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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBER!

Carsten Elsner
Institut fiir Mathematik, Universitidt Hannover
Welfengarten 1, D-30167 Hannover, Germany
(Submitted December 2000-Final Revision April 2001)

1. STATEMENT OF THE RESULTS

A famous result of Heilbronn states that for every real irrational £ and any € > 0 there
are infinitely many integers n satisfying

| €n? |I< i/

Here || - || denotes the distance to the nearest integer [3]. In view of our results below we
reformulate Heilbronn’s theorem as follows: There are infinitely many pairs of integers m, k
where m is a perfect square such that the inequality

1
Ifm—k|<m

holds.

The Pythagorean numbers z,y,z with z2 + y? = 22, where additionally z and y are
coprime, play an important role in number theory since they were first investigated by the
ancients. It is well-known that to every Pythagorean triplet x, y, z of positive integers satisfying

2

2 +y?*=2% (z,9)=1, £=0mod 2 (1.1)
a pair of positive integers a,b with @ > b > 0 corresponds such that
z=2ab, y=a®—b% z2=0a®>+b% (a,b)=1, a+b=1mod 2 (1.2)

bold ([2], Theorem 225). Moreover, there is a (1,1) correspondence between different values
of a,b and different values of z,y,z. The object of this paper is to investigate diophantine
inequalities |¢y — z| for integers y and z from triplets of Pythagorean numbers. Since z2 + g2
is required to be a perfect square - in what follows we write z2 + y? € [1- we have a essential
restriction on the rationals z/y approximating a real irrational £&. So one may not expect
to get a result as strong as Heilbronn’s theorem. Indeed, there are irrationals £ such that
|éy — z| > 1 holds for all integers z, y satisfying z2 +y? € 0 . But almost all real irrationals ¢
(in the sense of the Lebesgue-measure) can be approximated in such a way that |£y — z| tends
to zero for a infinite sequence or pairs z, y corresponding to Pythagorean numbers. In order to
prove our results we shall make use of the properties of continued fraction expansions. By our
first theorem we describe those real irrationals having good approximations by Pythagorean
numbers.
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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBERS

Theorem 1.1: Let £ > 0 denote a real irrational number such that the quotients of the
continued fraction expansion of at least one of the numbers 1 := £+ /14 €2 and 7y =
(14 +/1 4 £2)/¢ are not bounded. Then there are infinitely many pairs of positive integers =,y
satisfying

ey —z| =0(1) and z*+y%€D.

Conversely, if the quotients of both of the numbers 11 and 7, are bounded, then there ezists
some § > 0 such that
€y — x| =6

holds for all positive integers =,y where 22 +y? €.

It can easily be seen that the irrationality of £ does not allow the numbers 71 and 75 to
be rationals. The following result can be derived from the preceding theorem and from the
metric theory of continued fractions:

Corollary 1.1: To almost all real numbers & (in the sense of the Lebesgue measure) there are
infinitely many pairs of integers z # 0, y > 0 satisfying

léy —z]=0(1) andz®+y?cO.

Many exceptional numbers £ not belonging to that set of full measure are given by certain
quadratic surds:
Corollary 1.2: Let r > 1 denote some rational such that £ := /72 — 1 is an irrational number.
Then the ineguality
|6y — x| > ¢ (1.3)

holds for some § > 0 (depending only on r) and for all positive integers z,y with z2 +y? €.

The lower bound ¢ can be computed explicitly. The corollary follows from Theorem 1.1
by setting £ := V72 —-1.

Taking r = 3/2, we conclude that £ = +/5/2 satisfies the condition of Corollary 1.2.
Involving some refinements of the estimates from the proof of the general theorem, we find
that (1.3) holds with § = 1/4 for £ = v/5/2.

Finally, we give an application to inhomogeneous diophantine approzimations by Fibonacci
numbers. Although |yv/5/2 — z| > § holds for all Pythagorean numbers z,y, this is no longer
true in the case of inhomogeneous approximation. By the following result we estimate |y —
x — 7| for infinitely many Pythagorean numbers x and ¥, where ¢ and 7 are given by Fyxv/5/2
and +Fy/ V5, respectively, for some fixed even integer k.

Theorem 1.2: Let k > 2 denote an even integer. Then,

Fk\/g @ 22n+1

0< - (2F, F, — F F. +(-)" < —
2 ( n n+k) kL 2n4-k ( ) \/g 5(14—\/5)2”

holds for all integers n > 1, and we have

(ZFnFn+k)2 + (FkF2n+k)2 €l (n 2 1)'
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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBERS

2. PROOF OF THEOREM 1.1

It can easily be verified that 7; > 1 and 72 > 1. One gets 72 by substituting 1/¢ for ¢ in
1. First we assume that the sequence ag, a1, as,... of quotients from the continued fraction
expansion 7; = (ag; a1,0as,- .. ) is not bounded. If p, /g, denotes the nt® convergent of 7y, the
inequality

Dn
, — 2%
K qn

<

n>n 2.1
an+1q121 ( = 0) ( )

holds, where ng is chosen sufficiently large. There exists some positive real number 8 such
that gy = 1 + 28; particularly we have 71 > (1 + 8)(1 + 1/p,) for n > ng. By m1gn — pn < 1,
one gets

P‘n+1< Pn

gn < ﬁ“ﬂ—

(n > no). (2.2)

Let

f(®) ==E—-§—(t——i—) t>1).

By straightforward computations it can easily be verified that
f(m)=0. (2.3)
For any two real numbers ¢;,%; satisfying 1 < #; < iy there is some real number a with

t1 < a < t3 such that
|f(t2) — F(t)| = |F ()] - [tz — ta]

holds. In the case when n is even let t; = p, /qn and ¢ = 71, otherwise put ¢1 = 71, t2 = Pn/gn-
Thus, for any even index n > ng we have 11 > a > pp/gn > 1, where the lower bound 1 follows
immediately from 7; > 1 and from (2.1). For any odd index n it is clear that a > #; holds.

