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1. INTRODUCTION

Let ay,...,a,_; (r22, a,_, #0) be fixed real numbers. An r-generalized Fibonacci sequence
V. }*=, is defined by the linear recurrence relation of order 7,
nSn=0 y

Via=aV,+aV, ++a,_}V, fornzr-1, 1)

¥ n— r=1" n~-r+l»

where V, ..., V,_; are specified by the initial conditions. In the sequel we refer to these sequences
as sequences (1) or (1). When a; (0<i <r—1) are nonnegative and gcd{i +1; a, > 0} =1, where
gcd means the greatest common divisor, it was established in [10] that the characteristic polyno-
mial P(X)=X"-ayX"'----—a,_,X —a,_, has a unique positive zero ¢ and |1|<g for any
other zero 4 of P(X). And in [2] and [8] it was shown, by two different methods, that the limit
of the ratio V,, /q" exists if and only if the Ostrowski condition ged(i +1; a; > 0} = 1 is satisfied.

The purpose of this paper is to study the extended Ostrowski condition by considering (C):
ged{i+1; g, # 0} =1 for sequences (1) in the case of real coefficients (Section 2). We apply
Horner's diagram to the convergence of sequences (1) (Section 3). An extension of (C) to the
case of real coefficients is studied in Section 4. Finally, some concluding remarks are given in
Section S.

2. CONDITION (C) FOR SEQUENCES (1)

The Horner diagram for a given polynomial P(X)=ayX" +---+a,_ X +a,, where a,, a,, ...,
a, are real numbers, is a process for computing the value of P(£) for every x =¢. Its main idea
consists of writing P(&) = (--((ayE+a)E+a)é+ - )é+a,. Therefore, we can consider the
finite sequence {8, }o<;<, defined as follows:

Bo=ay, B1=Pos, Br=a,+PBi&, ... B, =a,+B,5.
Hence, we derive that 8, = P(£) and P(X) = OQ(X)(X - &)+ P(&), where O(X) = S, X ey
ﬂn—2X+ﬂ -1
Suppose that sequence (1) converges. For lim,_, V, #0, we have a,+a,+---+a,_;=1.

Suppose also that
a,+a;+---+a,_; =1 2)
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CONVERGENCE OF r-GENERALIZED FIBONACCI SEQUENCES AND AN EXTENSION OF OSTROWSKI'S CONDITION

Set b, = Z’Z, a;=p; and d =gecd{j+1; a; #0}. Then b, = B; for £=1 and condition (2) implies

that b, =1. Assume that the following condition is satisfied:

r=1

b, =0. 3)
Jj=0
By direct computation, we can verify that we have
V,+bl, \+-+b,_V, o =V,_;+bV, ,++b_J,. @)
Thus,
r-1 - V.
lim V, = ————_(1 J=k ak)
n—>+oo 7= +Da;

This expression was established in [2] and [8]. If (3) is not satisfied, the characteristic polynomial
takes the form P(X)=(X-1)(X"' +5X"2+.--+b,_;). Hence, 1=1 is of multiplicity >2.
Then {V,}}Z, does not converge for any choice of the initial conditions.

In the case of nomnegative coefficients satisfying (2), it was shown in [2] and [8] that
lim, ..V, exists for any choice of the initial conditions if and only if (C) is satisfied. Let us
establish that (C) is still necessary in the case of arbitrary real coefficients. In [9] it was estab-

lished that the combinatorial form of a sequence (1) is given by

V,=Aypn,r)+ A, p(n-1Lr)+-+A4,_p(n-r+1r) %)
for any n>r, where 4, =a,_V, +---+a,V,_, and
pnn= 3 Qe ©)
ko +2ky+ - +rk,_y=n—r r-1°
with p(r,r)=1 and p(n,r)=0, if n2r-1. For Vy=---=V,_,=0and V,_ =1, we have V, =
p(n+1,r) for n20. Inthe case of nonnegative coefficients, the sequence
)
q"" Jn=o’
where ¢ is the unique positive characteristic root, converges with
pnr)_ 1

™

lim =
n>+o g™ 14+bj++b))]

where b}, = X2} ‘;’“ (see [9]).
(The combinatorial form of sequence (1) has been studied by various methods and techniques;

see, e.g., [6], [7], [9], and [11].)
Suppose that a, ...,a,_, are real numbers and let a
cients (a; =a,_; orj;=r—1). Then (6) takes the form
(B +e+k) bk
,o(n, r)" Z Wi:afi] e a .

(o +D)le +(iy 1)k + -+ +(iy +1)k, =n—r ’

a;,4d;,...,a; be the nonvanishing coeffi-

Thus, we deduce that p(n,r) =0 for n<r or n# kd (k €N), where d = ged{j+1; a; #0}. For
d=gecd{j+1; a; #0} 22, it was shown in [8] that the sequence (1) has d subsequences of type
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CONVERGENCE OF r-GENERALIZED FIBONACCI SEQUENCES AND AN EXTENSION OF OSTROWSKI'S CONDITION

(1) in the case of nonnegative coefficients. For a,,...,a,_, real, we can derive from (C) that the
sequence (1) also owns d subsequences {V/)} ., (0<j<d-1) of type (1) defined as follows:
VO =V, = Ap(nd, )+ Ay ,p(n-Dd, 1)+ + A4,_y, p((n+1)d~r,r) for 0< j<d-1. So,
if the sequence (1) converges for any choice of initial conditions, we have V, =V for any j,
which implies that d = ged{j +1, a, # 0} = 1.

Proposition 2.1: Let {V,},,, be a sequence (1), where a,, ..., a,_; are real numbers satisfying (2).

> %=1

If {¥/,},50 converges for any choice of the initial conditions, then condition (C) is satisfied.

The following example allows us to see that condition (C) is not sufficient for the conver-
gence of a sequence (1), in the case of arbitrary real coefficients, with (2).

Example 2.1: Let {V,},., be a sequence (1) whose characteristic polynomial is
P(X)=X}-aX*-aX-a,

with @y =2+v, gy =—(1+2v), and a,=v (v#0,-2). Thus, Z§=0 a; =1 and (C) is satisfied.
Because the multiplicity of the characteristic root 4 =1 is 2, the sequence {//,},,, does not con-

verge for any choice of initial conditions.

3. CONVERGENCE OF SEQUENCES (1)

Horner's diagram is used for practical computations of values of polynomials (see, e.g., [1]).
In this section we apply this method to the convergence of some sequences (1), where the role of
the initial conditions is considered.

Let {V/,(n)},50 be a sequence (1) whose initial conditions are 4=(a,,...,a,_;). Let 4,,...,
A, be its real characteristic roots with multiplicities m,, ..., m,, respectively. Because the coeffi-
cients and initial conditions are real numbers, we deduce that if A =1lim,_ V;:'(’:)l) exists, thenA

is a real characteristic root.

Proposition 3.1: Let {V/,(n)},,, be a sequence (1) whose coefficients and initial conditions are
real numbers. Suppose that

k
ZajslforOskSr—l. ¥
j=0

flim, . V—;‘,%:';)l—) exists and is positive, then {/,(n)},,, converges.

Proof: Condition (8) implies that ;=1 and b, = 1_21;;(1) a; 20. Hence, from the Horner
diagram we deduce that, for any real zero 4 of the characteristic P(X), we have A <1. Since

-1
V()= Z B, jnj/lnz >

s m
=1 j=0

¢3

- where [A;[2]4,|2---2|4;|>--- 2|4, | and f, ; are obtained from initial condition A (see [2]), it

follows that when lim,_, V,’}:E’:)l )= 1, exists and is positive, we have
. Vn+1) U =
O< lim 4——2=24,<1 and V,(n)= 1 A} with D
< n_lg_lw VA(n) i an A(n) ; ;ﬁl,l 1 W ;}ﬂx,j
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CONVERGENCE OF r-GENERALIZED FIBONACCI SEQUENCES AND AN EXTENSION OF OSTROWSKI'S CONDITION

For 4, <1, we deduce that lim,_,, V,(m)=0. For A,=1, condition (8) implies that 1,=1is a
simple characteristic root. Also, [4;|<A,=1 for j>i. Therefore, Binet's formula implies that
{V (1)} ,50 converges. [

Remark 3.1: We can also use Descartes' rule of signs to derive the convergence of {//,(n)} 5.
More precisely, we have P(X)= gy X " + .- +5,_ X - 1)+ P(1), where by=1, b, =1- P a
>0, and P()=1- Z;;%, @; 20, by (9). From Descartes' rule, we have O(x) >0 for every x>0.
Thus, P(x)> 0 for every x>1. Hence, 4 <1 for every positive zero 1 of P(X).

Proposition 3.2: Let {V,(n)},5, be a sequence (1) whose coefficients and initial conditions are
real numbers. Suppose that

k r—2
ay2-1, Y (-, <lforl<k<r-2, Y (-1)*a, <l %)
J=0 j=0
If lim,_, MY—,‘}%};—)— exists and is negative, then {/,(n)}, converges. More precisely, we have

lim,_, .,V ,(m)=0.

Proof: We have Q(X) = (-1) P(-X); thus, 4 is a zero of P(X) if and only if -1 is a zero
of O(X). Set (X)) =By X+ +b,_)X -1 +0O(1); expression (9) implies that b, =1, b, =
1+ 0(-Va, 20 (k=1,..,r-2), and b,_, =1+ ¥ 3(-1)a, >0. We now have Q(1) # 0 and
Homer's diagram implies that 4 <1 for any real zero A of Q(X). Thus, for any real zero A of
P(X), we have also 4>-1. Since lim, V’,ﬂj'(’:)l) exists, it follows from Binet's formula that

(1)}, converges with lim,_ V() =0. O

Example 3.1: Let {V,(n)},5, be a sequence (1) defined by
9 18
= e — — - 3 >
Vin+1) 2OI/A(n)+20VA(n ) forn=1.

It is easy to see that gy = 2 and a; =13 satisfy condition (9). For 4= (1, -3}, we have

lim Var+D 3

dm ey 4

Thus, {V;(n)},s¢ converges with lim,_  V,(m)=0. For any A+#(la,—2%), where @ #0 is a

real number, we have
tim VA(Tl-}—D _ §

e S S

and {V/,(n)},5, diverges.

4, EXTENSION OF (C) AND CONVERGENCE OF (1)

Let {V,},20 be a sequence (1), where a,,...,a,_, are real numbers satisfying (2). Then
P(X)=(X-DO(X), where O(X)=by X" +b X" >+ +b,_ with b, = ¥"7, a,, where by =1.
Suppose that b; #0 (1< j<r-1) and set
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|

Let R(X)=X"1-X"2-...— X —1and let § >0 be its unique positive zero. Then 7 >0 is
also a solution of the equation X" —~2X"'+1=0. A straightforward computation allows us to
derive that

b,

by

by,

r

br—l

5 eeey

H=HQ)= max{

b _
=t

r

Lemma 4.1: Let §>0 be the unique positive zero of R(X)=X""1-X"2—...— X -1 and
M > 0. Then the following two conditions are equivalent:

Mg <1; (10)

M<1 and M"-2M+1>0. 1

Proof: 1t is clear that § >1. Suppose that Mg <1. Then we have 0<M <1/ <1. Since
g(x)=x"—2x"""+1is a nondecreasing function on [§, + ), we have g(§) = 0<g(1/M). Thus,
we have M"-2M +1>0. Conversely, suppose that 0 <M <1 and M"-2M +1>0. Then
O<(M™-2M+1)/M" =g(1/M) and 1/M >1. Since g(x)<0 for 1<x<g, we must have
1/M>¢q,ie, Mg <1. O

Lemma 4.2: Let Q(X)=byX"'+b,X"*+...+b,_,. Assume that b, =1 and b;#0 for1<j<
r—1. Then the zeros of J(X) have modulus bounded by Hg .

Proof: For every real number X, we have

10X 2| X! = by X2 =+~ |b,]
r-1 bl -2 b2 bl -3 b—l bl
= N yr2 |22 -3 | 2L
X115, b, by b2 by

> | X[ -HX -H* X3~ - H!
If X =zHq, where |z| > 1, then
10X 2 |2/ H™'g™™ - Hlz[ 2 B2 — . - B = H'R(|z]§) > 0. O
Suppose that Q(1) #0. Let X =aY (o >0) and let

-1, Oy e by r- br—
O,N=y"+Ay 24+ 2y 4... 4L

a a a

If y, is a zero of Q,(X), then x,=ay, is a zero of Q(X) and H, =H(Q,)=%. Leta>0 be
such that H, <1 and H, ~2H,+1>0. Then Lemma 4.2 implies that the zeros of O, (¥) are of
modulus < 1 and those of O(X) are of modulus < . Let

a,=inf{a >0, H, <land H, -2H, +1>0}.

Elementary computation using the function f(x)=x"-2x+1 allows us to deduce that o, = xﬂo,
where x, #1 is the other positive zero of the equation x" —2x+1=0. Thus, we can formulate
the following result.
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Proposition 4.1: Let Q(X)=X""'+b, X" +...+b,_, satisfy Q(1) #0. Assume that the b;'s are
not zero. Then, for any A of Q(X), we have |1]|> f—o, where x, #1 is the positive zero of
¥ -2x+1=0

The connection between (C) and (10) may be expressed as follows.
Corollary 4.1: Let § be the unique positive zero of R(X)=X""1-X"2—-...— X —1. Assume
that the b;'s are not zero and that
Then, for M = H, condition (10) implies condition (C).

Proof: Suppose that condition (10) is satisfied. Then Lemma 4.1 implies that # <1. If
a, =0, we can deduce that b, =5, =1 and thus H > 1, which gives a contradiction. O

b

r=1

br—-2

g eeey

H=mu@mL

b
bl

For the convergence of sequences (1) in the case of arbitrary real coefficients, condition (10)
for M = H may replace (C) considered in the case of nonnegative coefficients. More precisely,
we have the following result.

Proposition 4.2: Let {V,},., be a sequence (1), where a,, ..., a,_; are real numbers satisfying (2).
Assume that Horner's b;'s are not zero and that

Then, if (10) is satisfied for M = H, the sequence {V,},, converges for any choice of initial
conditions.

Proof: Set C=V,_+bV, ,++-+b,_V, and L= TCH’,—T Consider the sequence {W,},0
defined by W, =V, - L. From (4), we deduce that W, =-bW,_+---—b,_W, .., for n>r-1.
Thus, {W,},, is also a sequence (1) of order 7 —1 whose combinatorial expression defined by (5)
and (6) is

W,=Bpmr-)+Bpm-Lr-)+--+B,_pmn-r+2,r-1) fornzr-1,
where B, =-b,_W,—--~b,W,_, (m=1,...,r—1) and

Z (k1+'"+kr—1)!
k!

b,
bl

br—l

br—2

PREEE)

H=mu@mL

b ke
q'...crq

r—1 >

pnr-1=

42k + - +(r=Dk,_j=n-r+1

where ¢; =-b;, p'(k,k)=1, and p'(n,k)=0 if n>k—1. Therefore, {¥,},, converges for any

choice of initial conditions if and only if lim, ,, W, =0 if and only if lim,  o'(n,r—1)=0.
Suppose b; #0 (1< j<r-1). Then

AT ke

b
By B,y o= By 22

1

Thus, we have
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(CERRET ]

’ -1 an—r+1
P/, r =D ko k!

ky 2k + - +(r=1k,_j=n-r+1

(12)

From expression (7) we derive that the right-hand side of (12) is asymptotically equivalent to the
expression
( Hq)n—r+1
g'+2g% + -+ (-7

(see Theorem 3.2 of [9]). The conclusion follows from (10). O

Condition (10) is not necessary for the convergence of a sequence (1), as is shown in the
following example.

