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1. INTRODUCTION 

Let a0, . . . , a M (r > 2, ar_x & 0) be fixed real numbers. An r-generallzed Fibonacci sequence 
{Vn}*™0 Is defined by the linear recurrence relation of order r, 

where V0, ...,Vr_x are specified by the initial conditions. In the sequel we refer to these sequences 
as sequences (1) or (1). When at (0 < i < r -1) are nonnegative and gcd{/ +1; ax > 0} = 1, where 
gcd means the greatest common divisor, it was established in [10] that the characteristic polyno-
mial P(X) = Xr - aQXr~l - >— ar_2X-ar_j has a unique positive zero q and |A|<$ for any 
other zero X of P{X). And in [2] and [8] it was shown, by two different methods, that the limit 
of the ratio Vn lqn exists if and only if the Ostrowski condition gcd(i +1; at > 0} = 1 is satisfied. 

The purpose of this paper is to study the extended Ostrowski condition by considering ( Q : 
gcd{i + l; at * 0} = 1 for sequences (1) in the case of real coefficients (Section 2). We apply 
Horner's diagram to the convergence of sequences (1) (Section 3). An extension of ( Q to the 
case of real coefficients is studied in Section 4. Finally, some concluding remarks are given in 
Section 5. 

2. CONDITION (C) FOR SEQUENCES (1) 

The Horner diagram for a given polynomial P(X) = a0Xn + • • • + an_tX + an, where a0, al9 ..., 
an are real numbers, is a process for computing the value of P(g) for every x = £ • Its main Idea 
consists of writing P ( ^ = (" , ( (^£+ a i )£+a2)£+" ' , )£ + a/r Therefore, we can consider the 
finite sequence {Pj}o<j<n defined as follows: 

Hence, we derive that Pn = P(g) and P(X) = Q(X)(X - £ ) + />(£), where Q(X) = P0Xn~l + • • • + 

Suppose that sequence (1) converges. For limw_̂ +Q0F„ * 0, we have aQ +ax + ••• +ar_x = 1. 
Suppose also that 

<%+(*! + —+ar_x = \. (2) 
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CONVERGENCE OF r-GENERALIZED FIBONACCI SEQUENCES AND AN EXTENSION OF OSTROWSKl'S CONDITION 

Set bt = EyJ aj = fit and d = gcd{j +1; a} * 0}. Then bt = fit for £ = 1 and condition (2) implies 
that b0 = 1. Assume that the following condition is satisfied: 

2>,*0- (3) 

By direct computation, we can verify that we have 

V„ +b^i + -+br-1V„-r+l = K^+hV^ + -+br_1V0. (4) 
Thus, 

This expression was established in [2] and [8]. If (3) is not satisfied, the characteristic polynomial 
takes the form P(X) = (X- l)(Xr_1 + b^'2 + — +br_l). Hence, 2 = 1 is of multiplicity > 2. 
Then {VH}*™Q does not converge for any choice of the initial conditions. 

In the case of nonnegative coefficients satisfying (2), it was shown in [2] and [8] that 
Ximn_^Ji<0Vn exists for any choice of the initial conditions if and only if ( Q is satisfied. Let us 
establish that (C) is still necessary in the case of arbitrary real coefficients. In [9] it was estab-
lished that the combinatorial form of a sequence (1) is given by 

Vn = A0p(n, r) + AlP(n - \ r) + • • • + Ar_lP{n - r +1, r) (5) 

for any n > r, where Am = ar_ym + • • • + ajf.^ and 

with p(r9 r) = 1 and p(n9 r) = 0, if n > r -1. For VQ = • • • = Fr_2 = 0 and Vr_l = 1, we have F„ = 
p(n +1, r) for n > 0. In the case of nonnegative coefficients, the sequence 

q' '"~r J„=o' 
where q is the unique positive characteristic root, converges with 

lim £ & 2 = 1 (7) 

whereAi = Z ^ # r ( s e e [ 9 ] ) . 

(The combinatorial form of sequence (1) has been studied by various methods and techniques; 
see, e.g., [6], [7], [9], and [11].) 

Suppose that a0,...,ar-1 are real numbers and let aj^aj^--^ajs be the nonvanishing coeffi-
cients (a^ = ar„4 or/, = r -1). Then (6) takes the form 

_ (*i +-+*i)! k L L 

(i0+l)^+(/1+l)^ + -..+(/,+l)^=»i-r. % A ' " A ' 

Thus, we deduce that p(nyr) = 0 for « < r or n^kd (k GN), where rf = gcd{y +1; ay. ̂  0}. For 
d = gccl(j +1; a. * 0} > 2, it was shown in [8] that the sequence (1) has d subsequences of type 
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(1) in the case of nonnegative coefficients. For a0, ...,ar_x real, we can derive from (C) that the 
sequence (1) also owns d subsequences {V^}n>0 (0<j<d-l) of type (1) defined as follows: 
KU) =Vnd+j = AjP(nd,r) + Ad+Jp((n-l)d,r) + ... + A^d^ for 0< j < J - l . So, 
if the sequence (1) converges for any choice of initial conditions, we have Vn ~V^ for any j , 
which implies that d - gcd{/ +1; a. * 0} = 1. 

Proposition 2.1: Let {Vn}n>0 be a sequence (1), where a0, ...,ar_j are real numbers satisfying (2). 
If {Vn}n>0 converges for any choice of the initial conditions, then condition (C) is satisfied. 

The following example allows us to see that condition (C) is not sufficient for the conver-
gence of a sequence (1), in the case of arbitrary real coefficients, with (2). 

Example 2.1: Let {Vn}n>0 be a sequence (1) whose characteristic polynomial is 

P(X) = X3-a0X2-alX-a2 

with aQ = 2 + v, ax = -(1 + 2v)9 and a2~v ( v * 0 , - 2 ) . Thus, Sy=oaj = 1 a n^ ( Q is satisfied. 
Because the multiplicity of the characteristic root X - 1 is 2, the sequence {^}w>0 does not con-
verge for any choice of initial conditions. 

3, CONVERGENCE OF SEQUENCES (1) 

Horner's diagram is used for practical computations of values of polynomials (see, e.g., [1]). 
In this section we apply this method to the convergence of some sequences (1), where the role of 
the initial conditions is considered. 

Let {VA(ri)}n>0 be a sequence (1) whose initial conditions are A = (aQ,..., ar_x). Let Xh..., 
Xs be its real characteristic roots with multiplicities ml,...,ms, respectively. Because the coeffi-
cients and initial conditions are real numbers, we deduce that if X = lim „_»+«, y ^ exists, thenX 
is a real characteristic root. 

Proposition 3.1: Let {VA(n)}n>0 be a sequence (1) whose coefficients and initial conditions are 
real numbers. Suppose that 

k 
]Ta y < l f o r 0 < £ < r - l . (8) 
y=o 

If lim^^^ Vy^^ exists and is positive, then {VA(n)}n>0 converges. 

Proof: Condition (8) implies that b0 = 1 and hk = l-Zy!oay ^ 0- Hence, from the Horner 
diagram we deduce that, for any real zero X of the characteristic P(X), we have X<\. Since 

s ms-l 

where |Xx \ > \X21> • • • > \Xt | > • • • > \Xk | and filtJ are obtained from initial condition A (see [2]), it 
follows that when l im^.^ V/^TJ? = A>t exists and is positive, we have 

V (nA-W s ms~l m'~l 

W->+«0 VA{fl) l=j J=0 / = 0 
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For Xt < 1, we deduce that \\mn^+mVA(n) = 0. For A, = 1, condition (8) implies that Xt = 1 is a 
simple characteristic root. Also? |A.|<Xf = 1 for j>i. Therefore, Binet's formula implies that 
{VAin))n>Q converges. D 

Remark 3d: We can also use Descartes1 rule of signs to derive the convergence of {VA(n)}n>Q. 
More precisely, we have P(X) = (b0Xr~l + • • • + b^X -1) + P(l), where ft0 = 1, ft* = 1 - YJ~^ai 

> 0, and P(l) = 1 - Sylo #/ ^ °> by (9). From Descartes1 rule? we have Q(x) > 0 for every x > 0. 
Thus, P(x) > 0 for every x > 1. Hence, 1 < 1 for every positive zero 1 of P(X). 

Proposition 3.2: Let {^(w)}„^0 be a sequence (1) whose coefficients and initial conditions are 
real numbers. Suppose that 

k r-2 
aQ>-\ £(- iy+ 1ay£lfor l£Jfc<£r-2, X( - iy + 1 a , < L (9) 

If l im^.^ y ^ exists and is negative, then {VA(n)}n>0 converges. More precisely, we have 
limn^o0VA(n) = 0. 

Proof: We have Q(X) = (-IJP(-X); thus, 1 is a zero of P(X) if and only if - 1 is a zero 
of Q(JQ. Set Q(X) = (b0Xr~l + • • • + ftr_,)(Z -1) + 2(1); expression (9) implies that b0 = 1, 6* = 
l+Z^oC-iy^y^O (* = l , . . . , r -2) , and 6 ^ = 1 + S ^ o ( - i y « / > ° - We now have g ( l ) ^ 0 and 
Homer's diagram implies that X < 1 for any real zero 2 of Q(X). Thus, for any real zero X of 
P(X), we have also A > - 1 . Since l im^^—^™ exists, it follows from Binet's formula that 
WA(n)}n>® converges with lim^+00 VA(ri) = 0. D 

Example 3.1: Let {^(w)}„>0 be a sequence (1) defined by 

VA(n + l) = ^VA(n) + ̂ VA(n-l) fo r«>l . 

It is easy to see that a0 = ̂  and at = ̂  satisfy condition (9). For ^ = (1, - -j), we have 

,im z&ttt=-i<o. 
Thus, {VA(n)}n>0 converges with limri^<X)VA(n) = 0. For any A*(la,-•—), where a ^ O is a 
real number, we have 

lim -
VA(n) 5 

and {VA(n)}n>0 diverges. 

r VA(n + l) 6 A lim - 4 ; , , = -= > 0 

4. EXTENSION OF (C) AND CONVERGENCE OF (1) 

Let {f^J^o ^e a sequence (1), where a0, ...,ar_! are real numbers satisfying (2). Then 
P(X) = (X-i)Q(X)9 where g(X) - b ^ X ^ + ^ X ^ - h . . . +^_j with ^ = E ^ o , , where ft0 - 1. 
Suppose that fy * 0 (1 < j < r -1) and set 
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H = H(Q) = max\ 
°0 K 

Jr-\ 

"r-2 

Let R(X) - Xr l - Xr 2 X-l and let q > 0 be its unique positive zero. Then q > 0 is 
also a solution of the equation Xr - 2Xr"~l +1 = 0. A straightforward computation allows us to 
derive that 

^ ) < < r < 2 . 
Lemma 4.1: Let ^ > 0 be the unique positive zero of R{X)-Xr x-
M>0. Then the following two conditions are equivalent: 

Mq<\; 

M<\ and Mr-2M + l>0. 

•X r-2 X-l and 

(10) 

(11) 

Proof: It is clear that q>\. Suppose that Mq < 1. Then we have 0 < M < \lq<\. Since 
g(x) - xr - 2xT"~l +1 is a nondecreasing function on [q9 + oo), we have g(q) = 0 < g(l/M). Thus, 
we have M r - 2 M + 1>0. Conversely, suppose that 0 < M < 1 and Mr-2M + l>0. Then 
0<(Mr-2M + l)/Mr = g(l/M) and 1/M>1. Since g(x)<0 for l < x < ^ , we must have 
1 /M># , i.e., Mq<\. U 

Lemma 4.2: Let Q(X) = h0Xr'l+hlXr~2 + ••• +br_v Assume that b0 = 1 and iy * 0 for 1 < j < 
r - 1 . Then the zeros of Q(X) have modulus bounded by Hq. 

Proof: For every real number X, we have 

leW^ix-1!-!*^-2! ^ i 

IX-11 -x r-2 ^2 ^1 yr-3 
*1 h 

Jr-\ 
Jr-2 

A 
An 

> | X rl - HXr~2 - IPX"'3 Hr~l 

If X = zifg, where |z| > 1, then 

\Q{X)\ > \z\r~lHr-lqr-l-H\z\r-2Hr-2qr-2- - . - fT" 1 = Hr-lR(\z\q)>0. D 

Suppose that Q(l) ^ 0. Let X = aY (a > 0) and let 

Qm = Yr-l+^r-2+\r-3 + --'+^. 
^aX / a a2 ar~l 

If yQ is a zero of Qa(X), then x0 = qy0 is a zero of Q(X) and ifa = H{Qa) = ̂ . Let a > 0 be 
such that Ha<\ and if£ - 2//a 4-1 > 0. Then Lemma 4.2 implies that the zeros of QJJ) are of 
modulus < 1 and those of Q(X) are of modulus < a. Let 

a0 = i n f { a > 0 ; i f a < l a n d i ^ - 2 i ^ + l>0}. 

Elementary computation using the function f(x) = xr -2JC + 1 allows us to deduce that aQ = ^-, 
where JC0 * 1 is the other positive zero of the equation xr - 2x + l = 0. Thus, we can formulate 
the following result. 
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Proposition 4.1: Let Q{X) = Xr~l + bxXr~2 + • • • + br_x satisfy 0(1) * 0. Assume that the b/& are 
not zero. Then, for any A of Q(X), we have |2 | > ̂ -? where x0 ̂  1 is the positive zero of 
x r - 2 x + l = 0 

The connection between (Q and (10) may be expressed as follows. 

Corollary 4.1: Let q be the unique positive zero of R(X) = Xr~l - Xr~2 X-l. Assume 
that the bjs are not zero and that 

H = max< \bx\, 
\ 

K-i 
Jr-2 

Then, for M = Hy condition (10) implies condition (C). 

Proof: Suppose that condition (10) is satisfied. Then Lemma 4.1 implies that H < 1. If 
aQ = 0, wre can deduce that b0 = bx = l and thus H > 1, which gives a contradiction. • 

For the convergence of sequences (1) in the case of arbitrary real coefficients, condition (10) 
for M = H may replace (C) considered in the case of nonnegative coefficients. More precisely, 
we have the following result. 
Proposition 4.2: Let {VJ^Q be a sequence (1), where a0, ...,ar_1 are real numbers satisfying (2). 
Assume that Homer's J/s are not zero and that 

H = max\ \bx\, 
Jr-\ 
Jr-2 

Then, if (10) is satisfied for M = H, the sequence {VJn>0 converges for any choice of initial 
conditions. 

Proof: Set C = Vr_t + b^r_2 + • • • + br_yQ and L = 1+^+.^+fe • Consider the sequence {Wn}n>0 

defined by Wn = Vn - L. From (4), we deduce that Wn = -bJV^ + • • • - Ar_!^_r+1 for T? > r - 1 . 
Thus, {^}„>0 is also a sequence (1) of order r-1 whose combinatorial expression defined by (5) 
and (6) is 

Wn=BlpXn,r~l) + Blp%n-\r--l) + -'+Br_lpe(n-r + 2,r-l) forn>r-l, 

where Bm = - A r _ ^ W _ ! (m = 1, . . . ,r-1) and 

(*l + " + * r - l ) ' j k , A - , 
£ I #, s Cl •••Cr-1 > Pf(n,r~l)= X 

fc1+2fci+"-+(r-l)Jfcr_1 = w-r+l A - l ' 

where cf = -bj9 p?(k9 k) = l, and //(«, k) = 0 if n> k-1. Therefore, {FJ^>0 converges for any 
choice of initial conditions if and only if limn__^+(X)Wn = 0 if and only if llmn_^+O0pe(n,r-1) = 0. 
Suppose bj * 0 (1 < j < r -1) . Then 

\h\h-\br-i\K-l = \h l^1+"-+ r̂_i 

h 
k2 + --+kr_l K-x 

Jr-2 

K-

Thus, we have 

2002] 391 



CONVERGENCE OF r-GENERALIZED FIBONACCI SEQUENCES AND AN EXTENSION OF OSTROWSKl'S CONDITION 

\p'{n,r-\)\<H-^ X (V,'"tV!-
Ar1+2Jfc1+-+(r-l)ifcr_1 = n - r+ l K\' --Kr-\-

(12) 

From expression (7) we derive that the right-hand side of (12) is asymptotically equivalent to the 
expression 

(Hqf-r+l 

q-l+2q-2 + ~-+(r-l)q-r+l 

(see Theorem 3.2 of [9]). The conclusion follows from (10). D 

Condition (10) is not necessary for the convergence of a sequence (1), as is shown in the 
following example. 

Example 4J: Let {Vn}n>0 be a sequence (1), where r = 3 and a0 = 1 - ju, ax = fi - a, a2 = a with 
ju*0 and a * 0. Then a0 +ax +a2 = 1, bx = ju, and J2 = a, For example, if // = •£• and a - -2-10 10' 
we deduce that 2 0 = 1, 2X = ~, and X2 = ± are simple zeros of P(X). Thus, the sequence {Vn}n>0 

converges. Meanwhile, in this case we have H = j , and q 
Hq > 1. Other values of ft and a may give the same conclusion. 

~ _ lW5 is the solution of x2 = x +1, so 

5, CONCLUDING MEMAMKS 

Let us consider the following classical lemma (see, e.g., [5] and [10]). 

Lemma 5.1: Let R(X) = b0X* + blXa~l + *"+bs (bQj£Q) be a polynomial of real coefficients. 
Assume that the bj

 fs are not zero. Set 

M1(i?) = max|l,X 
s-\ 

;=0 

"y+i 

M3(R) = max 
Vi 

i/y 
; 1 < J < S , M4(R) = max< 

^5-1 
, 2 

7 - 1 
1 < J < 5 - 1 . 

Thus, |A| < Mj(R) (j = 1,2,3,4) for any zero X ofR(X). 

Condition (2) implies that P(X) = (X-T)Q(X), where Q(X) = b0Xr-l+blXr-2 + -+br_l 

with bk = Tfjl\ a j and bQ = 1. Thus, if a0 = 0, we have b0 = bh which implies that Mj(Q) > 1 for 
j = 2,3,4. In particular, if Mj(Q) < 1 (/ = 2,3,4), we deduce that aQ * 0, and ( Q is satisfied. 

Proposition 5.1: Let {^}n>0 be a sequence (1) whose coefficients are real numbers satisfying (2). 
Let Q(X) = b0Xr~l+hlXr~2-h-°-+br_h where bk = 2^"!^.. Assume that the bjs are not zero. 
Then, if Mj(Q) < 1 for some j = 2,3,4, the sequence {FJW>0 converges for any choice of initial 
conditions. 

The convergence of a sequence (1) has been studied in [3] and [4] for r = 2,3. Proposition 
5.1 extends Theorem 2 of [3] and Theorem 1 of [4] to r > 2. 
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Remark 5.1: Let {VJn>Q be a sequence (1) and set 

M = m a x { | 6 y r ; j = l , . . . , r -1} . 

Assume that the bjs are not zero. Then all results of Section 4 are still valid if we substitute M 
for 

H= max< \bx\9 

Also note that H < M4(Q), where 

M4(Q) = max< 
,Js-l 

? 

b2 

hi 

2 

, ...? 

*> 1 
Vi 1 

^ 2 

; 1 < J < 5 - 1 . 
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1. INTRODUCTION 

The second-order linear recurrence sequence U = {Un}, w = 0,1,2,..., is defined by integers 
a, h, t/0, Ux and by the recursion Un+2 = bU„+l +aUn for n > 0. We suppose that ab * 0 and not 
both U0 and Ux are zero. If a and (3 denote the roots of the characteristic polynomial x2 -hx-a 
of the sequence U, then we have the Binet formula (see [1]): 

f ^Aan-Bpn 

a-fi ' 
where A = Ul-UQft and B = Ul-U0a. The generating function is 

^Q " l-hx-ax2 

If U0 = 0, U1 = 1, then the sequence 3* = {£/„} is called the generalized Fibonacci sequence, 
and % = ^f. 

In order to express our results, we denote by crUj(n, k) (i,y, and k are nonnegative integers) 
the summation of all products of choosing j elements from n + 2k-l9 n + 2k-2, ..., n + 2k-i + \ 
but not containing any two consecutive elements. We note that crUJ{n9 k) = 0 if j < 0 or j > [£), 
af 0(n,k) = l (/>0), att(n,k) = j(i-l)(2n + 4k-i) (/>1). For example, when J = 6, we have 

a6A(n,k) = (n + 2k-l) + (n + 2k-2) + (n + 2k-3) + (n + 2k-4) + (n + 2k-S), 
a6a(n,k) = (n + 2k-l)(n + 2k-3) + (n + 2k-l)(n + 2k-4) + 

+ (n + 2k-2)(n + 2k-4) + (n + 2k-2)(n + 2k-5) + (n + 2k--3)(n + 2k-5X 
a6 3(n, k) = (n + 2k - l)(w + 2k - 3)(w + 2k - 5). 

It is easy to prove that 
(n + 2k - l)a2k_2f k_x(n, k -1) = a2k$ k («, *) (* > 1) 

and 
(n + 2k-l)akH_2ii_l(n,k-l) + a k ^ (l<i<k,k>2). 

Recently, W. Zhang [2] obtained the following result: Let 17 = (UJ be defined as above. If 
U0 = 0, then for any positive integer k > 2, we have 
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uk~l 

X UaUai ...Uat = * w[gk-x(n)Un_k+l +hk_l(n)U„_k], 

where the summation Is taken over all w-tuples with positive integer coordinates (aha2,...,ak) 
such that ^ + o 2 + '*-+aik=w, and he pointed out that gk_i(x) and hk_x{x) are two effectively 
computable polynomials of degree k-l, their coefficients depending only on a, b, and k. 

In this paper, we obtain 

&-i(") = Z C 2 ^ ' ^ " 1 " 1 ^ ™ *'+ l>*w-i*w-i> -k + \k- \Wk_t (k > 1) 

and 

i=0 

where (ri)k = n(n +1) • • • (n + k -1) with </i)0 = 1. We also give the congruence relation 

gW)UM+hU»)U^k = 0 (mod(^-l)!(Z»2+4a)t-1) (k>l), 

which generalizes the results presented in [2]. 