Therefore one gets
pn)| _ 1 1
‘f(’h)—f (q—n) =3 (1+ ag) n

a>1 (n2>ng). (2.4)

Dn

p— —

qn

where

Applying (2.1), (2.3), and the definition of f, the inequality takes the form
1/(pn ¢n 1 1
(B _ 1+ =) —
\E 2 (qn pn)l < ( i az) 2an1147
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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBERS

Put © := p2 — g2, y := 2pngs. For n tending to infinity the positive integers p, are not
bounded, therefore we get infinitely many pairs «,y of positive integers. By (2.2), = > 0 holds
for all sufficiently large indices n. Putting # and y into the above inequality and applying
(2.4), we get

1 4p?
<z > = e, (2.5)
n+19n  On+1Y

T
-3

where z2 + y% = (p2 + ¢2)? € 0. Using (2.2), we compute an upper bound for p2 on the right
side of (2.5): pi = x4+ ¢% <z +pn/(1+ B)?, or, pi < (1+B)°x/B(2+ ) < (1 + B)’z/2B
for n > ng. Moreover, (2.5) gives |€y — z| < y, from which the estimate z < (1 + )y follows
immediately. Altogether we have proved that infinitely many pairs of positive integers z,y
with 12 4 % € [ exists such that

T
Y

2(1 +6)(1 +8)°
<
Bany1y

-

holds, where any pair z,y corresponds to some n. Finally, we restrict n on integers from a
subsequence corresponding to monotonously increasing partial quotients a,41. For n tending
to infinity, the assertion of the first part of the theorem concerning #; follows from

2(1+6)(1+p)?
< .
ﬂa'n+1

&y — =

Next, if the sequence of quotients from the continued fraction expansion of 72 is not
bounded, we get by the same method infinitely many pairs z,y of integers (where y is even)
satisfying z? + y? € O and

'2 - wl o L +BY (28 :=m2 — 1, n2 = (ao;a1,02,...})-

3 Ban+1

This inequality can be simplified by

<2u+oa+ﬂﬁ7

Ex—y
I ] Bani1

which completes the proof of the first part of the theorem.
In order to show the second part we now assume that both numbers, 1; and 72, have
bounded partial quotients. It suffices to prove

€y — x| > é (2.6)
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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBERS

for coprime Pythagorean integers = and y : if |éy — z| < § for (z,y) > 1, one may divide the
inequality by (z,y). Then we get a new pair of coprime integers with

(&) + (&) <o

which contradicts (2.6). From the hypothesis on 71 we conclude that there is some positive
real number §; satisfying

MR

for all positive coprime integers a and b.
The first assertion we shall disprove states that there are infinitely many pairs of positive
coprime integers z,y such that 2|y, =2+ y? € O, and

€y — z| < d1(m — 1). (2.8)

By (1.1) and (1.2) we know that to every pair z,y two integers a,b correspond such that
y=2ab, z=a?—b% a>b, (a,b) =1, and a+b =1 mod 2. Again we denote by f(t)(t > 1)
the function defined above. Using 7, > 1 and a/b > 1 it is clear that f’(¢) is defined for all
real numbers which are situated between 7; and a/b. Therefore, corresponding to a and b, a
real number « exists satisfying

(a=m)-(a—3) <0and |f(m)-7(3)|=1F'@|m -3
By (2.3) we find that

a? —b?
2ab

X
-3

-

1 1 a

In what follows it is necessary to distinguish two cases.
Case 1: |y —a/b| > 1.

Using 1/a > 0, we conclude from (2.9) that |y — z| > y/2. For all sufficiently large
integers y this contradicts to our assumption from (2.8).
Case 2: |m1 —a/b] < 1.

First, it follows from this hypothesis that b < a/(1: —1). Next, we estimate the right side
of (2.9) by the inequality from (2.7):

91 _ 0i(m —1)
> 252 > 2b

;_E
v
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ON RATIONAL APPROXIMATIONS BY PYTHAGOREAN NUMBERS
Consequently we have, using y = 2ab,

&y — x| > 61(m — 1),

which again is impossible by our assumption. So we have proved that there are at most finitely
many pairs x,y of positive coprime integers satisfying 2|y, 2+ y% € 0, and

€y — x| < 1(m — 1). (2.10)

Since we may assume that the partial quotients of the number 7, are also bounded, we get
a similar result concerning the approximation of 1/¢ : There are at most finitely many pairs
z,y of positive coprime integers with 2|y, z2 4+ y? € 0, and

< 52(7]2 — 1), (2.11)

=

3

where 8, denotes some positive real number satisfying
-5 > 5
Y >

for all coprime positive integers a and b. Since £ is positive, the inequality from (2.11) can be
transformed into

|6z — y| < d26(n2 — 1),

which is satisfied at most by finitely many coprime Pythagorean numbers z,y with 2|y. By
(2.10) we complete the proof of the theorem.

3. PROOF OF THEOREM 1.2

Lemma 3.1: Let k > 2 and n > 1 denote integers, where k is even. Then one has
Fiix—Fi=FpFanik (3.1)

and
(@FaFotk)? + (FiFanyx)? €00 (3.2)

Proof: Throughout this final section we denote the number (1 4+ v/5)/2 by p. We shall
need Binet’s formula

Fn=2 (- EL) 2. (3:3)

Since k is assumed to be even, one gets from (3.3):

5(Fae — Fo) = (p”+k _ (;i):)z ~ (pn B (__Eln)_n)z
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1 1
= (Pk - ;;) : (P2"+k - p2n+k) = 5Fx Fon k-

This proves (3.1). Then the second assertion of the lemma follows easily, since one has

(2FnFn+k)2 + (FkF2n+k)2 = (2FnFn+k)2 + (F7%+k - F-r%)2 = (Fr%+k + Ff)z €

Binet’s formula (3.3) is a basic identity which also is used a several times to prove the
inequalities in Theorem 1.2. Since k£ > 2 is assumed to be an even integer, one gets

Far,
V5

=5 (=) (7= 5) (- ) -

V5FFyFyig — FyFonir + (1)

It follows that the term on the left side represents a positive real number, which is bounded
by 2/5p%". By (3.2) from Lemma 3.1, this finishes the proof of the theorem.
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1. INTRODUCTION

A matrix with a full set of linearly independent eigenvectors is diagonalizable: if the
n by n matrix A has eigenvalues \; with corresponding eigenvectors u;(1 < j < n), if U =
(u1]uz| .. .|un) and D = diag(A1, s, . .., An), then U is a diagonalizing matrix for A: U~1AU =
D. Taking transposes shows that (U~!)? is a diagonalizing matrix for A*. Hence U? itself is a
diagonalizing matrix for A? if U? is the identity matirx, or more generally, due to the scalability
of eigenvectors, if U? is a scalar matrix.

