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A COMBINATORIAL PROOF OF A RECURSIVE RELATION OF THE 
MOTZKIN-SEQUENCE BY LATTICE PATHS 

Wen-Jin Woan 
Howard University, Washington, D.C. 20059 

wwoan@fac.howard.edu 

We consider those lattice paths in the Cartesian plane running from (05 0) that use the steps 
from S = {U = (1,1) (an up-step), I = (1,0) (a level-step), D = (l,-1) (a down-step)}. Let 
A(n, k) be the set of all lattice paths ending at the point (n, k) and let M(n) be the set of lattice 
paths in A(n9 0) that never go below the x-axis. Let a(n9 k) - \A(n9 k)| and mn - \M(ri)\, where 
mn is called the Motzkin number. Here, we shall give a combinatorial proof of the three-term 
recursion of the Motzkin sequence, 

(n + 2)mn = (2w + V)mn_l + 3(/i - l)mn_ 2? 

and also that 

m„ 
n + 2 

• < 3 - lim-*L = 3. 
m% 

ln-l n + 2' n->aomn_l 

The first few Motzkin numbers are /i% = 1,1,2,4,9,21,51.... Let B(n, k) denote the set of 
lattice paths in A(n9 k) that do not attain their highest value (i.e., maximum second coordinate) 
until the last step. Note that the last step of the paths in B(n9 k) is U. Let hnk - \B(n, k)\, then 
some entries of the matrices (a^k) and (bn^k) are as follows: 

3 4" n/k 
0 
1 
2 
3 

-4 -3 

1 

-2 

1 
3 

-1 

1 
2 
6 

0 
1 
1 
3 
7 

1 

1 
2 
6 

2 

1 
3 1 

1 4 10 16 19 16 10 4 1 

n/k 0 1 2 3 4 
0 1 0 0 0 0 
1 0 1 0 0 0 
2 0 1 1 0 0 
3 0 2 2 1 0 
4 0 4 5 3 1 

Lemma 1: There is a combinatorial proof for the equation mn - bn+ll. See [1] and [3] for the cut 
and paste technique. 

Proof: Let P eB(n + l, 1), remove the last step (U) and the reflection of the remaining is in 
M{ri). D 

For example, 
P = (DLDDUDLUULU)U e5(12,1) -> DLDDUDLUULU 

-> ULUUDULDDLD = QeM(l 1), 
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A COMBINATORIAL PROOF OF A RECURSIVE RELATION OF THE MOTZKIN SEQUENCE BY LATTICE PATHS 

.. V\ 

e= 
Theorem 2: There is a combinatorial proof for the equation (n + l)hn+l x = a(n +1,1). See also 
[5] for the proof and [1] and [3] for the cut and paste technique. 

Proof: Let S(n +1) = {P*: P eB(n +1,1), P* with one marked vertex, which is one of the 
first n +1 vertices}. Then \S(n +1)| = (w + l)bn+l x. Let P* e S(n +1); this marked vertex parti-
tions the path P = FB, where F is the front section and B is the back section. Then Q = BF e 
A(n+ 1,1). Note that, graphically, the attached point is the leftmost highest point (the second 
coordinate) of Q. The converse starts with the leftmost highest point of Q in A(n + \91) and 
reverse the above procedures. • 

For example, 

/ 
_>/>*= \ ^ P-V eS(12), ^N y 

-*Q = 
/ 

y\ 
N eA(U,l). 

Proposition 3: The total number of L steps in M{n) is the same as that in B(n +1,1) and is an 1. 

Proof: From the proof of Lemma 1, the bijection between M(n) and B(n + \, 1) through 
reflection, it keeps the L steps. Hence, they have the same number of L steps. 

Let P = FLB sB(n +1,1) with L step. Then Q = BF <=A(n,l). Note that the joining point is 
the leftmost highest point in Q, since P G 5 ( » + 1, 1), by definition P reaches height 1 only at the 
end of the last step, the second coordinate of the L is less than or equal to 0; hence, any point in 
the subpath F from the initial point to L is lower or equal to the initial point and any point, before 
the terminal point, of the subpath B from L to the terminal point is of lower than the terminal 
point. This identification suggests the inverse mapping. D 

For example, 

4 [FEB. 
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-+P = FLB e 5(12,1), 

Q = BF= x s 
/ \ 

E ,4(11,1). 

Proposition 4: There is a combinatorial proof for the equation 

an, 0 = h+1,1 + j (nb*+l, 1 " an, l ) = bn+l, 1 + j (nft«+l, 1 " n K l)' 

Proof: Let J(w) = {Pe: JP e A/(w), Pe is P with an up-step marked}. By Theorem 2 and 
Proposition 3, the number of level-steps among all paths in M(n) is anl =nhn^h and the total 
number of steps among all paths in M(ri) is nrnn =nhn+l^; hence, the total number of up-steps 
among all paths in M{n) is \{nhn+hl~nbn^- \T(n)\. Let Pe = FUB eT(n) with the U step 
marked, then Q - BUF e A(n, 0) - M(n) and the initial point of U in Q is the rightmost lowest 
point in Q. The inverse mapping starts with the rightmost lowest point. Note that \M(ri)\ = rnn = 

W D 

For example, 

pe = 

\ . 
6r(ii), 

G = E ,4(11,0). 

Proposition 5: There is a combinatorial proof for the equation 
a « , 0 = a « - l , -1 + an-l, 0 + an-l, 1 = ^ - 1 , 1 + an-\, 0 

= 2(/f-l)ft^u + An,1 + l((/i-l)ftnfl-(/f-l)ftll. lf l). 

Proof: The first equality represents the partition of A(n, 0) by the last step (U, Z, or D\ the 
second equality represents the symmetric property an_x_x = an_lA and the last equality by 
Theorem 2 and Proposition 4. D 
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The following example shows the trail of one element for n = 11. 

/*V~\ 
V V 

/ G ,4(11,0). 

Removing the last step, the second term of the first equality and the second term of the second 
equality, 

e ,4(10,0). 

By Proposition 4, the second term of the third equality, 

\ . 
e 7\10). 

Theorem 6: There is a combinatorial proof for the equation 

V i + \ ( " V i - "h i) = 2(" - l)*Vi, ,+*„,! + (j(fp - 1)Z>„,! - (» - l)Z>„_i,,) 

Proof: The composition of the mappings in Proposition 4 and Proposition 5. • 
The following example shows the trail of one element for n -11, 

Pe = FUB= A / ,̂ v \̂ X. eTXll), 

Q = BUF = G ,4(11,0), 

<-V G ,4(11,0). 

[FEB. 



A COMBINATORIAL PROOF OF A RECURSIVE RELATION OF THE MOTZKIN SEQUENCE BY LATTICE PATHS 

Removing the last step, 

\ > -

By Proposition 4, 

y E ,4(10,0). 

The following result was proved in a combinatorial way in [2]. 

Theorem 7: (n + 2)rnn = (2/2 + l)#f̂ f_1 + 3 (w - l)mn_2. 

Proof: By Theorem 6, 

By Lemma 1, 

^" +\(nmn~nmn-d = 2(W~ ! K - 2 +»Vl +[2 ( ( W ~ 2 K-1 " (^~ 1K-2)J-

Equivalently, 
(/? + 2 K = (2w + lK_ 1 + 3(w -1K_ 2 . • 

Theorems: 3 ^ - < - ^ - < 3 ^—for«>5 and l i m - ^ - = 3. 
w + 2 //f^ n + 2 ri^^mn_l 

Proof: By Theorem 7, let 

5 . = ^ = 2 n + l } 3/1-3 » y 2 = 2w + l t ^ 
"" w„_i w + 2 n + 2 mn_l n + 2 sn_x

9 

2/1 + 1 o 3 , 3/1-3 ' 9 
n' n + 2 n + 2' n' n + 2 n + 2' 

then 

Sn=an+-JL- a i l d T-V = Vl-
^w-l ^n an 

If V l < 3, then j ^ - = sn_l < 3 and 

5 = f l + - ^ > 2 -̂r + ̂ - A = 3- 6 

°«-i 
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sn+l=an+l+^<2 ± - + _ f l ± 3 . = 2 — + ^ _ 
S 72 + 3 3 - - S - 72 + 3 -&L-

= 2 3 , f l + 2 = 3 4 _ 
w + 3 w+3 ra + 3 ' 

- 1 - 1 _£ _21 _5j. -
^ ~ r , % " 2 , f f 4 " 4 , , % " 9 , , % " 2 1 < 

By induction on both even and odd, we have the following: 

3 - < s— - lim—a- = 3. D 
w + 2 mn_l<3 n + 2 n-^^mn_l 
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ON THE RESOLUTION OF THE EQUATIONS Un = (f) AND Vn = (j) 

Laszlo Szalay* 
University of Soprom, H-9400, Soprom, Bajcsy Zs. lit 4, Hungary 

E-mail: laszalay@efe.hu 
(Submitted September 1999-Final Revision March 2000) 

1. INTRODUCTION 
The purpose of the present paper is to prove that there are finitely many binomial coefficients 

of the form (f in certain binary recurrences, and give a simple method for the determination of 
these coefficients. We illustrate the method by the Fibonacci, the Lucas, and the Pell sequences. 
First, we transform both of the title equations into two elliptic equations and apply a theorem of 
Mordell [10], [11] to them. (Later, Siegel [16] generalized MofdelTs result, and in 1968 Baker 
[1] gave its effective version.) After showing the finiteness, we use the program package SIMATH 
[15] which is a computer algebra system, especially useful for number theoretic purposes, and is 
able to find all the integer points on the corresponding elliptic curves. The algorithms of SIMATH 
are based on some deep results of Gebel, Petho, and Zimmer [5]. 

Before going into detail, we present a short historical survey. Several authors have investi-
gated the occurrence of special figurate numbers in the second-order linear recurrences. One such 
problem is, for example, to determine which Fibonacci numbers are square. Cohn [2], [3] and 
Wyler [18], applying elementary methods, proved independently that the only square Fibonacci 
numbers are F0 = 0, Fl=F2 = l, and Fl2 = 144. A similar result for the Lucas numbers was 
obtained by Cohn [4]: if Ln = x2, then n-\ or n = 3. London and Finkelstein [6] established Ml 
Fibonacci cubes. Petho [12] gave a new proof of the theorem of London and Finkelstein, apply-
ing the Gel'fond-Baker method and computer investigations. Later Petho found all the fifth-
power Fibonacci numbers [14], and all the perfect powers in the Pell sequence [13]. 

Another special interest was to determine the triangular numbers Tx = x(^+1) in certain recur-
rences. Hoggatt conjectured that there are only five triangular Fibonacci numbers. This problem 
was originally posed in 1963 by Tallman [17] in The Fibonacci Quarterly. In 1989 Mng [8] 
proved Hoggatt's conjecture by showing that the only Fibonacci numbers that are triangular are 
FQ - 0, F'{ = F2 - 1, F4 = 3, F^ - 2 1 , and Fl0 = 55. Ming also proved in [9] that the only triangular 
Lucas numbers are Lx - 1, L2 - 3, and Ll% = 5778. Moreover, the only triangular Pell number is 
Px = 1 (see McDaniel [7]). 

Since the number Tx-\ is equal to the binomial coefficient (2), it is natural to ask whether the 
terms (3) occur in binary recurrences or not. As we will see, the second-order linear recurrences, 
for instance, the Fibonacci, the Lucas, and the Pell sequences have few such terms. 

Now we introduce some notation. Let the sequence {Un}™=0 be defined by the initial terms 
U0, Ul9 and by the recurrence relation 

U„ = AUn_l+BUn_2 (»>2), (1) 

where U0,Ux,A9BeZ with the conditions \U01 + \UX\ > 0 and AB* 0. Moreover, let a and fi. 
be the roots of the polynomial 

* Research supported by Hungarian National Foundation for Scientific Research Grant No. 25157/1998. 
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ON THE RESOLUTION OF THE EQUATIONS Un = (3) AND Vn = g ) 

p(x) = x2-Ax-B, (2) 

and we denote the discriminant A2 + 4B of p(x) by D. Suppose D * 0 (i.e., a * J3). Through-
out this paper we also assume that U0 = 0 and U{ = \. 

The sequence 
V„ = AV„_l+BV„_2 (»>2), (3) 

with the initial values V0 = 2 and Vx = A is the associate sequence of U. The recurrences U and V 
satisfy the relation V2 -DU2 = 4{-B)n. 

Finally, it is even assumed that \B\= 1. Then 

V2-DU2 = 4(±lf = ±4. (4) 

As usual, denote by Fn9 Ln, and Pn the w* term of the Fibonacci, the Lucas, and the Pell 
sequences, respectively. 

The following theorems formulate precisely the new results. 

Theorem 1: Both the equations Un = (3) and Vn = (3) have only a finite number of solutions 
(n, x) in the integers n > 0 and x > 3. 

Theorem 2: All the integer solutions of the equation 
(0 F„ = (*)are(H,x) = (l,3)and(2,3), 

(11) 4 = (J) are fax) = (1,3) and (3,4), 
(Hi) P„ = (f)is(»,x) = (l,3). 

2. PROOF OF THEOREM 1 

Let f/and Vbe binary recurrences specified above. We distinguish two cases. 
Case 1. First, we deal with the equation 

Un = {i] (5) 
in the integers n and x. Applying (4) together with y - Vn and xx - x - 1 , we havef/w = (^1) and 

y2-D[^J = ±4. (6) 
Take the 36 times of the equation (6). Let x2 = x\ and yx - 6y, and using these new variables, 
from (6) we get 

y\ = Dx\-2Dx2+Dx2 ± 144. (7) 

Multiplying by 36D2 the equation (7) together with k = 33Dy{ and / = 3D(3x2 - 2), it follows that 

k2 = P-27D2l + (54D3±l04976D2). (8) 

By a theorem of Mordell [10], [11], it is sufficient to show that the polynomial u(l) = l3-
27D2/ + (54D3 + 104976D2) has three distinct roots. Suppose the polynomial u(l) has a multiple 
root I Then f satisfies u'(l) = 3/2-27D2 = 0, i.e., 7=±3D. Since u(3D)= +104976D2, it 

10 [FEB. 



ON THE RESOLUTION OF THE EQUATIONS Un = (f) AND Vn - (f) 

follows that D = 0, which is impossible. Moreover, u(-3D) = 108D3 ± 104976D2 implies D = 0 
or D = ±972. But £> * 0, and by |2?|= 1 there are no integers A for which D = A2+4B = ±972. 
Consequently, &(/) has three distinct zeros. 

Case 2. The second case consists of the examination of the Diophantine equation 

^ ( 3 ) ( 9 ) 

in the integers n and x. Let y = C/w and xx = x - 1 . Applying the method step by step as above in 
Case 1, it leads to the elliptic equation 

k2=P-21D2UcD\ (10) 
where c = -104922 if n is even and c = 105030 otherwise. The polynomial v(l) = P-27D2l + cD3 

also has three distinct roots because v'(/) = 3/2-27D2, 7*= ±3D, and v(±3D) = 0 implies D = 0. 
Thus, the proof of Theorem 1 is complete. • 

3. PROOF OF THEOREM 2 

The corresponding elliptic curves of equations (8) and (10) are, in short, Weierstrass normal 
form, whence, for a given discriminant £>, the theorem can be solved by SIMATH. 

By (8) and (10), one can compute the coefficients of the elliptic curves in case of the Fibo-
nacci, the Lucas, and the Pell sequences. The calculations are summarized in Table 1, as well as 
all the integer points belonging to them. Every binary recurrence leads to two elliptic equations 
because of the even and odd suffixes. For the Fibonacci and Lucas sequences, D = 5; for the Pell 
sequence and its associate sequence, D = 8. 

TABLE 1 

Equation 

*. = © 

k - © 

k = (D 
k = (3) 

k = © 
k = G) 

Transformed equations 

k2 = / 3 - 6 7 5 / + 2631150 

k2 = I3 - 675/ - 2617650 

k2 = I3 - 675/ - 13115250 

k2 = l3- 675/ + 13128750 

k2 = / 3 - 1728/ + 6746112 

k2 = l3- 1728/ - 6690816 

All the integer solutions (l,k) 
(15,1620), (-30,1620), (5199,374868), 

(735,19980), (150,2430), (-129,756) 
(150,810), (555,12960), (1014,32238), 

(195,2160), (451,9424), (4011,254016) 

no solution 

(375,8100), (-74,3574), (150,4050), 
(-201,2268), (2391,116964) 

(-192,0), (24,2592), (-48,2592), (97,2737) 
(312,6048), (564,13608), (5208,375840) 

(240,2592), (609,14769) 

The last step is to calculate x and y from the solutions (/, k). By the proof of Theorem 1, it 
follows that x = 1 + V(/ + 6Z))/9D, y = kl\ 62D in the case of equation (5), and y = k 1162D2 in 
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3) 

the case of the associate sequence. Except for some values x mdy, they are not integers if x > 3. 
The exceptions provide all the solutions of equations (8) and (10). Then the proof of Theorem 2 
is complete. • 
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1. INTROBUCTION 
In [3], Shonhiwa considered the function 

Gk(n)= I 1, 
\<ai,...,ak<n 
(ax,...,ak)=l 

where k>2, n > 1, and asked: "What can be said about this fiinction?" As a partial answer, he 
show7edthat 

J=l d\j L 

where ju is the Mobius fiinction (see [3], Theorem 4). 
There is a more simple formula, namely, 

G*(")=2>0) 
leading to the asymptotic result 

( i ) 

Gk(n) = -—- + < , , (2) 
t(k) {0(rf-l\ if* £3, 

where £ denotes, as usual, the Riemann zeta function. Formulas (1) and (2) are well known (see, 
e.g., [1]). It follows that 

lim^M=_L 
ra-»oo n

k g(k)' 
i.e., the probability that k positive integers chosen at random are relatively prime is -^r. 

For generalizations of this result, we refer to [2]. 
Remark 1: A short proof of (1) is as follows: Using the following property of the Mobius func-
tion, 

l<ax,...,ak<n d\{ax,...,ak) 

and denoting a. = dbj, 1 < j < k, we obtain 

Gk(n) = ±M(d) X 1 = Z^)^T 
d=l 1<6!,.. . ,^<«/J d=l L a j 

In what follows, we investigate the question: What is the probability Ak that k positive inte-
gers are pairwise relatively prime? 
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THE PROBABILITY THAT k POSITIVE INTEGERS ARE PAIRWISE RELATIVELY PRIME 

For k = 2 we have, of course, A^ =7^7 = 0.607... and for k > 3, Ak <7^y. Moreover, for 
large k, -Jj-r is nearly 1 and Ak seems to be nearly 0. 

The next Theorem contains an asymptotic formula analogous to (2), giving the exact value of 
4. 

2. MAIN RESULTS 

Let k,n,u>\ and let 

tf°oo= I 1 
(a/,fly)=l,j>y 

( « , • , « ) = ! 

be the number of Ar-tuples (al9...,ak) with 1 <a1?...,% <n such that a1?...,% are pairwise rela-
tively prime and each is prime to u. 

Our main result is the following 

Theorem: For a fixed k > 1, we have uniformly for n, u > 1, 

i f >(») = Atfk(u)n>+0(e(u)nk-1log?-1n), (3) 
where 

it /,(n)=nfi-
and 0{u) is the number of squarefree divisors of u. 

Remark 2: Here fk(u) is a multiplicative function in u. 

Corollary 1: The probability that k positive integers are pairwise relatively prime and each is 
prime to u is 

l i m^M= A / ( M ) 

Corollary 2: (u = 1) The probability that k positive integers are pairwise relatively prime is 

3. PROOF OF THE THEOREM 

We need the following lemmas. 

Lemma 1: For every k,n,u>l, 

Proof: From the definition of F$u\ri)9 we immediately have 
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THE PROBABILITY THAT k POSITIVE INTEGERS ARE PAIRWISE RELATIVELY PRIME 

ak+l = l \<ax,...,ak<n ak+l = l / = ! 
(fl^+1,«) = l {ahaj)=\,i*j (ak+l,u) = l (j,u) = l 

Lemma 2: For every £, w > 1, 

where 

and © (¥) stands for the number of distinct prime factors of u. 

Proof: By the multiplicativity of the Involved functions, It is enough to verify for n = pa a 
prime power: 

fa ak(d) -1
 P{1+ P J -1 p+k-r'&y 

Note that, for k = 2, a2{u) = y/(u) is the Dedekind function. 

Lemma 3: For k > 1, let r^(w) denote, as usual, the number of ordered ^-tuples (aly..., %) of 
positive integers such that n = ax""-ak. Then 

f«) ^ 1 ^ = 0 ( 1 0 ^ ^ (4) 
n<x n 

<b) I ^ = 0 ( ^ ) . (5) 

Proof: 
(a) Apply the familiar result E„<x T*(W) = 0(xlog^-1 x) and partial summation. 
(6) By induction on k. For k = 1, Tx(ri) = 1, w > 1, and 

!£=«*>•<£) (6) 
is well known. Suppose that 

^ n2 ^ x 

Then, from the identity t^+1(w) = Z^|w ^(rf), we obtain 

yliilM = y £t̂ ) = y _ L V Tk(e) 
La m2 LJ ^ 2 ^ 2 La J2 La Jl 
n<x " de<x u * d<xa e<xld * 

,2^+0((|)V-f)) 
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=<r(2)*Ii+o 
d<x' 

b g ^ X y 1 
x 2-1 d x dix" 

\ 

:W(«2) + 0(I)) + 0(i9^£lpgx 

by (6), and we get the desired result (5). 
Now, for the proof of the Theorem, we use induction on k. For k = 1, we have the Legendre 

function 

\<a<n a=\ d\(a,u) a=\ d\a 
(a,u)=l d\u 

«/|K \<j<nld d\u L " J |̂M V " J 

Hence, 

P^\n) = X 1 = " — + O(0(«)) 
a = l 

and (3) is true for & = 1 with Ax = 1, /j(i/) = -^p, ^ denoting the Euler function. 
Suppose that (3) is valid for k and prove it for k +1. From Lemma 1, we obtain 

(/,«) = ! 

= 4 A ( ^ lAO)+o 0(u)tf-Hog*-liiZ0U) 
0 » = i /=i y 

Here E"=i^(j) ^ £/=i r2C/) = 0(wlog/i), where r2 = r is the divisor function. 
Furthermore, by Lemma 2, 

£ A 0 ) = ^ /W(t° _ v / W w 
•= I I i-

(y,«)=i 
7<w ^ ( r f ) ftn ak(d) e^nld 

( / ,«) = ! (cf,w) = l (e,K)=l 

Using (7), we have 

f/.c/>= I ^ ( ^ + 0 ( W ) -
(tf,K)=l 

/=1 
(/,«) = ! 

M £ ^ ^ I itn d ) 
(</,«)=! 

since ak(d)>d. 

(7) 

(8) 

(9) 
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Hence, the main term of (9) is 

(d,u) = l 

•»nu 

)u\ p(p + k-\) 

>(/' + ̂ -l)JS!l1 PK Pip + k-l)) ' 
and its 0-terms are 

( _ k^dA f 

d>n d2 nldu^l 
d>n 

= 0008*-'») 

by Lemma 3(b) and 

O ml, £»(<0 
d<n 

= 0 <K«)T, rk(d) 
d<n 

= O(0(u)logkn) 

from Lemma 3(a). 
Substituting into (8), we get 

»)=Ani • S F ^ / ^ H H I 1 " * ^ v.k+1 

+ 0(nk log*"1«)+0(G{u)nk log* n) = Ak+1fk+1(u)nk+1 + 0(6(u)nk log* n) 

by an easy computation, which shows that the formula is true for k +1 and the proof is complete. 

