
TABLE OF CONTENTS 

Characterizations of a-Words, Moments, and Determinants Wai-fong Oman 194 

On Some Classes of Effectively Integrable Differential Equations 
and Functional Recurrences Krystyna Grytczuk 209 

A Three-Variable Identity Involving Cubes of Fibonacci Numbers................ R. S. Melham 220 

An Elementary Proof of Jacobi's Four-Square Theorem John A. Ewell 224 

Rises, Levels, Drops and "+" Signs in Compositions: Extensions of a 
Paper by Alladi and Hoggatt...................... S. Heuhach, P Z Chinn and R. P. Grimaldi 229 

Vieta Convolutions and Diagonal Polynomials .....A.E Horadarn 240 

Dynamic One-Pile Nim Arthur Holshouser, Harold Reiter and James Rudzinski 253 

Fibonacci Numbers and Partitions Jose Plinio 0. Santos andMilos Ivkovic 263 

A Class of Fibonacci Ideal Lattices in ZtCu]....... Michele Elia and J. Carmelo Interlando 279 

VOLUME 41 JUME-JULY2003 ^UHBER 3 I 



PURPOSE 
The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for wide-

spread interest in the Fibonacci and related numbers, especially with respect to new results, research 
proposals, challenging problems, and innovative proofs of old ideas. 

EDITORIAL POLICY 
THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its readers, 

most of whom are university teachers and students. These articles should be lively and well motivated, 
with new ideas that develop enthusiasm for number sequences or the exploration of number facts. 
Illustrations and tables should be wisely used to clarify the ideas of the manuscript. Unanswered ques-
tions are encouraged, and a complete list of references is absolutely necessary. 

SUBMITTING AN ARTICLE 
Articles should be submitted using the format of articles in any current issues of THE FIBONACCI 

QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly readable, 
double spaced with wide margins and on only one side of the paper. The full name and address of the 
author must appear at the beginning of the paper directly under the title. Illustrations should be carefully 
drawn in India ink on separate sheets of bond paper or vellum, approximately twice the size they are to 
appear in print. Since the Fibonacci Association has adopted Fx = F2 = 1, F» +;= F« +Fn-/, n>2 and Lt=l, 
L2 =3, L«+7 = L/i+L/i-7, n> 2 as the standard definitions for The Fibonacci and Lucas sequences, these 
definitions should not be a part of future papers. However, the notations must be used. One to three 
complete A.M.S. classification numbers must be given directly after references or on the bottom of the 
last page. Papers not satisfying all of these criteria will be returned. See the worldwide web page at: 

http://www.sdstate.edu/~wcsc/http/fibhome.html. 

Three copies of the manuscript should be submitted to: CURTIS COOPER, DEPARTMENT OF 
MATHEMATICS AND COMPUTER SCIENCE, CENTRAL MISSOURI STATE UNIVERSITY, 
WARRENSBURG, MO 64093-5045. 

Authors are encouraged to keep a copy of their manuscripts for their own files as protection against 
loss. The editor will give immediate acknowledgment of all manuscripts received. 

The journal will now accept articles via electronic services. However, electronic manuscripts must be 
submitted using the typesetting mathematical wordprocessor AMS-TeX. Submitting manuscripts using 
AMS-TeX will speed up the refereeing process. AMS-TeX can be downloaded from the internet via the 
homepage of the American Mathematical Society. 

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION 
Address all subscription correspondence, including notification of address change, to: PATTY 

SOLSAA, SUBSCRIPTIONS MANAGER, THE FIBONACCI ASSOCIATION, P.O. BOX 320, 
AURORA, SD 57002-0320. E-mails soisaap@itcteI.com. 

Requests for reprint permission should be directed to the editor. However, general permission is 
granted to members of The Fibonacci Association for noncommercial reproduction of a limited quantity 
of individual articles (in whole or in part) provided complete reference is made to the source. 
. Annual domestic Fibonacci Association membership dues, which include a subscription to THE 

FIBONACCI QUARTERLY, are $40 for Regular Membership, $50 for Library, $50 for Sustaining 
Membership, and $80 for Institutional Membership; foreign rates, which are based on international 
mailing rates, are somewhat higher than domestic rates; please write for details. THE FIBONACCI 
QUARTERLY is published each February, May, August and November. 

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard copy for-
mat from PROQUEST INFORMATION & LEARNING, 300 NORTH ZEEB ROAD, P.O. BOX 1346, 
ANN ARBOR, MI 48106-1346. Reprints can also be purchased from PROQUEST at the same address. 

©2003 by 
The Fibonacci Association 

All rights reserved, including rights to this journal 
issue as a whole and, except where otherwise noted, 

rights to each individual contribution. 



X3& ^Fibonacci Quarterly 
Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) 

and Br. Alfred Brousseau (1907-1988) 

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 
DEVOTED TO THE STUDY OF INTEGERS WITH SPECIAL PROPERTIES 

EDITOR 
PROFESSOR CURTIS COOPER, Department of Mathematics and Computer Science, Central Missouri 
State University, Warrensburg, MO 64093-5045 e-mail: cnc8851@cmsu2xmsu.edu 

EDITORIAL BOARD' 
DAVE) M. BRESSOUD, Macalester College, St, Paul, MN 55105-1899 
JGHNBUREIE, Gonzaga University, Spokane, WA 99258-0001 
BART GODDARD, East Texas State University, Commerce, TX 75429-3011 
HENRY W. GOULD, West Virginia University, Morgantown, WV 26506-0001 
HEIKO HARBORTH, Tech. Univ. Carolo Wilhelmina, Braunschweig, Germany 
A.F. HORADAM, University of New England, Armidale, N.S.W. 2351, Australia 
STEVE LIGH, Southeastern Louisiana University, Hammond, LA 70402 
FLORIAN LUCA, Institute de Mathematicas de la UNAM, Morelia, Michoacan, Mexico 
RICHARD MOLLIN, University of Calgary, Calgary T2N 1N4, Alberta, Canada 
GARYL. MULLEN, The Pennsylvania State University, University Park, PA 16802-6401 
HARALD G. NIEDERREITER, National University of Singapore, Singapore 117543, Republic of Singapore 
SAMIH OBAID, San Jose State University, San Jose, CA 95192-0103 
ANDREAS PHILIPPOU, University of Patras, 26100 Patras, Greece 
NEVILLE ROBBINS, San Francisco State University, San Francisco, CA 94132-1722 
DONALD W. ROBINSON, Brigham Young University, Provo, UT 84602-6539 
LAWRENCE SOMER, Catholic University of America, Washington, D.C. 20064-0001 
M.N.S. SWAMY, Concordia University, Montreal H3G 1M8, Quebec, Canada 
ROBERT F. ITCHY, Technical University, Graz, Austria 
ANNE LUDINGTON YOUNG, Loyola College in Maryland, Baltimore, MD 21210-2699 

BOARD OF DIRECTORS—THE FIBONACCI ASSOCIATION 
FRED T. HOWARD, President 
Wake Forest University, Winston-Salem, NC 27109 
PETER G. ANDERSON, Treasurer 
Rochester Institute of Technology, Rochester, NY 14623-5608 
GERALD E. BERGUM 
South Dakota State University, Brookings, SD 57007-1596 
KARLDILCHER 
Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5 
ANDREW GRANVILLE 
Universite de Montreal, Montreal, Quebec, Canada H3C 3J7 
HELEN GRUNDMAN 
Bryn Mawr College, Bryn Mawr, PA 19101-2899 
MARJORIE JOHNSON, Secretary 
665 Fairlane Avenue, Santa Clara, CA 95051 
CLARK KIMBERLING 
University of Evansville, Evans ville, IN 47722-0001 
JEFF LAGARIAS 
AT&T Labs-Research, Florham Park? NJ 07932-0971 
WILLIAM WEBB, Vice-President 
Washington State University, Pullman, WA99164-3113 

Fibonacci Association Web Page Address: http://www.MSCS.dal.ca/Fibonacci/ 



CHARACTERIZATIONS OF ^ W O R D S 5 MOMENTS, 
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Wai-feng Chuae 
Depaxtment of Mathematics, Chung-yuan Christian University, Chung-Li 

Taiwan 32023, Republic of China 
(Submitted August 2000-Final Revision December 2002) 

1. I N T R O D U C T I O N 

Throughout this paper we consider binary words. All results can easily be stated for 
words over other two-letter alphabets. For any word w, let \w\ denote the length of w and let 
\w\i, called the height of w, denote the number of occurrences of the letter 1 in w. For n > 1 " 
and ci? c 2 ? . . . , cn E {0,1}, define operators T and ~ by 

T(c i c 2 . - . c n ) = c 2 . . . c n c i ? 

(c iC 2 . . .Cn)~ = Cn . . .C 2 Ci . 

For each integer j , let TJ have the obvious meaning. The operator T is called the cyclic shift 
(or rotation) operator. A word u is called a conjugate of a word w if u — T^(w) for some integer 
j . The set of all distinct conjugates of w is called the conjugate class of w and is denoted by 
[w]. The word w is called the reversal of the word w. 

A word w is said to be a palindrome if either w is the empty word or w = w. w is said to 
be primitive if it is not a power of another word, w is said to be a Lyndon (resp. anti-Lyndon 
word if it is the smallest (resp., largest) in the lexicographic order in the conjugate class of ' 
w. w is said to be bordered if there are words x and y with x nonempty such that w = xyx; 
otherwise, w is said to be unhordered. 

For w — cic2 . . .Cqj where each a is either 0 or 1, define M(w) = ]Ci=i(<Z + l ~i)ci- M{w) 
is called the moment of w. Define 

M([«/]) = {M(«) : u E H } ? 

<$(«;) = max{M(te) — M(t?) : u,v £ [w]}. 

One way to define a™words is to make use of T and the words w ( | J define below. (See 
[13] for the original definition and basic properties of a-words.) 

Let p and q be two relatively prime positive integers with p < q. Let [0, a% + 1 , a 2 , . . . , an] 
be the continued fraction expansion of | . Define a sequence of words w_i, WQ, w i , . . . ,wn re- -
cursively as follows: Let w_i = 1, u0 = 0, and for 1 < & < n, let 

f ti*.-2ti2-i (* i s even) 
l "fc^iWfc-2 (A; is odd). 
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It is know that the word un depends on | , but not the continued fraction expansion [1, 2]. 

Denote un by u (|J. Clearly, its first (resp., last) letter is 0 (resp., 1). 
A word w is said to be an a-word if either w E {0, 1} or there are two relatively prime 

positive integers p and q with p < q such that w is a conjugate of u (Ej. Conjugates of 

u [-JF^-) (resp., u ( - J^ - J ) are known as binary Fibonacci words (see [6]). 

We first report briefly some known results about the word u — u (E) and its reversal. The 
conjugates w, T(u),..., Tq~1(u) of u are exactly the distinct a-words with length q and height 
p. Thus each a-word is primitive. The word u (resp., u) is a Lyndon (resp., anti-Lyndon) 
a-word (see [1,11]). The word u is the only binary word which has two factorizations of the 
form u = xy = Ozl, where x,y, z are palindromes, \z\ = q — 2, \y\ = s and 1 < s < q is such 
that ps = l(mod q) (see [20]). The conjugate class [u] of u is closed under taking reversals. 
Clearly u — T~s{u). Both u and u are unbordered. Furthermore, the set of Lyndon a-words 
and their reversals are the only unbordered finite Sturmian words (a finite Sturmian word 
is any finite factor (or segment) of any characteristic word (see section 5)) [14]. The set of 
Lyndon a-words coincides with the set of Christoffel primitives (see [1,2] for the definition of 
Christoiffel primitive). 

Let [0, a\ + 1, a2,. . . . , an] be the continued fraction expansion of | . In [13], it was shown 
that a word w is a conjugate of u if and only if there are integers n , . . . , rn with 0 < ri < 
a>i, 1 < i < ^? and words w-i,wo,w±,..., wn such that 

tt/-i = 1, Wo = 0, Wn = W, 

Wi = w f i 7 r i W i _ 2 ^ [ i i 3 1 < i < n. 

In fact, each conjugate Tk{u) of u corresponds to those n-tuples ( r i , . . . , r n ) of integers with 
0 < n < a{, 1 < i < n and k = ^ = 1 r < ^ _ i ( m o d g), where c?_i = q0 = 1, qi = a»gi-i + 
gj_2, 1 < i < n. Thus, each a-word can be obtained recursively by concatenation. The words, 
having length q and height p, obtained with n = • • • = rn = 0 or n = • • • = r n - i = 1 — rn = 0 
are called standard Sturmian words (see [1]). It is not hard to see that a word w having length 
q and height p is a standard Sturmian word if and only if w = T(u) or w = T(u). 

Let u (j) = 0 and u(j) = 1. I f | and y are consecutive fractions in the Farey sequence 

of any order with | < |y, then u (fij^r) = u H) u [JT)- -^so ^ n e mapping r h-> w(r) is an 
increasing function from the set of all reduced fractions in [0,1] onto the set of all Lyndon 
a-words. In other words, if r < r! then u(r) < u(rf) in the lexicographic order (see [2]). 
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More results - both old and new - about u 11 j will be presented below. 
In an earlier paper, the present author proved that if w is an a™word having length q, then 

M([w]) is a set of q consecutive positive integers and S(w) = q — 1. Each of these properties 
actually characterizes a-words (Theorem 4.4). The result used to prove this characterization 
is itself a characterization of a-words (Lemma 2.1) with other interesting consequences besides 
Theorem 4.4. In section 3, we obtain characterization of elements of the set PER and standard 
Sturmian words (Corollary 3.2), and we identify those a-words that are palindromes (Corollary 
3.4). In section 5, we compute the determinants of a class of matrices involving a-words 
(Theorem 5.1). As a special case, we obtain a sequence of (0,l)-matrices Ai, A2 . . . such that 
An is an Fn x Fn matrix whose rows are precisely the Fibonacci words having length Fn, height 
F n _ i (resp., F n _ 2 ) , and det(An) = F n _ x (resp., F n _ 2 ) . 

2, A L E M M A 

[11,14,16,18] present some characterizations of a-words. The characterization proved in 
[11] is restated in Lemma 2.1 below. With this result, we know exactly where the ones in 
each a-word are located and so each a-word can be generated directly without using a-words 
of shorter lengths. Corollary 2.2 shows how all a-words having the same length q and height 
p may be ordered in such a way that consecutive pairs differ in exactly two adjacent letters. 
Sections 3-5 present some interesting consequences of Lemma 2.1 and Corollary 2.2. 
L e m m a 2 .1 : Let p and q be relatively prime positive integers with p < q. Define s as the 
unique integer with 

sp = l(mod q) and 1 < s < q. (1) 

Let u = u (A. Then for 0 < j < q - 1, 

thefc** letter of Tjs(u) is 1 

<$=^k = (r — j)s (mod q) for some r with 0 < r < p — 1, 

<=^k = 1 + (r + j)(q — s)(mod q) for some r with 1 < r < p. 

A proof of Lemma 2.1 appears in the Appendix (see also [11]). 
Coro l la ry 2.2: Let p ? g ? s , and u be as in Lemma 2.1. Let 0 < j < q — 1. The words T^s(u) 
and T^+1^s(u) differ by exactly two adjacent letters. If i = (p— 1 —j)s (mod q) and 1 < i < g, 
then the (i - l)th and the ith letters in Tjs(u) and Tij+1)s(u) are 01 and 10 respectively. 

Proof: Let 0 < j < q — 1. The positions of 1 in T^s(u) and T^+1^s(u) are respectively 

-j*> (i ™ i k . - -, (P - 2 - j)a, (p -1 - j > , 
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and 
( - J - 1)*, -js, (1 - j)s,..., (p - 2 - j)s 

(mod g). If (p—j—l)s = i (mod q) where 1 < i < g, then clearly i ^ 1 and (—j — l)s = i — 1 
(mod g). Hence the words T^(w) and T^+1>(u) differ by exactly two letters. The (i - l)th 

and the ith letters in T*8(u) and r^ + 1 ) 5 (w) are 01 and 10 respectively. D 
We remark that when 

g = F n andj> = F n _ i , 5 - i , n > 3 . 
[ Fn™2 (n odd) 

Then Lemma 2.1 and Corollary 2.2 reduce to Theorem 2 (or Corollary 12(i) of [6]) and Theorem 
3 of [10] respectively. 

3. I M M E D I A T E C O N S E Q U E N C E S 

Throughout this section, let p, g3 5, and u be as in Lemma 2.1. We shall show how Lemma 
2.1 yeilds new and old results on factorization, PER, standard Sturmian words, lexicographic 
order, reversals and moments. 
Corol la ry 3.1: 
(a) u = xt/j where x and y are palindromes with \y\ = s and \x\ = q — s. 
(b) u — 0^1, where z is a palindrome. 
Note that, by taking reversals, we immediately derive from (a) and (b) respectively that u — yx 
and u = lz0. 

Proof: The proofs of (a) and (b) are almost identical so we suffice with the proof of (b). 
Let 2 < k<q-l. 

The kth letter of u is 1 
<=$* k = rs (mod q) for some r with 1 < r < p — 1 (by Lemma 2.1 with j = 0) 
<=$» g + 1 — k = (p — r)s (mod q) for some 1 < r < p — 1 (by equation (1)) 
<=> the (q + 1- k)th letter of u is 1. 
Therefore the result follows. D 

Let PER= {0,1} U {z : Ozl is a Lyndon a»word}0 Note that the empty word belongs to 
PER. Let PER01= -f>01 : z e PER}. The set PER10 is defined similarly. The set of standard 
Sturmian words equals {0,1}U PER01UPER10. Elements of PER and standard Sturmian 
words have been recently studied extensively (see [1]). The following corollary provides char-
acterizations of these words. 
Corollary 3.2: 
(a) Let z E PER with \z\ = q - 2 and \z\i = p - 1 > 1. Then 

the kth letter of z is 1 
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k = rs — 1 (mod q) for some r with 1 < r < p — 1 
fe = r(g — 5) (mod q) for some r with 1 < r < p — 1. 

(b) Let w E PER01 and «/ G PER10 with |w| = |w;] = g and H i = \w'\! = p . Then 
the fct/l letter of w is 1 

<=4> fc = rs — 1 (mod g) for some r with 1 < r < p; 
the kth letter of tt/ is 1 

<=^ k = r(q — s) (mod q) for some r with 1 < r < p. 
Proof: Part (a) follows from Lemma 2.1 and the fact that Ozl = u. Part (b) follows from 

the fact that w = T(u) and w' — T(u). D 
When the conjugates of u are listed as in (2) below 3 we observe some interesting phenom-

ena. 
Coro l la ry 3,3 (see [11]): 
(a) The sequence of words 

u, Ts(u), T2s(u),..., Tto-V*(u) = u (2) 

is increasing in lexicographic order. 
(b) Ti*(u) have increasing moments with M(T*8(u)) = fclKi±li + j -f 1 (0 < j < ^ - 1). 

Proof: Part (a) and the recurrence relation M(T^+ 1 ) s (? i)) = M(T^s(w))+l? 0 < j < q-2, 
follow immediately from Corollary 2.2 and the definition of M. Thus M(Tjs(u)) = M(u) + 
J? 0 < j < g — L We have 

-^( w ) ~ ^ l ^ + l ~ " I — + 1) I + 1 (by definition of M and Lemma A3 of Appendix) 

: « ( p - i ) - E 
P " 1 r % 

P J A=I *-
+ 1 (by rearrangement) 

= q(p - 1) - {q 1}!f 1} + 1 (by e.g. [5]) 

( g + l ) ( p - l ) 
2 + 1 ' 

proving (b). D 
The above corollary generlizes Corollaries 2 and 3 of [10]. The following corollary gener-

alizes Lemmas 6 and 7 of [7]. 
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Corol la ry 3.4: 
(a) Tb-i-fi'fa) = (Tis(u)y , 0 < j < q - 1. 
(b) If q is odd, then [u] contains exactly one palindrome, namely TV^~")s(?i); if g is even? [u] 

contains no palindrome. 
Note, letting j = 0 in (a) yields u = T~s(u). 
Proof: 
Let 0 < j < q — 1. By repeated use of Lemma 2.1, for 1 < k < g3 

the ( g + 1 - k)th letter of T ^ " 1 - ^ 5 ^ ) is 1 
<̂ =>- q + 1 — k = 1 + (r + (q — 1 — j))(q — s) (mod g) for some 1 < r < p 
<<=> k = (r ; — j)s (mod g) for some 0 < rf < p — 1 
4=> the kth letter of T^'s(w) is 1. 
This proves (a). Part (b) follows immediately from part (a) and the distinctness of the 

Tj(u). n 

4. M O M E N T S O F a - W O R D S 

For any binary word w, let S(w) = max{M(u) —M(v) : w, v £ [w]}- The following lemma 
summarizing the properties of moments of a-words is an immediate consequence of part (b) 
of Corollary 3.3. 
L e m m a 4 .1 : Let w be an a-word with \w\ = q > 2 and \w\i — p. Let u — u (| J. Then 

(a) M(u) = minM([w)) = (p"1}
2

(g+1) + 1, Af(fi) = maxM([w]) = ( p+1)
2

(g+1) - 1. 
(b) 5(w) = g - 1. 
(c) M ([«/]) is a set of q consecutive positive integers. 

We shall prove in Theorem 4.4 below that each of the conditions (b) and (c) is equivalent 
to saying that w is an a-word. We need the following lemma which is useful when studying 
moments of binary words. 
L e m m a 4.2: Let w be a binary word with \w\ = q and \w\i = p. Let M& = M(Tfc («/)), 0 < 
k < q. Let w = c\C2 . . . cq where each a is either 0 or 1. Define cq+j = Cj for 1 < j < q. Then 
for 0 < r < k < g, we have 

k 
Mk-MT=p(k-r)-q ]P c*. 

t= r+ l 

In particular, Mk - M 0 = pk - q X)t=i Cj if fc > Q» 
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Proof: For each k with 0 < k < q — 1, since Tk(w) = ck+ick+2 • • • c&+g? we have 

q k+q k+q 
Mk = Yl(q +1~ ^Ck+J = ^ ( f c + ^+ 1~ ^Ci =P(k + q + l ) - J2 ici 

j= l i~k+l i=k+l 

If r < kj then 

k+q r+q 

Mk-Mr=p(k-Jrq-\-l)- ] P j C j -p(r + q + l)+ Y*, ici 
j—k+1 «=r+l 

Jb &+g 
= p(fc - r) + J ^ *Cj - ] T jcj-

i=r+l j=r+g+l 

k 

= p(k -r) -q Y2f ci- n 

i=r+l 

L e m m a 4.3: Let w be a binary word with \w\ = q > 2 and \w\i = p. If 8(w) = q — 1 then q 
and p are relatively prime positive integers and w is an a-word conjugate to u (| J. 

