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ON LUCAS v-TRIANGLES 

Hong Hu 
Department of Mathematics, Huaiyin Teachers College, Huaiyin 223001, Jiangsu Province, P.R. China 

(Submitted March 1999-Final Revision March 2002) 

1. INTRODUCTION 

Let N = {0,1,2,...} and T = M \ {0}. Let A and B be fixed nonzero integers with (A,B) = l, 
and write A = A2-4B. We will assume A^O, which excludes degenerate cases including 
\A\ = 2 and B = 1. Define {un}neN and {vn}neN as follows: 

uo = 0, ux = 1 and un+l - Aun - Bun_x for n G Z+; (1.1) 

v0 = 2, vx = A and vn+l = Avn-Bvn_x for n GZ+. (1.2) 

They are called Lucas sequences. The addition formulas 
umv„ + u„vm , vmv„ + Aumii„ jy «,, ,, ^x 

Um+n = m n n m a n ( } y ^ _ m n tnjL for m, II GN (1.3) 

are well known. A list of such basic identities can be found in [3]. 
If A ^ ±1 or B ^ 1, then w1? s^,... are nonzero by [1], and so are vx = u2lul9 v2 = M4/M2, ... . 

In the case A2 = B - 1, we noted in [1] that un = 0 o 31n. IF vw = 0, then uln = i/wvw = 0; hence, 
31n and un = Q, which is impossible since v2~Au2 = 4Bn (cf. [3]). Thus, v0,v1? v2,... are all 
nonzero. 

We set vw! = Ilo<A:<^v^ ^or w G^> anc^ regard an empty product as value 1. For n,k eN 
with n>k,wt define the Lucas v-triangle {£} as follows: 

ia-A (i4) 
(This definition is not new in the case A = l and B = - 1 ; the reader may consult Wells [5].) Simi-
larly, in the case A*±\ or J3*l, Lucas ^triangles can be defined in terms of the sequence 
OUneN (Cf- [ID-

Let q be a positive integer. Clearly, vq = ^ (mod 5) and hence (2?, v )̂ = 1. Let v* denote 
the largest divisor of vq prime to v0,...,v t. Then v* is odd since v0=2. It is known that 
<ym v j G ft 2,| V w ) |} for m,n G N (cf [3] or (2.21) of [4]). If q\n, then ( W vj) = 1 and so 
(^v l l ) = (v;,(v^vw)) = l. 

For m G Z, we let D(w) denote the ring of rationals in the form alb with a G Z, 6 G Z+, and 
(A, /w) = 1. When r GD(M), by x = r (mod wi) we mean that x can be written as r + my with 
j G D(m). For a positive integer q, if 0<k <n<q then {£ } lies in D(v*). 

Let/? be a prime. A famous theorem of Lucas concerning Pascal's triangles (i.e., binomial 
coefficients) states that 

fc:;M:X«)(mod/,) 
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ON LUCAS V-TRIANGLES 

if m, w, s, t are nonnegative integers with s,t<p. An analogy to Lucas u-triangles. was obtained 
by Kimball and Webb [2], by Wilson [6] in some special cases, and by Hu and Sun [1] for the 
general case. In this paper we aim to establish a similar result for Lucas v-triangles. Recall that 
the sequence {un}nM is strong divisible, i.e., (um, un) =|W(Wf„) I for all m,n e N, while {vn}neN is not 
in general This makes our goal more challenging. 

Our main result is as follows. 

Theorem: Let q be a positive integer. For m,n G2N = {0,2,4,...} with m>n, and s,t eN with 
q> s>t, we have 

:/'22){^:,s}•(:){;}(-^)ww,*"', <™^>- <••*> 
A proof of the theorem will be presented in Section 3; it depends on several lemmas given in 

the next section. Our method is different from that of [5] and [6]. 

2e THREE LEMMAS 

As usual, for a real number x, we use L Ĵ to denote the greatest integer not exceeding x. 

Lemma2.1: Let k e Z+ and q GN. Then 

L¥J 

and 
111 

%^^ZPl~V1"2/(-^)/ (2-1) 

=tp-(\7/)^-2'(-^y, (2.2) 
where 

% 

k r*-'1eZ fori = 0,l,...,[-|J. 
k-i\ i 

This known result was included in [3]. 
From Lemma 2.1, we can deduce 

Lemma 2,2: Let k,q,r eN. Then 

\2vr{-B<1t12 +\{-m)kl2-lhuqurvq (modv^) if2|*, 

\Au,ur(-Bqfk-1)n+k(-B^k-^2vrv (modv*) if2j*. I AMgMr( 

Moreover , providing 2\k, w e have 

vfr. _ : (_59) (*- i )« V 9 ( m o d v ^ ) . (2.4) 

Proof: The case £ = 0 is trivial. Below we let k e Z+. Obviously, 

r*-KYV»L¥J(_W¥J-J^- i , f>W*" l v . tf2"*' 
I L¥J J ' |(-5»)(*-1)'2 if 2\k. 
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So, by (2.1), we have 
- v - ^ v Vq vllKJ%lVq \{-B^fl2-\ (mo&vl) if 2|*, 

Ukq U^UBq){k-i)i2 ( m o d 2 ) i f2 |£ 

Similarly, (2.2) implies that 
k 

\2(-Bq)kn (mo&vl) if 21*, 
**~*-|lJ 

[ i fcC-^^-^v, (modv*) if 2|*. 

As 2vtg+r = vAgvr + Aukgur, (2.3) follows from the above. 
Now suppose that k is odd. By Lemma 2.1, 

For any primep, clearly p3"213 eD(p), and for w = 4,5,... we also have pn~2 In eD(p) because 

(1 -h/? -1)""2 > 1 + f^ Y 2 1 ( ^ ~ J ) + O " i)""2 ^ 2 + (/? - 2 ) 0 -1 ) > /?. 

When 0< i< (&-3 ) /2 , by the above, vq~2i~21 (k-2i) &D(p) for any prime/? dividing v so 
vk

q~2i~21 (k - 2i) G D(vq). Thus, we have the desired (2.4). 

Lemma 2.3: Let qbe any positive integer, and let m, w be even integers with m>n>0. Then 

iVoo/- Recall that (v*, 25) = 1. In view of (2.4), for / = 1,3,5,... we have 

^f = (-Bqfivq (modv*). 

Observe that 

T-T v(m-k)g = |-r m/2-j jj m-k j-y v(m-k)g
/(m~k) 

\<k<nV{n-k)q Q<j<nl2n'^~J 0<k<nn~® 0<k<n V(n-k)q ' \n~ * ) 
2|tt 2J* 2|£ 

FT ^zA. rr %-^/((^"^H) 

0<k<n n~k oLL V(n-k)q ' ((* ~ *>*) 
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By (2.2), for / = 2,4,6,... we have viq s 2(-B*y'2 (modv2
q), and hence (vjq, v*) = 1. 

Whenever 0<j<nq and j# q (mod 2#), we have (v y, v*) = 1. Also, 

2%_y = 2v(m_„)g+(m?_y) - 2v„<?_,.(-JB*)<"'-">/2 (mod vp 

by (2.3). Thus, 

TJ ?aa=Ls Y\(-Bq)a?l = (-B^"^ (modvp. 
0<j<nq Vnq-j 0<j<nq 
2qh-q 2q\j-q 

Combining the above, we obtain that 

(ml2\[mq\_(ml2\ n % - / 
l/i/2 JWf"l/ i /2j 11 7~~ 

'm/2\ yw v(m-fc)g T-T vmg-y 
SQ<k<n V(n-k)q 0<j<nq Vnq-j 

2\k 2q\j-q 

This completes the proof of Lemma 2.3. 

3e PROOF OF THE THEOREM 

Recall that 

since s<q. Clearly, 

J mq + ${_ 
\nq +1J " n0<7<„q Vj U0<r<t(2v„q+r) • U0<r<s.,(2v{m_n)q+r)' 

Applying Lemmas 2.2 and 2.3, we then get that 

(ml2\[mq + s\Jml2\\mq\ n o < r ^ (2v r ( - i ?T / 2 ) 
\nl2)\nq + t] l« /2J l^Jn o < r S r (2v r ( -^) ' ' / 2 ) -n o < r , s _ ( (2v r ( -^)( ' " -") / 2 ) 

• & ) 

w \ ( m\a^»i vsl- i jM\t>-V-«?ns-t) 
y"T ' v , ! V , ! 

- ( ^ H * ) ^ ^ * ^ (modv*). 

This completes the proof of the Theorem. 
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AN OLYMPIAD PROBLEM, EULER?S SEQUENCE, 
AND STIRLING'S FORMULA 

Arpad Benyi 
Department of Mathematics, University of Kansas, Lawrence, KS 66045 

(Submitted May 2000-Final Revision August 2000) 

1. INTRODUCTION 

There are several ways of defining the real number e. The most common of them is to define 
e as the limit of the nondecreasing sequence 

Related to this definition is the following problem proposed in 1990 at the Romanian County 
Olympiad: "Study the convergence of the sequence {xn}n>l defined by 

1 \n+Xn 

1 + - = e." HI 
The problem is not hard to solve, but, surprisingly, a different approach to solving it than the one 
given originally by the proposers yields some interesting applications. The solution given by the 
proposers used FHopital's rule. For this, we write 

1 
Xn ~ f 1 \ W' 

H1+s) 
and then obtain 

r " " " V ' X) 1 
2 

If one were to solve the problem in a different way, then a natural question related to con-
vergence would be whether the sequence is bounded or not. The answer to this is given by the 
double inequality 

which proves that the sequence is bounded and xn e (0,1). In view of this, one might ask if (1) 
can be refined to a similar pair of inequalities that incorporate 0.5 in the exponents. In other 
words, is sit true that, for a given 8 > 0 and n sufficiently large, the following inequalities hold: 

Hr<«H) 
In order to answer this question, we will generalize (1) and show how the generalized 

a-inequality can be applied to various problems, namely: find a shorter proof of Stirling's formula 
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than the one given by D. S. Mitrinovic (see [3], pp. 181-84), solve the Olympiad problem men-
tioned before, and study the convergence of a general Euler-type series. 

2. THE a-INEQUALITY 
We prove the following 

Proposition: 
(a) If 0 < a < 0.5, then there exists an x(a) > 0 such that 

\x+a 

(b) If a > 0.5, then 

< e, x> x(a); 

>e, x>0. 

Proof: For a > 0, let fa : (0, oo) -» (0, oo), fa(x) = (l + ±)x+a. Logarithmic differentiation of 
this function yields 

r^-HTH^ym i). 
If we consider now the mapping ga : (0, oo) -> R, ga(x).= ln(l + 7) - x ? ^ , then 

& W ~ x2(x + l)2 •• 
We notice a couple of cases: 

(i) If a e [0,0.5), then g£(x) <0 for all x>x(a) = a/(l~-2d). Thus,g-a is nonincreasing 
on (x(a), 00) and ga(x) > limx_¥O0ga(x) = 0 for all x > x(a). This implies that /£(*) > 0 for all 
x > x(a). Hence, fa is strictly increasing on (x(a), 00). Finally, using the fact that l im^^ fa(x) 
= e, we infer that fa(x) < e for all x > x(a). 

(ii) If a G [0.5,00), then g'a(x) > 0 for all x > 0. From this point, an argument similar to the 
one used before leads to the conclusion that fa(x) > e for all x > 0. 

Before we continue with our applications, let us note that the case a = 0.5 is treated, among 
other inequalities involving exponentials, in [3, §3.6]. 

3. APPLICATIONS 

A. If we let s e (0,0.5) and a = 0.5-8 in (a), we see that xn>±-s for all n>[(l-2s]/4s] + l. 
By (b), it is true that xn < \ + s for any n > 1; hence, 

1 
n 2 

< s, n> n(s) = 1-28 
48 + 1, 

which proves that the sequence converges, indeed, to 0.5. 
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B* It Is well known that Euler's sequence 

2 n — \ 
Is nonclecreasing and converges to Euler's constant, C = .57721566.... We show below that this 
fact Is just a complex consequence of the a-inequallty with a = 0, 1 in the previous section. More 
generally, we use our proposition to study the convergence of the family of sequences: 

1 1 1 
Y (a) = ——+—— + •••+ ln«, n>2,a>0. 
/nX J \+a 2+a n-l+a 

We will prove that (y„(a)) is convergent for any a > 0. Since 

if a< 0.5, then y n+l(a) - y n(a) > 0 f o r a11 n ^ n(a) = [l=^l + 2> a n d i f a ^ °-5> t h e n Tn+i(a)-
yn{a) < 0 for all n > 2. If we could prove that our sequence Is also bounded, then convergence 
would follow automatically. Let us consider first the case when a e [0,0.5). Since a +1 > 1, we 
can write yk+l(a +1) - yk(a +1) < 0, k > 2. But 

yk{a + l) = y^a) + ln{\ + ^ - ^ -
r + 1 

Implies that 
ln(l+j^-\n^+1^yrk+2(a)-rk+1(a),k>2. 

Now, If we let k = 2 ,3, . . . ,«- 2 and add these inequalities, we find that 

y„(a)<ln| + r3(a)- lnfl + - M < ——+ ̂  ln2> n^4> 
fn\ J 2 / 3 W V n-lj 1 + a 2 + a 

which proves that our sequence Is bounded and, hence, convergent. Denote Its limit by y(a). 
Note that y(a) e [m(a), M(a)], where m(a) = rmn{y2(a\..., f„(a)(a)} and 

M(a) = max|x2(a) ,r3(^XY^ + ^ ^ - l n 2 } -

For a = 0, p(0) = C and n(G) = 2; hence, C e [1 - In 2,1.5 - In 2]. Suppose now that a = 0.5. An 
easy computation gives 

r „ ( £ ) = r 2 „ - r „ + 2 b 2 - 2 ^ C + 2 ln2-2 . 

When a e (0.5,1], we have 

which implies y„(a) ->y(a) e [C - 1 , - ^ - In 2]. Finally, if a e (1, QO) , then 
i i i i i 

r"~r"^ = a[T+^ + 2(2+a) + '" + (n-\)(n-l+a)) 
, 1 , 1 1 , , 1 H a a 

<a\— + — ---\ h-,2 2 3 n-\ n) 4 n' 
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hence, r » - » r ( a ) E [ C - f ? 1 ^ - l n 2 ] . 

C. Stirling's formula asserts that 

It is well known that the result is closely related to the behavior of the gamma function, T(x) = 
lQe~*tx~ldt for large values of x. This classical way of deriving Stirling's formula can be found, 
for example, in [1, pp. 20-24]. For different approaches, see also [2] and [4]. We use our propo-
sition to give a proof which is different from the ones mentioned before. This proof uses an 
argument similar to, but shorter than, the one given by D. S. Mitrinovic. We will assume as 
known the following result due to Wallis: 

lim. M = £ 
»-»=°(2«-l)!!V2^TT V2' 

For a> 0, let u„(a) = - ^ , n>2. Then 

thus, (un(jj) is nonincreasing and bounded below by 1. Therefore, l im^^ un(~) = u exists and is 
strictly positive. Note also that 

u2n(\) {2n-\)\\S' 
If we let n -» oo? we obtain u - 42TV, which proves Stirling's formula. Note that in this formula 
the value a = 0.5 is the best one, for 

Too if a <0.5, 
JmH,(a) = (0 i f a > 0 - 5 -
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1. WTMOBUCTION AND SUMMARY 

In [3] it has been shown that powers of the generating function c(x) of Catalan numbers 
{QaeNo= ft ^ 2> 5> 14> 4 2 , •••}, w h e r e No : = {°, I2> •••} (m- 1 4 5 9 a n d A000108 of [8] and refer-
ences of [3]) can be expressed in terms of a linear combination of 1 and c(x) with coefficients 
replaced by certain scaled Chebyshev polynomials of the second kind. In this paper, derivatives of 
c(x) are studied in a similar manner. The starting point Is the following expression for the first 
derivative: 

This equation Is equivalent to the simple recurrence relation valid for Cn: 

(« + 2)Cw+1-2(2« + l)Q = 0, /i = -1,0,1,..., with d = -1 /2 . (2) 

Equation (1) can, of course, also be found from the explicit form c(x) = (1 - Vl -4x) / (2x). The 
result for the rfi1 derivative is of the form 

with certain polynomials an_t(x) of degree n-\ and hn(x) of degree n. These polynomials are 
found to be 

hn{x) = J (~l)mB(n, m)xn-m 

m=Q 

with 

«fc"»=(?X-)/fr} (4) 
which defines a triangle of numbers for «,m eN, n>m>0, where N: = {1,2,3,...}. The first 
terms are depicted in Table 1 with B(n9 m) = 0 for n < m. Another representation for the polyno-
mials bn(x) is also found, i.e., 

b„(x) = -2ftCk_lxk(4x-irk. (5) 
k=Q 

Equating both forms ofbn(x) leads to a formula involving convolutions of Catalan numbers with 
powers of an arbitrary constant X:=(4x-l)/x. This formula Is given In (31). Equation (5) 
reveals the generating function of the polynomials b„(x) because It Is a convolution of two func-
tional sequences. The result Is 
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TABLE 1. B(n, m) Central Binomial Triangle 

7VV 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
2 
6 
20 
70 
252 
924 
3432 
12870 
48620 
184756 

1 

0 
1 
6 
30 
140 
630 
2772 
12012 
51480 
218790 
923780 

2 

0 
0 
1 
10 
70 
420 
2310 
12012 
60060 
291720 
1385670 

3 

0 
0 
0 
1 
14 
126 
924 
6006 
36036 
204204 
1108536 

4 

0 
0 
0 
0 
1 
18 
198 
1716 
12870 
87516 
554268 

5 

0 
0 
0 
0 
0 
1 
22 
286 
2860 
24310 
184756 

6 

0 
0 
0 
0 
0 
0 
1 
26 
390 
4420 
41990 

7 

0 
0 
0 
0 
0 
0 
0 
1 
30 
510 

6460 

8 

0 
0 
0 
0 
0 
0 
0 
0 
1 
34 
646 

9 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
38 

10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

(6) 

The other family of polynomials is 

an{x) = J {-l)kA(n +1, * + l)xn~k 

k=0 

with the triangular array A(n9m) defined for m = 0 by A(n,0) = C„, and for W,/WGN with n> 
m>0by the numbers 

^^^(--i^-fflA2?-?); (7) 

The first terms of this triangular array of numbers are shown in Table 2 with A{n, m) = 0 for 
n<m. Both results (4) and (7) are solutions to recurrence relations which hold for bn(x) and 
an{x) and their respective coefficients B(n, m) and A(n, m). 

Another representation for the polynomials a„(x) is found to be 

a»W = ICitx*(4x-l)-*> 
k=0 

which shows that the generating function of these polynomials is 

(8) 

(9) 

Comparing (5) with (8) yields the following relation between these two types of polynomials 
b„(x) = (4x-l)"-2xan_l(x), n e N0, with a_,(x) ̂  0, (10) 

and between the coefficients 
B(n,m) = ^"-m-2A(n,m + \). (11) 
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TABLE 2„ A(n, m) Catalan Triangle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

I 
0 

1 
I 
2 
5 

I 14 
1 42 

132 
429 
1430 
4862 
16796 

1 

0 
1 
5 
22 
93 
386 
1586 
6476 
26333 
106762 
431910 

2 

0 
0 
1 
9 
58 
325 
1686 
8330 
39796 
185517 
848830 

3 

0 
0 
0 
1 
13 
110 
765 
4746 
27314 
149052 
781725 

4 

0 
0 
0 
0 
1 
17 
178 
1477 
10654 
69930 
428772 

5 

0 
0 
0 
0 
0 
1 
21 
262 
2525 
20754 
152946 

6 

0 
0 
0 
0 
0 
0 
1 
25 
362 
3973 
36646 

7 

0 
0 
0 
0 
0 
0 
0 
1 
29 
478 
5885 

8 

0 
0 
0 
0 
0 
0 
0 
0 
1 
33 
610 

9 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
37 

10 

0 
o 
0 
0 
0 
0 
0 
0 
0 
0 
1 

The triangle of numbers A(n,m) is related to a rectangular array of integers A(n,m) with 
A(0, m) = l, A(n9 0) = -Cn for » G N , and for n > m > 1 by 

A(n, m) = -A(n- m, m) + 2^n~m)+l fcj], (12) 

or with (7) for m e N? n e N0, by 

Part of the array A(n9 m) is shown in Table 3, where it is called C4(w? m). 

TABLE 3e C4(«, m) Catalan Array 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
-1 
-2 
-5 
-14 
-42 
-132 
-429 

-1430 
-4862 

-16796 

1 

1 
3 
10 
35 
126 
462 
1716 
6435 
24310 
92378 
352716 

2 

1 
7 
38 
187 
874 
3958 

• 17548 
76627 
330818 
1415650 
6015316 

3 

1 
11 
82 
515 
2934 

15694 
80324 
397923 
1922510 
9105690 
42438076 

4 

1 
15 
142 
1083 
7266 

44758 
259356 
1435347 
7663898 
39761282 
201483204 

5 

1 
19 
218 
1955 
15086 
105102 
679764 
4154403 
24281510 
136887322 
749032492 

6 

1 
23 
310 
3195 
27866 
216566 
1546028 
10338515 
65635570 
399429602 
2346750900 
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It turns out that the m* column of the triangle of numbers A(n, m) for m = 0,1,... is deter-
mined by the generating function 

The /71th column of the triangle of numbers B(n, m) for m = 0,1,... is generated by 

1 
Vlr4xU-4xJ ' 

This fact identifies the infinite dimensional matrices A and B as examples of Riordan matrices in 
the terminology of [7]. The matrix A associated with A(n, m) is an example of a Riordan array. 