4. APPROXIMATION OF THE CONSTANTS Ak 

Using the arithmetic mean-geometric mean inequality we have, for every k > 2 and every 
primep, 

1- 1 \ * - i 

1 + k-\\ 1 
, m™I'-prr p 

l k-l 

and obtain the series of positive terms, 

Slog 
( 

1- 1 •k+i 

1 + k-l 
•y\ 

:2>g| 
\-k+l 

where pn denotes the /1th prime. 
Furthermore, the Bernoulli-inequality yields 

\jfe-i 

hence, 

i - i 

i -

\ fc - l 

1 + 

> 1 -

Pn 

k-l 

1 + k-l 
Pn 

\k 

-l\ 

• L 

= -log4> 

k-l >1- k-\ 

for every A: > 2 and every prime/?. 
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Therefore, the N^ -order error RN of series (10) can be evaluated as follows. Taking 
N > k-1, we have pN>k-l and 

«=T+1 iV Pn) \ Pn ) ) ^ l I, V Pn ) ) 

= J+ll08l1+/«-(*1-l)2J<^+i?V:1 
2 

i) 
Now using that pn < 2w, valid for n > 5, we have 

KN< Z^ AJL <u rt - n L 
00 

z 
ft-1 

(*-D2 

4«2-(/t-

— + 

2 „ = V + A 2 H - ( * - 1 ) 2W + ( * - 1 ) 

J__+...+ I ^ (*z£ 
2 UAT-/fc + 3 2tf -* + 5 2N+k-lJ 2(2N-k + 3)' 

In order to obtain an approximation with r exact decimals, we use the condition 

C*-1)2 <l . io-
2(2JV-/fc + 3) " 2 

and have N > \{{k -1)2 • 10r + k - 3). Consequently, for such an N, 

with r exact decimals. 
Choosing r = 3 and doing the computations on a computer (I used MAPLE v), we obtain the 

following approximate values of the numbers Ak: 
A2 = 0.607..., A3 = 0.286..., A4 = 0.114..., A5 = 0.040..., 
4=0.013..., 4 = 0.004..., 4 = 0.001... 

Furthermore, taking into account that the factors of the infinite product giving Ak are less than 1, 
we obtain 
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0. INTRODUCTION 
For a natural number vand two sequences {A(k),B(k)}k of binomial coefficients, the follow-

ing convolutions of Vandermonde type, 

C(rn, w, v): = ]T A(m + kv)B{n - kv) , 
k 

will be investigated in this paper. When v = 2, 3, 4, the convolutions will be nominated duplicate, 
triplicate, and quadruplicate, respectively. Thanks to the explicit solutions of the corresponding 
algebraic equations, we will establish the generating functions of binomial coefficients with run-
ning indices multiplicated accordingly. Then the formal power series method will be used to 
demonstrate several binomial convolution identities. 

When v = 1, we reproduce a pair of binomial identities and the related generating function 
relations, from which our argument will be developed. In this respect, there are two general con-
volution formulas due to Hagen and Rothe (cf. [9], §5.4), 

^ a (a + k0\(Y-k0\y-n(l _a + y-np(a + Y\ ( . 
h« + W\ k k^)y-k(}- a + y { n ) <0-la> 

and 

tMa"%'-')--^r) (0lb) 
which have been recovered by Gould [7] (see also [3], [6], and §4.5 in [10]) through manipulating 
the generating functions 

and 

£Ja + *A k J fl + fj-firi' 
where r = (27-1)/?/*. More binomial convolution formulas and the related hypergeometric iden-
tities may be found in [4] and [8]. 

For an indeterminate x and a complex sequence {T(k)}k, the generating function is defined by 
the following formal power series: 

•/(*) = £r(*)x*. (0.3a) 
jfc=0 

Denote by ov = exp(2; r^ ) the Vth primitive root of unity. Then there exists a well-known 
formula to determine the generating function of the subsequence with running indices congruent 
to 1 modulo v, 
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vf] T(kv+i)xkv+l = £ a#v-i>f(xafv), (0.3b) 
k=Q *r=0 

which will be used in this paper frequently without indication. 

1. DUPLICATE CONVOLUTIONS 

For p = 1/2, the functional equation between two variables rand TJ in (0.2) becomes quad-
ratic. The substitution of its solution 7](2T) -> U2(T) leads the generating functions stated in 
(0.2a) and (0.2b) to the following lemma. 

Lemma 1.1: For two indeterminates rand Urelated by 

we have functional equations 

2r = U-j-oU = r + yll + T\ (1.1a) 

and generating functions 

and 

1 = U(T)XU(-T), (1.1b) 
2T = U(T)-U(-T), (1.1c) 

2yl\ + r2=U(r) + U(-T), (l.ld) 
1 + U2(T) = {U(T) + U(-T)}U(T), (Lie) 

1 + U2(-T) = {U(T) + U(-T)}U(-T), (l.lf) 

S I * FT) ~u(r)+u(-ry (L2b) 

Their combinations lead us immediately to the following proposition. 

Proposition 1.2: With the complex function [/defined in Lemma 1.1, we have generating func-
tions on duplicated binomial coefficients: 

U2°(T) + U*"(-T) = f ^-(a^k)(2rr, (1.3a) 
k=o a "•"K V / 

^ a - i ( r ) _^ a - , ( _ T ) = g2^ra + n(2r)2fc+1) (13b) 
k=0 a^~K \ J 

U(T)+U(-T) ~iX2k r } ' ( } 

U(T)+U(-T) tXx+2kr } ' { } 

Based on these relations, we are ready to establish binomial formulas on duplicate convolu-
tions. 
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a + k \m + 2k)\p-2k) c-k 

2a + 2c-rn-n(a + c} , / um2e-2a+m-n(c-a + m\ ^ A\ 

Theorem 1.3 (Duplicate convolution identities [5]): 
x^2a-mf a + kY c-k} (a+c\., nm(c-a+rn\ nA\ 

t " ^ F U + 2^J^-2^J^^+WJ + (-1) [ m + n } (L4a> 
E 2a-mf a + k Y c - i \2c-n ,. . . . 

^-^rlni+^ll i i -^l-Trr (L4b) 
la + 

Proof: By means of Lemma 1.1, manipulate generating functions 
oF7l+2c-w/„\ sjTTl+2a+2c-n/-\ r%jjl+2c-2a-n / _ \ 

/772a/ x + r/2«/_ x, _2f/ ( IL = 2t/ (r) 2£/ (r) 
1 w V " £/(r) + t /(-r) t/(r) + £/(-r) t/(Y) + £/(-r) 

and 
rrr^-lf-x f / 2 0 - l ( _ „ „ 2 C / 1 + 2 ™ ( r ) = 2<72°+2e-"(r) 2 ^ + 2 c - 2 a - " ( T ) 
1 w V " t/(r) + E/(-r) £/(T) + C/(-T) C/(r) + f/(-r) ' 

According to Proposition 1.2, the coefficients of T" and t1+" in the formal power series expan-
sions lead us, respectively, to the following convolution formulas, 

and 
> 2a-l^a-f-A: V c - ^ ^ r^ + ĉ l fl + c - a^ •. ^ 

which have been discovered for the first time by Andrews-Burge (see [1], Eqs. 3.1-3.2), with the 
help of hypergeometric transformations in their work on plane partition enumerations and deter-
minant evaluations. 

Letting 8 - 0, 1 be the Kronecker delta, we can unify both formulas as a unilateral convolu-
tion identity, 

x^2a-S(a + k Y c-k }_f^ + c},_ns(S + c-a\ 
^~^Tk~{S + 2k){n-2k)-{S + ny^ l) { S + n J' 

which, in turn, is expressed under parameter replacements 
k->k + p, 
a->a-p9 
c^c + p, 
n-*n + 2p, 
8-^m-2p, 

as the first finite bilateral convolution formula stated in the theorem. 
Again from Lemma 1.1 and Proposition 1.2, consider the generating functions 

{U2a(r) + U2a(-r)} x U2c~n(T) = U2a+2c~n(T) + U2c-2a~n(T) 
and 

{U2a~l(r) - U2a-\-r)} x U2c~n(T) = U2a+2c-n-\r) - U2c-2a-n+l(r), 
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then the coefficients of rn and rl+n in the formal power series expansions result, respectively, in 
the following binomial convolution identities: 

Z 2a (a + k\2c-n( c-k\ /* £ \ 

k 7^k{ 2k ^{n-2k) (L 6 a> 
2a + 2c-n(a + c\ , 2c-2a-n(c-a\ ,, ,«v 

= - ^ T ^ l n J + - ^ - l n > (L6b) 
Z la-\(a + k\2c-n( c - k \ ,, c ,. 

t ^Tti+2*jTTlii-2*J • (L6c) 

2a + 2c-n-\(a + c\ 2c-2a-n + lf\ + c-a\ ,, . . . 
= TTc ll+»J l + c-a { l+» } (L6d) 

Their bilateralization derived exactly in the same way as in the proof of the first formula (1.4a) 
leads us to the second one (1.4b-1.4c). This completes the proof of Theorem 1.3. • 

As a by-product, we present a pair of convolution formulas of Jensen type. From Lemma 
1.1, it is trivial to have the formal power series 

1 = 1 = l y T* 
U(T) + U(-T) 2{U(T) -T} 2 £ j Ul+k(r)' 

By means of Proposition 1.2, we can establish the following expansions, 

Ul+2a(r) + Ul+2a(-T) 2Ul+2c(r) = ^ T*Ul+2a+2c-k(T) + TkUl+2a~2c+k (-T) 
U{T) + U{-T) XU(T) + U(-T) ^ U(T) + U(-T) 

and 
U2a(r)-U2a(-T) 2U1+2C(T) = y r ^ 2 a + 2 c ^ ( r ) - r*E/2c-2"-*(r) 

t/(r) + t / (-r) Xf/(T) + C/(-r) £ 0 £/(r) + t / ( -r) 

whose coefficients of rn and r1+w lead us, respectively, to the Jensen convolutions 

and 

^ l V a J ^ (L7b) 

Further formulas of Jensen type and binomial identities related to Theorem 1.3 as well as their 
applications to determinant evaluations can be found in [2] and [5]. 

2. TRIPLICATE CONVOLUTIONS 

When J3= 1/3, the functional equation between two variables rand t] in (0.2) is cubic. The 
substitution of its solution rf(3r) —»V3(r) can be used to reformulate the generating functions 
stated in (0.2a)-(0.2b) as follows. 

Lemma 2.1: Denote the cubic root of unity by s = exp(2m /3). For two indeterminates r and V 
related by 

22 [FEB. 



SOME BINOMIAL CONVOLUTION FORMULAS 

rl 1 _ ir A / _ X . T 3r = r ~ o F = A ( r ) + ^ , (2.1a) 

where 
A(r) = ̂ /{l + Vl-4/3}/2, (2. lb) 

we have the functional equations 

1 = V(r) x V(TCO) x r ( r a 2 ) , (2.2a) 
0 = V{T) + (OV(TO}) + (O2V{TO)2), (2.2b) 

-3r = V(TCO)V(TO)2) + COV(T)V(TCO)+CO2V(T)V(T(O2) , (2.2c) 

and generating functions 

Their combinations yield the following generating functions on triplicated binomial coefficients. 

Proposition 2.2: With complex function V defined as in Lemma 2.1, we have generating function 
relations: 

V*"(T) + * * » ( « > ) + F 3 W ) = f ^ ( a
3

+ / ) ( 3 ^ , (2.4a) 

^ ( rH^^rf iO + ̂ n™ 2 ) = E iTfTlf'l+
+

a3^)(3r)1+3"' (24b) 

F3a(r) + ffl^Cm,) + O>2V*"(TCO2) = £ - J ^ + ' ^ p r ) * * . (2.4c) 

Theorem 23 (Triplicate convolution identities): Given two natural numbers m and n, define 

^ 2 ^ ^ ^ . l+2> m^n(mod3), 
0(m,n) = a)m+2"+co2m+" = \ ' ; ' ' (2.5) 

1-1, w#w(mod3). 
Then there holds a binomial identity 

3a f+a + k] a f f + a - * ] „ 6 a ) 
^> ^+a + k\m + 3k )^+a-k\n-3k ) v ' ' 

^ + 2a^ m+n J ^-a{m + n J v ' ' K J 

and its reversal 

~ ^ i + c + 2Jfĉ  m + 3k )%+c-2k{ n-3k ) v ' 

r>„ {2m+2n , o / N _ _ (im+ln r \ 

£ 4 >m;„ j + ^ i 'm+ny^- <*»> 2m+2n 
3 
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Proof: By means of Lemma 2.1, manipulate generating functions: 
V3a(r) x {V3a(r) + V3a(rco)+V3a(T6)2)} = V6a(r) + F~3a(ra) +F"3"(r<y2), 

V3a{r) x {V3a(r) + o) 2V3a(rco) + o)V3a(ro)2)} = V6a(r) + o)V-3a(ro)) + aP-V~3a {T(O2\ 

V3U(T) x {V3a(r) + 0)V3a(TQ)) + co2V3a(T(o2)} = V6a(r) + (o2V-3a{rco) + o)V-3a{ro)2). 

According to Proposition 2.2, the coefficients of rn+y, v = 0, 1, 2, in the formal power series 
expansions lead us, respectively, to the following binomial convolutions, 

3a (% + a + k\ a (%+a-k 
Y j + a + k\ v + 3k J^ + a-ky n-3k 

2a (^- + 2a\i -a (*?-d\*, , 
n+v 

3 

which gives rise to the first finite bilateral convolution formula stated in the theorem under param-
eter replacements k ->k + py v->m-3p, and n->n + 3p. Rewriting every binomial coefficient 
in the first binomial identity through 

we immediately obtain the second one in the theorem. D 

3. QUADRUPLICATE CONVOLUTIONS 

For /? = l /4 , the functional equation between two variables r and rj in (0.2) becomes 
quartic. The substitution of its solution r/(4f) -> W4(r) leads the generating functions stated in 
(0.2a)-(0.2b) to the following lemma. 
Lemma 3.1: For two indeterminates z and ^related by 

1 ^ „,_ T + WW- r 2 
4T = W3-^*>W=- " V " ^ ' / ' , (3.1a) 

where 
O(r) = yl<t>2(r) + <t>(T)y/(T) + y/2(T) (3. lb) 

and 
#f), W(T) = A/±T2 + Vr4 +1 /27 , (3.1c) 

we have the functional equations 
n ( r ) = f l ( - r ) = n(/z) = Q(-ir), (3.2a) 

W(f) x W(-T) x W(fT) x W(-ir) = 1, . (3-2b) 
#(T) x y/{r) = 1 and <*3(r)- ̂ 3(r) = 2r2, (3.2c) 

and generating functions 

t^M^y^'-^^ ("a) 
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f(a + k/4\ f_4W4+4°(t) (3.3b) 

Their combinations bring about the following generating functions. 

Proposition 3.2: With the complex function Was in Lemma 3.1, we have the following generat-
ing function relations: 

4c (c + k 
k=0 C + k ^ / W ) 4 * = W4C{T) + W4C(-T) 

+ W4c(iT) + W4c(-iT), 

4c l+C + k 1(4 )̂1+4* = W4c^ _ W4c(_r) 

IT 
k=0 2 

+ c + k 

-iW4c(iT)+iW4c(-ir), 

-W4c{H)-W4c(-iT), 

|(4r)3+4fc =W4C(T)-W4C(-T) 

+ iW4c(iT)-iW4c(-it). 

4c 
k=Ql+c + k{ 3+4k 

Theorem 33 (Quadruplicate convolution identities): For two integers m and w, let 

f+1, wn-w#0(mod-4), 
s(m, n) = • 

-1, m + n = 0(tnod4). 

Then, for m x n # 1 (mod 4), we have 

4c 
T f + c + i 

l + c -* 

+ 
-Ac 

f+c-k 
m + 4k ) % + c-k{^ n-4k 

-c 

k 4 

*-c + k 
+ ky m + 4k)^-c-k\n-4k 

4 \e(m,ri) 

2c (*f + 2c) + -2c (*T-2c\{m n) 
mfL + 2c\ m + n J mf--2c\ m+n J x ' '' 

Otherwise, for m x n = 1 (mod 4), there holds 

^ 4c 

k 4 

+ 1 

Jf + c-k 
+ c + k{ m + 4k Jf + c - J t l n-4k 

%+c-k^i , . 4 ts(m,n) 

-4c f-c-k 
k £f--c + k\2 + m + 4k)*^--c-k 

(f-c-k 

2c (*p- + 2c) , v , -2c ("p—lcS 
= — 4 \e(m,n)+— 4 

^ + 2c^ m + n J ^-Icy m+n ) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

(3-4g) 

(3.4h) 

(3.5) 

(3.6a) 

(3.6b) 

(3.6c) 

(3.7a) 

(3.7b) 

(3.7c) 
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Proof: For v = 0, 1, 2, 3, define the binomial convolutions 0v(w, c) by 

4c l-r + c + k) c o„(",<0 = S - * + c- jO (3.8) T ' f + c + £^ v + 4£ J f + c-A:^ w - 4 * J 

The proof of the theorem will be divided into four cases according to m (mod 4). 

Case 1: m = 0 (mod 4). By means of Lemma 3.1 and (3.4a)-(3.4b), we may manipulate 
generating functions: 

-W*c{r) + W4C(T) x {W4C(T) + W4C(~T) + W4c(ir) + W4c{-ir)} 
= W-^QrW^i-iT) + W-^i-rW^iir) + W-4c{~r)W-4c{-ir). 

The coefficients of r" in the formal power series expansions lead us to the following binomial 
convolutions, 

def A0(w,c) =00(TI,C) 

* 4 < 

2c + f 
2c [2c + f 

/ i t - c - c 
V * J ^ - c l w-* 

w-it 
A0(n, k), 

where A0(w, £) = (-l)n{ik +i3k +i2k+3n}, whose values are displayed in Table 1. 

TABLE 1. Values of A0(#t, k) 

\ \ n 

}/c\J 
1 ° 1 

2 

L 3 

0 

j 3 
1 ~1 

1 _ 1 
[ - 1 

1 

i-2 
—i 

2 + 2 
—i 

2 

1 
1 

- 3 
1 

3 

—2 — z I 
i \ 

2-i 
i | 

For n = 0 (mod 2), Table 1 suggests that we express (3.9b) as 

-(-iri 

-c-k 
4k 

Jc 4 

-c l^-c c l ^ - c 
_^_c^ w_£ J' 

which may be simplified, by means of (0. la), to the following relation: 

A0(n,c) =(-iy, / 200(/f,-c)-(-l)- / 2 -2c (*-2c 
2c I n 

= (-l)n/2A0(n,-cl /fs0(mod2). 
While n = 1 (mod 2), it is easy to check from Table 1 that 

*(/!-*) AQ(n,k) + A0(n,n-k) = -2(-l)— 

Then the combination of (3.12b) and its reversal enables us to write 

(3.9a) 

(3.9b) 

(3.10a) 

(3.10b) 
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k 4 

-c 
njL-c{ n-k 

QzL-.C \ k(n-k) 
4 c l (_ i ) - r -

= ! • 

-c 
it 4 

c -c "4 I 
jfc=0(mod4) 4 

-c l^-c -C 
n-k -C 

(n-k r \ 
4 C 

n-k 

Applying (0.1a) to the penultimate sum, we get 

Aofoc) =-%(p,~c) + T ^ [*n
2c (3.11a) 

= -A0(w, - c), 7i s 1 (mod 2). (3.11b) 

Both relaitions (3.10) and (3.11) may be stated as the single one A0(n, c) + A0(n, -c)s(0,n) = 0 
which, in view of (3.9a), confirms the case m = 0 (mod 4) of Theorem 3.3 with replacements 
k-^k+p and n->n + 4p. 

Case 2: m = 1 (mod 4). In view of Lemma 3.1 and (3.4c)-(3.4d), we have the generating 
function relation: 

-W*C(T) + W4C(T) x {W4C(T) - W4C(-T) - iW4c(n) + iW4c{-ir)} 
= -W-4\iT)W-4\-H) + iW-4\-T)W-4\ir)-iW 

The coefficients of rl+n in their formal power series expansions leads us to the following binomial 
convolutions, 

A ^ c ) *? <>!(», c ) - 2c + ±f 
2c + ̂ [ 1 + Ti 

= 1: -c 
-c i^-c 

k 4 *" V "" / 4 

\n(A+k . A+n+2k , ,-3+3£\ 

l+n-k 

* E E ^ 1 + V * P'<"-*> 

where ^(w, £) = (-1)"{/1+* +/1+"+^ + r*"*}, whose values are displayed in Table 2. 
TABLE 2. Values of X ,(«,*) 

(3.12a) 

(3.12b) 

\ n 
1 fcN 
Jin 1 

2 

J 3 

i ° 
' i 

| - 2 - 2 
i 

l_2-i 

1 

1 
1 
1 

- 3 

2 

—2 

2 - 2 
— 2 

2 + 2 

3 

- 1 1 
3 

- 1 
- 1 J 

For n s 1 (mod 2), Table 2 suggests that we rewrite (3.12b) as 

A1(»,C)=(-I)V5; 
* 4 

l t d , 

-c f* - -c 1+n-A: - C 

J±J=*-cll+/i-* 

-H)¥I -4c f3 

* f"C+* 
f-c + £ a * - c - * 
3 + 4£ J ^ - c - & ^ 7 i - 2 - 4 £ 

which may be simplified, by means of (0.1a), to the following relation: 

2002] 27 



SOME BINOMIAL CONVOLUTION FORMULAS 

A , ( » , , ) = ( - 1 ) * 1 ^ ( ' « ; ; „ 2 j (3.13a) 

- ( - l ) ^ 0 3 ( w - 2 , - c ) , ?i = l (mod2) (3.13b) 

= A1(/i,-c), w = 3(mod4), (3.13c) 
where the last line is derived by reversing the summation order. 

When n = 0 (mod 2), it is easy to check from Table 2 that 
(n-k)(k-1) 

Xx{n, k) + Xl{n,l + n-k) = - 2 ( - l ) — T ~ . 

Then the combination of (3.12b) and its reversal enables us to express 

%-c\ -c (^TF^-C], ,t<»-*x*-i) ^ - s ^ r ^ ^ H ) * 
i^M^&V* z ^-v^-r^-C k jaft_c^l + n_kj kslf^ ±-c{ k )^t-c\\ + n-k k 4 ^ V ^ / 4 U V I T " "J fcsl(mod4) 4 

Applying (0.la) to the penultimate sum, we get 

A^c) --0i(».^)-<-^^(t+»2C) ( 3Ha) 

= -Ax(n, -c), n = 0 (mod 2). (3.14b) 

Both relations (3.13) and (3.14) may be restated as 
At(n, c) + Ax(n, - c)e(l, n) = 0, n # 1 (mod 4) 
<>,(«, c) + 03(« - 2, - c): « = 1 (mod 4) 

2c f^- + 2c] -2c (&L-2C 
±f- + 2c\ l+n J ±f--2c\ l+/i 

which, in view of (3.12a), confirms the case m = \ (mod 4) of Theorem 3.3 with replacements 
k ->k+p and n->n + 4p. 

Case 3: m = 2 (mod 4). Using Lemma 3.1 and (3.4e)-(3.4f), perform the formal manipula-
tion on generating functions: 

-W*C(T) + W4C(T) x {W4C(T) + W4C(-T) - FF4c(/r) - W4c(-ir)} 
= r-4c(ir)^-4c(~iT) - f r 4 c ( - r ) r - 4 ' ( i r ) - r - 4 c ( - r ) r - 4 c ( - i r ) . 

The coefficients of r2*n in the formal power series expansions lead us to the following binomial 
convolutions, 

^0*0^0-^(^7). (3.15a) 

_ __-c (ir-c\ -c f2+Tk -c 
~ 2-dT 

k 4 
where 

= Tf^c[\Cj^^c{2ln-_kjUn,k), (3.15b) 

X2(n, k) = (-l)"{/2+* +i2+3k +i2+»+2k) 
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whose values are displayed in Table 3. 
For n = 0 (mod 2), Table 3 suggests that we reformulate (3.15b) as 

A2(n,c) = (-IT/2^ 
k 4 C 2±f*—c[2 + n-k 

- ( - D W / 2 E I -4c ±-c + k -c f - c -^ 
k \-c + h\ 2 + 4& J^-c-ky n-4k 

which may-be simplified, by means of (0.1a), to the following relation: 
_o„ ( %±n_ _ 9 A» 

A2(n, c) = -(-ir/202(», -c) + (-l)«/2 -^^[ \ + „ 

= -(-l)"l2A2(n, -c), w = 0 (mod 2). 

