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Leader • Friend 

This edition of The Fibonacci Quarterly is being dedi-
cated to Professor Calvin T, Long for his inspirations to 
his students, for his actions as a role model to his fellow 
Mathematicians, and for his extremely active participa-
tion in The Fibonacci Association as an author, referee 
and member of the Board of Directors. 

Thank You! 



A Short Biography of Calvin T. Long 
Calvin T. Long was born in Rupert, Idaho, where he received his elementary and secondary education. 

Inspired by his teachers, he continued his education and was granted a B. S. degree from the University of 
Idaho in 1950, an M. S. degree from the University of Oregon in 1952 and a Ph.D. under the direction of 
Professor Ivan Niven, from the University of Oregon in 1955. After graduation, he spent one year as an 
analyst in Washington, D. C. working for the National Security Agency. In 1956, Cal accepted a position in 
the Mathematics Department at Washington State University (WSU) in Pullman, Washington, where he 
remained until his retirement in 1992. 

It would be impossible to list all of Professor Long's accomplishments during his tenure at WSU so we 
will try to list only what we consider to be the most important ones. During the 1960s and early 1970s Cal 
served as director or associate director for several NSF-funded institutes for elementary, junior and high 
school mathematics teachers. This led to his deep interest in mathematics education. From 1970-78, he 
served as department chairman. 

As a teacher, his students both at the graduate and undergraduate level respected him. He was a task-
master but had a good sense of humor, sound scholarship and the ability to lead his students to their best 
efforts in an uncompromising way by insisting on excellence. For his efforts, Professor Long received the 
President's Faculty Excellence Award for Teaching in 1987 and was one of WSU's Case Award Nominees and 
Centennial Lecturers. He was also a visiting professor at three foreign and two American universities. During 
his career he directed 27 masters students and was the thesis advisor for five doctoral students. 

As a researcher, he was the author or co-author of at least twenty-four grant proposals that funded 
programs or institutes related to mathematics education. He was the author of several books on number 
theory and mathematics education. He did extensive reviewing and refereeing of research papers and was 
an associate editor for two mathematics journals. He had more than 80-refereed publications and gave 
more than 150-invited lectures throughout the United States, Canada, Australia, New Zealand and Ger-
many. He has also given at least 50 invited colloquium talks. Professor Long is a member of many honor 
societies, including Phi Beta Kappa. He is also an active member of many mathematical societies, including 
the Mathematical Association of America (MAA), the American Mathematical Society (AMS), the Fi-
bonacci Association and the National Council of Teachers of Mathematics. He was elected Vice-Chairman, 
Chairman and Governor of the Northwest Section of the MAA. He served on numerous local, regional 
and national committees. For his dedication to his profession, he received the Certificate of Meritorious 
Service from the MAA in January of 1991. 

As a mentor, he was always there for his fellow teachers as well as for his current and former students. 
As a leader, he was a state coordinator for the American High School Mathematics Examination, he was 
one of the organizers of the WSU Mathematics Honors Scholarship Competition program, and he was a 
consultant to the Washington State Superintendent of Public Instruction, to the State Department of 
Education and to the National Science Foundation. 

Concerning The Fibonacci Association, Cal is a Charter Member. He served on the Board of Direc-
tors from July 6,1983 to June 19,1999 and he was the President for the last fifteen years. He was a strong 
supporter of the Fibonacci Research Conferences, attending most of them and presenting papers. Under 
his leadership, the organization became stronger and more unified. 

On the unprofessional side, Cal is an avid fisherman and lover of the outdoors. It was not unusual to 
see him fly casting in the lakes and streams or walking the trails of the idyllic Idaho wilderness and 
sometimes you could even see him boating down the rapids of the Snake River. Cal also has a beautiful 
tenor voice, which he put to good use as a member of his church choir, a member of the Vandeleers, a 
well known University of Idaho choral group, a member of the Eugene Gleesmen, during his graduate 
years, a member of the Pullman/Moscow Chorale and a member of the Idaho-Washington Symphony 
Chorale. Cal was also a very dedicated husband whose strongest supporter was his wife Jean on whom 
he always knew he could count on because her support was always there. Finally, Cal was a devoted 
father to his two children, Tracy and Greg. 

Cal, for all that you have done in so many ways for so many people, we say thank you. Enjoy retire-
ment and know that you have made a difference to so many people who have crossed your path. 



THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION JJ 
TABLE OF CONTENTS 

The Burgstahler Coincidence John Greene 194 

Factorizations and Eigenvalues of Fibonacci and Symmetric 
Fibonacci Matrices Gwang- Yeon Lee, Jin-Soo Kim, and Sang-Gu Lee 203 

Convolutions for Jacobsthal-Type Polynomials A.F. Horadam 212 

Vieta Polynomials A.E Horadam 223 

Pentagonal Numbers in the Pell Sequence and Diophantine 
Equations 2x2=y2(3y~l)2i.2 V Siva Rama Prasad and B. Srinivasa Rao 233 

Dedication to Cal Long , 242 

On the Representation of the Integers as a Difference of Squares M.A. Nyhlom 243 

Sequences Related to Riordan Arrays Xiqiang Zhao and Shuangshuang Ding 247 

On the Infinitude of Composite NSW Numbers ........ James A. Sellers and Hugh Williams 253 

A Note on a Diophantine Equation Considered by Powell B.G. Sloss 255 

The Least Integer Having p Fibonacci Representations, 
p Prime Marjorie Bicknell-Johnson 260 

Second-Order Linear Recurrences of Composite Numbers Anatoly S. Izotov 266 

Author and Title Index 268 

A Divisibility Property of Binary Linear Recurrences Neville Robhins 269 

The Prime Number Maze William Paulsen 272 

Fibonacci-Lucas Quasi-Cyclic Matrices Lin Dazheng 280 

Partition Forms of Fibonacci Numbers Sun Ping 287 

VOLUME 40 JUNE-JULY 2002 NUMBER gj 



PURPOSE 
The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for wide-

spread interest in the Fibonacci and related numbers, especially with respect to new results, research 
proposals, challenging problems, and innovative proofs of old ideas. 

EDITORIAL POLICY 
THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its readers, 

most of whom are university teachers and students. These articles should be lively and well motivated, 
with new ideas that develop enthusiasm for number sequences or the exploration of number facts. 
Illustrations and tables should be wisely used to clarify the ideas of the manuscript. Unanswered ques-
tions are encouraged, and a complete list of references is absolutely necessary. 

SUBMITTING AN ARTICLE 
Articles should be submitted using the format of articles in any current issues of THE FIBONACCI 

QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly readable, 
double spaced with wide margins and on only one side of the paper. The full name and address of the 
author must appear at the beginning of the paper directly under the title. Illustrations should be carefully 
drawn in India ink on separate sheets of bond paper or vellum, approximately twice the size they are to 
appear in print. Since the Fibonacci Association has adopted Fj = F2 = 1, Ei +/= R +R- ; , n>2 and L ^ l , 
L2 =3, L«+y = LH+L/1-/, n>2 as the standard definitions for The Fibonacci and Lucas sequences, these 
definitions should not be a part of future papers. However, the notations must be used. One to three 
complete A.M.S. classification numbers must be given directly after references or on the bottom of the 
last page. Papers not satisfying all of these criteria will be returned. See the worldwide web page at: 

http://www.sdstate.edu/~wcsc/http/fibhome.html. 

Three copies of the manuscript should be submitted to: CURTIS COOPER, DEPARTMENT OF 
MATHEMATICS AND COMPUTER SCIENCE, CENTRAL MISSOURI STATE UNIVERSITY, 
WARRENSBURG, MO 64093-5045. 

Authors are encouraged to keep a copy of their manuscripts for their own files as protection against 
loss. The editor will give immediate acknowledgment of all manuscripts received. 

The journal will now accept articles via electronic services. However, electronic manuscripts must be 
submitted using the typesetting mathematical wordprocessor AMS-TeX. Submitting manuscripts using 
AMS-TeX will speed up the refereeing process. AMS-TeX can be downloaded from the internet via the 
homepage of the American Mathematical Society. 

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION 
Address all subscription correspondence, including notification of address change, to: PATTY 

SOLSAA, SUBSCRIPTIONS MANAGER, THE FIBONACCI ASSOCIATION, P.O. BOX 320, 
AURORA, SD 57002-0320. E-mail: solsaap@itctel.com. 

Requests for reprint permission should be directed to the editor. However, general permission is 
granted to members of The Fibonacci Association for noncommercial reproduction of a limited quantity 
of individual articles (in whole or in part) provided complete reference is made to the source. 

Annual domestic Fibonacci Association membership dues, which include a subscription to THE 
FIBONACCI QUARTERLY, are $40 for Regular Membership, $50 for Library, $50 for Sustaining 
Membership, and $80 for Institutional Membership; foreign rates, which are based on international 
mailing rates, are somewhat higher than domestic rates; please write for details. THE FIBONACCI 
QUARTERLY is published each February, May, August and November. 

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard copy for-
mat from PROQUEST INFORMATION & LEARNING, 300 NORTH ZEEB ROAD, P.O. BOX 1346, 
ANN ARBOR, MI 48106-1346. Reprints can also be purchased from PROQUEST at the same address. 

©2002 by 
The Fibonacci Association 

All rights reserved, including rights to this journal 
issue as a whole and, except where otherwise noted, 

rights to each individual contribution. 



Hie Wlb&naccl Quarterly 
Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) 

and Br. Alfred Brousseau (1907-1988) 

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 
DEVOTED TO THE STUDY OF INTEGERS WITH SPECIAL PROPERTIES 

EDITOR 
PROFESSOR CURTIS COOPER, Department of Mathematics and Computer Science, Central Missouri 
State University, Warrensburg, MO 64093-5045 e-mail: cnc8851@cmsu2.cmsu.edu 

EDITORIAL BOARD 
DAVE) M. BRESSOUD, Macalester College, St. Paul, MN 55105-1899 
JOHN BURKE, Gonzaga University, Spokane, WA 99258-0001 
BART GODDARD, East Texas State University, Commerce, TX 75429-3011 
HENRY W. GOULD, West Virginia University, Morgantown, WV 26506-0001 
HEIKO HARBORTH, Tech. Univ. Carolo Wilhelmina, Braunschweig, Germany 
A.F. HORADAM, University of New England, Armidale, N.S.W. 2351, Australia 
STEVE LIGH, Southeastern Louisiana University, Hammond, LA 70402 
FL.ORIAN LUCA, Instituto de Mathematicas de la UNAM, Morelia, Michoacan, Mexico 
RICHARD MOLLIN, University of Calgary, Calgary T2N 1N4, Alberta, Canada 
GARY L. MULLEN, The Pennsylvania State University, University Park, PA 16802-6401 
HARALD G. NTEDERREITER, National University of Singapore, Singapore 117543, Republic of Singapore 
SAMIH OB AID, San Jose State University, San Jose, CA 95192-0103 
ANDREAS PHILIPPOU, University of Patras, 26100 Patras, Greece 
NEVILLE ROBBINS, San Francisco State University, San Francisco, CA 94132-1722 
DONALD W. ROBINSON, Brigham Young University, Provo, UT 84602-6539 
LAWRENCE SOMER, Catholic University of America, Washington, D.C. 20064-0001 
M.N.S. SWAMY, Concordia University, Montreal H3G 1M8, Quebec, Canada 
ROBEET F. TICHY, Technical University, Graz, Austria 
ANNE LUDINGTON YOUNG, Loyola College in Maryland, Baltimore, MD 21210-2699 

BOARD OF DIRECTORS—THE FIBONACCI ASSOCIATION 
G.L. ALEXANDERSON, Emeritus 
Santa Clara University, Santa Clara, CA 95053-0001 
CALVIN T. LONG, Emeritus 
Northern Arizona University, Flagstaff, AZ 86011 
FRED T. HOWARD, President 
Wake Forest University, Winston-Salem, NC 27109 
PETER G. ANDERSON, Treasurer 
Rochester Institute of Technology, Rochester, NY 14623-5608 
GERALD E. BERGUM 
South Dakota State University, Brookings, SD 57007-1596 
KARL DILCHER 
Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5 
ANDREW GRANVILLE 
University of Georgia, Athens, GA 30601-3024 
HELEN GRUNDMAN 
Bryn Mawr College, Bryn Mawr, PA 19101-2899 
MARJORIE JOHNSON, Secretary 
665 Fairlane Avenue, Santa Clara, CA 95051 
CLARK KIMBERLING 
University of Evansville, Evansville, IN 47722-0001 
JEFF LAGARIAS 
AT&T Labs-Research, Florham Park, NJ 07932-0971 
WILLIAM WEBB, Vice-President 
Washington State University, Pullman, WA 99164-3113 

Fibonacci Association Web Page Address: http://taww.MSCS.dal.ca/Fibonacci/ 



THE BURGSTAHLER COINCIDENCE 

Join Greene 
Department of Mathematics and Statistics, University of Minnesota, Duliith, MN 55812 

(Submitted March 2000-Final Revision July 2000) 

1. INTRODUCTION 

Let tan x = aQ + axx+a2x2 + a3x3 + • • •. We know, of course, that a2n = 0 for al! n. Define a 
sequence An via 

We have the following table: 

n 

k 
1 

1 

2 

1 

3 

2 

4 

3 

5 

5 

6 

8 

7 

13-2-
1 J 45 

8 

21-1-

9 

34I6Z 

10 

5 6 f 

At the 1999 MAA North Central Section Summer Seminar Sylvan Burgstahler posed the 
following question. 
Question 1: Why is An approximately equal to a Fibonacci number? 

In discussing this problem with the author, Dr. Burgstahler posed two more questions. 

Question 2: If a7 is changed from •— to j™ = ~ j , then A7 becomes 13 and A% becomes 21, but 
the new A9 is 33|™ rather than 34. If we then change a9 from •—§5- to -J™ ~-™, • A9 and Am 

change to the appropriate Fibonacci numbers, but An remains incorrect. Does this pattern of 
obtaining two additional Fibonacci numbers for each correction persist? 

More generally, 
Question 3: Suppose that f(x) = btx-¥h3x3 +b5x5 + • • • is such that 

2k<n V / 2k<n 

what can be said about the ¥$, and what can be said about / (*)? 

In this paper we attempt to answer these questions. The first is straightforward, but the 
second and third are more interesting. The structure of this paper is as follows. In Section 2 we 
derive a formula for An that explains its proximity to the Fibonacci numbers. In Section 3 we 
recast this problem as a summation inversion problem to answer Question 2 and part of Question 
3. We address the rest of Question 3 in Section 4. Throughout this paper we use the convention 
that F0 = 0, Ft = l, a is the golden ratio, 

a = _ _ and fi = ——. 

We will make free use of the usual facts, e.g., a+fi = l9 afi = -l. 
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2. A FORMULA FOR THE NUMBERS AH 

It Is well known ([1], formula 4, p. 51) that the coefficients of tanx can be written explicitly 
ie terms of Bernoulli numbers: 

where B2n Is the In^ Bernoulli number. The Bernoulli numbers are defined by the generating 
function ([1], formula 1, p. 35) 

°o n 

^rS4^'' (2-2) 
and have values 1, - j , ~, 0, - ^ , 0, ^-, 0, —^, 0, -g|, ... . They satisfy many identities including 
the recurrence ([1], formula 18, p. 38) 

and series formulas 

These last two formulas can be found in most books of mathematical tables. Alternatively, (2.3) 
can be found in [1] (formula 22, p. 38) or in [2] (Vol. II, formula 2.60, p. 60). It is easy to derive 
(2.4) from (2.3). 

Using (2.1) and (2.4) with (1.1), we have 

- Y (n\ nk22k+2(22k+l-i) n t 2(2£ + 2)! ( 1 1 
~2k<nV-k) (2*+ 2)1 (22k+2-l)x2k+2{ 32k+2 +52k+2 

so 

^ ~ ** 2fe, 5 w (y+1)2**2*2* • (2-5) 

Now consider the function 

2Jfc<n V / 
It is easy to see that 

/ ^ ) = ( 1 + X)" + ( 1 - X )
2 " - ( 1 + ( - 1 ) " K . (2.7) 
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Interchanging the order of summation in (2.5), we have 

^ J i /o ; , i\2 Jn xiP>{2j + TfJ\{2j + \)x)' 
or 

4 - 4 £ ^ ^ftQj + Xf (2/ + 1K i + ^ ^ _ r + f i 2 
(2j + l)/r 

-(! + (-!)-) (2./ + 1)* 

For example, 

1 _ ^ 2 

00 . 

**£S(2./ + 1): 
i + ^ A ^ l + ( i - 2 

^ {2j + \)n) \ (2j + \)n 

;r2l 32 52 J ^ 8 
and 

4 . = 4 i ^ t?%>(2j + Vf 
1 + (2y + l)^ + 1 -(27+ 1)^; l(2j' + l)«-

*2£0(2;+i)2 • 
With formula (2.8) for 4> the main term is where j = 0. This gives 

A = - 1 i+rT+fi-^T-o+(-i)n)(fJ ;r /r •*BJ-
For example, letting 

consider the expanded table 
o*BJ-

Finally, 

whereas 

(2.8) 

^ 
F» 
A 
c„ 

l 
l 
I 

.66 

2 
1 
1 

1.09 

3 
2 
2 
1.8 

4 
3 
3 

2.91 

5 
5 
5 

4.76 

6 
8 
8 

7.79 

7 
13 

13.04 
12.75 

8 
21 

21.18 
20.86 

9 
34 

34.53 
34.14 

10 
55 

56.32 
55.88 

K = jz(<*"-fi") = ̂ ( ^ J =.447(1.618)", 

4 = - i f 1 + - Y =.405(1.637)". 

Thus, 4*/^w = .906(1.0115)w. Hence, for small n9 4 =K> although the A's grow exponentially 
faster than Fn in the long run. 
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3. THE BURGSTAHLER PROBLEM AS AN INVERSION PROBLEM 

The real problem considered in this paper is the following: Find the sequence 62n+1 given that 

2k<n V ' 
_ u2k+\-

2k<ns 

This can be cast as a sum inversion problem: Given a known sequence {an}„=0> suppose a new 
sequence is defined by 

k 

for some given set of constants c^ky what can be said about the Vs in terms of the rfs? It must be 
pointed out that such a sequence of b'$ need not always exist. For example, if we attempt to 
define a sequence b2n+l by 

we find that there is no solution: Fl = bh F2 =bl + b3, F3 = ht-¥3b3 is an inconsistent system of 
three equations and two unknowns. Similarly, if we attempt to solve the system 

n=^[2k)b*^ 
2k<n V ' 

rather than the given one, we obtain l = bh 2 = bh and again there is no solution. In order to 
even ask Question 3 in the Introduction, we need 

2k<nx- / 
®2k+i 

to define a consistent system. In fact, as we will see, a proof that this system is consistent will 
give an affirmative answer to Question 2. 

Here is a standard technique (see [2], Vol. I, pp. 437, 438, or [3], formula 2.1.2, p. 28) for 
solving a class of inversion problems: Suppose that 

k 

where cl%k depends on only n-k9 say cn^k = cn_k. In this case an is a convolution of b„ and c„. 
Thus, passing to generating functions, with 

A(x) = ^a„x", B(x) = ftbnx", C(*) = i>„x", 
n-Q «=0 w=0 

we have A(x) = B(x)C(x). Hence, B(x) = C(x)-lA(x). 
We use this technique to solve the inversion problem 

n-\r \ 
(3.1) 

k=0s 

This expression only makes sense for n> 1; we extend it by setting a0 = 0. Dividing each side by 
n\ gives 
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"-1 i h 
kV n\ £o(»-*) ! 

Here, the n -1 in the upper limit introduces a complication. The cn in the convolution is 

[0, « = 0, 
C"{i, n>X. 

In this case, C(x) = e* - 1. Using exponential generating functions for an and iw, 

so 

Since A(0) = 0, we can write this as 

B(x) = -^—A(x). (3.2) 
e - 1 

2?(x) = - J - i . 4 ( x ) . 
r - l x 

Thus, the 68s will be a convolution of Bernoulli numbers with the afs. In particular, we have 

Theorem 3J: Suppose that sequences {aj and {hj are defined by 

Then 
4n~k+l• ^IK^i^-^K"*1)^ 

We next consider the specific case where an = Fn. In this case, A(x), the exponential gen-
erating function for the Fibonacci numbers is 

A(x) = -j-(eax-efix). 

Thus, we have 

e x - l V 5 V5 sinhx/2 
Since B(x) is an even fijnction, all the odd terms are zero. 

Theorem 3.2: If the sequence {cj is defined by 

then C2n+1 = 0 for all n. Consequently, 

^=l(iW (3-4) 
Moreover, 
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7k<n V / 2k<n 

has as its unique solution, xn = c^ for all n. 

Proof: The remarks preceding the theorem show that c2n+l = 0 for all n, which gives us 
(3.4). As a consequence, we know that the system in (3.5) has a solution of the form xn = c2n. 
That this is the only solution follows by induction on n, using 

/^ i =
2 tL(22*1) j % =S(22*1K 

or 

Corollary 3.3: The two systems of equations 

and 
F2n+2 

each have the same solution x„ = c2n for all n. 

Proof: Again, a solution xn = c2n exists to each of these systems and, by induction, each has 
a unique solution. 

Dr. Burgstahler's numbers b2n+l are now just c2n above. Combining Theorems 3.1 and 3.2, 
we have 

Theorem 3.4: The system of equations 

Fn= E(2i)*2*+i 
2k<ns 

is consistent and has a unique solution 
In 

\ Lfi-f-1 1 D 
r2n-k+l-^^^tffir^2' 

We are now in a position to answer Dr. Burgstahler's second question: as coefficients in tanx 
are changed one by one to the b2n+h each change corrects two terms to Fibonacci numbers. This 
is because of Corollary 3.3, which indicates that both F2n+t and F2n+2 can be expressed as sums 
involving,^, ft3, ..., b2n+l. 

4. CONCLUDING MEMAMKS 

We have not yet given a complete answer to Question 3. While we have given a formula 
for the terms of the sequence {b2nU}, we have not said anything about the function f(x) = bjx + 
b3x2 + b5xb + °-. 
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Theorem 4.1: The power series Z*=0 *2«+ix2w+i ^a s a radius of convergence of 0. 
Sketch of Proof: Suppose, by way of contradiction, that this is not the case. That is, sup-

pose that Z^=o^2n+ix2n+l converges to a function f(x), at least for \x\ <C for some constant 
C > 0. Then it may be shown that f(x) satisfies the functional equation 

in some neighborhood of the origin. Since 1 + x - x 2 = 0 at x = a, x = fi, this region must be a 
subset of the interval (/?, a). However, given a function/satisfying (4.1), if x = a is a pole for/, 
then so is -j™ = a or x = -^. Iterating this,/has a pole at each of the values x = j ^ 9 if it has a 
pole at a. In particular, for a = fi, this gives an increasing sequence of poles with 0 as its limit. 
As no convergent power series about the origin can have this property, we have a contradiction. 

Thus, the first part of Question 3 was slightly naive—there was no guarantee that such a 
function / ( x ) even existed; in fact, one does not. However, it was only by following the gener-
ating function approach above, and noting the problem of the poles that the author discovered this 
fact. 

One may ask about an exponential generating function for the sequence {b2n+l} rather than 
the ordinary generating function, of course. As a consequence of formula (3.3), this exponential 
generating function is 

Jo V5(e
f-i) Jo V5sinhf/2 

The integral is needed to correct the index from <̂ ,n to b2n+l. 
It is reasonable to ask when the system of equations 

2*<*A ' 
(4.2) 

is consistent. We have the following result. 

Theorem 4.2: The system in (4.2) is consistent if and only if the solution to the system 

~ ' " > * (4.3) 

satisfies the condition j 2 w + 1 = 0 for all n. In this case, the solution to (4.2) is given by xn = y2n for 
all 7t. 

Proof: If the solution to (4.3) satisfies the condition that y2n+l = 0 for all n9 then we obtain 
existence and uniqueness for solutions to (4.2) in exactly the same way as in Theorem 3.2. For 
the other direction, we assume that (4.2) has a solution and proceed in induction on n to show 
that in the solution to (4.3) all y2n+x are 0 and that y2n = xn for all n. To begin the induction, the 
equations ax = x0 and a2 = XQ show that to be consistent, we need at=a2. In this case, yQ = al9 

Jo + 2yi = #2 giy e s y\ = 0* Moreover, since x0 = ax, we have that x0 = y0. 
So, by way of induction, assume that, for 0 < k < n - 1 , y2M = 0 and xk - y2k. We have 
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2k<2n+l ^ ' k=Q 
and 

v f 2 « + A v ^ w + A a2nu = L{ 2k K* = £ ( 2^ J^fc-

Since y2k = % for al! £ < w, comparing these two expressions gives that y2n = xn. Now 

V [2n + 2] _<sr(2n + 2\ 
a2n+i- z- i 2k rk~M ik n 

2k<2n+2^ s k=Q\ / 
and 

«2»+2 - 2f(2nk%=if2*2)**+(2"+2)^+1 
force j 2 w + 1 to be 0. This completes the proof. 

We may now use generating function techniques to give more information. 

Corollary 43: The system in (4.2) is consistent if and only if the exponential generating function 
A(x) for {an} satisfies the functional equation 

A(x) = -exA(-x). (4.4) 

Proof: We may solve system (3.1) rather than (4.2). By formula (3.2), we have the relation 

where B(x) is the exponential generating function for the yn. By the previous theorem, B(x) 
must be an even function of x. Hence, 

1 A(rx) = -±-A(x), 
e~x-l 

from which the functional equation follows. 
The functional equation (4.4) does not place too heavy a restriction on sequences {an}. For 

example, if f(x) is any odd function, then -^/(x) will satisfy equation (4.4). We conclude with 
the following result. 

Theorem 4.4: If the sequence {an} satisfies a recurrence relation of the type an =ayi_l + can_2, 
where c is an arbitrary constant and a0 = 0, then system (4.2) is consistent. 