Because differentiation of c(x) = Z*=0 Ckxk leads to 

where C(0, k) = Ck, one finds, together with (3), the following identities for n e N, p e{0,1,..., 
/ i - l } , 

o»>: ti-tfc, ( A H W ) ' I{A .){2W1>/(»)-/(2t7-1
1) 

= A(n,n-p)/\2" 
(15) 

and for « e N , k G N 0 , 

™ PAWiMi"^%'----c("-i^) (,6) 
The remainder of this paper provides proofs for the above statements. 

2. DERIVATIVES 

The starting point is equation (1) which can either be verified from the explicit form of the 
generating function c(x) or by converting the recursion relation (2) for Catalan numbers into an 
equation for their generating function. A computation of 

1 dn+lc(x) 1 d(\ dnc{x) 
(TI + 1)! dxn+l n + ldx{n\ dxn 

with (3) taken as granted and equation (1), produces the following mixed relations between the 
quantities an{x) and hn(x) and their first derivatives, valid for « G N 0 , 

(it + lK(x) = * l - 4 x ^ (17) 

(n + l)bn+l{x) = x{\-4x)b'n(x)^^^ (18) 

with inputs a__x{x) = 0 and bQ(x) = 1. 
From (18), it is clear by induction that bn(x) is a polynomial of degree n. Again by induction, 

the same statement holds for an(x) in (17). Therefore, we write, for n e N0, 
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a„(x) = £(-l)ka(n,k)x"-k, (19) 
&=0 

n 

»»W = l H k % * ) ^ , (20) 

with the triangular arrays of numbers a(w, k) and B(n9 k) with row number n and column number 
k < n. The triangular array a(n9 k) will later be enlarged to another one which will then be called 
A(n9k). 

We first solve bn(x) in (18) by inserting (20) and deriving the recursion relation for the coef-
ficients B(n9 m) after comparing coefficients of x"+1, x°, and xn~k for k = 0,1,..., n -1. 

xn+l: (n + l)B(n +1,0) = 2(2w +l)5(w, 0), (21) 

x°: fi(/i +1, /i +1) = 5(#i, w), (22) 

xn~k: (TI + l)5(w +1, Jfc +1) = (* + l)5(/i, Jfc) + 2(2(w + *) + 3)B(n9 k +1). (23) 

With the input B(09 0) = 1, one deduces from (21) for the leading coefficient ofbn(x) 

*<».̂ "^=fH»> (24) 
and from (22) 

B(n9n)^l9 i .e.A(0) = (-!)"• (25) 

The double factorial (2w -1)!!: = 1 • 3 • 5 • • • • • (2w -1) appeared in (24). 
In order to solve (23), we conjecture from Table 1 that, for n9 m e N, 

2?(w, wi) = 45(w - 1 , m)+JB(W - 1 , m -1), (26) 

with input B(n, 0) = (2^) from (24). 
If we use this conjecture in (23), written with w-» / i - l , A ->/w-l , we are led to consider 

the simple recursion 
B(n,m) = *±^B(n,m-l). (27) 

The solution of this recursion is, for n,me N0, 

D , s_ 1 wl (2n\_ m\n\ (2n\_(2n\(n\ l(2m\ ~ax 
5(^W)-2"(2w-l)ll(»-»i)ll»J"(2iif)!(ii-Jii)lUJ-l»JW/lwJ- ( } 

With the Pochhammer symbol (a)w := T(«+a) / P(a), this result can also be written as 

B(n, m) = ((2m +1) / 2 ) ^ 4 ^ / (n - m)!. 

This result satisfies (21), i.e., (24), as well as (22), i.e., (25). It is also the solution to (23) pro-
vided we prove the conjecture (26) using B(n, m) in (28). This can be done by inserting 

D / v (2n)\m\ 
B M = (2m)J.(n-my. 

in (26). Thus, we have proved the following proposition. 
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Proposition 1: We have 

*„(*) = t i-l)kB(n, k)x"~k, where B(n, k) = ( ? ) ( * ) / ( ? } 

This triangle of numbers as shown in Table 1 appears as A046521 in the database [8], 
One can derive another explicit representation for the polynomials bn(x) by using (27) in (20): 

( l -4x)6; (x)+2(2i i - l ) f t l l (x )+2^y = 0. (29) 

This leads, together with (18), to the following inhomogeneous recursion relation for bn(x): 

bn+l(x) = {4x-l)bn(x)-2Cnx"+\ bQ(x)^l (30) 

Equation (29) can also be solved as first-order linear and inhomogeneous differential equation 
forbn(x). 

Proposition 2: We have 

*-(*) = -2ZCt_1x*(4x-ir*, 

where the Ck
fs are the Catalan numbers for k e N0 and C_x = -1 /2. 

Proof: Iteration of (30). D 

Proposition 3: The generating function gb(x; z) := lL™^bn{x)xn for {bn(x)} is given by (6). 

Proof: The alternative form ofbn(x) given by equation (5) is a convolution of the functional 
sequences {-2Ck_lxk}neN and {(4x - l)n}neN , with generating functions 1 ~-2xzc(xz) = ^1 - Axz 
and l / ( l + (l-4x)z), respectively. Therefore, gb(x;z) is the product of these two generating 
functions. • 

Comparing this alternative form (5) for bn(x) with the one given by (20), together with (28), 
proves the following identity in n and X\~ (4x- l)/x. The term k - 0 in the sum (5) has been 
written separately. 

Corollary 1 (convolution of Catalan sequence and the sequence of powers of A): For n e N 
and X ̂  oo ? 

ViW^^lf^^-^ZH^-A)*^)/^)]. (31) 

Therefore, the generating function for the sequence sn{X) is 

g(Mx):=ttsH(A)*' = c(x)/(l-Ax). 

From the generating function, the recurrence relation is found to be $n(X) = Xsn_l{X) + Cn, 
s_x{X) = 0. The connection with the polynomial bn(x) is 

*M) = \&n+l - H - *TX+i(} i (4 - A))). 
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The case X = 0 (x = 1/4) is also covered by this formula. It produces from sn(0) = Cn the 
following identity. 

Example 1: Case X = 0 (x = 1 / 4), 

tx-trfty/et)-^. (32) 
This identity occurs in one of the exercises 2.7, 2, page 32 of [4]. 

We note that from (5) one has -2hn+l(l 14) = Cn 1An. The large n behavior of this sequence is 
known to be (see [2], Exercise 9.60): 

CJAn l l 

If one puts Ax-1 = x, i.e., x = 1/3, in (5), one can identify the partial sum sn(l) of Catalan num-
bers: 

*„0):= S Q =|(l~3"+1*„+1(l/3)). (33) 
k=0 L 

This sequence {1,2,4,9,23,65,197,626,2056,...} appears as A014137 in the web encyclopedia 
[8]. If one puts X -1 in Corollary 1, one also finds the following example. 

Example 2: 

2Vl(i)=i+^l^l;)^). (34) 

Another interesting example is the case X = A (x = QO). Here one finds a simple result for the 
convolution of Catalan's sequence with powers of 4. 

Example 3: X = 4 (x = QO), 

2 V I ( 4 ) = 4 " - ( ^ ) . (35) 

This- sequence {1,5,22,93,386,1586,6476,...} appears in the book [8] as Nr. 3920 and as 
A000346 in the web encyclopedia [8], It will show up again in this work as A(n +1,1), the 
second column in the A(n, m) triangle (see Table 2). 

The sequence for X = -1 (x = 1 / 5) is also nonnegative, as can be seen by writing 

% ( - ^ Q + I ( Q / - Q M ) for*eN 
1=2 

and k 
% + l ( ~ l ) - Z-rf (^2/+l ~ ^2/)> 

i=\ 
and using 

AC W -C W -Q. 1 = 3 ^ Q _ 1 > 0 . 

This is the sequence {1,0,2,3,11,31,101,328,1102,3760,...} which appears now as A032357 in 
the web encyclopedia [8]. 
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Recursion (26) for B(n, m) can be transformed into an equation for the generating function 
for the sequence appearing in the m^ column of the B(n, m) triangle 

GB(m;x):=f^B(n,m)xn, (36) 
n=m 

with input 

the generating function for the central binomial numbers. So (26) implies, for /WGN0, 

GJm; x) = {~^— T , l . (37) 

For x-j^GB(rn; x), see (53). Therefore, we have proved the following proposition. 

Proposition 4 (column sequences of the B(n, m) triangle): The sequence {B(n, m)}™=m, defined 
for fixed /MGN 0 and n E N0 by (28), is the convolution of the central binomial sequence 

and the m^ convolution of the (shifted) power sequence {0,1,41,42,...}. 

Note 1: The infinite dimensional matrix B with elements B(n, m) given for n > m > 0 by (28) and 
B(n, m) = 0 for n< m is an example of a Riordan matrix [7]. With the notation of this reference, 

" ( ; 
l 

V -N/T^4X'1-4X, 

Note 2:(Sheffer-type identities from Riordan matrices): Triangular Riordan matrices 

M = (M,A>,>o =(£(*),/(*)), 
MUj = 0 for j >i , in the notation of [7], lead to polynomials that satisfy Sheffer-type identities 
(see [5] and its references, and also [1]), 

n n 
Sn(x+y) = 2 X O 0 i U ( x ) = ZPk(y)S„_k(x), (38) 

k=Q jfc=0 

n n 

Pn(*+y) = I Pk(y)Pn-k(x) = I PkV)P»-k(y), (39) 
k=Q k=0 

where the polynomials Sn(x) and Pn(x) are defined by 

W = I W M ^ . " e N o > Pn(*) = T , P ^ , » e N , P o W - 1 , (40) 
m=Q m- m=l m' 

with P„ m '. = [zn](fm{z)X n>m>\. Here #(x) defines the first column of M: Mn 0 = [x"]g(x). 

If one uses sn(x):=n\Sn(x) and Jpn(x):=fi!i^(x), one obtains the Sheffer identities (also 
called binomial identities) treated in [5]. Then sn(x) is Sheffer for (l / g(f(t)), f(t)), and pn(x) is 
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associated to f{t)—or Sheffer for (1, f{t))—in the terminology of [5]. Here / ( f ) stands for the 
inverse of/(f) as a function. 

Let us give the relation between gb(x; z) and GB(m; x). 

Proposition 5: We have 

gbtez)=Z(-irGBfcxzi±] . (41) 

Proof: One inserts the value of hn(x) given in (20) into the definition (6) of gb(x; z) and 
rewrites the Cauchy sum as two infinite sums which are then interchanged. Finally, the definition 
of GB(m; x) in (36) is used. • 

One can check (41) by using the explicit form of GB(m; xz) given in (36) and comparing with 
(6). 

In a similar vein, we can solve an(x) in (17) with bn(x) given by (20) and (28). The coeffi-
cients a(n9 k), defined by (19), have to satisfy, after comparing coefficients of xn, x°, and xn~k 

for k = l ,2, . . . ,w-l and n G N 0 : 
xn\ a(«,0) = 4a(«-l,0) + Q, (42) 

x°: (n + l)a(n9 n) = 1 + na(n -1, n -1), (43) 

xn~k\ (/i + l)a(/i,k) = ka(n-l9k-l) + 4(n + l + k)a(n-l9k) + B{n9k). (44) 

In (42) we have used (24), i.e., B(n,0) = (n + l)Cn; in (43) we have used (25), i.e., B(n,n) = 1. 
From (42) one finds, with input a(0,0) = 1, 

0foO) = £ Q 4 - * , (45) 

and from. (43), 
a(n, n) = 1 or an(0) = (-1)*. (46) 

Note that a(n9 0) = $n(4) of (31) with solution (35). It is convenient to define a(n -1, -1 ) : = Cn9 

« G N 0 . Then the sequence {^(11,0)}^ is, with a(-l , 0):=0, the convolution of the sequence 
.{a(k, -1)}*! and the shifted power sequence {0,1,41,42,...}. Before solving (44), with B(n9 k) 
from (28) inserted, we add to the triangular array of numbers a(n9 m) the m = -1 column and an 
extra row for n = - 1 , and define a new enlarged triangular array for n9mGfi0 as 

A(n9 m): = a(n -l9m-l) (47) 

with A(n9 0) = a(n -1, -1) = C„ and A(09 m) = a(-l , m ~ 1) = S%m. An inspection of the A(n9 m) 
triangular array, partly depicted in Table 2, leads to the conjecture 

A(n9 m) = 4A(n -l9m) + A(n-l9m-1), (48) 

with A(n9 0) = C„ and A(n9m) = 0 for n < m. This recursion relation can be used to extend the 
array A(n9 m) to negative integer values of m. This conjecture is correct for A(n + l9T) = a(n9 0) 
found in (45), as well as for A(n + l9n + l) = a{n9n) = 1 known from (46). The generating func-
tion for the sequence appearing in the #1* column, 
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GA(m;x):=J^A(n,m)x", (49) 
n—m 

satisfies, due to (48), GA(m; x) = -^GA(m-l; x), remembering that A{m-\m) = Q and that 
GA(0; x) = c(x). Therefore, 

G ^ ( / W ; X ) = ( I ^ T C ( X ) - (5o) 

Note 3: The infinite dimensional matrix A with elements A(n9 m) given for n > m > 0 by (48) and 
A(n, m) = 0 for n < m is another example of a Riordan matrix, written in the notation of [7] as 
(c(x),x/(l-4x)). 

Because of (37) and Vl-4xc(x) = 2-c(x), these generating functions of the conjectured 
A(n, m) column sequences obey 

GA(nr,x) = (2-c(x))GB(m;x). (51) 

If we use the conjecture (48) in (44), which is written with (47) in the form 
(w + l)i4(/i + l,/if + l) = »ii4(/i,/ii) + 4(/i + wi + l)i4(/i,wi + l) + 5(7i,wi) 

for n eN0, we{l, 2, . . . ,w-l}, we have 

mA(n +1, m +1) - (n + l)A(n9 m) + B(n9 m) = 0. (52) 

This recursion relation can be written with the help of the generating functions (36) and (49) as 

x— + l\GA(m;x)~GA{m + \ x) = GB(m; x), (53) 

or with (50) (i.e., the conjecture) as 

'*£ +1 ~ T^4x)GA(m>X) = GM>Xl (54) 

Together with (51), this means 

x-£-((2-c(x))GB(m,x)) = {T*Z-ty2-«®+\ GB(m;x). (55) 

If we can prove this equation with GB(x) given by (37), we have shown that (44) is equivalent to 
the conjecture (48). In order to prove (55), we first compute from (37) for m e N0, 

d 
dx :GB(m,x)^2+fjGB(m + l;x) = ^^-GB(m;x). (56) 

With this result, (55) reduces to 

^xC(x) + ( 2 - c ( x ) ) | 5 g - l)GBfa x) = 0, (57) 

and with (1), the factor in front of GB(m; x) vanishes identically for x * 1 / 4. Therefore, we have 
proved the following two propositions concerning the column sequences of the A{n9 m) triangular 
array and the triangular A(n, m) array, respectively. 
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Proposition 6: The triangular array of numbers A(n, m)9 defined for n,meM0 by equation (48), 
A(n90) = Cn9 A(n9m) = 0 for n<m has as its nfl* column sequence {A(n9m)}^=m the convo-
lution of the Catalan sequence and the w* convolution of the shifted power sequence {0,1,41, 
42,...}. 

Proof: Use (50) with (49). D 

Proposition 7: The triangular array A{n9m) of Proposition 6 coincides with the one defined by 
(47) and (42), (43) and (44) with B(n9 m) given by (28). 

Proof: On one hand, a{n9 Q) = A(n + l9 1) and a(n9 n) = A(n +1, n +1) = 1 of (42) and (43), 
i.e., (45) and (46), respectively, satisfy (48). On the other hand, (44) is rewritten with the aid of 
(47) as (52), and (52) has been proved by (53)-(57). D 

Alternatively, one can use the now proven conjecture (48), together with (47), in (44) and 
derive for n e N0, m e N0, 

4ma(n - 1 , m) = (n +1 - m)a(n - 1 , m -1) - B(n9 m). (58) 

This is written in terms of the polynomials an_x(x) of (19) and bn(x) of (20) as 

x(l-4x)a>n_l(x) + (l-4x + 4nx)an_l(x)- W x " + bn(x) = 0. (59) 

With this result, (17) becomes an inhomogeneous recursion relation for an(x): 

an(x) = (4x - I K ^ x ) + Cnx\ a0(x) - 1. (60) 

Moreover, (59) can also be considered as an inhomogeneous linear differential equation for 
<*n-i(x) with g*ven *«(x)- To find the solution this way is, however, a bit tedious. Let us give an 
alternative form for an(x) in the following proposition. 

Proposition 8: The solution of the recursion relation (60) is given by (8). 
Proof: Iteration of (60). • 
Next, we give a corollary. 

Corollary 2: The generating function ga(x; z) := T^=odn(x)zn is given by (9). 

Proof: Equation (8) above shows that an(x) is a convolution of the functional sequences 
{Ckxk}neN and {(4x-l)^}^eN with generating functions c(xz) and 1/(1 +(l-4x)z). Therefore, 
ga(x; z) is the product of these generating functions. D 

We now have a relation between ga(x; z) and GA(m; x). 

Proposition 9: 
8°(X'>Z) = l i t^)mGA(»r, xz)(±J. (61) 

Proof: Analogous to the proof of Proposition 5. D 

One can check (61) by putting in the explicit form (50) of GA(m; x) and compare with (9). 
Let us state the relation between bn{x) and aw_j(x) as Proposition 10. 
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Proposition 10: For n e N0 and a_x{x) = 0, the relation between bn(x) and a^x) is given by 
(10). 

Proof: The alternative expressions (5) and (8) for these two families of polynomials are 
used. One splits off the k = 0 term in (5) with C_x = -1/2 from the sum and shifts the summation 
variable. D 

Corollary 3: The coefficients of the triangular arrays A(n, m) and B(n, m) are related as given by 
en). 

Proof: The relation (10) between the polynomials is, with the help of (19) and (20), written 
for the coefficients a(n - 1 , w), or by (47) for A(n,m +1) and B(n, m). • 

It remains to compute the explicit expression for the coefficients a(n, k) of an(x) defined by 
(19). Because of (47), it suffices to determine A(n, m). 

Corollary 4: The triangular array numbers A(n, m) are given explicitly by formula (7). 

Proof: The formula (4) written for B(n, m -1) is used in relation (11). • 

Note 4: This formula for A(n, m) satisfies indeed the recursion relation (48) with the given input. 
The first term, 

A A n-m+l f 

2* 

satisfies it because of the binomial identity 

{m~l) = {m-l) + {m-2)' 
For the second term of A(n, m) in (7) one has to prove 

or after division by (2^P), 

2n-\( n \_ Jn-\\ (n-\\lm-3 
n \m-\)-\m-\) + \m-2) m-\ > 

which reduces to the trivial identity In -1 = 2(« - m+1) + 2/w - 3. Both terms together, i.e., (7), 
satisfy the input A(n, n) s 1. 

Note 5: A («, m) was found originally after iteration in the form (with «>/w>0and(- l ) ! ! := l ) 

AQi,m)-2-4 ^ _ j j {2m_3)u
 Cn-m- (62) 

A(n, 0) = Cn. It is easy to establish the equivalence with (7). 

In the original derivation of the formula (7) for A(n,m), it turned out to be convenient to 
introduce a rectangular array of integers A(n, m) for n,/»eN0 as follows: ^4(0, m) = 1, A(n, 0) : = 
-Cn for weN, and for m e N and n eN0, A(n,m) is defined by (12) or, equivalently, by (13). 
The A(n, m) recursion (48) translates (with the help of the Pascal-triangle identity) into 
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A(n9 m) = 4A(n -\m) + A(n, m -1). (63) 

This leads, after iteration and use of A(09 m) = 1 from (12) with A(n9 n) = 1, to 

A(n9m) = 4nJ]A(k9m-l)/4k. (64) 
k=Q 

Thus, the following proposition describes column sequences of the A(n9 m) = C4(n, m) array. 

Proposition 11: The nfi1 column sequence of the A(n,m) array, {A(n9m)}neNQ9 is the convolu-
tion of the sequence {A(n, 0)}W6No = {1, - 1 , - 2 , -5 , . . .} , generated by 2-c(x), and the w* con-
volution of the power sequence {4k}keNo. 

Proof: Iteration of (64) with the A(n90) input. D 

Corollary 5: The ordinary generating function of the m^ column sequence of the A(nym) array 
(13) is given by 

00 ( i \m 

GAfax):=ZM",m)x* = (2-c(x))\j^) (65) 
for melH0. 

Proof: Use Proposition 11 written for generating functions. • 

Because of the convolution of the (negative) Catalan sequence with powers of 4, we shall call 
this A(n9 m) array also C4(n9 m). A part of it is shown in Table 3 above. The second column 
sequence is given by 

i(«,l) = C4(»,l) = [2"w
+1] 

and appears as nr. 2848 in the book [8], or as A001700 in the web encyclopedia [8]. The 
sequence of the third column {A(n, 2) = C4(n9 2)}neNo = {1,7,38,187,...} is, from (64) and (62) 
with (12), determined by 

4n X (2\+1) Uk = (2#t + 3)(2#i + 1)Q - 22n+\ 

and is listed as A000531 in the web encyclopedia [8]. There the fourth column sequence is now 
listed as A029887. 

Note 6: The infinite dimensional lower triangular matrix A related to the array A(n,m) = C4(n9m) 
by A(n9m):= A(n-m9m + T) for n>m>0 and A(n9m):=0 for n<m is again an example of a 
Riordan matrix [7]. In the notation of [7], A = (c(x) I Vl-4x, X I Vl-4x) . 

