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CHARACTERIZATIONS OF «-WORDS, MOMENTS,
AND DETERMINANTS

Wai-fong Chuan

Department of Mathematics, Chung-yuan Christian University, Chung-Li
Taiwan 32023, Republic of China
(Submitted August 2000-Final Revision December 2002)

1. INTRODUCTION

Throughout this paper we consider binary words. All results can easily be stated for
words over other two-letter alphabets. For any word w, let |w| denote the length of w and let
|w|i, called the height of w, denote the number of occurrences of the letter 1 in w. For n > 1
and ¢1,¢2,...,cn € {0,1}, define operators T and ~ by

T(c1c2 .. .Cn) =C2...ChC1,

(c1ep...cn)” =cp...c201.

For each integer 7, let 77 have the obvious meaning. The operator T is called the cyclic shift
(or rotation) operator. A word u is called a conjugate of a word w if u = T7 (w) for some integer
j. The set of all distinct conjugates of w is called the conjugate class of w and is denoted by
[w]. The word w is called the reversal of the word w.

A word w is said to be a palindrome if either w is the empty word or @ = w. w is said to
be primative if it is not a power of another word. w is said to be a Lyndon (resp. anti-Lyndon
word if it is the smallest (resp., largest) in the lexicographic order in the conjugate class of -
w. w is said to be bordered if there are words z and y with # nonempty such that w = zyz;
otherwise, w is said to be unbordered.

For w = cicz. . . ¢q, where each ¢; is either 0 or 1, define M (w) = Y 7, (g+1—i)c;. M(w)
is called the moment of w. Define

M([w]) = {M(u) : u € [w]},
§(w) = max{M(u) — M(v) : u,v € [w]}.

One way to define a-words is to make use of T' and the words u (g) define below. (See
[13] for the original definition and basic properties of a-words.)

Let p and g be two relatively prime positive integers with p < ¢. Let [0,a1 + 1,02, ..., a4]
be the continued fraction expansion of g. Define a sequence of words w—_1,ug,t1,...,U, re- °
cursively as follows: Let u_3 =1, ug =0, and for 1 <k <, let

. { ug—oupt ; (kis even)
BT ul uk_z (ks odd).
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It is know that the word u, depends on %, but not the continued fraction expansion [1, 2].
Denote u, by u (5). Clearly, its first (resp., last) letter is O (resp., 1).
A word w is said to be an a-word if either w € {0,1} or there are two relatively prime

positive integers p and g with p < ¢ such that w is a conjugate of u (1—;). Conjugates of

U (F;:) (resp., u (F;;"’) ) are known as binary Fibonacci words (see [6]).

We first report briefly some known results about the word u = u (‘3) and its reversal. The
conjugates u, T'(u), ..., T9 1(u) of u are exactly the distinct a-words with length g and height
p. Thus each a-word is primitive. The word u (resp., 4) is a Lyndon (resp., anti-Lyndon)
a-word (see [1,11]). The word u is the only binary word which has two factorizations of the
form u = zy = 0z, where z,y, z are palindromes, |z| = ¢ — 2,|y| = s and 1 < s < ¢ is such
that ps = 1(mod g¢) (see [20]). The conjugate class [u] of u is closed under taking reversals.
Clearly & = T—*(u). Both u and @ are unbordered. Furthermore, the set of Lyndon a-words
and their reversals are the only unbordered finite Sturmian words (a finite Sturmian word
is any finite factor (or segment) of any characteristic word (see section 5)) [14]. The set of
Lyndon a-words coincides with the set of Christoffel primitives (see [1,2] for the definition of
Christoffel primitive).

Let [0,a1 +1,az,...,as] be the continued fraction expansion of £. In [13], it was shown
that a word w is a conjugate of v if and only if there are integers rq,...,7, With 0 < r; <
a;,1 <1< n, and words w_1,wp, w1, ..., W, such that

woy =1, wy =0, wy, =w,

w; = wi T wiwt,, 1<i<n.

In fact, each conjugate T%(u) of u corresponds to those n-tuples (r1,...,7r,) of integers with
0<r<a, 1<i<mnand k=Y rig_1(mod g), where ¢_; = g0 = 1, ¢ = aigi—1 +
gi—2, 1 < i < n. Thus, each a-word can be obtained recursively by concatenation. The words,
having length g and height p, obtained withr; =+ =r, =0o0rri = =rp1=1-7r, =0
are called standard Sturmian words (see [1]). It is not hard to see that a word w having length
g and height p is a standard Sturmian word if and only if w = T'(u) or w = T'(&).

Letu () =0and u(}) =1. If £ and ;—i are consecutive fractions in the Farey sequence

of any order with ¢ < 2—',, then u (gi’;’,) =u(t)u (z—',> Also the mapping r +— u(r) is an
increasing function from the set of all reduced fractions in [0,1] onto the set of all Lyndon

a-words. In other words, if r < 7/ then u(r) < u(r') in the lexicographic order (see [2]).

2003 195



CHARACTERIZATIONS OF -WORDS, MOMENTS, AND DETERMINANTS

More results - both old and new - about u (%) will be presented below.

