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ON SUMMATION FORMULAS AND IDENTITIES FOR FIBONACCI NUMBERS 

DAVID ZEITLIN, University of Minnesota, Minneapolis, Minnesota 

1. REMARKS ON THE PAPER OF BROTHER U0 ALFRED 

Alfred [ l ] has shown that 

n - i m 

<L1> E^k+r =!^™\.™r+L^m) + C* ' 
k=o i=o 

where Ct is a constant independent of n and Ag(n) = g(n + 1) - g(n), with 
A1g(n) = AfA^gCn)). The following result yields (1.1) as a special case: 

Theorem 1. Let Hn+2 = Hn + I + Hn, n = 0 , l , ° ° ° s with H0 = p and 
Hj = «r. Then for n = l , 2 , - -« , we have 

n - i m 

<"> E ^ r = Hn,rZ 
k=o s=o 

m 

(?) E^^^m-s 

*• Hn+r+i 22 
s=o 

i=o 

J^MJ^-MFji+iGin-s 
1=0 

n + Co 

( r , m = 0, ! , • • • • ) , 

where 

m 
(1.3) C2 - -Hr^(- l) i ( i I )F2 iG1

m - Hr+15]M)1(i!)F2i+1G1
m 

1=0 1-0 

( r , m = 0, ! ,•••)» 

and G (see [2]) are Stirling numbers of the second kind with the properties 
that Gj •= 0 if i ^ 0, G\ = 1, i = 0 5 1 5

0 8 0 * &\ = 0 if i £ 0, and G^= 0 
if i > s. 

1 
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Proof of Theorem 10 We assert that 

n-4 m 
{1A) S ^ k + r ^ ( " l ) W r t ^ m ) + C2 , 

k=o i=o 

We note that if Agfa.) = Ah(n)9 then g(n) = hfa) + C2o Thus9 using the A oper-
ator on both sides of (1.4), we obtain 

m 
A, , -xm 

1=0 

(1.5) n m H n + r = ^ ^ ^ ^ i + n + r t A ^ n + I)1 

HI 

- / ^(-l)1H2i+n+r+i^1(ninX 
1=0 

Since fa + l ) m - n m = A(am), wehave A*fa + l ) m = A 1 ^ ) + Ai+1(nm)o Thus, 
since Hn+2 ~ Hn+i + Hn» do 5) simplifies to 

m 
(1.6) n m H n + r = ^ ( - l ) % 2 J + n + r + 2 A j + 1 ( i i m ) 

3=0 
m 

'i=o 

Let j + 1 = i in the first sum of (106)0 Since A (a ) = 0, the right-hand 
side sums cancels except the term for i = 09 which yields n m H „ 

We proceed now to simplify (1.4). Since [2, p. 9] 

(1.7) A^fa) = ( - D ^ t - l ^ f 1 Jg(D + k) (i - 0,1, — ) , 
k=o x ' 

we have for gfa) = n" 
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(1.8) 
i 

m A V ) = { - l j ^ t - i ^ m & i + k) 
k=o 
i m 

= <-»'£<-»" (0£(") k "~ v 
k=o s=o 

m i 
H1~S Z(T)»s<-»T(-»k(Ot: 

s=o 
HI 

# LmmJ 

since [2, p* 169, (3)] 

s=o k=o 
m 

S=G 

(1.9) ( - l ) 1 ^ =X)( -D k (k)k : 

k=o 

m (i = 0 , l , - , m ) 

Buschman [3, p. 6, (12)] showed that 

and thus from (1.10), with s = 2i and p = n + r + l? we obtain 

(loll) H2i+n+r+i = F2iHn+r + F2i+iHn+r+i . 

Using (1.11), we obtain from (1.4) 

n-i m 

(ia2) £ > % „ = \+x{-i)iF*A%m) 
k=o i=o 

Hn+r+iE(-1 ) i F2i+iA i ( n m ) + °2 

i=o 
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If we substitute for A1^111) in (1.12) by (1.8), we obtain, upon interchanging 
summations, (1.2), Add n H . to both sides of (1.2). Then, for n = 0, 

n+r 
all terms in the sums are 0 except for s = 0, and so we obtain C2 as given 
by (1.3). 

If p = 0 and q = 1, then H = F , and C2 (1.3) yields Ct in (1.1). 
For calculation purposes, (1.2) is more suitable than (1.1), since Stirling num-
bers are tabulated. Moreover, (1.2) and (1.3) are in the simplest form possible* Using the properties of F and G , we note that the coefficient of H , in & r *- n n? n + r 

(1.2) i s a polynomial in n of degree m - 1, while the coefficient of H 
is a polynomial in n of degree m. 

The following result is a generalization of Theorem Is 
Theorem 2. Let 

n+r+i 

m 
P(x) = V^a.x^ , 

3=° 

a £ 0 
m ' 

where a., j = 0, ! , • • • , m , are constants. Then for n = 1,2,°°°, we have 

n-i m 
(1.13) X > ( k ) H k + r = \+rJjJj-1)1(Xl)F4 Z a j ( s H -

k=o s=o i=o I i=s+i 

m m 

s=o 
•w^|2>*««)'-«!E'j(iH-

j=s+i 
1=0 

nS + C3 

where 
( r ,m = 0 ,1 , •• •) , 

m m 
(1.14) C3 = 

- H r Z < - 1 ) i ( i : ) H Z a 3 G j ! 
1=0 3=1 

H r + i Z ( - 1 ) i ( i ! ) F 2 i + 1 E a J G S i=o (j=i 
( r ,m = 0, ! , • • • ) 
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Comments., If a. = 0, j = 0,1,° • • , m - 1, and a = 1, then (1.13) 
and (1.14) reduce to (1.2) and (1.3), respectively,. A special case of (1,13) 
occurs when 

m 
P(k) = k ( m ) = k(k - 1)««* (k - m + 1) = Y V kj , 

/ J m 

where (see [2, p. 142]) S-1 are Stirling numbers of the first kind. Then, since 
, (m) , / k \ , 0 m 

k = m! I I , we have 

-i 

^ k ( m ) H k + r = HI! ] T P\ H k + r <n = in + 1, m + 2 , ; - . ) 
n-i n-l 

k=o k=m 

Moreover, since a. = S** , j = 0 , l , O 8 o , m , we have j m J 

m m 
V a . G S f s ^ = / ° .)=\l if

f ! = m l 
JL*J 3 3 £—d m 3 \ m - x / L° if i f m j 

(see [2, p. 182, (1)]). Using (1.10), we obtain from (1.14) 

(1.15) C3 - (~l)m+1(m!) (F 2 m H r + F 2 m + 1 H r + 1 ) = (-l)m + 1(m! ) H 2 m + r + 1 . 

It should be noted that C3 in (1.14) was obtained from (1.13) for n = 0. For 
P(k) = k , the same value of C3 (1.15) is also obtained from (1.13) for 
n = 0, l , - - « , m - 1 (m > 1). Let P(k) = k ' m ' in (1.13), where a. = S3 , and 
let (1.13) be written as follows: 

«.16, f V » > H k + r - • > < » % „ 
k=o 

- Li(m,n)H ^ + L2(m,n)H ^ ^ ~ (-l)m(m!)H _,_ ^ n+r . n+r+i 2m+r+i 
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We obtain f rom (1.16) 

[Feb. 

(1.17) vUl/ (-1) Cm!)H2m+r+i = L;i(m,n)Hn+r + L 2 ( m 9 n ) H n + r + 1 

(n = 0 , l , * « - , m ~ 1). 

F r o m (1.10) with p = n + r + 1 and s = 2m - n5 we obtain 

(1.18) H2m+r+i ~ F 2m~n H n+r + F 2m+i-nH n +r+i • 

If we subst i tute for H2:m-fr+i in (1.17) by (1.18) and then equate coefficients of 

H n + r and H n + r + i in ( I d 7), we obtain the following ident i t ies : 

(1.19) ( - l ) m ( m ! ) F 2 m „ n = ^ 

s=o 

m / m 

Z(-1)I(L')r« E ( J B ) Si°M 
i=o (j=s+i 

(n = 0, ! , • • • , m - 1; m = • 1 ,2 ,« - - ) , 

(1.20) ( - l ) m ( m ! ) F 2 m + 1 „ n = ^ 

s=o 

m 

£<-i>w2i+I £ P W Gji 
i=o j=s+i 

(n = 0 , l , a , - , m - l ; m = 1 ? 2 9 ° * ° ) . 

By repea ted addit ions, one obtains (interchanging summat ions in the final resul t ) 

m / m 
\ H 1 / (1.21) (-lrCm! )F2m+k_n = ^ T W t t )F2i+k ^ \ J ^ (J

s)SiGjls ^ 
i=o s=o lj=s+i ' 

(k = 0 , 1 , • • • ; n = 0 , 1 , • v , m - 1; m = 1, 2, • • • ) . ' 

Proof of Theorem 20 Noting that A P(n) = 0, we find, imita t ing the 
proof of Theo rem 1, that 
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m 

jLmd 
k=o 

P(k)H. k+r J ( -D^j+n+r+i ^P(n) + C3 

1=0 

= H 
- " J L i l 

i=o 1=0 

Since .Hi. H i 

>(n) = X / j n 5 ' Aip(n) = y^^ 
3=0 j=o 

and using CL8), we have 

m m 
]TVD^aiAW) = ^ ( - D ^ i ^ a A1^) 
i=o i=o 3=0 

m m j 

-E -̂EvEOK"" 
1=0 j=0 S=0 

-E^>'-EE^(H.k 

m 

i ~ 0 

y 
s=o 

S=0 * }=S 

I JLmsJ 3 \ ^ / 3" 
i=o 1 i=s+i 

since 
m 3 ni m 

y^y^f(s9j) = X ^ i C f ^ ] ) a n d G j - s = ° i f .i - s < i . 
j=o s=o s=o j=s 

The value of C3 Is obtained from (1.13) for n = 0o 

2e REMARKS ON THE PAPER BY R, REICHMAN 

The operator A9 where Agfa) = g(n+ 1) - g(n), is referred to as the 
forward difference operator, while the operator V, where Vg(n) = g(n) -g{n- 1), 
is referred to as the backward difference operator,, Indeed* 

(2, J) V f̂a) = ]T\-1)S (X
s) g(a - s) = (- l ) i^(- l ) k ( i) g^'- i 

s=o k=o 
i + k ) . 
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If we compare (2,1) and (1.7), we note that 

(2.2) V*gCn) = A*g(n - i) (i - 0 ,1 , •• •) ; 

and if g(ja) •= n , we have 

(2.3) V%m) = A*(n - i ) m (i = 0 , l , - - - , m + l ) . 

Reichman [4] gave the following results: 

m 

(2.4) X^X = 2 ^ ( " 1 ) i ] F n + 2 + i V i ( n m ) + ° 4 ' 
k=o î o 

(2.5) ] T k m F 2 k = ^ ( - D ^ + M V ^ n 1 1 1 ) + C5 , 
k=o i=o 

(2o6) ^ k ^ z k - i = ^ W ^ ^ i V V 1 1 1 ) + C 
k=o i=o 

Rao [5] generalized (2.4) and gave 

m 
(2.7) S k m H k = X i (-^Hn-^+iV^n111) + cf . 

k=o i=o 

The following results contain (2.4), (2.5), (2.6) and (2.7) as special cases. 
The notation is consistent with Theorems 1 and 2. 

Theorem 3. For n = 0, ! , • • • ; r = 0, ±1, ±2, • • • ,• we have 
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J 

[Feb . 

vV - (. 
s=o 

Since 

m 

j=o 

we have 

ra m m j 

1=0 i=Q j=0 S=0 

m m m 

i=o s=o j=s 

2} c~ir 
s=o 

m / m 

£"_, Z <-«S (i) °i-
1=0 \ j = s + i 

a+i T Additional simplif icat ions a r e obtained by noting that F . = (-1) F . and 
F~(i.-.i) " ^ 1 ) 3 ' : F -» i 9 The value of C7 i s obtained from (2.8) for n = 0. 

