
GENERALIZED BASES FOR THE REAL NUiBEiS 
J . A . Fr idy, Rutgers —The State Univers i ty , New Brunswick, New Jersey 

Throughout this paper { r i } ^ will denote a non-Increasing real number 
sequence with limit zero; each of {k|}^° and {mj}^0 denotes a non-negative 
integer sequence 

S = V k.r.- and S* = V m.r. 

(finite or infinite). We shall consider the possibility of expressing each num-
ber x In the interval (-S*,S) in the form 

CO 

x = 7 ^ a.r. 
1 

where each a. is an Integer satisfying -m. < a. < k.. 
In the classical n~scale number representation, each x in [ 0 , 1 ] can 

be expressed in the above form, where n > 1, and r . = n" , k. = n - 1, 
and m. = 0 for each ia Previous generalizations ([6] and [8]) have con-
sidered only the expansion of positive numbers with certain restrictions on the 
coefficient bounds {kj-f. 

In this note we shall extend the previous work to include negative number 
representations as well as relaxing the restrictions on the coefficients {a^}J°. 
We shall also consider the question of uniqueness of such representations and 
the expansion of real numbers using a base sequence {±rj}^° of both positive 
and negative terms, 

DEFINITION. The sequence {r{}-f is a {k9m}-base for the Interval 
(-S*,S) if for each x in (-*S*,S) there is an integeresequence {aj}^° such 
that 

OO 

(1) x = y ^ a . r . , and -m. ^ a. < k. for each I 0 
LMJ . 1 1 1 1 1 

i 
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Our main purpose is to develop an explicit characterization of a {k,m}~ 
base; to this end we first consider the case where m. = 0 for each i; i„ e c , 
a {k,0}-base. 

LEMMA0 The sequence {ri}^ is a {k, 0}-base for the interval (0,S) 
if and only if 

(2) r ^ YJ k.r. for each n0 

n+i 

Proof0 If (2) does not hold and 

r n > x > Z V l • 
n+i 

for some n5 it is easily seen that x cannot be expressed in the form (1)0 

Assume that (2) holds and let x be in (0,S), the conclusion being trivial 
for x = 0. Let i(l) be the least positive integer such that r-n* =s x, and 
choose a.yiv to be the greatest integer such that a.... < k._x and a._xr.A-v i ( l ) & s i ( l ) i ( l ) i ( l ) i ( l ) 
^ x0 

If a . /^r . , - , < x. we continue inductively: 1(1) 1(1) ' J 

Let i(n) be the least positive integer such that 

n-i 

<3> ri(n) ^ x ~ Eai(p)ri(p) a n d i ( n ) . > l ( n - D ; 

Choose a., v to be the greatest integer such that a.. , ^ k . . v and i(n) & & i(n) i(n) 

n-i 

<4> ai(n)ri(n) * X " E ai(p)ri(p) 

In case equality does not hold in (4) for any n, we assert that 
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j ^ j i(p> i(p> 

Suppose, to the c o n t r a r y , that for some posi t ive € 

n 

E a., . r . , v ^ x - € , for each n . x(p) i(p) 

p=i 

If r.> v < e i t follows that 

n - i 
(6) (a., x + l ) r . , x ^ x - y ^ a . , , r . , > 0 
v ; v i(n) ; i(n) L^ i(p) i(p) 

p=i 

By the choice of a. , , th i s impl ies that a = k. , , ; f u r t h e r m o r e , (6) a l so 

y ie lds 

ri(n)+i - ri(n) ~ x " 2 J ai(p)ri(p) > 
p=i 

so that i(n + 1) = i(n) + 1.' Hence, 

<7> E ^ (p ) r i ( p ) = E WKP) + E VP " x • 
p^i p=i p=i(n) 

Applying (2) to (7) we s e e that 

n - i 

( 8 ) r i ( n ) - i * X " E a i (p ) r i (p ) ' 
P=i 
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By the choice of i(n), (8) implies that i(n) - 1 = i(n - 1), so that (8) can be 
written as 

n-2 
(a., .,. + l ) r . , 1X < x - \^ a., ,r., . , v i(n-l) ' i(n-l) Z ^ i(p) i(p) ' 

p=i 

whence a., _- = k. . Thus it is readily seen that for every n, i(n) =n 
and a., , = k , which contradicts x < S; this establishes (5) and completes 
the proof0 

REMARK. From this Lemma the following is clear: 
If {r|}^° is a {k,0}-base for [0,S) and N is apositive integer, then {r^}0^ 
is a {k, 0}!!-base for the interval 

L N / 

Theorem 1„ The sequence {ri}f is a {k,m}-base for (-S*,S) if and 
only if 

(9) r < \ ^ (k. 4- m.)r. for each n 
i=n+i 

Proof„ If (9) does not hold and 

rn > x > S <ki + m i ) r i ' 
n+i 

it follows easily from the Lemma that x - S* is in (-S*,S) but x - S* cannot 
be expressed as in (1)„ 

To show the sufficiency of (9) we first consider the case where S* is fin-
ite. Let x be in (-S*,S). By the Lemma, (9) guarantees a sequence {ai}J° 
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such that 
oo 

x + S* = /LJ a i r i » a n d 0 < a. < k. + m. for each i . 
i 

Letting b. = a. - m. , we have 

OO 

x = z ^ b . r . , and -m. < b. < k. for each i . 
i 

The case in which S is finite is proved similarly* If both S* and S 
are infinite it follows immediately from the Lemma that every non-negative x 
can be expressed as 

oo 

where 0 < a. < k., and every negative x can be so expressed with -m. ^ a. 
< 0. 

We now wish to establish conditions under which the representations in the 
form (1) are unique. Since the common decimal expansion is not unique, and 
this is the special case where r . = 10 , m. = 0, and k. = 9, we cannot 
hope for total uniqueness in any non-trivial case„ Therefore we adopt a con-
vention similar to that used in identifying the decimal „ 0999 • • • with .1000 • ° •, 
v iz . , we disallow a representation in which a. = k. for every i greater than 
some nB Note that in the proof of the Lemma such representations were not 
necessary0 (This is also the reason that we did not consider the closed inter-
val ['0;9S] even when S was finite0 

Theorem 2, The sequence {vj}t yields exactly one {k,m}-base repre -
sentation of each x in (-S*, S) if and only if 

(10) rn = 2^ (\ + mi) ' r i f o r e a c n n 

i=n+i 
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Proof0 The sufficiency of (10) is fairly straightforward. Conversely, it 
is easily seen that for unique representation it is necessary that gf (and S) 
be finite,, Suppose that S* is finite and { r ^ satisfies (9) but not (10), Then 
there exists an integer n and a number x such that 

< x < Y^ (k. + m.)r. . n 4-J v i r i r n 
n+i 

Using the construction in the proof of the Lemma, we get a sequence {a^}1 

satisfying 

x 
i 

5>iri • 

and 0 ^ a. ^ k. + m.; moreover, since r < x. at least one of a^,00- a i l l 9 9 n ' ** 5 n 
is non-zero. Taking b. = a. - m., we have 

(11) x - g* = ^ b . r . , where -m. < b. < k. , 

and for some i ^ n, b. 4= -m., 
On the other hand SrA , is a {k + m9 0} , -base for the interval L u n + i «- » J n+i 

OO 

>E(ki + mi>ri) 
n+i / 

by the Remark following the Lemma, This yields a second {k, m}-base repre-
sentation: x - s =zZi d.r. , where d. = -m. for all i < n. 

COROLLARY, The sequence {r^}^ yields a unique {k,m}-base repre-
sentation of each x in (-S *, S) if and only if 
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r n = (S + S * ) / n . * (1 + k. + m . ) for each n . 

Proof., This is straightforward induction using Theorem 2a 

The foregoing theory can be used to consider representations of realnum-
bers in which the base sequence t r i J 1 takes on both positive and negative 
values. Let A and B be disjoint sets whose union is the set of positive inte-
gers , and let C» and CR denote their respective characteristic functions,, 
We shall use 

iloo 
CR(i) 

H ) r . 
1 j 1 

as the base sequence 
Theorem 3Q If {q,ifi is a positive integer sequence, then 

I 1 1 

is a {q? 0}-base for the interval 

i£B ieA • ) 

if and only if 

00 

(12) r
n " S qiri f o r e a c h n 

n+i 

P roo i Let k. = CA(i)q. and m. = CB(i)qt, so that k. + m. = q., 
2. Aq.r . = Ss and 2. gQ-^ = Sf Thus by Theorem 1, (12) is equivalent 
to {ri}^° being a {k, m}-base for (-S*SS)0 If (12) holds and x is in (-S*,S), 
then 

00 

x ^ X biri , w h e r e ~CB( i ) q i ~ b i - C A ( i ) q i • 
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cB(i) 

Taking a. = (-1) b . , we have 

(13) V U°B(i) 
and 0 < a. < • i £ q i 

The converse is proved similarly,, 
REMARK*' It is clear that the representations in (13) are unique if and 

only if equality holds in (12) for each n„ 
A related problem is that of expressing a given number x in the form 

OO 

(14) x = V^ e.r. , where e. = 1 or -1 „ 
i 

The following solution is proved using Theorem 1. 
PROPOSITION; if 

r < Y r. for each ns and |xl < V r . , 
n+i i 

i 

then x can be expressed in the form (14)Q 

The special case of Theorem 1 in which k. = 1 and m. = 0, for all i, 
is apparently an old result first proved by Kakeya [7] (cf. [2]). Generalizations 
of the n-scale (radix n) representation of positive integers which are anal-
ogous to the theory presented here have been developed by Alder [l] and Brown 
[3 -5 ] . 
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ON A PARTIAL DIFFERENCE EQUATION OF L CARUTZ 
W . Jentsch, University of Hal le /S. , Germany 

Translated by: P.F, Byrd and MonTka Aumann, San Jose State Col lege, San Jose, C a l i f . 

SUMMARY 

Eine von L„ CARLITZ behandelte partielle Differenzengleichung zweiter 
Ordnung, die mit den FIBONACCI-Zahlen in Beziehung steht, wird mit Hilfe 
einer algebraisch begriindeten, zweidimensionalen Operatorenrechnung gelost. 
Die sich hierbei ergebende Losung ist allgemeiner als diejenigevon L. CARLITZ. 

In an article [1] by L. Carlitz, a solution of the equation 

(*) umn ~ um-i ,n ~ um,n-i ~ um-2,n + 3 u m- i , n - i ~ um,n~2 = ° 
(m,n ^ 2, integral) 

was given with the aid of a power series expansion related to the Fibonacci 
numbers. Although the solution contains only three arbitrary constants (viz# , 
u00s u01, and u10), it is called a "general solution" — a terminology which 
appears justified only if, besides equation (1), the following secondary condi-
tions, not mentioned in [1 ] , are also imposed: 

(2) u u - u01 - u10 + 3u00 = 0 , 

(3) u0n - u ^ ^ - u0jI1„2 = 0 for n > 2 , 

(4) u m 0 - um_1?0 - um„2>0 = 0 for m => 2 , 

(5) u i n - uon - u t ^ i + S u o ^ i - ul jn_2 = 0 for n > 2 , 

(6) u m l - um_1 ? 1 - u m o - um_2 y l + 3 u m „ l j 0 = 0 • for m > 2 . 

The conclusion (1.4) from [1] is valid only under the assumptions (2) to (6). 
From (2), u.n is fixed, and from (3) to (6) the initial values u 0 n , u l n and 
u m 0 , u m l are uniquely determined for n,m ^ 20 The general solution of (3), 
for instance, is 

2 0 2 
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(7) uon - u01 F n + u00 Fn_t for n > 0 , 

where 
n _ n 1 __ 1 

(8) F n = ^-zp w i t h « = ^ (1 + V5) , iS = |- (1 - NTS) (n integral). 

One can easily verify that the solution (5.4) given by LB Carlitz in [1] reduces 
to equation (7) for m = 08 

The general solution of (1) without secondary conditions thus contains two 
pairs of arbitrary functions of only one of the two integral variables m and n. 
We now wish to determine this solution with the aid of the ?f two-dimensional, 
discrete operational calculus" developed in [2 ] . 

According to the fundamental idea of Je Mikusiriski (see perhaps [3]) , the 
usual addition and the two dimensional Cauchy product 

m,n 
(9) amn * bmn ~ 2 a/ivbm-jU n-v a s multiplication 

/x ,v =0 

are introduced in the set of complex-valued functions of two nonnegative integral 
variables, and the quotient field Q2 belonging to the integral domain D2 a r i s -
ing from this means is considered. In order to conform with the relations in 
[ 2 ] , we make an index shift in (1) and write 

(lf) DfUum) = um+2jn+2 ~ um+i,n-H2 ~ um+25n+t ~ um,n+2 + 3um+i,n+i 

- um+2?n = ° (m>n - °) • 

After application of the difference theorem from [ 2 ] , 

um+k,n+i = P ^ m n - Q* 2 p K nKn - p 2 q ^ u m X + 

k~* ^ lr.it M 
2 2 pK V % x 

/c=o M *X 

(um neD2; u m , u. initial values; k?£ natural numbers;p,-.qinverses to shift 
operators in Q2), one obtains the operator representation 



ON A PARTIAL DIFFERENCE EQUATION [Oct. 

u = h(p,q,m?n) 
g(p,q) 

where the numera to r i s 

h = ^ n h t + r m h 2 + /3nh3 + <5mh4 + or0h5 + ^ h 6 + /50h7 + fthg , 

a s one can eas i ly verify with the polynomials 

hi(p,q) = P2q2 ~ pq2 ~ P2q + 3pq - p2 , h2 = ht(q,p) , 
h3(p,q) = pq2 - pq - P, h4 = h3(q,p), h5 = -p2q2 + pq2 + p2q - 3pq, 