In an earlier paper, the present author proved that if w is an a-word having length g, then
M([w]) is a set of g consecutive positive integers and §(w) = g — 1. Each of these properties
actually characterizes a-words (Theorem 4.4). The result used to prove this characterization
is itself a characterization of a-words (Lemma 2.1) with other interesting consequences besides
Theorem 4.4. In section 3, we obtain characterization of elements of the set PER and standard
Sturmian words (Corollary 3.2), and we identify those a-words that are palindromes (Corollary
3.4). In section 5, we compute the determinants of a class of matrices involving a-words
(Theorem 5.1). As a special case, we obtain a sequence of (0,1)-matrices A;, Ay ... such that
A, is an F,, x F,, matrix whose rows are precisely the Fibonacci worvds having length F;,, height

F,—1 (resp., Fn_2), and det(A,) = Fp—1 (resp., Fp—2).
2. A LEMMA

[11,14,16,18] present some characterizations of a-words. The characterization proved in
[11] is restated in Lemma 2.1 below. With this result, we know exactly where the ones in
each a-word are located and so each a-word can be generated directly without using a-words
of shorter lengths. Corollary 2.2 shows how all a-words having the same length ¢ and height
p may be ordered in such a way that consecutive pairs differ in exactly two adjacent letters.
Sections 3-5 present some interesting consequences of Lemma 2.1 and Corollary 2.2.
Lemma 2.1: Let p and ¢ be relatively prime positive integers with p < g. Define s as the
unique integer with
sp=1(mod q) and 1 < s < gq. (1)

Letu=u(§).ThenforOSqu—-l,

the k%" letter of T9%(u) is 1
<k =(r—j)s (mod g) for some r with 0 <r <p-—1,
<k =1+(r+ j)(g — s)(mod g) for some r with 1 <r < p.
A proof of Lemma 2.1 appears in the Appendix (see also [11]).
Corollary 2.2: Let p,q,s, and u be as in Lemma 2.1. Let 0 < j < ¢ — 1. The words 77%(u)
and TU+Ds(y) differ by exactly two adjacent letters. If i = (p—1—j)s (mod ¢) and 1 < i < g,

then the (i — 1)** and the i** letters in T7%(u) and TU*D%(y) are 01 and 10 respectively.
Proof: Let 0 < j < g — 1. The positions of 1 in T9%(u) and TU+V%(y) are respectively

-js,(l—j)s,...,(p—Z—j)s,(p—l—j)s,
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and

(_j - 1)57 _j37 (1 _j)57"'7(p_2 _.7)5

(mod q). If (p—j—1)s = i (mod g) where 1 < i < ¢, then clearly i # 1 and (—j—1)s =i—1
(mod q). Hence the words T9%(u) and TU*3(y) differ by exactly two letters. The (i — 1)
and the it" letters in 77%(u) and TU+Y3(y) are 01 and 10 respectively. O

We remark that when

Fn_1 (neven) S 3

=F,andp=F,_;, s= ,
g=Fp and p 1, 8 {FM2(HM® n>

Then Lemma 2.1 and Corollary 2.2 reduce to Theorem 2 (or Corollary 12(z) of [6]) and Theorem
3 of [10] respectively.

3. IMMEDIATE CONSEQUENCES

Throughout this section, let p, g, s, and u be as in Lemma 2.1. We shall show how Lemma
2.1 yeilds new and old results on factorization, PER, standard Sturmian words, lexicographic
order, reversals and moments.
Corollary 3.1:
(a) v = zy, where z and y are palindromes with |y| = s and |z| = ¢ — s.
(b) u = 0z, where z is a palindrome.
Note that, by taking reversals, we immediately derive from (a) and (b) respectively that & = yz
and % = [20.

Proof: The proofs of (a) and (b) are almost identical so we suffice with the proof of (b).
Let 2<k<g-—1.

The k** letter of u is 1
<= k =rs (mod q) for some r with 1 <r <p—1 (by Lemma 2.1 with j = 0)
<= qg+1—k=(p—r)s (mod g) for some 1 <r < p—1 (by equation (1))
<= the (g + 1 — k)®* letter of u is 1.
Therefore the result follows. [0

Let PER= {0,1} U {2z : 021 is a Lyndon a-word}. Note that the empty word belongs to
PER. Let PERO1= {201 : z € PER}. The set PER10 is defined similarly. The set of standard
Sturmian words equals {0,1}U PEROIUPER10. Elements of PER and standard Sturmian
words have been recently studied extensively (see [1]). The following corollary provides char-
acterizations of these words.
Corollary 3.2:
(a) Let z € PER with |2] =¢—2 and |z|; = p—1 > 1. Then

the k** letter of z is 1

2003] 197



CHARACTERIZATIONS OF -WORDS, MOMENTS, AND DETERMINANTS

< k=rs—1 (mod q) for somer with 1 <r<p-1
< k=7(¢g—s) (mod q) for some r with 1 <r <p-—1.
(b) Let w € PERO1 and w' € PER10 with |w| = |w’| = ¢ and |w|; = |w'|; = p. Then
the k** letter of w is 1
<= k=rs—1 (mod q) for some r with 1 <r < p;
the k" letter of w' is 1
<= k=7r(¢—s) (mod g) for some r with 1 <r < p.
Proof: Part (a) follows from Lemma 2.1 and the fact that 0z1 = u. Part (b) follows from
the fact that w = T(@) and w’' = T'(u). O
When the conjugates of u are listed as in (2) below, we observe some interesting phenom-
ena.
Corollary 3.3 (see [11]):
(a) The sequence of words

