GENERALIZED BASES FOR THE REAL NUMBERS
J. A. Fridy, Rutgers—The State University, New Brunswick, New Jersey

Throughout this paper {ri}‘f will denote a non-increasing real number
sequence with limit zero; each of { kl}f and { ml}f denotes a non-negative

integer sequence
o
S = Zkiri and 8% = Z m, v,
1

(finite or infinite), We shall consider the possibility of expressing each num-

ber x in the interval (-S*S) in the form

)
x =) ar
.11

1

where each a is an integer satisfying -m; = 2, = ki’

In the classical n-scale number representation, each x in [0,1] can
be expressed in the above form, where n > 1, and r, = n_i, ki.= n-1,
and m; = 0 for each i. Previous generalizations ([6] and [8]) have con-
sidered only the expansion of positive numbers with certain restrictions onthe
coefficient bounds {k;}7.

In this note we shall extend the previous workto include negative number
representations as well as relaxing the restrictions on the coefficients {aI}‘;o
We shall also consider the question of uniqueness of such representations and
the expansion of real numbersvusing a base sequence {iri}‘f of both positive
and negative terms,

DEFINITION, The sequence {rj}7 is a {k,m}-base for the interval
(-S*,8) if for each x in (~8%*,8) tlhiere is an integer sequence {ai}:o such
that '

L] .
1 X = Za.r. and -m, =a, = k; i
(1) 3T 0 d m, : k1 for each i,
1

193



194 GENERALIZED BASES [Oct,

Our main purpose isto develop an explicit characterization of a {k, m}—
base; to this end we first consider the case where m, = 0 for each ij i.e,,
a [k, 0}-base.

LEMMA, The sequence {ri}:o is a {k,0}-base for the interval (0,S)
if and only if

0
2) r, = Z kiri for each n.
n+1
Proof, If (2) does not hold and
r > X > kr, ,
it
n+i

for some n, it is easily seen that x cannot be expressed in the form (1).

Assume that (2) holds and let x be in (0,S), the conclusion being trivial

for x = 0. Let i(1) be the least positive integer such that ri(l) =x, and
choose 2y 1) to be the greatest integer such that 2y it = ki (1) and ay (1)ri (1)
= X,
i 2y (1)ri ) < x, we continue inductively:
Let i(n) be the least positive integer such that
n-1
(3) ri(n) =X - Zai(p)ri(p) and i(m) > i@ -1) ;
p=t
- 7 <
Choose a; () to be the greatest integer such that a; ) _ki () and
n-1
@ i = 2 i) i)
p=1

In case equality does not hold in (4) for any n, we assert that
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)
p=1

Suppose, to the contrary, that for some positive ¢

%)) ~

X

n
Zai(p)ri(p) = x - €, foreach n

p=1
If *in) < € it follows that
n~-i
©) @iy + Ve = X = 2 24T -
p=t
By the choice of ai(n) this implies that a; () = ki (n); furthermore, (6) also
yields
n
T+ - Yiw) T * 2. %oTip)
p=1
so that i(n+ 1) = i(n) + 1. Hence,
© n-i -
= . . kr = .
@ Yt = 2 te)ie pp = ¥
p=1 p=t p=i(n)
Applying (2) to (7) we see that
n-1
® Tt = X7 20t i) -

p=t
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By the choice of i(n), (8) implies that i(n) -1 = i(n - 1), so that (8) can be

written as
n-2
@inegy * Drygy = XD % o) ip)
p=t
whence a, Thus it is readily seen that for every n, i(n) =n

= Kk, .
i(n-1) i(n-1)
and 2 ) = kn’ which contradicts x < S; this establishes (5) and completes
the proof,

REMARK, From this Lemma the following is clear:

If {r;}7 isa {k,0}-base for [0,S) and N is apositive integer, then {ri}WN

isa {k, 0}§—base for the interval

)

Theorem 1, The sequence {r;j}7 isa {k,m}-base for (-S*,S) if and
only if

[ee]
-
9) r, = L (ki + mi)ri for each n .
i=n+1

Proof, If (9) does not hold and

[=e]
.+ m.)r.
r,> x> Z (k1 Inl)r1 ,
n+i

it follows easily from the Lemma that x - S* 1is in (-S*,S) but x - S* cannot
be expressed as in (1).
To show the sufficiency of (9) we first consider the case where S* isfin-

ite. Let x bein (-S*,S8). By the Lemma, (9) guarantees a sequence {aj}y
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such that

