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1. INTRODUCTION 
Let |a, I denote a sequence of natural numbers which satisfies the dif-

ference equation \+o ~ \+i + ak ^ o r k = 1,2, • '• •. ^ is easy to prove by 
induction that a

x
 + a

2
 + " ' + a

n
 = a

n+2 " a2 f o r n = 1,2 ?«• •; we use this fact 
in defining 

k=l k=0 
(1) P(x) = I I (1 + x ~ l = V A(k)xk 

and 

an+2 a2 n - \ *™ * 

^n«=n(1+^)= E An (2) P n « = J I II,+ x - j = ^ A^(k)^ 
k=l k=0 

It follows from these definitions that A(k) enumerates the number of r ep re -
sentations 

(3) a i t + ai2 + • • •+ a .̂ = k with 0 < i < • • • < i. f 

and that A (k) enumerates the number of these representations with i. < n. 
Hoggatt and Basin [9] found recurrence formulae satisfied by {A (k)| 

and {A(k) J when | a I is the Fibonacci sequence; in Section 2 we give general -
izations of these results,, 

Hoggatt and King [lo] defined a complete sequence of natural numbers 
ia I as one for which A(n) > 0 for n = 1,2,«-- and found that (i) JF I is 
complete, (ii) JF I with any term deleted is complete, and (iii) | F I with any 
two terms deleted is not complete. Brown [ l ] gave a simple necessary and 
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290 REPRESENTATIONS OF N AS A SUM OF [Dec. 

sufficient condition for completeness of an arbitrary sequence of natural num-
bers and showed that the Fibonacci sequence is characterized by properties (ii) 
and (iii) already mentioned. Zeckendorf [l 3] showed that if F1 is deleted 
from the Fibonacci sequence, then the resulting sequence has the property that 
every natural number has exactly one representation as a sum of elements from 
this sequence whose subscripts differ by at least two. Brown [2] has given an 
exposition of this paper and Daykin [4] showed that the Fibonacci sequence is 
the only sequence with the properties mentioned in Zeckendorf s Theorem. 
More on the subject of Zeckendorf s Theorem can be found in another excellent 
paper by Brown [3] . Ferns [5] , Lafer [ l l ] , and Lafer and Long [12] have 
discussed various aspects of the problem of representing numbers as sums of 
Fibonacci numbers. Graham [6] has investigated completeness properties of 
jF + (-1) ^ and proved that every sufficiently large number is a sum of d is -
tinct elements of this sequence even after any finite subset has been deleted. 

In Section 3 we take up the problem of determining the magnitude of A(n) 
when la 1 is the Fibonacci sequence; in this case we write A(n) = R(n). 
Hoggatt [7] proposed that it be shown that R(F2 - 1) = n and that R(N) > n 
if N > F 2 n - 1. We will show that 

and that F < N < F J L l » l implies n - n+1 ^ 

[ H 1 ] ^ ROT < 2 F(n+1) /2 

if n is odd and 

J-n^_2j < R(N) < F(n+4>/2 

if n is even. 

In Section 4 we investigate the numbers of representations of k as a sum 
of distinct Fibonacci numbers, writing a = F . and T(n) for A(n) in this 
case. The behavior of the function T(n) is somewhat different from that of 
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R(n) of Section 3. For example, we show that there exist infinitely many n 
for which T(n) = k for a fixed k5 and in particular we find the solution sets • 
for each of the equations T(n) = 1, T(n) = 2, T(n) = 3. By definition T(n) 
< R(n) so that T(N) < n - 1 if N < F n + 1 - 1. We show that 

T<F„+1> - [ 4 - 1 ] 
and T ( F n + 1 + 1) = [n /2 ] for n = 3 , 4 , " • . 

Hoggatt [8] proposed that one show that M(n), the number of natural 
numbers less than n which cannot be expressed as a sum of distinct Lucas 
numbers 1^(1^ = 1, L2 = 3, L n + 2 = L n + 1 + LQ) has the property M(Ln) = 
F -; also, he asked for a formula for M(n). In Section 5, we give a solution 
to the same question involving any incomplete sequence satisfying a « = a -
+ a with a1 < a^ < • • • . In a paper now in preparation we have shown that 
the only complete sequences of natural numbers which satisfy the Fibonacci r e -
currence are those with initial terms (i) a~ = a« = 1, (ii) a- = 1, a^ = 2, 
or (iii) a- = 2, a,, = 1. 

2. RECURRENCE RELATIONS 

See Section 1 for definitions and notation. 

Lemma 1. A (k) = A
n ( a n + 2 " a2 •" k^ f o r k = °» 1 >""> n -

Proof. Using the product notation for P we see 

The symmetric property of A now follows on equating coefficients of the 
powers of x in (4). 

Lemma 2. 
(a) An+1(k) = An(k) if 0 < k < a n + 1 - 1. 
(b) An+1(k) = An(k) + An(k - an + 1) if a n + 1 < k < an + 2 - ^ 
(c) An+1(k) = An(k - an + 1) if an + 2 - a2 + 1 < k < a n + 3 - v 

Proof. Each of these statements is obtained by equating coefficients of 
x in the identity 
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(5) P„+1 (*) = (l + x n + 1 j PQ(X) n+r 

Lemma 3. 

(a) An+1(k) = A(k) if 0 4 k 4 an + 2 - 1. 
(b) An+1(k) = A(an + 2 - a2 - k) + A(k - an + 1) if an + 1 4 k 4 an + 2 - a2. 
(c) An+1(k) = A(an + 3 - a2 - k) if an + 2 - a2 + 1 4 k 4 a ^ - v 

Proof, (a) This follows by induction on part (a) of Lemma 2. 
(c) Using Lemma 1 we have A +1(k) = A + 1 (a + 3 - a^ - k) and assum-

ing an + 2 - a2 + 1 < k < a n + 3 - a2 we have 0 4 aQ+3 - a£ - k 4 aQ+1 - 1, so 
that we can apply (a) of this lemma to get A + 1 (a „ - su - k) = A(a « - a2 - k) 
for k in the range under consideration and this is (c). 

(b) Statement (b) of Lemma 2 asserts A _ (k) = A (k) + A (k - a ..) for 
A 1 4 k 4 a + 2 - a2; but by (c) of this lemma wehave A (k) = A(a ? • - a2 - k) 
for k in the range under consideration. Also, if a - 4 k 4 a 2 - a . we 
have 0 4 k - a + 1 - a2? so by (a) of this lemma we have A (k - a -) = A(k 
" an+i) ' Combining these results gives part b. 

Lemma 4. 
(a) A(k) = A(an+2 - a 2 - k) + A(k - an + 1) if a n + 1 < k < an + 2 - a2 and 

n = 2 , 3 , " - . 
(b) A(k) = A(an + 3 - a2 - k) if an + 2 - a£ + 1 < k < \ + 2 - 1 and n = 

2 , 3 , - - - . 
(c) A(an+2 - a2 + k) = A(an - a2 + k) if 1 < k < a2 - 1. 

(Note that in (b) and (c) the range of k is the empty set unless a 2 > 2.) 
Proof. 
(a) This is merely a combination of (a) and (b) in Lemma 3. 
(b) If a n + 2 - a 2 + l < k < a n + 2 - l ? then a n + 1 - a^ + 1 < a n + 3 - a£ - k 

- an+l ~ ±9 S 0 t h a t b y ( a ) o f L e m m a 3 > A( a
n+3 " \ ~ k ) = An+l( an+3 ~ a2 " k ^ 

By Lemma 1, A
n + i ( a

n + 3 - a2 - k) = 'A -(k) and using (a) of Lemma 3 again 
we see that A +1(k) = A(k) for k in the proposed range. 

(c) Writing k = a + 2 - a2 + j with 1 < j < a2 - 1 in (b) we get 

(6). A(an+2 - a2 + j) = A(an + 3 - a2 - aQ+2 + ^ - j) = A(an + 1 - j) ; 
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b u t an+l " ^ = an+l " a2 + ^a2 " ^ w h e r e 1 < &2 " ^ - a2 " X s o t h a t w e c a n 

use (6) to obtain 

( 7 ) A<an+1 " j ) = A < V l " a2 + <«2 " j ) ) = A<an " <a2 " »> • 

Combining (6) and (7) we obtain (c). 
Lemma 5. A(an + 1 + j) = A(an+2 - a2 - j) for 0 < j < an - a2 and n = 

2 ,3 , 

3 < a +2 " a2 s o ^ a t ^ v ^ °^ ^ e m m a ^ w e have 

Proof. For j in the range under consideration we have a , n < a , .. + 

(8) A(an+1 + j) = A(an+2 - a2 - an+1 - j) + A(an+1 + j - an+1) 

= A(an - a2 - j) + A(j) . 

But we also have a .. < a „ - a„ - j < a „ - a~ for the assumed range of 
j , so that we can apply Lemma 4 again to write 

^ A < V 2 " a2 ' j ) = A ( a n + 2 - a2 " an+2 + a2 + j ) + A ( a n + 2 " a2 ^ 
~ an+1) = A(j) + A(an - a£ - j) . 

Since the right members of (8) and (9) are the same, so are the left members. 
Using Lemmas 4 and 5 it is not hard to calculate A(k) for a given s e -

quence ja l. Of particular interest to us are the cases when | a I is the 
Fibonacci sequence, the Fibonacci sequence with the first term deleted, and 
the Lucas sequence; we write A(k) = R(k), T(k) and S(k) respectively in 
these cases. A table Is provided for each of these functions in order to i l l u s -
trate some of our results. 

3. SOME PROPERTIES OF R(k) 

In light of Lemma 4, it is natural to consider the behavior of H(k) in the 
intervals [F , F - 1] ; thus, as a matter of convenience we write 

(10) I n = {R(Fn) ,R(Fn + 1), • - - , R (F n + 1 - 1)} 
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and note that Lemma 4 implies 

(11) I n + 1 = (R(0) + R(Fn - 1), R(l) + R(Fn - 2), • • •, R(Fn - 1) + R(0)}. 

As we mentioned in the introduction, Hoggatt has proposed that one prove 
R(F2 - 1) = n and that R(k) > R(F - 1) if k > F £ - 1. This problem 
has led us to prove a result involving special values of R(k) and to find the 
maximum and minimum of R(k) in I . 

Theorem 1. 

(a) R(Fn) = [ - f 1 ] for n > 1 , 

(b) R(Fn - 1) = p ^ p ] for n > 0 , 

(c) R(F - 2) = n - 2 for n > 2 , 

(d) R(F - 3) = n - 3 for n > 4. 

Proof. We prove only (b) (the other proofs are analogous) which implies 
the first part of Hoggattfs proposal. First , we observe that (b) is true for 
small values of n by consulting Table 1. Next, suppose 

R(Ft - 1) = p * X1 for t = n and n + 1 

and take k = F ~ - 1 in (a) of Lemma 4 to obtain 

(12) R(Fn + 2 - 1) = R(0) + R(Fn - 1) = 1 + [ ' H f 1 ] 

m 
Thus, the assertion follows by induction on n. 

Theorem 2. 

*<*»> • [H*\ 
is a minimum of R(k) in I . 
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Proof. We can verify the theorem for small values of n by inspection 
in Table 1. Suppose the theorem holds for all n < N - 1. We know by Theo-
rem 1 that 

«<v • [H*\ 

so that we are assuming 

(13) PHr^l = R ( F
n ) - R( k ) for F

n - k - F
n +1 " X and n = 1,2, • • • , N - 1. 

Now suppose F N 4 k 4 F N + 1 - 1 and write n = N - 1 in (a) of Lemma 
4 to obtain 

(14) R(k) = R(F N + 1 - 1 - k) + R(k - FN) ; 

but F N 4 k 4 F N + 1 - 1 implies 0 4 F N + 1 - 1 - k 4 F^_± - 1 and 0 4 k -
F N < F N _ 1 - 1 . Suppose 

(15) F t < F N + 1 - 1 - k < F t + 1 - 1 , 

where of course F t + 1 - 1 < F N - 1 - 1 or 0 < t £ N - 2 (we are taking FQ 

0). Now 

(16) F N - F m < k + F N - F N _ t < F N - F t - 1 , 

but with 0 < t < N - 2 we must have F N _ 2 < F N - F t + 1 and F N - F t - 1 < 
F N 1 - 1 so that evidently 

<1?) FN-2 ^ k " F N S F N-1 - 1 

Using (16) and (17) along with (13) we have 

(18) [ f ] < R(k - F N ) 
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and 

(19) 1 < p T ^ l ~ R ( F N + 1 " * " k ) s i n c e t ~ ° ' 

Combining (18) and (19) in (14) gives 

(20) -« ^ [I] + ' - [H*\ 
for FAT — k — F X T | 1 - 1. Hence the t heo rem follows by induction on N. 

N N+l J 

Coro l l a ry . R(k) > R ( F 2 n - 1) = n if k > F 2 n - 1. 

Proof. We know from T h e o r e m 2 that the min imum value of R(k) in 

I 2 and I 2 .-I i s n + 1 in each of them; hence the minimum of R(k) in J 2 

U L i s n + 1. Thus, every value of R(k) in I ? 2 U I 2 ,« i s a t leas t 
n + 2 so that we can conclude by induction on n that R(k) > R ( F 2 - 1) if k 
> F 0 - 1 . 2n 

Theorem 3. The max imum of R(k) in I 2 is F 2 and the max imum 

of R(k) in I 2 n + 1 i s 2 F n + 1 for n = 1,2, • • • ; a l so , 

(21) F 3 ^ 2 F 2 < F 4 < 2 F 3 < ••• < F ^ < 2 F n + 1 < F n + 3 <• • • 

for n = 2 , 3 , - - • . 
Proof. The r e su l t in (21) follows by a s imple induction. 
The r e s u l t s concerning the maximum values of R(k) in I 2 and I 

can be ver i f ied for smal l n by us ing Table 1. Suppose these r e s u l t s hold for 

al l n ^ N; then we have by (a) of L e m m a 4, 

(22) R ( F
n + 1

 + *) = R ( F
n - t - 1) + R(t) for 0 < t < F n - 1 . 

Also , .we know by (b) of Lemma 4 that R(k) is s y m m e t r i c in I - , so it is 

enough to cons ider the values of only the f i rs t half of the e lements of I - in 

o r d e r to de te rmine the max imum e lements . More than the f i rs t half of the 
e lements of I M a r e contained in the s e t s n+l 

(23) { R ( F n + 1 + t ) | t = 0 , ! , - • • , F n _ 1 - l } a n d { R ( F n + 1 + t ) | t = F n ^ , - - , F n - l } . 
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Consider first the maximum of the first of the two sets in (23); evidently, 

m a x R(F + t) = m a x {R(F^ - t - 1) + R(t)} 
0<t<F , - 1 n i 0<t<F , - 1 n 

n-1 n-1 
(24) ^ m a x R(F - t - 1) + m a x R(t) 

0<t<F , - 1 V 0<t<F , - 1 
n-1 n-1 

•=' 2 m a x ! . 
n-Z 

Next, we have for the second set in (23) 

m a x R(F ,. + t) 
F - t ^ F -1 n + 1 

11 ^ m a x R(F - t - 1) + m a x R(t) 
(25) F ^ t ^ F -1 F , ^ t ^ F -1 x ' n-1 n n-1 n 

= max I o + m a x I . . n-3 n-1 

Together (24) and (25) imply 

(26) max I + 1 < max {max I _1 + max I „, 2 max I 2 } * 

Writingn = 2N + 1 in (26) and applying the induction hypothesis we have 

(27) max I 2 N + 2 £ max { F N + 3 , 4FN> = F N + 3 ; 

similarly, n = 2N + 2 in (26) gives 

(28) m a x I 2 N + 3 £ max {2F N + 2 , 2F N + 2 } = 2F N + 2 . 

In order to finish the proof of Theorem 3 we need to show that F N + 3 e 
T2N+2 *** 2 F N+2 e Ws" 

Since 0 ^ F 2 N + t £ F 2 N + 3 - 1 for t = 0,1, • • • , F , ^ - 1, we can 
use (22) and (b) of Lemma 4 to find 

(29) R(F 2 N + 3 + F 2 N + t) = R(F 2 N + 1 - t - 1) + R(F2 N + t) = 2R(F2 N + t) , 
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for t = 0 ,1 , • • •, F 2 N - - 1. From this we gather that all of the elements of 
I 2 N multiplied by 2 occur in I 2 N + T n e n c e > twice the maximum in I 2 N is 
in Iovr+o an(* this is precisely 2 F N + 2 . 

It is not so obvious that F N + ~ € Io N + 2 ; t o Pr°ve this we let X. denote 
an integer such that R ( F 2 N + X ) = F + 2 for n ^ N. We will also include 
in our induction hypothesis that an admissible value of \ - for n < N is 
given by X - = F 2 - -• X - 1. Now consider 

R(F2N+2 + F2N-1 ~ XN " 1 ) 

n m
 = R ( F2N+1 " F2N-1 + V + R ( F 2N-1 " XN " X) 

( } = R<F2N + XN> + R<F2N-2 + W 
FN+2 + FN+1 = FN+3 

The second equality in (30) follows from (22). It is now clear that an admissible 

value for XN + 1 is F oN-l " XN ~ 1 a n d t n a t F N + 3 € I2N+2* T h i s c o m P l e t e s 

the proof of Theorem 3. 

