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THE INTERVAL ASSOCIATED WITH A FIBONACCI NUMBER 

Takao Komatsu 
Faculty of Education, Mie University, Tsu, Mie 514-8507, Japan 

e-mail: komatsu@edu.mie-u.ac.jp 
(Submitted October 2000-Final Revision February 2001) 

1. INTRODUCTION 

It is well known that the /1th Fibonacci number Fn is given by the Binet-Moivre form Fn = 
{an - pn) IV5, where a,0 = (l± J5) 12. JVlobius [2], however, gave a different way to character-
ize a Fibonacci number. Let z be an integer with z > 2. Then z is a.Fibonacci number if and only 
if the interval [gz-l/z, gz + l/z] contains exactly one integer^ where g=a = (l + 45)/2 is the 
golden number. 

In this paper we shall give some criteria about a more general case. 

2. CRITERION 1 
As usual, let a - [aQ; a1? a2?...] denote the continued fraction expansion of a, where 

a = a0 + l/al9 tfo = LaJ> 
a„ = an + l/an+l9 an = la„] (n = l,2,...). 

The n^ convergent pnlqn- [a0; al9..., a J of a is given by the recurrence relations 

Pn=anPn-l+Pn-2 ( " = 0,1, . . .) , P-2 = °? P-l = \ 

qn = an%-\+%-2 (w = o,i,...), q~i = \ 9-1 = 0. 
Let the sequence Gn be defined by G0 = 0, Gx = 1, Gn = aGn_1 + Gn_2 (w = 2,3,...). Gw is called 
the nm generalized Fibonacci number. The Binet-Moivre form of G„ (w = 0,1,2,...) is given by 

n a~p 3 

where a and /? are the solutions of the equation x2 - ax -1 = 0. Assume that a > /?. Then the 
continued fraction expansion of a is given by 

a + ̂ a2+4 r , 

andGn = ^II_1=/7lf_2 («>0). 

Theorem 1: Let a = (a + va2 +4)/2 = [a;a,a,...] with a > 2 (or a = l and«>2) . Then ^ is a 
generalized Fibonacci number is and only if the interval 

r i _L 11 
ga , qa +— 

[̂  aq ^ aq\ 
contains exactly one integer/?; explicitly q~qn = Gw+1 and p = pn. 
Remark: In fact, 

pn-l<qna- — <pn<qna + — <pn + l. aqn aqn 
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Proof: In general, by [3], 

1 
?„(«»+r?n+?»-i) ^ an+lq2„ 

because an+l = [an+l; an+2,...]. When a - (-J5 +1) 12 = [1; 1,1,...] and n > 2, a more precise upper 
bound is possible. Namely, from 

n+l qn 2 2 ' 
weMve\a-pJqn\<l/(2q2). 

Returning to a = (a + ̂ Ja2 +4)12 = [a;a,a,...]? if g = #w (=G„+i) and p = pn, then \a-p/q\ 
< II {aq2), which is equivalent to 

1 , 1 
^ aq r ^ aq 

Furthermore, 
pn +1 >g„a +1 >qna + and pn-l<qna-1+ <q„a . 
rn ^n aqn ™ aqn

 rn ™ aqn ^n aqn 

Notice that when a-\ and n = 0,1, the interval contains two integers. In fact, 

qna = a-l<l<2<a + l = qna +—. 

On the other hand, suppose that plq satisfies \a-plq\< II{aq2). We shall follow a similar 
step to the proof of Theorem 184 in [ 1 ]. Assume that p I q = [h0; hh..., bn]. Then 

p - «(-ir t (o<.<I). 
Set 

q q2 

^ ~~ ^ r* ? l . C , W —• ~ ^ , 

where PJQn= p/q = [b0;bh...,bn]. Then 

g(-ir = p n = (-iy 
q2 a Qn Qn^Qn + Qn-lY 

Letting e = Qn l{o)Qn + Q,^), we have 

a, = I - % L > f l - l ^ l (a>2). 
* & 

Notice again that we can set a = 2 instead of a = 1 when a = (V5+ 1) /2 = [1; 1,1,...] and n > 2. 
Therefore, by Theorem 172 in [1], Pn„% /Q1„1 and PnIQn are two consecutive convergents to a. 

3. CRITERION 2 
As Mobius proved, unless a is the golden number, the number of integers included in the 

interval \qa-^,qa + ̂ \ may be more than one. For the generalized a, the following criterion 
holds. 
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Theorem 2: Let a = (a + V« 2 +4) /2 = [a;a, a,...]. Then the solutions (p, q) of the inequality 
qa-l/q < p<qa + \lq using positive integersp and q are as follows: 

(p„, <in\ • • •»(«&> ' f t ) . ( X + # , - 1 , q„+q»-x), (J>„H - pn, qn+i - qn) (» * o), 

where f = L ^ J • 

iVoc/; Let q be an integer with q„<q< q„+l. First, we will show that if | qa - p \ < 1 Iq then 
the form of q must be iq„ or qn+l -iqn (i = 1,2,..., aB+1 - 1 ) . By Lemma 2.1 and Theorem 3.3 in 
[4], we have 

{wjQr} < {u2a} <•••< {uq ^a) if n is even, 

{«!«} > {u2a} >•••> {«9n+|_,a} if « i s odd, 

where{M1,M2,...,Mgn+i_1} = { l , 2 , . . . , ^ n + 1 - l } i s a s e t w i t h ^ = 7 ^ (mod qn+l) (/' = 1,2,.. . ,?„+1-1). 
Explicitly, 

{?„«} < {2^n«} < • • • < {a„+iq„a} < {(q„ - qn^)a} < {(2q„ - q^d) 

<•< {(?»+l - 2 ? n +?„-l)a} < {(?»+! - ? „ +?„-l)a} < {(?„+! -«„+!?„)«} 
< • • • < {(?„+i - 2?„)a} < ((?„+! - ? „ ) « } , 

if Mis even; similar if n is odd. Since 

II (?„ - ?»-i)« II = I (?« - ?«-i)« - (P» - /V-i) I = 
a „ + , + l > . l 

«»+!?«+ ?»-! ?n 
and 

II(*H-I - ? » + ?»-i)«ll = IfaUi - f t + 9»-i)a-(P„+i - A + />„-i)l = "̂ f1-
+ a„x 1 + l n+l 1 

there does not exist a q satisfying qa-l/q <p<qa + \lq unless the form of q is q = iq„ or 
<1 = <ln+\-i(ln Q = !>2,•••>a»+i-!)• 

a - *9» a - AL 

?» 
1 1 

?»(«„+#«+?„-i) k2q, 2^2 
n 

holds if and only if 

When a = [a; a , a , . . . ] , we have 

k*-l<*nH + 
g«-l 

yfa <yfa = Ja, + 3=1 
<Ji 

< J « 3 ^ < - < > 4 ^ < - U + ^ - -ft 

Since [Vtf J = [ « / Va J = 1 (a = 1) and al4a < Va + 1 (a > 2), we obtain 

L^j=| ?«-
* . 

a 
L£. 

Let a ^ > 4. Then, since an¥l > i + 2 > i2 / (i -1) for i = 2,3, . . . , an+l - 2, we have (i - l)aw+2
an+i ^ 

|,2«IH-2> yielding ((/ - l ) ^ + l)f^+1 > (i2aw+2 +/ + l)qn. Thus, 
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II (?»+!-'?„)« II: 1 - + - ' i a M 4 . 7 + l 1 c»+2 

a»+2«ii+l + ft* ^4-lfti + ft,-l 0W2^ + 1 + ft, ftn-1 - nn 

Since 

a > a + i - i = ^ - i > ^ - i = ^ n+l 
a ?1 ?» ?» 

for n > 0, we have 

yielding 

I(?„+! -tf»)«-(Pn+l ~Pn)\ = —^ <-

a- Pn+\~Pn 

mn+\+<in %+i-in 

1 
(?„+!- In? 

Since 

for « > 1 , we have 

a<a + l = P o _ + l<P>L + i = 2n±L + i 
% <ln In 

ll(*H4 - («»+! - l)^„)«ll = l(?» +?„-l)« ~ (Pn + /V-l)l: a-\ 1 
°^n

+an-l 9n+9n-i 
yielding 

a- Pn+Pn-l 1 
(tf»+?»-l)2 

For w = 0, 

a = | a - ( a + l) |<l = -y-
<7o2 

REFERENCES 
1. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 5th ed. Oxford: 
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SOME IDENTITIES INVOLVING THE POWERS OF THE 
GENERALIZED FIBONACCI NUMBERS 

Feng-Zfaen Zhao and Tianming Wang 
Dalian University of Technology, 116024 Dalian, P.R. China 

(Submitted October 2000-Final Revision May 2001) 

1. INTRODUCTION 

In this paper, we are interested in the generalized Fibonacci and Lucas numbers 

where a = (p + ̂ p2-4q)/29 fi = (p-^p2-Aq) /2, andj? and q are real numbers with pq^O 
and p2 - Aq > 0. For p = -q = l, {UJ and {VJ are the classical Fibonacci sequence {i^}and the 
classical Lucas sequence {Ln}, respectively. It is obvious that the sequences {U„} and {Vn} satisfy 
the linear recurrence relation Wn = pWn_l-qWn_2, n>2. In [1], Zhang discussed the calculation 
of the summation 

I UaUa2...Uak. (2) 

This problem is very interesting and can help us to find some convolution properties. Zhang [1] 
gave a method for calculating (2) and obtained a series of identities involving the generalized 
Fibonacci numbers. For instance, he proved that 

I UaUb = - j ^ j -Kn - \)pUn - 2nqUn_(\, n>\, (3) 
a+b=n P ~^<i 

X UaUbUc= f \ , 2 [ ( ( ^ 3 - 4 ^ ) H 2 - ( 3 / ?
3 - 6 ^ ) » + (2p3 + 4^))[/„_1 

a+b+c=n Z\P ~49J (4) 
+ ( ( V - P2q)n2 + 3p2qn - (2p2q + Aq2))U.n_2\ n>2. 

For the powers of the generalized Fibonacci numbers, are there results similar to (3) and (4)? 
It seems that this has not been studied. The purpose of this paper is to investigate the calculation 
of the summation of the forms 

£ UlU\...U\ and X ^ X - ^ -

Using Zhang's method, we will establish some identities involving the squares and cubics of the 
generalized Fibonacci numbers. 

2. MAIN RESULTS 

Consider the generating functions of {U2} and {U*}: 

G(x) = Y,U2xn and H(x) = £ U „ V . 

By using (1) and the geometric series formula, we have 
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and 

H(x) = -

(x)- l ax px 
w a-p\(\-a2x)(\-apx) (l-J32x)(l-aj3x) 

1 
(a-p? 

U3x 3qx 
Lo - a3x)(l - /3\) (1 - aqx){\ - fiqx) 

ivl ^ • ( i i 0 
'W<uuu(}a>\'\fnq\)' 

, \x\ <min ( 1 1 1 1 
[\c?\'\/F\'\a9\'\fi9\ 

Define 

F(x) = ^ - = ±U2x-\ F1(x) = -^fda"U„x"-\ F2(x) = -^±P"U„x"-\ 
«=1 

w=l 

For F(x), Fx(x% F2(x), E(x), Ex(x), and E2(x), we have the following lemmas. 

Lemma 1: If F(x), Fx(x)9 and F2(x) are defined by (5), then they satisfy: 

F\x) = J^pffo ~ 2«2 W ( * ) - 4a2pFl(x) + (p- 2apx)F{(x) - 4a0%(x)] 

2aP 
(a-p? 

a P4 ap ap 
(a2-p2)(\-a2x) (a2-p2)(l-p2x) 1-aPx (\-apxf 

(5) 

E{x) = !M. = fJUlx"-\ El(x) = —L^fdU3nx"-\ E2(x) = -^YU„q"x"-\ (6) 

(7) 

pi( ,_(P~ 2a2pxfF{'{x) - \4a2p(p - 2a2px)F1'(x) + 32a4p2Fl(x) 
W " 2(a-/?)6 

(p - 2ap2x)2F2"(x) - Uap2(p - 2ap2x)F{(x) + 32a2p%(x) 
2(a-P)6 

3aP 
(a-pf 

a 4a6p 
(a2- P2)(\ - a2xf (a2 - p2)(a - P)(l - a2x) 
4ap6 4a5p2 + 4a2ps 

(a2-p2)(a-P)(l-p2x) (a2-p2)(a-P)(l-ccPx) 
„2tf2 

(8) 

pb 3a2p2
 | 2a2p 

(a2-p2)(l-p2x)2 (l-apx)2 (l-apxf 

Proof: It is clear that 
F\x) = F2(x)+F2(x) - 2Fl(x)F2(x) and F\x) = F,3(x) - F2

3(x) - 3F1(x)F2(x)JF(x). 
Using the definition of Fx(x) and the derivative of Fx(x), and noticing that a+/? = /?, we get 

F,2(x) = - 1 

Following the same pattern, we get 

r 3 - 1 i?(x) = («-/?)2 

[(p - 2a2px)F{(x) - 4a2pF1(x)}. 

[(p - 2ap2x)F{(x) - 4ap2F2(x)]. 

(9) 
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In the meantime, it is very easy to show that 

^ w = < ^ 
a* P4 ap ap 

(a~P)(l-a2x) (a2 - p2){\-p2x) l-apx (l-apx)2 

where 

\x\ <rmn 
1 1 1 

\ar\fir\9\ 
Thus, (7) holds. 

Differentiating in (9), we have 

2Fl(x)Fl'(x) = 
(a-fiy 

-[(p-2a2pX)F1"(x) - 6a2pF{{x)\ 

Applying (9) again, we have 

F\X) = (^ " 2a2Px)Fl"(x) - Ua2p(p - 2a2px)Fl'(x) + 32a*p2Fl(x) 

Following the same way, we have 

~2a<- - V ' 
2{a-pf 

Fi(x) = (p - 2aplx)F2" (x) - Uap2(p - 2ap2x)F{ (x) + 32a2p*F2(x) 
2{a-pf 

On the other hand, after careful calculus, one can verify that 

Fx{x)F2{x)F{x). ap 
(a-pf 

a 4a6p 
(a2-p2)(\-a2xf (a2 -p2)(a-p)(l-a2x) 

4ap6 4a5p2 + 4a2p5 

-+-(a2-p2)(a-p)(l-p2x) (a2-p2)(a-P)(l-aPx) 
2o2 3a2f$2

 f 2a2/? 
(a2 - ^ 2)(1 - ^2x)2 (1 - apxf (1 - a fix)3 _ 

Therefore, (8) holds. D 

Lemma 2: l£E(x), El{x)9 and E2(x) are defined by (6), then they satisfy: 

E\x) = {-2q3x + V3)E[{x) 4q3E1(x) [6g2x + 3p(q + 2)]E2-(x) 
(p2-4q)2U3 (p2-4q)2U3 {p2q + 2p2+4)(p2-4q) 

12qE2(x) 6q 
(p2q + 2p2 + 4)(p2-4q) p(p2-4q) 

P2g(V2+q) P6 

7/2 
a6 a2q(F2 + q) 

l-a3x l-aqx 

3tv\ -E\x) 

+ 

2Xp~2-4qfUl 

l-Pqx l-p3x 

1 W - 2q3x)2E['{x) - \4q3(V3 - 2q3x)E( (x) + 32q%(x)] 

1 -{[3p(q + 2) + 6q2x]2E2-'(x) 2(p2q + 2p2+4)2(p2-4q)2 

+ [ip(q + 2) + 6q2x](6q2 + l2q)E$ (x)+2&Sq2E2(x)} 

(10) 
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9q a 
p(p2-4qf Ul-a3x) 3V\2 

g V ( r a + g ) a6q(V2+q) a3q% 
2 Ol a2-f$ a-P a3-j3 3 /?3 I-ax 

(aV agA Va+g f/?V , /V H + g 
a - / ? a 2 - / 9 2 J l - a # c [a-fi a2-p2)l-pqx 

a-fi a2-p2 a3~p3 ^ - + ^ - .+ 2 V (11) 
l-y03JC ( l - £ V f />(/>2-4?)5 

a 
(a2-y92)(l-a ; 5x) 

6„ air ^ii 

- + 
aVlq2(V2+q)-a6q P3q3 

a-fi a2-p2 
1 a3?(F2+?) 

„3/?3 Pbq-pViq
2(V2+q) a3p~ 

a-p a2-p2 
1 M + ? ) 

l-a<7* (1-aga:)2 

/?9 

11-^gx (I-Pqx)2 (a2 - p2){\-p3x)\' 

The proof of Lemma 2 is similar to that of Lemma 1 and therefore is omitted here. 

From the lemmas, we can obtain the main results of this paper. We now state and prove the 
following new results. 

Theorem 1: Let {U„} be the generalized Fibonacci sequence. Then we have 

hUaUb~ 7^ V^{~uT~nq r ' ( } 
a+b-

I *##>? = 1 [/>2«(» - l)t/„2
+1 - 2^ (2» + 3)U„U„+1 

a+b+c=n 2(p2-4qf 

+4q2(n2+l0n-9)U„.lUn+l] 

4g(q"-%-V2n+1) 

3q ( " - ^ 2 
(P2-4^)3L ^2 

, «>2. 

(13) 

Proof: To show that this theorem is valid, comparing the coefficients on both sides of (7) 
and (8), and noticing that (1), a+P = p, ap = q, and (a~P)2 = p2-4q, we get identities (12) 
and (13). D 

Corollary 1: Let {U„} be the generalized Fibonacci sequence and k be a positive integer. Then 

y rprp = l-lnqkUnk-k +("-WkU*Y*Uk
 2(ful (Ui**k no*-*) „>\ ( i 4 ) 

E UlkU2
bkU2

k = 2(p2 _\qful {n{n - l)V2U2„k+k 

-2Vkqk(2n + 3)U„kU„k+k+4q2k(n2 + \0n-9)Unk_kUnk+k] (15) 

A(nnkV.. -nkV. . A 

a-¥b+c=n 

U2k(p2-4qf »-W2*M + * y ^ 

for n > 2. 
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Proof: Let 

UL = (<xky v y = u*.t v,=ank+pnk=Vnk (16) 
ak-pk Uk 

It is clear that the sequences $U'n) and { '̂} satisfy the linear recurrence relation 

W^V.W^-q'W^n^l. 
Now, we apply Theorem 1 to the sequences {U'„} and (F„'}. In (12), if U„, V„, p, and q are 
replaced by U'„, VJ, Vk, and qk, respectively, one has that 

Due to (16) and V2-4qk = U%(p2 -4q), we get (14). Using a similar method, we get (15). • 

Theorem. 2: Let {Un} be the generalized Fibonacci sequence. Then 

V Tar* = -TntfU^+jn-WJJ* 9q"(2nqU„_1-pUn) 
atn ' " (F2-4q)3U3 (p*-4q? 

6g[^w-(^+g)<r1^] 
p(p2-4qf 

V f/3„3f/3 _ (»-2)[(»-l)F32t/3„-2(2» + l)gV3^„_3] + 4 (» 2 - l )^3„_ 6 
^ U°U>U°- 2(p2-4q)5Ui 

(17) 

a+b+c=n 

~ T T T ^ t V l " 2 - W„-2 - 2pq(7n - 12)C/„_1 +p\n -1)(» - 2)C/J 
(P ~4q) 

9q 
PiP -MY 

(»-2F3„ + (V2+q)q3U3n_6 -q(V2+q)U3n_3~^^ 
U, 

+ (V2 + q)q" lUn+l + V 2 H" a-2- + -
27g2 

/>(/>2-4<7)5 
K 3" _ „"-2 - ^ t / , «+3 

Vl(y2+q)q"-1U„_2-^-^-(ri-2)(V2+q)q"+1Vl1+l 

Proof: Comparing the coefficients of xn 2 and xn 3 on both sides of (10) and (11), respec-
tively, we get Theorem 2. • 

Corollary 2: Let {UJ be the generalized Fibonacci sequence and k be a positive integer. Then 

V Tr3Tr3 _ -2»g3*t/3*(W-i) + (n - W3lcU3kn 9qk>\2nqkV'„k_k -VkV^ 
akn"kbk~ U3k(p*-4qf - Uk(p*-4qf 

UkVk(p2-4qf 
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E U*U2*U*-2U2k(p2_4qy 
a+b+c= n 

[{n-\){n-2)V3\U3kn-2(n-2)(2n + \)q'kU3kn_3kV3k 

ngnk 

+ 4(«2 - l)q6kU3kn-6kl- U2^2_4q)5 [ W " Wto-2* 

-2F^(7«-12)C/fe,_tH-^2(»-l)(«-2)C/„,]- 9qk 

WW-*4f 

u3k uk ukvk 
21q 2k 

Um-q*"-*Ukn+3k-Vk<y2k +qk)qkn-kUkn_2k UlVktf-4q)\Vk 

.^^-{n-2W2k + qk)qk"+kVkn+kUk 

We note that Corollaries 1 and 2 are generalizations of Theorems 1 and 2, respectively. 
Finally, we can find some congruences from Theorems 1 and 2 according to the particular 

choices ofp and q. For example, setting p = -q - 1 in (12) and F2 = 1, we obtain 

i w=[ 2^- i + (r l ) F j 44(^+ 2+»(-D"). 
Setting /* = - ^ = 1 in (17), we have 

V J*.»* = ^ - 3 + 2 ^ + ^ + 21(-1)* fi + l«(-l)"/W-i 
o+fe=» 125 

Hence, 

and 
[ 2 ^ _ 1 + (^-l)FJLw + 2(F2 M + 2+K-ir)^0 (mod5), w * l , 

^ - 3 +2(^ + 2)F3w + (-l)w(21^Fn + 18HF„_1)SSO (mod 125), ^ I > 1 . 
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1. INTRODUCTION 

It is always fascinating to see what'results when seemingly different areas of mathematics 
overlap. This article reveals one such result; number theory and linear algebra (with the help of 
orthogonal polynomials) are intertwined to yield complex factorizations of the Fibonacci and 
Lucas numbers. In Sections 2 and 33 respectively, we derive these complex factorizations: 

n-l 

F. = W-V 
k=l 

FCOS-
nk w>2, 

and 

z„=ni-2/ COS' 
n{k-\) i\\ 

k=l\ 
n>\. 

Along the way, we also establish the general forms: 

and 

^s inJHeo^- i ) ) 
r„-i —r-(—_u .^ , n>l, 

sin(cos X-i)) 

L„ = 2i" cos(n cos_1(-£)), n > 1. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

A simple proof of (1.1) can be obtained by considering the roots of Fibonacci polynomials 
(see Webb and Parberry [7] and Hoggatt and Long [3]). This paper proves (1.1) by considering 
how the Fibonacci numbers can be connected to Chebyshev polynomials by determinants of a 
sequence of matrices, and then illustrates a connection between the Lucas numbers and Cheby-
shev polynomials (and hence proves (1.2)) by using a slightly different sequence of matrices. 
(1.3) and (1.4) are not new developments (see Morgado [4] and Rivlin [5]); however, they are of 
interest here because they fall out of the derivations of (1.1) and (1.2) quite naturally. 

In order to simplify the derivations of (1.1) and (1.2), we present the following lemma (the 
proof is included for completeness). 

Lemma 1: Let {H(H), n = 1,2,...} be a sequence of tridiagonal matrices of the form: 

"2 ,1 ^2 ,2 "2 ,3 

H(«) = | A,.2 Ki *•• |. (1.5) 

n.n—l K 
Then the successive determinants of H(/i) are given by the recursive formula: 
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(1.6) 
|H(1)|=/*U, 

\m)\=hihi-hihi> 
mn)\=h„JlI(n-\)\-h„_lJin,„-imn-2)l 

Proof: We prove Lemma 1 by the second principle of finite induction, computing all deter 
minants by cofactor expansion. For the basis step, we have: 

|H( l )M(/> U ) l=\ i , 

|H(3)| = 

Then 

|H(2)| = 

(hi hi o "I 
"2,1 "2,2 "2,3 

[° hi hi) 

\&\ hX2)\ 

= ^ 3 ^ ( 2 ) 1 - ^ 3 

-"1,1^2,2 "l ,2"2,b 

1 (h i h »\ "1,1 #*1,2 

|l° hi) 
= \ 3 | H ( 2 ) | - / I 2 J 3 

tive step, we assume \Jl(k)\=hkk\ll{k-X)\-hk_^khkk_^K(k-2) 

|H(* + 1)| = 

(hi hi ] 
"2,1 *ha "2,3 

"3,2 ^3,3 

%-2,fc-l 

"k-l,k-2 K-\,k-l "k-l,k 

\,k-\ \ f c \Ml 

V ''k+l.k "k+l,k+lj 

=h+iMMk)\-h Ml 

'h,, hl2 \i 
hi hi "2,3 

"3 ,2 "3 ,3 
nk-l,k-l 

h-l,k-2 "k-l,k-l "k-l,k 
0 hk+l,k 

= h+iMi\ll(k)\-hk+ihMj1l(k-l)\. D 

2. COMPLEX FACTORIZATION OF THE FIBONACCI NUMBERS 

In order to derive (1.1), we introduce the sequence of matrices {M(ri),n = l, 2,...}, where 
M(n) is the » x » tridiagonal matrix with entries mkk = \, \<k<n, and mk_^k = mkk_x -i, 2 < 
k<n. That is, 

M(«) = 

'\ i 
i 1 i 

i 1 
•. / 
i 1 

(2.1) 
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According to Lemma 1, successive determinants of M(w) are given by the recursive formula: 
|M(1)| = 1, 
|M(2)| = l 2 - i 2 = 2, (2.2) 
|M(^)| = l |M(^ - l ) | - i 2 |M( / i -2 ) | = |M(^i-l)|-h 

Clearly, this is also the Fibonacci sequence, starting with F2. Hence, 

Fn = \M(n-l)\,n>2. (2.3) 

There are a variety of ways to compute the matrix determinant (see Golub and Van Loan [2] 
for more details). In addition to the method of cofactor expansion, the determinant of a matrix 
can be found by taking the product of its eigenvalues. Therefore, we will compute the spectrum 
of M(/i) in order to find an alternate formulation for |M(n)\. 