Proof: Let w E [w] with M(u) — minM([w]). Let fci,&2,. --,fc9 be a permutation of 
0 3 1 , . . . ,q — 1 such that Jfci = 0 and M ^ < M^2 < • • • < M&g. Let u = c\c2 . . . c g where each a 
is either 0 or 1. Define cq+j = Cj for 1 < j < q. By the assumption and Lemma 4.2? we have 

' - l = Mibfl -Mkl =pkq-q^2ci, 
* = i 

and so g and p are relatively prime positive integers. Again by Lemma 4.2? the moments 
Mkl, Mk2,..., Mfcg are all distinct and therefore M^m+1 — Mkrn = 1, f o r l < m < g — 1. 

Let 1 < m < g — 1. Lemma 4.2 also implies that 

1 - Mkm+1 - Mkrn = { p(km •+1 ~ km) ~~ q l^i=krn + l ci C1* km < fcm+i), 

j=fcm+1+l C^ ~ P\km ~~ km+l) V1* &m+l < &m)-
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Define s by equation (1). Then 

, S - (km< fcm+l) 
km+1 ' ™m [ 8 - < q (km+i < km) 

= 5 (mod g) 

and therefore km = (m — l)s (mod q). 
We claim that ckr = 0 for p + 1 < r < q. To show this, let 1 < m < q — p. Since 

km+p — ^TO = (ra + F ~~ l )s — (ra — l)s = ps = l(mod q) and ~~q + 1 < fcTO+p — fem < q — 1, 
it follows that fcTO+p — <fcTO equals either — q + 1 or 1. If &TO+P — km = — q + 1, then &TO+P = 0 
(and km = q — 1). But then ra + p = 1, a contradiction. Therefore feTO+p = km + 1. According 
to Lemma 4.2, we have 

P = Mkm+p - Mkm = p(km+p ~km)~q ] P a = p - f cfcm+p; 

so c&m+p = 0, proving our claim. 
Since \U\Q = q — p, we see that 

ck = 1 «£=£- k = q OT kr for some r with 2 < r < p 

k = rs (mod q) for some r with 0 < r < p — 1. 

It follows from Lemma 2.1 that w = u (| J. Consequently w is an a-word. D 
Combining Lemma 4.1 and 4.3, we have the following characterization of a-words. 

T h e o r e m 4.4: Let w be a binary word with \w\ = q > 2. Then the following statements are 
equivalent: 

(a) 5(w) = q-l, 
(b) w is an a-word, 
(c) M([w]) is a set of q consecutive positive integers. 

R e m a r k 4.5: For w — ciC2.. .cg where each a is either 0 or 1, define S(w) ~ XX=i*c*° 
The results about moments can easily be reformulated using S(w) instead of M(w). Plainly 
S(w) = M(w), and S(w) + M(w) = (\w\ + l) |w|i- Graphically, a word w is represented by a 
polygonal path from A(0,0) to B(\w\, \w\i) as follows: starting from, the origin A, represent a 
0 (resp., 1) in w by a horizontal unit segment going to the right (resp., a vertical unit segment 
going upward, followed by a horizontal unit segment going to the right). This polygonal path 
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divides the rectangular region having opposite vertexes .A7(—1,0) and B into two subregions. 
The one below (resp., above) the polygonal path has area M(w) (resp., S(w)) (see Figure). 

i-----S|W) 

_ P (^ -Q. 

M(w) ----1 

0 1 1 0 1 0 
5, D E T E R M I N A N T S O F M A T R I C E S I N V O L V I N G a - W O R D S 

Throughout this section, let q and p be relatively prime positive integers with p < q. Let 
u — u I -). Regarding each binary word as a vector, we consider the q x q (0, l)-matrix whose 

j t h row is the a-word T~^"1\u)^ 1 < j < q. It is easy to see that this matrix is a circulant 
matrix, that is, a matrix of the form 

Ci C2 

C2 C 3 

Cq— 1 Cq 

Cq-2 Cq-i 

Cl 

where Ck is the kth digit of «. We denote this matrix by circ(u) (see [19]). 
Among all the matrices obtained from circ(u) by permuting its rows, the matrix circ(u) 

is of particular interest for the following reasons. 
Let a be any irrational number between 0 and 1 such that E is a convergent of the 

continued fraction expansion of a. The characteristic word f(a) is an infinite binary word 
whose kth letter is [(k + l )a] - [fca], k > 1 (see, for example, [3, 13-15, 21, 23]). When 
a = g~1 , / (a) is called the golden sequence (see, for example, [4, 8, 9, 12, 17, 24, 25]). 
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Golden sequence turns out to be the Fibonacci binary word pattern JF(1 , 01) (an infinite word 
W1W2W3 . . . , where w\ = x and w^ = y are binary words, and wn — wn-2wn-iy n > 3, is 
called a Fibonacci binary word pattern and is denoted by F(x,y) (see [17, 25])). 

It is well-known that for each k > 1, there are exactly fe+ 1 distinct factors (or segments) 
of f(a) (see [23]). Let y denote the palindrome that differs from u only by the last (resp., 
first) letter if the qth letter o f / ( a ) is 1 (resp., 0). It was proved in [13] that for 1 < k < q, the 
rows of the upper left (k + 1) x k submatrix of the (q + 1) x q matrix 

circ(u) 
1 y 

(resp., circ(u) 
y 

are precisely the k + 1 distinct factors of / ( a ) of length k. 
Another interesting fact about circ(u) is contained in the following theorem. 

T h e o r e m 5.1: det(circ(u)) — p, if q > 1. Here u ( j ) = 0 and u ( \ ) = 1. 
Since the matrices under consideration are circulant matrices, their eigenvalues and hence 

their determinants can be computed using the qth roots of unity. However the following row 
rule proof based on the combinatoric properties of Corollary 2.2 is more elegant. 

Proof: Let u — c\C2 •. • 7cq where c i , . . .cq E {0,1}. Clearly the result holds for q < 2. 
Now let q > 3. Using (1), for 1 < t < q, define 1 < it < q such that it = l + (t — l)s (mod q). 
Denote circ(u) by A and its (i, fc)-entry by A(i, k). For 2 < t < q, since row it (resp., it-i) of 
A is T"it+1(u) = T^-^iu) (resp., r ^ - t + 1 ^ ( t i ) ) , Corollary 2.2 implies that 

A(it-i,it - 1) = 1, i4(t t-i ,«t) = 0, 

j 4 ( i t , i t - l ) = 0, A(it,it) = 1, 

A(it,k) = A(it~ijk) for k ^ it and k ^ it — 1. 

Let JB be the matrix obtained from A by adding (—1) times row it-\ to row it, for each 
t = g, q — 1 , . . . , 2, in the order given. Then 

B(l,fc) = A(l,fc) = Cib, 

J3(it, k) - ( - l ) ^ ( i t _ i , fc) + Afa, k) 

f - 1 (fc = it - i ) 

= < l(k = it) 
[ 0 (otherwise), 
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where 2 < i < g, and 1 < k < q. Since %2, i s ? . . . , iq is a permutation of 2 , 3 , . . . , g, it follows 
that B is the matrix 

Cl 

- 1 
0 

C2 

1 
- 1 

C3 . . 

0 .. 
1 .. 

• Cg-l 

0 
0 

cq 
0 
0 

0 0 0 -1 1 

Clearly, 

det(circ(u)) — det(B) = Y^ c& = p- D 
k=i 

Here is a special case of Theorem 5.1. Let {vn} and {zn} be sequences of Fibonacci words 
given recursively by 

VQ = l ,v i = 0,v2 = l ,v n = S 
I Vn_2Vn-l 

t;n_i?/n_2 (n is odd) 
(n is even), 

Zi = 1,^2 = 0,£n = < 
^n_2^n-i (n is odd) 

is even), 

Let An = circ(vn) (resp., circ(zn)), n > 1. Since -^r-1 = [0 ,1 ,1 , . . . , ! ] (n 
^ r i - 2 1 ones) (resp., -p [0 ,2 ,1 , . . . , ! ] (n — 3 ones)), n > 3, we see that vn = 

(u (^Y12-)) ( resp., zn — (u f ^ p M J J , n > 1. It follows from Theorem 5.1 that each 
An is an Fn x F n (0,1) - matrix whose rows are precisely the Fibonacci words having length 
Fn and height F n _ i (resp., F n „ 2 ) and det(An) = F n _ i (resp., Fn_2). 

A P P E N D I X . A P R O O F O F L E M M A 2.1 

For each real number 0, the infinite binary word f(0) whose kth letter is [(AH-l)0] — [fc0], k > 
1, is called the characteristic word of 0. 
L e m m a A l (see [21]): Let 0 < 61 < 1. 
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(a) If 0 is irrational and k > 1, then 

the kth letter of f(0) is 1 

<=>k = for some h > 1. 

(b) If 0 = | is rational, where p, g are relatively prime positive integers, and k > 1, fe ̂  0 and 
k ^ —1 (mod g), then 

the fet/l letter of / (0) is 1 

for some h>l, h^Q (mod p). ^=>k = 

Throughout the rest of this section, let p and q be relatively prime positive integers with 
p < q. Let I < s < q,l <t < p, and ps = qt + 1. Let' n = w ( | j . If w is a word and w = xy 
where y is nonempty, we write a? = wy~1. 
L e m m a A2: Let 0 be a real number between 0 and 1 such that ^ is a convergent of the 
continued fraction expansion of 0. Let z be a palindrome such that u = Ozl. 
(a) (see [1,3,21]) z is a prefix of / (0) . 
(b) If | > 0, then w l _ 1 (resp., u) is a prefix of 0/(0) (resp., 1/(0)), but « is not a prefix of 

0/(0). 
(c) If £ < 0, then ?i (resp., «0 _ 1 ) is a prefix of 0/(0) (resp., 1/(0)), but w is not a prefix of 

i/(V 
(d) 0/(§)=«~ 

Proof: Part (b) and (c) follow from (a) and the fact that [(q — 1)0] = p — 1, [(q +1)0] = p, 
and 

P ( * < * ) . 

Part (d) follows from (b). • 
The following lemma follows from Lemmas Al and A2. 
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L e m m a A3 : The first (resp., last) letter of u is 0 (resp., 1). For 1 < k < g, 

the kth letter of u is 1 

< = » * - ! = hq 
P 

for some 1 < h < p — 1. 

L e m m a A4: For each h with 1 < h < p, there is a unique r with 1 < r < p such that 
^ = rs — 1 (mod g). The mapping h \—> r is a bijection from { 1 , 2 , . . . ,p} onto itself. 

Furthermore, 
(a) h = rt and r = h(p — rn) (mod p), where 1 < m < p, and q = m (mod p). 
(b) /i = p <=> r = p. 

Proof: Let 1 < h < p. Since s and q are relatively prime, there is a unique integer r, 
1 < r < <Z such that 

hq 
P 

= rs — I (mod g). 

Clearly (b) holds. Let n be an integer such that ^ = rs — 1 — ng. Then 

p . 
= rps — p — nqp 

= r(qt + 1) — p — nqp 

— q(rt — np) + r — p. 

Since p M < hq < p f ^ l + p, we have 

T p V 
(rt — np) -\ < h <rt — np+ -, 

Q Q Q 

that is, 
r p 

h + np — rt< - < h-hnp — rt-\—. 
q q 

Therefore h + np — rt= H = 0 and r - p < q(h + np - rt) = 0; so h = rt (mod p) and 
1 < T < p. The second part of (a) follows immediately from the first part. 
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It remains to show that if 1 < /n < h2 < p, then f ^ l =£ [ ^ 1 (mod q). Let k = h2-h1, 
where 1 < h± < h2 < p, i.e., 1 < k < p — 1. Then 

hiq 
+ K 

htq + kl < htq kg = fe2g 

^ ftia »— 1 ftia < — + g < — + g - 1 
p p p 

< 
hiq 

+ g; 

so the result follows. • 
Lemma 2.1 now follows immediately from Lemmas A3 and A4. 
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1. I N T R O D U C T I O N 

It is well-known (see5 [4] p. 411) that the general solution of the differential equation 
(x2 — l ) | / ; + xyf — n2y = 0 is of the form: 

V = CI(^V^EIY+CJ^V^T)\ (1) 

where C\ and C^ are arbitrary constants and n E N. 
For G\ = C2 = 1 from (1) we get that 

x + yx2 — 1 I / x — yx2 — 1 
Tn(x)= - ^ - + v- , (2) 

is the Chebyshev polynomial of the first kind. 
In [2] the author has considered a more general class of polynomials, namely: 

Wn(x\ c) = + , (3) 

where c is a parameter and where n > 1 is the degree of the polynomial Wn(x; c). Moreover, 
it has been proved in [2] that the function: 

y = Ci(*±y^)\Ca(*-yfTA\ (4) 

is the general solution of the differential equation: 

(x2 + c)y" + xy" - n2y = 0,x2 + c > 0, n E N. (*) 
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The polynomial Wn(x;c) given by (3) contains the well-known Pell polynomial when c = 1 
and the Fibonacci polynomial when c = 4. 

In this paper we give further extensions of this result. 

2* B A S I C L E M M A S 

L e m m a 1: Let s®, u E C2(J) be real-valued functions of x, where J = (xi,X2) C R and 
ti / 0 on J . The function y\ — SQUXJ with non-zero real constant A3 is the particular solution 
of the differential equation: 

Dop" + Dn/ + D2y = 0 (2.1) 

if and only if there exist the functions 81,82 £ C2(J) such that 

D0S2 + DlSl + D2sQ = 0. (2.2) 

Proof: Suppose that the function y\ = SQUX is the particular solution of (2.1). Then we 
have Doy" + Diy[+ D2yi = 0 and by the assumption on the functions SQ and u it follows that 

y[ = s'0ux-+ SQXU^U* = ux (s'0 + Xs0 — J . (2=3) 

Putting 

si = So + A$0 — (2.4) 
u 

in (2.3) we have y[ = 5iteA. In a similar manner we obtain 

y!( = (8luxy = 8[ux + A*it4A-V = B A (*; + A * i - ) .. (2.5) 

Putting 

82 = 8,
1 + \81- (2.6) 

u 

in (2.5) we have y" = §2^A? and therefore we obtain J^ol/i+-^i!/i + ^22/i = DQS2UX + DiS\ux + 
D2S0?|A = WA(D052 + #1*1 + -D250) = 0. 

210 [JUNE-JULY 



ON SOME CLASSES OF EFFECTIVELY INTEGRABLE DIFFERENTIAL EQUATIONS AND FUNCTIONAL . . . 

Since w ̂  0 on J then (2.2) follows from the last equality. Now, we suppose that (2.2) is 
satisfied by some functions so>si>S2 £ G2(J). Then we have 

D0s2ux + DlSlux + D2s0ux = 0. (2.7) 

Putting 2/1 = SQUX in (2.7) we obtain y[ = siux and y" = s2ux, where the functions s\ and 
s2 are defined by the formulas (2.4) and (2.6), respectively Hence, Doy'{ + Diy[ + D2yi = 0, 
and the proof of Lemma 1 is complete. D 

L e m m a 2: Let so,toyu,v e C2(J) be real-valued functions of x and let u ^ 0, ? ; ^ 0 o n J . 
Then the functions 

2/i = s0ux and 1/2 = t0vx (2.8) 

are particular solutions of the differential equation: 

D0y" + Diy
f + D2y = 0, (2.9) 

if and only if the functions s i , £i, s2, and £2 are given by the formulas: 

# 1 * f t / . t * . c / x 

§! = sn + Aso — ,*i = *o + At0 —,«2 = *i + Asi —, t2 = t\ + \tx—, (2.10) 
U V U V 

and 

* - < * ( * * ) , * . = * ( « : ) , * = « * ( ; : : : ) • p-«> 

Proof: From Lemma 1 it follows that the functions t/i = Soux and y2 = IQVX are particular 
solutions of the equation (2.9) if and only if 

D0s2 + Di*i + D2s0 = 0 and D0t2 + Dth + Z>2*o = 0, (2.12) 

where the functions si,s2,ti, and t2 are defined by the formulas in (2.10). Now, we consider 
the determinant: 

( so *i $2 
so st s2 I . (2.13) 

to t\ t2 

It is easy to see that W\ = 0, and by Laplace's theorem we obtain 

s„det(»; H)+,^(Z £ ) + « « ( ; ;2)=0. (2.4, 
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Denoting D0 = det ( J ° J1 J , Dt - det f j 2 J° J , Z>2 = det ( J1 J2 J, in (2.14) we obtain 

DQ^2 + Disi + D2S0 = 0. In a similar manner we consider the determinant: 

to ti £2 
W 2 = det j t 0 *i «2 I • (2-15) 

1 5 0 * i 5 2 

As in the previous case we obtain that Dfa + Diti + D2to = 0 and the proof of Lemma 2 is 
complete. D 

Prom Lemma 1 and Lemma 2 we deduce the following lemma: 

L e m m a 3: Let A be a non-zero real constant and let u, v £ C2(J) be a non-zero real-valued 
functions, linearly independent over R, where J = (a; 1,0:2) C R. Then the general solution of 
the differential equation: 

det ( J t ) » " + d e t ( £ j ) y ' + A d e t ( | j [ ) v = 0, (**) 

where g = *£ - (1 - A) ( £ ) and ft = * £ - (1 - A) ( £ ) is of the form 

y = dux + C2vx, (2.16) 

where Ci and C-z are arbitrary constants. 

Proof: Putting so = to = 1 in Lemma 1 and Lemma 2, we obtain si = A^-,ti = A^- and 

'1 + A S l ^ = A ( ^ - ( l - A ) ( ^ ) 2 ) = A 5 , f 2 = t'1 + A<1^ = A ( f - ( l - A ) ( ^ ) 2 ) = 52 = 5 

Aft. Hence, we have 

D ° = d e t ( i A£) = A d e t ( i ^ ) ( 2 1 7 ) 

*=* . (* l)-d-(JS !)=**(? I) <»•"> 
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°-«{u S)="*(A| Z)-*<*{i 0- (2-19> 
Prom (2.17)-(2.19) it follows that equation (2 J ) reduces to (**), hence by Lemma 2 it follows 
that the functions y\ = ux, and y2 = vx are particular solutions of (**). It suffices to prove that 
the functions y\ and y2 are linearly independent over JR. To this end consider the Wronskian 
of these functions 

/ lit i) \ 

By the assumptions that u ^ 0, v ^ 0 it follows that det I , ; ^ 0 on J and 

consequently from (2.20) we see that W (2/1,2/2) ^ 0 on J . Therefore the function 

y = C11/1 + C2»2 = ClU
x + C72?/A 

is the general solution of the differential" equation (**). The proof of Lemma 3 is complete. • 

3. T H E R E S U L T S 

In this part of our paper we obtain some new classes of second order differential equations 
which are effectively integrable and with general solutions given in explicit form (Cf. [4]). 
Namely, we prove of the following theorem. 

T h e o r e m 1: Let the functions a, 5 E C2(J), J = ( x i , ^ ) C R be real™valued and non-zero in 
x such that ax =fi ±bx on J , and let a3 b be linearly independent over R. Then the function 

y = d(a(x) + b(x))n + C2(a(x) - b(x))n (3.1) 

where C\ and C2 are arbitrary constants and n E N is a general solution of the differential 
equation: 

P0{x)y" + Pt(x)y' + nP2{x)y = 0, (***) 

where 
P0(x) = (a(x)2 - b(x)2)(a'(x)b(x) - b'(x)a(x)) = F(x)G(x) (3.2) 

Pi(x) = (a"(x)b(x) - b"(x)a{x))F{x) + 2(n - l)G(x)(a'(x)a(x) - b'(x)b(x)) (3.3) 

P2(x) = (b"(x)a'(x) - a"{x)h!(x))F{x) - (n - 1) {{a'{x)f - (6'(a:))2) G{x) (3.4) 
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Proof: Let u = a(x) — b(x), v = a(x) + b(x) and let y\ — wn and f/2 = vn , where n e N. 
Then by Lemma 3 it follows that 

d e t ^ ^ = 2K(x)tw-y-M„W) +4(n_ l ) = ^)aM-j.-M^)G(x) (36) 

d e t ( | g j = W w v ( , ) > ( , ) ) . < i . 1 ) j W , y ) n ^ (37) 

Substituting (3.5)-(3.7) in (**) of Lemma 3 we obtain^ after some calculation that (**) 
reduces to the equation Po(x)yfi + Pi(x)yf + P2(x)y = 0 with the functional coefficients 
Po(x),Pi(x), and P2(x) as given by the formulas (3*2)-(3»4)B It remains to prove that the 
functions u = a(x) — &(rr) and v = a(x) + b(x) are linearly independent over R under the 
assumption that the functions a(x) and b(x) are linearly independent over R. To this end we 
consider the Wronskian 

w / \ A 4. ( u v \ A ± ( a(x) ~~ Kx) a(x) + Kx) \ W(u,v) = det I , , J = det 1 ,) { , , \ \ ,} ( . l 7 \ \ . 
v / \u v J \a (x) — b (x) a(x) + o(x)J 

From the well-known properties of determinants it follows that 

^ ) , ) = 2 d e t ( ^ ) *<*>) . (3.8) 

Prom (3.8) and by the assumptions of the theorem about the functions a and b it folllows that 
W(u, v) T£ 0 on J and the proof of Theorem 1 is complete* D 

Using Theorem 1 we obtain the following: 

T h e o r e m 2: The general solution of the differential equation 

F0(x)y,f + F!(x)i/ + F2(x)y - 0 . (I) 
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with coefficients F0{x),Fi(x), and F2(x) given by the formulas 

F0(x) = 2(bx + c)(bx + 2c) (x2 + bx + c) (II) 

jFi(aO = Ax(bx + c) + 2(n - l)5(fe + 2c) (^2 + bx + c) 

F2(x) = ~(2A(bx + c) + A(n - l)(fta?"+ 2c)) 

where A = b2 — 4c is the discriminant of the polynomial f(x) = x2 + bx + c and 6a; + c ^ 0 
and te + 2c ^ 0 on J = (#1, #2) C i? is of the form 

faj + V ^ T k T c l , ~ Ix-y/x2 + bx + c\ /TTTN 
» = Cl\ o + C 2 = , (HI) 

where G\ and C2 are. arbitrary constants and n E N. 
Proof: Let a(x) = § and b(x) = \\/x2 + bx + c. Then we have a'(x) = | and 

5 ' ^ ) =
 2 x + 6 , so a/;(^) - 0 and b"(x) = 

Ay/x2 + bx + c 8(x2 + &E + c)^/x2 -\-bx-\- c 

Using formulas (3.2)-(3.4) from Theorem 1 we obtain 

P1(a;) = 

32Vx2 + 6a; + c ' 

A:c(6a: + c) + 2(n - l)b(fcc + 2c)(x2 + bx + c) 

P2(*) = 

64(x2 + 6x + c)s/x2 -\-bx-\- c 

2A(bx + c) + A(n - l)(6x + 2c) 
128(x2 + bx + c ) v ^ T ¥ T c 

From the last formulas it is easy to see that the equation reduces to the equation (I) with 
the coefficients given by (II). Therefore, it remains to prove that the functions a(x) = § and 
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b(x) = \\/x2 + bx + c are linearly independent over R, if bx-\-2c ^ 0 on J . Let W(a, 5) denotes 
the Wronskian of the functions a and 6. Then we have 

WYa,6) = det ,\ { ,/> < = det ( i 2 2^+5 = —• , = • 

Prom the last equality it follows that W(a, b) ^ 0 on J , because 6x + 2c ^ 0 on J . 

