sj = (sj+2/sj+l)(sj+1
the limit. As a partialanswer to the questions arising here we include

Theorem 1. (A). If one zero r of f(x) exceeds all others in
absolute value, then S = {SJ§ Zc R has lim s. /r =cy. Hence
if S # 0, S is terminally non-zero, nd lim S_]-I-l/s =T,

(B). If lr l <1 forall i2 2, thesequence S has lim (s, —(:1r1 )-
Hence, if S is an integral sequence, s. isthe closest 1nteger to ¢, l
for large j, and, if ag # 0, no other integral sequence ).'ciRi has the
same c,.
iy j j
Proof, (A). sj/r1 S cz(rz/rl) +...+cn(rn/r1)-> e
]2 =
If c; # 0, then 8 #0, j2 J, and so Sj+l/sj

11 .
rl(s'+l/rlJ )/(sj/rl‘])—-, rlcl/c1 =1

- J ] j , o
(B). Sj c T = cyr, +o..t c r, 0. Twointegral sequences with

the same c, are therefore terminally identical, and hence identical,
if a, # 0. Indeed, it is clear from (R) that two sequences are equal if

they agree on any n consecutive corresponding indices.
3. INTEGRAL SEQUENCES

The integral sequences F = {fj? of C(f) form a module Z(f),
withintegral basis UO, ooy Ur1 > every such sequence being uniquely
expressible, with integral coefficients, in the form

= +o.. 7t ’ . .
F fOUO fn-lUn-l f_] &Z

The sequences of Z(f) with fO = 0 form a sub-module of Z(f), and
have remarkable divisibility properties, as we shall see.

The sequences of Z(f), considered modulo m, form a finite mod-
ule Zm(f) of exactly m" sequences with components in the modular
ring Zrn = Z/Zm, the first n arbitrary, the rest governed by the re-
cursion (R) mod m.

Suppose now that m2 2 is an integer prime to a,, and let

0
F= {fjf be a sequence of Zm(f). It is clear from (R) that F is pure
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periodic if it is periodic at all, hence that F is periodic if and only

if its n-tuples

(fo, cees fn-l) and (fk,

Tt fk-l—n—l)

are identical for some positive k, the leastsuch k being its period.
Since F = 0, of period k=1, is the only sequence of Zm(f) con-
taining the zero n-tuple, anon-zerosequence F can containat most

-1 .
m" different n-tuples, and so must be pure periodic of period

k Sm" - 1.
Moreover, F has period k = m™ - 1 if and only if its first

m™ -1 n-tuples
(fo, P | 1), (fl, oo fn), e (fmn_z, cens fmn+n_3)

are all distinct. In such a case, each of the m” - 1 non-zero se-
quences of Zm(f) is a terminal sub-sequence of F, and so also has
this period. The situation cannot arise for a composite modulus
m=ab, a2 2, b2 2., For, suchan F contains the n-tuples (1,0,
e, 0) and (b,0,...,0), hence aF is inthe space and contains the
n-tuples (a,0,...,0) ;=/ (0,0,...,0), which is impossible.
The maximum period m" -1 is attainable in case of a primf_e .
modulus, which may be seen from the theory of Galois fields [17] h
n- n

Let p bea primein Z, and suppose f(x) = -a -2 X-...-a +x

x
is an irreducible polynomial in Zp[x] . S?J.Ch an f(x) neylcists for
every p and n. The sequences of Zp(f) may then be regarded not
only as the integral sequences, mod p, of the space C(f), but also in
a quite different light. For there exists a field C* D Zp’ the ''root-
field" of f(x) (abstractly, the Galois field GFpn)) of exactly pn

elements, uniquely expressible in the form

n-1
s_f0+f1r+...+fn_lr ,ij.Zp
in terms of which we may write
n-1
f(x):(x-r)(x-rp)...(x-rp )

with n distinct zeros in C%*.
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Following the plan of é 1, we find that the set C¥*(f) of all se-
quences S = {Sj} , wWith sj €C* governedby the recursion (R) in C*,
is a vector space of order n over C%*, consisting of exactly (pn)n
sequences, and containingthe original module Zp(f) of pn sequences
F= {f.? , .67 .

i) gop

The zeros of f(x) beingdistinctin C#%*, the geometric sequences
R'i whichthey generate forma basis for C¥*(f), in terms of which every

sequence of the space may be uniquely expressed:
S=c, R, t...+c R, c. eCx*
171 n n J

1
the zeros of f(x) displayed above.

with components sj =c rl'] +...t cnrnJ, j2 0, wherethe r, arenow

This sub-structure of the sequences S reveals their periodic
character. For, the multiplicative group G of C% is cyclic, with a
generator s of period pn— 1. If h is the period of r in G, then
h]pn - 1, and the element rpi has period h/(h, pi) = h, whichis there-
fore the period of every zero of f(x). An obvious modification of the
argument at the end of § 1 shows that every mon-zero sequence S of
C*(f) has period h.

The element r itselfneednothave period pn - 1; however, some
element s # 0 of C%* does generate the full group G, andits minimal
polynomial mod p is irreducible of degree n in Z [X] Hence there
exists, forevery p and n, anirreducible f(x) ofdegree n in Z [x]
for which the zero r in C¥% generates G, and every sequence #0
of the corresponding space C%*(f) has period p][1 - 1. We summarize
these results in more conventional terms in

Theorem 2. If m2 2 isaninteger primeto a_ , then, modulo

0’
m, every integral sequence F ={fj} of C(f) is pure periodic of per-

kl ka, f3k) * s 0 . If
m 1is composite, every period is less than m™ - 1, If p is a prime,

iod k émn - 1. Hence, if m]fo, then also mlf

and f(x) is irreducible [6] mod p, all integral sequences F of C(f)
are pure periodic with the same period h, where h lpn -1, For every

p and n, there exists an f(x) such that h = pn - 1.
Example 1. For f{(x) = —2-x+x3 mod 3,

V= {602021221022200101211201llC.)O, .o i— ,
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the period [7] being h = 26.
Ifaninteger m 2 1 divides some f., j2 1, of an integral se-

quence F, the least positive such j is called the rank of m in F.

Corollary 1. If F is an integral sequence of C(f), with
fO = 0, everypositive integer m primeto a hasarank r <k £ m"
-1 in F.

4. THE SPACE OF A QUADRATIC

For {(x) = -3y - ax + xz = (x—rl)(x-rz),

C(f) of all sequences S = {sjg R sje C, satisfying

the associated space

= ] >
(R) 2085 v 318541 T Sy4p0 J2 0
has the basis U, = {1,0,a0,,..§ LU, = {O,I,al,...’

: ¢ 2
the sub-space of vectors CIRI + CZRZ’ where Rib il’ri’ TS ,} ,

i=1,2 are its geometric sequences. The particular sequence

} ., and contains

. A 2
V = R1 +R2 %ij }‘Z,al,Zao +a1 , f

consisting of the integers Vj = rlJ + rz‘], j2 0, is of special import-
ance.
The geometric sequences Ri forma basis for C(f) if and only

if r) # r,, in which case the matrix R of él is

The corresponding ''Binet formulas'' are accordingly

o0 = PRy T TR/ (xy - w5)

(B) U
U, = (R - RZ)/(r1 -T,)

or .explicitly,

_ j j - _ J_o -
TR P LN S VAR R SO R P VA REPY)

The relation u,. is here manifest,

0j -~ %o"1,j-1 '
We 1.<nowfrom 52 that, if lrll > lrz ', lim ulj/rl‘]zl/(rl-rz),

. J_ . — 1 -
lim vj/r1 =1, and lim ul,j+l/u1j lim Vj+1/Vj Ty
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Again, if }rZ’ <1, then., for example, lim (Vj - rlj) =0 and
vj is the nearest integer to rlJ, j 2 J; moreover -if ag 7‘ 0, V is the
only integral sequence R1 + CZRZ'

The integral sequences F = {fj} of C(f) form a module, with

integral basis UO’ Ul’ and, modulo an integer m prime to a,, are

. 0
all pure periodic with periods less than m . For a prime modulus p,
if f(x) isirreducible mod p, these periodsare equal, anddivide p2 -1,
and there exists an f(x) such that every period is exactly p2 - 1.

0= 0) has

the single basic sequence Ul’ which is hereafter denoted simply by

The sub-module of sequences F = flUl (i.e., with {

U= g(uji- = ?(O,l,al,...g . For f(x)= —l—x+x2, it is of course the
Fibonacci sequence.

. . 2 .
Every integer m prime to a, has a rank r Sk <m in U,

0
where k is the period of U mod m; indeed mluk, Uypersees similar
statements may be made for every F = flU, and F = fOUO.

It is interesting that every sequence of C(f) is expressible in

terms of U alone. For example, from V = ZUO + alU follows

= + 4 .
Vj aouj 1 uj 1, J = 1
Example 2. For

f(x) = I'- 2x +x° = (x - 1)%, U= 0,1,2,3,4, ... V= 2,2,2,2,2,..
Example 3. For

fx) = 2 - 3x+x= (x-2)(x- 1), u, = 2) -1, vi= 20 +1

. . . _ n _ 1.
satisfy the simple recursions uj+1 Zuj 1, V'j+1 Zvj 1. Note that

up =2P 1, v k= Z.Zk+ 1. The sequence U mod uj has period j.
2
Example 4. For

f(x) = -2 - x +x° = (x - 2)(x + 1), up:(2p+l)/3, vp:Zp-l ,

for odd p, and v, =225 41, kz 1.

5. THE SEQUENCE U
. o

e
Even for the general quadratic [8]',' the sequence

. 2 \
U= {O,l,al,ao+al , %
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has some remarkable properties, which flow from the
Lemma 1. For all

1 > =
Jz0,t20, aoujut +U.J.+1ut_'_1 uj+‘1:+1

The statement is easily proved, for fixed t2 0, by induction
from j, j*l1 to j+2, being obvious for j = 0,1. The induction step

reads

a.u.ta,u,.

= aglaguytayu e tlagu,) fagug e, =

30%42% T 813041
. + . = u, .
oMttt T Ytz T Y3
From this follows
Theorem 3. Thecorrespondence j—> u., preserves divisibility
, or u,|u,,u

UL s 00
k 3121 35
= 1, the final statement is trivial for j =0,1.

i.e., Jjlk implies ujlu
Since uy = 0, uy
Fixing j 2 2, weprove uj Iujq by inductionon gq 2 1. Thisis trivial

for gq=1. Fix q 2 1, and assume u.!ujq. Setting t=jg-1(2 1)

in the Lemma shows that u, 'u. .
j{q+l)

Lemma 2. Ifaprime p dividesanytwoconsecutive Uy then

p divides age

If p’ujﬂ’ Y42

and ultimately p u, = 0, uy

Theorem 4. Let m beapositiveinteger primeto a

0’ thenfrom (R) follows pluj, u.j+1

= 1, which is false.

but not a

0 Then,
modulo m, U is pure periodic of period k <rn2, and mluo, Uy

u Thus m has a rank r £k in U. Moreover, m’u

2k e 0’

u, u, , ... and no other u., i.e., mluz if and only if r’x_’. In

r’ 2r
particular, r'k.

