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ON LUCAS v-TRIANGLES

Hong Hu

Department of Mathematics, Huaiyin Teachers College, Huaiyin 223001, Jiangsu Province, P.R. China
(Submitted March 1999-Final Revision March 2002)

1. INTRODUCTION

Let N={0,1,2,...} and Z* =N\{0}. Let 4 and B be fixed nonzero integers with (4,B) =1,
and write A=A?-4B. We will assume A #0, which excludes degenerate cases including
|A|=2 and B=1. Define {u,},.y and {v,}, .y as follows:

uy=0, u,=1and u,,, = Au,— Bu, , for n e Z*; 1.1
vw=2,w=Aand v, ,=Av,-Bv, , forneZ". (1.2)

They are called Lucas sequences. The addition formulas
u,,,Jrn:yﬁ;—u’—’X’l and vm+n=wﬂ£1 form,n eN (1.3)

are well known. A list of such basic identities can be found in [3].

If A#=+1or B#1, then u,u,,... are nonzero by [1], and so are vy =u, /u, v, =u, /u,, ... .
In the case 4*> = B=1, we noted in [1] that 4, =0<>3|n. If v, =0, then u,, =u,v, = 0; hence,
3|n and u, =0, which is impossible since v> — Au? =4B" (cf. [3]). Thus, v,,v,,,,... are all
nonzero.

We set v,!=Tlj1<, v, for n €N, and regard an empty product as value 1. For n,k N
with n > k, we define the Lucas v-triangle {}} as follows:

{Z}: vy (1.4)

vy, |

(This definition is not new in the case 4 =1 and B = -1, the reader may consult Wells [5].) Simi-
larly, in the case 4#+1 or B=#1, Lucas u-triangles can be defined in terms of the sequence

{un}nEN (Cf [1])
Let g be a positive integer. Clearly, v, = 47 (mod B) and hence (B,v,)=1. Let v; denote

the largest divisor of v, prime to v),...,v,;. Then v; is odd since v, =2. It is known that
Vs V) €41, 2|V )|} for mneN (cf [3] or (2.21) of [4]). If gfn, then (v, ,,v;) =1 and so
g ) = (v, (0, ) = 1.

For m € Z, we let D(m) denote the ring of rationals in the form a/b witha e Z, b € Z*, and
(b,m)=1. When r € D(m), by x=r (mod m) we mean that x can be written as »+my with
y € D(m). For a positive integer g, if 0<k <n <q then {}} liesin D(v}).

Let p be a prime. A famous theorem of Lucas concerning Pascal's triangles (i.e., binomial

coefficients) states that
mp+s)_(m\(s
(pie)=(2)) e
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ON LUCAS v-TRIANGLES

if m, n, s, ¢ are nonnegative integers with 5,7 < p. An analogy to Lucas u-triangles was obtained
by Kimball and Webb [2], by Wilson [6] in some special cases, and by Hu and Sun [1] for the
general case. In this paper we aim to establish a similar result for Lucas v-triangles. Recall that
the sequence {u,},y is strong divisible, i.e., (u,, u,) =|u, | for all m,n e N, while {v,}, .y is not
in general. This makes our goal more challenging.

Our main result is as follows.

Theorem: Let g be a positive integer. For m,n €2N={0,2,4,...} with m>n, and s, €N with

q>s>t, wehave
/2 + mon(y neg "
(’Z/z){lzg_'_:}s(’s){i}(_lgq) T (ng-+t)+5(s=t) (modvq)_ (1.5)

A proof of the theorem will be presented in Section 3; it depends on several lemmas given in
the next section. Our method is different from that of [S] and [6].

2. THREE LEMMAS
As usual, for a real number x, we use |_x | to denote the greatest integer not exceeding x.

Lemma 2.1: Let k € Z* and g eN. Then

L) k—i—1Y) k-1-2 i
"kq="q2( i )vq (=B7) 2.1
i=0
and
L%J k k—i k—2i g\
Vi = 2 ﬁ( i )Vq =57, (22)
where
k (k-i . EJ
———k_i( i )eZ forz—O,l,...,l2 .

This known result was included in [3].
From Lemma 2.1, we can deduce

Lemma 2.2: Let k,q,r €N. Then

L {2\;,(—3‘1)"/2 +E (B Ay, (modv?)  if 2|k, 23
kg+r = -1/ - 2y '
Auju, (-BHYED2 4 k(-BHYED2yy, (modvy) if 2] k.
Moreover, providing 2|k, we have
Y - (-BTED2y (modv?), 2.4)

k
Proof: The case k =0 is trivial. Below we let k¥ € Z*. Obviously,

k=1-UU) vty _goylin) [ TCBD" Ty 21K,
L—k—?_l Vq h (_Bq)(k—l)/z if2]'k.
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ON LUCAS v-TRIANGLES

So, by (2.1), we have

{g(—BQ)k/qu (modv?) if 2|k,
ukq =

t, X _
(-BH*D2 (modv?) if 2/ k.

Similarly, (2.2) implies that
—| £
k (k LzJJv;—zl%J(_Bq)L%J

Vv, =——
T E-[510 L4

2(-B%)*" (modv?) if 2|k,

| R(=BHED2y, (modv2) if 20k,

As 2vi,, = Vv, + Auu,, (2.3) follows from the above.
Now suppose that kis odd. By Lemma 2.1,
k__l

Vg _~ 1 (k=i k- i
k2o k-2i) BT
k-2i-2
oy RaVE-D2 | 2 Ve k—i—1), pngy

2

For any prime p, clearly p*2/3 e D(p), and for n=4,5, ... we also have p"~%/n € D(p) because
A+p-p*2> 14r(";2)(119—1)+(p—1)"-2 >2+n-2)(p-)=n

When 0<i <(k—3)/2, by the above, vi~*~*/(k —2i) € D(p) for any prime p dividing v,, so
vi"%2/ (k- 2i) € D(v,). Thus, we have the desired (2.4).

Lemma 2.3: Let q be any positive integer, and let m, n be even integers with m>n>0. Then
/2)|m nip, *
(’:” / 2){m;1} _ (’;’)(—34) 79 (mod v?). @.5)
Proof: Recall that (v;,2B)=1. Inview of (2.4), fori=1,3,5, ... we have

Vig _ BIYT dv?
1_'=(_ )7 v, (modvy).

Observe that
(m/2) Vim-k)q - m/2—_] . H m—k . v(m—k)q /(m_ k)
ni2 0<k<n Y(n-k)q  0<j<n/2 n/2-j 0<k<n n-k 0<k<n Y(n-k)q /(n_k)
2k 21k 2)k

_ H m—k . Vim-k)q /((m_ k)vq)
o<k<n T~ k 0<k<n v(n-k)q /((n - k)vq)
21k
m (_Bq)(m—k—l)IZ m g\E=nE .
= (n) H _Bq)(n-k—l)/Z = (n)(“B ) 22 (mOd Vq).
0521;k<n
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ON LUCAS v-TRIANGLES

By (2.2), for i =2,4,6, ... we have v, =2(-B7)"* (modv}), and hence (v, v;) =1
Whenever 0< j<nqg and j#¢q (mod 2q), we have (v,,_;,v;) =1. Also,

Wyge i =2V

mq

= -n)/2 *
ng+(ng=j) = zvnq— ,—(—Bq)(m ™) (mod vq)

by (2.3). Thus,

| A— —n m= 1
[T 2=L= TIBYT =BTt (modv)).
0< . vn — ] 0< i
<j<ng “ng-j Sj<ng
2qYj-q 2q/j-q

Combining the above, we obtain that

(m/2) {mq} - (m/2) H Ving—j
n/2)\ng n/2 o< <ng Voa-7

- ( ) v(wk)q . Vimg-j
0<k<n v(n—k)q 0<j<ng vnq—j
29fj-q
= m — R4 %% 2 (nq_!l)
<Jemricm

(’,’1’) (=BT (modv}).
This completes the proof of Lemma 2.3.

