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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBER! 

Carsten Eisner 
Institut fur Mathematik, Universitat Hannover 
Welfengarten 1, D-30167 Hannover, Germany 

(Submitted December 2000-Final Revision April 2001) 

1. S T A T E M E N T O F T H E R E S U L T S 

A famous result of Heilbronn states that for every real irrational £ and any e > 0 there 
are infinitely many integers n satisfying 

II £n 2 | |< * 
n l / 2 - e " 

Here || • || denotes the distance to the nearest integer [3]. In view of our results below we 
reformulate Heilbronn's theorem as follows: There are infinitely many pairs of integers ra, k 
where m is a perfect square such that the inequality 

\Sm-k\< - ^ 

holds. 
The Pythagorean numbers x,y,z with x2 + y2 = z2, where additionally x and y are 

coprime, play an important role in number theory since they were first investigated by the 
ancients. It is well-known that to every Pythagorean triplet x,y3z of positive integers satisfying 

x2 + y2 = z2, (ar,y) = l, x = 0 mod 2 (1.1) 

a pair of positive integers a, b with a > b > 0 corresponds such that 

x = 2ab, y = a2-b2, z = a2 + ft2, (o,6) = 1, a + b = 1 mod 2 (1.2) 

hold ([2], Theorem 225). Moreover, there is a (1,1) correspondence between different values 
of o, b and different values of x, y, z. The object of this paper is to investigate diophantine 
inequalities \£y — x\ for integers y and x from triplets of Pythagorean numbers. Since x2 + y2 

is required to be a perfect square - in what follows we write x2 + y2 € • - we have a essential 
restriction on the rationals x/y approximating a real irrational £. So one may not expect 
to get a result as strong as Heilbronn's theorem. Indeed, there are irrationals £ such that 
\iy — x\ ^$> 1 holds for all integers x, y satisfying x2 + y2 E D . But almost all real irrationals £ 
(in the sense of the Lebesgue-measure) can be approximated in such a way that |fy — x\ tends 
to zero for a infinite sequence or pairs x, y- corresponding to Pythagorean numbers. In order to 
prove our results we shall make use of the properties of continued fraction expansions. By our 
first theorem we describe those real irrationals having good approximations by Pythagorean 
numbers. 
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T h e o r e m 1.1: Let £ > 0 denote a real irrational number such that the quotients of the 
continued fraction expansion of at least one of the numbers rji := £ + \ A 4- £2 and ^2 := 
(1 + y 1 + £2)/£ are not bounded. Then there are infinitely many pairs of positive integers x, y 
satisfying 

|fp -x\ = o(l) and x2 + y2 E • . 

Conversely, if the quotients of both of the numbers r/i and ^2 @>re bounded, then there exists 
some 8 > 0 such that 

\€v ~ x\ > 8 
holds for all positive integers x, y where x2 + y2 E D . 

It can easily be seen that the irrationality of £ does not allow the numbers TJI and ^2 to 
be rationals. The following result can be derived from the preceding theorem and from the 
metric theory of continued fractions: 
Coro l la ry 1.1; To almost all real numbers £ (in the sense of the Lebesgue measure) there are 
infinitely many pairs of integers x ^ 0, y > 0 satisfying 

|f y - x \ = o(l) and x2 + y2 E • . 

Many exceptional numbers £ not belonging to that set of full measure are given by certain 
quadratic surds: 
Coro l la ry 1.2; Let r > 1 denote some rational such that£ := sjr2 — 1 is an irrational number. 
Then the inequality 

\ty-x\>8 (1.3) 
holds for some 8 > 0 (depending only on r) and for all positive integers x, y with x2 + y2 E D . 

The lower bound 8 can be computed explicitly. The corollary follows from Theorem 1.1 
by setting £ := \/r2 — 1. 

Talking r = 3/2, we conclude that f = V5/2 satisfies the condition of Corollary 1.2. 
Involving some refinements of the estimates from the proof of the general theorem, we find 
that (1.3) holds with 8 = 1/4 for £ = y/H/2. 

Finally, we give an application to inhomogeneous diophantine approximations by Fibonacci 
numbers. Although \yy/E/2 — x\> 8 holds for all Pythagorean numbers x,y, this is no longer 
true in the case of inhomogeneous approximation. By the following result we estimate \£y — 
x — rj\ for infinitely many Pythagorean numbers x and y, where £ and 77 are given by F&<\/5/2 
and ±F2k/V§i respectively, for some fixed even integer k. 
T h e o r e m 1.2; Let k > 2 denote an even integer. Then, 

0 < ^ ? . (2FnFn+k) - FkF2n+k + ( - i ) n ^ § < 2 2 " + 1 

va 5(1 + vE)2n 

holds for all integers n > 1, and we have 

(2FnFn+k)2 + (FkF2n+k)2 G • (n > 1). 
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.2. P R O O F O F T H E O R E M 1.1 

It can easily be verified that ^i > 1 and rfe > 1- One gets r}2 by substituting l / £ for £ in 
r}\. First we assume that the sequence ao,ai ,a2, - - • of quotients from the continued fraction 
expansion r}i = (aol fli,«2,...) is not bounded. lipn/qn denotes the nth convergent of r/i, the 
inequality 

Pn < 
Un+lQu 

(n > no) (2.1) 

holds, where no is chosen sufficiently large. There exists some positive real number f3 such 
that 7/i = l + 2/3; particularly we have rji > (1 + /3)(1 + l/pn) for n > UQ. By r}iqn — pn < 1, 
one gets 

. Pn + 1 . Pn ( . x 
(In < —z— < i , Q {n > no). m 1 + fi 

(2.2) 

Let 

/(*):=e-i(*-i) <*̂ )-

By straightforward computations it can easily be verified that 

f(m) = o. (2.3) 

For any two real numbers ti,t2 satisfying 1 < ti < £2 there is some real number a with 
ti < a <t2 such that 

l/(*a)-/(*i)l = l/'(«)H*2-*il 
holds. In the case when n is even let t\ — pn/qn and £2 = ?/i, otherwise put t\ = r/i, £2 = pn/qn-
Thus, for any even index n > no we have fji > a > pn/qn > 1? where the lower bound 1 follows 
immediately from r}\ > 1 and from (2.1). For any odd index n it is clear that a > TJI holds. 
Therefore one gets 

*»>-'®l = K1+;?) Vi 
Pn_ 
Qn 

where 
a > 1 (n > no). 

Applying (2.1), (2.3), and the definition of/ , the inequality takes the form 

(2.4) 

J^_M|<f1+M_J_. 
2 \qn Vn)\ \ a2J2an+iql 
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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBERS 

Put x := p 2 — g2, y := 2pnqn. For n tending to infinity the positive integers pn are not 
bounded, therefore we get infinitely many pairs x3y of positive integers. By (2.2), x > 0 holds 
for all sufficiently large indices n. Putting x and y into the above inequality and applying 
(2.4), we get 

e- < 
<*n+l9n 

4f* 
2 J (2.5) 

where x2 + y2 = (p2 + g2)2 G D- Using (2.2), we compute an upper bound for p 2 on the right 
side of (2.5): p2

n = x + q2
n < x + p2J(l + /?)2, or, p2

n < (1 + 0)2x/0{2 + fi) < (1 + / ? )V2/3 
for n > no- Moreover, (2.5) gives |£y — x\ < y, from which the estimate a? < (1 + 0 y follows 
immediately. Altogether we have proved that infinitely many pairs of positive integers x^y 
with x2 + y 2 E D exists such that 

< 
2(l + 0 ( l + i g ) 2 

holds, where any pair a;, y corresponds to some n. Finally, we restrict n on integers from a 
subsequence corresponding to monotonously increasing partial quotients an+\. For n tending 
to infinity, the assertion of the first part of the theorem concerning 171 follows from 

Ify - A < 
2(1+ 0 ( 1 +/J) 2 

@an +1 

Next, if the sequence of quotients from the continued fraction expansion of rfe is not 
bounded, we get by the same method infinitely many pairs x, y of integers (where y is even) 
satisfying x2 + y2 G • and 

— x < 
2(1 + 1 / 0 ( 1 + /3)2 

fian. 4-1 
(2/3 := ij2 - 1, m = (oo; fli, «2, - - - ))• 

This inequality can be simplified by 

\&~y\< 
2(1 + 0(1 + 0)* 

0an + i 

which completes the proof of the first part of the theorem. 
In order to show the second part we now assume that both numbers, r/i and j/2> have 

bounded partial quotients. It suffices to prove 

Ifr - x\ > S (2.6) 
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for coprime Pythagorean integers x and y : if \£y — x\ < 8 for (x,y) > 1, one may divide the 
inequality by (x,y). Then we get a new pair of coprime integers with 

(Jay + (JLJ\ 
\(x,y)J \(x,y)J 

en, 

which contradicts (2.6). Prom the hypothesis on 771 we conclude that there is some positive 
real number Si satisfying 

•Hi > 
Si 
b2 (2.7) 

for all positive coprime integers a and b. 
The first assertion we shall disprove states that there are infinitely many pairs of positive 

coprime integers x, y such that 2\y, x2 + y2 E D, and 

| £ 0 - * | < * i O f t - l ) - (2.8) 

By (1.1) and (1.2) we know that to every pair x,y two integers a, 6 correspond such that 
y = 2aft, x = a2 —b2

7 a > 6, (a, b) — 1, and a + 6 = 1 mod 2. Again we denote by f(t)(t > 1) 
the function defined above. Using fji > 1 and a/b > 1 it is clear that f'(t) is defined for all 
real numbers which are situated between r/i and a/b. Therefore, corresponding to a and 6, a 
real number a exists satisfying 

( a _ m). (a _ « ) < o and |/(ifc) - / ( £ ) | = I J » l Vi 

By (2.3) we find that 

V t- 2ab =K1+^) m- (2.9) 

In what follows it is necessary to distinguish two cases. 
Case 1: |r/i — a/b\ > 1. 

Using l / « > 0, we conclude from (2.9) that \£y — x\ > y/2. For all sufficiently large 
integers y this contradicts to our assumption from (2.8). 
Case 2: 1% - a/b\ < 1. 

First, it follows from this hypothesis that b < a/(fit — 1). Next, we estimate the right side 
of (2.9) by the inequality from (2.7): 

e - X jh_ <?I(T/I -
262 2oft 

1) 
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Consequently we have, using y = 2a65 

|€y - a | > t f i ( T f t - l ) , 

which again is impossible by our assumption. So we have proved that there are at most finitely 
many pairs x, y of positive coprime integers satisfying 2\y, x2 + y2 G D, and 

|&-*|<*ifai-i)- (2.10) 

Since we may assume that the partial quotients of the number ife are also bounded, we get 
a similar result concerning the approximation of l /£ : There are at most finitely many pairs 
x, y of positive coprime integers with 2|y, x2 + y2 E D, and 

— x < $2(r}2 ~ 1 ) , (2.11) 

where 82 denotes some positive real number satisfying 

!»-£ > b2 

for all coprime positive integers a and 6. Since £ is positive, the inequality from (2.11) can be 
transformed into 

which is satisfied at most by finitely many coprime Pythagorean numbers x3y with 2\y. By 
(2.10) we complete the proof of the theorem. 

X P R O O F O F T H E O R E M 1.2 

L e m m a 3.1: Let k > 2 and n>l denote integers, where k is even. Then one has 

Fn+k - F n = FkF2n-i-k 

and 

(3.1) 

(2FnFn+k)2 + (FkF2n+k)2 E a (3.2) 

Proof: Throughout this final section we denote the number (1 + -\/5)/2 by p. We shall 
need Binet's formula 

Fm = ±,(pm-t-^-) (m>l). 
V5 V Pm 

(3.3) 

Since k is assumed to be even, one gets from (3.3): 

m + k - **) = (p-+fc - ^ S ) 2 - (P» - {-=f-)' 
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= (pk ~ £ ) • (p2n+k ~ ^s) = w**W 

This proves (3.1). Then the second assertion of the lemma follows easily, since one has 

(2FnFn+k)2 + (FkF2n+kf = {2FnFn+kf + (Fn
2

+fc - Fn
2)2 = (Fn

2
+fc + Fn

2)2 G Q 

Binet's formula (3.3) is a basic identity which also is used a several times to prove the 
inequalities in Theorem 1.2. Since k > 2 is assumed to be an even integer, one gets 

V5FkFnFn+k - FkF2n+k + ( - 1 ) " % 

=K'-?)-(',-^)-('"-££)-
-K'-?)-('~-?M+fc£(',-?0 

5 V P2kJ P2n' 

It follows that the term on the left side represents a positive real number, which is bounded 
by 2/5p2n. By (3.2) from Lemma 3.1, this finishes the proof of the theorem. 
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1. I N T R O D U C T I O N 

A matrix with a full set of linearly independent eigenvectors is diagonalizable: if the 
n by n matrix 4̂ has eigenvalues Xj with corresponding eigenvectors Uj(l < j < n) , if U = 
(tii|^2| • • • \y>n) and D = diag(Ai3 A2, . . . , An), then U is a diagonalizing matrix for A: U~1AU = 
D. Taking transposes shows that (C/~"1)t is a diagonalizing matrix for A*. Hence U1 itself is a 
diagonalizing matrix for Af if U2 is the identity matirx, or more generally, due to the scalability 
of eigenvectors, if U2 is a scalar matrix. 

The purpose of this note is to point out that the right-justified Pascal-triangle matrix R = 
is an example of this phenomenon. Let a denote the golden ratio (1 + \ /5) /2 . ((£)) l<i,j'<n 

The eigenvalues of R* (which of course are the same as the eigenvalues of R) were found in [1]: 
Xi — (—l)n~ia2i~n~1i 1 < i < n. The corresponding eigenvectors u% of Rf were also found in 
[1] (here suitably scaled for our purposes): U{ = (wij)i<j<n where 

-«=(-«)-B-D-C:;) (;::)«—'. 

Let 17 = (Uij)l<i,j<n-

For example, when n = 5, 

/ 0 0 0 0 1 \ 

R = 
0 0 0 1 1 
0 0 1 2 1 
0 1 3 3 1 

\ 1 4 6 4 1 / 

and U = 

(a* 
-a3 

a2 

—a 
\ 1 

-4a 3 

3 a 2 - a 4 

-2a + 2a3 

l - 3 a 2 

4a 

6a2 

-3a + 3a3 

1 - 4a2 + a4 

3a - 3a3 

6a2 

-4a 
l - 3 a 2 

2a - 2a3 

3a2 - a4 

4a3 

! \ 
a 
a2 

a3 

a 4 / 

Since the rows of U are eigenvectors of R*, U* is a diagonalizing matrix for R*. By the 
first paragraph applied to A = Rf, U will be a diagonalizing matrix for R if we can show that 
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(C/*)2 (equivalently U2) is a scalar matrix. We now proceed to show that U2 = (1 + a2)71"1/^ 
and in fact this holds for arbitrary a. We use the notation [xk]p(x) to denote the coefficient of 
xk in the polynomial p(x). Consider the generating function U{(z) = z(z — a)n~~l(az + I)*"1. 
Using the binomial theorem to expand U{(z)j it is immediate that 

j = l 

Now the (i, k) entry of U2 is 

3=1 

7 = 1 X / \ 

i-1 

i-1 = [x*"1] (x - a)""1 (^Lti _ a y (a^±l + ̂  L J \ i - a / \ X — a / 

= [xfc_1] (ax + 1 - ax + a2)"_i(a2x + a + x - af'1 

= [x"-1} (l + a y - V - ^ l + a 2 ) * - 1 

= [xfc-i](l + a2)'1-1 

= (i + a2)n-1<yfci, 

as desired. 
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1. INTRODUCTION 

We consider a generalization of the Fibonacci sequence which is called the fe-Fibonacci 

sequence for a positive integer k > 2. The k-Fibonacci sequence {gn ^} is defined as 

0(*) _ fl(*) _ . . . _ 0(*) _ 0 aW _ i 9Q — 9i — — 9k-2 — u> flfc-i — l 

and for n > k > 2, 

9n — 9n-l + 9n-2 ^ r 9n-k' 

We call gn the nth k-Fibonacci number. For example, if k = 2, then {$4 } is the Fibonacci 

sequence {Fn}. If k — 5, then ^ ^ = ^J * — g\ — g% = 0, $4 = 1, and the 5-Fibonacci 
sequence is 

(gW = 0) , 0,0,0,1,1,2, 4,8,16,31,61,120,236,464,912,.... 

Let E be a 1 by (k — 1) matrix whose entries are ones and let In be the identity matrix of 

order n. Let _2) for n > 0. For any k > 2, the fundamental recurrence 

relation, n> k, 

9n — 9n-l ^ 9n-2 + + 9n-k 

can be defined by the vector recurrence relation g^+j = Qkgn , where 

Qk = 
0 Jfc-i 
1 £7 (1) 
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We call Qk the k-Fibonacei matrix. By applying (1), we have g ^ x = Q^Si^- In [4], [6] and 
[7], we can find relationships between the fe-Fibonacci numbers and their associated matrices. 

In [2], M. Elmore introduced the Fibonacci function following as: 

eXix _ ex2x ^ ^ ^ An),^ _ A?eAl* - Age*22 

fo(x) = -= , fn{x) = f™(x) = 

and hence fn+i(x) = fn(x) + fn-i(x), where 

AI = — - — and A2 = — - — . 

Here, Ai, A2 are the roots of x2 — x — 1 = 0. 
In this paper, we consider a function which is a generalization of the Fibonacci function 

and consider sequences of generalized Fibonacci functions. 

2. G E N E R A L I Z E D F I B O N A C C I F U N C T I O N S 

For positive integers I and n with I < n, let Q^n denote the set of all strictly increasing 
^-sequences from {1 ,2 , . . . , n } . For a n n x n matrix A and for a,/3 E Qj,n ? let -A[a?|/?] denote 
the matrix lying in rows a and columns j3 and let A(a\j3) denote the matrix complementary 
to -A [a |/3] in A. In particular, we denote -A({i}|{j}) = A(i\j). 

We define a function G(k,x) by 

00 (k) 

Since 

r g£fc)(n + i) , 

the function G(k?x) is convergent for all real number a;. 
For fixed k > 2, the power series G(fc, a?) satisfies the differential equation 

G ^ ( * , ^) - G**-1^*, x) - • • • - G"(k, x) ~ Gf(k,x) - G(fe, x) = 0. (2) 

In [5], we can find that the characteristic equation xk — xk~1 x — 1 = 0 of Qk does 
not have multiple roots. So, if Ai, A2, - - -, Ajb are the roots of xk — a;*"1 — • • • — x — 1 = 0, then 
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Ai, A2 , . . . , At are distinct. That is, the eigenvalues of Qk are distinct. Define V to be the A; 
by k Vandermonde matrix by 

V = 

1 
Ai 

1 
A2 

\k—2 \k—2 
Al A2 
A*"1 A*"1 

1 
A* 

(2) 

Then we have the following theorem. 
T h e o r e m 2 .1 : Let Ai, A2, . . . , A*. be the eigenvalues of the ^-Fibonacci matrix Qk. Then, the 
initial-value problem ^ ~ o G®(k, x) = G^( fc ,x) , where G&(k, 0) =.0 for i = 0 , 1 , . . . , k - 2, 

and G^k""1\k,0) = 1 has the unique solution G(k,x) = Y^l=icieXiX\ where 

/ uk+idetV(k\i) 
[ } d e t F 3 i = 1,2,...,k. (3) 

Proof: Since the characteristic equation of Qk is xk — xk~x — x — 1 = 0, it is clear 
that cieA l X + c2eX2X H h ckeXkX is a solution of (2.). 

Now, we will prove that c» = •^y(—l)k+tdetV(k\i),i = 1,2,...,k. Since G(k,x) = 

Cie\ix + C2e\2x + < C j f c e A f c * a n d for x = 0? G?W(fcj 0) - 0 for t = 0 , 1 , . . . , Jfc-2, G^k~x\k, 0) = 1, 
we have 

G(fc, 0) = a + c2 + • • • + ck = 0 
G\k, 0) = ci Ai + c2A2 + • • • + ckXk = 0 

G<*"2>(jfc, 0) = ci A j - 2 + c2A*~2 + • • • + ckXk~2 = 0 

G^-^ik, 0) - c iAj" 1 + c2Xt1 + ' •' + cjbAj"1 - 1. 

Let c = (ci, C2, -. -, cjb-i, cjb)T and b = ( 0 , 0 , . . . , 0,1)T. Then we have Vc = b . Since the 
matrix V is a Vandermonde matrix and Ai, A2, . . . , A*, are distinct, the matrix V is nonsingular. 
For i = 1,2,..., k, the matrix V(fc|i) is also a Vandermonde matrix and nonsingular. Therefore, 

by Cramer's rule, we have c* = ( — l ) k + i d e t ^ y \ i = l,2,...,k and the proof is complete. • 
We can replace the writing of (2) by the form 

Gw(k,x) = G&'Vfcx) + • • • + G"(k,x) + G!{k,x) + G{k,x). 
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This suggests that we use the notation Go(k,x) = G(k,x) and, for i > 1, Gi(k,x) = G^(k,x). 
Thus 

Gn(k,x) = GM(k,x) = dAyeA l* + c2\%ex*x + • • • + ck\%ex*x 

gives us the sequence of functions {Gn(k,x)} with the property that 

Gn(k,x) = Gn-i(k,x) + Gn-2(k,x) + • • • + (?„_*(*,a;), n > k, (4) 

where each c$ is in (3). We shall refer to these functions as k-Fibonacci functions. If k = 2, 
then G?(2,x) = fo(x) is the Fibonacci function as in [2]. Prom (4), we have the following 
theorem. 
T h e o r e m 2,2: For the ^-Fibonacci function Gn(fc,x), 

G0(k, 0) = 0 = g™, Giik, 0) = 0 = g[k),..., Gk-2(k, 0) = 0 = gk%, 

Gk-t(k,0) = 1 = gk%Gk(k,0) = G0(*,0) + • • • + Gfc-i(fe,0) = 1 = g[h\ 

gM = Gn(k, 0) = ci A? + c2A^ + • • • + cfeA£ 

— # n - l + 9n-2H r 5 n _ f c , n £ K, 

where each c, is given by (3). 
Let Gn(k,x) = (Gn(k,x),...,Gn+k-i(k,x))T. For k > 2, the fundamental recurrence 

realtion (4) can be defined by the vector recurrence relation G„ + i ( / ; , x) = QhGn(k,x) and 
hence Gn+i(fc,a;) = Q^Gi(k,x). 

Simee gk_t = gk — 1, we can replace the matrix Q& in (1) with 

Qk = 

0 5 ^ 0 . . . 0 
0 0 g ^ ... 0 

0(fc) (*) 
- iff, 

Then we can find the matrix Ql = [^-(n)] in [5] where, for i = 1 ,2 , . . . ,k and j — l,2,...,k, 

s y w - 9n+a-2) + + p„+(i_2)-o-i) (fc) (5) 

We know that gl^n) = 5„+4_2 and 5]fc(n) = 5„+i_!- So, we have the following theorem. 
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Theorem 2.3: For nonnegative integers n and m, n + m > k, we have 

k 

Gn+m+1(k,x) = ^9iAn)G™+i(k>x)' 

In particular, 

Gk{k,x) = ^ ^ x -
»=o t ! 

Proof: Since G„+i(A;,a;) = Q£Gi(fc,a;), 

Gn+m+1(k,x) = QJ^Gifoa:) = Qk • QFG&z) 
= QlGm+1(k,x). 

By applying (5), we have 

Gn+m+i(fc, x) = ^|1(ri)Gm+i(feJ x) + h ^fc(n)Gm+fc(fe, x). 

Since J2iZo G{(k,x) = Gk{k,x) and 

k-i (*) (fc) 

i=0 

we have 
oo (fc) 

i=0 

Note that Q£+ m = Q™+n. Then we have the following corollary. 
Corollary 2.4: For nonnegative integers n and m, n + rn > ft, we have 

i = i 

We know that the characteristic polynomial of Qk is Â  - Â ™1 A - 1. So, we have 
the following lemma. 

112 [MAY 



GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS 

L e m m a 2*5: Let Xk — A*1"*1 — A — 1 = 0 be the characteristic equation of Qfc- Then, for 
any root A of the characteristic equation, n > k > 0, we have, 

Proof: Prom (5) we have, for j = 1,2, . . . , k, 

9lj(p) = g*_t + g*_2 + • • • + g*^. 

