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1. I N T R O D U C T I O N 

MacMahon [1], pp. 217-223, studied special kinds of partitions of a positive integer, 
which he called perfect partitions and subperfect partitions. He defined a perfect partition of 
a number as "a partition which contains one and only one partition of every lesser number" 
and a subperfect partition as "a partition which contains one and only one partition of every 
lesser number if it is permissible to regard the several parts as affected with either the positive 
or negative sign". For instance, (1 1 3) is a perfect partition of 5 because we can uniquely 
express each of the numbers 1 through 5 by using the parts of two l?s and a 3. Thus (1), (1 
1), (3), and (1 3) are the partitions referred to. The partition (1 3) is a subperfect partition of 
4 because 1 is represented by the part 1, 2 by —1 + 3, and 3 3 by the part 3. In [1] MacMahon 
derived a recurrence relation for the number of such partitions using generating functions and 
found a nice relation between the number of perfect partitions and the number of ordered 
factorizations. See [4] for more information. 

One way of generalizing MacMahon's idea is to eliminate the uniqueness condition, which 
was done by the second author [2]. He defines a complete partition of n to be a partition 
A = (Ai • • • Xi) such that every number m with 1 < m < n can be represented by the form of 
m — Yli=i ai^i, where a* E S — {0,1}. He also studied the case of the set S = {0,1, • • • , r} 
in [3]. In this paper we shall study the r-subcomplete partitions which are complete partitions 
with the set S = {— r, • • • , — 1,0,1, • • • , r } , where r is a positive integer. 

2. T H E r - S U B C O M P L E T E P A R T I T I O N S 

Even if it is well-known, we start with a definition of partitions. Throughout this paper 
the number n represents a positive integer. 
Defini t ion 2 .1 : A partition of n is a finite non-decreasing sequence A = (Ai • • • Xi) such that 
X^=i Xi — n and Xi > 0 for all i = 1, • • • , I- The Xi are called the parts of the partition and 
the number I is called the length of the partition. 

We sometimes write A = ( l m i 2 m 2 • • -) , which means there are exactly rrii parts equal to 
i in the partition A. For example, we can write 7 partitions of 5 as (5), (1 4), (2 3), (I2 3), 
(1 22), ( I 3 2), and (I6) . The following two concepts are already mentioned, but we formally 
define them again to see how we can generalize them. 
Defini t ion 2.2: A partition X — (X™1 • • • A]711) of n is a perfect partition of n if every integer 
rn with 1 < rn < n can be uniquely expressed as m = ]T/t=ia*^*> where a* E {0,1, • • • ,m*} 
and repeated parts are regarded as indistinguishable. 
Defini t ion 2.3: 4̂ partition X ^(A™1 • - • A}1*1) of n is a subperfect partition if each integer rn 
with 1 < m < n can be uniquely represented as X^=i a*^*> where ai E {— ra», • • • , — 1,0,1, • • • , mi} 
and repeated parts are regarded as indistinguishable. 
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Defini t ion 2.4: A partition ofn A = (Ai • • • A|) is a complete partition of n if each integer m 
with 1 < m < n can he represented as m = X^=i ai^i> where ai E {0,1}. 

For n = 6, partitions (I6) , ( I 4 2), ( I 3 3), (I2 22) and (1 2 3) are complete partitions. We 
refer to the paper [2] for more information on complete partitions. Now we are ready to define 
our main topic, the r-subcomplete partitions. 
Definit ion 2,5: A partition ofn A = (Ai • • • A|) is an r-suhcomplete partition of n if each 
integer m with 1 < m < rn can be expressed as m — X)i=ia*^*> where ai E 
{— r, • • • , —1,0,1, • • • , r } . Such as m is said to he r-representable. 

We also say a partition A = (Ai • • • Aj) is r-subcomplete if it is an r-subcomplete partition of 
the number AH hAj. We will write {0 ,±1 ,±2 , • • • , ± r } for the set {—r, • • • ,—1,0,1, • • • , r } 
and the letter r represents a positive integer throughout this paper. The r-subcomplete parti-
tions with the set {0,1, • • • , r } are called r-complete partitions. See [3] for more information. 
E x a m p l e 1: The partition (1 4) is a 2-subcomplete partition of 5. To see this we list 2-
representations of numbers from 1 to 10; 1 = 1, 2 = 2 - 1 + 0 - 4 , 3 = —1 • 1 + 1 • 4,4 = 
0 - 1 + 1- 4,5 = 1-1 + 1- 4,6 = 2 - 1 + 1- 4 , 7 = - 1 - 1 + 2- 4,8 = 0 - 1 + 2- 4,9 = 1-1 + 2 . 4, 
and 10 = 2 - 1 + 2 • 4. 

Tt is easy to see that every integer m with —rn < m < 0 can also be expressed in the 
form X^=i ai^i w * t n ai ^ { '̂ ^ ^ ^ ^ " ' > ^r} if A = (Ai • • • Aj) is an r-subcomplete partition 
of n. So one can say if A = (Ai • • • Aj) is an r-subcomplete partition of n then each number 
between — rn and rn can be represented by the form. We will need this simple fact in the 
proof of Lemma 2.9 and Theorem 2.10. The following Lemma shows that every r-subcomplete 
partition should have 1 as the first part. 
L e m m a 2.6: Let A = (Ai • • • Aj) be an r-subcomplete partition ofn. Then Ai is 1. 

Proof: Suppose not. Then Ai > 1. Since A is an r-subcomplete partition of n, the 
numbers 1 and r n — 1 are r-representable. Let 1 = J2i=i ai^h where ai E {0, ± 1 , ±2 , - - - , ± r } . 
Then there should be at least one aj < 0 for some j since A, > 1 for all i. Then rn — 1 = 
rGC;=i Ai) - Y?i=iai^i — ]Cl=i( r ~ ai)K- Then r - aj > r, which means rn - 1 is not 
r-representable, which is a contradiction. • 

i i 
T h e o r e m 2.7: Let A = (Ai • • • A|) he an r-subcomplete partition ofn. Then A* < l + 2 r z2j=i Aj 
for each i = 2, • • • , i. 

Proof: Suppose not. Then there exists at least one number k such that A& > 1 + 
2r E ? ~ i Aj, where 2 < fc < I. Thus, 

fc-i \ i 
rn> rn— I 1 + 2r J ^ A j J > rn — A& = r ^ A j — A& 

j = i / j = i 

fc-i i 
= r^ ]Aj + (r-l)Ajfe + r ]JT Aj. 
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Since the number rn— (1 + 2r YljZi Aj ) *s r-representable, we can let rn— (1 + 2r J2jZi Aj) = 

J2i=i ai^i-> where ai E {0, ± 1 , ±2 , • • • , dbr}. Then a^ = ak+i = • • • = ai — r because 

rn - ( l + 2r £ * ! * *j) > r Y,)z\ \ , + (r - 1)Xk + r T!j=k^i XJ a n d A i < • • • < A* < Afc+1 < 

••• < Xi. Thus, 

( fc-1 \ fc-1 I 

l + 2r^Ai = £ a i A i + r £ A i . 
i=l / i=l J=fc 

So 
fc-i i 

r n = 1 + 5 ^ ( 2 r + a i )A^ ' + r y ^ A J - > r n + l 3 

which is a contradiction. D 
Coro l la ry 2.8: Let A = (Ai • • • A;) be an r-subcomplete partition of n. Then Xi < (2r + I )* - 1 

for each i = 1, • • • ,Z. 
Proof: For % = 1, the result is obvious. Assuming that A* < (2r + 1)*_1 for i = 1, • • • , A;, 

A f c + 1 < l + 2 r ^ A j < l + 2 , - ( 2 ; r + 1
i

) 1 = (2?- + l)fc. D 

L e m m a 2.9: Let X = (Ai • • • A|) 6e an r-subcomplete partition of n. Then for k = 1, • • • , I 
eac/i partition (Ai • • • A&) is r-subcomplete of the number Ai H h Afc. 

Proof: Clearly, (1) is an r-subcomplete partition of 1 for all r. Assume that (Ai • • • A&) is 
an r-subcomplete partition of Ai H \- A&. We only need to show that for w = 1, • • • , r each 
m such that r(Ai H h A&) + (w — l)Afc-j_i < m < r(X\ H h A&) + wXk+i is r-representable. 
Since Afe+i < 1 + 2r £ * = 1 A, from Theorem 2.7, 

r(Ai + h A&) - Afc+i < m - wAfc+i < r(Ai + h Afc) 

k \ k 
3 1-hr 22 Ai I <m~ ^Afc+i < r j P A_ 

i=i / i=i 

-r \ J Aj < m — u;Ajk+i < r Y^ A 
i=i i=i 
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Thus by the inductive assumption, the number m — wXt+i is r-representable by Ai, • • • , A&. 
So m - wXk+1 = X)j=i aj^j, where aj £ {0? dbl3 ±2, - - • , ± r } . Therefore, m = $ ^ = 1 o^A^ + 
ii/Ajb+i. This completes the proof. D 

The converse of Theorem-2.7 is also true and it gives a criterion to determine r-subcomplete 
partitions. 
T h e o r e m 2*10: Let A = (Ai • • • Af) be a partition of n with Ai = 1 and Xi < 1 + 2r ]T)}=i Ai 
for i = 2, • • • ,1 . Then X is an r-subcomplete partition of n. 

Proof: Obviously,• (1) is an r-subcomplete partition of 1 for all r. Asusme that (Ai • • • A*) 
is r-subcomplete. Then by Lemma 2.9, every partition (Ai • • • Xi) is r-subcomplete for i = 
2, • • • , ife. We want to show that (Ai • • • XkXk+i) is r-subcomplete. To do this we use similar 
steps to the proof of Lemma 2.9. Let m satisfy r(Ai + • • • + A&) + (w — l)Afc+i < m < 
r(Ai H h Ajb) + w\k+i, where w = 1,2, • • • , r. Now, since r(Ai + • • • + A*.) - A*.+i < 
m — wXk+i < r(X\ + h Ajb) and from the given condition A^+i < 1 + 2r J2'j=i Aj, we have 
—r(Ai + • • • + Afc) < m — wXk+i < r(X± + • • • + A&). By the inductive assumption and 
Lemma 2.9 m = wA&+i + Y^i=i aiXi, that is, (Ai • • - Xk7 Afc+i) is an r-subcomplete partition. 
Thus, the partition (Ai • • • Af) is an r-subcomplete partition. D 
P r o p o s i t i o n 2.11: Let X = (Ai• • • Af) be an r-subcomplete partition ofn. Then the minimum 
possible length I is [log(2r+i)(2rra + 1)], where \x] is the least integer which is greater than or 
equal to x. 

Proof: By Corollary 2.8, n - E 5 = i Ai ^ E j = i ( 2 r + 1)i™1 = ^ V ' " * - Therefore, 
^ > R o g ( 2 r + 1 ) ( 2 r n + l ) l . D 
P r o p o s i t i o n 2*12: Let X = (Ai • • • Af) be an r-subcomplete partition of n. Then the largest 
possible part is L ^ + r J ; where [x\ is the largest integer which is less than or equal to x. 

Proof: Let ra = Ai + • • • + Aj-i + Aj. Then Af is the largest and w - Aj = £ j = i Aj. By 

Theorem 2.73 Af < 1 + 2r Y^%\ Aj - 1 + 2r(n - Af). Thus Af < L ^ + r J • • 
Now 3 we try to find two recurrence relations and a generating function for r-subcomplete 

partitions. Let Srjk(n) be the number of r-subcomplete partitions o f n whose largest part is 
at most k. The set of such partitions can be partitioned into two subsets: one with the largest 
part at most k — 1 and the other with the largest part exactly k. The latter type of partitions 
can be obtained by adding k as the last part of an r-subcomplete partitions of n — k whose 
largest part is at most fe. We know from Proposition 2.12 that the largest possible part k 
should satisfy 1 < k < L ^ + r J - If & > l^F$t^ Sr^(n) becomes actually ff ,2m+ij(w), which 
is the number of all r-subcomplete partitions of ra. It is easy to see from the definition of 
Sy}fc(ra) that £V,jb(l) = 1 for all k and Sr,i(ra) = 1 for all ra. Thus we obtain 
T h e o r e m 2*13: Let SV5fc(ra) be the number of r-subcomplete partitions ofn whose largest pari 
is at most k. Then Srji(n) = 1 for all n and for k > 2 

i 5 r , M ( » ) + 5 , t ( n - t ) , y i < * < | _ ^ M j 
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with initial conditions 5r ji(0) = 1 and Srfi(n) = 0 for all n. 
Example 2: 

^2,6(7) = 33,6(7) = 52)4(7) + S2,5(2) = (S2,3(7) + S2,4(3)) + S2,i(2) 
= (52,2(7) + 52)3(4)) + S2>2(3) + 1 
= {(52,1(7) + S2,2(5)) + (52,2(4) + £2,3(1))} + (52,i(3) + S2,2(l)) + 1 
= 1 + (52,i(5) + S2j2(3)) + (52,i(4) + 52,2(2)) + 1 + (1 + 1) + 1 
= 1 + 1 + (52,i(3) + 52 l 2( l)) + 1 + 52>1(2) + 4 
= 2 + (1 + 52,i( l)) + 1 + 1 + 4 = 10 

Now let us count the number of r-subcomplete partitions whose largest part is exactly k 
and find a generating function for this number. Let ET^{ri) be the number of r-subcomplete 
partitions of n whose largest part is exactly k. A recurrence relation for ETtk{n) can be obtained 
by the method we used in deriving Sr,k(n) above, but we can use the number Sryk(n) itself as 
follows. Prom the recurrence relation for Sr,k(n), 

Er,k(n) = 5r,fc(n) - Sr,k-i(n) = Sr,k(n - k) 
= 5r,fc(n - k) - 5r,fe_i(n - k) + 5r, f c-i(n - k) 
= £ r , * ( n - A ) + £ r , f c _ i ( n - l ) . 

It is easy to see that Er>i(n) = 1 for all n. The numbers £r,fc(n),£r,fc_i(n — 1), and Er^k(n-k) 
count corresponding r-subeomplete partitions of n,n — 1, and n — k, respectively. So they 
should satisfy the condition of Proposition 2.12. In other words, each of them must have 

k < m^r\,k - 1 < L2r(
2V^1

)+1J, and k < L'^aVff"1"1]. respectively. Summarizing these, we 
obtain 
Theorem 2.14: Let ET,k(n) be the number of r-subcomplete partitions of a positive integer n 
whose largest part is exactly k. Then Er^i(n) = 1 for all n, and for k > 2 

f £r,fc-i(n - 1) + Er,k(n - k) ifn>2k + 

ErAn) = { 
2r 

£rjb_i(n-l) ifk+^<n<2k+^ 
0 if n < k + *=± 

with ETfi(0) = 1, Er<o(n) = 0 for all n and Erjk(n) = 0 for all n < k. 
E x a m p l e 3: 

£2,2(5) = £2,i(4) + £2 ) 2(3) = 1 + £2>1(2) = 2. 
£2,2(6) = E2A(5) + £2,2(4) = 1 + £2,i(3) = 2. 
^2,3(9) = £2,2(8) + £2,3(6) = £2,i(7) + £2,2(6) + £2,2(5) = 1 + 2 + 2 = 5. 
£2,4(6) = £2,3(5) + £2,2(4) = £2,i(3) = 1. 
£2,4(5) = £2,3(4) = £2,2(3) = £2]1(2) = 1. 
£2,5(11) = £2,4(10) + £2,5(6) = (£2,3(9) + £2,4(6)) + £2,4(5) = 5 + 1 + 1 = 7. 
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The following three tables show the first few values of r-subcomplete partitions with 
r — 1,2 and 3. We denote Sr(n) as the number of all r-subcomplete partitions of n. 

k\n 
1 
2 
3 
4 
5 
6 
7 

Si(n) 

1 
1 

1 

2 
1 

1 

3 
1 
1 

2 

4 
1 
1 
1 

3 

5 
1 
2 
1 

4 

6 
1 
2 
2 
1 

6 

7 
1 
3 
3 
2 
1 

10 

8 
1 
3 
4 
3 
2 

13 

9 
1 
4 
5 
4 
3 
2 

19 

10 
1 
4 
7 
6 
4 
3 
2 
27 

11 
1 
5 
8 
9 
6 
4 
3 
36 

Table I r = 1 

fc\n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

52(n) 

1 
1 

1 

2 
1 

1 

3 
1 
1 

2 

4 
1 
1 
1 

3 

5 
1 
2 
1 
1 

5 

6 
1 
2 
2 
1 
1 

7 

7 
1 
3 
3 
2 
1 

10 

8 
1 
3 
4 
3 
2 
1 

14 

9 
1 
4 
5 
5 
3 
2 
1 

21 

10 
1 
4 
7 
6 
5 
3 
2 
1 

29 

11 
1 
5 
8 
9 
7 
5 
3 
2 
1 
41 

Table II r = 2 

k\n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

S3(n) 

1 
1 

1 

2 
1 

1 

3 
1 
1 

2 

4 
1 
1 
1 

3 

5 
1 
2 
1 
1 

5 

6 
1 
2 
2 
1 
1 

7 

7 
1 
3 
3 
2 
1 
1 

11 

8 
1 
3 
4 
3 
2 
1 
1 

15 

9 
1 
4 
5 
5 
3 
2 
1 

21 

10 
1 
4 
7 
6 
5 
3 
2 
1 

29 

11 
1 
5 
8 
9 
7 
5 
3 
2 
1 
41 

Table III r = 3 
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Now we are ready to find a generating function for Er^(n). Based on Theorem 2.14 we 
obtain the following. 
T h e o r e m 2.15: Let Fr^k{q) = Y^™=o ErAnhn for k>l. Then 

FrAQ) = 
(q)k 

1 - ^«*(?)2H+l^r,2H+l((2r + l)i + 1) 
i=0 

(2.1) 

where-s = f ^ l , Frfi(q) = 1, and (q)k = (1 - qk)(l - q"-1) • • • (1 - «). 
Proof: By Theorem 2.14, 

n=k+s 

2k+s-l 

E 
n=fc-fs 

£ ) Er,k-1(n-l)qn + J2 [Er,k-i(n-l)+Er,k(n-k)]qn 

n=2k+s 

= J2 ETtk.1{n-l)qn+ J2 ET,k{n-k)qn 

n=k+s n=2k+s 

= q £ Er,k.1(n)qn+qk J T Er>k(n)qn. (2.2) 
n==k-\-s— 1 n=k+s 

Since s = T ^ r ] , its value depends on k and r. Thus from Proposition 2.12, Fr^-i{q) becomes 
Fr,k-i(q) = Y:n=k+s-iEr,k-i(n)qn or Fr>Jb_ifo) = EZ=k+s-2 ®r,k-i(n)q-. Let 2rp + 3 < k < 
2r(p+1) + 1 for somep = 0,1,2, • • •. Then 2rp + 2 < k-1 < 2r (p+1) and s=p+l. Consider 
Erjk-i(k + 5 — 2). This is the number of r-subcomplete partitions of fe + s — 2 = fc — 1 + p 
whose largest part is exactly fc — 1. So any number between 1 and r(& — 1 + p) should be 
r-representable. But with k — 1 = 2rp +1(2 < t < 2r) fixed as the largest part, the number 
r p + 1 can not be r-representable. Thus, Er^-i(k + s — 2) = 0 for 2rp + 2 < k — 1 < 2r(p + 1). 
Thus, we obtain 

J^Jb-ifa) 
E n " H 5 - i ^ r ,*- i (n)« n if & ^ 2(mod 2r) 

& + s _ 2 Sr,fc-i(n)gn if k = 2(mod 2r). 

For fe ^ 2(mod 2r) equation (2.2) becomes 

^•>fc(?)=? S Er,k_1(n)qn+qk J^ Er,k(n)qn = qF^.^q)+qkFr,k(q). 
n=fc+s—1 n=fe+s 
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Thus, 

FTAQ) = Y^-kFr,k-i{q)- (2.3) 

For A: = 2(mod 2r) equation (2.2) becomes 

O O CSO 

Fr,k(9)=q S Er,k-i(n)qn + qh ] T Er,k{n)qn 

n=k+s—1 n=k+s 

= g{FP,*_i(g) - E*_i(fc + a - 2 ) g * + - a } + gfcFr>fc(g). 

Thus we have 

Now, let k = 2rp+2 +1 for some non-negative integer p with 1 < t < 2r — 1. Then k ^ 2(mod 
2r), so we can iterate equation (2.3) t times to get 

Because k — t = 2rp + 2 = 2(mod 2r), we have to use identity (2.4) to compute FTjk-t(q) which 
is equal to i?

r,2r(s-i)+2(^) since |"2 T%*2] = p + 1 = 5. We have 

iJ,r,2r(a-l)+2'(g) = 1 _ 2 r(*-l)+2 F r , 2 r ( s - l ) + l ( ^ ) -

g a r ( a - l ) + a + l £ r > 2 r ( j _ 1 ) + l ( 2 r ( g - 1) + , ) 
1 _ g 2r (s - l )+2 

Thus by applying (2.6) to (2.5), 

(2.6) 

_ k - 2 r ( s - l ) - l 
Fr'k^ ~ (1 _ gfc) . . . (1 _ g 2r(s- l )+2) Fr,2r(s-l)+l(q)-

g f c + ' - 1 g r , 3 r ( . - i ) + i ( 2 r ( « - l ) + g) 
(1 - qk) • • • (1 - g2r(«-l)+2) • (2.7) 
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Now 2r(s - 1) + 1 = 2rp + 1 ^ 2(mod 2r), so by equation (2.3) 

Fr,2r(s-l)+l(q) - x _ ^ r t s - l J + l - ^ ' M s - l ) ^ ) -

Again this can be iterated 2r — 1 times, which gives us 

? 2 r - l 
^r,2r(s-l)+l(g) = ^ _ g 2 r ( . - l ) + l ) . . . (1 _ g2r(S-2)+3) ^ r ^ ^ f a ) -

By applying (2.8) to (2.7), 

„fc-2r(s-2)-2 
Fr,k(q) = ( 1 _ gfc) . . . (1 _ g2r(s-2)+3)-F'-.2''(s-2)+2(g)-

g
f c + - 1 E r , 2 r ( s _ 1 ) + 1 ( 2 r ( S - l ) + S) 

(2.8) 

(2.9) (1 _ gfc) . . . (1 _ g 2r( . - l )+2) • 

The number 2 r ( s - 2 ) + 2 = 2 r ( p - l ) + 2 EE 2(mod 2r). So by (2.4) and with r 2 r ( ' 2" a ) + 11 = s - l , 

•^r,2r(s-2)+2(g) ~n_ q2r(.S-2)+2\F^M^-^+^l)~ 

g 2 r ( s - 2 ) + s £ r , 2 r ( , - 2 ) + i ( 2 r ( g - 2) + a - 1) 
1 _ </2r(S-2)+2 (2.10) 

Thus, 

_fc-2r(s-2)-l 
Fr,k(q) = (1 _ gfc) . . . (1 _ g2r(s-2)+2) F r ,2r ( s -2 )+ l (g ) -

<?fc+*-2£r,2r ( s-2)+i(2r(g - 2) + * - 1) 
(1 - gfc) • • • (1 - g2r(S-2)+2) 

g f c + s - 1 E r , 2 r ( s _ 1 ) + 1 (2r( g - 1) + a) 
(1 _ gfc) . . . (1 _ g2r(S-l)+2) • (2.11) 
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By continuing iteration on FTj2r(s-2)+i(<l)> w e finally obtain the following. 

^r,fc(«) = : 
qkErA{i) qk+1Ert2r+1(2r + 2) 

~T~ /-, u\ /-. o - i o \ I 
(«)* L ( l - g f c ) - - ( l - 9 2 ) (l-qk)---(l-q2r+2) 

qk+s-2ErMs_2)+1(2r(s - 2) + s - 1) 
(1 - gfc) • • • (1 - g2r(S-2)+2) 

^+'-1Erj2r{,_1)+1(2r(a-l) + s) 
(1 _ gfc) . . . (1 _ g2r(.-l)+2) (2.12) 

One can easily derive our formula (2.1) from this result. • 
E x a m p l e 4: The following are generating functions for k = 2 ,4,5,6 and r = 2. 

F2Aq)=£-q2E*Al)-q2 
(«)2 1 - 9 2 (g)2 l-q2' 

F*M = (T^f2'3 - (l-q*)(l-q*)F2Aq) - W 

F2,5(9) = 7 ^ - ^ , 4 ( 9 ) = ^ - . 

*2,e(«) 
(9)6 

(9)6 

g7g2 | 5(6) g6-E2,i(i) 
1 _ q6 + (1 _ g 6 ) ( 1 _.g5)(l _ g 4 ) ( 1 _ g 8 ) ( l _ q2) 

+ l - < ? 6 ( 1 - < 7 6 ) ( 1 - < Z 5 ) ( 1 - < Z 4 ) ( 1 - < Z 3 ) ( 1 - < Z 2 ) J 

E x a m p l e 5: By expanding the above, we obtain the following generating functions whose 
coefficients are expected from Table II. 

F2M) = q3 + q4 + 2<Z5 + 2<?6 + 3g7 + 3g8 + V + 4g10 + 5 g u + 5g12 + 6g13 • • • , 
-^2,4(9) = g5 + <Z6 + 2g7 + 3<z8 + 5g9 + 6g10 + 9 g u + Uq12 + 15g13 + • • • , 
F2,6(g) = qe + qr + 2(f + 3g9 + 5 g io + 7 g i i + 1Qgi2 + 1 3 g i3 + . . . j 

F2j6(ff) = g8 + 2g9 + 3<?10 + 5?11 + 7<?12 + 10g13 + • • • . 
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Let S = (sn)nez be a "doubly infinite" recurring sequence in the complex field, C, satis-
fying the recurrence 

Sn+2 = &Sn+l + PSn (1) 

where a, p G C and p ^ 0. It can happen that the elements of a minimal periodic segment 
(see below) of S form a subgroup of the multiplicative group C* of C and our purpose here is 
to investigate this phenomenon. The analogous situation in the context of finite fields seems 
to have first been investigated by Somer [2], [3]; see also [1]. 