Example 4.1: Let {V,},,, be a sequence (1), where r =3 and a, =1- 4, a, = u—«a, a, = a with
u#0and @#0. Then ay+a,+a,=1, b= p, and b, = a. For example, if =3 and a =3,
we deduce that A,=1, 4,=2%, and 1, =1 are simple zeros of P(X). Thus, the sequence {V,},s,

1445
2

Hg > 1. Other values of 4 and o may give the same conclusion.

converges. Meanwhile, in this case we have H = —g—, and § = is the solution of x? = x+1, so

5. CONCLUDING REMARKS
Let us consider the following classical lemma (see, e.g., [5] and [10]).

Lemma 5.1: Let R(X)=byX +bX*'+...+b, (b,#0) be a polynomial of real coefficients.
Assume that the b;'s are not zero. Set

s | b. =11 ph.
MI(R) = maX{l, Z -+ }’ M2(R) = —lil_ >
=11 b ~ 1 b,
J J J
(v 5 b
M,(R) = maxq [-—L-| ; 1<j<sp, My(R)=max{ ||, 2|—|; 1<j<s-1;
b, b, , b,

Thus, || < M;(R) (j =1,2,3,4) for any zero 4 of R(X).

Condition (2) implies that P(X)= (X -1)Q(X), where Q(X)=b, X" +b X 2+ .- +b,,
with b, =37, a; and b, =1. Thus, if a, =0, we have ;= b,, which implies that M,(Q) > 1 for
J=2,3,4. In particular, if M (Q) <1 (j =2,3,4), we deduce that a, # 0, and (C) is satisfied.
Proposition 5.1: Let {V,},, be a sequence (1) whose coefficients are real numbers satisfying (2).
Let Q(X)=byX"'+b, X" +..-+b,_;, where b, =37, a,. Assume that the b,'s are not zero.
Then, if M;(Q) <1 for some j=2,3,4, the sequence {V,},,, converges for any choice of initial
conditions.

The convergence of a sequence (1) has been studied in [3] and [4] for » =2,3. Proposition
5.1 extends Theorem 2 of [3] and Theorem 1 of [4] to r > 2.
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Remark 5.1: Let {V,},., be a sequence (1) and set
M =max{|p,["/; j=1,.,r-1}.

Assume that the bj's are not zero. Then all results of Section 4 are still valid if we substitute A/

for

; 1£j$s—1}‘

b
bl

br—l
br—Z

300y

H= max{ 1By,
Also note that H < M,(Q), where

M(Q)= maX{

S

bs—l

)2

b
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1. INTRODUCTION

The second-order linear recurrence sequence U = {U,}, n=0,1,2,..., is defined by integers
a, b, U,, U, and by the recursion U,,, =bU,,, +aU, for n>0. We suppose that ab = 0 and not
both U, and U, are zero. If o and S denote the roots of the characteristic polynomial x* —bx—a
of the sequence U, then we have the Binet formula (see [1]):

Aa" - Bp"
U,=—>—
n a_ﬂ >
where A=U,-U,pf and B=U,-U,a. The generating function is
iUnxn _U+ U, "Uob)x_
n=0

2

If U, =0, U, =1, then the sequence ¥ = {U,} is called the generalized Fibonacci sequence,
and &, = %

In order to express our results, we denote by o, ;(n, k) (7, j, and k are nonnegative integers)
the summation of all products of choosing j elements from n+2k -1, n+2k-2, ..., n+2k—i+1
but not containing any two consecutive elements. We note that o; ;(n,k)=0 if j<O0 or j> [g],
0;0(n, k)=1(20), o, ,(n k) =3 (i—-1)(2n+4k i) (i =1). For example, when i = 6, we have

1-bx-ax

os,0(m k) =1,
O (k) =(n+2k-1)+(n+2k-2)+(n+2k-3)+(m+2k -4)+(n+2k-95),
O (M K)=(n+2k~D(n+2k-3)+(n+2k - D(n+2k -4+ (n+2k -+ 2k -5)
+(n+2k-2)n+2k—-4)+(n+2k -2)(n+2k-5)+ (n+2k - 3)(n+2k - 5),
0'6,3(n, k)= (@m+2k - )(n+2k-3)n+2k-5).
It is easy to prove that
(n+2k -Dosy g g k-D =0y (0, k) (k21

and
n+2k-Dop, i qmk-D+o,, 0,0+ Lk-D =0, (k) (1<i<k k22).

Recently, W. Zhang [2] obtained the following result: Let U = (U,} be defined as above. If
U, =0, then for any positive integer k¥ >2, we have
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Uk—l
‘Z v,u, ..U, v g MU, 1y +h_ (MU, ],

ajtay+---+ap=n o (b2 + 4a)k—l(k - l)!

where the summation is taken over all n-tuples with positive integer coordinates (ay,a,, ..., a,)
such that a, +a, +-+-+a, =n, and he pointed out that g,_,(x) and A,_,(x) are two effectively
computable polynomials of degree k& — 1, their coefficients depending only on @, b, and %.

In this paper, we obtain

k-1
&ia(n) = Z (za)ibkviﬂ(n —k+ 1>k—i—10'k+i—1,i(n ~k+LEk-DF_; (k=1
i=0
and

k-l
B () = az Qayb " n—k+ DieiciOhsim, =k +LEk-DF ., (k21

i=0

where (n), =n(n+1)---(n+k—1) with (n), =1. We also give the congruence relation
g,y +hy (MU, =0 (mod (k- 1! +4a)t™) (k2 1),
which generalizes the results presented in {2].

2. THE RESULTS AND THEIR PROOFS

In this section, with U, =0, let

U FR (k)1
G(xX)=|——5 =ZU,, X"

1-bx —ax?

n=0
Then
X Ugﬁ)U‘(lfz) U‘S:m) - Uﬁ,,:fr...»,k,,,)'
aytayt+---ta,=n
Taking k, =k, =---=k, =1, we have
Lemma I: Z u,U, U, = gm

aytay+---+a,=n

Theorem 1: U*D = k(bz—({il-éia—i {mbU®) +2a(n+2k-DUP} (k=1).
Proof:
% (G, ()b +2a%)") = GL()(B + 20 + G () (B +2ax)2a
and

U, (b+2ax)\*
‘%(Gk ()b +2ax)F) = %(’—‘““——1 i(b;:— gz) )

Ub+ 2ax))"“‘ 2a(1 - bx — ax®) + (b + 2ax)?

- kUl(1~bx—mc2 (1—bx —ax®)?
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k-1 2.2 2
= k(b+2ax)"'1Ul( U, ) 2a°x° +2abx +b" +2a

1-bx - (1-bx—ax?)?
= k(b -+ Zm)k-lU ( Ul )k—l —2a(1 —bx—‘lxz) +b2 +4q
N 1-bx —a? (1~bx—ax2)2 .

Hence,

G (x)(® +2ax)* + G (x)k(b +2ax)*'2a

= k(b +26m)k_1U ( Ul )k_l _2(1(1 —bx—mz) +b2 +4a

! 1—bx—ax2 (l—bx—ax2)2 .

Therefore,

G (x)U,(b + 2ax) + 2akU,G,(x) = —2akU,G,(x) + (b* + 4a)kG, . ,(x).
This concludes the proof of Theorem 1. O
Theorem 2: UV = WZ ay 8" )10, i () Upais (K 20).

Proof: This theorem can be proved by induction. When % = 0, the theorem is trivial. When
k =1, the theorem is true by applying Theorem 1. Assume the theorem is true for a positive
integer k£ —1, then

Uk = }(TZU—ZG)— (nbU®) +2a(n+2k -1)UP}

__ b U
_k(b2+4a) (k 1)l(b2+4

k-1 Z(Za)lbk—’_l<n+ 1>k—r 1, iO ki~ 1, z(n+1 k 1) n+k—i
a)

Uk—l R
+ 2a(n+ 2k — l) (k 1)'([)2 4 )k 1 2(20) bk 1<n>k—1 10 ke4i-1, l(n k- 1) n+k—i— l}

U & ipk—n
W{ Z(za) 4 n+ 1>k =10 kti-1, 1(n+1 k- 1) n+k—i

k-1
+Y Ray"o N nyy (4 2k - D)oy, (1, k-1) Un+k—i—l}
i=0

Uk k-1 '
m{ > Qayb Y04y M+ L k= DU,

=0

+Z(2a)’b""(n>k_,("+2k DOk sim, i1 k=D, +k—1}

U

W{bk@)lco'k Lo +1 k-1, +k+2(20)' Y Uil O i i k=1)

+(+2k =10y, (n, k= D]+(2a)* (0 +2k - Doy 5 51 (n, k- 1)Un}
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Ur £ N

k'(bz _:_ 4a)t { k(")kak,o(n +L0U,,, + Z(Za)'bk_'(n)k_,.UHkﬂ,»O’kH’ (n, k) + (Za)ko'Zk, <, k)Un}
Ul lbk—l

k|(b2 +4a )k Z (20) <n>k—l O-k+1 1(" k) n+k—i-

That is, the theorem is also true for £. This proves the Theorem 2. O

Lemma2: U, =%.,U,+a% U, , (k=20,m21).
Proof: Use Binet's formula. O

Ty S Qo s O Fisa Uy +0%e Uy (20

Proof: Use Theorem 2 and Lemma 2. O
Theorem 4: Z v,U,, U,

a -~ a”

Theorem 3: U%*D =

aj+ay+ - +ag=n

Uk
T O+ 4a) (k-1

{I:Z(Za)’bk~‘ 1<n k+1>k—1——lo-k+t l,x(n k+l k 1)gsk—ti| n—k+1

k-1
+a |: 2 Qayb T =k 1) Oy (k1 k- l)gk—i—l]Un—k} (k=1).

i=0
Proof: Noting Lemma 1 and Theorem 3, we have
> v, v, ..U, =U, ®)

aj+ay+--+ag=n

Uf~
(k 1)|(b2 +4a

X (Fi Upoprs +aFi, U, y)

)k —~1 Z(2a)xbk_' 1<n k+ l>k l—lo—k-—l+l I(n k +1 k- 1)

NG +4cglk_1(k 1)'{[2(261)’%1 =kt DO =k LD, ] HH}

k=1
+a [ Z (Za)ibk-i_1<" —k+ Dy 10y, (=K +1, k- I)gk—i—l:lUn—k} 0
i=0

From this theorem, we can get the expression of g,_,(n) and A,_,(n), namely,

k=1
M) =Y Qayo" -k + 1104y -k +LE-DF, (k2])
i=0
and

k-1
Ba)=ay 2a)b -k +1) 104y ik +LE-DF_, (k21).

i=0

Theorem 5: g,_ (WU, +h_(m)U,_, =0 (mod (k-6 +4a)*™) (k=1).
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This result is a generalization of Corollary 2 of [2]. When U, =a=5b=1 and k=12,3,
respectively, this result becomes (i)-(iii) of Corollary 2 of [2].
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1. INTRODUCTION
For a € C\ {1} we write, as in [2],

1
&

a2 I
from which it follows that H (o) (n=0,1,...) are uniquely determined by
1 n—1
Hye)=1, Hfa)= mz (Z)Hk(a) n=0). )
k=0

The Eulerian polynomials R (@) (n=0,1,...) are defined by R (a)=(a-1)"H, (o) as Euler first
discussed them in [4]. For n>1, as is easily seen from (1), R (a) is a polynomial in o of degree
n—1 with integer coefficients and was expressed by Euler in [4] as

R(a)=Y dja*", @)
k=1

where the integers A7 (1<k <n) are known as Eulerian numbers (see also [3, p. 51]). Later,
Frobenius [5] gave another expression for R (&) as

R ()= ik!S};’(a—l nk 3)
k=1

where S} (1<% <n) denote the Stirling numbers of the second kind (see also [3, p. 244]).

The object of this paper is to obtain one more expression for R (&) in terms of an array of
integers C} closely related to the central factorial numbers (see [6, §6.5]). By means of the new
expression for R (a), we derive explicit formulas for Bernoulli and Euler numbers and others, and
unify some known results, in terms of these Cj .

2. ANEW EXPRESSION FOR R, (a)
We define an array of integers C} in the following way: for integers r, £ 21,
1< i 2k Y. .
VAN 7 =% —
Cre k%( ) (k~])J ifn=2r-1,
kCH! if n="2r.

Clearly, C¥ = C¥ =1. We make the convention that CZ1 = CZ" =0.

“)
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These integers C; are closely related to the central factorial numbers of the second kind
T(n, k) defined as in [6, p. 212]. Indeed, for r,k > 1, C¥'= (2k -1)! T(2r, 2k). Thus, it follows
from the properties of 7(2r, 2k) (see also [1, pp. 428-29]) that

4 |@r-DV ifk=r,
C2r 1_ 5
g {o ifk>r+1 ©)
Moreover, the second formula in the definition (4) together with
CF' =202k -1)C¥, +kC¥ ©6)

gives the recurrence for C;. We may also derive (5) and (6) directly from the definition.

The new expression of R, (a) given below contains the powers of « as in (2) and also that of
a—1 as in (3). Moreover, the number of the terms in the summation is about half of that in (2)
and (3).

Theorem 1: For an integer r > 1:

Ropi(@) = . CE e (a - 2, )
k=1
Ry, (a)=(1+ a)z C z'ak_l(a — D)2, ®
k=1

Proof: Clearly, from (1), Ri(a) =1 and R,(a) =1+a. For the general case, the proof is by
induction on r > 1 using the recurrence

Ryui(@) = (14 DR, @)+ (1- @) S (R (@) ©
for n>1 (see [2], [5]). If (7) is true, then by (9),
R, (@)= @r)aR, (@) +(1- @) 2 (aR,, ()
= Y RCH 1+ @)k @ — 1,
which by (4) equals the right-handks_i:ie of (8). If (8) is true, then by (9) again,
Riyp(@) = @r + Dy, (@) +(1- @) ok, (@)

=Y C¥F{2a@k+D)+k(a-1*}a* (a-1)""*
k=1
=C¥(a-1)" +C¥2Q2r +)a’+ Y {22k - ) C¥ +kCI}a* (@ - )P -2+,
k=2

which by (5) and (6) equals the right-hand side of (7) with r replaced by r +1. This completes the
proof of the theorem.

Some classical formulas involving the Eulerian numbers have their counterparts in the integers
C}. Analogous to an identity of Worpitzky (see [3, p. 243]), we have the following theorem.
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Theorem 2: For an integer r > 1:
2r— ar-1{x+k—1
ZC " ( b1 ) (10)

Proof: Let A be the difference operator defined by Af (x) = f(x+1)— f(x). Following an
idea of Frobenius in [5], we have by a property of § 7 (see [3, p. 207]) and (3)

z"j 'S"() Zn:j!Sj’.’A"‘f(”;)an(I+A)C;).

=

r—1 _ z r— —1 A2r— X 1{x+k-1
x2 I_ZCI? 1(1+A)k 1A2 2k(2r-1) ZCZ 1( Pyl 1)

k=1

Thus, by (7),

In connection with the Bernoulli polynomials B,(x) and the Bernoulli numbers B, = B,(0)
analogous to

1 n—-1 - __1
S BBy =5 4 (7))
Jj=

we have the following theorem.

Theorem 3: For an integer r > 1:

BB} =3 G (), an
2r k—
FriPra@=Ce-d 3 Slack (V) (12)

Proof: Since both sides of (11) are polynomials in x, it suffices to assume that x equals an
integer m>1. Then it follows from (10) using formulas in [3, pp. 10 and 155] that

1 o - k+j-1 - k-1
Li,m-81-3 =3 ‘Z(Zkf_l) > ("5

j=1 k=1
Similarly,

m-1 r m-1
. rJ(k+j
2r+1 Byrlm) = ZJZ ZC,ﬁ & ?( 2k—1)

J=1

Lo (k+j-1) (k+]j
S5 [ ()
=] Jj=1
v | (mt k-1, (m+k
"ZIC [( 2% +1 )*(2k+1)]
:£C2,2m l(m+k—1)

ok ap+1\ 2k )

As a simple and interesting consequence of Theorem 3, we derive some explicit formulas for
Bernoulli numbers which may be compared with those in Theorems 5 and 6 below.
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Theorem 4: For an integer 7 > 1:

a(k l'k'
5= Yy ey, (3)
k
By = 2R ) o (14)

Proof: We obtain (13) by differentiating both sides of (12) and then evaluating at x =0.
Moreover, we have, by (6),

Bzr+2—kzl( - -1 2k 2;;'k{2(2k NCF, +kCF}

- kg(—l)" %2{(k £ )2k +1) - k(2K +3)}C7,

from which (14) follows.
From the proof of Theorem 3 we have, in particular,

ijzm Zczr 1(m+k)

m 2r 2r m+k
Z] —(2m+1)z2k+]C (Zk)

Jj=1

(15)

We refer to [7] in which (13) and (15) have been given.

