A Special Tribute to
Calvin T. Long

Teacher ¢ Researcher  Mentor
Leader ¢ Friend

This edition of The Fibonacci Quarterly is being dedi-
cated to Professor Calvin T. Long for his inspirations to
his students, for his actions as a role model to his fellow
Mathematicians, and for his extremely active participa-
tion in The Fibonacci Association as an author, referee
and member of the Board of Directors.

Thank You!




A Short Biography of Calvin T. Long

Calvin T. Long was born in Rupert, Idaho, where he received his elementary and secondary education.
Inspired by his teachers, he continued his education and was granted a B. S. degree from the University of
Idaho in 1950, an M. S. degree from the University of Oregon in 1952 and a Ph.D. under the direction of
Professor Ivan Niven, from the University of Oregon in 1955. After graduation, he spent one year as an
analyst in Washington, D. C. working for the National Security Agency. In 1956, Cal accepted a position in
the Mathematics Department at Washington State University (WSU) in Pullman, Washington, where he
remained until his retirement in 1992.

It would be impossible to list all of Professor Long’s accomplishments during his tenure at WSU so we
will try to list only what we consider to be the most important ones. During the 1960s and early 1970s Cal
served as director or associate director for several NSF-funded institutes for elementary, junior and high
school mathematics teachers. This led to his deep interest in mathematics education. From 1970-78, he
served as department chairman.

As a teacher, his students both at the graduate and undergraduate level respected him. He was a task-
master but had a good sense of humor, sound scholarship and the ability to lead his students to their best
efforts in an uncompromising way by insisting on excellence. For his efforts, Professor Long received the
President’s Faculty Excellence Award for Teaching in 1987 and was one of WSU’s Case Award Nominees and
Centennial Lecturers. He was also a visiting professor at three foreign and two American universities. During
his career he directed 27 masters students and was the thesis advisor for five doctoral students.

As a researcher, he was the author or co-author of at least twenty-four grant proposals that funded
programs or institutes related to mathematics education. He was the author of several books on number
theory and mathematics education. He did extensive reviewing and refereeing of research papers and was
an associate editor for two mathematics journals. He had more than 80-refereed publications and gave
more than 150-invited lectures throughout the United States, Canada, Australia, New Zealand and Ger-
many. He has also given at least 50 invited colloquium talks. Professor Long is a member of many honor
societies, including Phi Beta Kappa. He is also an active member of many mathematical societies, including
the Mathematical Association of America (MAA), the American Mathematical Society (AMS), the Fi-
bonacci Association and the National Council of Teachers of Mathematics. He was elected Vice-Chairman,
Chairman and Governor of the Northwest Section of the MAA. He served on numerous local, regional
and national committees. For his dedication to his profession, he received the Certificate of Meritorious
Service from the MAA in January of 1991.

As a mentor, he was always there for his fellow teachers as well as for his current and former students.
As a leader, he was a state coordinator for the American High School Mathematics Examination, he was
one of the organizers of the WSU Mathematics Honors Scholarship Competition program, and he was a
consultant to the Washington State Superintendent of Public Instruction, to the State Department of
Education and to the National Science Foundation.

Concerning The Fibonacci Association, Cal is a Charter Member. He served on the Board of Direc-
tors from July 6, 1983 to June 19, 1999 and he was the President for the last fifteen years. He was a strong
supporter of the Fibonacci Research Conferences, attending most of them and presenting papers. Under
his leadership, the organization became stronger and more unified.

On the unprofessional side, Cal is an avid fisherman and lover of the outdoors. It was not unusual to
see him fly casting in the lakes and streams or walking the trails of the idyllic Idaho wilderness and
sometimes you could even see him boating down the rapids of the Snake River. Cal also has a beautiful
tenor voice, which he put to good use as a member of his church choir, a member of the Vandeleers, a
well known University of Idaho choral group, a member of the Eugene Gleesmen, during his graduate
years, a member of the Pullman/Moscow Chorale and a member of the Idaho-Washington Symphony
Chorale. Cal was also a very dedicated husband whose strongest supporter was his wife Jean on whom
he always knew he could count on because her support was always there. Finally, Cal was a devoted
father to his two children, Tracy and Greg.

Cal, for all that you have done in so many ways for so many people, we say thank you. Enjoy retire-
ment and know that you have made a difference to so many people who have crossed your path.
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THE BURGSTAHLER COINCIDENCE

John Greene
Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812
(Submitted March 2000-Final Revision July 2000)

1. INTRODUCTION

Let tanx = ay +ax +ayx* +a;x° +---. We know, of course, that a,, =0 for all n. Define a
sequence 4, via

4,= nz_l(’]:)akﬂ = Z (zl}c)a2k+l- (1.1)

k=0 2k<n
We have the following table:

ni1{2|3(4|5|6| 7 8 9 10

A, |1]1]2(3|5[8]132 |218 |34 | 5620

At the 1999 MAA North Central Section Summer Seminar Sylvan Burgstahler posed the
following question.

Question 1: Why is A, approximately equal to a Fibonacci number?
In discussing this problem with the author, Dr. Burgstahler posed two more questions.

315 21, then 4, becomes 13 and Ag becomes 21, but

the new A, is 33314 rather than 34. If we then change g, from 5% to 32: =2, 4 and 4,

change to the appropriate Fibonacci numbers, but 4, remains incorrect. Does this pattern of
obtaining two additional Fibonacci numbers for each correction persist?

Question 2: 1f a, is changed from 1% to 5

More generally,

Question 3: Suppose that f(x) = byx+b,x* +bgx’ + -+ is such that

F,= Z (2’;,)1721:“,

2k<n
what can be said about the b's, and what can be said about f(x)?

In this paper we attempt to answer these questions. The first is straightforward, but the
second and third are more interesting. The structure of this paper is as follows. In Section 2 we
derive a formula for 4, that explains its proximity to the Fibonacci numbers. In Section 3 we
recast this problem as a summation inversion problem to answer Question 2 and part of Question
3. We address the rest of Question 3 in Section 4. Throughout this paper we use the convention
that F, =0, F; =1, ais the golden ratio,

a=—1—+2£ and f

We will make free use of the usual facts, e.g., a+ =1, aff =—

_1«/‘
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THE BURGSTAHLER COINCIDENCE

2. AFORMULA FOR THE NUMBERS 4,

It is well known ([1], formula 4, p. 51) that the coefficients of tanx can be written explicitly
in terms of Bernoulli numbers:
— (-1 2 (2 — 1)
a2n—l ”‘( l) (2 )| ‘BZn’ (21)

where B,, is the 2n™ Bernoulli number. The Bernoulli numbers are defined by the generating
function ([1], formula 1, p. 35)

= Z (2.2)
n=0 ’
and have values 1, -1, +,0, -1, 0, %, 0, - 310, 0, Z, ... . They satisfy many identities including

the recurrence ([1], formula 18, p. 38)

5(1)a-o

k=0
and series formulas
_ -1 (2n)! 1 1
B,, = (-1 ’22,,_17[2" 1+ 7 + 7 4o, 2.3)
a1 202m)! 1 1
B,,=(-1 1——(22" D (1+ et ) 2.4

These last two formulas can be found in most books of mathematical tables. Alternatively, (2.3)
can be found in [1] (formula 22, p. 38) or in [2] (Vol. II, formula 2.60, p. 60). It is easy to derive
(2.4) from (2.3).