Finally, we derive identities by using, for n G N0, equation (14) for the left-hand side of (3) 
and the results for a^_x(x) and bn(x) for the right-hand side. Because there are no negative 
powers of x on the left-hand side of (3), such powers have to vanish on the right-hand side. This 
leads to the first family of identities. Because 

(1-4JC)-" = X ^ 4 * J C * , 
k=o k-
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with Pochhammer's symbol defined after (28), this means that xp](an_l(x) + bn(x)c(x))y the 
coefficient proportional to xp, has to vanish for p = 0,1,..., n-1, n e N. This requirement reads 

(-ir^M^-i^-i-^+Zc-ir'^^-^c^-o. (66) 
The sum is restricted to k < p (<n) because no number Q with negative index is found in c(x). 
Inserting the known coefficients produces (15). 

Proposition 12: For « G N and p e {0,1,..., n-1} identity (Dl), given by (15), holds. 

Proof: With (47), (66) becomes 

t(-dp-kCp-kB(n,n-k) = A(n,n-pl (67) 

which is (Dl) of (15) if the summation index k is changed into p-k, and the symmetry of the 
binomial coefficients is used. D 

Example4: Take /? = « - l e N 0 : 

I^(/+.)2rfi-V(-)-,-^')/(-> (68) 

With this identity we have found a sum representation for the convolution of the Catalan sequence 
and powers of 4: 

^ ^ . - T C ^ U M B - O ^ , ) ^ 
k=Q " V / fc=o 

[cf. (35) with (31)]. 
The second family of identities, (D2) of (16), results from comparing powers xk with i e N 0 

on both sides of (3) after expansion of (l-4x)"w as given above in the text before (66). Only the 
second term hn(x)c(x) contributes because an_x(x) lxn has only negative powers of x. Thus, with 
definition (14), one finds, for k e N0 and / i eN, 

k /„\ AI n (!t);4' 

1=0 l • j=0 
(69) 

which is, after interchange of the summations and insertion of B(n,n-j) from (4), the desired 
identity (D2) if also the summation index j is changed to n - q. 

Thus, we have shown 

Proposition 13: For k e N0 and n e N, identity (D2) of (16) with C(/i, A) defined by (14) holds 
true. 

Example 5: Take k = 0, n efi. Then we have 

Z(- iy("t ! ) s 1 ' <7°) 
which is elementary. 
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1. INTROBUCTION AND RESULTS 

As usual, the Fibonacci polynomials F(x) = {Fn(x)}, ?i = 0,1,2,..., are defined by the second-
order linear recurrence sequence 

Fw+2(x) = xFw+1(x) + Fw(x) (1) 

for n > 0 and F0(x) = 0, Fx{x) = 1. Let 

a = 1 - and 8 = !L-
2 r 2 

denote the roots of the characteristic polynomial I 2 - xX -1 of the sequence F(x), then the terms 
of the sequence F(x) (see [2]) can be expressed as 

Fn(x) = -~p{oc"-n 

for » = (>, 1,2,.... 
If x = 1, then the sequence F(l) is called the Fibonacci sequence, and we shall denote it by 

F = {F„). 
The various properties of {Fn) were investigated by many authors. For example, Duncan [1] 

and Kuipers [3] proved that QogFJ is uniformly distributed mod 1. Robbins [4] studied the 
Fibonacci numbers of the forms px2 ±1 and px3 ± 1, where p is a prime. The second author [5] 
obtained some identities involving the Fibonacci numbers. The main purpose of this paper is to 
study how to calculate the summation involving the Fibonacci polynomials: 

I Fai+i(*)-Fa2+1(x) Fat+l(x), (2) 

where the summation is over all ^-dimension nonnegative integer coordinates ( a b a 2 ? ...,ak) such 
that ax +a2 + • • • H-â  = n9 and k is any positive integer. 

Regarding (2), it seems that it has not been studied yet, at least I have not seen expressions 
like (2) before. The problem is interesting because it is a generalization of [5], and it can also help 
us to find some new convolution properties for F(x). In this paper we use the generating func-
tion of the sequence F(x) and its partial derivative to study the evaluation of (2), and give an 
interesting identity for any fixed positive integers k and n. That is, we shall prove the following 
proposition. 

Proposition: Let F(x) = {Fn(x)} be defined by (1). Then, for any positive integers k and n, we 
have the calculating formula 

* This work was supported by the Doctorate Foundation of Xi'an Jiaotong University. 
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z ^+i(*)-^+tw ^+iw=if , i +*-1-w}f , i +V-1r2 B ,Vt a . 
where (J) = wl(^iw)!, and [z] denotes the greatest integer not exceeding z. 

From this proposition, we may immediately deduce the following several corollaries. 

Corollary 1: For any positive integers k and w, we have the identity 

aj +a2 H — +tf& = n+k m=Q 

'n + k-l-m\ (n + k-l-2m 
m ) \ k-l 

Corollary 2: For any positive integers k and n, we have 

Y F -F F - i M ^ Y ^ 
Jfc-l-/iA (n + k-l-2m 

m j ' l jfc-1 

m=0 

Corollary 3: The identity 

^ • F 3ai 3o9 
[ 3 a A 

_ <}2n+k m l * H *-i J 
<OjH—+ak=n+k m=0 

holds for all positive integers k and n. 

Corollary 4: Let £ and n be positive integers. Then 

16" 

ri f/i + £ - l - / ?A fn + k-l-
Y K -R .....R = 3 » . 7 t - 5 ^ - y i ^ A *Z1 

- 1 - 2 / M 

«] + ••• +«£=«+& m=0 

Corollary 5: Let & and w be positive integers. Then 
ri fn + k-l-m\ (n + k-l-2m 

z v s * ^=5*.ii-.tL—^ n ^ 
121" 

In feet, for any positive integer m, using the proposition, we can give an exact calculating 
formula for 

cti +a2+ - • • +cik ~ n+k 

p .p ...--F 
•"• max * ma2 •* mak • 

2. PROOF OF THE PROPOSITION 

In this section we shall complete the proof of the proposition. First, note that 

Fn(x) = - 1 x W x 2 + 4 Y f x -Vx 2 +4 V 
Vx2+4 

so we can easily deduce that the generating function of F(x) is 
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G(t,x) = 1 1 
\-xt-t1 (a-t)(fi-t) 

=^f>"+1-/?"+V>"=Z^+1(*)-'"-
a P n=0 

(3) 

«=o 
Let J^** denote the &* partial derivative of G(t, x) for x, and F^k\x) denote the &* deriva-
tive of F„(x). Then from (3) we have 

dG(f, x) t ILF^xyt", ax (i-xt-ty %-
<X}\t,x)_ 2\.f _frm(x)tn 

(5) 

k-l oo dG«-%x)= (k-iy.-f-1 _ 
dxk~x (l-xt-t2f Z^w-^Z^A*)-' n+k-l 

n=0 n=0 

where we have used the fact that Fn+l(x) is a polynomial of degree n. 
For any two absolutely convergent power series ZJ^Lo'V^ and T^=0hnxn, note that 

OO \ ( 00 \ 00 / " \ 

!"„*" • ZV" = 1 Z«A 
H=0 / \w=0 / «=0 \u+v=n J 

X". 

So from (5) we obtain 

Z[ Z v*)-f«,+iW ^iwl-'^fz^wiW-'"^ 
n = 0 \̂ <j]H !-<»*=>> J \n=0 

1 1 dG (f,x) _ 1 y c-(fc-i)/-̂ . t" 

Equating the coefficients of/" on both sides of equation (6), we obtain the identity 

Z F^xyF^x) Fak+1(x) = —I_./&-»>(*). 

On the other hand, note that from the combinatorial identity 

(*-l)! 

(n-m +1 "\_ (n-m \ (n-rn\ 
\ m ) - { m ) + {m-l)> 

(6) 

(7) 

(8) 

the recurrence formula Fn+2(x) = xF„+l(x) + F„(x), and by mathematical induction, we can easily 
deduce 

^+i(*)=z(w;wV2 m (9) 
In fact, from the definition of Fn(x), we know that (9) is true for n = 0 and n = 1. Assume 

(9) is true for all integers 0 < n < k. Then, for n - k +1, applying (8) and the inductive hypothesis 
we immediately obtain 
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[—1 

m=Q ' m m=0 V / 
2m 

=i+2 
— ' k-i-m\ _k-l-2m — 

m=0 
m + l m=0 V / 

-1-2/w 

[¥] [¥], 

m=0 ^ ' w=0 

-l-2m 

k-l-m) k-l-2m 
m l'x 

= xFM(x) + Fk(x) = Fk+2 (X), 

where we have used {k
m

m)= 0 if m> •§-. So by'induction we know that (9) is true for all non-
negative integer n. 

From (9) we can deduce that the (k -1)* derivative of Fn+k(x) is 

^ ( x ) = 
, L ^ S fft + k-l-m Yx„+k-i-2m

] — 
m=0 m 

(n + k-l-m)\Y„-2m 
„.„ m\-(n-2m){ = Y/Z^\"^x"~lm- o°) 

Combining (7) and (10), we obtain the identity 

i JW^-M n«w-S("+*;l"">("+V-Ir2"}*rt"-
This completes the proof of the Proposition. 

Proof of the Corollaries: Taking x = 1 in the Proposition and noting that F0 = 0, we have 

al + a2 + ---+ak=n al+l+a2+l+---+ak+l=n+k 

[-1 

fl|+a2 +•••+"* = "+£ m=0 v ' v ' 

This proves Corollary 1. 

Taking x = —S, 4, - 3*j5, and 11, respectively, in the Proposition, and noting that 

• ^ + i 

FnHSY-
(-1) «+l 3+sx (3-sy (-1)"+1V5 

**!«•> 

w)=^[(2+vsr-(2-vsr]=^ 
F„(-3V5) = ^ 

1+VTf" fl-V5V"' 
2 3"' 

7 + 3VSY f 7-3^5 Y 
7 4«? 

and 
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W ) = ̂ 5 W m - M '1+V5 5n 1-V5V"' 
= 5^5». 

we may immediately deduce Corollary 2, Corollary 3, Corollary 4, and Corollary 5. 
This completes the proof of the Corollaries. 
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(Submitted July 2000) 

1. INTRODUCTION 

The numbers of the form m{5™~3), where m is any positive integer, are called heptagonal 
numbers. That is, 1, 7, 18, 34, 55, 81, ..., listed in [4] as sequence number 1826. In this paper, it 
is established that 1, 4, 7, and 18 are the only generalized heptagonal numbers (where m is any 
integer) in the Lucas sequence {Ln}. As a result, the Diophantine equations of the title are solved. 
Earlier, Cohn [1] identified the squares (listed in [4] as sequence number 1340) and Luo (see [2] 
and [3]) identified the triangular and pentagonal numbers (listed in [4] as sequence numbers 1002 
and 1562, respectively) in {LJ. 

% IDENTITIES AND PRELIMINARY LEMMAS 

We have the following well-known properties of {Ln} and {Fn}: 

£_„=(-!)"A, and F_n=(-l)"+1Fn; (1) 
2|Z,„iff3|» and 3\L„ \ffn = 2 (mod 4); (2) 

L2
n = 5F?+4(-iy. (3) 

If m = ±2 (mod 6), then the congruence 

A,+2te,-(-i)*M«">dzj (4) 
holds, where k is an integer. 

Since TV is generalized heptagonal if and only if 407V" + 9 is the square of an integer congruent 
to 7 (mod 10), we identify those n for which 40Ln + 9 is a perfect square. We begin with 

Lemma 1: Suppose n = 1,3, ±4, or ±6 (mod 18200). Then 40Zn + 9 is a perfect square if and 
only if n = 1,3, ±4, or ±6. 

Proof: To prove this, we adopt the following procedure: Suppose n = s (modN) and n*e. 
Then n can be written as n = 2'S-20-g + e, where 0>y and 2\g. And since, for 0>y, 
20+s z=2e (mod p), taking 

mJ/i-2$ i f ^ ( m o d s ) , 
[2^ otherwise, 

we get that 
m = c (mod p) and n = 2km + s, where k is odd. (5) 

Now, by (4), (5), and the fact that m = ±2 (mod 6), we have 

40Lll + 9 = 40Z2ibllf, + 9S40(- l )*Z, + 9 (mod LJ. 
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(6) 

Since either m or n is not congruent to 2 modulo 4 we have, by (3), the Jacobi symbol 

U0L„ + 9\ _ (-A0Ls + 9\ _ (L, 
\ Lm ) V Lm J \M, 

But, modulo M, {Ln} is periodic with period P (i.e., Ln+Pt = Ln (mod M) for all integers t > 0). 
Thus, from (1) and (5), we have fo) = -l. Therefore, by (6), it follows that (^*£) = - 1 for 
nits, showing that 40Ln + 9 is not a perfect square. For each value of n = s, the corresponding 
values are tabulated in Table A. 

TABLE A 

s 

1 

3 

±4 

±6 

N 

22-5 

22-5-13 

2 2 . 5 2 

23-52-7 

S 

5 

5-13 

52 

52-7 

7 

1 

1 

1 

2 

s 

4 

20 

36 

12 

P 

30 

50 

270 

156 

M 

5 

513 

5 

52 

5 

52 

5 

^(mod s) 

2,3 

3, ±5, 9, 
13, 19. 

6, 8, 16, 
18. 

7, 16, 34, 
35. 

2, ±4, ±5, 
±9, 10, 11, 
±13, 14, 
28, 30. 

0, 10. 

±5,9, 11. 

c (mod p) 

2, ±10,16 

±2, ±4, 
±16, ±20, 
±22, ±24. 

2, 8, ±20, 
±40, 46, 
62, 64, 
±80, 94, 
98, ±110, 
122, 124, 
130, 136, 
152, 166, 
182, 212, 
218, 226, 
244, 256, 
260. 
4, 8, 16, 
64,80, 

100. 

M 

31 

151 

271 

79 

P 

30 

50 

270 

78 

Since the L.C.M. of (25- 5, 22- 5-13, 22- 52, 23- 52• 7) = 18200, Lemma 1 follows from Table 
A. D 

Lemma 2: A0Ln + 9 is not a perfect square if n # 1,3, ± 4, or ±6 (mod 18200). 

Proof: We prove the lemma in different steps, eliminating at each stage certain integers n 
congruent modulo 18200 for which 40Zw + 9 is not a square. In each step, we choose an integer 
M such that the period P (of the sequence {LJ mod M) is a divisor of 18200 and thereby elimi-
nate certain residue classes modulo P. We tabulate these in the following way (Table B). 
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TABLE B 

Period I 
P 

10 j 

50 

ioo! 

14 
28 

70 

700 

350 
26 
52 

130 

650 
910 

1 8 
40 

I 728 
j 1400 

Modulus 
M 

11 

101 

151 

3001 

29 
13 
71 

911 

701 

i 54601 
521 
233 

131 

24571 
3251 

1 50051 
3 

41 
232961 

1 28001 

Required values of n where I 

{ m J' l 

±2,9. j 
0, 11, ±15, ±16, 17, ±20, ±24, 27, 
43, 45, 47. 
5, 7, ±14, 33, 37,41. 

±10, 13, 21, 23, ±44, 53, 71,75. 

0,5,13. 
9, ±10, ±12, 15, 17,21,23,25. 
11, 15,31,53,63. 
±16, ±20. 
±60, ±106, ±146, ±204, 231, 
±254, ±304, ±306, 563, 651. 
323 
0, ±8, ±9, ±10, ±11, ±12, 19. 
±5, ±20, ±21, ±24, 29, 39, 49. 
23, ±30, 33, 51, ±54, ±56, 91, 
103, 111. 
53. 

1 ±46, ±106, ±154, ±256, ±306. 
| ±386. 
1 0, 5, 7. 

±14. 
±202. 

J281. 

Left out values of n (mod k) 1 
where k is a positive integer 1 

0, 1,±3, 4 ,5 or 6 (mod 10) 

1,3, ±4, ±6, ±10, 13,21,23, 
25 or 31 (mod. 50) 

1,3, ±4, ±6,25, 31, ±40, ±46, 
51,63,73 or 81 (mod 100) 

1, 3, ±4, ±6, ±104, ±246, 281, 
±340 (mod 700) 

1,3, ±4, ±6, ±2346 or 7281 
(mod 9100) 

1 1, J, ±4, ±o (mod tozuU) 

3. MAIN THEOREM 

Theorem: 
(a) Ln is a generalized heptagona! number only for n = 1,3, ±4, or ±6. 
(b) Ln is a heptagonal number only for n = 1, ±43 or ±6. 

Proof: 
(a) The first part of the theorem follows from Lemmas 1 and 2. 
(b) Since an integer N is heptagonal if and only if 4(W + 9 = (10m - 3)2

? where m is a posi-
tive integer, we have the following table. • 

TABLE C 

n 
Ln 

40Ln49 
m 

\ Fn 

1 
1 

? 2 

1 
1 

3 
4 

132 

-1 
2 

±4 
1 

172 

2 
±3 

±6 
18 
272 

3 
±8 
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4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS 
It is well known that if x{ +yx^/D (where D is not a perfect square, xv yx are least positive 

integers) is the fundamental solution of Pell's equation x2 -Dy2 = ±1, then the general solution is 
given by xn +yn4D = (xx +yx4D)n. Therefore, by (3), it follows that 

L2n + V5F2w is a solution of x2 - 5y2 =4, (7) 
while 

^2n+i+ ^ ^ 2 n + i ls a solution of x2 - 5y2 - -4 . (8) 

We have the following two corollaries. 
Corollary 1: The solution set of the Diophantine equation 

x2(5jc-3)2=20y2-16 (9) 
is {(1,±!),(-!, ±2)}. 

Proof: Writing X = x(5x -3)12, equation (9) reduces to the form 

X2=5y2-A (10) 

whose solutions are, by (8), L2n+l + V5F2w+1 for any integer n. 
Now x = w, y = h is a solution of (9) o m(5™~3) + J5b is a solution of (10) and the corollary 

follows from Theorem 1(a) and Table C. D 
Similarly, we can prove the following. 

Corollary 2: The solution set of the Diophantine equation 

X 2 ( 5 J C - 3 ) 2 = 2 0 J 2 + 1 6 
is {(2,±3),(3, ±8)}. 
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1. MTRODUCTION 

A nonzero m x n (0, 1)-matrix A is called a nullspace matrix If each entry (/', j) of A has an 
even number of l's in the set of entries consisting of (/, j) and its rectilinear neighbors. It is called 
a nullspace matrix since the existence of an m x n nullspace matrix implies the closed neighbor-
hood matrix of the mxn grid graph Is singular over GF(2). By closed neighborhood matrix, we 
mean the adjacency matrix of the graphs with Ts down the diagonal. 

In Sections 2 and 3, we review the relationship of the Fibonacci polynomials to nullspace 
matrices. In Section 3, we define composite and prime nullspace matrices and present some num-
ber sequences related to the nullspace matrices and pose a question analogous to the famous 
question about whether or not there exist infinitely many prime Fibonacci numbers. 

2* BACKGROUND 

In this paper, all polynomials are over the binary field GF(2). When no confusion results, we 
denote the all-zero w-vector simply by 0. See Table 1 for an example of a nullspace matrix. 

TABLE 1. A 4 x 4 Nullspace Matrix 
1 0 0 0 
1 1 0 0 
1 0 1 0 
0 1 1 1 

If we choose a nonzero vector w eF", where Fn is the binary n-tuple space and let w be the 
first row of a matrix A, for each i > 1 there is a unique way to choose the Ith row to make the 
number of l's in the closed neighborhood of each entry In the (/- l) s t row even. If rt is the Ith 

row, the unique way of doing this is given by 

rt = Brt_x +rf_2, i > 2, r0 = 0, rx = w, (1) 

where B = [by] Is the n x n tridiagonal (0,1)-matrix with btj = 1 if and only If |/ - j \ < 1 (and the 
TJ'S in (1) are written as column vectors). If rm+l = 0 for some positive integer m, then rl9 r2, ..., rm 

are the rows of an m x n nullspace matrix. We can also compute the entries of rt one at a time by 
rU\ = r^lj] + /;_![/ -1]+r/.1L/ +1]+rt_2[j] mod 2. 

It follows from the definitions that rt = / - (^ ) w f°r i = 0,1,2,..., where ft is the Ith Fibonacci 
polynomial over GF(2): 

ft=yfi-i+ft-i,i*Xf* = 0,/1 = l. (2) 
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In this paper, we are interested in building large nullspace matrices from smaller ones. A 
fundamental property of nullspace matrices is given in the following simple proposition. 

Proposition 1: Let n and k be positive integers with k +1 a multiple of n +1. If there exists an 
n x n nullspace matrix, then there also exists & k xk nullspace matrix. 

To see this another way, if k +1 = q(n +1) where q is a positive integer, and if A is an n x n 
nullspace matrix, then a k x k nullspace matrix can be constructed by letting row and column 
numbers w-f 1, 2(« + l),...,(gr-l)(« + l) have all entries equal to zero, creating a q xq array of 
n x n squares, putting A in one of the nxn squares and filling in the rest of them by "reflecting'1 

across the lines of zeros. That is, one can take the 4 x 4 nullspace matrix from Table 1 and con-
struct a 9 x 9 nullspace matrix; see Table 2. 