4. T(n), THE NUMBER OF REPRESENTATIONS OF n AS A SUM 
OF DISTINCT FIBONACCI NUMBERS 

For the moment we are taking a = F ,. in the lemmas of Section 2 
n n+l 

and write A(k) = T(k) in this case. The following theorem can be proved in 
the same way we proved Theorem 1, so we leave out the proof. 

Theorem 4. 
(a) Pn+1> = [ - 2 - ] * n = 1'2'' 
(b) T(Fn+1 + 1) = [|] if n = 3 ,4 ," 
Theorem 5. 
(a) T(N) = 1 if and only if N = F n + 1 - 1 for n = 1,2, • • • . 
(b) T(N) = 2 if and only if N = F n + 3 + F n - 1 or F R + 4 - F - 1 for n = 

1,2, ' •" . 
(c) T(N) >• 0 if N 2= 0. 
(d) T(N) = 3 i f andonlyi fN = F ^ + F n - 1, F n + 5 + F n + 1 - 1 , ^ 6 " 

Fn-^ Ve^Vl"1 f o r n = 1.2,--- . 
Proof, (a) and (c): We can check Table 2 to see that T(F - 1) = 1 

if n = 1,2,3,4. Suppose T(F +- - 1) = 1 for all n less than N > 4. Then 
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by (c) of Lemma 4 we have T (F N - F 3 + 1) = T(F N - 1) = T(F N _ 3 - 1) which 
is 1 by assumption. Next, the table shows that the only values of N < F r for 
which T(N) = 1 are N = F 2 - 1, F 3 - 1, F 4 - 1 and F 5 - 1. Suppose for 
all 4 ^ n < N, where N > 5, that F n < k < F - 1 implies T(k) > 1. 
Then by (a) of Lemma 4 we have for FXT ^ k < FATl1 - 1, T(k) = T(FXT . -

JN J N + 1 N + l 
F 3 - k) + T(k - FN) > 2. This completes the proofs of both (a) and (c). 

(b) By Lemma 5, we have T ( F n + 3 + FQ - 1) = T ( F n + 4 - F n - F 3 + 1), 
and since F n + 3 ^ F n + 3 + F n - 1 < F n + 4 - F 3 we can apply (a) of Lemma 4 to 
get T ( F n + 3 + F n - 1) = T ( F n + 4 - F 3 - F ^ - F Q + 1) + T(F n + 3 + V 1 - Fn + 3) 
= T (F n + 1 - 1) + T(F n - 1). By (a) of this lemma, the last sum is 2. To prove 
the "only if' part of (c), we use induction with (a) of Lemma 4 just as in the 
proof of the "only if" part of (a). 

(d) The proof can be given using induction and (a) of Lemma 4 just as (a) 
and (b) were proved. 

Theorem 6. For every natural number k there exist infinitely many N 
such that N has exactly k representations as a sum of distinct Fibonacci num-
bers , in fact, 

(31) T ( F n + k + 2 + 2 F n + 2 - 1) = k for n = 1,2,— and k = 4 , 5 , ' • • . 

Proof. The theorem is true for k = 1,2, 3, by (a), (b),and{d)of Theo-
rem 5. We will verify the theorem for k = 4 and leave the verification for 
k = 5 as an exercise. 

Since F n + 6 ^ F n + 6 + 2 F n + 2 - 1 < F n + 7 - F 3 we can apply (a) of Lemma 
4 to obtain 

T<Fn+6 + 2 F n + 2 " *> = T < F n + 7 " F 3 ' F n + 6 " 2 F n + 2 + X> 
<32> + T ( F n + 6 + 2 F n + 2 - 1 - F n + 6 ) 

= T ( F n + 5 " 2 F n + 2 " *> + T < 2 F n + 2 " *> 

h o w e v e r , 2 F ^0 = F ^ 0 + F ^ + F = F ^ 0 + F so tha t n+2 n+2 n+l n n+3 n 

(33) T ( 2 F n + 2 - 1 ) = T ( F n + 3 + F n - l ) = 2 , 
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(34) T(F n + 5 - 2 F n + 2 - 1) = T ( F n + 4 - F j i - 1) = 2 

by (b) of Theorem 5; combining (33) and (34) in the last member of (32) gives the 
desired result. 

Now suppose (31) holds for all k < N where N > 5. Since F, + N + o -
Fn+N+2 + 2 Fn+2 " X ~ Fn+N+3 ~ F 3 ' w e c a n u s e ^ o f L e m m a 4 t o o b t a i n 

T<Fn+N+2 + 2 F n + 2 " X> = T<Fn+N+3 " F 3 " Fn+N+2 - 2 F n + 2 + 1 > 

< 3 5 > + T<Fn+N+2 + 2 F n + 2 " * ~ F n W 

= T<Fn+N+l " 2 F n + 2 " !> + T<2 Fn+2 " ^ 

Since 0 < 2F 2 - 1 ^ F + N + 1 - F~ we can use Lemma 5 to write 

T ( F n + N + l " F 3 " 2 F n + 2 + *> = T<Fn+N+l " 2 F n + 2 " X> 
(36) = T < V N + 2Fn+2 - !) ' 

but, this last quantity is n - 2 by assumption and recalling (33) we see that the 
sum in the last member of (35) is (N - 2) + 2 = N. This concludes the proof. 

5. INCOMPLETE SEQUENCES 

In what follows, N(n) denotes the number of non-negative integers k < 
n for which A(k) = 0. 

Lemma 6. Let 0 < v1 < v2 <• • • denote the sequence of numbers k 
for which A(k) = 0 and suppose v, - , v, 9, • • • ,v, is a complete listing of 
the vTs between a and a + k + i < a ,- for n > 2; then v , , . = a + v. n n J n+1 J t+j n j 
for j = l , 2 , , # , , s and v is the largest v not exceeding k + 1. 

s 
Proof. The lemma can be verified for n = 2 and 3 by determining 

A(k) for 0 < k < a . ^ using P^(x), since by (a) of Lemma 3 we have A(k) = 
A s (k) for k in the supposed range. 

Suppose for some N ^ 3 that the v.Ts between a and a - are given 
by a + v r j a + vOJ«®», a + v« where v. is the largest v. not exceeding J n V n 2' ' n i I i 
a 1 and n ^ N. We will show that this implies the v. between aN and a „ 
+ k < a N + 1 are given by aN + v p a N + v2 , • • • , a

N + v
s
 w h e r e v

s
 i s t h e 

largest v. not exceeding k + 1 . 
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Case 1. Let a„ < a^ + v. ;£ ^NT+I ~ ao> then by (a) of Lemma 4 we 
have 

A(aN + v.) = A(aN + 1 - ag - aN - v.) + A(aN + v. - aN) 

(37) = A(aN_1 - a2 - v.) + A(v.) 

= A(aN_1 - a2 - v.) ; 

but for aXT + v. in the range being considered we have 0 ^ v. ^ aXT ., - a0 so 
N 3 & & j N-l 2 

that by Lemma 5 

(38) A(a N - 1 - a2 - v.) = A ( a ^ 2 + v.) 

and the right member is zero by assumption, so that A(a~, + v.) = 0 is a 
consequence. 

Now suppose there is a t not a v. such that aN ^ aN + t ^ ^ . i ~ ao 
and A(aN + t) = 0; then by (a) of Lemma 4 we would have 

(39) A(aN + t) = A(aN__1 - a2 ~ t) + A(t) . 

But this is a contradiction since A(t) 4= 0 (t is not a v^ and we assumed 
A(aN + t) = 0. 

Thus a^ + vv aN + v2> '•9 , a N + v g < a^ + k <; a ^ ^ - a£ is a complete 
listing of the v. between a N and a^ + k ^ a^+ 1 - a2-

Case 2. Let a N + 1 - a2 < aN + v. < ^ 4 4 » t h e n b ^ (c) o f Lemma 4 we 
have 

(40) A(a^ + v.) = A(aN__2 + v.) 

which is zero by assumption. If we suppose there is a t such that t is not 
a v. and a N + 1 - a£ < aN + t < a ^ ^ implies A(aN + t) = 0, we obtain a 
contradiction since A(a^ + t) = A(aN 2 + t) = 0 would imply t is a v.. 

Thus, a~, + v., • .• -, a^ + v*, with v. the smallest v. not less than 
aM~i> c o m P r i s e s a complete listing of the v. between aN . - a~ and 3^ , - , . 
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Taken together, the results proved in Cases 1 and 2 imply Lemma 6 by 
induction. 

Corollary. If A(k) > 0 for k ^ a9, then {a } is complete; this is 
dt n 

equivalent to saying .(a. , a2) = (2,1), (1,2) or (1,1). 
Proof. This follows from Lemma 6 and induction. Also, note that if 

{a } is not complete, then there exist infinitely many k such that A(k) = 0. 
Lemma 7. 
(a) N(an + k) = N(a ) + N(k) if .0 < k < a and n = 2, 3, 4, • • • . 
(b) N(k) = k if 0 < k < a1 . 
(c) N(k) = k - 1 if ax ^ k < a2 . 
(d) N(k) = k - 2 if a2 < k ̂  a3 . 
(e) N ( a n - 1 ) - N(an) if n = 1,2,-•• . 
Proof, (a) Suppose n > 2, then by Lemma 6, the v. such that a < 

v. ^ a + k with 0 ^ k -̂  a n are given by a + v n , a + vOJ • • • ,a + v., i n n-1 & J n 1' n 2' ' n j ' 
where v. is the smallest v. not exceeding k. Hence there are N(k) v. in 
the supposed range. By definition the number of v. % a is N(a ) so N(a 
+ k) = N(an) + N(k). 

(b) (c) (d) follow from the fact that A(k) 4 0 with k < a3 only if k = 0, 
al' V 

(e) Since a is never a v., N(a - 1) = N(a ). 
v 7 n I x n ' x n' 
Lemma 8. N(a-) = a- - 1, N(a2) = a2 - 2 , N(a„) = a„ - 3 and N(a -) 

= N(an) + N ( a n ^ ) if n = 3,4,- •• . 
Proof. N(a1) = N(a- - 1) = a1 - 1 by (e) and (b) of Lemma 7 respectively; 

the second and third statements follow by (e) and (c) and (e) and (d) of the same 
lemma respectively. The last statement follows by writing k = a - in (a) of 
Lemma 7. 

Lemma 9. N(a ) = a - F ,- if n = 1 ,2 , . . . and F denotes the n 
Fibonacci number. 

Proof. The statement is clearly true for n = 1,2,3 and can be seen by 
the first part of Lemma 8. If we suppose the statement true for all n < k(k >: 3) 
we can write 

N V i > = N ( a k > + N ( ak- i> = \ ' F k + i + V i - F k 
(41) 

\+l ~ Fk+2 
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by the last part of Lemma 8; so Lemma 9 follows by induction on k. 
Lemma 10. Every natural number can be written in the form 

(42) n = a k l + ak 2 +" • • + ak. + t 

with k. + 1. > k., - and 0 ^ t < a0. 
Proof. The lemma is trivially true for all n ^ a2. Every natural num-

ber between a~ and a« can be written a~ + t with t < a- ; n = a« is of 
the form (42). 

Suppose (42) holds for all n < N, and let a, denote the largest a i not 
exceeding N and consider N - a, . We must have N = a, < a, - , since 
N < a, ^ a, - implies N ^ a . + 1 which contradicts the maximal property of 
a, . It follows that N - a, < N can be represented in the form (42) with k + 
1 > k-, hence, N = afe. + a k l + • • • + akj[ + t is also of the form (42). 

Theorem 7. Let n be a number represented as in (42). Then 

(43) N(n) 

n ~ {%+! + Fk2+1 + ••• + F k . + i } if 0 =st ==. ax 

n - {1 + F k l + 1 + F k 2 + 1 + • • - + F k . + 1 } if ax < t ^ a 2 

Proof. Since ak 2 + • • • + ak. + t < a k l - 1 we can apply Lemma 7 
to obtain 

(44) N(n) = N(akl) + N(ak2 + • • • + ak. + t) ; 

applying Lemma 7 repeatedly in (44) we get 

(45) N(n) = N(ak l) + N(akg) + • • - + N(ak. + t) . 

Now if ak. = a2, 0 ^ t < a1? since if t ^ ^ we would have ak i = ag and 
we can write 

(46) N(ak. + t) = N(ak.) + N(t) ; 
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but if ak- = a-i ». we would have a- + t < a2 and we res elect t as a1 + t ; 
also, we can conclude from this that a. # - 1 ^ a3 so (46) still holds in this 
case. Thus (45) can be written in the form 

(47) N(n) = N(ak l) + N(ak£) + -•• + N(ak.) + N(t) 

Applying Lemma 9 to the N(ak.) in the right member of (47) we get 

(48) N(n) = a k l - F k l + 1 + ak 2 - F k 2 + 1 + • • - + ak. - F k . + 1 + N(t) 

= a k l + ak 2 + • • • + ak. + N(t) - { F k l + 1 + . . . + F k . + 1 } ; 

but if t < a^, N(t) = t and ak_. +• • •+ ak. + t = n by assumption so that the 
first part of (43) is true. If a1 ^ t < a2, N(t) = t - 1 and we see that the 
second part of (43) is also true. This completes the proof of Theorem 6. 

Hoggatt (Problem H-53, Fibonacci Quarterly) has proposed that one show 
that M(n), the number of natural numbers less than n which cannot be expres-
sed as a sum of distinct Lucas numbers L (L1 = 1, L0 = 3, L 0 = L +L 

n x dt Tr^di n + x n 
has the property 

(49) M(L ) = F n v n7 n-1 

also, he asked for a formula for M(n). 
The Lucas sequence can be used in place of {a } in all of our lemmas 

and theorems. In particular, Lemma 9 tells us M(L ) = N(L ) = L - F 
it is a trivial matter to show L 

n+l' 
F - = F - by induction so (49) is proved. 

Writing ak. = L^. in (42) and Theorem 7 gives a formula for M(n) for all 
natural numbers n. 

Table 1 
R(k) for 0 < k < 144 

n 
R(n) 

0 

1 

n 20 

R(n) 4 

1 

2 

2 

2 

3 4 

3 3 

5 6 7 

3 4 3 

8 9 10 11 12 

4 5 4 5 4 

13 14 15 16 17 18 19 

4 6 5 6 6 5 6 

21 22 23 24 25 26 27 28 29 30 31 32 33 

5 7 6 8 7 6 8 6 7 8 6 7 5 

34 35 36 37 38 39 

5 8 7 9 9 8 
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n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 
R(n) 10 7 8 10 8 10 8 7 10 8 9 9 7 8 5 

55 56 57 58 59 
6 9 8 11 10 

n 

R(n) 

60 

9 

61 

12 

62 

9 

63 

11 

64 

13 

65 

10 

66 

12 

67 

9 

68 

8 

69 

12 

70 

10 
71 
12 

72 

12 

73 

10 

74 

12 
75 

8 

76 

9 

77 

12 

78 

10 

79 

13 

n 80 81 82 83 84 85 86 87 88 

R(n) 11 9 12 9 10 11 8 9 6 

89 90 91 92 93 94 95 96 97 98 99 

6 10 9 12 12 11 14 10 12 15 12 

n 

R(n) 

n 

R(n) 

100 

15 

116 

16 

101 

12 

117 

12 

102 103 

11 16 

118 119 

14 16 

104 

13 

120 

12 

105 

15 

121 

14 

106 107 

15 12 

122 123 

10 9 

108 109 

14 9 

124 125 

14 12 

110 111 

10 14 

126 127 

15 15 

112 

12 

128 

13 

113 

16 

129 

16 

114 

14 

130 

11 

115 

12 

131 

12 

n 132 133 134 

R(n) 15 12 15 

135 136 137 138 139 140 141 

12 10 14 11 12 12 9 

142 143 

10 6 

Table 2 
T(k) for 0 < k < 55 

n . 