We now introduce another sequence of matrices {G(w)? n = 1,2,...}, where G(w) is the n x n 
tridiagonal matrix with entries gk k = 0,l<k <n, and gk_t k - g^-i = 1, 2<k<n. That is, 

G(«): 

0 1 
1 0 1 

1 0 

1 

• .' 
1 

1 
0 

(2.4) 

Note that M(w) = l+iG(n). Let Ak, k = 1,2,...,n, be the eigenvalues of G(ri) (with associated 
eigenvectors xk). Then, for eachy, 

M(ri)\j = [I+iG(ri)]Xj = lxj +iG(«)x/ = xy +iAj*j = (1+M,)*,.. 

Therefore, fik = 1+ i l k , k = 1,2,..., n, are the eigenvalues of M(/i). Hence, 

\M(n)\ = fl(l+akXn>L 
k=l 

(2.5) 

In order to determine the Xk's, we recall that each Xk is a zero of the characteristic polyno-
mial p„(X) - | G(») - XI|. Since G(«) - I I is a tridiagonal matrix, i.e., 

G(n)-XY = 

f-X 1 
1 -X 1 

1 -X 

1 

(2.6) 

we use Lemma 1 to establish a recursive formula for the characteristic polynomials of (G(»), 
« = 1,2,...}: 

Pi{X) = -X, 
p2(X) = X2-l, (2.7) 

This family of characteristic polynomials can be transformed into another family {U„(x), n > 1} by 
the transformation X = -2x: 

2003] 15 



COMPLEX FACTORIZATIONS OF THE FIBONACCI AND LUCAS NUMBERS 

Ui(x) = 2x, 
U2(x) = 4x2-\, (2.8) 
U„{x) = 2xUn_1(x)-Un.2(x). 

The family {U„(x), n > 1} is the set of Chebyshev polynomials of the second kind. It is a well-
known fact (see Rivlin [5]) that defining x = cos# allows the Chebyshev polynomials of the 
second kind to be written as: 

u(x)=srn[(n + l)0] 
sm0 

From (2.9), we can see that the roots of Un(x) = 0 are given by 0k = -~f, k = 1,2, ..., n, or xk = 
cos0£ = cos—j-, k -1,2,...,n. Applying the transformation X = -2x, we now have the eigen-
values of G(n): 

-2 cos- nk 
k ~ w + 1 

Combining (2.3), (2.5), and (2.10), we have 

, * = l,2,...,/i. 

^ f i = |M(/i)| = n ( l - 2 i c o s ^ n>\ 

(2.10) 

(2.11) 

which is identical to the complex factorization (1.1). 
From (2.6), we can think of Chebyshev polynomials of the second kind as being generated by 

determinants of successive matrices of the form 

A(w, x) = 

2x 1 
1 2x 1 

1 2x 

1 2x 

(2.12) 

where A(w, x) is n x n. If we note that M(ri) = /A(w, - -0, then we have: 

\M(ri)\=f 

Combining (2.3), (2.9), and (2.13) yields 

AM)k<-0 

Since it is also true that 

sin((» + l)cos-'(-i)) 
n+1 sin(cos_1(-£)) 

J 7 = 1 = f-osin(cos"1(-^)) 
1 sin(cos_1(-^))' 

(2.13) 

(2.14) 

(1.3) holds. 

3. COMPLEX FACTORIZATION OF THE LUCAS NUMMEMS 
The process by which we derive (1.2) is similar to that of the derivation of (1.1), but it has its 

owe intricacies. Consider the sequence of matrices {S(TI), n = 1,2,...}, where S(w) is the n x n tri-
diagonal matrix with entries \ x = y, $kfk = 1, 2<k<n, and % „ u = sk^ml = i, 2 < k < n. That is, 
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S(») = 

2 ' 
i 1 i 

i 1 
•. i 
i 1 

(3.1) 

According to Lemma 1, successive determinants-of S(/i) are given by the recursive formula: 

|S(1)| = ±, 
|S(2)| = ± - / 2 = f , (3.2) 
|S(«)| = 1|S(«-1)|-/2 |S(»-2)| = |S(«-1)| + |S(»-2)| . 

Clearly, each number in this sequence is half of the corresponding Lucas number. We have 
Ln = 2\S(n)l n>h (3.3) 

Unlike the derivation in the previous section, we will not compute the spectrum of S(w) 
directly. Instead, we will first note the following: 

|S(«) |=i | ( l+e i e f)S(») | , (3.4) 

where tj is the j * column of the identity matrix. (This is true because 11 + e^J" | = 2.) Further-
more, we can express the right-hand side of (3.4) in the following way: 

i | ( l+ e ienS(«)| =i|l+/(G(/i) + e1^)|, (3.5) 

where G(«) is the matrix given in (2.4). Let yk, k = l,2,...,n be the eigenvalues of G(n) + exej 
(with associated eigenvectors j k ) . Then, for eachj, 

( l + i t G ^ + e^ ) ) ^ - = Iyy +i(G(«) + e1e|)y/ = y, +i>yyy = (l+iyy)yy. 
Therefore, 

i\l+i(G(n) + t^)\^^U(l+irk) (3.6) 
J f c = l 

In order to determine the y ̂ ss, we recall that each yk is a zero of the characteristic polyno-
mial q„(y) = | G(«) + CjcJ -yl\. Since | ( I - jepj)| = j , we can alternately represent the charac-
teristic polynomial as 

^ ( r ) = 2|(l-le1e?')(G(») + e 1 ^ - r l ) | . (3.7) 

Since qn(y) is twice the determinant of a tridiagonal matrix, i.e., 

q„(r) = 2\(l-}e1ej)(G(n) + e^-rI)\=2 

(-*- 1 
2 1 

i -r I 
I -r 

i -Y, 

(3.8) 

we can use Lemma 1 to establish a recursive formula for q„(y): 
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ft00 = -2-> 

qn(r) = -r<i„-i(r)-<i„-2(r)-
(3.9) 

This family of polynomials can be transformed into another family {T„(x), n>\} by the transfor-
mation y = -2x: 

Tl(x) = x, 
T2(x) = 2x2-l, (3.10) 
rw(x) = 2xrw_1(x)-rw.2(x). 

The family {Tn{x\ n>\) is the set of Chebyshev polynomials of the first kind. Rivlin [5] shows 
that defining x = cos0 allows the Chebyshev polynomials of the first kind to be written as 

^(x) = cos«$. (3.11) 

From (3.11), we can see that the roots of Tn{x) = 0 are given by 

^ " ^ i ^ - i o „ ^ *. -™sflfe = c o s ^ ~"*', k=\2,...,n. 0k = -, k = l,2, ...,w, or X£ = cos£ 
?i * * n 

Applying the transformation y = -2x and considering that the roots of (3.7) are also roots of 
we now have the eigenvalues of G(n) + e^J'. 

A*-\) yk=-2 cos-

Combining (3.3)-(3.6) and (3.12), we have 

-, * = 1,2,...,«. 

4=Il|l-2'cos^-^>l,/i^l, 

(3.12) 

(3.13) 

which is identical to the complex factorization (1.2). 
From (3.8), we can think of Chebyshev polynomials of the first kind as being generated by 

determinants of successive matrices of the form 

B(n,x) = 

where B(«, x) is n x n. If we note that S(») = iB(n, - j), then we have 

(x 1 
1 2x 

1 

k 

1 
2x 

• .' 
1 

1 
2x 

(3.14) 

»H)I "•<-£)• |S(*)|=i" 

Combining (3.3), (3.11), and (3.15) yields 

L„ = 2 / n c o s ^ c o s - ^ - ^ j , »>1, 

which is exactly (1.4). 

(3.15) 

(3.16) 
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4 CONCLUSION 

This method of exploiting special properties of the Chebyshev polynomials allows us to find 
other interesting factorizations as well. For instance, the factorizations 

^ + 2 = n ( 3 - 2 c o s ^ y , «>1, (4.1) 

n = f t ( 2 - 2 c o s ^ , n>2, (4.2) 

21-« = nh-™^F%>^l> («) 
and 

can be derived with judicious choices of entries in tridiagonal matrices (Strang [6] presents a 
family of tridiagonal matrices that can be used to derive (4.1)). It is also possible to compare 
these factorizations with the Binet-like general formulas (see Burton [1]) for second-order linear 
recurrence relations in order to determine which products converge to zero, converge to a non-
zero number, or diverge as n approaches infinity. 

One final note: an interesting (but fairly straightforward) problem for students of complex 
variables is to prove that (1.3) is equivalent to Binet's formula for the Fibonacci Numbers. 
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1. INTRODUCTION 

What may be called "Fibonacci inequalities" have been studied in a variety of contexts. These 
include metric spaces [6], diophantine approximation [7], fractional bounds [5], Fibonacci num-
bers of graphs [1], and Farey-Fibonacci fractions [2]. Here we consider Fibonacci inequalities. 
The results are the "best possible" and we relate them through the sequence {fnr}"=0 defined by 

mr = FrFn+l-r> 

where n is a fixed natural number and FhF2,F3,..., are the ordinary Fibonacci numbers. 

2. MAM RESULT 

Theorem: For every natural number k, the following inequalities for the elements of the sequence 
{mk}"km0 are valid: 

(a) if T? = 4&, then 
FlF4k > F3F4k-2 > " ' ' > F2k-lF2k+2 > F2kF2k+l > F2k-2F2k+3 > ' *' > F2F4k-li 

(b) if/i = 4* + l,then 
FlF4k+l > F3F4k~l >'••> F2k-lF2k+3 > F2kUF2k-hl > F2kF2k+2 >"*> F

2
F4k'> 

(e) if?? = 4Jfc+2,then 
FlF4k+2 > F3F4k > " *8 > F2k+lF2k+2 > F2kF2k+3 > F2k-2F2k+5 >°'°> F

2
F4k+\l 

(d) iff? = 4A + 3? then 
FlF4k+3 > F3F4kU >'"> F2k+lF2k+3 > F2k-l-2F2k+2 > F2kF2M > ''' > F2F4k+2 • 

Examples when k = 3: 
(a) FxFl2 = 144>F3FlQ = 110>F5FB = 105>F6F7 = 104>F4F9 = 102>F2Fn = 89; 
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(b) FxFl3 = 233 > F3Fn = 178 > F5F9 = 170 > F7F7 = 169 > F6F8 = 168 
> F4F10 = 165 >F2F12 = 144; 

(c) FXFX4 = 377 > F3Fl2 = 288 > F7FK = 273 > F6F9 = 272 > F4Fn = 267 > F2F13 = 233; 
(i) FtFl5 = 610 > F3Fl3 = 466 > F7F9 = 442 > F8F8 = 441 > F6F10 = 440 

> F4Fl2 = 432 > F2Fl4 = 377. 

Proof of Theorem: We shall use Induction simultaneously on «, that Is, on k and i. 
For k = 1, we have 

F1F4 = l x 3 > 2 x l = F3F2? 
F ^ = 1 x 5 > 2 x 2 = F3F3 > 1 x 3 = F2 F4, 
F ^ = 1 x 8 >2 x 3 = F3F4 > 1 x 5 = F2F5, 
FXF7 = 1 x 13 > 2 x 5 = F3F5 > 3 x 3 = F4F4 > 1 x 8 = F2F5. 

Assume that inequalities (a), (b), (c), and (d) are true for some k>\. Then we must prove that 
the inequalities are true for k +1. 

In particular, from the truth of (d), it follows that, for every i, \<i<k: 

We shall discuss case (a), but the other cases are proved similarly. 
First, we see that 

FxF4k+4 - F3F4k+2 = F4k+3 + F4k+2 - 2F4k+2 - F4k+3 - F4k+2 > 0, 

that is, the inequality 
F2i-iF4k_2j+6 > F2i+lF4k_2i+4 (2.2) 

is valid for i = 1. 
Let us assume that, for some i, \<i<ky Inequality (2.2) is true. Then we must prove that 

the inequality 
•^•+1^4Jfc-2f+4 > ^+3^fc-2/+2 (2.3) 

is also true. 
But 

-^•+l-MJfc-2i+4 "" ^ / + 3 ^ 4 J t - 2 i + 2 = ^+l-MJfc-2i+3 + -^j+1^4&-2Z+2 ~ ^2i+V4k-2i+2 ~ ^2i+2^4k-2i+2 

~ ^/+l-Mfc-2i+3 ~ ^/+2^fc-2i+2 > ® 

because of the Inductive assumption for (d) In case (2.1). Therefore, Inequality (3) holds, from 
which the truth of (a) follows. 

3. DISCUSSION 
By analogy with the extremal problems discussed In [3], we can formulate the following. 

Corollary: For every natural number n the maximal element of the sequence {%}^=0 is FxFn. 

Proof of Corollary: Equation (I26) of [8] can be rewritten is 

Fn = Fk+lFn_k +FkFn_k_l 

to show that Fn > Fn_kFku, \<k<n, which gives the required result. 
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More generally, FxFn is the maximal element of the set 
M={EE,...,E E}9 

where n = ix + ?2 + • • • + ik, 1 < A: < w, is a positive partition into k parts. The result can be proved 
by induction. 

4. CONCLUDING COMMENTS 

A somewhat analogous result was proposed by Bakinova [4] and proved by Mascioni [9]: 

F\ F3 F5 F6 E4 F2 

The results can be generalized to the sequence {un(0,1; p, q)} defined by the recurrence 

with UQ = 0, ux - 1, p * 0, /? G Z, A = /?2 + 4g > 0, in which case a neater proof comes from the 
use of the Binet forms for the general terms and hyperbolic cosines and sines. The result can also 
be extended to related triples of Fibonacci numbers. 
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1. INTRODUCTION 

This paper is concerned with the summation problem of power series of the form 

#(*>/):= E /(*)**, (1-1) 
a<k<b 

where / ( / ) is a differentiate function defined on the real number interval [a, b), and x may be a 
real or complex number with x*0 and x*l. Obviously, the case for x = l of (1.1) could be 
generally treated by means of the well-known Euler-Maclaurin summation formula. The object of 
this paper is to find a general summation formula for (1.1) that could be applied readily to some 
interesting special cases, e.g., those with f{i)-tx (2 ei?), / ( / ) = logf (V>1), and f(t) = qt2 

(0<q<l)9 respectively. Related results will be presented in Sections 3-5. 
Recall that for the particular case f(t) = tp and [a, b) = [0, oo) with/? being a positive integer, 

we have the classical result (cf. [1], [2], [4]) 

w = X ^ = ^ ^ , (i*i < ix o-2) 
where Ap(x) is the Eulerian polynomial of degree/?, and may be written explicitly in the form (cf. 
Comtet [2], §6.5) 

Ap{x) = ftA{p,k)x\ 4£c) = l, 
J f c = l 

with 

AP,k) = t(-^(P*%-J)P QzkZp), 
/=o V J J 

A(p, k) being known as Eulerian numbers. 
As is known, various methods have been proposed for computing the sum of the so-called 

arithmetic-geometric progression (cf. [2], [3], [4]) 

*?(*) = 2>p**. (1.3) 

This is a partial cum of (1.2) with oo being replaced by n. For k = 0,1,2,..., denote 

* This project is supported by the Special. Funds for Major State Basic Research Projects (Grant No. G19990328) 
and Zhejiaing Provincial Natural Science Foundation of China (Grant No. 100002). 
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**(X) = ( I ^ ' (L4) 

and call ak(x) a Eulerian fraction with x * 1. Then the right-hand side of (1.2) is precisely ap(x), 
and one can also have a closed formula for (1.3) using ak(xys, namely, 

SS(x) = ap(x)-x»+lfd [Pyk(x)(n + \y-k. (1.5) 

This is known as a refinement of DeBruyn's formula for (1.3) (cf. Hsu & Tan [5]). 
Both (1.2) and (1.5) may suggest that Eulerian fractions ak(x) (k - 0,1,2,...) would play an 

important role in solving the summation problem of (1.1). That this prediction is true will be 
justified in Section 3. 

2e AN EXTENSION OF EULERIAN FRACTIONS 

We shall introduce a certain linear combination of Eulerian fractions that will be used for the 
construction of a summation formula for (1.1). As before, we always assume x ^ 0,1. 

First, Eulerian polynomials Ak(x) may be defined via the exponential generating function (cf. 
[2], (6.5.10)) 

Substituting t/(l-x) for t9 we obtain the generating function for Eulerian fractions: 
J2, fk i 

Also, we may write (cf. Hsu & Shiue [4]) 

«k(x) = t/S(kJ)-^-^, (2.3) 

where S(k, j) are Stirling numbers of the second kind. 
Multiplying both sides of (2.2) by (l-xe*), one can verify that (2.2) implies the recurrence 

relations a0(x) = 1 / (1 - x) and 

Now, let us define a polynomial in z of degree k via a certain linear combination of <*j(x)% i.e., 

^ ^ ) : = i ( 5 ) « / W ^ (2-5) 
where a0(z9x) = a0(x) = l/(l-x). Using (2.2), we may easily obtain a generating function for 
ak(z9x): co k zt 

S^irif^ (26) 
Moreover, some simple properties of ak{z, x) may be derived easily from (2.5), (2.4), and 

(2.6), namely, 
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(a) ak(0,x) = ak(x) (k>0). (2.7) 

(b) % ( l ,x ) = | % ( x ) (k>ll (2.8) 

(c) ^ f e ) = % _ i ( z ? x ) (k >!). (2_9) 
dz 

(d) % ^ ^ = ( - l / + 1 a , ( l -^x)x . (2.10) 

Obviously, (a) and (b) imply that ak(z9 x) may be regarded as an extension of ak(x). Also (d) is 
inferred easily from (2.6), and the relation 

& f^v>\0-(l-z)t _e^_ (~x)e 
l-(l/x)et l-xe-t 

(e) For 0 < x < 1, the function ak(z9 x) is positive and monotonically increasing with z > 0. 
For x > 1, so is the function (-l)k+lak(l-z, x) with z > 0. 

In fact, the first statement of (e) follows from (2.3), (2.5), and (2.9). The second statement is 
inferred from (2.10) and the first statement since 

(-l)*+1at(l-z,*) = a , ( z 5 £ ) l > 0 (x>l). 

Finally, to use the latter in the next section, we need to make the function ak(z9 t) (0 < z < 1) 
periodic of period unity for z e R (the set of real numbers). In other words, we have to define 

!

ak (z, x) when 0 < z < 1, 

(2.11) 
al(z-\x) for all ZGR. 

Also, we shall need 
Lemma 2A (cf Wang [8]): For k > 1, d£(z9 x)x~[z] is an absolutely continuous function of z in 
J?, where [z] denotes the integer part of z so that z - 1 < [z] < z. 

Proof: It suffices to verify the continuity property at integer points z- j . Clearly, using 
(2.11) and (2.8), we have 

at (/+, *)*4y+1 = 4 tt %>~m = % (0, *)*"' = % (*)*"', 
< 0 - x)x-«-l = %(1, x)x^+1 = %(x)x"'. 

Since a*{z9 x)x~^ is a piece-wise polynomial in z, it is clear that a\ (z, x)e"[z] is an absolutely 
continuous function of z. 

3« A SUMMATION FORMULA FOIL (LI) 

A basic result is contained in the following theorem. 

Theorem. 3.1: Let f(z) be a real function continuous together with its m* derivative on [a, h] 
(m > 1). Then, for x ^ 0,1 we have 
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a<k<b k=Q Kl Z~Q / 3 | \ 

where the notation [F(z)]z
zZa: = F(J) - F(a) is adopted. 

Proof: We shall prove (3.1) by using integration by parts for a certain Riemann-Stieltjes inte-
gral. The basic idea is very similar to that of proving the general Euler-Maclaurin sum formula 
with an integral remainder (cf. Wang [7]). 

In what follows, all the integrals are taken with respect to the independent variable z. Denote 
the remainder term of (3.1) by 

**=c^h)! ^:-i(~z' *)*~[~zl/ (m)(^2- (3-2> 
By Lemma 2.1 and (2.9), we see that (3.2) may be rewritten as Riemann-Stieltjes integrals in 

the following forms: 

Rm = ^[fw(z)d(a*m(-z,x)x-^) (m>l) ; (3.3) 

/^=^ri)iJ!fl^>(-r'x)x"I"rl^(""I)(z> {m-l)- (34) 

The form of (3.3) suggests that one may even supply the definition of RQ via (3.3) by setting 
m = 0 in the right-hand side of (3.3). Thus, one may find that the case m = 0 of (3.3) just gives 
the power series S£(x, f) as defined by (1.1): 

X " ~ 1 Q X~~la£k<b a£k<b 

Now, starting with (3.4) and using integration by parts, we obtain 

where the last term may be denoted by Rnh,l in accordance with (3.3). Consequently, by recursion 
we find 

This is precisely equivalent to (3.1), and the theorem is proved. D 

Remark 3.2: As regards formula (3.1) and its applications, some earlier and rudimentary results 
containing a different form of it in terms of Stirling numbers instead of Eulerian fractions appeared 
in Wang [8] and in Wang and Shen [9]. Also, it may be worth mentioning that (3.1) can be used 
to treat trigonometric sums with summands like f(k)rk cos k0 and f(k)rk sin kO when taking 
x = rew (f2 = -l,r>090<0<2n). 
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4. FORMULAS WITH ESTIMABLE REMAINDERS 

Throughout this section, we assume x > 0, x * 1, and [a, b] = [M, N]9 where M and iV are 
integers with 0<M<N. Recalling (2.11) and (2.7), we find 

[ai(~z, x)x-^f(%)l:l = ak(x)[xNf(k\N) - xM f«\M)\. 

Consider the remainder given (3.1): 

^ = ( ^ 1 ) ! C<-^-z> x)x-[~z]f{m)(z)dz. (4.1) 

Setting /(m)(z) s i , we can see that the integrand function of the above integral keeps definite 
(either positive or negative) sign, in accordance with (2.11) an4 property (e) of Section 2. In fact, 
for the case/(m)(z) = l, 

\ / • n=M 
N-l 

mK=M 

= i « m « I (*" - *"+1) = ~r(xM- *")• 
Clearly, the integrand a ^ O - z, x)xn+l (0 < z < 1) shown above has a definite sign whenever x > 1 
or 0 < x < 1. 

Therefore, applying the mean value theorem to the integral (4.1), we are led to the following 
theorem.. 
Theorem 4.1: Let f(z) have the in* continuous derivative f^m\z) (m>l) on [M, N}. Then, 
for x > 0 with x * 1, there exists a number £ e (M9 N) such that 

Z/(*)** = S ^ [ x ^ / W ( ^ ) - x ^ W l + ̂ C * " - x ^ ) / W ( ^ ) . (4.2) 

As a simple example, for the case M = 0, JV -> oo, 0 < x < l , and /(f) = fp with/? being a 
positive integer, we may choose m = p + l and find that 

lim xNfw(N) = 0, 0<k<p, 

so that (4.2) yields 

Also, for the case JV<ooswe have 

E ^ x V ( t ) W = * " t f f V " * = x»ap{N, x), 

so that (4.2) implies the result 

2003] 27 



A SUMMATION FORMULA FOR POWER SERIES USING EULERIAN FRACTIONS 

N£xPxk=ap(x)-ap(N,x)xN 

which is precisely the formula (1.5) with n = N-l. 
The next theorem will provide a more available form for the remainder of the summation 

formula. 