Proof: The case where c = 0 is trivial; the solution to the recurrence relation being just the 0 
sequence. Another special case is c = ~ , in which case one may check that 

an=n2~\ A(x) = ̂ ex/\ and B(x) = -
2 s x / 2e*-l 

In the cases where c & 0, ~ , any solution satisfying a0 - 0 will be of the form an = C(un-vn), 
where C is. a constant, and u + v = 1 (u and v being the solutions to x2 - x - c = 0). In this case, 
A(x) = C(eux-evx),so 
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-exA(-x) = -Cex(e~^ - iTw) = C(e(1~v)x - el~u)x) = C(e^ - era) = 4(x), 

so A(x) satisfies the required functional equation, completing the proof. 

As a very easy example, if c = 2, one may check that an - 2n ~{-tf produces a consistent 
system for (4.2). In this case, 

f 0, n odd, 
ba = 3 and b„ =« 

[2, weven?«>0. 
That this works can be independently checked using formulas (2.6) and (2.7). 
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1. INTRODUCTION 

Matrix methods are a major tool in solving many problems stemming from linear recurrence 
relations. A matrix version of a linear recurrence relation on the Fibonacci sequence is well 
known as 

Fn-l 
, F n . 

We let 

[0 1] 
Li iJ 

nj0 l ]_[0 Fx 
L1 1J — L ^ F2 

thee we can easily establish the following interesting property of Q by mathematical induction. 

Qn = Fn Fn+l. 

From the equation Qn+lQn = Q2n+\ we get 
Fn+2 Fn+l 

/ n + 1 Af . 

Fn+1 F. F2n+2 F2n+l 
F2n+l F2n 

3 F„ i v j 
which, upon tracing through the multiplication, yields an identity for each Fibonacci number on 
the right-hand side. For example, we have the elegant formula, 

F?+l + F*=F2n+l. (1) 

The sum of the squares of the Irst n Fibonacci numbers is almost as famous as the formula for the 
sum of the first n terms: 

F? + F? + "-+F2 -FF ln+l' 

In particular, in [1], the authors gave several basic Fibonacci identities. For example, 

F& +F2F3+F3F4 + -+F„_1F„ = F™ +Ff^" * • 

Now, we define a new matrix. The n x n Fibonacci matrix <Fn = [/•,] is defined as 

\F,_J+U i-j+ 1*0, 

(2) 

(3) 

»„ = [/*] = 0, i-j + l<0. 
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For example, 

95 = 

1 
1 
2 
3 
5 

0 
1 
1 
2 
3 

0 
0 
1 
1 
2 

0 
0 
0 
1 
1 

0 
0 
0 
0 
1 

and the first column of SF5 is the vector (1,1,2,3,5)r„ Thus, several interesting facts can be found 
from the matrix 3^. 

The set of all n-square matrices is denoted by Mn. Any matrix B sMn of the form B - A*A, 
AeMn, may be written as B = UT9 where L eMn is a lower triangular matrix with nonnegative 
diagonal entries. This factorization is unique if A is nonsingular. This is called the Gholesky fac-
torization of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular 
lower triangular matrix L GM„ with positive diagonal entries such that B = LIT. If B is a real 
matrix, L may be taken to be real. 

A matrix A e Mn of the form 

A = 
"4i 

o 
0 

^22 

0 * A * . 

in which Aii sMnn i = 1,2,..., k, and E^flj = n, is called Mock diagonal Notationally, such a 
matrix is often indicated as A = An ® A^ © • • • ® 4at or? m o r e briefly, ® Zf=i 4*; this is called the 
direct sum of the matrices An,..., 4t&-

2. FACTORIZATIONS 

In [2], the authors gave the Cholesky factorization of the Pascal matrix. In this section we 
consider the construction and factorization of our Fibonacci matrix of order n by using the (0,1)-
matrix, where a matrix is said to be a (0,1)-matrix if each of its entries is either 0 or 1. 

Let /„ be the identity matrix of order n. Further, we define the n x n matrices Sn9 9n, and 
Gkby 

S0 = 
"l 0 0" 
1 1 0 
1 0 1 

, S-! = 
" 1 0 0] 
0 1 0 
0 1 ij 

and Sk=So®Ik, k = \%...9 9j, = [ l ] e 9 U G^In, G2 = In_3i 
In_k ® Sk_3. Then we have the following lemma. 

S_l9 and, for k>39 Gk = 

Lemma 2.1: ^ ^ ~ 3 - ^ ^ - 3 ' 

Proof: For k = 3, we have SF3 $0 = 2F3. Let k > 3. From the definition of the matrix product 
and the familiar Fibonacci sequence, the conclusion follows. D 

From the definition of Gk9 we know that Gn = Sn„39 Gl = In9 and In_3 ® S_v The following 
theorem is an immediate consequence of Lemma 2.1. 
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Theorem 2.2; The Fibonacci matrix \ can be factored by the Gk*$ as follows: ¥fn = GtG2 °°°Gn. 
For example, 

9?s = GtG2G3G4G5 = I5(I2 ® S^XI2 © SQ)(m © TO 
1 0 0 0 0] 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 ij 

1 0 0 
0 1 0 
0 0 1 
0 0 0 
0 0 0 

0 
0 
0 
1 
1 

oil 
0 1 
0 1 
0 

IJ 

1 0 
0 1 
0 0 
0 0 
0 0 

0 
0 
1 
1 
1 

0 Oil 
0 0 1 
0 0 
1 0 
0 l j 

1 
0 
0 
0 
0 

0 
1 
1 
1 
0 

0 0 Ol 
0 0 0 
1 0 0 
0 1 0 
0 0 l j 

1 
1 
1 
0 
0 

0 0 
1 0 
0 1 
0 0 
0 0 

0 
0 
0 
1 
0 

0 
0 
0 
0 
1 

1 0 0 0 0 
1 1 0 0 0 
2 1 1 0 0 
3 2 1 1 0 
5 3 2 1 1 

Now we consider another factorization of 3>„. The n x n matrix C„ = [Cy] is defined as 
~FX 0 ••• 

' 

7 = 1, 
i = j , i.e., C„ = 
otherwise, 

F2 1 

Fn 0 1 

The next theorem follows by a simple calculation. 

Theorem 2.3: For n > 2, 9n = Q ^ © C„_X){I2 © C„_2) - (I„_2 © C2). 

Also, we can easily find the inverse of the Fibonacci matrix 9n. We know that 

ST' = 
1 0 Ol 

-1 1 0 
-1 0 1 , s:l = \ 

1 0 0 
0 1 0 
0 -1 1 

, and ^ = V © 4 -

Define Hk = G^1. Then 

H\ = Gf = I„, H2 = G2 = 7„_3 © SZ1 = I„_2 

Also, we know that 

1 0 
-1 1 and H„ = S„l-n un—3 • 

c_1 = 
Ft 0 ••• 0 

-F2 1 

-K 0 
and (7 t© CU)-1 = / , © < £ , . 

So the foUowing corollary holds. 

Corollary 2.4: 9£» = G^Gfc!, -G^G? = HJl^ -H^ = (7„_2 © Q" 1 - (7, © C^C?. 

From Corollary 2.4, we have 

9C 

1 
-1 
-1 
0 

0 
1 

-1 
-1 

0 
0 
1 

-1 

0 • 
0 • 
0 • 
1 • 

•• 0 
•• 0 
•• 0 
•• 0 

0 - 1 - 1 1 

(4) 
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Now we define a symmetric Fibonacci matrix ®Ln = [qfj] as, for i, j = 1,2,..., n, 

% q* [qu-2+%j-i> i + ^ h 

where qXQ = 0. Then we have qXj = qjX = F} and q2j = qj2 = FJ+l. For example, 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 

2 
3 
6 
9 
15 
24 
39 
63 
102 
165 

3 
5 
9 
15 
24 
39 
63 
102 
165 
267 

5 
8 
15 
24 
40 
64 
104 
168 
272 
440 

8 
13 
24 
39 
64 
104 
168 
272 
440 
712 

13 
21 
39 
63 
104 
168 
273 
441 
714 
1155 

21 
34 
63 
102 
168 
272 
441 
714 
1155 
1869 

34 
55 
102 
165 
272 
440 
714 
1155 
1879 
3025 

55 
89 
165 
267 
440 
712 
1155 
1869 
3025 
4895 

From the definition of %, we derive the following lemma. 

Lemma 2.5: For j > 3, q3j = F4(Fj_3 + Fj„2F3). 

Proof: We know that qX3 = Fx
2 + F2

2 +F3
2 = F3F4; hence, q^3 = F4F3 = F4(FQ + FXF3) for 

F0 = 0. By induction, q3j = F4(Fj_3 + Fj_2F3). • 

We know that q3A = qh3 = F3 and qX2 = #2,3 = F*- ^so w e s e e that q4j = qli4> q4f2 = q2A, 
and q4 3 = q3i4. By induction, we have the following lemma. 

Lemma 2.6: For j > 4, q4J = F4(Fj_4 + Fj_4F3 + Fj_3F5). 

From Lemmas 2.5 and 2.6, we know q5h $5j2, q$^ and g5j4. From these facts and the defi-
nition of %n, we have the following lemma. 

Lemma 2.7: For j > 5, q5J = F,._5F4(1+F3 + F5) + F ^ ^ ^ . 

Proof: Since ^ 5 = F5F6 we have, by induction, qSj = i^-_5i^(l + i^ -f- J^) + Fj_4F5F6. D 

From the definition of 2,„ together with Lemmas 2.5, 2.6, and 2.7, we have the following 
lemma by induction on i. 

Lemma2.8: For j>i>6, 

% = * } - A 0 + ^ +F5) + FJ_iF5F6 + Fj_iF6F7 + • • • + F ^ / ? + F,_/+1J^+1. 

Now we have the following theorem. 

Theorem 2.9: For w > 1 a positive integer, i f ^ . ! '-H2HX%=9^ and the Cholesky factoriza-
tion of aw is given by SLn = 9n9f, 

Proof: By Corollary 2.4, fl^^ • • • H2HX = 9;\ So, if we have 9~l\ = 9T
n, then the theo-

rem holds. 
Let X = [Xy] = 9~l%n. Then, by (4), we have the following: 
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Xij = *}-!, 
if 1 = 1, 
if i = 2, 

[~%~2t j ~ %-i, j + %• otherwise. 

Now we consider the case / > 3 . Since 2,w is a symmetric matrix, -qt-2,j ~cii-ij +% ~ 
~~9j, i-2 ~~ ?j, M + ?jt • Hence, by the definition of \ , xtJ - 0 for j +1 < *. So, we will prove that 
-%-2j-%-ij+%j =Fj-i+i for j * i. 

In the case in which i < 5, we have xfJ = î _z-+i by Lemmas 2.5, 2.4, and 2.7. 
Now suppose that j>i>6. Then, by Lemma 2.8, we have 

Xij = ~%-2, j ~~ Qi-l J + %j 

= (FH - FH+l - FH+2)F4(l + F3 + F5) + (FH - F,_,+1 - F^F.F, 
+ ••• + (Fj_, -Fj_M - Fj_i+2)Ft_3Ft_2 + (Fj_t - Ff_i+l - F;_,+3)i^_2i^_1 

+ (FM - FMJA)F,_yFt + FH^,FM. 

Since FJ_i-FJ_i+l-Fj_i+2 = -2FJ_i+1, FJ_t-FJ^x-FJ_i+3 = -3FJ^+l, and Fj_i-Fj_i+2 = -FJ_i+l, 
we have 

Since F4 = 3, using (3) we have 

Xg = -6-2i^-H + yo-O-i-1 _ m _ ^ l-F^-J^+F^ +i Fj-i+i-

Since Fr+1 = Fj+F^ and by (1) we have 

*y = 0 " 2F/_1F/_2 - F2i_3 - %_•& + F,FM)Fj^+i 
= (l-2Fi_1Fi_2-F2i_3 + F?)FJ_i+1 

= (1 - i f t -Fl2 -IF^F^ +Ft
2)FJ_i+l 

= (l-(Fi_l+Fi_1f+F?)FJ_i+1 

= (l-F/
2+F/

2)Fy_/+1 = F,_,.+1. 

Therefore, &~l2L„ = ®l, i.e., the Cholesky factorization of &„ is given by &„ = 9n 9T
n . D 

In particular, since &;1 = (S^)""1^1 = (9? )T&~\ we have 

a-•l _ 

3 
0 
-1 
0 

0 
0 
0 

0 
3 
0 
-1 

0 
0 
0 

-1 
0 
3 
0 

0 
0 
0 

0 •• 
-1 •• 
0 •• 
3 '• 

0 •• 
0 •• 
0 •• 

• 3 
• 0 
• -1 

0 
2 
-1 

0 
0 
0 
0 

-1 
-1 
1 

(5) 

From Theorem 2.9, we have the following corollary. 
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Corollary 2.10: If k is an odd number, then 

[ ^ A K * - D if «is even. 

If A: is an even number, then 

te-^-i) if ^ is odd, 
[^A-<ifc-i)-F* if^ is even. 

For the case when we multiply the Ith row of 9n and the i* column of 3^ , we have the 
famous formula (2). Also, formula (2) is the case when k = 0 in Corollary 2.10. 

3, EIGENVALUES OF 1^ 

In this section, we consider the eigenvalues of 2,w. 
Let 2 = {iL = (xhx2,...,xn)eRn:xl>x2>-->xn}. For x , y e S , x-<y if Z f^ . ^Zf.^,, 

A = 1,2,..., n and if * = n, then the equality holds. When x < y, x is said to be majorized by y, or 
y is said to majorize x. The condition for majorization can be rewritten as follows: for x, y e 2), 
x -< y if Xf=0

 xn-t ^ Sf=o JV-*, k = 0,1,..., n - 2, and if k - n - 1 , then equality holds. 
The following is an interesting simple fact: 

YT- x (x,..., x) •< (x1?..., xn), where x = ~Jt^-

More interesting facts about majorizations can be found in [4]. 
An nxn matrix P = [/fy] is doubly stochastic if ptj>0 for i, j = 1,2,...,/i, '£JLi/fy = 1, 

j = 1,2,..., /i, and Z"=i /fy = 1, i = 1,2,..., n. In 1929, Hardy, Littlewood, and Polya proved that a 
necessary and sufficient condition that x -< y is that there exist a doubly stochastic matrix P such 
thatx = yP. 

We know both the eigenvalues and the main diagonal elements of a real symmetrix matrix are 
real numbers. The precise relationship between the main diagonal elements and the eigenvalues is 
given by the notion of majorization as follows: the vector of eigenvalues of a symmetrix matrix is 
majorized by the diagonal elements of the matrix. 

Note that det &n = 1 and det ®Ln = 1. Let Xl9 X2,..., Xn be the eigenvalues of \ . Since \ = 
9n <Pl and Zf=i F? = Fk+lFk9 the eigenvalues of % are all positive and 

(Fn+lFn> FnFn-h • • • > F2Fd < C*l> ^2> • • • > K)' 

In [1], we find the interesting combinatorial property, YZ=0(ri7) = Fn+l. So we have the 
following corollaries. 

Corollary 3.1: Let Xl9 X2,..., Xn be the eigenvalues of 2,w. Then 

feo(7))2"l if n is odd, 
Xt + X2 H \- Xn-\ 

teo(7))2 ifwiseven. 
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Proof: Since (Fn+lFn, FnFn_l,...,FzF1) -< (Xx, X2,..., Xn), and from Corollary 2.10, 

3 - H . u ^ M + i ) 2 - ^ if«isodd, J f c C r ) ) 2 - ! if»isodd, 
[ ( J ^ ) If n Is even, ( ^ 0 ( 7 ) ) 2 If n Is even. 

Corollary 3.2: Ifn is an odd number, then 

.1=0 

/ I - / 

If w Is an even number, then 

• 1 < nXx. 

M§C< J J ^ 
Proof: Let sn - Xx + X2 + • *• + Xn. Since 

^ • ^ — ^ H ( ^ A 2 — ^ » X 

we have Xn<^-<Xl. Therefore, the proof is complete. D 

From, equation (5), we have 

(3,3,...,3,2,1H 1 1 
KXn

 ? Xn_l
 ? ? Xt 

Thus, there exists a doubly stochastic matrix T = [tiJ] such that 

(3, 3,..., 3,2,1) = 1 1 
^n ^n-l ^ 1 

hi hi 
hi hi 

tnl tnl 

'In 
hn 

That is, we have -^tln +j^hn + -+i;^n =l and tln + t2n + ~>+tm = l. 

*i 

Xj_ 

(6) 

Lemma 3J: For each i - 1,2,..., n, tn^^ n~~^i' 
x 

Proof: Suppose that tn_{i_^n >^fj. Then 

In In nn # J _ j w _ j w _ j w _ j V 1 2 *• 

Since /1/f + t2n
 + '"+ tnn ~ 1 a n^ SLi^/ ™ w* ^ s yields a contradiction, so t ^ ^ n < -^. D 

From Lemma 3.3, we have 1 - (« -1) j-^_(/_1)5„ > 0. Let a = sn-(n-l). Therefore, we have 
the following theorem. 

Theorem 3.4: For (a, 1,1,..., 1) e % (a, 1,1,..., 1) < (21? 22,.. . , Xn). 

Proof: A necessary and sufficient condition that (a, 1,1,..., 1) -< (Xl912,..., X„) Is that there 
exist a doubly stochastic matrix P such that (a, 1,1,..., 1) = (Xl9 X2,..., Xn)P. 
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We define an n x n matrix P = [pfJ] as follows: 

P = 
Pll Pl2 '" Pl2 
Pi\ Pii *;° Pii 

\_Pnl Pnl "' Pnl\ 

where pi2=^~tn-(i-i%n asl£l Pa = ^~(n~^)Pn> ' = l,2,. . . , / i . Since J is doubly stochastic and 
Xt > 0 , # 2 > 0 , J = 1 ,2 , . . . , / I . By Lemma 3.3, ^ >0 , f = l,2,...,/f. Then 

A2+A2 + -+fl«2 = f L + 
f, nr\n 

1 2 
+ ...+ *1« _ i, 

#1 + (» - O^Z = 1 - (W - 1)^,2 + (« - *)#2 = 1 > 
and 

/711 + /?21 + - - + /7fll = l - ( « - l ) f l 2 + l - ( « - l ) / ? 2 2 + -.- + l - ( « - l ) p „ 2 

= n-«( /? i 2 + f t j + ••• + p r t ) + A 2 + f t 2 + ••' +P„2 = !• 

Thus, p is a doubly stochastic matrix. Furthermore, 

and 

= A1 + A2 + -+Al f-(/ i- l)(A,/i l 2+A2ft2 + -+Al lp l l 2) 
= l j + 22 + • • • + Xn - (n -1) = a. 

Thus, ( a J J ? . . . J ) = (A1 ?22 ?„. . ?2JP?so(a3l? l ? . . . ? l)-<(21 ?22 j . . . ?^). D 

From equation (6), we have the following lemma. 

Lemma 3.5: For k = 2,3, ...,/?, 2fc > 3 / ^ . 

/*wj£ From (6), for * > 2, 

1 + 1 +.. .+ 1 ^ l + 2 + 3 + .-.+3 = 3(*- l) . 
Al A2 Ak 

Thus, 
1 1 +4~+-+~J—\<3(k-l). 

Ak ^ A j A 2 Ak_x 

Therefore, for* = 2,3,..., n, Xk> 3 ^ . D 

Corollary 3.6: For i = l ,2 , . . . ,«-2 , 2^^ <(* + ! ) - 3 — ^ . In particular, a<2j , and ^ r n ^ 
A„<f 

Proof: If £ = 1, then. 2W + 2W-1 <2. By Lemma 3.5, we have Xn_x < 2 - j ~ ^ ? . Hence, by 
induction on n9 the proof is complete for k = 1,2,..., n - 2. In particular, by Theorem 3.4 and (6), 

<1 < i . D 3(w-l) - " » - 3 

210 [JUNE-JULY 



FACTORIZATIONS AND EIGENVALUES OF FIBONACCI AND SYMMETRIC FIBONACCI MATRICES 

Since det2^ = XlX2..,Xn = 1, A223„.82w = ̂ -3 we have A\ 1 >Xl.,,Xn_l = j - . Thus, 

1 >l 
f i \n~l 

A v , u iy 

' i T"1 i 
Therefore, 
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1. PRELIMINARIES 

Object of the Paper 
Basically, the purpose of this paper is to present data on convolution polynomials J^k\x) and 

jik\x) for Jacobsthal and Jacobsthal-Lucas polynomials Jn(x) and j„(x), respectively, and, more 
specifically, on the corresponding convolution numbers arising when x = l. 

Our information will roughly parallel and, therefore, should be compared with that offered for 
Pell and Pell-Lucas polynomials Pn(x) and Qn(x), respectively, in [7] and [8] in particular. 

Properties of Jn(x) and j„(x) may be found in [5] and [6, p. 138]. Originally J„(x) was 
investigated by the Norwegian mathematician Jacobsthal [9]. For ease of reference, it is thought 
desirable to reproduce a few essential features of Jn(x) and jn(x) in the next subsection. 

Background articles of relevance on convolutions which could be consulted with benefit are 
[1], [2], and [3]. But observe that in [3] the x has to be replaced by 2x for our J„(x). 

Convolution Arrays 
Convolution numbers, symbolized by Jj^(l) = J^k) and j*k\l) = fk\ where k represents the 

"order" of the convolution and n the sequence index, may be displayed in a convolution array 
(pattern). When k = 09 the ordinary Jacobsthal numbers jf® == Jn and the Jacobsthal-Lucas num-
bers j ^ 0 ) = j n are generated. 

Readers of [3, p. 401] will be aware that the w*-order convolution sequence for jffl appears 
there as columns of a matrix. As the convolution array for ffi does not seem to have been pre-
viously recorded, we shall disclose its details in Table 2. 

Mathematical Background 
Definitions 

JfHii*) = 4N-I(*) + 2xJ„(x), J0(x) = 0, Jx(x) = 1. (1.1) 
Jn+2(*) = Jn*l(x) + 2xf„(x)9 jQ(x) = 2, jx(x) =1 (1.2) 

For.0<«<10, Jn(x) and jn(x) are recorded in [6] in Tables 1 and 2, respectively, to which 
the reader is encouraged to refer. 

Special Cases 
x = l: Jacobsthal numbers /„(!) = Jn and Jacobsthal-Lucas numbers j„(l) = j n . 
x = ±: Jn(£j = Fn9 jn(j) = Ln (the /1th Fibonacci and Lucas numbers). 

It follows that Tables 1 and 2 in [6] with (1.1) and (1.2) thus generate the number sequences 
{JW(1)} = 0,1,1,3,5,11,21,43,..., (1.3) 

U(l)} = 2,1,5,7,17,31,65,127,.... (1.4) 
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Binet Forms 
From the characteristic equation A2 - A - 2x = 0 for both (1.1) and (1.2), we deduce the roots 

„ 1 + A Q 1-A „ cx 

so that 
a+p=\ afi = 2x, a - ^ = Vl + 8x=A. (1.6) 

Binei forms are thee 
./B(x) = ( a » - / H / A , (1-7) 

jn{x) = an+P". (1.8) 

Generating Functions 

X/„+ 1(x)J" = ( l - j - 2 r ) ; 2 r 1
> (1.9) 

CO 

Ei„+iW'Jw = a + 4xyXl-J-2xy2)-1. (1.10) 

An immediate consequence of (1.9) and (1.10) is 

Jw(x) = /w(x) + 4x^1(x)? (1.11) 

which is also quickly obtainable from (1.7) and (1.8). 
Jacobsthal convolution polynomials Jf^{x) are defined [see (4.9) and (4.9a)] from (1.9) by 

Z J&(x)y = 0 - y - 2xy2T(k+1)- (1.12) 

The corresponding Jacobsthal-Lucas convolution polynomials J^+i(x)j^ are defined in (5.7) 
and (5.7a) by means of (1.10). 

2. FIRST JACOBSTHAL CONVOLUTION POLYNOMIALS J$\x) 

Generating Function Definition 
00 

S^iC*)/ =(l-y-2xy2T2 (2.1) 
n=Q 

= f £ ^ + i W / ] by (1.9). (2.1a) 

Examples 
J?\x) = 1, JP(X) = 2, 4l)(x) = 3 + 4x, Jf\x) = 4 + \2x, 4»(x) = 5 + 24x + 12x2, 
«#>(*) = 6+4QX + 48*2, 41)(x) = 7 + 60x + 120x2+32x3,.... 

Special Cose (First Jacobsthal Convolution Numbers: x -1) 

{^1>(1)} = 1)2)7,16,41,94,219).... (2.3) 
Observe that this sequence of integers appears in the second column of the matrix in [3, 

p. 401]. 
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Recurrence Relations 
Immediately, from (1.9) and (2.1), we deduce the recurrence 

J$i(x) - 4H*) - 2xJ&(x) = J„+1(x). (2.4) 

By means of (2.4), the list of first convolution polynomials may be extended indefinitely. 
Partial differentiation with respect toy of both sides of (1.9) along with the equating of the 

coefficients of yn~l then yields, with (2.1), 

nJn+l(x) = Jil\x)+4xJJ,1}l(x). (2.5) 

Combine (2.4) with (2.5) to obtain the recurrence 

nJil(x) = (» + l)jJ1)(x) + 2^W + 2)J<?1(x). (2.6) 

Eliminate 4L\(x) from (2.4) and (2.5). Then 

(n + 2) Jn+l(x) = UiKx) - jW(x). (2.7) 

Add (2.5) to (2.7), whence 

(W + l)Jw+i(x) = J^1(x) + 2x8/«1(x). (2.8) 

Or, apply (2.9) below twice with reliance on (3.13), (3.12), and (1.2) in [6] and appeal to the 
(new) result, jn¥i(x) + 4xjn(x) = A2Jw+1(x) obtained from Binet forms (1.7) and (1.8) above. 