h6(p,q) =-p 2 q + p q , h7 = h6(q,p) , h8 = -pq 

and the coefficients, the given init ial va lues , 

(11) an = u o n , y m = u m o , /5n = u m , 6m = u m l with 

«o = ^o > ft) = yu a\ = 6o » Pi = 6t • 

The denominator , a polynomial of degree 4 in p,q is 

g(P,q) = P2q2 - Pq2 - P2q + 3pq - p2 - q2 = g1(p,q)g2(p,q) 
with 

gi = pq - ap - ]Sq and g2 = pq - /3p - aq , 

where a and ft have the va lues given in (8). As can be immedia te ly proved, 

~~~x €D9 
g(p,q) 2 

holds for i = 1, • • •, 8; and these t e r m s a r e indeed functions of the Fibonacci 

number s F, . If cons idera t ions for the opera to r 

p2q2 

g(p,q) 

a r e indicated, the calculat ion for the remain ing m e m b e r s of u m n then follows 
eas i ly . If one conceives 

204 

(10) 
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pq2 

g(p?q) 

as a (proper fractional) rational operator of p alone, then there results, by 
decomposition into partial fractions, 

p2q2
 = i / o-pq _ /fog j g__ 

g(P,q) a - p \g2(p,q) gi(p,q)/ q - 1 g(P 

and on account of the obvious relations 

g2(p,q) \ m ) a P ' g l (p,q) \ m ) a P 

and of the meaning of q/(q - 1) as a "partial summation operator" 

-a— b = 2 b 

it follows that 

q - 1 mn m^ ' 

g(p,q) c - /5 k t I m /L^ P a P J g ( p W - - P k = 0 

from which, on account of a ^ k = (_i)k (^ integral), of definition (8), of the 
symmetry of g(p,q), and with the notation G m n for (p2q2)/g , there finally 
results 

a2) g & = G - = <W = £ (-Dk(m
k

+k) Fm+1_k = 

s ( - l ) k ( n k k ) F n + 1 _ k for m,n s o. 
m 
2 

k=o 

With the aid of (12) the operators h j /g (i = l , - . . , 8 ) - can now be immediately 
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represented as functions from D2. In order to simplify the notation, we define; 
G m n = 0 in case an index is negative; according to (12) this is also achieved by 
stipulating the following: 

(13) 2 a k = 0 , I k 1 = 0 for £ < 0 . 

(With this agreement, ( l /p2) G m n = Gm^2>^.» £°? example,,.holds,for all m,n 

Therewith we obtain, after easy calculation from (10), 
(14) u m n =^ n » ( l + Gm_2$li ) + 7 m * (1 + Gm ? n_2) 

+ 0n" (Gm-i,n ~ Gm-i,n~i ~ Gm-i,n-2) 
+ 6 m - (Gxa,n-i ~ G m-i ,n- i " Gm-2,n-i) - »oGmn 
+ {a0 - /30)Gm-i3,h + («o " ^i)Gmfn-i "*" (3<*o - £0 ~ a\ + ^i)Gixi~i,n-i 

for all m,n — 0. 
(In this the multiplication symbol means multiplication in D2 and the summand 
1 is the identity element of D2.) If we finally use 

•Dn(r)vn G m-i ,n ~ Gm~i,n-i " (' 

and correspondingly 

Gm,n-i - Gm-i ,n- i = ( - l ) 1 1 1 ^ " 1 ) F n . m for m,n - 0 , 

and carry out the multiplication in D2 then after simple transformations for 
m,n ^ 0 we obtain from (14) 

n m 

<15* umn = % + ym + E V /̂n-̂  + E Gjx.,n-2ym-ji 

i i i l l 

m m 

£~J x f I ft I n-jbt m-ju JLd /A-2fn-i m-/i 

, i x m / m + n\ „ n / i x n / m + n - l \ „ 
- «O(-D ( m j F n _ m + 1 - /30(-D y n j F m _ n 
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We verify that (15) satisfies equation (11)? however, we only indicate the calcu-
lation; to begin with, D(orn) = -%+2 holds and D(7m) = -7m+2 • 

Furthermore, 

( n \ n+g 

2 n
G m - 2 ^ B ^ = 2 % + 2 „ , D ( G m ^ 2 ) ^ - ^ [ G ^ - G ^ ^ - G ^ J 

+ a , JG - G 4 - G - G + 3G -l 
n+iL mi m- i , i mo m-2,i m-i,oJ 

= QW2
 ; 

for, it is true that Gm 0 - Gm.1 ? 0 - Gm.2 ? 0 = { J £ r m > 0 ' 

Gmt ~ G m-i , t - Gmo - Gm-2,t + 3Gm-i5o =: 0 for all m > 0 

and 

D ( G H I - 2 S P - 2 ) = 0 for m ^ 0 , ^ ^ 2 , 

k+i 
as one recognizes after some calculation with the aid of (12) and F^ = (-1) F , 
(k integral) or as one can read off directly from the fact that G m n in D2 is 
inverse to 

V o o ... 
by (9). 

Analogously one completes the verification. By appropriate calculation one r e c -
ognizes that the initial conditions (11) are satisfied by (15). Since 60 = at, and 
because of definition (13) and of the validity of the relation (3) for F n ? there 
results for m = 0S n ^ 0, for instance, 

uon = < V o + GD,n-2 o ("'o^n'-^i^-^'o'K^' 
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• * * • • 

RECURRING SEQUENCES 
Review of Book by Dov Jarden 
By Brother Alfred Brousseau 

For some time the volume, Recurring Sequences, by Dov Jarden has been 
unavailable, but now a printing has been made of a revised version* The new 
book contains articles published by the author on Fibonacci numbers and r e -
lated matters in Riveon Lematematika and other publications. A number of 
these articles were originally in Hebrew and hence unavailable to the general 
reading public. This volume now enables the reader to become acquainted with 
this extensive material (some thirty articles) In convenient form. 

In addition, there is a list of Fibonacci and Lucas numbers as well as 
their known factorizations up to the 385th number In each case. Many new r e -
sults in this section are the work of John Brillhart of the University of San 
Francisco and the University of California* 

There is likewise, a Fibonacci bibliography which has been extended to 
include articles to the year 1962a 

This valuable reference for Fibonacci fanciers is now available through 
the Fibonacci Association for the price of $6.00. All requests for the volume 
should be sent to Brother Alfred Brousseau, Managing Editor, St. Maryfs 
College, Calif. , 94575. 

• • * • • 

The Fibonacci Association invites Educational Institutions to apply for Academic 
Membership in the Association. The minimum subscription fee is $25 annually. 
(Academic Members will receive two copies of each issue and will have their 
names listed in the Journal. 

• • • • • 



ENUMERATION OF PARTITIONS SUBJECT TO LIMITATIONS ON SIZE OF MEMBERS 

Daniel C. Fielder, Georgia Institute o f Technology, A t lan ta , Georgia 

•1.' INTRODUCTION 

In a previous work [1], it was shown that 'the partition enumeration* 
P(n[p| < n + p - 1) is given by 

(II P(n|p| < n + p - 1) = 

(la) P(n|p| 

"n - p + 2 
+ E 

1=1 

n - p + 2 - w. 

n + p - 1) = 1 

P * l , 

P = l . 

The w. are the sums of each partition in the set of partitions described by 
PV(>3,<n - pj>l ,< [(n-p)/3])^35<pK It was stated in [1] that the summa-
tion term of (1) is zero for those values of p and (n - p) for which PV(^39 

< n - p | ^ l ? ^ [(n-p)/3}j^3,^p) does not exis t (See the footnote below for a 
brief description of nomenclature.) For n - p < 3 and/or p = 2, w. = 09 

O n e raison dfetre for (1) is the adaptability of w. to digital computation, 
P(njp!^n - p + 1) is a basic enumeration form which is extremely useful 

in evaluating more restrictive enumerations [2 ] , PV(n|p[<n - p + 1) shares 
this versatility in that sets of many other partition types can be constructed by 
operations on the members of the partitions of the basic set„ When PV(n)p|^i 
- p + 1) is under consideration, it is convenient to arrange the p members of 
a partition so that 

(2) *p a p - i - ap~2 

P(n)pj<q) is the enumeration of the partitions of n into exactly p members, 
no member of which is greater than q„ The appended notation PV(n|p|^ q) 
is the actual set of such partitions* The use of ^ and/or ^ symbols with n, 
p ,o r q defines lower limits and/or upper limits of the quantity modified. Note 
that [ ] (except for obvious reference use) is used with realnumbers to indicate 
the greatest integer less than or equal to the number bracketed, 

209 
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where a, is an individual partition member. The arrangement of (2) leads to 
an initial partition of PV(n|p|^n - p + 1) as 

(3) 
ap 

1 

ap-i 

1 1 
ap-2 

1 

a 2 
1 

a l 
n - p + 1 

One method [3] of generating successive partitions of PV(n|p|<n - p + 1) starts 
with (3) and successively increases a2 by 1 and decreases a.t by 1 until (2) 
is just barely satisfied. New members, a , a p ^ , - • • , a2»ai are chosen 
exhaustively, and the increase a2—decrease â  process is repeated. 

Based on the above brief background, it is possible to consider the fol-
lowing enumeration extensions to (1): 

(a) P(n|p|>s) 

(b) P(n|p|<r) . 

No member less than s, where s is a positive integer 
such that s ^ n - p + 1 . 

No member greater than r where r is a positive integer 
such that r ^ n - p + 1 . 

(c) P(n |p |^s , ^ r ) . No member less than s, or greater than r 

2. ENUMERATION OF P(n|p|>s) 

There exists one member of a partition in the set PV(njpj—s) which is 
at least as large as any member of any partition in the set. Let this member 
be q which can readily be found as 

s 

(4) q = n - s(p - 1) . 

This implies that for any als 

(5) n - ps^ + s ^ at ^ s 

from which a necessary condition of P(njp|^s) is seen to be 

(6) (?) 
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The initial partition of PV(n|p|^s) is 

(7) s, s, s, - . . , s , n - s(p - 1) 

If s - 1 is subtracted from each member of (7), the result is a modified ini-
tial partition 

(8) 1, 1, 1, a e o , 1, n - sp + 1 . 

The complete enumeration for a partition set starting with (8) i s , according to 
(1), P(n?|p|<nf - :p + 1), where 

(9) nf = n - sp + p . 

Because the aA and a2 members of the initial partitions (7) and (8) differ by 
the same integer (n - sp) and because each a^ of each partition developed 
from (7) is (s - 1) greater than the corresponding a^ of the corresponding 
partition developed from (8), there are exactly as many partitions developable 
from the start of (7) as there are from (8). Hence, P(n|p|^s) appears in the 
form of (1) as 

(10) P(n|p|^s) = P(nf|p|Mnf - p + 1) . 

As a simple example, consider P(is |6 |^2) . For this case, n = 15, and nT = 
9.' It is seen below that P(15J6|^2) = P(9J6|<4) = 3e 

PV(15[6l^2) PV(9[6l<4) 
2 ,2 ,2 ,2 ,2 ,5 1 ,1 ,1 ,1 ,1 ,4 
2 ,2 ,2 ,2 ,3 ,4 1 ,1 ,1 ,1 ,2 ,3 
2 ,2 ,2 ,3 ,3 ,3 1,1,1,2,2,2 

3e ENUMERATION OF P(n|p|<r) 

The partitions of the set PV(>3,^n - p]>l,< [(n - p)/3] ]^3 <p) canbe 
arranged in columns according to the number of members in a partition. This 
is illustrated in Table 1 for n = 16, p = 58 
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i 

PV(> 3 , < l l | ^ 1, < 3 | > 35<5) 

0 

0 

1 

3 

4 

5 

2 

3,3 

3,4 

3,5 

4,4 

4,5 

5,5 

3 

3,3,3 
3,3,4 

3,3,5 

3,4,4 

Table 1 

The sum of members of each partition is equal to a w. for use in (1). The use 
of the index i can be extended somewhat to allow it to designate the column 
from which the summed partition was taken. Although w. might stand for any 
of several sums, no loss in generality results thereby since all of these sums 
must eventually be considered0 To account for the non-summation term in( l ) , 
a zero column with a lone zero entry is added to indicate that an added w0 = 
0. Table 2 shows values of w. for n =. 16, p = 5. 

i 0 

0 

1 

3 

4 

5 

2 

6 

7 

8 

8 

9 

10 

3 

9 

10 

11 

11 

Table 2 Values of w. 

If, as the w.fs are successively selected for enumerating P ( n | p | ^ n - p 
+ 1) in (1), a simultaneous generation of the partitions in the set PV(nlp|^n -
p + 1) is made (by the increase a2—decrease &t method, for example) there 
would result subsets of PV(n|p|^n - p + 1) each having [(n- p + 2 - wi)/2] 
partitions of n0 For i = 0, the subset can easily be constructed,, It is seen 
that the a2 and a3 members of the initial partition must necessarily be one. 
For i = 1, the a2 and a3 members of the initial partition assume the least 
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possible value two since i = 0 has accounted for the value one9 It can be 
argued in this fashion that the a2 and a3 members of an initial partition in a 
subset must be (i + l ) . The a4 member of the initial partition of the subset 
would not generally be known in advance. However, this member is certainly 
not less than any member of any partition in the subset. Set dj be the a1 

member of the initial partition corresponding to the particular w-. If bj are 
the number of partitions In the subset, the bracketed terms of (1) limit the 
possibilities of bj to either 

(11) n - p + '1 2bt 

o r 

(11a) n - p + 1 - w. = 2b| 

The arrangement of the subset of b^ partitions is 

(12) ui 
partitions 

ap ap_i 

X X 

a«j Sin 

1+1 i+1 d| **— (Initial Partition) 

i+1 I+bj di-bi+1 

From (12), it can be deduced that either 

(13) d{ = 2b. - 1 + i 

or 

(13a) d. = 2b. + i i I 

Comparison of (13) with (11) and (13a) with (11a) yields the desired 

(14) dj = (n - p + 1 - wj + i) 
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An i l lus t ra t ion is given in Table 3 for cons t ruc t ion of PV(16 |5 |^12) , cons is ten t 

with the w. from P V { ^ 3 , ^ l l | ^ l , < 3 | ^ 3 , <5) as a r r anged in Tables 1 and 2. 

i 

PV(16| 5|^12) 

0 

1 , 1 , 1 , 1 , 1 , 1 2 

1 , 1 , 1 , 1 , 2 , 1 1 
1 , 1 , 1 , 1 , 3 , 1 0 
1 , 1 , 1 , 1 , 4 , 9 

1 . 1 . 1 . 1 . 5 , 8 

1 . 1 . 1 . 1 . 6 , 7 

1 

1 , 1 , 2 , 2 , 

1 , 1 , 2 , 3 , 
1 , 1 , 2 , 4 , 

1 , 1 , 2 , 5 , 

1 , 1 , 2 , 6 , 

1 , 2 , 2 , 2 , 

1 , 2 , 2 , 3 , 

1 , 2 , 2 , 4 , 

1 , 2 , 2 , 5 , 
2 , 2 , 2 , 2 , 

2 , 2 , 2 , 3 , 

2 , 2 , 2 , 4 , 

2 , 2 , 2 , 5 , 

10 

9 

8 
7 

6 

9 

8 

7 

6 

8 

7 

6 

5 

2 

1 , 1 , 3 , 3 , 8 

1 , 1 , 3 , 4 , 7 

1 , 1 , 3 , 5 , 6 

1 , 2 , 3 , 3 , 7 

1 , 2 , 3 , 4 , 6 

1 , 2 , 3 , 5 , 5 

1 , 3 , 3 , 3 , 6 

1 , 3 , 3 , 4 , 5 

2 , 2 , 3 , 3 , 6 

2 , 2 , 3 , 4 , 5 

Z , O , Oj O, O 

2 , 3 , 3 , 4 , 4 

O , 0 , 0 , 0 , 4 t 

3 

1,1,4,4,6 1 
1 , 1 , 4 , 4 , 5 

1 , 2 , 4 , 4 , 5 

1 , 3 , 4 , 4 , 4 

2 , 2 , 4 , 4 , 4 

Table 3 PV(16|5|<12) 

Table 4 shows bj cor responding to wi of Table 1 for P(16 |5 |^12) = £ b . 
i=o 

i 

b i 
1 

0 

6 

1, 

5 
4 
4 

2 

3 
3 
2 
2 
2 
1 

3 

2 
1 
1 
1 

Table 4 2 b. = P(16J5j<12) = 37 
i l 
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Let the b. for P(n|p|<r) be b i r „ It follows that for P(nlp|<r) each 
b j r can have no more (and will possibly have less) than bf partitions. The 
non-negative integer by which b j r is less than b r can be observed by com-
paring r with the entries in the SL1 column of (12), This leads immediately 
to 

(15) P(n|p|<r) = 
"n - p + 2" 

• < * o 4 n - p + 2 - w. 

"') = i Ebi 

where 

(16) 
n 

0 
d . - r 

- p + 2 - w. 

2 ' ~_ 

( r > d . ) , 
(d. > r ^ (d. - b. 
x i v i i 

(r < (d. - b. + 1)) 

Table 5 serves to illustrate (15) for n = 1 6 , p = 5, r = 7ffi 

i 

b i r 

0 1 2 3 

1 2 2 2 

2 3 1 
3 2 1 

2 1 
1 

Table 5 E b i r
 = P(16J5J^7) = 23 

4„ ENUMERATION OF P(n|pl>s,<r) 

The combination of the previous two methods leads quickly to the desired 
enumeration. Reference to (10) reveals a P(n?|p|^nf - p + 1) for which every 
member of each partition of PV(nf]p)^nf - p + 1) is (s - 1) less than the cor-
responding member of the appropriate counterpart in PV(n|p|^s). If the de-
sired r is depressed to rf where 
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(17) r ! = r - (s - 1) , 