The purpose of this note is to point out that the right-justified Pascal-triangle matrix R =
((fz__; )1<i i<n is an example of this phenomenon. Let a denote the golden ratio (1 + /5)/2.
The eigenvalues of Rt (which of course are the same as the eigenvalues of R) were found in [1]:
A = (=1)""ia?-""1 1 < i < n. The corresponding eigenvectors u; of R* were also found in
[1] (here suitably scaled for our purposes): u; = (uij)1<j<n Where

uij = (—a)"™ kz;l(—l)i"“ (Z: 11) (;7'__]:) g2b—i-1.

Let U = (ui5)1<i,j<n-
For example, when n =5,

000 01 a* —4q3 6a2 —4a 1
0 00 11 —a® 3a2-a* -3a+3a® 1-3a2 a
R=]10 012 1| andU=| a2 —-2a+2a® 1-—4a’>+a* 2a—2a® a?
01 3 31 —a 1—3a? 3a—3a® 3a2-a* d®
1 4 6 4 1 1 4a 6a? 443 at

Since the rows of U are eigenvectors of R?, U? is a diagonalizing matrix for R*. By the
first paragraph applied to A = R, U will be a diagonalizing matrix for R if we can show that
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(U?)? (equivalently U?) is a scalar matrix. We now proceed to show that U? = (1 + a?)" "I,
and in fact this holds for arbitrary a. We use the notation [z*]p(z) to denote the coefficient of
z¥ in the polynomial p(z). Consider the generating function U;(z) = z(z — a)" *(az + 1) 1.

Using the binomial theorem to expand U;(z), it is immediate that

Ui(z) = iuijzj.

j=1

Now the (i, k) entry of U2 is

Ui = Z [a:k"l] (z—a)" I (ax+1)I71. [zj—l] (z—a)" " (az + 1)1
j=1

n

Z [2771] Y I (ax + 1)z — a)" " (az + 1)*!

j=1

r—a

= [*Y (@~ @)™ Z:; s (9“"—+-1->j—1 (2 — )"~ (az + 1)1

n—i i—-1
_ ne1 - 1 ax +1 ar + 1 1
= [zF~ —a) E ( — ¢ az———+

1 n—i 1 i—1
=[] (z — a)"* (aa: LE a) (aaw + + 1)
z—a zT—a

= [z*"Y (az +1~-az +a®)"*(®s+a+ 1z —a)!
=[5 (1 + a2)P~izi = (1 + a?)i

= [z*~] (1 +a?)"1

= (14 a®)" oy,

as desired.
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1. INTRODUCTION

We consider a generalization of the Fibonacci sequence which is called the k-Fibonacci

sequence for a positive integer k& > 2. The k-Fibonacci sequence {g )} is defined as

k k k
g = ( ) +9( )2+ +g'£b—)k'

We call g( ) the nth k-Fibonacci number. For example, if &k = 2, then {g,(f)} is the Fibonacci

sequence {F,}. If £ = 5, then g((J ) = g§5) g§5) = ggs) =0, g‘(f) =1, and the 5-Fibonacci
sequence is

(935) - 0) 10,0,0,1,1,2,4,8,16,31, 61,120, 236, 464,912, . . ..
Let E be a 1 by (k — 1) matrix whose entries are ones and let I, be the identity matrix of

order n. Let g(k) = (g,(bk), (k)

2 ik 1) for n > 0. For any k > 2, the fundamental recurrence
relation, n > k,

k k k
gi® “95; )1+g£_)2+---+g( )

n—k

can be defined by the vector recurrence relation gn +1 = ngf,k), where

=] %], o
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We call Q the k-Fibonacci matriz. By applying (1), we have g}ﬂl = ’,;ggk) . In [4], [6] and

[7], we can find relationships between the k-Fibonacci numbers and their associated matrices.
In [2], M. Elmore introduced the Fibonacci function following as:

2T NLAIT _ Z\NpA2Z
— (n) _ )‘13 )\26
— , fal@) = fo (2) 7 )

AT _ oA
fo(z) = 2 °

and hence fr11(z) = fo(z) + fa-1(z), where

1 —_
= +\/gand)\2=1 \/5

M 2 2

Here, A1, A2 are the roots of z2 —z — 1 = 0.
In this paper, we consider a function which is a generalization of the Fibonacci function
and consider sequences of generalized Fibonacci functions.

2. GENERALIZED FIBONACCI FUNCTIONS

For positive integers ! and n with I < n, let @i, denote the set of all strictly increasing
l-sequences from {1,2,...,n}. For an n X n matrix A and for o, € Qi n, let Ala|B] denote
the matrix lying in rows a and columns S and let A(a|B) denote the matrix complementary
to' Ala|f] in A. In particular, we denote A({:}|{s}) = A(i|j).

We define a function G(k,z) by

co g(k) ]
G(k,z) = Z ;—!m“.