3. PROOF OF THE THEOREM

s "
{ t} eD(;)
since s <q. Clearly,

{mq+ S} — 1—4[(m—n)q<j5mq v_] H0<r<s(2 mq+r)
nq+t 1_I()<j£nq vj l_IO<r<t(2 nq+r) H0<r_<_s—t(2v m—n)q+r)

Recall that

Applying Lemmas 2.2 and 2.3, we then get that

('m/ 2) {mq+s} (m/ 2) {mq} ., <, (2v,(-B)"?)
n/2)\ng+t n/2)\nq | Ty, <(29,(-B*)"?) - peye,-(2v, (=B ")

I

n vy

(S oy

A —

This completes the proof of the Theorem.

2002]
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AN OLYMPIAD PROBLEM, EULER'S SEQUENCE,
AND STIRLING'S FORMULA

Arpad Benyi
Department of Mathematics, University of Kansas, Lawrence, KS 66045
(Submitted May 2000-Final Revision August 2000)

1. INTRODUCTION

There are several ways of defining the real number e. The most common of them is to define
e as the limit of the nondecreasing sequence

(-1},

Related to this definition is the following problem proposed in 1990 at the Romanian County
Olympiad: "Study the convergence of the sequence {x,},., defined by

n+x,
(1 + l) =e."
n

The problem is not hard to solve, but, surprisingly, a different approach to solving it than the one
given originally by the proposers yields some interesting applications. The solution given by the
proposers used I'Hopital's rule. For this, we write

_ 1

=y
ln(1+—)
n

1—xln(1+~1—) 1

fim — X)L

¥ ln(1+—) 2
x

If one were to solve the problem in a different way, then a natural question related to con-
vergence would be whether the sequence is bounded or not. The answer to this is given by the

double inequality
1 1V 1 1 n+1 1
(+Z) <e<(+—’;) , 1

which proves that the sequence is bounded and x, € (0,1). In view of this, one might ask if (1)
can be refined to a similar pair of inequalities that incorporate 0.5 in the exponents. In other
words, is sit true that, for a given £> 0 and n sufficiently large, the following inequalities hold:

1 ntl-s 1 nlte
(1+—) <e< (l-_l——) ?
n n

In order to answer this question, we will generalize (1) and show how the generalized
a-inequality can be applied to various problems, namely: find a shorter proof of Stirling's formula

and then obtain
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AN OLYMPIAD PROBLEM, EULER'S SEQUENCE, AND STIRLING'S FORMULA

than the one given by D. S. Mitrinovic (see [3], pp. 181-84), solve the Olympiad problem men-
tioned before, and study the convergence of a general Euler-type series.
2. THE a-INEQUALITY

We prove the following
Proposition:
(@) If 0<a <0.5, then there exists an x(a) =0 such that

1 x+a
(1+;) <e, x>x(a);

(b) If >0.5, then
1 x+a
(1+—) >e, x>0.
x

Proof: For 20, let f,:(0,0) = (0,), f,(x)= (1 +%)x+a. Logarithmic differentiation of

this function yields
o) =(1+L)"" 1\__a+x
fix) = (1 + x) [ln(l+ x) e 1)].
If we consider now the mapping g, : (0,©) > R, g,(x) =In(1+1)— -2 then

1
x x(x+1)
ooy —X(1-2a)+a
g x=20-20) e

xR (x+1)?

We notice a couple of cases:

(i) If a €[0,0.5), then g/ (x) <0 for all x>x(a)=a/(1-2a). Thus,g, is nonincreasing
on (x(a),x) and g,(x)>lim,_,,g,(x)=0 for all x>x(a). This implies that f;(x)>0 for all
x> x(a). Hence, f, is strictly increasing on (x(a), ). Finally, using the fact that lim,_, £, (x)
=e, we infer that f, (x) <e forall x> x(a).

(i) If a €[0.5, ), then g/ (x) >0 for all x>0. From this point, an argument similar to the
one used before leads to the conclusion that f,(x) > e for all x> 0.

Before we continue with our applications, let us note that the case o = 0.5 is treated, among
other inequalities involving exponentials, in [3, §3.6].
3. APPLICATIONS

A. Ifwelet £ €(0,0.5) and @ = 0.5—¢ in (a), we see that x, > 1 —¢ for all n>[(1-2¢£]/4€]+1.
By (b), it is true that x, <4 +& for any 7>1; hence,

<&, nxn(g)= [1;§g]+1,

1
xn—i

which proves that the sequence converges, indeed, to 0.5.
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B. Itis well known that Euler's sequence

1
—1+ [ P E >
Vn 2 — Inn, n>2,

is nondecreasing and converges to Euler's constant, C = .57721566.... We show below that this
fact is just a complex consequence of the a-inequality with @ =0, 1 in the previous section. More
generally, we use our proposition to study the convergence of the family of sequences:

_ 1 1
7a(@)= 1+a 2+a - +n—1+a
We will prove that (y,(a)) is convergent for any a > 0. Since
R S PO}
7@ =7,@) = —tn(1+1),

if a<0.5, then y,,,(a)-y,(a)>0 for all n>n(a)= [1 2a]+2 and if a 2 0.5, then y,,,(a)—
v.(a) <0 for all n>2. If we could prove that our sequence is also bounded, then convergence
would follow automatically. Let us consider first the case when a €[0,0.5). Since a+1> 1, we
can write ¥, (a+1)-y,(a+1) <0, £ >2. But

1 1
7@+ = 7k+1(a)+1n(1+z)_m

—Inn, n>2,a>0.

implies that
1
1n(1+ k) ln(l +k—1—) > Vi@ —7in(@), k22,

Now, if we let £ =2,3,...,n—2 and add these inequalities, we find that

3 1 1 1
¥ (@) <1n§+73(a)—ln(l+n_1) < 1+a+2+a_ln2’ n>4,

which proves that our sequence is bounded and, hence, convergent. Denote its limit by y(a).
Note that y(a) € [m(a), M(a)], where m(a) = min{y ,(a), ..., ¥ (@)} and

M(a) = max{}/2 (a), 73(a) F —In 2} .

For a=0, y(0)=C and n(0) =2; hence, C €[1-1n2,1.5—-In2]. Suppose now that a=0.5. An
easy computation gives

7,,(%):”"_y,,+21n2—2—>C+21n2—2.

When a € (0.5, 1], we have

1,1 1 _ 1
ya(@== > += 3 +- +—’;—lnn— ¥ ntl +In(1+;1—)—1

which implies y ,(a) > y(a) € [C LL-In 2] Finally, if a € (1, 0}, then

> 1+a

@ =a( ot s b e
Yn=Vn l1+a 2(2+a) (n—l)(n—1+a)

4 n
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hence, 7,(a) > y(a) €[C-4<,:L--1n2].

4 l+a

C. Stirling's formula asserts that
nl~ \/Znn(g)n.

It is well known that the result is closely related to the behavior of the gamma function, I'(x) =
Iy e'*"'dt for large values of x. This classical way of deriving Stirling's formula can be found,
for example, in [1, pp. 20-24]. For different approaches, see also [2] and [4]. We use our propo-
sition to give a proof which is different from the ones mentioned before. This proof uses an
argument similar to, but shorter than, the one given by D. S. Mitrinovic. We will assume as
known the following result due to Wallis:

ol 3

lim = .
n>o (2n-Ny2n+1 2
For a> 0, let u,(@) = =4, n22. Then
1 n+t
un(zl) =l(1+1) 7 1
un+l(5) € n
1

thus, (u,(1)) is nonincreasing and bounded below by 1. Therefore, lim,_,, ”n(i) =u exists and is

strictly positive. Note also that

0(3) __@nI2

a(z)  @1-DitVn’
If we let n—> oo, we obtain u =+/27, which proves Stirling's formula. Note that in this formula
the value o = 0.5 is the best one, for

lim # (c) = w ifa<0.5,
Y =10 ita > 05.
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1. INTRODUCTION AND SUMMARY

In [3] it has been shown that powers of the generating function ¢(x) of Catalan numbers
{Cluen, ={1,1,2,5,14,42,...}, where Ng:={0,1,2, ...} (nr. 1459 and A000108 of [8] and refer-
ences of [3]) can be expressed in terms of a linear combination of 1 and c(x) with coefficients
replaced by certain scaled Chebyshev polynomials of the second kind. In this paper, derivatives of
c(x) are studied in a similar manner. The starting point is the following expression for the first
derivative:

d ;i._x_) = o(x) = x(1+4x)7(1 +(=1+2%) (). M)