Other Main Properties 
Next, we are able to derive the revealing connective relation 

J < Q ( y ) = ^ i ( * ) + 4 ^ , ( * ) > ( 2 9 ) 

where A is given in (1.6). As a prelude to (2.9), we require the recursion 

njn+l(x) = (1-f 4x) j f (x) + 4x4i\(x) + 8x2J^2(x). (2.10) 

Establishing (2.10) merely asks us to differentiate (1.10) partially with respect to y, and then 
perform appropriate algebraic interpretations involving (2.1). Corresponding coefficients of yn~l 

are then equated. 

Ptoofsof(2.9): 
(a) Induction. The formula is verifiably valid for w = 1,2,3,4,5. Employing the induction 

method in conjunction with (2.4) leads us to the desired end. 
(b) Alternatively (cf. [8, p. 61, (4.7)]), algebraic manipulation in (2.1) gives 

V MM^ - a + ̂  + 4x>;-f8xV) + 4x(l-j;-2xy2) 
hrWy " (l^x)(l~y~2xyy 

= l ^ Z C ^ i W + ̂ x / ^ x ) ) ^ 1 by (1.9), (1.10), (2.10). 

Compare coefficients of yn and (2.9) ensues. 
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Observe that a Binet form may be deduced for Jjp(x) from (2.9) by means of (1.7) and (1.8). 
Worth noting in passing is that by combining.(1.1) and [6, (3.12)] we may express the numerator 
of the right-hand side of (2.9) neatly as (n + l)jn+l(x)-Jn+l(x). 

Explicit Combinatorial Form 
Theorem 1: 

41 }W= Z (V)("""r ~l)(2xY (c losedform)- C2-11) 
Proof (by Induction): Using (2.2), we readily verify-that the theorem is true for all « = 1, 2, 

3. Assume it is true for all n < TV", that is, 

Assumption: yg>(x)= £ ^ i ' ) ^ " ? ^ 2 * ) ' . (A> 

Then the right-hand side of (2.6) becomes 
N( J$(x)+2x4>_1(x)) + (4\x) + 4x4lt(x)) 

= Nfl(N-r)(N;r\2xy + N$t (N;r\2xY from (A), onsimplifying 
r=0 V ' r = 0 V / 

[f] 
= ^ I ( ^ - r + l ) p - r l ( 2 x ) ' - (B) 

= W&i(*), ( Q 
which must be the left-hand side of (2.6). 

Consequently, (B) and (C) with (A) show that (2.11) is true for n = N +1 and thus for all n. 
Hence, Theorem 1 is completely demonstrated. 

Remarks: Recourse is required in the proof to the use of 
(I) N even, N odd considered separately (for convenience), 

(U) Pascal's Formula, and 
(Hi) the combinatorial result (readily computable) 

( J f - r ^ - ^ - r ) ^ 1 ) ^ ^ } (2-ll«) 
Summation 

From (2.4) and [6, (3.7)], 

X J?\x) = ^ x ) " f r W + 1, (2.12) 

Expatnding the right-hand side of (2.1a), both sides having lower bound #i = 1, and equating 
coefficients, we arrive at 
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4Hx)- 2z[ijr(x)J„-r+l(x) "even, 

2 sU2iJ W ^ i W + J L . (*) » odd. 

Differentiation and Convolutions 
Let the prime (') represent partial differentiation with respect to x. Differentiate both sides 

of (1.9) with respect to x. Compare this with (2.1). Then, on equating coefficients of yn~l, we 
deduce the notably succinct connection 

2J^(x) = JUx). (2.14) 
But fn(x) = 2nJn_x(x) by [6, (3.21)]. Hence, the second derivative is 

m) = 4nJ%{x). (2.15) 

3. FIRST JACOBSTHAL-LUCAS CONVOLUTION POLYNOMIALS £\x) 

Generating Function Definition 

ILMM? =(l + 4xyf(l-y-2xy2r2 (3.1) 

S i r + i W / by (1.10). (3.1a) 
,r=0 ) 

w=0 
f co \ 2 

Vr=0 
J5xii#ffpfe.s; 

# ( * ) = !, ^1)(x) = 2 + 8x, # ( x ) = 3 + 20x + 16x2, # ( x ) = 4 + 36x + 64x2, 
ja)(x) = 5 + 56x + 156x2 + 64x3, £\x) = 6 + 80x + 3Q4x2 + 228x3,.... 

Special Case (First Jacobsthal-Lucas Convolution Numbers: x = 1) 

U(1)(l)} = 110,39,104,281,678,1627,.... (3.3) 

Recurrence Relations 
Immediately, from (2.1) and (3.1), we have 

j<P(x) = 4»(x) + *xJJ»l(x) + l(&J®2(x), (3.4) 

by means of which a list of convolution polynomials may be presented, in conjunction with (2.2), 
which may be checked against those already given in (3.2). 

Combining (3.4) and (2.10), we deduce that 
2A?/„+1W = 7<1)(X) + (1 + 8X)41)(X) (l + 8x = A2). (3.5) 

Equations (2.9) and (3.5) generate the pleasing connection 
jiHx) = njn+l(x)-4xJn(x), (3.6) 

which, with (1.11), may be cast in the form 
(it - l)jn+l(x) = £Kx) - Jn+l(x). (3.7) 

Alternatively, (3.6) may be demonstrated in the following way. 
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| ,«W,~> . ^ . - J ^ f f r ? by(3,) 
CO 

= (1 + 4xy)]TnJn+i(x)yn~l differentiating (1.9) w.r.t. y 

= I («^i Wy1+4*(n -1) y„(x))y, 

whence (3.6) emerges by (1.11). 

Other Main Properties 
Comparing the generating functions in (1.10) and (2.1), we calculate upon simplification that 

jn(x) = 4l\x) + (4x -1) J ^ ( x ) - 64*j£>2(x) - 8x2Jr
II_3(x). (3.8) 

Taken together, (2.9) and (3.6) produce 

4l\x)£Hx) = "2j"+l(x)~}6x2j2^) (A2 = 1 + 8x). (3.9) 
A 

Equation (3.6), in conjunction with (1.7) and (1.8), allows us to display jfp(x) in a Binet 
form. 

Furthermore, (2.9) and (3.6) yield 

A24Hx)+i\x) = 2njn+l(x) (3.10) 
and 

A2Jf(x)-7<1)(x) = 8xJ„(x). (3.11) 

Lastly, we append a result which is left as an exercise for the curiosity of the reader: 
(A2~l)j,(x) = A 2 ^ (3.12) 

where A 2 - l = 8x by(1.6). 

4. GENERAL JACOB8TBAL CONVOLUTION POLYNOMIALS /<*>(*) (* > 1) 

A. CASE k = 2 (Second Jacobsthal Convolution Polynomials) 

Generating Function Definition 

Z-Z^iWy =(l-y-2xy2T3 (4.1) 
w=0 

= [I^+iW/J- (4-la) 
Examples 

JP(X) = \ 42)(x) = 3, 42\x) = 6 + 6x, 42)(x) = 10 + 24x, J$2)(x) = 15 + 60x + 24x2, 
42)(x) = 21 + 120x + 120x2, Jf\x) = 28 + 210x + 360x2 +80x3,.... 

Special Case (Second Jacobsthal Convolution Numbers: x = 1) 

y f ( l ) } = 1,3,12,34,99,261,678,.... (4.3) 
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Observe that this sequence of numbers occurs in the third column of the matrix array in [3, 
p. 401]. 

Recurrence Relations 
Immediately, from (2.1) and (4.1) there comes 

J$i(x) - J?\*) - 2xJ%(.x) = J$i(x) (4-4) 
whereas (1.9) and (4.1) lead to 

/„£(*) - 2Jl\x) + (1 - 4x)jW(x)+4xjW2(x)+4x24%(x) = J„+l(x). (4.5) 

Differentiate both sides of (2.1) partially with respect to y, then equate coefficients of yn~l to 
obtain, by (4.1), 

nJil(x) = 2(42)(x) + 4xjf_>(x)). (4.6) 

Eliminate J$i(x) from (4.4) and (4.6). Hence, 

nJ^(x) = (n + 2)42 >(x) + 2x(/i + 4)J<!^). (4-7) 
Next, eliminate J^i(x) from (4.4) and (4.6). Accordingly, 

(n + 4) J « (x) = 2(2j£>(x) - Ji2\x)). (4.8) 

Not all results in Section 3 above (k = 1) extend readily to direct unit superscript increase on 
both sides of the equation [cf. (2.7), (4.8)]. 

B. CASE k General (kth Jacobsthal Convolution Polynomials) 

Generating Function Definition 

t,Jl&(x)? =(\-y-2xy2rW (4.9) 

( oo \k+l 

= IZ-/r+iW/J by (1.9). (4.9a) 
Examples 

Jj*>(x) = l, ^ ( x ) = ( * t 1 ) , 4k\x) = (k+
2

2y{kll)2x, 

Special Case (£* Jacobsthal Convolution Numbers: x = 1) 

{Jf\l)} = \, h + l, (* + l)(*±£), (k + m + 2)^iy.... (4.11) 

Explicit Combinatorial Form 
Theorem 2: r3=L, 

4^(x)=|(*+, ,; r-1)(, |-;-1)(2xy. (4.i2) 

(4.10) 
\2 , 
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Proof: Constructing the proof parallels the procedures employed in Theorem 1, where k = l. 
That is, apply (4.15), which will be proven independently below, and induction in tandem. 

Remarks: Corresponding to the combinatorial identity (2.11a) for Theorem 1, we require in the 
proof of Theorem 2, 

(4.12a) 

i.e., k is absorbed into the product and demerges as a factor. 
Finally, we have the sum 

N r^-'-'XVM^-^Xv) 
-A N + k-AfN-r 

(4.12b) 

Pascal's formula is needed in (4.12a) and (4.12b). The simplified form in (4.12b) relates to the 
expression for ^ ( x ) in (4.12). 

Knowledge of (4.12) now permits us to compute jf\x) for any k and n. In particular, 
jf){x) = 35 + 120x + 40x2. Refer also to (4.10). 

Recurrence Relations 
Appealing to (4.9) and (4.9) with k - 1 , we have the immediate consequence 

J^)-^n\x)-2xJ^(x) = •&(*)• (4-13) 
Partially differentiate both sides of (4.9) with respect to y. Considering coefficients of yn~l we 
then have, on replacing k by k - 1 , 

nJ<fc\x) = k(4k\x)+4xj£\{x)). (414) 

Combine (4.13) and (4.14) to obtain the recurrence 

nJ%{(x) = (n + k)4k >(x) + 2x(« + 2*) j£{(x). (4.15) 

Furthermore, from (4.13) and (4.14), we arrive at 

(n + 2k)J^x) = k(2jW(x)-4k\x)). (4.16) 

Results when k = 2 may now be checked against those specialized in (4. l)-(4.8). 

Convolution Array for J^ 
In Table 1 below, we exhibit the simplest numbers occurring in the Jacobsthal array for the 

convolution numbers J^. 
Convolution numbers for k = 1,2 and for small values of n are already publicized in (2.3), 

(4.3) and (3.3), (5.3). Applying the extremely useful formulas obtained (from the Cauchy convo-
lutions of a sequence with itself) by induction in [1, pp. 193-94], where the initial conditions (1.1), 
(1.2) are known, we may develop the array for J^ to our heart's desire. Or use Theorem 2 when 
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x = L Systematic reduction to n = l (boundary case) using (4.13) is a rewarding, if tedious, 
exercise. Reduction by (4.13) gives, for example, J^{x) = 10 + 24x in conformity with (4.2). 

TABLE 1. Convolution Array for /<*> (n = 1,2,..., 5) 

I f / * 

1 
2 
3 
4 
5 

0 

T~ 
i 
3 
5 
11 

1 

~T~ 
2 
7 
16 
41 

2 

~T~ 
3 
12 
34 
99 

3 • 

~1 ' 
4 • 
18 -
60 • 
195 • 

k 
~ 1 

(?) 
• m+2(*t") 
" (*S3M*?) 
•• (*r)+6(*r)+4r2

a) 

It should be noted that the formulas given in [1, pp. 193-94] relate to rows in the convolution 
array, whereas it is the columns that are generated in our approach, namely, one column for each 
convolution value of k. 

Be aware that the notation in [1, pp. 193-94] is different, namely, we have the correspon-
dence (subscripts in Rnk referring to rows and columns, respectively) 

Rnk<^4k-l\ (4.17) 

Formula (4.10) and [1, (1.6)] then both yield, for example, i?43 = Jf} = 34 (Table 1). 
Reverting briefly to [3, p. 401] we see that the abbreviated array for J^ is exposed in matrix 

form in which the first, second, third, ... columns of the matrix B2P are precisely our jf\ j£\ 
j(2\ ..., respectively. En passant, we remark that the columns of the matrix AJ* are exactly the 
Pell convolution numbers Pw

(0), Pw
(1), Pw

(2),... examined in [8]. 

5, GENERAL JACOBSTHAL-LUCAS CONVOLUTION 
POLYNOMIALS j<*\x) (k > 1) 

A, CASE k-2 (Second Jacobstfaal-Lucas Convolution Polynomials) 

Generating Function Definition 

£ . / $ (* ) / =(l + 4xyf[l-y-2xy2T3 

(°° V 
\r=0 J 

Examples 
j(2)(x) = 1, jf\x) = 3 +12*, J P ( X ) = 6 + 42* + 48x2, 
ji2)(x) = 10 + 96x + 216x2 + 64x3, j5

(2)(*) = 15 + 180x + 600x2 4-480*3, 

Special Case (Second Jacobsthal-Lucas Convolution Numbers: x = 1) 

{/<2)(1)} = 1,15,96,386,1275,.... 
Recurrence Relations 

Taken together, (1.10), (3.1), and (5.1) yield 
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M W = [tjUx)A[£j&(x)A (5.4) 
w=0 V«=0 Aw=0 / 

Comparing coefficients of yn, we deduce that 
«+i 

ti%(x) = Hmtil+2(x)- (5.5) 

Furthermore, from (4.1) and (5.1), we easily derive 
i2)(x) = 42\x) + UxJJftix) + 48x2 J<?2(x) + 64x342)

3(x). (5.6) 

B. CASE k General (tth Jacolistial-Liicas Convolution Polynomials) 
Generating Function Definition 

Z i S W / =(l + 4xyf+l[l-y-2^2T(k+l) (5.7) 

Examples 

rk + 2 
2 

Theorem 3: 
k+i 

(5.8) 
#>(x) = l, # ) (x) = (*J'1)(l + 4x), 

#)(x) = (* + 1)l^+2x(* + 1){2(* + 1) + l} + (' 
Special Case (k^ Jacobsthal-Lucas Convolution Numbers: x = 1) 

{^(D} = u ( ^ 1 ) , 1 6 ^ 2
+ 1 ) + 2 ( ^ 1 ) { 2 ( ^ 1 ) + l} + ( ^ 2 ) , . . . . (5.9) 

^*)W = Sf* + 1>)(4xyj^)(x), (5.10) 

where J^r(x) are given in (4.12). 
Proof: Expand (l+4xy)*+1 in conjunction with (4.9) and (5.7) to produce 

#>(*) = J?>(x)+(* + ̂ x ^ l W +(* + 1)(4x)2^)
2 (x) + • • • 

+ (* + ! ] (4x)' //_> (x) + • • • + (4x)k*lJ«?Ux). 

The theorem is thus demonstrated. 
Armed with this knowledge (5.10), we may then appeal to (4.12) for the determination of the 

convolution polynomials j^k\x) for any k and n. For example, application of (5.10) leads us to 
j5

(2)(x) = 15 + 180x + 600x2 +480x3, which confirms (5.2). 

Convolution Array for ffi 
A truncated array for ffi is set out in Table 2. 
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TABLE 2. Convolution Array for jj,k) (« = 1,2,...,5) 

nlk 
1 
2 
3 
4 
5 

0 1 
1 1 1 1 
5 10 15 20 
7 39 96 178 
17 104 386 488 
31 281 1275 4163 

i6(^)+(r)Krv2}+e;2) 

As In (4.16), we have the correspondence of notation 

where subscripts in Rnk refer to rows and columns, respectively, whence, for instance, R32 = 
jP = 39 (Table 2). 

Evidently, there is a law of diminishing returns evolving as we proceed to study the case for k 
general, and more so as we progress from J^k\x) to j^k\x). Perhaps we should follow a precept 
of Descartes and leave further discoveries for the pleasure of the assiduous investigator. 
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1. VIETA AIWAYS AND POLYNOMIALS 

Vieta Arrays 
Consider the combinatorial forms 

B(n,j) = (n-j-1 
(° *;*[¥]) 

and 
Hnj)=^]tjj) (°^M)' 

(i . i) 

(1.2) 

where n(> 1) is the 11th row in an infinite left-adjusted triangular array. Thee the entries in these 
arrays are as exhibited in Tables 1 and 2. 

TABLE 1. Array forB(#i? j) TABLE 2. Array for b(n, j) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 

1 
3 
6 
10 
15 
21 

1 
4 
10 
20 

1 
5 

1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 

2 
5 
9 
14 
20 
27 
35 

2 
7 
16 
30 
50 

2 
9 
25 2 

In the notation and nomenclature of this paper, Table 1 will be called the Vieta-Fihonacci 
array and Table 2 the Vieta-lucas array. The Table 2 array has already been displayed in [5] 
where its discovery is attributed to Vieta (or Viete, 1540-1603) [8]. 

Vieta Polynomials 
From (1.1) and Table 1, we define the Vieta-Fibonacci polynomials Vn(x) by 

\x"-2k-\V0(x) = 0. 
k=Q \ tv J 

From (1.3), we find: 

Vjix) = t V2(x) = x, KJx) = r2 - 1 , V4{x) = x3 -2r„ j 
V3{x) = x' - JJT + 1? F51X- = v* - 4 T J 4- 3z, P7(r) = A6 - 5;c4' + 6;r" - 1 , . . . j 

Bqi^uo!1! f L^) and Tafaf? ?. ̂ aa Iir/iJ,a the d^toiition of the Vieia-Lucas polynomials vn(x) as 

(1.3) 

(1.4) 
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v»W = i ( " ^ r r r f l ,
i k * V 2 * , v0(x) = 2. (1.5) 

From (1.5), we get: 

vt(x) = x, v2(x) = x2-2, v3(x) = x3- 3x, v4(x) = x4- 4x2 + 2,1 
v5(x) = x5-5x3 + 5x, v6(x) = x6-6x4 + 9x2-2? . . . . J 

Remark: Array Table 2 [8] and polynomials v„(x) were Investigated in some detail in [5], while 
some fruitful pioneer work on vn(x) was accomplished in [3]. Array Table 1 and polynomials 
V„ (x) were introduced in [6]. But see also [1, p. 14] and [4, pp. 312-13]. 

Recurrence Relations 
Recursive definitions of the Vieta polynomials are 

V„(x) = xV„_1(x)-V„_2(x) (1.7) 
with 

V0(x) = 0, V1(x) = l, (1.7a) 
and 

vn(x) = xvM.1(x)-v„_2(x) (1.8) 
with 

v0(x) = 2,vl(x) = x. (1.8a) 

Characteristic Equation Roots 
Both (1.7) and (1.8) have the characteristic equation 

A2-Ax + l = 0 (1.9) 
with roots 

so that 

a = i ± A f / ? = ̂ A , A = V ? ^ 4 (1.10) 

a/?=l, a+fi = x. (1.11) 

Purpose of this Paper 
It is proposed 
(i) to develop salient properties of Vn(x) and vw(x), and 

(ii) to explore the interplay of relationships among Vieta, Jacobsthal, and Morgan-Voyce 
polynomials (while observing the known connections with Fibonacci, Lucas, and Cheby-
shev polynomials). 

2, VIETA-FIBONACCI POLYNOMIALS FM(x) 

Formulas (2.1) and (2.2) below flow from routine processes. 

Binet Form n _ on 
VM=SL-f~- (21) 

Generating Function „ 
Z^(*)y" l ^[ i -^+/r I . (2.2) 
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Simson's Formula 

Negative Subscript 

Differentiation 

A neat result: 

^ i ( * ) * U * ) - V^ix) = -1 (by (2.1))]. (23) 

Kn(x) = -Pn(x) (by (2.1)). (2.4) 

^M^nVn(x) (by (2.1), (3.1)). (2.5) 

VnWV^i-x) +Vn(rxWn-l{x) = 0 (#i > 2). (2.6) 
Induction may be used to demonstrate (2.6); see [6]. 

3. WETA^LUCAS POLYNOMIALS V^JC) 

Standard techniques reveal the following basic features of vn(x). 
Binet Form 

vn(x) = an + fi". (3.1) 
Generating Function 

Simsonvs Formula 

Negative Subscript 

Miscellany 

CO 

y£v„(x)y = (2-xy)[l-xy+yiTl- (3-2) 
11=0 

(—In odd., 
vn+,(x)v„_1(x) - v„(x) = | A 2 ^ evgn^ (3.3) 

v_„(x) = v„(x). (3.4) 

vB(*K_,(-x) + vB(-x)vlf_1(x) = 0. (3.5) 
yfr) + £ i (* ) - ^» (* )Vi (* ) = -A2. (3.6) 

v„(x2-2)-v2(x) = -2 . (3.7) 

(i) Results (3.3)-(3.7) may be determined by applying (3.1). To establish (3.5) by an alternative 
method, follow the approach used in [6] for the analogous equation for Vn (x). 

(ii) Both (3.6) and (3.7) occur, in effect, in [3]. 
fiii) There are no results for V„ (x) corresponding to (3.6) and (3.7) for vn(x). 
(iv) Observe that, for vn(x2 - 2 ) , the expressions corresponding to a, fi, and A in (1.10) become 

a* = a\^ = fi\A* = xA. 
Permutability 
Theorem 1 (Jaeobsthal [3]): vm(yn(x)) = vn(ym(x)) = vmn(x). 

Proof: Adapting Jacobsthal's neat treatment of this elegant result, we notice the key nexus 

vn{x) = vn[a + ̂ a " + a-" (by (1.11), (3.1)). (3.8) 

whence 
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vm„(x) = a"m + a-"m (by (3.1)) 
= v„(am + a-m) (by (3.8)) 
= v„(vm(x)) (by (3.1)) 
= vm(v„(x)) also. 

Remark: There is no result for V„(x) corresponding to Theorem 1 (Jacobsthal's theorem) for 
V„(JC), i.e., the V„(x) are nonpermutable [cf. (9.3), (9.4)]. 

4. PROPERTIES OF Vn(x), vH(x) 

Elementary methods, mostly involving Binet forms (2.1) and (3.1), disclose the following 
quintessential relations connecting V„(x) and vn(x). 

Vn(x)vM = V2„(x). (4.1) 
^ W - U ^ ) = v„W. (4.2) 

v„+,W-v„_1W = A2r„(x). (4.3) 

v„(x) = 2V„+1(x)-xV„(x)- (44) 
A2V„(x) = 2v„+l(x)-xv„(x). (4.5) 

Notice that (4.4) is a direct consequence of the generating function definitions (2.2) and (3.2). 

Summation 
m 

A2tVM = vm+l(x) + vm(x)-x-2 (by(4.3)). (4.6) 

m 

Iv„W = FMlW+F„(x)-l (by(4.2)). (4.7) 

Slims (Differences) ©f Products 
Vm(x)v„(x)+Vn(x)vm(x) = 2Vm+„(x). (4.8) 
Vm(x)vn(x) -V„(x)vm(x) = 2Vm_„(x). (4.9) 

vm(x)v„(x) + A2Vm(x)V„(x) = 2vm+„(x). (4.10) 
vm(x)vn(x) - A2Vm(x)Vn(x) = 2v^„(x). (4.11) 

Special cases m = n: In turn, the reductions are (4.1), 0 = 0 (1.7a), and 
v2(x) + A2V2(x) = 2v2n(x) (by (4.10)), (4.12) 

v2(x)-A2V2(x) = 4 (by (4.11)). (4.13) 

Associated Sequences 
Definitions^ The k% associated sequences {V}k)(x)} and {v^}(x)} of {Vn(x)} and {vn(x)} 

are defined by, respectively (k > 1), 
Kik)(x) = V&\x)-V&\x), (4.14) 
v?\x) = i & V ) - i&»(x), (4.15) 

where V}°\x) = V„(x) and v<0>(x) = v„(x). 
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What are the ramifications of these ideas? 
Immediately, 

V?\x) = v*(x) (from (4.2)), (4.16) 
v^(x) = A2Vn(x) (from (4.3)) (4.17) 

are the generic members of the first associated sequences {f^P(x)} and {v£\x)}. 
Repeated application of the above formulas eventually reveals the succinct results: 

V2m(x) = v(2m~l\x) = /&Vn(x), (4.18) 

V^l\x) = v2m(x) = A2"Vw(x) • (4.19) 

5* THE ARGUMENT -x2t ¥IETA AND MORGAN-VOYCE 

Attractively simple formulas can be found to relate the Vieta polynomials to Morgan-Voyce 
polynomials having argument -x2. Valuable space is preserved in this paper by asking the reader 
to consult [2] and [6] for the relevant combinatorial definitions of the Morgan-Voyce polynomials 
B„(x)9 b„(x), Q(x)5 and cn(x). 

Alternative proofs are provided specifically to heighten insights into the structure of the 
polynomials. Equalities in some proofs require a reverse order of terms. 

Theorem 2: 
(a) K2lI(x) = ( - i r , xB B (-x 2 ) . 

o>) ^»-iW=(-irI*»(-*2). 
(a) 

Proof 1: 

Proof 2: 

n-l 

= F2n(x)(by(1.3)). 
> {2k+ 1 

,2k+l (by [6, (2.20)]) 

(b) 
Proof 1: 

Proof2: 

V2„(x) = i-iy-'xlU-x^+B^i-x2)] (by [6] adjusted) 
= (-\y-lxB„(-x2) (by [2, (2.13)]). 

(-\rX(-x2)="±(-\)k+"-l^ + *k-iyk (by [2, (2.21)]) 

= ̂ -i(*)0>yO13)). 