=0

Since

(k)
lim gn \nT ) (n+1)

E
noree gr(z-gl

— 00,

the function G(k, z) is convergent for all real number z.
For fixed k > 2, the power series G(k, ) satisfies the differential equation

G®(k, z) — G*V(k,z) — - — G"(k,z) — G'(k,z) — G(k,z) = 0. (2)
In [5], we can find that the characteristic equation z¥ —z*~! — ... —z — 1 = 0 of Q}, does
not have multiple roots. So, if A1, Az, ..., Ay are the roots of z¥ — %=1 — ... — 2 —1 =0, then
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A1, A2, ..., A are distinct. That is, the eigenvalues of @ are distinct. Define V' to be the &k
by k£ Vandermonde matrix by

1 1 1
/\1 A2 AIﬂ:
V= : : : : (2)
APTEOAETE L AR
YLD D

Then we have the following theorem.
Theorem 2.1: Let Ay, As, ..., Ax be the eigenvalues of the k-Fibonacci matrix Q. Then, the
initial-value problem Y5~ G®(k, z) = G®)(k, z), where G®(k,0) =0 for i = 0,1,...,k — 2,

and G*~1(k,0) = 1 has the unique solution G(k,z) = Zf=1 c;e*®, where

det V(k|i) .
;= (=) =12, ... k. 3
G ( ) detV ? ) ) ( )
Proof: Since the characteristic equation of Qy is z*¥ —zF~1 —... —z — 1 =0, it is clear

that c;eM% + cpe?2® + - - - + cxe**® is a solution of (2.).
Now, we will prove that ¢; = 3¢ (—1)¥+idet V(kli),i = 1,2,...,k. Since G(k,z) =

c1eX% 4 coe?? 4. .. cre*® and for z = 0, GO (k,0) =0fori =0,1,...,k—2,G¢I(k,0) =1,
we have

G(k,0)261+62+"'+ck=0
G,(k,()) =ciA1+ A2+ -+ A =0

G*D(k,0) = ci A2 A2 4 A2 =

G*D(k,0) = et At b eadb 4 AT = 1
Let ¢ = (c1,¢2,..-,¢k—1,¢k)T and b = (0,0,...,0,1)T. Then we have Vc = b. Since the
matrix V is a Vandermonde matrix and A1, Ag, .. ., Ag are distinct, the matrix V' is nonsingular.

Fori=1,2,...,k, the matrix V(k|7) is also a Vandermonde matrix and nonsingular. Therefore,

by Cramer’s rule, we have c¢; = (—1)’““%—2—;(—5@, 1=1,2,...,k and the proof is complete. [J
We can replace the writing of (2) by the form

G®(k,z) = G*V(k,z)+-- -+ G"(k,z) + G'(k,z) + G(k, z).
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This suggests that we use the notation Go(k,z) = G(k,x) and, for i > 1, G;(k, z) = G (k, z).
Thus
Gn(k,z) = G™ (k,x) = c1ATeM® + coAJe?2® + - - + cp AT e

gives us the sequence of functions {G,(k,z)} with the property that
Gn(k,z) = Gp-1(k,z) + Gp—2(k,z) + -+ + Gn—i(k,z), n >k, 4)
where each c¢; is in (3). We shall refer to these functions as k-Fibonacci functions. If k = 2,

then G(2,z) = fo(z) is the Fibonacci function as in [2]. From (4), we have the following
theorem.

Theorem 2.2: For the k-Fibonacci function G, (k, z),

Go(k,0) =0=g$P,G1(k,0)=0=g®, ..., Gr_z(k,0) = 0= g{¥,,
(k,0) =1=g®  Gi(k,0) = Go(k,0) + - - - + Gx—1(k,0) = 1 = g{¥
Gk-—l(kao) =1 91> k( ’ ) 0( ) )+ + k—l( ) ) 9

9t®) = Gp(k,0) = c1AT + A} + - - -+ cp A}

k k k
=g+ g4+ g, n2 E,

where each ¢; is given by (3).

Let Gnp(k,z) = (Gn(k,x),...,Gnik—1(k,z))T. For k > 2, the fundamental recurrence
realtion (4) can be defined by the vector recurrence relation Gp41(k,z) = QrGn(k,z) and
hence Gn+1(k,z) = Q3G (k, ).

Sinee g,(clf_)l = g,(ck) = 1, we can replace the matrix @y, in (1) with

0 g®, 0 ... 0]

0 0 g,(ck_)1 0

Q=1 : = 1
0 0 g,(ck_)1
Lo®, o . P o

Then we can find the matrix Qf = [!J,T,j(n)] in [5] where, fort=1,2,...,kand j =1,2,...,k,

t _ (k) (k)
9i,;(M) = 9p3 oy T T Iniimg)-(i—1)° (5)

We know that 9;{,1("") = 97(:2;’—2 and g}: w(n) = g,(fzi_l. So, we have the following theorem.
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Theorem 2.3: For nonnegative integers n and m, n+ m > k, we have

k
Grnim+1(k,z) = Zgl,j(n)Gm‘!-j(k?z)'
i=1
In particular,
oo (k)

Gr(k,z) = Z g%’i:z:’

i=0
Proof: Since Gp11(k, z) = Q2 G1(k, z),

Gn+m+1(k7-7-") = Q:+mG1(k7w) = Q"I: ' Q’;anl(k7 iL')
= Q’,;’Gm+1(k,.’l:).

By applying (5), we have

Grim1(k, 3) = g1 ;(0)Gms1(k,z) + -+ -+ g} 1 (0) i (K, 7).