Using (2.1) and (2.4) with (1.1), we have

2k+2 2K+ _
4= (ﬁ)%m =2 (2’2)(—1)"%‘6%;2)—!1)32“2

2k<n 2k<n

n 2%+2(p2k+ 2(2k +2)! 1 1
= Z (Zk)(_l)k (2; +2)! )(_ D* (szgz -1 732k+2 1+ 32k+2 + 52k+2 o

2k<n

22k+3 1 1
= Z (Zk) 2k+2 (1+ 32k+2 + 52k+2 + ")’

2k<n

SO

8 o 2k
4, -y 2 z(z@)m- 2.5

2k<n j=0

Now consider the function

fux)= (2'2)362". (2.6)

2k<n
It is easy to see that

(2" + (1= x)" = L+ (1)

1= .

@7
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THE BURGSTAHLER COINCIDENCE

Interchanging the order of summation in (2.5), we have

_ 2
4= 22“(2]+1)2f((2]-!—1)7r)

or

4 2 Y 2
=— + 1
& 2; 2_]-!-1)2[( (2j+1)7r) ( @2j+Dm
For example, ‘
41 2
4 == 1+ +1-
! 7:2];)(2]“)2[( (2j+1)7r) (
3 1,1 8 n*
2? 1+§-2'+5:2-+“)=F?=1,

and

431 2 Y
Al*?;(2j+1)2 [(l+(2j+l)7z) +(l_

2

2

Q2j+Dx

J-arcm

)

2

2

With formula (2.8) for 4,, the main term is where j = 0. This gives

A,,E;.z.[(ng.)"+(1_.3;)"_<1+(_1)n>( )];%(H%)".

For example, letting

2
(2j+1)7r) _((2j+1)7z

TS 1)7[) } 2.8)

J

C,,=iz(1+£) ,
7 T
consider the expanded table
n 1 2 6 7 8 9 10
E, 1 1 2 3 8 13 21 34 55
A, 1 1 2 3 8 1304 | 2118 | 3453 | 5632
C, | 66 | 109 | 18 | 291 | 476 | 779 | 1275 | 2086 | 3414 | 5588
Finally,
1 (1+45Y
=—=(a"-pfN=—+ =447(1618)"
G ﬂ>£(2) 4470618,
whereas

=4 (1+ 2) =405(1637)".
ﬂ

Thus, 4,/F, =.906(10115)". Hence, for small n, 4, = F,,

faster than F, in the long run.
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THE BURGSTAHLER COINCIDENCE

3. THE BURGSTAHLER PROBLEM AS AN INVERSION PROBLEM

The real problem considered in this paper is the following: Find the sequence &,,,, given that
F,= ; (2’2)b2k+1-
2k<n

This can be cast as a sum inversion problem: Given a known sequence {a,},, suppose a new
sequence is defined by
a,= ch,kbk;
k

for some given set of constants ¢, ,, what can be said about the b's in terms of the a's? It must be
pointed out that such a sequence of b's need not always exist. For example, if we attempt to

define a sequence b,,,, by
F,= Z (2’2)1’2“1,

2k<n

we find that there is no solution: F, =b,, F,=5b,+b;, F,=b,+3b; is an inconsistent system of
three equations and two unknowns. Similarly, if we attempt to solve the system

n= 25'1 (2’2)bﬂc+l

rather than the given one, we obtain 1=54,, 2=5,, and again there is no solution. In order to
even ask Question 3 in the Introduction, we need

F,= Z (2’;«7)1’2"“'

2k<n

to define a consistent system. In fact, as we will see, a proof that this system is consistent will

give an affirmative answer to Question 2.
Here is a standard technique (see [2], Vol. I, pp. 437, 438, or [3], formula 2.1.2, p. 28) for
solving a class of inversion problems: Suppose that

a, = Z cn, kbm
k

where ¢, , depends on only n—k, say ¢, , =c, ;. In this case a, is a convolution of b, and c,.
Thus, passing to generating functions, with
A(x) = Zanx", B(x) = Zb,,x”, C(x) = chx”,
n=0 n=0 n=0
we have A(x) = B(x)C(x). Hence, B(x) = C(x)" A(x).
We use this technique to solve the inversion problem
n—1
a = Z(Z)bk- G.1)
k=0

This expression only makes sense for n>1; we extend it by setting a, = 0. Dividing each side by
n! gives
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THE BURGSTAHLER COINCIDENCE

—%-_n—l 1 b_k
n & m-k) k

Here, the n—1 in the upper limit introduces a complication. The ¢, in the convolution is

0, n=0Q,

c":{—‘- n>1

n!?
In this case, C(x) = e” —1. Using exponential generating functions for a, and 5,,
A(x) = B(x)(e* - 1),
so
B(x) = ——-LI A(). (.2)
e p—

Since A(0) = 0, we can write this as

B(x) = 1_1 %A(x).

Thus, the b's will be a convolution of Bernoulli numbers with the a's. In particular, we have

ex

Theorem 3.1: Suppose that sequences {a,} and {5,} are defined by

n-1

an = Z(Z)bk
k=0

Then

S 1 1 &(n+l
b,= Z(Z)'mBn—kakﬂ = ml(nk )Bka k4l -

k=0 k=0

We next consider the specific case where a, = F,. In this case, A(x), the exponential gen-
erating function for the Fibonacci numbers is

A(x) = %(e“" —ehv),

Thus, we have

_ 1 1 o pe_ 1 sinh(s/5x/2)
B(x)—ex_ng(e eﬂx)_ﬁ sinhx/2 @3)

Since B(x) is an even function, all the odd terms are zero.

Theorem 3.2: If the sequence {c,} is defined by
n-1
F;! = Z (Z) S
k=0
then c,,,, = 0 for all n. Consequently,

F= 3 (5 e (3.4)

2k<n

Moreover,
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THE BURGSTAHLER COINCIDENCE

F=3 (fk)xk (.5)

2k<n

has as its unique solution, x, = ¢, for all .