T(n) 

n 

T(n) 

0 1 2 

1 1 1 

20 21 

1 4 

3 4 5 6 7 8 

2 1 2 2 1 3 

22 23 24 25 26 

3 3 5 2 4 

9 

2 

27 

4 

10 11 12 13 14 

2 3 1 3 3 

28 29 30 31 32 33 

2 5 3 . 3 4 1 

15 16 17 18 19 
2 4 2 3 3 

34 35 36 37 38 39 

4 4 3 6 3 5 

n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 

T(n) 5 2 6 4 4 6 2 5 5 3 6 3 4 4 1 5 
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Table 3 
S(k) for 0 < k < 68 

n 

S(n) 

S(n) 

n 

0 

1 

20 

0 

40 

5 

1 2 

1 0 

3 

1 

4 

2 

21 22 23 

2 4 2 

41 42 43 

3 0 3 

5 

1 

24 

0 

44 

4 

6 

0 

7 8 9 10 

2 2 0 1 

11 12 

3 2 

25 26 27 28 

3 3 0 1 

29 30 31 

4 3 0 

45 46 

1 0 

47 48 49 50 51 

4 4 0 3 6 

13 

0 

32 

3 

52 

3 

14 15 16 17 

2 3 1 0 

33 34 35 36 37 

5 2 0 4 4 

53 54 55 56 57 

0 5 5 0 2 

18 

3 

38 

0 

58 

6 

19 

3 

39 

2 

59 

4 

n 

S(n) 

60 

0 

61 

4 

62 

6 

63 

2 

64 

0 

65 

5 

66 

5 

67 

0 

68 

3 

69 
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ON A GENERALIZATION OF MULTINOMIAL COEFFICIENTS 
FOR FIBONACCI SEQUENCES 

Eugene E. Kohlbecker, MacMurray Col lege, Jacksonvi l le , I l l ino is 

Let m = n1 + n2 +• • • + nk be a partition of m into k ^ 2 positive inte-
gral parts and let F0 = 0, Ft = 1,- • • , F n = F n - 1 + Fn_2 for n > 2. This is 
known as the Fibonacci sequence. A multinomial coefficient for the Fibonacci 
sequence is defined to be the quotient 

m / nt n2 n k 

[ m ; n l f n 2 f " - , n k ] = II Fj / II F, II Fj • • • II Fj , 
j=i / j=i j=i j=i 

It is the purpose of this paper to show that such quotients are integer 
valued. In order to do this we first establish a representation of F m in terms 
of a linear combination of the F n . . This result is of some interest in itself 
since it contains many of the classic formulae for Fibonacci sequences. 

Theorem 1; Let F0 = 0, Ft = 1, • •• , F n = F n = 1 + Fn_2, n > 2, and let 
m = nj + n2 +• • • + n k be a partition of m into positive integral parts . Then 

k 
Fm = £ G i P I F * i 

i=i 

k 
where Gt = 1, G* = F n + n + . . . n - i , l < i < k; and P t = II Fn.+i , 

1 L L x i=i+i J 

1 <= i < k, P k = 1. J 

For the proof of the theorem we require the following Lemmas: 
Lemma 1; If nt + n2 + • • • + nk and n | + nj + • • . + n k are partitions of m 

into k > 2 positive integral parts where the parts n\, n*, • • • , n k are a per-
mutation of the parts nl s n2s • • • , nk$ then 

I*! i=i 
307 
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where 
G i = F n 1 + n 2 + . . . + n i . r i > 1 < i * k, Gt = 1 ; 

P i = jin^i' * - 1 < k j Pk = 1 ; 

G i = Fnf
1+n|+... +n!_ -1 ' 1 < i ^ k, G\ = 1 ; 

k 
P i = • P F n ! + 1 ' 1:~ l < k > P k = X • 

Proof: Since any permutation of the parts n1,n2,« • ^ n ^ can be obtained by suc-
cessive transpositions of adjacent parts it suffices to show the conclusion for 
the case ng + 1 = ng and ng = ng + 1, n^ = n{ for i * s, s + 1. From the def-
inition of Gj[ and G[ we have Gi = G{ for 1 < i < s and s + 2 < i < k, 
Gs+i = Fn i+n2+.-.+ns„1+ns-i , Gs + 1 = Fn1+n2+... +ns_1+ns + i-i . We also have 
P. = P{ for 1 < i == s - 1 and s + l < i < k , P g = Fns+1+ips+i» a n d P g = 
F n +iPs+i- Thus every term in the unprimed sum equals the corresponding 
term in the primed sum except for the terms where i = s and i = s + 1. Con-
sidering just these terms, we must show that G P F n + G s+ i p s+ i F n +i = 

GTPTFni + G \ P ' Fnt ,< . 
s s n s s+i s+t ns+i 

Gs Ps Fnc
 + G s + i p s + i F n s + 1 = G

s
F n s + i + i P s + i F n s k*s 

+ F
ni+n2+- • • ns-i+ns-^s+lFng+i 

G
s

F n s + 1 + i F n s 

+ (Fns
Fn1+n2+. • • n s _ t + G s F n s r i ) F n s + 1 

F ns F n s + i F n 1 +n 2 + . . .n s . i 
+ G s ^ n S + i ^ F n s

 + F n s + 1
F n s - i ) 

Fns
F%+iFn1+n2+- • • n s - 1 

+ G s F n s + n s + i 

Fns+iF nsFn1+n2+- • • ns„t 

+ G s ( F n s + 1 F n s + 1 + F n s F n s + r l ) 
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= G
s

F % + i F n s + i 

+ (Fns+iFni+ii2+-• • ng-! + G s F n s + r i ) F n s 

= G s F n s + i F n s + 1 

+ Fn1+n2+- • • +n s _ 1 +n s + r i F n s 

= G s F n s + i P s + 1 F n g + 1 

+ Fn1+n2+* • • +ns_1+ns+1-i Ps+i F n s 

s s n
s s+i s+i n

s + i 

where we have used repeatedly the classical formula F m = F
m + 1

F
n

+ F
n - i F m ° 

Lemma 2% If xit + n2 + • • * + % is a partition of m into k > 2positive!: 
integral parts with at least one part (say n s ) greater than 1, then 

£ W * i = £GiPiFn! 
1=1 1=1 1 

where n. = n! for i =1= s . r ; nQ - 1 = nf , n + 1 = n r , s 4= r . and G.,P. , i i ' 3 s s r r l i 
G! and P! are all defined as in Lemma le 

Proof; In view of Lemma 1 we can assume that nt > 1 and show the result for 
the partitions nt + -n2 +. - • + n^ and n| + nj + •.« + n^ where nj = nt - 1, n£ = 
n2 4- 1, n! = n. for 3 < i < k. For this choice,, G^ = G! for i = 1 and 3 < 

, and P. = P! for 1 < i < k. 
- 2 ' 1 1 

Here every term in the unprimed sum equals the corresponding term in 
the primed sum except for i = 1,2. Considering only these terms, 

k k 
GjPiFn i + G2P2Fn2 = (F n i ) n F n j + 1 + ( F n r l F n 2 ) ^ F n j + I 

k 

'SV^V^n^aV 
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k 

= (Fm+nJ n Fni+i 

k 
= ( F n 2 +2 F n r i + F n 2 + i F n r 2 ) ^ Fnj+i 

k k 
= ( F a ) n F n + 1 + ( F ¥ 2 F n t) n F n + 1 

1 j=2 J j=3 J 

= GJ.PjFnj + GjPjFnt 

which completes the proof. 

We now proceed to the proof of the theorem. When m ..= k we have n̂  = 
1, Gj = 1, Gi = Fi_2 for 2 < i < k, Pj = 1 for 1 < i < k and 

k=m m-2 
£ G i p i F n i = F t + E *t = *v+ (Fm - 1 ) = F m 
i=i i=o 

by a well-known result for the Fibonacci sequence. When m = k + 1, all the 
parts are 1 except one part which is 2. By Lemma 1 we can assume that n k = 
2. For this we have Gi = F i - 2 for 1 < i < k, Gt = 1, Pj = FJp-^Fs for 1 
< i < k, P k = 1. Thus 

k 
£ GiPjFn = FsFfc.! + Fk_2 = F k _ t + (Ffc-i + Fk_2) = F k + 1 . 
i=i 

Now assume m > k + 2 and let m = nj + n2 + • • • + n k with nt < n2 < • • • 
< n k . There are two cases, n k > 3 or n k > 2 and n k - 1 > 2. By applying 
Lemma 2 we can reduce the second case to the first. Thus we need only con-
sider ni < n2 < • •'• < nk with nk > 3. We assume that the result; is valid 
for the partitions 

m - 1 = n} + nJL + • • • + n^ where n! = nj , 1 < i < k, n{_ = n, - 1 

m - 2 = n̂ f + n'2T +«... + n" where nT.f = ^ , 1 ^ i < k, n" = n k - 2 
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and show it holds for the partition 

m = nt. + n2 * • • • + nk 

We have Gi = Gt = G{ for 1 < i < k and 

k-i' 

P i = (Fnk)' tt V 1 ' 
k-i 

Pi = <Fnk-i> i I : Fni+i j=i+i J 

for 1 ^ i < k, p
k
 = p k = p

k
 = *• Hence, 

k k 

i~i m-2 ^ i i nj g i i nfJ 

k-i / k-1 \ 
= . § Gi( . 2 i Fnjf i ) (Fnk + Fnjjrl) F .̂ 

+ GkPk<Fnk-i + Fnk~2) 

F = F m m-

E Wl 
1=1 

which is the desired result. 

Utilizing the result of Theorem 1 we prove the following theorem: 
Theorem 2; Let m and r be integers, m ^ r > 2, and let nt + n2 

+ • • • +nk be a partition of m into positive integral parts. 
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Then [ m;nj, n2, • • • , n r ] is an integer. 
Proof: If m = 2, then r = 2, and the only admissible partition has i^ = n2 

= 1. Clearly [2;1,1] is an integer. Now let m > 2 and assume that for 
every partition of m - 1 into positive integers where m - 1 ^ s ^ 2 we have 
that [m - 1; n1 ,n2,--- ,n ] is an integer. If r = m, then each n. = 1, 1 ^ 
i << „r, anoV [m;ri1?n2,-• ° ,n 1 is an integer,, If 2 < r < m then m - 1 ^ r 
^ 2, and by the induction hypothesis [m - l;n4 - l ,n2, • • • , n r ] f [m - l;n1,n2 -
1,* • • , n r ] , • • • , [m - 1; n1?n2,e °° , 1 ^ - l ] are all integers. 

Now 

k 

where we have used Theorem 1 to write F m as a linear combination of the 
F n . , 1 < i < r . The right-hand side is an integer since all the terms are inte-
gers. This completes the proof of the theorem. 

Editorial Comment: The special multinomial coefficient where k = 2, that is , 
for m = nt + n2 , 

m / n i n2 
n Fj / n FJ n Fj , 
j=i ; j=i j = i . 

has been given the fitting name, "Fibonomial coefficient," Fibonomial coef-
ficients appeared in this Quarterly in advanced problem H-4, proposed by 
T. Brennan and solved by J. L. Brown, Oct., 1963, p. 49, and in Brennan's 
paper, "Fibonacci Powers and Pascal 's Triangle in a Matrix," April and October, 
1964. Also, a proof of the theorem of this paper for the case k = 2 appears 
in D. Jar den's Recurring Sequences, p. 45. 

* • • • • 



ON THE DETERMINATION OF THE ZEROS OF THE FIBONACCI SEQUENCE " 
ROBERT P. BACKSTROM, Brighton High School, So. Austral ia 

In Ms article [ l ] , Brother U, Alfred has given a table of periods and 
zeros of the Fibonacci Sequence for primes in the range 2,000 < p < 3,000, 
The range p < 2,000 has been investigated by D, D, Wall [2] , The present 
author has studied the extended range p < 5, 000 by computer, and has found 
that approximately 68% of the primes have zeros which are maximal or half 
maximal/ i. e , , Z(F,p) = p + 1, p ~ I, (p + l ) /2 or (p - l ) /2 , 

It would seem profitable, then, to seek a formula which gives the values 
of Z(F,p) for some of these "time-consuming" primes* If these can be taken 
care of this way, the average time per prime would decrease since there are 
large primes with surprisingly small periodse 

We have succeeded in producing a formula for two sets of primes, A 
table of zeros of the Fibonacci Sequence for primes in the range 3,000 < p < 
< 10,000 discovered by these formulas is included at the end of this paper, 
It is not known whether these formulae apply to more than a finite set of primes, 
See [3] for some discussion on this point, 

To develop the ideas in a somewhat more general context, we introduce 
the Primary Numbers F defined by the recurrence relations 

Fn+2 = a F n + 1 + b F n ; F0 = 0, Ft = 1 , 

where a and b are integral, F may be given explicitly in the Binet form; 

oft - 0n 

where a and /3 are the (assumed distinct) roots of the quadratic equation 
x2 - ax - b = 0, In a like manner, we may define the Secondary Numbers 
which play the same role as the well known Lucas Numbers do to the Fibonacci 
Numbers, Thus the Secondary Numbers L are defined by the recurrence 
relations 

313 
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Ln+2 "" a Ln+i + bL n ; L0 - 2, Lj 

L may also be given explicitly in the Binet form as t 

(2) L n = a n + pn 

The following three properties of the Pr imary Sequences may easily be estab-
lished by induction, or by using formula (1). 

1) F r = -(~b) rF_r 

2) If (a,b) = 1, then (Fn,b) = 1 
3) If (a,b) = 1/ then ( F ^ F n + J ) = 1 .' 

Using formula (1), it is a simple algebraic exercise to prove the next result. 
Lemma 1. F = F.,«F . + bF.F . 4 

*• m 1+1 m - i i m - i - i 

Proof: Since a and p a re the roots of x2 - ax - b = 0, we have 
ap = -b. 

R.H.S. = (far -p )(a - P ) - ap (a - p )far -p ))/{a-p)2 

= bm+i - * i + 1 . pm^ - a*1"1 • 0 i + I + / P + * - pam + ai+1. f l + a
m~l 

• pi+1 -apm)/(a-p)2 

, m+i , nm+i « m />m,/, m 9 = (a + P -pa - ap )/{a - P)2 

= (a~p)(am - / ? m ) / ( * -p)2 = fom - i3 m ) / (a - 0) = L.H.S. 
Making use of properties 1) and 3) and Lemma 1, we may prove the following 
Theorem which tells us that the factors of Pr imary Sequences occur in similar 
patterns to those encountered in the Fibonacci Sequence i tself 

Theorem "ta Let (a,'b) = 1. Chose a prime p and an integer j such 
that p3 exactly divides F , (d > 0), but no Pr imary Number with smaller 

i subscript. Then pJ divides F (not necessarily exactly) if and only if n = 
dt for some integer t» Ors F , | F iff n = dt for some integer t. 

Proof. Suppose that n = dt. We prove by induction on t that p3 divides 
F n . t = 1. p3 divides Fd # 

Assume true for t = t9 t > X. 

*i .e . , pj}Fd but pi+1-fF 
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Putting m = d(t + 1) and i = d in Lemma lf we have the identity? 

F % = F F • + hF F 
d(t+i) *d+jrdt d^dt- i 

p3 divides F , and F , . , so by (l)f divides F, . , + » 9 

Conversely* suppose that p3 divides F s where n = dt + r for some r sat-
isfying 0 < r < d. We seek a contradiction* forcing r to equal 0. 

Putting m = dt and i = - r in Lemma l s we have the identity % 

F = F F + hF F 
*dt -r+i dt+r - r dt+r-l ° 

r—i r 
Multiplying through by ~(-b) and using the fact that F = -(-b) F , we 
haves 

~(-b)r~ F d t = V i F d t + r - F r F d t + r w l . 

Since p3 divides both F ^ and F d t + r it divides F
r

F
d t + r _ > However, if 

(af b) = 1, consecutive Primary Numbers are co-^prime, and so p does not 
divide F j . . J@ Thus p3 divides F which is a contradiction* dt+r-i r 

Another result which we will need is contained in the next Theorem. This r e -
sult is a direct generalization of the well-known result appHed to Fibonacci 
Numbers* The proof follows precisely the one given by Hardy and Wright in 
[4 ] , and so need not be repeated here. 

Theorem 2. Let k = a2 + 4b ^ 0 and p be a prime such that p / 2b, 
then p divides F f F or F + according as the Legendre Symbol (k/p) 
is +1, 0 or ~le 

Proof. Let the roots of the quadratic equation x2 - ax - b = 0 bes 

a = (a + Va2 + 4b)/2 and p = (a - Va2 + 4b)/2 

Hence 

F - <T ~ SU - ( a + V k ) n - ( a - \ ^ ) n 
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Case 1. (k/p) = +1 

2P~2F _ = ((a + VE)**""1 - (a - Nkf'1)/(2Nk) 

I r odd ^ r ' 
\ l < r < p - 2 

P _ ! ) / 2 / P - I \ 

(2^ + 1) ^ - M m o d p ) f o r s = 0 , l , o o ° , (p - 3)/2, we find that 

ap r"1(^k)r\/(Vk) 

=r^p-2 
(p-3) /2 

P-2S-2, S 
2? k 

\ 2s + 1 / 
S=0 

since 

(p-3)/2 
2P~Vi s " Z aP"2S"2kS(m°dp) 

s=o 

Summing this geometric progression, we have: 

2pbFp_1 H ap - akk-1*72 (mod p) . 