Since Ef__?ol Gi(k,z) = G(k,z) and

(k)

k-1 (k)
k k g Itk
> Gilk,o) = g+ giho + e o TR
i=0

we have

x© gB)
Gi(k,z) = Z Ttkgiono

]
— il
Note that Q7™ = Q™" Then we have the following corollary.
k k g

Corollary 2.4: For nonnegative integers n and m, n + m > k, we have

k
Grims1(k,2) =Y g1 ;(m)Grsj(k, ).

j=1

We know that the characteristic polynomial of Q, is A¥ — A5~ —... X —1. So, we have

the following lemma.
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Lemma 2.5: Let A¥ — A¥~! —... — X — 1 = 0 be the characteristic equation of Q. Then, for
any root X of the characteristic equation, n > k > 0, we have,

k .
= Zgl’j(n)/\J_l.

i=1

Proof: From (5) we have, for j =1,2,...,k,

gI,j(n) =gk 1tgf o+ Hgb

It can be shown directly for n = k that

. - k k
N = g g (g, 1 g, 4t o) N2t (o, 4+ g,) A gy

=X AR AL
We show this by induction on n. Then

X"'-H — )\n A
= (gi,k("")’\k_l + gi,k—1(”))\k_2 +eet 91,2("))\ + gii-,l(n)) A
k & k -
= gEX* + (91(1—)1 + 9( Jyt et gas,-zk+1) ARt

- k
+ (98 o) X2 (90, + (98,) 22 4+ g0

Since \F = AF=1 4 ...+ XA+ 1, we have
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AP = o)) (k=14 x 1) (g,‘,’”1 49" 4 g® +1) AB-14
(9% + 9 -+ g a) X2t (02, + 925) 42 + g0,
= (ggc) Mt ggc)kﬂ) AT+ (ggc) +ee +g‘l(1,k2k+2) AR
oo () + o0, ) A+ g
_ ’(Llfal)‘k—l ( (k) 4 g(k) N gr(blc_)k”) =
ook (g + g0, ) A+ g0
=gl + DN gl (A DT gl (1A

+ .- +gI’2(n +1)A+ gI,l(n +1)

1J('n,+ AL

IIMa-

Therefore, by induction of n, the proof is completed. O
Theorem 2.6: Let A be a root of characteristic equation of Q;. For positive integer n, we
have

k
Gk, A) =) ani N1,

where

(k) (k) (k)

_ gn+k gﬂ+] 1 gn-i—z
i=k+1

Proof: Since \¥ = A¥=1 4 ... 4+ X4+ 1 and by lemma 2.5, we have
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. g( ) g(k)
G (k )\)_g(k) 51_21/\_'_ n+2A2+ e 2n Z2n yno

g(k)k g(k)k 1 g( )
(g(k)+ HE pgli (k1)L +911(7") 2” +. )

K (k+ 1)!
(k) (k) (k)
k In+tk Intk+1 92
( 7(L+)1+ 7,:: +912(k+1)(k’:+ 1) +- +912(”) 0 > A
+ P +
(k) (%) (k) (%)
In+r—1 gn+k } Intk+1 an yk-1

=, + aznA 44 O’kn/\k-l

k
_ yj—1
—E a; A7,

i=1

where
(k) (k) (k)
In+k g’n+] 1 g'n.+1.
Qj, = ] +( —1)! + Z gl,](z)
i—-k+1
for 7=1,2,...,k, the proof is completed. OJ

Frorn theorem 2.3 and theorem 2.6, we have

g(k)
Gn(k7z)““z T;:;H 1.

i=0

= g 1(n — 1)G1(k,z) + - + g1 (0 — 1)Gr(k, )

k
— i1
—§ a; 77,
i=1
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where

(k) (k) (k)

. In+tk g’n+_‘l 1 gn+1
aJ" - kt 1)| +t§*’1 (z)

for j=1,2,...,k.
3. SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Matrix methods are a major tool in solving certain problems stemming from linear recur-
rence relations. In this section, the procedure will be illustrated by means of a sequence, and
an interesting example will be given.

To begin with, we introduce the concept of the resultant of given polynomials [3]. Let
f(@) =37 paiz" " and g(z) = Y 1w, biz™ "t be polynomials, where ag # 0 and by # 0. The
presence of a common divisor for f(z) and g(z) is equivalent to the fact that there exists
polynomials p(z) and ¢(z) such that f(z)q(z) = g(z)p(x) where deg p(z) < n — 1 and deg
g(z) <m—1. Let g(z) = uox™ 1 + -+ -+ Up—1 and p(x) = vox™ ' + -+ -+ v,—1. The equality
f(z)g(z) = g(z)p(x) can be expressed in the form of a system of equations

aoUp = bo'Uo
aiug + agui = bivg + bovy
asug + ai1u1 + agus = bavg + bivy + bove

The polynomials f(z) and g(z) have a common root if and only if this system of equations
has a nonzero solution (ug,us,...,v0,v1,...). If, for example, m = 3 and n = 2, then the
determinant of this system is of the form

ap 0 0 -—bo 0 ap a1 a2 0 0
a; ag 0 b1 —by 0 ap a1 a2 O
az a1 Qo —bz —bl =0 0 apg a3 a| = |S(f($),g(1‘))|
0 az Qa1 —-bg —b2 bo bl bz b3 0
0 0 a2 0 -—b3 0 bo b1 b2 b3

The matrix S(f(z),g(x)) is called the Sylvester matriz of polynomials f(x) and g(z). The
determinant of S(f(z),g(z)) is called the resultant of f(z) and g(z) and is denoted by
R(f(z),9(z)). It is clear that R(f(z),g(x)) = 0 if and only if the polynomials f(z) and
g(z) have a common divisor, and hence, an equation f(z) = 0 has multiple roots if and only
if R(f(z), f'(z)) = 0.

Now, we define a sequence. For fixed k, k > 2, and a complex number a, a sequence of
k-Fibonacci functions, {G,(k,a)}, is defined recursively as follows:

Go(k, a) = 8o, Gl(k,a,) =81y -0y Gk_l(k,a) = 8k—1, (6)
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Gn(k, a) = p1Gn_1(k,a) +p2Gn_2(k,a) + .- +kan_k(k,a), n > k, (7)

where sg, S1, ..., Sk—1, P1, P2, .-, Pk are complex numbers.
Our natural question now becomes, for k > 2, what is an explicit expression for G, (k,a)
is terms of sg, S1, ..., Sk—1, P1, ..., PET HSo=---=8,_2=0, sp_1=8,=1, pp=---=

pr =1 and a = 0, then by theorem 2.2 we have G,(k,0) = g,. In [8], Rosenbaum gave the
explicit expression for k& = 2.