the enumeration P(n}|p|^s,^r) is equal to P(nf |p|^rf) . 
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DID YOU KNOW? 

Prof. D.'E. Knuth of California Institute of Technology is working on a 3 -
volume book, The Analysis of Algorithms, which has 39 exercises at the end 
of the section which introduces the Fibonacci Sequence. However, the Fibonacci 
Sequence occurs in many different places, both as an operational tool, or to 
serve as examples of good sequences and also bad sequences. He reports that 
there are at least 12 different algorithms directly or indirectly connected with 
the Fibonacci Sequence. In the age of computers, the Fibonacci Sequence is 
coming of age in many wayse This book will be a most welcome addition to the 
growing list of Fibonacci related books and articles. 

* 

Prof. C. T. Long of Washington State University has written a very nice 
book, Elementary Introduction to Number Theory, 1965, Heath, Boston. It con-
tains a good discussion of the Fibonacci Numbers in Chapter One and several 
Fibonacci Problems in Chapters I and II. 

• • • • • 



ON THE DIVISIBILITY PROPERTIES OF FIBONACCI NUMBERS 
John Hs Hal ton, University of Colorado, Boulder, Colorado 

1. INTRODUCTION 

The Fibonacci sequence i s defined by the r e c u r r e n c e re la t ion 

(1) F n + 2 = F n + 1 + F n , 

together with the p a r t i c u l a r values 

F 0 = 0, Ft = 1 

whence 

F 2 = 1, F s = 2, F 4 = 3 , F 5 = 5, F 6 = 8 = 2\ F 7 = 13 

F 8 = 21 = 3 " 7, F 9 = 34 = 2 • 17, F 1 0 = 55 = 5 • 11 , • • • ; 

(2) 
and, in p a r t i c u l a r , 

F12.= 1 4 4 = 2 4 ° 3 2 , F 1 4 = 377 = 13=29, F 1 5 = 610 = 2- 5 • 61 , 

F 1 8 = 2584 = 23 -17 . 19, F2 0 = 6765 = 3 • 5 • 11 • 4 1 , 

F 2 1 = 10946 = 2° 1 3 - 4 2 1 , F 2 4 = 46368 = 2 . 5 - 3 2 - 7 - 2 3 , 

F 2 5 = 75025 = 52» 3001, F 2 8 = 317811 = 3 -13° 29 • 281 , 

F3 0 = 832040 = 23 • 5 • 11 • 31 • 61 , F 3 5 = 9227465 = 5 • 13 • 141961 , 
F 3 6 = 14930352 = 24. 33 -17 • 19 -107 , F4 2 = 267914296 = 2 3 - 1 3 - 2 9 - 2 1 1 - 4 2 1 

F7 0 = 190392490709135 = 5 • 11 • 13 - 29 • 7.1 • 911 •141961 
V 

In this p a p e r , we shall be concerned with the sub-sequence of Fibonacci 

n u m b e r s which a r e divis ible by powers of a given integer,, We shal l a l so be 

i n t e r e s t ed in the assoc ia ted p rob lem of the per iodic na tu re of the sequence of 

r e m a i n d e r s , when the Fibonacci number s a r e divided by a given in teger . 

217 
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The Fibonacci sequence is defined for all integer values of the index n0 

However, the well-known identity 

(3) F = ( - l ^ F 
% ' -n x ' n 

shows that negative indices add nothing to the divisibility properties of the 
Fibonacci numbers,, We shall consequently simplify our discussion, without 
loss of generality, by imposing the restriction that n ^ 0. 

Of the many papers dealing with our problem, perhaps the most useful 
are those of Carmichael [1] , Robinson [5] , Vinson [6] , and Wall [7]; and the 
reader can find many additional references in these. Most of the other papers 
in the field give either less complete results, or give them for more general 
sequences. 

We shall make use, in what follows, of the well-known identities:* 

(4) 

(5) 

^{(H^)"-(4^)"} : 

(6) F n " F n _iF n + 1 = (-if1 

(7> F k n + r = L 

and since F0 = 0, 

(8) F ^ = F 
h= 

k V h
F

k - h F if k > 0 
I n n-i r+h' 

n2-fL )Fn lFn-iFh 
h=l v n / 

*See, for example, equations (6), (3), (5), (67), and (34), in my earliertpaper 
[ 3] „ Equation (5) above follows from (4) by the binomial theorem. 
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Also 

n=c>L\ 
and 

::)• 
(10> p divides I J if p is prime and 0 < s < p , 

and Fermat?s theorem, that 

(11) nr = 1 (mod p) if p is prime and (m9p) = 1 

As is customary, we use (A9B,C,o o°) to represent the greatest com-
mon factor of integers A, B5 C, • e • , and [A, Bs C, • • • ] to represent their least 
common multiple. We have 

(12) n^P""1) = ( m / p ) ( m o d p) 9 

where p is an odd prime and (m/p) denotes the Legendre index, which is ±1 
if (m,p) = 1, and 0 otherwise. 

Each writer seems to have invented his own notation0 I shall adopt the 
following, which comes closest to that of Robinson in [ 5] . 

Definition 1, The least positive index a such that F is divisible by 
m1 (that i s , F = 0 (mod mn)) will be written 

(13) ar(m,n) = aim1,1) = a(mn) . 

This is variously called the "rank of apparition" (why not "appearance"?) of 
m n , or the "restricted period" of .the Fibonacci sequence modulo mn„ 

Definition 2. The least positive index p. such that both F =r 0 and 
Fjjtf-i = 1 (mod m11) will be written 
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(14) M(m,n) = M(mn,l) = M (mn) . 

This notation follows Carmichael [2], who named \x the "characteristic number" 
of the Fibonacci sequence modulo mn

c It is also called the "period" of the s e -
quence modulo mn. 

Definition 3. I shall write 

(15) jLi(m,n)/Qr(m,n) - /3(m,n) = /3(mn, 1) - /3(mn) . 

Definition 40 The greatest integer v such that F , . i s divisible by __JL & & or(m,n) J 

m.v will be written 

(16) p(msn) - i>(mn,l) = v(mP) . 

It is then clear that 

(17) or(m,n) = oj(m,n + 1) = • • • = ar(m, p(m,n)) < a(m,p(m9ii) + 1) 

or, equivalently, 

(18) v(m, i/(m,n)) = v(m,n) . 

Definition 5Q I shall call the sequence 

( 1 9 ) Fa(m, i) > F
f f(m, 2) ' " * ° ' Faf(m, n)' "° ° ' 

the divisibility sequence of m„ 

2„ PRELIMINARIES 

We shall need a number of preliminary results , whose proofs will be out-
lined for completeness,, 

Lemma 1, F , F , and F are always pairwise prime, 
Clf f divides two of the numbers, it must divide the third, by (l)c Thus, , by 
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induction along the sequence, using (1), we see that f must divide every F . 
Thus, since Fj = 1, f = 1.] 

Lemma 20 If n ^ 2, F is a strictly increasing positive function of n0 

[By (1), if F n ^ ^ 0 and F ^ * 1, F n + 1 > F Q 2> 1. By (2), F0 = 0 and 
F1 = 1, whence the lemma follows by induction/] 

Lemma 38 If n ^ 3 

(20) <*(Fn) = n. . 

fBy Lemma 2, if n ^ 3, the least index m such that F ^ F is n j 1 J . ' ' m n J 

Lemma 4„ 

(2D ( F m , F n ) = F ( m > n ) . 

[Let (m,n) = g and ( F m , F n ) = G0 There are integers x and y (not both 
negative) such that xm + yn = g0 Suppose x ^ 0; then, by (7), 

x / \ 
F = I P I ) F h F X " h F M, = 0 (mod G) , g Z-# \ h m m-i yn+h x ; ? 

h=o x n / 

since G divides F and F , and by (8), F divides F . Thus F is m n* J W J n yn g 
divisible by Ge Again, by (8), F, ^ = 0 (mod F L Thus, since g divides 
both both m and n, F divides both F and F , and so G is divisible by 

Lemma 5a F is divisible by F , if and only if either m is divisible 
by n, or n = 20 

[By Lemma 4, ( F m , F n ) = F n if and only if F ( ^ = F n ; that i s , (m,n) = 
n or n = 2B ] 

Definition 6n The remainder when F is divided by m will be written 
F^ ' and will be called the residue of F modulo m0 Clearly 

n n J 

(22) F = F ( m ) ( m o d m ) , 0 ^ F ( m ) < m 
v / n n x /5 n 
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Lemma 6C The sequence of residues F ^ m ' , modulo any integer m> 
2, is periodic with period /x(m).' That is 

(23) or 

(m) = (m) 
n+kM(m) n 

F ,, , , = F (mod m), n+l^(m) nx ' 

[The ordered pair of integers F^ , F ^ , ; can take at most m2 distinct val-
n n+i / \ / \ / \ 

ues0 Thus the m2 + 1 such consecutive pairs in F J , F\ ' , • • • , F- 2_L 
must have a duplication. By backward induction on the indices of two equal 
pairs , using (1), we see that there must be a pair F5 ' , F k + i equal to F J 
= 0, F j m ' = 1, with 2 ^ k ^ m2

0 By definition, the least such k is pt(fta), 
The periodicity now follows from (1). ] 

Lemma 7, For any integer m, we can find an F divisible by m, 
[For example, p = kju(m)9 for any integer k, by Lemma 6„] 

Lemma 8e F is divisible by m if and only if n is divisible by a(m)0 

[Since m is a factor of F , v; if n is divisible by o?(m), F is divisible 
by m, by Lemma 50 Let n = k&(m) + r , 0 < r < a(m), and let m divide 
F .' Then, by (7), F , , F = F. = 0 (mod m). Thus, sinceby Lemma 1, n » J v /» Q/(m)-i r n x ' s J * 
(FcKm)>For(m)-i) = 1 ; F. = 0 (mod m). Since r < a(m), which is minimal, 
F = 0 ; whence r = 0 and n is divisible by a(m)e] 

Lemma 9, For all integers m and r > s > 0, a(m,s) divides a(m,r)„ 
[F , v is divisible by m r and so by ms

e The result follows from Lemma L #(m,r) J J 

8.] 
Lemma 10. M(m) is divisible by a(m)Q That i s , /3(m) is an integer,, 

[Since F y , = F i m ' = 0, F" x is divisible by m0 The lemma follows 
from Lemma 8. ] 

Lemma 11, If p is an odd prime, then p divides only one of F , 
F , and F ; namely, F m , where m = p - (5/p).' 
[(p,2) = 10 Using (5), (10), and (11), we obtain that 

1/ 

(24) F p s 2P~ 
s=o x 
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Thus p divides F if and only if (5/p) = 0, by (12); that i s , when p = 5, 
By (5), (9), (10), and (11), 

4<P-i) 

(25) 2F ^ = 2PF ^ 
y l p+i p+i ^ ( \ 2 s + 1 / \ 2 s / ) 

and, by (1), (24), and (25), 

(26) 2F s 1 - 5 ^ P l) (mod p) 

The lemma now follows. We may, note that all but the dependence on (5/p) 
follows directly from (6), which yields that, if p + 5, by (11) and (24), 

F F _,_ = F2 - 1 s 0 (modp) ; p~i p+i p \ r? * 

and from (1).] 
Lemma 12, a(p) divides p - (5/p), if p is an odd prime; and if a(p) 

is itself prime and p 4= 5, a(p) < p„ 
[ The first part follows from Lemmas 8 and 11. Thus a(p) < p .+ 1. By Lem-
ma 11, if p # 5 and a(p) is prime, since p ± 1 is not prime, a(p) ^ p - 2.] 

Lemma 13, If 

\ K X 
i 2 k 

(27) m = Pi p2 ••• p k 

where the p. are distinct primes and the X. are positive integers, then 

(28) ar(m,n) = [^(p^nXi), aip2sn\2)f • • • , a<&£>*•>%)I 

and 

(29) M(m,n) = ( X p ^ n ^ ) , ii(p2,n\2), °°° 9 M(Pk9
n%)] 
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[By Lemma 8, F, is divisible by p. if and only if t is divisible by #(p., 
n \ . ) . Thus F+ is divisible by m n if and only if t is a multiple of all the 
of(p.,n\. )c Since a(m,n) is minimal, (28) follows,, By Lemma 6, F , = 
F (mod p. ) for every s if and only if t is a multiple of ^(p.,nX.)„ Thus, s i i i 
by the Chinese remainder theorem, F , = F (mod m ) for every s if and 

s+t s 
only if t is a common multiple of the M(p.,n\.)0 Since ju(m,n) i s the mini-
mal such t, (29) follows,] 

Lemma 140 For any integers m and n, 

or([m,n]) = [a(m), a(n)] 

(3.0) { and 

M([m,n]) - [iMm), M(n)] 

[This follows from Lemma 13, by expanding m and n in prime factors, ] 
Definitio] 

will be written 
Definition 7. The greatest integer n such that N is divisible by m 

(31) n = pot N 

and called the "potency" of N to base m, following Hc Guptac It is then clear 
that, in particular, 

(32) v(m,n) = pot F . . . 
x ' v ' ' v m of(m,n) 

Lemma 15a P ° t m F N = n if and only if N is divisible by cv(m,n) but 
not by a(m,n + l)c 

[ This is an immediate consequence of Lemma 8„ ] 
Lemma 16c If k and n are positive integers, then ( F - ^ / F , F ) is 

a factor of k„ 
[By (8), F ^ / F = k F ^ 1 (mod Fn).' Thus, if ( F ^ / F Fn) = g, g divides 

k-i k F . B y Lemma 1, (F ' F ) = 1; so g divides k j 
n-i J ' v n-iJ n7 ' & J 
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Lemma 17, If k and n are both integers greater than one, then 
F|Q! / F n is a strictly increasing function of n and of k. 
[By (8), F ^ / F n = 2 h = 1 L p n

 1 F ^ F ^ Every te rm in the sum is positive, 
and increases with F , F 9 and ke The result follows from Lemma 2„ 1 n* n~i* J 

Of these results , those in Lemmas 1, 2, 4 — 7, 11, and 16 have been 
known for a long times Lemmas 8 — 10 and 12 — 15 appear, or are implicit, in 
the papers of Robinson [ 5 ] , Vinson [6 ] , and Wall [7]„[My a(m)9 /3(m), ju(m) 
are written a(m), /3(m), 5(m) by Robinson, and f(m), t(m), s(m) by Vinson,, 
respectively; and Wall writes d(m), k(m) for my a(m)9 jLt(m)0] 

30 THE DIVISIBILITY SEQUENCE 

Theorem lc If p is an odd prime and n ^ v(p), then 

(33) <*(p,n) - pn~v(p)<*(p) , 

(34) v(p,n) = n 

If p # 5, (p,ar(p)) = 1; while 

(35) Qf(5,n) = 5 n 

Further, 

(36) a(2) = 3, a(4) = 6 = a(S) 

and if n ^ 3, 

(37) or(2,n) - 2n 2a(2) = 2n""2 • 3 

Proof. By Lemma 9, cKp,n) = k&(p,n - 1), for some integer k9 Write 

Then, by (8), 
F , • , = pnA, F , . = p ^ B , F , . 4 = a 

ar(p,n) ^ ' or(p,n-i) ^ s a(p,n-i)-i 
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k / , v 

(38) pA = 2 ( )p(n"1)(h-1)BhCk-hFh . 

Thus , if EL > v(p) ^ 1, s ince (p, C) = 1, kB must be divisible by p„ Hence, 

if v(p, n - 1) = n - 1, (p,B) = 1, whence p divides k„ Since a(p5n) and 

so k, i s min imal , k = pc Now, by (10), s ince k > 2, (38) yie lds that A = 

BCr (mod p)0 Since the fac tors on the r ight a r e p r i m e to p , so i s A, 

whence v(p,n) = n0 By (18), v(p, v(p)) = y(p), so that , by induction, if n ^ 

v(p), (34)holds and ar(p,n) = p n ~ V H * ( p , v(p)). By (17), or(p, v(p» = or(p), 

yielding (33). 

By Lemma 12, a(p) divides p - (5/p). Thus , if p 4 5, (p,a(p)) = 1» 

If p = 5, then, by (2), a (5) = 5,- v(5) = 1, and, by (33), we get (35). 

Final ly , if p = 25 (38) s t i l l holds , and we s e e , as before , that k = p 

= 2 if v(2, n - 1) = n - 1. Thus 2A - 2n~1B2 + 2BC, whence (2, A) = 1 

and -v(2,n) = n, a s before , if n — 3. By (2), we have (36), whence we obtain 

(37) l ike (33). 

T h e o r e m ^ If p o t . F = n ^ 1, where p is p r i m e and p + 2 , and 
n if r — 0 and (p,t) = 1; then pot F = n + r8 If p = 2 , t m i s an odd 

p p t m 
mult iple of 3 and F, i s an odd multiple of 2 , whi le , If r > 1, pot2F 

t m 2 r t m 
r + 2e 

Proofc We repeatedly use L e m m a 15 and Theo rem 1. If n >: 1 and p 

4= 2, e i ther p i s odd and n ^ v(p), or p = 2 and n > 3; whence, by (33) 

o r (37), 

(39) or(p,n+ r) = p r a ( p , n) . 

Thus , m = ka(p9n) for some k p r i m e to p0 Hence p r t m = t k o r ( p , n + r ) , so 

that pot F = n + r0 By (36), if p n = 2, m and t m a r e divisible by 3 
p p r t m 

but not by 6, so that pot2F, = 1, and s imi la r ly by (37), pot2F = r + 2, 
. . ^ - l m 2 r t m 
if r ^ 1. 

T h e o r e m s 1 and 2 have a fairly long history,, Lucas [4] (see pages 209 — 

210) proved the s imples t formula (39) with r = 1, but failed to notice the anomaly 
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when p n = 20 Carmichael .[1] (see pages 40 — 42) proved Theorem 2 in full,* 
using the theory of cyclotomic polynomials,, Both Lucas1 and CarmichaePs r e -
sults apply to a more general sequence** than that defined by (1) and (2). 
Robinson [5] proves Theorem 1, for odd primes only, by a matrix method0 

Theorem 30 If pot F . = n ^ 1 , where p is prime and p =1= 2, and 
