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1. INTRODUCTION

Let {ak} denote a sequence of natural numbers which satisfies the dif-

ference equation Yo = g T for k =1,2,-+-, It is easy to proveby
induction that a; + a, Foeet a, =2 03 forn=1,2,+-;weuse this fact
in defining
) P(x)=||<1+x)=ZA(k)x
=1 k=0
and
n. a 273
k
@) P (x) = | |(1'+ X )= Z A K)x
k=1 k=0

It follows from these definitions that A(k) enumerates the number of repre-
sentations

. . .o . — T i < e i
(3) aj *aj, * + alj k with 0< i <1j

and that An(k) enumerates the number of these representations with i, < n.

Hoggatt and Basin [9] found recurrence formulae satisfied by {A (k)}
and {A(k)} when {an} is the Fibonacci sequence; in Section 2 we give general -
izations of these results,

Hoggatt and King [10] defined a complete sequence of natural numbers
{an} as one for Which Am) > 0 for n=1,2,--- and found that (i) {Fn} is
complete, (ii) {FP} with any term deleted is complete, and (iii) {Fn} with any
two terms deleted is not complete. Brown [1] gave a simple necessary and
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290 REPRESENTATIONS OF N AS A SUM OF [ Dec.

sufficient condition for completeness of an arbitrary sequence of natural num-
bers and showed that the Fibonacci sequence is characterized by properties (ii)
and (iii) already mentioned. Zeckendorf [13] showed that if F1 is deleted
from the Fibonacci sequence, then the resulting sequence has the property that
every natural number has exactly one representation as a sum of elements from
this sequence whose subscripts differ by at least two. Brown [2] has given an
exposition of this paper and Daykin [4] showed that the Fibonacci sequence is
the only sequence with the properties mentioned in Zeckendorf's Theorem.
More on the subject of Zeckendorf's Theorem can be found in another excellent
paper by Brown [3]. Ferns [5], Lafer [11], and Lafer and Long [12] have
discussed various aspects of the problem of representing numbers as sums of
Fibonacci numbers. Graham [6] has investigated completeness properties of
{Fn + (—l)n} and proved that every sufficiently large number is a sum of dis-
tinct elements of this sequence even after any finite subset has been deleted.

In Section 3 we take up the problem of determining the magnitude of A(n)
when {an} is the Fibonacci sequence; in this case we write A(n) = R(n).
Hoggatt [ 7] proposed that it be shown that R(F, -1) =n and that R(N) > n
if N > F2n - 1. We will show that

R(F_ - 1) :[ngl] ,

andthat F < N <F -1 implies
n n+

1

if n is odd and

[25] <m0 < g

if n is even.

In Section 4 we investigate the number; of representations of k as a sum

of distinct Fibonaceci numbers, writing a, = Fn+1 and T(n) for A(n) in this

case. The behavior of the function T(n) is somewhat different from that of



1966] DISTINCT ELEMENTS FROM SPECIAL SEQUENCES 291

R(n) of Section 3. For example, we show that there exist infinitely many n
for which T(n) = k for a fixed k, and in particular we find the solution sets"
for each of the equations T(n) = 1, T(m) =2, T@) = 3. By definition T(n)

< R(n) sothat TN) £ n-1 if N < Fn+1 - 1. We show that

w0 <[4

and T(F, , + 1) = [n/2] for n=3,4,"" .
Hoggatt [8] proposed that one show that M(n), the number of natural

numbers less than n which cannot be expressed as a sum of distinct Lucas
numbers Ln(L1 =1, L2 =3, Ln+2 = Ln+1 + Ln) has the property M(Ln) =
Fn~1; also, he asked for a formula for M(n). In Section 5, we give a solution
to the same question involving any incomplete sequence satisfying are T A4
+ a, with 2y <ag Lt In a paper now in preparation we have shown that
the only complete sequences of natural numbers which satisfy the Fibonacci re-
currence are those with initial terms (i) a; =a, = 1, (i) a; = 1, a, = 2,

or (iii) a; = 2, a, = 1.

2. RECURRENCE RELATIONS

See Section 1 for definitions and notation.
Lemmal. A (k) = A (a ,, -3, -k) for k=0,1,""",n.

Proof. Using the product notation for Pn we see

. a_ .-a
(4) - x ™2 Zp ()1—;) =P (%) -

The symmetric property of An now follows on equating coefficients of the

powers of x in (4).

Lemma 2.

(2) An+l(k) = An(k) if 0<k < an+1 - 1.

(o) An+1(k) = An(k) + An(k - an+1) if a1 <k < 242 " g
© Apq) =Ak-a ) i a,,-a,*l<k<a, -a,.

Proof. Each of these statements is obtained by equating coefficients of
k . . .
X in the identity
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5 P s 2™ p
(5) 1 ® = L+ x )
Lemma 3.
@ AL ) =AK if 0£kea o -1
(b) An+1(k) = Al&(anJr2 - a, -k) +Ak —an+1) if a1 & k ¢ &g " 3y
= - - i - L -
(c) An+1(k) A(a}{1+3 a, ky if 8.9 8+ 1 & k ¢ 2 4a = dy

Proof. (a) This follows by induction on part (a) of Lemma 2.
(c) Using Lemma 1 we have An+1(k) = A +1(an+3 -a, - k) and assum-

n
i - < - - A - -k & -
ing a a,+1 <k <a a, wehave 0 £ a a, k__an+1 1, so

n+2 2 n+3 2 n+3

that we can apply (a) of this lemmato get An+1 (an+3 -a, - k) = A(s:.][1+3 -3, - k)

for k in the range under consideration and this is (c).

(o) Statement (b) of Lemma 2 asserts An +1(k) = An(k) + An(k -a +1) for
An 1< k ¢ & 19 "85 but by (c) of this lemmawehave An(k) = ‘A'(an+2' -, - k)
for k inthe range under consideration. Also, if a4 k ¢ A 49 ~ 2y We

+1 =
have 0 £ k - a1 "8y SO by (a) of this lemma we have An(k - an+1) = Ak
-a, +1). Combining these results gives part b.
Lemma 4.
(a) Ak) = (an+2 —az—k) + Ak —an+l) if a1 <k« a9 "3 and
n=2,3-"",
(b) Ak) = A(an+3 - a, -k) if a9 —a2+1 <k<a, ., -1and n=
2,3, .
(c) A(an+2 ~a2+k) = A(an—az+k) if 1 <k iaz - 1.
(Note that in (b) and (c) the range of k is the empty set unless ay 2 2.)
Proof.
(a) This is merely a combination of (a) and (b) in Lemma 3.
(b) If a9~ 3y +1< k< a .o -1 then 241 —az‘+1 < a g3 -k
S a.- 1, so that by (a)of Lemma 3, A(an+3 -a, - k) = An+1(an+3 -a, - k).

By Lemma 1, An+1 (an+3 -

we see that An +l(k) = A(k) for k in the proposed range.

a, - k) = ‘An 1 (k) and using (a) of Lemma 3 again

(c) Writing k=an+2—a2+j with 1 < j <ay -1 in (b) we get

©) Alpp ~ 233 ) = Alap,g ~ a5 ~ 8y, T8y — ) = Ay, - )



. But we also have a
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but a4 ~i= 81 ~ 3t (ag =) where 1< a, =] £ a, -1 so that we can
use (6) to obtain

(1) Al ~1) =A@ -8, + (2, -]) = Al - @, - ])

Combining (6) and (7) we obtain (c).
Lemma 5. A(an
2, 3’ co s

Proof. For j inthe range under consideration we have 241 <2t

+l+j)=A(an+2—a2—j) for Ogjgan-az and n =

i< 2 19 "8 SO that by (a) of Lemma 4 we have

®) Al D= T8 T %

Alay - ay - ) + AQ)

- ]) + A(an+1 + J - an+1)

It

- a, for the assumed range of

w1 S Zpyg T2 7T S 2,
j, so that we can apply Lemma 4 again to write

2

9 A

nz T3 T T ARy, may ma ., tay Tt A, -3y -]

-a ) = AQ) + Aa, - a, - )

Since the right members of (8) and (9) are the same, so are the left members.
Using Lemmas 4 and 5 it is not hard to calculate A(k) for a given se-

quence {an}. Of particular interest to us are the cases when {an} is the

Fibonacci sequence, the Fibonacci sequence with the first term deleted, and

the Lucas sequence; we write A(k) = R(k), T(k) and S(k) respectively in

these cases. A table is provided for each of these functions in order to illus—

trate some of our results.

3. SOME PROPERTIES OF R(k)

In light of Lemma 4, it is natural to consider the behavior of Rk) in the

intervals [Fn’ Fn 41" 1]; thus, as a matter of convenience we write

(L0) I, = {REn), R(F, + 1), -+, R(F,, - D}
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and note that Lemma 4 implies
1) 1., ={R(O + R(F - 1), RA) + R(F, - 2), ", R(F, -1) + R(0)}.

As we mentioned in the introduction, Hoggatt has proposed that one prove
R(F2n -1) = n and that R(k) > R(F2n -1) if k > an - 1. This problem
has led us to prove a result involving special values of R(k) and to find the

maximum and minimum of R(kk) in In.

Theorem 1.

(a) R(F) = [n . 2] for n >1 ,
_In+1

(b) R(Fn—l) —[———-—2 ]for n>o0,

(c) R(Fn—2)=n—2forn>2,

(d) R(Fn—3)=n—3forn>4.

Proof. We prove only (b) (the other proofs are analogous) which implies
the first part of Hoggatt's proposal. First, we observe that (b) is true for

small values of n by consulting Table 1. Next, suppose

R(Ft—l)=[t;1]f0rt=nandn+1

and take k = Fn 4o —1 in(a) of Lemma 4 to obtain

2

(12) R(F_., - 1)

R(0) + R(F - 1) = 1+ [m]

4

Thus, the assertion follows by induction on n.

n+2

Theorem 2.

R(Fn) _ [n ;— 2]

is 2 minimum of R(k) in In'
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Proof. We can verify the theorem for small values of n by inspection
in Table 1. Suppose the theorem holds for all n < N - 1. We know by Theo-
rem 1 that

R(Fn) - [n er 2]

so that we are assuming

-1 and n=1,2,--,N-1.

(13) [“—-;—L—z-] = R(F) £ R() for F_ £k &F

Now suppose FN £k £ F -1 and write n = N -1 in(a) of Lemma

N+1

4 to obtain
(14) REk) = R(F,q -1 -k + Rk - Fy ;

-1 impli -1-k & - Lk -
but Fy &k £ Fy,, -1 implies 0 & Fy g -1 k£Fy -1 and 0£ Kk
P < -
Fy s FN—l 1. Suppose
(15) F, € Fpgyy -1 -k £ F,, -1,

where of course Ft+1 -15< FN—l -1 or 0<t< N-2 (we are taking FO =
0). Now

(16) Fy - Fiy € k#Fy-Fy, < P -F -1,

but with 0 <t < N -2 we must have FN_2SF -F and FN—Ft—ls

N Tt
Fy-p 1 sothat evidently

- < -
17) g € K-Fy S Fyg-1

Using (16) and (17) along with (13) we have
N
(18) [-2—] < Rk - Fy)
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and
t+2 .
(19) 15[2]SR(FN+1—1—k)s1ncet20.

Combining (18) and (19) in (14) gives
20) Rk) = [32’-] +1 = [N : 2]
for FN =k= FN i 1. Hence the theorem follows by induction on N.

Corollary. R(k) > R(Fy -1) =n if k > F, -1.

Proof. We know from Theorem 2 that the minimum value of R(k) in
12n and Iszrl is n+1 in each of them; hence the minimum of R(k) in Ion
U12n+1 is n+ 1. Thus, every value of R(k) in 12n+2 U Izn+3 is at least
n+ 2 so that we can conclude by induction on n that R(k) > R(FZn -1) if k
> an -1.

Theorem 3. The maximum of R(k) in Izn is Fn+2 and the maximum
of R(k) in 12n+1 is ZFM+1 for n=1,2,---; also,

(21) Fy = 2Fy < F, < 2Fg < «++ < F_,<2F  <F o<
for n = 2,3,--

Proof. The result in (21) follows by a simple induction.

The results concerning the maximum values of R(k) in I2n and 12n+1

can be verified for small n by using Table 1. Suppose these results hold for

all n = N; then we have by (a) of Lemma 4,

22) R(F ,, +1t = R(F -t -1)+R@t) for 0<t=<F -1

n+l

Also, .we know by (b) of Lemma 4 that R(k) is symmetric in I so it is

n+1’
enough to consider the values of only the first half of the elements of In +1 in
order to determine the maximum elements. More than the first half of the

elements of In 41 are contained in the sets

@3) {R(F_,, + tylt = 0,1,---, F__ -Ttand{R(F_, +t)lt=F _,°

-, F -
n

1.
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Consider first the maximum of the first of the two sets in (23); evidently,

max R(F_ . +1t) = max {R(F_ -t - 1) + R(t)
ost=F_ -1 M1 0=t<F_,-1. ™ !
n-1 n-1
(24) = max R(F -t-1)+ max R(t)
<< - -
0=t<F _ -1 O<t<F__ -1
= 2 max In_2

Next, we have for the second set in (233

max R(F + t)
F _St=F -1 T
= max R(F -t -1+ max R(t)
=t<F - =t=F -

(25) F _,St=F -1 F _,St=F -1
= max Im_3 + max In_1

Together (24) and (25) imply

(26) max In+1 = max {max In—l + max In—3’ 2 max In—z}

Writingn = 2N + 1 in (26) and applying the induction hypothesis we have

F

@7 wg b = Frug s

max Ly, =max {F

similarly, n = 2N+ 2 in (26) gives

(28) max I = max {2F

2N+3 N2 2Fuob = 2Fy

In order to finish the proof of Theorem 3 we need to. show that F. o €

I2N+2 and 2FN+2 € 12N+3'

Since 0 SF2N+tS F2N+3 -1 for t =0,1,---, F2N—1 -1, we can

use (22) and (b) of Lemma 4 to find

(29) R(F F .+t = R(F

an+s T Fan ont1 Tt T D R(Fy 1) = 2R(Fy o+ 1),
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for t =0,1,:°", F2N-1 - 1. From this we gather that all of the elements of’
IZN multiplied by 2 occur in IZN +35 hence, twice the maximum in IZN is
in IZN+3 and this is precisely 2FN+2'

It is not so obvious that FN +3 € IZN 125 to prove this we let xn denote
an integer such that R(FZN + )\n) = Fn+2 for n = N. We will also include
in our induction hypothesis that an .admissible value of xn+1 for n < N is
given by )‘n+1 = F2n—1 - )‘n - 1. Now consider

RFoxee * Fanop “ Ay~ 1)

50) = BFoner = Fonar 0 * By ~ Ay - D)
= R(Fgy * Ay + B(Fy g + Aoy
= Fyez ¥ P T Faes -

The second equality in (30) follows from (22). It is now clear that an admissible

value for xN+1 is FZN—I - )‘N -1 and that FN+3 € IZN+2'

the proof of Theorem 3.

This completes

4. T(), THE NUMBER OF REPRESENTATIONS OF n AS A SUM
OF DISTINCT FIBONACCI NUMBERS

For the moment we are taking a = Fn 1 in the lemmas of Section 2

and write A(k) = T(k) in this case. The following theorem can be proved in
the same way we proved Theorem 1, so we leave out the proof.

Theorem 4.

n+11. _
(a) ,T(Fn+1) - [ 2 ] 1f n = 1!2!