=]
* .
X+ 8 = Zairi, and 0 = ai = ki+mi for each i .
1
Letting bi =3 -m;, we have

0
= p— << < ]
b:4 Zbiri R and m, = bi = ki for each i,
1

The case in which S is finite is proved similarly. If both S*and S
are infinite it follows immediately from the Lemma that every non-negative x

can be expressed as

where 0 = a, = ki’ and every negative x can be so expressed with -m, = a;
=0,

We now wishto establish conditions under which the representations inthe
form (1) are unique., Since the common decimal expansion is not unique, and
this is the special case where r; = 10_1, m, = 0, and ki =9, we cannot
hope for total uniqueness in any non-trivial case, Therefore we adopt a con-
vention similar tothat used in identifying the decimal .0999--- with ,1000---,
viz, , we disallow a representation in which a; = ki for every i greaterthan
some n, Note that in the proof of the Lemma such representations were not
necessary. (This is also the reason that we did not consider the closed inter-
val [0,S] even when S was finite,

Theorem 2. The sequence {rj}; yieldsexactlyone {k,m}-base repre-

sentation of each x in (-S*,S) if and only if

]
(10) r, = Z (ki + mi)ri for each n,
i=n+1
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Proof, The sufficiency of (10) is fairly straightforward, Conversely, it

is easily seen that for unique representation it is necessary that S° (and S)
be finite, Suppose that S* is finite and {ri};o satisfies (9) but not (10), Then

there exists an integer n and a number X such that

0
r X (k1 ml)r1
n+i

Using the construction in the proof of the Lemma, we get a sequence { ai}:o

satisfying

i'i

and 0 = a; = ki + m,; moreover, since r, <% at least one of ay,°-- 2

is non-zero, Taking bi =a; -m;, we have

[ee]
(11) x -8 = Z:biri , where -m; = bi = ki s
1

and for some i = n, bi * -,
) . 0 .
On the other hand {ri}n ., isa {k+m,0} +,"base for the interval

[~ ]

[0,2 (& + mi)ri> ,

n+1

by the Remark followingthe Lemma, This yields a second {k, m}-base repre-
sentation: x - s =21 ar, , where d, = -m, for all i =n,

COROLLARY. The sequence {r;}; yields aunique {k, m}-base repre-
sentation of each x in (-S* S) if and only if
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r o= 8+ s*)/HiZ1 (L +k +m) foreach n,

Proof, This is straightforward induction using Theorem 2,

The foregoing theory canbe used to consider representations of real num-
bers in which the base sequence {ri}:o takes on both positive and negative
values, Let A and B be disjoint sets whose union is the setof positive inte-
gers, and let C A and CB denote their respective characteristic functions,
We shall use

C, (i)
. B
(i) r,
as the base sequence.
Theorem 3, If {ql}‘;o is a positive integer sequence, then
C,L@)
B
(-1) ry
1

is a {q, 0} -base for the interval

i€B icA

(‘ Z 9Ty » Z qiri)

if and only if

(12) r, = Z qiri for each n,
n+i

Proof, Let ki = C A(i)qi and m, = CB(i)qi’ so that ki +m, = q,
- - oF 1 .

Z; ATy = S, and Z pair; ST Thus by Theorem 1, (12) is equivalent
to {ri}‘f being a {k, m} -base for (-8*,8), If (12) holds and x is in (-S*,S),

then

[~e)
X = Z biri , Where —CB(i)qi = bi = CA(i)qi .
1
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Taking a; = (-1) bi’ we have
(2]
Ch) ]
B,
(13) Zai [(—1) ry and 0 = 2 = ¢ .
1

The converse is proved similarly.
REMARK, It is clear that the representations in (13) are unique if and
only if equality holds in (12) for each n.

A related problem is that of expressing a given number x in the form

fee]

(14) X = Zeiri s where € = 1 or -1 .,

1

The following solution is proved using Theorem 1,
PROPOSITION, If

(=] o0
r, = E T for each n, and |x| s§ r;,
n+i 1

then x can be expressed in the form (14),

The special case of Theorem 1 in which ki =1 and nii = 0, forall i,
is apparently an old result first proved by Kakeya [7] (cf. [2]). Generalizations
of the n-scale (radix n) representation of positive integers which are anal-
ogous to the theory presented here have béen developed by Alder [1] and Brown
[3-5]
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ON A PARTIAL DIFFERENCE EQUATION OF L. CARLITZ

W. Jentsch, University of Halle/S., Germany
Translated by: P.F. Byrd and Monika Aumann, San Jose State College, San Jose, Calif.