Comments,, We note that (2*5) and (206) a r e spec ia l c a s e s of (208)* Suppose 

now 

P(k) = ( - k ) ( m ) = y ^ C - D ^ S ^ k J 

Since (~k)*m) = (~k)(~k-l> • • (~~k-m-fl) = (- . l)mk(k + 1)- • • (k + m - 1), we have 

^ ( - k ) ( m ) H 2 k + r = (~ l ) m (m! ) 

k=o 

_—^ / k + m - 1 
H 2 k + r 9 
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m m 

(2.10) y w ^ G - =YsiGi = r; 5 i zm] 
L-J 3 3 Z ^ m j [0 if I £ m j 

Thus, from (2.9), with a0 = 0 and a. = (-1)JS J , j = l / " , m 5 we obtain 
(using (1.10)) 

x H l (2.11) C7 = (-l)111(m:)(F H - F ,KT ) 
' m r m-i r+i m r m-i r+i 

= -Cmi)(F H + F H ' ) = -(ml)H , 
-m r i-m r+i r+i-m 

The following result, derived via forward differences, is an alternate 
form of Theorem 3, which was derived via backward differences. 

Theorem 4. For n = 0 ,1 , • • •; r = 0, ±1, ±2, • • • , we have 

(2.12) y^P(k)H2k+r 
k=o 

H< 

m 

2n+r / ^ 
s=o 

"m 

i i=i 
m 

H2n+r+l / J 

£ >=o 1 

E ( - i ) i ( i ! ) F i - 2 E a j ( J s ) G j -
J=S+1 

m ( m 

E(- l ) i f e ) rHlai(!)Gi-
i=o \ i=s+i j=s+i 

(m = 0 ,1 , • • •) , 

nS + C7 

where 

(2.13) C7 = H 
m 

a0 -X]("1) iw)Fi-2EaJGi 
i=i (j=i 

m 

- Hr+iX!"i)i(ii)Fi"iEa3G31 
1=0 J=i 

Comments. If we compare (2.8) with (2.12), we conclude that for arbi-
t rary a , j = 0, l , « ° ° , m , 
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i=o Ij=s+L ! 
m | m 1 

p-^wj £.,('.)< 
i=l *j=s+i 

. (s• = 0 , ! , • • * , m - 1) ; 

m / m 
(2.15) (-D^C-DWi-i E ^ S (i) G3-S 

i=o ' j=s+i ' 
(s = 0, !,-•••, m) . 

For a. = S_ ,̂ j = 0,1, • - • , m, (2.14) and (2.15) with s = 09 yield (noting (2.10)), 
respectively, 

(2.16) ( - l ^ ' V l )Fm„2 = ^ ( - D ^ ! )FiX]("1)JSmGj Xm = 1, 2f • • •) ; 
i=o j=i 

m m 
(2.17) ( - l )mem!)Fm_1 = ^ ( - l ) i ( i ! ) F i _ 1 ^ ( - l ) j S ^ i G J (m = 0 ,1 , • • •) . 

i=o j=i 

Addition of (2.16) and (2.17) gives 

m m 
(2.18) (-l)m(m! ) F m _ s = ^ ( - l ) i ( i ! ) F i + 1 ^ ( - l ) J S ^ G J (m = 1,2, — ) . 

i=o j=i 

Since L R = F n + 1 + F , addition of (2.17) and (2.18) gives 
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m HI 

(2.19) <-l)m(m2)Lm„2 = 2 ( - l ) i a ! ) L i ^ ( - l ) j S ^ G J (m = lf 2, • • •) . 
i=o j=i 

We note that (2.17) may be written as 

m-i m 
(2.20) (nU)F m _i [ - l + ( - l ) m ] = ^ ( - D i ( i l ) F i . 1 ^ H ) i S ^ G J 

i=o j=i 

(m = 1,2,---) o 

Thus, for m = 2n, n .= l 5 2 , - o o
s (2o20) gives 

2n-i 2n 
(2.21) ^ ( - l ) i ( i ! ) F i , 1 ^ ( - l ) j S ^ G | - 0 (n = 1, 2, • • •) . 

i=o- j=i 

Since ([2, pp. 149, 17l]) 

Q m-i _ b2n 

(2.21) may be written as 

- ( * ) • 

~ -G2n 

2n-2 2n 

(2.22) (2n)! (2n - l)F2 n_2 = ^ (-1)^1 )Fi_t ^ ( - D ^ G J 
i=o j=i 

(n = 1, 2,« 

Suppose now 

p(k> H k
(m) =^]sikj 

m 

3=1 
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in (2.12). Noting (2.10), we obtain from (2.13) 

[Feb. 

(2.23) C7 = ( - l ) m + 1 ( m ! ) ( F m _ 2 H r + F m ^ H r + i ) = ( - l ) m + 1 ( m ! ) H r + m _ i . 

If we r ewr i t e (2.12) as 

n 

(2.24) y V m ) H 2 k + r = L*(m,n)H2n+r + L*(m,n)H 2 n + r + 1 + C7 , 
k=o 

we obtain f rom (2.24) 

(2.25) ( - l ) m ( m ! ) H r + m „ 1 = Lf(m,n)H2 n+r + L*(m, n ) H 2 n + r + 1 ( n = 0 , l v , m - 1 ) 

F r o m (1.10) with p = 2n + r + 1 and s = m - 2 - 2n, we obtain 

(2.26) H r + m - i = Fm-2-2nH2n+r + F m- i -2n H 2n+r+i 

If we subst i tute for H r + n i _ 1 in (2.25) by (2.26) and then equate coefficients of 

H2n+r a n d H2 n+r+i in (2.25), we obtain the following ident i t ies : 

(2.27) ( - l ) m ( m ! ) F m _ 2 _ 2 n = 

s=o 

m 

i=i I j=s+i 

(n = 0 , 1 , • • • , m - 1; m = l , 2 , ' - # ) , 

(2.28) (-l)ni(ml)Fm_^ 2n £ s=o 

1 1 1 I 1 1 1 

i=o ''j=s+i V / 

(n = 0 , 1 , • • • , m - 1; m = 1, 2, • • •) . 

Proof of Theorem 4„ It i s readi ly verif ied that 
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n-i m 

^ P ( k ) H 2 k + r =y^( -D 1 Hm+r- i+ i A*P(n) + C7 

15 

k=o i=o 

H-2n+r 

m 
P(n) + ^ (-D1Fi_2 ^Pfo) 

i=i 
m 

H g n + r + l ^ ( - 1 ) ^ 1 A*P{n) + C7 , 
i=o 

since H2n+r_i+i = F ^ ^ n + r + Fi_iH2n+r+i5 which is obtained from (1„10) 
where s = i - 2 and p = 2n + r + 10 The simplification of (2.29) to the form 
(2*12) proceeds in the same manner as in the proof of Theorem 2. The value 
of C7 (2.13) is obtained from (2.12) for n = 0. 

The following result , derived via backward differences, is an alternate 
form of Theorem 2, which was derived via forward differences. Since 

n m 
(2.30) y^P(k)H] 

k=o 
*k+r = yYl )X^r+24 jVW) + C3 

m 

P(n) + ^ < - l ) i F i + 1 V i P ( i i ) 
i=i 

m 
+ H a + r + ^ ^ D V i ^ V ^ f c i ) + C3 

- H, 

i=o 
we may now state 

Theorem 5. For m = 0 5 l 9
e o o ; n = l 925

c 

n-i m 
(2.31) X > ) H k + r = H n + rE C"1)£ 

k=o s=o 

B 
m 

-n+r+i 2 , ^~1^ 
s=o 

E,!'"|E<-uS(l)Qi1-
I j=s+i 

"m | m s v 

I j = S + l 

+ C3 
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m 

[Feb. 

m 

°3 = "Hr]£«Fi+i Z{"1)JajGJ - H ^ E i ! F i + 2 Z(-1)JajGJ 
i=i Ij=L 1-0 \ j= i 

(r, m = 0 ,1 , • • •) 

Comments,, If we compare (1,13) with (2„31), we conclude that for arbi-
t rary aJf J = 0 , 1 , . . . ,m , 

(2.33) 

> j=s+i ' ' " :s+i ) 
m / m 

<-«sZ"<« E . <-l,S(i)GJ-
j=s+i 

(s = 0,1, • • • , m - 1) ; 

m 
(2.34) X M ^ O F ^ J £ a / n G H 

i=o I j=s+i ^ ' ' 
m | m 

= (-i)s5>Fi+2 x;_ <-«s (i) < 
j=s+i 

(s = 0, ! , • • • , m) . 

For a. = (-1)JS^, j = 0, l , - - « , m , (2.33) and (2.34) with s = 0, yield (noting 
(2.10)), respectively 

m m 
(2.35) m ! F m + 1 = £ (-!)*(!! )F2 i £ ( - D ^ G * 

i= l J=i 

Cm = 1, 2, • • •) ; 
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m m 

(2.36) ml F m + 2 = J^ {-I)1*!! )F 2 i + 1 ] T ^SLG] (m = 0 ,1 , • • •) . 
i=o j=i 

Suppose now 

m 
P(k) = (-k)(m) = S(-D5s4kj 

in (2.31). Then 

n-i n-i 
/ k + m - 1 \ T-

xk+r ' 
k=o k=i 

and from (2,32) we obtain 

(2.37) C3 = - (m!)(F m + 1 H r + F m + 2 H r + 1 ) - - (mI )H m + r + 2 

We note that (2.4) and (2.7). are special cases of (2.30).. 

3. ADDITIONAL RESULTS 

In terms of forward differences it is readily verified that 

n-i m 

(3.1) J2 p<k>H3k+r = J^ ^1) l2"1"lH3n+r>l+2i ^ W + C8 

k=o i=o 
m 

= H 3 n + r ^ (-l) i2- i"1F2 i_2 A^tn) 
i=o 

m 

+ H3I1+r+i 2 (-1)1 2"1 ^ i - i ^ ( D ) + C8 

1=0 
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Moreover5 in t e r m s of backward differences, it i s read i ly verif ied that 

m 
(3.2) 2 POOHsk+r 

k=o 

] T (-1)X2 x ^ n + r ^ i V ' P W + C8 

i=o 

m 

H 3 n + r ^ ( - D V ^ ^ ^ i V ' p W 

i=o 
m 

+ H 3 n + r + i J ] (- l) i2-1"" iF2„ iV1P(n) + C8 

1=0 

The following resu l t i s a r e s t a t emen t of (3.1) and (3.2): 

T h e o r e m 6. F o r n = 1 ,2 , °»° ; r = 0 , ± 1 , ± 2 , « " ° , we have 

n - i m 
( 3 « 3 ) X ) p ( k ) H 3 k + r = H s n + r S 

k=o s=o 

m 
+ H3 n+r+i 2^ 

s=o 

m | m 

£ ( -DW-V, £ a. (J) 
i=o ' i=s+i 

G 

J=S+1 

m 

' j=s+i 1=0 

(m - 0 , 1 , — ) , 

where 

m 
(3.4) C8 = -Hr Y, C-Di(i02"i"1F2i„2 £ aiGS 

1=0 J=i 

m 
" H r + 1 E (-Di(i02-i-1F2i-1 J ] ajGi 

1=0 • J = l 

F o r n = 0 3 1 , • • *; r = 0, ±1, ±2, • • * , we have 
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(3.5) 
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HI 

]Tp<k)H3k+r = H 3 n + r ] T (~1)£ 

k=o s=o 

m 

+ H. 3n+r+i E <-«' 
s=o 

lj=s+i ; 