28 THE RESULTS AND THEIR PROOFS 

In this section, with U0 = 0, let 

°MT^?J-IU^'-«=o 
Then 

Z Tj(h)rT(h) . . . rrf**) - rr(*i+*2+-+*«) uax
 ua2

 uam ~~ u n-m+l 
al+a2+-+am=n 

Taking kl = k2 = -- = km = l,wQ have 

Lemma 1: ^ ^ A • • • ̂  = U^m+l. 
al+a2+-+am=n 

Theorem 1: U(
n
k+l) = f1 {nbU<& + 2a(n + 2k- l)U™} (k>l). 

Proof: 
-~-(Gk(x)(b + 2axf) = G^(x)(b + 2axf + Gk(x)k(b + 2axf~l2a 

and 

dx\ k\ A > J dx\\-bx-ax2) 

_ fU^h + 2wcyf~l 2a(l-bx-ax2) + (b + 2ax)2 

-*U\l-bx-ax?) (l-bx-ax2)2 

2002] 395 



A NOTE ON A CLASS OF COMPUTATIONAL FORMULAS INVOLVING THE MULTIPLE SUM OF RECURRENCE SEQUENCES 

= k(b + to^f-Lf' 2a2x2
+2abx+b2

+2a 
\l-bx-ax1) (l-bx-ax1)1 

v ; \\-bx-ax2) (\-bx-ax2)2 

Hence, 
G'k(x)(b + laxf + Gk(x)k(b + 2ax)k-l2a 

= k{b + 2axfM U* Y-Ml-bx-ax2)+tf+4a 
v ' \\-bx-ax2) (l-bx-ax2)2 

Therefore, 
G'k(x)U{(b + 2ax) + 2aWlGk(x) = -2aWlGk(x) + (b2 + 4a)kGM(x). 

This concludes the proof of Theorem 1. D 

Theorem!: U?+l> = ^ [ ^ fWbk-'(n)t_,er,+,,.(*)t/„+,_,. (k>0). 

Proof: This theorem can be proved by induction. When k = 0? the theorem is trivial. When 
k = 1, the theorem is true by applying Theorem 1. Assume the theorem is true for a positive 
integer k-l9 then 

^ + 1 ) = ^(/+4a){"W"')l + 2a (" + 2 ^ " 1 ) ^ ) } 

k(b2 + 4a) I (*-l)!(62 +40)*-' ~ 

+ 2a(» + 2*-1) ^ _ m f f i ^ - i lW**"Mfr>*w-i<Wufo *"W„+*-,-i} 

: ̂ , ( / f 4 a ) . { l ( 2 ^ " " < " + 1>*-,-I^H,-I,,(» + U " I t f U w 

+ U(2a)'+1^-i-1<»>,_,._1(» + 2k - \)akM_u(n, k - \)U„+k_t\ 
i=0 J 

: ^ ^ ^ I I ^ M - ' H , ^ , . ^ + \ , k - i)un+k_t 

+ £ (2a)1 bk-<»>*_,(« + 2k- \)vk+iW(n, * - 1)CW,1 
;=0 J 

: ^ , ( / f 4 a ) J M < " > ^ ^ . o ( " H * - W„+* + Z(2a)'M-'<«),_,.f/„+,_,[c7,+,_1,,.(», * -1) 

+ (n + 2k - l)crk+t_2t,_,(«, * - ! ) ] + (2af (n+2k- \)a2k_x k_x(n, k-\)Un\ 
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That Is, the theorem Is also true for k. This proves the Theorem 2. D 

Lemma 2: U^^^^+a^U^ (k>0,m>l). 

Proof: Use Binet's formula. D 

Theorem 3: Uf+^ = ̂ [ ^ Z W^~'<">*-;<W*> * X ^ + i U„ +a®k_i U^) (k>0). 

Proof: Use Theorem 2 and Lemma 2. • 

Theorem* £ UaUai...Uak 

m k-l 

(b2+Aaf-\k-l)\ 
k-i 

Z 
i=0 

Sc^yft^-^-^+Dw^w-u^-^+i,*-!)^ u. n-k+l 

-ha 
k-\ 
X (2a)'M-'-1<» - A + l>tw_,fft+,_u(» -k + \k- \)9k_t_x 
/=0 

£/„_, (A>1). 

Proof: Noting Lemma 1 and Theorem 3, we have 

X uaua2...uat=uj,k_\+l 
a, +a7 A— +ak =n 

^ ! -^(laytf-'-Kn -k + \\.Mak_Mtt{n -k + \,k-\) 
(k-\)\{b2+4af-l£0 

x (%-tU„-k+i +a%_t_lU„_k) 

Ui k-l k-l 

z 
/=o 

± (2aybk-'-\n -k + 1 ) ^ , ^ .(n-k + l,k-1)^_, 
(62+4a)fc-1(yfc-l)! 

U(2a)'M-'-1<» - * + \)M<rk„_u{n -k + l,k-1)9^ 

U. n-k+l| 

+ a 
i=0 

t/^ . • Jn-k 

From this theorem, we can get the expression of gk_x(n) and hk_l(n)9 namely, 
jt-i 

&-i(«) = Z (2aybk-'-l<n -k + D t ^ a ^ u C i i - * +1, * - 1 ) ^ _ , (* > 1) 
1=0 

and 
jfe—I 

i=0 
\ - i (» ) = a Z (2a ) ' ^ - ' -> - * + l U ^ . ^ / . - A + l,k - 1)®M (k > 1). 

Theorem 5: gk.y{n)Ult.M + /?t_i(«)t/„_t = 0 (mod (k -1)! (A2 + 4a)*"1) (Jfc > 1). 
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This result is a generalization of Corollary 2 of [2], When Ul=a = b = l and k = 1,2? 3, 
respectively, this result becomes (i)-(iii) of Corollary 2 of [2]. 
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L INTRODUCTION 

For a e C\ {1} we write, as in [2], 
1 •v °° *n 

e'-a % "V 'nV 

from which it follows that En(d) (n = 0,1,...) are uniquely determined by 

H0(a)ml, Hn(a) = ^zfyHk(a) (n>l). (1) 

TheEulerian polynomials Rtl(a) (« = 0,1,...) are defined by Rn{a)-{a-VfHn{a) asEuler first 
discussed them in [4]. For n > 1, as is easily seen from (1), Rn(a) is a polynomial in a of degree 
n-\ with integer coefficients and was expressed by Euler in [4] as 

*„(«) = 14"«*_1, (2) 
k=l 

where the integers A\ (\<k <n) are known as Eulerian numbers (see also [3, p. 51]). Later, 
Frobenius [5] gave another expression for Rn(a) as 

R„(a) = fjk\S"k{a-\rk, (3) 

where S% (1 < k < n) denote the Stirling numbers of the second kind (see also [3, p. 244]). 
The object of this paper is to obtain one more expression for R„(a) in terms of an array of 

integers Q! closely related to the central factorial numbers (see [6, §6.5]). By means of the new 
expression for R^ia), we derive explicit formulas for Bernoulli and Euler numbers and others, and 
unify some known results, in terms of these C£. 

2. A NEW EXPRESSION FOR Rn(a) 

We define an array of integers Q in the following way: for integers r, k>l, 

Q = | * 6 V~J' (4) 
[kClr-1 i£n = 2r. 

Clearly, Cfr"1 = Q2r = 1. We make the convention that Q2""1 = C0
2r - 0. 
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These integers C% are closely related to the central factorial numbers of the second kind 
T(n, k) defined as in [6, p. 212]. Indeed, for r,k > 1, Cf~l = (2k-\)\ T(2r, 2k). Thus, it follows 
from the properties of T(2r, 2k) (see also [1, pp. 428-29]) that 

,,,_,_ f(2r-l)! ifk = r, 
cr=V ... (5) 

Moreover, the second formula in the definition (4) together with 

Cri=2{2k-\)Cll+kClr (6) 

gives the recurrence for Q . We may also derive (5) and (6) directly from the definition. 
The new expression of R„(a) given below contains the powers of a as in (2) and also that of 

a-I as in (3). Moreover, the number of the terms in the summation is about half of that in (2) 
and (3). 

Theorem 1: For an integer r > 1: 

*2,-i(«) = £c2rla«-Xa - l ) 2 - 2 * , (7) 

R2r(a) = (1 + a)£ Clrak~\a - i)2r~2k. (8) 

Proof: Clearly, from (1), Ri(a) = 1 and R2(a) = 1 + a. For the general case, the proof is by 
induction on r > 1 using the recurrence 

^ i ( « ) = (" + l)aRn(a)+0 - a)^(aRn(a)) (9) 

for n > 1 (see [2], [5]). If (7) is true, then by (9), 

i?2r(a) = (2r)ai^r.1(a) + ( l - a ) ^ ( a ^ r „ 1 ( a ) ) 

= X kC2
k
r~\l + a)ak~l(a - l)2r"2*, 

which by (4) equals the right-hand side of (8). If (8) is true, then by (9) again, 

i?2r+i(a0 = (2r + l)aR2r(a) + (1 - a ) ^ ( a / k ( a ) ) 

= S c f {2«(2^ +1) + *(« -!)2} a*~V " !)2r"U 

= Q2r (a - l)2r + C2r2(2r + l)ar + £ {2(2Jfc -1) C ^ + kC2
k
r}ak~\a - \fr~2k*\ 

which by (5) and (6) equals the right-hand side of (7) with r replaced by r +1. This completes the 
proof of the theorem. 

Some classical formulas involving the Eulerian numbers have their counterparts in the integers 
eg. Analogous to an identity of Worpitzky (see [3, p. 243]), we have the following theorem. 
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Theorem 2: For an integer r > 1: 

x2r-l _ y Qlr-\ (x + k-l 
k=\ 

2Jfc-l r (10) 

Proof: Let A be the difference operator defined by A/(x) = /(JC + 1 ) - / ( * ) . Following an 
idea of Frobenius in [5], we have by a property of S" (see [3, p. 207]) and (3) 

Thus, by (7), 

^=±^'^;(5)=x^'^; A—-Q=^<z+A)(J 

^ i = £ cr \i+A)*-^2* (2/_ j)=s Q 
jfe=i 

2r-l f X + A - 1 
* 2Jfc-l *=i 

In connection with the Bernoulli polynomials Bn(x) and the Bernoulli numbers Bn = Bn(0) 
analogous to 

we have the following theorem. 

Theorem 3: For an integer r > 1: 
1 {BM-B2r}=icr(x+

2
k

k-l\ 2r k=\ 

^ ^ W ^ - O Z a F u ^ ^ - 1 } 

( i i ) 

(12) 

Proof: Since both sides of (11) are polynomials in x, it suffices to assume that x equals an 
integer m>l. Then it follows from (10) using formulas in [3, pp. 10 and 155] that 

Similarly, 

UBlr(m)-B2r}=mf/-=£ e r f (kuj:A=t cH m+
2
k
k-1) 

-^2r" 
m-l 

k=l j=l 

'k+J-?\Jk+J 
2k + 2* 

= ZQ 
fc=l 

+ i ~ l ^ , fm + k 
2^ + 1 

i n - + 2^ + 9] 
'C ,2r2/ff-lfflf + &-l 

i f c = l 2* + l l 2^ 

As a simple and interesting consequence of Theorem 3, we derive some explicit formulas for 
Bernoulli numbers which may be compared with those in Theorems 5 and 6 below. 
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Theorem 4: For an integer r > 1: 
B-'iyf"%^cr- <i3) 

Proof: We obtain (13) by differentiating both sides of (12) and then evaluating at x = 0. 
Moreover, we have, by (6), 

= t(-1)" kntlZ2&k + 1)(2it +1}-k{2k + 3)}C '̂ 
from which (14) follows. 

From the proof of Theorem 3 we have, in particular, 

Z ,-2r-l _ V ^'2r~1 f W + * 

l^^g^W 
(IS) 

We refer to [7] in which (13) and (15) have been given. 

3. BERNOULLI AND EULER NUMBERS 

We recall that 
j2r oo ,2r-l 

s e c ^ X H ) ' ^ — , t a n ' = I X - r ( 2 r _ 1 ) r 

where E2r are known as the Euler numbers and T2r_x as the tangent numbers. The Bernoulli num-
bers can be obtained by 

Since 
2eu .e2it-l , „ .^TT,^(it)n 

where i = -J-l, it follows that, for r > 1, 
E2r = (l+i)H2r(i), (16) 

^ - i = ( - i ) r 0 -0^ 2 r - i (0 - (17) 
Moreover, it is easy to verify that 

T^X=(-iji^H^i-i)=(-lr^iC-i). (m 
See also [2, p. 257] and [3, p. 259]. 
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Theorem 5: For an Integer r > 1: 

jt=i z 

r 

and 

it=l Z 

T2r+l = t(-iy-k2»-2k+ic?. 

Proof: We have, by (7) and (17), 

^-i-c-o^xcr1-^ 
w ( ' -1 ) U ' 

from whiich (19) follows. Moreover, we have, by (6), 

^+i = Z(-i)r"^i{2(2^-i)Q2:1+Acf} 
*=i z 

= Z(-ir*i{2(2* + l)-2*)C?, 
J k = l z 

from which (21) follows. We obtain (20) and (22) similarly using (18) Instead. 

Theorem 6: For an Integer r > 1: 
r | 

k=l Z 

Proof: We have, by (8) and (16), 

^--ZHr*2^'1^. 

J f c = l 

2r _ L _ _ _ 
* ( l - l ) 2 * ' 

from which (23) follows. Moreover, we have, by (6), 
r+l . » 

3™ = K-if^r^^-i^i+^cf} 
*=1 Z 

J f c = l Z 

from which (24) follows. 

The formulas (21) and (23) can be found In [3, p. 259] where no proofs are 
to [1, pp. 479-80] for other explicit formulas for Tlr^ and E2r. 
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1. INTRODUCTION 

Kappraff [2] described the panels In the pavement of the Reading Room of the Library on the 
second floor of the San Lorenzo church complex in Florence. Work on the library was begun in 
1523 by Pope Clement VII, Giulio di Medici, as a monument to his uncle, Lorenzo di Medici. 
The library was one of the few successes of Clement's disastrous reign, characterized as it was by 
bad political decisions (see [1], [11]). In the TImaeus panel of the library, Michelangelo, the 
designer of the library, used the number relations (the scale) of the lambda figure which had pre-
viously been used as the musical system studied by Pythagoras [4]. 

Kappraff used the lambda triangle In Table 1 "found In Plato's Timaeus and referred to there 
as the World Soul" Strictly speaking, the lambda diagram displayed In Table 1 is that given In 
Taylor [10] but with the empty space between the two slanting lines A (hence the designation 
lambda) filled in a methodical and obvious way. Plato himself does not appear to have used the 
lambda figure as such though he used the two generating scales 1, 2, 4, 8 and 1, 3, 9, 27 shown by 
the slanting lines to describe the creation by the Demiurge of the World Soul. These scales are 
represented linearly (essentially In one line) in the commentary on the Timaeus [5]. 

TABLE 1. Tie Lambda Triangle 
1 

2 / \ 3 
4 / 6 \ 9 

8 / 1 2 1 8 \ 2 7 

The formation is obvious and one cannot resist the temptation to portray the associated left-
and right-triangular arrays (Tables 2 and 3). Clearly, these arrays may be extended Infinitely. 

TABLE 2o Left-Triangular Lambda Array TABLE 3. Right-Triangular Lambda Array 
1 0 0 0 0 0 0 1 
2 3 0 0 0 0 2 3 
4 6 9 0 0 4 6 9 
8 12 18 27 8 12 18 27 

It Is the purpose of this paper to describe some of the properties of these arrays and triangles. 

2. LAMBDA TRIANGLES 

The elements, u^m of the left-triangular array satisfy the partial difference equation 

^ » = ^ « h i + W i » n>0y0<m<n, (2.1) 
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(2.3) 

with boundary conditions un Q = 2n l
9 un m = 0 when n< 0 and m>n, and general term 

Mn,m = 2"-m3'"-1, (2.2) 

where n, m represent the rows and columns, respectively. We can see that the row sums, 1,5, 19, 
65, 211, ... (Sequence M3887 of [8]), are given by the second-order homogeneous linear recur-
rence relation 

vn = 5v„-i - 6v„-2> n > 3, Vj = 1, v2 = 5, 
= 3"-2", »>1. 

The partial column sums are displayed in Table 4. 
TABLE 4. Partial Column Sums of Left-Triangular Lambda Array 

1 
3 3 
7 9 9 
15 21 27 27 
31 45 63 81 81 
63 93 135 189 243 243 

The elements in the cells of Table 4 satisfy the partial recurrence relation 

Vn,m = Vn.m-l+W„-1.m-Wn-Xm-\, ri>m>\, (2.4) 
with general term 

w„,m = -i>»-\2"-»>*-\). (2.5) 

We now develop more general properties by means of the polynomials associated with the num-
bers in lambda triangles. 

3. ABSTRACT LAMBDA TRIANGLES 

Kappraffs array (Table 1) may be readily abstracted and extended as in Table 5 (a, h integers 
>0): 

TABLE 5. Abstract Lambda Triangle 

1 
a b 

a2 ab b2 

a3 a2b ab2 b3 

a4 a3b a2b2 ab3 b4 

The abstract lambda polynomials !£m (x) (where 2^ (x) = 1) may be easily read off from the rows 
of Table 5. To illustrate the situation we have 

%{x) = a4 +a3bx+a2b2x2 +ab3x3 + b4x4
 = H _ Z ^ E 1 . 

a-bx 
Interchanging a and b, we get the abstract reciprocal lambda polynomials lm(x) (with /j(x) = 1). 

Recurrence relations are, respectively, 
^ffl+2(*) = («+bx) 2m+1 (x) -abxXm (x), (3.1) 
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^ 2 0 0 = (b +axVm+ii*) ~ ®bx!m(x). (3.2) 
Gen.erating functions are, respectively, 

£ ^ ( x ) / - 1 = {l-[(a+bx)y-abxy1]}-\ (3.3) 

fdlm(x)y"'-l^{l-[b+ax)y-abxy2]r1. (3.4) 

Properties of these polynomials may be developed to include, for example: 
(i) Other fundamental features such as Binet forms, Simson's formulas, closed forms; 

(ii) Convolutions ^ } ( x ) , /£>(*); 
(iii) Rising and descending polynomials. 
We do this in Section 4 by considering a case closer to the original lambda triangle, namely, 

when a = n,b = n + l. 

4. GENERALIZED LAMBDA POLYNOMIALS 

We consider generalized lambda polynomials, Aw(x), and reciprocal lambda polynomials, 
Am(x), associated with the generalized lambda triangle of Table 6, which should be compared 
with Table 1. 

TABLE 6* Generalized Lambda Triangle 

1 
n w + 1 

n2 n(n + l) (n + lf 
n3 /I2(/I + 1) n(n + lf (#i + l)3 

n4 yi3(/i + l) n2(n + lf n(n + lf (w + 1)4 

The two classes of polynomials are related by 

AB(x) = x»-1AIB(iX 
Am(x) = *r-lAm(±). 

4.1 Am(x) Polynomials 

Basic properties of Am(x) are listed succinctly hereunder: 

A0(x) = 0 
A,(x) = l 
A2(x) = n + (« + l)x 
A3(x) = n2 + n{n + l)x + (n + l)2x2 

A4(x) = n3 + n2(n + l)x+n{n + l)2x2 + (n + l)3x3 

A5(x) = n 4 + » 3 ( » + l )x+« 2 (« + l)2x2+«(M + l)3x3 + (« + l)4x4 

(4.1) 

(4.2) 

Setting x = 1, m> 0, we obtain the sequence of coefficient sums, thus (observe the binomial 
coefficients): 

{AOT(l)}-{l,2« + l,3w2 + 3w + l ,4«3 + 6w2 + 4« + l , . . . } . (4.3) 
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Recurrence relations; 
homogeneous: 

Am+2 (*) = [w + (/i + l)x]AmU(x) - w(/i + l)xAm(x). (4.4) 
inhomoegneous: 

Am+l(x) = nAm(x) + [(n + l)xY {m>0). (4.5) 

Roots of characteristic equation: 
/t,(/i + l)x. (4.6) 

Closed form: 
m-l 

Am(x) = YdnJ[(n + l)xrl-J. (4.7) 
y=o 

Binet form: 

K(x)=[(rl)f-nm- (4-8) 
w (w + l)x-w 

Simson9s formula: 
Am+1(x)Am_1(x)-A2

m(x) = -[n(n + l)xrl (m>l). (4.9) 
Generating function: 

£ Am(x)y-1 = {1 - [(/i + (n + l)x)y - n{n + l)xy2} } ~ \ (4.10) 
/ w = l 

4.2 Reciprocal Am(jc) Polynomials 

A0(x) = 0 

A2(x) = (ji + l)+nr 
vt3(x) = (w +1)2 + w(" + l)x + n2x2 {4Ai) 

A4(x) = (ft +1)3 + w(w + lfx + n2(n + l)x2 +n3x3 

A5(x) = (/i +1)4 + w(/i + l)3x+w2(w + l)2x2 + n3(n + l)x + n4x4 

Setting x = 1, m> 0, we obtain the sequence of coefficient sums, thus (observe the binomial 
coefficients): 

{ ^ ( 1 ) } = {1?2^ + 1?3?I2+3^ + 154W3+6W2+4W + 1?...} = {A?W(1)}. (4.12) 

Recurrence relations: 
homogeneous: 

*>m-2(x) = [(" +1) + ™Wm+l(x)- »(» + WJX). (4.13) 
inhomogeneous: 

Am+l(x) = (n + l)Am(x)H(n + l)xT (m>0). (4.14) 

Roots of characteristic equation: 
n + \m. (4.15) 
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Closed forms 
m-l 

^.w=I(^+i)vr1"/. (4.i6) 
Biiiet forms 

AmKX) H * - ( / I + 1) • ( 4 1 7 ) 

Simson's formula: 
*>m+i (xWnJx) -X2

m{x) = -[«(» + DxT1 {m * 1). (4.18) 

Generating function: 

I X C * ) / " - 1 ^{l-[(n + l+nx)y-n(n + l)xy2]y1. (4.19) 
m=l 

5* RELATED POLYNOMIALS 

In this section, polynomial properties of related convolutions and of rising and falling diago-
nals are sketched. 