Making use of Euler?s Criterion k^" 1 ' ' 2 = (k/p) (mod p) for the quadratic 
character of k (modp), assuming that p - 2b, (k/p) = +1 and knowing that 
sF = a (mod p), we have: 

F p _ t = 0 (mod p) 

Case 2. (k/p) = 0 

2P~1F = ((a+ Mkf - (a - vI)P)/(2Vk) 

r odd \ / / / s=o 
, l ^ r < p 
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p divides each Binomial Coefficient except the last and so: 

2 P - V . k ^ " ^ 2 (mod p) . 

Since p ^ 2b and (k/p) = 0, we have 

F s o (mod p) 

Case 3. (k/p) = -1 

2PFp+1 = ((a +Vk)p+1 - (a -Vk)^V(2Vic) 
> i / n i i \ P + 1 

. ~w \ r / 
3-r+1(V4E)r | / V5 

r odd 
v l<r ^p 

(p-i)/2 

s a P~2S, S 2? k 

All the Binomial Coefficients except the first and last are divisible by p and 
so: 

2 P F = aP + ak*" 1 ^ 2 (mod p) . 
p+i x 

Since p { 2b, (k/p) = -1 and ap = a (mod p), we have: 

F p + i = 0 (mod p) 

Yet another well-known result which can be extended to the Primary Se-
quences is given in Lemma 28 A proof may be constructed on the model pro-
vided by Glenn Michael in [ 5 ] , and is a simple exercise for the reader, 
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Lemma 2. If (a,b) = 1 and e,d are positive integers, then (F 9FJ 

| F (c ,d) 
Proof. Let e = (c,d) and D = (F , F , ) . e[c and e[d hence by Theorem 

1, F,JF and F JF , . Thus F [DC ' e c eE d e1 

There exist integers x and y (given by the Euclidean Algorithm) such 
that e = xc + yd. Suppose without loss of generality that x > 0 and y ^ 0. 
Using Lemma 1 with m = xc and i = e we have: 

F = F F , + b F F , xc e-i -yd e -yd-i 

D | F and F , and so by Theorem 1, DJF and F ,. Thus DlbF F , 1 c d J ' ' xc -yd s e -yd-i 
but by property 2), (D,b) = 1, and by property 3), (D, F_ , ) = 1„ Thus 

This, to 
Lemma 3„ 

D [ F . This, together with F O | D gives the result 

F 0 - F L = (-b)n 1 

2n-i n-i n v ' 

Proof. 

_ „ G / 2n-i 2n-i , n-i 0 n - i . n A w 
L. H. S. = (a - p - (a - p ){a + p ))/(a - p) 

. 2n-i 2n-i 2n-i n-i n j i - i n J n - i W / oX = (a - p^ -a - a P + p a + p )/(a - p) 
= (-a p + p a )/(a - P) 

= (a - pHapf^/ia - p) = (a/3)11""1 = (-b)11"1 = R.H.S. 

MAIN RESULTS 

We shall divide the main results of this paper into 6 parts — four Lemmas 
in which the essential ideas are proven, a Theorem utilizing these ideas and a 
Corollary applying them in particular to the Fibonacci Numbers. It will be im-
plicitly understood that from now on, (a,b) = 1 and p j ' 2abk. 

Lemma4. If (-b/p) = (k/p) = +1 (LegendreSymbols), then p | F , W „ 
Proof. Using Lemma 3 with n = (p + l) /2 gives 

F p - i Lp+i _ / M(P-1)/2 
F p ~ ~2 2~~ ~ ( " b ) 
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In the proof of Theorem 2 we find that 

2 P _ 1 F p a F p s (k/p) (mod p) . 

Thus: 

F T 
(3) (k/p) - - E d JE±i = (_b/p) (mod p) 

Putting (-b/p) = (k/p) = +1 we have: 

F L 
~ ^ p - ^ r - = 0 (mod p) . 

Suppose, now, that p divides L, , jWft. Since L, ,4. , = F , / F , , j W , 
^ F F (p+i)/2 (p+i)/2 P+i (p+i)/2 

p divides F ,,. Theorem 2 tells us that p divides F since (k/p) = +1. * p+i ^ p-1 v v ^ ' 
Applying Lemma 2, we see that p divides F, . which is F2 . 

But F2 = a and so we have a contradiction. 
Lemma 5. If (-b/p) - (k/p) = - 1 , then p j F

( p + 1 ) / 2 • 
Proof. Using (3) with (-b/p) = (k/p) = -1 we have: 

_jpl J±i s o (mod p) 

Suppose that p J F . . . . Therefore pJF _ r By Theorem 2, P ! F
D + 1 » a n d 

so as before, we find that p[F2 = a a contradiction. Hence pJL,D+1w2 • 
Since L = aF + 2bF . any prime divisor common to F and L n n n-iJ J n n 

must divide 2b by property 3). These primes are excluded, and so PfF/I>!_1\/2 

as asserted. 
Lemma 6. If (-b/p) = +1, (k/p) = - 1 , then p | F ( p + 1 ) / 2 . 
Proof. Putting (-b/p) = +1 and (k/p) = -1 in (3) we have: 

F T 
- ^ - ^ H - 2 (mod p) 
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Thus P'fL/D+1\/2 since p fi 2. Suppose, to the contrary, that pfF, +1w2. 
By Theorem 2, p | F _,,, and so p[F , / F , j j W = L, , . , a contradiction. J ' ^ ' p+i ' ^ p+i (p+l)/2 (P+W2 

Lemma 7. If (-b/p) = -1 and (k/p) = +1, then p^F __ . , . 
Proof. Similarly we have: 

!|± i±i B +2 (mod p) 

Clearly 
P/ fF(p-D/2 • 

To distinguish from the Fibonacci case, we shall employ the terminology 
Z(F;a,b;p) for the first non-trivial zero (mod p) of the Primary Sequence with 
parameters a and b. Thus Z(F;l , l ;p) = Z(F,p) following the notation used 
by Brother U. Alfred in [ l ] . Similar remarks apply to Z(L;a,b;p). 

Main Theorem. 
1) If r is a prime and p = 2r + 1 is a prime such that (-b/p) = (k/p) 

= +1, then Z(F;a,b;p) = r. 
2) If s is a prime and p = 2s - 1 is a prime such that (-b/p) = (k/p) 

= - 1 , then Z(F;a,b;p) = p + 1. 
3) If s is a prime and p = 2s - 1 is a prime such that (-b/p) = +1, 

and (k/p) = - 1 , then Z(F;a,b;p) = s. 
4) If r is a prime and p = 2r + 1 is a prime such that (-b/p) = - 1 , 

and (k/p) = +1, then Z(F;a,b;p) = p - 1. 
Proof of the Main Theorem. 
1) Since (k/p) - +1, we see from Theorems 1 and 2 that p [ F , ,where 

d is a divisor of p - 1 = 2r. The only divisors of 2r are l , 2 , r and 2r 
since r is prime. Clearly p |FA = 1 and by assumption p^F2 = a. Lem-
ma 4 tells us that p[F and so Z(F;a,b;p) = r. 

2) Since (k/p) = - 1 , p J F , ,where d[p + 1 = 2s. The divisors of 2s 
are l , 2 , s and 2s. p|F< and p^Fo. Lemma 5 then tells us that p/fF and 

s 
so p must divide F2 S = F , i . e . , Z(F;a,b;p) = p + 1. 

3) Since (k/p) = - 1 , p | F d , w h e r e djp + 1 = 2s. Thus d must be 1, 
2 ,s or 2s because of theprimality of s. p / |F1 and p/fF2. Lemma 6 tells us 
that p | F and SO Z(F;a,b;p) = s. 

s 
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4) Since (k/p) = + 1 , p | F , where d | p - 1 = 2r . Again d mus t be 

one of: l , 2 , r or 2r s ince r i s p r i m e . p f F j and p f F 2 . Lemma 7 te l l s us 

that p/fF and so p mus t divide F = F _ . Hence Z(F;a ,b ;p) = p - 1. 

Specializing the above r e s u l t s to the ca se of the Fibonacci Sequence 

(F = F + + F ; F 0 = 0, F 1 =*• 1) by choosing a = b = 1 and hence k = 

5, we find that p a r t s 1) and 2) of the Main Theo rem a r e now vacuous. Indeed, 

1) r e q u i r e s p to be of the form 20k + 1 o r 9, and thus r to be of the form 

10k + 0 or 4 which cannot be p r i m e ; 2) r e q u i r e s p to be of the form 20k + 

3 o r 7, and thus s to be of the form 10k + 2 or 4 giving only the p r i m e 2; 

3) r e q u i r e s p to be of the form 20k + 13 or 17 requ i r ing s to be of the form 

10k + 7 or 9 which may now be p r i m e and 4) r e q u i r e s p to be of the form 20k 

+11 or 19 and thus r to be of the form 10k + 5 or 9 g'ving p r i m e s 5 and 10k +9. 

Thus we have es tabl ished the following r e su l t : 

Corol lary . Employing the symbol Z(F ,p) to denote the f i r s t non- t r iv ia l 

z e r o (mod p) among the Fibonacci Sequence (F = F + F ; F 0 = 0, F 1 

= 1) we have: 
1) s = 2 and p = 2s - 1 = 3 a r e both p r i m e , and so Z(F ,3 ) = 4a 

2) If s = 7 o r 9 (mod 10) and p = 2s - 1 a r e both p r i m e , then 

Z(F ,p ) = s. 

3) r = 5 and p = 2r + 1 = 11 a r e both p r i m e , and so Z(F,11) = 10. 
4) If r = 9 (mod 10) and p = 2r + 1 a r e both p r i m e , then Z(F ,p ) = 

p - 1 . 

It would be in te res t ing to d iscover other s e t s of p r i m e s which have d e t e r -

minable pe r iods and z e r o s . One such se t i s the se t of Mersenne p r i m e s M = 

2 P - 1, where p i s a p r i m e of the form 4t + 3. Since ( -1 /M ) = p / M ) = - 1 , 

L e m m a 5 t e l l s u s t h a t M ^F24t + 2 a n d s o MJfF 2 g for 0 < g < 4t + 2, o t h e r -

wise we could obtain a contradict ion from Theorem 1. However, T h e o r e m 2 

t e l l s us that M | F 2 p , and so Z ( F , M ) = 2 P . 

A. definite formula for Z(F ,p) i s not to be expected for the s ame r e a s o n 

that one would not expect to find a formula for the exponent to which a given 

in teger c belongs modulo p . However, some p r o b l e m s , such as that of c l a s -

sifying the se t of p r i m e s for which Z(F ,p) i s even (the se t of d iv i so rs of the 

Lucas Numbers (p r 2)) may have pa r t i a l or complete solut ions , and so we 

leave the r e a d e r to invest igate them. 
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3119 
3217 
3253 
3313 
3517 
3733 
3779 
4057 
4079 
4139 
4177 
4259 
4273 
4357 
4679 
4799 
4919 
4933 
5077 
5099 
5113 
5233 

Z(F,p) 

3118 
1609 
1627 
1657 
1759 
1867 
3778 
2029 
4078 
4138 
2089 
4258 
2137 
2179 
4678 
4798 
4918 
2467 
2539 
5098 
2557 
2617 

TABLE OF ZEROS 

P Z(F,p) 

5399 
5413 
5437 
5639 
5879 
5939 
6037 
6073 
6133 
6217 
6337 
6373 
6599 
6637 
6659 
6719 
6779 
6899 
6997 
7057 
7079 
7213 

Z(F,p) 

5398 
2707 
2719 
5638 
5878 
5938 
3019 
3037 
3067 
3109 
3169 
3187 
6598 
3319 
6658 
6718 
6778 
6898 
3499 
3529 
7078 
3607 

7393 
7417 
7477 
7537 
7559 
7753 
7933 
8039 
8053 
8317 
8353 
8677 
8699 
8713 
8819 
8893 
9013 
9133 
9277 
9817 
9839 
9973 

3697 
3709 
3739 
3769 
7558 
3877 
3967 
8038 
4027 
4159 
4177 
4339 
8698 
4357 
8818 
4447 
4507 
4567 
4639 
4909 
9838 
4987 
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SOME BINOMIAL COEFFICIENT IDENTITIES* 
L. CARLITZ, Duke Universi ty, Durham, N o . Carol ina 

Put 

^ A / i + j \ / m - i + j \ / i + n - j \ / m + n - i - j \ 

i=o j=0 

The formula 

/ m + n 
(1) H(m,n) - H(m - l ,n) - H(msn - 1) = (m + n \ 

m / 

was proposed as a problem by Paul Brock in the SIAM Review [1]; the pub-
lished solution by David Slepian established the identity by means of contour 
integration, Another proof was subsequently given by R. M„ Baer and the 
proposer [ 2 ] , 

The writer [3 ] gave a proof of (1) and of some related formulas by means 
of generating functions. The proof of (1) in particular depended on the expansion 

i=oj=ok=oM)V J A k A i A i / 

= {[(1 -v ) ( l - x ) - w + u ( l - w ) ] 2 - 4u(l - v - w ) ( l -W-X)f"" ( 1 / 2 ) 

If we take u = w, v = x we get 
^Supported in part by NSF grant GP-1593, 
(Received by the editors Oct. , 1964.) 

323 
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v* "̂"̂  mm -1 9 9 ~P-'^) 
(3) 22 2^ H ( m ' n ) u v = ( l - u - v) (1 - 2u - 2v +. u - 2uv + v ) 

m=0 n=0 

which implies (1). We now take u = -w, v = -x. Then the left member of (2) 
becomes 

i=0j=ok=0£=0 \ J / \ k A * A i / 

oo oo 

J2J2 H(m»n) wmxn , 
m=0 n=0 

where 

m n 
- V^ V^ i+i/ i + i \/m " i + A/ i + n " i\ fm + n " i " j \ 

"*•">-£!>> t , A i X.- , )( .-. )• 
The right member of (2) becomes 

n \ 1 1 

, i [ ( l - u ) 2 - x 2 ] +4w( l -u + x)( l -u-x)>"2 = ( l -2w 2 -2x 2 + w4-2w2x2 + x4)~2 

It is proved in [3] that 

(1 - 2w - 2x + w2 - 2wx + x 2 ) " ( l / 2 ) = £ £ ( m + j 
m=On=oV m / 

We therefore get 

o o o o N oo oo / m + n \ 2 

(4) £ £ H(m,n)w m x n = ^ E ) * 2 m ^ n 

m=0 n=0 m=0 n=0 ^ m ' 

m n w x 
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so that H(m9n) = 0 if either m or n is odd, while 

(5) H(2m 
m + n \ 

m ) 

If in (2) we take u = v5 w = x9 it is proved in [3] that 

(6) f ; f ) J(m9n)vmxn = (1 - 2 v f ( l / 2 > ( l - 2 x f <l/2>(l - 2v - 2 x f <l/2> 

m=0 n=0 

where 

m n 
J(m 

" / m \ / n \ / m ~ i + k \ / i + n ~ k \ 

- £ £ ( X X > X . ) 
Since 

(1 - 2 v ) ^ l / 2 ) ( l - 2 x f <l/2>(l - 2 v - 2 x f <1/2> = (1 - 2 v f V -tof^l - — ^ 
( (l-2v)(l-2x)) 

-(1/2) 

r r 
v x ^(rh-^rv-axr1 

00 / 2 r \ °° / m + r \ j f / n + r \ 

£ r - £ , ) « n E ( ,)«* 
r=0 X r ; m=0 \ r ' n=0 x r ; 

00 00 

m=0 rs=0 r = 0 ^ X / \ L / \ l / 
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so that 

[Dec. 

min(m9n) *2 
T/ x 0m+n Y ^ o"2^ J(m,n) = 2 > 2 

r=0 : ) ( ; » 

= 2 m + n 3 F 2 
1/2, -m, -n' 

19 1 

in the usual notation for generalized hypergeometric function. This may be 
compared with [3, (4.3)], 

We now take u = -v, w = -x in (2). Then the left member of (2) 
becomes 

J2 X) j ( m ' n ) v m x I 1 » 
m=0 n=0 

where 

^ J ^ •_•_! / m \ M /m - i + k\ / i + n - k\ 
W) = ££H> (XX . X . ) 

As for the right member of (2) we get 

/ ( l - 2 v ) 2 + 4v(l - v + x ) } " ^ ^ = (1 + 4vx ) " ( l / 2 ) 

so that 

/ j / ^ J(m,n)v x = (1 4- 4vx) 
m=0 n=0 

-(1/2) 

Since 
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(1 + 4vx)-<l/2> = f ) ( - l ) n ( 2 n ) ^ ^ . 
n=0 

it follows that 

(m + n\ J (9) J(m.n) = (-1)" I ) 6^ 

It follows from (7) that 

^ , A -^ / m \ / n \ / i + k \ / m + n - i - k \ 

m 3i , _ v 2 y _ x 2 
(i + k)i (m + n - i - k) 

mini 
i=0 k=0 

Thus (9) may be replaced by 

m n /ml (n\ 

(iU) J^JZ^J K ; /m + n V mn 
1=0 k=0 y i + k J 

The left member of (3) Is equal to 

i=o j=o k=o £=o V J / \ k A £ A i / 

i=0 k=0 j=0 ^ ] ' \ 3 / i=0 \ /V 
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00 (X) I 00 

i=0 k=0 I j=0 

^ „ .,, * ( i+ l ) . (k + l ) . . 2 

00 00 
= E Z ^ k | F ( i n } k + l ; l ; v ) ( 2 

i=0 k=0 

where F(i + 1), k + 1; 1; v) is the hyper geometric function. If we put 

m 
G m ( v ) = X ) ^ F ( m - k + ^ k + i ; i ; v ) } 2 

k=0 

then (3) becomes 

2 oo oo oo / m + n \ 
(ID JuXW^-n-^SS 

n=0 m=0 n=0 ^ m ' 

m Multiplying by 1 - u - v and comparing coefficients of u we get 

" / m + n \ 2 

(12) (1 - v)G (?) - G m (v) = J ] ( ) v11 = F(m + 1, m + l ; l ;v) 
n=0 V m I 

This identity is evidently equivalent to (1). 
In a similar manner, it follows from (4) that 

00 00 

£ 2 (-1)iui+kF(i + l 9 k + 1 ; 1; v) F(i + 1, k + 1; 1; -v) 
i=0 k=0 

^ 2mf/m + n \ 2n 

m=0 n=0 
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which yields the identity 

2m . 2 
(13) Y^ H - ) 1 ^ 1 + 1, 2m - i + l f l ; v ) F ( i + l , 2 m - i + l ; l ; -v) = V ( J v 2 n . 