3. BERNOULLI AND EULER NUMBERS

We recall that
t2r—1

_ 0 , t2r
sect—go( 1) EZ’_(Zr)!’ tant = ZE"‘(Zr o

where E,, are known as the Euler numbers and 7,,_; as the tangent numbers. The Bernoulli num-
bers can be obtained by

=y

4'(4' 1) B
Since ’
sect+’tant=e;‘:teirIrl '22' —1+(1+1)ZH(1)(”)
where i = +/—1, it follows that, for 7 > 1,
E,, = (1+)H,, (), (16)
By = (1 (1= Hy, (). (17)

Moreover, it is easy to verify that
By = (“1)r22r—1H2r—1(_1) = (—1)"1R2,_1(—1). (18)
See also [2, p. 257] and [3, p. 259].
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Theorem 5: For an integer r > 1

kgl l)r—k 2k — 2r-1’ (19)
- Z’: 1y k-2 C2r-L, (20)
and .
= kg(— 1+ ’; i Vor 8 @D
T, = i (__1)r-k22r—2k+lclfr' (22)
k=1

Proof: We have, by (7) and (17),

k
2r l_( 1)r22 2r— )2k’

from which (19) follows. Moreover, we have, by (6),

r+l

7;,+1=Z(—1)""“ —{2Qk-)CE +kCZ}
k=1

r

=3 1y * L@k +1)-2k3C?,
k=1 2
from which (21) follows. We obtain (20) and (22) similarly using (18) instead.

Theorem 6: For an integer r > 1:

kz (—1)'c 2k- (23)
& K43k +1 4
By =2 (-1 1——-—2k_1 Ct. (24)
k=1

Proof: We have, by (8) and (16),

Z i )2k 4

from which (23) follows. Moreover, we have, by (6),

r+l

Eyin= Z( l)k 1{2(2" 1)C 1+kC1?r}

k=1
r _ 1 ,
=Y (-D* ‘-—zk_l {(k+D(2k+1)-k2}CF,
k=1
from which (24) follows.

The formulas (21) and (23) can be found in [3, p. 259] where no proofs are given. We refer
to [1, pp. 479-80] for other explicit formulas for 7,,_; and E,, .
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1. INTRODUCTION

Kappraff [2] described the panels in the pavement of the Reading Room of the Library on the
second floor of the San Lorenzo church complex in Florence. Work on the library was begun in
1523 by Pope Clement VII, Giulio di Medici, as a monument to his uncle, Lorenzo di Medici.
The library was one of the few successes of Clement's disastrous reign, characterized as it was by
bad political decisions (see [1], [11]). In the Timaeus panel of the library, Michelangelo, the
designer of the library, used the number relations (the scale) of the lambda figure which had pre-
viously been used as the musical system studied by Pythagoras [4].

Kappraff used the lambda triangle in Table 1 "found in Plato's 7imaeus and referred to there
as the World Soul." Strictly speaking, the lambda diagram displayed in Table 1 is that given in
Taylor [10] but with the empty space between the two slanting lines /A (hence the designation
lambda) filled in a methodical and obvious way. Plato himself does not appear to have used the
lambda figure as such though he used the two generating scales 1, 2, 4, 8 and 1, 3, 9, 27 shown by
the slanting lines to describe the creation by the Demiurge of the World Soul. These scales are
represented linearly (essentially in one line) in the commentary on the Timaeus [5].

TABLE 1. The Lambda Triangle

1
2/\3
4,/ 6 \9
8 /12 18\ 27

The formation is obvious and one cannot resist the temptation to portray the associated lefi-
and right-triangular arrays (Tables 2 and 3). Clearly, these arrays may be extended infinitely.

TABLE 2. Left-Triangular Lambda Array TABLE 3. Right-Triangular Lambda Array

1 6 0 O 6 0 0 1
2 3 0 ¢ 6 0 2 3
4 6 9 O 0 4 6 9
8 12 18 27 8 12 18 27

It is the purpose of this paper to describe some of the properties of these arrays and triangles.

2. LAMBDA TRIANGLES
The elements, u, ,,, of the left-triangular array satisfy the partial difference equation

> “n, m>
Uy oy = Uy oy HU n>0,0<m<n, 2.1)

n,m n—1, m—1»
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with boundary conditions u, o =2""", u, , =0 when n <0 and m > n, and general term

Uy =273, 2.2)

where n, m represent the rows and columns, respectively. We can see that the row sums, 1, 5, 19,

65, 211, ... (Sequence M3887 of [8]), are given by the second-order homogeneous linear recur-
rence relation
Vy =W, =6V, ,, n23, v =1v,=5

n
=3"-2" nx1

2.3)

The partial column sums are displayed in Table 4.

TABLE 4. Partial Column Sums of Left-Triangular Lambda Array

1

3 3

7 9 9

15 21 27 27

31 45 63 81 81
63 93 135 189 243 243

The elements in the cells of Table 4 satisfy the partial recurrence relation

Worn =Wnmd tWotm= W1, BZm>1, 2.4)
with general term
Wy =3"127" -1), (2.5)

We now develop more general properties by means of the polynomials associated with the num-
bers in lambda triangles.

3. ABSTRACT LAMBDA TRIANGLES

Kappraff's array (Table 1) may be readily abstracted and extended as in Table 5 (a, b integers
> 0):
TABLE 5. Abstract Lambda Triangle

1
a b
a* ab b?
a a’h ab? b
at  ab a’h? ab®> bt

The abstract lambda polynomials £, (x) (where &, (x) = 1) may be easily read off from the rows

of Table 5. To illustrate the situation we have
5 755
Ly(x) = a* +a’bx +a*b’x* +ab’x’ +b*x* = %.
Interchanging a and b, we get the abstract reciprocal lambda polynomials 1,(x) (with /,(x) =1).
Recurrence relations are, respectively,

Lps() = (@ +55) By (6) ~abx L, (0), @3.1)
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2 (¥) = (0 + @0)l, ()~ abicl, (x). (¢2)
Generating functions are, respectively,
2 Ln(@y" = (1-[(a+bx)y - abxy*1y, (.3)
m=1
2 Ln(0)y" = {1-[b+ax)y - abxy*1} . G4
m=1

Properties of these polynomials may be developed to include, for example:
(i) Other fundamental features such as Binet forms, Simson's formulas, closed forms;
(i) Convolutions £ (x), 1¥)(x);
(iii) Rising and descending polynomials.
We do this in Section 4 by considering a case closer to the original lambda triangle, namely,
whena=n,b=n+1.

4. GENERALIZED LAMBDA POLYNOMIALS

We consider generalized lambda polynomials, A,(x), and reciprocal lambda polynomials,
A (%), associated with the generalized lambda triangle of Table 6, which should be compared
with Table 1.
TABLE 6. Generalized Lambda Triangle

1
n n+l
n? n(n+1) (n+1)?
n n*(n+1) n(n +1)? (n+1)?
n n*(n+1) n*(n+1)? n(n+1)* (n+1)*

The two classes of polynomials are related by
Am(%) = x"IA,(3),

4.1)
A(¥) = x""2,,(3).
4.1 A,,(x) Polynomials
Basic properties of A,,(x) are listed succinctly hereunder:
Ag(x)=0
A(x)=1
A (x)=n+@n+1x
2(X)=n+(n+1) “2)

Ay(x) =n* +n(n+1)x +(n+1)%x?
Ay(x) =1 +m*(n+Dx +n(n+1)%x* + (n+1)°x>
Ag(x) =n* + P+ Dx +n*(n+ 1D x? +n(n+1)°x> + (n+ 1)*x*

Setting x =1, m> 0, we obtain the sequence of coefficient sums, thus (observe the binomial
coefficients):
(A, (D} ={1,2n+1,3n* +3n+1,4n° +6n* +4n+1,...}. 4.3)
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Recurrence relations:

homogeneous:
A, (x)=[n+@+Dx]A,,, (x) —n(n+DxA,(x). “4.4)
inhomoegneous:
A u(x)=nA, (x)+[(n+Dx]" (m=0). “.5)
Roots of characteristic equation:
n, (n+1)x. 4.6)
Closed form:
m=1
A, (x)= an [(n+D)x]" 1. 4.7
j=0
Binet form:
_[n+Dx]"-n"
A, (x)= —(n P (4.8)
Simson's formula:
A1 (A1 (%) = A%, (x) = ~[n(n+ Dx]™ (m21). (4.9)
Generating function:
3 Ay = {1=[(r+ (4 D)y~ + DTy (4.10)
m=1
4.2 Reciprocal 1,,(x) Polynomials
Ao(x)=0
A(x)=1
Ay(x)=(n+1)+nx @1

A3(x) = (n+1)? +n(n+1)x +n*x?
A4(x) = m+1)® +n(n+12x+n*(n+1D)x* +n’x
As(x) =+ D) +n(n+1)3x +n (n+1?x2 + 7’ (n+ Dx +n'*x*

Setting x =1, m> 0, we obtain the sequence of coefficient sums, thus (observe the binomial
coefficients):

4,0} ={,2n+1,3n* +3n+1, 4 +6n* +4n+1,...} = {A,,(D}. 4.12)
Recurrence relations:
homogeneous:
A (@) =[(+ D) +nx]A,,,,(x)—n(n+1)xA ,(x). (4.13)
inhomogeneous:
Api1(¥) = (n+DA,,(x)+[(n+Dx]" (m=0). (4.14)

Roots of characteristic equation:
n+lnx. (4.15)
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Closed form:

2 (0)= f(n AT [, .16)

Binet form:
()" —(n+1”

A, (x)= ) (4.17)
Simson's formula;
2 it O i) = A2, (%) = ~[m(n+ Dx]™™ (m21). (4.18)
Generating function:
ﬁu:ﬂ,,,,(x)y’"~1 = {1-[(n+1+m)y—-nn+x*]} . 4.19)

m=1

5. RELATED POLYNOMIALS

In this section, polynomial properties of related convolutions and of rising and falling diago-
nals are sketched.

5.1 Convolutions
There are two types of lambda convolution polynomials which are related by

AB(x) =x"TAB(L), (5.1)
AB ) = x"1AB(L), (5.2)

in which A®)(x) and A%)(x) are the k™ convolutions of A,(x) and A,(x), respectively, and
A®)(x) is defined in terms of a generating function

o0

2 ARGy = -[(n+ -+ Dx)y —n(e+ Dy 7D, (5.3)

m=1
whence we get the recurrence relation
AB () = A5V (x) - (n+ (1 + D) AED () + n(n + DxALD(x), (5.4)

m-2

For instance, when £ =1:

AP(x) =0 (definition)

A(l])(x) =1

AD(x) = 3% +4n(n+ Dx + 301+ 1)*x*

AD(x) = 4r® + 6% (n + Dx + 6n(n + D2 x* +4(n+ 1%

Analogously to (5.3) there is a generating function for A%)(x) with 7n <> n+1.
If we consider A(Z5_; AL (x)y™ ")/ Sy, then we get

(m—DAED(x) = k{(n+(m+Dx) - 2n(n + Dy} (5.6)
= k{(n+n(n+Dx)AD) () — 2n(n + DxA®) (x)}. (5.7

2002] 409



REFLECTIONS ON THE LAMBDA TRIANGLE

Replace £ by &k — 1 in Equation (5.4):
A D(x) = AB(x) - (n+ (1 + Dx)AD) (x) + n(n + DA, (x). (5.8)

Now eliminate A%)(x) from (5.7) and (5.8) to get the recurrence
(m—DAD (x) =[k +m—1](n+ @ +1D)x)AD (x) - n(n+ D2k + m—1]AD), (x).

m~-1 =

From this, with £ =1, m— m+1, we can get

mAD,, (1) = (m+1)2n+DAD1) - (m +2)nn+ DAL, (1). (5.9
Let n=2 in Equation (5.9). Then
mAD, (1) = 5(m +DAD (1) - 6(m +2) AV, (1). (5.10)

Notice that in {A®(x)} (reference (5.5) above) the numerical coefficients form a neat triangle as
displayed in Table 7, in which the row sums are the tetrahedral numbers ("3%) (that is, 1, 4, 10, 20,
35, ...) and the rising diagonal sums belong to Sequence 1349 of [8] with general terms 2("3’), n
odd, and n(n+2)(n+4)/24, n even.

TABLE 7. Lambda Convolution Coefficients

5.2 Rising and Descending Polynomials

Denote the rising and descending polynomials of A, (x) and A ,(x) by R, (x) and 7,(x) and
D, (x) and d,,(x), respectively. They are related, in each case, by the interchange of # and n+1.

A,,(x) Rising
R(x)=1
Ry(x)=n
Ry(x)=n*+(n+1Dx

Ry(x)=r*+n(n+1)x G.11)
Ry(x) =n* +r*(n+Dx +(n+1)*x?
Ry(x) = +r*(n+Dx +n(n+1)*x
Setting #=2 and x =1, we obtain the sequence
{R,(D}=1{1,2,7,14,37,74,175,350, ...}. (5.12)
Recurrence relations:
homogeneous:
R, (x) = [0 +(n+Dx]R,,_,(x)—n*(n+)xR,, 5(x) (m>2), (5.13)
RZm(x) = nRZn—l(x) (m 2 1) (5 14)

410 [NoV.



REFLECTIONS ON THE LAMBDA TRIANGLE

inhomogeneous:
Ry, () =nRy, (x)+((n+1Dx)" (m=0). (5.15)
A (x) Rising
rnx)=1
r(x)=n+1
r(x) =@+ +nx
r(x) = (m+1) +n(n+1)x (.16)
rs(x) = (n+D* +n(n+1)2x +nx?
rs(x) = (n+1)° +n(n+1)>*x +r*(n+Dx?
Setting n=2 and x =1, we obtain the sequence
{r,(D}=1{1,3,11,33,103,309, 935, ...}. (5.17)
Recurrence relations:
homogeneous:
Pamt(¥) = [+ 1)? +1nx]ry,, ()= n(n+1)2x7y,, 5(x) (m=>2), (5.18)
Ty (X) =+ 1Dy, (x) (m=1). (5.19)
inhomogeneous:
Tams1(X) = (14 D1y, (x) +(mx)™ - (m 2 0). (5.20)
Observe from (5.14) and (5.19) the link
(n+DR,, (¥)r,,,_((x) =nR,, ()7, (x) (m=1). ;.21

A quasi-reciprocal relationship between R, (x) and r,(x) can be evolved subject to certain
provisos regarding 7 and n + 1. For example,

Ry(x) = x*rs(L) if n* > n, n+1> (n+1)>%
Check for ry(x) and Rs(1). Likewise, look at R¢(x) and 7;(1), and r4(x) and Ry(3).
Patterns for m odd and m even emerge.

A,,(x) Descending
Clearly, D, (x) =n"'(1-(m+1)x)7, so

D, (x)=nD,_,(x) (5.22)
and
@gg)— =M+ D" (- (n+1)x)2 (5.23)
It
D=D(x,y)= ¥ D,y = (1-(n+ 1)),
then i
‘;g;g =§. (5.24)
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A,,(x) Descending
Obviously, d,(x) = (n+1)" (1~ nx)™, so

dm(x) = (n + l)dm—l(x)

and
dd‘,%‘fx) =n(n+1)"1-m) 2.
If
d=d(x,y)=3 d,(x)y"" = (1-nmxy)™,
n=1
then
dldy x
/ox  y
Hence,
Dad_JD A
o dy Oy o
and
% n Y t-m T
diggx) :(n+l) [1—(n+l)x] ’ (5.25)
Special Case

Putting n =2 in the results of Sections 4 and 5, we obtain the particular cases for the original
configuration in Table 1.

Further investigation of rising and descending polynomials could be undertaken; for example,
the establishment of closed summation forms for R, (x) and 7,,(x).