It can be shown directly for n = k that 

\k _ „(*) xfc-1 , (JJk) , (fc) , , (k)\ ,k-2 , , fjfc) , J&) \ x , Jk 

We show this by induction on n. Then 

An+1 = An . A 

= (flUWA*-1 + flU-i(n)A*-2 + • • • + flI»A + ̂ ( n ) ) A 

- 9nX + \ 0n - l + 9n-2 + '"+ 9n-k+l)A 

4. (nW 4. 4. „(*) ^ \k~2 . . . . f„(*) » /„(*) \ I 2 4- „(*) A 
+ f ^ n - l "T r 9n„k+2j A "I r \9n-l + Wn-2 j A + $ n - l A -

Since A& = Xk~1 H h A + 1, we have 
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An+1 = £<> ( A f c - l + ... + X + l ) + ( ^ + gWa + . . . + 5(*)fc+1) A * - l + 

{ & + & + • • • + 9 ^ Afc"2 + • • • + ( & + « £ 2 ) A2 + <^XA 

= (</ifc) + * & + • • • + 9(:ik+1) A*"1 + ( « « + • • • + <^f c + 2) A* 

+ " - + ( * ? ) + ^ 2 I ) A + « £ 0 

+ - + ( « ? ) + fl?2i)A + « « 

= 5J)fc(n + l^*"1 +5I,fc_1(n + l)Afc"2 +5J>fc_2(n + 1)A* 

+ ---+ffi> 2(»+1)A + ffM(» + 1) 

= E»I>+1)AJ"1-

Therefore, by induction of n, the proof is completed. • 
Theorem 2.6: Let A be a root of characteristic equation of Qk- For positive integer n, we 
have 

yfc-3 

Gn(M) = X>^AJ_1> 

where 

J = n 

Proof: Since Afe = A*"""1 H h A + 1 and by lemma 2.55 we have 
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Gn(k, A) = 5 « + g^X + ^ A 2 + • • • + fef.A- + . 

( (*) (*) 

( (&) (Jfe) 

(*) . g*+fc • t / L | i ^ n + f c + 1 

, + - - + ^ ( n ) ^ + ... + 
n! 

(*) \ 

+ ••• + 

\(fc-l)! + ft! +ffl*(* + 1)(* + l ) ! + +»i*Wn, + - - J A 

where 

for j = 1,2, . . . , ft, the proof is completed. D 
From theorem 2.3 and theorem 2.6, we have 

oo (k) 

j=0 

- J g\A(n - l)Gi(fc, x) + • • • + sljfc(n - l)Gk(k, x) 

k 

3 = 1 
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where 

a3n = 
9n+k . y n + j - 1 . Y ^ /.t fr^w+* 

"*T + ( F i ) i + i j 1
1 ' l j W — £! 

for j= l ,2 , . . . , f c . 

3 . S E Q U E N C E S O F G E N E R A L I Z E D F I B O N A C C I F U N C T I O N S 

Matrix methods are a major tool in solving certain problems stemming from linear recur-
rence relations. In this section, the procedure will be illustrated by means of a sequence, and 
an interesting example will be given. 

To begin with, we introduce the concept of the resultant of given polynomials [3]. Let 
f(x) — Y%=o aixn~{ a n d g(x) — YHLO hx™'~i be polynomials, where ao ^ 0 and 60 ¥" 0. The 
presence of a common divisor for f(x) and g(x) is equivalent to the fact that there exists 
polynomials p(x) and q(x) such that f(x)q(x) — g{x)p{x) where deg p(x) < n — 1 and deg 
q{x) <rn — l. Let q(x) = uox™'1 H h um-i and p(x) — voxn~l H h v n - i . The equality 
f(x)q(x) = g(x)p(x) can be expressed in the form of a system of equations 

GQUO = &o^O 

aiu0 + a0^i = bivo + h0vi 
(I2U0 + a\U\ + a0u2 — h2vQ + h\Vi + 60^2 

The polynomials f(x) and #(x) have a common root if and only if this system of equations 
has a nonzero solution (wo,Wi,.. .,wo,wi,.. .)• Q f° r example, m = 3 and n = 2, then the 
determinant of this system is of the form 

Oo 0 0 
01 ao 0 
02 a>i 0,0 
0 02 Oi 
0 0 a2 

-b0 
- 6 1 
- 6 2 
- 6 3 
0 

0 
- 6 0 
- 6 1 
-6 2 
- 6 3 

= 

do o\ ®2 0 
0 ao &i 0,2 
0 0 ao a i 
60 61 &2 63 
0 60 bi 62 

0 
0 

&2 
0 
63 

= \S(f(x),g(*))\ 

The matrix S(f(x),g(x)) is called the Sylvester matrix of polynomials f(x) and #(x). The 
determinant of S(f(x),g(x)) is called the resultant of /(a:) and g(x) and is denoted by 
R(f(x),g(x)). It is clear that R(f(x),g(x)) = 0 if and only if the polynomials f(x) and 
#(#) have a common divisor, and hence, an equation f(x) = 0 has multiple roots if and only 
ifR(f(x),f'(x)) = 0. 

Now, we define a sequence. For fixed k, k > 2, and a complex number a, a sequence of 
fc-Fibonacci functions, {Gn(k,a)}, is defined recursively as follows: 

G0(k,a) = so, Gi(k,a) = s1, . . . , Gk-i(k,a) = sk-i, (6) 
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Gn(k,a) = PiGn-tik^a) + p2Gn-2(kJa) + • • - -hpkGn^k(k,a), n>k, (7) 

where SQ, S I , . . . , Sk-i, pi, P2, • • •, Pk are complex numbers. 
Our natural question now becomes, for fe > 2, what is an explicit expression for Gn(k,a) 

is terms of s0, 8±, . . . , s&_i, pu . . . , p&? If s0 = • • • = $k-2 — 0, sk-t = sk = l, pt = >.- = 
Pk = 1 and a = 0, then by theorem 2.2 we have Gn(fe,0) = gn. In [8], Rosenbaum gave the 
explicit expression for k = 2. 

In this section, we give an explicit expression for Gn(k, a) — p\Gn-\(k, a)-\-p2Gn~2{kja) + 
"• + pkGn-k(k,a), n > k in terms of initial conditions Go(k,a) — $o> C?i(fe,a) = 
*i, . . . , <?A;-i(fc,a) = 5jb-i, fe > 2. 

Let Gn(fe) = (Gn(fe,a), . . . , . C?n_fc+i(fc,a))T for fe > 2. The fundamental recurrence 
relation (7) can be defined by the vector recurrence relation Gn(k) = Q&Gn_i(fe), where 

Q& = p Pk 
4 - i o a n d p = t p i , ^ , - - - ^ * : - ! ] -

Let s = (s jb- i , . . . , 5o)T. Then, we have, for n > 0, Gn+&_i(fe) = Q^s, and the characteristic 

equation of Qk is 
/(A) = Xk - ptX*'1 pjb-iA ~ p* - 0. 

If iJ(/(A), / ;(A)) 7̂  0, then the equation /(A) = 0 has distinct fe roots. 
Theorem 3.1: Let /(A) be the characteristic equation of the matrix Qk. If i?(/(A), / '(A)) / 0, 
then Gn(k,a) = piG?

n_i(fe,a) + p2Gn_2(fe5a) + • • • +p&G?
n_&(fe,a) has an explicit expression 

in terms of so,. - -, §k-i-
Proof: If i?(/(A),/ ;(A)) ^ 0, then the characteristic equation of Qk has fe distinct roots, 

say Ai, A2,.. •, A*. Since the matrix Qk is diagonalizable, there exists a matrix A such that 
A'^-QkA = diag(Ai, A 2 , . . . , A*.). Then Gn+^_i(fe) = Adiag(Ay, Ag , . . . , A^)A~1s, and hence we 
have 

k 
Gn(k, a) = diAJ + d2A^ + • • • + dkXn

k = J2 «W> 
t = i 

where di , d2, • . . , djb are complex numbers independent of n. We can determine the values 
of di, d 2 ? . . . , dk by Cramer's rule. That is, by setting ra = 0, 1, . . . , fe — 1, we have 

G0(fe, a) = di + d2 + • • • + dfc, 
Gi(fe, a) = diAi + d2A2 H 1- dkXkj 

Gk-t(k, a) = diAf"1 + d2A^"1 + • - - + dkX\ k > 
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and hence 
Vd = s, d = (d i ,d 2 , . . . ,d jb) T . (8) 

Therefore, we now have the desired result from (8). • 
Recall that 

Qk P Pk 
4 - i 0 

where [p = pi,P2> - • • ? JPfc-i]- Then, in [1], we have the following theorem. 

T h e o r e m 3.2 [1]: The (i,j) entry q\™' (pi,p2, - • • 3Pfc) in Q% is given by the following formula: 

qlj>(pi,P2,...,Pk)= £ m , 4 - . . . 4 . m . 
(mi,...,mfe) mi H hmfc 

/ m i H hmfc\ 
x )J 

\ m i , m 2 , . . . , m j b ; 
(9) 

where the summation is over nonnegative integers satisfying mi + 2rri2 H h krrik = n — i+j, 
and the coefficient in (9) is defined to be 1 if n = i — j . 

Applying the Gn+k-i(k) = Q^s to the above theorem, we have 

3 = 1 

(10) 

Prom (9), we have 

«?(pi , •••,!>*) = X ] 
(roi , . . . ,mj,) 

mj + mj+i -I h m^ 
m H [- m& 

V m i J m 2 r . . J m f e / 

where the summation is over nonnegative integers satisfying mi + 2m2 H f- krrik = n — k+j, 
and the coefficient in (10) is defined to be 1 if n — k — j . 
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Hence, from theorem 3.1 and (10), 

k 

Gn(k, a) = ^2q$(pi, • • • ,Pk)sk-j 

E**?-

Example : In (6) and (7), if we take a = 0, SQ = si = • • • = Sk~3 = 0, Sk-2 = §k-i = 1 and 
Pi = ••• =Pk = 1, then 

G0(fc, 0) = • • • = (7fc„3(fc, 0) = 0, Gfc„2(ife, 0) - Gfc-i(fc, 0) - 1, 
and for n > fc > 2, 

Gn(fc, 0) - Gn_i(fc, 0) + Gn_2(*, 0) + • • • + Gn_fc(fe, 0) 
^ 9n= 9n-l + 0n-2 H h 0n-Jfe-

Let gn = (ffn j---,fl„_fc4.i)T- For any fc > 2, the fundamental recurrence relation 

„(*) _ (k) . (k) ,(fc) .(*) * « ^ } = ^_ 1 +^„_ i 2 H 5-^-fc c a n be defined by the vector recurrence relation g^J = Q&g^J.!. 

Then, we have gi&) = QJJgo*^ = <?&(131?0,.. D ,0)T . Since Q& has fc distinct eigenvalues (see 

gW = d1\n
1+--- + dk\%. 

Hence, we can determine di,d,2, - • -, cf& from (8). 
For example, if k — 3, then the characteristic equation of Q3 is /(A) = A3 — A2 — A — 1 = 0, 

and hence 

i?(/(A),/ '(A)) = 

1 - 1 - 1 - 1 0 
0 1 - 1 - 1 - 1 
3 - 2 - 1 0 0 
0 3 - 2 - 1 0 
0 0 3 - 2 - 1 

= 44 ^ 0. 

Thus /(A) = 0 has 3 distinct roots. Suppose a, /? and 7 are the distinct roots of /(A) = 0. 
Then we have 

1 , . 1 

. 1 , . «\/3~ 1 
P = - g ( « + «) + - g - ( « - v) + - , 

1 , . «\/3 , x 1 
7 = - g ( « + «) - -g—(« ~ v ) + 3 . 
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where 

So, we have 

and hence 

* = V^T, u = y 19 + 3\/33 and v = y 19 - 3%/33. 

gg)=d1an + d20n + d3in, 

1 1 
a £ 
a2 £2 

1 " 
7 
I2. 

M d2 
rf3 

— 
"ol 
1 
l j 

Set 

5 = det 
1 
a 
a2 

1 
0 
P2 

1 
7 
7 2 . 

, 8a = det 
0 1 
1 P 
1 £2 7 ,.5p = det a 

2 a 

0 1 
1 7 
1 7

2 

and 

<5A = . d e t 
1 1 0 
a y9 1 

2 /32 1 a 

Then we have 

di = —, d2 = - p and d3 = -=- . 

As we know, the complex numbers di , d2, and da are independent of n. 

We can also find an expression for gk' in [6] follows: 

9™ 
(& + &)(P-r)-(Pn-<*n) 

(a- 1)08-7) 

(11) 

(12) 

So, by (11) and (12), 

8ac?+tfip»+5,r _ (*£-i+*--0 ^ - ^ - 0" - a " ) 
( a - 1 ) 0 8 - 7 ) 
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Similarly, if k = 2, then 

<#) = -F,n = r ^ - ( A ? - A 2 ) , (13) 

where Ai and A2 are the eigenvalues of Q2. Actually 

_ l + y/5 , . 1 - V 5 
Ai = — and A2 = — - — . 

In this case, 

Al — A2 y/E A2 — Ai y/E 

and (13) is Binet's formula for the nth Fibonacci number Fn. 
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1. I N T R O D U C T I O N 

Let (un)n>o be a sequence of positive integers. We denote by G(u) the multiplicative 
subgroup of Q+ generated by all the members of (wn)n>o- That is, 

G(u) = { < J • < ! • . . . • < * ! § > 0 , 0 < n i <n2 < ••• < n S 3 a n d a ^ E Z* for i = 1 ,2 , . . . , *} . 
(1.1) 

In some cases, the group G(u) is very easy to understand. For example, if (un)n>o is a 
geometrical progression of first term UQ and ratio r — UI/UQ, then 

G(u) = {<r^ | for some a j G Z}. (1.2) 

For a sequence (ten)n>o we also denote by 

U = {m E N|ra = un for some n > 0}. (1.3) 

That is, U is the range of the sequence (un)n>o. In this paper, we look at the set G(u) D N . 
Certainly, U C G(u) D N C N . It is easy to see that the extreme cases of the above inclusions 
can occur in some non-trivial instances. For example, if un = n\ for all n > 0, then m = 
um/um-i for all ra > 1, therefore G(u) = N . However, if (un)n>o is an arithmetical progression 
of first term 1 and difference k > 1, then G(u) D N = U. Indeed, notice that 1 = UQ E 17, and 
that if we write some rn E G{u) n N , m ^ l a s 

m ~ I I u™i> ^or s o m e s — ^ a n ( i «» E Z* for i = 1,2,..., s, (1.4) 
*=i 

then we can rearrange equation (1.4) as 

m n un?i= n <• ( L S ) 
1<«<S 1<*<S 
ai<0 « i > 0 
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We may now reduce equation (1.5) modulo k and get rn = 1 (mod fc), therefore m E U. 
While both the group G{u) and the semigroup G{u) C\ N are very easy to understand for the 
above mentioned sequences (un)n>o, not the same is true when (un)n>o is a non-degenerate 
linearly recurrent sequence. In this note, we investigate the group G(u) and the semigroup 
G(u) fl N when (un)n>o is a Lehmer sequence. 

Recall that if L and M are two non-zero coprime integers with L — AM ^ 0, then the nth 

Lehmer number corresponding to the pair (L, M) and denoted by Pn is defined as 

{ an-0n 

an-j3n 

a*-6* 

for n = l(mod 2), 

3 ^ - otherwise, 

where a and /3 are the two roots of the characteristic equation 

x 2 - ^ x + M = Q. (1.7) 

To avoid degenerate cases, we assume that a//3 is not a root of 1. In what follows, we 
denote by un = \Pn\ and by G = G(u). Our main results say that though the set G is 
topologically dense in the set of non-negative real numbers, its asymptotic density in the set 
of positive integers is zero. Before stating it, we introduce one more notation. 

For every positive real number x let G{x) = G fl N n (0,x). For every finite set of prime 
numbers V, let G-p be the subgroup of Q!j_ generated by G and V. If x is a positive real 
number, we denote G*p(x) = G-p f) N fl (0, x). 

We have the following results. 
T h e o r e m 1: The set G is dense in the set of non-negative real numbers. 
T h e o r e m 2: For any positive number S there exists a computable constant C depending on 
8, V, L and M such that 

#G"« < o&? (L8) 

holds for all x > C. 
The above Theorem 2 has the following immediate consequence. 

Corollary 1: 
(i) Both the group G and the factor group Q!j_/G are infinitely generated. 

(ii) There exist infinitely many prime numbers p which do not belong to G. 
(iii) There exist infintely many n 's such that n\ does not belong to G. 

Since the group G is a subgroup of Q!j_, we know that G contains no torsion elements. 

However, this is not necessarily the case for the factor group Q+/G . Let G = Q+/G. Since G 

is abelian, it follows that G has a torsion part, let's call it T(G), and 

F(G) := ^ (1.9) 
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is torsion free. The following result is slightly stronger version of the above Corollary. 
Proposition: The group F(G) contains a free subgroup of infinite rank. 

The following Corollary follows from the above Proposition and is a stronger version of 
Corollary 1 (ii). 
Corollary 2: There exist infinitely many prime numbers p such that pk $ G for any positive 
integer k. 

3. T H E P R O O F S 

T h e P r o o f of T h e o r e m 1: It is proved in Lemma 2 of [3] that if p and q are two coprime 
integers with 1 < p < q, then each non-negative real number is a limit-point of the set of all 
fractions of the form jpmg~"n, where m and n are positive integers. Since for all positive integers 
k and s we have (ukjU3) = W(&5S), the above result applied to positive integers us/u^^ and 
uk/u(k,s) proves Theorem 1. 

We now proceed to the proof of Theorem 2. 
In what follows, we recall the definition of a primitive prime divisor of a term of a Lehmer 

sequence. It is well known that i^nl^m 
whenever n\m. A primitive prime divisor of um is 

defined to be a prime number p\um such that pfun for any n < m. Moreover, an intrinsic 
primitive prime divisor of um is defined to be a primitive prime divisor p of um such that p 
does not divide the discriminant A = L — 4M of (un)n>o. In order not to complicate the 
terminology, in what, follows we will refer to an intrinsic primitive prime divisor of um as 
simply a primitive divisor of um. By results of Ward [5] for the case in which (un)n>o has 
positive discriminant, and Bilu, Hanrot and Voutier [1] for the general case, we know that um 

has a primitive divisor for all m > 30. It is also well known that any primitive divisor p of um 

satisifies p = ±l (mod ra). 
For every finite set of prime numbers V we denote by 

Mv = max(30,p + l\p G V). (2.1) 

When V is empty, we simply set M = M® = 30. From the above remarks, it follows that 
whenever n > M<p, un has primitive divisors and none of them belongs to V. 

We begin by pointing out a large free subgroup of G. 
L e m m a 1: 
(i) Let Gi be the subgroup of G generated by the set {wn}i<n<30 and C?2 be the subgroup of G 
generated by the set {wn}n>30- Then, 6?2 is free on the set of generators {un}n>$Q and G is 
the direct product of G\ and C?2-
(ii) Let Gi?p be the subgroup ofG-p generated by the set P U { % } n < M P let G^^v be the subgroup 
ofG*p generated by the set {un}n>Mv- Then, Gzp is free on the set of generators {un}n>Mv 

and G-p is the direct product of G\j> and G2,v-
T h e P r o o f of L e m m a 1: We prove only (i) as the proof of (ii) is entirely similar. It is clear 
that G is the product of G\ and (?2. In order to prove that this product is direct and that t?2 
is indeed free on the indicated set of generators, it suffices to show that if 

J J u®i = 1, for some s > 1, « J G Z * and m < n^ < - - • < n5, (2.2) 
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then ns < 30. But this follows right away because un has a primitive divisor of n > 30. 
Let; g E Gp> \ G\,v- By the definition of G-p \ G\,p, it follows that one may write 

per i=i 

where j3p E Z for all p E P , s > 1, a* E Z* for i = 1 ,2, . . . , 5 and n\ < n^ < • • • < ns with 
ns > M<p. Of course, the above representation (2.3) for g need not be unique. However, by 
Lemma 1 above, we get that both the index ns and the exponent as oiung do not depend on the 
representation of g of the form (2.3). Thus, we may define two functions / , h : G-p\Gi,-p -» Z 
by f(9) — ns and h(g) = as. We also extend the function / to the whole G-p by simply setting 
f(g) — M-p when g E G\^p. 

The following observation is relevant in what follows. 
L e m m a 2: Assume that g E G-p \ G\j>. If g E N ; then h(g) > 0. 
T h e P r o o f of L e m m a 2: This is almost obvious. Indeed, assume that g is given by formula 
(2.3) and that as < 0. Since ns > Mp, it follows that uns has primitive divisors. Pick a 
primitive divisor q of uns. By the remarks preceeding Lemma 1, we know that q $ V. Since 
g E N and as < 0, formula (2.3) implies that 

Q\UP I I uh (2-4) 
•pEV l<j<ns 

which is obviously impossible. 
T h e P r o o f of T h e o r e m 2: We assume that \a\ > |/?|. Notice that \a\ > 1. For any n > 30, 
we denote by Pr{n) the primitive part of un. That is, Pr(n) is the product of all the primitive 
prime divisors of un at the powers at which they appear in the prime factor decomposition of 
un. It is well known (see [4]), that if we denote by Q all the primitive roots of unity of order 
n for i = 1,2, . . . , 0(n), then 

where 

is the homogenized version of the nth cyclotomic polynomial and q(n) is either 1 or the largest 
prime factor of n. We also denote by Prp{n) the primitive part of un which is coprime to 
all the prime numbers p E V- By using linear forms in logarithms, both complex and p-adic 

2003] 125 



THE MULTIPLICATIVE GROUP GENERATED BY THE LEHMER NUMBERS 

with respect to the primes p E V (see [4]), it follows easily that there exist two effectively 
computable constants c\ and c% depending on L, M and V such that 

Prv(n) > | a |^W-cidWiogn3 whenever n > c2, (2.6) 

where d(n) is the number of divisors of n. Since d(n) < ne for every e > 0 provided that n is 
large enough (with respect to e) and since 

(pin) > -— , whenever n> C4 (2.7) 
log log n 

for some absolute constants C3 and c^ it follows that there exists a constant C5 (depending on 
L, M and V) such that 

Pr*p{n) > e^, whenever n > c5. (2.8) 

We may assume that cs > 30. 
We now look at the elements g e G-p fl N . Let y be a very large positive real number 

(y > 30), and set 
A(y) = {geGrnN\f(g)<y}, (2.9) 

and 
B(y) = {geGvnN\f(9)>y}, (2.10) 

Certainly, G-p f l N = A(y) U B{y) holds for every y. For a real number x set A(x,y) = 
A(y) fl (0, x) and J5(x, y) = B(y) fl (0, x). Thus, in order to bound the cardinality of G<p(x)3 it 
suffices to bound both the cardinality of A(x,y) and B(x,y). 

