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MORGAN-VOYCE CONVOLUTIONS 

A, F. Horadam 
The University of New England, Armidale, Australia 2351 
(Submitted December 1999-Final Revision August 2000) 

1. GENERATING FUNCTIONS 

Morgan-Voyce Generators 
Much has been written lately about the four Morgan-Voyce polynomials Bn(x), bn(x), C„(x), 

and cn(x). Basic properties of these polynomials are developed in [2], which contains appropriate 
reference material. 

The main purpose of this paper is to investigate the simplest features of the convolutions of 
the Morgan-Voyce polynomials and their corresponding numbers occurring when x = 1. Our 
Morgan-Voyce polynomials are defined [2] in terms of generating functions thus: 

$,BM)Tl=[l-(2 + x)y-y>Tl = g, B0(x) = 0, (1.1) 

ic„(x)y"=[2-(2 + x)y]g, (1.2) 

I&-i(*)y-1=[i-0+*)j'te, 0.3) 

icn(x)y" = [-l + (3 + x)y]g, (1.4) 

where, in (1.1)-(1.4), the functional notation g(x,y) = g has been dropped in the interest of sim-
plicity. So, g (1.1) may be said to be the "single parent" progenitor of the family (1.2)-(l .4)! 

Partial differentiation with respect to x (Section 5), which is a second feature of this paper, 
provides us with deeper insights into the essential nature of the polynomials. Two related papers 
could indeed have evolved from this paper but it is thought more desirable to preserve unity and 
cohesiveness. 

Motivation 
Stimuli for pursuing this investigation are: 

(i) in mountaineering language, "it [the challenge] is there!" and 
(ii) it increases our knowledge of convolution analysis beyond that already established for other 

well-known polynomials. 

Initial Conditions 
All the convolution number sequences displayed in (2.2a), (2.3a); (3.2a), (3.3a); (4.2a), (4.3a); 

(5.2a), (5.3a) for Bj?\x), Cf \x), b<*\x)9 c(
n

k)(x), respectively, when k = 1,2, have been checked 
against those obtainable from the general formulas in [1] which were determined by means of 
Cauchy products. This signifies that our generating function definitions must, when x = 1, pro-
duce exactly the same two initial numbers of each sequence as are specified in [1]. 
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2. CONVOLUTIONS FOR BM(x) 
Definitions 

The kth convolution polynomials B^k\x) of B„(x) are defined by 

X ^ C x ) / " 1 = g*+1, #>(*) = 0, (2.1) 
w = l 

(°° V+1 

= I ^ W J " - 1 , (2-la) 
\n=\ J 

s o t h a t ^ x ^ S ^ x ) . 
Correspondingly, the &rA convolution numbers B^k\l) = . g^ arise in the special case when 

x = l. 

Examples 
k=l 

k = 2 

B^(x) = 1, B?\x) = 4 + 2x, 53
(1)(x) = 10+12x + 3x2, 

j3f(x) = 20 + 42x + 24x2 +4x3, £5
(1)(x) = 35 + 112x + 108x2 + 40x3 + 5x4,.... 

B[2\x) = 1, B?\x) = 6 + 3x, £<2>(X) = 21 + 24x + 6x2, 
Bi2\x) = 56+108x + 60x2 + 10x3, 55

(2)(x) = 126 + 360x + 330x2 + 120x3 + 15x4 

(2.2) 

(2.3) 

Special Cases 
{^>}-= 1,6,25,90,300,.... (2.2a) 

{g&)yf = 1? 9,51,234,961,.... (2.3a) 

Larger values of k and n clearly Involve cumbersome expressions which do not excite our 
interest. 

Recurrence Relations 
Immediately from (1.1) and (2.1) we deduce that 

^*>(x) = # + 1 > (x ) - (2 + * ^ (2.4) 

with the simplest instance (k = 0) being 

Bn(x) = BiHx) - (2 + xyB&ix) + i£>2(x). (2.4a) 

Partial differentiation with respect to y in (2.1) and comparison of coefficients of yn~2 leads to 

(n - l)Bik >(x) = (t +1){(2 + x ) I ^ ( x ) - 21^>(x)} . (2.5) 

Amalgamating (2.4) and (2.5) and replacing k by k -1, we obtain the reduction 

(H - l)B^\x) = (* + * - 1X2 + ̂ l ( x ) - (/i + 2* - l)ie>2(x). (2-6) 

Recurrence (2.6) enables us to consolidate a table for Bjf\x), given x = 1, from two previ-
ously known successive values. Substitution of k = 0 reduces (2.6) to the defining recurrence for 
Bn(x). Furthermore, k = 0 in (2.5) produces the simple link (n -» n +1) 

nBn+l(x) = (2 + x)BJP(x)-2B^(x). (2.5a) 
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Further partial differentiation, but this time with respect to x, will be investigated for all the 
Morgan-Voyce polynomials separately in Section 5. 

3. CONVOLUTIONS FOR Cn(x) 

Coming now to Cn{x) we find ourselves enmeshed in more complicated algebra than that for 
Bn(x), by virtue of the definition (1.2). 

Definitions 
The kth convolution polynomials Cff\x) of Cn(x) are defined by 

£C<*>(x)/ =[2-(2 + x)y]k+Y+l (3.1) 

/ 00 \k+l 

= SQ(x)y , (3.1a) 
sothatq<0)(x) = Cn(x). 

Correspondingly, the kth convolution numbers Cj,k\l) = C^ arise when x - 1. 

Examples 
k=l 

C§>(x) = 4, Q(1)(x) = 4(2 + x), C?\x) = 12 + 20x + 5x2, 
C3

(I)(x) = 16+56x + 36x2+6x3, C[l)(x) = 20 + 120x + 142x2 + 56x3 + 7x4, 
k = 2 

C$2)(x) = 8, Q(2)(x) = 12(2 + x), C52)(x) = 48 + 72x + 18x2, 
C$2)(x) = 80+240x + 150x2 +25x3, Cf}(x) = 120+600x + 678x2 +264x3 + 33x4 

(3.2) 

(3.3) 

Special Cases 
(CS1*)? = 4,12,37,114, 345,.... (3.2a) 
{CfX = 8,36,138,495,1695,.... (3.3a) 

Recurrence Relations 
Taken together, (2.1) and (3.1) give rise, when k = 1, to 

^ ( x ) = 4 I ? f ( x ) ^ (3.4) 

Differentiate (1.2) partially with respect toy and equate coefficients of yn~l. After simplifica-
tion, the algebra reduces to 

«Cn(x) = (2 + x)5W(x)-4^!)1(x) + (2 + x)5(«2(x). (3.5) 

Uniting (3.4) and (3.5), we establish, on tidying up, that 

n(2 + x)Q(x) = (4 + x)xB<P(x) + Cft(x). (3.6) 

Multiply numerator and denominator of (3.1), when k = 0, by g (1.1). Simplification then , 
shows, by (2.1), that 

C^(x) = 2I?f(x)»3(2 + x ^ (3.7) 
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Extending (3.5) to k = 2, we quickly get 
Ci%(x) = 8£f \x) -12(2 + x)Bg{ + 6(2 + x)2B(

n%(x) - (2 + x)3B(%(x). (3.8) 

Beyond this, the formulas become even less algebraically attractive. Enchantment and time 
are lacking to pursue this unproductive activity. 

4. CONVOLUTIONS FOR bn(x) 

Definitions 
The kth convolution polynomials bf\x) ofbjx) are defined by 

00 

£ C M / " 4 = {1 - 0 + x)y}k+lgk+l (so btf\x) = 1) (4.1) 

= Z V i W y 1 • (4-la) 

In particular, when x = 1, the k'h convolution numbers b^k\l) = b^ emerge. 

Examples 
k=l 

b^Xx) = 2, biP(x) = 3 + 2x, tfpQc) = 4 + 8x + 2x2, 
bil\x) = 5 + 20x + l3x2 +2x3,.... 

k = 2 
b{2\x) = 3, b(2\x) = 6+3x, ^2)(x) = 10 + 15x + 3x2, 
bf\x) = 15 + 45x + 24x2 + 3x3,.... 

Special Cases 
{b«X = 1,2,5,14,40,.... (4.2a) 

{€% = 1,3,9,28,87,.... (4.3a) 
Recurrence Relations 

Put k = 1 in (4.1). Then we immediately construct the recurrence 

b®(x) = 5&CX) - 2(1 + x)^1}(x) + (1 + x)2BJ,%(x). (4.4) 

Partially differentiate (4.1) with respect to y. Then 

nb„(x) = Bi1\x)-24l\(x) + (l + x)Bil}2(x). (4.5) 

Together, with suitable adjustment, (4.4) and (4.5) produce 

nbn(x) = b^ix) + 2xB^}1(x) - (x + x 2 )^ 2 (x ) . (4.6) 

Next, let us multiply numerator and denominator of (4.1), when k = 1, by g (1.1). Upon the 
requisite algebraic manipulation with application ofb^\x) given by (4.1), when k = 2, namely, 

b<?\x) = B%(x) -3(1 + x)BJ,2\x)+3(1 + xfBtVfc) - (1 + x?BJ»2(x), (4.7) 

it transpires that 

ft(2)(x) = b®(x) + Bj,2)(x) - (3 + 2x)JBf>(x) + (3 + 4x + x2)£<2)
2(x) - (1 + x)2B$,%(x). (4.8) 

(4.2) 

(4.3) 
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Caveat! Anticipating (5.1) we might have been tempted to use the formula bn(x) = Bn(x) - Bn_t(x) 
[2, (2.13) : x = 1] to derive the valid generating function Y^=\bn{x)yn~l = (1-y)g. However, the 
difficulty here for convolutions is that the first element defined is bx{x) = 1. What we need is 
bQ(x) = 1 to be covered by the definition. Consequently, we must abide by (4.1). 

5. CONVOLUTIONS FOR cn(x) 
Definitions 

Care must be taken when we come to deal with the convolutions of the last of our four 
Morgan-Voyce polynomials. Our problem with cn(x) as defined in (1.4) is that c0(x) = - 1 . But 
we do not want negative numbers as part of convolutions. So we begin the sequence for cn(x) 
with cl(x) = l. 

Recalling [2, (3.7)] that cn(x) = Bn(x) + Bn__l(x)9 we define the kth convolution polynomials 
c^k\x) of cn(x) to be given by (n > 1) 

I c f W - ^ O + ^ V * 1 . (5.i) 
71=1 

Substitution of x = 1 engenders the kth convolution numbers c^(l) = c^. 

Examples 
* = 1 

4l)(x) = l, 4\x) = 6+2x, 4l)(x) = l9 + l6x + 3x2, 
C(D = 44 + 68x + 30x2 + 4x3, c3

(1) = 85 + 208* +159x2 + 48x3 + 5x4, .... 
k = 2 

c{2)(x) = 1, 42\x) = 9 + 3x, 42\x) = 42 + 33x + 6x2, 
c\2\x) = 138 + 189x + 78x2 + 10x3, <f>(x) = 363 + 759x+528x2 + 150x3 + 15x4,. 

Special Cases 
{ ^ ^ = 1,8,38,146,505,.... (5.2a) 

{cfX = 1,12,81,415,1815,.... (5.3a) 
Recurrence Relations 

From (5.1) and (1.1) we have automatically 

<£>(*) = i??)(x) + 2 ^ 1 ( x ) + ̂ 22(x). (5.4) 

Partial differentiation in (5.1) with respect to y9 in conjunction with (1.1), and n -> n +1, pro-
duces 

nc^(x) = (3 + x)B®(x) - 2i£\(x) - B$2(x). (5.5) 

Joining (5.4) and (5.5) ensures the neat nexus 
cW(x) = (4 + x)I$\x)-ncn+1(x). (5.6) 

Next, taking k = 0, multiply numerator and denominator in (5.1) by g. Organizing the result-
ing material and applying (1.1) then establishes the result: 

cn+1(x) = B^l(x)-(l + x)[BJ,1\x) + B^l(x)}+BJ,%(x). (5.7) 

(5.2) 

(5.3) 
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6. PARTIAL DIFFERENTIATION 
In this section, partial differentiation is performed only with respect to x. 

Notation 
Successive orders of partial differentiation (first, second, third, ..., it4) will be represented by 

superscript primes ', ", m, ...9k primes, where the unbracketed superscript k is to be clearly distin-
guished from the bracketed km convolution order symbol superscript (k). Thus, we will have 

Likewise for C„(x), bn(x), and cn(x). 

L Bjftx): Equate appropriate coefficients using (1.1) in 

11=1 m=0 

unfolding the nice result 
B>n{x) = B%{x). (6.1) 

Repetition of the process gives 
B>Xx) = 2Bi%(x). (6.1a) 

Generally, 
# ( x ) = *!£&(*)• (6.1b) 

Temporarily revert to Bjp(x). Then we may write 

fiBi2\x)y"-l=[{l-(2 + x)y+y'}^{(2 + x)y-l}]gi = fdB<,l\x)y"-l
 + {(2 + x)y-l}gi, 

whence 
BP(x) = B£\x) + (2 + x)i£{(x) - B™2{x). (6.2) 

Accordingly, (6.1a) and (6.2) conjoined give 
B?>(x) = Bj,*>(x) - (2 + x)i£> (x) + BV2(x) (6.3) 

which is (2.4) when k = 1. 
Two pleasant theorems now conclude this subsection. 

Theorem 1: B^.2(x) - Bftx) = (n + l)B®(x). 

Proof: 
B'^{x)-B';{x) = 25<2>(x)-2£<2J2(x) by (2.12) 

= 2BJP(x)+2{(2 + x)i£>(x) - B™2{x)} - 2B™2(x) by (2.7) 
= 2B£\x) + 2{(2 + x)i£> (x) - 2B™2(x)}. 
= 2Bi1\x) + (n-l)BJ,l\x) by(2.8) 
= (n + l)B®(x). 

Corollary 1: 2Zm
n=2nB^x(x) = B£(x) + ^ ( x ) . 

More generally, 
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Theorem2: B^+2(x)~B^(x) = (*-l)!(w + l)^2-*(*)-
In particular, we have B'n+2{x) - B'n{x) = (n + l)Bn+l(x) (=Q+1(x)) as we expect from [2, 

(3.9), (3.24)]. 

DL C*(JC): Consider the relation Cn(x) = Bn+l(x) - Bn^(x) [2, (3.9)]. Redefine (1.2) In this con-
text to assert 

tc„(*)y"+1 = (y-f)g-y, c0(x) = 2. (6.4) 
w = l 

Elementary processes then, with [2, (3.24)] produce 

Q(x) = £«(x) - 3&(*) = nB„(x), (6-5) 
Q(x) = 2(^>(x) - SJ23(x)) = nB%(x) = nB&c), (6.6) 

culminating in 

Ck
n(x) = k ! (^i+ 1(x) - 5 « _,(*)) = «(* -1)! Bj&l(x), (6-7) 

whence 

xc(x)=*!(eu^)+cu^)~i)- (6.8) 
»=jfc+l 

In particular (A = 1), 
^ C ^ ^ W + ^ x ) . (6.8a) 
W = l 

Analogously to Theorem 2 there Is 

CLW ~ Cn (*) = < + 7 « + 2t1W, (6-9) 
which can be expressed In convolution form. Proof of the assertion (6.9) Is left to the reader. • 

HI. bk
n{x): Convolutions ofbn(x) do not appear In this section (see the Caveat In Section 4), so 

we may, on making use of [2, (2.13)], choose the definition 

tbMyn~l = (i~y)g, Mx) = h (6.10) 

Then, by (1.1), 
K<*) = 4%(x) - Bt%(x) = B'n{x) - BU*), (6=11) 

%(x) = 2(Bi%(x) - 4%(x)) = Bfr) - BU*l (6-12) 
Eventually, and generally, 

bk
n{x) = A!(5S(x) - 2 # U * ) ) = Bk

n{x) - BUx). (6.13) 

Summation discloses that 
m 

Jjh'n{x) = R^l{x) = B'm{x) (6.14) 

while 

£**(x) = *!i£>t(x) = 2£(x). (6.15) 
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From nBn{x) = Q(x) = bf
n(x) + be

n+l(x), we may deduce after a little rearrangement that 
m 

X(-irn«5„(x) = &;+1W (6.16) 

which can be generalized to b^+l(x). 

TV. C*(JC): Appealing to [2, (3.7)], we take 

fdcri(x)y^ = (l^y)g. (6.17) 

Following the procedure in III, we rapidly reach the general situation: 

<*(x) = k\{B^k{x) + B^Ux)) = Bk
n(x) + BUx). (6.18) 

From nBk
n{x) = C*+1(x) = c^(x)-c*+1(x) (see [2, (3.11)]), it then transpires that 

m 

X«*) = 0*)- (6-19) 
Suppose k = 1 in (6.18). Addition then reveals that 

m 

2(-i)-c;(x) = ( - i r ^ iW = (-ir^;(x), (6.20) 
whence, by (6.16), 

Z(-i)"cj(*)=(-iri;*;(x). (6.21) 
n=2 n=2 

7« CONCLUSION 
Undertaking a thorough investigation of the latent features of the mixed foursome of Morgan-

Voyce polynomials is a task of rather Herculean proportions, but no doubt somewhat more satis-
fying than cleansing the Augean stables. One challenge confronting us is an examination of the 
rising and falling diagonal polynomials associated with the Morgan-Voyce polynomials. For a 
related study of this kind of project, the recent paper [3], containing many references, is strongly 
suggested.. 
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1. INTRODUCTION 

Let a0,...,ar-1 (r > 2, ar_x * 0) be some real or complex numbers. Let {Cn}n>0 be a sequence 
of C (or R). Sometimes, for reasons of convenience, we consider {C„}w>0 under its equivalent 
form as a function C: N -> C (or R). And when no possible confusion can arise, we write C(n) 
rather than Cn and, similarly, in case of an indexed family of functions Cj :N->C, we use Cj(n) 
instead of CJ9„. Let {^}„>0 be the sequence defined by the following nonhomogeneous recur-
rence relation of order r, 

^ + i = ^ + ^ - i + - - '+^- i^ r + i + Q+i f o r w ^ r - 1 , (1) 
where TQ,..., Tr_x are given initial values (or conditions). In the sequel, we refer to such sequence 
{Tn}n^0 as the solution of "recurrence relation (I).81 If the function C satisfies 

for some finite sequence of functions C0,...,Q :N->C, the solution {Tn}n>0 may be expressed as 

j=0 

where {Tjn}n>Q is the solution of (1) with C„ = Cj(ri). Solutions of (1) have been studied in the 
case in which C equals a polynomial or a factorial polynomial (see, e.g., [l]-[4], [7], [9], [12]). 

The purpose of this paper is to study a matrix formulation of (1), which extends those con-
sidered for (1) in [6], [10], and [11], when C(n) = 0. This allows us to provide a method for 
solving equation (1) for a general C: N -> C. Our expression for general solutions of (1) extends 
those obtained in [1] for r> 2. If the nonhomogeneous part equals a polynomial or a factorial 
polynomial, our general solution allows us to recover a well-known particular solution—Asveld's 
polynomials and factorial polynomials (see [2], [3], [9]). 

This paper is organized as follows. In Section 2 we study a n r x r matrix associated to (1), 
in connection with r-generalized Fibonacci sequences. In Section 3 we use a matrix formulation 
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with an aim toward solving (1) for arbitrary C:N->C. Section 4 is devoted to the study and 
discussion of our general solution in the polynomial and factorial polynomial cases. Section 5 
consists of some final remarks. 

2. MATMCES ASSOCIATED TO ^GENERALIZED FIBONACCI SEQUENCES 
From the ^-generalized Fibonacci sequence Vn+l = a^n + ••• +ar_yn_r+x for n>0, as studied 

by Andrade and Pethe [I], we take r copies, indexed by s (0 < s < r -1): 

Vtt=a<rts) + -+ar-y£+l for«>0. (2) 

We provide these r copies with mutually difFerent sets of initial conditions, that is, Vlf = Ssj 

(0< j<r-1, 0 < s < r - 1 ) , where Ssj is the Kronecker symbol. Consider the following r xr 
matrix: 

1 0 • • • 0 
0 1 0 ••• 0 

v 0 ••• 0 1 0 

(3) 

Expression (3) shows that the columns and arrows of A are indexed from 0 to r-1. The usual 
matrix indexing form A = (aij)l<i)J<r of (3) is given as follows: aXj =aj_t for every 1< j<r, 
and atJ = SUi_x for every 2 < i < r, 1 < j < r. 

The matrix (3) has been considered for r-generalized Fibonacci sequences in [6], [10], [11]. 
A straightforward computation allows us to establish that the matrix A is related to the r-

generalized Fibonacci sequences (2) as follows. 

Proposition 2.1: Let A be the matrix defined by (3). Then? for every n > 0? we have 

A ={@js)o<ifS<r-l 

where 
<=V&. (4) 

Remark 2.1: Due to the initial conditions Vlf -Ssj (0 < j < r -1, 0 < s < r -1), we have indeed 
that A0 equals the r x r -identity matrix. 

3. SOLVING (1) BY MATRIX METHODS 
Consider Xn = \Tn,..., T„_r+l) and /)„ ='(C„,0,...,0) for « > r - l , where fZ denotes the 

transpose of Z. We can easily verify that (1) is equivalent to the following matrix equation: 
X„+l = AX„ + Dn+l, n>r-\, (5) 

where A is the matrix (3). From (5), we derive that 

X„ = A"-r+%_1 + f,A"-kDk, n>r. (6) 

Let R,, = EJU An'kDk. Then we can verify that i^+1 = AR„ +Dn+l. From expressions (4), (5), 
and (6), we derive the following result. 
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Theorem 3.1: Let {^}„>0 be the solution of (1) whose initial conditions are T0,..., Tr_v Then, 
for n > 0, we have 

T„ = f / ^ T ^ + ±V„^kCk. (7) 
s=Q k=r 

Because of (2), the sequence {UJn>0 defined by U„ = E£j V^r+lTr_s_x is a solution of the homo-
geneous part of (1). Thus, the sequence {W£ps)}n>0, where 

K(PS)=imck=-ix^-,-1+T„ 
is a particular solution of (1) that satisfies W^ps) = 0 for n = 0,1,..., r -1. We call {W<ps)}n>0 the 
fundamental particular solution of (1). Hence, (6) and Theorem 3.1 allow us to formulate the 
following result. 

Theorem 3.2: Let {Tn}n>0 be a solution of (1). Then, for n > 0, we have 

T„ = J<hs> + W™ = #fa> - § ^ i t f f t + 3^>, (8) 
s=Q 

where {^</75>}w^0 *s the fundamental particular solution of (1), {Tf;hs)}n>Q is a solution of the 
homogeneous part of (1) with initial conditions TQ,..., Tr_l9 and {1^ps)}n>o is a particular solution 
of (1) with initial conditions J$ps\..., 7<%\ 

Expression (8) extends the one established in [1], with the aid of Binet's formula in the poly-
nomial case. 