The proof of Theorem 2 is complete. • 
Now, we observe that the result described in Introduction follows immediately from The-

orem 2 in the particular case where 6 = 0. 

4 . F U N C T I O N A L R E C U R R E N C E S A N D G E N E R A L I Z E D 
H O R A D A M - M A H O N F O R M U L A F O R P E L L P O L Y N O M I A L S 

In [3], Horadam and Mahon consider a matrix method in the investigation of some classes 
of polynomials such as the Pell polynomials Pn(x). They proved that for every natural number 
n, we have 

Pn.1(x)Pn+1(x) - Pfe) = ( -1 ) " , (4.1) 

where Pn(x) is defined by the recurrence formula: 

Po(x) = 0, Pi(x) = 1, Pn+2(x) - 2xPn+1(x) + Pn(x)> (4.2) 

In [1], the authors have considered the functional matrix 

*-"«-(£} $)• 
Let TTA(X) ^ 0 or det-A(x) ^ 0 on J = ( x i , ^ ) C JR and let 

r = r(ar) = TrA(x) = a(x) + d(a?),*- = s(x) = -det-A(ar), (4.3) 

and 
uQ = u0(x) = r, t*i = wi(x) = riio(a?) + s. (4.4) 

Let 
%(x ) = run-i(x) + 5Bfl_2(^)j for n > 2, (4.5) 
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be a functional recurrence sequence associated with the matrix A = A(x). Then for every 
natural number n > 2, we have, in [1], 

AnrT\ = f*(z) h(x)\n
 = fa(x)un^2(x) + vn-2(x) b(x)un-2(x) \ (4 §) 

\c(x) d(x)) \ c(x)un^2(x) d(x)un^2(x) + vn^2(x) J ' { ' } 

where 
vn-2(x) = suns(x) for n > 3 and u-i{x) — 1 for n = 2= (4.7) 

Prom (4.6) and (4.7) it follows that the formula (4.8) holds for the recurrence sequence 
un(x) defined by (4.4) and (4.5): 

*n- i (*) - t4„(x)tiTO-2(aO = (detA(x))n (4.8) 

for every natural number n > 2. Now, we deduce from (4.8) the Horadam-Mahon formula for 
Pell polynomials. Indeed, let a(x) = d(x) = x and b(x) = c(x) = V^ 2 + 1. Then the matrix 
A(x) — P(x) has the form 

and the recurrence sequence Pn(x) associated with the matrix P(x) satisfies the following 
conditions: 

r = TrP(x) = 2x, s=-detP(x) = 1, (4.10) 

and 
Pn(x) = rPn-!(x) + sPn-2(x) = 2xPn__1(^) + Pn-2(x). (4.11) 

Here, Pn(a;) denotes the Pell polynomial. Replacing un(x) by Pn{x) in the formula (4.8) we 
obtain the Horadam-Mahon formula for Pell polynomials. 

In the same way we produce more general formulas connected with classes of polynomials 
Wn(x;hjc) considered in Theorem 2. Namely, we have the following: 

P ropos i t i on 1: Let W(x; 6, c) = I t 2 , I be a 2 x 2 functional matrix 
\ v x ~f~ ox I- c x j 

and let Wi^ar; 6, c) be the functional recurrence sequence associated with the matrix W(x; 6, c) 
defined by the formulas: 

r = TrW(x\ b, c) = 2x, s = - det W{x\ 6, c) 

= -~(x2 - (x2 + fear + c)) = fe + c 
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and 
Wo(x\b,c) = r = 2xj Wi(x]b,c) = rWo(x]b,c) + s = 4x2 + 6x + c 

and for n > 2 

Wn(x;b,c) — rWn„i(x;6?c) + §Wn_.2(x;ftJc) = 2xWn»-i(x;6?c) + (6a: + c)Wn_2(x;65c). 

Then for every natural number n > 2 we have 

W f t - i f o M - W ^ ^ M ^ n ^ M - (debW(x\b9c))n = ( - l ) n ( t e + c)n . 

Proof: In the first step, by inductive manner as in [1], (pages 116-117), we obtain an 
analog of formula (4.6) for the powers of the matrix W(x-,b,c), using the recurrence sequence 
Wn(x;b,c). The final step relies on applying Cauchy's theorem on product of determinants. D 

In a similar way as in [1], (pages 118-119) we obtain the following: 

P r o p o s i t i o n 2: Let k be a non-zero constant and let a = a(x) and b = b(x) be given functions 
of the variable x. Then for every natural number n we have 

a(x) b(x)\n _ ( Rn(x) Sn(x)\ 
kb(x) a(x)J \kSn(x) Rn(x)J> 

where 
Rn(x) = \ ( («(*) + h{x)Vk)n + (a(x) - 6(x)Vfe)n) 

and 
Sn(x) = -^j= ((a(x) + b{x)Vk)n - (a(x) - 6 ( x ) ^ ) n ) . • 

Putting k = 1 in the last equalities we obtain an explicit connection between the functions 
u(x) = a(x)—b(x) and v(x) = a(x)+6(x) considered in Theorem 2 with powers of the functional 
matrices and the corresponding functional recurrences. 
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1.. I N T R O D U C T I O N 

The identities 

^ri+l ~h Fn = F2n+l (1-1) 

and 
Fn+1 + Fn~~ Fn~-l = F3n (1 = 2) 

are special cases of identity (5) of Torretto and Fuchs [7], Interestingly, (1.2) is the only 
identity involving cubes of Fibonacci numbers that appears in Bickson3s History of the Theory 
of Numbers [1, p. 395], and Dickson attributes it to Lucas. 

In [6], the following generalizations of (1.1) and (1.2), together with their Lucas counter-
parts , were given. 

•Fn+fc+l + Fn-k = F2k-±lF2n+l] (1-3) 

F3k+lF
n+k+l + FM+2Fn+k ~~ Fn-2k-l ~ F3k+lF3k+2F3n- (1-4) 

In fact, as was proved by Howard [5], (1.3) is equivalent to 

F2 + (_i)«+*+ij* = Fn^kFn+kj (i.5) 

occurring as Iig on page 59 in [4], In (1.5), replacing n by n + fc, and k by n yields 

*"»+* + ( " 1 ) * + 1 ^ = FkF2n+k, (1.6) 

equivalent to (1.5), and which we require in the sequel 
Recently, we were made aware of the identity 

Fn+2 ~~ SFn + Fn-2 = SF3n (1 = 7) 

due to Ginsburg [3], and this prompted us to search for a more general identity that yields 
(1.2), (1.4), and (1.7) as special cases. This identity is stated in the next section, and our proof 
of it relies on a powerful method given recently by Dresel [2]. For instance, in the terminology 
of Dresel, (1.1) is homogeneous of degree 2 in the variable rc. As such, to prove It we need only 
verify Its validity for 3 distinct values of n. 
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Quite often, after discovering a new Fibonacci identity, we expend energy trying to discover 
its Lucas counterpart. Dresel's duality theorem provides us with a way of achieving this quickly. 
Indeed, the duality theorem produces a dual identity for any homogeneous Fibonacci-Lucas 
(FL) identity. 

T h e Dua l i t y T h e o r e m (Dresel): Given a homogeneous FL-identity in the variable w, we can 
arrive at; a new dual identity with respect to the variable n by making the following changes 
throughout: 

(i) when j is odd, Fjn+k is replaced by Ljn+k/^y 
(ii) when j is odd, Ljn+k is replaced by \/EFjn+ky 

(iii) when j is odd, (—l)J"n is replaced by — (—l)J'n„ 
The justification for each step in the theorem is easily seen if we refer to the Binet forms. For 
example, the dual of (1=1) is L^+1 +1% = BF2n+i' We give further illustrations after the proof 
of our main result, when we employ the duality theorem to produce seven additional identities. 

2. T H E M A I N R E S U L T 

We make use of the following identities. 

F _ n - ( - l ) - + 1 F n , (2.1) 

Fn+k + Fn„k =LnFk, k odd, (2.2) 

Fn+k - Fn„k = LnFk, k even, (2.3) 

F2n = FnLn, (2.4) 

(-l)k+1FkF^k - FkF*_k + F2kF* = {-lf^FlF2kF^ (2.5) 

Identities (2.1) and (2.4) are well known, while identities (2.2) and (2.3) occur as I22 and I2^ 
respectively, on page 59 in [4]. Identity (2.5), which appears as (5.2) in [2], can be expressed 
more simply if we factor out Fk. However, in its present form, its relationship with our main 
result is more transparent. Our main result follows. 
Theorem: Let fc, m, and n be any integers. Then 

FmFZ+k + {~t)k+m+1FkFl+m + (-l)fc+TOFfc_mF„3 = Fk_mFkFmF3n+k+m. (2.6) 

Proof: Since (2.6) is homogeneous of degree 3 in the variable n, we need only verify its 
validity for four distinct values of n. If k = ra, or if one of k or m is zero, then (2.6) follows 
immediately. Furthermore, if k + m = 0, then (2.6) follows from (2.5). So we may assume 
that km(k — m)(k + m) ^ 0. Bet then 0, —fe, —ra, and —k — m are distinct, and so we need 
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only verify (2.6) for these four values of n. We perform the verifications for n — —k and 
n = —k — rn, and leave the remaining verifications to the reader. 

Using (2.1), we find that F*k+m = (-l)*-™+1i^_m, and Flk = (-l)fc+1Ffc
3. Then, for 

n = —k, 

LHS = (-l)k+m+1FkF3_k+m + (-l)k+mFk-mF3_k 

= FkFk
3_m + (-l)m+1Fk.mFk

3 

= Fk.mFk[Fl_m + {-ir^Fk
2} 

= Fk_mFk[Fk
2_m + (-l)-™+1Fk

2} 

~ Fh—m-Pk*1—m^2k—rn 
(using (1.6)) 

= Fk-mFkF-m,F-(-2k+m) 
= Fk.mFk(-l)m+1Fm(-l)-2k+m+1F.2k+m 

= Fk-mFkFmF-2k+m 
= RHS. 

(using (2.1)) 

For n = — k — m we have 

LHS = FmFlm + (-l)k+m+1FkFik + (-l)k+mFk„mF3_k_m 

= ( ~ i r + 1 i ^ + {-l)mFt - Fk.mF3
k+m (using (2.1)) 

= ( - l ) m [Fk - Fm] - Fk-mFk+m 

= ( - l ) m [Fl + (-l)k+m+1Fl) [F* + {-l)k+mFl} - Fk..mFl+m 

= (-1)™ [^+(fc-ro) + {-l?-m+1Fl] [Fl + (-l)k+mFl] - Fk.mF3
k+m 

= (-irFk.mFk+m [Fl + (-l)k+mFl] - Fk.mFi+m (using (1.6)) 
= Fk.mFk+m [{-lTFl - [F^+k + {-l)k+1Fl}} 

= Fk.mFk+m [{-l)mFl - FkF2m+k] (using (1.6)) 
= —Fk—mFk+mFk [F(jn+k)+m + ( — 1)TO F(m+fc)_mJ 
= -Fk-mFk+mFkLk+mFm (using (2.2) and (2.3)) 
= -Fk-mFkFmF2k+2m (using (2.4)) 

= RHS, using (2.1). 

This completes the proof of the Theorem. D 
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Now, since (2.6) is homogeneous of degree 3 in the variable n, its dual identity, with 
respect to n is 

FmLl+k + (-l)k+m+1FkL3
n+m + ( - l ) ^ + m ^ _ m i ^ = 5Ffc_mF&FmL 

Sn+k+m- (2.7) 
Before proceeding we note that, since (—l)fc = (a/3)fc, (-l)kFk has degree 3 with respect to 
the variable k. Hence (2.6) and (2.7) are each homogeneous of degree 3 in fe, and their duals 
with respect to k are, respectively, 

FmLn+k + 5(—l) mLkFn+m + 5(—1) m Lk-mFn = Lk-mLkFmL3n+k+m, (2.8) 

and 

25FmF*+k + (-l)k+mLkll+m + (-l)k+m+1Lk„mll = bLk-mLkFmF3n+k+m. (2.9) 

Finally, since Fm = (-l)2™Fm,Fk„m = ( - l ) ™ " ^ 1 ! ^ , and Lk.m = (-l)m~kLm.k, 
we see that (2.6)-(2.9) are each homogeneous of degree 5 in m. Accordingly, we find that their 
duals in the variable m are, respectively, 

5LmF*+k + (-l)k+mFkL3
n+m + B(~l)k+m+1Lk.mF3 - Lk.mFkLmLSn+k+m, (2.10) 

LmLl+k + 2 5 ( - l ) f c + m ^ F n
3

+ T O + (-l)k+m+1Lk-mL3
n = §Lk-mFkLmF3n+k+m, (2.11) 

L m L 3
+ f c + (-l)k+m^LkL3

n+m + 25( - l )* + m F f c _ m F n
3 - 5Fk.mLkLmF3n+k^m, (2.12) 

25Lm.Fn
3

+fe + 2 5 ( - l ) f c + m + % F 3
+ m + 5(- l ) f c + mFJ f c_mL3 = 5FJb_roJLJbJLroL3n+ib+m- (2.13) 
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1. INTRODUCTION 

Recall that P := {1,2,3}. . .}, N := P U {0} and Z := {0 ± 1, ± 2 , . . . } . Then, for each 

r±(n) := |{(mi?m2,m33ra4) G Z4|n = m\ + m\ + m\ + m|} | . 

For each n G P, cr(?i) denotes the sum of all positive divisors of rc, 6(n) denotes the exponent of 
the largest power of 2 dividing n, and then Od(n) := n2~6^n^. (Quite properly, 6(n) (or 2 6 ^ ) 
is called the binary part of n and Od{n) is called the odd part of n.) In this note we give a 
simple proof of the following elegant result first stated and proved by Jacobi [1, p. 285]. 

Theorem 1: For each n G P , 

r4(n) = 8(2+ (-l)n)a(Od(n)). 
(Of course, r4(0) = 1.) 
Our proof depends on several immediate consequences of the celebrated Gauss-Jacobi 

triple-product identity 

oo oo 

]I(i-x2n)(i + tx2n-1)(i + r1x2n-1) = J2xn2tn> (!) 
n = l — oo 

which is valid for each pair of complex numbers t,x such that t ^ 0 and |x| < 1. For a 
proof see [2, pp. 282-283]. 

2, PROOF OF THEOREM 1 

We begin with Jacobi's triangular-number identity [2, p. 285] 

oo oo 
2 j J ( l - xnf = ]T(-1)&(2& + l)xk{k+1)/2, (2) 

n = l —oo 

valid for each x such that \x\ < 1. In (2) we first let x -> x8, and then multiply the 
resulting identity by x to get 

oo oo 

2*IJ(1 - a;8")3 = £ ( - l ) * ( 2 * + l)a:<2fc+1>a. (3) 
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Next, we square both sides of (3), and appeal to the elementary identity 

u2 + v2 = -{(u + v)2 + (u- v)2} 

to get 

oo oo 
2 i tnu i i \ 2 Ax2 JJ(1 - a;8")6 = J2 E (-1)i+*(2i + W2* + l)a^+1>2+(2fc+1> 

1 i=—co Jb=—oo 

oo oo 
= E E (-l)i+&(2i + l)(2fc + l)x2W+fe+1>2+«-fc)2] 

j=z—oo Jc=~-oo 

Now3 with 
J£ := {(r3 5) E Z2|r and 5 have the same parity}, 

it follows easily that the function F : Z 2 —» Z2
5 defined by 

-F(j\ *0 := ( i + fc, J - fc), for each (j? k) G Z2 , 

is one-to-one from Z 2 onto J5. Hence, in the foregoing identity let r = j + fc, s = j — k, so 
j = ( l /2)(r + ^)3 A; = ( l /2)( r - 5), and let x -> x1 / 2 to get 

1 (r,s)€E 

= E ( - i ) r { (^+ i ) 2 - ^ ( r + 1 ) 2 + s 2 

(r,s)6iS 

y (2TO+1) v2-+ i>2 y x(2™)2 - y x^im+^ > > » ) v2"> 
—00 —00 

£ > m + 2)2x(2™+2»!5]1(2',+1)! + E x ( 2 m + 2 ) 2 £ ( 2 n + IJV2" 

00 00 
2 { E ( 2 m + i ) 2 i ( ! m + I ) J E i W ' - E x ( 2 m + 1 ) 2 E ( 2 n ) V 2 n ) 
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since m £ Z <==> m + l G Z . We cancel a factor of 2 and put 

oo 
(2n)2 /(*):= X><a™+1>\ *(*):= £ > 

to get 

2*ft(l - ^ ) 6 = g^9'fix)-9ix)-^x)'e'9{x) (4) 
1 9\X) 

where 6X := xDx,Dx denoting differentiation with respect to x. But, with the help of (1), we 
get 

f(x) = 2xfl(l-xSn)(l + x8n)2, 

^ ) = n ( l - ^ ) ( l + ^ - 4 ) 2 , 

so that 

'<*>=2xf[ (1 + a:8n)2 
g(x) Al(i + SB8»-4) 

Hence, 

«™*»-$Hgi^-.Efi&£1}. 
Now, 

5^) 2 Jg = f{x)g{x) = 2xJI(l - *8n)2(l + ^4")2 
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With the help of Euler's identity [2, p. 277] 

n(i+a?»)(i-xa»-i)=il 

which is valid for each complex number x such that \x\ < 1, we substitute the foregoing 
evaluations into (4), cancel 2x, let x —> x1^ and divide both sides of the resulting identity 
by I K 1 - x2nf{l + xn)2 to get 

™(l _ r 2 n \ 6 / i _ T2n-l\6 ™ 

n (
( 1 - J 4 + ^ =na-«*)M-«»-T 

- 1 + 1 6 V ^ i V P * - 1 ^ ' (5) 
fc = l & = 1 

We now digress momentarily to make a couple of key observations. First, we let t = 1 in 
(1), and observe that the fourth power of the right-hand side of the resulting identity generates 
the sequence r^n), n E M. In other words, 

oo ( oo 1 4 oo 

na-^a+s2"- 1)8- E*n f =Y,r*Wxn-
1 l-oo J n=0 

Next, we observe that the composite function a o Od arises quite naturally in the expansion: 

0 0 foi* 1\ 2k—1 °° °° 

E (^ZXi = E E<2* - D*"-1 • ̂ ' ^ 1 - x 2 

OO CO 

EEC2*-1)*-

= E*nE<* 
n=l d|n 

d|odd 

= E< 7(°d(n))a : n-
n=l 

2003] 227 



AN ELEMENTARY PROOF OF JACOBFS FOUR-SQUARE THEOREM 

Returning to the proof of our theorem, we appeal to [2, p. 312], and in (5) let x —> —x to 
get 

J2 r4(n)xn = JJ(1 - x2nf{\ + x271-1)8 

n=0 

k = l + x k=l l x 

4„_2 °° (11. i \„ .2fc- l 

- 1 + 1 5 Z ^ l_a;4n-2 + 8 Z ^ 1 _ x2fc-l 
n = l fc=l 

oo oo 

= 1 + 16 J2 a{Od{n))x2n + 8 J^ (r(Od(n))xn 

n = l n = l 

= 1 + 16 J2 <r(Od(2n))x2n + 8 ] T <r(Od(2»i))x271 + 8 J P <T(2» - l ) * 2 " " 1 

n = l n = l n = l 

OO OO 

= 1 + 24 ^ <r(Od(2n))x2'1 + 8 ̂  a(2n - l)*2™"1. 
7 1 = 1 7 1 = 1 

Here, we've made use of the obvious facts: Od(2n) = Od(n) and Od(2n — 1) = 2n — 1, for each 
n G P. Finally, we equate coefficients of like powers of ar to get 

r4(0) = 1 

and for each ra G P, 

r4(2n) = 24a(Od(2n)), r4(2n - 1) - 8a(2n - 1). 

This completes the proof of theorem 1. 
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1. I N T R O D U C T I O N 

A composition of n consists of an ordered sequence of positive integers whose sum is n. A 
palindromic composition (or palindrome) is one for which the sequence reads the same forwards 
and backwards. We derive results for the number of "+?5 signs, summands, levels (a suxnmand 
followed, by itself), rises (a summand followed by a larger on), and drops (a summand followed 
by a smaller one) for both compositions and palindromes of n. This generalizes a paper by 
Alladi and Hoggatt [1], where summands were restricted to be only Is and 2s. 