We have only to prove mlu’e implies r 'é, which is obvious
for £=0. For £

> 1, we have r £.¢, by the minimality of r.
Write £ =rq+j, 0Lj <r, q21l. For t=rq-1(20), Lemmal

reads
+u, =
aOujurq—l u]+l urq u,

Since mluj, u, u (Th. 3), we have mla Now m
d r rq

u.u .
07j rg-1
is prime to aO, and hence also to urq 1’ since a prime common to
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this and m 1is also in urq’ contradicting Lemma 2. It follows that
m‘uj, where 0 5 j < r. Hence j=0 and £ = rq. Weturntothe spe-

cial case of

Lemma 3. If (a.o, al) = 1, the sequence U has the properties:

itv

(a) (ao,uj) =1, for all j 1,

= 7>
{b) (uj’ujﬂ) 1, forall j 2 O,
= 3 > 0.
(c) (uj, uk) (uk, ujJrk) for all j, k 2 0
Proof. (a) Inductionon j2 1. For j=1, trivial. Assuming
= 1 2 =
(a.o, uj+l) 1 for fixed j2 0, weseefrom (R)that (ao, uj+2) 1 also.
For, a prime common to these divides a,u. and hence u.,,, since
17j+1 j+1
(ao, al) = 1, violating the induction hypothesis.
(b) is clear from Lemma 2 and (a).
(c) is trivial when j or k is zero.
For j,k2 1, wehave from Lemma 1, a u.u + Clear-

T) (0 S T B N B
ly (uj, U;k) Iuk, uj+k and hence (uj, uk) Uy uj+k)" Conversely,

(uk, uj+k) laoujuk_1 .

The former is prime to a, by (a)and to u by (b). Thus it di-

0 k-1
vides uj, Uy and so it divides (uj’ uk).
Note: It is clear from (a) that the only integers m dividing
components u.j of U are prime to ag:
Theorem 5(A). If {gj\\,ﬁ is an-arbitrary sequence of integers

with gg = 0, thenthe correspondence j—» g. preserves g.c.d.'s, that
for all j,k 2z 0.

—

1}

(B) In particular, the sequence U has thisproperty whenever

(aO, al) =1.

Proof: (A) Thenecessityis obvious. Inprovingthe sufficiency

we may suppose £ 2 k. The conclusionis clear for k=0, since g = 0.
If £ 2k> 0 and k].fZ = gk, we have
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B T Bkt (B g = (gag) = = (gogy)

In the remaining case, £ > k> 0, k T2, we write £ = kg +j, 0 < j
<k <.£, -and obtain (gj, gk) = (gk, gj+k) = ... = (gk, g,_,—,). It is then
clear how the Euclidean algorithm, proceeding from this relation
through a sequence of similar steps and terminating in an equation
such as L=KQ+J, 0 <J <K <L, with (£, k) = J‘K, leads to the
conclusion (gg, gk) = ... = (gL, gK) = (gK, gJ) = g5

(B) The application of (A) to U 'is now clear from Lemma
3(c).

Note: The non-trivial part of Th. 4 follows elegantly from Th.
5(B) when (aO, al) = 1. For, if r isthe rankof m, and m’u’c, then

ml(u ,u ;(r,,/é)lr, and r = (r,ﬂ)!.ﬁ .

e %) U, gy T

Corollary 2. If T 7 r, are relatively prime integers the
correspondence j—> uj = (1‘13—1‘2'])/(1'1 - rz) is g.c.d. -preserving.

For, {(x) = (x - rl)(x - rz) = -ao-a1x+x has a; =71 + r, and
a, = -r,r, relatively prime.

° Nlotz: It is. clear that the set of all g.c.d. -preserving func-
tions g(j) ontheintegersisaclosedassociative system (semi-group)
with identity under the composition £(g(j)). Theorem 5(A), suggested
by the referee, characterizes these functions. The sequences U re-
sulting from quadratics with (ao, al) =1 arenon-trivial functions of
the kind. As a ''trivial'' example consider g(2j - 1) =1, g(2j) = 2j.
Although '"well-known'' we include the seldom fully stated

Corollary 3. Forintegers T # r, with (rl, rz) =1 anddif-

2
ference d = Tyo- Ty, let uj = (rlJ - rz‘])/(r1 - rZ), iz 1.

(a) (4, uj) = (d, )

(b) A prime p'up ifand onlyif pld. Such a prime p has rank p
in U.

(c) If pld, then pTup and (d,u ) = 1.

(d) If p|d, then p]up, (d,u) = p, and if p is odd, pz’[up.
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() Every prime factor q # p of u, is of form 1 + hp.

(f) If r, >,

q = q(p) dividing up, of form 1 + hp, and q(p) is one-one.

> 0, thenforeveryodd prime p thereexists a prime

Proof. (a) is trivial for j =1, and follows for j2 2 from

- i_ _oqqiml A 4-3 J
uj-(d+r2) rz)/d-(d +C1d r,te. 4Gl

j-2 . j-1
JZrZJ )d+_]I‘ZJ (a%*)

since (d, rz) =1,

(b) From (a¥*), up = dp—1 mod p. The statement about the rank

of p follows from (a).

(c) follows from (b) and (a).

(d) follows from (b), (a), and the congruence u_ =z pr Pl od
2 & p=PT2
p_ implied by (a*) for a prime p 2 3.

(e) If qlup, q # p, then rlp = rzp mod q, r £ r, mod ¢, since

(d, up) is 1 or p;and qTrl, Tye We present two proofs: (1) Letting
rzr:"z = 1 mod q, wehave (rlr‘z)p =1, r ré #Z 1 mod q implies p = per-
iod (r,r} mod q)|®(a)=q-1=hp. (2) rlq'l 1 = rzq_l
u ,a ) =1u , by Cor. 2. Hence 1) = hp, otherwise
altag_pu)=ul ) ) by plia-1)=nhp

(@-1,p)=1, qju; = 1.

mod q,

Wi

(f) Since u, = rlp-1 t... t rzp_l > przp_l > p, it follows that
there exists a prime q = q(p) of form 1 +hp 2 7 dividing up for p
odd, and by Cor. 2, this function is one-one. Of course the construc-
tion is valid for every pair T T, covered by the corollary, the sim-
plest being 2,1 with up = 2P_1. It is not known whether an infinity of

primes 1 + 2p exist.

Corollary 4. If

= > = = < = ooy
(ao,al) 1 and agra 2 1, l:henu0 0 <u1 1 Su,=a; <u, <uy |
and
(a) j compositeimplies u. composite, (b) uj|uk implies j|k,
except in the single case a, =1. If a, =1, (a) is false only when

1 1



1966 FIBONACCI SPACES 109

j=4 and uy is prime, while (b) is false only when j =2 and k is
odd.,

Proof. It is clear from (R) that u, is increasing as stated.

(a) Let j=hi, h22,i2 2. By Th. 3, up s Uy uj, where
u,u, < uj, since 2 £ h, i <j. If w or u, exceeds 1, u.j is com-
posite. Suppose both are 1. Then clearly h=1i=2, and 1 = u = u
=u, =2y, j=hi= 4, uJ. = uy, and (a) follows with its proviso.

(b) If uj U then uj :' (uj,uk) = u(j,k) (Th. 5), where
(i, k) € j. If equality holds, j jk; if inequality, we must have (j, k) =

=u, = al, k odd, and (b) follows.

]L,_]=2,1=u1 2

6. THE LUCASIAN SEQUENCES U, V

The integral sequences

; 2 N
U= {uj} = {O,l,al, } and V = {vj} = {2,211,2:10-1-:&1 seeet

with
=y j . - J j
uj = (r1 - T, )/(r1 rz), vj =1 + LPA

of the space C(f) associated with the quadratic

2
f(x) = -2 - g% +x = (x - rl)(x -,
where
1 1
21 2z 21 2 2
rl——Z(a1+Q)’ rz"z(al'Q)y Q—al +4a0,
1
r, +r,=a,, r,r,=-a,, r, -r =C)z a,. Q%0
1 2 1’ 7172 0’ 1 2 - 0 ’

have curious interrelations, which have been exploited by Lucas [4;
p. 223], and Lehmer [5], (in even more general form) in the design
of various ''tests for primality'. We present here some old and new

aspects of this.

The following relations are easily verified using the above form-

ulas for u., Vj:
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1 = ' =
(1) ujvk +ukv‘j 2uj+k (1a) ujvj uZj
- - 2(-a )] >
(@) wyvy -y = -2agfey o (k2 )
(3) Vjvk + Qujuk = 2vj+k (3a) vj + Quj = ZVZj
; = 2(-a ) >
(4) Vjvk Qujuk 2( ao) Vk—j (k 2 J)
2 2 j
(4a) Vj - Qu,. = 4(-a0)
- 2 j
(5) VZJ. = vj - 2(—a0)
(6) u1=l, V].:al
(7) up = Q(p-l)/Z mod p, for every odd prime p.

For example, we compute

1 1 1
P~2  _ 2.P A2\ _ P i, p_ p-i.i/2
27Q up-(al Q)T -(a -Q7) = 15 (A-(-1))Ca "t Qf,
so
Zp—lu = 1P cPa p—lQ(l_l)/Z, from which
P 0 il

i odd

-1
up = Q(p )/2 mod p.

A primeis saidto be regular (relative to £(x)) in case p TZaOQ.

We know from Th. 4 such a prime has rank r = r(p) |k(p) <=p2 -1 in

U, where k(p) isthe period of U mod p, and p luo, Uy e and
no other u.. More remarkably, we see now, from (2), (1), (6), and
(7), that
_otp-1)/2 (p-1)/2_ _
ay Q a; = ZaLOuP_1 and a; + Q a; = Zup_l_1 mod p.

Lemma 4. If p isaregularprime, then plup_1 if (Q/p) =1,

where p'up if (Q/p) = -1 (Legendre symbol!), so that always

+1
r(p) Sp+1 in U.
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Lemma 5. If p is a regular prime, then PIVzk if and only
. k+l .
if r(p) =2 in U.

Proof. If p v,k then p|u2k+1 by (1a), but pTqu by (4a),

hence r(p) =2 . Conversely, if p’u2k+1 but not Us ks then p]vzk
by (la).