if r ^ 0; then there is a strictly increasing sequence of pairwise prime inte-
gers i = i (m,p)(s = 0,1,2,?**), all prime to p, such that 

s s 

(40)- • F = Pn+Thha°a ^T • 
p m 

Proof. When r = 0, we define F = p J£0, . where (p,40) = 1. By 
Theorem 2, if r ^ 1, there are integers A,B, and C, such that 

F r = P ^ A , F r _ t = p ^ - ^ B , F r _ 1 = C , 
p m p m p m-i 

and (p,A) = (p,B) = 1, while, by Lemma 1, (pB, C) = 1. Thus, by (8), 

(41) A = B E( P ) P ^ ^ ^ H B ^ C P - ^ 

where, as in the proof of Theorem 1, the sum on the right is an integer, since 
n 2: l . Thus A is divisible by Ba If we write A = i Bs it is clear that 
A = H0 £j • • • I , yielding (40). Further (41) gives us that 

(42) £ r = P BZ)( P ) P^n + r - l ) ( h - l ) - 2Bh-2Cp-hFh + C^ 1 , 

* He has a misprint, making the greatest power of 2 too small by one. 
**The-sequence is D = (op- - j3n)/(a - /3), where a + f$ and a/3 are mutually 

prime integers. For F n , by (4), a = (l/2)(l + N/"5) and p'= (l/2)(l - N/TT). 
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where the sum is again an integer, since either p ^ 3 and n ^ 1, or p = 2 
and n ^ 3Q Thus it = Cr (modpB); so that, since C is prime to p, 
^ o , ^ , " 0 ^ _ , so is- 4 . Again, since £ exceeds a positive integer multiple 
of pB, we have that 

<43) *r > P V I ' - - V i > Vi 

Corollary 10 If pot F = n ^ 1 and p + 2, and if r > s > 0, then 

(44) £ r _ s (p s m, p ) = V m , p ) 

and 

(45) £0(PSm> P) = 4o(m»P)JMm»P) °-° V m » P ) • 

Corollary 20 If pot 2 F m = 1 and r > 1, then 

r+2 
(46) F r = 21 £ 0 (2m J 2)£ 1 (2m J 2)°°^ r (2m,2) . 

2 m 

Theorem 3, with its corollaries, contains a definition of £ (m,p) when-
s 

ever pot F = n > 1 and p n 4 28 By analogy with (40), (44), (45) and (46), 
we shall adopt the following definition for the remaining case, 

Definition 8, If m = 3t where t is odd (so that, by Theorem 2, pot 2 F m 
= 1), the sequence £ (m, 2) is defined by 

s 

(47) .«0(m,2) = | F m 

(48) l,(m,2) = 2*0(2m,2)/£0(m,2) , 

and 

(49) y m , 2 ) = * (2m,2) if s > 2 
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Corollary 3S Adopting Definition .8, we obtain equation (40) for every 
prime p, and every positive integer m such that pot F = n > 1. In every 
case, the numbers Jta = 0 (m,p)(s = 0,1,2',°°®) are integers, all pairwise 

o S 

prime, and all but fL^m^) are always prime to p0 If m is an odd multiple 
of 3,4^(211,2) is an odd multiple of 2; in every other case, J^(m,p) is prime 
to p0 

Proof0 If p + 2 , the corollary coincides with Theorem 30 If p n = 2 
(that is , m is an odd multiple of 3, by (36)) and r ^ 1, Corollary 2 and Defin-
ition 8 (equations (46), (48), and (49)) show that equation (40) holds, with 
^0(m,2)j^(m,2), J02(m,2),j£3(m,2), ° ° ° all pairwise prime odd integers, by 
Theorem 3. Finally, when p n = 2 and r = 0, we get (40) from the definition 
(47)j and, by Theorem 2, J0o(m,2) is an odd integer. 

Further, by (8), F 2 m = F m ( F m + 2Fm_1), which yields through (40) that 
£i(m,2) •= J20(m,2) + F m - l 9 Since %9Fm.t) = ( l 1 }Fm-i) = 1 (by Lemma 4), 
and both £0 and F m . j are odd, we see that ^(111,2) is even and prime to 
|>0(m,2). Finally, since ji^ is odd, it must be an odd multiple of 2e 

Theorem 4C Let P = {Pi ,P2," # ,Pk} be a set of k distinct primes, 
Then P contains all the prime factors of F , F , • • * , Fn7 only if 

Pi P2 P K 

k = 1 and P = {2} or {5} , 

(50) { k = 2 and P = {2, 3} or {2, 5} , 

or 

k = 3 and P - -T2, 3, 5} . 

Proof0 Let k = 1. Then F can have no prime factor other than p1# 

By (2), Lemma 2, and Lemma 11, the only possible values of p1 are 2 and 5„ 
Let k ^ 2, and first suppose that 2 $ Pe By Lemma 4, if I + ]\, 

(Fp . , Fp.) = 1, so that no prime factor is common to two of the Fp^; and by 
Lemma 2, since every p. ^ 3, every Fp. has at least one prime factor, 
Thus every F p . has exactly one prime factore Let us now renumber the p. , 
if necessary, so that p1 is the least prime in P not equal to 5, and 

(51). F^ = p^2, F = p3
r3? • • • , F - p . 1 

Pi P2 3 Pi-i 1 
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where each r j ^ 1, This can always be done, and, since p t 4= 5, inductively 
P2?P3?000 + 5s> and no Pi„! = p|a Finally, by Lemma 8S each pi„ 4 = ar(pi) 
and so, by Lemma 12, or(Pi) = P i - t < Pi. Thus the sequence defined by (51) 
cannot terminate, and this contradicts the finiteness of P, Therefore 2 e P 
and we may write pt = 2a If the F p . (i = 2 ,3 , • ° °,k) are all odd, the p^(i = 
2,3,° • ° ,k) from a set of k - 1 distinct odd primes containing all the prime 
factors of the corresponding" set of Fp.# We have just shown that this can only 
happen if k - 1 = 1 and p2 = 5, Suppose now that one of the F p . is even0 

Then, by (2), we can write p2 = 3, since F3 = 2„ If k = 2, this completes 
the enumeration of possible cases0 If k ^ 3 , then P3?P49 ° ° ° ?Pu form a set of 
k - 2 distinct odd primes containing all the prime factors of the corresponding 
set of Fp., because a(S) = 4, which is not prime, Again, we know that this 
can only happen if k - 2 = 1 and p3 = 5, This completes the proof0 

Definition 9» If pot F N = n, and if either n ^ 1 and p = 5, or n > 
v(p), we shall call p a multiple prime factor (mpf) of F N . If, on the contrary, 
p + 5 and n = v(p), then p is a simple prime factor (spf) of F N . 

Lemma 18, p is a multiple prime factor of F N if and only if it is a prime 
factor of both F N and N, A prime factor of F N which is not multiple is, a 
simple prime factor, 
[This follows from Definition 9, Lemma 8, and Theorem 1„] 

Lemma 19, If k and n are positive integers and p is a multiple prime 
factor, of F , • it is also a multiple prime factor of F, . Conversely, if p is 
a simple prime factor of F, , it is also a simple prime factor of F „ 
[This follows from Lemmas 5 and 18.] 

Theorem 5, F N has at least one simple prime factor, unless N = 1,2, 
5, 6, or 12. 

Proof. Fj = F2 = 1, so that these F N have no prime factors at all, and 
so no spf, as stated. Let N ^ 3, and let F N = m satisfy (27). By Lemma 2, 
the set P of prime factors of F N is not empty. If F N has only mpfs, by 
Lemma.: 16, each p» divides N; whence by Lemma 5, each F . divides m, 

*• P i 
It follows that P contains all the prime factors of every Fp . e This is the 
situation dealt with in Theorem 4, and it can only occur in the five cases listed 
in (50), 

By (2), (50), Lemma 8, and Theorem. 1,. if F N has only mpfs, we see 
that F N = 2 r • 3 s • 5t

0 Further, r < 4; s < 2; t < 1; r t = 0; st• = 0; if 
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r = 0 then s = 0 and t = 1; if s = t = 0 then r = 3; if r s > 0 then r = 
4 and s = 20 Thus F N = 5,89 or 144; whence N = 5, 6y or 12; and all 
these cases are valid and stated in the theorem. 

4m CARM1CHAEL?S THEOREM 

By using the theory, of cyclotomic polynomials, Carmichael proved, for 
the general sequence* D , a theorem which,, in our terminology, reads as 

n 
follows [Compare [1] , Theorem XXIII, pages 61 —62e] 

Carmichaelfs Theorem. If N f 1, 2, 6, or 12, then there is a prime 
p, such that N = #(p)0 

We shall proceed to derive this theorem, for the Fibonacci sequence, by 
the elementary considerations we have used so far. Let 

(52) N = q?*q?2 . . . q*k 

where the q. are distinct primes and the n^ ^ 1. We shall write N,-v for 
any of the k integers N. = N/q*, and more generally N / M for any of the 

( k \ 
h ] integers N/q. q. °@ • q^ , with{i1?i2,** •• , %} a subset" (without repe-

tition) of {1, 2, •• % k}. We shall also write R, for the product of the ( , J 
integers ~FN„. . 

Lemma 20. If N satisfies (52), then 

h=i 

[By repeated application of Lemma 4§ we see that 

<FNV % V • " • F N i h ) = F ( N /q i t , N / q ^ . - . - . N / q ^ ) = 

<54> F 
N / V i 2 " ' % " rN(h) 

F„ 

*See footnote on page 227 above. 
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so that Ru is the product of the, greatest common factors of all sets of h 
numbers F M . Let a prime factor p divide exactly s1 of the F , , ; and 

N(D N(D 
let p 2

f p V ° ° , p m divide s9.s3,* ° • ,• s m of the F M , respectively; but let 
(1) 

no F be divisible by p „ Then k - s^ — s2 — ° ° ° — s m — 1 and 

pot [F , F , • • ° , F N ]= ms Of the I ' 1 factors in R, , (54) shows that 

( h1 ) ' ( h) ? °°° A if1 / a r e respectively divisible by p, p2, ••*, p „ (Note 

that J , 1 = 0 if s < h, and that the set of factors divisible by p includes 

those divisible by p2
? which include those divisible by p3

s and so on)e Thus 

•xyh-fh1)+ (? ) • + - + (sif) • w h » o e 

t=i h=i 7 t=i 

which implies (53)0] 

It follows from Lemmas 5 and 20 that 

F R2 R4 * ° ° F 
(55) Q. - N N 

'N Rt R3 R 5 -- - [ F ^ , F ^ , °«°$ F N ^ ; 

is a positive integerc [Carmichael [1] writes DM for my F N ? and FN(#,/3) 
= /3^N)QN(pr/i8) for my Qw where 

(56) «N) = q ? r V i - l j q ? 2 " 1 ^ - 1) ' " %k (% ~ D 

in the Euler </>~functione ] 



1966] OF FIBONACCI NUMBERS 233 

By (55) and Theorem 2, if a prime p divides QN, it is either a factor 
of F N which is prime to every F , or it also divides some F M . In 

*(!> N ( l ) 
the former case, by Lemma 8, since a(p) divides N, but no N m , neces-
sarily N = of(p), and if N t 5, p 4= 5 and p is a spf of FN„ In the latter 
case, by Theorem 29 p is a mpf of F and pot Q = 1, except if N = 6 
(when QN = Q6 = F ^ /F 2 F 3 = 4.) 

Lemma 21.' If N satisfies (52) and 

(57) QN > q4q2 - • • qfe , 

then there is a prime p such that N = aip). 
[As explained above, if N = 6, QN = 4 < 2 • 3, so this case does not arise* 
Thus pot Q = 0 or 1 and Q / q ^ '" \ cannot be divisible by any q.„ 

Thus if this quotient exceeds one, Q must be divisible by some prime other 
than the qj, and such a prime p has N = or(p).] 

Lemma 22. If N satisfies (52) and k ^ 4 , then (57) holds. 
[Since R, has I, 1 Fibonacci-number factors, and since 

(1 + l ) k = 2k and T V i ) h . [ j = (1 - l ) k = 0 

k-i we see that the numerator and denominator of QN, by (55), each has 2 
Fibonacci-number factors. Also, by (4), if a = (1/2)(\j5 + 1) and b = 
(1/2)(N/5" - 1) so that a > 1 >. b = l / a [Carmichael write^ a and -p for my 
a and b ] , | 

I 

(58) a n ( l - b2) ^ a n ( l - b2n) =s ^SF^ ^ a n ( l + b2n) ^ j a n ( l + b2) . 

Therefore, since (1 -b 2 ) / ( l + b2) = 1/V5 and by (55) and (58), QN ^ a^l /Vs)2 , 
where, by (36), 

f = N - 2N( 1 ) + SN(2) - . . . = N HH^-KH 
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so that 

(59) QN * a ^ V ^ / " 1 * a ^ ^ ^ - ^ ' ^ ^ ^ t V v s ) ^ " 1 

Clearly (qt - l)(q2 - 1) ° • ° (qk - 1) exceeds the value when we put q1 = 2 and 
qi =2i - 1 (i - 2), namely qk~* (k - 1)1. The function 

k 
2 + Z X ^ 

i = i 

increases more slowly with each q. than does the product, and its value at 
k x 

the minimal point is 2" +• k2 - k + 1. If k ^ 4, this is seen to be less than 
2k~1(k - 1)1. Thus, by (59), 

8 k - l 
(60) QN ^ | | |k i I (aV^5)8 

i= i 

The function a / n has a minimum, for integer values of n when n = 29 and 
it exceeds one when n - 4e Thus, by (60), 

(61) Q N / q i q 2
o e * q k ^ (a/2)(aV3)(ay5)(a6/7)(aY'sy5)8 = a2Vl31250 > 8 , 

and the lemma follows.] 
Lemma 23? If N satisfies (52) and k = 3$ then (57) holds if at least 

one q. — 11, or if no q. = 2, or if any n. ^ 20 

[ As in the proof of Lemma 21, (59) still holds. Now, if we suppose that qt < 
q2 < %, we see that qt — 2, q2 — 3, and, by the first supposition of the lemma, 
q3 ^ 11. Thus 
(62) 
(qi - l)(q2 - l)(q3 " 1) := (Qt - l)(q2 - m% - 2) + (q* - l)(q2 - 2) + (qi - 1) 

^ 2(q3 - 2) + (q2 - 2) + (qt - 1) * (qt - 1) + (q2 - 1) + (q3 - 1) + 7 ; 
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and so ? by (59) and (62), a s before , 

(63) Q N / q i q 2 q 3 > (a/2)(a2/3)(a*o/l 1 ) ^ / 5 * ) = a20/l65O > 9 , 

and (57) follows, 

Adopting the second supposit ion, we have qt ^ 3§ q2 > 55 and q3 > 7 

Then (62) Is r ep laced by 

(64) (qt - l)(q2 - l)(q3 - 1) > 8(q3 - 2) + 2(q2 - 2) + q 1 - l 2> (qt -1)+ (q2 - 1 ) + 

+ (q3 - 1) •+ 36 , 
and (63) by 

(65) Q N / q i q 2
( l 3 - (a2/3)(aV5)(a6/7)(a3 6/52) = a4 8/2625 > 106 , 

and (57) follows againe 

Final ly , if any n. ^ 29 0(n) ^ 2(qA - l)(q2 - 2)(q3 - 1)0 Thus , a s before , 

qt ^ 25 q2 > 3 , q3 ^ 59 and 2 ^ - l)(q2 - l)(qg - 1) ^ (qt - 1) + (q2 - 1) + 

(q3 - 1) + 9; whence 

m %/<li<k<k* (a/2)(aV3)(aV5)(aV52) = a " / 7 5 0 « 2.-9 

and we get (57).'] 
L e m m a 24, If N sa t i s f ies (52).and k = 29 then (57) holds If N/qj,q2 > 

33 o r if at l ea s t one q. > 11. 

[ L e t N/q4q2 - r . Then by (55), Q R = F r F r / F ^ F q ^ , and by (8), 

whence, by L e m m a 2, Q N > (F r _ 1 / F ^ 1 " 1 . Thus , by (58) 

(68) QN/q iq2 * { a ^ - ^ " 1 (1 - b ^ V d + b ^ ^ / q f t 
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First we assume that r ^ 3. Then5 by the kind of argument used, above, if 
qt ^ 3 and q2 - 2, and by (68), 

(69) QN /qxq2 ^ ( a q ^ / q i ) ( a 3 q 2" 4 /q 2 ) {a(l - b«>)/(l + h*)}^'1 

> a4(0o94)2/6 > 1 . 

Next, we assume that qt ^ 2, q2 £=11, r ^ 1„ Then, by (68), 

(70) Q N / q i q 2 ^ ( a ^ ^ ^ / q i X a ^ ' V q z X a a - b2°)/(l + b 2 ) } ^ " 1 >a9(0o72)/22>2. 

The results (69) and (70) establish the lemma.] 
Lemma 25, If q is prime and q — 3, then there is a prime p such 

that q = a(p)a 

[if q — 3, F — 2, by Lemma 2, and so F has a prime factor pe By Lem-
ma 8, a(p) divides q, whence, since q is prime, a(p) = q.] 

Lemma 26c If q is prime and X ^ 2, then there is a prime p f 5, 
such that q^ = a(p)0 

[By Lemma 16 and Theorem 1, if q = m, (F / F , F ) = 1 if q * 5; 
and if 5X~* = m, ( F 5 m / F m , F m > = 5e If q * 5, by Lemma 17, F q m / F m > 
F 4 / F 2 = 3; so that F must have a prime factor p f 5, prime to F . 
If q = 5, since F25 / 5 F 5 = 3001, by (2), Lemma 17 shows that again F 
has a prime factor p + 5, prime to F „ Thus, by Lemma 8, for any q,o?(p) 
divides qm = q^ but not m = q " , Therefore q^ = a(p). ] 

We now have sufficient information to prove CarmichaePs theorem. 
Theorem 60 If N + 1, 2, 6, or 12, then there is a prime p such that 

N = ar(p). 
Proof, Let the (unique) prime-power expansion of N be given by (52). 

By Lemma 21, Lemmas 22, 23, and 24 show that the theorem holds in the fol-
lowing cases: (i) if k ^ 4, all N; (ii) if k = 3 and either (a) one q. ^ 11, 
(b) no q. = 2, or (c) one n. ^ 2; and (iii) if k = 2 and either (a) N/q1q2 

- 3 or (b) one qt ^ l l e In addition, Lemmas 25 and 26 show that the theorem 
holds (iv) if k = 1 and N + 28 We see from (2) that, indeed, when N = 1,2, 



1966] OF FIBONACCI NUMBERS 237 

6, or 12, there is no prime p such that N = a(p)0 It therefore remains to 
show that such a p exists, (v) when k = 3, no q. — 11, one q. = 2, and 
no n. — 2, and (vi) when k = 2, N 4 6 or 12, N / q ^ = 1 or 2, and no q. 
— 11. We look for primes p which divide F M but no corresponding F , 