TABLE 3. Values of A2(«, &) 

\ n 

1 fe\J Fo~l 
1 

2 
[ 3 

0 

- 3 
1 
1 
1 

1 

z + 2 
—i 

i-2 
—i 

2 

- 1 
- 1 
3 

- 1 

3 

2-i 1 
i 1 

- 2 - 2 
i | 

(3.16a) 

(3.16b) 

While n=\ (mod 2), it is easy to check from Table 3 above that 

A2(n,k) + A2(n,2 + n-k) = 2(-l) 

Then the combination of (3.12b) and its reversal enables us to state 

kjn+k) 
2 

A2(^C) = S 
k 4 6 

- C - c 
2+n-k -C 

(2+n-k 

= Z 
it 4 C 

2+n-k 

^=^-c[2 + n-k 
4 

-4 I 
Ar=2(mod4) 4 C 

2+n-k — C 

2±^=k-c{2 + n-k 
4 x 

Applying (0. la) to the penultimate sum, we get 

A2(n,c) = -02(n,-c) + -2c (2+n 

lf-2c 
-2c (3.17a) 

(3.17b) 
2 + w 

= -A2(w, - c), w = 1 (mod 2). 

Both relations (3.16) and (3.17) may be written as the single relation 
A2(«, c) + A2(«, - c)*(2, n) = 0, 

which confirms, in view of (3.15a), the case m = 2 (mod 4) of Theorem 3.3 with replacements 
k-^>k+p and «-»w + 4/?. 

Case 4s w = 3 (mod 4). Finally, from Lemma 3.1 and (3.4g)-(3.4h), we get the following 
functional equation: 

2002] 29 



SOME BINOMIAL CONVOLUTION FORMULAS 

- f l ^ O + r ^ r ) x {W4C(T)~W4c(-T)+iW4c(ir)-iW4c(-iT)} 
= JT4c(/r)fr4c(-/r) - iW^i-^W-^iir)+iW^i-^W^i-iz). 

The coefficients of r3+" in their formal power series expansions leads us to the following binomial 
convolutions, 

1c (lc+ita 

A3(»,c)t f03(„) C). 2c + ̂ y 3+n 

=Z-
k 4 

-c i^-c 
-c{ k )2±f*-c{3+n-k 

3+n-k 
X3{n, k), 

where 
X3{n, k) = (-l)n{i3+k +iMk +i3+n+2k} 

whose values are displayed in Table 4. 

TABLE 4. Values of A3(n,k) 

\ n 

pn 
* ! 
2 

L3 

0 

—i 
.2 + 2 

—2 

[_i-2 

1 

- 1 
- 1 
- 1 
3 

2 

i 
2 - 2 

2 

- 2 - 2 

3 

1 1 
- 3 
1 
1 J 

For n = 1 (mod 2), Table 4 suggests that we rewrite (3.18b) as 

-c 
A3(«,c)-( 1)' Z i _ c + ^ [ 4

1 + 4 i t J*±tt_c_jfc^2'+/i-4* 
4 

-(-D^I-^ft-^ ' 1 
A: 4 * - C l * 

- C 3+n-k g\ 

^--c\}ln-kj 

which may be simplified, by means of (0.1a), to the following relation, 

+ (-l)^i01(2+/i,-c), / i s l (mod2) 

= {-lf^A3(n,-c), n=\ (mod4), 

where the last line is derived by reversing the summation order. 
While n = 0 (mod 2), it is easy to check from Table 4 that 

(n-kXk+l) 

X3(n, k)+A3(n,3+n-k) = -2(-l) 2 . 

Then, the combination of (3.18b) and its reversal leads us to 
A3(n>c) = H: 

'*_, -c 
\-c\ k )l±f*--c\} + n-k 

3+n-k _ c \ (n-kXk+\) 

(3.18a) 

(3.18b) 

(3.19a) 

(3.19b) 

(3.19c) 
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rt-< *) 
-c 

2±a=k.-.c 

'3+n-k c 

,2+n-k 
.4 V -c fe-c) -c (***-c\ 

A3(n,c) = -03(n,-c)+1^-\ 4 f | (3.20a) 

Applying (0. la) to the penultimate sum, we get 
-2c p^-2^ 

2f--2c{ 3+n 

= - A3(/i, - c), /i s 0 (mod 2). (3.20b) 
Both relations (3.19) and (3.20) may be reproduced as 

A3(w, c) + A3(/i, - c)s(3, w) = 0, w # 3 (mod 4), 

03(«, c) + 0t(2+w, - c): w = 3 (mod 4) 

2c p ^ + 2cA -2c f ^ - 2 ^ 
^ + 2c[ 3+w J ^ - 2 c [ 3 + w / 

which confirms, in view of (3.18a), the case m^3 (mod 4) of Theorem 3.3 with replacements 
k-^k + p and«->« + 4jP. 

Therefore, the proof of Theorem 3.3 is complete. • 

Remark: During the 100th anniversary of Tricomi (October 1997, Rome), Richard Askey sug-
gested that the author try another approach to the binomial identities stated in Theorem 1.3. This 
may be presented as follows: 

Letting /? = 1 / 2 in (0. lb), we obtain 

X __a_(a + kl2\(c-kI2\ (a + c\ n o i o \ 

By means of 
a (a + kl2\ , nk -a f-a + kI2\ 

a + k/2{ k ) V y -a + k/2{ k } 

we can reformulate (3.21a) as 

| < - 1 > ' ^ 7 2 ( a + * ' 2 ) ( C » - * 2 ) = ( C ^ ) - <321b> 

Then identities (1.5a) and (1.5b) follow directly from1/the combinations of (3.21a) and (3.21b). 
Two other identities, stated in (1.6a)-(1.6b) and (1.6c)-(1.6d), may be derived similarly from 
(0. la). The details are left to the reader. 
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1. INTRODUCTION 
The modified Dickson polynomials 

[nil] f .\ 

were defined and studied by P. Fllipponi In the case a-\ in [1], where several identities and con-
gruences were established. In this note we generalize some of those theorems and present some 
new properties of these polynomials. One basic result is Proposition 2 in [1] which states that if/? 
is an odd prime and k is an integer, then 

Zp(k,l) = (k\p) (mod/0, (1-2) 
where (k \p) is the Legendre symbol The generalization is as follows. 

Theorem 1: Ifp is an odd prime, a and k are integers, and m and r are positive integers, then 

[l, ifwiseven, 

z
mpr (*, a) = HJk) • Zmprl (*, a) (mod pr), 

where Hm^ \(k\p\ ifwisodd. 

We will deduce this from a corresponding congruence for these polynomials in the polyno-
mial ring Z[y, a], and present a few applications thereof in the next section. We give an analogous 
definition of modified Dickson polynomials of the second kind and give some identities, recur-
rences, and congruences for them in Section 3. We conclude by describing a compositeness test 
based on. Theorem 1 in the last section. 

2. CONGRUENCES FOR MODIFIED DICKSON POLYNOMIALS 

The (usual) Dickson polynomials Dn(x, a) are defined for n > 0 by 

D„(x, a) = ' f ]-^(n ~ A(-ayx"-2J (2.1) 
;=0¥ l J V J J 

(cf. [2]), with the convention that D0(x, a) = 2. They may also be defined as the expansion coef-
ficients of the rational differential form 

i^ = -£/)„(*, a ) r ^ , (2.2) 

where P(T) = 1-xT + aT2 (see [5], eq. (1.6)), and they satisfy the functional equation 
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By comparing (1.1) and (2.1), we see that as polynomials in>> and a, 

7( \ \Dnlym>a\ ifraiseven, 
[y V2Dn{y ,a\ ifwisodd 

(cf. [1], eq. (1.2)). We have the following congruence for the polynomials Z„(y, a). 

Theorem 2: Ifp is an odd prime and m, r are positive integers, then the congruence 

V C * * ) 3 Hm'Zmpr-*(yP,<*P) (mod/fZ[y,a]) 
holds in the polynomial ring Z[y, a], where 

f l, if/wiseven, 

Proof: In Theorem 2 of [5] we showed that the congruence 
Dmfr{x,d)^Dmpr.x(xP,aP) (mod//Z[y,a]) (2.5) 

holds in the polynomial ring I\y, a]. Replacing the indeterminate x with yvi yields 
D

mff(yl/2>a)^D
mp'->(ypl2>aP) (modprZ[ym,a]), (2.6) 

where yp/2 is defined to be (yl/2)p. By (2.4), this gives the result for even m, since both sides of 
the congruence (2.6) lie in Z[y, a] in that case. For odd m, we divide both sides of (2.6) by ym 

to obtain the congruence 

y-V2Dmpr(yi,2,a)^y^/2-(y-P'2Dmpr.,(y'"2,a'')) (modprZ[y,a]), (2.7) 
both sides of which now lie in Z[y, a]. Comparison with (2.4) now gives the result for odd in. 

Theorem 1 may be obtained directly from this as follows. 

Proof of Theorem 1: Let a, k be integers and consider them as elements of the ring 1LP of 
/?-adic integers. For an element uofZp, the Teichmuller representative u of u is defined to be the 
unique solution to xp - x which is congruent to u modulo pZp; it is also given by thep-adic limit 
u = limr_>00 upr. Observing that dp = d, kp = k, and £(/7-1)/2 = (k\p), we evaluate the polynomial 
congruence of Theorem 2aiy = k,a = dto obtain 

Zmf{k,a) = Hm{.k).Zm^(k,a) (mod//Zp), (2.8) 
where Hm{k) is as defined in the statement of the theorem. 

Now, from the second statement of Theorem 3 given in [5], applied with / = 1, n -1, and 
K = Qp(Jk), it follows that 

Dmf{k"\a) ^ Dmf{k"\a) (modnpr€)K) (2.9) 

for all r, where {n) is the maximal ideal in the ring of integers £>K of the field K. For m even, 
comparison of (2.8) and (2.9) yields 

Dmf{k*2,a) = DmrX{kV2,d) (mod*?/-1©*), (2.10) 
but both sides of this congruence are integers, so it must hold modulo prZ. In this case the 
theorem then follows by comparison with (2.4). 

34 [FEB. 



ON MODIFIED DICKSON POLYNOMIALS 

Ifm is odd and k * 0, multiplying both sides of (2.8) by km yields 

D^(P\a)^(k\pyDm^(km,a) (modprQK). (2.11) 

Comparison with (2.9) shows that 

Dmif{kv\a)^{k\pyDm^{km,a) (mod^O*), (2.12) 

and then dividing by kin yields 

^mpAKa)^{k\PyZmpr.x{Kd) (mod^Cfc), (2.13) 

but again both sides of this congruence are integers, so it holds modulo prZ, proving the theorem 
in that case. 

Finally, when k = 0 and n is odd, we have the identity Z„(0, a) - {-dfn~l)l2 -n (cf. [1], eq. 
(2.7)), so that Zmpr(0, a) = 0 (mod pr) when m is odd. Combining this with (2.9), we see that in 
this case we also have 

Zmpr(k,a) = Hm(k).Zm^{k,a) (modnprl€>K), (2.14) 

but again both sides are integers, proving the theorem. 

Remarks: Perhaps the most interesting feature of these theorems is that while the "special ele-
ment" Hm depends on y and on the parity of m, it does not depend on a. For example, taking 
m = 1, r = 1 in Theorem 1 and observing that Zx(y, a) = l yields 

Zp(k,a) = (k\p) (mod/i), (2.15) 

of which Filipponi's result (1.2) is a special case; indeed it is evident from (1.1) that Zp(k,a) = 
£(/>-i)/2 (mocjp) for au a i n Section 4 below we propose a compositeness test based on (2.15). 

One also obtains interesting congruences by combining Theorem 1 above with Filipponi's 
multiplication formula ([1], eq. (3.6)). For example, for n even the h - 3 case of Filipponi's result 
is the identity 

Z3„ = 43-3Z„ (2.16) 

(cf. [1], eq. (3.5)), where Z„ = Z„(k,l). Putting n = m-3r with m even, from Theorem 1.1 we 
obtain Z3t1 = Zn (mod 3r+1); combining this with (2.16) yields Zn(Z2

n - 4 ) = 0 (mod 3r+1). It fol-
lows that, if n is even and divisible by 3r, then Zn is congruent to either - 2 , 0, or 2 modulo 3r+1. 
A similar but slightly more complicated result holds for n odd. Many other such results may be 
obtained similarly. 

We conclude this section with a generating form and recurrence for the Zn(y,a), which 
provides an efficient means for generating the sequence and for obtaining identities. 

Theorem 3: For n > 0 the polynomials Zn(y, a) may be obtained as the expansion coefficients of 
the rational differential form 

T7(v ^rndT A\-{2a-y)T-at1-2a2Ti)dT 
h ] T l + (2a-^+a2r4 

Consequently, the sequence Zn = Z„(y,a) is given by the recurrence Z0 = 2, Zx = \, Z2=y-2a, 
Z3 = y-3a, and Z„+2 = (y-2a)Z„-a2Z„_2. 
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Proof: Use (2.4) to write the power series 

fXr-1 = ̂ -1/2£ W 2 , aKT"-1+(-T)"-1) 
»=i ^„=i ( 2 1 7 ) 

+7lA(y1/2,«)(r-,-(-r)"-1) 

as the sum of an even function of T and an odd function of T. Then from (2.2) we obtain 

-pn(y,")rf=l[(i+y-»2)§$Hi-y-V2)§^), (2.18) 

where P(T) = l-yl/2T+aT2. Expanding and simplifying (2.18) yields the first statement of the 
theorem. The recurrence follows by multiplying both sides by \ + {2a-y)T2 +a2T4 and equating 
coefficients of T^dT. 

3. MODIFIED DICKSON POLYNOMIALS OF THE SECOND KIND 

The Dickson polynomials of the second kind En(x, a) are defined for n > 0 by 

En(x,a) = ^ I w J\(-nVr»-V ;»(*>-«)= 1 1 " / J ( - a y * " " 2 ' (3-1) 

(cf. [2]). They may also be defined as the expansion coefficients of the rational differential form 

-^-=^E„(x,a)rdT, (3.2) 

where P(T) = 1-xT+aT2 ([5], eq. (4.4)). By way of analogy with (1.1) we define the modified 
Dickson polynomials of the second kind Yn(y, a) by 

[nil]/ _ . \ 

YnM = I ^jJJ(-ayy[n,2]-J. (3.3) 

Comparison of (3.1) and (3.3) shows that as polynomials iny and a, 

En(yl/2, a), ifn is even, 
y-ll2En(yll2,a\ ifrcisodd. 

From this definition, we deduce the following generating form for the polynomials Yn(y, a). 

y.ov«H Z'tl ' <3-4> 

Theorem 4: The polynomials Yn(y,a) may be obtained as the expansion coefficients of the 
rational differential form 

to" l + (2a-y)P+a2p-

Consequently, the sequence Yn = Y„(y,a) is given by the recurrence Y0 = l, ^ = 1, Y2=y-a, 
Y, = y-2a, and Yn+2 = (y-2a)Y„-a%_2. 
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Proof: Use (3.4) to write the power series ^Y^a)!* as the sum of an even function of J 
and an odd function of T. Then from (3.2) we obtain 

pn(y,a)rdT^[(l+y-^)^Hl-y-V2)^), (3.5) 

where P(T) = l-yl/2T+aT2. Expanding and simplifying (3.5) yields the first statement of the 
theorem. The recurrence follows by multiplying both sides by l + (2a- y)T2 +a2T4 and equating 
coefficients of VdT. 

The generating functions for Yn and Zn may be used directly to deduce several identities relat-
ing them to Dn and En, some of which we record here. 

Theorem 5: In the polynomial ring Z[y, a] we have the identities 

0 Y2m-\(y,a) = Em-\iy -2a>al) for m > 0, 
(U) Z2m(y,a) = Dm(y-2a,a2) for^i>0? 

(Hi) Y2m(y,a) + Z2^l(y,a) = 2Em(y-2a,a2) - forw>0? 

(iv) Y2m(y,a)-Z2m+l(y,a) = 2aEm_l(y-2a,a2) forw>0. 

Proof: For (iii), use Theorems 3 and 4 and equation (3.2) to write 

Y <7« + Zn+\)T"dT = — ^ ^ =-j-+(odd function of T) dT 

= 2 Z ^ ( y ~ 2a> a2)T2mdT+(odd function of T)dT. 
m=0 

(3.6) 

Equating coefficients of T2mdT gives the result. The other parts are obtained similarly. 

Remarks: Replacing y with y2 in (ii) and using (2.4) yields the n - 2 case of the familiar compo-
sition formula 

Dmniy,a) = Dm{Dniy,a),a") (3.7) 

for the usual Dickson polynomials. An analogous formula 

E7^.fr,a) = yEnt_l{D2(y,a\al) (3.8) 

is obtained in a like manner from (i). Similar composition formulas for E2m and D2m+l may be 
obtained by combining (iii) and (iv) and replacing y with y2. 

Another set of identities relating the polynomials Yn and Zn may be derived from the 
observation that the characteristic polynomial l + (2a-y)T2 +a2lA is invariant under the trans-
formation a h-» -a, y h-» y - 4a, as follows. 

Theorem 6: If m is a nonnegative integer we have, as identities in the polynomial ring Z[y, a], 
(i) Z2m+l(y-4a,-a)^Y2m(y,al 

(ii) Z2m(y-4a,-a) = Z2m(y,a), 
(iii) Y2m(y-4a,-a) = Z2m+l(y,aX 

(iv) Jiii+iCv - 4a> ~a) = Y2m+i(y>a) • 
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Proof: Using the generating form from Theorem 3, we compute 

f , „ , . ,™rfJ (l-(2a-y)T+aT2-2a2T3)dT 

= (-(2a-y)T-2a2T3)dT (l+a^dT 
l + (2a-7)7^+a 2 r 4 + l + (2a -y ) r 2 + a274 

(3.9) 

Noting that the even part of this form agrees with the even part of the generating form for Yn from 
Theorem 4, and the odd part of (3.9) agrees with the odd part of the generating form for Zn from 
Theorem 3, gives results (i) and (ii). Repeating the argument starting from the generating form 
for Yn from Theorem 4 gives (iii) and (iv). 

Remark: Parts (i) and (iii) of Theorem 6 are equivalent. 

Finally, we will use the results of Theorems 5 and 6 to give an analog of Theorem 1 for the 
values of the polynomials Y„. 

Theorem 7: Ifp is an odd prime, a and k are integers, and m and r are positive integers, then 

Ympr_x{k, a) s am(k) • V'-i(*' f l ) (mod pr)> 

where 
\(k(k - 4a) |p), if m is even, 
[(k - Aa \p\ if m is odd. 

Proof: First, suppose m = 2j is even. From Theorem 5(i), we have 

Ympr-1(k,a) = EJpr_1(k-Za,a2) 

for all r > 0. Using the congruence 
Ejy-i(x>a) - (x2 " 4 a I /O • E

jprl-i(x>a) (m o dPr) (3A0) 

(see [5], Cor. C; [4], Cor. l(i)) with x = k-2a and a replaced by a2 yields the result for even m. 
If iw is odd, then mpr - 1 is even for all r > 0, and from Theorem 6(i) we have Y r_x(y, a) = 

Z r (y - 4a, - a). The result in this case then follows from the odd m case of Theorem 1. 

Remarks: While it is possible to prove a polynomial congruence that holds modulo prZ[y, a] 
(analogous to Theorem 2) for the Yn, the resulting congruence is rather inelegant due to the cum-
bersome "lifting of Frobenius11 involved (cf [5], Remark A.2, p. 43). However, the "modp" case 
of this congruence may be stated rather simply: Ifp is an odd prime and m is a positive integer, 
then the congruence 

ymp-i(y^)^Gm-Ym_1(yP,a") (modPZ[y,a]) (3.11) 

holds in the polynomial ring Z[y, a], where 

G ={(yO-4a))( p-1 ) / 2 , ifmiseven, 
m K>'-4a)(p-1>/2, ifwisodd. 
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For m even, this follows from Theorem 5(1) above and from Theorem 5 in [5]; for m odd, it 
follows from Theorem 6(1) and from the odd m case of Theorem 2. In particular, the special case 
m-\ yields the congruence 

Yp_l(y,a)^(y-4af^/2 (modpZ\y9a])9 (3.12) 

and the case m = 2 yields 

Y2p^{y,a)^(y{y-4a)fP^12 (mo&pZ\y,d\). (3.13) 

4 A COMPOSITENESS TEST 

The congruence (2.15) furnishes a compositeness test which contains the usual Dickson 
polynomial test and the Solovay-Strassen test as special cases. If n is a prime then for all integers 
k and a we have 

Zn(k,a) = (k\n) (mod/i) (4.1) 

by (2.15), where (k\ri) now (and throughout this section) denotes the Jacobi symbol. If n is odd 
then in the special case in which a - 0 the congruence (4.1) becomes 

k{n-l)l2^(k\n) (mod7i), (4.2) 

which is the basis for the Solovay-Strassen test. On the other hand, suppose n is odd and k is a 
quadratic residue modulo n. Writing k = b2 (mod n) and using (2.4), we have 

bZn(k,a)^bZn(b2,a) = Dn(h,a) (mod/i), (4.3) 

whereas (k\ri) = l. So, in the case where k is a quadratic residue modulo «, the congruence (4.1) 
is equivalent to the congruence 

Dn(h,a) = b (mod/i), (4.4) 

which is the basis of the usual Dickson polynomial compositeness test. 
If n is a prime, it is clear that (4.4) is satisfied for all integers a and b from (2.5) with m = 

r = 1 and p = n; and (4.2) is likewise satisfied for all integers k. However, if n is an odd compos-
ite number then there exist values of k with (k, ri) = 1 for which (4.2) holds; in this case, n is said 
to be a Euler pseudoprime to the base k. Furthermore, if n is an odd composite it may happen 
that (4.4) is satisfied for all integers b and a fixed integer a, in which case n is said to be a strong 
Dickson pseudoprime to the base a (cf. [2]). It is even possible that n may be a strong Dickson 
pseudoprime to every base; that is, (4.4) may hold for all integers a and b, although n is not 
prime. 

It is quite easy to see that the compositeness test we propose based on the congruence (4.1) 
admits no "strong pseudoprimes" to any given base a; in fact, if n is not prime then for any a the 
congruence (4.1) fails at least half the time, as we now record. 

Theorem 8: Let n be an odd composite integer, and let Un denote the group of units in the ring 
Z/wZ. Then for any integer a, the congruence (4.1) fails for at least half the elements kofUn. 

Proi9f: First, suppose that n is a nonsquare and write n = pem with p prime, e odd, and 
(m, p) = l. Suppose that (4.1) holds for k = b. Using the Chinese remainder theorem, choose an 
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integer c such that c = b (mod m) and (c\p) = -(b\p). It then follows that (c\ri) = -(b\n) but 
Zn(c,a) = Zn(h,d) (mod m); hence (4.1) cannot hold for k = c. Using the isomorphism Un = 
UmxUpe, we see that in fact half the integers c congruent to h modulo m have (c\p) = -(b\p). 
Therefore, in any congruence class modulo m at most half the elements k can satisfy (4.1). The 
theorem then follows in this case. 

Now suppose that n is a square and write n - p2m with/? prime. Since n is a square we have 
(k\n) = 1 for all integers k Suppose then that (4.1) holds for k = b; then evaluating the polyno-
mial congruence of Theorem 2 with r = 2 at a = a, y = b yields 

1^Z^9a)^b^^Z^(bP9aP) (mod^). (4.5) 

Now if c is any integer congruent to b modulo /?, then cp=bp (mod p2) and therefore 
Zmp(cP,aP) = Zmp(bP,aP) (mod/?2). However, if c^b (mod/?), then c(^1)/2 #M^1) /2 (mod p2) 
unless c = b (mod/?2). Thus, if c = b (mod/?) but c^b (mod p2) then (4.1) cannot hold for 
k = c. Rewriting n as n = pem' with e even and (p,mf) = l and using the isomorphism 
U„= Um, x Upe shows that more than half the integers c Glfn which are congruent to b modulo p 
are not congruent to b modulo p2. The theorem then follows in this case. 