TABLE 2. A 9 x 9 Nullspace Matrix 

1 0 0 0 0 0 0 0 1 
110 0 0 0 0 11 
10 10 0 0 10 1 
0 1110 1110 
0 0 0 0 0 0 0 0 0 
0 1110 1110 
10 10 0 0 10 1 
110 0 0 0 0 11 
10 0 0 0 0 0 0 1 

3, NULLSPACE-PRIMES 

We call a nullspace matrix that has at least one row or column of zeros a composite nullspace 
matrix, otherwise we say it is a prime nullspace matrix. We say that an integer n is nullspace-
prime if there exists an (n -1) x (n -1) nullspace matrix, but for no proper divisor m of n does 
there exist an (m-1) x (/if-1) nullspace matrix. With the aid of a computer, we have determined 
that the first few nullspace-primes are 5, 6, 17, 31, 33, 63, 127, 129, 171, 257, 511, 683, This 
sequence does not match any in Shane's Encyclopedia of Integer Sequences. Other nullspace-
primes include 2047, 2731, 2979, 3277, 3641, and 8191. We prove below that 6 is, in fact, the 
only even nullspace-prime. It is easy to see that there exists an n x n nullspace matrix if and only 
if n is one less than a multiple of a nullspace-prime. 

One could use a simple (albeit, rather slow) sieving algorithm to determine if an integer n is a 
nullspace-prime, assuming we know that there exists an (n -1) x (n -1) nullspace matrix (which 
can be determined in 0(nlog2n) time [1]). For example, 693 is not a nullspace-prime since 693 
modulo 33 = 0, though there does exist a 692 x 692 nullspace matrix. 

We say two polynomials pt(x) and p2(x) are conjugates if p^x + l) = p(x). If p(x) is an 
irreducible polynomial, we say that the Fibonacci index of p(x) is t if t is the smallest positive 
integer such that p(x) divides ft(x). The following is from [1]. 

Theorem 2 [1J: There exists mnxm nullspace matrix if and only if /„+1(x) and fm+l(x + l) are 
not relatively prime. 
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Theorem 2 Is a special case of the following result (letting r = 0 In Proposition 3 below yields 
Theorem 2), also from [1]. 

Proposition 3: Let X be the closed neighborhood matrix of the m x n grid graph. If r Is the 
degree of the greatest common divisor of /w+1(x + l) and fmn(x), then the fraction o fwxl 0-1 
vectors z having solutions y to the equation Xy-z is 2~r. 

Proposition 3 was proved using the Primary Decomposition Theorem for linear operators, 
also known as the Spectral Decomposition Theorem (cf. [4]). 

To illustrate Theorem 2, there exists a 16 x 16 nullspace matrix because /17(x) has the self-
conjugate Irreducible factor and there exists a 32 x 32 nullspace matrix because f33(x) has the 
conjugate pair of Irreducible factors x5 + x4 + x3 + x +1 and x5 + x3 + x2 + x +1. 

Using Theorem 2, we can prove that there is only one even nullspace-prime. 

Fact 4: The only even nullspace-prime Is 6. 

Proof: As there do not exist 1 x 1 or 3 x 3 nullspace matrices, 2 and 4 are not nullspace-
primes. Let n > 6 be an even integer and suppose n were a nullspace-prime. Then there exists an 
( H - I ) X ( W - I ) nullspace matrix. Hence, by Theorem 2, fn(x) and /w(x + l) have a common 
factor. It was shown In Lemma 4, part (3), of [1] (using Induction), that f2n = xf* for all n > 0. 
Lemma 4, part (5), of [1] states that fmn(x) = fm(x)fn(xfm(x))9 for m,n>Q. It follows that either 
there exists an (f -1) x (•§• -1) nullspace matrix, in which case n is not a nullspace-prime, or that x 
and JC + 1 are a conjugate pair of factors of f„(x) and fn(x +1). Using Lemma 4 of [1] and Induc-
tion, it is not hard to prove that x + 1 Is a factor of fk if and only If 31 Ar and this property also 
happens to be a special case of Proposition 5(b) of [1]. Hence, we have that 6|«, which implies 
that n Is not a nullspace-prime. • 

For completeness, we note that Proposition 5(b) from [1] states that, if p(x) is an Irreducible 
polynomial other than 1 or x with Fibonacci index t, then p(x)\fr(x) If and only If t \r. The proof 
of this property is based on Lemma 4 of [1]. 

We state a theorem from [3] that follows from results in [1], Recall that B Is the n x n tri-
diagpnal matrix defined In Section 2. 

Theorem 5 [3J: The set of all vectors w that can be the first row ofanwxw nullspace matrix Is 
equal to the nullspace Nm+l of /m+1(5). If dm+l(x) Is the greatest common divisor of /„+1(x +1) 
and /w+1(x), then the nullspace of dm+l(B) Is equal to Nm+l and has dimension equal to the 
degree of dm+l. 

As can be concluded from the results in [1] and [3], If an m x n nullspace matrix has a row of 
zeros and If the first such row Is the (j + l)st

? * e i 1 i + ^ divides •/if+ 1 and row r is all zeros if and 
only if r is a multiple of j +1. The same is true of columns (with n In place of m\ since a matrix 
Is a nullspace matrix If and only If its transpose is. 

As we noted above, 63 Is a nullspace-prime, so there is no way to "piece together" square 
nullspace matrices to get a 62 x 62 nullspace matrix. But there does exist a 6 x 8 nullspace 
matrix. A 9 x 7 array of this nullspace matrix and Its reflections, with rows and columns of zeros 
in between, can be used to construct a composite 62 x 62 nullspace matrix. Therefore, If n Is a 
nullspace-prime, there may exist an (n -1) x (n -1) composite nullspace matrix. But it is not hard 
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to show that there must also exist an (n -1) x (n -1) prime nullspace matrix (the sum of the 
62 x 62 composite nullspace matrix and its 90 degree rotation is a prime nullspace matrix). This 
situation, and more, is described in the following theorem; an example is given following the proof 
of the theorem. 

Theorem 6: Let n be an even positive integer and let dn+l(x) have positive degree and be the 
greatest common divisor of fn+i(x) and fn+i(x +1). Then: 
(1) Every nxn nullspace matrix is prime if and only if every irreducible factor of dn+l(x) has 
Fibonacci index equal to n +1. 
(2) Every nxn nullspace matrix is composite if and only if dn+l(x) divides ft+i(x) for some 
t + l*0 less than w + l. 

Proof: Let Pi9p29—9Pk be the irreducible factors of dn+l, and let Wi be the nullspace of 
Pi(B) for i = 1,2,..., k, where B is the tridiagonal matrix defined above. We note that the Wt 

intersection Wj = {0} for i*j9 and that each Wi is invariant under multiplication by B (Baf eWj 
for each ai eWt\ So the nullspace of dn+l(B) is equal to the direct sum Wl®W2®~°®Wk. By 
Theorem 5, this is equal to the set of vectors that can be the first row of an nxn nullspace 
matrix. Choose a nonzero vector ai GWt for each i. Let /be any polynomial. Then f(B)(al + 
a2 +' * • ak) - 0 if and only if f{B)at = 0 for each i, and this happens if and only if/is divisible by 
pt for each i. If some pt has Fibonacci index t +1 where t<n, then every nonzero vector in Wt is 
the first row of an n x n nullspace matrix with (t + l)st row all zeros. If there is no such t9 then 
each nxn nullspace matrix is prime, establishing (1). 

Letting the polynomial/above be dn+l, it is clear that if dn+l divides ft+1 for some t * 0 less 
than n, then every nxn nullspace matrix has (t + l)st row all zeros. And if there is no such t, then 
the vector ax + a2 + — h ^ , where at is a nonzero vector in Wt for each i, is the first row of a 
prime nxn nullspace matrix. • 

For example, every 32 x 32 nullspace matrix is prime because 
d33(x) = (x5 + x4 +x3 + x + l)2(x5 + x3 + x2 + x +1)2 

and each of these factors has Fibonacci index 33. But no 98 x 98 nullspace matrix is prime be-
cause d99(x) - d33(x). Every 98 x 98 nullspace matrix has row and column numbers 33 and 66 
with all entries zero. 

Corollary 7: If n +1 is a prime number, then there exists no nxn composite nullspace matrix. 

We now pose our main open question. 

Question 1: Are there an infinite number of nullspace-primes? 

One might also ask whether or not a polynomial time algorithm exists to determine if an inte-
ger is nullspace-prime or not. 

What more can be said about the distribution of nullspace-primes? From the few listed above, 
we can see that many take the form 2k ± 1, but there are many nullspace primes that are not of this 
form; being of this form does not guarantee being nullspace-prime, take for example 65. In gen-
eral, Fibonacci polynomials of the form /2*+1(x) anc^ fi*-\{x) ^ a v e manY distinct factors [3], as 
do those with indices that are of the form (2k ±l)/p, where p is a "small" prime. For example, 
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fm has eleven distinct nontrivial factors and /683 has 31 distinct nontrivial factors. Thus, it is not 
surprising, given the results from [3], that many of these indices turn out to be nullspace-primes. 
What is not fully understood is how to characterize more precisely when an integer if nullspace-
prime, even if it is of the form 2* ± 1. 

4. SUPER NULLSPACE-PRIMES 

Define n to be super nutlspace-prime if there exists no (n -1) x (n -1) composite nullspace 
matrix and there exists an (n -1) x (n -1) nullspace matrix. As mentioned above, 63 is nullspace-
prime, but not super nullspace-prime. But 33 is super nullspace-prime because there does not 
exist a 2 x 10 nullspace matrix. Or, using Theorem 6(1), we see that 

d33(x) = (x5 + x4 +x3 + x + l)2(x5 + x3 + x2 + x +1)2 

and each of these two factors has Fibonacci index 33. The integers 5, 6, 17, 31, 33, 127, 129, 
171, 257, 511, 683 are super nullspace-prime. Of course, although 29 is prime, 29 is not null-
space-prime or super nullspace-prime since there does not exist a 28 x 28 nullspace matrix. 

We know from [3] that, if n - 2k where k>3, or n = 2k -2 where k > 3, that there exists an 
nxn nullspace matrix. Thus, if n is prime and either n-l = 2k or « - 1 = 2* -2 , then n + \ is 
super nullspace-prime, such as n = 257. But it seems likely that in order to determine whether an 
integer is super nullspace-prime requires factoring that integer or computing the Fibonacci indices 
of a number of polynomials, if we use the criteria described in Theorem 6(1), neither of which we 
know how to do efficiently (i.e., in polynomial time). 

Conjecture 2: There are an infinite number of super nullspace-primes. 

Note that, if the conjecture is false, then there are only finitely many Mersenne primes. We 
leave as an open problem determining how many super nullspace composites there are: integers, 
such as 99, which are such that there exists an (n -1) x (n -1) nullspace matrix and every 
(w- l )x (w- l ) nullspace matrix is composite. Likewise, how many integers, such as 63, are 
nullspace-prime but not super nullspace-prime? 
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1. INTRODUCTION 

Consider the set of points (i,j) given by nonnegative integers / and/ This lattice may be 
viewed as an unbounded rectangle with boundary consisting of points (/', 0) on a horizontal x-axis 
and points (0, j) on a vertical j-axis. There are many systematic ways to draw paths from this 
boundary into the interior of the lattice. Enumerations of such paths yield arrays associated with 
Fibonacci numbers and other recurrence sequences. Such enumerations also apply to various 
classes of compositions of nonnegative integers. In order to investigate such enumerations, we 
begin with some notation: 

R = {(/, j): / and j are nonnegative Integers}, 
R+ = {('*> j) '• i ancU are positive integers}, 
R° = R-R+. 

Suppose G is a circuit-free graph on R, directed so that for each (/, j) in R+ every path to 
(i, j) is rooted in a vertex in R°. Each edge entering (/, j) has a tail (x, y); let 

E(i, j) = {(xtJ(k), y,Jk)):k = \,2,...,n(i, j)} 

be the set of tails. Suppose now that a number R(i,j) Is assigned to each (/, j ) in R°9 and for 
each (i, j) in R+ define inductively 

<i,j) 

R(r,j)= H^iPkl (i) 
k=l 

where the points pk are the vertices in E(i, j). The numbers R(i, j) comprise a rectangular array: 

i?(0,'2) R{\,2) R(2,2) R(3,2) -
R(0,l) R(l,l) R(2,l) R(3,l) ... 
R(0,0) R(l,0) R(2,0) R(3,0) -

which can be expressed in triangular form: 
R(0,0) 

R(l,0) R(0,l) 
R(2,0) R(l,l) R(0,2) 

or 
7X0,0) 

r(i,o) r(i,i) 
7(2,0) 7(2,1) 7(2,2) 

Explicitly, 
T(i,j):=R(i-j,j) for 0< j<i. (2) 
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Henceforth, except for Examples 3C and 3D, we posit that for all (i,f) in R°, the number 
R(i, j) is the out-degree of (/, j), satisfying 

/?(/,0) = l and R(0,j)e{0,l}. (3) 

Then, for (/, j) in J?+, the number of paths to (/', j) is R(i, j), hence T(i 4-7, 7). The initial values 
R(i,j) for (1,7) in i?° imply initial values r(i,0) and r(/,/) for i >0; these values occupy the 
outermost wedge of the triangular array T. We call {/?(/', 7)} the path-counting rectangle ofG, 
and {I(i, 7) } the path-counting triangle of G for the given initial values. For reasons of nota-
tional convenience hereafter, define 

i ? ( i ,7 ) -0 i f i<0or7<0; (4) 

T(iJ) = 0 if / <0 ory <0 ory >/. (5) 

2e INTEGER STRINGS AND COMPOSITIONS 

In this section we restrict attention to path-counting under these conditions: 
(i) T(i, 0) = 1 for 1 >0; 
(ii) for (i, 7) in i?+, each (x, y) in E(i, 7) has the form (/' -1,7 + q), where q is an element 

of a prescribed set Q of nonnegative integers. 

By (1) and (2), 

R&jl^W-Xj+qkl (6) 
k=l 

m,j) = tlT(f-qk-11j + qk). (7) 

Theorem 1: Let Q be a nonempty set of nonnegative integers, and let / and7 be positive integers. 
If 0 e Q, then the number of strings(sh %..., sm) of nonnegative integers sk satisfying the three 
conditions, 
(a) sk~sk_lGQfork = 2,3,...,m, 
(b) sm=j, 
(c) /w = / + l, 
is given as in (6) by R(i, 7) or, equivalently, by I(i + j , 7). If 0 g g> then the number of strings 
(sh %, ...9sm) of nonnegative integers sk satisfying (a), (b), and 

(c)' m<i + \ 
is given as in (6) by R(i, 7) or, equivalently, by T(i+j, 7). 

Proof: 
Case 1: CJ e g . The paths counted by R(i9 7) consist of edges (k -1, jk)-to-(k, jk+i), where 

Jh+i-Jk eQ for* = 1,2,...,/, andy/+1 = y. Let sk = j k + l - jk for k = l,2,...,i + l. Then fo,^, 
...,^m) is a string of the sort described. Conversely, for m = i + l, each such string yields a path 
with initial point (0,7^ for some j \ > 0 and terminal point (1,7), where 7 = ̂ .+1. This one-to-one 
correspondence between the paths and strings establishes that the number of strings is R(i, j). 
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Case 2% 0 &Q. Here, the initial point of a path can be of the form (?0,0), where 0 < i0 < i -1. 
The one-to-one correspondence holds, but the length of a string can be < i +1. D 

Corollary 1A: Suppose T(i, i) = 0 for / > 1. If 0 e Q, then R(i, j), hence also T(i + y, j ) , is the 
number of compositions of/ consisting of i parts in the set Q. If 0 gQ, then i?(/, y), hence also 
T(j+j, j), is the number of compositions of; consisting of at most i parts, all in the set Q. 

Proof: If 0 G Q, the i differences j k + l - jk in the proof of Theorem 1 lie in Q and have sum/ 
Thus, there is a one-to-one correspondence between the paths counted by R(i9 j) and the compo-
sitions. If 0 £ Q, the same argument applies, except that the root of a path to (i, j) may be a 
point (/?, 0) for 0 < h < i'-1, and the corresponding number of parts is i - h. D 

The following two corollaries have similar, omitted, proofs. 

Corollary IB: Suppose h > 1, T(i, i) = 1 for / < h, and T(i, i) = 0 for i > h. If 0 e g , then i?(i, j ) , 
hence also 7(i + j , j ) , is the number of compositions of the numbers j,j-l9j-2,...,j-h con-
sisting of # parts in the set Q. If Ogg, then R(i,j), hence also T(i+j,j), is the number of 
compositions of the numbers j,j-l,j~2,...,j-h consisting of at most / parts, all in the set Q. 

Corollary 1C: Suppose T(i9i) = 1 for all / > 0. If 0 e g , then R(i, j), hence also T(i +j, j), is 
the number of compositions of the numbers 0,1,2, . . . , j consisting of / parts in the set Q. 
If Ogg, then R(i,j), hence also T(i+j,j), is the number of compositions of the numbers 
0,1,2,..., j consisting of at most i parts, all in the set Q. 

Theorem 2: Suppose n > 2 and Q is a set of n nonnegative integers qk. Suppose also that 
qi<q2<"'<cln- Let St be the sum of numbers in row i of array T(i,j). Then (Sf) is a linear 
recurrence sequence of order qn +1. 

Proof: 

Si = iT(iJ) = T(i,0) + T(iJ) + fdiT(i-qk-lJ-qk) 
y=0 ;=1 k=l 

= r(/,0) + r( i ,0 + Z 'tT(i-qk-lJ-qkl 

so that, by (5), 

,s;. = r(/)o)+7'(/,/)+X I ^ - ^ - i , 7 ) 

= l + 7(/,/) + fc=l y=o 

mo+Xs-, 
*=i 

?*-i ifft = 0, 

i + ^ O + E - W i i f f t>a n 
fc=l 
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The proof of Theorem 2 shows that, If qx = 0 and T(i, i) = 0 for all / greater than some i0, 
then the linear recurrence is homogeneous for / > i0. This is illustrated by Example 1C. 

We turn now to applications of Theorems 1 and 2, in the form of Examples 1A-E, with par-
ticular interest in the appearance of Fibonacci and Lucas numbers in row sums or the central 
column. 

Example 1A: A011973 In Sloame [5] 

Initial values 
\Q 

Recurrence 
Row sums 

T(i, 0) = 1 for i > 0, T(i, i) = 0 for i > 1 
{0,1} 
T(iJ) = T{i - 1, j) + T(i - 2, j - 1) for 1 < j < i - 1 
1,1,2,3,5,8,. . . (Fibonaccinumbers) 

This is essentially the triangular array of coefficients of the Fibonacci polynomials [1], having 
rows (1), (1), (1,1), (1,2), (1,3,1), ... . The two arrays have identical nonzero entries. Note that 
the southeast diagonals of nonzero entries form Pascal triangle: T(i, j) = C(i-j, j). 

1 
1 0 

1 1 0 
1 2 0 0 

1 3 1 0 0 
1 4 3 0 0 0 

1 5 6 1 0 0 0 
1 6 10 4 0 0 0 0 

For example, 7(6,2) = 6 counts the compositions of 2 into 4 parts, each a 0 or 1, and it also 
counts strings of length 5, starting with 0 and ending in 2, with gaps of size 0 or 1: 

compositions 
strings 

0011 
00012 

0101 
00112 

0110 
00122 

1001 
01112 

1010 
01122 

1100 
01222_ 

Example IB: A005794 in Sloane [5] 

Initial values 
Q 
Recurrence 
Row sums 
Central column 

T(i, 0) = 1 for i > 0; T(i, i) = 1 for 0 < i < 3, else T(i, i) = 0 "1 
{0,1} 
T(iJ) = T{i - 1, j) + T(i - 2, j - 1) for 1 < j < i - 1 
1, 2,4,7,11,18,29,47, ... (Lucas numbers) I 
1,2,4, 8,15,26,42,64, ... (Cake numbers, A000125 in Sloane [5]) 

1 
1 1 

1 2 1 
1 3 2 1 

1 4 4 2 0 
1 5 7 4 1 0 

1 6 11 8 3 0 0 
1 7 16 15 7 1 0 0 

1 8 22 26 15 4 0 0 0 

For exaimple, 7(7,4) = 7 counts the compositions of 1, 2, 3 into 3 parts, each a 0 or 1, and it also 
counts strings of length 4 starting with 0, 1, 2, or 3 and ending in 4, with gaps of size 0 or 1: 
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compositions 
strings 

001 
3334 

010 
3344 

100 
3444 

011 
2234 

101 
2334 

110 
2344 

111 
1234 

Regarding row sums, for n > 2, the number of strings fo, %,..., sm) having gap sizes 0 or 1 
and m + sm = n +1 is the 71th Lucas number; e.g., for n = 4, the L4 = 11 strings are as follows: 

00000; 0001,0111,1111; 012,112,122,222; 33,23. 
Example 1C: A052509 in Sloane [5] 

Initial values 
Q 
Recurrence 
Row sums 
Central column 

T(z,0) = T( i , i ) = 1 fori > 0 
{0,1} 
T ( z ! j ) - r ( z - l , ; ) + T ( z - 2 , j - l ) fori <3<i-
1,2,4,7,12, . . . (Fibonacci numbers minus 1) 
1,1,2,4,8,16, ...(powers of 2) 

- 1 

1 
1 1 

1 2 1 
1 3 2 1 

1 4 4 2 1 
1 5 7 4 2 1 

1 6 1 1 8 4 2 1 
1 7 16 15 8 4 2 1 

1 8 22 26 16 8 4 2 1 

For example, 7(5,2) = 7 counts the compositions of 0, 1, 2 into 3 parts, each a 0 or 1, and it also 
counts strings of length 4 ending in 2 with gaps of size 0 or 1: 

compositions 
strings 

000 
2222 

001 
1112 

010 
1122 

100 
1222 

011 
0012 

101 
0112 

110 
0122 

By Theorem 2, St, = 1 + 5J_, + S,_2 for / > 2. As a first step in an induction argument, we have 
S0 = F3 -1 and S, = F4 -1. The hypothesis that Sk = Fk+3 -1 for all * < / - 1 yields S,. = 1 + Fi+2 -
l + ^ + i -l = 3 + 3 - l -

Example ID: A055215 in Sloane [5] 

Initial values 
Q 
Recurrence 
Central column 

T{i,6)=: T(i70~=T for i > 0 1 
{1,2} 1 
T(iJ) = T(z - 2, j - 1) + T(i - 3, j - 2) for 1 < j < i - 1 ! 
1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

1 
1 1 

1 1 1 
1 1 2 1 

1 1 2 2 1 
1 1 2 3 2 1 

1 1 2 3 4 2 1 
1 1 2 3 5 4 2 1 

1 1 2 3 5 7 4 2 1 
1 1 2 3 5 8 8 4 2 1 

1 1 2 3 5 8 12 8 4 2 1 
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r(8,5) = 7 counts the compositions of the integers 1, 2, 3, 4, 5 into 3 parts, each a 1 or 2, and it 
also counts strings of length 4 ending in 5 with gaps of sizes 1 or 2: 

compositions 
strings 

111 
2345 

112 
1235 

121 
1245 

211 
1345 

122 
0135 

212 
0235 

221 
0245 

In accord with Theorem 2, the sequence (St) of row sums satisfies the recurrence £,. = S_2 + 
SM+2. ' " 

Example IE: A056216 In Sloane [5] 

Initial values 
Q 
Recurrence 
Central column 

r ( i , 0 ) = r ( M ) = l f o r i > 0 
{0,1,2} 
T{itj) = T(i-hJ) + T{i-2J-
A027914inSloanc[4] 

-l) + T{i-3;j-- 2) for 1 < j < i - 1 

1 
1 1 

1 2 . 1 . . 
1 3 3 1 

1 4 6 3 1 
1 5 10 8 3 1 

1 6 15 17 9 3 1 
1 7 21 31 23 9 3 1 

1 8 28 51 50 26 9 3 1 
1 9 36 78 96 66 27 9 3 1 

7(5, 3) = 8 counts the compositions into 2 parts, each a 0, 1, or 2, of nonnegative integers < 3, 
and it also counts strings of length 3 ending in 3 with gaps of size 0, 1, or 2: 

compositions 
strings 

00 
333 

01 
223 

10 
233 

11 
123 

02 
133 

20 
113 

12 
023 

21 
013 

The array in Example IE has interesting connections with the array of coefficients of (1 + x + x2)" 
considered by Hoggatt and Bicknell [3]. That array, UQJ) consists of trinomial coefficients. 
Written in left-justified form as in Comtet [2], we have 

1 1 1 
1 2 3 2 1 
1 3 6 7 6 3 1 
1 4 10 16 19 16 10 4 1 
1 5 15 30 45 51 45 30 15 5 1 

For example, the partial row-sums, X%iU(iJ), beginning with 1, 2, 6, 17, 50, form the central 
column of the preceding array. 