Some results by Alladi and Hoggatt can be generalized to compositions with summands of 
all possible sizes, but the connections with the Fibonacci sequence are specific to compositions 
with Is and 2s. However, we will establish a connection to the Jacobsthal sequence [8], which 
arises in many contexts: tilings of a 3 x n board [7], meets between subsets of a lattice [3], 
and alternating sign matrices [4], to name just a few. Alladi and Hoggatt also derived results 
about the number of times a particular summand occurs in all compositions and palindromes 
of n, respectively. Generalizations of these results are given in [2], 

In Section 2 we introduce the notation that will be used, methods to generate compositions 
and palindromes, as well as some easy results on the total numbers of compositions and 
palindromes, the number of "+" signs and the numbers of summands for both compositions 
and palindromes. We also derive the number of palindromes into i parts, which form an 
"enlarged" Pascal's triangle. 

Section 3 contains the harder and more interesting results on the numbers of levels, rises 
and drops for compositions, as well as interesting connections between these quantities. In 
Section 4 we derive the corresponding results for palindromes. Unlike the case of compositions, 
we now have to distinguish between odd and even n« The final section contains generating 
functions for all quantities of interest. 
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2. N O T A T I O N A N D G E N E R A L R E S U L T S 

We start with some notation and general results. Let 

CnjPn — the number of compositions and palindromes of n, respectively 

Cn,Pn — ^ n e number of "+" signs in all compositions and palindromes of n, respectively 

C^,P^ = the number of summands in all compositions and palindromes of n, respectively 

Cn{%) = the number of compositions of n ending in x 

Cn(xj y) = the number of compositions of n ending in x + y 

rnjln,dn = the number of rises, levels, and drops in all compositions of n, respectively 

^njlnjdn — the number of rises, levels, and drops in all palindromes of n, respectively. 

We now look at ways of creating compositions and palindromes of n. Compositions of n + 1 
can be created from those of n by either appending ' + 1 ' to the right end of the composition 
or by increasing the rightmost summand by 1. This process is reversible and creates no 
duplicates, hence creates all compositions of n + 1. To create all palindromes of n, combine 
a middle summand of size m (with the same parity as n, 0 < m < n) with a composition of 
ItYIk on the left and its mirror image on the right. Again, the process is reversible and creates 
no duplicates (see Lemma 2 of [2]). We will refer to these two methods as the Composition 
Creation Method (CCM) and the Palindrome Creation Method (PCM), respectively. Figure 1 
illustrates the PCM 
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1 
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1 1 

1 

2 
1 

3 
2 
1 
1 

6 
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2 
2 

3 
2 
1 
1 

1 

2 
1 

1 
2 
1 

1 

1 1 

1 

1 
2 
1 

1 

2 
1 

3 
2 
1 
1 

7 
5 

3 
3 

1 
1 
1 
1 

1 

2 
1 1 

3 
2 1 
1 2 
1 1 1 

« i _ 5 5 

Figure 1: Creating palindromes of n = 6 and n = 7 

We can now state some basic results for the number of compositions, palindromes, "+ 
signs and summands. 
T h e o r e m 1: 

1. Cn = 2n~1 for n > 1, C0 := 1. 
2. P2* = i W i = 2*/<0rfc>l . 
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3. C+ = (n- l )2 n - 2 forn>l,C$ := 0. 
4- P2k+i = k2k f°r k>®> P2k = (2k ~ i ) 2 ^" 1 for * > 1, P+ := 0. 
5. Cj[ = (n + l )2n"2 for n > 1, Cff := 1. 
6. if*+i = (* + !)2fc for k>Q, Pg = (2k + l)2fc"1 /or ft > 1, P$ := 1. 

Proof: 1. The number of compositions of n into i parts is (™Zi) (see Section 1.4 in [5]). 
Thus, for n > 1, 

2. Using the PCM as illustrated in Figure 1, it is easy to see that 

k 
P2fc = P 2 i f c + i - J ] a - l + (l + 2 + . . . + 2 f c - 1 ) -2 f c . 

t=0 

3. A composition of n with i summands has i — 1 "+" signs. Thus, the number of "+" signs 
can be obtained by summing according to the number of summands in the composition: 

^-D<-»-(::1
l)-B'-1,-^fe 

=(»-i)E("r2)=(»-i)-2°"!- w 

4. The number of "+" signs in a palindrome of 2k + 1 is twice the number of "+" signs in the 
associated composition, plus two "+" signs connecting the two compositions with the middle 
summand. 

P&+1 = £ ( 2 ^ + 2Ct) = E ( 2 • 2 i _ 1 + 2(< - l)2i"2) 
t= i »=i 

£ ( • + 1)2'"1 = &2fc, 
i = l 
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where the last equality is easily proved by induction. For palindromes .of 2fc, the same reasoning 
applies, except that there is only one "+'? sign when a composition of jfc is combined with its 
mirror image. Thus, 

fc-i 
ptk = E ( 2 ^ + 2 C t ) + (tf*+2Ct) = E(2 C^+2 Ct) - ck 

i=i i= i 

jfc2*-2fc"1 = (2jfe-l)2fc-1. 

5. & 6. The number of summands in a composition or palindrome is one more than the number 
of "+" signs, and the results follows by substituting the previous results into C% = C+ + Cn 

and P£ = P++Pn. U 
Part 4 of Theorem 4 could have been proved similarly to part 1, using the number of 

palindromes of n into i parts, denoted by P%
n. These numbers exhibit an interesting pattern 

which will be proved in Lemma 2. 

Figure 2: Palindromes with % parts 

Lemma 2: Pg_x = 0 and P%Z\ = i ^ " 1 = PH = Cj-l) for j = l,...,k,k>l. 
Proof: The first equality follows from the fact that a palindrome of an odd number n has 

to have an odd number of summands. For the other cases we will interpret the palindrome 
as a tiling where cuts are placed to create the parts. Since we want to create a palindrome, 
we look only at one of the two halves of the tiling and finish the other half as the mirror 
image. If n = 2k — 1, to create 2j — 1 parts we select - "g1 ~ J ~ 1 positions out of the 
possible '-- "~^— = k — 1 cutting positions. If n = 2k, then we need to distinguish between 
palindromes having an odd or even number of summands. If the number of summands is 2j — 1, 
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then there cannot be a cut directly in the middle, so only ^ p ^ = k — 1 cutting positions are 
available, out of which we select L^z^hzl = j __ im if ^he number of summands is 2j, then the 
number of palindromes corresponds to the number of compositions of fc, with half the number 
of summands (= i ) , which equals (^i j ) . D 

5, L E V E L S , R I S E S A N D D R O P S F O R C O M P O S I T I O N S 

We now turn our attention to the harder and more interesting results for the numbers of 
levels, rises and drops in all compositions of n. 

T h e o r e m 3: 
1. ln = i ( ( 3 n + l )2 n + 8 ( - l ) n ) forn>l and I0 = 0. 
2. rn = dn = | ( (3n - 5)2n~2 - ( -1)") for n > 3 and r0 = r1=r2 = 0= 

Proof: 1. In order to obtain a recursion for the number of levels in the compositions of 
n, we look at the right end of the compositions, as this is where the COM creates changes. 
Applying the-CCM, the levels in the compositions of n + 1 are twice those in the compositions 
of 7i, modified by any changes in the number of levels that occur at the right end. If a 1 is 
added, an additional level is created in all the compositions of n that end in 1, i.e., a total of 
Cn(l) = | C n - i additional levels. If the rightmost summand is increased by 1, one level is lost 
if the composition of n ends in x + x, and one additional level is created if the composition of 
n ends in x + (x — 1)= Thus, 

hk+i = 2l2fc + ^C2k ~ YlGM(X,x) + ] T C 2 k ( x , x - 1) 
a?=l x=2 

k k 

= 2I2&+2 """ — / ^ C2k-2x + } j Cr
2fc-(2g-l) 

x—1 x=2 

= 2l2k + 22fc~2 - (2 2 & - 3 + 22fc~5 + • • • + 21 + 1) + (22 f c-4 + • • • + 1) 

= 2Z2fc + (22fc~2 - 22fc~3 + 22 f c _ 4 - • • • - 2 + 1) - 1 

2 2 * - i _ 2 

= 2^2A; H Jj , 
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while 

1 k-1 k 
hk = 2i2fc-i + ^ ^ J b - i - Y2 c2k-i{x, x) + ] P C W - I O E , x - 1) 

x = l x = 2 

= 2J2*-i + 22fc"3 - (22fc~4 + 22*"6 + • • • + 22 + 1) + (2 2 *- 5 + • •. + 21 + 1) 

= 2l2k-i + (22fc~3 - 22fc~4 + 22fc~5 + 2 - 1) + 1 

= 2l2fc-l + 
22&-2 + 2 

Altogether, for all n > 2, 

«-n — zin_i + 2 «-2 + 2 ( - i ) » 
(2) 

The homogeneous and particular solutions, 4 and ln
p , respectively, are given by 

|W = c „ 2 n a n d jfr) = A . (_!)n + B . n2nt 

Substituting 4 into Eq. (2) and comparing the coefficients for powers of 2 and —1, respec-
tively, yields A = § and B = ^ . Substituting ln = ln

h) + 4 P ) = c • 2n + | ( - l ) n + ^ • n • 2n 

into Eq. (2) and using the initial condition l2 — 1 yields c = ^ , giving the equation for ln for 
n > 3. (Actually, the formula also holds for n > 1). 
2. It is easy to see that rn = dn, since for each nonpalindromic composition there is one which 
has the summands in reverse order. For palindromic compositions, the symmetry matches each 
rise in the first half with a drop in the second half and vice versa. Since C+ = rn + ln + dn, it 
follows that rn = ^ f K • 

Table 1 shows values for the quantities of interest. In Theorem 4 we will establish the 
patterns suggested in this table. 

n 
c+ 
^n 

?*n — C*"n 

l 
0 
0 
0 

2 
1 
1 
0 

3 
4 
2 
1 

4 
12 
6 
3 

5 
32 
14 
9 

6 
80 
34 
23 

7 
192 
78 
57 

8 
448 
178 
135 

9 
1024 
398 
313 

10 
2304 
882 
711 

11 
5120 
1934 
1593 

12 
11264 
4210 
3527 

234 

Table 1: Values for C+,ln and r n 
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^ n - 1 • 

T h e o r e m 4: 
1. rn+i = rn-{-ln and more generally, rn = Y^7=2 h for n ^ 3. 
2. C+ = r n + r n + i . 
3. C+ = 4 • (In_x + in_2) = 4 • (rn - r n _ 2 ) . 

= a n _ i , where an is the nth term of the Jacobsthal sequence. 

Proof: 1. The first equation follows by substituting the formulas of Theorem 3 for rn 

and ln and collecting terms. The general formula follows by induction. 
2. This follows from part 1, since G+ = rn + ln + dn and rn = dn. 
3. The first equality follows by substituting the formula in Theorem 3 for i n_i and ln-2- The 
second equality follows from part 1. 
4. The sequence of values for fn — ln — rn is given by 1,1,3,5,11,21,43, This sequence 
satisfies several recurrence relations, for example fn = 2fn-i + (—l)n or fn = 2n — / n _ i , both 
of which can be verified by substituting the formulas given in Theorem 3. These recursions 
define the Jacobsthal sequence (A001045 in [8]), and comparison of the intitial values shows 
that fn — a n _ i . • 

4 . L E V E L S , R I S E S A N D D R O P S F O R P A L I N D R O M E S 

We now look at the numbers of levels, rises and drops for palindromes. Unlike the case for 
compositions, there is no single formula for the number of levels, rises and drops, respectively. 
Here we have to distinguish between odd and even values of n, as well as look at the remainder 
of k when divided by 3. 

T h e o r e m 5: For k > 1, 

1. J 2 * = g ( - l ) * + 2' 
k = 0 mod (3) 
k = 1 mod (3) 
k = 2 mod (3) 

J2jb+1 = - ( - ! ) * + 2 ' 
/ 2 2 k\ 

+ < 
- 4 
7 

6 
7 
-2 

\ 7 

k = 0 mod (3) 
k = 1 mod (3) 
k = 2 mod (3) 
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2. F2fe = d2k (-lf~~2k'~1(— - — ) + < 
63 3 

l 7 

k = 0 mod (3) 
k = 1 mod (3) 
^ E E 2 mod (3) 

? 2 i b - l = ^2Jb+l = ( ~ k = 0 mod 

l i. — o ™ ^ 

jfe = 0 mod (3) 
(3) 

k = 2 mod (3) 

Proof: We use the PCM, where a middle summand m = 21 or m = 21 + 1 (I > 0) is 
combined with a composition of fc — I and its mirror image, to create a palindrome of n = 2k 
or n — 2k + 1, respectively. The number of levels in the palindrome is twice the number of 
levels of the composition, plus any additional levels created when the compositions are joined 
with the middle summand. 

We will first look at the case where n (and thus rn) is even. If I = m = 0, a composition 
of k is joined with its mirror image, and we get only one additional level. If I > 0, then we get 
two additional levels for a composition ending in m, for m = 21 < k — I. Thus, 

L*AI 
'2* = 2 ' E ' w + Ck + 2 . 53 C*-,(20 = *i + 2*"1 + * 2 -

1=0 1=1 

(3) 

Since IQ = h = 0, the first summand reduces to 

fc k k k 

«=2 g f - , ' 3 . 
z=2 z=2 

t = 0 

+ ^((-i)fc + i) 

= ^ f c + i { (* + 1)2* - 2*+*} + §(-1)* = | ( - 1 ) * + ( | ~ | ) 2*" (4) 

To compute S2, note that Cn{i) = Cn-i(i — 1) = • • • = C„_j+i(l) = |Cn_j+i = 2n l 1 for 
$ < n and Cn(n) = 1. The latter case only occurs when k = 31. Let k :— 3j + r, where 

236 [JUNE-JULY 



RISES, LEVELS, DROPS AND "+» SIGNS IN COMPOSITIONS: EXTENSIONS ... 

r = 1,2,3= (This somewhat unconventional definition allows for a unified proof.) Thus, with 
XA denoting the indicator function of A, 

1=1 i=i 

- 2 r • EW"1 + 2 • ̂ {-3} - V ( ^ - ^ ) + 2 • X{r=3} 

2̂  _ 2T _ I ^ ^ A; = 0 mod (3) 
^ fc = r mod (3), for r = 1,2 

7 + 2 - % = 3 > = ^ , ; _ „ _ (5) 

Combining Equations (3), (4) and (5) and simplifying gives the result for Z2fc-
For n = 2& + 1, we make a similar argument. Again, each palindrome has twice the 

number of levels of the associated composition, and we get two additional levels whenever the 
composition ends in TO, for m = 21 + 1 < k — I. Thus, 

k L(*-i)AI 
? 2 *+ 1 = 2 ' E'*-' + 2 ' E ^-^(21 + 1) =: 5i + *3-

1=0 1=0 

With an argument similar to that for 52, we derive 

s3 = < 

j=± k = 0 mod (3) 

^f^ k~i mod (3) (6) 
2 & + 2-2 jfc = 2 mod (3). ^ 7 

Combing Equations (4) and (6) and simplifying gives the result for fefc+i- Finally, the results 
for fn and dn follow from the fact that fn — dn— n

2
 n . D 

5. G E N E R A T I N G F U N C T I O N S 

Let Gan(x) = X̂ fĉ =o afc^fc be the generating function of the sequence .{a^g 0 . We will give 
the generating functions for all the quantities of interest. 
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T h e o r e m 6 

2- Gct{x) = j ^ and Gp+(x) = *\^ttf-

3- Gcs(x) = ^ 0 - and GPs{x) = ^ f E f ^ -

4- G*n(«) = (i+xK^IL)^ a n d Grw(a?) = Gd n(x) = -(1+x)^_2x)^ • 

c r» / ^ — s 2 ( l+3x+4x 2 4-x 3 -a ; 4 -4a 5 -6a ; 6 ) ^ , ^ / \ _ ^ / \ _ x4( l+3x+4x2+4g;3+4x4) 
0. l*Xn\X) — ( 1 + x 2 ) ( 1 4 . x + a . 2 ) ( 1 _ 2 x 2 ) 2 Ana t / f n W - ^dn\X) - ( l + X 2 ) ( l + a . + x 2 ) ( l _ 2 x 2 ) 2 -

Proof: 1. & 2. The generating functions for {Cn}o°, {^n}o° a n < l {C^~}o° a r e straightfor-
ward using the definition and the formulas of Theorem 1. We derive G p +(x) , as it needs to 
take into account the two different formulas for odd and even n. Prom Theorem 1, we get 

CO 
2k GP+ (*) = E J^-I*2*-1+E p& 

J f e = l J b = l 

o o o o 
= J2(k - l ) 2 ^ 1 ^ " 1 + J](2fe - 1)2&~ V*. (7) 

fc=i fc=i 

Separating each sum in Eq. (7) into terms with and without a factor of fc, and recombining 
like terms across sums leads to 

G p n + ( a ; ) = Idl££ j ^ * ^ 2 ) * " 1 - (* + x2) X;(2^2)fc~1 

fc = l fe=l 

l + 2x d / 1 \ x-\-x2 x2 + 2x3 + 2x4 

V1 - 2a:2 y 1 -4 d x V l - 2 a : 2 y 1 - 2x2 (1 - 2x2)2 ' 

3. Since C% = Cn + C+, Gcs(x) = <?cn(aO + Gc+(a:); likewise for GPs{x). 
4. The generating function for Z„ can be easily computed using Mathematica or Maple, using 
either the recursive or the explicit description. The relevant Mathematica commands are 

<<DiscreteMath 'RSolve' 

GeneratingPunction[{a[n + 1] = = 2a[n] + (2/3) * 2\n - 2) + ( -2 /3) * ( - l ) l n - 2), 
o [0 ]==0 ,a [ l ]==0} ,a [n ] ,» ,* ] [ [ l > l ] ] 

PowerSum[((l/36) + (n/12)) * Yh + (2/9) * ( - l )"h , {z, n, 1}] 
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C+-ln Furthermore, GTn(x) = Gdn(x) = \ \Gc+(x) — Gin(x)Y since rn dn = 2 

5. In this case we have six different formulas for fn, depending on the remainder of n with 
respect to 6. Let Gi(x) denote the generating function of {hk+i}<kLo- Then, using the definition 
of the generating function and separating the sum according to the remainder (similar to the 
computation in part 2), we get 

GIn(x) = G0(x6) + x • Gi(x6) + x2 • G2(x6) + • • • + x5 • G5(xG). 
The functions Gi(x) and the resulting generating function Gf (x) are derived using the 

following Mathematica commands: 
« D i s c r e t e M a t h cRSolvec 

gO[z.} =PowerSum[(l/126)((126(w) + 53) * 2^3n) + 108 + 28(-1)^*0), {z, n, 1}] 
gl[z.] =PowerSum[(l/63)((63n + 22) * Z\3n) - 36 + 14(- l )"h) , {z, n, 1}] 
g2[z.] =PowerSum[(l/63)((126n + 95) * 2T(3n) - 18 - U(-l)"h), {z, n, 0}] 
$3[z_] =PowerSum[(l/63)((126n + 86) * 2^3n) + 54 - 1 4 ( - l p i ) , {*,n,0}] 
$4[^_] =PowerSum[(l/63)((252n + 274) * 21[3n) - 36 + U(-l)li), {z, n, 0}] 
35[;s-] =PowerSum[(l/63)((252n + 256) * 21[3n) - 18 + 14(-l)^n), {z, n, 0}] 
•genfunfc] := g0[z^] + * gl[z^] + z"2 $2[z"6] + z"$ g3[z^6] + ^ ^ 4 [ ^ ] + z^h gb[z^} 

Finally, Gf n(x) = Gin(x) = § ( G P + ( X ) - Gin(x)\ since fn = dn = 5 ^ 2 L . D 
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1. I N T R O D U C T I O N . V1ETA D I P T Y C H 

Two separate, but related, matters are discussed in this communication. One presents a 
few basic properties of Vieta convolutions, the other offers an outline of the main features of 
rising and falling diagonal polynomial functions for the Vieta polynomials. 

Vieta polynomials are of two kinds [7], the Vieta-Fibonacci polynomials Vn(x) and the 
Vieta-Lucas polynomials vn(x)3 defined for our purposes by generating functions as, respec-
tively, 

oo 
YtVn{x)yn-1 = [l~xy + y2]-\ F0(x) = 0, (1.1) 

and 

oo 
Yjvn{x)yn = t2-xy)[l-xy + y2)-1. (1.2) 

.n=0 

Combinatorial^ Binet form and recurrence definitions of Vn(x) and vn(x), along with many 
detailed properties of these polynomials^ are provided in [7]. One might also consult [14] for 
other facets of Vn(x). Vieta polynomials are so named to honour the French mathematician 
Vieta (Francois Viete? 1540-1803.) 

A Value of Convolu t ions 
Why do we give emphasis to a study of convolutions defined in terms of generating func-

tions? 
Looking at (1.1) and (2.1), we see immediately that Vn(x) is a special case of Vn (x) when 

k = Q: Viewed reversely^ Vn (x) is a generalization of Vn(x). For the author, the importance 
of a study of convolutions lies in this dual perspective. 

Similar comments apply to vn(x) (1.2) and vn \x) (2.8). 
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2. V i E T A C O N V O L U T I O N S 

Vieta-Fibonacci Convolut ions 

Definition: The kth Vieta-Fibonacci convolution Vn (x) of Vn{x) is generated by 

OG 

V ^ f ) ( x ) ! / « - 1 = [ l - a ; | / + / ] - ^ + 1 ) , Vo
{k\x) = 0. (2.1) 

n=I 

For the explicit representation of the polynomials Vn (x) see Theorem 2 (2.1?) and The-
orem 1 (2.16) when k = 1. 

Examples: 

v}1}(x) = 1, V?\x) = 2x, V^\x) = 3x2 - 2, V^(x) = 4x3 - 6x, 

V$l)(x) = 5x4 - 12x2 + 3, F6
(1)(x) = 6x5 - 20x3 + 12x , . . . . 