5.1 Convolutions 
There are two types of lambda convolution polynomials which are related by 

W(x) = x>»-irt!?(i), (5.1) 

A2>(x) = x"-UW(iX (5-2) 

in which A(^(x) and ^(x) are the k^ convolutions of Am(x) and Am(x), respectively, and 
A^(x) is defined in terms of a generating function 

£ A(^(x)ym"1 = {l-l(n + (n + l)x)y~n(n + l)xy2]}-(k+l\ (5.3) 

whence we get the recurrence relation 

A(^(x) = A(*+1)(x) - (w + (w + l)x) A(^f(x) + n(n + l)xA(^(x), (5.4) 

For instance, when k = 1: 

A(
0
1)(x) = 0 (definition) 

A f ( x ) - 1 
A(

2
1)(x)-2w + 2(« + l)x (5.5) 

A(
3
1}(x) = 3»2 + 4n(n + l)x + 3(» + l)2x2 

A(
4
1}(x) = 4w3 + 6n2(n + l)x + 6n(n + l)2x2 + 4(w + l)3x3 

Analogously to (5.3) there is a generating function for A$(x) with n <-> n +1. 
If we consider ^ ( S ^ A ^ x ) / 1 " 1 ) / ^ , then we get 

(m - l)A(^-1}(x) - k{(n + (n + l)x) - 2n(n + l)xy} (5.6) 

= i{(w + w(w + l)x)A(^1(x)™2<« + l)xA(^2(x)}„ (5.7) 
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Replace k by k - 1 in Equation (5.4): 
A ^ C x ) = A«?(x) - (n + (n + l)x) A ^ ( x ) + *(#i +1) A<£2(x). (5.8) 

Now eliminate A(^(x) from (5.7) and (5.8) to get the recurrence 

(m -1)A(*>(x) = [k + m - l](/i + (w + l ) x ) A ^ x ) - w(/i +1)[2* + m - l]A(*l2(x). 

From this, with £ = 1, m -> m +1, we can get 

wys2hl(l) = (w + lX2it + l ) A ^ (5.9) 
Let 7i = 2 in Equation (5.9). Then 

BIA&.O) = 5(/« + 1)A»(1) -6(m + 2)A<£,(1). (5.10) 

Notice that in {A(^(x)} (reference (5.5) above) the numerical coefficients form a neat triangle as 
displayed in Table 7, in which the row sums are the tetrahedral numbers ("£3) (that is, 1,4, 10, 20, 
35, ...) and the rising diagonal sums belong to Sequence 1349 of [8] with general terms -^(n^3), n 
odd, and n(n + 2)(n + 4) / 24, n even. 

TABLE 78 Lambda Convolution Coefficients 

1 
2 2 

3 4 3 
4 6 6 4 

5 8 9 8 5 

5.2 Rising and Descending Polynomials 

Denote the rising and descending polynomials of Am(x) and Aw(x) by Rm(x) and rm(x) and 
Dm(x) and dm(x), respectively. They are related, in each case, by the interchange of n and « +1. 

Aw(x) Rising 
Rl(x) = l 
R2(x) = n 
R3(x) = n2+(n + l)x 
R4(x) = n3+n(n + l)x 
R5(x) = n4 +n2(n + l)x + (n + ifx2 

R6(x) = n5+n3(n + l)x + n{n +1)2 x2 

(5.11) 

Setting w = 2 and x = 1, we obtain the sequence 
{i?Jl)}= {1,2,7,14,37,74,175,350,...}. (5.12) 

Recurrence relations; 
homogeneous: 

R2m+l(x) = [n2 + (n + l)x]R2m_1(x)-n2(n + l)xR2n_3(x) (m>2), (5.13) 

R2m(x) = nRJk_l(x) (m>\). (5.14) 
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inhomogeneous: 

Xm{x) Rising 

R2m+i{x) = nR2m(x)+({n + l)x)m (m>0). (5.15) 

r2(x) = w + l 
r3(x) = (n + l)2 +nx 
r4(x) = (n + if + n(n + l)x 
r5(x) = (n +1)4 + «(« -h I)2 x+n2x2 

r6(x) = (n +1)5 + w(w 4- l)3x + n2(n + l)x2 

(5.16) 

Setting « = 2 and x = 1, we obtain the sequence 

{rM(l)} = {1,3,11,33,103,309,935,...}. (5.17) 

Recurrence relations: 
homogeneous: 

r2m+i(x) = [(n + l)2+nxy2m_l(x)-n(n + l)2xr2^3(x) (m>2\ (5.18) 

r2n^) = (P + \)rlm_l{x) (m>\). (5.19) 

inhomogeneous: 

^wiW=(w+iy2»,w+(«r (w^o). (5.20) 
Observe from (5.14) and (5.19) the link 

(« + l ) J ? 2 m ^ ^ (5.21) 

A quasi-reciprocal relationship between Rm(x) and rm(x) can be evolved subject to certain 
provisos regarding n and n +1. For example, 

i?5(x) = x2r5(^) if «2 -> w, w +1 -> (« +1)2. 

Check for r5(x) and J?5(x)- Likewise, look at i^(x) and r6(£), and r6(x) and i ? ^ ) . 
Patterns for /w odd and m even emerge. 

Am(jc) Descending 
Clearly, DJx) = nm~l(l -(n + l)x)-\ so 

D^x^nD^x) (5.22) 
and 

d D ^ = (n + l y - ^ l - (TI + l)x)"2. (5.23) 
ax 

If 
^5^j)sZ^)r1=(i-(»+W"1, 

then 
dDI8y'-£ (5 24) 
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lm(x) Descending 
Obviously, djx) = (n +1)^! - rar)"1, so 

dm(x) = (n + l)dm_l(x) 

Mm(X) _ ^ , ixw-l/i _ Y - 2 
A • = ̂  + l)w-1(l-/ir)-2. 

and 

If 

then 

Hence, 

and 

^M r _ w- i r i „ 12 
(5.25) 

Special Case 
Putting n = 2 in the results of Sections 4 and 5, we obtain the particular cases for the original 

configuration in Table 1. 
Further investigation of rising and descending polynomials could be undertaken; for example, 

the establishment of closed summation forms for Rm(x) and rm(x). 

6. FIBONACCI-LAMBDA TRIANGLES 

6.1 Fibonacci-Lambda Polynomials 
Suppose now that we replace a and b in Section 3 by a and /?, respectively, where a = ^—^ 

and P - ^y^. We then have a triangle whose row sums are, successively, 

1_ a-p h 

dDm{x) 
dx 

ddm{x) 
dx 

ddldy _ 
ddl dx 

_ x 

~ y' 

dx dy dy dx 

w l-nx 
_l-(#i + l)xj 

a2-p2_ 
a-p 

._a3-P3 

a-p 

^P = ^ ^ - = F2 

r ' - / ? ' ( 6 1 ) 

a3 + a2p+ap2+p3 = ^—^- = F4 a~P 

so that the »* row sums to 
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" a-p ' 
The Fibonacci-lambda polynomials <&m(x) will then have the recurrence relations 

^m+2(x) = (a+/3x)^m+1(x)-a/k^m(x), m>0, (6.2) 

Qmn(x) = aa>m(x) + (flc)m, m>Q. (6.3) 

The first few examples are 

O0(x) = 0 
<&,(*) = 1 
$>2{x) = a-fk 
<£3(x) = a2+a/fc+/?2jt2 (6A) 

<D4(x) = o? + a2fix + ap2x2 + p3x3 

<D5(x) = a4 + a3px + a2p2x2 + ap3x3 + p V 

Clearly, 

<&„0) = ^-
6,2 VfFibonacci-Lucas Triangle" 

To continue the Fibonacci theme in this section, we next form the triangle with elements bt • 
(where i refers to rows and j to columns) defined by 

Kj=bi-hj+bi-U-h / > 2 ? 0 < j < i 3 (6.5) 

with boundary conditions 
bu0 = Fi+2, i > 0; bUi = Z,+1, i > 1; bUJ = 0J>j, (6.6) 

in which Ln = an +ftn represents the Lucas numbers. This yields the formation in Table 8. Note 
that (6.5) and (6.6) lead to \ x - Fi+3 = bi+lf09 i > 1. 

TABLE 8. "Fibonacci-Lucas Triangle" 

1 
2 3 
3 5 4 
5 8 9 7 
8 13 17 16 11 

13 21 30 33 27 18 
21 34 51 63 60 45 29 
34 55 85 114 123 105 74 47 

This is termed a "Fibonacci-Lucas triangle" to distinguish it from the Fibonacci and Lucas 
triangles already n the literature [7]. The vertical and sloping sides of this triangle clearly have 
Fibonacci and Lucas numbers as their elements, but there are other connections, too. 
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6.3 Difference Operators 
Instead of considering sums along rows, diagonals, and columns, we here look at differences 

between rows and columns by means of the row and column difference operators defined by 
(6.7) 

For example, 

\Kj-

^Ar 

AAo=A+i,o-*,,o 
= A+3 ~ A+2 
= FM 

= * ; - l , 0 

= */,i-*/,o 

= AAo 

= bi+\,rKj> 

=Kj+\~Kj-

by (6.7) 
by (6.6) 

by (6.6) 
by(6.5)and6,_ijl = A,0 

by (6.8). 

(6.8) 

More generally, Ar, Ac are commutative operations: 

ArAeft/>/ = Ar(6/>/+1-6/t/) by (6.8) 

= ( W i -Kj+i) = &+w ~ kj) W (6.7) 

= AJbi+lJ-AcbiJ by (6.8) 
= AA*„. by (6.7). 

Other results can be investigated. For instance, 
A>Aj = Fi+2. (6.9) 

We can prove (6.9) by means of mathematical induction on i and/ 
By reversing the columns in Table 8 (that is, by making the Lucas numbers the left-hand 

exterior sloping side), one can also study these and other properties for a "Lucas-Fibonacci 
triangle"; this is a topic for further research. Are there, one might ask, any interesting relation-
ships between the "Fibonacci-Lucas" and the "Lucas-Fibonacci" triangles? 

7. CONCLUSION 

7.1 Bleary Extensions 
These lambda-type triangles can be extended indefinitely. For instance, we can construct a 

triangle of binary numbers as in Table 9. 

TABLE 9. Binary Triangle 

1 
10 11 
100 101 111 
IOOO looi ion m i 
10000 10001 10011 10111 11111 
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7.2 Determinants 
Two other properties which are commonly examined are the values of corresponding deter-

minants and modular arrays. The original left- and right-triangular lambda matrices (in Tables 2 
and 3) have determinants with values which are powers of 3 and 2, respectively. 
7*3 Modular Triangles 

The displays in Tables 10 and 11 represent the original extended lambda triangle (Table 1) 
modulo 5 and modulo 7, respectively. Table 10 has symmetry in its odd rows and Table 11 has 
neat patterns of cycles. Further research could involve seeking a modulus which could produce 
remainders to develop specific patterns such as Sirpinski triangles [9], arrowhead curves [7], or 
the partitioning of the triangles into square arrays [3]. 

TABLE 10. Lambda Triangle Modulo 5 

1 
2 3 

4 1 4 
3 2 3 2 

1 4 1 4 1 
2 3 2 3 2 3 

TABLE 11. Lambda Triangle Modulo 7 

1 
2 3 

4 6 2 
1 5 4 6 

2 3 1 5 4 
4 6 2 3 1 5 

7.4 Ongoing Research 
The purpose of this paper has been to explore some of the properties associated with the 

lambda triangle. In doing so, several ideas for further research have been suggested for the inter-
ested reader. Finally, in this spirit, one might extend the previous knowledge through negative 
numbers, that is, start with -2, - 4 , -8 , . . . and -3 , -9 , -27 , . . . (as in Table 1 with common vertex 
1). All this has no physical or artistic relation to our original Timaeus panel Indeed it is a world 
away from Plato and Michelangelo. 
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R E P O R T O N T H E T E N T H I N T E R N A T I O N A L C O N F E R E N C E O N 
F I B O N A C C I N U M B E R S AND T H E I R A P P L I C A T I O N S 

The Tenth International Conference on Fibonacci Numbers and Their Applications held at Northern 
Arizona University in Flagstaff, Arizona, from June 24-28, 2002, found over 70 enthusiastic Fibonacci 
number lovers from Australia, Canada, England, Germany, Italy, Japan, Mexico, New Zealand, Poland, 
Romania, Scotland, and the USA gathered together to hear over 50 excellent presentations. The gathering 
was attended by both old and new Fibonacci friends, but it was sadly noted that several regulars were 
unable to be with us this year. They were both warmly remembered and greatly missed. A special thanks 
to organizer Cal Long and all the folks at Northern Arizona University for their hospitality and generosity 
in hosting this outstanding conference. 

Monday through Wednesday morning found us savoring a variety of talks on things theoretical, 
operational, and applicable of a Fibonacci and related nature, with members sharing ideas while renewing 
old friendships and forming new ones. 

Later on Wednesday the group was doubly treated. After the morning talks, we were entertained by 
mathemagician Art Benjamin's most impressive presentation; displaying his skills and cleverness by 
mentally performing challenging mathematical manipulations and zapping out magic squares as if (yes!) by 
magic. After graciously sharing some of the secrets of his wizardry with us, he dazzled one and all by 
mentally and accurately multiplying two five-place numbers to terminate his mesmerizing performance. 

That afternoon we were bussed to our second wonder of the day: The Grand Canyon. Here we were 
able to spend several hours gazing at nature's wondrous spectacle. Oh to be a condor for an hour! In the 
evening a steak dinner was catered for us as we exchanged social and mathematical dialog to the 
background of exquisite scenic wonder at the edge of the Canyon. On the way back to the campus, we 
were able to witness a magnificent display of stars but an arm length away in the clear Arizona night sky. 

On Thursday and Friday it was back to many more interesting, informative presentations and during 
the breaks we were treated to Peter Anderson's marvelous computer display of the many photographs he 
took of association members and their families enjoying the Canyon. 

The closing banquet on Friday night terminated with a special tribute to Calvin T. Long for his very 
distinguished career of 50 years as teacher, mentor, and researcher, as well as valued friend, contributor to, 
and supporter of The Fibonacci Association. He was both praised and roasted by President Fred T. 
Howard and former editor Gerald E. Bergum. After much laughter and tears, Cal received a standing 
ovation from this proud and grateful group of his friends and colleagues. 

After over an hour of cordial good-byes, everyone eventually drifted away vowing that, Lord willing, 
we'll all meet again in Braunschweig, Germany, in 2004. 

Charles K. Cook 
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1. INTRODUCTION 

Various authors (see, e.g., [5], [7], [16], [17]) have studied number theoretic properties asso-
ciated with the matrix S(ri), defined in effect by 

S(n) = [shJ]nxn, (1.1) 
where 

\n-i J J ~ 1 I yj+y'-n-l n-i sUj{ri)=SiJ=(-ir,['n_j)p>+j-"-Y-', (i.2) 

where p, q are arbitrary integers. These properties have generally been in the context of second-
order linear recursive sequences, particularly the Fibonacci numbers. We note that, for Horadam's 
generalized sequence {wn} = {wn(a, b;pyq)} [13], we have the recurrence relation 

with initial conditions w0 = a,wl=b. For the matrix S, we have the comparable partial recurrence 
relation 

sU=PslJ-l-<Isi+lj-V ( L 4 > 

We define the combinatorial matrix [2]: SPtq(/?;2) = [\su j(n)\]nxn. 
The purpose of this paper is to show how higher-order sequences arise quite naturally from 

S(n) and to suggest problems for analogous further research arising out of further generalizations 
of the binomial coefficients. For notational purposes, we consider SPfq(n; r), where Sp^q(n;2) = 
S(n) above, and for simplicity we take the absolute values of the numbers in the cells of each 
matrix. 

2. PMELIMINAMY OBSERVATIONS 

now have 

^_,(7;2) = 

(0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
1 
1 

0 
0 
0 
0 
1 
2 
1 

0 
0 
0 
1 
3 
3 
1 

0 
0 
1 
4 
6 
4 
1 

0 
1 
5 

10 
10 
5 
1 

i] 
6 

15 
20 
15 
6 
1 
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We observe that the falling diagonal sums are the Fibonacci numbers {1,1,2, 3,5,8,13} and the 
rising diagonal sums are the binomial coefficients {7,21,35,21,7,1}. Similarly, 

SU(7;2) = 

(0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
1 
2 

0 
0 
0 
0 
1 
4 
4 

0 
0 
0 
1 
6 
12 
8 

0 
0 
1 
8 
24 
32 
16 

0 
1 
10 
40 
80 
80 
32 

f| 
12 
60 
160 
240 
192 
64 

Other generalizations can be pursued. For instance, 

2k - I T -1 = ^2k+l - P ~ ' 

where 

(2.1) 

52*,-l-52*,-l£ 

in which E is the elementary (self-inverse) matrix 

E -lei,jinxn 

eiJ = 
if/ = H + l, 
otherwise. 

E is the unit matrix with rows reversed. It is used again in Section 5. An example of (2.1) when 
k~ 1 is 

M o o 0Y0 o o i\ (o o o i\ 
6 1 0 0 

12 4 1 0 
8 4 2 1 

0 0 1 6 
0 1 4 12 
1 2 4 8 

0 0 
0 1 

1 12 
8 48 

1 4 16 64 

The falling (from left to right) diagonal sums in these matrices are generalized Pell numbers, 
{P„}, defined in turn by the second-order linear recurrence relations 

P„ = 2kPn_1+P„_2, n>2,k>0 (2.2) 

with initial conditions PQ = 0, Pl = l. When k = 0,1, we have the ordinary Fibonacci and Pell 
numbers, respectively. 

In what follows, we use Bondarenko's notation (£)r for the number of different ways of dis-
tributing m objects among n cells where each cell may contain at most r-\ objects [3]: 

r-\ = 1, 

n I _ | n 

WJr V(r-1)"~, MJr' 
n\ _/0> n<0,m<0, orm>(r-Y)n, 
w l II, n = m = 0. 

m)r iJlm-' ' + 1j/ 
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3* THE A AND S MATRICES 

We define the A and S matrices by 

and 

A(n;r) = 

S(n;r) = 

M] 
Ml 

(3.1) 

(3.2) 

For related developments, see [4], [8], [18]. As examples, we now look at 5(7; 2) = 5 ^ (7; 2) 
and the associated matrix A(7; 2), 

A(7; 2) = 

(1 
0 
0 
0 
0 
0 
o 

5 
1 
0 
0 
0 
0 
0 

6 
4 
1 
0 
0 
0 
0 

1 
3 
3 
1 
0 
0 
0 

0 
0 
1 
2 
1 
0 
0 

0 
0 
0 
0 
1 
1 
0 

0] 
0 
0 
0 
0 
0 
1 

Then It Is readily verified that 

where 
A(l; 2)5(7; 2) = 5(7; 3), (3.3) 

' 0 0 0 1 10 45 141^ 
0 0 0 3 16 51 126 
0 
0 
0 
0 
1 

0 
0 
1 
1 
1 

1 
2 
3 
2 
1 

6 
7 
6 
3 
1 

19 
16 
10 
4 
1 

45 
30 
15 
5 
1 

90 
50 
21 
6 
1 

S(7; 3) = 

with falling diagonal sums {1,1,2,4,7,13,24} which Is a subset of the set of n-step self-avoiding 
walks on a Manhattan lattice, and the elements satisfy the linear third-order recurrence relation 
un - un_x +un_2 +w„_3, n > 3, with 1̂  = 0,1^ = 1,1^ = 1 (see [21]). Next, let 

^(7; 3) = 

(l 
0 
0 
0 
0 
0 
o 

5 
1 
0 
0 
0 
0 
0 

10 
4 
1 
0 
0 
0 
0 

7 
6 
3 
1 
0 
0 
0 

1 
2 
3 
2 
1 
0 
0 

0 
0 
0 
1 
1 
1 
0 

0) 
0 
0 
0 
0 
0 
1 

and 

5(7; 4) = 

0 0 1 10 44 135 336"\ 
0 
0 
0 
0 
0 
1 

0 
0 
1 
1 
1 
1 

2 
3 
4 
3 
2 
1 

12 
12 
10 
6 
3 
1 

40 
31 
20 
10 
4 
1 

101 
65 
35 
15 
5 
1 

216 
120 
56 
21 
6 
1 
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Then 
A(7;3)S(7;2) = S(7;4). 

More generally, 

Theorem 1: A(n; r)S(n; 2) = S(n; r +1). 
Proof: 

A(n;r)S(n;2) 

(3.4) 

£:!)] 
[5&"w-*) 
E U - M A * 1 ! 

from the definition of 
m 

reversing the order of summation, 

from Equation (1.15) of [3], 

= S(n;r + l). D 

The elements of S and A can be rearranged to form generalized Pascal triangles (see [19], 
[22], [25]). They can also be made into tetrahedrons with Pascal's triangle as one section (see 
[11], [12], [21]). Ericksen [9] has elaborated the principal properties of Bondarenko's coefficients 
in a pyramid. 

4. RECURSIVE SEQUENCES 

The rising diagonal sums associated with each of the r* rows in the triangles of Section 3 
yield the Fibonacci sequences and their generalizations; that is, the rising diagonals associated 
with the combined second rows yield the Fibonacci numbers. We can express this by the follow-
ing theorem. 

Theorem 2: 

u, n+1? 

in which {Un} is the generalized Fibonacci sequence of arbitrary order r defined by the recurrence 
relation 

Un = iun_p n>l, 

with initial conditions U_n = 0, n = 0,1,2,..., r - 2, Ux = 1. 

Proof: Consider 
n-k \ir-\)nlr\ 

= I 
n-k 

from a consideration of the zero terms in the upper portion of the (^)r array. Then dQ = 1, dn = 0 
for n<0 and, for n>0, 
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= X X l " 1 " changing the summation index to j = k - i +1 then reverting to £, 
/=1 k=-i+l V / r 

n-i-k 
k 

using the boundary conditions, 
1=1 fc=0 

= tdn-, 
1=1 

Thus, */w satisfies the generalized Fibonacci recurrence relation of arbitrary order r with the given 
initial conditions. D 

Basically, this theorem says that each element in the (*)r array is the sum off elements above 
and to the left of it, and that r consecutive diagonals are needed to obtain all the terms required to 
form the elements of the next diagonal. 