Write f(t) = t2 - a t - p G C[t],p + 0. A sequence of complex numbers S — (sn)n£% 
satisfying (1) will be called an f-sequence in C; / is the characteristic polynomial of S. If 
there exists rn G N such that sa = sa+m for all a G Z and if also rn is minimal subject to 
this then S is periodic with least period m. By a minimal periodic segment we understand the 
whole sequence if S is not periodic, and any segment consisting of m consecutive members of 
S if S is periodic with least period m. 
Definit ion 1: Let f(t) = t2 - at - p G C[t], p ^ 0. The subgroup M < C* is said to be an 
f-sequence subgroup if either 
(a) M is infinite and the underlying set of M can be written in such an order as to form a 
doubly infinite /-sequence (s n ) n ez where sa ^ s& if a ^ 6, or 
(b) M is finite, of order m, and the underlying set of M can be written in such an order as to 
coincide with a minimal periodic segment of an /-sequence (5n)n^^, where sa — 55 if and only 
if a = b (mod rn). 

We will write M — (sn)n€% even if M is finite, and will say that (sn)nez is a representation 
of, or represents, M as an /-sequence. 

If f(t) G C[t], / (0) + 0, and if g, he C* are roots of / , then 

< 9 > = ( • - . , 9~2,9~\ hg,g2,.*.) = (gn)nez 

is an "obvious" representation of < g >< V as an /-sequence subgroup; it can happen that 
h 7̂  g but < h >=< g > , and then (hn)n^z is a different representation of the same subgroup. 
This suggests: 
Defini t ion 2: Let f(t) = t2-at-pE C [ t ] , p ^ 0 . 
(a) The /-sequence (sn)n£z in C is said to be cyclic if there exists g EC such that sn+i/sn — g 
for all n G Z. 
(b) The /-sequence subgroup M of C* is said to be standard if whenever M is represented 
as an /-sequence M = (sn)ne% then (sn)ne% is necessarily cyclic. Otherwise, M is said to be 
nonstandard. 
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(c) Suppose that M i s a nonstandard /-sequence subgroup. If M admits representation as a 
cyclic /-sequence then we say that M is nonstandard of the first type] otherwise M is said to 
be nonstandard of the second type. 

Essentially, M is standard if the "obvious" ways are the only ways of realising it as an 
/-sequence subgroup. If M = (gn)nez is a representation of M as a cyclic /-sequence, then 
it is clear that g must be both a root of f(t) and a generator of M as a group, whence M 
is a cyclic group. It is possible to find polynomials f(t) which admit non-cyclic /-sequence 
subgroups: see Proposition 6(d) below. 

Our main results are Propositions 4 and 6. Suppose that f(t) G C[t] and that / has roots 
g, h G C*. Except in the case 

\g\ = \h\?l and g ^ ±ft, 

which remains open, we prove that an /-sequence subgroup must be standard unless g = —ft; 
when g = —h we classify the nonstandard subgroups. 
Observa t ions 3: Suppose f(t) — t2 — at — p G C[t], p =fi 0, with roots #, h G C , and let 
(sn)n€Z be an /-sequence in C 
(a) Suppose firstly that g ^ ft. By linear algebra, there exist a, /3 G C with s0 = <x + P and 
s\ — ag + /3ft. By induction, sn = agn + /3ftn for all integers n > 0, and because p ^ 0 this 
may be extended to cover the case of negative n. 
(b) Suppose next that g — ft. There exist a,/3 G C such that so = a and si = #(o: + /3). Again, 
we have sn = (a + n(i)gn for all n G Z. 
(c) The reciprocal polynomial of /(£) is (-p)f*(t) where /*(*) = t2 + (<r/p)£ - (!//>). The 
roots of /*(£) are c/"1, ft"1 G C*. 

If (sn)nez is an /-sequence in C then (rn)n^z is an /*-sequence where rn = s-n. If 
M ~ (sn)n€z is an /-sequence subgroup of C* then M = ( r n ) n G ^ is also an /*-sequence 
subgroup. Thus M is standard as an /-sequence subgroup if and only if it is standard as an 
/*-sequence subgroup. Further, if sn = agn + /3ftn for all n G Z then r n = a ( g - 1 ) n +/3(ft~i)n 

for all n. 
Before continuing, we fix some notation. If z G C then |z| will always denote the modulus 

of z. We will use ord(z) to denote the multiplicative order of z G C*, if z is a root of unity, 
and ord(M) to denote the order of the group M , if finite. 
P r o p o s i t i o n 4: Let f(t) = t2 — at — p G C[t], p ^ 0. Suppose that f has distinct roots 
g, ft G C*. Let M = (sn)n^z < C* 6e an f-sequence subgroup and write sn — agn + f3hn for 
all n, for suitable a, /3 G C. Suppose that either 
(1) \g\ # 1̂ 1, or 
(2) |^| = |ft| ^ 1, ^/ft is not a root of unity and \a\ / \(3\. 
Then a/3 = 0. Further, M is standard. 
Proof: Suppose for a contradiction that a/3 ^ 0. We may assume that so = 1, while by 
Observation 3(c) we may also assume that \g\ > \h\ and that \g\ > 1. Write 7 = h/g, so 
0 < |T | < 1 and sm = ^ m ( a + ftjm). Suppose m is positive. Then \(a + /37m)| is bounded 
above by \a\ + |/3|. If I7I < 1 or if I7I = 1 and \a\ / \fi\ then |(a + ^ 7 m ) | is bounded below 
(away from 0). 
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Now SmSn G M for all m,n E Z because M is a group. Thus there exists a function 
u : Z2 -> Z : (m, n) i-> w(m, n) such that s m s n = ^ ( m , n ) for all m, n. Thus, for all m, n e Z , 

s m s n = ^™+™(a + /37
m)(a + /37

n) = gu^n\a + / 3 7 ^ m ' n ) ) . (2) 

The boundedness of | a + / 3 7 m | m > 0 implies that |^|"*+«-«(m,n) j g bounded above and below 
whenever m,n^u{rn^n) > 0. But |$| > 1 and so there exists a constant K such that 

\m + n — u(m,n)\ < K (3) 

whenever m, n, «(m, n) > 0. 
Now fix i > 0 and suppose that u{n + i ,n — i) > 0 for infinitely many n. By (3), there 

exists a fixed j with \j\ < K such that w(n + i, n — i) = 2n + j for infinitely many n. Thus 

sn+iSn-i = g2n(a + / J 7
n + i ) ( a + ^7n"*) = <?2"+J'(« + / ?7 2 n + j ) , 

or 
(a2 - ag{) + a/%* + j^hn + (/32 - / 3 T V ) 7

2 n - 0 

for infinitely many n. Now a/3 ^ 0, while (7* + 7 ~ l ) ^ 0 because 7 is not a root of unity. 
Thus, for infinitely many n5 j n is a root of a fixed polynomial, independent of n, of degree 
either 1 or 2. Thus infinitely many of the 7" must coincide., which is impossible because 7 is 
neither zero nor a root of unity* 

Thus for fixed i > 0, u{n + i, n — i) < 0 for all positive n but a finite number. Now (2) 
gives 

^ 2 n ( a + /3 7
n + i ) ( a + 07n-*) = fc«(w+*.»-0(a7-tt(n+i'n-i) + /3) 

and so |^|2n|/i|"w(n+*»n""*) is bounded, independent of i and of n, provided just that n > i > 0 
and ix(n + i, n — i) < 0. But given i > 0, these conditions hold for infinitely many n > i, and 
so I hI < 1. It then follows that there exists a positive integer K\ such that whenever n > i > 0 
and u(n + i, n - i) < 0 we have 

\u(n + i,n-i) __ log|</| 
I 2 n l o g I ft I 

Let 7£ = { 0 , 1 , . . . , 4ifi + 2}„ For each i > 0, w(n + i, n — i) < 0 for all but finitely many 
positive n and so there exists N such that if n > N we have «(n + i, n — i) < 0 for a l i i E 7J 
simultaneously. Thus for distinct $1,^2 G 7^, (4) gives 

|w(n + i i , n — ii) — ii(n + £2?n — ia)| < 2K\ 

whenever n > N« So for fixed n® > Ny all integers U{UQ + i, ng — i) for i E TZ belong to an 
interval of length at most AK\ centered on w(no,no). By the pigeon hole principle, there exist 
h / «2 such that w(no + i i , no — h) = w(no + $2? no — ^2). Thus 
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and so 
a/3(jh +-y~il)(gh)n° = afiW2 + j~i2)(gh)n°. 

Since af3gh ^ 0, it follows that 

y 1 _ /y*2 _ ' ' 
7 ' /y»l/y*2 ' 

so that either 7*1 = j%2 or 7*17*2 — i? both of which are impossible because 7 is neither zero 
nor a root of unity. We conclude that a/3 = 0; it follows that M is standard. • 
L e m m a 5: Let f(t) — t2 — at — p E C[t], where \p\ = 1. Suppose that f(t) has roots g,h E C*. 
Let M = (sn)nez < C* be an f-sequence subgroup. 
(a) If g / h, then \g\ — \h\ = 1 if and only if \s\ = 1 for all s E M. 
(b) If g = h, then \g\ = 1 and \s\ — 1 for all s E M. 
Proof: (a) Suppose g ^ h. By Observation 3(a), there exist a, ft E C with sn — agn + (3hn 

for all n E Z. Now |#/i| = |p| = 1, so |</| = 1 if and only if \h\ — 1. Suppose |g| = \h\ — 1 and 
that there exists s E M with |s | ^ 1. Then the cyclic subgroup < s >< M contains elements 
of arbitrarily large modulus. But | s n | = \agn + /3hn\ < \a\ + |/3| for all n, a contradiction. 

Suppose next that | s n | = 1 for all n E Z. Assume \g\ > 1, so that \h\ < 1. If a = 0 
then /3 ^ 0 and 1 = | s n | = |/3/in| for all n, which is absurd because ft is fixed and \h\ < 1. 
Thus a / 0. Now | | a# n | - |/3/in|| < \agn + f3hn\ = | s n | - 1. But |/3/in| < |/3|, while \agn\ is 
unbounded as n increases, a contradiction. 
(b) Suppose g = h E C* is a double root of f(t), so that \g\ = 1. By Observation 3(b), there 
exist a , / 3 G C with sn — (a + nfi)gn for all n E Z. As 0 ^ M then not both a, /? can be zero. 
Suppose there exists s E M with |s | ^ 1. Then the subgroup < s >< M contains elements 
of arbitrarily small modulus. But sn = (a-\-n/3)gn, whence | s n | > | |a | — \nfi\\. Since a,/? are 
fixed and not both zero then | |a | — |w/J|| ^ 0 whenever n E Z is such that n|/J| i=- |a| , and then 

{|H-|»jS|[:nGZ, n\P\^\a\} 

is bounded away from 0, a contradiction. • 
P r o p o s i t i o n 6: Let f(t) — t2 — at — p E C[t], where p / 0; and suppose that f has roots 
g,h E C* . Let M < C* be an f-sequence subgroup. Then 
(a) If \g\ — \h\ = 1 and p ^ db/i £/ien M is standard. 
(b) If g = h then M is standard. 
(c) If g — —h then M is finite if and only if p is a root of unity. 
(d) If g = —h and if M is infinite then M has one of the forms: 

M = (. . . ,p-1 ,ep&-1
%/p? l,epk^/p,p,...) or 

M=(...,p-1,-ffi-1,l,-f,p,...), 

where e E { 1 , - 1 } and k E Z. In the first case, M —< e^fp > is cyclic and nonstandard of 
the first type. In the second case, M =< — 1 > x < p > is non-cyclic and nonstandard of the 
second type. 
(e) Suppose g — —h and M is finite of order m. Write r =oid(p)jby (c). 
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If r is even then m = 2r and M is nonstandard of the first type unless p = — 1 when M 
is standard. 

If r is odd then either m = r and 

is standard, or else m = 2r and 

where g = p( r + 1 ) / 2 and 1 < j < r. Further, M is nonstandard of the first type unless p = 1, 
when M is standard. 

Proof: Write M — (sn)n^z- Without loss, suppose so = 1. 
(a) Suppose \g\ = \h\ = 1 and g ^ ±/i; then a 7̂  0 and \p\•= 1. By Lemma 5, M lies on the 
unit circle. 

Write r = a/2^ 0. Then {g, h} = {r ± y/r2 + p} and r 2 + p + 0. If w, v E C* are such 
that \u -f v\ = \u — v\ then the segments Ou and 0?; are perpendicular, whence \u ± v\ — 
V I ^ T F F - Here, \g\ = \h\ = 1 = y V l + | r 2 + p|, and so 1 = | r 2 | + | r 2 + p|. Then 

l = |p| = | - r 2 + r 2 + p | < | r 2 | + | r 2 + p| = l5 

whence —r2 and r 2 + p are parallel; that is, p = fer2 where fc E K. and fc < —1. Thus, \r\ < 1, 
so 0 < |o-| < 2. Now si = al + ps„i and because | s_ i | = 1, then \si — a\ = | p s - i | = 1 = |s i | . 
But given a circle of radius 1, a fixed diameter I and A E K. with 0 < A < 2, the circle has 
exactly two chords of length A parallel to /. Thus, for a fixed, there are just two s E C such 
that |s — a\ = \s\ = 1. But the roots g ^ h of f(t) satisfy \g — a\ — \g\ — \h — a\ = \h\ = 1. 
Thus the only /-sequence subgroups are ( . . . , 1,g, . . .) and ( . . . , 1, / i , . . . ) , and M is standard 
in this case. 
(b) Suppose that g = h. By Observation 3(b), there exist a,/3 E C with sn = gn(a + fin) for 
n E Z, while a = 1 because SQ = 1. 

Suppose firstly that |$| = 1. Now a — 2g and p = — $2, so |p| = 1 and then \s\ = 1 for all 
s E M by Lemma 5(b). But si = 2g — g2s-\ because SQ = 1. Thus, |si — 2g\ = \g2s-i\ = 1, 
so si and si — 2g lie on the unit circle at distance \2g\ = 2 from each other. Thus s± = g and 
M — ( . . . , 1, # , . . . ) is standard. 

By Observation 3(c) we may now suppose \g\ > 1. It is easy to check that 

Mm | s n | = ooand Mm | 1 + / 3 B | / | 1 + /3(n + 1)| = 1; 
n—¥oo n—*-oo 

in the second limit, the denominator is equal to \sn+i/gn+1\ and so is non-zero. Therefore 
there exists Nt E N such that both \g\ > | l + /3n|/ | l + / 3 (n+ l ) | and \sn\ > I whenever n > Nt. 
Thus | s n +i | > \sn\ > 1 for n > N\. Similarly, there exists N2 E N such that | s„_i | < \sn\ < 1 
whenever n < —N2 and so there exists K E N with K > N\ such that 

\sn\ > max{|*i | , 1/\SJ\ : -N2 <j< Nt} 
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whenever n > K, in particular, \SK\ > \sj\ if J < K. Thus, sj.1 = SL for some L < —N2. The 
monotonicity of | s n | with respect to n outside the interval [—iV"2, Ni] and the fact that M is a 
group now guarantee that s^+j = SL-J for all j E N o - It follows that 

gK+j(a+0(K + j))gL-f(a + l3(L-j)) = l, j = 0,1,2. 

Simplification gives 

gK+Lp2RL = gK+Lp2(K + X)(L _ JJ = gK+Lp2^R + 2^L _ 2y 

Now # / 0 because p / 0. If 0 + 0 then both X - if - 1 = 0 and 2(L - JRT) - 4 = 0, which is 
absurd. Thus /J = 0 and M is standard, proving (b). 

We now assume for the rest of the proof that g = —h, so that a = 0, f(t) = t2—p, g2 = p 
and {g, h} = {y/p, —^/p}- Then sn+2 = psn for all n E Z, and so M = ( . . . , 1, x, /?, # p , . . . ) 
where x = s±: we will fix this interpretation for x. 
(c) If M is infinite then p% ^ pP whenever % ^ j and so p is not a root of unity. If M is finite 
then the powers of p cannot be all distinct, whence p is a root of unity. 
(d) Suppose that M is infinite. Then the elements pP and xpP are all distinct as j runs over 
Z. Now x2 E M and so either x2 = xpP or #2 = pp, for suitable j . If x2 — xpP then x — pP, 
contrary to distinctness; thus x2 = pP. There are two cases: 
(1) Suppose j = 2fc 4-1 is odd. Then x = epky/p, where £ E {1, —1} and 

M = ( . . . , / 9 - 1 ,ep f c - 1
> /p , l ,ep f c

> /P ,p , . . . ) -

We may shift the subsequence (sn)n Qdd relative to {sn)n even any number of places to the left 
or right and obtain different representations of M as an /-sequence: this corresponds to taking 
different values of k. With fc = 0we obtain a cyclic representation of M as an /-sequence, and 
so M is nonstandard of the first type. 
(2) Suppose j — 2k is even. Then x E {pk, —pk}, whence x = — pk by distinctness. Then 

M=(...,p-1,-pk-1,l,-pk,p,...), 

so that M = < — 1 > x < p > is a non-cyclic group; thus M is nonstandard of the second type. 
(e) Suppose M is finite of order m. We have p = g2, while x2 = pi with 1 < j < r by 
distinctness. Thus x = egi where e E {—1,1}, and so S2k — g2k and S2k+i = sg2k^ for all k. 
Then 

The distinct elements of M are just the terms from SQ = I to s m _ i , where sm is the first 
occurence of 1 after s$. 

Suppose firstly that r is even. Then e E< p >, ord(g) = 2r and < p > contains no odd 
power of g. Thus j is odd as otherwise S2&+1 = eg2k+i would be an even power of g, against 
distinctness. But now S2M-1 = eg2k+i ^ 1 for all fc, so s^r is the first occurrence of 1 and 
rn = 2r; we may shift (sn)n 0dd to obtain r distinct sequences, with that for j = 1 being cyclic. 
Thus M is nonstandard of the first type unless r = 2 when M = ( . , . , 1, ei, —1, — ei, 1,...) is 
standard. 
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Suppose next that r is odd. Then — l^<p> and < p > contains a unique square-root 
ofp, namely p( r + 1 ) / 2 . We may suppose that g = p^1^2; then oid(g) =ord(p) = r. 

Suppose e = 1. Then j is odd, by distinctness. Write d = (r - j ) / 2 > 0. Then S2d+i = 
g2d+j ___ 2 a n c j {.̂ -g jg evidently the first occurrence of 1 after s0, whence m — 2d + 1. But now 
c?2d+2 = 52d+2 = 5i = gi and so r — j + 2 = 2d + 2 = j(mod r) . It follows that j = 1, m — r 
and 

M = ( . . . , l , ^ 2 , . . . ) = (.. . , l , / r + 1 ^ , p , . . . ) 

is standard. 
Suppose e = —l. As g G< p > but — 1 ^ < p > then no term S2&+1 = —#2&+J belongs to 

< p >; thus the first occurrence of 1 after so is S2r = $ 2 r = 1? and so m = 2r. Again we may 
shift (sn)n odd to obtain r distinct sequences, with that for j = 1 being cyclic, so that M is 
nonstandard of the first type unless r — 1 and M = ( . . . , 1, —1,1, . . . ) , which is standard. • 
Examples 7: (a) Let f{t) = t2 — 2. As in Proposition 6(d), the following are /-sequence 
subgroups of C*, where e G {—1,1} and k G Z: 

M M = ( . . . , 2 ~ \ s2fe~1v/251, e2*V2,2, . . . ) and 

M 2 = ( . . . , 2 - 1 , - 2 * - 1 , l , - 2 * , 2 , . . . ) . 

The groups Mij £ = < ey/2 > are cyclic and nonstandard of the first type, while M2 =< —1 > 
x < 2 > is non-cyclic and nonstandard of the second type. 
(b) Let f(t) = t2—uj where UJ = e2™/3 G C. As in Proposition 6(e), the following are /-sequence 
subgroups: 

Mi = (. . . , l , a ; 2 , a ; , l , . . . ) , and 
M _ ! = ( . . . , 1, -0^ ,0 ; , -UJJ+\UJ2, - V + 2 , 1, . . .) , where 1 < j < 3. 

The group Mi , of order 3, is standard, while M_i , of order 6, is nonstandard of the first type 
(because the sequence with j = 2 is cyclic). 
(c) Let f(t) = t2 —i. The following are- /-sequence subgroups of C*: 

Me = ( . . . , 1, eilVi, i, eil+1Vi, - 1 , eil+2Vi, - i , s i l + 3 V i , . . . ) , 

where e G { 1 , - 1 } and 1 < I < 4. The sequences with 1 = 4 are cyclic and so each Me is 
nonstandard of the first type. 
L e m m a 8: Let f(t) =t2 — at~pE. C\t], where p / 0, and suppose that / has roots g, h G C* 
with \g\ — \h\ ^ l,g ^ ±h. Suppose that M = (sn)nez is an f-sequence subgroup ofC*. Then 
M is infinite. 

Proof: By Observation 3(c), we may suppose that \g\ = \h\ > 1. Write 7 = h/g\ then 
I7I = 1 but 7 ^ ± 1 . By Observation 3(a), there exist a,/9 eC such that sn = gn(a-^-/3jn) for 
n G Z. If M were finite then 1 = \sn\ = \g\n\a-{-/3jn\ for all n. But \g\n increases with n, and 
so \a + /?7n | decreases. As n increases, the points a + @jn move (as 7 / 1) around the circle 
with centre a and radius \/3\. Thus |a + /3jn\ cannot decrease and so M cannot be finite. • 
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P r o p o s i t i o n 9: Let f(t) = t2 — at — pE C[t], where p ^ 0. Suppose M is a finite f-sequence 
subgroup of C*. Then M is standard unless both a — 0 and ord(M) is even and at least 6; in 
which case it is nonstandard of the first type. 

Proof: The result follows from Propositions 4 and 6 together with Lemma 8. • 
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1. I N T R O D U C T I O N 

Of the many ways of representing numbers, as described by Fraenkel [3] for example, the 
most usual and most important represent an integer N as the scalar product 

N = D.W 

where D is the digit vector (the visible digits of the representation) and W is a weight vector. 
To conform with normal conventions for displaying number representations these vectors are 
written in the order 

. . .Wi,Wi-.i, . . . ,W2,Wi,W0. 

The weight vector is in turn derived from the base vector B by 

fc-i 

In the conventional uniform base number systems such as binary or decimal, 6* = 6 V i and 
Wk = bk, where the constant b is the base of the number system. So a number such as 
40 = 1 x 25 + 1 x 23 has the binary (base 2) representation 101000. For measurements in a 
mixed base system, the base vector has an appropriate mixture of values. As an example for 
{miles, yards, feet, inches}, the base vector is B = {1760,3,12,1} and the weight vector is 
W = {63360,36,12,1} to give lengths in inches. 

But Zeckendorf has shown [8] that the Fibonacci numbers 

Fn = . . . , 34,21,13,8,5,3,2,1,1 (least-significant weight on right) 

can be used as the weight vector, in conjunction with a digit vector D in which d» E {0,1}, 
for a representation which resembles a binary number. This gives what is now called the 
Zeckendorf representation on the integers; we will denote the Zeckendorf representation of N 
as Z(N). The Zeckendorf representation usually omits the redundant bit corresponding to 
Fi — 1, so that the least-significant bit corresponds to F2 (which is also equal to 1). For 
example as 30 = 21 + 8 + 1, Z(30) = 1010001. It has the important property that the 
Zeckendorf representation of a positive integer will never have two or more adjacent Is; by 
the definition of its Fibonacci weights, any bit string such as . . . 00110. . . is equivalent to 
. . . 0 1 0 0 0 . . . . 

The Zeckendorf representations are of more than just intellectual interest. For example, 
Apostolico and Fraenkel [1] and Fraenkel and Klein [4] show that the Zeckendorf represen-
tations (although they do not call them by that name) are the basis of a "variable length" 
representation of the integers. These representations are important in coding theory, where 
a sequence of integers must be represented as a stream of bits, such that the average length 
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of each integer in the bit stream is minimised, and the representations are self-delimiting. 
By transmitting the Zeckendorf representation least-significant bit first and following its most 
significant 1 by another 1, we get the illegal sequence .. .011 which can act as a terminating 
"comma". 

Here though, we are more interested in showing that it is possible to perform arithmetic 
on integers in the Zeckendorf representation. 

2. A R I T H M E T I C W I T H Z E C K E N D O R F I N T E G E R S 

There is a little prior work in this connection. Graham, Knuth and Patashnik [7] discuss 
the addition of 1 in the Zeckendorf representation, but do not proceed to actual arithmetic. 
Freitag and Phillips [6] discuss addition and multiplication, and refer to Filiponi [2] and their 
own earlier paper [5] for subtraction. Thus no previous work discusses arithmetic as a coherent 
whole, covering all of the major operations, including multiplication and division. 

The emphasis of this paper is frankly pragmatic, developing practical algorithms to per-
form the arithmetic operations. All have been implemented and tested on a computer. Most of 
the algorithms are developed by analogy with conventional arithmetic methods, supplemented 
as necessary by the requirements and constraints of the Zeckendorf representation. For exam-
ple, multiplication will be performed by the addition of suitable multiples of the multiplicand, 
selected according to the bit pattern of the multiplier. Division will use a sequence of trial 
subtractions, as in normal long division. 