The test described here may be implemented in time commensurate with that required for 
other well-known tests. Using the identities 

\Zn{Kdf-2a\ lin is even, 
ZjJk,a) = < (4.6) 

[kZn{k,af-2a\ if* is odd, 

and the recursion 
Zln^Ka)^Zn,lKa)Zn{Kd)-a\ (4.7) 

i n \ {^(k.^-aZ^ik^), ifwiseven, 
Zn+l(k,a) = \ (4.8) 

[kZ^k^-aZ^k^a), if^isodd, 
one may compute Zn{k,a) with O(log^i) multiplications, as outlined in Lemma 2.5 of [2] for 
Dn{k, a). The identities (4.6)-(4.8) were given in the case a - 1 in equations (3.2)-(3.4) of [1], 
and are proved for general a in the same manner. 
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1. INTRODUCTION 
In 1983 and 1984, Neville Robbins showed that neither the Fibonacci nor the Pell number 

sequence has terms of the form px2 for prime p = 3 (mod 4), with one exception in each 
sequence [3], [4]. The main idea of Robbins' paper can be used to prove a stronger result, namely, 
that with a small number of exceptions, neither sequence has terms of the form kx2 if k is an 
integer all of whose prime factors are congruent to 3 modulo 4. An interesting corollary is that, 
with 11 exceptions, every term of the Fibonacci sequence has a prime factor of the form 4r +1 
and, similarly, with 5 exceptions, for the Pell sequence. 

The solutions of Fn = x2 and Fn = 2x2 were found by Cohn [1], and of Fn = kx2, for certain 
values of k > 2, by Robbins [5]; of particular interest is Robbins' result that there are 15 values of 
£, 2 < £ < 1000, for which solutions exist, and he gives these solutions. We refer the reader to [5]. 

2* SOME IDENTITIES AND RESULTS 

We shall use the following identities and well-known facts relating the Fibonacci and Lucas 
numbers: 

F2n-FnLn, (1) 
gcd(Fw, Ln) = 2 if 31 n and 1 otherwise, (2) 

*Wi = # + # ! • (3) 
Let £ = {3,4,6,8,16,24,32,48} and let T={k'\k'>\ is square-free and each odd prime 

factor of k' is =3 (mod 4)}. It may be noted that, in the following theorem, there is no loss of 
generality in assuming that k is square-free. 

Theorem 1: If n > 1, then Fn = kx2 for some square-free integer k > 2 whose odd prime factors 
are all =3 (mod 4) iff n eS. 

Proof: The sufficiency: 
F3 = 2 (k = 2) F16 = 3-7-47 (£ = 987) 
F4 = 3 (£ = 3) F24=25-32-7-23 (£ = 322) 
F6 = 8 (k = 2) F32 = 3-7-47-2207 (* = 2178309) 
F8 = 3-7 (£ = 21) F48 = 26-32-7-23-47-1103 (£ = 8346401) 

The necessity: Assume there exists at least one integer w>l, n &S, such that Fn has the 
form k'X2 for some kf e T and integer X. Then there exists a least such integer N; we let 
FN - kx2 for some k e T and integer x. Now N is not odd, since, by (3), if TV is odd, then FN is 
the sum of 2 squares and it is well known that the square-free part of the sum of 2 squares does 
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not have a factor = 3 (mod 4). Let N = 2m. Then, by (1) and (2), FN = kx2 implies that there 
exist integers y and z, x = yz, such that either 

(a) Fw = -v2andZta = fe2, (c) Fw = * i / a n d Z ^ f c ^ 2 , or 
(b) FOT = 2y2 and Zw = 2kz2, (d) F„ = 2 * ^ and Lm = 2 * ^ , 

where ^*2 = &, ^ > 2. 
If (a), then by [1], m - 1,2, or 12. But then JV = 2, which is not possible since F2 = l, or 

JV = 4 or 24, contrary to our assumption that N &S. 
If (b), then by [2], m - 3 or 6, but then N - 6, contrary to our assumption, or N = 12, but 

F12*£r2. 
If (c), then, since m<N md kxeT, m = 4,6,8,16,24,32, or 48; that is, N = S, 12, 16, 32, 

48, 64, or 96. But 8, 16, 32, 48 are in S, Fl2 * kxx2, 44811F64, and 7691F96 (4481,769 & 1 (mod 
4)). 

If (d), then either 2kx e T7 or, if kx is even, &t = 2k3 and Fw = 2fc1y2 = k3(2y2), with &3 e T; 
hence, the argument of (c) applies with kx replaced by 2kx or k3. 

It follows that, if n £ S, then Fn * Vx2 for any k' GT. 
Since i^ ^ kx2 implies Fn^k,wQ immediately have 

Theorem 2: If n ^ 0,1,2 or an element of 5, then i^ has at least one prime factor of the form 
4r + l. 

If Pn denotes the w* Pell number, and i^ the rfi term of the "associated Pell sequence" 
(ii0 = 2,i?1 = l), then, with one minor change, properties (1), (2), and (3) hold: P2m = PmRm, 
gcd(Pw, RJ = 2 if m is even and 1 otherwise, and P2w+1 = /?2 + p2

+1. 

We have the following results for Pell numbers. The proofs require the known facts that Pn 

is a square iff n = 1 or 7 and Pn is twice a square iff n = 1 (see [4]); since the proofs parallel those 
of Theorems 1 and 2, we omit them. 

Theorem 3: If w > 1, then i^ = Ax2 for some square-free integer k whose odd prime factors are 
all = 3 (mod 4) iff n = 2,4, or 14. 

Theorem 4: If w * 0,1,2,4, or 14, then Pn has at least one prime factor of the form 4r +1. 
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0, INTRODUCTION 

Let Z denote the set of integers, P denote the positive integers, and N denote the nonnegative 
integers. Define the Collatz mapping T: 2N +1 -> 2N +1 by T(x) = (3x +1) / 2J, where V \3x +1 
but 2-/'+1|3x + l. The famous 3x + l Conjecture, or Collatz Problem, asserts that, for any x e 
2N + 1, there exists k eN satisfying Tk(x) = 1, where Tk denotes k compositions of the function 
T. This paper's version of the Collatz mapping is also found in [4], whereas the most commonly 
used version is given in the comprehensive survey of Lagarias [6] and the research monograph of 
Wirsching [9]. It is obvious that our formulation of the 3x + l Conjecture is equivalent to those 
given in [6] and [9]. 

It is natural to study the 3x +1 Conjecture in terms of the directed graph G2N+1 with vertices 
2N +1 and directed edges from x to T(x). A portion of this graph, known as the Collatz graph 
[6], is displayed in Figure 1. A slightly different version of the Collatz graph, which includes the 
positive even integers, is presented in [6], whereas G2N+l excludes these with the purpose of 
making upcoming properties of certain vertices more transparent. 

Figure 1. The Collatz Graph C2N+1 (T4(x) = l,x< 150) 

A directed graph is said to be weakly connected if it is connected when viewed as an 
undirected graph, and we will call a pair of vertices weakly connected if they are connected by an 
undirected path. Using these graph-theoretical considerations, the 3x +1 Conjecture can be re-
stated as follows: 

3x +1 Conjecture (1st form): The Collatz graph is weakly connected. 
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Our immediate goal is to identify a collection of vertices of G2N+1 which have a certain con-
nectivity property (Section 1). We then use this result to analyze new directed graphs with vertex 
sets contained in 2N + 1 for which weak connectivity also implies truth of the 3x + l Conjecture 
(Sections 2 and 3). Some conditions under which vertices of these new graphs are weakly con-
nected are given. Certain numbers x satisfying the condition that T2(x) =1 are discussed in Sec-
tion 4. (A different characterization of some positive integers satisfying Tk(x) = 1 can be found in 
[2].) In Section 4, we also prove the facts that cycles and divergent trajectories in our new graphs 
induce cycles and divergent trajectories in the original Collate graph. 

1. VERTICES WITH A SPECIAL CONNECTIVITY PROPERTY 

To identify our vertex set, we need a few preliminaries. For x E 2 N + 1, the total stopping 
time of x, denoted a(x), is the least whole number & satisfying Tk(x) = 1. (If no such k exists, set 
CT(X) = OO.) Define the binary relation « on 2N + 1 as follows: x^y if and only if there exists 
& e N with k < min(cy(x), a(yf) satisfying Tk(x) = Tk(y). Clearly; « is an equivalence relation, 
hence each x G 2 N +1 belongs to an equivalence class Cx. Observe that a(x) = a(y) < oo implies 
that x&y, and furthermore, the set Lk = {x e2N +11a(x) = k} is an.equivalence class under «. 

Progress has been made recently in determining the density of positive integers x satisfying 
er(x) < oo. The strongest known result is in [3], where it is shown that, if n(x) counts the number 
of integers n satisfying \n\ < x and a(n) < oo? then, for all sufficiently large x, K(X) >xu. Impor-
tant groundwork for this result was provided by Krasikov [5], who used a scheme of difference 
inequalities to show that TT(X) > x3/?. A stochastic approach for analyzing total stopping times is 
presented in [7], and a thorough summary of currently known total stopping time results can be 
found in [9]. 

It also bears mentioning that, throughout the literature, there is a distinct difference between 
stopping time and total stopping time. The stopping time of x is defined to be the least positive 
integer k for which Tk(x) < x. The most important stopping time result is given in [8], where it is 
shown that the density of positive integers with finite stopping time is 1. 

We are not ready to state and prove our first result, which can also be found in [1]. The 
proof reveals properties of certain vertices of the Collate graph which are useful later; therefore, it 
is presented here. 

Theorem 1: If x > 5 is the smallest element in Cx, then there exists n e P such that T"(x) = 
F(2x + 1). 

Proof: Let A^ denote the arithmetic progression {2n+2m + 2n -1}^= 0 ? and let Bn denote the 
arithmetic progression {2n+2m + 2n+l + 2n -1}^0. If we let Sx = U„e2N+i(4i), S2 = \J„€2r(BJ, 
^3 = UW€2P(42)?

 a n d S4 = Dne2N+i(Bn), it is easy to verify that {Sl9 S2, S3, S4} is a partition of 
2N +1. We now show that x e S3 o S4 is impossible. If x e S3, write x = 2n+2m + 2" - 1 , where n 
is even, and if x E S4 and n - 1, choose y satisfying 4y +1 = x, else choose y satisfying 2y +1 = x. 
In all cases, a straightforward computation, taking parity of n into consideration when necessary, 
shows that T"(x) = T"(y). Hence y » x with y < x, contradicting the fact that x is smallest in its 
equivalence class. Therefore, x £ S3 u 54, so x e Sx u S2. If x e Sx, write x = 2n+2m + 2n - 1 with 
n odd, and if x e S2, write x = 2""1"2 m + 2n+l + 2n -1 with n even. Again applying the Collate func-
tion n times and taking parity of n into account, we obtain T"(x) = Tn(2x +1). D 
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Corollary 1 follows easily from Theorem 1. 

Corollary 1: If x is the smallest element in Lk, then the vertices x and 2x4-1 of G2N+1 are weakly 
connected. 

2* REDUCING THE VERTEX SET OF THE COLLATZ GRAPH 

We now construct a new directed graph whose vertices are the smallest elements of the 
equivalence classes under «. The primary tool used is a mapping f induced by the Collate map-
ping. The construction has the advantage of reducing the set of vertices of the Collate graph, but 
the disadvantage of sacrificing some information about T(x). 

Let M - {x e 2N + l|x < y for all y e Cx}. For S c P, define x{$) to be the smallest ele-
ment of S. Define f:M-+M by t(m) = X(CT(m)). Due to the fact that every vertex of the 
Collate graph is weakly connected to some m e M, the following statement is equivalent to the 
3x + l Conjecture. 

3x + l Conjecture (2nd form): The directed graph GM with vertices M and directed edges from 
m to T(m) is weakly connected. 

9 1 

A 

I 5 
A 

I 3 
A 

I 17 
A 

1 11 
A 

1 7 

FIGURE 2e The Graph GM (a(x) < 5) 

A portion of GM is displayed in Figure 2. The graph GM, in effect, collapses the vertices of 
G2N+1 whose trajectories enter M9 thereby reducing the set of vertices necessary to connect. 
Despite this reduction in the vertex set, it turns out that weak connectivity can be established for 
certain pairs of vertices of GM, as shown in the next three theorems. 

Theorem 2: Let XGM with x = 5 (mod 6), and define T~l(x) to be the smallest y in 2N + 1 
satisfying T{y) - x. Then x and Tl(x) are weakly connected vertices of GM. 

Proof: Letting x = 6t + 5, it follows that rl(x) = 4t + 3. We must show that 4t + 3 is a 
vertex of GM. If 4/+ 3 is not in M, then there exists w <4t + 3 with w « 4^ + 3, and using the 
definition of «, it follows that T(w) « T(4t + 3) = x. Since x G M , we obtain x < T(w), and this 
yields 
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67 + 5 < :—, where />1 . 
2J 

Substituting the inequality w < 47 + 3 yields 
6 f + 5 <3(4r + 3) + l = 12L±10 = 6 / + 5 

2J V 
a contradiction. Hence, x = 4t + 3 is a vertex of GM. Finally, since 

f(r\x)) = z(cnr>ix))) = z(.cx) = x, 
we have x and T~\x) weakly connected. D 

Remark: If x e M with x = 1 (mod 6), then ^ ( x ) is not necessarily in M. For example, 379 = 
X(Ll9) and 283 = ̂ (Z20), but r ! (379) = 505. 

Theorem 3: Let x e M with x = 1 (mod 8), and let y = X(CT(X))• Assumey is not a multiple of 
3. Then J(x) = y, and x and y are weakly connected vertices of GM. 

Proof: Let x = %k +1. If J(x) * j , then j = x(CT(x)) implies that >> < T(x) and j » J(x). 
Also, by hypothesis, j must be of the form 67 +1 or 67 + 5. If j = 67 +1, then j < J(x) gives 
67 + 1<6& + 1, hence t<k. Also, j ^ T ^ x ) implies 7"1(y)^x, where F"1^) is the smallest 
inverse image ofy under T. Therefore, 87 +1« x, and since x e M, we must have x < 87+1. This 
yields 8* + l<S7+l, hence k < t, a contradiction. If j is of the form 67 + 5, then j < T(x) yields 
67 + 5 < 6*+ 1, hence 7<* . The condition T~l(y)^x yields 47 + 3 ^ x , hence 8* + l <47 + 3. 
Substituting the inequality t <k yields 87+l<47 + 3, again a contradiction. Therefore, T(x) = j 
must hold. Since F(x) = j(Cr(JC)) = j , it follows that x and j are weakly connected vertices of 
GM. D 

Theorem 4: Let x e M with x = 25 (mod 64), and let j = x(CT{x)) • Then j = [3(x -1)] / 8, and 
the vertices x and [3(x -1)]/ 8 are weakly connected. 

Proof: Let x = 64k + 25. Simple computations show that T(x) = 48* + 19 and that 

j^flMzl^^Tix)). 

Therefore, fT(x) -1] / 2 « T(x), hence T(x) & y. Also x = 1 (mod 8), so we can apply Theorem 3 
to see that j must be a multiple of 3. Let j = 37. By Theorem 1, we have y&2y + l = 6t + l. 
Since J(87 + l) = 67 + l, we have J(87 + l ) ^ j ; , and using the fact that y&T(x) along with the 
transitivity of », we obtain J(87 +1) « T(x). Using the definition of «, it follows that 87 +1« x, 
and since x e M , we have x<87 + l. Furthermore, y « T(x) ̂ [T(x)-~l]/2 = 24*+ 9; thus, by 
the minimality of j , we see that 37 < 24*+ 9. From this inequality, we get f(37) + l< 
j(24* + 9) + l which yields 87 + l < x . Therefore, x = 87 + l, hence j = [3(x-l)]/8. It follows 
that f(x) = [3(x -1)] / 8 and that x and [3(x -1)] / 8 are weakly connected. • 

Observe that, if x > 5 is a vertex of GM, then, by the proof of Theorem 1, it must be true that 
x GS1KJS2. We can actually restrict the vertex set of GM slightly further, according to the next 
theorem. 
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Theorem 5: If x is In the arithmetic progression {32m +17}^=1, then x is not a vertex of GM. 

Proof: We will assume x GM and find a contradiction. Let x = 32^ +17with k > 1, and let 
J = #(Cr(x)) • Since 7(x) = 24^ + 13 and J(24& +13) = T(6k + 3), it follows that J(x) * j ; . Also, 
x = 1 (mod 8) and x e M , so we can apply Theorem 3 to see that y must be a multiple of 3. 
Now,, y « 2 j +1 by Theorem 1 and j « T(x) by the definition of y, hence J(x) « 2 j +1. Since y 
is a multiple of 3, T~l(2y +1) = fy +1, we have x ^ f j + 1 . This yields x < f j + l, and since 
y « T(x)« 6A: 4- 3, we have j < 6A: + 3. Combining these inequalities yields x < 16k + 9, a contra-
diction. Therefore, x g M? and x is not a vertex of GM. • 

Remarks: A further systematic reduction of the vertex set beyond that of Theorem 5 would be of 
interest, as would further development of the weak connectivity results given in Theorems 1-4. It 
would also be interesting to state conditions which, when combined with the theorems in this 
section, would be sufficient to guarantee weak connectivity of GM; in fact, 17 GM. 

3. A DIFFERENT REDUCTION OF THE VERTEX SET 

We now reduce the vertex set of the Collatz graph to a set properly containing M, and use 
this set to construct a new directed graph for which weak connectedness is equivalent to truth of 
the 3x +1 Conjecture. First, we need some preliminaries to help describe our vertex set. If we let 
f(x) = 4x +1 and g(x) = 2x +1 and let Mb defined as in Section 2, we have the following lemma. 

Lemma 1: Let x e M, n e N, and 8 e {0,1}. Then fn(x) e Cx when x > 1, and fngs{x) G CX 

whenx>5. 
Proof: When x > 1, a quick computation shows that T(f(x)) = T(x), thus T(fn(x)) = T(x), 

and hence fn(x) G CX for n G N. When x > 5, we can apply Theorem 1 to obtain gfix) G CX9 SO 
fngd(x)GCx. U 

For x > 5 , let Gx = {fngs(x)\n G N , 5 e{0,1}}; for x = 3 and x = 5, let Gx = {fn{x)\n GN}. 
Note that Gx consists of a collection of vertices for which weak connectedness to x in the Collatz 
graph has been established. For convenience, set Gx = {1}. Lemma 1 implies that. G x c C x ; there-
fore, it makes sense to study the vertices of Cx apart from Gx. We do so using the following 
inductive definition. 

Definition: For j GN\ the 7th exceptional number in Cx is the smallest positive integer Xj satis-
fying Xj GCX-U/=O GXi_x, where Gx_{ = 0. 

To clarify the previous definition, consider the example 
G25 = {25,101,405,...}u{51,205,821,...}. 

Since <r(25) = 7, it follows that C25 = {x G P \a(x) - 7}. Direct computation shows that 217 is the 
smallest positive integef in C25 - G25, hence 217 is the first exceptional number in C7. Repeating 
the process, we compute 

G217 = {217,869,3477, ...}u{435,1741,6965,...}, 
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and hence can verify that 433 is the smallest positive integer in C25 - {G25 ^J G217}. Therefore, 433 
is the second exceptional number in C25. A table of exceptional numbers satisfying a(x) < 10 and 
j < 4 is provided below. 

TABLE 1. Exceptional Numbers (a(x) < 10, j < 4) 

<T{X) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

X 
1 
5 1 
3,113, 7281,466033, 29826161 
17,75,1137,2417,4849 
11,201,369,401,753 
7,241,267,497,537 
9,81,321,331,625 
25,49,217,433,441 
33, 65, 273, 289, 529 
43,89,177,385,423 
57, 59, 465, 473, 507 

Let E denote the set of all exceptional numbers 2N +1. Using the methods of the proof of 
Theorem 4 of [1], it can be shown that, for a(x) > 1, Cx - U J U G V J = 0 for all j G N, hence, in 
this case, each j > 0 gives a distinct element of E. Furthermore, the following lemma gives a 
complete description of the set E. 

Lemma2: S1KJS2U{\5} = E. 

Proof: The fact that EC:$1KJ$2\J {3,5} is an immediate consequence of Lemmas 6 and 7 of 
[1] and Theorem 1. Therefore, we will show that Sl u S2 u {3? 5} e E. If x e 5i u S2 u {3,5} 
with x< 11, numerical computation shows that x e £ , thus we will show that, if x> 11, then 
x GS1^JS2 gives x GE. If x &E, then x = fngs(y) for some } / G £ . If n> 1, then x G8M + 5, 
which is impossible, hence n-0. Therefore, x = g^(y) for some y GE. If 5 = 0, we obtain 
x = j , which contradicts the fact that x&E. Hence 8 = 1; thus x = 2 j +1. Since X G ^ U ^ , 
this yields y GS3^JS4 with j > 5, which contradicts the fact that j e ^ c ^ u ^ u f ^ S } . Hence, 
our assumption that x g JE must be false. • 

Remark: Using the equivalence classes defined in Section 1, the proofs of Theorems 3 and 4 of 
[1] can immediately be generalized to the case where a(x) < oo. 

The primary purpose of Lemma 2 is to establish weak connectivity between certain vertices 
of a new directed graph (see Theorem 7). However, it is interesting to note that we can use 
Lemma 2 and the proof of Theorem 1 to immediately establish the following theorem, which is 
also given in [1]. 

Theorem 6: Let x GE with x > 5. Then there exists i e N such that 7*(x) = Tk(2x +1). 

We now use the sets Gx to construct a new partition of the positive odd integers. This par-
tition will enable us to define a new directed graph. 

Lemma 3: Let 9 = {Gx \ x G E). Then 2? is a partition of 2N +1. 
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Proof: Since 
UxeMCx = 2N + l and Cx = \JxeCxf^GX9 

it follows immediately that 

UX6*GX = 2N + 1. 

It remains to show that, if x and y are in E, then Gxr\Gy = ® when Gx*Gy. We will prove this 
by contradiction. If z e Gx n Gy9 then 

* = /V'(*) = /*£* GO, 
where % ^ e JV, 8h82G {0,1}, / (x) = 4x +1, and g(x) = 2x +1. Without loss of generality, we 
can consider three cases: Sl = 82=0',8l = 0 and 82 = l; and ^ = S2 = 1. 

In the first case, we have 

and since we can assume nx <«2 without loss of generality, we obtain x=/"2~Wl(y). Assume 
x & 5, as the theorem follows trivially in this case. If r^ -nx = 0, then Gx = G,, is a contradiction, 
and if nx -j\ > 0, we have x of the form 8m+ 5 with /w> 1 and x GE, which contradicts Lemma 
2. Hence, in any event, Sx = 82 - 0 is impossible. 

In the second case, we have 

If rty = n2, then x = 2y +1, hence XGG^. Since Theorem 6 implies that x eCy, we have contra-
dicted the fact that x G E. If Wj < Wj, then x = /w2-"i (2j = 1); therefore, x is of the form 8m + 5 
with m;> 1. Since x GE, we have again contradicted Lemma 2. If r^ < w1? we obtain 2 j +1 = 
/Wl-W2(x), which implies that 2y + l is of the form 8#i + 5, contradicting the fact that y is odd. 
Hence, in any event, Sx - 0 and 82 = 1 is impossible. 

Finally, the third case gives 

/^ (2x + l) = / ^ ( 2 j ; + l). 

Again, without loss of generality, assume n, < r^. If fy = /^, then x = y, hence Gx = Ĝ  is a 
contradiction. If/^ < w^-then 2x + l = fri2~ril(2y + l) implies that 2x + l is of the form 8/w + 5. 
This forces x to be even, again a contradiction. Thus, 8l = 82 = l is also impossible, and hence 
our assumption that Gxr\Gy = $ must be false. D 

Using the partition 2?, we define the equivalence relation ~ as follows: x~ y if and only if x 
andy are in Gx for some z GE. Denote by Ex the equivalence class under - which contains x. 
For e GE, define T :E -> E by T(e) = x(ET^). We now obtain another formulation of the 
3x + l Conjecture. 
3JC + 1 Conjecture (3rd form): The directed graph GE with vertices E and directed edges from e 
to T(e) is weakly connected. 

A portion of the directed graph GE is displayed in Figure 3. The graph GE collapses some 
vertices of G2N+t whose trajectories enter E9 while at the same time retaining enough vertices to 
permit establishing of substantial weak connectivity. 

2002] 49 



THE 3x + 1 PROBLEM AND DIRECED GRAPHS 

FIGURE 3. The Graph GE (a(x) <5J<4fx< 5000) 

Now let S{ and S2 be defined as in the proof of Theorem 1, and let S = Si u 5 2 - 1 . For x not 
a multiple of 3, let T~l(x) be the smallest y in 2N +1 satisfying T(y) = x, and define 

rl(S) = {rl($)\seS-3F}. 
We then have the following results. 