u, T%(u), T*(u),..., T V) =4 (2)

is increasing in lexicographic order.
(b) T7%(u) have increasing moments with M (T7%(u)) = @——1)2(9—-]’—1) +j+1(0<j<qg-1).
Proof: Part (a) and the recurrence relation M(TU+Vs(y)) = M(T7°(u))+1,0 < j < g2,
follow immediately from Corollary 2.2 and the definition of M. Thus M(T7%(u)) = M(u) +
75,0<j<g—1. We have

p—1

M(u) = Z (q +1- ([}—Lg‘] + 1)) + 1 (by definition of M and Lemma A3 of Appendix)
h=1
p—1 h
=q(p—1)— Z [—;] + 1 (by rearrangement)
h=1
-1 -1
=qp-1)- T g iy g )

7

_@+)e-1
2

proving (b). O
The above corollary generlizes Corollaries 2 and 3 of [10]. The following corollary gener-
alizes Lemmas 6 and 7 of [7].
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Corollary 3.4:
(a) T@=1=93(u) = (T95(u))”, 0< j<g—1.
(b) If ¢ is odd, then [u] contains exactly one palindrome, namely T(%)s(u); if g is even, [u]
contains no palindrome.
Note, letting j = 0 in (a) yields @ = T~%(u).
Proof:
Let 0 < j < ¢ — 1. By repeated use of Lemma 2.1, for 1 < k < g,
the (g + 1 — k)** letter of T(4~1=73(y) is 1
< q+1-k=14+(+(@—-1-75))(¢g—s) (mod g) forsome 1 <r <p
<= k= (r"—j)s (mod ¢) forsome 0 <r' <p-—1
<= the k" letter of T7°(u) is 1.
This proves (a). Part (b) follows immediately from part (a) and the distinctness of the
T (u). O

4. MOMENTS OF o-WORDS

For any binary word w, let d(w) = maz{M (u) — M (v) : u,v € [w]}. The following lemma
summarizing the properties of moments of a-words is an immediate consequence of part (b)
of Corollary 3.3.

Lemma 4.1: Let w be an a-word with |w| = ¢ > 2 and |w|; = p. Let u = u (’é). Then

(a) M(u) = minM([w]) = @A 4 1 M (@) = mazM ([w]) = &AL _ 7
(b) d(w) =g 1.
(¢) M([w]) is a set of q consecutive positive integers.

We shall prove in Theorem 4.4 below that each of the conditions (b) and (c) is equivalent
to saying that w is an a-word. We need the following lemma which is useful when studying
moments of binary words.

Lemma 4.2: Let w be a binary word with |w| = ¢ and |w|; = p. Let My, = M(T*(w)), 0 <
k < g. Let w = c1c2...cq where each c; is either 0 or 1. Define c41; = ¢; for 1 < j < q. Then
for 0 <r < k < g, we have

k

My — M, =pk—7)—q Z Ci-
i=r+1

In particular, My, — My = pk — ¢ >, ¢; if k > 0.
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Proof: For each k with 0 < k < g — 1, since T%(w) = cx+1Ck+2 - - - Ck+q, We have

q k+q k+q
My, :Z(q+1—j)ck+]’ = Z (k+g+1—2)ci=plk+qg+1)— Z ic;.
j=1 i=k+1 i=k+1
If r <k, then
k+q T+q
My—M,=pk+q+1)— Y jej—plr+g+1)+ Y ic
]=k+1 i=r+1
k k+g
=p(k—r)+Zici— Z jcj
i=r+1 j=r+q+1

k
=plk—r)—q Z ci. O

i=r+1

Lemma 4.3: Let w be a binary word with |w| = ¢ > 2 and |w|; = p. If §(w) =g — 1 then ¢
and p are relatively prime positive integers and w is an a-word conjugate to u g .

Proof: Let u € [w] with M(u) = minM([w]). Let ki,ko,...,kq be a permutation of
0,1,...,9—1 such that k; = 0 and My, < M, <--- < Mg,. Let u = cic2... ¢, where each ¢;

is either 0 or 1. Define cq4; = ¢j for 1 < j < g. By the assumption and Lemma 4.2, we have

kq
q—1=My, — My, =pkg—q ) ci,

=1

and so g and p are relatively prime positive integers. Again by Lemma 4.2, the moments
My, Mgy, ..., My, are all distinct and therefore My, , — Mg, =1,for 1 <m < q— 1.
Let 1 <m < ¢g—1. Lemma 4.2 also implies that

p(km+1 - km) —q Zf;n;,l+1 G (if km < km+1)7

1= Mgy — Mk, = { Em .
92 2Tk 141 — P(bm — kmt1)  (f kg < Km).-
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Define s by equation (1). Then

5 (km < km+ 1)

Bras — b =
+ { s—q (kmi1 < km)

= s (mod g)

and therefore ky, = (m — 1)s {mod g).