2.1 A D D I T I O N 

We start addition by adding each pair of bits as separate numbers, giving an initial sum 
whose digits are di E {0,1,2}, where each di corresponds to its Fibonacci number i^. We then 
sweep over the whole representation until there is no further change, applying the following 
rules to eliminate the 2s (which are illegal digits) and consecutive Is. The representation must 
be extended by one place to include as a trailing digit the d\ term which is usually omitted. 
Remova l of c 2 ' digi ts : From the fundamental relation that Fn — F n _ 2 + F n _ i , it is readily 
shown that 2Fn = F n + i + F n _ 2 . In digit patterns, we replace . . . 00200.. . by . . . 01001 . . . , 
subtracting the 2 and adding the two Ts to the nearby positions. Equivalently, a digit pattern 
x2yz transforms to (l-\-x)Qy(l + z). A least-significant digit pattern of . . . 20 clearly overflows 
beyond the least significant bit. We handle this by temporarily extending the representation 
by one place to include the d\ digit so that the original . . . 020 converts to . . . 1001. (This rule 
does not apply to the d2 and d\ terms with weights of 1; this is covered by the special case 
below.) 
Remova l of adjacent I s : Again using the fundamental relation Fn — jFn_2 + i^n-i? we can 
replace two adjacent non-zero digits by a more-significant 1. This step should be performed by 
the left-to-right scan through the representation to avoid a "piling up" of the left-propagating 
carry with long runs of Is. 
Least-significant I s : The first rule fails if we have 2 in the least-significant (F2) digit, because 
there is nowhere to receive the rightward carry propagation. In this case we restore the Fi 
term and replace the least-significant . . . 20 by . . . 11, which has the same numeric value. If 
the extended bit pattern is now . . . I l l , the first two Is may be eliminated by the "adjacent 
Is" rule. If the F 3 bit is a 0, bit pattern . . .011, we can immediately transform to . . . 100 
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(still extended), and then eliminate the extension bit. It may in turn be replaced by . . . 100, 
by the rule for consecutive Is. (This rule could be eliminated entirely by an extension of the 
representation to include do with a non-standard weight w$ = 1.) 
Remove t h e t e m p o r a r y di t e r m : If at any stage, cfe = 0 and d\ — 1 we can set d2 — 1 and 
set d\ = 0 (the two bits have the same weight), which is equivalent to discarding the d\ term 
which was introduced. Setting efe = 1 may force a removal of adjacent Is. 

A d d i t i o n 
Consecutive Is 

Eliminate a 2 

Add 9 r ight b i t s 
d2>2 

di > 2 (alternate) 

di = 1 

S u b t r a c t i o n 
eliminate —1 

Fibonacci weights 

becomes 

here x > 2 
becomes 

here x > 2 
becomes 

becomes 

becomes 
Fibonacci weights 

becomes 
and again 

Fi+2 
1 
0 
0 

Fi+1 
X 

X 

w 
w + 1 

F3 

w 
w+1 

Fi+1 
0 
1 
1 

Fi 
y 

y + i 

X 

x-2 

F2 
X 

x-1 

X 

x-2 

0 
1 
Fi 
0 
1 
0 

Fi-i 
1 
0 

y 
y 
Fi 
0 
l 

0 
0 

I 
0 

Fi-! 
0 
0 
1 

Fi-2\ 
1 
0 

z 
z + 1 

Fi-2\ 
-1 i 
- 1 
0 

Table 1: Adjustments and corrections in addition and subtraction 

Zeckendorf addition has two carries, one going one place left to higher significance and 
one two places right to lower significance. The first is entirely analogous to the carry of 
conventional binary arithmetic, while the second reflects the special nature of the Zeckendorf 
representation. 

These adjustments and corrections are summarised in Table 1, which also includes the 
sign-fill from subtraction (Section 2.2). Note that in all cases which show a 1 being inserted, 
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augend 
addend 
initial sum 
consecutive Is 
result 
Check - 38+23= 

augend 
addend 
initial sum 
carries 
consecutive Is 
remove Fi bit 
result 
Check - 15+23= 

=61 

=38 

1 
1 

1 

1 
0 
0 

1 
1 
1 

0 
1 
1 
0 
0 

1 
1 
1 
0 
0 
0 

0 
0 
0 
0 
0 

1 
0 
1 
1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
1 

0 
0 
0 
0 
0 
0 
0 

1 
0 
1 
0 
0 

0 
0 
0 
1 
1 
1 
1 

0 
1 
1 
0 
0 

1 
1 
2 
0 
0 
0 
0 

1 
0 
1 
1 
1 

0 
0 
0 
0 
0 
1 
1 

= 38 
= 23 
= 61! 
= 611 
= 611 

= 15 
= 23 
= 38 

1 = 3 8 
1 = 3 8 

= 38 
= 38 

Figure 1: Two addition examples, (38 + 23) and (15 + 23) 

the real action is to add the 1 to the previous value of that digit; eliminating one 2 may very 
well change another 1 to a 2, which must in turn be corrected. The removal of a 2 is likewise 
performed as a subtraction, rather than a simple deletion. 

The addition may be compared with conventional binary addition. Binary addition (or 
decimal, or in any other polynomial number system) has a single carry which propagates to 
more-significant digits. If we start the add from the least-significant end we need only a single 
pass and the carry management is readily included in the standard simple algorithm. The 
two carries of Zeckendorf addition make the operation much more complicated and seem to 
necessitate multiple passes to absorb carries. 

To illustrate, Figure 1 shows the addition of 38 + 23 = 10000101 + 1000010 and 15 + 23 = 
100010 + 1000010. Both display the decimal value to the right of each line to emphasise 
that the correction and redistribution of bits does not affect the value. One example shows 
the temporary extension of the Zeckendorf representation to include the F± term. Each line 
presents the representation and value after the operation given at the start of the line. The 
various rules of Table 1 may be applied in any order, possibly changing the intermediate values 
but not the final result. 

2.2 S U B T R A C T I O N 

For subtraction say X — Y -> Z, where X is the minuend, Y the subtrahend and Z the 
difference, we start with a digit-wise subtraction X{ — yi —> Zi, giving Z{ & {—1,0,1}. The two 
values 0 and 1 pose no problem, as they are valid digits in Z{Z). 

The case Z{ = — 1 is rather more difficult. From where Z{ = — 1 we scan to its left looking for 
the next most-significant 1 bit. Then rewrite this bit by the Fibonacci rule 100 • • • -» 0 1 1 . . . , 
and then repeat rewriting the rightmost 1-bit of the pair of Is 

1000 • 0110 > 001011 • 00101011... 

until one of the two rightmost 1 bits coincides in position with the —1 of 
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subtrahend 
minuend 
subtract digit-by-digit 
rewrite 1000 
rewrite 0110, cancelling -1 
rewrite adjacent Is 
Result 

1 
1 

0 
0 

1 
0 
1 

0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
1 
0 
0 
0 

0 
1 
-1 
-1 
0 
1 
1 

0 
0 
0 
0 
1 
0 
0 

1 
0 
1 
1 
1 
0 
0 

= 481 
= 371 
= HI 
= 1 1 ! 
= 1 1 
= 1 1 

~~= 1 1 

Figure 2: Example of subtraction —(48 — 37) 

the result and cancels it, leaving a 0 result. (There may of course be no more significant 1. 
This corresponds to a negative result; we introduce a suitable large Fn and proceed from there, 
producing an "Fn complement55 as discussed later.) The scan, for digits zi — — 1 should be 
performed from most-significant to least-significant digits. This action is included in Table 1 
earlier. 

The preceding rule eliminates all of the digits whose value is — 1, but often introduces 
other digits greater than 1, or pairs of adjacent Is. All of these situations must be handled by 
the rules already introduced for addition. Subtraction is therefore an extension of addition. 

Figure 2 shows an example, subtracting 37 from 48. As with addition, the various rewriting 
rules may be applied in any order; changing that order will change the finer details of the 
subtraction. 

Note that we cannot easily propagate a borrow left from the place where Z{ = — 1. The 
rewriting rule steps two positions at each step and without knowing the distance to the next-
significant 1 we know neither the alignment of the 01 bits which are introduced nor which of 
the two final 11 bits will be finally cancelled. (Conventional binary subtraction rewrites, for 
example, 10000 as 01100 + 100 -> OHIO + 10 -» 01111 + 1; the final + 1 is cancelled against 
the 1 of the subtrahend. Each stage proceeds by only one place and there is no ambiguity in 
reversing the process for the conventional right-to-left borrow propagation.) 

2.3 C O M P L E M E N T I N G 

Subtraction quickly leads to negative numbers and their representations. Computer de-
signers now prefer the 2s complement representation in which a number and its complement, 
added as unsigned quantities, total 2n. 

By analogy we can represent a negative value by its Fn complement. Also by analogy 
we say that a value is negative if its representation has its most-significant bit a 1. But this 
immediately introduces a major problem. An Fn complement representation has F n _ 2 values 
with a leading 1 and F n _ i values with a leading 0; there are about 1.6 times as many positive 
values as negative and about 38% of all positive values have no complement! (Complementing 
seemed almost incomprehensible until its asymmetrical range was realised. By analogy with 
binary numbers it was expected that' there would be similar numbers of positive and negative 
values but there was no simple way of differentiating signed integers.) 
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N 
1 
?, 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Z(N) 
1 
10 
100 
101 
1000 
1001 
1010 
10000 
10001 
10010 
10100 

F(8) comp 
101010 
101001 
101000 
100101 
100100 
100010 
100001 
100000 
-
-
-

F(9) comp 
1010101 
1010100 
1010010 
1010001 
1010000 
1001010 
1001001 
1001000 
1000101 
1000100 
1000010 

F(10) comp 
10101010 
10101001 
10101000 
10100101 
10100100 
10100010 
10100001 
10100000 
10010101 
10010100 
10010010 

F(ll) comp 
101010101 
101010100 
101010010 
101010001 
101010000 
101001010 
101001001 
101001000 
101000101 
101000100 
101000010 

Table 2: Illustration of Fibonacci F(n) complements 

If a positive number N requires n bits, then N < F n +i . The signed number — N requires 
at least n + 2 bits and must use at least the F n + s complement. (Numbers of this precision 
will require at least the original n bits, place space for the sign. The "sign" of a negative 
number is, by definition, a ' 1 ' bit, but this 1 must be followed by a 0 for a valid Zeckendorf 
representation.) 

Complementing is most easily handled by subtraction from zero; there seems to be simple 
complementing rule. In comparison with binary arithmetic it is complicated considerably by 
the bi-directional carries and by the "sign-fill" pattern of 101010.. . . whose alignment with 
respect to the significant bits is not easily decided. Because the sign fill pattern is 1010. . . an 
extension from unsigned to signed numbers requires at least 2 extra bits. 

Some complements are shown in Table 2. We see that a negative number is characterised 
by a leading 1010. . . bit pattern, rather than the 1111 . . . usually associated with binary 
numbers. The 1010. . . pattern has two alignments with respect to the bits of the value being 
complemented; these two alignments and interactions with the "numerically significant" bits 
lead to two different bit patterns in the complement. In the example, 2(7) — 1010 and the 
two patterns are . . . 0001 for n even and . . . 01001 for n odd. 

2,4 M U L T I P L I C A T I O N 

In the introduction we discussed the representation of an integer N as the scalar product 

N = D.W 

where D is the digit vector (the visible digits of the representation) and W is a weight vector. 
We now develop multiplication by analogy with conventional multiplication, building on this 
representation. Only positive values will be considered for both multiplication and, later, 
division. 

To calculate the product Z " f - I x Y , w e first write X (the multiplier) as X.W, giving 

Z ^-X.WxY 
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whence 
Z *" ^Xi.Wi.Y = Y^xUwi.Y). 

multiplicand 
multiplier 

1 

M a k e Fibonacci Multiples of multiplicand 
F3 multiple 1 0 0 
JF4 multiple 1 0 1 
F6 multiple 1 0 1 0 
F6 multiple 1 0 1 0 1 
Accumulate appropriate multiples 
add F4 multiple 1 
add F6 multiple 1 0 1 
product 1 0 0 1 

0 
0 
0 

1 
1 
0 

0 
1 

0 
0 
1 
0 

0 
0 
1 

0 
0 

0 
0 
0 
0 

0 
0 
0 

1 
1 

0 
1 
0 
0 

1 
0 
0 

0 
0 

0 
0 
0 
0 

0 
0 
0 

1 
0 

0 
1 
1 
0 

1 
0 
1 

= 1 7 J 
= 11 

= 34 | 
= 51 | 
= 85 | 
= 136 | 

= 51 
= 136 
= 187 

Check that 17 x 11 = 187 

Table 3: Example of Zeckendorf multiplication (17 x 11) 

The product is the sum of appropriately weighted multiples of the multiplicand Y, each 
multiple in turn multiplied by the multiplier digit x%. In a uniform base number system the 
scaling is easily done by "left shifting", or appending 0s to the right of Y, as in standard long 
multiplication. 

With Fibonacci arithmetic, the scaling must mirror the generation of the Fibonacci num-
bers themselves; we can no longer use simple shifts or inclusion of 0s. The weight vector W is 
now the Fibonacci numbers; given a multiplicand Y, we generate its Fibonacci multiples Mn 

as -
MX = M2 = Z(Y), M3=M1+M2,...yMk = Afc-i + M&_2, - - -

and then add these weighted by the bits of 2(X). (All arithmetic is of course done using the 
Zeckendorf addition of Section 2.1.) 

An example of multiplication given in Table 3. It shows first the two factors, then the 
multiples of the multiplicand, and finally the steps of the multiplication proper. 

3 . D I V I S I O N 

Division is, as might be expected, the reversal of Multiplication. The procedure is precisely 
that of a conventional "long division", but adapted to use the Fibonacci multiples of multipli-
cation rather than the scaled multiples of conventional arithmetic. Starting with the dividend, 
we try to subtract successively decreasing Fibonacci multiples of the divisor, entering quotient 
bits as appropriate, a 0 for an unsuccessful subtraction and a 1 for a successful subtraction. 
Again, we restrict ourselves to positive inputs. 

Table 4 shows an example of Zeckendorf division. We start by building a suitable table 
of the Fibonacci multiples of the divisor, stopping when the multiple has more bits than the 
dividend. Note here that the dividend, assumed unsigned, must be extended by at least 2 bits 
to accommodate the negative values which arise during division. 
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We then enter the cycle of trial subtractions. At each stage, if the residue1 is negative 
("unsuccessful" subtraction), we enter a 0 bit in the quotient and restore the previous residue. 
If the residue is positive ("successful" subtraction"), we enter a quotient bit of 1 and use the 

dividend 
divisor 

1 

Make Fibonacci Multiples 
F-i multiple 

. Fz multiple 
i<4 multiple 
F5 multiple 
Fe multiple 
Fi multiple 
Fs multiple 
Fg multiple 
Trial subtractions 
Fg overdraw = 
Fs overdraw = 
F7 residue = 
F5 overdraw = 
Fi residue = 
F2 residue = 
quotient = 
remainder = 

1 
1 0 

0 0 1 

of divisor 

1 
0 
1 

1 
0 
1 
0 

1 
0 
1 
0 
1 

1 

0 

1 
1 
0 
1 
0 
1 
0 

0 

0 

0 
0 
1 
0 
1 
0 
0 

1 

1 

0 
1 

1 
0 
1 
0 
1 
0 
0 
0 

0 

0 

1 

1 
0 

0 
0 
0 
1 
0 
0 
0 
0 

0 

0 
1 

T~ 
1 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 

1 
0 
0 
0 

1 
1 

1 
0 
1 
0 
0 
0 
0 
0 

1 

0 
1 
1 
1 

0 
0 

0 
0 
0 
0 
0 
0 
0 
1 

0 

1 
0 
0 
0 

1 
1 

1 
0 
1 
1 
0 
1 
1 
0 

0 

0 
0 
1 
0 

=300 
=17 

=17 
=34 
=51 
=85 
=136 
=221 
=357 
=578 

=79 

=28 
=11 
=17 
=11 

Check -300 -M7 = 17(+rem = 11) 

Table 4: Example of Zeckendorf division (300 -=-17) 

new residue for the next trial subtraction. As an optimisation with a successful subtraction, 
we can avoid the next multiple completely, going immediately from say Mi to Mj_ 2 . The 
subtraction with the M^-i multiple cannot succeed because that would give two consecutive 
Is in the quotient. 

4. C O N C L U S I O N S 

Although we have demonstrated the main arithmetic operations on Zeckendorf integers, 
this arithmetic is unlikely to remain more than a curiosity. It is much more complex than nor-
mal binary arithmetic based on powers of 2 and the Zeckendorf representations are themselves 
more bulky than the corresponding binary representations. 

Another problem lies in the representation of fractions. Powers of 2 extend naturally 
to negative powers and fractional values. Extending the Fibonacci numbers Fn for n < 0 
repeats the values for positive n, but with alternating sign; they provide no way of representing 
fractions. 

There is no generally accepted term for- the working value from which divisor multiples are subtracted during division. 
While some authors use "partial remainder" or "partial dividend", the preference here is for "residue". 
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1. I N T R O D U C T I O N 

The numbers of the form m(5™~3) ? where rn is any positive integer, are called heptagonal 
numbers. The first few are 1, 7, 18, 34, 55, 81, . . . , and are listed in [4] as sequence number 
A000566. In this paper it is established that 0, 1, 13, 34 and 55 are the only generalized 
heptagonal numbers (where rn is any integer) in the Fibonacci sequence {Fn}. These numbers 
can also solve the Diophantine equations of the title. Earlier, J.H.E. Cohn [1] has identified 
the squares and Ming Luo (see [2] and [3]) has identified the triangular, pentagonal numbers in 
{Fn}. Furthermore, in [5] it is proved that 1, 4, 7 and 18 are the only generalized heptagonal 
numbers in the Lucas sequence {Ln}. 

2. I D E N T I T I E S A N D P R E L I M I N A R Y L E M M A S 

We have the following well known properties of {Fn} and {Ln}: 

F _ n = ( - i r + 1 F n and L_ n = (-l)nLn (1) 

+ and 2Lm+n = 5 F m F n + (2) 

F2n = FnLn and L2n = L2
n + 2 ( - l f + 1 (3) 

L2
n = bF%+4(-ir (4) 

2\Fn iff 3|w and 2\Ln iff 3|n (5) 

3|Fn iff 4|n and 3|Z,n iff n = 2(mod 4) (6) 

9|Fn iff 12|n and 9\Ln ifin = 6(mod 12) (7) 

L8 nEE2(mod3) . (8) 

If m = ±2(mod 6), then 

Lm = 3(mod 4) and L2m = 7(mod 8), (9) 

F2mt+n = (- l )*Fn(inod Lm), (10) 

where n, m, and t denote integers. 
Since, N is a generalized heptagonal number if and only if 40N + 9 is the square of an 

integer congruent to 7(mod 10), we identify those n for which 40.Fn + 9 is a perfect square. 
We begin with 
L e m m a 1: Suppose n = 0(mod 24 • 17). Then 40Fn + 9 is a perfect square if and only if n = 0. 
Proof: If n = 0, then 40Fn + 9 = 32 . 
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Conversely, suppose n = 0(mod 24-17) and n ^ 0. Then n can be written asn = 2-ll-2e-g, 
where 9 > 3 and 2 \ g. And since for 9 > 3,2e+8 = 2* (mod 680), taking A; = 2e if 0 = 0, 5 or 
7 (mod 8) and k = 17 • 2e for the other values of 9, we have 

AT = 32,128, ±136,256,272 or 408(mod 680). (11) 

Since k = ±2(mod 6), from (10), we get 

40Fn + 9 = 40F2fc(2x+1) + 9 = 40(-l)xF2k + 9(mod L2k). 

Therefore, using properties (1) to (9) of {Fn} and {Ln}, the Jacobi symbol 

/±80^Lk+3L2
k /40Fn + 9 \ = (±40F2k + 9\ _ / _ 3 _ \ / ± 4 0 ^ + 3 \ = _ / L^\ 

V L2k J V ^ 7 \L2k) \ L2k ) \ 3 J 

Letting uk = ^r and vk = 80uk ± 3Lk we obtain 

V L2k J V L2k J \80ukLk±3Ll) \ Lk J \ vk J 

/ - 2 \ n{hFl + Ll)\ = f 2 \ /720JFg + 144£g\ 
\LkJ\ vk J \Lk-vkJ\ vk J 

Since vk = ^ ± 3Lk, then 144L2 = 1024
9°0FI (m od vk) and 

/720f1
fc

2 + 144£| \ = /108880i72\ = /5xl361\ = /t/*\ / vk \ = ( Vk \ 
V vk J \ vk ) V vk J U A l 3 6 1 / U361 / 

(8QFk±§Lk 

V 1361 

Furthermore, ( ^ ) = - 1 , it follows that ( * g ± » ) = ( ^ f r * ) -

But modulo 1361, the sequence {80Fn ± 9Ln} is periodic with period 680 and by (11), 
(S°Fi^iLk) = -^ f o r a11 v a l u e s o f k- T h e kmma follows. 
Lemma 2: Suppose n = ±1, 2, ±7, ±9, 10(mod 133280). Then 40Fn + 9 is a perfect square 
if and only if n = ±1, 2, ±7, ±9,10. 

Proof: To prove this, we adopt the following procedure which enables us to tabulate the 
corresponding values reducing repetition and space. 

Suppose n = e(mod N) and n^e. Then n can be written as n = 2 • S - 2e • g -f e, where 
9 > 7 and 2 J[ g. Then, n = 2km + e, where k is odd, and m is even. 
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Now, using (10), we choose m such that m = ±2(mod 6). Thus, 

40Fn + 9 = 40F2*m+e + 9 = 40(-l)*F€ + 9(mod Lm). 

Therefore, the Jacobi symbol 

'40Fn + 9 \ / - 4 0 F e + 9 \ fW (^H 'ra 
~M 

(12) 

But modulo M, {£„} is periodic with period P. Now, since for 9 > -),2e+s = 2e(mod 
P), choosing m = p • 2e if d = C(mod s) and m = 2e otherwise, we have m = c(mod P) and 

(Jap.) = - l , for all values of m. Prom (12), it follows that ( 4 0 ^ + 9 ) = - 1 , for n # e. For 

each value of e, the corresponding values are tabulated in this way (Table A). 

€ 

± 1 , 
2 

±7 

±9 

10 

Â  

22-72 

25-72 

25-5-72 

25-72-17 

^ 

1 f 

72 

5-72 

17-72 1 

1 

7 

1 

4 

4 

4 

! 5 

4 

36 

48 

52 

M 

31 

511 

1351 

2191 | 

P 

30 

592 

1552 

2512 

H 

72 

72 

7 

5-72 

72 

7 

17-72 

72 

7 j 

C(mod s) 

2 , 3 . 

13,31. 

1 0, 1, 6, 7, 8, 
±9, 16, 18, 
19, 24, 25, 

26, 34. 
2, 20, 26, 

44. 
7, 15, 18, 
31 ,39 ,42 . 
0, 1, 4, 9, 
11, 19, 21 , 
24, 25, 28, 
33, 35, 43, 
45. 
0, 8, 26, 34. 
1, 11, 14, 
19, 21, 27, 
37, 40, 45, 
47. 
±4, 6, 12, 
±13, 18, 
±22, 25, 
32, 38, 44, 
51. 

c(mod P) 

2, 16. 

±16, ±32, 
±48, ±144, 
±160, ±192, I 
±208, ±240, 
±272, ±288. 

±32, ±48, 
±64, ±112, 
±208, ±256, 
±304, ±352, 
±368, ±432, 
±464, ±480, 
±528, ±560, 
±592, ±672, 
±688, ±704, 
±752, ±768 

±32, ±48, 
±112, ±128, 
±224, ±272, 
±432, ±448, 
±512, ±624, 
±1024, 
±1040, 
±1072, 
±1248 

1 
Table A. 
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Since L.C.M. of (22 • 72 ,25 • 72 ,25 • 5• 72, 25 • 72 • 17) = 133280, the lemma follows. 
As a consequence of Lemma 1 and 2 we have the following. 

Corol la ry 1: Suppose n = 0, ±1 ,2 , ±7 , ±9,10(mod 133280). Then 4 0 F n + 9 is a perfect square 
if and only if n = 0, ±1 ,2 , ±7 , ±9,10. 
L e m m a 3: 40Fn + 9 is not a perfect square if n £ 0, ±1 ,2 , ±7 , ±9,10(mod 133280). 

Proof: We prove the lemma in different steps eliminating at each stage certain integers 
n congruent modulo 133280 for which 40Fn + 9 is not a square. In each step, we choose an 
integer m such that the period p (of the sequence {Fn} mod m) is a divisor of 133280 and 
thereby eliminate certain residue class modulo p. For example 

Mod 29: The sequence {Fn} mod 29 has period 14. We can eliminate n = ± 3 , ± 6 and 
12 (mod 14), since 40Fn + 9 = 2,10,8 and 27(mod 29) respectively and they are quadratic 
nonresidue modulo 29. There remain n = 0, ±1 ,2 , ±4, ± 5 or 7(mod 14), equivalently, n = 
0, ±1 ,2 , ±4, ± 5 , ±7 , ±9 , ±10, ±13,14 or 16(mod 28). 

Similarly we can eliminate the remaining values of n. After reaching modulus 133280, if 
there remain any values of n we eliminate them in the higher modulus (that is in the miltiples 
of 133280). We tablulate them in the following way (Table B). 
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Period 

P 
14 

28 

8 
56 
16 
112 

32 

10 
40 

70 

160 

80 
140 

196 

490 

392 
7840 

136 

238 

680 

68 ! 
1 2380 

34 
1 1360 

8330 

1 26656 J 

Modulus 
1 III 

29 

13 

3 
281 
7 

14503 

47 

11 
41 
71 
911 
1601 
3041 
2161 

141961 

97 

491 

1471 • 
5881 
54881 

67 

239| 

1361 ! 

1597 
2381 
3571 

5441 
16661 

124951 
39983 J 

Required values of n where j 4QF„ +9 j - -\ 
\ m J 

±3, ±6, 12. 

±13, 16, 18,24. 

±3,6. 
4,42. 
4. 
32, ±47, ±49, ±55, 58, 66, 88. 

12, 24, 28. 

±4,8. 
±15, ±17, 32. 
±19, ±21, ±23, ±27, ±33. 
±41. 
±39, 40, 90, 122, 130. 
±79, ±73, 82. 
±41, 42. 
±61. 
±19, ±27, 28, ±29, ±35, 56, ±57, ±65, 66, 
86,±91, 122, 150, 178. , 
72, ±77, 100, ±133, ±141, 142, ±147, j 
170, ±201, ±209, 210, 212, ±219, 310, 
352, 430. 
30, 140, ±149, ±217, 240, 280, 290, 422. 