"HI I m 

^j=s+i 

+ C8 (m = 0, ! , - • • ) , 

where 

(3.6) C8 = H r 

m 

i=o 

HI / 

HI 

I>>S G J 
3=1 

HI 

^iZ^^VE'-^f! J 3 
1=0 3=i 

Comments,, Add P ( n ) H 3 n + r to both s ides of (3.3), Then, compar ing (3.3) 

and (3.5), we conclude that for a r b i t r a r y a., j = 0, 1, ° ° - , m, 

(3.7) as + J ] (-l)i(iI)2-i-1F2i_2 £ a ^ G * 
i=o I i=s+i j=s+i 

m 

^ T » f % E (-»S(lK 
1=0 \ j=s+i 

(s = 0 , 1 , • •• ,m) ; 

m 

(3.8) j ; w w % j ; a lu; 
1=0 1 j=S+l 

HI / H I J 

( _ D s ^ ^ - - V i E <-1)Jaj(i)G
3-s

 (s = o.i.-.»> 
1=0 li=s+i 
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F o r a. = S^ , j - 0 , 1 , • - • , m, (3.7) and (3.8) with s - 0, yield (noting (2.10)), 

respec t ive ly 

(3.9) m! 2-m"1F2m_2 = J ] i! 2"i"1F1-i ]T t -D^GJ (m = 1, 2, • • •) , 
1=0 3=i 

m 

(3.10) m!2 m hf^-i = £ il 2 ^ - i E ("1)Js
m

GJ <m = 0,1, • • •) , 
1=0 13=i 

I I > l 
which m a y b e simplified by noting that Fi_j = (-1) Fi_i and F2_i = (-1) Fi_2-

If a. = ( - l ) V , j = 0 , 1 , ° ° ° , m , (3.7) and (3.8) with s = 0 yield, 
respec t ive ly , 

(3.11) (ml)2~m V J 
m 

^C^i) i ( i : )2" i -Si-2E(- 1 ) J smGj (m = 1 ' 2 ' o o o ) 

1=0 [ 3 = i 

(3.12) - (m! )2 m ^ m ^ a 

m m 
= ^(- l ) i ( i ! )2- i - 1F2 i_ i i ; ( - l ) J s iGi 

i=o 3=i 

(m = 0 , 1 , • • •) 

By repea ted addit ions, (309) and (3.10), a s well a s (3.11) and (3.12), give s im i l a r 

identit ies for Lucas n u m b e r s , L • . 
9 n 

Suppose now 

po s k
(m) = 2smkj 

j=i 
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in (3o3)„ Then, from (3.4), we obtain 

21 

C8 = ( - l ) m + 1 (mS )2 H 1 - 1 ( F 2 m _ 2 H r + F 2 m _ i H r + 1 ) 

F r o m (1.10) with p = 3n + r + 1 and s = 2m - 2 - 3n, we obtain 

Efem+r-l ~ F2m-2-3nH3n+r + F2m-l-3nH3n+r+i 

If we subst i tu te for C8 in (3.3) and then equate coefficients of H 3 n + r and 

H 3 n + r + i , we obtain the following ident i t ies : 

(3.13) ( - l ) m ( m l ) 2 - m " 1 F 2 m _ 2 „ 3 n 

m 

-z s=o 

m m 

i=o ' j=s+i 

(n = 0 5 1 , •• • , m - 1; m = 1, 2, • • •) , 

(3.14) ( - l ) m ( m ! ) 2 m " 1 F 2 m - l - 3 n 

E 
s=o 

m 

Ij=s+i 1=0 

(n = 0, V » n i . - l ; m = l , 2 , - - « ) 

Suppose now 

m 
P(k) = (-k)(m) = £ < - l ) j S ^ 

3=i 
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in (3.5). Then from (3.6), we obtain 

C8 = - ( in i )2~ m ~ i (F 1 _ 1 I 1 H r + F 2 _ m H r + 1 ) = -(m!)2~m"1Hr-f2-m . 

4. GENERALIZATIONS 

Let a, b , U0 and Ui be a r b i t r a r y rea l n u m b e r s , and consider the follow-

ing t h r e e sequences : 

(4.1) U n + 2 - a U n + 1 + bUn , ab = 1, a f - 1 9 (n = 0 , 1 , - - ) , 

(4.2) U n + 2 = aUn+i + U n , a f 0, (n = 0 , 1 , - - •) , 

(4.3) U n + 2 = U n + i + bU n , b = 0, (n = 0 , 1 , - ) , . 

We note that (4.1), (4.2), and (4.3) r educe to the Fibonacci sequence for the p rope r 

choices of a and b„ We shal l obtain summation fo rmulas , us ing both forward 

and backward differences, for each of the t h r e e sequences , a s defined by (4„1), 

(4.2), and (4.3), which yield the previous r e s u l t s , i . e . , T h e o r e m s 2, 3, 4, 5, 

and 6, a s special c a se s for the p r o p e r choices of a and b„ We have a l ready 

seen how ce r t a in p rocedures may be used to obtain var ious ident i t ies from our 

T h e o r e m s 2, • • • , 6„ In view of space l imi ta t ions , no at tempt will be made to 

u s e t h e s e p rocedu re s to fully exploit the genera l r e s u l t s obtained in th is sectionB 

Ident i t ies given in the proofs of T h e o r e m s 2 and 3 will be u sed to obtain the 

explicit formulas ci ted in our genera l t h e o r e m s , whose proofs a r e s im i l a r to 

that used for T h e o r e m 2 (if forward differences a r e involved) o r to that used 

for T h e o r e m 3 (if backward differences a r e involved). We shal l u s e repeatedly 

the following identity [3, p . 6, 12] 
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(4.4) Up+S - b ^ g U p - ! + * s+ iU p 

whe re $ 0
 = 0> <£i = 1, and $ n + 2 = a$n+i + fofai* n = 0 9 1 9 ° ° ° . We note that 

(4.4) yields (1,10) for a = b = 1. All r e s u l t s in this sect ion a r e valid for the 
p a r a m e t e r range9 r = 05 ±1, ±25 • • • . P(k) (see T h e o r e m 2) is defined as 
before,, F o r negat ive subsc r ip t s , we define 

(4.5) U - n .= (U0Vn - U n ) / ( - b ) n (n = l s 2 5 — ) , 

where V0 = 2, Vi = a, and Vn+2 = aVn+i + bVn ? n = 0 5 l , e " , We note 

that $ _ n - - * n / { - b ) n
? n = l , 2 , - » - . 

(i) Let U n satisfy (4.1). Since 

n - i m 

<4«6) S P { k ) U 3 k + r = J ^ i - D V + b r ^ n + r - i - h s i ^ P ( n ) + C^ 
k=o i=o 

m 

- bU3 n+r ^ ( - D V + b ) " 1 " 1 ^ ^ A2P(n) 
i=o 

m 

+ U 8 n + r + i ^ ( » l ) i ( a 2 + W 1 " ^ . ! A W ) + C8* 

1=0 

and 

HI 

<4*7) £ p ^ u 3 k + r = ^ ( - D ^ a 2 + b) 1 h l s n + ^ - i ^ P C n ) + Cs 
k=o i=o 

m 
= b I J 3 n + r S (""1)1(a2 + W'^Wi^Pdi) 

i=o 
m 

1=0 
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We may now state 
Theorem 7. Let Un satisfy (4.1). For n = 1, 2, • • •, and m = 0 , 1 , " # , 

we have 
n-i 

(4.8) y ^ P ( k ) U 3 k + r 

k=o 
m 

bU 3 n + r V " 
s=o 

m 
+ u3n+r+i / j 

s=o 

^(-lftilMa* + b ) " 1 - ^ J^ aj (J
s) GjL 

> 'j=s+i 
" m / m 

1=0 lj=s+i 

n • + Cft 

where 

m m 
(4.9) C* = - b U r ^ ^ D ^ i l X a 2 + b)"i"1«2i-2 E a j G j 

1=0 

/ m 
Ur+1^(-l)i(il)(a2 + W ^ W i J ^ a . G J 

1=0 J= i 

For n = 0 ,1 , • • •, and m = 0 ,1 , • o o , we have 

n 
(4.10) ^ P ( k ) U 3 k + I 

k=o 

m 
= bUto+r]£<-l>6 

s=o 

m 

"m ( m 

]Ti : (a* + b)"1"1^! J^ ^1)Jaj (3s) G j -
i=o 1j=s+i 

u3n+r+i J> (-If 
s=o 

m / m 

^ i i (a2 + w - ^ W i J ] ("1)Ja5 (i) Gj^ 
1=0 i=s+i 

n + C8 , 
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(4.11) Ca - U a °" b^ii(a2+b) i i^i-ily^(-i)3a-Gil 
i=o ( j=i )_ 

m | m \ 

- ur+iX/Ma2 + b)"i"^2-iE("1)JajGj ' 
1=0 • 3 = i 

For a = b = 1, Theorem 7 yields Theorem 60 

(ii) Let U satisfy (4.2). Since 

n-i m 
(4.12) ^ P « U 2 k + r = J ] ( - l ) i a " i ' 1 U 2 n + r . 1 + i A i P ( n ) + C? 

k=o 1=0 

U2n+r P(n) + ^ ( . D V 1 " 1 ^ ^Pfo) 

i=i 

m 
U g n + r + i ^ - l ) ^ " 1 " 1 ^ - ! A*P(n) + C? 

1=0 

and 

n m 
(4.13) ^ P ( k ) U 2 f c f r

 = ^ ( - 1 ) l a " 1 " l u 2 n + r + i - i V 1 P ( n ) + C* 
k=o i=o 

U ^ + r ^ V D V 1 1*_iV1P(n) 
i=o 

m 

+ U a a + r + i ^ t - D V ^ U i - i ^ P f c ) + C7* , 

25 

1=0 

we may now state 
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Theorem 8. Let U satisfy (4*2), For n3 m = 0513 • • *, we have 

XX 

(4.14) ^ P(k)U2k+I 

k=o 
m 

= u2n+r / j 

s=o 

" m 

i i=i 
m I 

+ u2n+r+iy J 
s=o 

m i in 

3=s+i 
m j m 

1=0 *j=s+i 

n + C7 ? 

where 

(4.15) C* = U-T ~ u r 

m 
a0 •E^^^-E^i 

i=i 

HI 

3=i 

m 
" Ur+iS^^tt^^Vi^ajGJ 

1=0 ] = i 

For n, m = 0,1? °• - , we have 

(4.16) y ^ P ( k ) U 2 k + r 

k=o 
m 

(-1)° 
s=o 

m i m 

E'-^-'lEw'Sli) i=0 | j=s+i 

m 

+ U 2 n + r + i / J ( - D S 

s=o 

+ c* , 

"m ( m 

1=0 I j=s+i 

r 
< s 

-

s n 

•Mo-' ll 
3 W 3-s J 
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(4.17) C* - U-7 - u r 
1=0 I j=i 

m I in ) 

U r + i X / a"i"1^i~i£("i)JajGj 
1=0 F 

For a = 1, (4.14) and (4.15) yield Theorem 4; and (4,16) and (4017) yield 
Theorem 3. 