SUMMARY

Eine von L, CARLITZ behandelte partielle Differenzengleichung zweiter
Ordnung, die mit den FIBONACCI-Zahlen in Beziehung steht, wird mit Hilfe
einer algebraisch begriindeten, zweidimensionalen Operatorenrechnung gelost.

Die sich hierbeiergebende Losung ist allgemeiner als diejenigevon L. CARLITZ,

In an article [1] by L. Carlitz, a solution of the equation

(1) Umn - Ym-y;n - Umn-1 - Um-2,n t 3Um-yn-y - Ump-2 = 0
2, integral)

v

(m,n

was given with the aid of a power series expansion related to the Fibonacci
numbers. Although the solution contains only three arbitrary constants (viz.,
Uy, Ugy, and uyy), it is called a "general solution" — a terminology which
appears justified only if, besides equation (1), the following secondary condi-

tions, not mentioned in [1], are also imposed:

@) Uy = Upy = Uy + 3y = 0,

(3) Up - Ypn-y - Yp-p = 0 for n =2,

(4) Umo = Um-1,0 = Um-20 = 0 for m = 2,
(5) U - Up - Ugnp-g * 3uo,n—1 - Up-y = 0 for n = 2, .
(6)  umg - Um-1,1 - Ymp - Ym-2,1 T 3Um-10 = 0 for m = 2.,

The conclusion (1.4) from [1] is valid only under the assumptions (2) to (6).
From (2), uy is fixed, and from (3) to (6) the initial values uy,, uy, and
Upyo s Uy are uniquely determined for n,m = 2. The general solution of (3),

for instance, is

202
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(7) U = Uy Fp + upFp_y for n = 0,
where n n
® T, = -0—10—!—:—% with o = %(1 +NB), B = %(1 - N3) (o integral),

One can easily verify that the solution (5.4) given by L. Carlitz in [1] reduces
to equation (7) for m = 0,

The general solution of (1) without secondary conditions thus contains two
pairs of arbitrary functions of only one of the two integral variables m and n.
We now wish to determine this solution with the aid of the '"two-dimensional,
discrete operational calculus' developed in [2].

According to the fundamental idea of J, Mikusinski (see perhaps [ 3]), the

usual addition and the two dimensional Cauchy product

m,n

(9) amn * Pmn = z a'uvbm~u,n—v as multiplication

pav =0

areintroducedin the setof complex-valued functions of two nonnegative integral
variables, and the quotient field Q, belonging to the integral domain D, aris-
ing from this means is considered, In order to conform with the relations in

[2], we make an index shift in (1) and write

(1) D@mn) = Um+z,n+z — Umtin+2 ~ Umto,ntt ~ Umon+e + 3Um+ints

- Um+en = 0 (mn = 0) .

After application of the difference theorem from [ 2],

lk—l k-x kﬁ—1 ¢
Um+k,n+f = qulumn -q ugn - p 2 afhupg, +
K=0 =0
k-1 g-1 ,
T = pk_[{qﬁ”‘xu N
K= )\:0 K-A

u__€D,;u u.
(mn 2> "m)’ “kn

operators in Q,), one obtains the operator representation

initial values; k,{ natural numbers;p,qinverses to: shift



204 ON A PARTIAL DIFFERENCE EQUATION [Oct.

(10) u = h(pyq’m,n)
§(.9)

El

where the numerator is

h = Olnh1 + 'Ymhz + Bnhs + émh4 + Q/Oh5 + aihG + Bohg + B1h8 ,

as one can easily verify with the polynomials

hj(p7q) p2q2 - qu - qu + 3pq - p2 ’ h2 = hi(q3p) ’
hy(p,q) = pa® - pq - p, hy = hy(q,p), h; =-p’q® + pg® + p%g - 3pq,
hg(®,q) =-p%q + pa, h; = hg@,p), hy = -pg