58, ±113, 168. 
±551. 
8, ±17, ±23, ±25, 26, 32, 34, ±39, 40, 
±41, 42, 48, ±55, ±56, ±65, 90, 112, 114. 
±19, 24, 28, ±35, ±37, ±41, ±43, 44, ±49, 
±57, ±69, 70, ±71, ±75, ±77, 86, 100, 
±103, ±107, 108, 142, 154, 164, 184, 
196, 206. 
±73, ±121, ±151, ±167, ±193, ±319, 
±321. 
±5, ±11, ±14, 20, 38, 64. 
560, ±973, 1962, 2102. 
±4, ±13, 32. 

160, 322, 970. 
±919, ±1461, 7360. 
±2389. 
±13319. 

Left out values of n (mod k) 
where k is a positive integer | 

0, ±1, 2, ±4, ±5, 7 (mod 14) 
0, ±1,2, 4, ±5, ±7, ±9, 10, 14 

(mod 28) 
0, ±1,2, ±7, ±9, 10, ±23, 28, 

32 (mod 56) | 

0, ±1, 2, ±7, ±9, 10, ±23, 28, 
±33, 56 (mod 112) 

0, ±1, 2, ±7, ±9, 10, ±23, ±33, 
±79, ±89, ±103, ±105, ±111, 
112, 114, 168 (mod 224) 

0, ±1,2, ±7, ±9, 10, ±551, 
560, 1010 (mod 1120) 

0, ±1,2, ±7, ±9, 10, ±3369, 
±3911,3920 (mod 7840) 

0, ±1, 2, ±7, ±9, 10,66640 
(mod 133280) 

418 

Table B 

[NOV. 



HEPTAGONAL NUMBERS IN THE FIBONACCI SEQUENCE ... 

We now eliminate n = 66640(mod 133280), equivalent!^ n = 66640 or 199920 (mod 
266560). Now, modulo 449, the sequence {40Fn + 9} is periodic with period 448. Also, 66640 
= 336(mod 448), ( 4 Q ^ + 9 ) - - 1 and 199920 = 112 (mod 448), ( 4 Q ^ + 9 ) = - L The lemma 
follows. 

3 . M A I N T H E O R E M 

Theorem 1: (a) Fn is a generalized heptagonal number only for n = 0, ±1 ,2 , ±7 , ±9 or 10; 
and (b) Fn is a heptagonal number only for n = ±1 ,2 , ±9 or 10. 

Proof: Part (a) of the theorem follows from Corollary 1 and Lemma 3. For part (b) , 
since, an integer N is heptagonal if and only if 40N + 9 = (lO.ra — 3)2 where m is a positive 
integer. We have the following table. 

n 
Fn 

40Fn + 9 
m 
Ln 

0 
0 
3y 

0 
2 

±1 
1 
7'2 

1 
±1 

2 
1 

?2 
1 
3 

±7 
13 

23y 

- 2 
±29 

±9 
34 
37a 

4 
±76 

10 
55 

472 

5 
123 

Table C. 

4* S O L U T I O N S O F C E R T A I N D I O P H A N T I N E E Q U A T I O N S 

It is well known that if x\ + y\\[T) (where D is not a perfect square and x i , y i are least 
positive integers) is the fundamental solution of Pell's equation x2 — Dy2 = ± 1 , then the 
general solution is given by xn + yn\/T) = (x% + yi\fD)n. Therefore, by (4), we have 

L2n + V5F2 n is a solution of x2 - 5y2 = 4, (13) 

while 
-^2n+i + V5F2n+i is a solution of x2 — By2 = —4. (14) 

We have, by (13), (14), Theorem 1, and Table C, the following two corollaries. 
Coro l la ry 2: The solution set of the Diophantine equation 4x2 = by2(By — 3)2 — 16 is 
{(±1,1), ( ± 2 9 , - 2 ) , (±76,4)}. 
Coro l la ry 3: The solution set of the Diophantine equation Ax2 = 5y2(5y — 3)2 + 16 is 
{(±2,0), (±3,1), (±123,5)}. 
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1. I N T R O D U C T I O N 

The purpose of this paper is to study properties of mapped shuffled Fibonacci languages 
F(afi) and F^vy Let X — {a?6} be an alphabet and let X* be the free monoid generated 
by X. Let 1 be the empty word and let X+ — X* \ {1}. The length of a word u is denoted 
by lg(w). Every subset of X* is called a language. For two words u, v E X +

? we consider the 
following type of Fibonacci sequence of words: 

W\ = U, W2 = V, Ws = UV, . . . , Wn = Wn-2Wn-i, . . . , Tl > 3 . 

Let FUjV = {wi\i > 1}. If u — a and v = b, then FUjV is denoted by Fa$. The sequence of 
Fibonacci words plays a very important role in the combinatorial theory of free monoids for 
the recursively defined structure and remarkable combinatorial properties of Fibonacci words 
can be shown. Some properties concerning the Fiboancci language FUyV have been investigated 
by De Luca in [2], by Fan and Shyr in [3] and by Knuth, Morris and Prat t in [6]. 

In [1], properties of Fibonacci words generated through the bicatenation operation, i.e., 
Fi = Fi-tFi-2 U Fi-2Fi-\ = {uv,vu\u E Fi-i,v E i^„ 2 } where Ft = {a} and F2 = {&}, are 
investigated. Here we consider the shuffle operation. For u,v E X*, the shuffle product of u 
and v is the set uov defined by: 

UOV = {U1V1U2V2 ' ' -UnVnlUijVj E X * , 1 < i, j < U, U\U2 " ' Un = U, V\V2 ' ' ' Vn = v}. 

For A, B C X*, the shuffle product of A and B is defined as: A o B = \JueA V€B(U ° v)- We 
consider the following type of Fibonacci sequence of sets: 

Fi = {a}, F2 = {&}, Fn+2 = Fno Fn+1 for n > 1. 

Let F(atb) — Ut>i Fi. Remark that every word in the same F{ has the same length. For u,v E 
X + , let the homomorphism h : X* —>• X* be defined by h(a) = u and h(b) — v. The mapped 
shuffled Fibonacci language F(u^v) is defined to be the language h(F(a^) = {h(w)\w E F^a^}. 

Section 2 concerns properties of the mapped shuffled Fibonacci language -F(Ujt/) related to 
the theory of formal languages. We prove that -F(a,&) is equal to the set of all combinations 
of words in the Fibonacci language Fa$. In [3], Fan and Shyr show that Fa$ is regular free. 
Then clearly Fa^ is not a regular language. For more complicated cases, we show that F^u^ 
is neither dense nor context-free for any {u,v} / X . In Section 2, we also show that F(u^ is 
a context-sensitive language. 

Section 3 is dedicated to investigate the relationships between Fibonacci words in F(UjV) 
and primitive words. In [3] and [5], the powers of a word which can be contained as a subword 
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in a Fibonacci word are studied. Here we show that F(a^ contains only primitive words. 
Some properties of words u and v such that F(UiV) contains primitive words are investigated 
in Section 3 too. 

In Section 4, some conditions of u and v such that the homomorphism h : X* —)• X* 
defined by h(a) = u and h(b) = v is palindrome preserving or d-primitive preserving are 
studied. We also count the number of palindrome words in each F*. Codes contained in F(u^ 
are investigated in Section 5. 

Items„not defined here or in the subsequent sections can be found in [4] and [9]. 

2. T H E M A P P E D S H U F F L E D F I B O N A C C I L A N G U A G E FM 

In this paper we let the sequence of Fibonacci numbers rrti be defined by mi = 1, ra2 = 1 
and rrti — rrii-i + rrii-2 for i > 3. We also let ra0 = 0. Let the Fibonacci language Fa^b 

be ordered in the lexicographic order as Fa^ — \w\, ?z/2, W3,. - . , wni...}. For u E X + , C(u) 
denotes the set of all combinations of the word u. 

Let Fi = {a}, F 2 = {h}. Then 

F 3 = {ab,ba} = C(ah) = C(w3), 
F 4 = {hab,ahb,bba} = C(abb) = C(w4), 
F5 = {abbab, babab, haabb, abahb, aabbb, abhba, babba, bbaba, bbaab, bbbaa} 

= C(aabbb) = C(ti/5). 

For u E X* and a E X , let na(u) denote the number of a's in w. We shall show the above 
observations can be applied to all F{. That is the following property: 
P r o p o s i t i o n 2 .1 : Fx = {a}, F 2 = {6} and F, = C(ami-2bmi-1) = C(w;) for i > 3. 

Proof: From the previous observation, it is true for i = 1,2,3,4,5. Suppose that 
the hypothesis holds true for i < n with an integer n > 5. Now consider sets F n + i 
and C(amn-1bmn). From the facts that F n _ i = C(am—36m"~2) and F n = C(am—26m"-1) , 
it follows that F n +i = F n _ ! o Fn C C(aTOw-16TOw). Next, let w E C(amw-16TO»). Let 
w E C(am n~36m n-2) = F n _ i be the word arranged in the same order as the first m n _ 3 
a's and the first ran_2 6's of w. One can take v E X + such that w e u o v. Then 
we get na(v) = na(w) - ra„_3 = m n _ 2 and w&(t;) = nb(w) - ran_2 = ran-i- Thus 
t; E Cfa™*-2^*-1) = F n . Therefore, w E uov C F n _ i o F n = F n + 1 . Q 

For L C X*, let C(L) = U«€£C(W)- Pr<>P°sitiQn 2-1 derives that F(0j&) = C(Fa,6). A 
language L is said to be dense if L n X*uX* ^ 0 for every u E X*. 
P r o p o s i t i o n 2.2: The language F(a?&) is dense. 

Proof: It is clear that na(wi) = ra*_2 and nb(wi) = rrii-i for i > 3. For every K E X*, 
let & = lg(w),ra = rrik+2 - na(u) and n — rrik+z - m(u). Then a7nubn E C(w&+4) C F(0>&). 
Thus F(0j6) is dense. D 

For a given language L C X*, the principal congruence Pz, determined by L is defined as 
follows: 

u = ^ ( F L ) ^=^ (#uy £ -̂  ^=^ #^2/ £ L Vx,y E X*). 

It is well known that the language L is accepted by a finite automaton if and only if L has 
finite PL congruence classes, that is PL is a finite index. A language which is accepted by a 
finite automaton is called a regular language ([4]). We call a language L disjunctive if PL is 
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the equality. Clearly, a disjunctive language is not regular. It is known that every disjunctive 
language is dense (see [9]). 
Coro l la ry 2.3: The language F(a^ is not disjunctive. 

Proof: For any two distinct words u,v E X* with na{u) = na(v) and n^{u) — n&(t;), in 
view of Proposition 2.1, we have xuy E F(a,b) if a n o - onh if XVV £ ^(a,6) f° r x,y G X*. Hence 
the Fibonacci language F(a,6) is not disjunctive. D 
L e m m a 2.4: ([13]) Let h : X* -> X* be a homomorphism. If h(L) is dense for some L C I * , 
then /i(X) = X. 
Corol la ry 2*5: For u,v E X + , if {w, v} 7̂  X , then F(UjV) is not dense. 

Proof: If {u, v} 7̂  X , then by Lemma 2.4, h(F(a^) = F(UJVJ is not dense . • 
Corollary 2.3 shows that .F(0,&) is not disjunctive. Moreover, Corollary 2.5 shows that 

F(u^v) is not dense for {u, v} ^ X. In the following we shall show that F^v) is neither regular 
nor context-free for any u,v E X + . A language L is said to be regular free (context-free 
free) if every infinite subset of L is not a regular (context-free) language. Of course, if a 
language is context-free free, then it is also regular free. It is known that if L is an infinite 
context-free language, then there exist xi,X23^3,^4,#5 E X* with lg(^2^4) > 1 such that 
{xix^xsx^xsln > 0} C L (see [4]). The language of the form {xix^x^x^x^n > 0} is called a 
context-free component. 
P r o p o s i t i o n 2*6: For any u,v E X + , F^v) is context-free free. 

Proof: Suppose on the contrary that F^v) is not context-free free. Then there is an 
infinite context-free subset of F(u^vj. That is, there exist x±,X2, ^33 ^4? ̂ 5 E X* with Ig (2:2^4) > 
1 such that {xix^x^x^n > 0} Q -^Wo- Remark that F\ = {u},F2 = {v}, Fi = F j_2oi 7 i_ i 
for i > 3, -F(Wjt;) = U»>i ^ ? anc^ mi < mi+i f° r every i > 2. There is k > 3 such that 
xix3

2xzx\x5 E jFfc for some j > 1 and uik-i > lg(x2a?4)- This implies that rrik+i = mfc__i+ 
m*; > lg(xix^+1X3^4+1X5). Thus xiX2+1X3X3

4
+1x5 £ i*(tt,v), which leads to a contradiction. 

Therefore, -F^w) is context-free free. D 
Moreover, we shall show that F(UyV) is a context-sensitive language. For definitions and 

properties of context-sensitive languages and linear bounded automata, one is referred to [4]. 
P ropos i t i on 2*7: For u, v E X + , -F(UjV) is a context-sensitive language. 

Proof: Here we consider the language L — .F(a,&) \ \@>°> &}• It is known that if L is context-
sensitive, so is F(a?5). By Proposition 2.1, Fi+2 = C(amibmi+1) for i > 1. We construct a 5 
track linear bounded automation such that the first track stores the input word w, the second 
track stores the number m^_i, the third and fourth tracks store the number mi and the fifth 
track stores the number rat-+i. This automation is initialized by i = 1, i.e., track 2 stores 
mo, track 3 stores m i , and so on. For any input word w in track 1, we check the number 
mi stored in track 4 with a's in w. If na < m*, then w ^ L. If na > m*, then we put m^ 
from track 4 into track 5, put ra^-i from track 2 into track 4, replace the number in track 2 
by mi in track 3, replace the number in track 3 by the number in track 4, and compare the 
number in track 4 with a3s in w again. If the number m» in track 4 equals na(w), then we 
compare the number TOi+i in track 5 with 63s in w. If mj+i = ra&(w), then w E L. Otherwise, 
w ^ L. This automation is a linear bounded automation which accepts L. Therefore, L is 
context-sensitive. As context-sensitive languages are closed under 1-free substitution, F^u^ is 
also a context-sensitive language. D 
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Here, we consider one property of Fibonacci numbers. Then we shall study the difference 
between the shuffled Fibonacci language F^a^ and the inserted Fibonacci language i"(a,&)-
P r o p o s i t i o n 2.8: Let % > 10. Then 
(1) [mi/(mi-2 + 1)J = 2 = Lmi-i/(™*-3 - 1)J and 
(2) 0 < mi -2 — 2(rai_4 — 1) < rrii-4 — 1. 

Proof: By definition, m^ = 5, rni = rrtis + 2m^_2 and mi = ra^-i + m^_2 > rrii-i + 5 
for i > 7. Let i > 10. Then mi_ 2 + 1 > 77^-3 - 2 > 0 and ra;_3 - 1 > rrii-4 + 2 > 0. This 
together with the equalities ra^/(rai_2 + l) = 2 + (rrii_3 —2)/(rai_2 + l) and mi_i / (mt_3 —1) = 
2 + (rai_4 + 2)/(mi_3 - 1) imply that Lra;/(ra;_2 + 1)J = 2 = [m;- i / ( ra ;_ 3 - 1)J- Moreover, 
0 < rrii_2 - 2(rrii-4 — 1) = mi_5 + 2 < rrii_4 — 1. D 

For i , B C X*, the insertion of B into 4̂ is defined as: 

B -$ A — {uvw\u, w E X*,uw E A,v E B}. 

Let Ji = {a}, I2 — {6} and li = ^ -2-^-^-1 for & > 3. The inserted Fibonacci language I(a,b) 
is defined by I ( a j 6 ) = Ui>i^. Clearly, I; C C(ami-2hmi-1) = C(«/,) = i^ for i > 3. By 
observation, I* = F^ for z = 1,2,3,4,5,6,7,8,9. 
P r o p o s i t i o n 2.9: I* C F» for every i > 10. 

Proof: It is clear that J* C 1* for i > 1. Let w = a7614a7614a766. Then w E Fxo but 

w £ ( IsAlg) = Jio- Indeed, one can take r = rrii-2— 2(ra*_4 — 1) and 5 = nti-i— 2(mi_3 + l) for 
i > 10. This is conjunction with Proposition 2.8 yields 0 < r < 771̂ -4 — 1 and 0 < s < mi-3 + l. 

Let w = (ami-4-1bmi-3+1)2arbs. Then w E Ci/n™*-^™*-1) = F< and w £ C(am*-46TO*-3) -4 

C(am<-s6m*-a) = Fi_2 A Fi_i . Since h = Ji_2 -4 J<_i C JFi_2 A F ^ i , we have w i I;, which 
completes the proof. • 

3 . FM A N D P R I M I T I V E W O R D S 

A word p E X + which is not a power of any other word is called a primitive word. Let 
Q be the set of all primitive words over X ([9]). It is known that every word in X+ can be 
uniquely expressed as a power of a primitive word ([8]). In [3], Fan and Shyr have proved that 
the Fibonacci language Faj, is a subset of Q. Here we show that -F(0,6) Q Q- We also want to 
find words u,v such that F(UiV) C Q. 
P r o p o s i t i o n 3 .1: -F(0,6) Q Q-

Proof: We consider w E F{ for some i > 3 whenever a, 6 E Q. By Proposition 2.1, 
w E C(anii-2brrii~1). Since m*_2 and rrii-i are relatively prime, w E Q. Therefore, 
F(a,b) Q Q. • 

For u E X + , if u = pn and p is a primitive word, then ^fu = p is called the primitive root 
of u. For a language L C X + , let %/L = {v^ l^ E L}. A language L C X4" is called pwre if for 
any u E L + , V ^ £ ^ + -
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A non-empty language L is a code if for x±, x2,. - . , xn, 2/1,2/2? • • • ? 2/™ E •£» 2-1^2 • • • xn — 
V1V1 '"Vm implies that m = n and X{ — yi for i = 1,2, . . . , n. Let {u, v} be a code and let 
ft : X* •-> X* be defined by h(a) = w and ft(6) = t?. Then ft being injective is derived directly 
from the definition of codes. 
P r o p o s i t i o n 3,2: ([10]) Let ft : X* -» X* be an injective homomorphism. If ft(X) is a pure 
code, then ft preserves the primitive words. 
P r o p o s i t i o n 3.3: For two distinct words u,v E X + , if {u,v} is a pure code, then F(UiV) C Q. 

Proof: By Proposition 3.1, -F(a,6) Q Q- Let {w,?;} be a pure code. We define the injective 
homomorphism ft : X* —)• X* as h(a) = u and ft(6) = v. Also, for a language L C X + , 
let h(L) = {h(u)\u E L}. Clearly, F(u>v) = ft(JF(a>&)). Prom Proposition 3.2, one has that 

The definition of pure codes makes checking whether {u^v} is a pure code not easy. We 
are going to find some other properties of u and v related to the primitivity of F(UfVy. A word 
u is a conjugate of a word w if there exist x,y E X* such that u = xy and w = yx. The 
following lemmas concerning basic properties of decompositions and catenations of words will 
be needed in the sequel. 
L e m m a 3.4: ([8]) For x , | /G X + , x y = yx implies that y/x = y/y. 
Remark: In fact that for x,y e X4", xy = yx if and only if y/x = y/y. 
L e m m a 3.5: ([11]) Let xy =p%,x,y E X + , p E Q,i > 1. Then yx = ql for some q E Q. 
L e m m a 3.6: ([12]) Let xqm = gk for some m, k > l,x E X + , g E Q and g E Q, with a; £ c?+. 
Then g / g and lg(5) > lgfa™-1). 

If it* = xy f° r xiV ^ 3£*•> then x is called a prefix of w and it is denoted by x <p u; the 
word y is called a suffix of w and denoted by y <s u. 
P r o p o s i t i o n 3.7: Let u,v E X + with lg(tx) = lg(t/) and tw E Q, and let ft : X* -> X* be 
a homomorphism defined by h(a) = u and ft(6) = v where X = {a, 6}. Then ft preserves 
primitive words except a and b. That is, h(Q)\Q C {w,v}. 

Proof: Let u,v £ X + , lg(w) =lg(v) and wi; E Q. By Lemma 3.5, t/w E Q. As wv E 
Q, u^ v. Define ft : X* —)> X* by ft(a) = u and ft(6) = v. Since {w, v} is a uniform code, ft is 
an injective homomorphism. We want to show that h(w) E Q whenever w E Q\{a,6,a6,6a}. 
Suppose on the contrary that there exists w E Q\{a,6,a6,6a} such that h(w) £ Q. As 
w E Q\{a,b, ab,ba},lg(w) > 3. Let w1 be a conjugate of w. From Lemma 3.5, one has that 
w E Q if and only if it/ E Q. As lg(w) > 3 and w E Q^na{w) / 0 and n&(t//) / 0. If 
no conjugate of w contains any one of the following subwords b2a or a26, then w — (ah)1 or 
ti; = (6a)* for some i > 2. This implies that w fi Q, a contradiction. Thus there is a conjugate 
of w that contains a subword b2a or a26. In the other word, there exists a conjugate wl of w 
such that a <p wf and 62 < s w7, or 6 <p wl and a2 <s wl. Without loss of any generality, we 
let a <p wf and 62 <s w!. Clearly, u <p h(wf) and v2 <s h(wf). Note that h(wf) is a conjugate 
of h(w). This in conjunction with h(w) fi Q and Lemma 3.5 yields h{wl) £ Q. That is, there 
exist p E Q and j > 1 such that h(wf) = p*+1. Since lg(u) =lg(v) and ?;2 < s h(wr)1 by Lemma 
3.6, we get lg(p) > lg(u). Hence there exists y E X + such that p — uy. 

If y E {u^v}+j then h(wf) — (uyY+1 and uy E {te,t;}+. This implies that w1 — 
ft~1(ft(w/)) = h~1((uy)j+1) = (/i"1(ttj/))J'+1 ^ Q? a contradiction. Hence, y ^ {«, v } + . Since 
(uy)j+1 E {w,?;}"f, we have y(uy)j E {?i,?;}+. Hence there exist ?/i E {n,t;}* and y2 E X + 

such that y = yiy2 and lgd/2) <lg(w). The fact (uy^)^1 = p^+1 = h{wl) E {u,v}+ implies 
that wi = 2/2(^2/1^2) '̂ E {w,t?}+. Not that lg(wi) = fc lg(v) for some positive integer fc and 
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that lg(t/;i) > lg(v). Hence lg(wi) > 2 lg(v). This in conjunction with v2 <s uy\W\ = h(wf) 
yields v2 <s w\. We consider the following cases: 
(1) u <s uy\. As v2 <s wi and lg(v) > lg(2/2), there exists 2/3 G X+ such that v = 2/32/2-

It follows that wi — y4{y$y2)2 for some 2/4 G {i4,u}*. Since u < s ££2/i, we obtain u <s 
U2(uyiy2)j~1uy1 = 2/4(2/32/2)2/3- This together with lg(w) = lg(t/) yields w = 2/22/3- Now we 
consider the following four subcases: 

(1-a) u2 = 2/22/32/22/3 < P ^ i = 2/2(^2/12/2)^ Then 2/32/2 < P ^2/i2/2- As \g(u) = lg(2/22/s), « = 
2/32/2 = v. This implies that uv £ Q, a contradiction. 

(1-b) uv = 2/22/32/3̂ 2 < P wi = 2/2uy1y2{uy1 y2K"1. Then 2/2 < P 2/32/32/2 < P (uy1y2)j. There exist 
2/4 < P 2/3 and r > 0 such that 2/2 = yjjjte- Thus yl+1y± <p 2/3^42/32/i2/2(t*2/i2/2)i~1

J i.e., 
2/32/32/4 <P 2/42/32/12/3- It follows that 2/3 = 2/42/5 = 2/52/4 for some y5 £ X*. By Lemma 3.4, 
we have ^Jyi — yfyl = -s/yi. This is conjunction with y2 = 2/32/4 and lg(*0 = lgO>) yields 
u = 2/22/3 = 2/32/2 = v and uv £ Q; a, contradiction. 

(1-c) vu = 2/32/22/22/3 < P wi = 2/2(2/22/32/i2/2)J- This implies that 2/32/22/2 = 2/22/22/3. By Lemma 
3.4, ^ / ^ = y^yf = ^fyi. Thus 2/22/3 — 2/32/2 and u — v. Hence, uv £ Q, a contradiction. 

(1-d) v2 <p w\. As v <p w\ = 2/2(̂ 2/12/2)̂  and 1; = 2/32/2 5 there exists 2/4 G X + such that 
v = 2/22/4 with lg(?/4) = lg(2/3)- Since v2 = 2/22/42/22/4 < P wi = 2/2(̂ 2/i2/2>7 and lg(u) = 
^(2/22/3) = lg(2/42/2), w = 2/42/2- Consider the case that lg(y4) < lg(y2)- There exists 
2/5 G X* such that 2/2 = 2/42/5- Then v = 2/42/52/4 and u = 2/42/42/5- As v2 = 2̂/42/52/4 <s 
wi = (2/2^2/1)̂ 2/2 = (2/2W2/i)J2/42/5,2/52/4 = 2/42/5 and w = v. Hence uv £ Q, a, contradiction. 
Now, let lg(2/4) > ig(2/2)- There exists 2/5 G X+ such that 2/4 = 2/22/5- Then w = 2/22/52/2 
and v = 2/22/22/5- As v2 = 2̂/22/22/5 <s wi and uy2 = 2/22/52/22/2 <s ^ i , 2/22/22/5 = 2/52/22/2- By 
Lemma 3.4, y/y^ — y/y^ — v^/5- This implies that yfu = -̂ /v and uv £ Q, a, contradiction. 

(2) v <s uy\. As v2 <s w\, there exists 2/3 G X + such that v = 2/32/2 = 2/22/3- By Lemma 3.4, 
y/l/2 — y^3- That is, there exist q G Q and r i , r2 > 1 such that 2/2 = (f1,2/3 = <?r2 and 
v = g r i + r 2 . We consider the following four subcases: 

(2-a) u2 <p wi = 2/2(^2/i2/2p- There exists 2/4 G X + such that w = 2/22/4 = 2/42/2- Thus 
V^4 = y/yz- This in conjunction with ^fyi — s/vi yields u — g r i + r 2 = v and uv £ Q, a 
contradiction. 

