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1, I N T R O D U C T I O N 

The classical r-Fibonacci sequence (Ui)i>o is defined by some given real numbers 
UQ,UI,. ..,Ur-i and the difference equation 

YlakUi-k = 0;". i > r , 
fc=0 

where afc,fc = 0 , l , . . . , r are arbitrary real numbers such that ar ^ 0,r > 2. The characteristic 
polynomial of this equation is given by 

Q{x) = ao + a\x + «2^2 + h arxr. 

Many authors have studied the r-Fibonacci sequence given above, see for example Mouline 
and Rachidi (1998). Philippou et. al. (1982) and Philippou (1988) have related the Fibonacci 
sequences to the one dimensional geometric probability distribution. 

Now we introduce the double indexed Fibonacci sequence (DIFS) of order (n,m). Let 
(Uij)i>oj>o be the double indexed sequence defined by the difference equations of order (n, rn) : 

Yl ] C akiMui-kuj-k2 = 0, i > n , j > m , (1) 
&1=0fc2=0 

where aij,i — 0 , . . . , n, j = 0 , . . . , rn are real numbers such that aoo i1 0 and an<m ^ 0. The 
corresponding characteristic polynomial is defined by 

Q(x, y) = aoo + «io^ + aoiV + anxy + h anmxnym. 

Next, we recall that (X, Y) is a discrete random vector in two dimensions with values in N x TV 
and defined on a certain underlying probability space (O, A? P) with probability generating 
function given by 

g(x,y) = E{xxyY) = J ^ ^ B j ^ V ? 
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DOUBLE INDEXED FIBONACCI SEQUENCES AND THE BIVARIATE ... 

where pij = P{X = i,Y = j),i > 0 , j > 0 is the probability inass function of (X, Y). For 
example, the bivariate negative binomial distribution has the probability generating function 
defined by 

9{x'y)={l-aX-by-cXy) ' ( 2 ) 

where a, 6, c and d are real numbers such that 0 < a < l , 0 < 6 < l , 0 < d < l and a+6+c-hd = 
1. For r = 1, we get the bivariate geometric distribution as a special case of (2). For more 
details about these distributions and their applications see Edwards et. al. (1961), Feller 
(1968) (page 285), Subrahmanian et. al. (1973) and Davy et. al. (1996). 

Philippou et. al. (1989, 1990, 1991) and Antzoulakos et. al. (1991) have related the 
special case of the above distribution when the crossed term in x and y is null (c = 0) with 
extensions to some particular characteristic polynomials (see section 3). 

This work is organized as follows: in the second section we develop the setting of the 
difference equation given by (1). In section 3, we give examples of DIFS with their combina-
torial solutions. In section 4, we study the relationships of DIFS and the bivariate probability 
distributions given by (2). 

2* T H E D I F S 

Let (Uij)i>oj>o be the DIFS of order (n,m) as given by (1), that is, 

YU2aki^Ui~k^3-k2 = 0, i>n,j>m, (3) 
k1=0k2=0 

with the initial conditions: aoot^oo = 1 and an,m ^ 0 with U{j = 0 if i < 0 or j < 0. Now 
let Q(x,y) be the corresponding characteristic polynomial with order (n,m) of the difference 
equation given by (3), that is, 

Q(x,y)= J2 E ^ . ^ 1 ^ 2 ' (4) 
k1=0k2=0 

with ao,o / 0 and an j m / 0. Then we have the development of 1/Q(x, y) using power series, 
that is, 
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DOUBLE INDEXED FIBONACCI SEQUENCES AND THE BIVARIATE 

Prom the equality Q{x,y)/Q{x,y) = 1, we get 

E E ^ . ^ V 2 • E Vijjy* = x> 
fci=ofc2=o *>o,i>o 

which gives the difference equations defined by (3) with specific initial conditions. The combi-
natorial solution of (3), (£7ij)i>o,j>cb *s then given by means of the development of 1/Q(x,y) 
using power series. 

There are two cases which the combinatorial solution of (3) could be deduced from ele-
mentary combinatorial solutions. Let Q(x,y) be a characteristic polynomial of order (n,ra) 
such that the following decomposition holds 

J b = l 

where the order of each polynomial Qk(x, y) is (n&, ra^), k = 1 , . . . , r with n = n i + h n r 

and m = mi H (-mr. Let U\ • be the combinatorial solution of Qfc(#, ?/), that is, 

^ = E ^ V , *-1--'-Q 

Let us establish the following result which gives the convolution of independent DIFS's. 
T h e o r e m 1: If (Uij) is the combinatorial solution of (3) with Q(x,y) verifying the decompo-
sition (5) then 

i i-ii *-(*H Mr-2) j j-ji j - ( j i + " - + J r - 2 ) 

•% = E E - E E E - E 
i 1 = ( H 2 = 0 » r - l = 0 J i = 0 j 2 = 0 i r - l = 0 

r / ( l ) r/(2) irfr-i) r/M 

Proof: One has, 

= H Y, ^ l ^ - - ^ l - i l + - + ^ J 1 + - + j V 
t i , . . . , l r J i , - . . , J r 
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DOUBLE INDEXED FIBONACCI SEQUENCES AND THE BIVARIATE ... 

Set i = i\ + • —YiT and j = ji + h j r - Then 

«^=E*VEE- E E I - E 
^ V ' * ' id i1=0i2=0 tr_i=0 j1=0j2=0 jr-i=0 

U * l , J l U * 2 , i 2 " " , i y i r - l , i r - l i - ( « l + - + i r - l ) , j - ( i l + - + i r - l ) -

By the identification with 

Q(x,y) *— 
* j 

one can deduce the result of the theorem. • 
Let us now suppose that the characteristic polynomial, Q{x,y), of equation (3) can be 

decomposed as 
Q{x,y) = Qi{x)'Q2{y) (6) 

where Qi(x) and $2(2/) are polynomials with respective orders n and m such that 

1
 = V U-(1 V * = V I7^V 

Qi(*) V ^ V 

Let us establish this result. 
T h e o r e m 2: The characteristic polynomial Q(x, y) of (3) is decomposed as in (6) if and only 
if the combinatorial solution is given by 

uti = D-Wcrf 

Proof: First 

Q(x,y) Qi(s:) g2(v) 

* 3 J 

Then, by identification with 

— = *y Ui iX%y^. 
Q(*,tf) f - M " 
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the result follows. • 
Let us introduce the notion of marginals of the DIFS. Let U{j be a DIFS of order (n,m) 

as given by (3) and Q(x,y) be the corresponding characteristic polynomial as given by (4). 
We define the marginal polynomials as polynomials in x or in y, that is, Q(x, 1) and Q(l ,y) 
given by 

n m 

Q(x, i) = 5Z aikxl = lL,xllLtaiki 
l,k 1=0 k=0 

m n 

Q(hy) = J2aikyk = J2ykYlaik-
l,k k=0 1=0 

The associated equations are respectively 

n m 

J=0 k=0 

m n 
J^Wj-kJ2alk = 0, 
k=o i=o 

with V{ = J2j Uij a n d Wj = Yli Uij which are the combinatorial marginal solutions. 

3 . E X A M P L E S 

(a) DIFS of order (1,1): Let U^ be the DIFS given by (3) with n = m = 1, that is, 

i i 

]C 5Z akuk2
Ui-kuj-k2 = 0-

k1=0k2=0 

This is equivalent to 

aooUij + ®ioUi-ij + aoiUij-i + anUi-ij-i = 0, (7) 

with aoo^oo = 1- The associated characteristic polynomial is then 

Q(x, y) = a0o + «io^ + &oi!/ + ^ n x y . 

For the developement of l/Q(x, y) using power series, we first need to establish the following 
lemma. 
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L e m m a 1: Let a,6,c be real numbers and r be a positive integer. One has, 
(i) if abc ^ 0 and (x, y) is such that \ax + by + cxy\ < 1, then 

min(f,j) _ k 

=x>v«w Y: (S) ^^-^^V- . - I (1 - ax - by - cxy)r j-> ^ \ab 

(ii) if a = 0,bc^0 and (x, y) is such that \by + cxy\ < 1, then 

J-—f = jybyyicxyyCUjC^^, 
(l-by 

%3 

(Hi) ifh~Q,ac^Q and (x, y) is such that \ax + cxy\ < 1, then 

(iv) if ab / 0, c = 0 and (x, y) is such that \ax + by\ < 1, then 

(1 - ax - fe|/)r 
* , j 

where Cl
n = n\il/(n — i)\ and the summation Y^i j i>s over i > 0?J > 0. 

Proof: 
(i) It is known that for |t| < 1 the expansion of 1/(1 — t)r is X)n>0*nCn+£-i-

ax -\-by-\- cxy, one has, 

Now by the multinomial formula, one has, 

(ax + by + cxy)71 = ] T (ax)*1 (%)*2 (cxy)*3 - ni 
ki\k2\k3l 

= Y aklbk*ck3xk*+k*yk*+k* , 
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with the conventions that 0° = 0! = 1. Let us put i = k\ + &3 and j — &2 + &3- One can 
see that i — 0 , . . . , n, j = 0 , . . . , n and 0 < fc3 < i, 0 < &3 < j , that is 0 < k3 < min(i, j). 
Then for ah ^ 0 

(1 _ ax _ by _ CTy)r ~ E ^ - 1 E («*) W (aJ (i _ h)l{j _ ks)lhl 
k*s n! 

axnoyy {-hj 
n>0 i+j—&3=n 

ram(i,.7') 
c\k* (i + j-k3)\ 

i>0 j>0 k3=0 -D-iW E ( 5 ) ' , , - ^ : ^ , ^ . . 
which coincides with the claimed formula. 

(ii) If a ~ 0 and be / 0, one has 

(% + cxy)" = ^ ^ ( G c y ) " " * ^ . 
fc=0 

Then 

F=^^ = ?5-'£(wW~'Ci 
n > 0 fc=0 

fc>o j > o 

One can easily derive the other expressions of the lemma. • 
Let us derive from Lemma 1. the expression of 1/Q(x,y) using power series. It is easy 

to see that with the parameterizations aoo = l /d3aio = —a/d,aoi = — &/d, ai,i = —c/d, (7) 
becomes 

Uij = aUi-ltj + bUij-i + cUi-ij-i, i > l,j > 1, (8) 

with the initial conditions: C/QO = d, ?7io = ad, and C/oi = bd. The associated characteristic 
polynomial is 

1 - ax - by - cxy 
Q(s, 0) = ^ • 

Prom the above Lemma 1 and for r = 1 (with for example ab 7^ 0) one has 

Q0&, y) 
hs 
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with 

min(ijj) 

UtJ-daV 2^ ^ j (i-k)l(j-k)lk\ 

-*'" E (5) <**«-
k=0 

which is the combinatorial solution of equation (8). For c = 0, which means that the crossed 
term is null, the solution is then U{j = dalWCl+A. This is the solution of the m-variate 
generalized Fibonacci polynomial of order ft (here m = 2, ft = 1) given by Philippou et. al. 
(1991) and Antzoulakos et. al. (1991). 

(b) DIPS of order (r,r): Let Q be 

Q(x, y) = (l-ax-by- cxy)r/dr
J 

which is the characteristic polynomial of the DIPS of order (r, r ) given by 

This is equivalent to 

J2 afci E(-a) f c 2 c^ f c i r E V&)fc3(-c)r-fei-fc2-fc3 
fc1==0 fc2=0 &3=0 

r*kz rr(r) _ n 
,- / r-fc1-fc2

u t-r+A;i+fc3,i-r+fei+fe2 ~~ U" 

From Lemma 1, one can deduce the combinatorial solution of the above equation. That is, 

min(ij) 

£ # W a V Y, U ) CfCjfJ-*C2#+r-*-i> i > 0 , j > 0 . (10) 
k=0 

This solution can also be derived from Theorem 1 since the characteristic polynomial has the 
decomposition (5). Since the DIFS of order (r^r) is the r-fold convolution of DIFS of order 
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(1,1), Philippou et. al. (1991) showed that the solution can be evaluated (for small values of 
r) recursively as 

^ = 1 1 ^ * ! - ^ ^ 2 > 
fc1=0fc2=0 

with U^p = Uij which is the solution of DIFS of order (1,1). 

4. T H E D I F S A N D T H E B I V A R I A T E P R O B A B I L I T Y D I S T R I B U T I O N 

A random couple (X,Y) has a bivariate negative binomial distribution if its probability 
generating function has the form given by (2), that is 

\1 — ax — by — cxyj 9(x 

with a,bjC and d such that 0 < a < 1,0 < 6 < 1,0 < d < 1 and a + b + c + d — 1. 
This distribution is the convolution of r independent bivariate geometric distributions. One 
can recognize the associated stochastic DIFS given in example (b) which the combinatorial 
solution given by (10) is the probability mass function associated to this bivariate negative 
binomial distribution, that is for i > 0, j > 0, 

min(i,j) fc 

P(X = i,Y = j) = <TaiV J2 U J ^q/ + i _ f c CT+/ + r _ f c _ 1 . (11) 
fc=0 

Equation (9) permits recursive computations of the above probabilities which are more con-
venient than those given by Edwards et. al. (1961) and Subrahmanian et. al. (1973). The 
geometric case (r = 1) is given by equation (8). 

The random variables X and Y have the marginal distributions which are negative bi-
nomial distributions with respectively the parameters (r, d/(l — b)) and ( r , d / ( l — a)), that 
is 

p(x = i)= (TTTS) u'> {^ °> (12) 

where (Ui) is the marginal Fibonacci sequence satisfying 

£C*(^)Vfc = 0, (13) 
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with UQ = 1. The same holds with P(Y = j). The relations (12) and (13) are less practical 
for the evaluation of P(X = i), since the following recursive scheme is more effective 

p{x = » ) = J i + r~~~r)p<<x = i"1^ * - 1 ? 

starting with the initial condition P(X = 0) = p r
? where p = d/(l — b) and p + g = 1. 

The covariance of X and Y is given by (see for example Subrahmanian et. al. (1973)) 

Cov(X,Y) = r ^ . 

It is easy to see that X and Y are independent random variables if and only if Cov(X,Y) = 
0(c = —ab). We can express this result as follows. 
L e m m a 2: For i > 0, j > 0 and r >1, one has 

min(ij) 
srr—1 j~n—1 \ A / -i \ fc/-»fc/nri /no—1 
^ r + j _ l W + j _ l - 2^i ^~LJ °* ^i+j-k^i+j+r-k-V 

k=0 

Proof: Let g(x, y) — dr/(l — ax — by — cxy)r. The independence of X and Y is given by 
c = —ab, that is 

^ ) = (r^) (r^) 
(i - ay B ^ d • (i - &r x>)j<?;^-i 

= J2uaxiyj 

with 
Un = (i - of (i - hya^c^Uc;-^. 

By identification with (11) when c = — ab, we get the result of the lemma. • 

5. C O N C L U S I O N 

As in the case of the one indexed Fibonacci sequences, there is a relationship between 
the probability distributions of discrete type and these sequences. In this work, some basic 
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definitions, results and examples of DIFS are given. The link between stochastic DIFS and 
the bivariate negative binomial distribution is established. 

There are plenty of problems left to be solved such as: the combinatorial solution of (1) 
with arbitrary real numbers (a^)? the roots of the characteristic polynomial. 

Also the generalization to the multiple indexed Fibonacci sequences and their relationship 
with multivariate probability distribution opens the door to a host of other quesitons. 
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1* I N T R O D U C T I O N 

Let S2 '• Z + -> Z + denote the function that takes a positive integer to the sum of 
the squares of its decimal digits. For a E Z + , let 82(a) — a and for m > 1 let 
S'2h(a) = S2(S™~1(a)). A happy number is a positive integer a such that 5™ (a) — 1 for 
some m > 0. It is well known that 4 is not a happy number and that, in fact, for all a £ Z + , a 
is not a happy number if and only if S™(a) = 4 for some m > 0. (See [4] for a proof.) The 
height of a happy number is the least m > 0 such that 5^ (a ) — 1. Hence, 1 is a happy number 
of height 0; 10 is a happy number of height 1; and 7 is a happy number, of height 5. 

Similarly, we define S3 : Z + -> Z + to be the function that takes a positive integer to the 
sum of the cubes of its decimal digits. A cubic happy number is a positive integer a such that 
S™(a) = 1 for some 771 > 0. The height of a cubic happy number is defined in the obvious way. 
So, 1 is a cubic happy number of height 0; 10 is a cubic happy number of height 1; and 112 is 
a cubic happy number of height 2. 

By computing the heights of each happy number less than 400, it is straightforward to 
find the least happy numbers of heights up to 6. (These, as well as the least happy number of 
height 7, can also be found in [2] and [5].) Richard Guy [3] reports that Jud McCranie verified 
the value of the least happy number of height 7 and determined the value of the least happy 
number of height 8. Guy further reports that Warut Roonguthai determined the least happy 
number of height 9. These results and their methods of proof have not, to the best of our 
knowledge, appeared in the literature. 

The goal of this paper is to present a method for confirming these and additional results. 
Along with determining the least happy number of height 10 and providing proofs for other 
happy numbers of small heights, we find with proof the least cubic happy numbers of small 
heights. Our algorithms combine computer and by-hand calculations. It should be noted that 
none of the computer calculations took special packages beyond the usual C + + language and 
no program needed longer than a few seconds to run. 

In Section 2 we present the least happy numbers of heights 0 through 10 and describe 
the methods used to determine them. In Section 3 we do the same for the least cubic happy 
numbers of heights 0 through 8. 

2. S Q U A R I N G H E I G H T S 

Table 1 gives the least happy numbers of heights 0 through 10. Those through height 7 
are easily found by simply iterating S% on each positive integer up to about 80,000, until 1 or 
4 is reached and recording the number of iterations needed when 1 is attained. The goal of 
this section is to explain both the derivations and the proofs for the rest of the table. 
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height 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

happy number 
I 
10 
13 
23 
19 
7 

356 
78999 

3789 x 10973 - 1 
78889 X 10(3789X10973-306)/81 _ j 

259 X 10[78889xl0<3789xlo973-306>/81-13]/81 _ 1 

Table 1: The least happy numbers of heights 0-10. 

As described above, we used a simple computer search to determine the heights of all 
happy numbers less than 80,000. The only other computer routine we used in this work is a 
nested search in which we checked when a fixed number was equal to the sum of squares of 
a certain number of single digit integers. (See below for more details.) Since the number of 
single digit integers is never large, the search takes very little time. 

To prove that 3789 x 10973 — 1 is the least happy number of height 8, we begin with a 
lemma that is immediate from the first computer search mentioned above. 
L e m m a 1: The only happy numbers of height 7 less than 80,000 are 78999, 79899, 79989, 
and 79998. 
T h e o r e m 2: The least happy number of height 8 is 

a$ = 3789 x 10973 - 1 = 378899.. . 9 . 

Proof. It is easy enough to check that 3789 x 10973 — 1 is indeed a happy number of 
height 8. To prove that it is least, let x < 3789 x 10973 — 1 be a happy number of height 
8. Then S2(x) < 32 + 976 x 92 = 79065. S2(x) must be a happy number of height 7 so, by 
Lemma 1, 52(x) = 78999. We see that x must have at least 973 9?s in its base 10 expansion 
since otherwise S2{x) < 3 2 + 4 x 82 + 972 x 92 < 78999. Assuming without loss of generality 
that the digits of x are in nondecreasing order, we have that 

973 

x — aia2a^a4L 9 9 . . . 9, 

with 0 < a\ < 3, and a\ < a2 < a$ < a± < 9. Since S2(x) = 78999, we have al + a2+al-\-al = 
78999 — 973 x 9 2 = 186. A computer search through the possible values of a%, a2, as, and a± 
finds that the only solution is 

973 

x = 3788 9 9 . . . 9 = a8, 

as desired. D 
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The proofs for the least happy numbers of heights 9 and 10 follow the same general outline. 
We get as a corollary to the above proof that the only happy numbers of height 8 less than 
4 x 10976 are numbers whose digits are permutations of the digits of as. This result will take 
the place of Lemma 1 in the proof of Theorem 3. 
Theorem 3: The least happy number of height 9 is 

(cr8-305)/81 

a9 = 78889 x i0(^9xio973-306)/8i _ i = 7 8888 999^^99 . 

Proof. Again, we can easily verify that this is a happy number of the desired height. 
Let x < a9 be a happy number of height 9, with the digits of x in nondecreasing order. 
Then S2(x) < 72 + [(aB ~ 305)/81 + 4] x 92 < a8 + 68 and so, from the previous proof, 
S2(x) = os- Now, x must have at least (a8 — 305)/81 97s in its base 10 expansion since 
otherwise S2(x) < 72 + 5 x 82 + [(a8 ~ 305)/81 - 1] x 92 < as. So we have 

(o-8-305)/81 

x = ata^^a^a^ 999 . . . 99 , 

with 0 < a\ < 7, and a± < a2 < a$ < «4 < a§ < 9. Since S2(x) = CJ§, we have Y2i=i a f ~ 305. 
A computer search shows that the only solution is x = a9. O 
Theorem 4: The least happy number of height 10 is 

(cr9-93)/81 
aw = 259 x 10(^889x103—0--soe)/81_94] /81 _ 1 = 2 5 8 ^ ^ 

Proof. <JIO is a happy number of height 10, since $2(0*10) = o$. Let x < 0*10 be a happy 
number of height 10, with nondecreasing digits. Then S2(x) < 22 + [(a9 - 93)/81 + 2] x 92 < 
erg + 73 and so, from the previous proof, S2(x) = a9. We see that x must have at least 
(<r9 — 93)/81 — 4 93s in its -base 10 expansion since otherwise S2(x) < 22 + 7 x 82 + [(erg — 
93)/81 - 5] x 92 < cr9. So we have 

(<79-93)/81-4 

x = aia2«3«4«5«6«7 9999 99 , 

with 0 < a± < 2, and a\ < a2 < as < 04 < a§ < a® < a*? < 9. Since S2(x) = 0*9, we have 
X)I=i al ~ 417. A computer search shows that x = o\$. D 

This method can certainly be extended to find additional least happy numbers of given 
heights. There are a few obstacles to be dealt with. The main one is simply finding a good 
candidate for the least happy number, thus bounding the size of the numbers being considered. 
It's ahrays possible to find a happy number of a given height: simply take a happy number of 
the next smaller height and string that many l 's in a row. More efficient is taking as many 
9's as possible, then adding digits as needed to obtained the desired sum. This explains the 
divisions by 81 that appear in the expressions for a9 and a\Q. 