Example 2A: A055800 In Sloane [5] 

Initial values 
Q 

Recurrence 

Row sums 
Central column 

T(i, 0) = 1 for i > 0; T(i , i) = 0 for i > 1 
{1 ,3 ,5 ,7 ,9 , . . . } 

CO 

r ( i , j ) = E r ( i - 2 f e , j - 2 f c + l ) f o r l <j<i-l 1 

$ = 2IV2J (powers of 2) 
1,1,1, 2, 3, 5, 8,.... (Fibonacci numbers) 
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1 
1 0 

1 1 0 
1 1 0 0 

1 1 1 1 0 
1 1 1 1 0 0 

1 1 1 2 2 1 0 
1 1 1 2 2 1 0 0 

1 1 1 2 3 4 3 1 0 
1 1 1 2 3 4 3 1 0 0 

1 1 1 2 3 5 7 7 4 1 0 For example, 7(10,5) = 5 counts the compositions of 5 into parts in the set {1,3,5}, and it also 
counts strings ending in 5 with gaps of size 1, 3, or 5: 

compositions 
strings 

11111 
012345 

113 
0125 

131 
0145 

311 
0345 

5 
05 

Example 2A points toward a more general result. 

Theorem 3: The number of compositions of the positive integers < n into odd parts is Fn. 

Proof: By Corollary 1A, the number of compositions of 0,1,2,...,n into odd parts is 
T(2n, ri). Therefore, it suffices to prove that T(2n, n) = Fn. We shall prove somewhat more: that 
the first n +1 terms of row In are 1, Fl9 F2,..., Fn_2, Fn_l9 Fnforn>l. Assume for arbitrary n > 2 
that this has been established for all m < n-1. Then, for row 2w, we have T(2n, 0) = 1 and for 
\<j<n, 

T(2nJ) = f^T(2n-2kJ-2k + l)= j^Fj^^Fj. D 
k=l h=Q 

Example 2B: A055801 in Sloaiie [5] 

Initial values 
Q 

Recurrence 

Central column 

T(i, 0) = T(i, i) = 1 for i > 0 
{ 1 , 3 , 5 , 7 , 9 , . . . } 

oo 
T(h j) = £ T ( i - 2k, j - 2k + 1) for 1 < j < i • 

1 ,1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

- 1 

1 
1 1 

1 1 1 
1 1 1 1 

1 1 1 2 1 
1 1 1 2 2 1 

1 1 1 2 3 3 1 
1 1 1 2 3 4 3 1 

1 1 1 2 3 5 6 4 1 
1 1 1 2 3 5 7 7 4 1 

1 1 1 2 3 5 8 11 10 5 1 For example, 7(9,6) = 7 counts the compositions of numbers < 6 using up to 3 parts, each an 
odd number, and it also counts strings of length < 4 ending in 6 with no even gap sizes: 
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compositions 
strings 

111 
3456 

113 
1236 

131 
1256 

311 
1456 

33 
036 

15 
016 

51 1 
056 

3, ARRAYS BASED ON RECTANGULAR SETS E(i$ j) 

In Section 2, the tall-set E(i, j) as defined in Section 1 is of the form {(* - 1 , j + q)}. That is 
to say, all edges into vertex (ij) emanate from a single column of array {RQJ)}. In Section 3, 
we consider paths for which £(/, j) is a rectangle of more than one column. 

Example 3A: A055807 in Sloane [5] 

Initial values 

Recurrence 

Row sums 

R(i, 0) = 1 for i > 0, R(0t j) = 0 for j > 1 

R(iJ) = 2 EB( i ' / ) for i > 1, j > 1; T{iJ) = 
t'=o y=o 

1,1,2,5,13,...(odd-indexed Fibonacci numbers) 

= R(i-- j , j) 

1 
1 0 

1 1 0 
1 3 1 0 

1 7 4 1 0 
1 15 12 5 1 0 

1 31 32 18 6 1 0 
1 63 80 56 25 7 1 0 

The array obtained by reflecting this one about its central column appears as A050143 in Sloane 
[5]. In order to see that the row sums in Example 3A are odd-indexed Fibonacci numbers, we 
first record an identity having an easy omitted proof: 

R(iJ)=2R(i-lJ)+R(iJ-l)-R(i-lJ-l)fori>l,j>2. 

y=2 

by (8), so that 

S=2 2n-2 + l + ntdR(n-j-lJ)Ul+R(n-2,l) 
J=2 J 

y=2 ;=2 

= ( 2 5 ^ + l) + (2 - 2 - l + S ^ - 2 " - 2 -1)-
n-4 

2"-3-l + ^R(n-j-2J) 
j=2 

(8) 

(9) 
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Since both sequences (Sn) and (F2n_l) are uniquely determined by initial values S0 = l and 5i = 2 
together with the recurrence in (9), we have Sn = F2n_l for n > 0. 

Example 3B: A055818 In Sloane [5] 

Initial values 

Recurrence 

Row sums 

R{i,0) = R{0,i) = 1 fori > 0 

R(hJ) = S £flW,f)foTi> 1, j > 1; T(iJ) = R(i-jJ) 
1, 2, 4,10, 26 , . . . (twice odd-indexed Fibonacci numbers) 

1 
1 1 

1 2 1 
1 5 3 1 

1 11 9 4 1 
1 23 24 14 5 1 

1 47 60 43 20 6 1 
1 95 144 122 69 27 7 1 

The recurrences (8) hold for this array and can be used to prove that the row sums are given by 

Next, we break free of the initial values (3). When counting paths into the point (3,0), for 
example, rather than counting only the edge (0,0)-to-(3,0) as a path, we can treat each of the 
following as paths: 

(0,0)-to-(3,0), 
(0,0)4o-(2,0)-to-(3,0), 
(0,0)4o-a0)-to-(3,0), 
(0,0)-to-(l,0)-to-(2,0)-to-(3,0). 

More generally, for this sort of path, the number of paths entering (i, 0) is 21"1 for / > 1. Using as 
initial values RQ, 0) = 2I_1, we count certain paths over rectangular tail-sets and obtain another 
array. 

Example 3C: A049600 in Sloane [5] 

Initial values 

Recurrence 

Row sums 
Alternating row sums 

E(0,0) = 1, R{i, 0) = 2r-T and R(0, i) = 0 for i > 1 

R(iJ) = 2 E«(*'. /) f o r * £ i. i Z l; T(ij) = R(i - jj) 1 
t v =0/=0 

1,1 ,3 ,8 ,21,55, . . . (even-indexed Fibonacci numbers) 
1 ,1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

1 
1 0 

2 1 0 
4 3 1 0 

8 8 4 1 0 

This array and its connections to compositions are considered in [4]. Again, the recurrences (8) 
prevail and can be used to prove that the row sums are given by S„ = F2n for n > 1, and that alter-
nating rows sums defined by 
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4 = T(n, 0) - T(n, 1) + T(n, 2) - • • • + (-If T(n, ri) 

satisfy 4 , = -^ for w > 1. 
Next, we consider rectangular tail-sets restricted to just two columns. On the x-axis the 

initial values R(\ 0) = 1 and R(2,0) = 1, together with the two-column recurrence, determine the 
Fibonacci sequence for values of R(i, 0). 

Example 3D: A0S5830 in Slmm [5] 

Initial values 

Recurrence 

1st diagonal 

fl(O.b) ="l, jR(if.O) = 2 ^ i for i > 1, fl(0,j) = Oforj > 1 1 

R(h3) = E £R(i'J) for i > 1, J > 1; r ( t , i ) = #(* - 3,3) 

1,1 ,1 ,2 ,3 ,5 ,8 , . . . (Fibonacci numbers) 

1 
1 0 

2 1 0 
3 3 1 0 

5 7 4 1 0 
8 15 12 5 1 0 

13 30 31 18 6 1 0 
21 58 73 54 25 7 1 0 

In [4], this sort of array is discussed not only for 2-column tail-sets, but also for w-column tail-
sets for m>2. 

4. A SYMMETRIC ARRAY 

We consider one more array, this one given by one recurrence for points beneath the line 
y = x and another, symmetric to the first, for the points above the line y = x. 

Example 4: A038792 in Sloane [5] 

Initial values 
Recurrence 
Central column 

r(tlo) = r(i l 
WJ) = T(i 
1,2,5,13,34, 

i) = 1 for i > 0 
- 1, j ) + T(i - 2, j - 1 ) if t < j / 2 , elseT(z,j) = 
.. (odd-indexed Fibonacci numbers) 

= T(i,i-- 1 ) 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 5 4 1 
1 5 8 8 5 1 

1 6 12 13 12 6 1 
1 7 17 21 21 17 7 1 

Note thai the recurrence can be written in symmetric form, as follows: 
r r ( i ~ i , j ) + r ( i » 2 , j - i ) i f2 /< j , 

T(iJ) = T(i-l,j-l) + T(i-2J-l) i£2i>j. 
It is easy to prove that the central column of this array is the sequence of odd-indexed Fibonacci 
numbers, in conjunction with the fact that each column adjacent to the central one is the even-
indexed Fibonacci sequence. 
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1. INTRODUCTION 
The study of GCD matrices was initiated by Beslin and Ligh [5]. In that paper the authors 

investigated GCD matrices in the direction of their structure, determinant, and arithmetic in Zn. 
The determinants of GCD matrices were investigated in [6] and [11]. Furthermore, many other 
results on GCD matrices were established or conjectured (see [2]-[4], [7]-[10], and [12]). 

In this paper we define an nxn matrix S = (sij), where stj =%p, and call S the "almost 
Hilbert-Smith matrix." In the second section we calculate the determinant and the inverse of the 
almost Hilbert-Smith matrix. In the last section we consider a generalization of the almost Hilbert-
Smith matrix. 

29 THE STRUCTURE OF THE ALMOST HILBERT-SMITH MATRIX 

The nxn matrix S = ($.), where s/;. = ̂ jp-9 is called the almost Hilbert-Smith matrix. In this 
section we present a structure theorem and then calculate the value of the determinant of the 
almost Etilbert-Smith matrix. The following theorem describes the structure of the almost Hilbert-
Smith matrix. 

Theorem 1: Let S = (stJ) be the nxn almost Hilbert-Smith matrix. Define the nxn matrix 
A = (flij) by 

[0 otherwise, 

where (j> is Euler's totient function. Then S = AAT. 

Proof: The //-entry in AAT is 

k=\ k\i J lJ k\(i,J) U 
k\J 

Corollary 1: The almost Hilbert-Smith matrix is positive definite, and hence invertible. 
Proof: The matrix A - (o^) is a lower triangular matrix and its diagonal is 

{ 1 ' 2 — n j 
It is clear that det A = ^[#1)4(2)... 0(n)]m and #1) >0forl<i<n. Since det A > 0, rank(S) = 
rank{AAT) = mnk(A) = n. Thus, S is positive definite. D 
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Corollary 2: If S is the n x n almost Hilbert-Smith matrix, then 

detS = -^-3-#l)rt2)...#/i). 

Proof: By Theorem 1, and since the matrix 4̂ is a lower triangular matrix, the result is 
immediate. D 

The matrix A in Theorem 1 can be written as A = EA112, where the n x n matrices E = (ey) 
and A = diag(Xx, X2,..., A,n) are given by 

etj=i 
1 if/U 

[0 otherwise, 

and Xj = tfj). Thus, S = AAT = (EAV2)(EAy2)T = EAET. 

(1) 

Theorem 2: Let S = (fy) be the nxn almost Hilbert-Smith matrix. Then the inverse of Sis the 
matrix B = (bu) such that 

'"-'^wA^B 
j\k 

where ju denotes the Mobius function. 

Proof: Let E = (e^) be the matrix defined in (1) and the n x n matrix U - {utj) be defined as 
follows: 

ty = < 
JM\j\ ftj\U 

10 otherwise. 

Calculating the //-entry of the product EU gives 

ijil; e^=i**-E>i7j=f?*HJ r " *./• 
/ i * 

Hence, t/ = E~\ If A = «fe>g(#l), #2),... , #»)), then 5 = EAET. Thus, 5"1 = UTA~lU = (btJ), 
where 

j\k 

Example 1: Let 5 - (sfJ) be the 4 x 4 almost Hilbert-Smith matrix, 

$ = 

1 2 3 4 
1 1 1 1 
2 2 6 4 
1 1 1 J_ 
3 6 3 12 
1 1 _L 1 
.4 4 12 4 By Theorem 2, S = {btj)9 where 
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b -i i (M(J)MV) , M2)//(2) ju(3)M(3) M4)M4)V 5 
I *0) *(2) *(3) + 0(4) J" 2' 

ftu = 1 ; ^(2)M0 , M4M2) 
I 0(2) *(4) 

-_2 A -1 1 M3)M0 _ 3 

= 6, &23 = 0, h - i j M4)M1)_Q A .22|>(l)Ml),^(2)//(2) 

*--14 ^ -a * 2 2 ~ 2 H~^ "i^r 
_ M2)M1)_ _ Ml)//Q)_9 , _ . _ Ml)Ml)_o 

* 2 4 - 2 4 0(4) - 4 , ^ 3 - 3 3 ^ ( 3 ) - 2 , Z>34-0, * 4 4 - 4 - 4 — ^ — 8 . 
Therefore, since S'1 is symmetric, we have 

S~l = 

5 
2 

2 
3 
2 

0 

-2 
6 
0 

-4 

3 
2 

0 
9 
2 

0 

0 
-4 

0 
8 

3* GENERALIZATION OF THE ALMOST HILBERT-SMITH MATRIX 
In this section we consider an n x n matrix, the //-entry of which is the positive m^ power of 

the //-entry of the almost Hilbert-Smith matrix: 

ij fijm ' 

Let m be a positive integer and let S = (stJ) be the nxn almost Hilbert-Smith matrix. Define 
an n x n matrix Sm, the //-entry of which is s™-. Then 

ij jm jm Zm*i f-m jm ? 

1 J k\{ij) l J 

where Jm is Jordan's generalization of Eulerss totient function [1], given by 

Theorem 3: Let C = (ci;/) be an w x n matrix defined by 
C-- = < fvspi „ „_ 

otherwise. 
Then Sm = CCT. 

Proof: The //-entry in CCT is 

J N l Arli ' 

V^wVCT) 
r 

= ± y j ( i ) = y ^ = j j » , n 
1 i *!(/,/) l J 
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Corollary 3: The matrix Sm = (s™) is positive definite, and hence invertible. 
Proof: The matrix C = (c^) is a lower triangular matrix and its diagonal is 

(JJJ5 JJJZ) JJJn)) 

It is clear that 
v T ' 2m '""' nm j 

detC = ̂ [ J w ( l ) J m (2) . . . / w ( / i ) ] 1 / 2 

and Jm(i) > 0 for 1 < i < n. Since detC > 0, rank{Sm) = rank(CCT) = rank{C) = n. Thus, Sm is 
positive definite. • 

Corollary 4: If Sm = (s™) is the n x n matrix whose //-entry is ^ = ~^-, then 

detSm = - 1 -Jm(l)Jm(2)...Jm(p). 
(n\)2m 

Proof: By Theorem 3, and since the matrix C is a lower triangular matrix, the result is imme-
diate. D 

Example 2: Consider S3, where S is the 5 x 5 almost Hilbert-Smith matrix. Then 
i 1 _i_ J_ _J_" 
1 8 27 64 125 
1 1 _1_ _i_ 1 
8 8 216 64 1000 

?3 _ | JL _L_ _L _ 1 _ _ 1 _ 
27 216 27 1728 3375 
J_ J- l _!_ l 
64 64 1728 64 8000 
1 1 1 1 1 

.125 1000 3375 8000 125. By Corollary 4, we have 

detS3 ^J3(l)J3(2)J3(3)J3(4)J3(5) = MJ™1^ • • 
p i j b - ^ - ^ / ^ w - ^ v ^ v / 46656000000' 

We now define the n x n matrices D = {dtj) and Q = diag(col, o)2, . , £>„) by 
1 if/1', 

otherwise, 
(2) 

and CO j = Jm{j). Then the matrix C = (cfj) can be written as C = DQm. Thus, we have 

sm = ccT = (Dnl/2)(Dnl/2)T = DQDT. 

Theorem 4: The inverse of the matrix Sm = (s™) is the matrix G = (g^), where 

J\k 

Proof: Let D = (dtj) be the matrix defined in (2) and the n x n matrix V = (v^) be defined as 
follows: 

342 [AUG. 



ON THE ALMOST HILBERT-SMITH MATRICES 

V-. = { J
mM\l-\ ifj\i, 

10 otherwise. 

Calculating the //-entry of the product DV gives 

k=i k\il \J. 

Hence, V = D~X. If n = diag(Jm(i),Jm(2\...,Jm(n)), then Sm = DODT. Therefore, (5")"1 = 
F r n - 1 r = G = (gy), where 

Example 3: If S2 is the 4 x 4 almost Hilbert-Smith matrix, then 

D 

1 1 1 JL" 
1 4 9 16 
1 1 _L _L 
4 4 36 16 
1 1 1 1 
9 36 9 144 
1 1 1 1 

16 16 144 16. 

Moreover 

(fi(\)M(l) , M2M2) , MQ)M&) I M4)M4)" 
1 1 " ' \ J2(l) 72(2) J2(3) J2(4) _ 24' 

d _12f//(2)Ml),M4)M2) 
12 I 4(2) 4(4) 

_ 4 . _ M3)M1) _ 9 
— 3 ' ^ - 1 , 3 ~ ^ - " 8 ' 

d _, 1 //(4Ml)_n , _g2rMl)Ml),M2)M2)>l_20 _ 
14 4(4) " ' 22 1^2)" 4(4) J~T' ^23-°' 

. M2M1)_ 16 //(!)//(!) _ 81 _ /i(l)//(l) _ 64 
a 2 4 - 2 - 4 — -——, a^-i-i- - , a 3 4 -u , a 4 4 - # 4 -4(4) 3 ' JJ J2(3) 8 

Therefore, since (S2)~l is symmetric, we have 

4(4) 

(S2) ' 2 \ - l , 

35 _ ! _ 9 . A 
24 3 8 u 

_ 1 20 A _16 
3 3 u 3 

- I • o f o 
o -f o f 
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1. INTRODUCTION 

Let p be an odd prime. In 1988, using the formula for the sum 

z (?) 
k^r (mod 8) 

the author proved that (cf. [7], Theorem 2.6) 

and 

In 1995, using a similar method, Zhi-Wei Sun [9] proved the author's conjecture, 

Later, Zun Shan and Edward T. H. Wang [5] gave a simple proof of the above congruence. 
In [9] and [10], Zhi-Wei Sun also pointed out another congruence, 

i f I ^ f (»«»P). 
In this paper, by using the formulas for Fibonacci quotient and Pell quotient, we obtain the 

following five congruences: 

Z j ^ I ^ (mod/.), (1.2) 

I S i K f * §<k<*k 

I rV— I T (mod^ <M> is*<f^'2 f< *<^* 

Z r - E i (™M> o-5) 
! £ & < £ * & < * < £ * 

where p > 5 is a prime. 
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2. BASIC LEMMAS 

The Lucas sequences {un(a, b)} and {v„(a, b)} are defined as follows: 

«o(a, b) = 0, u^a, b) = 1, u„+1(a, b) = bu„(a, b) - aun_x{a, V) (n > 1), 
v0(a, b) = 2, v^a, b) = b, vn+l(a, b) = bv„(a, fy-av^a, b) (n > 1). 