= (8l . _
®) T(F,, +1) = [2] if n= 3,4,
Theorem 5.
(a) T(N) =1 ifandonly if N = Fn+1 -1 for n=1,2,""-,
(b) 1T(112\I)=2 if and only if N=Fn+3+Fn—10r Fn+4—Fn—1 forn =
(c) T(N) > 0 if N= 0. ‘
(@ T(N) =3ifandonly ifN=F +F -1, F  +F -1, F .-
Fn-l, Fn+6_}n+1_1 for n =1,2," .

Proof. (a) and (c): We can check Table 2 to see that T(Fn+1 -1 =1
if n =1,2,3,4. Suppose T(Fm_1 -1) =1 for all n less than N > 4. Then
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by (c) of Lemma 4 we have T(FN - F3 +1) = T(FN -1) = T(FN_3 - 1) which

is 1 by assumption. Next, the table shows that the only values of N < F5 for
which T(N) =1 are N = F2 -1, F3 -1, F4 -1 and F5 - 1. Suppose for
all 4 =n< N, where N > 5, that Fn =k < Fn+1 -1 implies T(k) > 1.
Then by (a) of Lemma 4 we have for FN =k< FN+1 -1, Tk)=T(F
F3 -k + Tk - FN) = 2. This completes the proofs of both (a) and (c).
() By Lemma 5, we have T(Fn+3 + Fn -1) = T(Fn+4 - Fn - F3 +1),
and since Fn+3 = Fn+3 + Fn -1= Fn+4 - F3 we can apply (a) of Lemma 4 to
get T(F g+ F -1) =T(F  , ~-Fy-F o-F +1)+T(F ,+F -1-F )
= T(Fn+1 -1) + T(Fn -1). By (a) of this lemma, the last sum is 2. To prove

N+1 ~

the "only if'' part of (c), we use induction with (a) of Lemma 4 just as in the
proof of the "only if" part of (a).

(d) The proof can be given using induction and (a) of Lemma 4 justas (a)
and (b) were proved.

Theorem 6. For every natural number k there exist infinitely many N
suchthat N has exactly k representations as a sum of distinct Fibonacci num-
bers, in fact,

(31) T(F 2F . -1) = k for n = 1,2, and k = 4,5,

n+k+2 + n+2
Proof. The theorem is true for k = 1,2,3, by (), (b),and{(d) of Theo-
rem 5. We will verify the theorem for k = 4 and leave the verification for

k = 5 as an exercise.

Since Fn+6 = Fn+6 + 217‘](1_]_2 -1= Fn+7 - F3 we can apply (a) of Lemma
4 to obtain
T(Fn+6 + 2Fn+2 -1) = T(Fn+7 - F3 - Fn+6 - 2Fn+2 + 1)
(32) + T(Fp,e * 2F 5 -1 - F o
= T(F,, - 2F o - 1) + TRF , - 1);

however, 2Fn+2 = Fn+2 + Fn+1 + Fn = Fn+3 + Fn so that

(33) TEF ,, -1) = T(F ., +F -1) = 2,
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(34) T(F .. -2F . -1) = T(F

n+5 nt+2 Fpo-1 =2

n+t4 ~ "n

by (b) of Theorem 5; combining (33) and (34) in the last member of (32) gives the
desired result.

Now suppose (31) holds for all k < N where N > 5. ‘Since F‘n+N+2 =
Fn+N+2 + 2Fn+2 -1= Fn+N+3 - F3, we can use (a) of Lemma 4 to obtain
TEpNs2 ¥ 2F g =1 = TFpiws = F3 = Friwe ~2Fmp +1)

(35) * T(Fn+N+2 * 2Fn+2 -L- Fn+N+2)
= TFpineg ~ 2Fpag = D 7 T@F,, - 1)
i -1= - s
Since 0 < 2Fn+2 1 Fn+N+1 F3 we can use Lemma 5 to write
T(Fn+N+1 - F3 - 2Fn+2 + 1) = T(Fn+N+1 - 2Fn+2 - 1)
(36) = -1);
= T(F  x + 2F 0 -1

but, this last quantity is n - 2 by assumption and recalling (33) we seethat the
sum in the last member of (35) is (N - 2) + 2 = N. This concludes the proof.

5. INCOMPLETE SEQUENCES

In what follows, N(n) denotes the number of non-negative integers k =
‘n for which AKk) = 0.
Lemma 6. Let 0 < V) < Vg <o denote the sequence of numbers k

for which A() = 0 and suppose v is a complete listing of

t+1° V20T Vi
the v's between a and a_+k+j=<a for n= 2; then v, .
n n n+l t+j

for j =1,2,°*°,s and Vg is the largest v not exceeding k + 1.

= + .
an{ VJ

Proof. The lemma can be verified for n = 2 and 3 by determining
Ak) for 0 = k = a1 using P4(x), since by (a) of Lemma 3 we have A(k) =
A4(k) for k in the supposed range. '
Suppose for some N =3 that the vi's between a, and a,

+1

by A, + Vs B+ Vgt a, + \f where v, 18 the largest vy not exceeding

a1 and n <N, We will show that this implies the v; between ay and ay

are given

+k <a are given by a .+ v.,, a

N+1 N 1’
largest v not exceeding k + 1,

Nt Vg ttts By + Vg Where v is the
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) Case 1. Let ay < aN+vj = Ay T 39 then by (a) of Lemma 4 we
ave

A(a,N+Vj) = A(3N+1 -2 - Ay - v].) + A(aN + vj - aN?
A(aLN_1 - ay - v].) + A(VJ.)

A(aN_1 - a, - Vj) ;

I

(37

but for aN + vj in the range being considered we have 0 = Vj = a -a, so

that by Lemma 5

N-1 2

(38) A(a,N_1 -2, - vj) = A(aN__2 + vj)

and the right member is zero by assumption, so that A(a.N +Vj) =0 is a
consequence.
Now suppose there is a t not a vy such that a = ay +t= ag+1 29

N
and A(aN +t) = 0; then by (a) of Lemma 4 we would have

(39) Alag +1) = Ay -3, - 1) + A®)

But this is a contradiction since A(t) # 0 (¢ isnota vi) and we assumed
A(aN +t) = 0.

Thus aN+v1, aN+v2,"‘,aN+VSS aN+kS a4~ 3y 1S a complete
listing of the vj between ay and ay t k = ANy ~ 2o

Case 2. Let aN+1—a < a

9 N + vj = ANty then by (c) of Lemma 4 we

have

(40) A(aN + vj) = A(aN_2 + vj)

which is zero by assumption. If we suppose there is a t such that t is not
a v, and Ay ~ 2 < AT t < A implies A(aN+ t) = 0, we obtain a
contradiction since A(aN +t) = A(aLN_2 +t) = 0 would imply t is a Vs

Thus, ay +v].,'- Ay +v,, with V]. the smallest vi not less than

-a, and a

y-p’ comprises a complete listing of the vi between a 5 N+1°

N+1
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Taken together, the results proved in Cases 1 and 2 imply Lemma 6 by
induction.

Corollary, If A(k) > 0 for k =< 8y, then {an} is complete; this is
equivalent to saying (al, az) = (2,1), (1,2) or (1,1).

Proof. This follows from Lemma 6 and induction. Also, note that if
{an} is not complete, then there exist infinitely many k such that A(k) = 0.

Lemma 7.

@) N(an+ k) = N(an) +Nk) if 0=k=a

(b) Nk) = k if 0=k <a .

(c) N() k—lifa15k< a, -

(d) N(k) k -2 if a, = k= 2, .

(e) N(an—l) = N(an) if n=1,2,---.

Proof. (a) Suppose n > 2, then by Lemma 6, the \ such that a, <

v.=a +k with 0=k =23
i n n

and n = 2,3,4, " .
n-1

It

1]

29

-1 j
where v, is the smallest \ not exceeding k. Hence there are N(k) vy in

are given by a_ + a_ + cee,a tv
g Y 8, TV 3 T Vg "

the supposed range. By definition the number of v, =a, is N(an) S0 N(atn
+k) = N(an) + N(k).

(b) (c) (d) follow from the fact that A(k) + 0 with k < a, only if k=0,

3

a a,

o
(e) Since a, isnevera v, N(an -1) = N(an).

19

Lemma 8. N(al) =2
= N(an) + N(an_l) if n= 3,4,---. |
Proof. N(al) = N(a1 -1) = a - 1 by (e) and (b) of Lemma 7 respectively;

-1, N(a,) = a, -2, N(ay) =a, -3 and N@a_, )

the second and third statements follow by (e) and (c) and (e) and (d) of the same
lemma respectively. The last statement follows by writing k = a1 in (a) of
Lemma 7.
Lemma 9. N(a ) =a_ -F if n=1,2,... and F_ denotes the nth
—_— T n n+l n
Fibonacci number.
Proof. The statement is clearly true for n = 1,2,3 and can be seenby
the first part of Lemma 8., Ifwe suppose the statement true for all n < kk = 3)

we can write

Il

Ny, ) = N@) +N@y ;) = -F, +a ;- F

(41)

U1~ Fraa
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by the last part of Lemma 8; so Lemma 9 follows by induction on k.

Lemma 10. Every natural number can be written in the form

(42) n=ak1+ak2 + aki—l—t
i > =t <
with kj+1 kJ.Jrl and 0=t a,.
Proof. The lemma is trivially true for all n = a,. Every natural num-
ber between a, and as can be written a2+t with t < 2, ; n = ag is of

the form (42).

Suppose (42) holds for all n < N, and let a denote the largest a; not
exceeding N and consider N - a- We must have N = ay < & 1> since
N < ay = a4 implies N = a . which contradicts the maximal property of
ay. It follows that N - ay < N can be represented in the form (42) with k +
1> kl; hence, N = ay + gy Foeot ' +t is also of the form (42).

Theorem 7. Let n be a number represented as in (42). Then

n-{F a1+ Flgun + 000+ Fea} i 0 st=a)

(#43) N(w =
n-{1+ Figg+1 T Fge1 + 000 F Fki+1} if a; =t=a,
Proof. Since ap, + +r * Ay FU< g - 1 we can apply Lemma 7
to obtain
(44) N@n) = N(akl) + N(ak2 o oA, + 1) ;

applying Lemma 7 repeatedly in (44) we get

(45) N@) = Nag,) + Nlygg) + - + Nigg + 1)

Now if ag; = 2g» 0=t=a, since if t = a, we would have ag; = ag and

we can write

(46) Ny + 1) = Nag) + N@) ;
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but if ag; = ap,. We would have ay +t < a, and we reselect t as a, + tl;

also, we can conclude from this that a -1 = ag S0 (46) still holds in this

i
case. Thus (45) can be written in the form
(47) N(m) = Nay) + Niaky) + -+ + Nagy) + Nt
Applying Lemma 9 to the N'(aki) in the right member of (47) we get

(48) N(@) = ay; - Fis1 + gy - Figal + oo+ + ap; - Figeg + N
= gy tagy toorr bkt NE) - {Figaq oo+ Fgn}o s

but if t < 2, N(¢t) =t and Ayt At t = n by assumption so that the

first part of (43) is true. If a; = t < a9, N¢) =t -1 and we see that the

second part of (43) is also true. This completes the proof of Theorem 6.
Hoggatt (Problem H-53, Fibonacei Quarterly)has proposed that one show

that M(n), the number of naturalnumberslessthan n which cannot be expres-

sed as a sum of distinet Lucas numbers Ln(Ll =1, L2 = 3, Ln+2 = Ln+1+ Lrl

has the property

’

(49) M(L) = F__,

also, he asked for a formula for M(n).

The Lucas sequence can be used in place of {a } inall of our lemmas
and theorems. In particular, Lemma 9 tells us M(Ln) = N(Ln) = Ln - Fn+1;
it is a trivial matter to show L_- F =F by induction so (49) is proved.

n n+1 n-1
Writing ay, = Ly,
natural numbers n.

in (42) and Theorem 7 gives a formula for M) for all

Table 1
R(k) for 0 sk < 144

n |0|[1]2]|3 4|5 6 7|8 9 10 11 12 |13 14 15 16 17 18 19
Rm)|1{2|2|3 3}3 43|45 4.5 4} 4 6 5 6 6 5 6

n 20121 22 23 24 25 26 27 28 29 30 31 32 33|34 35 36 37 38 39
Rm) 45 7 6 8 7 6 8 6 7 8 6 7 5|5 8 7 9 9 8
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Table 1 (Cont'd)
n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54|55 56 57 58 59

Rm) 10 7 810 810 8 7 10 8 9 9 7 8 516 9 8 11 10

n 60 61 62 63 64 65 66 67 68 69 70 71 72 73 T4 75 76 T7 78 79
Rn) 912 9 11 13 10 12 9 8 12 10 12 12 10 12 8 9 12 10 13

n 80 81 82 83 84 85 86 87 88189 90 91 92 93 94 95 96 97 98 99
R(n) 11 9 12 9 10 11 8 9 6} 6 10 9 12 12 11 14 10 12 15 12

n 100 101 102 103 104 105 106 107 108 1069 110 111 112 113 114 115
R(n) 15 12 11 16 13 15 15 12 14 9 10 14 12 16 14 12

n 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
R(n) 16 12 14 16 12 14 10 9 14 12 15 15 13 16 11 12

n 132 133 134 135 136 137 138 139 140 141 142 143
Rmn) 15 12 15 12 10 14 11 12 12 9 10 6

Table 2
T(k) for 0= k = 55

n. 012345 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Tmw) 11121 2 213 2 2 3 1 3 3 2 4 2 3 3

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Tm) 1 4 3 3 5 2 4 4 2 5 3.3 4 1 4 4 3 6 3 5

n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
T (n) 5 2 6 4 4 6 2 5 5 3 6 3 4 4 1 5
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Table 3
S(k) for 0 < k < 68

n Of1 2{3{4 5 6|7 8 9 10f11 12 13 14 15 16 17 |18 19
Sm 1J1 0j1492 1 0j2 2 O 1} 3 2 O 2 3 1 0] 3 3

n 20 21 22 23 24 25 26 27 28|29 30 31 32 33 34 35 36 37 38 39
Sm) 0 2 4 2 0 3 3 0 1l4 3 0 3 5 2 0 4 4 0 2

n 40 41 42 43 44 45 46 |47 48 49 50 51 52 53 54 55 56 57 58 59
Sm) 5 3 0 3 4 1 0f4 4 0 3 6 3 0O b 5 0 2 6 4

n 60 61 62 63 64 65 66 67 68 69
S(n) 0 4 6 2 0 5 5 0 3
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ON A GENERALIZATION OF MULTINOMIAL COEFFICIENTS
FOR FIBONACCI SEQUENCES

Eugene E. Kohlbecker, MacMurray College, Jacksonville, Illinois

Let m = ny +ny +---+ n. be a partition of m into k = 2. positive inte-
gral parts and let ¥y = 0, Fy=1,°--,F, = Fy_;+ Fp_, for n > 2, This is
known as the Fibonacci sequence, A multinomial coefficient for the Fibonacci
sequence is defined to be the quotient

m n, n, e
[m; ny,np,--,m ] = I Fj I Fj I Fjye-- ul Fy .
= =t 7j=1 =t

It is the purpose of this paper to show that such quotients are integer
valued, In order to do this we first establish a representation of F,  in terms
of a linear combination of the Fp,. This result is of some interest in itself

since it contains many of the classic formulae for Fibonacci sequences.