6. FIBONACCI-LAMBDA TRIANGLES

6.1 Fibonacci-Lambda Polynomials

Suppose now that we replace a and b in Section 3 by & and S, respectively, where o = %

and S = % We then have a triangle whose row sums are, successively,

1-2=L 5

a+p-Z=E - F,
a2+ap+ﬁ2=1;:_§3=1,3 (6.1)

& +atfrafi+ fi= a;:§4=E‘

so that the #»™ row sums to
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_o-p
The Fibonacci-lambda polynomials ®,,(x) will then have the recurrence relations
D,,12(¥) = (@ + )P, (x) — afix®@,,(x), m20, (6.2)
©,,,1(¥) = 00, (x) + ()", m20, 63)

The first few examples are
Dy(x)=0
Dy (x)=1
Cy(x)=a-pr
D,(x) = a® +afx + fix?
O, (x) =’ +afx +affx* + 8%
@y(x) = a* + 3P+ a7 + o> + fx*

(6.4)

Clearly,
@, =F,.

6.2 "Fibonacci-Lucas Triangle"
To continue the Fibonacci theme in this section, we next form the triangle with elements b, ;
(where i refers to rows and j to columns) defined by

b .=b_, .+b

i =0, 0 0, 122, 0<j <0, 6.5)
with boundary conditions

b g=F,, 120, b ,=L,, ix} bi’j=0,j>i, (6.6)
in which L, = a” + " represents the Lucas numbers. This yields the formation in Table 8. Note
that (6.5) and (6.6) lead to b, y = F ;3 =58, i > 1

TABLE 8. "Fibonacci-Lucas Triangle”

1

2 3

3 5 4
5 8 9 7

g 1317 16 11

13 21 30 33 27 18

21 34 51 63 o0 45 26
34 55 85 114 123 105 74 47

This is termed a "Fibonacci-Lucas triangle” to distinguish it from the Fibonacci and Lucas
triangles already n ihe literature [7]. The vertical and sloping sides of this triangle clearly have
Fibonacci and Lucas numbers as their elements, but there are other connections, tco.
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6.3 Difference Operators

Instead of considering sums along rows, diagonals, and columns, we here look at differences
between rows and columns by means of the row and column difference operators defined by

Ab; i =biy-b; ©6.7)
Ab;;=b ju-b ;. (6.8)
For example,
Abo=b0-b, by(6.7)
=FE,-F, by(6.6)

=b_10 by (6.6)
=b,,-bio by (6.5)and b, =b,
=Ab;, by (6.8).
More generally, A,, A, are commutative operations:
ArAcbi,j = Ar(bi,j+l "bi,j) by (6.8)
= (bi+l, j+l -b, j+l) = (b, j -b, j) by (6.7)
= (bi+l, jH T bi+1, j) - (bi, JH1 T bi, j)
=Aby, i~ Ab, j by (6.8)
=AADb, ; by (6.7).
Other results can be investigated. For instance,
Mbi, iT F. (6.9)

We can prove (6.9) by means of mathematical induction on i and j.

By reversing the columns in Table 8 (that is, by making the Lucas numbers the left-hand
exterior sloping side), one can also study these and other properties for a "Lucas-Fibonacci
triangle"; this is a topic for further research. Are there, one might ask, any interesting relation-
ships between the "Fibonacci-Lucas" and the "Lucas-Fibonacci" triangles?

7. CONCLUSION

7.1 Binary Extensions

These lambda-type triangles can be extended indefinitely. For instance, we can construct a
triangle of binary numbers as in Table 9.

TABLE 9. Binary Triangle
10 11
100 101 111

1000 1001 1011 1111
10000 10001 10011 10111 11111
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7.2 Determinants

Two other properties which are commonly examined are the values of corresponding deter-
minants and modular arrays. The original left- and right-triangular lambda matrices (in Tables 2
and 3) have determinants with values which are powers of 3 and 2, respectively.

7.3 Modular Triangles

The displays in Tables 10 and 11 represent the original extended lambda triangle (Table 1)
modulo 5 and modulo 7, respectively. Table 10 has symmetry in its odd rows and Table 11 has
neat patterns of cycles. Further research could involve seeking a modulus which could produce
remainders to develop specific patterns such as Sirpinski triangles [9], arrowhead curves [7], or
the partitioning of the triangles into square arrays [3].

TABLE 10. Lambda Triangle Modulo §

7.4 Ongoing Research

The purpose of this paper has been to explore some of the properties associated with the
lambda triangle. In doing so, several ideas for further research have been suggested for the inter-
ested reader. Finally, in this spirit, one might extend the previous knowledge through negative
numbers, that is, start with -2, -4, -8, ... and -3, -9,-27, ... (as in Table 1 with common vertex
1). All this has no physical or artistic relation to our original Timaeus panel. Indeed it is a world
away from Plato and Michelangelo.
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REPORT ON THE TENTH INTERNATIONAL CONFERENCE ON
FIBONACCI NUMBERS AND THEIR APPLICATIONS

The Tenth International Conference on Fibonacci Numbers and Their Applications held at Northern
Arizona University in Flagstaff, Arizona, from June 24-28, 2002, found over 70 enthusiastic Fibonacci
number lovers from Australia, Canada, England, Germany, Italy, Japan, Mexico, New Zealand, Poland,
Romania, Scotland, and the USA gathered together to hear over 50 excellent presentations. The gathering
was attended by both old and new Fibonacei friends, but it was sadly noted that several regulars were
unable to be with us this year. They were both warmly remembered and greatly missed. A special thanks
to organizer Cal Long and all the folks at Northern Arizona University for their hospitality and generosity
in hosting this outstanding conference.

Monday through Wednesday morning found us savoring a variety of talks on things theoretical,
operational, and applicable of a Fibonacci and related nature, with members sharing ideas while renewing
old friendships and forming new ones.

Later on Wednesday the group was doubly treated. Afier the moming talks, we were entertained by
mathemagician Art Benjamin's most impressive presentation; displaying his skills and cleverness by
mentally performing challenging mathematical manipulations and zapping out magic squares as if (yes!) by
magic. After graciously sharing some of the secrets of his wizardry with us, he dazzled one and all by
mentally and accurately multiplying two five-place numbers to terminate his mesmerizing performance.

That afiernoon we were bussed to our second wonder of the day: The Grand Canyon. Here we were
able to spend several hours gazing at nature's wondrous spectacle. Oh to be a condor for an hour! In the
evening a steak dinner was catered for us as we exchanged social and mathematical dialog to the
background of exquisite scenic wonder at the edge of the Canyon. On the way back to the campus, we
were able to witness a magnificent display of stars but an arm length away in the clear Arizona night sky.

On Thursday and Friday it was back to many more interesting, informative presentations and during
the breaks we were treated to Peter Anderson's marvelous computer display of the many photographs he
took of association members and their families enjoying the Canyon.

The closing banquet on Friday night terminated with a special tribute to Calvin T. Long for his very
distinguished career of 50 years as teacher, mentor, and researcher, as well as valued friend, contributor to,
and supporter of The Fibonacci Association. He was both praised and roasted by President Fred T.
Howard and former editor Gerald E. Bergum. After much laughter and tears, Cal received a standing
ovation from this proud and grateful group of his friends and colleagues.

After over an hour of cordial good-byes, everyone eventually drifted away vowing that, Lord willing,
we'll all meet again in Braunschweig, Germany, in 2004,

Charles K. Cook
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1. INTRODUCTION

Various authors (see, e.g., [5], [7], [16], [17]) have studied number theoretic properties asso-
ciated with the matrix S(77), defined in effect by

S =[5, ;1uxn> (1.1)
where
— — (_1\n—i J_'l i+j—-n-1_n-i
§,,m=s,;=C0" ;1P (1.2)

where p, g are arbitrary integers. These properties have generally been in the context of second-
order linear recursive sequences, particularly the Fibonacci numbers. We note that, for Horadam's
generalized sequence {w,} = {w,(a, b; p, q)} [13], we have the recurrence relation

Wn-':pw —l_qwn—l’ nzza (13)

with initial conditions w, =a, w; = b. For the matrix S, we have the comparable partial recurrence
relation
S, 5 = PSi, j-1~ 484, j-1- (1.4)

We define the combinatorial matrix [2]: S, ,(7;2) =[|s; ;(1)|],xx-

The purpose of this paper is to show how higher-order sequences arise quite naturally from
S(n) and to suggest problems for analogous further research arising out of further generalizations
of the binomial coefficients. For notational purposes, we consider S, ,(n;7), where S, ,(n;,2) =
S(n) above, and for simplicity we take the absolute values of the numbers in the cells of each
matrix.

2. PRELIMINARY OBSERVATIONS

We now have

00000 0 1
00000 1 6
00001 515

S._(7;2)=0 0 0 1 4 10 20|
00136 10 15
01234 5 6
11111 1 1
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We observe that the falling diagonal sums are the Fibonacci numbers {1,1,2,3,5,8,13} and the
rising diagonal sums are the binomial coefficients {7,21,35,21,7,1}. Similarly,

000 O O O 1
000 O O0 1 12
000 0O 1 10 60
Sz,_1(7; 2)={0 0 0 1 8 40 160]|.
0 01 6 24 80 240
0 1 4 12 32 80 192
1 2 4 8 16 32 64
Other generalizations can be pursued. For instance,
Szlk,_lSzk’_l = 2k+l _po k> 0: (2- 1)
where
21 = S B
in which E is the elementary (self-inverse) matrix
E= [ei,j]nxn
o = 1 ifj=n+l,
L7700 otherwise.

E is the unit matrix with rows reversed. It is used again in Section 5. An example of (2.1) when
k=1is

1 0 0 0)(f0O 0 0 1 00 0 1
6 1 0 0J/0 0 1 6(_[0 0 1 12
12 4 1 0)j0 1 4 12(|0 1 8 48
8 4 2 1)\1 2 4 8 1 4 16 64

The falling (from left to right) diagonal sums in these matrices are generalized Pell numbers,
{P,}, defined in turn by the second-order linear recurrence relations

P=2*P_+P_, n>2 k>0 22)

with initial conditions £, =0, A =1. When k£ =0,1, we have the ordinary Fibonacci and Pell

numbers, respectively.
In what follows, we use Bondarenko's notation (},), for the number of different ways of dis-
tributing m objects among » cells where each cell may contain at most 7 —1 objects [3]:

n<0,m<0, orm>(r—1n,
1 n=m=0.
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3. THE A AND § MATRICES
We define the 4 and § matrices by

A(mr){(’}“_{)r] G.D)
Sln;ry= [({1:3)’} (3.2)

For related developments, see [4], [8], [18]. As examples, we now look at §(7;2)= 5, (7;2)
and the associated matrix 4(7;2),

and

A(T,2) =

QOO0 =
OO OOO M h
OO O rm b
SO N=-=OO

OO O = W ) e
Omm OOCO
OO OO0O00

Then it is readily verified that

A(T,2)8(7,2) = 8(7;3), (3.3)
where

S(13)=

_- O OO0 0O
ok et s DO OO
_— PN e © O
et ) QN ] O\ WD e

[un—y

[«

W

o

W

o]

with falling diagonal sums {1,1,2,4,7,13, 24} which is a subset of the set of n-step self-avoiding
walks on a Manhattan lattice, and the elements satisfy the linear third-order recurrence relation
,=u,_ +u,_,+u, 5, 123, with 4y =0, 4, =1, u, =1 (see [21]). Next, let

n—-3s
1 5107 1 0 0
01 4 6 2 00
00 1 3 3 00
A(7;3)={0 0 0 1 2 1 O
0 0 0 0 110
00 0 0 010
0 0 0 0 0 0 1
and
0 0 1 10 44 135 336
0 0 2 12 40 101 216
0 0 3 12 31 65 120
S(7;4)=10 1 4 10 20 35 56|
01 3 6 10 15 21
012 3 4 5 6
1 11 1 1 1 1
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Then
A(7:3)8(7,2) = 8(7; 4). (3.4)
More generally,
Theorem 1: A(n;r)S(n;2) = S(n;r +1).
Proof:

Aense: = 3574 (0 }C)]
= —i (111‘:_—]1( )r(’{ _ i)] from the definition of (Z)r,

= Z( k ) (j . 1)] reversing the order of summation,

) (J—%) ] from Equation (1.15) of [3],
r+l

=Smr+1). O

The elements of S and A can be rearranged to form generalized Pascal triangles (see [19],
[22], [25]). They can also be made into tetrahedrons with Pascal's triangle as one section (see
[11], [12], [21]). Ericksen [9] has elaborated the principal properties of Bondarenko's coefficients
in a pyramid.

4. RECURSIVE SEQUENCES

The rising diagonal sums associated with each of the r rows in the triangles of Section 3
yield the Fibonacci sequences and their generalizations; that is, the rising diagonals associated
with the combined second rows yield the Fibonacci numbers. We can express this by the follow-
ing theorem.

Theorem 2: iy
L D”(n—k) U
k = Yn+ls

in which {U,} is the generalized Fibonacci sequence of arbitrary order r defined by the recurrence
relation

k=0

UH:ZU,,_,, n>1,

=

with initial conditions U_, =0, n=0,1,2,...,r-2, U, =1.

Proof: Consider
n L(r-BHn/r]
n—k n-k
=35 ()

r k=0
from a consideration of the zero terms in the upper portion of the (},), array. Thend,=1,d, =0

for n <0 and, for n> 0,
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452 () -3 B0

= Z Z (n k k) changing the summation index to j =k —i +1 then reverting to &,

=y (” - lic_ k ) using the boundary conditions,
i=1 r

Thus, d,, satisfies the generalized Fibonacci recurrence relation of arbitrary order » with the given
initial conditions. O

Basically, this theorem says that each element in the (},), array is the sum of 7 elements above
and to the left of it, and that  consecutive diagonals are needed to obtain all the terms required to
form the elements of the next diagonal.

When 7 = 2, the theorem reduces to a familiar expression for the Fibonacci numbers, namely,

Ln/2] n—m
Fa=2 ("3") @1

m=0

and when » = 3, we get equation (4.1) of [21]:

|n/2] |n/3] , , Ln/2]
n—m-— m+ n—k
el = Z Z ( m+jj)( j])z Z( k )3- (4.2)

U,
m=0 j=0 k=0

5. INVERSE MATRICES

The inverse matrices have some neat properties. For instance, for absolute values of the
entries, we have

S'=ESE, ;.1
where E is the elementary matrix defined in Section 2. Of more interest is
1 -5 14 28 42 -42 0
0 1 -4 9 -14 14 0
0 0 1 -3 5 =50
ALTy={0 0 0 1 -2 2 0f (5.2)
0 0 O 0 1 -1 0
0 0 O 0 0 10
0 0 0 0 0 0 1

The absolute values of the elements of the columns of 4™! can be rearranged to form the
rows of Table 1. The row and column headed M refer to the corresponding sequence in Sloane
and Plouffe [23].

The elements ¢; ; in Table 1 satisty the partial recurrence relation

a

i = a; +a1+1 J=1» l: .] 2 1’

with boundary conditions
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a Catalan number [14]. A general solution of this is given by

a‘.:—i—+—1— 2j+1
1T )

TABLE 1. Elements of the Inverse Associated Matrix

i\j 0] 1 2 3 4 5 6 M
0 1] 1 2 5 14 42 | 132 1459
1 11 2 5 14 42 | 132 | 429 1459
2 1] 3 9 28 90 | 297 | 1001 2809
3 1] 4 14 48 | 165 | 572 | 2002 3483
4 1] 5 20 75 | 275 | 1001 | 3640 3904
5 1] 6 27 | 110 | 429 | 1638 | 6188 4177
6 11 7 35 | 154 | 637 | 2548 | 9996 4413
M 1356 | 3841 | 4929 | 5277 | -

Note that the rising diagonals in Table 1 generate the Catalan numbers. The elements in
Table 1 correspond to the number of two element lattice permutations, where the permutation
represents a path through a lattice where the path does not cross a diagonal [6]. Since there are
some intersections among the sequences in Table 1, a topic for further research could be to con-
sider if these are the only intersections (cf. [24]).