We start by bounding the cardinality of A(x,y). Assume that q\ < q2 < • • • < qt are all 
the possible prime factors of an integer g e A(x,y). Then, 

k 

U^Up'Uur ( 2 - n) 
i = l p€*P j < ^ 

Since V is fixed and since un < (2 |a | ) n holds for all n > 1, it follows that there exists a 
constant ce (depending on i , M and "P) such that 

k 

E 
i= i 

H ^ < e ^ 2 . (2.12) 

Prom the Prime Number Theorem, we know that there exists an absolute constant C7 > 0 such 
that 

eC7fc<n<fc. <2-13) 
« = 1 
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Hence, 
„2 k < cgy', (2.14) 

where eg = CQ/C^J. Assume now that g E A{x^y) has the prime factor decomposition 

k 

g = n«r> w h e r e Mi > 0 for i = 1,2,...,fc. (2.15) 

Since g < x, it follows that 

logx < l o g x forani = 1 2 ^ ( 2 o l 6 ) 

"" logq{ - log 2 

Prom inequalities (2,14) and (2.15), it follows that there exists a constant eg such that 

#A(x, y) < (log x)C9y2, for all x > 3. (2.17) 

The above inequality (2.17) holds for all y > 30. 
We now bound the cardinality of B(x,y) for y large enough. 
Assume that y > M-p and assume that g G B(x,y). Prom the definition of J3(x,y), it 

follows that f(g) > y. Moreover, from Lemma 2, it follows that h(g) > 0. By writing 

9=RpfipIl<h (2-18) 

where {fp e Z,« > 1, a* E Z* for i = 1,2, . . . ,« and m < n% < • • • < na , with ws = f(g) > y 
and a s = h(g) > 0, we get that the positive integer g is a multiple of Pr*p(f(g)). There are at 
most 

PrvUi.9)) 

positive integers less than x which are multiples of Pr-p(f(g)). Hence, this argument shows 
that the cardinality of S(x , y) is bounded above by 

*«*•»> s E 5 = j j ) - <"9> 

We now assume that y > c§ and use the lower bound (2.8) on Pr-p(t) for t > y > c& to infer 
that 

#s(*>t0<£-5s- (2-20) 
*>» e 
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By inequality (2.20), it follows that there exists an absolute constant CIQ such that 

#B(x,y)<C-^-x. (2.21) 

Combining inequalities (2.17) and (2.21), we get that 

Gv{x) < (logs)092'2 + c^0- • x, provided that x > 3 and y > c5. (2.22) 

All it remains to show is that one may choose y (depending on x) such that 

(2.23) (log*) + ^ *< {lQgxy 

To see how (2.23) holds, we choose any e > 0 small enough and set 

y=(logx)1*-e. (2.24) 

Clearly, y > c& when x is large enough. Moreover, the inequality 

<10^™' < W <2'25> 

is equivalent to 
(c9y

2 + 6) log log x < log x - log 2, 

or 
(cg^ogx) 1 " 2 6 + 8) logloga? < logsr - log2, 

which certainly holds for x large enough. Finally, the inequality 

^ • * < o 7 r i L ^ (2-26) 
e^/y 2( logx)5 v ; 

is equivalent to 

1 
log 2ci0 + g loS V + * loS loS x <Vv> 
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or 

log2c 1 0 + f- I - - e j - f < n l o g l o g x < ( logs)*"* , 

which is again satisfied for x large enough. Inequalities (2.25) and (2.26) imply inequality 
(2.23). 

Theorem 2 is therefore proved. 
T h e P r o o f of Coro l la ry 1: 
(i). The fact that G is infinitely generated follows from Lemma 1. Assume now that Q + / G 
is finitely generated. It now follows that there exists a finite set of prime numbers, call it P, 
such that G-p = Q+. It now follows that G-p f l N = N , which contradicts the Theorem 2. 
(ii). If there are only finitely many prime numbers p not belonging to G, then Q + / G is finitely 
generated, which contradicts (i). 
(iii). Assume that there exists no E N such that n\ E G for all n > HQ. Since n = n\/{n —1)! E 
G, whenever n > no + 1, it follows that Q + / G is finitely generated, which contradicts (i). 

We now give the proof of the Proposition. This proof is based on the following Lemma 
due to Schinzel (see [2]). 
L e m m a 3: There exists a strictly increasing sequence of integers (mj)i>i with mi > 30 such 
that umi, has at least two primitive divisors. 

Using Lemma 3 above and the Axiom of Choice, it follows that one may select an infinite 
set of prime numbers Q — {(Z»}"t>i such that q^ is a primitive divisor of umi for all * > 1. We 
introduce on Q the order relation induced by the natural ordering of the orders of apparition 
m,i$ of the qiS and denote this by qi -< qi+i for all % > 1. Based on Lemma 3 above, we infer 
the following auxiliary result. 
L e m m a 4: With the above notations? let G3 be the subgroup of Q!j_ generated by the set Q. 
Then, G(1G 3 = {1}. 
T h e P r o o f of L e m m a 4: Assume that this is not so and let g E Gfl G3 \ {1}. It follows that 

s = n < ; = IK;> (2-27) 
* = i j = i 

where s > 1, t > 1, n\ < 712 < • • - < ra5, k\ < &2 < * • • < h and a», /Jj E Z* for i — 1 ,2, . . . , s 
and j = 1,2, . . . , £ . We first show that ns — m&t. Indeed, since f̂ct | I I i=i Mn» ? a n d Qkt *s a 

primitive divisor of wmfc , it follows that there exists some i with 1 < i < s such that raj-Jra*. 
In particular, ns > m^t. Assume that ns > m&t. Since m&t > m\ > 30, it follows that uns 

has a primitive divisor, call it q. Since q is a primitive divisor of ung and ns > ni for all i < s, 
it follows that q = qkd for some j . < t. But this impossible because #*.. is a primitive divisor of 
umk. and rrikj <rrikt < ns. Thus, ns = mkt. Now uUs has at least two primitive prime 
divisors. Pick a primitive prime divisor q of uUs different than g&t. Arguments similar to the 
preceeding ones show that q$ini foi i < s and q ^ q^ for any j < t. This contradicts formula 
(2.27). 
T h e P r o o f of t h e P ropos i t ion : The proof of the Proposition is contained in Lemma 3. 
Indeed, by Lemma 3, it follows easily that the factor group G = Q + / G contains the subgroup 
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GG3/G = G$. This subgroup is free on the basis {qG\q E Q}. Thus, this subgroup can be 
identified with a subgroup of F(G) and therefore F(G) has a free subgroup of infinite rank. 
T h e P r o o f of Coro l la ry 2: This follows from the Proposition. Indeed, assume that there 
exist only finitely many prime numbers, call them pi,P2? • • • ?Ps? such that whenever q is a 
prime number with q^ p% for any « = l , 2 , . . . , s , there exists k > 0 (depending on q) such that 
qk G G. Since qk £ G is equivalent to the fact that the coset qG has exponent k in the factor 
group G = Q + / C , it follows that qG G T{G), whenever q ^ pt for i = 1 ,2, . . . , s. Hence, F(G) 
is finitely generated, which contradicts the Proposition. 

3. A N E X A M P L E 

The well known Fibonacci sequence (Fn)n>o is given by F 0 = 0, Fi = 1 and Fn+2 = 
Fn+i + Fn for all n > 0. The set of its terms U = {Fn}n>0 coincides with the set of terms of 
the Lehmer sequence corresponding to the pair (L,M) = (1,1). For this sequence, the only n's 
for which Fn does not have a primitive divisor are n = 1,2,5,6,12. Since F\ — F2 — 1, F$ = 
5,2*6 = F$ and F& = F^F^, it follows, by Lemma 1 from the previous section, that the group 
G for the Fibonacci sequence is free having the set {-Fn}n^i,2,6,i2 as basis. Since we know that 
G f l N has density zero, it follows that G does not contain all the positive integers. An easy 
computation shows that the first positive integer in N \ G is 37. 

For this sequence, one can point out a nice structure by means of a trace map. That is, 
let g G G \ {1} and write g as 

f = i 

for some s > 1, where a* E Z* and 3 < n i < ri2 < . . .ns are such that nj ^ 6 or 12 for any 
i= 1 ,2, . . . , s. From the above arguments, we know that every g G £? \ {1} can be represented 
in this way and that such a representation is unique. Thus, we may define the trace of g as 

J(9) = Ylaini' ^ 

When g = 1, we simply set 1(1) = 0. It is easy to see that I: G —> Z is a group homomorphism 
whose kernel is GQ = {g E G\I(g) = 0}. Moreover, G/GQ = Z. The subgroup GQ of G has a 
topological interpretation in the sense that it contains elements which are arbitrarily close to 
the identity 1 of G. 

4. C O M M E N T S A N D P R O B L E M S 

While our Theorem 2 guarantees that the density of the set G f l N is zero, it seems 
reasonable to conjecture that, in fact, a much better upper bound for cardinality of the set 
G*p{x) than the one asserted at (1.8) holds. Thus, we propose the following problem. 
P r o b l e m 1: Prove that for every e > 0, there exists a computable constant C depending only 
on e, V, L and M such that 

# { m G G p f l N|ra < x} < xe 

130 [MAY 



THE MULTIPLICATIVE GROUP GENERATED BY THE LEHMER NUMBERS 

holds for all x > C. 
Assume that mi < m2 < • • • < mn < . . . are all the elements of G n N . Our result shows 

that for every fc, there exists a computable constant C& such that mn > n(logn)k holds for all 
n > Ck» In particular, the series 

is convergent. It is certainly a very difficult problem to decide whether or not the number 
given by (4.1) is rational or irrational (or algebraic, respectively, transcendental). 

Another interesting question to investigate would be the distribution of the positive inte-
gers (rrii)i>i. By Theorem 2, we know that the set of those integers has density zero. One may 
ask how fast does the sequence (rrii)i>i grow. For example, if it were true that the sequence 
of differences m^+i — ra» diverges to infinity with i, then we would get an alternative proof for 
the fact that G f l N has density zero. Unfortunately, such a statement need not be true in 
general., Indeed, let (Fn)n>o be the Fibonacci sequence mentioned above and let (Ln)n>Q be 
its Lucas companion sequence. Then the identity 

Fl - Fn+1Fn„t = ( - l ) n + 1 , for all n = 0 , 1 , . . . (4.2) 

provides infinitely many examples of positive integers i for which m^+i — m* = 1. Moreover, 
either one of the identities 

. Z » - 5 2 £ = 4 . ( - l ) » , 

or 
L2n-Li = 2.(-ir+1 

which hold for all n = 0 , 1 , . . . , together with the fact that Ln = F2n/Fn E G for all n > 1, 
provides infinitely many examples of positive integers i for which rn^+i — m» < 4. In our 
Proposition, we pointed out that the group F(G) contains a free subgroup of infinite rank but 
we said nothing about the subgroup T(G). Concerning the subgroup T(G), we propose the 
following conjecture, 
Problem 2: Prove that T(G) is finite. 

Finally, it could be of interest to analyze the dependence of the group G of the starting 
Lehmer sequence (Fn)n>o» More precisely, assume that (Pn)n>o and {Pr

n)n>o are two Lehmer 
sequences. Let-ten = \Pn\ and u'n = \P^\ and define G, G1 and [7, U1 as before. We offer the 
following conjecture. 
Problem 3: Prove that if GC\G! is infinitely generated, then U f)U! is infinite. 

It is well-known, and it follows from the theory of linear forms in logarithms, that if UDU1 

is infinite, then there exist two arithmetical progressions (an + &)n>o and (en + d)n>o with 
ah ^ 0 such that \Pan+b = \Pcn+d\ h°lds for all n > 0. Thus, Problem 3 above is just a 
generalization of this well known result from diophantine equations. 
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1. I N T R O D U C T I O N 

It is well known that the Fibonacci numbers can be expressed in the form 

Round{-^=[(l + V5)/2]n}. 
V5 

[5] We look at integer sequences which are solutions to non-negative difference equations and 
show that if the equation is l -Bouncied then the solution can be expressed as Round {a AQ } 
where a is a constant and Ao is the unique positive real root of the characteristic polynomial. 
We also give an easy to test sufficient condition which uses monotonicity of the coefficients of 
the polynomial and one evaluation of the polynomial at an integer point. We use our theorems 
to show that the generalized Fibonacci numbers [6] can be expressed in this rounded form. 

In simple examples, the solution to a recurrence relation is often a constant times a power 
of an eigenvalue. For example, xn = 2x n _ i , with xo = 3 has the solution xn = 3-2n. Somewhat 
surprisingly even when we have irrational eigenvalues, the same form of solution may obtain, 
but with the extra complication of a rounding operation. For example, for the Fibonacci 
difference equation Fn = JFn-i + Fn-2 with FQ = 0 and F± = 1, we have the solution 

where a = (1 + VE)/2 and /3 — (1 — \/h)/2 and both a and /3 are irrational numbers. But 
pleasantly, 

Fn = Round S) 
where Round(X) returns the integer nearest to X. (This leaves Round ( | ) undefined.) A 
simple explanation for this ability to use Round is that |/3| < 1 and 1/VE < 1/2, and so 
| /3 n / \ /5 | < 1/2 for n > 0. (One should note that this rounding only works for n > 0. For 
n < 0, this formula is incorrect, but other simple formulas with Round are possible.) 

Professor Renato Capocelli passed away a few years ago while he was still a young man. This paper is the culmination 
of some work we started together when he visited Oregon State University. 
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This simple example might suggest that roundability would follow from some simple con-
ditions on the eigenvalues. A possible conjecture might be that: if every eigenvalue, except for 
the largest, were small, and if the initial deviations were small, then the deviations would stay 
small, and the integer sequence could be computed by rounding. When we are speaking about 
deviations here, we mean the difference between the sequence value and the approximation, 
e.g., 

dn = Fn- -=an 

would be the deviation for the Fibonacci sequence. More generally, we would have a sequence 
sn and an approximation of the form aAp where Ao is an eigenvalue of the operator for the 
sequence, a is a constant which depends on the initial values, and the deviation would be 

(Occasionally in the following, we may also say deviation when we mean the absolute value of 
the deviation.) 

So to maintain roundability, we would like the absolute value of the deviations to start 
small and stay small. We might wish that the deviations were always decreasing in absolute 
value, but that may not be the case. 

Consider a sequence sn defined by a kth order difference equation. If the k eigenvalues 
are distinct, sn can be written as 

fc-i 

i=0 

and if Ao is the largest positive eigenvalue, we can write the deviation as 

k-i 
dn = sn- «oAo = 5 ^ a*A?, 

i= l 

and by the familar absolute value inequality 

So, if |Aj| < 1 for each i E { 1 , 2 , . . . , & - ! } then 

K I < E W 
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and if J2i=i \ai\ < V 2 t h e n K l < 1/2, for all n > 0. 
So it seems that we have found the desired result. We have a result that takes care of the 

Fibonacci sequence, but this result will be difficult to apply to more general sequences since 
it seems to require us to calculate each of the a*. Notice that we can easily compute 

dn = sn - OQAQ 

but this really tells us little about YliZi \ai\-
Even though we can bound the absolute value of the deviations, the bound may have to be 

a severe overestimate to handle the possibly irregular behavior of the deviations. What sort of 
irregular behavior is possible? One possibility is spiking behavior, that is, the deviations may 
be'nearly 0, say for n G {1,2,3,4,5}, but then be relatively large for n — 6. Such spiking could 
occur if Ai = (1 — e)cj where e is a small positive number and a; is a 6th root of unity. Longer 
period spiking could be possible if, say, Ai = (1 — ei)ujs and A2 = (1 — ^2)075, then spiking 
with period 15 would be possible because the period 3 spike and the period 5 spike could 
add to give a large spike of period 15. Obviously, even longer periods are possible because a 
number of short periods could multiply together to give a long period. The simple absolute 
value bound produces an upper envelope for the deviations which can dance around rather 
erratically beneath this envelope. In general, this envelope may be the best easy estimate 
that one can find. As in other situations, restricting our difference equations to non-negative 
equations can help. But, we will need more than non-negativity for a strong result. 

2. A R O U N D I N G T H E O R E M 

Defini t ion 2 .1 : A difference equation xn == ctxn-t H h Ck%n-k is 1-bounded iff 
• Vi a £ N and ck G N4" 
• ^fx"Cft(A) *s a non-negative polynomial 

where ch(X) = Xk —ciA^"1 c& is the characteristic polynomial of the difference equation, 
and Ao is the unique positive root of ch(X). If, in addition, £~* ch(X) is primitive (aperiodic), 
that is, gcd{i\ci > 0} = 1, the difference equation is s t rong ly l - b o u n d e d . 

We want to use this definition to show: 
Theorem 2.1: If xn is an integer sequence which is a solution to a 1 -bounded difference 
equation, then there is an a so that 

a) 
Vw > 0 \xn — aAp I < max {\x* — « A Q | } . 

0<j<k—l 

h)if 
max \\XJ — aXl\} < 1/2 

0<j<Jfe-lU J U I J ' 

then Vn > 0, xn = Round{aX1o). 
c) If the difference equation is s t rongly 1-bounded 

BnoVn > no xn = Round(aXQ). 
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We approach this theorem via a simple lemma. 
L e m m a 2.2: If yn is a solution of yn = aiyn-i -\ h akyn-k and YH=I \ai\ < *> t n e n 

\Vn\ <M = max{|y0|, \vi\, • • • \Vk-i\}-
Proof: Clearly the conclusion follows for all n G { 0 , . . . , k — 1}. For larger n, 

Vn = Oiyn- l + 1" akVn-k = ] P <*iVn-i 
i=l 

and so 

k k 

\Vn\ < Yl \ai\\Vn-i\ < MY1 W ~ M 

where the first < is the absolute value inequality, the second < comes from the inductive 
hypothesis that each \yn-i\ < M, and the third < is from the assumption that ]T) \a{\ < 1. D 

Next consider the polynomial £~£ ch(X). If this polynomial is non-negative then it has 
the form Xk — feiA^""1 — • • • — bk with each hi > 0. Since substituting 1 for A must give 0, we 
have 1 — 6i — 62 6^ = 0 and hence 5^&i = ]£|&i| = 1 < 1. 

Now if dn is any solution to xn = c\xn-\ H h CkXn-k and dn has n o A" component, 
then dn is a solution to the difference equation which has ^_y as its characteristic polynomial, 

and dn is also a solution to the difference equation whose characteristic polynomial is ~^lc
x ^ • 

So by the previous remarks and the lemma, |dn| < max{|d0|7 Mil? • • • > |dfc-i|} = M. Since 
xn — aAg meets the assumptions for dn when a is chosen to exactly cancel the A™ component 
in xn, we have also proved part (a) of the theorem. 

For part (b), if M < 1/2 then since \xn - a\%\ < M < 1/2, we have a\% - 1/2 < xn < 
aXg + 1/2 and clearly xn = Round(a\%). 

For part (c), strongly 1-bounded implies that all of the eigenvalues Â  used in the expansion 
of dn have absolute value strictly less than 1. Hence, 

dn = J2<XiDmilK] 

and if |Ai| > |A2| > > |Ajb—1| then 

\dn\ < E \<*i\\Dmiwi\ < E N •c • n f c i A " i ̂  * * * I A ? I 
fe-1 k-1 

1=1 *=1 

which will be < 1/2 for large enough n because |Ai|n is exponentially decreasing to 0 while nk 

is growing at only a polynomial rate. In these inequalities we may want to recall that Dmi is 
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the wii fold derivative operator, and that a polynomial can always be bounded from above by 
a constant times the highest power of the variable in the polynomial. 

2 .1 , A N E A S Y T O C H E C K S U F F I C I E N T C O N D I T I O N 

It might seem relatively difficult to show that £~£ ch(X) is non-negative. After all, it 
seems that at least one would have to calculate AQ. Fortunately, there is a relatively easy to 
check sufficient condition. 

Let us first look at computing jz^* It is easy to check that 

ch(X) __ k_t k_2 

A — AQ 
= ^oA^~i+^iAf c-^ + - '- + ^ „ 1 

where go = 1 and gi+i — Xog% — c%+i- So carrying out this division is the same work as 
evaluating ch(Xo) stage by stage. In fact, 

gk = Aopjb-i - ck = A§ - c iA^- 1 ck = ch(X0) = 0, 

that is, the division is possible because A — AQ divides ch(X) is equivalent to Ao being a root of 
<A(A). 

Since we want to know if -£^~ch(X) is non-negative, we can compute 

A ~ ^ ( A ) = A* - (1 - 0OA*-1 - (9l - g2)Xk~2 - - - - - (gk-2 - gk~i)X - » - i 
A - A 0 

and we want 1 > gi > g2 > '" > gk~i > 0- We have the condition gk-i > 0 for free because 
gk = 0 = X0gk-i - ck, and so gk-i = ck/X0, and by assumption ck / 0. 

Now for the condition gi > <fc+i, we would need 

Ao - ciAJ-1 - • • • - Ci > Xp-1 - dAf
0 ci+i 

or equivalently 

0 > A£+1 - (a + l)Af
0 - (ca - cOAJ"1 ( Q + I - a) 

for i E { 0 , 1 , . . . , k — 2}. These inequalities give the necessary condition that 

Ao < ci + 1, 

and the rest of the inequalities are implied by the sufficient conditions 

Cfc-l > Ck~2 > ' ' " > C2 > Ci . 

Obviously these sufficient conditions are easy to test by looking at the coefficients of the original 
polynomial ch(X). It might seem that testing Ao < c\ 4- 1 would require one to know the value 
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of Ao, but as one can show, c\ + 1 > Ao iff ch{c\ + 1) > 0. So testing this condition can be 
done using only k integer multiplications. 

One minor problem remains. Although the conditions force the polynomial £~£ eft (A) 
to be non-negative, they do not force this polynomial to be primitive. That is, it is still 
possible for some of the eigenvalues to have absolute value equal to 1. The simplest way to 
force primitivity is to require c\ + 1 > Ao because this will force the second coefficient in the 
polynomial to be strictly positive. 

We collect these observations in the following theorem. 
T h e o r e m 2,3: Assume xn is an integer sequence which is a solution of the non-negative 
difference equation xn — c\xn-\ H hCkXn-k7 so that xn = aAg" + dn where Ao is the positive 
eigenvalue of the difference equation and dn has no AQ component. If 

9 Ck-i > • • • > c i 
• and ci + 1 > Ao 
® and max{ |d 0 | , |d i | , . . .,|dfc_i|} < 1/2 

then xn = Round(a\Q) for all n > 0. 
V 
• Ck-l >'">Cl 
9 and c\ + 1 > Ao 

then there is an no so that xn = Round(a\o) for all n > no, and no is the least integer so 
that m a x { | d n o | , | d n o + i | , . . . , | d n o + f c - i | } < 1/2. 

3 . U S I N G T H E R O U N D I N G T H E O R E M 

Consider the generalization of the Fibonacci difference equation from order 2 to order fc, 
that is, 

fn — fn-1 + / n - 2 + * ' ' + fn—k-

These numbers have been studied by many authors [3] [4] [6] [7]. Here the coefficients are all 
1, that is, 1 = c\ = C2 = • • • = Cfc. So the first condition of the theorem is satisfied. Although 
we do not know the value of Ao, we do know that c\ + 1 = 2. To show that 2 > Ao, all we have 
to do is evaluate the polynomial Afc - A*"""1 A - l a t A = 2 and show that the value of 
the polynomial is positive. But 2k - 2k~1 2 - 1 = 2k - (2k - 1) = 1, and so 2 > A0. 
Hence the theorem assures us that there is some no so that fn = Round(aXo) for n > no-
Notice that we have said nothing about initial conditions. We know that the value of no will 
depend on the initial conditions. 

The generalized Fibonacci numbers satisfy the kth order Fibonacci difference equation 
and the initial conditions /o = 0, f\ = l , /2 = l,fs = 2, . . . , /&_i = 2fc~3. Working the 
difference equation backward we can show that an equivalent set of initial conditions is 
/_(fc_2) = /_(fc_3) = • • • = / - i = /o = 0 and fi = 1. Then using standard methods (e.g. 
bi-orthogonal bases), we can show that 

A Q - 1 
a Ao[(* + l ) A o - 2 * ] " 
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The corresponding deviations are 

d_(fc_2) = 0 - aA~(*-2> 

d_(fc_3) = 0 -aA-( f c - 3 > 

do = 0 — a 
d\ = 1 — a. 

Notice that max{|d_(fc_2)Urf-(fe-3)|j -. -, Mo|} = \do\ = a because Ao > 1. The fact that 
Ao > 1 can be easily shown by evaluating ch(X) at A = 1, which gives — (ft — 1), a negative 
value, and so Ao > 1. We note that di > 0 because otherwise dn would always be negative and 
would therefore have a AQ component. If we can show that both a < 1/2 and 1 — a\o < 1/2, 
then we can take no = — (ft — 2), and the generalized Fibonacci numbers can be calculated by 
fn = Round(a\o) for all n > -(ft - 2). 

To show that 1 — aAo < 1/2, we only need (fc+iu"J2fc > >̂ ̂ ut this can be written as 
0 > (k — l)(Ao — 2) which is true because 2 > Ao-

To show 1/2 > a, we need \ > ^ -^Ao [(k + l)Ao — 2k] which can be rewritten as 
2 > (k + 1)AQ(2 — Ao) and using the fact that 2 — Ao = A "̂&, this can be written as 2 A Q _ 1 > 
k + 1. For ft = 2, this reduces to Ao > 3/2 which is easy to verify. For ft > 2, we use 
Ag"1 = A*p2 + . . . + l + i to get 2A*;-1 = 2(Ag"2 + . . .+ ^ > 2(ft - 1) using the fact that 
Ao > 1. Finally, 2(ft - 1) >°ft + 1 if ft > 3, and 1/2 > a is established. 