These are the basic lemmas. For computational reasons, we

¢ . _ 2 _ 2
note tl;{at the sequen_ce ,_vzk% , with v, = ZaO ta;t, vopgr = (vzkg
- Zaoz , k2 1 (cf. [_5-_[) is related to the auxiliary sequence {Skg

defined by

= - >
Sk+1 Sk 2,k 21
. ; . _ . 2k-1 S
via the simple equation Yok = 3 Sk’ k2 1. Thus, whenever
ag Ialz, {Skg- is an integral sequence, and a regular prime p di-

_ 2
S, =2+ (a /ao),

vides v,k if and only if p Sk'

We may state one of Lehmer's results as

Theorem 6. Let M= Zq—l, where q is an odd prime, and

suppose aq,a; are integers with the properties

(a) If p is a prime divisor of M, then pTZaOQ where Q = al2 +
4a0.
(b) M prime implies (Q/M) = -1 and (aO/M) =1,
Then M 1is prime if and only if M,V(M+1)/Z, (equivalently
S, if aolalz).

Proof. If prime p]M'V(MH)/Z’ p is regular by (a); hence,
in U, r(p) = M+l &£ p+l by Lemmas 5,4, Thus p]M < p,and M = p,
prime. Conversely, if M is prime, itis regular by (a), and from
(b), (3), (6), and (7) follows alz -Q= 2VM+1, or Vp+] = —Zao mod
M. Then from (5) and (b), —Zao = (v 2)2 - ZaO(M+E)/2, and M
divides the stated vj.

(M+1)/

Example 5. For ag =2 = 2, Q =12, (a)and (b) are satisfied.
For, only the primes 2 and 3 divide ZaOQ, and M =1 mod 2 and
M =1 mod 3. Moreover, if M is a prime (Q/M) = (3/M) = -1, and
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(aO/M) = (Z/M) =1, since M= -1 mod8., Since 2, alz, the sequence
{ 5,5 isintegral with S =4, and M isprime ifand only if M S
In the same fashion one may prove

Theorem 7. Let F=22%+ 1, t2 1, and suppose a

0?2y are
integers with the properties
(a) If p is a prime divisor of F, then p1'ZaOQ,
(b) F prime implies (Q/F) =1, (aO/F) = -1,
Then F 1is prime if and only if Flv(F—l)/Z’ (equivalently

. . 2
SZt-l’ if a.0|a1 ).

Proof. Suppose prime pIFIV(F—l)/Z' Then p 1is regular and
in U has r(p)=F -1 <p+1, so plF S p+2. Clearly F = p, other-

wise 2p SF £p+2, p£2. If F is prime, it is regular by (a), and
2 _ -
from (b), (6), (7), (4), a;” - Q= -2ayve mod F or Vo1 =2 mod

F. From (5) and (b), 2 = (V(F-l)/Z)Z + 2 mod F and the theorem fol-
lows.

Example 6. For ag=2a; = 3, Q =21, onlythe primes 2, 3, and
7 divide ZaOQ, whereas F =1 mod2, F=2 mod3; as for 7, note
that either Zt =1 + 3h, and then F =3 mod 7, or Zt =2 + 3h, and

then F =z 5 mod 7. Hence (a) holds. If F is prime, we have (3/F)
= (F/3) = (2/3) = -1, and also (7/F) = (F/7) = -1, since (3/7)= -1 =
(5/7). Hence (Q/F)=(3/F)(7/F) =1, and (aO/F) = (3/F) = -1, as re-

quired. The auxiliary S, are integers, with S, = 5.

1

Note: The tests indicated in Th. 7 have no computational ad-

k

vantage over the orthodox N and S condition 3(}?_1)/Z = -1 mod F.

Indeed, the latteris a specialcase of Th., 7, with a, =3, a, = 2. For

0 1
the latest computational results see the relevant articles in Math.
Comp. 18 (Jan. 1964) and Scientific American (Nov. 1964, p. 12). The

least undecided Fermat number is F17.

7. THE SPACE Zp(f)

Let p be a prime of Z, and f(x) = -a

2 -
- e
g 2 xtx Zp[x_{. The
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regularity condition pTZaOQ, which we here assume, insures that p
is odd, and the zeros T, of f(x) in its root field are non-zero and

distinct.

Since f(x) = (X—Z'al)2 - (2‘)2Q, where 2' is the inverse of 2
mod p, we see that this root field is Zp if (Q/p) = 1, or the Galois
field C¥ = GF(p°) of 43 if (Q/p) = -1.

(I.)  If (Q/p) =1, there isa beZ such that b> = Q mod p,
and f(x) is reducible in zp[x]. Indeed, in zp, f(x) = (x - 2'(a; +D))
(x - 2'(a1 - b)) has the distinct zeros indicated. The space Zp(f)
itself has basis Rl’ R2 over VA ea.ch of its sequences being ex-
pressible inthe form s, = ClrlJ + chZ‘], s riézp' Since rip_1 =1
mod p, every S is pure periodic of period dividing p-1. By an ar-
gument now familiar, if h isthe least exponentfor which both rih =1,
every sequence with both ¢y £0 (e.g., UO’ U, and V) has period
h.

This case is of special interest when p = 221: +1 is a prime,
The conditions (Q/p) = 1, (ao/p) = -1 then hold if and only if f(x)

has zeros in Z with (say) r, a quadratic residue, and r, a non-

2
has period p-1, and r

1

residue. In such a case, r may have any

1 2
period m’%(p—l), in Zp. From the above expressionof s, in terms

of the T, it is clear that one sequence (S = 0) has period 1, exactly

p-1 (those with ¢, =0, <, # 0) haveperiod m, and the (p-1)p re-

1

maining sequences (with ¢y 40, ¢, arbitrary) have period p-1.

2
(II.) If (Q/p) = -1, f(x) is irreducible in Z.p[x], with zeros
T, P in C*, where, in the cyclic group G of order p~ -1, r and
rP have a period h!p2 - 1. The geometric sequences Ri are now
in C*(f) and form a basis for the latter space over C¥*., All se-
quences S # 0 of C*(f), in particular those of Z (f), have period

h. Since (r)p-lhl p)p+l = rp+1(1 - rpz'l) =0, plu

- (r pHL”

For every p 2 3, there exists an irreducible quadratic (rela-
tive towhich. p isnecessarily regular)for which r hasperiod pz-l.
Every sequence of the corresponding space has period pz-l. Since

plu , and every pair (0,1), ..., (0, p-1), indeed everypair ¥ (0, 0),
p+l y
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must appear exactly once asan adjacent pair in the sequence {uo, v
up2_1} mod p, it is clear that p+l is itself the rank of p in U, and
the above sequence consists of the terminal element and p-1 blocks of
ptl elements each. Moreover, each block arises from the first by
renaming its elements, since eachis the beginningof a sequence of the

space which is a multiple of U itself.

Such a sequence thus provides a solution of very special type for
the m = p, n=2 problem (Cf. footnote [7]) Lehmer's quadratic (Ex.
5) f(x)= -2—2x+x2 mod p= 23 -1=7 hasaroot r ofperiod 7Z -1 =48,

and mod 7 we find

U= {01262216 05323352 04131143 06515561 02454425 03646634 0,..*

FOOTNOTES

1. Most of theideas presented may be found elsewhere, sometimes

in less general form. See for example references [3, 6, 10].

2. A parallelversionis obtainedif C iseverywhere replaced by the
"root field' of f(x) over the rational field, or by the abstract
root field of f(x) mod p. See [7].

3. Although linearly independent, one may note, among others, the
. _ C >
relation uoj a'oun-l,j—l’ iz t.
4., Explicitly, for i=0,1,...,n-15j=1, ..., n,

i
r..=(-1)o(n-1-1i;j)/ 7 (zr, -r.)
i ( J.)/k#j K
where the o denotes the elementary symmetric function of de-

gree n-1-i in the n-1 roots Ty other than rj. (Here o =1
when n-1-i=0). Cf. ref. [8].

5. Periodalways means minimal period, while pure periodic means

that periodicity obtains from the beginning of the sequence.

6. The root field for a reducible f mod p exists, butthe periodicity

properties are more complicated.

7. The method indicated (with suitableinsertion of a zero) provides
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an algebraic construction of a sequence of integers mod m, of
length mn+n-l, containing no repeated n-tuple, in the case of
prime m. The existence of such sequences for arbitrary m,n
is a well-known corollary of a theorem on graphs [2, 9]. (Re-

mark of referee.)

For the Fibonacci case, see [10], on which the present section

is modelled.
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RELATIVELY PRIME SEQUENCE SOLUTIONS OF NON-LINEAR DIFFERENCE EQUATIONS

J.W. Layman
Virginia Polytechnic Institute

In the following we present a one-parameter family of first
order non-linear difference equations which are shown to possess
solutions which are sequences of (pair-wise) relatively prime num-

bers. In particular, we show that the sequences

Zk
(A) F_=2° +1
(B) G¥=2cosh |25 cosh™! Poof 13
K > —

where n, is an odd or even integer according as the sign in (B) is
plus or minus, respectively, consist of relatively prime numbers by
virtue of being solutions of such difference equations. Sequence (A)
is the famous sequence of so-called Fermat numbers originally con-
jectured by Fermat to consist only of prime numbers (later disproved
by Euler). The present method provides anew proof of the relatively
primacy of these numbers (see El], p. 14). Sequence (B) is appar-
ently new andis the only other important solution which has been ob-
tained in closed form.

These specific results are based on the following simple theorem:

3y

Theorem: Ifthe sequence of integers ;’guk§ satisfies the difference
(8
equation
1) - ul bu, + b
) epn T U T Py
where k=0,1,2,... and b is integral, then the distinct elements
u s U have no common divisor except possibly for the divisors of
1 2
b.
Proof. We may write equation (1) in the form
L W TN Tl
which by iteration may be expressed as (Continued on page 152.)
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AN ALMOST LINEAR RECURRENCE

Donald E. Knuth .
Calif. Institute of Technology, Pasadena, Calif.

A general linear recurrence with constant coefficients has the

form

Uy =a,, U, =a,,.0.,U =a_ ;
1 2’ *r-1 r ’

1:

u b.,u + b u +...+ b u

n 1 ' n-1 2 n-2 " r n-r’ n2r

The Fibonacci sequence is the simplest non-trivial case. Consider,
however, the following sequence:

(1) =1

|

®n” Pn-1 +¢[n/2] » >0

In this case, successive terms are formed from the previous one by
adding the term '"halfway back'' in the sequence. This recurrence,
which may be considered as a new kind of generalization of the Fib-
onacci sequence, has anumber of interesting properties which we will
examine here,

The sequence begins 1,2, 4, 6,10, 14, 20, 26,36,... . Itis easy
to see that all terms except the first are even, and furthermore ¢
is divisible by 4 if and only if n = Zz'k-1 (mod ZZk) for some k 2 11?
We leave it to the reader to discover further arithmetic properties
of the sequence.