(2-b) tit; < p wi = y2{uyiy2y. There exist t/4,2/5,2/6 G X + such that te = 2/22/4 = 2/42/5,̂  = 
2/52/6,lg(2/5) = lg(sfe) = lg(gr i) and lg(y4) = lg(2/s)- Thus 2/5 = ^ n = 2/2- As w = 2/22/4 = 
2/42/2, by Lemma 3.4, ^fyi = ^/y^. Thus uv — 2/22/4 ^ Q, a contradiction. 

(2-c) t;2 = 2/22/32/22/3 <p ti/i = 2/2(ti2/i2/2)J- The condition lg(w) = lg(v) implies that u = y3y2 = v 
and uv £ Q, a contradiction. 

(2-d) ?;ti < p wi. As v = 1/22/3 ^p w i — 2/2(^2/i^2)^, there exist 2/4,2/5 G X + such that u = 
2/32/4 = 2/42/5 with lg(j/4) = lg(2/2)- This implies that 2/4 = (2/s)r32/6 for some r3 > 0 and 
2/6 < P 2/3- Since lg(y4) = Ig(^) = lg(^r i) and 2/3 = gr2,2/4 = g n • 
Thus u = qTl+r2 = v and uv $ Q, a contradiction. • 
Prom the proof of Proposition 3.1, we have the following result immediately. 

Coro l la ry 3.8: Let A = {a, b} and 1? a finite nonempty alphabet. If h : A* -» J3* is a 
homomorphism of ^4* into S* defined by /i(a) = w and h(b) = v for some primitive words 
u, v G B + such that lg(ti) = lg(?;) and uv is a primitive word, then h preserves primitive 
words. 
Coro l la ry 3.9: F(UjV)\Q C {urv} for any two words u,v G X + with lg(w) = lg(v) and uv G Q. 

Proof: Let u,v G X + with lg(?i) = lg(t;) and «v G Q. By Proposition 3.1, F(a?&) C Q. 
Prom Proposition 3.7, one has that F(UyV^\Q C {w,v}. D 
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For u, v E X + , we conjecture that {uv, uv2} C Q if and only if F^U^\Q C {w, ?/}. This 
is left for our further research. The partially primitive-preserving homomorphisms is also an 
interesting research topic for our further work. 

4. PALINDROME WORDS AND d-PRIMITIVE WORDS IN . F ^ 

If x — aid2 - - - an, where a* E X, then we define the reverse (or mirror image) of the word 
x to be x — an - • • 0201. A word x is called palindromic if x = x ([7]). 
P ropos i t i on 4 .1 : Let n* be the number of palindrome words in F{ — C(ami-2bmi-1). Then 
n\ = 1^2 — 1, and for i > 3, 

if mi is an even number, 
Tbi \ .1 . 

is an odd number, 

f 0, if m* is 

where Jfci = [ ^ f M and k2 = L ^ J = 
Proof: If w is a palindrome word with lg(w) > 2, then there exist u E X4" and v E 1 U { 1 } 

such that w = uvu. By the definition of reverses, we have na(u) = na(u) and ra&(w) = n&(fi). 
Thus at most one of na(w) and ra&(ii/) can be odd whenever w is a palindrome word. Prom 
definitions: m\ — l,rri2 = 1 and m% = mt*_i + wii-2 for i > 3, it follows that mi is an even 
number if and only if ra»_i and rni-2 are odd numbers. Consider i > 3. Then m^ > 2. If 
w E F{ and m^ is an even number, then lg(w) = w^ and «/ E C(am i~25m i-1) where both rrii-i 
and mj_2 are odd numbers. This implies that there exists no palindrome word in Fi if ra» is 
an even number. Now we consider the case that mi is an odd number. Let w = uvu E F{ for 
some w e l + a n d ^ G X. Then « E C(afcl6fc2), where fci = \J^\, k2 = L 1 ^ 1 ] - This implies 

that^ = % g ? - D 

L e m m a 4.2: ([7]) Let u,v E X + be two distinct words and let h : X* —> X* be defined by 
h(a) = u and h(b) = v. Then w and t; are palindrome words if and only if h is a palindrome 
preserving homomorphism. 

It is known that {u, v} C X + is a code if and only if yfu i=- y/v (see [9]). For two words 
u,v E X+,{u,v} being a code implies that h is an injective homomorphism where h(a) = u 
and h(b) = v. 
P r o p o s i t i o n 4*3: Let u,v E XH~ be two palindrome words. Then y/u =̂  y ^ ^ a n < i o n l y ^ -̂  
and h(L) contain the same number of palindrome words for every L C X + . 

Proof: Let w, v E X + be two palindrome words with -y î 7̂  -0/ . For 11/ E X*, by Lemma 
4.2, h(w) is a palindrome word whenever w is a palindrome word. Now, let w = ata2 • • • an be 
such that /i(w) is a palindrome word, where a» E X, 1 < i < 71, i.e., /&(«;) = /&(«;). Note that 
/i(w) = h(an)h(an-i) - - • /i(ai) = h(an)h(an-i) • • -/&(ai) = /i(w). This in conjunction with 
the fact that /i is injective whenever y/u / y ^ yields w — w^ i.e., w is a palindrome word. 
Therefore, L and h(L) contain the same number of palindrome words for every L C X + . 
Conversely, we assume that for every L C X + , L and ft(i) contain the same number of 
palindrome words. Let L\ = {a, 5} and L2 = {a6,6a}. Then a, 6 being palindrome words, 
by Lemma 4.2, implies that both h(a) — u and h(b) = v are also palindrome words. Since 
ab and ba are not palindrome words, uv ^ uv = vu = vu. By the remark of Lemma 3.4, we 
obtain y/u ^ y/v. U 
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Proposition 4.3 derives that for two palindrome words u and v, if h(a) = U, h(b) = v and 
^fu 7̂  y/v, then Fi and ̂ (Fi) contain the same number of palindrome words for every i > 1. 
A word d E X* is said to be a proper d-factor of a word z E X + if d ^ z and z = dx = yd 
for some words x, y. The family of words which have % distinct proper d-factors is denoted by 
D(i). A word x E X"1" is d-primitive if x = dy\ = y2d, where d E X + and yi,y2 E X*, implies 
that x = d and y± = y?. — 1. The set £)(1) is exactly the family of all d-primitive words. For 
the properties of D(i), one is referred to [13]. For u^v E X + , let dUyV denote the maximal word 
in X* being such that u = xdUjV and v = dUyVy for some x, | /G X*. 
L e m m a 4.4: ([7]) Let u,v E X + be two distinct d-primitive words such that dUjV = dViU — 1 
and let h(a) — u and h{b) = v. Then h is d-primitive preserving. 
P r o p o s i t i o n 4.5: Let u,v E D(l) with du?v = dt,)W = 1 and let h(a) = u and h{b) = v. Then 
the following two statements hold true: 
(1) w E D( l ) if and only if h(w) E Z?(l); 
(2) L and /i(X) contain the same number of d-primitive words for any L C X + . 

Proof: By Lemma 4.4, h is d-primitive preserving. If w E -O(l), then /i(w) E 1^(1). Now 
assume that w E X + \ .D(1) . That is, there exist d, x,y E X4" such that w = xd = dy. Then 
h(x)h(d) = h(xd) =•- /i(w) = /i(d?/) = h(d)h(y). This implies that /i(d) is a non-empty d-factor 
of h(w) and h(w) £ D(l). Thus statement (1) holds true. For any L C X + , as h is injective 
and by (1), L and /i(X<) contain the same number of d-primitive words. • 

Proposition 4.5 derives that for u,v E D(l) with dUjV = dv,u = 1, F{ and h(F{) contain 
the same number of d-primitive words where h(a) = u and h(b) = v. 

5. FM A N D C O D E S 

Proposition 2.1 derives that F(a^ D {amibmi+1\i > 2} which is a bifix code. Let Faj> be 
ordered in the lexicographic order as {wi,W2,... ,wn,...}. In [3], Fan and Shyr show that 
languages {w2n\n > 1} and {w2n-i\n > 1} a r e codes. In [14], we show that for k > 2, {wnk\n > 
1} is a code. Here we are going to find some other codes contained in F^u^vy 
Example : For a given integer k > 2, let Ln = C{amn-2bmn~1~mn-k)bm^-k for n > k. Then 
L = U{>2Lik is a suffix code contained in F(a^y 
L e m m a 5.1 ([10]) Let h : X* —> X* be a homomorphism. Then the following statements are 
equivalent: 
(1) h is code preserving; 
(2) h is injective; 
(3) \h{X)\ = |X| and h(X) is a code. 
Coro l la ry 5.2 For u, v E X + , let 7i(a) = w and /i(6) = v. Let L C F^a^ be a code. Then 
{uj v} being a code implies that h(L) is a code. 

According to Corollary 5.2, we then consider codes in F^a^ instead of codes in F(Wjt/). We 
quote the following lemma from [14], which is needed in the sequel. 
L e m m a 5.3: ([14]) 
(1) For every i>l,W{ /£pWi+i; 
(2) W{ <p Wj implies that j — i is an even number; 
(3) for k > 5 and 1 < i < k — 4, W{ <p Wk implies that WiWi+iWi+iWiWi+i <p Wk] 
(4) for each k > 2,W{Wi £p Wk for every i < k. 
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P r o p o s i t i o n 5.4: Let Li = wi-iX™1-2 for i > 3. For k > 3, let L C Un>i£n& be such that 
\L n Lijb| = 1 for each i > 1. Then L is a code. 

Proof: Suppose there exists k > 3 such that there is L C (Jn>i -k»fc w ^ 1-̂  n ^ i f c l = 1 
for each i > 1 and that £ is not a code. Then there exist u^u^.. .wnjVi,V2,.. • ,vm E £ 
for some finite integers m , n > 1 such that u\ / v\ and u\U2 — -un = v\V2- • °vm. Since 
wi 7̂  vi, without loss of generality, let u± <p vi. There exist i\ < ji such that u± G Lkix 
and vi E Lkjx. This implies that w^-i <p wkj1-i. By the definition of £ and ii > 1, 
&ji — 1 > fc^i + fe — 1 > 2fc — 1 > 5. Moreover, kji — kit > 3 which follows immediately from 
the inequalities k > 3 and j i > i i . Then apply (2) of Lemma 5.3 to get kji — ki\ > 4, i.e., 
(kii — 1) < (fcji — 1) — 4. This is the case considered in the following: 
(*) By (3) of Lemma 5.3, wki1-.iwki1wkilwkil-.iwkil <p Wkj1-i <p v\- This in conjunction 

with ui <p vi.ui E w ^ - i l ^ i - 2 and wkil = Wki1-2Wki1-i yields u\ — wkil-iwkil-2. 
Thus 

UlWkil+iWkil+i = UiWkii-lWkiiWkii-lWki! <P Vi. 

Let u2 E Lk%2 for some i2 > 1. If <2 > *i> then lg(w2) = rnki2-2 + m>ki2-i > 
mfci1+i + mkil+2 > lg(wkil+iwkil+1). This together with wiw 2 "-w n = ^1^2 • • -vTO 
and wityjbti+itwfcti+i <p *>i yields w&^+i < p wki2-i <p u2. By (1) of Lemma 5.3, 
k%2 — l>ki\-\-2. This implies that Wkii+iWkii+i <P Wki2-i> i n contradiction with (4) of 
Lemma 5.3. Thus i2 < h- We consider the following two subcases: 

(*1) H = h- Then u2 = ui = wkil-iwkil-2 and uiU2Wkil-iwkil-1wkil <p vx. Let 
^3 £ £&i3 for some is > 1. Then again by (4) of Lemma 5.3, mkil+i > 2mici1-i = 
Igiwki^iWk^-i) > lg(ti7fci3_i) = friki3-i' Thus <i > i3 and m ^ 3 < 2mki1-i- It 
follows that us <p Wkii-iWkii-iWkii- If is = *i>t*3 E w ^ - i X ™ * ^ - 2 implies that 
^ 3 == wki1-iwki1-3VJki1^4 7̂  Wi. This contradicts the fact that \L (1 L^] = 1. Thus 
one has the following case: 

(*!') is < i\. Then we have ki\ — 1 > ki$ + k — 1 > 5. Since fcii — ki$ > 3, by (2) of Lemma 
5.3, kii - kis > 4. Note that U1U2 - - -un = V1V2 • • -vm,uiU2Wk%1-iWki1-iWk%1 <P v and 
^3 £ wki3-iXmki3-2. Hence U/JM3-I < jpwjbti-i <p vi- By (3) of Lemma 5.3, we obtain 
wki3-iwki3wki3wki3-.iwki3 <p wkil-i <p vi. This is the same case as the case (*). 

(*2) %2 < i\- This case is analogous to the case (*1') which is the same as the case (*). 
This implies that U\U2 • • • un <p vi, i.e. U1U2 - • • un / ^1^2 — mvm, a contradiction, which 
completes the proof. D 
Clearly, L C F(a,b)^{Jn>i ^nk w ^ ^ \LnLnk\ — 1 is also a code for any k > 3. Remark that 

the code £ given in Proposition 5.4 can be neither a prefix code nor a suffix code. Furthermore, 
we conjecture that if we choose a word from each F 2 n , n > 2, to form a set £ , the £ is a code. 
This is left for our further research. 
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I , I N T R O D U C T I O N 

A positive integer n is said to be a Niven number (or a Harshad number) if it is divisible 
by the sum of its (decimal) digits. For instance, 153 is a Niven number since 9 divides 153, 
while 154 is not* 

Let N(x) denote the number of Niven numbers < x. Using a computer, one can obtain 
the following table: 

X 

10 
100 
1000 

N(x) 
10 
33 
213 

X 

104 

105 

106 

N(x) 
1538 
11872 
95428 

X 

107 

10s 

109 

N(x) 
806095 
6954793 
61574510 

It has been established by R.E. Kennedy & C.N. Cooper [4] that the set of Niven numbers 
is of zero density, and later by I. Vardi [5] that, given any e > 0 

N(x) < 
(logx)1/2" 

(i) 

We have not found in the literature any lower bound for N(x), although L Vardi [5] has 
obtained that there exists a positive constant a such that 

N(x) > a-—^-^ (2) 
v ; (logaj)11/2 v ; 

for infinitely many integers x, namely for all sufficiently large x of the form x = iolofc+n_i~2
3 k 

and n being positive integers satisfying 10n = 45fe + 10. Even though inequality (2) most likely 
holds for all sufficiently large x, it has not yet been proved. More recent results concerning 
Niven numbers have been obtained (see for instance H.G. Grundman [3] and T. Cai [1]). 

Our goal is to provide a non trivial lower bound for N(x) and also to improve on (1). 
Hence we shall prove the following result. 
T h e o r e m : Given any e > 0, then 

x1""6 < N(x) < 
x log log x 

logx 
(3) 

We shall further give a heuristic argument which would lead to an asymptotic formula for 
N(x), namely N(x) ~ Cj^-;, where 

Research supported in part by a grant from CRSNG. 
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14 
c= — log 10 « 1.1939. (4) 

2. T H E L O W E R B O U N D F O R N(x) 

We shall establish that given any e > 0, there exists a positive real number xo = xo(e) 
such that 

N(x)>x1~e ioTsdlx>x0. (5) 

Before we start the proof of this result, we introduce some notation and establish two 
lemmas. 

Given a positive integer n = [di,d2,-..,dk], where di , d2, • • •, dk are the (decimal) digits 
of n, we set s(n) = $^ = 1 d» . Hence n is a Niven number if s(n)\n. For convenience we set 
5(0) = 0. 

Further let H stand for the set of positive integers h for which there exist two non negative 
integers a and h such that h = 2a • 106. Hence 

H = {1,2,4,8,10,16,20,32,40,64,80,100,128,160,200,256,320,400,512,640,.. .}. 

Now given a positive integer n, define h(n) as the largest integer h E H such that h <n. For 
instance h(23) = 20 and h(189) = 160. 
L e m m a 1: Given e > 0, there exists a positive integer no such that -^x < 1+e for all n > no-

Proof: Let e > 0 and assume that n > 2. First observe that 

n 
< 1 + e <^=^ logn - logh(n) < log(l + e) := ei, h(n) 

say. It follows from classical results on approximation of real numbers by rational ones that 
there exist two positive integers p and q such that 

0 <5 : = p l o g l 0 - g l o g 2 <ei. 

For each integer n > 2, define 

(6) 

logn 
log 2 

and t := 
logn — r log2 

(7) 

From (6) and (7), it follows that 

I o g n - ( r l o g 2 + £ ( p l o g l 0 - g l o g 2 ) ) < S < eu 

that is 
n 

2r"«* • 10*^ 
< 1 + e. 
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In order to complete the proof of Lemma 1, it remains to establish that 2 r _ ^ • 10tp E H, that 
is that r - qt > 0. But it follows from (7) that 

t < loSn-rlog2 logn _ log2 / l o g n _ \ _ log2 
5 ~ S S \log2 J ~ ~ T ~ ' 

so that 

r — qt > r — q log 2 logn 
(Jog 2 

fffog^ logn _ glog2 __ 
6 log 2 J 

a quantity which will certainly be positive if n is chosen to satisfy 

log^ ^ glog2 
log2 " * + ' 

that is 
n > no := 2(glog2)/5+ll + 1 

Noting that q and 8 depend only on e, the proof of Lemma 1 is complete. 
Given two non negative integers r and y, let 

M(r,y) := #{0 < n < 10r : s(n) = y}. (8) 

For instance M(2,9) = 10. Since the average value of s(n) for n = 0,1, 2 , . . . , 10r — 1 is | r , 
one should expect that, given a positive integer r, the expression M(r,y) attains its maximal 
value at y = [ | r] . This motivates the following result. 
L e m m a 2: Given any positive integer r, one has 

M(r,[4.5r]) > 
10r 

9r + l 

Proof: As n runs through the integers 0 , 1 , 2 , 3 , . . . , 10r — 1, it is clear that s(n) takes on 
9r + l distinct values, namely 0,1,2, 3 , . . . , 9r. This implies that there exists a number y = y(r) 
such that M(r,y) > ĝ M*- By showing that the function M(r,y) takes on its maximal value 
when y = [4.5r], the proof of Lemma 2 will be complete. We first prove: 
(a) If r is even, M(r, 4.5r + y) = M(r, 4.5r - y) for 0 < y < 4.5r; if r is odd, M(r, 4.5r + y + 

0.5) = M(r, 4.5r - y - 0.5) for 0 < y < 4.5r; 
(b) if y < 4.5r, then M(r, y) < M(r, y + 1). 
To prove (a), let 

C: 5r + y if r is even, 
5r + y + 0.5 if r is odd, (9) 
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and consider the set K of non negative integers k < 10r such that s(k) = z and the set L of 
non negative integers £ < 10r such that s(l) = 9r — z. Observe that the function a : K -> L 
defined by 

a(k) ^a([di,d2i-..,dr]) = [9 - d i , 9 - d2j. • • , 9 - d r ] 

is one-to-one. Note that here, for convenience, if n has t digits, t < r, we assume that n begins 
with a string oir — t zeros, thus allowing it to have r digits. It follows from this that |Jff| = |L| 
and therefore that 

M(r,*) = M ( r , 9 r - z ) . (10) 
Combining (9) and (10) establishes (a). 

To prove (b), we proceed by induction on r. Since M(l,y) = 1 for 0 < y < 9, it follows 
that (b) holds for r = 1. 

Now given any integer r > 2, it is clear that 

9 

*=0 

from which it follows immediately that 

Af (r, y + 1) - M(r, y) = M(r - 1, y + 1) - M(r - 1,y - 9). (11) 

Hence to prove (b) we only need to show that the right hand side of (11) is non negative, 
Assuming that y is an integer smaller than 4.5r, we have that y < 4.5r — 0.5 = 4.5(r —1)4-4 and 
hence y = 4.5(r — 1) 4-4 — j for some real number j > 0 (actually an integer or half an integer). 
Using (a) and the induction argument, it follows that M(r — l,y 4- 1) — M{r — l ,y — 9) > 0 
holds if |4.5(r - 1) - (y + 1)| < |4.5(r - 1) - (y - 9)|. Replacing y by 4.5(r - 1) 4- 4 - j , we 
obtain that this last inequality is equivalent to \j — 5| < \j 4- 5|, which clearly holds for any 
real number j > 0, thus proving (b) and completing the proof of Lemma 2. 

We are now ready to establish the lower bound (5). In fact, we shall prove that given any 
e > 0, there exists an integer r0 such that 

N (10r(1+e)) > 10 r ( 1 ° e ) for all integers r > r0. (12) 

To see that this statement is equivalent to (5), it is sufficient to choose XQ > 10r o^1 +^. Indeed, 
by doing so, if -x > x®, then 

10r(l+e) < x < 1()(r+l)(l+e) for ft c e r t a i n r > r Q ? 

in which case 
N{x) > N ( l 0 r ( 1 + £ ) ) > 10r(1™e), 

and since x < I0^r+1^1+e\ we have 

xir+miU < i o r ^ - £ ) < N(x), 
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that is 
xl~61 < 10r(1-£) < N(x), 

for some £\ = ei(r,e) which tends to 0 as e —>- 0 and r —> oo. 
It is therefore sufficient to prove the existence of a positive integer ro for which (12) holds. 
First for each integer r > 1, define the non negative integers a(r) and b(r) implicitly by 

2«(r) . 1Qh(r) = ^([4.5r]). (13) 

We shall now construct a set of integers n satisfying certain conditions. First we limit ourselves 
to those integers n such that s(n) — 2a^ • 1 0 6 ^ . Such integers n are divisible by s(n) if and 
only if their last a(r) -f 6(r) digits form a number divisible by 2a^ • 1 0 5 ^ . Hence we further 
restrict our set of integers n to those for which the (fixed) number v formed by the last 
a(r) + b(r) digits of n is a multiple of s(n). 

Finally for the first digit of n3 we choose an integer d, 1 < d < 9? in such a manner that 

2a(r) . 1Qh(r) _ ^ _d=Q ( m o d gy (14) 

Thus let n be written as the concatenation of the digits of d, u and v, which we write as 
n = [d, w, v], where u is yet to be determined. Clearly such an integer n shall be a Niven 
number if d + s(u) + s(v) = s(n) = 2aW • 1 0 ^ r \ that is if s(u) = 2a^ • 106M - d - *(v). We 
shall now choose u among those integers having at most fi := - '1Q

 4 5
 s^v' digits. Note 

that /3 is an integer because of condition (14). 

Now Lemma 2 guarantees that there are at least ^ p j possible choices for u. 
Let us now find upper and lower bounds for fi in terms of r. 
On one hand, we have 

h([4.5r])-d-s(v) fr([4.5r]) 
^ - il K ~ T 5 ~ -r- (15) 

On the other hand, recalling (13), we have s(v) < 9(a(r) + b(r)) < 9los^[4
2

5rJ ) , and 
therefore 

ft([4.5r])-d-,(t,) M [ 4 . 5 r ] ) - 9 - 9 M f f m 
P 4.5 4.5 ' *• ; 

Using Lemma 1, we have that, if r is large enough, /i([4.5r]) > 4.5r(l — e/2). Hence it follows 
from (16) that 

4 . 5 r ( l - £ / 2 ) - 9 - 9 l 0 ^ i ' 4
2

5 r ] ) 

P> ^ ^ ^—>r(l-e), (17) 

provided r is sufficiently large, say r >r\. 
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Again using (13), we have that 

a(r) + b(r) + 1 < &\ L
 n

 U + 1. log 2 

Since h(n) < n, and choosing r sufficiently large, say r > r2, it follows from this last inequality 
that 

a(r) + b(r) + 1 < , ' ^ + 1 < re: (r > r 2 ) . log 2 

Combining this inequality with (15), we have that 

P + a(r) + 6(r) + 1 < r ( l + e) (r > r 2 ) . (18) 

Hence, because n has /3 + a(r) + &(r) + 1 digits, it follows from (18) that 

n < 10 r ( 1 + e ) (r > r2) (19) 

Since, as we saw above, there are at least <^py ways of choosing u, we may conclude from (19) 

that there exist at least <#pj Niven numbers smaller than 10 r ^ 1 + e \ that is 

jV (l(f U+-A > 1Q^ > 1 Q r ( 1 " g ) > i0Ki-2e) 
V 7 > 9/3 + 1 9 r ( l - e ) + l 

for r sufficiently large, say r > r3, where we used (17) and the fact that <#ry increases with 

Prom this, (12) follows with ro = max(r i , r2 , r 3 ) , and thus the lower bound (5). 

a. T H E U P P E R B O U N D F O R N(x) 

We shall establish that 

» W <330,o8l0. ̂ + f ...el0. ^ ^ C 1 0 " ^ 1 0 ) . « 

from which the upper bound of our Theorem will follow immediately. 
To establish (20), we first prove that for any positive integer r, 

^(io»-)<99-y).i(r + f.io-. (2i) 
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Clearly (20) follows from (21) by choosing r 

In order to prove (21), we first write 

logo: 
log 10 + 1-

where 

and 

JVr(10r) = A(r) + B(r) + l, 

Mr) = # { ! < ^ < 10r : s(n)\n and \s(n) - 4.5r| > 0.5r} 

B(r) = # { 1 < n< 10r : s(n)\n and Ar < s(n) < 5r} 

To estimate A(r), we use the idea introduced by Kennedy & Cooper [4] of considering 
the value 5(71), in the range 0 , l , 2 , . , . , 1 0 r — l a s a random variable of mean JJL = 4.5r and 
variance a2 = 8.25r. This is justified by considering each digit of n as an independant variable 
taking each of the values 051, 2,3, 4,5, 6,7,8,9 with a probability equal to ^ . Thus, according 
to Chebyshev's inequality (see for instance Galambos [2], p. 23), we have 

P(\s(n) - M| > k) < ^ , that is P(\s(n) - 4.5r| > 0.5r) < | | ~ = ™. 