and the coefficients, the given initial values,

(11) o T Wn, Ym = Umg,> Bn = Wn s Om = Umy with

= Yo, By =Yy o = Op, By = &y

The denominator, a polynomial of degree 4 in p,q is

g(P,a) = p%q® - pa® - p’g + 3pq - p? - @ = g(p,q) g,(p,q)
with
g, =pd -op-pq and g, = pq-p6p-od ,

where « and B have the values given in (8). As can be immediately proved,

hj D
—_— €
gp,a) ¢

holds for i = 1,---,8; and these terms are indeed functions of the Fibonacci

numbers Fk . If considerations for the operator

p%q?
g(p,q)

are indicated, the calculation for the remaining members of u then follows

mn
easily, If one conceives
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pq?
g(p,q)

as a (proper fractional) rational operator of p alone, then there results, by

decomposition into partial fractions,

plq? _ 1 apq  _ _Bpq ) q
g(p,q) a - B\8gp,9) gyp,9)/ q-1 ’

and on account of the obvious relations
pq _(min\) mn pa _({mtm\ nm
£,0,9) ( m )"‘ P Ee,9 ( m )"‘ g

and of the meaning of q/(q - 1) as a "partial summation operator"

it follows that

n
p¥q® _ 1 m+k m+1pk _ kK pmit
g(p,Q)_oz—Bi)(m)[a p - apmil]

from which, on account of akﬁk = (—1)k (k integral), of definition (8), of the
symmetry of g(p,q), and with the notation Gy, for (p?q?)/g, there finally

results
(12) p'q? = G = Gpm = ; (—l)k (m+k) F k =
mn : 1-k ~
g(p.q) o Kk m+
m
k}] (—1)k<n;k)Fn+1_k for mn = 0,
=0

With the aid of (12) the operators hj/g (i=1,---,8) can now be immediately
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represented as functions from D,. In order to simplify the notation, we define:
Gmn = 0 in case an index is negative; according to (12)this is alsoachieved by
stipulating the following:
(13) éoakrso,(i):O for ¢ <0 .
(With this agreement, (1/p?) Gy, = Gm-2,ns for example, holds.for.all. m,n
=0.)
Therewith we obtain, after easy calculation from (10),
(14) ump=on (L +Gm_ypn )+ 7m- (1 + Gy n-o)

+Bn* (Gm-1,n - Gm-1,n~1 =~ Gm-1,n-2)

+6m* Gmn-1 - Gm-1,n-1 - Gm-2,n~1) = ?Gmn

+ (g = B)Gm-1,n * (@ - 2)Gm -1 = Bag - By — @1 + B1)Gm-1,n-1

for all m,n = 0,

(In this the multiplication symbol means multiplication in D, and the summand

1 is the identity element of D,.) If we finally use

m+n-1
Gm—i,n - Gm“ian"i = (—1)n< n )Fm—n
and correspondingly
m+n-1
Gmn-1 - Gm-1,n-1 = (-l)m( m )Fn—m for mm = 0 ,

and carry out the multiplication in D, then after simple transformations for

m,n = 0 we obtain from (14)
n m
y = + :
(15) umn % * ym * Z Gm—Z,van— v Gu,n—wm—#
V =0 M:O

n m
wvim+y-13)_
* Z -1) ( v )Fm—z/ﬁn—v - Z Gm—1, =Py
V=0 V=0

m m
g fn+u-1 < _
+ Z (-1) ( o ) Fn—uom—u Z GM—Z,n~15m—u
H=0 =0

- 0™ (mn-: n) Fp-me1 ~ Bo(-1)" (m +nn i 1) Fr-n

U CRATE el i 1) F - (20 + B)G

m m-1,n-1
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We verify that (15) satisfies equation (1'), however, we only indicate the calcu-
lation: to begin with, D(y,) = -on; holds and D(Ypy) = ~Ypmes -

Furthermore,

n n+g
D(yio Gm~2,va’n-v> = Viz apte-pDGmgp-2) + n-a ., [Gmo _Gm—i,o_Gm—z,o]

1 for

m=90 ,
0 for m » ¢

for, it is true that Gpyy -~ Gm-10 = Gm-2p = {

GIIH - Gm_1,1 - GmO - Gm__z’j + 3Gm-—1,0 = { forall m = 0
and

D(Gm—z,v—z) = ( for m = ()’ y = 2 ,

as one recognizes after some calculation with the aid of (12} and Fy = (—l)kHF_k

(k integral} or as one can read off directly from the fact that Gn, in Dy is

inverse to
g 1-1-1 00
—~—=—=1—1—%-}-—+—3§-i 13 0 9
pig? P q? P p? 10 0 ees
0 0 oo
by(g). e o e

