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MORGAN-VOYCE CONVOLUTIONS

A. F. Horadam

The University of New England, Armidale, Australia 2351
(Submitted December 1999-Final Revision August 2000)

1. GENERATING FUNCTIONS

Morgan-Voyce Generators

Much has been written lately about the four Morgan-Voyce polynomials B,(x), b,(x), C,(x),
and c,(x). Basic properties of these polynomials are developed in [2], which contains appropriate
reference material.

The main purpose of this paper is to investigate the simplest features of the convolutions of
the Morgan-Voyce polynomials and their corresponding numbers occurring when x=1. Our
Morgan-Voyce polynomials are defined [2] in terms of generating functions thus:

5.5,y =0-Cr Ay =T =5 Bi9) =0 a
3G,y =2- 2+ X, (12)
2.,y =[1- 0yl 13)
goc,,(x)y" =[-1+(G+x)ylg, (1.4)

where, in (1.1)-(1.4), the functional notation g(x, y) = g has been dropped in the interest of sim-
plicity. So, g (1.1) may be said to be the "single parent" progenitor of the family (1.2)-(1.4)!

Partial differentiation with respect to x (Section 5), which is a second feature of this paper,
provides us with deeper insights into the essential nature of the polynomials. Two related papers
could indeed have evolved from this paper but it is thought more desirable to preserve unity and
cohesiveness.

Motivation
Stimuli for pursuing this investigation are:

(i) in mountaineering language, "it [the challenge] is there!" and

(ii) it increases our knowledge of convolution analysis beyond that already established for other
well-known polynomials.

Initial Conditions

All the convolution number sequences displayed in (2.2a), (2.3a); (3.2a), (3.3a); (4.2a), (4.32),
(5.2a), (5.3a) for BO(x), CO(x), P (x), c®(x), respectively, when k = 1,2, have been checked
against those obtainable from the general formulas in [1] which were determined by means of
Cauchy products. This signifies that our generating function definitions must, when x =1, pro-
duce exactly the same two initial numbers of each sequence as are specified in [1].
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2. CONVOLUTIONS FOR B,(x)
Definitions

The k™ convolution polynomials B (x) of B,(x) are defined by

2B£k)(x)y"“ =g, BP(x)=0, @.1)
= (i Bn(x)y"“)m, (2.12)

so that B (x) = B, (x).
Correspondingly, the k" convolution numbers B®(1) = B® arise in the special case when
x=1.
Examples
k=1
BO(x) =1, BO(x) =4+2x, BO(x)=10+12x+3x%,

2.2
BP(x) =20+42x +24x* +4x>, B{(x)=35+112x +108x? +40x> +5x*, ... 22)
k=2
B@(x)=1, BP(x)=6+3x, B{¥(x)=21+24x+6x?, @.3)
BO(x) = 56+108x +60x* +10x°, B®(x) =126+360x +330x2 +120x> +15x%, ...
Special Cases
{B{) =1,6,25,90,300,.... (2.2a)
{BP}° =1,9,51,234,961, .... (2.32)

Larger values of k£ and n clearly involve cumbersome expressions which do not excite our
interest.

Recurrence Relations
Immediately from (1.1) and (2.1) we deduce that

BP(x) = BH*D(x) - (2+x)BE(x) + BE () (2.4)
with the simplest instance (k = 0) being
B,(x) = B{(x) - (2+x) By (x) + BY,(x). (2.42)

Partial differentiation with respect to y in (2.1) and comparison of coefficients of y"~* leads to
(=DBP(x) = (k +D{(2 +x)BED(x) - 2BE (%)} (2.5)

n—-1

Amalgamating (2.4) and (2.5) and replacing k by k — 1, we obtain the reduction
(n-1DBP(x) = (n+k —1)(2 +x)BE)(x) — (n+2k — 1) BE, (x). (2.6)

n—1

Recurrence (2.6) enables us to consolidate a table for B¥)(x), given x =1, from two previ-
ously known successive values. Substitution of k¥ = 0 reduces (2.6) to the defining recurrence for
B,(x). Furthermore, k£ =0 in (2.5) produces the simple link (7 - n+1)

nB,,,(x) = 2+ x)BP(x) - 2B0,(x). 2.59)
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Further partial differentiation, but this time with respect to x, will be investigated for all the
Morgan-Voyce polynomials separately in Section 5.