The problem is in finding a good candidate for the least happy number of a given height. 
If the candidate is too large, then the size of the search through sums of squares may be 
prohibitive. Further, it may be impossible to prove that the image under S2 of the least happy 
number of the desired height must be the least happy number of the next smaller height or even 
a permutation of its digits. This could lead to the need for separate searches for additional 
happy numbers of smaller heights. 
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It may be that these two problems are not solvable by finding a good candidate. Theo-
retically, it may be that even with the least happy number found, the search through sums of 
squares may take too long. It would be interesting to know if there is a bound on the size of 
the search, that is on the number of unknown digits, regardless of the height involved. 

3 . C U B I N G H E I G H T S 

In this section, we apply the methods developed in Section 2 to the problem of finding 
least cubic happy numbers of given heights. Table 2 gives the least cubic happy numbers of 
heights 0 through 8. 

height 
0 
1 
2 
3 
4 
5 
6 
7 
8 

cubic happy number 
I 
10 
112 

1189 
778 

13477 
238889 x 1016 - 1 

1127 x io 3 2 7 6 9 4 1 0 1 5 0 8 9 1 6 3 2 3 7 — l 
35678 x io(1127x1o3276941016089163:!37-1055)/729 _ 1 

Table 2: The least cubic happy numbers of height 0-8. 

As in the last section, we start by computing the heights of all cubic happy numbers less 
than 20,000. This gives us the least cubic happy numbers of heights 0 through 5. To save 
computing time we use the fact that all cubic happy numbers are congruent to 1 modulo 3, 
since S3 preserves congruence classes modulo 3. In the case of happy numbers, we used the 
fact that a positive integer x is not a happy number if and only if, for some m > 0, S^(x) = 4. 
For the cubic case, we use the fact that a positive integer congruent to 1 modulo 3 is not a 
cubic happy number if and only if, for some m > 0, Sf{x) E {55,136,160,370,919}. (See [1] 
or [2].) 

Our method of proof is basically as in Section 2. We consider a positive integer x less 
than or equal to our claimed least cubic happy number and prove that x must, in fact, equal 
our candidate. Obviously, in place of a search through sums of squares, we do a computer 
search through sums of cubes. Otherwise, the algorithm is the same. 

Again, we begin with a lemma that is immediate from the computation finding the heights 
of cubic happy numbers less than 20,000. 
L e m m a 5: The only cubic happy numbers of height 5 less than 16,000 are 13477, 13747, 
13774, U377, 14737, and 14773. 
T h e o r e m 6: The least cubic happy number of height 6 is 

w 
76 = 238889 x 1016 - 1 = 2 3 8 8 8 8 ^ 9 . 
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Proof. Since £3(76) = 13747 is a cubic happy number of height 5, 76 is a cubic happy num-
ber of height 6. Let x < je be a cubic happy number of height 6 with digits in nondecreasing or-
der. Then S3(x) < 2 3 +21 x 93 = 15317. Since S3(x) must be a cubic happy number of height 6, 
by Lemma 5, we have that S3(x) E {13477,13747,13774,14377,14737,14773}. Further, x must 
have at least 13 9Js in its base 10 expansion since otherwise S3 (x) < 2 3 +9 x 83 +12 x 93 = 13364 
which is too small. This gives us that 

13 

X = aia2«3®4«5C&6a7&8G9 99 . . . 9 , 

with 0 < a\ < 2, and a\ < a^ < a3 < «4 < a§ < CLQ < ay < as < ag < 9. We search 
for combinations such that jfi=i «? + 13 x 93 e {13477,13747,13774,14377,14737,14773}. A 
computer search shows that the only solution is 

16 

x = 2388889. . .9 = 76 . D 

T h e o r e m 7: The least cubic happy number of height 7 is 
( 7 6 -226)/729 

7 7 = 1 1 2 7 X 103276941015089163237 _ ± = n 26 ^99^99 . 

Proof. It?s easy to verify that 77 is a cubic happy number of height 7. Let x < 77 
be a cubic happy number of height 7 with digits in nondecreasing order. Then S3(x) < 
I 3 + [(76 - 226)/729 + 3] x 93 < 75 + 1962. Prom the computer search in the previous proof, 
it follows that S3 (a:) = 76- Now, x must have at least (76 — 226)/729 — 6 9?s in its base 10 
expansion since otherwise S3(x) < I 3 + 10 x 83 + [(76 - 226)/729 - 7] x 93 < *ye. So 

(7 6 -226) /729-6 

x = aia2a3a4La§a®a7a%a®aiQ 99999. . . 999 , 

with 0 < a\ < 1, and a% < a2 < a3 < a4 < a$ < a® < a? < a® < ag < a±o < 9. Since 
S3 (a;) = 76, we need X ^ = i a ! = 4600. A computer search shows that the only solution is 
x — 77. • . . 
T h e o r e m 8: The least cubic happy number of height 8 is 

(77-1054)/729 

7 8 = 35678 x 1 0("27xio—«o1 5os9 1 6 3 2,r_1 0 5 5 ) / 7 2 9 _ x = 3 5 6 7 7 & - ^ 

Proof. As usual, we start by noting that j% is indeed a cubic happy number of height 
8. Now, let x < 78 be a cubic happy number of height 8 with digits in nondecreasing order. 
Then S3(x) < 3 3 + [(77 - 1054)/729 + 4] x 93 = 77 + 1889. Prom the computer search in the 
previous proof, it follows that S3(x) — 77. Now, x must have at least (77 — 1054)/729 — 4 9Js 
in its base 10 expansion since otherwise S3(x) < 3 3 + 9 x 83 + [(77 - 1054)/729 - 5] x 93 < 77. 
So 

(77-1054)/729~4 

x = aia2«3a4«5«6«7«8«9 99999...999 , 

with 0 < a\ < 3, and a\ < a2 < a3 < 04 < a§ < a® < aj < ag < ag < 9. Since S3(x) — 77, we 

need X^=i ai = 3970. A computer search shows that the only solution is x = 73. D 
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1, I N T R O D U C T I O N 

For any prime p let us define the modular Fibonacci set Fib[p] to be the subset of Fp = 
{ 0 , 1 , . . . ,,p — 1} (the finite field with p elements) consisting of all the terms appearing in the 
Fibonacci sequence modulo p. For example, when p = 41 we have the Fibonacci sequence 
modulo 41 

1,1,2,3,5,8,13,21,34,14,7,21,28,8,36,3,39,1,40,0,40,40,39, 

38,36,33,28,20,7,27,34,20,13,33,5,38,2,40,1,0, . . . 

so that the corresponding modular Fibonacci set will be 

Fib[41] = {0,1,2,3,5,7,8,13,14,20,21,27,28,33,34,36,38,39,40} C P4i-

Of course there are plenty of ways of picking up a special subset of Fp for any prime p. One 
possible choice would be to select within any finite prime field Fp the set of all perfect squares 
modulo Pi say Sq[p] so that, for example, 

Sq[ll] = {0 , l , 3 ,4 ,5 ,9} . 

An interesting thing about the sets Sq[p] is that they admit a uniform description by a first-
order logical formula, namely 

#(X) = (3Y)(X = Y2) 

The above <1>(X) is a first-order formula written in the language of rings such that for any 
prime p the subset Sq[p] of Fp coincides with the set of all elements x E Fp satisfying # : 

Sq[p] = {x E F p : #(x) true}. 

In a more technical language, we can say that the perfect squares are first-order definable. 
At this moment the following natural question can be asked: is there a formula 0(X) that 

defines in each field Fp the set Fib[p]? By providing a negative answer to the above question, 
the present note establishes a worth noting, albeit negative, property of the family of modular 
Fibonacci sets. Our main result is the following: 
T h e o r e m 1: There is no formula 6{x) written in the first-order language of rings that defines 
in each field Fp the set Fib[p]. 

For basic concepts of logic and model theory, including that of elementary formula one 
may consult [1]. An essential role in the proof of Theorem 1 will be played by the following 
result [2] estimating the number of points of definable subsets of finite fields: 
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T h e o r e m 2: If 0(X) is a formula in one free variable X written in the first-order language of 
rings, then there are positive constants A, B, and positive rational numbers 0 < /ii < • • • < 
/£& < 1 such that for any finite field F g , if Nq(0) represents the number of elements a G Fq 

such that 0(a) is true, either 
Nq(0) < A 

or 
\Nq(0)-iaq\<By/q 

for some « E { 1 , . . . , k}. 
Example . Consider 

9{x) = ( 3 * i ) . . . (3Yn)[(X + 1 .= Y?) A • • • A (X + n = Yn
2)] 

so that 9(X) asserts that X - f l , X + 2 , . . . , X + n are perfect squares within the field. In 
this case one can take k = 2 with /xi = l / 2 n and / j 2 = 1. The first value, /ii , stands 
for the fields of odd characteristic. Indeed, according to a classical result of Davenport, the 
number N = iV(si, er2, . . . , en) of elements x G GF(q) for which the Legendre character takes 
n preassigned values £i,£2> • • • > £n on a; + di, x + d 2 , . . . , x + dn, can be estimated ([4], p. 263) 
as N = q/2n + 0(n^/q) with an absolute implied constant. The second value /x2 stands for the 
finite fields of characteristic two, in which every element is a square. 

29 P R O O F O F T H E M A I N R E S U L T 

In order to apply Theorem 2 to the proof of our main result, we will need a result on the 
cardinalities of the modular Fibonacci sets Fib[p]. 
P r o p o s i t i o n 3: For any e > 0 there exists a prime p such that 

|Fib[p]| <pe. 

Proof: From [3] and [5] it follows that if k(p) is the period of the Fibonacci sequence modulo 
p, then p/k(p) is an unbounded function of the prime p. Proposition 3 is a straight-forward 
consequence of this fact. 

We now proceed to the proof of Theorem 1. Let us suppose, by contradiction, that there 
exists some formula 0(X) in the first-order language of rings, with the property that for any 
prime p and any x G P p 

x G Fib[p] <^0(x) true in P p . 

Let A, B and 0 < //i < • • • < /i*; < 1 be the constants associated to the formula 0 by Theorem 
2. It follows then for any prime p, either 

|Fib[p]| < A (1) 

or 
\\Fib\p]\-w\<By/p (2) 

for some i G { 1 , . . . ,&}. Note that (1) fails for all sufficiently large p, since the sequence of 
Fibonacci numbers is strictly increasing after the second term. Thus, for p big enough it is 
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(2) which must be true. However, by proposition 3, there are arbitrarily large p for which (2) 
fails for i — 1 , . . . , k. Thus a formula 9(X) as above cannot exist. 
R e m a r k : In the same way one can prove that there is no finite set {0i(X),...,9n(X)} of 
first-order formulas written in the language of rings such that for each prime p some formula 
Oi(X) defines Fib[p] in the field F p . 

R E F E R E N C E S 

[1] C.C. Chang and H.J. Keisler. Model Theory. Second Edition, North-Holland, Amsterdam, 
1977. 

[2] Z. Chatzidakis, L.v.d. Dries and A. Macintyre. "Definable Sets Over Finite Fields." 
Crelle Journal 427 (1992): 107-135. 

[3] D. Jar den. "Unboundedness of the function [p-(5/p)]/a(p) in Fibonacci's sequence." A.M. 
Monthly 53 (1946): 426-427. 

[4] R. Lidl and H. Niederreiter. Finite Fields. Second Edition, Cambridge University Press, 
1997. 

[5] J. Vinson. "The Relation of the Period Modulo m to the Rank of Apparition of m in the 
Fibonacci Sequence." The Fibonacci Quarterly 1 (1963): 37-45. 

AMS Classification Numbers: 11TXX, 11B50 

* * * 

2003] 309 



A NIM-TYPE GAME AND CONTINUED FRACTIONS 

Tamas Lengyel 
Occidental College, 1600 Campus Road, Los Angeles, CA 90041 

(Submitted April 2001-Final Revision July 2001) 

1. I N T R O D U C T I O N 

In the two-person nim-type game called Euclid a position consists of a pair (a, b) of positive 
integers. Players alternate moves, a move consisting of decreasing the larger number in the 
current position by any positive multiple of the smaller number, as long as the result remains 
positive. The first player unable to make a move loses. In the restricted version a set of 
natural numbers A is given, and a move decreases the larger number in the current position 
by some multiple A E A of the smaller number, as long as the result remains positive. We 
present winning strategies and tight bounds on the length of the game assuming optimal play. 
For A = Afc = {1,2,. . . ,&},& > 2, the winner is determined by the parity of the position of 
the first partial quotient that is different from 1 in a reduced form of the continued fraction 
expansion of b/a. 

Apparently, the game was introduced by Cole and Davie [1]. An analysis of the game and 
more references can be found in [1,7] (see also [3]). The goal is to determine those a and b 
for which the player who goes first from position (a, b) can guarantee a win with optimal play. 
There is no tie and the game is finite so one of the players must have a winning strategy for 
each starting position (a, 6). The winning positions are intimately related to the ratio of the 
larger number to the smaller one when compared to the golden ratio, # = 1 "y 5 « 1.6180, as 
it is demonstrated by 

T h e o r e m A: Player 1 has a winning strategy if and only if the ratio of the larger number to 
the smaller in the starting position is greater than # . 

The winning strategy can be described in terms of the set W of all unordered pairs 
(a, 6), a, b > 0, with the property that b/a > # , or a/b > # and its complement set £ . It is 
showed [1,8] that for any pair in W, there is at least one move that leaves a pair in £ , and for 
any pair in £ , all legal moves leave a pair in W. We describe the solution in geometric terms 
in Section 2. 

Without-loss of generality, we can assume that a < b for the starting position (a, b). 
(Afterwards, whenever it is helpful, we automatically rearrange the terms so that the first 
number is the smaller one as long as the numbers are different.) Accordingly, Player 1 has a 
winning strategy if and only if b/a > # . We study a simple variation of the game in Section 
3. It leads to the use of the Euclidean algorithm to obtain the continued fraction expansion 
relevant to the game. In Section 4 this approach is applied to the original game, and results on 
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its length L(a,b) are also given. Generalized versions of the game are introduced and analyzed 
in Section 5. 

2. T H E G E O M E T R I C A P P R O A C H 

We consider the open cone defined by £ = {(z,y)\x,y > 0 ,1 /# < y/x < # } . The goal of 
the game is to move to the diagonal y = x and thereby prevent the other player from making 
further moves. We have two cases depending on whether (a, 6) is in £ or not. The following 
two properties describe the differences and are illustrated in Figures 1-3. 
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Figure 1 Figure 2 Figure 3 

(i) For every pair (a,b),a / 6, there is exactly one direction (horizontal or vertical) in which 
one can make a legal move. From a position (a, b) G £ there is only one legal move, and 
it leads to a position outside £ . 

(ii) For every a there are exactly a points in £ with x = a. Therefore, if a < 6, then there is a 
unique integer multiple of a, say d = Xa, such that decreasing b by d places the new pair 
(a, b - d) in £ provided (a, 6) £ £ . 

The first graph shows that (a, 6) with a < 6 forces a downward move while we must move 
to the left if a > k Note that the case (a, b) with a > 6 can be reduced to the one with a < b 
by a reflection with respect to the line y = x. If (a, 6) G £ , a < 6, then a < b < 2a and thus 
(a, 6 - a) is the only legal move from (a, b) (Figure 2). It is easy to see that ^ > # , yielding 
property (i). Property (ii) is illustrated in Figure 3. For every integer a there are exactly 
a points with integer coordinates on the line x = a within the cone £ . This follows by the 
observation that the line x = a meets £ in a segment of length # a - ±a = a. If (a, b) £ £ 
then, by the irrationality of $ , there is exactly one move leading to a point (a,V) G £ for 
some integer V', as opposed to the case (a, 5) G £ when the only legal move will take the player 
outside £ (Figure 2). 

In case of the optimal play the loser has only one legal move available to him at each 
step, i.e., his moves are forced upon him and.he cannot even extend the length of the game. 
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Figure 4 illustrates two typical games: the starting position (9,2) and (11,8) give the winning 
strategy to Players 1 and 2, respectively. In Section 5 we introduce variations of the game in 
which restrictions on the moves guarantee that even the loser has choices to make. 

Figure 4 

3. A V A R I A T I O N A N D T H E E U C L I D E A N A L G O R I T H M 

In this section, we turn to a deterministic version of the game. Players alternate moves, 
and a move decreases the larger number in the current position by the smaller number, as 
long as the result remains positive. The first player unable to make a move loses. The 
reason for introducing this variation is to understand how simple continued fractions help in 
analyzing these and the original games. In fact, the notion of continued fractions is based 
on the process of continued alternating subtractions [2]. We can express rational numbers as 
continued fractions by using the Euclidean algorithm. First we take the finite simple continued 
fraction expansion of b/a = [ a 0 , a i , a 2 , . . • ? a n ] . The natural number a» is called the ith partial 
quotient (or continued fraction digit) of b/a. (Note that we start indexing at i = 0.) This form 
provides us with a representation of the steps of this game. Note that if b = qa-hr with integers 
q and r(0 < r < a), then q = a0. After a0 consecutive subtractions of a from 6 the remainder 
becomes smaller than a. We switch their roles and keep continuing the subtractions until 
r = 0, at which point a = b. The number of legal moves in this game is a0 + a\ -\ f- an - 1; 
thus Player 1 wins if and only if YH=O ai *s e v e n -

Note that if an ^ 1 then the n + 1-digit [ o 0 , a i , a 2 , . . - , a n ] and the n + 2-digit 
[ao,ai,a25.. . a n _ i , a n - 1,1] forms stand for the same rational number and the digit sum 
is not affected. The former expansion is called the short form. In this paper we always use 
short forms. 

Asymptotic results for the average of length L'(a, b) = J2?=o a< - 1 of the game are given 
in [2]. 
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4* THE CONTINUED FRACTION BASED APPROACH 

We can also completely describe the winning strategy for the original game in terms of 
the partial quotients a» of b/a, a <b. If b/a = [ao, a i , . . . , 0^+1] = [1,1, , 1], i.e., at- = 1 for 
each i = 0 , 1 , . . . , n + 1, then we switch to the short form [ao, a i , . . . , a n - i ? 2] with a» = 1, i = 
0 , 1 , . . . , n — 1. (Note that this happens only if we divide two consecutive Fibonacci numbers.) 
In this way, we can guarantee that at least one of the partial quotients is different from 1. 

Clearly, as long as ai — 1, i = 0 , 1 , . . . , k — 1, players are forced to take the smaller number 
from the larger. If the next quotient a& / 1, then we say that a& is the first digit different from 
1. For any position (a, 6), a < b, with b/a = [ao, a±,..., an], the actual move of taking Xa from 
b can be specified by the positive integer multiplier A. The resulting position can be described 
by the fraction [ a i , . . . ,an] if A = ao or [ao — A , a i , . . . , an] if A < ao. Clearly, every move 
affects the actual first continued fraction digit only. The following theorem was suggested by 
Richard E. Schwartz [6]. 

T h e o r e m 1: Let [ao ,a i , . . . ,an] with an > 2 be the continued fraction expansion of b/a for 
the starting position (a, 6), a < b. Player 1 has a winning strategy if and only if the first partial 
quotient a% that is different from 1 appears at a position with an even index. In other words, 
the first player who can actually make a non-forced move has a winning strategy. 

This theorem is the explicit form of the statement made by Spitznagel [7] who noted that 
"the opponent of someone following the (winning) strategy is likely to notice his moves are 
being forced every step of the way, and from this observation it might be possible for him to 
determine what the strategy must be." 

Note that the short continued fraction notation guarantees that there is a digit different 
from 1, namely an > 2. We use the notation e^+i = [ajb+i,ajH-2j - • • ,fln]. 

Proof: If ak > 2 then the player facing the ratio b'/a' — [a*.,..., an] can win. This means 
that once a player meets the first partial quotient different from 1 then she can win, and the 
other player will face a 1 in every consecutive step (otherwise a reversal of strategy would 
be possible). Assume that we have already removed the leading Is from the expansion and 
k < n. We will see that the optimal play closely follows the continued fraction expansion by 
processing and removing consecutive digits. It takes one or two moves (one for each player) 
to eliminate the actual digit. We have two cases. 
(*) If efc+i < # then this player can take akaf from ¥ leaving y — e&+i behind, with l / # < 

1 < ejfc+x < # . Note that a^+i = 1 follows. In this case there is a single move used to 
remove a& from the expansion to get position (a;/, b") with ratio y = [a^+i, 0^+2, - - -, an] = 
[i?«&+2? - • • jflfi]-
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(**) Otherwise e^+i > # and player takes only (a&—l)a! from V leaving y =. [1, a,k+i, a&+2, • • •, «n] 
behind. Once again y < # , for 

l / # < 1 < y = 1 + 1/ejb+i < ! + ! / # = # . 

The pair (af^b") left for the other player has ratio y = bli /als < # . Therefore, y has a 
continued fraction expansion starting with 1 and thus the other player is forced to take 
a11 from b". In this case it takes two moves to remove a& from the continued fraction 
expression. 
In any case, after the other player's move is finished, we get b ~tf =^77 — 1 < # — 1 = ^ . 

We set bm — a11 and a111 — b11 — a;/, flip the numerator and denominator, and derive that the 
resulting ratio bm/am > # . With d = [bm/am\ > 1 we can rewrite V"/am = d+\ > # . 
In fact, d = a.k+2 and z = [0^+3,0^+4,... ,a n ] if we followed (*), while d = a&+i and z = 
[a&+2, «fe+33 • - -, Q>n] if w e u s e d (**)• The case d > 2 can be reduced to that of a& > 2. If d = 1 
then 1/z > # — 1 = l / # , i.e., z < # , and we proceed with the argument used in (*), with z 
playing the role of efc+i. 

We can continue this until k becomes n when the player can take the (an — l)-times multiple 
of the smaller number from the larger one, leaving equal numbers for the other player, who 
will be unable to make a move. • 

We repeatedly applied the simple fact that 1 + ~ > # if and only if z < # . The player with 
winning strategy cannot make a mistake if she wants to win. In summary, she can (and must) 
always leave y = [1, uo, U±, . . . , um] with u = [UQ, U\, . . . , um] > # behind for the other player. 
This makes y < # and forces the other player to simply take the actual smaller number from 
the larger one. In turn she will face a position with a "safe fraction" u > # , i.e., a position 
outside C. 