Analogously one completes the verification. By appropriate calculation one rec-
ognizes that the initial conditions (11) are satisfied by (15). Since 6, = ¢y, and
because of definition (13) and of the validity of the relation (3) for F,, there

results for m = 0, n = 0, for instance,
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RECURRING SEQUENCES

Review of Book by Dov Jarden
By Brother Alfred Brousseau

For some time the volume, Recurring Sequences, by Dov Jarden has been

unavailable, but now a printing has been made of a revised version, The new
book contains articles published by the author on Fibonacci rumbers and fe—
lated matters in Riveon Lematematika and other publications. A number of
these articles were originally in Hebrew and hence unavailable to the general
reading public., This volume now enablesthe reader tobecome acquainted with
this extensive material (some thirty articles) in convenient form,

In addition, there is a list of Fibonacci and Lucas numbers as well as
their known factorizations up to the 385th number in each case, Many new re-
sults in this section are the work of John Brillhart of the University of San
Francisco and the University of California,

There is likewise, a Fibonacci bibliography which has been extended to
include articles to the year 1962,

This valuable reference for Fibonacci fanciers is now available through
the Fibonaceci Association for the price of $6.00. All requests for the volume
should be sent to Brother Alfred Brousseau, Managing Editor, St, Mary's
College, Calif, , 94575,

L 2 b 2 4

The Fibonacci Association invites Educational Institutions to apply for Academic
Membership in the Association, The minimum subscriptionfee is $25annually,
(Academic Members will receive two copies of each issue and will have their

names listed in the Journal,
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ENUMERATION OF PARTITIONS SUBJECT TO LIMITATIONS ON SIZE OF MEMBERS

Daniel C. Fielder, Georgia Institute of Technology, Atlanta, Georgia

1, INTRODUCTION

In a previous work [1], it was shown that‘'the partition enumeration*

Plp| =n+p-1) is given by

n-p+2 n-p+2-w,
1y Palpl =n+p-1) =[—~—-]+Z[ ‘] p#1,

2 i=1 2

(1a) Palpl = n+p-1) =1 p=1

The w; are the sums of each partition in the set of partitions described by
PV(=3,=n - p|=1,=< [(n-p)/3]=3,=p). It was stated in [1] that the summa-
tion term of (1) is zero for those values of p and (n - p) for which PV(=3,
Sn—plzl,ﬁ [(n—p)/3]:123,5p) does not exist, (See the footnote below for a
brief description of nomenclature.) ¥or n-p < 3 and/or p = 2, w; = Q.
One raison d'étre for (1) is the adaptability of Wi to digital computation,
P(nlpf =n - p + 1) is a basic enumeration form which is extremely useful
in evaluating more restrictive enumerations [2]. PV(n|p|=n - p + 1) shares
this versatility in that sets of many other partitiontypes can be constructed by
operations on the members of the partitions of the basic set, When PV(nI p]Sn
- p+ 1) is under consideration, it is convenient to arrange the p members of

a partition so that

IA

(2) ap = 8py = apg = c° a4 = 8y ,

P(n}p|=q) isthe enumeration of the partitionsof n into exactly p members,
no member of which is greater than q. The appended notation PV(n|p|= q)
is the actual set of such partitions, The use of = and/or = symbols withn,
p,or q defines lower limits and/or upper limits of the quantity modified, Note
that [ ] (except for obvious reference use) is used with realnumbers toindicate
the greatest integer less than or equal to the number bracketed.

209
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where 2 is an individual partition member, The arrangement of (2) leads to

an initial partition of PV(nl p] =n-p+1) as

[ | g
@) T 1T T T T T~ Tila-p+1
One method [ 3] of generating successive partitions of PV(nI p] =n - p + 1) starts
with (3) and successively increases a, by 1 and decreases a, by 1 until (2)
is just barely satisfied, New members, ap, Ay
exhaustively, and the increase a,—decrease a, process is repeated.

«+-,8,,8; are chosen

Based on the above brief background, it is possible to consider the fol-

lowing enumeration extensions to (1):

No member less than s, where s is a positive integer

@) P(nlp]zs) * suchthat s=n-p+1,

No member greater than r where r is a positive integer

®) P(n}p]Sr) * suchthat r=n-p+1,

(c) P(nlpl =g,<r). No member less than s, or greater than r.