Proof: The remarks preceding the theorem show that ¢, ., =0 for all n, which gives us
(3.4). As a consequence, we know that the system in (3.5) has a solution of the form x, =c¢,,.
That this is the only solution follows by induction on n, using

2n+1 N(2n+1
By = Z (gk )xk=Z( gk )xk,

2k<2n+1 k=0
or
1 S 2n+1
X, = gn—H(Fzm—é( 2% )xk :
Corollary 3.3: The two systems of equations
~(2n+1
L (3.6)
k=0
and
~(2n+2
Fypig = Z( ’;k )xk 3.7
k=

each have the same solution x, = c,, for all n.

Proof: Again, a solution x, = ¢,, exists to each of these systems and, by induction, each has
a unique solution.

Dr. Burgstahler's numbers b,,,, are now just c,, above. Combining Theorems 3.1 and 3.2,
we have

Theorem 3.4: The system of equations

F,= Z (ﬁ,)bzkﬂ

2k<n
is consistent and has a unique solution

1 & (2m+1
b2n+1=mkz=;)( k )Bk‘F2n—k+l'

We are now in a position to answer Dr. Burgstahler's second question: as coefficients in tanx
are changed one by one to the b,,,;, each change corrects two terms to Fibonacci numbers. This
is because of Corollary 3.3, which indicates that both F,,,, and F,,,, can be expressed as sums
involving b,, bs, ..., by,;.

4. CONCLUDING REMARKS

We have not yet given a complete answer to Question 3. While we have given a formula
for the terms of the sequence {b,,,,}, we have not said anything about the function f(x)=">bx+
byx? +bgx® + -+ .
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Theorem 4.1: The power series X o b, ,;x***! has a radius of convergence of 0.

Sketch of Proof: Suppose, by way of contradiction, that this is not the case. That is, sup-
pose that X b, ., x*™*! converges to a function f(x), at least for |x| <C for some constant
C > 0. Then it may be shown that f(x) satisfies the functional equation

f(x)=1+;‘2_x2+f( x ) @.1)

1+x

in some neighborhood of the origin. Since 1+x—x*=0 at x=a, x = f, this region must be a
subset of the interval (5, a) However, given a function f satisfying (4.1), if x =a is a pole for
then so is {%; =a or x =1%;. Iterating this, f has a pole at each of the values x = %, if it has a
pole at a. In particular, for a = 3, this gives an increasing sequence of poles with 0 as its limit.
As no convergent power series about the origin can have this property, we have a contradiction.

Thus, the first part of Question 3 was slightly naive—there was no guarantee that such a
function f(x) even existed; in fact, one does not. However, it was only by following the gener-
ating function approach above, and noting the problem of the poles that the author discovered this
fact.

One may ask about an exponential generating function for the sequence {b,,,;} rather than
the ordinary generating function, of course. As a consequence of formula (3.3), this exponential
generating function is

jx! —eﬂ‘! or J‘xtsinh.\/gt/Z)dt.
V5(e" -1) o /5Ssinh /2

The integral is needed to correct the index from c,, to b,,,,,.
It is reasonable to ask when the system of equations

a,= Z (Zk)x" “4.2)

2k<n
is consistent. We have the following result.

Theorem 4.2: The system in (4.2) is consistent if and only if the solution to the system

a, = nz_l(Z)J’k *3)

k=0

satisfies the condition y,,,, =0 for all #n. In this case, the solution to (4.2) is given by x, = y,, for
all n.

Proof: 1If the solution to (4.3) satisfies the condition that y,,,; =0 for all n, then we obtain
existence and uniqueness for solutions to (4.2) in exactly the same way as in Theorem 3.2. For
the other direction, we assume that (4.2) has a solution and proceed in induction on n to show
that in the solution to (4.3) all y,,,, are 0 and that y,, = x, for all n. To begin the induction, the
equations a, = x, and a, = x, show that to be consistent, we need a, =a,. In this case, y, =aq,,
Yo +2y, =a, gives y; = 0. Moreover, since x, = g;, we have that x, = y,.

So, by way of induction, assume that, for 0<k <n-1, y,,,, =0 and x, = y,,. We have
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2n+1 - (2n+1
AREEDY ( 2% )xk=k§( 2% )xk,

2k<2n+1
and

- (2n+1 - (2n+1
Dont1 = Z( 2% )J’k =Z( 2% )J’2k-
k=0 k=0
Since y,; = x; for all k¥ <n, comparing these two expressions gives that y,, = x,. Now
2n+2) S (2n+2)
a = X, = X
ma= T (5 =257
and

2n+1 n
2n+2 2n+2
Dpia = Z( " ) Z( " )ylk +(2n+2)y,1
k=0

force y,,,, to be 0. This completes the proof.

We may now use generating function techniques to give more information.

Corollary 4.3: The system in (4.2) is consistent if and only if the exponential generating function
A(x) for {a,} satisfies the functional equation

A(x) =—-€e*A(-x). “4.4)
Proof: We may solve system (3.1) rather than (4.2). By formula (3.2), we have the relation
B(x) =—— A(¥),
e’ —-1

where B(x) is the exponential generating function for the y,. By the previous theorem, B(x)
must be an even function of x. Hence,

—x)= xl
e —
from which the functional equation follows.

The functional equation (4.4) does not place too heavy a restriction on sequences {a,}. For
example, if f(x) is any odd function, then 2= f(x) will satisfy equation (4.4). We conclude with
the following result.

e*+1

Theorem 4.4: If the sequence {a,} satisfies a recurrence relation of the type a,=a,_, +ca,
where c is an arbitrary constant and a, = 0, then system (4.2) is consistent.

n—2 b

Proof: The case where ¢ = 0 is trivial; the solution to the recurrence relation being just the 0
sequence. Another special case is ¢ ==, in which case one may check that

e
e -1

a,=n2", A(x)= %e"/ 2 and B(x)=2
In the cases where ¢ #0, 5L, any solution satisfying a, =0 will be of the form a, = C(u" —v"),

where C is a constant, and #+v =1 ( and v being the solutions to x> —x —c=0). In this case,
A(x) =C(e” —e™), so
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—e* A(—x) = -Ce*(e™ — ™) = C(e™* — ™) = C(e* — ™) = A(x),
so A(x) satisfies the required functional equation, completing the proof.
As a very easy example, if ¢ =2, one may check that a, =2"—(-1)" produces a consistent
system for (4.2). In this case,
0, nodd,

2

by=3 and b, = {
neven,n>0.