Theorem 4.2: Let f{z) have the (#1 + 1)* continuous derivative on [M. N]. Suppose that either 
of the following two conditions is satisfied with respect to the sum S^(x, f): 
(0 For x > 1, f{m\z) and f(m+l)(z) are of the same sign in (M, N). 

(II) For 0 < x < 1, fm\z) and f(m+l\z) keep opposite signs in (M, N). 
Then there is a number 0 E (0,1) such that 

Z/(*)** = Z^Tr^^^^^O ~ *Nf{k\N)} + 0^f-[xMfm\M) - xNfm\N)\ (4.3) 

Proof: Replacing m by m +1 in expression (4.1) and using integration by parts, one may find 
(cf. the proof of Theorem 3.1) 

K = ±am(XiX"fW(M) - xNfW(N)]+iU • 

Using property (e) in Section 2 and formula (4.1) for Rm9 and also recalling the derivation of 
(4.2), one may observe that each of the conditions (I) and (II) implies that Rm and Rm+l have 
opposite signs. Consequently, there is a number 0 (0 < 0 < 1) such that 

i ^ = 0S^[xA//O»)(Arf) _ xNfm\N)}. • 

5, EXAMPLES AND MEMAMKS 

Here we provide three illustrative examples that indicate the application of the results proved 
in Section 4. 

Example 5.1: Let / (f) = tx (X > 0, X eR) and choose m> X. It is clear that f(t) satisfies con-
dition (II) of Theorem 4.2 on the interval (0, oo). Consequently, we can apply the theorem to the 
sum S$(x, / ) with [M, N] c (0, oo) and 0 < x < 1, getting 

Z **** = Z (i)^k(x)(xMMA-k - x»Nx-k) + 0(^\am(x)(xMMx-m - xNNx~m), (5.1) 

where 0 is a certain number with 0 < 0 < 1. 
Let us consider the generalized Riemann ^-function 

€(?>x): = Z k " S % k (0 < x < 1,5 ei?) (5.2) 
it—I 

and choose m>-s, then the function £(s,x) can be approximated by its partial sum with an 
estimable remainder, viz., 
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C& *) = E W +xN{%{ k)*k(d*r** + ̂ )am(x)N'sA (5.3) 
Actually, this follows from (5.1) and the fact that 

l i m J A ^ ^ V - ^ 0 (0<k<m). 

Remark 5.2: For the general case in which x is a complex number (x * 1), the remainder of for-
mula (5.1) has to be replaced by its integral form, viz., 

K = ™{fy\N
M<-i{-z,x)x-[-zV-mdz. (5.4) 

In particular, for the case x = eia (i2 = -1,0 < a < 2K), m = l, and M - 1, we have ajj(-z, x) -
a0(x) = 1 / (1 - x), and the remainder given by (5.4) has a simple estimate 

\Rl\ = 0(Nx~l) (#->oo). 

Remark 53: It is known that, as a nontrivial example treated by Olver [6], the estimation of the 
sum 

where a and fi are fixed real numbers with a > fi, fi * 0, and e^ * 1, has the expression 

$(a,fiN) = -^N" + 0(N<*-l) + 0(l). (5.5) 
eip-l 

Evidently, this is readily implied by (5.1) with x = ef^9 X = a , m = 1, M = 1, and the remainder 
being replaced by (5.4). Also, a more precise estimate may be obtained by taking m = 2. 

Example 5.4: Define the function A(x) by the following: 

A(x):=£(tog*)** (0<x< l ) . (5.6) 
k=2 

Then, for any given m>l, A(x) can be approximated by its partial sum with an estimable remain-
der, viz., 

Aw=Xdoĝ  ~xN{%tl^+0t^1\ <5-7> 
where O<0<1. 

Evidently the remainder term of (5.7) is obtained from an application of Theorem 4.2 to the 
function f(t) = log t with M and N being replaced by iVand oo, respectively. 

Example 5.5: Let us take f(t) = qfl with 0 < q < 1, so that we are now concerned with the com-
putation or estimation of Jacobi-type power series 

J(^q) = J^qk2xk (x>0,x*l) (5.8) 

which occurs as an important part in the well-known Jacobi triple-product formula 
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]J(l + q2k-lx)(l + q2k-lx-l)(l-q2k) = £ ? * V . (5.9) 
k=l -oo 

It is known that the k^ derivative of f(t) = q*2 with respect to t may be expressed in the form 
[k/2] v . 

/<*>(/) = g<2 X ^ ^ ^ a ^ i O o g g ^ a ) ^ (5.10) 

so that / w ( / ) -» 0 as t -» oo. 
Now, applying Theorem 4.1 to S%(x, / ) , we easily obtain 

A*,*)=iW+*w{ifl#/(k)(^)+^/w(4 (5.11) 
where £ e (JV, oo), and f(k)(N) and f(m\%) are given by (5.10) with f = JV and f = £, respec-
tively. Certainly the right-hand side of (5.11) without the last term xNam(x)f^m\^) lm\ may be 
used as an approximation to J(x, q) by taking large N. 

Remark 5.6: As is known, Binet's formulas express both Fibonacci numbers Fk and Lucas num-
bers Lk in powers of the quantities (1± V5)/2 with exponent k+\. Therefore, one may see that, 
under certain conditions for f(t)9 various finite series of the forms E^ f(k)Fk and Z& f(k)Lk can 
also be computed by means of Theorems 4.1 and 4.2. 
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0. INTRODUCTION 

Let MC be the monoid of all Morse code sequences of dots a(:=®) and dashes b(: = -) with 
respect to concatenation. MC consists of all words in a and b. Let P be the algebra of all polyno-
mials HveMCKv w^h r e a l coefficients. 

We are interested in: 
a) polynomials in P which we call abstract Fibonacci polynomials. They are defined by the 

recursion 
Fn(a, b) = aF^a, b) + bFn_2(a, b) 

with initial values FQ(a, b) = 0, Fx(a, b) = s. 
b) polynomials Fn(x, s, q) in real variables x and s which we call q-Fibonacci polynomials. 

They are defined by the recursion 

Fn(x, s, q) = xF„-i(x, s, q) + t(qn-2s)Fn_2(x, s, q) 

with initial values FQ(x, s9 q) = 0, Fx(x9 s,q) = l, where t(s) ^ 0 is a fiinction of a real variable s 
and q * 0 is a real number. 

We show how these classes of polynomials are connected, generalize some well-known theo-
rems about the classical Fibonacci polynomials, and study some examples. Related results have 
been obtained previously by Al-Salam and Ismail [1], Andrews, Knopfinacher, and Paule [4], 
Carlitz [6], Ismail, Prodinger, and Stanton [11], and Schur [12]. I want to thank Peter Paule for 
his suggestion to formulate all results in terms of Morse code sequences. My thanks are also due 
to the referee for drawing my attention to the paper of Ismail, Prodinger, and Stanton [11] and to 
the polynomials of Al-Salam and Ismail [1]. Most of the cited papersare inspired by the Rogers-
Ramanujan identities (e.g., [1], [4], [11], [12]) or by the connections with the general theory of 
orthogonal polynomials (e.g., [1], [3], [11], [13]), but the aim of this paper is to emphasize the 
analogy with elementary results on Fibonacci numbers and Fibonacci polynomials and to give as 
simple and transparent proofs as possible. 

1. ABSTRACT FIBONACCI POLYNOMIALS 

Let MC be the set of all Morse code sequences of dots (•) and dashes (-). We interpret MC 
as a monoid with respect to concatenation whose unit element is the empty sequence s. If we 
write a for a dot and b for a dash, then MC consists of all words in a and b. Let P be the corre-
sponding monoid algebra over R, i.e., the algebra of all finite sums (polynomials) XVEMCKV W ^ 
real coefficients. 

An important element of P is the binomial 

(P + W = tcn
k(a,b). (1.1) 

£=0 
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Here C£{a, b) is the sum of all words with k dashes and n-k dots. It is characterized by the 
boundary values C°(a, b) = SkQ and Q (a, b) = an and each of the two recursions 

Cr\a,b) = bCn
k_x(a,b)+aC"k(a,b) (1.2) 

or 
CTXa,b) = CU{a,b)b + C"k{a,b)a. (1.3) 

We are mainly interested in a class of polynomials which we call abstract Fibonacci polyno-
mials. They are defined by the recursion 

Fn(a, b) = aFn.M h) + bFn_2(a, b) (1.4) 

and the initial values F0(a,b) = 0 and Fl(a,h) = s. This sequence begins with 0, s, a, a2+b, 
a3+ab + ha,... . 

If we define the length of an element v GMC as 2k+ 1, where k is the number of dashes 
(elements b) and / is the number of dots (elements a) occurring in v, then it is easily shown by 
induction that Fn(a, b) is the sum of all words in MC of length n-1. 

It is now easy to see that they satisfy also another recursion: 
FMb) = Fn_l(a,h)a + Fn_2(a,b)b. (1.5) 

To this end, consider all words of length n - 1 which end with a and those which end with b. 
Both recurrences are special cases of the formula 

F^ia, b) = Fm_,(a, b)bF„(a, b)+Fm(a, b)F„+l(«, b), (1.6) 

which follows from the fact that each word w of length m+n-l can be factored uniquely either 
as w = uhv, where u has length m-2 and v has length n-1, or as w = xy, where x has length 
m-\ andy has lengthn. 

There is a simple formula connecting these Fibonacci polynomials with the Q (a, b): 

Theorem LI: The abstract Fibonacci polynomials are given by 

^(^*) = ZV W (^*) . (1-7) 
For Fn(a, b) is the sum of all monomials v e MC with length n - 1. If such a monomial has 

exactly k dashes, then it has n-1 - 2 k dots; therefore, n-k-I letters and the sum over all such 
words is Cf"*~V?*). 

Consider now the homomorphism $: P -> R[x, s] defined by 0(a) = x, $(h) = s9 where x and 
s are commuting variables. Let Fn(x, s):=$(Fn(a,b)). Then we get the classical Fibonacci poly-
nomials defined by 

Fn(x, s) = xF^x, s) + siv.2(x, s) 
with F0(x, s) = 0, Fj(x, 5) = 1. Since 

we get from (1.7) the well-known formula 

Jk=o v 

- A - l 1 Jfc.jf-2/fc-l 
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2. A CLASS OF f-FIBONACCI POLYNOMIALS 

Now we consider Morse code sequences which are defined on some Interval {m, w + 1, ..., 
m + k -1} c Z. In this case, we say that the sequence starts at place m. We want to associate a 
weight to such a sequence in the following way: Let t(s) * 0 be a function of a real variable s and 
let q ^ 0 be a real number. Let v be a Morse code sequence on some Interval {m, m + 1, ..., 
#1+it -1}. If the place i e {JW, JW +1,..., m+k -1} Is occupied by a dot, we set w(i) = x; If It Is the 
endpoint of a dash, we set w(i) = t(q*s). In the other cases, let w(i) = 1. Now the weight of v Is 
defined as the product of the weights of all places of the interval, i.e., 

m+k-l 

w(v)= Y[w(il 
i-m 

If, e.g., the sequence - • - • • — • starts at m = 4, its weight Is x4t(q5s)t(q*s)t(ql2s)t(ql4s). The 
weight of all Morse code sequences with length » - 1 starting at m = 0 Is denoted by F„(x, $, q) 
and Is our q-analog of the Fibonacci polynomials. 

We can immediately deduce a recursion for Fn (x, $, q). 
We show that the recurrence 

Fn(x, $, q) = xF^(x, s, q) + t{qn"2s)Fn_2(x, s,q) (2.1) 

holds with initial values F0(x9 s, q) = 0, Fx(x9 s,q) = \. This recursion means that we can split a 
Morse code sequence of length n-\ Into two parts, those with a dot In the last position and those 
with a dash there. In the first case, the dot has weight x and the sequence in front has the weight 
Fn_x(x, s, q). Since the weights are multiplicative, the first term is explained. A dash at the end 
gives the weight t{qn~2s). Since the dash occupies two positions, the sequence in front of the 
dash now has length n - 2 and we get the second term in the formula. 

If we split the Morse code sequences Into those with a dot in the first position and those with 
a dash In the beginning, we get in the same way the recursion 

Fn(x9 s9 q) - xiv^x, qs, q) + t(qs)Fn_2(x, q\ q) (2.2) 

with the same initial conditions as before. 
Let 

A(X,s) = (t°s) I) (2.3) 
and 

M„(x, s) = A(x, q"-ls)A(x, q"~2s) • • • A(x, s). (2.4) 
Then we get 

Mn(x,s) = \ . (2.5) 
I t(.s)F„(x, qs, q) Fn+l(x, s, q)J 

From (2.4), it follows that the matrices M„(x, s) satisfy the relation 

Mk+„(x, s) = Mk(x, q"s)Mn(x, s). (2.6) 

If we extend this to negative indices—which is uniquely possible—we get 

M_k(x,s) = (Mk(x,q-k
S))-1; 
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therefore, 

d„(q s) 

which implies 

,̂+i(*> 9 "s, q) ~F„(x, q "s, q) 
t(q-"s)Fn(x, q~"+1s, q) ((q-^F^x, q~"+\ q) 

^^-^'M^r (27) 
Taking determinants in (2.5), we obtain the q-Cassini formula 

K-1& qs9 q)Fn+l(x9 s, q) -Fn(x;s, q)Fn(x, qs, q) = (-Vftiqs) • • • t{qn~ls). (2.8) 
This is a special case of the following theorem. 

Theorem 2A (q-EuIer-Cassim formula): The q-Fibonacci polynomials satisfy the polynomial 
identity 

Fn-i(*> W> q)Fn+k(x9 s9 q) - Fn(x9 s9 q)Fn+k_l(x9 qs, q) 
= (rlYKqs) • • • t(sTls)Fk(x9 <fs9 q). 

This formula is an immediate consequence of (2.6) if we write it in the form 

Mk+n(x9 s)Mn(x9 $yl = Mk(x9 qns) 

and compare the upper right entries of the matrices. 
A more illuminating proof results from an imitation of the construction given in [14]: Con-

sider all pairs of Morse code sequences of the form (w,v), where u starts at 0 and has length 
n + k-l for some k > 1 and v starts at 1 and has length w-2 . If there is a place /, 0<i < « - 2 , 
where a dot occurs in one of the sequences, there is also a minimal J ^ with this property. Then 
we exchange the sequences starting at i ^ +1 

Thus, to each pair (u, v) there is associated a pair (u9 v), where u starts at 0 and has length 
n-\ and v starts at 1 and has length n+k-l. It is clear that the weights of the pairs are the 
same, w(u)w(v) = w(u)w(v). The only pairs where this bijection fails are, for even w, those where 
v has only dashes and in u all places up to w - 1 are occupied by dashes. The weight of these pairs 
is t(qs)"'t(qn~ls)Fk(x9qns9 q). If w is odd, then this bijection fails at those pairs (u9 v) where u 
has only dashes and in v all places up to n -1 are occupied by dashes. Thus, the q-Euler-Cassini 
formula is proved. 

Corollary 2.2: In the special case t(s) = s9 the Euler-Cassiei formula reduces to 

F*-i(x, W9 q)Fn+k(x9 s9 q) - Fn(x9 s9 q)Fn+k^(x9 qs9 q) = (-lfq^^lFk(x, qns9 q). 

This corollary was first proved by Andrews, Knopfmacher, and Paule [4] with other methods. 
Another proof for the more general polynomials of Al-Salam and Ismail was given in [11], and yet 
another combinatorial proof was recently obtained by Berkovich and Paule [5]. 
Remark: If we choose a function x(s) instead of the constant x and define' the weight of the 
place i as x(qfs) if the place is occupied by a dot, then we get apolynomial Kn(s) as the weight of 
the set of all Morse code sequences of length n starting at position 0. We call it the q-continuant 
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corresponding to the set of all Morse code sequences of length n, since for t(s) = 1 and x{qks) = 
xk+i w e obtain the continuants considered in [10]. 

The continuant is intimately connected with continued fractions. If we set x(q's) - xt and 
t(qis) = yi and write 

Y , y\ . y\ yi y* 
x , yi Xl+X2 + X3 + 

1 -w _JL_ 

then it is easy to see that 
y\ yi yn = Kn+l(s) 

Xi+X2+ Xn Kn(^)' 

As a special case, we obtain 

^ 2 ( U g ) =ut(q$)t(q*s) tjffs) 
Fr*i(\qs,q) 1 + 1 + i 

If we let w -> oo, it is easy to see that, at least in the case where t(s) is a formal power series 
with t(0) = 0, we have limn_^aoFn(x, s, q) = F^ix, s9 q) in the sense that the coefficients of each 
power qk remain constant beginning with some index n(k). Therefore, we obtain the infinite 
continued fraction 

FJ&s9q) ^ut(qs)t(q2$) 
FJXqs,q) 1+ 1 + 

and the functional equation i^(x, s, q) = F^x, qs, q) + t(qs)Fa0(x, q\ q). 

3. f-FIBONACCI OPERATORS 

Now we want to establish a connection between the abstract Fibonacci polynomials and the 
^-Fibonacci-polynomials. To this end, we consider the ring R of linear operators on the vector 
space of polynomials R[x, s]. We are interested only in multiplication operators with polynomials 
and the operator tj in R defined by rjf(x9 s) = / (x , qs). 

We define a homomorphism O: P -» R by 

0(a) = xrj, #(6) = t(qs)ri2. 

Then we have 
^{Fn(a,b)) = Fn(x,s,q)i1"-\ (3.1) 

This is easily verified by induction from 
<X>(F„(a, h)) = ^a^F^a, *)) + 0(6)0(F„_2(a, b)) 

= xrfi-i(x, s, q)rf~2 + Kqs)tfF„_2(x, s, q)rf-3 

= **Vi(*. qs, q)rf'1 + t{qs)F„_2(x, q2s, q)rf~l 

= (x/v_,(x, qs, q) + t(qs)F„_2(x, q\ q))rf-1 = F„(x, s, q)if~\ 

As a special case, we see that applying the Fibonacci operators to the polynomial 1 we get 

F„(x, s, q) = Fn(x, s, q)rf-h = ®(F„(a, b))l. (3.2) 
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4. THE ^-FIBONACCI POLYNOMIALS OF L. CARLITZ 

If we choose t(s) = ^ , w e get the ^-Fibonacci polynomials of Carlitz [6]. They are a special 
case of the Al-Salam and Ismail polynomials Un(x;a,b) introduced in [1], which are defined by 
Un+l(x; a, b) = x(l+aqn)Un(x; a, b) - hq^U^x; a, b) for n > 1 with initial values U0(x; a, b) = 1, 
U^x; a, b) = x(l+a). It is clear that Fn(x, s, q) = Un_t(x; 0, - sq~l). 

In this case, the recurrences are 

F0(x9 s, q) = 0, Fx{x9 s, q) = 1, 
and 

Fn(x9 s, q) = xFn_t(x9 qs9 q) + sFn_2(x9 q \ q\ 
F0(x9s9q) = 09 Fl(x,s,q) = l 

The matrix form reduces to 

K$Fn(x9qs9q) Fn+l(x9$9q); 

and the Cassini formula is 

Fn+i(x> s> 4)Fn-i(*> ^ ? 4) ~ Fn(x9 s9 q)Fn(x9 qs, q) = (-Ifq^^1. 

Remark: A special case of these polynomials has already been obtained by Schur [12]. In [4], 
these Schur polynomials are called en and dn. In our terminology, these are en - Fn(l, q9 q) and 
dn = Fn_l{\q2,q). 

For the following, we need the Gaussian g-binomial coefficients [J] (cf, e.g., [3] or [7]). We 
define them by 

\n\fjq—-

They satisfy the following recursions: 

M„{x, s) = 

I-TT2 i forneZandJfcel 

w + 1 
k = q* + n 

and 
w + 1 

k 
+«**it-i]-

The (/-binomial theorem (see, e.g., [3] or [7]) states that, for n e N, 

04+2?)"= I 
k>QL 

BkAn~k if AB = qBA. 

Now we have xrj-srf = qsif - XTJ or, in other words, 0 ( a ) 0 ( i ) = q<bQj)<S>(a). This may be 
stated in the following way 

0(Q"(a,6)) = (siff(xn) n-k (4.1) 

Therefore, from (1.7), we get 
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or, equivalently, 
A:=0 

F„(x, s, q) = ®(F„(a, b))l = I i" ~£ ~ %,??(xrJT*-h 

n - l r. 
Fn(x,s,q)=X 

4=0 L 

n-k-l A2)^cxn-2k-l 

5. ANOTHER INTERESTING CASE 
Another interesting special case is given by 

t(s) = 4 ^ 
K) (l + s)(l+qsy 

We denote the corresponding Fibonacci polynomials by f„(x, s, q). Here we get 

,k\x ~r~ (xrj+tiqsWyi^ 
Yl(l+qJs)(l+qn+JS) 

If we set 

d„,k(s) = -k
 2 - , 

no+^)(i+^+/*) 
we can write this in the form 

It is easy to see that 

7=1 

*=0 *"X*(*). 

<*(*») = 9* 1 +t£?iJ
<W(J> 

and 

1 + 0**1* # K , w ( ^ ) = M"*ni'V<W(J)-

We have to show that 

(X7j+t(qs)7f)±\1i\x"-kd„>k(s) = 2 
fc=0 

II+l 

£=0 

'n + 1' *w+1"X+u(4 
The left-hand side is 

ix\l]x"-kd„tk(qS) + ±\l}x"-kt(qs)dn^S) 
k=0 l J i t=0L J 

k=0L J t=0 L J 

(4 

(5 
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The recurrences of the ^-binomial coefficients imply 

Lk l + ffl A n ll + q^sjn + l 

from which the right-hand side follows. 
From (5.1), it follows that 

<D(q?(a,ft)) = ,n-k 4y(*;v 

In this.case, (1.7) implies the following theorem. 

Theorem 5.1: The g-Fibonacci polynomials fn(x, s9 q) are given by 

/w(x,5,«):=*(FH(a,ft))l 
»-i r, 

4=0 

« - £ - ! ^ - 2 * - ! ^g^V 
no+^xi+9""*+y_i*) 

(5.2) 

6. A CONNECTION WITH THE CATALAN NUMBERS 

The classical Fibonacci polynomials are intimately related to the Catalan numbers 

c = -L ( 2 w l 
" n + An)' 

The Fibonacci polynomials F„(x, 1), n > 0, are a basis of the vector space of polynomials. If we 
define the linear functional L by L(F„+l) = S„0, then we get L(x2n+1) = 0 and L(x2n) = (-1)"C„. 

We will now sketch how this fact can be generalized. The polynomials Fn(x, s, q), n>0, are 
a basis of the vector space IP of all polynomials in x whose coefficients are rational functions in s 
and q. We can therefore define a linear functional L on P by 

L(F„) = S„A. (6.1) 
Let 

f(5)/(gs) — ffc^'s) " 

Then we have xP„ = t(q"s)F„+1 - F„_v 

Now, define the numbers 

an,k=(-l)^L(x»Fk+l), 

where fx] denotes the least integer greater than or equal to x. They satisfy 
a0,k = ^Q,k 

an, k = an-l, Jfc-1 + ' ( f l ^ K - l , *+l. 

where aw>i = 0 if k < 0. 

(6.2) 
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These numbers have an obvious combinatorial interpretation (consider, e.g., [8], [9]). Con™ 
sider all nonnegative lattice paths in IR2 that start in (0,0) with upward steps (1,1) and downward 
steps (1, -1). We associate to each upward step ending on the height k the weight 1 and to each 
downward step ending on the height k the weight t(qk*ls). The weight of the path is the product 
of the weights of all steps of the path. 