(iii) Let Un satisfy (4e3)„ Since 

n-1 m 
(4018) ^ P ( k ) U k + r = ^ ( - 1 ) ^ i Hln+r+i^i ^Pfo) + C* 

k=o 1=0 

b U n + r ^ ( - l ) V 1 fy2i ^ P W 
i=o 

m 
+ U n + r + 1 ^ ( - l ) V 1 " V 2 i + i ^ P ( n ) + C* 

1=0 

and 

m 
(4.19) ^ P ( k ) U k + r = ^(-Dhr1 V + r + a + i V ^ W + Cj 

k=o 1=0 

= b U n + r 

m b""1]P(n) + X / ( " 1 ) J b " i " 1 * i + l V i p & l ) 
i= i 

m 
Un+r+i^ jM-l )^ 1 V i + a ^ P W + C* , 

1=0 
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Theorem 9. Let U satisfy (4» 3). For m = 0, ! , • • • ; n = 1,2,-**, we 

n - i 
(4o20) y ^ P ( k ) U k + r 

k=o 
m Tm . — 

=oli=o 'j=s+i 
m f m ( m 

- bU n+r 
s^o[i=o 

m Tni 
+ U n + r + 1 ^ ^ ^ 

s^o I i=o 

m 

»3=s+i 

s , 0 * n + C3 , 

where 

m 
(4.21) C* = -bUr^C-lJ^Ob-^WEa.Gjj 

i=o ( j=i I 
m / m J 

" U r + 1]C ("1)i(il ̂ "^^i+i 5^ajGJ 
i=o 3=i 

For m = 0 , ! , • • • ; n = 1,2, • • • , we have 

n - i m 
(4,22) ]TW)Uk 

+r " b u n + r ^ ( " 1 ) " fc=o s=o 
m 

un+r+l / ^(-D 
s=o 

m / m . \ 

i=i (j=s+i ' 

i~o I j=s+i 

+ c 3 9 

where 
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m j m \ 

- b U r y ^ i l b " 1 ' " V i + i \ ^ ( - l ) j a . G ! 
i=i \ j=i J 

m , m ] 

29 

1=0 ] = i 

F o r b = 1, (4.20) and (4.21) yield Theorem 2; and (4022) and (4„23) 
yield Theorem 5e 

5. APPLICATIONS FOR A SUMMATION FORMULA 

Recently, the author [6] proved the following resul t" 

L e m m a 1„ Let u . , i = 0 , 1 , • • • , p - 1, be a r b i t r a r y r e a l n u m b e r s , and 

let u , n = 0 , 1 , • • • , satisfy a homogeneous, l inear difference equation of 

o r d e r p with r e a l , constant coefficientse 

(5.1) boUn+p + b 1 u n +p- i + 8 8 ° + bpu n = 0 (b0bp £ 0) 

Let x be a r e a l number* Then 

(5.2) - 2 1=0 

bfxi 

3 - i 

Evk -E 
k=o k=o 

B bpn+i+k- j 
i=o 

n+i+k 

p - i 

k=0 j=o 
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(5.3) > u ,x = 
Tb.u, . : 

k p 

k=o i=o 

The series in (5.3) converges for | x | < I XI, where A is the root of bpxP + 
+ bjx + b0 = 0 with the smallest absolute value. 

In [6] , (5.2) was used to obtain a closed form for 

E* k x 
k=o 

If x0 is a value of x such that 

Jji4 - ° > 
i=o 

then 

^ k 
ukx0 

k=o 

is obtained from (5.2) by applying LTHospital1 s rule. 
As before, let 

m 
P(k) - y \ . k j , a f 0 , 

j=o 

and consider u, = P(k)w , , k = 0 ,1 , • • • , where q = 1, 2, • • •; r = 0, ±1, 
±2 , - ° - , and 
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(5.4) wn+2 + diWn+j + d2wn - 0, d ^ £ 0, d2 - 4d2 ^ 0, (n = 0 , 1 , - . . ) . 

If a and /3 are the roots of x2 + dix + do = 0, then IT, = w , , satisfies 
1 * k qk+r 

(5.5) Uk+2 - VqUk + 1 + dfu k = 0 (k = 0 , 1 , - . . ) , 

since (x - afl)(x - j8Q) - x2 - Vqx + d£, where V - cP + 0 n , n = 0 ,1 , • • % 
with VQ ='2, Vi = -dl5 satisfies (5e4)8 We note that P(k)wqk+r is a solution 
of a homogeneous, linear difference equation of order 2m + 2 with real, con-
stant coefficients whose characteristic equation is given by 

(5.6) [(x - aq)(x - j8q)] m + 1 = (x2 - Vqx + df)m+i - 0 . 

Since 

2m+2 

(x2 - Vqx + 4 ) m + 1 - ^ b 2 m + 2 _ s x S 

s=o 

we have that 

( i - vqX + dfx̂ )m+1 = £ y 

In [2, p* 30, example 3] , it is shown that 

2m+2 
.3 

r 
j=0 

m+i 

(5.7) b. = ( - ^ ^ ( ' ^ ^ ^ ( j - i ) ^ 1 " ^ ^ CJ = o . V . 2 » + « . 
i=o 

Thus, (5.2), in which p = 2m + 2 and b. defined by (5.7), yields a closed form 
for 

k 
vqk+r 

k=o 
2 Pfl^w^^x 
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If w, = KL, then dt = d2 = - 1 , Vq = Lq 5 and (5.2) yields 

(5.8) - ( 1 - L q x + ( - 1 ) ^ ) m + ^ p ( k ) H q k + r X l 5 

k=o 
2m+i 

k=o 
2m+i 

^ b . P f o + 1 + k - j ) H q ( n + 1 + k _ j ) + r 

k 

^ b . P ( k - j ) H q ( k - j ) + r 

n+l+k x 

k=o 3=o 

x (n = 0 , 1 / " ) , 

where (see (5.7)) 

(5.9) b 
m+i 

2m + 2). 

If P(k) = k = ml l ^ J in (5.8), we conclude that for a r b i t r a r y x, 

(5.10) 
2m+i 

E 
k=o 

XX r + ±mk ~ J ) H q(n+i+k- jHr 
n+i+k 

x 

2m+i 

k=o j=o x ' 

H q(k- j )+r 

(n = 0 , 1 , ° • • , m - 1; m = 1, 2, ° • • ) 

OTYI-J-0 

If n = 0 in (5.10), the coefficient of x mus t be 0, i. e. 

(5.11) 

21X1+1 / \ 

E , f 2m + 2 - j l „ 
3 \ m / Hq(2m+2-j)+r = 0 (m = 1 , 2 , - . . ) 
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If P(k) = ( - k ) ( m ) - ( - l ) m ( m ! ) / k + ™ " A in (588)3 we conclude that for 
a r b i t r a r y x and n = 05 

2H1+1 

(5.12) V * 

k=o 

k / 

3=0 x 

m | H q( i+k- j )+r 
. i+k 

2H1+1 

£ 
k=o 

j=0 

x* (m-= 1 , 2 , - - - ) 

2m+2 In (5.12), the coefficient of x must be 05 i. e . , 

2K1+1 , v 

{ 5 - 1 3 ) J2 b j ( 3 m m 1 " j ) Hqfem-w-jHr - ° (m - 1 , 2 , - - - ) 

i=o 

If P(k) = 1, then (5.8) yields a resu l t which has a l ready been proved by the 

author [ 7 , p . 1059 (5)] s us ing a different procedure* 

Noting that w m = cos md and w n = sin n# satisfy wn+2 - 2 cos 0wn-n + 

w n = 0, n = 0 5 1 , ° ° » 9 with Vn = 2 c o s n 0 , where 0 fi 09TT, 0 < 0 < 2rr9 

we obtain f rom (5.2) the following two ident i t ies : 

(5.14, - [ ! - 2(003 q«x + *T+'2>{r S:3J}' 
k=o 

2m+i 

k=o 

K 

b .P(n + l + k - 3 ) | s i n
 Lrq(n + l + k - j ) + r ] 4 

Ĵ o 

. n+i+k 

2m+i 

k=o 
Z ^ ] P ( k 3 M s m [qfe - j) + r ] 0 / 
3=0 

(n = 0 , 1 , • • • ) 

w h e r e {see (5.7)) 

(5.15) 
1X1+1 

b. = <-!>J J ] ( m ^ / ( j - i ) ( 2 C°S qe)2i_j (j = °'1'"*'2m+2)-
i=o 
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The relative simplicity of our results, (5.14) and (5.15), may be compared with 
the less general (as well as less elegant) results obtained by Schwatt [8, 
pp0 217-219], who used the differential operator, (xd/dx) „ 

For choices of P{k) = k or (~k) , we obtain (in the same manner 
as (5„11) and (5.13)) the identities (pairwise) 

2m+i 
(5 16) Y ^ b ( 2m + 2 - j W cos [q(2m + 2 - j ) + r ] ^ » Q , 
( 5 o l 6 ) LJ j \ m / i s l n [ q ( 2 m + 2 - j ) + r ] » f ° {Jl 

2H1+1 

(5.17) y b . ( 3 m + i - j M c o s [
r

q g m : ' ^ ! : r ] / J = o <m = i.2.-> 
JLJ 3 \ ni y i sin [q(2m + 2 - j) + r ] 0 J j=o 

Identities (5016) and {5.17) may be transformed to hold for hyperbolic functions 
by recalling that cosh (i#) = cos 0 and sinh (10) = i sin#e 

As an application of (5.3), we have 

(5.18) (1 - Vqx + dfx2 ) m + i y ^ P(k)wq k + rxk 

k=o 
" k 
2 ^ b , P ( k - j)wq(k-j)+r 

k=o 
2m+i *~ 

k=0 3=0 

k 
x 

where b. is defined by (5.7). 
It is desirable to have check formulas for the computed values of b.. In 

our discussion, consider b., as given by (5.7), where 

2m+2 
(5.19) (1 - Vqx + d fx 2 ) m + 1 - ^ b.xj (m = 0 ,1 , - - - ) . 

3=0 

We may set x = ±1 in (5.19). A substantial reduction in the effort required 
to evaluate all the b., j = 0 ,1 , °a • , 2m + 2, is afforded by noting that 
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(5.20) b ^ . j = d ? ( m + H ) b . (j = 0 , 1 , . . . , m + 1) . 

To prove (5,20), multiply both sides of (5.19) by d ^ m + l ) , and so 

2m+2 
(5.21) (d? - d2Vqx + d f ^ ) m + 1 = J2 b j ^ ( m + l ) x j . 

5=o 

Replacing x in (5.21) by x/dj?, we obtain (in reverse order) 

2H1+2 2TCL+2 

(5.22) (*» - Vqx + d^)m+1 = J^ Y^1"^ = Z b 2 m + H x J ; 

and thus (5.20) is obtained by comparing the coefficients of x** in the sums in 
(5.22). 

Let t = 1 , 2 , . ' . , and let gt+i(x) = 0 (where gt+i(x) is a polynomial in 
x of degree t + 1) be the characteristic equation determined by HQ^-+r. Then 
the characteristic equation determined by u, = P(k)Hq^.+r is given by 
[gt-Hl(x)]m = °- S i n c e 

(t+i)(m+i) 

[xt+wa/x)]m+i = Y, v j • 
j=0 

(5.2) may be applied to yield a closed form for 

E P ( k ) H q k + r x k 

k=o 

A formidable obstacle in this procedure is the complex nature of the b. , which 
involve multiple summations. 
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As a s imple example , cons ider H ^ + r , where H ^ + 3 + r - 2 H ^ + 2 + r - 2 H ^ + 1 + r 

+ H 2
+ = 0, and g3(x) - x3 - 2x2 - 2x + 1. Then x 3 g( l /x) = 1 - 2x - 2x2 + x3 

and 

3<m+i) 

(1 - 2x - 2x2 + i?)m+1 = ^ b - x 3 -

i=o 

Using the binomial t h e o r e m and then applying (5. 7) (with t h e p r o p e r change of 

notation for t he coefficients) , we obtain 

m+i 

(1 - 2x - 2x2 + x 3 ) m + 1 = X K m i + 1 ) ( W C l + x - ( K ^ / 2 ) ] 1 

i=o 
m+i i v 2i 3m+3 

-Zm^Zv^-EV i=o x ' k=o j=o 

w h e r e 
i 

, k - s E(s)(t-s0(-1/2)t 
s=o 

c
k
 = > U I i i, „ U-V*J (k = 0, ! , • • • , 2i) , 

and 

(5.23) b. = £ f 1 *) (-2)^.1 
1=0 

m + i 

= ( • 

i=o \ / s=o 

(j = 0 , 1 , - • • , 3m + 3) 

Thus , f rom (5.2) with p = 3m + 3 and u, = P(k)H2 , we obtain (where b . 
is defined by (5.23)), 
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(5,24) - (1 - 2x - 2x2 + x 3 > m + i y ] p ( k ) H | 

k=o 

3m+2 

k=o 
i Y ^ b . P ( n + 1 + k - j)H* n+i+k-j+r 
J=o 

k+r 

n+i+k 
3m+2 

E 
k=0 

X>Jp*-J)HLj 
J=o 

j+r 

Recal l ing the manne r by which (5.11), (5.13), (5.16), and (5.17) w e r e 

obtained, we may now s ta te the following r e su l t : 

T h e o r e m 10. Let 

Then 

(5.26) 

(5.25) [x* g t f j d / x ) ] im+1 
(t+i)(m+i) 

F° 
b.x ] (m = 1,2,- • •) 

(t+i)(m+i)-l 
y / ( t + l ) (m + l ) - j ) H i 

j=o 
q(tm+t+m+i-j)+r 

( q , t , m = 1 , 2 , - - - ; r = 0, ±1 , ±2, • • • J 

= 0 

(t+i)(m+i)-i 

(5.27) £ -i(* + l ) ( m + l ) - j 
m 

1 + m\ H t q(tm+t+m+l-j)+r - 0 

J=o 

( q , t , m = 1 , 2 , - - - ; r - 0, ±1, ±2, • • •) . 