We had previously established this result by a more complicated argument [2]. Some of 
the applications of generalized Fibonacci numbers are described by Capocelli [1]. 

As another example, let us consider 

xn = 2a?n_i + 2xn_2 + 3ajn_3. 

The characteristic polynomial is A3 — 2A2 — 2A — 3 which has the dominant root Ao = 3. Here 
ft = 3, and Ck-i = c2 = 2 > ci, and c\ + 1 = 2 + 1 = 3 > Ao- So the first and second conditions 
of the theorem are satisfied. But, as yet we do not have initial conditions which are needed to 
specify the deviations. It is easy to check that a = ^ ( # o + x\ + x2) . So, for example, if we 
choose the initial conditions XQ — l , ^ i = 3, #2 = 9, then a = 1 and xn = 1 x 3n„ For these 
initial conditions 

d0 = ^ o - a x 3° = 1 - 1 = 0 
dt = xi -ax 3 1 = 3 - 3 = 0 
d2 = x2 - a x 32 = 9 - 9 = 0. 

So the third condition of the theorem is satisfied and xn = Round(a AQ) = jRotmd(l x 3 n = 3n). 
Of course, this result could have been found directly without using the rounding theorem. 
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Let us consider a different set of initial conditions. For example, xo = 0, x\ = 0,#2 = 1-
Now a = 1/13 and the deviations are 

« 1 1 
d o = °-13=-T3 

di = 0- JL-_A 
13 ~~~13 

1 - — - — 
13 _ + 1 3 ' 

So the absolute values of these deviations are all < 1/2 and the third condition of the theorem 
is satisfied. Thus, xn = Round (JTJA"). In this example, the theorem tells us that the solution 
can be obtained by rounding, and this result was not obvious without the theorem. 

Let us consider one more example of initial conditions for this difference equation, namely, 
xo = 0, x\ = 3, #2 = 9. Here, a = 12/13 and the deviations are: 

« 12 12 
d o = ° -13 = -13 

d1 = 3 - ^ = +i-1 13 13 

d2 = 9 108 _ 9 
13 ~ 13' 

In this case, the deviations are not all less than 1/2 in absolute value. Further, c\ + 1 = Ao, 
so neither immediate rounding nor eventual rounding is promised by the theorem. It is easy 
to calculate that 

nA 12 . 12 
<*3 = 2 4 - - x 3 3 = - -

19 Q 
d, = 75 x 34 = +— 

4 13 13 
d5 = 2 2 5 - | x 3 ^ = A . 

So in this example, the deviations are periodic with period 3, and the deviations do not 
decrease. The theorem does not say that rounding is possible and, in fact, rounding is not 
possible. 
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The identities 

and 
J W n + l - # = (-!)" (1) 

•F,n-2-Fn-l-fn+l-Fn+2 ~ Fn = —1 (2) 

are very old, dating back to 1753 and 1880, respectively. According to Dickson [1], pages 393 
and 401, the first was proved by Robert Simson and the second was stated by E. Gelin and 
proved by E. Cesaro. Simson's identity and the Gelin-Cesaro identity have been generalized 
many times. For details and references we refer the reader to [3] and [4]. 

We began to wonder if there was a pleasing identity involving the difference of third-order 
products, but a search of the literature revealed nothing to match the beauty of the identities 
above. We offer the following: 

^71+1-^71+2^+6 — F n + 3 = ( — l ) n F n . (3) 

One method of proof is to use (1) to substitute for (—l)n, then express each of jFn-i? Fn, -̂ n+s? 
and F n + 6 in terms of Fn+i and -Fn+2, and expand both sides. We prefer this method of proof 
since it carries over nicely to our generalization of (3), which we give next. 

Our generalization is stated for the sequence {Wn} = {Wn(a,j h;p,q)} defined by 

Wn=pWn-1-qWn-2, W0 = a, Wl = b 

where a, b,p, and q are taken to be arbitrary complex numbers with q ̂  0. Since q ̂  0, {Wn} 
is defined for all integers n. Put e = pab — qa2 — b2. Then 

Wn+1Wn+2Wn+6 - Wl+z = eqn+1 (p3Wn+2 - q2Wn+1) , (4) 

which clearly generalizes (3). Generalizations often suffer through a loss of elegance, but this 
is not the case here, adding testimony to the charm of (3). 

To prove (4) we require the identity 

W^Wn+3 ~ W^2 = eqn+\ (5) 

which generalizes (1) and is a variant of (4.3) in [2]. In addition, we require 

Wn+3 = pWn+2 - qWn+1 

Wn+e = (p4 - 3p2q + q2) Wn+2 - (p3q ~ 2pq2) Wn+1
 [ ) 
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where each identity in (6) is obtained with the use of the recurrence for {W n }. Now, using (5) 
and (6) we express (4) in terms of p,<jr, Wn+i , and W"n+2j and thus verify equality of the left 
and right sides. 

Finally, we remark that Waddill (see (18) in [5]) proved the equivalent of (5) with an 
elegant use of matrices, which means that our proof of (4) does not rely upon the use of the 
Binet form ([2]) for Wn. 
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1. INTRODUCTION 

In the notation of Horadam [2], let Wn — Wn(a,&;p, g), where 

Wn=pWn-1-qWn„2 (n>2) (1) 

W0 = a, Wt=b. 
If a and /3, assumed distinct, are the roots of 

\2-p\ + q = Q, 

we have the Binet form 

71 ~ a-/3 ' i j 

in which A — b — a^ and B = b — aa. 
The nth terms of the well-known Fibonacci and Lucas numbers can be denoted by Fn = 

Wn(0,1; 1, —1) and Ln = Wn(2,1; 1, — 1), respectively. 
We also denote 

Un = Wn(0,l;p,q) = ^ — | ^ , Vn = Wn(2,p;p,q) = a" + /T. (3) 
a — p 

By simple computing, we have 

^ 1 - Vmx + qmx2 

Let W = {Wn} be defined as above, with Wo = 0. For any positive integer k > 2, W. 
Zhang [3] obtained the following summation: 

bk~1 

X ] W*i Wa2... Wak = y-2 , xfc_u. rr:[9k-i(n)Wn-k+i + ftfc_i(n)Wn_fc], 
01+02+...+0fc=n yp n) \K !)• 
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where the summation is taken over all n-tuples with positive integer coordinates («i, 02? • • •, Q>k) 
such that ai+a2-\ ha& = n. Moreover, gk-i(x) and hk-i(x) are two effectively computable 
polynomials of degree k — 1 with coefficients only depending on p, q and k. 

Recently, Z. Zhang and X. Wang [4] gave explicit expressions for gk^1(x) and hk-i(x). 
P. He and Z. Zhang [1] discussed generalized Lucas numbers* The purpose of this paper is to 
generalize the above results, i.e., to evaluate the following summation: 

2. T H E C O N V O L U T E D F O R M U L A O F G E N E R A L I Z E D 
F I B O N A C C I N U M B E R S 

Throughout this section, with Wo = 0, if we let 

then we have 

l-Vmx + <Tx2, n=0 

J2 WmaiWma2...Wmak=W^n_k+1). (6) 
ai+a2+'"+aie=n 

T h e o r e m 2 .1 : 

w™x) = fc(va-V) {HVMW^ ~2qm(n+2k~1)w™} • (7) 

Proof: Noting that 

Jx(Gk{x){Vm - 2qmx)k) = G'k(x)(Vm - 2qmx)k + Gk(x)k(Vm - 2qmx)k-\-2qm) 

and 

±(G>(z)(V -2a™x)k)-±(bUm{Vm-2qmX\ dx(Gk{x)(Vm 2q *))-dx{1_VmX + fnx2) 

fc-i 2qm(l - Vmx + qmx2) + V£- 4g" - u fbUm(Vm-2qmx)y-\TT 

~K\l-Vmx + qmx2 J m (l-Vmx + qmx*)2 
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we have 

G'k(x)bUm(Vm - 2qmx) - 2bkUmqmGk(x) = 2bkUmqmGk(x) + fc(V£ - 4qm)Gk+1(x). 

Comparing the coemcients of both sides of the equation, our theorem holds. 
We denote by 0^(71, k) the summation of all products of choosing % elements from n + k 

i + 1, n-\- k — i + 2, . . . , ra + 2fc — 1 but not containing any two consecutive elements, i.e., 

^i(n,k) = Y^Y[(ji + k-i + jt) (8) 
t= i 

where the summation is taken over all i-tuples with positive integer coordinates (ji,J2, • • • ,ji) 
such that 1 < ji < j*2 < * • • < ji < k + i — 1 and \jr — j s \ > 2 for 1 < r ^ s < i. 

We note that oo(n, k) = 1. It is easy to prove that 

(n + 2k - l)(7jb-i(n, fc - 1) = o"jb(n, fc), (9) 

and 
(n + 2fe - l)cri_i(n, fc - 1) + (Ti(n + 1, k - 1) = ^ ( n , fc), (10) 

which yields 
T h e o r e m 2.2: 

\fc fc 

where (n)*, = n(n + l)(ra + 2 ) . . . (n + k - 1). 
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Proof: We prove the theorem by induction on k. When k = 0,1, the theorem is true by 
applying Theorem 2.1. Assume the theorem is true for a positive integer k — 1. Then 

w™+1) = fcflj-V) H™<U -2qm{n+2k~1)w^ 

f=0 

J f e - 1 

din + 1, k - l)Wm(B+fc_fl + (-2,™)(n - 1 + 2*) (fe _ i)!(V^ - 4g^)*-^ X 

k-1 

J^i-^yV^'Hnh-i-iMnik- lJW^+jw-u} 
f = 0 

{Wm) {V£n{n + l)*_i<70(n + 1, * - 1)Wm(fl+ib) ( * ! ( V ^ - 4 ^ ) * 

& - i 

+ S ( - 2 g m ) ^ " ^ < ^ + !>*-•<*(* + 1, k - lJW^n+jb-o 

+ I ] ( - 2 ^ m ) ' F m ~ i ( ^ + 2ft - i)(n)k.m^(n,k - l)Wm{n+k-i)} 
* = i 

(6»m)* {j£(„>fc(ro(n,*)Wm(B+fc) 
~ ifc!(F^-4gTO)fc 

+ E(-2g'n) i^- i (rx>f c_ iWm ( n + f c_ i ) [a(n + 1, * - 1) + (n + 2* - l ^ - ^ n , ft - 1)] 

+(-2qm)k(n + 2k- l)ak-i{n, k - l)Wmn} 

fc-i 

i = l 
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(Apply (9), (10)) 

(bUm) k 
(n+fc) k\(V£-4qm)k' 

+ Y,(-2qm)iVti(n)k-Mn,k)WMn+k_i) + {-2qm)kcrk(n,k)Wmn} 
fc-1 

1 = 1 

^^^^{-2^)iV*ri{n)k-^i{n,k)Wmln+k^. 
i=0 

Hence the theorem is also true for k. This completes the proof. 
Theorem 2.3: 

/ j V*mai Wma2 . . . Wmak 

o-i 4-Q-2 H hafc=n 

= ( f c - l ) | ^ ^ 

Proof: Use (6) and Theorem 2.2. 
Lemma 2.4: 

UmWm(k+n) = UmnWm{k+1) - qmUm{jh„i)Wmk. (13) 

Proof: Use (2), (3). 
Let 

fc-i 

»i-i(») = E(-29m) i F -~1 _ f ( n - k + Vk-i-Mn -k + l,k- 1)^^) (14) 
i=0 

and 

fc-i 

*=0 

Then we have the following theorem. 
Theorem 2.5: 

/ _j ^ma\ Wma2 . . . Wmak 

»i +a2+"-+afc=n 
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= ( f c -1 ) | (V%-V. )*- i { S H ( * ( ^ I ) + h£\(n)Wn{n_k)} . (16) 

Proof: Use Theorem 2.3 and Lemma 2.4. 
Corollary 2,6: 

/ j *^ma Wmb 
a-$-b=n 

= V2 -4tT^n ~ ^VmU2m ~ ^ " ^ l ^ l " - ! ) - 9m(n - l)VmUmWm(n_2)}, 

] T WmaWmbW„ 
a+b+c=n 

b Um {(» - 2)(n - l)V^U3m - 2qm(n - 2)(2n + l)Fm[/2TO + Aq2m{n - 1) 
2{Vg-Aq™)2 

(n + l)C/ro]Wm(„_2) - gm[(n - 2)(n - l ) ^ ? 7 2 m - 2qm(n - 2)(2n + l)Fmt/m]WTO(„_3)} . 

Proof: Take ft = 2,3 in Theorem 2.5. 
Prom (16), we have 

Corollary 2.7: 

ft*-1^-2 { f i W ^ l n - H D + * K ( * M ) } = 0 ( niod (* - l)!(l£ - V*)*"1) . 

(17) 

3. THE CONVOLUTED FORMULA OF GENERALIZED 
LUCAS NUMBERS 

Let A = 2Um+i — pUm. Taking a = 2, 6 = p and using (4) we have 

E \r w — 2 — Ax 

1 - Fmx + gmx2 

71=0 

Let 

W-pV'-iiJ^rJ-
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Obviously, Vmn = Vmn. From these, we have 

/ _j Vmai Vma2 - • • Vmak = 

Theorem 3-1: 

fc(AFm - 4qm)V£+» = 4(n + 2 )F« n + 2 ) - 2(2n + * + 2 ) A ^ n + 1 ) + (n + fc)AV«. (19) 

Proof: Noting that 

dx 
t„ ( ,_± ( 2 -Ax 
( k{X)~ dx \l-Vmx + ^afl 

* - 1 - A + 2Vm - 4qmx + qmAx2 

= k-

=k( 2~Ax V A 

V1 - V^x + gmx2 / (1 - V^x + qmx2)2 

= k ( 2~Ax V" 1 A [ 1 - ^ x + grox2] + [AFm - 4<f" 
V1 - Vmx + qmx2 ) (1 - V^x + qmx2)2 

A / 2 - A x \fc AVm-4gm f 2 - A x \ f c + 1 

V l - l ^ x + ^ x V ( 2 - A x ) 2 X V ( l - F r o x + gTOx2),/ ' 2 - Ax \ 1 - Vmx + gmx2 

we have 

\2 d 

(2 - Ax)2—Hk{x) = k[AVm - 4qm}xHk+l(x) + kA(2 - Ax)Hk(x). 

This implies 

k[AVm - 4qm}xHk+1(x) = (4 - 4Ax + A2x2)^-Hk{x) - kA{2 - Ax)#fc(x). 

Comparing the coefficients of both sides in the above equation, the theorem holds. 
Theorem 3.2: 

/ , VrnaVmh 
a-\-b—n 

= AVm - 4g™ ^ 4 ( n + 2 ) V m { n + 2 ) + 2 ( 2 n + 3 ) A ^W+D + (n + ! ) A 2 ^ « } • (2°) 
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J2 vmaVmbVmc = 2 ( A V ^ _ 4 g T O ) 2 { 1 6 ( n + 4)(n+2)Vm{n+i) 
a+b+c=n 

+8((n + 2)(2n + 7) + (n + 3)(2n + 4)) A F r o ( n + 3 ) + 4((n + 2)(n + 3) + (2n + 4)(2n + 5) 

+ ( n + 2 ) 2 ) A 2 F m ( n + 2 ) + 2(n + 2)(4n 4- 7 ) A 3 F m ( n + 1 ) + (n + l )(n + 2 )A 4 F m n } . (21) 

Proof: Use (18) and Theorem 3.1. 
In Theorem 3.1, taking m = 1,2 gives the main results of paper [1], 

Corollary 3.3: 

HP2 - 4g)Vf + 1 ) = 4(n + 2)V<% - 2p(2n + k + 2 ) ^ + / ( n + k)V™, (22) 

^ V ~ % ) ^ + 1 ) = 4 ( n + 2 ) l ^ (23) 
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1. I N T R O D U C T I O N A N D M A I N R E S U L T 

A well-known but classicial result concerning the harmonic series is that the sequence of 
partial sums ]Cr=i r c a n n e v e r be an integer for n > 1. More generally, Nagell [3] showed that 
X^r=i m+rd c a n n o t t>e an integer for any positive integers m, n and d. As an extension of 
these results the author, in a recent paper [4], constructed further examples of positive rational 
termed series having non-integer partial sums. These partial sums were of the form Y^-i !T> 
where {Un} are the sequence of generalised Fibonacci numbers generated, for n > 2, via the 
recurrence relation 

Un = PUn^ - QUn-2, (1) 

with Uo — 0, U\ = 1 and (P,Q) a relatively prime pair of integers satisfying \P\ > Q > 0 or 
P z/z 0, Q < 0. (Note when (P, Q) = (2,1) one has Un = n). By viewing these partial sums as 
the symmetric function formed from summing the products of the terms ^ - , ^ - , . . . JJ- taken 
one at a time, one may naturally ask whether all other symmetric fucntions in the reciprocals 
of such generalised Fibonacci numbers can be non-integer. In this paper we will show that for 
sequences {Un} generated via (1), with P > 2 and Q < 0, there can in fact be at most finitely 
many n such that one or more of the elementary symmetric functions in ^- , ^ - , . . . jj- is an 
integer. To establish this result we will require two preliminary Lemmas, the first of which is 
a refinement of Bertrand's postulate due to Ingham [2]. 

L e m m a 1.1: For any real number x > 1 there always exists a prime in the interval (x^x+xs). 
The second lemma is a standard result of generalised Fibonacci sequences, a proof of 

which can be found in [1], 
L e m m a 1.2: For any sequence {Un} generated with respect to a relatively prime pair of 
integers (P,Q) via (1) then (Um,Un) = I7(m,n)-

We now can prove the following theorem: 
T h e o r e m 1.1: Suppose the sequence {Un} is generated via (1) with respect to the relatively 
prime pair (P,Q) such that P > 2 and Q < 0. Denote the kth elementary symmetric function 
in jjj-, j j - , . . . , jj- by 0(n, k), then for this family of functions there exists a uniform lower 
bound N on n, such that (j>(n, k) is non-integer for n> N and 1 < k < n. 

Proof: To establish the non-integer status of </>(n, k) it will suffice to consider the two 
separate cases of k > 31ogn and k < 31ogn, noting here that it is sufficient to take only 
strict inequalities as logn can never be an integer for integer n > 1. In both cases we will 
demonstrate the existence of the lower bounds given by Nt = min{s E N : logn > <p- for 

n > S} = f e ^ l and N2 = min{S G N : ^ ^ + 2Jas» < I , "3
+ > 28(1 + l o g 3 ) 5 for 
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all n > s} respectively on n, for which 0(n, k) is non-integer. As iVi and N2 are constructed 
independently of k, one can then set N = max{JVi,JV"2} from which it is immeidate that 
0(n, k) must be non-integer for all n > N and 1 < k < n. Furthermore, as Ni and JV2 are not 
dependent on the specific choice of the sequence {Un}, one sees that the lower bound N must 
hold uniformly over the family of generalised Fibonacci sequences as specified in the theorem 
statement. We now proceed with the following two cases. 
Case 1: k > 31ogn 

First note for the prescribed values of (P,Q) it can be shown, via an easy induction 

on n, that Un > n. Now, as ip(n^k) is formed from summing the terms ^- , ^ - , . . . , ^ -

taken k at a time, we observe that </>(n, k) must occur k\ times in the multinomial expan-

sion f ^ - + ^ - + 1~ tr") • Hence, using the usual comparison of log n with the terms of the 

harmonic series, we obtain that 

</>(n! 
1 (1 1 1 V 1 (, 1 i V 

< I ( l + logn)fc. (2) 

Now by definition of JVi if n > Nx then logn > ^ and so k > ^ . Consequently 

noting here that the second last inequality follows from the fact that | j < ek. Hence, we 
deduce from the previous inequality and (2) that 0 < 0(n, k) < 1 for any n > Nt as required. 
Case 2: fc < 31ogn 

In this case it first will be necessary to show that for n> N2 

GRiTI)-')'^1)'- <3> 
Upon factoring out | and k,£+1\ from the right and left hand side respectively of the conjec-

tured inequality in (3) one finds that 

* (-^)>H)- « kz{k +1)8 
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Now, as k < 31ogn and so £ < 3 1 ° g n -* 0 monotonically for n > e, it is clear the 

term (l + | ) can be bounded above by (1 + log3)5 for n > 3 say. Similarly, as fc^"^ < 

9( lo^w) + 3 1 ° s w -> 0 and fc3(fc+!)8 > (31o g^-t-i)11 "^ °° a s n ~^ °°> o n e c a n c n o o s e n sufficiently 

large but finite and independent of fc, such that ^ ± ^ < \ and k3{f+1)8 > 28(1 + log3)5. 

Consequently by definition of JV2 one has for n > N2 

^(-^'x^* k*(k 

and so one concludes that (3) must hold for all n > N2. Now raising both sides of (3) to the 
power I one finds upon rearrangement that 

5. 
n / ra \ / w \ 8 

* > ( 1 + * n j + (1+fcTiJ • 

Hence for n > N2 there must exist, by Lemma 1.1, a prime p in the open interval 

f 1 + j^pj, jM. By construction p must be such that 1 < mp < n for m = 1,2, . . . , k but 

(k + l)p > n. Considering again $(n, fc) as a sum of the product of the terms ^- , ^ - , . . . , ^~ 
taken jb at a time we can write 

where C{ is one of the possible (£) products of the terms U±, U2, • • -, C/„ taken fe at a time and 

, UiU2--.Un 
hi = . 

By the above UpU2p . . . Ukp = cs, for some s e { 1 , 2 , . . . , (^)}, and as (fc + l )p > n, no other of 

the remaining (£) - 1 products c* can contain generalised Fibonacci numbers in which all of 
the corresponding k subscripts are a multiple of p. Consequently, by construction each 6 ,̂ with 
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i ^ s, must contain at least one of the terms in the set 4̂ = {C/"p, U2P, - - -, UkP} while h$ will 
contain none of the terms in A. Now by Lemma 1.2 asp is prime (Up, Ump) = P(P,mp) = Up, for 
each m = 1,2, . . . , fc, and so I7p|ft< for every i ^ 5. Also for (r,p) = 1 one has (Up, Ur) = U\ — 1 
but as hs contains only those terms Ur for which (r,p) = 1, we conclude that Up must be 
relatively prime to 5SJ and so Up$Sj which in turn implies that Up^B. Thus ^(n3 fc) = ^ where 
UP\C but UpfB, that is ^(n, fc) cannot be an integer for any n > N2 as required. D 
R e m a r k 1.1: It is clear that the above argument could easily be applied to higher order 
recurrences {Un} with Un > n if an analogous result in Lemma 1.2 ,could be found. 
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1. I N T R O D U C T I O N 

One approach to the study of the distributions of residues of second-order recurrence se-
quences (wn) modulo powers of a prime p is to identify and examine subsequences w% = wn+tmj 
that are themselves first-order recurrence sequences. In particular, the restricted period, 
h = h(pr), and the multiplier, M = M(p r ) , satisfy wn+t/i = Mtwn (mod pr) for all t and 
all n, and are independent of the initial terms of the sequence (see, e.g., [1]). In [1], we gener-
alized the notion of the restricted period and multiplier to that of the special restricted period 
and special multiplier. Theorem 3.5 of [1] shows that if the sequence w is p-regular for an odd 
prime p,r is sufficiently large, and wn is not divisible by p, then wn+th^pr*^ = (M*(n,pr))twn 

(mod pr) for all £, where r* = [ r /2] , and the integer M*(n,p r ) , which is defined up to con-
gruence modulo pr and depends upon n, is called the special multiplier of w with respect to n. 

In this article, we examine the residues d that actually occur as special multipliers of a 
second-order recurrence sequence. We show that if there exists ap-regular sequence satisfying a 
given second-order recursion and r is sufficiently large, then every conceivable special multiplier 
actually exists modulo pr. Since the special multiplier M*(n,p r ) must satisfy the congruence 

M*(n,p r ) = M(pr*) (mod pr*), 

this amounts to showing that if d = M(pr*) (mod pr*)j then there exists a sequence w that 
satisfies the given recursion, and an index n, such that d actually occurs as the special multiplier 
M*(n,pr) of that sequence. 

The proof of the theorem is broken into three cases depending upon whether I ^ J = — 1, 1, 
or 0, where D is the discriminant of the sequence w. 