The sequence ¢n has aninteresting combinatorial interpreta-
tion: ¢, is precisely the number of partitions of the number 2n into
powers of 2, For example, 6 =4 +2=4+1+1=2+2+2=2+2+
l1+1=2+1+4+41+1+1=14+1+1+1+1+1, and ¢3:6. Tover-

ify this interpretation, let P(m) be the number of partitions of m

The preparation of this paper was supported, in part, b‘y NSF grant
GP-212. Acknowledgementisalsomade tothe Burroughs Corporation
for the use of a B5000 computer.
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i = too ceo
intopowersof 2. If 2n 2 + a, + ao where a; 223, > Aap

and each a; is a power of 2, there are two cases: (i) a, = 1; then

ay tooot ar 1 is a partition of 2n-1; (ii) ak> 1; then al/Z + aZ/Z +
eest ak/Z is a partition of n. Conversely, all partitions of 2n are
obtained from partitions of 2n-1 and n inthisway, so P(2n) = P(2n-1)
+ P(n). We also find P(2n+l) = P(2n) by a similar argument; here
only case (i) can arise since 2n + 1 1is an odd number. These recur-
rence relations for P, together with P(l) =1 and P(2) = 2, establish
the fact that ¢ = P(2n).

The same sequence also arises in other ways; the author first

noticed it in connection with the solution of the recurrence relation
(la) M(0) =0

M(n) = n + min (2M(k)+M(n-1-k))
04k<n

for whichit canbe shownthat M(n) - M(n-1) =m if ¢ < 2n < ¢
m m+l,
and

1 n-1 -1
M(Zd’n—l)— 2 ¢n_L—4¢2n—1]

Recurrences such as (la) occur in the study of dynamic programming
problems, and they will be the subject of another paper.
Let us begin our analysis of (bn by noticing some of its most

elementary properties. By applying the rule (1) repeatedly, we find

6 =
(2) gy = 2Byt t )

Another immediate consequence of (1) is

2
(3) 5" ¢ ¢

2
2n+l " 2n-1 ¢n

The sequence ¢n grows fairly rapidly; for example,

¢500 1981471878
20

¢10000=2.14><10 .

Infact, we now show that ¢n grows more rapidly than any power of n:
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Theorem 1. For any power k, there is an integer Nk such that

<1!n>nk for all n > N..

k
k+1

Proof: Let N be such that (2°7141) 2 (2 + L)<

)
k+1
n

, and let

a = min (¢n/

N £n £ 2N

Then by induction ¢n A <:1nk+1 for all n AN, since this is true for

N £ n € 2N, and if n > 2N

)

K1 k+1
b, = b +¢[n/2] S a(n-1) +{n/2]77)
Kl | n-1k+l 1 41 + 1
> a(tn-1)" + (D = a0+ D) 2 an ) )™
2
> a(t + Ly (ot 2 gkt

If we choose Nk >1/a and NkZ N, the proof is complete.

We now consider the generating function for ¢ o Let

2 3
(4) F(x)_¢0+¢1x+¢2x +¢3x + ..

Notice that

2 2. -3 4.4 5
(1+X)(F(x)—¢0+¢0x+¢ 1¥ +¢1x +¢2x +¢2x + ...

1
©

2" 3 4
+ (¢1—¢O)X+(¢Z—¢1)X + (¢3—¢2)X + (¢4-¢3)x +. .

thus

We have therefore

2 4 8
(5) Fix) = (1+x)(1+x7)(1+x )(1+}28).., _ .

(1-x) (L% (Lo ) (Lox ) e (Lo 5 (Lmx ) (Lo ) (L) - -
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From this form of the generating function, we see that F(x)
converges for lxl < 1. (Asa functionof the complex variable z, F(z)

has the unit circle as a natural boundary.) It follows that

lim sup \n/¢n =1 |,

i.e. the sequence d)n grows more slowly than o™ for any -constant
a > 1, This is in marked contrast to linear recurrences such as the
Fibonacci numbers.

In the remainder of this paper we will determine the true rate of
growth of the sequence ¢n; it will be proved by elementary methods
that

1
In ¢1’1 - m (ln n) ,
1. €.
1 2 2
. m(ln n) +o((ln n) )
(6) ¢ _=e

The techniques are similar to others which have been used for deter-
mining the order of magnitude of the partition function (see [2] ).

We start by observing that

o0
2k
In F(x) = -In(l-x) + E (-In(l-x"))
k=0
00 . 0 o] Zk
S‘ﬂ r
X X
= R -~
Z T ) Z T
r=1 k=0 r=1
and hence by differentiation
) o X k
F'(x) _ Xr—l + 2 2k 2°r
FG) Z : CEE
r=1 k=0 r=1

Z+4x+2x2+8x3+2x4+4x5+...+0X +...
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where 6 is twice the highest power of 2 dividing k. Therefore

k
Fl(x) 2,0, 3 4.5 k-1
o) - (1-x){(2+6x+8x"+16x™ +18x +22x +.,.+ll/kx +..0)
where if
a; a
k=2 +...+2 ", a >a,5...>a_» 0,

. . k-1 . .
the coefficient of x in the power series on the righthand side is

= 0 =
¥ 01+ 2+....+o a, 2 +...+ta 2

(The reader will find the verification of this latter formula an inter-
esting exercise in the use of the binary system.) We can estimate

the magnitude of y k 2% follows:

a. -1 a. -2
1 1 + ... ta)
N _ .
d,k_a1k+2k (2 + 22 1
a1+1
= (a;T2)k - 2 ta; +2 2(1+1og2k)k -2k
hence
(7) klogyk - k&g, £ klog,k+2k

This estimate and the monotonicity of ¢ o are the only facts about

F(x) which are used in the derivation below.

Let ﬁ(ln(l—x))z
G(x) = e
Then
G'(x) _ - log(l-x) _ ;1 _, 1 5 2., 13 3. 77 4
Gr) Tz sy Mgt rmzX tymzX Tremzx )

Since the derivative of -log(l-x)/(1-x) is (l—log(l-x))/(l—x)z, we

find that the coefficient of xk~1 in the power series on the right is

where
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(9) hk=1+%—+... %
Since hk = In k + 0(1), ‘we have therefore established the equations
o o
SN DERCE-C R JA
k=1 ‘ k=1
and
(11) Y= x, +0(k)

This suggests a possible relation between the coefficients of F(x) and

those of G(x). Note that if

F'(x)
(x)

= (I-x)i(x)

o

then

F(x) = exp / (L-t)f(t)dt
0

Therefore the following lemma shows how relations (10) and (11) might

be applied to our problem:

Lemma 1. Let
x
A(x) = exp f (1-t)a(t)dt ,
0
X
B(x) = exp f (I-t)b(t)dt ,
0
where
A(x) = Akxk, a(x) = akxk_l, B(x) :E kak, b(x) = bkxk._1 .

Assume the coefficients of A(x) andof b(x) arenon-negativeand non-

for all k, A

decreasing. Thenif a, <b

R < B, ;if a, > b for all
>
k,A.] B

k k — k= "k

K
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Essentially the same argument works if a, 2 b, for all k.

AN ALMOST LINEAR RECURRENCE

Proof: AO = BO = 1. Assume 2y < bk forall k, and Ak'<'
0 £ k ¢« n. Then since A'(x) = (1-x)a(x)A(x), we have
nA L FagAs ta Byma) Fe o a1(An-l - Ans2)
< bnAo + bn_l(Al—Ao) R bl(An_l—An_Z)
= Ao(Bn—bn_l) + Al(bn_l-bn_z) R An—lb
< Bo(bn—bn_l) + Bl(bn_l—bn_z) o0t Bn-lb

k™ "k

By

The problem is now one of estimating the coefficients of

1 2
e In (1-x)
G(x) = e n 4
Theorem 2. If
2
(12) oC In"(1-x) - c Xt )
: z : n
we have
2
(13) ¢, = aln” n+0((ln n)(ln In n)) .
Proof: First we show that
0o
(14) In™(1-x) = iuh S S
n m,n
n=m
where

summed over all integers a

the a, are distinct.

of (14) is

H = E _,______1_____
m, n al---a

1"

m-1 e
™ (1-x) 2: g ol
(x-1) - m, n ’

n=m

123

for

vesa such that 1 £ a. < n, and
m-1 i

This follows inductively, since the derivative
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and we have

m-1
(15) Hm,n'Hm,n—l * n- Hrn—l,n—l

Turning to equation (12), we have

“n* :i am o o Al Z Z :( H o X",

m=0

(16)

Me

"
(@]

n

(We define Hm n o 0 if m > n, so the parenthesized summation is

actualiy a finite sum for any fixed value of n.)

Our theorem relies on the estimates

m-1 m-1
n

(17) (h -h ) < H z.h_‘l, if m<n

The righthand inequality is obvious, since this is the sum

e —
alo . oam-l

without the restriction that the a's are distinct. On the other hand,

given any term of

we form a term

bl.eobm_l

belonging to Hm,n’ where bkz a - T if a

{al, sees } Thus, we decrease the largest element byl, the

second largest by 2, and so on; in case of ties, an arbitrary order is

is the r-th largest of

taken. No two terms

map into the same
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1
P anda.,..a S5 s

1 m-1 1 m-1 1 m-1

so the lefthand side of (17) is established,
Putting the righthand side of (17) into (16), we obtain

o M- 1 Zm 2 2
(18) ¢ =2 E LS o oL E , n L _2e "o
n n (m-T)]! Zm,n T (m-IyT - T w ¢

On the other hand,

2
(19 °p >3 @07 Hom,n

for any particular value of m. " We choose m to be approximately
ahn_1 + 1, assuming n 1is large. Then we evaluate the logarithm of
the term on the right, using Stirling's approximationandthe left hand

side of (17), and discarding terms of order less than (ln n)(ln In n):

-1
. 2a o™ 2m-1
In €n ln(—?l— (m-1)! (hn—l i th-l) )

2 2 2 2 o
= ahn__lln a + Zahn—lln(hn—l_th—l) - ahn_l(ln(ahn_l) -1)+0(lnn)
2 2 th 1
= a hn—l + 2a hn_lln(l - T————)+ 0(ln n)
n-1
= h2 - 2ah h + 0(ln n)
= %% n-1"2m-1

This together with (18) establishes theorem 2.