Theorem 1: Let Fy =0, F; = 1,-+« ,F, = Fp, ; + F 5, n =2, and let

m = ny +ny +---+ 0 be a partition of m into positive integral parts. Then

k
' Fm = l_ziG]'Panl

k
-1, 1<i=k;and Py = II Fnj.+1_’

where Gy = 1, G; = Fn1+n2+-'- n i

1Si<k,Pk=l.

For the proof of the theorem we require the following Lemmas:
Lemma 1: If nj+mn,+--.+ny and n! +n! +...+ ny are partitions of m
into k> 2 positive integral parts where the parts nj, n%, oo, ni{ are a per-

mutation of the parts n,, ny,..., ny, then

k k o
2. GiPi Fn; = 2 GiPi Fng
i=1 i=1

307
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where

Gi = Fnpngteeoimy-1 » 2 <1 =k G =13

i'j=¥+1-F'nj+1’ 1=i<k, Pp = 1;

Gi = Fapmprooamy —1s 1 <15k G =1;
k

| — < s =

P! = j=g1Fn3+i , 1= i <k Pl =1,

Proof: Since any permutation of the parts n;,ny,--.,n, canbe obtained by suc-
cessive transpositions of adjacent parts it suffices to show the conclusion for
- ot
the case ng,, = n‘S and ng = ng.y,
inition of G; and G{ we have Gj = Gj for 1=i=<s and s+2=1i=Kk,

n; = nj for i # s, s+ 1, From the def-

Gs+1 = Fngtngte -« +ng_+ng-1, Ggeq = Fn ngte - « ¥0g_ytngyy-1. We ‘also haye
P,=P; for 1=i=s-1and s+1=i= k, Py = Fns+1+1ps+1’ and Py =
Fns+1Ps+1- Thus every term in the unprimed sum equals the corresponding
term in the primed sum except for the terms where i = s and i =s+1, Con-
sidering just these terms, we must show that GsPans + Gs+1Ps+1Fns +

G'P'Fpt + G
8 8 ]

1 -
1 1
s+1Ps+1Fn§,+1 .

G Fg Tog * Gs+1PstiFngyy = GgFngirtiPs+iFng

+ F - P
n1+n2+ ns_1+ns-1 S+1Fns+1

* (FngFnjtngte - ong_ + GsFng=1)Fng,

= Fnans+1Fn1+112+' c°Ng_q

*+ Gg Fng h1Fng * Fng Fng-1)

= Fp F F
Ng Ng iy nytnyte e+ Ng_y

* GsFnging,,

= FnS+1FnSFn1+n2+. o ns__1

* Gg(FngriFngy; * FngFngy-1)
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= GgFng+1Fng+y

+
(Fns+1Fn1+nz+' ceNg-y * GSFHS+1-1 )Fns

= GsFngt1Fng,,

+ F ', F
n1+n2+. ° e +ns_1-|-ns+1—1 ns

1l

GSFnS'H PS+1 Fns+1

+ F
DyFfgde s e 4ng i +Hngy -1 Ps+1 Fns

]

1
GLPLTyy + Gl Pl For

1
s+ Ngyy

where we have used repeatedly the classical formula Fltn = Fm sF T P Fme

Lemma 2: If n;+mny+---+1n is a partition of m into k = 2positive::
integral parts with at least one part (say ng) greater than 1, then

§k: k
G;P.Fn, = ) G!P!Fp
i=1 11 1 = 1 1 i

where ni=n{ for i#s,r;ns—1=n’s, nr+1=n1'c" s # r, and Gi’Pi’

Gi and Pi are all defined as in Lemma 1,

Proof: In view of Lemma 1we can assume that n; > 1 and show the result for
the partitions n; +any +--- +“nk and nj+n+ - -+ + nf where ni=n -1, n = .
ny+1, nf =n for 3<1i< k. For this choice, G; = G} for i =1 and3 <

i
i<k, Gy=F G!=F andPi=P{for1<isk.

ny-1’ 2 ny-2’

Here every term in the unprimed sum equals the corresponding term in

the primed sum except for i = 1,2. Considering only these terms,

k k
GipiFn1 + G2P2Fn2 = (Fni) JIJ2 Fnj+1 + (Fni—anz) JI;Is Fnj+1

k
(Fn Frat + Fp g Fp ) jH_ Fnj+

il

=3
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k
= (Fpgin,) I Fr+e
=3
k
= (F]12+2 Fn1—1 + Fn2+1Fn1—-2) EI Fnj+1
k k

(Fni—ﬁ) jI=12 Fngr + (Fyeo Fn-1) n Fnj+q

J

1
Gy P;Fni + Gy P, Fn}

which completes the proof,

We now proceed to the proof of the theorem., When m = k we have n; =
1, Gy =1,Gj = Fjy for 2<i<k, Pi=1 for 1< i< k and

k=m m=—2
21 GiPjFp; = Fy+ iEFi = Fy+ (Fyy - 1) = Fy
i= =0

by a well-known result for the Fibonacci sequence. When m = k+ 1, all the
parts are 1 except one part which is 2, By Lemma 1 we can assume that nj =
2. For this we have Gj = Fj_, for 1< i<k, G, = 1, P; = FK-i-1F, for 1
<i <k, P =1, Thus '

k
_ZiGiPiFni = FyFgy + Fiip = Fioq + (Fk-y + Fkp) = Flty .
1:

Nowassume m > k+ 2 andlet m=n; + ng+---+ny with nj < ng & -+
£y, There are two cases, nk > 3 or ng > 2 and ng_y 2 2. By applying
Lemma 2 we can reduce the second case to the first. Thus we need only con-
sider ny < my < -+ < np with ng > 3. “We assume' that' the result.is valid

for the partitions

i}

m-1=nj+mn}+-..+nf  where n, =n;,1=<1i<k, np =n -1

1
3
1
1

1 1" .
m-2=mn, +n, +.ee+n"' where n"=n,1=i<k n'=mn_-2
1 2 k i i? Tk k
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and show it holds for the partition

We have G; = Gi = G} for 1= i =k and

P
Pl
s — '_
for 1=1i <k, Pk—Pk—
F =F + F =
m m-1 m-~2

which is the desired result,

311

ceet oy

k-1

= (Fpeq) I Fpgg
T iy I

ket

= (Fp) I Fpen

Tk jEitt 3 ’
k-1

i = (Fog-1) 1L Fnoy

t K7 iy

P!' = 1, Hence,

3 >

> GIP{Fpy + ), GUPUF_,

= 11 i i?i 1 1 ni

k=1 k-1

& i 2 Fags | (Foge + Fryet) Py

K
2 GPiFny
1=1

* GyPy (Foge—g + Fyea)

Utilizing the result of Theorem 1 we prove the following theorem:

Theorem 2: Let m and r be integers,

m= r= 2, and letn;+n,

+e+++np be a partition of m into positive integral parts.
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Then [m;ny,ny,---,np] is an integer.

Proof: If m = 2, then r B 2, and the only admissible partition has n; = n,
= 1. Clearly [2;1,1] is an integer, Now let m > 2 and assume that for
every partition of m - 1 into positive integers where m - 1= s = 2 we have
that [m - 1; ny,ny,--- ,nS] is an integer. If r = m, then each n, =1,1=
i<.r, and [m;n;,ny--- s ] is an integer. If 2<=r< m then m-1=r
= 2, and by the induction hypothesis [m - 1;n; - 1,ny,+++,np], [m - 1;n4,ny -

1,-0+,n.], T [m -1;ny,n5,°,n, - 1] are all integers,

Now

k
[mny,ng,eee,n.] = in GiPi-m - 1;n1"“’ni—1"”nr]

where we have used Theorem 1 to write F,, as a linear combination of the
Fpgs
gers, This completes the proof of the theorem,

1= 1i= r, The right-hand side is an integer since all the terms are inte-

Editorial Comment: The special multinomial coefficient where k = 2, that is,

for m = n;+n,,

m 0y Dy
nE [ F I F
R

has been given the fitting name, '""Fibonomial coefficient,' Fibonomial coef-
ficients appeared in this Quarterly in advanced problem H-4, proposed by
T. Brennan and solved by J, L. Brown, Oct,, 1963, p. 49, and in Brennan's
paper, "Fibonacci Powers and Pascal's Triangle ina Matrix," April and October,
1964, Also, a proof of the theorem of this paper for the case k = 2 appears
in D. Jarden's Recurring Sequences, p. 45.

LI 28 2% 2% 4



ON THE DETERMINATION OF THE ZEROS OF THE FIBONACCI SEQUENCE
ROBERT P. BACKSTROM, Brighton High School, So. Australia

In his article [1], Brother U, Alfred has given a table of periods and
zeros of the Fibonacci Sequence for primes in the range 2,000 < p < 3,000,
The range p < 2,000 has been investigated by D, D, Wall [2], The present
author has studied the extended range p < 5,000 by computer, and has found
that approximately 68%of the primes have zeros which are maximal or half
maximal, i,e,, Z(F,p) =p+1,p -1, +1)/2 or (p-1)/2

It would seem profitable, then, to seek a formula which gives the values
of Z(F, p) for some of these "time-consuming" primes, If these can be taken
care of this way, the average time per prime would decrease since there are
large primes with surprisingly small periods,

We have succeeded in producing a formula for two sets of primes, A
table of zeros of the Fibonacci Sequence for primes in the range 3,000 < p <
< 10,000 discovered by these formulas is included at the end of this paper,
It is not known whether these formulae applyto morethan a finite set of primes,
See [3] for some discussion on this point,

To develop the ideas in a somewhat more general context, we introduce

the Primary Numbers Fn defined by the recurrence relation:
Fn.[sz=aFn+1+bFn;F0= 0, F1= 1,

where a and b are integral, Fn may be given explicitly in the Binet form;

_a? - B0
&Y Fn_g_a———%— ’

where a and B are the (assumed distinct) roots of the quadratic equation
x!-ax-b =0, In a like manner, we may define the Secondary Numbers
which play the same role as the well known Lucas Numbers do to the Fibonacci
Numbers, Thus the Secondary Numbers Ln are defined by the recurrence
relation:

313
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Lnyp = alnyy T bLy 5 Ly = 2, Iy = a,
Ln may also be given explicitly in the Binet form as:

(2 L, = o™+ gt

The following three properties of the Primary Sequences may easily be estab-
lished by induction, or by using formula (1),

— r
) F, o= -(HF_
2) If (a,b) = 1, then (Fn, b) =1
3) If (a,b) = 1, then (Fn, Fn+1) =1,

Using formula (1), it is a simple algebraic exercise to prove the next result,

3 +
Lemma 1, Fm Fi +1Fm—i bFiFm-i-—i

Proof: Since o and B are the roots of x> - ax - b = 0, we have
aBf = -h.
RHS = ((aiH -ﬁi+1)(arm_i _ m—i) -op (ai _ Bi)bm-i_i _ m—i-i))/(a-ﬂ)z
_ (am+1 _ i, Bm—i _ g i, ﬁi+1 + gott _ g™ + oL ﬂm—i + am—i
- B - ™)/ (a - B)?
(am+1 +Bm+1 —Ba™ - aﬂm)/(a - By
(@-ple™ -V (-8 =@ - ") (-p) = LHS
Making use of properties 1) and 3) and Lemma 1, we may prove the following
Theorem which tells us that the factors of Primary Sequences occur in similar
patterns to those encountered in the Fibonacci Sequence itself,
.- Theorem 1, Let (a,b) = 1, Chose a prime p and an integer j such

that pj exactly divides F d* (d > 0), but no Primary Number with smaller

1]

subscript, Then pj divides Fn (not necessarily exactly) if and only if n =
dt for some integer t, Or: F len iff n = dt for some integer t, )

Proof, Suppose that n = dt, Weprove byinduction on t that p] divides
Fn. t=1, pj divides F &

Assume true for t =1, t > 1,

*i,e., pj,}?d but pjﬂ‘er.
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Putting m = d{t +1) and i = d in Lemma 1, we have the identity:

F + bF,F

Fagry = FarFai a¥dt-1

g - :
p° divides F d and F g S0 by (1), divides F i) °

Conversely, suppose that pJ divides Fn ,where n = dt +r for some r sat-
isfying 0 < r < d, We seek a contradiction, forcing r to equal 0,
Putting m = dt and i = -r in Lemma 1, we have the identity:

i =

a = FopriFape * PF

rFaprr-1
Multiplying through by --(---b)r“1 and using the fact that Fr = —(—b)rF_r, we
have:

-0 F, = F

dt r-tTdpir ~ F

ert+r—1 ®

Since pj divides both F at and F i it divides FrF drmg® However, if
(a,b) = 1, consecutive Primary Numbers are co-prime, and so p does not
divide ¥ dtrmt® Thus pj divides Fr which is a contradiction,

Another result which we will need is contained in the next Theorem, Thisre-
sult is a direct generalization of the well-known result applied to Fibonacci
Numbers, The proof follows precisely the one given by Hardy and Wright in
[4], and so need not be repeated here,

Theorem 2, Let k = a’+4b # 0 and p be a prime such that p } 2b,
then p divides Fp—:l’ Fp or Fp + according as the Legendre Symbol (k/p)
is +1, 0 or -1,

Proof. Let the roots of the quadratic equation x* ~ax~b = 0 be:

@ = (a + Va + 4b)/2 and g = (a~ Va + 4p)/2"

Hence

p o= =8"_ @+ViR'- @ -Vig"
Looa™B 2"V
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Case 1. (k/p) = +1

?}"ZFP_1 = (@@ + NBP' - (a - NBP )/ @VE)
p-t p-1
p-1 et p-1 _
o P> ( )-ap N - Z( ) BN R
=0 \ T r=0 r
p-1 -
- Z ( ) TR )
r odd r
l=r=p-2
(p-3)/2
p-1 —2ge
- E < )ap 28 zk.s
s=0 25 + 1
since (21;;11) = -1 (mod p) for s = 0,1,°°°, (p - 3)/2, we find that
(-8)/2
p-2 - p-28-2, 8§
2TF = Z a k> (mod p)
5=0
Summing this geometric progression, we have:
2Ppr = aP - ak(p /2 (mod p)

p-1
Making use of Euler's Criterion k(p—l)/ L (k/p) (mod p) for the quadratic
character of k (mod p), assuming that p {-Zb (k/p) = +1 and knowing that

aP = a (mod p), we have:

F = 0(modp) .

Case 2. (k/p) =

]

(@+ NBP - @ - vBPy/ (2~/E)

Z () (BT - Z () a7 (-B)) | 2 B)
I,

9Py
p

r=0 =0 (p 1)/2
= Y‘ ) aP~ r(r\/E) (NB) = ( ) p-2s-1 8
r odd (\r ) SZ_% 2s + 1 koo

1=r=p
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p divides each Binomial Coefficient except the last and so:

2p—1F T = k(p_'i)/2

P {(mod p) .

Since p [/ 2b and (k/p) = 0, we have
F =0 d .
b (mod p)
Case 3, (k/p) = -1

1%
2 Fp_|_1

(@ + VP - @ -vBPY/ @V

= p+l -1r+1 r " p+1 -r+i r
Z( )ap \CHRD) P BT [ B
r

r
r=>0 =0

+1
2. (p >ap""“(vl?)r VE

r odd r
1=r =p
(p-1)/2
p+1 _
= Z ( )ap 2sks .
2s + 1
s=0

All the Binomial Coefficients except the first and last are divisible by p and

S0:

p = P (p-1)/2
2Fp+1—a + ak (mod p) .

Since p’( 2b, (k/p) = -1 and a" =a (mod p), we have:
P

I = 0 (mod p) .