When r = 2, the theorem reduces to a familiar expression for the Fibonacci numbers, namely, 

(4.1) [n+l = i (v) 
and when r = 3, we get equation (4.1) of [21]: 

L«/2J ln/3} 

a w+l ' Z- - -^- in-m-jum-rj] ^ fn — k 
2-* I mA- i II / l ~ ^ » 1 k 

m=0 j=Q 

n-m-j\(m+j]1 
(4.2) 

5. INVERSE MATRICES 

The inverse matrices have some neat properties. For instance, for absolute values of the 
entries, we have 

STl = ESE, (5.1) 
where E is the elementary matrix defined in Section 2. Of more interest is 

4 5 ™ i ( 7 ; 2 ) -

'1 
0 
0 
0 
0 
0 

,0 

-5 
1 
0 
0 
0 
0 
0 

14 
-4 

1 
0 
0 
0 
0 

-28 
9 

-3 
1 
0 
0 
0 

42 
-14 

5 
-2 

1 
0 
0 

-42 
14 
-5 
2 

- 1 
1 
0 

0>) 
0 
0 
0 
0 
0 
1 

(5.2) 

The absolute values of the elements of the columns of A can be rearranged to form the 
rows of Table 1. The row and column headed M refer to the corresponding sequence in Sloane 
andPlouffe[23]. 

The elements atJ in Table 1 satisfy the partial recurrence relation 

at,j=ai-ij+at+i,j-i> iJ>l, 
with boundary conditions 
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31-
a Catalan number [14]. A general solution of this is given by 

°''J l+j + \{ J 

TABLE 1. Elements of the Inverse Associated Matrix 

! *w 
0 
1 
2 
3 
4 
5 
6 

M 

0 1 

1 
2 
3 
4 
5 
6 
7 

1356 

2 

2 
5 
9 
14 
20 
27 
35 

3841 

3 

5 
14 
28 
48 
75 
110 
154 

4929 

4 

14 
42 
90 
165 
275 
429 
637 

5277 

5 

42 
132 
297 
572 
1001 
1638 

2548 

-

6 

132 
429 
1001 
2002 

3640 

6188 

9996 

M 

1459 

1459 

2809 

3483 

3904 

4177 

4413 

Note that the rising diagonals in Table 1 generate the Catalan numbers. The elements in 
Table 1 correspond to the number of two element lattice permutations, where the permutation 
represents a path through a lattice where the path does not cross a diagonal [6]. Since there are 
some intersections among the sequences in Table 1, a topic for further research could be to con-
sider if these are the only intersections (cf. [24]). 

Bondarenko's generalization of the binomial coefficient takes no account of the order across 
or within cells. Further research could accommodate this order and then apply these extensions to 
other combinatorial applications along the lines of the work of Letac and Takacs [15] who, in 
effect, related the permutations associated with Bondarenko's Q)3 to random walks along the 
edges of a dodecahedron or the connections of combinatorial matrices to planar networks [10]. 
Such research should lead to generalizations of the Fibonacci sequence which would be different 
from the {£/„} discussed here and the standard generalizations of Philippou and his colleagues 
[20]. 
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1. INTRODUCTION AND RESULTS 

As usual, Chebyshev polynomials of the first and second kind, T(x) = {^(x)} and U(x) = 
{Un(x}} (n = 0,1,2,...), are defined by the second-order linear recurrence sequences 

Tn+2(x) = 2xTn+l(x)-Tn(x) (1) 
and 

U„+2(x) = 2xU„+l(x)-U„(x) (2) 

for n > 0, T0(x) = 1, Tx(x) = x, U0(x) = 1, and U^x) = 2x. These polynomials play a very impor-
tant role in the study of the orthogonality of functions (see [1]), but regarding their arithmetical 
properties, we know very little at present. We do not even know whether there exists any relation 
between Chebyshev polynomials and some famous sequences. In this paper, we want to prove 
some identities involving Chebyshev polynomials, Lucas numbers, and Fibonacci numbers. For 
convenience, we let T$k\x) and U^k)(x) denote the k^ derivatives of Tn(x) and Un(x) with 
respect to x. Then we can use the generating functions of the sequences Tn(x) and Un(x), and 
their partial derivatives, to prove the following three theorems. 

Theorem 1: Let Un{x) be defined by (2). Then, for any positive integer k and nonnegative inte-
ger n, we have the identity 

ai+a2+---+ak+\=n i-l ^ * • 

where the summation is over all k + 1-dimension nonnegative integer coordinates (al9 a2,...,ak+l) 
such that al+a2 + '-+ak+l =n. 

Theorem 2: Under the conditions of Theorem 1, we have 

Theorem 3: Under the conditions of Theorem 1, we also have 

From these theorems, we may immediately deduce the following corollaries. 

Corollary 1: Let F„ be the /1th Fibonacci number. Then, for any positive integer k and non-
negative integer n, we have the identities: 

* This work is supported by the N.S.F. and P.N.S.F. of P.R. of China. 
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Y F >F F -SdZLrmfl) 
La _ Ial+1 Ia2+l ak+\+l ~ 2k - k \ "+k \2 f al+a2+---+ak+l = n 

Y F -F . . - . F - (~lT rr(k) f-3 
Zrf r2(a,+l) r2(a2+l) ^ ( a ^ + l ) - 9 * 11 w+M ? b 

G!+cr2+---+aik+1=?i ^ ' ^ V ^ / 

2^ 3̂(flf,+l) * ^3(a2+l) """ *\ak+l+l) = "T"["f̂ yi+Jt (~2l'X 

where i2 = - 1 . In particular, for k = 23 we have the Identities: 

X K+i-FM-Fc+1 = ±-[(n+2)(5n + 17)Fn+3-6(n + 3)Fn+2l 
a+b+c=n DU 

X JW^W^c+i) = ̂ [1 8^ + 3>F2»+4 + (» + 2)(5"-7)F2„+ 6] , 

X F3(a+1) o i 73(^l ) -^3(0+1) = ^ [ ( W + 2 ) ( 5 w + 8)^3W +9 ~ ^ + 3 ) F 3 w + 6 ] . 
a+b+c=n JKJ 

Corollary 2: Under the conditions of Corollary 1, we have: 

X (al + l)-(ak+1 + l)-Fai+l...FaM+1 
al+---+ak+l = n+2k+2 

_ (_i)n+U+2 M ,k + ft ^ 

Z («i +1) • • • (ak+1 +1) • F2{ai+l)... F2(aM+l) 
al+---+ak+l = n+2k+2 

k+l 

i-(2k+\v.to I * r-+4*+3-H2> ,24+1 

X (a, +1) • • • (a t + 1 +1) • F 3 ( a i + 1 ) . . . F3{aM+1) 
al+---+ak+l = n+2k+2 

m+2k+2 k+l 

2k~-
jn+2k+2 k+l fk + l \ 

fc.(2* + l)!£(-1)V h J^*?3-2*(-20. 

Corollary 3: Let Ln be the «* Lucas numbers. Then, for any positive integer k and eonnegative 
integer w, we have the identities: 

V+k+l k+l fi\bfi, , A / j ^ 
w+2^+l-/i [ " Y h X 4ar4a2°-s9,4%+1- 9-1 11 M J A PW+2 

•n+fc+1 k+l Si +\ 

«! + •••+%+ 1 = w+^+l ^ ^ • h=0 

where i2 = - 1 . In particular, for k = 2, we have the identities: 
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X 4 - 4 - 4 = ̂ [ ( » + 10)/W3+2(« + 7)F„+2], 

I L2a-L2b-L2c = Zp-[3(n + 10)F2„+5 + (n + 16)F2„+4i 
a+b+c=n+3 ^ 

£ L3a-L3b-L3c = ^p-[4(n + l0)F3n+7 + 3(n + 9)F3n+6l 

Corollary 4: For any nonnegative integer n, we have the congruence 
(II + 2)(5n + 8)F3w+9 s 6(/i + 3)F3n+6 mod 400. 

These corollaries are generalizations of [2]. 

2. PROOF OF THE THEOREMS 

In this section we shall complete the proofs of the theorems. First, note that (see [1]3 (2.1.1)) 

and 

C/flW=^=T[(,+V?^I)"+1-(,-V^"+1], 
so we can easily deduce that the generating function of T(x) and U(x) are 

and 

^O-fz^jr-lw---. (4) 
n=0 

respectively. Then from (4) we have 

dx ~(l-2xt + t2)2~to n ' 
**•('.«> = 2K2Q2

 = y ^(2) ( x ) . ,„+2 
^ 2 (\-2xt + t2f to ' ( 5 ) 

^ " ( l - 2 x / + /2)fc+1~„=o ' 
where we have used the fact that Un(x) is a polynomial of degree n. 

Therefore, from (5) we get 
CO ( \ ( CO Y+l 

I I £4,(*)-̂ (*) t̂ +1(*) k = !>„(*)•'" 
n=0 V,<ii+ —+<>i+i=» / \ n=0 / 

1 1 (TF(t, X) _ 1 Vs T T(k) ( \ fn 
~ (1 - 2xt + t2)M " *!(2/)* ^ ~ 2* • *! to }' ' 

(6) 
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Equating the coefficients of f on both sides of equation (6), we obtain the identity 

£ Uai(x).Ua2(x) ^ ( X ) = 1 0 & ( X ) . 
a1+a2+-aik+1 = « Z ' * • 

This proves Theorem 1. 

Now we prove Theorem 3. Multiplying both sides of (5) by (1 - x/)*+1 gives 

( . • " w r - ? ! ! ^ - ^ ' (7) 

Note that 

a-xtr^fi-xftfz1). 
Comparing the coefficients of f+k+l on both sides of equation (7), we obtain Theorem 3. 

To prove Theorem 2, we note that ^ = nU^x) and 

dGJt*x) _ t-t _ Y1 7<i)/v\ #»+i 

or 

F^rl>+w"w"" <s> 
Taking A: = 2m +1 in (5), then multiplying by (1 - t2)m+l on both sides of (5), we can also get 

(l-2xt + t2)2m+2 22^1.(2M + l)!we0 "+ 2 m + l W 

Combining (8) and (9), we may immediately obtain the identity 

E (,al + l)...(am+l + \yUai(x)...Uain+i(x) 
ax 4- • • • +aOT+i = W+2TW+2 

= 2™.(2m + l)!SH)*V* J^^3-2;j(x)-
This completes the proof of Theorem 2. 

Proof of the Corollaries: Taking x = -|? ~ , and -2i* in Theorems 1-3, respectively, and 
noting that 

Un(£ = inFn+l, U„(^fj = (-lTF2(n+1), t/n(-20 = ^ V 3 ( „ + 1 ) , 

T"{i)=1iL"' T"if)=tFL>"' T»(-2i)=tfL3»> 
F»+2 = F„+l + F„, 

(1 - x2)U'n{x) = (in- l ) ^ , ( x ) - «xt/„(x), 
and 

(l-x2)J7;(x) = 3xU>n{x)-n{n + 2)Un{x\ 
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we may immediately deduce Corollaries 1-3. Corollary 4 follows from Corollary 1 and the fact 
that 2|/^a+1) for all integers a > 0. 

Remark: For any positive integer m > 4, using our theorems, we can also give an exact calculat-
ing formula for the general sums 

k k 

Z Il^-M) and X U1^ 
but in these cases the computations are more complex. 
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1. IK'/RODUCTION AND RESULTS 

The set nw of all permutations of (1,2,...,«), i.e., of all one-to-one mappings n from N -
{1,2,..., n) onto N, can be made to a metric space by defining 

||;r = n'|| = max{|;r(i)-flr'(0l: \<i<«}. 

This space has been studied by Lagrange [1] with emphasis on the number of points contained in a 
sphere with radius k around the identity, i.e., 

q>(k9 n) = \{x e I F : |;r(i)-i| < k, 1 <i <n}\9 

where \A\ denotes the cardinality of the set A. 
These numbers have been calculated in [1] for k e {1,2,3} and all WGN, the set of positive 

integers. For k = 1, it is fairly easy to show that <p(];n-l), n e N, <p(X 0) = 1, is the sequence of 
Fibonacci numbers. For k = 2 and k = 3, the enumeration is based on quite involved recurrences. 
The corresponding sequences are listed in Sloane and Puffle [4] as series Ml600 and Ml671, 
respectively. 

The main purpose of this note is to supplement these findings by providing a closed formula 
for <p(k\ri) when k-\-2<m<2k + 2. Note that, for « < £ + l, one obviously has (p(k;n) = n\; 
thus, the cases n > 2k + 3, k > 4, remain unresolved. 

As a by-product, we obtain a formula for the permanent of specially patterned (0,1)-matrices. 
The connection to the problem above is as follows: Let n, k GM, k<n~~l, be fixed, and for 
i e JV, Bj = {j GZ:i-k<j <i-hk}r\N, where Z is the set of all integers. 

Then <p(k;n) is the same as the number of systems of distinct representatives for the set 
{Bl9 B2,..., BJ. Defining now for ?, j e N 

one has, for the permanent of the matrix A = (a^) (cf. Mine [2], p. 31), 

Ver(A) = q>(k;n). (1.1) 

Remark: The recurrence formula for.^(2; n) has also been derived by Mine using properties of 
permanents (see [2], p. 49, Exercise 16). 

The matrix A defined in this way is symmetric and has, when k + 2 <#i<2^ + 2, the block 
structure 

( \ 1 A \ 
&mxm lmxs ^mxm 
1 1 1 
5xm *sxs ^sxm 

i AT 1 1 
V fflw ±mxs ^mxm J 

(1.2) 
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where m = n-l-k, s = 2k + 2-n, laxb is the ax6-matrix with all elements equal to one and 
Amxm is the m x m-matrix with zeros on and above the diagonal and ones under the diagonal. For 
n = 2k+2, the second row and column blocks cancel. The matrix Amxm has been studied by 
Riordan ([3], p. 211 ff.) in connection with the rook problem. Riordan proved that the numbers 
of ways to put r non-attacking rooks on a triangular chessboard are given by the Stirling number 
of the second kind. This will be crucial for the calculation of <p(k\ n) and of Per(/4) for matrices A 
of a slightly more general structure than that given in (1.2). The results we will prove in Section 2 
are as follows: Let S" denote the Stirling numbers of the second kind, i.e., the number of ways to 
partition an w-set into r nonempty subsets. 

Theorem 1: Let k,n G N , k+2<n<2k + 2y m = n-k-l. Then 

<p(k; n) = X (-l)m"r(« - 2m+r)\(n- 2m+r)mS"r. J r+1 
r=0 

Furthermore, let the matrix AA be defined as 

AA = 

( \ 1 A ^ 
Am2*/Wi ^WJXWJ ^n^xmj 
1 1 1 
^Wjxmj i /w3xm3

 xnh)y.m1 

(1.3) 

where we'N, n = ml-\-m2+m3, n^ GN^{0} , 1 < J < 3 , Aaxa as above; for m^ =0, the correspond-
ing row and column blocks cancel. 

Theorem 2: Let AA be defined by (1.3). Then 

Per(̂ A) = f.i-iy-'fa + /•)!(«% +/T^,+1 • 

Remarks: 
(a) Since the permanent is invariant with respect to transposing a matrix and to multiplication by 
permutation matrices, AA as given in (1.3) is only a representative of a set of matrices for which 
Theorem 2 holds. In particular, it follows that, for all mh ^m^e N^,{0}, 

Wj mi 

£ (-!)""-'(/», + r)\(mi + rrS%1 = 2(-ir»-r(»» +OK"% + ' f C ' 
r=0 r=0 

Specializing further one gets, for v\ = 0, m^ = 1, m^ +1 = HI, the well-known relation 

i=£(-irrHsr
m 

(Jj Since the matrix A given in (1.2) is a special case of the matrix AA, in view of (1.1), Theorem 
1 is a special case of Theorem 2. Therefore, we have to prove only Theorem 2. 

2» PROOFS 

By a suitable identification of the rook problem discussed in Riordan [3], chapters 7 and 8, 
with the problem considered here, part of the proof of Theorem 2 could be derived from results in 
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[3]. In view of a certain consistence of the complete proof, we prefer however to develop the 
necessary details from the beginning. 

The problem of determining <p(k\ n) can be seen as a problem of finding the cardinality of an 
intersection of unions of sets. We will do this by applying the principle of inclusion and exclusion 
to its complement. Therefore, the sets 11^ = {n G W : n(i) = j], ij G N - {1,2,..., n) are rele-
vant. Let 3V(J) for J a H denote the set of all I a J with \I\ = k and £ the set of all ^-tuples 
in N^ with pairwise different components. For k,neN, k<n, (ilJ2,...Jk)eN^r\Nk, and 
j v G N, 1 < v < k, one obviously has 

\(n-k)\ \£{JiJ2,...,h)^K, 
0 otherwise. 

Therefore, one gets from the principle of inclusion and exclusion that, for k, n G N, k < n, J aN 
with \J\ = k, and Bt a N, i GJ, 

U Und=t(-irv-r)! x \{Ui,-Jr)^K-Ji^f^^}\ 
ieJjeBj \ r=l I*®r(J) 

For the sets on the right-hand side of (2.1), it holds that 
1 

(2.1) 

| {C / i , . . . > 7 r )GN-7 / e ^V / e /} t = - ( / |_J t ) ! 

For n eM, k eNJO}, * < «, 51;S,,...,B„ c iV, let 

f l k e l T r ^ O e ^ } 
J€J 

(2.2) 

BZ(B1,...,B„) = 
Z | { 0 1 , . . . , A ) e ^ : 7 ; e 5 , V / e J } | , for* s i , 

1, for * = 0. 
(2.3) 

[If one considers a chessboard on which pieces may be placed only on positions (i, j) for which 
j G Bi9 then R%(Bh..., J?w) is the number of ways of putting k non-attacking rooks on this board.] 

Lemma 1: Let k, n G N, j < n, B{ c JV for i G JV. Then it holds that 

I 
Je9k(N) 

= K - i r I ( / i - r ) ! ^ : j j / ? ' ( 5 l , . . . , 5 B ) . 

/Voo/: With the help of (2.1), one gets 

Z 
Je®k(N) 

f'eJ y e ^ 

= Z ( - i r 1 (» - ' - ) ! Z Z l U ^ . ^ ^ e N - ^ G ^ V / G / } ! 
r=l Je<3>k(N) leW^J) 

= i,(-iy-\n-r)\ Z |{a. . . ,7r)GN;:j / e J8, .V/G/} | |{Je^(iV):/cy}| 

k 

=E(T^-r)i[j/r)m..^). n 
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In the next lemma It Is shown how the numbers Rl{Bh..., Bn) are related to RZ(B£9..., 2J£), 
where Bf denotes the complement of Bt w.r.t. N. (In terms of the rook problem, one thus con-
siders the complement of the chessboard.) The lemma is equivalent to Theorem 2 In RIordan ([3], 
p. 180). 

Lemma 2: Let k9n G N , k <n, Bt aN, i e N. Then It holds that 

i?£(i?1?...?iy = X ( ^ ^ 

Proof: By (2.2) and (2.3), one has 

IPI&ZW'.X^GBM (n~k)\R^Bh^Bn) = £ 
Je9k(N) 

= I 
Je9k{N) 

ieJ 

( 
n\- UIK-

ieJ je.Bf 

The assertion then follows with the help of Lemma 1. • 
Lemma 2 will become useful for calculating Per(^4A) in the following manner: Let AA - (a^) 

and put Bt = {j GN: atj = 1}. Since by (2.2) and (2.3) 

Ver(AA)= X f k * < o 

one obtains from Lemma 2 that 

"^"•UaiM0 = 1 
i=l 

^"(A,...,^), 

Per(4) = X(-l) r(«-/-)!^n(Ac, .- , Bc
n). (2.4) 

r=0 

The matrix corresponding to jBf,..., Bc
n is 4A = lwxw - AA, which is easier to handle because It has 

mainly blocks of zero-matrices. A further simplification is obtained by considering instead of AA 

the matrix 

AA = ^mjxwj T̂O2*fM2 ^m2xm3 

^m^xm^ ^m3xm2 ^m^xm^ 

(2.5) 

where Aaxa = laxa - Â  a • ifA is obtained from 4A by suitable permutations of rows and columns. 
By Remark (a) one has Per(ylA) = Per(yfA). 

Now we turn to the special structure related to the matrices of the form Awxm, that Is, we 
consider Bt = {1,2,..., i}, i e Nm = {1,2,..., w}. One can easily show by Induction on k that 

| U , . . . , A ) ^ y v G A , , l ^ * } | = l I ( I A > l - > ' ) 
v=l 

if k,meN, k<m, and D1?...?Z\ c Nm such that DvaDv¥l9 \<v<k, so that 
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We denote the right-hand side of (2.6) by of, 1 < * < w, a® = 1, a™ = 0, for k < 0 or k > m. 

Lemma 3: For a™ defined as above, it holds that 
(a) a^ = aT~l + (m-hl-k)a^:l for dl k GI, mGM, m>2. 
(h) a^ = S^lkfordlmGM,kGNu{0}?k<m. 

Proof: Part (a) follows Immediately from the definition of a™. Assertion (b) obvlolisly holds 
true for m= 1. Since the Stirling numbers of the second kind.satisfy the recursion S™ = S™zl + 
kS^1"1, the assertion Is a consequence of (a). • 

It now follows from Lemma 3 and (2.6) that, for Bi = {1,2,..., /} , \<i<my 

Rm(R iSRU, for all m e N,k e Nu{0>, k < my 
Rk(lil,...,Bm) = < „ (2.7) 

[0, otherwise. 
To deal with the two A-blocks of the matrix AA, the following lemma Is helpful. 

Lemma 4: Let m1? % H G N , n>ml+m2, and ChC2>...,Gn czN such that: 
(a) q c f t 2 , . . , / n } , 1 < I < # I I ; 

fSj Cy cz{iwl + l,...,m+/ii2}, /fi1 + l<i<wl+#%; 
(e) Q = 0, m + ̂ 2 +1 < i < «. 

Furthermore, let Z), = {j e{l, . . . ?I%} : 7 + ^ eCJ+OTi}, 1 <i <i%. Then It holds that 

[0, /Wj+wij+ ! < & < « . 

Proof: Let iV, = {1,...,/»!), JV2 = {mx + l,...,ml + m2}, N3 = {mx +1% +1,...,n) and, for Je 
^(Af), /*(•/) = I (t/i, •••> A) e N* : jf, e q Vi e J} |. Since q = 0 for 1 e ^ 3 , one has fk(J) = 0 if 
J e 9>t(JV) and J n JV3 * 0. This implies 

(̂Q,...,q,) = t I S AW^J2). 