It is well known that 

u„(a,b) 1 
y/b2-4a 

fe + V ^ ^ Y (h-yfb1^)" (b2-4a±0) 

and 

vri(a,b) = \ — I + ' 

Let/? be an odd prime, and let m be an integer with m £ 0 (mod/?). It is evident that 

2 s (f )(^)*=(}+^)p - o - ̂  - 2(^y 
2\k 

and 

Since 

2Z(fl(^)"=(1+^)/7+0-^)p-2-
1\k 

p(p-A=tH 

by the above one can easily prove 

\k-i 
-p (mod/?2), 

Lemma 1 ([7], Lemma 2.4): Suppose that/? is an odd prime and that m is an integer such that 
p\m. Then 

U&2 ! fflP-i-i ( f )« p ( l - W ,2 ) - l 
^ L TZJ- ~ 2 ™ (modp), 

( ^ V 2-v.(l-m,2) 
w Z ^ - (mod/?), 

£=i 

m^1-! 

where (^) is the Legendre symbol. 
For any odd prime/? and integer m, set qp(m) = mF~p~l. Using Lemma 1, we can prove 

Proposition 1: Let m be an integer and let p be an odd prime such that p\m{m -1). Then 

4m 

(m-2)(f)-/wf(H)/2 

Z i -+* , ( * - i ) 

v *= ^ &•#* 
- + ?(m—1) — 9p(m) (mod/?). 
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Proof: Set un = un{\-m, 2) and vn = vw(l-/w, 2). From [1], [4], and Lemma 1.7 of [6], we 
know that 

v2
n-4mu2

n=4{l-m)\ vn = 2un+l-2un, ^ ^ O w - v J 
and 

Thus, 

2m 

V(srw/>~(?Js 0 (mod -̂
v2

p_(f)^4(l-m)p-^ (modp2), 

and hence, 

vp_(f),±2(i^](l-^-^(mod^). 
If (~) = 1, then v^j = 2up-1up_x = 2 (mod/7). Hence, by the above, we get 

vp_^2(l-mr-^i^y2 + qp{m-\)p (mod/72). (2.1) 

Now, applying Lemma 1 we find 

V i l v p ~ V i 1 f v /> - 2 V i - 2 
P 2m p 2m{ P P 

= — 
~2w 

and 

/ (p-l)/2 k \ 

X — ~ ^ ( w ~ 1 ) | (mod/?) 

/> 2/7 P 2 P 

\( ip~m 1 1 

This proves the result in the case (y) = 1. 
If(^) = -l , then 

V i = 2 V i - 2(* ~ ™)UP = 2 0 ~ w ) ( m o d P) • 
So 

v / ) + l S 2 ( l - / « ) ^ j ( l - / W ) ^ 1 > / 2
S ( l - / W ) ( 2 + ̂ (m- l ) / 7 ) (mod/.2). (2.2) 

Note that 

Vi = ^ (Vi+ (w - lK) = 2 Vi+ (! _ W)V 

Applying (2.2) and Lemma 1, one can easily deduce the desired result. Therefore, the proof is 
complete. 

Corollary 1: Let/7 be an odd prime and let {P„} denote the Pell sequence given by P0 = 0, Px = 1, 
and i>n+1=2/>„+/>„_,(«>!). Then 
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(p-l)/2 0k PD_(2\ 

to X ^^-4-^f-(modpl 

0>) I X ^ " " 2 p +9,(2) (mod/>). 

Proof: Taking m = 2 in Proposition 1 gives the result. 

Corollary 2: Let p > 3 be a prime, $0 = 0, ^ = 1, and iSw+1 = 4S„ - Sn_l (n > 1). Then 
(p-l)/2 ^ £ » - m 

W I T — 3 © - ^ - ^ ( 2 ) ( m o d p ) . 

V(#-2'2>H 

(p-l)/2 . , ^ D _ m 
W Z ^ H i ) ^ - ^ 2 ) + ?P(3)(modp). 

Proof: Suppose a and b are integers. From [4] we know that u^^a, h) = u„(a, b)v„(a, b) and 

V ( ^ / a ' ^ ~ "Ft"' ̂  ~ { ]> "J S 0 ^m°d &• 
Thus, 

[2«p(-2,2) - 2 V l ( - 2 , 2 ) S 2 (mod p) if (A) = 1, 

[2iipfI(-2,2) + 4ti|,(-2,2) = -4 (mod/>) if (^) = - 1 , 

S 3 ( f ) - l (mod/ ; ) . 

Observing that S„ = w„(l, 4) = 2_nM2„(-2,2), we get 

5 H f ) / / > = 2^ 'v H , ) ( -2 ,2 )« H , ) ( -2 ,2 ) / / , 

•2 ( * H (36) - l )«H#2 ,2 )^ 

= 1(1 + 3&)) V ( # 2 > 2 ) //> (mod />). 

This, together with the case m = 3 of Proposition 1 gives the result. 

Remark 1: The sequence {SJ was first introduced by my brother Zhi-Wei Sun, who gave the 
formula for the sum S^s r (mod 12> (2) 'm terms of {£„} (cf. [10]). 

Corollary 3: Let p > 5 be a prime and let {FJ denote the Fibonacci sequence. Then 
(p-l)/2 -* FD_(s_\ 

to E r - S - ^ ^ f i n o d p ) . 

(p~l)/2 1 FD_(L\ 
to I ^^-^+qP)~2qp{2){mo&p). 
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Proof: It is easily seen that ww(—4, 2) = 2n ^Fn. So we have 

_ L M = 2 ' '+W_Z_kL ^ 2 W ^ - ^ (mod/;). 

Combining this with the case m - 5 of Proposition 1 yields the result. 
Let {B„} and {Bn{x)} be the Bernoulli numbers and Bernoulli polynomials given by 

A>=I, 2(jtV*=o<"*2> 
and 

n-k 

It is well known that (cf. [3]) 
w - l 

Ix-=-4-(/UiW-^i) 
x=0 M + l 

Lemma 2: Let p be an odd prime and let iwbea positive integer such that p\m. If s e {1,2,..., 
m-1}, then 

where [x] is the greatest integer not exceeding x and {x} = x-[x]. 

Proof: Clearly, 

x H *'~2=iM[»]+1)-B<-) 

For any rationale-integers x m&y, it is evident that (cf. [3]) 

PBk(x) = £ f J W * * ~ r * 0 (mod /?) for * = 0,1,..., p - 2, 

and so 

BM(x + py)-Bp_1(x)= X (P7l)Bk(x)(pyrl-k = 0 (mod/?). 

Hence, by the above and the relation B„(l -x) = (-l)"Bn(x) (cf. [3]), we get 

This proves the lemma. 
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and 

3. PROOF OF (1.1)-(1.5) 

In [8], using the formula for the sum Et=r(mod 8)®'the author proved that 

—7T^ = x Z jT" (mod/?) (3.1) 

^ - | U (m°d/,)- (32) 

Here, (3.1) was found by Z. W. Sun [10], and (3.2) was also given by Williams [12]. 
Now, putting (3.1) and (3.2) together with Corollary 1(a) proves (1.1) and (1.3). 
To prove (1.2), we note that Williams (see [11]) has shown that 

Fp-m 2p-^pl5] (-1)*-1, . , 

Since Eisenstein, it is well known that (cf. [6]) 
(p-l)/2 ( nk-l ! P-l / ixfc-1 

Thus, by Williams' result, 
k=\ * 2 k=1 k 

Fnji\ of IP/5U nfc-A f , -^.A ^ i . , _ | w _ ' f t f i ,_|L,(2)+ z tfi (mod/?). 

Hence, by Corollary 3(a), we have 

^ ^ , - 5 ^ - 2 ^ ( 2 ) , 2 X ^ ( m o d p ) . 

This proves (1.2). 
Now, consider (1.4). From [2], we know that 

^i[{^})-B^^3qp(2) (modp) 
and 

Thus, by using Lemma 2, we obtain 

•AU^HM){iW*v 
(mod/?). 

This, 

350 

togethei 

--3gp(2)4 

* with Corollary 1(b) 

•4^(2)-

proves 
P 

(1.4). 
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Finally, we consider (1.5). By [2], 

^ i ( { f } ) - ^ i ^2^ p (2 )+ |^ (3 ) (modp) 
and 

Thus, by Lemma 2 and Corollary 2(a), 

3 /^ ^ /ox 3 ,., i 3 l V ® _ ^ 3' - 2 ? / 2 ) ^ ? p ( 3 ) - 3 ? / 2 ) - ^ / 3 ) - 3 ^ - ^ , £ ^ (modp) 
$„ ik 

This proves (1.5) and the proof is complete. 
Remark 2: The congruences (I.l)-(IJ) can also be proved by using the method in the proof of 
(1.4) or (1.5). 
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1. INTRODUCTION 

The Fibonacci numbers Fn (w = 0,1,2,...) satisfy the recurrence relation Fn=Fn_l-\-Fn_2 

(n > 2) with F0 = 0, Fx = 1. We denote 

F(*,*) = X FvA-Fvk ("**)> (!) 
Vi+v2-l \-vk=n 

where the summation is over all ^-dimension nonnegative integer coordinates (v1? v2,..., v^) such 
that Vj + v2 + • • • + vk = n and k is any positive integer. The numbers F(n9 k) are called convolution 
Fibonacci numbers (see [3], [1], [2]). W. Zhang recently studied the convolution Fibonacci 
numbers F(n, 2), F(n, 3), and F(n, 4) in [4], and the following three identities were obtained: 

X FaF^-An-DF^lnF^), (2) 

I FaFbFc=±-{(Sn2-9n-2)Fn_l+(5n2-2n-2)Fn_2), (3) 
a+b+c=n D U 

X FaFbFcFd =-L-((4n3-12n2-4n + 12)Fn_2+(3n3-6n2-3n + 6)Fn_3). (4) 
a+b+c+d=n n U 

The main purpose of this paper is that a recurrence relation and an expression in terms of 
Fibonacci numbers are given for convolution Fibonacci numbers F(n, k), where n and k are any 
positive integers with n>k. 

2. DEFINITIONS AND LEMMAS 

Definition 1: The &*-order Fibonacci numbers F„k) are given by the following expansion 
formula: 

/ « 
A = I3*V\ (5) 

By (1) and (5), we have F„(1) = Fn, F(n, k) = F„(t), and F^ =0(n<k). 

Definition 2: The A*-order Fibonacci polynomials F^k) (x;p) are given by the following expan-
sion formula: 

1 ' =±F?\x;p)t". (6) 
\-2xt-pt2; „=0 

By (5) and (6), we have F„(*> = F ^ ; 1) (» > *). 
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Definition 3: Let w, kj be three integers with n>k>2, 0<j<k-l,md 

For any (xx, x2,..., xk_x) e Mk_laJ.^ y, A(xj, x2,..., x^ j ; £, w) is defined by 

where yx, j 2 , . . . , j ^ , Zj, z2,..., zk_x satisfies the following: 
(a) If xx = 1, then j j =n; if xx =03 then j j = w-l. 
(S) V i : l < / < ^ - l ; i f x. =1, then z. = - i ; i fx . - 0 , then z. =1. 
(c) Vi: 1 < / < k - 2; if x. = xi+l = 1 or x. = 03 x m = 1, then j . + 1 = j . ; if x. = x/+1 = 0 or xt - 1, 

*/+i=0,thenj; / + 1=-v/-l . 

Lemma 1: 

(a) ^F^ix;p) = 2kF%\x;p) {n > 1); (7) 

(b) {n + \)F^{x-p) = 2x{n + k)F^\x-p) + p{n + 2k-\)F^(x-Py, (8) 

(c) ^F^\{x-p)-2x^\x-p)-2kF^\x-p)-p^F^(x-p) = 0. (9) 

iVoo/- By Definition 2. D 

Lemma 2: For k > 2, we have: 

(«) 4^)(^)+4^(^)=^,^^; (io) 

(b) ^F^(x;p)-x^Fn^(x;p) = (n-l + 2k)F^(x;p). (11) 

Proof: By Lemma 1(b) and (c), we immediately obtain (10) and (11). D 

Lemma 3: We denote 

s(n,k,j): = X V W , / X I » * 2 . - » * * - P M ) ( 0 < 7 < £ - l ) , 
(*1>*2 * * - l ) e j W * - K « 

where the summation is over all (k-1)-dimension coordinates (xv x2,..., *<._,) such that (x,, X2, 
. . . ,xt_,)eA/t_w>y,then: 

(ty f j - l W * , 0 ) = 5(/i,* + l,0); 

0 / (^ + l\s(n-l,k,k-l) = s(n,k + l,k); 

(c) (j--lX(n,kJ)+0^ + ljs(n-l,kJ-t) = s(n,k + lJ) (I<j<k-l). 
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Proof: 

(*) (f"1)^'*'0^^"1) 2 Xk-i,o(xvx2>->xk-vk>n) 
(xl,x2,...,xk_l)eMk_l 0 

=(f.I>M.ai....u..)-(j-fe-.)(j=j-.)..(=-. 
= At f 0(LL... ,l;* + L/i) = £ At i 0(x„x2, . . . ,* t ;* + l,ii) = 5(ii,* + l,0). 

(*1'*2 *k)eMk,0 

0>) f^+iWi,M-i) = (^+i) X \n(*„^,-,*t-i;*,»-i) 

-(^+i>*«(fta... .«*.-i)-(=fi+i)(H+i)-(=^+i) 
= A^t(0,0,...,a,* + l,»)= X A0k(x1,x2,...,xk;k + l,n) = s(n,k + l,k). 

(AT,,X2,...,Xt)sA/0t 

(cj 5(w,A: + l,y)= X Ak_JtJ(xl,x2,...,xk;k + l,ri) 
(*b*2 xk)*Mk_jj 

Z At_y>y(Lx2,...,xt;* + l,n) + X V; , / 0 . * ! 't^+l.") 
(l*2,~,*k) e W * - ^ (<>.*2 **) eMk-J,j 

=(f-1) Z Vw,/(x2.-.^;*.») 

+(^-+1) Z Wi^.-,^;*."-!) 
(*2 Xk)eMk-JJ-\ 

= (j--iy(n,kJ) + ̂  + ljs(n-\,k,j-l). D 

3. MAIN RESULTS 

Theorem 1: For « > k > 2, we have: 

« ^*'>-^(£-')^<^ V^W^*'* <l2) 

w ^>4fe"1)F""""+f(H+1)F"r"- (13) 
Proof: 
(a) By (10) and (11), we have 

(x2 +P)^k\x- p) = nxF^(x; p) + p{n - l + 2k)F^(x; p). (14) 

By (14) and (7), we immediately obtain (12). 
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(b) Taking x = ± and p = 1 In (12) and noting that 

w-mfa), 
we immediately obtain (13). D 

Theorem 2: For n > k > 2, we have 
\k-i-j 

2(x2+p) 

where s{n, k, j) is defined as in Leftima 3. 

Proof (using mathematical induction): 
1° When k = 2, by Theorem 1, we have 

5(«,^,7)Fn_w(x;p), (15) 

2(*2+/>) 2(xi+/>) 

r—rhoOi 2, "Vvite />) + ^ f r \ i ( ° ; 2> »Vva(*; />) 
\WY „ V 

= 1 
;tsI2(x2+/»>; U(* +/>)J oo^,-,,, Z A w, Axi' 2> n)Fn-i-j(x; p) 

M^TjJ te^>J*^--A/» (16) 

(16) shows that (15) is true for the natural number 2. 
2° Suppose that (15) is true for some natural number k By the supposition, Theorem 1, 

and Lemma 3, we have 

f-lJ5(«,*,0)Fw„1(x;/») + ( x * 
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+S(j^]T'(5^)'((f-i>ht./)+(5j1*'>«.->.*.y->))^Art 
+uc 

2(x2+/>) 
5(/i,* + l,0)FB_1(x;/») 

+%y^T{w^sin-',+ij)F^x'-p) 

+ 2(x2+p) 
s{n,k + \,k)Fn_x_k(x;p) 

'th^''y^jh"-k+xj)F--^-p) <i7) 
(17) shows that (15) is also true for the natural number k +1. • 

From 1° and 2°, we know that (15) is true. 

Theorem 3: For n > k > 2, we have 

Fin, k) = F« = j^lj"12>X», k, j)Fn_p (18) 

where s(n, k, j) is defined as in Lemma 3. 
1 
2 Proof: Taking x = \ and p = 1 in Theorem 2, and noting that 

F(M) = 3k>=/$g, l) and F„_y = F„_wg;l), 
we immediately obtain (18). • 

Corollary 1: For « > fc > 2, we have 
(a) F(n,2) = \({n-\)F„+2nFn_l)-

(b) F(n,3) = ^ ( ( H 2 - 3 n + 2)F„ + (4«2-6n-A)F^ + (4»2-4)F„_2); 

fc> JF(n,4) = 7L((«3-6«2 + ll«-6)Fn+(6n3-24«2+6« + 36)F„_i 
+ (12«3 - 24«2 - 48w + 36)F„_2 + (8w3 - 32n)Fn_3); 

(d) F{n, 5) = ̂  ((n4 - 1 On3 + 3 5H2 - 50n + 24)F„ + (8n4 - 60w3 +1 OOJ2 +120w - 288)F„_! 
+ (24«4 - 120w3 - 60W2 + 660w - 144)F„_2 + (32«4 - 8Gra3 - 320w2 + 440? + 288)F„_3 

+ (16n4 - 160W2 + 144)F„_4). 

Remark: By Corollary l(a)-(c) and Fn = Fn_l + Fn_2 (n > 2), we immediately obtain (2), (3), and 
(4) (see Zhang [4]). 
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1. INTRODUCTION 

Horadam's sequence {wn(a,b; p,q)}, or briefly {wn}, is defined by the recurrence relation 
w0=a, wt=b, wn = pwn_l~qwn_2 (n>2) (see, e.g., [1], [2], [3]). The sequence {u„(p,q)}> or 
briefly {un}, is defined as un = wn(l,p;p,q), and the sequence {v„(p,q)}> or briefly {vw}, is 
defined as vn = wn(29 p; p, q). The sequences {un} and {v„}, respectively, are generalized Fibo-
nacci and Lucas sequences. 

In this note we study linear combinations of Horadam's sequences and the generating function 
of the ordinary product of two of Horadam's sequences. Similar results for the generalized Fibo-
nacci sequence {un} are given by McCarthy and Sivaramakrishnan [4]. In [1], Horadam studied 
the generating function of powers of {wj. The main results are in Sections 2 and 3 below 

2, LINEAR COMBINATIONS 

Let Pi,p2,-,Pk be distinct complex numbers and let w^ =wn(a,h;pj,q) and u^ = 
un(pj, q) for j = 1,2,..., k. McCarthy and Sivaramakrishnan show that the sequences {u^} are 
linearly independent and that if un = cpfp +c2^2) + '"+ckuik>) ^or all î > 0 then, for some h with 
1 <h< k, we have ch - 1, Cj = 0 for j±h and p = ph (see Theorems 3 and 4 in [4]). 

In this section we show that these results hold for the more general sequences {wn} and 
{w^}. In the proofs, we need the identities 

[nil] / , \ [(n-l)l2] f - , x 

"• =«!(-!/[k)r2kqkHb-pa) £ (-l)f" " r ' V (2-1) 

(see eq. (1.7) in [3]) and 

Wn=b%-l-^%-2 (2.2) 
(seeeq. (2.14) in [2]). 

We now give the generalizations. 

Theorem 2.1: Let a ̂  0. The sequences {w^} are linearly independent. 

Proof: Suppose that 
k 

YtcjwiJ) = 0 for«>0. 

Then the first k of these equations form a system of k linear equations with chc2,...,ck as 
unknowns. The matrix of coefficients is [wfJ)], i = 0,1,..., k -1; j = 1,2,..., k. The row with 
i = 0 is a,a,...,a. The other rows can be obtained by equation (2.1). Thus, if / > 1, then by 
adding appropriate multiples of the rows 0,1,..., i - 1 to row /', the matrix can be transformed into 
one having 2ap{, 2apf29 • • •, 2a/?[ as its row /'. Thus, 
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\<i<j<k 

andhencec/ = 0, y = l,2,...,it. D 

Theorem 2.2: L e t a , 6 ^ 0 . If, for complex numbers cl,c29...9ck9 

£c y w^=w w 3 n>0, (2.3) 

then for some h with 1 <h <k we have ^ = 1 , ^ = 0 for j*h and p = ph. 