This equation is equivalent to the simple recurrence relation valid for C,:

n+2)C,.,-22n+1)C,=0, n=-1,0,1,..., with C_, =~1/2. 2)
Equation (1) can, of course, also be found from the explicit form c(x) = (1-+v1-4x)/(2x). The
result for the n' derivative is of the form

ddex)_ 1

i dxn - (X(l _ 4x))n (an—l(x) + bn(X)C(X)), (3)

with certain polynomials a,_,(x) of degree n—1 and b,(x) of degree n. These polynomials are
found to be

b (x)= i D7 B, myx™"

m=0

som=(2))(2)

which defines a triangle of numbers for n,meN, n>m=>0, where N:={1,2,3,...}. The first
terms are depicted in Table 1 with B(n, m) =0 for n <m. Another representation for the polyno-
mials b,(x) is also found, i.e,,

with

B (x) = =23 Cp_pi (4x— 1), 5)
k=0

Equating both forms of 4,(x) leads to a formula involving convolutions of Catalan numbers with
powers of an arbitrary constant A:=(4x—1)/x. This formula is given in (31). Equation (5)
reveals the generating function of the polynomials b,(x) because it is a convolution of two func-
tional sequences. The result is
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o Ji-4
8(52) = 26,(7"= 13 o ©)

TABLE 1. B(n, m) Central Binomial Triangle

A m 0 1 2 3 4 5 6 7 8| 91|10
0 1 0 0 0 0 0 0 0 0 0} O
1 2 1 0 0 0 0 0 0 0 0| O
2 6 6 1 0 0 0 0 0 0 0| O
3 20 30 10 1 0 0 0 0 0| 0| O
4 70 140 70 14 1 0 0 0 0 0| O
5 252 630 420 126 18 1 0 0 0| 0| O
6 924 2772 2310 924 198 22 1 0 0y 0| O
7 3432 | 12012 12012 6006 1716 286 26 1 0| 0| O
8 12870 | 51480 60060 36036 | 12870 2860 390 30 11 0( 0
9 48620 | 218790 | 291720 | 204204 | 87516 | 24310 | 4420 | 510 | 34| 1| O
10 184756 | 923780 | 1385670 | 1108536 | 554268 | 184756 | 41990 | 6460 | 646 | 38 | 1

The other family of polynomials is
a,(x)=Y () A(m+1, k+Dx"*
k=0

with the triangular array A(n, m) defined for m=0 by A(n,0)=C,, and for n,m € N with n>

m> 0 by the numbers
Yo (2) (50

The first terms of this triangular array of numbers are shown in Table 2 with A(n,m)=0 for
n<m. Both results (4) and (7) are solutions to recurrence relations which hold for 4,(x) and
a,(x) and their respective coefficients B(n, m) and A(n, m).

Another representation for the polynomials a,(x) is found to be

a,(x) = Y Cx*(dx-1)"*, ®
k=0
which shows that the generating function of these polynomials is
O < n__ c(xz)
ga(x’ z).—%an(x)z - 1+(1_4x)z (9)

Comparing (5) with (8) yields the following relation between these two types of polynomials
b,(x) =(4x-1)" -2xa,_,(x), n € N,, with a_,(x) =0, (10)
and between the coefficients
B(n, m) = (,;’1)4"-m —2A4(n,m+1). an
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TABLE 2. A(n, m) Catalan Triangle

» m 0 1 2 3 4 5 6 7 8| 9110
0 1 0 0 0 0 0 0 0 0| 0] 0
1 1 1 0 0 0 0 0 0 6; 0] 0
2 2 5 1 0 0 0 0 0 0{ 0| O
3 5 22 9 1 0 0 0 0 0] 0y 0
4 14 93 58 13 1 0 0 0 0 0| 0
5 42 386 325 110 17 1 0 0 0 01 0
6 132 1586 1686 765 178 21 1 0 0y 0] 0
7 429 6476 8330 4746 1477 262 25 1 0 0| 0
8 1430 | 26333 | 39796 | 27314 | 10654 2525 362 29 14y 010
9 4862 | 106762 | 185517 | 149052 { 69930 | 20754 | 3973 { 478 | 33| 1| O
10 16796 | 431910 | 848830 | 781725 | 428772 | 152946 | 36646 | 5885 | 610 { 37 | 1

The triangle of numbers A(n, m) is related to a rectangular array of integers A(n, m) with
A(O,m)=1, A(n,0)=-C, for neN, and for n>m>1by
A(n, m) = —A(@n—m, m) + 2204 (;}1 ~ 11) (12)

or with (7) for m e N,n e N, by
2 _l(n+m\|(2n+m)) [[2(m~1)\  am—1
A(n’m)_f(n+1)[( n+m )/( m-1 )% axm! (13)
Part of the array A(n, m) is shown in Table 3, where it is called C4(n, m).

TABLE 3. C4(n, m) Catalan Array

m 0 1 2 3 4 5 6
n
0 1 1 1 1 1 1 1
1 -1 3 7 11 15 19 23
2 -2 10 38 82 142 218 310
3 -5 35 187 515 1083 1955 3195
4 -14 126 874 2934 7266 15086 27866
5 -42 462 3958 15694 44758 105102 216566
6 -132 1716 1 17548 80324 259356 679764 1546028
7 -429 6435 76627 397923 1435347 4154403 10338515
8 -1430 | 24310 | 330818 | 1922510 7663898 | 24281510 65635570
9 -4862 | 92378 | 1415650 | G105690 1 39761282 | 136887322 | 399429602
10 -16796 | 352716 | 6015316 | 42438076 | 201483204 | 749032492 | 2346750900
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It turns out that the m" column of the triangle of numbers A(n,m) for m=0, 1, ... is deter-
mined by the generating function
X m
c(x)(1—4x) '

The m™ column of the triangle of numbers B(n, m) for m=0, 1, ... is generated by

ralw)
1-4x\1-4x/
This fact identifies the infinite dimensional matrices A and B as examples of Riordan matrices in
the terminology of [7]. The matrix A associated with A(n, m) is an example of a Riordan array.
Because differentiation of ¢(x) = ¥;_, C,x* leads to
2(n+k))!

1 d%(x) _ i C(n, k)x*, with C(n, k) := %fl(k + Do = ;ém%ﬁ’ (19
141 k! -

n
n! dx oo

where C(0, k) = C,,, one finds, together with (3), the following identities for ne N, p€{0,1,...,
n-1},

o e ) ) A e B D)

= A(n,n—p)/(zn"),
andforneN, k €N,

(D2): JZ:;)(— 1y (@ / (2}1 ))24’ (” e 1) Covjr =Cln, k)/ (2,;’) (16)

The remainder of this paper provides proofs for the above statements.

2. DERIVATIVES

The starting point is equation (1) which can either be verified from the explicit form of the
generating function ¢(x) or by converting the recursion relation (2) for Catalan numbers into an
equation for their generating function. A computation of

1 d™e(x) 1 d ( 1 d"c(x))

m+D! dx™  n+ldx\n! dx"

with (3) taken as granted and equation (1), produces the following mixed relations between the
quantities a,(x) and b,(x) and their first derivatives, valid for n € N,

(n+1a,(x) =x(1-4x)a,_,(x) +5,(x) +n(8x - Da,_,(x), a7n
(n+1)b,,4(x) = x(1-4x)b.(x) + (—(n + 1) + 2(1+ 4n)x)b,,(x), (18)

with inputs a_,(x) =0 and by(x) =1.
From (18), it is clear by induction that b,(x) is a polynomial of degree n. Again by induction,
the same statement holds for a,(x) in (17). Therefore, we write, for n € N,
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4,9 = Y (-Dka(n, by, 19)
k=0

5,09 = 3 (DB, by, 20)
k=0

with the triangular arrays of numbers a(n, k) and B(n, k) with row number 7 and column number
k <n. The triangular array a(n, k) will later be enlarged to another one which will then be called
A(n, k).