We note that (5.26) and (5.27) a r e identical for m = 1. 
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60 REMARKS ON THE PAPER BY LEDIN [ 9] 

From our (2.31) with r = 0, EL = F , , and P(k) = k m (so that a = 1 , 
a. = 0, j = 0 , ! , • • • 5»m - 1), we conclude (see 9, (3a), (3b) for notation) 
that 

3 
(6s l ) Mi*3 = Z k I F k + i G f « = 0 ' 1 ' " ° ) • 

k=o 

^ M2,j = Z k l F k + 2 G ^ 0 = 0,1,-
k=o 

From [9, (6a)], we obtain for i = 3 

(6'3) M3,3 =JjlF^ " ° j t ^ 0 ' 1 ' - ) 
k=o 

Thus, the assertion [9, (6e)] is valid only for i = 1,) (with j = 0,1, • • •) and 
i = 3 (j = 1,2,- . .) . Since F k + . = F . ^ F ^ + F.__2Fk+l (see (1.10)), we obtain 
from [9, (6b)], using (6.1) and (6„2) above, that 

j i-4 
(6'4) M i J = E M Fk+i°? " E f c + 1 ) J F i -3-k (J = 1. 2, • • •) . 

k=o k=o 

SFoting (6.1), (6.2), and (6.4), we are tempted to define 

Mo , J = I > F k G ? « = 0,1, 
k=o 
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It should be noted that (6.1) and (6.2) a r e not uniquely defined,, In the 

notation of [9, (8)], our (1.2) (with r = 0 and H, = F, ) can be wri t ten as 

(6.5) S ( m s n - 1) = F P ( m , n ) + F ,P 0 (m,n) + C(m) , 
n 6 n~~ i 2 

where (using 9, (2b), (3b) ) 

(6.6) C(m) = ( - l ) m + 1 M (m = 0 , l , - " ) . 
2, m 

Thus , f rom (1.2), we obtain 

_j 
(6°7) M39J = ( - i ) j 2 ] ( " 1 ) k ( k ! ) F ^ G f (J = 0,1,"") ? 

J 
(6.8) M23J = (""1)J^]<-"1)k(k |)F

2k+iGf <j = 0,1,---) . 
k=o 

Since M . = M . + M, . for j = 1, 2 , e •" , we obtain from (6.7) and (6.8) that 
3SJ 2,3 1,3 J 

j 

(6.9) Muj = <""1)3^<-"1)k<kl )F2kGj?: 0 = i ' 2 ' " ' ) • 
k=o 

Since F 2 k + i - 1 = F
i „ 1

F
2 k 4 - 1

 + F i - 2
: F 3k ( s e e ( l a 0 ) ) s w e o b t a i n f r o m t9* ( 6 b ) ] » 

us ing (6.8) and (6.9), that 

k=o k=o 
(6.10) M.̂  = <-l)J£<-l>k

W >F2k+i-iGf " J > + ' ^ i - S - k 

(J = 1, 2, • • •) 

From (6.4) and (6.10), we conclude that 

j j 

(6.11) (-l)j^(-l)k(k!)F2k+i_lGJC = E k ' F
k + i G ^ (j = 1, 2, • • •; i = 0,1, • • •). 

k=o k=o 
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It should be noted that [9, (7c)] was obtained from [9, (6a)], using [9, 
(7a)]. Since 1.9, (7c)] is a linear difference equation of second order in i, its 
solution is 

i-3 

(6.12) P.(m,n) = F . ^ ( m , n ) ,+ F .^P^m.n) - ^ ( n - k)mF.^1_k 

k = ° ft = 3.4.. 

Using (6.12) and (1.10), [9, (8)] can be simplified to 

(6.13) S(m,n - h) = F P (m, n) + F P (m,n) + (-l)m+1M0 
n i n+ i 2 2,m 

k=o 

Since P3(m, n) = (-1) P3(m,-n) [9, (9)] can be simplified (using [ 9, 
(6a). (7c)]) to 

n 
m TYi 
m ™ ™ F + M F " 

i.m n+i 2,m n+2 
k=i 

(6.14) ^ ( n - k + l ) m F u = M< _ F _ , A + Mn _ F „ _ + n 

+ (-l)m+1(P2(m,-n) + Pidn.-n)) (m = 1, 2, • - . ) . 

Since (see 19, (11)]) P.(m,n) = (-1) Q(m,-n + i - l ) , where Q(m,n) 
are the Weinshenk polynomials in n of degree m (see reference [8] cited in 
[9]), it follows that 

m 
(6.15) Q(m.n) = ( - l ^ P ^ m , n ) = J ] ( ^ ) ^ f 

Thus (6.15), where M 1 is defined by (6.1), affords a closed form for the co-
efficients of Q(m,n)0 From (6.12), with n replaced by -n, we obtain the 
following recursion relation for the Weinshenk polynomials: 
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(6.16) Q(m,n + i - l ) = F ^ Q t m , ! ! + 1) + F. Q(m,n) 

1-3 

•J2{n+k)mFi-i-k (i = 3 > 4 > 8 " > 
k=o 

In j.9, (7a)] there is defined 

m 
(6.17) P.(m,n) = ^ T (-l) j f™\ M . ^ ^ 5 (m = 0,1,< 

j=o V / 

If we apply the well-known inverse pair relations, 

k=o k=o ^ ' 

to (6.17), we obtain as its inverse 

m 
(6.19) M.jm - ]TVl ) 3 ( ^ ) P.O.n)!!111"5 (m = 0,1, —) . 

Since P.(j,n) = (-l)JQ(j,-n + i - 1), we obtain from (6.19) 

m 

(6.20) MUm = Y^lf) Q(J5 ~n + * " 1)nm"j • 
5=0 

From (1.19), we obtain for n = 0, recalling (6.9), 

m 

(6.21) ( - D m ^ ) F 2 m = £ ( - D ^ i . j 
j=l 

(m = 1, 2, • • •) 
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F r o m (1.20), we obtain for n = 0, r eca l l ing (6.8), 

m 

(6»22) ( ^ l ) m ( n i ! ) F 2 m + 1 = ] T ( - l ^ M ^ (m = 0 , 1 , • • •) . 

3=0 

F r o m (2.35), we obtain, reca l l ing (6.9), 

m 
(6.23) ml F _,_, = 7 S j M, . (m = 1, 2, • • •) . 

m+l L^J m 1,3 

j=i 

F r o m (2.36), we obtain, reca l l ing (6.8), 

(6.24) mSF JO = V S j Mo . (m = 0 , 1 , - 0 . 
m+2 L^j m 2,] 

j=o 

If we set b = 2 in (4.3), then U = (~l)n is a solution of (4.3). In 

(4,20), set P(k) = k m so that a = 1, a. - 0, j = 0, l s - • • , m - 1. Thus , 
m j 

(4.20), with b = 2 and r = 0, gives a c losed form for 

n - l 
vk, m ^ ( ~ l ) k k m . 

k=o 
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THE Q MATRIX AS A COUNTEREXAMPLE IN GROUP THEORY 

D. A . L IND, University of Vi rg in ia, Charlottesvil le, V a . 

If g is an element of a group G, then o(g), the order of g, is defined 
to be the number of distinct elements of G in the set j e , g , g , °8°j5 where 
e is the identity of G. This is equivalent to defining o(g) to be the number 
of elements in the cyclic subgroup of G generated by g. It is an easy conse-
quence that the order of g equals the least positive integer n such that gn = 
e. If no such integer exists, g is said to be of infinite order* 

In an abelian group H (i. e. , ab = ba for all a,b 6 H) it is easy to 
show that the product of two elements of finite order must again be of finite 
order. Indeed, if o(a) = m, o(b) = n for some a,b £ H, then (ab) 

n TTL T\ TO 

= e, so o(ab) < mn. However, this does not necessarily 
hold in general, as shown in the following counterexample involving the Q 
matrix* 

Let G be the multiplicative group of all nonsingular 2x2 matrices, and 
let 

R = ["o i ] ' S = ["i ~°] 
be elements of G. One can check that K2 = S3 = I, the identity matrix, so 
that R and S are of finite order,, But 

RS = [I J] = Q . 

the Q matrix. Now Basin and Hoggatt [l] have shown that 

(RS)n = Qn = 

for any n > 08 Thus RS has infinite order, 

(See page 80 for reference.) 
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ON A CERTAIN KIND OF FIBONACCI SLIMS* 

GEORGE LEDIN, JR. , Institute of Chemical Biology, University of San Francisco, San Francisco, Cal i f . 

INTRODUCTION 

The sum 

n 
S(m,n) = J ] k m F k 

k=i 

(where F, is the k Fibonacci number) has been studied for particular val-
ues of me The cases m = 0 and m = 1 are well known [1,2]„ The case 
m = 3 was proposed as a problem [3] by Brother Ue Alfred of St. Mary!s 
College, California; this problem was later solved [4] by means of transla-
tional operator techniques and linear recurrence relations [5], This method 
of solution [4] can be generalized for arbitrary positive integral values of m, 
but it usually will involve the time-consuming, error-inviting procedure of 
solving 2m + 2 simultaneous equations in 2m + 2 variables, which is already 
a complicated task for m = 3. 

The method outlined in this paper is much more elementary, and the 
work required in finding a particular sum is reduced to several simple inte-
grations. The procedure discussed below not only facilitates the computation 
of these sums, but it is also a useful tool in the solution of other problems^ 
such as the problem of Fibonacci Ifcentroidsfr proposed by the author [6], ce r -
tain aspects of Fibonacci convolutions, and the like. 

THEORY 
Consider the sum 

n 
W 2 k m F k = S(m,n) = Fn+1P2(m,n) + F ^ d n . n ) + C(m) 

k=i 
*This paper was originally presented at the Fibonacci Association Meeting of 

21 May 1966. 

45 
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where F, denotes the k Fibonacci number (F0 = 0, F t = 1, F^+2 = Fk+t 
+ Fk), P^m.n) and P2(m,n) are polynomials in n of degree m, and C(m) 
is a constant depending only on the degree m„ 

Thus we can write 

(2a) P^rn^n) = a m n m + an^n3 1 1"1 + ••• + aln + a, 

(2b) P2(m,n) = b m n m + b m „ 1 n m 1 + . . . + b4n + b0 

Theorem 1. 
C(m) = -b0 

Proof. 
Take S(m, 0) = F ^ m , * ) ) + FoP^m.O) + C(m) from (1)) 

0 = P2(m,0) + C(m) but P2(m,0) = b0 from (2b)) . 