Theorem 3. Let <, be as in theorem 2. Then
c
lim 2L -
n*# 00 n
Proof: Since H > H , we have
. m,n+l = "m,n

Cn+1 > I
C = n+l

n

by (16).
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We also observe that Hm n <h and hence by (15)

2

n-le-l,n

m-1 .
Hrn,n+l SHrn,n+ n hn-le—Z,n ’
thus
oo [ m-1
j : a Zm Za a 2m-1,,2(m-1)
Cntl < “m?! (m_)HZm,n * (n+l)hn-1 Z Trn—l)l(Zm-Z)( n )HZ(m-l),n
m=1 m=2
3ah
< n c 4+ n-1 c )
= n+tl "n n+1 n °
Corollary 3. If P(x) is any polynomial, and if
n L 2 1 + P
S et et U P
n
then
InC =1lnc_+ 0(1)
n n
Proof: If eP(X) =2, + a;x + azx‘2 + ..., we have
Cn _aocn+a1cn_1 + ... +anc0 P(1)
= = — e
c [
n n
Th 4 In & ~ ! 1 2
eorem 4. n é ~ - (ln n)
Proof: Let € > 0 be given. By (11), we can find N so that when

n> N, (1-—e)><k < wk < (1 +€)><k. Apply lemma 1 with A(x) = F(x),

o]

n-1
b(x) = ¥ + ¥x + ...+ Yx + E (1+e)><kxk'1
k=N+1

We find ¢n <_Cn where, by Corollary 3,
l+e 2
In Cn (m)ln n .
Then apply lemma 1 with

@

A(x) = F(x), b(x) = Z (1- €)%, !
k=N+1
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Thi i :
is gives us ¢n_> Cn where
l-e,. 2
LI
1n’ Cn (—ln)ln n .
Therefore

In ¢

1
In 4

|

(In n)

is arbitrarily small when n is large enough.

Of course, the estimate we have derivedin this theorem is very
crude as far as the actual value of d’n is concerned. Empirical
tests based on the exact values of ¢n for n €10000 reveal excel-
lent agreement with the following formula: B

Inn
In 4

(20) In ¢_= (lnn-2(lnlnn) +1) +lnn - .843

The erroris less than .05 for n » 10; it reachesa low ofabout -.05
when n is near 50, thenincreasesto approximately .032 when n is
near 5000, and it slowly decreases after that. Thus we can use (20)
to calculate

1og2 n

(21) 1.721(\/?1')

d)n ~ .472n a
with anerror ofat most 5% when 10 < n <10000. Although formula
(20) gives very goodaccuracy, it should be remembered that only the
first term of the expansion has been verified, and the comparatively
small values of In In n forthe rangeof n considered makes it pos-
sible that (20) is not the true asymptotic result. On the assumption
that the true formula is a relatively ''simple' one, however, equation
(20) gives strikingagreement. A similar situation exists in the study
of the partition function; the methods used here can be applied with

ease to that problem, to give

log p(n)'v#\/%n ;

the actual asymptotic formula for p(n) itself is
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ﬂJzn 1
37736
(n) = (—— - ! ) ¢ ro(A V)
p T I
4V3  4g 2(n - 57) (n - 5,)

where A<‘n’J% ;

wJ%n

p{n) ~ e .

1
4V3n
It is doubtful that it would have been guessed empirically in either of

these forms. For an account of this and a bibliography, see [1] .
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SOME DETERMINANTS CONTAINING POWERS OF FIBONACCI NUMBERS
L. Carlitz
Duke University, Durham, N.C.

1. F. D. Parker (Problem H-46, this Quarterly, Vol. 2 (1964),
p. 303) has proposed the evaluation of the determinant

4 ..

'Fn+1+_]—2' (1’ J‘ 1: 2: 37 4: 57)

This suggests the more general problem of evaluating

_ _ |k _
D, =Dy = Fn+r+sl (r, s=0,1, ..., k) .

We shall show that

1

sk(k+1)(n+1)

2 k, . k _k-1 2
(1) D, = (-1) TT () (F] 2 R

j=0
For example
n+l n+l
Dl—(-l) R DZ—(—I) 2, D3—36 ,
= 2
D4- 13824,
To prove (1) we consider the quadratic form
k
k
Q= Z Fotrts U Us
r, s=0
Since
n n ;
_a -B 1+ /5 1 -5
Fn - a - B (Cl - 2 > ﬁ - 2 ) ’

we have

k Kk , '
(a—B)kQ _ § : u § :(-l)k_j (l;) a(n+r+s)j B(n—r—s)(k-j)
r, s=0 j=0

129
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k
k
.o . . (rts)j ,(r+s)(k-j)
=Z:(-1)k'J (%) o™ prlkd) Z o P u,ug
3=0 J r, s=0
k k 2
| =E (1)) o™ i) E o™ prledly
j:O r=0 .
If we put
k Ir
(2) v = E ()
) r=0
it is clear that
k
(3) (@-p)5 :Z(-l)k‘J (13?) o™ prik-d) vi‘.
30

Thus by means ofthe linear transformation (2}, we have reduced Q to
diagonal form. If A denotes the determinant of the linear transfor-

mation (2), it follows from (3) that
%k(kﬂ) k Lok(ke1)

(4 D=1 TT (5 (e-p 5 (o) a?
j=0

Now
k-r,° | ‘
A= @ T s=0,1,.0000

Since this is a Vandermonde determinant we get

k-s r k-r

N (a®p°7% - o7p )

-

= T "85S (a-p)F
0 <r <s £k
1 k-1 k-r
- (a_ﬁ)z—‘k(k+l) 0’rﬁk—r-s F
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1
(a-B)° T

r=0. s=1

k(k+1) <71 en) ﬁ%(k-r)(k—r-l) k-r

F
s

1 1
=k(k+1) k(k+1)(k-1) _
(a-B)2 (oL-B)E Flf Fl?f 1 ... F

Therefore (4) becomes

1 k
Zk(k+1)(n+1)
D, = (-1)? TT (- (F

j=0

This completes the proof of (1).

2. As for the determinant
k ,
D, (L) = |l el (s=0, 1, Lo R,

consideration of the quadratic form

k
k u u
ntr+s r s

r, s=0

k ‘ k _
- 2 :(1;_) unj-ﬁn(k-j) Z LT +s)] ﬁ(r+s)(k-j) _
j:O r, s=0 )

LS LS . 2
=Z(1§_, o2 gnlk-j) Z“rJ prikd)
j=0 r=0
yields
k
DU =TT & o™ gD . a7
j=0

k
1
= (02 T e ) FE R L R
j=0
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It follows that

1 1 K
Lok(k+1) tk(k+1)
2 52 TT

_ k, . k k-1 ' 2
(5) D, (L) = (-1) (j) (Fy Fy —.ee Fy)
j=0
3. Formulas (1) and (5) can be generalized in an obvious way. Con-

sider the sequence {Wn§ defined by

w =an—an

n+l -1

where WO’ W, are assigned. Put

1
—

Dk(w) - I Wn+r+s

If p2—4q}/0 and

p+/p2-4q

o= =g Pz

2
N W, - BW, . AW, - W, . WI-pW W, +qWo
=5 -p c BEagmg— =- 3
p - 4q
We find that
%k(kﬂ) %nk(k+l)+%k(k+1)(k—l) k N
(6) Dy (W) = (-1) q T
j=0
1
Sk(k+1)
2 2.2 k k-1 2
(W] - pW W, +qWg) (U 07 U
where
U - o™ - gt
n a-fp

Indeed (6) holds also when p2 - 49 = 0, provided we now take
Un = n(p/Z)n_l. This can be proved directly in the following way. We

have

- (By?
wo= G4+ B)
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where A=W _, pB=2W

0 - pW_ . Then

1 0

py (n+tr+s)k
D, (W) = [

_ (%) nk(k+1 ) +k 2 (k+1 ) | (A + Blntrts)<]

We recall that for a determinant of the type
111n+r+sl (r, s=0, 1, ..., k)

we have

r+s

Iun+r+sl = l o n

k
(A + B(ntr+s)) ] (r, s=0, 1, ...

w | (r, s=0, 1, ..., K)

133

H

where A 1is the usual finite difference operator. (See for example

1, p. 1037.) In the present instance u_ = (A+Bn)k, so that
Li» P d P n

r+s _ k _ 1wk
A un—O (r +s > k), A un—k.B
It follows that
1

k(k+1)
|(A+B(nt+r+s)| = (-1)2 ey g(etl)
and therefore
1
Tk(k+1) )
(1) DLW) - (1) (g)nk(k+1)+k(k+l)(k 1 )k+1(Wl pWO)k(kH)
On the other hand (6) becomes
| (it nk (k1) 42 k(k+1) (k1) Al
D, (W) = (-1) &) 3 (AR
j=0
P k(k+l) ‘ 2(k-j+1) p 2U-DIk-JHL)
- (W -3 W) T3 v
=1
1
sk(k+l) _ nk(k+l)+k(k+1)(k-1)
= (-1)° &) (w, - & w )kt

k .
T 09 20D

j=1
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Since
k k . ‘ k
] s . 2(k-j+1) -
T e ) (—*——Q.Ji)z ) =7 (N’
j:l ' J-‘-]. J:O
k
K |kl
=TT gy =
j=0

it.is clear that (6) and (7) are in agreement,
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KKK HKHKHKAK K XXX KK

All subscription correspondence should be addressed to Brother U.
Alfred, St. Mary's College, Calif. All checks ($4.00 per year) should
be made out to the Fibonacci Association or the Fibonacci Quarterly.
Manuscripts intended for publication in the Quarterly should be sent
to Verner E. Hoggatt, Jr., Mathematics Department, San Jose State
College, San Jose, Calif. All manuscripts should be typed, double-
spaced. Drawings should be made the same size as they will appear
in the Quarterly, and should be done in India ink on either vellum or
bond paper. Authors should keep a copy of the manuscript sent to the

editors.



ON THE QUADRATIC CHARACTER OF THE FIBONACCI ROOT
Emma Lehmer

Berkeley, Calif.

Let 8= (1 +4J5)/2 be a root of the quadratic equation
xz -x -1=0
The n-th term of the Fibonacci sequence can be given by

021’1_ n

) R
\]5
Hence for any prime p # 5 we can state the criterion:

(2) F_ = 0(mod p) if and only if 8%™ = (-1)™ (mod p) .

If we define & = %1 in terms of the Legendre symbol as
(3) e= (=582 (modp) p#5

then a special case of Lucas' theorem 1 states

(4) Fp— e "z 0(mod p)

while a special case of a theorem of Lehmer 2 gives

(5) F = O(mod p) if and only if p=4m+l

Both (4) and (5) follow immediately from the criterion (2) and the

easily verifiable congruence

(6) 8 P"® ¢ (modp)

Itis the purpose of this note to give a criterionfor the quadratic
character of 6 and toapply it tofind the condition for the divisibility
of

|’U
PN
(¢

by p.
135
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In the first place, if p divides
F ’
p-E
4
then it must also divide
F
P-g
2
and therefore' by (5) we have p = 4m+l, but since (p - 6)/4 must be
an integer,‘ € =1, sothat p = 20m+l,9. The quadratic character of

# for such primes is contained in the following lemma.

Lemma
(\/5—> if p=10m+l
g -1 p
2 _ 8, _ 5
(7) - (E) - __(J:) if p=10m-1
p
Proof. Let a be a primitive fifth root of unity so that aS =1,

while a # 1, then it is well known that

(8) a is an integer modulo p if and only if p = 10m+1

. . -1
It is also clear that we can write @ = - (a + a ) so that

0.2+ a+1 =0 and hence

-0+ VQZ - 4

(9) o= "ty

Considering (9) as a congruence modulo p and remembering that
is an integer for the primes under considerationwe see that a will be

an integer modulo p only when 62 -4 is a quadratic residue. But

(10) 0% - 4=(0-2)(0+2) = - (8-1)° 045 .