^2-1(*) = (-1)"(*24,(-*2) " b„-i(~x2)) (by [6] adjusted) 
= (-l)"(-6n(-x2))(by[2,(2.15)]) 
= (-iy-\(-x2). 

Corollary 1: V2„_l(ix) = (-i)"-lb„(x2) (i2 = -1). 
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Theorem 3: 
m v2n(x) = (-iycn(-x2y 
(h) v2„_l(x) = (-irlxcn(-x2) 

(a) 
Proof: 

fn-1 
(-l)"C„(-x2) = (-!)» g ( - i ) ^ ^ : J + ̂ x2fc

+(-l)»x2" (by [6, (2.2)]) 
U=o 

= v2„(x)(by(1.5)) 
[= ( - l ) " ^ - * 2 ) - * 2 ^ - * 2 ) ) (by (3.21)]). 

(b) 
Proof: 

(-l)^XCn(-x2) = p-ir"^^+J_fyk-1 (by [2, (3.23)]) 
= v2l_1(x) (by (1.5)) 

[=(-l)n-1x(Cn_1(-x2) + c„_1(-x2)) (by [2, (3.11)]]). 

Corollary 2: v2n(ix) = (-l)"C„(x2) (f2 = -1). 

6. THE ARGUMENT - - V : VEETA AND JACOBSTHAL 
or 

Here, we discover connections between the Vieta and Jacobsthal polynomials. 

Theorem 4: 

(a) V„(x) = *"-%(-ji} 

(b) v„(x) = x7„ ( -^ j ) (by [6, (2.7)]). 

(a) 
Proof: 

M, 

= ^ _ 1 ^(-^-) (by[6 , (2 .3) ] ) 

!*"'l[^-i(-^-) + ( -^)^-2( -^) ] by definition of Jn(x) 

I = *""1^-i(-i-)-^"Vn_2(-^) as in [6] adjusted 
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Proof: 

^{-^)%^^{nlkY- (by[M2.6)]) 
= v„(x)(by(1.5)or[5, (1.9)]) 

\=x"[jn-i{-jr) + {-jr)jn-2{-jr)] by definition ofjn(x)\ 

\_=X"J»-A~lfi)~X" Jn-2\-^r) J 

7. THE ARGUMENT-: JACOBSTHAL AND MORGAN-VOYCE 

Next, we detect some attractive simple links between Jacobsthal and Morgan-Voyce polyno-
mials involving reciprocal arguments x, ^. 

Theorem 5: 

(a) B„(x) = x»-1J2n(±y 

(b) c„(X)=x"j2„(±y 

(a) This is stated and proved in [6, (2.8)]. 

(b) 
Proof: 

= C„(x)(by[6, (2.2)]). 

Upon making the transformation x -^ £ in Theorem 5(a) and (b), we obtain their Mutuality 
Properties in Corollary 3(a) and (b). 

Corollary 3 (Mutuality): 

(a) J2„(x) = x"-lB„(±y 

(b) J2n(x) = x"C„{^j. 

Combining Theorems 2(a) and 4(a), we get 

X2n'%n ( ~ 4 f ) = V2n(x) = (-irlxBn(-X2) 
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leading to 

n,(-x2)=(-«ar1^,(-^), 
thus confirming Theorem 5(a) when x ->-x 2 . Conclusions of a similar nature link j2„(-^-)? 

v2n(x), and bn(-x2) in Theorems 3(a), 4(b), and 5(b). 

Theorem 6: 

(a) b„(x) = x"-lJ2n_1(±y 

(b) c„(x) = / \ , ( 0 
Proof: Similar to that for Theorem 5. 

Corollary 4 (Mutuality): 

(a) J2n-1{x) = x"-\(^. 

(h) h„-1(?c) = x"-\[^. 

8. ZEROS OF Vn(x), vtt(x) 

Known zeros of the Morgan-Voyce polynomials [2, (4.20)-(4.23)] may be employed to 
detect the zeros of the Vieta and the Jacobsthal polynomials. Some elementary trigonometry is 
required. 

(a) Vn(x) = 9 
By [2, (4.20)] and Theorem 2(a) with x->-x2, the 2 « - l zeros of V2„(x) are 0 and the 

2(n -1) zeros of Bn(-x2), namely (r = 1,2,...,«-1), 

x = ±2 sin (- % 1 = ±2 c o s f ^ - x) 
V»2j {2n ) ( 8 J ) 

r -2cos—n {m-2n, i.e., weven). 

Similarly, by [2, (4.21)] and Theorem 2(b) with x-» -x2, the 2ra-2 zeros of V2n_l(x) are the 
2(» -1) zeros of bn(-x2), namely (r = 1,2,...,«-1), 

\2n-\ ) x = +2 sin | %-\ ^\ = ±2 cosl 
.211-1 2 j U - . , ( g 2 ) 

:2cos—-;r (WI = 2 # I - 1 , i.e., m odd). 

Zeros 2cos-^;r given in (8.1) and (8.2) are precisely those given in [7, (2.25)] for y = -1 (for 
Vm(x)) when m is even or odd. See also (7, (2.23)]. 
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(b) vH(x) = 0 
Invoking Theorems 3(a) and 3(b) next in conjunction with [2, (4.22), (4.23)] for Cn(x) and 

c„(x) and making the transformation x -> ™x2, we discover the n zeros of vw(x) are (r = 1,..., #i) 

0 (2r-l x = 2cos -——n V 2n 

which is in accord with [7, (2.26)]. See also [7, (2.24)]. 
Alternative approach to (a) and (b) above: Use the known roots for Chebyshev polynomials 

(9.3) and (9.4). 
(c) Zeros of Jn(x)9 jH(x) 

From Theorems 4(a), 4(b), it follows that the zeros of J„(x), j„(x) are given by — \ - > x . 
This leads in (8.1)-(8.3) to the zeros of J„(x), jn(x) as 

1 1 

that is, for 

(e) JH(x) = 0: x = - | s e c 2 ^ , (8.4) 

These zero values concur with those given in [7, (2.28(, (2.29)] if we remember that 2x in the 
definitions for J„(x\ j„(x) in [7] has to be replaced by x in this paper (as in [6]). Refer also to 
Corollaries 3(a) and 3(b). 

9. MEDLEY 

Lastly, we append some Vieta-related features of familiar polynomials. 

Fibonacci and Lucas Polynomials FH(x), LH(x) 

Vn(ix) = i"-lFn(x) (i2 = -l). (9.1) 

vn(ix) = fLn(x) ([5]). (9.2) 

Chebyshev Polynomials TH(x)9 Un(x) 

K(*) = Un(±Xy (9.3) 

v„(x) = 2T„(±xSj ([3], [5]). (9.4) 

Suggested Topics for Further Development 
1. Irreducibility, divisibility: Detailed analysis for vn(x) as in [5] is, for Vn(x), left to the 

aficionados (having regard to Tables 1 and 2); 
2* Rising and falling diagonals for Vieta polynomials (which has already been done for the 

Chebyshev polynomials and which has been almost completed for Vieta polynomials); 
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3. Convolutions for Vn{x) and vn(x) (in which much progress has been achieved); 
4, Numerical values: Consider various integer values of x in Vn(x) and vn(x) to obtain sets of 

Vieta numbers. Some nice results ensue. Guidance may be sought in [2, pp. 172-73]. 

Conclusion 
Apparently the v„(jt) offer a slightly richer field of exploration than do the V„(x). However, 

many opportunities for discovery present themselves. Hopefully, this paper may whet the appetite 
of some readers to undertake further experiences. 
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1. INTRODUCTION 

It is well known that a positive integer N is called a pentagonal (generalized pentagonal) 
number if N = m(3m ~ 1) 12 for some integer m > 0 (for any integer m). 

Ming Leo [1] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci 
sequence {Fn}. Later, he showed (in [2]) that 2, 1, and 7 are the only generalized pentagonal 
numbers in the Lucas sequence {Ln}. In [3] we have proved that 1 and 7 are the only generalized 
pentagonal numbers in the associated Pell sequence {Qn} delned by 

Q0 = Qx = 1 and Qn+2 = 2Qn+l + Q„ for n > 0. (1) 

In this paper, we consider the Pell sequence {PJ defined by 

P0=0,P1 = 1, and Pn+2=2Pn+l+Pn for«>0 (2) 

and prove that P±l, P^, P4, and P6 are the only pentagonal numbers. Also we show that P0, P±1, 
P2, P^, P4, and P6 are the only generalized pentagonal numbers. Further, we use this to solve the 
Diophantine equations of the title. 

2. PRELIMINARY RESULTS 

We have the following well-known properties of {Pn} and {Qn}: for all integers m and n, 

pn =
 a"-P" a n d Q =

a"+P" w herea = 1 + V2 and p = 1-V2, (3) 

P_„ = {-\rlPn and Q_„ = (-l)"Qn, (4) 
a2 = 2P„2+(-iy, (5) 

e3„=a(e„2+6P„2), (6> 
^ + n = 2PmG„-(-l)"Pm_„. (7) 

If m is odd, then: 
(i) g£ + 6 / * S 7 (mod8), (ii) PM = \ (mod 4),] 

(iii) Qm = ±1 (mod 4) according as m = ±1 (mod 4) J 

Lemma 1: Ifn, k9 and t are integers, then Pn+2kt = (-l)t^V)Pn (mod Qk). 

Proof: If t = 0, the lemma is trivial and it can be proved for t > 0 by using induction on t 
with (7). If t < 0, say t = -m9 where m > 0, then by (4) we have 

Pn+2k, = Pn-2km = Pn+2(-k)m^{-V{-M)Pn (mod0_*) = (-l)'(*+1)^ (modft), 

proving the lemma. 
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3. SOME LEMMAS 

Since N ~m(3m--t)l2 If and only If 24N + l = (6in-T)2, we have that N Is generalized 
pentagonal if and only If 24N +1 is the square of an Integer congruent to 5 (mod 6). Therefore, 
In this section we Identify those n for which 24Pn +1 is a perfect square. 

We begin with 

Lemma 2: Suppose » s ± l (mod 22 • 5). Then 24Pn +1 Is a perfect square if and only if n = ±1. 

Proof: If n = ±1, then by (4) we have 24Pn +1 = 24P±l +1 = 52. Conversely, suppose n = ±l 
(mod 22-5) and n g{-l, 1}. Then n can be written as n = 2'\Y-5m±l, where r >0 , \\\m, and 
2\m. Taking 

_ (5m If m = ±2 or ±8 (mod22), 
\m otherwise, 

we get that 

k = ±4, ±6, or ±10 (mod 22), and n = 2kg±l, where^is odd (in fact, g = IF -5 or IF) . (9) 
Now, by Lemma 1, (9), and (4), we get 

24Pn +1 = 24P2kg±l +1 ^ 24(-l)^+1>P±1 +1 (mod Qk) 
- 24(-l) +1 (mod Qk) s -23 (mod ft). 

Therefore, the Jacobi symbol 

24P„ + AJ-23]jQk 
a ) VQk) w (10) 

But modulo 23, the sequence {ft} has period 22. That is, Qn+2it = Qn (m°d 23) for all Integers 
t > 0. Thus, by (9) and (4), we get ft = ft4, Q&, or Q±l0 (mod 23) = 17, 7, or 5 (mod 23), so 
that 

^ 2f J = V23 J5 V23 / ° r 123J? 

and In any case 

'§)-!. 01) 
From (10) and (11), it follows that 

(24P„ + f 

{ a 
showing 24Pn +1 Is not a perfect square. Hence, the lemma. 

: - l for we {-1,1}, 

Lemma 3: Suppose n = ±3 (mod 24). Then 24 J^ +1 is a perfect square If and only If n = ±3. 

Proof: If n = ±3, then by (4) we have 24PW+ 1 = 241^ + 1 = ll2. Conversely, suppose 
n = ±3 (mod 24) and n £ {-3,3}. Then n can be written as n = 2• 3r • * ± 3, where r > 0, 3 | A, and 
8|fc. And we get that 

* = ±8 or ± 16 (mod 48) and n = 2kg±3, where g = 3r Is odd and k Is even. (12) 
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Now, by Lemma 1, (12), and (4), we get 

24Pn +1 = 24P2kg±3 +1 = 24(-l)^+1>/j3 +1 (mod Qk) = -119 (mod Qk). 

Hence, the Jacobi symbol 
(IAP ±\\ (-I%Q\ f n. A 

(13) 
24P, + l l _ f - 1 1 9 l _ f & 

Qk ) { Qk ) \y\9 

But, modulo 119, the sequence {QJ has period 48. Therefore, by (12) and (4), we get Qk = Q±g 

or Q±l6 (mod 119) =101 or 52 (mod 119), and in any case, 

ft~L O-O 
From (13) and (14), it follows that 

(24P +l\ 
h ^ L + i =-ifor/i«{-3,3}, 
V Qt J 

showing that 24i^ +1 is not a perfect square. Hence the lemma. 

Lemma 4: Suppose n = 4 (mod 22 • 5). Then 24i^ +1 is a perfect square if and only if n - 4. 

Proof: If n = 4, then 24PW +1 = 24P4 +1 = 172. Conversely, suppose » s 4 (mod 22• 5) and 
w^4. Thenw canbe writtenas n = 2°3r°5nt + 4, where r > 0 , 2|m, and 3|iw. Taking 

\m if m = ±10 (mod 30), 
* = *. , . 

\5m otherwise, 
we get that 

k = ±10 (mod 30) and n = 2kg+ 4, where g is odd (in fact, g = 3r or 3r • 5). (15) 

Now, by Lemma 1 and (15), we get 

24Pw±l = 24P2^+4 + l-24(-l)^+ 1>P4 + l(mod a ) - ~ 2 8 7 ( m o d Qk). 

Hence, the Jacobi symbol 

m-m-in 
But, modulo 287, the sequence {QJ has period 30. Therefore, by (15) and (4), we get Qk =Q±i0 

(mod 287) = 206 (mod 287), so that 

From (16) and (17), it follows that 

E— l = ~l for ft * 4, 
ft 

showing that 24i^ +1 is not a perfect square. Hence the lemma. 
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Lemma 5: Suppose n = 2 (mod 22 • 5 • 7). Then 24Pn +1 is a perfect square if and only if w = 2. 

Proof: If n = 2, then we have 24Pn + l = 24P2 + l = I2. Conversely, suppose w = 2 (mod 
22-5-7) and/ i^2 . Then n can be written as n = 2- 23r-5-7w + 2, where r > 0 , 23\m, and 2|iff. 
Taking 

[7iff if w = ±16 (mod 46), 
* = J5wt if m = ±2,±4, ±12,±22 (mod 46), 

l/w otherwise, 

we get that 
k = ±6, ±8, ± 10, ± 14, ± 18, ±20 (mod 46) and n = 2kg+ 2, wheregis odd 
(infact, ^=23r-5-7, 23r-7, or 23r-5). 

Now, by Lemma 1 and (18), we get 
24P„ + l = 2 4 / ^ + 2 + l = 24(-l)^+1>i>+l(mod a ) = -47(mod Qk). 

Hence, the Jacobi symbol 
,24P„ + l)J-47) = (Qk) 

Qk ) l a J U ? / 

(18) 

(19) 

But, modulo 47, the sequence {Q„} has period 46. Therefore, by (18) and (4), we get Qk = Q±6, 
Qn> Qtio. Sti4. 2±i8> or g^o (mod 47) = 5,13,26,33,15, or 35 (mod 47), so that 

m # - • 
(20) 

From (19) and (20), it follows that 

24Pn + l 
Qk 

= -1 for«*2, 

showing 24i^ +1 is not a perfect square. Hence the lemma. 

Lemma 6: Suppose n = 6 (mod 22-3-5-7). Then 24/^ + 1 is a perfect square if and only if 
n = 6. 

Proof: If n = 6, then we have 24Pn +1 = 24P6 +1 = 412. Conversely, suppose n = 6 (mod 
22-3-5-7) and n*6. Then n can be written as « = 2-3r-3-5-7w + 2, where r > 0 , 2\m, and 
3 jw, which implies that iff = ±2 (mod 6). Taking 

f3-5w if in. s ±2,±32,±52,±76,±82,±86,±100,±124, 
±130,±170,±178,or ±188 (mod 396), 

_ \lm if iff = ±26, ±62, or ±88 (mod 396), 
" |3iff ifw=±4,±10,±14,±20,±22,±28,±40,±58,±74,±98,±104, 

±110,±116,±136,±146,±148,±172, or ±196(mod396), 
[iff otherwise, 
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we get that 

£ = ±8,±12,±16,+30,±34,±38,±42,±44,±46,±48,±50,±56,±60, 
+64,±66,±68,±70,±80,±84,±92,±94,±102,±106,±112,±118, 
±12Q,±122,±128,±134,±140, + 142,±152,±154,±158,±160,±164, 
±166,±174,±176,±182,±184,±190,±192,±194,±202,±204,±206, 
±212,±214,±220,±222,±230,±232,±236,±238,±242,±244,±254, 
+256, + 262,±268, + 274,+276,+278, ± 284, ± 290, ± 294, + 302, + 304, 
±312, + 316,±326,±328,±330,+332,±336,±340, + 346,±348,±350, 
±352,±354, + 358, + 362,+366, + 380,±384, or ±388 (mod792) 

and 

24P„ + l]J-l679)J Qk ) 
ft J I Qk ) U679J-

Bet, modulo 1679, the sequence {QJ has period 792. Therefore, by (21) and (4), we get 

(21) 

n = 2kg + 6, where g is odd and k is even. (22) 

Now, by Lemma 1 and (22), we get 

24P, + l = 24P2%+6 + l-24(~-l)^+1)P6 + l (mod ft)-~1679 (mod & ) . 

Hence, the Jacobi symbol 

(23) 

Qt = 577,1132,973,485,143,1019,923,737,141,109,513,97,329,1015, 
829,601,1098,577,1351,1144,513,485,362,348,1382,1569,1316, 
316,808,163,879,1015,1611,1604,973,925,1316,923,1151,1019, 
1589,1382,766,1535,1604,329,370,163,76,1404,26,1385, 97,122, 
1535,944,1613,143,1589,141,1144,1385,1132,370,601,1098,1267, 
582,316,109,1175,362,348,47,1613,766,925,582,1351,808,139,26, 
76,879,1267,122,1569, or 1175 (mod 1679), respectively. 

And for all these values of k, the Jacobi symbol 

GfeH <24) 
From (23) and (24), it follows that 

24P. + T, 1 . . 
= -1 forw^o, & 

showing that 24i^ +1 is not a perfect square. Hence the lemma. 

Lemma 7: Suppose n = 0 (mod 2-3-7243). Then 24i^ + l is a perfect square if and only if 

Proof: If /i = 0, then we have 24J^ + l = 24iJ + l = l2. Conversely, suppose J I S O (mod 
2'3»72-13)andforw^0 put « = 2'72'13-3r°z, where r>\ and 3|z. We choose m as follows: 
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13 • 3r if r = ±1 (mod 4) according as z = ±1 (mod 3), 
__ 7 • 3r if r = ±3 (mod 4) according as z = ±1 (mod 3), 

72 • 3r if r = 0 (mod 4), z = 1 (mod 3) or r = 2 (mod 4), z = 2 (mod 3), 
3r if r = 2 (mod4),zs 1 (mod3) orr s 0 (mod4),zs2 (mod3). 

Then n = 2/w(3& ± 1) for some integer k and odd m. Since, for r > 1, we have 3r = 3, 9, 27, or 
21 (mod 30) according as r = 1, 2, 3, or 0 (mod 4), it follows that 

/w s ±9 (mod 30) according as z = ±1 (mod 3). (25) 
Therefore, by Lemma 1, (4), (6), and the fact that m is odd, we have 

24PM + 1 = 24F, 2(3m)k±2m ; ; 24(-l)^+ 1)p± 2 f f l + l(mode3J 
= ±24P2m +1 (mod QI + 6P*) according as z = +1 (mod 3). 

Letting wm-Q^ + 6P^ and using (5), (7), and (8), we obtain the Jacobi symbol: 

24P„ + n = r±24P2m + A = (±48QmPm-QJ + 2P£'\ = (±4%QmPm + ZP*' 
Wm J { Wm J { Wm J { Wm 

=(2)(pm)(±sQm+pm\=(m^+p^ = ( wm 

= f (+6Qm + PJ(±6Qm - PJ + 217PJ ) = f 217 
(̂  ±6Qm + Pm J 1^0,+ P, 

K^^H™)̂ ^60"*^ 
But since 

(26) modulo 217, the sequence {Hm} is periodic with period 30. 
That is, Hn+30u = Hn (mod 217) for all integers u > 0. And F± 9 = 6̂ +9 ±P±9^ ±12 (mod 217). 
Therefore, by (25) and (26), we get 

^24fw + l V r±12^_ 
wM J : 1,217J L 

As a consequence of Lemmas 2-7, we have the following lemmas. 

Lemma 8: Suppose n = 0, ±1,2, ±3,4, or 6 (mod 152880). Then 24Pn +1 is a perfect square if 
and only if n = 0, ±1,2, ±3,4, or 6. 

Lemma 9: 24Pn +1 is not .a perfect square if/i # 0, ±1,2, ±3,4, or 6 (mod 152880). 

Proof: We prove the lemma in different steps, eliminating at each stage certain integers n 
congruent modulo 152880 for which 24i^ + 1 is not a square. In each step, we choose an integer 
m such that the period k (of the sequence {PJ mod m) is a divisor of 152880 and thereby elimi-
nate certain residue classes modulo k. For example: 

(a) Mod41. The sequence {PJ mod 41 has period 10. We can eliminate / i s 8 (mod 10), 
since 24i^ +1 s 35 (mod 41) and 35 is a quadratic nonresidue-modulo 41. There remain wsO, 1, 
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2, 3, 4, 5, 6, 7, and 9 (mod 10) or, equlvalently /i = 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 
16, 17, and 19 (mod 20). 

(b) Mod29. The sequence {PJ mod 29 has period 20. We can eliminate n = 7, 12, 13, 14, 
16, and 18 (mod 20), since they imply, respectively, 24Pn +1 = 26, 11, 26, 3, 3, and 11 (mod 29). 
There remain n= 0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 15, 17, or 19 (mod 20) or, equivalently, n= 0, 1, 2, 
3, 4, 5, 6, 9, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 35, 37, or 39 (mod 40). 

Similarly, we can eliminate the remaining values of n. After reaching modulo 152880, if there 
remain any values of w, we eliminate them in the higher modulos (i.e., in the multiples of 152880). 
We tabulate these in Tables A and B. 

4. MAIN THEOREM 
Theorem 1: 
(a) Pn is a generalized pentagonal number only for n = 0, +1,2, ±3,4, or 6. 
(b) Pn is a pentagonal number only for n = ±1, ±3,4, or 6. 

Proof: 
(a) From Lemmas 8 and 9, the first part of the theorem follows. 
(b) Since an integer N is pentagonal if and only if 24 JV +1 = (6m -1)2, where m is a positive 

integer, and since P0 - 0, P2 - 2, we have 24i^ +1 ̂  (6m-1)2 and 24P2 +1 * (6m-1)2 for posi-
tive integer m, from which it follows that PQ and P2 are not pentagonal. 

5. SOLUTIONS OF CERTAIN BIOPHANTINE EQUATIONS 

If I) is a positive integer that is not a perfect square, it is well known that x2 -Dy2 = ±1 is 
called the Pell equation and that if xx +yl<J~D is the fundamental solution of it (i.e., xx and yx are 
least positive integers), then xn+yn«JI) = (xl+yl<jD)n is also a solution of the same equation; 
conversely, every solution of it is of this form. 

Now, by (5), we have Q2 = 2P2 + (-ff for every n. Therefore, it follows that 

Q2n + 42P2n is a solution of x2 - 2y2 = 1, (27) 
while 

Qin+i+ ̂ 2^2»+iis a solution of x2 -2y2 = -l. (28) 

Thus, the complete set of solutions of the equations x2-2y2 = ±1 is given by 

x = ±Qn,y = ±PH. (29) 

Theorem 2: The solution set of the Diophantine equation 
2 X 2 = J 2 ( 3 J - 1 ) 2 - 2 (30) 

is {(±1,1), (±7,2)}. 

Proof: Writing Y = y(3y -1) /2, equation (30) reduces to the form 

x2-2Y2 = -l, (31) 
whose solutions are, by (28), Q2n+l + «j2P2n+l for any integer n. 
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TABLE A 

Modulus 
ni 

41 J 
29 
19 
59 

241 | 

31 J 
269 | 
601 

2281 
1 1153 
1 239 

13 

1 113 
337 

7 1 

83 
139 
281 

[ 37633 
79 

599 
313 

521 
1949 
1091 
181 

1471 

293 

587 
2939 

Period 
k 

10 
20 J 
40 
40 
80 

30 
60 

120 
120 
48 
14 
28 
56 ! 
56 
70 

168 
280 
280 
336 
26 
26 
78 

260 
260 

1 312 
364 
98 

196 

1176 
J 5880 

Required values of n where p l E a i i j = -1 

8. 
7, 12, 13, 14 and 16. j 
5, 15, 17, 19, 21, 22, 23, 25, 26 and 35. 
24. j 
±9, ±10, ±29, 30, ±31, ±39, 44 and 50. 

±7, ±11, 12, 14,24 and 26. 
±9, ±17, ±21 and 22. 
46. 
20 and 40. 
±5, 8, 28, 30 and 32. 
±5,7,8 and 10. 1 
±11, 16,20 and 26. 
±25, ±27, 30, 40 and 46. 
12 and 18. 
60 and 62. 
28, ±69 and ±71. 
42. 
126. 
±165 and 170. 
±7, 10, 13, 14, 20 and 22. 
8, ±9, 16 and 24. 

1 ±11, 18, ±25, ±27, 28, ±29, ±31, 32, ±37, 38, 58 
and 64. 
±21, ±23, 44, 80, ±83, 160, 186, 240 and 246. 
±37, ±57, ±63, ±81, 82 and 122. 