We first solve b,(x) in (18) by inserting (20) and deriving the recursion relation for the coef-
ficients B(n, m) after comparing coefficients of x™*!, x°, and x"* for k =0,1,...,n—1.

x": (n+1)B(m+1,0)=2(2n+1)B(n, 0), (21)
x% B(n+1,n+1)= B(n,n), (22)
x"* (n+)Bm+1,k+1) = (k+1)B(n, k) +2(2n+k)+3)B(n, k +1). (23)
With the input B(0, 0) =1, one deduces from (21) for the leading coefficient of b, (x)
Blr,0) =2 (2Dl _ ()l (2,:’) 24)
and from (22)
B(n,n)=1, i.e., b,(0)=(-1" (25)

The double factorial 2n—1)!!:=1-3-5-...-(2n—1) appeared in (24).
~ In order to solve (23), we conjecture from Table 1 that, for n,m € N,

B(n, m) =4B(n—1,m)+ B(n—1, m—1), (26)
with input B(n, 0) = (*") from (24).

If we use this conjecture in (23), written with n—>n—1, k >m—1, we are led to consider
the simple recursion

_n+l-m _
B(n,m)——-————z(zm_l)B(n,m 1). @7

The solution of this recursion is, for n,m € N,

B(n,m) = 2"‘(2;;- ! (nf !m)! (2:) B (_Zr'ﬁ)ﬂ'(%'——m)_'(z: ) - (2:) (’7')/ (2”"”) @)

With the Pochhammer symbol (@), :=I'(n+a)/T'(a), this result can also be written as
B(n,m)=(2m+1)/2),_,4™" (n—m)!.

This result satisfies (21), i.e., (24), as well as (22), i.e., (25). It is also the solution to (23) pro-
vided we prove the conjecture (26) using B(n, m) in (28). This can be done by inserting

(2n)'m!
@2m)ini(n-—m)!

in (26). Thus, we have proved the following proposition.

B(n,m) =
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Proposition 1: We have
b(x) =3 (-D¥B(n, k)x"*, where B(n, k)= (2”")(2) / (2,5‘ )
k=0

This triangie of numbers as shown in Table 1 appears as A046521 in the database [8].

One can derive another explicit representation for the polynomials 5,(x) by using (27) in (20):
(1-4x)b,(x)+2(2n- b, (x)+2 (2:) x"=0. 29)

This leads, together with (18), to the following inhomogeneous recursion relation for b,(x):
Bpy(6) = (4x = Db, () 26, 6™, By(x) =1 (30)

Equation (29) can also be solved as first-order linear and inhomogeneous differential equation
for b,(x).

Proposition 2: We have
7
by(x)=-23 Cpyx* (4x -1,
k=0

where the C,'s are the Catalan numbers for £ e Ny and C_; =-1/2.
Proof: lteration of (30). DO
Proposition 3: The generating function g,(x; z) 1= 27, b,(x)x" for {b,(x)} is given by (6).

Proof: The alternative form of b,(x) given by equation (5) is a convolution of the functional
sequences {-2C,_x*}. en, and {(4x—1)"}, .y , With generating functions 1-2xzc(xz) = Ji-4xz
and 1/(1+(1-4x)z), respectively. Therefore, g,(x;z) is the product of these two generating
functions. O

Comparing this alternative form (5) for 5,(x) with the one given by (20), together with (28),
proves the following identity in #» and A:=(4x—-1)/x. The term & =0 in the sum (5) has been
written separately.

Corollary 1 (convolution of Catalan sequence and the sequence of powers of 2): For neN

and A # oo,
5, ()= A1 ,,Z:) % - %(/1 —(3:);(—1)"(4 _ A (’,Z) / (Zkk)). G1)
Therefore, the generating function for the sequence s,(4) is
g(4; x):= i 85,(A)x" = e(x)/ (1 - Ax).
n=0

From the generating function, the recurrence relation is found to be s,(1)=A4s, ,(1)+C,,
5_,(4)=0. The connection with the polynomial 5,(x) is

$,(A) =5 (" = (4= 2)™1b,,,(1/ (4= 2).
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The case A =0 (x=1/4) is also covered by this formula. It produces from s,(0) = C, the
following identity.

Example 1: Case A=0 (x=1/4),

,;Z:o(_l)m B /)= (32)

This identity occurs in one of the exercises 2.7, 2, page 32 of [4].

We note that from (5) one has ~25,,,(1/4) =C,/4". The large n behavior of this sequence is
known to be (see [2], Exercise 9.60):
I 1
5
If one puts 4x—1=x, i.e, x=1/3, in (5), one can identify the partial sum s,(1) of Catalan num-
bers:

C, /4"~

5(M)= G =1 1-38,,,0/9), (33)
k=0

This sequence {1,2,4,9,23, 65,197, 626,2056, ...} appears as A014137 in the web encyclopedia
[8]. If one puts A—1 in Corollary 1, one also finds the foliowing example.

25 _()=1+ (2’;’)2%0 g (Z) 3 / (Zkk). (34)

Another interesting example is the case A =4 (x = ), Here one finds a simple result for the
convolution of Catalan's sequence with powers of 4.

Example 2:

Example 3: A =4 (x=00),
s =4"-(2), (39)

This sequence {1, 5,22, 93,386,1586,6476,...} appears in the book [8] as Nr. 3920 and as
A000346 in the web encyclopedia [8]. It will show up again in this work as A(n+1,1), the
second column in the A(n, m) triangle (see Table 2).

The sequence for A =—1 (x =1/5) is also nonnegative, as can be seen by writing

k
S (D =Cy+ D (Cyy—-Cyy) forkeN
=2
and .
Sen-D = Z Cun —Cy),
=1
and using

AC,:=C,=Cpy =32 c >0.

n-1+

This is the sequence {1,0,2,3,11,31, 101, 328,1102,3760, ...} which appears now as A032357 in
the web encyclopedia [8].
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Recursion (26) for B(n, m) can be transformed into an equation for the generating function
for the sequence appearing in the m™ column of the B(n, m) triangle

Gy(m; x) = Z B(n, mx", (36)
with input i
—(2n 1
O. — 71 =
G0 =3 (¥ )= e

the generating function for the central binomial numbers. So (26) implies, for m € N,

A x Y 1
GB(m,x)—(l_4x) T 37

For x-£ Gy(m; x), see (53). Therefore, we have proved the following proposition.

Proposition 4 (column sequences of the B(n, m) triangle): The sequence {B(n, m)},_,., defined

n=m>

for fixed m € N, and n € N, by (28), is the convolution of the central binomial sequence

().

and the m™ convolution of the (shifted) power sequence {0, 1, 4!, 42, ...}.

Note 1: The infinite dimensional matrix B with elements B(n, m) given for n>m >0 by (28) and
B(n, m) =0 for n <m is an example of a Riordan matrix {7]. With the notation of this reference,

B= (; _x_)
N1-4x’1-4x )
Note 2:(Sheffer-type identities from Riordan matrices): Triangular Riordan matrices
M= (M,j)iZjZO =(g(), f(x)),

M, ;=0 for j>i, in the notation of [7], lead to polynomials that satisfy Sheffer-type identities
(see [5] and its references, and also [1]),

Sn<x+y)=§skcy)P_k(x) =kzioPkcy)S ), (38)
P,,(x+y)=kiﬂ,<y>13,_k(x)=§3,<x)&-kcv), (39)
=0 =0

where the polynomials S,(x) and P,(x) are defined by

8,()= Y M, >, neNy, P(x)= 7.15""%’ neN, B(x)=1, (40)

m=0

with P, :=[z"](f"(2)), n=m>1. Here g(x) defines the first column of M: M, , =[x"1g(x).

If one uses s5,(x):=n!S,(x) and p,(x):=n!P,(x), one obtains the Sheffer identities (also
called binomial identities) treated in [5]. Then s,(x) is Sheffer for (1/ g(f(#)), £(?)), and p,(x) is
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associated to f(#)—or Sheffer for (1, f(#))—in the terminology of [S]. Here f(f) stands for the
inverse of f(¥) as a function.

Let us give the relation between g, (x; z) and Gg(m; x).