Now multiplying out this probability by the length of the interval [1,10r — 1], we obtain the 
estimate 

A(r)< 33 • 10r 
(22) 

The estimation of B(r) requires a little bit more effort. 
If we denote by a = a(s(n)) the number of digits of s(n), then, since 4r < s(n) < 5r, we 

have 

log4r 
log 10 + 1 < a < 

log5r' 
log 10, + 1. (23) 

We shall write each integer n counted in B(r) as the concatenation n — [c,d], where d = d(n) 
is the number formed by the last a digits of n and c — c{n) is the number formed by the first 
r — a digits of n. Here, again for convenience, we allow c and thus n to begin with a string of 
O's. Using this notation, it is clear that s(n) — s(c) + s(d) which means that s(c) = s(n) — s(d). 
Prom this, follows the double inequality 

s(n) —9a< s(c) < s(n). 

Hence, for any fixed value of s(n), say a = s(n), the number of distinct ways of choosing c is 
at most 

^2 M(r~a,s{c)), 
s(c)=a—9a 

(24) 
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where M(r,y) was defined in (8). 
For fixed values of s(n) and c, we now count the number of distinct ways of choosing d so 

that s(n)\n. This number is clearly no larger than the number of multiples of s(n) located in 
the interval I := [c • 10a, (c + 1) • 10°]. Since the length of this interval is 10a, it follows that 

I contains at most L := s{n) + l multiples of s(n). Since a represents the number of digits 
of s(n), it is clear that L < 10 + 1 = 11. 

We have thus established that for fixed values of s(n) and c, we have at most 11 different 
ways of choosing d. 

It follows from this that for a fixed value a of s(n) E [4r, 5r], the number of "c,d combi-
nations" yielding a positive integer n < 10r such that s(n)|n, that is a|n, is at most 11 times 
the quantity (24), that is 

11 J^ M(r-a,a(c)). (25) 
s(c)=a—9a 

Summing this last quantity in the range 4r < a < 5r, we obtain that 

5r a 

B(r)< 11 ^ 5 3 M(r-<x,s(c))-
a=4r s(c)=a~9a 

Observing that in this double summation, s(c) takes its values in the interval [4r — 9a, 5r] and 
that s(c) takes each integer value belonging to this interval at most 9a times, we obtain that 

5r 

B(r) < 11 • 9a J2 M( r " a' *(c))" 
s(c)=4r—9a 

By widening our summation bounds and using (23), we have that 

B(r) < 99a jrM(r -a,y) = 99a • 1 0 r - 0 < 99 ( p ^ j + l ) • Wr 

Since by (23), a > |°jffi, we finally obtain that 

„ , N „ 99 • log(4r) • 107" 
B(r) < 5i_J . (26) 
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Recalling that iV(lQr) = A(r) + B(r) + 1, (21) follows immediately from (22) and (26), thus 
completing the proof of the upper bound, and thus of our Theorem. 
R e m a r k s : 

1. We treated both r — a and Ar — 9a as non negative integers without justification. Since 
it is sufficient to check that Ar > 9a and since a < l o Sfo+ffi1 0, it is enough to verify 
that Ar > 9 1 ° S I ^ 1

9
0

1 O R 1 0
> which holds for all integers r > 6. For each r < 5, (21) is easily 

verified by direct computation. 
2. Although we used probability theory, there was no breach in rigor. Indeed, this is because 

it is a fact that for n < 10r, the iih digit of n, for each i= 1,2, . . . , r (allowing, as we did 
above, each number n to begin with a string of 0?s so that is has r digits), takes on each 
integer value in [0,9] exactly one time out of ten. 

4. T H E S E A R C H F O R T H E A S Y M P T O T I C B E H A V I O U R O F N(x) 

By examining the table in §1, it is difficult to imagine if N(x) is asymptotic to some 
expression of the form x/L{x), where L(x) is some slowly oscillating function such as logx. 

Nevertheless we believe that, as x -» oo 

N(x) = (c + o(l) — . (27) 
logx 

where c is given in (4). We base our conjecture on a heuristic argument. 
Here is how it goes. First we make the reasonable assumption that the probability that 

s(n)\n is l / s (n ) , provided that s(n) is not a multiple of 3. On the other hand, since 3|s(n) if 
and only if 3|n, we assume that, if 3 || s(n), then the probability that s(n)\n is 3/s(ri). In a 
like manner, we shall assume that, if 9|s(n), then s(n)\n with a probability of 9/s(n). 

Hence using conditional probability, we may write that 

P(s(n)\n) = P(s(n)\n assuming that 3j/(n)) • P(3j/s(n)) (28) 
+ P(s(n)\n assuming that 3 || s(n)) • F(3 || s(n)) 
+ P(s(n)\n assuming that 9|s(n)) • P(9\s(n)) 

1 2 3 2 9 1 7 1 
s(n) 3 s(n) 9 s(n) 9 3 s(n)' 

As we saw above, the expected value of s(n) for n G [0,10r - 1] is | r . Combining this 
observation with (28), we obtain that if n is chosen at random in the interval [0,10r — 1], then 

r , / x. x 7 1 1 4 

Multiplying this probability by the length of the interval [0,10r — 1], it follows that we 
4-lQr 

2 7 T can expect ^ ^ Niven numbers in the interval [0,10r — 1]. 
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Therefore, given a large number x, if we let r = \ Y^JQ •> w e immediately obtain (27). 
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1, I N T R O D U C T I O N 

Let r > 0 be a fixed real number. In this paper we will study infinite series of the form: 

oo 

n = l (FnY 

where x G [0,Ir]. Ir signifies the sum of series (1) if en = 1 for all n G N. The convergence 
of the series (1), if x — -̂7*5 can be easily proved by the well-known Binet formula! Letting 
a = (1 + >/5)/2 and f3 = (1 - y/5)/2 we have 

Fn = (an-Pn)/VE. (2) 

Notice that 0 < a~r < 1 and that Binet's formula yields limn^00(Fn)r /arn = (\/5) . Thus 
applying the quotient-criterion for infinite series and geometric series proves the convergence 
of (1). For example: I\ = 3,359 Furthermore it is easy to see that 

Ir > Iri for r < r1, Ir —> oo for r —> 0 and Ir —>• 2 for r —> oo. (3) 

We begin with certain results due to J.L. Brown in [1] and P. Ribenboim in [8] dealing 
with the representation of real numbers in the form (1). In [1] J.L. Brown treated the case 
r = 1. In [8] P. Ribenboim proved that for every positive real number x there exists a unique 
integer m > 1 such that i"i/(m_i) < x < Ii/m and x is representable in the form (1) with 
r — 1/m, but x is not of the form (1) with r = l / (ra - 1) because x > h/{m-\){^oo = 0). 
Besides requiring r > 0 we do not make any other restrictions on r. 

The following theorem is basic for our considerations. 
T h e o r e m 1: (S. Kakeya, 1914) Let (An) be a sequence of positive real numbers, such that 
the series 

oo 

n = l 

is convergent with sum s and the inequalities 

Ai > A2 > A3 > • • • (5) 

are fulfilled. 
Then, each number x E [0, s] may be written in the form 

oo 

* = 5>" A " e»e{o,i} (6) 
n = l 
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if and only if 
An < An+i + An+2 + • • • (7) 

for all n e N. 
The "digits" en of the expansion may be determined recursively by the following algorithm: 

If n > 1 and if the digits et- of the expansion of x are already defined for all i <n, then we let 

n - l 

en = 1 if ^2 ei^i + An < x. (7a) 
t = l 

Otherwise, we set en = 0. 
Then, each expansion with x > 0 is infinite, i.e. there is an infinite set of integers n with 

en = 1. 
A proof of Theorem 1 can be found in [1], or in [7, exercise 131] or in [8]. 
For our purpose it is practical to introduce the following notion (see [6]): 

Definition: A sequence (An) satisfying conditions (4) and (5) of Theorem 1 is said to be 
interval-filling (relating to [0, s]) if every number x E [0, s] can be written in the form (6). 

2. T H E C A S E 0 < r < 1 

First we give an example of an application of 
T h e o r e m 1: Let An = l/F£ for all n E N, where r is a fixed number with 0 < r < 1. As we 
have mentioned above this sequence satisfies condition (4) of Theorem 1. (5) is also valid. For 
the proof of (7) we note first that 1/Fn < 2/Fn+1 is valid for all n E N. With 0 < r < 1 we 
get 

1 2 21/7" 1 2 
— < — < — which yields < ' J (Fny (Fn+1y 

Prom this we obtain by mathematical induction: 

i/(Fny - i/(Fn+ky < i/(Fn+1y + i/(Fn+2y + . •. + i/(Fn+ky 

for all fe > 1. 
Now let h —> oo. The limits of the two sides in the preceding inequality exist and we 

obtain 

i ^ i 
< E (FnY -^{Fn+kY' 

Condition (7) is thus established. The application of Theorem 1 immediately yields, that each 
real number x with 0 < x < Ir, where 0 < r < 1, has (at least) one expansion of the form (1). 
In other words: ( l / i ^ ) ^ L i i s interval-filling relating to [0,/ r]-

This statement can be extended considerably. 
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T h e o r e m 2: For each real number x with 0 < x < Ir and fixed r with 0 < r < 1 the set Cx, 
which consists of all different expansions for x of the form (1), is uncountable; it has cardinality 
c (the power of the continuum). 

The proof is based on an idea which is used in [2] and [3] considering the representation 
of the real number x in the form 

oo 

71 = 1 

with non-integral base q. Such an expansion is not unique in general. 
Our central point is the construction of a subsequence of ( l / ( i ?

n ) r ) ^_ 1 which also satisfies 
the conditions of Theorem 1. 

Before we give a proof of Theorem 2 we need some results on sums of Fibonacci reciprocals. 
T h e o r e m 3: (Jensen's inequality see [5]). Let 0 < r < 1 and let A be a finite or infinite 
subset of N. Then, we claim that 

£1/*i<(E1/(*,or 

i£A \i€A 

1/r 

Proof: Let us let a = (J2i€A l/(Fi)r)1/r. Thus, £ i e A l/(Fia)r = 1 and we get l/(Fia) < 
1 for all » E A. 1 > r yields l / (F;a) < l / (F ;a ) r for i e A. Therefore, 

j>/(fla)<£l/(W = l. 
i£A i£A 

Multiply by a. From the defintion of a and because of the last inequality we obtain the 
assertion. • 
T h e o r e m 4: Let 0 < r < 1. Let z denote a positive integer. 

(i) If z = 2k + l, then 

1 1 1 
< T ^ ^ + 

(ii) If z — 2k, then 

(Fzy (Fz+1y (Fz+2y 

1 1 1 1 
< 7^ T- + 71^ w + 

(iii) If z = 2k + l, then 

(Fzy ^ (Fz+1y (Fz+2y (Fz+3y 

1 1 1 
(Fzy " (Fz+2y ^ (Fz+3y (Fz+n{z)y 

with an integer n(z) dependent on the odd integer z, with n(z) < n(z-\-2) and n(2k+1) 
oo, as k —> oo. 
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(iv) If z = 2k, then 

1 1 1 1 
< TT; r~ + 7^ TZ + T^ w + • " + (Fzy ^ (Fz+1y (Fz+3y (Fz+4y (Fz+ky 

with k = 7 if z = 2 and k = 5 if z > 4. 
Proof: First we treat the case r = 1. 

(i) z = 2& + 1. The assertion is equivalent to Fz+1Fz+2 < Fz (Fz+i -f Fz+2) or 
Fz+1 (Fz+2 ~ Fz) < FzFz+2 or (Fz+1)2 < FzFz+2. Then, the well-known formula 
Fl - F n + 1 F n _ ! = ( - l ) n + 1 with n = z + 1 yields ( F , + 1 ) 2 = F , + 2 F , - 1 < FZ+2FZ. 
The proof of (i) for r = 1 is complete. 

(ii) z = 2k. Using (i), we get 

1 1 1 , , 
< — h •—— and then Fz+1 Fz+2 -Tz+3 

1 2 1 1 1 
Fz Fz+i Fz+i Fz+2 Fz+3 

(iii) z = 2fc + 1. For the purpose of abbreviation let 5 = f3/a = (y/5 - 3) '/2. Then, \S\ < 1. 
Using the Binet's formula we have 

Fz Fz Fz az-Pz az-fiz 

•z+2 Fz+3 Fz+n az+2 - pz+2 az+n - j3z+n 

_ - a - 2 ( l + m , , Q - n (1 + 1*1') 
1 + |£|*+2 l T | * h + n 

( i + m a - ^ r - 1 ) ( N o t e o 2 ( 1 . ( 1 / a ) ) = 1() 
> (1 + \8\z+2)a2(l - (1/a)) l l l ' " j 

(i + H*+2) 

Because | j | < 1 it follows that (1 + \5\z)/(l + \S\Z+2) > 1. 
Further, we notice that the increasing sequence ((1 — (l/of)71-1) has limit 1, as n -> oo. 

Therefore, it follows that the inequality 

(i + lTO-W1), , 
( 1 + 1 ^ + 2 ) 
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is valid for all sufficient large values of n E N. We denote the minimum of these values by 
n(z). Thus, we have 

Fz Fz Fz 

fz+2 ^ z + 3 J"z+n 

for all n > n(z). This is equivalent to (iii). 
The assertions n(z) < n(z + 2) and n(2k + 1) -> oo as k -» oo are easily proved. 

(iv) Let z — 2k. If z = 2 a direct computation leads to the assertion. We observe that for 
z > 4, the desired result is equivalent to 

^ ± 1 f- i -+ J - + J-") > i. 

Applying (i) with the odd integer 2 + 3 to the parenthesis on the left hand side, we obtain 

FZFZ+1 ( 1 + _2_ + _M >
 2F*F*+i 

Fz-i \Fz+3 Fz+4 Fz+sJ Fz_iFz+z 

Therefore, it is enough to establish that 2FzFz+i > Fz-iFz+3. For that purpose we begin 
with the well-known equation Fn+2Fn-i — FnFn+i — (—l)n (n E N). We obtain Fz-2Fz+i — 
FZ-XFZ = - 1 and from this 2Fz+1Fz-2 > FZ^XFZ. It follows step-by-step that 2Fz+i(Fz -
Fz-i) > Fz-iFz\ 2FZFZ+! > 2Fz„lFz+1 + FZ^FZ = Fz_iF*+3. We have therefore proved all 
parts of the theorem for r = 1. 

The general assertions for 0 < r < 1 are immediate consequences of Theorem 3. For 
instance: In the event of (i) the subset A is as follows: A = {z + 1, z + 2}. Then, we have by 
Theorem 3 

1 1 1 / 1 1 x 1 / r 

< + - < 7-= r- + 
Fz Fz+1 F z + 2 " V ( ^ + i ) r (Fz+2) 

Raising both sides to the rth power we have (i). 
All other cases follow in a similar way. Therefore, the proof of Theorem 4 is complete. 

• 
Before we continue with the proof of Theorem 2 let us give a simple application of Theorem 

4. 
r will be chosen with 0 < r < 1. Assume that we have a representation of x E [0, Jr] in 

the form (1) with the interval-filling sequence (I/(Fn)T)(^L1 on the basis of the algorithm (7a). 
T h e o r e m 5: Consider the sequence (en(x))^L1 of digits. A chain of consecutive digits "1" 
following a digit "0" has at most length two. 

Proof: Let en(x) = 0, en+i(a;) = l,en+2(x) = 1? • •• ,en+fcW = 1 be a chain of the 
described kind. Then, we obtain by algorithm (7a) 

n—1 i 1 n—1 1 
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Thus, 

1 1 1 

We now appeal to Theorem 4. It implies that k must be equal to 1 (at most equal to 2), if 
n is an odd (even) number since the assumption k > 2 (k > 3) leads to a contradiction with 
Theorem 4(i) or (ii). 

The proof is complete. • 
P r o o f of T h e o r e m 2: We choose a sequence of even integers (ZJ)<JL1 = (2kj)fL1 with 

Zj+i — Zj > max{9? n(zj — 1)] for all j E N. The first member z\ will be chosen (later) to be 
sufficiently large. Let M = N — {ZJ}J±V Consider the set {l/(Fm)r :m £ M} as anon 
increasing sequence (An)^_1 of numbers: \\ — lj{F\f ^\2 = l / ( F 2 ) r

3 . . . , \ZY~\ — 
l/(FZl.1Y,XZl = l/(FZl+1r,XZl+1 = l/(FZl+2y,.... 

Next? we shall show that Theorem 1 is applicable to the sequence (An)^L1? in particular 
the validity of (6). 

First we determine for each m G M the unique number j E N such that the condition 
Zj-i + 1 < m < Zj — 1 is satisfied (z0 = 0). Then3 we obtain with the help of Theorem 4 

zL/ (j?^ > 7^ 7̂ + 7^ w + 7 ^ xT > 
n^m(Fny (Fm+1y (Fm+2y (Fm+3y (Fmy> 

n G M if Zj-i + 1 < m < Zj — 4 in view of Theorem 4(i), (ii); 

^ 1 1 1 1 
n>m(Fny (Fm+1y (Fm+2y (Fmy> 

n G M if m = Zj — 3 in view of Theorem 4(i); 

y-* 1 1 
2^> TFLV > TPZ~, 

1 

n>m 
(Fny (Fm+1y (Fm+3y (Fm+ky' ( F m r 

n e M if m = Zj — 2 in view of Theorem 4(iv); and 

y ^ 1 1 1 1 1 
hn ^ ) r > (F™+2)r + ( F - + 3 ) r + " ' + (Fm+n(m)y > (Fmy' 

n e M ii rn = Zj — 1 in view of Theorem 4(iii). 
So? we obtain for each m G M : l/(Fm)T < £ n > m j T l 6 M

 1/(Fn)T? t b a t is we proved that 
condition (7) of Theorem 1 is satisfied. It is clear that (4) and (5) are valid. 

Let 0 < x < J r . We choose z\ so that the following conditions are satisfied simultaneously: 
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This is possible, because l i m ^ - ^ Y,n>Zl
 l/(Fn)T = 0. Let A be any subset of the set {ZJ}^. 

We define now the 0-1-sequence (6j)(*L1 in the following way: Sj = 1, if Zj € A, Sj = 05 if 
Zj ^ A . Consider the number 

C O r. 

We obtain from the above conditions (*) that 

oo i oo -

It follows from this that 0 < y < Y^Li ^n-
Nov/ the key point is the application of Theorem 1. For each real number in the interval 

[0, J2^Li ^n] there is a series of the form 

CO 

7 1 = 1 

With a view to the definition of y we receive the following representation: 

CO CO -

n = l j=l KPzJ} 

We note that a Fibonacci reciprocal contained in the second sum cannot occur in the first, 
which implies that the representation of x is dependent on the sequence (Sj), Two different 
sequence (Sj) and (Sj) lead to different representations of x. It is well-known that the set of 
all 0-1-sequences has cardinality c (the power of the continuum). Therefore, the set Cx of 
different representations of re in the form (1) has at least cardinality c. Because the cardinality 
of the set of 0-1-sequences equals the cardinality of the continuum, the set Cx has cardinality 
at most c. 

Theorem 2 is thus established. D 
Next, we will draw a comparison between our Theorem 2 and results in [2] and [3], which 

are due to P. Erdos, M. Horvath, I. Joo and V. Komornik. 
First we make the observation that by Binet3s formula l i m n - ^ Fn/an — l/y/5, that is Fn 

and an are "almost" proportional as n —> oo. To simplify matters we assume Fn ~ an. Then 
it follows that (Fn)r ~ anr = qn with q = ar and the interval 0 < r < 1 corresponds to the 
interval 1 < q < a. 

Let q G ( l , a ) . It was proven in [2] (see Theorem 3 in [2]) that for every x G (0,1/q - 1) 
there are c different expansions of the form 

CO 

* = E S e„e{o,i}. (8) 
n = l q 
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We can say that this result is analogous to our Theorem 2, if we take into consideration the 
above-mentioned remark on (Fn)r and qn. 

On the other hand it was shown in [3] (see the proof of Theorem 1 in [3]) that, if we 
assume in (8) x = 1 and q = a, there exist precisely countably many expansions of the form 
(8). It is surprising that we have different cardinal numbers relating the set of representations 
for x = 1 and r — 1 according to (1) and the set of representation for x — 1 and q — a 
according to (8). 

3 . T H E C A S E r > 1 

We shall prove two further theorems regarding expansions of the form (1). 
T h e o r e m 6: Let r satisfy 1 < r < log 2/ log a. Then, there is an even integer ra(r) such that 
the sequence ( l / ( ^n ) r )^L m ( r ) - i *s interval-filling. 

T h e o r e m 7: Let r satisfy r > log 2/log a. Then, there is no integer m G N such that 
(l/(Fn)r)™ is an interval-filling sequence. 

P roo f of T h e o r e m 6: In view of the equation (3/a = —1/a2 and with the help of Binet's 
formula it easily follows that 

1 + (_i)n+2 -2n-2 
Fn+1/Fn = aE(n) where E(n) = ^ {_[)n+1^2n • 

If 1 < r < log 2/log a holds, then 2 > 21/r > a. As soon as n is an odd integer we get 
E(n) < 1. Thus, it follows that Fn+i/Fn < 21fr for an odd integer n. On the other hand, we 
obtain from the definition of E(n) that for even integers the following statements are valid: 
E(n) > ljE(n) > E(n-\- 2),limn_»00 E(n) = 1. Hence, there is a smallest even integer m(r) 
such that 1 < E(m(r)) < 21'T/a. Therefore, Fn+1/Fn = aE(n) < aE(m(r)) < 21/r for each 
even n > m(r). Summarizing we obtain Fn+i/Fn < 21/r or (Fn+i)r/(Fn)r < 2 for all integers 
n > m(r) — 1. This implies that Theorem 1 is applicable since the sequence ( l / ( F n ) r ) with 
n > rn(r) — 1 meets all the requirements of the theorem, in particular condition (7). Theorem 
6 is thus established. • 

P r o o f of T h e o r e m 7: Let r > log 2/log a, equivalent to ar > 2. First we shall prove 
that, for all even integers n £ N, we have 

i/(Fny > i/(Fn+1y + 2/(Fn+2y. (10) 

We again use the defintion of E(n) in the proof of Theorem 6. We receive from (10) the 
equivalent inequality 

ar(E(n)E(n + l ) ) r > (E(n + l ) ) r + 2/ar (n even). (11) 

On the other side, we obtain for even n G Ni 

E(n)E(n 4-1) - 1 + ^ ( ^ > 1 and E(n + 1) < 1. 
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The last two inequalities and ar > 2 yield that (11) is valid for all even n £ N, because 

ar(E(n)E(n + l ) ) r > 2((E(n)E(n + l ) ) r > 2 > (E(n + l ) ) r + 1 > (E(n + l ) ) r + 2/ar. 

Thus, the equivalent statement (10) follows, from which we obtain by mathematical induction: 

> J2JF—Y (12) (Fny (Fn+2ky ^ (Fn+i) 

for all k > 1 and even n. 
Then, it follows from (12) as k -> oo: 

1 °° 1 
( ^ E ( ^ ( » €* , » even). (13) 

Now, suppose that in (13) for two consecutive even numbers n — v and n = v + 2 the 
equals sign is valid. 

Then, a simple calculation shows that we have a contradiction to (10): 

1 1 2 

P^~P^+(I^3 

i.e. from two successive inequalities (13) there is at most one equality. Next, consider the set 

A(r) - {n\n G 2N, l / ( F n ) r > £ l/(Fn+i)r}. 
1 = 1 

Prom the preceding argument it is clear that A(r) is an infinite subset of N, such that 
condition (7) of Theorem 1 is not true for n G A(r). We conclude that there is no integer 
m E N, such that the sequence ( l / (F n ) r ) £L m is interval-filling. • 
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1. I N T R O D U C T I O N 

Let x be any nonzero real number. The n by n generalized Fibonacci matrix of the first 
kind, Tn[x] — [fij], is defined as 

/, i j ~ \ 0 
~3 i - j + 1 > 0, 

i-j + l<0. 

We define the nhy n generalized Fibonacci matrix of the second kind, TZn[x] = \ru\, as 

(1) 

r * 7 J > 

(Ft -j+ixi+J-2 i-j+ 1>0, 
i-j + l<0. (2) 

Note that Tn[l] = lZn[l] and Tn[l} is called the Fibonacci matrix (see [3]). 
The n by n generalized symmetric Fibonacci matrix, Qn[x] — [qij], is defined as 

Qij = Qj 
1 Qij-2x2 + qij-ix i + 1 <j, 

where gi,o = 0. Then we know that for j > 1? qij = qji = FjX3 x and q2j — qj2 — Fj+ix3. 
Qn[l] is called the symmetric Fibonacci matrix (see [3]). For example, 

.F5\x] 

1 
x 

2x2 

3x3 

0 
1 
X 

2x2 

0 
0 
1 
X 

0 
0 
0 
1 

0 
0 
0 
0 

L5a;4 3x3 2x2 x 1 

n5[x] = 

1 
X 

2x2 

3x3 

5x4 

0 
x2 

X3 

2x4 

3x5 

0 
0 
x4 

X5 

2x6 

0 
0 
0 

X6 

X7 

0 
0 
0 
0 
X8 

Q5[x] = 

1 x 2x2 3x3 5x4 "• 
x 2x2 3x3 5x4 8x5 

2x2 3x3 6x4 9x5 15x6 

3x3 5x4 9x5 15x6 24x7 

5x4 8x5 15x6 24x7 40x8 
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Let V — {x = (#i, x2, • • •, xn) E Rn : x± > x2 > • • • > xn}, where R is the set of real 
numbers. For x, y E V, x -< y if ^ = 1 X t < X^= i^? ^ = l ? 2 , . . . , n and if k = n then 
equality holds. When x -< y, a; is said to be majorized by y, or y is said to majorize x. The 
condition for majorization can be rewritten as follows: for x, y E T>, x -< y if J2i=o xn-% > 
Yli=o Vn-ii & = 0 , 1 , . . . , n — 2 and if fc = n — 1 then equality holds. 

The following is an interesting simple fact. 

{Xj . . . , X) -s \Xij . . . j X n j 3 

7^= E L i J More interesting facts about majorization can be found in [4], where x = 
An n x n matrix P = [p -̂] is doubly stochastic if Pij > 0 for i, j = 1,2,. . . ,n , X^ILi^i ~ 

1, j = 1,2, . . . , n , and J2]=iPij = l , i = 1,2,.. . , n . In 1929, Hardy, Littlewood and Polya 
proved that a necessary and sufficient condition that x -< y is that there exist a doubly 
stochastic matrix P such that x = yP. 