(1) for then N = or(p), as explained earlier,, l ' 
Case (v). We have N = 2 - 3 • 5 = 30, 2 . 3 • 7 = 42, and 2 • 5 • 7 = 

70, We see from (2) that 30 = or(31), 42 = <*(211), and 70 = a(71) = a(911); 
so that the theorem holds„ 

Case (vi). We have. N = 2 • 5 = 10, 22 • 5 = 20, 2 • 7 = 14,. 22 • 7 = 28, 
3 • 5 = 15, 3 • 7 = 21, and 5 - 7 - 35. We see from (2) that 10 = or<ll), 
20 = ar(41), 14 = #(29), 28 = ar(281), 15 = or(61), 21 = ar(421), and'35 = 
a(141961). This completes the theorem,, 

Lemma 27. If N = a(p) and N + 5 whence p =(= 5), p Is a simple 
prime factor of FN» 
[By Lemma 18, if p Is a mpf of F N , p divides both N and F^0 Thus, 
since, by Theorem 1, if p =t= 5, (p,or(p)) = 1; N must be divisible by por(p), 
so that N # a(p)0 The lemma follows.] 

By Lemma 27, Theorem 5 Is seen to follow from Theorem 60 We also 
see that Theorem 3 and its corollaries follow from Theorems 1, 2, and 6 (with 
the exception of the fact that the a (m,p) increase with s). 

s 
For completeness, we also state the following result. 
Lemma 28Q If f1 = 1, f2s f35 ° ° ° ,f = N are all the divisors of N, then 

m 
(71) FN = ]~[Q f r 

r=i 

[If N satisfies (52), its divisors are the (nt + l)(n2 + I)8 • • 0% + 1) = m inte-
gers 

s, s9 k f = q f A q 2
2 ••• q k , 

where 0 ^ s. ^ n., I = l , 2 >
Q ' o , k . By (55), a particular factor F can 

appear only once in Qf; and this, when 
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ti to *k 
g = v q2

2 • * * ^k 

and t. = n. except when i = i l s i 2 s° ° ° s i t (when t. < n . ) , only if f = g or 
gq. or gq. q. or • °• or gq. q. • • • q. a It follows by (55) that F appears 
in 

n r=i 

Qf 
r 

to the total power 

and 1 if h = 0o This proves that the product is simply F „] 

5e PERIODICITY OF RESIDUES 

We shall complete this discussion of divisibility properties with a survey 
of results pertaining to the characteristic number M(m,.n) defined in Section 1. 

Lemmas 13 and 14 show that we may limit the study of the functions 
c*(m,n) and M(m,n) to that of ar(p,n) and ju(p,n), where p is prime. We 
have established the essential properties of ar(p,n) in Theorem 10 Thus, by 
(15), the corresponding behaviour of pt(p,n) is known if we know that of /3(p,n)„ 
So far, we have only stated, in Lemma 10, that /3(m) (and, in particular, 
/3(p,n)) is always an integer.' The papers of Robinson [ 5 ] , Vinson [ 6 ] , and 
Wall [7] have answered almost every question that may be asked about /3(p,n), 
and it is their work which will be outlined herec Proofs of all the results quoted 
below may be found in Vinsonfs paper [ 6 ] , and so will be omitted here, 

Theorem 70 If p is an odd prime and n a positive integer, then 

14 if pot2a(p) =• 0 j 
1 if pot2c*(p) = 1 ( 
2 if pot2a(p) ^ 2] 
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but 

(73) £(2,1) = 0(2,2) - 1, and (3(2,n) = 2 if n > 3 . 

We note that ; with the two exceptions given in (73), 0(p,n) i s independ-

ent of n0 Also? 0(p,n) always takes one of the t h r ee values 1, 2, or 4 — 

a r emarkab ly s imple resu l t , 

Theo rem 8e If m i s a posi t ive in teger satisfying (27), then (i) j3(m) -

4, if m ^ 3 and a(m) i s odd; (ii) j3(m) = 1, if pot2or(p.) = 1 for every 

p . + 2 (i = 1, 2, • • • , k) and if pot2m ^ 2; and (iii) 0(m) = 2 for all other 

me 

We note that T h e o r e m 8 contains Theorem 7, as a specia l c a s e , when 

m = p , where p i s p r ime 0 (The connection i s through L e m m a 13,) 

T h e o r e m 9a If p i s an odd p r i m e , not equal to 5, and n a posi t ive 

in teger , then 

1 if p = 11 or 19 (mod 20) 

(74) j8(p,n) = { 2 if p s 3 or 7 (mod 20) 

4 if p = 13 or 17 (mod 20) 

and (of the r ema in ing va lues of p s 1 o r 9 (mod 2O))0(p,n) # 2 if p = 21 or 

29 (mod 40)o 

These r e s u l t s a r e connected with the foregoing by way of L e m m a 12. 

Vinson points out that the theorem, is "comple te" in the sense that every r e -

maining possibi l i ty o c c u r s ; he l i s t s the examples : 

0(521) = 1, 0(41) = 2, 0(761) = 4, [p = 1 (mod 40)] 

0(809) = 1, 0(409) - 2,. 0(89) = 4, [p = 9 (mod 40)] 
( 7 5 ) j 0(101) = 1, 0(61) = 4 , [p = 21 (mod 40)] 

0(29) = 1, 0(109) - 4, [p = 2 9 (mod 40)] 
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GENERALIZED FIBONACCI SEQUENCES 
ASSOCIATED WITH A GENERALIZED PASCAL TRIANGLE 

V . C . Harris and Carolyn C . Sty les, San Diego State Col lege & San Diego Mesa Co liege 

1. INTRODUCTION 

In this paper we introduce the numbers 

(1.1) 

uo = 

Un(P,q,s) = 

u0(p,q,s) = 

n 

Lp+sqj 

= E 
i=o 

= 1 

' ( 

n - ip 
s 

i q 

where n, p, q, s are positive integers and [x] is the largest integer in x. 
The characteristic equation and a generating function are developed and the 
relation to a generalized Pascal 's triangle is exhibited in Section 2. An inter-
esting feature is the repetition of each term g times where g = (p, s). Cer-
tain sums and some properties relating to congruence are established in 
Sections 3 and 4e 

The numbers corresponding to the case s = 1 are developed in our p r e -
vious paper [2] . Thus the Fibonacci numbers are those for p = q = s = 10 

The numbers in Dickinson [1] are the special case p = a, q = l 5 s = c - a. 
By multiplying the binomial coefficients 

i q 

by a11 x%i(l before summing, the numbers could be generalized further, 

*A more appropriate choice of exponents, suggested by DrP David Zeitlin, 
appears in a paper by him which will follow,, 

241 
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2. THE CHARACTERISTIC EQUATION AND GENERATING FUNCTION 

We note that 

-flN^WCH*] 
iq - 1 

or zero, from properties of binomial coefficients. Hence, if Ef(x) = f(x + 1) 
we have (Es - 1)1^ is a sum of binomial coefficients with first coefficient in-
volving iq - 1. After repeating q times there results 

(Es - l ) qun(psq,s) = un_p(psq,s)y n - p > 0 

or 

^ V p + q s = l l ) V p 4 - ( q - l ) s - ( ? ) V p % 2 ) s + ' " + ( 4 ) q + i V P
 + UB (^l]Un+p+(q-l)s \ 2 / U n 

Hence the characteristic equation is 

(2.2) X P ( X
S _ ±fi _ i = o 

with initial conditions 

(2.3) u0 = ut up+qs-l * 

It may be remarked that u , = 2 . 
J p+qs 
Suppose the arithmetic triangle to be written but with each row repeated 

s times, Then one sees that u (p,q,s) is the sum of the term in the first col-
umn and n row (counting the top row as the zero row) and the terms 
obtained by starting from this term and taking steps p, q— that i s , p units 
up and q units to the right. When (p,s) = g > l the sequences {u n g } , {ung+1},» • • , K ^ g ^ i 

are the same since each sequence is determined by the same recursion formula 
and the same initial conditions. 
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Let f(x) = x P (x S - l ) q - 1 so that f'(x) = x13"1 (xS - l ) q " j [(p + qs)xS - p ]. 
The roo t s of ff(x) = 0 a r e the roots of 

x = 0, x S = 1 and x S = — E 
p + qs 

None of the roo t s of ff (x) = 0 i s a root of f(x) = 0 and f(x) has no mult iple 

root . If the p + sq roo t s of f(x) a r e x 1 ,x 2 ,x 3 ,« • • , x then the d e t e r m i n -

ant of the coefficients c-,. c 9 . • • • , c , in 

p+qs 

p + ( i s 

*V* n+i „ - , ., 
^ c i X i = u n n = 0 , 1 , • • - , ? + sq - 1 
i=i i s different f rom z e r o . The sys t em can be solved by C r a m e r ' s ru le using 

Vandermondians . It r e s u l t s that c. = (x. - 1 ) / [(x, - l ) { [ p + s q ] x . - p}] and 

hence 

/ s .,v n+i p+sq (x. - l ) x 
(2-4> % = E " L * n = 0 , 1 , 2 , — 

i=i (Xi - l ) [ ( p + sq)xf - p ] 

To obtain a genera t ing function, wr i te 

S = ]£ uix l • 

Then by multiplying S by each of 

< - l ) ( ; ) x S , ( - l ) * ( j y B , - . ( - D q ( j ) x * and -: .xP^qs 

and adding, one finds 

f(i-x^-xp+sq]S = i:zi:(-i)Y?)xks+i q-i s - i K - / \ 

k=o i=o j=o V / 

Note we have used u0 = ut = • - • = Up+Sq>1 = 1 and (201)„ Hence 
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\ u x = 

n=o 

y j q ^^ 
£ _ ^ / . . ^ JLm~** * \ ] I X 

ii __ k- < i- J ri \_71'i 
"(3 " ' j / j ' i T / ^ 

The numerator is equal to 

s - i / 0-1 / \ \ s"1 

S^g'-^v)^}-£••<•-*>«-' 
= (1 - x s ) q / ( l - x) 

Hence 

(2.5) f\ x
n = (1 - xS)q/(l - x) 

.fe n (1 - x«)q - xP + s q 

As an example, for p = 2, q = 2, s = 3, this gives 

7 % (2,2,3) x11 = ^ - + X + X2 - ^ " x 4 " x 5 

^ e
 n 1 - 2x3 + xs - x8 

This gives the sequence 

{un(2,2,3)} = 1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,4 ,4 , 4,7, 7, 8,12,12,16,21,21,31, 37,.' 

3. SUMS 

i=0 i=o 
(3.D XX.-I! (VfV )rv---« + 

un+p+s(q-i)-i + ' ' * + u
n+p+s(q-i)-s+i J ( S<5lq 

where ^y is KroneckerTs 6. 
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This is seen to be true for q = 1 and all n by summing u0 = u -

V U l = Vs+i - V i ; " * ; un = Vs+n " Vtf S i n c e u„ = U l = . . . = 
Vsq-i = l j t h i S g i v 6 S 

n n+p+s n+p 

XX = E ui - (p+ s> - 5 > i + p 
i=o i=o i=o 

which is the result. Also this is true for n = 0 and all q. We have to show 

q _ 1 i/ i\ 
uo = £ (-Dl(q ~i M fVs(q-i) + • • ' + Vs(q-i)-(s-i)J-

i=o A / 
But u = 2 so that by separating the term corresponding to i = 0 we get 
l + s ( l - l ) ^ - 1 = 1 = u 0 . 

It remains to show the result in general. Assume (3.1) to be true for 
q > 2 and n = k ; then 

k+i k q 

EUi = Vi + E ui = E("1)l(?)Vpf(q-l)B+i + 

i=o i=o i=o 

*"' i/ - A 
2J(-1) I i lrVp+s(q-i) + Uk+p+s(q-i)-i + ' " 
i=o \ / 

uk+p+s(q-i)-s+iJ 

By combining terms 

Uk+l+p+s (q~i) Uk+p+s(q-i)+i 

using 

( : ) • ( ; : . > ( • ; ' ) • 

the result follows and the theorem is proved, 
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q n+p+s(q-k) 
E E 
k=o i=n+i 
t ' '£[ '" ( - l ) " + I , + B < C ' - k ) + k - i n » 1 . « eve . 

1=0 
( - l ) P + S q 2 q 

q n+ P ts(q-k) n + ^ s ( q _ k ) + k - i / 1 \ 
E E (-1) 
k=Q I=m-i 

0 P=q=l (mod 2)' 

+ \ ( - l ) n + 1 2 q - 1 p=q=o (mod 2) 

(3.2) ! ( - l ) n 2q"1 p£q (mod 2)J 

sodd 

Proof: Solve (2.1) for u and write (-1) ~ u. for i = n, n - l , e " , 0 . The 
sum of the (k + l)st column formed by the expansions is 

n / v n+p+s(q-k) / . 

1=0 x ' 1=0 

- ( - l ^ Y ^ t - 1 + -.. + (_i)lH-B(q-k)-l] 

since the terms added to obtain the sum on the right have u. = 1 in each case. 
Hence this gives 
n / v n+p+s(q-k) / , 

s>'"(;)v„„„ - E «••»"»*"(;), 
0 

i=o x ' i=o 

+ ( - l ) n + k l I '€ 

where e = 0, p + s(q-k) = 0 (mod 2) and = 1 otherwise. 

Summing for k = 0 , l ,* # # ' ,q gives 
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n q n+p+s(q-k) / , 

Y)-!)"-1 u. = y y (.D^stq-^k-i /q \ 
As**®® k £smaJ JLmmJ \ If / 
i=o k=o i=n+i x 7 

+yiV(-irpf8(q-k)+k-if?)u. + 
k=o i~o 

) S("1 ) R + k\k/£ f k ) J P + S(q "" k)* 0 ^ m o d 2 > 
4 k=o 

C , p + s(q - k) = O(mod 2) 

But 

y^^^jn+i^stq-kj+k-i/ q Ju. 
J 4 S « X# SJHBSSW \ / 

0 , s s 0 (mod 2) 
n 

( _ i ) p f B q 2
q J ] ( - i ) n - 1 u 1 , 8 E i ( i i i o d 2 ) 

i=o 

and 

V ^ y - , , n + k / q \ , k) 

~l ) n + 1 2 q " ' 1 , s odd p = q = 0 (mod 2) 

- l ) n 2 q " 1 , s odd p * q (mod 2) 

0 , otherwise 

Combining these r e s u l t s gives the theorem. 

It may be r e m a r k e d that 
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n n 
/ ,u2i and ; P u 2 i + 1 

i=o i=o 

can be obtained from (3.1) and (3.2). 

4. DIVISIBILITY PROPERTIES 

Using methods similar to those of our previous paper, one can show the 
following: Any p + sq consecutive terms are relatively prime0 The least 
nonnegative residues modulo any positive integer m of u (p,q,s) are periodic 
with a period P not exceeding m p + s ( ^ There is no preperiod and each period 
begins with p + sq terms all unity. Any prime divides infinitely many 
un(p,q,s) since 

UP~p S X / ^ M • ) UP+s(q-i) S ° ( m ° d m > -
i=o ^ 1' 
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REQUEST 

The Fibonacci Bibliographical Research Center desires that any reader 
finding a Fibonacci reference send a card giving the reference and a brief 
description of the contents. Please forward all such information to: 
Fibonacci Bibliographical Research Center, 
Mathematics Department 
San Jose State College 
San Jose, California 



CORRIGENDUM FOR "SOME CONfERGENT RECURSIVE SEQUENCES, 
HOMEOMORPHIC IDENTITIES, AND INDUCTIVELY DEFINED COMPLEMENTARY SEQUENCES" 

John C* Hollcfdcty^ Institute for Defense Analysis^ Washington, D.C. 

On the above-entitled paper, appearing in the February 1966 volume of 
the Fibonacci Quarterly, please note the following changes: 

Page 130 The last two lines of the Corollary should read: 
0 . 0 and only one homeomorphism g such that g > 1 and 

(2.9) h + h"1 = g + g"1 . 

Page 14. Equation (2a27) should read: 

(2027) (hUh"1)^) = t for all (hUh~1)"1(x) < t < x0 

Equation (2e3Q) should read: 

(2o30) h n + 1 = P - IT1 n > 1. 

Equation (2.31).should read: 

(2.31) h j I — - I I 
Page 15. Equation (2e36) should read 

(2.36) h j (^H) I . 

Page 16. Equations (2e39) and (2.40) should read as follows: 

,2.S9, v % I^ ,B = ( i ± # i i ) 

249 
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(2.40) ( a + \§a2 - 4 J _ 
2 / 

Page 21. After proof for the Corollary, add a Reference [5]. 
Page 23. The first line of the Corollary should read: 

Corollary; Let P(n) t 2n for some integer n > 0. Then 
Page 24. Change the last line of Theorem 16 to reads 

{ x } be inductively defined by 
Equation (3.26) should read-

(3,26) x0 < a(X-1) - x_1 

Page 26a Equation (4.13) should read: 

(4.13) F(x) = (a - ^a2 - l)x + 0 - P'JaT^i/{a ~ 1) 
Page 27. Equation (4.19) should read: 

(419) (x - p) {(a - l)x + pa + p} > a2e/(a + 1) 

Equation (4,24) should begin with the line 
(424) hf *(x) = xF(l) 0 < x < 1 

Page 28. The first line on the page should read: 
If p > 1* , then F(l) > 0 implies that -e < (p - I)2. It may 
be 

Page 29. Equation (5.3) should read: 
(5.3) hh(t) < gh(t) 

Page 33. Change the first line of Theorem 22 to read: 
Let /J < 1 and P +/xl > I. Let gt be any 

Page 34. The last three lines before the Corollary should read: 
for h1 has been proven. To prove convergence for gls insert \L into the proper 
positions of (1.39) and (1.40), and continue the argument of the paragraph con-
taining (1.39) and (1.40). Uniqueness of h is obtained from Theorem 21. 

Page 36. Add References below. 

11. J. Lambek and L. Moser,, Inverse and complementary sequences of natu-
ral numbers, Amer. Math. Monthly, 61 (1954), 454-458. 

12. H. W. Gould, ffNon-Fibonacci Numbers,ff Fibonacci Quarterly, Vol. 3, 
No. 3, October 1965, pp. 177-183. 

* * • • it is 



IDfllCED PIOILEiS AND SOLUTIONS 
Edited by VeEe Hoggatt, Jre / San Jose State College, San Jose, Calif. 

Send all communications concerning Advanced Problems and Solutions to 
Verner E0 Hoggatt, Jr0 , Mathematics Department, San Jose State College, San 
Jose, California,, This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or other 