Since ( U q ) n ( U q ) = 0 one has, for J, e ^ ( t y ) , J2 e ^ ( J l f , ) , that 

The assertion thee follows from 

and 

J2e9k_r(Ni) 

Finally, the following identity will become useful: 
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q = 

X ( - l ) r ( ^ - r ) ! ^ / _ r = (^»w)!(w-w)mforw5^Gf^{0}3 n>m. (2.8) 

Identity (2.8) can easily be proved by induction on m using the recurrence formula for the Stirling 
numbers. Now we are ready to prove Theorem 2. Consider the matrix AA = (a/;) defined in 
(2.5). Putting 

fO,...,/}, i<i<#il3 
{mt +1,..., ml +i-mx), ml + l<i<ml + i% 

[0, ml-¥m2-hl<i <n, 

one has afj = 1 if and only if j e Q. Note that for Q,-..., Q the assumptions of Lemma 4 are sat-
isfied and that Dt = {!,...,*'} for l<f ^/w^ Put n-n^-n^^m^. Then, from (2.4), Lemma 4, 
(2.7), and (2.8), one gets that 

Per04A) = t(-m*-r)\R?(Ch..., Q 
r=0 

= X (-i)r(»-'')iZ^(Q,-,c;)/^,(A,...,A,) 

= I (-l)r(«-'-)!l^+t^:U,= I $#-, S (-l)r(»-0!̂ +
+i-r+, 

= X(-ir">,-^i+^~^)K^-w14-v-w2)'w2^1 
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It is well known that the Fibonacci number Fn can be a prime only If n - 4 or n - p, where p 
is an odd prime. Throughout this paper, p will denote a prime. In a very interesting paper, Drobot 
[2] proved that Fp is composite for certain primes p. In particular, he proved that if p > 7, p = 2 
or 4 (mod 5), and 2p -1 is also a prime, then 2p -11 Fp and Fp > 2p - . For example, 371 Fl9 = 
4181-37-113. 

A similar result was proved by Euler and, independently, by Lagrange about the Mersenne 
numbers. It is easy to see that the Mersenne number Mn = 2" - 1 can be a prime only if n is a 
prime. Euler and Lagrange proved that, if p = 3 (mod 4) and 2p +1 is also a prime, then 
2p +11 Mp = 2p + l. A proof of this result is given in [5, pp. 90-91]. 

The primality of Mersenne numbers is of interest because of the following relationship to 
even perfect numbers. A positive integer is perfect if it is equal to the sum of its proper divisors. 
Euclid and Euler proved that the even integer n is perfect if and only if n is of the form 2/?"1(2p~ 1), 
where 2P~ 1 is a Mersenne prime. Euclid proved that this condition is sufficient for n to be a per-
fect number and Euler proved the necessity of this condition. At the present time only thirty-eight 
Mersenne primes are known, with the largest known Mersenne prime being 26 9 7 2 5 9 3-1, which has 
over two million digits. A list of all known Mersenne primes is given in the web site 

http://www.utm.edu/research/primes/glossary/Mersennes.html. 

We will prove a theorem which generalizes both of the results given above concerning the 
compositeness of Fp and Mp. Before presenting this theorem, we will need the following defini-
tion and results involving Lucas sequences. 

Definition 1: The Lucas sequence u(a, b) is a second-order linear recurrence satisfying the rela-
tion un+2 = aun+l + bun and having initial terms UQ = 0, ut = 1, where a and b are integers. 

We let D = a2 +4b be the discriminant of u(a9 b). Associated with u(akb) is the character-
istic polynomial f(x) = x2-ax-b with characteristic roots a and /?. Then, by the Binet formula 

We have the following theorem concerning the divisibility of un by the prime/?. 

Theorem 1: Let u(a,b) be a Lucas sequence, help be an odd prime such that p\bD. Then 

P\ur<Dip)> ( 2 ) 

where (Dip) is the Legendre symbol Moreover, 

P\U(p-{Dlp))l2 ( 3 ) 

if and only if {-b //?) = !. 
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Proof: Proofs of (2) are given in [4, pp. 290, 296-97] and [1, pp. 44-45]. A proof of (3) is 
given in [3, p. 441]. D 

We are now ready for our main result, Theorem 2. The results by Drobot and by Euler and 
by Lagrange on the compositeness of Fp and Mp will then be given as corollaries of Theorem 2. 

Theorem 2: Let u(a, b) be a Lucas sequence. Let/? be an odd prime such that p\b. 
(a) lf2p-lis^pnmQ,(D/(2p-l)) = -l,md(~b/(2p~l)) = l,thm2p-l\up. 

(b) If 2p + l is a prime, (D/(2p + l)) = 1, and ( - i / (2p + l)) = 1, then 2p + l\up. 

Proof: (a) By(3), 2/> -11 i^2p_1+iy2 = up. (b) By(3X2p + l\u(2p+l_m = up. D 

Corollary 1 (Drobot): Letp be a prime such that p>l', p = 2 or 4 (mod 5), and 2p-l is a 
prime. Then 2p-l\Fp and Fp>2p-l. 

Proof: Note that {FJ = f#(l, 1) and D = 5, It. is clear from (1) that if p > 7, then Fp>2p-1. 
If p = 2 (mod 5), then 2p - 1 = 3 (mod 5), while if p = 4 (mod 5), then 2p - 1 = 2 (mod 5). By 
the law of quadratic reciprocity, if 2p ~ 1 = 2 or 3 (mod 5), then 

(D/(2p-l)) = (5/{2p-l)) = -l. 
Since p s l or 3 (mod 4), it follows that 2p -1 = 1 (mod 4). Hence, 

H / ( 2 p - l ) ) = (-l/(2/i-l))=l. . 
It now follows from Theorem 2(a) that 

ip-l\Fp. D 

Corollary 2 (Euler and Lagrange): Let p be a prime such that p>3, p = 3 (mod 4), and 2p +1 
is a prime. Then 2p + l\ Mp and Mp > 2p +1. 

Proof: It is clear that if /?>3, then Mp =2p-l>2p + l. Consider the Lucas sequence 
w(3, - 2). Then £> = 1 and, by the Binet formula (1), 

2W-1 
I I = 4 — i = 2 , , - l = A/ll. 

Moreover, 
(Z>/(2/> + l)) = (l/(2/>+l)) = l. 

It also follows from the fact that p s 3 or 7 (mod 8) that 2p +1 = 7 (mod 8). Thus, 

(^/(2/> + l)) = (2/(2/> + l))=L 
It now follows from Theorem 2(b) that 

2p + l\up = Mp. D 

Remark: Primes/? such that 2p + l is also a prime are called Sophie Germain primes of the first 
kind, while primes p such that 2 p - 1 is a prime are called Sophie Germain primes of the second 
kind. It is not known whether there exist infinitely many Sophie Germain primes of the first or 
second Med. At the present time, the largest known Sophie Germain prime of the first kind is 
3714089895285 -2*0000 - 1 with 18075 digits, and the largest known Sophie Germain prime of the 

436 [NOV. 



GENERALIZATION OF A THEOREM OF DROBOT 

second Mod Is 16769025°234071 + 1 with 10264 digits. For a list of the largest known Sophie 
Germain primes, see the web sites 

http://www.utm.edu/research/primes/lists/top20/SopMeGeraiaIn.htnil 
and 

http://ksc9.th.com/warut/cunnlngham.html. 
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For consistency, we adopt the same notations and formats developed in our previous work 
on line-sequences, see [2]. 

A line-sequence is expressed as 
\J(c,b):..M_3,u_2,u_h[u0,ullu2,u3,u4,..., (1) 

«o.«i 

where un9 n G Z , denotes the /1th term, the generating pair is given by [% i/J, and the recurrence 
relation is 

cun+hun+l = un+2y (2) 

where c,h GR are not zero. Since (2) is valid for any value of n, we also have 

™n+l+hun+2=un+3. 

From these two relations, we find 

* = ( I W ^ 3 - H H . I , ^ + 2 ) / ( I W ^ 2 - ( V ) 2 ) ' (3) 
c = ((lW2)2-HH-iI'Wf3)/(lWl^i-(Vi)2)- X4) 

The product (see, e.g., [1], [4], [5]), abbreviated as "product" here, of two line-sequences 
does not necessarily satisfy a recurrence relation. We will give some conditions under which it 
does. 

A generalized Fibonacci line-sequence is given by 

{J(c,b):...[0,l],h,c+b2,..., (5) 
0,1 

and a generalized Lucas line-sequence is given by 

\J(c9 *): . . . [2,b], 2c+h\3ch + b\... (6) 
2,b 

see (4.3) and (4.12) in [2]. Let 

U(y^)=Ufe*)Ufe*)- 0) 
0,b 0,1 2,b 

Substituting (5) and (6) into (7) and multiplying corresponding terms produces 

\J(y,x):...[0,hl2cb+h\3c2b + 4cb3+h\.... (8) 
0,b 

Putting n = 0 in (3) and (4) and applying to (8), we obtain 

x = 2c+b2, y = -c2. (9) 
So (7) becomes 

U(-c2 ,2c+*2) = Ufef t )Ufe*) - (10) 
0,6 0,1 %b 

438 [NOV. 



ON THE PRODUCT OF LINE-SEQUENCES 

Let 

-6,0 1,0 -b,2c 

Following the same procedure, we fied 

{J(-c2,2c+b2) = {J(c,b)\J(c,b). 
-b,0 1,0 -b, 2c 

From (10) and (12), we-have the following pair: 

\J(-c\2c+h2) = -(l/b)[J(c,b) \J(c,b), 
1,0 1,0 -b,2c 

[j(-c2,2c+b2) = (Vb)\J(c, b)[j(c, b). 
0,1 0,1 2,6 

( i i ) 

(12) 

(13) 

(14) 

So we obtain the formula: 

U(-C2,2C + &2) = I U K 2 > 2 C + A 2 ) + J U ( - ^ 5 2 C + *2) 
ij 1,0 0,1 

= (1/4) -i\J(c,b) \J(c,b) + j\J(c,b)[j(c,b) 
1,0 -bt2c 0,1 2,b 

(15) 

Example: Letc = b = l in (15) and put MUJ = U. / -1,3) and FUJ = UUj{\ 1), then 

where M denotes Morgan-Voyce numbers, see (1) in [3]. 
Let mu^n and yjJ;„ be the rfi term of MUj and i^-, respectively. Then 

mUj\n = ~~* fib, nf-12; n + J fo, 1; nfl, 1; n = "'/n-l'w-1 +JfJn> 

(16) 

(17) 

where /w and 4 denote the /i* Fibonacci and the /1th Lucas numbers, respectively. In particular, 
ml0;n = "fn-lL-l = "fln-l* 

mQ,ln = fJn -fin-

Since the generating function of A//f • is (J - f/) / (1 - 3f + /2), we have 

/ / ( l -3 r + / 2 ) = X / 2 ^ " " 1
5 

/ I * l 

and 

For M u , 

and for M»1?1, 

l/(l-3/ + *2) = X / 2 / w-l 

«£1 

a-o/o-3r+/2)=x/2„_r-1
) n£l 

(l + 0/0-3^/2) = I/2„_A! 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
f f ^ l 
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1. INTRODUCTION 

To continue a previous note [2] (also [3]) on the morphology of self-similar trees, we recon-
sider, as simple model trees (see [2] for motivations), the sequence of binary trees Sk = Sk(a, b), 
k = 1,2,..., defined recursively for relatively prime integers a, b such that l<a<b:Sl9...,Sb are 
just one-leaf trees, and, for k > b +1, the left subtree of Sk is given by Sk_a and the right by Sk__b. 
Put c = ™. When c = 2, we have 5^(1,2), the Fibonacci tree (of order k). 

Denote the number of leaves in Sk by nk = nk{c) and write 

< 
2 = 1(c) = Mm Xk, 

then Xk : (l~Ak) may be considered as a left-to-right weight-proportion in Sk. 
The average path length Lk = Lk(c) (i.e., the average number of branchings along the path 

from the root to a leaf) of Sk is the sum of the lengths of all the paths from the root to leaves 
divided by nk. 

In Section 2 we show the following relation: 
G(c)H(c) = l, 

where 

[H(c) - - 2 log 2 ~ (1 - 2) log(l - X). 

("log" is to the base 2, while "In11 is to the base e.) 

That is, we show that the normalized Lk, Lk /log%, converges and the limit equals (H(c))~l, the 
inverse of the entropy of the distribution 2 , 1 - 2 . Roughly, G(c) and H(C)L express the asymp-
totic growth and breadth indices, respectively, of the tree. 

We will then observe in Section 3 some simple balance properties of Sk and show that the c 
maximizing G(c) but maintaining Sk balanced for every k is equal to 2. 

2. A LIMITING RELATION 

The following lemma was implicitly shown in [2] and will be used in the sequel. 

Lemmm 1: 
(a) tf = (l-X)a; 
(b) X = X(c) (1 < c) is less than 1 and strictly monotone increasing, and 2(1) = j - , 2(2) = -̂ -f̂ ; 

* This paper was presented at the Ninth International Conference on Fibonacci Numbers and Their Applications, 
July 17-22, 2000, Institut Sup6rieur de Technologic, Luxembourg. 
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(c) ^logwfc->^-(-logA)as*->oo; 
(d) \Xk - X | -» 0 exponentially fast as k -> oo. 

Theorem 1: G(c)H(c) = l. 

Proof: It is easy to see that the recursive structure of Sk implies 

Lk = XkLk_a + (1 - Afc)4_6 +1 (k > b +1) (1) 

(Ll = >- = Lb = 0), which we are going to compare with the following equation with constant 
coefficients: 

xk = Xxk_a+(l-X)xk_b + l (k>b + l) (2) 
(*i = - = *& = 0). 

Remark: Kapoor and Reingold [4] treated, in a different way, a general recurrence, including (1), 
derived from the binary trees with costs a and b on the left and right branches. 

The characteristic equation Xt~a + (l~X)t~b = 1 of the homogeneous 

yk = ^yk-a+0-^)^-6 (3) 
clearly has root 1, and it can be shown that \a\ < 1 for every other root a. Therefore, the general 
solution of (3) is given by yk = Q + sk, where Q is a constant and sk -» 0 (k -» oo). 

As a particular solution of (2), we have 

**=lz£rr* (*>i). 
* aH(c) 

In fact, the right-hand side of (2) then becomes 
aH(c) aH(c) 

= xk. 

The solution of (2) is therefore given by 

k aH(c) l k v ; 

which we regard as the solution satisfying the initial condition xx = • • • = xk = 0. 
Subtract (2) from (1) to get 

^k~Xk~ ^ki^k-a ~ Xk-a) + 0 ~ ^k)(h-b ~ Xk-h) + (̂ jfc ~ ^)(%-a ~ X£-fc)> 

then 

l 4 -^ l^^l4 -a -* t -a l+0-^) l^-Xwl+Ci l^-^ l , (5) 
since we can write \xk_a - xk„b \ < C2 from (4). 
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Now we prove by induction on k that 
\Lk~xk\<C3lnk (k>l) (6) 

for some constant C3. Trivially true for k = 1, ...,b, since Lk-xk = 0 for those k. Suppose k > 
b + \, then f < £ < 1. By the induction hypothesis, (5), and the inequality ln(l - x) < x, we have 

\Lk- xk\<C3Xk\n(k ~a) + C3{\- Xk)\n(k -b) + C2\Xk- X\ 

<C3|ln k-j(aAk+b(l-Ak))\ + C2\Ak-A\ 

<C3lnk~=^ + C2\Ak-A\<C3lnk, 

where the last inequality holds because, by Lemma 1(d), we could have chosen C3 large enough 
so that -^- + G2\Ak-A\<0£or k>b + l. 

From (4) and (6), we obtain 

(-log A), r 
h aH(c) r <C3ln^; 

hence, 

U 1 (-log A) k Cx + sk 
lognk H(c) a lognk lognk 

Therefore, -^~—> j ^ (k -> oo) by Lemma 1(c). D 

<C, 
lOg/l; * / ( " > 

3. CMTICAL BALANCE 
A most pleasing, though rather vague, concept concerning the form of a tree might be the 

concept of being "balanced as a whole." 
One natural definition of "balancedness" (let us call it V-balanced") of the trees Sk is: 

{Sk} is said to be w-balanced if nk > nk_a + nk_2a for every k > b + a +1 (see [2]). 
(Remark: b+a + l is the minimum k such that nk>3.) 

Note that the definition takes this form to refer to the sequence {Sk} not to individual Sk for 
reason of compactness. Also note that the definition may be viewed as stemming from the fact 
that the condition nk > nk_a +nk_2a can be written as 

meaning that the division nk_a : (nk -nk_a) of % is balanced better than or equally to the division 
W * - 2 « : ( " * - H * - 2 * ) -

Another pretty concept of balancedness of a binary tree is due to Adelson-Velskii and Landis 
[1]. Denote the height of Sk by hk = hk(c)9 then their definition adapted to 5^ is: 

{5^} is said to be h-halanced if hk_a - hk_b < 1 for every k > b+a +1. 
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We know from [2] that hk = \*=p\ (k > h). 
It should be mentioned here that, according to Nievergelt and Wong [5], {Sk} may be called 

"a-balanced" (0 < a < j) if ~ ~ > a holds for every k > b+a +1 and they showed that 

(-a log a - (1 - a) log(l - a)) < 1 
log/% 

for a-balanced {Sk} [in place of G(c)H(c) = 1]. 

Lemma 2: 
(a) {Sk} is w-balanced if and only if c < 2. 
(S) {5^} is h-balanced if and only if c < 2. 
(c) nk = nk_b +nk__2a f°r every k > b + a +1 if and only if c = 2. 
f<9 hk_a-hk_b = 1 for every A > b + a +1 if and only if c = 2. 

Proof; The proof is simple, comprising the following pieces 1-5. 
1. We first note that % = nk_a +nk__b, and hence the "if" part of (c) is obvious. 
2. There are (infinitely) many i such that nf <ni+l. So, if c<2 (i.e., b<2a), we have 

wik-2<i <nk-b f°r (infinitely) many A:, and if c>2 (i.e., b> 2a), we have nk__2a >nk_b for (infinitely) 
many k. This proves the "only if" parts of (a) and (c). An alternative proof is: Divide both sides 
of nk > nk__a + nk^2a by nk to obtain 

1> lk~a 
«, + 
't J 

'k-a lk-2a 
fin lk~a 

Let k->ooy then 1> A(c) + (A(c))2. Therefore, we deduce ^(c)<-^^ , and using Lemma 1(b) 
finishes the proof of those parts. 

3. Proof of the "if" part of (a). Suppose k>b+a + l. Since b<2a by c < 2 , we have 
Hence, {Sk} is w»balanced. 

Suppose c < 2. Then b<2a-l. Take k = b+ia (i > 2) to see that 
nk_b>mk_2a. 

®<hkma-hk^b = '(k-a)-b' -(k-b)-b' 

<(i f-l)-p ia-(2a-l)' 
a 

= ( j - l ) - ( / - 2 ) -

( i - l ) -

0. 

'ia-b' 

That is, / i ^ - hk_b = 0 holds for (infinitely) many i. 
Suppose c > 2 . Then b>2a +1. In this case, taking k = b+/a +1 (i>2) leads us to 

K-a ~ ̂ *-& = ' - 0' - 2) = 2. That is, /k_fl - 1%^ = 2 holds for (infinitely) many k. 
The two remarks above prove the "only if" parts of (b) and (d). 
5. Proof of the M if11 parts of (b) and (d). Suppose b + a + l<k <b + 2a. Then, since b +1 < 

k-a<b^a, we have hk^G-hk^b (=1-0 or 1-1)^1. (Furthermore, if c = 2, then k-b<b and 

Suppose next that k > b + 2a +1. From b < 2a, we have 
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(k-a)-b ^(k-b)-b , , 
a a ' 

and hence, by noting that k-b^2a + l>b + l, we have hk„a<hk_b + l. Therefore, {Sk} is h-
balanced. (Furthermore, if c = 2, then hk_a - hk_b +1.) D 

The (asymptotic) average growth function G(c) is strictly monotone increasing because the 
entropy H(c) is strictly monotone decreasing. Therefore, the c maximizing G(c) while keeping 
the Sk balanced for every k equals 2. 

SUMMARY 

Summarizing, we may say that the Fibonacci tree is critically balanced, and in this sense the 
Golden-cut point 2(2) might be interpreted as the critical balancing point. 
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1. INTRODUCTION 

There exists a very wide literature about the generalized Fibonacci sequences (see, e.g., [3], 
where interesting applications to number theory are also shown, and [2], where such sequences 
are treated as a particular case of a more general class of sequences of numbers). In this paper we 
start by defining some particular generalized Fibonacci sequences (denoted by {Un(c-l,-c)}neN, 
c GN) and by studying their properties. In particular, we find interesting relations between a 
generic term Un(c-l,-c), n GN, and Un+l(c-l,-c) and show a nice connection between the 
numbers Un(c~ 1, -c) and their expression in the c-ary enumeration system. After this, we give 
an estimate of the value of the logarithm of Un(c - 1 , - c) on the basis c. 

Successively, we. apply the properties of the sequences {Un(c-l,-c)}neN to the study of the 
number of solutions of linear equations in Zr, r e N. 

Finally, we briefly show the principal characteristics of another class of generalized Fibonacci 
sequences, {t/„(c + l,c)}weN, c eN\{l}. 

2. GENERALIZED FIBONACCI SEQUENCES: THE SEQUENCES {Un(c -1, - c)}neN 

For each pair (hy k), h,k e C of complex numbers such that k(h2 -4k) ^ 0, we denote by 
{Un(h, k)}neN the generalized Fibonacci sequence defined as follows: 

V/i e IH n > 2, Un(h, k) = hUn_x{K k) - kUn_2(h, k% U0(h, k) = 0, Ux(h, k) = I 

An explicit expression of the 72th term of {Un(h, k)}neN for generic « G N U { 0 } is given by 
the Binet formula 

where 
h + ̂ h2-4k A Q h-4h2-4k 

2 r 2 
are the distinct roots of the polynomial x2 -hx + k e C[x], called the characteristic polynomial of 
the sequence. Moreover, for every integer « e N u { 0 } , w e have 

a-p P a-p a-p ' 

We then obtain 

V « ^ u { 0 } , aUn(hyk)+P" = Un+l(h,k). (1) 
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As the role played by a and /? in the Binet formulas is symmetric, the following equalities are 
also true: 

V » e N u { 0 } , /3U„(h,k) + a" = Un+1(h,k). (2) 

As a particular case, let us consider now the generalized Fibonacci sequences of the form 
{U„(c-1, -c)}„eN> o being a positive integer; from the equalities h = c-1 and k = -c, we easily 
obtain a = c and /? = - 1 . Then, for all n e N u {0}, from the Binet formula we have 

U„(c-l,-c) = - • ( - ! ) " 

c + 1 ' 
while equalities (1) and (2) show, respectively, that 

VweN ^{0}, U„+l(c-l,-c) = cUn(c-l,-c) + (-iy, 
and 

V « e N u { 0 } , u„(c-l,-c) + U„+l(c-l,-c) = c". 