Evaluation of higher order convolutions (k > 2) is left to the inclination of the reader. 
Note that K(0)(x) = Vn(x) by (1.1), (2.1). 

Basic P r o p e r t i e s of V„ (x) 
Immediately from (2.1) 

V^-l\x) == V^(x) - xV^x) + V<%(x) (k>l,n> 2). (2.3) 

Differentiate (2.1) partially with respect to y after replacing k by k - 1. Then 

(n - l ) ^ * " 1 ^ ) = & (xVfMx) - 2V™2(xj) . (2.4) 

Eliminate Fn
(fc""1}(x) from (2.3) and (2.4) to derive 

(n - l)VW(x) = (n + fc - l ) * ^ * ^ ) - (n + 2& - 1 ) F J ? 2 ( X ) » (2.5) 

Now write 

£vn(x) = K(ar), £ ^ M = C ( x ) , . . . , ^-kVn(x) = V*(x). (2.6) 
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Differentiating (1.1) fe-times with respect to y, we arrive at the neat result 

V«(x) = k\vWk(x). (2.7) 

Vie ta-Lucas Convolut ions 

Definition: The kth Vieta-Lucas convolution Vn (x) of vn(x) is generated by 

oo 

J2 v{
n
k)(x)yn = (2 - xy)k+l[l -xy + y2]'^ (2-8) 

n—0 

so that v{n\x) = vn(x) by (1.2), (2.8). 
For the explicit representation of the polynomials Vn (x) see Theorem 3 (2.19). 

Examples : 

v£\x) = 4,v[1](x) - 4x,vi1)(x) = 5x2 - 8,v£\x) = 6x3 - 16x, 

v[1] (x) = 7x4 - 26x2 + 12,4X ) 0*0 = 8xb - 3Sx3 + Mx,.... (2.9) 

Because of the nature of the complicated algebra involved (unappetizing mental pabu-
lum!), we restrict our treatment to the simplest case k = 1. 

Basic P r o p e r t i e s of uh, (x)(k — 1) 
Proceeding similary as in (2.3)-(2.5) for Vn(x), we extract the following essential relation-

ships: 
& ( * ) = wW(x) - AxV^x) + x2V™2(x), (2.10) 

nvn{x) = xV£\x) - 4 ^ * ) + xV^2(x), (2.11) 

nxvn(x) = (x2 - 4)vW{x) + vl'l^x). (2.12) 

Observe the rather different sorts of equations (2.10)-(2.12) here compared with those 
in (2.3)-(2.5), as a consequence of the primacy and simplicity of the generating function for 
V?\x). 

Lastly, if we multiply numerator and denominator of (2.8) when k = 0 by 1 — xy + y2, 
then the ensuing algebra reduces to 

vn-x{x) = 2V£\x) - 3xFi i \ (x ) + (2 + x2)V™2(x) - xV<%{x). (2.13) 
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Closed Forms 

Lemma 1: 

N -r\ fN-r~l\ /JV~ - r\ {N-r- 1\ (N - r 
+ 2l , r _ ! -»[ r )• <2») 

Lemma 2: 

, f (N + Jfc - 1 - r\ (N - r - 1\ /JV + A; - 1 - r\ fN - r - 1\ 1 
H I * ){ r J + 2 ( * ){ r-1 J} 

Both lemmas are readily established by routine combinatorial calculation. Clearly, Lemma 
1 is a special case of Lemma 2 occurring when k = 1. Observe that in (2.15), the factor k is 
absorbed into the product and N emerges as a factor. (See also [8, (2.11a), (4.12a)] where the 
same two formulas (2.14) and (2.15) appear.) 

Theorem 1: 

VP{x) = ^ ( - l ) ' (n ~ r) (" _ ; " 1)*-s*-1. (2.16) 

P r o o f (by induc t ion) : 
The theorem is verifiably valid for n = 1,2,3 (say). Assume that it is true for n = N, 

that is, assume 

^1,(*) = I E 1 ( - D - r 1 ' i r ; > " — w r ( D / ^ _ V - / n r ^ - ^ ^ - ^ - l N AT-2T-1 

r = 0 
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Then, with n ->• n + 1, the right-hand side of (2.5) transforms to 

N Mf~\-vW xV^(x) - V£iiO»0 + WW = 2V^\(x) r ( l ) / „ . N _ o T r ( l ) 

= ^ E ( - i r ( ^ ~ r ) ( * - , V - * +ATX} ( ^ r " r ) ^ - a p by (i),Lemma 1 
r=0 ^ ' ^ ' r=0 ^ ' 

^| (_ l f("-;+')("-)x»- (B) 

= * ! # > , ( * ) (C) 

which must be the left-hand side of (2.5). 
Consequently, (B) and (C) together with (A) reveal that (2.16) is true for all values of n. 

Accordingly, Theorem 1 is fully established. 
T h e o r e m 2: 

e>« - 'E (-D' ("+Y- 0 (" T 0 •^,- (2-17) 

P r o o f (by Induc t i on ) : Follow the procedures in the proof of Theorem 1 while utilizing 
Lemma 2. (Pascal's Formula is needed in both Theorems 1 and 2.) 

Examples : 

„<*>=!, F<»W=(Y)X, v<»w=(Yy-(Y). 

w"*=(Y>3-2(Y>"- <2-is> 
as may be checked by (2.1). 

By virtue of the generating functions (2.1) and (2.8) for Vn (x) and vn
k\x) respectively, 

and in view of Theorem 2, it is clear that Vn (x) may be expressed combinatorially in sum-
mation form involving the Vieta convolutions. 
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T h e o r e m 3: 

r=0 ^ ' 
(2,19) 

where v£jr+1(x) are given in-(2.17). 

Proof: Expand (2—xy)k+1 in conjunction with (2.1) and (2.8). Theorem 3, as enunciated, 
then follows. 

Examples : 

4%)=2*+\ vik\x)=2*(k+
i
iy 

..(*) v?>(x) = 2 fc-i A + 2 2 1 , ; 1 ) + ( , r 5fc + l f'* + 1 
(2.20) 

Putting k = 1 in (2.20) reduces these expressions to those in (2.9). Theorem 1 corresponds 
to Theorem 3 when k — 1. 

A Ques t ion Answered . 
In [7], some elegant results connecting Vieta, Jacobsthal, and Morgan-Voyce polynomials 

with special arguments | , — x2
1 —^ were revealed. Note that in the definitions of Jacobsthal 

polynomials Jn(x) and Jacobsthal-Lucas polynomials jn(x) given in [6] and [8], the factor 2x 
is here replaced by x as in [7]. 

At the Luxembourg International Fibonacci Conference (July, 2000) the question was 
asked: 

Can these special results be carried over to convolution theory? 
Sadly, the answer is: generally, NO! 
Happily, however, there is one positive instance, namely,. 

Theorem 4: 
FW(x) = x«-14fc)(-^J. (2.21) 
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Proof: 
(a) By Theorem 2 and [7, Theorem 1], both expressions are equal to the combinatorial sum-

mation 

2 

with the same initial values 0 and 1 for n = 0,1. 
(b) Working from the recurrence relation [8, (4.13)] for x n - 1 J n (—p") we quickly have, on 

multiplying throughout by a;71^1, 

which is identical with (2.3) for xn'"1Jn (— p-) = Vn (#), both of which have initial 
values 0 and 1 for n = 0 ,1 . 

Note: 
(i) An analysis of the expansion of the generating function 1 — y — ^ for J^+i (~~^r) 

leads us to a verification of Theorem 3 for Vn (a?), for small values of n. 
(ii) No such joys as in Theorem 4 await us when we turn to vn (x) and j n (—^-)j as is 

evident from the more complicated forms of their generating functions. 
Coming to Morgan-Voyce convolutions, we find there is no connection with Vieta and 

Jacobsthal convolutions for the above special arguments, since the essential provisos in the 
Proofs in Theorem 4 do not pertain. [Parenthetically, we remark that even the beautiful 
Cinderella had less attractive sisters!] 

Cauchy Product 
Convolution polynomials Vn (x)(i = 1 , . . . , k) may also be defined by means of summa-

tions of Cauchy products, thus: 
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Definition: 

r=l 

Ki2)W = EK(1)WK,+1-r(x), 
r = l (2.22) 

V(k\x) = J2Vrk-\x)Vn+l-r(x). 
r - 1 

Examples : 

V^1](x) = 2Vt(x)V5(x) + 2V2V4(x) + (V3(x))2 = 5x4 - 12x2 + 3 as in (2.2), Theorem 1. 

VJ2)(x) = V ^ O ^ O * ) + F2
(1)(x)F3(x) + V3

{1\x)V2(x) + F4
( 1 ) (x)^(x) 

= 10x3 - 12a; as from (2.18), k = 2. 

Cauchy products may likewise define the Vieta-Lucas convolution polynomials Vn(x)(i = 
i , . . . , * ) . 

Definition: 

VnHx) = 5 ^ V r ( a ? ) V n - r ( « ) , 
r = 0 

t;«(a:) = X;41)(*K-r(a:), 
r = 0 (2.23) 

Wnfc)(*) = S t ' * 1{x)Vn-r{x). 
r = 0 

Examples: 

^ ( a : ) = 2v0(x)v4(x) + 2v1(x)v3(x) + (v2(x)f = 7x4 - 26x2 + 12 
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as in (2.9) 

= 2 5 x 3 - 6 0 , as from (2.20), fc = 2. 

Thus, there exist three ways of calculating, say, v^ (x) = 18x2 — 24, namely: (i) directly 
from (2.8), k = 2,ra = 2 (ii) by substituting k = 2,ra = 2 in (2.20) [equivalent really to (i)], 
and (iii) by using the Cauchy product (2.23). 

R e m a r k s : 
(a) Generally, we may extend (2.22) to 

n 
V.W(x) = £ Fr(™)(x)F^7l; r o )(x) (m = 0 , 1 , . . . ,k - 1). (2.24) 

r = l 

Likewise for t4 j(x). 
(b) Cauchy products as in (2.22-2.24) are applicable analogously to Jacobsthal-type polyno-

mials [8], Morgan-Voyce polynomials [9], Fermat-type polynomials [10], and to Pell and 
Pell-Lucas polynomials (for which see A.F. Horadam and Bro. J.M. Mahon: "Convo-
lutions for Pell Polynomials," Fibonacci Numbers and Their Applications (Eds. A.N. 
Philippou, G.E. Bergum, and A.F. Horadam), Kluwer Academic Publishers, Dordrecht, 
The Netherlands (1986): 55-80). 

Var ia t ion on a T h e m e 
Suppose we replace -hy2 by — y2 in (2.1) and (2.8). Designate the ensuing modified poly-

nomials by *14 \x) and *vb (x) respectively. Of course, it then transpires that 

*VW(x) = F<*\x), *v^(x) = L™(x), (2.25) 

where Fi (x) and L„ ' (x) are the generalized Fibonacci and Lucas kth convolution polynomi-
als, respectively. In fact, for example, *VQ(X) — 6x5 + 20x3 + 12a;. 

Mindful that *v£ \l) — Fn, the nth Fibonacci number, we may build up the Fibonacci 
convolution sequences as, e.g., 

{*F„W(1)} = {FW} = {1,2,5,10,20,38,71,130, . . .} , 

{*V^(1)} = {F™} = {1,3,9,22,51, 111, 233 , . . . } , (2.26) 

{*Fj3)(l)} = {F™} = {1,4,14,40,105,246,594,. . .}, 
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which may, for visual convenience, be expressed in tabular form. Calculations in (2,26) have 
involved (2.5), (2.17), and (2.18). Verfications may be obtained by recourse to V.E. Hoggatt, 
Jr. and G.E. Bergum, "Generalized Convolution Arrays", The Fibonacci Quarterly 13.3 (1975): 
193-196. Sequences occurring in (2.26) appear in the table on page 118 of V.E. Hoggatt, Jr. 
and Marjorie Bicknell™Johnson, "Fibonacci Convolution Sequences", The Fibonacci Quarterly 
15.2 (1977): 117-122. 

3 . V I E T A D I A G O N A L P O L Y N O M I A L S 

P r e a m b l e 
While sorting out ideas on rising and falling diagonal functions for Vn(x) and vn(x), the 

author became aware of the generalized survey in [15] covering similar work already done for 
Fibonacci, Lucas, Chebyshev [1], [3], [12], Fermat [3], and Jacobsthal [6] polynomials. 

To these polynomials we specifically add the earlier study of Pell polynomials [13] and 
Gegenbauer polynomials [11] (rising diagonals) and [5] (descending diagonals). Work on 
Morgan-Voyce rising and descending diagonal polynomials is under investigation. 

Each polynomial has an individual essence distinguishing it from others. Our justification 
for treating Vieta diagonal polynomials as separate entities and not just as particular instances 
of a general situation is that it preserves the distinguishing features of these polynomials and 
so it enhances our knowledge of Vieta polynomials per se. 

The slanting criss-cross pattern of rising and falling parallel diagonal "lines" is visually 
apparent for the polynomials displayed in [2], [3], [4], and [11]. Incidentally, both kinds of 
Chebyshev polynomials are special cases of Gegenbauer polynomials [5, p. 294], [11, p. 394]. 

Ris ing V i e t a Diagonal Polynomia ls 
Represent these polynomials for Vn(x) and vn(x) by Rn(x) and rn(x) respectively. Then 

the following fundamental conclusions are relatively easy to establish. 

Generating Funct ions 

oo 

Yt
Rn^)yn~l=V--y^-y2)\~\ Ro(x) = o. (3.i) 

n=l 

oo 

J^rn(x)yn-1 = (l-y3)[l-y(x-y2T1, r0(x) = 2. (3.2) 
71 = 3 

R e c u r r e n c e Rela t ions 
Rn(x) = xRn-i(x) - Rn-sfa). (3.3) 
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rn(x) = x r n - i ( x ) - rns(x). (3.4) 

rn(x) = Rn(x) - Rnsix). (3.5) 

Computation of the Rn(x) and rn(x) in (3.1) and (3.2) is left to the dedication of the 
reader. 

Descending Vieta Diagonal Polynomials 
Designate these polynomials for Vn(x) and vn(x) by Dn(x) and dn{x) respectively. Ana-

logues of the generating functions and recurrence relations for Rn(x) and rn{x) are straight-
forward to discover. 

Generating Functions 
Dn(x) = (x-l)n-\ D0(x) = Q, (3.6) 

dn(x) = (x- 2)(x - l ) n - \ d0(x) = 2, (3.7) 

whence 

Djx)=X~2- ( 3"8 ) 

Recurrence Relations 

dn-.i(x) Dn- i (x) 

Partial Differentiation 
Suppose now that we use the generating function symbolism 

G = G(x,y) = [l-(x-l)y]-1 = J2Dn(x)yn-1. (3.10) 
7 1 = 1 

An immediate outcome is that 

Setting 

oo 
H = H(x, y) = (x- 2)[1 - (x - ljp]"1 = £ dn{x)yn. (3.12) 

n = l 

we come to 

<*-'><«-*>£ = <l-»>ff- <"*> 
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Partial differentiation along the procedures of (3.10) - (3.13) for Rn(x) and rn(x) is a 
suggested exercise. 

4. C O N C L U S I O N 

In passing, we mention that the 1969 formula occurring in [7, reference [1], p. 14], 

[ f ] 

and surely of an earlier origin, is equivalent to the 1999 formula [15, (2.22)] when x — p, y = —q. 
Attention to the valuable material in [15] is strongly recommended. 

Attention might also be directed to the related study of convolutions for generalized 
Fibonacci and Lucas Polynomials in [10]. 

The purpose of this paper has been to give a skeletal framework to the theory which, 
hopefully, could be fleshed out to a more robust body of knowledge. 

Finally, the author wishes to thank the anonymous referee for the careful assessment of 
this submission. 
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1. I N T R O D U C T I O N 

r The purpose of this paper is to solve a class of combinatorial games consisting of one-pile 
counter pickup games for which the maximum number of counters that can be removed on 
each successive move changes during the play of the game. Two players alternate removing a 
positive number of counters from the pile. An ordered pair (iV, x) of positive integers is called 
a position. The number N represents the size of the pile of counters and x represents the 
greatest number of counters that can be removed on the next move. A function / : Z+ —> Z+ 

is given which determines the maximum size of the next move in terms of the current move 
size. Thus a move in a game is an ordered pair of positions (N,x) \—> (N — &,/(&)), where 
1 < k < minjiVjx}. The game ends when there are no counters left5 and the winner is the 
last player to move in the game. This paper extends two papers, one by Epp and Ferguson 
[2], and the other by Schwenk [6]. . 

In order to introduce the concepts in this paper, we initially assume that / satisfies 

(*). / ( n + l ) - / ( n ) > - l . 

Later in the paper we prove the necessary and.sufficient conditions on / so that our strategy 
is effective. In the appendix, we discuss the Epp, Ferguson paper. The authors are grateful to 
the referee for pointing out the possibility of finding both necessary and sufficient conditions 
on the function / so that the solution is effective. 

The game of 4static? one-pile nim is well understood. These are called subtraction games. 
A pile of n counters and a constant k are given. Two players alternately take from 1 up to k 
counters from the pile. The winner is the last player to remove a counter. The theory of these 
games is complete. See [1, p. 83]. 

Before discussing the strategy for playing dynamic one-pile nim, we prove four lemmas. 
These lemmas appear to have nothing in common with our games, but once they are proved, 
the strategy for playing will be easily understood. 
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G E N E R A L I Z E D B A S E S 

An infinite increasing sequence B = (60 = l>&ij&2>---) of positive integers is called an 
infinite g-base if for each k > 0,6^+1 < 26fc. This 'slow growth' of B's members guarantees 
Lemma 1. 

F in i te p-bases: A finite increasing sequence B — (bo = l,&i?&2? • ••?&*) of positive integers is 
called a finite g-base if for each 0 < k < t, 6fc+i < 2&&. 

L e m m a 1: Let B be an infinite #-base. Then each positive integer N can be represented as 
N = bix + bi2 H h 6*t where 6^ < 6*a < • • • < &it and each 6 .̂ belongs to B. 

Proof: The proof is given by the following recursive algorithm. Note first that bo = 1 E B. 
Suppose all the integers 1 ,2 ,3 , . . . , m — 1 have been represented as a sum of distinct members 
of B. Let bk denote the largest element of B not exceeding rn. That is, bk < rn < bk+i-
Then m = (m — bk) + bk- Now rn — bk < bk, for otherwise 2bk < m. But 6^+1 < 26^, 
contradicting the definition of &&. Since ra — 6& is less than m, it follows that m — bk has been 
represented as a sum of distinct members of B that are less than bk- Thus we may suppose 
that m — bk = bix + bi2 H h 6 ^ ^ where 6^ < bi2 < • • • . < 6^_x and each 6 .̂ belongs to B . 
Then rn = b^ + &i2 H h &it, where &it = frfc,^ < ^ 2 < ' " ' < &H a n d each 6 .̂ belongs to B. 
U 

Note that in general it may be possible to represent an integer N as a sum of distinct 
members of B in more than one way. We now define a stable representation. 

Definition: Let B — (bo = 1,61, . . .) be an infinite #-base. Suppose N — b^ + bi2 H h 6ifc, 
where 6^ < bi2 < • • • < b{k. We say that this representation of N is stable if for every 
t, 1 < * < k, 

t 

0=1 

Thus, in a stable representation of iV, each member bk of B is greater than the sum of all the 
summands b{k of N that are less than &&. 

L e m m a 2: Let B = (60 = 1, &i, . . . ) be an infinite g-base. Then each positive integer N has 
exactly one stable representation. It is generated by the algorithm used in the proof of Lemma 
1. 

Proof: Let us first suppose that N = bix + bi2 + h bik where bix < bi2 < • • • • < bik is 
a stable representation of N. We show that this representation is unique and is generated by 
the algorithm of Lemma 1. The proof is by mathematical induction on N. For N = 1, the 
representation is certainly unique and generated by the algorithm. Next we show that b{k is 
uniquely generated by the algorithm. Let bs < N < 6S+1. Then bik < N < 6S+1. If bik < bs, 
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then N = bi1+bi2-] h bik < b{k+i < 6S, contradicting the assumption that bs < N < ft5+1. 
Therefore, bik e B,bik > hs, and hik < bs+1 which together imply that bik = bs. This means 
that bik is unique and is computed by the algorithm. Now since JV = 6^ + 6ia + h bik 

is a stable representation of N, it follows from the definition of stable representation that 
N — bik = bix -\~h2-\ t-hk-i is a stable representation of N — b{k. Therefore, by induction we 
see that each of b^ , b{2,..., 6 f̂e_1 is also unique and generated by the algorithm. We next show 
that any number N has at least one stable representation. To do this, let N = b^ +6^2 H \-b{k, 
where bix <bi2 < • • • < bik, be generated by the algorithm. We prove by induction on N that 
this representation is stable. Again the case N = 1 is trivial. Suppose bs < N < bs+i. Then 
by definition of the algorithm, bik = bs and 

k 

0=1 

Note that N — bik = b^ + 6*2 H ^hk-i- Also, by definition of the algorithm, we see that each 
of h,, bi2j..., 6»fc__i is generated by the algorithm using the number N — b{k. Therefore, by 
induction on N — bik, we know that b{x + 6*2 H h hk_1 is a stable representation of N — b{k. 
Therefore, by the definition of stable representation, we know that for every 1 < t < k — 1, 

t 

9=1 

Therefore, for every 1 < t < k, 

t 

0=1 

G e n e r a t i n g $-bases: For every function / : Z+ —)• Z + satisfying 

(*) / ( n + l ) - / ( n ) > - l , 

we generate a g-ba.se Bf as follows: 
Let bQ = 1. Suppose (6o A ? - - -, 6jt) have been generated. Then % + i = 6* +&», where 6,- is the 
smallest member of {h0,&i,..., &*} such that /(fy) > 6^, if such a b{ exists. If no such bi exists 
for some fc, the base J3/ is finite. In this part of the paper we assume that Bf is infinite. As 
an example, if f(n) = 2ra, then Bf = {1 ,2 ,3 ,5 ,8 . . . } and we have what is call Fibonacci Mm. 
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For Lemmas 3 and 4 we assume that Bf = (bo = l,&i, - • •) is the infinite $-base gener-
ated by a function / satisfying the inequality (*), and that the positive integer N has stable 
representation N = b^ + h2 + • • • + bik with b{t < b{2 < • • • < hk. 