R e m a r k : Theorems A and 1 both give a necessary and sufficient condition for Player 1 
to have a winning strategy. This way we obtain a characterization of the condition that 
x = [oo, cii,. - •, cbn] is greater than # in terms of the parity of the location of the first continued 
fraction digit a% different from 1. This is in agreement with the fact that # = [1 ,1 ,1 , . . . ] , and 
the convergents alternately are above and below the exact value. 

Assuming optimal play by the winner, tight bounds for the length L(a, b) of the game are 
given in 

T h e o r e m 2: Let [ao ,a i , . . . ,a n ] with an > 2 be the continued fraction expansion of b/a for 
the starting position (a, 6), a < b. For the number L(a,b) of steps of the game we get that 

n + 1 < L ( a , 6 ) = n + l + ] T l < 2 n + l . 
&fc>2 

[ak+i , . . . ,an]>$ 
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The lower bound is attained if and only if the partial quotients are equal to 1 at all even or all 
odd positions. The upper bound is reached if and only if all partial quotients are at least 2. 

Note that we use the short notation. For example, the position (5,13) has ratio 
13/5=[2,1,1,2]; hence the lower bound is not attained according to the theorem. In fact, 
L(5,13) = 5. The long form 13/5 — [2,1,1,1,1] does not satisfy the condition an > 2 of the 
theorem. 

Proof: The proof is based on that of Theorem 1. The lower bound assumes that there 
are only simple moves, i.e., either a 1 is removed or (*) is used. In the latter case, if for some 
k and m > k : a& ^ l,a&+i = • • • = a m _ i = 1, and am ^ 1, then m — k must be even to 
guarantee that e&+i < $ by the Remark made after Theorem 1. 

The identity for £(a, b) follows from the observation that an extra move is made when a 
player applies (**), i.e., when the conditions a& > 2 and e&+i > # are satisfied. 

To reach the upper bound a& > 2, k = 0 , 1 , . . . , n, suffices. In this case the game and 
the Euclidean algorithm are closely related in the following sense. At any position (a, 6), if 
b = qa + r,q > 2,0 < r < a, then Player 1 takes q — 1 (rather than q) times a away from b. 
If r = 0 then the game is over. Otherwise, the other player is left with no other choice but to 
take a from b — (q — 1) • a, for a < b — (q — 1) • a < 2a. If the original ratio is b/a = [ao,ai,...,an] 
then, at each step. Player 1 will take ao — 1, a± — 1 , . . . times the actual smaller number from 
the actual bigger one while Player 2 always subtracts the smaller one from the bigger one (and 
stops when the numbers are equal). Note that Player 1 has a winning strategy when the upper 
bound is attained. D 

Examples : The games illustrated in Figure 4 have length 2/(9,2) = 3 for 9/2 = [4,2] (better 
yet 9/2 = [4+,2]), and £(11,8) = 4 for 11/8 = [1,2,1,2]. (The symbol + in the subscript 
indicates that an extra step is needed due to passing through (**). ) 

Example: reverse games: We can.reverse the continued fraction digits of b/a to get the 
"reverse" game. If b/a — [ao, a i , . . . , an] and gcd(a, 6) = 1 then we take c = [an, a ^ - i , . . . , ao] 
in its short form. It is easy that the numerator of c (in lowest terms) is &, i.e., c = b/aF with 
some a! such that gcd(a;,6) = 1. If ao > 1 then for the "reverse'1 game starting at position 
(a\b) we obtain L(af,b) = L(a,b). For example, 18/7 = [2+ , l , l ,3 ] gives 2/(7,18) = 5 and 
a reverse 18/5 = [3+, l , l ,2 ] which takes L(5,18) = 5 steps. If Player 2 has the winning 
strategy then L(a;,6) = L(a,6) — 1; otherwise L(af^b) = L(a,6) by the Remark made after 
Theorem 1. In fact, 43/25 = [1,1,2+, 1,1,3] has L(25,43) = 7 and 43/12 = [3+, 1,1,2+, 2] 
gives 1,(12,43) = 7. 

The game favors Player 1= In fact, Player 1 has more than 60% chance of winning [7]. 
Assuming that the average behavior' of integers 0 < a < b < N approximates that of the 
random reals in [0, N] and using the goemetric approach. Theorem A suggests l / # w .618 for 
the winning probability in the following sense: l im^^O 0 P((ajb) E W\a <b < N) = l / # . 
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The length n + 1 of the shortest game is the running time of the Euclidean algorithm, and 
its average is asymptotically 12*f2 InJV « 0.843InN for randomly selected starting positions 
(a,b),a < b < N, as N —> oo (cf. [2]). (The worst case scenario for the length of the shortest 
game occurs for Fibonacci-type games, i.e., when the starting position is (a, b) = (qn+i,pn+i) 
for some n > 1 such that pn+2 = Pn+i +Pn and qn+i — pn with po = 1 and integer pi = c>2. 
The resulting ratio is b/a = [ao, a i , . . . , an] = [ 1 , 1 , . . . , l ,c] , and the length is asymptotically 
^ f « 2.078 InN in this case.) 

For the length L(a, 6) computer simulation suggests that it takes about 9-10 steps on the 
average to finish games with starting positions (a,b),a < b < 10000. 

5. T H E R E S T R I C T E D G A M E : R E D U C T I O N A N D G E N E R A L I Z A T I O N S 

In this section, emphasizing the competitive nature of the original game, we discuss its 
restricted versions which, at the same time, generalize the version discussed in Section 3. Given 
a set of natural numbers A, players alternate moves, and a move decreases the larger number 
in the current position by some multiple A E A of the smaller number, as long as the result 
remains positive. The first player unable to make a move loses. For the original game we have 
A = { 1 , 2 , 3 , . . . } . We are interested in various subsets of this set. Theorems 4, 5, and 6 give 
the complete analysis for three different subsets. The simplified deterministic game of Section 
3 works with A = {1}. By the connection between the game and the corresponding continued 
fraction expansion we can easily see 

P r o p o s i t i o n 3: Theorems 1 and 2 can be extended to hold under the conditions A = A& = 
{1 ,2 , . . . ,&},6/a = [aoyai,. • • ,an] with a < b^ai E {1 ,2 , . . .,&} for all i = 0 , 1 , . . . ,n , and 
an > 2. 

The next interesting case is A = A2 with no restrictions on the a^s. We sketch the 
analysis of this game and characterize winning strategies in Theorem 4. The general case of 
A& is covered by Theorem 5. There is an evident parallelism with the original game though 
the restricted version seems more fair and interesting, for it is no longer true that the first 
player who can actually make a non-forced move has a winning strategy. 

We introduce a reduction of the partial quotients of [ao, « i , . • . , an] resulting in a reduced 
sequence of digits [ ro , r i , . . . , r m ] made of Is and 2s only. This form helps us in finding the 
player with a winning strategy. In fact, the characterization of a winning strategy in terms 
of the digits of the reduced sequence reminds us of that of the original games. Once a player 
meets the first digit r» different from 1 then she can win by never letting the other player face 
a 2 in the reduced sequence. 

Every partial quotient a* > 4 can be replaced by a 1 if a* = 1 mod 3 and by a 2 if 
a{ = 2 mod 3. Any multiple of 3 simply can be dropped from the continued fraction expansion 
as it gives benefit to neither player: it can be used for keeping one's turn but cannot be 
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used to switch turns. (Although this fact can be seen directly, a formal justification of this 
rule will come out in Cases (e) and (f) in the proof of Theorem 4.) We append a 2 to the 
end of all reduced sequences not ending in a 2. For example, after replacements, we get 
11/9= [1,4,2] =* [1,1,2] and 36/29 = [1,4,7] => [1,1,1,2], and Player 1 and Player 2 can 
win in the respective games. In both cases the first 2 characterizes the goals of Player 1: in 
the former one Player 1 will force Player 2 to finish the removal of the partial quotient 4. In 
the latter one, Player 1 tries to accomplish the removal of 4 but Player 2 can prevent it from 
happening by moving to 3, and then to 0, thus forcing Player 1 to face the last quotient 7, 
then 4 and 1. Remarkably, the conditions of Theorem 1 still work. 

T h e o r e m 4: For the game A = A2, Player 1 has a winning strategy if and only if in the 
reduced form the first digit r» that is different from 1 appears at a position with an even index. 

Proof: The proof is done by induction on the length of the reduced sequence 
[ ro , r i , . . . , r m ] . We give only the main ideas. Let x = [ao ,a i , . . . , a n ] be a ratio with re-
duced form [ro, r i , . . . , r m ] , r» E {1,2}, i = 0 , 1 , . . . , m. Player 1 refers to the player facing x. 
The statement holds for m = 0, i.e., reduced sequences of length 1. In this case, the a^s are 
multiples of 3 potentially followed by a last digit an = 2 mod 3. Winning by Player 1 is assured 
(cf. Cases (e) and (c) below). Suppose that the statement is true for any reduced sequence 
[ n , r 2 , . . . , r m ] of length ra. 

We prove that any reduced sequence [ r 0 , r i , r 2 , . . . , r m ] of length m + 1 means a win for 
Player 1 if the first digit is ro = 2 or if the player facing the sequence [ r i , . . . , r m ] loses. Nothing 
changes if the first digit ao is dropped. We have six cases. The first two deal with ro = 1, while 
the next two are concerned with ro = 2. The last two refer to cases when ao is removed, i.e., 
when a0 is a multiple of 3. Each step involves a goal to be met by the player with a winning 
strategy. 

Case (a): The player faced with [n, r 2 , . . . , rm] wins and ao = 1 mod 3. Any move with 
miltiplier A by Player 1 can be complemented by Player 2 using a move with multiplier 3 — A 
to yield a'0 = 1 mod 3, and finally forcing Player 1 to remove the first digit of x, leaving Player 
2 in a winning position [n , r 2 , . . . , r m ] . 

Case (b): The player faced with [ r j . , ^ , . . . , r m ] loses and ao = 1 mod 3. Player 1 can 
always move to some af

Q congruent to 0 mod 3 and finally remove the first digit of x. This 
makes Player 2 start with [ri, r 2 , . . . , rm] and hence Player 1 a winner. 

Case (c): The player faced with [ r i , r 2 , . . . , r m ] wins and ao = 2 mod 3. Player 1 can 
always move to some af

0 congruent to 1 mod 3 and finally force Player 2 to remove the first 
digit of x. Now Player 1 is facing [ri, r 2 , . . . , rm] and wins. 

Case (d): The player faced with [ r i , r 2 , . . . , r m ] loses and a0 = 2 mod 3. Player 1 can 
always move to some af

0 congruent to 0 mod 3 and finally remove the first digit of x. This 
makes Player 2 start with [n , r 2 ? . . . , rm] and hence Player 1 is a winner. 
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Case (e): The player faced with [ r i , r2 , - . • , r m ] wins and O,Q = 0 mod 3. Player 1 can 
always move to some af

Q congruent to 1 mod 3 and finally force Player 2 to remove the first 
digit of x. Now Player 1 is facing [n , r 2 , . . . , rm] and wins. 

Case (f): The player faced with [ri,r2, - -. ,rTO] loses and a® = 0 mod 3. Any move with 
multiplier A by Player 1 can be complemented by Player 2 using a move with multiplier 3 — A 
to yield a'0 = 0 mod 3. Finally Player 2 removes the first digit of x. Now Player 1 is facing 
[ r i , r 2 , . . . , r m ] and loses. This completes the inductive step. • 

Note that if the first digit is reduced to 1 then it acts like a negation, i.e., changing the 
winner-loser relationship based on [n , r 2 , . . . , rm] in agreeement with the theorem. The optimal 
play can be established by processing the reduced sequence backwards, i.e., from right to left 
and setting goals for the moves in accordance with the proof. At the end, the winning strategy 
emerges as a sequence of instructions on how to remove the digits of the original continued 
fraction one by one, from left to right. The following examples illustrate the process. 

Example : The starting position (6,19), i.e., 19/6 = [3,6] reduces to [2] which is a win for 
Player 1. As [6] reduces to [2], which is a win for Player 1, we proceed with Case (e). The 
goal for Player 1 is to always move to some value v = 1 mod 3 at this digit. As [3,6] reduces 
to [2] again, the same goal is set for Player 1. In terms of the actual steps, Player 1 first finds 
that the first target is v = 1 as v = 1 mod 3. This instructs Player 1 to take twice the smaller 
number from the larger one, i.e., 2 • 6 from 19. It leaves the position (6,7) with 7/6 = [1,6] for 
Player 2 forcing the removal of the quotient 1. Player 1 is presented with 6/1 = [6], i.e., the 
position (1,6). Player 1 has to move to 4 = 1 mod 3 by Case (e) again. In fact, the game is 
completed by taking 2 • 1 from 6 to yield (1,4). Now Player 2 moves to (l,u),u = 2 or 3, and 
Player 1 wraps up the win by moving to 1 mod 3, i.e., (1,1). 

Example : The ratio 2393/459 = [5,4,1,2,6,5] results in [2,1,1,2,2], i.e., a win for Player 1. 
The backward processing provides the following goals: at quotient 5 move to 1 mod 3 by Case 
(c), at 6 move to 1 mod 3 by Case (e), at 2 move to 1 mod 3 by Case (c), at 4 move to 0 mod 
3 by Case (b), and at 5 move to 1 mod 3 by Case (c). Note that 1934/459 = [4,4,1,2,6,5] 
is a win for Player 2 according to the reduced sequence [1,1,1,2,2]. The goals for Player 2 
are similar to those of the previous example for Player 1 except that at processing the first 
quotient 4, Player 2 must move to 1 mod 3 by Case (a). 

For the length £2(0, b) of the game we get L2(a7 b) = 2 X)a»#i f"1f 1 "*"ni ~~ n«iM ~~ * where 
rii and na$^d are the number oia^s that are equal to 1 and the number of times we used Cases 
(a), (b), and (d). 

The general case A = A&, k > 2, is fairly similar to that of A2. Reduction can be applied 
in the following sense: any multiple of k + 1 can be dropped from the continued fraction 
expansion and every partial quotient a\ > 2 can be replaced by a 1 if a% = 1 mod (k + 1) and 
by a 2 if a» = 2 , 3 , . . . , k mod (k + 1). Theorem 4 translates into 

318 [AUG. 



A NIM-TYPE GAME AND CONTINUED FRACTIONS 

T h e o r e m 5: Player 1 has a winning strategy for the game A = A&, k > 2, if and only if in 
the reduced form the first digit TI that is different from 1 appears at a position with an even 
index. For the length Lk(a, b) of the game we get Lk(a, b) = 2 J2ai#i \w±i~\ + ni ~ n " , M ~ I 
where rii and na^d are the number of a^s that are equal to 1 and the number of times we 
used Cases (a), (b), and (d). 

We omit the proof, which closely follows that of Theorem 4 with Cases (c) and (d) referring 
to ao = 2 , 3 , . . . , k mod (k + 1 ) . Note that if k — 1 then we never encounter Cases (c) and (d). 
Cases (a) and (b) correspond to an odd quotient a>i and thus, Li{a,b) is in agreement with 

The winner can be determined by using the reduced sequence in its short form. One might 
think (but the author has not been able to prove) that the winning probability of Player 1 for 
game Ak changes from 1/2 to l / # as A; -> oo. 

The reader might consider other generalizations of the original game. Clearly, A must 
contain 1 if we want the game to be playable until a ratio of 1 is reached. The referee suggested 
selecting A to be the set of all odd natural numbers. It turns out that this version can be 
analyzed similarly to the deterministic game discussed in Section 3 by means of a slightly more 
general 

T h e o r e m 6: For any subset A of the odd natural number containing 1, Player 1 wins if and 
only if the parity of the sum of the partial quotients of b/a is even. 

The proof is straightforward for every move changes the parity of the sum. The game is 
deterministic in the sense that the outcome of the game is not influenced by skill. Only the 
length of the game can be affected by the particular moves. 

Note that one can play the general game on the Stern-Brocot tree, starting at point 1 and 
ending at b/a, by playing n + 1 consecutive subtraction games of sizes a o , a i , . . . , a n - i , and 
an - 1. 
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1. I N T R O D U C T I O N 

DeMoivre (1718) used the generating function (found by employing the recurrence) for the 

Fibonacci sequence Y^Lo ^ix% — i-x-x2 > ^° °btain the identities Fn = a jj? , Ln = an + (5n 

{Lucas numbers) with a = 1+
2 ,/? = 1 -

2 • These identities are called Binet formulas, in 
honor of Binet who in fact rediscovered them more than one hundred years later, in 1843 
(see [6]). Reciprocally, using the Binet formulas, we can find the generating function easily 

E~0^ = ^ESoK-^V = ^(T^-T^) = i^^'si l lce^--1'a + ^ = L 

A natural question is whether we can find a closed form for the generating function 
for powers of Fibonacci numbers, or better yet, for powers of any second-order recurrence 
sequences. Carlitz [1] and Riordan [4] were unable to find the closed form for the generating 
functions F(r,x) of F£, but found a recurrence relation among them, namely 

^ A • 
(1 - Lrx + (-l)rx2)F(r, x) = l + rx J T ( - l ) i _ ^ F ( r - 2j, (-l)jx), 

j=i 3 

with Arj having a complicated structure (see also [2]). We are able to complete the study 
started by them by finding a closed form for the generating function for powers of any non-
degenerate second-order recurrence sequence. We would like to point out, that this "forgotten" 
technique we employ can be used to attack successfully other sums or series involving any 
second-order recurrence sequence. We also find closed forms for non-weighted partial sums for 
nondegenerate second-order recurrence sequences, generalizing a theorem of Horadam [3] and 
also weighted (by the binomial coefficients) partial sums for such sequences. Using these results 
we indicate how to obtain some congruences modulo powers of 5 for expressions involving 
Fibonacci and/or Lucas numbers. 

2. G E N E R A T I N G F U N C T I O N S 

We consider the general nondegenerate second-order recurrence, J7n+i = alln + 
bUn-i,a, 6, J7o, U± integers, 6 = a2 + 46 7̂  0. We intend to find the generating function of 

Also associated with the Institue of Mathematics of Romanian Academy, Bucharest, Romania 
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powers of its terms, ?7(r, x) = Y^Lo ^lx%- ft *s known that the Binet formula for the sequence 

Un is Un = Aan-B/3n, where a = | ( a + V a 2 4-4&),£ = | ( a - V a 2 + 46) and A = u^f,B = 

Ula-Qa• We associate the sequence Vn — an + /?n, which satisfies the same recurrence, with 
the initial conditions VQ — 2, V\ = a. 
T h e o r e m 1: We have 

r - 1 
^ / r \ Ar~2k — W~2k 4- (—h\k(W-2knrr-2k — AT~2kRr~2k\r 

"fr-*)=E(-^*(0-— I - ( - V ! J - ^ • 
ifr is odd, and 

£ i W l - ( - 6 ) * F r _ 2 f c s + 6 ^ 2 

fr\ {-AB)r2 .£ . 
+ ( r J i / n i > Z / r w evm-

Proof: We evalute 

oo / r / \ 

i=0 \fc=0 ^ ' / 

r • \ oo 

= E(I)^(-s)r"fcE(a^r"fca:)i 

= £ \k)Ak{~B)r~\-a^^x-
k=0 

If r is odd, then associating k «-» r — fc, we get 

c/r, x) - V(-i)fcfr>| f A B AB ) 

' r \ J4r_fcBfc - ^ f c
JBr _ f c + (AkBT-kar-kl3k - AT~k Bk ak pT~k)x 

fc=0 V 7 1 - (aki3r~k + ar~k/3k)x + a r /9 r x 2 

D-D'© fc/r\ AT-kBk - AkBr~k + (-b)k(AkBr-kar-2k - Ar~kBk^-2k)x 

k=0 v-x. 1 - (-&)fcK-_2*x - ^ 2 
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If r is even, then associating k «-» r - jfe, except for the middle term, we get 

'r\ ( AkBr~k Ar~kBk \ (r\ A*(-B)* 2 / r \ / AkBr Ar B \ / r \ J 

U(r,x) = E(-Dfcy {, _akf}r-kx + ! _ a , - ^ J + (J I (—6) 2 x 

! fc /Y\ A^B7"-* + ^lr-&Bfc - (AkBr-kar-k0k + AT-kBkakpr~k)x E(-Dfc( 
fc=0 V 

fey 1 - (akpr-k + ar-k/3k)x + ar/3rx2 

+ . • , ( - ^ S ) f ©i 
£(-*) 

2/ * - ( - & ) » a; 

fc / r \ ylfcBT'-fc + Ar_fcBfc - (-6)fe(AfcBr-fcar_2fc + AT-kBkpT-2k)x 
M l-(-b)kVr-2kx + brx2 

, ' r^ ( -AB)i 
§ / ! - ( - & ) * * 

If J70 = 0, then 4̂ = JB = ^r« , and in this case we can derive the following beautiful 
identities. 
Theorem 2: We have 

r - l 

U(r,x) = A-1 ± Q ^ ( ^ I ^ - ^ - ifr iS °dd 

U(rx) A ^ ( l)k(r] 2 ~ ( - b ) f c ^ - ^ /r\ (-l)i^ 

Corollary 3: If {Un} n is a nondegenerate second-order recurrence sequence and Uo — 0, then 

no r\ - ^ i M l - M ,9* 
U(2'x)~ (bx + l)(Px*-V2x + l) [Z) 

£/(3 x) = M ' C M l - * * * ~ &3*2) 
^ ' ' ( l - ^ 3 x - 6 3 x 2 ) ( l + 6Fi a ; -63x2)" W 
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Proof: We use Theorem 2. The first two identities are straightforward. Now, 

= A2 U3 + 36t7i + 6(^3^1 ~ SUiV3)x - h3(U3 + 3M7i)s2 

X (l-Vsx-bZx^il + hVxx-tfx2) 

SA2Uxx{l - 2abx - b3x2) 
~ (1 - V3x - b3x2)(l + bVxx - b3x2)' 

since U3 + 36f7i = (a2 + 46)E7i - «7i and C/j,Vi - 3J7iF3 = -2ofl7i- D 
R e m a r k 4: If Un = Fn, the Fibonacci sequence, then a = 6 = 1, and i/ ?7n = P n , £fte Pe/J 
sequence, then a = 2,6 = 1. 