Bondarenko's generalization of the binomial coefficient takes no account of the order across
or within cells. Further research could accommodate this order and then apply these extensions to
other combinatorial applications along the lines of the work of Letac and Takacs [15] who, in
effect, related the permutations associated with Bondarenko's (3), to random walks along the
edges of a dodecahedron or the connections of combinatorial matrices to planar networks [10].
Such research should lead to generalizations of the Fibonacci sequence which would be different
from the {U,} discussed here and the standard generalizations of Philippou and his colleagues
[20].
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ON CHEBYSHEV POLYNOMIALS AND FIBONACCI NUMBERS*
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1. INTRODUCTION AND RESULTS

As usual, Chebyshev polynomials of the first and second kind, 7(x)={7 (x)} and U(x)=
{U,(x¥)} (n=0,1,2,...), are defined by the second-order linear recurrence sequences

Ta (%) = 2xT,,,(x) — T,(x) )

Una(¥) = 2xU 11 (x) = U,,(x) @

for n>0, 7y(x) =1, T(x) =x, Uy(x) =1, and U,(x) = 2x. These polynomials play a very impor-
tant role in the study of the orthogonality of functions (see [1]), but regarding their arithmetical
properties, we know very little at present. We do not even know whether there exists any relation
between Chebyshev polynomials and some famous sequences. In this paper, we want to prove
some identities involving Chebyshev polynomials, Lucas numbers, and Fibonacci numbers. For
convenience, we let 7 (x) and U®¥(x) denote the k™ derivatives of 7,(x) and U,(x) with
respect to x. Then we can use the generating functions of the sequences 7 (x) and U, (x), and
their partial derivatives, to prove the following three theorems.

and

Theorem 1: Let U,(x) be defined by (2). Then, for any positive integer k¥ and nonnegative inte-

ger n, we have the identity
k+1

2 U@=5 R,

aytay+-tag=n i=l
where the summation is over all £ +1-dimension nonnegative integer coordinates (a;, a,, ..., a;,;)
such that g, +a, + - +a,,, =n.

Theorem 2: Under the conditions of Theorem 1, we have

k+l1 k+1
Z l—.[(ai + 1) Ua,- (x) 22k+l (2k 1)| Z (_ )h(k iy l) t(liﬁ;-lf)ii—Zh(x)’

ap+ - Hap =n+2k+2 i=1

where (})= h,(,f'h),

Theorem 3: Under the conditions of Theorem 1, we also have
k+1
k+1
I | EHCRE R A (P L)
ap+-tag =ntk+l i=1

From these theorems, we may immediately deduce the following corollaries.

Corollary 1: Let F, be the n™ Fibonacci number. Then, for any positive integer k£ and non-
negative integer n, we have the identities:

* This work is supported by the N.S.F. and P.N.S.F. of P.R. of China.
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-1
Y Fpn P Fyn=u (1)

ajtay+ - tap g =n

D" e (3
Z F2(a,+1)'Fz(a2+1)""'F;(ak+,+1) ok . k'U() 2 5

aytay+-tag ) =n

k
Z F;(a,+1)‘F3(a2+1)""'F Waps+1) — k' Ur(1+3c( =2i),

aptayt-ctap,=n

where i = —1. In particular, for k =2, we have the identities:

Z Fopy by Foy = 30 [(n +2)(Sn+17)F,,3—6(n+3)F,,,],

a+b+c=n
Z Bty Fagany Faerny = 30 [1 8(n+3)Fy,4 +(+2)(Sn—T)F,,.6],
a+b+c=n
Z Fyasy Fypary Fyeany = 30 [(” +2)(5n+8)F;,9 — 6(n+3) 5,61
a+bt+c=n

Corollary 2: Under the conditions of Corollary 1, we have:
Z @+ (@u+) Fy. F, a

ay+ - Fag  =n+2k+2

Fyrt2k+2 k+l k+1 i
22I£+1 )(zk + 1)| ’;)( l)h ( h )Urs?rﬁ;?}Zh (2)

Y @+ @) Fygn - B

ayt+ - ap  =n+2k+2
S ) k+1 -3
=i n (i (3)

Z (@ +D) (@ + D) By - B, 41

ay+ - +ay,  =n+2k+2

ln+2k+2 k+1 ) k + 1 - '
m hz: D Usiaiers-an (29).
=0

Corollary 3: Let L, be the n™ Lucas numbers. Then, for any positive integer & and nonnegative
integer n, we have the identities:

( )n+k+1 k+1 k +1 . i
La, : L£12 e Lak+1 - _2:—7;?};) 2 h U£+)2k+1—h 2 )

a4 ap g =ntk+l

h
( l)n+k+1 k+1 3 k+1 . 3
LZal : LZaz t Lzak.n 2—1 k! };} 2 h Ur(l+)2k+l-h '5_ >

ay+ - +ag  =ntk+l
1n+k+1 k41

k+1
Z L3a| ) L3Gz o L3G/H‘ Z (21)h( ) +2k+1 h ( 21)

ay+ tag g =ntk+l 2 k'h 0

where i = —1. In particular, for k£ =2, we have the identities:
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Y LybyLe=E2(0r 10)F, 5 420+ o),

a+b+c=n+3

+5
Y Ly Ly Ly =223+ 10)Fy s + (n+16)Fy,,41,

a+b+c=n+3

+5
2' L3a ) L3b . L3c = ”_2_[4(n + 10)F;§n+7 + 3(” + 9)F2;n+6]-

a+b+e=n+3

Corollary 4: For any nonnegative integer n, we have the congruence
(n+2)(5n+8)F,,,o = 6(n+3)E,,, mod 400.

These corollaries are generalizations of [2].

2. PROOF OF THE THEOREMS

In this section we shall complete the proofs of the theorems. First, note that (see [1], (2.1.1))

T,(x)= %[(x +J;2___1)" +(e- J;C2__1)n]
and

U,(x)= J—[ x+\/— ( \/_Tl)n“],

so we can easily deduce that the generating function of 7(x) and U(x) are

G 1-xt +°°T ;

1 = = 1"

%) 1-2xt +72 ,,;,"(x)

and

1 +00
—ZU,,(x)-t",

Fix,y=———=
1-2xt+12 4

respectively. Then from (4) we have

OF(t, x) 2t m n+l
U -t
ox (1 2xt + 12)2 ,;, n+1(x) ’

FPF(t,x) 2 (21)}
) — — Ur(p2) (x) . tn+2’
Ox? (1-2xt +12)° ,,;, 2

SF(@t,x) k-2
> U,(,k) (x) tn+k
Kk Q-2xt+1A)H ,;, *

where we have used the fact that U,,(x) is a polynomial of degree .
Therefore, from (5) we get

o ) k+1
Z( 2 Uy U)o am(x)J (ZUn(X)-t")

n=0 \ay+--+ay, =n

- 1 1 FF@tx)_ 1 U® ()47
B (1—2xt+t2)k+‘ B k|(2t)k Hrk T ok k',;, Unir(x)-1".
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Equating the coefficients of #* on both sides of equation (6), we obtain the identity

Z Ua, (x) ' U02 (x) ot a,m (x) = ;(1]3:(3‘7)

ay+ap+ - agg=n

2k k'
This proves Theorem 1.

Now we prove Theorem 3. Multiplying both sides of (5) by (1—x#)**! gives

(1 xt)k“ z (k) (x) tn(l xt)k“ (7)

(1-2xt + )k 2k ¥4

Note that
(-t = 3 Capie (" ¥ 1).
h=0
Comparing the coefficients of #"***! on both sides of equation (7), we obtain Theorem 3.
To prove Theorem 2, we note that d(T @) _ =nU,_,(x) and

OGt,x) 1= Sy g
o (l—2xi+0%) ‘,E,J;'(*‘(x) !

or

_(1;x+t2)2 Zo(nﬂ)U 0)-1". ®)

Taking k = 2m+1 in (5), then multiplying by (1-72)™*! on both sides of (5), we can also get

(1 t2)m+1

(2m+l) x)- " 1_t2 m+1' 9
(1-2xt +2)?m+2 =g, (2m+1)|Z samia(¥)1(1=17) ©)

Combining (8) and (9), we may immediately obtain the identity
2 @+D @ +D)- U, () ... U, (x)

ay+ e +a,  =n+2m+2

m+1 m
mZ(— )"( )U§i4$33-zh(x)-

This completes the proof of Theorem 2.

Proof of the Corollaries: Taking x=4, 3, and —2i in Theorems 1-3, respectively, and

noting that
T, (5) - %L 7;( ) L‘LLzm T(-2i) = ')" Ly,
F=F,+F,
(1-x)U(x) = (n+DU,_(x) - nxU,(x),

and

(-3 U2(x) = 3xU; () - n(n-+ 2)U, (),
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we may immediately deduce Corollaries 1-3. Corollary 4 follows from Corollary 1 and the fact
that 2|Fy,,, for all integers a > 0.

Remark: For any positive integer m > 4, using our theorems, we can also give an exact calculat-
ing formula for the general sums

k k
Z HFm(ai+l) and Z H Lma, >
ay+-+ag=n i=1 ay+-+ap=n+k i=1

but in these cases the computations are more complex.
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ON THE NUMBER OF PERMUTATIONS WITHIN A GIVEN DISTANCE
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1. INIRODUCTION AND RESULTS

The set IT” of all permutations of (1,2, ..., n), i.e., of all one-to-one mappings 7 from N =
{1,2,...,n} onto &V, can be made to a metric space by defining

|7z =7"|| = max {|x(@) — z'()|: 1<i <m}.

This space has been studied by Lagrange [1] with emphasis on the number of points contained in a
sphere with radius & around the identity, i.e.,

ol ny=|{r cIl":|x()—i| <k, 1<i<n}|

where | A| denotes the cardinality of the set 4.

These numbers have been calculated in [1] for £ €{1,2,3} and all » €N, the set of positive
integers. For k =1, it is fairly easy to show that p(I,n—-1), neN, ¢(I; 0) =1, is the sequence of
Fibonacci numbers. For & =2 and k =3, the enumeration is based on quite involved recurrences.
The corresponding sequences are listed in Sloane and Puffle [4] as series M1600 and M1671,
respectively.

The main purpose of this note is to supplement these findings by providing a closed formula
for p(k;n) when k+2<n<2k+2. Note that, for n<k+1, one obviously has ¢(k; n)=n!;
thus, the cases # > 2k +3, k >4, remain unresolved.

As a by-product, we obtain a formula for the permanent of specially patterned (0, 1)-matrices.
The connection to the problem above is as follows: Let n, £ €N, £ <n-1, be fixed, and for
ieN,B={jeZ:i-k<j<i+k}n N, where Z is the set of all integers.

Then @(k; n) is the same as the number of systems of distinct representatives for the set
{B, B,, ..., B,}. Defining now fori, je N

one has, for the permanent of the matrix 4 = (g;) (cf. Minc [2], p. 31),
Per(A) = p(k; n). (1.H

Remark: The recurrence formula for ¢(2; n) has also been derived by Minc using properties of
permanents (see [2], p. 49, Exercise 16).

, jeB,
0, jeB,

The matrix 4 defined in this way is symmetric and has, when £ +2<n <2k +2, the block
structure

£
. g iV’n)(i?ﬁ ivmxx Amxm
A = 1;?(73" ESX.S' Es‘xm 3 (32)
‘\Amxm me.&‘ mem
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where m=n-1-k, s=2k+2-n, 1,,, is the a xb-matrix with all elements equal to one and
A, is the mx m-matrix with zeros on and above the diagonal and ones under the diagonal. For
n=2k +2, the second row and column blocks cancel. The matrix A,,, has been studied by
Riordan ([3], p. 211 ff)) in connection with the rook problem. Riordan proved that the numbers
of ways to put r non-attacking rooks on a triangular chessboard are given by the Stirling number
of the second kind. This will be crucial for the calculation of ¢ (k; #) and of Per(4) for matrices 4
of a slightly more general structure than that given in (1.2). The results we will prove in Section 2
are as follows: Let S, denote the Stirling numbers of the second kind, i.e., the number of ways to
partition an n-set into » nonempty subsets.

Theorem 1: Let k,neN, k+2<n<2k+2 m=n-k—-1. Then

ok m) = 3 (Y™ (n—2m+ )\~ 2m-+ )" ST,

r=0

Furthermore, let the matrix 4, be defined as

' Lnyxm  Lmymy B
AA = 1m3xm1 1m3><m3 1m3><m2 > (13)
A 1 1

myxmy Smyxmy Sy xm
where neN, n=m +m, +m;, m eN_{0}, 1<i<3, A,

ing row and column blocks cancel.

Theorem 2: Let A, be defined by (1.3). Then

. as above; for m = 0, the correspond-

Per(4y) = 3. (1) (my + ) \(m + 7Y™ ST,

r=0
Remarks:

(a) Since the permanent is invariant with respect to transposing a matrix and to multiplication by
permutation matrices, 4, as given in (1.3) is only a representative of a set of matrices for which
Theorem 2 holds. In particular, it follows that, for all m, m,, m; € N {0},

S ) g )y + Y S = S 1y () + Y ST
r=0 r=0

Specializing further one gets, for m, =0, my =1, m, +1=m, the well-known relation
1=) (-D)™"risr.
r=1

(b) Since the matrix A given in (1.2) is a special case of the matrix 4,, in view of (1.1), Theorem
1 is a special case of Theorem 2. Therefore, we have to prove only Theorem 2.

2. PROOFS

By a suitable identification of the rook problem discussed in Riordan [3], chapters 7 and 8,
with the problem considered here, part of the proof of Theorem 2 could be derived from results in
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[3]. In view of a certain consistence of the complete proof, we prefer however to develop the
necessary details from the beginning.

The problem of determining ¢ (k; n) can be seen as a problem of finding the cardinality of an
intersection of unions of sets. We will do this by applying the principle of inclusion and exclusion
to its complement. Therefore, the sets I, ={z e II": 7() = j}, i,j e N={1,2, .., n} are rele-
vant. Let @, (J) for J< N denote the set of all 7 = J with |[I| =k and % the set of all £-tuples
in N* with pairwise different components. For k,neN, k<n, (i,i,,...,5,) eNEAN¥, and
J, € N, 1<v <k, one obviously has

ﬂﬂm

Therefore, one gets from the principle of inclusion and exclusion that, for k,neN, k<n, Jc N
with |J|=k,and B,cN,ieJ,

U UIT;

iel jeB;

For the sets on the right-hand side of (2.1), it holds that

(G 3 €N €B Y, e D= o

{(n B Gy, gy g €NE)

otherwise.

k
=Xy m-0 Y |{Gn-n i) eNLj eB Viel}| @1
r=1 IeP.(J)

({= ell": z(i) e B}|. (2.2)

ie

k)!
ForneN, k eN_{0}, k<n, B,B,,...,B,C N, let
Y {Us-od) eNEjieB Viesy| forkzl,

RI:’(BD ey n) - Jeg"(N) (23)
1 fork=0.

ed

[If one considers a chessboard on which pieces may be placed only on positions (7, j) for which
j €B,, then R}(B,, ..., B,) is the number of ways of putting k£ non-attacking rooks on this board. ]

Lemma 1: Let k,neN, j<n, B.c N fori e N. Then it holds that

k
> U Uyl =S cr-te-n(i )R, 8)

JeP (N)|ie] jeB;

Proof: With the help of (2.1), one gets

U um;

JePy(N) |ied jebB;
k

=YY m-nt Y Y (G- ) eNLijeB Viel}
r=1 JeP (N) 1eP L)

k
=X Y- Y (G- J) €N €B Vi e}||[{J e P(V) I c J}
r=1 Te®{N)

k
= g (=1 - r)!(Z :Z)R,"(Bl, ..,B). O
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In the next lemma it is shown how the numbers R;(B,, ..., B,) are related to R;'(B{,..., BS),
where B denotes the complement of B, w.r.t. N. (In terms of the rook problem, one thus con-
siders the complement of the chessboard.) The lemma is equivalent to Theorem 2 in Riordan ([3],
p. 180).