3. CONVOLUTIONS FOR C,(x)

Coming now to C,(x) we find ourselves enmeshed in more complicated algebra than that for
B, (x), by virtue of the definition (1.2).

Definitions
The k™ convolution polynomials C¥)(x) of C,(x) are defined by

> Oy =[2-@+x)y]gH G.1)
n=0

(S, G.12
=0

so that CO(x) = C,(x).
Correspondingly, the k" convolution numbers C*) (1) = C® arise when x =1.

Examples
k=1
CP(x)=4, CO(x) =42 +x), CP(x) =12+20x +5x2, 3.2)
CP(x) =16 +56x +36x* + 6x°, C{P(x) =20+120x +142x% +56x° + Tx*, ... '
k=2
C?(x) =8, C¥P(x) =122 +x), CP(x)=48+72x +18x?, 33)
C{P(x) = 80+240x +150x +25x°, C{P(x) =120+600x +678x* +264x> +33x*,....
Special Cases
{COY =4,12,37,114,345, ... (3.2a)
{CP}> =8,36,138,495,1695, .... (3.3a)
Recurrence Relations
Taken together, (2.1) and (3.1) give rise, when £ =1, to
() = 4B (x) - 42 + X)BO (x) + (2 + x)* B, (x). G4

Differentiate (1.2) partially with respect to y and equate coefficients of ™!, After simplifica-
tion, the algebra reduces to

nC,(x) = (2+x)BO(x) - 4BY,(x) + 2+ x)BO, (x). 3.5
Uniting (3.4) and (3.5), we establish, on tidying up, that
n(2+x)C,(x) = (4 +x)xBP(x) + CO (). (3.6)

Multiply numerator and denominator of (3.1), when k¥ =0, by g (1.1). Simplification then
shows, by (2.1), that

C,_y(x) = 2BO(x) - 32+ x) B, (x) + (6 + 4x + x?) B, (x) - (2 + x) BY, (x). 3.7
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Extending (3.5) to k =2, we quickly get
C (%) =8BP(x) - 12(2 + x)BZ, + 6(2 + x)* BZ,(x) - (2 + x)* BA(x). (3.8)

n-1

Beyond this, the formulas become even less algebraically attractive. Enchantment and time
are lacking to pursue this unproductive activity.

4. CONVOLUTIONS FOR b,(x)

Definitions
The k" convolution polynomials b®)(x) of b (x) are defined by

S0

2,500y = (1= 1+ )y gt (s0 8P (x) =1) 4.1
n=1
) k+1
( bn-1<x>y"-‘} . (4.12)
n=1
In particular, when x =1, the k" convolution numbers b (1) = b® emerge.
Examples
k=1
bP(x) =2, bP(x)=3+2x, bP(x) = 4+8x +2x2, @2)
B (x) = 5+20x +13x2 +2x°, ... '
k=2
b@(x) =3, bP(x)=6+3x, b (x)=10+15x+3x?, @3)
BP(x) = 15+45x +24x> +3x°, ... '
Special Cases
B0}y =1,2,5,14,40, ... (4.2a)
6P} =1,3,9,28,87, ... (4.32)
Recurrence Relations
Put £ =11in (4.1). Then we immediately construct the recurrence
bP(x) = B () - 201+ 1) BO(x) + 1+ %) B2 (). (4.4)
Partially differentiate (4.1) with respect to y. Then
nb,(x) = BO(x) - 2B, () + 1+ ) B, (x). @.5)
Together, with suitable adjustment, (4.4) and (4.5) produce
nb,(x) = b04(x) + 2xB0) (x) - (x +x) B, (). (4.6)

Next, let us multiply numerator and denominator of (4.1), when &k =1, by g (1.1). Upon the
requisite algebraic manipulation with application of 5P (x) given by (4.1), when & =2, namely,

bP(x) = B (x) -3 +0)BP (x) +3(1+x)" B (x) - (1 +x)° B (x), (4.7)

n

it transpires that
D (x) = b (x) + BP(x) - (3+2x) B,

n—-1

(x)+(@B+4x+ xZ)B,(,E)Z'(x) -1+ x)2B,(ﬁ)3(x). (4.8)
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Caveat! Anticipating (5.1) we might have been tempted to use the formula b,(x) =B, (x) — B,_,(x)
[2, (2.13) : x=1] to derive the valid generating function > b,(x)y"" = (1- y)g. However, the
difficulty here for convolutions is that the first element defined is b,(x)=1. What we need is
by(x) =1 to be covered by the definition. Consequently, we must abide by (4.1).