We claim that ¢, = 0 for p+1 < v < ¢g. To show this, let 1 < m < g — p. Since
kmtp —km=(m+p—1)s—(m—1)s =ps = l{mod q) and —q+ 1 < kpqp — b < g — 1,
it follows that km4p — km equals either —g+ 1 or 1. If kqp — by = —g + 1, then kypypy =0
(and k,, = ¢ —1). But then m +p = 1, a contradiction. Therefore kp4p = kmy, + 1. According
to Lemma 4.2, we have

Emp

p = Mkm‘HJ - Mkm = p(km+27 - km) - q Z C; — p - qckm+p;
i=km+1

80 Cgpyp, = 0, proving our claim.

Since |ulp = g — p, we see that

cp=1<=k=qork.forsomerwith2<r<p
<= k=rs (mod q) for some r with0 <r <p-—1.

It follows from Lemma 2.1 that u = u (’3 . Consequently w is an a-word. 1

Combining Lemma 4.1 and 4.3, we have the following characterization of a-words.
Theorem 4.4: Let w be a binary word with |w] = g > 2. Then the following statements are
equivalent:

(a) 6(w) =g -1,

(b) w is an a-word,

(¢) M([w]) is a set of g consecutive positive integers.
Remark 4.5: For w = cicy...c; where each ¢; is either 0 or 1, define S(w) = ¥ 7_;%ci.
The results about moments can easily be reformulated using S(w) instead of M(w). Plainly
S(w) = M(w), and S(w) + M(w) = (jw] + 1}|w|;. Graphically, a word w is represented by a
polygonal path from A(0,0) to B(|w|, |w!;) as follows: starting from the origin A, represent a
0 (resp., 1) in w by a horizontal unit segment going to the right (resp., a vertical unit segment

going upward, followed by a horizontal unit segment going to the right). This polygonal path
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divides the rectangular region having opposite vertexes A’(—1,0) and B into two subregions.
The one below (resp., above) the polygonal path has area M(w) (resp., S(w)) (see Figure).

A

B

-------

------------------- M(w).-.-;
; .

o 1 1 0 1 0
5. DETERMINANTS OF MATRICES INVOLVING o-WORDS

Throughout this section, let ¢ and p be relatively prime positive integers with p < ¢. Let
u=u (%). Regarding each binary word as a vector, we consider the g x g (0, 1)-matrix whose
4" row is the a-word T—U=1(@), 1 < j < ¢. It is easy to see that this matrix is a circulant
matrix, that is, a matrix of the form

€1 C2 ... Cg-1 Cq
Cqg C1 ... Cg—2 Cg—1
Cy C3 . Cq C1

where c;, is the k** digit of %. We denote this matrix by circ(@) (see [19]).

Among all the matrices obtained from cire(ii) by permuting its rows, the matrix cire(i)
is of particular interest for the following reasons.

Let o be any irrational number between 0 and 1 such that 1:13 is a convergent of the
continued fraction expansion of a. The characteristic word f(a) is an infinite binary word
whose k" letter is [(k + 1)a] — [ka], k > 1 (see, for example, [3, 13-15, 21, 23]). When
a = [52"—1,]’((1) is called the golden sequence (see, for example, [4, 8, 9, 12, 17, 24, 25]).
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Golden sequence turns out to be the Fibonacci binary word pattern F(1,01) (an infinite word
wiw2w3 ..., where w; = x and wy = y are binary words, and w, = wyp_swn,_1, 7 > 3, is
called a Fibonacci binary word patiern and is denoted by F(z,y) (see [17, 25])).

It is well-known that for each k > 1, there are exactly k + 1 distinct factors (or segments)
of f(a) (see [23]). Let y denote the palindrome that differs from » only by the last (resp.,
first) letter if the g™ letter of f(a) is 1 (resp., 0). It was proved in [13] that for 1 < k < g, the
rows of the upper left (k+ 1) x k submatrix of the (g + 1) X ¢ matrix

[ CiT;(ﬂ) } (resp_, [ cirz(u) ] )

are precisely the k + 1 distinct factors of f(a) of length k.

Another interesting fact about circ(@) is contained in the following theorem.
Theorem 5.1: det(circ(ii)) = p, if ¢ > 1. Here u (3) =0 and u (}) = 1.

Since the matrices under consideration are circulant matrices, their eigenvalues and hence
their determinants can be computed using the ¢** roots of unity. However the following row
rule proof based on the combinatoric properties of Corollary 2.2 is more elegant.

Proof: Let @ = cica...,cq where c1,...¢q € {0,1}. Clearly the result holds for ¢ < 2.
Now let ¢ > 3. Using (1), for 1 <t < g, define 1 < i; < ¢ such that ¢ = 1+ (¢t — 1)s (mod g).
Denote circ(i) by A and its (4, k)-entry by A(%, k). For 2 <t < g, since row %; (resp., 4z—1) of
Ais T~#+1(@) = T D5 (y) (resp., T t+D3(y)), Corollary 2.2 implies that

A(ig—1,8 — 1) = 1, A(ig—1,4) =0,
A(it,it - 1) = 0, A(it,it) = 1,
A(Zt,k) = A(it_l,k) for k ;é ’l:t and k 75 it —1.