Hence a is an integer modulo p if and only if 5 is a quadratic

residue of p. Hence by (8) we obtain

(a1 ‘ (ap\/5) _ 1 if p = 10m+l

-1 if p=10m-1

from which (7) and the lemma follow at once.
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But the quadratic character of\/5 is the same as the quartic
character of 5 and this has been expressed in terms of the quadratic

partition

(12) p=a +b , a = 1(mod 4)
as follows [3] :
5is a quarticresidueof p = 4m+1 if and only if b = 0 (mod 5)

51is a quadratic, but not a quartic residue of p is and only if

a =0 (mod 5).

Hence our lemma leads to the following theorem.

2
Theorem 1. Let p=a + b2 with a = 1 (mod 4), then

0 p-1 1 if p=20m+l, b=0(mod 5) or p=20m+9, a=0(mod 5)

- (E) ~ [-1 4if p=20m+l, a=0(mod 5) or p=20m+9, b=0(mod 5)

Combining Theorem 1 with condition (2) for n = (p-1)/4 we obtain

Theorem 2. Let p = az + b2 with a =1 (mod 4), then

F = O(mod p) if and only if

p-1

4
either p = 40m+1, 29 and b = 0(mod 5)
or p = 40m+9,21 and a = 0(mod 5)

The primes p € 1000 satisfying theorem 2 are

61,89,109, 149, 269, 389, 401, 421, 521, 661, 701, 761,769, 809, 821, 829

p =
The primes p < 1000 forwhich 6 is a quadratic residue are
p = 29,89,101,181, 229, 349, 401, 461, 509, 521, 541, 709, 761, 769, 809, 941

o= 6,10,23,14,82,144,112,22,122,100,173,171, 92, 339, 343, 228
For some of these primes the following theorem holds.

Theorem 3. If @ is a quadratic, but not a higher power residue of

a prime p = 10n#l, then allthe quadratic residues of p can be gen-

erated by addition as follows:

= = 0 -
r 1, 1 (mod p), r ., r *tr  (modp)
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This follows at once from the fact that on + on+1 = en(_o +1) = 0n+2.

For example for p = 29, 0 = 6, all the quadratic residues are
1,6,7,13,20, 4, 24, 28, 23,22,16,9, 25,5

after which the sequence repeats modulo p.

Further results along the lines of Theorems 1 and 2 are as fol-
lows,

Marguerite Dunton conjectured and the author proved for p=30m+1

that @ 1is a cubic residue of p, and hence that p divides

Fp-l s
3
if and only if p is represented by the form

p:sz+l35t2

The proof uses cyclotomic numbers of order 15 and is too long to give
here. Such primes < 1000 are 139, 151, 199, 331, 541, 619, 661,
709, 811, 829 and 919. The author 4 has shown that € 1is a quintic

residue of p and hence that

Fp_1

5
is divisible by p if andonly if p is an "artiad" of Lloyd Tanner{5] .
The artiads < 1000 are 211, 281, 421, :461, 521, 691, 881 and 991.
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ON EVALUATING CERTAIN COEFFICIENTS

Carolyn C. Styles
San Diego Mesa College, San Diego, California

The coefficients to be discussed are those involved when ex-
pressing the generalterm of certain sequences, defined by difference

equations, in terms of the roots ofthe related characteristic equation.
Case I:  If the characteristic equation

m m-1 m-2
(1)

m .
n+l
u = E Ckxk , un—O,l,Z,...,
k=1
where X k=1, 2, ..., m, is a root of (1). If the boundary condi-
tions are given by Ug =8y S oo =0 4 = 1 then
XIXZ Xk—llxk+1"' X
ZXZ 2 1 2 2
x1 2 cee Xk-l Xk+1... X
mxm m 1 m m
) B *1 72 k-1 " Tk+1°" m _ N
@ Gy = =D
KXy ewe Xy g Kp Xpgoeee X
ZXZ 2 2 2 2
X)Xy e X g X Xpggoeee X
mem m Xm m xm
1 2-.. Xk—l k Xk+1--- m

Expanding the determinants and dividing common factors from
the numerator and denominator gives

139
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m
3) N= (-5 om (x, - 1)
i=1
i#k
m
- k-
(4) D= (-1) lxk I (Xi_xk)
i=1
i#k
Since
m m
f(x) = 2 aiXm—l = I (x- Xi)’ a, = 1,
i=0 i=1
m m
fy=1 (1 - Xi) and f’(xk) =1 (Xk- Xi) ,
i=1 i=1
i#k

Using these identities, (3) becomes

™Ry
N = ———r)z;r ) if Xk#l

and (4) can be written
- mtk
D= (-1) xkf(xk)

Substituting these in (2) gives

- £(1)
Cy = ST - )T Tk 1.
Parker [4:] investigated the generalterm ofa recursive sequence
and gives a method for determining these coefficients but does not give
the general formula.

For the Fibonacci sequence the characteristic equation is

xz—x—lzo and u=u1=l .
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Therefore

c . =1 oo

k Xk(Xk - 1)(Zxk - 1) Zxk -1

Some characteristic equations obtained in generalizations of the
Fibonacci sequence and the values of Ck for each follow.

The characteristic equation in the generalization by Dickinson
[l] is x°-x*-1=0, a, c integers. Since l

, - .C a _ a _ a _ _ a
ka (Xk) = oxy - oaxy c:(xk + 1) ax; (c a)xk +c ,

1
(<, - D [ (e - a)xi +c]

Ck=

for the sequence in which Uy =uy = ... =u_ 4= 1.
In the generalization by Harris and Styles [Z_—J the character-
istic equationis xp(x - l)q -1=0, p, q integers, p2 0, gZ 1 and

Yp+g-1 7

U, = U; = s =

0 1

1
C, =
k b T Qx,
(p Wxe_y

as was shown in [2] without this formula.
Miles [3] used the characteristic equation

xk—xk_l—...—x—lz(), k integral > 2 .

For the sequence in which the initial conditions are given by

uO:u1=...=u =1 ,

k-1

C. = —p————, j=1,2, ..., k
J ij—(k+1)

Raab [5:[ used the characteristic equation

Xr+l - axr -b=0, a, b real, ~r integral> 1 .

For the sequence in whichthe initial conditions are given by

Uy =uy = .. :urzl s
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c. = b+a-1

k- 1);{(“ +b [(x+1)x, - ]

The boundary conditions can be generalized slightly. If

_ru_rz -r3 __rn+1
UO—P, 1—[3 ,uz—p ,...,un—-p ’

c = ‘ pf(r)'
kT ox (T -x )x,)

Case II:  If the characteristic equation (1) has a root of multi-

plicity 2 then

m

B n+l n+l _
u.n—(C1+2C2)X2 + E Ckxk , n=20,1,2,...
k=3

and X, is the repeated root of (1). Ifthe boundary conditions are given

by uo =u1 Seee=u 0= 1, then,
I Xy X3 .o Xm
2 2 2
1 sz X3 . X
1 3xg xg . X:’n
m m m
5) . - 1 mx, X3 . X ) N1
1 - - D
*2 %2 ¥3 0 X
2 2 2 2 2
x5 X, X3 SR N
3 3 3 3 3
x, 3%, X3 ee X
m m m m
Xy mx, X3 cee X
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Expanding the determinants gives

m m m-1 m-2 4
(6) N1 = II X, I (xi - 1) I (Xm_xi) H(xl;n_fxi),._,[] (XS_Xi)
i=2 i=3 . i=3 i=3 i=3
(m-2)(m-3) m -
(x,4-%5) | (-1) z [(zxz-l) M (x-%,) - %, (x,-1)
i=3 -

(the sum of all possible factors (Xi - x

m-3 at a time]
Since

m
f"(xz) =2 II (x
i=3

5" Xi) and f"'(xz) =6

(the sum of all possible products of the factors (x2 - Xi)’ i=3, 4,
., m, taken m-3 at a time), the quantityin the braces in (6) can be

expressed

(m-1)(m-2)
(-1) 2 [(sz—l)f"(xz) +x2(x2-1)f"'(x2)]
Therefore,
(m-1)(m-2) m m m-1
N, = (1) C Mmox 1 -1 11 (x_-x)
i=2 i=3 i=3
m-2 4
I1 (xm_l—xi) oo I (XS-Xi). (X4—X3) {(sz—l)f”(xz)
i=3 i=3 7

+ xz(xz-l) f”'(xz)
—

Expanding the determinant in the denominator gives
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m m m m
(8 D = x5 I x I (x-x)° T (gx) I (x,-x)
= x, x; X, =X, X=X, e R
i=2 i=3 i=4 i=5
m m
M Gymxggy T Gymx )
i=m-1 i=m
Substituting (7) and (8) in (5) and simplifying gives
m
m (1 - Xi)
_ X - ti
. - i=3 ZXZ 1) (XZ) N XZ(XZ 1)f (XZ)}
1 - m 2 6 ]
2 2
X, M (xy-%)
i=3
Ifxz'-‘l,Cl=l. Ifxzit/l,
m
2
4(1—x2) I (l—xi) -
_ T - [y
) i3 l:(_sz Df'(x,) +x2(gz L)' (x,)
1- 2 2 2 2 6 |
x, Lf”(xz)] (1-x2) -
Therefore,
Tty
c. = 2 . +]E l x, #1
- - - . El
1 X2<X2 )t (XZ) Lxy X 1 31 (XZ) 2

To determine C., the numerator in (5) is replaced by

2
XZ 1 x3 . Xm
2 1 2 2
XZ X3 . Xm
3 3 3
x5 1 X3 X = NZ
o m m
X5 X3 . X
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Evaluating gives

m m m m
(9) Ny = DT I % (- %) T xp) T (g -%5) e
i=2 i=2 i=3 i=4
m m
I (Xi_xm_z) I1 (X]‘.—.Xm—l)
i=m-1 i=m

Dividing (9) by (8) and simplifying gives

m m
-7 m (-x) 2 (1-x,)
i=2 2
C. = =
2, m ST (x,)
X, M (xi-xz)
i=3
For X2:1’ C2=O. For xzyfl,
2£(1)
C2 =

xif"(xz)(l—xz)

To determine C k=3, 4, ..