3. H O R A D A M ' S T H E O R E M 

Horadam [3] found some closed forms for partial sums Sn = Y^=i »̂> ^-w = ]C?=i ^-*» 
where P n is the generalized Pell sequence, P n +i = 2Pn + P n - i , Pi — P? -P2 = Q- Let p n be 
the ordinary Pell sequence, with p = l,q = 2, and gn be the sequence satisfying the same 
recurrence, with p = l ,g = 3. He proved 
T h e o r e m 5 ( H o r a d a m ) : For any n, 

$An = q2n(pq2n-l + M2n) + P ~ ̂  #4n-2 = g2n-l(P^2n-2 + M2n-l) 

S471+I = q2n(PQ2n + M2n+l) - 25 SW-l = q2niPQ[2n-2 + OT2n-l) ~ P 

S-4H = q2n(-pq2n+2 + ̂ 2n+l ) + 3p - q] S-4n-¥2 = q2n(-pq2n + M2u-l) + 2P 

Sr_4n+1 = q2n(pq2n+l ~ 0«2n) + P5 # -4n - l = 92n+l(pg2n+2 ~ OT2n+l) + 2P ~ 9-

We observe that Horadam's theorem is a particular case of the partial sum for a non-
degenerate second-order recurrence sequence Un. In fact, we generalize it even more by finding 
SnAx) = £?=o Uixi- F o r simplicity, we let U0 = 0. Thus, Un = A(an-@n) and Vn = an+/3n. 
We prove 
T h e o r e m 6: We have 

aU (r) Ar-lr^hk(r\ Ur-2k - (-*)»»l7(r-afc)(w+1)*» + ( - f t ^ n - D ^ ^ ^ + l 
bn'r{X) ~ W 1 - (-6)*K_2*ar - ft'*2 ' W 
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if r is odd, and 

2 - (-b)kVr-2kx - (-6)fc("+1V(r_2fc)(n+1)x"+1 + (-by+knV{r_2k)nxn+2 

l-(-b)kVr-2kx + brx2 

if r is even. 
Proof: We evaluate 

i=o fc=o W 

= ArJ2(-iy-k(r\J2(ak^~kxy 
k=0 x ' i=0 

Ar v r - i y * (T\ (^ r " f c ^) n + 1 - 1 

<kj akBr~kx — 1 
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Assume r is odd. Then, associating k <-» r — fc, we get 

r - l 

B , p W _ ^ ; W \ ar- f c i8 f cx-l a*p-*x-l J 

- A
r V f _ i ) t (r\ (<*kl3T~kx - l)(a(r-fc)("+1)/9fc("+1)x"+1 - 1) 

r - l 

Ar 

fc=0 X 7 

-(ar~k/3kX ~ l)(aHn+l)p(r-k)(n+l)xn+l _ ^ 

{akpT-kx - l)(ar-k/3kx ~-1) 

r \ / ar(n+l)-fcn^r+fcnxn+2 _ a(r-k)(n+l) ftk(n+1)^+1 

r - l 

A i>0 
fc=0 V 7 

„akpr-kx _ ar+fcn£r(n+l)-fcnxn+2 + ^ r - f e ^ ^ 

_|_afc(n+l)^(r-fc)(n-rl)a;n+l 

1 - (-6)fc(ar-2fc + fir-2k)x + a r ^ x 2 

fc / r \ ( - 6 ) f c ( a r - 2 f c - /3r~2k)x - ( - f t )*(n+l)( a ( r -2*)(n+l) 

_fl(r-2fc)(n+l)jxn+l _|_ (_^r+fcn/a(r-2fc)n _ g(r-2fc)nWn+2 

1 - (-6)*Fr-2*x - 6 ^ 2 

Assume r is even. Then, as before, associating k 4-> r — k, except for the middle term, we 
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get 

q U ( , _ A r ^ ( ^ f c fr\ 2 ~ ( - b ) f c ( a ^ f c + ^ 2 f c ) x - ( -6 )Mn+l ) ( a ( r -2 ib ) (n + l ) 

fc=0 

_j_/j(r-2fc)(n+l)Wn+l _j_ / jy\r+&n/a(r-2&)n _|_ g(r-2fe)n\xn+2 

l - ( - 6 ) * F r - 2 * * + &r*2 

2 - (-h) f cVr-2 f ca; - ( - f e ) f c ( r a + 1 ) V ( r - 2 f c ) ( n + l ) ^ + 1 + ( - & ) r + f c " V ( r - 2 f c ) n ^ + 2 

1 - (-b)*Vr-2kX + brX* 

Taking r = 1, we get the partial sum for any nondegenerate second-order recurrence 
sequence, with UQ = 0, 

Corol la ry 7: S^x) = ' ^ - ^ ^ " ^ 

R e m a r k 8: Horadarn's theorem follows easily, since Sn = S^i(l). Also S-n can be 
found without difficulty, by observing that F _ n = p p _ n _ 2 + qp-n-\ — — p(—l)n+2pn+2 — 
q(-l)n+1Pn+i, and using S*A(-1). 

4. W E I G H T E D C O M B I N A T O R I A L S U M S 

In [6] there are quite a few identities like YH=O (")** = ^ n , or X)?=0 (1)F^ w h i c h i s 

5 W L „ if n is even, and 5[V-li?nj if n is odd. A natural question is: for fixed r, what is 
the closed form for the weighted sum Y17=o (?)^T fif ** exists)? We are able to answer the 
previous question, not only for the Fibonacci sequence, but also for any second-order recurrence 
sequence Un: in a more general setting. Let SrjTl(x) = $^L 0 (?l)U[x%. 
T h e o r e m 9: We have 

£•,»(*) = E CC)Ak(-BY-k(l + akpr-kx)n. 
fc=o ^ ' 

Moreover, t/Z70 = 0, then• Sr,n(x) = ^ E L o M ^ G K 1 + af c£r _ f ca;)n. 
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Proof: Let 

Sr,n(x) = J2 (fj E (l)(Aai)k(-Bpiy-kxi 

7=Z W t=£ W 

=E(l)^(-r'|:(l)<«v r—km\i 

k=0 x ' 

kor—km\n B)r-k{l+ak$T-kx) 

If U0 = 0, then A = B, and Sr,n(x) = Ar Efc=o(" 1 ) r "*(*)( 1 + a*j8r"*ar)n. D 
Although we found an answer, it is not very exciting. However, by studying Theorem 9, 

we observe that we might be able to get nice sums involving the Fibonacci and Lucas sequences 
(or any such sequence, for that matter), if we are able to express 1 plus/minus a power of a,/3 
as the same multiple of a power of a, respectively /3. When Un = Fn, the Fibonacci sequence, 
the following lemma does exactly what we need. 
L e m m a 10: The following identities are true 

a2s - (-I)3 = VbasFs 

pis _ ( _ 1 ) s = _ ^ s F s 

a2s + ( - l ) s = Lsas 

018 + ( ~ l ) s = LS/3S. 

Proof: Straightforward using the Binet formula for Fs and Ls. • • 
T h e o r e m 11: We have 

fi'4r+2,n(l) = b ^ ^ ^ £ ( ^ ^ ^ r + X - f c ^ r + l - f c ) , if « *» odd 

S4r+2,n(l) = 5*~i2r+1) f ) ( - l ) * ( ^ ^ ^ F2"r+1_fcJLn(2r+1_fc), i/ n as et;en 

54r,n(l) = 5' -2r 

(6) 

(7) 

(8) 

(9) 
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Proof: We use Theorem 9. Associating k «-» 4r + 2 — h, except for the middle term in 
iSr4r+2,7z(l), we obtain 

S4r+2,n(l) = ^ ^ £ ( - ! ) * ( ^ ^ ^ [(l + «*/J4^2"*)" + (l + a4r+2-*/3*)n] 

= 5-(2r+1) £ ( - 1 ) * ( ^ + 2 ) [(1 + (-1)*S4 r + 2-2T + (1 + (-l)fca4r+2-2fc)nl 

= 5-(2r+l) yV_!)fc(n+l) T4f + 2>j |Y(-1)* + ^2(2r+l-^)\n
 + [(_]_)& + a2(2r+l-fc)V 

10) 

We did not insert the middle term, since it is equal to 

5-(2r+i) (_1 )2 r+i (*r + 2 \ ( 1 + a 2 r + 1 ^ 2 r + 1 ) n 

= 5 - ( 2 r + l ) ( _ 1 ) 2 r + l (^ + 2 \ ± + ( _ 1 ) 2 r + l ) n = Q 

In (10), using (6), and observing that a
2 ( 2 r + 1 - f c ) + ( -1)* = a2(2 r + 1- f e) - ( - l ) 2 r + 1 - f c , we get 

54r+2,n(l) = 5 - ( 2 r + 1 ) ^ ( - l ) ( " + 1 ) f c ^ + V ^ ^ , ( ( - I f ^ C ^ + l - * ) + a »PH- l -* ) ) . 

Therefore, if n is odd, then 

5 W „ ( 1 ) = 5 - ^ £ ( 4 r + 2 ) 5 ^ F 2 " r + 1 _ f c F n ( 2 r + 1 _ f c ) 

and, if n is even, then 

2r / \ 
S4r+2,„(1) = 5-(2 r + 1)E(- l ) f c ( 4 r + 2j5^2™+1_fcLn(2r+1_fe). 
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In the same way, associating k «-> AT — fc, except for the middle term, and using Lemma 10, 
we get 

2 r - l 
5^(1) = 5-2r £ (-1)* (4r) [(1 + ak^~k)n + (1 + a*-kf3k)n] + 5~2r2» ( f ) 

k=0 \ / \ V/ 

= 5"2r £ (-l)fc(B+1) (t") [((-l)fe + i82(2r-fc))n + ((-l)fc + «2^-fc))n] 
fc=o ^ ' 

J2 (-l)fc("+D f4^ (L£-fc£(27'~fc)n + ^r_ f ca ( 2 r - f c ) n ) + 2" C 

2E(-l)fc("+1) ( t ) J3r-^C2r-«» + 2" (; 

+ 5"2r2T1 (11) 

<4r 
,2r . D 

R e m a r k 12: In the same manner we can find X^_0 {j)Upix%-
We now list some interesting special cases of Theorems 9 and 11. 

Coro l la ry 13: We have 

2n+l 

£ 

E ( " ) # = ^(3"L2« - Ai~lTLn + 6 • 2"). 

^2n 

2 " , + 1 ) ^ = 5 » F M 
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Proof: The second, third and fifth identities follow from Theorem 11. Now, using Theo-
rem 9, with A = -4=, we get 

-L(_(l+/?)" +(1 + 0 = - ^ = - T = ( - ( 1 + /9)n + (1 + a)n) = -^(a2n - (32n) = F2n. 

Next, the fourth identity follows from 

S^(i) = ^j= E(-i)3-fc Q (i+«fc/?3-fcr 

1 [-(1 + /33)" + 3(1 + ap2)n - 3(1 + a2p)n + (1 + a3)"] 
5V5 

1
 ?[-(2/32)" + 3a" - 3/3" + (2a2)"] = \{2nF2n + 3J?n), 

5V5 5 

since 1 + /33 = 2£2, 1 + a 3 = 2a2. • 
The results in our next theorem are obtained by putting x = — 1 in Theorem 9, and since 

the proofs are similar to the proofs in Theorem 11, we omit them. 
Theorem 14: We have 

S4r,„(-1) = 5 * - 2 r J ] ( - l ) f c ( r\F2T_kL{2T_k)n,ifn is en 
fc=0 ^ ' 

5 4 r , n ( - l ) = - S 2 ^ - 2 7 " J ] ( l)F2r-kF{2T-k)n,ifn IS odd, 

5 4 r + 2 , n ( - l ) = 5 ~ ( 2 r + 1 ) 

fc=0 

2r 

[^(_1) V * )L2T+l_kL{2r+l_k)n-2 ^2r + 1J 

Next we record some interesting special cases of Theorem 9 and 14. 
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Corollary 15: We have 

E ( - l ) ' ( " ) ^ = |((-l)"^-2"+1) 

£(-!)< ( " W = h-2)»Fn -3F2n) 

5Z(-l)Mn)^4 = 5ni±(L2n -4Ln), */n is euen 

£ ( - ! ) ' ( " W = -5^(^+4^) , i/n is odd. 
t=0 W 

Proof: The first identity is a simple application of Theorem 9. The identities for even 
powers are immediate consequences of Theorem 14. Now, using Theorem 9, we get 

53,„(-l) = ^ / g ( - ( l - FY + 3(1 - «/32)" - 3(1 - a2f3Y + (1 - «3)n) 

1 =(-(-2)n/3" + 3/32n - 3a2" + {-2)nan) = \{{-2)nFn - 3F2„), 
5V5 5 

since 1 - ^ 3 = -2£, 1 - a3 = -2a . D 
From (9) we obtain, for r > 1, 

X>l)fc(n+1) (t)^-fci(2r-fe)n + 2"/£) = 0 (mod 52r). 

Similar congruence results follow from other sums in Section 4, and we leave these for the 
reader to formulate. 
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1. I N T R O D U C T I O N 

In [2], Pomerance, Selfridge and Wagstaff offered $30 for a number n which is simulta-
neously a strong base 2-pseudoprime and a Lucas pseudoprime (with a discriminant specified 
in [2]). Since there is no known composite number that meets this criteria, even if the first 
condition is weakened to requiring only that n be a base 2-pseudoprime, it was suggested that 
this might be a reasonable test for "primality" which, though fallible, might be more reliable 
than current tests. Indeed since their article was published, both Mathematica and Maple 
have switched to some variation on this method. 

In [3], an unpublished manuscript by Carl Pomerance (available on Jon Grantham's web 
site, www.pseudoprime.com/pseudo.html), Baillie is credited with first proposing such a combi-
nation test. In [2], Pomerance, Selfridge and Wagstaff show that there are no counterexamples 
less then 20 • 109. Subsequently, a composite number which is both a base 2-pseudoprime and 
a Lucas pseudoprime has been referred to as a Baillie-PSW pseudoprime. 

Pomerance [3] gave a heuristic argument to show that there should be infinitely many 
such numbers. In fact, his argument suggest that for any e > 0, the number of Baillie-PSW 
pseudoprimes < x should exceed x1"6 for x sufficiently large depending on the choice of e. 

With time, the prize for such a number, n has grown to $620, and the conditions have 
been relaxed to the following [4]: 

1) 2n = (mod n), 
2) Fn+t = (mod n) 
3) n = 2 or 3(mod 5), 
4) n is composite (with explicit factorization provided). 

In this paper, we present calculations related to the construction of Baillie-PSW pseudo-
primes. We use a variation of the method Pomerance described. It should be pointed out that 
we have no example of such a number, although we are certain we could construct one if only 
we could search through a rather large space in which such an example will live. 

2. P R E L I M I N A R I E S 

The following are elementary facts related to base 2-pseudoprimes and Fibonacci pseudo-
primes. These facts can be found in many books on factoring, cryptography or primality. For 
example, see [1 Sec. 10.14], [5, Chap. 2 Sec IV], or [6, pp. 107-115]. 

334 [AUG. 



SOME COMMENTS ON BAILLIE-PSW PSEUDOPRIMES 

For each odd number n > 1, there is an integer h > 0 such that 

1) 2/l = l(mod?i), 
2) i f 2 m = l ( m o d n ) then % * . 

This number h is called the order of 2 modulo n and is denoted ordn(2). Since 2^ n ) = 1 (mod 
n), it follows that h\</>(n). Similarly, for each odd number n > 1 there is a positive integer k 
such that 

1) Fk = 0(mod n), 
2) if Fm = 0(mod n) then fc|m. 

We are unaware of a standard notation for this index k. We refer to it as the Fibonacci 
order of n and denote it by ord/ (n). 

A composite number, n, is called a base 2-pseudoprime if 2n~1 = l(mod n). This happens 
if and only if ordn(2) is a divisor of n — 1. For primes p3 ^p~(5) = 0(mod p). If for an odd 

composite number n5 Fn_ss\ = 0(mod n), we call n a Fibonacci pseudoprime. This happens 

if and only if ord/(n) is a divisor of n — (^ ) . 
The following are obvious sufficient conditions for n to be a base 2-pseudoprime or a 

Fibonacci pseudoprime: Suppose that n is an odd? square free composite number. 

If for each prime p|n3 ordp(2)divides n — 1 
then n is a base 2-pseudoprime. (2.1) 

If for each prime p\n, ord/(j?)divides n — 

then n is a Fibonacci pseudoprime. (2.2) 

As we mentioned in the introduction, Pomerance, Selfridge and WagstafF offer $620 for 
an example of a number n = 2 or 3 (mod 5) such that n is both a base 2-pseudoprime and a 
Fibonacci pseudoprime. In this case, n — ( | ) = n + 1. 

Here is a variation on Pomerance5s method for searching for such a number: Let M and 
N be two highly composite numbers with GCD(M3 N) = 2. Let P be the set of all primes p 
with the following properties: 

1) p does not divide MN, 
2) ordF(2) divides M, 
3) ord/(p) divides N. 

5 
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Define a function / on the subsets of P as follows: 

If a subset, -A, of P with cardinality at least 2 can be found such that 

/ ( ^ ) = 2 o r 3 ( m o d 5 ) ? 

f(A) = l(mod M) , and f(A) = - l ( m o d JV), 

then as an easy consequence of (2.1) and (2.2), f(A) will be a Baillie-PSW pseudoprime. If P 
is a large set compared with MN, then we expect lots of subsets A to exist. That is, assuming 
that the congruence classes of f(A) are roughly uniformly distributed modulo M and JV, one 
might expect 

2lpl 
(2.3) <j){MN) 

subsets A to have the desired properties. 
In addition to Pomerance's manuscript, Grantham's site also contains a list of 2030 primes, 

constructed by Grantham and Red Alford. Grantham comments that he and Alford "highly 
suspect" that some subset product of these primes is a Baillie-PSW pseudoprime. The site does 
not give reasons. However, an analysis of the primes shows that each has the property that p—1 
divides M and p + 1 divides JV, where M = 2(13)2(17)2(29)2(37)2(41)2(53)2(61)... (1249) and 
JV = 22(3)7(7)4(11)3(19)2(23)2(31)2(43)2(47)2(59)2(67)2(71)...(1187). Here, the only odd 
primes dividing M are congruent to 1 (mod 4) and the only odd primes dividing JV are those 
congruent to 3(mod 4). In each case, there are exactly 100 such primes. For this choice of M 
and JV, cf)(MN) ** 1.017659177 x 10545 < 21 8 1 1 . The problem, of course, is that a space of size 
22030 -g n a r c [ i0 search even if one expects 2219 examples. 

This current investigation began as a Master's project for the first author. The project 

was to look for much smaller numbers M and JV for which ^fMN\ > 1. It was thought that 

using ordp(2) and ord/(p) instead of p—1 a n d p + 1 would significantly reduce the size of M and 
JV. We performed our calculations using five Pentium III PC's and three Apple PowerMac's. 
We used C / C + + on the PC's, employing only single precision arithmetic (but with 84 bit 
integers.) On- the PowerMac's, we used Maple V™. 

3. R E S U L T S W I T H O U T U S I N G ORD p (2) O R ORD/(p) . 

Based on the primes of Grantham's site and their implied numbers M and JV, we searched 
for smaller M and JV as follows. We attempted to partition the small primes between M and 
JV a bit more evenly. We began with intial values 

Mstar t=.2(7)4(13)2(19)2(23)2(31)2(43)2(47)2(59)2(67)2
) 
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^start - (2)6(3)6(11)3(17)2(29)2(37)2(41)2(53)2. 

We put the powers of 2 and 3 in iVstart because it was thought that this would be advantageouos 
when we considered ordp(2), as discussed in the next section. We chose to favor ordp(2) over 
ord/(p) because it was quicker to calculate ordp(2) than ord/(p). For a given value of n, we 
then construct an 

-Wtaii = product of n ~ 9 primes, all congruent to 3(mod 4), 

Ntaii = product of n — 7 primes, all congruent to l(mod 4). 

We set M = MstaTtMtaii and N = 4iVstartiV"tail„ Thus, M and N are each divisible by exactly 
n odd primes. Next, we constructed the set 

ATmit = {a : a is a divisor of iVstart} 

of all divisors of iVstart. This set contains 47,628 elements. For each fe, let 

Nk = {x : x is a divisor of iVtaii and x has k prime divisors}. 

This set has (n^7) elements. If g(x, y) = 4xy - 1, with x E iVinit and y £ Nk (setting y = 1 if 
k = 0), then g(x,y) -f-1 is a divisor of N with exactly k prime divisors in common with JVtaii. 
We proceed as follows: As k increases from 0, for each x in iV^t and y in Nk, determine if 
g(x, y) — 1 is a divisor of M. If so, test if g(x, y) is prime. If it is, add g(x,y) to the list of 
pirmes in P&. At the end, we construct the set P = U^iV Technically, we should delete any 
primes p\MN from the list. In the following tables, we have not done this. However, this will 
not affect our results since the number of such primes is small compared to the size of F . 

Our first table gives the number of primes found for various values of n, k: 

k\n 
0 
1 
2 
3 
4 
5 
6 

total 
needed 

10 
7 
1 
0 
0 
0 
0 
0 
8 
192 

20 
9 
8 
1 
0 
0 
0 
0 
18 
332 

30 
19 
21 
10 
9 
0 
0 
0 
59 
490 

40 
19 
40 
37 
24 
5 
2 
0 
127 
660 

50 
24 
60 
72 
58 
26 
6 
0 
246 
838 

60 
27 
91 
119 
123 
66 
13 
3 
442 
1023 

70 
30 
123 
201 
203 
122 
47 
7 
733 
1214 

80 
32 
151 
295 
342 
236 
91 

1147 
1410 

90 
33 
194 
416 
565 
380 

1588 
1610 

100 
34 
224 
568 
850 
528 

2204 
1813 

Table 3.1 

Some comments on this table: the empty entries indicate computations we did not un-
dertake (there are about 37 million calculations needed for each element of iVstart f° r entry 
(90,5), for example. Our construction ensures that each Pk = Pk(n) satisfies Pkijri) Q Pkip) 
if ra < n. Thus, we know that we will find at least 91 primes for entry n = 90, k = 5. Hence, 
by n — 90, the number of primes in P grows past the expected number needed to cover all 
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reduced residue classes. It should also be pointed out that the counts are not complete for 
the larger numbers n: we sped up calculations by using only the smallest entries from iV"init. 
Based on numerical evidence, this missed some but not many primes. An interesting feature 
to the table is that although Alford's and Grantham's M and N seemed very contrived in that 
each was divisible by exactly 100 odd primes, it appears that they could not have decreased 
the number of primes by much. 