Yet another well-known result which can be extended to the Primary Se-
quences is given in Lemma 2. A proof may be constructed on the model pro-

vided by Glenn Michael in [5], and is a simple exercise for the reader,
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Lemma 2. If (a,b) = 1 and c,d are positive integers, then (FC,F d)

Fee,af \

Proof. Let e = (c,d) and D = (F_,Fy). elc and e|d henceby Theorem
1, Fe!Fc and FelF g Thus FeiD.

There exist integers x and y (given by the Euclidean Algorithm)such
that e = x¢ + yd, Suppose without loss of generality that x >0 and y =0,

Using Lemma 1 with m = x¢ and 1 = e we have:

Fre = FooiFya * bFeF_yd_1 .
D[Fc and Fj and so by Theorem 1, DMFXC and Fod Thus D[bFeF_y 4oy
but by property 2), (D,b) = 1, and by property 3), (D,F_y d- 1) = 1, Thus
D[Fe. This, together with F_[D gives the result.
Lemma 3.
F F_ L = (b
on-1 = Fpoilp = P
"Proof,
2n-1 n-1 n-i n-i..n Lt}
LHS = (@ - B @ -8 Mo B Nl-p
m- -1 - -1 -1 -
=(an1__B?n _0!2n1_a11 ﬁn+6n a’n_‘_ﬁni)/(a»_m

n-in n-in

= (- B+ ale-pH
@- PR Ve -8 = @ = (0 = RuS.

]

MAIN RESULTS

We shall divide the main results of this paper into 6 parts — four Lemmas
in which the essential ideas are proven, a Theorem utilizing these ideas and a
Corollary applying them in particular tothe Fibonacci Numbers., It will be im-
plicitly understood that from now on, (a,b) = 1 and p T 2abk,
Lemma4, If (-b/p) = (&/p) = +1 (Legendre Symbols), then p|F ®
Proof, Using Lemma 3 with n = (p + 1)/2 gives

-1)/2°

F L
_Tp-i Tprt L (p-1)/2
F, - 5 5 = (D)
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In the proof of Theorem 2 we find that

zp"Fp = F, = (&/p) (mod p)

Thus:
F -1 L 1
(3) (&/p) - £= £ = (4b/p) (mod p)

Putting (-b/p) = (k/p) = +1 we have:
bt _pri o 0 (mod p) .

Suppose, now, that p divides L(p+1)/2' Since L(p+1)/2 = Fp+1 /F(p+1)/2 s

p divides Fp+1‘ Theorem 2 tells us that p divides Fp_1 since (k/p) = +1.

Applying Lemma 2, we see that p divides F ( which is F, .

p—'19p+1)
But F, = a and so we have a contradiction.
Lemma 5. If (-b/p) = (k/p) = -1, then p T F(p+1)/2 .

Proof. Using (3) with (-b/p) = (k/p) = -1 we have:

F L
~§’:—‘ ~%F—1‘='0(modp).

By Theorem 2, p|F and

1

Suppose that pIF(p_l) /2 Therefore p[Fp_
so as before, we find that p[F, = a a contradiction, Hence p|L

p+1’

(p+1)/2 °

Since Ln = aFn+ ZbFn—i’ any prime divisor common to Fn and Ln
must divide 2b by property 3).. Theseprimes are excluded, andso p'f'F(pF 1)/2
as asserted.

Lemma 6, If (-b/p) = +1, (k/p) = -1, then p[F(pH)/2

Proof. Putting (-b/p) = +1 and (k/p) = -1 in (3) we have:

;
|

2 P -2 (mOd P) .
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Thus p{"L(p+ /2 (©+1)/2"
By Theorem 2, pIFpH, and so p[Fp+1/F(p+1)/2 = L(p+1/2 a contradiction,

Lemma 7. If (-b/p) = -1 and (k/p) = +1, then Fo-1)/2°
Proof. Similarly we have: '

since . uppose, to the contrar, a F
i p # 2. Suppose, to th trary, that p/’

Fp—1 Lp+1
2 2

= +2 (mod p)

Clearly
p[F .
(P-1)/2

To distinguish from the Fibonacci case, we shall employ the terminology
Z(F;a,b;p) for the first non-trivial zero (mod p) of the Primary Sequence with
parameters a and b. Thus Z(F;1,1;p) = Z(F,p) following thenotationused
by Brother U. Alfred in [1]. Similar remarks apply to Z(L;a,b;p).

Main Theorem.

1) If r is aprime and p = 2r + 1 is a prime such that (-b/p) = (k/p)
+1, then Z(F;a,b;p) = r.

2) If s is a prime and p
-1, then Z(F;a,b;p) = p+ 1.

]

2s - 1 is a prime such that (-b/p) = (k/p)

1l

1

3) If s is a prime and p = 2s - 1 is a prime such that (-b/p) = +1,
and (k/p) = -1, then Z(F;a,b;p) = s.
4) If r isa primeand p = 2r+ 1 is a prime such that (-b/p) = -1,

and (k/p) = +1, then Z(F;a,b;p) = p - 1.

Proof of the Main Theorem.,

1) Since (k/p) = +1, we see from Theorems 1 and 2 that p[Fd,where
d is a divisor of p -1 = 2r. The only divisors of 2r are 1,2,r and 2r
since r is prime. Clearly p/{ F; =1 and by assumption pr{ F, = a. Lem-
ma 4 tells us that p[Fr and so Z(F;a,b;p) = r.

2) Since (k/p) = -1, ple ,where dfp+1 = 2s. The divisors of zs
are 1,2,s and 2s. p|/F, and p/F,. Lemma 5 then tells us that p/[Fs and
" i.e., Z(F;a,b;p) = p+ 1.

3) Since (k/p) = -1, pIFd ,where dlp+1 = 2s. Thus d must be 1,
2,8 or 2s because of the primality of s. p'f F, and of F,. Lemma 6 tells us
that pEFS and so Z(F;a,b;p) = s.

80 p must divide Fyg = F
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4) Since (k/p) = +1, p[Fd where d|p-1 = 2r. Again d must be
one of: 1,2,r or 2r since r is prime, p’f’F1 and pr’Fg. Lemma 7 tells us
that p/{FI_ and so p must divide Fzr = Fp—i’ Hence Z(F;a,b;p) = p - 1.

Specializing the above results to the case of the Fibonacci Sequence
(]5‘][1+2 = Fm_1 +F s Fy =0, Fy= 1) by choosing a = b = 1 and hence k =
5, we find that parts 1) and 2) of the Main Theorem are now vacuous, Indeed,
1) requires p to be of the form 20k + 1 or 9, andthus r to be of the form
10k + 0 or 4 which cannot be prime; 2) requires p to be of the form 20k +
3 or 7, and thus s to be of the form 10k+ 2 or 4 giving only the prime 2;
3) requires p to be of the form 20k + 13 or 17 requiring s tobe of the form
10k + 7 or 9 which may now be prime and 4) requires p to be of the form 20k
+11 or 19 and thus r tobe of the form 10k + 5or 9 g'ving primes 5 and 10k +9.
Thus we have established the following result:

Corollary. Employing the symbol Z(F,p) to denote the first non-trivial

zero (mod p) among the Fibonacci Sequence (Fn+2 = F 1+ Fn; F, =0, Fy

n+
= 1) we have:

1) s =2 and p = 2s -1 = 3 are both prime, and so Z(F,3) = 4.

2) If s=7 or 9 (mod 10) and p = 2s -1 are both prime; then
Z(F,p) = s.

3) r=5 and p = 2r+1 = 11 are both prime, and so Z(¥,11) = 10.

4) If r = 9 (mod 10) and p = 2r + 1 are both prime, then Z(F,p) =
p-1.

It would be interestingto discover other sets of primes which have deter-
minable periods and zeros. One such set is the set of Mersenne primes Mp =
2P _ 1,where p is a prime of the form 4t + 3. Since (—l/Mp) = (5/Mp) = -1,
Lemma 5 tells usthat Mp/[FzéLt + 2 andso Mp/{Fzg for 0 < g < 4t + 2, other-
wise we could obtain a contradiction from Theorem 1. However, Theorem 2
tells us that Mp!sz, and so Z(F,M ) = 2P,

A definite formula for Z(F,p) is not to be expected for the same reason
that one would not expect to find a formula for the exponent to which a given
integer c¢ belongs modulo p. However, some problems, such as that of clas-
sifying the set of primes for which Z(F,p) is even (the set of divisors of the
Lucas Numbers (p # 2)) may have partial or complete solutions, and so we

leave the reader to investigate them.
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3119
3217
3253
3313
3517
3733
3779
4057
4079
4139
4177
4259
4273
4357
4679
4799
4919
4933
5077
5099
5113
5233

ON THE DETERMINATION OF THE ZEROS
OF THE FIBONACCI SEQUENCE

TABLE OF ZEROS

p Z(F,p)
5399 5398
5413 2707
5437 2719
5639 5638
5879 5878
5939 5938
6037 3019
6073 3037
6133 3067
6217 3109
6337 3169
6373 3187
6599 6598
6637 3319
6659 6658
6719 6718
6779 6778
6899 6898
6997 3499
7057 3529
7079 7078
7213 3607
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7393
7417
7477
7537
7559
7753
7933
8039
8053
8317
8353
8677
8699
8713
8819
8893
9013
9133
9277
9817
9839
9973

Dec. 1966

Z(F,p)
3697
3709
3739
3769
7558
3877
3967
8038
4027
4159
4177
4339
8698
4357
8818
4447
4507
4567
4639
4909
9838
4987
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SOME BINOMIAL COEFFICIENT IDENTITIES®
L. CARLITZ, Duke University, Durham, No. Carolina

Put

S fi+ti\fm-i+\fi+n-j\/m+n-1-]j
e =T ()T
i=o j=0 J J n-=] o=

The formula

2

m+ n
1) H(m,n) - Hm - 1,n) - Hm,n - 1) = ( )
m

was proposed as a problem by Paul Brock in the SIAM Review [1]; the pub-
lished solution by David Slepian established the identity by means of contour
integration. Another proof was subsequently given by R. M. Baer and the
proposer [2]. »
The writer {3 ] gave a proof of (1) and of some related formulas by means

of generating functions. Theproof of (1) in particular depended onthe expansion

SN e
1=0j=0k=0 =0 \ I k ! 1

= {[ -V -0 - Wl - W] - dug -v - WL -w-x)) P

If we take u = w, v = x we get

*Supported in part by NSF grant GP-1593.
(Received by the editors Oct., 1964.)
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_ -(1/2)
3) ZZ H(mn)u V' o= = (1 -u-v) l(1—:2u--2v+uz—2uv+v2) s
m=0 n=0
which implies (1). We now take u = -w, v = —x. Thenthe left member of (2)
becomes
o0 00 00 0o . .
i1\ [itk\[k+o\/L +i NPT

i=0 j=0 k=02 =0 k ' 1

Z Z H(m,n) whx" s

m=0 n=0
where

m n o ..
— i f 147 -itj\/i+n-j\/m+n-i-j
H(m, n) =ZZ<'1’1+J<1 ])<m 1 ])( )( . )

i=0 j=0 i i n-j n-j ‘

The right member of (2) becomes

2 1 -1
( {[ (1-u)?-x2] +4w(l —u+x)(1—u—x)} 2= (1-2w?-2x%+wh-2wix2+x%) 2

It is proved in [3] that

2
®© O fm+n
(1—2w—2X+W2~2WX+X2)—(1/2) = ZZ( )men ’

m=0 n=0

We therefore get

A o ®© 2
0 EF T BT (M) e

m=0 n=0 m=0 n=0



1966] SOME BINOMIAL COEFFICIENT IDENTITIES 325

so that H(m,n) = 0 if either m or n is odd, while

_ m + n\?
() H@m,2n) = ( )

m

If in (2) we take u = v, w = X, it is proved in [3] that

o0 [0 0]
(6) Z Z T, v = @ - 2902 - 22 /2 1 _ gy - 2 1/2)

m=0 n=0
where
mon oy fa\/m-i+k\/i+n-k
s -2 2 ()T
=0 k=0 \1/\K k i
Since
-(1/2)
@ -2v)" VD 1 Lo @Dy oy o~/ o Loyl -2x)_131 . 2 S
(L -2v)(L-2x)
* far rr
) Z( ) ' x
“\r/a —op)t Tt - 2x)F T
- X fer ® /m+r ® fn+r
S B
r=0 r m=0 r n=0 r

min(m,n)

B S ()N

m=0 n=0 r=0
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[Dec.
so that
min(m, n) 2
r\/m\/n
m+n -2r
Jm,n) = 2 2 < )( X)
LW W
r=0
) 2m+n3F2 1/2, -m, -n
1, 1
in the usual notation for generalized hypergeometric function. This may be
compared with [3, (4.3)].
We now take u = -v, w = -x in (2). Then the left member of (2)
becomes
o0 o0
Z Z:f(m,n)vmxn s
m=0 n=0
where

1

Jem,m) = % i (nt (m)<n)<m o k)( e k)
i=0 k=0 1/\k k '

Asg for the right member of (2) we get

{a-20+ v ol 2 - s oy

so that

[o o} [oe] .
Z Z: T,y vx" = (1 + 4vx)—(1/2)

m=0 n=0

Since
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~/2) e .af?\ 4
1+ 4vx) = 2 (-1) Vi
. n
n=0
it follows that

_ ) o fmtn
9 J(m,n) = (-1) < Spm

m

It follows from (7) that

m\ /n\/i+k +n-~1i-
Jm,n) = (-1) ZZ (—1)1+k< )( ><1 )(m i
$=0 k=0 k k n -k

)

2
m n P e
_ ZZ (_1)1+k( ) < ) @+l en- k)

i=0 k=0

Thus (9) may be replaced by

m n
(10) >y (-1)i+k

i=0 k=0

ngW.’-‘i
[\V]
i
>

The left member of (3) is equal to

1093031 0 (e ) R Bt

i=0 j=0 k=0 £=0

t%

i=0 k=0

BSOS )E(
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o o 0 2

. i+1).k+1). .
DYy e
it

i=0 k=0 §=0

i

(e ] oc
Yy rar Lkl
i=0 k=0

1t

v

where F(@{+1), k+1;1;v) is the hypergeometric function. If we put
m
Cp® = D {P@ -k + 1, k+ 151w}
k=0
then (3) becomes
o 2
m -1 N o m_n
(11) Zu G = (L -u-v) ZZ o uy
n=0 m=0 n=0

Multiplying by 1 -u -v and comparing coefficients of u™ we get

® fm+n
1z) @ -wG, ) -G ) = Z( ) v =Fm+1, m+ L1;v) .

_ n=0 m

This identity is evidently equivalent to (1).
In a similar manner, it follows from (4) that

oo oo

Y3 et R, k1 1 V) FE 4L, k4 1 1 )

i=0 k=0
2
[ ]
_ i u2m (m+n> 2n
= V N

m=0 n=0 * o
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which yields the identity

2m 2
in,. . ) . min\ o
3) Y (-D'F@E+ 1, 2m — i+ 1, 1; v)FE+1,2m -1+ 1513-v) =3 V4R,
=0 ~ n
i n=0

The identities corresponding to (7) and (9) seem less interesting.

With a little manipulation the right member of (2) reduces to

fa —u—v-W—X—U.W—VX)2 —4uvwx}_(1/2)

We have therefore

w SEEELINTICN

i=0 j=0 k=0 £=0 : !

={@l-u-v-w-x+ uw+vx)2 —4uvwx}—(1/2)

Note that the right side is unchanged by the permutation (uvwx) and also by
each of the transpositions (uw) and (vx) and thereforeby the permutations of
agroup of order eight. The same symmetries are evident from the left member.