S. CONVOLUTIONS FOR c,(x)

Definitions

Care must be taken when we come to deal with the convolutions of the last of our four
Morgan-Voyce polynomials. Our problem with c,(x) as defined in (1.4) is that ¢;(x) =—1. But
we do not want negative numbers as part of convolutions. So we begin the sequence for c,(x)
with ¢(x) =1.

Recalling [2, (3.7)] that ¢,(x) = B,(x)+ B,_,(x), we define the k" convolution polynomials
c®(x) of c,(x) to be given by (n>1)

Ll

DBy =1+ y)H g (5.1)

n=1

Substitution of x =1 engenders the k* convolution numbers ¢ (1) = ¢®.

Examples
k=1
Px)=1, P(x)=6+2x, P(x)=19+16x+3x?, (5.2)
cD =44+ 68x +30x% +4x>, ¢ =85+208x +159x% +48x> +5x*, ...
k=2
P(x) =1, P(x)=9+3x, §?(x)=42+33x+6x%, (5.3)
cP(x) = 138+189x +78x? +10x°, c¢{P(x) =363 +759x +528x* +150x> +15x%, ...
! Special Cases
{c} =1,8,38,146,505, .... (5.2a)
{eP}7 =1,12,81,415,1815, ... (5.3a)
Recurrence Relations
From (5.1) and (1.1) we have automatically
¢ (x) = BO(x) + 2B, (x) + B, (x). (5.4)

Partial differentiation in (5.1) with respect to y, in conjunction with (1.1), and n - n+1, pro-

duces
n¢,,1(x) = (3+x)BO(x)-2BY,

() — Br(:l—)z(x) (5.5
Joining (5.4) and (5.5) ensures the neat nexus
P (x) = (4+x) B (x) = 1,1 (x). (5.6)

Next, taking & = 0, multiply numerator and denominator in (5.1) by g. Organizing the result-
ing material and applying (1.1) then establishes the result:

1 (¥) = BEY() = 1+ 0)[BP (0) + B ()] + B2 (x). (5.7
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6. PARTIAL DIFFERENTIATION
In this section, partial differentiation is performed only with respect to x.

Notation
Successive orders of partial differentiation (first, second, third, ..., #™) will be represented by

ronom

superscript primes ', ", ”, ..., k primes, where the unbracketed superscript £ is to be clearly distin-
guished from the bracketed k™ convolution order symbol superscript (k). Thus, we will have

IB,(x J*B,(x o B X
BI( )_ () Bn( )_ ()’ ()_ ()
Likewise for C,(x), b,(x), and c,,(x).
I. B¥(x): Equate appropriate coefficients using (1.1) in
2By = yg* = 3 B (x)y"
n=1 m=0
unfolding the nice result
B(x)= B (x). 6.1)
Repetition of the process gives
B!'(x) = 2B&,(x). (6.1a)
Generally,
BF(x) = k! B, (x). (6.1b)

Temporarily revert to BP(x). Then we may write
Y BP@)y" ! =[{1-2+x)y+y} +{2+x)y-1}g*= Y BO(x)y +{2+x)y-1}g’,
n=1 n=1
whence
BA(x) = BP(x) +(2 +x)B(x) - B (). (6.2)
Accordingly, (6.1a) and (6.2) conjoined give
B (x) = BP(x) - 2+ x)BA(x) + By (x) (6.3)
which is (2.4) when k =1.
Two pleasant theorems now conclude this subsection.
Theorem 1: B!_,(x)— B!(x) = (n+1)BY(x).
Proof:
Ba(9) - By(x) = 2BP(x) ~2B%(x) by (2.12)
=2B0(x) +2{2+x)BA(x) - B (¥)} - 2B (x) by (2.7)
=2BP(x) +2{(2 +x)B&(x) - 2B&, (%)}
=2BP(x)+(m-1)BP(x) by (2.8)
= (n+1)BY(x).
Corollary 1: ™ ,nBY,(x) = B2 (x)+ B,(x).