2. P R E L I M I N A R I E S 

We employ the standard notation of [1]. In particular, w(a,h) represents a second-order 
sequence that satisfies the recursion 

wn+2 = awn+1 - bwn, (2.1) 

and, for a given odd prime p, T{a, b) denotes the family of sequences (w) that satisfy (2.1) and 
for which p Y (w0,wi). We let Xw(pr) denote the period of w(a,h) modulo pr, i.e., the least 
positive integer A such that for all n 

wn+x=Wn (modp r ) , 
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and similarly, we let hw(pr) denote the restricted period of w(a, 6) modulo f?r, i.e., the least 
positive integer h such that for some integer M and for all n 

wn+h = Mwn (mod pr). 

The integer M = Mw(pr), defined up to congruence modulo pT, is called the multiplier of 
w(a,b) modulo pr, Since they are critical to the present study, we also remind the reader of 
the definitions of the special restricted period and special multipliers of a sequence w E T(a,b). 
Defini t ion 2 .1 : For fixed n and r, let h%J{n,pr) be the least integer m of the set { hw(pc) | 1 < 
c < r } for which the sequence w% = wn+tm satisfies a first-order recurrence relation wj+i — 
M*w% (naod pr) for some integer M*. The integer ft* = hla(n,pr) is called the special restricted 
period and M* = A4^(n^pr) (defined up to congruence modulo pr) the special multiplier with 
respect to wn modulo pr. 

Finally, we let f(x) = x2 — ax + b be the characteristic polynomial of (w) and D = 
D(a, b) = a2 — 46 the discriminant of (w). 

In general, when studying recursive sequences w(a, 6) modulo powers of a prime p, elements 
wn for which p | wn behave quite differently from elements for which p fwn. It is convenient to 
refer to a term wn for which p fwn as p~regular and a term wn for which p | wn as p-singular. 
Analogously, we call an integer d ^singular if p \ d and f>-regular if p j / d. 

The sequences of T(ajb) are partitioned into equivalence classes, usually called m-blocks? 
by the equivalence relation m o t , which relates two sequences if one is equivalent modulo m to 
a multiple of a translation of the other. We are interested here in pr-blocks, where p is an odd 
prime. 

A recurrence w(a,6) is p~regular if WQW2 — w\ =£ 0 (mod p), and p-irregular (or simply 
irregular, if the prime p is evident) otherwise. It is well known that either every sequence 
in a block of T{a, b) is p-regular, or none of them are, and hence, the blocks of T{a, 6) are 
divided into p-regular and p-irregular blocks. It is also easy to see that all p-regular sequences 
in T{a, 6) have the same period, restricted period, and multiplier. Consequently, the period, 
restricted period, and multiplier of a regular sequence in J7(a, 6) are independent of the initial 
terms of the sequence, and are global parameters of the family F(a,b). We denote these 
global parameters by A(pr), h(pr), and M(p r ) , respectively. If u(a3b) E T(a,b) denotes the 
generalized Fibonacci sequence, i.e., the sequence in T(a,b) with initial terms 0 and 1, then 
u(a,b) is j>-regular and therefore can be used to determine the global parameters of ,F(a,&). 
In particular, h(pr) = hu(pT). 

For most second-order sequences w(a,b), the restricted period moduloj?r + 1 is p times the 
restricted period of w(a, 6) modulo pr when the exponent r is sufficiently large. The precise 
value of r that constitutes sufficiently large in this sense is denoted by the critical parameter 
e(w), as defined below. 
Defini t ion 2.2: If w(a,b) E J*(o,6), then we define e = e(w) to be the largest integer, if it 
exists, such that hw(pe) = hw(jp). 

The period of a second-order recurrence manifests a similar behavior and we define the 
corresponding parameter f(w). 
Definint ion 2.3: If w(a,b) E T{a,6), then we define / = f(w) to be the largest integer, if it 
exists, such that Xw{p^) — Aw(p). 

The sequence w(a,b) is said to be nondegenerate if the parameter e(w) exists, and de-
generaie otherwise. If w is p-regular and e(w) does not exist, then hu(p) = 0, and all of 
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the p-regular sequences in T(a,b) are degenerate. Our main theorem, Theorem 5.1, concerns 
families T{a, b) that contain a nondegenerate p-regular sequence. It follows that all of the 
p-regular sequences examined in this paper are nondegenerate. 

On the other hand, we must take into account degenerate p-irregular sequences in T(a,b). 
For notational convenience we adopt the convention that e(w) = oo when w is degenerate, 
and consider the statement r < e(w) to be true when e(w) = oo. Note that a degenerate 
p-irregular second-order recurrence satisfies a first-order recurrence modulo pr for all positive 
integers r. 

The restricted periods of p-regular sequences are given by the following important theorem. 
T h e o r e m 2.4 (Theorem 2.11 of [1]): Suppose that w(a,6) E ^"(a, b) is p-regular and that 
e = e(w) and f = f(w) both exist. Let e* = min(r, e), / * = min ( r , / ) ; and s = X(p)/h(p). 
Then, for all positive integers r, 

h(pT) = Pr-e'h(pe) (2.2) 

\{pr)=pr-r\{pf) and (2.3) 

W - »VW)) = ffi - £$g -/•-''.. (2.4) 
The following theorem is analogue for p-irregular sequences. We note that both Theorem 

2.5 and Corollary 2.6 remain true in the case that w is degenerate. 
T h e o r e m 2.5:'Let w(a,b) E T(a,b) be a p-irregular recurrence and set hf(pr) = hw(pr)^ e = 
e(u), and el — e(w). Let f = max(r — e',0). Then 

{ 1 if r< e;, 

h(pr-e') - h(pe) = h(p) if e1 < r < e' + e, 
h(pT~e') - pT~e-e>h(p) if e' + e<r. 

Theorem 2.5 has an important corollary that we require below. 
Corol la ry 2.6: If w, wf E T{a,b) are p-irregular and satisfy e(w) = e(wf), then hw(pr) = 
hw>(pr). 

Proof: It is clear from Theorem 2.5 that the restricted period depends only on e(w) and 
the global parameters h(p) and e. 

The ratios of terms of recurrences (w) modulo p r are closely related to multipliers and 
play a key role in our study. If a, 6, c, and d are integers, with p f b and p Yd, then the quotients 
a/b and c/d may be viewed as elements of Zp, the localization of the integers at the prime 
ideal (p). It is then natural to define 

a/b = c/d (mod p r ) if and only if ad — be = 0 (mod p r ) . 

In [1], the notation pw{n,m) was introduced to represent the ratio of elements wn+m and wn 

of a second-order recurrence sequence (w) when wn was not divisible by p. We extend that 
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notation to include the situation when the p-power dividing wn does not exceed the p-power 
dividing w n + m . 
Defini t ion 2,7: If w(a,b) £ !F(a,b) and m and n are nonnegative integers such that pk \\ wn 
and pk i| w n + m , then we define p(n,m) = pw(n,m) to be the element (wn+m/pk)/(wn/pk) £ 
Zp. 

Note, in particular, that if wn is p-regular, then the multiplier and special multiplier 
modulo pr can be expressed in terms of ratios: 

Mw(pT) = p(n, hw(pT)) (mod p r ) , 

K(Pr) = rt*,*i(Pr)) (mod*'). 
To make it convenient to refer to elements congruent to ratios modulo p r , we introduce the 
mapping TTT : Z p -> Z/j?rZ, the canonical extension to Zp of the quotient map TT : Z -» Z/j /Z. 

We require the following three basic lemmas from [1] in our analysis below. 
L e m m a 2*8 (Lemma 3.3 of [1]): Let w(a, b) £ «F(a, b) and fix a positive integer c. Let i and j 
be two integers such that i < j . Let £ be the largest integer (possibly zero) such that h{pl) \ c 
and m the largest integer (possibly zero) such that hw(pm) | j — i. Then 

Wi+cWj — Wj+cWi = 0 (mod pr) 

if and only if £-\-m > r. In particular, if Wi and Wj are p-regular, then pw(i,c) = pw{jjc) 
(mod pr) if and only if £ + m>r. 
L e m m a 2,9 (Lemma 3.4) of [1]): Let w(a, b) £ T{a, b) and w'(a, b) £ T(a, b) and fix a positive 
integer c. Let £ be the largest integer such that h(pl) | c and assume that £•< r. If, for integers 
n and i, 

w'n+cwn+i - wn+i+cwf
n = 0 (mod pr), (2.5) 

then wf(a,b) is a m o t ofw(a,b) modulo pr""i. 
Conversely, if wf(a,b) is a m o t of w(a,b) modulo pr~'i? then there exists an i such that 

(2.5) holds for all n. 
L e m m a 2.10 (Lemma 2.13 of [1]): Let B be apr'-block of T{a,b) containing the sequence w. 
Then, up to congruence modulo j?r, B contains pr~1(p ~ l)hw(pT) distinct sequences. 

Finally, we require two tools to "lift" roots modulo p of the characteristic polynomial to 
roots modulo higher powers of p. When I ^ J = 1, the characteristic polynomial f(x) has 
nonsingular roots, that is, roots that are not simultaneously roots of ff(x). In this situation, 
each of the roots modulo p lifts to a unique root modulo each higher power of p. The required 
lifting theorem is Hensel's lemma, which we state here for reference. 
T h e o r e m 2.11 (Hensel's lemma): Suppose that f(x) is a polynomial with integral coefficients. 
If f(m) = 0 (modf/ ) and fr(rn) ^ 0 (mod j?), then there is a unique i modulo p such that 
f(m + tp{) = 0 (mod p i + 1 ) . 

Proof: See Theorem 2.23, p. 87 of [2]. D 

When (£•) = 0, the characteristic polynomial f(x) has only one singular root modulo 
p, that is, the single root of f(x) modulo p is simultaneously a root of f(x). In this case, the 
lifting of roots is governed by the following theorem. 
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T h e o r e m 2.12: Suppose that f(x) is a polynomial with integral coefficients. If f(m) = 
0 (mod pl) and ff(m) = 0 (mod p), then f(m + tp%) = f(m) (mod pt+1). Furthermore, one of 
the following occurs: 
(a) Each of the p distinct residues rn + tp% (mod jp*+1), for 0 < t < p, satisfy f(m + tpl) = 

Q(modpi+1). 
(b) None of the residues m+tp1 (mod p*+ 1), for 0 <t < p, satisfy f{m+tpl) = 0 (mod p*+1). 

Proof: See p. 88 of [2]. • 
The lifting of singular roots of a polynomial f{x) is more complicated than that of non-

singular roots and is best described by the modulo p root tree of f{x). 
Definit ion 2.13: The modulo p root tree of f{x) is a tree whose nodes at the fe-th level are 
labelled by the roots of f(x) modulo pk. The nodes at level k + 1 are connected to the nodes 
at level k corresponding to the roots from which they are lifted. A terminal node of the root 
tree at the fc-th level corresponds to a root modulo pk that does not lift to a root modulo pk+1. 

For use below, we denote by n& the number of nonterminal nodes of the modulo p root 
tree of f(x) at the fc-th level. In other words, f(x) has exactly n* roots modulo pk that lift to 
roots modulo pk+1. 

The root tree may be finite or infinite: in the first case, all the nodes at some level of the 
root tree are terminal; in the second case, one of the roots modulo p lifts to a root modulo pk for 
all k. The polynomials that concern us in this paper, the quadratic characteristic polynomials 
f(x) = x2 - ax + 6, have at most one singular root when f ™ J = 0 , and consequently the root 
tree is connected with a single base node. We illustrate the root tree with two examples. 
E x a m p l e 2.14: Let f(x) — x2 — x — 1, the characteristic polynomial of the Fibonacci family 
^ ( 1 , - 1 ) . Since D = a2 - 4 6 = 1 + 4 = 5 = 0 (mod 5), we see that ( f ) = 0 and f(x) has a 
unique, singular root modulo 5, namely ra = 3. However, since / (3) = 5 ^ 0 (mod 25), this 
root does not lift to any root of f(x) modulo 25. It follows that the root tree of f(x) modulo 
5 consists of only the base node. 

FIGURE 1. The Modulo 3 Root Tree of f(x) = x2 + x + 61 
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E x a m p l e 2„15: Let f(x) = a;2 + a;H-61, the characteristic polynomial of the family :F(-1,61). 
Since D = 1 — 244 = —243 = 0 (mod 3), we see that f(x) has a unique singular root modulo 
3, namely ra = 1. Since / ( I ) = 63 = 0 (mod 9), Theorem 2.12 implies that the root 1 lifts to 
three distinct roots modulo 9, namely 1, 4, and 7. Thus the root tree of f(x) modulo 3 has 
three nodes on the second level 

Since / ( I ) = 63 ^ 0 (mod 27) and / (7) = 117 -£ 0 (mod 27), neither 1 nor 7 lifts to a 
root of f(x) modulo 27. However, / (4) = 81 = 0 (mod 27), so Theorem 2.12 implies that the 
root 4 lifts to three roots of f(x) modulo 27, namely 4, 13, and 22. We conclude that the root 
tree of f(x) modulo 3 has three nodes on the third level. 

Next, we observe that / (4) = /(13) = /(22) = 0 (mod 81), so each of these roots lifts 
to three roots modulo 81. Clearly the root '4 lifts to 4, 31, and 58; 13 lifts to 13, 40, and 67; 
and 22 lifts to 22, 49, and 76. Therefore the root tree of f(x) modulo 3 has nine nodes on the 
fourth level. 

To compute the fifth level of the root tree, we observe that f(x) ^ 0 (mod 243) when 
x G {4,31,58,22,49,76} while f(x) = 0 (mod'243) when x G {13,40,67}. Therefore the roots 
13, 40, and 67 each lift to three roots modulo 243, namely 13, 94, 175, 40, 121, 202, 67, 148, 
and 229. Thus the fifth level of the root tree has nine nodes. 

Finally, it is easy to check that none of the nine roots of f(x) modulo 243 lifts to a root 
modulo 729. Thus the root tree of f(x) modulo 3 is finite with five levels. (See Figure 1.) 

3 . p - R E G U L A R B L O C K S 

Our analysis of special multipliers requries a careful accounting of the number of pr-blocks 
in ^"(a, 6) having certain properties. For p-regular blocks, this accounting was performed in 

T h e o r e m 3.1 (Corollary 2.17 of [1]): Let T8ing(pr) and Treg(pr) denote, respectively, the 
number of p-regular blocks in J°(a,6) with and without p-singular terms. Then 

r^frr) = £^) and T^r) = M £ > • (3J) 

4. ^ I R R E G U L A R B L O C K S 

Counting the number of p-irregular blocks in !F(a,b) is somewhat more complicated, and 
requires examination of several cases. Note that the p-irregular sequences w in this section 
may be degenerate, in which case e(w) = oo. By convention, the assertion that e(w) > r 
includes the possibility that e(w) = oo. 
L e m m a 4 .1 : IfwE ^(a^b) is p-irregular and r < e(w), then w lies in the same pr-block as 
a sequence in F(a, b) that has initial terms 1, j , where 7 is congruent modulo pT to a root of 
the characteristic polynomial f{x) = x2 — ax + 6. 

Proof: Since w is p-irregular and r < e(w), the sequence w is first-order modulo p r . 
Moreover, since w E J*(a,&), we know that p Y (wo,w±), and therefore pY w$. Choose £ and 
7 G Z to satisfy C = WQ1 (mod pT) and 7 = w^wi (mod p r ) . Then the multiple (w of the 
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sequence w is first-order modulo p r , satisfies the recurrence relation (2.1), and has initial terms 
1, 7. It follows that 7 2 = cry - b (mod p r ) , and we see that ^(7) = 0 (mod p r ) , as desired. • 
T h e o r e m 4.2: Suppose B is a p-irregular pr-block of jF{a^b) and w, wf E B. Then either 
e(w) — e(wf) <r or e(w), e(wf) > r. 

Proof: First suppose that w, wf E B C T{a, b) and r < e(w). Since r < e(w) and w is 
p-irregular, it follows that w satisfies a first-order recurrence modulo pr. Since wf lies in the 
same pr-block as w, and, obviously, any multiple of a translation of a first-order recurrence 
is also a first-order recurrence, it is clear that wf is also first-order modulo p r , and hence 
r < e(wf). 

Next, suppose that w, wf E B C T and r > e(w). Without loss of generality, we may 
assume that e(w!) > e(w). If e(wf) > r, then wf is a first-order recurrence modulo p r , and, 
since w belongs to the same pr-block, w must also be first-order modulo pr. But then e(w) > r, 
a contradiction. Thus, r > e(wf) > e(w). 

Since r > e(w;), it is now clear that w and ws belong to the same pe^w ^-block. By 
definition of e(wf) and the fact that wf is p-irregular, we know that w1 is first-order modulo 
pe{w )o Therefore w is also first-order modulo pe^w \ and hence e(w) > e(w/). We now conclude 
that e(w) = e(t£/;), as desired. • 

The next two theorems provide an accounting of p-irregular pr-blocks when (^-J = 1, 
making extensive use of Hensel's lemma. 

T h e o r e m 4,3: If ( ~ J = 1, then there are exactly two distinct p-irregular pT-blocks in !F(a,b) 
that contain a sequence w with the property that r < ew. 

Proof: Since ( —• 1 = 1 , the characteristic polynomial f(x) = x2 — ax + b has two distinct 
roots in Z/pZ. Suppose that a, /3 E Z project onto these distinct roots. It is easy to verify 
that f(a) ^ 0 (mod p) and /;(/3) ^ 0 (mod p), as otherwise a = ft = a/2 (mod p), and the 
roots are not distinct. By Hensel's lemma, applied repeatedly, the polynomial f(x) has exactly 
two distinct roots modulo p r . If we suppose now that a and /? E Z were chosen to project onto 
these distinct roots modulo p r , then the two sequences wa and wp that satisfy the recursion 
(2.1) and have initial terms 1, a and 1, p, respectively, are p-irregular and first-order modulo 
pr. Hence e(wa) > r and e{w@) > r. Moreover, it is clear that wa and w@ lie in different 
pr-blocks. 

Conversely, if w is p-irregular with e(w) > r, then, by Lemma 4.1, w lies in the same 
pr-block as wa or (ic/^), as desired. D 

T h e o r e m 4.4: If (j) = 1 and k <r, then there are exactly 2pr~k~1(p - l)/hw(pr) 
distinct p-irregular pr-blocks in T{a, b) that contain a sequence w with the property that ew = k. 

Proof: First we note that, by Corollary 2.6, hw(pr) is independent of the choice of the 
sequence w. 

Next, we count the number of sequences, up to congruence modulo p r , in the set 

ftk = {w G JT(a, 6) J w is p-irregular, e(w) = ft, and WQ = 1 (mod p r ) } . 
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If w E fifc, then w is first-order modulo pfc, but is not first order modulo pk+1. Consequently, 
if f(x) — x2 — ax 4- h is the characteristic polynomial of w and w% = 7, then 

f(j) = 0 (mod pk) and (4.1) 
/ ( 7 ) ^ 0 ( m o d / * 1 ) . (42) 

Since (f -•) = 1, the polynomial / (x ) has two distinct roots modulo p . By Hensel's lemma, 

there are exactly two residues modulo pk that satisfy (4.1), and, again by Hensel's lemma, 
exactly 2(p ~ 1) residues modulo pk~¥1 that satisfy both (4=1) and (4.2). It follows that there 
are 2pr~~(k+1^(p - 1) residues modulo pr that satisfy both (4.1) and (4.2). 

On the other hand, if w G F(a,b) has initial terms 1, 7, where 7 is congruent modulo pT 

to one of the 2pr~^k+1^(p — 1) residues that satisfy both (4.1) and (4.2), then w satisfies (2.1) 
and is first-order modulo pk, but is not first order modulo j?fc+1. Thus e(w) — k and w E O&. 
It follows that Qt contains exactly 2pr~^k+1\p — 1) sequences that are distinct modulo pr. 

Since the initial term WQ of a p-irregular sequence in !F(a, b) is invertible, it is clear that 
each p-irregular sequence in T(a,h) for which e(w) — k is equivalent modulo pr to one of 
the sequences in fi&. Moreover, the 4>(pr) multiples by an invertible element of Z /p r Z of 
each of the 2pr~tk+1)(p - 1) sequences in Q^ are distinct modulo pT'. Thus there are exactly 
2^(pr)pr"~^+1^(p — 1) = 2p2r~k~~2(p — I ) 2 p-irregular sequences w E T(a3b) that are distinct 
modulo pr and satisfy e(w) = k. 

Finally, by Lemma 2.10 and Corollary 2.6, every j?r-block of T{a, b) that contains a se-
quence w that is p-irregular and satisfies e(w) = k contains pr~~1 (p—l)hw(pT) distinct sequences 
modulo p r , and hence there are 2pr~^k+1^{p — l)/hw(pr) such pr-blocks. D 

Finally, we examine the situation when 1—1 = 0 . Again, our objective is to count the 
number of p-irregular pr-blocks and the primary technique is to lift the roots of the charac-
teristic polynomial. In this situation, however, the roots are singular, and the primary tool is 
Theorem 2.12 rather than Hensel's lemma. 

As in the analysis when ( ^ J = 1, we wish to count separately the p-irregular blocks 
that which contain a sequence w for which ew < r and those that which contain a sequence w 
for which r < ew. However, the computation here depends heavily on the parameters a and 
b. Consequently, our results will depend upon the structure of the modulo p root tree of the 
characteristic polynomial f(x) = x2 — ax + 6. In particular, the next two results depend upon 
the number of nonterminal nodes n*. at the fc-th level of the root tree. 

T h e o r e m 4.5: If ( — j = 0 and n r _ i is the number of nonterminal nodes at level r — 1 of 

the modulo p root tree of f(x) — x2 — ax + b, then there are exactly pnr^i distinct p-irregular 
pT-blocks in !F{a,b) that contain a sequence w with the property that r < ew. 

Proof: As in the proof of Theorem 4.3, the ^irregular j?r-blocks that contain a sequence 
w for which r < ew correspond to the sequences wa that satisfy the recursion (2.1) and have 
initial terms 1, a, where a G Z projects onto a root of f(x) modulo p r . The roots of f(x) 
modulo pr correspond to the nodes at the r-th level of the modulo p root tree. 

By Theorem 2.12 each root of f(x) modulo •pr~1 either fails to lift to any root modulo 
p r , or lifts to p distinct roots modulo j?r. By definition of n r _ i , the characteristic polynomial 
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f(x) has exactly n r _ i roots modulo p r _ 1 that lift to roots modulo p r . It follows that there 
are exactly pnr-\ distinct roots of f(x) modulo p r , and consequently, there are exactly pnr~i 
distinct p-irregular pr-blocks that contain a sequence w for which r < ew. D 

T h e o r e m 4.6: Suppose that ( ^ 1 = 0 and k <r. Let ra& denote the number of nonterminal 

nodes at the k-th level of the modulo p root tree of f(x) = x2 — ax + b. Then the number of 
distinct p-irregular pr-blocks in ,F(a,&) that contain a sequence w with the property that ew — k 
is exactly 

(a) (1 — ni)pr~1/hw(pr), if k — 1, and 
(b) (pr**.-! - nk)pr~k/hw(pT), if l<k <r. 
Proof: As in the proof of Theorem 4.4, we first observe that, by Corollary 2.6, hw{pT) is 

independent of the choice of the sequence w. 
For each k < r, we let 

ilk = {w E J7(a, b) | w is p-irregular, e(w) = fc, and wo = l (mod pr)}. 

As in the proof of Theorem 4.4, if w E ilk, then w is first-order modulo pk, but is not first 
order modulo pk+1. Consequently, if f(x) = x2 — ax + b is the characteristic polynomial of w 
and w\ = 7, then 

/ (7 ) = 0 (modp*) and (4.3) 
/ ( 7 ) ^ 0 (modp& + 1) . (4.4) 

Therefore, 7 corresponds to a node on level k of the modulo p root tree of / ( x ) , but not on 
level k + 1, i.e., a terminal node on the fc-th level of the root tree. 