information that will assist the editor0 To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within three months after 
publication of the problems,, 

H-89 . Proposed by Maxey Brooke, Sweeny, Texas. 

Fibonacci started out with a pair of rabbits, a male and a female0 A 
female will begin bearing after two months and will bear monthly thereafter,, 
The first litter a female bears is twin males, thereafter she alternately bears 
female and male. 

Find a recurrence relation for the number of males and females born at 
the end of the n month and the total rabbit population at that time. 

H-90 Proposed by V. E. Hoggatf, Jr., San Jose State College, San Jose, Calif. 

Let the total population after n time periods be the sequence |F^} __„ 
determine the common birth sequence for every female rabbit and tie It in with 
the value of the Fibonacci polynomials at x = 20 (f0(x) = 0, f^x) = 1 and 
fn+2(x) = xfn+i(x) + fn(x>' n * 0). 

H - 9 1 . Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Let m = r , then show 

m=i 
F<- / F n = E (-1>JnLk-1-2j + e n > k n / x n Z ~ ^ ' TE-1-2J 

where 
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2 5 2 ADVANCED PROBLEMS [Oc t 

| ( - l ) m n if k is odd 

f 0 if k is even 

and [x] is the greatest integer not exceeding x0 

H-92 Proposed by Brother U. Alfred, St Mary's College, Calif. 

Prove or Disprove: A part from F1? F2, F3, F4> no Fibonacci number, 
F„. (i > 0) is a divisor of a Lucas Number„ 

H-93 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Show that 

n-i 

F„ = 
k=i 

• n . g (.*.«. ^ ) 
n-2 

L . = 
k=i 

, - E ( « + — ^ ^ 
where n is the greatest integer contained in n/2c 

SOLUTIONS 

H-50 Proposed by Ralph Greenberg, Philadelphia, Pa. and H. Winthrop, University of So. 

Florida, Tampa, Fla. 

Show 

Iln, = F. E 2n 
n1+n2+n3+s • • +npn 

where the sum is taken over all partitions of n into positive integers and the 
order of distinct summands is considered,, 
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A paper by D„ A„ Lindand V0 E0 Hoggatt, Jr0 , "Composition Formulas Derived 
from Birth. Sequences,!f will appear soon in the Fibonacci Quarterly, and will 
discuss this among many other examples,, 

H-22 Proposed by V. E. Hoggatt, Jr.r San Jose State College, San Jose, Calif. 

If 

oo 

P(x) =TT(1 + xFi) = y^R(n)xn 

i=i n=o 

then show 

(i) R(F2n - 1) = n 
(ii) R(N) > n if N > F 2 n - 1 . 

H-53 Proposed by V. f . Hoggatt, Jr., San Jose State College, San Jose, Calif. 

and S.L. Basin, Sylvania Electronics Systems, Mt. View, Calif. 

The Lucas sequence Lt = 1, L2 = 3; LQ+2 = L n + 1 + Ln for n 1 is 
incomplete (see V„ E0 Hoggatt, JrB and C0 King, Problem E-1424 American 
Monthly, Vol. 67, No0 6, June-July I960, p0 593, since every integer n i s not 
the sum of distinct Lucas numbers0 OBSERVE THAT 2, 6, 9, 13, 17, °°° 
cannot be so represented. Let M(n) be the number of positive integers less 
than n which cannot be so represented. Show 

M(Ln) = Fn.t 

Find, if possible, a closed form solution for M(n)„ 

A paper by David Klarner to appear soon in the Fibonacci Quarterly com-
pletely answers these questionsc 

H-55 Proposed by Raymond Whitney, Lock Haven State College, Lock Haven, Pa. 
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Let F(n) and L(n) denote the n Fibonacci and n Lucas numbers, 
respectively, 

Given U(n) = F(F(n)), V(n) = F(L(n)), W(n) = L(L(n)) and X(n) = L(F ), 
find recurrence relations for the sequences U(n), V(n), W(n), and X(n)„ 

A paper by student Gary Ford to appear soon in the Fibonacci Quarterly 
offers several answers to this problem,, Also a paper by R. Whitney deals with 
this and will appear shortly, 
H - 5 2 Proposed by Brother U. Alfred, St Mary's Co!lege/ Calif. 

Prove that the value of the determinant 

n 
i2 u2 

n+2 n+4 

n+4 n+6 

n+2 n+4 

n+6 

n+8 

is 18(-1)" n+i 

Solution by y, E. Hoggatt, Jr., San Jose State College, San Jose, Calif. 

Since F2 = (L - 2)/5, the auxiliary polynomial satisfied by F2 is the 
product of the auxiliary polynomials for L : (x2 - 7x + 1) and for C = -2 : 
(x - 1) or 

(x2 - 7x + l)(x - 1) = x3 - 8x2 + 8x - 1 

Therefore the recurrence relation for F2 is 
2n 

u2 , . = 8u2, J - 8u2, n + u2 . n+6 n+4 n+2 n 

Thus D = (-l)D by using the above recurrence relation after multiplying 
the first column of D by - 1 . ' The value .of D0 is -18, therefore D = 18(-1) 

TWO BEAUTIES 

H - 4 7 Proposed by L. Carlitz, Duke University, Durham, N.C. 
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Show that 

n=o 

where 

V (n ) L n 
S\ * I nX 

M*> 
(1 - x - x2)k 

«- ! > ' Ck) v k' 
r=o 

H - 5 1 Proposed fey V. £. Hoggatt, Jr., San Jose Sfofe College, Son Jose; Col l i . 

one/ L. Carlitz, Duke University, Durham, N. C. 

Show that If 

(I) xt 
1 - (2 - x)t + (1 - x - x2)t2

 k = 1 

= ZQk^t k 

and 

(ii) 

OO 

\w 
(1 - x - x2)k 

n=o 

that 

*k« =E("1>r'1(r)F^P = Qk<x> 
r=o 

Solutions by Kathleen Weland, Gary Ford, and Douglas Lind, Undergraduate Research 

Program, University of Santa Clara, Santa Clara, Calif. 
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It is familiar that 

[Oct 

, J?L / n + k - 1 \ 

Let Wn obey Wn+2 = pWn+1 - qW , p2 - 4q 4 0, and let a « b both satisfy 
x2 - px + q = 0, so that a + b = p., ab = q. Then W = Aa11 + Bb11 for some 
constants A and B and all n. It follows that 

* / n + k - 1 \ 

^ v n / 

A(l - ax) k + B(l - bx) k 

A(l - bx)k + B(l - ax)k 

(1 - px + qx2) 
k A X/- i ) j (? ) b y + B Z)" l ) j f i ) a J 

- '- 3 = 0 EL 
(1 - px + qx2)1 

2>J0) 
4=o 

(Aa J + Bb J)(abx)3 

(1 - px + qx2)" 

- 4zL 
%(x) 

(1 - px + qx2)k (1 - px + qx2)k 

Toget(ii)ofH-51weput p = l , q = - 1 , W = F , andrecalling F_ = (-1)" F 
we have 

00 / \ l"k 

n=o * / j=o 
(1 - x - x 2 r . 
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To obtain H-47,.we se t p = 1, q = - 1 , W = L , and r e m e m b e r i n g that L_ 
= (-1) L we find v ' n 

£ 
n=o 

' n + k - 1 
T

 n 

L x = n 
y % l ) J 171 LJC 
i=o 

1/ J 
(1 - x - x2) 

We now genera l ize (i) of H-51Q Since 

Rk(x) = l > q ) j ( J) w-fj 

= A(l - b x ) k + B( l - a x ) k , 

we have 

y ^ R k ( x ) t k = A ^ p i - b x ) t ] k + B V [ ( 1 - a x ) t f 
k=o k=o k»o. 

B 
1 - (1 - bx)t 1 - (1 - ax)t 

A + B - (A + B)t + (Aa + Bb)x1' 

1 - (2 - px)t + (1 - px + qx2)t2 

Now W0 = A + Bj Wj = Aa + Bb, so we may wr i t e 

(*) X R k ( x ) t k = W0 + (xWj - W0)t 

k=o 1 - (2 - px) t + (1 - px + qx2)t2 

Put t ing p =• 1, q = - 1 , Wn = F^ makes Rk(x) - Qt(x) of P r o b l e m H - 5 1 , 
and (*) becomes 

n n 
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E Qk«tk 

k=o 

the required r e su l t 

Also solved hy the proposers . 

xt 
1 - (2 - x)t + (1 - x - x2)t2 

• 

LATE PROBLEM ADDITIONS 

A SIMPLE PROOF, PLEASE! 
H-91f Submitted by RobertW. Floyd, Carnegie Institute of Technology, and 

Donald E. Knuth, California Institute of Technology, 
Let a be any irrational number, and let the notation {xj stand for the 

fractional part of x. Suppose a man has accurately marked off the points 1, 
0, \a>\, \2a},°°°9 j(n - l)a\ on a line, n > 1. These n + 1 points divide the 
line segment between 0 and 1 into n disjoint Intervals. Show that when the 
man adds the next point \na\, it falls in the largest of these n intervals; if 
there are several intervals which have the maximum length, the point \na>\ 
falls in one of these maximal intervals,, Furthermore, If a is the !?golden 
ratio?f </>"" =y(v§~- ' l ) = 0.618 • • • , then the point {nor} always divides the 
corresponding interval Into two intervals whose lengths are In the golden ratio. 
A number a has the property that {no?} always divides Its interval Into two 
par ts , such that the ratio of longer to shorter is less than 2, if and only if |or| 
= <f>~ or 0 " s (Notes The fact that the fractional parts |nor| are asymptotic-
ally equidistributed In (0,1) is well known; this problem shows the mechanism 
behind that theorem, since {n#| always chooses the largest remaining open 
place. Furthermore, the sequence | n ^ | is the "most equidistributedT? of all 
these sequences.) 
H-95 Proposed by J. A. H. Hunter, Toronto, Canada. 

Show 

F 3 n + k + ^ FLk = L
k[FkF3n + ^M] ' 

* • * * * 



A SINGULAR FIBONACCI MATRIX AND ITS RELATED LAMBDA FUNCTION 
Curtis McKnight (student) & Dean Priest, Harding Col lege, Searcy, Arkansas 

After a very brief introduction to some of the extremely basic properties 
of Fibonacci numbers, a student of mine inductively produced the following 
identities concerning determinants of Fibonacci matrices: 

(1) IF-n+s+2 

rn+i 
^n+s+3 

= <-l)" n+i F S+2 

(2) 

(3) 

F n 
Fn+m+2 

| F n 
Fn+m+s+2 

F n+m+i 
Fn+2m+3 

F n+m+i | 
Fn+2m +S+3! 

n+i 
(-1) Fm+iFm+2 

= (-1)' 
n+i. 

' m+i * m+s+2 

Each row of the determinant is regarded as a pair of numbers, the subscript 
s refers to the number of terms in the Fibonacci sequence skipped between 
successive pairs , and the subscript m refers to the number of terms skipped 
between the two numbers of a pair, 

It is simple exercise to establish the validity of (1), (2), and (3) using 
Fm+n = F n - i F m + FnFm+i- However, close inspection will show that (1), (2), 
and (3) are only special cases and/or variations of 

(4) F F 
P q 

Fp-kFq+k ( - ! ) • 

p-k 
FkFq+k-p 

where k = m + 1 and q - p = s + 1. 
This comparison is made easier when (4) is written as 

(4') 
F , F 
p-k p 

p-k+i 
= <-« FkFq+k-p 

q q+k 

thus suggesting a form for a related 3 X 3 matrix 

259 
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P ~ 

FJ-k 
F m -k 
F n -k 

FJ 
F m 

F n 

Fj+k" 
Fm+k 
Fn+k 

A singular property of the Det(P) presents itself. 
Theorem: Det(P) = 0, k, j j n ^ n are integers. 

Proof: There is no loss in generality to assume j > m > n and it is simply 
convenient to assume k > 0. By applying (4) it is apparent that the columns 
of P are linearly dependent. We note by inspection that F^ (column 3) - F2k 

k+i 
(column 2) = (-1) F^ (column 1). Thus, the determinant is clearly zero (0). 

Q. E. D. 

Since the Det(P) = 0, a previous article of this Quarterly [3 j suggests 
it would be interesting to consider the Det(P + a) where P + a means a matrix 
P with a added to each element of P. The generality of j , m , n , and k 
would almost prohibit the techniques used by Whitney [3] . Hence procedures 
discussed by Bicknell in [l] and by Bicknell and Hoggatt in a previous article 
of this Quarterly [2] are employed. Using the formula [2] 

Det(P + a) = Det(P) + a X(P) , 

where X(P) is the change in the value of the determinant of P, when the num-
ber 1 is added to each element of P , we have 

Det(P + a) = a \(P) , 

since Det(P) = 0. NowA(P) and the corresponding Det(P + a) are interests 
ing in any one of the following forms. They are also derived with the aid of (4T). 

(a) MP) = 

1 
F m - k 
F n -k ' 

" F j - k 

"FJ-k 

1 

F m - F j 
F n - F j 

• m+k 
?n+k 

•j+k 

-Vk 

or 
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(b) X(P) 

Therefore, 

ITS RELATED LAMBDA FUNCTION 261 
= [F2k - Fk - fi)kFkj| (-1) nx-k^ + (-1) j-fc F . - (~1)J k F 

n-j v ' m -«] 

(c) Det(P + a) = FT m - k F , j - k 
F n -k ~ F j -k 

F - F-
F - F-

*m+k " *j+k 
Fn+k " Fj+k 

or 

m-kT (d) Det(P+a) = [ F 2 k - F k - (-1) Fk][ ( - l ) m " X _ m + (-1) 0-* F . - (-1) n-j ; i-K rm-j ] a . 

The first factors of (b) and (d) have a straightforward simplification if it is 
known in advance whether or not k is even or odd. The various forms of 
X(P) and Det(P + a) become much more intriguing once the interesting pat-
terns in the subscripts and exponents and their relationship to P are observed. 
These patterns could easily serve as mnemonic devices. 

REFERENCES 
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3. Problem B-249 Fibonacci Quarterly, Vol. 2, No. 2, April, 1964. 

• • • * • * 

REQUEST 

The Fibonacci Bibliographical Research Center desires that any reader 
finding a Fibonacci reference send a card giving the reference and a brief 
description of the contents. Please forward all such information to: 
Fibonacci Bibliographical Research Center. 
Mathematics Department, 
San Jose State College 
San Jose, California. 

• * * * • 



EXPLORING SPECIAL FIBONACCI RELATIONS 

Brother U. Alfred, St. Mary's College, Calif. 

In a previous exploration section, readers were introduced to the prob-
lem of generalized Fibonacci-Lucas relations. We denoted the terms of the 
generalized Fibonacci sequence as f and those of the associated generalized 
Lucas sequence as g where 

Sn = fn-i + fn+i 

Recall also that the sequence (2, 9) means the Fibonacci sequence with ft = 2 
and f2 = 9. The following represent some curious results obtained in trying 
to express f g as a linear combination of ffs and gTs. 

Sequence Formula for fngn 

(2>9) fn£n = f2n+5 ~ S2n-2 

(3 >7) fnSn = S2n+3 ~ f2n-i 

(3.10) fngn = g2n+3 + f2n + gm_t 

(3,H) fn% = §2n+4 ~ S2n - f2n-3 

(4,13) fngn = g2n+4 + *2n-4 

(5.11) fngn = S2n+3 + f2n+3 + f2n-2 

(5,13) fngn = g2n+4 + f2n-i + f2n-4 

M,W> fn&ti = ^2n+4 + S2n-i 

'(6,17) fnSn = §2n+5 "" f2n+3 + f2n-4 

(7,17) fngn = g2n+4 + g2n+2 + f2n-4 

Now, of course, it must be recognized that these linear expressions could be 
represented in an infinity of different ways. However, it does not seem that 
they are all one and the same relation. If not, then we have specific relations 
that characterize the individual sequences. So the following questions are raised: 

262 
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(1) Can the above formulas for fngn be unified into one formula? 
(2) If not, can other instances be found of this type of phenomenon? 
(3) When is it that we have particular formulas for each Fibonacci sequence 

rather than a general formula for all sequences? 

• • • • • 

All subscription correspondence should be addressed to Brother U. Alfred, 
St. Maryfs College, Calif, All checks ($4.00 per year) should be made out to 
the Fibonacci Association or the Fibonacci Quarterly. Manuscripts Intended 
for publication in the Quarterly should be sent to Verner E. Hoggatt, Jr . , 
Mathematics Department, San Jose State College, San Jose, Calif. AH manu-
scripts should be typed, double-spaced. Drawings should be made the same size 
as they will appear in the Quarterly, and should be done in India ink on either 
vellum or bond paper. Authors should keep a copy of the manuscripts sent to 
the editors. 

• * * * * 

NOTICE TO ALL SUBSCRIBERS!! I 

Please notify the Managing Editor AT ONCE of any address change. The Post 
Office Department, rather than forwarding magazines mailed third class, sends 
them directly to the dead-letter office. Unless the addressee specifically r e -
quests the Fibonacci Quarterly to be forwarded at first class rates to the new 
address, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR 