4* POLYNOMIAL AND FACTORIAL POLYNOMIAL CASES 

4.1 Elementary Polynomial Solutions and Asveld's Polynomials 

For C(n) ~nj (0 < j < d), the fundamental particular solution {Wfffl^o, called the elemen-
tary fundamental particular solution, Is 

Wtf> = £q'VW for»>r. 
q=r 

Let {fn}n>r be the sequence of C°°-functions defined on R as follows: 

/,W = Z^exp(^) . (9) 
q=r 

For each function fn9 the j * derivative is 

q=r 

Expressions (2) and (9) imply that {f„j)}n>r satisfies the following nonhomogeneous recur-
rence relation of order r, 

/ ^ « = Z « , / ^ ? W + (" + iyexp[(» + l)x]. (10) 
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For reasons of simplicity, we suppose that {^(0)}^>_r+1 has simple characteristic roots. Thus, 
Binetfs formula takes the form Vn

(0) = S^ 1 atX\. We have to distinguish the following exhaustive 
cases: 

1. Xt *1 for every i (0<i < r - l ) . 
2. There exists d (0<d<r-l) such that Xd = l. 

In the sequel, we suppose (without loss of generality) that XQ = 1. 
When Xt & 1 for all i (0 < i < r -1), we consider 

Hlfi(x) = gl(x)e^\ Khn(x) = l > < x ) A r + \ ' (11) 
i=0 

where 

And If X0 = 1, we set 

G„(x) = a 0 I ^ , # 2 » = & ( x ^ » * , ^2j„(x) = 2 v , ( x H r + 1 , (12) 
p=r j'=l 

where 

i=le -Aj 

We set S^x) = # u ( x ) if Xt *1 for alii ( 0 < i < r - l ) and Sn(x) = Gn(x) + H2fn(x) if A0 = l. 
Because the X/s are characteristic roots, we have 

4!»+iW = I«^V,W(^ = l2). 
i=0 

Then, from (10), we derive that for j > 0 we have 

<S#i(*) = Z r f K ^ ) + (« + l);' exp[(/i + l)x]. (13) 
i=0 

As a consequence, we have the following lemma. 

Lemma 4.1: 
(a) The elementary fundamental particular solution {Wffi}n>0 of (1) Is given byWffi = /„(/)(0). 
More precisely, we have Wffi = H$(0) + K$(0) if Xt * 1 for all i (0 < i < r -1), where J ^ „(x) 
and ^ „ ( x ) are given by (11), and W$ = GiJ\0) + H^l(0) + K^n(0) If A0 = l, where G„(x), 
H2>n(x), and A ^ x ) a r e given by (12). 
(S) For j > 0, the sequence { ^ ( O ) } ^ Is a particular solution of (1) for C(n) = nj. 

By Leibnitz's formula, we have 

*#(*)=I { tCXi^W^^ for J * °> 
where p = 1,2. If X0 = 1 Is a characteristic root, then we have 

2002] 109 



SOLVING NONHOMOGENEOUS RECURRENCE RELATIONS OF ORDER r BY MATRIX METHODS 

Gy)(o)=a02y=«oi>-/>y-
p=r p=0 

It is known that Z£=0 pJ = Qj(ri), where Qj(n) is a polynomial of degree j +1. Thus, Lemma 4.1 
and (13) allow us to derive the following result. 

Theorem 4.2: Let {Tn}n>0 be a solution of (1) with C(n) = nj. Then the elementary polynomial 
solution {Pj(n)}n>0 of (1) is given by Pj{n) = SJ

n{0). More precisely, if Xt & 1 for all i (0<i < 
r-l), we have 

.1; 
and if XQ = 1 we have 

w=£{£C)(*K'><°>}»<. o«) 

/>(») = «„£ ft(«-r)» + £ j £ QY*W-'>(0)W. <1S> 

If A0 = 1, the polynomial (15) may be written as Pj(n) = a$iJ*1 + E^=o vj,knk> where v^^ are 
constants (real or complex numbers). 

Theorem 4.2 shows that particular polynomial solutions Pj(n) (0<j<d) defined by (14)-
(15) are the well-known Asveld's polynomials studied in [2], [4], [9], and [12]. Our method of 
obtaining Pj(ri) (0<j<d) is different. For their computation, we use the classic result on 
%%oPJ = Qj(p) and the j * derivative ofHpn(x) (p = l, 2) given by (11)-(12). The derivative of 
Hpn{x) (p = 1,2) can be derived from the following property. 

Proposition 43: Let u(x) = -~^ with X & 0,1 and x * ln(A) if X > 0. Then we have 

U{k\x): 
(ex-X) &+i> 

where Tk+l = X(X-X)%*—(k + l)XTk for & > 0. 

4,2 Elementary Factorial Polynomial Solutions and Asveld's Polynomials 

For C(n) = w^, the elementary fundamental particular solution {Wffi}n>0 is 

^Pn) = TPU)Vn-p for all ^i>r. 
p=r 

Instead of (9), let {fn}n>r be the sequence-of C^-functions on R* = R - {0} defined as follows: 

7-W = H)/Z^*"*+/"1- (16> 
The q* ( f>0) derivative of hJwk(x) = x-k+J'1 (x*0) is ^ ( x ) = (- l ) 9 (*-y + ̂ )to)Jc-*+^-1. 
Hence, the j ^ derivative of fn is 

7o)(x)=x*0)^^_1-
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From (2), we derive that {/Jn>r defined by (16) satisfies 

/ $ ( * ) = %/$(*) + (P + 1)°V"-2. (17) 
1=0 

As in Subsection 4.1, we suppose that {V^}n>_r+l has simple characteristic roots. We also con-
sider the following two exhaustive cases: (a) At*\ for every i (0<i < r - 1 ) ; (b) There exists d 
(0 < d < r -1) such that Xd = 1. As in Subsection 4.1, we suppose in the second case that 2 0 = 1. 
The case in which Xd = l for some d*0 can be derived easily. 

When A1 * 1 for all i (0<i < r - l ) , we set 

HUx) = U^Kni^Kn^)= S^(^r+1
? (18) 

0 < f < r - l 

where 

IfA0 = l, weset 

Gn(x) = ( - i y a 0 X \ f c W , #2,„(*) = &(*)>>„„(*)> ^ . » W = 2 ^ ( * ) ^ T r r t , (19) 
fc=r i=l 

where 

Because the 1/s are characteristic roots, we have 

j=0 

Then from (17) we derive that, for all j > 0, we have 

^ l W = Z^)W+(»+i)0 )^""2, (20) 
i=0 

where Sn(x) = Hln(x) if Xt * 1 for all i (0<i < r - l ) and ^(x) = Gw(x) + J f ^ x ) if A0 = 1. 

Therefore, we have the analog of Lemma 4.1 as follows. 
Lemma 4.4 
(a) The elementary fundamental particular solution {WJ^}}n>Q of (1) is given by Wffi = f£J)(i). 
More precisely, we have jf$£> = B$(l)+K$(l) if Xt * 1 for all i (0 < i < r -1) , where BUn(x) 
and ^ ( x ) are given by (18), and ^ > = C^(l) + i ^ ( l ) + ̂ i ( l ) if A0 = l, where 4 ( x ) , 
32n(x)9 and ^ „ ( x ) are given by (19). 

(b) For j > 0, the sequence { ^ ( l ) } ^ is a particular solution of (1) for Cn = nu\ 

By Leibnitz's formula, we have 
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Thus, 

£=o V-// 

Consider the following "binomial theorem for factorial polynomials," which is designated by 
Asveld [3] as Lemma 1: 

1=0 V J 

Then we have 

/=o v*=i V-//V / y 

Hence, H (I) (p = 1,2) is a factorial polynomial. If 2 0 = 1, we have 

e^(i)=ao2>-*)w. 

Next, we establish that Gjj/\l) is a factorial polynomial. 

Lemma 4.5: For j > 0, we have 

£=0 &=0 

where /J^ ̂  are constants (real or complex numbers). 

Proof: Consider Stirling numbers of the first kind s(t, j) and Stirling numbers of the second 
kind S(t9 j), which are defined by 

x(J) = £ s(t, j)x> and yf = £ S(t, i)x(f>. 
?=0 t=Q 

By successive applications of the two preceding formulas and the following classic result, 
n t+l 

k=Q i = 0 

we derive that 

where 

Now, using Lemma 4.4, we derive the following result. 

Theorem 4.6: Let {TJn>0 be a solution of (1) with C{n) = rfj). Then the elementary factorial 
polynomial solution { -̂(̂ )}«>o of (1) is given by Pj(n) = S^J\l). More precisely, if Xt * 1 for all 
i (0 < i < r -1), we have 
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PM) = t ft(-D* {^{i)^-k)(lXk-j)fk-Arfi\ (21) 
And if X0 - 1, we have 

it1 _L fj_ fu\fi\ \ 
rff>, (22) pjin)=(-iy«„trj.*fl»+1 t (-*)* R)fn^^ax^-7)(A-'> 

£=0 /=! \k=i W V / J 

where y f̂Jk are constants (real or complex numbers). 

The particular factorial polynomial solutions Pj(n) (0<j<d) defined by (21)-(22) are the 
well-known Asveld factorial polynomials studied in [4] and [7]. Our method for obtaining Pj(n) 
(0<j<ct) is different from Asveld!s. For their computation, we use Lemma 4.5 and the j * 
derivative ofHniP(x) (p = 1,2) as defined by (18)-(19). 

4*3 Polynomial and Factorial Polynomial Solutions for 2 0 = 1 of Multiplicity m > 1 
Suppose that Xt * 1 for all i (0 < i < r -1). Then (14) and (21) imply, respectively, that the 

Asveld polynomials Pj(n) (0<j<d) are of degree j and the Asveld factorial polynomials Pj(n) 
(0<j<d) are of degree/ Meanwhile, for 2 0 = 1, (15) and (22) show that Pj(n) and Pj(n) 
(0 < j < d) may be of degree j +1. More generally, an extension of Theorems 4.2 and 4.6 may 
be derived by the same method using, respectively, 

m-\ n 

1=0 k=r 

instead of G„(x) and 
m-\ n 

GM=c-iy l>0,,- l>-*)'*~*+y_1 
1=0 k=r 

instead of Gn(x) of (19). 
More precisely, we have the following result. 

Theorem 4.7: Let {^}„>0 be a solution of (1) and suppose that X0 = 1 has multiplicity m > 1, and 
the other characteristic roots Xh..., Xs (where s = r-m-l)m-Q simple. 
(a) For C(n) = nJ, the elementary polynomial solution {Pj(n)}n>0 of (1) is given by 

w = f x x + 1 { t Q)(/)̂ -°(o)}"fc
5 

where v,-^ are constants (real or complex numbers) and 

(Jj For C(w) = w^, the elementary factorial polynomial solution {Pj{n))n>® of (1) is given by 

where v ^ are constants (real or complex numbers) and 
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Theorem 4.7 shows that Pj(n) and Pf(n) may be of degree j+m, where m is the multiplicity 
of XQ = l. 

4.4 Solutions of (1) for General {Cn}n>Q 

In the general situation, polynomial and factorial polynomial solutions of (1) are as follows. 

Proposition 4.8: Let {Tn}n>0 be a solution of (1) and suppose that the characteristic roots A0,..., 
Xr_x are simple. Then: 
(a) For C(n) = T,%oJ3jnJ, the particular fundamental polynomial solution {P(n)}n>0 of (1) is 
given by P(n) = HJ=QfiJSJJ

J\G). More precisely, P(ri) = ^.dJ=0fijPj(n)9 where /^(w) is given by 
(14) if Xt * 1 for all i (0<i < r - l ) and (15) if A0 = 1. 
(&j For C(??) = EyLo/ty^* the particular fundamental factorial polynomial solution {P(^)}w>0 of 
(1) is given by P(n) = 2 ^ 0 ^ w

0 ) ( l ) . More precisely, P(fi) = T% fi).Pj(n), where P;(/i) is given 
by (21) if A, * 1 for all i (0<i < r - l ) and by (22) if A0 = 1. 

From Lemma 4.1 and Theorem 4.2, we derive that in the polynomial case the elementary fun-
damental particular solutions of (1) are 

n-r+l 

if Xi ^ 1 for all i (0 < i < r -1), where Pj(n) is given by (14) and 

And if XQ = 1, we have 
r - l 

wtf> = pJ(ri)+Z'4J)(o)xrr+1, 
/=o 

where i^(ia) is given by (15) above. For C(??) = ZjLo/fy^ ^ e fundamental particular solution 
R</?5>L>oisgivenby 

/=o 

In the same manner, Lemma 4.4 and Theorem 4.6 imply that, for the factorial polynomial case, 
elementary fundamental particular solutions are 

1=0 

if Xf & 1 for all i (0 < i < r -1), where ^(w) is given by (21) above, and 

• axJ~r 

And if A0 = 1, we have 
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j^=i ,»+I^(i)Ar+ i , 
/=o 

where Pj(n) is given by (22) above. For C(n) = H%0fijnu\ the fundamental particular solution 
{W£p^}„zo of (1) may be expressed as 

,=0 

More precisely, Lemmas 4.1 and 4.4, Theorems 4.2 and 4.6, and Proposition 4.8 imply 

Proposition 43: Let {Tn}n>0 be a solution of (1) and suppose that the characteristic roots A0,..., 
Xr_l are simple. Then 
(a) For C(n) = Yf^Pp3, the fiindamental particular solution {W£ps}}n>0 of (1) is 

Wn
{ps) = £fijPj<P) + I, I i ^ / } ( 0 ) W 

y=o 

if 2,- * 1 for all i (0 < i < r -1), where 

/=0 V;=0 

w-r+1 

and Pjifi) is given by (14). And if A0 = 1, we have 

r - l / d 

w„w = I^ y (» )+I I>,*f }(o) 
y=0 i=l V/=0 

^r+l, 
where Pj(ri) is given by (15). 
(b) For C(») = 2^=0 Pfffi, the fundamental particular solution {WJ;ps)}n>Q of (1) is 

r - l f d 

/=o 1=0 y = o 

nn-r+l 

if A, * 1 for all i (0<i < r - l ) , where 
a,-x-Vt{x) = (rV:? 

•J-r 

XtX-1 

and ^-(w) is given by (21). And if 2 0 = 1, we have 

r - l / d 

J=Q M ^ = 0 

where J^(/i) is given by (22). 

i r + i ? 

5* CONCLUDING REMARKS 

Remark 5.1: Relation with Genocchi and Bernoulli Numbers. In the 7th derivative of Hp^n{x) 
(p = 1,2) given by (11)-(12) appears the k^ (0<k< j) derivative of functions ut{x) = - j ^ - . Let 
M{X) = -^j—, where 1 < 0, then 
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where v = —f, p - -ln(-A), and v{i) = -^. The Genocchi numbers Gn (n > 0) are defined by 

(see [5] and [8]). So, because G0 = 0, we have 

a M . l y G {x+fiT-iflf G„+i r>k-n * _ 

Particularly, for A = - 1 , we have 
1 T\ ^ X" 

2«„tS~"+1»!' 
If 2 0 = 1 is a simple characteristic root, we may take, for any x & 0, Gw(x) = ao/iw(x)w(x), 

where hn(x) = g" r* *-1 and w(x) = -~^. Expansion series of these two functions are 

U( v ^ ( / i - r + 1)* xk , . x^r, xk 

where Bk are the Bernoulli numbers (see, e.g., [5] and [8]). Then Leibnitz's formula 

G«\x) = aMi
l\h<tUk-i\x) 

implies that 

Hence, Asveld's polynomials Pj(n) (0<j<d) depend on the Genocchi and Bernoulli numbers 
when X< 0 or A0 = l. 

Remark 5.2: Degree of Pj(n) and Pj(n). Theorems 4.2, 4.6, and 4.7 show that Asveld's 
polynomials Pj(n) and factorial polynomials Pj(ri) (0<j<d) are of degree j+m, where m is the 
multiplicity of A0 = 1. This property is established by the two last authors using an alternative 
method for solving (1), which is the subject of another paper. 

Remark 53: The Case of Multiplicities > 1. In Section 4 we considered that the characteristic 
roots are simple except for Theorem 4.7, where A0 = l is supposed of multiplicity m>\. The 
problem is to derive the particular polynomial or factorial polynomial solutions of (1) using the 
method of Section 3 when the characteristic roots A0,...,Ap (p<r-l) are of arbitrary multipli-
cities nt0,...,mp. 
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Diophantus found three rationals ~, -y, ~ with the property that the product of any two of 
them Increased by the sum of those two gives a perfect square (see [5], pp. 85-86, 215-217), and 
Euler found four rationals ^ , ^ 4 , -̂ -, j - with the same property (see [4], pp. 518-519). 

We will call a set {x1? x2,..., xm} ofm rationals such that xtXj +xt +Xj is a perfect square for 
all 1 < i < j < m a Eulerian m-tuple. 

In [8], we found the Eulerian quintuple 

f 27 17 27 4931 ( , 
1 40' 8 ' 10 ? ? 40 J ' l } 

This example leads us to the following questions: Is there any Eulerian quintuple consisting of 
positive rationals (this would be more in the style of Diophantus)? Are there infinitely many such 
quintuples? In the present paper we give affirmative answers to both questions. 

We mention that it is not known whether there exists any Eulerian quadruple consisting of 
integers. In [3]. [10], and [12], it was proved that some particular Eulerian triples cannot be 
extended to an integer quadruple; in [7], it was proved that the Eulerian pair {0,1} cannot be 
extended to an integer quadruple. 

Let q be a rational number. A set {aha2,...,am} of m nonzero rationals is called a 
Diophantine m-tuple with the property D(q) if aflj + q is a perfect square for all 1 </ <j <m 
(see [6]). It is clear that {xhx2,...,xm} is a Eulerian m-tuple iff {xx +1, x2 +1,... , xm +1} is a 
Diophantine m-tuple with the property D(-l). 

In [8], we proved that the set 

{US^-m-S^, lA* + 5>(-, + 3), ( , - 2 X 5 ^ 6 ) , 
} (x2 +4x- 6)(-x2 +4x-f 6), 4x2 } 

has the property D(^x 2 (x 2 ~x-3)(x 2 +2x-12)) . From (2) for x = | , we obtain the Eulerian 
quintuple (1). 

Consider the quartic curve 
Q: y2 = -(x2-x~3)(x2 +2x-12). 

We have a rational point (f , f ) on Q. Using the construction from [1], we find that, with the 
substitution 

63^ + 10̂  + 2619 24J3 - 6777s2 -lit2- 34749/ + 54898479 
18s+ 4/+ 2403 ? J (18s+4/ + 2403)2 

Q is birationally equivalent to the elliptic curve 

E: t2 = ^-189815-1001700 
= (s-159)(s + 75)(s + 84). 

(3) 
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Using the program package SIMATH (see [14]), we obtain the following information about 
curve E: E(Q)t0TS = Z/2Z x Z/2Z, E(Q\OTS = {6,A = (159, 0), B = (-75, 0), C = (-84, 0)}, rank 
£(Q) = 1, £(Q)/£(Q)tors=<P>, where P = (2103, -96228). The author is grateful to the 
referee for the observation that the minimal equation for E is v2 = u3 - u2 - 23 AM -1296. This is 
curve 1248E1 in John Cremona's online tables, which confirm that the rank of E is equal to 1. 

As a direct consequence of the fact that rank E(Q) = 1, we conclude that there are infinitely 
many rational points on Q. By (2), we obtain infinitely many Diophantine quintuples with the 
property D ( - ^ x 2 j 2 ) , and multiplying elements of these quintuples by -^ we obtain quintuples 
with the property D(- l ) . Therefore, we have proved 

Theorem 1: There exist infinitely many Diophantine quintuples with the property D(-l). 

Corollary 1: There exist infinitely many Eulerian quintuples. 

The next question is: Which points (s, t) on E(Q) induce Eulerian quintuples with positive 
elements or, equivalently, Diophantine quintuples with the property D(-l) whose elements are 
>1? 

Therefore, we would like to find the points (x, y) on Q such that the five rationals 

(x2 4- 6x -18)(-x2 + 2x + 2) - Axy x(x + 5)(-x + 3) - Ay 3(x - 2)(5x + 6) - 4xy 
Axy ? Ay ? Axy 
(x2 + 4x-6)(-x2 + 4x + 6)-Axy A 3x-y 

: :—, and 
Axy y 

are all positive. Let us denote these five expressions by ^ (x , j ) , . . . , J?5(x,j/). First of all, from 
(x2 - x - 3)(x2 + 2x -12) = -y2 < 0, it follows that 

"l + Vl3 X G 

.Here, 

- i - V i 3 , l ^ u 2 •l + J\3 (4) 

-1 - Vl3 *-4.605551275464, 1 Z^ *-1.302775637732, 

1±^11 „ 2.302775637732, -1+Vl3 * 2.605551275464. 

Set a = ^ r^ . and 0 = ~1+^. Then condition (4) may be written in the form 

xe[-2a,-fl\\j[a,2p\. 
Assume first that y > 0. Then we find (using MATHEMATICA) that R^x, y) > 0 if and only if 

x e(a, xm) u <x(2),20), where 

x(1) « 2.306300513595, x(2) * 2.601569034318; 
R2(x, y) > 0 iff x e (a, 20); R3(x, y) > 0 iff x e (a, 20); R4(x, y) > 0 iff x e (a, 2/3); R5(x, y)>0 
iff jce<a,2/?>. 

Assume now that y < 0. Then we find that R^x, y)>0 iff x e (-2a, -0); i?2(x, y) > 0 iff 
x G(2CC, X(3)) iwi <-3, -0), where 

act3)*-4.482360405707; 
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R3(x, y) > 0 iff x G (-2a, - 2> u <x(4), - P), where 

x(4)« -1338580448007; 
Jf4(x, j ) > 0 iff x e (-2a, - /?>; i?5(x, j ) > 0 Iff x G <-2a, - 3> u <-2, - /?>. 

Summarizing these computations, we may write that J^(JC, j ) > 0 for / = 1,..., 5 iff 

x G<a, x(1)> LJ <x(2)
? 2/J>, y > 0 or x G<-2a, x(3)> u <x(4), -fi), y< 0. (5) 

We can see also that we have only three possibilities for the signs of J^(x,j/), / = 1,..., 5. 
Namely, we may have zero, one, or five negative numbers among them. This is not surprising. 
Indeed, it is a consequence of the following simple fact. 

Proposition 1: There does not exist a Eulerian triple {x1? x2, x^} such that xt > 0, x2 < 0, and 
x3 <0. 

Proof: Let y2 = -x2 and y3 = -x3. Since -xxy2 -y2 + xl>0, we have y2 < 1 and, similarly, 
y3<l. On the other hand, y^-yz~y3 ^0 implies y2y3> 4, a contradiction. D 

Now we may determine the points on E such that the corresponding points (x, y) on Q sat-
isfy (5). Using (3), we obtain that these points are 

sG{&\P^) KJ (P\^\t>0 or SG(&>,^6>> u <^7),^8)>, t<0, (6) 
where 

,s(1) « -79.224984709848, si2) « -76.849933010661, 
sQ) « 458.63743164323, s(4) « 937.53800125946, 
s(5) « -82.093984103146, s(6) « -79.690329099008, 
^7 ) « 232.03689724592, ^8) « 348.76934786866. 

Our final task is-to determine rational points on E which satisfy (6). We know that rational 
points on E have the form X = T+mP, where T G {©, A9 By C} and W G Z . 

We may parameterize elliptic curve E by the Weierstrass function 

s=p(z)9 t = jp>(z). 

We will denote the parameter z corresponding to the point X = (5, /) by m(X). The Weierstrass 
p-function is periodic, with complex and real periods given by 

ds 
Vl 001700+189815- s* 

ds 
/159 Vs3-18981s-1001700 

(see [11], pp. 22-29). We have a(A) = %-, o)(B) = ̂ - + ̂ -i, m{C) = ̂ i. Using PARI [2], we 
find that <»(P) = a, where 

er« 0.0218157627564. 
Also using PARI, we find that condition (6) is equivalent to 

m{X) e ( / 0 , ^ ) u ( y » + ^ , * < > + ̂  (7) 
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or 

m 

where 

W-^i e (y(2\ n u (r
(2)+^, ̂ (2) +^)3 (8) 

yW « 0.0545490289958, ^ « 0.06898634204343 

X(2) « 0.0525347833467? ^(2) « 0.0710005876925. 