(3) 

(4) 

The first terms of some of such generalized Fibonacci sequences, corresponding to fixed values of 
c, are: 

: 0,1,0,1,0,1,0,1,0,1,0,1,...; {f/„(0,-l)}„6 
{Un(l,-2)}ne 

{t/„(2,-3)}„€ 
{[/„(3,-4)}„€ 
{t/„(5,-6)}„e 

0,1 
0,1 

0,1 
0,1 

1,3,5,11,21,43,85,171,341,683,...; 

2,7,20,61,182,547,1640,4921,...; 

3,13,51,205,819,3277,13107,52429,. 

5,31,185,1111, 6665,39991,239945,... 

3. {Un(c - 1 , - c)}neN (c > 2) IN THE c-ARY ENUMERATION SYSTEM 

Theorem: Let c > 2 be a fixed integer; then, for each fixed integer nt>2, the two following 
assertions are equivalent: 
(a) 3neN:m = U„(c-l,-c); 
(h) in the c-ary enumeration system, the expression of m is either of the form 

( c - l)0(c-1) ...0(c-1) or of the form ( c - l)0(c-1)... 0(c-1)1. 
Moreover, when for a given m the two assertions are satisfied, we have m = U.+l(c - 1 , - c), where 
t denotes the number of digits of m which appear when it is written in the c-ary enumeration 
system. 

The theorem can be proven by noticing that, for every n eN KJ {0}, we have the recursion 
U„+l(c-l,-c) = cUn(c-l,-c) + (-\y. Hence, if (a) is satisfied, assertion (b) straightforwardly 
follows by induction from the first few terms: 

U2(c-l,-c) = c-l-l = c-l; 
tf3(c-l,-c) = c-(c-l) + l = 10-(c-l) + l = (c-1)0 + 1 = (c - l ) l ; 
^ ( c - l , - c ) = c - t / 3 ( c - l , - c ) - l = 10-[(c- l ) l ] - l = ( c - l ) 1 0 - l 

= (c- l )0(c- l ) ; 
U5(c-1, - c ) = c-U4(c-l, -c) + 1 = 10-[(c- l)0(c-1)] +1 

= (c - l)0(c -1)0 +1 = (c - l)0(c -1)1; 
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t/6(c-l,-c) = c-£/5(c-l,-c)-l = 10-[(c-l)0(c-l)l]-l 
= (c - l)0(c -1)10 - 1 = (c - l)0(c - l)0(c -1). 

(For the sake of clarity, the convention was adopted of writing the c-ary expressions in boldface 
characters; the dot denotes multiplication.) Conversely, if (b) is satisfied, m is clearly seen to be 
a term of the sequence {Un{c-\-c)}neN by applying a finite number of times the recursion 
Un+l(c -1, - c) = cUn(c -1, -c) + (-l)w, and assertion (a) follows. 

Moreover, it is clear that, for every n > 2, the number of digits of Un+l(c - 1 , - c) when it is 
written in the c-ary system is one unit larger than the number of digits of Un(c-l,-c) when it is 
expressed in the same system. Since in the c-ary system the number U2(c -1, - c) is expressed by 
the only digit c - 1 , the second part of the theorem follows by induction. 

4. AN ESTIMATE OF Ugc(Un(c - 1 , - c)) (c > 2, n > 1) 

For any c > 2 and n > 1, we know that 

cn-{-\)\ Un{C-\~C): 
c + 1 

hence, we have \ogc(Un(c-1, - c)) = logc(cw - {-l)n) - logc(c +1), which is equal to 

logc c " l - (-lf - log , •H" = n-\ + \ogc\\-tj£--logc 1 + 1 

Now we suppose c fixed and consider logc(U„(c-1, -c)) as a function of n. Since 

tart+v). 
y 

= l + o(l) as y-+0, 

we have ln(l+y) = y + o(y) (y -» 0); logc(l+y) = -^ + o(y) (y -» 0). Then, for n -> +oo, we can 
write 

On the other hand, for every positive real number x, the following inequalities hold: 0 < ln(l + x) 
< x; hence, we have 0 < logc(l + x) < •—•. Taking x = ~, we obtain 

0<logcfl + - l < — i - . 
CV c) cine 

Then, from the above equalities we have, when setting /(c) = logc(l + £), the approximation of 
logc(C/n(c - 1 , - c)) holding for « large, 

logc(f/n(c-l,-c)) = » - l + l o g ^ l - ^ ) - l o g ^ l + ^ 

n-1 
= W - l - r ( c ) + ^ ^ - + o l ^ - J ( « - > + o o ) , 

where 0<^(c)<7 ]L 
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5. LINEAR EQUATIONS IN Zr AND THEM RELATION WITH 
THE SEQUENCES {UM(c-t3 ~c)}neM 

We consider the problem of finding the elements (xl;x2;...'9xk) G(Zrf which satisfy the 
congruence equation 

k 
%Xj = a (modr), (5) 
i=i 

and the constraining equalities 

gcd(xi? r) = dj; j = 1,2,..., * , (6) 

where r and k are fixed positive integers, r is odd, a e Zr , and dhd2y ...9dk are k divisors (not 
necessarily distinct) of r. Let us pose, for each prime divisorp of r, A = #({y, 1 < J < Jt: p\dj}), 
and let us assume that, for eachp, bp>2. 

Starting from formulas which give the total number Na of solutions of the above problem 
(see [1], eq. (3.37), and [4], ex. 3.8, p. 138), replacing in such formulas Ramanujan sums by their 
expressions as given by Holder's equalities, i.e., 

VOT,weN,c(m;n)= £ (e2Kilnym = <P(P) 

gcd( j , n 
$p(n/gcd(n,m)) 

-p(n/gcd(n9m)), 
»)=i 

<p and p being, respectively, Euler's and Mobius' functions (see [5]), and then using basic proper-
ties of <p and p and applying (in reverse order) the distributive property of the product with 
respect to the sum, gives rise to the following equality: 

__(p{r I d^fjr I d2) ...<p(r I dk) 
11 a ~ „ °ra* 

where 

pa= n 
p\r,p](a 

,__t>t n i-fca; 
b„-l 

ip~lf^\ 

(7) 

(8) 
(p-dPj p\r,p\a 

The latter formula can be found in [5] for the special case dl=d2=*" = dk = l only. Compare 
equalities (7) and (8) also with [6]. t 

Now we want to rewrite equality (8) in terms of the generalized Fibonacci sequences that we 
treated in the previous sections. First, we observe that, for each prime divisor/? of r, by applying 
the Binet formula to the terms of {U„(c-1, -c)}nM in the case in which c = p-1, we have, for 
each nonnegative integer w, 

i.e., pUn(p - 2,1 - p) = Q? -1)* - (-!)". Hence, from (8), we obtain 

pa= n 
P\r,pl(a 

= n 
p\r,p\a 

(p-itp n 
\&„-l (p-ir"'-(-ir &„-i 

'p-U„r(p-2,l-p) 

ip-lf n 
(i?-!)*""1 

P-Ub,-i(P-2>l-P) 
(P-1)"< 
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n (P-lf>-\ n 
UK(p-2,\-p) 

P-\ IT u^ip-iA-p). 
P\r,p\a 

(9) 

Now let us fix a prime divisor q of r and let u be a residue class in Zr such that q\u. We 
want to calculate the ratio of Pqu to Pu. From expression (9) of Pa for generic a, comparing the 
case in which a = qu with the case in which a = f/, we immediately obtain 

Pqu _ £ V i ( g - 2 , l - g ) = (g~ Wyi(g-2,l-g) 
/>„ t/tfo-2,l-?)/fa-l) Ub(q-2,l-q) ' 

(10) 

Moreover, from (3), taking c = q - 1 and « = b< -1, we obtain 

.6.-1 Ub(q-2,l-q) = (q-l)Ub,(q-2,l-q)H-ir-\ 

i.e., (̂  - \)UbAq -2,l-q) = Ub(q-2,l-q) + (-!)"', and hence 

3 . ^(g-2,i-y)+(-iyv 
P„ Ub(q-2,l-q) Ub(q-2,l-qY 

(-l)b< 
(11) 

Equations (11) show that the ratio Pqul Pu depends on q, but is independent of u. They also show 
that, when bq is even, then Pqu> PU9 while when bq is odd, then Pqu<Pu. This means that a sum 
having an even number of addenda which are not multiples of q -tends to favor as possible results 
the multiples of q9 while a sum having an odd number of addenda which are not multiples of q 
tends to favor the numbers which are not multiples ofq. Moreover, since r is odd (which implies 
q>3) and for c>2 the integer U„(c-l,-c) tends to infinity as n—>+oo, equations (11) show 
that the greater bq, the nearer one to another are the values of Pqu and Pu. This means that if in a 
sum there are many addenda which are not multiples of q, then the sum tends to favor significantly 
neither the multiples of q nor the integers which are not multiples ofq. More generally, in view of 
(7) and (8), the distribution in Zr of the values of the expression EJU*/ as x1? Xj,..., xk vary in 
ZJ!, tends to be a uniform distribution as k tends to infinity (because Pa tends to 1 and Na 

becomes independent of a). 
Furthermore, if q 2 | r , then for each residue class a in Zr which is a multiple off, there exist 

exactly q-l classes u in Zr not multiples ofq such that a = qu (mod r). In this case, from equa-
tions (10), dividing Pqu I Pu by q - 1 , we obtain the number 

Ub(q-2,l-q) 3 (12) 

which, being independent of a, can be considered as the ratio of the number of the strings (xt; 
x2;...; xk) such that #| EJLi Xj to the number of the strings (xt; x^ ...; xk) such that q J EJU *). 

We now give an example of what was discussed in this section. Let the following problem be 
assigned: 

]T X- = a (mod 3), gcd(xJ-, 3) = 1 for j • = 1,2,...,7. 

We want to calculate the ratio N0/Nv 
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By taking q = 3 and u = 1, we have bq = 7 and then, by (11), we can write 

Np_N3_P3_ H ) 7 1 ^42 
Nx Nx Pt f/7(l,-2) 43 43' 

To obtain the ratio of the number of strings (xt; x2;...; Xj) e(Z^)7 such that 3|E7
=1x/ to the 

number of strings (xx; x2; ...;XJ)G (Z3)7 such that 3|2y=1 JC;, we use expression (12) ancj find that 
this ratio is equal to ffil'I^* °LQ-?t0 43 • 

6. THE SEQUENCES {Un(c +15 c)}mM 

Another interesting class of generalized Fibonacci sequences is the set {Un(c + l,c)}nEN, i.e., 
of the sequences whose characteristic polynomial has c and 1 as roots, c being a positive integer 
not equal to 1. 

For all n e M u {0}5 we have the Binet formulas 

tfw(c + l,c) = ̂ ^ ; t h e n VFIGM, Un(c + l,c) = cn~l+cn-2+ --+C + 1. 

Some examples of such sequences are: 
{£/w(3,2)}weN:0,1,3,7,15,31,63,127,...; 
{0,(4, 3)}„€N : 0,1,4,13,40,121,364,1093,...; 
{Un(5,4)}neN: 0,1,5,21,85,341,1365,5461,...; 
{Un(6,5))nM:091,6,31,156,781,3906,19531,.... 

From equalities (1) and (2) we have, respectively, 
VfieNu{0}, UnU(c + l,c) = cUn(c + l,c) + l 

and 
V H G N U { 0 } , Un+l(c + ]9c) = UH(c + l9c) + J'. 

For a fixed c, it is clear that the terms of {Un(c + \c)}neN, if we exclude the first term 0, are 
exactly the integers which in the c-ary system are written in the form 11... 1. Moreover, for each 
neN, the number of digits "llf that appear in the expression of Un(c + \ c) ip the c-ary system is 
n. 

For any c > 2 and n > 1, we have logc (Un(c +1, c)) = logc (cn -1) - logc (c -1), which is equal 
to 

Since log, (1 + y) - £ + o(y) (y -» 0), 

Further, 
—^—<lnfl-—^ < 0. 

Therefore, we deduce 
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-7—i^~ <iogii-~l<o. 
(c-l) lnc V CJ 

Now we can write, setting 
*(«>= k * ( i - i ) - ^ ( i * ^ ) . 

the approximation to logc (Un(c +1, c)) holding for large n, 

loge(^(c + l,c)) = i i - l + l o & ^ l - ^ - l o g c ^ ^ 

where 0<S(c)<j^. 
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1. INTRODUCTION 
The Idea of co-generalized Fibonacci sequences began with Euler, who discussed Daniel 

Bernoulli's method of using linear recurrences to approximate roots of (mainly polynomial) equa-
tions (see [4], article 355). Recently, such sequences have been introduced and studied in [10], 
[11], and [14]. They are defined as follows: Let {a;-}p0 be a sequence of real numbers and con-
sider the sequence {Vn}neI defined by the following linear recurrence relation of order oo, 

+00 

•̂H = I « X - m if»*0, (1) 

where {V_j}^0 are specified by the initial conditions. We shall refer to them in the sequel as 
sequences (1). They are an extension of /^generalized Fibonacci sequences (see, e.g., [3], [8], and 
[9]) and their general term Vn (n > 1) does not always exist. Hence, they were studied under 
some conditions on the sequences of coefficients {dj}^0 and the initial conditions {VmJ}*™0 (see 
[10], [11], and [14]). 

The aim of this paper is to study the combinatoric expression of sequences (1) and extend the 
results of [13]. When the coefficients are nonnegatlve with sum 1, this expression is derived from 
properties of Markov chains. By Induction we see also that this expression is still valid for arbi-
trary coefficients (Section 2). For the case of arbitrary nonnegatlve coefficients, we give the 
asymptotic behavior of V„ (Section 3). 

2. MARKOV CHAINS AND COMBINATORIC EXPRESSION OF Vn 

2,1 Fundamental Hypotheses 
It was shown In [10], [11], and [14] that the general term Vn of a sequence (1) does not exist 

In general. Therefore, we need some necessary hypotheses on {an}n^0 and {V_n}n^.Q which Insure 
the existence of V„ for every n > 1. In this paper we are Interested In the following hypotheses: 
• (H. 1) For every m, we have am > 0 and there exists k > m such th<at ak > 0; 
• (H.2) There exists C > 0 such that am < C for any m\ 
• (H.3) The series E ^ 0 W-m I *s convergent. 
These hypotheses are compatible with the Markov chains formulation of sequences (1). 

22 Sequences (1) and Markov Chains 
Let {aj}j>0 be a sequence of real numbers which satisfies (H.1). Suppose that the following 

condition is satisfied: 

w=0 
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Condition (2) shows that (H.2) is trivially verified. Consider the following matrix: 
... - 1 0 1 2 ••• 

-1 
0 

P= 1 
2 
3 

•• 0 
•• 0 

•• «2 
•• «3 
" a4 

1 
0 

«1 
a2 
«3 

0 
1 

« 0 

«1 
a% 

0 
0 
0 

"o 
ai 

... 
0 

«o 

0 
0 

... 
0 ••• 

(3) 

If we set P = (P(n, w))^meZ? we have P(n, m) = Sn^m for n,m e {• • •, - 1,0}, P(n, m) = an_m_x for 
n>0 and n~m-l>0, and P(n,m) = 0 elsewhere. Condition (2) shows that P is a stochastic 
matrix. Therefore, P is a transition matrix of a Markov chain (3) whose state space is Z= {•••, 
-1,0,1, • • •}. • The states • • •, - 2, -1,0 are absorbing states and 1,2, • • • are transient states. 

Consider the following infinite vector X = (• • •, F_m, • • •, V0, • • •, 1 ,̂ • * *)*. Then a sequence (1) 
can be written in the following matrix form: 

X = PX. (4) 
The preceding infinite matrix product (4) is simply Vn = Hm<n P(n, m)Vm. In the same way, matrix 
P2 = (i*2)(«, *n))n,mez i s giv@n bY ^(2)(«, "0 = Sw+i<;<n-i ^(«, y)^0\ "0 for every w > 0, n > 0. 
By induction, we also define the matrix Pk = {P{-k\n,m))^meT. Equation (4) shows that 
AT = P*JST for every Jfc£l. Thus, 

if = & X , where ft (5) 

Properties of Cesaro mean convergence, applied to the matrix sequence {Pk)k>i (see, e.g., [6] and 
[7]), allows us to state the following proposition. 

Proposition 2.2: Let P be a stochastic matrix defined by (3). Then, the sequence {Qk)k>i given 
by (5) converges (when k -> +oo) to the following matrix, 

- 1 0 1 ... 

(6) 
-1 

0 
Q= i 

2 
3 

( '. 
0 1 0 
0 0 1 

- p(\,-m) ... />(1,0) 
- p(2,-m) - . p(2,0) 
- p(3,-m) ... p(3,0) 

0 • 
0 • 
0 • 
0 • 
0 • 

• 0 
• 0 

where p(k9 ~ m) for k > 1 and m > 0 is the probability of absorption of the system by the state 
-m when it starts from k. 

Relation (5) and Proposition 2.2 show that X = QX, where Q is the matrix given by (6). 
Therefore, using the matrix product (4), we prove the following extension of Theorem 2.2 of 
[13]. 
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Theorem 23: Let {VJn€l be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then, 
for every n > 1, we have 

+00 

^ = I P ( » , - W F - „ . (7) 

Expression (7) gives F̂  (JI > 1) as a linear combination of the initial conditions and the 
absorption probabilities p(k, ~m) (k>\m>0). 

23 Computation of the p(n, m) 
The computation of p(n, m) and p(n, -m) is the same as in [13]. 

Case of if > m > 0. In this case, p(n, m) is the probability of reaching the transient state m 
starting from the initial one n. The system, starting from «, will go to m after one transition with 
the probability P(n, m) = an_m„l. We say that the system had made a jump of n - m units. To go 
from n to m (n>m), the system must make kj jumps of j +1 units with probability Qj (/ > 0). 
Since the total displacement is n -m, we have Ar0 + 2^ + "-+(n-rri)kn_m_l =n-m, and the total 
number of units of this displacement is k0+kl + -~+ kn_m_l. The number of ways to choose 
k0,kx,..., kn_m_l is 

(*0 + *l + " + * i , - m - l ) ' 

and the probability of each choice is a^af1 ... cfys£\. Therefore, we have 
(yn-m-l K \j 

P(»>">)= I k\k? k ^ o V ' - e - i . (8) 
s;=r,o,+i)̂ =«-'w °' l'''' n~m~l -

From (8), we prove easily that 
p(n,m)=p(n-m90) and p(0,0) = l. (9) 

We note that for n > m > 0 we have 

where {/^I^iC^o* •••>as)}n>o 'm ̂ e sequence of multivariate Fibonacci polynomials of Philippou 
of orders (see [1]). 

Case of n > 0 and -m < 0. In this case, n is a transient state and —m is an absorbing one. 
To go from n to -m, the last transient state visited by the system is s, where 0 < s < n. And to go 
from s to —m, the system must make only one jump with probability aJ+m_i. Since p(n,s) is the 
probability of going from n to s, we show that the probability of absorption of the system by the 
state -m when it starts from n > 0 is p(n, -m) = arH.m,l + TTs=i p(n, s)as+m_t. Therefore, using (9), 
we establish the following expression: 

n 
p{n,-m) = ̂ p(n-s, ®)as+m_v (10) 

s=l 

2.4 Combinatoric Expression of Vn (#i > 1) 
The substitution of (10) in (7) allows us to obtain 
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K = l\ip("-^)as+\v_m (li) 
m=Q { 5=1 J 

for every n > 1. The two hypotheses (H.2)-(H.3) show that we can make the permutation of the 
two sums in (11). Therefore, we prove the following result. 

Theorem 2.4: Let {Vn}neZ be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then 
we have 

V„ = f,AsP(ri-s,0) (12) 

for every n > 1, where the p(n - s, 0) are defined by (8)-(9) and As = S^=0
 as+m-^-m • 

In particular, we have the following corollary. 

Corollary 2.5: Let {VJneI be a sequence (1) such that (H.1) and (2) are satisfied. Suppose that 
VQ = 1 and V__m = 0 for m > 1. Then, for every n > 1, we have 

Fw = p(/i, 0) = a0p(n-1, 0) + a,p(/i-2,0)+ - + 0 ^ ( 0 , 0 ) , (13) 

where the /p(/i - s, 0) are defined by (8)-(9). 

Expression (13) can also be obtained using the Markov chains techniques on the displacement 
of the system from the state n to the state 0, as was done in Subsection 2.3. 

3. COMB1NATORIC EXPRESSION OF Vn IN THE GENERAL CASE 

Let {VJneI be a sequence (1) whose coefficients {̂ -}7->o are arbitrary real numbers. Suppose 
that {\aj | }jx> and {H,-}^ satisfy (H. 1), (H.2), and (H.3). For every n > 1, we set 

with p(09 0) = 1 and /?(-#, 0) = 0 for every i > 1. Thus, by induction on n9 we prove that (13) is 
also verified by expression (14) of p(n9 G). Consider the sequence {Wn } n e Z defined as follows: 
Wn^Vn for n< - l and 

•Ko ( n 1 

for /? > 1. For w = 1, a direct computation shows that we have Wl = E ^ 0
 am̂ -OT = ^ • Since (14) 

satisfies (13), we derive by a simple induction that Wn=Vn for every n > 1. Therefore, we have 
the following general result. 

Theorem 3.1: Let {VJneZ be a sequence (1) whose coefficients {dj)^ are arbitrary real num-
bers such that {\aj\}j:t® and {VmJ}j>Q satisfy (H.1), (H.2), and (HJ). Then, for every w>l, we 
have 

V„ = f,AsP(n-S,0), 
$=1 
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where the p(n - s, 0) are given by (14) and 
+00 

m=0 

The comblnatoric expression of r-generallzed Fibonacci sequences has been established by 
various techniques and methods (see, e.g., [1], [5], [8], [13], and [15]). Theorem 3.1 is a gen-
eralization of such a combinatoric expression to ^-generalized Fibonacci sequences. 