More generally,
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Theorem 2: Bf,,(x)— BX(x) = (k- 1)!(n+1)B%;D, (x).

In particular, we have B, ,(x)-B/(x)= (n+DB,,,(x) (=C.,,(x)) as we expect from [2,

(3.9), (3.24)].

IL C¥(x): Consider the relation C,(x) = B, a(¥)—B,,(x) [2, (3.9)]. Redefine (1.2) in this con-

text to assert
2. Gy =(-y)g-y, Cx)=2.
n=1

Elementary processes then, with [2, (3.24)] produce
Ci(x) = B (x) - B, (x) = nB,(x),
Cr(x) =2(BA\(x) - B2y (x)) = nB2\(x) = nB;(x),
culminating in
G (¥) = kN(BE, 11 (¥) = BE, () = n(k - DI B (),
whence

3 CE() = k1(BY, () + BO, () 1).

n=k+l

In particular (k£ =1),
m
2. Cr=BP)+ B, ().
n=1

Analogously to Theorem 2 there is
Cria(0) = G (x) = nCi () + 2B, (%),

(6.4)

(6.5)
(6.6)

6.7

(6.8)

(6.8a)

(6.9)

which can be expressed in convolution form. Proof of the assertion (6.9) is left to the reader.

IIL b¥(x): Convolutions of b,(x) do not appear in this section (see the Caveat in Section 4), so

we may, on making use of [2, (2.13)], choose the definition

S b,y =(1-y)g, bo(¥)=1.

n=1

Then, by (1.1),
bi(x) = B (x) - B, (x) = By(x) - B, (%),
by (x) = 2B2y(x) - BE(x)) = By/(x) — By, ().
Eventually, and generally,
b(®) = k(BEL() - B, 1() = By ()~ By (%),
Summation discloses that
3540 = B, () = By(®)
while "~
i Bt (x) = k! BB, (x) = B (x).

n=k+1
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From nB,(x) = Cy(x) = b;(x) + b, ,,(x), we may deduce after a little rearrangement that
D, (=1)™"nB,(x) = b},,(x) (6.16)
n=1

which can be generalized to 5%, (x).

IV. c¥(x): Appealing to [2, (3.7)], we take

gc,,(x)y" = (1+y)g ©.17)
Following the procedure in III, we rapidly reach the general situation:
6 () = KI(B5,(0) + BEL(x)) = By (x) + B,y (¥). (6.18)
From nB* (x) = C¥*(x) = & (x) — F*1(x) (see [2, (3.11)]), it then transpires that
3 nBE(K) = £, (6.19)
n=1
Suppose k& =1 in (6.18). Addition then reveals that
zm:(—l)"cr’,(x) = (-1)"B3(x¥) = (-1)"B;,(x), (6:20)
whence, by (6.16), "
2709 = DT LHC). 621)

7. CONCLUSION

Undertaking a thorough investigation of the latent features of the mixed foursome of Morgan-
Voyce polynomials is a task of rather Herculean proportions, but no doubt somewhat more satis-
fying than cleansing the Augean stables. One challenge confronting us is an examination of the
rising and falling diagonal polynomials associated with the Morgan-Voyce polynomials. For a
related study of this kind of project, the recent paper [3], containing many references, is strongly
suggested.
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1. INTRODUCTION

Let a,,...,a,_, (r =2, a,_; #0) be some real or complex numbers. Let {C,},>, be a sequence
of C (or R). Sometimes, for reasons of convenience, we consider {C,},s, under its equivalent
form as a function C:N— C (or R). And when no possible confusion can arise, we write C(n)
rather than C, and, similarly, in case of an indexed family of functions C; :N— C, we use C;(n)
instead of C; ,. Let {I.},>o be the sequence defined by the following nonhomogeneous recur-
rence relation of order 7,

T

n+l = a0];1 +a1];l—l +ee +ar—17;1—r+1 + Cn+1 fOI' nzr- 17 (1)
where 1, ..., T'_, are given initial values (or conditions). In the sequel, we refer to such sequence