Proof: We prove that 
k 

XC/nJ)=Un, »*<>. (2.4) 

Assume that « = 0. Then EjU c/w^ = w0 or Sj= 1 c/? = a. Since a * 0, we have Zy=1 cy = 1 or 
Ey=i £/4i} = % Thus, (2.4) holds for n = 0. Assume that (2.4) holds for n < m. Then, with the 
aid of (2.2) and the induction assumption, 

k k k k 
H^yjli = ̂ Cjttf-qa^CjuWi = b^c/J^-qaum_v 
/=1 J=l /=! ;=1 

On the other hand, with the aid of (2.3) and (2.2), 
k 

Since b * 0, we see that (2.4) holds for w = m. This completes the proof of (2.4). Now, applying 
the result of McCarthy and Sivaramakrishnan [4] referred to at the beginning of this section to 
(2.4), we have ch - 1, Cj = 0 for j*h and p- ph for some h with 1 <h< k. This completes the 
proof of Theorem 2.2. • 

Remark 2.1: Considering the.sequence {ww/a}, a^O, and using the results of [4], it can be 
shown that Theorems 2.1 and 2.2 hold for the sequences {wn{a, p; p, q)} and {wn(a9 py9 pj9 q)}. 
Thus, Theorems 2.1 and 2.2 hold for the generalized Lucas sequence {vn}. 

3. GENERATING FUNCTIONS 

Let the sequence {w'n(a',b';p',q')}, or briefly {w'n}, be defined by the recurrence relation 
Wo = a\ w[ = V9 w^ = p'w'^ - q'y>'n-i (» > 2). In this section we evaluate the generating function 
of the ordinary product {wnw'n} of two of Horadam's sequences. For the sake of brevity, we 
denote W2(x) = S^=0

 w
n
wnxn • We thus evaluate W2(x). As special cases, we obtain the generating 

functions of {!/„«£} and {w%} evaluated by McCarthy and Sivaramakrishnan [4] and by Horadam 
[1], respectively. 

Lemma 3.1: 
A „ _ a'b - paaf + (pfqaa' -qab<)x + (p~ p!qx)W2(x) 
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Proof: It Is clear that 

n=0 n=Q n=Q 
OO 00 

00 00 

= a'b + pl^(x) - paa' - ^ w ^ ^ x " + qj^ wn_xwf
nxn - p'qx(W2(x) - aa') 

= a'b - paa' - gai'x + p'qaa'x + pW2(x)~- pfqxW2(x). 

The proof of Lemma 3.1 is complete. • 

Lemma 3.2: 

Lemma 3.2 follows from Lemma 3.1 by replacing a, b,p, and $ with a', b\ p\ and $', respec-
tively. 

Theorem 3.1: 

m*)=, 2 _ , _ . . , . . / ! i - pp'x+[(p2 - g)g'+(p'2 - g')q]x2 - pp'qq'x3+q2qf2x4' 
where 

yl(x) = aa' + (66' - aafpp')x + (aa'p2qf + aa'paq - aa'qq' - ab'p'q - afbpq')x2 

+ (ab'pqq' + a'bp'qq' - aa'ppfqqp - bb'qq')x3. 

Proof: We have 
00 00 

W2(x) = ^wX„x" = aa' +bb'x + ^(pw„_l-qw„_2)(p'w'n_1-q'w^2)x" 
«=0 «=2 

00 00 

= aa' +bb'x + pp'Y,w„-iK-ix" - />?'I>„-i<-2*" 
w=2 «=2 

OO 00 

- />'?£ W»-2<-l*" + W'Z W«-2<-2*" 
w=2 «=2 

( °° "̂  °° 
= aa' + ft J'x+pp'x Z w„w£x" - aa' - p#'x2 Z wn+lw'nxn 

Vn=o y «=o 
OO OO 

- p'qx2 Z wX+i*w+w'*2 Z wX*w-

Applying Lemmas 3.1 and 3.2, we obtain 
w / v , u , f , f „ , , v f 2a'b-paa'+ p'qaa'x-qab'x + (p-p'qx)W2{x) 
W2(x) = aa' +bb'x-aa'pp'x + pp'xWJx) -pq'x1 -——— -—=———^ * ' 2 W 

1 - qq'x 
-p>qx2ab'-p,aa! + Pq'aa'X-q'^ 

I-qq'x2 

Solving for W2 (x), we get Theorem 3.1. D 
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Corollary 3.1 [4p 
y* , n 1 - qqfX 
2 , ununx - i _ ̂  + ^ 2 _ ̂  + ^ 2 _ ^ ^ 2 _ pp,qq,j + ^qaxA • 

Corollary 3.2: 
f y : , x , __ 4 - 3pp'x + (2/?V + 2 / / 2

g - 4qq')x2 - pp'qq'x3 

Corollary 33: 
fuVxn^ 2-_pp'x + (p'V2gg')x2 

tknn 1 - pp'x + [ ( / - q)qp + (pa - q')q]x2 - pp'qq'x3 + q2qax4 ' «=o 

Corollary 3.4 [1]: 

Corollary 3.5 [4]: 

Corollary 3.6: 

f W2xn = a2Hh2-a2(p2-q)]x + q(h-pafx2 

to n (l-qx)il-(p2-2q)x + q2x2} 

Y 2 n _ 1 +0X 
^ X " (1 - qx)[l -(p2- 2q)x + g V ] " 

V v V = A + (4q-3p2)x + p2qx2 

£?"* (l-qx){l-(p2-2q)x + q2x2Y 
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1. INTRODUCTION AND BACKGROUND. 
In the present note we shall give two proofs of a property of the poly-Bernoulli numbers, the 

closed formula for negative index poly-Bernoulli numbers given by Arakawa and Kaneko [1]. 
The first proof uses weighted Stirling numbers of the second kind (see [2], [3]). The second, 
much simpler, proof is due to Zeilberger. 

In Kaneko's paper, "On Poly-Bemoulli Numbers" [5], the poly-Bernoulli numbers, which 
generalize the classical Bernoulli numbers, are defined and studied. For every integer k9 called the 
index, we define a sequence of rational numbers B^ (« = 0,1,2,...), which we refer to as poly-
Bernoulli numbers, by 

lLifc(.)|z=1_e., = | B ^ . (1) 

Here, for any integer k9 Llk(z) denotes the formal power series ZJ^z'V/w*, which is the k^ 
polylogarithm if k > 1 and a rational function if k < 0. When k =1, B^ is the usual Bernoulli 
number (with B} = 1 /2). In [4] Kaneko obtained an explicit formula for Bk

n: 

where {%} is an integer referred to as a Stirling number of the second kind [6]. 

2, CLOSED FORMULA 

Theorem 2d (Closed Formula): For any w, k > 0, we have 

**-iw{j:!}C:i}- p> 
We need two lemmas. We use the notation and numeration of the equations in Carlitz's 

paper [3]. 

Lemma 2.1: 

ii-Wrifyfy = H)"'!{m} = H)"^R(», t, i), (4) 
where 

Proof: In order to prove this lemma, we calculate the generating function: 

i0£<-H"){s}S-s<-<7K{s}S 
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: Z, (_1)^ I I P1- ji = / i _ / i „ z\y+i> ̂ y * e generalized binomial theorem, 

= e-*(e-* - if = £*!R(/i, *, lX-l)"»7? by [3], (3.9). 

Lemma 2.2: 

£ZBwt*y = Z/»y(*)^0') (5) 

where p / x ) = 7! I " 0R(n, j , l)x". 

Proof: By (2), we have 

Z Z B - V / = £ 1 1 ; f n r H r ^ W i ) * W , by pi, (3.4), 
00 00 CO 00 / \ / f 1 \ 

=ZZZ E"(7R(M,o (-Dn(-i)^'CW 
w=0 &=Q m=0 *=0 V / • V I J J 

= Z | ) A 0 ' X - l ) " | ; f 7 l ( - i r ™ l f c } « " , by Lemma 2.1, 

= Z ZftCy)(-ir(-i)"^!R(», Al)*" = X ACO'ifX",', i)*" = fipt(x)pt(y). 
£=0 n=Q £=0 n=0 £=0 

Proof of (3): To prove (3), we compare the coefficients on both sides of (5). In the course 
of Arakawa and Kaneko's proof they prove the following proposition. 

Proposition 2.1: For n > 05 

I(-l)'Bft = 0. 
^=0 

Proof: We offer a more direct proof: 

£=0 £=0 m=0 ^ J 

^ - i r l i l - i r ^ ^ + l / h l , by [4], (6.20), 

= (-Dn ±{-\)mm\ {;+Jl=nysl n + l=o. 

3. ANOTHER PROOF 

In Kaneko's paper [4], he obtained the symmetric formula: 

Y Ywk — *—= - (6) 
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By using (6), D. Zeilberger gives a much simpler proof of (3) as follows: 
-k x y Qx+y 

fc>Ow>o n. K\ e -te e y>0 

= S T T T ^ O + W - eXy<rex)ij+1)0 - ^ y (-v) 

= I T-^Dja-o^D.ta-^)^1]. 
/so U + V 

Now using the usual generating function for the Stirling numbers of the second kind {£}, i.e., 

sr [n\un _{eu-lf 
n>k 

he obtains: 
jn ,Jfc 

«>0fc>0 
(-iy+ic/+i)i ^ , U + lf «i 

xD, (-iy+1o+D! z { / + I } F 

-z^zfriftzfriHi 
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INTRODUCTION 

If n is a nofinegative integer, let t(n) = n(n + l)/2 denote the w* triangular number. Gauss' 
triangular number theorem states that if x is a complex variable such that |x| < 1, then 

n>\ l x n>Q 

(see [1], p. 326, Ex. 5b, or [3], Theorem 354, p. 284). 
In this note, we make use of this Gaussian formula to derive several apparently new identities 

concerning qQ(ri), the number of self-conjugate partitions of n. 

PRELIMINARIES 

Definition 1: Let p(n) denote the number of unrestricted partitions of n. 
Definition 2: Let q0(n) denote the number of partitions of n into distinct odd parts (or the num-
ber of self-conjugate partitions of «). 
Definition 3: If r > 1, let qr(ri) denote the number of partitions of n into distinct parts in r colors. 

Remark: If f(n) is any of the above partition functions, we define /(O) = 1, f(a) = 0 if a is not 
a nonnegative integer. 
Definition 4 (Pentagonal numbers): If k e Z, then 

„ . k(3k-l) 

IDENTITIES 

Let x be a complex variable such that |x \ < 1. Let r > 1. Let j > 1. Then we have: 

n o - %jn)=i+x H > v^+%j M~k ) ) , (3) 
no+*2"-i)=i%(»)*". (4) 
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n a-*2"-1)-1=n a+*") =!«(»)*", 
«>1 «>0 

w>l 

n>\ »>0 

Vn^O J\n>0 J n>Q\k=0 

(5) 

(6) 

(7) 

= t(j) for somej > 0, 
otherwise. 

Remark: For proofs, see Chapter 19 of [3]. 

THE MAIN RESULTS 

Theorem 1: Let the integer n>0. Then 

<7o(») + 1 (- !)*(%(» - *»(*)) + <7o(« - 4«(-*)))={J ^ 

Proof: By (1) and (5), we have: 

£ **(»> = U (1 + x")(l - x2") = f | (1 + JC2W"1X1 + *2")0 - *2n) 

=n(i+^"ixi-^")=n(i+^""i)n(i-^)=[z?o(»K]no-^4") 
«>1 H > 1 «>1 V«>0 )n>\ 

( ^ 
n>o\ kt\ J 

The last few steps required the use of (4), (3)? and (7). The conclusion now follows by matching 
coefficients of like powers of x. 

Remark: We earlier proved similar recurrences concerning q0(n), namely: 

k>\ [0 otherwise. 

(See Theorem 2 in each of [4] and [5], respectively.) 

Theorem 2: Let the integer w>0. Then 

k>l j>0 \ ^ J 

Proof: In the proof of Theorem 1, we encountered the identity: 

«>0 

Therefore, 
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n a+*2n-i)0 - *4")o+x4n)=n o+*4n)z x'in). 

f i ft( i )*"]no-xf c )=fz^yTs^") 
Vw>0 y w>l l W £ 0 V ^ An^O 

The conclusion now follows by Invoking (4), (3), and (7), and matching coefficients of like 
powers of x. 

The following theorem regarding q0(n) is not a recurrence; it expresses q0(ri) in terms of 
p(n). 

Theorem 3: 

Proof: 

j>0 ^ n 
l + x" 

S?O(»K=no**2-1)=n fr^r=n w -
nZQ n>l n>\ l "*"x n£l V1 x 

l + X ,2/i 

4w)(l-x2"-!) 
V A 

«>I «£1 l x \n>0 v ^ y 7V«>0 ) 

by (4), (3), and (1). The conclusion now follows if one invokes (7) and matches coefficients of 
like powers of x. 

Remark: Theorem 3 is essentially Watson's identity: 

An 

Wo Aw=o 
(see [6], p. 551). 

The content of Theorem 3 may be stated more explicitly as Theorem 3 a below. 

Theorem 3a: 
q0(4n) = p(n) + p(n~J) + p(n~9) + p(n~30) + p(n-34) + -°, 

qQ(4n + l) = p(n) + p(n~5) + p(n~ll) + p(n-26) + p(n-3S) + -'y 

qQ(4n + 2) = p(n-l) + p(n-2) + p(n-i6) + p(n-l9) + p(n-47) + 
qQ(4n^3) = p(n) + p(n-3) + p(n~\3)+p(n-22) + p(n--42) + '''. 

Corollary: qQ(n) > p([n 14]). 

Proof: This follows from Theorem 3. 

Remark: In [2], J. Ewell proved a theorem similar to Theorem 3, namely: 

a 
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Using similar reasoning, it follows that 
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1. INTRODUCTION 

In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article 
in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of 
the composite numbers. He defined a Smith number to be a composite number where the sum 
of the digits in its prime factorization is equal to the digit sum of the number. The set was named 
in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 
when written as a single number 4,937,775 possessed this interesting characteristic. Adding the 
digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums 
of42. 

Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. 
Since that time, many things have been discovered about Smith numbers including the fact that 
there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by 
Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce 
Smith numbers having ten million digits and thirteen million digits. Using the same large repunit 
and a new large palindromic prime, the author is able to find a Smith number with over thirty-two 
million digits. 

2. NOTATIONS AND BASIC FACTS 

For any positive integer w, we let S(ri) denote the sum of the digits of n. For any positive 
integer n, we let Sp(n) denote the sum of the digits of the prime factorization of n. For example, 
£(27) = 2 + 7 - 9 and Sp(21) = Sp(3-3-3) = 3 + 3 + 3 = 9. Hence, 27 is a Smith number. 

A repunit, denoted i?W5 is a number consisting of a string of n onefs. For example, R4 = 1111. 
Currently, the largest known prime repunit is Rmi9 which was shown to be prime by Hugh 
Williams and Harvey Dubner in 1985. 

The following facts are used in constructions of very large Smith numbers. 
Fact 1: If you multiply 9Rn by any natural number less than 9Rn, then the digit sum is 9w, i.e., 

S(M *9Rn) = 9M = S(9RJ whm M < 9Rn (for a proof, see [3]). 

Keith Wayland and Sham Oltikar in [5] provided the following. 

Fact 2: If S(u) > Sp(u) and S(u) = Sp(u) (mod 7), then 10* -u is a Smith number, where k = 
(S(u)-sp(u))n. 

3* PMOM LARGEST SMITH NUMBERS 

In 1987, Dubner discovered the large palindromic prime M= 104594 + 3*102297 + 1. When 
this prime is raised to a power t9 the digit sum will be the sum of the digits of the numbers in front 
of each power of 102297. As long as each coefficient of a power of 102297 is less than 9i?1031, 
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when it is multiplied by 9i?1031 that coefficient has a digit sum of 9 * 1031. Since the largest coef-
ficient occurs in the middle, it is sufficient to bound it by 9i?1031. 

Suppose that N = 9Rmi*Mt with each coefficient of a power of 102297 being less than 
9i?1031, then each of the It +1 powers of 102297 contributes 9 * 1031 to the digit sum. Hence, 

On the other hand, the prime factorization of iVls simply 3 *3 * J?1031*Mr and so 
£,(#) = 3 + 3 + 1031 + Sf 

because Sp(M) = 5. For any positive t, we have S(N) > Sp(N) and 

S(N)-Sp(N) = lS553t + S2A2 
= 3t + 3 (mod 7) 
= 3(f + l) (mod?). 

This result will be 0 (mod 7) when t = 6 (mod 7). Yates [7] was able to find the optimal t value 
that is congruent to 6 (mod 7) and has a coefficient of 102297*f less than 9i?1031 was 1476. In this 
case, the coefficient of io2297*1476 is 7.85 *101029 and increasing t by 7 causes the middle coeffi-
cient to be greater than 9i?1031. Finally, the computation 

( ^ ( # ) - ^ ( # ) ) / 7 = (18553*1476 + 8242)/7 = 3913210 

and Oltikar and Wayland's fact say that 

9i?1031 * (104594 + 3 * 102297 +1)1476 *103913210 

is a Smith number. This number has 1031 + 1476*4594 + 1 + 3913210 = 10,694,986 digits. 
This number did not remain as the largest Smith number for very long because Dubner found 

a new larger palindromic prime in 1990. Yates used Dubner's prime, 106572 + 3 * 103286 +1, to pro-
duce the Smith number 

9i?1031 * (106572 + 3 * 103286 +1)1476 * 103913210 

which has 13,614,514 digits. Yates published his finding in a poem serving as a tribute to Martin 
Gardner [8]. 

4. NEW LARGEST SMITH NUMBER 

Chris Caldwell is keeping on the World Wide Web a list of the 5000 largest primes [1] which 
is changing monthly. He also has available for retrieval a list of the largest palindromic primes 
[2]. In his list, we found a new very large palindromic prime with a small middle. The list credits. 
Daniel Heuer for using the program Primeform in 2001 to discover that M= 1028572 + 8 * 1014286 +1 
is prime. 

Suppose N = 9i?1031*M/ with each coefficient of a power of 1014286 being less than 9R} 1031-
Since Heuer's new palindromic prime has a middle digit 8, S(N) - Sp(N) is now 18548/ + 8242 = 
5/+ 3 (mod 7).. This will be 0 (mod 7) when / = 5 (mod 7). The optimal t value that is 
congruent to 5 (mod 7) and has a coefficient of I014286*r less than 9i?1031 turns out to be 1027. 
Then, the exponent to use on 10 is (S(N)-Sp(N)/1 = (18548*1027 + 8242)77 = 2722434. 
Hence the new Smith number is 
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9*i(M * (lo28572 + 8 *1Ql4286 + lf°21 ^102722434 

which has 1031 + 1027*28572 + 1 + 2722434 = 32,066,910 digits. 
While there are larger palindomic primes in Caldwell's list, the larger ones have middle terms 

that are not single-digit numbers. Then you must use a much smaller / value on the palindromic 
prime so that the middle coefficient in the trinomial expansion is bounded by 9J?1031. This limita-
tion forces the number of digits in the resulting Smith number to be much smaller than 32 million. 
In fact, using the larger palindromic prime, 

M = 1035352 + 2049402 * 1017673 +1, 
the optimal t value is t = 157 and yields a Smith number having only 5,968,187 digits. 
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Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others' proposals must be sub-
mitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by February 15, 2003. If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Ai+2 ~ AH-1 + A?> M) - 2> Lx = 1. 

Also, a = (1 + ̂ 5) / 2, /? = ( l -V5)/2 , Fn = (an-pn)I\J5, and Ln = an+fin. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-940 Proposed by Gabriel® Stanica & Pantelimon Stanica, Auburn Univ. Montgomery\ 
Montgomery, AL 

How many perfect squares are in the sequence 

k=0 

B-941 Proposed by Walther Janous, Innsbruck, Austria 
Show that 

B-942 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 
(a) For n > 3, find the Fibonacci number closest to L„. 
(b) For n > 3, find the Fibonacci number closest to l}n. 

B-943 Proposed by Jose Luis Diaz & Juan J Egozcue, Vniversitat Politecnica de Catalunya, 
Terrassa, Spain 

Let n be a positive integer. Prove that 
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k=lFk Fn+2~l 

When does equality occur? 

B-944 Proposed by Paul S. Bruckman, Berkeley, CA 
For all odd primes p, prove that 

k=l 

where y represents the residue k l (mod/)). 

B-945 Proposed by K Gauthier, Royal Military College of Canada 
For n > 0, q > 0, s integers, show that 

^ / J^-l^+lXw-0+* = Fq+lF2r,+s' 
1=0 \ J 

SOLUTIONS 
Some Sum Divides Another 

6-925 Proposed by Jose Luis Diaz & Man /. Egozcue, Universitat Politecnica de Catalunya, 
Terrassa, Spain 
(Vol 3% no. 53 November 2001) 

Prove that X^=0 F*+l divides 

I#+1[Ffc+2+(-l)^]for«>0. 
k=Q 

Solution by H.-J. Seifferi, Berlin, Germany 
From (I3) of [1], we know that 

n 

2^Fk+l ~ Fn+iFn+2> 
k=0 

so it suffices to prove that, for all n > 03 

Sn := iFk\lFk+2 H-tfFk] = [^Z^F»+3 H-lfF^y^F^. (1) 

Direct computation shows that this is true for n = 0. Assuming that (1) holds for n-1, n > 1, we 
obtain 

Sn = Sn_1+F^x[Fn+2H-V'Fn\ 

= ( ^ ^ ^ a - (-l)"^i]^Wi + tfdF„+2 + (-1)"FJ 

= i 1 1 ^ - ^ + F n + l y „ + l F „ + 2 = i ^ t s L F n ^ + ( - i y F „ + 2 y„+lFn+2, 
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where the latter equality Is easily established by considering the cases in which n is even and n is 
odd. This completes the induction proof of (1). 

Reference 
1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci Associa-

tion, 1979. 
Almost all solvers used essentially a similar method and provided the same reference. 
Also solved by Brian IX Beasley, Paul S« Bruckman, Charles Cook, Kenneth R Davenport, 
L* A. G Dresel, Russell J. Mendel, Walther Janous, and the proposers. 