Then antk is the weight of all lattice paths from (0,0) to (n9 k). It is clear that a2w4,10 = 0. If 
we set a2n 0 = C„(s9 q)9 then Cn(s9 q) is a f-analog of the Catalan numbers 

r l (2A 
because it is well known that the number of such paths equals C„ (c£, e.g., [10]). It is easy to 
give a recurrence for these ^-Catalan numbers. To this end, decompose each lattice path from 
(0,0) to (2«, 0) into the first path which returns to the x-axis and the rest path. The first path 
goes from (0,0) to (2k +2,0), 0<k<n-l9 and consists of a rising segment followed by a path 
from (0,0) to (2k, 0) (but one level higher) and a falling segment. Thus, 

w - l 

This is a q-analog of the recursion 

for the classical Catalan numbers. 
For 

Q ~ 2^ QQ-*-i> cQ - I, 
k=Q 

t(s) 2— 
(l + s)(l + 0S)' 

the corresponding ^-Catalan numbers Cw(l, q) have been found by Andrews [2] and are given by 
the explicit formula 

Q(U) = i 
[n+i] 

'2ri 
n 

(2q) In 

(i+f)(n-f^)na+f02 
j=2 

The ^-Catalan numbers appear also as coefficients of the following power series associated 
with the Fibonacci polynomials. Consider the ^-Fibonacci polynomials corresponding to ~zt(s) in 
place of t(s). Then we have Fn(\ s9 q, z) = Fn„t(\ qs, q, z) - zt(qs)Fn_2(\ q\ q, z) If we define 

w ? ._F„_l(l9qs9q9z) 
8*S'Z)- Fn(\$9q9z) ? 

then we have gn(s9 z) = l + zt(qs)g^t(qs9 z)gn(s9 z). 
For n -»oo, these formal power series in z converge coordinatewise toward a formal power 

series g(s9 z) which satisfies g(s9 z) = l + zt(qs)g(s9 z)g(qs9 z). Comparing coefficients we see that 
g(s9 z) = 2 Cn(s9 q)zn

9 where the Cn(s9 q) are the q-Catalan numbers defined by 
w - 1 

cnis* 4) = Xc*(?5> qXwyCn-k-iis, q). 

This result is also an easy consequence of Theorem 5.8.2 in [3]. 
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1. INTRODUCTION 

Let {an}^_ao be a sequence which satisfies a linear recurrence of order k +1. We are herein 
concerned with the lacunary subsequences {®mn+b}Z=-ao> where m and b are fixed integers, so 
called because they consist of the terms from {aJ with lacunae, or gaps, of length m between 
them. In [5], [2], and [3] it has been shown that, for any m and A, the subsequences {amn+b} also 
satisfy a linear recurrence of order k + l. In this note we shall express the coefficients of this 
recurrence in terms of generalized Dickson polynomials, by means-of their functional equations, 
and present some applications of this description. As corollaries to our main theorem we give 
generalizations, to prime power moduli, of the known result ([5], Theorem 4) that whenever/? is 
prime, the subsequences { a ^ ^ } ^ satisfy the same linear recurrence modulo p as is satisfied by 
{an}. We conclude with an analog of Howardfs tribonacci identity ([3], Theorem 3.1) for 
tetranacci sequences. 

2. THE MAIN RESULT 

Let our sequence {an} satisfy a linear recurrence of order k +1, say 

where a is a unit in some integral domainR and x1? x^,..., x̂  are indeterminates over R. (By use 
of evaluation homomorphisms R[xl9..., xk} -> R9 one may also regard x1? x^,..., xk as elements of 
R). If we are given some initial conditions, say a0,a1?...,% ei?[xl5..., xk\ then the recurrence 
(2.1) may be used to define an for all integers #i, and for any integer b we have a formal power 
series identity 

in the formal power series ring i?[xl5 x2,..., JCJ[7]|, where 

P(T) = 1 - x{r+x2T2 + • • • + (~l)kxkI* - (~lfaTM (2.3) 

is the characteristic polynomial of the recurrence (2.1) and Q(T) is some polynomial of degree at 
most k 

Now let K be the quotient field of the polynomial ring R[xh x2,..., xk]. Then over some finite 
extension field Z of K the polynomial P(T) splits into the product 

P{T) = f[{\-ajT). (2.4) 
7=0 

It follows that Xj = crj(a09...,ak) for 1 < j<k and a = crk+l(aQ,...,ak), where aj denotes the 
j * elementary symmetric fijnction in k +1 indeterminates. 
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For l<i<k9 let P«(7) be the polynomial in R[xl9...9xkJT} of degree !=(kf) with 
constant term 1 whose reciprocal roots are all products of the form ccj ... ctj , where 0 < jx < • • • 
<jt<k. The coefficients of P(l) are symmetric functions of a0,.. . ,ak9 and therefore there are 
polynomials yj$i in R[xh..., x j such that 

P«(7) = 1 - ^ , 7 + ^ , 7 * +... + ( - 1 ) % ^ , (2.5) 

with yhi = xt and yu = d. The generalized Dickson polynomials Djp (over J?) are then defined 
for m > 0 by the expansion 

^ = -fjDV\Xl,...,Xk,a)r»^ (2.6) 

in R{xh...,xk]lTl (cf. [6], eq. (1.6)). The usual Dickson polynomials Dm(x9a) are obtained in 
this way from P(T) = 1-xT-haT2 with i = * = 1, and if R is a finite field then this definition of 
generalized Dickson polynomials agrees with that given in [4]. From the generating form (2.6), 
we may derive for m > 0 the functional equations (cf. [6], eq. 2.5)) 

D$(xl,...,xk,a) = at(a™,...,a>Z) 0 ^ * ) (2.7) 

and the identity am = a™a™ ...a™. These relations may be used to define the polynomials 
D$(xh ...9xk9a)e R[xh..., xk] for all integers m; specifically, we have 

DPix^^x^a)^^ (2.8) 

for m = 0, and for any integer m we have 

D<?(xh.... xk, a) = amD^{xh..., xk, a), (2.9) 

where i + j = k +1. With this definition, the polynomial D$ is a polynomial of total degree \m\ in 
R\xl9..., xk] for every integer m. Now we are ready to state the main theorem. 

Theorem 1: Let {an} satisfy the linear recurrence (2,1) in R[xl9..., xk"]. Then, for any integers m 
and b9 the lacunary subsequence {amn+b} in R[xl9..., JCJ satisfies the recurrence 

Proof: Let m and 6 be given. If m = 0, the statement of the theorem reduces to the very 
well-known identity 

kf(-iy(ktl)=Q <2-10) 
-by (2.8). Assuming the theorem is true for m9 it follows also for -in by (2.9); therefore, it suffices 
to assume m is positive. Consider the generating function (2.2) for the sequence {an+b}. Define 
the linear operator <p on R[xh..., x j T ] by 

^ / ( i ) = 1 ( / ( r ) + / ( ^ + / ( ^ T ) + « - + / ( ^ 1 r ) ) ( i n ) 

where 0 is a primitive nfl* root of unity in some finite extension ofK. Since 
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^Hr nsz1- a.* we have 

( l ^ ] = I«W*~\ (2-13) 
Vf=0 / «=0 

which Is the generating function for our lacunary subsequence. 
By virtue of the factorization (2.4), we have a partial fraction decomposition 

m=:y_ja (214) 

valid as a power series identity in the subring R[xl9 ..., x j [ 7 | <of LIT}, where the exponents are 
defined by setting ei equal to 1 plus the number of a7- with otj = af and j < i (so, e.g., all ei are 1 
if and only if all ai are distinct). Then we compute in L{6)\T\ 

JomVlyy s -Ay y ^ _ 

= i f Q<n = &D 
w S O - o / T T P(F") ' 

with each Q a polynomial of degree less than e,, and 0 therefore a polynomial of degree at most 
k. It follows by comparison with (2.13) that P is the characteristic polynomial for the recurrent 
sequence {amn+b}, where P(Tm) = nf=00 - afT"). If we write 

P{T) = l-yiT+y2T2
 + ...+(-lfykTk-{-\fyk+lTk+\ (2.16) 

then we have yt = cri(a™9..., a J) for 1 < i < * and j ^ + 1 = a^af ... a™. Hence, by the functional 
equations (2.7), we have yj = / ^ (x j , . . . , x^, a) for 1 <i < k and jk+1 = am

y giving thq result. 

Remarks: In Theorem 1 we have assumed a is a unit in R; however, this assumption is needed 
only to ensure that an and £$ are elements of R when n is negative. The recurrence given in the 
theorem remains valid in R\xl9 ...,xfc] if a is an arbitrary element of R (even if a = 0), or in 
R[xl9..., x^, a] if a is regarded as an indeterminate over J?, provided b>m>0. It is equally valid 
for arbitrary integers m and 6 if interpreted as a recurrence in the Laurent ring R[xh..., xk, a, a- 1]. 

3* CONGRUENCES FOR LACUNARY RECURRENCES 

It is known ([5], Theorem 4) that, if {aj^o 'ls a linearly recurrent sequence in Z and p is 
prime, then the subsequence {®prn+b}™=0 satisfies the same linear recurrence modulo/? as is satis-
fied by {aj. Theorem 1 and results of [6] give rise to some generalizations of this result. 

Corollary 2: Let {a„}|JLo satisfy a linear recurrence 

in R[xh..., xk9 a], and let « } ^ = 0 satisfy the linear recurrence 

<+k=«+ik-i - ̂ <+M+• • • - ("if4<+H)^X-i 
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in R[xl9..., xk,a]. Then for any prime/? and any positive integers b, d9 m, and r, the two lacunary 
subsequences {ampr„+b}™=o and {af

mpr-in+d}^=0 in R[xl9..., xk9a] satisfy the same recurrence modulo 
prR[xl9...9xk9a]. 

Proof: In Theorem 2 of [6], we showed that the differential form (2.6) is an invariant dif-
ferential on the multiplicative formal group law over the polynomial ring R[xh...,xk,a], from 
which one may deduce the congruences 

Z ^ ( * i , ...,**,*) = Z ^ i ^ (3.1) 

in R{xh...9xk9a]. Since ampr =(ap)mpr~l
9 the corollary then follows from Theorem 1 and the 

observation that the left members of the congruences (3.1) are the coefficients of the recurrence 
for {amjfn+b} and the right members of the congruences (3.1) are the coefficients of the recurrence 
fcr{a^-w}. 

Taking m = r = 1 in the above Corollary 2 yields a polynomial congruence which implies 
Theorem 3 of [5] and the main result of [1]. We now consider another generalization. 

Corollary 3: Let {an}^L0 satisfy the linear recurrence 

in Z. Then, for any prime/? and any positive integers b9 d9 m9 and r9 the two lacunary subsequen-
ces {amprn+b}™=o and {ampr~in+d}^Q 'm Z satisfy the same recurrence modulo pr. 

Proof: In Theorem 3 of [6], we showed that, for any integers xi9..., xk9a9 the differential 
form (2.6) is an invariant differential on the multiplicative formal group law over Z, from which 
one may deduce the congruences 

D%,(*i,•••>Xk,°)• D%r*(n>•••>*k>a) (mod/^Z) (3.2) 

for any integers xl9...9xk9a. Since ampr = ampr~l (mod jf\ the corollary then follows from Theo-
rem 1 and the observation that the left members of the congruences (3.2) are the coefficients of 
the recurrence for {amifn+b} and the right members of the congruences (3.2) are the coefficients of 
the recurrence for {ampr-in+d}. 

The r = 1 case of this theorem contains the result of [1] and Theorems 3 and 4 of [5]. To 
illustrate the general case, consider the example of the tribonacci sequence {PJ defined by the 
recurrence 

^ + 2 = ^ + i + ^ + ^ - i (3.3) 

with PQ9 Pl9 P2 arbitrary integers. As a special case of Theorem 1, we have Howard's general 
formula (see [3], eq. (3.6)) for the lacunary subsequences {Pmrs^} which implies, for example, 

Pn+4 = 3̂ w+2 + Pn + *n-2 9 P -4) 

^ 8 = 1 ^ 4 + 5 ^ + ^ - 4 , (3.5) 

^ 1 6 = 1 3 1 ^ - 3 ^ + ^ 8 , (3.6) 

^ + 3 2 
= 17155/>„+16 + 253PB + P„_16. (3.7) 
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We observe that the recurrence coefficients in (3.3) and (3.4) agree modulo 2, while those in (3.4) 
and (33) agree modulo 22, those in (3.5) and (3.6) agree modulo 23, and those in (3.6) and (3.7) 
agree modulo 24, as predicted by Corollary 3 for p = 2. For p = 3 one has 

^ = 7 ^ 3 - 5 ^ + ^ 3 , (3-8) 
i^+18 = 241/j^ -23/> + Pn_9, (3.9) 

Pn+54 = 13980895/^ +4459PH +P,_275 (3.10) 

with the recurrence coefficients in (3.3) and (3.8) agreeing modulo 3, those in (3.8) and (3.9) 
agreeing modulo 32, and those in (3.9) and (3.10) agreeing modulo 33. Once more, 

^ 1 0 = 2 ^ 5 + ^ + ^ ^ 5 , (3.11) 
Pn+50 = 4132721Pw+25 +2201PW + PW_25, (3.12) 

with the recurrence coefficients in (3.3) and (3.11) agreeing modulo 5, and those in (3.11) and 
(3.12) agreeing modulo 52. 

The system of congruences (3.2) implies that {D^r(xl9..., xk9a)}™=0 is a Cauchy sequence in 
the ring Zp of/?»adic integers for fixed xl3 ...,x2, a, m9 i, and any prime/?, and therefore con-
verges /radically to some limit H%\ Combining Theorem 1 with the complete statement of 
Theorem 3 in [6] therefore allows a/?-adic restatement of Corollary 3. 

Corollary 3 (alternate version): Let {^}^=0 satisfy the linear recurrence 

in Z and let/? be any prime. Then, for any positive integer m9 there exist algebraic integers Hj£\ 
...9H%\ A^ in ZP9 which depend only on %..., xk9 a (mod/?), such that the lacunary subsequen-
ces {bj = {amprn+d} satisfy 

bn+k - i 4 \ ^ - i " ^ ( m o d ^ Z p ) 

for all nonnegative integers r and d. 

"This version of the corollary says that associated to any integral linear recurrent sequence 
{an)n=o t ^ e r e 'ls> ̂ or e a c e positive integer m and each prime p9 a single recurrence (with p-adic 
coefficients) that is satisfied modulo pr+lZp by every lacunary subsequence {amprnHi}Z*0' ^ S a e 

illustration of the idea, from (3.7), we note that the recurrence 

6Jlt2 = 1715»Ji+1+25»JI+ftJi.i (3-13) 
is satisfied modulo 2r+l by {bj = {/£*•„+</} for r = 0,1,2,3,4; analogous examples of this type for 
lacunary subsequences of {PJ are given by (3.10) for p = 3 and r = 0,1,2,3, and by (3.12) for 
p = 5 and r = 0,1,2. A natural question to ask is: When will the "universal" /?-adic recurrences of 
the corollary, which hold for all r9 actually have integer coefficients? 

This question may be answered to some extent in the case of second-order recurrences 
(k = 1) using the results of [7], where systems of congruences 

Bg>(x9d) = B (mod//*1) (3.14) 
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for integer values of B were classified. In particular, combining Theorem 1 of the present paper 
with Theorem 1 of [7] yields the following corollary. 

Corollary 4: Let {aj^o satisfy the second-order linear recurrence 

for integers x and a. Then, for every prime p9 there exists an integer m and integers Hm and A^ 
such that the recurrence 

*«+l = **trPn ~ ArPn-l 

is satisfied modulo pr+l by the lacunary subsequence {bn} = {amprn+d} for all nonnegative integers 
r and d. Furthermore, Hm e {-2, -1,0,1,2} and 4 , e {-1,0,1}. 

The means for determining the integers m, /fm, and 4» a r e outlined in the corollary to Theo-
rem 2 of [7], A few examples involving the Fibonacci sequence {Fn} are: 

Fn+m.r - - F n - F ^ r (mod2^) if 3/ar, (3.15) 

^ - 2F. - ^ . . r (mod2r+1) i f 3 I ^ (3'16> 

^ . a ^ - ^ . y (mod3'+1) if ni 3£Z (mod 8); (3.17) 

F ^ B - ^ - F ^ (modS^1) if *i « 2 (mod4); (3.18) 

Fn+m.r a " ^ . r (mod7^+1) if m s ±4 (mod 16). (3.19) 

4. TETKANACCI SEQUENCES 

In Theorem 2.1 of [3], Howard showed that if {aj satisfies the recurrence (2.1) over C 
then, for any integers m and b9 the lacunary subsequence {amn+b} satisfies the recurrence 

£+1 

where the numbers cmJm are independent of the initial conditions a0, al9..., %? and are defined by 
a certain generating function. The identity cm>ik+t)m =am was shown in Lemma 2.2 of [3]; the 
result of Theorem 1 above shows that cmJm = D^'\xh..., xk9 a) for 1 < j < k. In the tribonacci 
case (k = 2), Howard showed (see Lemma 3.2 of [3]) that cm m = Dm and cm 2w = a m H w , where 
Dm = D^C^, x2, a). This produces the beautiful identity (cf, [3], eq. (1.5)) 

an+2m = Dman+m~-amD^n +ama^m9 (4.2) 

which is valid for all integers m and n; observe that {am} and {Dm} satisfy the same third-order 
recurrence. We remark that the two identities of Lemma 3.2 in [3] are generalized to arbitrary k 
by (2.9) and Theorem 1; specifically, we have 

Cm.m=Dm m d Cm.km = <*" D_m9 (4.3) 

where Dm = Djp(xh ...9xk9a). Iii the tetranacci case (k = 3), equation (4.3) expresses all but the 
central coefficient cmt2m in terms of a and Dm. Whereas {am} and {Dm} both satisfy the same 
fourth-order recurrence, this central coefficient {cmt2m} unfortunately satisfies a recurrence of 
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order (J) = 6. This suggests that perhaps there is no general simple analog of (4.2) for recurrences 
whose order exceeds three. However, by means of the functional equations (2.7), one may easily 
verify that cm2m = D^\xl9 ...,xk,a) = (Dl-D2m)l2 over any integral domain R of characteristic 
not equal to 2. Therefore, we may state the following analog of Theorem 3.1 in [3] for tetranacci 
sequences. 

Theorem 5: Let {an) satisfy the linear recurrence 

in i?[x1? x2, x3], where, the characteristic of the integral domain R is different from 2 and a is a unit 
in R. Then, for any integers m and n, we have the identity 

a„+3m = Dman+2m-2(Dm~D2mK+m +amD_man~aman_m 

in R[xh x2, x3], where Dm = DJPfa, x2, x3, a). 
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1. INTRODUCTION 

For convenience, we quote some notations and symbols in [7]: Let the sequence {wj be 
defined by the recurrence relation 

Wn+k = <W**-1 + • • • + %-lW*+l + akWn 0-1) 
and the initial conditions 

wQ = c0? wx = cl9...,wk_x = ck_l9 (1.2) 

where al9 ...9ak and c0,..., ck_x are complex constants. Then we call {wj a A^-order Fibonacci-
Lucas sequence or, simply, an F-L sequence, call, every wn an F-L number, and call 

fix) = xk- a^-1 - • • • - ak_tx ~.ak (1.3) 

the characteristic polynomial of {wj. A number a satisfying f(a) = 0 is called a characteristic 
root of {w„}. If % ^ 0, we may consider {wj as {wJtZ- We denote Z(%) = Z for % * 0 or 
Z+^{0} for dk = 0. The set of F-L sequences satisfying (1.1) is denoted by £l(al9...,ak) and 
also by Q(/(x)). Let {i$} ( 0 < i < i - l ) be a sequence in 0( / (x)) with the initial conditions 
t$ = Sni for 0 < n < k -1, where 5 is the Kronecker function. Then we call {u®} the Ith basic 
sequence in 0 ( / (x ) ) , and also call {«£*™!)} the principal sequence in 0( / (x) ) for its impor-
tance. In [3], M. E. Waddill considered the congruence properties modulo m of the fc^-order 
F-L sequence {MJ eQ(l,. . . ,l) with initial conditions M0 = M1 = -- = A/^„3 = 0 and Mk_2 = 
Mk^t = I In this paper we apply matrix techniques to research the congruence properties modulo 
m of the general £*-order F-L sequence {wj G O ( % ...9ak) = 0 ( / (x ) ) , where al9...9ak e Z . In 
Section 2 we give required preliminaries. By using matrix techniques, in Section 3 we discuss the 
congruence properties of F-L sequences and get a series of general results. In Section 4 we apply 
our general results to the special case of second-order F-L sequences. As examples, two more 
interesting theorems are given. 

2. PRELIMINARIES 

Let {wj e 0(al3 ...,%) = 0( / (x) ) . Denote col wn = (w^„1? wn+k^2,..., ww)r Then, from 
(LI), we have 

col wnU = A col wn, (2.1) 

where 
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A = 
1 

1 

ak-l ak 

(2.2) 

is called the associated matrix of {w„}, also of f(x). And we also denote Q(au ...,ak).hy Q(A). 
Note that in A the entry in the Ith row and j * column is 0 if / > 1 and /' * j' +1. 

Theorem 2.1: Let {w„} e Q(A). Then, for n e. Z(at), 

col w„ = .4" col w0. (2.3) 

For simplicity, in this paper we prove all theorems only for Z(%) = Z. 

Proof: If n > 0, then (2.3) can be proved by induction and by using (2.1). If n > Q, again by 
induction and by using (2.1), we can easily verify col wm+n = Am col wn for m > 0. Taking m = —n 
we get col w0 = 4̂"̂  col ww, whence (2.3) also holds for n< 0. D 

Theorem 2.2: Let {i^0} (i' = 0,l , . . . ,£-l) be the i* basic sequence in 0(a1?...?%) = 0(i4). 
Then, for W G Z ( % ) , 

4 " = (col ig-l\ col i#f-2)
?... ? col f#f ). (2.4) 

Proof: From (2.3), the right-hand side of (2.4) is equal to (let /be the identity matrix) 

(An col 4k~l\ An col 4k~2\ ...,A" col 40)) 
= A%col 4k'l\ col 4^ 2 ) , . . . , col n f ) = AnI = An. D 

Remark 2J: Equation (2.4) was shown in [9] and [1]. Its equivalent form was shown as (4) in 
[4], where U„ is equal to u^J1^ in (2.4). It may be seen that, owing to the introduction of the 
basic sequences, it is more convenient to use (2.4) than to use (4) in [4]. 

Substituting (2.4) into (2 J ) and comparing the i * row on both sides, we get the following 
corollary which was stated in [7]. 

Corollary 2.4: Let {u^} (i = 0,1, ...,*-1) be the Ith basic sequence in Cl(al9...,ak) = Q(A) and 
let {wj G Cl(A); Then {wj can be represented uniquely as 

k-l 

i=0 
(2.5) 

The following theorem gives a technique for generating F»L sequences by using the matrix 
other than the associated matrix. The method of proof is quoted from [9]. 

Theorem 2.5: Let Xn = (xnl9 xn2,..., x^'f be a vector over C and let B be a square matrix of 
order k over C. If 

\xI-B\ = f{x) = ** -otxk~l - — -ak-\x~~ak 
and 

then, for »sZ(f l t ) , 
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(1) (*„, )n G fi(«i> - ,«*) = **(/(*)) (/ = !.•••.*) or, simply, 

{^}„en(ai,...,a,) = a(/(x)). 
(Naturally, we can generalize the concept of an F-L sequence to that of an F-L vector sequence.) 

(2) 
B" = uik-»Bk-1 +u^Bk~2 + -+u2)B + u^I. (2.6) 

Specifically, 
A" = u<£-l)Ak-1 +uf-2Uk-2 + - + u<pA + uWl, (2.7) 

where {u^} is the j " 1 (J' = 0, ...,&-1) basic sequence in Cl(ax,...,ak) and A is the associated 
matrix of / (x) . 

Proof: By the Cayley-Hamilton Theorem, we have Bk = axBk~l H — +ak_lB+akI, whence 

5n+* = aiBn+k-1 + -+ak_lBn+l +akB". (2.8) 

Multiplying by XQ, we obtain Xn+Jfc = axXnJl.k_x + •••+ ak_xX„+x + akX„. This means that (1) holds. 
Denote B" = (fy),s,t y s t . Then (2.8) implies $»•*> = a^** - 0 + - +at_$"+1> +at^") . Therefore, 
{$">},, e Cl(f (x)). By (2.5), it follows that 

r=0 
which is equivalent to (2.6). • 

The following theorem is called the Theorem of Constructing Identities (TCI) in matrix 
form. TCI in polynomial form was proved in [6]. 

Theorem Z6 (TCI of matrix farm): Let 0(al5..., ak) = Cl(A). If 

holds, where nf,pj e Z(ak) and duej G C ? I = 0,..., s and j -0,..., /, then 
s t 

X ^ o l w ^ ^ / c o l w (2.10) 
i=o y=o 

holds for any {wn} e Q(A). Specifically, 
s t 

1=0 J=0 

holds for any {wj e Cl(A). Conversely, if (2.11) holds for any {wn} e Q(A), then (2.9) holds. 