to publication dates: February 15, April 15, October 15, and December 15. 

* * * -k * 

The Fibonacci Association Invites Educational Institutions to apply for Academic 
Membership in the Association. The minimum subscription fee is $25 annually. 
(Academic Members will receive two copies of each issue and will have their 

.names listed In the Journal. 
* * * * * 



ALGEBRA THROUGH PROBLEM SOLVING 
BOOK REVIEW 

Brother U. Alfred, St. Mary's College, Calif. 

A paperback entitled Algebra Through Problem Solving, written by Abraham 
Pc Hillman, University of New Mexico, and Gerald L. Alexanderson, Univer-
sity of Santa Clara (1966, Allyn and Bacon) has appeared as one of a series 
entitled Topics in Contemporary Mathematics,, The following sequence of 
topics is covered0 

1. The Pascal Triangle 
2. The Fibonacci and Lucas Numbers 
3. Factorials 
4. Arithmetic and Geometric Progressions 
5. Mathematical Induction 
6„ The Binomial Theorem 
7. Combinations and Permutations 
8. Polynomial Equations 
9. Determinants 

10o Inequalities,, 
The manner of treatment is to give a presentation of the basic ideas in a 

succinct and cogent fashion and then allow the student to become familiar with 
these ideas by solving numerous and varied problems. This approach, it seems 
to the present reviewer, is highly commendable,, 

Of particular interest is the role given the Fibonacci and Lucas numbers. 
Note that these sequences are introduced early in the bookG In Chapter 2, they 
are used in the main to provide the student with an opportunity to make mathe-
matical conjectures on new and unfamiliar material. But the authors do not 
stop there. As might be expected, they play a key role in the chapter on math-
ematical induction and are brought in occasionally in other portions of the book 
as well. 

An unofficial and rapid count of these loci apart from Chapter 2 is given 
below. 

In the chapter on mathematical induction, p. 35, No. 4; p. 37, No. 17, 
p. 38, Nos. 19-25 inclusive; in the chapter on the binomial theorem, Nos. 33-
36, pp. 49-50; in the chapter on determinants, No. 17, pp. 94-95; in the chapter 
on inequalities, No. 5, p. 107, No. 28, p. 117. 

(Text continued on p. 269.) 
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OPTIMALLY PROOF FOR THE SYMMETRIC FIBONACCI SEARCH TECHNIQUE 
Mordecai Avr ie l and Douglass J . W i l de , Stanford Universi ty, Stanford, Ca l i f , 

An Important problem in engineering, economics, and statistics is to find 
the maximum of a function. When the function has only one stationary point, 
the maximum, and when it depends on a single variable in a finite interval, the 
most efficient way to find the maximum is based on the Fibonacci numbers. The 
procedure, now known widely as "Fibonacci search," was discovered and shown 
optimal in a minimax sense by Kiefer [1 ]. Se Johnson [2 ] gave a different 
demonstration. Oliver and Wilde [3,4] extended the procedure to the case 
where, in order to distinguish between adjacent measurements, a non-negligible 
distance must be preserved between them. Although this modification, called 
the symmetric Fibonacci technique is described informally in [4], where 
numerous extensions are also discussed the present paper gives the first com-
plete, precise description, and formal optimality proof. 

Let y(x) be a unimodal function, i. e8 , one with a unique relative maxi-
mum value obtained at x = x* on the closed interval [a,b]; thus 

(1) y(x*) = max y(x) 
a<x<b 

and a < xt < x2 < x* implies y(x1) < y(x2);x*< xt < x2 ^ b implies y(xt) 
> y(x2)e As a practical consideration, assume that y(x) canbe measured only 
with finite accuracy, but there is a 6 > 0 such that if \xt - x2| > 6 the meas-
urements of y(xt) and y(x2) will be equal only if xt and x2 lie on opposite 
sides of x*s 

A search strategy S(n, 6) on [a,b] is a plan for evaluating the function 
at n distinct points XUK^9^ ••• ,xn•, where the location of x^+1 depends on 
y(xj) for j ^ k and where 

(2) |xj - x k | > 5 j * K 1 < j , k < n 

The plan terminates after successive reduction of a starting interval on which 
the function is defined to a final interval of a required length, containing x*e 
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Suppose k function evaluations have been performed, and let m k be such that 

(3) y(mk) = max{y(x1),-«-,y(xk)} 

Let 

(4) L k = {xj:xj < mk, j < k}u{a} 

(5) Rk = {xj:xj > mk, j < k}U{b} 

and 

(6) £k = Sup L k 

(7) r k = Inf Rk 

Since y is unimodal, it is clear that x* must be in the interval [ £ k , r k ] . 
The purpose of this paper is to derive a search strategy Sop(n, <5) that 

is optimal in the sense that it maximizes the length of the starting interval for 
whatever final interval is given. From (2) - (7) it follows that the final inter-
val for any n > 1 is 

(8) r n - .*n > 26 

By choosing the required length (>2 6) of the final interval we rescalethe sys-
tem as follows: 

(9) r n - 7 n = \ ( r n - je n ) = 1, \ > 0 

(10) 6 = ^ 

(11) x = X(x - a) 

Thus the new strategy S(n,6*) is defined on [ 0 , D n ] , where Dn = X(b - a)9 

and it yields a final interval of unit length. 
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The symmetric Fibonacci search is a search strategy f o r a starting 
interval [0,5"^] where the right end point D^ is given by 

(12) DF = F n + 1 - Fn^69 n = 1 ,2 , - . . 

where 

(13) F n + 2 = F n + 1 + F n (F0 = 0, Fj = 1) 

are the Fibonacci numbers. The strategy is defined by the rules 

(14) x4
F = Fn - Fn_26 

and 

<15> x J + i = ' k
 + 7 k - m k 

Lemma: The symmetric Fibonacci search defined above is an S(n,6) 
search strategy for [ 0 , D n ] with r - £ = 1. 

Proof; By induction on n„ The lemma i s trivially true for n = 1, since by 
(3) - (7) It = 0 and rA = 1. For n = 2, 5 f = 2 - <5 and xt = 1,imply-

_ _ -p _ 
ing that Ht = 0, rt = 2 - 6 and consequently x2 = 1 - 6 by (15). Thus 
|xt - x2 I = 6 and for any unimodal function either m2 = xt or m2 = x2 , 
and in both cases r2 - 12 = 1. 

Now assume the lemma true for n = N ^2)a Then D N + 1 = F N + 2 - FN<5 
-p —TT — 

and xt = F N + j - FNmml6 = DN„ Consequently, j ^ = 0, r t = F N + 2 - FN<5 and 
x2

F= F N - FN_26 = H j _ 1 . Also | x f - xf |. =. D^ - D ^ => 1 -g" =>g\ If m2 

= xf then T2 = 0 and r2 = x^ = D^s Thus 0 < x* ^ D^ with one evaluation 
of the function at D^ 1 and G the induction hypothesis the lemma is true 
for this case. If m2 = x ^ , then i2 = x2 = D j ^ and r2 = D N + 1 . Define 
the new variable x F = D J_, 1 - xF so that 0 ^ x F < D £ with one function 

__F N+l N 
evaluation at D^_x- Thus by induction the lemma is true for this case, too; 

Note that if y(x^+ 1) = y(i%) and say n% > xj[+1 , x* is known to lie 
in the interval [ x ^ + l s m k ] . As iBf^+i = n% or mfc+1 = xE+, , the Fibonacci 
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search plan suggests reducing the interval [ % J ^ ] to either [^,1*%] or 
[xf+1, r ^ ] . An improved choice could be made in this case by taking the next 
interval as [ ^k+l'^k+ll ~ [^l+l»™k] which can be the starting interval for a 
new S(n - k - 2,6) Fibonacci plan. This fortuitous situation is deliberately 
excluded from the theorem following in order to simplify the proof. 

Theorem: The symmetric Fibonacci search plan is the unique S (n,6) 
strategy among all S(n,6) strategies, provided y(x^+^) =t= y(m^) for every 
k = 1,2,••• ,n - 1„ 
Proof: by induction on n. For n = 1 the proof is obvious because all ~Dt = 
—- F _ _ 
Dj = 1. For n = 2 we can assume without loss of generality that xt > x2„ 
Then any S(n,6 ) must satisfy Xj = 1, D2 - Xj =£ 1 - 6, yielding D2 < 2 - "6 = 

Tp 

D2 o Assume now that the theorem is true for n = N ^ 2, then for an S(N + 
1,6) strategy let Xi > x2 and m2 = x2. Hence T2 = 0, r2 = x1? and we have 
an S(N,6) strategy on [O.Xj], By induction 

(16) xt * D^ 

If m2
 = x1? then 2̂ = ^2, ^2 ~ DN+1 > and by induction therefore 

(17) B N + 1 - x2 ^ D N 

However, 

(18) x2 < D * ^ 

also by induction, since if x* < x2 then x* has to be located by an S(N - 1,6 ) 
strategy on [0,x2]. Thus addition of (17) and (18) yields 

<19> ° N + 1 S 5N + »l-l 
j p Tp Tp 

But DN + D N - 1 = D N + 1 by (12), and this shows that the symmetric Fibonacci 
search is indeed optimal. 

Moreover, we observe that 

(20) D N + 1 - x t ^ ^ 



1 9 6 6 ] FIBONACCI SEARCH TECHNIQUE 269 

by an argument similar to that used in (18).' Relations (16) - (20) show that 
the symmetric Fibonacci search is the only way to achieve the maximum value 
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ALGEBRA THROUGH PROBLEM SOLVING, Book Review, Cont'd from p. 264. 

From the standpoint of the Fibonacci association, this text is a landmark 
in its recognition of the pedagogical value of the Fibonacci series. Let us hope 
that other authors will see the wisdom of incorporating such interesting and 
pregnant material into their textbooks0 
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The Fibonacci Association invites Educational Institutions to apply for Academic 
Membership in the Association, The minimum subscription fee is $25 annually. 

. (Academic Members will receive two copies of each issue and will have their 
names listed in the Journal. 

• • • • • 



AN EXPRESSION FOR GENERALIZED FIBONACCI NUMBERS 
David Es Ferguson, Prog ram ma tics In corpora ted , Los Angeles, Ca l i f . 

An interesting expression for the Fibonacci numbers is presented here 
which relies on the modulo three value of the subscript. 

a - i , . /2 i + a - l \ _. . 
(la) F 3 a = 1 - Y I (-lf'l8l (a > 0) 

i=o \ 3i / 

a-i ' /2i + a \ 
(lb) F 3 a + 1 = 1 - 2 V I. (~ l ) a ~V (a > 0) 

M \ 3 i + 1 / 

a-i / 2i + a + l \ 

i=0 V 3 1 + 2 / 
(1c) F 3 a + 2 = 1 - 4 V ( "" ' ~ " 1 (-if"4 8l (a > 0) 

This is a special case of a more general expression for the generalized Fibonacci 
numbers [ 1] . 

(2a) V ^ m = 1 (m = -n + l f . . . , 0 ) 

n 
(2b) V = Y V , 
K ' n5m La n,m-k 

fc=i 

It is seen that F m = V2 m -2* 

It is interesting to note that these numbers arise in the analysis of polyphase 
merge-sorting with n + 1 tapes. The Vn m represent the total number of 
strings on all the tapes and also the length of strings (assuming initial length 
of 1) at each step of the polyphase merge process. A description of the poly-
phase merge-sort can be found in [2 ] , 

The general expression can be written ass 

<*> Vn,a(n+l)+b = 1 + ^ 
a / i n + a + b - l \ 

-V-DE ).(-Dart(2^1)1 

i= o \ a " * / 
(b = l , - - - , n + 1), (a > 0 ) . 
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GENERALIZED FIBONACCI NUMBERS 

Let 

f (x) = Y V x m 
nx l *-* n?m 

m=o 

It follows immediately that 
(1 - x - x2 xn)fn(x) = 1 + (n - l)x + (n - 2)x2 + • • • + x11"1 

Therefore 
1 + (n - l)x + (n - 2)x2 + »• • + x11""1 

1 - x - x2 - • •• - x" nv , _„ _.2 __n 

(4) 

If 

1 + (n - '2)x - x2 - ••• - x n 

1 - 2x + xn + 1 

1 - x 1 - 2x + x n + 1 

i °° 

— — = y w x
m 

1 - 2x + xn+l ^ n,m 
the sequence W is defined by: 

n,m J 

(5a) W n ? m
 = ° (m < 0) 

(5b) Wn j m = 1 (m = 0) 

(5c) W = 2W - W (m > 0) 
x ' n ,m n,m-i n,m-n-i l ; 

From Eq. (4) V^m = 1 + (n - 1)W ^ (m > 0) 

Theorem: 

<6> W n a ( n + 0 + b = £ J
 2b+(n+ l ) j ^ a - j 

n,a(n+i)+b j = 0 \ ( n + 1 ) j + b / 

(This formula immediately yields the identity '(3).) 
Proof: 1 °° 

— L " = E (2x - x n + n m 

1 - 2x + xn + 1 m=o 

OO CO 

E E ( i 9 k / -jxm-k (n+i)m-nk 
m=o k = o \ k / z {~1} x 
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Rearranging this sum in terms of powers of x, let (n + l)a + b = (n + l)m -
nk. It follows that k = b (mod (n +1)), so k = (n+ l)j + b for some j > Q* 
Changing the sum on m and k into a sum on a? b and j s and noting that 
m = a + b + nj, results in: 

OO OO 

£ £ x(n+i)a+b £ / a + b + n 3 | 2 ( n + 1 » + b (-i)a-J 
a=o b=o j=o \ (n + 1) j + b / 

This completes the proof. A similar method was used by Polya [3 ] to solve 
another recurrence relation. 

Another interesting expression which arises from this analysis is the general 
expression for the numbers defined by: 

(7a) U n ? m - 0 (m = -n + l , - - - f - l ) 

(7b) U - 1 (m = 0) 
v ' n.m v ' 

m 
(7c) U = T u . (m > 0) 
v ' n.m £-> n.m-i x ' 

5 i=l y 

It is seen that F = U? rn_1 . 

These numbers also arise in the analysis of polyphase merge-^sorting; 
they represent the number of strings produced at each step of the process. 

The general expression is : 

a ( / i n + a + b \ / i n + a + b - l \ ) 

w-^K...)+(..,-x )r e ' 
(b = (),••• ,n) , (a + b > 0) 

The proof is similar to the above and is omitted* 
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• • • • • 

FIBONACCI YET AGAIN 

J. A. He Hunter 

Consider a triangle such that the square of one side equals the product of 
the other two sides. 

Then we have sides: X, \/XY? and Y; say X > Y. 
Eliminating an common factor we may set X = a2, Y = b2, so that the 

"reduced" sides become a2
? ab? b2. 

Then, for a triangle, we must have ab + b2 > a2 which requires (\^T— 
l) /2 < b /a < (\/5 + l ) /2 . 

Hence a sufficient condition for a triangle that meets the requirements is 

F 2 n „ 1 / F 2 n < b /a < F 2 n / F 2 n „ 1 with X = ka2, Y = kb2 . 

• * • • • 

All subscription correspondence should be addressed to Brother.U. Alfred, 
St. Mary!s College, Calif. All checks ($4.00 per year) should be made out to 
the Fibonacci Association or the Fibonacci Quarterly. Manuscripts intended 
for publication in the Quarterly should be sent to Verner E. Hoggatt, J r . , 
Mathematics Department, San Jose State College, San Jose, Calif. All manu-
scripts should be typed, double-spaced. Drawings shouldbe made the same size 
as they will appear in the Quarterly, and should be done in India ink on either 
vellum or bond paper. Authors should keep a copy of the manuscripts sent to 
the editors. 



A POWER IDENTITY FOR SECOND-ORDER RECURRENT SEQUENCES 
V . E . Hoggatt, J r . , San Jose State College, San Jose, Cal i f . 
and D . A . Lind, University of Virginia, Charlottesville, V a . 

1. INTRODUCTION 

The following hold for all integers n and k: 

Fn+k ~ FkFn+i + Fk-lFn 

Fn+k = ¥ k , ) F ^ + (FkFk-2)Fn+ 1 " ( W k - ^ ' 

Fn+k = (FkFk-iFk-2
/ 2>Fn+3 + <FkFk-iFk-3)Fn+2 " (FkFk-2

Fk-3)Fn+i 

" <Fk-iFk-2
Fk-3 /2K • 

These identities suggest that there is a general expansion of the form 

(1.1) 
jjy 

Fn+k = E a J iKP)FU 
3=o 

Here we show such an expansion does indeed exist, find an expression for the 
coefficients a.(ksp), and generalize (1.1) to second order recurrent sequences. 

2S A FIBONACCI POWER IDENTITY 

ml Define the Fibonomial coefficients :\ by 

F F ••• F m m-i m-r+i 
F 1 F 2 - - F r 

(r > 0); = 1 

Jarden [4] proved that the term-by-term product z of p sequences each 
obeying the Fibonacci recurrence satisfies 

2 7 4 