L e m m a 3: / ( ^ J < b{2. 

Proof: Because the representation is stable, 6^ + bi2 < 6^2+i < &i3. Now &i2+i = bi2 + b{ 
where b{ is the smallest member of 6Q? &I>..», &i2 such that /(&i) > h2. Since 6̂ 2 + b{t < &i2+i, 
it follows that 6j is larger than 6^. Since fef; is the smallest member of {6oj&i» • - - ?h2} s u c ^ 
that f(bi) > h2, it follows that / ( f t i j < 6<2. D 

L e m m a 4: Suppose integer x satisfies 1 < x < ht. Let b^ — x = bjx + bj2 + • • - + bjt be the 
stable representation of b^ - a; in B / , where bjx <bj2 < • • • < 6j t . Then 
(1) N — x = bjt +bj2 + - • + bjt + 6j2 + 6̂ 3 + • • • + 6»fc is the stable representation of N — x in 

JB/ and 
(2) bn < f(x). 

Proof: The proof of (1) is trivial. The proof of (2) is by mathematical induction on t. 
We consider below two cases, the first of which takes care of t — 1. 

Case (a): 1 < b^ — x < b^-i. 
Case (b): ft^-i < b^ — x < b^. 

In case (a), we show that f(x) > b%x — x. Since b{t — x = bjx + bj2 + • • • + bjt, it follows 
that f(x) > bjt. Now 6^ = 6^-1 + h where h is the smallest member of &Q,fei,... j i ^ - i 
such that f(bi) > b^-i. Therefore, /(6») = f{b%x —6^-1 > 6̂ 1__i- Note that the condition 
f(n + 1) — f(n) > — 1 can be used repeatedly to see that f(n + N) — f(n) > —N. Thus 
f(n + N) > f(n) - N and 

f(x) = fibi, - h^x + [h^t ~ (h, - x)}) 

> f(K - ftii-i) - [6t!-i - (6*! - x)] 

= fQ>i) + bii - 6 * 1 - 1 - a ? 

> ft^-i +&ij — ftii-i — x = bit — #, 

since /(&») > ft^-i- That is, f(x) > b{t — x. Note that case (a) completely takes care of 
Lemma 4 when t = 1 and starts the mathematical induction on t. 

Case (b) Since b^ — x — bjx + bj2 + • • • + bjt is.stable where bjx < bj2 < • • • < 6jt and 
since 6^-1 < 6^ — x = ft^ + 6j2 + • • - + bjt < 6^, we know from Lemma 2 (or directly from 
the definition of stable itself) that bjt = fe^-i. Therefore, 

x = bh - (tj! +6 j 2 + --- + 6jt) 

- (6^ - fe^.x) - (6^ + bh + • • • + 6it_x). 

256 [JUNE™ JULY 



DYNAMIC ONE-PILE NIM 

Now bix = bix-i-\-bi where bi is the smallest member of 605 &i, • • •, ^ n - i such t h a t /(&*) > fc^-i. 

Therefore x = k - (bh + 5i2 + • • • + &,•,_,); that is, bjx + 6i2 + • • • + 5i t_1 = h - x. Of course, 
hi + 6j2 + " ' ' + ^it-i Is stable. Therefore, by mathematical induction, /(a;) > bj1. U 

Theorem 1 puts these four lemmas together to establish a strategy for playing dynamic 
one-pile nim optimally when Bf is infinite. 

T h e o r e m 1: Suppose the dynamic one-pile nim game with initial position (N,x) and move 
function / satisfying (*) is given, and the $-base Bf is infinite. Also, let N — bix + &i2 H \-hk 

be the stable representation of N in Bf, where b^ <b{2 < -• - < hk. Then the first player can 
win if x > bix and the second player can win if x < b^. 

Proof: Assuming x > b^, the first player removes 6^ counters. This move results in the 
position (N — b^, / ( ^ J ) = {b%2 + h3 H \-hk? f{bix ))• Note that the number of summands 
in the stable representation of the pile size N of the position has been reduced. Also, the 
representation of AT — b^ is stable and, by Lemma 3, /(ft^) < b{2. 

Thus the second player must remove fewer than b{2 counters. Suppose the second player 
removes xf counters, where 1 < xl < b{2. Thus the second player has moved to position 
(N-bh - x ' , / (* ' ) ) = (bi2 -hbh + • - -+bik -x\ f(xf)) = (bh +hJ2 + • • -+6 i t +6i3 + • • •+&<*, /(a?')), 
where bjx + bj2 -\— • + bjt is the stable representation of b{2 — xf. By Lemma 4, parts 1 and 2, 
bji + bj2 "̂  •" fyt + ^3 "̂  1" îfc ig t n e stable representation of &»2 + &i3 + • • • + &ifc — #' and 

&i. < / ( * ' ) • 

Note that the second player has not reduced the number of summands, and after his move, 
bjx < / (# ' ) • The first player is therefore in a position analogous to the initial position, since 
bj1 < f{x!). The first player can now reduce the pile by bjt counters, which again reduces 
the number of summands. Thus the first player can reduce the number of summands and the 
second player cannot. This means that the first player will eventually reduce the number of 
summands to zero, thereby winning. 

When the initial position satisfies x < b^, the second player wins by using the first player's 
strategy in the case above, that is, by reducing the pile size by the smallest number bix that 
appear in the stable representation of the pile size. D 

Next we discuss the case in which the ^-base Bf is finite. Note that when / is bounded, 
Bf is finite. However, a finite ^-base is possible even when / is unbounded. As an example 
consider / : Z+ -+ Z+ defined by / ( I ) = /(2) - / (3) = 2 and f(n) = n for all n > 4. 
This function satisfies the unit jump condition f(n + 1) = f(n) > —1. its g-~ha.se is 6Q = 
15 b\ = bo + &o = 2,62 = h + 60 = 3. Of course, 63 does not exist because there is no member 
bi e {b0,bljb2} = {1,2,3} such that /(6<) > b2 = 3. Thus the f-base is finite. The proofs of 
the following four lemmas and the theorem parallel very closely the proofs of the corresponding 
four lemmas and the theorem for infinite ^-bases. 
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L e m m a 1': Let B = (bQ = l ,&i ,62 ? . . . ,bt) be a finite #-base. Then each positive integer N 
can be represented as a sum of distinct members of B allowing multiple copies of the largest 
element of B: 

where b^ <bi2 < • • • < bik < bt for some integer 0 > 0. 
As we noted in the case for infinite jg-bases, there may be multiple representations. Thus 

we have the following definition of stable representation. 

Definition: L e t B = (60 = 1,6i,. . . ,&*) be a finite ^-base. Suppose N = b^+b^H \-bik+0bt, 
where 6^ < b{2 < • • • < bik < bt and 0 is a nonnegative integer. We say that this representation 
of N is stable if for every /i, 1 < h < fc, 

^2bU <bih+l' 

L e m m a 2': Let B — (bo — 1,&i,..., bt) be a finite #-base. Then each positive integer N has 
exactly one stable representation. 

For Lemmas 3' and A1 we assume that i?/ = (&o = l,&i,.. . ,&t) is the finite g-base 
generated by a function / : Z+ ~> Z + satisfying the inequality (*), and that the positive 
integer N has stable representation N = bi1-t-bi2-\ hb{k -\-0bt with b^ < bi2 < • • • < bik < bt 
and 0 is a nonnegative integer. 

L e m m a 3': /(fcij < &i2. 
Note that for all b{ G Bf,f(bi) <bt. This is why J5/ is finite. 

L e m m a 4': Suppose integer x satisfies 1 < x <bi1. Let 6^ — x — 6^ + 6j2 -f h 6^ be the 
stable representation in Bf, where bjx <bj2 < • • • < bjh. Then 

1. N — x — bjx + bj2 + h 6J?i + &i2 + 6^ + h bik + 0bt is the stable representation of 
N — x in Bf and 

2. 6,-t < / (x) . 

T h e o r e m 1;: Suppose the dynamic one-pile nim game with initial position (N,x) and move 
function / satisfying (*) is given, and the #-base Bf = (6Q = l?&i?&2? • • • ,&t) is finite. Also, let 
N = b{x + b{2 H h 6jfc + $&t be the stable representation of N in B j , where 6^ < 6̂ 2 < • - • < 
6̂ fe < 6t. Then the first player can win if x > b{t and the second player can win if x < b^. In 
the special case where N = 0bt, the first player can win if x > bt, and the second player can 
win if x < bt -

\ ? a<r rA :Zl j ^ r ^fcc3nLi'o to t ie ^j^ci^e T r ^ e i i 1 _', / t T + —r S + l e any function. 
v a _1LJ r2?jMS£i±j &L.A SMOV^ZI ec^idjclc^s ^ / t lo~: .neorc^^ J 4:* uic?. We generate a 
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g-ba.se Bf = (b0 = l,bt,...) from / just as before. For convenience, we assume Bf is infinite. 
Lemmas 1-3 remain true since they do not depend on the condition 

(*) / ( n + l ) - / ( n ) > - l . 

Also, in the proof of Lemma 4, only case (a) of property (2) used property * on / . 

Definition: For any positive integer N, let N = b^ + bi2 +• • • + &** be the stable representation 
of N in Bf, where bix <bi2 <•- < bik. Then we define g(N) = bh. Also, g(Q) = g(-N) = 0. 

L e m m a 5: Given / : Z+ —> Z+, theorem 1 is true for / if and only if Lemma 4 is true for / . 

Proof: Obviously Lemma 4 implies Theorem 1. We now show that if Lemma 4 is false, 
then Theorem 1 is false. Since part (1) of Lemma 4 is trivial, we can use the definition of g to 
see that Lemma 4 is equivalent to the statement for all be G Bf, and for all 1 < x < bo, 

g(be - x) < f(x). 

No matter what / is, bo = l,bi = 2,$(1) = l,g(2) = 2 holds. Therefore, g(bg — x) < f(x) 
holds when be G {6Q?&I} and 1 < x < be for all / . Define 6^ to be the smallest member of 
{&2,&3j&4? • • •} such that g(b<f> — x) > f(x) for some 1 < x < bf. By definition of b<f>, this 
means that Lemma 4 is true for all be G {ho,bi,... ,6^-1} and all 1 < x < be- This means 
that Theorem 1 holds for all positions (N,x) when 1 < N < b^ since the base members 
&0,&0+i,&0+2, - • • do not come into play when N < b<p. Next consider the position (b<f,,x) as 
described above. Of course, 1 < x < b^ and $(&«£ — x) > f(x). We will show that (b<f>,x) is an 
unsafe position, which contradicts Theorem 1. Let the first player remove x counters so that 
(b<f>,x) H-> (bj, — x, f(x)). Since b<f>—x < 6^, Theorem 1 correctly tells us whether (bj, — x, f(x)) 
is safe or unsafe. Because f(x) < g{b^ — x), Theorem 1, along with the definition of g tells us 
that (h<p — x,f(x)) is a safe position. This means that (b^x) is an unsafe position. • 

L e m m a 6: The necessary and sufficient conditions on / so that Lemma 4 holds is that for all 
bix G {hi,h2,...}, and for all 1 < 6^ - x < 6*1-1, §{hx - x) < f(x). 

Proof: First note that part (1) of Lemma 4 is a trivial statement and can be ignored. 
So what we are saying here is that Lemma 4 is true if and only if Lemma 4 is true for 
part (2), case (a). Note in part (2) that 6^ = $(6^ — x), from- the definition of g, since 
bix —x = bjt -\-bj2 + • • • +bjt is the stable representation of b{t —x in Bf and 6^ < bj2 < . . . bjt. 

The reason Lemma 4 is true if and only if Lemma 4 is true for part (2), case (a) is that 
the only place in the proof of Lemma 4 where the property * is used is in proving part (2), 
case (a). Since we have dropped the condition * of/, the only way that we can now deal with 
part (2), case (a) is just to assume that Lemma 4 is always true for part (2), case (a). Thus 
part (2), case (a) becomes the necessary and sufficient condition on / for Lemma 4 to hold. D 
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Definition: For all nonnegative integers fe, let 

where b$(k) E {b0,61,62,..., &fc}-

L e m m a 7: The following two conditions are equivalent. 
1. For all bk+i G {61,62? • • - } and for all 1 < bk+i ~ x < bk, 

g(bk+i-x) <f(x). 

2. For all nonnegative integer k and for all nonnegative integer x, 

9(hk~x) <f(b0W + x). 

Note that (1) is a restatement of the condition in Lemma 6. Also, (2) uses g(0) = g(—N) = 0. 

Proof: We first show that (1) implies (2). Since g(0) = g(—N) = 0, let us assume 
1 < bk — x. Let x = 6^^) + x. Thus, x = 6&+i — bk-\-x. Therefore 1 < hk+t — x = bk—x<bk. 
Hence from (1), g(bk+1-x) = g(bk-x) < f(x) = f(b$(k)+x). That is g(bk-x) < f(b0W+x). 
We now show that (2) implies (1). Since bk+i — x < bk, define x by bk+i — x + x = bk, where 
x > 0. Therefore, bk — x = bk+i — x. Also, x = bk+i — bk-l-x = b@(k) + x. Therefore from (2), 
g(bk -x) = g(bk+1 - x) < f(b$w +x) = f(x). That is, g(bk+i - x) < f(x). D 

M a i n Theo rem: Given / : Z+ —> Z+ with an infinite Bf, the necessary and sufficient 
conditions on / so that Theorem 1 holds for / is that for all nonnegative k and x 

g(bk -x) < f(b9{k) +x). 

Since g(N) < N observe that the following are sufficient but not necessary conditions on 
/ for theorem 1 to hold: for all nonnegative integers k and x, /(&#(&) + x) >bk—x. Recall that 
f(^e(k)) > bk from the definition of Bf. From this it is easy to see that the original restriction 
(*) on / implies f$e{k) +x) >bk-x. 

The following theorem allows the Main Theorem to be used more efficiently since we only 
have to worry about f(x) when x is not in the base Bf. 

T h e o r e m 2: Suppose that / : Z+ -> Z+ generates the infinite ^-base Bf = {bo = 
1,&I,&2J-• •}> and / is non-decreasing on Bf. Then / satisfies the hypothesis of the main 
theorem if and only if the following is true for each x not in Bf. Suppose bt < x < &t+i- Also, 
suppose 60(fe) < x < 6fc+i if and only if k 6 {t,t+l,t + 2,... ,t + t}. Then for this x, we require 
ff(6t+» - x) < f(x) for t = 1 ,2 ,3 , . . . , t + 1. 

The proof of this, which uses part 1 of Lemma 7 is left to the reader. Using this theorem, 
we see that / generates the Fibonacci base Bf = {132,355,8,13, . = ,} and the main theorem 
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is effective for / if and only if the following two conditions hold: a. for every bt E Bf,bt+i < 
< fet+2 and b. for all nonnegative integers i, and all x satisfying bt < x < fct+i>#(&t+i — 

x) < f(x). Note that g(bt+i ~ x) = g(bt+2 - x) when bt < x < bt+i, so #(bt+2 — x) < f(x) is 
redundant. 

T H E M I S B R B V E R S I O N 

To win at the uiisere version (JV, x) of dynamic nim, simply use the theory to win the 
game (N — l,ar), so that your opponent is forced to take the last counter. 

A P P E N D I X 

We now discuss Theorem 2.1 of the Epp Ferguson paper. Let / : Z+ —> Z+ be an 
arbitrary function defining our one pile dynamic •nim game. If a player is confronted with a 
pile size of n > 1, let L(n) denote the smallest possible winning move. Of course, L(n) < n 
and equality might hold. Note also that removing k counters from a pile of n is a winning 
move if and only if f(k) < L(n — k)y where £(0) = oo. Theorem 2.1 (Epp, Ferguson): Suppose 
f(k) < L(n — k). Then k = L(n) if and only if L(k) = k» Epp and Ferguson prove this when 
/ is non-decreasing. The reader can easily show that if / satisfies the condition of our main 
theorem, then £(£(n)) = L(n) for all positive integers n. The following example shows that 
Theorem 2.1 breaks down when / is not non-decreasing. 

Example : There exists / satisfying f(n + 1) — / (n ) > — 1 such that there exists k < n 
with f(k) < L(n - k), L(k) = k3 and k ^ £(ra). 

Proof: Consider / defined by f(n) — 8 — n when 1 < n < 7 and f(n) = n when 8 < n. 
Then Bf = {1,2,3,4, 5,6, 7,8,16,32,64,128,256,. . .}. Since 9 = 8 + 1, we see that 1,(9) = 1. 
Consider the position (9,8). We see that the following are all winning moves: 

(9j 8 ) H> (9 - 7, /(7)) = (2,1), £(7) = 7 # £(9) = 1, 

(9> 8 ) H> (9 - 6, /(6)) - (3,2), £(6) = 6 ^ £(9), 

(9,8) i-> (9 - 2, /(2)) = (7,6), £(2) - 2 ^ L(9). D 

The reader might like to show that for the following / ,£ (16) = 10, and £(10) ^ 10 : f(n) = 
n^n / 10, and /(10) = 1. Of course this / does not satisfy the conditions of our main theorem. 
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1. I N T R O D U C T I O N 

In a series of two papers [6] and [7] Slater gave a list of 130 identities of the Rogers-
Ramanujan type. In [2] Andrews has introduced a two variable function in order to look for 
combinatorial interpretations for those identities. In [5] one of us, Santos, gave conjectures for 
explicit formulas for families of polynomial that can be obtained using Andrews method for 
74 identities of Slater's list. 

In this paper we are going to prove the conjectures given by Santos in [5] for identities 94 
and 99. 

We show, also that the family of polynomials Pn(q) related to identity 94 given by 

Po(«) = l, Pi(q) = l+q + q2 

Pn(q) = (1 + q + q2n)Pn-i{q) ~ qPn-2(q) 

is the generating function for partitions into at most n parts in which every even smaller than 
the largest part appears at least once and that the family Tn(q) related to identity 99 given by 

T0(q) = h T1(q) = l + q2 

Tn(q) = (1 + q + q2n)Tn^(q) - qTn-2(q) 

is the generating function for partitions into at most n parts in which the largest part is even 
and every even smaller than the largest appears at least once. 

In what follows we denote the Fibonacci numbers by Fn where F0 = 0;Fi = 1 and 
Fn = F n - i + F n _2 3 ^ > 2, and use the standard notation 

(A;q)n = (l-A)(l-Aq).--(l-Mn-1) 
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and 

(A-^U^Hil-Aq"), \q\<l. 
n=0 

We need also the following identities for the Gaussian polynomials 

\n~ 
[m_ 

In" 

In 

— 

— 

n 
n — rn 

n-l] 
m J 

" n - l " 
m — 1 

+ qn-m 

\+Qm 
n 

" n - l " 
m — 1 

- 1 * 
m 

(1.3) 

(1.4) 

(1.5) 

where 

(QlQ)r 
Q]Q)m(q;q)n-r 

0 otherwise 

-, for 0 < m < n, (1.6) 

2. T H E FIRST FAMILY OF POLYNOMIALS 

We consider now the two variable function associated to identity 94 of Slater [7] which is: 

n„n +n tnq f94(q,t) = V ] 7- ^r j - Y\ ' (2.1) 

Prom this we have that 

(1 - t){l - tq)f9i(q, t) = l + tq2f94(q; tq2) 

and in order to obtain a recurrence relation from this functional equation we make the following 
substitution 

/94(«,*) = £^n*n-
n=0 
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Now we have: 

(1 - i)(l - tq) J2 Pntn = l + tq2J2 Pn(^r 
n=0 n~0 

which implies 

E Pn*n ~ E Pn~ltn ~ E «F»-Ir + E 9P«-2*" = 1 + E <l2nPn-ltn. 
71=0 n = l n=l n=2 n=l 

Prom this last equation it is easy to see that 

Po(q) = l; P1(q) = l + q + q2 

Pn(q) = (l+q + q2n)Pn-i(<l)-<lPn-2(q)-
(2.2) 

Santos gave in [5] a conjecture Cn(q), for an explicity formula for this family of polyno-
mials: 

Cn(q) = E «' 15j^+4j 

J = - 0 0 

"2n,+ 1" 
• i > 15j2 + 14j+3 2n + l 

n - 5j - 2_ 
(2.3) 

In our next theorem we prove that this conjecture is true. 

T h e o r e m 2.1: The family Pn(q) given in (2.2) is equal to Cn(q) given in (2.3). 