4. ASYMPTOTIC BEHAVIOR OF p(n, 0) 

In this section we study the asymptotic behavior of p(n, 0) when the coefficients aj (J > 0) 
are nonnegative real numbers. 

Let {Vn}neZ be a sequence (1) whose coefficients {ctj}^ are arbitrary nonnegative real num-
bers. Suppose that (H. 1), (H.2), and (H.3) are verified. If VQ = 1 and V_m = 0 for every m > 1, we 
derive from (7) that V„ =p(n9 0) for every n > 1, where p(n, 0) Is given by (14). For E^~0% = *> 
It was established In [14] that the following condition (G):gcd{j-hl;aj >0} = 1, Implies that 
limlf^+00f; = 0 If Zm>Q(m + l)am = -hcD and limn^+wVn = Zm^Tl(m)V_m If Hm^(m + l)am <+QO? 

where Tl(m) = H\Zm % / 2^>o(^ +1)% (see [14], Theorem 2.2). Therefore, we have the following 
proposition. 

Proposition 4.1: Let {cij}^ b© a sequence of nonnegative real numbers that satisfies (H.1) and 
(2). Then, If ( Q Is verified, we have 

Mm p(n,0) = 0 for ^(#1 + l)aw = +00 
w£0 

and 

Mm p f o , 0 ) ^ — * f o r X ( ^ + l K < + Q ° . 

Suppose now that Z ^ % * 1 arbitrary. Hence, we have the following two cases. 
Case 1: Tm>0 <*m > 1 • Let R be the radius of convergence of f(x) = ££?0

 a***+1 • Hypothesis 
(H.2) Implies that J? > 1. The function/is nondecreaslng on [0, R[ and 

/= Mm/(x)>/( l )=X^> L 
X~*R niZQ 

Therefore, there exists a unique q > 1 such that f(q-1) = 1. Set bm = q~~m~lam and Wn = q"nVn. It 
is easy to see that 

+00 

Hence, P^L 6 z is also a sequence (1) with X^obm = l. Since f > 1, we have \W_„ \ < \V_n |, which 
proves that the initial conditions {TK.n}n^ satisfy (H.3). Suppose that {^j^o satisfies (Q. Since 
gcdfj + l ; ^ >0} = gcd{/ + l;ft/ >0}, we show that {Oj}^ also satisfies (Q . If we apply Propo-
sition 4.1, we prove the following proposition. 
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Proposition 4.2: Let {ctj}^ be a sequence of nonnegative real numbers that satisfies (H.1), 
(H.2), and (C). Suppose that Z^oam > 1- Then there exists a unique q > 1 such that 

lim ^ ^ - = 0 for Y(m+l)a„#-m-1 = +oo 
"-**0 V tan 

'-*-*"00 ¥ [m>o ¥ J m>Q 

m>0 
and 

where p(w, 0) is given by (14). 

Case 2: Sw>0 #m < 1 • In this case, it was established in [14] that the series S„>0 Vn converges 
absolutely. Thus, the series Em>0p(^, 0) is convergent, which implies that \imn_^^X)p{n, 0) = 0. 

For T>m>0(m + V)amq~m~l < +QO, the real number q>\ can be approximated as follows: 

q= lim dp(n,0). 
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1. INTRODUCTION 

We consider two sequences defined by the recursion relations 
«o = 0, «! = 1, w„+2 = aun+l-bun, (1) 

v0 = 2, v, = a, v„+2 = avn+x -bv„, (2) 

where a and b are integers which are nonzero, D = a2 - Ab * 0. Then 
a" - Bn 

u»=^Tjf> v„ = <*"+?", (3) 

where a and fi are distinct roots of the polynomial f(z) = z2-az+b. Each un is called a Lucas 
number, which is an integer. A Lucas sequence {un} is called degenerate if the quotient of the 
roots off is a root of unity and nondegenerate otherwise. Throughout this paper we assume that 
a and b are coprime. 

The problem of determining all the perfect squares in a Lucas sequence has been studied by 
several authors: Cohn, Halton, Shorey, Tijdeman, Ribenboim, Mcdaniel, among others. In 1964, 
Cohn [1], [2] proved that when a = l and b--\9 the only squares in the sequence {un} are 
UQ = 0, % = f#2 = 1, and ul2 = 144, and the only squares in the sequence {vj are vx = 1 and v3 = 4. 
In 1969, by using the theory of elliptic curves, London and Finkelstein [5] proved that the only 
cubes in the Fibonacci sequence are F0 = 0, Fl = F2 = l, and F6 = S. Shorey and Tijdeman [9] 
proved for nondegenerate Lucas sequences that given d*0 and e>2, where d and e are inte-
gers, if um = dUe with U & 0 (U integral), then m is bounded by an effectively computable con-
stant. In 1996, Ribenboim and Mcdaniel [8] proved that, if a and b are odd and coprime and if 
D = a2 -4b is positive, then un is a perfect square only if n = 0,1,2,3,6, or 12, vn is a perfect 
square only if n = 1,3, or 5. 

The aim of this paper is to give an elementary proof of a special case of the above result 
obtained by Shorey and Tijdeman [9]. Developing the argument of London and Finkelstein [5], 
we obtain the following results. 

Proposition 1: Let n > 0 be an integer of the form n = 4m+r with 0 < r < 4. If un is a perfect 
square, thee the rational point (Ds1 i!b2m',Dsti!b3m) lies on the elliptic curve y2 = x3+4Dbrx, 
where D = a2 - 46, s2 = \un |, t = vn, all of which are prime to b. 

Proposition 2: Let 0 < r < 4 be a fixed integer. If b is even and the group of rational points on 
the elliptic curve y2 = x3 + 4D¥x has rank zero or rank one, then u4m+r is a perfect square only 
for finitely many m > 0. 
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2. PROOFS OF PROPOSITIONS 1 AND 2 

Proof of Proposition 1 
Let a and fi be distinct roots of the polynomial f{z) = z2-az+b. Since afi = b and D~ 

{a-(J)2 we obtain, from (3), v2-Du2 = 4bn. Suppose that the n^ term un is a perfect square. 
Putting \un\ = s2 and vn = i, from the equality above we have t2 = Ds4 +4bn. Multiplying through 
by Z)V, we see 

(Dstf = (B$zf+4D(Bs2)bn. 

Writing n = 4m + r with 0 < r < 4, we obtain 

Next we shall show that Ds2 lb2m and Dst lb3m are in lowest terms. Let p be an arbitrary 
prime divisor of b. Then? from (1) and (2), we have un = an~l (mod/?) and vn = an (mod/?). Since 
a and b aire coprime, un 4 0 (mod p) and vn # 0 (mod /?); furthermore, D = a2 - 46 = a2 # 0 (mod 
p). We have thus completed the proof. D 

Before proceeding to the proof of Proposition 2, we will need the following information. 
Let c be a nonzero integer and let C be the elliptic curve given by the equation y2 - x3 + ex. 

We denote by T the additive group of rational points on C and by O the zero element of T. 

Definition 1: For P = (x,y)eT, we write x = plq in lowest terms and define the logarithmic 
height of P by 

A(P) = logmax(|P|,|g|). 

Definition 2: For P eT, the quantity 

h(P) = 11m hirp) 
X / n-»ao 4n 

Is called the canonical height of P. 
The following two fundamental theorems on the height are well known, so the proofs are 

omitted (see [4] or [10]). 

Theorem 1: There is a constant K0 that depends on the elliptic curve C, so that 

\h(2P)-4h(P)| < KQ for all P e F . (4) 

Theorem 2 (Neron): There is a constant KX that depends only on the elliptic curve C, so that for 
all positive integers n and for all P e T we have 

\h{nP)-n2h{P)\<Kv (5) 

Definition 3: For P = (x,y) in T, we write x = plq in lowest terms and denote by X(P) the 
exponent of the highest power of 2 that divides the denominator q. By convention, we define 
1(0) = 0. 

Lemma 1: Let PGT with P^(0,0). If A(P)*0, then l(2P) = l (P) + 2. 

2002] 461 



PERFECT SQUARES IN THE LUCAS NUMBERS 

Proof: We can write P = (x, y) = (m/e2, nle3), where m/e2 and n/e3 are in lowest terms 
with e > 0. Then the x coordinate of 2P is given by 

3x 2 +cf _(m-ce4)2 
x(2P) = -2x +, - — , - , -; { 2y ) (2enf 

Since e is even and m, n are odd, X(2P) = A(P) + 2. D 

L^mifia 2; Let i^ and P2 be in F with Px * (0,0) and P2 * (0,0). If 0 < A(PX) < A(P2), then 
A(Pl + P2)<A(P2). 

Proof: If /J = 0 , then ^ + P2) = A(P2). So let us write Px = (xhyx) = {mle2,nle3) and 
Pi = ( x 2>y i )~^I f 2 ^ I f 3 )^ where m/e2, n/e3, mlf2, and ?f//3 are in lowest terms with 
e > 0 and / > 0. Then the x coordinate of Px +P2 is given by 

( ^2 
(yi~yi x(Pl + P2) = -xl-x2 + 

= (nf3-ffe3f-(mf2 -me2)2(mf2 + me2) 
e2f2(mf2-me2)2 

Since 0 < A^) < A(P2), we can write e = 2sef and / = 2 f / ' , where e' and / ' are odd and s and f 
are integers with 0 < s < t. Then x(Pt + P2) becomes 

(2*-*nf* -jfe'3)2 - (22t~2srnf>2 -mea)2{22t-2smf>2 +mef2) 
22te'2f>2{22t-2smf'2-me<2)2 

Since e\ / ' , m, and JF are odd, we have A(Pl + P2) < 2t. Combining this with A(P2) = 2t, we 
obtain X(Pl + P2) < A(P2). ' D 

Lemma 3: Assume that T has rank one, and let P be a generator for the infinite cyclic subgroup 
of r . Let tQ denote the least positive value of the integer t such that A(tP) & 0. Then, for any 
integer / > 0, if 2lt0 < n< 2l+%, then l(nP) < X(2ltQP). 

Proof: We use strong induction on /. First we show that the result is true for / = 0. Suppose 
t0 <n<2tQ. Then we can write n = tQ+r with 0<r <t0. Since A(rP) = 0 and A(t0P)>0, by 
Lemma 1 we have X(nP) = A(t0P+rP) < l(tQP). 

Next we suppose that the result is true for each /= 0,1,2,..., k. For any integer n satisfying 
2k+lt0 <n<2k+2tQ, there exists an integer r such that n = 2k+lt0 +r and 0< r <2k+%. The induc-
tion hypothesis gives A(rP) < A(2kt0P). By Lemma 1 we have X{2kt0P) < A(2k+lt0P). Therefore, 
X(rP)<A(2k+ltQP); thus, by Lemma 2 we have A(nP) = A(2k+%P+rP) < l(2k+%P), which 
shows that the result is true for / = k +1. Hence, the result is true for every integer / > 0 and the 
proof is complete. D 

Proof of Proposition 2 
We put Rm = (Ds2 lh2m, Dst lb3m), where s2 = \u4m+r | and f = v4m+r. Assume that F has rank 

zero. Then it is a finite cyclic group, and so the rational point Rm lies on the elliptic curve C only 
for finitely many m > 0; therefore, u4m+r is a perfect square only for finitely many m > 0. 
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Next assume that T has rank one. Then T~Z@F, where Z is an Infinite cyclic group and F 
is a torsion group of order two or four (see [4] or [10]). Let P G F be a generator for Z and 
QGT for F. Now suppose that the rational point Rm lies on the elliptic curve C. Then there are 
integers i and j such that 

Rm = iP+JQ. (6) 
Since 4Q = O, where O is the zero element of T, we obtain 

4Rm=41P. (7) 

The essential tool for the proof is the logarithmic height. Since h(4iP) = h(-4iP), we can 
assume i > 0 without loss of generality. Let kQ be the least positive value of the integer k such 
that X{kP) * 0. Then there is an integer / > 0 such that 2lkQ < 4/ < 2l+lk0. From Lemmas 1 and 3, 
we find l(4iP) < A(2lk0P) = l(k0P) + 21. Since A(4iP) = A(4J?J > 2m, putting A0 = A^P), we 
obtain 2/ > A(4iP) - 20 > 2m ~ 20 . Hence, 4i > 27*0 > 2m~x^11. 

Now., Theorem 2 tells us that there is a constant Kx depending only on the elliptic curve C, so 
that 

h(4iP) > (4ifh(P) -Kx> 22m~x«h(P) - Kv (8) 

Next we estimate for h(4Rm). Let a and ft be distinct roots of the polynomial f(z) = z2 ~ 
az + h. Putting y - max(|a|, |/?|) > 1, we find 

| ^ | = |a^|2m<^4m
5 

IDs21 - |Dii4m+r| = \a-p\\aA^-fl«*»\ 

<(\a\ + \p\)(\a\4m+r+\fi\4m+r)<4y4m+4 

Therefore, h(RJ < log Ay4(m+1) = 4(m +1) log y + 2 log 2. Hence, by Theorem 1, 

h(4Rm)<\6h(Rm) + 5K0 <64(w + l ) lo g r + 321og2 + 5*o, (9) 

where Zg is a constant depending only on the elliptic curve C. 
It follows that, if the rational point Rm lies on the elliptic curve C, then m satisfies the follow-

ing inequality: 
64(iw + l)logr+321og2 + 5^0>22m-AoA(P)-Z1. (10) 

However, there exists a constant N>0 such that inequality (10) is false for every m>N, so 
the rational point Rm is not found on C for every m>N. We conclude from Proposition 1 that 
u4m+r is not a perfect square for every m>N. We have thus completed the proof. D 

3. APPLICATIONS 

Following Silverman and Tate [10], we describe how to compute the rank r of the group T 
of rational points on the elliptic curve C: y2 = x3 + ex with integral coefficients. Let CT denote 
the multiplicative group of nonzero rational numbers, and let €3f2 = {u2 : u eQ*}. Now consider 
the map q>: T —> Q* / CT2 defined by the rule: 

f(0) = l (modQ*2) 
p(0,0) = c (modQ*2) 
<p(x,y) = x (raodCF2) ifx^O. 
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On the other hand, let F denote the group of rational points on the elliptic curve C : y2 = 
x3 - 4cx. Using the analogous map <p: T -> Q* / Cf2, we obtain the formula for the rank of F: 

y = #Kn-^(D> (11) 

where #^(T) and #^(F) denote the order of <p(T) and the order of 7p(T)9 respectively. 
Next we describe how to determine the order of <p(T). It is obvious from the rule of the map 

<p that {1, c(mod Q*2)} c tp(T). 
Now, for P = (x, j ) G F with j * 0, the coordinates x andj are written in the form 

cM1 qMN 

in lowest terms with M& 0 and e > 0, where <\ is an integral divisor of c, so that c = qc2. Here 
M, e, and TV must satisfy the equation 

N2 = ctM4+c2e\ (12) 
and also the conditions 

gcd(M, e) = gcd(TV, e) = gcd(c1? e) = 1, 
gcdfe, M) = gcd(M, TV) = I 

Hence, for a factorization c = qc2, if the equation N2 = cxM4 + c2e4 has a solution (M, e, TV) with 
A/ ^ 0 that satisfies the side conditions above, then ct (mod Q*2) is in ^(F), otherwise it is not. 

Proposition 3: Let p be a prime and let C be the elliptic curve y2 = x3 - 4/wc. If p = 3 (mod 4), 
then the group F of rational points on C has rank zero or rank one. 

Proof: Since c = -4p, the possibilities for cx are q = ±1, ±2, ±4, ±p ±2p, ±4p. So we see 
that q>(T) c {±1, ±2, ±/>, ±2/? (mod©*2)}. We shall show first that -1 £ F . Let us consider the 
equation 

N2 = -M4+4pe\ (13) 

This implies the congruence N2 s -M4 (modp). Since p s 3 (mod 4), we have {-lip) - - 1 , 
where {-Up) is the Legendre symbol of -1 forp; hence, the congruence above has no solutions 
with M# 0 (mod /?). So equation (13) has no solutions in integers with gcd(A#, N) = l. Simi-
larly, the equation N2 = -4M4 + pe4 has no solutions in integers with gcd(M, N) = l. Therefore, 
-1 £0>(r), and hence #p(T) = 2 or #p(T) = 4. 

On the other hand, let C be the elliptic curve y2 = x3 + I6px, and let F denote the group of 
rational points on C. Since c = l6p9 we have <p(T) c {l,2,p,2p (nnodG*2)}. We shall show 
by contradiction that 2 £p( r ) . Let us consider the equation 

N2 = 2M4 + 8pe4. (14) 

Suppose equation (14) has a solution in integers with M * 0 and gcd(M, TV) = 1. Then TV is even. 
Putting TV = 2TV1? we have 2TV2 = M4 +4pe4, showing that Mis even, contrary to the hypothesis 
that M and TV are coprime. Hence, equation (14) has no solutions in integers with gcd(M, TV) = 1. 
Similarly, the equation TV2 = %M4 + 2pe4 has no solutions in integers with gcd(TV, e) = 1. Thus, 
2 £ ?>(r), and so #^(F) = 2. By formula (11), we find 
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2r = M>#gr) = Ior2 
4 

Therefore, r has rank zero or rank one. D 
Proposition 4: Let p9 q be primes and let C be the elliptic curve y2 = x3 - 4pqx. If p = 5 (mod 
8), q = 3 (mod 8), and (p/q) = -l, thee the group T of rational points on C has rank zero or 
rank one. 

Proof: Since c = ~4pq, we have p(T) e {±1, ±2, ±p9 ±q9 ±2p9 ±2q, ±pq9 ±2pq (mod Q*2)}. 
We shall show, for instance, that -2p g l \ The hypotheses give 

$->• G M ? M S H (f)-&)-
Hence, the congruence N2 = -2pM4 (mod #) has no solutions with M ^ 0 (mod f) because 
(~2plq)=(-llq)(2/q)(plq) = ~~l9 so N2 ^-2pM4 +2qe4 has no solutions in integers with 
gcd(M, JV) = 1. Therefore, -2p g l \ By using the same argument, we can show that <p(T) does 
not have any elements of {-1, ±2, ±p, ±q9 ~2p9pq92pq}. Thus, we obtain #*p(T) < 4. 

On the other hand, let C be the elliptic curve y2 = x3 + \6pqx, and let T denote the group of 
rational points on C. Since c = 16pq, we have a(T) c {1,2, p, f, 2p, 2f, pq9 2pq (mod G*2)}. 
By using an argument similar to the one above, we can show that p &!p(Y) and q^(T). 
Furthermore, by using an argument similar to the one we gave in the proof of Proposition 3, we 
can show that $?(T) does not have any elements of {2,2p9 2q9 2pq). Thus, we obtain #tp(T) = 2. 
Therefore, by formula (11), we find 2r < 2. In conclusion, T has rank zero or rank one. D 

In addition, the following proposition holds. The proof is completely analogous to that of 
Proposition 4. 

Proposition 5: Let p9 q be primes and let C be the elliptic curve y2 = x3 - Apqx. If p = 1 (mod 
8), q = 7 (mod 8), and (p/q) = - 1 , then the group T of rational points on C has rank zero or 
rank one. 

Now let us consider the Lucas sequence determined by UQ = 09 ul = l> un+2 = aun+l~-bum 

where a and b are coprime integers that are nonzero, D = a2 - 4b * 0. Assume that b is even. If 
D = -p < 0, where p is a prime, then p s 3 (mod 4). If D = -pq < 0, where p and q are primes, 
then •(/?,#) = (3,5) (mod 8) or (p9q) = (l97) (mod 8). Hence, the following three corollaries 
hold. 

Corollary 1: Assume b is even and D = -p < 0, where/? is a prime. Then there are only finitely 
many perfect squares in the subsequence {u4m}. 

Corollary 2: Assume b is even and D = -pq <0, where p and q are primes with (p/q) = - 1 . 
Then there are only finitely many perfect squares in the subsequence {u4m}. 

Corollary 3: Assume b is of the form b = (2d)4 for some integer d. If D = -/?, where p i s a 
prime, or if D = -qr < 0, where q and r are primes with (qIf) = - 1 , then there are only finitely 
many perfect squares in the sequence {u„}. 
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Proof: Suppose that the rfi1 term, un, is a perfect square. As mentioned above, we have 
t2 = Ds4 + 4(2d)4n, where s1 = \un | and / = vn. This implies 

Dst f { D£ f , AT^\ Ds2 
+ 4D {(Id)3"} [(Id)2"} \(2d)2n\ 

From Propositions 3, 4, and 5, we obtain that the elliptic curve y2 = x3 +4Dx has rank zero or 
rank one. It follows that un is a perfect square only for finitely many n > 0. D 
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Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Editor, 
DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State Univer-
sity, 800 University Drive, Maryville, MO 64468. All solutions to others'proposals must be sub-
mitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathematics and Statistics, 
Northwest Missouri State University, 800 University Drive, Maryville, MO 64468. 

If you wish to have receipt of your submission acknowledged, please include a self-addressed, 
stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in this 
issue must be received by April 15, 2003. If a problem is not original, -the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

^t+2 = K+i+Fn, F0 = 0, Fx = 1; 
AH-2 ~ Ai+i + Ai> LQ = 2, Lt = 1. 

Also3a = (l + V5)/25 £ = ( l -V5)/2 , Fn = (a" - fin) / & and Ln = an+fi". 

PROBLEMS PROPOSED IN THIS ISSUE 

B-946 Proposed by Mario Catalani, University of Torino, Torino, Italy 
Find the smallest positive integer k such that the following series converge and find the value 

of the sums: 

1=1 * 1=1 K 

B-947 Proposed by Stanley Rahinowitz? MathPro Press, Westford, MA 
(a) Find a nonsquare polynomial f(x,y,z) with integer coefficients such that f(Ffl,Fn+l?Fn+2) 

is a perfect square for all n. 
(b) Find a nonsquare polynomial g(x9y) with integer coefficients such that g(Fn,Fn+l) is a 

perfect square for all n. 
B-948 Proposed by Jose Luis Diaz-Barrero & Juan Jose Egozcue, Universitat Politicnica de 

Catalunya, Barcelona, Spain 
Let £ be a positive integer greater than or equal to 2. Show that, for x > 0, 

n 

lOgir F F X" ^ J] l°gF , X° 
k=l 
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B-949 Proposed by N. Gauthier, Royal Military College of Canada 
For / and n positive integers, find closed form expressions for the following sums, 

S i s £ 3" -* /$ . 2 / and S^YJ~kA 
k=l k=l 

3 
'3k-(2l+l)' 

B-950 Proposed by Paul S. Bruckman, Berkeley, CA 
For all primes p>2, prove that 

g j ^ O (mod/0, 

where j represents the residue k~l (modp). 