2

That this works can be independently checked using formulas (2.6) and (2.7).
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1. INTRODUCTION

Matrix methods are a major tool in solving many problems stemming from linear recurrence
relations. A matrix version of a linear recurrence relation on the Fibonacci sequence is well

known as
E,7_[o 1][F
Fal 11 U F]

_fo 1]1_Jo Fl]
o<1 -5 7}
then we can easily establish the following interesting property of O by mathematical induction.

o= ]

n n+l

We let

From the equation 0™'Q0" = 0*™*!, we get
[F;HZ E1+li||:1:n+l F;l :| = [En+2 F‘2n+l}
B B JLE Bl o By
which, upon tracing through the multiplication, yields an identity for each Fibonacci number on
the right-hand side. For example, we have the elegant formula,

Fl +E12 =Fpa €))

The sum of the squares of the first 7 Fibonacci numbers is almost as famous as the formula for the

sum of the first » terms:
F*+F}+--+F}=FF,,. )]

In particular, in [1], the authors gave several basic Fibonacci identities. For example,
By +EF, —1

n

FF, + B+ EF,+ o+ F, F, = 203 00— 3)

Now, we define a new matrix. The nxn Fibonacci matrix ¥, = f;] is defined as

E

o i 120,

i-j+1<0.

2
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For example,

Fs=

U1 W DN =
W e O
N == OO
——O O O
—_0O 00O

and the first column of % is the vector (1,1,2,3,5)7. Thus, several interesting facts can be found
from the matrix %,.

The set of all 7-square matrices is denoted by M, . Any matrix B € M, of the form B = 4*4,
A € M, may be written as B = LL*, where L € M, is a lower triangular matrix with nonnegative
diagonal entries. This factorization is unique if 4 is nonsingular. This is called the Cholesky fac-
torization of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular
lower triangular matrix L € M, with positive diagonal entries such that B=LL*. If B is a real
matrix, L may be taken to be real.

A matrix 4 € M, of the form

A - 0 A22 . ) O
0 Ay

in which 4, eM,,, i=1,2,....k, and 3 ,n =n, is called block diagonal. Notationally, such a

matrix is often indicated as 4 = 4, ® 4,, ® ---® 4, or, more briefly, DXL, 4,;; this is called the
direct sum of the matrices 4,,, ..., 4.

2. FACTORIZATIONS

In [2], the authors gave the Cholesky factorization of the Pascal matrix. In this section we
consider the construction and factorization of our Fibonacci matrix of order »n by using the (0, 1)-
matrix, where a matrix is said to be a (0, 1)-matrix if each of its entries is either 0 or 1.

Let I, be the identity matrix of order 7. Further, we define the n xn matrices S,, %,, and

G, by
1 00 1 00
S,=|1 1 0|, S,=[0 1 0,
1 01 011

and S, =8,®1,, k=12,..., %=110%_,, G=I, G=1I1_,®5,, and, for k>3, G, =
I,_,.® S,_;. Then we have the following lemma.
Lemma2.l: %,8, ;=%,,k>3.

Proof: For k =3, we have %, S, =%,. Let k>3. From the definition of the matrix product
and the familiar Fibonacci sequence, the conclusion follows. O

From the definition of G,, we know that G,=S,_;, G,=1,, and I,_;® §S_;. The following
theorem is an immediate consequence of Lemma 2.1.
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Theorem 2.2: The Fibonacci matrix ¥, can be factored by the G,'s as follows: %, = GG, -+

For example,

%5 =GG,GG,Gs =1 s(L,®© S_ ), @ S)([1]® 818,

100001 0000100001 00001 0000
01000(010060J)01O0O0O0)01000)jT 1000
=|00100|/001 000010001 10010100
00010jj00010{00C110)H0101O0H0O0O0T1O0
00001]jj00011)00101/00O0O0T1jj0O0O0OO01
10000
11000
=2 110 0]
32110
53211

Now we consider another factorization of %,. The nxn matrix C, =[c;] is defined as

E el }-’::1 (1) 8
=1L i=j e, =2 . |
0, otherwise, Fn 0 - 1

The next theorem follows by a simple calculation.
Theorem 2.3: Forn>22, %, =C,(I, ® C,_))(I, ® C,_;) - (I,., ® C,).

Also, we can easily find the inverse of the Fibonacci matrix &%,. We know that

1 00
St=|-1 1 0],
-1 0 1

Define H, = G;'. Then

Hl = Gl_l = In, H2 = G2_1 :In—3 @ S__ll =In-2 @ I:_ll (1)]’ and Hn = ;_13

1 0 O
St=l0 1 0|, and S;'=S;"@® I,.
0 -1 1

Also, we know that

F 0 -0
G'=| T 1Y e eCT =L OC
-F 0 1

So the following corollary holds.

Cﬂrollan, 2.4.’ gs;lz G;IG;_II e GEIG{I = Han—l oo HZHI - (In__z @ Cz)_l e (Il @ Cn_l)_lc;l.

From Corollary 2.4, we have

1 0 0 0 - 0
11 0 0 - 0
a1 211 0 0

g"_O—.l -1 1 of
0 « 0 -1 -1 1
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Now we define a symmetric Fibonacci matrix 2, =[q;] as, for i, j=1,2,...,n,

v G, j2 TG - IH1S],

where g, o =0. Then we have q;; = ¢, = F; and q,; =q;, = F},,. For example,

1 1 2 3 5 8 13 21 34 55
1 2 3 5 8 13 21 34 55 89
2 3 6 9 15 24 39 63 102 165
3 5 9 15 24 39 63 102 165 267
9 - 5 8 15 24 40 64 104 168 272 440
0718 13 24 39 64 104 168 272 440 712 |
13 21 39 63 104 168 273 441 714 1155
21 34 63 102 168 272 441 714 1155 1869
34 55 102 165 272 440 714 1155 1879 3025
55 89 165 267 440 712 1155 1869 3025 4895

From the definition of 2,,, we derive the following lemma.
Lemma 2.5: For j23, q3; = Fy(F; 3+ F,_,F).

Proof: We know that gy, =F?+F}+F} = FF,; hence, ¢3,=F,F, = F(Fy+FF) for
Fy=0. By induction, ¢5; = Fy(F; 3+ F;_,F5). O

We know that q;;=¢;3=F and g5, =¢,3=F,. Also we see that q, ;=41 4, 442 =,4,
and q, ; = ¢; 4. By induction, we have the following lemma.

Lemma 2.6: For j>4, q,; = Fi(F;_4+F,_,/5+ F_3F).

From Lemmas 2.5 and 2.6, we know ¢s ;, ¢s », gs 3, and g5 4. From these facts and the defi-
nition of 9,,, we have the following lemma.
Lemma 2.7: For j25, qs; = F;_sF,(1+ B+ )+ F;_,FiF.

Proof: Since gs 5 = FsF; we have, by induction, gs; = F,_F,(1+ F; + F) + F,_F5F;. O

From the definition of 2, together with Lemmas 2.5, 2.6, and 2.7, we have the following
lemma by induction on i.
Lemma 2.8: For j>i>6,

4y = F, Fy(+ B+ F)+ F,_FF+ F,_FFy+-+ F_F_F+F_  FF,.
Now we have the following theorem.