Suppose that k = 1. We know that there is a unique node at the first level of the root 
tree, corresponding to the unique root modulo p of the characteristic polynomial f(x). Since 
rii, which must be either 0 or 1, is the number of nodes that lift, there remain (1 — n±) 
terminal nodes, that is, (1 — n\) roots modulo p that satisfy both (4.3) and (4.4). It follows 
that there are (1 — ni)pr"1 residues modulo pT that satisfy both (4.3) and (4.4), and hence 
\tt1\ = (l-n1)pr~\ 

Now suppose that 1 < k < r. By Theorem 2.12 there are pn^-i nodes at the fc-th level 
of the modulo p root tree, and n& of these lift. It follows that the k-th level of the root tree 
contains (pnk-i — nk) terminal nodes. These nodes correspond to roots 7 of f(x) modulo 
pk that satisfy both (4.3) and (4.4). Therefore there are (pnk-i — nk)pT~k distinct residues 
modulo pr that satisfy both (4.3) and (4.4), and hence |fi&| = (pn^-i — nk)pr~k. 

Since the initial term WQ of a p-irregular sequence in .F(a, b) is invertible, it is clear that 
each p-irregular sequence in T(a,b) for which e(w) = k is equivalent modulo pT to one of the 
sequences in ilk. Moreover, the <j>{pr) multiples by an invertible element of Z / p r Z of each 
of the sequences in fi& are distinct modulo pr. Thus there are exactly 0(pr)|Ofc | p-irregular 
sequences w E T(a, b) that are distinct modulo pr and satisfy e(w) = k. 

Finally, by Lemma 2.10 and Corollary 2.6, every pr-block of T{a, b) that contains a se-
quence w that is p-irregular and satisfies e(w) = k contains pr~1(p - l)hw(pr) = <j>{pr)hw{pT) 
distinct sequences modulo p r , and hence there are \ilk\/hw(pr) such pr-blocks. 

By substituting in the computed values of \ilk\ for k = 1 and 1 < k < r, we obtain the 
conclusion of the theorem. D 
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5. T H E M A I N T H E O R E M 

T h e o r e m 5.1: Suppose that T{a,b) contains anondegeneratep-regular sequence and r > e. 
Let d be a nonnegative integer such that d = M(pr*) (mod pr*). Then there exists a recurrence 
w(a,b) E ^ ( a , 6) and an,index n such that 0 < n < h(pr~~T ) and 

d = pw(n, ft*) (mod p r ) . 

Proof: Jfw(a,b) E J"(a?6)? then for each p-regular term u/n, the ratio pw(n,h*) satisfies 

pw(n, h*) = M(pr ) (mod pr*). 

There are exactly pr~~r* residues t modulo pr with the property that t = d (mod pr*). Conse-
quently, if we can show that the residues 7rr(pw(n,h*)) E Z /p r Z , corresponding to the ratios 
pw(n,h*) arising from every p-regular term wn of every sequence w(a,b) E !F(a,b), account 
for pT~T distinct residues modulo p r , then one ratio must satisfy the required congruence 
Pwirij h*) = d (mod p r ) . To this end, we carefully enumerate the distinct residues modulo pr 

that appear as ratios pw(n, h*)(mod pr) for sequences w(a, b) E T. 
First observe that, by Lemma 2.8, the ratios pw(n3 h*) are distinct modulo pT for 0 < n < 

h(pr~r*)« Second, by Lemma 2.9, 

{irr(pw(n,h*)) \0<n< (pr~r*)} = {irr(pw,(n,h*)) \0<n< h(pr~r*)} 

when w and wf lie in the same block modulo pT~r , while 

{nr{Pw{n, h*)) \0<n< (pr^)} D K ( p w / ( n , h*)) \0<n< fc(pr"r*)} = 4> 

when w(a,b) and w;(a, 6) lie in different blocks modulo p r ~ r * . Thus we may narrow our 
analysis to one sequence from each pr""~r* -block of ,F(a,6). 

If «/(«,&) contains no p-singular elements, then the ratios {pw(n,h*) | 0 < n < /i(pr"~r )} 
account for h(pT~~r*) distinct residues modulo pr. On the other hand, suppose that w(a,b) 
contains p-singular terms, Clearly every cycle in the same block as w(a, b) has the same number 
of p-singular terms, and without loss of generality, we may assume that WQ is p-singular. Then 
wm isp-singular if and only if h{p) \ TO. Consequently, one restricted period of w(a, b) contains 
h{pT~T*)/h{p) p-singular terms and h(pr™~r,¥)—h(pr~r*)/h(p) p-regular terms. As noted above, 
these p regular terms wm give rise to distinct ratios pw(m, h*) modulo p r , and hence the block 
of w(a, b) contributes h(pr~r*) — h(pr"~"r )/h(p) ratios modulo p r . 

We can now apply Theorem 3.1 to count the distinct special multipliers that arise from 
sequences in the p-regular pr""r -blocks of T(a,b). The number of distinct ratios pw(n,h®) 
modulo pr is: 

Treg(j/-r*) • h(pr~r') + W p - ' - * ) • (h(pr~r') - ^ p ) 
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To complete the proof, we count the number of distinct special multipliers that arise from 
sequences in the p-irregular pT~r* -blocks. We break the analysis into three cases corresponding 

to (f) = - 1 , 1 , and 0. 

Case 1: ( f ) = - 1 . 

If ( ^ J = —1, (5.1) yields pr~r* distinct ratios, and the argument is complete. 

Case 2: (f) = 1. 

Assume that ( ^ 1 = 1. Then (5.1) yields pr~~r* — 2pr~r*~~1 distinct ratios arising from 

the p-regular pr~r -blocks. To complete the argument, we counnt the distinct ratios arising 
from sequences in the p-irregular p r ~ r * -blocks. 

If B is a p-irregular pr~r* -block of ^*(a,6) that contains a sequence w for which e(w) > 
r — r* then, by Theorem 2.5, hw(pr~r*) = 1 and the block B contributes only one additional 
ratio, p(0,1). Since, by Theorem 4.3, there are exactly two such blocks, these blocks contribute 
two additional ratios. 

If B is a p r ~ r * -block containing a sequence w for which e(w) = k < r — r*, then w 
contributes hw(pT~~r ) additional ratios. By Theorem 4.4, there are exactly 2pr"~r*~k~l{p — 
l)/hw{pr~~T ) such pT"T -blocks, and therefore these blocks contribute 

additional ratios. If we sum over all possible values of fc, i.e., 1 < k < r — r*, we obtain 

= 2(p - i f " ~^~ l = 2pr~r'-1 - 2 (5.2) 

additional ratios. 
Combining the new ratios obtained from the p-irregular pT~~r* -blocks with those obtained 

from the p-regular pr~r* -blocks yields p r ~ r * - 2 p r " r * - 1 + 2pT~r*-1 - 2 + 2 = pr~r* ratios, as 
desired. 
Case 3: (jf) = 0. 
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Assume that ( y j = 0. Then (5.1) yields pr r* -pr r* 1 distinct ratios arising from the 

p-regular pr~T -blocks. As in the previous case, we complete the argument by counting the 
distinct ratios arising from sequences in the p-irregular _pr~"r*-blocks. 

As usual, for each k satisfying 1 < k < r, let nk represent the number of nonterminal nodes 
at the fc-th level of the modulo p root tree of the characteristic polynomial f(x) = x2 — ax + b, 

If B is a p-irregular pr~r -block of T(a, h) that contains a sequence w for which e(w) > 
r — r* then, by Theorem 2.5, hwp(T~r*} = 1 and the block B contributes only one additional 
ratio, p(0,1). Since, by Theorem 4.5, there are exactly pn r _ r *„ i such blocks, these blocks 
contribute pnr-T*-i ratios. 

If B is a j>-irregular p r ~ r * -block that contains a sequence w for which e(w) = k < r — r*, 
then w contributes hwp^T~~T*} additional ratios. Theorem 4.6 implies that there are exactly 
(1 — ni)pT~~T*~x/hw{pT~T*) such pr~r*-blocks when k = 1 and (pnk-i—nk)pr~'r*~k/hw(j)r~r*) 
such jf~r*-blocks when 1 < k < r — r*. Therefore the number of additional ratios contributed 
by these blocks is 

{1 hZi^-n'1' *«(pr~r">=p{l ~ nw^1' when k=x 

^ ^ " / ^ y r ' " * • K(pr-r*) = (pn*-i - n * ) ! / - " - * , when k > 1. 
hw(pr r ) 

If we sum over all possible values of A, i.e., 1 < k < r — r*, we obtain a simple telescoping sum: 

i—r* — 1 

( l-ni)pr-r '-1+ J2 (Pnk-i-nk)pr-r*~k 

jfc=2 

= (1 - ni)pr"" r*_ 1 + (pax - n2)p r~ r*~2 + • • • + (pnr_r*_2 - nr-r*-i)p 

T — T * — 1 

= p — jra r _ r *_i . 

Adding the count of new ratios obtained from the p irregular pT~~r -blocks to that obtained 
from the p-regular pr~r*-blocks yields pT~~r* -~pr~"r*~1-j-pnT^T*~.i+pr'~'T*~"1 —pnr_r*-i = PT~~T 

ratios, as desired. • 
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1. STERN'S D I A T O M I C A R R A Y 

Each row of Pascal's triangle is formed by addition of adjacent elements of the preceding 
row, producing binomial coefficients and counting combinations. Each row of Stern's diatomic 
array is formed by addition of adjacent elements of the preceding row, but interspersed with 
elements of the preceding row. In this case, the rows of the table will be shown to count certain 
Fibonacci representations. 

Starting with 1 and 1, form, a table in which each line is formed by copying the preceding 
line3 and inserting the sum of consecutive elements: 1, 1; 1, 1+1, 1; 1, 1+2, 2, 2+1, 1; 
The body of the table contains Stern's diatomic array, sequence A049456 in [10]. Actually, 
this arra3^ has been called Stern's diatomic series in the literature [9], [11], but it should have 
been called the Eisenstein-Stern diatomic series by earlier authors because Stern's introduction 
refers back to Eisenstein. 

1 1 
1 2 1 
1 3 2 3 1 
1 4 3 5 2 5 3 4 1 
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 
1 6 5 9 4 117 103 118 135 12 7 9 2 9 7 125 13 8 113 107 114 9 5 6 1 

If an,k is the kth term in the nth line, k = 1,2, . . . , n = 0 , 1 , 2 , . . . , 

a«,2m = «n~l,m + ^n-l ,m+l a n d «n,2m-l = Q>n-l,m- (1-1) 

Lehmer [9] reports that Stern took the initial line 1, 1 as the zerot/l line and proved, among 
others, the following properties: 

1. The number of terms in the nth line is 2n + 1, and their sum is 3 n + 1. 
2. The table is symmetric; in the nth line the kth term equals the (2n + 2 — k)th term. 
3. Terms appearing in the nth line as sums of their two adjacent terms are called dyads. 

There are 2n~~1 dyads and 2 n ~ 1 + 1 non-dyads on the nth line. The dyads a occupy 
positions of even number k (called rank) on the line. 

4. Two consecutive terms, a and 6, have no common factor. 
5. Every ordered pair (a, b) occurs exactly once as consecutive terms in some line of the 

table. 
6. If a and b are relatively prime, the pair of consecutive terms (a, b) appears in the line 

whose number is one less than the sum of the quotients appearing in the expansion of a/b 
in a regular continued fraction. 
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Lehmer [9] then uses the quotients of the continued fraction expansion of r\jt2 to place the 
consecutive terms r\ and r^ into the table by computing both the line number and the rank of 
r i . Further, he shows that the largest dyads in the nth line, n > 2, have the value F n + 2 , the 
(n + 2)nd FibQnacci number. Lehmer's results for the line number and rank are summarized 
in Theorem 1.1. 

T h e o r e m 1.1: If consecutive terms r\ and r<i occur on the nth line of Stern's diatomic array 
and if the continued fraction for ri/r2 is [<Zi; </2, <Z3J «• •»<Zm-2> r m - i ] , then 

n = Qi + Q2 + Q3 -\ h q-m-2 + r m - i - 1, (1.2) 

and if m is odd (even), r\ is the left (right) neighbor of r 2 in the first (second) half of line n. 
If rn is odd, the position number k (rank) of T\ in the first half of line n is 

k = 2qi"^q2^—I"0m-2 _ 2qi~*"q2~*r'"+qrn-s 4 - . . . — 2qi~*~q2 -t- 2qi (1.3) 

More recently, Calkin and Wilf [6] use Stern's diatomic array to explicitly describe a 
sequence b(n) (sequence A002487 in [10]) such that every positive rational appears exactly 
once as b(n)/b(n + 1), 

{b(n)} = {1 ,1 ,2 ,1 ,3 ,2 ,3 ,1 ,4 ,3 ,5 ,2 ,5 ,3 ,4 ,1 ,5 ,4 ,7 , . . . } . (1-4) 

It is shown in [6] that b(n) counts the number of hyperbinary representations of the integer 
n, n > 1; that is, the number of ways of writing n as a sum of powers of 2, each power being 
used at most twice, 6(0) = 1. Here, we apply Stern's diatomic array to counting Fibonacci 
representations. 

2. F I B O N A C C I R E P R E S E N T A T I O N S 

Let R(N) denote the number of Fibonacci representations [4] of the positive integer N\ 
that is, the number of representations of N as sums of distinct Fibonacci numbers F&, (or 
as a single Fibonacci number F&), k > 2, written in descending order. We define U(0) = 1. 
The Zeckendorf representation of JV, denoted Zeck N, is the unique representation of N using 
only non-consecutive Fibonacci numbers F&, k > 2. The largest Fibonacci number contained 
in N will be listed first in Zeck N. Whenever R(N) is prime, Zeck N uses only Fibonacci 
numbers whose subscripts have the same parity [3], [5]. For that reason, we are interested in 
integers N whose Zeckendorf representation uses only even-subscripted Fibonacci numbers; we 
call such N an even-Zeck integer, denoted JV", sequence A054204 in [10]. The j t h even-Zeck 
integer N = N(j) can be written immediately when j is known. 

We list early values R(N) for consecutive even-Zeck integers N, augmented with R(0) = 1, 
sequence A002487 in [10]: 

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 
N(j) 0 1 3 4 8 9 11 12 21 22 24 25 29 30 32 33 . . . (2.1) 

R(N(j)) 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 . . . 
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The even-Zeck integers N(J) are enumerated below for j = 1,2, . . . ; we define N(0) = 0. 

3 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

binary 
1 
10 
11 
100 
101 
110 
111 
1000 
1001 
1010 

powers of 2 
2°  
21 

21 + 2°  
22 

22 + 2°  
22 + 21 

22 + 21 + 2°  
23 

23 + 2°  
23 + 21 

Zeck N(J) 
F2 
F4 

F4 + F2 

F6 
FQ + F-2, 
F6 + F4 

FQ + F4 + JF*2 
•̂8 

•2*8 + -^2 
^8 + ^4 

m i 
3 
4 
8 
9 
11 
12 
21 
22 
24 

L e m m a 2 .1 : If j is represented as the sum of distinct powers of 2 in descending order, 
j = 2r + 2s + j- 2W, r > 5 > w, then the j t h even-Zeck integer N = N(j) is given by Zeck 
N(j) = F2(r+i) + -̂ 2(5+1) H 1" -^(w+i)- I n short, replace the binary representation of j in 
the powers 2p,p = 0 , 1 , . . . , by i*2(p+i) to find N = JV"(j). 

Proof: The short table displays Lemma 2.1 for j = 1,2, . . . , 1 0 . The next even-Zeck 
integer N(j + 1) will be formed from the binary representation of (j + 1). • 

L e m m a 2*2. (i) If Zeck N = N(j), j > 2, has F2 for its smallest term, then N-1 = N(j -1), 
but N + 1 is not an even-Zeck integer. 

(ii) if Zeck N = N(j), j > 2, has F2c, c > 2, for its smallest term, then JV> 1 = N(j + 1), 
but N — 1 is not an even-Zeck integer. 

(iii) The even-Zeck integer N* preceding N = N(j), j > 2, with F2cj c > 1, for its 
smallest term, is N(j - 1) = N* = N - F2c^2 - 1. 

Proof: Let c = 1, and take # ( j ) = F 2 n + • • • + F2p + F2, p > 2, n > 3. Then 
JNT — 1 = N(J - 1), but N+l = F2n H h F 2 p 4- F 3 is not an even-Zeck integer, illustrating 
(i). Further, N(j-1) = N-F0-1 = N- -F2c-2 - 1,c = 1, satifying (iii). 

Let JV(j) - F 2 n + .-• + F 2 c + 2 p + F2c, c > 2 , p > 1, n > 3. Then JV(j) + 1 = F2n + ••• + 
F2C+2 + *2c + *2 = N(j 4- 1), but # ( j ) - 1 = F2n + • • • + F 2 c + 2 p + F 2 c - 1 - F2fl + . • • + 
F2C+2p + (F2C-1 H I- F7 + F5 4- F3) , not an even-Zeck integer, as in (ii). Part (iii) follows 
from 

N(j) ~ F 2 c _ 2 - 1 = F2n + . . • + F 2 c + 2 p + F2c - F 2 c „ 2 = 1 
= F2n + . . . + F 2 c + 2 + (F 2 c - i - 1) 

= F2n + • • • + *2c+2p + (*2c-2 + * ' ' + ^6 + F 4 + F2) = N(j - 1) = N*. D 
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Cut the list from R(N) given earlier in (2.1) at the boundary l 's to form rows 

(1 1), ( 1 2 1), ( 1 3 2 3 1), ( 1 4 3 5 2 5 3 4 1 ) , . . . , 

where we keep the leftmost 1 for symmetry. Each row, after the first, includes the list of R(N) 
for the preceding row, interspersed with sums of successive pairs of adjacent terms from the 
preceding row: 

(1, 1), (1, 1 + 1, 1), (1, 2 + 1, 2, 2 + 1, 1), (1, 1 + 3, 3, 3 + 2, 2, 2 + 3, 3, 3 + 1, 1), . . . . 

We recognize the first four lines of Stern's Diatomic array. Our nth row, 1, n, (n — 1), . . . , 
contains 1 followed by the number of Fibonacci representations R(N) for consecutive even-Zeck 
integers N,F2n < N < i^n+i — 1 where R(F2n) = n, n > 1. We next prove that this array is 
indeed the same as Stern's diatomic array. Lemma 2.3, which allows us to shift subscripts, was 
Hoggatt's conjecture and was proved by Klarner [8, Thm. 4]. Lemma 2.4 is part of Lemma 11 
from [4]. 
L e m m a 2.3: If sequence {hn} satisfies the Fibonacci recurrence bn+2 = bn+i + bn, then 
R(bk — 1) = R(bk+i — 1) for k sufficiently large. 

L e m m a 2.4: Let N be an integer whose Zeckendorf representation has F2c, c > 2, as its 
smallest term. Then R(N) = R(N - 1) + R(N + 1). 

T h e o r e m 2 .1 : Let the nth row of an array list the number of Fibonacci representations R(N) 
for consecutive even-Zeck Integers N, F2n < N < -FWfi — 1- Let bnjk denote the 
kth term of the nth row, n = 1, 2, 3, . . . , where &n,i = 1, and 6 n ^ = R(N(jnik)) for 
j n k = 2n~1 + k - 2, Jfe = 2 , 3 , . . . , 271"1 + 1. Then 6n>fc = an_ijfe, the kth term in the (n - l)st 

line in Stern's diatomic array, n = 1,2, . . . , and k = 1 ,2, . . . , 2 n _ 1 + 1. 

Proof: Interpret the leftmost column (k = 1) of l 's as R(F2n-i — 1) = 1, where F2n-i — 1 
is the even-Zeck integer preceding F 2 n according to Lemma 2.2 (iii) with N = I<2n,Ti > 1. In 
particular, 6i;i = 1 = ao,i, and 6i52 = 1 = ao,2- We show that the two arrays have the same 
rule of formation by establishing 

bn,2m = &n-l , ra + & n - l , m + l a n d 6 n , 2 m - l = & n - l , m ? fl>2. (2 .2) 

(a) We first prove bn^m = &n-i,m + 6n-i,m+i for n > 2, m = 1 , . . . , 2 n ~ 2 . The case m = 1 

is satisfied because 6n- i , i = 1 by definition, and 6n-i,2 = R(N(2n~2)) = R(F2(n-i)) = n — 1 

from above. For m = 2 , . . . , 271"2, N(j) = JV(jn>2ro) = F2n + • • • + F2c+2p + F 2 c , c > 2,1 < 
p < n — 3, when n > 3 because c = 1(F2) is not present for even k < 2m in row n. Also, 
\>c+p; hence, 1 < p < n- c < n- 2 for n > 3; if n = 2,p = 0 and c = 2. From Lemma 2.2, 
N* = N(j - 1), j\T = N(j) = iV(jn j 2 m), and (J\T + 1) = J\T(j + 1) are consecutive even-Zeck 
integers. Hence 6n,2m-i = R(N*),bni2m = J?(iV), and 6nj2m+i = -R(iV+ 1) are consecutive 
entries in the nth row. Since N(j-1) and iV(jF+l) are each a term in some Fibonacci sequence, 
apply Lemma 2.3 to shift subscripts down 2 in the expressions for R(N(j+l)) and R(N(j-l)). 
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R(N(j + 1)) = R(N + l) = R(F2n + .- + F2c+2p + F2c + (F3 - 1)) 
- R((F2n-2 + . . . + F2 c + 2 p_2 + F2c_2 + Ft) - 1) 

= R(F2(n-l) +'"+ ^2<H-2p-2 + F2 c_2) = R(M), (2.3) 

which is in the (n — l)st row, and M, the argument given above, is an even-Zeck integer. The 
binary representation of M — F2n^2 + • • • + F2c+2p-2 + F2c^2, c > 2, is obtained from 
the binary representation of N by a right-shift by one position (see Lemma 2.1). Because 
N = N(jn,2m), one therefore finds M = N(jn-i,m+i)l hence by definition R(M) = 6n-i,m+i. 
Prom Lecama 2.2 (iii) (with c -> c — 1 > 1), and Lemma 2.3, 

J2(JVtf - 1)) = R(N*) - i?(# - F2 c - 2 - 1) 

= R(F2n-.2 + • • • + F2C+2P-2 + F 2 c - 2 ~ F2 c-4 ~ 1) = «(M*) (2.4) 

where M*, defined as the argument of the last R, is the even-Zeck preceding M. Hence, 
M* = N(jn-iim), and by definition, R(M*) = 6n™ijm. What we have to prove now is 
R(N) = R(M*) + R(M). For this we want to use Lemma 2.4 with N-> N. We know already 
that R(N + 1) = R(M) but N — 1 is not an even-Zeck integer for c > 2. However, we now 
show that R(N - 1) = ^(M*). 

fl(J\T - 1) = R(F2n + • • • + F2 c + 2 p + F2c - 1) 

= E(i?
2n_2c+2 + 1" i*2p+2 + -̂ 2 — 1) = ^(iT) 

by shifting subscripts down (2c - 2). Recalculate R(N*) as 

R(N(j - 1)) = R(F2n + • • • + F2 c + 2 p + F2c - F2c™2 - 1) 
= fl((*2« + • • • + ^2c+2p + *2c-l - 1) 

= U(*2»-2c+2 + • • ' + ^p+2 + Fl - 1) = fi(A-), 

by shifting subscripts down (2c — 2). Thus, 

R(N - 1) = iJ(J\r(j - 1)) = R(M*). (2.5) 
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Therefore, 6n,2 m = K-i,m + K-i,m+i, and part (a) of the proof is finished. 
(b) We prove 6n,2m-i = &n-i,m fo rn > 2,m = 1 , . . . , 2 n " 2 . For m = l,6n>i = 1 = 6n- i , i 

by definition. If m = 2 , . . . ,2 n ~ 2 ,6 n ) 2 m-i = #(JV"(in,2m-i)) = E(iV"*) if we use the same 
notation as in part (a) of the proof. There we have already shown R(N*) = R(M*) = 6 n - i , m , 
which finishes part (b) of the proof. Together with the input &i,i = 1 = &ij2 we have shown 
that6n,jb = o n - i > j b , n = l , 2 , . . . , a n d f c = l > 2 , . . . , 2 f l - 1 + l . • 

Corol la ry 2.1.1: If N is an even-Zeck integer such that Zeck N ends in F 2 c , c > 2, and if N* 
is the preceding even-Zeck integer, then R(N*) = R(N - 1 ) . Also, iJ(JV(j - 1 ) ) = R(N(j) - 1 ) 
with N = N(j ) . 