Inspection of the first few values of m (see Table I) leads us to the fol-
lowing determination of the polynomials (2a) and (2b). 

m 
(3a) 

m 
P^m.n) = £ ( - l ) J ( ^ M l 7 J n « H 

m 
(3b) 

ILL 

P2(m,n) ^ ( - ^ ( r ) ^ , ^ 

s, the 
where I . I are the binomial coefficients, and Mlsj and M 2 j are certain 
numbers, the law of formation of which is yet to be determined (refer to Table II). 

Theorem 2. 
n 

(4a) P^m + l,n) = (m + 1) J P^m.njdx + a{ 
o 

n 
(4b) P2(m + l ,n) = (m + 1) J P2(m,x)dx + bj 
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Table I 

LIST OF FIBONACCI SUMS OF THE TYPE 
S(m>n) ^ Z k ^ ^ k = F

n + i P 2 ( m ' n ) + F ^ O ^ n ) + C(m) 

0 S(0,n) = F n + 1 ( l ) + F n ( l ) - 1 
1 S( l ,n) = F n + l ( n - 2) + F n (n - 1) + 2 

2 S(29n) = F , (n2 - 4n + 8) + F (n2 - 2n + 5) - 8 

3 S(3,n) = F n + i ( n 3 - 6n2 + 24n - 50) + Fn(n3 - 3n2 + 15n - 31) + 50 

4 S(4$n) = F (n4 - 8n3 + 48n2 - 200n + 416) + F (n 4 -4n 3 +30n2 - 124n + 

+ 257) - 416 
5 S(5sn) = Fn+l(n5 - 10n4 + 80n3 - 500n2 + 2080n - 4322) + 

+ F (n5 - 5n4 + 50n3 - 310n2 + I285n - 2671) + 4322 

6 8(6,11) = F (n6 - 12n5 + 120n4 - 1000n3 + 6240n2 - 25932n + 53888) + 

+ F (n6 - 6n5 + 75n4 - 620n3 + 3855n2 - 16026n + 33305) -

- 53888 

7 S(7,n) = Fn+1(n7 - 14n6 + 168n5 - 1750n4 + I4560n3 - 90762n2 + 

+ 3772l6n - 783890) + F (n7 - 7n6 + 105n5 - 1085n4 + 

+ 8995n3 - 56091n2 + 233135n - 484471) + 783890 

8 S(8sn) = Fn+1(n8 - 16nT + 224n6 - 2800n5 + 29120n4 - 242032n3 + 

+ 1508864n2 - 627112On + 13031936) + F (n8 - 8n7 + 140n6 -
n 

- 1736n5 + 17990n4 - 149576n3 + 932540n2 - 3875768n + 

+ 8054177) - 13031936 
9 S(99n) = F ,,(n9 - 18n8 + 288n7 - 4200n6 + 52416n5 - 544572n4 + 

n+i 
+ 4526592n3 - 28220040n2 + 117287424n - 243733442) + 
+ F (n9 - 9n8 + 180n? - 2604n6 + 32382n5 - 336546n4 + 

n 

+ 2797620n3 - 17440956n2 + 72487593n - 150635551) 

+ 243733442 
10 S(10,n) = F (n10 - 20n9 + 360n8 - 6000n7 + 87360n6 - 1089144n5 + 

n+i 

+ 11316480n4-- 94066800n3 + 586487120n2 - 2437334420n + 

+ 5064892768) + F (n10 - 10n9+ 225n8 - 3720n7 + 53970n6 -
- 673092n5 + 6994050n4 - 58136520n3 + 362437965n2 -
- 1506355510n + 3130287705) ~ 5064892768 
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Table II 

LIST OF THE M1$j AND M2jj NUMBERS 

LFeb. 

M i.5 M< • 2 . 3 

0 

1 

2 
3 

4 

5 

6 

7 

8. 

9 

10 

1 

1 

5 
31 

257 

2671 

33305 

484471 

8054177 

150635551 

3130287705 

1 

2 
8 

50 

416 

4322 
53888 

783890 
13031936 

243733442 
5064892768 

(5a) aj = 1 - (m + l)f ( P ^ m . x ) + P2(m,x))dx 

(5b) bj = 1 - (m + 1) J (Pi(m,x) + 2P2(m,x))dx 
o 

Proofo 

P rove (4a) f i rs t . Using (3a) we have 

n 

(m + 1) { Pi(m, x)dx = (m + iX J QX 

/

xxx 

n 
m C 

Cm + 1) XVDXj d) ^ = E (-DV 3 (m + 1) n»+H 

= Pi(m + l ,n) - aj, 
H j=» 
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(aj is determined for j = m + 1, a value which is missing from the summa-
tion sign.) A similar proof establishes (4b). 

Now, 
l 

aj = PjCm + 1, 0) = Pi(m + 1,1) - (m + 1) J Pi(m9x)dx 
o 

and 
l 

bj = P2(m + 1,0) = P2(m + 1,1) - (m + l ) / p 2 (m,x )dx 
o 

and since S(m + 1,1) = 1 = P2(m + 1,1) + Pj(m + 1,1) + C(m + 1) (C(m + 1) = 
-bj by Theorem 1) then 

l l 
1 = (m + 1) J Pi(m,x)dx + aj + (m + 1) J P2(m,x)dx 

o o 

and the value of a* follows,, A similar manipulation yields the required value 
of bj . 

Corollary 1 

dPjdn + l ,n) dP2(m + l ,n) 
= (m + DPidn , ! ! ) ;— —— = m(m + l)P2(m,n) . dn ' ' 1 V ^ ' ^ ' A r 

dn 

Corollary 2 

drP!(m,n) drP2(m,n) 
= m(m - l) - • • (m - r + l)Pj(m - r, n); = m(m - 1)» • • 

dn dn 

• • • (m - r + l)P2(m - r , n) 
Corollary 3 

P2(m, 1) = a0 (refer to (2a, 2b)). 

Example 1 
n 

Problem. Obtain the sum \ J kF, • 
k=i 
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Solution. We know 

n 

E F, = F ^ + F - 1 (m = 0) . k n+i n 

k=i 

So the polynomials are Pt(0fn) = 1, P2(0sn) = 1. Now, applying Theorem 29 

Pi(l ,n) = J l d x + aj = n + aj and P2(l,n) = f Idx + b^ = n + bj 
o o 

i 1 
aj = 1 - J* (1 + l)dx = 1 - 2 = 4 and bj = 1 - / (1 + 2)dx = 1 - 3 = -2 

Thus, the required sum is equal to F (n - 2) + F (n - 1) + 2, 

Example 2 

Problem. Obtain the sum 
n 

k=i 

Solution, From Example 1, we know 

E k F k = F n + i { n " 2 ) + F n ( n " 1) + 2 

k=i 

So the polynomials are Pi(l ,n) = n - 1, P2(lsn) = n - 2„ Nowf applying 
Theorem 2 

Pi(2,n) = 2 J (x - l)dx + aj = n2 - 2n + aj and P2(2sn) = 2 J (x- 2)dxH-bg = n2~4n+bj 
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1 1 
J = l - 2 j ( x - l + x - 2)dx = 1 - 2 J (2x - 3)dx = 1 - 2(1 - 3) = 1 + 4 = 5 

bJ = l - 2 / ( x - l + 2 x - 4)dx = 1 - 2 J (3x - 5)dx = 1 - (3 - 10) = 1 + 7 = 

Thus, the required sum is equal to F (n2 - 4n + 8) + F (n2 - 2n + 5) - 8„ 

Theorem 3. 
If u, are the "generalized" Fibonacci numbers (i„ e„, numbers obeying 

the Fibonacci recurrence relation, but with different initial conditions) with 
the properties uk + 2 = \ + 1

 + \ » u0 = q, uA = p, [7] , then 

n 

E m k u k = u n + 1 P2 (m, n) + unPi (m, n) + K(m) , 
k=i 

where P2 and Pi are polynomials defined as above (3a9 3b) and K(m) = 
-(pb0 + qa0 ). 

In Theorem 3 we have stated a simple and useful result. The proof of 
this theorem is trivial, since u, = pF^ + qF, [7 ] . Two particular cases 
are most interesting. The Fibonacci case (p = 19 q = 0) has been discussed 
above; the Lucas case (p = 1, q = 2) is also quite simple (refer to Table HI). 

At this stage it seems clear that a study of the polynomials Pi(m9n) and 
P2(m,n) and of the numbers M y and M y pose by themselves an interest-
ing problem. The intuitive bounds 

M y + 1 > 2(j + l ) M y M y + 1 > 2(j + l ) M y (j > 1) 

hold for all cases shown on Table II and can be proven by total induction using 
the formulas developed for aj and bj • A very curious relationship exists 
between these numbers; this relationship, and the fact that these numbers are 
members of a whole class of numbers M y can be appreciated effectively in 
Table IV„ Horizontal addition of two consecutive M y numbers is the basic 
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Table IE 

LIST OF LUCAS SUMS OF THE TYPE 

T(m,n) = E k = 1 k m L k = L ^ P ^ n ) + L ^ f r ^ n ) + K(m) 

m = 0 T(0,n) = L n + 1 ( l ) + L n ( l ) - 3 

m - 1 T ( l , n) = L n + l ( n - 2) + Ln<n - 1) 4- 4 

m = 2 T(2,n) = L n + i (n 2 - 4n + 8) + Ln(n2 - 2n + 5) - 18 

m = 3 T(39n) = L ^ ( n 3 - 6n2 + 24n - 50) + L (n3 - 3n2 + 15n - 31) + 112 n+i n 
m = 4 T(4, n) = L fn4 - 8n3 + 48n2 - 200n + 416) + L (n4 - 4n3 + 30n2 - 124n n+l n 

+ 257) - 930 

m = 5 T(5sn) = Ln + 1(n5 - 10n4 + 80n3 - 500n2 + 2080n - 4322) + 

+ L (n5 - 5n4 + 50n3 - 310n2 + 1285n - 2671) + 9664 n 

p r inc ip le in the construct ion of Table IV; the r e s u l t s of success ive hor izonta l 

additions can be followed with the aid of the broken l ines . The following i l l u s -

t ra t ion should clarify the p r o c e s s ; 

1 _ 5 _ - 3 1 -
\ ^^ \ *" 

\ ^ - \ 
M+5=6 -^ _ _ 5+31=3£ 

1 ~~^ 6+36=42 
1 \ 

2+6=8 ^.8+42=50 
2<L _ _ ^ 8 - 50-

T h e s e z ig -zag re la t ionships imply the second-o rde r l inear difference equation 

(6a) M = M + M - (i - 3)3 

(i = 3, 4, 5 , - - « ; j = 0, 1, 2,--«- ) 

t he solution of which i s shown in Eq. (6b) „ 
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Table IV 