We analyzed our data as follows. A number is called z-smooth if all its prime divisors are 
less than z. Riesel [6, page 164] gives a crude estimate of u~uxu for the number of x-smooth 
numbers less than xu. He indicates that this estimate is often good enough to approximate 
the run time of computer algorithms which make use of smooth numbers. We are seeking 
primes such that p — 1 and p+1 are both z-smooth with respect to some z, and which also 
have factors from prescribed sets of primes. If one has a set of primes with asymptotic density 
1/2, then Riesel's argument leads to an estimate of (2u)~uxu numbers less than xu which are 
x-smooth and have all their prime divisors from that prescribed set. 

We use the following model: Given two disjoint sets of n primes; Pi,j?2,-•«,Pn> and 
qi, q2, • • •, qn with all the pJs and g?s of about the same size, we select j of the primes from the 
g-list, multiply them together to get an m. We ask that Am — 1 be prime and Am — 2 factor 
over the p's. In fact, what we really need is for 2m — 1 to factor over the p's. In this case, 
xu = 2qJ

n and x — pn = qn. This gives 

^ ln2 + j m g n In2 
u £* = 3 + = j + a, 

In qn In qn 

where a = ln(2)/ln(gn). Thus, the rough probability that Am — 2 is smooth with factors 
dividing M is (2j + 2a)~-?'~a. We also require that Am — 1 be prime, which happens with 
expected probability w j ^ - i v Thus, our estimate of the probability that a number of this 

form meet our requirements is , ,Vj, ? where u = j + j ^ - . The expected number of primes 

of this form is ^ ^ f 7 1 ) . 
ln(4gi) Vj/ 

Obviously, our primes differ dramatically in size. Moreover, our numbers need more than 
smoothness - there are limits on the divisibility of our numbers by small primes. However, this 
model is still useful for making predictions and understanding overall patterns. For example, 

using (-) - $ - jLf-j, we have 

2(2u)-" / n \ ^ 21-uu-unjej 

ln(4ql) \j) ~ ln(4«i)v^y 3j' 

If we ignore the difference between j and u, this expression is approximately 

2 / e n 
(3.1) 
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Thus, we expect no primes to be contributed by the cases where j > y/en/2. For example 
looking at Table 3.1, when n — 50, we expect no primes for k > 8. In fact, we got none for 
k = 6 or 7 either. If we trust (3.1) to give good estimates of the numbers of primes for various 
k in Table 3.1, then for k = 6, we should have found .37 = 0 primes. In fact, we do not trust 
(3.1) for more than a crude analysis. For example, it predicts 1.59 primes for n = 50, jfc = 5 
rather than the 6 we found, and it predicts 4.8 primes for k — 4 rather than our 26. 

Suppose we accept ^ uJj as a rough probability that a prime g(x^y) has the desired 

properties, where g(x,y) — 1 has j prime divisors. For each entry (n, k) in Table 3.1, we solved 
the equation 

# of primes found 2(2u)~u 

# of cases looked at ln(4g£) 

for j , where qn is the largest prime divisor of MN. We take this " j " to be some kind of average 
number of prime factors. The results are recorded in the table below. 

k\n 
0 
1 
2 
3 
4 
5 

10 
3.32 
4.24 
-
-
-
-

20 
3.21 
4.03 
5.16 
-
-
-

30 
2.96 
3.90 
4.'82 
5.40 
-
-

40 
2.95 
3.81 
4.65 
5.44 
6.42 
7.13 

50 
2.87 
3.76 
4.60 
5.41 
6.26 
7.20 

60 
2.82 
3.69 
4.57 
5.37 
6.24 
7.28 

70 
2.78 
3.64 
4.52 
5.37 
6.26 
7.17 

80 
2.76 
3.62 
4.49 
5.35 
6.24 

90 
2.75 
3.58 
4.46 
5.32 
6.25 

100 
2.73 
3.57 
4.44 
5.30 
6.29 

Table 3.2 

We did not compute values for k = 6,n = 60, 70 because we only did partial searches 
with k = 6. We ignored n = 80, k = 5 for the same reason. Based on the table, we expect the 
(5,90) entry to be roughly 7.2. We may use this to estimate the number of primes found for 
k = 5,n — 90. The result is that we expect some 171 primes in this case. Similarly, we expect 
maybe 46 primes when k — 6 (using j = 8.2) so that k from 0 to 6, we expect a total of 1805 
primes when n — 90. 

This table may be used to interpolate back to the point where the number of primes 
exactly matches the minimum number needed to cover all reduced residue classes. This point 
will be between n = 80 and n = 90. If we are cautious and use only k = 0 , . . . , 6 and j-values: 
2.76, 3.62, 4.49, 5.34, 6.25, 7.20, 8.20, then the matching point occurs at n = 88. Using the 
most optimistic numbers for j reduces this to n = 85. 

4. T H E E F F E C T O F U S I N G ORB p (2) O i l ORD/(p) 

How much does it help to ask only that ordp(2) divide M rather than that p — 1 divide 
M? Here is one model. Let Mf = 24(33)(112)(17)(29)M and search for primes as in Section 
3, but for which p — 1 divides Mf. Include p in P if 2M = 1 (mod p). The only additional 

2003] 339 



SOME COMMENTS ON BAILLIE-PSW PSEUDOPRIMES 

primes picked up this way are primes in which p—1 does not divide M, but p — 1 divides M1 

and ordp(2) divides M. We expect that p — 1 will have exactly one factor of 11 in ~y cases, 
and that this factor will not divide ordp(2) in -y of those cases. Similarly, exactly two factors 
of 11 should occur in j ^ cases, with both factors dropping out -^ of the time. Thus, the 
l l ' s should increase the count by a factor of (l + yp- -f jp-)- Arguing likewise for the other 
divisors M' jM gives a multiplier of 

1 1 1 1 
+ 8 + 32 + 128 + 512 

2 2 2 
27 243 2187 

10 10 
+ 1331 + l i s 

16 
1+T7* 

28 
1 + 293 I * L 2 7 8 -

As can be seen, it is the smaller primes that contribute most to this number. This is why we 
chose to make N divisibile by both powers of 2 and powers of 3. In Table 4.1, we give the 
actual numbers of primes found for various n, k for which p — 1 divides M7, ordp(2) divides 
M, and p+1 divides N. 

k\n 
0 
1 
2 
3 
4 
5 
6 

total 
ratio 
needed 

10 
9 
2 
0 
0 
0 
0 
0 
11 
1.38 
192 

20 
11 
10 
1 
0 
0 
0 
0 
22 
1.22 
332 

30 
23 
28 
19 
9 
0 
0 
0 
79 
1.34 
490 

40 
24 
55 
57 
30 
9 
2 
0 
177 
1.39 
660 

50 
30 
77 
103 
71 
35 
8 
0 
324 
1.32 
838 

60 
33 
112 
173 
171 
91 
20 
4 
604 
1.37 
1023 

70 
35 
151 
285 
274 
190 
70 
10 
1015 
1.38 
1214 

80 
39 
183 
415 
472 
359 
134 

1602 
1.39 
1410 

90 
40 
233 
580 
762 
564 

2179 
1.37 
1610 

100 
42 
268 
780 
1144 
736 

2970 
1.35 
1813 

Table 4.1 

In the table, the actual multiplier (the ratio row) appears to be somewhat higher, closer 
to 1.37 with the data looked at so far. We do not have an explanation for this discrepancy. 

Given the data above, it is natural to ask how low n can be and still have a sufficiently 
large number of primes to expect to cover the reduced residue classes of MN, According to 
the table, this happens by n = 80. We estimated the number of primes with n = 75 as follows: 
using the formula 

# of primes found 2(2u)~~u 

# of cases looked at In (4^) 
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and solve for j with the data from n — 70 and n = 80 in table 4.1 (admittedly a questionable 
thing to do) we interpolated to get estimated values of j for n = 75. Here are our results: 

n\k 
70 
75 
80 

0 
2.734 
2.715 
2.695 

1 
3.580 
3.572 
3.563 

2 
4.417 
4.404 
4.391 

3 
5.291 
5.277 
5.262 

4 
6.140 
6.134 
6.128 

5 
7.066 
7.066 

6 

8.016 

7 

8.966 

Table 4.2 

The row for n = 75 was obtained by averaging the results from 70 and 80, but rounding 
up to three decimal places. However, the prime list for n = 80, k — 5 was incomplete, so we 
used the value from n = 70, k — 5 for this entry. We estimated the entries for k = 6 and k = 7 
by adding .95 to the previous entries. Based on this table, when n = 75, we should expect to 
find the following numbers of primes: 

0 
37 

1 
165 

2 
344 

3 
360 

4 
263 

5 
103 

6 
28 

7 
6 

total 
1306 

needed 
1311 

Table 4.3 

Since we were conservative in our estimates for k = 5,6,7, we decided to actually carry 
out the computer search for primes. We were lucky to exceed expectations. Here is our actual 
count of primes found for n — 75. 

0 
35 

1 
165 

2 
349 

3 
356 

4 
279 

5 
116 

6 
25 

7 
1 

total 
1326 

needed 
1311 

Table 4.4 

Of the total, six primes are divisors of MN, leaving a set P with 1320 elements. Thus, 
we expect a Baillie-PSW pseudoprime to exist at this level. Since we did not complete counts 
for k = 6, 7, it is remotely possible that there are enough primes at n = 74 as well. 

Introducing the Fibonacci order with our M and N might be expected to have the fol-
lowing effect: Supposing we use an Nl = JV(7)3(13)2(19)(23). We would then expect 

(-4)(-^^)(-§+#)(^)('+§)--
times as many primes. In particular, for n = 70, (1022)(1.027) = 1050, still far short of the 
1214 needed in this case. In actual calculations, we again appear to beat this estimate, picking 
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up at least 40 additional primes for k between 0 and 3. However, we estimate fewer than 40 
primes remain to be found, leaving us more than 100 short of our goal. 

5. T H E Q U E S T F O R n = 70 

Given that we could find enough primes in our set P with n = 75, which corresponds to 
75 odd primes dividing each of M and N, we attempted to push the computational limits of 
our computers to try to reduce this to n = 70. There are several ways to change the way M 
and N are constructed to try to increase the size of P. We have put powers of 2 and 3 in N so 
as to favor the existence of primes with ordp(2) dividing M over ord/(p) dividing N. Suppose 
we are a bit more equitable, and start with, say, 

M s t a r t = 2(3)6(11)3(17)2(23)2(31)2(41)2(47)2(59)2, 

iVstajt = (2)6(7)4(13)2(19)2(29)2(37)2(43)2(53)2(61)2. 

One might expect this change to produce slightly more primes with p - l\M,p+ 1|JV, 
decrease the number of primes added using ordp(2), but increase the number of primes added 
using ordf(p). In fact, for reasons we do not understand, this change slightly decreased the 
number of primes p with p—l\M,p+l\N. The increase in the number of primes added using 
ord/(p) did not offset this decrease. 

We only calculated these numbers for 0 < k < 4. It is possible that things would improve 
for higher values of k. We considered it very unlikely, however, that searching higher k would 
yield enough additional primes to make a real difference. This being the case, we went back to 
our original set up, but increased the multiplicity of the smaller prime divisors of M and N. 
This increased the size of F , but also increased </>(MN), meaning that it increased the number 
of primes needed. We finally succeeded in obtaining enough primes with 

Ms t a x t = 2(7)5(13)3(19)3(23)2(31)2(43)2(47)2(59)2(67)2, 

Nstaxt = (2)12(3)8(11)3(17)3(29)2(37)2(41)2(53)2, 

and Mtaii and JVtaii as before. That is, Mtaii = (71) (79) . . . (787), a product 
congruent to 3(mod 4), and JVtaii = (61)(73).. . (829), a product of 68 primes 
1 (mod 4). In this case, we obtained the following table: 

k 
p-l/p+1 
ordp(2) 
ord/(p) 
total 

0 
30 
6 
0 
36 

1 
137 
37 
6 
180 

2 
232 
108 
17 
357 

3 
242 
88 
21 
351 

4 
137 
79 
9 
225 

5 
51 
27 
4 
82 

6 
7 
3 

10 

7 
1 

1 

total 
837 
348 
57 
1242 

Table 5.1 

The needed number of primes increased from the original 1214 to 1240. Thus, 2lpl is only 
about four times as big as <j>{MN). We only did partial searches with k = 4,5 for primes 
satisfying oid f(p)\N, and we suspect that there are more primes to find. Also, we were using 

of 66 primes all 
all congruent to 
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only single precision arithmetic in our search on PC's (using 64-bit numbers, however) and at 
k = 6,7 we were hampered by integer overflow problems, so we expect a few more primes here 
as well. Thus, we are confident that there is a Baillie-PSW pseudoprime to be found using 
this M and N. 

It would be hard to push these calculations down to n = 69. The largest primes dividing 
M and N are T87 and 829 respectively. There are a total of 60 primes in our list requiring one 
or the other of these. Thus, our list would drop to 1182 primes if these were deleted. Since 
log2 (j)(MN) would only drop to 1221, there would be a large gap to make up. We appeared 
to be getting diminishing returns from increasing the multiplicity of the smaller primes, so it 
is doubtful that this gap could be bridged. 

6* C O N C L U S I O N S 

To date, the $620 appears to be safe. Unless an efficient scheme to search a space of size 
2i5oo -1S founc|j o r a n approach other than that suggested by Pomerance can be found, the 
problem of constructing a counterexample appears to be intractable. It should be mentioned 
that Pomerance has indicated a willingness to pay his share even for an existence proof [4]. 
There might be more hope here. For example, suppose we have an M, N, P . Let A be a subset 
of P , and let U be the set of all subset products of elements of 4̂ modulo MN. Given a prime 
p G P — A, we might ask how big a set of subset products for AU {p} is. Giving pU the obvious 
meaning, this set will clearly be UUpU and since \U\ = |P17|, \UUpU\ = 2\U\ - \Uf\pU\. If 
x G U n pU, then for some sets of primes, x = p\p2 • - -Pk = P(?i<Z2 • • • qj, with the p's and g's 
from A. This can only happen if p = pip2 . . -Pkq^q^1 • • -qj1- Thus, if we can choose p so as 
to avoid the set 

{piP2 • • -Puq^q^1 • • • g~1(mod MN) : pJs and g5s are in ^4}, 

then \U UpU\ = 2\U\. Obviously, we cannot pick p to meet this condition forever. If \U\ > 
\(j)(MN), there will be a representation p = pip2 .. . p ^ r 1 ^ " 1 • • • Qj"1- ^ t n e number of such 
representations of p is small, the intersection of U and pU will also be small. Thus, one might 
have a chance of proving that all reduced residue classes are covered at some stage. 

If for some M and iV, \P\ is much larger than log2(f)(MN)^ perhaps there is a way to 
exploit this size difference as well. For example, the authors would be interested in a proof or 
counterexample to the following claim: 
Claim: Let m and n be relatively prime integers. Let 4̂ and B be disjoint sets of primes, with 
no prime dividing rnn. Suppose that for each reduced residue class x of m and y of n there 
are nonempty subsets 5, T of A and U, V of B such that 

f(S) = x(mod m) and f(U) = a;(mod m)1 

f(T) = y(mod n) and f(V) = y(mod n). 

Then for each reduced residue class z of mn, there is a subset W of A U B such that f(W) = 
z(mod mn). 

The authors have not experimented with the claim enough to actually submit it as a 
conjecture. However, if such a claim were true, then it might be possible to use the prime 
factorization of MN to show that P covers all reduced residue classes of MN. This approach 
is wasteful of primes in P so the authors are currently calculating primes for the case n= 100, 
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with the same Mstart and i\Tstaxt that were used for n = 70. This should give a very large set P 
compared to log2(/)(MN). As of this writing, the set P has 4838 primes, with log2<f)(MN) = 
1838. We estimate that | F | may get as large as 5500. Various sets of primes we have found 
are available on the second author's web site, www.d.umn.edu/^jgreene. 
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1. I N T R O D U C T I O N 

For convenience, in this paper we adopt the notations and symbols in [3] or [4]: 
Let the sequence {wn} be defined by the recurrence relation 

wn+k = a iwn + f c_i H h ak-iwn+i + akwn, (1.1) 

and the initial conditions 

W0 = Co, Ml = C i , . . . , U / f c _ i = Cfc-i, (1 .2) 

where a i , . . . ,ak, and Co, . . . ,c^- i are complex constants. Then we call {wn} a kth- o rde r 
Fibonacci -Lucas sequence or simply an F-L sequence, call every wn an F-L number , 
and call 

f(x) — xk — a\xk~l — . . . — ak-\x — ak (1.3) 

the charac te r i s t i c po lynomia l of {wn}. A number a satisfying f(a) = 0 is called a char-
ac ter i s t ic root of {wn}. In this paper we always assume that ak / 0, hence we may consider 
{wn} as {w^ll^. The set of F-L sequences satisfying (1.1) is denoted by Q ( a i , . . . ,ak) and 
also by Q(f(x)). Let x\,.. .,xk be the roots of f(x) defined by (1.3), and let 

vn = x? + xl + • • • + xl(n E Z). (1.4) 

Then, obviously, {vn} E fi(ai,... ,ak). Since for k — 2 and a\ — a>2 = l,{^n} is just the 
classical Lucas sequence { I n } , we call {vn} for any fc the kth-order Lucas sequence in 
Q(a\,..., ak). In [1] and [2] Howard proved the following theorem: 
T h e o r e m 1.1: Let {wn} E fl(ai,... ,a&). Then for m > 1 and a// integers n, 

k 

W{k-l)m+n = / ^ ( - ^ " ^ m j m ^ f c - j - l j m + n -

T/ie numbers cmjm are defined by 

ra-l fe 
XI [1 - o i ( ^ x ) - a 2 ( ^ x ) 2 afc(^x)fc] = 1 + ^ ( - l ) ^ , , - ^ ' " 1 , 
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where 6 is a primitive mth root of unity. 
Yet in [2] he proved the following result: 

T h e o r e m 1.2: Let {wn} E 0(r , s, t). Then for m , n 6 Z , 

% + 2 m = JmWn+m ~ tmJ-mWn + tmWn-m' (1-5) 

Here {J n } £ 0(r , 5, t) satisfies JQ = 3, J\ — r, J2 = r2 + 2s. 
It is easy to see that {Jn} is just the third-order Lucas sequence in 0(r , s,t). Thus we 

observe that the identity (1.5) involves only the numbers from an arbitrary third-order F-L 
sequence and from the third-order Lucas sequence in Q(r, s, t). This suggests the main purpose 
of the present paper: we shall prove a general fct/l-order F-L identity which involves only the 
numbers from an arbitrary fct/l-order F-L sequence and from the fct/l-order Lucas sequence in 
f i ( a i , . . . , aic). As an application of the identity we represent cmjm in Theorem 1.1 by the kth-
order Lucas numbers. Then to make the identity simpler we give the identity an alternative 
form in which the negative subscripts for the kth-oidei Lucas sequence are introduced. As a 
corollary of the identity we generalize the result of Theorem 1.2 from the case k = 3 to the 
case of any k. In our proofs we do not need to consider whether the characteristic roots of 
the F-L sequence are distinct. Also, we can use our results to construct identities for given fe, 
and the computations are relatively simple. We first give some preliminaries in Section 2, and 
then in Section 3 we give the main results and their proofs. Some examples are also given in 
Section 3. 

2. P R E L I M I N A R I E S 

L e m m a 2.1: Let {vn} be the kth-order Lucas sequence in fi(ai,..., a&). Denote the generating 
function of {vn} by 

00 

V{x) = ^vnxn. (2.1) 
n=0 

Then 

\ri \ - fc ~ (fc ~ l)aix ~ (k ~ 2)a2£2 2afc-2xfc~2 - ak^ixk"1 

1 — a±X — tt2Xz — . . . — QkXK 

Proof: Let x i , . . . , Xk be the roots of the characteristic polynomial f(x), denoted by (1.3), 
of sequence {vn}. Denote 

f*(x) — 1 — a\x — a2%2 Q>kXk-

Clearly, 
f*(x) = xkf{x-x) = (1 - aria;)... (1 - xkx). 

Whence 
In f*(x) = ln(l - xxx) + • • • + ln(l - xkx). 

346 [AUG. 



ON THE kth -ORDER F-L IDENTITY 

Differentiating the both sides of the last expression we obtain 

Prom (2.1) it follows that 

V(x) = v0 

Thus the proof is finished. 
Prom (2.1) and (2.2) it follows that 

(1 — a\x — d2x2 — - - - — akxk) J J vnxn 

n=0 

= k- (k- l)aix ~(k- 2)a2x2 2dk-2xk~2 - dk-ix1"'1. 

Comparing the coefficients of x% in the both sides of the last expression for i = 1 , . . . , k we get 
the well-known Newton's formula: 
Corol la ry 2.2: (Newton ' s formula) Let {vn} be the kth-order Lucas sequence in 
fi(ai,.. ., ,ak)- Then 

diVi-i + d2Vi-2 H h a»-it;i + iai = Vi (i = 1 , . . . , k). 

L e m m a 2.3: [4] Let {wn} E fi(ai,... 3a&) = Q(f(x)), and x i , . . . ,xk be the roots of f(x). For 
rn E Z + , let 

fm(x) = ( i - ^ ) . . . ( x - x%) = xh- b1xk~1 - . . . - bk-Xx - bk. (2.3) 

Then {wmn+r}n E 0 ( / m ( x ) ) . 27WJ£ is, 

Wm{n+k)+r — M m ( n + f c - l ) + r + ' " 8 + 6 f c - l ^ m ( n + l ) + r + bkWmn+r. 