Proposition 5: We have
0 m 1 m
8 (x%,2) = Y (-1)"Gy(m; xz)(;) . 41)

m=0
Proof: One inserts the value of b,(x) given in (20) into the definition (6) of g,(x;z) and
rewrites the Cauchy sum as two infinite sums which are then interchanged. Finally, the definition
of Ggz(m; x) in (36) isused. O
One can check (41) by using the explicit form of Gz(m; xz) given in (36) and comparing with
©.
In a similar vein, we can solve a,(x) in (17) with b,(x) given by (20) and (28). The coeffi-

cients a(n, k), defined by (19), have to satisfy, after comparing coefficients of x”, x°, and x"*
fork=1,2,..,n—1and neN,:

x" a(n,0)=4a(n-1,0)+C,, (42)
x% (n+a(n,n)=1+na(n-1,n-1), (43)
x" % (m+Dan, k)= ka(n-1,k-1)+4(m+1+k)a(—1,k)+ B, k). (44)

In (42) we have used (24), i.e.,, B(n,0)=(n+1)C,; in (43) we have used (25), i.e., B(n,n)=1
From (42) one finds, with input a(0,0) =1,

a(n, 0) = Z Ca™*, (45)
k=0
and from (43),
a(n,n)=1 or a,(0)=(-1)". (46)

Note that a(n, 0) = s,(4) of (31) with solution (35). It is convenient to define a(n—1,-1):=C,,
neN,. Then the sequence {a(n, 0)}7 is, with a(-1,0):=0, the convolution of the sequence
{a(k,-1)}*, and the shifted power sequence {0,1,4',4%,...}. Before solving (44), with B(n, k)
from (28) inserted, we add to the triangular array of numbers a(n, m) the m=—1 column and an
extra row for n= -1, and define a new enlarged triangular array for n,m € N as

A(n,m).=a(m-1,m-1) 47

with A(n,0)=a(m—-1,-1)=C, and A(0,m)=a(-1,m-1)=4J, ,. An inspection of the A(n,m)
triangular array, partly depicted in Table 2, leads to the conjecture

An,m)=4An-1,m)+ A(n-1,m-1), (48)

with A(n,0)=C, and A(n,m)=0 for n<m. This recursion relation can be used to extend the

array A(n, m) to negative integer values of m. This conjecture is correct for A(n+1, 1) = a(n, 0)

found in (45), as well as for A(n+1,n+1)=a(n,n)=1 known from (46). The generating func-
tion for the sequence appearing in the m™ column,
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Gy(m; x):= Y A(n,m)x", (49)
satisfies, due to (48), G (m; x) = 57 G,(m—1; x), remembering that A(m—1,m)=0 and that
G4(0; x) = c(x). Therefore,

G, (m; x) = (1 i )mc(x). (50)

Note 3: The infinite dimensional matrix A with elements A4(n, m) given for n>m > 0 by (48) and
A(n,m)=0 for n<m is another example of a Riordan matrix, written in the notation of [7] as

(c(x), x / (1-4x)).
Because of (37) and +/1-4x c¢(x) =2—c(x), these generating functions of the conjectured
A(n, m) column sequences obey

G 4(m; x) = (2 - c(x))Gy(m, x). (1)
If we use the conjecture (48) in (44), which is written with (47) in the form
m+DAm+1,m+)=mA(n,m)+4(n+m+1)A(n,m+1)+ B(n, m)

forneNy,, me{l,2,...,n-1}, we have
mAm+1,m+1)—(m+1) A(n, m)+ B(n,m) = 0. (52)

This recursion relation can be written with the help of the generating functions (36) and (49) as

(x%+1)GA(m; x)-—%GA(m+1; x) = Gg(m; x), (53)
or with (50) (i.e., the conjecture) as
(x%+1—1—:%)GA(m; x) = Gg(m;, x). (54)
Together with (51), this means
# (2= ) Gyom )= | (1 2-1)(2- o) 41/ Gyt ). (59)

If we can prove this equation with Gz(x) given by (37), we have shown that (44) is equivalent to
the conjecture (48). In order to prove (55), we first compute from (37) for m € N,

d N m Lo _2x+m )
xEGB(m, x)—(2+ x)GB(m+1, X)= e Gg(m; x). (56)
With this result, (55) reduces to
(—xc’ (x)+(2-c(x)) i: ii - 1) Gg(m; x) =0, (57)

and with (1), the factor in front of Gz(m;, x) vanishes identically for x #1/4. Therefore, we have
proved the following two propositions concerning the column sequences of the A(n, m) triangular
array and the triangular A(n, m) array, respectively.
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Proposition 6: The triangular array of numbers A(n, m), defined for n,m € N, by equation (48),
A, 0)=C,, A(n,m)=0 for n<m has as its m™ column sequence {A4(n, m)}y ., the convo-

lution of the Catalan sequence and the m™ convolution of the shifted power sequence {0,1, 4!,
421

Proof: Use (50) with (49). O

Proposition 7: The triangular array A(n, m) of Proposition 6 coincides with the one defined by
(47) and (42), (43) and (44) with B(n, m) given by (28).

Proaf: On one hand, a(n, 0)=A(n+11) and a(m,my=A(m+1Ln+1) =1 of (42) and (43),
i.e., (45) and (46), respectively, satisfy (48). On the other hand, (44) is rewritten with the aid of
(47) as (52), and (52) has been proved by (53)-(57). O

Alternatively, one can use the now proven conjecture (48), together with (47), in (44) and
derive for n e N, me N,

dma(n—1,m)y=(n+1-mya(n-1,m-1)— B(n, m). (58)

This is written in terms of the polynomials a,_,(x) of (19) and b,(x) of (20) as
w(1—-4x)a’,_(x) +(1-4x +4m)a,_ ()~ (2;;’) ¥ +b, (%)= 0. (59)

With this result, (17) becomes an inhomogeneous recursion relation for a,(x):
a,(x) = (4x - D, () + Cx", ap(x) =1 (60)

Moreover, (59) can also be considered as an inhomogeneous linear differential equation for
a,_;(x) with given 5,(x). To find the solution this way is, however, a bit tedious. Let us give an
alternative form for a,(x) in the following proposition.
Proposition 8: The solution of the recursion relation (60} is given by (8).

Proof: Tteration of (60). O

Next, we give a corollary.
Corollary 2: The generating function g,(x; z):= X ,a,(x)z" is given by (9).

Proof: Equation (8) above shows that a,(x) is a convolution of the functional sequences
{C,x*}, ey, and {(4x—1)¥}, oy with generating functions c(xz) and 1/(1+(1-4x)z). Therefore,
g,(x; z) is the product of these generating functions. O

We now have a relation between g,(x; z) and G,(m;, x).

Proposition 9:

o0

5.6 x2) 1 (61)

m=0

1
ga(x) Z) - ]1—4352

Proof: Analogous to the proof of Proposition 5. O

One can check (61) by putting in the explicit form (50) of G,(m; x) and compare with (9).
Let us state the relation between b,(x) and a,_;(x) as Proposition 10.
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Proposition 10: For n e N, and a_,(x) =0, the relation between b,(x) and a,_,(x) is given by
(10).

Proof: The alternative expressions (5) and (8) for these two families of polynomials are
used. One splits off the £ =0 term in (5) with C_; =—1/2 from the sum and shifts the summation
variable. O

Corollary 3: The coefficients of the triangular arrays A(n, m) and B(n, m) are related as given by
(11).

Proof: The relation (10) between the polynomials is, with the help of (19) and (20), written
for the coefficients a(n—1, m), or by (47) for A(n,m+1) and B(n,m). O

It remains to compute the explicit expression for the coefficients a(n, k) of a,(x) defined by
(19). Because of (47), it suffices to determine A(n, m).

Corollary 4: The triangular array numbers A(n, m) are given explicitly by formula (7).
Proof: The formula (4) written for B(n, m—1) is used in relation (11). O

Note 4: This formula for A(n, m) satisfies indeed the recursion relation (48) with the given input.

The first term,
1 -miif m
347 ()

satisfies it because of the binomial identity

()= lnm2)

For the second term of A(#, 7) in (7) one has to prove
n \(2n)_ 4 (n-1 2(n-1) +fr-1 2(n-1\2(2m-3)
m—1)\n )" "\m-1)\ n-1 m-2 )\ n-1 m—-1 >

or after division by (XD),
2n=1( n \_,(n-1) (n-1 2m-3
n m-1)"“\lm-1 m-2 m—-1"~

which reduces to the trivial identity 2n—1=2(n—m+1)+2m—3. Both terms together, i.e., (7),
satisfy the input A(n,n) =1.