Note that points X and A + X Induce the same quintuple. Namely, if X induces the point 
(x, y) on Q, then A + X induces the point (f 3 fr)3 and the only effect of these changes on Ri

is is 
the permutation of R2{x, j ) and R3(x, y). Therefore, it suffices to consider the points of the form 
mP and C+mP. 

The point X = mP satisfies condition (7) iff ma mod ̂  e</(1), ^(1)> or, equivalently, 

j^^j^m. (9) 

Analogously, the point X = C+mP satisfies condition (8) iff 

2y(2) 2S(2)\ 
wi-[ — | m o d l e ( ^ — , ^ — ) . (10) 

{m2J \ m2 ' m2 J 
Assume that —1 = -f- e Q. Then co(2lP) = 0, which means that P is a torsion point, a contradic-
tion. Therefore, ^~ is an irrational number and we may apply Bohl-Sierpinski-Weyl theorem (see 
[13], pp. 24-27), which implies that the sequence {m-(^) mod l} is dense in [0, 1]. 

Therefore, there are infinitely many integers m that satisfy condition (9), resp. (10), and then 
the corresponding points mP, C + mP on E(Q) satisfy conditions (7), resp. (8). 

Hence, we have proved 

Theorem 2: There exist infinitely many Eulerian quintuples consisting of positive rationals. 
Example 1: Condition (9) can be approximated by 

#1-0.214469590718 modi e (0.536286571189, 0.678201019526), 

and condition (10) by 
in-0.214469590718 modi e (0.51646663051, 0.698002960205). 

It is easy to find "small solutions" of (9): 
msMl = {..., -100,-95,-86,-81,-72,-67,-58,-53,-44,-39,-30,-25, 

-16,-11,-2,3,12,17,26,31,40,45,54,59,68,73,82,87,96,...},. 

and of (10): 
MGM2 = {..., -100,-95,-90,-86,-81,-72,-67,-58,-53,-44,-39,-30,-25, 

-16,-11,-2,3,12,17,26,31,40,45,54,59,68,73,82,87,91, 96,...}. 

Note that, for i = 1,2, msMi holds if and only if l-m eMt. Namely, the points rnP and 
A + (l-m)P induce the same point on Q. This fact explains why ^(1) + S® = ^(2) + <^2) = a + -^• 
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Note also that, for "many11 elements m of the set Mi9 / = 1,2, m + 2%eMf holds. This 
happens because 28a is close to 3a)2. 

The Eulerian quintuples induced by the points -IP and C-2P are listed in the following 
table: 

point on E Eulerian quintuple 

-2P 

f12253738824071768160902809331272805381 40228062558134597846809398333 
113356284738726537361337339615814680856 ' 2027377666049252712575626072 ' 

90410203607675775632231738735 1459249660815833141719920182753327588589 
2640165528414654368852526998 > 13356284738726537361337339615814680856 > 

164634788770687616151 
200378051669604563 J 

C-2P 

-24384004810826647895250908584025016017 11174534572531880776077845373 
l 1226018751971657626989240363062470220 ' 1225575724730803312553801852 ' 

200408761263308135110463918 2876707800134532926186517692138532777 
200450485329612350005456055> 1226018751971657626989240363062470220 ' 

1329253988561517422 ^ 
200378051669604563 J 

Remark 1: In the same manner as in the proof of Theorem 2, we can prove that there are 
infinitely many Eulerian quintuples consisting of negative rationals, and infinitely many Eulerian 
quintuples consisting of one negative and four rationals. 
Remark 2: In [9], we asked the following question: For which nonzero rationals q do there exist 
infinitely many rational Diophantine quintuples with the property D(q)l It is clear that it suffices 
to consider square-free integers q. It was already known to Euler that there exist infinitely many 
rational Diophantine quintuples with the property D(l) (see [4], p. 517). In [9], we gave an 
affirmative answer to the above question for q = -39 and Theorem 1 solves the case q = -l. In 
our forthcoming paper, we will give an affirmative answer to the above question for a large class 
of rationals q, including 114 integers in the range -100 <2< 100. 
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The computation of the multiple sum on a linear recurrence sequence is an interesting 
question. Many fine results have been given. This paper will establish a computational formula 
for the multiple sum on the generalized Lucas sequence. A new method will be used and some 
congruence relations will be given. 

We define a linear recurrence sequence Wn = W„(a,b9p,q)9n = 0,l,...9 as 

We consider the sequence 
(U„ = Wn(0,l;p,q), 
[V„ = Wn(2,p;p,q). 

Then U„ and Vn are called the generalized Fibonacci sequence and the generalized Lucas 
sequence. Their BInet formulas are, respectively, 

an-Bn 

u»=^=f~ and F»=a"+^"' where 

g = * + Vjpg and fi = EzJZz*L 
2 r 2 

In [2], W. Zhang gave a computational formula involving the multiple sum on the generalized 
Fibonacci sequence when UQ = 0. 

In this paper, we shall use another method (formal power) to establish a computational for-
mula for the multiple sum on the generalized Lucas sequence, I.e., 

where the summation Is taken over all Ti-tuples with positive coordinates (al9 a29...,ak) such that 

The generating function of the Generalized Lucas sequence {VJQ Is 
^ = 2-px 

—0 " l-px + qx* 
Let 

nzo i-px + qx 

Obviously, Fn
(1) =Vn. Then 

Z yWyih) ... y(K) = y(h+k7+ - +km) 
ai+a2+ -+am=n 
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If we take kx = k2 • • km = 1, we obtain the following lemma. 

V V —V =Vim) Lemma: ^T 
al+a2+-+am=n 

Theorem 1: Let V^ be defined as above. Then 

1 
k(p2-4q) 

{4(n + 2)V^-2p(2n + k + 2)V£l+p2(n + k)V£k)}. 

Proof: We note the following equalities: 

j-(Hk(x)) =±{-^P^k 

dxx kX n dx{l-px + qx2 

f 2~PX ^ l 

= k 

= k 

J 
\k-i 

1- px + qx2 

2-px 
l-px + qx2 

2-px | p-4qx + pqx2 

l-px + qx2 J (l-px + qx2)2 

-p(l-px + qx2) + (2-px)(p-2qx) 
(l-px + qx2)2 

-p + p2x - pqx2 +2p- 4qx - p2x + 2pqx2 

(l-px + qx2)2 

_ kp 

2-px \ p(l -px + qx2) + (p2- 4q)x 
l-px + qx2 J (l-px + qx2)2 

2-px ^ k(p2-4q)x( 2-px 

Thus, 

kx(p2-4q) 

2-px\l-px + qx2 

2-px I __/0 ^^ 2 d 

k+i 

l-px + qx2 (2-pxY 

(2-px)2 \l--px + qx 

2-px 
dx\ l-px + qx 

•kp(2-px) 2-px 
l-px + qx2 

So 
loc(p2-4q) I X ( * + V = (4-4px + p2x2) Yd^k)x:n-l-kp(2-px) J ^ V . 

n>0 n>0 n>0 

Comparing coefficients on both sides of the equation, we have 

k(p2 -4q)V^l) = 4(n + \)V£\ -4npV^ +p2(n- \)V£\ -2kpV™ + kp2V^ 

= 4(n + l)V£l - 2p(2n + k)Vn
ik) +p2(n + k-1)^. 

This completes the proof. • 
Taking k = 1,2,3,4 in the lemma and using Theorem 1, we obtain the following results. 

Theorem 2: Let (Vn) be defined as above. We have the following identities: 

(«> I vavb = 
a+b=n 

l 
p2-4q 

{2pVn+l+[(» + l)(p2-4q)-4q]Vn}. 
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0>) £ VaVbVc= " + 2 A6pVn+l + [(n + l)(p1-4q)-l2q]V„}. 
a+b+c=n Z\P ~^H) 

(c) £ VybVyd= } {l2[(n + 3)2(p2-4q) + (n + l)(p2-4q)-2qW„+2 

+ [(» + 3)3(P2 -4q)2 -12<?(» + 3)2(p2 - 4q) + 24q2]V„}. 

(d) I VybVydVe = 2
l {4S(n + l)(n + 4)Vn+4-4[l2q(n+2)(n2 + l0n + 23) 

a+b+c+d+e=n ^\P ~^H) 

- 2(«+4)3(p2 - 4q) - 3p\n+4)(«2 + 6» + 7) + 6nq]Vn+2 

+ (« +4)[48?2(» + 3)2 + (« + 3)3(p2 - 4qf - %q(n + 3)2 (p2 - 4q) 

-l2p2q(n + 3)2 + 24q2]V„}. 

Here, (n)k =«(«- l ) (w-2)•••(«-k + l). 

Theorem 3: Under the conditions of Theorem 2, we have the following: 
(a) 2V„+2 -2qV„^0 (mod p2 - 4q). 
(b) 12[(n + 3)2(/72 - 4q) + (#i + l)(p2 - 4q) - 2q]Vn+2 

+ [(« + 3)3(^2 -4q f - \2q(n + 3)2{p2 -4q) + 24q2]V„ = 0 (mod 3\(p2 - 4qf). 
(c) (n+4)[48q\n + 3)2 + (n + 3)3(p2 - 49)2 -8 ? (» + 3)2(p2 -4q) - \2p2q(n + 3)2 + 24q2}V„ 

- 4[l2q(n + 2)(«2 +10« + 23) - 2(« + 4)3(p2 - 4q) - 3p\n + 4)(«2 + 6« + 7) + 6w?F„+2 

+ 48(« + l)(w + 4)V„+4 = 0 (mod4\(p2-4q)2). 

Proof: Use Theorem 2(a), (c), (d). 
Taking p--q-\, V„ = L„ is the Lucas sequence, i.e., L0 = 2, Lx-\, L2 = 3, L3 = 4, ... 

Thus, from Theorem 2, we obtain Corollaries 1 and 2. 

Corollary 1: Let (Z„) be the Lucas sequence. Then we have the following: 

(a) £ 4 4 = !{2Z,„+1 + (5» + 9)Z,,}. 
a^b-n 

T. TA. = -
10 

(h) X 4 4 4 = ^ { 6 4 + i + ( 5 « + i 7 ) 4 } -

ft) £ 4 4 4 4 = ̂  (12(5«2 + 30» + 37)4+1 + (25«3 + 270«2 +935n + 978)4 }. 

(9 ^ 4 4 4 4 4 = ̂ {48(#i + lX* + 4 ) ^ 
a+b+c+d+e=n O U U 

+ ~^~[(#i + 3)(w + 4)(25«2 +175/i + 298) + 24(w + 4)]4. 
600 

Corollary 2: Let ( 4 ) b© the Lucas sequence. Then we have the following congruences: 
(a) 4 + 2 + 4^0(mod5). 
(h) 12(5H2 + 30#I + 3 7 ) 4 + 1 + (25H3 + 120/I2 +35/i+ 78)4 = 0 (mod 150). 
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(c) 48(n +1)(« + 4)4 + 4 + 4(25«3 + 264n2 + 875« + 876)L„+2 

+ [(« + 3)(« + 4)(25«2 +175» + 298) + 24(« + 4)]L„ = 0 (mod 600). 

First, we gave the multiple sum on the generalized Lucas sequence. Then, we discussed the 
multiple sum on the even generalized Lucas sequence. Now 

YV x*>=1[ 2~PX i 2 + Px }= 2-(p2-2q)x2 

£0
2" 2[l-px + gx2 \ + px + qx2\ l-(p2 -2q)x2 +q2x4' 

We use methods similar to those employed above. Let 

v RMY" = ( 2-(p2-2q)x 

ko ~{l-(p2-2q)x + q2x2 

Obviously, B$ = V2n, 
I vlaylai-v2am=B^, 

ai+a2+---+am=n 

^ » + 1 ) = , i, I AA4(n + 2)R^l4-2(j>2-2q)(2n + k + 2)4%+<j?2-2q)2(n + k)I^>}. 
kp2(p2-4q) 

Hence, we have the following theorems. 

Theorem 4: £ V2aV2b = \ {2(p2-2q)V2n+2 +[{n + \)p2(p2 -4q) -4q2]V2n}, 
a+b=n P \P -*<1) 

2 Witf* = 9 n 2 , i _ 4 ^ i^P2 -2<DV2>»z + [(» + !)/>V -4?) - l2q2]V2n}. 
a+b+c=n £P \P ^H) 

Theorem, 5: 2(p2 - 2q) V2n+2 - 4q2V2n = 0 (mod p2(p2 - Aq)). 

6(^2-2^)F2n+2 + {|?2(W + l ) ( p 2 - 4 f ) - 1 2 f
2 ] F 2 ^ 0 (mod 2p2(p2-4q)). 
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1. INTRODUCTION 

For any real or complex number fi, we denote 

where/? Is a positive integer, with (t\jS)Q = 1, and call it the generalized falling factorial with incre-
ment fi. In particular, we write (f 11)̂  = (f) and (f |0) =tp. It is known that the Dickson poly-
nomial in t of degree/? with real parameter a is defined as 

D
P^)=Yf-{piY-^p-2i o-i) 

with D0(t, a) = 2 (cf. [4]). Evidently Dp(t, 0) = tp. 
In this paper, we find closed summation formulas for the series 

$l\n) = J^(k + A \p)prk cosk0, Sf »>(«>) = ]T (k + X \0)prk coskO, (1.2) 

Si2\n) = t(k + A\fi)prksmk0, Sp>(») = £ ( * + A | / V * an *0, (1.3) 
k=Q Jc=Q 

^1}(«)=T.Dp(k> aykcoske> s^i00)=TDp(k> a>k c°sk0' o-4) 
k~a k=a 

S?\ri) = J^Dpik, a)rk smkO, S<2)(oo) = £ # , ( * . a)rk sinkO, (1.5) 
k=a k~a 

where a is any given integer, X and fi are real numbers, and \r \ < 1 for iSp (̂oo), i, j = 1,2. 
In [2], L. C. Hsu and P. J. S. Shiue have obtained closed summation formulas for the series 

SM) = i(k + mpxk, Sl(oo) = fd(k^-A\fi)px\ (1.6) 
k=Q k=Q 

n+a oo 

S2(n)=j,Dp(k,a)xk, S2(o0)=^Dp(k,a)xk, (1.7) 
k=a k-a 

where a is any given integer, X and fi are real or complex numbers, and \x\ < 1 for both <$i(oo) 
and i^C00) • The results of this paper are based on the conclusions above. 
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2* MAIN RESULTS 

We first define the rank as follows. 

Definition 2.1: The number of the summation symbols £ appearing in the right-hand side of a 
closed summation formula is called the rank of this summation formula. 

Recall Howard's degenerate weighted Stirling numbers S(p,j,A\fl) (0<j<p) can be 
defined by the basis transformation relation 

(t+MP)P = ftJl-S(pj,w(j)- (2-1) 

Indeed, by applying the forward difference operator A defined by Af(x) = f(x + t)-f(x) and 
A7 = AA7"1 (J > 2), and using the Newton interpolation formula to the LBS of (2.1), we see that 
the numbers J \S(p9 j , X\f$) in the RHS of (2.1) may be written as (cf. [2]) 

j\s(pj,m=&(t+MP)P]t=o=i(-iy-m{i\™+MP)P- (2.2) 

Equation (2.2) shows the rank of S(p9 j , 2 \fi) is 1. 
On the other hand, a kind of generalized Stirling numbers, called Dickson Stirling numbers, 

can be introduced by the relations (cf. [1], [2]) 

Dp(t9a) = ftS(p9j9a)(t-a)J Q> = 1,2,...). (2.3) 

Of course, these relations may be rewritten as follows: 

Dp(t + a9a) = fd$(p9j9a)(t)J (p = \29...). (2.4) 
y=o 

In fact, similar to the expression of S(p, j , X \ff)9 the Dickson-Stirling numbers have the finite dif-
ference expression 

S(p9j9a) = j^AWp(t9a)\t=a 

and its rank is 1. 
In the following, we first list the main results of L. C. Hsu and P. J. S. Shiue (cf. [2]) which 

are important to our conclusions. Denote 

(/>{x9n9j): fey-**;) 1-x 

Lemma 2.1: For x * 1, we have the summation formula 

w r \\-x 
(2.5) 

2(k + A\/3)pxk = tj*S(p,j,mt(x,nJX (26) 
&=0 ;=0 

where ^(x, n, j) is given by (2.5). 

Lemma 2.2: For |x| < 1, we have the summation formula 
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±«t+xWs-iJ,*?J-T°'- (27) 
£=0 ;=0 I 1 X) 

Lemma 23: For any given Integer a , we have the summation formula 
n+a p 
YdDp{k,a)xk = xa^j\S(p,j,a)lf>(x,n,j), (2.8) 
k=a j=Q 

where the Dickson-Stirling numbers are defined by (2.3) and $x, n, j) is given by (2.5). 

Lemma 2.4: For |x[ < 1 and any given integer a , we have the formula 

£/>,(*, a)x* = ̂ ^ y . (2.9) 

The proofs of Lemmas 2.1 through 2.4 can be seen in [2]. 
In these lemmas, the constants A, j3 are real or complex numbers, a is an integer. From now 

on, unless specified, we assume A, fi are real parameters, a is an integer. 
We first recall the famous Chebyshev polynomial Tn(x) defined as follows: 

Tn{x) = cos(w arccosx), x e [-1,1]. 

It is known that Tn(x) satisfies the recurrence relations Tn+l(x) = 2xTn(x) - ^_2(x) with T0(x) = 1, 
Tt(x) = x. For simplicity, denote 

cosd~r 
cost 1 ^l+^-lrcosd' 

sin^= l fn6 (2.10) 
Vl+r2--2rcos0 

l~ / U l + r 2 - 2 r c o s # J ? 

where Tt(x) is the Chebyshev polynomial of degree /. 

Theorem 2.1: Assume 0 < 0 < 2;r, r > 0. If r * 1 or 0 * 0, 2n, we have the summation formulas 

^{k + m^coske^jSSipjAm^ir^^J), (2.11) 
Jfc=0 J=0 

X ( ^ + A | ^ V * S i n ^ = f j ! . y ( A i U | ^ < 2 > ( r ^ , « , 7 ) , (2.12) 

where 
(l-rcosg)7} rsin2^ £ r r M - / " fi>(r,0,n,J) = r' 

.rn+l 

(1 + r2 - 2r cos0) 2 (1 + r2 - 2r cos0) 2 /=o 

yi^w + n mJ2^[cos(yf + l)0--rcos#f0] sin0sin(/i4-1)0-rsin0sinu0 y^^m-i-/1 
&(j-m/ \ (Ur2^2rms0)^ (l-f f 2 - 2 r c o s 0 ) ^ S M J 
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4tP(r909n9j) = r1 
r sin 0Tf 7_ , sin^(l-rcos$) ^ r 7 V-i_/ 

„ j+i + , ~ ^xi±i JL hh [(1+r2 ™2rcos^)^ (1+r2 - 2 r c o s $ ) ^ /=o 

__ «+iy (w +1 \rm]Tm[s'm(n +1)0-rsiting] sin gcos(w +1)^9-r sin #cos#fg y?r<™-i-i] 
^ o U - ^ J [ (l + r 2 - 2 r c o s ^ (l + r 2 - 2 r c o s ^ £ J M J 

Equations (2.11) and (2.12) imply that the summation formulas of Tl^ik-h A\fi)prkcoskd and 
Hn

k=Q(k + X \P)prk sin £0 have the same rank 5. 

Proof: In (2.6), set x = re10, then 
p 

Z& + Mflprkcosk$ = '£j\S(pJ,MflRetfTv!°,n,j), 
Jt=0 

P 

&=o 

We first obtain 
x _ rew _ r(cos0+isin0) _r(cosd-r+isinff) 

l~x l-rew l - r cos0- i r s in0 1+r2 -2rcos0 

rVl+r 2 -2 rcos^ f cos$-r isinfl 
l+ r 2 -2 r cos0 vVl+r2-2rcos0 ^l+r2-2rcos0 

-(cos^+isin^): 
Vl+r 2 -2rcos0 

where cos ^ and sin tx are defined in (2.10), and 

1 1 I f l - r cos$ 

reul 
Vl + r 2 ~2rcos# ? 

r + | -
rs in$ 

l-x l-rew / l + r 2 - 2 r c o s H V l + r 2 - 2 r c o s 0 ^l+r2-2rcos0 
eu2 

where 
Vl+r 2 -2 rcos$ ? 

l - r cos0 
cos^2 = sin t2 = • rsin$ 

Vl+r2-2rcos(9 yjl + r2-2rcos0 

Therefore, 

e"2 
sJl+r2-2rcosd 

rJeUh+h)' 

r V l ' 
i ' o V - ' w > ' ( l + r 2 - 2 r c l l(l+r2-2rcosey m=oV "V(l-

£ , U - f f l J ( l + r 2 - 2 r c o s ^ ' 

cos0)2 

(l + r2-2rcos0)^ * h^'-™) (l+r2-2rcos0) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Equation (2.18) implies that 
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Re^rew,n,j) 
rJcos(jt}+t2) r„+i y ( n +1Vm cos[/w^ +12 + (n +1)0] 

( l + r 2 - 2 r c o s 0 ) ^ w$J~m) ( 1 + r 2 - 2 r c o s ^ 

( l+r 2 -2rcos0p~ «=ov 
+1 V m s i n ^ + r2 + (H + 1)0] 

m ( l+ r 2 -2 rcos0)* 

(2.19) 

(2.20) 

By the definition of Chebyshev polynomial and (2.10), we know T; = cos(ltx). Set / • = sin jtl9 then 

Ij = sin jtx - sin(y -T)tx cos^ + cos(y -1)^ sin tx 

- Ij_x costx + Tj_x sin ft = (Ij_2 costx + Tj_2 sin tx) costx + 7 ^ sin tx 

= (/y_3 cos/j + Tj_3 sin ̂ ) cos2 tx + 7J_2 sin ̂  cos^ + T^ sin ̂  
= 7y_3 cos3 ̂  + sin ̂ (2}_3 cos2 ̂  + Tj_2 co$tx + 7^) 

= 7S cos-7"1 ̂  + sin tx(Tx cosy"2 ^ + 2J cos;"3 ^ + • • • + Tj_2 costx + T}^) 
= sin tx(cosJ~l r2 + 3J cos7"2 f2 + T2 cos-7'3 *! + ••• + 2}_2 cos^ + Tj_{) 

= sinter1-1. 
1=0 

From (2.21) and (2.17), it is easy to obtain that 
y-1 

Similarly, 

cos(jtx +t2) = cos jtx cost2 - sin jtx sin r2 = Tj cost2 - sin ̂  sin t2^ Ttt{ l l 

1=0 

(l-rcas0)Tj r s i n 2 0 f Tr-i-i 
Vl+r 2 -2rcos0 l - f r 2 - 2 r c o s 0 ^ ' * 

sin( JYJ + f2) = sin jtx cosr2 + cos j ^ sin t2 

^ s i n 0 ( l - r c o s 0 ) ^ r p _ w , ^ s i n * 
l + r 2 - 2 r c o s 0 ^ ' * <sfu-r2-2r 

rT, sin 0 
cos0 

Hence, 
cos(jtx + t2+ aff) = co$(jtx +12) cosad - sin( jtx + t2) sin a0 

(l-rcosQTj rsin20 g ? y - i - / ' 
Vl+r 2 -2rcos0 l + r 2 - 2 r c o s 0 ^ 

y-i 

cos«0 

sin 0(1-r cos 0) y» Tp-i-i 
l + r 2 - 2 r c o s 0 S ' * 

r 7J- sin 0 
Vl+r 2~2rcos0 

sina0 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
7^(cosa0-rcos0cosa0-rsin0sina0) 

Vl+r 2 -2rcos0 
- r s ^ 2 ^cosa0+ sin 0sin a 0 - r sin 0 cos0 sin a0 y< j^jj-i-i 

l+ r 2 -2 rcos0 £J ' * 

= 7}[costtfl-rcos(l-g)g] _ sin 0sin Q0+4sin 0sin(l - a)0 t-1
 r j 7 - i - / 

Vl+r 2 -2rcos0 l + r 2 - 2 r c o s 0 £ J M * 
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sm( jtx + t2+ aff) = sin( jtx +t2) cosa0+cos(Jtt +t2) sin a0 

^J— - - rT,sin0 sin 0(1 ~r cos 0) y» r T/-i-i r*/s : 

l + r 2 - 2 r c o s 0 S 7 1 V B ^ 2r cos0 
cosad 

(I-r cos ff)Tj r sin2 0 4--. TTJ-i-1 
(2.25) 

sina0 
_i/H-r2-2rcos0 l + r 2 -2 rcos0J3 

= ^Isina0+rsin(l--a)0] + sin 0cosa0- r sin 0cos(l - a)0 Jy TTi^i 
Vl+r 2 -2rcos0 l + r 2 -2 rcos0 £ g M 

In (2.24) and (2.25), set j = m and a = n +1 to obtain 

r . . / i\/vi Ocos(« + l)0-rcos«0] cos[/if fx + f2 + (n +1)0] = m r - ^ — — 7 — -
Vl + r2™2rcos0 

sin 0 sin(y? +1)0 - r sin 0 sin w 0 y? ™,™-i-/ 
l+ r 2 -2 rcos0 £5 ' * ' 

(2.26) 

sin[nf ̂  + /2 + (w +1)0} = Tm[sin(n +1)0 - r sin nff\ 
^Jl+r2-2rcos0 

sin 0cos(w +1)0 - r sin 0cosn0 y? «,™_i_/ 
l + r 2 -2 rcos0 £J ' * 

(2.27) 

From (2.13), (2.14), (2.19), (2.20), (2.22), (2.23), (2.26), and (2.27), we obtain (2.11) and (2.12) 
immediately. 