-Xi 

+ ••• + 
~Zk 

xkx 1 — XiX 

oo 

- Ew+1 + • • •+*r V = - E v-+ixn. 
n = 0 n = 0 

/* (a?) _ , ar(ai + 2a2# + • 
' X * „ , ,—— — f£ ~T~ 

+ fcafcxfc *) 
/ • (*) a ix — &2# a&x* 

D 
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3. T H E M A I N R E S U L T S A N D P R O O F S 

T h e o r e m 3.1: Let {wn} be any sequence in 0(a i , . . . ,afc) = fl(f(x)), and let {vn} he the 
kth-order Lucas sequence in Q(f(x)). Let xi,... ,Xk he the roots of f(x) and fm(x) he defined 
by (2.3) for m E Z+. Then for nEZ, 

Wm(n+k)+r = hwm(n+k-l)+r H H ^ - l ^ m ( n + l ) + r + bkWmn+r, (3 .1) 

and b\,.. .,bk can be obtained by solving the trianglular system of linear equations 

M m ( z - l ) + hvm(i-2) H f- bi-lVm + * i = Vmi ( i = 1, . . - , fe). (3 .2) 

In other words, for i — 1 , . . . , fc; 

6» = 6 i ( m ) = 77 
z! 

1 

^3m V2n 

V(i-2)m V(i-3)m V(^_ 4 ) m . . . l / m 

V(*-l)m V(i_2)m V(t-3)m ••• v2m 

V2m 

V4m 

% - 1 V(i-i)m 

Vm Vim 

(3.3) 

Proof: In fi(/ro(x)) the fct/l-order .Lucas sequence is 

K = CT + - + ( i? r=U«eZ) . 
Thus (3.1) and (3.2) follow from Lemma 2.3 and Corollary 2.2. We use Cramer's Rule on (3.2) 
to obtain (3.3) • 
R e m a r k : In (3.1) taking n = —1 and then taking r = n we get cmjm = bj(m). Then cmjm 

can be represented by the fct/l-order Lucas numbers and it is more easy to caluclate cmjm's. 
For example, by using (3.2) or (3.3) we can obtain: 
For k = 3, 

For k 

% + 2 m = VmWn+m + (^2m ~ ^ m ) / 2 ' wn + ( 2 ^3m ~ 3?/m?;2m + ^ m ) / 6 

^n+3m = % ^ n + 2 m + (^2m ~ * 4 ) / 2 ' wn+m + ( 2 ^3m ~ %VmV2m + ^ m ) / 6 ' ^ n + 

(6v 4 m - $VmV3m ~ 3v%m + 6 t / ^ l / 2 m - * 4 ) / 2 4 • W n - m ; 

For fe = 5, 

(6v4m - Svmv3m ~ 3t/fm + 6t4t / 2 m - vm)/2A • n/n+ 
(24^5m - 30vmV4m ~ 20v2mv3m + 20t4t/3 m + 15vmt;|TO-
1 0 ^ 2 m + ^ ) / l 2 0 • Wn—m. 
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Theorem 3.2: Under the conditions of Theorem 3.1 we have 

bk-i{m) = ( - l ) ^ + 1 ^ m + 1 ) + 1 a ^ 6 , ( - m ) (t = 1 , . . . , fc - 1), 

and 
bk(m) = ( - l ) ^ 1 ) ^ 1 ) ^ . 

Therefore for odd k we have 

(3.4) 

(3.5) 

wm(n+k)+r =^l(m)wrn(n-\-k-l)+r + & 2 ( m ) w m ( n + f c - 2 ) + r H h 

6 ( i b _ l ) / 2 ( ^ ) w m ( n + ( f c + l ) / 2 ) + r - ^ f c l ( ^ ( f e - l ) / 2 ( - ^ ' ) ' ^ m ( n + ( i f c - l ) / 2 ) + r + 

h 6 2 ( - ^ ) w m ( n + 2 ) - j - r + &l(-m)tl /T O(n+i)+ r - W m n + r ) ? 

(3.6) 

and /or even fc we ftave 

Wm(n+k)+r = & l ( m ) w m ( n + f c - l ) + r + 6 2 ( ^ l ) w m ( n + & _ 2 ) H - r H K 

^ f c / 2 - l ( ^ ) ^ m ( n + f c / 2 + l ) + r + & & / 2 ( ^ V m ( n - f f c / 2 ) + r + 

( - ^ ) m ( f c & / 2 - l ( - ^ ) ^ m ( n + i b / 2 - l ) + r + 

h 6 2 ( - ^ ) ^ m ( n + 2 ) + r + & l ( - m ) w m ( n + l ) + r ~ ^ m n + r ) -

(3.7) 

Proof: Clearly, 

6, = 6 f c(m) = -(-l)kx? . . . * ? = ( - l ) * + i ( - ( - l ) * a f c ) " \ 

Whence (3.5) holds. Let 

/m(*) = ^ / m O O = (1 " X?X) . . . (1 " X ^ ) 
= 1 - bxx -b2x2 fefe-i^"1 - bkxk. 

Then the kth-oidei Lucas sequence in fi(/^(x)) is 

K = (xlm)n + ••• + ( * * T = «-mn(» e z). 
By Newton's formula we have? for i = 1 , . . . , k — 1, 

^ f c - l ^ - m ( i - l ) + 6 fc -2V_ m ( t -2 ) + r &Jfe-(i-l)t/-m + * * - » = -^k^-mii 

where 6* = &i(ra). It follows from Cramer's Rule that 

6fc_; = bk-i(rn) = 
-bk(rn) 

1 
V - m 
^ - 2 m 

V-3m 

V-rn 

V-2m 

V-{i~2)m ^ - ( i - 3 ) m v-(i~4)m 
V _ ( j _ l ) m V_(<_2)m V-(»-3)m 

V-2m 
V-3m 

V—2m V—m V—im 

(3-8) 
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Noticing (3.5) and comparing (3.8) with (3.3) we see that (3.4) holds. This completes the 
proof. D 
Corol lary 3.3: Let {wn} he any sequence in fi(ai,...,afc} = £l(f(x)), and let {vn} he the 
kth-order Lucas sequence in ft(f(x)). Assume that n,m E Z and m / 0. Then, for odd k we 
have 

w, n+m(Jb_1) =hi{m)wn+m(k-2) + l>2(m)wn+m(k„3) H h 
fyfc-l)/2(ra)wn+m(fc_i)/2 - afc l (6(fc-l) /2(-^)^n+m(fc-3)/2+ (3-9) 

h h2{-m)wn+m + bi{-m)wn - wn-m), 

and for even k we have 

^;n+m(&_i) =&i(ra)wn+m(fc_2) + 62(ra)wn+m(fc_3) H h 
bk/2-l(™)Wn+mk/2 + ^fc/2(^)^n+m(fc/2-l) + 

{-ak)m(bk/2-i(-m)wn+m{k/2-2)+ 
h h2{-m)wn+m + h1(-m)wn - wn-m)-

(3.10) 

Proof: For m > 0 the conclusion is shown by taking n = — 1 and then taking r = n in 
Theorem 3.2. Now, assume that m < 0. Then, — m > 0, and, by the proved result, for odd k 
we have 

wn-m(Jb-i) =hi{-m)wn_m{k_2) + M-ra)t£/n_m(fc_3) + h 

fc(Jfc-l)/2(-w)tt/n-TO(fc-l)/2 - ak m ( & (fc~l) /2(^)^n-m(fc-3) /2+ 
h b2(m)wn-m + 6i(m)wn - wn+m), 

(3.11) 

and for even & we have 

wn_m(fc_i) =M-ra )w n _ m ( A ._ 2 ) + h(-m)wn„m(k_3) + • • • + 
h/2-i(-m)wn_mk/2 + 6Jb/2(-m)w;n_m(ib/2-i)+ 

( - a f c ) ~ m ( ^ / 2 - l M ^ n - m ( f c / 2 - 2 ) + 
h 62(m)wn-m + hi(m)wn - u / n + m ) . 

(3.12) 

Multiplying both sides of (3.11) by a7^ and replacing n by n + ra(& - 2) we can get (3.9). 
Multiplying both sides of (3.12) by (—ak)m and replacing n by n-\-m(k — 2) we can get (3.10). 
Thus the proof is finished. D 
R e m a r k : Corollary 3.3 is a generalization of Theorem 1.2 (for k = 3). By using the corollary 
we can easily give the following examples: 
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For k = 4, 

^n+3m = VmWn+2m + (^2m ~ * 4 ) / 2 • W n + m + ( - a 4 ) m ( ? / - m ? % - t l / n _ m ) ; 

For A; = 5, 

a^((t;_-2m ~ vim)/2 • wn+m + v-mwn - wn„m)] 

For jfe = 6, 

Wn+5m =VmWn+4m + (^2m ~ * 4 j / 2 ' wn+3m + (2t>3m ~ 3vmV2m + ^ m ) / 6 ' % + 2 m + 

( - « 6 ) m ( ( ^ - 2 m - V-m)/2 ' ™n+m + ^ - m ^ n - W n -m)-

R E F E R E N C E S 

[1] F .T.Howard. "Generalizations of a Fibonacci Identity." Applications of Fibonacci Num-
bers, Vol. 8. Edited by Fredric T. Howard. Kluwer Academic Publishers. Dordrecht, The 
Netherlands, 1999: pp. 201-211. 

[2] F. T. Howard. "A Tribonacci Identity." The Fibonacci Quarterly 39.4 (2001): 352-357. 
[3] C. Z. Zhou. "A Generalization of the 'All or None' Divisibility Property." The Fibonacci 

Quarterly 35.2 (1997): 129-134. 
[4] C. Z. Zhou. "Constructing Identities Involving feth-order F-L Numbers by Using the 

Characteristic Polynomial." Applications of Fibonacci Numbers, Vol. 8. Edited by Fredric 
T. Howard. Kluwer Academic Publishers. Dordrecht, The Netherlands, 1999: pp. 369-
379. 

AMS Classification Numbers: 11B39, 11B37 

T T T 

2003] 351 



UNEXPECTED PELL AND QUASI 
MORGAN-VOYCE SUMMATION CONNECTIONS 

A. F. Horadam 
The University of New England, Armidale, N.S.W., Australia 2351 

(Submitted May 2001-Final Revision May 2002) 

1. PRELIMINARIES 

Motivation 
In [1], the connection between Pell convolution numbers Pn and Quasi Morgan-Voyce 

polynomials Sn
r (x) was established. 

Here, the objective is to display a set of nine neat formulas (Theorems 1-9) expressing 

Sn
r,u\%) in terms of finite sums involving P i m ) (r, u = 0,1,2) with P0

(m) = 0, while P i m ) (n < 0) 

is not defined. Central to this theme is the germinal polynomial Sn ' (x). 
Initially, the impetus for this paper originated from a nice result (Theorem 1) discovered 

by J.M. Mahon [3], [4], to whom indebtedness is gratefully acknowledged. 

Background Mate r i a l 

Firstly, note that [1, (3.3)] 

S^UHx) = J2dnf^ (1-1) 
fc=0 

with certain restrictions [1, (3.4)] on d^£'. Secondly [1, Theorem 1], 

dnf = P»r+^Qnu (1.2) 
where Pn, Qn are the Pell and Pell-Lucas numbers [2], respectively, with Pn = Pn ,Qn = Qn -
Allusion t o (1.1) a n d (1.2) will be cons tan t ly made* 

Results (1.3) - (1.6) are required in the demonstration of proofs: 

pirn) = 2 p ?(m) + p £ n ) + ^ - l ) {recurrence) ( L 3 ) 

p H , p(m) _ n p ( m - l ) n .^ 
rn+l-m "T rn-l-m —

 m
Jrn+l-m \L-^) 

p(m) _ p(m) _ n + 2m-l (m_1) 

& = P^k + ̂ -V + ~ « * - (1-6) 
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Results (1.3) - (1.6) occur In [1] as [1, (2.1)], [1, (2.4)], [1, (2.5)], and [1 Theorem 4], 
respectively. They are necessary tools of trade in this paper. 

Please notice the correction in (1.6) to the first factor in the third term in the enunciation 
of [1, Theorem 4], namely, ~~ instead of ^ ^ 

Guid ing C o m m e n t s 

(i) Familarity with [1, Table 1] and [1, Table 2] is essential. 
(ii) Choice of n — 3 in all the Examples of the Theorems provides some basis for comparison. 

(iii) Because of the variety of approaches available in the proofs, some detail of all proofs is 
appropriate. 

(iv) Generally (Theorems 3-9), the technique for developing the proofs lies in "spotting" the 

involvement of two or more Sn ' (%) and hence pursuing the corresponding arithmetic for 

2. T H E S U M M A T I O N R E S U L T S 
T h e o r e m 1 (Mahon [3]): S^l'(x) = E L o ^ + i - ^ 

Proof: Now S^ix) = E L o C 1 * ^ <L 1)-
But 

rf(M) _ p(fc-D • p(fc) + n ~ f c p ( f c - i ) b v (1 6) 

_ p(fc-i) , P(*) (n - fc + 1 + 2fc - 1) (fc-q) n-k (fc_!) 
2k n+1-* 2k 

_ p(fc) 
— ^n+l-fc' 

whence the theorem follows by (1.1). 
A l t e rna t i ve P roof [4]: Use induction on n in conjunction with (1.3). 

Example : S$'l\x) = 12 + 14a: + 6a:2 + x3 = P | 0 ) + P3
(1):r + P2

(2)x2 + i f V . 

T h e o r e m 2: ^ ( z ) = £ £ j ^ V + 1 -
Proof: ^ ° ) ( x ) = xBB(x) by [1, (4.5)] 

= xS^(x) by [1,(4.1)], 

where Bn(x) is the quasi Morgan-Voyce analogue [1] of the corresponding standard Morgan-
Voyce polynomial Bn(x). Theorem 2 is thus an immediate consequence of Theorem 1. 

Example : Sf>°\x) = Sx + Ax2 + x3 = P3
(0)x + P 2

( V + P f V . 
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T h e o r e m 3: Sk°'l\x) = £ L i ̂ i f + 7 V + % • 

Proof: Consider Si1A\x) - s£$(x). Then 

,(i,i) _ ,(i,i) _ p(fc-i) p(fe) , n-k (fc-i) 
"n,fc "n-l , fc _ ^ra+l-fc "•" ^n-fc + 2fc n + l - i 

- P i ^ - e U - ^ ^ P ^ by (1.6) 

- P ^ - 1 ) 4- " ~ fc + 2 f c ~ 1 p ( fc - l ) , n ~ k p ( fc - l ) 
- 'n+l - fc ••" 2fc n - i "*" 2k n+1~k 

- e - ^ - ^ ^ P ^ by (1.5) 

_ p( fc - l ) , " ~ * p( fc - l ) _ " + * p ( f c - l ) /„x 
— ^ n + l - f c "•" gjfe n+ l - f c ~ 2fe n + 1 _ * *• ' 

= « } by (1.6). 

Invoking (a) ensures the theorem. Be aware that the isolated Pell-Lucas term \Qn arises 
when k = 0. Also see (1.2) for r = 0, u = 1. 

Example : Sf'l\x) = 7 + 10s + 5x2 + x3 = | Q 3 + 2P3
(0)x + f P2

(1)z2 + Px
(2)x3. 

T h e o r e m 4: fl*1^*) = E L i (*£?* + ^ i ) ** + *V 

Proof: Consider S h i f t s ) for jfe, added to S i ^ t e ) for A; - 1. So 

,(i,i) , j ( i , i ) _ P ( f c - i ) , p(fc) , " - l - f c p ( f c - i ) 
"n-l ,fc + a n - l , f c - l — rn-k + ^ n - l - f c ^ 2jfc " - f c 

_ P(*) , p(*-D , » - l + fep(fc-i) n - f c (fc_2) 
- ^„_i_fc + rn_k + 2fc ^n_fc + 2(jfc_i) n+i-fc b y ^ , 5 ' 

= PfJ, + PiSi (0 
<'fc

0) by (1.6), 
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whence the theorem ensues on appeal to (/3). Observe that the extraneous Pell number Pn 
occurs when k = 0, in conformity with (1.2) for r = 1, u = 0. 

Example : S^°\x) = 5 + 9x + 5s 2 + x3 = P 3 + ( P 3
( 0 ) + P2

(1)) x + ( P 2
( 1 ) + p f 5 ) x2 + 

(p<a> + P0<3>)*». 

T h e o r e m 5: s£>2\x) = £ L i ( 2 P & U - P ^ - f c ) ** + 2 W 

Proof: Consider 2Sn ' '(x) for &, then subtract S^liix) for fe — L Accordingly, 

9 ,(i,i) ^(1,1) _ 9p(*) , n + fc (fc-i) (fc_i) n - 2 + fc ( f e .2 ) 
Zan,fc ~~ a n - l , f c - l — Z j r n -A; ^ ^ ^ n + l - J b ~~ rn-k 2(fe - 1) n + 1 ~ & y ^ ' 

= 2P£)
1_f c - P ^ - f c by (1.4), (1.5), (1.3) and simplifying (7) 

-fpW _ p(fc) _ p(fc-i) \ , p(fc) , p(fc) 
— \ ^ n + l - f c ^ n - l - f c ^n+l-Jfcy "*" ^ n + l - f c "*" ^ n - l - f c 

= 2 P ^ + Pf+
)
1_fc + Pf_)

1_fc by (1.3) 

= 2 P J V ^ £ & by (1.4) 

_ p(fc-i) , 9 P(fc) , 9 " ~ fc p(fc-i) 
~ rn+l-k ~1~ zrn-k T" ̂  ' 2ft n + 1 - * 

Applying (7), we have the theorem where 2P„+i originates with k = 0. Refer again to 
(1.2), where r = w = 2 in this case. 
Example : 

S^2)(x) = 24 + 23x + 8x2 + x3 

= 2P4 + (2P3
(1) - P f ) x + (2P2

(2) - P2
(1))z2 + (2PX

(3) - P f V 3 -

Theorem 6: S^\x) = E L o {&&-* + P£>k + P^i-u) 
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Proof: Consider s££(x) + S^^x) + S ^ ^ x ) , leading to 

,(1,1) ,(1,1) , ,,(1,1) _ p(k-l) , n ~ f c p ( f c - l ) , p(fc) an,fc "t" an-l,fc "^ un-2,k ~ rn+l-k "•" 2fc n+l-fc "*" ̂ ra-& 

p(fc-l) W - l - f c p ( f c - i ) , p(fc) 

>(fc-i) , n - 2 - f c p ( f c - i ) _̂  p(fc) 
2fc 

p l * - l J , '* * * p(fc"lj , p(*J 

= Pf+\_fc + PfJ* + P f U using (1.5) three times (5) 

= e}
f c + £ i £ & by (1.4) 

_ p(f c-!) , p(*0 . n ~ fc p ^ " 1 ) 9 
— ̂ n+l-fc "+" ^n-A; + 2& ^(n+l-fc) ' Z 

= fi? by (1.6), 

whence the theorem is assured by (J). 

Example : ^ 1 , 2 ) ( x ) = 19 + 19x + 7x2+x3 = (>4
(0) + P3

(0) + P2
(0)) + ( P 3

( 1 ) + P2
(1) + Px

(1)) z + 

(P2
(2) + P<2> + P<2)) x2 + ( p « + P f + Pi.1?) x3. 

Out l ines of Proofs of T h e o r e m s 7-9: 
Anticipating that the reader's appetite may have been whetted a little, we hopefully 

leave the remaining proofs as minor challenges, while giving a indication in each case of the 
appropriate procedure. 

T h e o r e m 7: si°'2\x) = £ L i f Pf+7 V + Q»-

Proof: This resembles Theorem 3. Use Si1A)(x) + s£$(x) giving 

di'f + 4 - 1 - = P£i-k + pn-i-k by Theorem 1, applied twice 

_ p(fc-l) 
~~ "Si+l-fc " 

- d(°'2) an,k 

k by (1.4) 

» - * p(fc-i) 

by (1.6). 
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Once again, we recall that the appendage constant term Qn in the enunciation of the 
theorem refers to k — 0, noting that this is guaranteed by (1.2) for r = 0,w = 2. 

Example : S$*'2)(x) = 14 + 15^ + 6x2 + x3 = Q3 + 3P^0)x + §P2
(1)x2 + P f V . 

T h e o r e m 8: S ^ ( x ) = E L i ( 2 ^ + P & I ^ ) ** + 2P„-

Proof: This resembles Theorem 4. Use (1.5) and (1.6) to produce 

9//( l j l ) 4-//(1'1} - p(fc-!) , o p W 
z a n- l , fc "T" an-l,k-l — ^n+l-fc "*" Lrn-h 

d\ (2,0) 
n.fc 

with A; = 0 yielding the exterior term 2P„, confirmed by (1.2) for r = 2, w = 0. 
Example: 

S f ,O)0c) = 10 + 13x + 6a:2 + x3 

= 2P3 + (2P2
(1) + P3

(0))x + {2P[2) + P2
(1))x2 + (2P0

(3) + P[2))x3. 

Theorem 9: ^ ( z ) = E L i ( 2 P « f c + ^ P £ A ) «* + 2P» + |Qn-

Proof: If we consider the simple addition Sn ' (x) + S^l^x), then 

,(i,i) ,(i,i) _ 9 p ( f c ) n + k ( fc_i) 

- d(2,1) 

— "n,fc 

eventually, after applying (1.6) and (1.5) and tidying up. Our theorem is then validated, 

remembering that d^' = 2P„ + \Qn by (1.2). 
Example : 

SfA\x) = 17 + 18x + 7x2 + x3 

= (10 + 7) + (2P2
(1) + 2P3(0))x + ( 2 i f > + \P^)X2 + (2P0<3> + Px

(2))x3. 
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3 . A F T E R T H O U G H T S 

Rela t ionships a m o n g (i) t h e d£%\ (ii) the Sn (x) 

Simple links connecting the %*& , each with a corresponding nexus involving the Sn
r'u\x), 

are relatively easy to discover from the material in Theorems 1-9. For convenience we will drop 

the functional notation for Sn
7(x) in this segment. Thus: 

Temporary Convention: Sn
r (x) = Sn

r,u. 

Theorems Connections 

3,9 (3.1) 

4,8 

j(2,0) _ ,(1,0) _ ,(1,1) \ 
an,k an,k — an-l,k ' 

o(2,o) _ cf(i,o) _ 9(1,1) 
(3.2) 

6,7 
C ( M ) _ o(0,2) __ ^(1,1) 

(3.3) 

Appropriate right-hand sides of (3.2), (3.3) are the same, whereas those of (3.1) are twice 
as great. 