1 52, 54 and 168. 
168,286 and 338. 
±11, 14, ±15, 16, ±17, 18, ±27, 28, ±29, 30, ±39, 
46, 48, 56, 58, 60 and 76. 
±25, ±31, ±53, ±55, 84, ±85, 86, 88, 140 and 
172. 
±335,338,510,678,756,846,1012 and 1014. 
2520 and 2522. 

Left out values of n (mod t) 
where t is a positive integer 

0, ±1,2, ±3, 4, 5 or 6 (mod 10) 
0, ±1, 2, ±3, 4, ±5, 6, ± 9 or 10(mod 20) j 

0, ±1, 2, ±3, 4, 6, ± 9, ±10, ±11 or 20 
(mod 40) j 

0, ±1, 2, ±3, 4, 6, ±11, ±20, ±37, 40, 42 
or 46 (mod 80) J 

0, ±1, 2, ±3, 4, 6, ±60, 100, ±117, 
120 or 122 (mod 240) 

0, ±1, 2, ±3, 4, 6, 420, 840 or 1260 
(mod 1680) 

0, ±1, 2, ±3, 4, 6, 5460, 10920 or 
16380 (mod 21840). 

1 0, ± 1, 2, ±3, 4, 6, 3 8220, 76440 or 
I 114660 (mod 152880). 

We now eliminate: n s 38220,76440, or 114660 (mod 152880). 
Or equivalently: n = 38220,76440,114660,191100,229320, or 267540 (mod 305760). 
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TABLE B 

Modulus 
m 

J 9 7 

r 449 
2689 

Period 
k 
96 

448 
1344 

Required valies of i where [24P.+1] 
m 

= ~1 

±12, 36 and 60. 

56, 168, 
840, 1176. 

Left out values of n (mod t) 
where t is a positive integer 

±76440 (mod 305760) or equivalently 
±76440, ±229320 (mod 611520) | 

Completely eliminated under 
modulo 611520. 

Now x = a, y = hha, solution of (30) o a + -J2b(3b -1) /2 is a solution of (31) o a = Q2n+l 

and b(3b -1) 12 - P2n+l for some integer n. But we know by Theorem 1(a) that Pk is generalized 
pentagonal if and only if k = 0, ±1,2, ±3,4, or 6. Therefore, we have either 

(i) a = Q_i = ^ ft(36-l)/2 = i i 1 = l; (ii) a = Q = l, 6(3ft-l)/2 = /J = l; 

(iii) a = fi.3 = -7, ft(3ft-l)/2 = /L3 = 5; (iv) a = Q3 = 7, b(3b-l)/2 = P3 = 5. 

Solving the above equations, we get the required solution set of equation (30). 

We can prove the following theorem in a similar manner. 

Theorem 3: The solution set of the Diophantine equation 2x2 = y2(3y-1)2 +2 is 
{(±1,0)? (±3, -1), (±17,3), (±99, - 280)}. 
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Teacher • Researcher • Mentor • Leader • Friend 
Calvin T. Long was born in Rupert Idaho, where he received his elementary and secondary 

education. Inspired by his teachers, he continued his education and was granted a B. S. degree from 
the University of Idaho in 1950, an M. S. degree from the University of Oregon in 1952 and a Ph.D. 
under the direction of Professor Ivan Niven, from the University of Oregon in 1955. After gradua-
tion, he spent one year as an analyst in Washington, D. C working 
for the National Security Agency. In 1956, Cal accepted a position 
in the Mathematics Department at Washington State University 
(WSU) in Pullman, Washington, where he remained until his re-
tirement in 1992. 

It would be impossible to list all of Professor Long's accomplish- '"; ; . t ' \ 
ments during his tenure at WSU so we will try to list only what we ' t%"' **? " ^' % ? 

consider to be the most important ones. During the 1960s and early ^ *?t -\!*v -
1970s Cal served as director or associate director for several NSF- , - " v|{~"* 
funded institutes for elementary, junior and high school mathemat- <^ : . ^ ^ ^ ^ >

; '% - , 
ics teachers. This led to his deep interest in mathematics education. ^ - x : - i ' , - '" . , JL;.. 
From 1970-78, he served as department chairman. •'•• s *BM^j 

As a teacher, his students both at the graduate and undergradu- ^ 0MW>. -\ 

ate level respected him. He was a taskmaster but had a good sense ^ ' ^ '• ' *""-" 
of humor, sound scholarship and the ability to lead his students to their best efforts in an uncompro-
mising way by insisting on excellence. For his efforts, Professor Long received the President's Faculty 
Excellence Award for Teaching in 1987 and was one of WSU's Case Award Nominees and Centennial 
Lecturers. He was also a visiting professor at three foreign and two American universities. During his 
career he directed 27 masters students and was the thesis advisor for five doctoral students. 

As a researcher, he was the author or co-author of at least twenty-four grant proposals that 
funded programs or institutes related to mathematics education. He was the author of several books 
on number theory and mathematics education. He did extensive reviewing and refereeing of re-
search papers and was an associate editor for two mathematics journals. He had more than 80-
refereed publications and gave more than 150-invited lectures throughout the United States, Canada, 
Australia, New Zealand and Germany. He has also given at least 50 invited colloquium talks. Profes-
sor Long is a member of many honor societies, including Phi Beta Kappa. He is also an active member 
of many mathematical societies, including the Mathematical Association of America (MAA), the Ameri-
can Mathematical Society (AMS), the Fibonacci Association and the National Council of Teachers of 
Mathematics. He was elected Vice-Chairman, Chairman and Governor of the Northwest Section of 
the MAA. He served on numerous local, regional and national committees. For his dedication to his 
profession, he received the Certificate of Meritorious Service from the MAA in January of 1991. 

As a mentor, he was always there for his fellow teachers as well as for his current and former 
students. As a leader, he was a state coordinator for the American High School Mathematics Exami-
nation, he was one of the organizers of the WSU Mathematics Honors Scholarship Competition 

(Continued on page 259) 
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1. INTRODUCTION 

In recent times a number of authors (see [l]-[4]) have revisited the well-known results of 
Fermat and Jacobl In connection with the polygonal representation of the integers. In the papers 
cited an. alternate derivation for such formulas giving the total number of representations of an 
integer as the sum of either two triangular or square numbers was provided. These enumerations, 
which are given in terms of elementary divisor functions, were deduced as a consequence of the 
Gauss-Jacobi triple product identity. In contrast to sums of polygonal numbers, the author has 
investigated within [5] the representation of the integers as a difference of two triangular num-
bers. By use of a purely combinatorial argument, it was shown that the number of such repre-
sentations of an integer n was exactly equal to the number of odd divisors of n. In this note we 
propose to extend the methods employed in [5] to the case of squares to prove the following 
result. 

Theorem LI: The number s(n) of representations of a positive integer as a difference of the 
squares of two nonnegative integers is given by 

m = \{do (») + (-irldl(n)+l + (-Vm*1\ (1) 

where d(ri) is the total number of divisors of n and, for each / e fG,1}, 

4(II)= I i. 
d\n,d^imod2 

To facilitate the result, we shall need a preliminary definition and technical lemma. 

Definition LI: For a given n eN\{0}, a factorization n = ab, with a,b G N \ { 0 } is said to be 
nontrivial if a & 1, n. Two such factorizations, atbt = a2b2 = n, are distinct if al^a2yb2. 

The following result, which concerns counting the total number of distinct nontrivial factori-
zations, ab = n9 may be known; however, interested readers can consult [5] for a proof 

Lemntm LI: Let n be an integer greater than unity and d(n) the number of divisors of n. Then 
the total number N(n) of nontrivial distinct factorizations of n is given by 

N(n) = 

[d(n)-2 

for square #t 

for nonsquare /i, 

d(n) - 1 
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2. PROOF OF THEOREM 1.1 

Our first goal will be to determine whether, for a given n eN\{0}, there exists x, y GN such 
that n = x2 - y2. To analyze the solvability of this diophantine equation, suppose n = ab, where 
a, b &N\ {0}, and consider the following system of simultaneous linear equations 

x~y = a 
x+y = b ( 2 ) 

whose general solution is given by 

f v (a + b b-a\ 

Now, for there to exist a representation of n as a difference of two squares, one must be able to 
find a factorization ab = n for which (2) will yield a solution (x, y) in integers. 

Remark 2.1: We note that it is sufficient to consider only (2) since, if for a chosen factorization 
ab = n an integer solution pair (x, y) is found, then the corresponding representation n = x2 - y2 

is also obtained if the right-hand side of (2) is interchanged. Indeed, one finds upon solving 
x'~/ = b 
xf+yf = a 

that x' = ~f- and y' = *=£•. Thus, xf = x while y' = -y, which yields an identical difference of 
squares representation. 

We deal with the existence or otherwise of those factorizations ab = n, which gives rise to 
the integer solution pair (x, y) of (2). It is clear from the general solution of (2) that, for x to be a 
positive integer a, b must at least be chosen so that a + b is an even integer. Clearly, this can only 
be achieved if a and b are of the same parity. Furthermore, such a chose of a and b will also 
ensure that y = x~a is also an integer. With this reasoning in mind, it will be convenient to con-
sider the following cases separately. 

Cmt It n = 4k + 2, k GN. In this instance, if ab = 2(2k +1), then one cannot possibly find 
an a and b of the same parity, so no integer solution (x, y) of (2) can be found. Consequently, 
s(4*+2) = 0. 

Case 2s n*4k + 2. Clearly, n = 2m(2k + l) for some n GN\{1} and 5 G N . Considering first 
m = 0, it is immediate that all factorizations ab = 2k +1 will produce integer solutions to (2) since 
a and b are odd. Alternatively, when m>\ one can always construct, for every factorization 
cd = 2k +1, an a and b of the form (a, b) = (21 c, V*d) with i e {1,2,...., m -1} that will produce 
an integer solution of (2). Hence, for the m and k prescribed above, one can conclude that 
s(2m(2k + l))>0. 

Having determined the set of integers n which are of the form n = x2-y2, we can now 
address the problem of finding the exact number s(n) of such representations. Primarily, this will 
entail determining whether any duplication occurs between the representations generated from the 
various distinct factorizations discussed in Case 2. To this end, we need to demonstrate that if in 
Z\{0} ajbt = ajbj, with ai * aj9 bj for i * j , then one has a, +ft, *a } +bj. Suppose to the contary 
that ty+b^aj+bj, then there must exist an r GZ\{0} such that aj=af+r and bj=bj+r. 
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Substituting these equations Into the equality apt = apj9 one finds a^bj +r) = (af +r)A-. Hence, r 
must be a nonzero Integer solution of 

r(at~hj) = 0. (3) 

However, this Is Impossible as r = 0 Is the only possible solution of (3) since at-bj * 0; a contra-
diction. Consequently, If for two distinct factorizations atht = afij = n9 one solves (2) to produce 
corresponding Integer solutions (xj9yt) and (xj9yj)9 then we must have xi=(ai+bi)/2*(aJ + 
bj) / 2 = Xj and so yt = xt-a^Xj*~a- yj. Thus, In order to calculate s(n) for an n * 4k + 2, one 
must determine the total number of distinct factorizations discussed In Case 2. Considering when 
n is odd we have, from Lemma LI, N(ri) nontrlvlal distinct factorizations. However, as 
(a, i) = (l,w) contributes a representation, one has s(n) = N(n) + l9 which we write here using 
d(n) = d0(n) + dx(n) as 

( ~ (dQ(n) 4- dx(n)) for nonsquare n, 
(4) 

j (d0 (n) + dx (n) + 1) for square n. 

Suppose n is even, then, as was observed previously, s(n) Is equal to the total number of distinct 
factorizations atbt = n were both ^ and bt are even. Denoting the number of distinct factoriza-
tions of« = atbt with a,. and bt of opposite parity by Nf{n)9 observe that sin) must be equal to the 
difference between the number of distinct factorizations of n and N'(n)9 that Is, s{n) = N(n) + l~ 
Nf(n). To determine N'(n), consider an arbitrary factorization (ci9dt) (possibly trivial) of the 
odd number 2~mn. Now, If 2~mn Is not a perfect square, then (2mci9di) and (ci9 2mdt) must be 
distinct factorizations of n9 which cannot be duplicated by the use of an alternate factorization 
(cj9dj) of 2~mn. Thus, from Lemma 1.1, there are 2(^-w*) distinct factorizations afy =n 
having at and bt of opposite parity. Similarly, If 2"mn is a square, then (2mci9df) and (ci92mdt) 
will be distinct factorizations provided ct ^di9 and so again by Lemma 1.1 we have, counting the 
single contribution from (2mci9ct)9 precisely 2(^2~2W^--l) + l distinct factorizations afif =n with 
af and bt of opposite parity. Consequently, In any case, N'(n) = d(2~mn). Now, observing that 
d(2~mn) = dx(n) and d(n) = dQ(n) + dx(ri), we obtain, for an even n & 4k + 2, the following expres-
sion: 

f \ (dQ(n) - dx(n)) for nonsquare w, 
(5) 

j - (4)(#i) - ^(w) +1) for square n. 

Recalling that d(n) Is odd If and only if n Is a square, we find 

1 + (- f\d^>+1 |0 for nonsquare n9 

2 ) 1 for square n. 

Thus, one can combine equations (4) and (5) into a single expression Independent of the parity of 
n as indicated In (1). Finally, we show that (1) holds for n = 4k + 2. In this Instance, as n cannot 
be a square, \{l + (-l)d(rl)+l) = 0; moreover, dQ(2(2k +1)) = di(2(2* +1)), since every odd divisor 
d of n Is In one-to-one correspondence with an even divisor of w, namely, 2d. Thus, from (1), we 
find that ^(2(2* +1)) = ̂ (d0(2(2k +1)) -dt(2(2k +1))) - 0 as required. 
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Example 2.1: For a given integer n, whose prime factorization is known, one can determine all 
of the s(n) representations of n as a difference of squares from the factorizations ab~n with 
a>b>0 and a = ±b (mod 2), using (x9y) = (j2f̂ 3 - ^ . To illustrate this, we shall calculate the 
representations in the case of a square and nonsquare number. Beginning with, say n = 22 -5-7, 
we have that d^(140) = 8, 4(140) = 4, and rf(140) even, so 5(140) = | ( 8 - 4) = 2. Thus, from the 
two factorizations (a,b) e{(2-7?2-5)?(2«5-732)}5 we find that 140=:122-22, 362-342. In the 
case of w = (2-5-7)2, we have.d^(4900) = 18, 4(4900) = 9, ^(4900) odd; therefore, s(4900) = 
£(18-9 + 1) = . Thus, again from the five factorizations (a, b) e {(2 • 52 - 72,2), (2 - 52 - 7,2 • 7), 
(2-5-7,2-5-7),(2-72,2-52),(2^5'72,2-5)}, we now obtain that 4900- 12262-12242, 2502-
2402,702 ™02,742 -242,1822 -1682. 

To conclude, we present a simple application of Theorem 1.1 for counting the number of 
those partitions of an integer whose summands form a sequence of consecutive odd integers. 
Note that for an odd integer n we do not count n = 0+w as a partition of the required type as 
zero is not an odd integer. 

Corollary 2.1: If p0(n) denotes the number of partitions of a positive integer n having summands 
consisting of consecutive odd integers, then 

Proof: Recalling that the m®1 perfect square is equal to the sum of the first m odd integers, 
one sees that the representation n = x2 ~y2 gives a partition of the required form, provided that 
x-y>\. Moreover, as a consecutive square difference representation can only occur for an odd 
integer, we clearly must have p0(n) = s(n) - 1 for odd n and p0(n) = s(n) for even n. D 
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1. INTRODUCTION 

The concept of a Riordan array was defined in [4] as follows: Let Sf = R[x] be a ring of 
formal power series with real coefficients in some indeterminate x. Let g(x) e 9 and let f(x) = 
EjtLo fkjk G & w^th f0 = 0 (in this paper we assume fx & 0). Let dQ(x) = g(x)9 dk - g(x)(f(x))k, 
and d^k = [xn]dk(x)9 where [xn]dk(x) means the coefficients of x^ in the expansion of dk(x) in 
x. Then an infinite lower triangular array, D = {dn^k \k,n eE,k <n}, is obtained. We also write 
D = (g(x% f(x)) and call D a Riordan array. In this paper we obtain some new relations between 
two sequences and some new inverse relations by using Riordan arrays. Some results are a gen-
eralization of [2] and [3]. 

2. SEQUENCES MELATEB TO MOMDAN ARRAYS 

Let a(x) = Xr=o%^ e ^ and D = (g(x\ / (*)) . Let 

8\x) *=0 

A(x) = a(f(x)) = flAkxke9, 
k^Q 

and 

Theorem 1: We have 

s{x) = g(x)A(x) = ^skxk e 9. 
k=Q 

k=0 \ i = 0 

Proof: By Theorem 1.1 in [5], we have 

A = I Z4,A-ik 0) 

Z<^k=l^MxHf(x)) = Sn 
k^0 

From s(x) = ̂ (x)^(x), A(x) = s(x)h(x), we have 
n n f oo \ m f n \ 

This completes the proof D 
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Theorem!: We have 

(2) 

where dnk can be obtained by using one of the following Lagrange inversion formulas (see [1], 
pp. 148-52): 

*rW/(*)Y". 
* n \ x 

*n,k 
_,2n-kX^(-\yn-k >-*y^(-iy 

n j£- n + j 
:K )ff-J[x"-k+J](f(x)y-

(3) 

(4) 

Proof: By A(x) = a(f(x)), we have a(x) = A(f(x)), where f(f(x)) = / ( / ( * ) ) = x and 
/(O) = 0. By [1] and Theorem 1.1 in [5], we obtain an - T^=0d^kAk, in which 

dr.,k=[x"](f(x)f=hx"-k]{^-
n \ x 

or 

This completes the proof. D 

We can combine Theorems 1 and 2 to obtain a generator of an inverse relation. 

Theorem 3: We have the following inverse relation, 

4 = Z X4,A-i 
it=o V/=o 
00 

fc=0 

a k> 
(5) 

where dntk can be obtained by using (3) or (4). 

In addition, we obtain many new identities by using (1) or (2). The interested reader can 
consult [2] and [3]. 

Example 1: Let g(x) = -^- and f(x) = /* ' . Then h(x) = l-ax and 

dn = [xl i_f^L_Y = Per*(nHs-i)k 
"•* L n-axyil-axy) V 5* 

By (1), we have 
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By (2) and (3), we have 

kr.M-htl bl% (-1)""-""*-' Ujlty 

So we obtain the following inverse relation: 

Letting s = l = l,a = t, and b = s, we can obtain Theorems 3 and 4 in [3]. • 

Example 2: Let Dx = (1? log(l-x)) - (dl
n%k) and D2 = (1? (1 -ex)) = « k ) . Then 

< * = M 0 o g ( l - x))k = (-1) V ] ( l o g ^ ) j = (-If ^Sl(n, k) 

and 

<k =[«"](!-e*)* =(-l) iM(eJ C-l)A r = ( - l ) * ^ ( M ) . 

From /4 (x) = a(log(l - x)), we find a(x) = .4 (1 - e*). So by (1) we have 

«» = X(-i)*W".*)4, 
where ^(w, it) and ^(w, £) are the Stirling numbers of both kinds and have the following generat-
ing functions (see [5]), respectively: 

log 
1 r=f^i(^)^ (cr-ir=S5f^»)*"- D 

n=0 "• n = 0 " -
1-X 

3. SEQUENCES RELATED TO EXPONENTIAL RIORDAN ARRAYS 

Let 

/w=Z/*fi 
it—0 

We introduce a new notation, (xk)f(x) = fk9 and assume f0 = 0, ft & 0. Let 

kv 
For an infinite lower triangular array E = {e^ ̂ K * e N ? A < TI}, if 
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%,k=(x")g(x)&&f-(k>0), 

for fixed k, then we write E = (g(x\f(x)) and say that (g(x\f(x)) Is an exponential Riordan 
array. 

Let 

k=Q ^ ! 

and let E = (g(x), f(x)) be an exponential Riordan array. Let 
00 Jk °° v& 

and 

m=wrlkPtT* **>=*<«*»=I*IT-

q(x) = g(x)B(x)=Ydqk~TV' 

For the exponential Riordan arrays, we have the following theorem as Theorem 1.1 In [5]. 

Theorem 4: We have 

I X A ==<*">£(*)£</(*)). (6) 

Proof: 

i e „ , A = i(x")g(x)^^bk = (x")g(x)b(f(x)). D 
k~Q k=0 Kl 

Example 3: Let E = (ex, - x) be an exponential Riordan array. Then 
\k 

en,k=(x")ext$- = (-Vk("k 

For 
ax __ J)x jo n 

where a, ft = (1 ± ̂ 5) / 2 and Fn Is the w* Fibonacci number defined by Fn+l = Fn + Fn_l9 F0 = 0, 
Fl = l (see [2]), by (6) we have 

£( -1 )* \£)Fk = (x»)e*b(-x) = <s")e*e
 a_b = <*">-*(») = "^> 

that is, 

it=o v / 
This is (8) in [2]. D 

By (6), we can obtain many new identities. The interested reader can refer to the related 
documents. 

Theorem 5: We have 

B„ = t{i{"\kPn-]bk- (7) 
k=o V/=o v J ) 
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Proof: The proof is similar to that of Theorem 1. • 
Theorem 6: We have 

CO 

K = 2 X A (8) 
where e}%k can be obtained by using one of the following Lagrange Inversion formulas (see [1], 
148-52): 

ft# From j?(x) = b(f{x)\ we have A(x) = B(f(x)), where / ( / ( * ) ) = f(f(x)) = x. So 

6/) = <x»)JB(/») = £ e M 4 , 
&=0 

where 

or 

^*=Mf}or>))t=f}*(%-*)2^(B}*)>ry[^>](/(^ 

(k-l)\{ n )fa(n+jXn-k + jy\ J )Jl { 'UK)) ' 

Theorem 7: As in Theorem 3, we have the following inverse relation, 

*„ = Xe«,A, 
Jfc=0 

where e„^ can be obtained by using (9) or (10). 

Example 4: Let (g(x\ f(x)) = (1, log ̂ ) . Then 

By (7), we have 

jfc=0 
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By (10), we have 

e - n\ (2n-kY^ (-1)' f " - * W * + / N f i o a
 l Y 

(*-l)l 

By (8), we have 
^(^fj^^t/W"-^ 

Therefore, we obtain the following inverse relation: 
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1. MOTIVATION 

The NSW numbers (named in honor of Newman, Shanks, and Williams [3]) were studied 
approximately 20 years ago in connection with the order of certain simple groups. These are the 
numbers fn which satisfy the recurrence 

/ » i = 6/w- /*- i 0 ) 

with initial conditions fi = l and f2 = 7. 
These numbers have also been studied in other contexts. For example, Bonk, Shapiro, and 

Simion [2] discuss them in relation to Schroder numbers and combinatorial statistics on lattice 
paths. 

Recently, Barcucci et al. [1] provided a combinatorial interpretation for the NSW numbers by 
defining a certain regular language 2J and studying particular properties of 2J. They close their 
note by asking two questions: 

1. Do there exist infinitely many fn prime? 
2. Do there exist infinitely many fn composite? 
The goal of this paper is to answer the second question affirmatively, but in a much broader 

context. Fix an integer k>2 and consider the sequence of values satisfying fn+l = kfn~~fn-\> 
fi = l9 and f2 = k +1. Then we have the following theorem. 

Theorem LI: For all m > 1 and all n > 0, fm l/^-i^+w 

2. THE NECESSARY TOOLS 

To prove Theorem 1.1, we need to develop a few key tools. First, let a be a zero of 
x2 -Jbc + 1, the characteristic polynomial of the recurrence. If a e Q (the rational numbers), then 
we may assume that a = f, where m, n eZ and (m,ri) = l. Hence, we have iw2 -kmn+n 2 = 0 or 
iw2 = kmn -n2. It is clear then that m\n2 and n\m2, so that f = ±1 because (m, n) = 1. Therefore, 
Z [ a ] n Q = Z. 

Now define congruence in Z[a] by writing X = fi (mod y) for A, fi, v eZ[a] to mean that 
Uzp- eZ[«], where v * 0. Note that if A, /i, v eZ and A = fi (mod v) by this definition, then 
U^L eZ|[a]n Q, which implies ^ ^ eZ, so that A s / / (mod y) by the conventional definition 
of congruence. 

Also, note that if y eQ(a) and A, /i, v, yX, YP* Yy eZ[a], then X = fi (mod y) implies yX = 
yfi (modyy). 

Now we are ready to complete the proof of Theorem 1.1. 
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Proof: We first handle the case k = 2 separately. In this case, it is easy to show that 
.£ = 211-1 for n>\. Then f(2m_l)n+m = 2((2m-l)n+m)-l = (2m~l)(2n + l) and fm\f(2m.l)n+m 

clearly. 
Next, we assume that k >2. Since a is a zero of x2 -kx + 1, a is neither 0 nor 1. Also, 

a2 + l = ka. Note that /? = \l a is the other zero of x2-kx + l, and a+(5 = k. Since a and/? 
are distinct, we know that fn = Aan + B/3n for some constants i4 and 5, and since / 0 = -1 and 
f = 1, we have 4̂ + B = -1 and A a + J5/? = 1. Solving these two equations yields 

, 1+/? « ^ 1 + a i4 = ^r and 5 = -
a-p a-p Therefore, 

/ f f l = ^ ( 0 + y 9 ) a m - ( l + a)yS'") = - ^ ^ l + l j a ' » - ( l + a ) ^ 

1 /-/i . „ \ „m-l / i , „ \ om\ _ l + CC , m - l • ((1 + d)aTx - (1 + a)pm) = - ^ ( a " " 1 - pm). 