{T.},0 as the solution of "recurrence relation (1)." If the function C satisfies

d
C,= Z,BjCj,,,

J=0

for some finite sequence of functions C,, ..., C; :N — C, the solution {7}},, may be expressed as

d
T, = Zﬂ jI_;',n >
=0
where {7} ,},»o is the solution of (1) with C, = C;(n). Solutions of (1) have been studied in the
case in which C equals a polynomial or a factorial polynomial (see, e.g., [1]-[4], [7], [9], [12]).
The purpose of this paper is to study a matrix formulation of (1), which extends those con-
sidered for (1) in [6], [10], and [11], when C(n)=0. This allows us to provide a method for
solving equation (1) for a general C:N— C. Our expression for general solutions of (1) extends
those obtained in [1] for » >2. If the nonhomogeneous part equals a polynomial or a factorial
polynomial, our general solution allows us to recover a well-known particular solution—Asveld's
polynomials and factorial polynomials (see [2], [3], [9]).
This paper is organized as follows. In Section 2 we study an 7 x 7 matrix associated to (1),
in connection with r-generalized Fibonacci sequences. In Section 3 we use a matrix formulation
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with an aim toward solving (1) for arbitrary C:N— C. Section 4 is devoted to the study and
discussion of our general solution in the polynomial and factorial polynomial cases. Section 5
consists of some final remarks.

2. MATRICES ASSOCIATED TO »-GENERALIZED FIBONACCI SEQUENCES

From the r-generalized Fibonacci sequence V,, =aj, +--++a,_V,_,,, for n>0, as studied
by Andrade and Pethe [1], we take r copies, indexed by s (0< s<r—1):

Vid=ad 0+ +a p 9, fornz0. @)

(2|

We provide these r copies with mutually different sets of initial conditions, that is, V_(j-.) =6,

(0<j<r-1,0<s<r-1), where J, ; is the Kronecker symbol. Consider the following r x r

matrix:
4 a a,.,
1 0 0
A=[0 1 0 - 0| 3)
0 - 0 1 0

Expression (3) shows that the columns and arrows of A4 are indexed from 0 to »—1. The usual
matrix indexing form 4 =(q; ;)i<; ;<, of (3) is given as follows: a,; =a;_, for every 1< j<r,
and a;; =0, ;. forevery 2<i<r,1<j<r.
The matrix (3) has been considered for r-generalized Fibonacci sequences in [6], [10], [11].
A straightforward computation allows us to establish that the matrix 4 is related to the r-
generalized Fibonacci sequences (2) as follows.

Proposition 2.1: Let A be the matrix defined by (3). Then, for every n>0, we have

( ls)0<x s<r-1

where
ar=ve. O]

Remark 2.1: Due to the initial conditions V'Y =&, (0< j<r-1, 0<s<r-1), we have indeed
that A° equals the r x r-identity matrix.

3. SOLVING (1) BY MATRIX METHODS

Consider X,=%T,...,T,_,,) and D,=(C,,0,...,0) for n>r—1, where ‘Z denotes the
transpose of Z. We can easily verify that (1) is equivalent to the following matrix equation:

X, ,=4X,+D,,,, n=>r-1, 5)

where 4 is the matrix (3). From (5), we derive that
X,=A""X,_ +) A"D,, nxr. (6)

k=r

Let R,=Y,_ A"*D,. Then we can verify that R,,, = AR, +D,,;. From expressions (4), (5),
and (6), we derive the following result.
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Theorem 3.1: Let {1},., be the solution of (1) whose initial conditions are T, ..., T,

1. Then,
for n>0, we have

r=1

];1 = Z n5r+lT—s—l + ZV(O) (7)

5s=0
Because of (2), the sequence {U,,},», defined by U, = X7, V)

) al s is a solution of the homo-
geneous part of (1). Thus, the sequence {WP} _, where

WP = ZV(")C = —Z ol + T,

5s=0

is a particular solution of (1) that satisfies W?? =0 for n=0,1,...,7 —1. We call {9}, ., the
JSundamental particular solution of (1). Hence, (6) and Theorem 3.1 allow us to formulate the
following result.