1=0 n=0\ n / 

The identities corresponding to (7) and (9) seem less interesting. 

With a little manipulation the right member of (2) reduces to 

|(1 - u - v - w - x - uw - vx) - 4uvwx}~' ' 

We have therefore 

„ k It Jw x 
oo oo oo oo / i + j \ / j + k \ / k + A /JL + i \ . . 

<"> E E E E , t , ( , ) ^ 
i =0 j=0 k=0 4=0 \ J f X K ' \ 7 X X ' 

= {(1 - u - v - w - x + u w + vx) - 4uvwx \~K / ' 

Note that the right side is unchanged by the permutation (uvwx) and also by 
each of the transpositions (uw) and (vx) and therefore by the permutations of 
a group of order eight. The same symmetries are evident from the left member. 

It maybe of interest to remark that in the case of three variables we have 
the expansion 

(15) 
i=0 j=0 k=0 X 3 f X K ' X 1 ' 

= < ( l - u - v - w ) - 4uvw)> -(1/2) 

Each side is plainly symmetric in u, v, w. As a special case of (15) we may 
2 2 

mention v = eu, w = e us where e9 e are the primitive cube roots of unity, 
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3 -CL/2\ The right member reduces to (1 - 4u ) x ; and therefore 

i+j+k=3n^ J A k A i / \ n / 

while 

n£(7,(- ;•)(•;),- . . , K 
If we expand the right member of (15) and compare coefficients we get 

v f A ( i - M + k - 2 r ) I _ / i + J V , + k V k + 1 ^ 

which can also be written in the form 

(m V W \ ' / W = (i + .1)! (| + k)! (k + i)! 
K ' L-, (i + j + k\ i ! j lk!( i + j + k)! ('Tk) 

In the case of six variables a good deal of computation is required. 
Making use of 3, (5.1) we can show that 

»,.Uh")("T,:"X",;")(^"Hv)' 
^i^22U33U44U5546 

,= { [ l - U j - U g - ^ - U ^ - U ^ l ^ 

- ^UgU^UgUe}""*" 
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On the right of (17) the bilinear terms satisfy the following rule: in the cycle 
(123456) adjacent subscripts are not allowed; thus, for example u u2 and 
UL ufi do not appear0 

If we take u^ = u ^ u^ = ug , ug = u g , the right member of (7) reduces 
to 

{[1 - 2 ^ - 2u2 - 2u3 + ( ^ + u2 + u3) 2 - 2u 1 u 2 u 3 ] 2 - 4ufu2u2} 

= {[(l - ^ ~U2 - U ^ - ^ d - ^ "Ug -Ug)2 . ^ U g U g f ^ 2 ) 

in agreement with [3, (5.2)]. 
For five variables we find that 

V * ° 5 l 5 

= { [1 - ^ - u2 - u 3 - u 4 - u5 + V 3 + V4 +V4 + U 2 U 5 + V 5 ] 2 " 4 U 1 U 2 V 4 U
5 } " ( 1 / 2 )

| 

The bilinear terms on the right are determined exactly as in (17); in the cycle 
(12345) adjacent subscripts are not allowed. 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by V . E. HOGGATT, JR. , San Jose State College, San Jose, Cal i f . 

Send all communications concerning Advanced Problems and Solutions to 
Raymond Whitney, Mathematics Department, Lock Haven State College, Lock 
Haven, Pennsylvania. This department especially welcomes problems believed 
to be new or extending old results. Proposers should submit solutions or other 
information that will assist the editor. To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within three months after 
publication of the problems. 

H - 9 3 Proposed by Douglas Lindl University of Virginia/ Charlottesville, Va. ( C o r r e c t e d ) 

that _ 
n-1 ?«=u(3 + 2 o o s^) 

where n is the greatest integer in n/2 . 
H - 9 6 Proposed by Maxey Brooke, Sweeny, Texas, and V. E. Hoggatt, Jr., San Jose State 

College, San Jose. Calif. th Suppose a female rabbit produces F (L ) female rabbits at the n 
time point and her female offspring follow the same birth sequence, then show 
that the new arrivals, C , (,D ,) at the n time point satisfies 

and 
C -L.Q = 2C M + C C- = 1 C0 = 2 

n+2 n+1 n 1 2 

D _ = 3D + ( - l ) n D, = 1 n+1 n x 7 1 
H - 9 7 Proposed by L.Cariiti, Duke University, Durham, N.C. 

Show 

l(*)V|0H>"-k(*)(°;k)vk 

332 
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H-98 Proposed by George Ledin,Jr.,San Francisco, Calif. 

If the sequence of in tegers Is designated as J , the r ing identity as I, 

and the quas i - inve r se of J as F , then (I - J)(I - F) = 1 should be sat isf ied. 

F o r fur ther information see R* Ge Buschman, "Quas i I nve r se s of S e q u e n c e s / ' 

Amer i can Mathemat ica l Monthly, VoL 73 , No. 4 , III (1966) p . 134, 

Find the quas i - inve r se sequence of the in tegers (negative, posi t ive , and 

zero)o 

H-99 Proposed by Charles R. Wall, Marker Heights,'Texas. . 
Using the notation of H-63 (April 1965 FQJ , p„ 116), show that if a — 

( l + v S ) / 2 , 
r | V 5 F n c " n = 1 + 5 : e D n ( n " " 1 ) / 2 F ( n 9 m ) - " n ( m + 1 > 
n=l n=l 

H L «"n = 1 + g (-i)n<n+1>/2 F(n,m)«-n<m+1> . 
n=l n n=l 

where F F o e o F 
^, v m m - 1 m-n+1 
F(n ,m) = :„ F _ e F 

* l r 2 n 
H-100 Proposed by D.W. Robinson, Brigham Young Univ. ,Provo, Utah. 

Let N be an integer such that F n < N < F n + 1 , n > 1. Find the m a x i -

mum number of Fibonacci n u m b e r s r equ i r ed to r e p r e s e n t N as an Algebra ic 

Sum of these numbers,, 

H-101 Proposed by-Harlan Umansky, Cliff side Park, N. J.f and Malcolm Tollman, 
Brooklyn, N.Y. 

Let a , b , c , d be any four consecut ive genera l ized Fibonacci number s (say 
H 1 = p and H 2 = q and H n + 2 = H n + 1 + H n , n > 1), then show 

(cd - ab) 2 = (ad)2 + (2bc)2 

Let A = L k L k + 3 ? B = 2 L k + 1 L k + 2 ? and C = L £ k + 2 + Ug^. Then show 

A 2
 + B 2 = C 2 .• 

H-1Q2 Proposed by J. Arkin, Suffern, N. Y. 

m 
Find a c losed express ion for A in the following r e c u r r e n c e re la t ion , 

o 

+ 1 = A - A o - A „ - A K + A - + A Q + A Q - A 1 0 , m m - 3 m - 4 m - 5 m-7 m - 8 m - 9 m - 1 2 ' 

where m = 0 , 1 , 2 , ° « ° and the f i rs t t h i r t een va lues of Aft through A - 2 a r e 
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1 ,1,2,3,5,7,10,13,18,23,30,37, and 47, and [x] is the greatest integer 
contained in x. 

SOLUTIONS 
EULER AND FIBONACCI 

H-54 deposed by Douglas lind, University @f Virginia, Charlottesville, Va. 

If F is the n Fibonacci number, then show that n 9 

<A(F ) •• 0 (mod 4), n > 4 

where <f>(n) is EulerTs function, 
' Solution by John L.Brown Jr., Penn. State Univ., State College, Pa. 

It is well known that m|n implies F F . Further, F = 3 (mod 4) 
^ m| n 9 n \ / 

implies n = 6k - 2 for k = 1 ,2 ,3 ,°°° . Therefore, if F is a prime and n 
^ 4, F must be of the form 4s + 1 with s a positive integer, [.Otherwise., 
F ,n > 4) would be of the form 4r + 3 and hence n = 6k - 2 with k > 2 
implying that FQT 11F , contrary to assumption.] Since <£(p) = p - 1 for any OJK—XJ n 
prime p, it is therefore clear that F prime with n > 4 implies $(F ) = 
</>(4s + 1) = (4s + 1) - 1 = 4s = 0 (mod 4). 

Now, for any integer n, 

~"K)(*-i)-H)-
where p 1 , p 2 , • • • ,p, are the distinct prime divisors of n. Therefore, for n 
= ab with a and b integers ̂  

*(ab) = a b / l - — \ ( 1 - — | *** f 1 - — 1 , 

where p 1 , p 2 , a • ••, p, are the distinct prime divisors of ab„ Since the distinct 
prime divisors of either a or b separately are included among those of ab, 
it is obvious that either <£(a) = 0 (mod 4) or $(b) = 0 (mod 4) necessarily im-
plies 0(ab) = 0 (mod 4). 

We shall now prove by an induction on n that $(F ) =. 0 (mod 4) for n 
> 4. First , the result is easily verified for n = 5,6,o < , o ,10o Assume as an 
induction hypothesis that it has been proved for all n < t where t is an integer 
> 10. Then, if F. - is prime, we have $(F _ = 0 (mod 4) by the result of 
the first paragraph,, Otherwise, we distinguish 2 cases. If t + 1 is composite, 
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t + l may be written as t + 1 = m- m 2 where m and m^ are integers both 
> 1§ and at least one of thems say m- for definiteness5 is >5 and < t„ Then 

F mi F t+ l f s o t n a t Ft+i = F mi * Q° Since * ( F m i ) = 0 (mod-4) by the induc-
tion hypothesis, we conclude from the remarks of the second paragraph that 
<£(F, -) = ^ ( F m i • q) = 0 (mod 4) as required, 

In the alternative case where t + 1 is prime9 we note that F , . - is odd 
(otherwise t + 1 would be divisible by 3) and composite„ Hence F, ^ has only 
odd prime factors 9 say p 1 , p2 ? • • e , p, , and 

t)K)-R)-*<Ft+i> = Ft+i y1 

Since k > 2, it is clear that 

*(Ft + 1) = ^ i _ ( p ^ - D ^ - l ) . - ^ - ! ) 

is divisible by 4„ Thus in all cases, *(F t + 1) = 0 (mod 4) and the proof is com-
pleted by mathematical induction,, 
Also solved by the proposer. 

H -56 Proposed by L.Cariitz, Duke University, Durham, N.C. • 

Show 

f K _<VW k>1 
n=l . ^ FA 

Solution by the Proposer. 

1 1 Fn+3 " F n _ 2 
F n F n+l F n+2 Fn+lFn+2Fn+3 FnFn+lFn+2Fn+3 FnFn+2Fn+3 

so that 

2 V n + 2 F n H - 3 V 4 = ^ ( F / n + 1 F ^ 2 F n + 3 -rn + 1Fn + 2Fn + 3j = 4' 
F ?F 

1 1 =. n+4 ~ n 
F F F F ~ F F F F ' F F F F F 

n n+1 n+2 n+3 n+1 n+2 n+3 n+4 n n+1 n+2 n+3 n+4 
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3 
FnFn+2Fn+3Fn+4 

so that 

,n+l 00 n °° / n 

Z 2 n
 = Y* / 2n 

F F ^0F ^0F ,_. L FF MF , J 
1 n n+2 n+3 n+4 \ n n+1 n+2 ] 

2X 

n+3 Fn+1 Fn+2 Fn+3Fn+4 

so that 

F 1 F 2 F 3 F 4 3 

F k 
F n+l F n+2 ' ° ' F n+k+l 

F k 

F - F F n+k+1 *k n 
n n+1 n+k+1 

F k + i 
F F F • • • F n n+2 n+3 n+k+1 

F k F T 
k+1 L-J F F F • • • F F F e * • F K L , n n+2 n+3 n+k+1 *3*4 *k+l n=l 

which is equivalent to the stated result. 

ONE MOMENT, PLEASE 

H-57 Proposed by George Ledin, Jr., San Francisco, Calif. 

If F is the n Fibonacci number, define 

n 
G n = I>Fk / 5>k 

. k=l / / \ k=l 

and show 
(i) llm (Gn + 1 - Gn) = 1 

n-^oo 
(ii) Km (G ^ / G ) = 1 
x ' n—>ool n+1 n ' 
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Solution by Douglas Lindt University of Virginia, Charlottesville^ Va. 

(i) Let H be the generalized Fibonacci numbers de 
+ q, H = H + H 0 . We may show by induction 
(i) Let H be the generalized Fibonacci numbers defined by H = p, H = p 

n JL u 

R n = Z mk = (n + 1)H: 
k=l 

n+2 " Hn+4 + H 3 

Sn " X X " Hn+2 " H2 
k=l 

(The first is problem B~40, Fibonacci Quarterly, Vol. 2, No. 29 p. 154.) Let 
G = R /S . Then n n n 

L = lim (G _ - G ) x n+1 n' 
n—>c» 

= lim 
n—>oo| 

(n + 2)Hn+3 - Hn + 5 + H3 (n + l )Hn + 2 = H n + 4 + H3 

Hn+3 ' H2 Hn+2 " H2 

and so by dividing we get 

(1) L = lim [ 
n—>ooj 

n + 2 - H _,_ /H J__+H,/H _ n + l - H _, , /H _,0 + H0 /H ^ n+5 n+3 3 n+3 n+4 n+2 3 n+2 
1 " H2 / Hn+3 1 " H2 /Hn+2 

Horadam, "A Generalized Fibonacci Sequence," American Mathematical 
Monthly, Vol. 68 (1961), pp. 455-459, has shown 

(2) lim Hn + k /H n = aK, a = (1 + V5)/2 
n—>oo 

and it is easy to prove 

(3) lim c /F = 0, c ? r constants, 
n—>oo 
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so that 
L = lim (n + 2 - H _ /H ^Q - n - 1 + H _,, /H ^ 0 ) 

^ x n+5 n+3 n+4 n+2' 
n—>oo 

2 2 = 1 - a + a = 1. 
(ii) By dividing the numerator and denominator of the main fractions in (1) by 
n, forming their quotient j applying (2), (3), and the easily proved lim 1/nF 
=0,r constant, we find lim (G + t /G ) = 1. 

Putting p = 1, q = 0 in the above gives the desired results of the problem. 
Also solved by John L Brown Jr., Penn. State Univ., State College, Pa., and the Proposer. 

COMPOSITIONS ANYONE? 

H-58 Proposed by John L.Brown Jr.,Penn. State Univ., State College, Pa. 

Evaluate, as a function of n and k, the sum 

V V ' " + i k + 1 = n F 2 i l + 2 F 2 i k + 2 f t ' ' F2ik+2F2ik+l+2 > 

where L , i 2 , io, • • •, L - constitute an orderedset of indices which take on the 
values of all permutations of all sets of k + 1 non-negative integers whose sum 
is n. 

Solution by' David leitiin, Minneapolis, Minn. 

If V(n,k) is the desired sum, then 
lk+1 00 

£ V(n,k)xn = 
n=0 £ F2n+2xI1 

n=0 n 0 _,_ 2,k+l (1 - 3x + x ) 
Since the generating function of the Gegenbauer (or ultraspherical) polynomial, 
C(a)(u), is oo , , , 

E Cf (u)xn = 1—^ , 
n=0 (1 - 2ux + x ) 

we see that V(n,k) = Cf*> 
where 

Thus 

(i) 
c(a),Bv = _A_ ^ / - n m I > + n - m) 0 ,n-2m 
C n (M) T(a) ^ 0

 ( X) m!(n - 2m)! ^ M ) 

fn/2] / k + n - m \ / n - m \ „ 0w> 
V(n,k) - E J ( - l ) m ( ( 3 n " 2 m 

m^O • V k / \ m / 

Also solved by the proposer,. 
* • * * • 



FIBONACCI ON EGYPTIAN FRACTIONS 
M 0 Dunton and R.Ee Grlmm^Sacramento State Col lege, Sacramento,,Calif. 

When J6 Je Sylvester wrote in [ l ] of his method for expressing any 
rational number between 0 and 1 as a sum of a finite number of unitary frac-
tions, he was not aware that the method was known to Leonardo Pisano in 1202. 
B„ M8 Stewart in [2] has a chapter on Egyptian fractions, but makes no men-
tion of Fibonacci. It is hoped that the following translation will make it pos-
sible for Fibonacci to speak for himself8 In preparing the text which is to be 
incorporated in a complete, new edition of the Liber Abacci, we have used 
pp9 77-83 of Baldassare Boncompagnifs Scritti di Leonardo Pisano, Vole 1 
(Rome, 1857)e We have consulted microfilms of the manuscripts listed in the 
bibliography in attempting to correct apparent e r rors . At the same time, we 
have tried to reproduce Fibonacci1 s style as closely as seems consistent with 
readability. 