INTERDEPENDENCE CHART FOR THE M. . NUMBERS 

\ 
6 ^ _ x36 - _ 

-31 - -257- -2671 

/ \ 

\ / \ / 
2 8 8 - _ _ 2928 

\ -3216 
• - 3 5 4 0 

- 42 - _ _ _ "^ - - 3 2 4 - _ _ 
/ \ ^ - - 3 6 6 - _ _ 
7 X / \ ^ ^ - 3 9 0 6 

\ / \ / \ 
\ / 

/ 
x \ 

-50- -416-
/ \ 

-4322 

\ x i o ^ . 5 8 - ^ _ 
/ \ ^ - - 6 8 - _ 

/ \ / \ 

\ / 
/ •13-

\ / 
- 8 1 — 

4 6 6 - _ _ 
- - 5 2 4 - _ . 
- - 5 9 2 - _ 

/ \ / \ 
\ 

4738 
' - - 5 2 0 4 
" • ^ - 5 7 2 8 
- - - -6320 

•6 73* -6993 
/ 

1 6 ^ _ 
/ \ 

/ \ 
/ \ 

/ \ 
1/ \ 

\ \/ v 7 5 4 - ~ ^ _ _ X 7 6 6 6 ^ 
- - 8 4 2 0 

9 4 x - _ _ _ 
" - - 1 1 0 - _ _ ^ ~~ - 8 4 8 - _ _ __ 

/ \ " - - 9 5 8 - - _ _ ' ^ - - 9 2 6 8 
/ \ / \ ~ " ^ - 1 0 2 2 6 

' x / \ / N 
2 0 — — 1 3 0 - — 1 0 8 8 - - 1 1 3 1 4 

\ / \ / N ' / \ / 
X 2 4 ^ _ _ X 1 5 0 ^ _ _ _ X 1 2 1 8 - _ _ N 1 2 4 0 2 ^ 
/ \ ^ - - 1 7 4 - ^ _ _ _ ^ - - 1 3 6 8 - ^ _ _ ^ ~ ^ - 1 3 6 2 0 

/ \ / \ ^ - - 1 5 4 2 - _ ^ " ~ ~ " ^ - 1 4 9 8 8 
/ X / \ / \ ^ - 1 6 5 3 0 

/ 

/ \ 
[/ \ / 

29-
/ 

\ / \ / \ 
\ / \ / \ 

2 0 3 - — — 1 7 4 5 ^ — 18275 
X / \ / \ / \ / 

3 4 - ^ - _ _ _ 2 3 2 - _ _ _ 1 9 4 8 - _ _ _ 20020 
/ \ ^ - 2 6 6 - _ _ ^ ^ - 2 1 8 0 _ _ _ "~~-21968 

/ \ / \ ~ ^ ^ - - 2 4 4 6 _ _ _ ^ - - 2 4 1 4 8 
/ \ / \ ' \ ^ - - 2 6 5 9 4 

/ 

/ \ / 
/ 40-

x / 
\ / 
-306-

\ 
X 2752- / 

/ \ \ 
\ / \ / \ / \ / 

- 4 6 / ^ N . „ / N M „ / X _ / 

29346 

/ \ 
/ \ 

/ \ / 
/ \ / 

| / 
?7 — — 5 3 — 

3 4 6 - _ _ _ 3 0 5 8 -
^ - 3 9 2 _ _ _ ^ - - 3 4 0 4 -

/ \ ^ ^ - - ^ 3 7 9 6 -

\ 

32098 
^ - 3 5 1 5 6 

_ - - 3 8 5 6 0 
/ X

x ~ ^ - 4 2 3 5 6 x 

N / \ / \ 
. 445 — - X 4241^ N 46597 
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i-4 
(6b) M. . = F . ]VL . + F . M, . - V * (k + 1)^ F . Q , 

i,j l - i 2, j i - 2 i , ] L^ i - 3 - k 
k=o 

where F . r e p r e s e n t s the i ' Fibonacci numbero 

The interdependence of the fundamental set of number s M^ j and M2jj 

is noted f rom the formulas 

3 3 

(60 MlfJ = E ( - 1 ) h ( h ) M2,J-h a n d M 2 , j = E (h) M ^"h 
h=o ' h=o V ' 

The interdependence of the complete set of numbers M. . is evidenced with the 

fo rmula 1 : 

<6d) M^. = (i - 1)1 + £ (2j"h - 1) ( i ) M.jh 

h=o 

with j > 0, M. = 1, M. = i > 1. 
J * i,o 1,1 
David Zeit l in, in a pape r to be published in the Fibonacci Quar te r ly , 2 h a s 

shown that the following re la t ionship holds: 

j 

(6e) M. . = V h ! $ h F ^ . 
i.J ^ 3 h+i h=o 

w h e r e $ . a r e the Stirl ing n u m b e r s of the second kind, 

The polynomials V\ and P 2 a r e , s imi la r ly , specia l c a s e s of a m o r e 

genera l ca se of polynomials . 

AThe author i s indebted to Dr . Ve rne r E„ Hoggatt, J r . for pointing out th i s r e -
lat ionship through pe r sona l cor respondence . 

2The author acknowledges the r e f e r ee for th is in te res t ing r e m a r k . 
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m 
(7a) P.(mfn) = Y (~1)3M. . H n m ~ j 

1 L^ i s j I ] I 
j=0 X ! 

which are interrelated in the following ways? 

(7b) P.+ h(msn) = P . f r ^ n - h ) 

m (7c) P.(m3n) = P. .(m,n) + P. (msn) - (n + 3 - i) 

(i = 3, 4, 5, •••) 

These properties (7) enable us to obtain the following formula, thus generalize 
(1): 

(8) S (m 9 n -h ) = Fn^h + 1Pg^(m9n)+ Fn_hP1_i_h(m5n) + C(m) 

We have investigated sums of the form 

Ft + 2 m F 2 + 3 m F 3 + • • • + (n - l ) m F + n m F 
l L 6 n _ 1 n 

and it seems quite natural* that we apply our results to the "convolution type1 

sums of the form 

n m F i + (n - l ) m F 2 + (n - 2 ) m F 3 + . . . + 2 m F n - 1 + F n 

Theorem 40 

( 9 ) E ( n " k + 1 ) m \ - R ( m ' n ) = M s 5 m F n + i + M 2 3 m F n " P3*(m>n) 

k=i 

* Mathematicians1 beloved excuse* 
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where M and M a r e pa r t i cu l a r c a s e s of the M. . numbers (see 
o, m <i|,m i,j 

Table IV) and Pj^m, n) (the "conjugate" of the polynomial P3(m, n)) is defined 

as follows 

in 

(10) P*(m,n) = ^ M 3 j j H n 

A l i s t of t hese "convolution-type" sums i s provided in Table V. 

Table V 
n LIST OF SUMS OF THE TYPE 

k xvvu^ iv i V 1 3 j i n
 x

 n + 1
 X V i 2 , m x n 2 > " k + 1 ) ^ = R(m,n) = M ^ F ^ + M ? _ F„ - P 3 (m,n) 

k=i 

m = 0 R(0,n) = F ^ + F - 1 n+l n 
m = 1 R(l ,n) = 3F _,_ + 2F - (n + 3) n+l n 
m = 2 R(2,n) = 13F ^ + 8F - (n2 + 6n + 13) n+i n 
m = 3 R(3,n) = 81F ^ + 50F - (n3 + 9n2 + 39n + 81) 

n+l n 
m = 4 R(4,n) = 673F ^ + 416F - (n4 + 12n3 + 78n2 + 324n + 673) 

n+l n 
m = 5 R(5,n) = 6993F , A + 4322F - (n5 + 15n4 + 130n3 + 810n2 + 3365n + 6993) 

n+l n 

If Q(m,n) a r e the Weinshenk polynomials in n of degree m [ 8 j , then 

(11) P t (m,n) = Q(m,n + i - l ) and P . (m,n) = ( - l ) m Q ( m , - n + i - 1) 

The above re la t ionships (11) follow from the fact that P*(m, n) = (-1) P . (m, -n ) . 

The constant t e r m i s then C(m) = P i (m, l ) = Q(m, 1), and the or iginal sum (1) 

can be fur ther wri t ten as follows: 

(12) S(m,n) = ( - l ) m J F n + 1 Q ( m 5 - n + 1) + F n Q ( m , - n ) - Q ( m , l ) } 

The theore t i ca l i n t e re s t that these sums a rouse is beyond doubt the p r i -
m a r y motive for the i r scru t iny . Weinshenk [8 ] has applied some of these 



1967 ] ON A CERTAIN KIND OF FIBONACCI SUMS 57 

r e s u l t s to a p rob lem of reflect ion of light. The p rob lem of centroids [ 6 ] can be 

dealt in a m o r e genera l manner with the aid of an auxi l iary function defined by 

(13) G(r , s ,n) = k * 

hi pa r t i cu l a r , G( l , 05n) = G has the following l imit ing behavior : 

G 
l im -S-JL = l im (G ^ - G ) = 1 G ^ n+i n 

n—>oo n n—> oo 

The p rob lems invest igated in th i s paper a r e far f rom being completely 

solved. Although we could have genera l ized the subsc r ip t s in all our sums [ 9 ] , 

we purpose ly avoided this* However, some quest ions of impor tance have not 

been answered. Some of t hese quest ions a r e : 

1. Could the theory of S(m,n) be extended to negative m ? (All we need 

to study is m = - 1 , s ince the r e s t of the sums can be obtained with the aid of 

t h e a lgor i thms developed in th is paper ; notice that 

P . ( - l , n ) = l im 
^ 2 P.(m,n) 

i ^ d n d n i 
m—*>o 

2. Could the theory of S(m, n) be extended to ra t iona l (and to real) [ l o ] 

m ? If th is is poss ib le , what can be said about complex m ? 

3. What is the possibi l i ty of studying sums of the type 

n 
S(r,s,n) = £ krFjJ 

k=i 

with the aid of s tandard techniques? 
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•i LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM OF TERQUEi 
. AND AN EXTENSION OF FIBONACCI NUMBERS . 

C. A . CHURCH, Jr . and H. W. GOULD, W . Virginia University, Morgantown, W. Va . 

In this paper we give a simple lattice point solution to a generalized per-
mutation problem of Terquem and develop some elementary results for the 
extended Fibonacci numbers associated with the permutation problems 

The classical permutation problem of Terquem [12] has been stated by 
Riordan [10, p„ 17, ex„ 15] in the following manner,. Consider combinations 
of n numbered things in natural (rising) order, with f (n,r) the number of r -
combinations with odd elements in odd position and even elements in even posi-
tions, or, what is equivalent, with f (n,r) the number of combinations with an 
equal number of odd and even elements for r even and with the number of odd 
elements one greater than the number of even for r odd. 

It is easy to show that f(n,r) = f (n - 1, r - 1) + f(n - 2, r) , with f(n, 0) 
= 1, and explicitly 

(1) f(n,r) = 

Moreover, 

n 
(2) f (n) = ^T f (n, r) = f (n - 1) + f (n - 2) 

r=o 

so that f(n) is an ordinary Fibonacci number with f(0) = 1 and f(l) = 2„ 
A detailed discussion of Terquemfs problem is given by Netto [8, pp. 84-

87] and Thoralf Skolem [8, pp. 313-314] has appended notes on an extension of 
the problem in which the even and odd question is replaced by the more general 
question of what happens when one uses a modulus m to determine the position 
of an element in the permutation. 

"^Research supported by National Science Foundation Grant GP-482. 
59 
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More p rec i se ly , for a modulus m > 2, SkolemTs genera l iza t ion m a y b e 

s ta ted as follows. F r o m among the f i r s t n na tura l numbers let f(n,r;m) d e -

note the number of combinations in na tura l o rde r of r of these number s such 

that the j e lement in the combination is congruent to j modulo m. That i s , 

(3) f(n,r;m) = N < a 1 a 2
o e ° a r : 1 < a* < a2 < * " ° < a r < n, a. = j (mod m)> 

Z 1< B,t< a2 <° • • < a r < n 
a. = j (mod m) 

Consider the a r r a y in Fig. 1, whe re the l a s t en t ry is r + km, with 

k = 
m 

s ince r + km < n impl ies that the l a r g e s t in tegral va lue of k cannot exceed 

(n - r ) / m 0 This a r r a y contains those , and only those , e lements from among 

1, 2, • • • , n which may appear in a combination,, That i s , the j column con-

s i s t s of al l those e lements < n in the s a m e congruence c l a s s (mod m) which 

may appear in the j posit ion. 