K’ ., m, the numerator in (5) is

replaced by

X, X, X4 .. X1 1 X4l ot X
2 2 2 2 2 1 2 2
XZ XZ X3 o e Xk—l Xk'l’]. s e 0 Xm
3 3 3 3 3 1 3 3 _
X5 X5 Xq I X4l o0 Xl T
m m m m 1 m m
XZ mXZ }(3 Xk—l Xk+1 o s e Xm

Evaluating Nk yields
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m m m-1 m-2
an N o= (¥t n To(1-x) ;| ( oo
k= x5 x, I ( -x;) ¥ Xm-xi) o (x _1—xi) .
i=3 i=2 i=2 i=2
ik ik i#k i=k
k+l1 k-1 ‘ 3 2
H (Xk+2-xi) K (Xk-l-l —xi) oo I (x4—xi) | (X3_Xi)
i=2 i=2 i=2 i=2
ik
m
i=3
i#k
Substituting (11) and (8) in (10) leads to
m
D 0x)® B (1ex)
i=3
- ik
Cr = D
X %) BOBgemx) m (gex)
i=2 i=k+l
m
Do) m (1)
; i
- i=3
Cx = k-1 m s 1
: m- T
i=2 i=k+l1
There Ck= 1, X = 1.
_ (1) .
Ck - xkzl‘-xk;f'lxki if Xk 7{ 1
Summary: If the roots of
m
m-1
f(x) = ax =0
i=0
are not repeated and uo = u1 = u2 N um-l =1,
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Ck = 1 s X = 1
£(1)
C, I= , x, #£1
k x(l—xk) X k
If f(x) has a double root, X = X5, and Uy = Uy T ... = w = 1,
1 s XZ =1
C, = .
1 2£(1) 1, 1 +f"(xz) e 41
L -D (= —— — ,
x5 (%, 1)f (XZ) X, 512—1_ 3?'-'—(;(? 2
0 , XZ =1
C2 =
5 Zf(l?' L ox, 41
xz(l-xz)f (XZ)
1 =
s Xk 1
Ck = , k=3, 4, ., m
:i(l) — ’ Xk7( 1
B S R k
REFERENCES
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XXX XXX XX XX XXX




' ADVANCED PROBLEMS AND SOLUTIONS

‘ Edited by Verner E. Hoggatt, Jr.
| San Jose State College, San Jose, California

Send all communications concerning Advanced Problems and
Solutions to Verner E. Hoggatt, Jr., Mathematics Department, San
Jose State College, San Jose, California. This department especially
welcomes problems believed to be new or extending old results. Pro-
posers should submit solutions or other information that will assist
the editor. To facilitate their consideration, solutions should be sub-
mitted on separate signed sheets within two months after publication

of the problems.

H-84  Proposed by Oswald Wyler, Carnegie Institute of Technology

For any positive integer m, there is aninteger k(m) with the
propertythat m divides a Fibonacci number Fn ifand only if k(m)
divides n. For a prime number p, it is known that k(p) divides
p-1if p==+1 (mod5), and that k(p) divides p+1 if p=z+2
(mod 5). Using a table of Fiborzlacci numbers, one finds that Fk(p)
is a multiple of p, but not of p , for small prime numbers p, or in
other words that k(p) < k(pz) for small prime numbers p. It does

not seem to be known whether thisis the case for all prime numbers

p or not.

H-85  Proposed by H.W. Gould, West Virginia University, Morgantown, West Va.
y

Let

n
Dnz fnxn - [fnx ] ,
where

; h fo=f =1, x=(1+ B2
Fn+1 fn + fn—l with fO fl 1, x=( )Y/
and [z] = greatest integer < z (so that z - [2z] = fractional part
of z). Prove (or disprove) the existence of the limits

148
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lim D, =0.27... = A
2n
n —> o
and
lim D2n+1 =0.72... = B
n -—> oo
with A+ B =1. Generalize to case of U o4 TP + qun-l’ where p
and q are real and u and u, are given.

H-86  Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Let p and g be integers suchthat p+q > 1, q > 0 show that

if

Pi,_1y9 _ 1 -

x" (x-1) 1 = 0 has roots Tys Tos eees rp+q
and

(x—l)p_}.cl -xP =0 has roots s, s s

17727 """ Tptq

then

sipdlqurg1 for i=1, 2, 3, ..., ptqg .

H-87 Proposed by Monte Boisen, Jr., San Jose State College, San Jose, Calif.

Show that, if

u0=u2=u3=. =un_l:1 and
- >
uk uk—1+uk-2+°"+uk—n k n ,
then
oo
1 -x? 220 -0 - (@2 K
‘1 - > n = u, x
- X=X - .ee X k=0

H-88  Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

jol

E : n _ m
F4mk (k) B LZk Fka ’

k=a
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where Fm and Lm are the mth Fibonacci and mth Lucas num-

bers, respectively.

H-80 Prc;posed by J.A.H. Hunter, Toronto, Ontario, Canada and Max Rumney,
I London, England — Corrected
Show

n n ‘
n 2 n-1
: :(r) Fr+2 B 2 :( r ) F21“!*5 :
r=0 r=0
SOLUTIONS

THE FINAL WORD
H-42 The corrected list is:
1,2,3,5,9,15, 20, 25,41 .

J. D. Konhauser first noted the typing error.

Solution to the Crossword Puzzle by H.W. Gould, West Virginia University

—| >

— | > O/Wn|>T n|m

nimi={>omZmo

NkEE BHREE EHik

miO|Z|M|C|OMiu &l | —
Sikele [

] [GlwiFsipavdieoliuilm

D> <| T

o[>
<
—|0

XXX KKK KKK KKK



TERMINA L|DIGIT COINCIDENCES BETWEEN FIBONACCI NUMBERS AND THEIR INDICES

Gerard R. Deily
U.S. Department of Defense, Washington, D.C.

In[l]the Editor of this journal proposedessentially the follow-
ing question: What Fibonaccinumbers of index less than 10, 000 have
terminal digits coincident with the index? This note answers that
question by supplying a computer-generated table of such coincidences.

The computer program was written in the ALGOL 60 interna-
tional algorithmic 1anguage[23and is given in the Appendix. For
those readers not familiar with the ALGOL language, the operations
performed by the program are basically as follows: With starting
values given, all Fibonacci numbers with indices 1 to 9999 are com-
puted modulo 10, 000. Fibonacci numbers F1 through Fg

reduced mod 10 and compared with their respective indices,

are then
Fio
through F99are reduced mod 100 and likewise compared, and sim-
ilar reductions and comparisons are performed for F

F999 and for FlOOO through F9999.

answer YES, the index for which this occurs is marked with an as-

100 through

If the comparison yields an

terist, A 100 x 100 table, shown listed as tables IandIl, is then.
printed out with row coordinates in hundreds and column coordinates
inunits, and withasterisks in the locations where coincidences occur.
Hence, an asterisk in row zero column 61 indicates that Fél has
61 as its last two digits, and similarly an asterisk in row 4 column 85
indicates that Fugs has 485 as its last three digits. Note the regu-
larity of patterns in Tables I and II; these might prove to be an in-
teresting subject for further investigation.

A digest of the results reported herein is given in Table IIL
These results were checked through F505 by inspecting a table [3]
of Fibonacci numbers and by running several versions of the basic

programs.
REFERENCES

1. Brother U. Alfred, ""Exploring Fibonacci Numbers witha Calcu-
lator, '"FibonacciQuarterly, Vol. 2, No, 2 (April 1964), p. 138,
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2. P. Naur et al, '""Revised Report on the Algorithmic Language
ALGOL 60", Communications of the ACM, Vol. 6, No. 1 (Jan-
uary 1963), pp. 1-17.

3. S. L. Basin and V. E. Hoggatt, Jr., '""The First 571 Fibonacci
Numbers', Recreational Mathematics, No. 11 (October 1962),

pPP. 19-30. (ﬁﬁj}“&dé m/,:,;ﬁf,g/ /6‘3.)

{Continued from page 116.)

uk—bzuk_luk_z... uk—(k—l) [uk-(k—l)_b} .
Hence
i=k1—l
ukl = (uO - b) I u +b
i=0

Choose k2 < kl without loss of generality and the conclusion is ap-
parent.

We now consider equation (1) in several special cases. If b= 0
the equation is easily solved but in this case the theorem holds triv-
ivially. Let b = 2. Then we have

2
U T Yt Ay t2

which can be written in the form

2

u -1l=(u -1)

k+1 k

The solution of this equation is clearly

(2) u,_ = A +1

Hence the sequence with elements AZk + 1, for integral A, is relatively
prime exceptpossibly for the common divisor 2. The exception is ob-
viously removed when A is an even integer. When A = 2, we have the

Fermat numbers mentioned previously.

(Continued on page 164.)
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FIBONACCI NUMBERS AND THEIR INDICES

APPENDIX

ALGOL-60 Pfogram for Producing Fibonacci Terminal
Digit Concidences

procedure hollerith (name, representation);

real name;

string representation;

end

name: = representation;

integer procedure mod (x, m);

value x, m;

integer x, m;
mod: = x - m X (x £ m);

integer i, j, k;

ﬁl blank, star;

integer array F[-1:9999] ;

@ ;e11[0:9999] ;

hollerith (blank, '');

hollerith (star, '*');

F[-1]:=1;

F[0] : = 0;

cell[ 0] : = star;

for ki =1 step 1 until 4 do

‘L)egin

ﬁminteger finish, modulus;
;n:i—lifﬁs: =10 % k;
finish: = modulus - 1;

for i: = modulus / 10 step 1 until finish do

F[i] :=mod (F[i-1] + F[i-2], 10000);
cell[i] : = if mod (F[l] , modulus) = i
then star
else blank;
end calculations for k-th order of magnitude;
end setup of coincidence table;

write (for i: = 0 step 1 until 99 do _
for j: = 0 step 1 until 99 do cell| 100%i + j] );

Fibonacci terminal digit coincidence program;
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TABLE III

INDICES COINCIDENT WITH FIBONACCI NUMBER TERMINAL DIGITS

1,

25, 29,
49,

41,

5,

61, 65,

85, 89

101, 125,

245,

365,

485,

601, 605,

701, 725,

845,

965,
1105, 1205, 1249, 1345,
2305, 2405, 2501, 2545,

145,
265,
385,
505,
625,
745,
865,
985,

149,

649,
749,

1445, 1585,
2645, 2785,

3505, 3605, 3745, 3749, 3845, 3985,
4705, 4805, 4945, 5045, 5185,
5905, 6001, 6005, 6145, 6245, 6385,
7105, 7205, 7249, 7345, 7445, 7585,
8305, 8405, 8501, 8545, 8645, 8785,
9505, 9605, 9745, 9749, 9845, 9985,

XXX XXX XK HKAKXKXK XX

1685, 1825, 1925, 2065,
2885, 3025, 3125, 3265,
4085, 4225, 4325, 4465,
5285, 5425, 5525, 5665,
6485, 6625, 6725, 6865,
7685, 7825, 7925, 8065,
8885, 9025, 9125, 9265,
others exceed 10000,

Also solved by Douglas Lind and Donald Howells.

21
33
45
57
69
81



PHI, THE GOLDEN RATIO (to 4599 Decimal Places), AND FIBONACCI NUMBERS"

Murray Berg
Oakland, Calif.