Theorem 2.9: For n>1 a positive integer, H,H,_,--- H,H,2,,=%! and the Cholesky factoriza-
tion of 9, is given by 2, = %, F'.
Proof: By Corollary 2.4, H H, - H,H, =%F," So, if we have %,'9,=%/, then the theo-

rem holds.
Let X =[x,]1=%,'2,. Then, by (4), we have the following:
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F, ifi=1,
¥, =AF_, ifi=2,

G2, j —Gi-1,j + 9y otherwise.

Now we consider the case i >3. Since 9, is a symmetric matrix, Qg ;G +y =
~q,,i-2— 9,11 +9;- Hence, by the definition of 9 =0 for j+1<i. So, we will prove that
~Gi—g,j —Gi-,j + Gy =Fj_ia for j 2 1.

In the case in which 7 < 5, we have x; = F_,,, by Lemmas 2.5, 2.4, and 2.7.

n’tj

Now suppose that j >i >6. Then, by Lemma 2.8, we have
Xy ==Gia, j _qi—l,j +4y
=(F_;—Fn— F i)+ B+ F)+(F - F Ly — Fp,)EF
ot (B = B = Fro) BaF oy + (B - B — Fip)FoF
+(F - F ) F+F FE,,.

Since Fj_ ~F, iy~ Fjig=-2F 1, ;i —F iy~ F3="3F_,ad F,_, - F, ., =-F ,,,,
we have

Xy = Fa2F - 2(BF + FyFs+ - + F_,F, ) - F_,F - FF; + EF,;]

y

Since F, =3, using (3) we have

E,. +F_F, -1
X; =[—6—2( AR —ﬁl@—%]—ﬁ.zﬁ_l—ﬁ-l :

2

Ney
+
z
 ——
\i"n
b
—

Since F,,, = F, + F_, and by (1) we have
Xy =(A=2FF - B 3 - F_F+ EF,)F
=(1-2F_F y— Fy s+ F)F
=(1-F,- Ezz —2F_F_,+F? Vi
=(1-(F_ +F_ )"+ Ez)Fj—m
=(1- E2 + EZ)F}'—HI = F}—i+1'
Therefore, ', = %/, i.e., the Cholesky factorization of 9, is givenby 2, =%, %! . O
In particular, since 2! = (F)'F 1= (F,') %!, we have

3 0 -1 0 0
6 3 0 -1 .- 0
-1 0 3 0 - 0
o U S ©®)
o o0 0 0 - 3 0 -1
6o 0 0 0 - 0 2 -1
(0 0 0 0 -+ -1 -1 1|

From Theorem 2.9, we have the following corollary.
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Corollary 2.10: If k is an odd number, then

FE P oE EF, -y~ F ifnisodd,
_ + e 4 =
ok SR V00 AP if nis even.

If & is an even number, then

FF, k-1 if nis odd,
Ey+o+FyF = o
EF, -y~ F ifniseven

For the case when we multiply the i row of %, and the i column of %, , we have the

famous formula (2). Also, formula (2) is the case when & = 0 in Corollary 2.10.

3. EIGENVALUES OF 2,

In this section, we consider the eigenvalues of 2, .

Let @={x=(x,%,...,x,)eR":x>x,>->x}. Forx,yed, x<y if TE x, <¥* y,
k=12,...,n and if k = n, then the equality holds. When x <y, x is said to be majorized by y, or
y is said to majorize x. The condition for majorization can be rewritten as follows: for x,y €9,
x<yifXkox, , >2¥kF y, ., k=0,1.. n-2, andif k = n—1, then equality holds.

The following is an interesting simple fact:

n
®,...,%)<(x,...,x,), where ¥ = %.
More interesting facts about majorizations can be found in [4].

An nxn matrix P=[p;] is doubly stochastic if p; 20 for i,j=1,2,...,n, 3., p; =1,
J=12,..,n,and 37, p;=1,i=12,...,n. In 1929, Hardy, Littlewood, and Polya proved that a
necessary and sufficient condition that x <y is that there exist a doubly stochastic matrix P such
that x =yP.

We know both the eigenvalues and the main diagonal elements of a real symmetrix matrix are
real numbers. The precise relationship between the main diagonal elements and the eigenvalues is
given by the notion of majorization as follows: the vector of eigenvalues of a symmetrix matrix is
majorized by the diagonal elements of the matrix.

Note that det F,=1and det2,=1. Let 4,, 4,,..., 4, be the eigenvalues of 2,. Since 2, =
F %I and X | F? = F,,,F,, the eigenvalues of 2,, are all positive and

L5y BBy s FyF) = (A, Ags o A).

=15+

In [1], we find the interesting combinatorial property, X/Lo(";')=F,,;. So we have the
following corollaries.

Corollary 3.1: Let A,, A,, ..., A, be the eigenvalues of 2,,. Then
—i\\2 . .
"o("7)) -1 ifmisodd,
ﬂ'l+ﬂ'2+'“+ln= ( 0( ))
(Zmo(™ ))2 if nis even.

1
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Proof: Since (F,,F,, F,F,_,,..., hF) < (A}, A, ..., 4,), and from Corollary 2.10,

(Fu)'-F ifnisodd, _ (Ero(7) -1 ifmis odd,

(F)? ifnis even, ( " ))2 if n is even.

‘ll+12+---+/ln:{
i=0\ i

Corollary 3.2: If nis an odd number, then

n -\ \2
ni, < (E (nl_l)) -1<ni,.
i=0

If n is an even number, then

Proof: Lets,=A,+A,+---+4,. Since

(

we have A, << 4,. Therefore, the proof is complete. O

s, 8
sy n)-<(/11, Agyeiis An),

N |:°"‘

*n

From equation (5), we have

G.3,...3,2, 1)<(/1—1n, l:_l , 11:) )
Thus, there exists a doubly stochastic matrix T'=[#;] such that
1 y ) :11 :12 :m
(3’3’“"3’2’l)z(/l_n’m"“’ﬂ_l) 21 22 2" .
(TR T

That is, we have 31, + 71—t + - +5-t,, =1and i, +1), +-+ +1,, = 1.

, i
Lemma 3.3: Foreachi=1,2,...,n, bty <77

Proof: Suppose that #,_;_y , > ;,'l_’T Then

A A A 1
tl,,+t2,,+---+tm,>n_‘1+n_21+---n_"1 =n_1(/11+12+---+l,,).

A
n-1°

Since #,, +1,, ++++ +1,, =1 and 27, 4; 2 n, this yields a contradiction, so ,_;_y, , < 0

From Lemma 3.3, we have 1-(n— l)%it,,_(,-_l),,, >0. Let  =s,—(n—1). Therefore, we have
the following theorem.

Theorem 3.4: For (a,1,1,..,1) €D, (a,1,1,...,D<(4,,4,,..., 4,).