• • • 

In this chapter, we explain how to break up rational numbers into unitary 
fractions so that you may be able to distinguish more intelligently about frac-
tions having any denominator, when considering what part or parts of a unit 
integer they are, 

This work is divided into 7 sections, the first of which is when the larger 
number, which is below the bar, is divided by the smaller. The rule for this 
category is that you divide the larger by the smaller andyou will have the part 
which the smaller is of the larger,, E. g. , we want to know what part 3/12 is 
to a unit integer. If 12 is divided by 3, the result is 4, for which you say 1/4, 
which is 3/12 of a unit integer. In the same way 4/20 is 1/5 of a unit integer; 
5/100 is 1/20, since 100 divided by 5 gives 20, You should reason in the same 
way about similar cases, 

Now this category is divided into 3 parts , the first of which is simple, 
the second compound; the third is called compound reversed,, The simple is 
the one I just mentioned, The compound is when the simple has to do with the 
parts of a second number, as in the case of 

339 
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2 
4 
T 

since 2/4, which belongs to the first simple category, is divided by 9; where-
fore, 

2 

9 

becomes 

while 

1. 
2 _ 1 
9 18 

becomes 

and 

becomes 
10 

1. 
3 

10 ' 
since 3/9 reduced is 1/3, which compounded with 1/10 produces 

1 
3 

10 ; 

and you should reason in this same way about similar cases. The first cate-
gory compound reversed is 

3/5 
9 

*This is a 20th-century interpretation of what Leonardo writes as 20/49. We 
have consistently made such conversions in this translation. 

**Notice his awareness of the commutative property! 
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this being 

3 
9 
5 

which equals 
1 

5 

reason about 
4 

8 
in the same way; it reverses to 

becomes 

10 = 2_ 
9 & 

The second category is when the larger number is not divisible by the 
smaller, but from the smaller can be made such parts that the larger is divided 
by any of the parts themselves. The rule for this category is that you make 
parts of the smaller by which the larger can be divided; and let the larger be 
divided by each one of these parts, and you will have unitary fractions which will 
be the smaller of the larger. E0 g. , we want to separate 5/6 into unitary frac-
tions. Since 6 is not divisible by 5, 5/6 cannot be of the first category; but 
since 5 can be partitioned into 3 and 2, by each of which the larger, namely 6, 
is divisible, 5/6 is proved to belong to the second category. Hence, when 6 is 
divided by 3 and 2, the result is 2 and 3; for the 2, one takes 1/2, and for 3, 
take 1/3. Therefore 5/6 = 1 /3+1 /2 of the unit integer; or otherwise, by 
separating 5/6 into 3/6 and 2/6, each will be one of those two fractions: 3/6? 

belonging to the first category, equals 1/2, and 2/6 equals l / 3 of one; and 5/6 
equals 1/3 + 1 / 2 , as we said above. Likewise, if you resolve 7/8 into 4/8, 2/8 
and 1/8, you will have 1/2 for V 8 and 1/4 for 2/8 and 1/8 for 1/8, i. e. , for 
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7/8 you will have 1/8 + 1/4 + 1/2. Now this second category has in like manner 
a compound part and a compound reversed p a r t 

3 
4 
10 

belongs to the compound part, since 3/4 according to the second category is 
1/4 + 1/2; wherefore for 

3 
4 

10 

one gets the compounds 

1 1 
2 , 4 

To" a n dTo ' 

i . e . , 1/20 and 1/40. Likewise, 
5 1 . 1 -
8 2 8 

- r - becomes — and -jr-

since 5/8 = 1/2 + 1/8; but for 

8 
10 

since it belongs to the first category reversed, you will not resolve into 

I I 
io and "To ' 

since by the first category it should be reversed into 

_5_ 1 
10 2 

and this will take place because of the affinity which 5, which is above the 8, 
has for 10. Now regarding the compound reversed part of this category, an 

5 0 * Recall that in his notation it reads 
8 10 
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example is 

3 JL I L 
, which is reversed into - ~ - = -|— + 

10 ' 5 5 5 s 

i. e. , 1/25 + 1/50; because 3/10 is reduced in simple form into 1/5 + 1/10, 
therefore 

_3_ 
10 
5 

compounded will be resolved into 

1 .1 
5 , 5 

"5" a n d To 
In like manner 

5 i l l , 
7 8 2 L 8 

— glVeS T" = — + — ; 

and you should reason in this way in similar cases. But since we recognize 
that the parts of the first and second category are necessary before the others 
in computations, we take pains to show at present in certain tables the break-
downs of the parts of certain numbers, which you should be eager to learn by 
heart in order better to understand what we mean in this section. 

The third category is when one more than the larger number is divisible 
by the smaller. The rule for this category is that you divide the number which 
is more than the larger by the smaller, and the quantity resulting from the 
division will be such part of the unit integer as is the smaller of the larger, 
plus the same part of the part which one is of the smaller number. E. ge , we 
want to make unitary fractions of 2/11, which is in this category since one more 
than 11, i. e . , 12, is divisible by 2, which is above the bar; since 6 is produced 
by this division, the results are 1/6 plus 1/6 of 1/11, i . e . , 

I 
6 
11 

as the unitary fractions of 2/11.' In the same way, for 3/ l lyouwil l have l /4and 
*To conserve space we have omitted his table of breakdowns for all rational 

numbers between 0 and 1 having denominators 6, 8, 12, 20, 24, 60, or 100. 
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1. 
4 
11 1. 6 0 

1 
44 

And for 4/11 you will have 

1 
JL + _L 
3 11 

» **e-» 33 3 

and for 6/11 you will have 

1 
2 
11 i 0 e 0 , 

1 
22 

and for 5/19 you will have 
1. 
4 

19 
io e„ 76 4 

since 5 which is above 19 is 1/4 of 20, which is 1 + 19„ The third category as 
well is also compounded twice, as in the case of 

2 
3 
7 

likewise 

which is 

4 
7 
9 -4-

1 
2 
7 

+ 

. + 

1 
14 
9 

1 
6 
7 

> 

- , since 

4 since - y -

2 
3 

i s 

i s 

1 
14 

1 
6 

+ 

+ 

1 
2 

And this same category is also reversed, as 

3 
7 

11 o r for 
3 
7 

11 i s 

_3^ 
11 
7 

The 3/1.1 by the third category is l /44 + 1/4; wherefore 
_3_ 
11 
7 i s 

1. 

7 

1 
44 Likewise is reversed to 

which belongs to two compounded categories, namely the second and third. 
According to the second compounded category 
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3/8 l s 1 /l . l\ _ 1/4 1/8 .* 
T̂  1S 7 ^8 + 4 J " ~T~ + "T~ ; 

also, according to the third category compounded, 

7 1S 7 \ 2 4 + 3 / » 

since 3/8 results in 1/24 + 1/3; and you should reason in the same way about 
similar cases. 

There are times when from this same category two parts can be made 
from the smaller number above the bar, by either of which one more than the 
larger Is divided without remainder, as in 8/11 and 9/ l l 8 For two parts can 
be made from 8/11, namely 6/11 and 2/11; whence for 6/11 we have, accord-
ing to this reasoning, two unitary fractions, namely 1/22 + 1/2, and for 2/11 
we have 1/66 + l/6„ Therefore for 8/11 we have 1/66 •+ 1/22 + 1/6 + 1/2. 
Likewise, for 9/11, through its being resolved into 6/11 and 3/11, we have 

and for 10/11 we have 

± + ± + I + I 
44 22 4 2 

33 22 3 2 

since the 10 above the 11 Is 1/3 + 1/2 of 12, which is one more than the 11 
under the bar„ 

The fourth category is when the larger is prime and one more than the 
larger is divided by one less than the smaller, as 5/11 and 7 / l l 9 The rule for 
this category is that you subtract one from the smaller, from which you will 
make one unitary fraction such as the number will be which is under the bar; 

I I 0 *Note the distributive law! His notation is Q A „ . 

**It appears that he is trying to generalize. If so, he must have recognized a 
flaw; for in the next section he uses a different approach 
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and then you will have as remainders parts of the third category, as in the case 
when you subtract l / l l from 5/11, with the remainder being 4/l l„ For this, 
by the third category, you will have unitary fractions l /33 + 1/3; with the 
above-written 1/11 added on, the result is 

_L + A + I 
33 11 3 

In the same way for 7/11 you will have 

and for 3/7 you will have 

and for 6/19 you will have 

JL + JL + I 
22 11 2 

28 7 4 

- 1 + -L + I . 
76 19 4 ' 

and for 7/29 you will have 

a 
_5 + I l e ' J L + JL + I 
29 5 ' B " 145 29 5 e 

The fifth category is when the larger number is even, and one more than 
the larger is divisible by two less than the smaller. The rule for this cate-
gory is that you subtract 2 from the smaller number, and this 2 will belong to 
the first category, but the remainder will belong to the third, as in 11/26 from 
which if you subtract 2/26, which equals 1/13 according to the rule of the first 
category, the remainder is 9/26, which equals 

1/3 1 1 1 
26 3 ' *s# ' 78 3 

To this add l / l 3 ; the result will be 

, A. + ± + I 
78 13 3 

as the unitary fractions of 11/26; and in the same way for 11/62 you will have 
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1/7 1 1 
62 31 7 # 

The sixth category is when the larger number is divisible by 3, and one 
more than the larger is divisible by 3 less than the smaller, as in 17/27. The 
rule for this is that from the parts themselves you will subtract three parts , i. e„, 
that you will subtract 3 from the lesser. These three parts will belong to the 
first category, the res t to the third, as when from 17/27 you subtract 3/27 
(1/9 according to the first category of our topic); and to 14/27, which by the 
third category is 1/54 + 1/2, adding the 1/9 written above, you get 

54 9 2 

as the parts of 17/27. In the same way for 20/33 you will have 

66 11 2 ' 
The seventh category is when none of the above-described categories 

occurs. The rule for this category is very useful, since through it the parts 
of certain above-described categories, viz, , the second, fourth, fifth and sixth 
categories, are occasionally found better than through the rules of those cate-
gories themselves. Hence the parts of the four categories themselves are 
always to be derived through this seventh rule, so that you can more precisely 
discover the neater parts , either through the rules of the categories themselves 
or through the present rule. The rule for this category is that you divide the 
larger number by the smaller; and when the division itself is not even, look to 
see between what two numbers that division falls. Then take the larger part, 
and subtract it, and keep the remainder. If this will be from one of the above-
described categories, then you will take the larger part of the remainder itself 1 
and you will do this until the parts of one of the above-described categories 
remain, or until you have all unitary fractions. E. g . , we want to break down 
4/13 into unitary fractions. Now 13 divided by 4 falls between 3 and 4; where-
fore 4/13 of the unit integer is less than 1/3 and more than 1/4 of it; wherefore 

* By larger part, he evidently means the unitary fraction with the larger de-
nominator. Iii the example this would be 1/4. 
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we perceive that l / 4 is the largest unitary fraction that can be taken fro m4/ l3 s 

For 13/13 makes the unit integer; wherefore one fourth of 13/13, i. e„, 

13 
4 x 1 3 

is 1/4 of the unit integer; wherefore subtract 13/(4 x 13) from 4/13, and the 
remainder will be 3/(4 x 13), which by the second category is 

JL / I + 1\ 
13 ^4 21 13 14 ' 2 J ' loe°9 52 + 26 

Or since 3/(4 x 13) is 3/52, which by the rule for the second category is in like 
manner l /52 + l /26, we thus have for 4/13 three unitary fractions, namely 

1 1 1 
52 26 4 

Otherwise, you can find the parts of 3/52 by this seventh rule, namely by divid-
ing by 3; the result is 17, and more; wherefore l / l 8 is the largest part which 

8 is in 3/52. Consequently, 52 divided by 18 gives 2 + <r ; if this is taken from 3, 
the remainder is 

Therefore for 3/52 we have 

1 1 
9 x 52 o r 468 

JL + JL 
468 18 

wherefore for 4 / l 3 we have 

J L + . 1 + I 
468 18 4 • 

Likewise, you will make unitary fractions of 9/61 in the following way. 
Divide 61 by 9, and the result will be 6, and more; wherefore you will have l / 7 
as the largest unitary fraction of 9/61e And so you will divide 61 by 7, with 
the result 8 + =-, which are sixty-first parts of one; subtract this from 9/61, 
and the remainder will be 



1966] FIBONACCI ON EGYPTIAN FRACTIONS 349 

2 . _2__ _2_ . _ 1 _ , 1 
7 x 6 1 ' ** 6° s 427 ; t M S 427 1S 214 anCl 214 x 427 ' 

according to the third category; therefore 9/61 is 

214x427 214 7 

Since 2/(7x61) by the compound third category results in 

4 x 6 1 2 8 x 6 1 f 

consequently for 9/61, the result is 

* 
_ i _ +.L. + I 
1708 244 7 • 

Likewise, we want to demonstrate this same method concerning 17/299 

If 29 is divided by 17, we obtain 1, and more; wherefore we perceive that 
17/29 is more than half of the unit integer; and it is to be noted that 3/3, 4/4* 
5/5, or 6/6 makes the unit integer; in like manner 29/29 makes the unit integer, 
If we take half of it, v e . , 14-/29, and take this from 17/29, the remainder 
will be 2 | / 2 9 , i. e.V 5/58; wherefore 17/29 is 5/58 + l /2 e Of this 5/58 one 
must make unitary fractions, namely by this same category; wherefore divide 
58 by 5, and the result will be 11, and more. Whence one perceives that l / l 2 
is the largest unitary fraction that is in 5/58; whence one should take l / l 2 f rom 
58/58, i9 e e , from the integer, with the result 4 | /58 , which is less than 5/58 
by 1/(6 x 58), i. e e , 1/348; and so you will have for 17/29 three unitary frac-
tions, namely 

1 l 1 , 1 
348 12 2 

*By compound third category he means factor out l /61 from 2/(7 x 61) and 
apply the third category method to 2/7e This gives 2/7 = l /28 + l / 4 , and so 
2/(7 x 61) = 1/61 (1/28 + 1/4) = l / (61 x 28) + l / (61 x 4).' 
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Now there is in similar cases a certain other universal rule* namely, that 
you find a number which has in it many divisors like 12, 24, 369 48, 60, or 
any other number which is greater than half the number under the bar, or less 
than double it, so that for the above-written 17/29 we take 24, which is more 
than half of 29; and therefore multiply the 17 which is above the bar by 24, and 
it will be 408; divide this by 29 and by 24, with the result 

24 

Then see what part 14 is of 24; the result is 

I+1o r -h+ 2 •> 
keep these as parts of 17/29; and again see what part the 2 which is above the 
29 is of 24; the result is 1/12 of it, for which you will have ( l / l2) /29 among 
the parts of 17/29. Since 2/29 of 1/24 = 2/24 of l /29, which is namely 1/348, 
therefore for 17/29 you will have 

1 , 1 , 1 JL_ . JL + I 
348 4 3 , 0 r 348 12 2 * 

as we found out above. 
Likewise, if you multiply the 17 which is above the 29 by 36, just as you 

multiplied it by 24, and divide in a similar way by 29 and by 36, the result is 

21-2-
- g f S - , the 21 being J + f or ^ + f of 36; 

and 3, which is above 29, is 1/12 of 36; and from the 3 which is above 29, the 
result will be 

L 
12 .. 1 i . e. . 29 > * " 348 ' 

and so you will have again as the unitary fractions of 17/29, 

1 1 1 _J_ . JL + I 
348 4 3 9 0 r 348 12 2 • 
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And if you want to know why we multiplied by 24 that 17 which is above the 29, 
and divided the product by 29, you should know that of 17/29 we made twenty 
fourths because 24 is a number composed of many numbers, whence its parts 
derive from the first and second category* For 17/29 has been found, as p r e -
viously said, to be 

29 . . . . 14 of which — 24 s v x W11^ix 24 

which is at the head of the bar, is expressed by the second category as 

1 , 1 1 , 1 
4 + 3 or - + -

and for the remainder ^ /24, it is expressed by the first category reversed as 

JL JL 
24 . 12" 
29 > J"^> 29 

Likewise, when you have multiplied 17 by 36 and divided by 29* then you have 
made thirty sixths of 17/29* For 29/29 is equal to 36/36; wherefore the ratio 
which 29 is to 36 will also hold true for 17 to the fourth number; wherefore we 
multiplied the third number* namely 17, by the second, namely 36, and divided 
the product by the first, because when the four numbers are proportional, the 
multiplication of the second by thethirdis equal to the multiplication of the first 
by the fourth, as has been shown by Euclid* 

Likewise, if you want to break down 19/53 into unitary fractions, although 
it belongs to the fourth category, when one more than 53 is divided by one less 
than 19, whence for 19/53 you will have 

JL + -L + 1 , 
159 53 3 9 

let us next show in what way it should be done by the seventh category* Now 53 
divided by 19 falls between 2 and 3; wherefore we have l / 3 as the largest unitary 

* In his notation it reads ^ r 04° S i n c e n e reads numbers from right to left, 
TJT is at the beginning or head of the fraction. 
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fraction which can be taken from 19/53;and subtract a third of 53, namely 1?|, 
from 19, with the remainder being l|-, i„ e . , l | - /53; therefore the unitary frac-
tions of 19/53 are 

159 53 3 ' 

as we discovered through the rule of the fourth category. 
Now by this rule one cannot so easily make the unitary fractions of 20/53. 