In (2.11) and (2.12), set n -> oo to obtain the following conclusion. 

Theorem 2.2: If r < 1 and 0 < 0 < In, then 

£ ( * + A | ^ / c o s W = 27!5(p ,7U|^J 1 >( r , t f ,7 ) 
;=0 k=0 

and 

where 

and 

2 ( * + ^ l ^ s i n W = 2 7 « 5 ( p , 7 \ A | ^ P > ( r , 0 , 7 ) , 

(2.28) 

(2.29) 
fc=0 

tfV,*,./)^ 

yi¥\r,e,f) = r' 

Tj(l-rcos0) r sin2 0 
^•tti (1 + r2 - 2r cos0) 2 (1+r2 - 2r cos<9) 2 /=o 

.EW"1" 

r7̂ - sin 0 
,m 

, sin 0(1-r cos0) y» r r i _ i . 
_ ( l+r 2 -2rcos0)^ (1 + r2 -2rcos0p~ /=5 

The rani: of (2.28) and (2.29) is 3. 

Theorem 2J: Assume r > 0, 0 < 0 < 2n. If r ± 1 or 0 & 0, 2n for any given integer a , we have 
the summation formulas: 
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n+a 

k=a 

where 

<$\a,r,e,n,j) = r*a 

<c=a J=0 

n+a p 
]TDp(k, a)rk sink0 = %j\S(p, j , a)$\a9 r, 99 n9 j), 

(2.30) 

(2.31) 
y=o 

T c o s a ® ~ r cos0- ~~a)0 _ sinflsingfl + rsinflsin(l-g)fl 4-̂  TTJ-1~ 
(1 + r2 - 2r cosfl) 2 (1 + r2 - 2r cos0) 2 /=o 

„«+l+a 

( l+r2-2rcos0) 
w+2 

_ sin 0 sin(n +1 + g)0 - r sin 0 sin(w + a)0 yJ TTm-\-i 
(l + r2-2rcos0) 2 /=o 

4^{a9r9e9n9j)^^ 
)j-1 

rp sma0~rsm(l-a)0 sin0cosa0-rsin$cos(l-or)fl^^^7-. 
(l + r2~2rcos$) 2 (1 + r 2-2rcos$) 2 

f-l-Z 

/=0 

- r 
,/i+l+a £0"+ i b -m=0 

-HI 
r ^ ( ^ +1 + Qpfl - y sin(w + a)0 

TO+2 

( l+r2-2rcos$) 2 

+ 
sin 0 cos(n +1 + a)0 - r sin 0 cos(n + a)0 -̂f T r m - i - / 

(l + r2-2rcos$) 2 
/=o 

Equations (2.30) and (2.31) imply that the summation formulas of 1^1% Dp(k, a)rk co§k0 and 
Z£2 ®p{^* a)rk sin ̂ $ have the same rank 5. 

w Proof: In (2.8), set x = re1", then 
??+a 

£ / )„(* , a)rk cosk0 = £ . / ! S ( A 7, a) Re[r V ^ ( / ^ , n, j)], 
k=a 

n+a 

j=0 

P 
^Dp(k, a)rk smke = £ J ! S ( A j , a)lm[ra^e<l>{reie, n, j)]. 
k=a j=0 

By (2.18), we have 

xaf(x,n,j) = r"elaOt(re!0) 

(2.32) 

(2.33) 

rJ+cteUh+h+a8)> 

(l + r2-2rcosd)^ 
n + l\ r m e [ m f | +'2 +(" + 1 + 0 ! )^ ,^(n + l\ rme 

(l+r2-2rcos6») 2 

This implies 

R e f r V ' ^ ' V . y ) ] - „ ^ ,/» „ A-1_r'+acas(jtl+t2+aff) 
(l+r2-2rcos0) 

n+l+a 

tyj~m) (1 

(2.34) 

(2.35) 

tXj-m) ( l + r 2 - 2 r c o s ^ 
W 
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T xaiadj./ id M r J+" sin( it, + L + CC0) ImI>Va(^(re , n, j)] ^-J—2—j^-
( l+r 2 -2rcos#p~ 

(2.36) 
rn+\+a y ( n +1V" sinQ^ + f2 + {n +1 + a)0] 

toy-m) ( l + r 2 - 2 r c o s 0 ) ^ ' 

By (2.32), (2.33), (2.35), (2.36), (2.24), and (2.25), we obtain (2.30) and (2.31). 

In (2.30) and (2.31), set n -»• oo, then we easily obtain the following conclusion. 

Theorem 2.4: If r < 1, 0 < 0 < In, then 

%Dp(k, a)rk cosk0=fij\S(p, j , a)V^\a, r, 0, n, j), (2.37) 
k=a j=0 

^D^k, a)rk sink0 = f.jlSip, j , a)y/£\a,r, 0, n, j), (2.38) 
k=a ;'=0 

where 

¥^(a,r,05nj) = r^a T cos a0 - r cos(l - a)0 _ $m0$ma0 + rsm0§m(l-a)0 ^ TTJ-i-i 
J n JH JH 2-J l 1 

(l + r~2rcos$) 2 (1 + r -2rcos$) 2 /=o 

^ ( a , r , 0 , i i , / ) = r>+» 

These imply that the rank of (2.37) and (2.38) Is 3. 

i J-1 

rp sin a0- rsin(l - q)fl sin 0cosa0—rsin $cos(l - q)fl ^ TTJ-i-i 
j 7T2~+ y+3 Z J 1 / 1 ! 

(l + r2-2rcos$) 2 (l + r2-2rcos$) 2 /=o 
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1. INTRODUCTION 

Bicknell and Hoggatt [l]-[6] , [9] published several articles in the 1970s involving matrices 
made up of generalized arithmetic progressions and convolutions of sequences with first term one. 
We give a new proof of their result using a novel decomposition of such matrices and then extend 
their result to convolution matrices of sequences whose first term does not equal one. In the 
process, we gain an increased understanding of the underlying structures of such matrices. We 
also note that these results should be readily extensible to a class of matrices recently discussed by 
Ollerton and Shannon [11]. 

2. AMTHMETIC PROGRESSION MATRICES 

In [5] and others, Bicknell and Hoggatt define an arithmetic progression of r* order, or 
(AP)r9 as any sequence of numbers whose r* row of differences is a nonzero constant while the 
(r - l)st is not. The constant number In the r* row is called the constant of the progression. The 
sequence Itself is the zeroth row of differences, so a constant nonzero sequence is an (AP)0. 
They then give the following theorem. 

Theorem 1 ("Eves' Theorem"): Let A be an n x n matrix whose Ith row (/ = 1,2,..., n) Is com-
posed of n terms of an {AP)i_l with constant of progression at. Then \A\ must be equal to 

Bicknell and Hoggatt refer to this as Eves1 Theorem after a letter they received from Howard 
Eves; however, very similar results may be found much earlier In Mulr and Metzler (see [10], pp. 
47-48 and Ch. XX). The first example of such a matrix given In both of these sources Is the 
familiar rectangular form of Pascal's triangle, 

r= 

(l 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 

1 
3 
6 
10 
15 
21 

1 
4 
10 
20 
35 
56 

1 
5 
15 
35 
70 
126 

1 
6 ••• 
21 ••• 
56 ••• 
126 ••• 
252 ••• 

(1) 

whose Ith row (i = l, 2,...) is an (AP)^ with constant 1. According to the theorem, then, the 
determinant of any n x n submatrix of T with one side on the left column of ones (or, by sym-
metry, Its top row along the top row of ones) must equal njLi ^ = XIJLi *" * • 

An alternate approach Involves the observation that 
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T = 

(I 
1 
jl 
1 
1 
1 

0 
1 
2 
3 
4 
5 

0 
0 
1 
3 
6 
10 

0 
0 
0 
1 
4 
10 

0 
0 
0 
0 
1 
5 

0 -^ 
0 ••• 
0 ••• 
0 ••• 
0 ••• 
1 ••• 

• 

(I 
0 
0 
0 
0 
0 

1 
1 
0 
0 
0 
0 

1 
2 
1 
0 
0 
0 

1 
3 
3 
1 
0 
0 

1 
4 
6 
4 
1 
0 

1 ••• 
5 ••• 
10 ••• 
10 ••• 
5 ••• 
1 ••• 

(2) 

that is, Pascal's triangle in rectangular form is equal to the matrix product of its lower triangular 
form with its upper triangular form. 

From this decomposition, it is easy to see why the upper left corner determinants discussed 
above must equal one. Furthermore, it begs the question: can other arithmetic matrices be decom-
posed in a similar way? 

The answer is yes. In fact, any matrix A whose rows are arithmetic progressions satisfying 
the criteria of Eves1 theorem may be decomposed similarly. We state this formally as 

Theorem 2 (Pascal Decomposition Theorem): Let any n x n matrix whose Ith row is an (AP)^ 
for i = 1,2,..., n be known as an arithmetic matrix. Then A is an arithmetic matrix if and only if it 
may be rewritten as the product of an n x n lower triangular seed matrix S with nonzero diagonal 
elements and the upper triangular matrix form of Pascal's triangle. 

Proof: We will first present a constructive proof that such a matrix decomposes and then 
deal with the reverse case. Let 

A = 

f l \ 

v4?y 

(3) 

where 4 is the Ith row of A, that is, Ai=(aihai2,...,ain)ri and let Af be an (AP)^ as defined 
above. We write out the difference table of this Ith row as in Sloane and Plouffe (see [12], p. 13), 
labeling the leading diagonal {bil9hi2,...}: 

AL 
A4 
A24 

N-lAf 

ba = aa a •a a to a V4 a He 

(4) 

where A^4 denotes the k^ row of A/s differences; that is, the j * element of A4 is Aâ - = 
aiU+i)" aij anc^ ^n §er ieral ^ 7* element of A^4 is A^. = Ak~laj(j+l) - £t~lQtj. 

Now, since At is an (AP)t_l9 its ( i - l )* row of differences must be equal to the nonzero 
constant of the progression. In particular, bu must equal the constant of the progression. Also, 
any elements below row i (on the leading diagonal, all bij9 j > i) must equal zero. From [12], we 
have the following relationships between the top row of our difference table and its leading 
diagonal: 
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- 1 0 - 0 h, and bn ^}:!W (5) 

Substituting for the aik that make up our matrix A, we have 

A = 
ar 
A2\ 

\an\ 

a 12 

^22 

a • r t l 

"in 
J2n 

AnnJ 

1,0-0 
lfa 

'V ' 2 / 

& A X ••• §("->-' 

(6) 

Now, since some of the iw were shown to be zero above, we can reindex the sums and see that 
f 

fbu 0 
"21 

*31 

\b
nl 

"22 
&32 

"n2 

0 
0 

*33 

4 

o ^ 
o 
o 

KnJ 

1 1 

o i 

0 0 1 

0 0 0 

0 0 0 

(V) 
M - l 

« - l 

n-l 
n-2 

(7) 

Therefore, A can be written as the product of a lower triangular matrix S and the n x n upper tri-
angular Pascal matrix. Moreover, it is easy to see that bu * 0 for (i = 1,2,..., n) by the definition 
oftU(AP)t. 

As for the reverse case, we notice that so long as the diagonal elements ofS are nonzero, the 
process outlined above can be run backwards. Hence, any matrix that is the product of a lower 
triangular seed matrix S with nonzero diagonal elements and the upper triangular matrix form of 
the Pascal triangle must be an (AP) matrix, and our theorem is proved. What's more, we now 
know the exact structure of the seed matrix S, and can calculate it from our original matrix A. We 
call this process the Pascal decomposition of A. 

Corollary: I ^ F d V 
As an example, we can apply our theorem to the numbers Mk^r examined by Wong and 

Maddocks in [13]. These numbers, with properties somewhat similar to binomial coefficients, 
satisfy the recurrence relation 

(8) Mk+l r+l = M * H r + Mk, r+1 + M* k,r 

with initial conditions M 0 0 = M1 0 = M0jl = 1. If we write these numbers out in a matrix where k 
is the row number and r indicates the column, we have the following arithmetic matrix: 
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M: 

fl 
1 
1 
1 
1 
1 

1 
3 
5 
7 
9 
11 

1 
5 
13 
25 
41 
61 

1 
7 
25 
63 
129 
231 

1 
9 
41 
129 
321 
681 

1 
11 ••• 
61 ••• 

231 ••• 
681 ••• 
1683 ••• 

(9) 

To decompose M, we multiply it by the inverse of the upper triangular Pascal matrix. Equiva-
lently, we could write out the difference tables for each row of M, but the inversion method is 
more succinct: 

(\ 
1 
1 
1 
1 

1 
3 
5 
7 
9 

1 1 1 
5 7 9 
13 25 41 

1 
11 
61 

25 63 129 231 
41 129 321 681 

1 11 61 231 681 1683 

v 

' 1 1 1 1 
0 1 2 3 
0 0 1 3 
0 0 0 1 
0 0 0 0 
0 0 0 0 0 

1 
5 
10 
10 
5 
1 

J v 
0 (\ 0 0 0 0 0 

1 2 0 0 0 0 
1 4 4 0 0 0 
1 6 12 8 0 0 
1 8 24 32 16 0 
1 10 40 80 80 32 

V , : : : : : 
which may be rewritten as 

M = 

V i 

fl 0 
1 2 
1 4 
1 6 
1 8 
1 10 

v • 

0 
0 
4 
12 
24 
40 

0 
0 
0 
8 

32 
80 

0 
0 
0 
0 
16 
80 

0 -) 
o ... 
0 ••• 
0 ••• 
0 ••• 

32 ••• 

• 

fl 1 1 1 1 1 •••' 
0 1 2 3 4 5 ••• 
0 0 1 3 6 10 ••• 
0 0 0 1 4 10 — 
0 0 0 0 1 5 ••• 
0 0 0 0 0 1 ••• 

v 

(10) 

(11) 

From equation (11), it is easy to see that \M\nxn = 2n{n"l)l2, as predicted by Eves' theorem Oust 
note that each row i (i = 1,..., n) has constant 21"1]. 

Interestingly, symmetric matrices such as M are subject to further decomposition using the 
lower triangular matrix form of Pascal's triangle; note that 

M--

fl 0 0 
1 1 0 
1 2 1 
1 3 3 
1 4 6 
1 5 10 

v: : : 

0 
0 
0 
1 
4 
10 

0 0 —') 
0 0 ••• 
0 0 ••• 
0 0 ••• 
1 0 -
5 1 ••• 
: : •.) 

• 

fl 0 0 0 0 
0 2 0 0 0 
0 0 4 0 0 
0 0 0 8 0 
0 0 0 0 16 
0 0 0 0 0 

v : : : : : 

0 •••" 
0 ••• 
0 ••• 
0 ••• 
0 ••• 

32 ••• 

\ 

• 

/ 

f l 1 1 1 1 1 • 
0 1 2 3 4 5 • 
0 0 1 3 6 10 • 
0 0 0 1 4 10 • 
0 0 0 0 1 5 • 
0 0 0 0 0 1 • 

V- : • : • • 

(12) 

This result is valid for symmetric arithmetic matrices in general, so we present another corollary. 
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Corollary: Let A be any symmetric matrix that also satisfies the conditions of Theorem 2. Then 
A- PT' -D-P, whereP is the upper triangular Pascal triangle matrix and D is diag{cx,c2,...,cn) 
with cf being the constant of the progression for the Ith row of A (i = 1,2,..., /i). 

Proof: By Theorem 2, A = SX-P and AT = PT -S2, where 5i and $2 are lower triangular and 
upper triangular matrices, respectively. Since A is symmetric and P is invertible, we can write 
A = PT -LX'P and AT = PT -L2-P, where Lx is lower triangular and 1^ is upper triangular. Since 
A = AT by symmetry, PT >LX'P = PT>L2°P. Thus, Lx- L2, and since Lx is lower triangular and 
L^ is upper triangular, they must be a diagonal matrix, denoted by diag{lh /2, ...,/„). Now, the 
diagonal elements of P and P r are all one, and by the first corollary to Theorem 2 the deter-
minant of the principal (k x k) submatrix of A is equal to the product of the progression constants 
of its rows, cfo. ..Cu. This means that cfa *.,ck~lj2..Jk for k = 1,2,...,n. Therefore, by induc-
tion on fc, the diagonal elements of D = Lx = L2 must equal the progression constants for A'§ 
rows. 

3. CONVOLUTION MATRICES FOR SEQUENCES WITH FIRST TERM ONE 

The convolution matrices Bicknell and Hoggatt studied next provide further interesting 
examples of the decomposition technique, and they also lead to an interesting generalization. The 
convolution of two sequences {an} and {bj (n = 0,1,...) is defined to be the sequence {cj such 
that cn = T!k=Q^kK-k- ^ e convolution matrix of a sequence is the matrix whose Ith column is the 
( i - l ) * convolution of the sequence with itself (/ = 1,2,...). The rectangular form of Pascal's 
triangle, for instance, is the convolution matrix for the sequence {1,1,1,...}. Bicknell and Hoggatt 
did a detailed analysis of the convolutions of the Catalan numbers 

^^{^ift")}^1'1 ' 2 ' 5 ' 1 4 ' -^ 
over the course of several papers; in [2] and [3], they present the following convolution matrix for 
this sequence: 

C = 

(\ 
1 
2 
5 
14 
42 

1 
2 
5 
14 
42 
132 

1 
3 
9 

28 
90 

297 

1 
4 
14 
48 
165 
572 

1 
5 

20 
75 

275 
1001 

1 
6 ••• 

27 ••• 
110 ••• 
429 ••• 
1638 ••• 

(13) 

Bicknell and Hoggatt showed in [3] that any convolution matrix for a sequence whose first 
term is one must be an arithmetic progression matrix with row constants all equal to one and, 
hence, must—by Eves8 theorem—have determinant one. Nevertheless, examining the Pascal 
decompositions for these matrices is worthwhile since it reveals a detailed underlying structure 
not otherwise apparent. 

Looking at the Pascal decomposition of C, we note that the seed matrix S seems to have a 
close relationship to the even columns of C: 
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C-

(1 
1 
2 
5 

14 
42 

0 
1 
3 
9 

28 
90 

0 
0 
1 
5 

20 
75 

0 0 0 •••"] 
0 0 0 — 
0 0 0 -
1 0 0 -
7 1 0 -
35 9 1 ••• 

• 

(1 1 1 1 1 1 •••" 
0 1 2 3 4 5 ••• 
0 0 1 3 6 10 ••• 
0 0 0 1 4 10 ••• 
0 0 0 0 1 5 ••• 
0 0 0 0 0 1 ••• 

1 

(14) 

What can account for this? To tease out the answer, we first examine convolution matrices in 
general. First, we note that any nxn convolution matrix V of a sequence {vn} may be written in 
the form 

V = (V, A-V, A2°V,...,An-l-VX (15) 

where V is the first n terms of {vj and 

A = 

fv0 
vl 
v? 

v V i 

0 
vo 
v> 

Vn-2 

0 •• 
0 •• 

vp :* 

V 3 -

0) 
0 
0 

voJ 
(16) 

If we set v0 = 1, then from [3] we know that J7 is a matrix satisfying Theorem 2 and must? there-
fore, have a Pascal decomposition, i.e., V = S°P, where S is a lower triangular seed and P repre-
sents the upper triangular Pascal matrix. We can solve this for S = V°P~l; substituting for V 
gives 

S = (F, A-V, A2-V,„ 

Since the inverse of P is clearly 
A"~l -V)- Pr- ill) 

3-1™ 

(1 
0 
0 
0 
0 
0 

- 1 
1 
0 
0 
0 
0 

1 
- 2 
1 
0 
0 
0 

- 1 
3 

- 3 
1 
0 
0 

1 
- 4 
6 

- 4 
1 
0 

- 1 • 
5 • 

- 10 • 
10 • 
- 5 • 
1 • 

(18) 

we can rewrite S: 

S = (V, (A-I)-V, (A-I)2-V,...,(A-I)"-1-V), 
where / is the identity matrix. 

Thus, each column of S is a successive convolution of {v0, v1;...,v„) with {0,vh v2,. 
i.e., if 

f 0 

B = (A-I) = 

Vv»-i 

0 
0 

V2 

0 
0 
0 

0 
0 

then 

S = (V, BV, B2V,...,B"-1-V). 
We summarize this discussion in the following theorem. 

(19) 

(20) 

(21) 
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Theorem 3 (Weak Convolution Decomposition Theorem): If V is a convolution matrix of a 
sequence {vj with first term one, then V = S- P for some lower triangular matrix S and the upper 
triangular Pascal triangle matrix P. Moreover, successive columns of S are successive convolu-
tions of the sequence {vn} with the sequence {0, vl9 v2, v3 , . . .} . 

Returning to our Catalan convolution matrix example, we can reexamine its seed matrix in 
light of this theorem. As predicted, each column is a convolution of the sequences {1,1,2,5,...} 
and {0,1,2,5,...}. Besides this, we can make our earlier conjecture about the relationship 
between the columns of the Catalan seed matrix, denoted by Sc, and the even columns of C 
explicit: the Ith column of Sc is equal to the (21')* column of C shifted down / places (/' = 0, 1, ...). 

Symbolically, we let C = (C, A-U, A2 • C,..., An~l•C), where C is the column vector filled 
with the first n Catalan numbers and 

Co 
Q 
Q 

0 
Co 
Q 

0 
0 

Co 

V.C„_i C„_2 C„_3 

Also, let Sc = (C, B • U, B2 • C,..., Bn~l • C), where 

0> 
0 
0 

G 

(22) 

oj 

B = 

0 

C2 

0 
0 

0 
0 
0 

\(-„-l (s„-2 

- 0\ 
... o 
... o 
c 6 

(23) 

Then what we are trying to show is that Bk C is equal to A2k • C shifted down k spots. 
We first note that the Catalan numbers have the well-known recursive relation Zy=0 Q-jCj = 

q+ 1for/ = 0 , l , . . . (See [8].) 
By this relation, we have 

and 

h-A2 = 

fa 
C2 

C3 

V^n 

f o 
c. 