Note 5: A(n, m) was found originally after iteration in the form (with >m > 0 and (-D!!:=1)

A(n, m)=2-4"" (m’_’_ 1) - Hif"=1(2(g’n:"3))“;!2k Ve, 62)

A(n,0)=C,. It is easy to establish the equivalence with (7).

In the original derivation of the formula (7) for A(n, m), it turned out to be convenient to
introduce a rectangular array of integers A(n, m) for n,m € N, as follows: A@O,my=1, A(n,0):=
—C, for neN, and for meN and ne N, A(n,m) is defined by (12) or, equivalently, by (13).
The A(n, m) recursion (48) translates (with the help of the Pascal-triangle identity) into

310 fauG.



ON POLYNOMIALS RELATED TO DERIVATIVES OF THE GENERATING FUNCTION OF CATALAN NUMBERS

Am,m)y=44@n-1,m)+A(n,m-1). (63)
This leads, after iteration and use of A(0,m) =1 from (12) with A(n,n)=1, to
A(n,my=4"" A(k,m-1)/4*. (64)
k=0

Thus, the following proposition describes column sequences of the A(n, m) = C4(n, m) array.

Proposition 11: The m™ column sequence of the A(n, m) array, {A(n, m)}, eN,» is the convolu-
tion of the sequence {4(n, 0)}nen, ={1,—1,-2,-5,...}, generated by 2—c(x), and the m™ con-
volution of the power sequence {4*}, .y o

Proof: Tteration of (64) with the A(n, 0) input. O

Corollary 5: The ordinary generating function of the m™ column sequence of the A(n, m) array
(13) is given by

G (m; x) = i A(n, m)x" = (2 - c(x)) (ﬁ)m (65)
for m e N,,. i

Proof: Use Proposition 11 written for generating functions. O

Because of the convolution of the (negative) Catalan sequence with powers of 4, we shall call
this A(n, m) array also C4(n,m). A part of it is shown in Table 3 above. The second column
sequence is given by

A, 1)=C4am, 1) = (2n + 1)

n

and appears as nr. 2848 in the book [8], or as A001700 in the web encyclopedia [8]. The
sequence of the third column {4(n,2) = C4(n, 2)},. v, =11,7,38,187,...} is, from (64) and (62)
with (12), determined by
n S 2k+1 k _ 2n+1
4 IZ;)( i )/4 =(2n+3)(2n+1)C, - 2>

and is listed as A000531 in the web encyclopedia [8]. There the fourth column sequence is now
listed as A029887.

Note 6: The infinite dimensional lower triangular matrix A related to the array A (1, m) = C4(n,m)
by A(n,m):= A(n—m,m+1) for n>m>0 and A(n,m):=0 for n<m is again an example of a
Riordan matrix [7]. In the notation of [7], A = (c(x)/~/1-4x, x/J1-4x).

Finally, we derive identities by using, for n € N,, equation (14) for the left-hand side of (3)
and the results for a, ,(x) and b,(x) for the right-hand side. Because there are no negative
powers of x on the left-hand side of (3), such powers have to vanish on the right-hand side. This
leads to the first family of identities. Because

<0

(1-4x)" = Z%"“kxk,
k=0 ™°
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with Pochhammer's symbol defined after (28), this means that x?](a,_,(x)+5,(x)c(x)), the
coeficient proportional to x?, has to vanish for p=0,1,...,n—1, n € N. This requirement reads

D)""Pan-1,n-1-p)+ z,,: (-D)"*B(n,n-k)C, , =0. (66)
k=0

The sum is restricted to k£ < p (<n) because no number C; with negative index is found in c(x).
Inserting the known coefficients produces (15).
Proposition 12: For neN and p €{0,1,...,n—1} identity (D1), given by (15), holds.

Proof: With (47), (66) becomes
kZ:;)(— 1) C,«B(m,n—k)=A(n,n-p), (67)

which is (D1) of (15) if the summation index ¥ is changed into p—k, and the symmetry of the
binomial coefficients is used. O

Example 4: Take p=n—-1eNj:

S (s () -2/ (3) @

With this identity we have found a sum representation for the convolution of the Catalan sequence

and powers of 4:
=5 gk = LS Cpp (7 L
Sn—l()-_ kz=:4) k _2 n I;)( ) k+1 2k+1

[cf. (35) with (31)].

The second family of identities, (D2) of (16), results from comparing powers x* with k e N,
on both sides of (3) after expansion of (1—-4x)~" as given above in the text before (66). Only the
second term b, (x)c(x) contributes because a,_;(x)/x" has only negative powers of x. Thus, with
definition (14), one finds, for k e N, and n €N,

k I n
Cln )= X O3 7B oo, (©)
=0 ' =0

which is, after interchange of the summations and insertion of B(n,n— j) from (4), the desired
identity (D2) if also the summation index j is changed to #—q.

Thus, we have shown

Proposition 13: For k € N, and n € N, identity (D2) of (16) with C(n, k) defined by (14) holds
true.

Example 5: Take k=0, n € N. Then we have

S (i)

(70)
which is elementary.
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SOME IDENTITIES INVOLVING THE FIBONACCI POLYNOMIALS*

Yi Yuan and Wenpeng Zhang
Research Center for Basic Science, Xi'an Jiaotong University, Xi'an Shaanxi, P.R. China
(Submitted June 2000-Final Revision November 2000)

1. INTRODUCTION AND RESULTS

As usual, the Fibonacci polynomials F(x) = {F,(x)}, n=0,1,2, ..., are defined by the second-
order linear recurrence sequence

B (%) = x4 (x) + F(x) )
for n>0 and Fy(x)=0, F(x)=1 Let

=x+Jx2+4 Vx?+4

_x_
> and f= >

denote the roots of the characteristic polynomial 2> —xA —1 of the sequence F(x), then the terms
of the sequence F(x) (see [2]) can be expressed as

a

1
F - n__ an
(=55l -
forn=0,12,....
If x =1, then the sequence F(1) is called the Fibonacci sequence, and we shall denote it by
F={F}.

The various properties of {F,} were investigated by many authors. For example, Duncan [1]
and Kuipers [3] proved that (logF,) is uniformly distributed mod 1. Robbins [4] studied the
Fibonacci numbers of the forms px?+1 and px®+ 1, where p is a prime. The second author [5]
obtained some identities involving the Fibonacci numbers. The main purpose of this paper is to
study how to calculate the summation involving the Fibonacci polynomials:

2 Fn()F () F (), 2
ay+ay+---+ag=n
where the summation is over all k-dimension nonnegative integer coordinates (a,,a,, ..., ;) such
that g, +a, + -+ +a, =n, and k is any positive integer.

Regarding (2), it seems that it has not been studied yet, at least I have not seen expressions
like (2) before. The problem is interesting because it is a generalization of [5], and it can also help
us to find some new convolution properties for F(x). In this paper we use the generating func-
tion of the sequence F(x) and its partial derivative to study the evaluation of (2), and give an
interesting identity for any fixed positive integers k¥ and n. That is, we shall prove the following
proposition.

Proposition: Let F(x)={F,(x)} be defined by (1). Then, for any positive integers k£ and n, we
have the calculating formula

* This work was supported by the Doctorate Foundation of Xi'an Jiaotong University.
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Dy Fi(0)-Fy y(x) e p;k+l(x):[zzzj(n+k;’l—m) (n+kk l1 2m) .

ayrayt - +ag=n

where (7) = and [z] denotes the greatest integer not exceeding z.

From this proposnion, we may immediately deduce the following several corollaries.

Corollary 1: For any positive integers & and n, we have the identity

+k-1- +k-1-2
3 E, F, Z(n m)(n 1 m)

ay+ay+ - +ap=nt+k m=0

Corollary 2: For any positive integers k and n, we have

i (n+k 1- m) (n+k—l—2m)
nek k-1
Z 2a| Ea2 ! “Eak =3k.57. Z .