We know both the eigenvalues and the main diagonal elements of a real symmetric ma-
trix, are real numbers. The precise relationship between the main diagonal elements and the 
eigenvalues is given by the notion of majorization as follows: the vector of eigenvalues of a 
symmetric matrix majorize the main diagonal elements of the matrix (see [2]). 

In [1] and [5], the authors gave factorizations of the Pascal matrix and generalized Pascal 
matrix. In [3],the authors gave factorizations of the Fibonacci matrix Tn[l} and discussed the 
Cholesky factorization and the eigenvalues of the symmetric Fibonacci matrix Qn [1]. 

In this paper, we consider factorizations of the generalized Fibonacci matrices of the first 
kind and the second kind, and consider the Cholesky factorization of the generalized symmetric 
Fibonacci matrix. Also, we consider the eigenvalues of Qn[#]-

2. F A C T O R I Z A T I O N S 

In this section, we discuss factorizations of ^ [ x ] , TZn[x] and Qn[x] for any nonzero real 
number x. 

Let In be the identity matrix of order n. We define the matrices Sn[x], Tn\x\ and Gk[x] 
by 

So[x) 
1 
X 

X2 

0 
1 
0 

0 
0 
1 

,S-i[x] = 
1 
0 
0 

0 
1 
X 

0 
0 
1 

andSk[x] = S0[x]®Ik, fc = l , 2 , . . . , Tn[x] = [ l ]e^n- i[a?] , G1[x] = In, G 2 W = J „ - 3 e S . i [ i ] , 
and, for k > 3, Gk[x] = Jn_fc © Sk-3[x]. 

In [3], the authors gave a factorization of the Fibonacci matrix !Fn[i] as follows: 
T h e o r e m 2 .1 : For n > 1 a positive integer, 

^ [ l ] = G 1 [ l ]G 2 [ l ] . . .G„[ l ] . 

Now, we consider a factorization of the generalized Fibonacci matrix of the first kind. 
From the definition of the matrix product and a familiar Fibonacci sequence, we have the 
following lemma. 

452 [NOV. 



THE LINEAR ALGEBRA OF THE GENERALIZED FIBONACCI MATRICES 

L e m m a 2,2: For k > 3, 
Tk[x)Sk-zlx) = Jr

k[x). 

Recall that Gn[x] = Sns[x], G^x] = In and G2[x] = I n _ 3 © SLijx]. As an immediate 
consequence of lemma 2.2, we have the following theorem. 
Theorem 2.3: The n by n generalized Fibonacci matrix of the first kind, JFn[x], can be 
factorized by G&[x]'s as follows. 

Fn[x] = G1[x]G2[x}...Gn[x]. 

We consider another factorization of JviM- Then n by n matrix Cn[x] = [cij] is defined 
as: 

Fix*'* j = h 
Cij = { 1 i = j , 

0 otherwise, 
i.e., Cn[x] = 

Ft 0 . . . 0 
F2x 1 . . . 0 

h.JfnX n - l 

The next theorem follows, by a simple calculation. 
T h e o r e m 2,4: For n > 2, 

Tn[x) = Cn[x]{h - ©Cn_i[x])(J2 © Cn-2[x))... ( 4 - 2 e C2[x)). 

Also we can easily find the inverse of the generalized Fibonacci matrix of the first kind. We 
know that 

SoM"""1 
1 0 0 

-x 1 0 
-x2 0 1 

S-ilx}-1 = 
1 0 0 
0 1 0 
0 -x 1 

and Skix}-1 = Soix}-1 ® h- Define Hk[x] = Gk[x]-X. Then Hi[x] = G^x}'1 = In, H2[x] = 

G2[x}-1 = Jn-3 0 S-dx}-1 = In-2< 1 0 
-x 1 

and Hn[x] = Sn-3[x] *. Also, we know that 

Cnix}-1 = 
-F2x 

Fnxn-X 

0 .. 
1 .. 

0 .. 

. 0 

. 0 

. 1 

and (Ik © Cn-klx})-1 = h® Cn-k[x] 1. 

So, the following corollary holds. 
Corollary 2.5: For n > 2, 

fn[x}-1 = Gn[x}-1Gn-1[x}-l...G2[x]-1G1[x}-1 

= Hn[x]Hn_1[x]...H2[x}Hl[x] 
= ( /n -2 © CM-1) . . . ( / ! © Cn-M'^Cnlx]'1. 
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Prom corollary 2.5, we have 

^ M " 1 = 

—X 
-x2 -x 

0 
1 
-x 
X2 

0 
0 
1 

—x 

0 . 
0 . 
0 . 
1 

. . 0 

., 0 

. . 0 

. . 0 

0 -x2 -x 1 

(3) 

For a factorization of the generalized Fibonacci matrix of the second kind, 7Zn[x], we 
define the matrices Mn[x], 1Zn[x] and Nk[x] by 

M0\x} = 
1 
X 

1 

0 
x2 

0 

0 
0 

X2 

, M„1[x} = 
1 0 0 
0 1 0 
0 x x2 

and Mk[x] = M0[x]®x2Ik,k = 1,2,. . . ,nn[x] = [ 1 ] ® V I H » ^ I W = In,N2[x] = 4 - 3 ® 
M_i[x], and, for k > 3, iV&[x] = I"n_& © M&_3[x]. Then we have the following lemma. 
L e m m a 2.6: For k > 3, 

Kk[x] = Kk[x]Mk-3[x]. 

Proof: For k — 3, we have 7J3[a;]Mo[x] = %s[x]. Let k > 3. From the definition of the 
matrix product and a familiar Fibonacci sequence, the conclusion follows. • 

As an immediate consequence of lemma 2.6, we have the following theorem. 
T h e o r e m 2.7: The n by n generalized Fibonacci matrix of the second kind, 1Zn[x], can be 
factorized by JV^'s as follows. 

Un[x} = N1[x]N2[x}...Nn[x). 

Now, we consider another factorization of 7Zn[x}. The n by n matrix Ln[x] = [kj] is 
defined as: 

n j 

FiX
%-> j = l, 

x2 i = jj>2 
0 

i.e., Ln[x) = 
otherwise, 

Ft 
F2x 

.Fnx' n — l 

.. o 

.. 0 

x J 

Prom the definition of the matrix Ln[x], the following theorem holds. 
Theorem 2.8: For n > 2, 

Unix] = Ln{x](h © L»_ i [ s ] ) ( J 2 e £„_ 2 [x ] ) . • • (In-2 © L2{x\). 
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We can easily find the inverse of the generalized Fibonacci matrix of the second kind. We 
know that 

Mo"1!*] "f 
0 
1 

X2 

0 

0 " 
0 
1 

, MZl\x] = 
"l 
0 
0 

0 
1 

_ 1, 
X 

0 " 
0 
1 

X-Z-

and for k > 1, 

M^[x] = M^[x}®\lk 

Define Uk[x] = N^[x]. Then Ux[x\ = In, U2[x] = N^[x] = J n _ 3 © MZ\[x], and, for k > 3, 
Uk[x] = NjZ^x] = J„_fc © Mj~}3[x\. Also, we know that 

Lnlx]-1 = 

.E2 1 
X X~^ 

-F3 0 £ 

-F4x 0 0 

0 . . . 0 
0 

.. . . . 0 

]fnx ,n-3 0 0 o x 
and (Ik © Ln-k[x]) * = Ik © -Ln_fc[a;] . Then we have the following corollary. 
Coro l la ry 2.9: For n > 2, 

^ [ x ] " 1 = i7„[x]?77l_1[x]...t/1[x] 
= (J„- 2 © i 2 M _ 1 ) • • • (Il © L n - l f x ] - 1 ) ^ ^ ] - 1 . 

From corollary 2.9, we have 

1 

Tlnlx]'1 = 

0 0 

X2 X 3 X^ 
0 - 1 - 1 

X X° X 
1 

0 0 - ^ 

0 
0 
0 
0 

1 1 
^ 2 n —3 x 2 r i — 2 

(4) 

Note that ^ [ l ] " 1 = nn[l]-\ 
Now, we consider a factorization of Qn[x]. In [3], the authors gave the Cholesky factor-

ization of the symmetric Fibonacci matrix Qn[l] as follows: 
T h e o r e m 2.10: For n > 1 a positive integer 

Qn[l} = Tn[l]Tn[l}T. 

From the definition of Qn[x], we derive the following lemma. 
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L e m m a 2.11: For n > 1 a positive integer, let Qn[x] = [qij]. Then 
(i) For j > 3, q3j = F4(F^3 + Fj.2F3)x^\ 

(ii) For j > 4, q4j = F 4 (F i _ 4 + F^4F3 + F^3F5)x^2. 
(iii) For j > 5, «y = [JFi-5*4(l + ^3 + F5) + F i - 4F6F6]a? ' + 3 . 
(iv) For j > i > 6, ^ = [ F ^ F ^ l + F 3 + F5) + F^iF6F6 + • • • + Fj^F^Fi + 

F i _ i + l J F i F i + 1 ] x ^ - 2 . 

Proof: We know that g3,3 = E&=i Ffc X 4 = (Fi2 + Fi + ^ f ) ^ 4 = F3F4xA, and hence 
g3,3 = FAF3x4 = F4(F0 + FiF 3 )x 4 for F0 = 0. By induction, q3j = F4(F^3 + Fj.2F3)x^1 for 
j > 3. Thus, we have (i). 

We know that q\j3 = q3it = F3x2 and q2,3 = *Zs,2 = F4x3. Also, we know that q^i = 
qi,4 = F4xz,q4^2 = ^2,4 = F5x4 and q3^ = q4,3 = -F4(Fi + F2F3)x5 by (i). By induction, we 
have q4j = F4(Fj-.4 + Fj-4F3 + F ^ F s ) ^ ' * 2 for j > 4. Thus, (ii) holds. 

By induction, (iii) and (iv) also hold. • 
Now, we have the following theorem. 

T h e o r e m 2.12: For n > 1 a positive integer 

Un[x]Un-![x] . . . [ / i N S n W - Tn[x)T 

and the Cholesky factorization of Qn [x] is given by 

Qn[x] = Kn[x]Tn[x]T. 

Proof: By corollary 2.9, Un[x]Un-i[x] ...U1[x] = Tln[x}-1. So, if we have Unlx^Qnlx] = 
Tnlx]71 then the theorem holds. 

Note that Qn[x] is a symmetric matrix. Let A[x] — [aij] — TZnlx]"1Qn[x}. By the 
definition of Qn[x] and (4), a -̂ = 0 for j + 1 < i. 

Now we consider the case j > i. By (4) and lemma 2.11, we know that a -̂ = fji for i < 5. 
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We consider j > i > 6. Then, by (4), we have 

ay = -2t-4 * - 2 , j 2J-3 9'"1 J + Z2i^2 * J 

1 
= 1JZ2 W - < ^ ( 1 + *3 + *i>) + Fj-iFsFn + ••• + F^Fi-iFi 

x-

+ Fj-i+iFiFi+dx**-2 

- ^[Z*{Fj-i+iMl + F3 + FB) + Fj-i+iFsFe + ••• + 
x 

F j _ i + 1 F i _ 2 F i _ 1 + Fj-i+tFi-iFilx'+i-3 

~ ~k=i[Fj-i+iFA{l + pz + Fs) + Fj-i+iFsFa + ••• + 
X 

Fj-wFi-aFi^ + Fj-i+sFi-tFi-dx**-* 
= [(Fj-i - Fj-i+t - Fj-wWl + F 3 + Fb) + (Fj-i - F^i+1 

— Fj-_i+2)i?5^16 + h (Fj-i — F j - t + l — i?j-t4-2)i?t-3^i-2 

+ ( F ^ - Fj^F^tFi + l ^ - i + x F i J i + i y - V 

Since JFJ_< - F ^ + i - Fj-i+2 = -2Fj-.i+1,Fj„i - Fj-i+1 - Fj„i+3 = - 3 i ^ -_ i + l 5 and Fj-i -
Fj„i+2 = -Fj-i+i, we have 

aid = F i - i + i [ - 2 F 4 - 2(F3F4 + F4F5 + • • • + * i_ 2 *Ui ) - ^ - 2 ^ - 1 - ^ - 1 ^ + i ^ F i + 1 ] ^ " \ 

Since JF4 = 3 and 

FlF2 + F2F3 + ... + Fi_lFi = F*~> + W-1 " * , 

we have 

- 6 - 2 ( F 2 ( j - 1 ) - 1 + fl-^M -1 _ F i F 2 _ F2F3 

Fi-tFi-i - F^Fi + FiFi+dFj-i+ixi-' 
(1 - 2F i _ 1 F i _ 2 - F 2 i _ 3 - F i - iF i + FiFi+JFj-i+tx*-*. 
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Since Fi+1 = F{ + *i_i and Ff+1 + Ff = F2i+1, 

aij = (1 - 2Fi_1Fi_2 - {Ff_x + Ff_2) + Ff) + i ^ + i x ^ 

= Fj-i+ixf-' 

= fji-

Thus, A[x] = Tn[x\T for 1 < i, j < n. 
Therefore, 7£„[x]-1Qn|x] = Tn[x\T, i.e., the Cholesky factorization of Qn[x\ is given by 

Qn{x} = nn[x}Fn[x}T. U 
example, 

Q5[x] = 

r 1 
X 

2x2 

3x3 

L5x4 

X 

2x2 

3x3 

5x4 

8x5 

2x2 

3x3 

6x4 

9x5 

15x6 

3x3 

5x4 

9x5 

15a:6 

24x7 

5x4 

8x5 

15x6 

24x7 

40x8 

= 7i5[a?]J'5[x]1 

1 
a; 

2x2 

3x3 

5x4 

0 
X2 

x3 

2x4 

3x5 

0 
0 
X 4 

X 5 

2x6 

0 
0 
0 
X6 

X 7 

0 ] 
0 
0 
0 
x8J 

rl 
0 
0 
0 
LO 

X 

1 
0 
0 
0 

2x2 

X 

1 
0 
0 

3x3 

2x2 

X 

1 
0 

5x4 

3x3 

2x2 

X 

1 

Since Qn[x]_1 = (<77„[a:]T)-172n[a;]-1, we have 

Qnix}-1^ 

3 
0 
X 2 

0 

£ o 

1 
3 

o _. 

0 
1 

0 
3 

0 
0 
_J 
0 

E 2n—6 

0 

1 

a;2n —4 

0 
2 

E 2 n - 4 

0 
0 
0 
0 

c 2 n - 4 

(5) 

Prom theorem 2.12, we have the following corollary. 
Corollary 2.13: If k is an odd number, then 

(FnFn_fc + . . . + Ffc+1F1)r 2n-k~2 (Fni^fc . ! ) - Ffc)x2"~fc-2 if n is odd, 

I (FnFn-(k-l ) ) X 2n-fe-2 if n is even. 
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If k is an even number, then 

{FnFn_{kml))x2n-k-2 if n is odd, 

(*_!) - Fk)x2n~k-2 if n is even. 
(FnFn.k + • • • + F f c + 1 ^ - f c - 2 = { )F"Fn 

3, E I G E N V A L U E S O F Qn[x] 

Let A be an m by n matrix. For index sets a C { 1 , 2 , . . . , rn} and /? C { 1 , 2 , . . . , n}, we 
denote the submatrix that lies in the rows of 4̂ indexed by a and the columns indexed by (3 
as A(a,/3). If m = n and a = /3, the submatrix yl(a ,a) is a principal submatrix of A and is 
abbreviated A{ot). We denote by A{ the leading principal submatrix of A determined by the 
first i rows and columns, A{ = A({1,2,..., i}), i = 2 , . . . , n. Note that if 4̂ is Heraiitian, so is 
each Ai, and therefore each A{ has a real determinant. 

We know that if 4̂ is positive definite, then all principal minors of A are positive, and, in 
fact, the converse is valid when A is Hermitian. However, in [2], we have the following stronger 
result: If 4̂ is an n by n Hermitian matrix, then A is positive definite if and only if det A{ > 0 
for i = 1,2, . . . ,n . We know that Qn[%] is a Hermitian matrix, det 1Zn[x] = x7^71-1) and det 
Tn[x] = 1 for n > 2. By theorem 2.12, we have det Qn[x] = det(^n[x]J"n[x]T) = xn{n~l\ 
Since x is a nonzero real, we have det Qi[x] > 0, i = 2 , 3 , . . . , n. Thus, the matrix Qn[x] is a 
positive definite matrix, and hence the eigenvalues of Qn[x] are all positive. 

Let Ai[ar], M[%]<> • • - ? An[x] be the eigenvalues of Qn[x]. Since 

k=l 

we have 

{Fn+1Fnx2n~\ FnFn.lX2n"\ ..., FzF2x\ F 2 ^ ) - ^ (Ax[x], A2[x] , . . . , An[x]). 

Let sn[x) = ]T^=1 Ai[x]. Then, 

*n[x] = Fn^Fnx2n~2 + i^ n F n _ ix 2 n - 4 + • • • + F3F2x2 + F2Ft. 

Thus, Ai[l], A 2 [ l ] ? . . . , An[l] are the eigenvalues of Qn[l] and 

F3i ?2, i ;2i ; , i )^(A1[l] ,A2[l] , . . . ,An[l]) . 

We know the interesting combinatorial property 

n — i 
i 

t = 0 
E ""' - ' « • • 
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In [3], the authors gave the following result 

Ai[l] + A2[l] + --- + An.[l] = 
l(Er=o(T)) 'f»i 

is odd, 

is even. 

Also, we have 

3 . . . j 

n n 
^(A1[l],A2[l],...,An[l]). 

So, we have An[l] < ^ < Ai[l], i.e., if n is an odd number then 

Ki=0 
nXn[l}< £ . - l < « A i [ l ] 

if n is an even number then 

»A„[1]< ( E ( n - *)) <«A![1]. 

Suppose that x > 1 and (Ai[x], A2[x],..., Xn[x]) G IX Then, from (5), we have 

-< re2' x4'"""' x2^-6 ' x27i-4 ' x2 7 1-2; \Xn[x]' An_i[x]'"""' Ai[x] 

Thus, there exists a doubly stochastic matrix T = [tij] such that 

3 A A .. 3 2 1 
™2 ' r 4 ' ' " ' ' «.2n-6 > ™2n-4 ' ™2n-2 

So, we have 

i.e. , 

\n[xY An_i[x]'"*"' Xt[x] 

til ^12 
^21 ^22 

tin 
fan 

• tnl t n 2 

o _ ^11 j fal tnl 
Xn[x] Xn-i[x] Ai[x]' 

1 _ *H , *21 . . tnl 
I — ——r-7 + — r^ + ' " ' + 3An[x] 3An_i[x] 3Ai[ar] 
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Since the matrix T is a doubly stochastic matrix, 

in + hi + • —I- tni — 1-

L e m m a 3.1: Suppose that x > 1. For each i — 1, 2 , . . . , n, n > 2, 

3 A* [a] 

Proof: Suppose that tn_( i_1)?1 > ^ f f S i = 1,2,. . . ,ra. Then 

£ n - ( t - l ) , l < 

3Ai[z] 

n - 1 

* i f . _L* ^ 3Ai[g] 3A2[x] 3An[x] 
n — 1 n — 1 

3 

n - 1 

(Ai[x] + A2[x] + .-- + An[a;]). 
n - r 

Since x > 1 and 

Ai[a;] + A2[ar] + '"" + A ^ N = Fn+1Fnx2n'2 + • • • + F3F2x2 + F2Fl > n, 

this yields a contradiction. 

Therefore, £n_(i_i),i < ^ , i = 1, 2 , . . . ,n. D 
In [3], the authors found properties of the eigenvalues of Qn[l] and proved the following 

result. 
T h e o r e m 3.2: Let r = sn[l] - (n - 1). For (Ai[l], A2[l],. • •, An[l]) E P , 

( r , l , l , . . . , l ) ^ ( A i [ l ] , A 2 [ l ] , . . . , A n [ l ] ) . 

Let <T[X] = sn[x] - rk^. Then, we have (<r[x], §, | , . . . , | ) E © and $n[x] = a[x] + I L ^ — 
Y^i=i ^iix)- ^n ^ e n e x ^ theorem, we have another majorization of the eigenvalues of Qn[#]-
T h e o r e m 3.3: Suppose that x > 1. For (Ai[x], A2[x], . . . , An[x]) E ©, we have 

( ^ M , 3 ' 3 ' • • •' 3 ) ^ (AiM> ^ M , • • •, An[x]). 

Proof: Let P = \pij) be an n by n matrix as follows: 

P = 

Pll 
P21 

F n l 

P l2 • 
F22 • 

Pn2. • 

• Pl2 
• F22 

• PTI2 
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where pi2 = n
3x-[x}'1 anc* Pn = ^ ~ (n ~ 1)P*2,« = 1,2, . . . , n. Since T is doubly stochastic 

and Xi[x] > 0, j?i2 > 0; i = 1,2, . . . , n. By lemma 3.1, pn > 0, i — 1 ,2, . . . , n. Then 

. . . *n,l . ^n-1 ,1 . . $1,1 T 
Pl2 + P22 H h Pn2 = Q . r 1 + r 1 H h r 1 = 1, 

3Ai[x] 3A2[x] 3An|xJ 
P»i + (n - l)pi2 = 1 - (n - l)pi2 + (n - l)p;2 = 1, and 

P n +P21 H hpni 
= 1 - (n - l)p12 + 1 - (n - l)p22 + h 1 - (n - l)pn2 

= n-(n- l ) (p i2+p 2 2 + YPn2) = I-

Thus, P is a doubly stochastic matrix. Furthermore, 

x r l . \ r i i i \ r l Ai[x]t„,i A2a;fn_i j i An [x t M 
Ai a; P12 + A2 x p22 + • • • + Xn[x]pn2 = - r : + r 1 + • • • + l \ 

oAi[o;J 3A2[x| 3An|xJ 
1 1 

— o(*n , l + * n - l , l H h * l , l ) = o > 

and 

Ai[a?]pn + A2[x]p2i + • • • + An[x]pni 
- Ai[x](l - (n - l)p12) + • • • + An[a?](l - (n - l )pn 2) 
= Ai[x] + A2[a;] + h An[ar] - (n - l)(Ai[a;]pi2 + A2[x]p22 + h An[x]pn2) 

= «n[a;] - (n - l )g ( t n , i + J n - i , i + • • • + *i,i) 

= crfcL 

Thus, (<r[x], | , | , . . . , | ) = (Ai[x], A2[x], . . . , An[a])P. 
Therefore, 

( ^[^]? 33 35" • •3 3 ) "̂  (Ai[ar],A2[x],...,An[x]). D 

Prom (6), we have the following lemma. 
L e m m a 3.4: Suppose that x > 1. For fc = 2 , 3 , . . . , n, 

<A*[a;]. 
3(fc - 1) 
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Proof: Prom (6), for k > 2, 

1 1 1 1 2 3 3 
Al[x] + X2[x] + ' ' ' + ~h\x] ~ X ^ ^ + ^ = 4 + ̂ 2^6 + ' " + x - 2n~2k ' 

Since x > 1, we have 

Thus, 

TTT + T~r^ + "'" + TTT < 1 + 2 + 3 + • • • + 3 = 3(fc - 1). 
Ai[x] A2[ar] A* [a;] 

^ < 3 ( f c - l ) - f T ^ + - ^ + --. + -^T 1
>) <3(*-l). 

Xk[x] \Xi[x\ X2[x} Xk-i[x)J 

Therefore, 3^-i) - AjfcN- E 

In [3], the authors gave a bound for the eigenvalues of Qn[l] as follows: for A; = 1,2, . . . , n-
2, 

A„-fc[l] < ( * + !) • 
n — k 

3 ( n - l ) ' 

In the next theorem, we have a bound for the eigenvalues of Q„[x] that is better than (7). 
Theorem 3.5: Suppose that x > 1. For k = 2 ,3 , . . . , n — 2, 

S(n-k-l)^K-k[x^^k + 2 - l n 

In particular, 

(7) 

n — k — 1 

a[x] < Ai[x] < 3 n - V - l ) ^ n ( n _ 1 ) , 

1 % . . 2n-3 
< Xn-i[x\ < 3(n - 2) 3 ( n - l ) 5 

and 

3 ( ^ 1 ) * A - w * r 

Proof: By theorem 3.3, we have a[x] < \\{x\ and Xn[x] < | . By lemma 3.4, we have 
afc=7j < xn[x}- Since 

det Qn[x] = &et{Kn[x}Tn[x}T) = xn{n~l) = \i[x}X2[x}...Xn[x], 
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we have, by lemma 3.4, 

1 
S 7 1 " 1 ^ - ! ) ! 

< \2[x],..\n[x}. 

Thus, Ai[x] < T'l{n - l)\xni<n-l\ 
By lemma 3.4, 3 ^ 2 ) ^ ^ n - i W a n d An[x] + An-i[x] < | . So, 

We know that 

An-xN < - - Xn[x] < - - ^ — ^ = ^ — ^ . 

1 1 r n 1 , 1 1 

i.e., | + h 1 < l n n < l + | + h - V So, we have 

1 1 1 _ / 1 1 
n — 1 n — 2 n — k ~ V 2 n — fc — 1 

> Inn — ln(n — fc — 1) — 1. 
Since, by (8) and 

we have 

fc+1 
An-ibN < —^ (Anfa] + An_i[x] + • • • + A n _ f c + i [x]) , 

(8) 

An-fcH < - A; + 2 - In n 
n — k — 1 

Therefore, 

3(n-k-l)-K-k[x]-l k + 2 - In 
ri — £ — 1 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Russ Euler and Jawad Sadek 

Please submit all new problem proposals and corresponding solutions to the Problems Edi-
tor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State 
University, 800 University Drive, Maryville, MO 644@$° All solutions to others' proposals 
must be submitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathemat-
ics and Statistics? Northwest Missouri State University, 800 University Drive, Maryville, MO 
64468. 

If you wish to have receipt of your submission acknowledged, please include a self-
addressed, stamped envelope. 

Each problem and solution should be typed on separate sheets. Solutions to problems in 
this issue must be received by May 15, 2004- If a problem is not original, the proposer should 
inform the Problem Editor of the history of the problem. A problem should not be submitted 
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to 
include references rather than quoting "well-known results". 