2 

0 0 
0 

C„-l C„_2 

c, 
V^n-i 

0 
0 

C„-2 

0 
0 
0 

where 
(0 0 0 

1 0 0 
0 1 0 
6 6 ••'• 

0^ 
0 
0 

4 
- 0~\ 
... o 
... o 
c,' o 

0̂ 1 
0 
0 

(24) 

••B, (25) 

1 0 

(26) 
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Since Is- A2 = B, we can show by mathematical induction that 

= (r,(/s^2)-r,(/2^4)-r,...,(/r1^^1))C), 
thereby showing the desired relationship between the columns of Sc and the even columns, of C. 

4. CONVOLUTION MATRICES OF SEQUENCES WITH 
FIRST TERM OTHER THAN ONE 

We now have a very detailed understanding of the structure of any convolution matrix of a 
sequence whose first term is one. What happens, though, if the sequence's first term does not 
equal one? A good example is the following convolution matrix of the Lucas numbers {2, 1, 3, 4, 
7, ...} (we use the standard definition and notation, but begin with LQ = 2 instead of Lx = 1): 

(28) 

Eves' theorem has nothing to say in this case since the rows are no longer arithmetic progressions. 
However, if we multiply it twice by the inverse of the upper triangular Pascal triangle matrix, 
which we will again denote P, we obtain a seed matrix very like the ones encountered in our 
earlier work: 

(2 
1 
3 
4 
7 
11 

4 
4 
13 
22 
45 
82 

8 
12 
42 
85 
195 
399 

16 
32 
120 
280 
705 
1588 

32 
80 
320 
840 
2290 
5601 

64 • 
192 • 
816 • 
2368 • 
6924 • 
10204 • 

L-(P-1f = 

2 
1 
3 
4 
7 
11 

0 
2 
7 
14 
31 
60 

0 
0 
2 
13 
43 
115 

0 
0 
0 
2 
19 
90 

0 
0 
0 
0 
2 
25 

0 • 
0 • 
0 • 
0 • 
0 • 
2 • 

(29) 

In particular, each column of this matrix is equal to the convolution of the sequences {2, 1, 3, 4, 
...} and {0,1,3,4,. . .}. 

Note that this sequence had first term two, and that we multiplied the matrix by P l twice. 
This was by no means coincidental; in fact, we may state this correlation as part of a general 
theorem. 

Theorem 4 (Strong Convolution Decomposition Theorem): Let {vn} be a sequence whose first 
term is a positive integer v0, and let Fbe the convolution matrix of that sequence. Then V = 
S-Pv° for some lower triangular matrix S and the upper triangular Pascal triangle matrix P. 
Moreover, successive columns of S are successive convolutions of the sequence {vn} with the 
sequence {0, vh v2, v3,...}. 

Proof: The proof is constructive. We first note that if V is any convolution matrix of a 
sequence {vn} with first term v0, then V = (V, A-V, A2• V,..., An~l•V), where V is the column 
vector whose Ith element is vi and 
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A = 

vo 
vl 
V2 
V3 
v4 
v5 

0 
v0 
vi 
v2 
V3 
v4 

0 
0 

vo 
vi 
V2 
V3 

0 
0 
0 
vo 
Vl 
V2 

0 
0 
0 
0 
v0 
*I 

0 •• 
0 •• 

0 •• 
0 •• 
0 •• 
vo •• 

(30) 

v / 
If we multiply the convolution matrix v0 times by the inverse of the upper triangular Pascal tri-
angle matrix P, we have 

s=v-(p-l)v° 
= {V, A-V, A1-V,...,AH-l-V)-(P-iy* 
= (V, (A-I)-V,(A-I)2-V,...,(A-1)"'1 • V)• (P-1)^-1 

= (V,(A- 21) -V,(A- 21 f •¥,..., (A- 2/)""1 • V) • ( P " 1 ) ^ 
(31) 

= (V, (A-v0iyV, (A-v0lf.V,...,(A-v0ir1-V). 
Let a new matrix B = A - vQI, i.e., 

0 

B = 

0 
0 
Vl 
v2 
v3 
v4 

0 
0 
0 
vi 
V2 
v3 

0 
0 
0 
0 
vi 
v? 

0 
0 
0 
0 
0 
v; 

0 ••• 
0 ••• 
0 ••• 
0 ••• 
0 ••• 
0 ••• 

(32) 

Then it is clear that S is a convolution matrix since S = (V, B-V, B2 • V,..., Bn~l • V). More spe-
cifically, successive columns ofS are successive convolutions of the sequence {v0, vl9 v2,...} with 
{0, vl9 v2,...}, as was to be shown. 

Corollary: For any convolution matrix V satisfying the conditions of Theorem 4, \V\ = vj v^""1^2. 

Proof: By Theorem 4, F = ̂ -Pv°. Now, | P ^ | = 1V» =1, so \V\ = \S\. Since S is lower 
triangular with diagonal elements v0, v0vf, VQV?, ..., v0rf~l, \S\ = vJv1

1+2+'"+(,,"1). Hence, |F | = |5 | = 

Remark: The determinant of any convolution matrix is wholly determined by the first two 
elements of the sequence. 

5. CONCLUSION AND FUTURE GOALS 

Pascal decompositions allow easy calculation of determinants for arbitrary sized matrices, for 
once the sequence on the diagonal of the seed matrix is understood, it is a simple matter to 
calculate its product. What's more, this technique provides a visual tool to examine the structure 
of several flavors of matrices, such as the arithmetic and convolution matrices discussed above. 
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In a future paper, we hope to further generalize this technique and add to this list the recursion 
relation matrices studied by Ollerton and Shannon [11]. 
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1. MOTIVATION 

It is known that if Ln, respectively Rn9 are n x n matrices with the (/, j ) * entry the binomial 
coefficient (y~l)? respectively (^l)), then L2

n = In (mod 2), respectively R„=In (mod 2), where 
In is the identity matrix of dimension n>\ (see, e.g., Problem PI 073 5 in the May 1999 issue of 
Arner. Math Monthly). 

The entries of Ln form a left-justified Pascal triangle and the entries of Rn result from taking 
the mirror-image of this triangle with respect to its first column. 

The questions we ask are: Can this result be extended to other primes or, better yet, is it pos-
sible to find a closed form for the entries of powers of Ln and Rnl 

Ln succumbs easily, as we shall see in our first result. Rn in turn fights back, since closed 
forms for its powers are not found. However, we show a beautiful connection between matrices 
similar to Rn and the Fibonacci numbers. If n - 2, the connection is easily seen, since 

A simple consequence of our results is that the order of Ln modulo a prime p is p, and the order 
of Rn modulo/? divides four times the entry point of the Fibonacci sequence modulo p. 

2* HIGHER POWERS OF L AND Rn 

The first approach that comes to mind is to find a closed form for all entries of powers of Ln 

and Rn. It is not difficult to obtain all the powers of Ln. Denoting the entries of the e* power of 
Ln by 1$9 we can prove 

Theorem 1: The entries of Li are 

W = ̂ j-ty C1) 
Proof: We use induction on e. The result is certainly true for e = l. Now, using induction 

and matrix multiplication, 

c-£(i:lh(j:!) |̂-(i-lXi=i 

To prove a similar result for Rn is no easy matter. In fact, except for a few lower-dimensional 
cases and a few of its rows/columns, simple closed forms for the entries of Re

n are not found. 
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Iii the sequel, we consider the tableau with entries aijy i > 1, j > 0, satisfying 

^, ; - l=^-l f JH+q-W, (2) 
with boundary conditions alt„ = l, ahj=0, j*n. We shall use the following consequences of 
the boundary conditions and recurrence (2): aUJ = 0 for i+j <n, and ahn+l = 05 1 <i <n [in fact, 
we use only these consequences and (2)]. The matrix R will be defined as (^•,_/-)I=I...?IJJ-=L..„. We 
treat the second and third powers first, since it gives us the idea about the general case. To clear 
up the mysteries of some of the steps in our calculations, we will refer to matrix multiplication as 
m.m. and the boundary conditions as he. 

Lemma 2: The entries of the matrix R2 satisfy 

Kj+i = bi'ij+i+2Ai-irbtp 2 < i < w ? i < j < « - i ? (3) 

and the entries of J?3 satisfy 
ci+lJ = 2cUJ+3citj_l-2*i+lJ_l, l<i<n-l, 2<j<n. (4) 

Proof: Using matrix multiplication and (2), we obtain 

(2)i 
1 ~ i 

5=1 5=1 

n n n 

= 5X A+w _ 2X Ay m='IX Any ~hy 
5=1 5=1 5=1 

Therefore, denoting SUj = Z ^ i ^ A + w * w e obtain 

I f 2 < i < w and l<j<n, 
Sl. J = Z (^-1, * + ai~h ^ l K + l , ; "= Si-1, J + Z a/-l, A , 7 

5=1 r=2 
m.m. & j , b.c. « » 

= "Vi, y + bt-i, j+a<-i, »+ia»+i, y " a»-i, iai, / = V i . y + *.-i, y • 

Using (6) in the previous recurrence, we obtain bf J+i + hij = bi_lj+1 + hl_lj+hi_lj, which gives us 
(3). 

If the relations (3) are satisfied, we obtain, for j > 2, 

(5) 

cijm=Y.ai,hi - Z ^ . ^ - i y + ^ - u - i - ^ y - i ) 
5=1 5=1 

n n 

= 2 X A-iy + 2 I X A-i,y-i -<7.y-i = Tt.j+2Tuj-\-ci.j-i> 
5=1 5=1 

where Tu y = EJU ̂ , A - i y • Furthermore, for i < /? - 1 , 
( 2 ) / 

TUj- Z (^+l.f-l ^ M - l ) ^ " ! , / ^ ^ / +<*+!, A / -ai+\.J>n.rCU -"l^OJ+Oi, A , / 
(2) , , ftf. 
- *7+l, j ~ C i , / + ai, A ) , J " a i , » + A i , ; ~~ Ci+l j Ci, j ' 
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Therefore, 
°t, j = TUj+2Tit j_x - cu j_x = ci+lf j - ch j + 2ci+l j „ t - 2cJ9 j _ t - cu j _ x , 

which will produce the equations (4). D 

Corollary 3: The entries of the second and third power of R can be expressed in terms of the 
entries of the previous row: 

We have wondered if relations similar to (3) or (4) are true for higher powers of R. It turns 
out that 

Theorem 4: The entries af*j of the e®1 power of R satisfy the relation 

F , de)- = F de\ + F , fl(eJ , - F a^ , 
^Vl "i,y ^e "i-l,y ^ ^e+l "i-l, y-1 re ui, j-l> 

where i^ is the Fibonacci sequence. 

Proof: We show first that the entries of Re satisfy a relation of the form 

sM?, = «.<4$j+fi.4$j-i+r.43-i CO 
and then will proceed to find these coefficients. From Lemma 2, we observe that St = 0, al = 1, 
fix = l,n = -l $2 = h<*2 = !> Pi = 2>r2 = - 1 , and £3 = 1, a3 = 2, /?3 = 3, r 3 = -2 . Now, the 
coefficients of Re satisfy, for i, j > 2, 

°e~lai-\J ~ Zj°e-lai-l,sas,j ~ Z^ai-l,s\ae-las-lj^Pe-las-l,j-l+fe-las,j-l) 
5=1 5=1 ( 8 ) 

m.m. ±'a+.iU,_UJ +fit-iUl_itJ_1 +re-i4-\,j-u 

where UUj = 2 ^ at, a£$. We evaluate, for 2 < / < n, 

5=1 

~ ai5y a/-l,y+ai,0a0,y a/-l,0^),y ai,nan,j ^ai-l,nanJ 

- ai, y ai-i, y + a i - i , i ao, y a / - i 5 n+ia«, y ~ ai, y a?-i, y> 

since dj_u = 0, i < #i, and aj_ln+l = 0. Thus, 

« - i < # = (^-i + * - i W - i y +0»-i - J V i W - l y-i " A ^ i < % 

Therefore, we obtain the following system of sequences: 

ae = ae_l+Se_1, 

He - Pe-l ~ 7 e-l> 

Ye = -Pe-l-

(9) 
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From this, we deduce Se
 = Fe__^ ^e

 = Fe, J3e = Fe+^ y e — ~FeJ where Fe is the Fibonacci sequence 
withi^ = 0, F1 = l. D 

Corollary 3 can be generalized, with a little more work and anticipating (10), to obtain the 
elements in the (/ +1)* row of Re, in terms of the elements in the previous row. 

Proposition 5: We have 
; - i pk-i 

k=l re-l 

3. HIGHER POWERS OF Ln AND Mn MODULO A PRIME p 

As before let Ln, respectively Rn, be defined as the matrices with entries (J~l), respectively 
CJl}). We use the notation n matrix =a (modpf with the meaning "matrix = al„ (modp)". 

We ask the question of whether or not the order of ln and Rn modulo a prime/? is finite. We 
can easily prove a result for Ln using Theorem 1. 

Theorem 6: The order of Ln (n > 2) modulo/? is/?. 

Proof: We have shown that the entries of Ifn are //*j = ̂ J(jl\) for any integer e. Thus, the 
entries on the principal diagonal of Ifn are all 1. If / * j , then p | l\f). Assume there is an integer 
e with 0 < e < p such that p\lj\j for all i*j. Take i = 2 and 7 = 1. Then p\e is a contradiction. 
Therefore, the integer/? is the least integer e > 0 for which p\l^eJ for all / ^j, which proves our 
assertion. • 

We can prove the finiteness of the order of Rn modulo p in a simple manner. By the Pigeon-
hole Principle, there exist s<t such that Rs

n = Rf
n (modp). Since Rn is an invertible matrix (det 

Rn - (~\y ^ 0 (mod p)\ R^ = In (mod p). More precise results will be proved next. In order 
to do that, we need some known facts about the period of the Fibonacci sequence. It was shown 
that the period of the Fibonacci sequence modulo m (not necessarily prime) is less than or equal to 
6m (with equality holding for infinitely many values of m) (see P. Freyd, Problem E 3410, Amer. 
Math Monthly, December 1990, with a solution provided in ibid, March 1992). In the case of a 
prime, the result can be strengthened (see Theorem 7). The least integer n * 0 with the property 
m\Fn is called the entry point modulo m. 

In [1] and [7], the authors obtain (see also [6], Chs. VI-VII, for a more updated source) 

Theorem 7 (Bloom-Wall): Denote the period of the Fibonacci sequence modulo p by 2P(/?). Let 
p be an odd prime with p * 5. If p s ±1 (mod 5), then the period 9*0?) 10? -1) . If p = ±3 (mod 
5), then the entry point e\(p + l) and the period 2?(j?) 12(p +1). 

Remark 8: For p = 2, the entry point is 3 and the period is 3. In the case p = 59 the entry point 
is 5 and the period is 20. 

Theorem 9: If e is the entry point modulo p of Fe9 thee R^k = (~l)(^1)eiV-i4£ (mod p) and 
i ^ + i ^ ( - l ) * 4 w ( m o d ^)- Moreover, R* = In (modp). 

Proof: We prove by induction on e that the elements in the first row and first column of R* 
are 
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W^ZtyttF.'-1 and c^^F^Ft1. (10) 

First, we deal with the elements In the first row. The first equation is certainly true for e = l, if we 
define 0̂  = 1. Now, 

Again by induction, we prove the result for the elements in the first column. The case e = l can 
be checked easily. Then 

5 = 1 S=l ^ ' 

= F"~l Y I £=M Y' ~ * 1 = F"-1 II+5=1-1 = F""' F",1 

e a U.J v»-*J * [ i - J e e+1-
Let e be the entry point modulo p of the Fibonacci sequence. By Bloom-Waifs result, we 

have e<p + \. Using Theorem 4, we obtain F^a^j ^ Fea^\J^Fe^1aff{J_1-Fea^j_.l (mod/?). 
Thus, 

i W ^ ^ i ^ U (mod/?)- (11) 
Since Fe_t + Fe = FM, p\Fe, and /> |F^ , we obtain Fe_x = Fe+l (mod/?) and 

< ! s « £ l , - i (mod/?). (12) 

We see from what was proved above that, modulo p, the elements in the first row and column of 
Rn (mod/?) are all zero, except for the one in the first position, which is F"Z\ # 0 (mod/?). Using 
(12), we get Re

n = F^In (mod/?). Using Cassinifs identity Fe__tFe+l -Fe
2 = (-If (see [2], p. 292), 

we obtain F%_x = F*+l = (™l)e (mod/?). If w = 2*, then 

F - 1 = F/4"1 - ( / ^ ^ / v l l - ( - l ) * / £ - ( - 1 ) ( * + 1 ) ^ (mod/?). 

If 7i = 2k +1, then F£ = 7^5 s (Fj^)* s (-1)^ (mod/?). 
The previous two congruences replaced in R% s= i ^ X (mod /?), will give the first two 

assertions of our theorem. 
It is well known (a very particular case of Matijasevichfs lemma) that F2e_x = F£_x + F* = F^ 

(mod F^X so F£_x = 1 (mod /?). Thus, since Fm divides Fsm for all m and s (in particular, for 
s = 2,m = e), it follows that F2e = 0 (mod/?) and B? = (R*ef = {F^rlIn s /„ (mod/?). D 

Remark 10: We remark here the fact that the bound 4e for the order of R is tight. That can be 
seen by taking, for example, the prime 13, since the entry point for the Fibonacci sequence is 7, 
and the order of R4k is 28. 
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Using some elementary number theory, we can prove 

Theorem 11: If p \ F l9 then i?̂ "™1 = In (mod/?). 

Proof: We observe that, since p \ Jy^, we have p = ±1 (mod 5), otherwise, p = ±2 (mod 5), 
and by Bloom-Wall's theorem, the entry point e divides p +1. Thus, e\p-\ and e\p + \. There-
fore, e must be 2. This is not possible because F2 = l, which is not divisible by any prime. So, 
p = i l (mod 5) and Fp EE F^2 (mod pi Thus, RP~l = F ; ^ = F/"1/, (mod/?). 

By the previous Bloom-Wall theorem, &(p) \ (p~-1); therefore, Jy.! = 0, Fp = 1, F ^ = 1, 
etc. Hence, i?^ 1 = F£~% = /„ (mod/?)- D 

Another interesting result is the following theorem. 

Theorem 12: If plF^, then i?4+
+\ s j r

2 i t + 1 (mod/?) and W£l = -I2k (mod/?). 

Pr^of: Assume p = 2. The entry point of the Fibonacci sequence modulo 2 is e = 3. Since 
F> = 1, Theorem 9 shows the result in this case. Assume p>2. We know that in this case we 
must have p = ±2 (mod 5). Using the known formula (see, e.g., [3], Theorem 180) 

Fj=2l~J lMty*W+ 
taking j = p, and using Fermat's Little Theorem, 2P l = 1 (mod/?), we obtain 

Fp^5^n(Pj = -l(modp), 

since, for the primes = ±2 (mod 5), 5 is a quadratic nonresidue. 
When n is odd, i?^+1 sFp~~lIn = (F^)^!^ = In (mod/?). Consider the case of n even. Since 

Fp s - I (mod/?), we have RJ?1 = Ff% = (-1)"-% = -/„ (mod/?). D 

The proofs of the previous two theorems imply 

Corollary 13: If p = ±1 (mod 5) and /? - 1 is the entry point for the Fibonacci sequence modulo 
p, then the period is exactly p - 1. If /? = ±2 (mod 5) and /? +1 is the entry point for the Fibo-
nacci sequence modulo/?, then the period is exactly 2(/? +1). 

Corollary 14: The order of Rn (mod/?) is less than or equal to 2(p +1) and the bound is met. 
Proof: If p = ±1 (mod 5), thee the order of R„ (mod /?) is < p -1. If /? s ±2 (mod 5), then 

Fp = -1 (mod/?). Therefore, J^+1 =F;~!4 = H F 1 / , (mod/?). Thus, i ? ^ 2 s /n (mod/?). The 
bound is met for all primes p = ±2 (mod 5) and all even integers n. D 

4. FURTHER PROBLEMS ANB RESULTS 

The inverses of Rn and Ln are not difficult to find. We have 

Theorem 15: The inverse of 

^ ( C - ' . L , , * <K<-*"G--'.L /*» 
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The Inverse of 

Proof: We have 

t(-^(i:lXj:l)'vf(-'rG--,.Xi:i)**,G-i)I(-<'4 
which is 05 unless i-j, in which case it is 1. A similar analysis for Rn will produce its inverse. • 

Another approach to find a closed form for all entries of powers of Rn would be to find all 
eigenvalues of Rn, and use the diagonalization of the matrix to find the entries of Rn. We found 
the following empirically and we state It as a conjecture. 

Conjecture 16: Denote </> = ̂ jr-, $ - ^Y~ . The eigenvalues of Rn are: 

(a) {H)k+it2i-\(-Vk+T-lU,..,k if" = 2*. 
(b) {(-l)k}^{H?+i<t>\(-dk+it2iU...,k if» = 2* + l. 

Another venue of research would be to study the matrices associated to other Interesting 
sequences—Lucas, Pell, etc.—and we will approach this matter elsewhere. 

Note Added to Proof: Recently, the above-mentioned conjecture was settled in the affirma-
tive, Independently, by P. Stanlca and R. Peele, by D. Callan, and by H. Prodinger. 
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In this paper we discuss the divisibility theory of the generalized Lucas sequences Un and Vn 
which were defined by D. H. Lehmer [1] as follows: 

Un = (a"-fi")'(<*-P), (1) 
F„ = a" + £", V0 = 25 (2) 

where a = (jR^jA)/2, fi = (jR~~jA)/2 are the roots of x2~Rl/2x-hQ = 0, R and Q are 
coprime integers, R > 0, the discriminant A = R - 4Q, and n > 0 is an integer. 

The main theorem of this paper is a complement of that of Lehmer [1], and this result is 
essential in the applications to exponential Diophantine equations, as we will show in another 
paper. Moreover, the main results of McBaniel [2] will be extended, and this can be deduced 
easily from the main theorem of this paper. 

It is easy to see that U2k+l and V2k are rational integers and that U2k and V2k+l are integral 
multiples of Rin. Let Z be the set of integers, Rl/2Z = {aRl/2 ] a e Z}. If we define the divisibility 
of the elements of the set Z u Rll2Z as follows: For any A, B e Z KJ RmZ, A\B o B = A-C, and 
C G Z U J?1/2Z, then most of the propositions below are well known (see, e.g., [3], Chapter 2). 
Proposition 1(e) was recently proved in [2]; however, as we will show, this proposition is not true 
for the most general definition of the generalized Lucas sequences as defined above. 

Proposition 1: Let m and n be arbitrary integers: 
(a) Vn

2-AUt = 4Q". 
(b) If»*|», then Um\U„; if nlm is odd, then Vm\V„. 
(c) U2n^UnVn;V2n^V2-~2G\ 
(d) lfd = gcd(m,n),thmgcd(Um,UJ = Ud, 
(e) lfd = gcd(w, «), then gcd(Fm, Vn) = Vd if mid and nld are odd, and 1, or 2, otherwise. 
(f) If p is a prime and Q) is the minimal positive integer with p\Um ([1] defined m to be the 
appearance of/? in Un), then for any positive integers k and A, we have px+l\Ukmpx. 
(g) If an odd prime/?, with p\RA9 e = (AR Ip) is the Kronecker symbol, then Up-£ = 0 (mod/?). 

For any prime/?, A GZ^JR1/2Z, ordpA is defined to be the rational number s with 2s being 
an integer and /?2*||.42, denoted by otdpA = s.We now have the following theorem. 