Proof: Multiplying (2.9) by col wQ and using (2.3), we get (2.10), then (2.11). Conversely, 
if (2,11) holds for any {wj e Cl(A)9 then it holds for every basic sequence {u^} e Cl(A) (i = 0, 
..,, k -1). By using (2.5) and (2.7), we can prove that (2.9) holds. • 

The following lemma was proved in [6]. It can also be proved by using the TCI of matrix 
form. 
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Lemma 2.7: Let {i#>} (i = 0,'...,*-l) be the i* basic sequence in Q = Q(ah...9ak) = Q(A) and 
let {wj be any sequence in O. Then, for m9 n e Z(%), 

^ ^ E ^ ' V * * - (2.12) 

Remark 2.8: For convenience, we rewrite (2.12) as 

^ m ^ ^ c o l n v (2.13) 
where.^^(Mt^M^K..^), 

3. CONGRUENCE PROPERTIES OF F-L SEQUENCES 
In the subsequent discussions we deal with the integer sequences in Q(ah ...9ak) = Q(A) = 

Q(f(x))9 where al9al9...,ak G Z . The Cayley-Hamilton Theorem gives 

Ak = atAk~l +a2Ak~2 + — +ak_xA+akl. (3.1) 

Let M be the ring of integer matrices of order k. Let meZ+
9 m>\9 and let (m) be the prin-

cipal idea! generated by m over IU. For M9 N e M, define M^N (mod iw) if M-N e (w). Let 
{wn}-€ Q(i4). If there exists l e Z + such that 

# = / (mod w), (3.2) 
then we call the least positive integer f satisfying (3.2) the order of A modulo m and denote 
t = ordm(A). If there exist integers / > 0 and n0 > 0 such that 

ww+r = ww (mod m) iff » > #i0, (3.3) 

then we call {wj periodic moduli© m and call the least positive integer t satisfying (3.3) the 
perlcid ©f {wH} modulo m9 and denote t = P(m9wn). If #% = 0, we call {u>w} purely periodic. 
The following lemma is obvious. 

Lemma 3.1: 
(1) If an integer i > 0 satisfies (3.2), thee ordm(i4)|/. 
(2) If an integer f > 0 satisfies (3.3), then P{m9 wn)\t. 

Lemmm 3.2: Let 0 ( % ...9ak) = Cl(A). Thee ordw(i4) exists iff (#i, ak) = l. 

Proof: Assume that ordOT(J) exists. Thee (3.2) holds. Taking determinants on both of its 
sides and noting (2.2), we get (-l)**"1^ s l (mo^ m)- This implies (m9ak) = 1. Conversely, 
assume (m, %) = 1. Then there exists an integer b being the inverse, of ak (mod m). Whence, 
from (3.1), we have Ab(Ak~l-alAk~2 - ••• - % „ / ) = / (mod ai). This means that there exists a 
matrix B which is the inverse of A (mod m). Since among / , A9..., 4 ' , . . . (mod m) there are at 
most mkl different residues, there exist r > s > 0 such that Ar = As (mod m). Multiplying by B'9 

we obtain AT' = I (mod m)9 so ordw( J ) exists. • 

Theorem 3J: Let 0 = O(%...9ak) = £t(A) and let {#„} be the principal sequence in Q. If 
(m9 ak) == 1, then {uj is purely periodic and P(jn9 un) = ordm(A), 

Proof: From Lemma 3.2, V = ordM(i4) exists since (m9 ah) = 1. Then (3.2) implies that, for 
any n > 0, A!**' s yl11 (mod w) holds. From TCI, for any n > 0, i#w+r s i#w (mod w) holds. Thus, 
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{uj is purely periodic and, by Lemma 3.1, t = P(m, un)\f. Conversely, since any {wn} e fi can 
be represented linearly by {uj over the ring of integers (see [7], Lemma 2.5), the congruence 
wn+t = wn (mod nf) holds for any {wj e Q. Whence the converse of TCI implies that An+t s An 

(mod in) holds. Multiplying by A~n (from the proof of Lemma 3.2, A~l exists), we get (3.2). 
Thus, Lemma 3.1 implies f\t. Summarizing the above, we obtain t = f. D 

Corollary 3.4: Let Q = Cl(al9...,ak) = Cl(A) and let {uj be the principal sequence in O. If 
(m, ak) = 1, then any {wn} e O is purely periodic and P(m, wn)\P(m, un) = ordm(^4). 

For what sequences {wn} in Q,(A) besides the principal sequence will the equality P(m9 wn) = 
ordm(A) hold? To give an answer on the sufficient condition for the question, we introduce the 
Hankel matrix and Hankd determinant of {wn}9 which are defined by, respectively, H(wn) = 
(col w^_l 5 col ww+£_2,..., col wn) and detH(wn). 

Theorem 3.5: Let 0 = 0(a1?...,%) = Q(A). Let {uj be the principal sequence in O and let 
{wn} be any sequence in O. Assume (m,ak) = (m, detif(w0)) = 1. Then P(iff, w„) = P(m9 un) -
otdm{A). 

Proof: From (m9ak) = 1, Theorem 3.3, and Corollary 3.4, we conclude that {wn} is purely 
periodic and P(m9wn)\P(m9un) = ordm(A). Thus, we need only prove that P(m9un)\P(m9wn). 
Equation (2.13) gives wnH = An col wt. Whence 

(uW-i,..., wn+h wn) = 4(col wk_l9..., col wl9 col w0). (3.4) 

The equality (3.4) can be considered a system of linear equations in unknowns t$ (i = 0,..., 
k -1). The coefficient determinant of the system is det(col wk„h..., col wl9 col wQ) = det/7(w0). 
Since (iff, det H(w0)) = 1, we can solve un = u^~1^ = b^n+k-i + • • * + K-^i+ hwo (m^d m). Hence, 
P(m,un)\P{m,wn). D 

For more detailed consideration on the periodicity, we introduce the following concepts: Let 
{wj G Q(i4). If there exists s e Z* such that 

A'= cl (mod m), (3.5) 
where C G Z and (iff, c) = 1, then we call the least positive integer s satisfying (3.5) the constrained 
order of A modulo m, call c a multiplier of A modulo m, and denote s = ord^(^l). Corre-
spondingly, if there exist integers s > 0 and w0 > 0 such that 

w
n+s = <wn (mod iff) iff n > n0, (3.6) 

where c is an integer independent of if and (iff, c) = 1, then we call the least positive integer s sat-
isfying (3.6) the constrained period of {wm} modulo m, call c a multiplier of {wn} modulo m, 
and denote s = P'(m9 wn). If »0 = 0, we call {wj purely constrained periodic. We point out 
that the definition of "constrained period11 has generalized and improved the definition in [2]. 
Similarly to Lemma 3.1, the following lemma is obvious. 

Lemmm3.6: 
(1) If an integer s > 0 satisfies (3.5), then ord^(i4) \s. 
(2) If an integer s > 0 satisfies (3.6), then Pf(m9 wn) \s. 
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Clearly, if ordOT(^) exists, then ord'm(A) must exist [especially in the case c= 1 (mod m)]. 
Hence, from 3.2, we obtain 

Lemma 3.7: Let Q(ah ...,ak) = Q(A). Then otd'm(A) exists iff (m,ak) = l. 

By induction ony, we can easily prove 

Lemmm 3.8: Let s and c be the constrained period and a multiplier of {wj modulo /», respec-
tively; that is to say that (3.6) holds. Then, for j > 0 and n > nQ, we have 

wn+Js^cJwn (mod m). (3.7) 

Theorem 3.9: Let Q = Q(a1,...,aik) = Q(j4), let {wj be the principal sequence in O, and let 
{wj be any sequence in O. If (m, ak) = 1, then 
(1) {uj and {wn} are purely constrained periodic and Pf(m, wn)\P%m, un) = ord^(^). 
(2) us+k_t, where s = P'(m, un) = ord^(^), is a multiplier of {uj (mod m). 

Proof: 
(1) The proof is similar to the proofs of Theorem 3.3 and Corollary 3.4. 
(2) Take n = k -1 in the congruence un+s = cun (mod m) and note that uk_t = 1. D 

Theorem 3.10: Let {uj be the principal sequence in 0(a1?...,%) and let (m9ak) = 1. Denote 
P%m, un) = s, u^k_x = c, and ordm(c) = r. Then 
(1) P(m,urt) = rs. 
(2) The structure of {un (modm)} in a period is as follows: 

0, ..., 0, c, cuk9 cuk+l9 ..., «#,„!, (modw) 

flj Let P(m, un) = t. From w .̂, = MW (mod m) and Lemma 3.6, we have s\t. Then I = rxs. 
On the other hand, Theorem 3.9 implies that c is a multiplier of {uj (mod m). Equation (3.7) 
implies that 

Mn+JS = c\(modml (3.8) 

Taking y" = ordw(c) = r, we have %+„ = % (mod #»). Whence Lemma 3.1 gives t\rs9 that is, 
rxs\rs. Now we need only prove that rx=r. If this were not the case, then rx<r. Let A be the 
associated matrix of {uj. Theorem 3.9 implies that A' = c (mod m). Theorem 3.3 implies that 
A'=I (mod m)9 that is, A*' = (Asf = cf1/ s / (mod w). This contradicts ordw(c) = r . 

(2) In (3.8), let j = 0,1,..., r - 1 and let n = 0,1, ...;-$-1; then we have the required result. D 

Corollary 3.11: Let {uj be the principal sequence in 0(a1?..„,%) and let (# I ,%) = 1. Then 
P'(jn9 w„) is the least integer s such that $ > # - 1 and 

« , B ",+i • - • *W-2 = ° ( m o d w)- (3-9) 
As an example, we let {uj be the principal sequence in 0(1,1,1). By calculating, we obtain 
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K(mod7)} = {0?0;l?l?2?4?0?6?3?2?4?2?l?0?3?4?0;0;4?...}. 

Therefore, s = P'(7, un) = 16, c = MM = 4 (mod 7). Since 42 = 2 and 43 s 1 (mod 7), we obtain 
r = ord7(c) = 3\ and so t = P(7, un) = rs = 48. Furthermore, from Theorem 3.10, we can get 

un s 0 (mod 7)iffws 0,1,6,13 (mod 16), 
un = 1 (mod 7) iff n = 2,3,12,20,25,27,37,42,47 (mod 48), 

Another application example can be found in [8]. The above numerical results can be used to 
verify the following theorem. 

Theorem 3.12: Let 0 = 0(a l 5 . . . ,%)=0(^) = 0( / (x) ) , let {un} be the principal sequence in £2, 
and let {wj be any sequence in CI. Assume that (m9ak) -1. Denote P(m, un) = s, us+k_l = c, 
and ordm(c) = r. 
(1) If (m9 c -1) = 1, then, for all integers n > 0, 

§ > w + ; , - 0 (modm). (3.10) 
y-o 

(2) If (m, /(I)) = 1, then, for a0 = -1 and, for all integers « > 0, 

Z ^ y S / ( l ) - 1 ( c - l ) j ; ( f l b + f l i + ' - - + « / ^ ^ w (modin). (3.11) 
y-o y-o 

Specifically, 
2«Wy - / O r ^ l - c y (modiif) (i > 0). (3.12) 
y-o 

Proof: 
(1) From (1) of Theorem 3.9 and (3.7), we have 

r - l r-1 

(*- ! )Z w , + y , s (c™ O Z ^ i . = (^ - !K s ° (modm). 
y-o y-o 

Then (3.10) follows from the above congruence and (m, c -1) = 1. 
(2) From f(A) = 0, we have 

-f(l)I = f(A)~f(l)I 
= (A~l)((Ak-l + ~^A+I)~al(Ak~2 + <- + A+I)-<--a^ 

Whence, from (m, /(I)) = 1, we get 

y=o 

On the other hand, from Theorem 3.9 and (3.5), we have 

(A-T)(A'-l + A'-2 + - + A + I) = Aa-I = (c-l)I (modm). 
Whence 
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^(c-1)/(1)-*£ (a0 + at +... + ay)^*-W ( m o d m)9 

multiplying It by A", by TCI we get (3.11). D 

Note: Since (m, ak) = 1, the Inverse of A (mod m) exists, which Is 

4"1 = ak
l(Ak"1 - a ^ " 2 - . . . - A W / ) (mod m). 

Similarly, the sequence {wn (mod #w)} e 0(^4) can be extended to n < 0 by using the recurrence. 
Under this definition, the last theorem and the subsequent theorems, which hold for n > 0, will 
hold for » e Z . 

Corollary 3A3: Under the conditions of Theorem 3.12, let / = r$. If f«) (/w, c -1) = 1, or If (S) 
»f|(c-1) and (wi, / (I)) = 1, then 

JlWn*j = 1 X + / = 0 (mod!!!). (3.13) 

Proof: We have Z ^ w ^ = Z£oEy"o w^+y,. So (3.13) is proved by using (3.10) for (a) or 
by using (3.11) for (b). D 
Remark 3.14: 
(1) If we change P'(m9 un) = s and Ms+k^t = c so that j°'(iw? w j = s and c Is a multiplier of {wj 
modulo m9 respectively, then (3.10) and (3.13) still hold because (3.7) still holds. But at this time 
we cannot conclude that (3.11) holds. 
(2) If.neither conditions (a) nor (b) are fulfilled, (3.13) may not hold. For example: It Is dear 
that {»} Is the principal sequence in 0(2, -1) = 0(/(x)) . Thus, / ( I ) = 0. 

{n (mod 10)} = {0,1,2,3,4,5,6,7,8,9, (U,... 1 

Implies 5=10 and c = 1 (mod 10). Hence, neither condition (a) nor condition (b) Is fulfilled. We 
have 0 + 1 + 2 + — +9 s 5# 0 (mod 10), i.e., (3.13) does not hold. 

Theorem 3d5: Let {u„} be the principal sequence In Cl(al9...9ak) = Q(A) and (m9ak) = 1. Set 
P'(m, u„) = s. Then, for j > 09 we have 

m 
Uj^x s a[ V i (m o d m2l (3•14) 

(2) 
« / ^ " M V i y " ^ (modm2) (<>•£</£*-2). (3.15) 

/V«MJ^ Let {u^} (# = 0, ...,*-1) be the i* bask sequence In Cl(A). Clearly, i ^ = akt^~l) = 
akun. Eleeote us+k^l = c. We shall prove the theorem by Induction. For y = 1, (3.14) and (3.15) 
are trivial. Assume that both (3 J4) and (3.15) hold for/ We want to prove that they also hold 
for j +1. 

(1) From (2.12), we have %+i}^i = E£o MfsMs-M• Theorem 3.9 and (3.7) imply that 
ijD = cJ% = 0 and us^M = cu^ = 0 (mod m) for 1 < i < i - 1 . Then, by the induction hypothesis, 
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Hy+i),-! s u^us_t = akujs_xus_x »ak(af ty^u^ = a{u{tl (modm2). 
(2) Again from (2.12), we have uu+l)s+d = Sf="0

1^°^+J+/. From (3.9) and the recurrence 
(1.1), we obtain c = ug+k_l = akug^l (moc* m)- Whence, from (3.7), we obtain uJS+dH = cJud+i = 
(akus-i)Jud+i (m°d ^ ) and i/f} = ci$ = 0 (mod m) for 1 < i < k -1. It follows that 

£-1 

*w*fs ^%**+X ^°(fl*viV^+i (mod^2)-
1=1 

Since i^ = 0 for 0 < d < k - 2, the last expression can be rewritten as 
k-i 

u(J+l)s+d s uf\.s+d + (a^y^u^u^ (modw2). 
/=o 

Thus, by (2.12), we get 
% + i W = *J%*f + ta-i)y2W (mod w2). 

Since u^ = akus„v the conclusion follows by the induction hypothesis. D 

We point out that Theorem 3.12 and Corollary 3.13 have generalized Theorem 12 in [3], 
while Theorem 3.15 has generalized Theorem 7 in [3]. 

4. THE CASE OF k = 2 

For k = 2, the principal sequence un = u^ in Cl(a9b) satisfies UQ = 0, % = 1, and un+2 = 
aun+l +hun for n > 0. The 0th basic sequence i^0) satisfies i40) = 1, u(0) = 0. and the same recur-
rence. We assume h*0, since 6 = 0 is less interesting. Clearly, u^=bi4n_x. The associated 
matrix is 

-(T 5} 

r=rr- £j- (4.D 

Our conclusions for general k can be easily transferred to the case of k = 2, for example: 
Theorem 2.2 gives that, for « e Z , 

Theorem 2.5 give that, for n e Z, 

4" = 1 ^ + 51^7. (4.2) 

Corollary 3.11 given that, if (m, 6) = 1, then P'(jny un) is the least integer s such that s > 1 and 
w, = 0 (mod m). 

We do not enumerate all of them. Instead, we focus our mind on obtaining more interesting 
conclusions. Because of limited space, as examples we give only those for Theorems 3.12 and 
3.15. 

Theorem 4.1: Let {7^} be the Fibonacci sequence, i.e., the principal sequence in O = 0(1,1), and 
let {wj be any sequence in O. Let p > 3 be a prime. Then, for all integer n e Z: 
(1) 

^n +Wf»P
 +Wn+2P +"W3p = 0 (modF^). (4.3) 
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(2) 
p-l 

Z>»+/
 s ( ^ - i - !K + i (modF^). (4.4) 

Proof: In Theorem 3.12, take m = Fp. Then, from (4.2), Ap = Fp_x (mod m\ where, as is 
well known, (m, F^) = (Fp9 F^) = 1. Lemma 3.6 Implies P'(m, F„) = s\p. Since s> 1 andp Is 
prime, we have s = p. And the multiplier c s f ^ s F ^ (mod m) (or, It can be obtained by 
Theorem 3.9 directly). It Is well known that 

FL-Fn+lFn-F^{-\f. (4.5) 

Whence c2 = i^.j = ( - i y = -1 (mod m). Thus, r = ordw(c) = 4. From Theorem 3.12: 
(1) To prove (4.3), it is sufficient to prove d = (m, c -1) = (F ,̂ Fp+1 -1) = 1. Let p = 2q +1 

and let Z,„ be the »* Lucas number. Then F = Fq+1+F2 and 

^P+i -1 = ^ i V i - l - F
q+l(Fq+l+2iV) - H)'(iv2

+, - ^ - F2) 
\3Fq+lFq+F2 for2\q, 

~ [2F9
2
+1 + Fq+1Fq - F2 otherwise. 

For even q, 

d = (F2
+l + F], 3Fq+lFq + F2) = (F?

2
+1 + F?

2, Fq(3Fq+1 + Fq)). 

Since (F?
2
+1 + Fq

2, Fq+1) = (F2, Fq+l) = 1 and, by the same reasoning, (Fq
2
+1+Fq

2, Fq) = l, we have 
d = (Fq

2
+1 + F2,3Fq+1+Fq). 

For odd q, we also have 

d = (F2
+l+F2,2F2

+l + Fq+lFq-F2) = (F2
+1+F2, Fq+1(3Fq+1 + F,)) 

= (^2
+ 1+^,3F9 + 1+F?). 

Thus, 
d = (F9+1(^+1 - 3Fg), 3Fg+1 + F,) = (F?+1 - 3F?, 3Fg+1 + Fq) 

= (Fq+1 - 3Fq, \0Fq) = (Fq+l - 3Fq, 10) = (-Zg_i, 10). 

The fact that {L„ (mod5)} = {2,1,3,4,2,1,...} implies that (Lq_h 5) = 1. And the fact that {L„ 
(mod2)} = {0,1,1,0,1,1,...} implies that 2\Lq_x iff 3\(q-\), i.e., 3 |(p-3)/2. Whence, 3\p. 
This is also impossible. Hence, d = \. 

(2) Here / (* ) = x2 - x -1 and / ( l ) = - 1 . Whence (m, / ( l ) ) = 1 holds. Hence, (4.4) holds 
by (3.11). D 

The following theorem implies a possible generalization and an alternative proof of Theorem 
3.15. 

Theorem 4.2: Let {«„} be the principal sequence in CI = Q.(a, b) = Q(A) and {wn} be any 
sequence in Q. Assume (m, b) = \. Denote P'(m, un) = s. Then, for j > 0 and d > 0, we have 

*Vi = v l«i-iwi + (bu,-i)J~lU«, ~««,-iK (modm2). (4.6) 
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(2) 
wjs+d s ( K - i ) X + KH-I)J"\WM (mod m2). (4.7) 

Proof: From (4.2), As = ^A+bu^L Since m\us, we have Ajs = (bu^ 1+j(bus_$~lusA 
(modm2). Whence 

i*"-** = (bu^y.A* + Kbu^y^u^1 (mod w2). (4.8) 

If rf> 03 then (4.7) follows from TCI. For </ = - 1 , from A2 ~aA-hi = 0, we get A(A-aI) = A 
(modm2). Whence (wi,ft) = l gives ^ s j ' ^ - o f ) (modiw2). And (4.8) becomes ^ " ^ 
b^u^A + (hu^y^QUs - oif^)/ (mod w2). Thus? (4.6) follows from TCI. D 

It is easy to see that when {wj - {uj and d = 0 the conclusions of the last theorem agree 
with those of Theorem 3.15. 
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1. INTRODUCTION 

In [2], it was shown that 

l i = 3 + S^V-' (U) 
w=l rn n=l rnrn+lrn+2 

and, using the same approach, it can be shown that 
00 if^.lY1-1 °° 1 

JL p ~ l~ 2L p p p - v ,2/ 

Let m be a positive integer, and define the sums 

sa...,»»)=£ 1 , «*i, (i.3) 
and 

In [1] (see equations 20, 21, and 22), Brousseau proved that 

and 

(1.4) 

r a 2 ) = - ^ - | 5 ( L 2 , 3 , 4 ) , (1.5) 

5 a 2'3'4) = 26^0+lfr(1'2'3'4'5'6)' (L6) 

7(1,2,3,4,5)6) = I 5 | ^ - ^ a 2 , 3 , 4 , 5 , 6 , 7 , 8 ) . (1.7) 

As an application, he computed the value of the sum Z*»i^- to twenty-five decimal places. 
Our aim in this paper is to establish explicit formulas that extend (1.5)-(1.7). Specifically, we 

obtain formulas 
T&...9m) = rl+r2S(l,...9m9m+l9m+2), m>l, (1.8) 

and 
SQ,...,m) = r3+r4T(l9...,m9 m + I, w+2), IW>1, (1.9) 

where the rt are rational numbers that depend on m. Among other things, Carlitz [3] attacked the 
same problem with the use of generating functions and Fibonomial coefficients. Here we provide 
an alternative and more transparent approach, with the use of only simple identities that involve 
the Fibonacci numbers. 
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2. PRELIMINARY RESULTS 

We require the following results: 

n=l rnrn+2 

£ ^ ^ • = -1 + 27(1); (2.2) 

tTr^- = -\^{l,2), (2.3) 

(2.4) y (-1)""1
 = 1. 

tFF J F =F
{:T^ +^f±^^2,...J/W), m>\, (2.5) 

w = l A n1 n+l J n+m-l1 n+m+l r \ rmrm+l A m+l 

y (-ir' = c-ir .(-r^+^m 
(=1 Ar*Wl" *'Ai+m-F«+#w+l P\'"Air*m+1 Aw+1 

-*w+wr «+m+2 A r n+wH-1 

= (— I) ^Bi+A+fl i+A+»i+2 + L1 + ("~ 1) -*m+2 J •^n+m-^n+m+2 ~~ \ V ^m+2 ? 

r(i , 2,...,«), « * i ; (2.6) 

(2.7) 

= ( - i r ^ + l ^ i + m + l ^ + w + a + [ l + ( - l ) m " ^2]^+mA»+>W+2 + (~1)"~ An+2-
(2.8) 

Formulas (2.1)-(2.3) can be obtained from [1]. More precisely: (2.1) occurs as (4); (2.2) 
follows if we use (3) to evaluate 

00 1 

Y—— 
n-\ A n£ n+k 

for k = 1 and k = 2; and (2.3) is the first entry in Table III. Formula (2.4) follows from (2.4) in 
[4]. Again, turning to [4], we see that identity (3.3) therein and its counterpart for J yield (2.5) 
and (2.6) for m> 3. We can verify the validity of (2.5) and (2.6) for m = 1 and 2 by simply 
substituting these values and comparing the outcomes with (2.1)-(2.4). Finally, (2.7) and (2.8) 
can be established with the use of the Binet form for Fn. 

3. THE RESULTS 

Our results are contained in the theorem that follows. 