5m
a+ - +ap=n+k m=0

o (n+k—1—m) (n+k—l~2m)
2 m ) k-1
Z Eal . F;az _22n+k =

m=0

ap+ - tag=ntk

Corollary 3: The identity

holds for all positive integers & and n.
Corollary 4: Let k and n be positive integers. Then

o (n+k—1~m)_(n+k—l—2m)
Y E,-F,-F =3".7k.5%.22“ m k-1 .

a; "+ 4a, 4a; m
ay+--tap=ntk m=0 45

Corollary 5: Let k and n be positive integers. Then

n+k—-1-m) (n+k—-1-2m
" n[’;] m ’ k-1
Y. Fy Py By =5011" ) :

m
ap+ - tap=n+k m=0 121

In fact, for any positive integer m, using the proposition, we can give an exact calculating
formula for

Z Fmal Fmaz '“'Fmak'

ay+ag+ - +ap=n+k

2. PROOF OF THE PROPOSITION

In this section we shall complete the proof of the proposition. First, note that

R0 =7 +4[("+‘/f_ﬁ]n—("”‘/fﬁjn}

so we can easily deduce that the generating function of F(x) is
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Gt x) = —

1

1-xt—1?

“(@-n@B-1)

3)

Z(anﬂ ﬂn+l) "= Z +l(x) v

n=0

Let % denote the k™ partial derivative of G(Z, x) for x, and F®¥)(x) denote the k™ deriva-

tive of F,(x). Then from (3) we have

oG(t, x) t S
%) _ =S FO(x). 1"
Ox (—xt—1%)? "go ()17,
AGH(t, x) 2112 2
,X) _ =3 FO(x).1"
ox* (1-xt-1%)} ,,é:, ()1, )
AG*!(t, x) _ (k-1)1-¢*! i ED(y). 17 = ZF(k D(x). £+
oxt ! (I-xt-1 = il ’
where we have used the fact that F,,,(x) is a polynomial of degree n.
For any two absolutely convergent power series 2.° ya,x" and 2.7, b,x", note that
(Za,,x")-(z:bnx") = z ( Zaubv)x"
n=0 n=0 n=0 \u+v=n
So from (5) we obtain
) k
) ( Y Fon() Fu()- 'F;k+l(x)J'tn (Z () t")
n=0 \ aj+---+ay=n n=0 (6)
1 1 GHx) 1 FD
= = 2 = NS
(A-xt-)F  (k-DF1 ox! (k—l)!n;) *)-
Equating the coefficients of " on both sides of equation (6), we obtain the identity
1
2 Fa(®)Fpn() Fyg(0) = o B0 (). M
G-DI'
aytay+---+ag=n
On the other hand, note that from the combinatorial identity
n—-m+1\_(n-m n—m
(7)) () ®
the recurrence formula F,,,(x) = xF,,,(x) + F,(x), and by mathematical induction, we can easily
deduce
Eu)= 5. (") ©
m=0
In fact, from the definition of F,(x), we know that (9) is true for =0 and n=1. Assume

(9) is true for all integers 0<n <k. Then, for n=k +1, applying (8) and the inductive hypothesis

we immediately obtain
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= XF (%) + F (%) = B (%),
where we have used (¥,”)=0 if m>%. So by induction we know that (9) is true for all non-

negative integer n.
From (9) we can deduce that the (k —1)™ derivative of F,,,,(x) is

k-1 ey n+k—1-m\ _ntk-1-2m (b []g +k—1-m)! -
E®D(x) = Z( )x Z (10)

nk = m m!-(n—2m)!

Combining (7) and (10), we obtain the identity

Z Fyn(®)-Fy (%) F, ()= i—(n+k’—’;l—m)‘(n+kk—%ll—2m)_x,,_‘z,n'

ap+--+ag=n =0

!
—

This completes the proof of the Proposition.
Proof of the Corollaries: Taking x =1 in the Proposition and noting that F; =0, we have

Z a,+1(1) 2+1(1) ak+1(1) = Z F;lﬂ E72+1 Ezk+1
ay+ ay+---+ap=n ay+l+ay +1+ - +a, +Hl=n+k
(5]
n+k-1-m)\ (n+k—-1-2m
- Y El‘F;z""'EkZZ( - )( t—1 )
ajtay+--+ap=n+k m=0

This proves Corollary 1.
Taking x = —/5, 4, - 34/5, and 11, respectively, in the Proposition, and noting that

FoaB) = (1)"*‘[(3+«/§)”_(3—~5)"}=(‘1);+1‘/§~F2n,

2 2

A= 35 + ~6- ‘f)]=27175“[(”2‘/5)3"‘(#)3"}:%%

o 38 (32T

and
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F,,(u)=%[(11+25J§)"_(u_25ﬁ)"]= . [(1+2J§)5"_(l__2[§)5n

1
:|:_5"}?5m

we may immediately deduce Corollary 2, Corollary 3, Corollary 4, and Corollary 5.

This completes the proof of the Corollaries.
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HEPTAGONAL NUMBERS IN THE LUCAS SEQUENCE AND
DIOPHANTINE EQUATIONS x?*(5x — 3)* = 20y% £ 16

B. Srinivasa Rao
Department of Mathematics, Osmania University, Hyderabad - 500 007. A.P., India
(Submitted July 2000)

1. INTRODUCTION

The numbers of the form m—(sg"—:’), where m is any positive integer, are called hepragonal

numbers. Thatis, 1, 7, 18, 34, 55, 81, ..., listed in [4] as sequence number 1826. In this paper, it
is established that 1, 4, 7, and 18 are the only generalized heptagonal numbers (where m is any
integer) in the Lucas sequence {L }. As a result, the Diophantine equations of the title are solved.
Earlier, Cohn [1] identified the squares (listed in [4] as sequence number 1340) and Luo (see [2]
and [3]) identified the triangular and pentagonal numbers (listed in [4] as sequence numbers 1002
and 1562, respectively) in {L,}.

2. IDENTITIES AND PRELIMINARY LEMMAS
We have the following well-known properties of {L} and {F}:

L,=(-D"L, and F =(-D)"F; 1)
2|L,iff3|n and 3|L,iff n=2 (mod 4), )
L2 =5F* +4(-1)". (3)

If m= %2 (mod 6), then the congruence
L yen=CDFL, (mod L) @

holds, where £ is an integer.
Since NV is generalized heptagonal if and only if 40N +9 is the square of an integer congruent
to 7 (mod 10), we identify those » for which 40L+9 is a perfect square. We begin with

Lemma I: Suppose n=1,3,+4, or £6 (mod 18200). Then 40L_+9 is a perfect square if and
onlyifn=13, 14, or 6.

Proof: To prove this, we adopt the following procedure: Suppose =& (mod N) and n=¢.
Then » can be written as n=2-6-2°.g+&, where 8>y and 2Jg. And since, for 8>y,
2%+ = 29 (mod p), taking

. {p-zf’ if §=¢ (mods),
28 otherwise,

we get that
m=c (modp) and n=2km+ ¢, where kis odd. 5)

Now, by (4), (5), and the fact that m = +2 (mod 6), we have
40L,+9=40L, . +9=40(-1)*L_+9 (mod L,).
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Since either m or 7 is not congruent to 2 modulo 4 we have, by (3), the Jacobi symbol

40L,+9) (-40L,+9 _(Lm) 6

L, ) U L, ) \Mm) )

But, modulo M, {L,} is periodic with period P (i.e., L, = L, (mod M) for all integers ¢ > 0).
Thus, from (1) and (5), we have (32) =-1. Therefore, by (6), it follows that (ﬂff’i) =—1 for

n# g, showing that 40L,+9 is not a perfect square. For each value of n= &, the corresponding
values are tabulated in Table A.

TABLE A

£ N 6 || s | P | u |{(mods) c(medp) M | P

1 225 5 1| 43| 5 2,3 2,+10,16 | 31 | 30
5.13 3i3i5f99’ 4, 4

+16, +20,| 151 | 50
s | 6816 149y 404

3 (225131513 (1|20 50

18.
2 | 716,34, |2 8 20,
5 35, +40, 46,
62, 64,
+80, 94,
98, +110,
+4 | 2252 | 52 |1]36 |27 2, 4, 45 | 122, 124,) 591 | 599

+9, 10, 11, | 130, 136,
3 1413, 14| 152 166,

182, 212,
28, 30. 218, 226,
244, 256,
260.
52 0, 10. 4, 8, 16,
+6 | 22527 1 527 (2] 12 | 156 64, 80, 79 | 78
5 15,9, 11. 100.