Proof: A necessary and sufficient condition that (o, 1,1,...,1) <(4,, 4,, ..., 4,) is that there
exist a doubly stochastic matrix P such that (e, L, 1,...,1) = (4, 4,, ..., 4,)P.
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We define an 7 x n matrix P =[p;] as follows:

Pu P - P2
p=|Pn Pn ' Pn

Pn Pm ' Pm
where p;, ——t,,_(, nn and py=1-(n-1p,, i=1,2,..,n. Since T is doubly stochastic and

A4,>0, p,20,i=12,...,n. ByLemma3.3, p, >0, 1—12,...,n. Then
+ Py ot —zﬂl+t""”+---+fll—1
p12 p22 pnl_ j’l /12 /1" -
Pat(m-Dpy=1-@m-Dp,+(n-Yp, =1,
and
PutpPu+ 4 py=l-m-Dp,+1-(-Dpy+---+1-(n-Dp,,
=n—-n(Py+Pp+t D)t Pt Pt oty =1

Thus, p is a doubly stochastic matrix. Furthermore,

APy + AP+ o+ A pn =4 Im +4, ot et A, 1
12, 77, "2,
Syttt i, =1

and
A+ 2,0+ A0y = (= =-Dp) ++1,(1-(n-1p,,)
sh+ A+t A, — (=D piy + Aypyy + - + AP2)
=4+ + -+, -(n-D=a.

Thus, (o, 1L 1,...,)=(1,45,..,4,)P,s0 (a, L 1,..., D) < (A, 4,,..., 4,). O
From equation (6), we have the following lemma.

Lemma 3.5: Fork=2,3,....n, A, 2 3(k 5
Proof: From (6), for k=2,

1,1 1
11+/12+ /1 —<1+243+--+3=3(k-1).
Thus,

1 1 1 1
—<3(k-1 +—t et |<3(k-1).
k ( ) (’11 ’12 ’lk 1) ( )

Therefore, for k=2,3,...,n, 1, > “3(1}1-1)- u

Corollary 3.6: For k=12,..,n-2, A, <(k+1)- 3(n"1) In particular, a <A, and 3 l)s

1
A, <1

Proof: If k=1, then 4,+4, ,<2. By Lemma 3.5, we have 4, ; <2-3:5. Hence, by
induction on n, the proof'is complete for k =1,2,...,n—2. In particular, by Theorem 3.4 and (6),
A=<1,<i. 0
3(n—l) n=73"
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Since det 2, = 4,4,...4, =1, 4y45...4, =4, we have A7 2 4,...4,; =5 Thus

1 n—1
’In > (Z) .

n-1
1 1
—_— < < =
(ll] <A, <3
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1. PRELIMINARIES

Object of the Paper

Basically, the purpose of this paper is to present data on convolution polynomials J{?(x) and
J®(x) for Jacobsthal and Jacobsthal-Lucas polynomials J, (x) and j,(x), respectively, and, more
specifically, on the corresponding convolution numbers arising when x =1.

Our information will roughly parallel and, therefore, should be compared with that offered for
Pell and Pell-Lucas polynomials P,(x) and 0,(x), respectively, in [7] and [8] in particular.

Properties of J,(x) and j,(x) may be found in [5] and [6, p. 138]. Originally J (x) was
investigated by the Norwegian mathematician Jacobsthal [9]. For ease of reference, it is thought
desirable to reproduce a few essential features of J,(x) and j,(x) in the next subsection.

Background articles of relevance on convolutions which could be consulted with benefit are
{1}, {21, and [3]. But observe that in [3] the x has to be replaced by 2x for our J, (x).

Convolution Arrays

Convolution numbers, symbolized by JO(1) = J® and (1) = jB), where k represents the
"order" of the convolution and » the sequence index, may be displayed in a convolution array
(pattern). When k = 0, the ordinary Jacobsthal numbers J'” =/ and the Jacobsthal-Lucas num-
bers ¥ = j, are generated.

Readers of [3, p. 401] will be aware that the #™-order convolution sequence for J* appears
there as columns of a matrix. As the convolution array for j*) does not seem to have been pre-
viously recorded, we shall disclose its details in Table 2.

Mathematical Background
Definitions
Jn2(%) = Jpa(x) +2xJ,(x), Jo(x) =0, Si(x)=1. an
T2 (%) = Jua () +2x5,(0), Jo(¥) =2, ji(x)=1 (12)

For 0<n<10, J,(x) and j,(x) are recorded in [6] in Tables 1 and 2, respectively, to which
the reader is encouraged to refer.

Special Cases

x = 1: Jacobsthal numbers J, (1) = J, and Jacobsthal-Lucas numbers j, (1) = j,.

x=%:J,(1)=F, j(%)=L, (the n® Fibonacci and Lucas numbers).

1t follows that Tables 1 and 2 in [6] with (1.1} and (1.2) thus generate the number sequences
{J,(1D}=0,1,1,3,511,2143,.., (1.3)
(,(D}=2,15717,31,65127, ... (1.4)
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Binet Forms
From the characteristic equation A° — A4 —2x = 0 for both (1.1) and (1.2), we deduce the roots

_1+A _1-A
o= 2 > .‘3 - 2 3 (15>
so that
a+f=1 aff=2x, a-f=J1+8x = A, (1.6)
Binet forms are then
J0)=(a" =B/ A, amn
Jfxy=a"+p" (1.8)
Generating Functions
2 a0y = (- y =247, (1.9)
n=0
2o Jen (0" = (L 4xp)(1 - y - 297y (1.10)
=0
An immediate consequence of (1.9} and (1.10) is
Ja(X) = Sy (%) + 4%, (%), (1.11)

which is also quickly obtainable from (1.7) and (1.8).
Jacobsthal convolution polynomials J(x) are defined [see (4.9) and (4.92)] from (1.9) by

2 Ay = 1=y = 2xy?)y D, (1.12)
n=0

The corresponding Jacobsthal-Lucas convolution polynomials j$)(x)y" are defined in (5.7)
and (5.7a) by means of (1.10).

2. FIRST JACOBSTHAL CONVOLUTION POLYNOMIALS J®(x)

Generating Function Definition

SIDE@Y =(1-y-27) @.1)

n=0

) 2
= (‘Z J;H(x)y’) by (1.9). (2.13)
r=0
Excamples
JOW) =1, JP(x) =2, JO(x)=3+4x, JP(x)=4+12x, JO(x)=5+24x +12x2,

(2.2)
JO(x) = 6+40x +48x%, JP(x) =T +60x +120x? +32x°, ...

Special Case (First Jacobsthal Convolution Numbers: x =1)
{(JOMY=1,2,7,16,41,94,219, ... 2.3)
Observe that this sequence of integers appears in the second column of the matrix in [3,
p. 401}
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Recurrence Relations
Immediately, from (1.9) and (2.1), we deduce the recurrence
Jr(ti?l(x) - Jr(ll)(x) = 2xJ0(%) = s (%) 24
By means of (2.4), the list of first convolution polynomials may be extended indefinitely.