SOLUTIONS 
An Inequality and an Equality Case 

B-930 Proposed by Jose Luis Diaz & Juan Jose Egozcue, Terrassa, Spain 
(Vol 40, no. 1, February 2002) 

Let n > 0 be a nonnegative integer. Prove that F^nI%n < (F^1)2. When does equality occur? 

Solution byH.-J, Seiffert, Berlin, Germany 
We shall prove that, for all nonnegative integers /?, 

FLnfFn < J7Fn+l < J72Fn+l (]\ 
rn ^n ~r2n - rn+l > \k) 

with equality on the left-hand side only when n = 0 or n = 1, and on the right-hand side only when 
w = l. 

If x and y are distinct positive real numbers, then, by the weighted Arithmetic-Geometric 
Mean Inequality, 

^MX x y <&r Since|™ < Jxy < ̂ ~, we have 

x yyx < {xyix+y)l1 < [ £ ± Z Y*'. (2) 

The cases n = 0 and n-\ can be treated directly. If n > 2, then 0<Fn<Ln and (2) gives 

' F +L Y"+L" 

From (I7) and (I8) of [1], we know that FnLn = F2n and Ln = F ^ +FW+1. The latter identity gives 
Fn + Ln = 2Fn+l so that (1), including the conditions for equality, is proved. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
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Abo solved by Paul Bruckman, Charles Cook, L.AG. Dresel, OvMiu Furdui, Wmlther Janous, 
Harris Kwong, Toufik Mansour (partial solution), and the proposer. 

A Relatively Prime Couple 

B-93I Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI 
(Vol 40, no. 1, February 2002) 

Prove that gcd{Lm Fn+l) = 1 for all n > 0. 

Solution by Charles K Cook, University of South Carolina at Sumter, Sumter, SC 
First, note that 4 = Fw+1 + F„_x and Fn = Fn+l ~ Fn_t. Let «/ = (Fn+h Ln). Then d \ Fn+l and 

d\Ln^Fn+l+Fn_v It follows that d\Fn_v Thus, d ^ - F ^ and F\Fn. But (Fn,Fn¥l) = 1. 
Hence, d = l. 

Also solved by Paul Bruckmam, L.A.G. Dresel, Pentti Haukkanen, John Jaroma, Wmlther 
Janous, Harris Kwong, Toufik Mansour, Maitland Rose, H.-J. Seiffert, and the proposer. 

A Strict Inequality and a Serious Series 

B-932 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI 
(Vol 40, no. 1, February 2002) 

Prove that 
F F F 1 °° F F F 

A) - 2_4"' 2w < r=— for all n > 1 and B) Y * 4"'2k converges. 
FlF3'"F2n+l V^iH-l f^FlF3'"F2k+l 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
The Inequality in A) can be established by means of induction. To complete the inductive 

step, it suffices to prove that 
1 F2n+2 < 1 . 

iF2n+l ^2w+3 ^F2n+3 
or, equivalently, 

F2n+2<F2n+lF2n+3' 

Binetfs formulas yield 

5 ^ 2 = ( ^ + 2 ~ P2n+2f = «4"+4 - ^Pfn+2 + @4n+4 = hn+4 - 2 
and, In a similar manner, 

5F2n+1F2n+3 = a4"+4 - 2(afi)2"+\a2
 +fi2)+fl4"+4 = L4n+4 + 2L3, 

thereby completing the Induction. 
To prove B), we use a comparison test. Because of A), it remains to show that 

y 1 

Jfc=l SF2k+\ 

converges. We now apply a ratio test to complete the proof: 
r2fc+l - J_< J 
F24+3 « 
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H.-J. Seiffertproved the sharper inequality 
F2F4...F2n ^ 1 

FlF3'--F2n+l ^2F2n+l 

with equality occurring only when n-\. 

Also solved by Paul Bruckman, Charles Cook, L.A.G. Dresel, Jose Luis Diaz & Juan Jose 
Egozcue (jointly), Pentti Haukkanen, Walther Janous, Touftk Mansour9 H.-J. Seiffert, and 
the proposer. 

A Special Case of a More General Inequality 

B-933 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI 
(Vol 40, no. 1, February 2002) 

Prove that F/n+1 > F^x for all n > 4. 

Solution I by Pantelimon Stanica, Montgomery, AL 
We prove the inequality by induction. For n = 4, we need 35 >53, which is obviously true. 

Assuming the inequality true for n, we prove it for n +1. Thus, 
pFn+l - frFn+\J7Fn ^ J7Fn+\ J7F„+\ -(17 J7 \Fn+l > J7Fn+l 
rn+l ~ rn+l rn+l > rn+l rn ~ \rn+\rn) ^ rn+2 •> 

using induction and the fact that FnFn+l >Fn+ Fn+l = Fn+2. 

Further Comment: In fact, a much more general inequality is true (see, e.g., F. Qi & L. Debnath, 
"Inequalities of Power-Exponential Functions," J. Ineq. Pure Appl. Math 1.2 [2000]:art. 15): 

If e < x < y, then xy > yx; 

If x < y < e , then x^ <y*. 

The first inequality, taking x = Fn9 y = Fn+l9 n>4, implies B-933. 

Solution II by Paul S. Bruckman, Sacramento, CA 
For brevity, write a = Fn, b = Fn+l. 
Consider the analytic function F(x) = x / In x, x > l . Note that F' (x) = 1 / In x - 1 / In2 x; thus 

F'(x) = 0 iff x = e. Also, F"(x) = ~l/(xln2x)-f 2/(xln3x). Since F"(e) = l/e>0, then F 
attains a relative minimum at x = e; in fact, F(e) = e. Moreover, F'(x)>0 if x>e , i.e., F is 
increasing for all x > e. 

In particular, if n > 4, we have b>5, b>a>3>e, so b/lnb > a Una. Equivalently, blna > 
a In J, which implies ab >ba. Q.E.D. 

Incidentally, note that if n < 4, a < e, then the indicated inequality is invalid. For n - 1,2,3, 
respectively, we find that 1 = I1 = I1, 1 = I2 < 21 = 2, and 8 = 23 < 32 = 9. 
Most solvers used variations of Solution II. H.-J. Seiffert improved the inequality by showing 

Also solved by Charles Cook, Jose Luis Biaz-Barrero & Juan Jose Egozcue (jointly), L.A.G. 
Dresel, Walther Janous, Toufik Mansour, H.-J. Seiffert, and the proposer. 

470 [NOV. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

A Trigonometric Fibonacci Equality 

B-934 Proposed by K Gauthier, Royal Military College of Canada 
(Vol 40, no. 1, February 2002) 

Prove that 

«=1 V^ ImInIn+\J \ rmrn+lJ «=1 V rmrnrn+lJ \ rn+lrm J 

where m is a positive integer. 
Solution by L.A* G. Dresel9 Reading? England 

For a,ny given m, let An = nFm^ I {FmFnFn+l) and Bn = nFnFm+l I (FmFnU). Using the trigono-
metric identities 2sin2(A/2) = l-cos.4, sin(i? + yt) = cos>isini? + cosi?sin^? and sin(B-A) = 
cos A sin B - cos J? sin A, the proposition to be proved transforms to 

Z s i n ^ ^ Z s i n ^ + H ) ^ } , 

the summations being from n = ltom. Now 

{B^irVfAJ = {nFm+J{F^nFn+M{Fnf^(-m, 
and using identity (29) of [1], (Fnf + (-!)" = Fn+lFn_u we obtain 

HIUS, it remains to prove Z(sin5w-sin5w-1) = 0, which reduces to (sinjBw-sin50) = 0. But 
B0 = 0 and Bm = n, so that sin Bm = sin BQ = 0. 

Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood 

Ltd., 1989. 
Also solved by Paul Bruckman, Ovidiu Furdui, Walther Janous, H.-J. Seiffert, and the 
proposer. 
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PROBLEMS PROPOSED IN THIS ISSUE 
H-589 Proposed by Robert DiSario9 Bryant College, Smithfield, RI 

Let / («) = F(F(nj), where F(n) is the n^ Fibonacci number. Show that 

f(nS = ( / (* - l ) ) 2 - ( - l ) F ( w ) ( / ( " -2 ) ) 2 

H ) / ( » - 3 ) 
for n > 3. 

B-590 Proposed by Florian Lucm$ Campus Morelia^ Michoacan? Mexico 
For any positive integer k, let #(k)9 <r(k)9 r(k), Cl(k)9 m(k) be the Euler function of k9 the 

sum of divisors function of k, .the number of divisors function of k, and the number of prime 
divisors function of A: (where the primes are counted with or without multiplicity), respectively. 

1. Show that n \ ${Fn) holds for infinitely many n. 
2* Show that n \ cr(Fn) holds for infinitely many n. 
3* Show that n \ t(Fn) holds for infinitely many n. 
4. Show that for no n > 1 can n divide either Q(FJ or m{Fn). 

H-591 Proposed by H.-J. Seiffert, Berlin^ Germany 
Prove that, for all positive integers n, 

(a) 5"F2n_x= f(-ir^y44" + l \ 
k=Q v / 

5f2«-Jfc+3 

(h) S"L2n= 2 W 4 " + * - H 4 V 3 \ 
Jfc=0 ^ ^ 

5l2n-k+4 

(c) 5"-«F2n= 2 § V i ) K 8 f , + < r + 3 ) / 5 ( 4 " r 3 \ 
ik«0 \ K J 

k^Q V 
5f2n-fc+2 

where [ ] denotes the greatest integer function. 
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HJ592 Proposed by K Gautheir & J. R Gosselin, Royal Military College of Canada 
For integers m > 1, n > 25 let Xbe a nontrivia! n x n matrix such that 

X2 = xX+yI9 (1) 

where x9 y are ledeterminates and / is a unit matrix. (By definition, a trivial matrix is diagonal) 
Then consider the Fibonacci and Lucas sequences of polynomials, {Ft{x9 y)}f=0 and {L£x9 y)}f=0, 
defined by the recurrences 

FQ(x9y) = 09 Fx(x9y) = \, Fl+2(x9y) = xFM(x9y)+yFl(x9y)9 

L0(x,y) = 2, Ll(x9y) = x9 Ll+2(x,y) = xLM(x,y)+yLl(x9y), 

respectively. 
a* Show that 

Xm = amX+bmy! and that Xm + (-~y)mX~m = cj9 

where am9 bm9 and cm are to be expressed in closed form as functions of the polynomials (2). 
b. Now let 

f(X;x,y) = \U-X\= fd(-\rmK-J<m 

be the characteristic (monic) polynomial associated to X, where the set of coefficients, 

is entirely determined from the defining relation for f(A; x9 y). For example, 1 0 = 1, At = tr(X)? 

Xn = det(X)9 etc. Show that 

f^(-\yXn_mFm(x9y) = 0 andthat ytnr^J^fay)**^ 
m=l m-l 

SOLUTIONS 
A Fine Product 

H-577 Proposed by Paul S, Bruckman, Sacramento, CA 
(Vol 3% no. 5, November 2001) 

Define the following constant: C = 11̂ (1 - IIpip -1)} as an infinite product over all primes/?. 
(A) Show that 

00 

lMw)/Mw)}, 

where //(«) and ^(/i) are the Mobtus and Euler functions, respectively. 

Solution by Nairn Tuglu9 Turkey 

Y/i(»)/{w#?)}= Mm YMWWW}-

If/is a multiplicative arithmetic function, then 
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2/i(d)/(rf)=n(i-/(p)x 
d\r p 

where/? is prime less than r. 
If the Euler function $(r) is multiplicative, then f(r) = ̂ ~r is a multiplicative function; so 

lMrf)/W(d)} = n{i-75bo}-
If/? is prime, then $(p) = p -1, and we have 

iM«o/w(rf)}=n{1-^}' 
where/? is prime less than m; therefore, 

£M»)/{^(")}=limn{l-K^)} 
n=l p 

is an infinite product over all primes/?. 

Firm Matrices 

H-S78 Proposed by K Gauthier & J. R. Gosselin, Royal Military College of Canada 
(Vol 399 mo. 5, November 2001) 

In Problem B-863, S. Rabinowitz gave a set of four 2 x 2 matrices which are particular solu-
tions of the matrix equation 

X2 = X + I, (1) 

where / is the unit matrix [The Fibonacci Quarterly 36.5 (1998); solved by H. Kappus, 373 
(1999)]. The matrices presented by Rabinowitz are not diagonal (i.e., they are nontrivial), have-
determinant -1 and trace +1. 
a. Find the complete set {X} of the nontrivial solutions of (1) and establish whether the proper-
ties det(X) = -1 and tr(X) = +1 hold generally. 
k Determine the complete set {X} of the nontrivial solutions of the generalized characteristic 
equation 

X2 = xX+yI, (2) 

for the 2 x 2 Fibonacci matrix sequence Xn+2 = xXn+l +yXn
y n = 0,1,2,..., where x and y are 

arbitrary parameters such that x2/4-f-j ;*0; obtain expressions for the determinant and for the 
trace. 

Solution by Waltker Jamous9 Innsbruck? Austria 
It is enough to deal with part b (clearly containing the first question a). 
Let the matrix X under consideration be given as \* J]. Then for X it has to hold that 

a b 
c d 

2 
-x- ~a b 

c d -y> 
"l 0" 
0 1 = 

"0 0" 
0 0_ 

i.e. (upon factorization of the left-hand side), 
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-c°(x-a-d) -d-x-y+b-c+d2 

Therefore, we have to distinguish several cases. 
CASE1. 6 = 0. Then 

-Q-x-y+a2 +0-c -0-(x-a-d) 
-c°(x-a~d) ~d°x-y + 0°c + d2 

- a - x - j + a 2 0 
-c-(x-a-d) -d-x-y-i-d2 

0 0 
0 0 

= 

= 

"0 0" 
0 Oj 

"0 0] 
o oj 

Case 1.1. c = 0. Then 

-a-x-y+a 0 
-0-(x-a-d) -d°x-y + d2 

-a-x-y + a2 0 
0 -d>x-y+d2 

\ = "0 0" 
0 Oj 

r° °i 
o oj 

yielding, for the entries a and d, the possibilities 

a-
^l(x2+4-y) + x ^d=4Jx2+4-y) + x j = V(x2+4-j;) + x ^ = x- V(x2 + 4-j) 

x - J ( x 2 + 4 - y ) , J(x2+4-y) + x x-J(x2-f 4-j) , x -J (x 2 +4- j / ) 
2 2 ? 2 2 

All of these solutions yield desired matrices X of type [g 2] having det(X) = a*J and tr(JQ = 

Remark: From these possibilities, it is easily derived that for part a the two stated properties 
det(X) = --1 and tr(JF) = +1 do not hold in general! 

Case 1.2. £ ^ ° . Then x-a-d = 09 i.e., d = x-oy whence 

- a -x -y - f a 2 0 
- C ' ( x - a - ( x - a ) ) - ( x - a ) - x - j + (x -a ) 2 

^2 
- a - x - j - f a 

0 
0 

-a-x-y + a2 

= 

= 

"o o" 
0 0 

"0 0" 
0 0j 

Therefore the entry a has to be 

V(x2+4-j) + x ^ ( x 2 + 4 - j ) 
2 ? ^ 2 

with the corresponding possibilities of d(=x-a): 

f_ x-^(x2+4-y) x-^/(x2+4-j) + x 
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Hence, all matrices X of type [* J] are of the desired kind. Their determinants and traces are a* d 
and a + d, respectively. 
CASE 2* ,!c = 0t!, and its only fnews subcase 6^0 , are dealt with in a manner similar to that 
shown above. 

Thus, we are left with 
CASE 3* b * 0 and c * 0. Then x - a - d = 0, whence d = x-a and, further, 

-a-x-y + a2 +b-c -b'X + Q'h+b-(x-o) 
-c-x+a-c + c-(x-a) -(x~a)'X-y-\-b-c + (x-a)2 

-a>x-y + a2 +b-c 0 
0 -a-x-y+a2 +b>c 

= 

r° °i 0 0 

"0 Ol 
0 0} 

Thus, we get (with a and b arbitrary) 

t__ a-x+y-a 

Therefore, finally, the matrices X for this case are 

having \x(X) = x, and det 
a b 

a-x+ y-a2 

—f x-a 
b 

a>x+y-a 
x-a 

•--y. 

Abo solved by P. Bruckmamf M Catalan!? 0. Furduif J. Morrison? amdH.-J, Seiffert 

A Lesser Problem 

H-581 Proposed by Jose Luis Diaz, Polytechnic University ofCatalunyaf Spain 
(Vol 40, no. I February 2002) 

Let n be a positive integer. Prove that 
(a) F^+F^+F„%<Fn

F»+F„F£>+F„Ftf. 

Solution by the proposer 
Part (a) trivially holds if n = 1,2. In order to prove the general statement, we observe that 

{F„F" +F& +F&)-(Ff"> +F& +Fn%) 

Therefore, our statement will be established if we prove that, for n > 3, 

and 

hold. 

F>+i^<F/»+i£T
1 

rn+l rn+l ^ rn+2 rn+2 

0) 

(2) 

In fact, we consider the integral 
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Ii=iF
n+l(Kli^gFri+l~Fn

xlogFn)dx. 

Since Fn<Fn¥l if n>3, then, for Fn<n<Fn+l, we have F*logFn <F*+llogFn < Fn
x
+llogFn+l 

midll>0. 
On the other hand, evaluating the integral, we obtain 

h = C"+' (Fn\i logi<,+1 - F„' log F„)dx = [/£, - Fffi 

= (F„F"+F%f)-(Fn^+Fnl) 

and (1) is proved. 
To prove (2), we consider the integral 

tF»* 

k 
h=lF

n+\^2l^sK+2^^ilogFn+l)dx. 

Since Fn+l < Fn+2, then, for Fn < x < Fn+2, we have F*+l log Fw+1 < F £ 2 log Fn+2 and /2 > 0. 
On the other hand, evaluating I2, we obtain 

h = C+2 tf,x+2 !og F„+2 - i £ , logFn+1) A = [ /£ 2 - /£,£"•' 
- (FF"+2 - FF* \ -(FF»+2 - FF*} 
~\Pn+2 Pn+2J \Pn+l Pn+l)' 

This completes the proof of part (a). 
We will prove part (b) of our statement using the weighted AM-GM-HM inequality [1]: "Let 

xi? x2,.. . , xn be positive real numbers and let w{, w2,...,wn be nonnegative real numbers that sum 
to 1. Then 

2>A>n*Hi k=l k=l U = l Xk J 

^Wh (3) 

Equality holds when xl=x2 = "- = xn" 
The proof will be done in two steps. First, we will prove that 

f F 4- F 4-F ^ + ^ + 1 + ^ + 2 

F?-»F&*F& < [F" + F " + 3 1 + F"+2j (4) 
In fact, setting 

xx~FnJ x2=Fn+lJ x3 = rn+2, 
and 

F F F 
w

 rn+l w _ J n+2 w _ A n 
Wl Fn + F„+l+Fn+2' 2 K + Fn+l+Fn+2' 3 Fn + Fn+1 + Fn+2 

we have, from (3), 
rn rn+l l n+2 

<
 PnPn+l , pn+Vn+2 , pn+2pn 

K+Fn+l+Fn+2 ^ + ^ + l + ^ f 2 Fn+Fn+l+Fn+2 . 

or 
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1 n J n+l l n+2 v 

rFF i + F ,F *+F & ^Fn+F"+l+F"+2 

1 n1 n+l ~ J n+l1 n+2 ^ A n+21 n 

Ai + l*n+l + Ai+2 
Inequality (4) will be established if we prove that 

(FF , + F ,F . + F & Y"*Fn+2+Fn+2 (F+F , + F ,y»+F»+i+ir»+2 
i w i H + l T i »+lfB+2 ^ rn+2rn ^ | ^w ^ ^H+I ^ *»+2 g 

I Fn+Fn+l+Fn+2 J 
or, equivalently, 

< -j 

or 

i.e., 

AIAI+1 + Fn+lFn+2 + At+2 Ai < Ai + ^ H - l + ffi+2 
A I + A I + I + ^ H + 2 3 

(FB + Fwfl +F, + 2 ) 2 > 3(FW^+1 + Fn+lFn+2 + Fn+2Fnl 

Fn + Af+1 + Ai+2 > AIAI+1 + Fn+lFn+2 + Fn+2Fn • 
The last inequality will be proved in a straightforward manner. In fact, adding the inequalities 

F^F^>2FnFn+h Fn\l+F*+2>2Fn+lFn+2y mdF*+2+Fn
2 >2Fn+2Fn we have 

Fn + Fn+l + Fn+2 > FnFn+l + Fn+lFn+2 + Ai+2 A* 

and the result is proved. 
Finally, we will prove that 

F 4-F 4~F Y"+Fn+l+i"+2 
1 n^1 n+l^1 n+2 • < FF"FFntlFFnZ2 (5) 

Setting xx = F„, x2 = F„+l,x3 = Fn+2, wt = FJ(F„ + Fn+l+F„+2), w2=Fn+l/(Fn+Fn+l+F„+2), and 
w3 - F„+2 l{Fn+ F„+l + F„+2), and using GM-HM inequality, we have 

_ = 1 
3 

Fn+Fn+l+Fr,+2 _ 
1 1 - + - 1 

Fn + Fn+1 + Fn+2 Fn + Fn+l + Fn+2 Fn + Fn+l + K+2 

<r pFnl(Fn+Fn^F„^)FFn+il(F„+F^+F„+1)FF„^l(Fn+F„^Fn+1) 
^ A n •*- w4-1 A 1114-0 n+l n+2 

Hence, 
F+F , + F AF»+F^+F»+* * w w 
rn^rn+l^rn+2 ^ T?F„ j?Fn+l rFn < FP"F n*+lF nx2 

^ £ n £ n+l A n+2 

and (5) is proved. 
This completes the proof of part (b) and we are done. 

Reference 
1. G. Hardy, J. E. Littlewood, & G. Polya. Inequalities. Cambridge, 1997. 
Also solved by P. Eruckmmnf C Cook, O. Fmrdui9 H.-J. Seiffert, andN. Tuglm. 
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