Lemma 2: Let k,neN, k<n, B,c N,ie N. Then it holds that

RI!(B,..,B)= f(—l)'(k ~r)!(Zj;)(Zj;)R;'(Bf, .., BY).

r=0

Proof: By (2.2) and (2.3), one has

(n-—k)!R]?(B"":Bn): Z

ﬂ{ﬂ ell”: (i) eBi}'

JeP (N) |ie]
= ¥ [m-|U Uml|
JeP(N) iel jeBf

The assertion then follows with the help of Lemma 1. O

Lemma 2 will become useful for calculating Per(4,) in the following manner: Let 4, = (a;)
and put B,={j € N:a; =1}. Since by (2.2) and (2.3)

Per(4,) = Z Hai,fr(i)z

zell” i=1

{ﬂ' ell”: I}ai,ﬂ(i) = IH =R;(B,,...,B,),
one obtains from Lemma 2 that
Per(4,) = Z(——l)’(n—r)!R,"(Bf, v BY). 2.4
r=0

The matrix corresponding to Bf, ..., B¢ is 4, =1,,, — A4, which is easier to handle because it has
mainly blocks of zero-matrices. A further simplification is obtained by considering instead of 4,
the matrix

n Aml xm 9’”1 xn O"'l""‘s
AA = Omz xmy Amgxml Omzxm3 H (25)
0'”3""'1 O'”s"mz O”'s"'”s

where A, =1,,,~ AL - A, is obtained from 4, by suitable permutations of rows and columns.
By Remark (a) one has Per(4,) = Per(/fA).

Now we turn to the special structure related to the matrices of the form Amxm, that is, we
consider B ={1,2,...,i},i € N, ={1,2,...,m}. One can easily show by induction on & that

k
| s i) eNE2j, €D, 1<v < kY| =T T(ID, k1-v)
v=1
ifk,meN, k<m,and D,,...,D, c N,, such that D, c D,;, 1< v <k, so that

k
R'B,...B)= Y  TlG+1-v. 2.6)

1) < ++<ipSm  v=1
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We denote the right-hand side of (2.6) by a, 1<k <m, af =1, af =0, for k <0 or k >m.

Lemma 3: For o} defined as above, it holds that
@ af=af ' +(m+1-k)al foralkeZ meN, m>2.
B of =8, forallmeN, k eN_{0}, k<m.
Proof: Part (a) follows immediately from the definition of a}'. Assertion (b) obviously holds

true for m=1. Since the Stirling numbers of the second kind satisfy the recursion S7" = ™! +
kST, the assertion is a consequence of (a). O

It now follows from Lemma 3 and (2.6) that, for B, ={1,2,...,7}, 1<i<m,

S, forallmeN k eN_{0}, k <m,

2.7
0, otherwise. @7

R,Q"(Bl,...,Bm)z{

To deal with the two A -blocks of the matrix 4,, the following lemma is helpful.

Lemma 4: Let m, m,, neN, n>m +m,, and C,,C,, ..., C, € N such that:

(@ Cc{l,2,. ,m}, 1<i<m;

B Ccim+l,. . m+m}, m+1<i<m+m),

© C=0 m+m+1<i<n.

Furthermore, let D, = {j €{l,...,m,}: j+m €C,,, }, 1<i <m,. Then it holds that

k
R™(C,....,C,)R™ (D,,...,D,), 0<k<m+m,
R,:'(Cl,...,cn)= ygo v(l ) k ( mz) W Ty

0 m+m+1<k<n.

Proof: Let Ny={L,...,m}, N, ={m+1,...,m+m}, Ny={m+m+1,. ¢} and, for J e
P(N), fi(D) =|{(j1,...,jk) eNkt:j eC Vied} I Since C, =0 for i € N3, one has f,(J)=0 if
Je®P,(N) and JN;#0. This implies

k
R(C,...CH=D, 2, P A ACHA)

r=0 J,&®,(Ny) J,eP_.(N,)

Since (.UN G L}V C;) = 0 one has, for J, € P,(N)), J, € P,_,(N,), that
ieN, ieN,

S oI = {Usr o> 7) €N, i €G Vi € B [{Urnns - i) €NET 2 €C Wi €}
The assertion then follows from

RM(CphosCp)= Y |{Ui-n i) eNL:1j €C Vie S}
J1€P,.(Ny)
and

R2(Dy.sD)= Y Ui eNET1jeGVies}| O
J&Pp_ (N

Finally, the following identity will become useful:
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i(—l)’(n—r)!S,’,’,‘I}_, =(n-m)l(n—m)" for m,n eN_{0}, n>m.
=0

(2.8)

Identity (2.8) can easily be proved by induction on m using the recurrence formula for the Stirling

numbers. Now we are ready to prove Theorem 2.
(2.5). Putting

Consider the matrix A, =(4,) defined in

...}, 1<i<m,
C=qm+1,..,m+i-m}, m+1<i<m+m,,
0, m+m,+1<i<n,

one has d;; =1 if and only if j € ;. Note that for C,,..., C, the assumptions of Lemma 4 are sat-
isfied and that D, ={1,...,i} for 1<i<m,. Put n—m—m,=m;. Then, from (2.4), Lemma 4,
(2.7), and (2.8), one gets that

Per(d,) = io(— 1Y (n-r)!R"(C, ..., C,)

my+my r

=Y )Y @-rY RMG, ... Co) R/(D,y ., D)
r=0 v=0
my+my r my+m;

) +my my+my
= 2 G m=-NY S S = 2 Satiey 2 G (=S,
r=0 v=0 v=0 r=v

my+l-r+v

my my m
=2 Sty 2N m=r =S = 3 (C) S, (- v —my) (n— v —m,)™
v=0 v=0

r=0

m

v=0

= f“(—l)"’l“’(m3 +V)(my + V)" St

v=0
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(Submitted September 2000-Final Revision December 2000)

It is well known that the Fibonacci number F, can be a prime only if n=4 or n= p, where p
is an odd prime. Throughout this paper, p will denote a prime. In a very interesting paper, Drobot
[2] proved that F, is composite for certain primes p. In particular, he proved thatif p>7, p=2
or 4 (mod 5), and 2p—1 is also a prime, then 2p~1|F, and F, >2p— . For example, 37| F, =
4181=37-113.

A similar result was proved by Euler and, independently, by Lagrange about the Mersenne
numbers. It is easy to see that the Mersenne number A, =2" -1 can be a prime only if # is a
prime. Euler and Lagrange proved that, if p=3 (mod 4) and 2p+1 is also a prime, then
2p+1|M,=2p+1. A proof of this result is given in [5, pp. 90-91].

The primality of Mersenne numbers is of interest because of the following relationship to
even perfect numbers. A positive integer is perfect if it is equal to the sum of its proper divisors.
Euclid and Euler proved that the even integer n is perfect if and only if  is of the form 27-1(27-1),
where 27 -1 is a Mersenne prime. Euclid proved that this condition is sufficient for » to be a per-
fect number and Euler proved the necessity of this condition. At the present time only thirty-eight
Mersenne primes are known, with the largest known Mersenne prime being 25°72* — 1, which has
over two million digits. A list of all known Mersenne primes is given in the web site

http://www.utm.edu/research/primes/glossary/Mersennes.html.

We will prove a theorem which generalizes both of the results given above concerning the
compositeness of F, and M,,. Before presenting this theorem, we will need the following defini-
tion and results involving Lucas sequences.

Definition 1: The Lucas sequence u(a, b) is a second-order linear recurrence satisfying the rela-
tion ,,, = au,,, +bu, and having initial terms u; = 0, #, = 1, where a and b are integers.

We let D =a® +4b be the discriminant of u(a, b). Associated with u(a, b) is the character-
istic polynomial f(x) = x* —ax — b with characteristic roots & and #. Then, by the Binet formula

" = % (1
We have the following theorem concerning the divisibility of u, by the prime p.
Theorem 1: Let u(a, b) be a Lucas sequence. Let p be an odd prime such that p[bD. Then
Pl oy @
where (D/p) is the Legendre symbol. Moreover,

pl Y(p~Dip)y2 3)
if and only if (-b/p) =1.
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Proof: Proofs of (2) are given in [4, pp. 290, 296-97] and [1, pp. 44-45]. A proof of (3) is
givenin [3, p. 441]. O

We are now ready for our main result, Theorem 2. The results by Drobot and by Euler and
by Lagrange on the compositeness of F, and M, will then be given as corollaries of Theorem 2.

Theorem 2: Let u(a, b) be a Lucas sequence. Let p be an odd prime such that p [b.
(@) If2p-1isaprime, (D/(2p-1))=-1,and (-b/(2p-1) =1, then 2p—1|u,.
() 1If2p+1isaprime, (D/(2p+1))=1,and (-b/(2p+1)) =1, then 2p+1|u,.

Proof: (@) By (3), 2p—1|ug, 1y, =u,. (B) By (3), 2p+1{uy iy, =u,. O
Corollary 1 (Drobot): Let p be a prime such that p>7, p=2 or 4 (mod 5), and 2p-1is a
prime. Then 2p—1|F, and F,>2p-1.

Proof: Note that {F,} =u(1,1) and D =5. It is clear from (1) that if p>7, then F, >2p-1
If p=2 (mod 5), then 2p—1=3 (mod 5), while if p=4 (mod 5), then 2p—-1=2 (mod 5). By
the law of quadratic reciprocity, if 2p—1=2 or 3 (mod 5), then

(D/@2p-1)=(5/@p-1)=-1.
Since p =1 or 3 (mod 4), it follows that 2p—1=1 (mod 4). Hence,
(-b/@2p-1)=(C-V@2p-1)=1
It now follows from Theorem 2(a) that
2p-1|F,. O

Corollary 2 (Euler and Lagrange): Let p be a prime such that p>3, p=3 (mod 4), and 2p+1
is a prime. Then 2p+1|M, and M, >2p+1.

Proof: 1t is clear that if p>3, then M, =27 -1>2p+1. Consider the Lucas sequence
#(3,—2). Then D=1 and, by the Binet formula (1),
_2"-1_ 0 1_
h, =57 =2"-1=M,.
(D/@p+1)=(1/2p+1)=1.
It also follows from the fact that p =3 or 7 (mod 8) that 2p+1=7 (mod 8). Thus,
-b/2p+1)=(2/2p+1))=1
It now follows from Theorem 2(b) that
2p+1llu,=M,. O

Moreover,

Remark: Primes p such that 2p+1 is also a prime are called Sophie Germain primes of the first
kind, while primes p such that 2p—1 is a prime are called Sophie Germain primes of the second
kind. Tt is not known whether there exist infinitely many Sophie Germain primes of the first or
second kind. At the present time, the largest known Sophie Germain prime of the first kind is
3714089895285-25°°%° — 1 with 18075 digits, and the largest known Sophie Germain prime of the
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second kind is 16769025-2**7' +1 with 10264 digits. For a list of the largest known Sophie
Germain primes, see the web sites

and

http://www.utm.edu/research/primes/lists/top20/SophieGermain. html

http://ksc9.th.com/warut/cunningham html.
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For consistency, we adopt the same notations and formats developed in our previous work
on line-sequences, see [2].
A line-sequence is expressed as

(e, B):..ug, g, g, [y, ], 1y, 005, 1., )

gy,

where u,, n € Z, denotes the n' term, the generating pair is given by [#,, %], and the recurrence
relation is
Clh,, +bun+1 =Upias (2)

where ¢, b € R are not zero. Since (2) is valid for any value of n, we also have
Clhyyy + Bt =ty 3.
From these two relations, we find
b= (Uyityy3 ~ Unyithns) | (Uytsy = Wniy)?), 3)
¢ = ((Ua) ~Wsithpsz) | (@001~ @11)?). @

The product (see, e.g., [1], [4], [5]), abbreviated as "product" here, of two line-sequences
does not necessarily satisfy a recurrence relation. We will give some conditions under which it
does.

A generalized Fibonacci line-sequence is given by

U b):..[0,1,b,c+b7, ..., ®)
01
and a generalized Lucas line-sequence is given by
UG, 8):...[2,5], 2¢+8%,3ch + B, ... (6)
2,b
see (4.3) and (4.12) in [2]. Let
U, %)= Ul b). (M
0.5 01 25
Substituting (5) and (6) into (7) and multiplying corresponding terms produces
U, x):...[0,8], 2¢b + B, 3c*b + 4cb® + B, ... (8)
0,5
Putting n =0 in (3) and (4) and applying to (8), we obtain
x=2c+b, y=-c*. ©
So (7) becomes
U, 2¢+8%) = (e, BlU(c, b). (10)
0.5 01 25
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Let
U, 0= U(c ) U, b). (11)

-b,0 -b,2¢

Following the same procedure, we find

U 2c+8%) = U(c ) (e, b). (12)

-b,0 ~b,2¢

From (10) and (12), we have the following pair:

U(—c Zc+b2)—v(l/b)U(c b) U(c b), (13)
-b,2c

U(nc ,2c+b2)=(l/b)U(c,b)U(c,b). (14)

0,1 0,1 2,b

So we obtain the formula:
U2, 2¢+ 8 —IU( —c? 2c+b2)+]U( -2, 2¢+b%)

1.7
(15)
—(1/b)[~zU(c » Ues+ilJenUe b)}
Example: Letc=b=1in(15)and put M, ; =U, (-1,3) and F ; =U, ,(1 1), then
M, j=—iF oF g o+ By 1 f% 05 (16)

where M denotes Morgan-Voyce numbers, see (1) in [3].

Let m, ., and f; ;. , be the n™ term of M, ; and F, |, respectively. Then

i, jo
mi,j;n =-1 fl,O;n -1,2%n +.]f0,1;n 2Ln— —i n—lln—l +jfnln’ (17)
where f, and /, denote the n Fibonacci and the 7™ Lucas numbers, respectively. In particular,
My 0.0 =~ Frtbo1 = = Son-2, (18)
Mo 1, = Sbn = Jfan- (19)
Since the generating function of M, ; is (j —-if)/(1-3t+ 1%), we have
tHA=3t+2) =3 fonat™, 20)
nzi
and
V(A=3+=3 0" @1
nzl
For M, ;,
A-0/(1-3+2y=3 f ", (22)
nzl
and for M_, ,,
(+0/ Q-3+ =31, ¢ (23)
nzl
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FIBONACCI TREE IS CRITICALLY BALANCED-A NOTE*

Yasuichi Horibe
Dept. of Math. Inform. Sci., Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
(Submitted September 2000-Final Revision February 2001)

1. INTRODUCTION

To continue a previous note [2] (also [3]) on the morphology of self-similar trees, we recon-
sider, as simple model trees (see [2] for motivations), the sequence of binary trees S, = S, (a, b),
k=1,2,..., defined recursively for relatively prime integers a, b such that 1<a<b:S§,,..., S, are
just one-leaf trees, and, for £ > b +1, the left subtree of S, is given by S,_, and the right by S,_,.
Put c=£. When ¢ =2, we have S, (1, 2), the Fibonacci tree (of order k).

Denote the number of leaves in S, by 7, =n,(c) and write

Ay =ﬂk(c):”—f;;i (k2b+1),
A=A(c) = lim 4,
k-
then A, : (1-4,) may be considered as a left-to-right weight-proportion in ..

The average path length L, = L,(c) (i.e., the average number of branchings along the path
from the root to a leaf) of S is the sum of the lengths of all the paths from the root to leaves

divided by n, .
In Section 2 we show the following relation:
G(H(©)=1,
where

0

. L
G(C) = ,ll_l;l'l logkn,‘ 4
H(c)=-AlogA—-(1-A)log(1-A).

("log" is to the base 2, while "In" is to the base e.)

That is, we show that the normalized L, L, /logn, , converges and the limit equals (H(c))™, the
inverse of the entropy of the distribution A,1-A4. Roughly, G(c) and H(c)k express the asymp-
totic growth and breadth indices, respectively, of the tree.

We will then observe in Section 3 some simple balance properties of S, and show that the ¢
maximizing G(c) but maintaining S, balanced for every £ is equal to 2.

2. A LIMITING RELATION
The following lemma was implicitly shown in [2] and will be used in the sequel.

Lemma 1:
@ 2=(1-27;
(b)) A=A(c) (1=<c) is less than 1 and strictly monotone increasing, and A(1) =1, A(2) = @;

* This paper was presented at the Ninth International Conference on Fibonacci Numbers and Their Applications,
July 17-22, 2000, Institut Supérieur de Technologie, Luxembourg.
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(©) +logn, —>L(-logA)ask — o;
(d) |4, —A|— 0 exponentially fast as £ — co.
Theorem 1: G(c)H(c)=1.