Lemma4: r\S)^S. 
Proof: If x e Sx, let x = 2W+2#i + 2W - 1 with « E 2N +1. By considering congruences of /n 

modulo 3, we see that x can be expressed in one of the following three forms: 

x = 3.2*+2£ + 2 w - l ; 
x = 3.2"+2£ + 2w+2+2w-l; 
x=3-2w+2Jt + 2w+3 + 2w-l . 

If x is of the first form, then n odd yields x = 1 (mod 6). This gives 

r!(x) = 4 x - l 

Hence ^ ( x ) = 1 (mod 8), and therefore T~l(x) e S. 
If x is of the second form, then n odd yields x = 0 (mod 3), hence T~l(x) does not exist. 
If x is of the third form, then n odd yields x = 5 (mod 6). This gives 

r 1 ( x ) = ^ - i = 2w+3* + 2w+2 + 2J n+l 1, 

hence T~l(x) eS2. If x e S2, let x = 2w+2m+2w+1 +2" - 1 with w e 2P. Again considering con-
gruences of m modulo 3, x can be expressed in one of the following three forms: 
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x = 3-2'*2k + 2r1 + 2n-l; 
x = 3 • 2"+2k + 2"+2 + 2"+1 + 2" - 1 ; 
x = 3-2"+2k + 2"+3 + 2"+1+2"-l. 

If x is of the first form, then x = 5 (mod 6). Therefore, 

r\x) = ^~- = 2"+3k + 2"+1 - 1 , 
and hence T~l(x) G 5i. 

If x is of the second form, then x = 0 (mod 6), and thus 7^(x) does not exist. 
If x is of the third form, then x = 1 (mod 6) and, as before, T~l(x) = 1 (mod 8), and thus is in 

Sv Hence, in all cases, T~l(x) G S. D 

Theorem 7; Let x be an element of E. Then the vertices x and 7^!(x) of GE are weakly con-
nected. 

Proof; We first show that x G E yields J^!(x) G E. We can assume without loss of gener-
ality that x > 5. Letting x G E and applying Lemma 2, we see that x G SX ^J S2. Applying Lemma 
3 gives T~l(x) eSl<u82~l, and again applying Lemma 2, we obtain T~l(x) GE. Finally, we get 

T(T\x)) = X(ET(T-l(x))) = X(EX) - x, 

hence x and T~\x) are weakly connected. D 

4. TOTAL STOPPING TIMES OF CERTAIN EXCEPTIONAL NUMBERS 
AND CYCLES UNDER INDUCED MAPS 

One possible approach to establishing weak connectedness of GE is to characterize all x G E 
with a given finite total stopping time, and to apply T~l repeatedly to those vertices. By Theorem 
7, these inverse images would also be vertices of GE, and perhaps would substantially 8Till up" the 
set of all vertices o£GE. All x G E satisfying a(x) < 2 are described in Lemma 5 and Theorem 8. 

Lemma §: Let x G E, and let f(x) = 4x +1. Then a(x) = 1 if and only if x = 5. 
Proof: It is well known that, for any x G 2N +1, a(x) = 1 if and only if x = j(4n+l -1) for 

some neP (see [4]). Since 

4(4"+1-1) = Z4/=/l|-1(5) 
and since x G E, we must have x = 5. D 

Lemma 6: Let 
% f3m \ i ( 3m-2 

JVi=o J J V /-o 

Then4 = {aOT5jOT,WGP}u{^Jiw,WGP}. 

Proof: The fact that amt„ and bn%n are in L2 is easily verified by computation of J^(aWjW) 
and I^ib^J. Thus, we need to show that L2 c {a^Jm, H G P } U {bMtn \m9 n G P). If x G Z,2, 
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thenr(r(x)) = l, hence T(x) = ±(4k+l-l) for some k G¥. Since T(x) = (3x +1)/2j for some 
j G P, we obtain 

z J 1=0 

hence 2> Sf=0 4' = 1 (mod 3). This yields2'(/t +1) = 1 (mod 3). Thus, if/ is even, we have k = 0 
(mod 3), and if/ is odd, we have & = 1 (mod 3). In the first case, setting j = In and k = 3m gives 
x = amn;'m the second case, setting j = In - 1 and k - 3m - 2 gives x-bm^n. D 

If we let x e £ with a(x) = 2, direct computation yields Ex = {3,113,7281,466033,...}. It 
is interesting to observe that the function h(x) - 64x-f 49 generates all of Ex except for x = 3, 
hence motivating our final lemma as well as Theorem 8. 

Lemma 7: Let x G 2N + 1, g(x) = 2x + l, and /i(x) = 64x + 49. Then 7*(g(M(x))) = T2(hk(x)) 
forall&eP. 

Proof: We proceed by induction on £. When £ = 1, some simple computation shows that 
T2(g(hk(x)))^T\hk(x)). 

Assuming the lemma is true for k = j , we show that the lemma holds for k = j +1. Since 

T\g(^l(x))) = T\g(h>(h(x)))) 

and the induction hypothesis gives 
T\g{y{h{x))))=T\y{h(x))), 

we obtain 
T\g{ti+\x))) = T\hJ+\x)). 

Hence, the case where k = j +1 holds true. D 

Theorem 8: Let x GE with x > 5 and let h(x) = 64x + 49. Then a(x) - 2 if and only if x = 
hn(l) for some n G¥. 

Proof: Assume a(x) = 2 and let amn and hmn be defined as in Lemma 6. Using this lemma, 
we see that x-amn or x-bmn for some w , n e P . If we let / (x ) = 4x + l, the relationships 
a/w,«+i = f(am,n) and *TM,/2+I - /(*m,») a r e easily verified. Hence, using the fact that x G E in con-
junction with Lemma 2, we see that x = aml or x = ftwl. Now direct computation shows that 
Kam, i) ~ am+i I f°r all w G P, so a ^ ! = 1 (mod 8). Using Lemma 2 and verifying the case where 
m = 1 independently, we obtain aml G E for all m G P. Now let #(x) = 2x +1. Since 7^(aw?1) = 
T^(hm+l j) and if(<Vi) =^+1,1, we see that hm+ll GE only when m = 0, hence when A^+u =3. 
Since x > 5, we conclude that x = hn(am {) for some m e P and » G N . Using /i(aw x) = am+1! and 
the fact that a u = h(l), the result x = hn(l) for some « e P follows. 

We now show by induction that <j(x) - 2 is a necessary condition for x = hn(l). For w = 1, 
<x(x) = 2 is easily verified. We assume that, for x = hn(l) x = hk(l), we have a(x) = 2, and will 
show that x = hk+l(l) yields a(x) = 2. Direct computation shows that T2(h(x)) = T2(g(x)), thus 
T2(hk+1(x)) = T2(h(hk(x))) = T\g(hk(x))\ Using Lemma 7, we obtain T2(hk+\x)) = T2{hk{x)). 
Finally, setting x = l and invoking the induction hypothesis, we get T2(hk+l(l)) = l; hence, for 
x = hk+l(l), we have a(x) = 2. • 
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Remark: A similar characterization for x e E satisfying <r(x) = ifc when k > 3 would be of inter-
est. In the case where k = 3--numerical computation suggests that x = (/^)"(17) or x = (/^)w(75)? 
where /|(x) = 64x + 49 and h^x) = 32x + 17. Furthermore, if we let Ek = {x eE\a(x) = k}9 it 
can be conjectured that Ek = \Jiil{hl,(xi)\n GN} for some tk e P and Aj = a/x + ̂ .. The behavior 
of tk Ik as £ -» oo also merits further study. 

We now demonstrate that a nontrivial cycle under T will induce a nontrivial cycle under the 
maps t and T (Theorems 9 and 10). Thus, to prove that nontrivial cycles do not exist under T, it 
is sufficient to prove that nontrivial cycles do not exist under either f or T. Let « and ~ be the 
equivalence relations given in Sections 1 and 3, and let J be defined as in Section 2. If we define 
f: 2N +1 -> 2N + by f(x) = X(CT(X)), we have the following lemmas. 

Lemma 8: P(x) = f(T(x)) for all x e 2P +1. 

Proof: Letting y = f(x) and z = T(x), we have j « z, so J(y) « J(z). Therefore, Cr0;) = 
C/(Z), and thus l(CT(y)) = j(Cr(z )). This gives t(y) = f(z), and substituting for j and z gives the 
result. • 

Lemma 9: tk+l(x) = f(Tk(x)) for all it e P and for all x e 2P +1 satisfying a(x) > it. 

Proof: We proceed by induction on k. The case in which k-\ follows from Lemma 8. 
Assume that the lemma holds when k = j . Since 

P'+2(x) = f(P+1(x)) = f(t(P(x))) = P(P(x)) 

and since Lemma 8 gives 

p(p(x)) = f(7(P'(x))) = f(F'+1(x)), 
the case when k = j + l holds true. • 

Theorem 9: If 7*(JC) = x for some £ e P and x e 2N + 1, then there exists y GM satisfying 
t*(y) = y. 

Proof: By Lemma 9, 7*+1(x) = T(Tk(x)), hence invoking the hypothesis of the theorem 
gives P+l(x) = t(x), and setting y = f(x) gives the result. • 

Lemma 10: Let X J G £ with x - j . Then T(x) ~ T(y). 

Proof: If x - j , then x and y are in Gz for some z GE. Hence we can write x = f"1^1 (z) 
and y = f^g3*(z), where nh^GN, Jl3cJ2 e {0,1}, / (x) = 4x +1, and g(x) = 2x +1. Applying 
Lemma 1, we see that T(x) = T(g*i (x)) and T(y) = T&* (x)). TfSx = S2, the result follows, so 
assume, without loss of generality, that Sx = 0 and J2 = 1. This yields T(x) - T(z) and T(y) = 
T(2z +1). If z = 5, the conclusion of the lemma is easily verified, so assume z * 5. Since Z G £ , 
we can combine Lemma 2 with the proof of Theorem 1 to see that T(z) = (3z +1) I2j with j = 1 
or j = 2. (The possibility of j = 4 is eliminated since z±5) Noting that T(2z +1) = 3z + 2, we 
obtain 2JT(z) +1 = J(2z +1). When j = 1, this yields g(T(x)) = T(y), and when j = 2, this yields 
f(T(x)) = J(j/); hence, in either case, T(x) - J ( j ) . D 

Theorem 10: If 7*(x) = x for some k e P, then there exists e e £ satisfying r*(e) = e. 
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Proof: Using Lemma 10, the statements and proofs of Lemmas 8 and 9 hold with f replaced 
by T, Cx replaced by Ex. and « replaced by ~. Hence, the result follows from a proof analogous 
to that of Theorem 9, with T replaced by T and M replaced by E. D 

Finally, we will demonstrate that divergent trajectories under f and T will induce divergent 
trajectories under T. 

Theorem 11: If {fk(x)}^l is divergent, then {Tk(x)}^=l is divergent. 

Proof: By Lemma 9, we obtain fk(x) = T(Tk~l(x)), and by the definition of T, we have 
f(I*-l(x)) = z(CTk(x)). Thus, f*(x) = z(CTkM), and hence fk(x)<Tk(x), from which the 
theorem immediately follows. D 

Theorem 12: If {Tk(x)}%ml is divergent, then {Tk(x)}^=l is divergent. 

Proof: Since Lemma 9 holds with f replaced by J , Theorem 12 follows from a proof analo-
gous to that of Theorem 11, with f replaced by T. D 

Remarks: The results in this paper are primarily geared toward a constructive proof of the 3x + l 
Conjecture by establishing weak connectivity of GM or GE. It is interesting to note that, if x = 1 
(mod 32) and f(x) = 8x + 9, then x and f(x) are weakly connected in GE. Furthermore, if x is in 
E, x = 3 (mod 4), and g(x) = 32x +17, then x and g(x) are weakly connected in GE. Finally, if 
x = 1 (mod 8) and h{x) - 64x + 49, then x and h(x) are weakly connected vertices of GE. These 
results, coupled with Theorems 6 and 7, may be sufficient to establish weak connectivity of GE. 
This appears to be a promising direction for future research. 
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BOOK REVIEW 
Fibonacci and Lucas Numbers with Applications, by Thomas Koshy 

(New York Wlley-Intersclence, 2001; ISBN^ 0-47-39969-8) 

This is a delightful, book which should prove of great value not only to the professional 
mathematician but also to a great variety of other professionals like architects, biologists, neuro-
physiologists, physicists, and stock market analysts, to name but a few. The book is aimed at a 
broad student audience as well, and it contains a large selection of proposed problems which 
should make the book a valuable instrument for teaching a first course on number theory. Finally, 
the book should be of interest to Fibonacci enthusiasts and laypersons alike. This book has a very 
broad scope indeed! 

Koshy begins by offering a lively and well-documented historical perspective on Leonardo 
Fibonacci and on his mathematical works; he also sketches the contributions made by Edouard 
Lucas. Next, the author takes the reader through some of the interesting occurrences of Fibo-
nacci numbers in the biological, the chemical, the medical, the physical and the money market 
worlds. After having set this motivational stage in the first four chapters of the book, Koshy now 
adeptly moves on, in chapters 5 through 15, to some of the more elementary properties of 
Fibonacci and Lucas numbers: techniques for generating simple identities are presented and linear 
recurrence relations are discussed; links between the Fibonacci numbers and Pascal's triangle are 
established and explored, etc. Finally, the author proceeds to a presentation of more advanced 
subjects which involve Fibonacci and Lucas numbers, such as divisibility properties, generating 
functions, continued fractions, periodicity, weighted sums, matrices and the g-matrix, Fibonacci 
and Lucas polynomials, Jacobsthal polynomials, Morgan-Voyce polynomials, Tribonacci poly-
nomials, etc. The coverage is truly extensive. 

The book is well written, well researched, and well organized. One should not overlook 
these features, particularly the last one, considering the astronomical amount of research and 
pedagogical literature that exists on Fibonacci numbers! The style is lively and precise. Difficult 
underlying concepts such as graphs, trees, etc. are all explained with great ease and confidence. I 
particularly enjoy the numerous theorems, identities, and results that are quoted throughout the 
book! I am also delighted by Koshy's tendency to provide anecdotal and biographical background 
on the authors he quotes. As a result of that tendency, the reader can catch a glimpse, albeit too 
brief at times, of the human face that lies behind this particular theorem or that particular 
technique. The entire book is liberally sprinkled with historical anecdotes and footnotes which 
show that the author has thoroughly researched his subject and which add color and vitality to the 
topic at hand. 

I would venture to say that Koshy's book is the most comprehensive collection of results, 
theorems, and references regarding Fibonacci numbers and their applications to date. The timing 
and scope of the book make it a rather fitting tribute to the enduring impact of Leonardo 
Fibonacci's Liber Abaci since it was originally published in 1202, 800 years ago next year! I 
recommend Koshy's book without reservation to professional mathematicians who teach a course 
on number theory, to professional scientists and engineers, to students, and to the general 
amateurs and enthusiasts alike. 

Reviewed by Napoleon Gauthier 
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AN ALTERNATE PROOF OF A THEOREM OF J. EWELL 
Neville Robbins 

Math. Department, San Francisco State University, San Francisco, CA 94231 
E-mail: robbins@math.sfsu.edu 

(Submitted February 2000-Final Revision April 2000) 

Let tr(ri) denote the number of representations of n as a sum of r triangular numbers. In [1], 
J. Ewell derived a sextuple product identity, one of whose consequences is 

Theorem 1: For each integer n > 0, 
t4(ri) = a(2n + l) 

where a denotes the arithmetical sum-of-divisors function. 
In this note we present an alternate proof of Theorem 1. 

Proof: Clearly, n is a sum of four triangular numbers if and only if &i + 4 is a sum of the 
squares of four odd positive integers. Let r4(n) denote the number of representations of n as a 
sum of four squares, while s4(n) denotes the number of representations of n as the sum of four 
odd squares. An elementary argument shows that, if 8w + 4 is a sum of four squares, then these 
squares must all have the same parity. It is easily seen that 

8« + 4 = £(2*,.)2 

if and only if 

2n + l = J]b?. 
z = l 

Therefore, we have 
*4{8w + 4) = r4(ta + 4)-r4(2if + l) = ^ 

= 8(a(4/i + 2) - a{2n +1)) = I6a(2n +1), 

according to a well-known formula of Jacobi ([2], Theorem 386, p. 312). Therefore, the number 
of representations of 8w + 4 as the sum of the squares of four odd positive integers is 

±s4(%n + 4) = a(2n + l) 
lo 

from which the conclusion follows. 
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ON THE NUMBER OF PARTITIONS INTO AN EVEN 
AND ODD NUMBER OF PARTS 

Neville Robbins 
Mathematics Department, San Francisco State University, San Francisco, CA 94132 

E-mail: robbins@math.sfsu.edu 
{Submitted February 2000-Finai Revision July 2000) 

INTRODUCTION 

Let qf(ri), q°(n) denote, respectively, the number of partitions into n evenly many, oddly 
many parts, with each part occurring at most i times. Let Ai(ri) = qf(ri)-q?(ri). Let o)(j) = 
j(3j -1) / 2. It is well known that 

[0 otherwise. 

Formulas for At(ri) were obtained by Hickerson [2] in the cases / = 3, / even; by Alder & Muwafi 
[1] in the cases i = 5, 7; by Hickerson [3] for i odd. In this note, we present a simpler formula for 
Af-(«), where i is odd, than that given in [3]. As a consequence, we obtain two apparently new 
recurrences concerning q(n). 

Remark: Note that, iff denotes any partition function, then we define f(a) = 0 if a is not a 
nonnegative integer. 

PRELIMINARIES 

Definition 1: If r > 2, let br(n) denote the number of r-regular partitions of w, i.e., the number of 
partitions of n into parts not divisible by r, or equivalently, the number of partitions of n such that 
each part occurs less than r times. 

Let x eC, |x| < 1. Then we have 

n(i-xw)=i+^(-i)*(xfl,<*>+jcfl,(-*>), (i) 
&(»)*" = Ilf^' (2) 

£ A f ( i » ^ = n 1 + ( : 5 j r p " . (3> 
WJW ie"-J(J + i)l2' (4) 

0 otherwise. 
Theorem 1: If r > 2, then 

-m(-k) 

Proof: Invoking (3), (2), and (1), we have 

^.w-^f)+Z(-',){^(tfQ)+^(t 
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l-X 

X". 

^7^110-*")= i*r f V no-*") 
«>i x x «>i ^«>o V^ / yw>i 

The conclusion now follows by matching coefficients of like powers of x. 

Theorem 2: 

»^-s<-4("-W^B ~+1)/4' 
Proof: Apply Theorem 1 with r = 2, noting that A2(w) = ?(w)- This yields 

If we invoke (4) and replace n by 2w, we get (a); similarly, if we replace w by 2n +1, we get (b). 
Since it is easily seen that 2\a)(k) iff k = 0,3 (mod 4), we may rewrite Theorem 2 in a 

fraction-free form as follows. 

Theorem 2*: 
(a) ^(^) _ ̂ (^ _ i) + ̂  (̂ (̂ i - (4i - l)(3i -1))+^(^ - (w - (4i +1)(3/ +1))) 

(b) 9(») + l 9 ( « - ' 0 2 / - 5 ) ) + ^ ( « - / ( 1 2 / + 5)) -X(?(«-(4/ -3)(3/ - l ) ) 
i>\ i>\ 

+ q(n-(4i-l)(3i-2))) = 
1 ifn = X / + 3)/4, 
0 otherwise. 
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ON THE MORGAN-VOYCE POLYNOMIAL GENERALIZATION 
OF THE FIRST KIND 

Jack Y. Lee 
280 86th Street #D2, Brooklyn, NY 11209 

(Submitted November 1999-Final Revision March 2000) 

111 recent years, a number of papers appeared on the subject of generalization of the Morgan-
Voyce (Mr) polynomials (see5 e.g., Andre-Jeannin [l]-[3] and Horadam [4]-[7]). The richness of 
results in these works prompted our Investigation on this subject. We further generalized the M-
polynomials in a particular way and obtained some new relations by means of the line-sequential 
formalism developed earlier (see, e.g., [8]-[10]). It was also shown that many known results were 
obtainable from these relations In a simple and systematic manner. 

The recurrence relation of the M-polyeomials is given by 
~-m.n + (2 + x)mn+l = mn+2, » G Z , (1) 

where mn denotes the /1th term in the line-sequence; and c = -1 and b = 2 + x are the parametric 
coefficients with x being the polynomial variable. The pair of basis, see (1.3a) and (1.4a) in [9], is 
given by, respectively, 

Ml50(-l,2 + x):... ,[l,0]?-l,-(2 + x),-(3 + 4x + x2),..., (2a) 

M 0 J ( - l ,2 + x):...,[0,l],2 + x,3 + 4x + x2,4 + 10x + 6x2+x3,..., (2b) 

which spans the two-dimensional M-vector space. 
Let the /1th element of the line-sequence Muj be denoted by mn[i, j], then by the definition of 

translation operation, (3.1) in [8], we have 
Trnjl, 0] = mn+l[\ 0]; Tmj[091] = ̂ w[0,1]. (3a) 

From (2a) and (2b), obviously the following translatlonal relations hold: 
7 M l 0 = - M 0 J , IM0A = Ml2^ (3b) 

where we have applied the rule of scalar multiplication In [8]. The first relation above also states 
the translatlonal relation between the two basis line-sequences. In terms of the elements, It takes 
the form 

^+1[1,0] = ^ J 0 , 1 ] , (3c) 

In agreement with formula (1.2b) in [10]. Also, by the parity relations (1.3a) and (1.3b) in [10], 
we have, between the elements In the positive and negative branches of each of the two basis line-
sequences, the following relations, respectively, 

M _ J 1 , 0 ] - - ^ + 2 [ 1 , 0 ] , (4a) 

«ao,i]=-»ao,i]. (4b) 
The negative branches In (2a) and (2b) can be obtained by applying these relations, respectively. 

Let the generating pair of a line-sequence be [i,j], where j = i + sx + r, and / , 5 , r e Z , 
denote a set of parametric constants. This generating pair specifies a corresponding family of 
line-sequences lying in the M-space. We call this way of generalization adopted by Andre-Jeannin 
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[1] the generalization of the first kind, hence the title of this report. Later, Andre-Jeannin [2] also 
generalized the recurrence relation (1); thus, from the line-sequential point of view, generalized 
the M-space itself We call this latter way of generalization the generalization of the second kind. 
In this report we shall concern ourselves with the former case only. The latter case will be dis-
cussed in a separate report. 

Table 1 below gives the line-sequential conversion of those polynomial sequences treated in 
this report. The parametric coefficients in the Morgan-Voyce line-sequence are implicit in the 
designation of the letter M and henceforth omitted. There appears in the literature more than one 
set of conventions, we shall stick to those adopted in this table. 

TABLE 1. Line-Sequences and Elements Conversion 

Polynomials Elements Line-Sequences References 

B„(x) 

*»(*) 
Pjf\x) 
<£\x) 
#-">(x) 

u„(y) 

m„[i,i + sx+r] 
m„[0,l] 

iH,[l,l] 
m„[l,l + x + r] 

m„[2,2 + x+r] 

mn[u,u + x+r] 

^[0,1] 

-"^i, i+sx+r 

M.,1 

Ki 
Ml,l+x+r 

™2,2+x+r 

•"*«, u+x+r 

H , i 

(5a), (56) 
[11] 

[11] 

[1] 
[4] 

[5] 

[11] 

The line-sequence MUj can be decomposed according to the rules of linear addition and 
scalar multiplication, see [8], as 

M,i+«+r = M,l+**r+('"-l)M,l- (5a) 
In terms of the elements, this becomes 

mn[i, i + sx+r] = mn[\ l + sx+r] + (i- l)mn[l, 1]. (5b) 

Putting i = u, 5 = 1, and using the conversion in Table 1, we obtain 

tf\X) = p(r\X) + (u-l)b„(x). (5C) 

This is Theorem 1 in [5] and, equivalently, Theorem 1 in [6]. See the Remark below for further 
explanation. 