It maybe of interest toremark that inthe case of three variables wehave
the expansion

5 iii(iif])(wrk)(ku) ik

k i

Each side is plainly symmetric in u, v, w. As a special caseof (15) we may

. _ 2 PN
mention v = €u, w = € u, where €, € are theprimitive cube roots of unity.
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The right member reduces to (1 - 4113)-(1/ 2) and therefore

Z (i + j)(j + k)(k + i) €j+2k ) (211)
i+j+k=sn \ I k i n

while

i+3\ /j+k\ [k+i\ .
Z()( )(.)63+2k=0(3/rn).
i+jtk=n \ k !

If we expand the right member of (15) and compare coefficients we get

EZ (+]+k-2m)! _ i+ j+ k\ sk +1
r rl@-o!@§-oylk-1)! ; k i ?

o

which can also be written in the form

i\ (i) /x
(1')<1'>() . G+ PIg+HrRIE&+ D!
(16) > (i+ Sh - Shnraeg o

r 2r

5.

In the case of six variables a good deal of computation is required.
Making use of 3, (5.1) we can show that

an i (11 12) (12+13)<13+14) <14+15)(15+16) (16+1>
. . i i i ; ; : :
1,00 eig=0 2 '3 1y 5 s ) 47
"1} 2 u§3 ugtug’ uze

‘ 2
&= { [1 -u i —U.2 —u3 —u4—U5 —u6+u 1U3+u1u“+u1u5+u2U4+u2u5+ U.2u6+u3U5+U3u6+u4u6 —u1u3u 5 —U2u4u6 ]

- 4ujuugugugugl”
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On the right of (17) the bilinear terms satisfy the following rule: in the cycle
(123456) adjacent subscripts are not allowed; thus, for example wu, and
wug do not appear.

If wetake W T U, Uy U, U S U, the right member of (7) reduces
to

-(1/2)
{[1 - 2uy - 2u, - 2ug + (u +u, + u3) - 2w uyu 3] - 4u1u2u }

-1 2 -
{0 -y -y - ug T -y -y - uy? - a7/
in agreement with [3, (5.2)].

For five variables we find that

) Z <1l+12> <12+13> (13+14) (14+15> <1 +i ) u]‘_lu 2u3 4 i
i i i i 192 % %Y {
i 9°%%, i =0 12 3 4 5 1
1 5

+uu, +tuu,tuu +uu+uu -4u. v uu,u }(1/2)
={[1‘“1'“2‘“3“u4‘“ Uty Uy Uy Tty 5] - 4y v
The bilinear terms on the right are determined exactly as in (17); in the cycle
(12345) adjacent subscripts are not allowed.
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ADVANCED PROBLEMS AND SOLUTIONS
Edited by V. E. HOGGATT, JR., San Jose State College, San Jose, Calif.

Send all communications concerning Advanced Problems and Solutions to
Rayi’nond Whitney, Mathematics Department, Lock Haven State College, Lock
Haven, Pennsylvania. This department especially welcomes problems believed
to be new or extending old results. Proposers should submit solutions or other
information that will assist the editor. To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within three months after
publication of the problems.

H-93 Proposed by Douglas Lind; University of Virginia, Charlottesville, Va. (Corrected)
that L
n-1
= 2k
Fn = |_|(3 + 2 cos 0 )
k=1
n-2
L =] |(3+2cos k+1"~7) ,
n n
k=1
where 7 is the greatest integer in n/2.
H—96. Proposed by Maxey Brooke, Sweeny, Texas, and V. E. Hoggatt, Jr, San Jose State

College, San Jose, Calif. th
Suppose a female rabbit produces Fn (Ln) female rabbits at the n

time point and her female offspring follow the same birth sequence, then show

that the new arrivals, Cn’ " Dn,) at the nth time point satisfies ,

Cn+2 = 2Cn+1 + Cn Cl =1 C2 = 2

and
o~ — n 3

Dn+1 = 3Dn + (-1) D1 1 .

H-97 Proposed by L. Carlitz, Duke University, Durham, N.C.
Show
n 2 n
n n-k/n n+k

@ 2 (1) mm 2 @ (E) (76F) e

S k) BT & k) k) Mk

n 2 n
® 2 () = = e () (7 T

332
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H-98 Proposed by George Ledin, Jr,San Francisco, Calif.

If the sequence of integers is designated as J, the ring identity as I,
and the quasi-inverse of J as F, then (I - J)(I - F) = I should be satisfied.
For further information see R. G. Buschman, "Quasi Inverses of Sequences,"
American Mathematical Monthly, Vol. 73, No. 4, III (1966) p. 134.

Find the quasi-inverse sequence of the integers (negative, positive, and

Z€ero).

H-99 Proposed by Charles R. Wall, Harker Heights, Texas.
Using the notation of H-63 (April 1965 FQJ, p. 116), show that if a:=

@ +\Vh/2, .
]_1\/_5_}? o™ =1+ Z (-l)n(n—l)/zF(n’ m)a-n m+1)
n=l " n=1

= - = n(n+1)/2 -n(m+1)
L «a =1+ (-1) F(n, m) ,
here .
§ F@,m) = FnFm-1"" " Fmoni
Flen e 0 Fn

H-100 Proposed by DW. Robinson, Brigham Young Univ. ,Provo, Utah.
i < <
Let N be an integer such that Fn <N Fn+1’

mum number of Fibonacci numbers required to represent N as an Algebraic

n 2 1. Find the maxi-

Sum of these numbers.

H-101 Proposed by .Harlan Umansky, Cliffside Park,N.J, and Malcolm Tallman,
Brooklyn, N.Y.

Let a,b,c,d be anyfour consecutive generalized Fibonacci numbers (say

=T = = >
H p and H2 g and Hn+2 Hn+1 + Hn’ n 2 1), then show

1

(cd - ab)® = (ad)® + @bc)?

Let A = LkLk+3’ B =2Lk+1.Lk+2’ and C =L

A2 4 B2 = 2

OKk+2 + sz 4 Then show

H-102 Proposed by J. Arkin, Suffern, N. Y.

Find a closed expression for Am in the following recurrence relation.

A + A
m

m-3 m-4 = “m-5 A

2 77 4m-8 " fm-9 T “m-12°

where m = 0,1,2,--- and the first thirteen values of AO through A12 are

[e]
[9—‘]+1=A -A . -A A A
m
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1,1,2,3,5,7,10,13,18,23,30,37, and 47, and [x] is the greatest integer
contained in x.
SOLUTIONS
EULER AND FIBONACCI

H-54 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

If Fn is the nth Fibonacci number, then show that
¢(Fn) = 0 (mod4), n >4

where ¢(n) is Euler's function.
‘-folutioh by John L. Brown Jr. Penn. State Univ., State College, Pa. )

It is well known that m|n implies Fm’Fn. Further, ]5‘n = 3 (mod 4)
implies n = 6k -2 for k = 1,2,3,°-+, Therefore, if Fn is a prime and n
> 4, Fn must be of the form 4s +1 with s a positive integer. E.Otherwise,
Fn,n > 4) would be of the form 4r + 3 and hence n = 6k -2 with k > 2

implying that F contrary to assumption,] Since ¢(p) =p -1 for any

3k—1|Fn’
prime p, it is therefore clear that Fn prime with n > 4 implies ¢(Fn) =
P(ds +1) = (ds+1) =1 = 4s = 0 (mod 4).

Now, for any integer n,

{28

where Pys Pgs"°,P, are the distinct prime divisors of n. Therefore, for n

= ab with a and b integers,

_ _ 1 IR S 4
¢(ab)—ab<1 p1><1 p2> (1 pk)’

where PysPys°** 5P, are the distinct prime divisors of ab. Since the distinct
prime divisors of either a or b separately are included among those of ab,
it is obvious that either &#(a) = 0 (mod 4) or ¢é(b) = 0 (mod 4) necessarily im-
plies ¢(ab) = 0 (mod 4).

We shall now prove by an induction on n that ¢(Fn) = 0 (mod 4) for n
> 4, First, the result is easily verified for n = 5,6,°°°,10. Assume as an
induction hypothesis that ithasbeenproved for all n < t where t is an integer
210, Then, if F is prime, we have ¢(F = 0 (mod 4) by the result of

t+1 t+1)
the first paragraph. Otherwise, we distinguish 2 cases. If t +1 is composite,
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1 and m, are integersboth

>1, and at least one of them, say m, for definiteness, is >5 and <t. Then

t+1 may be writtenas t+1 = m, m, where m

lelFm, sothat ¥, = Fp ° q. Since $(Fp,) =0 (mod 4) bythe induc-
tion hypothesis, we conclude from the remarks of the second paragraph that
<I>(F,C +1) = ¢(le e q) = 0 (mod 4) as required.

In the alternative case where t+ 1 is prime, we note that Ft 41 is odd
(otherwise t + 1 would be divisible by 3) and composite. Hence Ft 41 has only

odd prime factors, say p;,Py,°**,py, and

= L 1) ... _ L
- 2)(2) (- -4)

Since k > 2, it is clear that

Pt+l

F T e
¢( t+1) plpzo oo pk

(o, - Doy - D+e - 1)

is divisible by 4. Thus in all cases, dJ(F,c +1) = 0 (mod 4) and the proof is com-
pleted by mathematical induction.

Also solved by the proposer.

H-56  Proposed by L. Carlitz, Duke University, Durham, N.C. .

Show
[o'e) n
Z Fk - (Fk / Fk+1) k>1
-1 FaFose " FrocF e k:,.l T
o= i=1 i
Solution by the Proposer.
L 1 1 o st Fy 2
o - - - ?
FnFn+1 1:‘n-l-'2 Fn+1 Fn+2 Fn+3 Fn Fn+1 Fn+2 FIn+3 Fn Fn+2 Fn+ 3
so that
1 _ 153 1 ) 1 ) 1
"2 F ry
21: FnFn+2Fn+3Fn+4 2 1 FnFn+l Fn+2Fn+3 Fn+1Fn+2 n+3
\ 1 ] ) Py Wy
° FF F F F F F F F F F F

n n+l n+t2  nt+3 n+l n+2 n+3Fn+4 n n+l n+2 n+3 nt+4
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_ 3
- s
F1{1Fn+2 Fn+3Fn+4
so that
o o] o0
DI~ s v viRD DI L e S el e i
1 FnFn-er Fn—l—3Fn+4 1 FnFn+1 Fn+2 Fn+3 Fn+1 Fn+2 Fn+3Fn+4
— 2 = -];-
FIFZ F3 F 4 3
. 1 _ Fr e e
FoFort”  Fook ForiFnee Foern FoFner " Foekn
_ Flen
- ae e 2
FnFn+2 Fn+3 Fn+k+1
so that
o0 n
ket FoFefues " Frann FeFy " Fry

n=1
which is equivalent to the stated result.

ONE MOMENT, PLEASE

H-57 Proposed by George Ledin, Jr,San Francisco, Calif.

If Fn is the nth Fibonacei number, define

n n
G, = Z kF Z F
k=1 =1
and show
(@) lim (G, - G) =1
n—oo
(ii) lim (G ., /Gy =1

n-—ow" ntl n



1966 ADVANCED PROBLEMS AND SOLUTIONS

o
1)
pst

Generalize.

Solution by Douglas Lind, University of Virginia, Charlottesville, Va.

(i) Let Hn be the generalized Fibonacci numbers defined by H1 = p, H2 =P

+ q, HI1 = Hn-—l + Hn—z' We may show by induction

n
R = Zka =@+ DH , -H , +H
k=1
n
) Sn = Z-Hk = Hn+2 - HZ
k=1

(The first is problem B-40, Fibonacci Quarterly, Vol. 2, No. 2, p. 154.) Let
Gn = Rn /Sn’ Then

L = lim (G, -G)
n—oo

+H

(+ 2)H o -H +H (o+1)H et Hy

= lim n+5 3 _ n+2 =H
n—>00 Hog ~ Hy Hwo ~Hy

and so by dividing we get

n+2-H o /H o +Hy /H . n+1-Hp, /M o+Hg /H o
1-H,/H o - 1-Hy/H ,

(1) L= lim
n—o0

Horadam, "A Generalized Fibonacci Sequence,'" American Mathematical
Monthly, Vol. 68 (1961), pp. 455-459, has shown

) lim H /Hn = ak, a = (1+V5h)/2

n—> o0

n+k
and it is easy to prove

(3) lim C/Fn+r = 0, e¢,r constants,
D—>o00
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so that

lim @+2-H / /H

n-—>00

=1—a2+a2=1.

=
I

—n—1+Hn+

n+3 4 " T k2 )

(ii) By dividing the numerator and denominator of the main fractions in (1) by
n, formingtheir quotient, applying (2), (3), and the easily proved lim 1/nFn i
=0, r constant, we find lim (G _,; /Gn) =1,

Putting p = 1, q = 0 inthe above gives the desired results of the problem.

Also sclved by John L.Brown Jr,Penn. State Univ., State College, Pa,, and the Proposer.
COMPOSITIONS ANYONE ?

H-58 Pr0posed by Johin L. Brown Jr, Penn, State Univ., State College, Pa.

Evaluate, as a function of n and k, the sum
i Hy* +1.k nT2ip+2Faqe2 - FageaFoy 42

Where 11, o 3, cee, 1k 41 constitute an ordered set of indices whichtake onthe
values of all permutations of all sets of k + 1 non-negative integers whose sum
is n.
Solution by"’ David Zeitlin, Minneapolis, Minn.