Proof: 1t is easy to see that the recursive structure of S, implies

L =0L_,+(A-A)L,_,+1 (k=2b+1) m
(Ly=+--=L,=0), which we are going to compare with the following equation with constant
coefficients:
X, =Ax_,+(1-A)x_,+1 (k2b+1) 2)
(q="=x,=0).

Remark: Kapoor and Reingold [4] treated, in a different way, a general recurrence, including (1),
derived from the binary trees with costs a and b on the left and right branches.

The characteristic equation A#° +(1— A)¢™® =1 of the homogeneous
Vi = Wiea + A=Yy €)
clearly has root 1, and it can be shown that |a| < 1 for every other root a. Therefore, the general

solution of (3) is given by y, = C, +¢&,, where C, is a constant and &, — 0 (k — ©).
As a particular solution of (2), we have

_Clogd) sy,

%= "5H ()
In fact, the right-hand side of (2) then becomes
2 loe ) }%g;”)(k a)+(1— 1) Clogd) Ef?(k—b)ﬂ
_(ag(gcf)m H()(axllogl+b(l A)log A—-ailog A —a(l- A)log(1- 1))
N CRAr )1°g{(1 —lbﬂ)“} -Gy Loy Lemma 1)
- x,

The solution of (2) is therefore given by

(=logd)
= +
X 2H(0) k+Ci+¢, @)
which we regard as the solution satisfying the initial condition x; =---=x, =0.

Subtract (2) from (1) to get
L —x, = L (L= %) (A= A )Ly — %) + (A — D), — %, p),
then
|Li =% | < A | Ly = X | + (A= A | Loy — X | + G| A — A, )

since we can write |x,_, —x,_,| < C, from (4).
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Now we prove by induction on & that
|L —x, | <Cylnk (k=1) (6)
for some constant C;. Trivially true for k=1,..., b, since I, = x, = 0 for those . Suppose £ 2

b+1, then £ <£ <1. By the induction hypothesis, (5), and the inequality In{1-x) < x, we have

|y — x| < Cydy In(k —a)+ Gy (1= A) In(k - B) + Cy |4, — A|

:C3{/1k (lnk+ln (1—~%D+(1—/1k)(lnk+1n(1~%))}+€2|/1k ~ 1

<G, {lnk—%(aﬂk +b(1—/1k))}+C2|/’tk Y

%%+C2Mk—ﬂ;sc3lnk,

where the last inequality holds because, by Lemma 1(d), we could have chosen C, large enough
so that — 22+ C, |4, —~A| <0 for k 2b+1.
From (4) and (6), we obtain

<Cylnk-

<Glnk;

k Ink
<G (]lognk )(T)

hence,

L, 1 (=logh) k Ctg,
logn, H{c) a logn, logn,

Therefore, —%— — -~ (k — ) by Lemma 1(c). O
logn, H{c)

3. CRITICAL BALANCE

A most pleasing, though rather vague, concept concerning the form of a tree might be the
concept of being "balanced as a whole."
One natural definition of "balancedness” (let us call it "w-balanced") of the trees S, is:

{S,} is said to be w-balanced if m, > m;_, +n,_,, forevery k 2b+a b1 (see [2]).
(Remark: b-+a-+1 is the minimum & such that n, 2 3.)

Note that the definition takes this form to refer to the sequence {S,} not to individual S, for
reason of compactness. Also note that the definition may be viewed as stemming from the fact
that the condition n, 2 n,_, +n,_,, can be written as

g = =) S (M =M 00) =T
meaning that the division n,__ : (1, —1,_,) of n, is balanced better than or equally to the division

o (n’k - nk—Qa)'
Another pretty concept of balancedness of a binary tree is due to Adelson-Velskii and Landis
[1]. Denote the height of S, by %, = &,(c}, then their definition adapted to §,, is:

{8,} is said to be h-balanced if h,_,—h,_, < 1forevery k 2b+a+1.
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We know from [2] that A, =[%£2] (k 2 b).
It should be mentioned here that, according to Nievergelt and Wong [5], {S,} may be called
"a-balanced" (0 < @ <3) if %£ > o holds for every k >b+a +1 and they showed that

( Ly )(—aloga—(l—a)log(l—a))s1

logn,
for a-balanced {S,} [in place of G(c)H(c)=1].
Lemma 2:
(a) {S,} is w-balanced if and only if c<2.
(B) {S,} is h-balanced if and only if ¢ < 2.
(¢) m,=n,_,+n,_,, forevery k>b+a+1ifand onlyif c=2.
(d h,_,—h,_,=1forevery k2b+a+1ifand onlyif c=2.

Proof: The proof is simple, comprising the following pieces 1~5.

1. We first note that n, =n,_, +n,_,, and hence the "if" part of (c) is obvious.

2. There are (infinitely) many i such that n,<n,,. So, if c<2 (i.e, b<2a), we have
n,_y, <m,_, for (infinitely) many £, and if ¢ >2 (i.e., b > 2a), we have n,_,, >n,_, for (infinitely)
many k. This proves the "only if" parts of (a) and (c). An alternative proof is: Divide both sides
of m, 2n,_, +n,_,, by n, to obtain

1> (nk—a )+ (nk—a )(nk-Za )
\m m Thea)
Let k — oo, then 1> A(c)+(A(c))?. Therefore, we deduce A(c) < @, and using Lemma 1(b)

finishes the proof of those parts.

3. Proof of the "if" part of (a). Suppose k>b+a+1. Since b<2a by c<2, we have
n,_, 2n,_,,. Hence, {S,} is w-balanced.

4. Suppose c<2. Then b<2a-1. Take k =b+ia (i >2) to see that
k—a)-b] [(k=0)-b7_,. ja—b
0.<_hk_a~hk_b:[( z) ]_[( a) 1:(,_1)_[12 ]
. ja—(2a-1 . . 1
S(1—1)—{%)]=(z—1)~(z—2)_[51:0,

That is, A,_, - h_, = 0 holds for (infinitely) many £.
Suppose ¢>2. Then b>2a+1. In this case, taking k =b+ia+1 (i 22) leads us to
h,_,—h,_,=i—-(—-2)=2. Thatis, h,_,—h,_, =2 holds for (infinitely) many £.

The two remarks above prove the "only if" parts of (b) and (d).

5. Proof of the "if" parts of (b) and (d). Suppose b+a+1<k <b+2a. Then, since b+1<
k-a<b+a,wehave h,_,~h,_, (=1-0 or 1-1)<1. (Furthermore, if ¢c=2, then ¥ —b <5 and
By y—hy ,=1-0=1)

Suppose next that £ > b5 +2a+1. From b <2a, we have
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(k—a)-b < {(k—Db)-b 1,
a a

and hence, by noting that k—b2>2a+12b+1, we have hy,_,<h,_,+1. Therefore, {S,} is h-

balanced. (Furthermore, if c=2, then #,_,=h,_,+1.) O

The (asymptotic) average growth function G{c) is strictly monotone increasing because the
entropy H(c) is strictly monotone decreasing. Therefore, the ¢ maximizing G(c) while keeping
the §, balanced for every £ equals 2.

SUMMARY

Summarizing, we may say that the Fibonacci tree is critically balanced, and in this sense the
Golden-cut point A(2) might be interpreted as the critical balancing point.
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1. INTRODUCTION

There exists a very wide literature about the generalized Fibonacci sequences (see, e.g., [3],
where interesting applications to number theory are also shown, and [2], where such sequences
are treated as a particular case of a more general class of sequences of numbers). In this paper we
start by defining some particular generalized Fibonacci sequences (denoted by {U,(c—1,—¢)},en»
c €N} and by studying their properties. In particular, we find interesting relations between a
generic term U,(c—1,~¢), neN, and U,,(c-1,—¢) and show a nice connection between the
numbers U, (c—1, —¢) and their expression in the c-ary enumeration system. After this, we give
an estimate of the value of the logarithm of U, (c—1, — ¢) on the basis c.

Successively, we apply the properties of the sequences {U,(c~1, —c)},cn to the study of the
number of solutions of linear equations in Z,, » eN.

Finally, we briefly show the principal characteristics of another class of generalized Fibonacci
sequences, {U, (c+1,¢)},en, € €N{1}.

2. GENERALIZED FIBONACCI SEQUENCES: THE SEQUENCES {U, (c—-1,-¢c)},n

For each pair (h, k), h,k € C of complex numbers such that k(k* —4k) =0, we denote by
{U,(h, k)}, N the generalized Fibonacci sequence defined as follows:

VneN, n=2, Uh, k) =hU,_(h, k) kU, ,(h, k), Uy(h, k) =0, U,(h, k) =1

An explicit expression of the n' term of {U,(h, k)},. for generic n e N U {0} is given by
the Binet formula

U=

where
1[ 2_4 —_ 2_4

are the distinct roots of the polynomial x? —hx +k € C[x], called the characteristic polynomial of
the sequence. Moreover, for every integer n € N U {0}, we have

. an_ﬁn +ﬂ" _ an+1_aﬂn+aﬂn_ﬂn+l _ an+l_ﬂn+l

o- a-pf a-ff

We then obtain
VneN {0}, a-Uyhk)+B"= U, (h k). )

446 [Nov.



GENERALIZED FIBONACCI SEQUENCES AND LINEAR CONGRUENCES

As the role played by @ and f in the Binet formulas is symmetric, the following equalities are
also true:
VneN U0}, B-U,(hk)+a"=U,,(h k). @

As a particular case, let us consider now the generalized Fibonacci sequences of the form
{U,(c—1,- )}, e, € being a positive integer; from the equalities 7=c—1 and k = —c, we easily
obtain @ =c and f#=-1. Then, for all » €N U {0}, from the Binet formula we have

U,,(c—l,—c)=cn;¥

b

while equalities (1) and (2) show, respectively, that

VneNuU {O}a Un+1(c— la —C) = CUn(C_ l’ _C) +(_1)n’ (3)
and
VreNuw {0}, U(c-1,-¢c)+U,,(c-1,-c)=C". “@

The first terms of some of such generalized Fibonacci sequences, corresponding to fixed values of

c, are:
{Un(07 - 1)}HEN : O: 1) 07 19 0) 17 O) 1) 02 1: 0’ 15 ,

(U,(,-2)},on:0,11,3,5,11,21,43, 85,171, 341, 683, ...;
{U,(2,-3)},en:0,1,2,7, 20, 61,182, 547, 1640, 4921, .;
{U,3,-4)},n:0,1,3,13,51,205,819, 3277, 13107, 52429, .. ;
{U,(5,-6)},n:0,1,5 31,185 1111, 6665,39991, 239945, ...

3. {U,(c—1,-c)},n (c=2) IN THE c-ARY ENUMERATION SYSTEM

Theorem: Let ¢>2 be a fixed integer; then, for each fixed integer m>2, the two following
assertions are equivalent:
(@ IneN:m=U,(c-1,-c);
(b) in the c-ary enumeration system, the expression of 7 is either of the form
(c—=10(c—1)...0(c—1) or of the form (c-1)0(c—1) ... 0(c - D1.
Moreover, when for a given m the two assertions are satisfied, we have m = Ué a(c—1,—c), where
t denotes the number of digits of m which appear when it is written in the c-ary enumeration
system.
The theorem can be proven by noticing that, for every n €N U {0}, we have the recursion
U, (c-1,-c)=cU,(c-1,—-c)+(-1)". Hence, if (a) is satisfied, assertion (b) straightforwardly
follows by induction from the first few terms:
Uyc-1,-¢)=c-1-1=c¢c—1;
Uy(c-1,-¢)=c-(c-D+1=10-(c-D+1=(c-D0+1=(c-DI;
Uyfe-1,-c)=c-Uy(c-1,-¢c)-1=10-[(c-DI]-1=(c-1)10-1
=(c-1)0(c-1);
Us(c-1,-¢c)=c-Us(c-1,-¢0)+1=10-[(c-D0(c-1)]+1
=(c-1D)0(c-1)0+1=(c-1)0(c-1L;
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Ugc-1,-c)=c-Us(c-1,-¢c)-1=10-[(c-1)0(c-D1]-1
=(c-D0(c-1D10-1=(c-1)0(c—-1)0(c—1).
(For the sake of clarity, the convention was adopted of writing the c-ary expressions in boldface
characters; the dot denotes multiplication.) Conversely, if (b) is satisfied, m is clearly seen to be
a term of the sequence {U,(c—1,—c)},.n by applying a finite number of times the recursion
U, (c-1,-¢c)=cU, (c-1,—-c)+(-1)", and assertion (a) follows.

Moreover, it is clear that, for every n>2, the number of digits of U,,,,(c~1,—¢) when it is
written in the c-ary system is one unit larger than the number of digits of U, (c -1, —¢) when it is
expressed in the same system. Since in the c-ary system the number U,(c -1, —¢) is expressed by
the only digit c—1, the second part of the theorem follows by induction.

4. AN ESTIMATE OF log (U,(c—-1,—¢)) (c=2,n>1)

For any ¢>2 and n>1, we know that

cn_ __1 n
U e-1,-9= =L

hence, we have log,(U,(c-1, —¢)) =log,(c" — (-1)") —log (c +1), which is equal to

log, [c" (1 - (:E?—n)] —log, [c(l +%)j| =n-1+log, (1 - (—c#] —log, (1 + %)

Now we suppose ¢ fixed and consider log,(U,(c—1, —c)) as a function of n. Since

ln(;+y) i+o(l) as y >0,

we have In(1+y) =y +o(y) (y = 0); log,(1+y) = Ey;+o(y) (y > 0). Then, for n — +wo, we can

write
n _nyn-1
log, (l— (—c}“) ] () i (c ) (n— +0).

'Inc

On the other hand, for every positive real number x, the following inequalities hold: 0 <In(1+x)
< x; hence, we have 0 <log, (1+x) <{%. Taking x =, we obtain

1 1
0 - )
<10g0(1+0)<clnc

Then, from the above equalities we have, when setting y(c) = log, (1+1), the approximation of
log.(U,(c—1, —c)) holding for n large,

log (U,(c-1,-¢))=n-1+log, (1 - (_Pn ) —log, (l + %)
c

=n-1-p()+ N n, (C) (n—> +oo),

c"Inc

where O<y(c) <

clnc
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5. LINEAR EQUATIONS IN Z, AND THEIR RELATION WITH
THE SEQUENCES {U,(c—1,-¢)}, N

We consider the problem of finding the elements (x;; x,;...; x,) € (Z,)* which satisfy the
congruence equation

2. x;=a (modr), )

Jj=1
and the constraining equalities

ng(xj>r):dj; j=1’2""’k) (6)

where 7 and k are fixed positive integers, 7 is odd, a € Z,, and d,,d,, ...,d, are k divisors (not
necessarily distinct) of 7. Let us pose, for each prime divisor p of 7, b, = #({j,1< j<k: pld}}),
and let us assume that, for each p, ,>2.

Starting from formulas which give the total number N, of solutions of the above problem
(see [1], eq. (3.37), and [4], ex. 3.8, p. 138), replacing in such formulas Ramanujan sums by their
expressions as given by Holder's equalities, i.e.,

Vm,n eN, c(m;n) = ) g¥iln PP ) — n/ ged(n, m)),
ged(j, m)=1

@ and u being, respectively, Euler's and Mobius' functions (see [5]), and then using basic proper-
ties of ¢ and u and applying (in reverse order) the distributive property of the product with
respect to the sum, gives rise to the following equality:

N, = ¢("/d1)¢("/:'2) @ /d) p %)
where
r= 1] [l—i‘—Qb"T]- I [l—i‘—’lb”[—l.l]. ®
pnplal  @=D7 ] pinpal (@-D7
The latter formula can be found in [5] for the special case d, =d, =:--=d, =1 only. Compare

equalities (7) and (8) also with [6]. .