2. ENUMERATION OF P(n|p|=s)

There exists one member of a partition in the set PV(n] p] =8) which is
at least as large as any member of any partition in the set, Let this member
be g which can readily be found as
(4) ge = n-s(p-1) .

This implies that for any a,,

(5) n-ps+s =a =s ,

from which a necessary condition of P(n|pl=s) is seen to be

(6) (%) = s .
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The initial partition of PV(n|p) =g) is
(7) S, S, S,--o,S,H—S(p - 1)

If s -1 is subtracted from each member of (7), the result is a modified ini-

tial partition
(8) 1,1, 1,°°°,1, n -sp+ 1,

The complete enumeration for a partition set starting with (8) is, according to
(1), P(n’lpl =n' - p + 1), where

(9) n' = n-sp+p.

Because the a; and a, members of the initial partitions (7) and (8) differ by
the same integer (n - sp) and because each aj of each partition developed
from (7) is (s - 1) greater than the corresponding aj of the corresponding
partitioh developed from (8), there are exactly as many partitions developable
from the start of (7) as there are from (8). Hence, P(nlpl =s) appears in the

form of (1) as
(10) P@m|p|=s) = P@'pl=n' - p + 1) .

As a simple example, consider P(15| 6! =2), For this case, n = 15, andn'=
9. It is seen below that P(15|6/=2) = P(9l6|=4) = 3.

PV(15/6|=2) PV(9] 6| =4)

2,2,2,2,2,5 1,1,1,1,1,4
2,2,2,2,3,4 1,1,1,1,2,3
2,2,2,3,3,3 1,1,1,2,2,2

3. ENUMERATION OF P(a|p|=r)

The partitions of the set PV(=3,<n - p|=1,= [(n - p)/3] |=3=p) canbe
arrangedin columns according tothe number of members in a partition, This

is illustrated in Table 1 for n = 16, p = 5.
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i 1 2 3
0 3 3,3 3,3,
4 3,4 3,3,4
5 3,5 3,3,5
PV(=3,=11|=1,=3|=3,=5) 44 3,44
4,5
5,5
Table 1

The sum of members of eachpartition is equal to a w; for use in (1). The use
of the index i can be extended somewhat to allow it to designate the column
from which the summed partition was taken, Although wy might stand for any
of several sums, no loss in generality results thereby since all of these sums
must eventually be considered. To account for the non-summation term in (1),
a zeroth column with a lone zero entry is added to indicate that an added wy =

0. Table 2 shows values of w; for n =16, p = 5.

i 0 1 2 3
0 3 6 9
4 7 10
8 11
8 11
9
10

Table 2 Values of w,

If, as the wi's are successively selected for enumerating P@|p/=n -p
+ 1) in (1), a simultaneous generation of the partitions in the set PV(n] p| =n -
p+ 1) is made (by the increase a,—decrease a; method, for example) there
would result subsets of PV(n]p] =n-p+1) each having [(n~p+2 - wi)/ 2]
partitions of n, For i = 0, the subset can easily be constructed., It is seen
that the a, and a; members of the initial partition must necessarily be one,

For i = 1, the a, and a; members of the initial partition assume the least
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possible value two since i = 0 has accounted for the value one., It can be
argued in this fashion that the a, and a; members of an initial partition in a
subset must be (i +1). The a, member of the initial partition of the subset
would not generally be known in advance, However, this member is certainly
not less than any member of any partition in the subset. Set d; be the a,
member of the initial partition corresponding to the particular W If by are
the number of partitions in the subset, the bracketed terms of (1) limit the

possibilities of b; to either

(11) n-p+1-w=2b-1 ,
or
(11a) n—p+1—wi=2bi .