Let B be the matrix obtained from A by adding (—1) times row i;—; to row i;, for each
t=gq,9—1,...,2,in the order given. Then

B(lak) = A(lak) = Ck,
B(ity k) = (_1)A(it—17 k) + A(itv k)

1 (k=14 —1)
1 (k= 14)
0 (otherwise),

Il
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where 2 <t < ¢, and 1 <k < g. Since 43,43,...,%, is a permutation of 2,3,...,¢, it follows
that B is the matrix

Ci Co Ccy ... » Cq—-1 Cq
-1 1 0 ... 0 0
0 -1 1 ... 0 0
0 6 0 -1 1

Clearly,

det(circ(@)) = det(B) = ch =p. O
k=1

Here is a special case of Theorem 5.1. Let {v,} and {z,} be sequences of Fibonacci words

given recursively by

Un—1Up—2 (1 is odd)
v=1v1=0,v2=1v, = .
Up—2Un—1 (7 is even),

Zn-22p—1 (n is odd)
z1=1,20=0,2, = .
Zn-12n—2 (n is even),

Let A, = circ(vn) (rvesp., circ(zn)), m» > 1. Since F;—;‘ = [0,1,1,...,1] (n —
1 ones) (resp., F;—f = [0,2,1,...,1] (n — 3 omnes)), =n > 3, we see that v, =

(u (Fl’;‘“l))w ( resp., Zn = (u (fﬁi))N) , n > 1. It follows from Theorem 5.1 that each
Ay is an F,, x F, (0,1) - matrix whose rows are precisely the Fibonacci words having length

F, and height F,,_; (resp., F,_2) and det(A4,) = Fp_; (resp., F,,_2).
APPENDIX. A PROOF OF LEMMA 2.1

For each real number 8, the infinite binary word f(8) whose k** letter is [(k+-1)8]—[k6], k >
1, is called the characteristic word of 8.
Lemma Al (see [21]): Let 0 < 8 < 1.
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(a) If 9 is irrational and k > 1, then

the k'™ letter of f(6) is 1

<k = [%] for some h > 1.

(b) If & =  is rational, where p, g are relatively prime positive integers, and k > 1,k # 0 and
k # —1 (mod gq), then

the k** letter of £(8) is 1

=k = [%] for some h > 1, h # 0 (mod p).

Throughout the rest of this section, let p and g be relatively prime positive integers with
p<gq. Let 1<s<q,1<t<p,and ps =gt + 1. Let'u:u(g). If w is a word and w = zy
where y is nonempty, we write z = wy~*.

Lemma A2: Let 6 be a real number between 0 and 1 such that g is a convergent of the
continued fraction expansion of 8. Let z be a palindrome such that v = 0z1.

(a) (see [1,3,21]) z is a prefix of f(6).

(b) If g > 0, then ul™! (resp., @) is a prefix of 0f(6) (resp., 1f(6)), but u is not a prefix of

05(6).

(c) If 2 < 0, then u (resp., %0~1) is a prefix of 0f () (resp., 1f(6)), but @ is not a prefix of
1£(6).
@ o7 (3) ==

Proof: Part (b) and (c) follow from (a) and the fact that [(¢—1)8] =p—1,[(¢g+1)0] = p,

and

D
N’

NV
5
~—

Part (d) follows from (b). O

The following lemma follows from Lemmas Al and A2.
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Lemma A3: The first (resp., last) letter of u is 0 (resp., 1). For 1 < k < g,

the &k letter of w is 1

@k—l:[%] forsome 1 < h<p-—1.

Lemma A4: For each h with 1 < h < p, there is a unique r with 1 < r < p such that
[%‘1] = rs — 1 (mod q). The mapping h > 7 is a bijection from {1,2,...,p} onto itself.
Furthermore,
(a) h=rt and r = h(p — m) (mod p), where 1 < m < p, and ¢ = m (mod p).
(b) h=p<=r=p.

Proof: Let 1 < h < p. Since s and ¢ are relatively prime, there is a unique integer r,
1 < r < g such that

5]t o

Clearly (b) holds. Let n be an integer such that [%‘1] =78 —1—mnqg. Then

hq
p|—|=rps—p—ngp
p
=r(gt+1)—p—ngp
= g(rt —np) +r —p.

Since p [5‘5] <hg<p [%] + p, we have

(Tt—np)+§—§§h<rt—np+—;—,

that is,

h+np—-rt<2_<_h+np—7't+§.

Therefore h + np — rt = [3] =0andr—p < glh+mnp—rt) = 0; so h = rt (mod p) and

1 < r < p. The second part of (a) follows immediately from the first part.
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It remains to show that if 1 < hy < hs < p, then [%] E3 [L%‘i] (mod q). Let k = hg — hy,
where 1 < hy < ho <p,ie,1 <k <p—1. Then

[%]+1<[%3]+kg<m+@=hiq

P p P p

h ~1 _h
—12+p———q<—;g+q—1

Y4 D
hig
<[ +e

so the result follows. O
Lemma 2.1 now follows immediately from Lemmas A3 and A4.
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1. INTRODUCTION