Theorem 3.2: Let {T},-, be a solution of (1). Then, for n >0, we have

T, = T WP = T _ ZV(s) T4P9, 4+ T4, (®)

n—-r+14r—s-1
5s=0

where {W P9} ., is the fundamental particular solution of (1), {Z*?} ., is a solution of the
homogeneous part of (1) with initial conditions 7, ..., 7._,, and {IP?} ., is a particular solution
of (1) with initial conditions T3P, ..., T,

Expression (8) extends the one established in [1], with the aid of Binet's formula in the poly-

nomial case.

4. POLYNOMIAL AND FACTORIAL POLYNOMIAL CASES

4.1 Elementary Polynomial Solutions and Asveld's Polynomials

For C(n)=n’ (0< j<d), the fundamental particular solution {W 7"}, ., called the elemen-
tary fundamental particular solution, is
ij’;,‘) =Yg VO fornzr.
q=r
Let {f,},», be the sequence of C*-functions defined on R as follows:
f(x)= Z VO exp(qr). ©)
q=r
For each function f,, the j® derivative is
9@ = X0V exp(py)
pran
Expressions (2) and (9) imply that {£"},,, satisfies the following nonhomogeneous recur-
rence relation of order 7,

ANGE Zafn”(x) +(n+1) expl[(n+1)x]. (10)
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For reasons of simplicity, we suppose that (¥ ”},._.., has simple characteristic roots. Thus,
Binet's formula takes the form V¥ =377} a,27. We have to distinguish the following exhaustive
cases:

1. A, #1foreveryi (0<i<r-1).

2. Thereexistsd (0<d <r-1) suchthat 1, =1.

In the sequel, we suppose (without loss of generality) that 1,=1.
When 4, #1 for all i (0<i <r-1), we consider

r=1

H, ()= g(0)e™ ™, K ,(x)=3 w04, - ay
where -
f9= 3 < v =
Andif A,=1, we set
Go(X) = @Yo, Hy (9)= gy, K, (9)= 3 m(0)2rr™, (12)
where ~ i )

&(x)= z xa,-
i=1€ —

Weset S,(x)=H, ,(x) if ;=1 foralli (0<i<r-1)and §,(x) =G,(x)+ H, (x) if 1,=1.
Because the A,'s are characteristic roots, we have

A

H

r-1

Ky = 2a ki) (p=1.2).

Then, from (10), we derive that for j >0 we have

r=1
SD(x) = Z a SO (x) + (n+1) exp[(n+Dx]. (13)
i=0
As a consequence, we have the following lemma.

Lemma 4.1:

(@) The elementary fundamental particular solution {7}, of (1) is given byW#? = £0(0).
More precisely, we have W29 = H{)(0)+ K{)(0) if A, #1 for all i (0<i <r—1), where H, ,(x)
and K ,(x) are given by (11), and W% = GY(0)+ H)(0)+ KY)(0) if A,=1, where G,(x),
H, (x), and K, ,(x) are given by (12).

(b) For j =0, the sequence {S$’(0)},s¢ is a particular solution of (1) for C(n) =n’.

By Leibnitz's formula, we have

HY (x) = Z {Z( )( ) a ")(x)} we™D* for j>0,

i=0 k=i

where p=1,2. If A,=1is a characteristic root, then we have
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GO =Y P =y 3. (n-pY .
p=r p=0

It is known that X7 _, p = Q;(n), where Q;(n) is a polynomial of degree j+1. Thus, Lemma 4.1
and (13) allow us to derive the following result.
Theorem 4.2: Let {T},>, be a solution of (1) with C(n) =n/. Then the elementary polynomial
solution {F;(n)},5, of (1) is given by F;(n)= §7(0). More precisely, if 4,1 for all i (0<i<
r—1), we have

Py =313 ()% )ev-20\ 14

=313 (5)(7 s, a4

and if A,=1 we have

Jj+l J J .
kY (j-i
P =03 p(n -+ 3 {Z (5)(%)e >(o>}n". (15)
k=0 k=0 i=k

If Ao=1, the polynomial (15) may be written as P,(n) = ag’™'+ 3, v, 1, where vV, are
constants (real or complex numbers).

Theorem 4.2 shows that particular polynomial solutions P;(n) (0< j<d) defined by (14)-
(15) are the well-known Asveld's polynomials studied in [2], [4], [9], and [12]. Our method of
obtaining P;(n) (0< j<d) is different. For their computation, we use the classic result on
3o P’ = Q,(m) and the j" derivative of H, ,(x) (p=1,2) given by (11)-(12). The derivative of
H, (x) (p=1,2) can be derived from the following property.