Proof: Considering that Co(q) = 1 and Ci(q) = 1 + q + q2 we have to show that 

Cn(q) = (! + (/ + g 2 n ) ^ „ i ( g ) - qCn-2(q) that is: 

j=-oo 
15j2+4j '2n + 1' 

n - 5j J 
y g15^+14i+3 

J = — O0 

2 n + l 
ri — 5j - 2_ 

= (i + <? + <?2n) E ^'2+4J 

{J = ™ O Q 

2 n - l 
n — 5 j — Ij E 15i2+14j+3[ 2 n - l 

¥ In - 5 j - 31 

- g 
i j = -OQ 

Uf+4j 2n-3 
[n — 5 j - 2J 

y ^ g15j2+14j-f3 

j = — o o 

2 n - 3 
ft- — 5j — 4 

(2.4) 
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If we apply (1.4) in each expression on the left side of (2.4) we get 

E % 15j2+4j 2n 
n - 5 jm 

+ \ ^ g^ j 2 +9 i+n+l 

j = — o © 

2n 
n — 5j — Ij 

- Y ^ «15i2+14j+3 

J = - O Q 

2n 
n ~ 5j - 2_ 

y ^ 15j2+19j+6+n 

j = — CX3 

2n 
[n - 5j - 3_ 

Applying now (1.5) to each sum in the expression above and replacing it in (2.4) we get after 
some cancellations 

y gl5j2+j+n 

J=L~OO 

'In - 1 

j=-oo 

2n-l 
n - 5 j - 2 

15jf2+9j+n+4 2 n - l 
[n - 5 j - 2 

j = —OO 

15j2+19j+6+n 2n-l 
\n — 5 j — 4 

y ^ ^i5j2+4j+i 

j = - o o 

2 n - l 
n — 5j — 1 

_ y ^ «15j2 + 14j+4 

j = - o o 

2 n - l 
n - 5 j - 3 

y ^ g i5 j 2 +4j+i 

j = - o o 

2 n - 3 
n - 5 j - 2 

+ y c?15-7'24-14^'4"4 

J = —OO 

2 n - 3 
n — 5j — 4j (2.5) 

Considering the right side of the last expression and applying (1.4) on the first two sums 
we get 

\ T g i5 j 2 +4j+i 

J = — OO 

2 n - 2 
n — bj — 1 

+ y ^ gi5-72+9-?'+i+n 

3=—oo 

2 n - 2 
n - 5 j - 2 

E . 
i = - o o 

15J 2 4-14J+4 2 n - 2 
w - 5 j - 3J 

_ y ^ 15j2+19j+6+n 

J = — (X) 

2 n - 2 
[n — 5 j — 4 

. y ^ gi5j2+4j+i 2 n - 3 ' 
n - 5 j - 2_ + E «: 

J = — OO 

15.f+14J+4 2 n - 3 
Ti — 5j" — 4 
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Applying now (1.5) on the first and third sums on this last expression and making some 
cancellations we have that the right side of (2.5) is equal to: 

j=-oo 

2 ^ - 3 
[ra — 5 j — 1_ 

_j_ y qWf+9j+t+n 
j=—oo 

2n-2 
n — 5j — 2_ 

2 ^ - 3 
n — 5j — 3_ 

y 15i24-19j+6+n 

j = — oo 

2n~2 
n — 5j — 4 

If we take now the left side of (2.5) and apply (1.4) to all sums we get: 

y q15j2-j+n 

i = - o o 

"2ra - 2" 
ra - 5jfJ 

+ \ ^ g15j2+4j+2r^l 

i=™oo 

2 ^ - 2 
\n — 5j — 1_ 

_|_ y 15j2+9j+n+l 

j=-oo 

2ra-2 
n — 5 j — 2j 

+ y g!5i2+14i+2w+2 

J = - 0 0 

2 n - 2 
\n — hj — 3_ 

y 15j2+9i+Ti+i 

j=-~oo 

2 n - 2 
n - 5 j - 2J 

y 15i2 + 14j+2n4-2 2 ^ - 2 
n — 5j — 3_ 

y ^ i5j2+i4j+fi+e 

i=-oo 

2 ^ - 2 
n — 5j — 4_ 

- V a
1 5 i2+2 4i+2 w+9 

j=-oo 

2 n - 2 
n — 5 j — 5_ 

(2.6) 

Applying now (1=5) on the first and fifth sums of this last expression and making cancel-
lations with the sums from the right side given in (2.6) we are left with: 

y Wj2~-6j+2n 

j=—oo 

2n - 3' 
n ~~ 5 j _ 

+ y^ 9
i5J2+4^+2n-1 

j = —CO 

2 n - 2 
\n-5j— 1 

+ y 15j2 + i4i+2n+2 

j = -oo 

2 m - 2 
n - 5 j - 3J 

- V gl5j2+4j+2n-l 2 B - 3 
n — 5j — 2_ 

y 15j2 + 14j+2n+2 2 n - 2 
n — 5 j — 3= 

__ y 15j2+24j-f2w+9 

j = -oo 

2 n - 2 
\n — 5 j — 5_ 
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Observing that the third sum cancels the fifth and replacing j by j + 1 in the last sum we 
get after using (1.4) 

y ^ 15j2+4j+2n+l 

j = - o o 

2n-2 
n — Bj — 1J 

- y 15i2+4j+2n~-l 

j—-oo 

2n~3 
\n — 5j — 2_ 

_ V ^ 15j2- j+3n-2 

j=~-oo 

2 n - 3 
n — 5j — 1 

which is identically zero by (1.5) completing the proof. D 
Next we make a few observations regarding the combinatorics of PN(Q) given in (2.2) = 

Knowing that Pn(o) is the coefficient of tN in (2.1) that is: 

Z^ a _, 
nran ~$"n tnq 

„^0(i-*)(^2;g2)nfeg2)n+i 

and considering that n2 + n = 2 + 4 -\ h 2n we can see that the coefficient of tN in 

n nn +n tnq 
(tq2\q2)n(tq;q2)n+i 

is the generating function for partitions into exactly N parts in which every even smaller than 
the largest part appears at least once. Because of the factor (1 — t) in the denominator we 
have proved the following theorem: 

T h e o r e m 2.2: Pn(q) is the generating function for partitions into at most N parts in which 
every even smaller than the largest part appears at least once. 

To see, now3 the connection between the family of polynomials PN(Q) and the Fibonacci 
numbers we observe first that if we replace q by 1 in.(2.2) we have 

P 0 ( l ) = l ; P i ( l ) = 3 

P n ( l ) = 3 P n - i ( l ) - P n - 2 ( l ) 

and that for the Fibonacci sequence Fn we have also that F-z = 1; F4 = 3 and 

-F271+2 = 3i*2Ti — I*2ra-2 
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which allow us to,conclude that 

Cn(l) = Pn(l) = F2n+2 

and from these considerations we have proved the following: 

T h e o r e m 2,3: The total number of partitions Into at most N parts In which every even 
smaller than the largest part appears at least once is equal to F2N+2-

The family given in (2.2) has also an interesting property at q = —1. At this point we 
have 

P o ( - l ) = 1; P x ( - l ) = 1 

P n ( - l ) = P „ - 1 ( - l ) + P n . 2 ( - l ) 

which tell us that for q = - 1 we have all the Fibonacci numbers, i.e. Py i ( -1) = Pn+i- IQ 

order to be able to see what happens combinatorially at —1 we have to observe that when we 
change q by — q in (2.1) the only term that changes is (tq;q2)n+i and that now the coefficient 
of tN is going to be just the number of partitions as described in Theorem 2.3 having an even 
number of odd parts minus the number of partions of that type with an odd number of odd 
parts. We state this in our next theorem. 

| Partitions as described in Theorem 2.2 

" 

0 

1 

2 

3 

u 

with an 
even number of odd parts 

* 

-©• 

4> 

9 @ 

9 @ 

* 

© 9 

• 0 

9 ® 

© m 

® m ® 
© © ® 
9 ® 

I © a 

m @ 
9 

9 

® 9 9 9 

® © 

» 9 

© 9 

9 

® 

© © 9 
© 9 
© 

• 9 9 9 
® 9 O ® 
® © 

© 

9 

9 9 © ® 
® © 

© 9 9 9 
9 9 
9 © 

@ 9 ® 9 # ©1 
S @ © ® 1 
® @ 1 

with an 
3 odd number of odd parts 

m 

© 
9 © 

9 

m 9 

® 

9 9 © 

9 © 

9 9 9 -3 
9 © 
® 

0 © 

© O 

© 

© © G ffl 
9 9 © 
m 9 

e 

a © 9 
o © 
o & 

© 9 9 9 9 
9 9 9 9 
9 @ 

/'';<"-' 

1 

3 

8 

21 

K"«J 

I 

1 

2 

3 

J 
Table 2.1 
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T h e o r e m 2.4; The total number of partitions into at most N parts in which every even 
smaller than the largest part appears at least once and having an even number of odd parts 
minus the number of those with an odd number of odd parts is equal to FJV+I-

In the table (2.1) we present, for a few values of n, all the results proved so far. The first 
column has n3 the second the partitions described in theorem 2.4 with an even number of odd 
parts and the third column those with an odd number of odd parts. The fourth column.has 
•F2n+2 which is the total number of partitions in columns 2 and 3 and the fifth column has the 
difference between the number of partitions on the second and third column which is F n +i . 

3* T H E S E C O N D FAMILY O F P O L Y N O M I A L S 

Now we consider the two variable function given in Santos [5] associated to identity 99 of 
Slater [7] which is: 

nnn +n-tnq 
f99(q,t) — / 77—5\ 71 ¥T 

^=j(*;92)n+i(«g;?2)n 

(3.1) 

From this we can get 

(1 - t)(l - tq)f99(q, t) = l-tq + tq2f99(q, tq2) 

from which we obtain in a way similar to the one used to get (2.2) the following family of 
polynomials 

T0(q) = l;T1(q) = l + q2 

Tn(q) = (1 + q + q2n)Tn-i{q) - qTn-2(q) 
(3.2) 

As for the family (2.2) Santos gave in [5] a conjecture for an explicity formula for (3.2) which 

is 

Bn(q) = £ q15j2+2j 

3 = -oo 

2n + 1 
[n - 5 j 

. y ^ ^i5j2
+ 8j+i 

j=-oo 

2 n + l 
[n — 5j — 1 

(3.3) 

The proof for this conjecture is given in the next theorem. 

T h e o r e m 3.1: The family Tn(q) given in (3.2) is equal to Bn(q) given in (3.3). 
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Proof: Considering that BQ(q) = 1 and Bi(q) — 1 + q2 we have to show that Bn(q] — 
(1 + q + q2n)Bn-1(q) - qBn^2(q) which is: 

j=—oo 

15j2+2j "2n + 1 V a15i2+8i+l 

j = - 0 0 
n — 5j — 1J 

L (l + g + g2n) J2 J*'**2* 
2n-l 

n — 5j — 1 
- y ^ gi5j2+8j+i 

j = - o o 

2 w - l 
[n ~ 5j — 2_ 

( oo 
E 915/+2j 

j-~oo 

2n — 3 
w - 5j - 2_ 

y ^ ^i5j2+8i+i 

j = - o o 

2 B - 3 
n — 5 j — 3_ 

(3.4) 

We apply (1.4) on each sum on the left to get 

S ^15j2+2i 
3 = -oo 

2n 
n - 5jm 

+ £ g15i2+7i+n+lf 2 n 

j = - o o 
[n — 5j — 1 

. \~^ i5j2+8i+i 

i=~oo 

2n 
n — 5j — 1_ 

T ^ 15j2 + 13j+n+2 

j = - o o 

2n 
[n - 5 j - 2 

Applying now, (1.5) in all sums we obtain: 

y ^ i5j2+2j 

j = ~ o o 

2 n - l 
n — 5 j — 1 + E 9 

j = - 0 0 

15j2+3j 2n - 1" 
n - 5jf. 

+ E 9 15r+7j+n+l 2 n - l 
[n - 5 j - 2. 

+ V g15i2+2i+2" 
j = - o o 

2 n - l 
n — 5j — 1_ 

E ̂  
i=-oo 

15j^+8j + l 2n—1 
n — 5 j — 2_ • E 9 

j = - o o 

15r+3j+n 2 n - l 
n — 5j — 1J 

j = - o o 

15j^ + 13j+w+2 2 w - l 
71 — 5 j — 3_ E « 

i=-oo 

15J""+8J+2W 2w - 1 
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Replacing this in (3.4) and making cancellations we are left with: 

y q15j2Sj+n 

j = ™oo 

'2rc - 1" 
n - 5 j . + E * 

j = - o o 

15j2+7j+n+l 2 r a - l 
n — 5 jf — 2_ 

y * i5j2+3i+« 

J = — OO 

j=—oo 

15J 2 +2J + 1 

2 n - l " 
[n — 5 j — 1_ 

2 n - l 
[ra — 5 j — 1 

J = —OO 

15jz + 13j+n+3 2n-l 
n — 5j — 3_ 

i=—oo 

15j2+8j+2 2 n - l 
n — 5 j — 2_ 

(3.5) 

y ^ ^i5i2+2j+i 

j = — o o 

2ra-3 
n - 5 j - 2 

+ y* g15j2+8j+2 

J = ~ C X ) 

2 n - 3 
n — 5 j — 3_ 

Applying (1.4) on the first two sums on the right side of this last expression we get for that 
side: 

y ^ qisj2+2j+i 

j = - o o 

2n - 2 
n — 5j — 1 

+ V g15j2+7i+n+l 

j = — o o 

2 n - 2 " 
|_n - 5j - 2 

y ^ g i5j 2+8j 

j = - o o 

2 n - 2 
n - 5 j - 2_ 

_ y ^ g i5 j 2 + i3 j +n+l 

j = - o o 

2 n - 2 
™ — 5j — 3 

. y ^ ^i5j2+2i+i 

j=-oo 

2 n - 3 
n - 5 j - 2 

+ y g15i2+8i+2 

j = - o o 

2 n - 3 ' 
n - 5 j - 3 

Using (1.5) on the first and third sums we get after cancellations 

y ^ I5j2-3j+n 

j = - o o 

2 T I - 3 

n — 5 j — 1 
+ Y ^ g15j2+7j-HH~l 

j = - o o 

2r i -2 
[n - 5 j - 2_ 

y g i5 j 2+3j+n 2 n - 3 ' 
[n — 5 j — 2_ 

j = — CO 

15j2+13j+2+n 2 n - 2 
n — 5 j — 3_ 
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Applying (1.4) in all sums on the left side of (3.5) and making cancellations with the corre-
sponding sums on the right we get: 

y ^ ^I5j2-3j+n 

3=-oo 

2n - 2' 
n - 5 j _ 

+ ' Y ^ g 1 5 i 2 + 2 j + 2 n - l 

j=—oo 

2n-2 
[n — 5j — 1_ 

+ E*1 
j= — oo 

. \ ~ ^ g 1 5 j 2 + 8 i + 2 n 

i=~oo 

= E ^" -3j+n 

3=—oo 

n+2 2n- 2 
n - 5j - 3. 

I 2n-2 
[n - 5j - 2 

[ 2 n - 3 ] 
[n - 5j - lj 

\ ^ g 1 5 j 2 + 3 j + n 

J = - o o 

- Y ^ «15j2+18j+2n+4 

j = - o o 

2 n - 2 
ra — bj — 1 

[ 2 n - 2 
[n — 5 j — 4 

j=-oo 

15j2+3j+n 2 n - 3 
n - 5 j - 2_ 

Using (1.5) on the first and fourth sums on the LHS we get: 

V ^ 1 5 j 2 - 8 i + 2 n 

3 — — OQ 

2n - 3" 
[n - 5jJ 

+ V " g15j2+2i+2n-l 2 n - 2 
n — 5j — 1_ 

+ y ^ 15j2 + 12j+2n+2 
i=-oo 

2 n - 2 
n — hj — 3_ 

_ V ^ 1 5 j 2 - 2 j + 2 n - l 

j = - o o 

2 n - 3 
n ~ 5j — 1. 

- V o15i2+8j+2n 
jf=-oo 

2 n - 2 " 
|n - 5 j - 2. £ «•*" +18J+5 

J=--00 

2n-2 
n — 5 j — 4 

Replacing j by j — 1 in the last sum and using (1.3) that sum cancels with the third. 
If we replace j by — j in the fourth sum using (1.3) and subtract from the second by (1.4) 

we get finally: 

y ^ 15j2~8j+2n 

j = - o o 

"2ra - 3' 
n - 5 j . + E « 

j = --QO 

15J 2 ™3J '4 -3TI -2 2 n - 3 " 
[n — 5j — 1 

15j2+8j+2n 2 n - 2 " 
[w — 5j — 2_ 

0. 
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To see that this expression is, in fact, identically zero we apply (1.4) on the first two sums 
replacing j by —j and using (1.3) on the result which completes the proof. 

Considering that Tjv(g) is the coefficient oitN in the sum 

0 0 4-n~Ti2-\-n 

]£(l-t){tq*rf)n(tq;q*)n 

and observing again that n2 + n = 2 + 4 H h 2n we see that the coefficient of tN in 

•t-n „n2+n 

(tq2\Q2)n(tq;q2)n 

is the generating function for partitions into exactly N parts in which the largest part is even 
and every even smaller the largest part appears at least once. Prom the presence of the factor 
(1 — i) in the denominator we have proved the following theorem: 

Theorem 3.2: Tn(q) is the generating function for partitions into at most N parts in which 
the largest part is even and every even smaller than the largest appears at least once. 

Replacing now q by 1 in (3.2) we get 

r 0 ( l ) = 1; T!(l) = 2 

rB(i) = 3rB_1(i)-r„_2(i). 

But for Fn we have 

Fx = 1; F3 = 2 

^2n+l ~ 3F2 n _ i — ^271-3 

which allow us to conclude that 

B n ( l ) = r n ( l ) = F 2 n + i 

and by these results we have proved. 

T h e o r e m 3.3: The total number of partitions into at most N parts in which the largest part 
is even and every even smaller than the largest part appears at least once is equal to F 2 n + i . 

For family (3.2) we have also that, at q = —1, we get all the Fibonacci numbers F n , n > 2. 

r 0 ( - i ) = i ; r i ( - i ) = 2 

rn(-i) = rn_1(-i) + rn_2(-i) 
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i.e., T n ( -1 ) = Fn+2,n>0. 

If we make the same observation that have made for the first family of polynomials re-
garding the combinatorial interpretation at q = - 1 we have proved the following result: 
T h e o r e m 3.4: The total number of partitions into at most N parts in which the largest part 
is even and every even smaller than the largest part appears at least once and having an even 
number of odd parts minus the number of those with an odd number of odd parts is equal to 
FN+2-

1 Partitions as described in Theorem 3.3 
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with an 
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In the table (3.1) we present, for a few values of n, all the results proved in this section. 
The first column has n5 the second the partitions described in Theorem 3.3 with an even 
number of odd parts and the third column those with an odd number of odd parts. The fourth 
column has F2n+1 which is the total number of partitions in columns 2 and 3 and the fifth 
column has the difference between the number of partitions on the second and third column 
which is F n + 2 . 

4. A F O R M U L A F O R Fn 

Using the fact that the Gaussian polynomials given in (1.6) are g-analogue of the binomial 
coefficient, i.e., that 

Mm 
g-»l 

we may take the limits as q approaches 1 in (2.3) and (3.3) to get 

]imCn(q) = Mm Y] q 15j2+4j "2ra + 1 
[n - 5jJ 

j — — OO 

15j2+14j+3 2 n + l 
n - bj - 2 

= E 
J = — OO 

2 n + l \ / 2n + l ' 
n-^jj \n-5j-2 Cn(l) 

and 

hm Bn(q) = hm \ ^ q 
q-+l X ' g-f l I £-^ 

\ i = -oo 

15j2+2j 2n + 1" 
[n - 5 j i=-oo 

1 5 j 2 + 8 j + l 2 n + l 
n — 5j — 1 

= £ 
j = - o o 

.» - 5 J 7 \ n - 5 j - 1 
Bn(l) 

But as we have observed 

C„(l) = F 2 n + 2 and B n ( l ) = F 2 n + 1 
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which tell us that 

OQ 

F2n+2= Y, 
j = —OO 

and 

OO 

j = -QQ 

5. L A T T I C E P A T H S A N D F I B O N A C C I N U M B E R S 

In this section we are going to show how to express the Fibonacci numbers in terms of 
lattice path. 

In Narayana [4], Lemma 4A one can find the following formula 

CO 

\L(m,n\t,s)\ J2 
j = - o o 

which give the total number of lattice paths from the origin to (m, n) not touching the lines 
y = x — t and y = x + s. 

But considering that we can write (4.1) and (4.2) as follows 

oo 

F2n+2= Yl 
j = — OO 

OO 

j=z-OQ 

we can conclude just by comparing (4.4) and (4.5) with (4.3) that the following theorem holds: 

T h e o r e m 5.1: F2 n+i is the number of lattice paths from the origin to (n^n-h 1) not touching 

the line y = x — i and y = x + 5 — i, where i = 1,2. 

2ra + l Y _ / 2n+l 
n - 5j) \n - 5 j - 2 (4.1) 

2n + l 
n-hj 

2n+l 
n — 5 j — 1 

(4.2) 

m + n 
m — k(t-\- s) 

m + n 
n + kit + s) + t 

(5.1) 

n + (n + 1) 
n - j ( 2 + 3) 

n + ( n + l ) 
n + l + j ( 2 + 3) + 2 

(5.2) 

ra+(n+l)\ _ / n + ( n + l ) 
'(1 + 4 ) / \ ( n + l ) + j ( l + 4) + l n 

(5.3) 

2003] 277 



FIBONACCI NUMBERS AND PARTITIONS 

R E F E R E N C E S 

[1] G.E. Andrews. "The Theory of Partitions." Encyclopedia of Math, and Its Applica-
tions (G.-C. Rota, ed.), Addison-Wesley, Reading, 1976, Vol. 2 (Reprinted: Cambridge 
University Press, Cambridge, 1984. 

[2] G.E. Andrews. Combinatorics and Ramanujan's "lost" notebook London, 1985, pp. 1-23. 
[3] P. Mondek. Identidades de Slater: Novas identidades e interpretagoes combinatorias, Tese 

de Doutorado, IMECC-UNICAMP, 1997. 
[4] T.V. Narayana. "Lattice Path Combinatorics with Statistical Applications." Mathemat-

ical Expositions 23 University of Toronto Press, 1976. 
[5] J.P.O. Santos. Computer Algebra and Identities of the Rogers-Ramanujan Type." Ph.D. 

thesis, Pennsylvania State University, 1991. 
[6] L.J. Slater. "A New Proof of Rogers' Transformations of Infinite Series." Proc. London 

Math. Soc. 53.2 (1951): 460-475. 
[7] L.J. Slater. "Further Identities of the Rogers-Ramanujan Type." Proc. London Math. 

Soc. 54.2 (1952): 147-167. 