We may also decompose Mtj in the following manner: 
Mi,i+sx+r = Mf2/+« + ( ' , - 0 H , i . (6a) 

Let i = s = l9 then we obtain 

M, i+*+r = M, 2+x + (r- 1)M>. i • (6b) 
In terms of the elements, applying (3 a) and (3 b), we find 

mn[l, 1 + x + r] = mn+l[0,1] + (r - l)mn[0,1]. (6c) 
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Applying conversions in Table 1, we obtain 

P^(x) = Bn+l(x) + (r-l)Bn(x) (6d) 
or, equivalently, 

&Hx) = Un+l{^y{r-l)Un[^y (6e) 
which is (4.6) in [5]. 

If we decompose MUj in the following manner, 
MiJ+sx+r = M l 2 + „ + ( /-2+r)Af0 f l + ( / - l )M1 > 0 , (7a) 

and let / = u and 5 = 1 . Then, using (3b) and (3c), we obtain 

which, in terms of the elements, becomes 

mn[u, u + x + r ] = mn+llO, 1] + (u - 2 + r)mn[0,1] - (u - l K - i P , 1] - (7b) 

Using the conversions in Table 1, we obtain 

# • «>(*) = Bn+l(x) + (u-2+r)B„(x) -(u- \)Bn_^) 

or, equivalently, 

^r'")W = ^ + i ( ^ ) + ("-2 + r)f/^2±£J-(M-l)^_1^2±£J. (7c) 

This is Theorem 2 in [5] (with a minor typographical correction). It is also valid for negative 
values of the index n (ref. Theorem 2 in [6]). See the Remark below. 

We may also decompose MUj in the following manner: 

MtJ =iMh0+jM0A (8a) 

= iM^ 0 +iM0f j + sxM0f j + rM0j v (8b) 

Following Andre-Jeannin [1] and Horadam [4], we define 

k 

where the notation has been modified slightly for typographical convenience but is otherwise 
easily recognizable as compared to the relating symbols used in [1] and [4]. It is known (see [1]) 
that the coefficients of x in the basis line-sequence M0tl are generated by the combinatorial func-
tion (2^+1); by the translational relation (3b), the coefficients in the complementary basis line-
sequence M1>0 are then generated by -("2*+"/). Substituting into (8b), using Pascal's theorem, we 
obtain the general coefficient formula: 

/• \ c xfn + k-i) , fn + k\t (n + k^\ / m 
m„tk(t,s,r) = (i-s)[ 2k y\2k ) + r[2k + \} <9> 

Repeated use of Pascal's theorem leads to relations for some special cases, following are 
some important examples. 
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Example 1: Let / = 1 and 5 = 1; we obtain formula (9) in [1]: 
m^r) = (%kyr(Zk\\). (10) 

Example 2: Let i = 2 and s = 1; we obtain Theorem 1 in [4]: 

^.ftW-("+£->("a*M»+*i} <»> 
Example 3: Let i = w and 5 = 1; we obtain formula (2.12) in [5]: 

m„,t(„,U) = <»-.)("+
2*->)+(»2

+/)+r(»;/) (,2) 

Example 4: Applying the "negative whole" formula 

(which has its origin in the reflection symmetry of the Pascal array) to (9), we obtain the equiva-
lent formula for - n \ 

^ft^-^-i'H^i-'HiVi} <:3) 

Putting i-u and s - 1, we see that it reduces to 

m_.>^) = (»-l)(-/)f+^')-r(27+*), (14) 
which is equation (2.9) in [6]. And so forth. 

It is easy to verify that 

("tKal-^'H"^3)- <l5) 
Using this identity, we obtain 

mn,kQ> 5> r ) = 2mn-lk(*> S> T) ~ mn-2,k(j> S> V) + mn-l,k-lQ> s , r l 0 6 ) 

This reduces to (7) in [1] if i = s = 1; to (2.10) in [4] if i = 2 and 5 = 1; and to (2.10) in [5] if/ = u 
and 5 = 1, 

Applying the "negative whole" formula to (15), we obtain 

(fH-i'^^!} OT) 
Using this identity, we obtain 

m-n,k(f>5>r) = 2 m-*-i, *&s,r)-m_„_2 k(/,5,r) + m_n_hk_x(i9s,r), (18) 

which reduces to (2.7) in [6] if i = u and 5 = 1. 

Remark: Both identities (9) and (13) and identities (15) and (17) are valid for both positive 
and negative values of index n, a property intrinsic to the line-sequential formalism. Since (5a) is 
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a line-sequential formulation, this means that equation (5c) is valid irrespective of the positivity or 
the negativity of the index /?. Therefore, equation (5c) is equivalent to both Theorem 1 in [5] and 
Theorem 1 in [6]. Similarly, equation (7c) is equivalent to Theorem 2 in [5] and also equivalent 
to Theorem 2 in [6]. 

There are some special cases that are worth our attention. 
Case 1. Let / = s-r in (9). We then have 

^nA^r,s,r) = r^k
k-iys^k

kyra^k+satX. (19) 

This translates into the decomposition formula 

MUJ = (s-r)Ml0 + s(\ + x)M0A. (20) 

The polynomial line-sequence is as follows: 

Ms_r^+x)(-l,2 + x):...,[s-r,s(l + x)],s+r + 3sx + sx2, 

$ + 2r + (6$ + r)x + 5sx2 +$x3,.... 

Case 20 Let s = r in (9). We then have 

m„^i, r, r) = </ - r ) ( » + . * " ̂ r ( ^ V ) - <t - » £ U + « & • (22) 

This translates into the decomposition formula 
MUj = iMl0 + (i+r(l + x))M0A. (23) 

The polynomial line-sequence is as follows: 

M,(/+r(l+*))(-U+ (24) 

Case 3 (a special case of Case 2). Let i = 0 and s = r in (9). Then we have 

i»^r,r) = r((»iVlO+("i*)) = r^*+^>- (25) 

This translates into the decomposition formula? from (23), 
MUj^r(\ + x)M^ (26) 

Hence, this reduces to a multiple of the second basis. The polynomial line-sequence is as follows: 

MWx)(-\M2x):...Mr{\+ (27) 

Case 4. Let i = 2r and s = r in (9). We then have 

m^(2 r , r , r ) = r ( ( " + ^ - 1 ) + ( " ^ 1
1 ) ] = r ( ^ - ^ + ^ ^ (28) 

where hf\ is as given in Table 2 below. This translates into the decomposition formula 

^ . rp+x) =K2Mls0-f (3 + x)M0J). (29) 

The polynomial line-sequence is as follows: 
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M 2 r r p + x ) ( - l , l + 2x):...,[2r,r(3 + x)],r^ (30) 

Note that, for -w, we also have, from (28), 

>u.<?'.'.')-r((-it)+("+i-1)-(i+
+*))-'e,B-|a^ <31> 

where bfft. is as given in Table 2 below. And so forth. 

Table 2 is a compilation of some conversion relations for convenience of reference. 

TABLE 2. Conversion Relations 

Relations References 

m„ *(/, s, r) = (i - s)ai% k + sdjft +ra<,\ k [see(9)] 

mn,t(Ll,0) = ̂ * ) = <0i [1] 

«V * a 1> r) = ( " + / ) + r ^ ) = a ^ [1] 

mn,t(2,u)=(»^>(^/)+(2rA)=e [4] 

^ft^)=("+i->b*)+<i+
+*)=^ C4] 
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The usual way to multiply numbers in binary representation runs as follows: To compute 
m-n, copy n to x. Multiply x by two. If the last digit of m is 1, then add n to x. Now delete the 
last digit of m. Repeat until m = 1, then x = m-n. 

Since multiplication by 2 needs almost no time, the running time of this algorithm depends 
only on the time to add two numbers and the number of lfs occurring 'mm. If n and m are both 
k-bit numbers, one needs almost always y£2-bit operations. 

In [1], Dimitrov and Donevsky used the Zeckendorf representation to construct a number 
system in which, on average, less nonvanishing digits are needed to represent a number. Thus, 
using this representation, multiplication becomes about 3.2% faster. In this note we will give 
another number system, which gives an algorithm to multiply w-digit numbers in expected time 
f ?i2 + 2w, i.e., for large numbers this algorithm is 25% faster than the usual one. 

Note that, for very large numbers, Karatsuba and Ofmann gave an algorithms with running 
time 0(^ili85), and Schoenhagen and Strasser gave one with running time 0(n log/flog log TI) [2]; 
however, the constants implied by the 0-notations are so large that these algorithms have no 
meaning for most computations. Thus, faster multiplication of small numbers might speed up 
many computations. 

We will write integers as a string consisting of 1, 0, and - 1 , and interpret a string akak_x... 
a0 as E^/21. Our algorithm will make use of the following simple statement. 

Proposition 1: 
(a) Every integer n has a unique representation as above with the following additional 

requirements: there are no three consecutive l's, no two consecutive nonvanishing digits are -l 's, 
between a 1 and a -1 there are at least two 0's, and the first digit is 0 if and only if n = 0. 

(h) The expected number of nonvanishing digits in the representation of an n-b\t number is 
| ( n + 3). 

(c) The representation can be found by changing < |-w-bits on average. 
Proof: First, we prove the uniqueness of this representation. Let n be the least number such 

that there are two different representations ak ... a0 and fil... J30. If & > /, then 
ak... a0 - pt... /3Q> 100-100... -110110.. . = 1-1-1-1...= 1. 

N y / V y / 

k+l digits <k digits 

Thus, k = /. Since, by the same computation, the leading digit of a positive digit is 1, deleting this 
digit together with the following 0's yields a counterexample of smaller absolute value, therefore 
inverting if necessary gives a smaller positive counterexample. However, we assumed n to be 
minimal. 

To construct this representation, begin with the ordinary binary representation of n. Now, 
since 2h + ••• +4 + 2 + 1 = 2k+l - 1 , we have 
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11...11 = 100...00-1. 
k digits r̂-f-1 digits 

Thus, replacing every string of A consecutive l's as above does not change the value of the string, 
and it is easily seen that the new representation fulfills all requirements, if we replace only blocks 
of length > 3. During this replacement, we have to change k +1 digits for every block of length k. 
Since the expected value of the number of blocks of length k in an w-digit number is nTk~l, the 
expected value of replacements equals 

k=3 H ^ k=3 L H 

In the resulting string, there is a single 1 for every substring 011 in the ordinary binary representa-
tion, two consecutive l's for every substring 0110 and a 1 and a -1 for every block of length > 3. 
Thus, to estimate the number of nonvanishing digits, we have to count the blocks in the ordinary 
binary representation. At every digit, a new block begins with probability 1/2, except the first 
one, where this is certain. If the last digit is 0, then there are as many 1-blocks as 0-blocks, other-
wise, there is one 1-block more. Thus, the expected number of 1-blocks is i~3-. Among these, 
there are - ^ blocks of length 1; thus, the total number of nonvanishing digits equals 

~n+3 n+3 3, ^ 
2— — = -(w +3). 

4 8 8V ; 

Hence, all of our claims are proved. • 
Now, adding and subtracting Integers takes the same amount of time. Thus, to multiply two 

zz-digit numbers using this modified binary system, we need | ( « + 3) additions or subtractions on 
average. Each addition needs n bit operations, so this part of the multiplication algorithm needs 
|w2 +-|w steps. We also have to modify one of the two numbers to be multiplied, which takes 
~n steps. Therefore, the total running time becomes 

3 2 15 3 2 o 
8 8 8 

as claimed. 
For n > 15, we have ~n2 > |w2 +-^w. Thus, for numbers > 215 = 32768, multiplying by using 

this number system is faster than the usual algorithm. 
Note that things become even better if one has to do computations with the same number 

several times, since than one only has to convert the Integers once. It Is easily seen that in this 
case multiplication is always at least as fast as the standard algorithm. 
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An integer n is called a totient if there is some integer x such that <p(x) = n, where <p is 
Euler's function. If this equation is not solvable, n is called a nontotient. In 1956, Schinzel [4] 
proved that, for any positive k, 2-lk is a nontotient. In 1961, Ore (see [1]) proved that, for every 
a , there is some odd number k such that 2a -k is a nontotient. In 1963, Selfridge [1] showed 
that the same is true with k restricted by k < 111 129. Recently, Mingzhi [3] proved that, for any 
given d, there are infinitely many primes/? such that dp is a nontotient. In fact, his proof gives the 
existence of a, q with (a, q)~l such that, for any sufficiently large prime p = a (mod q), dp is a 
nontotient. Thus, by the prime number theorem for arithmetic progressions, a positive percentage 
of all primes/? has this property. However, here q>dT^d\ where r(n) denotes the number of 
divisors of w; thus, this percentage is quite small. In this note we will show this is true for almost 
all primes/?. "Further, we describe explicitly a large class of nontotients. We will prove the follow-
ing theorems. 

Theorem 1: There is an absolute constant c such that, for any integer d, the number of primes 
p < x such that dp is a totient is bounded above by cr(d2)-^—^. 

Here and in the sequel, the letter c denotes absolute positive constants and the letters/? and q 
denote prime numbers only. 

Theorem 2: Setw = 3-5-7-13-19-37-73,a = 35274404. If dis an integer relatively prime to m 
such that, for every prime divisor/? of*/, p is a quadratic residue (mod 73), and q = a (mod m) is 
a prime number such that q-l\d, then dq is a nontotient. 

It will be apparent from the proof that the value of a is by no means unique. Also, m may be 
subject to variation. We only use the fact that m has many prime divisors, and that the least 
common multiple of all / ? - l , where p ranges over the prime divisors, of m, is very small. 
However, for other values of m, the computations would become extremely long. 

The proof of Theorem 1 is based on the following theorem of Erdos [2]. 

Theorem 3: There is an absolute constant c such that, for any integer a, we have, for the number 
Na(x) of primes p < x such that ap +1 is also prime, the inequality 

Na(x)<c~^ll(l-^] . 
l o g 2 * ^ q) 

Proof of Theorem 1: Assume that/? is some prime such that dp is a totient, say dp - <p(n). 
Since <p is multiplicative and, for prime numbers q, we have <p{q) = q-l, there is either some 
prime divisor q of n such that q = 1 (mod /?), say q = ap +1, or n is divisible by p2. In the latter 
case we have n-pkm, where (p9m) = l. Thus, we get dp = (/?-l)pk~l<p(m) and p-l\d. So 
the number of such /? is < r(d). In the first case, we have n = qm with (q, m) = l; therefore, we 
get dp = (q- \)<p(m) = ap<p{m). Especially, a is some divisor of d. We now fix some a, and count 
the number of primes p<x such that the equation dp = <p(qm) is solvable when q = ap + \ is 
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prime. This is at most the number of p < x such that q = ap +1 is prime, and by Theorem 2 this 
number is v f \ V1 

Since a is a divisor of d, the total number of solutions is at most 

x infi-lVI 

We have 

nfi-ir-nf'^lnfi-^ q\a V *?/ g | a \ ^V ?|a 

4nK)-zf 
° ?|a V * / t\a l 

Hence, the sum above can be estimated as 

a\d q\a V ^ / a\d t\a 

The function f(d) - Z ^ Z ^ j is multiplicative, since it is the Dirichlet convolution of multipli-
cative functions. For prime powers, we have 

/ ( / ) = I I P""= I (k-m + l)p-m <2k + l = r(p2k). 
0<l<k 0<rn<l 0<m<,k 

By multiplicativity, we get / («) < r(«2) for any n. Hence, the total number of primes p<x such 
that dp is totient is at most 

" -T(d2) + r(d), 
log2x 

and by increasing c slightly, the second term may be neglected. This proves Theorem 1. 
Proof of Theorem 2: Note that, if the equation <p{x) = dq is solvable, either q2\x or there is 

some prime p = \ (mod q) such that p-\\dq. In the first case, we have 

q(q-l) = f(q2)\(p(x) = dq, 

contradicting our first assumption on d. In the second case, number the prime divisors of m by rj9 
1 < j < 7, and choose some primitive root TTJ for each7. We may assume that/? does not divide 
m; thus, the condition that/? is prime implies r}\p. This is equivalent to d'q # 1 (mod r,-) for a 
certain divisor d' ofd. Write 

1=1 

define atj by nf = pt (mod /)), and define bj by nhf = q = a (mod r,). Then the condition on/? 
implies the system of incongruences 

n 

Y,aijxi*~bj (modry-l). 
1=1 
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Now, choosing /ry to be the least primitive root (mod r,), i.e., /r;- =2 for j & 3,7, TT3 - 3, and 
K1 = 5, we obtain bx = 1, b2 = 2, h3 = 4, b4 = 8, A5 = 12, £6 = 24, ft7 = 0. (Note that here we have 
much more freedom; we could choose different primitive roots, and we could use different values 
for the hj, each resulting in different values for a.) To prove our claim, note first that by assump-
tion all Pi are quadratic residues (mod 73), so all an are even. Thus, since b7 is even, too, we 
may divide the seventh incongruence by 2, obtaining an incongruence (mod 36). Further, for ally, 
we have ry, -1136, so every incongruence (mod r, -1) may be written as a set of incongruences 
(mod 36). Now, the solvability of the system is equivalent to the existence of some residue class 
(mod 36) that is not contained in one of the following seven sets, each defined by one of the seven 
incongruences: 

{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35}, 
{2,6,10,14,18,22,26,30,34}, 
{4,10,14,20,26,32}, 
{8,20,32}, {12, 30}, {24}, {36}. 

By construction, the first four sets define residue classes (mod 12), and one easily checks that all 
but the class 0 are covered, whereas the last three sets contain the remaining class. Thus, our 
initial assumption on the solvability of the equation cp{x) - dq was wrong, proving Theorem 2. 
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1. INTRODUCTION 

In [2], Brousseau considered sums of the form 

and 

S(KK..;K) = ±FF F
l
 F 0.1) 

n=\ A nA n+k^ n+k2 "' A n+km 

7X*„*„-,AJ = j ; ( " i r ' , (1.2) 
n=\ rnrn+k\n+k2 ''' n+km 

where the kt are positive integers with kl<k2<--<km. He stated that the sums in (1.1) and 
(1.2) could be written as 

S(khk2,...,km) = r^r2S(\2,...,m) (1.3) 

and 
T(khk2,...,kJ = r3 + r4T(l,2,...,in), (1.4) 

where A\, r2, r3, and r4 are rational numbers that depend upon kx,k2,...,km. He arrived at this 
conclusion after treating several cases involving small values of m. 

Our aim in this paper is to prove Brousseaufs claim by providing reduction formulas that 
accomplish this task. Recently, Andre-Jeannin [1] treated the case m = 1 by giving explicit expres-
sions for the coefficients rx, r2, r3, and r4. Indeed, he worked with a generalization of the Fibo-
nacci sequence, and we will do the same. In light of Andre-Jeannin's results, we consider only 
m>2. We have found, for each of the sums (1.3) and (1.4), that two reduction formulas are 
needed for the case m- 2, and three are needed for m> 3. Consequently, we treat those cases 
separately. 

Define the sequences {UJ and {WJ for all integers n by 

\U„ = pU^-qU„_2, U0 = 0,Ul = l, 
\Wn = pWn_x-qWn_2, W,=a,Wx = b. 

Here a, b, p, and q are assumed to be integers with pq*0 and A = p2 - 4q > 0. Consequently, 
we can write down closed expressions for U„ and Wn (see [3]): 

TT an-p" . m Aan-Bj3" , . 

where a = (p + J~A)/2, fi = (p-<jA)/2, A=h-afi, and B = h-aa. Thus, {WJ generalizes 
{UJ which, in turn, generalizes {FJ. 
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We note that 

Consequently, 
a>\ a n d a > | ^ | i f p > 0 , w h i l e / ? < - l and \p\ > \a\ if p<0. 

W„*-^:an ifp>0,mdWn*—^~pnifp<0. 
a-p * ' n a-fi. 

Throughout the remainder of the paper, we take 

1 

and 

8(kl,k2,...,km)-2^ww w w 

00 f—lY1-1 

T{kl,k2,...,kJ = ^—— — 

(1.6) 

(1.7) 

(1.8) 

(1.9) 
n=l ̂ Ki+k^Ki+k2 • * • ^Ki+km 

where the kt are positive integers as described earlier. From (1.6) it follows that Un & 0 for n > 1. 
We shall suppose that Wn * 0 for n > 1. Then, by (1.6) and (1.7), use of the ratio test shows that 
the series in (1.8) and (1.9) are absolutely convergent. 

We require the following identities: 

UJVn¥l-WnHII = qUm_lWH, (1.10) 

Um-k+fflt+k ~ Wn+m = qUm_kWnJtk_x, (1-11) 

UJVn + q™UdWn_m_d = Um+dW„_d, (1.12) 

PWn+m +q2Um_2Wn = UmWn^ (1.13) 

Um-l+Wn+k ~ Uk-l+ffli+m = *? ^m-k^tH-l-l' (1-14) 

Identity (1.11) follows from (1.10), which is essentially (3.14) in [3], where the initial values of 
{[/„} are shifted. Identities (1.13) and (1.14) follow from (1.12), which occurs as (5.7) in [4]. 

2, THREE TERMS IN THE DENOMINATOR 

Our results for the case in which the denominator consists of a product of three terms are 
contained in the following theorem. 

Theorem 1: Let kx and k2 be positive integers with kx<k2. Then 
1 &{kly k2) — qll, -[U.^Sikt - 1 , k2) - S(k, -1, k,)] if 1 < k,, 
ki~k\ 

v q2uk 

Uy u>. 
S(l,k2-l)- I 

WW. 
if 2 < A:, 

T(kh k2) = -^—[U^^Tik, - 1, k2) - T(k, -1, *,)] if 1 < K 

q2u* T{\,k2) = ^-T{\,2)+1^-2 

ww2wk. 
-T(l,k2-l) if 2 < >t, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Proof: With the use of (1.11), it follows that 

WnWn+kWn+ki WJY^W^ WJV^.JV^ (2.5) 

and summing both sides we.obtain (2.1). Likewise, to obtain (2.3), we first multiply (2.5) by 
(-1)""1 and sum both sides. 

Next we have 

^ P . lUkr-+ „. ' "2";—, (2.6) "™n+Wn+k2 WJ¥n+J¥n+2 Wn+JYn+2Wn+ki 

which follows from (1.13). Now, if we sum both sides of (2.6) and note that 

^ 1 1 
^Wn+xWn+2Wn+k2

 v ' 2 ' WxW2Wki> 

we obtain (2.2). Finally, to establish (2.4), we multiply (2.6) by (-l)""1, sum both sides, and note 
that 

y H)""1
 = \ ~r(i9k2-i). 

n=l ^n+Wn+'Wn+k1 ^WWk2 

This proves Theorem 1. D 
It is instructive to work through some examples. Taking Wn-Fn and using (2.1) and (2.2) 

repeatedly, we find that S(3,6) = —^ + \S(\9 2), and this agrees with the corresponding entry in 
Table III of [2]. Again, with Wn = F„, we have 7(3,6) = - ^ + ± 7 ( 1 , 2 ) . 

3* MORE THAN THREE TERMS IN THE DENOMINATOR 

Let kl9 k29...9km be positive integers and put P{kh ...9km) = WJVn+ki ... Wn+km. With this nota-
tion, the work that follows will be more succinct. The main result of this section is contained in 
the theorem that follows, where we give only the reduction formulas for S(kl9 k29...9 km). After 
the proof, we will indicate how the corresponding reduction formulas for T(kl9 k2, ••-,km) can be 
obtained. 

Theorem 2: For m > 3, let kx < k2 < • • • < km be positive integers and set k0 = 0. Then 

S(kl9k29...9km) = k .-kA\TT S(kl9...9kjmml9kj-l9kj9...9km_29'cm) 
q J Uk _k 

Uk k + j 
km_x-k~+ijj S(kh...9kJ_l9kJ.-l9kj9...9km_l) 

? Ukm-km_l 
ifl<j<m-2 and kj_t <kj-l; 

(3.1) 

S(kl9..., km) - m S(kl9..., km_l9 km_x 1, km) 

&>-> 
S(kl9..., km_29 km_x 1, km_l) it km_2 < km_l 1; 

(3.2) 
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S(l,2,...,m-l,kJ = ^S(l,2,...,m) 

, ^K-m 
Km 

SYl ° m l /r 1> 
A(W~,*f \km 1) j ^ ^ ^ 

e use of (1.14), we see that 

_f Km Km-\ 
Ukm-kJ+i 

r{kly..., kj-i, kj — 1, kj,..., ^w_2, £w) 

£>£ , -£ .+1 

(3.3) 
if m < kn 

P{kx,..., kj_h kj l,kj,..., km_l) 

and summing both sides we obtain (3.1). 
Next we have 

?£/, Km km U km-km_x+\ 1 
P{kl,...,km) P\k\,.^km_2,km_l \km) P{ki9...9km_29km_l 1, km_]) 

which can be proved with the use of (1.11). Summing both sides, we obtain (3.2). 
Finally, with the aid of (1.12) we see that 

Uk U <lmUk „m 
Km _ ^ m i J Km m 

P{\,2,...,m-\,km) P(l,2,...,m) Wn^n+2...Wn^n+K 

The reduction formula (3.3) follows if we sum both sides and observe that 

^ 1 „„ „ , , ,x 1 • = 5(1,2,... ,m-\,km-1)-
JW2...wmw, ^W W WW 

w=l rrn+lrrn+2 •' • rrn+mrrn+km 

This completes the proof of Theorem 2. • 

As was the case in Theorem 1, the reduction formulas for Jean be obtained from those for S. 
In (3.1) and (3.2), we simply replace S by T. In (3.3), we first replace the term in square brackets 
b y 

-5(1,2,. ..,m- 1,*M-1) 
1 

Wt-WJTk. 
and then replace 5 by T. 