Now let Um = am-1-/3m eZ[a] {fi = k-a), where /w>l. Then am_1 = y0m (mod C/m) implies 
ff2m-l = ama^l _. ^ m _ } ^ ^ j ^ ^ 1 = p,p*-l = ̂ l^m-l = 2 (m o d JJJ H e n c e 

TT _ /v(2w-l)«+m-l _ n{2m-\)n+m 
u(2m-l)n+m ~ u P 

s pm(a(2m-l)n - ft2™-1*") (mod t / J 

S 0 (mod£ / J . 
Therefore, 

o r fm\f(2m-l)n+m- ^ 

^J^-^-ofmod^If/, 

3. CLOSING THOUGHTS 

We close by noting that this theorem proves fm\f(2m-\)n+m f°r a variety of well-known 
sequences {fm}Z^\ other than the NSW numbers, including the odd numbers (k = 2), the Lucas 
numbers L^ (k = 3), and the Fibonacci numbers F4w+2 (1 = 7). 
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1. INTRODUCTION 

B. J. Powell [2] conjectured that, for any positive even integer m and for any positive integer 
n sufficiently large for which mn + l = q, where q is a prime, the Diophantine equation 

Ax?+By" = Cz" (1) 

has no solutions in positive integers x, y9 and z, where A9 B, and C are natural numbers. Q. Sun 
[4] provided evidence in favor of this conjecture by showing that, if 

(A±B±C)(A±B)(A±Q(B±C)*0, 
where A, B, and C are even nonzero integers, then, if 

n>[(\A\ + \B\ + \C\)«m)-l]/m 

and q = nm + l is prime, $(m) is Euler's totient fiinction, then equation (1) has only the trivial 
solution xyz = 0. 

A corollary of a theorem in the paper of G. Faltings [1] is that equation (1) has only finitely 
many solutions, coprime in pairs, for n > 3. 

Thus, there has been considerable interest in the problem of the solvability of (1) in integers. 
In this paper we find further conditions under which (1) has no nontrivial natural number solu-
tions. Various relationships between variables in the equation are found excluding the possibility 
of nontrivial solutions. 

In the following we denote by N the set of nonzero positive integers and we denote by Z the 
set of integers. 

2. RESULTS 

We consider the Diophantine equation 
Axn + Y = Cz\ (2) 

where A, C, 7, x, n9 and z are all integers. Clearly, (1) is a special case of (2). Therefore, if (2) 
has no solutions for Y = By", then (1) has no solutions. 

Two lemmas are given before our main theorem. This Theorem 1 specifies conditions on a 
prime natural number, such that if these conditions hold then (2) has no solutions and therefore 
the corresponding version of (1) has no solution for a specific choice of variables. 
Lemma 1: If A, C, Y9 x, z, n e M in equation (2), then A>C implies x < z. 

Proof: If A>C, then xn <-^xn <zn because Axn <Czn. So x< z. D 

* We must sadly report that the author of this article recently passed away so any questions or concerns should be 
sent to the editor. 
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The following lemma is an application of the binomial theorem and is crucial to our 
arguments. 

Lemmm 2: Suppose q is a prime, N,M,X,ZGZ and A, C, q,u,teN. Axm +qfM = Czm and 
Axr + <fN = Czr, where q1\CmAr -C'Am (which is satisfied, in particular, by q^C-A), and 
(q,m) = (qyQ = (g9 A) = (q9x) = (q,N) = 1, then u>t. 

Proof: Now 

So, from the binomial theorem, we find that 

Nfl2t + Ni^2u = (cmAr - CrAm)xrm + r^A^x^'^M - mCrAm~lxr^l)quN 

for particular NlyN2 e Z . 
So t > u implies q\mCAxN, which implies q\m or q\C or q\ A or q\x or q\N; which are all 

contradictions. • 

Theorem 1: Let q be a prime, when there exists t,n GN 5 n>q-l such that fr|^4-C, fr||F then 
there are no solutions to the Diophantine equation (2) for (q, n) = (q, Ax) = (f, Cz) = 1, where fr 

does not divide zq~l - xq~l. In particular, this last condition holds if either 
(a) i>{q-t)logqz and A>C,Y,x,z GM, or, 
(b) iff2 does not divide z-x but q\z-x, F e Z . 

Proof: Now we may assume 

Ax?+q'M = Czn (3) 
and 

^ X ^ + 1 4 - ^ = Cz^ + 1 , (4) 

where (q, N) = lby the lesser Fermat theorem. Therefore, from Lemma 2, 

u = t + k, where i e N u f O } . 

Hence, after multiplying (4) by xq~l, we obtain that 

Axn + qt+k+q~lNq = Czn-q+lxq~l (5) 

for Nq = x ^ W e Z. Then, after subtracting (3) from (5), we find that 

qt+k+q~lNq = Czn-q+l(xq~l-zq-l) + qtM. 

Therefore, q1 \zq~l -xq~l, since (C, q) = (x, q) = (z,q) = l. Thus, (2) has no solutions for qf > zq~l 

when A > C, because z > x from Lemma 1. After taking logarithms, this is equivalent to t > 
(q-l)logqz. 

Now assume that the conditions of case (b) hold, then 

— = zq-2+xzq~3 + °~+xq-2 

z-x 
^(q-l)zq~2 (modq). 
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Hence, the left-hand side is not divisible by q, because (q-\q) = (q,z) = l. So q2 does not 
divide z9'1-xq-\ D 

X EXAMPLES 

As an example of our Theorem 1, we show that the following Diophantine problem is not 
solvable, where the details are given in our Theorem 2. 

Theorem 2: If x, y,t9k e M9 then the Diophantine equation (1 + 3f )x5 + 3fy5 = 55^ has no solution 
for (x, 3) = 0 ,3) = (*, 3) = 1 and / > 4k . 

Proof: The conditions of Theorem 1(a) are satisfied for q = 39 A = (1 + 3*), z~5k
9 and 

n = 5, since t > 4k > 2k log3(5). D 

It would be very interesting to find an elementary proof of Fermat's last theorem; to this end, 
we provide a new elementary sufficient condition for Fermat's last theorem to hold. This condi-
tion is given as Theorem 3. A more general result can be found in the paper by K. A. Ribet [3]. 
However, Theorem 2 provides a purely elementary route to a solution of the Diophantine equa-
tion under consideration. 

Theorem 3: Fermat's last theorem holds if there are no t eM and x9y9z G Z , such that, for 
p > 3 a prime, xp + 2fyp = zp and z - x = 2fL for some I G Z with (x, 2y) = (2y9 z) - (x, z) = 
(y,2) = l. 

Proof: It is well known that to prove Fermat's last theorem we need only show that there are 
no integer solutions to the Diophantine equation xp + yp + zp = 0, with (x, y) = (yyz) = (x, z) = 1. 
Hence, we may assume that 

xp + 2fy{ = zp
9 (6) 

where x, z, yx e Z , with (2j1? z) = (x, z) = (2j1?x) = (yl92) = 1, by rearranging the variables if 
necessary, since two of the x, y9 z must be odd. All the conditions of Theorem 1 are satisfied for 
equation (6) for the case q-2. Because x, z are odd, we may assume that z - x = 2(2,7 + 1) or 
z - x = 4K9 where J , I G Z . In the first case, 2\z - x but 4 does not divide z-x. Consequently, 
from Theorem 1, Fermat's theorem holds in this case. Hence, z - x = 41} for l) e Z. Hence, 

2typ = zp-xp 

= (z - x ) (z^ + xz^"2 +. -. + x^1) 
= 41} {(x + 4I1)^-1 + x(x + 4I})P'2 + - • •,+ x^1) 
= 4Z,!F, 

thus defining F. 
So 2t~2yp = LlF. Suppose 2\F9 then 2\pxp"\ which implies 2\p or 2|x; a contradiction. 

Thus, 2'""2 |Z? and (2, F) = 1. Therefore, there exists I G Z such that z - x = 2fL. D 
The paper by K. A. Ribet [3] states that the Diophantine equation xn ^qfyn +zw = 0, where q 

and n are distinct prime numbers and q e {3,5,7,11,13,17,19,23,29,53,59} does not have any 
solution for n > 11. Theorem 4 uses Theorem 1 to obtain, in particular, an asymptotic result con-
cerning the related Diophantine equation 

xn+qsyn = zn (7) 
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for infinitely many q and n. Note that Theorem 4 is not a special case of Q. Sun*s aforementioned 
theorem, because in Theorem 4 n is not required to satisfy the constraint that nm + l is a prime for 
suitable m, but. n is required, in particular, to be coprime with respect to q; which is a weaker 
constraint. 

Theorem 4: The Diophantine equation (7), with q, x, n, t, y, and z natural numbers, q an odd 
prime, and (f, ri) = (q, x) = (q, y) = (g, z) = 1, has no solutions if 

In particular, no solution exists if 
x>yn-l{q~iy-lzn-1. 

Hence, there exists a positive integer N(x, q, y, z) such that there are no solutions to (7) for 
n > N and x > y. 

Proof: Suppose qf > zq~l - tf~l
9 then qt does not divide (Mly) zq~l ~ xq~~l. Therefore, from 

Theorem 1, there is no solution to the Diophantine equation (7) when 

— — = qt>zq~l-x^\ 
yn 

which is equivalent to 
n _ n 

given that (7) holds. 
So there is no solution to (7), given that (8) holds, which, after canceling the factor z—x, 

results in 
zn-l+xzn-2 + .., + xn-l 

z 9 - 2 + x z < 7 - 3 + . . . + x < 7 - 2 

Noting that z > x, this is satisfied if 
nx"-1 

>y". 

(q-\)z<> 
which occurs if and only if 

!°£W + ̂ l\og{x) > logC) + hog{{q - \)z*-1). 
n n 

This, in turn, is satisfied if 

l o g ( x ) > ̂ l o g C v ) + - ~ l o g ( ( 9 -1)^ - 1 ) • 

Consequently (7) has no solutions when 
_ n l q-\ 

x>y*-x{q-X)»-xzn-x. 
In particular, let j , q9 and z be all fixed, then, given s>03 there is M>0 such that there are no 
solutions to (7) lor n > lid, (;?.,q*> = <>, qj = (y\ 7} = I, 

X> V\iJr ::t. 
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Thus, there exists N>0 such that, if n> N9 there are no solutions to (7) when x>yy because x 
and j are integers aed e may be chosen arbitrarily small. D 
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program, and he was a consultant to the Washington State Superintendent of Public Instruction, to 
the State Department of Education and to the National Science Foundation. 

Concerning The Fibonacci Association, CaS is a Charter Member He served on the Board of 
Directors from July 6, 1983 to June 19, 1999 and he was the President for the last fifteen years. He 
was a strong supporter of the Fibonacci Research Conferences, attending most of them and present-
ing papers. Under his leadership, the organization became stronger and more unified. 

On the unprofessional side, Cal is an avid fisherman and lover of the outdoors. It was not unusual 
to see him fly casting in the lakes and streams or walking the trails of the idyllic Idaho wilderness and 
sometimes you could even see him boating down the rapids of the Snake River, Cal also has a 
beautiful tenor voice, which he put to good use as a member of his church choir, a member of the 
Vandeleers, a well known University of Idaho choral group, a member of the Eugene Gleesmen, 
during his graduate years, a member of the Pullman/Moscow Chorale and a member of the Idaho-
Washington Symphony Chorale. Cal was also a very dedicated husband whose strongest supporter 
was his wife Jean on whom he always knew he could count on because her support was always 
there. Finally, Cal was a devoted father to his two children, Tracy and Greg. 

Cal, for all that you have done in so many ways for so many people, we say thank you. Enjoy 
retirement and know that you have made a difference to so many people who have crossed your path. 
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1. INTRODUCTION 

Given a positive integer N, a representation of N as a sum of distinct Fibonacci numbers in 
descending order is a Fibonacci representation of N. Let R(N) be the number of Fibonacci repre-
sentations of N. For example, J?(58) = 7, since 58 can be written as: 

55 + 3 34 + 21 + 3 34 + 13 + 8 + 3 
55 + 2 + 1 34 + 21 + 2 + 1 34 + 13 + 8 + 2 + 1 

34 + 13 + 5 + 3 + 2 + 1 
Any positive integer N can be represented, uniquely as the sum of distinct, nonconsecutive Fibo-
nacci numbers; this representation is the Zeckendorf representation of N, denoted Zeck N. In 
particular, Zeck 58 = 55 + 3 = i^0+J^,in subscript notation. 

The subscripts of the Fibonacci numbers appearing in Zeck N allow calculation of R(N) by 
using reduction formulas [3], [4], If Zeck N - Fn+k + K, where K = Fn + *"+Ft< Fn+l, then 

R(N) = R(F^2q + K) = qR(K)+R(Fn+l-K-2), k = 2q, (1.1) 

R(N) = R(Fn+2g+l+K) = (q + l)R(K), k = 2q + l. (1.2) 

Further, subscripts in Zeck N can be shifted downward c to calculate R(N-l), 

R(N-l) = R(F„+k_c + Fn_c + -+Ft_c-l), (>c + 2. (1.3) 

Lastly, tables for R(N) contain palindromic lists. For N within successive intervals Fn<N< 
Fn+l - 2, the values for R(N) satisfy the symmetric property 

R(Fn+l-2-M)=R(Fn+M), 0<M<F„_h n>3. (1.4) 

The table for R(N) repeats patterns within intervals and subintervals although with increasingly 
larger values; indeed, R(N) -appears fractal in nature. What interests us, however, is the inverse 
problem: Given a value «, write an integer N such that R(N) = n or, most interesting of all, find 
the least N having exactly n representations as sums of distinct Fibonacci numbers. 

Let 4? be the least positive integer having exactly n Fibonacci representations. Then { 4 } = 
{1,3,8,16,24,37,58,63,...}, but while the first 330 values for 4 are listed in [6], 4 is given by 
formula only for special values of n. However, when p is prime, all Fibonacci numbers used in 
Zeck Ap have even subscripts. The sequence {BJ of the next section arises from an attempt to 
make sense of {AJ when n = p is prime. 

2. EVEN-ZECK INTEGERS AND THE BOUNDING SEQUENCE {BJ 

If an integer N has a prime number of Fibonacci representations, then the subscripts of the 
Fibonacci numbers appearing in Zeck N have the same parity. Since R(F2k+1) = R(F2k), we 
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concentrate upon even subscripts. We will call a positive integer whose Zeckendorf representa-
tion contains only even-subscripted Fibonacci numbers an even-Zeck Integer. 

Here we study a bounding sequence {Bn}9 where B„ > A„, n> 1. We let Bn be the least 
even-Zeck integer having exactly n Fibonacci representations. Note that An=Bn whenever A^ is 
an even-Zeck integer. 

We begin by listing even-Zeck N and computing R(N) for N in our restricted domain. In 
Table 2.13 we underline the first occurrence of each value for R(N) and list subscripts only for 
Zeck N. Notice that 2k integers N have Zeck N beginning with F2(k+Y). For N in the interval 
F2k <N < F2k+l - 2, R(N) takes on values in a palindromic list which begins with k - R(F2k) and 
ends with k = R(F2k+l - 2 ) , with central value 2. Interestingly, every third entry for R(N) is even. 

TABLE 2.1. 
R(N) 

I 
2 
1 
3 
2 
3 
1 
4 
3 
5 
2 
5 
3 
4 
1 

N 
1 
3 
4 
8 
9 
11 
12 
21 
22 
24 
25 
29 
30 
32 
33 

R(N) 
ZcckN 
2 
4 
4,2 
6 
6,2 
6,4 
6,4,2 
8 
8,2 
8,4 
8,4,2 
8,6 
8,6,2 
8,6,4 
8,6,4,2 

for Even-Zeck N3t<N< 
R(N) 

5 
4 
7 
3 
8 
5 
7 
2 
7 
5 
8 
3 
7 
4 
5 
1 

N 
55 
56 
58 
59 
63 
64 
66 
61 
76 
77 
79 
80 
84 
85 
87 
88 

ZetikN 
10 
10,2 
10,4 
10,4,2 
10,6 
10,6,2 
10,6,4 
10,6,4,2 
10,8 
10,8,2 
10,8,4 
10,8,4,2 
10,8,6 
10,8,6,2 
10,8,6,4 
10,8,6,4,2 

In Table 2.1, the listed values for R(N) for N = Fm+K can be obtained by writing the 
values (1), 4, 3, 5, 2, ..., from R(N) for N^Fn + K, interspersed with their sums: (1), 5, 4, 7, 3, 
8, 5, 7, 2, ..., the first half of the palindromic sequence of R(N) values for N = Fl0+K, where, 
of course, the second half repeats. The first (1) arises from R(Ft -1) = 1, t > 1; the algorithm 
computes R(N) for even-Zeck N in the interval F2k<N< F2k+l -1, using values obtained from 
the preceding interval for N. 

Theorem 2.1: If N is an even-Zeck integer such that Zeck N ends in F2c9 c>2, F2k<N< 
F2ku - 1 , and N* is the even-Zeck integer preceding N9 then 

R(N) = R(N + l)+R(N*). (2.1) 

Further, R(N + 1) = R(M) and R(N*) = R(Mm), where A4® is the even-Zeck integer preceding 
Min the interval F2k_2 ^ M < F2k„t - 1 . 

Proof: We will use (1.3) to shift subscripts in computing R(N + T) and R(N*). If N = 
Fik +' '9 + Fic+2p -t-F^, c>2, then the even-Zeck integer preceding Nis 
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While (N-l) Is not an even-Zeck integer, we can apply (1.3) to shift each subscript down 
(2c - 2) to obtain an even-Zeck integer, 

= ^(^2k~2c+2 + "°+ F2p+2 +F2-l)= R(F2k-2c+2 + ' *' + F2p+2) = R(K), 

where K is an even-Zeck integer. Similarly, shifting subscripts down 2 c - 2 in (2.2), we obtain 
R(N*) = R(N -1) . From [3], R(N) = R(N +1)+R(N -1) for any integer N such that Zeck N 
ends in F2c, c > 2. The rest of Theorem 2.1 follows from similar subscript reductions, so that 

R(N + 1) = R(F2k_2 + • • • + F2c+2p_2 + F2c_2) = *(Arf), (2.4) 

and/i(Jn = * ( ^ ^ • 
When we list the 2k values for R(N) for even-Zeck N in the interval F2k<N < F2M -1, the 

corresponding values for N can be found by numbering the entries for R(N). For example, 
in Table 2.1, 66 is the 7th entry in the interval Fl0<N<Fn-l (the 6th entry after 55), and 
6 = 2 2 +2 ! corresponds to F2(Ul) + F2{ur); Zeck 66 = F10 + F6+F4. If R(N) is the m* entry in 
the interval F2k<N<F2M-l, and if (iw-l) = 2p + —+2W

? then the associated even-Zeck 
integer Nhas Zeck N = F2k +F2(i?+1) + ••• +i^(w+1). Further, the list is palindromic; the wi* entry 
for /?(#)'equals the (2*"1 -w)* entry. 

Since Ap is an even-Zeck integer when p is prime, Bp = ^ p for prime j?, and Bn> A„ for all 
w > 1. The first occurrences of R(N) in Table 2.1 give us {BJ = {1,3,8,21,24, _ , 58,63,...}, 
where B6 is as yet unknown. Table 2.2 lists the first 89 values for {Bn}, from computation of 
R(N) for even-ZeckN,1<N<F23. 

n 
67* 
68 
69* 
70 
71* 
72 
73* 
74* 
75 
76* 
77 
78 
79* 
80 
81* 
82 
83* 
84 
85 
86 
87 
88 
89* 

Bn 
7166 
7221 
7200 
8158 
7310 
18719 
7831 
8187 
7954 
7205 
18295 
18164 
7815 
7959 
7925 
18918 
18154 
18240 
18112 
19083 
18167 
18146 
7920 

TABLE2.2. B„for l<«<89 
n 
r 
2* 
3* 
4 
5* 
6 
7* 
8* 
9 
10 
11* 
12 
13* 
14 
15 
16 
17* 
18* 
19* 
20 
21* 
22 

Bm 
1 
3 
8 
21 
24 
144 
58 
63 
147 
155 
152 
173 
168 
385 
398 
461 
406 
401 
435 
1215 
440 
1016 

n 
IT 
24 
25 
26 
IT 
28 
29* 
30 
31* 
32 
33 
34* 
35 
36 
37* 
38 
39 
40 
41* 
42 
43* 
44 

Bn 
1011 
1063 
1053 
1045 
1066 
2608 
1050 
1139 
1160 
2650 
2642 
1155 
2663 
2807 
2647 
6841 
2969 
2749 
2736 
7145 
2757 
2791 

n 
45 
46* 
47* 
48 
49* 
50* 
51 
52 
53* 
54 
55* 
56 
57 
58 
59* 
60 
61* 
62 
63 
64 
65 
66 

Bn 
3134 
2990 
2752 
6975 
2985 
3019 
6930 
6917 
6967 
19298 
3024 
7163 
6972 
7297 
7349 
6933 
7218 
7836 
7171 
7315 
7208 
7899 
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In Table 2.2, * denotes Bn = Am which is always true for n = Fk or Lk, and when n is prime. 
However, while we can have Bn = An when n is composite, the most irregularly occurring values 
for B„ are when n is even. 

Theorem 2.2: The following special values for n have An = /?„: 

" = ̂ fc+i 4 = ^ + ^ 4 + ^ - 8 + ^ - 1 2 + -% * ^ 2 ; (2.5) 
/i = ZJk_1 Bn = F2k+F2k„6+F2k_lQ + F2k„l4 + °«% k>3. (2.6) 

Proof: An has the above values for the given values of n from [1]. Since in these two cases 
An is an even-Zeck integer, An~Bn. • 

From computation of the first 610 values for Bm it appears that if Zeck n begins with Fk9 that 
is, Fk <n<Fk+i9 then Zeck Bn begins with J ^ , F2k+29 or ^ + 4 ; this has not been proved. How-
ever, Fm+l is the largest value for R(M) in the interval F2m<M < F2m+l> and all other values for 
R{M) which appear in that interval have Zeck n beginning with Fm or a smaller Fibonacci num-
ber. Note that we are relating n and Bn in an interesting way, since the subscripts in Zeck N are 
used to compute R(N). 

3* PROPERTIES OF {£„} 

Theorem 3.1: IfN is an even-Zeck integer such that F2k< N < F2k+h and if M - Fk+t - 1 , then 
the three largest values occurring for R(N) are: 

R(N) = n N = Bn 

Fk+l M = F&1-19 k>2; (3.1) 

/4+i-/i-4 A/ + 5(-l)*, k>6; (3.2) 
/ki-^-4-^-* M + 39(-l)*, **9. (3.3) 

For even-Zeck JV in this interval, the following values for R(N) do not occur: 
R(N) = Fk+l-p, l<p</U + F W - 1 ? * >9, (3.4) 

except for p = Fk_4. In particular, 

R(N) = Fk+i-l k>7, 
is a missing value. 

Proof: From [1], M is the smallest integer having Fk+l Fibonacci representations; Zeck M 
appears in (2.5). Tables for R(N) show palindromic behavior within each interval for N as well 
as "peaks" containing clusters of values where N = JB„. The l!peak value" is the sum of two adja-
cent values for R(M) at the "peak" of the preceding interval F2k„2 ^M<F2k^t from the forma-
tion of the table for R(N). 

Table 3.1 exhibits behavior near the primary peak value R(N) = Fk+l for the interval 

Recalling (2.1), when Zeck N ends in F2c > F4, R(N) = R(N +1) + R(N*)9 where N* is the even-
Zeck integer preceding N. Since we are looking at consecutive even-Zeck N in Table 3.1, the 
formula for each value of R(N) can be proved by induction, k > 6. 
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TABLE 3.1. R(N) for Even-Zeck JV, F2k +FU_4 <N <F2k +F2 

*odd: M = Fk\t-l = F2k+F2k_4 + - Fu+Fn+F6 

R(N) 

Fu+Ft-s 
4-2 
F -F 
1 k+\ £ k-~4 
Fk-l 

4+1 
4 
4- i 
Fk-2 

^k+\ ~ At-4 

N 

A / - 8 
M-7 
M-S 
M-A 
M 
M+l 
M + 3 
M + 4 
M+13 

Zeck Wends with: 

• • + ^ 4 + ^ 0 
••+^4+^10+^2 
..+ Fu+Fl0 + F4 

..+Fu + Fi0 + F4 + F2 

..+FU + FW + F6 

..+ FU+F10 + F6 + F2 

..+ Fl4 + Fl0+F6 + F4 

..+FH+Fl0 + F6 + F4 + F2 

..+ FU+FW+FS 

kevm: M = Fk\1-l = F2k+F2k_4 + --+Fu+F8+F4 

R(N) 

Fk+l - Lk_4 

4-2 
4- i 
4 
Fk+\ 
4- i 
4+i - Fk_4 

4-2 
Fk+Fk_5 

F*-3 

N 

M-13 
M - 1 2 
M - 3 
M-2 
M 
M + l 
M + 5 
M + 6 
M + % 
M + 9 

Zeck Abends with: 

..+ Fn+F6 + F4 

..+ Fl2+F6 + F4 + F2 

..+ Fn+Fs 

..+ Fn+Fg+F2 

..+ FU+FS+F4 

..+ F]2+Fi+F4+F2 

,.+ Fa+F,+F6 

..+ Fl2+Fi + F6 + F2 

..+ Fn+Ft+F6 + F4 

..+Fu+Fi+F6 + F4+F2 

We show that R(N) = Bn for n = Fk+l - 4 „ 4 because we cannot get the same result for a 
smallerN. In Table 3.1, NIs In the Interval F2k + F2k_4 < N <F2k + F2k„3. To have R(N) = Fk+l-
Fk_4 for a smaller N9 we must have F2k< N <F2k + F2k„4. From (2.6), Lk_t Is the largest value 
for R(N) for even-ZeckNin the Interval F2k+F2k_6 < N<F2k + F2k__4, where Lk_t = Fk + 1_ 2 < 
Fk+\ ~ 1-4 = 1 + 1-2 +1-s> s o R(*0 = 1+i - 1 - 4 cannot occur for N<F2k+ F2k_4, establish-
ing (3.2). Equation (3.3) follows in a similar manner. • 

Corollary 3.1.1: For n - Fk+l -Fk__4 as in Theorem 3.1, 4? = B„ for k > 7. 