The golden ratio can be obtained by the division of a line seg-
ment into two parts such that the ratio of the total line to the larger
segment is the same as the larger segment to the smaller segment.
This ratio was given the name, phi, by the U.S. mathematician,
Mark Barr, over 50 years ago [1]

If B were the larger segment and A the smaller segment, then

(1) A+B B

B A

Letting A = unity, we have

If we let B equal unity, then the result would be one less than phi.
Phi is the only number whose reciprocal is obtained by subtracting
one from itself. ‘

Phi is an irrational number, and its determination depends on

the calculation off6 . It can also be calculated from the Fibonacci
series [1] and [2]

The Fiboﬁacci numbers are an infinite series,where each ele-
ment in the seriesis the sum of the preceding two elements, and the

first two are equal to 1.
Thus F,=F, =1
and for 1> 2 F.=F. ., +F,

where Fi = the 1ith number in the Fibonacci series.
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A program was written for the IBM 1401 which produced Fib-
onaccinumbers up to 4000 digits inlength. A pair of consecutive num-
bers were printed out at each 100 digit level.

v F476is the first 100 digit Fibonacci number. For each succed-
ing 100 digit level, the F number increased by 478 and 479 alternately,
i.e., F954 is the first Fibonacci number with 200 digits, | has

300, has 400, up to F

Fl1433

F1911 19137 with 4000 digits. Table 1 lists the

Fibonacci numbers F11003 and F11'004.
It is evident from equation (1) that phi is the ratio between two
consecutive members of the Fibonacci series. Theoretically, we can
obtain the ratio toany number of decimal places by performing one di-
vision with Fibonacci numbers that are far out in the series. How-
ever, this must have practical limits.
A separate program performed such a division for F

11003 274
11004’ both 2300 digits in length. The division instruction took 21

F
minutes., This was repeated with the numerator and denominator re-
versed. The ratios coincided to 4598 decimal places.

Empiricdl observation of members early in the series show that
the true ratio lies somewhere between the ratios obtained by the two
divisions. In fact, it is approximately one fourth the distance between
the first two non-coinciding digits of the two divisions. These two
digits for the first division were 42 and for the second division, 10.
The true first digit of the two would be 3. This is the 4599th digit of
phi. Table 2 lists the fractional digits of phi.

REFERENCES
1. Martin Gardner, Mathematical Games, Scientific American, Vol.
201, No. 2, Aug. 1959, pp. 128-134.
2. N. Vorob'ev, Fibonacci Numbers, Translated from the Russian

by Halina Moss, Blaisdell Publishing Co., 1961,
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F11003

1385226108
2651224797
7173511856
7574996945
2496093268
0051225211
2012890852
2723799650
5572088355
7660404686
2764124938
2740869994
8090725106
5635374951
5632860204
4129306207
0887842148
4139509331
8165137824
3977633239
6975227979
0339811947
5460935494

1389849146
6473891243
2146914169
6924869639
9753082994
5428814745
4806673466
8596935856
6215509544
1519119027
6088403251
0851091246
3521862288
5618951083
6956657639
6694621619
5647170984
5149971174
6242619136
4708095587
1208062350
9365812919
6299557873

3318369579
0891846980
6708707974
6917120736
9214939556
3016761256
9663354501
5423569649
0202887462
4619727906
4049695388
9478056732
6871088487
0648797240
5257855778
2343575456
3084772401
6116928633
9332914897
4875953506
8359916939
9616056923
1660491087

2494356958
3039604879
6699151188
5268922184
6355848406
7294777233
1142199481
1078336886
8129578616
1507794036
4991667711
4448753439
7752208419
0490175133
2371306204
2042187238
9888001330
0190593393
6535760412
4381158531
5154135119
2347309682
1345701086

TABLE 1 \

4648374158
0046956080
2442466984
1896192623
4062988440
1289541117
3650636786
5232864678
9581239454
8906861517
8842003238
5432510823
8640236523
8680223685
3737166938
4602706582
8095527704
4778407869
9776981220
0839843746
9519556612
3963617027
7269788440

2397008279
4905717207
5710547919
7606833193
6134620903
0885655450
5229287829
6569734815
0372956238
2622180521
3436710506
1301627655
8079861118
3297035838
2038668754
1109668539
2088481463
5760226150
2863991636
7700728139
8740630214
2634743224
1871245899

8631194478
6604928573
6199746044
0271352823
7912031476
2312356840
8848188137
6337166059
2134273674
1023706129
9902097057
8708508729
4773187478
1198854328
7674835212
8459488464
9095526048
4212756331
1855595685
7778864638
0954042220
7003593412
2914722272

0123270814
5218136522

7472341072

3209213511

6964248790

1372262062
8172683771

1819627031

4384466075
5731454302
1865017517
2151315800
6521109077
8383937835
3478098396
3113389750
6913994736
3772061206
2283544770
1922731227
3240718052
0651665497
8848008668

9606278507
1731643799
4003782106

6654782175

8726924515
2298301027
0267970914
1521792082
5128521668
7936180979
9126821677
9109439700
2668319024
9669940528
4289148123
2861398637
0451421700
7071231484
1435962831
0284538002
7657932922
7760111150
9496842560

1751399903
6629392564
0553357908
9454851487
7016612608
7269258591
5115676896
0236762110
0497974568
1895837832
1994293318
1412268114
3505313833
7162356283
8919252426
8833783107
6160580357
0297335718
8080741054
6509070757
9545448966
9982857292
1752488377
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PLACES), AND FIBONACCI NUMBERS 161

1966

2045868343
5212663386
1696207032
3449470495
6970400028
4843530567
2429267526
8509040947
4320827505
0776903895
6059216589
4948730231
5519881921
0078030852
1926372891
7773224499
8639320456
4453415091
2076124785
2380514321
1411745339
4790817651
0198991768

6563811772
2223536931
2210432162
6584678850
1210427621
8300228785
3116533924
6213222981
1312181562
3219681986
4667595519
5417676893
8020640529
6118075451
0670503399
4353088999
5209896985
2954070050
6459161608
1734815100
2731208092
8097787268
4149175123

0309179805
7931800607
6954862629
9874339442
7711177780
6997829778
7316711121
0172610705
8551222480
1514378031
0040055590
7521030687
0551893494
9288770502
2822652635
0950168032
5567814106
1947754861
3705949878
5590134561
8972792221
4161176325
3134015273

7628621354
6672635443
6313614438
2125448770
5315317141
3478458782
1588186385
9611645629
9394712341
4997411069
8950229530
3788034417
7592600734
1096842493
5620902979
8112194320
9683728840
6307542264
6006970189
0118007905
3298064294
0386121129
3843837234

TABLE 2

4862270526
3389086595
1497587012
6647809158
0117046665
2891109762
1331620384
9098162905
4517022373
2608867429
9423124823
0093954409
8522821010
6271359251
8642472759
4819643876
5874610337
1729394680
4098864007
0638142152
6878242748
1436834376
5009347860

0462818902
9395829056
2034080588
8460749988
9914669798
5003026961
0052221657
5520852479
5805772786
6226757560
5521221241
6279558986
8819464454
8760777884
7725655086
7586331479
8105444390
3673198058
6443617093
7093085880
7401745055
7023503711
4979294599

4497072072
3832266131
7954454749
7124007652
7317613560
5617002504
9128667529
0352406020
1600868838
5231727775
5444006470
7872320951
4222318891
6658361502
1548754357
8571911397
9436835835
6183391832
3417270919
9287570345
4067787570
1633072586
1582201258

0418939113
9928290267
2461856953
1705751797
0670874807
6433824377
4654906811
1727997471
2952304592
2035361393
3405657347
2426893557
3192946896
3891349333
4826471814
8153978074
8138113116
8599130396
1433650137
0507808145
8323731097
9883258710
1045982309

- 61803398
7484754088
8806752087
6486444924
8834166256
1013179523
6486102838
3171599343
7534277759
6478780178
6210767389
9766397239
3097045095
2200230144
3122310533
1451270006
7615077221
8993855576
0720144559
1576601148
4588199063
5915117762
3363222381
2552872124

8749894848
0753868917
6689250171
1044320771
2494075890
6894275219
3126833037
2359734949
2778625619
8992199027

3764556060

4949946584
9568440175
3770269923
9232136243
0238901620
1750826945
9754841491
5044977921
mewﬁwoowm
3612982798
9784432847
0980901211
1370436149
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POWERS OF THE GOLDEN SECTION

Robert S. Beard
Berkeley, Calif.

The Golden Sectionis the positive root k of the equation xz +x=1,

k= (V5-1)/2=0.618034.

The negative root, (- V5 - 1)/2, is -1/k, the negative reciprocal of

k. From the above equation,

n _ kn-l-l + k1'1+2 - kn—Z _ kn-l

’

That is, any power of k is the sum of the next two higher powers or
the difference between the next two lower powers.

If the powers of k are listed serially as in the box tabulation
with the accompanying diagram, the ascending and descending ratios
of the successive powers are k and 1/k respectively.

Each power of k can be expressed in terms of its first power
and a Fibonacci number as indicated in the right column of the box
tabulation. Starting with the successive powers ko and kl, this
column can be completed by repeated application of the k™ formula.
It is evident from this tabulation and the k'~ formula that the powers
of k form a Fibonacci series which can be separated into two com-
ponent Fibonacci series.,

Continuing further, allpower of k can be expressed in terms of
any other power and a number as shown on the accompanying trans-
formation tables. The box tabulation on the diagram can be used to

determine the values given in the transformation table. For example,

the value k = % k6 - % is obtained from k6 =5 - 8k. This value for
k, coupled with the value kO =0 + § can be used to determine all of

the values listed in the vertical lfé column with the aid of the K"
formulas.

Itis interestingtonote the recurrence of the Fibonacci sequence
in the numerators in the vertical columns and in the denominators in

the horizontal columns. Both the Fibonacci and Lucas series appear

163
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. 0 . . . . .
in the k= vertical column. Complex expressions involving various

powers of k can be very much simplified by reference to these tables.

REFERENCE

Robert S. Beard, "The Golden Section and Fibonacci Numbers'',

Scripta Mathematica, Vol. 16, Mar. - June, 1950 pp. 116-119.

AKX KK KKK KKK KK

( ft/é«’/“/‘ﬁfé' Cflld/f/,/u (V/(//\ 4;}1[&/ /6. o /é(a el /é7)

(Continued from page 152,)

In general we may transform equation (1) by writing

(3) u, = F(V))

Suppose that furthermore we require that F satisfythe functional equa-

tion
2
(4) F°(s) - bF(s) + b = F(2s)
Then our equation becomes F(Vk+l) = F(ka)’ a solution of which is
'lgiven by V. = AZk. Hence we have B
(5) - Fazk

Y

We now consider the functional equation (4). Let

F(s) -

% = 2L(s) .

Then equation (4) becomes

N

' 2
(6) LZ(s)=—§-[%--’3>+L<2s)]

(Continued on page 169.)
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