It is well-known (see, [4] p. 411) that the general solution of the differential equation
(z% — 1)y" + zy’ — n?y = 0 is of the form:

n n
T+ vVr2 -1 Tz —vz2 -1
y=C|——| +C|——F] , (1)
2 2
where C; and Cs are arbitrary constants and n € N.
For C; = C3 =1 from (1) we get that
2 1 " 2 1 "
T+ Vs — T — vz —

Tn(z) = (—“‘2—_> + (“—2"‘“) ) (2)

is the Chebyshev polynomial of the first kind.
In [2] the author has considered a more general class of polynomials, namely:

®3)

W (1) = (1:+\/2:CT—1——C) N (a:—\/zs—cm) |

where c is a parameter and where n > 1 is the degree of the polynomial W, (z;c). Moreover,
it has been proved in [2] that the function:

z+vVz?+c " z—vVzl+e "
y=Ci|\————| +C|——F—] , 4)
2 2
is the general solution of the differential equation:
(22 + )y +xy —n’y=0,224+¢>0, neN. (*)
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The polynomial W, (z;c) given by (3) contains the well-known Pell polynomial when ¢ = 1
and the Fibonacci polynomial when ¢ = 4.
In this paper we give further extensions of this result.

2. BASIC LEMMAS

Lemma 1: Let 59, © € C?(J) be real-valued functions of z, where J = (z;,z2) C R and
u # 0 on J. The function y; = sgu?, with non-zero real constant ), is the particular solution
of the differential equation:

Doy" + D1y’ + Day =0 (2.1)

if and only if there exist the functions sq, s, € C?(J) such that

Dgsy + Disy -+ Dasg = 0. (2.2)

Proof: Suppose that the function y; = spu” is the particular solution of (2.1). Then we
have Dyyy + D1y} + Doy = 0 and by the assumption on the functions s and u it follows that

7
yll = SB'U,}‘ + SQAU)‘_Iu/ — 'U,A (36 + )\So%) . (23)

Putting

7

§1 = 86 -+ )\So% (24)

in (2.3) we have 4} = s1u*. In a similar manner we obtain
o
Y = (Slu)\)’ = S’l’u,’\ + A0y = ot <3'1 + Asy Z) . (2.5)

Putting

14

g2 =87+ )\51% (2.6)

in (2.5) we have ¢/ = spu?, and therefore we obtain Dy} + D1y} +Day1 = Dosau™+Dysiu” +
Dg&ou;\ = UA(DQSQ + Disy + DgSo) = 0.
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Since u # 0 on J then (2.2) follows from the last equality. Now, we suppose that (2.2) is

satisfied by some functions s, 51,52 € C2(J). Then we have
DOSQUA + Dlslu’\ + Dgso’u,’\ =0. (27)

Putting y; = sou” in (2.7) we obtain 3} = s;u* and 4 = ssu®, where the functions s; and
so are defined by the formulas (2.4) and (2.6), respectively. Hence, Doy + D1y} + Day1 = 0,
and the proof of Lemma 1 is complete. O

Lemma 2: Let s¢,%,u,v € C%(J) be real-valued functions of z and let u # 0, v # 0 on J.

Then the functions
A

y1 = sou” and yp = tov (2.8)
are particular solutions of the differential equation:

Doy" + D1y’ + Doy = 0, (2.9)

if and only if the functions s;,%1, 82, and ¢2 are given by the formulas:

/ / 7 /

u v
81 = 36 + )\Sog—,t1 = tf) + /\tog-,SZ = 8’1 + Asl—,tz = tll + /\tl—, (2.10)
u v u v
and
S0 81 82 8o 81 82
= = = . 2.11
Do det (to t ) ,D1 det <t2 to) ,D2 det (tl tz) ( )

Proof: From Lemma 1 it follows that the functions y; = sou* and yz = tov* are particular
solutions of the equation (2.9) if and only if

Dgsy + Dqs1 + Dasg = 0 and Dgts + D1ty + Doty =0, (2.12)

where the functions s, s2,%1, and ¢3 are defined by the formulas in (2.10). Now, we consider
the determinant:

S0 81 82
W1 = det So S1 82 . (213)
to t1 to

It is easy to see that W; = 0, and by Laplace’s theorem we obtain

81 82 82 8o So S22\ _
sodet (tl t2> + sy det (t2 t0> + sadet (to t1> =0. (2.14)
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Denoting Dy = det %o 51 , D1 = det 52 %o , Dg = det B1 %2 , in (2.14) we obtain
to 11 ta 1o t1 ta

Dgss + Dys1 + Dgsg = 0. In a similar manner we consider the determinant:

to 11 fa
W2 =det to t1 tz (215)
8g 81 829

As in the previous case we obtain that Dgty + Dyt; + Dt = 0 and the proof of Lemma 2 is
complete. O

From Lemma 1 and Lemma 2 we deduce the following lemma:

Lemma 3: Let A be a non-zero real constant and let u,v € C?(J) be a non-zero real-valued

functions, linearly independent over R, where J = (z1,22) C R. Then the general solution of
the differential equation:

1 " g 1 7
det:(1 )y +det(h 1>y +)\det<

14 I 2 i ! 2
where g = % — (1 - ) (%) and h= 2" —(1-1) (%) is of the form

SICEE
el (e

Nymo,

y = Cru* + Cav?, (2.16)

where C} and Cs are arbitrary constants.