Partial differentiation with respect to y of both sides of (1.9) along with the equating of the
coefficients of y"! then yields, with (2.1),

1,1 (6) = TP () +4xJ 2 (x). (2.5)
Combine (2.4) with (2.5) to obtain the recurrence
nJB,x) = 1+ 1)JD(x) + 2x(n +2)JD,(x). (2.6)
Eliminate J®(x) from (2.4) and (2.5). Then
(1+2)J,,,1(¥) = 2J (%) = S (x). 2.7)
Add (2.5) to (2.7), whence
(1 +1)J,1(x) = S (%) + 20D (x). 2.8

Or, apply (2.9) below twice with reliance on (3.13), (3.12), and (1.2) in [6] and appeal to the
(new) result, j,,,(x)+4xj,(x) = A>J,,,(x) obtained from Binet forms (1.7) and (1.8) above.

Other Main Properties
Next, we are able to derive the revealing connective relation

njn+l(x) + 4xJn(x)

JPOx) = 2 : (2.9)
where A is given in (1.6). As a prelude to (2.9), we require the recursion
1,1 (%) = (1+4x)JD(x) + 4xJ D, (x) +8x?JD, (x). (2.10)

Establishing (2.10) merely asks us to differentiate (1.10) partially with respect to y, and then
perform appropriate algebraic interpretations involving (2.1). Corresponding coefficients of y"~!
are then equated.

Proofs of (2.9):

(a) Induction. The formula is verifiably valid for n=1,2,3,4,5. Employing the induction
method in conjunction with (2.4) leads us to the desired end.

(b) Alternatively (cf. {8, p. 61, (4.7)]), algebraic manipulation in (2.1) gives

i JO )y = (1+4x +4xy +8x%y?) + 4x(1- y - 2xp%)
o (A +80)1-y-207)
= Trgr 2 Wt (¥) +4x/,(0)y™" by (1.9), (1.10), (2.10).
n=1

n—1

Compare coefficients of y"~ and (2.9) ensues.
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Observe that a Binet form may be deduced for J{°(x) from (2.9) by means of (1.7) and (1.8).
Worth noting in passing is that by combining (1.1) and [6, (3.12)] we may express the numerator
of the right-hand side of (2.9) neatly as (n+1)j,,,(x) = J,.,(x).

Explicit Combinatorial Form

Theorem 1:
5]
JOE) =Y (n 1 r)(n-:: B 1) (2x)"  (closed form). (2.11)

Proof (by induction): Using (2.2), we readily verify that the theorem is true for ali n=1, 2,
3. Assume it is true for all n < N, that is,

| [27]
Assumption: JP(x)= zg, (N L r )(N —rr~1) (2x). (A)

Then the right-hand side of (2.6) becomes
N(IR )+ 2021 (0)) + (I (%) + 40Ty (%))

k3 4]
=NY (N-r) (N " r)(z;c)r +NY, (N - r)(Zx)’ from (A), on simplifying

r=0 r=0

#
- NZ(N—rH)(N ;’)(Zx)' ®)

r=0
= NIy (), ©
which must be the left-hand side of (2.6).
Consequently, (B) and (C) with (A) show that (2.11) is true for n= N +1 and thus for all 7.
Hence, Theorem 1 is completely demonstrated.
Remarks: Recourse is required in the proof to the use of
(i) N even, N odd considered separately (for convenience),
(i) Pascal's Formula, and
(iii) the combinatorial result (readily computable)

w-n(N 72w -n(NT = M(YT) @11a)
Summation
From (2.4) and [6, (3.7)],

5:.]:1)(36) — 2x n22(x)4_x;]n+4(x) + l (212)

r=1

Expanding the right-hand side of (2.1a), both sides having lower bound 7 =1, and equating
coefficients, we arrive at
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J,(11)(x) — ZZE{ILJr(x)J —r+1(x) neven,

(2.13)
2508 g )T () + Jaa(®) 1 odd

Differentiation and Convolutions

Let the prime (') represent partial differentiation with respect to x. Differentiate both sides
of (1.9) with respect to x. Compare this with (2.1). Then, on equating coefficients of y"*! we
deduce the notably succinct connection

2J0(x) = S (). (2.14)
But ji(x)=2nJ,_,(x) by [6, (3.21)]. Hence, the second derivative is
Jx) = anJy(x). (2.15)

3. FIRST JACOBSTHAL-LUCAS CONVOLUTION POLYNOMIALS jP(x)

Generating Function Definition

S =449y =207 G
w 2
=(Zj,+l(x>yf) by (1.10). (3.12)
Examples: ~
JO) =1, jP(x)=2+8x, jP(x)=3+20x+16x%, j{P(x)=4+36x+64x%, 32)
J(x) =5+56x +156x2 +64x>, j(x) = 6+80x +304x% +228x°, ...
Special Case (First Jacobsthal-Lucas Convolution Numbers: x =1)
P} =1,10,39,104, 281, 678,1627, .... (33)
Recurrence Relations
Immediately, from (2.1) and (3.1), we have
JP0) = JP0e) + 862, () +16x7 T2, (), G4

by means of which a list of convolution polynomials may be presented, in conjunction with (2.2),
which may be checked against those already given in (3.2).
Combining (3.4) and (2.10), we deduce that

2,,1(%) = O +(1+8x)JP(x) (1+8x =A%), (3.5)
Equations (2.9) and (3.5) generate the pleasing connection
JOG) = 1y () - 42, (x), (3.6
which, with (1.11), may be cast in the form
=1 g (¥) = JP () = Sy (%) )

Alternatively, (3.6) may be demonstrated in the following way,

216 [JUNE-JULY



CONVOLUTIONS FOR JACOBSTHAL-TYPE POLYNOMIALS

el

; - 1+4
Z}Jﬁl)(x)ynl =(1+4Xy)-(1—_y_—2xy30)2)7 by (3.1)

= (1+4x) Y nJ,,,(x)y™" differentiating (1.9) w.rt.y
n=1
=2, (1 ()™ +4x(n = 1)J, ()Y,
n=1
whence (3.6) emerges by (1.11).
Other Main Properties
Comparing the generating functions in (1.10) and (2.1), we calculate upon simplification that
Jn(%) = D) + (4x = DIL)(x) = 6430y (x) - 8%, _3(x). (€2
Taken together, (2.9) and (3.6) produce

IO () = i) ;21 PH® (g =148, (3.9)

Equation (3.6), in conjunction with (1.7) and (1.8), allows us to display j’(x) in a Binet
form.
Furthermore, (2.9) and (3.6) yield

RJO(x) + jO(x) = 2nj,,,(x) (3.10)
and
A2JD(x) - jO(x) =8xJ (x). 3.11)
Lastly, we append a result which is left as an exercise for the curiosity of the reader:
(& = 1), () = A {I2() + 20T 2 (x)} = (Eh () + 262, (%)}, (3.12)

where A2 —1=8x by (1.6).