Proof: See equations (2.4) and (2.5). • 

T h e o r e m 2.2: Let N = N(j) be the j t h even-Zeck integer, j = 0 , 1 , 2 , . . . , with N(0) = 0. If 
R(N) = 6nfc with bUik defined in Theorem 2.1, then N = N(jn,k) with j n > f c = 2T l-1 + fc - 2, fc = 
1,2, . . . , 271"1 + 1, for n = 1,2, N(j),j > 1, is obtained by replacing powers 2P in the dual 
representation of j n ^ by F2(p+i); if j = 0, then JV = 0. Alternately, N = F 2 n + X"(ik - 2), 
where ^(fc - 2) is the (k - 2)nd even-Zeck integer. 

Proof: Apply Lemma 2.1 to Theorem 2.1. • 
To illustrate Theorem 2.2, R(N) = 7 = 65,3 appears as the 8th term in the 5th row; 

n - 2 = 8 - 2 = 6 = 22 + 21, yielding N = F2.6 + F 2 ( 2 + 1 ) + F2{1+1) = F1Q + F6 + F 4 = 66, and 
iJ(66) = 7. The earlier R(N) = 7 = 65j4 in that row occurs for TV = F1Q + FA = 58. 

Since the nth row of the array for R(N) is the (n — l ) s t line of Stern's array, several prop-
erties of Fibonacci representations of even-Zeck integers N correspond directly to properties 
given for elements of Stern's diatomic array from Section 1. 

1. There are 2n~~1 even-Zeck integers N in the interval F 2 n < JV" < F 2 n + i — 1. There are 
2 n _ 1 + 1 terms R(N) in the nth row, whose sum is 3 n _ 1 + 1. 

2. The table of R(N) values is symmetric; in the nth row, the kth term equals the (2 n ~ 1 + 
2 - k)th term. Compare with R(F2n + M) = R(F2n+i - 2 - M) , 0 < M < F2n-i, n>2, 
formed from Theorem 1 of [4] by replacing n with 2n. 

3. Dyads R(N) correspond to Zeck N ending in JP2C, c > 2; excepting the first column, 
non~dyads R(N) have Zeck N ending in F2 = 1. The dyads have even term numbers. 

4. For even-Zeck N, consecutive values for R(N) are relatively prime. Consecutive values 
for even-Zeck integers N appear in relatively prime pairs, (3,4), (8,9), (11,12), (21, 22), 
(24 ,25) , . . . . 

The largest value [2] for R(N) in row n is -Fn+ij corresponding to Fn+2 as the largest dyad 
in the nth line as given by Lehmer [9]. Notice that Lemma 2.3 appears in the table as the 
columns of constants, and the central term in each row is 2. Properties 5 and 6 are explored 
in the next section. 

3 . S T E R N ' S D I A T O M I C A R R A Y A P P L I E D T O 
F I B O N A C C I R E P R E S E N T A T I O N S 

We can find many even-Zeck integers N having a specified value for R(N) by applying 
Theorem 1.1. According to Lehmer [9], Stern gives Euler's #(m) as the number of times that 
an element m appears in the (m - l)si and all succeeding lines of Stern's diatomic array; this, 
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of course, is our mth row, where values for R(N) are the elements, and Euler's #(m) is the 
number of integers not exceeding m and prime to m. We express R(N) as the sum of a pair 
of relatively prime integers r\ and r2, and then use the Euclidean algorithm to write quotients 
used in the continued fraction for r i / rg . The row and column numbers for R(N) — bn^ as 
well as the Zeckendorf representation of N, can be written from those same quotients. 

T h e o r e m 3.1: Let R(N) = hnjk as in Theorem 2.1. Let R(N) = n + r2, n and r2 relatively 
prime. Use the Euclidean algorithm to write r\ = gir2 + 3̂? r2 = 92^3 + ^4,^3 = q^r^ + 
r 5 , . . . , r T O _2 = qm~2-\-rm„i+rm, rm = 1. Then n / r 2 = fei;g2,03,-•• ,gm-2,rTO_i], a regular 
continued fraction. The dyad value R(N) occurs in row n, where 

n = Qi + m + qs + • • • 4- qm-2 + r m _ i + 1; (3.1) 

R(N) occurs between n and r2, in columns k and (2 n ~ 1 + 2 — &), fc > 2, where 

jfe = 2«1+«*+-"+*»-2+i - 2 « 1 + « a + " , + ^ - » + 1 + 2 g i + g 2 + 1 + 2*1+1,ra odd, (3.2a) 

.or k = 2qi~¥q2-j""+qrn-2+1 - 2*1 +«2 +-+*»-»+ 1 + 2 g i + 1 + 2,m even, (3.2b) 

Proof: Equation (3.1) is (1.2), adjusted by adding 2, since our row numbers are one more 
than Stern's line numbers, and we are one row farther out. Equation (3.2a) is (1.3) when 
m is odd, taken one row farther out; k is twice the column number of r% in the (n — l)st 

row. If v\ is a dyad and thus has an even column number, let r2 = &n-1,2^4-1 • If T\ is 
the left neighbor of r2, then n = 6n-i,2w and 6n,& = n 4- r 2 = &n,2(2w);fe is twice the 
column number of T\ as (3.2a). If r i is the right neighbor of r2, then n = &n-i,2«H-2j and 
6n,& = ^2 + n — 6n-i,2ti;+i + 6n-i,2w+2 = &2(2w+i) = &n,4w+2, so that k is 2 more than twice 
the column number of n as in (3.2b). • 

L e m m a 3.1: Let bn,k be the kth term of the nth row of the array of Theorem 2.1. The term 
directly below 6n,& in the (n + p)th row is bn,k = &n+p,2i»(jfe-i)+i- I n particular 

&i,i = fti+fn-ij^^-^i-ij+i = &n,i = l , n > 1; 

&1,2 = & l + ( n - l ) , 2 ^ - 1 ( 2 - l ) H - l = & n , 2 » - i + l = l > n ^ *> 

&p,2 = 6p+(n-p),2'»-P(2-l)+l = K,2™-P+1 =P,n> p,p = 1 , 2 , . . . . (3.3) 

Proof: Lemma 3.1 restates Theorem 1 from [9]: If N has rank Rn in the nth line, it 
appears directly below in the (n + k)th line with rank Rn+k = 2^ (1^ — 1) + 1. D 

Define a zigzag path through the array of Theorem 2.1 as movement down and right 
alternating with movement down and left. Define ZR(y) as a movement down y rows and 
right 1 term; ZL(x), down x rows and left 1 term. Prom Lemma 3.1, 

ZR(y) :b w,t ~* &t»+y,[2»(t—1)+1]+1 — bw+y,2y(t—l)+2> 

ZL(x) :hWit -» 6to+x,[2*(*-i)+i]-i = bw+x,2*(t-i)- (3-4) 
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L e m m a 3.2: Let R(N) = 6n,fc = n + r2, n/r2 = fei; q2, 93,••• , 3m-2, r m _ i ] , r m _ i > 2, where 
7*1 is a dyad, r i > r2. If 6n,fc is on the left side of the table, the zigzag path from &i5i to 6n>fc is 
ZR(rm-.i - l)ZL(qm-2) • • .ZR(q2)ZL(qi)ZR(l), where T\ is on the left of r2, m is odd, and 
k is given by (3.2a); or, ZR(rm-i - l ) Z L ( g m _ 2 ) . . . ZR{qi)ZL{\), where n is on the right of 
r2, m is even, and k is given by (3.2b). 

If bUik is on the right side of the table, the zigzag path from &i)2 to bHik is 
ZL(rm-i - l)ZR(qm-2).. • ZL(q2)ZR(qi)ZL(l), for n on the right of r2, m odd; or, 
ZL( r m _ i - l)ZR(qm-.2)... ZL{qi)ZR{\), rx on the left of r2, m even. R(N) = 6n,2n-i+2_fc 
for A; as in (3.2a) or (3.2b) as m is odd or even. 

Proof: On the left side of the table, the path from &i?i begins ZR(rm-i — 1) to brrn_li2 

followed by ZL(qm-.2). If T\ is on the left of r2, the path from b\^\ will end with a move ZR(1) 
to R(N), preceded by ZL{a\) to r\\ m is odd. If r\ is on the right of r2, the path from b\,\ to 
bHik ends .. .ZR(qi)ZL(l), so that m is even. Suppose r\/r2 = [ a i ; a 2 , a3 , r m _ i ] . The zigzag 
path from 6 M to bn,k is ZR(rm-i - l)ZL(a3)ZR(a2)ZL(ai)ZR(l): 

h,l - > ftrTO-i,2 - > fto3+rm_i,2°3(2-l)+0 ~* &a 2 +a 3 +r m _ i ,2 a 2 ( 2 a 3 - l ) + 2 

"""* ^ a i + a 2 + a 3 + r m _ i , 2 a i ( 2 a 2 + 0 3 - 2 a 2 + 2 - l ) + 0 

- * ^ a i + a 2 + 0 3 + r m _ i H - l , 2 ( 2 a i + 0 2 + a 3 - 2 a i + ° 2 + 2 o i _ i ) + 2 

= = "n,2°i+°2+a3+1—2°i+02+1+2°i+15 

k is given by (3.2a), a\ = qi, i = 1,2,3. This pattern continues fo rm odd. Suppose r\/r2 = 
[oi;a2,rT O_i]. The zigzag path from b^i to bUjk is Zi?( r m _i - l )ZL(a 2 )Z i i (a i )ZL( l ) : 

&1,1 "> ftrm_i,2 - > 6 o 2 + r m _ i , 2 « 2 ( 2 - l ) + 0 ""> &a i+a 2 +r m _ i ,2« i (2«2- l )+2 

~~*" ̂ a i + a 2 + r m _ i + l , 2 (2 a i+ a 2 -2 a i - [ -2 - l )+0 = & n , 2 0 i + a 2 + i - . 2 « i + i + 2 ; 

fc is given by (3.2b), a« = (ft, i = 1,2. The pattern continues for m even. 
The situation on the right side of the table is similar. The path from &i)2 to 6n,& on the 

right side is the mirror image of the path from &i?i to bnyk on the left. D 

L e m m a 3.3: Let R(N) = bn,k = n + r 2 , r i / . r 2 = fai; 92,03, . . . , g m _ 2 , r m _ i ] , r m _ i > 2. If 
r\ is the left neighbor or r2 in the (n — l ) s t row, and m is odd (even), the ordered sequence, 
r i , i^JV^r-j, appears in the nt / l row on the left (right) side of the table. 

Theorem 3.2 generalizes the zigzag paths of Lemma 3.2 to JRSJftS... patterns, where 
9t(g) means to write the next (q) even-subscripted Fibonacci numbers; £(q), omit the next (q) 
even-subscripts. Note that r\ and r2 are not ordered. 

T h e o r e m 3-2: Let the dyad R(N) = n + r 2 , r i and r2 relatively prime, appear in the nth 

row as in Theorem 3.1. If R(N) is between n and r2 on the left side of the table, Zeck JV" is 
given from n/r2 = [qi\q2jg3,...,qm-2,rm_i],rm_i > 2, by the 9tC9tC. . . pattern 

9*(l)£(r r o- i - l )9t (gm^.2 )£(gm_3) . . . JK(«i)£(l), m odd; (3.5) 

• • .9t(g2)£(gi)£(l) , m even. The first Fibonacci number written is F2n. 
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Proof: Let 2q correspond to i*2(p+i) as in Lemma 2.1; R(N) = bUik is the term appearing 
(k - 2) entries to the right of 6n?2 = R(F2n) where F2n = N(2n~1). Prom (3.1) with (3.2a) 
or (3.2b), the highest power of 2 in k has exponent (qt + q2 H h qm-2) = (n — r m _ i — 1). 
Prom (3.2a), 

ft — 2 = ( 2 9 l + 9 2 _ l — H g m - 2 + 1 _ 2ff i+92+—+gm-3+i _j_ . |_ /2?i+92H-g3+i _ 2 0 i + 0 2 + i \ 1 ( 2 g i + 1 — 2) 

__ 29l+02+—+«m-3 + l(29™-2 — 1) -j f- 2^1+^2 + l /2?3 _ ] \ _|_ 2(2^1 ~ l ) 

_- 2?1+?2H hgm-3 + 1 /2?m-2-l _|_ |_ 2 -f 1) -f J- 2Ql+q2 + 1(2q3~1 _|_ |_ 2 4- l) 

+ 2(29 1"1 + . . . + 1) 

which contains qm-2 consecutive powers of 2 beginning with 2 9 l + 9 2 + " " + g m - 2 , followed by qm-3 
consecutive missing powers of 2, followed by qm-4 consecutive powers of 2 , . . . , ending with qi 
consecutive powers of 2, with the one final term 2° missing. (Recall that k is even, since R(N) 
is a dyad.) In the sum (2 n ~ 1 + (k — 2)), the leading exponent in each block of consecutive 
powers of 2 results from successively subtracting r m _ i , gm_2, <Zm-3j from (n — 1). If m is even, 
(k — 2) as calculated from (3.2b) ends with h (2qi + 2) — 2, or (qi + 1) missing powers of 2; 
note that 2° is always missing. The pattern of (3.5) follows from Theorems 2.2 and 3.1, and 
Lemma 3.2. D 

Corol la ry 3.2.1: The zigzag path in which all quotients are 1 leads to &n,fc = R(N) = F n + i , 
for N = F2n + i^n-4 + F2n-% + - - . , with smallest term F6 or F4, as n is odd or even. 

Proof: Rewrite [1; 1 , 1 , . . . , 1,1,1] as [1; 1 , 1 , . . . , 1,2] and use Theorem 3.2. On the right 
side, N — F2n + F2n-2 + F 2 n - 6 + . . . , which results from (3.5) if r m _ i = 1. • 
Coro l la ry 3.2.2: If R(N) from Theorem 3.2 is between n and r2 on the right 
side of the table, Zeck N is written from the 9t9tC9lC... pattern, 9t(l)!K(rm_i -
l ) £ ( g m _ 2 ) 9 % m _ 3 ) •. -JK(gi)£(l), m even; or, ending .. .£ (g i )£( l ) , m odd; r m _ i > 2. 

Proof: The zigzag path from &ij2 to bn,k on the right side is the mirror image of that 
from 6i?i to bUjk on the left side. Recall that bn^ = hn,2™-1+2-k by symmetry. D 

To illustrate, compute N from R(N) = 27 = 19 + 8. 19/8 = [2; 2,1,2]; n = (2 + 2 + 
1 + 2) + 1 = 8, m = 3. We are on the left side, and Zeck N begins i*i6;&8,2 = 8. Interpret 
the pattern 9t(l)£(2 - l)Vt(l)£(2)fJ{(2)£,(l) as use 16; omit 14; use 12; omit 10 and 8; use 6 
and 4; omit 2. Thus, Zeck N = Fw + F12 + F6 + FA = 1142; iJ(1142) = 27. The sequence 
19, 27, 8, occurs with 27 = 68j40 = R(N(jn,k)) for j^k = 2 8 " 1 + (25 + 22 + 21) - 2, verifying 

N = F2(74.i)+F2(5+1)+F2(2+i) +-^2(1+1)• O n t n e r igf l t side, Corollary 3.2.2 gives the associated 

solution N' from JH(1)£«(2 - l)£(l)JR(2)il(2)£(l) as JV; = F i 6 + F 1 4 + F10 + F 8 - 1440, where 
fl(1440) = 27 = 68,903 8 = 68)89 and 19 = &8,9i-

The symmetries of the array for R(N) let us find other even-Zeck integers M such that 
R(M) = R(N), with R(M) and R(N) both appearing in the nth row. Theorem 3.3 gives a 
special solution for M. 
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T h e o r e m 3.3: Let R(N) = n + r 2 , r i / r 2 = [qi;q2,qs, • - - Jgm-2J7"m-i]J as in Theorem 3.2; 
#1 > l , r m - i > 2. Let Zeck M be written from the £H£9t£... pattern of (3.5), adjusted by 
taking the quotients of r i / r 2 in ascending order: lft(l)£(gi)lft(</2)£(<j3) • • - 9 ^ m - i — l) i l ( l ) , 
m odd; .. .!ft(<|m._2)£(rm_i - l)i5(l), m even. Then R(M) = R(N), both appearing in row n. 

Proof: A reversal identity for continued fractions appears as Theorem 1 in [1]: if 
[aojaij-.-jOn-ijOn] = Pn/qn, then [ a n , a n _ i , . . . , a i , a 0 } = p „ / p n - i - Here, R(M) = pn = 
R(N). a 

Theorem 3.3 applied to the preceding example gives 9*(l)£(2)JK(2)£(l)$ft(2 - 1)£(1) or 
M = Fw + Fio + F8 + F 4 = 1066; JR(1066) = 27, but JV = 1142. 

The Calkin and Wilf [6] sequence (1.4) is the same as our sequence (2.1); that is, b(j) = 
R(N(J)), where b(j)/b(j + 1) is the j t h rational number, j = 0,1,2, Thus, the results of 
the present paper allow us to write ]bhe j t h rational number. Given j , by Lemma 2.1, we can 
write Zeck N(j), the Zeckendorf representation of the j t h even-Zeck integer; there are several 
ways [4] to compute R(N(j)) and R(N(j + 1)). Given any rational number a/6, Theorem 
3.2 can be adapted to find N(j) such that a/b = R(N(j))/R(N(j + 1)). For example, to 
answer at which position the rational number 13/8 appears, place 13 between 5 and 8 in the 
nth row, 5,13,8; n/r2 = 5/8 = [0; 1,1,1,2], n = 6, m is even. Since R(N(j)) = 13 is on the 
right side of the table, Corollary 3.2.2 gives N(j) = Fi 2 + JFio + F 6 = 207, and N(J+ !) = 
208, where J?(207) = 13, E(208) = 8. Prom Zeck JV(j), j = 212/2""1 + 2 1 0 / 2 " 1 + 2 6 / 2 " 1 = 
25 + 24 + 22 = 52; thus, 13/8 is the 52n d rational number. Another example: to find 5/12, 
use the sequence 5,12,7; 5/7 = [0; 1,2,2], n = 6,ra =• 3. We are on the left side; Theorem 
3.2 gives N(j + 1) = F12 + Fs + F6 = 173; Jf2(173) = 12. The preceding even-Zeck integer 
N(j) = F12 + F 8 + F4 + F2 = 169, i?(169) = 5; j = 2 1 2 / 2 ^ + 2 8 / 2 " 1 + 2 4 / 2 " 1 + 2 2 / 2 " 1 = 43. 
Thus, 5/12 is the 43 r d rational number. We note that R(N(j)) is another function f(j) such 
that f(j)/f{j + 1) takes every rational value exactly once, answering a question posed in [6]. 

Figure 1. The Calkin-Wilf version of the tree of fractions 
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Further, we can write the address of the rational number ri/r2 appearing in Calkin and 
Wilf a tree of fractions, which is a variant of the Stern-Brocot tree [7]. The tree of fractions 
(Figure 1) has 1/1 at the top of the tree. Each vertex r1/r2 has two children; its left child is 
n / ( r i + r 2 ) , and its right child is ( n + r2)/r2; each fraction is R(N(j))/R(N(j +1 ) ) for some 
j . In the nth row of the tree, the numerators are the first 2n~1 terms of our nth row. Let 
n/r2 = [qi] q2, qs, • • • ,q m -2, r T O _i] ,r m = l,qi> 0 , r m _ i > 2; if m is odd (even), r i / r 2 appears 
on the left (right) side of the tree, and r\ is on the left (right) of r2 in the table. Starting 
from 1/1, if m is odd, the vertex r i / r 2 has the address LTm-l~lRqm~2. .„Lq2Rqi; if m is even, 
jjrm_i»i^gm_2 m m _jfjff2jrrgi. w n e r e JJI m e a n s to move q vertices left; Rq, move q vertices right; 
L° and J?° are not written. If n is the left neighbor of r2 in the table and R(N(j)) ™ n + r2? 
then R(N(j))/R(N(j + 1)) is the right child of n/r2; if instead R(N(j + 1)) = n + r2, then 
R(N(j))/R(N(j + 1)) is the left child of n/r2. 
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* * * . 

Tribute 

Jo Ann Vine 

JoAnn Vine, Fibonacci Quarterly typist for 25 years, is retiring. She never 
missed a deadline and hates to give it up, but it is time to retire. 

JoAnn sang with the San Francisco Opera before she married Richard Vine 
(FQ Subscription Manager for 17 years). She started her statistical typing business 
in 1964, typing theses for students at Stanford and San Jose State. 

Thank you, JoAnn, for your years of dedicated service to the Fibonacci 
Association! 
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E L E M E N T A R Y P R O B L E M S A N D S O L U T I O N S 

Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Edi-
tor, DR. RUSS EULER, Department of Mathematics and Statistics/Northwest Missouri State 
University, 800 University Drive, Maryville, MO 644^8. All solutions to others' proposals 
must be submitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathemat-
ics and Statistics, Northwest Missouri State University, 800 University Drive, Maryville, MO 
64468. 

If you wish to have receipt of your submission acknowledged, please include a self-
addressed, stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in 
this issue must be received by November 15, 2003. If a problem is not original, the proposer 
should inform the Problem Editor of the history of the problem. A problem should not be 
submitted elsewhere while it is under consideration for publication in this Journal. Solvers are 
asked to include references rather than quoting (iwell-known results". 

B A S I C F O R M U L A S 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = F n + 1 + Fn, F0 = 0, Fi = 1; 

Ln+2 = Ln+1 + Ln, LQ = 2, L\ = 1. 

Also, a = (1 + V§)/2, p = (1 - V5)/2, Fn = (an - Pn)/V$, and Ln = an + /3 n . 

PROBLEMS P R O P O S E D I N THIS ISSUE 

B-956 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI 
Prove that 

l + v / 5 < ^ 1 3 

n=0 

B-957 Proposed by Muneer Jebreel, Jerusalem, Israel 
For n > 1, prove that 
(a) I | n + 3 + 4 = 4L2n+i+3 + L%, 

and 
(b) Ll»+6 — ^ + 4L2n+l+9 + If2»+3" 

2003] 181 



ELEMENTARY PROBLEMS AND SOLUTIONS 

B-958 Proposed by Jose Luis Diaz-Barrero & Juan Jose Egozcue, Universitat Politecnica 
Catalunya, Barcelona, Spain 

Find the greatest common divisor of 

2 + S ^ a n d 3 + ELfc-
fc=i k=i 

B-959 Proposed by John H. Jaroma, Austin College, Sherman, TX 
Find the sum of the infinite series 

i 1 1 ? i 1 1 ^L 1 ^ . J!L "if! J!fL ilL 127 
+ 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 + 4096 + 8192 + 16384 + ' 

B-960 Proposed by Bob Johnson, Durham University, Durham, England 
If a 4- 6 = c + d, prove that 

FaFb - FcFd = ( - I f [Fa_rF6_r - Fc- rFd_r] 

for all integers a36,c,d and r. 

SOLUTIONS 

Circle the Squares 

B-940 Proposed by Gabriela S&nica & Pantelimon Stanica, 
Auborn Univ. Montgomery, Montgomery AL. 
(Vol. 40, no. 4, August 2002) 

How many perfect squares are in the sequence 

Solution by Martin Reiner, New York, NY. 
We claim that the only square in this sequence is X2 = 4. 
Note that x0 , . . •, x± = 2,3,4,6,12. For k > 5 we have F& > 5, and so Fk\ = 0 (mod 5). 

Thus Xk = Xk-i = • • • = ^4 = 2 (mod 5). But modulo 5 any square is either congruent to 0, 
1, or 4. 

Also solved by Scott Brown, Paul Bruckman, Ovidiu Purdiu, Walther Janous, 
Jaroslaze Seibert, H.-J. SeifFert, and the proposer. 

All solutions received follow more or less the same method as the featured one. 
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I t is Always Nega t ive 

B-941 P r o p o s e d by W a l t h e r J anous f Innsbruck, A u s t r i a 
(Vol. 40, no . 4, Augus t 2002) 

Show that 

nFn+Q F n + 8 
~2^HT + " 2 ^ - " *8 < 0 far n > 1. 

Solut ion by Jose Luis Diaz -Bar re ro a n d J u a n Jose Egozcue, Univers i t a t Pol i tecnica 
de Catalunya, Barce lona , Spain* 

First, we observe that the given statement is equivalent to 

nFn+6 + 2Fn+s<2n+1F8. (1) 

In order to prove the preceding inequality we will argue by induction. The case when n = 1 
trivially holds. Assume that (1) holds for n = 1,2, . . . , n and we should prove that 

(n + l)Fn+7 + 2 F n + 9 < 2 n + 2 F 8 

also holds,. In fact, 

(n + l)Fn+7 + 2Fn+9 = (n + l)(Fn+6 + F n + 5 ) + 2 ( F n + 7 + F n + 8 ) 

- (nFn+6 + 2F n + 8 ) + [(n - l ) F n + 5 + 2Fn + 7] + 2 F n + 5 + Fn+e 

< 2 n + 1 F 8 + 2nF8 + (n - l ) F n + 6 + 2 ( F n + 5 + Fn+6) < 2 n + 2 F 8 

and the result stated in (1) follows by strong mathematical induction. 