As an application of Theorem 2 we have, with Wn - F„, 

5(1,2,4,6,7) = -35(1,2,3,4,7) + 25(1,2,3,4,6) by (3.1); 

5(1,2,3,4,7) = ̂ + A 5 ( 1 , 2 , 3 , 4 , 5 ) - ^ 5 ( 1 , 2 , 3 , 4 , 6 ) by(3.3); 

5(1,2,3,4,6) = j^+15(1,2,3,4,5) by (3.3). 

Together (3.4)-(3.6) imply that 

(3.4) 

(3.5) 

(3.6) 

5a2'4'6'7) = d£6-2>'2'3'4'5)-
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4. CONCLUDING COMMENTS 

Recently, Rabinowltz [5] considered the finite sums associated with (1.1) and (1.2). That is, 
he took the upper limit of summation to be N, and gave an algorithm for expressing the resulting 
sums in terms of 

Ij-. IV-'and Zyr-
In addition, he posed a number of interesting open questions. 
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In this note, we find all triples consisting of consecutive binomial coefficients 
r?A ( n \ ( n 
Kk) U + U U + 2J M 

forming Pythagorean triples. The result is 

Theorem: If the three numbers listed at (1) above form a Pythagorean triple, then n = 62 and 
k = 26 or 34. 

We first notice that it is enough to assume that k + 2<n/2. Indeed, if k>n 12, then one can 
use the symmetry of the Pascal triangle to reduce the problem to the previous one, while the case 
in which k<nl2 but k-\-2>n/2 is impossible because these conditions will lead to isosceles 
Pythagorean triangles which, as we all know, do not exist. 

Proof: After performing the cancellations in the following equation, 

we get 
(k + 2)2((k +1)2 + (n - kf) = {n- kf{n -k-lf. (3) 

We make the substitution x:=n-k and y:=k + l. Equation (3) becomes 

(y + l)2(x2+y2) = x2(x-lf. (4) 

Notice that equation (4) implies that x2 +y2 is a square. Let d := gcd(x, y). 
We distinguish two cases: 
Case 1. 

(x = 2duv, 
_ where gcd(i*, v) = 1 and u £ v (mod 2). (5) 

y = d(u2-v2), 
Combining formulas (5) and equation (4), we get 

(d(u2 - v2) + \){u2 + v2) = 2uv(2duv -1). (6) 

Since gcd(u2 + v2,2uv) = 1, it follows from equation (6) that (u2 + v2) | (2duv -1). Hence, 
*2-v2 

u2+v2 2uv 
where dx is an integer. One can rewrite the two equations (7) as 

ld(2uv)-dl(u2+v2) = \ 

2duv-l d(u2-v2) + l , „ 

(8) 
[rf(w2-v2)-rf1(2iiv) = - l . 
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One can now regard (8) as a linear system In two unknowns, namely, d and dx. After solving it by 
using Kramer's rule, one gets 

d = _z(u±vf 
(9) 

u4 - v4 - 4u2v2 ' 
-u2+v2-2uv 

l~ u4-v4-4u2v2' d = 

Let A = u4 - v4 - 4u2v2 be the determinant of the coefficient matrix. We now show that A = ±1. 
Indeed, notice that since u£v (mod 2), it follows that A is odd. Assume that |A| > 1 and let/? be 
an odd prime divisor of A. From the first formula (9) and the fact that d is an integer, we get that 
p\(u + v). Since p | A = u4 -v4 -4u2v2 = (u + v)(u-v)(u2 + v2)-4u2v2, it follows that p\uv. But 
since p\(u + v) also, we get that p | gcd(w, v), which is impossible. Hence, 

u4-v4-4u2v2 = ±l. (10) 

Notice that equation (10) can be rewritten as (2(u2 - 2v2))2 - 5(2v2)2 - ±4. It is well known that 
all positive integer solutions of X2 - SY2 - ±4 are of the form X-Lt and Y = Ft for some 
positive integer t, where (Ln)n>0 and (FJn>0 are the Lucas and the Fibonacci sequence, respec-
tively, given by L0 = 2, Zj = l, F0 = 0, Fx = l, and Ln+2 = Ln+l + Ln and Fn+2 =Fn+l+Frn respec-
tively.* Now equation (11) implies that 

(12) 

It is known (see, e.g., [3]) that the only Fibonacci numbers which are twice times a square are 
F0 = 0, F3 = 2, and F6 = 8. Hence, for our case, we get t = 3, v = 1, and t = 6, v = 2, respec-
tively. In the first case, we get u = 2. From formula (9), we get d = 9, and then from formulas 
(5), we get x = 36 and y - 27. This gives the solution n - 62 and k = 26, and by the symmetry 
of the Pascal triangle, k = 34 as well. The case t - 6 and v = 2 does not lead to an integer 
solution for u. 

Case 2* 

f x = d(u2 —v2) where gcd(w, v) = 1 and u ̂  v (mod 2). (13) 

y = 2duv, 
This case is very similar to the preceding one. With the notations (13), equation (4) becomes 

(d(2uv) + l)(n2 + v2) = (u2 - v2)(d{u2 - v2) -1). (14) 

Since gcd(n2 + v2,f#2-v2) = l, it follows that (u2 + v2)|(d(u2 -v2)-1). Hence, equation (14) 
implies that 

^ + l = ^ - v » ) - l ^ ( 1 5 ) 
u2-v2 tt + v2 

where ^ is an integer. One may now rewrite equation (15) as 

* I could not find a reference for this fact. 
2002] 77 



CONSECUTIVE BINOMIAL COEFFICIENTS IN PYTHAGOREAN TRIPLES AND SQUARES IN THE FIBONACCI SEQUENCE 

\d(2uv)-di(u2-v2) = -l, 
\d(u2-^)-dl(u2+v2) = l. 

Solving system (16) in terms of dand dl versus u and v, we get 

2«2 

(16) 

d = 

<k = 

(u2 -v2)2 -2uv(u2 +v2Y 
2uv+u2-v2 (17) 

( H 2 - V 2 ) 2 - 2 K V ( K 2 + V 2 ) ' 

One may again argue as in the preceding case that 

(u2 - v2)2 - 2uv(u2 + v2) = ±1. (18) 
Rewrite (18) as 

(2(M2 + v2 - MV))2 - 5(2wv)2 = ±4. (19) 

Equation (19) implies that there exists / > 0 such that 
[F,=2uv, 
[Lt = 2(u2+v2-uv). 

Formulas (20) imply that 

(20) 

^ - £ = («-v)2. (21) 

Using the well-known fact that Lt = Ft + 2Ft_x for all t> 1, it follows by formula (21) that 

Ft_x = (u-vf. (22) 

It is well known (see [1] or [2]) that the only squares in the Fibonacci sequence are F0 = 0, Fx = l9 

F2 = l, and Fl2 - 144. Hence, by formula (22), we get that t = 1, 2, 3, 13. None of these values 
gives integer solutions u, v from the system of equations (20). The Theorem is therefore proved. 
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1. INTRODUCTION 

Let a0,...?ar_1 (r >2,ar_x ^0) be some fixed real (or complex) numbers and {C„}w>0 be a 
sequence of real (or complex) numbers. Let {Tn}~^0 be the sequence defined by the following 
nonhomogeneous relation of order r, 

Tn+l=aJn+alTn-l + '-+ar-lTn-r^CnJ fcrW>r-l, (1) 

where TQ,..., Tr_x are specified by the initial conditions. In the sequel, we refer to these sequences 
as sequences (J). The solutions {Tn}n>0 of (1) may be given as follows: Tn - l*h^ + 7%p\ where 
{7^}„>o is a solution of the homogeneous part of (1) and {1^p^}n^o is a particular solution of (1). 
If Q = Tfj=QpjCJ

n, solutions {TJn^0 of 0 ) °W be expressed as Tn = itf^fljTj, where {Tj}„^0 is 
a solution of (1) for Cn = CJ

n. Sequences (1) are studied in the case of Cn polynomial or factorial 
polynomial (see, e.g., [2], [3], [4], [5], [7], [12], and [8]). 

The purpose of this paper is to study a linearization process of (1) when Cn-Vn, where 
{Vn}n>0 is an ^-generalized Fibonacci sequence whose V0,..., Vm_l are the initial terms and 

Vn+^Wn + '-'+b^V^i, f o r / i ^w-1 , (2) 

where bQ,..., bm_l (m> 2,bm_l & 0) are given fixed real (or complex) numbers. This process per-
mits the construction of a method for solving (1). In the polynomial and factorial polynomial 
cases, our linearization process allows us to express well-known particular solutions, particularly 
Asveld's polynomials and factorial polynomials, in another form. Examples and discussion are 
given. 

This paper is organized as follows: In Section 2 we study a Linearization Process of (1). In 
Section 3 we apply this process to polynomial and factorial polynomial cases. Section 4 provides 
a concluding discussion. 

2, LINEARIZATION PROCESS FOR SEQUENCES (1) 

In this section we suppose Cn~Vn with {VJn^0 defined by (2), where we set m=s and 
a2 = {/i0,...,//,} the set of its characteristic roots whose multiplicities are, respectively, /%,.. . ,#. 
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Expression (1) implies that Vn+l = Tn+l - ZylJ, a^n-j f°r anY ^ > r - 1 . Let n > r + s -1, then 
for anyy (0 < j < s -1) we have Vn_j = Tn_j - E ^ akTn_j_k_x. Then from (2) we derive that 

r - l s-\ s-l r - l 
Tn+1 = Y,ajTn-j + HfijTn-J " Z HbjakTn-j-k-V ( 3 ) 

/=o y=o /=o fc=o 

Expression (3) shows that 3^+1 (« >r + s - l ) is a linear recurrence relation of order r + s; more 
precisely, we have 

r j - l r 2 - l r + < s - l 

£ u = (ao +b0)Tn + ̂  (a; + bj - Cj)Tn_j + £ v y ^ y - ^ ^ - / , 

where c, = Hk+p=j',k>i,p>oh-iap md /i = min(r, s), r2 = max(r,s) with vj=aj-cJ for r > s , 
v • = i • - cy for r < s, and v • = 0 for r = s. Hence, we have the following result. 

Theorem 2.1 (Linearization Process): Let {Tn}n>0 be a sequence (1) and {Vn}n>0 be a sequence 
(2), where m-s. Suppose Cn=Vn, then {TJn>0 is a sequence (2), where m-r + $. More pre-
cisely, {Tn}n>0 is a sequence (2) whose initial terms are TQ,...,!^^ and whose characteristic 
polynomial is p(x) = P\(x)p2(x), where pt(x) = xr -J^r~}QciJxr~J~l is the characteristic polynomial 
of the homogeneous part of (1) and p2(x) = xs - Zy=o ̂ x*"7-1 *s ̂ e characteristic polynomial of 
(2). 

Let <JX = {20,..., Ag} be the set of characteristic roots of the homogeneous part of (1) whose 
multiplicities are n0,...,nq, respectively. Then er = {v,p(v) = 0} = alua2. Set 0 = { v0,..., vk}, 
where vi=pii for 0<i<t and vi+t = ^x for l < / < A - f + l. If <r1n<r2 = 0, we have k = q + 
t + l, and if not, £ = $ + £ + 1-2/, where w is the cardinal of Gxr\u2. In the latter case, the Linear-
ization Process shows that the multiplicity of Vj ealr\<j2

 ls mj =nj +Pj> where rij and pj are 
multiplicities of v- in px(x) and p2(x), respectively. Therefore, we derive the Binet formula of 
\Tn}n>Q a S 

t k-t+\ 

y^S^W+Z^rW^ (4) 
y=o y=i 

with Rj(ri) = H™do fijiri* where ntj is the multiplicity of vj in p(x) = pl(x)p2(x) and /?77 are 
constants derived as solution of a linear system of r + s equations (see, e.g., [9] and [11]). 

Because Vj for t +1 < j < k satisfies Pi(Vj) = 0, we show that the sequence {^}n>0 defined 
by 1*® = Zy={+1i?;+f(^)v^+f is a solution of the homogeneous part of (1). Thus, we have the fol-
lowing result. 

Theorem 2.2: Let {Tn}n>0 be a sequence (1) and {Vn}n>0 a sequence (2), where m = s. Suppose 
Cn - Vn9 then the sequence {T%p)}n>o, defined by 

is a particular solution of (1). 

Suppose v0 = JUQ = 1 ea2, then Binet's formula implies that Vn = Q)(^) + Zy=i2/(w)^"? where 
Qj(ri) are polynomials in n of degree p} - . Then a solution {1^p)}n>0 of (1) may be expressed as 
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follows: #'> = Tl
n + T^ where {TX>o and {^}w>0 are the solutions of (1) for, Cn = Q,(/i) and 

Q = T!]=\Q](n)t£j, respectively. We call {T*}n>0 the polynomial solutions of(l), corresponding 
to the polynomial part of Cn. 

Corollary 2.1: Let {^}„>0 be a sequence (1) and {Vn}n>0 a sequence (2). Suppose v0 = /i0 = 
lea2. Then the polynomial solution {T*}n±o of (1) is given by 3^ = /i0(w), where Ro(n) = 
S S ^ / W 'm derived from the Binet formula (4) of the linearized expression (3) of {^}w>0. More 
precisely: 
(a) If 1 g crl9 we have 7% = i?o(w) with RQ(X) of degree #% - 1 , where m^ = /?0 is the multiplicity 
of//0 = 1 in /?2(x)-
(6) If 1 e a1? we have 1% = i^(w) with /^(JC) of degree #% - 1 = n0 + p0 - 1 , where w0 and p0 are 
multiplicities of 2 0 = ju0 = 1 in ^(x) and p2(x)> respectively. 

Corollary 2.1 shows that the polynomial solution {T*}„±o of (1) is nothing but the polynomial 
part of (4), corresponding to the solution of (1) for C„, equal to the polynomial part in the Binet 
decomposition of {Vn}n>0. 

Example 2.1: Let {Tn}n>0 be a sequence (1) whose initial terms are T0, Tl9 and Tn+l =a0Tn + 
a\^n-i +^n for w > 1, where {Vn}n>0 is a sequence (2) with m=s. Then the Linearization Process 
implies that {Tn}n>0 is a sequence (2), where m = s+2, whose initial terms are TQ9...9Ts+l and 
whose coefficients are f#0 = aQ + bQt> ul = al+ bx - aQbQ, u^ = bx - aj>x - apQ,..., us_l = bs_t - aQbs_2 -
atbs_3, us = ajt^-afi^ and us+l = - a ^ - i -

3* APPLICATIONS TO POLYNOMIAL AND FACTORIAL POLYNOMIAL CASES 

3.1 Polynomial Case 
In this subsection we consider C„ = H<j3s0fi/iJ

9 where n eN. Let us first connect this case 
with the situation of Section 2. To this aim, we can show easily that if {VJn^Q is a sequence such 
that Vn = Tfj=QPjnJ\ for «>0 , then {VJn>0 is a sequence (2) with m = d + \ whose initial terms 
are V09 ...9Vd and coefficients bj = (-l)y(!/+{), where (*) = fc!(^)p are derived from its characteris-
tic polynomial p2(x) = (x-l)d+l. Particularly, for Cn =nj, we derive the following proposition 
from Corollary 2.1. 

Proposition 3 J: Let {Tn}n^0 be a sequence (1) and let Cn-n]'. Then the polynomial solution 
{Pj(n)}n>0 of (1) is given by Pj(n) = /^(/i), where ^(n) = ZJV/V 1 ' is derived from the Binet 
formula (4) of the linearized expression (3) of {Tn}n7l0. More precisely: 
(a) If 1 £ al3 we have /̂ .(w) = i?o(«) with i?0(x) of degree m$ - 1 = j . 
(S) If 1 G a1? we have /^(w) = i?o(w) with R0(x) of degree w0 - 1 = n0+j, where «0 is the multi-
plicity of 10 - 1 in px(x). 

More generally, we have the following result. 

Proposition 3.2: Let {Tn}„^0 be a sequence (1) and let Cn = Tfj=Qpjnj. Then the polynomial 
solution {P(n)}„zo of (1) is P(n) = I^(n) = T?MfijPj(n)9 where Ro(n) = Iffilfiot*r is derived 
from the Binet formula (4) of the linearized expression (3) or {Tn}n^0. More precisely: 
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(a) If 1 g al9 we have P(n) = R${n) with RQ(x) of degree d. 
(h) If 1 e o-l5 we have P(/i) = R^Qi) with i?0(x) of degree m0-l = n0 + d9 where TI0 is the multi-
plicity of 10 = 1 in Pj(x). 

Propositions 3.1 and 3.2 show that particular polynomial solutions Pj(n) (0<j<d) are the 
well-known Asveld polynomials studied in [3], [5], [8], and [12]. Our method of obtaining Pj(n) 
(0<j<d) is different. For their computation, we applied the Linearization Process of Section 2 
to {^}„>o- Thus, the Binet formula (4) of the linearized expression (3) of (1) allows us to con-
clude that Pj(n) can be considered as a polynomial part of (4). For A,0 = lecrl, we have mQ > 
7 + 2, and Proposition 3.1 shows that Pj(n) may be of degree >7 + l because the a& are not 
necessarily null for j +1 < / < m0 -1. This result has been verified by the authors with the aid of 
another method devised for solving equations (1) for a general Cn. 

3*2 Factorial Polynomial Case 
In this subsection, let Cn = Ey=0 Pp{3), where n^ = n(n -1) • • • (n - j +1). Note that /i(;) = 

7 !(y for 7 > 1 and w(0) = 1 (0(0) = 1). This case is related to the situation of Section 2 as follows. 
Consider Stirling numbers of the first kind s(t, j) and Stirling numbers of the second kind, S(t, j), 
which are defined by x(J) = Z/=0 s(t, j)xf and xj = Ej=0 S(t, i)x(f) (see, e.g., [1], [6], [7], and [10]). 
Hence, for any j > 1, we have n^ = S/sso,s(^ i'V- Therefore, {«(;)}„>0 is a sequence (2), where 
5 = 7 + 1. We then derive the following proposition from Proposition 3.2. 

Proposition 33: Let {^}„>0 be a sequence (1) and C„ = niJ\ Then the factorial polynomial solu-
tion {^(w)L>o of (1) is given by PJ(ri) = K(u(ri), where R<u(n)=TJ

J
t=Qs(jJ)Pt(n) with Pt(n) = 

Tfjto°~l ®otni (0 < / < 7) are solutions of the linearized expression (3) of {Tn}n>0 for Cn ~nf (0 < 
t<j). More precisely: 
(a) If 1 e o-1? we have 1* (/i) = Z^0(£/-g <A t)ytq)d«\ where ^ = E,% <${K q), with £(/, ?) 
the Stirling numbers of the second kind. 
(b) If 1 ea , , we have PJ{n) = l^-l^^-is{J,tyr1q)rf-''\ where y„ = Z£*-1a$,S(i,?), with 
w0 > 1 the multiplicity of 2 0 = 1. 

More generally, we have the following proposition. 

Proposition 3.4: Let {TJn>0 be a sequence (1) and Cn = Zy=0Pf^]). Then, the factorial polyno-

mial solution {jP(rt)}„fco of (1) i§ giyen by P(ri) = i?o(«) = Y?J=Q P jPjtn), where ^.(w) a r e factorial 
polynomial solutions of (1) for Cw = n^ given by Proposition 3.3. 

Propositions 3.3 and 3.4 show that particular factorial polynomial solutions Pj(n) (0<j<d) 
are the well-known Asveld factorial polynomials studied in [5] and [7]. Our method of obtaining 
Pj(ri) (0<j<d) is different from those above. As for the polynomial case, if 1 eah we can 
show that Pj(n) (0<j<d) may be of degree >j + l. This result has also been verified by the 
authors using another method for solving (1) in the general case. 

Example 3.1: Let {^}w>0 be a sequence (1) whose initial conditions are T0, Tl? and Tn+l = 3Tn-
2Tn_x +Vn for n > 1, where Vn = n. It is easy to see that Vn+l - 2V„-Vn_1; therefore, the Lineariza-
tion Process of Section 2 and Example 2.1 imply that Tn+l = 5Tn- 9Tn_t + lTn_2 - 2Tn_3 for n > 3, 
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where the Initial conditions are TQy 2J, T2 = 3TX -2TQ +1, and T3 = 1TX -6T0 + 5. The characteristic 
polynomial of {TJn>0 is p(x) = (x- lf(x -2) . So the Binet formula of {Tn)n>0 is Tn = P(n) + rft? 
for any n > 0, where P(/i) = an2+hm + c. Also, the coefficients a, ft, c, and 77 are a solution of 
the linear system of 4 equations, (S): P(n) + r/2n = Tn> n = 0,1,2,3. A straight computation allows 
us to verify that (S) is a Cramer system which owns a unique solution a, b, c9 and rj. In particu-
lar, we have a = ~~. Hence, the polynomial solution {P(n)}n>0 of (1) is of degree 2. 

4. CONCLUDING DISCUSSION AND EXAMPLE 
4.1 Method of Substitution and Linearization Process 

For Cn = Yfj=QpjnJ (or C„ = Sy=o^yW(y)), the usual way for searching the particular polyno-
mial (or factorial polynomial) solutions {-P(»)}w 0̂ (o r {^(w)}«>o) °f OX anc* hence the Asveld 
polynomials (or factorial polynomials), is to consider them in the following form: 

d d 
P(n)^Y,AjnJ* P(n) = Y,AjnU)- (5) 

Thee the coefficients Aj (0<j<d) are computed from a series of equations that are obtained 
from the substitution of (5) in (1) (see, e.g., [3], [4], [5], [7], [8], and [12]). 

The natural question is: How can we compare the Linearization Process of Section 2 and the 
method of substitution for searching particular solutions of (1) in polynomial and factorial poly-
nomial cases? The Linearization Process of Section 2 shows that: 
(a) If yi0 = 1 g.al [i.e., 1 is not a characteristic root of the homogeneous part of (1)], the Lineari-
zation Process shows that {P(n)}n>0 (or fP(«)}w>0) is of the form (5). And the coefficients Aj 
(0 < j < d) of (5) are obtained with the aid of the Binet formula applied directly to the linearized 
expression (3) of (1). 
(b) If 2 0 = 1 eat [i.e., 1 is a characteristic root of the homogeneous part of (1)], then these solu-
tions may be of degree >d. More precisely, we have P(n) = Zy=o° A/iJ and P(n) = Ey=o° Aj.n(j\ 
where n0 is the multiplicity of A0 = 1 eat. If P(ri), or P(ri), is of degree d, we must have Aj = 0 
for d + l<j <d+nQ. This means that we have some constraints on the coefficients a0,..., ar_h 

or on the initial terms T0,..., Tr_t. 

The following simple example helps to make precise the difference between the Linearization 
Process and the method of substitution. 