B A S I C F O R M U L A S 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 — ^ n + 1 + Pnj FQ = Qj F\ = 1; 

-^n+2 — ^ n + 1 + ^715 LQ = 2 , .Li = 1. 

Also, a = (1 + 75) /2 5 $ = (1 - >/5)/2, Fn = (an - /9T*)/v/5, and Ln = an + 0*. 

P R O B L E M S P R O P O S E D I N T H I S I S S U E 

B-968 P r o p o s e d by Stanley Rabinowitz^ M a t h P r o ? Westford^ M A 
Find a recurrence relation for rn — ^F . 

B-987 P r o p o s e d by J u a n PIa9 Par is f Prance 

Prove that ^FL is an integer of the form m ( r ^ + 1 ) . 
B-988 P r o p o s e d by M o h a m m a d K. Azariari? Univers i ty of Evansvil le , Evansville? 

I N 
Let F(n) = £ ? = 2 ^ o g S . where F{ is the ith Fibonacci number. Find lim F(n). 
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B-989 P r o p o s e d by Jose Luis Diaz-Bar rero , U P C , Barcelona , Spain 
Evaluate the following sum 

^ F n + 1 [ F 2 n + 3 + ( - l f + 1 ] F n + 3 
^ Fn+2[F2n^ + (-l)n][F2n+5 + (-1)*+*] • 

B-970 P r o p o s e d by P e t e r G. Anderson , Roches te r I n s t i t u t e of Technology, 
Roches te r , N Y 

Define a second-order and three third-order recursions by: 

fn = fn-1 + fn-2, with f0 = 1, / l = 1-
gn = gn-i + ^ n - 3 5 with g0 = l,gi = 1,^2 = 1-
hn — hn-2 + ^n~3? with ho — 1, h\ — 05 h2 — 1. 

and 
tn = t n _ i + tn_2 + t n _3 , with £0 = 1, *i = 1, h — 2. 

Prove : 
1. tn+3 = / n + 3 + Ylp+q=n fp^q-
2. £n + 2 = gn+2 + Ep+9=n &»*?• 
3. tn + l = kn+l + ^p+g= n M ? " 

S O L U T I O N S 

A n o t h e r Fibonacci Sequence 

B-951 P r o p o s e d by Stanley Rabinowi tz , M a t h P r o P res s , West ford , M A 
(Vol. 4 1 , no . 1, Feb rua ry 2003) 

The sequence (un) is defined by the recurrence 

_ 3un + 1 
bun + 3 

with the initial condition u\ = 1. Express wn in terms of Fibonacci and/or Lucas numbers. 
Solut ion by Car l Libis, Univers i ty of R h o d e Is land, Kings ton , R I . 

We will show by induction that un = F2n-i/L2n-i° Note that -ui = 1 = F\jL\. Assume 
that un = F 2 n _ i / i 2 n - i - Then 

3tin + 1 =
 3 & T 7 + l

 = 3F 2 n - i + l2n-i = 3 F 2 n - i + (2F2 w-2 + F2n_x) 
M n + 1 5tin + 3 5 ^ + 3 5F 2 n _ ! + 3L2 n_i 5F 2 n _ ! + 3(2F2 n_2 + F2n^) 

L; 2n-l 

2(2F2 n_x + F2 n_2) = F2ra_i + F2n = F2n+1 = F 2 n + i F 2 n + i 
2(4F2 n_i + 3F2 n_2) Fan-i + SFa,, F 2 n + 1 + 2F 2 n F2n+2 + F2n L2n+1 
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This completes the induction. 

All t h e received solut ions used a similar a r g u m e n t . A slight genera l iza t ion was 
given by H . J . Seifert. 
Also solved by P a u l S. B r u c k m a n , M ar i o Cata lan! , Char les Cook, K e n n e t h Dav-
e n p o r t , Steve Edwards , Sergio Falcon a n d Angel P l a z a ( joint ly) , Ovid iu Furdu i , 
W a l t h e r J a n o u s , E m r a h Kilig, Har r i s Kwong, K a t h l e e n Lewis, Re ine r M a r t i n , H.-
J . Seiffert, J a m e s Sellers, J . Spilker, David S tone , J . Suck, Ha ix ing Zhao, a n d t h e 
proposer . 

A n d . . . a F ibonacci Iden t i t y 

B-952 P r o p o s e d by Scot t H . Brown, A u b u r n Universi ty , Mon tgomery , AL 
(Vol. 4 1 , no . 1, Feb rua ry 2003) 

Show that 

10Fi0n-5 + 12Fi0n-10 + *10n-15 = 25F2
5

n + 25F2
3

n + 5 F 2 n 

for all integers n > 2. 

Solut ion by Har r i s Kwong, S U N Y College a t Predonia , Predonia , N Y . 

Using the following identities from [1] 

(iie) 5.F2m
 = ^4m — 2, 

(As) L2m = L±m + 2, 
(I24) LmFp = FmH_p - F m _ p ? p even, 

we find 

25F| n + 25F2
3

n + 5F2 n - F2n[(5F2
2J2 + 5 • 5F2

2
n + 5] 

= i ? 2n[ ( i4n-2) 2 + 5(L 4 T 1 -2) + 5] 

= ^2n[-^4n + ^4n ~ 1] 
= jF2 n[L8 n + L^n -f 1] 

= (FlOn — Fen) + (Fdn ~ -^2n) + F2n 

— FlOn-

Letting Gn = F 5 n ? it suffices to prove that 

G2n = lQG2n-i + 12G2n_2 + G2 n_3 , n > 2. (1) 

Prom the generating function 

!>*" - ̂  {£(••»)• - S W } = ̂  {rrk - rr^i} 
n=0 ' in=0 n=0 / i~ v r j 

1 ( a 5 - / 3 5 ) x F5x 5x 
a - / 3 1 - (a5 + p*)x + (a5/95)x2 1 - L5x + ( - l ) 5 x 2 l - l L c - x 2 ' 
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we deduce that q2 — q — 1 = 0 is the characteristic equation for Gn. Hence Gn satisifies the 
recurrence relation 

Gn = l l G n „ i + Gn-2? n>2j 

from which (1) follows immediately. 

Reference 
1. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers, pages 56-59, Fibonacci Association, 

1969,. 

1. Walther Janous made the remark that " . . . an immeidate consequence of the above 
identity is that for all n > 2, 5F2 n divides lOFion-s + lS-Fion-io + ^ion-i5- This suggests 
the following problem: Determine all 7-tuples (a, 6, c, d, A, B, C) where a, 6, c, A, B, C are 
positive integers and d is a non-zero integer such that for all n > max(0, ~:)J aFbn divides 
AFcn+a -f BFcn+2d + CFcn+3d and g.c.d(a, A, B, G) = 1 and a can not be increased". 

2. H.-J. Seiffert prove the identity 

10Ffc_5 + 1 2 I V 1 0 + Fk-15 = Fk for all K € Z. 

Also solved by P a u l B r u c k m a n , M ar io Cata lan! , K e n n y Davenpor t , L.A.G. Dresel, 
Sergio Falcon a n d Angel P l aza (jointly), Ovidiu Purdu i , N . G a u t h i e r , W a l t h e r 
J a n o u s , E m r a h Kills, Wil l iam Moser , H. - J . Seiffert, J* Suck, Haix ing Zhao, and 
t h e p ropose r . 

Never Perfect! 

B-953 P r o p o s e d by Ha rvey J . Hindin , H u n t i n g t o n S ta t ion , N Y 
(Vol. 4 1 , no . 1, Feb rua ry 2003) 

Show that 
(Fn)4 + (Fn+1)4 + ( F n + 2 ) 4 

is never a perfect square. Similarly, show that 

(gWn)4 + (Pw-„+1)4 + (wn + 2)4 

is never a perfect square, when Wn is defined for all integers n by Wn = pWn-\ — qWn-2 and 
where WQ = a and W\ = b. 

Solution, by H. - J . Seiffert, Ber l in , G e r m a n y 
If p = q = #2 and a = b = 1, then W0 = Wt = 1 and W2 = 0, so that (qWQ)4 + (pl^i)4 + 

(W2)4 — 4 is a perfect square. 
Now, suppose that p, q, a, and b are all integers with pq ^ 0. Let n be an integer such that 

the integer q2W*+p2W%+1+W%+2
 i s nonzero (this is satisfied for all integers n if (Wn) = (Fn)). 

Since [1] 
(qWn)4 + (pWn+i)4 + (Wn+2)4 = {q2W2

n +p>W%+1 + W^2f /2 

and since y/2 is irrational, the expression on the left hand side of the above identity then 
cannot be a perfect square. 
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Reference 
1. R.S. Melham & H. Kwong. "Problem B-927." The Fibonacci Quarterly 40.4 (2002): 

374-75. 

Paul Brukman discussed the Case pq = 0 and showed that it lead to trivial solutions. Even 
when pq = Q,A = ($Wn)4 + (pW n + i ) 4 + (Wn +2)4 may still be zero for some n, if a and h 
are properly chosen. To avoid much difficulties, he suggested the addition of " . . . is never a 
non — zero perfect square . . . " i n the statement of the problem. 

Also solved by P a u l B r u c k m a n , Mar io Cata lan! , L .A.G. Dresel , Sergio Falcon a n d 
Angel P l a z a ( joint ly) , Ovid iu Furdu i , W a l t h e r J a n o u s , Har r i s Kwong , Car l Libis 
(1st p a r t ) , Re ine r M a r t i n , a n d t h e p roposer . 

A Fibonacci floor-and-ceiling Equa l i ty 

B-954 P r o p o s e d by H. -J . Seiffert, Berl in , G e r m a n y 
(Vol. 4 1 , no . 1, F e b r u a r y 2003) 

Let n be a nonnegative integer. Show that 

V / ( ^ + 2 ) ( v / 5 F 2 n + 1 - 2 ) = i 2 L n / 2 j + i + %/5F2 r n / 2 l , 

where |_-J and ["•] denote the iloor-and ceiling-function, respectively. 

Solut ion by L.A.G. Dresel , Read ing , Eng land 
Let Sn denote the expression on the left side of the proposed identity. Since a + /3 = 

1,afi = —1 and a2 — a + 1, we have i/5 + 2 = 2a + 1 = a2 + a = a(a + 1) = a 3 , so that 
Sn = % /{a 3 (a 2 n + 1 - 2 - /32^+1)} = a^{a2n+2 - 2a + 02n} = a{an+l - ( - l ) n / 3 n } 5 giving 
Sn = (1 + a)an - ( - l ) n ( l - /3)/3n = an + an+1 - ( - l ) n ( / 3 n - £ n + 1 ) . Therefore, when n is 
even, we have Sn = Ln+i + y/5Fn, and when n is odd, we have Sn = Ln + y/5Fn+i, which 
agrees with the given formula. 

Also solved by P a u l B r u c k m a n , Mar io Ca ta lan i , K e n n y D a v e n p o r t , Sergio Falcon 
a n d Angel P l aza ( joint ly) , Ovidiu Furdu i , W a l t h e r J a n o u s , Ha r r i s Kwong , Haix ing 
Zhao, a n d t h e p roposer . 

A Str ic t Inequa l i ty 

B-955 P r o p o s e d by Ovidiu Furdu i , W e s t e r n Michigan Univers i ty , K a l a m a z o o , 
M I 

(Vol. 4 1 , no . 1, Feb rua ry 2003) 
Prove that 

V ^ + ^ Jl + F2n+l J^F~l 2 
2n+2 
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for all integers n > 0. 

Solut ion by P a u l S* Bruckman,, Berkeley^ CA 
Let Xl = F2n{l + {F2nf}-1/\x2 = {1 + (F2n+1f}-1/\x3 = {1 + (F2n+2)2}'1/2

9 for 
a given n > 0. Clearly, xi > 0, x2 > x3 > 0. Moreover, if n > 0, x\ > x2 > x3 > 0. Let 
S(n) = X! + x2 + ar3- Note 5(0) = 0 + 2 • 2" 1 / 2 = 21 / 2 « 1.41, hence 1 < 5(0) < 1.5. Also, 
5(1) = 2-1'2 + 5 " 1 / 2 + 10"1/2 w 1.47, hence 1 < 5(1) < 1.5. 

Next, 5(2) = 3 • 10"1 / 2 + 26" 1 / 2 + 65" 1 / 2 w 1.27. hence 1 < 5(2) < 1.5. 
Henceforth, we suppose n > 3. Then S(rc) < (F2 n + 2){1 + 0F2n)2}~1 / 2 < 1 + 2 /F 2 n < 

1 + 2 /F 6 = 1.25. Hence S(n) < 1.5 for all n > 0. In fact, 5(n) < 5(1) for all n > 0. 
On the other hand, if n > 3, 

5(n) = {1 + (Pin)"2}-1'2 + (^n+l)"1!! + (^2n+1)-2}-1/2 + ( i ^ ) " ^ + ( F ^ ) " 2 } - 1 / 2 

> 1 - l/{2(F2n)2} + ( i W i ) - 1 ( l - l/{2(F2n+1)2}) + (F2n+2)-1(l - l/{2(F2n+2)2}) 
= 1 + l/-F2„+i + l/F2n+2 - l /2{l/(F2 n)2 + l / (F2 n + 1)3 + l/(F2n+2)3} 
> 1 + 2/F2n+2 - (F2n + 2)/{2(F2 n)3} > 1 + 2/F2n+2 - l/(F2n)2. 

Note that 2(F2n)2 - F2n+2 > 0 if n > 3, hence 2/ JF2 n + 2 - l/(F2n)2 > 0. Therefore, 
S(n) > 1 for all n > 3. Prom our previous results, iS(n) > 1 for all n > 0. 
Q.E.D. 

We may also note that lim S(n) = 1. 

Also solved by Walther Janous, Angel Plaza and Sergio Falcon (jonitly), and the 
proposer. 
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P R O B L E M S P R O P O S E D I N T H I S I S S U E 

H-603 P r o p o s e d by t h e E. H e r r m a n n , Siegburg, G e r m a n y 
Show that if n > 3 and n = 1 (mod 2), then 

En j ~ Fn+2k -Tn-1 
< 

However, if n > 4 and n = 0 (mod 2), then 

K _ I < 2-/ F . < 
n-l ^Z^ Fn+2k En-2 

H-804 P r o p o s e d by M a r i o Cata lan! , Torino, I t a ly 
In H-592, the proposers introduced, for n > 2, a nondiagonal n x n matrix A such that 

A2 = xA + yJ, where x, y are indeterminates and I is the identity matrix. 
a) State the conditions under which all the eigenvalues of A are equal. 
b) Assume now that not all the eigenvalues of A are equal. Assume that A is a 2n x 2n matrix, 
and that tr(^4) = nx. Consider the Hamilton-Cayley equation for A 

2n 

£(-i)feAfcA2n-fc = o, 
A;=0 

where AQ = 1. Find X f̂c=o ^ 

H-6Q5 P r o p o s e d b y Jose Luis Diaz -Bar re ro & Juan J o s e Egozcue, Barce lona , Spain 
Find the smallest integer h for which X0an + Aian_i H h \kan+k = 0 holds for all n > 1 

with some integers Ao, . . . , A* not all zero, where {an}n>iis the integer sequence defined by 
L(n-1)/2J / . L(n-1)/2J 

- ( E (2;+1)2')( s M™»-1=0 \ • / g-0 
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S O L U T I O N S 

Some p roper t i e s of t h e n u m b e r 5 
H-591 P r o p o s e d by H. - J . Sieffert, Berl in , G e r m a n y 

(Vol. 409 no . 5, November 2002) 
Prove that 3 for all positive integers ra, 
(a) 

(b) 

(c) 

(d) 

5"F2 n_1 = g (_i)L(4»+3*)/5j/4n + l \ 

5 |/2n-fc+3 

2n+ l /A Q X 
5nL*n= E (- i)L(^+3*-3)/5j/4n + 3 \ 

5 l/2n-fc+4 

fc=0 
5 ^/2n-fe+l 

5"-li— t (V) 
5 \/2n-k+2 

where |_ J denotes the greatest integer function. 
Solut ion by t h e p ropose r 

Define the Fibonacci polynomials by F0(x) = 0, Fi(x) = 1, and i^ + 2 (x ) = xFk+i(x) + 
Fk{x) for k > 0. Prom H-492, we know that, for all complex numbers x and y and all 
nonegative integers n, 

Ln/2J 

J ] ( )jP„_2fc(x)F„_2A;(j/) = z^F^xy/z), 
fc=o ^ ' 

where z = y/x2 + y2 + 4. Replacing n by 2n + 1 and taking y = 0, after a suitable reindexing, 
we obtain 

i — n \ / 
|F2fc+1(x) = (x2 + 4 r . (1) 

k=o x 7 

Let Bk = (—l)feF2^+i( ia) , ft > 0, where i = \f^1 and a is the golden section. Then, the 
sequence {-B^}^>o satisfies the recursion Bk+2 = — fiBk+i — Bk for k > 0, where /? is the 
conjugate of a, and a simple induction argument shows that 

( 1 if Jfe = 0 ( m o d 5 ) ? 

a if k = 1 (mod 5), 
Bk=l 0 if feE0(m.od5), (2) 

—a if A; = 0 (mod 5), 
[ - 1 if ]fe = 0 (mod 5). 
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Since 4 - a2 — —\/5/3, identity (1) with x — ia gives 

E ( - 1 ) f c ( 2 n ^ 1 ) ^ = (-1)"5n/2^-
fc=o ^ n ' 

Define the sequences {cfe}fc>o and {dk}k>o by 

1 ifk = 0 (mod 5), 

(3) 

Ck—\ —1 ifk = 4 (mod 5), and dk = { 
0 otherwise, 

f 1 ifk = 1 (mod 5), 
- 1 ifk = 3 (mod B), 

[ 0 otherwise, 
and let 

fc=0 x 7 fc=0 v ' 

Then, by (2) and (3), Sn + aTn = ( - l ) n 5 n / 2 / 3 n . Since 2/3" = Ln - V5Fn, we then have 

f 5"/2Ln - 5 ( n + 1 ) / 2 F n if n is even, 
25 n + 2aTn = i 

[ 5 ( n + 1 ) / 2 F n - 5n/2Ln i fn is odd. 

Using 2a = 1 + -\/5 together with the fact \ /5 is irrational, we then must have 

5n'2Ln if n is even, 
2S„ + Tn = 

and 

Tn = 

5(n+1)/2Fn i fn is odd, 

- 5 n / 2 F „ if n is even, 

_ 5 ( n - i ) / 2 L n i f n i s o d d 

(4) 

(5) 

Substracting (5) from (4) yields 

f 5 n / 2 ( F n + L„) i fn is even, 
2Sn = { 

{ 5 ("-1 ) / 2 (5F„ + Ln) i fn isodd. 
(6) 

Dividing (6) by 2, subtracting the resulting equation from (4), and noting that Ln—Fn = 2Fn_i 
and 5Fn — Ln = 2L n _i , we find 

Sn + Tn = < 
f 5 n / 2 F n _ ! i fn is even, 

5 (»-D/3£ B _ 1 ifn ^ o d d . 
(7) 
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On the other hand, from 

, MJ r (_i)L^/5J i f ^ 2 ( m o d 5 ) 3 
Ck + dk — < 

y 0 otherwise, 
we get 

sn+Tn= J2(-i)l7k/51(2n+!:). (8) 
fc=o \n k J fc=0 

The desired identities (a) and (b) now easily follow from (7) and (8) by repacing n by 2n 
(respectively, by 2 n + 1), and reindexing. 
Multiplying (5) by 3, substracting the resulting equation from (4), and noting that Ln-\-3Fn = 
2Fn+2 and 5Fn + 3Ln = 2£ n + 2 , we obtain 

bn — Tn 

hn'2Fnjr2 i fn is even, 

5{n~1)/2Ln+2 i fn is odd. 
(9) 

Since 

_ f ( - l ) L ( 4 f c + 1 ) / 5 j i f ^ 2 ( m o d 5 ) , 
[ 0 otherwise, 

we have 

Sn~Tn= J2(-V[(9k+1)/5i(2n^)- (10) 
fc=0 ^ ' 

5 ^ + 3 

The desired identities (c) and (d) now easily follow from (9) and (10) by repacing n by 2n — 2 
(respectively, by 2n — 1), and reindexing. 
Also solved by P a u l B r a c k m a n a n d Vincent M a t h e . 

Mat r i ces satisfying quad ra t i c equa t ions 

H-592 P r o p o s e d by N* G a u t h e i r & J . B . Gosselinf Royal Mi l i t a ry College of C a n a d a 
(Vol. 409 no . 5, November 2002) 

For integers m > 1, n > 2, let X be a nontrivial n x n matrix such that 
X2 = xX + yl, _ _ % (1) 

where x, y are indeterminates and I is a unit matrix. (By definition, a trivial matrix is 
diagonal.) Then consider the Fibonacci and Lucas sequences of polynomials, {Fi(x,y)}^l0 

and {Li(x,y)}fl0, defined by the recurences 

F0(x,y) = 0, Fi(x,y) = l, Fl+2(x,y) = xFl+1(x,y) + yFl(x,y), (2) 

L0(x,y) = 2, Li(x,y) = x, Li+2(z,y) = xL^i(x,y) + yLt(x,y), (3) 
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respectively. 
a. Show that 

Xm = amX + bmyl and that Xm + ( - y ) m X ~ m = cmI, 
where am, 6m, and Cm are to be expressed in closed form as functions of the polynomials (2). 

b . Now let n 

/(A; x, y) = \XI - X\ = £ ( - I f — A n _ m A ™ 

be the characteristic (monic) polynomial associated to X, where the set of coefficients, 
{Xi~Xi(x,y);0<l<n} 

is entirely determined from the defining relation for f(\\x,y). For example, AQ = 1, Ai = 
tr(X), Xn = det(X), etc. Show that 

n n 
J ] ( - l ) r o A „ _ r o F m ( x , j / ) = 0 and that y ^ ( - l ) m A „ _ r o F m _ i ( a ; , p ) + A„ = 0. 
m = l m = l 

Solut ion by t h e p roposers 
a. First note that X has an inverse since X(X — xX) = y j implies det(X) =̂  0 (here, y 

is assumed to be a nonzero indeterminate). We prove by induction on ra > 1 that 

Xm = Fm(x,y)X + yFm^1(xJy)I, (3) 
and that 

Xm + (-y)mX-m = Lm(x,y)I, (4) 
so am = Fm(x,y), (x,y) and cm = Lm(x,y)„ it is clear that (3) is true for ra = 1 
and 2. Now assume its validity for an arbitrary value of ra and multiply (3) by X to get 

Xm+1 = Fm(x,y)X2 + yFm-xX = Fm(x, y)(xX + yl) + yFm^(x9 y)X 

= (xFm{x, y) + yFm^t(x, y))X + yFm{x, y)I = FTO+1f>, y)X + yFm(x, y)I, 

which is formula (3) for m + 1. To prove (4), note that it is true for ra = 1 since (1) implies 
X — yX™1 = xl. Squaring this last result then shows that (4) also holds for ra = .2. Now 
assume that (4) holds for ra > 2 and multiply it by X — yX™1 = xl to get 

( X - + 1 + (-p)T O + 1X-<m + 1>) + (-yX™'1 + (-y)mX-lm-V) - xLm{x,y)I, 

i.e., 
Xm+1 + ( -y) T O + 1 X-( r a + 1 ) = y(Xm^ + ( - y ) ^ - 1 ^ - ^ - 1 ) ) + x i m ( x ? y ) I 

= yLm-i(a ; ,y)J + a : I rm(a; ,y) /=Irm + i (a ; ,y) / , 

which proves that (4) holds for ra + 1 as well. 
b® According to the Hamilton-Cayley theorem, if/(A; x, y) is the characteristic polynomial 

associated with the matrix X, then f(X\x,y) — 0. Consequently, upon cancelling out an 
overall factor of (—l)n and upon using (3) for X m , we find that 

n n 
0=Y^(-l)m><n-mXm=^r/(-l)m\n„m(Fm(x,y)X + yFm-1(x,y)I) + \nI, 

m=0 m = l 
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which leads to the formulae given in the statement of the problem when X and I are linearly 
independent, i.e., in nontrivial cases. 

Vincent Mathe points out that that in the case y = 0 the matrix X is not necessarily 
invertible; see for example, the Solution of H-578, vol. 40, pages 474-476. 
Also solved by P a u l B r u c k m a n , Mar io Cata lani ? Toufik M a n s o u r a n d Vincent 
Mathe* 

A Lucas p r i m e congruence 

H-593 P r o p o s e d by H. - J . Seiffert, Berl in , G e r m a n y 
(Vol. 4 1 , no . 1, Feb rua ry 2003) 

Let p > 5 be a prime. Prove the congruence 

L(P"5)/10J k ! 

* E ^ T ^ 1 ) " - 1 " 2 ^ ^ ) -
Solut ion by t h e p ropose r 

It is wellknown that Lp = l (modp). Since by Fermat's Little Theorem, 2 P _ 1 = 1 (modp), 
we see that the expression appearing on the right hand side of the desired congruence is an 
integer. 
From H-562, we know that, for all nonnegative integers n, 

L(n-2)/5j . v 

» E „ 5t-2 )=<"-w. (i) 
k=0 X 7 

If k is an integer such that 0 < k < |_(jP — 5)/10j, then 

I p — 5 
p > ^ - 5 f e - 2 > ^ - 5 p - 1 P - 5 

_ 2 > - r - - 5 l Q 2 - 0 , 10 
because (p — 5)/10 is not an integer. Since, as is known, 

1 fp\ ( - l ) i - 1 

- . = ^—'- (modp) for j = 1 , . . . , p - 1, 
P\jJ 3 

relation (1) with n = (p — l ) /2 gives 

^ (p - l ) /2 - 5Jb - 2 p v F ; 

Multiplying by ( - l ) ^ - 1 ) / 2 and noting that 

- 5 - 1 0 2 
(p - l ) /2 - 5k - 2 p - 10k - 5 2fc + 1 

gives the desired congruence. 
Also solved by P a u l Brackman* 

Please Send in Proposa l s ! 

(mod p) 
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