Since the L.C.M. of (2°-5, 22-5-13, 2%. 52, 23.5%. 7) = 18200, Lemma 1 follows from Table
A O

Lemma 2: 40L, +9 is not a perfect square if n#1,3, £4, or +6 (mod 18200).

Proof: We prove the lemma in different steps, eliminating at each stage certain integers n
congruent modulo 18200 for which 40L,+9 is not a square. In each step, we choose an integer

M such that the period P (of the sequence {L,} mod M) is a divisor of 18200 and thereby elimi-
nate certain residue classes modulo P. We tabulate these in the following way (Table B).
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TABLE B
Required values of n where
Period | Modulus 401 +9 Left out values of n (mod k)
P M (W-———" ) = -1 where k is a positive integer
m
10 11142, 9. 0,1,43, 4,5 or 6(mod 10)
+15, + 120, 124, 27
101 0, 11, £15, £16, 17, £20, £24, 27, 1,3, 44, 46, £10, 13, 21, 23,
30 43,43, 47. 25 or 31 (mod 50)
151 15,7, +14, 33, 37, 41.
1, 3, 4, X6, 25, 31, 140, +46
+ 2 + 2 2 > kl 2 k3 2 >
160 3001 | £10, 13, 21, 23, +44, 53, 71, 75. 51,63, 73 or 81 (mod 100)
14 2910, 5, 13.
28 13 ]9, £10, £12, 15, 17, 21, 23, 25.
70 9Zi 111’612221’ 23, 63. 1, 3, £4, +6, +104, +246, 281,
2 : +340 (mod 700)
200 201 | £60, £106, +146, +204, 231,
+254, £304, £306, 563, 651.
350 54601 323
26 52110, 48 49, +10, +11, £12, 19
52 233 | 45, 420, +21, +24 29, 39, 49,
+ +54, +
13123, 130, 33, 51, 454, 236, O} | 5 44 46, 42346 or 7281
130 103, 111. (mod 9100)
24571 | 53.
650 3251 | £46, £106, £154, £256, £306.
910 50051 | £386
8 310,5.7.
40 411 +14.
— 1,3, 4, + 18200
728 | 232961 | 2202, » 3, 4,26 (mod 18200)
1400 28001 § 281.

3. MAIN THEOQOREM
Theorem:
{a) L, is a generalized heptagonal number only for n=1,3, +4, or 6.
(b) L, is a heptagonal number only for n=1, %4, or £6.
Proof:
(a) The first part of the theorem follows from Lemmas 1 and 2.

(b) Since an integer N is heptagonal if and only if 40N +9 = (10m—3)*, where m is a posi-
tive integer, we have the following table. O

TABLE C
» 1 3 +4 +6
L, 1 4 7 18
40L,+9 7 132 17 27*
m 1 -1 2 3
F, 1 2 +3 +8
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4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

It is well known that if x, + yﬂ/ﬁ (where D is not a perfect square, x,, y, are least positive

integers) is the fundamental solution of Pell's equation x> — Dy* = %1, then the general solution is
given by x, +y,+/D = (x; + y,/D)". Therefore, by (3), it follows that

L, +J§F2n is a solution of x? —5y* = 4, )
while
L, +J§F2n 41 is a solution of x? ~5y2 =4, ®)

We have the following two corollaries.
Corollary 1: The solution set of the Diophantine equation
x*(5x-3)* =20y -16 ©)
is {(1, £1),(-1,£2)}.
Proof: Writing X = x(5x —3)/2, equation (9) reduces to the form
Xt=5y"-4 (10)
whose solutions are, by (8), L,,,, + J§172n "

Now x=m, y =b is a solution of (9) < —"1(5%"31+ /5b is a solution of (10) and the corollary
follows from Theorem 1(a) and Table C. O

Similarly, we can prove the following.

for any integer .

Corollary 2: The solution set of the Diophantine equation

x*(5x-3)? =20y* +16
is {(2,£3), 3, £8)}.
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1. INTRODUCTION

A nonzero m x n (0, 1)-matrix 4 is called a nullspace matrix if each entry (i, j) of A has an
even number of 1's in the set of entries consisting of (7, ) and its rectilinear neighbors. It is called
a nullspace matrix since the existence of an m x n nullspace matrix implies the closed neighbor-
hood matrix of the m x n grid graph is singular over GF'(2). By closed neighborhood matrix, we
mean the adjacency matrix of the graphs with 1's down the diagonal.

In Sections 2 and 3, we review the relationship of the Fibonacci polynomials to nullspace
matrices. In Section 3, we define composite and prime nullspace matrices and present some num-
ber sequences related to the nullspace matrices and pose a question analogous to the famous
question about whether or not there exist infinitely many prime Fibonacci numbers.

2. BACKGROUND

In this paper, all polynomials are over the binary field GF(2). When no confusion results, we
denote the all-zero n-vector simply by 0. See Table 1 for an example of a nullspace matrix.

TABLE 1. A 4 x 4 Nullspace Matrix

1000
1100
1010
0111

If we choose a nonzero vector w € F", where F" is the binary n-fuple space and let w be the
first row of a matrix 4, for each i > 1 there is a unique way to choose the i/ row to make the
number of 1's in the closed neighborhood of each entry in the (i —1)* row even. If 7, is the it
row, the unique way of doing this is given by

r=Br_+r_,,i22, r,=0,rn,=w, )
where B =[b,;] is the n x n tridiagonal (0, 1)-matrix with b;; =1 if and only if |/ - j| <1 (and the

r;'s in (1) are wriiten as column vectors). If 7., = 0 for some positive integer m, then r,, 7,, ..., 1,
are the rows of an m x n nullspace matrix. We can also compute the entries of 7, one at a time by
FLA= 5l 1+ il = 14 7,0 + 11+ 50 ] mod 2.
It follows from the definitions that , = f(B)w fori=0,1,2,..., where f; is the i Fibonacci
polynomial over GF(2):
f;':x-fi—l+f;'—2’ i22’ szOnfl:l' (2)
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In this paper, we are interested in building large nullspace matrices from smaller ones. A
fundamental property of nullspace matrices is given in the following simple proposition.

Proposition 1: Let n and k be positive integers with &£ +1 a multiple of n+1. If there exists an
n x n nullspace matrix, then there also exists a k£ x k¥ nullspace matrix.

To see this another way, if k¥ +1=g(n+1) where q is a positive integer, and if 4 is an nx n
nullspace matrix, then a & x ¥ nullspace matrix can be constructed by letting row and column
numbers n+1, 2(n+1),...,(g—1)(n+1) have all entries equal to zero, creating a ¢ x ¢ array of
n x n squares, putting 4 in one of the n x n squares and filling in the rest of them by "reflecting"
across the lines of zeros. That is, one can take the 4 x 4 nullspace matrix from Table 1 and con-
struct a 9 x 9 nullspace matrix; see Table 2.

TABLE 2. A 9 x 9 Nullspace Matrix

100000001
110000011
101000101
011101110
000000000
011101110
101000101
110000011
100000001

3. NULLSPACE-PRIMES

We call a nullspace matrix that has at least one row or column of zeros a composite nullspace
matrix, otherwise we say it is a prime nullspace matrix. We say that an integer n is nullspace-
prime if there exists an (n—1) x (n—1) nullspace matrix, but for no proper divisor m of n does
there exist an (m—1) x (m—1) nullspace matrix. With the aid of a computer, we have determined
that the first few nullspace-primes are 5, 6, 17, 31, 33, 63, 127, 129, 171, 257, 511, 683. This
sequence does not match any in Sloane's Encyclopedia of Integer Sequences. Other nullspace-
primes include 2047, 2731, 2979, 3277, 3641, and 8191. We prove below that 6 is, in fact, the
only even nullspace-prime. It is easy to see that there exists an # x n nullspace matrix if and only
if n is one less than a multiple of a nullspace-prime.

One could use a simple (albeit, rather slow) sieving algorithm to determine if an integer n is a
nulls<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>