In this section, we give an explicit expression for Gy, (k, a) = p1Gn-1(k,a)+p2Grn—2(k,a)+
-+ + prGr-i(k,a), n > k in terms of initial conditions Go(k,a) = so, Gi(k,a) =
81y «-ny qk_l(k,a) = Sk—1, k > 2.

Let Gp(k) = (Gn(k,a), ..., Gn_g+1(k,a))T for k& > 2. The fundamental recurrence
relation (7) can be defined by the vector recurrence relation G (k) = Q+Gn—_1(k), where

Qk = [Ikp_l I:;:I and P= [Pl;P27 - '7pk—1]'

Let s = (Sg—1,-..,50)T. Then, we have, for n > 0, Gpyr_1(k) = ~Zs, and the characteristic

equation of Qk is

FO) =X —p At — o —pp A —pp =0
If R(f(A), /(X)) # 0, then the equation f(\) = 0 has distinct k roots.
Theorem 3.1: Let f()) be the characteristic equation of the matrix Q. If R(f(X), f'(A)) # 0,
then G, (k,a) = p1Gn-1(k,a) + p2Gn_2(k,a) + - - - + pxGn_i(k,a) has an explicit expression
in terms of sg,..., Sk—1.

Proof: If R(f()), f/())) # 0, then the characteristic equation of @y has k distinct roots,
say A1, A2,..., ;. Since the matrix Qr is diagonalizable, there exists a matrix A such that
A~1QrA = diag(A1, A2, - - -, \g)- Then Gppg—1(k) = Adiag(Af, A%, ..., A?)A~!s, and hence we
have

k
Gn(k,a) = didT +doAf + -+ dedf = ) did7,

=1

where dy, ds, ..., di are complex numbers independent of n. We can determine the values
of dy, ds,..., dip by Cramer’s rule. That is, by setting n =0, 1, ..., k — 1, we have

Go(k,a) =dy+de+ -+ dg,
Gi(k,a) = diA1 +da2da + - - - + di g,

Gi-1(k,a) = di A1+ dodE™1 oo+ dpab-1,
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and hence
Vd=s, d=(di,dz,...,ds)". (8)
Therefore, we now have the desired result from (8). O
Recall that
A _| P Pk
Qk - [Ik—l 0 } )
where [p = p1,p2,-..,Pk—1]- Then, in [1], we have the following theorem.

Theorem 3.2 [1]: The (3, j) entry qi(?) (p1,p2,---,pk) in Q’,: is given by the following formula:

Z m; +mip1+ -+ mg

QE?)(PI:P2a---,Pk)= mi+ -+ mg

(ml,...,mk)

<m1+---+mk
X

™y my
Pt 9
ml,mz,...,mk) 1 P ©)

where the summation is over nonnegative integers satisfying mq, +2ma+---+kmp =n—1i+74,
and the coefficient in (9) is defined to be 1 if n =i — j.
Applying the G4 x—1(k) = Qs to the above theorem, we have

Gr(k,a) = g (1, .., Pk)Sk—1+ @y (P1, - - -, PR) Sk -2+

o+ g™ (pa, ..., pr) S0

k
= qu(:})(Pl, ey PE)Sk—j- (10)
Jj=1

From (9), we have

Z mj+mjp1+ -+ mg

41(57;)(1’1,---,1%): M+ -+ mg

(m1,...,mg)

x(m1+"'+mk)pm1 p™*
1 .0 k )
my,Ma,..., Mg

where the summation is over nonnegative integers satisfying m1+2mao+:--+kmg = n—k+7,
and the coefficient in (10) is defined to be 1 if n = k — j.
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Hence, from theorem 3.1 and (10),

k
Gn(ka a) - Z (II?;)(ph e 7pk)5k—-j
=1

k
= AT,
=1

Example: In (6) and (7), if we take a =0, s =81 =+ = 8§43 =0, 8g—2 = 55—1 = 1 and
p1=---=pg =1, then
Go(k,0) = -+ = Gr—3(k,0) =0, Gg—2(k,0) = Gx-1(k,0) =1,

and for n > k > 2,
Gn(k, 0) = Gn_l(k, 0) + Gnmz(k, O) +--+ Gn_k(k, 0)
=9n=9gn-1+Gn-2+" -+ Gn—k-

Let éq(zk) = (g%k),...,g,(:?k _H)T. For any k > 2, the fundamental recurrence relation

gg“) = g,,(ﬁzl + ggc_)2+- . -+gq(zk_) i can be defined by the vector recurrence relation g,‘{“) = ngﬁf_)l.

Then, we have g,({“) = ";;gg’“’ = Q7(1,1,0,...,0)T. Since Q) has k distinct eigenvalues (see
51, )
gl = di AT - d AT
Hence, we can determine dy,ds, .. ., d; from (8). 5
For example, if k = 3, then the characteristic equation of Q3 is f(A) = A3—A2—-A—-1=0,
and hence

1 -1 -1 -1 0
0 1 -1 -1 -1
RFO),FO)=13 -2 -1 0 0 |=44+#0.
0 3 -2 -1 0
0 0 3 -2 -1

Thus f(A) = 0 has 3 distinct roots. Suppose a, S and « are the distinct roots of f(A) = 0.
Then we have

a—é(u—i—'v)—l—1
-3 3’

1 W3 1
B=—cw+v)+ L w—0)+3,
1= st - L+ L,
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where
i=v—1, u=1/19+3v33 and v= /19— 3V33.
So, we have
9 = dia™ + daf™ + d3v", (11)
and hence
1 1 1 d 0
(87 ﬂ Y dyj=1|1
a? B% 42 ds 1
Set
1 1 1 0 1 1 1 0 1
d=det|a B v |,0e=det|{l B ~v|,dg=det|a 1 ~v/|,
a2 ﬂ2 ,.),2 1 ﬂ2 ,.y2 aZ 1 ,),2
and

1 1 0
dr=det|a f 1].
a? p? 1

Then we have

8y
2,

% o % _
dl——a,d2—7, andda—

As we know, the complex numbers d;, d3, and d3 are independent of n.