If V(n,k) is the desired sum, then

E n [i n]k+1 1
Vn,k)x = F X =
K= = " 2nt2 o - 3x + X2)1<+1
Since the generating function of the Gegenbauer (or ultraspherical) polynomial,
(a) .
C " (u), is @
" Y c®wx" = e
n=0 1 -2ux+ x)
we see that
= cktl) (3
V(n,k) = Cn 5
where
n/2
c@® ) = =L [ﬁ] (-npml@tn-m ., n-2m
n @) == m!i(n - 2m)! "
Thus :
[n/2] k+n-m\ sn-m _
Vak =y (—1>m( ) ( ) gh7am
m= k m

Also solved by the proposer.
* ok kKK



FIBONACCI ON EGYPTIAN FRACTIONS

M. Dunton and R.E. Grimm, Sacramento State College, Sacramento, Calif.

When J, J. Sylvester wrote in [1] of his method for expressing any
rational number between 0 and 1 as a sum of a finite number of unitary frac-
tions, he was not aware that the method was known to Leonardo Pisano in 1202.
B, M. Stewart in [ 2] has a chapter on Egyptian fractions, but makes no men-
tion of Fibonacci, It is hoped that the following translation will make it pos-
sible for Fibonacci to speak for himself, In preparing the text which is to be
incorporated in a complete, new edition of the Liber Abacci, we have used

pp. 77—-83 of Baldassare Boncompagni's Scritti di Leonardo Pisano, VoI, 1

(Rome, 1857). We have consulted microfilms of the manuscripts listed in the
bibliography in attempting to correct apparent errors, At the same time, we
have tried to reproduce Fibonacci's style as closely as seems consistent with
readability,

* K Kk

In this chapter, we explainhow to break up rational numbers into unitary
fractions so that you may be able to distinguish more intelligently about frac-
tions having any denominator, when considering what part or parts of a unit
integer they are,

This work is divided into 7 sections, the first of which is when thelarger
number, which is below the bar, is divided by the smaller., The rule for this
category is that you divide the larger by the smaller andyou will have the part
which the smaller is of the larger, E.g., we want to know what part 3/12 is
to a unit integer, If 12 is divided by 3, the result is 4, for which you say 1/4,
which is 3/12 of a unit integer. In the same way 4/20 is 1/5 of a unit integer;
5/100 is 1/20, since 100 divided by 5 gives 20, You should reason in the same
way about similar cases,

Now this category is divided into 3 parts, the first of which is simple,
the second compound; the third is called compound reversed, The simple is
the one I just mentioned, The compound is when the simple has to do with the

parts of a second number, as in the case of

339
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*
2
4
? ’
since 2/4, which belongs to the first simple category, is divided by 9; where-
fore,
2
4
9
becomes
1
2 _ 1
9 18
while
2
6
9
becomes
1
3
9
and
3
92
10
becomes
1
3
10
since 3/9 reduced is 1/3, which compounded with 1/10 produces
1
S
10 ’
and you should reason in*this same way about similar cases, The first cate-
*
gory compound reversed is
3/5

9 L]

*This is a 20th-century interpretation of what Leonardo writes as 20/49. We
have consistently made such conversions in this translation,
**Notice his awareness of the commutative property!
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this being
3
9
5
which equals
1
3.
5 ’
reason about
4
T
8
in the same way; it reverses to
4 1 5
8 __ 2 9
7 7~ 2ndg
becomes
s 1
10 _ 2
9 9 °

The second cétegory is when the larger number is not divisible by the
smaller, but from the smaller canbe made suchpartsthat thelarger is divided
by any of the parts themselves. The rule for this category is that you make
parts of the smaller by which the larger can be divided; and let the larger be
divided by each one of these parts and you will have unitary fractions which will
be the smaller of the larger, E,g,, we want to separate 5/6 into unitary frac-
tions, Since 6 is not divisible by 5, 5/6 cannot be of the first category; but
since 5 can be partitioned into 3 and 2, by each of which the larger, namely 6,
is divisible, 5/6 is proved to belong to the second category, Hence, when 6 is
divided by 3 and 2, the result is 2 and 3; for the 2, one takes 1/2, and for 3,
take 1/3. Therefore 5/6 = 1/3 + 1/2 of the unit integer; or otherwise, by
separating 5/6 into 3/6 and 2/6, each will be one of those two fractions: 3/6,
belonging to the first category, equals 1/2, and 2/6 equals 1/3 of one; and 5/6
equals 1/3 + 1/2, as we said above, Likewise, ifyou resolve 7/8 into4/8, 2/8
and 1/8, you will have 1/2 for 4/8 and 1/4 for 2/8 and 1/8 for 1/8, i.e., for
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7/8 you will have 1/8 + 1/4 + 1/2, Nowthis second category has inlike manner
a compound part and a compound reversed part.

=
olmw

belongs to the compound part, since 3/4 according to the second category is
1/4 + 1/2; wherefore for

3
4
10
one gets the compounds
1 1
2 4
10 ™70
i.,e,, 1/20 and 1/40, Likewise,
| 5 101
2 8
5 becomes 5 and 5o

since 5/8 = 1/2 + 1/8; but for

-
o‘oolm

since it belongs to the first category reversed, you will not resolve into

Jpotr=
o]

TS T
since by the first category it should be reversed into

=l
OO{OCH

il

oolmn—l

and this will take pléce because of the affinity which 5, which is above the 8,

has for 10.* Now regarding the compound reversed part of this category, an

’:‘*Recall that in his notation it reads 5 0

810
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example is

3 3 1 1
5 ioh i : 10 _ 5 10
10 ° which is reversed into 5 =5 + <

i.e., 1/25 + 1/50; because 3/10 is reduced in simple form into 1/5 + 1/10,
therefore

3
10
5
compounded will be resolved into -
1 1
5 5
5 awd 4
In like manner
5 5 1 1

and you should reason in this way in similar cases, But since we recognize
that the parts of the first and second category are necessary before the others
in computations, we take pains to show at present in certain tables the break-
downs of the parts of certain numbers, which you should be eager to learn by
heart in order better to understand what we mean in this section.*

The third category is when one more than the larger number is divisible
by the smaller, The rulefor this category is that you divide the number which
is more than the larger by the smaller, and the quantity resulting from the
division will be such part of the unit integer as is the smaller of the larger,
plus the same part of the part which one is of the smaller number, E.g., we
want to make unitary fractions of 2/11, which is inthis category since one more
than 11, i, e,, 12, is divisible by 2, which is above the bar; since 6 is produced
by this division, the results are 1/6 plus 1/6 of 1/11, i.e.,

1

8
_ 11
as the unitary fractions of 2/11, Inthe same way, for 3/11youwill have 1/4and

*To conserve space we have omitted his table of breakdowns for all rational

numbers between 0 and 1 having denominators 6, 8, 12, 20, 24, 60, or 100,
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1
4 1 1
i Re @ Y g -
And for 4/11 you will have
1
1 3 1 1
3 1 oM ity
and for 6/11 you will have
1
1 2 . 1 1
2 T M 3@ T
and for 5/19 you will have
1
4 .o 1 1
19 > M%we oo

since 5 which is above 19 is 1/4 of 20, which is 1 + 19, The third category as
well is also compounded twice, as in the case of

2 1 1
3 R . 2 6 . 2 R 1 1
" which is 7 + " since 3" 18 6 + 5
likewise
4 11
7 . 2 - 14 R 4 . 1 1
9 ¥ g Ty . ST B o T
Andthis same category is also reversed, as
3 3 3 3
7 7. 7 . 11
Erui L A s R
The 3/11by the third category is 1/44 + 1/4; wherefore
3 1 1 3 3
11 . 4 44 s . 7
5 s = + - . Likewise

g is reversed to —— ,

7
which belongs to two compounded categories, namely the second and third
Accdrding to the second compounded category ' ‘
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3/8 1 L (L,1\_ 14, s
_7‘“187<8+4)“ /A

also, according to the third category compounded,

3/8 . 1(1 1
T8 7<§z+§)’

since 3/8 results in 1/24 + 1/3; and you should reason in the same way about
similar cases,

There are times when from this same category two parts can be made
from the smaller number above the bar, by either of which one more than the
larger is divided without remainder, as in 8/11 and 9/ 11:"’k For two parts can
be made from 8/11, namely 6/11 and 2/11; whence for 6/11 we have, accord-
ing to this reasoning, two unitary fractions, namely 1/22 + 1/2, and for 2/11
we have 1/66 + 1/6, Therefore for 8/11 we have 1/66 -+ 1/22 + 1/6 + 1/2.
Likewise, for 9/11, through its being resolved into 6/11 and 3/11, we have

1 1 1 1
and for 10/11 we have
1 1 1 1

since the 10 above the 11 is 1/3 + 1/2 of 12, which is one more than the 11
under the bar.

The fourth category is when the larger is prime and one more than the
larger is divided by one less than the smaller, as 5/11 and 7/11, The rulefor
this category is that you subtract one from the smaller, from which you will

make one unitary fraction such as the number will be which is under the bar;

*Note the distributive law! His notation is T4

**It appears that he is trying to generalize, If so, he must have recognized a
flaw; for in the next section he uses a different approach

110
8 4
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and thenyou will have as remainders parts of the third éategor‘y, as in the case
when you subtract 1/11 from 5/11, with the remainder being 4/11, For this,
by the third category, you will have unitary fractions 1/33 + 1/3; with the
above-written 1/11 added on, the result is

1 1 1
EEI U
In the same way for 7/11 you will have
1 1 1
BTty
and for 3/7 you will have
1, 1.1
28 7 4 ’
and for 6/19 you will have
1 1 1
7619 "7
and for 7/29 you will have
1
1=
5,1 . 1.1 .1
295 » “%» 1357329 "5

The fifth category is when the larger number is even, and one more than
the larger is divisible by two less than the smaller, The rule for this cate-
gory is that you subtract 2 from the smaller number, and this 2 will belong to
the first category, but the remainder will belong to the third, as in 11/26 from
which if you subtract 2/26, which equals 1/13 according to the rule of the first

category, the remainder is 9/26, which equals

1/3
26

wl=

To this add 1/13; the result will be

1 1 1
etz *3

w

as the unitary fractions of 11/26; and in the same way for 11/62 you will have
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V7 01 1
62 T "7

The sixth category is when the larger number is divisible by 3, and one
more than the larger is divisible by 3 less than the smaller, as in 17/27, The
rule for this is that from the parts themselves youwill subtract threeparts, i. e, ,
that you will subtract 3 from the lesser. These three parts will belong to the
first category, the rest to the third, as when from 17/27 you subtract 3/27
(1/9 according to the first category of our topic); and to 14/27, which by the
third category is 1/54 + 1/2, adding the 1/9 written above, you get

-+

|
DO | =

1
st
as the parts of 17/27, In the same way for 20/33 you will have |

L
66

The seventh category is when none of the above-described categories

1
gt

DO| =

occurs. The rule for this category is very useful, since through it the parts
of certain above-described categories, viz, , the second, fourth, fifth and sixth
categories, are occasionally found better than through the rules of those cate-
gories themselves, Hence the parts of the four categories themselves are
always to be derived through this seventh rule, so that you can more precisely
discover the neater parts, either through the rules of the categories themselves
or through the present rule. The rule for this category is that you divide the
larger number by the smaller; and when the division itself is not even; look to
see between what two numbers that division falls, Then take the larger part,*
and subtract it, and keep the remainder. If this will be from one of the above-
described categories, thenyou will take the larger part of the remainder itself;
and you will do this until the parts of one of the above-described categories
remain, or until you have all unitary fractions., E.g., we want to break down
4/18 into unitary fractions. Now 13 divided by 4 falls between 3 and 4; where-
fore 4/13 of the unit integer is less than1/3 and more than1/4 of it; wherefore
S TTNTITTRY

y larger part, he evidently means the unitary fraction with the larger de-
nominator, In the example this would be 1/4,
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_we perceive that 1/4 is the largest unitary fractionthat canbe taken from4/13,

For 13/13 makes the unmit integers wherefore one fourth of 13/13, i, e,,

13
4 x 13

is 1/4 of the umit integer; wherefore subtract 13/(4 x 13) from 4/13, and the
remainder will be 3/(4 x 13), which by the second category is

1 (1. 1\ . 1.1
13 (4+2> s e, 550t 3% .

Or since 3/(4 x 13) is 3/52, which by the rule for the second category is inlike
manner 1/52 + 1/26, we thus have for 4/13 three unitary fractions, namely

Otherwise, you canfind the parts of 3/52 by this seventh rule, namely by divid-
ing by 3; the result is 17, and more; wherefore 1/18 is the largest part which
is in 3/52, Consequently, 52 divided by 18 gives 2 + % ; if this is takenfrom 3,

the remainder is

—1 o L
9x 52 468 °
Therefore for 3/52 we have
1 1
o=
468 18 ’

wherefore for 4/13 we have

A, 1,1
468 18 4 °
Likewise, you will make unitary fractions of 9/61 in the following way.
Divide 61 by 9, and the result will be 6, and more; wherefore you will have 1/7
as the largest unitary fraction of 9/61, And so you will divide 61 by 7, with
the result 8 + %, which are sixty~first parts of one; subtract this from 9/61,

and the remainder will be
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this 2 is A and 1

2 . 2 . 2 1
Tx61° =% 127’ 127 214 214 x 427 °

according to the third category; therefore 9/61 is

1, 1

1
— 4 L
514 x 497 © 214 T 7

Since 2/(7x61) by the compound third category results in

1 and | —2—
4x61 © 28 x 61 d
consequently for 9/61, the result is
*
1,1 ,1
1708 244 7 °

Likewise, we want to demonstrate this same method concerning 17/29,
If 29 is divided by 17, we obtain 1, and more; wherefore we perceive that
17/29 is more than half of the unit integer; and it is to be noted that 3/3, 4/4,
5/5, or 6/6 makes the unit integer; inlike manner 29/29 makes the unitinteger,
If we take half of it, i, e, , 14% /29, and take this from 17/29, the remainder
will be 21/29, i,e,, 5/58; wherefore 17/29 is 5/58 + 1/2, * Of this 5/58 one
must make unitary fractions, namely by this same category; wherefore divide
58 by 5, and the result will be 11, and more,  Whence one perceives that 1/12 -
is the largest unitary fractionthat is in 5/58; whence one should take 1/12 from |
58/58, i, e,, from the integer, with the result 4%/ 58, which is less than 5/58
by 1/(6 x 58), i.e,, 1/348; and so you will have for 17/29 three unitary frac-

tions, namely

1.1 .1
t5 5

348 12

*By compound third category he means factor out 1/61 from 2/(7 x 61) and
apply the third category method to 2/7, This gives 2/7 = 1/28 + 1/4, andso
2/(7 x 61) = 1/61 (1/28 + 1/4) = 1/(61 x 28) + 1/(61 x 4),
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Nowthere is in similar cases a certain other universal rule, namely, that
you find a number which has in it many divisors like 12, 24, 36, 48, 60, or
any other number which is greater than half the number under the bar, or less
than double it, so that for the above~written 17/29 we take 24, which is more
than half of 29; and therefore multiply the 17 which is above the bar by 24, and
it will be 408; divide this by 29 and by 24, with the result

2
14 59
24 °
Then see what part 14 is of 24; the result is

L

* 12

A+

N
o
DO

or

keep these as parts of 17/29; and again see what part the 2 which is above the
29 is of 24; the result is 1/12 of it, for which you will have (1/12)/29 among
the parts of 17/29, Since 2/29 of 1/24 = 2/24 of 1/29, which is namely 1/348,
therefore for 17/29 you will have

1 ,1,1 A1
345 17§ O
as we found out above,

Likewise, if you multiply the 17 which is above the 29 by 36, just as you
multiplied it by 24, and divide in a similar way by 29 and by 36, the result is

of 36;

[N )

. 1.1 1
= = —
, the 21 being mn + 3 or I3

and 3, which is above 29, is 1/12 of 36; and from the 3 which is above 29, the
result will be

Do 1=
wlml"‘

s e, g o

and so you will have again as the unitary fractions of 17/29,

1
348

Cor Lol

* 348 12

+

=
Coj
[N
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And if you want to know why we multiplied by 24 that 17 which is above the 29,
and divided the product by 29, you should know that of 17/29 we made twenty
fourths because 24 is a number composed of many numbers, whence its parts
derive from the first and second category. For 17/29 has been found, as pre-
viously said, to be

2

14'25-

24

14
24 °

, of which
*
which is at the head of the bar, is expressed by the second category as

L
12

+ +

[N
=
D=

or

Ed

and for the remainder- 4 /24, it is expressed by the first category reversed as

2 1
24 . Iz
29 v e? 29 *

Likewise, when you have muitiplied 17 by 36 and divided by 29, then you have
made thirty sixths of 17/29, For 29/29 is equal to 36/36; wherefore the ratio
which 29 is to 36 will also hold true for 17 to the fourth number; wherefore we
multiplied the third number, namely 17, by the second, namely 36, and divided
the product by the first, because when the four numbers are proportional, the
multiplication of the second by thethirdis equal to the multiplication of the first
by the fourth, as has been shown by Euclid,

Likewise, if you want to break down 19/53 into unitary fractions, although
it belongs to the fourth category, when one more than 53 is divided by one less
than 19, whence for 19/53 you will have

2

ol

R
159 = 53

let us next show in what way it should be done bythe seventh category., Now 53
divided by 19 falls between 2 and 3; wherefore we have 1/3 as thelargest unitary

*In his notation it reads %%ﬁ- Since he reads numbers from right to left,

%—i— is at the beginning or head of the fraction,
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fraction which can be taken from 19/53;and subtract a third of 53, namely 17%,
from 19, with the remainder being 1%, i.e., 1%—/ 53; thereforethe unitary frac~
tions of 19/53 are

1, 1,1

159 53 '3
as we discovered through the rule of the fourth category.