Proof: Putting sg = fp = 1 in Lemma 1 and Lemma 2, we obtain s; = )\%,tl = %I and

7 " 7 2 7 i1 ! 2
32=33+A31%=A<1‘;—(1»>\) () ):Ag,tz:t’1+>\t1%:A(”T—(1—A)(%) ) =

Ah. Hence, we have

7

Dozdet(1 A‘i) :)\det(l
1 2% 1

v

Dlzdet(jz i>=det(3\\z D:,\det(g i) (2.18)

[JUNE-JULY

SERICY

> (2.17)

212



ON SOME CLASSES OF EFFECTIVELY INTEGRABLE DIFFERENTIAL EQUATIONS AND FUNCTIONAL . . .
7 7
51 8 AL ) L
Dy=det ' %) =det "% ") =xdet| » J). (2.19)
t1 i AL Xh L h

From (2.17)-(2.19) it follows that equation (2.9) reduces to (**), hence by Lemma 2 it follows
that the functions y; = u*, and y» = v* are particular solutions of (**). It suffices to prove that
the functions y; and y, are linearly independent over K. To this end consider the Wronskian
of these functions

A A
U v — — U v
W('!ll; y2) = det (ZZ ZZ) = det ()\'U,}‘_lu’ /\,UA—I,U/> = "ot 1. det (u/ o

>(é.20)

By the assumptions that v # 0, v # 0 it follows that det (3, :j,) # 0 on J and

consequently from (2.20) we see that W(y1,y2) # 0 on J. Therefore the function
y = Ciy1 + Cayz = Cru* + Cv*
is the general solution of the differential equation (**). The proof of Lemma 3 is complete. [J
3. THE RESULTS

In this part of our paper we obtain some new classes of second order differential equations
which are effectively integrable and with general solutions given in explicit form (Cf. [4]).
Namely, we prove of the following theorem.

Theorem 1: Let the functions a,b € C?(J), J = (z1,%2) C R be real-valued and non-zero in
z such that az # +bzx on J, and let a, b be linearly independent over R. Then the function

y = Ci(a(z) + b(z))" + Cz(a(z) —b(<))" (3.1)

where C; and C, are arbitrary constants and n € N is a general solution of the differential
equation:

Po(z)y" + Pi(z)y’ +nPx(z)y =0, (***)

where
Py(z) = (a(z)® — b(z)) (' (2)b(z) — ¥ (z)a(z)) = F(2)G(x) (3-2)
Py(z) = (a"(2)b(z) — V" (2)a(z)) F(z) + 2(n — 1)G(a)(d (@)ale) — ¥ (0)b(z))  (3.3)

Py(z) = (t'(z)a (z) — a" (@)t (2)) F(z) — (n — 1) (@' (2))* = ¥'(2))*) G(z) ~ (34)
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Proof: Let u = a(z) — b(z), v =a(z) + b(z) and let y1 = u™ and y, = v", where n € N.
Then by Lemma 3 it follows that

!

1 2N d(x)bz) -V (z)a(z) _G(x)
o —~> =TT b F@) @5)
o (1 1) = 2R P ) |y o) V5 g
L og\ _ 20" (@a(m) —a" @V () . _ (@@)?— ¥ ®)?) i
det<yﬂ_, h) - o) An—1) = o) Glz). (3.7)

Substituting (3.5)-(3.7) in (**) of Lemma 3 we obtain, after some calculation, that (**)
reduces to the equation Py(z)y” + Pi(z)y’ + Pa(z)y = 0 with the functional coeflicients
Py(z), Pi(z), and Py(z) as given by the formulas (3.2)-(3.4). It remains to prove that the
functions v = a(z) — b(z) and v = a(z) + b(z) are linearly independent over R under the
assumption that the functions a(x) and b(z) are linearly independent over R. To this end we
consider the Wronskian

_ _ a(z) —b(z) a(z)+b(z)
W (v, v) = det (3’ :,']') = det (a’(m) —b(z) d(z)+ b’(w)) )

From the well-known properties of determinants it follows that

W(u, v) = 2det (:,((Z)) ;’,((‘;))) , (3.8)

From (3.8) and by the assumptions of the theorem about the functions ¢ and b it folllows that
W{u,v) # 0 on J and the proof of Theorem 1 is complete. [J
Using Theorem 1 we obtain the following:

Theorem 2: The general solution of the differential equation

Fo(z)y" + Fi(z)y + Fa(z)y =0 . 1ty
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with coefficients Fy(z), Fi(z), and Fa(z) given by the formulas
Fo(z) = 2(bz + c)(bx + 2¢)(z? + bz + ¢) (IT)
Fi(z) = Az(bz + ¢) + 2(n — 1)b(bz + 2¢)(z® + bz + ¢)
1
Fy(x) = 5(2A(bz +¢) + A(n — 1)(bz + 2¢))

where A = b? — 4c is the discriminant of the polynomial f(z) = z? + bz + ¢ and bz + ¢ # 0
and bz + 2c¢ # 0 on J = (z1,22) C R is of the form

y=0 (I1I)

<$+\/:c2+bz+c>n+c (a:—\/x2+bzl:+c>n
2 ]
2 2

where Cy and C; are arbitrary constants and n € N.
Proof: Let a(z) = £ and b(z) = 1+/x% + bz + c. Then we have a’(z) = 1 and