When JV is any positive integer, /?(#) displays "peak" values near R(N) = Fk+1 similar to 
those listed in Table 3.1 for even-Zeck integers N. The three largest values for R(N), when Nis 
any positive integer, F2k<N<F2k+h are Fk+U Fk+l-~Fk_5 = 4Fk_2, and 1 + 1 - 1 _ 4 . When n = 
41-2, 4i = Af + 8(-l)*+1 for M = Fk

2
+l-l. The values for R(N) = Fk+l-p, l<p<Fk_5-l, 

k > 6, are missing for iV in that interval. 
A similar "secondary peak" in the lists for R(N) clusters around Lk_h both for N any positive 

integer and for TV an even-Zeck integer; hence, Theorem 3.2. 

N = Bn 

N^Bn 
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Theorem 3.2: If M = F2k + F2k_6 + F2k_l0 + --- = F2k + if_2 - 1 , then when 

» = 4 - i B„ = M, k>5; (3.5) 
n = Lk_l-Lk^ B„ = M+5{-l)k-\ k>l; (3.6) 

» = 4 - i - 4 - 6 - 4 - i o Bn = M+ 39(-i)k-\ k>ll (3.7) 

Corollary 3.2.1: For n = 4 - i " Lk_6 as in Theorem 3.2, A„ = Bn for k > 9. 

4. UNANSWERED QUESTIONS 

Theorem 3.1 shows some values for R{N) that are missing within each interval for even-
Zeck JV, F2k < N <i^^+i? k>9. In what Interval will those "missing values" first appear? The 
value n = R(N) always occurs for some evee-Zeck N9 since, in the worst case scenario, n = 
R(F2n). But when is {BJ complete? 

Conjecture 3.1.3: If R(N) is calculated for all even-Zeck N9 N <F2k+5, thee {BJ is complete 
for l<n<Fk. IfFk <n<Fk+l, then F2k <Bn<F2k+5. 

Finding the least integer having p Fibonacci representations, p prime, is an unsolved problem. 
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In [3], W. Sierpinski proved that there are infinitely many odd integers k (Sierpinski numbers) 
such that k2n + 1 is a composite number for all n>0, i.e., he found that the recurrence un+2 = 
3i#w+1 - 2un9 n>0, has infinitely many initial values UQ = k +1 and ux = 2k +1 that give composite 
un for all n>0. Analogously, R. L. Graham [1] and D. Knuth [2] found composite integers FQ, 
Fl9 (F0, Fx) = 1 for the Fibonacci-like sequence {Fn}, n > 0, Fn+2 = Fn+X +Fn such that Fn are all 
composite numbers. 

In the construction of composite sequences, the authors [l]-[3] used the idea of a covering 
set, i.e., a set P = {pl9 p 2 , ...9ph}9 h > 1, of prime numbers such that, for each n > 0, there exists at 
least one p GP such that un = 0 mod p . 

In this note we give a class of integers a > 0, b, (a, b) = 1 and find integers uQ, ux, ( % ux) = 1 
such that the sequence {un}, n>0, un+2 = ^^n+i~^un w ^ initial values u0, ux contain only com-
posite members. For even n, un has an algebraic decomposition while, for odd n9 un has a cover-
ing set P = {p}. 

To prove the main theorem, we need the following three lemmas. 

Lemma 1: Let integers a, b be such that A = a2-4b*Q. Let integers v0, vx be initial values for 
the recurrence vn+2 = avn+l~bvn, n>0. Then for the sequence {uj, n>0, and u0 = v0w0, i^ = 
VJWJ, un+2

 = aun+i ~ bun, n > 0, we have 

%W
 = W > (!) 

where 
w0 = *(2v1-av0)/rf, ^ = ^ ( ^ - 2 ^ 0 ) / ^ (2) 

d - (2vx - av0, avx - 2bv0), k is an arbitrary integer and wn+2 = awn+x - bwn. 

Proof: Let w0, wx be arbitrary integers. We prove that, if u2n = vnwn9 then w0, wx satisfy (2). 
It is known that the sequence {xn}9 n > 0, satisfies the recurrence xn+2 = axnU-bxn if and only if 
xn = Aan+Bf5n for n > 0, where >4,1? are constants and a , /? are the distinct roots of the charac-
teristic polynomial z2 -az + h, since A = a2 - 4b & 0. So we have 

vn = Axan + Bxf3\ w^^a'+Brf", 

where a = (a + A)/2, fi = (a-A)/2, and 

Ax = (vx-/3v0)/(a-/3\ Bx = (av0-vx)/(a-j3), 
A2 = {wx-pwQ)l{a-p\ B2=(aw0-wx)/(a-J3). 

Furthermore, 

vwww = (^a"+Bxf3n){A2an + ̂ w ) = V 2 « 2 " + (A52 + A2Bx)anpn + B^2". 

So, if AXB2 + A2BX = Q, the sequence {%}, & > 0 , uk = AxA2ak + B^B^ satisfies t4k+2=auk+x-
buk and u2n = vwww. Consider 
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0 = AXB2 + A2BX = (yx - ftv0)(aw0 - wx) I (a - fi)2 + (avQ - vx)(wt - 0wo) /(a - 0f 
= [(a + ^)(v1w0+v0w1)-2a^v0w0»2v1w1]/(a-^)2. 

Since a+fi = a9afi = b9 we have a(vxwQ +vQwl)-2bv0wQ -2vxwx = 0, or . 
(avx - 2ftv0)w0 = (2vj - av0)if x. 

If J = (2vx -av09avx- 2ftv0) and £ Is an arbitrary integer, then we have (2). 

Lemma 2: Let a>\9m>\9 and b be integers such that a = 0 mod w and w0, t#r are initial values 
for the recurrence un+2 = aun+l ~bun, n > 0. If ut = 0 mod wi, then Ujn+l = 0 mod /w for n > 0. 

Proof: Consider the sequence {Un}9 where U0 = 09 t^ = 1, C/^ = aUnJtl-bUn9 n > 0. It is 
known that t/2w = 0 mod « for « > 1. Since i^^+1 = up2n+l ~ ̂ usP2n for w > 0, we have i#2W+1 = 0 
mod HI. 

Lemma 3: Let integers a > 0 and A be such that (a, b) = 1, A = a2 -46 > 0, and i#0? % be initial 
values for i#w+2 =ow;f+1-6i/n, w>0, such that t#0>0, (A3%) = 1, (%W!) = 1, and %>aw0/2. 
Then (i/w, ww+1) = 1 and un+l > aun 12 for n > 0. 

Proof: We prove this lemma by induction. We first prove that (ft, un) - 1 for w > 1. By the 
condition of the lemma, (ft, ut) = 1. Let (ft, î ) = 1 for 1 < i < w. For i = n +1, we have (ft, t/n+1) = 
(ft,aun - ftw^i) = (ft,aun) = (ft, wj = 1. Since (% %) = 1, let (ui, i/m) = 1 for 1 < / < n. For / = w +1, 
we have (wn+i,ww+2) = O w ^ n + i +*w

w) = (u
n+hun) = *• % * e statement of Lemma 3, ut > au0/2. 

Assume that i/}- > au^__x 12 is true for 1 < i < w. Then, for / — w +1, 

M +̂1 = oi^ - *!/„_! = aun/2-houn/2- bun_x 

> aun 12 +a(aurt_l 12)12 -bu„_x > au„ 12 + Aun_x /4 > aun_x 12. 

Thus, the lemma Is proved. 
We now proceed to prove the main theorem. 

Theorem: Let odd a > 2 and ft be integers such that (a, ft) = 1 and let A = a2 -4ft > 0. Let j? be 
an odd prime divisor of a such that the Legendre symbol (ft Ip) = 1 and let I > 0 be any solution of 
the congruence x2 = b mod p. Let v0 > 1, (a, v0) = 1, and vx = tvQ + kp for some positive k such 
that (a, vt) = (v0, Vj) = (ft, v j = 1, vx > ovQ 12. Let d = (2vx - av0, avj - 2ftv0). 

Then the sequence {uj with initial values % = (2v0vt -avfold, uf = (v2 -bvg) Id, and Mn+2 = 
aun+l -bun for n > 0 Is a sequence of composite numbers. 

Proof: By Lemma 1, %, = v ^ , w > 0. Here vra+2 = «FW+1 -ftv„, w > 0, for given initial values 
v0, Vj, and ww+2 = aww+1 ™ftww, w > 0, for initial values w0 = (2vx-av0)/d9 wx = (avl-2bv0)/d. 

We have % = v0wQ = (2v0vt -ov@)/d9 u2 = vxwx = (avf -2bvQvl) id. Hence, 

ux = (u2 + fti%) /a = (avf - abv®) lad = (v2 - bv® ) Id. 

Since I2 s ft mod p9 wl = tv0 + kp9 and (ft, d) = • 1, we have % = 0 mod p. By Lemma 2, i#2w+1 = 0 
mod/? for #i>0. 

Further, (w0, Wj) < (M0, OI^) = (f#0? u2 +buQ) = (% i^) = (v0w0, v ^ ) . Consider 

(v0, ^i) < (v0, dwx) = (v0, ov! - 2ftv0) = (v0, ov!) = 1. 
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Analogously, (w05 vx) < (dw0, vx) = (2^ - % v^ = 1. Since (v0, vx) = 1 and (w0? wx) = l, we obtain 
(ii0, iij) = 1, and by Lemma 3, (un9 un+l) = 1 for n > 0. 

Finally, consider 

By Lemma 3, un+l > aun 12 for n > 0. Thus, the theorem is proved, 

On the other hand, it is easy to prove that there are no primes p0, p1 such that pn = apn_x -
bp„^2, « > 0 , (a, J) = l, and a2 -4A > 0 are primes for all n>\. 

Indeed, if ft s 0 mod pl, then p2 = a^ - % = 0 mod ft. Let ft # 0 mod ft, then there is an 
#i < ft +1 such that Um s 0 mod ft, where £/0 = 0, ^ = 1, f/w+2 - aC/w+1 -ftC/w, « > 0. Since 
Pm+i = PiUmU~-bPoUm, we have j ^ + 1 s 0 mod ft. 

It is interesting to find a sequence of primes of maximal length for the Mersenne recurrence 
pn+2 = 3pn+l - 2pn for n > 0, where p0, ft > p0 are given primes. The numerical search for small 
Po* PI 8 i v e s t h e sequence of nine primes {41,71,131,251,491,971,1931,3851,7691}. The more 
exact estimate for length N primes in the Mersenne recurrence uses 

Pn = PoK+i " 1P-iK = P®Mn+l - (3/>0 - ft)Mw, (3) 

where. Af0 = 0, Mt = l, Mn+2 = 3Mn+l-2Mn9 «>0. p0,ft are given primes and 3/%-# *2\ 
t>0. Let m = mmq>2{o(q):q\Qp®-Pi)}, q is prime, and let v(q) be the minimal s such that 
m5 s 0 mod f. Then by (3), |?ms0 mod f and N < m-1. ^ is equal to the upper bound, e.g., 
for the sequence {3467,6947,13907,27827,55667,111347,222707,445427,890967}. Now, since 
pQ = 3467, ft = 6947, and 11(3454 = 3p0 - f t , we have at = L>(1 1) = 10 and N = 9. 
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INTRODUCTION 

If A is a positive integer, let the polynomial A2- AA~l with discriminant D = A2 +4 have 
the roots: 

a = (A + W)l29 P = (A-415)I2. (1) 

Define a primary binary linear recurrence {uj and a secondary binary linear recurrence {vj by 

^{cf-niia-P), vn = a^f}\ (2) 
where n > 0. Equivalent^ let 

u0 = 0, ut = 1, un = i^Vi +w«-2 (3) 
and 

vQ = 2,vx = A, vn = J V ! + vw„2 (4) 
for«>2. Let 

ID if A is odd, 
t = <D/4 1 0 = 0 (mod 4), (5) 

[D/g i O = 2(mod4). 

Note that, in each case, / is an integer such that / s i (mod 4). 
Let (f) denote the Jacobi symbol 
In this note, we prove a divisibility property of the {u„} and of the {vj. In so doing, we 

generalize a recent result by V. Drobot [2] about Fibonacci numbers (the sequence {uj with 
A = l). It has been called to our attention that an alternate proof of Drobot's result follows from 
[1]. Note that, if A = 2, then the corresponding un sequence is called the Pell sequence, and is 
denoted Pn. Thus, we have Px = 1, P2 = 2, P3 = 5, P4 = 12, P5 = 29, and so forth. 

THE MAM RESULTS 

Theorem 1: Let {uj and I be defined as above. Let/? be an odd integer such that q = 2p-l is 
prime, and q\t. If A * 2 (mod 4), let (f) = - 1 . If A s 2 (mod 4) but A>29letq = ±1 (mod 8) 
and (f) = -1 or q = ±3 (mod 8) and (f) = 1. If A = 2, let q = ±3 (mod 8). Then q\up. Further-
more, up is composite unless up = q, which can occur only in the cases (A,p,q) = (1,7,13) 
(Fibonacci) or (A, p, q) = (2,3,5) (Pell). 

Proof: Equation (1) implies 
a-p = 4D afi = -l. (6) 

Applying (2) and (6) with n = p,we obtain 4Dup = ap ~pp. Squaring and applying (6), we get 

Bu2=a2p + p2p+2. (7) 
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Multiplying by 22p l and applying (1), we have 

22p~lDu2
p = 1 {(A + 4B)2p + (A- 4Dfp} + 4p (8) 

If we expand the right member of (8) via the binomial theorem and then simplify, we obtain 

22p~lDu2
p = A2p + X (lf\A2p~2kDk +Dp + 4P. (9) 

Since q-2p-\ is prime by hypothesis, we have 

qf2P)(orl±k<P-l. 

Furthermore, by Fermat's Little Theorem, we have A2p = A2 (mod q), 4P = 4 (mod q\ 22p~l s 2 
(mod q). Thus, we have 

2Du2
p ^ A2 +4 + Dp ^D + Dp ^D(l + Bp~l) (mod q\ 

which yields 2u2 s= 1 + D^"1 (mod f). 
Since p - l = (qr-l)/2, Eulerfs criterion yields 

,2 , . . ' / ) 2 i £ s l + ^—J (mod ^). 

Therefore, to prove that q\u , it suffices to show that (y) = - 1 . If .4 # 2 (mod 4), then (̂ -) = (̂ -). 
Since f = 1 (mod 4) and t > 1, we have 

GMf) -
by hypothesis, so we are done. 

If A = 2, so that D = 8, then 

mm 
since g = -3 (mod 8) by hypothesis. More generally, if A = 2 (mod 4) but 4̂ > 2, then IHfHiiHf? (f)-i 
since / = ±1 (mod 4). By hypothesis, we^have (|) = ~(|-) so we are done. 

The last sentence of the conclusion of Theorem 1 is now an easy corollary. 

Remarks: If A = 1, then un = Fn. (TMs~ was the case considered in [2].) If t is composite, then 
the determination of congruence conditions on q (mod t) such that {f) = (j) = ±1 may be achieved 
by factoring t as a product of primes and then applying the Chinese Remainder Theorem. 

Corollary 1: If Pn denotes the nm Pell number, the integer p>3, p^3 (mod 4), and q = 2p-l 
is prime, then q\u and q<up. 

Proof: This follows from Theorem 1, with A = 2. 
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We now present an analogous theorem regarding {vj, namely, 

Theorem 2: Let {vj and / be defined as in the Introduction. Let/? be an odd integer such that 
q = 2p +1 is prime and q\t. If A * 2 (mod 4), let (f) = - 1 . If A = 2 (mod 4) but A > 23 let 
f = ±1 (mod 8) and (f) = -1 or q = ±3 (mod 8) and (f) = 1. If 4 = 2, let f = ±3 (mod 8). Then 

Proof: The proof is similar to that of Theorem 1 and is therefore omitted here. 
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1. INTRODUCTION TO THE MAZE 

This paper introduces a fascinating maze based solely on the distribution of the prime num-
bers. Although it was originally designed as a simple puzzle, the maze revealed some rather 
startling properties of the primes. The rules are so simple and natural that traversing the maze 
seems more like exploring a natural cave formation than a maze of human design. 

We will describe this maze using the language of graph theory. In particular, we first define 
an undirected graph G0 with the set of all prime numbers as the vertex set. There will be an edge 
connecting two prime numbers iff their binary representations have a Hamming distance of 1. 
That is, two primes are connected iff their binary, representations differ by exactly one digit. 

The natural starting point is the smallest prime, 2 = 102. Following the graph GQ amounts to 
changing one binary digit at a time to form new prime numbers. The following sequence demon-
strates how we can get to larger and larger prime numbers by following the edges of G0. 

10, 
112 

1112 
101a 

1101a 
111012 
1111012 
1101012 
1001012 

11001012 

= 2 
= 3 
= 7 
= 5 
= 13 
= 29 
= 61 
= 53 
= 37 
= 101 

Actually, we can get to large primes much faster, since the Hamming distance between 3 and 
4099 = 10000000000112 is just 1. However, the above example illustrates that we can get to 101 
even if we add the restriction that the numbers increase at most one binary digit at a time. Even 
with this restriction, it is possible to reach 4099, but it requires a total of 46 steps. 

We can include this restriction by considering a directed graph, Gl9 whose vertices are again 
the prime numbers. There is an edge from/? to q iff the Hamming distance is 1, and 3p>q. Note 
that this always permits changing a 1 bit to a 0 bit, since q < p implies 3p>q. However, if a 0 
bit is changed to a 1 bit, then the condition 3p>q insures that q-p (which will be a power of 2) 
will be no more than twice the original number/?. 

The directed graph Gx is easier to analyze than the graph G0, since at any given vertex only a 
finite number of edges is possible. We define the valence of a prime number p to be the number 
of edges leaving the vertex p on Gx. It is not hard to have a computer map the first 70 steps 
(from 2) to determine which primes are attainable. A very small portion of the map is shown in 
Figure 1. 

By a lucky coincidence, the distribution of the prime numbers is exactly what is needed to 
keep this graph interesting. As N increases, its number of bits grows as log2 N, so to compute 
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the valence of N, we will need to test [log2 NJ +1 numbers for primality. However, by the prime 
number theorem [4], only about 1/lniV of these numbers will be prime. So, heuristically, the 
expected value of the valence will remain roughly constant throughout the entire graph. 

Figure 1 shows all of the primes that can be reached from the prime 2 without having to go to 
primes larger than 1024. However, this does not show all of the primes less than 1024 that can be 
reached from 2. The number 353 can be reached, but not without first attaining the prime 353 + 
227 + 2392+2441. 

(log) C ^ 

^ 0 3 ^ — 7L 

TD C[27) 
6 7 ) ( | 3 > 

8 binary digits 

7 binary digits 

(6T>-

C?9>-
(KD 

cjb>-

- < ! ! > 

-<J31>-

-Cp 

-dD 
-C?I>" -C|9>--CI£) 

7 3 6 binary digits 

5 binary digits 

4 binary digits 

3 binary digits 

2 binary digits 

FIGURE 1. The First 9 Levels of the Directed Graph G2 

The example 353 shows how the directed graph Gx can make back-tracking very difficult. 
Although only a finite number of primes can be reached from a given prime, there may in fact be 
an infinite number of primes from which one could get to a given prime. Some of the numbers 
involved will be very large, so one must be content with knowing that they are "probably prime" 
via the Miller-Rabin strong pseudoprime test. Since the probability of a composite number pass-
ing this test is about 4"100 [7], we can be fairly confident that the pseudoprimes needed to get to 
353 are indeed prime. 

2. THE PARTITIONING OF THE PRIMES 

The prime number 11 is ominously missing in Figure 1. This begs the question as to whether 
one can reach the prime 11 via a much larger prime, as in the case of 353. Obviously, 11 is in the 
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same connected component as 2 in G0, since there is an edge between 11 and 3. But can we get 
from 2 to 11 inGi? 

For each prime p, let us define Gp to be the subgraph of Gx consisting of all vertices and 
edges that can be reached starting from the prime/?. Note that there are many instances when Gp 

is a finite graph. For example, G73 consists of just two vertices, 73 and 89, and the bidirectional 
edge connecting them. The question is whether 11 is a vertex of G2. A simple parity argument 
shows that it is not. 

Definition: Let p > 3 be a prime number. We say that/? is of correct parity if either p = 2 mod 
3 and/? has an even number of 1 bits in its binary representation, or p = 1 mod 3 and/? has an odd 
number of 1 bits. We say that p > 3 is ofincorrect parity if/? is not of correct parity. We do not 
define parity for the primes 2 and 3. Note that 5 and 7 are of correct parity, but 11 is of incorrect 
parity. 

Proposition 1: If an edge in G0 connects two primes /? > 3 and q > 3, then/? and q have the same 
parity. In particular, all of the vertices of G2, besides 2 and 3, are of the correct parity. 

Proof: If an edge connects /? and q, their binary representation differs by exactly one digit. 
Thus, one of the primes will have an even number of 1 bits, while the other will have an odd 
number. 

Also, since/? and q differ by a power of 2, they cannot be congruent mod 3. Neither can be 
congruent to 0 mod 3, for both/? and q are primes > 3. Thus, one of the primes is congruent to 1 
mod 3, while the other is congruent to 2 mod 3. By the way that we defined the parity, if either/? 
or q is of correct parity, then the other must also be of correct parity. 

Finally, we notice that in the graph of G2, 2 only can go to 3, which can only go to 7. Thus, 
any other vertex in G2 must be reached from 7 without going through 2 or 3. Since 7 has the 
correct parity, any prime > 3 in G2 must also be of the correct parity. D 

With this proposition and the fact that 11 has incorrect parity, one sees that 11 is not a vertex 
of G2. In fact, if we delete the vertex 3 from the graph of G0, together with all edges connecting 
to 3, then the resulting graph consists of 2 and at least two large disconnected subgraphs. It is 
highly probable that these subgraphs are both infinite. The connected components of G0—{3} 
form a partition of the prime numbers. By convention, we will include 2 and 3 in the partition that 
contains the vertex 7. 

The parity argument shows that there must be at least two partitions. We will call the parti-
tion containing the first 4 primes the a-partition, which would of course contain all vertices of 
G2. A second partition, the ft-partition, contains the prime 11. All primes in the ^-partition 
would have incorrect parity. 

3. ISOLATED PRIMES 

In asking how many partitions there are, one must ask whether there is any prime /? totally 
isolated from any other primes in G0. In order for this to happen, p + 2" must always be com-
posite whenever 2n > /?. This is closely related to two other problems: the Polignac-Erdos prob-
lem and the SierpiAski problem. 

In 1849, Polignac conjectured that every odd integer > 1 could be expressed in the form 
2n + /? (see [10]). In 1950, Paul Erdos [3] disproved this conjecture, and in fact proved that there 
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Is an arithmetic progression of odd numbers, no term of which is of the form 2n + p. In fact, no 
term in this sequence is of the form 2n ±p, where/? is a prime. If we considered negative terms in 
this arithmetic progression, and found a term -k such that k is prime, then k would be a candidate 
for an isolated prime. 

In 1960, SierpiAski [9] asked: for what numbers k is 2m • * +1 composite for all m > 1. Such 
numbers are called Sierpiiiski numbers. The smallest SierpiAski number is believed to be 78557, 
but there are several smaller candidates for which no prime of the form 2m • k +1 is known [!]. 

SierpiAski showed that, ifk belongs to one of several arithmetic progressions, then any term 
of the sequence k + l, 2k +1, 4£ + l, ..., 2m-k + l is divisible by one of a set of 6 or 7 fixed 
primes. The set of primes is called the covering set for the Sierpiiiski number. The number 
78557 has the covering set {3, 5, 7, 13, 19, 37, 73}, while the next known Sierpiiiski number, 
271129, uses {3, 5, 7, 13, 17, 241} as its covering set [5]. 

The relationship between the Sierpiiiski numbers and the Polignac-Erdos numbers is given in 
[10]. Since the Polignac-Erdos numbers are in turn related to the isolated primes, there is a direct 
connection between the Sierpiiiski numbers and the isolated primes. The following proposition is 
taken from [10]. 

Proposition 2: Let k be a Sierpiiiski number with a covering set S. Then, for all w, k + 2n will be 
divisible by some prime in S. 

Proof: Let Nbt the product of the odd primes in the set S. If we let L = $(N), then N will 
divide the Mersenne number 2L -1 by Euler's theorem. We then have that, for all m, 

gcd(2m>k + l,N)>l. 

Multiplying the first part by 2L"m gives 

gcd(2L^ + 2L~w,#)>l . 

Since 2L s= 1 mod N9 we can replace 2L • k with k and write n for L - m to give us 

gc&{k + 2n,N)>\. 

Hence, for all n,k + 2n is divisible by some prime in S. Note that this process is reversible, so any 
covering set which shows that k + 2n is always composite will show that k is a Sierpiiiski num-
ber. D 

This proposition makes it clear how to search for isolated prime numbers. We need to find a 
Sierpiiiski number that is prime, and for which changing any 1 to a zero in its binary representa-
tion results in a composite number. A quick search through the known SierpiAski numbers [11] 
reveals tat 2131099 satisfies both the extra conditions, and so 2131099 is an isolated prime. 

However, 2131099 may not be the smallest isolated prime. The prime 19249 is still a candi-
date for being SierpiAski. If a covering set is discovered for this number, it will be the smallest 
isolated prime. 

A natural question that arises is whether there is an infinite number of isolated primes. To 
answer this question, we introduce two more sets of numbers related to the SierpiAski numbers, 
the Riesel numbers, and the Brier numbers. 
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Definition: A Riesel number is a number k for which 2n • k -1 is composite for all n > 0. A Urfer 
number is a number that is both SierpiAski and Riesel 

We can use an argument similar to that in Proposition 2 to show that, if k is a Riesel number 
with a covering set S, then k - 2n will always have a divisor in the set S. 