H.-J. Seiffert showed that ^ ^ + % ^ - i ?
8 < - § for n > 1 and L.A.G. Dresel generalized 

the inequality to *£ffi + 2F^f2 ~ Fn+t+2 <Qforn>landt>3. 
The condition n > 1 was inadvertantly left out by the editor, 

Also solved by Char les Ashbacker , Gurd ia l A r o r a a n d D o n n a S tu t son , P a u l Brack-
m a n , M a r i o Ca ta l an i , K e n n e t h D a v e n p o r t , LeA®G* Dresel , Ovidiu Fu rdu i , J o h n 
J a r o m a , Gera ld A* Heue r , Ja ros lav Seiber t , H . J . Seiffert, A d a m Stif ichcomb, a n d 
t h e p ropose r . 

As Close As I t Ge t s 
B-942 P r o p o s e d by S tan ley Rabinowitz, M a t h P r o P re s s , West ford , M A 

(Vol. 40, no . 4, Augus t 2002) 
(a) For n > 3, find the Fibonacci number closest to Ln. 
(b) For n > 3, find the Fibonacci number closest to i 2 . 

Solut ion by L«A*G@ Dresel , Read ing England . 
(a) The identity Ln = Fn+1 + Fn^ gives Ln - (Fn+1 +Fn)~h (Fn_i -Fn) = Fn+2 - Fn^2-

Therefore F n + i < Ln < Fn+2? and as we have -Fn-2 < -Fu-i f° r ^ > 4? it follows that Fn+2 is 
the Fibonacci number closest to Ln. 
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(b) Since Ln = an + pn we have (Ln)2 = L2n + 2 ( - l ) n . As before, we have 

L2n = F2n+1 + F2n-1 = F2n+2 ~ ^2n-2 7 SO t h a t 

(Ln)2 = F2n+1 + F2n_x + 2(-ir = F2n+2 - {F2n_2 - 2(- l )»}. 

It follows that (Ln)2 lies between F2n+i and i^n+2, and is closest to F 2 n + 2 provided that 
F2n-i + 2 ( - l ) n > F2 n_2 - 2 ( - l ) n , giving F2 n_3 + 4 ( - l ) n > 0. This condition is satisfied for 
n > 4. Therefore F2n+2 is closest. 

Also solved by Scott Brown (part (a)), Paul Bruckman, Mario Catalan!, Charles 
Cook, Ovidiu Furdui, Walther Janous, John Jaroma, Harris Kwong, Reiner Mar-
tin, Jaroslav Seibert, H.-J. SeifFert and the proposer. 

Inequality, Equality Matters 

B-943 Proposed by Jose Luis Diaz &; Juan J . Egozcue, 
Universitat Politecnica de Catalunya, Terrassa, Spain 
(Vol. 40, no. 4, August 2002) 

Let n be a positive integer. Prove that 

y Ll < (Ln+2 - 3)2) 
t.F,- Fn+2-l • 

When does equality occur? 

Solution by Graham Lord, Princeton, NJ 
We shall use the known identities that the sum of the first n Fibonacci numbers is F n + 2 —1, 

and the sum of the first n Lucas numbers is Ln+2 — 3. (See, for example, pages 52 and 54 of 
Fibonacci and Lucas Numbers by V.E. Hoggatt, 1969.) 

Then, by appealing to the Cauchy-Schwarz inequality (Sa6)2 < (Sa2) • (Sfe2), we have: 
(all sums are over k from i to n) 

(£f)(5>) = (£ f)«,«-i) 
We will have equality iff the two sets of numbers L\/Fk and Fk are proportional, that is, iff 
L\/Fi = L2/F2 = - • • = Ln/Fn. The latter condition is only true iff n = 1. 

Also solved by Paul Brtickman, Mario Catalan!, L.A.6. Dresel, Ovidiu Purdui, 
Walther Janous, Jaroslav Seibert, H.-J. SeifFert (2 solutions) and the proposer. 
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Walther Janous proved a more general inequality that may appear as a separate proposal. 

A P r i m e Congruence 

B-944 P r o p o s e d b y P a u l S. B ruckman ? Berkeley^ C A 
(Vol. 40? no- 49 Augus t 2002) 

For all odd primes p3 prove that 

where ^ represents the residue k~~1(mod p). 

Solut ion b y H . - J . Seiffert, Berlin^ G e r m a n y 
Let p be an odd prime. Prom 

HP ~ 1)(P ~ 2) • • • (p ~ k + 1) = ( -1)*"1*! (mod p), 

we obtain the well-known congruence 

( - l ) f c Q = - ^ ( m o d P
2 ) , k = l,2,...,p-l. 

Since (see, for example, P. Haukkanen. "On a Binomial Sum for the Fibonacci and Related 
Numbers." The Fibonacci Quarterly 34.4 (1996): 326-31, Corollary 2) 

A. = E(-Dfc(jK 

modulo jp2
3 we then have 

P - i T 

LP = L0 + (-l)pLp =p^2 y (mod P2)' 

The desired congruence now easily follows by observing that LQ = 2 and that p is odd. 

Also solved by L A . G . Dresel a n d t h e p roposer . 

A Simpler Express ion 
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B-945 P r o p o s e d by N . G a u t h i e r , Royal Mi l i t a ry College of C a n a d a 
(Vol. 40, no . 4, Augus t 2002) 

For n > 0, q > 0, s integers, show that 

1=0 x 7 
F(q+l){n-l)+s ~ Fq+lF2n+s-

Solut ion I by P a u l S. B r u c k m a n , Berkeley, C A 
Denote the given sum as S(n] q, s). 
Then S(n;q,s) = S - ^ E L o + ^ C V i ^ K ^ - ^^{a^F^ 

a<r+i)n _ps(Fq_1+pq+iyy N o w j? f f_1 + 0«+i - Fg_i + a F g + 1 + F g = F g + 1 ( l + a) - a2Fq+1; 
likewise, Fg_i + j 8 g + 1 = /32^«+i- Therefore, S(n\q,8) = 5~1 /2(Fg + 1)^{as + 2 n - ^ s + 2 n } = 
(Fg+l) nF2 n+S . 

Solut ion I I b y P e n t t i H a u k k a n e n , Univers i ty of T a m p e r e , T a m p e r e , F in l and 
Problem B-945 is a special case of Problem H-121. In fact, according to Problem H-121 

S (") (*&)Fmi+s=G&)F2nk+s' 
Replacing I with n - l w e obtain 

S (") G f e ) 1 ? m ( w", , +*=(*&)F 2 n f c + s' 
Writing m = q + l, k= 1 and multiplying with F ^ we arrive at the proposed identity 

L-F(g+l)(n-l)+* — ^ g + l ^ n + s -
1=0 X 7 

Also solved by Mar io Cata lan! , K e n n e t h B . D a v e n p o r t , Ovid iu Pu rdu i , a n d t h e 
p ropose r . 

N O T E S 
1. We would like to belatedly acknowledge the receipt of a solution to problem B-938 by 

Jereme Jarome. Also, Kenneth Davenport submitted a late solution to the same problem. 
2. Solution I by Pantelimon Stanica to problem B-933 contains a fatal error. In fact, the 

first inequality in the proof, F n + i F n + i > Fn+iFn should be reversed. We would like to 
apologize for the oversight. 
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Edited by 
Florian Luca 

Please send all communications concerning ADVANCED PROBLEMS AND SOLU-
TIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 61-3 (XANGARI),CP 58 089, 
MORELIA, MICHOACAN, MEXICO, or by e-mail at fluca@matmor.unam.mx as files of the 
type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or other information that 
will assist the editor. To facilitate their consideration, all solutions sent by regular mail should 
be submitted on separate signed sheets within two months after publication of the problems. 

P R O B L E M S P R O P O S E D I N T H I S I S S U E 

H-598 P r o p o s e d by t h e E d i t o r 
A beautiful result of McDaniel (The Fibonacci Quarterly 40*1, 2002) says that Fn has 

a prime divisor p = 1 (mod 4) for all but finitely many positive integers n. Show that 
the asymptotic density of the set of positive integers n for which Fn has a prime divisor 
p = 3 (mod 4) is 1/2. Recall that a subset M of all the positive integers is said to have an 
asymptotic density A if the limit 

lim 
# { 1 < n < x | n e Af} 

exists and equals A. 

H-59? P r o p o s e d b y M a r i o Ca ta lan i , Univers i ty of Torino^ Tor ino, I t a ly 
Let a3 /33 7 be the roots of the trinomial x3 — x2 — x — 1 = 0. Express 

interms of the Tribonacci sequence {Tn} given by T0 = 0, Ti = 1, T2 = 1 and Tn = T„_i + 
Tn-2 + Tn_3 for n > 3. 

H-598 Proposed by Jose* Dfaz-Barrero & Juan Egozcue, Barcelona, Spain 
Show that all the roots of the equation 

FiFn . . . FtFa FXF2 Ff-x 
F2Fn . . . F2F3 Fi-x F2Fi 

Fl-x . . . FnF3 FnF2 FnFl 

are integers. 
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S O L U T I O N S 

Represen t ing reals in F ibonacc i series 

H-582 P r o p o s e d by E r n s t H e r r m a n n , Siegburg, G e r m a n y 
a) Let A denote the set {2 ,3 ,5 ,8 , . . . , F m + 2 } of m succesive Fibonacci numbers, where 

m > 4. Prove that each real number x of the interval I — [(Fm+2 — I )"1?!] has a series 
representation of the form 

oo 

= V -
^FklFk2...Fki-' 

(1) 

where Fki G A for all i G N. 
b) It is impossible to change the assumption m > 4 into m > 3, that is, if A = {2,3,5} 

and I — [1/4,1], then there are real numbers with no representation of the form (1), where 
Fki G A. Find such a number. 

Solut ion by P a u l B r u c k m a n , Sac ramen to , C A 
Given an infinite sequence {cn} of real numbers with Cn > 2 write Sf(ci,C2,...) for the 

value of the series \jc\ + l/(ciC2) 4- Note that S^ci, C2?...) is well defined and is in the 
interval (0,1]. 

Now consider the series S(Fkl,Fk2J...), where k{ > 3 for i G N. For notational conve-
nience write U{k\1k2J...) = S(Fkl, Fk2,...). We first show that for all x with 0 < x < 1, x 
has an [/-series with no restriction of the subscripts k{ other than ki > 3 for i G N. To see why 
this is so, observe that for all real numbers A > 1, there is always a Fibonacci number Fj > 2, 
such that A < Fj < 2A. In particular, given x\ with 0 < x\ < 1, we may choose k\ > 3 such 
that 1/xi < Fkl < 2/x\. Let X2 — x\Fkl —1. Clearly, 0 < #2 < 1, ®®& therefore we may repeat 
the above algorithm. In other words, there exists &2 > 3 such that if we write x$ = X2Fk2 — 1, 
then 0 < ^3 < 1. Continuing in this fashion, we generate an infinite sequence {&i, &2? • • •} such 
that x\ = U(ki, &2,. • • )• Note that, in general, such a sequence is not uniquely determined. 

We now prove a ) . Given m > 4, let J m = [ (F m + 2 — I ) " 1 , ! ] , write Am = 
{1*3,^4,.. . , F m + 2 } , and consider a given x± in I m . As we showed above, there exists a se-
quence {k{} with k{ > 3 for i G N such that x\ = U(ki, &2? • - • )• We prove that among all 
such sequences there exists one which satisfies the additional constraint that ki G Am for all 
i G N. To achieve this, we partition Im into rn disjoint intervals as follows: 

a) suppose first that (Fm+2 ~ I ) " 1 < ^i < 2/jFm + 2. Then x\ < x i F m + 2 - 1 < 1. Thus, 
we may choose k\ — rn + 2, put X2 = xiFkl — 1, and then X2 G Im and we may continue the 
process. Note that there might be other values of k\ for which X2 is in J m . 

b) suppose now that 2/Fk+i < xi < 2/Fk for some k = 3 , 4 , . . . , m + 1. Then, Fk < 2jx\ 
and Fk+i > 2/xt. Since Fk+1 < 2Fk, it follows that 1/xi < Fk < 2/x\. Note that there 
might be other values of k for which this last inequality is satisfied. Choose k\ = k and write 
x2 = x\Fkl — 1. Then X2 < 1, and 

2Fk Fk„2 
302 > "p X = -p • 
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Now note that the right hand side of the above inequality is larger than or equal to (Fm+2 -
l)'"1when m > 4. Indeed, the inequality 

•F/b-2 > 

Fk+1 ^ m + 2 — J-

is equivalent to 
Fk-2Fm+2 > Fk+1 + jFjfc—2-

The above inequality holds for all TO > 4 and & E {3 ,4 , . . . ,m + 1}, but fails at TO = 3 and 
k = m+l. Thus, when m > 4, the number x2 E Im and we may continue the process. This 
proves part a ) . 

For part b ) , consider the interval J3 = (2/5,5/12) C I3. If we take x% E J3, we see that 
fci = 4 is the only possibility. We then obtain x2 = xiF^ — 1 = 3^i — 1, hence 1/5 < x2 < 1/4, 
and it is now clear that it is not possible that k{ E {3,4,5} for all i > 2. This argument shows 
that all values of x\ E J3 have the property that they do not have a representation of the form 
(1) with k{ E -A3 for all i E N, which, in particular, answers both questions from part b ) . 

Bruckman also attaches some examples of specific representations of the form (1) for some 
numbers stressing on the fact that such representations are, in general, not unique. A nice one 
is 

0.41 = 17(4,5,6; 6^ ) = 17(4,5,7,3,3,3; 376) = 

[7(4,6,3,3; 3~4) = 17(4,6,3,3,4,8,3; IJ\§) = 17(4,6,3,3; 4 ^ 9 ) , 

where the bar notation above has the same meaning as the one from the theory of periodic 
continued fractions. Note that 0.41 E J3 so no such representation of it exists with k% E ^43 
for all i E N. 
Also solved by t h e proposer* 

Ident i t i es w i th Fibonacci po lynomia ls 

H-586 P r o p o s e d by H. - J . Seiffert, Berlin^ G e r m a n y 
Define the sequence of Fibonacci and Lucas polynomials by 

F0(x) = 0, Ft(x) = 1, Fn+1(x) = xFn(x) + Fn^(x)9 n E N, 

LQ(X) = 2, Li(x) = x, Ln+i(x) = xLn(x) + Ln-i(x), n£ N, 

respectively. Show that, for all complex numbers x and all positive integers n, 

[n/2] 
xF2n+t(x) - F2n(x) + (-x)n+2Fn(x) + (-aOn + 1Fn_i(aO 

I k )*****> = 
k=Q 
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and 

[n/2] L ' J / ^ u\ 

£( k >%*(*) = 
xL2n+i(a;) - L2n(a;) + (-x)n+2Ln(x) + ( - ^ V i ^ ) 

. .. . 2 x 2 - l 
fc=0 

Solution by the proposer 
It is well known that 

Fn+l(:E) " VTO ' (1) 

where a(x) = (x + Vx2 + 4)/2 and 0(x) = (a; - Va;2 + 4)/2, and that 

[ n / 2 ] /« * \ 
(2) 

fc=0 

Each of the sides of the desired identities becomes a polynomial in x when multiplied by 
2x2 — 1. Thus, it suffices to prove these identities for real numbers x > 1. For such x, let 
y = ^a(x)/x — ̂ /—xfi{x). Since a{x)fi{x) = —1, we have 

^/xa(x) 

y + \A/2 + 4 = 2^/a(x)/x and ?/ - \/v2 + 4 = -2y/—x/3(x). 

Noting that (a(x) + x)(f3(x) + a;) = 2x2 — 1, from (1), it now easily follows that 

xn/2a{x)Sn/2Fn+i{y) = M±?_ . (a(x)2„+l _ {_x)n+la{xn 

or, since a(x)@(x) = — 1, 

a .n /2 a ( a ; ) 3n /2 F n + i ( y ) = ^ ( x ) 2 ^ 1 - a(a:)2" + ( - g )"+ 2 a(x)" + ( -aQ^qOc)"- 1 _ 
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F r o m ^ O ) 3 = (x2 + l)p{x)+x = x2p(x)-a(x)+2x, we obtain -p3(x)/x = a(x)/x-xP(x)-2, 
giving y = y/-p3(x) jx.Since a(a;)j8(a0 = - 1 , from (2), it follows that 

[n/2] , v 

x-^aW^^idf) = £ (** W*)8*- (4) 

Combining (3) and (4) and using the known relations 2a(x)i = Lj(x) + -%/x2 + 4Fj(x), we 
obtain the desired identities. 
Also solved by P . Bruckman 9 M . Ca ta lan i , K, Davenpor t? a n d V . Mathe* 

Mat r i ces w i t h Fibonacci Po lynomia ls 

H-587 P r o p o s e d by N . G a u t h i e r & J . R . Gosselin? Royal Mi l i t a ry College of C a n a d a 
Let x and y be indeterminates and let 

a = a(x,y) = -^(x+y/^T^), p = p(x9y) = -(x - y/x2 + Ay) 

be the distinct roots of the characteristic equation for the generalized Fibonacci sequence 
{Hn{x\y)}lzf> where 

Hn+2(x,y) = xHn+1(x,y) + yHn(x,y). 

If the initial conditions are taken as Ho(x,y) = 0, Hi(x,y) = 1, then the sequence gives 
the generalized Fibonacci polynomials {Fn(Xjy)}^z.(Q). On the other hand, if Ho(x,y) = 
2, Hi(x,y) = x, then the sequence gives the generalized Lucas polynomials {Ln(x,y)}{J=o°. 

Consider the following 2 x 2 matrices, 

* - ( ; i ) . *=(?;) . *=(;;;)• D - ( S i ) - - ( J O 
and let n and TO be nonnegative integers* [By definition, a matrix raised to the power 0 is 
equal to the unitmatrix I.] 

a* Express /n,m(#>w) = [(A — B)"'1(An -Bn)]m in closed form, in terms of the Fibonacci 
polynomials. 

b„ Express gn,m(x,y) = [An -f Bn]m in closed form, in terms of the Lucas polynomials. 
c* Express hn^m(x9 y) = [Cn + D B ] m in closed form, in terms of the Fibonacci and Lucas 

polynomials. 
C o m b i n e d solu t ion by P a u l B r u c k m a n , Sac ramen to , C A a n d M a r i o Cata lani f 

Torino^ I t a l y 
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To simplify notations, we write a = a(x,y), /3 = /3(x,y), Fn = Fn(x,y), and Ln 
Ln(%,y)' The Binet formulas for the Fibonacci and Lucas polynomialsare 

an - 6n 

Fn = £- and Ln = an+f3n. 
a — p 

Clearly, 

{A-B)^ = 7 

a-p 

By an easy induction on n one provesthat 

V° a" J' V° P" ) ' V ° an-/3n 

and 

By induction on m when n is fixed, it now follows that 

rjn , r>n}m_ (Ln uLn-A™ _ (L% nmL™-1Ln-.1\ 
[A + S J -\0 Ln ) -{ 0 L- J' 

and 

Also solved by the proposers, 

Erratas In the displayed formula in Proposed Problem H-595 (volume 41.1) the equal sign 
"=" should have been "<". 

Please Send in Proposals! 

192 



SUSTAINING MEMBERS 
*H.L. Alder 

G.L. Alexanderson 
P. G„ Anderson 
S. Ando 
A.T. Benjamin 
J.G. Bergart 
G. Bergum 

*M. Bicknell-Johnson 
W. Blumberg 
H. Bottcher 
P.S. Bruckman 
D. Callan 
G.D. Chakerian 
H. Chen 
C.K. Cook 
C. Cooper 
M.J. DeBruin 
M.J. DeLeon 
J .DeKerf 
E. Deutsch 

L.A.G. Dresel 
U. Dudley 
M. Elia 
L.G. Ericksen, Jr. 
D.R. Farmer 
D.C. Fielder 
C.T. Flynn 
E. Frost 
N. Gauthier 

* H.W.Gould 
P. Hagis, Jr. 
V. Hanning 
H. Harborth 

*A.F. Horadam 
Y. Horibe 
F.T. Howard 
R.J. Howell 
R.E. Kennedy 
C.H. Kimberling 
Y.H.H. Kwong 

J.C. Lagarias 
J. Lahr 

*C.T. Long 
G. Lord 
F. Luc a 
W.L. McDaniel 
F.U. Mendizabal 
M.G. Monzingo 
J.F. Morrison 
E. Nenzell 
H. Niederhausen 
S.A. Obaid 
T.J. Osier 
A. Prince 
D. Redmond 
C. Reiter 
B.F. Robertson 
S. Sato 
D.L. Schweizer 
H.J Seiffert 

A.G. Shannon 
L.W. Shapiro 
L. Somer 
P. Spears 
W.R. Spickerman 
P.K. Stockmeyer 
D.R. Stone 
J. Suck 
M.N.S. Swamy 

*D.Thoro 
J.C. Turner 
N. Vallous 
C. Vanden Eynden 
T.P. Vaughan 
J.N. Vitale 
M.J. Wallace 
J.E. Walton 
W.A. Webb 
V. Weber 
R.E. Whitney 

^Charter Members 

INSTITUTIONAL MEMBERS 
BIBLIOTECA DEL SEMINARIO MATHEMATICO 
Padova, Italy 

CALIFORNIA STATE UNIVERSITY 
SACRAMENTO 
Sacramento, California 

FAHD PETRO MIN UNIVERSITY 
Dhahran, Saudi Arabia 

GONZAGA UNIVERSITY 
Spokane, Washington 

HOWELL ENGINEERING COMPANY 
Yucaipa, California 

ITHACA COLLEGE 
Ithaca, New York 

KLEPCO, INC. 
Reno, Nevada 

KOBENHAVNS UNIVERSITY 
MATEMATISKINSTITUT 
Copenhagen, Denmark 

SAN JOSE STATE UNIVERSITY 
San Jose, California 

SANTA CLARA UNIVERSITY 
Santa Clara, California 

UNIVERSITE DE MONTREAL 
Montreal, Quebec, Canada 

UNIVERSITY OF NEW ENGLAND 
Armidale, N.S.W. Australia 

UNIVERSITY OF PATRAS 
Patras, Greece 

WAKE FOREST UNIVERSITY 
Winston-Salem, North Carolina 

YESHIVA UNIVERSITY 
New York, New York 

SOLSAA STATISTICAL SERVICES 
PO Box 320 

Aurora, South Dakota 57002 



BOOKS AVAILABLE 
THROUGH THE FIBONACCI ASSOCIATION 

Introduction to Fibonacci Discovery by Brother Alfred Brousseau, Fibonacci Association 
(FA), 1965. $18.00 

Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972. $23.00 

A Primer for the Fibonacci Numbers. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1972. $32.00 

Fibonacci's Problem Book, Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1974. $19.00 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from the 
French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. $6.00 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971. $6.00 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. 
FA, 1972. $30.00 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. $39.00 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Volume. 
Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. $38.00 

Applications of Fibonacci Numbers, Volumes 1-7. Edited by G.E. Bergum, A.F. Horadam and 
A.N. Philippou. Contact Kluwer Academic Publishers for price. 

Applications of Fibonacci Numbers, Volume 8. Edited by F.T. Howard. Contact Kluwer 
Academic Publishers for price. 

Generalized Pascal Triangles and Pyramids Their Fractals, Graphs and Applications by Boris 
A. Bondarenko. Translated from the Russian and edited by Richard C. Bollinger. 
FA, 1993. $37.00 

Fibonacci Entry Points and Periods for Primes 100,003 through 415,993 by Daniel C. Fielder 
and Paul S. Bruckman. $20.00 

Shipping and handling charges will be $4.00 for each book in the United States and Canada. 
For Foreign orders, the shipping and handling charge will be $9.00 for each book. 
Please write to the Fibonacci Association, P.O. Box 320, Aurora, S.D. 57002-0320, U.S.A., 
for more information. 