We can also find an expression for g in [6] follows:

&1 +92,) (B — (" —a”)
(@-DE-7

9® = ( (12)

So, by (11) and (12),

doa™ + 0gB™ + 047" ( 1(521 +91(L3-22) B=7)—(B" —a")

4 (@-1)(B-)
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Similarly, if & = 2, then

1

@ —-F =
n L VI W

(AT = 23), (13)
where A; and A are the eigenvalues of Q2. Actually

14+4/5 1-
= 2\/—and)\2= B

IS

A1

In this case,

oL _r . 1 1
T VBT - B

and (13) is Binet’s formula for the nth Fibonacci number F,.
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1. INTRODUCTION

Let (un)n>0 be a sequence of positive integers. We denote by G(u) the multiplicative
subgroup of Q7 generated by all the members of (uy)n>0. That is,

Gu)={up! ‘up?-...-up?|s >0, 0<n; <na <---<mg,and o; € Z* for i = 1,2,...,s}.

(1.1)
In some cases, the group G(u) is very easy to understand. For example, if (uy)n>0 is a
geometrical progression of first term ug and ratio r = u; /ug, then

G(u) = {ugrP|for some a, B € Z}. (1.2)

For a sequence (un)n>0 We also denote by
U = {m € N|m = u, for some n > 0}. (1.3)
That is, U is the range of the sequence (u5)n>0. In this paper, we look at the set G(u) N N.
Certainly, U C G(u) NN C N. It is easy to see that the extreme cases of the above inclusions
can occur in some non-trivial instances. For example, if u, = n! for all n > 0, then m =
U [Um—1 for allm > 1, therefore G(u) = N. However, if (v )n>0 is an arithmetical progression

of first term 1 and difference k¥ > 1, then G(u) NN = U. Indeed, notice that 1 = uy € U, and
that if we write some m € G(u) NN, m # 1 as

S
m= Huf::, for some s>1and a; € Z* fori=1,2,...,s, (1.4)
i=1

then we can rearrange equation (1.4) as

m H u, = H Upi. (1.5)

1<i<s 1<i<s
;<0 a;>0
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We may now reduce equation (1.5) modulo k¥ and get m = 1 (mod k), therefore m € U.
While both the group G(u) and the semigroup G(u) NN are very easy to understand for the
above mentioned sequences (un)n>0, DOt the same is true when (4n)n>0 i a non-degenerate
linearly recurrent sequence. In this note, we investigate the group G(u) and the semigroup
G(u) NN when (uy)n>0 is a Lehmer sequence.

Recall that if L and M are two non-zero coprime integers with L — 4M # 0, then the nt?
Lehmer number corresponding to the pair (L, M) and denoted by P, is defined as

%7;—:—%1 for n = 1(mod 2),
P n — n n (1'6)
%2:—22— otherwise,
where a and 8 are the two roots of the characteristic eguation
2 —VLz+ M =0. (1.7)

To avoid degenerate cases, we assume that a/f8 is not a root of 1. In what follows, we
denote by u, = |P,| and by G = G(u). Our main results say that though the set G is
topologically dense in the set of non-negative real numbers, its asymptotic density in the set
of positive integers is zero. Before stating it, we introduce one more notation.

For every positive real number z let G(z) = GN NN (0,z). For every finite set of prime
numbers P, let Gp be the subgroup of Q7 generated by G and P. If = is a positive real
number, we denote Gp(z) = Gp NN N (0, z).

We have the following results.

Theorem 1: The set G is dense in the sel of non-negative real numbers.
Theorem 2: For any positive number § there exists a computable constant C depending on

6, P, L and M such that
x

#G’p(iL’) < (logz)5

(1.8)

holds for all z > C.
The above Theorem 2 has the following immediate consequence.
Corollary 1:
(i) Both the group G and the factor group QY /G are infinitely generated.
(i1) There ezist infinitely many prime numbers p which do not belong to G.
(i) There ezist infintely many n’s such that n! does not belong to G.
Since the group G is a subgroup of Q7 , we know that G contains no torsion elements.

However, this is not necessarily the case for the factor group Q3 /G. Let G = Q% /G. Since G

is abelian, it follows that G has a torsion part, let’s call it T(G), and

FG):= — (1.9)
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is torsion free. The following result is slightly stronger version of the above Corollary.
Proposition: The group F(G) contains a free subgroup of infinite rank.

The following Corollary follows from the above Proposition and is a stronger version of
Corollary 1 (ii).
Corollary 2: There ezist infinitely many prime numbers p such that p* ¢ G for any positive
integer k.

3. THE PROOFS

The Proof of Theorem 1: It is proved in Lemma 2 of [3] that if p and g are two coprime
integers with 1 < p < g, then each non-negative real number is a limit-point of the set of all
fractions of the form p™g~", where m and n are positive integers. Since for all positive integers
k and s we have (ug,us) = u(,s), the above result applied to positive integers us/u 5) and
u/U(k,s) proves Theorem 1.

We now proceed to the proof of Theorem 2.

In what follows, we recall the definition of a primitive prime divisor of a term of a Lehmer
sequence. It is well known that u,|u,, whenever n|m. A primitive prime divisor of un, is
defined to be a prime number p|u,, such that pfu, for any n < m. Moreover, an intrinsic
primitive prime divisor of up, is defined to be a primitive prime divisor p of u,, such that p
does not divide the discriminant A = L — 4M of (un)n>0. In order not to complicate the
terminology, in what follows we will refer to an intrinsic primitive prime divisor of u,, as
simply a primitive divisor of up,. By results of Ward [5] for the case in which (up)n>o has
positive discriminant, and Bilu, Hanrot and Voutier [1] for the general case, we know that .,
has a primitive divisor for all m > 30. It is also well known that any primitive divisor p of uy,
satisifies p = £1 (mod m).

For every finite set of prime numbers P we denote by

Mp = max(30,p+ 1|p € P). (2.1)

When P is empty, we simply set M = My = 30. From the above remarks, it follows that
whenever n > Mp, u, has primitive divisors and none of them belongs to P.