Proposition 4.3: Let u(x) == with A= 0,1and x #In(2) if 2 > 0. Then we have
T.(e")
u(k)(x) = (eTI_C_}?jm’
where T, = X(X — 1) Z& — (k +1) XT, for k >0.

4.2 Elementary Factorial Polynomial Solutions and Asveld's Polynomials

For C(n) =n", the elementary fundamental particular solution {V'T/jf’jf)}nz 0 18

weo =3 pyO forallnzr.
p=r
Instead of (9), let {f.},, be the sequence of C*-functions on R* = R— {0} defined as follows:

Fi0) = (1Y S V© xkwt, (16)

The g™ (g>0) derivative of &, ,(x)= x 1 (x £0) is hj(.f’,l (x) = (-D(k - j+q)@Px7F*/-a-1,
Hence, the j* derivative of £, is

~ - n - I
D) = Zk(J)Vn(gl)‘x k-1

k=r
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From (2), we derive that {f,},,, defined by (16) satisfies
T = Za AAORICES (17

As in Subsection 4.1, we suppose that {#/{®} . _ ., has simple characteristic roots. We also con-
sider the following two exhaustive cases: (a) A4,#=1 for every i (0<i <r—1); (b) There exists d
(0<d <r-1) suchthat 1, =1. Asin Subsection 4.1, we suppose in the second case that 1,=1.
The case in which 4, =1 for some d # 0 can be derived easily.
When 4, #1 for alli (0<i <r-1), we set
By ()= 810 ,(0), Ky, (x)= 2 (AT, (18)
0<i<r-1

where

r=1

8= L Y - (1)1“ -

i=0

If 1,=1, we set
n r-1
G,()= -V ay) b 1 (x), Hy ,(x)=Z©h; (x), K, ,(x)=Y ()4, (19)
k=r i=1
where
r-1

()= -1y 21 e

Because the A,'s are characteristic roots, we have

r-1

K(x) = Z KD, (x) (p=1,2).
Then from (17) we derive that, for all j >0, we have

590 = T aS900 + @ n0x, 0

=
where §,(x) = H, ,(x) if A;#1 foralli (0<i<r-1) and 8,(x)=G,(x)+H, ,(x) if A,=1.
Therefore, we have the analog of Lemma 4.1 as follows.

Lemma 4.4

(a) The elementary fundamental particular solution {7{#?}, . of (1) is given by W = FO(1).
More precisely, we have W% = H)(1)+ KU)(1) if A, #1 for all i (0<i <r~1), where H, ()
and K ,(x) are given by (18), and W29 =G,(,’)(1)+H§{2,(l)+IC§{Z,(1) if 1,=1, where G, (x),
ﬁz’n(x), and I?Z,n(x) are given by (19).

() For j >0, the sequence {S’(1)},, is a particular solution of (1) for C, =n).

By Leibnitz's formula, we have

J
=2 (§)ee P mie @=1.2

2002] 111



SOLVING NONHOMOGENEOUS RECURRENCE RELATIONS OF ORDER ¥ BY MATRIX METHODS

Thus,
AN =31 (8)gomn=jiyoxmit p=1,2)
k=0

Consider the following "binomial theorem for factorial polynomials," which is designated by
Asveld [3] as Lemma 1:
(x+y)® = zk: ( I’c) PONCEY
i=0

Then we have

7 L (L k\(i j— (ki) |G

Hh =2, (; 1" ( j)(i)géf OG- )4 |1 (p=1,2).
Hence, H »n(D) (P =1,2) is a factorial polynomial. If 1,=1, we have

n-r

GO = ayy, (1-B).
k=0

Next, we establish that GY)(1) is a factorial polynomial.

Lemma 4.5: For j >0, we have

n Jt

1
Zk(f) = Zﬂj k"(k),
k

k=0 =0

where f; , are constants (real or complex numbers).