4. GENERAL JACOBSTHAL CONVOLUTION POLYNOMIALS J®(x) (k>1)
A. CASE k =2 (Second Jacobsthal Convolution Polynomials)

Generating Function Definition

S IBEY =(1-y-207° @1
n=0 . 5
= (%Jm(x)y’] - (4.1a)
Examples '
JOx) =1, JD(x)=3, JP(x)=6+6x, JO(x)=10+24x, JO(x)=15+60x+24x2, “2)
JP(x) = 21+120x +120x?, JP(x) = 28+210x +360x? +80x°, ...
Special Case (Second Jacobsthal Convolution Numbers: x =1)
{(JP(}=1,3,12,34,99,261,678, ... 4.3)
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Observe that this sequence of numbers occurs in the third column of the matrix array in [3,
p. 401].
Recurrence Relations
Immediately, from (2.1) and (4.1) there comes
T () = P (¥) = 2xJ (%) = T h (%) (4.4)
whereas (1.9) and (4.1) lead to
JD (x) - 2JP(x) + (1-4x)J3,

n n-1

(x)+ 4xJ(22(x) +4x? n_3(x) S (%). 4.5)

Differentiate both sides of (2.1) partially with respect to y, then equate coefficients of y"™! to
obtain, by (4.1),

nJEh(x) = 2(J P (x) +4xJ 2 (x)). (4.6)
Eliminate J(,(x) from (4.4) and (4.6). Hence,
() = (1 + 27D (x) + 2x(n+4) S (). (4.7)
Next, eliminate J$,(x) from (4.4) and (4.6). Accordingly,
1+ 42 () = 2230 - JP (). (4.8)

Not all results in Section 3 above (k =1) extend readily to direct unit superscript increase on
both sides of the equation [cf. (2.7), (4.8)].

B. CASE k General (k' Jacobsthal Convolution Polynomials)

Generating Function Definition

2@y =(1-y-2x7) ¢ (4.9)
n=0
w K+ _
=(ZJ,+,(x)y2) by (1.9). (4.92)
r=0
Examples
k+1 k+2Y (k+1
5@ =1 0@ =", @ =(¥32)+(* e
k+3), (k+2 k+4), (k+3 k+2 (*10
J,§k>(x):( ¥ )+( : )4x, J§’°)(x)=( : )+( ¥ )-3-2x+( * )(2x)2’"“
Special Case (k™ Jacobsthal Convolution Numbers: x = 1)
JOWD) =1, k+1, (k+1)("+6) (k + 1)(k+2)(k+15), 4.11)
Explicit Combinatorial Form
Theorem 2: [251]
S(k+n-r-1\(n-r-1 ’
J,‘,"’(x):Z( ner )(” ! )(Zx). (4.12)

r=0
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Proof: Constructing the proof parallels the procedures employed in Theorem 1, where & = 1.
That is, apply (4.15), which will be proven independently below, and induction in tandem.

Remarks: Corresponding to the combinatorial identity (2.11a) for Theorem 1, we require in the
proof of Theorem 2,

P {(N+kk—l—r)(N—rr—l) +2(N+kk—1—r)(Nr—_rl—l)}

(4.12a)

=N N+k-1-r\(N-r

- k-1 rop

i.e., k is absorbed into the product and N emerges as a factor.
Finally, we have the sum
N+k—-1-r\(N-r N+k-1-r\(N-r
2 [Ghrand Gh R Gty G

(4.12b)

_ N+k—-r\(N-r
("N
Pascal's formula is needed in (4.12a) and (4.12b). The simplified form in (4.12b) relates to the
Q . (k) .
expression for Jy},(x) in (4.12).
Knowledge of (4.12) now permits us to compute J(x) for any & and »n. In particular,
JO(x) =35+120x +40x>. Refer also to (4.10).

Recurrence Relations
Appealing to (4.9) and (4.9) with £ — 1, we have the immediate consequence

T - IP) =258 = JEO (). 4.13)

n-1

Partially differentiate both sides of (4.9) with respect to y. Considering coefficients of y"! we
then have, on replacing £k by &£ —1,

nJED(x) = k(IO (x) + 4By (x)). (4.14)
Combine (4.13) and (4.14) to obtain the recurrence
nJE)(x) = (n+k)JP (x) +2x(n+2k) JE)(x). (4.15)
Furthermore, from (4.13) and (4.14), we arrive at
(n+20)J80(x) = KB () - IO ). (4.16)

Results when & =2 may now be checked against those specialized in (4.1)-(4.8).

Convolution Array for J&

In Table 1 below, we exhibit the simplest numbers occurring in the Jacobsthal array for the
convolution numbers J.

Convolution numbers for k¥ =1,2 and for small values of n are already publicized in (2.3),
(4.3) and (3.3), (5.3). Applying the extremely useful formulas obtained (from the Cauchy convo-
lutions of a sequence with itself) by induction in [1, pp. 193-94], where the initial conditions (1.1),
(1.2) are known, we may develop the array for J* to our heart's desire. Or use Theorem 2 when
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x=1. Systematic reduction to n=1 (boundary case) using (4.13) is a rewarding, if tedious,
exercise. Reduction by (4.13) gives, for example, J{?(x) = 10+24x in conformity with (4.2).

TABLE 1. Convolution Array for J* (n=1,2,...,5)

nlkj0o 1 2 3 .. k

1|1 11 1 - 1

2 {1 2 3 4 .- ("

3 13 7 12 18 - (53 +2(*)
4 |5 16 34 60 - (53)+4(5Y)
5 |11 41 99 195 - (Mi)+6(*5)+4(*5)

It should be noted that the formulas given in [1, pp. 193-94] relate to rows in the convolution
array, whereas it is the columns that are generated in our approach, namely, one column for each
convolution value of £.

Be aware that the notation in [1, pp. 193-94] is different, namely, we have the correspon-
dence (subscripts in R, referring to rows and columns, respectively)

R, < J&, 4.17)
Formula (4.10) and [1, (1.6)] then both yield, for example, R,; = J\2 =34 (Table 1).

Reverting briefly to [3, p. 401] we see that the abbreviated array for J is exposed in matrix
form in which the first, second, third, ... columns of the matrix B,P are precisely our J©, JO,
JD ., respectively. En passant, we remark that the columns of the matrix 4,P are exactly the
Pell convolution numbers PO, PO P@ ' examined in [8].

5. GENERAL JACOBSTHAL-LUCAS CONVOLUTION
POLYNOMIALS j®(x) (k >1)
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