The arrangement of the subset of b; partitions is

4y -1 B ay
X X cee i+l i+l dj <= (Initial Partition)
(12) % . e
partitions
X X see i+l ith; dj-bjtl

From (12), it can be deduced that either

(13) a = 2, - 141
or
(13a) d = 2b, + i

Comparison of (13) with (11) and (13a) with (11a) yields the desired

(14) di = m-p+1-w+i
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An illustration is given in Table 3 for construction of PV(16|5I512), consistent
with the w, from PV(=3,= 11|=1,=3|=3,=5) as arranged in Tables 1 and 2.

i 0 1 2 3

1,1,1,1,1,12  1,1,2,2,10 1,1,3,3,8 1,1,4,4,6
1,1,1,1,2,11  1,1,2,3, 9 1,1,3,4,7 1,1,4,4,5
1,1,1,1,3,10  1,1,2,4, 8 1,1,3,5,6

1,1,1,1,4, 9  1,1,2,5, 7

1,1,1,1,5, 8  1,1,2,6, 6
1,1,1,1,6, 7

1,2,2,2, 9 1,2,3,3,7 1,2,4,4,5
1,2,2,3, 8 1,2,3,4,6
1,2,2,4, 7 1,2,3,5,5
PV(16|5|=12) 1,2,2,5, 6
2,2,2,2, 8 1,3,3,3,6 1,3,4,4,4
2,2,2,3, 7 1,3,3,4,5
2,2,2,4, 6
2,2,2,5, 5
2,2,3,3,6 2,2,4,4,4
2,2,3,4,5
2,3,3,3,5
2,3,3,4,4
3,3,3,3,4

Table 3 PV(16|5|=12)

Table 4 shows b; corresponding to w; of Table 1 for P(16|5|=12) = Zbi .
i=0

i 0 1 2 3
6 5 3 2
4 3 i
4 2 1
by 2 1
2
1

Table 4 %b P(16]5|=12) = 37
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Let the b, for P(/p|=r) be b;,. It follows that for P(nlp|=r) each
bjr can have no more (and will possibly have less) than b; partitions. The
non-negative integer by which bj,. is less than by can be observed by com-
paring r with the entries in the a; column of (12). This leads immediately

to

n-p+2 'fn—p+2—wi
(15) P(alp|=r) = — -ao+§:( — - ai) = 2 bir ,
1=1

1 { 2 i=0
where
0 (r=d) ,
(16) oy = di—r (di> rz(di—bi+1)) ,
n-p+2- w;
B E— (r < (di - bi + 1)).

Table 5 serves to illustrate (15) for n =16, p =5, r = T,

i 0 1 2 3

1 2
1
1
1

O D W N

Table 5 ) by, = P(16]5|=7) = 23
i

4, ENUMERATION OF P(n|p|=s,=r)

The combination of the previous two methods leads quickly tothe desired
enumeration, Reference to (10) reveals a P(n'l p] =n' - p + 1) for whichevery
member of each partition of PV(n']p] =n'-p+1) is (s - 1) less than thecor-
responding member of the appropriate counterpart in PV(nl pl =g), If the de-

sired r is depressed to r' where
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(17) =1 - (s - 1)

?

the enumeration P(n,]plngir) is equal to P(n']pl =rf) .,
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DID YOU KNOW?

Prof, D. E. Knuth of California Institute of Technology is working ona 3~
volume book, The Analysis of Algorithms, which has 39 exercises at the end
of the section which introduces the FibonacciSequence, However, the Fibonacci
Sequence occurs in many different places, both as an operational tool, or to
serve as examples of good sequences and also bad sequences. He reports that
there are at least 12 different algorithms directly or indirectly connected with
the Fibonacci Sequence. In the age of computers, the Fibonacci Sequence is
coming of age in many ways., This book will be a most welcome addition to the

growing list of Fibonacci related books and articles,

*

Prof, C. T. Long of Washington State University has written a verynice
book, Elementary Introduction to Number Theory, 1965, Heath, Boston, It con-
tains a good discussion of the Fibonacci Numbers in Chapter One and several

Fibonaceci Problems in Chapters I and II,

* Kk Kk kK
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ON THE DIVISIBILITY PROPERTIES OF FIBONACCI NUMBERS

John H. Halton, University of Colorado, Boulder, Colorado

1. INTRODUCTION

The Fibonacci sequence is defined by the recurrence relation

Fpeo = Fneg + Fp s

together with the particular values

@)

numbers which are divisible by powers of a given integer,

remainders, when the Fibonacci numbers are divided by a given integer.