Theorem: Let m > 1 be an integer. Then 

1 

m - , » ) = 7 T 7 T - ^ i 
(-irlFm+2+F2 

I *J *W2 ^-F^F^m,...,m + 2) 
- ^ m + l / L • ' ' 1 " 

m+2 >^-F^Fm+2S(l,...,m+2) 
(i+(-ir !+A*i) i?...F. IM+2 

(3.1) 

(3.2) 
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Proof; Let in > 1 be an integer. Then, due to telescoping, we have 

(3.3) 

Alternatively, with the use of (2.7), this sum can be written as 
00 F F — F F 

E 1 n+ml n+m+2 rnrn+m+l 

w=l A n A n+m+2 

_ f (-ir'^iiw^i^^+n+(-irFm+2]F„+mFn+m+2-(-iriFm+7 (34) 
•^*md F • • *F 
n~\ A n A n+tn+2 

= (-^m-lFm+iS(l,...,fn)+[l + (-lTFm+2]ft
 l Fm+2T(l,...,m + 2). 

n-\ n "n+m-V n+m+l 

Finally, after using (2.5) to substitute for 
00 

1 F F o»a F F ' 
n=\ rnrn+l""* rn+m-lrn+m+l 

we equate the right sides of (3.3) and (3.4), and then solve for S(\..., m) to obtain (3.1). In the 
course of the algebraic manipulations, we make use of the well-known identities Ln = Fn_^ + Fn+\ ? 
Fn +Fli = F2n+1, and F„_tF„+l - F> = (-If. 

Since the proof of (3.2) is similar, we merely give an outline. To begin, we have 

I(-ir'G 1 . 1 1 1 (3.5) 
F»«°F F F **«F F I F°°°FF 

n-l V rn '' * rn+m-lrn+m+l rn+l'''A n+mrn+m+2 J rl" ^m1 m+2 

Next, we write the left side of (3.5) as 

n=l V *'n'"*in+m+2 J 

Finally, we make use of (2.8) and (2.6), and then solve for F(l,..., m). This completes the proof 
of the theorem. D 

If we substitute m = 4 into (3.1), we obtain (1.6). Likewise, if we substitute m = 2 and m = 6 
into (3.2), we obtain (1.5) and (1.7), respectively. 

- 4. CONCLUDING COMMENTS 

Our results (3.1) and (3.2) do not produce (1.1) and (1.2), which, as stated in the Introduc-
tion, can be arrived at independently. Interestingly, due to our alternative approach, our main 
results are more simply stated than the corresponding results in [3]. See, for example, (5.8) in 
[3]. Incidentally, there is a typographical error in the last formula on page 464, where —| should 
be replaced by •§-• 

Finally, we refer the interested reader to the recent paper [5], where Rabinowitz discusses 
algorithmic aspects of certain finite reciprocal sums. 
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1. INTRODUCTION 

Problems of interest in goldpoint1 geometry [1] arise from study of tile-figures that are 
obtained when goldpoints are marked on sides of triangles, squares, pentagons, etc. and joined by 
lines in various ways. Many combinatoric problems arise naturally in the course of such studies. 
Another type of problem is to determine how to combine collections of golden tiles in jig-saw 
fashion, so that they tile a given geometric figure (or the whole plane) with goldpoint marks on 
touching sides corresponding everywhere. 

Examples of these types of problems are the following: 
(i) Find how many different golden tiles can be formed from regular polygons; that is, find 

how many inequivalent golden triangles, squares, pentagons, etc. there are. 
(ii) Given a regular hexagon, find how many different ways it can be tiled by equilateral 

golden triangles, jig-saw fashion. 
In this paper I introduce a new type of problem into goldpoint geometry. I study a variety of 

fractals which are achieved by using as base the segment [0, 1], and a motif which involves the 
goldpoints of that segment.2 

In Sections 2 and 3, the goldpoint dust set and snowflake are defined, and some of their 
properties are derived. 

In the following section, I describe goldpoint fractals which I dedicate to the memory of the 
inspirational American mathematician Herta T. Freitag, who passed away early in 2000 in her 91st 
year. 

In the final section, I present studies of fractals which are based on the regular pentagon. It is 
well-known (indeed the knowledge goes back to extreme antiquity, since it is mentioned in cabal-
istic literature) that the golden mean occurs frequently in the geometry of the pentagon [3] and its 
accompanying pentagram star. It is hoped that the results given below on pentagon fractals will 
add to existing literature on the pentagram. 

29 THE GOLDPOINT DUST SET 

We define the goldpoint dust set (the gp-dusi set) by prescribing an infinite process similar to 
that used to produce Cantor's fractal set. 

1 A point P m a segment AB is a goldpoint of AB ^AP/PB Is either a or \la (a Is the golden ratio). 
2 The terms %asef and emotif are now well known. Excellent references for these terms, and for several of the 
analytic techniques used in this paper are [2] and [4]. 
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We take the unit line-segment [0, 1] on the x-axis, and compute its goldpoints, which are at 
points (a"1,0) and (a~2, 0); call these points Gx and G2, respectively. Then we discard all points 
in the open set of the segment (GXG2). 

Next we compute the positions of the goldpoints Hl9 H2 and H3, H4 of the two remaining 
segments [Gl91] and [0, G2], respectively. Then we discard the two open sets between these two 
pairs of goldpoints. 

H4 H3 H 2 Hi 
#——#—#— m »# ©—# • 
0 G 2 G1 1 

FIGURE 1. Stage 2 of the formation of the gold point dust set 

We continue this process ad infinitum, at each stage discarding all the central open sets 
between pairs of goldpoints. 

The limiting set of points is called the goldpoint dust set of [0,1]. All points in it, except the 
two endpoints, are goldpoints of some segment in [0,1]. 

Some properties of points in the gp-dust set are described next. 
Gl9 G2 are the goldpoints of line segment [0,1], and G3, G4 are the goldpoints of [0G2]. 
Measuring lengths from 0, and writing Gt for |[0GJ|, we find: 

Gl = l/a* + l/a3 = l/a = F_ta+F_2 
G2 = l / a 2 = - a + 2 = F 2 a + F 3 
G3 = l/a4 + l/a5 = l/a3 = F_3a + F_4 
G4 = l / a 4 =F_4a + F_5 

and so on. 
Similarly, Hl9 H2 are the goldpoints of line segment [Gl91], and for them we find: 

Hl = l/a + l/.aA + l/a5 = l/a + l/a* 
H2 = l/a + l/a4 

It may be noted that: 
Gj is a goldpoint of [0,1] (given), 
Gt is a goldpoint of [G2H2] (since G2Gt = a"3 and GXH2 = cr"4), 
Gt is a goldpoint of [G3HX] (since G3GX = a'2 and GXHX - a"3). 

It follows that, as the process of discarding central open segments continues, all of the points 
left in the dust set are goldpoints (0 and 1 are excluded); in the limit, each point is a goldpoint an 
infinite number of times, with respect to pairs of other points in the dust set. It might be appro-
priate to call this the gold-dust set. 

It is evident from the above analysis that each goldpoint in the dust set can be expressed 
uniquely in a»nary form thus: 

goldpoint = O.CjCjfy • • • s cta~l + c2a~~2 + c^a"3 + • • •, 

where all the q coefficients are zero or unity, and with no pair of adjacent coefficients being (1,1).* 

* If in the calculation of a goldpoint we obtain both ct = 1 and cl+l = 1, we are required to combine the adjacent 
terms, using a~* +a~(i+l) = a~(i~l). 
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Examples £ 
Gx = 0.1, G2 = 0.01, G3 = 0.001, etc. 
Hx = Gt + a-4 + Q-5 = Q + a"3 = 0.101, 
H2 = Gt + a~4 = 0.1001. 

The goldpoint dust set is the set of all points in (0,1) which have this type of a-teraary form 
(reminiscent' of maximal Zeckendorf representations of n in terms of the Fibonacci numbers). 

3. THE GOLDPOINT SNOWFLAKE 

The following diagrams show how a snowflake fractal (a la von Koch, 1904) can be con-
structed from a line segment base, and the motif given as phase 1 in Figure 2. G and H are the 
goldpoints of the line segment [0,1]. Phases 2 and 5 indicate how the fractal develops. Since 
OG = Hl = l/a2, and the reduction factor is r - a2 at each step, the length of the perimeter of 
the snowflake at phase p is Pp = (4 / a2)p for p = 0,1,2,.... 

phase 1 phase 2 phase 5 

FIGURE 2. Development phases of the goldpoint snowflake 

Fractal (or self-similarity) dimension 
At each step, from each segment m = 4 new segments are formed, with length reduction 

factor r = a2 in every case. Hence, the fractal dimension of the goldpoint snowflake is 

dJogm= tog4_ = L44042... logr 2 log a 

4. HEMTA'S SHIELD, STAM JEWEL AND COMB 

In the last few months of Herta Freitag's life, I sent her three goldpoint fractal diagrams, 
which 1 hoped would amuse her. The shield (1 said) was for her protection, and was drawn on her 
90th birthday card. The jewel for her dress and the comb for her hair were sent later with get-
well messages. Sadly, my shield did not avail her for long; however, I was sure that she would 
appreciate the diagrams and look for the relationships to the golden mean that are evident within 
them. 

Both the shield and the star jewel are developed with goldpoint snowflakes on the sides of an 
equilateral triangle. The shield is exterior to the triangle; the jewel is interior to it (see Figs. 3 and 
4). 

Figure 5 shows Bella's goldpoint comb; 1 imagined it to be made of ivory. In the limit, it has 
an infinite number of teeth, the prong points forming a set of Hausdorff measure zero and equiva-
lent to the gp-dust set. I don't know what it would have done to her hair. It is easy to see how 
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the comb is built up of rectangles erected upon line segments parallel to those 'left in1 during the 
process of obtaining the goldpoint set (see Fig. 2). Upon each segment, a golden rectangle is con-
structed, with the horizontal segment being the larger side. 

FIGURE 3e Herta's goldpoint shield (phases 2, 3, and 5) 
[The dotted bounding-polygon is added In 2 to demonstrate the shield's outer shape.] 

FIGURE 4 Herta's star jewel (phases 2,3, and 5) 

I/a 

1/V 

11II11I 

JU&J^ iASAI 

V / . / / / / V / A / X / / < X / - / 

R. 

&&JUU 

,/**************** 
i***********J***** v*******4*'*******•*} '*******Kr********-l 
'*********£l******\ 
'*********/?******] 
'*****************] '*****************] 

•1/a* 

limit Sine X' 
FIGURE 5. Berta's goldpoint comb 
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Figure 5 shows how the short sides of the rectangles have lengths In the sequence: 
1 1 1 1 

This is a geometric progression of common ratio lid1, and its infinite sum is 1. Therefore, the 
goldpoint comb has height 1 and it covers (in the limit, and except for the limit line) a square of 
side 1. 

Thus, the unit square of the comb is tiled by golden rectangles in an interesting way. 
If we check the fhole' or 'spaces1 in the comb, we see that they are also rectangles, all standing 

on the horizontal limit line where the teeth 'end1. Again checking the dimensions, we see that each 
of these rectangles is also a golden rectangle. Moreover, the largest sholef rectangle is equal to the 
second largest ivory rectangle; the second largest fholef rectangle is equal to the third largest ivory 
rectangle; and so on. 

Tie area {A) of t ie Ivory 9 and t ie area (H) of t ie fh©les? 

Working directly from Figure 5 we get, for the total ivory in the comb: 

i4 = l x l + 2x-V + 4xJL + 8x-lJ+... = l f ; r A y = ^ . 
a a5 a9 a13 aM\& J 3 

Then, for the area of the 'holes' in the comb: 

H=l-A = \~a2 = ~ V [Check: (a2+a~2)-3.] 3 3 or 

5. THE GOLDPOINT MOTIF TRIANGLE, AND PENTAGON FRACTALS 

In this final section we first analyze the goldpoint motif triangle, showing various ways by 
which it can be partitioned. 

Then we take a regular pentagon and study some of its goldpoint properties. We show how 
a fractal of pentagon fractals can be constructed within it, and point out one or two of the prop-
erties of this object. 
Properties of t ie goldpoint motif bounding triangle 

In Figure 6(a) below, the goldpoint motif AGCHB is shown, together with its bounding tri-
angle ABC. (It was also shown in Fig. 2 above.) This triangle partitions into two (108°, 36°, 36°) 
triangles, viz. AGC and BHC, which we call S-triangles, and a (36°, 72°, 72°) triangle, GHC, 
which we call a J-triangle. We shall use the convention Sf to describe an ^-triangle drawn on a 
base Sine segment of length 1/a1', / = 0,1,2,...; similarly, we shall use Tt for the F-triangles drawn 
on such base line segments. 

When making the analyses and calculations, we shall have recourse to the formulas given at 
the beginning of Section 2, and also to the following trigonometric relations: 

| 0 
sm.0 
COS0 
tan0 

36° 
Ja + 2/(2a) 

all 
^Ja + 2/a2 

72° 
(l/2)Va+2 

l/(2a) 
a^/a+2 
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The goldpoint motif triangle, and some partitions of it 
Figure 6(a) is used to demonstrate several partition properties of the goldpoint motif triangle. 

Figure 6(b) shows how the triangle can be partitioned by pentagrams and S-triangles of diminish-
ing sizes and with sides I/a*. Various calculations and comments on these figures are given 
below the diagrams. 

FIGURE 6(a), The motif triangle and some dividing lines 

If AB = 1, then it is immediately seen that ABC is an S0 triangle, which is partitioned by GC 
and HC into two Sx and one T3 triangles (since AC = BC = l/a and GH= 1/a3). Thus, S0 = 
2SXKJT3. 

The area of triangle ABC is (1 / 2) AC sin 36° = Ja + 21 (4a2). 
Other partitions of ABC can be seen in the constructions. For example, the two T3 triangles 

ADG and BJH together with the central pentagon P3 on GH. Another is the set of decreasing and 
overlapping pentagons, on sides CD, DE, EF, ... and, similarly, on the right side of center, whose 
union limitingly fills triangle ABC. 

Finally, we observe that since an ^-triangle can be partitioned into a J-triangle and an ^-tri-
angle (e.g., ABC= AGCvGCB), by repeated divisions ABC can be partitioned into a sequence 
of diminishing ^-triangles; or else, similarly, into a sequence of diminishing T-triangles. We won't 
spell out their relative sizes, but point out that they are all in ratios of powers of a. 

Figure 6(b) demonstrates how the golden motif triangle can be partitioned into an attractive 
double sequence of diminishing pentagrams, with sides in diminishing powers of a, together with 
sequences of diminishing ^-triangles. 

Proposition: Every pentagram vertex (except C) is a double goldpoint with respect to two pairs 
of pentagram vertices. 

Proof: By inspection of the largest pair of pentagrams, and induction. 

FIGURE 6(b). Pentagrams and 5-triangles constructed in the motif triangle 
The complement in AABC of the infinite set of (interiors of) pentagrams is an infinite set S of 

5-triangles, being 3S3 u &S4 u &S5 u • • •. This can be regarded as phase 1 of a fractal. In the next 
phase, every ^-triangle in phase 1 provides a similar figure, all ^-triangles in it being reduced by 
a"3. 
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The dust set of this fractal is the set of all vertices of 5-triangles produced in this multiply-
infinite recurrence process. 

Some properties of the regular pentagon, with goldpolnts and partitions 
The next two figures, 6(c) and 6(d), show regular pentagons, of side 1, with various con-

struction lines upon them. 
In Figure 6(c), AABC is a 2[-triangle, so ^C = l/(2cos72) = a. From AAGD, we get 

AG = l/(2cos54) = aNa + 2 and GD = (l/2)tan54 = a2/2ja + 2. Also, CD = (1/2)tan72 = 
( l / 2 ) W a + 2 . 

By similar pentagons, G'D = a~3GD and G"A = aG' / sin 54 = 2 / Va + 2. 

FIGURE 6(c). A regular pentagon 

Proposition: 
(i) GG = GG". 

(ii) G is a goldpoint of CG*. 

FIGURE 6(d). A fractal of pentagons 

Proof: 

and 

GG' = GB-GfD 
= a2/24aT2-l/(2aJaT2) 
= l / ^ a + 2 (since a 2 - l / « = 2) 

GG" = GA-G"A 

Therefore 

(ii) 

= a/Ja + 2-l/(a4a~+2) 
= \l4a+2 (since a-1/a = 1). 

GGf = GG'f. 

GG*IGC = >GG'IGA 
= (l/-JaT2)^(-JaT2)/a = l/a. 

Other results about goldpoints in a pentagon construction may be found on page 28 in [2]. 
Let us turn to Figure 6(d) and examine the fractal of pentagons. 
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It is evident how Figure 6(d) can be obtained from Figure 6(c). The shaded pentagon P2 is 
replaced by its inner pentagon (a P4\ and then the two small pentagons are replicated around pen-
tagon abode (a?2)-

Looking at Figure 6(d), we see Si^'s and 5P4s arranged alternately with their centers on a 
circle by Proposition (i) above, and with a pentagon P2 in the middle. We can regard this as a 
motif for constructing a fractal of pentagons in the interior of pentagon ABCDE. 

Thus, to arrive at phase 1, we must remove all points in the unshaded regions, together with 
the perimeter of ABCDE. Then, to arrive at phase 2, we repeat the above constructions and 
removals in each of the eleven shaded pentagons. What remains will be 121 shaded pentagons, 
each scaled by a factor of a\ i = 2,3, or 4 according to its construction. From the tree diagram 
below, we see that the distribution of pentagons will then be IP4, 10P5, 35P6, 50P7, 25PS. 

P2^^^ 5P3 5P4 

/l\ /i\ /l\ 
PA 5P5 5P6 P5 5P6 5P7 P6 5P7 5P8 

Evidently, this process can be continued .indefinitely. And formulas can be computed for the 
coefficients on the tree and for reduction factors in areas when passing from phase / to phase i +1. 

The dust set of the fractal is the set of points in ABCDE which are not removed by this 
infinite process. A moment's thought shows that this set consists of the centers of all the 
pentagons constructed in the 'whole' process. And the set consists of a cosmos of points arranged 
in circles, with similar, reduced, circles arranged around each of them, and so on ad infinitum. 
Because of the similarity of this system with Ptolomy's model of the Universe, we name this dust 
set the Ptolomak dust set. 

The next two figures show phases of the interior and exterior fractals which are constructed 
on a regular pentagon using the goldpoint motif on its sides. 

Phase 2 of Figure 6(e) shows an attractive clover-leaf arrangement of five leaves, each of 
three P3 pentagons, formed in P2$ and arranged around a central P2. 

Phase 4 shows clearly how the interior goldpoint fractal of a regular pentagon is equal to the 
exterior goldpoint fractal of its pentagram. 

FIGURE 6(c). Interior goldpoint fractal of a pentagon (phases 2, 3, and 4) 
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It is clear from the phase 1 diagram of Figure 6(f) that the exterior goldpoint fractal of a 
regular pentagon is bounded by a regular pentagon. It is easy to prove this using angle values of 
the iS- and T-triangles which touch the boundary. We believe this property of a von Koch-type 
fractal having a bounding polygon which is similar to the generating polygon to be unique. 

phase. 1 phase 2 
(with two (with four phase 3 
unicursals) unicursais) 

FIGURE 6(f). Exterior goidpnimt fractal ©fa pentagon (phases 1, 29 and 3) 
A final interesting comment is the following: the sharp boundary points in the phase 1 dia-

gram can be connected by a unicersal polygon of chords of the diagram (each chord begins and 
ends along an arm of a point-angle), whereas the sharp boundary points of the phase 2 diagram 
require two such unicersal polygons to join them all up. In phase w, there will be 2n unicursal 
polygons required. The unicursal perimeters can be calculated in terms of a, given that P0 has 
side length 1. For example, in Pu the unicursals have perimeters 5 and 5(7 - 3a), respectively. 
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1. INTRODUCTION 

The/?-adic order, vp(r), of r is the exponent of the highest power of a prime/? which divides 
r. We characterize the/?-adic order vp(Fn) of the F„ sequence using multisection identities. The 
method of multisection is a helpful tool in discovering and proving divisibility properties. Here it 
leads to invariants of the modulo p2 Fibonacci generating function for p ^ 5. The proof relies on 
some simple results on the periodic structure of the series Fn. 

The periodic properties of the Fibonacci and Lucas numbers have been extensively studied 
(e.g., [13]). (For a general discussion of the modulo m periodicity of integer sequences, see [8].) 
The smallest positive index n such that Fn = 0 (mod/?) is called the rank of apparition (or rank of 
appearance, or Fibonacci entry-point) of prime/? and is denoted by n(p). The notion of rank of 
apparition n(m) can be extended to arbitrary modulus m>2. The order of/? in i^(p) will be 
denoted by e = e(p) = vp(Fn(py) > 1. Interested readers might consult [6] and [9] for a list of rele-
vant references on the properties of vp(F„). 

The main focus of this paper is the multisection based derivation of some important divisi-
bility properties of Fn (Theorem A) and Ln (Theorem D). A result similar to Theorem A was 
obtained by Halton [4]. This latter approach expresses the/?-adic order of generalized binomial 
coefficients in terms of the number of "carries." Theorem A can be generalized to include other 
linear recurrent sequences and a proof without using generating functions was given in Exercise 
3.2.2.11 of [6], The latter approach is implicitly based on multisections. 

The generating functions of the Fibonacci and Lucas numbers are 

f(x) = fdFnx"= x
 2 and h(x) = fiLj*= 2 X

 2, 
M=n I X X M_A 1 X X 

respectively. In this paper the general coefficients of these generating functions will be deter-
mined by multisection identities, as we prove 

Theorem A [9]: For all n > 0, we have 
[0, i fwsi ,2 (mod3), 
|l, if/ is 3 (mod 6), 
3, if/is 6 (mod 12), 

\y2(n) + 2 if n = 0 (mod 12), 
"2tf;H 

_ \Vp(n) + e(p), if w s 0 (mod n(p)\ 
' p V * W ~(0 , ifw#0 (modzi(/?)), 

The cases p = 2 and p = 5 are discussed in Sections 2 and 3, respectively. The general case 
is completed in Section 4. The case of p = 2 has been discussed in [5] using a different approach. 
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The multisection based technique offers a simplified treatment of this case. We extend the 
method to the Lucas numbers in Section 5. 

By the w-section of a power series g(x) = T^=0anxn we mean the extraction of the sum of 
terms atxl in which / is divisible by m. We use the resulting power series gm(x) = H<^=0amnxmn in 
its modified form gm(xllm) = H™=0amnxn and call it the ^-section as well. The corresponding se-
quence {^mJn=o of coefficients is referred to as the m-sectioe of the sequence {aj*=0. The 
notion of m-section can be generalized to form a sum of terms with index / ranging over a fixed 
congruence class of integers modulo m. It will be used in Sections 2 and 5. There are various 
general multisection identities (cf. [10, p. 131] or [1, p. 84]), and they can be helpful in proving 
divisibility patterns (e.g., [2]). The #f-section of the Fibonacci sequence leads to the form 

]?0
Fm"x" = i-Lmxf(-irxi- (1) 

The denominators are referred to as Lucas factors. For other applications of Lucas factors, see 
nil. 

The present proof of Theorem A is based on a multisection invariant. In fact, we will see in 
(5), (13), and (14) that x / ( l - x ) 2 or x/(l + x)2 is an invariant of the properly sected Fibonacci 
generating function taken mod p2 for every prime p & 5. The power ofp can be improved easily. 

We shall need some facts on the location of zeros in the series {Fn mod#w}w 0̂. 
Theorem B (Theorem 3 in [13]): The terms for which Fn = 0 (mod m) have subscripts that form 
a simple arithmetic progression. That is, for some positive integer d = d(m) and for x = 0, 1, 2, 
...,n = x-d gives al! n with Fn = 0 (mod/?) unless / is a multiple of «(p). 

Note that d(m) is exactly w(/w), and d(p*) = d(p) = n(p) for all 1 < / < e(p). It also follows 
that Fl # 0 (mod/?) unless / is a multiple of n(p). 

We denote the modulo m period of the Fibonacci series by n(m). Gauss proved that the ratio 
~^r is 1,2, or 4. In fact, we get 

Lemma C[9]: The ratio ™~~ can be characterized folly in terms of x = Fn{pyt = Fn(/7)+1 (mod/?) by 

I «(/?), iffx = 1 (mod/?), 
7r(p) = <2n(pX i f fxs-1 (mod/?), 

[4n(pX iffx2 = - l (mod/?). 

In the first case, p must have the form 10/±1 while the third case requires that p = 4/ + 1. 

We also will repeatedly use two identities (cf. (23) and (24) in [12]) for the Lucas numbers 
with arbitrary integers h > 0: 

L2h = 2(-lf + 5Fh\ (2) 

L2
h = 4(-lf + 5Fh

2. (3) 

It is worth noting that our proofs of Theorems A and D rely on three congruences for the 
Lucas numbers (cf. Lemmas 1, 2, and 3) which, in turn, can be improved significantly (cf. Lem-
mas 1 \ 2\ and 3 *) using the theorems. 
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2. THE CASE OF p = 2 

By adding together the six 6-sectionsZ^=0i^w+/x6w+/, / = 0,1,..., 5, of the generating function 
f(x), we obtain 

, , v x + x2 +2x3 + 3x4 +5x5 + 8x6 -5x7 + 3x* -2x9 +x10 -x11 

f(X) = 7 7} 
JK ' l-18x6 + x12 

which is equivalent to the recurrence relation Fn+l2 = lSFn+6-Fn, F0 = 0, Fl = l9...9. Fn = %9. 
This immediately implies that 

0, if >? = 1,2 (mod 3), 
1, ifw = 3 (mod 6), 
3, ifws6 (mod 12). 