AMS Classification Numbers: 11A17, 11P83, 11B39 

^ * * 

278 [JUNE-JULY 



A CLASS O F F I B O N A C C I IDEAL L A T T I C E S I N z[Ci2] 

Michele Elia 
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 1-10129 Torino, Italy 

J . Carmelo In te r lando* 
Departamento de Matematica, Universidade Estadual Paulista - UNESP 

Rua Crist6vao Colombo, 2265, 15054-000, Sao Jos«§ do Rio Preto, SP, Brazil 
(Submitted April 2001-Final Revision July 2001) 

1. I N T R O D U C T I O N 

Lattices occur in many different areas of science and engineering. They are used to define 
dense sphere packings in ^-dimensional spaces [5], and direct applications of them are found in 
number theory, in particular, to solve Diophantine equations [1]. There are further applications 
found in numerical analysis, for example, when evaluating n-dimensional integrals [5, p. 11-
12]. In modern digital communication systems, lattice constellations are used to send encoded 
information through noisy channels, [3, 5, 10]. In this application, lattices with dense sphere 
packings are desirable. Recently it has been shown that algebraic lattices (those originating 
from rings of integers via canonical embedding of number fields) can be linearly labeled by 
elements of a finite field, facilitating the encoding and decoding processes [6]. Prom the mid-
nineties on, concrete applications of lattices began appearing in cryptography [9]. In particular, 
the NP-hardness of the famous lattices shortest vector problem, namely the problem of finding 
a lattice point nearest to the origin, was proved by Ajtai [2] in 1997. Similar tools were used 
to study the hardness of the most significant bits of the secret keys in the Diffie-Hellman and 
related schemes in prime fields [9, p. 14]. Recall the Diffie-Hellman key exchange protocol: 
Alice and Bob fix a finite cyclic group G and a generator g. They respectively pick random 
a,h E [1, \G\] and exchange ga and gb, The secret key is gab. An interesting realization 
of this public key exchange is based on quadratic number fields with large class number [8, 
p. 261] wrhere the cyclic group is provided by the class groups. Proving the security of the 
Diffie-Hellman protocal has been a challenging problem in cryptography. 

It has long been known that several dense lattices are algebraic and, in particular, originate 
from ideals in rings of integers. We refer to these lattices as ideal lattices. Remarkably, the 
densest four-dimensional lattice, namely D^ is generated by the ideal (1 — C8)^[Cs] where Cs 
is a primitive eighth root of unity. A good measure of packing density is the center density, 
defined as the ratio between the lattice density (the proportion of the maximum space that is 
occupied by nonoverlapping spheres centered in lattice points) and the volume of a sphere of 
radius one [5, p. 13]. 

Let F be an algebraic number field generated by a root of m(x), an irreducible polynomial 
of degree n over Q. Let us assume that m(x) has r\ real roots and 2r2 complex roots. The 
center density 7 of an ideal lattice of F is given by 

V 2 ; N¥(j)^d(¥)/¥^ 

This work has been supported by the Fundagao de Amparo a Pesquisa do Estado de Sao Paulo-FAAESP, under grant 
99/02695-7, Brazil. 
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where d(¥) is the field discriminant, Nw(J) is the ideal norm., and d^ is the minimum square 
Euclidean distance between lattice points^ see [5, p. 10] or [7, Exercise 2.43]. D4 is the only 
four-dimensional lattice possessing a center density equal to | 3 [5, p. 9], the maximum achiev-
able in that dimension. On the other hand5 in this paper we exhibit a sequence of lattice (An) 
generated by principal ideals (Fn — (12^+2)2^12] in ^[£12] whose center densities approach | 
asymptotically. The sequence (zn) of complex numbers where zn = Fn — (^12-^+2? ^0 = — Ci2> 
and zi = 1 — 2("i2 satisfies Fibonacci's recurrence (see [4]), and so we refer to An as Fibonacci 

s2 
ideal lattices. We show that the center density j n of An is a rational number 4 ^ - which 

approaches | asymptotically as n goes to infinity. The integers Sn and A„ satisfy two lin-
ear recurring sequences related to Fibonacci and Lucas numbers. The theta series [5, p.45] 
0An(^) = YlxeA ^X°X5 where z is a complex variable and q = e7™*, is an expression made 
of Jacobi theta functions. The An are definitively different from D4 because the respective 
kissing numbers are 12 and 24. The kissing number of a sphere packing in any dimension 
is defined as the number of spheres that touch one sphere [5]. Given a lattice A in HHN with 
minimum distance «Jm5 we can think of the points of A as being centers of equal nonoveiiapping 
AT-spheres of radius dm/2. Then the kissing number of A is the kissing number of this packing 
just described. Notice that the theta series of A provides us with the kissing number r of A, 
since Q(z) = 1 + rqd™ + . . . [5]. 

The following sequences related to Fibonacci and Lucas numbers will be used in the proofs: 

an = Fl + Fl+2 = i ( 3 L 2 n + 2 + 4 ( - l ) » + 1 ) ; (1) 

bn = FnFn+2 = F*+ 1 .+ ( - 1 ) B + 1 = ~(L2n+2 + 3 ( - l ) " + 1 ) ; 

an - 3bn = ( -1 )" . 

(2) 

(3) 

The golden section 00 = ^~~ and w = 1 — w are the roots of x2 — x — 1 [11]. 

2. C E N T E R D E N S I T Y 

An integral basis for the ring Z[&2] is B = {l?Ci2?Ci2?Ci2} where C12 is a root of the 
clyclotomic polynomial x4 — x2 + 1. A real embedding a yields the generator matrix of A0 

So = 

1 
3/3 

2 
1 
2 
0 

0 
1 
2 

\ / 3 
2 
1' 

1 
-^1 

2 
1 
2 
0 

0 
1 
2 
\/Z 

2 
1 
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A generator matrix Bn of An is obtained as the product B0M(zn), where M(z„) belongs to 
an integral matrix representation of Z[Cu] with respect to basis B. We have 

M(Ci2) -

0 1 0 0 
0 0 1 0 
0 0 0 1 

- 1 0 1 0 

M(zn) = 

F 
0 
0 

n+2 

— -Pii+2 
F 
0 
0 

0 
—Fn+2 

F„ 
—Fn+2 

0 
0 

— F„+2 
Fn 

and 

Bn = B0M(zn) = ~2~Fn + 2 ^ + 2 

•Pn+2 

--Pn-+2 
2 -^n+2 "r" 2 ^ ^ 

2 1 ™ 
F» 

2-^n+2 

Fn 

-Fn-2 - W , VI] 
I P 
2

rn -2R n+2 

—Fn+2 

~Y~Fn+2 + 2-^n 
VI F 
2 r n 

2 Fn+2 

The squared Euclidean norm in An is given by the quadratic form Q(x) = xTB^Bnx with 
x G Z4. The positive definite symmetric matrix of this quadratic form results in 

An — J3n Bn — 

XFl + F*+2) - 3 F n F „ + 2 

—3FnFn+2 2(Fn + Fn+2) 
F„ + Fn+2 -3i r„i r„+2 

0 Fn
2 + Fn

2
+a 

K+n+2 2 0 2 
—3FnFn+2 i ^ + Fn+2 

1(Fl + Fl+2) -3FnFn+2 
—3FnFn+2 2(Fn + Fn+2) 

Writing Q{x) = xTAnx = xT{U-1)TUTAnUU-lx == x T ( t / - 1 ) T C„C/ - 1 x , we consider the 
transformation of An by the matrices 

U = 

-1 
0 
0 

L0 

0 
1 
0 

_ 1 
0 

1 
2 

0 
1 
0 

0 
0 
0 
1 

and U 1 = 

1 0 I 01 
0 1 0 0 
0 0 1 0 
.0 0 1 

to produce a block diagonal matrix 

Cn — 
2 ( ^ + ^ + 2 ) 

—3FnFn+2 
0 
0 

- 3 F n F n + 2 

1 ( ^ + ^+2) 
0 
0 

0 
0 

1 ( ^ + ^+2) 
-3FnFn+2 

0 
0 

—3FnF„+2 
2(FnFn+2) 
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Thus, setting gn = 2an + 2 ( - l ) n a n — 1 and making use of the identity (3), Q{x) is written as 
a linear combination of four squares 

Q(z) = ^ { M 2 ^ i + ^ 3 - ^ 2 ) + ( - l ) n ^ (4) 

This expression is conveniently written as Q(x) = Q(xi,X3,X2) + Q(ff43#2>#3)> by defining 

Q(ui, ti2, us) = -—{[an(2ui +u2- 1*3) + (~l)nu3]2 + gnu\}. 

d4 

The center density 7n of a Fibonacci ideal lattice is j n = m . , where d(¥) = 144, the 
' ' 4iVF(^n)y/d(F)' V ; ? 

norm of the principal ideal znZ[£i2] is the field norm of zn 

Nw(zn) = An = Ft - FlFl+2 + F*+2 = a2
n- 3b2

n, 

and, given (4), the squared minimum distance is 

d2
m=Sn = 2(F* + F 2

+ 2 ) - (1 - ( -1)") = 2an-l + ( - 1 ) " . (5) 

Therefore, 

_ [2an - (1 - ( -1)") ] 2
 = [2an - (1 - ( -1)") ] 2

 = Sj „ 1 / 1 \ 
T n 16 • [3a2 - 962] 4 8 . [ 2 a2 + 2 ( - l ) » a B - 1] 48 • A„ ~ 8 + {a* J' 

where the asymptotic expression shows that the convergence is exponential as n goes to infinity. 
Some initial terms are 

1 4 25 196 5329 37249 255025 
7 0 = 777,71 = ™>72 = 7 ^ > 7 3 = T 5 ^ T ' 7 4 = 17T7T7^>75 = o n n c o o , 7 6 12' u 39' ' 219' ,d 1623' '* 43212' '° 299532' ,0 2044236' 

Sequence A n . The sequence A n = F* - F*F%+2 + F*+2 = (F„2 + F 2
+ 2 ) 2 - 3F„2F„2

+2 satisfies 
a fifth order linear recurrence 

A n + 5 = 5 A n + 4 + 15A n + 3 - 15A n + 2 - 5 A n + 1 + A n , 

with initial values A0 = 1, Ai = 13, A2 = 73, A 3 = 541, and A 4 = 3601. In fact, the 
equation 

An - ^[6£ |n+2 + 6 i 2 n + 2 ( - l ) n + 1 + 25] 

= i t 6 ^ 4 ) " 4 " 1 + 6 ( ^ 4 ) n + 1 + 6 ( - o ; 2 ) n + 1 + 6(-aJ 2 ) n + 1 + 27] 
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shows that a;43uT 4
3 —a;2

? — uJ 2
3 and 1 are the roots of 

gA(x) = (x2 - L4x + l)(x2 + L 2 s + l)(x - 1) - x5 - 5x4 - 15x3 + l^x2 + 5x - 1, 

which is a characteristic polynomial of a fifth order linear recurrence. 
Sequence Sn. The squared minimum distance d2

n(n) — Sn = 2an — (1 — (—l)n) satisfies a 
fourth order recurrence 

#n+4 = 3$n+3 — 3<Jn+i + 5n, 

with initial values 5Q — 235\ = 83 82 — 205 and $3 = 56. In fact, the equation 

$n = j U ^ + 2 - | ( - l ) n - 1 - ^[6(a;2)n + 1 + 6(o7 2 f+ 1 - 3 ( - l ) » - 5] 

shows that a?2, a; 2, — 1, and 1 are the roots of 

gs(x) = (x2 - L2x + l)(x + l)(x - 1) = (x2 - ix + l)(x + l)(x - 1) = x4 - 3x3 + 3 x r 1, 

which is a characteristic polynomial of a fourth order linear recurrence. 

3. T H E T A S E R I E S 

In Chapter 4 of [5], Conway and Sloane describe basic techniques for theta series manip-
ulations. Their enlightening example of the hexagonal lattice [5, p. 110] helps us to study A0. 
This lattice has the following theta series 

6 A o (q) = 1 + 12g2 + 36g4 + 12q6 + 84g8 + 72g10 + 36g12 + . . . 

which is obtained using the quadratic form with symmetric matrix 

An = 

'2 0 1 0 ' 
0 2 0 1 
1 0 2 0 

,0 1 0 2, 

A direct computation yields 

eA o(g) = y q
x-x = y q2(4+4+*i**+*i+xi+*2X4) = s y ^ ^i+xi+xrxs) I = e2

Aexa(q2 

x€A0 xeA0 i s i , x 3€Z 

Furthermore, it is known [5, p. I l l ] that 
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where 6i(z) = 0{(O\z),i — 2,3? are Jacobi theta functions with q — e71 

T h e o r e m 1 For every n, the theta series of An 

©A (q) = y ^ qx U C^(u ) x = V * gQ(*i,*3,a>2)+Q(*4,:c2,*3) 

can 6e written in the following form 

©An(g) - e 0 0 ( n , ? ) 2 + 6 0 i (n 3 g) 2 + 2 0 n ( n , g ) • 81 0(n3g)3 (7) 

where Or3T2(n,q),r2lr3 E {0,1} can fee expressed in terms of Jacobi theta functions 

oo 

m=—oo 

<?s(^k) = E e2 i T O«+ '^m 2, and 04(£k) = *3(£ + £|*)-

Proof: In Q(xi ? x 3 ? x 2 ) and Q(u4,X25x3), the expressions 2^i+x3—a?2 and 2^4—X3+X2 are 
even numbers if £3 and x2 have the same parity, otherwise they are odd. Setting x2 = 2z2-\-r2 
and x3 = 2z3 + r3, where r2, ^3 E {0,1} and £2, £3 E Z5 we have 

Q(xi, x3, x2) = -—[(an(2[x1 + z3- z2) + r3) + 2z2 + r 2 ) 2 + gn(^z2 + r2)2] zan 

Q(x4,x2,x3) = — [(an(2[a?4 + z2 - z3] + r2) + 2z3 + r 3 ) 2 + £n(2z3 + r 3 ) 2 ] . 

The transformation mi = xi + z3 —£2,^2 = 2:2jm3 = z3, and m4 = 2:4 + ^2 -^3 is unimodular, 
thus for r3 and r2 fixed in 

1 
Q(xi,x3,x2) = ~—[(an(2wi + r3 - r2) + 2m2 + r 2 ) 2 + ^ ( 2 m 2 + r2)2] 

1 
Q(x4j x2j x3) = 2^-[(an(2m4 + r2 ~ r3) + 2m3 + r3f + gn(%m3 + r3)2] 
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the four variables mi , m23 m$, WI4 range independently over Z. Therefore (7) is obtained defin-
ing 

&r3r2(n,q) = J2 ^ [ k ( 2 m 1 + r 3 - r 2 ) + 2 r o 2 + r 2 ) 2
+ 5 n ( 2 r o 2 + , ^ ] ^ ^ = ^ ^ 

Now, setting m2 = anm + r and l = m i + m 3 with r E { 0 , 1 , . . . , an — 1}, we obtain 

Qw(n,9) = E E q^[M2i+T*-T2)+2r+r^ r2jr3 = 0,1. 

The infinite sums 

J^f g ^ [ ( ^ ( 2 £ + r 3 - - r 2 ) - f 2 r + r 2 ) 2 + ^ ( 2 a n m + 2 r + r 2 ) 2 ] r 2 j r 3 = 0 , l , r = 0, . . . , On - 1 

are actually products of Jacobi theta functions. This will be proved considering the exponent 
of q as a sum of three terms 

Bt = 2anf + 2(anr3 + 2r + r2)i 
E2 = 2angnm2 + 2gn(2r + r2)ra 

E 3 = ^ + (an + ( - l ) n ) ( 2 r + r 2 ) 2 + r3(2r + r 2 ) . 

Assuming q — e*%z;, from [5, p, 103] we have 

00 °° 2 firR 1 \ 

Therefore, two forms for 0r3r2(n><z) a r e possible, based on either of the two forms occurring 
in Poisson-Jacobi identity, that is, 

! _ V f l ( a " r 3 + 2r + r2 - 1 \ / 2r + r2 - 1 \ 
fg^z 2^ *\* 2an '2anzy/ 3 \ 2o„ ' 2 a n 3 r l z ; 

and 

" £ 0 3 M a „ r 3 + 2 r + r 2 ) | 2 a n z ) 6 > 3 ( w ^ 
r=0 
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For example, taking n = 0,1 mod 3 we get four fairly symmetric expressions for @ij(rbjq) 
in terms of Jacobi theta functions. With the restriction on n,an is odd, therefore — (2r + 
l)[(fln — l)/2] r u n s o v e r a M l remainder set along with r. Thus, using the properties 0±(£\z) — 
0s(f + | k ) and 03(£ + *\z) = 03(C\z) [12], we obtain 

2any/g^z *-? \ an 

r ,_1 V*-h _ 1 

a n - l 

2an2 an 2an$ 

6oi(n,g) - )=- Vs 04 (v—\—L} 64 (TT—I—— 
2an^/g^z ^ V a n 2an^y \ a n 2an#n 

eio(n,9) = "!_ E *4 (*—\i^-)e* f^- l^" 

en(n,«) - . ~* 5 03 U—\f^) ^ ^—1^- ) 

4. C O N C L U D I N G R E M A R K S 

We conclude with an example and a few remarks on open problems related to the con-
struction of n-dimensional lattices with maximum center density. 

Fibonacci ideal lattices have been used to design good signal constellations for sending 
information over communication channels [6]. The goal is to choose a constellation of M 
points in a space of dimension n with maximum normalized minimum squared distance K — 

d2 

- ^ log2 M, where E^ is the average squared norm of the points of the constellation, and 

^Lin IS ^ n e minimum squared distance between points of the constellation. For example, the 
ideal (2 — 5Ci2)Z[Ci2] may be used to construct a constellation of 37 points. A basis for A, the 
lattice generated by Z[£i2], is given by the rows of the following matrix: 

B = 

1 
^3 
2 
1 
2 
0 

0 
1 
2 

Vs 
2 
1 

1 
V3 

2 
1 
2 
0 

0 
1 
2 
Vs 

2 
1 

286 [JUNE-JULY 



A CLASS OF FIBONACCI IDEAL LATTICES IN Z[£ 1 2 ] 

whereas a basis for the Fibonacci ideal lattice A3 is obtained by left multiplying B by the 
matrix associated to the ideal (2 — 5Co) 

[ 2 - 5 0 0 ] 
0 2 - 5 0 
G O 2 - 5 

L5 0 - 5 2 J 

The center densities of A and A3 are 7 = 0.0833 and 73 = 0.1207 respectively. 
The rational prime 37 splits in Z[&2] as 37 = pip2psP4j where pi = ( - 1 + 2£12 + 2C2

2)3 
and the other primes p2,ps? and ^4 are obtained by conjugation, namely, substituting ("12 
with (f2, £j2J and CM respectively. Thus, the set of 37 elements modulo pi is Z[£12] is a field 
isomorphic to Z37 the set of remainders modulo 37. The following table 

\e 
0 

3 

6 

9 

12 

15 

18 

21 

24 

27 

30 

33 

36 

Xl 

0 

-1 

0 

-1 

0 

1 

0 

-1 

1 

0 

1 

0 

-1 

X2 

0 

-1 

0 

-1 

-1 

0 

-1 

-2 

1 

0 

1 

0 

0 

X3 

0 

1 

0 

1 

-1 

-2 

-1 

0 

0 

1 

0 

1 

0 

X4 

0 

1 

1 

2 

-1 

-1 

0 

1 

-1 

0 

0 

1 

0 

I 

1 

4 

7 

10 

13 

16 

19 

22 

25 

28 

31 

34 

Xi 

1 

0 

-1 

0 

-1 

1 

0 

-1 

0 

1 

0 

1 

%2 

0 

0 

-1 

0 

-1 

2 

1 

0 

1 

1 

0 

1 

X'S 

0 

-1 

0 

-1 

0 

0 

1 

2 

1 

-1 

0 

-1 

X4 

0 

-1 

0 

0 

-1 

-2 

-1 

-1 

£ 

2 

5 

8 

11 

14 

17 

20 

23 

26 

29 

32 

35 

Xi 

-2 

1 

0 

1 

0 

-1 

1 

0 

-1 

0 

-1 

2 

%2 

-1 

0 

-1 

0 

-1 

-1 

1 

1 

0 

1 

0 

1 

%3 

1 

-1 

0 

-1 

0 

-1 

1 

0 

1 

0 

1 

-1 

X'4 

1 

-1 

0 

0 

1 

0 

0 

-1 

0 

0 

1 

-1 

identitifies the constellations where a point with coordinates (xi,X2,x^,x^) in different bases, 
namely, Bt = {1, Ci2Ci2,Ci32} and B2 = {-1 + 2Ci2 + 2C2

2?-Ci2 + 2C?2 - 2d2
2 + 2C?2?-2 + 

C12 + 2Ci2? - 2 - 2Ci2 + 2(f2 + Ci2}5 receives the same label £ = x\ - 8x2 + (~8)2x2 - 83x3 = 
x\ + 29x2 + 27x2 + 6x3 mod 37. The maximum normalized minimum squared distances of 
constellations with 37 points in A and A3 are K — 3.21 and ^3 = 3.98 respectively. 

In dimension four, we have seen that an ideal lattice with maximum center density exists 
along with a class of ideal lattices achieving the same maximal density asymptotically. For a 
given m-dimensional space, it would be interesting to ascertain whether the maximum center 
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density Is achievable finitely or asymptotically. The theta series 0An (q) of a Fibonacci ideal 
lattice can be expressed by means of Jacobi theta functions. It is also of interest to know 
whether ©An (q) can be expressed in terms of a finite initial set of theta series 0 A O , - • •, ©As • 
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BOOKS AVAILABLE 
THROUGH THE FIBONACCI ASSOCIATION 

Introduction to Fibonacci Discovery by Brother Alfred Brousseau, Fibonacci Association 
(FA), 1965. ' $18.00 

Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972. $23.00 

A Primer for the Fibonacci Numbers. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1972. $32.00 

Fibonacci's Problem Book, Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1974. $19.00 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from the 
French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. $6.00 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971. $6.00 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. 
FA, 1972. $30.00 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. $39.00 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965. $14.00 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Volume. 
Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. $38.00 

Applications of Fibonacci Numbers, Volumes 1-7. Edited by G.E. Bergum, A.F. Horadam and 
A.N. Philippou. Contact Kluwer Academic Publishers for price. 

Applications of Fibonacci Numbers, Volume 8. Edited by F.T. Howard. Contact Kluwer 
Academic Publishers for price. 

Generalized Pascal Triangles and Pyramids Their Fractals, Graphs and Applications by Boris 
A. Bondarenko. Translated from the Russian and edited by Richard C. Bollinger. 
FA, 1993. $37.00 

Fibonacci Entry Points and Periods for Primes 100,003 through 415,993 by Daniel C. Fielder 
and Paul S. Bruckman. $20.00 

Shipping and handling charges will be $4.00 for each book in the United States and Canada. 
For Foreign orders, the shipping and handling charge will be $9,00 for each book. 
Please write to the Fibonacci Association, P.O. Box 320, Aurora, S.D. 57002-0320, U.S.A., 
for more information. 