Hence you will find them through another rule, viz. , by multiplying 20 by some 
number which has many divisors, as we have said previously. Now if 20 is 
multiplied by 48 and divided by 53 and then by 48, the result is 

18 — 
-—• , the 18 being | + J of 48, or ^~ + | ; 

and the 6 which is above the 53 is l /8 of 48; wherefore it will be -J /53 , since 
the 6 is above the 53; therefore for the unitary fractions of 20/53 you have. 

1 + _L + I . 
53 24 3 5 

and you should strive to operate in this way in all similar cases; and when you 
cannot have through any of the above-mentioned rules convenient unitary frac-
tions of any similar cases, you should strive to find them through one of the 
others; and one should note that there are many fractions which should be 
adapted before they are broken down into unitary fractions, namely when the 
larger number is not divided by the smaller and has in turn some common di-
visor, as in the case of 6/9, each of which numbers is exactly divided by 3; 
wherefore you will divide each of them by 3, with the resulting 2 above the bar 
and 3 below it, i. em, 2/3, which belongs to the third category, when one more 
than 3 is divisible by 2, whereby they are l /6 + l /2 . It is the same in the case 
of 6/8, each of which numbers is divisible by 2, whence they are reduced to 
3/4, equal to l /4 + l /2 by the second category; and you should reason in this 
way about similar cases. And if several fractions are under one bar, they 
should be reduced to one fraction beneath the bar. as in the case of 3 | / 8 , 
which is 7/16. And they are reduced as follows: 3, which is above the 8, is 
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multiplied by 2, and 1 is added; we put it down, and thus we have 7; and you 
will multiply 2 by 8, which is under the bar, and get 16; this 16 we put under 
the bar 9 and above it we put the 7# 

Likewise, sf 
4 T 71 
-—- is 135 9 

which is found according to the above-written method, namely by multiplying 
the 4 above the 9 by 5 and adding 3; this product is multiplied by 3 and 2 is 
added; and so we have 71 above the bar; and from multiplying 3 by 5 and that 
product by 9 we have 135 below the bar; this 71/135 according to the seventh 
rule is broken down into 

1 1 1 
270 45 2 

And it should be noted that when by the seventh rule you take the largest 
part, which the smaller number will be of the larger, and leave the unitary 
fractions that remain, the result is less than elegant You will leave that 
larger part and work with the other following part , which is less than it; so 
that if the larger part is 1/5, you will work with l /6 ; and if it is l / 7 , you will 
work with 1/8. E. g . , in 4/49 the largest part is l / l 3 ; when this is takenfrom 
4/49, the remainder is 

1 J-. 
13 3 319 1 
— , namely - ^ , which by the fourth category is - ^ + - ^ 

therefore, for 4/49 we have 

637 319 13 
which is less than elegant; wherefore you will abandon l /13 and work wi th l / l4 ; 
when this is taken from 4/49, the remainder is 

^ • 2 A * 4 \ 1 ^ . 1 
— , i , e . , - ; a n d s o f o r — we have — + — , 

2 3 4 *In his notation • 
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which are more elegant fractions than those previously found. They are found 
also in another way, namely by dividing the 4 above the 49 by a divisor of 49, 
with the result f / 7 , which by the third category compounded is 

I (± + IV 
7 \14 2 / ' 

1 l_ 
2 i 14 1 for - is — , and — is — 

and thus for 4/49 we have in like manner l /98 + l / l 4 . 
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CORRECTION 

In "An Almost Linear Recurrence," by Donald E. Knuth, April 1966 Fibonacci 

Quarterly, p. 123, replace c by lnc in Eq. 13. 

In "On the Quadratic Character of the Fibonacci Root," byEmmaLehner, April 

1966 Fibonacci Quarterly, please make the following corrections: 

p. 136, line -9: This line should end in 0. 
p. 136, line -5: Replace 5 by Oy/5. 

* * * * * 



BINOMIAL SUMS OF FIBONACCI POWERS 
JOHN WESSNER, Melbourne, Florida 

At the impetus of Professor Hoggatt, a general solution was obtained for 
summations of the form 

n 

k=0 V k / 
|<±l)kI* 

\ IT f 

k==C 

where b - 2m. Some suggestions will be made for attacking the problem for 
odd b, and it is hoped that a complete solution will be forthcoming, 

Let us first consider the case where b = 4p. If a = 1/2(1 + y/E), @ = 
1/2 (1 -V5) . F M a k + / 3 k ) / ( a - j 8 ) , and L, = otk + j3k, then 

k=0 W k=0 W 

11 / \ P̂ /A \ 

= s-2p X T ) E ( ) <-1)j(k+1) [(«4p_23)k+(^4p"2j)k] 

+ ( 4 P ) ( -D 2 p ( k + 1 ) | 

"l'(r)^!£(;)»v-|"-o-= 5 - 2 P 

2p-l 

j=0 XJ ' I k=0 

where we have made use of the fact that 

so-*-k=0 
355 
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Hence, we have reduced the problem to one involving Lucas numbers and 
no powers. We must digress to obtain the required Lucas formulas. 

Consider 

— . - E C ) 1 * - £ ( ; ) « • * • . * > 
a + « q ) n + (i + ^f 

If q = 2g, then 

L(n,l ,2g) = •j(«i3)g(-l)g + " 2 g } n + («^) g (" l ) g + 02g\n 

= a ^ p + (-l)g/jg}n + / ^ { ( - l ) ^ + 0g}n . 

The manipulation of this depends upon the parity of g. Let g = 2r, or q 
4r: 

T / i A \ / 2 m , «2rnA / 2r , 0 2 r , n _ T n L(n , l ,4r ) = (a + p )(« + p ) = L 2 r n L 2 r . 

If, instead, q = 4r + 2, then for odd values of n we obtain 

T / -, A , o. / (2r+l)n • . i v n 0 (2r+l )n . 2r+l n 2 r+ l v n L(n , l , 4 r + 2) = (c*v ' +(-1) pK J )(a - 0 ) 

= 5f(n+l) n 
D *<2r+l)n 2r+l ' 

For even values of n, 

L (n , l , 4 r + 2) = s K ^ ^ 

By the same methods we obtain 

k=0 

and 

n y v 

•5 3-L(n,-l,4r+2) = 2.1 I ( " ^ (4r+2)k =H> V A l ' 
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n / \ 
L(n,-l ,4r) = £ Q ( - 1 ) k L 4 r k = ^ r n ^ r 

for even n, and 

k=0 

L<n, - l , 4r ) = - 5 ^ n + 1 > F 2 m P - r 

if n is odd. 
Now, let us r e t u r n to t he or ig inal p rob lem. 

k=0 
2 p - l 

5 ( ; ) ' ? • • • * ( : ) -

f (>'£C)'-"\ + 5'2PZ. I. P J L 1 J ( - I ^ ( 4 p . 2 i ) k 

= sMr 

= 5 " 2 P ( 2 

i=0 i=l 

" 0 +5 C)L2(pVVi> 
i=0 

n 

• s o -" <-!)" 2 ^ 1 , )L2(p-i)n+nL2(p-i)+l| ' 

Similarly, if b = 4p + 2 , 

2p 

Z 
k=0 w k=0 XIW [ j=0 t^ Vk/ k=0

 X k / ( j=0 ^ J ' 

< / B 4 P ^ J 4 2 ) k ] + / 4 P + ' 2 \ ^ ( k + l ^ p H K 
\ 2 p + l / 

4p-2j+2 }k 
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2p 

S ( . ) <->J S J <-A*w 
j=0 V J ' k=0 V k / 

\ 2 P + i y ~ \ k / 

I P /4n + 2 \ ^ / 4D + 2 \ J 

V ( L ( n , l , 4 [ p - i ] + 2 ) - V ( ) L (n , - l , 4 [ p - i ] ) 
H ( \ 2i / r : \ 2 i + i / 

For summations involving alternating signs the same method of analysis 
gives similar resul ts . 

£ (n) ^Mp - 5-J*E(4 PW.-M[P-I]) 
k=0 ^ k ' ( i=0 V 2 l ' 

- V I I L(n,l,4[p-i] +2) , 
*_-, \ 2 i - l / I 4=1 

and 

^ / 4 p + 2 \ / 4 p + 2 \ I 
£ ) L ( n , l , 4 [ p - i ] ) - 2 n 

Tt \ 2i + 1 / \ 2p + 1 / ! i=0 

Finally, a word regarding summations for odd powers of F, . For powers 
b ^ 5, the problem still reduces to a binomial sum involving Lucas numbers 
whose subscripts are in an arithmetic progression, but the expressions (1 + a ) 
and (1 + /8 ) cannot be reduced in a manner similar to that used for even q. 
Surely they are reducible, and it is hoped that the expression obtained above 
may be extended to odd powers. 



A NOTE ON A THEOREM. OF JACOB! 
JOSEPH ARK I N , Suffern, New York 

It has been shown that the sequence, L , or l f 3,4,7,11,18,29,47, • 
is defined by 

(1) Ln = un + (-ufn (u = (1 + V5)/2) , 

where L is the n Lucas number. n 
Theorem 1. If L - = c (n = 2 ,3 ,4 , • • • ) , p is a prime 4m + 3, r>n-i n 

M = 2 P - 1 and 

n=2 n=2 

Then, M is a prime if and only if c = 0 (mod M ). 
Proof. Using the famous identity of Jacobi from Hardy and Wright [ l , 

p. 282], 

(2) " f j ( ( l =- x 2 n ) ( l + x ^ ^ d + x ^ ' V 1 ) ) = 1 + £ x n 2 ( Z
n
 + Z - n ) 

n=l n=l 

we put z + z~ = 3 (z = (3 +^/5)/2), and combining z with u in (1) we have 
u = z, so that L2 = z + z~ , which leads to 

(3) f [ d - x 2 n ) (1 + 3 X 2 - 1
 + x4-2) = 1 + ] T L^x"2 . 

n=l n=l 

Tl-2 
Next, in Theorem 1 we put L = c and replace n with 2 , where it 

2 n 

is evident the resulting equation is identical to F(x). 
359 



360 A NOTE ON A THEOREM OF JACOBI [Dec. 

We complete the proof of Theorem 1 with the following theorem of Lucas 
appearing in [2 , p. 397^ 
. o . If 4m + 3 is prime, P = 2 - 1 is prime if the first term of the 

2 
series 3,7,47, • • • , defined by r = r - 2, which is divisible by P is of 
rank 4m + 2; but P is composite if no one of the first 4m + 2 terms is 
divisible by P . , , 

Corollary. If [x] denotes the greatest integer contained in x and n! / 
(n - r ) ! r ! = P j , then 

K21 Wn-r\ 0 
z + z = n 2 ^ H-) (n - r) I Jb 

r=0 V r / 

The proof of the Corollary is obtained by elementary means if we put 

zn + z~n = ((b + Vb2 - 4)/2)n + ((b +Vb2 - 4)/2fn 

and then add the right side of the equation. 
In conclusion, although there are many special cases to the Corollary, 

the one obtained by setting b = 0 may be worth mentioning. 
Let 

p(n) = the number of unrestricted partitions of an integer n, 
p (n) = the number of partitions of n into parts not exceeding m, where 

P(0) = pm(0) = 1. 
We then have the following: 
Theorem 2. If 

m 

and 

Fm<x> = n ( 1 - X n ) _ 1 = 1 + Z P m ( n ) x 1 1 

n=l n=l 

f j ( l -xV1 = l+£> n ) x n . 
n=l n=l 
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then 

P(2u) = p2(u - 2) + p4(u - 8) + ••• + p 2 r (u - 2 r 2 ) + ••• (mod 2) 

and 

p(2u + 1) = P l (u) + p3(u - 4) + . . - + p 2 r + 1 ( u - 2 r 2 - 2 r ) + - « - (mod 2). 

Proof. Putting z + z = 0? then z = I (i = -1)9 so that z + z~ 
n 2 

= 2(-l) o Then applying these results, together with our replacing x with x 
in Eqs. (2) and (3), leads to 

oo oo 2 

]"]"(! - xn)(l + x211-1) = 1 + 2 ^ (-l)rx2r 

n=l r=l 

and it is evident that 

(4) YJ{1 + x2n~1] s Sp ( n ) x I 1 (mod 2) ° 
n=l n=0 

According to Hardy and Wright [ l ? p0 28l} , Euler proved that 

ffd+x211"1) = 1 + f V Fr(x2) . 

and combining this result with F (x) in Theorem 2 and with Eq. (4), we 
complete the proof of Theorem 2. 
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COMPOSITION OF RECURSIVE FORMULAE 
RAYMOND E. WHITNEY, Lock Haven State College, Lock Haven, Pa. 

The purpose of this article is to consider some properties of composite 
functions, such as Fv , L F , etc. For ease of notation, F(n) and L(n) 

r n r n 
will represent the usual Fibonacci and Lucas sequences, respectively. The 
following notations will also be adopted: 

g(n) s L{F(n)} 
h(n) ^ F{F(n)} 
f(n) s F{L(n)} 
k(n) s L{L(n)} 

P a r t i . Recursive Relations for g(n), h(n), f(n), k(n). 
Although hybrid relations for the above were sought, only partial success 

was achieved. 
(1) 5h(n)h(n + 1) = g(n + 2) = (- l)F ( n )g(n - 1) 

Proof. In this and subsequent parts , considerable use was made of the well 
known identities, 
(a) \/~5F(n) = o>n - pn 

(b) L(n) = a1 + /3n 

where 
1 + ^ 5 A Q 1 - V 5 — 5 and p = = 

In (a) replace n by F(n) and obtain 

\f5h(n) = orF(n) - /3F(n) 
^ h f a + 1) = aF(n + 1) - /3F(n + 1) 

Multiplying these and observing 

F(n + 2) = F(n) + F(n + 1) 

the result follows. 
(2) 

F(n + 1) =* F(n) + F(n - 1) 
ap * -1 

g(n)g(n + 1) - g(n + 2) _ .F 
•g(n - 1) " { l ) 
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Proof. In (b) replace n by F(n) and then as above the result follows. 

(3) g(n)g(n + 1) + 5h(n)h(n + 1) = 2g(n + 2) 

Proof. Combine (1) and (2). 

(4) 5f(n)f(n + 1) = k(n + 2) - (-l)L ( n )k(n - 1) 

Proof. In (a) replace n by L(n) and as above the result follows. 

, , , k(n)k(n + 1) - k(n + 2) _ , .L(n) 
( 5 ) ~ k(n - 1) •" ( } 

Proof. In (b) replace n by L(n) and as in (2) the result follows upon 
rearrangement. 

(6) k(n)k(n + 1) + 5f(n)f(n + 1) = 2k(n + 2) 

Proof. Combine (4) and (5). 

(7) g(n + l)g(n - 1) - k(n) + (- l )F ( n _ 1 )g(n) . 

Proof. In (b) replace n by F(n) and observe that 

L(n) = F(n + 1) + F(n - 1). 

The result then follows. 

(8) 5h(n - l)h(n + 1) = k(n) = (- l )F ( n"1 )g(n) . 

Proof. In (a) replace n by F(n - 1) and F(n + 1) and multiply. 

(9) g(n + l)g(n - 1) + 5h(n - l)h(n + 1) = 2k(n) 

Proof. Combine (7) and (8). 

(10) g(n + l)g(n - 1) - 5h(n - l)h(n + 1) = 2(- l ) F ( n _ 1 ) g(n) . 

Proof. As above, combining (7) and (8) yields the result. 

By combining the above relationships, many others maybe obtained. Note 
that (2) and (5) are hybrid relations, whereas the others are mongrel. It would 
be of interest to obtain hybrid relations for h(n) and f(n). In the light of the 
above results one can scarcely help setting up the correspondences 

h(n) <—» f (n) 

g(n) <—>k(n). 
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Part II. Explicit Relations for g(n), h(n), f(n), k(n). 
Using (a) and (b) one immediately obtains the rather clumsy formulae 

fas-ft i(«n-^ 
g(n) = « V 5 +/3V5 

t (n ) ~ VJ j a ^ ( 

k(n) = «<-V") - ^ V ) 
Part HI. Generating Functions for g(n)? h(n)9 f(n), k(n). 

The original goal of obtaining generating functions of the type 

F(x) = £ h(k)xk , 
0 

was not achieved. 
The methods used byRiordan [ l ] did not appear to offer much help in this direc-
tionc However, ugly mixed types could be obtained as the following example 
illustrates: 

00 

Proof. 

_ ^ a « = £ ln/v§h(i) + g(i) \ x i 
1 - x2 0 * 2 ' 

V(n) = \^h(n) + gfa) 
2 

Also, since 
uu 

1 - x - x2 0 
the result follows* 
Par t IV. Upper Bounds for h(n), g(n), f(n), k(n). 