\

whence

i

Fy
Fy

1, F =2, F; =3, Fy =5, Fg = 8 = 25, F; = 13
21 =37, Fyg=234=2:17, Fjy = 55 =511, == ;

I

and, in particular,

Fjp=144=2%-32, F, =377 =13-29, Fy5=610=2-5-61,
Fyp=2584=23.17.19, Fy = 6765 = 3+5°11-41,

Fy, = 10946 = 2+ 13- 421, Ty, = 46368 = 25.32.7.23 ,

Fys = 75025 = 52+ 3001, Fpg = 317811 = 3-13-29-281,

Fjp = 832040 = 23+ 51131+ 61, Fg5 = 9227465 = 5° 13- 141961 ,

Fgy = 14930352 = 24. 33.17-19-107, Fy, = 267914296=23.13-29-211. 421

Fqo = 190392490709135 = 5-11-13-29-71-911-141961 .

In this paper, we shall be concerned with the sub-sequence of Fibonacci
We shall also be
interested in the associated problem of the periodic nature of the sequence of

217
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The Fibonacci sequence is defined for all integer values of the index n,
However, the well=known identity
151

(3) Fo= (D7F,

shows that negative indices add nothing to the divisibility properties of the
Fibonacci numbers. We shall consequently simplify our discussion, without
loss of generality, by imposing the restriction that n = 0,

Of the many papers dealing with our problem, perhaps the most useful
are those of Carmichael [l , Robinson [5], Vinson [6] , and Wall [7]; and the
reader can find many additional references in these, Most of the other papers
in the field give either less complete results, or give them for more general
sequences,

We shall make use, in what follows, of the well-known identities:*

=\ n E AR
(4) Fn=w~%{}(1;\j5) ~<1'2\/5)} ;

[3n-1)]
Nty n s
(5) Fn=<—2—) E 5%, if n=1 ;
2s + 1
§=0
-1
(6) F2 - Fp-1Fpey = 1" ;
k
7) F = N (k FrpEhp it k=0 ;
( kntr ~ \ n” n-i r+h’ =7
h=0 "
and since Fj = 0,
k

® P = FL D

h=1

*See, for example, equations (6), (3), (5), (67), and (34), in my earlier,paper
[3]. Equation (5) above follows from (4) by the binomial theorem.

k
Fh—i Fk-h F
h n n-i-h
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Also
k+1 k k
(9) = + ,
h h h -1
and
p
(10) p divides if p isprimeand 0 <s <p ,
s

and Fermat's theorem, that
11 mP™ =1 (modp) if p is prime and (m,p) = 1

As is customary, we use (A,B,C,°°°) to represent the greatest com-
mon factor of integers A,B,C," -+, and [A,B,C,*°"° ] to represent their least

common multiple, We have

(12) i ® = (m/p) (mod p)

where p is an odd prime and (m/p) denotes the Legendre index, which is +1
if (m,p) = 1, and 0 otherwise,

Each writer seems to have invented his own notation, I shall adopt the
following, which comes closest to that of Robinson in [5].

Definition 1, The least positive index « such that Fa is divisible by

m" (that is, F_ = 0 (mod m%) ‘will be written
(13) o(m,n) = om™,1) = o(mb) .

This is variously called the "rank of apparition” (why not "appearance''?) of

m®, or the '"restricted period" of the Fibonacci sequence modulo mn,

Definition 2, The least positive index g such that both FM = 0 and
Futq =1 (mod m™) will be written
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(14) p(m,n) = p(m”,1) = p(m?

This notation follows Carmichael [2], whonamed p the "characteristic number"

of the Fibonaceci sequence modulo m™, It is also called the "period' of the se-

quence modulo . mi,

Definition 3, I shall write

(15) p(m,n)/e(m,n) = B(m,n) = p(m,1) = B(m")

Definition 4, The greatest integer v such that Fa is divisible by

(m, n)

m” will be written

(16) p(m,n) = v(ml,1) = p(mb)
It is then clear that
17) a(m,n) = g(m,n + 1) = .00 = g(m,r(m,n)) < a@m,pv(m,n) + 1)
or, equivalently,
(18) v (m,v(m,n)) = v(m,n)
Definition 5, I shall call the sequence
@9 Fom,y Tom, > Fam,n "

the divisibility sequence of m,

2, PRELIMINARIES

We shall need a number of preliminary results, whose proofs will be out-
lined for completeness.

Lemma 1, Fn’ F and Fn+2 are always pairwise prime,

- n+i’
[1f £ divides two of the numbers, it must divide the third, by (1). Thus,,by
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induction along the sequence, using (1), we<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>