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p+i 

(2.D J2 H-> 3 ( J + I ) / 2 

for in tegra l n. In p a r t i c u l a r z n = F ^ obeys (2.1). Car l i t z , [ 1 , Section 1] has 
shown that the de te rminant 

p + 1 

J n-j 

D 
"n+r+s 

( r , s = 0 , l , ° - , p ) 

has the value 

D p = ( - l ) P ( P + 1 ) ( n + 1 ) / 2 | ( P ) . ( F ^ . - F p ) ^ 0 
i=o \ J / 

implying that the p + 1 sequences {F },{FP } , • • • , {F P } a r e l inear ly 

independent over the r e a l s . Since each of these sequences obeys the (p + 1) 

o r d e r r e c u r r e n c e re la t ion (2.1), they must span the space of solutions of (2.1). 

There fore an expansion of the form (1.1) ex i s t s . 

To evaluate the coefficients a.(k,p) in (1.1) we f i r s t put k — 0 , l s ° ° • , p , 

giving a.(k,p) = 6.7 for 0 < j ? k < p , where 6.-. i s the Kronecker-del ta d e -

fined by <5., = 0 if j 4= k, 6-,, = 1. Next we show that the sequence 

{ a . ( k , p ) } l ^ o 

obeys (2.1) for j = 0 , 1 , • • • , p . Indeed from (1.1) we find 

p+i 

o = J2 <-Dr(r+1) /2 P + 1 
r "n+k-r 

p I p+i 

j=o j r=o 

P + 1 

r 
a ( k - r , p ) } F; n+j 

But the F v . (j = 0 , 1 , e * e ,p) a r e l inear ly independent, so that 
n+j 

E <-1>r(r+1)/2 
r=o 

p + 1 

r a.(k - r , p ) = 0 ( j = 0 , l , - - - , p ) 
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Now consider b.(k,p) = (F, F, • • • F, )/F, .(F.F. " « F F > 0 0 F . ) for 

j = 0, ! , • • • ,p - 1, b (k,p) = I p j , together with the convention that F0/F0 = 1. 

Clearly bj(k,p) = <5., for 0 < j,k < p. Since {b.(k,p)}j_ is ;the term-by -

term product of p Fibonacci sequences, it must obey (2.1). Thus {a.(k,p)}, 
oo th ^ 

and |b.(k,p)}, obey the same (p + 1) order recurrence relation and have 
their first p + 1 values equal (j = 0 , l , - - , , p ) , so that a.(k,p) = b.(k,p). 

Since F_ = (-l)n+1F , it follows that 
J r 

F - • • • F . = F .•••F1(-l) 
-1 j-p p-J 1V ' 

(P~J)(P-J+3)/2 

so that for j = 0,1,• • • ,p - 1, we have 

a.(k,p) = (-1) (lH)(P-J+3)/2 
I VW"F1 ll(Fr-Fi)(V]"-^flFk-j/ 

(-i) (P-J)(P-J+*)/2 ClDf] ( F k - P
/ F k - j > ' 

which is also valid for j = p using the convention F0 / F 0 = 1. Then (1.1) 

becomes 

P 
v(p-3)(p-J+3)/21 (2'2) Fn+k = 2 ^ ( " i r 

k 

LP. 
P 

< F k ^ / F k - j > ^ 

for all k„ We remark that since consecutive p powers of the natural num-

bers obey 

5 ( " " i r J ( P - 1 ) ( n + J ) P = ° ' 
3=o 

a development similar to the above leads to 

(2.3) (n + k)*- = 2 ^ e l ) 

j=o 
£<-'••(:)(;)(-) (n + if 
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a result parallel to (2.2) 

3. EXTENSION TO SECOND-ORDER RECURRENT SEQUENCES 

We now generalize the result of Section 2. Consider the second-order 
linear recurrence relation 

(3.1) yn + 2 = P y n + 1 - q y n (q * 0) . 

Let a and b be the roots of the auxiliary polynomial x2 - px + q of (3.1), 
Let w be any sequence satisfying (3,1) ? and define u by u = ( a n - b n ) / 
(a - b) if a + b, and u = na if a = bs so that u also satisfies (3.1). 

n fml 
Following [ 4 ] , we define the u-generalized binomial coefficients I I by 

[ T u u * • • u ,, r i 

m l = _m_m-i rn^r+i Tml = 
r j u UiU2---ur | _ 0 j u 

Jarden [4] has shown that the product x of p sequences each obeying (3.1) 
satisfies the (p + 1) order recurrence relation 

p+i 

(3.2) ^TVl)^"1)/2 

J=o 

p + 1 

J ^ - 3 = ° 

If all of these sequences are w , then it follows that x = wp obeys (3.2). 
It is our aim to give the corresponding generalization of (1.1) for the 

le 

that 
sequence w ; that i s , to show there exists coefficients a.(k,p,u) = a.(k) such 

(3'3) ^ + k = I ] a 3 ( k ) w J P 
n+j 

j=o 

and to give an explicit form for the a.(k)e Carlitz [ 1 , Section 3 ] proved that 

VW ) =K+r+sl <r's = O.L—.P) 



278 A POWER IDENTITY FOR [Oct. 

is nonzero, showing that the p + 1 sequences 

are linearly independent Reasoning as before, we see these sequences span 
the space of solutions of (3.2), so that the expansion (3.3) indeed exists. Put-
ting k = 0 , l , -** ,p in (3.3) gives a.(k) = 6., for 0 < j , k < p. It also fol-
lows as before that the sequence 

satisfies (3.2). Now consider 

b.(k.p.u) = b.(k) = u, u, / • • u , •/u,- .(u.u. / ••u1u_1*-*u. ) J J k k-i k - p ' k - f j j - i I 1 j ~ p ' 

for j = 0 , l , . . - , p - l , bp(k) = [^ , along with the convention u0 /u0 = 1 

Then bj(k) = 6.-. for 0 < j , k < p. Also{b-.(k)}, • obeys (3.2) because it 
is the product of p sequences each of which obeys (3.1). Since {a.(k)V? 

th 3 ^~° 
and {b-(k)}? (j = 0,l,°®»,p) obey the same (p + 1) order recurrence 
relation and agree in the first p + 1 values, we have a.(k) = b.(k). Now 
ab = a, so that u^ = (a"n - b ~ n ) / ( a - b) = -q n u . Then 

~l j - p p-j n ; 

and thus for j = 0 ,1 , • • • ,p - 1 we see 

(3.4) 
a (k) = (.i)P-Jq(P-J)(P-J+1)/2 

/ U, U, • • • U, , J V / U U / • • UJ \ / U, \ 
/ k k-i k-p+i W pp-i * . ]/ k-p\ 
\ Vp-l' " U l ' V (uj- * * ui><up-j- ' ' ul> /1 u k- j / 

= ( - l ) P " j q ( p " j ) ( p ~ 3 + l ) / 2 

. P J u u . 
(u, /u, .) , v k-p k - j ' ' 

which is also valid for j = p using the convention u0 /u0 = 1. Therefore (3.3) 
becomes 

p .-ki 

LPJ <3-5> w n + k = Z ( - 1 ) P " J ' 
,<p-i)(p-J+1)/*- (u, /u, .) w , . v k -p / k - j ' n+j 

u u 
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Carlitz has communicated and proved a further extension of this result. 
Let 

(P) 
n n+aj n+a2 n+ar 

where the a. are arbitrary but fixed nonnega,tive integers. Then we have 

(3.6) r0» - n + k ^ E ^ 
3=o 

P-Jq(P-J)(P-J + 1)/2 (u. /u. .)x® , 1 k-p k - j ; n+j 9 

where u0 /u0 still applies. We note that putting aA = a2 = •e • = a = 0 r e -
duces (3.6) to (3.5). 

To prove (3.6) using previous techniques requires us to show that the 
sequences 

{•?'}•{«£;}.•••.{"&} 
are linearly independent. To avoid this, we establish (3.6) by induction on k. 
Now (3.6) is true for k = 0 and all n. Assume it is true for some k ^ 0 and 
all ns and replace n by n + 1 , giving 

x ( p ) 

xi+k+i 5 > 1 > : 
u j=o 

p 

P-jq(P-J)(P-J+0/2 

X>1)P~j+lq P-J+UP-J+I)(P-J+2)/2 

JUJ=1 

It follows from (3.2) that 

k-p X(P) 
V j n+j+1 

P ^ X(P) + 

1-1 k- i+ i J 

J Ju J 

,(P) 
n+p+i 

K(P) 
n+p+i 

p+i p + 1 

j 

P-L(P-J)(P-J+1)/2 

"S("1)jq3(j"1)/2 

Ĵ o 

X(P) 
n+p+i-j 

u 
p + 1 

3 
n+j 

-»u 
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Since 

x (P) 
n+k-H 

1 k 

P £- 1 ) P- j q (P- j ) (P"j+l) / 2 

-*U j=0 

P 

3 - 1 

JP) 

3 k- j+i 

1 p+i k-j+i H k -p 3 

• V i V j + i - qP"3+luk-puj = V i V j + i ' 

we have 

JP) 
n+k+i - u, •k+il Z ( - 1 ) P " 3 q 

u j=o 

P-L(P-j)(P-J+i)/2 P 

J - 1 
JVitLx(p) 
u.u, . , , n+j 3 k-j+i J 

k + 1 

P 

i P 

E 
•J . i=0 

(„1)P~Jq(P~J)(P-J+1)/2 P 

u. 
u. k-p+i (p) 

V j + i n + j ? 

complet ing the induction s tep and the proofe 

4. SPECIAL CASES 

In this sect ion we reduce (3.5) to a genera l Fibonacci power Identity and 

to an identity involving powers of t e r m s of an a r i thmet i c p rog re s s ion . F i r s t 

if we le t w = F , , u = F , where r and s a r e fixed in tegers with n n s + r ' n n s ' fo 

s 4 0, then both w and u satisfy 

(4.1) v - L y + (-1) v = 0 . rn+2' s J n+ i 

The roo ts of the auxi l iary polynomial of (4.1) a r e dis t inct for s =f= 09 so that 

w and u satisfy the conditions of the previous section,, In this c a s e the u -

genera l ized binomial coefficients become the s -gene ra l i zed Fibonacci 
F m l L Ju 

coefficients , defined by 
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F F ins (m-i)s 
F F e ° ° F ts t s - s s 

1 (m-t+i)s (t > 0) ; = 1 

281 

A recurrence relation for these coefficients is given in [3 ] , Now here 

q = <-l)S, SO ( . D P - J q ^ M P - ^ / 2 « e i ) ( P ™ J ) [ s ( P ^ l H ] / 2 

Then (3.5) yields 

(4.3) F (n+k)s+r 
ral)(P-J)[s(p-j-M)+2]/2 

1=0 

p 

.j J. 

F (k-p)s F p 
F(k-J)s < n + « s + r 

Putting s = 1 and r = 0 gives equation (2,2). 
On the other hand, if we let w = ns + r and u - n, where r and s 

' n n ' 
are fixed integers, then w and u obey 

(4.4) V - 2v + V = 0 Jn+2 Jn-H J n 

Since the characteristic polynomial of (4.4) has the double root x = 1, both 
w and u satisfy the conditions for the validity of (3.5). In this case we have 
q = 1 and J , j = | , 1, the usual binomial coefficient. Then (3.5) becomes 

(4.5) ([n + k]s + r) 
p f \p / \ j / \k - j . (O + j]s + rf 

This reduces to (2.3) by setting s = 1 and r = 0S 
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ELEMENTARY PiOBLEiS AND SOLUTIONS 
Edited by A .P . HiNman/University of New Mexico, Albuquerque, New Mex* 

Send all communications regarding Elementary Problems and Solutions to 
Professor A. P. Hillman, Department of Mathematics and Statistics, Univer-
sity of New Mexico, Albuquerque, New Mexico 87106* Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should be 
received within three months of the publication date, 

B-94 Proposed by Clyde A. Bridge^ Springfield Jr. College, Springfield, Hi 

Show that the number N of non-zero terms in the expansion of 

0 0 0 . . . . 0 0 0 ! 
b2 0 0 . . . 0 0 0 
a3 b3 0 . . . 0 0 0 

0 ° ° ° 0 0 -1 an 

is obtained by replacing each a. and each b^ by 1 and evaluating K^ Show 
further that Nn = F n + 1 , the (n + l)st Fibonacci number, 

B-95 Proposed by Brother tf. Alfred, St. Mary*$ Co//-ege,.Ccr/if. 

What is the highest power of 2 that exactly divides 

F 1 F 2 F 3 ° ° ° F100 ? 

B-96 Proposed by Phil Manaf University of New Mexieo% AlbuquerquetNew Mex* 

Let Gn be the number of ways of expressing the positive integer n as 
an ordered sum at + a2 + • • * + as with each aj in the set { l ,2 ,3} 0 (For 

283 

K 



2 8 4 ELEMENTARY PROBLEMS [Oct. 

example, G3 = 4 since 3 has just the expressions 3,2 + 1, 1 + 2, 1 + 1 + 1.) 
Find and prove the lowest order linear homogeneous recursion relation sa t is -
fied by the Gn . 

B-97 Proposed by Douglas Lind, University of Virginia, Charlottesville, Vb. 

Let A = {a^}, be an increasing sequence of numbers and let A(n) de-
note the number of terms of A not greater than n. The Schnirelmann density 
of A is defined as the greatest lower bound of the ratios A(n)/n for n = 1, 
2,- • • . Show that the Fibonacci sequence has density zero. 

B-98 Proposed by Douglas Lind, University o f Virginia, Charlottesville, Vb. 

Let F be the n Fibonacci number and find a compact expression for 
the sum Sn(x) = Ftx + F2x2 + F3x3 + • • • + F n x n

 Q 

B-99 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Find a compact expression for the infinite sum 

S2(x) S3(x) 
T(x) = st(x) + ~^r- + -jr~ + *9° > 

where S (x) is as defined in B-98. 

SOLUTIONS 
DIFFERENCE AND DIFFERENTIAL EQUATIONS 

B-76 Proposed by James A. Jeske,San Jose State Colleget San Jose, Calif. 

The recurrence relation for the sequence of Lucas numbers is Ln+2 -
Ln+i - Ln = 0 with Lj = 1, L2 = 3. 

Find the transformed equation, the exponential generating function, and 
the general solution. 
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Solution by Douglas Unci! University of ¥irginias Charlottesviiieg Vb. 

By (4.2) of Jeskefs ar t ic le , the transformed equation is 

L2(D)Y = Y" - Yf - Y = 0, Y(0) = 2, Yf(0) = 1 . 

Now rt = (1 + /s/5)/2 and r2 = (1 - V5)/2 are the roots of L2(r) = 0, hence 
with the given initial values we may determine the solution for the Lucas s e -
quence to be 

i, - (H*r • (H*)T . 
The exponential generating function for the Lucas sequence is thus 

OO 

Yft) - e * + a* = 2X £ ... 
n=o 

Also solved by Clyde A. Bridget, Howard I.Walton, and the Proposer. 

IT PAYS TO CHECK 

B-77 Proposed by James A. Jeske,San Jose State Colleget San Jo§eg Calif. 

Find the general solution and the exponential generating function for the 
recurrence relation 

yn+3 - 5yn+2 + 8yn+i - 4 y n
 = ° » 

with y0 = 0 , yt = 0, and y2 =-1. 

Solution by Douglas Unds University of Virginiat Charlottesville; Vb. 

Since L3(x) = x3 .- 5x2 + 8x - 4 = (x - l)(x - 2)(x - 2) = 0, we have, 
using the notation of section 4 of Jeskefs paper, r1 = 1, nij = 1, r2 = 29 
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m 2 = 2, and m = 2e With the given init ial va lues we find the exponential 

genera t ing function to be 

Y(t) = - e t + e 2 t ( l - t) 

which, by applying the i nve r se t r a n s f o r m (3.3), y ie lds the genera l solution as 

Also solved by Clyde A, Bridget and the Proposer. Douglas Lind also noted that for-

mula (4.8) ©f Jeske's paper is not correct. 

A LUCAS SUM 

B-78 Proposed by Douglas lind, University of Virginia, Charlottesvillef Va. 

Show that 

F = L + L + • • • + L + e , n > 2 , 
n n-2 n-6 n-2-4m n ' * 

where m i s the g rea te s t in teger in (n - 3 ) /4 , and e = 0 if n = 0 (mod 4), 

e = 1 if n t 0 (mod 4). 

Solution by the Proposer. 

Proof by induction: The proposi t ion is easi ly shown t rue for n = 3 , 4 , 5 , 6 . 

Now a s s u m e the t h e o r e m t rue for 3 ^ n ^ k + 3. Then one finds that 

Fk-f4 = Lk+2 + Fk = Lk+2 + (Lk-2 + Lk-e + *8* + Lk~2-4m + e k ) 

so that the t heo rem is t rue for k + 4, complet ing the induction s tep and the 
proof0 

Also solved by David Zeitiin, 
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AN ALMOST LUCAS SUM 

B-79 Proposed by Brother U. Alfred, St Mary's Colleges Calif. 

Let a = (1 + V5) /2 . De te rmine a c losed express ion for 

\ = [<! + [a2 ] + . . - + [a n ] , 

where the squa re b r acke t s mean "g rea t e s t in teger in„?T 

Solution by the Proposer. 

If b = (1 - \ / 5 ) / 2 , a = L, - b with b negative and | b | < la Hence 

[ a k ] = L, if k- i s odd and [ a ^ ] = L, - 1 if k i s even, It follows that 

n 
Xn = i C Lk ~ \J 

k=i 
Va " 3 

Also solved by J.L. Brown/ Jr. and Jeremy C. Pond. 

OUR MAN OF PISA 

B-80 Proposed by Maxey Brooke, Sweeny, Texas. 

Solve the division alphametic 

_PISA 
FIB XONACCI 

where each l e t t e r r e p r e s e n t s one of the nine digits 1,2, • •• , 9 and two l e t t e r s 

may r e p r e s e n t the s a m e digit. 

Solution by the Proposer. 

9854 
382 [3764228 

This solution may not be unique. 
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GAUSSIAN PRIMES 

B-81 Proposed b y Douglas LiJid, University of Virginiag Charlottesville/ Va. 

Prove that only one of the Fibonacci numbers l f 2 s 3 ? 5 ?
o s e i s a p r i m e in 

the r ing of Gaussian in t ege r s . 

Solution by L. Carl/tz, Duke University, Durham, NX. 

Since 

F2n+i =• F n + 1 + F n = ( F n + 1 + F n i ) ( F n + 1 - F Q i ) , 

i t follows that F 2 n +i i s composi te in the Gauss ian r ing for a l l n > 0„ Since 

F2n = F L it follows that F 2 n i s composi te in the r ing of in tegers (kndv 

the re fore in the Gauss ian ring) for n > 2a F o r n = 2S F 4 = 3; for n = 1, 

F 2 = 1. 

Also solved by Sidney Krqvitz and the proposer. 

• • • • • 
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