Part l lyields explicitvalues for h(n)s e tc . , but the relations are awkward 
to work with and more workable bounds were sought, 

2n~2-2 (1) h(n) < 2 for n > 3 
Proof. h(n)s g(n), f(n)s k(n) are increasing functions of n, and it is well known 
that 

Hence 
F(n) < 2 n " 2 for n > 3. 

n —9 
h(n) = FJF(n)} < F(2n"2) < 22 "2 
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(2) f(n) < 2 5 ( 2 ) "~2 for n > 3 

Proofo 

L(n) = F(n - 1) + F(n + 1) < 2 n " 3 + 211"1 = 5(2)n"3 

The result follows as above* 

(3) k(n) < 5(2)5(2) " 3 for n > 3 

Proof, The result follows as abovec 

2n~2-S 
(4) g(n) < 5(2) for n > 3 

Proof. As above. 

The above inequalities may be replaced by strict inequalities for n > 3, 
since 

F(n) < 2 n " 2 for n > 3 

Proposal for Future Investigations 

To reiterate, the two most interesting avenues for future work are the 
development of generating functions for h(n), g(n), f(n), k(n), and hybrid recur-
sive relations for h(n) and f(n). 

REFERENCE 

1. JohnRiordan, "Generating Functions for Powers of Fibonacci Numbers," 
Duke Math. J . , 29 (1962), pp. 5-12. 
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NOTE ON THE EUCLIDEAN ALGORITHM 
R. L. DUNCAN, Lock Haven State College, Lock Haven, Pa. 

Let fi^ = 1; ^ 2 = 2 and ju,n = M n - 1 •* M 2 (n - 3 ) b e t h e Fibonacci 
numbers. Then the Euclidean Algorithm for finding (a 9 ^ ) is 

^n+1 = ^ n + M n -1 
^ n = M n-1 + ^n-2 

M 3 = M 2 + ^ 

and the required number of divisions is n, 
Let 

* = 1 4V^ ? 2 
2 2 

Then f > ^ , and, since f is a root of the equation f = f + 1, we have f 
>M2. Also, £3 - f + £ > M2 + ^ = M 3 and, in general, £ n > ^ . 

Now let p be the number of digits in p . Then ^ n > 10p" and, by the 
preceding result, l (r < f or 

n > E - ^ n > log ( 

Hence 

1 
n > , ^ A - 5 since log £ > •=• 

log f * 5 
In the proof of Lamefs Theorem [ l ] it is shown that 

n < 1 ^ + 1 , log f 
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where here n is the number of divisions in the Euclidean Algorithm for any 
two numbers and p is the number of digits in the smaller number. Thus we 
see that the upper bound for the number of divisions in the Euclidean Algorithm 
given by Lame's Theorem is virtually the best possible,, 

REFERENCE 

1. J . Vo Uspensky and M, A. Heaslet, Elementary Number Theory, McGraw-
Hill, 1939, p. 43. 

* • • * • 
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St. Mary's College, Calif. All checks ($4.00 per year) should be made out to 
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for publication in the Quarterly should be sent to Verner E. Hoggatt, J r . , 
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MORE FIBONACCI IDENTITIES 
M . N . S. SWAMY, Nova Scotia Technical Col lege, Ha l i fax , Canada 

In an e a r l i e r a r t i c l e [ l ] the author has d i scussed in detail the p r o p e r t i e s 

of a se t of polynomials B (x) and b (x). It has been shown that [2 J, 

Bn(x) = U(x + 2 + \ / x 2 + 4 x ) / 2 i n + 1 _ | ( x + 2 - \ /(x2 + 4 x ) / 2 l n + 1 l / V ( x 2 + 4x) 

Put t ing x = 1 and simplifying we can show that 

( la) B (1) = F ^ 
n 2n+2 

th where F i s the n Fibonacci number . n 
Hence, 

(lb) b (1) = B (1) - B (1) = F o ^ - F 0 = F 0 ^ nx ' re / n - i 2n+2 2n 2n+i 

We shal l now use ( l ) and the p rope r t i e s of B and b to es tab l i sh some 

in te res t ing Fibonacci ident i t ies : 

It has been shown that [ l ] , 

(2) 

and 

(3) 

B m 
b m 

B m 
B 

m-i 

B 
n b n 

= 
B 

m - r 
m - r - i 

B n 

V i = 
B 

m - r 
B 

m - r - i 

B I 
n - r 

b n - r - i 1 

B n - r 
B 

n - r - i ! 

F r o m (1) and (2) we can es tab l i sh that 

(4) 
m - i n- t 

m-2r n-2r 
F F 

m-2 r - i n -2 r - l 

and f rom (1) and (3) that 
369 
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(5) 
F F m n 
F F m-2 n-2 

F 
m-2r n-2r 

F F 
m-2r-2 n-2r-2l 

Using equations (33)-(37) of [1 ] we may deduce that [ 3 ] , 

(6) 

F 2 + F 6 + 
F i + F 5 + 

+ F 4 
+ F 

4n-2 
4n-3 

Fo + F 7 + • • - + F 
4n-l 

F 4 + F 8 + + F 
4n 

F2 
2n 

F F 2n-i 2n 
F F 2n 2n+i 
F F 2n 2n+2 

F r o m (33)-(37) of [1 ] we may es tab l i sh the ident i t ies 

and 

(x2 + 4x) y B2 = Bn , n - (2n + 3) x ' L-j r 2n+2 v ' 

(X2 + 4 X ) V B B = B f t l - (n + 2)(x + 2) L*i r r+i 2n+3 

(x2 + 4 x ) V b B = b 0 + (n + l )x - 1 v Z-* r r 2n+2 v 

(x2 + 4x)]Tb2
r = B2n+1+ 2(n + 1) 

F r o m the above ident i t ies and (1) we can deduce that 

(7) 

(8) 

5(F 2 F 4 + F 4 F 6 + F F ) 2n-2 2n' 

5 ( F t F 2 + F 3 F 4 + . . . + F 2 n l F 2 n ) 

F, - 3n 4n 

F L + (n - 1) 4n+i v ' 
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0) 5(F* + F | + . . . + F ^ ) = F 4 n + 2n 

and 

(10) 5(F2
2 + F* + •••. + F ^ ) = F 4 n + 2 - (2n + 1) 

Combining the identities of (9) and (10) we get 

(11) 5(F* + F* + - . + F*) = F 2 n + 2 + F 2 n + ( - l ) n + 1 

Also, we have the well-known identity, 

(12) F? + F 2 + • • - + F 2 = F F ^ x ; 1 2 n n n+1 

Hence f r o m (11) and (12) we get 

<13> F2r*2 + F2n " 5 F n + l F n = W* 

From (14) and (31) of reference [1] we have the results, 

(14) B 2 - B ^ B - = 1 
v ; r r+1 r - 1 

and 

(15) b B •- b ^ - B - = 1 ^ ; r r r+1 r - 1 

Therefore, ( B r / b ^ ) - ( B ^ / b r ) = l / ( b r b r + 1 ) . Hence, 

^ n - l V + ^ V l > + ' " + ( l / b lV = (Vl/bn> " < W 

Since B 0 = bQ = 1, we may write this result as , 

n . 

E (l/b b - ) = (B - 7 b ) 
1 
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Therefore 
n 

(16) (B n /b n ) = 1-+ ( B n ^ / b n ) = 1 + X > / b r b r - l > 
1 

Similarly starting with (14) we can establish that 

(17) (b /B ) = 1 - V (1/B B , ) x n i r Z-/ * r r - 1 7 

1 

Combining the identities (16) and (17) we have, 

(18) 
I n I ( n 

J1 + £ d/brbr^) 1 " D (VBr Br-1) 
i M i ' 

Substituting (1) in (18) we derive an interesting result that 

(19) 1 + 17 -p 
2n-l 2n+l 

-E F F *2n 2n+2 
= 1 

Many other interesting Fibonacci identities may be established using the 
properties of B and b , and it is left to the reader to develop these identities. 

REFERENCES 
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Fibonacci Quarterly, Vol. 4, No. 1, pp. 73-81. 
2V. S. L. Basin, "The Appearance of Fibonacci Numbers and the Q Matrix in 

Electrical Network Theory," Mathematics Magazine, Vol. 36, March-April 
1963, pp. 84-97. 

3. K. Siler, "FibonacciSummations," Fibonacci Quarterly, Vol. 1, October 
1963, pp. 67-69. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by A , P. HILLMAN, University of New Mexico, Albuquerque, New Mex. 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or 
solution should be submitted in legible form, prefer ably typed in double spacing, 
on a separate sheet or sheets in the format used below. Solutions should be 
received within three months of the publication date. 

B-100 Proposed by J.A.H. Hunter, Toronto, Canada. 

Let u l 0 = u ... + u - 1, with u. = 1 and u0 = 3. Find the general n+2 n+1 n 1 2 & 

solution for u . 

B - 1 0 1 Proposed by Thomas P. Deuce, Bowling Green State Univ., Bowling Green, Ohio. 

Let x . ( n be defined by x ^ = 1, x ^ = n, and x ^ ^ = x.+ln + 

x. . Express x. as a function of F and n. i , n ^ i , n n 

B-102 Proposed by Gerald L Aiexanderson, University of Santa Clara, Santa Clara, Calif. 

The Pell sequence 1,2, 5,12,29, •-8 is defined by P . = 1, PQ = 2 and 
2 P = 2 P M + P . Let (P , - + iP ) = x + iy , with x and y^ real and n+2 n+1 n v n+1 n7 n ^n n ^n 

let z =Jx + iy L Prove that the numbers x , y , and z are th^ lengths 
of the sides of a right triangle and that x and y are consecutive integers for 
every positive integer n. Are there any other positive integral solutions of 
x2 + ( x i l ) 2 = z2 than (x,z) = (xn5zn) ? 

B-103 Proposed by Douglas Lind, University of VirginiagCharlottesviil®B Vb. 

Let 

an = E F d <n^>' 
din 
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where the sum is over all divisors d of n. Prove that ja I is a strictly 
increasing sequence. Also show that 

00 F x11 °° 
T -2— = y a x n . 
1-J .. n L~i n 
n=l n=l 

B-104 Proposed by H. H. Ferns, Victoria, British Columbia. 

Show that 

F 2n-hl 1 
L^i L L ^ L ^0 3 ' - n n+1 n+2 n=l 

where F and L are the n Fibonacci and n Lucas numbers?respectively. 

B-105 Proposed by Phil Mana, Univ. of New Mexico, Albuquerque, New Mex. 

Let g be the number of finite sequences c^,c~9
m •' 9c with c = 1, 

each c. in J 0 , l } , (c. ,c i + 1) never (0,0), and ( c ^ c . ^ c . ^ ) never (0,1,0). 
Prove that for every integer s > 1 there is an integer t with t < s - 3 and 
g. an integral multiple of s. 

SOLUTIONS 

AN INTEGER VALUED FUNCTION 

B-82 Proposed by Nanci Smith, Univ. of New Mexico, Albuquerque, New Mex. 

Describe a function g(n) having the table: 

n 
g(n) 1 

1 ° 
1 o 

1 
1 

2 
1 

3 
2 

4 
1 

5 
2 

6 
2 

7 
3 

8 
1 

9 
2 

10 
2 

11 
3 

12 ••• 
2 ••• 
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Solution by the Proposer. 

The function g(n) is the number of one's (i. e . , sum of the "digits") in 
the binary representation of n. 

Also solved by Joseph D.I. Konhauser and Jeremy C. Pond. 

A RECURSION RELATION FOR SQUARES 

B-83 Proposed byM.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

Show that F 2 + F 2
 A = F 2 + F 2 + 4F2_LO . n n+4 n+1 n+3 n+2 

Solution by James E. Desmond, Fort Lauderdale, Florida. 

From Basin and Hoggatt ("A Primer on the Fibonacci Sequence—Part I, " 
2 2 

Fibonacci Quarterly, Vol. 1, No„ 1, p. 66) we have that F + F = F0 
ey c\ n + J . n /uH"T~l. and F* - F , = F0 . So9 n+1 n-1 2n 
Tr̂  , -p2 _ „2 _ __2 __ ._2 

n n+4 n+1 n+3 n+2 

= -<Fn+2 " Fn> + (Fn+4 " Fn+2> " <Fn+2 + F l l > " <Fn+3 + Fn+2> 

"F2(n+1) + F2(n+3) " F2(n+1)+1 ~ F2(n+2)+l 

"F2n+2 + F2n+6 " F2n+3 " F2n+5 
F 2 n + 4 ~ F 2 n + 4 

= 0 . 
Also solved by Anne E. Bentley, Clyde A. Bridger, Thomas P. Dence, Joseph D.E. Konhauser, 
Karen S. Laskowski, Douglas Linds Pat Miller, John W. Milsom, F. 0. Parker, Jeremy C. Pond, 
Ton/AnnViggiani, Howard L.Walton, David leitlin, and the proposer... 

TERM-BY-TERM SUMS 

B-84 Proposed by M.N.S. Swamy, Nova Scotia Technical C&lkg®, Halifax, Cm&d&. 

The Fibonacci polynomials are defined by L (x) = 1, f0(x) ^x, f (x) 
i. u n+l 

= xfn(x) + F ^ x ) , n > 1. If z r = fr(x) +fr(y), show that z r satisfies 
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V 4 " (X + y ) zn+3 + ( x y " 2)zn+2 + fr + y) + * n = 0 . . 
Solution by David ZeStlin, Minneapolis, Minn. 

In B-65 (see Vol. 3, NoQ 4, 1965, p„ 325), it was shown that if u and 
v are sequences which satisfy u l 0 + a u , - , + b u = 0 and v rt + cv ., + n J n+2 n+1 n n+2 n+1 
dv = 0, where a ,b ,c and d are constants, then z = u + v satisfies n ' ' ' ' 2 n n n 
zn+4 + pzn+3 + qzn+2 + r Z n+l + SZn = °» w h e r e ( E + a E + b ) ( E + c E + d ) s 

E 4 + pE3 + qE2 + rE + se Since p = a + c, q = ac + b + d, r = be + ad, and 
s = bd, the desired result is obtained by setting a = -x, b = - 1 , c = -y, 
and d = - 1 . 

Also solved by Clyde A. Bridges) James E. Desmond, Joseph D.E. Konhauser, 

Karen S.Laskowski, Douglas Lind, John W. Milsom, Jeremy C. Fond, Howard L.Walton, 
and the proposer . 

SUMS OF SQUARES 

B-85 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Find compact expressions for: 

(a) F* + F2
4 + F2 + .".". + F2

2
n 

(b) F2 + F3
2.+ F2

5 + . . . + F2V.t . 

Solution by David Zeitlin, Minneapolis, Minn. 

Using mathematical induction, one may show that for m = 0 , 1 , • • • , 

n 
5 J^ Ffk+m = F 4 n + 2 m + 2 + 2n( - l ) m + 1 + 6 F ^ - F ^ + 2 

k=o 

Thus, for m = 0 and m = 1, we obtain, respectively, 
n 

(a) J^ F2
2
k= (F4nf2 - 2n - l ) /5 , 

k=o 
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n - i 

(b) J^ F2k+i = ( F 4 n + 2 n ) / 5 

Also solved by Joseph D.E. Konhau§erf Jeremy C. Pond,Clyde Bridger, James E. 
Desmond, M.N.S. Swamy, and the Proposer. 

RECURSION FOR CUBES 

B - 8 6 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif. 

(Corrected version.) Show that the squares of every third Fibonacci 

number satisfy 

Yn+3 " 17Yn+2 " 17Yn+l + Yn = 0 . 

Solution by David Zeitiin, Minneapolis, Minn. 

Since F 2
n + m - Cta?n + C2b6n + Cz(-lf, m,n = 0 , 1 , - - - , where a 

and b are roots of x2 - x - 1 = 0, the difference equation, noting that a6 + 

b6 = L6 = 18 is 

(E + 1)(E - a«)(E - b6)yn 

(E + 1)(E2 - 18E + l ) y n 

= (E3 - 17E2 - 17E + l )y 

= Yn+3 - 17yn + 2 - 17yn+i + Yn = 0 . 
Also solved by James E. Desmond, Joseph D.E. Konhauser, Douglas Linds Jeremy C. Pond, 
C. B.A. Peck,, and the proposer . 

A SPECIAL CASE OF AN IDENTITY 

B-87 Proposed by A.P. Hillman, University of New Mexico, Albuquerque, New Mex. 

Prove the identity in x0, xu • • • 9 x n : 
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k=0 

i n 
xn-k 

^ n v * > kl (n - k) 
j=0 N ; j=o 

Solution by the Proposer. 

If the difference equation (1) , of "Generalized Binomial Coefficients," 
by Roseanna F. Torretto and J. Allen Fuchs, Fibonacci Quarterly, Vol. 2, 
No. 4, Dec. 1964, pp. 296-302, is chosen to be y - 2yn + 1 + y = 0 , then 
U^ becomes n, . 1 becomes the binomial coefficient / m \ and the identity 

of this problem results from formula (5) of that paper upon division of both 
sides by n.f . 

Also solved by Joseph D.E. Komhauser, Douglas Llndf and David Zeitlln. 

NOTICE TO ALL SUBSCRIBERS!!! 

Please notify the Managing Editor AT ONCE of any address change,, The Post 
Office Department, rather than forwarding magazines mailed third class, sends 
them directly to the dead-letter office. Unless the addressee specifically r e -
quests the Fibonacci Quarterly to be forwarded at first class rates to the new 
address, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR 
to publication dates: February 15, April 15, October 15, and December 15. 

• • • • • 
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