Theorem 1: If/?, q are odd primes and s, (are positive integers with /?5||A, q'\\R, then: 
(a) If ps > 3, then ordpUm = ordpm, ordp^ = 0. 
(b) For q* > 3: if m is odd, then oidqUm = 0, o r d ^ IVl = ordqm; ifm is even, then o r d ^ = 0, 
ordqUm = ordqm + t/2. 
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(c) Suppose ps = 3 and X is an integer with 3X \\3R + A, then ord3^ = 0, ord3U3m = X + ord3w; if 
3fiw, then ord3£/m = 0. 
(4) Suppose now that gf = 3 and ju is an integer with 3 |̂|3A + J?. If m is odd, then ord3l7m = 0, 
ord^^ IVX = ordyw+ //, and ord3^ IVX = 0 with 3|/w; if m is even, then ord3P^ = 0, ord3U3m = 
o rd^ + // +1 / 2 , and ord3Um = 1/2 with 3|/w. 
(e) Let 2||i?: if 2jw, then ord2Um = ord2Vm/Vt = 0 (2|iw); if 2||m, then ord2Fm = ord2F2 and 
ord2Um = 1/2; if 4\m, then ord2^ = 1/2 and ord2Um = ord2/w-1/2. 
0 Let 4|J?: if m is odd, then ord2C/w = 0 and ord2J^ = ord2J^; if m is even, then ord2Um = 
ord2w + yord2i?-l and ord2J^ = 1. 

Proof: We divide the proof of the theorem into three parts: 
(I) If /w is odd, subtracting the w* power of 2/? = Rl/2 - A1/2 from the m^ power of 2a = 

i?1/2+A1/2,weget 
(/w-l)/2 / \ (»i-l)/2 / t \ 

Let w be a positive integer with pu\\m, u > 0, and notice that 

ordp ~^— A=si + n- ordp(2/ +1) > si + w - log/7(2i +1). (4) 

If ps * 3, then p51 > 2/ +1 for any i > 1, so from (4) we know that every term of the summation of 
(3) is a multiple of pu+l; therefore, ordpUm = ord^w = u. This result together with Proposition 
1(a) and (i?, 0 = 1 implies that ordpFm = 0, i.e., Theorem 1(a) holds for odd m. 

If ps = 3, then 4U3 = 3i? + A, so from (3) we conclude that 3\Um when 3\m. Subtracting the 
w* power of 2/?3 = V3- Al/2U3 from the nfl* power of 2a3 = V3 + Al/2U3, we get 

(w-l)/2 / \ 

2"-1t/3m/C/3= X 2^lKAC/32)'F3m"2'"1- (5) 
1=0 V J 

Similar to the above, we have ord3U3m/U3 = ord3m and ord3J^ = 0, i.e., Theorem 1(c) holds for 
oddiw. 

If m is odd, from [1] and Proposition 1(a) we have 
(m-l)/2 / \ 

TT'VJV^ S L^AR'A^2^'2, (6) 

R(Vm/Vlf-AU2=4Qm. (7) 

Symmetrically, from (6) and (7) we conclude that Theorem 1(b) and (d) hold for odd m. 
(H) Now suppose that m is even, then U2 = R9 so R\U% for any even m; therefore, o r d ^ = 

0=ord^Fm by Proposition 1(a). Let m-2aml, 2\n\9 a > l , be an integer, and notice that by 
Proposition 1(c) we have 

n = UmVMV7nu...V,a.l . (8) 
2aml

 m\ ™\ 2i«i 2alml ^ ' 

Thus, ordpUm = ordpUmi and ordqUm = ord^FWj, and from the above result of the odd number mx 

we know that Theorem l(a)-(d) hold for even m. 
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(DO) For Theorem 1(e), It is well-known that {Um} satisfies the following recurrence relation, 

U^R^U^x-QU,,, U0 = 09UX = 1. (9) 
Since (R, Q) = 1 and 2||i?, we have Q = 1 (mod 2) and A = R-4Q = 2 (mod 4). Taking modulo 
2 for the sequence (9), we obtain a sequence with a period 4, 

Um^Q,lRl/\X0^R1/\\.^ (10) 

If 2\m, then (10) implies that ord2C/m = 0, and from 2||A and V% - At/2 = 4Qm we have 
ord2Fw = 1/2; if 4\m, then (10) implies that oid2Um > 1, and from 2||A and V2 - Mil = 4(T we 
have ord2FOT = 1. Then from (8) we have 

ord2C/m = ord2C/Wi + o r d ^ + £ ord^, = o + - + ( a - l ) = ord2#i - - . 

If 2||/w, say, m = 2ml, 2\n\, then F2 = J?-2i2 = 0 (mod 4), and adding the m^ powers of 
2a2 = V2 + (i?A)1/2 and 2^2 = V2 - (RA)y\ we get 

{mx-l)l2 / \ 

^-iv2mi/v2= 2 (2riijF^(Ai?)^-2?"i>/2 ( i i ) 

and ord2(F2
2l'(Ai?)(OTl"2l"1)/2) > ml - 1 , and the equality holds if and only if / = 0. Thus, by taking 

modulo 2mi for (11), we get ord2F2wf| /F2 = 0, and from (8) we have ord2F2mj = ord2F =1 /2 . 
Summing the above result we complete the proof of Theorem 1(e). 

For Theorem 1(f), if 4\R, put R = 4Rl9 then A = J?-40 = 4AX and g is odd, so 2\RxAl9 and 
if m is odd, 

(w-l)/2 / \ (w-3)/2 _ / T \ 

i=0 ^ ' i = l ^ ' 

Therefore, ord2C/wl = 0. Similarly, ord2Fw = ordjFj. If m is even, then from (8) we have 2\Um9 

and V*/4- AjC/2 = Qm implies that Vm12 is odd, i.e., ord2Fm = 1. From the results for odd m and 
again using (8) we have ord2C/m = ord2m~l + ord2F1 = ord2#w-f |-ord2J?-l. This completes the 
proof of Theorem 1. 

Remark 1: Put ax = aw\ fix = /J"1, ^ = ax + fiX9 Aj = ( ^ - ^ ) 2 , t / ^ = « -PDHPd -fix), and 
pO) = a j +pn

x. Then we have U® = Umn/Um, Fw
(1) = Vmm and A! = AC/2. Applying Theorem 1 

to Ujp, V£l\ we obtain the largest power off in U„ or Vn \£q\Um or q\Vm. 

Now let us remark that if 2 \R then 2 f A, since U„ and Fw satisfy recurrence relation (9) and 
the following one, respectively, 

V„2 = ̂ ^ - eFro, F0 = 2, Vt = Rm. (12) 

Taking modulo 2, we have 2\U^m when m> 0, and if 2f 0 then 2|t/w and 2\Vm if and only if 
31m and 3\n, respectively. Hence, from Remark 1 and the above discussion, we need only con-
sider the case of2\R when we study the behavior of the 2-part of Um and V„. 

We will now prove the following corollary which is an extension of Proposition 1(e) above. 

2002] 155 



A NOTE ON THE DIVISIBILITY OF THE GENERALIZED LUCAS SEQUENCES 

Corollary: If d = gcd(m,ri), then gcd(Vm,V„) = Vd ME mid and nld are odd, and 1, V2, or 2, 
otherwise. 

Proof: For J = gcd(m, n), we may suppose without loss of generality that km = d~h£n, where 
A and £ are positive integers. If k is odd, notice that VjV^ and (C/ ,̂ FOT)|2 for any m > 0 and 

2F^ = (a*-fidXat* - (3tn) +VdVin (13) 

and V„\Vini££ is odd, Fj[/^„ if ^ is even. Thus, 

(Vm,V„)\((<*d-fid)(<xe"~P(n\ VdVj\Wd. (14) 
If k is even, then In is an odd multiple of d, and we see that 

2(akm-fikm)/(ad-pd) = Vd(al"-/3e")/(ad-0d)+V(„, (15) 

Vm\2iatm-fikn)/(ad-fia), and V„\Ve„, so 

<ym,Vn)\Wd. (16) 
Furthermore, for any prime divisor /? of 2Vd from Remark 1, applying Theorem 1 to Vm and Vn we 
obtain the desired results. 

Remark 2: Lehmer proved the following theorem. 

Theorem A (Lehmer [1], Theorem 1.6): If 2a is a positive integer such that qa is the highest 
power of a prime q dividing Um, and ifk is any integer not divisible by q, then for any integer X, 
U^ x is divisible by qa+A, and if qa * 2, this is the highest power off dividing U^ x • 

Comparing Theorem A with Theorem 1 of this paper, we can easily find out that: If qa = 3, 
m = 2y 3||i?, and 9|3A + R, and we put X = 1 in Theorem A, then the last conclusion of Theorem 
A is incorrect. This is indispensable in its applications to exponential Diophantine equations, as 
will be shown in a future paper. 

Example: Let R = 2 and A = - 1 , then we have 
F0 = 2, F ^ V 2 , F2 = 4, V3 = 5j2, F4 = 14, F5 = 1<W5,..., 

which means that g c d ^ , V5) = ^j2. 
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1. INTRODUCTION 

The sequence of Fibonacci numbers with even subscripts (F2„) has one remarkable property. 
If we choose three successive elements of this sequence, then the product of any two of them 
Increased by 1 is a perfect square. Indeed, 

Fin ' Ffr+l + 1 = F£H-\, F^ • F^+4 + 1 = F2^+2 • 

This property was studied and generalized by several authors (see references). Let us just mention 
that Hoggatt and Bergum [8] proved that the number d = 4F2rj+iF2n+2F2ri+3 has the property that 
F2n'd + l, F2n+2-d + l, and i V n r ^ + 1 are perfect squares, and Dujella [7] proved that the posi-
tive Integer d with the above property Is unique. 

The purpose of this paper is to characterize linear binary recursive sequences which possess 
the similar property as the above property of Fibonacci numbers. 

We will consider binary recursive sequences of the form 
Gn+l = AGn-Gn_h (1) 

where A, G0, and Gt are integers. We call the sequence (Gw) nondegenerated If |G0| + |Gi| > 0 
and the quotient of the roots a, fi e C of the characteristic equation of G„, 

x2-Ax + l = 0, 

Is not a root of unity. Let D = A2 - 4, C = G?- AGQGi + G§. Then nondegeneracy Implies that 
| A | > 3 and C * 0. Solving recurrence (1), we obtain 

U"~ a-ft ? 

where a = Gt-GJ3, b = G\-GQa. 

Definition 1: Let k be an Integer. A sequence (G„) Is said to have the property P(k) If both 
GnGn+i + k and GnGn+2 + k are perfect squares for all n > 0. 

With this notation, we may say that the sequence (F2n) has the property P(l). 

Our main result is the following theorem. 

Theorem 1: Let (G„) be a nondegenerated binary recursive sequence given by (1). If Gn has the 
property P(k) for some i G Z , then A = 3 and k = GQ-3GQGt + Gf. 
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Remark 1: The sequences from Theorem 1 have the form 

Gn = ^l^n " ^ O ^ n - 2 ? 

and for G0 = 0 and Gt - 1 we obtain exactly the sequence (F2n). Note that the converse of Theo-
rem 1 is also valid. This follows from the formula (F2„) proved below, and the general fact that if 
ab + k = r2 then a(a + b~2r) + k = (a-r)2. 

2. PROOF OF THEOREM 1 

Assume that k is an integer such that the sequence (Gn) has the property P(k). This implies 
that GnGn+2 + k is a perfect square for all n > 0. On the other hand, 

2^2«+2 _,_ &2 /?2w+2 _ „-U(„pt\n(„2 _L l&\ r r - ®2a2n+2+h2f32n+2-ah(a@y(a2 + p2) 
(a-pf 

aa"+l - bpn+1 V ab(ap)n(a - pf 
a-p J {a-pf 

G2„+l-ab = Gl1-C. 

Hence, G2
+l - C + k is a perfect square for all n > 0. This implies that k = C. 

Our problem is now reduced to find sequences such that GnGn+l + C is a perfect square for all 
n> 0. 

We have G2
+l- AGnGn+l + G2 = C (see [9]). Denote GnGn+l + C = G2~(A-l)GnGn+l + G2

+l 

by Hn. It can be verified easily that the sequence (Hn) satisfies the recurrence relation 

//n+1 = ( ^ 2 - 2 ) / f n - / / „ _ 1 - C ( ^ 2 - ^ - 4 ) . 

Finally, put Sn = (A2 -4)Hn -C(A2 - A-4). Then the sequence (Sn) satisfies the homogeneous 
recurrence relation 

Denote the polynomial (A2 - 4)x2 - C(A2 - A - 4) by R(x). Then our condition implies that, for 
every n > 0, there exist x E Z such that 

Sn = R(x). (2) 

Therefore, equation (2) has infinitely many solutions. 
Let Dl = (A2-2)2-4 = A2(A2-4) and Cx = ^2-S0S2 = -(A2-4)A2C2 be the discriminant 

and the characteristic of the sequence (Sn), respectively. Assume also that 

e axa2n-b^2n . , . 
K = ——5—T3F— f°r s o m e ai &nd ft, 

and put 
Tn=ala2n+b1fi2» forallw^O. 

Then, since 

3?=Z}Sj + 4Q forall?i>0, 
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and since the equation Sn = R(x) has infinitely many integer solutions (w, x)? it follows that the 
equation 

y2=DlR(xf+4Cl 

has infinitely many integer solutions (x, y). By a well-known theorem of Siegel [20], we get that 
the polynomial F{X) = DlR(X)2+4Cl has at most two simple roots. Since F is of degree 43 it 
follows that F must have a double root. Notice that 

F\X) = 2DlR{X)R\X) = 4(A2 ~4)DlR(X)X. 

Certainly, F and R cannot have a common root because this would imply that Q = 0, which is 
impossible since (Gn) is nondegenerated. Hence, F(0) = 0, which is equivalent to 

A2(A2 - 4)[C(A2 -A- 4)]2 - 4A2(A2 - 4)C2 = 0. (3) 

Formula (3) implies that A2 - A - 4 = ±2. 

A2-A-4 = ±2. 

lfI2-A-4 = 2, then A = 3 or A = - 2 , and if A2 - A-4 = - 2 , then A = 2 or A= - 1 . Since 
we assumed that the sequence (Gw) is nondegenerated, i.e., \A\ > 3, we conclude that A = 3. D 

Remark 2: In degenerate cases with 4̂ = 0, ±1, ±2, the sequence (GJ also may have property 
P(k) for some k e Z. For example, for 4̂ = 2, the sequence Ĝ  = a has property P(62 - a 2 ) ; for 
A = 0, the sequence G2lf = 0, G4n+l = 2a6, G4w+3 = ~2a6 has property P((a2 + h2)2); for 4 = - 1 , 
the sequence G3n =a, G3n+l =b, G3n+2 = -a-b has property P(a2 -hab + h2). Here, a and b are 
arbitrary integers. 
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1. INTRODUCTION 

The Brahmagupta matrix and polynomials In two real variables were first introduced by 
Suryanarayan [7]. Later they were extended to two complex variables [8]. There is yet another 
way to extend naturally from the real variables case to the complex variables case. This is done 
by using two complex variables with their conjugates. In this paper we will explore this way of 
generalizing the matrix and the polynomials. This method yields quite different results than the 
ones developed in [8]. 

We define the Brahmagupta matrix, see (1) below, involving two complex variables as well as 
their conjugates and show that it generates a class of homogeneous polynomials. The two com-
plex variaibles z and w He in two distinct complex planes. This space is denoted C x C o r C 2 . A 
typical member of this space has the form g = (z,w). Following [8], the points in C2 can be 
identified naturally with the points of R4 by the scheme: 

(z, w) GC2 <-> (x + iy,u+iv)<->(x,y, u, v) e R4. 

The polynomials generated by the matrix contain some of the well-known real polynomials like 
Chebychev polynomials of the first and second kind and Morgan-Voyce polynomials, among 
others. Thus, the paper provides a unified approach to the study of Brahmagupta polynomials. 

In this paper we study the Brahmagupta matrix aed the Brahmagupta polynomials in two 
complex variables and their conjugates. This study is similar to those in [7] and [8] and provides 
a natural way to extend them from the real case to the complex case. The emerging polynomials 
have a unique feature, namely, their real and imaginary parts form only two polynomials instead of 
four, involving essentially two variables. However, they have to be studied in two different cases 
depending on the nature of the variables: (i) both real; (ii) one real and the other purely imaginary. 
It is interesting to note that in the former case the Brahmagupta matrix and Brahmagupta polyno-
mials are particular cases of those given in [7]; in the latter case, they are special cases of those 
given in [8]. In fact, Section 2 is clearly different from [7] and [8]. Section 5 is intended to show 
that the extended class of polynomials contain many of the well-known polynomials. 

2. BRAHMAGUPTA MATMX WITH COMPLEX ENTRIES 

Let z = x+iy and w = if+/v be two complex variables and let z = x-iy and w=u-iv be 
their conjugates. Let t * 0 be a fixed real number. Consider the matrix 

BJ=BJ(Z,W) = ^ ; ] = S(x,iO + JB(y,v), (1) 
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where 

*(£!/) = "£ rj and J- i 0 
0 - i 

Let fi = det(B/) = |z|2- r |w|2. It is clear that, if j = 0 and v = 0, then (1) reduces to the real case 
[7]. Let Bj denote the set of all matrices of the form B3. Define B3 = B3(z,w). Bj shows that, 
if Bk = Bj(zk, wk), then Bj satisfies the following properties: 

BlB2*B2Bl9 BlB2 = BlB2, B3B3^B3B3. 

Thus, if the entries of Bj are real, then Bj forms a commutative subgroup of GL(2, R). But in 
the present case, Bj is a noncommutative subgroup of GL(2, C). 

Let p - dQt(Bj) * 0. Set a2 = x2 - p. Notice that a is real if x2 - p > 0 and a is imaginary 
if x2 - P < 0. The eigenvalues of Bj are X± = x ± a, with corresponding eigenvectors E± = [±w, 
aTiyf, where J7 denotes the transpose. Using the eigenrelations, Bj can be diagonalized in the 
form 

Define 

z 
tw 

w 
z 

1 
2wa 

w 
a-iy a 

z w 
fw z 

• a 
cr + j j w 

-a+iy w (2) 

U L^ v 
Then, using the above eigenrelations, we find that 

[ z wT _ 1 [" w -w ~\\(x + a 
fw *J ~2wa[a-iy «+*>_][ 0 

)" 0 
(x-ay 

a+iy w 
-a+iy w 

From the above result, we derive the following Binet forms for zn and wn: 

^„=^[(x + ay-(x-an 

(3) 

(4) 

Let us consider the two cases: (a) a is real; (b) a is imaginary. 
Case (a). For a real, we can separate the real and imaginary parts of z„ = x„+ry„ and 

w_ • u„+ivn and obtain 
(0 Xn^Kx + ay + ix-aYl 

{iv) vn=^i(x+ay-(x-ayi 

(5) 

Set 

a y u V 
(6) 
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From the above results, we see that Instead of the four forms xn9 yn9 un, and vn9 there are essen-
tially two forms to consider, namely, 

xn = ^[(x + ay + (x-ay} and an=~[(x + af-(x-afl (7) 

We can generate x̂  and an by the matrix 

A = A(xP a) = x a ] 
a xj 

Case (b). For a imaginary, let us write a = ta. Following a similar procedure as for the 
real case, we find that 

a y u v y (8) 

where yn is obtained by replacing a by ia in (5, ii) and similarly we define x„, un, v„, and an. In 
relation (7), replacing a by ia, we find that 

x„ = h(x+iay + (x-ia)n] and ia„ =h(x+ia)"-(x-ia)"]. (9) 

From (7) and (9), we see that xn±an = (x±of and xn±ian ~(x±iaf. Similarly, we can 
generate xn and an by the matrix 

A = A(xja) = x ia 
ia x 

3@ PROPERTIES OF A AND A 

Notice that the determinant of A as well as that of A is x2 - a2 & 0. Since 
A(xh al)A(x2, a2) = A(x2, a2)A(xl9 ax), 

the set of matrices of the form A commute. Set 

An - A - X a \ _\ %n ^n 
a xj ~[a„ xn 

The Binet forms of A are given by (7). xn and an satisfy the following recurrence relations: 

xn+l = xxn+aan; aw+1 = xa w - f«v (10) 

From the recurrence relation (10), we derive the three-term recurrence relations satisfied by xn 

and an: 
xn+l = Ixx^ - (x2 - a2)xnml; an+l = 2xan - (x2 - a2)an^. 

It is clear that, if a is imaginary, the three-term recurrence relation becomes 

xn+l = 2xxn - (x2 + a2)xn^; an+l = 2x&„ - (x2 + a2)an^. 

if 4 = xn + an and % = xn-a„, thee 1* = 4 and tf = r/„. 
From the above results we see that, for real a, 

A _ x [cosh a sieha 
* ^e [sinha coshiz 
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To show this, we write 2xk = ̂ k + 7]k and 2ak = %k - r/k. Since 
00 Ak 

*A = 1TT and 4 = fc=0 k\ 
ak 

ah 

A _ we express xk and ak in terms of £ and 7 and obtain the desired results. Notice that dete 

On the other hand, if a is imaginary, we replace a by * a and follow a similar reasoning to 
show that 

eA =ex cos a 1 sin a 
1 sin a cos a 

In this case also, dete = e2x. 
xn and an can be extended to the negative integers also by defining x_n = xnp~n and a_n = 

-anp~n. Then we will have 

A~n x a 
a x 

a_ 
a_ 

here we have used the property 

x ai11 _ r_i_r x -&Tf _ j _ 
a xj J " [ / ? [ - a x \J pn 

-a* 

Notice that A0 = I, the identity matrix. A similar result holds for A n. 

4. RECURRENCE RELATIONS 

From the Binet forms (7) and (9), the reader may verify the following. 
Recurrence Relations: 

(0 
(77) 

m 
(iv) 

(v) 

(vi) 

(v/7) 

(viii) 

Xm+n XmXn — ^nfi^m 

®m+n ~ Xrrflm ~*~ ®mXn> 

P Xm-n ~ XmXn "*" aman> 

P ®m-n ~ Xrflm "*" Xm@'m 

Xm+n "T P Xm-n ~ ^XmXn> 

am+n ~*~P am-n = ^Xnam> 

Xm+n ~ P Xm-n ~ ^ ^ m ^ w ? 

am+n ~ P am-n = ^Xman-> 

( i i ) 

where the top sign is chosen if a is real; if a is imaginary, the bottom sign is chosen. Notice that 
(v) and (vi) are the generalizations of the three-term recurrence relations. 

Let Z£=i = Z. Again using the Binet forms, the reader may verify the following 
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(i) Yx = P X" x"+l + x P 
k /32-2x + l 

k p2-2x + \ 

K } ** k 2(j32-2x2 + \) 2{fi2-\) ' 

v2 _P2<X2n-<X2n+2 + <*2-P2 , /Ptf* ~ 1)' 
2{fi2-2a2 + \) 2(/?2-l) ' 

P2<*« (12) 

(/v) loi^Y^^V +i r„2 

(v) 2TJxkx„+l_k=m„+l+i . 
(X 

B2a (W) 2 Z akanU_k = mnU - ^ ^ , 
(wi) 2 Z ^aw_^+1 = 2 1 a A ^ + 1 = M W + 1 . 

(12, v, vi, vil) are convolution formulas. For a imaginary, a set of similar formulas holds. 
From the Binet forms for (7) we see that, for a > 0, xn and an satisfy 

Tie Limiting Properties: 

lim —— = 1 and lim —*- = lim —JL- = x + a. 