Now by this rule one cannot so easily make the unitary fractions of 20/53.
Hence you will find them through another rule, viz, , by multiplying 20 by some
number which has many divisors, as we have said previously, Now if 20 is
multiplied by 48 and divided by 53 and then by 48, the result is

185

53 . 1 1 1
—_— = = —_— 4 = .
78 the 18 being 3 + 7 of 48, or o4 3 ;

and the 6 which is above the 53 is 1/8 of 48; wherefore it will be 1 /53, since
the 6 is above the 53; therefore for the unitary fractions of 20/53 you have.

+

oot
[\
N

and you should strive to operate in this way in all similar cases; and when you
cannot have through any of the above-mentioned rules convenient unitary frac-
tions of any similar cases, you should strive to find them through one of the
others; and one should note that there are many fractions which should be
adapted before they are broken down into unitary fractions, namely when the
larger number is not divided by the smaller and has in turn some common di-
visor, as in the case of 6/9, each of which numbers is exactly divided by 3;
wherefore you will divide each of them by 3, with the resulting 2 above the bar
and 3 below it, i. e., 2/3, which belongs to the third category, when one more
than 3 is divisible by 2, whereby they are1/6 + 1/2, It is the same inthe case
of 6/8, each of which numbers is divisible by 2, whence they are reduced to
3/4, equal to 1/4 + 1/2 by the second category; and you should reason in this
way about similar cases, And if several fractions are under one bar, they
should be reduced to one fraction beneath the bar, as in the case of 3%/ 8,
which is 7/16, And they are reduced as follows: 3, which is above the 8, is
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multiplied by 2, and 1 is added; we put it down, and thus we have 7; and you
will multiply 2 by 8, which is under the bar, and get 16; this 16 we put under

the bar, and above it we put the 7,

*

Likewise,
71

is 135 ?

m}mToco'[’m

which is found according to the above-written method, namely by multiplying
the 4 above the 9 by 5 and adding 3; this product is multiplied by 3 and 2 is
added; and so we have 71 above the bar; and from multiplying 3 by 5 and that
product by 9 we have 135 below the bar; this 71/135 according to the seventh
rule is broken down into

R

270 45

ol
DO Ji=

And it should be noted that when by the seventh rule you take the largest
part, which the smaller number will be of the larger, and leave the unitary
fractions that remain, the result is less than elegant, You will leave that
larger part and work with the other following part, which is less than it; so
that if the larger part is 1/5, you will work with 1/6; and if it is 1/7, you will
work with 1/8, E.g., in 4/49 the largest part is 1/13; when this is taken from

4/49, the remainder is

3 1.
13 9

49 °

31
namely 6_27 , which by the fourth category is w7 + Ei_g H

therefore, for 4/49 we have
T
M 0, 1,1
637 319 3
which is less than elegant; wherefore you will abanlon 1/13 andwork with 1/14;

when this is taken from 4/49, the remainder is

N')—n

. 1 4 -1 1
— —_ -— —_— =
79 e 53 ; and so for 19 Ve have os "1z ¢

*In his notation —-—2 g ‘;
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which are more elegant fractions than those previously found, They are found
also in another way, namely by dividing the 4 above the 49 by a divisor of 49,
with the result 4 /7, which by the third category compounded is

1
1f1, 1)
7(14 * 2)’ for

1 i 1
and thus for 4/49 we have in like manner 1/98 + 1/14.

3] 0o =t

is 1—4,and-7——1s—;
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CORRECTION

In "An Almost Linear Recurrence," by Donald E. Knuth, April 1966 Fibonacci
Quarterly, p. 123, replace c, by Incn in Eq. 13.

In "On the Quadratic Character of the FibonacciRoot," by Emma Lehner, April

1966 Fibonacci Quarterly, please make the following corrections:

p. 136, line -9: This line should end in 6.

p. 136, line -5: Replace 5by 0+/5.
* Kk & A K



BINOMIAL SUMS OF FIBONACCI POWERS
JOHN WESSNER, Melbourne, Florida

At the impetus of Professor Hoggatt, a general solution was obtained for
summations of the form
% /n
> ( )(ﬂ)kFﬁ :
k

k=0

where b = 2m. Some suggestions will be made for attacking the problem for
odd b, and it is hoped that a complete solution will be forthcoming.

Let us first consider the case where b = 4p. If a= 1/2(1 +\/§), B =
1/2 @ -\A), F = @ +B%)/(@-p), and L= +B", then

n

n o n
() E()rrr

™

k=0 \K o \K
no 4p 4p
_ Z( )5—-2p Z( >(_1)t(a4p—tBt)k
k=0 \K t=0 \t
2p-1
Ry e e R T | SRS oS
= 5P )" ) @ E @) (8]
k=0 K/ | j=0 \J
- (4p> (-1y220D)
2p
2p-1 4 n n 4p
-2 P j j -2p n
o E (ol P (e
j=0 \J k=0 P

where we have made use of the fact that
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Hence, wehave reduced the problem to one involving Lucas numbers and
no powers. We must digress to obtain the required Lucas formulas.

Consider

n

n n n
L(n,1,q) = Z( )qu = z<k>(aqk + g%

k=0 \K k=0

|

1l

@+ aq)n + @ + ,eq)n.

If g =2g, then

L(,1,2g)

I

{(ﬂﬁ)g(-l)g + azg}n + @B)5(-1)8 + Bzg}n
a8 {aB 4 (1)EGEYT a5 {(-1)8a® + BELT .

The manipulation of fhis depends upon the parity of g. Let g = 2r, or q =
4r:
™m BZI‘n 2r

L(n,1,4r) = (™™ + oo + BTT)T = Ly Lon -

If, instead, q = 4r + 2, then for odd values of n we obtain

(a @r+l)n (_l)nﬂ(2r+1)n)(a2r+1 _ 82r+1 n

L(n,1,4r + 2) )

1l

1
_ z3(n+l) n
5 For+1)nfora

For even values of n,

1Il n

- 52
L, 1,4r +2) = 57 Lo ynFor
By the same methods we obtain
% /n
_ k _ _\n n
Ln,-1,4r+2) = E (k) -1) L(41'+2)k = 1) I"(21'+1)nL2r+1 ’

and
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n

n 1
- = - k = 2n .
L(n, -1, 4r) Z <k>( D Lygpk = 5° LoppFay
k=0
for even n, and
1
L(n’ "1, 4:1') = _52'(n+1)F Fn

2rn” 2r

if n is odd.

Now, let us return to the original problem.
n

n 4p
(D)= o ()
k 2p

k=0

-2p 2 4p i - . ik
570 ) ( .)"1) 2 k)“l’ " (4p-2i)k
j=0 k=0

J

I

p-1

_ P
= 572P zn(‘z*g) £y (gli))L(n,lA[p—i]) -Z(szl)L<n,—1,4[~p-ij+z)

i=0 i=1

p\ 2T (4
-2p ) n n
Rt <2p) > (21)L2(p-i)nL2(p-i)

i=0

n
4p n
el E < 2i - 1) Lo p-i)ntn2 p-)+1
i=1

Similarly, if b = 4p + 2,

D /n % fn Zp 4p + 2 ; -2
Z < >Fﬁp+2 _ 5—(2p+l)z< ) Z ( ' ) (_1)J(k+1’)[(a4p 2]+2)k
io \K k=0 \K/ (4= \

' . 4p + 2
N (B4p—2]+2)k] +< P ) (_1)(k+1)(2p+1)

2p+1
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Zp 4p + 2 o n
-@p+1 P 5> j
L ANEDY ( ) 0’ <k) (_I)JkL(4p—2j+2)k

i

k=0
4p+2\ "% /n
+ 5—(2p+l)< )Z < >-(—1)k+1
2p+1 k=0 k
P fap+2) Pl yp+a
= 5’(2p+1) Z < ) L(n,1,4[p-i]+2) - Z ( )L(n,-—l,4[p —i])
o \ 21/ o \2i+1

For summations involving alternating signs the same method of analysis

gives similar results.

- n p-1 4p
> ( ) (D ED = 57 < )L(n,-1,4[p-i])
k ~ \2i

k=0 i=0

4p
( ) Lm,1,4[p-i] +2); ,
2

i-1

>

p
i=1

o

and

4p + 2
L(n,-1,4[p -i]+2)

n n p
z( ) (_l)kF§p+2 - 5—(2p+1) Z (

k=0 i=0

Pl f4pi2 4p+2
-y L(n,1,4[p - i]) - ) 2"

o \2i+1 2p+1

2i

Finally, a word regarding summations for odd powers of Fk‘ For powers

b 2 5, the problem still reduces to a binomial sum involving Lucas numbers
whose subscripts are in an arithmetic progression, but the expressions (1 + aq)
and (1 + ,aq) cannot be reduced in a manner similar to that used for even q.
Surely they are reducible, and it is hoped that the expression obtained above
may be extended to odd powers.

* k k kK



A NOTE ON A THEOREM OF JACOBI
JOSEPH ARKIN, Suffern, New York

It has been shown that the sequence, Ln’ or 1,3,4,7,11,18,29,47,°°"

is defined by
@ = (1+V5/2) ,

@) L o=u + (™"
n
. th
where Ln is the n* Lucas number.
n=2,3,4,°-+), p is aprime 4m + 3,

Theorem 1. If L =c
—_— 2n—l n
M, = 2P -1 and

®. n- n-1 n
F(x)=| I(l—x2 )<1+3x2 1,42 _2)=1+§ cmx2 ;

n=2

Then, Mp is a prime if and only if cp =0 (mod Mp’).
Proof. Using the famous identity of Jacobi from Hardy and Wright [1,

p. 282],
o0 [e o} 2

@ TT@=-Na+ e+ 2Ny =140 5 @ ea™
n=1 =1

weput z + z_1 =3 (z = (3+A/5)/2), and combining z with u in (1) we have

u2 = z, so that LG

z® + 2™, which leads to

Il

Q0 o0
@) | I R W L R G E L, X2 .
) n=1

n=1
Next, in Theorem 1 weput L n-1"C%p andreplace n with 2n—2’ where it
2

is evident the resulting equation is identical to F(x).
359



360 A NOTE ON A THEOREM OF JACOBI [Dec,

We complete the proof of Theorem 1 with the following theorem of Lucas
appearing in [2, p. 3977:
eo. If 4m + 3 is prime, P = 24m+3 - 1 is prime if the first term of the
series 3,7,47,.-+, defined by Tl < 1’][21 -2, which is divisible by P is of
rank 4m + 2; but P is composite if no one of the first 4m +2 terms is
divisible by P... .

Corollary. If [x] denotes the greatest integer contained in x and n!/

@ - r)ir! = ‘1} , then
[0/2] -
22+ 2z =n Z )@ - r)_1< >bn—2r .
=0 r

The proof of the Corollary is obtained by elementary means if we put

2tz = (b B - /2% 4 (b +VBE - 4/

and then add the right side of the equation.
In conclusion, although there are many special cases to the Corollary,

the one obtained by setting b = 0 may be worth mentioning.

Let
p(@m) = the number of unrestricted partitions of an integer n,
pm(n) = the number of partitions of n into parts not exceeding m, where

p(0) = p,(0) = 1.
We then have the following:
Theorem 2. If

m )
F_@) = ]_[(1 -yt =1y me(n)xn
n=1 =1

and

ﬁ(ﬁl -y g +ip(n)xn ,

n=1 n=1
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then

DR = Dy(u - 2) + Dyl - 8) + =++ + py (@ - 20%) + =+ (mod 2)

and

PEU+ 1) = p (W) + pg(@ = 4) + +++ + Dy, (u=227 - 27) oo+ (mod 2).

1

Proof. Putting z +z = 0, then z 2

-2n

1l

i (iz = -1), sothat z Dy
= 2(-1)11° Then applying these results, together with our replacing x with x2

in Egs. (2) and (3), leads to

W(l B Xn)(1 + XZn—l) =1 4 2}_‘: (_l)rXZr

n=1 r=1

and it is evident that

o0 e 2}
4) -I—I-(l + in—l) = Z p@)x" (mod 2) .
n=1 n=0

According to Hardy and Wright [1, p. 281], Euler proved that

S 2n-1 QN
l I(1+x]“')=1+Zxr F <)
n=1 =1

and combining this result with Fm(x) in Theorem 2 and with Eq. (4), we

complete the proof of Theorem 2.
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- COMPOSITION OF RECURSIVE FORMULAE
RAYMOND E. WHITNEY, Lock Haven State College, Lock Haven, Pa.

The purpose of this article is to consider some properties of composite

functions, such as FFn’ Ly , ete. For ease of notation, F(n) and L(n)
n

will represent the usual Fibonacci and Lucas sequences, respectively. The

following notations will also be adopted:

g(n) = L{F@)}
h(n) = F{F(@n)}
f(n) = F{L(m)}
kn) = L{Lm}

Part I. Recursive Relations for g(), h(n), fm), k(n).

Although hybrid relations for the above were sought, only partial success
was achieved.

(1) shmh(n + 1) = g + 2) = (-1)F Vg - 1)

Proof. In this and subsequent parts, considerable use was made of the well
known identities, ’

(2) NBF@) = o - g"

(b) Ln) = o" + g

where - N
o - 1+2«/5 and § - 1-2~/5

In (a) replace n by F(n) and obtain

N5h(n)
NBh(n + 1)

aF@n) - gF(n)
aF(n + 1) - F(n + 1)

il

H

Multiplying these and observing

Fin + 2) = Fn) + F(n + 1)
Fn+ 1) = Fn) + Fln - 1)
af = -1
the result follows,
gn)gm + 1) - g +2) . F@n)
(2) o) = (-1)

363
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Proof. In (b) replace n by F(n) and then as above the result follows.
(3) gn)g(n + 1) + 5h(n)h(n + 1) = 2g(n + 2)

Proof. Combine (1) and (2).

@) st + 1) = kn + 2) - (-)*®km - 1)

Proof, In (a) replace n by L(n) and as above the result follows,

k(n)kin + 1) - k(n + 2) _

L(n)
(5) k(n _ 1) (_1)

Proof. In (b) replace n by L(n) and as in (2) the result follows upon
rearrangement.,

(6) k(n)k(n + 1) + 5f()f(n + 1) = 2k(n + 2)

Proof., Combine (4) and (5).
F(n-1)

) g+ Dgi - 1) = kiw) + ((1F O Vg |
Proof. In (b) replace n by F(n) and observe that
Ln) = Fmn + 1) + Fn - 1).
The result then follows.
(8) sho - Dhn + 1) = k) = (-1)F @ g,

Proof. In (a) replace n by F(n - 1) and F(n + 1) and multiply.
(9) gln + 1)gin - 1) + 5h(n - 1)h(n + 1) = 2k(n)
Proof. Combine (7) and (8).

(10) g(n + D)gm - 1) - 5hn - Dhen + 1) = 2(-nF @1

g(n).
Proof. As above, combining (7) and (8) yields the result,

By combining the above relationships, many others may be obtained. Note
that (2) and (5) are hybrid relations, whereas the others are mongrel, It would
be of interest to obtain hybrid relations for h(n) and f(n). In the light of the
above results one can scarcely help setting up the correspondences

h(n) <~ f(n)

gn) <—>k(n).
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Part II. Explicit Relations for g(n), h), f(n), k().