Proof: Consider Stirling numbers of the first kind s(z, ) and Stirling numbers of the second
kind S(z, ), which are defined by
J i
XD =3"s(t, j)x' and ¥ =) S(z,)x®.
t=0 t=0
By successive applications of the two preceding formulas and the following classic result,

k=0 i=0
we derive that
LS e @
Zk =B,
k=0 g=0

where
41

J
ﬂj,q = Z Zai,ls(t) .])S(qa .]) g
i=q i=0
Now, using Lemma 4.4, we derive the following resuit.

Theorem 4.6: Let {T},-, be a solution of (1) with C(n) =n"). Then the elementary factorial
polynomial solution {P,(n)},,, of (1) is given by P,(n) = §(1). More precisely, if 4, # 1 for all
i (0<i<r-1), we have
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P N P gUB 1)k = %D [0,
m>;i;<>(xgg 1)k - j) )n 1)
And if 1,=1, we have
B =(- l)faoZy, 2943 (Z(—l)"( AERCE ])(k"’)Jn(’) 22)
i=1 \ k=i

where y ; , are constants (real or complex numbers).

The particular factorial polynomial solutions Iﬁj(n) (0< j<d) defined by (21)-(22) are the
well-known Asveld factorial polynomials studied in [4] and [7]. Our method for obtaining ﬁj(n)

(0< j<d) is different from Asveld's. For their computation, we use Lemma 4.5 and the j™
derivative of H, ,(x) (p=1,2) as defined by (18)-(19).

4.3 Polynomial and Factorial Polynomial Solutions for 4,=1 of Multiplicity m >1

Suppose that 4, #1 for all i (0<i<r-1). Then (14) and (21) imply, respectively, that the
Asveld polynomials P;(n) (0< j<d) are of degree j and the Asveld factorial polynomials IN’j(n)
(0<j<d) are of degree j. Meanwhile, for 1,=1, (15) and (22) show that P,(n) and P}(n)
(0< j <d) may be of degree j+1. More generally, an extension of Theorems 4.2 and 4.6 may
be derived by the same method using, respectively,

G=3 3 ag (kYo

i=0 k=r

instead of G,(x) and
G,(x)=(-1 Zao ; Z(n kY 7+
instead of G, (x) of (19). ”
More precisely, we have the following result.

Theorem 4.7: Let {1}, be a solution of (1) and suppose that 4, =1 has multiplicity m>1, and
the other characteristic roots 4,,..., A, (where s =r —m—1) are simple.
(@) For C(n)=n’, the elementary polynomial solution {P, ()}, of (1) is given by

B = va+z{Z@X)yﬂ@}

i=k

where v, , are constants (real or complex numbers) and

S

a;
&(x) = ; Ny

(b) For C(n)=n", the elementary factorial polynomial solution {P,(1)},5, of (1) is given by

B = }:»f nw>+:: {EE(,)(k)~§F“(n}n¢%

i=k

where v , are constants (real or complex numbers) and
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~ —(—1\ s a;
gZ(x) ( 1) i=11_xi .

Theorem 4.7 shows that P;(n) and 13j(n) may be of degree j+m, where m is the multiplicity
of 1,=
4.4 Solutions of (1) for General {C,},.,

In the general situation, polynomial and factorial polynomial solutions of (1) are as follows.
Proposition 4.8: Let {1,},, be a solution of (1) and suppose that the characteristic roots Ay, ...,
A,_, are simple. Then:

(@) For C(n)=X" =0 B 7/, the particular fundamental polynomial solution {P(n)}, of (1) is
given by P(n) = X%, B,8(0). More precisely, P(n) =X, B,P,(n), where P,(n) is given by
(14)if ;%1 foralli (0<i<r-1) and (15)if 1,=1.

(b) For C(n)= Zd_o p jn(f) the particular fundamental factorial polynomial solution {P(1)},s, of
(1) is given by P(n) = X9_o B,5°(1). More precisely, P(n) = Z9., B,P,(n), where P,(n) is given
by 21)if A, #1 foralli (0<i<r-1) and by (22)if 1,=1.

From Lemma 4.1 and Theorem 4.2, we derive that in the polynomial case the elementary fun-
damental particular solutions of (1) are

r-1
WD = B )+ Yy
i=0
if 4, #1 foralli (0<i<r-1), where P;(n) is given by (14) and

ae
-

()=~
And if 1,=1, we have

r=1
Wi = Py(n)+ Z(:)uf”(o)/l’}"“,

i=
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