Tie Divisors of x2n and a2n: 
From (11 i) we see that, if a is imaginary, thee x+i« and x-ia are factors of x2n for real 

a. 
From (11 ii) we see that xn and an are factors of a2n. The last statement can be generalized: 

Ifr divides s, then xr and ar are factors of a5. 

5. BMAHMAGUPTA POLYNOMIALS 

With the help of the binomial expansions for xn ± a„ = (x ± a)n, we find that 

xn = xw +(^\xn-2a2 +f j l x ^ V + - . , 

aw = n x ^ a + f 3 V 3 a 3 +f J V V + - . 

Similarly, expanding x̂  ±ian = (x±la)n, we obtain 

For a real, the first few polynomials of x̂  and an are: 

x0 = l, Xj=x? X2=x2 + a2, x3 = x3-f3xa2, x4 = x4 + 6x2a2+j4 , . . . ; 
a0 = 0, ax = a, a2 = 2x«, a3 = 3x2a + a3, a4 = 4xa3 + 4x3a,.... 

Similarly, for a imaginary, we can write the first few polynomials of x̂  and a„. 
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Special Cases of t ie Polynomials: 
a. Brahmagupta sequences 
If x = 2 and a = V3, the Binet forms reduce to 

These sequences appear le obtaining Heron triangles with consecutive integer sides [1]; 2xn 

denotes the middle side and 2un denotes the height of the triangle. 

k Lucas and Fibonacci sequences Ln and Fn 

le Bj in (1), set x - y = u = y, v = 0, and 1 = 6. Thee we get 01 = a2 - x2 = 1, a- ^§-y and 

and, in this case, we have 

Wj{Ln+iF„,Fn) = Ln+iFn F„ 

c. Pell sequences 
In J5;, if we set x = y = w = 1, v = 0, and t = 3, we get /? = -1 , a = V2, and x„ and wn reduce 

to Pell sequences given by: 
2JC„ = (1 + V2)n + (1 - V2)", 2V2w„ = (1 + -Jl)n - (1 -V2)". 

Also, B„ becomes 

Bj(x„+iy„,y„) = 3j„ x„-iy„_ 

(L Brahmagupta polynomials 
If v = 0 = y, then xn and j„ reduce to the Brahmagupta polynomials in the real case: 

*„=| [ (*+W0"+(x-W0"] , y„ = ^[(x+yJt)"-(x-yJtn 

The properties of these polynomials have been studied in [7]. 

e. The Chebyshev polynomials 
Set /? = 1, a = Vx 2 -1 , and 1/ = 1, then 

1. ^ = « [ ( * + V ^ r 4- (x - V?M)" ] = £(*), 

2v ar - 1 
The Chebyshev polynomials occur in many branches of mathematics like Interpolation Theory, 
Orthogonal Polynomials, Approximation Theory, Numerical Analysis, etc. [6]. 

/ Polynomials similar to Chebyshev polynomials 
If we set fi = -1 and a = Vx2 + 1, we obtain polynomials similar to the Chebyshev polyno-

mials: 
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xn=I[(x+«J7vi)n+(* - 4x^)1=rn(x), 

& 2Vx2 +1 
g. Morgan-Voycepolynomials 
If x Is replaced by (x + 2) / 2 and a by Vx2+4x / 2 in the matrix A, then the det A = I. If, in 

addition, u = 1, thee 

0 fx + 2 + / x 2 +4xY , fjc + 2-V?+4jcY 2*-(_ ~2 j + ^ ~2 j , 

where Bn is the Morgan-Voyce polynomial [4], [9]. The three-term recurrence relation for these 
polynomials are Bn = (2 + x)Bnm_x ~~ Bn„2. Morgan-Voyce polynomials are used in the analysis of 
ladder networks and electric line theory [4], [9]. 

h. Catalan numbers 
If JC = 1 and a2 = 1 + 4w in (5), we find that 

2xn = (1 + <JT+4u)n + (1 - *JT+4u)\ 

2un = - i - i—[(1 + Jl + 4u)n - (1 - Vr+^w)'']. 
•vl + 4f# 

Both xw and f#w appear in the study of Catalan numbers [2]. 

Let a be real Then we find, from (7), 
dxn dan dxn dan 
ox da da ax 

From the above relations, we infer that xn and an are the polynomial solutions of the wave 
equation: 

dx1 da1 

On the other hand, Set a be imaginary. Put a = ia. Then we find, from (9), 
dxn dan 

* - * - * - ' • ( l 3 ) 

From these relations, we infer that xn and an are the polynomial solutions of the Laplace equa-
tion: 

k dx2 da2 
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6. GENERATING FUNCTIONS 

We shall now show that the generating functions for zn and wn are: 

(14) 

We shall assume that s is real; then we can separate the real and imaginary parts on both sides to 
obtain the following generating functions for xn and an: 

(0 Y,*/=—l~xs' 2; (») f.«X=—— 
~0 " 1-2XS+0S2' y ' ~0 " 1-2x5+ 

To show (13), we use the standard result: For \Bjs\ < 1, we have 

8$*' 
(15) 

n=0 
Now, 

I-BjS = l-zs -ws 
-tWs l-zs 

d®t(I-BJs) = l-(z + z)s + (\z\2-t\wf)s2^l-2xs+$s2, 

and 

(l-2»+/b2)£(^)" = l-zs ws 
tWs l-zs 

The claim (14) follows from the above result. 
It is known that, if F(s) and L(s) are generating functions of Fn and Ln, respectively, then 

F(s) = eL^ [3]. This result can be generalized to the generating functions of xn and an. Let 

X(s) = f > f c s \ A(s) = fiZtsk-\ *(*) = £ * , j 

k=l k=X a k=\ " * 

Notice that sx'(s) = X(s). Now, we state this result as the following theorem. 

Theorem: e2^ = A(s). 

Proof: Set % = x + a and t] = x-a. Then 

£+ri = 2x, fr = x2-a2 = B, 2*„ = ( f + 77"), 2an = (?-rf). 
Now consider 

5* 
* * 

2 « + - ^ + 7: 
2 ^ 

= -l[ln(l-^) + ln(l-^)] = - l l n ( l -2^+M 

which implies 2%(s) = In i4(s) or e2%{<i) = A(s). 
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All the infinite series summation properties involving reciprocals of xn and yn developed in 
[7] can be extended to xn and an (or an). Since the arithmetic goes through without any changes, 
we do not list them here. 
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1. INTRODUCTION 

As usual, the Farey series 9n of order n Is the ascending series of irreducible fractions 
between 0 and 1 whose denominators do not exceed n. Thus, hlk belongs to 8F„ = {p0, pl9 pl9 

~.9pm}9 where m = ^(l) + jJ(2)+--«+^(/i), if 0<h<k<n, (h,k) = l; the numbers 0 and 1 are 
included in the forms y and {-. For example, % is: 

0 * 1 1 1 2 1 3 2 3 4 1 
1 ' 5 ? 4 ? 3 ? 5 ? 2 ? 5 ? 3 ? 4 ? 5 9 1 * 

The many characteristic properties of 9n can be found in references [1] and [3], In this 
paper, we shall study the distribution problems of Dedekind sums for Farey fractions, and obtain 
some interesting identities. For convenience, we first introduce the definition of the Dedekind 
sum S(h9 q). For a positive integer q and an arbitrary integer h9 we define 

S(h,q) = X 
a=l 

where 

Yah 
I 9 

^ ^ fjc - [x] - ~ if x is not an integer; 
((*))HA .* . 

[0 ifx is an integer. 
The various arithmetical properties of S(h, k) were investigated by many authors. Perhaps the 
most famous property of S(h9 k) is the reciprocity formula (see [2], [4], and [6]): 

for all (h9q) = 1, h>0, q>0. Regarding Dedekind sums and uniform distribution, G. Myerson 
[5], Z. Zheng [10], and I. Vardi [7] have also obtained some meaningful results. But for any frac-
tion at Ity belonging to the Farey series <fq9 the authors are not aware of the study of the proper-
ties of S faty). The main purpose of this paper is to study the properties of Sfa,ty) for at Ity 
belonging to the Farey series 9q, and give an interesting identity. That is, we shall prove the 
following two main theorems. 

Theorem 1: Let 0 < a < q be a positive integer with (a, q) = l. Then we have the identity 

where n is the position of pn = a Iq = an lbn in the Farey series 9q, ty (0 < i < n) is the denomi-
nator of pt = f- with f- < pn = ~ in the Farey series 3^ . 
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Theorem 2: Let/? be a prime and let a be a positive integer with a < p9 thee we have the identity 

a^^jp-l) 
z(-i)=-i Yip k=i i V * M ^ h K~i) P 

where x °m the Dirichlet character mod p and L(\ x) is the Dirichlet /.-function corresponding 
character x • 

For a = 2 and 33 from Theorem 2 and the properties of character, we immediately obtain the 
following two corollaries. 

Corollary 1: Let/? be a prime and x be the Dirichlet odd character mod p. Then we have 

Corollary 2: Let/? be a prime and x be the Dirichlet character modulo p. Then X x(m(\x)\2 f|>-1)2(/-10) i f ^ l m o d 3 ; 

^M-^P-2XP-51 i f p ^ 2 m o d l 

It is clear that these two corollaries are an extension of Walum [8]. 

2. SOME LEMMAS 
To complete the proof of Theorems 1 and 25 we need the following two lemmas. 

Lemma 1: Ifh/k and h' lkf are two successive terms in SF„, then khf -hkf = 1. 

Proof: See Theorem 5.5 of [1]. 

Lemma 2: Let k and h be integers with k > 3 and (A, A) = 1. Then we have 

where ^( i ) is Euler's function. 

Proof: See [9]. 
3. PROOF OF THE THEOREMS 

In this section, we shall complete the proof of the theorems. First, we prove Theorem 1. We 
write the Farey fractions <fq as follows: 

9. El f*a I 

and suppose y- = f. 

For the successive terms x1 and ̂ ±, from Lemma 1 we know that 
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Using the properties of Dedekind sums and (2), we get 

S(a„, b„) = ^(aA-A-i. K) 
= S (Ol+«„-A)A) 
= S(b„_l,bn) = S(b„_l,bn). 

Similarly, we also have 

S(a„_v *„_i) = S(a„_A&„, &„_!> 
= S((aJ>n-l-l)b~„,b„_l) 
= S(-F„,b„_l) = -S(b„,bn_1), 

where bn denotes the solution x of the congruence equation xbn = 1 (modi^i). 
So? from (3), (4), and the reciprocity formula (1), we obtain 

S(a„, bn)-S{an_x, *„_,) = S(b„_b b„) + S{b„,b„_d = ^TT^-J-
1 2*A-i 4 

Hence, by expression (5) and Lemma 1, we obtain 

S(a„,bn) = S(a„_1,b„_1)+^- - f i + 
121 b„ b„_x 12*A-

S(a„_l,bn_l)+^\-f±+-± K K_x) 
1 (K-i b. \ 

+- a„ a„ 
12 

n "n-1 |_J_ 
\K b„_J 4 

(3) 

(4) 

(5) 

(6) 

From (6) and the fact that an/bn=a/q,we immediately have 

This completes the proof of Theorem 1. 
Proof of Theorem 2: Using Lemma 2, we have 

I X(a)\H\,x)\2 = ^-^-S{a,p). 
%modp * 

Then from Theorem 1 and (7), we can easily obtain 

I ^ ) | i ( U ) f = ^ 
%mod p 

*(-D=-I 

a w 

12/7 

12^A*f c *St_J 12/7 4 

**-J P 
This completes the proof of Theorem 2. 

(7) 
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Proof of the Corollaries: If a = 2, then the position of 2 Ip In the Farey fractions 9P Is ^ , 
so 7i = —^. Thus, from Theorem 2, we have 

p-l 

k=l 
±\¥+h\=^+~+t^+p P-l 

2 

h-l) P P-l P~^ P 

p-l p-2 P-^- P 
P P-l ' p 2 1-1 y 2 

(8) 

, n p-3 2p-^ + l p~ 2 

P-^ 
So, from (8) and Theorem 2, we have 

X X{2)\L{1,X)\2 = ^ ^ -
z(-i)=-i llP 

P+3 

SZth 
k=l 
^Li u bk-i 

\2p 

, 2 3Q> + 3) 
P 2 

p - i p - i , - p - 3 2 p - V + l P 2 
4 p-£^ p •+ 

2 3(p + 3) 

= n\p-lf(p-5) 
24p2 

This proves Corollary 1. 

Using Theorem 2, or the reciprocity formula (1) and Lemma 2, we may immediately deduce 

Z *(3)iza*)i2= 

This completes the proof of Corollary 2. 

*L (P-I)2(P-IO) 
3 6 ° n 2 

ifp = 1 mod 3; 

^ - 1 X ^ - 5 ) i f / , s 2 m o d 3 > 
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1. INTRODUCTION 

Recently, It was asked by Paul Bruckman [1] to show that the sum 

evaluates to n2(2£) for r = 3. In the published solution [16], It was also noted that Sx{n) = n(2£), 
and, as a consequence, It was conjectured that S2r+i(n) equals the product of (2„w) and a monk 
polynomial of degree r +1. 

We show this conjecture to be true, albeit with the modification of discarding the adjec-tival 
modifier fSmonicH. In fact, we show that S2r+l(n) = Pr(n)n(2£) and S2r(n) = Qr(n)22n~r\ where 
Pr(n) and Qr(n) are both polynomials of degree r with Integer coefficients. We then Investigate 
the relationship of these polynomials to the Dumont-Foata polynomials [6]. These are gener-
alizations of the Gandhi polynomials, which find their origin in a representation of the Genocchi 
numbers, first conjectured by Gandhi [9]. Finally, we show that the sums Sr{n) are essentially the 
moments of a random variate, measuring the absolute distance to the origin in a symmetric 
Bernoulli random walk, after In time steps. 

2* DERIVATION 

We note that the sum can be rewritten as 

w>-*±[2ky-[fy~ 
£=0 

with 5r0 the Kronecker delta. Now consider, for r > 1, 

r?Sr{ri)-Sr+2{ri) = J H ^ W ~k2) = ^{In-ljH^^k', 

leading directly to the recursion 
^r+2(«) = n \ (n) - 2n(2n - l)Sr(n -1) • (2) 

For r = 0, the derivation Is slightly more elaborate because we need to keep track of the addi-
tional term, but leads to the same recursion so that (2) Is valid for all nonnegatlve integers r. To 
start the recursion, we find the value S0(n) = 22n by an application of the binomial theorem to (1). 
The value of S^n) Is easily obtained by breaking up the summand k to create two sums: 

w-t(.?*)K»+*)-«-*)]-»-f(2,-"*,)-*'2(.?;-li) 
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and one sees that, after changing the range of summation of the second sum to start at k - 1, all 
terms cancel out, with the exception of the summand 2n(2n~l). Rearranging terms gives the 
desired Sl(n) = n(2

n
n). 

It is now clear that the structure of the sum depends upon the parity of r. Starting with the 
odd values, we simplify the recursion (2) by the substitution S2r+l(ri) - Pr(n)n(2") to give 

Pr+1(/i) = « 2 [ P » -Pr(n-1)]+nPr(n -1), (3) 

with initial condition P0(n) = 1. An inductive argument now shows that Pr(n) is a polynomial of 
degree r with integer coefficients, and proves the modified conjecture. It is not difficult to show 
that r! is the leading coefficient of Pr(ri), and, hence, that these polynomials are not raonic. In 
fact, the only cases for which the leading coefficient is 1 are r - 0 and r = 1. The first few 
polynomials are now easily determined as: 

Pl(n) = n, 
P2(M) = (2M-1)M, 
P3(M) = (6M2-8M+3)M, 
P4(n) = (24M3 - 60M2 + 54M -1 7)M, 
P5(n) = (120M4 - 480«3 + 762M2 - 556M + 155)M. 

For the even sums, we substitute S2r(ri) = Qr(ri)22"~r to give the recursion 

£>+1(») = 2M2[& ( M ) - & (M- 1 ) ] + M 0 > - 1), (4) 

with initial condition Q)(w) = 1. This shows that Q.(n) is a polynomial of degree r with integer 
coefficients. It is not difficult to establish that the leading coefficient is given by (2r -1) • (2r - 3) • 

•3-1 = (2r)!/(2rr!) and, hence, that these polynomials are also not monic. Applying the recur-
sion gives the first few polynomials as 

ft(w) = l, 
&<") = ", 
ft(w) = (3w-l>t, 
Q3(n) = (l5n2~l5n + 4)n, 
Q4(n) = (l05n3-2lQn2+l47n-34)n, 
Q5(n) = (945w4 -3150^i3 +4095w2 ~2370/I + 496)R 

It is worth noting that, by evaluating Sr(n) for particular values of w, one can derive various 
properties of [the coefficients of] the polynomials Pr(n) and Q.(ri). For instance, it is not difficult 
to show that the coefficients of Pr(n) sum to unity, and those of Q.(ri) to 2r_1 (for r > 1) by 
evaluating the sums for n = 1. Indeed, one can derive the closed form solutions for S2r(n) a n^ 
S2r+l(n) by solving a system of linear equations in r unknowns, representing the coefficients of the 
corresponding polynomial. 

In the constant of the polynomials Pr(n)/n, one recognizes the Genocchi numbers (see [4], 
[10]) named after the Italian mathematician Angelo Genocchi (1817-1889): 

G2 = - l , G4 = \ G6 = -3 , G8 = 17, G10 = -155, G12 =2073,.... 
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These numbers are defined through the exponential generating function 

and are related to the Bernoulli numbers by G2r = 2(l-22r)B2r. The Genocchi numbers are listed 
as sequence A001469 in the on-line version of the encyclopedia of integer sequences [15], where 
additional references may be found. The constant of the polynomials Qr{n)ln matches the first 
terms of the sequence A002105 in [15], and is related to the tangent numbers. The connection to 
the Genocchi numbers will be explored further in the next section, where the polynomials Pr(n) 
and Qr(n) are found to be related to special cases of the Dumont-Foata polynomials. 

Another matter of interest is the leading coefficient of the polynomials, characterizing the 
behavior of the sums Sr(n) for large values of n. For the even-indexed sums, this is easily estab-
lished as 

^(*)~f^22V, (5) 
and for the odd-indexed sums we can use Stirling's formula to give (2WW) ~ 22n /Jim, so that 

- W * ) ~ - T = 2 2 V + * . (6) 

In these expressions, one recognizes the moments of a central chi-distribution (see, for instance, 
[12], pp. 420-21). That this is no coincidence will be shown in Section 4, where we establish the 
connec-tion between the sums Sr(n) and the distance to the origin in a symmetric Bernoulli 
random walk. 

3. DUMONT-FOATA POLYNOMIALS 

In this section we show that the polynomials Pr(n) and Q.(ri) are related to special cases of 
the Dumont-Foata polynomials [6]. These are defined recursively by means of 

v̂+i(*> y>z) = (x+*)(y+z)Fr(x> y*z+1) - *2^v(*> y>z) > (7) 
with initial condition Fx(x9 y, z) = 1. Explicit expressions for these polynomials and their gener-
ating functions have been derived by Carlitz [3], but are too lengthy to display here. 

The Dumont-Foata polynomials can be regarded as generalizations of the Gandhi polynomials 
(see, for instance [5], [17]), which are defined by the recursion 

Fr+l(z) = (z + lfFr(z +1) - z2Fr(zl (8) 
with initial condition Fx(z) = 1. The coefficients of the first few of these polynomials are shown in 
Table 1, and can also be found in sequence A036970 in [15]. The Gandhi polynomials arose from 
a conjecture by Gandhi [9] concerning a representation of the Genocchi numbers. Gandhi8s 
conjec-ture that Fr(0) = (~l)rG2r was proved by Carlitz [2] and also by Riordan and Stein [14]. 
Another polynomial that can be derived as a special case of the Dumont-Foata polynomials is 
obtained by the recursion 

Fr+l(z) = (2z + l)(z + l)Fr(z +1) - 2z2Fr(z), (9) 

with initial condition Fx(z) = 1. The coefficients of the first few of these polynomials are given in 
Table 2. Comparing these and the coefficients of the Gandhi polynomials to the coefficients of 
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the polynomials Pr(ri) and din), the connection to the Dumont-Foata polynomials becomes 
evident. By substitution in (3) and (4), it is easily verified that 

Pr(n) = (-iy-lnFr(l,\-n) and Qr(n) = (~2y-lnFr(H-n), 

for r > 1. The occurrence of the Genocchi numbers in the expressions for Pr{ri) is seen to be a 
direct consequence of Gandhi's conjecture: Pr

f(0) = (-l)r~lFr(P) = ~G2r. The occurrence of the 
Genocchi numbers in the expressions for Q.(n) is conjectured by the present author, in the form 
Fr(0) = (~2)rG2r / (2r), where Fr(z) are the polynomials defined by (9). 

TABLE 1. Coefficients of the Gandhi Polynomials, Arranged in Triangular Form 

720 

40320 

120 

4200 

139440 

24 

480 

10248 

263040 

6 

60 

762 

12840 

282078 

2 

8 

54 

556 

8146 

161424 

1 

1 

3 

17 

155 

2073 

38227 5040 

40320 423360 1965600 5170800 8240952 7886580 4163438 929569 

TABLE 2. Coefficients of the Polynomials Fr(z)9 Arranged in Triangular Form 

10395 

945945 

945 

51975 

2837835 

105 

3150 

107415 

4579575 

15 

210 

4095 

111705 

4114110 

3 

15 

147 

2370 

56958 

1911000 

1 

1 

4 

34 

496 

11056 

349504 135135 

2027025 18918900 77567490 178378200 244909665 197722980 85389132 14873104 

4. SYMMETRIC BERNOULLI RANDOM WALKS 

In a symmetric Bernoulli random walk, one considers the movements of a particle starting at 
time t = 0 at the origin. Its movements are determined by a chance mechanism, where a fair coin 
is flipped and the particle is moved one unit to the right if it is heads up, and one unit to the left if 
it is tails up. A more exhaustive description and in-depth study of random walks can be found in 
Feller [8] or Revesz [13]. A more playful introduction to the topic is given in the monograph by 
Dynkin and Uspenskii [7]. A topic of interest is the position of the particle after 2n coin tosses: 
Y2n = Xx + X2 + • • • + X2n9 where Xi is +1 or -1 depending upon whether or not the coin showed 
heads in the Ith coin toss. Note that the Xf are independent and identically distributed variates 
with mean 0 and variance 1. The probability distribution of the position of the particle after In 
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moves can be derived from a simple combinatorial argument [see, e.g., [8], p. 75? or [13], p. 13) 
and is given by 

P«>b(r2^2*) = ^ J 2 - 2 - , 

where k = -#i, - w +1,.. . , n and n is a positive integer. The matter of interest in the context of this 
note is the distance to the origin \Y2n | at time t = 2«. Its moments are given by 

Ei4jr=iL^V2»|2*r, 
k=-n v / 

and one sees that E\Y2n \r = 2r~2n Sr(ri), thus establishing the connection to the absolute sums from 
the introduction. The limit behavior of these sums now becomes clear. By the central limit theo-
rem (see, e.g., [11], p. 18), one has that Y2n9 for sufficiently large n, follows a normal distribution 
with mean 0 and variance 2w. This implies that, asymptotically, \Y2n\ has a half-normal or central 
chi-distribution, so that 

E | y |r H(r + l)/2] 2rnr,2 
hl¥lnl r(i/2) 2 

(see, e.g., [12], pp. 420-21). This gives the asymptotic behavior of the sums as 

SM=22--'- E\Y2„ r ~ r [ ^ 2 W 2 , 
and, upon expanding the gamma functions, one recovers the limit results (5) and (6). 