It remains to be proven that 
v 2 ( ^ ) = v2(n)+4. (4) 

To this end, first we note that 

Lemma 1: L^ = 2 (mod22) for all k > 0. 

In fact, the modulo 4 period of Fn is 6, and this implies L6J = 2F6j+l = 2 (mod 4) for every 
integer j >0. 

By identity (1), we obtain that, for all k > 0, 

1 ^ = , j X
x + X^7rrt=t"*" (m°d22). (5) 

We have Fl2 = 144 = 24 • 9. By setting * = 0 and n = 2 in (5) it follows that F12.2 IFn=2 (mod 
22), thus v2(i^4) = v2(F12) + 1 = 5. In general, we use n - 2 and observe that 

^(^1M*+i) = v2(F1M4) + l = - = V2(F12) + * + 1 = 4 + V2(2*+1) 

follows by a simple inductive argument. We complete the proof of (4) by noting that, for n odd, 
V 2 ^ W „ ) = v2(F,Mt) holds by (5). D 

A sharper version of Lemma 1 can be derived from Theorem A (once it has been proven). 

Lemma 19: LU2k = 2 (mod 22*+6) for all * > 0. 

Proof of Lemma 1f: We note that Ll%lk = 2 (mod 2k+3) can be derived easily from the per-
iodicity of Fn, for Z12.2, = 2F12>2,+1 = 2 (mod 2*+3) as x(2l) = 12 • 2/"3, / > 1. We notice, however, 
that the sharper Z,12 = 322 = 2 (mod 26) also holds. Moreover, identity (2) yields -£12.2*+i =2 
(mod F2

22kX and we derive that LU2k+l=2 (mod (24+k)2) using Theorem A. Accordingly, we 
can replace the exponent ofp in identity (5). D 

3. THE CASE OF p = 5 

This case is a little more involved. We will find v$(F5kn), k > 1, in terms of v5(F5k) in three 
steps. In the first two, we assume that («, 5) = 1, then we deal with the case of n = 5. 
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First,, we take the 5-section of f(x) and obtain 

IV"-n^?"TT?"lv (mod5)-
which guarantees that v5(F5n) = v5(F5) if (n, 5) = 1. In the second step, we try to generalize this 
relation for indices of the form 5kn, (n, 5) = 1, k > 2. We shall need the following lemma. 

Lemma 2: L5k+\ -L5k=0 (mod 25) for k > 1. 

Proof of Lemma 2: By identity (3) we have, for * > 1, that L2
5k+l-L2

5k = 0 (modF2
k). It 

follows that 
(L5k+i - L5k)(L5k+i + L5k) = 0 (mod 25) (6) 

by Theorem B. Clearly, 
L5k+\ z=l5k = L5zzl (mod 5), (7) 

thus the factor L5k+\ + l5k cannot be a multiple of 5. Therefore, L5k+\ -L5k=0 (mod 25) by iden-
tity (6). • 

We note that v5(F25) = 2. It is true that, for * > 1, 

I V + 1 M %K n I ZZllL-lZJL 
\ •*• sk+l *ek J 1 - L5MX - x2 \~L5kX~ x2 

X X 
-(L k+i -L k) 5 + 5 1 -L5k+ix-x2 l-LskX-x2' 

The first factor is divisible by 25 according to Lemma 2. For (w, 5) = 1, we get 

i.e., v 5 ( i ^ ) = K5(iy) by induction on A > 1. 
Now we turn to the case of n = 5. For k > 1 and w = 5, we get that iy+2 /F5k+\ = /y+i I F$k 

(mod 25); therefore, 
v5(Fjk+2) = V5(F5*+I) + l = - = v5(F5) + * + l. 

by induction using v5(F25 /F5) = l. The proof of the case p = 5 is now complete. D 

Note that, once it is proven, Theorem A guarantees the much stronger lemma. 

Lemma 2':L5k+\ = L5k (mod 52k ) for k > 1. 

We note that an alternative derivation of (8) is possible by (7) but without using Lemma 2: 

1 — Lijt+iX — X I — L^k X — X n _ 0 

with Fj2) being the 2-fold convolution of the sequence Fn. The m-fold convolution of the se-
quence Fn is defined by 

Fn
(m)= Y ^F ...E , 

n Led h h im
 ? 
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which has the generating function [/OOF- Note that, by identity (7.61) on page 354 in [3], 
/*» = ̂ 5(2nFn+l-(n + l)Fn) = f(2Fn+l-Fn)-±Fn = fLn-\F». We can easily find the period of 
Fnm) by the general theory (cf. [8]) or by simple inspection. The latter approach also provides us 
with the actual elements of the period. It is clear that 100 is the modulo 25 period of nLn-Fn, 
and nLn -Fnis divisible by 25 if n is divisible by 5. It follows that 5 \F^ if 5 \n. 

4. THE GENERAL CASE 

In this section/? is a prime different from 2 and 5, and n denotes an integer for which vp(n) is 
either 0 or 1. We will use either an n(p)pk- or a 2n{p)pk -section in obtaining the required divisi-
bility properties. First, we prove 

Lemma 3: For any prime /? = 3 (mod 4), 

L f 2 (mod/?2), if K(J>)In(p) = \ 
n{p)pk [-2 (mod/?2), if7r(p)/n(p) = 2. 

Proof: Formula (3) yields that, if h > 0 is even, then L\h -L2
h = 0 (mod F%). Note that n(p) 

is even for p = 3 (mod 4) (see [13]). By setting h-n(p)pk we obtain 

(L2n{p)pk - Ln(p)pk)(L2n(p)pk + Ln(p)pk) » 0 (mod p2). (9) 

Therefore, either 
L2r,(P)pk s 4(p)P* (mod/?2) (10) 

or 
L2n(p)p* = -Lnip)pk (mod/? 2 ) , (11) 

for otherwise both L2n{p)pk - Ln{p)pk and L2n{p)pk + Ln{p)pk will be divisible by/?. This would lead 
to Ln{p)pk = 0 (mod/?), which is impossible as Ln^p)pk = 2Fn(p)pk+l (mod/?). According to identity 
(2), L2n(p) = 2 + 5F2

{p), which yields L2n{p) = 2 (mod p2) and also 

W s 2 (mod^2) (12> 
by Theorem B [13]. 

If 7v(p) ln(p) = 1, then F^+i = 1 (mod /?) by Lemma C, and we get Lln(<p) = Z,w(/?) = 2 (mod 
p) and, similarly, Z^C/OP* = Ln(p)pk s 2F2„(p)/?*+1 = 2 (mod /?), leading to (10). If n{p)ln{p) = 2, 
then Fn(p)+l = -1 (mod /?) and Z,2w(p) = -Ln{p) = 2 (mod /?) and L2n{p)pk = - 4 ( p ) p * = 2 (mod/?) 
corresponding to (11). • 

We are now able to finish the proof of Theorem A. In the case of 7i{p) ln(p) = 1 and 2, we 
can use 

t^fx" = 1 L
 X

 X + X2 - aflj ' Z C + i r 1 - " (mod/*), (13) 

which proves vp{Fn{p)pkn) = vp(Fn{p)pk) + vp(n) for vp{n) < 1. In particular, by setting w = /?, we 
obtain v/,(/^/,)pik+,) = rp(Fn(/7)i?*) +1, and ^(Fw(/?)/?,+1) = e(/?) + * + l follows by induction on 
* > 0 . In summary, we derived that vp(Fn(p)pkn) = e(p) + k + vp(n) and the proof is now 
complete. 
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On the other hand, If n(p)/n(p) = 49 then we switch from using an n(p)pk-section to a 
2*(p)/>*-section. By the duplication formula (cf. [3] or [12]), we get F2n{p)pkn = Fn{p)pknLn{p)pkn 

for any integer n > 0. This yields vp{F2n{p)pkn) = vp(Fn(p)pkn). We consider 

y I2n(p)pkn_n . 
-X" = 

^ 0 ^2n{p)pk 1 ~ ^2n(p)pkX + X 

Identity (12) implies that 

£ |KP)Pf»xn. * ^ ̂ m„ (modp2) ( 1 4 ) 
n=0 r2n{p)pk (l~X) n=l 

The proof can be concluded as above for 
vpiFn{p)PQ = ^(^2<p)P^) = vP(ft>i(p)) +* + vp{n) 

^vp(Fn(P))+k + vp(n) = e(j)) + k + vp(n). Q 

By means similar to Lemma 1', we can prove a stronger version of Lemma 3. 

Lemma 3f: For any prime p = 3 (mod 4), 

_ f 2 (mod /#*•"(/>»), if ^(p) /«(/?) - 1 ? 

*/»/* ™ j _ 2 ( m o d p2(k+e(p))^ if ^ ln(p)^2. 

Proof: We know that vp(/^p)p*) = 2(* +2(p)) by Theorem A. Thus, we can replace p2 by 
p2(k+e(p)) ie identities (9)~(14). D 

We note that, according to Lemmas 1? and 3', the denominators of the multisection identities 
(5), (13), and (14) have either 1 or -1 as a double root modulo some p-power with exponent 
2k + 6 or 2(k + 2(p)). This observation, combined with the remarks made in the proofs of the 
lemmas, helps in obtaining the foil description of the structure of the periods of the corresponding 
multisected sequences [cf. (5), (13), and (14)] with respect to the above-mentioned p-power 
moduli (p*5). 

5. LUCAS NUMBERS 

By using methods we applied to the Fibonacci sequence, we obtain 

V F n ^ 2 + x + 3y2-f4x3-f7x4 + llx5-18x6 + l ly7-7y8+4x9-3x1 0 + x11 

izr*" i»i8x6+x12 
which proves that 

[0, i f / i s l ,2 (mod 3), 
v2 (LJ = 12, if n s 3 (mod 6), 

[1, ifn&O (mod 6). 

If p = 5, then the modulo 5 periodic pattern of Ln is 2, 1, 3, 4, and thus S\Ln. 
If p*2 or 5, thee the order vp(Ln) can be derived easily by the duplication formula and 

Theorem. A (see [9]). Here, for the sake of uniformity, we use multisection Identities. We need 
the companion multisection identity to (1) for the Lucas sequence: 
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w|^-.-wW' (15) 
As Ln=F2n/Fn,wt see that Ln is divisible by p only if In is a multiple of n(p) while w is not; in 
other words, if n is an odd multiple of n(p)/2. This implies that we have to deal only with the 
case in which n(p) is even. The generalized -^-sected Lucas sequence will suffice to prove 

Theorem D: If p * 2 and n(p) ln{p) & 4, then, for every k > 0 and m = {n(p)l2)pk, 

0^E 2 ^ (mod/*), if7t{p)ln{p) = \ 

^ ^ = Z2^(-l)^nxn (modp2) if *(p) //i(p) = 2, 2|n Aw , -

yielding ^ ( Z J = vp(n) + e ( » if w = w(p) /2 (mod w(p)). 

Proof: Note that the conditions guarantee that n(p) is even. We discuss the case in which 
7t(p) ln{p) = 1 with k = 0 only, while the other cases can be carried out similarly. We note that 

It is known that n(p)l2 is odd ifn(p)ln{p) = 1 (cf. [9]). The common denominator of the above 
difference can be simplified. In fact, according to identity (15), the denominator of hn^(x2) is 

1 ~ 4i(p)X + X = 1~~ ( Ai(p)/2 + 2)X + * 

by Iw(/>) = Z ^ y 2 - 2(-l)n(p)/2, which follows from (2) and (3). We get 

l-Ln{p)x2 +x4 = (1-x2)2 ~Ll(p)/2x2 ^ (l-x2)2 (modp2). 

Finally, it is easy to see that l(x) simplifies to 

The exponent ofp can be increased to 2(k + e(p)) in the above proof and therefore in the theorem 
also. 
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1. INTRODUCTION 

The following identity is well known: 

# i + # = J w 0-i) 
Recently, Melham [6] proved the generalization 

Fn+k+l + Fn-k - F2k+lF2n+l (l 2 ) 

for all integers n and k9 and he also proved 

At+*+l+ At-* ~ ^2£+1^2/H-l° (1-3) 
Formula (1.2) appears to be a special case of the more general formula 

F?H-irJ-1F? = F*.jF*, 0.4) 

which appears without proof in [3, p. 59]. Obviously, (1.4) implies (1.2); we will show later in 
the paper that (1.2) also implies (1.4). Our main purpose, however, is to extend (1.4) to the gen-
eralized Fibonacci sequence {wn} = {wn(a9 b; p, q)} defined by 

wQ = a9 wx = b; wn = pwn_x-qwn_2 (n>2), (1.5) 

where a, b9 p9 and q are arbitrary complex numbers, with q^O. The numbers wn have been 
studied by Horadam (see, e.g., [4]), and some special cases were investigated by Lucas [5]. 
Obviously the definition can be extended to include negative subscripts; that is, for n = 1,2,3,..., 
define w_n = (pw_n+l-w_n+2)/q. A useful and interesting special case is {un} = {wn(0,1; p, q)}; 
that is, 

iio = 0, uy = 1; un = pun_x - qun_2. (1.6) 

One of the results in the present paper is 

w2
n - qn-J'wj = Mn_j(bwn+J - qaw^.^), (1.7) 

which is valid for arbitrary a, b9 p9 q9 and for all integers n and/ Formula (1.7) contains (1.1)-
(1.4) as special cases. In fact, we will prove a more general result (Theorem 3.1 below) that con-
tains (1.7) as a special case. 

2* A BASIC IDENTITY 

The following formula is essential for the proof of (1.7). 

Theorem 2J: For arbitrary a9 b9 p9 q9 and for all integers m and n9 HVm+i= wm+iun+i "WJ^m 
where wk and % are defined by (1.5) and (1.6), respectively. 
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Proof: We will first motivate Theorem 2.1 by showing how it can be derived, without prior 
knowledge, by a combinatorial argument, if we put some restrictions on a, b, p, q, and the sub-
scripts. We will then verify the theorem by means of Binet formulas, and all the restrictions will 
be removed. We note that there has been some recent interest in proving Fibonacci identities by 
means of combinatorial arguments [1]. 

Assume p > 0, -q > 0, a > 0, b > ap, and suppose we have a sequence of towns labeled X9 0, 
1, 2, 3, ... . Starting at town X9 a driver wants to reach town n under the following conditions: 
(1) There are exactly a different routes from town X to town 0; (2) There are exactly h different 
routes from town X to town 1 (including through town 0); (3) If k > 1, the driver cannot go 
directly from town X to town k; (4) Once town k has been reached, for any k > 0, there are only 
two ways to continue—the driver can go to town k + linp different ways, or he can bypass town 
k +1 and go directly to town k + 2 in -q different ways. Let rn be the number of different routes 
from town Jf to town n. Then r0=a,rl=b, and for n > 1, rn = prn_x - qrn_2. Thus, rn = wn, and it 
is clear that the number of ways to go from town k to town k +n, for k > 0, is wn+l(0,1; p9 q) = 

If the driver reaches town m+n + \9 there are two cases: 
Case 1. The driver goes through town m + l. She can reach town m +1 in wm+l ways, and 

then she can continue to town m+n +1 in ww+1 ways. 
Case 2. The driver bypasses town m + l. She can reach town m in wm ways, and then there 

are -q ways to reach town m + l. From town m + 2, the driver can continue to town m + n + l in 
un ways. 

Therefore, the number of different routes from town X to town m+n + l is 

and Theorem 2.1 is true with the given restrictions on a, b, p, q9 and the subscripts. By a remark-
able theorem of Bruckman and Rabinowitz [2], if an identity involving generalized Fibonacci num-
bers is true for all positive subscripts, it is true for all nonpositive subscripts as well. Thus, the 
identity is true for all n and m. 

Now we can remove all restrictions on a, b, p, and q by looking at the Binet forms of wn and 
un. Let a and fi be the roots of x2 - px + q = 0. Then ap = q9 and the Binet forms are (for some 
constants Al9 A^, Bl9 B2): 

wn = Atan+A2p\ un = ^ ^ , \£a*09 (2.1) 
a — p 

wn = Bxan + B2na\ un = na"-\ if a = /?. (2.2) 

If each of the numbers in Theorem 2.1 is replaced by its Binet form (2.1) or (2.2), we can verify 
that Theorem 2.1 is valid with no restrictions on a, h9 p9 or q. This completes the proof. D 

We note that the actual values of Ai9 Al9 Bl9 B2 are not needed in the above proof. However, 
for completeness we give the values here: 

Tfa*fi, then At = ^ § and ^ = H£z* jf a = fi, thee Bt=a and B2 =tz£E^ H* l a-p a-p a 
We also note that Theorem 2.1 can be proved by induction on n. 
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Corollary 2.1: For arbitrary a, h, p, q, and all integers w, wn = hun - qaun_x. 

Proof; In Theorem 2.1, replace m by 0, and replace n by (n -1). • 

3. THE MAIN RESULT 

In this section we assume that wn = wn(a,b;p,q) is defined by (1.5), and we assume that 
vn = wn(c> d> p, q) for arbitrary c and d. That is, 

v0 = c, Vj = d, and vn = p v ^ -gvw_2. (3.1) 

Theorem 3.1: For arbitrary a, A, c, J, p, q, and for all integers m, n, k, 

where vj9 wj9 and Uj are defined by (3.1), (1.5), and (1.6), respectively. 

Proof: We first show the theorem is true for all integers k > 0 by using induction on k. The 
case k = 0 is trivial; if k = 1, then by the corollary to Theorem 2.1, 

^+l**W ~ <PmWn = V^+iCK+l " 00*0 " tfVw(H " ^ „ - i ) 
= *0W4i+l - # V O - 9»(vin+lHi - WV-l ) 

with the last equality following from Theorem 2.1. Since ux = 1, we see that Theorem 3.1 is true 
for& = l. Assume Theorem 3.1 is true for k = 0,1,..., j . Then 

vm+J+lwn+J+l - qJ+lvmwn = (vm+J+lwn+J+l - qvm+Jwn+J) + (qvm+Jwn+J - qJ+lvmwn) 

= (bvm+n+2j+l - I™**!*!]) + WjQWmtn+J ~ W^+y- l ) (32) 

Now in Theorem 2.1, if we first replace n hyj and then replace m by m+n+j, we have 

Vm+n+2j+l + <Fn*n+jUj = Vn*n*j+luJ+\ , (3.3) 

and if we first replace n by j and then replace m by m+« + y - 1 , we have 
+ gvwfw+,_1^ = v ^ / i ^ . (3.4) 

Substituting (3.3) and (3.4) into (3.2), we have 
vm+J+lwn+J+l - qi+lvmwn = uJ+l(hvm^J+l - qavm+n+Jl 

and Theorem 3.1 is valid for k = j + 1. By induction, Theorem 3.1 is valid for all k > 0 and all 
integers m and n. 

We now want to show Theorem 3.1 is valid for all integers k. Clearly u_x - -q~l, and it is 
easy to prove by induction that u_k = -q~kuk for all integers k. In Theorem 3.1, replace m by 
m-k and replace n by n-k to get 

V „ ~qkvm-kWn-k = vk(hvm+n_k - q a v ^ ^ X 
so that 

and we see that Theorem 3.1 is valid for all integers k. This completes the proof. • 
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Corollary 3.1: For arbitrary a, ft, c, rf, p, qr, and for all integers n andy, 

where v ,̂ w^, and % are defined by (3.1), (1.5), and (1.6), respectively. 

Proof: First rewrite Theorem 3.1 by replacing both m and n by / In the resulting equation, 
replace k by (n - j) to obtain Corollary 3.1. D 

Corollary 3.2: For all integers n andy, 

Lfn + (-irJ+%FJ = Ln+JF^j9 (3.5) 

4F, + (-lr'tyV = 4-A/. (3.6) 
Proof: Equation (3.5) follows from Corollary 3.1, when vn = Ln and wn = F„. Formula (3.6) 

follows from (3.5): replacey by -y , and use L_j = (-ly'Z-, F.y = (-l)y+1i^-. D 

Corollary 33: For arbitrary a, ft, /?, q9 and for all integers n andy, 
w2 _ ?^yw2 = ^(bw^j - qawn+H), 

where wfc and % are defined by (1.5) and (1.6), respectively. 

Proof: In Corollary 3.1, let vk - wk for all integers k. D 

Corollary 3*4: For all integers ft andy, 
ir2 + (_ir;-i/72=ir_./r+.) 

Z2„ + (-ir>-1Z5 = 5Fn_yFn+y. 
In the final corollary, which follows directly from Theorem 3.1, we let Gn = wn(c,d; 1,-1), 

with c and t/ arbitrary. That is 
G0 = c, Gx = </, and Gw = G ^ + Gn_2 (3.7) 

for all ft. For example, Gn = Fn if c = 0, d = 1, and Gn = Z,n if c = 2, tf = 1. 

Corollary 3.5: For all integers #», «, and ̂ , 
< W w + (-l)*+1GmF„ = ^ G ^ , 

where Gn is defined by (3.7) for all w. 

4* EQUIVALENCE OF (1.2) AND (1.4)' 

The following theorem generalizes Mdhairfs results (1.2) and (1.3), and it proves that (1.2) 
and (1.4) are equivalent. 

Theorem 4.1: For arbitrary a, b, p, q, and for all integers n and k, 

w^+k - q2kwlk = M2k(hw2n - qaw2n_l\ (4.2) 

where Wj and Uj are defined by (1.5) and (1.6), respectively; also, (4.1) and (4.2) are equivalent. 
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Proof: It is clear that (4.1) and (4.2) together are equivalent to Corollary 3.3, so (4.1) and 
(4.2) are valid formulas. To see that (4.1) and (4.2) are equivalent to each other, we first assume 
that (4.1) holds for all integers n and k. From Corollary 3.3, we have 

9*Lk = wl+k+i-bwin+ik+i+qcwin+ik- (4-3) 
Subtracting q2k+lw2.k from both sides of (4.3) yields 

q A k - q2k™2n-k) = (vLk+1 - q2k+lwn-k) " *W>2II+2*+1 + <!™2n*2k 

= U2k+i(bw2n+i ~ ̂ 2 w ) " bw2n+2k+l + qaw2n+2k 

= - *0*W2fc + l " ^2k+lW2n+l) + qaiPln+Vt ~ ^2k+l^2n) 

= qhu2kw2n-q2au2kw2n_l, 

with the last equality following from Theorem 2.1. Thus, since q * 0, 
wLk - %2kwn-k = U2k(bw2n " WM>2n-l)> 

and (4.1) implies (4.2). The proof that (4.2) implies (4.1) is entirely similar. D 
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BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+1+Fn> F0 = °> Fl = l> 
Ai+2 ~ At+1 + Ai> LQ = 2, Lt = 1. 

Also, a = (l + V5)/2, £ = ( l -V5)/2 , Fn = (a* - fi") / JT, *nd Ln = an+fin. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-951 Proposed by Stanley RabinowitZf MathPro Press, Westford, MA 
The sequence {un) is defined by the recurrence 

_3^-j- l 
Un+l"5un + 3 

with the initial condition ux = 1. Express un in terms of Fibonacci and/or Lucas numbers. 

B-952 Proposed by Scott H Brawn, Auburn University, Montgomery, AL 
Show that 

25F2
5

n+25Fi*5F2n 

for all integers n > 2. 

B-953 Proposed by Harvey 1 Hindin, Huntington Station, NY 
Show that 

(FJ4HFnJ4HK+if 
is never a perfect square. Similarly, show that 
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is never a perfect square, where W„ is defined for all integers n by Wn = pWn_x - qWn_2 and where 
W0=a mdWx = b. 

B-954 Proposed by H.-J. Seiffert, Berlin, Germany 
Let n be a nonnegative integer. Show that 

y (V5 + 2)(V5F2„+1 - 2) = £2L>7/2J+1 + ^F2\nl2-\> 

where L*J and f*l denote the floor- and ceiling-function, respectively. 

B-955 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI 
Prove that 

F2n . 1 . 1 .3 

for all integers n > 0. 

1< Urn + i + _ < 

SOLUTIONS 

A Fibonacci Sine 

B-935 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI 
(Vol 40, no. 2, May 2002) 

Prove that 

where the arguments are measured in degrees. 
Solution by Walther Janous, Innsbruck, Austria 

In what follows, we shall prove a stronger inequality. We start from the familiar inequality 
sin(x)< 1 

x 
valid for all x^O. 