We begin by pointing out a large free subgroup of G.
Lemma 1:
(i) Let Gy be the subgroup of G generated by the set {un}1<n<3o and G2 be the subgroup of G
generated by the set {un}n>30. Then, Gz is free on the set of generators {un}n>30 and G is
the direct product of G1 and Ga.
(ii) Let G1,p be the subgroup of Gp generated by the set PU{un tn<nr, let G2, p be the subgroup
of Gp generated by the set {un}n>np. Then, Gop is free on the set of generators {un}n>np
and Gp is the direct product of G1p and G p.
The Proof of Lemma 1: We prove only (i) as the proof of (ii) is entirely similar. It is clear
that G is the product of G; and G». In order to prove that this product is direct and that Gs
is indeed free on the indicated set of generators, it suffices to show that if

S
Hu,‘:;’: , forsomes>1, a; €Z* and n; <ng < -+ < g, (2.2)
i=1
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then n, < 30. But this follows right away because u, has a primitive divisor of n > 30.
Let g € Gp \ G1,p. By the definition of Gp \ G1,p, it follows that one may write

g= H pPe Hu (2.3)

peEP i=1

where B, € Zforallpe P, s > 1,a; € Z* fori = 1,2,...,5 and n1 < ng < -+ < ng with
ns > Mp. Of course, the above representation (2.3) for g need not be unique. However, by
Lemma 1 above, we get that both the index n, and the exponent a; of u,, do not depend on the
representation of g of the form (2.3). Thus, we may define two functions f, h: Gp\G1,p = Z
by f(g9) = ns and h(g) = as. We also extend the function f to the whole Gp by simply setting
f(g) = Mp when g € G1,p.

The following observation is relevant in what follows.
Lemma 2: Assume that g € Gp \ G1,p. If g € N, then h(g) > 0.
The Proof of Lemma 2: This is almost obvious. Indeed, assume that g is given by formula
(2.3) and that as < 0. Since ny, > Mp, it follows that u,, has primitive divisors. Pick a
primitive divisor g of w,,. By the remarks preceeding Lemma 1, we know that g ¢ P. Since
g € N and a; < 0, formula (2.3) implies that

QIHP H Ujs (2.4)

PpEP 1<j<ng

which is obviously impossible.

The Proof of Theorem 2: We assume that |a| > |3|. Notice that |@| > 1. For any n > 30,
we denote by Pr(n) the primitive part of u,. That is, Pr(n) is the product of all the primitive
prime divisors of u, at the powers at which they appear in the prime factor decomposition of
Un. It is well known (see [4]), that if we denote by ¢; all the primitive roots of unity of order
nfori=1,2,...,4(n), then

) — 12n(B)|
Pr(n) = P (2.5)
where
$(n)
2.(X,Y) = [[(X - ¢Y) e ZIX,Y]

is the homogenized version of the n** cyclotomic polynomial and g(n) is either 1 or the largest
prime factor of n. We also denote by Prp(n) the primitive part of u, which is coprime to
all the prime numbers p € P. By using linear forms in logarithms, both complex and p-adic
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with respect to the primes p € P (see [4]), it follows easily that there exist two effectively
computable constants ¢; and ¢y depending on L, M and P such that

Prp(n) > |a|#M™—adm)legn - ghenever n > ¢y, (2.6)
where d(n) is the number of divisors of n. Since d(n) < n¢ for every € > 0 provided that n is

large enough (with respect to €) and since

c3n

$(n) > loglogn’

whenever n > ¢4 2.7

for some absolute constants cs and cy, it follows that there exists a constant ¢5 (depending on
L, M and P) such that

Prp(n) > eV™,  whenever n > cs. (2.8)

We may assume that c5 > 30.
We now look at the elements ¢ € Gp N N. Let y be a very large positive real number
(y > 30), and set

A(y) = {9 € GpNN|f(9) <y}, (2.9)
and
B(y) = {g € Gp NN|f(g) > y}, (2.10)

Certainly, Gp N N = A(y) U B(y) holds for every y. For a real number z set A(z,y) =
A(y)N(0,z) and B(z,y) = B(y) N(0,z). Thus, in order to bound the cardinality of Gp(z), it
suffices to bound both the cardinality of A(z,y) and B(z,y).

We start by bounding the cardinality of A(z,y). Assume that ¢; < g2 < --- < gy are all
the possible prime factors of an integer g € A(z,y). Then,

k
el [I2 I]w- (2.11)

i=1 peP j<y

Since P is fixed and since u, < (2|a|)™ holds for all n > 1, it follows that there exists a
constant cg (depending on L, M and P) such that

k
Mo <e. (2.12)

i=1

From the Prime Number Theorem, we know that there exists an absolute constant c; > 0 such
that

k
e <[] & (2.13)
i=1
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Hence,
k < csy?, (2.14)

where cg = ¢g/cy. Assume now that g € A(z,y) has the prime factor decomposition

k
g=[]da,  wherep;>0fori=1,2,... k. (2.15)
i=1

Since g < z, it follows that

logz  logz .
; < < foralle=1,2,...,k. 2.1
M‘L —_— long —_ log2 Or ail ¢ 17 3 7k ( 6)

From inequalities (2.14) and (2.15), it follows that there exists a constant cg such that

#A(z,y) < (log :I:)"WZ, for all z > 3. (2.17)

The above inequality (2.17) holds for all y > 30.

We now bound the cardinality of B(z,y) for y large enough.

Assume that y > Mp and assume that g € B(z,y). From the definition of B(z,y), it
follows that f(g) > y. Moreover, from Lemma 2, it follows that h(g) > 0. By writing

g=J] % []u, (2.18)

peEP i=1

where B, € Z,s > 1,a; € Z* for i = 1,2,...,5 and ny < ng < -+ < ng, with ng = f(g9) >y
and as = h(g) > 0, we get that the positive integer g is a multiple of Prp(f(g)). There are at

most T

Prp(f(9))

positive integers less than & which are multiples of Prp(f(g)). Hence, this argument shows
that the cardinality of B(z,y) is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>