Furthermore, Theorems 5 and 8 together yield 

5 ( 2 > 2 ) + 5 ( 2 , 0 ) = 2 ^ ( l , l ) + 5 ( l , l ) ) J 
(3.4) 

Verifications of (3.1) - (3.4) may readily be checked for n = 3 by using data already 

provided in the text, along with S1^ = 5 + 4x + x2. 
Lastly, observe that from (1.2), 

d. {:f-d{:f = (u-r)Pn.1 = Oiir 
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More generally, a quick investigation of d„ ^ ~~ ^nk C0UM- be undertaken. 

F I N A L E 

Our self-contained set of propositions (Theorems 1-9) has been a pleasurable challenge to 
the author who at no time found himself wandering in "the bloomless meadows of algebra55, 
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The Wrecker. Moreover, it has exploited the opportunity to expand our knowledge of the 

coefficients d„ ^ from [1]. 
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le I N T R O D U C T I O N 

In this paper we investigate sums of the form 
k 

to the generating function 
i f i / i I X I rxxr Q T \ r i l t n ? i i r f 4" h£s a 

' dx 
For any given n, such a sum can be determined [3] by applying the x-f- operator n times 

Jb>l 
9 3 

• x ~ xz 

then evaluating the resulting expression at x = 1/2. This leads to O,Q = 1, a\ = 53«2 = 47, and 
so on. These sums may be used to determine the expected value and higher moments of the 
number of flips needed of a fair coin until two consecutive heads appear [3]. In this article, 
we pursue the reverse strategy of using probability to derive an and develop an exponential 
generating function for an in Section 3. In Section 4, we present a method for finding an exact, 
non-recursive, formula for an. 

2. P R O B A B I L I S T I C I N T E R P R E T A T I O N 

Consider an infinitely long binary sequence of independent random variables 61,62? 63, • - • 
where P(6» = 0) = P(hi = 1) = 1/2. Let Y denote the random variable denoting the 
beginning of the first GO substring. That is, by = by+i — 0 and no 00 occurs before then, 
Thus P(Y = 1) = 1/4. For k > 2, we have P(Y = k) is equal to the probability that our 
sequence begins 61,62, • •., &jfe-231,0, 0, where no 00 occurs among the first k — 2 terms* Since 
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the probability of occurence of each such string is ( l /2 ) & + 1 , and it is well known [1] that there 
are exactly Fk binary strings of length k - 2 with no consecutive O's, we have for jfe > 1, 

Since Y is finite with probability 1, it follows that 

E ^ r = E ^ = *) = i-
fc>l fc>l 

For n > 0, the expected value of Yn is 

2 /c+i 
fc>l 

Thus a0 = 1. For n > 1, we use conditional expectation to find a recursive formula for an. We 
illustrate our argument with n — 1 and n = 2 before proceeding with the general case. 

For a random sequence 61,62, •••, we compute E(Y) by conditioning on 6i and 62- If 
hx = b2 = 0, then Y = 1. If 61 = 1, then we have wasted a flip, and we are back to the drawing 
board; let Y' denote the number of remaining flips needed. If 61 = 0 and 62 = 1, then we 
have wasted two flips, and we are back to the drawing board; let Y;/ denote the number of 
remaining flips needed in this case. Now by conditional expectation we have 

E(Y)=1-(l)+1-E(l + Y') + ^E(2 + Y") 

= \ + \ + IE(Y')+
1- + \E(Y») 

since E(Y') = E(Y") = E(Y). Solving for E{Y) gives us E(Y) = 5. Hence, 

fc>l 
Conditioning on the first two outcomes again allows us to compute 

E(Y2) = \{l2) + l-E [(1 + Y')2] + \E [(2 + Y")2} 

= I + \E{\ + 2Y + Y2) + \E(4 + 4Y + Y2) 
4 2 4 

= 7- + 2E(Y) + 3-E(Y2). 

Since E{Y) = 5, it follows that E{Y2) = 47. Thus, 

V^ k2Fk 47 
°2 = E 2 W = 4 7 ' 

fc>l 
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Following the same logic for higher moments, we derive for n > 1, 

E(Yn) = i ( l " ) + \E [(1 + Y)n] + \E [(2 + Y)n] 

= \ + \mn) + \ E (t) E(yk)+\ E (f) T~kE^ 

Consequently, we have the following recursive equation: 
n - l 

fc=0 
Thus for all n > 1, 

n - l 

w—x / \ 
£ ( y n ) = I + E ( J [2 + 2"~fc]^(yfc) 

fc=n W 

an = l + E ( ! ) [ 2 + 2 "~ f c K- (3) 

Using equation (3), one can easily derive as = 665, a^ = 12,551, and so on. 

3. G E N E R A T I N G F U N C T I O N A N D A S Y M P T O T I C S 

For n > 0, define the exponential generating function 
a(x) = Y ^x\ 

n>0 
It follows from equation (3) that 

a(z) = 1 + E ~{ " * " 
n>l 

= ex+ 2a(x)(ex - 1) + a(x)(e2x - 1). 

Consequently, 

«(*> = 4 - 2 e ^ - e ^ - ( 4 ) 

For the asymptotic growth of an, one need only look at the leading term of the Laurent 
series expansion [4] of a(x). This leads to 

10 
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4* C L O S E D F O R M 

While the recurrence (3), generating function (4), and asymptotic result (5) are satisfying, 
a closed form for an might also be desired. For the sake of completeness, we demonstrate such 
a closed form here. 

To calculate 

an~ 2^ 2k+1 5 
fc>i 

we first recall the Binet formula for Ft [3]: 

(6) 

Then (6) implies that (1) can be rewritten as 

2\/5 ^M-^rM *n = ^rr(1-±^\ - ^ » " ( ^ ^ l • (7) 

Next, we remember the formula for the geometric series: 

fc>o l x 

This holds for all real numbers x such that \x\ < 1. We now apply the 
^cfr operator n times 

to (8). It Is clear that the left-hand side of (8) will then become 
Yknxk. 
k>i 

The right-hand side of (8) Is transformed Into the rational function 
1 \ 

x\]e(nj)xj, (9) (1 - x)"*1 . 
3 = 1 

where the coefficients e(n,j) are the Eulerian numbers [2, Sequence A008292], defined by 

e(nj) =j-e(n- l,j) + (n-j + l) - e ( n - l , j - 1) with e ( l , l ) = 1. 

(The fact that these are Indeed the coefficients of the polynomial In the numerator of (9) can 
be proved quickly by Induction.) From the Information found In [2, Sequence A008292], we 
know 

ein^^ti-iru-ir^1). 
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Therefore, 

£kn*k = o 4 ) ^ x t [B-D'(; - o- (n 1x) 
k>i u z ' j=i lt=o \ * / 

(10) 

Thus the two sums 

zw^y^^h^y 
fc>l V / k>l \ / 

that appear in (7) can be determined explicity using (10) since 
1 + V5 < 1 and y/% < 1. 

Hence, an exact, non-recursive, formula for an can be developed. 
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1, I N T R O D U C T I O N 

Let n be a positive integer n and let uj(n), 0 (n) 3 r (n) ? <f>(n) and a(n) be the classical 
arithmetic functions of n. That is, cj(n), fi(n), and r(n) count the number of distinct prime 
divisors of n, the total number of prime divisors of n, and the number of divisors of n, respec-
tively, while 4>(n) and a(n) are the Euler function of n and the sum of divisors function of n 
respectively. 

A lot of interest has been expressed in investigating the asymptotic densities of the sets 
of n for which one of the "small'5 arithmetic functions of n divides some other arithmetic 
function of n. For example, in [2], it was shown that the set of n for which uj(n) divides n is 
of asymptotic density zero. This result was generalized in [4]. The formalism from [4] implies, 
in particular, that the set of n for which either Q(n) or r(n) divide n is also of asymptotic 
density zero. On the other hand, in [1] it is shown that r(n) divides a(n) for almost all n and, 
in fact, it can be shown that all three numbers u)(n), ft(n) and r(n) divide both 0(n) and 
o~(n) for almost all n. 

In this note, we look at the set of positive integers n for which one of the small arithmetic 
functions of n divides Fn or Ln. Here, Fn and Ln are the TI*̂ 1 Fibonacci numbers and the JI^^1 

Lucas number, respectively. We have the following result: 

Theo rem: 
The set of n for which either one of the numbers w(n), Q(n) or r(n) divides I 7 ^ is of 

asymptotic density zero. 
Since F2n — FnLn for all n > 0, it follows that for most n, none of the numbers u(n), O(n) 

or r(n) divides either Fn or Ln. Following our method of proof, we can easily generalize 
the above Theorem to the case when the Fibonacci sequence is replaced by any Lucas or 
Lehmer sequence. We believe that the above Theorem should hold with the Fibonacci sequence 
replaced by any non-degenerate linearly recurrent sequence but we. have not worked out the 
details of this statement. 

2. P R E L I M I N A R Y R E S U L T S 

Throughout the proof, we denote by ci ,C2,. . . computable constants which are absolute. 
For a positive integer k and a large positive real number x we let log^ar) to be the composition 
of the natural logarithm with itself k times evaluated in x. Finally, assume that S(x) is any 
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function defined for large positive values of x which tends to infinity with x. We use p to 
denote a prime number. We begin by pointing out a "large" asymptotic set of positive integers 
n. 

L e m m a 1: 
Let x be a large real number and let A(x) be the set of all positive integers n satisfying the 

following conditions: 
1. y/x < n < x; 
2. K B ) - l o g 2 ( x ) | < 8{x){\og2{x)yl2 and \Q(n) - log2(z)| < <K*)(log2(z))1/2; 
3. Write n — Y\p\npctp- Then, maxp |n(ap) < log3(x) and if p > log3(jj), then ap = 1. 
Then A(x) contains all positive integers n < x except for o(x) of them. 

T h e Proof of L e m m a 1: 
1. Clearly, there are at most -%/x = o(x) positive integers which do not satisfy 1. 
2. By a result of Tiiran (see [6]) 

£ > ( n ) - log2(aO)2 = 0(a:log2(x)). (1) 
n<x 

Thus, the inequality 

M n ) - l o g 2 ( s ) | < ^ ) ( l o g 2 ( s ) ) 1 / a (2) 

holds for all n < x except for O ( ^ y ) = o(x) of them. This takes care of the first inequality 
asserted at 2. For the second inequality here, we use the fact 

J2(n(n)-u(n)) = 0(x). (3) 
n<x 

By (3), it follows that the inequality 

fi(n)-o;(n)<^(x)(log2(a;))1/2 (4) 

holds for all n < x except for 0(s,.,lox ^^1/2) = o{x) of them. Inequalities (2) and (4) now 
tell us that 

\Sl{n)-\og2{x)\<8(x){\og2{x))ll2 (5) 

holds for all n < x except for o(x) of them. 
3. Assume first that n is divisible by some prime power pa with a > log3(x). Then, the 

number of such n < x is certainly at most 

£ ^ ) < »(C0og3(*)) - 1) = O ( - ^ ) = o(x). (6) plog3(x) VSV 63 V ; / ) \ 2 l o S : 

Here, we used £ to denote the classical Riemann zeta function. 
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Finally, assume that n is divisible by a square of a prime p > log3(a:). Then, the number 
of such n < x is at most 

Thus, A(x) contains all positive integers n < x but for o(x) of them. 
In what follows, for a positive integer n we denote by z{n) the order of apparition ofn in 

the Fibonacci sequence; that is, z(n) is the smallest positive integer n for which n\Fz^ny In 
the next Lemma, we recall a few well-known facts about z(n). 

L e m m a 2: 
1. There exist two constants c\ and c2 such that 

c\ logn < z(n) < C2nlog2(n) for all n > 3. (8) 
2. z(2s) = 3 • 2s~2for all s > 3. 

T h e P roof of L e m m a 2: 
1. Let 71 = 1 ^ 5 be ^ n e golden section and let 72 = 1 ~2

 5 be its conjugate. Since 

F n - 7 l ~ 7 2 for all n > 0 (9) 
7i ~ 72 

it follows easily that 
Fn < ln, (10) 

holds for all n > 0. Hence, since n\Fz(n), we get, in particular, that 

n < ^ ( „ ) < 7 i ( n ) - (11) 

Taking logarithms in (11) we get 
c\ logn < z(n) (12) 

with c\ — T~r—. 
1 log 71 

For the upper bound for z(n), we recall that if 

n = Hpa" (13) 
p\n 

then, 
z(n) = ]cmpln(z{pa')). (14) 

Moreover, if p is a prime, then 
z(p)\p-6p, (15) 

where Sp = ( | ) is the Jacobi symbol of p in respect to 5, and if a > 2 is a positive integer, 
then 

*(pa) |pa _ 1*(p) . ( is) 
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Combining (14), (15) and (16), we get that 

z(n) < n ^ P ~ 1 ( ^ + X) ^ <n) < ^n\og2{n). (17) 
p\n 

2. This is well-known (see, for example, [5]). 
For a given positive integer j and a positive large real number x let 

Pj(x) = #{n<x\uj(n)=j} (18) 
and 

nj(x) = #{n<x\n(n)=j}. (19) 
We shall need the following result: 

L e m m a 3: 
There exist two absolute constants c$ and C4 such that if x > c$ and j is any positive 

integer, then 
m a x ( p , ( x ) , 7 r J ( x ) ) < ( i o g 2

C y ) ) 1 / 2 . (20) 

T h e Proof of L e m m a 3: This is well-known (see [3], page 303). 
We are now ready to prove the Theorem. 

3 . T H E P R O O F O F T H E T H E O R E M 

We assume that x is large and that n £ A(x), where A(x) is the set defined in Lemma 1 
for some function 6. 

Throughout the proof, we assume that S(x) is any function tending to infinity with x 
slower than (log2(x))1/2; that is 

lim n */iu/2 = °- (21) 
x-+oo ( l o g 2 ( x ) ) 1 / 2 

We first treat the easiest case, namely r (n ) |F 2 n . Since n E A(x), it follows that 

u(n)> - log2(x) (22) 
holds for x large enough. Now write 

Tii = n pap 

p\n, p<log3(x) 

and 

n2= JJ p. 
p\n, p>log3(x) 

Clearly, n = nin,2,ni and n2 and coprime and n2 is square-free, therefore 
1 1 

«(n 2 ) = w(n) - w(m) > - log2(ar) - 7r(log3(a;)) > - ]og2(ar), (23) 
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where the last inequality in (23) holds for x large enough. Now notice that 

r{n) = r (n i ) r (n 2 ) = 2w(na>r(m). (24) 

Thus, if r (n ) |F 2 n , we get, in particular, that 2 ^ n 2 ) | F 2 n , whence s(2w(n2))|2rc. By inequality 
(23) and Lemma 2, it follows that if we denote by 0:2 the exponent at which 2 divides n, then 

a2 > uj(n2) - 3 > - log2(ar) - 3. (25) 
o 

The expression appearing in the right hand side of inequality (25) is larger than log3(x) for 
large x, contradicting the fact that n E A(x). Thus, if x is large and n E A(x), then r(n) 
cannot divide F2n. 

We now treat the cases in which uj(n) or Q(n) divides F2n. As the reader will see, the key 
ingredients for these proofs are the fact that n satisfies both condition 2 of Lemma 1 as well 
as Lemma 3, and both these results are symmetric in u(n) and fi(n). Thus, we shall treat in 
detail only the case in which u(n) divides F2n. 

We fix a positive integer j such that 

\j - log2(x)| < 8{x){\og2{x))1'2 (26) 

and we find an upper bound for the set of n E A(x) for which u(n) = j and j\F2n- Since j\F2n, 
it follows that 

2n = z(j)m, (27) 

for some positive integer m. Assume first that n is odd. In this case, 

j + 1 = v(2n) = u(mz(j)) = u(m) + v{z(j)) - s, where s = ^(gcd(m, z(j))). (28) 

We now notice that by inequality (26) and Lemma 2, 

c5 log3(x) < z(j) < c6 log2(x) log4(x) (29) 

holds for all x large enough and uniformly in j . In particular, 

s < UJ(Z(J)) < c7 log(z(j)) < c8 log3(x) (30) 

holds for x large enough and uniformly in j . Assume that s is a fixed number in the set 
{0,l,...,oj(z(j))}. Then 

2n 2x , . 

is a number with the property that 

u(m) = j + l-u(z(j))+s (32) 
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is fixed. Moreover, it is easy to see that 

x 
1/2 2tX ZX ZX /nn\ 

c6log2(x)log4(x) z{j) c5log3(^) 

Now Lemma 3 together with inequality (33) implies that the number of numbers m < 4 | j 
for which u(m) is given by formula (32) for fixed j and s is at most 

<** (34) 

and this bound is uniform in j and s when x is large. We now let s vary and we get that the 
number of odd n 6 A(x) for which w(n) = j and j\F2n is bounded above by 

C9(x(u(z(j)) + 1) ci0x\og(z(j)) 
z(.7)(log2(z))V2 < zU)0og2(x)y/*- ( ) 

We now use inequality (29) to conclude that (35) is bounded above by 
cuff log4Qg) r„B\ 

log3(ff)(log2(ff))V2- ^ > 

A similar analysis can be done to count the number of even n £ A(x) for which u)(n) = j and 
j\F2„. Thus, the total number of n 6 A(x) for which w(n) = j and j'|F2n is bounded above by 

c12xlog4(a;) 
log3(a;)(log2(x))V2 ^ > 

for large x and uniformly in j . Since j = uj(n) satisfies (26), it follows that j can take at most 
25(x)(log2(x))1/2 + 1 values. Thus, the totality of n E A{x) for which oo(n)\F2n is certainly 
not more than 

Ci3xlog4(x)S(x) 
logs 0*0 

(38) 

It now suffices to observe that one can choose S(x) such that the function appearing at (38) 
is o(x). For example, one can choose S(x) = i^(% an (^ ^ n e n ^ n e ^as^ expression appearing in 

(38)is°(i^y) = °w-
This shows that the set of n for which uj(n)\F2n is of asymptotic density zero. As we 

mentioned before, a similar analysis can be done to treat the case in which Q,(n)\F2n. The 
Theorem is therefore proved. 

4. R E M A R K S 

One may ask what about the set of positive integers n for which one of the "large" 
arithmetic functions of n, i.e. <f>{n) or a(n) divides Fn or Ln. The answer is that the sets of 
these n have all asymptotic densities zero, and this follows easily from our Theorem combined 
with the fact that both <fi{n) and a(n) are divisible by all three numbers u/(n), ft(n) and r(n) 
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for almost all n. If instead of considering whether or not Fn is a multiple of some other function 
of n, one looks at i^(„) or i ^ ^ ) , then one can show that both i^(n) and i ^ n ) are divisible 
by all three numbers u{n), fi(ra), r (n) for almost all n. We do not give more details. 
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1. I N T R O D U C T I O N 

Let P be a quadratic polynomial with integer coefficients. Motivated by a series of results 
on polygonal numbers (which we describe below) we consider the existence of integers a, 6, c, d 
and n such that 

P(n) = P{a) + P(b) = P(c) - P(d), P(a)P(b)P(c)P(d) / 0. (1) 

The simplest example of a polynomial P for which (1) has infinitely many solutions is P(x) — 
x2, for (3m)2 + (4m)2 = (5m)2 — (13m)2 — (12m)2 for every m. Now x2 = P^x) where, 
for each integer N with N > 3, Pnin) is the polygonal number (N — 2)n2/2 — (N — 4)n/2. 
In 1968 Sierpinski [5] showed that there are infinitely many solutions to (1) when P = P3, 
and this was subsequently extended to include the cases P5, P§ and P7 (see [2], [4] and [3], 
respectively). In 1981 S. Ando [1] showed that there are infinitely many solutions to (1) when 
P(x) — Ax2 -j- Bx, where A and B are integers with A — B even, and this implies that, for 
each N, (1) has infinitely many solutions when P = PJV. 

It is easy to find polynomials P for v/hich (1) has no solutions (for example, if P(n) is 
odd for every n), and this leads to the problem of characterizing those P for which (1) has 
infinitely many solutions. This problem has nothing to do with polygonal numbers, and here 
we prove the following result. 
T h e o r e m 1: Suppose that P{x) = Ax2 -j-Bx-}-C? where A^ B and C are integers, and A / 0. 
(i) If SA2 divides P(k) for some integer k, then there are infinitely many n such that (1) 

holds for some integers a, 6, c and d. 
(ii) If gcd(Aj B) does not divide C then there are no integer solutions to (1). 

Theorem l(i) is applicable when P(0) = 0, and this special case implies Ando3s result.. As 
illustrations of Theorem 1 we note that (1) has infinitely many solutions when P(x) = x2-\-2x-j-5 
(because P(l) = 8), but no solutions when P(x) = 6x2+3x+5. Not every quadratic polynomial 
is covered by Theorem 1; for example, x2 + 2x + 4 is not (to check that 8 does not divide 
P(k) for any k it suffices to consider k = 0 , 1 , . . . , 7). In fact, if P(x) — x2 + 2x + 4, then 
P(u + 1) — P(u) — 2u + 3, and it follows from this that for all k, 

P(2k2) + P(2k - 1) = P(2k2 + 1) 
= P(2k4 + 4k2 + 3) - P(2k4 + 4ifc2 + 2). 

The existence of solutions of (1) may have something to do with Diophantine equations; for 
example, if P(x) = x2 - Ax + 3, then P(x + 2) = P(y + 1) + P(y + 3) is equivalent to Pell's 
equation x2 - 2y2 = 1. This link with Diophantine equations suggests perhaps that there may 
be no simple criterion for (1) to have infinitely many solutions. 
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2. T H E P R O O F 

The proof of (i) is based on the following observation. 
L e m m a 2: Let p be any polynomial with integer coefficients. Suppose that there are non-
constant polynomials £, u, v and w with integer coefficients such that u(w(x)) = v(t(x)) + 1 
and P(v(x) + 1) — P{v{x)) = P(u(x)). Then there exist infinitely many n such that (1) holds 
for some integers a, 6, c and d. 

Proof: It is easy to see that if, for any integer x, we put n = u(w(x)), a = v(t(x)), b = 
u(t(x)), c = v(w(x)) + 1 and d — v(w(x)) then (1) holds. 
The Proof of (i): First, we show that the conclusion of (i) holds if 8^42 divides P(0)(= C). 
Let u{x) = 1 + AAx and v(x) = 8A2x2 + (4A + 2B)x + C/2A. Then u and v have integer 
coefficients and as is easily checked, P(v(x) +1 ) — P(v(x)) = P(u(x)). Next define t(x) = 4Ax 
and w(x) = v(4Ax)/4A. The assumption that 8A2 divides C implies that w has integer 
coefficients, and by construction, u(w(x)) = 1 + 4Aw(x) = v(t(x)) + 1. The conclusion of (i) 
now follows from Lemma 2. 