We observe that, for a measured in degrees, there holds 

sm(a) = s m | w 

Therefore, 

that is 

whence, finally, 

s in |fJ-sin(f)"sinB 2 J 2 2 2 \)Xb) ' 

F,\ _.(FA _,JFA _ Mr? sinl -2- -sin - f • sin\-&-1< 
81000' 
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8«sin ̂ ^-J - sio ̂ ^-J»sin f ^ l < 1 ^ ^ = 0.05205992133 

and the proof is complete. 

Several solvers proved that 8sinf sin-^ sin f <1? where x + j + z = ;r with equality occurring 
when x = y = z = j . 

Also solved by Paul Bruckman, Scoti Brown, Hoc! Civciv, Jose Luis Diaz-Bmrrero A Juan 
JoseEgozcue (jointly), M. Deshpande, JL A G. Dresel, Douglas lannucci, John Jaroma, H.-J. 
Seiffert, and the proposer. 

Exclusive Roots 

B-936 Proposed by Jose Luis Diaz & Juan Jose Egozcue, Terrassa, Spain 
(Vol 40, no. 2, May 2002) 

Let n be a nonnegative integer. Show that the equation 

x5 + F2nx* + 2{F2n -2F„2
+1)x3 + 2F2n(F2n -2J&,)*2 +*&* + *& = 0 

has only integer roots. 
Solution by MaitlamdA* Rose, University of South Carolina, Sumter, SC 

Use is made of the identities F2n = FnLn and Fn + Ln~ 2Fn+l, which leads to 
F2 + Ll = -2(F2n-2F2

+l). 
We note that 

(x - FJ(x + Fn)(x - LJ(x + 4)(x + F2n) 
= (x2-F2)(x2~l2J(x*F2J 
^(x*-x2(F^ll) + Fn

2Ll)(xi-F2J 
= x5

 + F2flx4 ~(Fn
2 + L2

ny~F2n(F2+liy +F?L2
nx+F2HF?Ll 

= x5 + F2wx4 + 2(F2w -2J&)* 3 + 2F2Mn-2F2
+l)x2 ^F2

nx + F^ 
The roots of the given equation are the integers ±Fn9 ±Ln9 and -F2n. 

Pentti Haukkanen and Walther Janous used Mathematica and Derive, respectively, to do the cal-
culations and found the same roots. 
Also solved by Paul Bruckman, Charles Cook, Haci Civciv A Nairn Tmglm (jointly), M. N. 
Deshpande, L. A, G. Dresel, Steve Edwards, Ovidiu Furdui, Pentti Haukkanen, Walther Jam-
ous, Harris Kwomg, Dom Redmond, Jaroslav Seibert, H.-J. Seiffert, James Sellers, and the 
proposers. 

Some Identifies 

B-937 Proposed by Paul Brmckmam, Sacramento, CA 
(Vol 40, no. 2, May 2002) 

Prove the following identities: 
(a) (Fnf + (F„+1)2 +4(F„+2)2 = (Fn+3)2 + (Ln+1)2; 
(b) {Lnf + (In+1)2 +4(Ln+2)2 = (L„+3f + (5FB+1)2. 
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Solution by Jaroslav Seibert, University ofHradec Krdlove, The Czech Republic 
We will prove the more general identity, 

G2
 + G„2

+1 + 4G2
+2 = G^3 + (Gn + G„+2)2, 

where {G„}*=1 is an arbitrary sequence satisfying the recurrence Gn+2 = Gn+l +G„. 
The more general identity may be written as 

G2 + Gn
2
+1 + 4G2

+2 - G2„+3 - (G„ + G„+2)2 

= G2 +G„2
+1 + 4(G„ + G„+1)2 -(G„ +2G„+1)2 -(2Gn +G„+1)2 

= G2 + G2
+1 + 4G2 + 8G„G„+I + 4G2

+1 - G2 - 4G„G„+1 - 4G2
+1 - 4G2 - 4G„G„+1 - G2

+1 = 0. 

If we put Gn = Fn, then Fn +Fn+2 = Ln+l and we obtain (a). 
If we put Gn- Ln, then Ln + Ln+2 = 5Fn+l and we obtain (b). 

Also solved by Scott Brown, Mario Catalani, Had Civciv9 Charles Cook, Kenneth Davenport, 
M N. Deshpande, Jose Luis Diaz-Barrero & Juan Jose Egozcue (jointly), L. A. G. Dresel, 
Steve Edwards, Ovidiu Furdui (two solutions), Pentti Haukkanen, Walther Janous, Muneer 
Jebreel, Harris Kwong, William Moser, Maitland Rose, H-J. Seiffert, James Sellers, and the 
proposer. 

Series Problem 

B-93H Proposed by Charles K Cook, University of South Carolina at Sumpter, Sumpter, SC 
(Vol 40, no. 2, May 2002) 

Find the smallest positive integer k for which the given series converges and find its sum 

« if. 
o» if-

Solution by Don Redmond, Southern Illinois University at Carbondale, Carbondale, IL 
Let Gn denote either Fn or Ln. If a , /? represent the solutions to the quadratic x2 - x -1 = 0? 

as usual, then for appropriate values of c and d we have Gn = can +dfin. Then, if the series con-
verges, we have 

f "Gn = y rtica" +d0") _ f na" Jf »/?" 
Z-j j-n dLd j.n La j-n La un 
w=l K n=l K «=I K w = l K 

(a/k) d (J3I k) ka d kp 
C(\-alkf (\-pikf C(k-af (k-/3f 

Since these are geometric series, we see that they converge if max( |a /£ | , | /? /£ | )<l , which 
gives that the least integer k that yields convergence is k = 2. 

From the definition of a and fi9 we see that 2 - a = p2 and 2~p = a2. Thus, 

ynGn_ 2a ip _ ca5 + dp5_ 

Thus, the answer to (a) is 2F5 = 10 and the answer to (b) is 2L5 = 22. D 
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Problem B-670 also considers these sums. 
Also solved by Paul Bruckman , Mario Catalani, Had Civciv & Nairn Tuglu (jointly), Ken-
neth Davenport, M. K Deshpande, Jose Luis Diaz-Barrero & Juan Jose Egozcue (jointly), 
L. A G. Dresel, Steve Edwards, Ovidiu Furdui, Douglas Iannucci, Walther Jattoms, John 
Jaroma, Harris Kwong, Kathleen Lewis, Jaroslav Seibert, H.-J. Seiffert, James Sellers, and 
the proposer. 

Identities Problem 

B-939 Proposed by N. Gauthier, Royal Military College of Canada 
(Vol 40, no. 2, May 2002) 

For n > 0 and s arbitrary Integers, with 

Mm,n) = f(l,m) = (-irl(fj(fy, 

prove the following identities: 
An L//3J 

(a) 2nFn+s = X Z/Q-fynOFto; 
1=0 m=Q 

An 11/3} 
(b) 3-2"-lnFn+s+2 = £ YJf(l-3m,m)[(l--2m)Fl+s+mFl+s_ll 

1=0 m=0 

Solution byH.-J. Seiffert, Berlin, Germany 
For(x?j)Gi?2,let 

An 1113} 

$n(^y) = T Tf(l-3m^xlym 

1=0 m=0 
An 1113} 

1=0 m=0 

Changing the summations and reindexing gives 

=2 Z(-<r*-(,.\.X:)^-
1=0 m=Q V / V / 

n n+3m f \/„\ 

s.(?,y)=z s (-irl+mLy[lyr 
m=0 l=3m v / V / 

m=Q k=Q V / V / 

^k-¥3tn~,tn 
% y 9 

which turns out to be the product of two sums. By the binomial theorem, 

Sn(x,y) = (l + X
3ynx-l)". (1) 

Proof of (a): From the known Binet form of the Fibonacci numbers, we see that the right-
hand side of the desired identity equals 

Ar,=j^(S„(a,l)a'-SMW)-

Since l + a3 = 2a2, l+/?3 = 2^2, a-\ = -p, p-\ = -a, and -afi = l, by (1), we have 
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An L//3J 
B«-=T J^f{l-^m){l-3m)Fl+s 

1=0 m=Q 

An L//3J 
/=0 m=0 

Ux, y): = S„(x, x~3y) = (1+y)"(x - If. 

U„(x,y):=^y) =n(l+yy(x-iy-1 

K(x, y): = dTn(^y) = n(\+y)»-\x -1)" 

denote the partial derivatives of Tn, then, by the definition of S„, 

B„ = ^(Un(a, a3)as+l - Un(fi, 03W+l), 

or, by (2), Bn = 2nnFn+s+2. Similarly, from the definition of Sn and (3), one finds 

or C„ = 2n~lnFn+s+2. It follows that Bn + Cn = 3 • 2n~lnFn+s+2, which proves the requested 
because 

(/ - 3m)Fl+s + mFl+s+l = (/ - 2m)Fl+s + mFl+^. 

Also solved by Paul Bruckman and the proposer. 
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PROBLEMS PROPOSED IN THIS ISSUE 

B-593 Proposed by H.-J. Seiffert, Berlin, Germmny 
Let p > 5 be a prime. Prove the congruence 

- " iz lL = r-B(^-1)/2 —— 
M

 2^ + 1 P 
2 Y, fe^(-l)(p-1)/2—-^(modp). 

H-594 Proposed by Mario Catalans, University of Torino, Torino, Italy 
Consider the generalized Fibonacci and Lucas polynomials: 

*wi(*.y) = xFn(x>y) +yFn-i(x,y), Fo(*>y) = °>Fi(x,JO = i; 
4+i(*> y) = xLn(x, y)+yL„_l(x, y), L0(x, y) = 2, Lt(x, y) = x. 

Assume y*0, 2x2-y*Q. We will write F„ and L„ for F„(x,y) and L„(x,y), respectively. 
Show that: 

I hi k )xy 3k~ T&^y) 

M * ) y 3k~ ?<&-?) 
H-595 Proposed ky Jme Dtaz-Barrero A Juan Egozcue, Barcelona, Spain 

Let t, n be positive integers. Prove that 

1 {"tit 1){S(-ot+w (*;l) #-"}=** -1. 
where Pn Is the # Pel! number, i.e., P0 = 0,Pl = l9 and Pn+2 = 2Pn+l + Pniorn>2. 
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SOLUTIONS 
A Convoluted Problem 

H-583 Proposed by N. Gauthier, Royal Military College of Canada 
(Vol 40, no. 2, May 2002) 

A Theorem on Generalized Fibonacci Convolutions 
This is a generalization of Problem B-858 by W. Lang {The Fibonacci Quarterly 36.3, 1998). 
Let n > 0, a, b be integers; also let A, B be arbitrary yet known real numbers and consider the 

generalized Fibonacci sequence {Gn = Aan + Bfi"}^^, where 

a = ~[l + ̂ l /? = | [1 -V5] . 

For m a nonnegative integer, prove the following generalized convolution theorem for the 
sequences {(a + »)"}£«o and {GX~*> 

n m 
Z(a + krGb_a_k = ^n[cr(a)Gb_a+M-cr(a+n + l)Gb_a_„+Ml 
k=0 Z=0 

where the set of coefficients {cf*(v); 0<m; 0<l<m; v = aora+n + l} satisfies the following 
second-order linear recurrence relation 

cT1(v) = (v + /)cf(v) + c^1(v); c^{v) = ^^l{v) = v,c^\v) = l 

with the understanding that c™(v) = 0 and that d ( v ) = 0. 
Prob. B-858 follows as a special case if one sets a = 0, m = l, b = n, and A - -B = (a-J3)~l 

in the above theorem. Indeed, one then gets that 

Gn = Fn, cl
0(0) = 0, c{(0) = l, < > + l), and4(n + l) = l 

and the result follows directly. 

Solution by Paul SL Bruckman, Berkeley, CA 
For typographical clarity, we change the summation variable 7" to "j" and we also change the 

notation nCj(x)" to "c{x;j,m)". We also note that there is a misprint in the statement of the 
problem. The correct expression in the right member of the statement of the problem (as modi-
fied by the indicated changes in notation) is as follows: 

m 
2 , j ! [c(a; j , m) Gb_a+J+2 - c(a+n +1; j , m) Gb 

-a-n+j+U' 
j=0 

We employ the standard finite difference operators A and £ = 1 + A, where the operand is x. 
We first demonstrate the following result: 

c(x;j,in) = AJ/j\=(xm). (1) 

Proof of (1): Let d(x; j , m) = NI j \ (xm), 0<j<mfor all real x. Clearly, d(x; j , m) is a poly-
nomial in x. Note that d(x; 0, m) = xm. Also, d{x; m,m) = l for all m and x, and d(x; 0,1) = x. 
Thus, the boundary conditions satisfied by the c{x; j , m) are also satisfied by the d{x; j , m). 

Next, note that 
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^ ( X ; J ^ + 1) = A > 7 J 1 ( X W + ^ 
k=Q 

= {(x+j)u\}iJck(-i)k(x+j-kr-{j/j\}YJ_1cu-i)k(x+j-kr 
= {(* + J) //!> £ jCk(-l)k(x + j - *)« + {1 /(J - ! ) ! } § jM-lfix + j-\-ky 

Ar=0 * « 0 

= (x + i){A>/j1}(x-) + ^ 

This Is the same recurrence as the one satisfied by the c(x;j,m). Since the two-dimensional 
sequences c(x; j , m) and d(x; j9 m) satisfy the same recurrence and have the same boundary 
conditions, they must be Identical. This establishes (1). D 

Therefore, the left member of the putative Identity (denoted as £ ) Is transformed as follows: 

k=Q 

£ = [Aab~a-n{En+l - an+l) I (E - a)} + Bpb~a~n{(En+l - pn+l) I (E - P)}](xm)\x:=a (2) 

On the other hand, If dl represents the right member of the (corrected) putative Identity, then 

= ^Ek(xm){Aab~a-k +Bpb-a~k} 
\x=a k=Q 

or 

fft = ^£Ak(xm){Aab"a+2+k + Bpb~a+2+k} 
k=Q 

m 

"Z ^k(xm){Aab-aU-n+k + Bp^^-^H 
\x=a k=Q 

b-a+2 r / A „\m+\ i i / / A ^ 1\ i nab-a+2 t/ A o\m¥\ 

x=a-¥n+l 

=a+n+\ 

di = [AcT**2 {{tuxf*1 - l}/(Aa -1) + B3b-"+2 {(AB)"*1 -1} / (A/?-1)}](*%= 

- [Aab-a+1-"{(Aa)m+l -1} / (Aa -1) + B/3b-a+1-"{(A/3)m+l -1} / (Ayff - l)](xm)\x=a 

dt = [Aab-a+1-"{(Aa)m+l - l}/(Aa-l)(a"+l-E"+1) 
+ Bfib-"+1-"{(Afi)m+1 -1} / (AS - l)(B"+1 - £"+1)](xm)|;c=a. 

Now note that Am+1(xm) = 0. Also, Aa -1 = (E - \)a -1 = Ea - a2, and A3 - 1 = (E -1)6 -1 = 
EB-B2. Therefore, we see that 

di = A ab~a-n{(En+l - an+l) l(E-a)} + B^"a-n{(En+l ~~ pn+l) t (E - P)}{xm)\x=a. (3) 

Comparison of (2) and (3) shows that £ = 9t. Q.E.D. 
Also solved By the proposer. 

FIni Your Identity 

H-584 Proposed by Paul & Bruckman, Berkeiey9 CA 
(Vol 4§, mo. 29 May 2§§2) 

Prove the following Identity: 

Al+2/ 
= (2Fw+3 + 4+ 2)5 + (^+2)5 + (5Fw+2)5 + 1920Fw^+1Fw+2Fw+3Fw+4. 
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Solution by the proposer 
We begin with the following identity: 

(a + &+c+d-e)5 + (a + h + c-d + e)5 + (a + b-c+d + e)5 + (a-b + c+d + e)5 

+ (-a + b + c-d + e)5 + (a + b + c-d-e)5 + (a+h~c+d-e)5 +(a-b + c+d-e)5 

+ (-a + b + c+d-e)5 + (a + b-c-d + ef + (a-h + c-d + e)5 +{-a+b + c-d + e)5 (*) 
+ (a-b-c+d + e)5+(-a-b-c+d + e)5+(-a+b + c + d + e)5 + (a + b + c + d + e)5 

= I920abcde. 
We replace a, h, c, d, and e by x1? x2, x3, x4, and x5, respectively. We may prove (*) (as thus 
modified) by expanding 

(Xj + x2 + X3 + x4 + x5)5 = as+ 5<r14 + 10<J23 + 20(j113 + 30al22 + 60cr1112 + 120a11111? 

where oahc - I / v ^ c , for example (with is, v, and w representing the x/s over all possible per-
mutations), with similar definitions for other quantities. Then we note that in the sum of the 16 
terms indicated in (*), the terms involving (Xj)5 vanish, since their coefficient is +1 8 times and -1 
8 times. The terms involving (xj)4 also vanish, since their coefficients are xt twice and -xt twice 
(for each i = 2,3,4, or 5). The terms involving (xj)3 have two kinds of coefficients: (xz-)2 and 
-(x,.)2; also, xtXj and -x;.*•, where i or j = 2,3,4, or 5, i*j. In either case, each sign occurs an 
equal number of times, and so the term vanishes. The remaining terms involving (xx)2 have two 
kinds of coefficients: xf(Xj)2 and -JC^X-)2; also xtXjXk and -xixJxk. Here, ij, or k = 2, 3,4, or 5, 
with i,y, and k distinct. In either case, the positive terms again cancel the negative ones, and so 
the terms involving (xj)2 all vanish. Finally, the remaining terms involving the first powers xx 

have coefficients 
2 3 4 5 X2X'>XAXC for each of the 16 terms, but are such that the total term is 

always positive. Therefore, the total coefficient of the product x1x2x3x4x5 is 16 * 120 = 1920. By 
symmetry, the sum is therefore equal to 1920x̂ 2X3X4X5. Thus, (*) is proved. 

In particular, if we set a = Fn, b = Fn+l, c = Fn+2, d~Fn+3, and e = Fn+4, we obtain (after 
some simplification) the indicated result. 
Also solved by K. Davenport, L* A. G Dresel, 0« Furdmi, K Tmglm, mmdH* Civciv. 

A D-Sequence 

H-585 Proposed by Herrmann Ernst? Siegburg, Germany 
(Vol 40, no. 4, August 2002) 

Let (dn) denote a sequence of positive integers dn with dx > 3 and dn+l-dn > 1, n = 1,2,.... 
We introduce the following sets of sequences (dn): 

5 = L „ ) : - i - < f ; - J - < - J - f o r a U i i e ^ l ; 
[ A/„ k=nFdk Fd„-X J 

C = |(4,): OS I T 4— ^ — forallwe^l. 
[ \ - i \ A u - i J 
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Show that: 
(a) there Is a bijection / : ] 0,1] -» B, f(x) = (dn(x))^x; 
(b) B is a subset of A with A \B * 0; 
fcj C is a subset of B with B\C*0. 

Solution by Paul S. Bruckman9 Berkeley•, C4 
A sequence (4X=i °f positive integers is called a D-sequence iff dx > 3 and dn+l-dn > 1, 

n GN . Let A denote the set of all D-sequences. Also, for typographical convenience, we write 
F(k) for i v We also write S„tM = Ef=w 1 / i 7 ^ ) , and £„ = Sn^ for all « ) e A. For a given 
8 = (c/w) e A, we may also write £„ (<5) = S„. We may characterize 4,I?, and C as follows: 

5 - {8 = (dn) G A: 1 /F(d„) <Sn(S)<llF(dn - 1) for all n e tf}; 
C - p = ( J J e A : 0 < l / F ( < ^ 

Note the slight modification in the definition of B (ss<ts instead of "<" in the second inequality 
defining B. 

Proof of (a): Suppose xx e(0,1) is given. Then there exists dxGN9 tff > 3, such that 
l/F(dx) < Xi < 1 / F ^ -1). Let x2 = Xj - 1 /F(dx). Note that 0 < x2 < Xj < 1. We continue in this 
fashion; generally, we define the sequence (xn) as follows: x„+x = xn-V F(d„)9 IIF{dn)<xn < 
II F{dn -1), dn+x >dn, n sN. Note that (x„) is a decreasing sequence, bounded below by zero. 
Since dn —> QO as n —» QO? we see that xw is arbitrarily small. Hence, l im^^ xn = 0. By iteration, 
x1 = l/F(4)4-x2 = l/F(J1) + l/F(J2) + x3 = - . = 5' lM + xM+1 for all M G # . Allowing Af->oo, 
we deduce that xl=Sl, where the D-sequence (rfw) is uniquely determined by the construction 
indicated above. Note, however, that the maximum value of Sx over the domain A is 2^L3 l/Fn 

= 0", say, where o"« 13599. In other words, there is not a one-to-one correspondence between 
(0,1) and A, the set of all possible D»sequences. There are sequences 8 e A such that Sx (8)>l. 
We may use the same construction as before, if 1 < xx < c For example, 

, 1 1 1 1 1 1 1 , 1 , 
2 3 8 34 89 987 196418 2178309 

F3 F4 F6 F9 ' Fn Fl6 F27 F32 

corresponding to the D-sequence Sx = (3,4,6,9,11,16,27,32,...), such that SX(SX) = 1. 
We aire to establish that if xx e(0,1) then there exists a unique 8 eB such that Sn(8)< 

l/F(dn-l) for all FIGN; the other condition for 8 GB9 namely that 1 /F(dJ < Sn(S) for all 
n G N, is automatically satisfied. We already know how to effect the construction of the unique 
8 GA such that xx = S^S). It only remains to show that, for such 8, Sn(8) <l/F(dn-1) for all 
n G N. Note that xx = SXt„-\(S) + xn = xt- S„(S) + xw for all n G N. This implies that xn = Sn(S) 
for all n G N. By our construction, xn = S„(5)<l/F(dn-1) for all n e N. This completes the 
proof of part (a). 
Note: Although, for a given xx e(0,1), there exists a unique 8 GB corresponding to xx (as 
provided by our construction, and such that Sx(8) = xx), there may be other 8 e A\B, say S'9 
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such that Sl(5') = xl. An illustration of this is provided by xi = p = l/F4+l/F6+l/Fs + "' 
« 0.5354. Clearly, this is generated by the sequence 8f = S'(p) = (4,6,8,...), which is an element 
of A. However, it is easily verified that 8' is not an element of B, since l/F(dl -1) = 1 /F(3) = 
1 / 2 < St(8f) = p = 0.5354. Our construction, however, yields the alternative sequence 8 = 8(p) = 
(3,9,13,15,24,27,31,35,37,39,42,49,...), which also has Sx(8) = p = 0.5354 and is, moreover, 
an element of B (this is true by the nature of the construction). 

Proof of (b): Suppose 8 GB. Then SX(S) < \IF{dl -1) < 1/F(2) = 1; hence, 8GA. Thus, 
B^A. 

As we have seen, 8' eA\B, where S' = (4,6,8,...) = (2w)^2, but SX(S') = p* 0.5354 < 1, so 
SXGA. HQnce,8feA\BmdA\B*0. 

Proof of (c): Suppose 8GC. Then, for all n e N, l/F(dn -1) > \IF(dn) +1 /F(dn+1 -1). 
By iteration, l/F(dn -1) > l/F(d„) +1 / F ^ ) + • • • +1 IF(dM) +1 /i7(^l / + 1 -1) for all M, n with 
M > w > 1. Thus, 1 / F ^ -1) > SnM(5) for all such M, n. Allowing M -» QO, it follows that 
1/F(rf„ -1) > Sw(£) for all y»Gff. Therefore, 8 GB, which shows that C c B . 

We display an example of a sequence 8" GB\C . 
We let 8" = (6,8,10,12,15,18,20,22,24,29,...) represent the element of B determined by 

our construction, such that SX(S") - 0.2. By definition, 8" eB. However, 

1 1 1 = 1 1 L_ = I_i_J_ = J ± A 
F(dl-l) F (4) F(d2-1) F(5) F(6) F(7) 5 8 13 520K ' 

which shows that 8" £ C; hence, 8" GB\C and 2?\C ^ 0 . This completes the proof of part (c). 

Note: More generally, 1/F(2w-1)- l/F(2n)- 1/F(2w + 1) = -l/F(2n-l)F(2n)F(2n + l)<0, 
after simplification. Thus, given 8 = (dn) E A with dk = 2n and t^+i = 2n + 2, say, then 8 &C; 
i.e., if dk G8 eC and dk is even, then dk+l -dk>3. 

Also solved by the proposer. 
Note: Problem H-582 (proposed by Ernst Herman and solved by Paul S. Bruckman) will appear 
in the May 2003 issue of this quarterly. 
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