Find the Limit 

B-926 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan 
(Vol 39, no. 5, November 2001) 

lfl<a<a, evaluate 
/ _L+J_+...+_L X + J L + . . . + _ i _ \ 

lim [aFl h p» -a* h Fn-l\. 

Solution by GurdialArora & Vlazko Kocic, New Orleans 
To find the above limit, we use the following result from [1]: 

lim|4- + i - + ---+4^ = 2 + a«3.6180339.... 
A F2 

Therefore, 
/ J_+_L+...+JL J_+_L+.. .+_J_\ 

lim [aPl h Fn -ah h Pn~l = 0. 

Reference 
1. Zdzislaw W. Trzaska. "On Factorial Fibonacci Numbers.1' The Math. Gazette (1998):82-85. 
Almost all solvers noted that 

exists and gave several references. In fact, the result is not difficult to prove. 

Also solved by Paul S* Bruckman, L. A. G Dresel, Russell J. Hendel, Walther Janous, H.-J. 
Seiffert, Nairn Tugler, and the proposer. 

A More General Identity 

B-927 Proposed by R S» Melham, University of Technology, Sydney, Australia 
(Vol 39, no. 5, November 2001) 

G. Candido [Sf A Relationship between the Fourth Powers of the Terms of the Fibonacci 
Series," ScriptaMathematica 113-4 (1951):230] gave the following fourth-power relation: 

2(F„4 + F„\1 + F„4
+2) = (F„2 +F„2

+1 +F„2
+2)2. 

Generalize this relation to the sequence defined for all integers n by 
w„=pw„-x-qwn_2, w^a,wx=b. 
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Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
We find 2 ( ?

4 f C + / r f f f l < + 2 ) = ( ? X 2 + ̂ 1 < 2 ) 2
! because 

and we complete the proof by noting that 

<?2 W C i + C 2 ) = q2W?[(W„+2 -pWn+lf + 2pWn+lW„+2] 
= q4W:+2pq2W2Wn+lWn+2, 

p2Ki(q2w?+w?+2) = p2w?+Wn+2 +qK)2-2qw„w„+2] 
= p4W:+1-2p2qW„W?+1W„+2, 

W?+2(q2W?+P2W?+i) = WZ+2[(pWn+l-qWny+2pqWnWM] 
= W:+2+2pqWnW„+lW?+2, 

and 

2pq2W^W„+lWn+2-2p2qWX+lW„+2 +2pqWnW„+1W^+2 

= 2pqW„Wn+1Wn+2(qW„ - pWn+l + W„+2) = 0. 

Also solved by Brian D. Beasley9 Paul S. Bruckman$ L. A. G. Dresel9 Russell J. Hendelf 
Walther Janous, and ike proposer* 

A Complex Fibonacci Polynomial 

B-928 Proposed by H.-J. Seiffert9 Berlin^ Germany 
(Vol 3% no. 5, November 2001) 

The Fibonacci polynomials are defined by FQ(x) = 0, Fx(x) = 1, Fn+X{x) = xFn+l(x) + F„(x) for 
n > 0. Show that, for all complex numbers x and all nonnegative integers n, 

*w.w=tyr2 [̂l%fy+2r*. 
where [/J and fe] denote the floor- and ceiling-function, respectively. 

Solution by Paul S. Bruchman9 Berkeley>, C4 
We may restate Seiffert's putative identity as follows: 

where 

G*»i(x) = I(-l)Ktt,) /2,f, ,"[S/
+

2?/2V +2r*. (2) 
Our proof of (1) uses a modified form of induction. First, however, we derive the recurrence 

satisfied by the F2n+i(xys. Note that the basic recurrence satisfied by the i^(x)fs has the charac-
teristic equation, z 2 - x z - 1 = 0, which has the solutions M = M(X) = X + 0 and v = v(x) = x-0, 
where 0 = (x2 +4)1/2. Note that u + v = x and tiv = - 1 . Therefore, the characteristic equation of 
the F2n+l(xy& is as follows: (z-u2)(z-v2) = 0, i.e., z2 - (x 2 + 2)z +1 = 0. In other words, the 
F2w+1(x)f s satisfy the following recurrence: 
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JWs(*) = (x2 + 2 ) F M ( x ) - 4 + 1 ( 4 n = 0,1,.... (3) 

Note that F^x) = 1 = G^x). Also, F3(x) = x2 +1 = (x2 + 2) - 1 = G3(x). Now 

(x2 + 2)G2n+3 (x) - G2n+l(x) = § ( - l ) K ™ (" + ! "K* + ]> ' 21] (x2 + 2 ) " ^ 

fe( } I ^ / 2 ] 
In the last sum, we replace k by k - 2; thus, this sum becomes 

2 ] l (x2+2)"-* 

g^ t a+ i ) / * ] (» + 1 " K* + l) / 2 ] \ x 2 + 2)»+2-*. 
n+2 

+ 
k=2 

We may extend this last sum by including the terms for k - 0 and k = l, since the combina-
torial term vanishes for such values. Similarly, the first sum may be extended to include the term 
for k - n + 2, for the same reason. We also note that 

'/i + l-[(ifc + l)/2]>\, (n + l-[(k + l)/2S)_(n + 2-[(k + l)/2] 
[k/2] ) + { [*/2]-l )-{ [k/2] 

Accordingly, we obtain the following result: 

(*2 +2)G2„+3(x)-G2n+1(x) = S( - i ) K k + D / 2 , (" + 2 "[ i%V ) / 2 1 ) ( x 2 + 2 r " 
which we recognize to equal G2w+5(x). Therefore, the F2n+l(xys and the G2„+1(x)8s satisfy the 
same recurrence, and also have the same initial values. It follows that 

4 + i W = G2n+i(xX n = 0,1,..., for all x. Q.E.D. 
Also solved by Walther Janous and the proposer. 

Between Fibonacci; Lucas, and Legendre 

B-929 Proposed by Harvey J. Hindin, Huntington Station, NY 
(Vol 39, no. 5, November 2001) 

Prove that 
2N-1 

A) F2N=(\/5ll2)^PK(5ll2/2)P2N_l_K(5l/2/2) forJV>l 

and 
2N 

B) L2N+1 = X PK@'21 WN-K^2 12) forN > 0, 
where PK{x) is the Legendre polynomial given by P0(x) = 1, Pt(x) = x, and the recurrence rela-
tion (K + l)PK+l(x) = (2K + l)xPK(x) - KPK_x(x). 

Solution by H.-J. Seiffert, Berlin, Germany 
The sequences of Fibonacci and Lucas polynomials are defined by 

F0(x) = 0, Fx(x) = 1, and Fn+2(x) = xFn+l(x) + Fn(x), n>0, 
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and 
Zo(x) = 2, L^x) = x, and Ln+2(x) = xLn+l(x) +Ln(x), w > 0, 

respectively. We shall prove that, for all real numbers x, 
Y 2N-1 

A) F2N(x) = -rf= X i t (Vx 5 +4/2)P 2 ^_ 1 ^(V?+4/2) fo r#> l , 
Vx + 4 ĵ =o 

and 
2N 

B) L2N+l(x) = xJ^PK(^/x2 +4 /2)P2N_K(^Jx2 +412) fo r#>0 . 
K=0 

It is known from equations (1.7) and (1.8) of [1] that 

Vx2+4 

where a(x) = (x + Vx2+4) / 2 and /?(*) = (x- Vx2+4) / 2. For sufficiently small |z|, let 

L=l 
Then, by (1), 

( i ) 

G(z) - ^T4YiF2N(x)z2N-1 + X W ^ . (2) 
N=l N=0 

On the other hand, the known closed form expression for infinite geometric sums gives 

r / r w a(x) Pipe) 
1 } l~a(x)z l-f/?(x)z? 

so that, by a(x) + fi(x) = x, fi(x) = - 1 , a(x)/?(x) = - 1 , and a(x) - /?(*) = Vx2+4, 

Cfr) = * j . (3) 
l - y x 2 +4z - f z 2 

The Legendre polynomials have the generating function (see [2], p. 190) 

Y PL(x)zL - , l — for small |z|. 
L=O Vl-2xz + z2 

Squaring, replacing x by Vx^f 4 / 2 , and multiplying the obtained identity by x, in view of (3) 
we get 

£ (x£PK{4^* /2)PL_K(^crT4 / 2 ) V = G(z). (4) 
L=OV K=Q J 

The above stated identities A) and B) now follow from (2) and (4) by comparing coefficients. 
Taking x = 1 solves the present proposal. 

Remarks: By analytic continuation, the identities A) and B) remain valid for all complex numbers 
x. Other identities involving Fibonacci and Lucas numbers can be obtained by taking x = J5, 4, 
1/V5, 3/, etc. For example, since F2N(^5) = J5F4N / 3 , from A) with x = V5, we find 
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2N-1 

F4N= I ^ (3 /2 )^_ 1 _ r (3 /2 ) forN>\. 
K=0 

References 
1. A. F. Horadam & Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci 
Quarterly 23.1 (1985):7-20. 
2. F. G. Tricomi. Vorlesungen uber Orthogonalreihen. 2. Auflage, Springer, 1970. 
Also solved by Paul & Bruckman, Kenneth R Davenport, Ovidiu Furdui, Walther Janous, 
and the proposer. 
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<ccook@sc.edu>. Copies will be sent by e-mail attachment. PLEASE INDICATE WORDPERFECT 
6.1, MS WORD 97, or WORDPERFECT DOS 5.1. 
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Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-585 Proposed by Herrmann Ernst? Siegbmrg? Germany 
Let (dn) denote a sequence of positive integers dn with dx > 3 and dn+x-dn > 1, n - 1,2,.... 
We introduce the following sets of sequences (dn): 

B= (rfj; A . < £ ^ - < ^ - f o r a l l ^ E # 
FdH k=n Fdk

 Fd-\ 

Show that: 
(a) there is a bijection / : ] 0,1] -> B, f(x) = (dn(x))™=l; 
(b) B is a subset of A with A\B & 0; 
(c) CisasubsetofJ5withJ?\C*0. 

H-586 Proposed by H.-J* Seiffert? Berlin? Germany 
Define the sequence of Fibonacci and Lucas polynomials by 

F0(x) = 0, Ft(x) = 15 Fw+1(x) = xFn(x) + F^x), neN, 
L0(x) = 2, Lx(x) = x, LnH(x) = xLn(x) + / ^ ( x ) , % e # , 

respectively. Show that, for all complex numbers x and all positive integers n, 

S I * J*^ 0 0 " 2*2-l 
and 

M * J x / * ( r ) - 2*2-l 
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H-587 Proposed by N. Gauthier &JR Gosselin, Royal Military College of Canada 
Let x and y be indeterminates and let 

a^a(x9y) = ^(x + ̂ x2+4y)9 ft = fi(x,y) = ±(x-J^Tty) 

be the distinct roots of the characteristic equation for the generalized Fibonacci sequence 
{#,(*, JOKX where 

#m.2<(*> y) = xHn+i(x> y)+yHn{x, y). 

If the initial conditions are taken as HQ(x9y) = 0, Hx(x9y) = 1, then the sequence gives the gen-
eralized Fibonacci polynomials {Fn(x9 y)}^. On the other hand, if H0(x9 y) = 2, H^x, y) = x, 
then the sequence gives the generalized Lucas polynomials {Ln(x9 y)}^ • 

Consider the following 2 x 2 matrices, 

and let n and m be nonnegative integers. [By definition, a matrix raised to the power zero is equal 
to the unit matrix /.] 

a. Express fn m(x,y) = [(A-B)~~l(An-Bn)]m in closed form, in terms of the Fibonacci 
polynomials. 

b. Express gn m(x9 y) = [An + Bn]m in closed form, in terms of the Lucas polynomials. 
c. Express hnm(x,y) = [C"+Dn]m in closed form, in terms of the Fibonacci and Lucas 

polynomials. 

H°588 Proposed by Jose Luiz Diaz-Barrero & Juan Jose Egozcue, Barcelona, Spain 
Let n be a positive integer. Prove that 

where Fn and Ln are, respectively, the w* Fibonacci and Lucas numbers. 

SOLUTIONS 
A Fractional Problem 

H-574 Proposed by J. JL Diaz-Barrero, Barcelona, Spain 
(Vol 39, no. 4, August 2001) 

Let n be a positive integer greater than or equal to 2. Determine 

(Fn-Ln)(Fn-Pn) (Ln-Fn)(Ln-Pn) {Pn-Fn)(Pn-Lny 

where Fn9 Ln9 and Pn are, respectively, the w* Fibonacci, Lucas, and Pell numbers. 

Solution by Paul S. Bruckman, Berkeley, CA 
We employ certain well-known results from finite difference theory. For any well-defined, 

complex-valued function f(x) with complex domain D, and for any three distinct values 
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xt e D , i = 1,2,3, define the "second-border!l divided difference of/, valued at (x1?x2,x3), as 
follows: 

A2(/(x)) | (xh x2, x3) - ^ /C^ ) + 02f(x2) + ̂ 3/(x3)? (1) 

where 6 \ - l / f ^ - x ^ - x , ) } , $2 - i /{(x2-X l)(x2-x3)}, 03 = l/{(x3~x1)(x3-x2)}. 
For brevity, we may also denote the left member of (1) as A2(/(x)) when no confusion is 

likely to arise. I f / i s a polynomial, the second-order divided difference has the following prop-
erties: 

A2(/(x)) = 0 if degree(/) = 0 or 1; A2(/(x)) = 1 if degree(/) = 2. (2) 

Given distinct values xl,x29x3, let al = xx +x2 +x3, a2 = xlx2+x2x3+x3xl. Consider the fol-
lowing expression: 

U(xh xh x3) = CF2A2(1) + (1 - a{)tf(x) + A2(x2). (3) 

Using (1), this becomes 

I7(x1? x29x3) = a2(0t + 02 + 03) + (1 - o^Xx^j + x202 + x303) + (x%0x + x\02 + x303). 

After expansion (using the definitions of ax and CJ2), this simplifies to 

U(xl9 x1? x3) = (xj + x2x3)0l + (x2 + xlx3)02 + (xj + xlx2)03. (4) 

On the other hand, since A2(l) = A2(x) = 0 and A2(x2) = 1, we see from (3) that U(xl9 xl9 x3) = 1. 
This yields the following general identity, 

(Xj 4- X2X3)$j 4- (x2 4- XlX3)02 4- (x3 4- XlX2)03 = 1 (5) 

which is true for any distinct values xl9 x2, and x3. 
We now need to show that Pn9 Ln9 and Fn are distinct if n >2. Note that Px - Lx - Ft - 1; 

P2 = 2, L2 = 3, F2 = 1; P3 = 5,13 = 4, F3 = 2. Since Pn,2 = 2Pn+l 4- Pn9 Ln+2 = Ln+l + Ln9 and Fn+2 = 
Fn+l+Fn9 it follows by an easy inductive proof that, if w > 3, Pn> Ln>Fn9 while L2> P2> F2. 
Therefore, if n > 2, we may let xx = Fn9 x2~ Ln9 x3 = Pn in (5), proving that the given expression 
simplifies to 1. 
Also solved by G. Arora, D* Iahnucci, H.-J. Seiffert, R & G* St arnica, and the proposer. 

A Remarkable Problem 

B-575 Proposed by N. Gautkier, Royal Military College of Canada 
(Vol 3% no. 4, August 2001) 

Problem Statement: "Four Remarkable Identities for the Fibonacci-Lucas Polynomialsff 

For n a nonnegative integer, the following Fibonacci-Lucas identities are known to hold: 

^2«+2 ~ "2w+l ~ ^2n 9 ^2fi+3 ~ ^2n+2 ~ fyn+V 

The corresponding identities for the Fibonacci {Fn(u)}™=0 and the Lucas {Ln(u)}™=0 polynomials, 
defined by 

F0(u) = 0, Fx(u) = 1? F^2(u) = uFnn{u) + F„(u), 
LQ(u) = 2, L^u) = 11, L^2(u) = uLn+l(u) + Ln(u), 

respectively, are: 
i 2 « + 2 W = ("* + 4 ) 4 f l ( « ) - L2niU)> F2n+l(U) = h n M = F2n+MY 0 ) 
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For m, n nonnegative integers, with the convention that a discrete sum with a negative upper limit 
is identically zero, prove the following generalizations of (1). 

Case a: (2n + 2)2mL2n+2(u) = (u2 + 4) 2m g^7J(2»+1>2; 

+u 
m-\ 2m 

Caseb: (2n + 3ymF2n+3(u) = (2m 

Case c: (2« + 2)2m+1F2n+2(w) = u 

Case d: (2/i + 3)2m+1 L2n+3 (w) = u 

IK7(2»+2>2' 

1=0 V / 

_ /=o v ' 

±(2m
2fl)(2n + 2?> 

^2«+l(M) 

A„+1W-[(2«)2'"]X2„(«). 

F2n+2(u)-[(2n + lf"]F2n+l(u). 

F2n+i(u) 

^ n + i (")- [ (2») 2 B , + 1 ]^(«)-

L2n+l(U) 

+ (M2+4) 
(=0 

2m+l 

2w + l as;>*« \2l+l ^2„+2(") 

-[(2»+i)2m+1]i:2„+1(«). 

Solution by the proposer 
Start from the identity 

xn+2 4- x~(n+2) = (x + x-!)(xw+1 + x"(n+1)) - (xw + x"w), 

which is valid for any variable x and number n. Next, introduce the differential operator D = x ~ 
and note that Dmxx = Xnxx for m a nonnegative integer and X an arbitrary number. Acting on the 
identity with Dm then gives 

(if + 2)m(xn+2 + (-l)m x-<n+2) = Dm[(x + x-!)(xw+1 + x"(w+1))] - fiw(xn + (-l)mx~n). (*) 

Now le t /and g be two arbitrary differentiate functions of x and note that 

D(fg) = (Df)g+f(Dg); D\fg) = (D2f)g+2(DfXDg) + f(D2g); 
D}(fg)-(D3f)g + 3(D2f)(Dg) + 3(Df)(iy2g)+nD3gy,etc.... 

The general term is 

Dm(fg)=th)(Dn"lf)(Dlgi 
as can easily be established by induction on m, so we skip the details. 

Insertion of (**) in (*) with / = (x-f x"1) and g = (xn+l + x~(w+1^) gives 

(*#) 
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(n + 2)m(xn+2 + (-lfjT(w+2>) 

= X (Y)(*+(~dm~l^l)(n+iy(^+1+(-iyx-<w+i>) - «%r*+(-ir x-*> (**#) 
1=0 \ J 

It is well known that the Fibonacci and Lucas polynomials can be represented in Binet form 
as follows: 

w-^E^^w-^w^o; 
a(u) = j(u + V M 2 + 4 ) ; fi(u) = y (w - Ju1+4). 

We now set x = a(u) = a in (***) and invoke the property a - 1 = -/? to get 

(/i + 2)w(a,rt-2 + ( - l f+ w + 2^+ 2) 

= X frlte + (-l)m+l+lM^ +1)'(a^1 + (-l)m+/+1/T+1) -n m (a n + ( -1 )^ /T) . 

Next, separate the sum over all / in the right-hand member of the above into a sum over even 
values (21) and one over odd values (2/+1) and make the following substitutions to obtain the 
four cases given in the problem statement. 

Case a: m^>2m;n-:>2m; Case c: m->2m + l; n—>2n; 
Case b: m->2m; n->2n + l; Case d: m->2m + l; n->2n + l. 

The algebra is straightforward and we skip the details. This completes the solution. 
Also solved by P. S. Bruckman andH.-J. Seiffert 

General IZB 

H-576 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 3% mo. 4, August 2001) 

Define the following constant, C2 = flp>2{l-l/(p-~l)2}, as an infinite product over all odd 
primes/?. 
(A) Show that C2 = Z*=i/i(2w~l)/{^(2w--l)}2

3 where fi(n) and $(n) are the Mobius and Euler 
functions, respectively. 
(B) Let Tdln ju(n/d)2d. Show that C2 = YOi{C(p)TR{n)ln

9 where £(/i) - E^ i k~n is the Rie-
mann Zeta ftinction (with n> 1) and £*(n) = T^^k-l)~n = (1 -2"WK(«). 
Note: C2 is the "twin-primes" constant that enters into Hardy and Littlewoodss "extended" con-
jectures regarding the distribution of twin primes and Goldbach's Conjecture. 
Solution by the proposer 

Solution to fart (A): C2 is easily shown to be a well-defined constant in (0,1). We may 
express the product defining C2 as a Euler product: 

c2=no-i/G>-i)2}=np+rtp)/WP)>2] 
p>2 p>2 

p>2 
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= I M»)/woo}2=Etf2«-i)/{tf2/i-i)}2. 
n-l, n odd n=l 

Solution to Part (B): From the expression for C2, 

- l ogQ = X{21og(l-Jp-1)-log(l-2Jp-1)} 
p>2 

= £ %(2"-2)p-"/n = y£(2"-2)g*(n)/n. 
n=\ p>2 n=2 

Taking the logarithm of the Euler product for the "modified" Zeta function, we obtain 

logr(') = -Ilog(i-/r') 
p>2 

valid for all s with Re (5) > 1. Then 

m=l p>2 m=\ 

By a variant form of Mobius inversion, we obtain 
00 

g*(s)=S ^(w) lo§ ̂ o^) /*». (*) 
Then 

"togC, = X ( 2 " - 2 ) / ^ X / i ( m ) l o g a ^ ) / ^ 
n-2 m=l 

= JtC(N)/Ny£M(N/d)(2d-2)= £loga^)i?(AT)/# 
N=2 d\N N=2 

since 
YfKN/d) = 0 (fbrtf>l). 

Now, taking the antilogarithm leads to the expression given in (B). 
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