Now suppose that 8^42 divides P(k), and let Q(x) = P(x + k). Then Q has leading 
coefficient A, and 8A2 divides Q(0); thus there are infinitely many n such that (1), with P 
replaced by Q, holds for some a, 6, c and d. The conclusion of (i) follows immediately from 
this. 
The Proof of (ii): If there are integers n, a and b such that P(n) = P(b) — P(a), then there are 
integers u and v such that Au + Bv = C, and this implies that gcd(^4, B) divides C, contrary 
to our assumption. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Edi-
tor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State 
University, 800 University Drive, Maryville, MO 644^8. All solutions to others' proposals 
must be submitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathemat-
ics and Statistics, Northwest Missouri State University, 800 University Drive, Maryville, MO 
64468. 

If you wish to have receipt of your submission acknowledged, please include a self-
addressed, stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in 
this issue must be received by February 15, 2004- If a problem is not original, the proposer 
should inform the Problem Editor of the history of the problem. A problem should not be 
submitted elsewhere while it is under consideration for publication in this Journal Solvers are 
asked to include references rather than quoting uwell-known results". 

B A S I C F O R M U L A S 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 — Fn+l + En, FQ = 0, F\ = 1; 

En+2 — in+1 + Ln, LQ = 2, Li = 1. 

Also, a = (1 + \ /5) /2, p = (1 - V5)/2, Fn = (an - / 3 n ) / ^ 3 and Ln = an + @n. 

P R O B L E M S P R O P O S E D I N T H I S I S S U E 

B-961 P r o p o s e d by Steve Edwards , S o u t h e r n Po ly technic S t a t e Universi ty , 
M a r i e t t a , G A 

Show that ^£±r + ^g- is a constant for all nonnegative integers n. 
B-962 P r o p o s e d by Steve Edwards , S o u t h e r n Po ly techn ic S t a t e Universi ty , 

M a r i e t t a , G A 
Find 

T T ff2fcffi>fc+2 + i?2fe-li72fc+2 

B-983 P r o p o s e d by Ovidiu Furdu i , W e s t e r n Michigan Universi ty , Ka lamazoo , 
M I 
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Prove that 

?2n + l ~ 1 > 1 
^2n+4 — 3.Fn+2 — Ln+2 + 3 ft 

for all rc > 1. 
B-964 P r o p o s e d by Stanley Rabinowi tz , M a t h P r o , Westford , M A 

Find a recurrence relation for rn = f̂ -. 

B-985 P r o p o s e d by Jose Luis Diaz -Bar re ro a n d J u a n Jose Egozcue, Univers i ta t 
Pol i tecn ica de Ca ta lunya , Barcelona , Spain 

Let n be a positive integer. Prove that 

Fn!(4Fn + 1)! 
( 2F n ) ! (F n _ 1 +F n + 1 ) ! (2F n + 1 ) ! 

is an integer. 

S O L U T I O N S 

W h e n Do t h e y Converge? 

B-948 P r o p o s e d by Mar io Cata lan! , Univers i ty of Tor ino, Tor ino, I t a ly 
(Vol. 40, no . 5, November 2002) 

Find the smallest positive integer k such that the following series converge and find the 
value of the sums: 

t = l t = l 

Solut ion by Toufik M a n s o u r , Cha lmers Univers i ty of Technology, Sweden* 
1. Using Lemma 3.2 in [1], we get 

G(x) - J2 Fn^nXn = x2 — 3x + 1' 
n>0 

It follows that 

d (^ d ^f^\ __ x(x4 + 3x3 - 6x2 + 3x + 1) 
\3 

^ d ( d \ x(x4 + 3 x 3 - 6 x 2 + : 

n>0 \ / v / 
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Hence, the sum J2n>on2^n^JnXn c o n v e r g e if a n ( i o n ty if \x\ < f (3 — \/5), which means k > 

| ( 3 + A/5)- Therefore, the smallest positive integer k such that (1) converges is k = 3. In this 
case the sum (1) equals 354. 

2. Using Corollary 3.5 in [1], we get 

H(x\ - y * F2 n = S ( l - S ) 

It follows that 

r-3 I -.4 I / (_2 
r 2 n _ 9 P M _ ( 1 - 2 S - 2 S 3 + S 4 + 43;2):C 

n>0 

Hence, the sum X^n>o ^ n ^ ™ converges when \x\ < | ( 3 — >/5), which means fc > | ( 3 + >/5)-
Thererore, the smallest positive integer k such that (2) converges is k = 3. In this case, the 
sum (2) equals —-. • 
P.S. It is easy to prove by induction that the sums X^>i imF%LiX% and Yl%>\ imFfx% converge 

for all x such that \x\ < | ( 3 — y/E) (maximum domain), for all m > 1. 

REFERENCES 
[1] P. Haukkanen. "A Note on Horadam's Sequence." The Fibonacci Quarterly 40A (20002): 

358-361. 

Also solved by P a u l B r u c k m a n , Char les Cook, K e n n e t h D a v e n p o r t , L.G. Dresel, 
Ovidiu Purd iu , W a l t h e r J a n o u s , Har r i s Kwang , Dav id M a n e s , J a m e s Sellers, a n d 
t h e proposer . 

In tegra l a n d Nonsqua re ! 

B-947 P r o p o s e d by S tan ley Rabinowi tz , M a t h P r o P re s s , West ford , M A 
(Vol. 40, no . 5, November 2002) 

(a) Find a nonsquare polynomial f(x, y, z) with integer coefficients such that f(Fn, F n + i , Fn+2) 
is a perfect square for all n. 

(b) Find a nonsquare polynomial g(x,y) with integer coefficients such that g(Fn,Fn+i) is a 
perfect square for all n. 

Solut ion by Pau l B r u c k m a n , Berkeley, C A a n d W a l t h e r J a n o u s , Ursu l inengymna-
sium, Innsbruck , A u s t r i a ( separa te ly) . 

We begin with the well-known "Wronskian" identity: 

F n + 1 F B _ i - {Fnf = ( - 1 ) " (1) 

Two alternative forms of this identity are the following: 

( F n + 1 ) 2 - Fn+1Fn - (Fn)2 = ( - 1 ) " (2) 
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(Fn+t)2 - Fn+2Fn = (-l)n (3) 

This suggests the following solution for Part (a): 

f(x, y, z) = (y2 - xz)(y2 - xy - x2) = y4 - xy3 - x2y2 - xy2z + x2yz + x3z (4) 

We see from (2) and (3) that with this / , we have: f(Fn,Fn+i,Fn+2) = 1? which is certainly 
a perfect square for all n. 

Also, using (2), we may take the following solution for Part (b): 

# 0 , y) = (y2 -xy-x2 -{- l)(y2 - xy - x2 - 1) = y4 - 2xy3 - x2y2 + 2x3y + x4 - 1 (5) 

It is easily checked that g(Fn, JPW+I) — 0 f° r all n, which is again a perfect square. 
Also solved by P e t e r Anderson , Michel Ballieu, LeG« Dresel , Ovid iu Furdu i (par t 
(a)) , Dav id M a n e s , a n d t h e p roposer . 

A Series Inequal i ty 

B-948 P r o p o s e d by Jose Luis Diaz -Bar re ro a n d J u a n Jose Egozcue, Univers i ta t 
Pol i tecn ica de Ca ta lunya , Barcelona , Spain 
(Vol. 40, no . 5, November 2002) 

Let £ be a positive integer greater than or equal to 2. Show that, for x > 0, 

logF£+lFi+2...Fe+nxn2 < J ] l o g F 4 X. l+k 
fc=l 

R e m a r k . The condition on x should be x > 1. For example, the inequality fails when 
n = t — 2 (try, for instance, x — 1/6). The proof below shows why we need x > 1. 

Solut ion by Har r i s Kwong, S U N Y College a t Fredonia , Fredonia , N Y . 
It follows from Cauchy-Schwarz inequality that 

'^-(t^^-^kr^-it'^Mt^. 
\k=l 

For x > 1, we have Inx > 0. Hence 

n2 In x ^ In x 
In Fi+1Fi+2 • •• Fi+n ^ In Fi+k 

which completes the proof, because In xj In a = logax for any a > 0. 
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Also solved by P a u l B r u c k m a n , Mar io Cata lan! , L.G. Dresel , Ovidh i Furdu i , 
W a l t h e r J a n o u s , H. -J . SeifFert, a n d t h e p roposer , 

Couples Congruence 

B-949 P r o p o s e d by N . Gau th i e r , Royal Mi l i t a ry College of C a n a d a 
(Vol. 40, no . 5, November 2002) 

For I and n positive integers, find closed form expressions for the following sums, 

Sl=22^n kFl*.2l a n d 2̂ = /2^n kLlk-(2l+l)-
k=l k=l 

Solut ion by Mar io Cata l in i , Univers i ty of Tor ino, Tor ino, I t a ly 
We will use the following identities: 

5F* = F3n-3(-l)nFn, (1) 

L3
n = L3n + 3 ( - l ) " L n . (2) 

71 

E on — k Z7>3 on — ljp3 _i_ on- 2 ZT»3 , on - 3 TTI3 I I op3 • jp3 
6 r 3 k - 2 l ~ 6 *3>2l^~6 ^32-2l^~6 ^33-2|H r dTgn-i^j +-*V-2l" 

k=l 

Using identity (1) and the fact that the subscript is always an even number we get 

bS1 = 2>n-l[Fv.2l - 3F3.2l] + 3n~2[F33.2l - 3F32.2l] + 3n-3[F34.2, - 3F3s.2l] 
+ h 3 [ F 3 n . 2 j — 3F3n-1.2l] + [F3n+l.2l ~ 3 F 3 n . 2 / ] . 

Because of a telescopic effect we obtain simply 

55i = — 3nF3.2i + F^n+i.21-

For the second summation we have 

n 

E nn-kj-3 _qn-lr3 , on-2r3 j _ o n - 3 r 3 , 

* lj3k-(2l+l) — * iy3-(2«+l) + 6 ^32.(2i+l) + 6 L3S'{21+1) + • • • k=l 

+ 3i3n-i .(2 |+i) +i3».(2«+l)" 
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Using identity 2 and the fact that the subscript is always an odd number we get 

S2 = 3 n p32.(2Hi) ~~ 3£3-(2j+i)] + 3 n ~ 2 [L^.(2i+i) - 3L32.(2H-i)] 

+ 3 n ~ [ l r 3 4 . (2 i + l ) - 3Zr33.(2J+l)] + - • • 

+ 3 [Lsn.ty+l) — 3 i 3 n - i . ( 2 i + i ) J + [1^3^+1.(21-1-1) — 3L 3 n . ( 2 j+ i ) J • 

Because of a telescopic effect we obtain 

S2 ~ — 3nL3.(2j+i) + £3n+i.(2J+l)-

Also solved by P a u l Bruckman, H.-J. Seiffert, a n d t h e p roposer . 

P r i m e s • • • Again 

6-950 P r o p o s e d by P a u l S. B r u c k m a n , Berkeley, CA 
(Vol. 40, no . 5, November 2002) 

For all primes p > 2, prove that 

]C~r = ° (modp)> 

where ^ represents the residue fc-1(modp). 

H.J. Seiffert refers the reader to part (b) of problem H-545 in The Fibonacci Quarterly 
38.2 (2000): 187-188 and Kenneth B. Davenport quotes Corollary 4 of "Equivalent Conditions 
for Fibonacci and Lucas Pseudoprimes which Contain a Square Factor," Pi Mu Epsilon Journal 
10.8 Spring 1988, 634-642. 

Also solved by L.G. Dresel a n d t h e proposer . 
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Please send all communications concerning ADVANCED PROBLEMS AND SOLU-
TIONS to FLORIAN LUCA, IMATE, UN AM, AP. POSTAL 61-3 (XANGARI), CP 58 089, 
MORELIA, MICHOACAN, MEXICO, or by e-mail at fluca@matmor.unam.mx as files of the 
type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or other information that 
will assist the editor. To facilitate their consideration, all solutions sent by regular mail should 
be submitted on separate signed sheets within two months after publication of the problems. 

P R O B L E M S P R O P O S E D I N T H I S I S S U E 

H-599 P r o p o s e d by t h e Ed i to r 

For every n > 0 let Cn := 1 ] be the nth Catalan number. Show that all the 
n + 1 V n J 

solutions of the diophantine equation Fm — Cn have m < 5. 

H-60Q P r o p o s e d by A r a l a p p a h Eswara thasan , Hofs t ra Univers i ty , H e m p s t e a d , 
N Y 

The Pseudo-Fibonacci numbers un are defined by U\ — 1, U2 = 4 and wn+2 = u-n+i +^n-
A number of the form 3s2, where s is an integer, is called a one-third square. Show that uo = 3 
and u-4 — 12 are the only one-third squares in the sequence. 

H-601 P r o p o s e d by W a l t h e r J a n o u s , Ur su l inengymnas ium, Innsb ruck , A u s t r i a 
Prove or disprove that the sequence 

I a(n+3)/2 | n > 1 

strictly decreases to its limit 1. Here, a is the golden section. 

H-602 P r o p o s e d by Ovid iu Purdu i , W e s t e r n Michigan Universi ty , Ka lamazoo , M I 
Find the limit 

lim V" I, 
n^°° rHtg-) 

where k and I are fixed positive integers, T is the Euler function, and a is the golden section. 
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S O L U T I O N S 

Sums of consecutive F ibonacc i n u m b e r s 

H-588 P r o p o s e d by Jose Luis Diaz -Bar re ro & J u a n Jose Egozcue, Barcelona , 
Spa in 

Let n be a positive integer. Prove that 

.n+1 n I T n _ p n 
I -s—r i -^u 11 J- u i i 

Solut ion by H. -J . SeifFert, Berlin^ G e r m a n y 
Direct computation shows that equality holds with n = 1. Now, suppose that n > 2. If a 

and b are real numbers such that b > a > 0, then, by Holder's Inequality, 

f\idt<(j\*y(i h \ n ( pb \ n 

dt] 

or, equivalently, 

n o n —a n fa-tuXn 
n + 1 

a ri /a -$- b\n 
~a ~ V 2 / 

Applying this inequality with a := F&+1 and b := Lfc+i, noting that F&+i + î jfc+i = 2F&+2, 
and taking the product over k = 1 , . . . , n, gives 

n-|-l n-{-l 
n TT J ^fc+l rfc+l n " • ' , : h n ^ 

By the Arithmetic-Geometric Mean Inequality, we have 

( n \ n n 

k=i J fc=i 

and the desired inequality follows. 
Also solved by P a u l Bruckman^ W a l t h e r J a n o u s a n d t h e p ropose r s . 
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I t e r a t e d Fibonacci n u m b e r s 

H-589 P r o p o s e d by R o b e r t DiSar io , Bryan t College, Smithfield, R I 
Let f(n) ~ F(F(n)), where F(ri) is the n t h Fibonacci number. Show that 

/ ( n ) = 7(^3) 

for n > 3. 
Solut ion by L.A.G. Dresel , Read ing , Eng land 

We shall first prove the identity Fs+tFs^t = (Fs)2 - ( - l ) 5 - t ( F t ) 2 , which corresponds to 
formula I (19) on page 59 of [1]. Using a/3 = — 1 and the Binet form for Fn, we have 

5 F s + t F s _ t = (as+t - /3*+t)(a*-* - p8'*) = a2s + /32 s - {af3)s-\a2t + /32t) 

= a2s - 2(a/3)s + /32s - {a^ia21 - 2(a/3)t + /32t} = 5{(FS)2 - ( - l )* -* (F t ) 2 } . 

Putting 5 := F n _ i and £ := Fn_2, we have 5 + 1 — Fn and s — t = F n _3 , so that our identity 
takes the form f(n)f(n-3) = (f(n-l))2-(-l)F(n~V(f(n-2))2. But since F n - 2 F n _ 2 + F n _ 3 
we have (—l)F(n~3) = (—l)F^n"1\ and for n > 3 we can divide by / ( n — 3), which proves the 
given formula. 
1. V.E. Hoggatt. "Fibonacci and Lucas numbers." Boston: Houghton Mifflin, 1969; rpt. 
Santa Clara, CA: The Fibonacci Association, 1979. 
Also solved by P. B r u c k m a n , M. Ca ta lan i , O. Pu rdu i , W . J a n o u s , H. Kwong , V, 
M a t h e , H. -J . Seiffert, J . Spilker a n d t h e p roposer . 

A r i t h m e t i c Funct ions of F ibonacci N u m b e r s 

H-590 P r o p o s e d by F lor ian Luca, I M A T E , U N A M , Morel ia , Mexico 
For any positive integer k let (/>(k), cr(k), r(k), 0(&), u(k) be the Euler function of &, the 

sum of divisors function of k, the number of divisors function of fc, and the number of prime 
divisors function of A; (where the primes are counted with or without multiplicity), respectively 

1. Show that n\(j){Fn) holds for infinitely many n. 
2. Show that n\a(Fn) holds for infinitely many n. 
3. Show that n\r(Fn) holds for infinitely many n. 
4. Show that for no n > 1 can n divide either oj(Fn) or Q(Fn). 

Solut ion by J . -Ch . Schlage-Puchta & J . Spilker, Alber t -Ludwigs -Univers i t a t 
Fre iburg , G e r m a n y 

We first prove a 
L e m m a : Let / : N —>• Z be multiplicative such that f(pk) is even for all primes p > 2 and 
all odd positive integers k. Then 2n\f(F2n) holds for every n > 6. 
Examples : 

1. The Euler function <f> is multiplicative and <j)(pk) = pk~l{p — 1) is even if p > 2. This 
is part 1 of the Problem. 
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2. The sum of j t h powers of divisors function <Tj(n) = J2d\ndJ' 3 ^ ° i s multiplicative 

and (Tj(pk) = 1 -hpj + hp(fc~1)j' is even if both p and k are odd. The cases j = 1 and j = 0 
are parts 2 and 3 of the Problem, respectively. 
P roof of t h e L e m m a : Define the multiplicative function 

if p > 2 . 

Then f*(2kn) = /*(n) and /* (n) | / (n ) hold for all positive integers k and n. It suffices to show 
that 

(1) 64|/*(F6 4); 
(2) if n > 6 and n\f*(Fn), then 2n | /*(F2 n) . 
Claim (1) above follows from the fact that F6 4 is odd, squarefree, and has precisely 6 prime 

factors. For Claim (2) above, we use the facts that F2n = FnLn and L\ — 5F^ = ( - l ) n • 4. 
Prom the last formula, it follows that gcd(Fn,Ln)\2. Thus, writing 2 a | |F n and 26| |Ln, we get 

r(F2n) = r(FnLn) = r (§• • £) = /•(fr)r(ilr) = /*(*•»)/•(£.)• 

By the hypotheses of the Lemma, f*(Ln) is always even except when Ln is a square or twice 
times a square. A result from [1] says that the only such values of n are n = 1, 3, 6. Thus, if 
n > 6, then f*(Ln) is even, which completes the proof (2) and of the Lemma. 

For part 4 of the Problem, assume that n > 2. Then Fn > 1, and so on the one hand 
writing the prime factorization of Fn we get 

3 3 

while on the other hand, by the Binet formula, we have 

where a is the golden section and /3 is its conjugate. Thus, n > Ylj % = ^(-^n) > ou(Fn), 
which shows that n cannot divide neither uj(Fn) nor u(Fn). 
1. J.H.E. Cohn. "Lucas and Fibonacci numbers and some Diophantine equations.15 Proc. 
Glasgow Math. Assoc. 7 (1965): 24-28. 

E d i t o r s Remarks All solutions used powers of 2 with exponent greater than or equal 
to 6 to settle parts 1-3 of the problem, and quoted the result from [1] above to the effect that 
Ln is a perfect square only for n = 1, 3. However, one does not need the full strength of the 
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result from [1] in this instance. Indeed, since L2 — 3 and L2n — L\n_x — 2 holds for all n > 2, 
it follows easily, by induction, that L2n = 3 (mod 4) holds for all n > 1, and as such these 
numbers cannot be perfect squares. 
Also solved P, B r u c k m a n , V. M a t h e a n d t h e p roposer . 

P lease Send in Proposa l s ! 

i 2 
i The Eleventh International Conference on I 
J Fibonacci Numbers and their Applications I 
m H 
I July 5 - July 9, 2004 I 
I Technical University Carolo-Wilhe mina, I 
I Braunschweig, Germany I 
H m 
1 Local Organizer: H. Harborth 1 
1 Conference Organizer: W. Webb 1 

I Call for Papers: The purpose of the conference is to bring together people from all branches of I 
1 mathematics and science with interests in recurrence sequences, their applications and I 
1 generalizations, and other special number sequences. j 
it n 
I Deadline: Papers and abstracts should be submitted in duplicate to W. Webb by May 1, 2004 at: 1 

1 Department of Mathematics I 
i Washington State University 1 
I Pullman, WA 99164-3113 § 
I- USA I 
I Phone: 509-335-3150 I 

I Electronic submissions, preferably in AMS - TeX, sent to webb@math.wsu. edu I 

1 Local Information: Contact H. Harborth at I 
I Diskrete Mathematik 1 
1 TU Braunschweig I 
I 38023 Braunschweig, Germany 1 
I Phone: 49-531-3917515; 49-531-322213 I 
1 h.harborth@tu-bs.de 1 

1 International Committee: A. Adelberg (U.S.A.), M. Bicknell-Johnson (U.S.A.), C. Cooper I 
1 (U.S.A.), Y. Horibe (Japan), A. Horadam (co-chair)(Australia), J. Lahr (Luxembourg), i 
1 A.Philippou (co-chair)(Greece), G. Phillips (co-chair)(Scotland), A. Shannon (Australia), L. 1 
1 Somer (U.S.A.), J. Turner (New Zealand). I 

1 Local Committee: J-P. Bode, A. Kemnitz, H. Weiss I 

I 1 
j Information: www.mscs.dal.ca/fibonacci/eleventh.html 1 
1 www.mathematik.tu-bs.de/dm/fibonacci 1 
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