Example 4.1: Let {T„}„^0 ^e a s e ( l u e n c e 0 ) whose initial terms are TQ, 2J, and Tn+l =@0Tn + 
a^n-x +K f°r n - * > w n e r e a0 = l-a,al = a with a * 1, and Vn = n. Then we can see that Vn+l = 
2Vn -Vn_l. Hence, the Linearization Process of Section 2 implies that 

3^1 = ( 3 - a ) ^ + 3 ( a - l ) r w . 1 - ( 3 a - l ) 2 ^ 2 + a ^ 3 for«>3, 

where initial terms are TQ, Tl9 T2 = (1 - a)Tx + aT0 +1, and T3 = (a2 - a + T)TX + a(l - a)T0 + (3 - a). 
The characteristic polynomial of {TJnk0 is p(x) = (x -l)3(x + a) , and its Binet formula is Tn = 
P(n) + TJX[ for n > 0, where P(w) = an2 +bn + c and Aj = - a . The coefficients a, A, c, and r\ are 
derived from the following linear system 4 equations (S): P(2) +17^ = TJ9 j = 0,1,2, and 3. A 
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straight computation allows us to see that (S) is a Cramer system which owns a unique solution 
a, b, c, and TJ if Aa = 2a3 + 6a2 + 6a - 2 * 0. In particular, we have a = (a +1)2 / Aa. Therefore, 
the polynomial solution {P(n)}n>0 of (1) is of degree 1 if a = - 1 , and of degree 2 if not. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Riiss Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others' proposals must be sub-
mitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by August 15, 2002. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting Sfwell-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l + Fn, FQ = 0, Fx = 1; 

A ? + 2 = Ai+ i • + 4J A ) = 2, LX = i. 

Also, a = (l + V5)/2 , £ = ( l - V 5 ) / 2 , Fn = (an - 0") / & *nd Ln = an+0n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-930 Proposed by Jose Luis Diaz and Juan Jose Egozcue, 
Universitat Politecnica de Catalunya, Terrassa, Spain 

Let n > 0 be a nonnegative integer. Prove that F^nLF
n
n < (i^+T1)2- When does equality occur? 

B-931 Proposed by Ovidiu Furdui, Western Michigan University\ Kalamazoo, Michigan 
Prove that gcd(4 , Fn+l) = 1 for all n > 0. 

B-932 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan 

Prove that 

A) ffi-/2" <-7-l-for all W*l 
and 

B ) X Z72i74"i72^ converges. 

B-933 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan 

Prove that Ffr+l > F^x for all n > 4. 
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B-934 Proposed by K Gauthier, Royal Military College of Canada 
Prove that 

2 T sin2(— m+l )sin(n n m+l} = Y(-1)" sin[ n m+l )cos( n rl m+l 1, 
w=l V 2 FmFnFn+\) \ FmFn+l) „=1 V FmFnFn+l J \ Fn+lFm J 

where m is a positive integer. 

Note: The Elementary Problems Editor, Dr. Russ Euler, is in need of more easy yet 
elegant and nonroutine problems. Due to space limitations, brevity is also important 

SOLUTIONS 
Subscript Is Power 

B-916 Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria 
(Vol 39, no. 2, May 2001) 

Determine the value of 

k=0 

Solution 1 byH.-J. Seiffert, Berlin, Germany 
In equation (2.6) of [1], it was shown that 

n (L 2 . 3 t - i )= iF 3 „ + 1 . 

Multiplying by L2 - 1 = 2 gives 

fl(LMk-l) = Fr+i. 
jfc=0 

Reference 
1. P. Filipponi. "On the Fibonacci Numbers whose Subscript Is a Power." The Fibonacci Quar-

terly 34.3 (1996):271-76. 

Solution 2 by PaulS. Bruckman, Sacramento, CA 
For brevity, write 3k = u, Ak^Fu. Note that Ak+l/Ak = F3J Fu - (a3u - fi3u) / (au - 0U) = 

a2u + aupu +/33u = L2U-l, since u is odd. Let Pn denote the given product. Then 

Pn = t[(Ak+l/Ak)9 

a telescoping product that reduces to An+ll A0. Therefore, since A0 = Fx = l, it follows that 
P„ = FV, where v = 3w+1. 

Also solved by Brian Beasley, Kenneth Davenport, L. A. G Dresel, Steve Edwards, Ovidiu 
Furdui, Russell Hendel, Walther Janous, Reiner Martin, Don Redmond, Maitland Rose, 
Jaroslav Seibert, and the proposer. 
The solvers all used almost the same induction argument to show the result. 
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A Two Sum Problem 

B-917 Proposed by Jose Luis Diaz, Universitat Politecnica de Catalunya, Terrassa, Spain 
(Vol 39, no. 2, May 2001) 

Find the following sums: 

l + A-u ,»* m Lu_^Ln±2 

where Lk is the k^ Lucas number. 

Solution by Reiner Martin, New York, NY 
Note that 

2 
'w+1 

' 1 
w=0 ^n^n+2 n=Q 

and 
I, 

vAiAi+l Ai+lAi+2/ % ^m+l^m+2 

y AH-I _y | J L_ | = 2__ 
w=o LnLn+2 n=0 \Ln Ln+2J 2 1 

So we can evaluate (a) as 

^ / Z, ~ 2 2 
«>0 ^n^n+2 ^ ^ 

To find (b), observe that 
m j j m 

F 2 F 2 Z-» 
w=0 ^n^n+l n=Q 

1 1 1 
i J 2 f2 4 f 2 : 

which converges to 1/4. 
Also solved by Paul & Bruckman, L. A. G. Dresel, Steve Edwards, Ovidiu Furdui, Russell 
Hendel, Walther Janous, Jaroslav Seibert, H.-J. Seiffert, and the proposer. 

Divisible or Not Divisible; That Is, by 2 

B-918 Proposed by M N Deshpande, Institute of Science, Nagpur, India 
(Vol 39, no. 2, May 2001) 

Let i andy be positive integers such that 1 < y < /. Let 
T(i,j) = FJFi_J+1 + FjFi_j+2 + FJ+l 

1 i-j+V 

Determine whether or not 
maximum T(i, y) - minimum T(i9 j) 

J J 

is divisible by 2 for all / > 3. 

Solution by L. A. G. Dresel, Reading, England 
Since Fj + FJ+l = FJ+2, we have T(i, j) = FJ+2FM+l + FjFM+29 and therefore 

T(i, j +1) = FJ^.J + F^F^ s Ffa + Fy+1i?_,+1 (mod 2), 
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since Fj = FJ+3 (mod 2). Hence, 

TQ, j) - T(i, j +1) - (Fj+2 - FJ+l)Ft_j+l + Fj(F,_J+2 - F,_j) = 2FjFt_j+l = 0 (mod 2). 

It follows that, for a given ?, T(i, j) modulo 2 is independent of j , and therefore the difference 
between the given maximum and minimum is divisible by 2 for each i. We note that 

T(i,j) = T(i,\) = Fi+l(mod2) 
for all j . 
Also solved by Paul S. Bruckman, Walther Janous, Reiner Martin, Jaroslav Seibert, H.-J. 
Seiffert, and the proposer. 

A Prime Equation 

B-9I9 Proposed by Richard Andre-Jeannin, Cosmes etRomain, France 
(Vol 39, no. 2, May 2001) 

Solve the.equation LnFn+l = pm(pm -1), where m and n are natural numbers and/? is a prime 
number. 

Solution by Jaroslav Seibert, Hradec Kralove, The Czech Republic 
First, we will prove that Ln and Fn+l are relatively prime numbers for each natural number n. 

Suppose there exists a prime q such that it divides the numbers Ln and Fn+1 for some n. It is 
known that LnFn+l = F2n+l+(-l)n - Fn+lLn+l-FnLn + (-tf (see S. Vajda, Fibonacci and Lucas 
Numbers & the Golden Section, pp. 25, 36). Since the prime q divides Fn+lLn+l-FnLn, it cannot 
divide FnLn+l, which is a contradiction. Further, it is easy to see that Fn+l <Ln< 2Fn+l, because 
Ln = Fn+l + Fn_x. To solve the given equation, it must be Fn+l = pm -1 and Ln- pm, which means 

•Fn+l = l. Then 
n+l _ on+1 

an+l-anp + apn-pn+l-an+l+f3n+l = a-f$, 

an-l-pn-l = a-p, 
an-l-pn-1 

:1. 
a-

But Fn_x = 1 holds only for w-1 = 1, « - 1 = 2, and n-1 = -1 if we admit Fibonacci numbers with 
negative indices. 

The given equation has only two solutions for natural numbers n, m. Concretely, if n- 2, 
m = 1, p = 3, then L2F3 = 3*(3! -1); if n = 3, m = 2, p = 2, then L3F4 = 22(22 -1) . In addition, if 
n = 0, m = 1, p = 2, the equality Z ^ = 2*(2l -1) also holds. 
Florian Luca commented that the equation LnFn+l = X(JC-1), where n and x are nonnegative 
integers is a more general equation. Reproved in one of his forthcoming papers that it has solu-
tions at n = 0, 2, and 3 as well. 

Also solved by Brian Beasley, Paul SL Bruckman, L. A. G. Dresel, Ovidiu Fordui, Walther 
Janous, Florian Luca, H.-J. Seiffert, and the proposer. 
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A Trigonometric Sum 

B-920 Proposed by N. Gauthier, Royal Military College of Canada 
(Vol 39, no. 2, May 2001) 

Prove that 

H^H^feh 
forp an arbitrary integer. 
Solution by Steve Edwards, Marietta, GA 

i 2 FF , J I 2 FF -̂f" 9 FF 2 FF 
n=l V * In1n+\J \ * rnl n+lj n=\ V ^ rnrn+l J \ *• rnrn+\ 

•i^Wi-^H^'li^. 
Now we can use the trig identity sin -^-cos-^ = ̂  (sin a - sin b) to get 

1 ̂  . pn . p;r - X s m ^ - s i n - ^ - . 

But this is a telescoping sum. Since ~ -> 0 as w -> oo, only y s i n ^ survives, and this is 0 for any 
integer p. 

5b/we solvers noted that the result is true forp any arbitrary complex number. 
Also solved by Paul SL Bruckman, Kenneth B. Davenport, JL A. G Dresel, Ovidiu Fordui, 
Toufik Mansour, Reiner Martin, Maitland Rose, Jaroslav Seibert, H.-J. Seiffert, and the 
proposer. 

We wish to belatedly acknowledge the solution to Problem B-901 by Charles K. Cook, and 
the solution to Problem B-911 by Lake Superior State University Problem Solving Group. 
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TENTH INTERNATIONAL CONFERENCE ON 
FIBONACCI NUMBERS AND THEIR APPLICATIONS 

June 24-Jtme 28, 2002 
Northern Arizona University 9 Flagstaff, Arizona 

LOCAL COMMITTEE INTERNATIONAL COMMITTEE 
C. Long, Chairman A. F. Horadam (Australia), Co-chair M. Johnson (U.S.A.) 
Terry Crites A. N. Philippou (Cyprus), Co-chair P. Kiss (Hungary) 
Steven Wilson A. Adelberg (U.S.A.) J. Lahr (Luxembourg) 
Jeff Rushal C. Cooper (U.S.A.) G. M. Phillips (Scotland) 
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2120 North Timberline Road 

Flagstaff, AZ 86004 
e-mail: calvin.long@nau.edu Fax: 928-523-5847 Phone: 928-527-4466 

CALL FOR PAPERS 
The purpose of the conference is to bring together people from all branches of mathematics and science who are 
interested in Fibonacci numbers, their applications and generalizations, and other special number sequences. For 
the conference Proceedings, manuscripts that include new, unpublished results (or new proofs of known theorems) 
will be considered. A manuscript should contain an abstract on a separate page. For papers not intended for the 
Proceedings, authors may submit just an abstract, describing new work, published work or work in progress. 
Papers and abstracts, which should be submitted in duplicate to F. T. Howard at the address below, are due no later 
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Box 7388 Reynolda Station 
Winston-Salem, NC 27109 (U.S.A.) 

e-mail: howard@mthcsc.wfu.edu 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND K WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSE© IN THIS ISSUE 

H-S81 Proposed by JoseLuiz Diaz, Polytechnic University ofCatalunya, Spain 
Let n be a positive integer. Prove that 

(a) F^+F%i+FZ2<Fn
F»+F„F;t>+F„Ftf, 

(b) F?-«FfrF&<F?-F&F&. 

H-582 Proposed by Ernst Herrmann, Siegburg, Germany 
a) Let A denote the set {2,3,5,8, ...9Fm+2} ofm successive Fibonacci numbers, where 

m > 4. Prove that each real number x of the interval / = [(Fm+2 ~ 1)~\ 1] has a series representa-
tion of the form 

*=5wv--v (1) 

where Fk_ e A for all / e N. 
b) It is impossible to change the assumption m > 4 into m > 3, that is, if A = {2,3,5} and 

/ = [1/4,1], then there are real numbers with no representation of the form (1), where Fk GA. 
Find such a number. 

SOLUTIONS 
Inspiring 

H-568 Proposed by K Gauthier, Royal Military College of Canada, Kingston, Ontario 
(Vol 38, no. 5, November 2000) 

The following was inspired by Paul. S. Bruckman's Problem B-871 in The Fibonacci Quar-
terly (proposed in Vol. 37, no. 1, February 1999; solved in Vol. 38, no. 1, February 2000). 

"For integers n,m>\, prove or disprove that 

/»-7r^zf2:Ti»-^i2m-1 
» • $ & > • 
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is the ratio of two polynomials with integer coefficients fm(n) = Pm(ri)/Qm(ri), where Pm(n) is of 
degree [^fj in n and Qm(n) is of degree [f-J; determine Pm(n) and Qm(n) for 1 <//* < 5." 

Solution by Paul S. Bruckman, Sacramento, CA 
We let the combinatorial number read "a choose h" be denoted by the symbol aCb. After a 

bit of manipulation, we may express fm(n) as follows: 

(.2nC„ffm(n) = 2£( 2 ,A) 2 (»-*) 2 m - 1 = 2gm(n), say. 
k=0 

That is, 

gM = VL(2nCk)2(n-kf-\ (1) 
Jc=0 

For convenience, we make the following definitions: 

4(") = ZG,A)2(»-*y; (2) 
A:=0 

^(«) = Z ( 2 n + 1 Q ) 2 ( « - ^ ; (3) 
k=0 

U(n)=,nC2n;V{n) = (2nC„f. (4) 

Note that gm(n) = A2m_l(n) and /m(/?) = 2A2m_l(n)/V(n). Also note that 

U(n -1) = /I(2/I - l)tf (/i) / {2(4/? - l)(4/i - 3)}, V(n -1) - ^2F(fi)/ {4(2w -1)2}. 

The following combinatorial identities are either directly found or easily derived from identi-
ties given in [1]; in some cases, their derivation is a bit lengthy, and is therefore abridged here: 

AQ(n) = \/2{U(n)+V(n)} (Identity (3.68) in [1]); (5) 

B0(n) = (4/i + l)E/(/i)/ (2/1 + 1) (Identity (3.69) in [1]); (6) 

A2(n) = n2U(n)12(4/?-1) (Identity (3.76) in [1] with In replacing /?); (7) 

Al(n) = nV(n)/4. (8) 

Proof of (8): The summand portion (n-k) in Ax(n) is equal to (n2 - k2 + (/?- k)2) I In. 
Thus, after simplification, 

2nAl(n) = /?24)(/?) - 4n2BQ(n -1) + ^(/t) 
= /?2(t/(/?) + V(n)) 12 - 2n3U(n) I {An -1) + /?2t/(/?) / (4/i -1)4/?2, 

which reduces to (8). D 

Z(2 .+ iQ)2(2^ + l -2*)2 = (2/? + l)£/(/?) (Identity (3.76) in [1], (9) 
with 2/1 + 1 replacing /i). 

Now the summand portion (/? - A:) in ^(/i) may be written as 

{4/?2-l + (2/? + l -2&)2-4£2}/ (4(2/1 + 1)}. 
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It then follows that 

4{2n + l)^(/i) = (4n2 - l)BQ(n) + C(n) - 4{2n + l)2(^(/i) - V(n)\ 

where C(n) is the expression given in the left member of (9). Then, after simplification, we obtain 
the following: 

Bl(n) = (2n + l)V(n)/2-(4n + l)U(n)/{2(2n + l)}. (10) 
Next, we note that 

(n - kf = (n- k)2{(2n - kf - k2} I An. 
Then, using the above definitions, we see that 

4nA3(n) = 4n2{B2(n -1) + 2Bl(n -1) + B0(n -1)} - 4n2B2{n -1); 

hence, 
A3(n) = 2nBl(n -1)+nB0(n -1). 

After further simplification, we obtain 

A3(n) = n3V(n) I [4{2n -1)}. (11) 

From the definitions given in (1) and (2), along with the relation fm(n) = 2gm(n)/V(n), and 
using the results of (8) and (11) we therefore have 

/!</!) =/t/2, /2(«) = »3/{2(2«-l)}. (12) 

We may prove Gauthier's conjecture by induction (on m). However, due to considerations of 
length, we can only outline the procedure and omit the details. The required tool for the proof is 
the following recurrence satisfied by the fm(n)'s: 

fm+2(n) = 2«2/m+i(»)-«4/m(«) + »4/m(«- !)• (13) 

Proof of (13): 

V(n){fm+1(n) ~ 2n2fm+i(n)+»7») / 2 

= i (2 n Q) 2 (« -^ ) 2 m _ 1 { (» -* ) 4 -2» 2 (« -^ 2 +« 4 } . 

Note that the quantity in braces is equal to {(w- k)2 -n2}2 = k2(2n~k)2; therefore, the last sum-
mation may be expressed as follows: 

(2«)2(2»-l)2£(2n_2Ct_1)2(»-*)2'"-1 

k=i 

= 4n\2n-l/£(2«-2Ck)2(n-l-k)2"'-1 

= 4n2{2n - lffm(n - \)V(n -1) / 2 = n4fm(n - l)V(n) 12, 

which reduces to (13). D 

Instead of applying induction directly on (13), we transform this recurrence and apply it to a 
modified set of functions. Namely, we make the following transformation: 
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* » = / » W , (14) 
where 

Tm{n) = 2r+l(n - 1 / 2)(r) = 2{2n -1)(2« - 3)... (2#i - 2r +1) (15) 
and 

r = [m/21 (16) 

Therefore, the Tm(nYs are polynomials in ?? of degree r. By making the substitution indicated 
in (14) into the recurrence (13), we obtain our modified recurrence relation. It becomes more 
convenient to dichotomize this relation into the two cases m = 2r and m = 2r +1: 

k2r+2(n) - 2n\2n -1 - 2r)k2r+l(n)+n4(2n-l- 2r)k2r(n) = n\2n - l)k2r{n -1), (17) 

k2r+3(n) - 2n\r+2(n)+n%2n -1 - 2r)k2r^(n) = n4(2n - l)k2r+l(n -1) . (18) 

From (12) and the relation in (14), we obtain the initial values 

*i(n) = n, k2(n) = n\ k3(n) = n\ k4(n) = 3n6 - 5n5 + n4. (19) 

It follows (by an easy induction) from (17), (18), and (19) that the km(ny$ are polynomials in n 
with integer coefficients. 

The following results are posited: 

k2r(n) = a2rn3r + R3r_x(n), k2r_x{n) = a 2 r V ' " 2 + % - 3 ^ ) ; (20) 

a2r = (2r-l)\/T-\ a2r_l = (2r-2)\/2r-1. (21) 

In these formulas, the functions RM(ri) are polynomials in n of degree M In order to prove (20) 
and (21), we must first verify that they yield the correct values for r = 1 and r - 2. Using (19), 
we find that ax = a2 = a3 = 1, and a4 = 3, thereby validating (20)-(21) for r = 1 and r = 2. If we 
apply the recurrence (17) to find k2r+2(n)y expand each expression using the putative expressions 
in (20)-(21), and compare coefficients, we find that the coefficients of n3r+5 and n3r+4 vanish, 
while the coefficient of n3r+3 is found by the first formula in (21) with r + 1 replacing r. This 
establishes the first half of the inductive step. 

Then applying (18) to obtain k2r+3(ri) and repeating the process, we find that the coefficients 
of n3r+6 and n3r+5 vanish, while the coefficient of w3r+4 is found by the second formula in (21) 
with r +1 replacing r. This establishes the second half of the inductive step. This is essentially 
equivalent to Gauthier's conjecture, with the added bonus of an expression for the leading term of 
km{n). 

Note that the degree of k2r(n) is 3r, while the degree of £2r-i(w) *s 3 r - 2 ; this fact may be 
expressed concisely as follows: the degree of km(n) is [3m/2]. 

Having established (20)-(21), we may then revert to the original definitions. That is, we may 
express fm(n) as the ratio Pm(n)/Qm(n) of two polynomials with integer coefficients, where 

Pm(n) = km(n) and Qm(n) = T(n-l/2)^ = 2(2n-l)(2n-3) ...(2w-2r + l), 

with r = [m/2]. Thus, the degree of Pm{n) is [3m 12] = m+r, while the degree of Qm(n) is r. 
This completes the demonstration of Gauthier's conjecture. 

It only remains to fulfill the last part of the problem, namely, to display the functions fm(n) 
for m = 1,2,3,4,5. Since we already know that fm(n) = Pm(n) I Q„(ri), where 
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a,(w) = 2(2w-lX2n-3)...(2w-2r + l), 
it suffices to display the first few values of Pm(n). As we have already shown, 

BSfl) = n, P2{n) = n\ P3(n) = n\ P4(n) = n4(3n2 -5w + l). 
Continuing by means of (17) and (18), we find the following: 

P5(n) = n4(6n3 -I2n2 + 6n-1), 

P6(n) = n4(30n5-l50n4 + 252n3~m5n2 + 65n-9), 
P7(n) = n4(90n6 -5\0n5 + 1074w4 -1128/?3 + 650«2 - 198w + 25), 

i> (W) = n4(630nB - 6300/?7 + 24990/?6 - 52200«5 

+ 64506w4™49356«3+23111/?2-6087« + 691), 
etc. 

By means of a little program names Derive, the author obtained the expanded expressions for 
Pr(n) from r = 1 to r = 15. These are available upon request. It would be desirable to identify the 
"Gauthier polynomials" Pr(n) with more familiar polynomials already appearing in the literature, 
whose properties may already be known. 
Reference 
1. H. W. Gould. Combinatorial Identities. Morgantown, W. Va., 1972. 

A High Exponent 

H-569 Proposed by Paul S* Bruckman, Berkeley\ CA 
(Vol 38, mo. 5, November 2000) 

Let r(n) and a(n) denote, respectively, the number of divisors of the positive integer n and 
the sum of such divisors. Let e2(n) denote the highest exponent of 2 dividing n. Let/? be any odd 
prime, and suppose e2(p +1) = h. Prove the following for all odd positive integers a: 

e2(*W)) = e2(T(if))+h-l. (*) 

Solution byH.-J. Seiffert, Berlin, Germany 
Ifm and n are any positive integers, then 

e2(m) = 0 if m is odd, e2(mn) - e2(m) + e2(n), 

e2(m + n) = tmn(e2(mX e2(n)) if e2(m) * e2(n). 

Let h and q be positive integers such that q is odd and 2hq -1 > 1. We consider the positive 
integers 

2km-l /<jh^ *\2km i 

where k is any positive integer and m any odd positive integer. First, we prove that 
e2(Ah m) = h for all odd m e N. (2) 

Since Alx = 2hq9 this is true for m = 1. Suppose that (2) holds for the odd positive integer m. 
Using the easily verified equation 
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A,m+2 = (2hq-l)4AUm + 2h+1q(2»-lq2 -2hq + \), 

from (1) and the induction hypothesis, we obtain e2(Alm+2) = h, so that (2) is established by 
induction. Next, we prove that, if m e N is odd, then 

e2(Ak,m) = k+h-l for all keN. (3) 

By (2), this is true for k = 1. Suppose that (3) holds for k eN. We have 

A+i, „ = \m((2hq ~ lfm +1) = 2Aktm(f2h-lq - \)AK m +1), 

so that, by (1) and the induction hypothesis, e2(Ak+lm) = e2(Akm) + l = k+k. This completes the 
induction proof of (3). 

Let/?, a, and h be as in the proposal. Then there exist positive integers k, q, and m such that 
q and m are both odd, p = 2hq - 1 > 1, and a = 2km - 1 . Noting that 

a(p^ = l + P + ^^p^Pj^=AKm 

and 
T(pa) = a + l = 2krn, 

we see that the requested equation (*) is an immediate consequence of (3). 
Also solved by L. A. G. Dreself D. Iannucci,H. Kwottg? R Martin, J. Spilkes, and the proposer. 

EDITORIAL REQUEST 
Please send in proposals!!! 
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