In 1998, Eric Brier [2] discovered the 41-digit number, 
29364695660123543278115025405114452910889, 

and suggested that it might be the smallest such number. However, this record for the smallest 
known Brier number has been beaten numerous times by Keller and Nash [6] and by Gallot in [8]. 
The current record is the 27-digit Brier number, 

5 = 878503122374924101526292469, 
using the covering set 

5 = {3,5,7,11,13,17,19,31,37,41,61,73,97,109,151,241,257,331, 61681}. 

Just one Brier number is sufficient to prove the following proposition. 

Proposition 3: There is an infinite number of isolated primes. 

Proof: Let B be the above Brier number, and let N = 217 times the product of the primes in 
S. Since B and N are coprime, by Dirichletfs theorem [7] there is an infinite number of primes of 
the form aN + B with a a positive integer. All that needs to be shown is that these primes are all 
isolated. In fact, we can prove that aN + B ± 2n is composite for all a > 0 and n > 0. Note that 

i f n : 
if n i 
i f n : 
i fn • 
if n : 
if n : 
if n • 
if n ; 
if n i 
if n = 

0 (mod 2), 
2 (mod 3), 
7 (mod 12), 
13 (mod 24), 
1 (mod 48), 
9 (mod 16), 
0 (mod 9), 
15 (mod 18), 
3 (mod 36), 
21 (mod 36), 

3|a7V + B - 2 n 

7\aN + B ~ 2n 

13|aiV + B - 2n 

24l\aN + B~2n 

97\aN + B - 2 n 

257|o7V + B - 2n 

73\aN + 5 - 2 n 

19|aiV 4 - £ - 2 n 

37\aN + B - 2n 

109|a7V + B - 2n 

if n = 
i fn • 
if n • 
if n ; 
if n ; 
if n \ 
if n : 
if n i 
i f n ; 
i fn i 

1 (mod 2), 
0 (mod 4), 
6 (mod 8), 
1 (mod 5), 
0 (mod 10), 
18 (mod 20), 
34 (mod 40), 
12 (mod 15), 
22 (mod 30), 
2 (mod 60), 

3|aiV + B + 2n 

b\aN + 5 + 2 n 

\7\aN + B + 2n 

31|o7V + J5 + 2 n 

n|aiv-hJe-h2n 

41|a7V + B + 2n 

61681|a7V + J 5 + 2 n 

151|a7V + B + 2 n 

331\aN + B + 2n 

61|aiV + JB + 2 n 

so the only case left to consider is if aN + B~2n happens to be one of the primes in the set S. If 
n < 17, we have aN + B - 2n > B - 217, which is of course greater than all the primes in S. If, on 
the other hand, n > 17, then 

aN + B-2n =5EE67573 (mod217), 

which is again greater than all of the primes in S. Thus, aN+B±2n is always composite, and so 
there is an infinite number of isolated primes. 

In the search for isolated primes, a few primes were discovered that were almost isolated, 
meaning that there was only one edge in Gx directed away from the prime/? rather than toward it. 
The prime 36652489 is a SierpiAski number, so we can tell that the only edge in G0 is one that 
connects to the prime 3098057. Yet this is a directed edge in Gl9 so there are no edges that con-
nect a prime number to the prime 36652489. Hence, for p ^36652489, the vertex 36652489 is 
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not In Gp. Ironically, G36652m not only contains 36652489, it also contains the vertex 2; hence, 
G2 is a strict subgraph of G36652489. 

One could also ask whether there are any finite partitions of G0 other than the isolated 
primes. We may never be able to answer this question, since such a partition would have to con-
tain a prime/? that is "almost Sierpiriski," that is, p + 2n would be composite for all n with one 
exception, that being another member of the partition. The one exception would preclude the 
possibility for a covering set for/?. Without a covering set, proving p + 2n is composite for all 
other n would be at least as difficult as proving that there are exactly 4 Fermat primes. A 
computer search will likely produce some "candidates9' for finite partitions, but no amount of 
computation would be able to prove that the partition is really finite. 

4. SOME CONJECTURES ABOUT THE MAZE 

Conjecture 1: All Fermat primes are vertices in G2. 
This is a very safe conjecture, for it is almost certain that the only Fermat primes are 3, 5, 17, 

257, and 65537, which can be verified to be in G2. Furthermore, any Fermat prime will have the 
correct parity. The first three primes show up quickly in Figure 1, but getting to 257 requires as 
many as 627 steps in the maze, since one first must reach the number 291 +226 + 769. The prime 
65537 requires first getting to 2268 + 2100 + 298 + 283 + 3. Finding the shortest path to these primes 
remains an. unsolved problem. 

Conjecture 2: All Mersenne primes are vertices in G2. 
The binary representation of the Mersennes makes them the natural goal for this maze of 

primes, and by a fortunate coincidence all Mersenne primes have the correct parity. Besides the 
easy ones found in Figure 1, 8191 requires exactly 38 steps, 131071 requires 48 steps, and 219 - 1 
requires 62 steps. The shortest path to 231 - 1 is unknown, since one must first reach 274 + 231 - 1 . 
Getting to 261 - 1 and 289 - 1 are straightforward; however, getting to 2107 - 1 requires first going 
to 2135 + 2107 - 247 - 233 - 4097. Reaching 2127 - 1 requires first getting to 2182 + 2127 - 1 . By back^ 
tracking, a computer has verified that 2521-1 is in G2, but the smallest neighbor to 26 0 7 - l is 
21160 + 2607 - 1 , which is currently too large for the computer to handle. 

Conjecture 3: There are four infinite partitions of G0 - {3} that contain primes less than 1000. 
Proving this conjecture if the fundamental unsolved problem of this maze. We have already 

seen using parity that there are at least two main partitions, the ^-partition and the /^partition. 
But as. we explore G0, two more partitions seem to crop up. Although there is no proof that these 
extra partitions do not connect in some way to the a-partition or the /^partition, there is very 
strong evidence that no such connection is possible, hence the conjecture. A table of the four par-
titions that seem to exist is shown below. 

The conjectured partitions 

a-partition 
^-partition 
7-partition 

| <5~partition 

Lowest prime 
2 

11 
277 
683 

Starting point 
2 

547 
4957 

35759 

Comments 
Main maze ! 

Can go from /3 —> a via 3 
Incorrect parity 
Correct parity 
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The primes less than 16000 in the ^partition are {683, 2699, 2729, 2731, 6827, 8363, 8747, 
8867, 10427, 1067, 10799, 10859, 10883, 10889, 10891, 10937, 10939, 10979, 10987, 11003, 
11171, 11177, 11243, 11939, 12011, 12203, 14891, 15017, 15083,...}. All other primes < 16000 
of correct parity are in the ^-partition. 

Likewise, {277, 337, 349, 373, 853, 1093, 1109, 1117, 1237, 1297, 1301, 1303, 1362, 1367, 
1373, 1381, 1399, 1429, 1489, 1493, 1621, 1861, 1873, 1877, 1879, 2389, 3413, 3541, 4177, 
4357, 4373, 4421, 4423, 4441, 4447, 4549, 4561, 4567, 4597, 4933, 4951, 4957, 5077, 5189, 
5197, 5209, 5233, 5237, 5333, 5381, 5393, 5399, 5407, 5413, 5431, 5437, 5441, 5443, 5449, 
5471, 5477, 5479, 5501, 5503, 5521, 5527, 5557, 5569, 5573, 5581, 5591, 5623, 5653,-5701, 
5717, 5749, 5953, 5981, 6007, 6037, 6101, 6133, 6229, 6421, 6469, 6481, 6997, 7237, 7253, 
7477, 7489, 7507, 7517, 7537, 7541, 7549, 7573, 7621, 7639, 7669, 8017, 8053, 10069, 12373, 
12613, 12637, 12757, 13381, 13397, 13399, 13591, 13597, 13633, 13649, 13669, 13681, 13687, 
13693, 13781, 13789, 14149, 14173, 14197, 14293, 15733, ...} are in the ^partition. All other 
primes < 16000 of incorrect parity, with the possible exception of 6379, are in the /^partition. 
(Analyzing 6379 requires working with numbers larger than 21396, which takes too long to 
determine which of these two sectors it is in.) 

This table includes the starting point for each partition. The starting point is the smallest 
prime s in the partition for which Gs apparently contains an infinite number of the vertices of the 
partition. In other words, for all smaller values of p in the partition, Gp produces a finite graph. 
(For the primes in the /̂ -partition, we would delete the vertex 3 before computing Gp.) It would 
be tempting to think that Gs would contain all of the vertices of the partition, but the almost iso-
lated" primes in the partition, such as 36652489, would be excluded. Hence, the most we could 
say is that Gs contains almost all of the vertices of the partition. In fact, all primes less than 
16000, with the possible exception of 6379, are in either G2, G547, G4957, or G35759. Furthermore, 
for all primes less than 50000, Gp is either finite or contains one of the four graphs. Thus, if there 
were a fifth infinite partition, the starting point would have to be larger than 50000. So the four 
partitions in the above table are the first four partitions in every sense. 

5* CONCLUSION 

It is amazing that the simple rules of the prime maze can raise so many theoretical questions. 
What started out as a simple puzzle turned into a fountain of problems, some of them solvable, 
while others may never be solved. It is ironic that the solution to some of the problems, such as 
finding an infinite number of isolated primes, turns out not involving the binary number system but 
rather just the powers of two. Therefore, the results of the prime number maze is likely to have 
significance in other areas of number theory. 
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1. INTRODUCTION 

Matrices such as 

R = R(D;xhx2,...,xn) = 

\Xn 

Dx„ 

*n-l 

Dx, 

*i ) 

(1) 

are called quasi-cyclic matrices. These matrices were introduced and studied in [2] and [5]. We 
can obtain these matrices by multiplying every element of the upper triangular part (not including 
the diagonal) of the cyclic matrices (see [4]) 

C = 
\Xn *n-l HJ 

byD. 
In this paper we will prove that, for n > 2, 

det(R(Ln;F2n_l,F2„_2,...,F„)) = l, 

where Ln and Fn denote, as usual, the 71th Lucas and Fibonacci numbers, respectively, and det(i?) 
denotes the determinant of R. In addition, if we let 

Ki,k - R(Ln'> Fln-l+k' F2n_2+k, •••> F„+k) 
for integral k, then 

det(R^) = (-l)"-1l„Fk"+Fk"_l. 

The motivation for studying these determinants comes from Pell's equation. It is well known that 
the solution of Pell's equation x2-dy2 = ±l is closely related to the unit of the quadratic field 
Qi-fd). We may extend the conclusion to fields of higher degree. If we rewrite x2 - dy2 = ±1 as 

we can easily do this. The equation 

det 

de . ( ; * ) . « . 

Dx„ 
*2 

\Xn *n-l 

Dx2^ 
Dx* 

*I J 

= ±\ (2) 

is called Pell's equation of degree n. Using our results, we can obtain solutions to an infinite 
family of Pell equations of higher degree based on Fibonacci and Lucas numbers. 
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To prove our results, we will need two propositions. These two propositions came from [2] 
and [5]. 

Proposition 1: 
n-l 

k=0 V'=l 
(3) 

where d = ^D and s = e2nll\ Also, each factor Ef=1 x^'1^'^ of the right-hand side of (3) is 
an eigenvalue of the matrix R. 

Proposition 2: Let n and D be fixed. Then the sum, difference, and product of two quasi-cyclic 
matrices is also quasi-cyclic. The inverse of a quasi-cyclic matrix is quasi-cyclic. 

2. THE MAIN RESULTS AND THEM PROOFS 

We are now ready to state and prove the first theorem. 

Theorem 1: Let#i>2. Then 

det(R(Ln;F2rl^F2n^^FJ) = l 

where Ln and Fn denote, as usual, the rfi1 Lucas and Fibonacci numbers, respectively. 

Proof: For n = 2, we have that 

dQt(R(L2;F3,F2)) = det(j ^ = 1, 

so the result of the theorem holds. If n > 2, let 

T = 

f 1 -1 -1 0 
0 1 - 1 - 1 
0 0 1 - 1 
0 0 0 0 
0 0 0 0 

... o 

... o 

... o 

... 1 

... o 
_ _ " . .. J T 

(A 
0 
0 

-1 
V 

By multiplication of matrices and properties of Fibonacci and Lucas numbers, we have 

RT = 

F2n-l ^n-2 ("I)" 

^M-l Fn 
F F 

0 
0 

(-1)" 
0 
0 

(4) 

(5) 

(6) 

Taking the determinant of both sides of (6) and noting that det(7) = 1, we have 
det(i?) = det(i?) det(I) = det(i?7) 

K 0 - 0} (' F , 

= (-l)2"-4det 
F F , 0 
1 n £ n-l 

Fln-\ Fzn-2 

0 

(-1)"/, w-2 
\Fn+2 ln+l 
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= detf F"+l 17 
• n det((-l)"/„_2) 

1 n A n-lj 

= (F^F^ - Fn
2)(-l)"(»-2> = (-!)"(-!)" = L 

where In denotes the Identity matrix of order n. Thus? Theorem 1 Is true. 

Corollary 1: If D = Ln9 then {F2n_h F2n_2,..., Fn) Is a solution of Pell's equation (3). 

Corollary 2: Let d = ̂ Ln, s = e27tiln. Then 
n-\ f n 

£0-1) 1 
&=o V/=i 

Proof: This Is obvious by Theorem 1 and Proposition 1. 
We now make the following conclusion. 

Theorem 2: The matrix R = R(Ln; F2n^h...?Fn) Is Invertlble. In addition, 

RTl = (-iy-l(I + E-E2), 

where / = L and 

£ = £ . 

Proof: Since det(i?) = 1 * 0, the Inverse J? ! exists. Obviously, 

i? = R(Ln, F2„_l5..., F„) = F^I + F^E + F^E2 + • 

r° i 
0 

k° 

0 •• 
0 •• 
1 •• 

0 •• 
r.- l 

0 
0 
0 

1 

L»] 0 
0 

"oj 

+ F„JE"-1. 

Hence, 

i?(-l)"-'(/ + £ - £ 2) 

(7) 

= (~ I)""1 (F2„-J+F2n.2E + F2n_3E2 + ••• + F^"'1 + F2n_xE + F2n_2E* + • • • 
+F„+lE"-1

 +FnE"-F2n_lE2 -...-Fn+2E"-l-F„+1E"-F„E"+l) 

= Hrl(F2n-iI + F2ri_2E + F2n_lE + F„E"-F„+lE"-F„E"+1) 

= Hr1(F2n_lI + F2„E + F„L„I-F„+1L„I-F„L„E) 

= ( - i r 1 0 W + FiJ + F2n_xE - F2n+lI - (-l)»I) 
=(-iy-1(-iy+1i=i. 

In the above, the three following facts have been used: 
1 • F2„_3 + F2„_2 -F2„_l = 0,...,F„ + Fn+l - F„+2 = 0. This is obvious from the definition o 

Fibonacci numbers. 
2. E" = L„I, E"+l = LnE. This can be verified easily by multiplication of matrices. 
3. LnFn = F2n and L„Fn+l = F2n+l + (-1)". These are well-known properties of Fibonacci 

and Lucas numbers. 
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Corollary 3: Let n > 3 be an odd number and B = Ln. Then 

(^,x2,xj,x4,...,xil) = (l,l,»l,0,...,0) 

is a solution of Pell's equation (3) of degree n. 
Let n > 4 be an even number and D- Ln. Thee 

(Xl3 X2? Xj, X4? . . . , Xn) = ( - 1 , - 1, 1, 0 , . . . , 0) 

is a solution of Pelfs equation (3) of degree n. 
Proof: Based on Theorem 2, when w is odd? we have 

det(R(Ln; 1,1,-1,0,..., 0))det(R(Ln;F2n__h..., FJ) = det(J) = 1 
and 

det(i?(Zll;F2^1,...,Fn))=l 
from Theorem 1, so 

det(/?(Zll;l,l,-l,0,...,0))=l 
and? by definition of solution the conclusion is true. For even w, the proof is similar. 

3, if ORE RESULTS ABOUT THE BETERMWANTS 

Let R„tk = R(Ln;F2n^uk, î „_2+£> •••, ^wX ^ = 0, ±1, ±2,..., be square matrices of degree w. 
Then Theorem 1 has the form det(i?W90) = 1. For det(J?wJ), det(/^2X-»>det(^»,-i)> det(/^_2)> 
..., we can also obtain corresponding results, but the values of these determinants are not 1, so 
that the inverses R^k of R„^9 k = ±1, ±2, ..., are not matrices with integer elements. 

TkeoremS: \_nn 

det(i?„;_1) = ( - i r 1 ( 4 - l ) , 
det(i?M>0) = l, 
det(RtlJ = (-ir1Ln, 
det (^ 2 ) = (-l)"-1i,ll + l. 

The result in the middle of Theorem 3, i.e., det(i?„j0) = 1 is just Theorem 1. The other results 
are closely related to L„, so we list thern here. In fact, they can be deduced from the more exten-
sive following results. 

Theorem 4: Let n > 2 be an integer and let k be an integer. Then 

M{Rn>k) = {-irlLnFk" + Fk% 

To prove Theorem 4, set 

on9k 

^2«+Jfc-l 

^2n+k-2 

Fn+k 

^2n+k-2 

^w+ifc-3 

Fn+k-1 

(rWFk-i 
i-iypk ' 

0 

•• <rWFk-
(-lfFk 

0 

(8) 
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Kk = 

F2n+k-y (-l)"Fk (-lYF^ 
Fln+k-2 

1 n+k 0 

Hm 

0 0 

(9) 

where the elements in the middle are zero in every determinant. Now the proof of Theorem 4 
consists of the following four points: 

1- teKKk) = gn,k+hn,k, 
2- g„,k = Fk»_l+(-d"-lF»-lFk"H-iyFk»-1F„Fk_l; 
3 • hn,k = (- W~lF„+kFk

n~l; 
4- gn,k+h^ = (-irlL„Fk" + Fk"_v 

We can obtain the above four points from five lemmas. 

Lemma 1: Suppose gn> k and hnk are defined as in (8) and (9). Then det(i?Wj k) = g„tk + hnk. 

Proof: Let The as in (5). Then, by properties of determinants, we have 
det(/?„>t) = det(i?;i;,)det(D 

= de t (^ u -7) 

[ 2 n + k - l 

•2n+k-2 

Fn+k 

F2n+k-3 (-lTFk 

1n+k-l o 
= s„,k+Kk-

This completes the proof of Lemma 1. 

Lemma 2 (the recurrence ofgnk): 

(10) 

Proof: By subtracting the second column from the first column of gnk, the first column 
becomes (F2n+k_3, F2rj+k_4, '••yFn-i-k-2)T ^y ̂ e properties of Fibonacci numbers, where J i n the 
superscript denotes the transpose of a matrix or vector. By subtracting the first column from the 
second column, and so on, after n + k-l subtractions between the two columns, the first two 
columns become 

Ai-1 Ai-2 ^0 

Next we exchange the first two columns if n+k is even and we keep the matrix if n + k is odd. 
Hence, the first two columns become 

(Fn K-l - FA' 
yFn_x Fn_2 ••• FQJ ' 
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Thus, 

gn,k=(-iy n+k-1 

Fn Fn_x (-IfF^ 
Fn-x F„_2 (-l)»Fk 

(-WFk 
0 

= (-!)' k-\ 
F , F 
1 n-\ J n 

»-2 ^ 

/? 
Expanding the last determinant by the first row and noting that F0 = 0, we have 

« u = (-l> ,jt-i -Fn-, 

F„-i Fk Fk_x 

Fy F0 0 

'k-l 

0 

+^*-l 

K-l Pn-2 *Vl 

F, FQ 0 

K-i 

0 

=(-i)*- i(-^-i(-i)1 M ,"I/^r2+Fk_1Hf-1g„-1,k)=(-ir'F^Fr2+Fk g n_u. 

Thus, Lemma 2 Is proved. 

Lemma 3: , 

Proof: By induction on w. 
(A) On the one hand, by the definition of g„ k, we have 

&,* = i*3+& i*2+& 
is, = F3+kFWc ~ i&* = H ) ' ,*+2-l (-1) 1-1 

&-1 

[ 2+k J 1+* 

On the other hand, the right side of (11) becomes 

F'li H-m-iK2 H~lfF2Ft%-i = Ft-x-Fi+F^ft 
= if_! - Fk_tFk - i f = Fk_tFk+l - F% = (-1)' 

Hence, Lemma 3 holds when n = 2. 
(B) Assume (11) holds for n - 1 , i.e., 

&-u=^i1+(-ir2^2^r1+(-ir1^-i^r,^-i-
We will prove that (11) holds for n. By (12) and recurrence (10), we have 

gn-ik=nr'F^Fr2+Fk.l(Fk%iH~ir2F„.2Frl+(-iriFn.1Fr2Fk_1) 

= Fk% + (-irlFk"-2((-dh-lF„-i - (F„ - Fn-dFk-XFk + /?_,/£,) 
= /?•_,+(-i)-/r2((-i)*"1^-i - ( ^ , - ^ i V i - i ^ +Fn_lF2_l) 

2002] 



FIBONACCI-LUCAS QUASI-CYCLIC MATRICES 

= Fk\ + (- l )»/ tfr IF t_ I + (-ir1F„_1Fr2(Ffc
2 -F^FM +FkFk.l + i £ 1 ) 

= Fk"_t + {-IfF^F^ + ( - l r ' i v A " . 
Hence, (11) holds for n. According to the induction principle, (11) holds for any number n>2. 
Thus, Lemma 3 is true. 

CoroUaryl: g^n = F^ 

Proof: Let k = n in (11). 

Lemma 4: , VM . „ , , v 

^^c-ir'/w/r1- (13) 
Proof: We obtain this by expanding the FI111 row of the right side of (9). 

Lemmm §: t 

gn.k+Kk = ( " i r ' V ? * +^-1- (14) 
Proof: By (11) and (13), and noticing that Fn+k = Fn+lFk +F„Fk_l9 we have 

=i£,+(-l)-1^, +F„+ 1)F;=^+(-iy-V?-
Hence, Lemma 5 holds. 

F^+c-ir^F;-1. 

Proof: Let £ = n in Theorem 4 and note that Ĵ w = Z ^ . 

Remark: We can verify that our lemmas and Theorem 4 are also true for negative k. 
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Corollary 5: 

det(Rn^) = 
F3M-\ 

Fjm-l 

F2n 

LnF2n
 s 

^ 1 * 

r2n+l 

9 9 ^ ra^3»-2 
9 ' A/*3«~-3 

^ 3 n - l 
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In the notation of Comtet [1], define the partitions of integer n as n = 2>% where J > 1 is a 
summand and kt > 0 Is the frequency of summand i. It is known that the number of subsets of an 
7f-element set is 2" and 

because of 
y _i_=-L( n ) 

Zkf=k 

Equation (1) shows that the number of subsets of an w-element set is related to the number of 
summands in partitions of w. It is surprising that the sums on the right of identity (1) become 
Fibonacci numbers when some summands of the partitions of n no longer appear. 

By means of generating functions, this article obtains the following result. 

Theorem: For any w > 1, Fibonacci numbers satisfy 

(4 *n= I ^ (2) 

(b) F»= I §Ml. (3) 
allfc2/=0 

For example, the partitions of the integer 7 are 
7, 1 + 6, 2 + 5, 3 + 4, 1 + 1 + 5, 1 + 2 + 4, 1 + 3 + 3, 2 + 2 + 3, 1 + 1 + 1 + 4, 1 + 1 + 2 + 3, 
1+2 + 2 + 2, 1 + 1 + 1 + 1 + 3, 1 + 1 + 1 + 2 + 2, 1 + 1 + 1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1 + 1 + 1. 

From (2), we have 
j? = i l + _^L+_2L + _2L = 1 + 2 + 2 + 3 = 8 6 1! 1!-U 11-1! 2!-l! 1 + A ^ + J °> 

and from (3), 

The Theorem can be proved easily by using the recurrence relations of Fibonacci numbers 
and the results of Bell polynomials B„tk [1]: 

and 
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i "n,k\Xh X2?'-"> Xn-k+l) ~ 2-f 
Ylxf< 

z^ n TWO*' ' 

In this article, [f]f(t) means the coefficient of f is in the formal series f(i), so that 

Y f / = — T can be written as Fn = [tn]-—*—=-. 
w£l 

Proof of Theorem: (a) It is well known that Fn+2 = Fn + Fn+l, n > 1, then 

F„ = [t"+2} 

=lyn + 1] 1-f 
l-t-t 

l-t-t' 

l-(£) 
=[/""] 

l - ( r + ^ + / 4 + - ) 

=S[frt](f2+<3+/4+-)t = I I 
fc>i k>\ Zik-n+l L 

it! 
IW,! 

: 5- M 
z*,=«+i n^ , ! 

fc,=0 

(6) The proof is similar; notice that Fn = Fn+l - Fn_t, n>2. Thus, for any n > 2, 

F„ = [t"+l] r'""ln ' 

= [/"]• 

l-t-t2 

l-t2 

-it"-1] l-t-t 
1 

l-t-t2 [t"]l-{^) [t"]l-(t + t3 + t5 + f-) 

r£[t»](t+t
3

+t
5

+f.:f = z X 
kZl ki.1 T.tk,=n 

*! 
n,,^,! ẑ =» n*,r 

all Ar2l=0 

Remark 1: The number of summands on the right of (2) is p(n + T)-p(n), and that of (3) is 
q(n). Here, p(n) is the number of partitions of n and q(n) is the number of partitions of n into 
distinct summands, see [1]. 
Remark 2: It is well known that Fibonacci numbers have a simple combinatorial meaning, Fn is 
the number of subsets of {1,2,3,..., n) such that no two elements are adjacent. Comparing with 
(1), the Theorem shows that Fibonacci numbers have a kind of new combinatorial structure as a 
weighted sum over partitions. 
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