Using (a) and (b) one immediately obtains the rather clumsy formulae

1
FE A G

gm) = ) L
Fa'-8Y) =8
B = oF b -g¥°
n, N n
fw = L o) - g +8")

n _n n
Ky = a(@ B | gl

Part OI. Generating Functions for gm), h@), f(m), k(n).

The original goal of obtaining generating functions of the type
& k
Fx) = 2 hkx ,
0

was not achieved.

The methods used by Riordan [1] didnot appear to offer much help inthis direc-
tion. However, ugly mixed types could be obtained as the following example
illustrates:

xlna _ f: ln{\@h(iz + g(i) } o
1- xz 0 2

Proof.
oF@ _ Voh n2 + gln

Also, since

X i i

—_ = F.x N
1 -x - x2 0 L

the result follows.

Part IV. Upper Bounds for h@), g®), f@n), k@).

Partyields explicitvalues for h(n), etc., but the relations are awkward
to work with and more workable bounds were sought.

2272 g
@) h(n) < 2 for n>3

Proof. h(n), gn), f(n), k(n) are increasingfunctions of n, and it is well known
that
Fm) < 2%2 for =n > 3.

Hence

hn) = F{F@} < FEP2) < 22 2
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n-3
@) fm) < 2@ 2 g n >3
Proof.

L) = F - 1) + F@ + 1) < 2%73 + 2871 = 5¢p)273

The result follows as above.

n-3
@) k@) < 5@°% 2 for n >3
Proof. The result follows as above.

ot 23

(4) gm) < 5(@2) for n23

Proof. As above.
The above inequalities may be replaced by strict inequalities for n > 3,

since

Fm) < 272 for n>3

Proposal for Future Investigations

To reiterate, the two most interesting avenues for future work are the
development of generating functions for h(n), g(n), f(n), k(n), and hybridrecur-

sive relations for h(n) and f(n).
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NOTE ON THE EUCLIDEAN ALGORITHM
R. L. DUNCAN, Lock Haven State College, Lock Haven, Pa.

Let uy =1; py =2 and p =g, +u o (@ 23) be the Fibonacei
numbers. Then the Euclidean Algorithm for finding (p,n +1° ”’n) is

Potl T Bp T Hp

= +
Bp T Hpol T Hp2

Ko = Ko Ty

P = 2
and the required number of divisions is n.
Let
¢ = 2_%3[5

Then ¢ > L and, since ¢ is a root of the equation fz = ¢+ 1, we have §2
>y, Also, §3

= gz + &> o+ py = pg and, in general, fn >y -
Now let p be the number of digits in u_. Then p > 10P71 and, by the

preceding result, 10P71 < &% or

p-1
n>10g§

Hence

. ; 1
n>Tc—;h-—5 since log¢ > &

In the proof of Lamé's Theorem [1] it is shown that
—B
n < Tog & + 1 ,
367
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where here n is the number of divisions in the Euclidean Algorithm for any
two numbers and p is the number of digits in the smaller number. Thus we
see that the upper bound for the number of divisions inthe Euclidean Algorithm

given by Lamé's Theorem is virtually the best possible.
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MORE FIBONACCI IDENTITIES
M. N. S. SWAMY, Nova Scotia Technical College, Halifax, Canada

In an earlier article [1] the author has discussed in detail the properties

of a set of polynomials Bn(x) and bn(X)' It has been shown that [2],
By(x) = [{(x + 2+ V2t 4x)/2}n+1_{(x 2 - =+ 4x)/2}n+1]/\/(x2 + 4x)

Putting x = 1 and simplifying we can show that

(1a) B() = F .,
. th . .
where Fn is the n Fibonacci number,

Hence,

(1b) bn(l) - Bn(l) - Bn—l(l) = FZIH'Z - an - F2n+1

We shallnow use (1) and the properties of Bn and b][1 to establish some
interesting Fibonacci identities:

It has been shown that [1],

B B "B B
@) . m bn _ bm—r n-r
m n m-r-1 On-r-1
and
B B B B
) m n _ m-r n-r
Bm—1 Bn—1 Bm~r—1 Bn—r—1

From (1) and (2) we can establish that

F F F F
(4) m n _ m-2or n-2r
F F_o.l~ F
m-1 n-i m-2r-i n-ar-1

and from (1) and (3) that
369
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F F F F
(5) m n m-2r n-2r
F

m-2 n-2

Fm-21‘-2 n-2r-2

Using equations (33)-(37) of [1] we may deduce that [3],

Fpt Fot oo + Py, = T

(6) Fi+ Fg+--c + F‘m_3 = an_inn
Fygt Fodeee 4 F o 7 FonFons
Fgy+ Fg+-..o +F4n = Fz'ann+2

From (33)-(37) of [1] we may establish the identities

n
(x* + ‘iX)ZBi- = Bypyy - @0+ 3)
0

n

S B B B
bmd T TH 2n+3
0

(x2 + 4x)

i

- (o + 2)x + 2)

1]

b2n+2 + m+ 1)x -1

n
(2 + 4x)Zerr
0

and

n

(x2 + 4X)Z b"; = B2n+1 + 2(n + 1)
0

From the above identities and (1) we can deduce fhat

(7) 5(F;Fy + F,Fg + +++ + F ) - 3n

2n—2F2n F4n

(8) 5(FFy + FgFy + -+ + F, F ) =TF

+
2n-1"2n in+1

(n -

1)

[Dec.
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2 2
) 5(F{ + F§ + -+ + F& ) = Fyy + 2n
and
2 2
(10) o(Fy + Fy * an) = Fipip ~ Gnt 1)

Combining the identities of (9) and (10) we get

2, F2 ... 2, _
(11) 5(F1 + F2 + + Fn) = lef1+2 +

n+l
F2n + (1)
Also, we have the well-known identity,

2 2 2
(12) F{ + Fy + o+ + F = FF

Hence from (11) and (12) we get

_ 4D
(13) F -5F F = (1)

a2 ¥ Fon
From (14) and (31) of reference [1] we have the results,

2

(14) B -B B _ =1
and
(15) err ~brgBrg =1

Therefore, (B, /br ) - B /br) =1/ (b,b. ). Hence,

(L/b b )+ @/b b )+ e+ (U/bby) = (B /b

-1""n

Since BO = b0 =1, we may write this result as,

n

Z (l/brbr—l) = (Bn-l /bn)
1
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Therefore
n

(16) (B,/b) =1+ (@B, ,/b) =1+ Z /b b__1)
1
Similarly starting with (14) we can establish that
n
- @n by /Bn) =1- E /BB, ;)

1

Combining the identities (16) and (17) we have,

n n
(18) 1+ E @mo bl - Z(l/BrBr_l) =1
1 1 2

Substituting (1) in (18) we derive an interesting result that

n n
1 1
19) T PR S b PR U S
12 Fon-1Fant1 21: FonFonta

Many other interesting Fibonacci identities may be established using the
properties of Bn and bn’ and it is left tothe readerto developthese identities.
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'ELEMENTARY PROBLEMS AND SOLUTIONS
.Edited by A. P. HILLMAN, University of New Mexico, Albuquerque, New Mex.

Send all communications regarding Elementary Problems and Solutions
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or
solution should be submitted in legible form, preferablytypedin double spacing,
on a separate sheet or sheets in the format used below. Solutions should be

received within three months of the publication date.

B-100 Proposed by J.A.H. Hunter, Toronto, Canada.

Let Uio = un+1

solution for u-

tu - 1, with u = 1 and U, = 3. Find the general

B-101 Proposed by Thomas P. Dence, Bowling Green State Univ., Bowling Green, Ohio.

=n, and X, =

=1, x X, +
’ it2,n i+1,n

1,n 2,n

%, . Express X, as a function of F_ and n.
i,n i,n n

Let X0 be defined by x

B-102 Proposed by Gerald L Alexanderson, University of Santa Clara, Santa Clara, Calif.

The Pell sequence 1,2,5,12,29,-+ is defined by P1 =1, P2 =2 and

o 22 _ . .
Pn+2 = 2Pn+l + Pn" Let (Pn+1 + 1Pn) =x +iy, with X and Y, real and.
let z, =txn + 1ynl., Prove that the numbers X Yo and z are the longths
of the sides of a right triangle and that X and y, are consecutive integers for
every positive integer n. Are there any other positive integral solutions of

4 xt1)? =27 than (5,2) = (,2) ?

B-103 Proposeéd by Douglas Lind, University of Virginia, Charlottesville, Va.
Let

D S
dln
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where the sum is over all divisors d of n. Prove that {an} is a strictly

increasing sequence. Also show that

n=1 1=x n=1

B-104 Proposed by H.H. Ferns, Victoria, British Columbia.

Show that

[o o}
Z F2n+1 _ 1
=1 LnLn+1Ln+2 3

where Fn and Ln arethe nth Fibonacci and nth Lucas numbers,respectively.

B-105 Proposed by Phil Mana, Univ. of New Mexico, Albuquerque, New Mex.

Let gy be the number of finite sequences C1sCgs™ " ,cn with ¢, = 1,

each c, in {0,14, (¢;»¢;,.q) Dever (0,0), and (cj,c; 1,C;.0) never3 (0,1,0).
Prove that for every integer s > 1 there is an integer t with t < s~ - 3 and
g, an integral multiple of s.

SOLUTIONS

AN INTEGER VALUED FUNCTION

B-82 Proposed by Nanci Smith, Univ. of New Mexico, Albuquerque, New Mex.

Describe a function g(n) having the table:

n ” 0 1
g) || 0

D
Nleo
Lol 5
Nj

(=2}

-3
Lol Ko o}
Nofeo
-
(=4
-
=
[u—
[
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Solution by the Proposer.

The function g(n) is the number of one's (i.e., sum of the "digits') in

the binary representation of n.

Also solved by Joseph D.E. Konhauser and Jeremy C. Pond.

A RECURSION RELATION FOR SQUARES

B-83 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada.

2 2 2 2 2
Show that Fn + Fn+4 = Fn+l + Fn+3 + 4Fn+2 .

Solution by James E. Desmond, Fort Lauderdale, Florida.

From Basin and Hoggatt (""A Primer on the FibonacciSequence —Part I,"

. . 2 2
F1bona2cc1 Quaxéterly, Vol. 1, No. 1, p. 66) we have that Fn+1 + Fn = F2n+1
and Fn+1 - Fn—l = FZn' So,

2 2 2 2 2
Fo* Fora ™ Froer ™ Foes ~ e
_ 2 2 2 2 2 2 2
B —(Fn+2 - Fi) * (Fn+4 - Fn+2) - (Fn+2 + Fn+1) - (Fn+3 * Fn+2)

'Fz(n+1) * F2<n+3) - F2(n+1)+1 - F2(n+2)+1
= Fontza ¥ Fang ~ Fonrs ~ Fones

on+4 ~ Fonia

F
= 0 .

Also solved by Anne E. Bentley, Clyde A. Bridger, Thomas P. Dence, Joseph D.E. Konhauser,

Karen S.Laskowski, Douglas Lind, Pat Miller, John W. Milsom, F. D. Parker, Jeremy C. Pond,

Toni AnnViggiani, Howard L.Walton, David Zeitlin, and the proposer.,

i

TERM-BY-TERM SUMS

B-84 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada.

The Fibonacci polynomials are defined by fl(x) =1, fz(x) =X, fn+1(x)
= xfn(x) + Fn_l(x), n >1, If z,. = fr(x) + fr(y), show that z, satisfies
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Zoig "~ x + y)zmg + xy - z)zn+2 + X +y) + z, = 0

Solution by Daw‘d'Zeiﬂ'in,‘MinmeapoIis, Minn.

In B-65 (see Vol. 3, No. 4, 1965, p. 325), it was shown that if u and
v, are sequences which satisfy Wig + au 4 + bun = 0 and Voo + eV +
dvn = (0, where a,b,c and d are constants, then Z, =u vy satisfies

+ pz + qz + rz + sz = 0, where (E2 + aE + b)(E2 +cE+d) =

“nid n+3 n+2 n+1
E4+pE3 +qE“+rE+s, Since p=a+c, q=ac+b+d, r=bec+ad, and
s = bd, the desired result is obtained by setting a = -x, b= -1, ¢ = -y,

and d = -1,

Also solved by'Clyde A. Bridger,\‘ James E. Desmond,, Joseph D.E. K;nhauser,
Karen S.Laskowski, Douglas Lind, John W, Milsom, Jeremy C. Pond, Howard L Walton,

and the proposer .
SUMS OF SQUARES
B-85 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Find compact expressions for:

(a) F2 + Fi + F2 + e an
(b) FLo+ Foo+ P24+ FR

Solution by David Zeitlin, Minneapolis, Minn,

Using mathematical induction, one may show that for m = 0,1,---,

™, gF2 - R
m

n
2
5 E Fokrm = Fapromse + 20(-1) s
k=0

Thus, for m = 0 and m = 1, we obtain, respectively,

n
@) > Fh= (Fye - 20 - /5,
k:
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(b) Z Fiery = (Fgn + 2n)/5

Also solved by Joseph D.E. Konhauser, Jeremy C. Pond, Clyde Bridger, James E.
Desmond M.N.S. Swamy, and the Proposer.

RECURSION FOR CUBES

B-86 Proposed by V. E. Hoggatt, Jr, San Jose State College, San Jose, Calif.

(Corrected version.) Show that the squares of every third Fibonacci

number satisfy

Yo+rs ~ 1%p+e - 17n+1 + yn = 0 .

Solution by David Zeitlin, Minneapolis, Minn.

n
et = C@af™ + CbfM + C4(-1)", m,n = 0,1,°-°, where a
and b are roots of x2 -x -1 = 0, the difference equation, noting that af +
b8 = Lg = 18 is

Since F?

(E + 1)(E - a¥(E - bo)y_

1l

(E + 1)(E2 - 18E + 1)y,

i

(E3 - 17E2 - 17E + Ly,

) = yn+s - 17n+s - 17yt + yn = 0
Also solved by James E. Desmond, Joseph D.E. Konhauser, Douglas Lind, Jeremy C. Pond,

R

C.B.A. Peck, and the proposer

A SPECIAL CASE OF AN IDENTITY

B-87 Proposed by A.P. Hillman, University of New Mexico, Albuquerque, New Mex.

Prove the identity in xj, x4, ++<, X ¢
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n (_l)n-k n n+ 1 n
Z K@ -0 T-I-(Xj k= ( ) *ij
k=0 j=0 2 §=0

Solution by the Proposer.

If the difference equation (1) , of "Generalized Binomial Coefficients,"

by Roseanna F. Torretto and J. Allen Fuchs, Fibonacci Quarterly, Vol. 2,

No. 4, Dec. 1964, pp. 296-302, is chosen to be Ypio = 21t Yy = 0, then

Un becomes n, [Ijn} becomes the binomial coefficient (™) and the identity
] ’

of this problem results from formula (5) of that paper upon division of both

sides by n! .
Also solved by Joseph D.E. Konhauser, . Douglas Lind, and David Zeitlin.

* ok kA ok

NOTICE TO ALL SUBSCRIBERS!!!

Please notify the Managing Editor AT ONCE of any address change, The Post
Office Department, rather than forwarding magazines mailed third class, sends
them directly to the dead-letter office, Unless the addressee specifically re-
quests the Fibonacci Quarterly to be forwarded at first class rates to the new
address, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR
to publication dates: February 15, April 15, October 15, and December 15,
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