5e DISCUSSION 

One could possibly use the relation of the Gandhi polynomials to the sums S2r+l(n) to gain 
new insights on the former. In particular, one now has an expression to derive the function values 
of the Gandhi polynomials for negative integral arguments: 

For example, one easily obtains Fr(-1) - (-If1 and Fr(~2) = (-l)r"1(22r"1 +1) / 3. 
Likewise, one can use the relation of the moments of the absolute distance to the origin in a 

symmetric Bernoulli random walk and the sums Sr(n) to express these moments in terms of the 
polynomi-als Pr(n) and Q.(ri): 

E\Y2„t=TQr(n) and E l ^ r 1 ^ ^ " * 1 * / ^ . 

This equivalence can be used to establish the rate of convergence to the moments of the half-
normal distribution. 

Finally, it should be noted that one can also determine expressions for S2r(ji) by means of the 
generating function 
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so that S2r(h) = f£2r\0). However, this approach covers only the even-indexed case, and does 
not give the same insights as the one we have followed here. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Russ Euler ami Jawai Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others'proposals must be sub-
mitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by November 15, 2002. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Ai+2 ~ A*+i + 4> A) = 2, L\ = 1. 

Also?« = (l + V5)/23 £ = ( l -V5)/2 , Fn = (an-fin)/<j5,md Ln = an+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-935 Proposed by Ovidiu Furdui$ Western Michigan University, Kalamazoo, MI 
Prove that 

where the arguments are measured in degrees. 
B-936 Proposed by Jose Luis Diaz & Juam Jose Egozcue, 

Universitat Politecnica de Catalumya, Terrassa, Spain 
Let n be a nonnegative integer. Show that the equation 

x5 + F2nx4 + 2(F2^2F,2
+1)x3 +2F2n(F2n -2/fti)*2 +F2> + F2

3, = 0 

has only integer roots. 

B-937 Proposed by Paul & Bruckman, Sacramento, CA 
Prove the following identities: 
(a) {F„f + (F„+1)2 +4(F„+2)2 = (Fn+3)2 +(Ln+1)2; 
(h) {Lnf + (Z„+1)2 + 4(Zn+2)2 = (L„+3)2 + (5F„+1)2. 
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B-938 Proposed by Charles K Cook, University of South Carolina at Sumter, Sumter, SC 
Find the smallest positive Integer k for which the given series converges and find its sum: 

W If; 
«=1 K 

B-939 Proposed by N. Gauthier, Royal Military College of Canada 
For n > 0 and 5 arbitrary integers, with 

f(l,m,n) = f(.l,m) = nr'(j)ln), 

prove the following identities: 
An U/3J 

4w L//3J 
A) 3 - 2 - t o w ^ = X Z/(/-3^w)[('-2nf)/?+1+nrf?+J.1]. 

SOLUTIONS 
A Relatively Prime Fibonacci Couple 

B-921 Proposed by the editors 
(Vol 39, no. 3, June-July 2001) 

Determine whether or not F6n -1 and F6n_3 +1 are relatively prime for all n > 1. 

Solution by Russell Jay Hendel, Towson University, Baltimore, MD 
We go beyond the problem requirements by also providing explicit formulas for the relative 

primeness. 
Recall that two integers a and b are relatively prime if and only if there exist integers x and y 

such that 
ax + by=l. (1) 

Accordingly, let 
a = F6n-\ a = F6n-l, 
b = F6n_3 + hb = F6n_3 + l 

The parallel processor algorithm of Hendel [2] motivates defining 
x = F6n-5 - {F6n-4 ~ ^n-W " 4} / 16, 

y = {F6n+3+F6n+l-F6n_3-F6n_5-l2}/l6. 
Using periodicity properties of the Fibonacci sequence modulo 16, it is straightforward to verify 
that x and y are in fact integers. 
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Using these definitions of x and y, (1) can be proven for all n by using the Verification 
Theorem of Dresel [1]. We need only check (1) for the first values of n and this is easily done by 
hand calculator. For example, when n = 3, (1) yields the explicit identity 2583*211 - 611* 892 = 1. 
References 
1. L. A. G. Dresel. 'Transformations of Fibonacci-Lucas Identities." In Applications of Fibo-

nacci Numbers 5:169-84. Ed. G. Bergum, et al. Dordrecht: Kluwer, 1993. 
2. R. J. Hendel. I?A Fibonacci Problem Classification Scheme Useful to Undergraduate Peda-

gogy.11 In Applications of 'Fibonacci Numbers 5:289-304. Dordrecht: Kluwer, 1993. 
Also solved by Paul S* Bruckman, JL A. G. Dresel, Lake Superior State University Problem 
Group\ H.-J. Seiffert, Gabriela & Pantelimon St arnica (jointly), ami the proposers. 

A Prime Search 

B-922 Proposed by Irving Kaplansky, Matk Sciences Research Institute, Berkeley, CA 
(Vol 39, no. 3, June-July 2002) 

Determine all primes p such that the Fibonacci numbers modulo p yield all residues. 

Solution by Pantelimon Stanica, Auburn University, Montgomery, AL 
In The Fibonacci Quarterly 6.2 (1968): 139-41 ("Fibonacci Sequence Modulo m"), A. P. 

Shah proved that ifp is a prime and p = 1? 9 (mod 10) then the Fibonacci sequence does not form 
a complete residue modulo/?. 

In The Fibonacci Quarterly 8.3 (1970):000-00 ["Fibonacci Sequence Modulo a Prime p = 3 
(mod 4)fl], G. Bruckner proved the same for the remaining cases if p > 7. Therefore, the Fibo-
nacci sequence modulo p yields all residues if and only if p = 2,3,53 7 by an easy calculation and 
using the above references. 

In The Fibonacci Quarterly 383 (2000):272-81 ("Complete and Reduced Residue Systems 
of Second-Order Recurrences Modulo pn\ H.-C. Li proved that even the generalized Fibonacci 
sequence with parameters (a, 1) does not form a complete residue system modulo p > 5. 
L. A. G. Dresel also referred to the G. Bruckner reference. 
Also solved by P. Bruckman, JL A G. Dresel, and the proposer. 

Tie Fraefion Continues 

B-923 Proposed by Jose Luis Diaz & Juan Jose Egozcue, 
Universitmt Politecniea de Catalunya, Terrassa, Spain 
(Vol 39, no. 3, June-July 2002) 

Let ax be the Ith convergent of the continued fractional expansion: 

a = l + - — — | 

1+— L -
1 + ... 

Prove that 
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fc=0 

;=0 v / / « / _ ! 

Solution by Paul S. Bruckman, Sacramento, CA 
The readers of this journal will readily recognize the following result: 

aJ=FM/FJ 

(for typographical clarity, the notation is modified). 
(a) Let 

n-l 
A(nJ) = l/n^aJ+k. 

k=0 

Note that A(n, j) is the arithmetic average (A.M.) of the quantities aj9 aJ+h ..., a^n_x. By the 
A.M.-G.M. inequality, 

A(nJ)>G(n,j)^\l\aJ.+k\ . 
Note that G{n, j) = (FJ+rl/Fjf". 

Also, 
F„aj +F„_, = (Ff^+F^/Fj = FJ+n/Fr 

Thus, A(n, j) > (F„aj + F„_,)1/n. Q.E.D. 

(6) Let 

S(k,j) = fjkCi{aj_xyi. 
1=0 

Then 
5(*,/) = 0 + l/ay_I)* = (l+/v_i/F/)* 

= W +Fj_l)IFj)k = (F^/Fjf = ( a / . 

This corrects the statement of this part of the problem. 
Also solved by H.-J. Seiffert (essentially the same as the featured solution) and the proposer. 

A Generalization of a Lucas Numbers Identity 

A B-924 Proposed by K Gauthier, Royal Military College of Canada 
(Vol 3% no. 3, June-July 2001) 

For n an arbitrary integer, the following identity is easily established for Lucas numbers: 

AEW+2 + ^2n-2 ~ 3^2n • ( * ) 

Consider the Fibonacci and Lucas polynomials, {î (w)}JJLo an£* {Ln(u)}™=0, defined by 
F0(u) = 0, FM = 1, Fn+2(u) = uF^M + FM, 

and 
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L0(u) = 2, Ii(i/) = u, Ln+2(u) = uLn+l(u) + L„(u), 
respectively. The corresponding generalization of (1) is 

L2n+l(u) + L2n_2(u) = (M2 + 2)L2n(u). (2) 

For m a eonnegatlve integer, with the convention that a discrete sum with a negative upper limit is 
identically zero, prove the following generalization of (2): 

Z2W(I I ) + I / ( W 2 + 4 ) = (n2+2) 
> 0 2/ 

2m i 2/ n 2/W 
2/ + 1 n

21 F2n(u). 
(3) 

Also prove the following companion identity: 

(n + l)2m+1F2n+2(u) + („ - lfm+1F2n_2(u) 

= II XfatUn" 
>o 

I 2 » + (n2+2) 
/=0 

2/w + nM2/+i 
2/ + 1 

27- F2„(i/). 
(4) 

Solution byH.-J. Seifferi9 Berlin^ Germany 
In (4), the upper index in the second sum on the right-hand side must be replaced by m. 
It is known [see A. F. Horadam & Bro. J. M. Mahoe, "Pell and Pell-Lucas Polynomials," The 

Fibonacci Quarterly 23.1 (1985):7-20, equations (3.23), (2.2), (2J), and (3.22)] that 
(u2 + 2 ) £ 2 » = L2n+2(u) + L2^2(u\ 

(u2 + 4 ) F 2 » = L2n^(u) + L2n+l(u), 

L2M = ^ - l ( " ) + F2n+l(U\ 
(u2 + 2)F2n(u) = F2n+2(u) + F2^2(;M); 

note that (5) is the corrected version of (2). 
jr (Mn2i = (n + i ) 2 "+{n^ i ) 2 ^ 
1=0 

m—\ V f 2m W i _(» + l)2m-(?*-l)2m 

f (2i» + A 2/ = (» + l)2" ,+1-(H-l)2m+1
> 

f. f 2i»+n„2/+i _ (»+i)2m+i+(»-i)2m+i 

lA 21+1JW - 2 

(5) 
(6) 
(7) 
(8) 

(9) 

(10) 

(11) 

(12) 

Proof of (3): In view of (5), (6), (9), and (10), we must show that 
(n + l)2mL2n+2(M) + (n~lfmL2n_2(u) 

(n + l)2m + (n-l)2m
 /T , . , T , y, , (n + l)2m-(n-l)2m , , , . r . . . 

= A / _ _ ! 1 _ (Z2W+2(JI) + £2„_2l«)) + i £—^ L- {uL2n_x{u) + uL2nU{u)\ 

which is true because 
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L2n-l(U) + ^ 2 » - l 0 ) + uL2n+l(U) = L2n+l(U) 

and, equivalently, 

Lln+lto ~ uL2n-lU) ~ uL2n+l(U) = h n ^ l 

Proof of (4): This is easily verified by applying (7), (8), (11), and (12), and using 
^ - i W + ̂ 4 + iW + 4 - 2 W = F2n+2(u). 

Also solved by P. Bruckmmn and the proposer. 

The Gandhi Polynomials 

In response to Paul Bruckman's question, Reiner Martin sent the following remark: 

In the August 2001 issue of The Fibonacci Quarterly, Paul Bruckman asks whether 
the polynomials P(r, n) given by JP(1, ri) = n and P(r +1, n) = n2 (P(r, n) - P{r, n -1)) 
are new to the literature. 

Indeed, these polynomials (or, rather, a trivial variation thereof) are known as 
Gandhi polynomials. References are: 
[1] D. Dumont, "Sur une conjecture de Gandhi concemant les nombres de Genocchi," 

Discrete Mathematics 1 (1972):321-27. 
[2] D. Dumont, "Interpretations combinatoires des nombres de Genocchi," Duke Math. 

Journal 41 (1974):305-U. 
Identifying these polynomials illustrates the usefulness of Sloane's On-line Encyclo-

pedia of Integer Sequences (http://www.research.att.com/~njas/sequences/). Entering 
the first few nonzero coefficients as 1, -1,2,3, - 8,6, -17,54, - 60,24 into the database 
yields a hit (up to signs) with the sequence A036970 (triangle of coefficients of Gandhi 
polynomials), where the references can be found. 

We wish to belatedly acknowledge the solution to problem B-915 by Walther Janous. In fact, his 
solution gives a sharper inequality that will appear in a separate proposal. 
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Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND K WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-583 Proposed by TV. Gauthier, Royal Military College of Canada 
A Theorem on Generalized Fibonacci Convolutions 

This is a generalization of Problem B-85B by W. Lang (The Fibonacci Quarterly 363, 1998). 
Let n > 0, a, b be integers; also let A, B be arbitrary yet known real numbers and consider the 

generalized Fibonacci sequence {Gn = Aan + T5/?W }*=_«,, where 

For m a nonnegative integer, prove the following generalized convolution theorem for the 
sequences {(a+«)m}"=_«, and {GX—«,, 

M m 

where the set of coefficients {cf(v); 0<m; 0 < / <m;v = aora+w +1} satisfies the following 
second-order linear recurrence relation 

crl(v) = (v + /)cfW + ̂ v ) ; dtf(v) = 1? c S V ) = v, cfil(y) = 1 

with the understanding that c^|(v) = 0 and that c^+1(v) = 0. 

Prob. B-858 follows as a special case if one sets a = 0? m = 1, b = n, and A = -B ~ (a-fif1 

in the above theorem. Indeed, one then gets that 

Gw = Fn,4(0) = 0,<ftO) = l , ^ 

and the result follows directly. 

H-584 Proposed by Paul & Bmckman, Sacramento, CA 
Prove the following identity: 

A1+2) 

= (2/w3 + 4 + 2 ) 5 + (Fn+i)5 + («W2)5 + 1920F^+1F,+2F,+3Fw+4. 
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SOLUTIONS 
Some Operator! 

H-571 Proposed by D. Tsedenbayar, Mongolian Pedagogical University, Warsaw, Poland 
(Vol 39, no. 1, February 2001) 

Prove: If (Taf)(t) = ta\'0f($)ds, with a eR, then 

( £ / ) ( 0 = r-n ( V + I - f+1ylf(s)ds, for a * -1 

and 

(TOW = 7^JotlnC/(^' fofa = "L 

Remark: If a = - 1 , then T_t is a Cesaro operator; if a = 0, then 7̂  is a Volterra operator. 

Solution by Paul S. Bruckman, Sacramento, CA 
Our proof is by induction on n. We let S(a) denote the set of positive integers n such that 

the statements of the problem are true. Note that the statements of the problem are true for n - 1, 
since they reduce to the definitions of (Ta)(f(t)). That is, 1 e S(a). 

Suppose neS(a). Then ( ^ ( / ( O M W J W O ) -

If a * - l , 

(D"+I(/(0) = (£) ^ fV+1 -5°+I)""7(j)<fa 

(a + l)"-1(/i-l)!Jo Jo 

(a + l)"-1(»-l)!Jo J" 

(5g+1-|/ffi+1f' 
(a + \f-\n — 1)! Jo-' W (a +1)» 

= l'f(s)(ta+l - O " ds, 

du 

which is the statement of the first part of the problem ( a ^ - 1 ) for n + \. That is, n&S{a): 
(n + l)&S(a) i f a ^ - 1 . 

The second part of the problem (for a = -1) is treated similarly. In this case, 

(T^rVit)) =(zl)(i/t(n-i)\)jt
o(iogt/srif(s)dS 

= (l/t(n-l)\)j'l/sj\logs/uy-lf(u)duds 

= (l/t(n-i)\)jt
of(u)jj/s(logs/u)"-ldsdu 
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= (l/t(n-l)\)l'of(u)fn[(logs/u)"^udu 

= (l/t(n)\)j'of(u)(\ogt/u)"du 

= (1/*(«) !)£/(sXlog*/*)"*. 
This is the statement of the problem for a = - 1 , w + 1. Therefore, n GS(-1) => (w + 1) e$( - l ) . 
We have shown that, for all real a, n GS(a)=>(n + l) eS(a). The desired results follow by 
induction. 

Slim Problem 

B-572 Proposed by Paul S* Bruckman, Berkeley, CA 
(Vol 3% no. 2, May 2001) 

Prove the following, where <p = a~l: 

£ {p5"*1 I (5m +1) + tp5n+31 (Sn + 2) - <p5n+A I (5n + 3) - (p5n*A I (5w + 4)} = (n 125)(50 -10V5)L 

Solution by Kenneth R Davenport, Frackville, PA 
Since, for |x |<l , 

- ^ 7 = l + jc5 + jc10 + x15 + - . = £ x 5 n , (1) 
1 — X M^n w=0 

we let, for - 1 < X < 1 , 
oo «5w+l 

(2) K } Jo l-x5 ^S(5w + 1)' 
f*P it J^ m5n+3 

^-'/.^?*-Sfe (3) 

^=Hi=?*=-5^5- ( 4> 
D«=-J0^?*=S(^J <5) 

Making use of an integral expression: 

J 1-JC" n # i & V n ) n n \ n ) 

1 ISCIW + I W , (. 0 6;r , 21 , 2 . 2(w + l>r + _ 
-—cos- v 7 log l -2xcos—+ xz -•••+—sin-1 ^—arctan 

n n v n ) n n 

xsin^F 
1-xcos^r 

2 . 4(/w + lW ^ xsin^f 2 . 6(01+ 1)* ^ x s k ^ 1 
+-sin — ^—arctan-— " +—sin-^-—^-arctan- " + ---—log(l-x). 

n n 1-xcos— n n l-xcos^f- n 
n n 

From Tables of Indefinite Integrals by G. Petit Bois (Dover Publications, 1961), we derive 
the following. 
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1 2nx f, n In , 2 
- - cos—log 11 - 2x c o s — + x 

1 4nt (% 0 4;r , 2 
- - cos—log 1 - 2x c o s — + x 

, 2 . In. _i +—sin—tan 

, 2 . 4;r4 _! +—sin—tan 

xsin-f 
1-xcos^f 

xsin4r 
1-xcos^f 

(6) 

For B(x)i 
1 4x% (- ~ 2n , 2 

• - cos—log II - 2x c o s — + x 

1 8/2"! (% „ An , 2^ 
- - c o s — l o g l - 2 x c o s — + xz 

, 2 . 4^-. -i 
+—sin—tan 

, 2 . 8;r. _! +—sin—tan 

xsm 5 
1-xcos^ 

xsin 4/r 
5 

1-XCOS^y1 (7) 

For C(x): 
, 1 6^i fi o 2TT , -+ - cos—log l - 2 x c o s — + x" 

, 1 I2nt (% 0 4TT D 2 + - cos—— log 1 - 2x c o s — + x 

2 . 6;r + -i •—sin—tan 

2 . 12;z\ _! •—sin—— tan 

xsin-^ 
1-xcos-f 

x s i n ^ 
1 - x c o s ^ 

(8) 

F o r D ( x ) s 
, 1 8;r 

+ - c o s T l o g f l - 2 x c o s ^ + x 2 j 

, 1 \6n % (% 0 4/F , 2 
+ - COS—T— log 1 - 2x c o s — + x 

2 . %TC. _i •—sin—tan 

2 . 167£\ .4 
— sin——tan 

xsin^f 
1-xcos-^ 

xsm An 

1-xcos^f (9) 
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And now, keeping In mind that (7) is multiplied by the factor q>, (8) by -<p, and (9) by - 1 , we 
observe that (6) and (9) when summed cancel the logarithmic parts due to sign and likewise (7) 
and (8) when summed will cancel the logarithmic parts. Thus, upon evaluating (6) and (9) as well 
as (7) and (8) between the bounds 0 and <p, one will then have: 

(d) + (9) = 

(7) +(8) = 

, 2 . In n , 2 . 4n + _i +—sm-——+ — sin—-tan l 
5 5 5 5 5 

2 . %n n 2 . 16;r, .x -—sin-—— -—sin——tan 5 5 5 5 5 

, 2 . 4n n , 2 . 8;r^ _i +—sin—— + —sin —-tan 

2 . §n n 2 . \2n. _i 
-—sm-—-----sm—— tan 5 5 5 5 5 

^sin^-
l-$?cos^f 

(pim^f 
1-^cos^f 

(pim^f 

(10) 

1-^cos^ 

^sin-^ 
An 1-^cos^f 

(11) 

And now, noting that 

sin — - sm —— + q> sm — - ^ sm —— = 0, 

we may simplify (10) and (11) to obtain 
2/r 
25 

.In . 8n •. 4n - 6/r 
sm -— - sin — + sm —- - sm —-

5 5 5 5 

(12) 

Analytically, this reduces to the expression: 
vl/2 

^ ( 1 0 + 2 V 5 ) I / 2 + f ^ ^ ] (10 + 2V5)1 / 2=^(10 + 2V5)1/2+(20-8V5)1/2. (13) 

And (13) is equivalent to 

Also solved by F. OvIdim$ H.-J. Set/fieri, and the proposer. 

^(50-10V5)1/2. 

Fee FI Fo Fiim 

H-573 Proposed by N. Gamthier, Royal Militmry College of Canada 
(Vol 3% no. 29 May 2001) 

"By definition, a magic matrix is a square matrix whose lines, columns, and two main diag-
onals all add up to the same sum. Consider a 3 x 3 magic matrix <P whose elements are the 
following combinations of the rfi1 and (w + 1)* Fibonacci numbers: 

<&„=3/7 ,+FM • i i »+r %2=K+h 
* 2 1 = Fn+1+2F„; 
* 3 I = 2^M-I; 

<fc 22 ' 2Fn,, 4- F„: ln+l 

*32 = 3Fn+1 + 2F„; 

<!>l3 = 2F„+l + 2Fn, 
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Find a closed-form expression for <t>m, where m is & positive integer, and determine all the values 
of m for which it too is a magic matrix." 

Solution by the proposer 
It is well known that the elements of a 3x3 magic matrix can generally be written in the 

form: 
#j j = a+b; %2=a-(b-i-c); 
m2l = a-(b-c); #22 =a; 
€>31=a-c; %2=a + (b + c); 

^23 = a + (b~c); 
#33 = a - b . 

In the present situation, a = Fn+3> b = Fn+U c = Fn. 
Now define three magic matrices, as follows: 

H 
(l 
1 

u 
1 
1 
1 

I) 
1 
V 

B = J_ 
V3 

(+\ -1 6\ 
-1 0 +1 
0 +1 -1 

c= J_ ( 0 -1 +1\ 
+1 0 
-1 +1 

Then O = aA + BB+yC, where a = 3F„+3, 5 = JSFn+l, y = V3>„. 
Next, for m an integer, one can simply verify the following multiplication properties: 

Am = A,m>0; AB = BA = AC = CA = N; BC = -CB; 
B2 = -C2 = I-A; B2m = B2,m>0; B2m+1 = B,m>0. 

N and / are the 3 x 3 null and identity matrices, respectively. Consequently, 

®2 = a2A + (p2-y2)B2, 

and since A, B commute, with AB = BA = N, and 
B2-r2 = (fi-y)(6+r) = 3F„+2Fn_l, 

we find that 

02 m = [a2 A + (fi2- y2)B2]m = j r (™\a2A)k[(fl2 - y2)B2]"-k 

= a2mA + (B2-y2)mB2 

= n^F^-F^F^A+^F^F^I 

for m & positive integer. Furthermore, for m a nonnegative integer, 

<D2m+1 = {<xA+BB+yC)la2mA+l(fi2-y2)mB2] 
= a2m+1A + {fi2 -y2)m[BB + yC] 
= 32"»lF%+iA + 3'»+1/2F„"L1FZ2[Fn+lB + FnC]. 

Odd powers of the magic matrix O are always magic as well, whereas even powers are only 
so if 01 = y2. This completes the solution. 

Also solved by P. BruckmarL 
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