Now we want to rewrite equality (8) in terms of the generalized Fibonacci sequences that we
treated in the previous sections. First, we observe that, for each prime divisor p of 7, by applying
the Binet formula to the terms of {U,(c—1, —¢)},n in the case in which ¢ = p—1, we have, for
each nonnegative integer 7,

U,p-2.1-p)= E==EL

ie, pU,(p-2,1- p)=(p-1)"-(-1)". Hence, from (8), we obtain
(p-D* —(—1)”!’} [(p—l)bf‘—(—n”""}
p=TT |2 =) -
plgra[ (p-D’ plgla (-1
p-U, (p-2,1-p) p-Uy «(p-2,1-p)

3&[ (p-1" ]H[ (p-D*" ]
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U, (p-2,1-
| 222 o eo2ion. O
1)" pir, pta

pir p- pir, pla

Now let us fix a prime divisor ¢ of 7 and let # be a residue class in Z, such that gfu. We
want to calculate the ratio of F, to F,. From expression (9) of F, for generic a, comparing the
case in which a = qu with the case in which a =u, we immediately obtain

F. Up,-1(9-2,1-9) _ @-DUs,(q-2, 1-g)

Lqu _ = 10
R U a-21-9/a-) Up4-21-9 (10
Moreover, from (3), taking ¢c=¢~1 and n=4, -1, we obtain
Uy, (4-2,1-9) = (@- DU, 1(g-2,1-@)+(-D"",
ie., (- DU, 1(q-2,1-9)=U; (g—2,1-g)+(-1)", and hence
B _Un@-21-9+CD" _ (yh an
k Uy, (g-2,1-9q) Uy (g-2,1-9)

Equations (11) show that the ratio F, / F, depends on ¢, but is independent of . They also show
that, when b, is even, then F, > F,, while when &, is odd, then F,, <F,. This means that a sum
having an even number of addenda which are not multiples of g tends to favor as possible results
the multiples of ¢, while a sum having an odd number of addenda which are not multiples of ¢
tends to favor the numbers which are not multiples of g. Moreover, since 7 is odd (which implies
g 2 3) and for ¢>2 the integer U,(c—1,—c) tends to infinity as #» — +oo, equations (11) show
that the greater b,, the nearer one to another are the values of £, and F,. This means that ifina
sum there are many addenda which are not multiples of g, then the sum tends to favor significantly
neither the multiples of ¢ nor the integers which are not multiples of g. More generally, in view of
(7) and (8), the distribution in Z, of the values of the expression Z’;=1 X; 88 Xj, Xp,..., X vary in
Z;, tends to be a uniform distribution as & tends to infinity (because P, tends to 1 and N,
becomes independent of a).

Furthermore, if g?|7, then for each residue class a in Z, which is a multiple of g, there exist
exactly g —1 classes # in Z, not multiples of ¢ such that a = gu (mod r). In this case, from equa-
tions (10), dividing F,, / F, by g1, we obtain the number

Up,-1(q-2,1-9)
U (g-2,1-q) °

which, being independent of @, can be considered as the ratio of the number of the strings (x,;
X,; ...; %) such that g| Zj‘-_;l x; to the number of the strings (x;; x,; ...; X, ) such that q,i’Z’le X5

(12)

We now give an example of what was discussed in this section. Let the following problem be
assigned:

7
ij =g (mod3), ged(x,3)=1forj=12,..,7.
j=1

We want to calculate the ratio N/ N,.
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By taking ¢ =3 and u =1, we have b, =7 and then, by (11), we can write

No_No_B_, () _ 1 _4
N N B UG-2) @B 4

To obtain the ratio of the number of strings (x;; x,;...; %) €(Z3)” such that 3|3

number of strings (x;; X,; ...; %) € (Z‘“b7 such that 3] %

this ratio is equal to 3“& i;, ie,toZl

j=1%; to the

J=1%;, We use expression (12) and find that

6. THE SEQUENCES {U (c+ L c)},en

Another interesting class of generalized Fibonacci sequences is the set {U,(c+1,¢)},en, 1€,
of the sequences whose characteristic polynomial has ¢ and 1 as roots, ¢ being a positive integer
not equal to 1.

For all n e N U {0}, we have the Binet formulas

=" 4" e+

Uf(c+l,c)= (’; _11,

Some examples of such sequences are:
{U.G,2},n:0,1,3,7,1531, 63,127, ..;
{U,(4,3)},en:0,1,4,13,40,121, 364, 1093, .. ;
{U,(5,9},en:0,1,5,21, 85,341, 1365,5461, ..
{U,(6,5},en:0,1,6,31,156,781,3906,19531, ...

From equalities (1) and (2) we have, respectively,

VreNuU {0}, U, (c+Lc)=cU, (c+1c)+1

and
VneNuU {0}, U, (c+Le)=U,(c+1c)+c".

For a fixed c, it is clear that the terms of {U, (c+1,¢)},n, if we exclude the first term O, are
exactly the integers which in the c-ary system are written in the form 11...1. Moreover, for each
n €N, the number of digits "1" that appear in the expression of U, (c+1, ¢) in the c-ary system is

n.
For any ¢ >2 and n> 1, we have log,(U,(c+1, ¢)) =log, (c" - 1) -log, (c—1), which is equal

n-1+log, (1—5) logc(l—l).

Since log,(1+y) = &= +0(y) (y = 0),

1y 1 1
kogc(l—cﬂ)— L”lnc+0(c”) (n— +ow).

1 1
—;:—T<Hn(l—z)

to

Further,

A

0.

Therefore, we deduce
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1 1
@-Dinc <logc(l c) <0.

). 1
logc(l c) —logc(l+c_1),

the approximation to log, (U,(c +1, ¢)) holding for large n,

Now we can write, setting

s(c)=

c

log, (U,(c+1,¢))=n—-1+log, (l _c”i) ~log, (1 - 1)

c"Inc leld

=n-1+6(c)- 1 +0(~1—) (n— +0),

where 0 < §(c) < m
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1. INTRODUCTION

The idea of co-generalized Fibonacci sequences began with Euler, who discussed Daniel
Bernoulli's method of using linear recurrences to approximate roots of (mainly polynomial) equa-
tions (see [4], article 355). Recently, such sequences have been introduced and studied in [10],
[11], and [14]. They are defined as follows: Let {a;}]%, be a sequence of real numbers and con-
sider the sequence {V,}, .7 defined by the following linear recurrence relation of order oo,

+o0
Vn+1 = ZamVn—m ifn> O’ (1)
m=0
where {V_ }7%, are specified by the initial conditions. We shall refer to them in the sequel as
sequences (1). They are an extension of 7-generalized Fibonacci sequences (see, e.g., [3], [8], and
[9]) and their general term V, (7 >1) does not always exist. Hence, they were studied under
some conditions on the sequences of coefficients {aj}jfo and the initial conditions {V/_ j};fo (see
[10], [11], and [14]).

The aim of this paper is to study the combinatoric expression of sequences (1) and extend the
results of [13]. When the coefficients are nonnegative with sum 1, this expression is derived from
properties of Markov chains. By induction we see also that this expression is still valid for arbi-
trary coefficients (Section 2). For the case of arbitrary nonnegative coefficients, we give the
asymptotic behavior of ¥, (Section 3).

2. MARKOV CHAINS AND COMBINATORIC EXPRESSION OF V,

2.1 Fundamental Hypotheses

It was shown in [10], [11], and [14] that the general term ¥, of a sequence (1) does not exist
in general. Therefore, we need some necessary hypotheses on {a,},,, and {V_,},,, which insure
the existence of V, for every n>1. In this paper we are interested in the following hypotheses:

e (H.1) For every m, we have a,, >0 and there exists £ >m such that a;, > 0,
e (H.2) There exists C >0 such that a, < C for any m;
e (H.3) The series 2,2 |V_,|is convergent.

These hypotheses are compatible with the Markov chains formulation of sequences (1).

2.2 Sequences (1) and Markov Chains

Let {a;} ;5 be a sequence of real numbers which satisfies (H.1). Suppose that the following
condition is satisfied:

iam =1 2)

m=0
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Condition (2) shows that (H.2) is trivially verified. Consider the following matrix:

-1 0 1 2
-1 0 1 0 O 0
0 0 0 1 O 0 3)
P=1 a a a 0 - .
2 a a, a aq 0
3 a a a, a a 0

If we set P =(P(n,m)), ez, we have P(n,m)=6,,, for nme{-,-1,0}, P(n,m)=a,_,_, for
n>0 and n—-m-120, and P(n,m)=0 elsewhere. Condition (2) shows that P is a stochastic
matrix. Therefore, P is a transition matrix of a Markov chain (J) whose state space is Z= {---,
-1,0,1,:--}. The states ---,—~2,—1,0 are absorbing states and 1,2, -+ are transient states.

Consider the following infinite vector X = (---,V_,,,-*,¥,,*-,¥,,+-+)'. Then a sequence (1)
can be written in the following matrix form:

X=PX. )

The preceding infinite matrix product (4) is simply V, =2, ., P(n,m)V,,. In the same way, matrix
P?=(PP(n,m)), nez is given by PO(n,m)=T,,..c cny P(n, )P(j,m) for every m>0, n>0.
By induction, we also define the matrix P*=(P®(n,m)),, 7. Equation (4) shows that
X = P*X forevery k >1. Thus,

2., k
X:QkX,wherleP*P; iy )

Properties of Césaro mean convergence, applied to the matrix sequence {P*},,, (see, e.g., [6] and
[7]), allows us to state the following proposition.

Proposition 2.2: Let P be a stochastic matrix defined by (3). Then, the sequence {Q,};s; given
by (5) converges (when & — +0) to the following matrix,

-1 0 1
-1 O 1 0 0 - 0
0 0 0 1 0 - 0 6)
Q= 1 p(la—m) t p(laO) 0 - ?
2 p(za_m) o p(2’0) o -

where p(k,—m) for k>1 and m>0 is the probability of absorption of the system by the state
—m when it starts from k.

Relation (5) and Proposition 2.2 show that X = QX, where O is the matrix given by (6).
Therefore, using the matrix product (4), we prove the following extension of Theorem 2.2 of

[13].
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Theorem 2.3: Let {V,},.7 be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then,
for every n>1, we have
+00
Vy= Y pln,~mV., 0
m=0
Expression (7) gives V, (n>1) as a linear combination of the initial conditions and the
absorption probabilities p(k,—m) (k>1,m=>0).

2.3 Computation of the p(n, m)

The computation of p(n, m) and p(n, —m) is the same as in [13].

Case of n>m>0. In this case, p(n, m) is the probability of reaching the transient state m
starting from the initial one n. The system, starting from », will go to m after one transition with
the probability P(n,m)=a,_,_,. We say that the system had made a jump of #» — m units. To go
from n to m (n>m), the system must make k; jumps of j+1 units with probability a; (j > 0).
Since the total displacement is n —m, we have ky +2k, +--- +(n—m)k,_,,_, =n—m, and the total
number of units of this displacement is k,+ k& +---+k,_, ,. The number of ways to choose
ko, kyy ook y 18

kg +ky+---+k,_, 1)!

k kit k!
and the probability of each choice is a°af' ... a1 Therefore, we have
(Znom-t g )1 ,
=0 T kg k -
p(n,m)= 2 m%"aﬂ Y i (3)

e (jHk=n—m
From (8), we prove easily that
p(n,m)=pmn-m,0) and p(0,0)=1. ©)
We note that for n>m >0 we have

—m+2
p(na m) =;Hr(:m’Tl’ )(aO’ ] an—m+1)7

where {H') . (ay, ...,a,)},»o is the sequence of multivariate Fibonacci polynomials of Philippou
of order s (see [1]).

Case of n>0 and —m <0. In this case, n is a transient state and —m is an absorbing one.
To go from n to —n, the last transient state visited by the system is s, where 0 <s <n. And to go
from s to —m, the system must make only one jump with probability a,,,, ,. Since p(n,s) is the
probability of going from n to s, we show that the probability of absorption of the system by the
state —m when it starts from n>0 is p(n, —m) =a,,,, , + 2, p(n, S)a,,,_,. Therefore, using (9),
we establish the following expression:

P, —m) =3 pln=5, 0. (10)

s=1

2.4 Combinatoric Expression of V,, (n>1)
The substitution of (10) in (7) allows us to obtain
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40 | 7
Vn = Z {Zp(n_sa 0)as+m—-l}V«m (11)
m=0 { s=1

for every n=1. The two hypotheses (H.2)-(H.3) show that we can make the permutation of the
two sums in (11). Therefore, we prove the following result.

Theorem 2.4: Let {V,},.7 be a sequence (1) such that (H.1), (H.3), and (2) are verified. Then
we have

V=2 Apln=s.0) (12)

for every n > 1, where the p(n—s, 0) are defined by (8)-(9) and 4, =22 a,, . V. ..

In particular, we have the following corollary.

Corollary 2.5: Let {V,},.7 be a sequence (1) such that (H.1) and (2) are satisfied. Suppose that
Vo=land V_, =0 for m>1. Then, for every n>1, we have

V, = p(n,0) = ayo(n—1,0)+ayp(n—2, 0+ +a, ,p(0,0), (13)
where the p(n— s, 0) are defined by (8)-(9).

Expression (13) can also be obtained using the Markov chains techniques on the displacement
of the system from the state » to the state 0, as was done in Subsection 2.3.

3. COMBINATORIC EXPRESSION OF V, IN THE GENERAL CASE

Let {V,},cz be a sequence (1) whose coefficients {a,} ;¢ are arbitrary real numbers. Suppose
that {|a;|} o and {V_;} 5 satisfy (H.1), (H.2), and (H.3). For every n>1, we set

ok

pn, 0= %a{?a{“ .akm, (14)
Z.';;g)(]'*'l)k'l:n 0. 1. e n_ .

with p(0,0) =1 and p(—£, 0) =0 for every £ 21. Thus, by induction on n, we prove that (13) is

also verified by expression (14) of p(n, 0). Consider the sequence {W, },.; defined as follows:

W =V, forn<-1and

M§

W= 51 s, o>as+m-} -
L

0 L s=1

3
il

for n=1. For n=1, a direct computation shows that we have W, =22, a V. =V,. Since (14)
satisfies (13), we derive by a simple induction that W, =V, for every n>1. Therefore, we have
the following general result.

Theorem 3.1: Let {V,},.7 be a sequence (1) whose coefficients {a,} o are arbitrary real num-
bers such that {|a;|} 5o and {I_}} 5o satisfy (H.1), (H.2), and (H.3). Then, for every n21, we
have

V=3 Ap(n-s,0),

=1
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where the p(n— s, 0) are given by (14) and

A Z s+m—-

m=0

The combinatoric expression of r-generalized Fibonacci sequences has been established by
various techniques and methods (see, e.g., [1], [5], [8], [13], and [15]). Theorem 3.1is a gen-
eralization of such a combinatoric expression to co-generalized Fibonacci sequences.

4. ASYMPTOTIC BEHAVIOR OF p(n, 0)

In this section we study the asymptotic behavior of p(n, 0) when the coefficients a; (j > 0)
are nonnegative real numbers.

Let {V,},<z be a sequence (1) whose coefficients {a,} ., are arbitrary nonnegative real num-
bers. Suppose that (H.1), (H.2), and (H.3) are verified. If ;=1 and V_, =0 for every m>1, we
derive from (7) that V,, = p(n, 0) for every n>1, where p(n, 0) is given by (14). For 25 a, =1,
it was established in [14] that the following condition (C):gcd{j+1;a;>0}=1, implies that
lim,, . V,=0 if 2 .o(m+Da,=+0 and lim,, V, =2 . TI@WV_, if 2 ..(m+1a, <+o,
where [1(m) = 25, a, / Zs0(k + Da,, (see [14], Theorem 2.2). Therefore, we have the following
proposition.

Proposition 4.1: Let {a;} ;5 be a sequence of nonnegative real numbers that satisfies (H.1) and
(2). Then, if (C) is verified, we have

lim p(n,0)=0 for )" (m+1Da, =+

m20
and

. 1
=1 for ¥ (m+1)a, <+,
MmO =, O 2, (¥ Day <

Suppose now that X;=, a, # 1 arbitrary. Hence, we have the following two cases.
Case 1: X, .,a,>1. Let R be the radius of convergence of f(x) = Z;Z, a,x**!. Hypothesis
(H.2) implies that R > 1. The function fis nondecreas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>