2z +b A
b(r) = ——=———, soa”’(z) =0 and bV"'(z) = — )
(=) 4Vz? +br+c (=) (=) 8(z2 +br+c)Vz?+br+c
Using formulas (3.2)-(3.4) from Theorem 1 we obtain
(bz + ¢)(bz + 2¢)
PO(‘T) = )
32vVz2+ b+ ¢

Az (bz +c) + 2(n — 1)b(bx + 2¢)(z* + bz + )
64(z2 4+ bz + c)Vz? +br+c ’

P1($) ==

(z) = 2A(bz + ¢) + A(n — 1)(bz + 2¢)
2 128(z2 + br + c)Vr2 + bz +¢

From the last formulas it is easy to see that the equation reduces to the equation (I) with
the coefficients given by (II). Therefore, it remains to prove that the functions a(z) = £ and
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b(z) = 2+/22 + bz + c are linearly independent over R, if bx+2c # 0 on J. Let W{(a,b) denotes
the Wronskian of the functions a¢ and . Then we have

W (a,b) = det ( o(z)

i@ vi) = (] %m): L

2 4—;@% 8/r fbzt+c
From the last equality it follows that W(a,b) # 0 on J, because bz + 2¢ # 0 on J.

The proof of Theorem 2 is complete. I
Now, we observe that the result described in Introduction follows immediately from The-
orem 2 in the particular case where b = 0.

4. FUNCTIONAL RECURRENCES AND GENERALIZED
HORADAM-MAHON FORMULA FOR PELL POLYNOMIALS

In [3], Horadam and Mahon consider a matrix method in the investigation of some classes
of polynomials such as the Pell polynomials P, (z). They proved that for every natural number
n, we have

Py1(2) Prya (@) — Pr(z) = (1", (4.1)

where P,(z) is defined by the recurrence formula:
Po(x) = O, PI(IL') = 1, Pn+2(.’lf) == 2.’L’Pn+1($) -+ P-,,,(.Z') (42)

In [1], the authors have considered the functional matrix

-u0= (5 43)

Let TrA(z) # 0 or det A(z) # 0 on J = (z3,z2) C R and let

r =r(z) = TrA(z) = a(z) + d(z), s = s(z) = — det A=), (4.3)
and
uo = up(z) =7, w1 = ui(x) = rue(z) + s. (4.4)
Let
Un(Z) = rtp-1(x) + sup—2(z), forn>2, (4.5)
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be a functional recurrence sequence associated with the matrix A = A(z). Then for every

natural number n > 2, we have, in [1],

nip) — [(ME)  b(x) " _ [ (@) un—s(x) + vn2() b(2)ttn_a(z)
A™(z) (C(w) d(fv)) ( () tg—a () d(x)un_2($)+vnm2($)>7 (4.6)

where
Up—2(Z) = sup—3(x) for n > 3 and u_y(z) =1 for n = 2. 4.7

From (4.6) and (4.7) it follows that the formula (4.8) holds for the recurrence sequence
un(z) defined by (4.4) and (4.5):

U —3(2) = Un(&)un—2(z) = (det A(z))" (4.8)

for every natural number n > 2. Now, we deduce from (4.8) the Horadam-Mahon formula for
Pell polynomials. Indeed, let a(z) = d(z) = z and b(z) = c(z) = V&2 + 1. Then the matrix
A(z) = P(z) has the form

PO = (o ), @9)

and the recurrence sequence P,(z) associated with the matrix P(z) satisfies the following
conditions:
r=TrP(z) =2z, s = —det P(z) =1, (4.10)

and
P (z) = rPy_1(x) + sPy_2{z) = 22P~1(x) + Pp—2(z). (4.11)

Here, P,(z) denotes the Pell polynomial. Replacing u,(z) by P,(z) in the formula (4.8) we
obtain the Horadam-Mahon formula for Pell polynomials.

In the same way we produce more general formulas connected with classes of polynomials
Wi (z; b, ¢) considered in Theorem 2. Namely, we have the following:

a, 0 v 2 3 o
Proposition 1: Let W(z;b,¢) = (\/;Z%E? N +mb$ te be a 2 x 2 functional matrix

and let W, (z; b, ¢) be the functional recurrence sequence associated with the matrix W{z;b,c)
defined by the formulas:

r=TrWx;b,c) =2z, s = —det W(z;b,¢)
=—(z? — (¥ + bz +c)=bz+c
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and
Wo(z;b,¢) = r = 2z, Wi(z;b,c) = rWo(z;b,c) + 5 = 4x® + bz +¢

and for n > 2
Wa(z;b,c) = rWy_1(z; b, ¢) + sWh—a(z; b,¢) = 2sWyp—1(z; b, ¢) + (bx + )W, —2(x; b, ¢).
Then for every natural number n > 2 we have
W2_,(z;b,¢) — Wy—2(z; b, ¢) Wy (z;b,¢) = (det W(z; b, )™ = (—1)"(bzx + c)™.

Proof: In the first step, by inductive manner as in [1], (pages 116-117), we obtain an
analog of formula (4.6) for the powers of the matrix W (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>