(0,0) 
- 1 — 

1 + m -

•l + 2m 

•2 + m-

-2 + 2m 

-3 + m-

-3 + 2 m 

#-$*» 

• r + m • 

2m 

X 

i-1 + km i. -2 + k m i. • 3 + km -i. 
Fig0 1 

-r + km —# 

B = (r ,s) 

F r o m the la t t ice appended to the a r r a y In Fig„ 1, we can sys temat ica l ly 

wr i t e out the des i r ed combinat ions, and evaluate f(n, r;m)„ 

To get the des i r ed r e su l t , let "a path from A to BfT mean a path along 

the ve r t i ca l and hor izonta l segments of the la t t ice , always moving downward or 

from left to r ight (we take the posi t ive x - ax i s to the r ight , the posi t ive y -ax i s 
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downward, thus agreeing with the informal way of writing down the permutations)* 
Each such path will generate a combination of the desired type, and conversely, 
as follows? Starting at A each horizontal step picks up an entry and vertical 
steps line up entries0 Now, It is well known how many lattice paths there are 
from a = (0,0) to B = (r,s). MacMahon [7, VoL I, p„ 167] shows that this 
number is precisely 

( r ) 

hi our case s = [(n - r ) /m] c Thus we have at once that 

(4) 
r + 

f (n, r;m) m\[- (m - l)r" 
HI 

r 

as found by Skolem0 Terquem!s (1) follows when m = 2„ To illustrate, we 
consider some examples0 

Example 1. Let n = 12, r = 3, m = 40 Then the corresponding array 

i s 

E 
1 1 
c «— 

3 _ J 

r—— 2 — — i 

fi • • — D 

^ - » - 1 0 — * -

1 3 

7 1 

and the ten combinations are 

1 2 3 
1 2 7 
1 2 11 

1 6 7 
1 6 11 
1 10 11 

5 6 7 
5 6 11 
5 10 11 

9 10 11 

and the particular combination 5, 10, 11 corresponds to the path indicated by 
arrows. Informally, one writes out the combinations by paths from the left 
column to the right column, moving horizontally and/or diagonally,, The clue 
to a systematic count is found by superimposing the rectangular grid* 

Example 2„ Let n = 12, r = 4, m = 30 Then the corresponding array 
is 
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FH 1 n 1 

1 2 1 
— » - 5 — * -

| 3 1 
o 

1 8 * ». Q — , J 

1 4 1 
*7 
t 

L^ îo— -̂

and the fifteen combinations are 

1 2 3 4 
1 2 3 7 
1 2 3 10 
1 2 6 7 
1 2 6 10 

1 2 9 10 
1 5 6 7 
1 5 6 10 
1 5 9 10 
1 8 9 10 

4 5 6 7 
4 5 6 10 
4 5 9 10 
4 8 9 10 
7 8 9 10 

and the combination 4, 5, 9, 10 corresponds to the path indicated by arrows, 
It is felt that our proof shows atruism of mathematics: one may often find 

a simpler proof by embedding a given problem (Terquemfs) in a more general 
setting., The lattice point enumeration we used is well known, but may not be 
apparent in the original problem because of its specialized form0 

The extended Fibonacci numbers, in analogy to (2), are now defined by 

(5) f(n) = fm(n) = 
n 

£ 
r=o 

j*n + (m - l)r" 
m 

and it is not difficult to verify that they satisfy the recurrence relation 

(6) fm(n) - fm(n - 1) + fm(n - m) 

For example, with m = 3 we have the sequence 1, 2, 3, 4, 6, 9,13,19, 28, 
By well-known theorems in the theory of linear difference equations, if the dis-
tinct roots, of the equation 

(7) t m - t111"1 - i - o 

are ti, t2, • • • tm* then there exist constants C r such that 
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HI 

(8) f (n) = \ ^ C t n 

m ZmJ r r r 

This genera l izes the fami l iar formulas 

-o a - b , n , , n 
F = -~ • , L = a + b , 

n a - b n * 
for the F ibonacc i -Lucas number s . The constants C m a y b e de termined from 

the sys t em of m l inea r equations in C : 

m 

(9) 7 JC r t 3
r = j + 1,- for j = 0, 1, 2, ••• , m - 1 . 

r=i 

F o r example9 when m = 3, an approximate solution of the equation (7) i s given 

by 

I t j = 1.4655 , 

t2 - -0.23275 + 0o792551 , 

t3 = -0o23275 - 0o792551 , 

where i2 = ' - 1 . Relat ions (5) through (9) a r e given by Skolem [ 8 , 313-314]* 

When m = 3 the exact solution of (7) i s given by 

ti = A + B + - | 

(11) t2 = J - A + i + A^B ^ p 

1 A + B A - B . / - o 

w h e r e 
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As a pa r t i a l check on the values of the roo t s , we note the following t h e o r e m 

from the theory of equations. Let 

m 
(12) n (t - t.) = t m - t m - z 

Then 

-
m m (13) lL l] = £ \b> X " m) ^ ' n > 1 5 
j=i k=o 

where 

A / i.\ a / a + bk \ 
Ak( a 'b ) = r r b k ( k )• 

This may be compared with the well-known [2 , 3, 4, 5] expansion 

(14) x a = ^ T A k ( a , b ) z k , with z = x - 1 
b 

, x 
k=o 

which was actually found by Lagrange in his g rea t m e m o i r of 1770 (Vol, 24 of 

P r o c . of the Ber l in Academy of Sciences) and which leads at once to the genera l 

addition t h e o r e m d i scussed in [2 , 3, 4, 5 ] a s f i r s t noted by H. A. Rothe„ 

See re la t ion (20), th is paper,, 
m m—l F o r the equation t - t - z = 0, we define the power sums of the 

roo t s t . by 

(15) S(n) - £ l ) 



1967] OF TERQUEM AND AN EXTENSION OF FIBONACCI NUMBERS 65 

Since t . " + z = t . , we find that 
3 3 

m 
S(n - 1) + zS(n - m) = £ {t*"1 + z t ^ 1 1 1 J = £ t ^ / t ^ 1 + z \ - J ] t ^ t * 1 , 

j=i j=i ^ / j=i 

so that S(n) i tself a lso sa t i s f ies a Fibonacci - type r e c u r r e n c e 

(16) S(n) = S(n - 1) + zS(n - m) . 

Using the va lues z = 1, m = 3, the prev ious roo ts (10) yield the approximate 

va lues (by log t ab les ) : S(l) - 1, S(2) = 0e9998, S(3) - 3,9995, and S(4) = 5 

v e r y near ly c This gives a pa r t i a l check on (10)o 

In any event5 we may cons ider the sequence defined by (13), (15), (16) a s 

a kind of extended Fibonacci sequence,, hi pa r t i cu l a r , 

(17) S(n) ™ n 
Z^ n - (m 
k=o 

(m - l )k ( • 
|- (m 

k 

T h e r e sa t i s f ies (16) jus t a s (5) sa t i s f ies (6). 

we compare (17) and (5)0 We a lso cal l at tention 

recent ly by J„ A9 Raab [Vj, who found that 

l )k n > 1 , 

a r e s imi l a r i t i e s and con t ra s t s if 

to another such r e su l t given 

the sequence defined by 

(18) x = 

[r+i j 
\ - ^ / n - r k \ n- k(r+i) b k 

sa t i s f ies 

(19) x = ax J + bx n n - l n - r - i 
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Formula (13) is substantially that given by Arthur Cayley [!]<, The classical 
Lagrange inversion formula for series is inherent in all these formulas,, One 
should also compare the Fibonacci-type relations here with the expansions 
given in [5]„ For m = 3, (17) gives the sequence 1,1, 4, 55 6,10,15, 21, 31, 

We als.o call attention to the two well-known special cases 

, , n+i n+i 
-2k k __ x - y £ (n i k) r 

k=o 
z = x - y 

and 

V^ / n - k \ n n-2k-i k = x11 + y 

=r \ k /n -k z ' k=o 

n , n 
• + y 
x + y 

where x = 1 + Vz + 1, y = 1 -v/z + 1° F and L occur when z = 49 
J v n n 

Relations (17) and (5) differ because the initial conditions differ., For 
z = 1, (17) satisfies precisely the same recurrence as (5)c If the initial 
values were the same then we would have found a formula for the permutation 
problem not unlike (17)„ There are many papers (too numerous to mention) in 
which complicated binomial sums are found by lattice point enumerations,, The 
convolutions in £2, 3,4, 5J may mostly be found by such counting methods,, We 
also note the recent papers of Greenwood |jf] and Stocks [ll] wherein the 
Fibonacci numbers occur0 

The convolution addition theorem [2, 3,4, 5] of H Ae Rothe (1793) 

(20) ^ A k ( a , b ) A n _ k ( c s b ) - An(a + c,b) , 
k=o 

valid for all real or complex a, b, c (being a polynomial identity in these), has 
been derived several times by lattice point methodse We mention only a novel 
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derivation by Lyness [13j0 Relation (20) has been rediscovered dozens of times 
since 1793, and its application in probability., graph theory, analysis, and the 
enumeration of flexagons, etc„ , shows that the theorem is very usefuL In fact, 
it is a natural source of binomial identities,, We should like to raise the ques-
tion here as to whether any analogous relation involving the generalized Terquem 
coefficients (4) existSo It seems appropriate to study the generating function 
defined by 

(21) T(x;a,b) = J^ (fa + (b - l )n1\ 

n=o 

for as general a and b as possible., If b is a natural number and a is an 
integer >0, the series terminates with that term where n = a, as is evident 
from the fact that a + (b - l)n < bn for n > a and the fact that | 1 = 0 for 
k < n when n > 0, provided k > 0o We also note that for arbitrary complex 
a and | x | < 1 

T(x;a,l) = 2 (») *" - {1 
n=o * ' 

+ x)" 

so that in this case we do have an addition theorem: 

T(x;a9l)T(x;c5l) = T(x;a + c , l ) . 

This, of course, corresponds to the case b = 0 in formula (20); the relation 
implies the familiar Vandermonde convolution or addition theorem. 

There does not seem to be any especially simple closed sum for the series 

(22) Cn(a,c,b) - ^ 
k=o 

n / f a + ( b - l ) k l \ / f c + (b - l')(n - k)] \ 

which occurs in 
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T(x ; a ,b )T(x , c ,b ) = V x n C n ( a s c ? b ) , 

n=o 

for a r b i t r a r y b6 
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ADVANCED PROBLEMS AND SOLUTIONS 
Edited by V. E. HOGGATT, JR., San Jose State College, San Jose, Calif. 

Send all communications concerning Advanced Problems and Solutions to 
Raymond Whitney, Mathematics Department, Lock Haven State College, Lock 
Haven, Pennsylvania. This department especially welcomes problems believed 
to be new or extending old results* Proposers should submit solutions or other 
information that will assist the editor. To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within three months after 
publication of the problems. 

NOTICE; PLEASE SEND ALL SOLUTIONS AND NEW PROPOSALS TO 
PROFESSOR RAYMOND E9 WHITNEY, MATHEMATICS DEPART-
MENT, LOCK HAVEN STATE COLLEGE, LOCK HAVEN, PA0 

H-103 Proposed by David Ze i t l in , Minneapolis, Minnesota„ 
Show that n 

8 A F3k+IF3k+2F61-'~ = F~ = F4 
' 3k+I 3k+2 6k+3 3n+3 

k=o 

H-104 Proposed by VernerEo Hoggatt, J r s , San Jose State College, San Jose, Calif 0 

Show 

L m X °° k 
1 - 5F X^ <-l ) m + W = £ 5 (^mk + X L ^ D m ) X 2 k ' m k=o 

where L and F are the m Lucas and Fibonacci numbers, respectively. m m > r J 

H-105 Proposed by Edgar Karst, Norman, Oklahoma, and S« O c Rorem, Davenport, 
Iowa, 

Show for al l positive integral n and primes p > 2 that 

(n + 1)P - nP = 6N + 1 

where N is a positive integer. Generalize. 

69 
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H-106 Proposed by L. Carl i tz, Duke University, Durham, N« Carolina, 
Show that n n 

a) 
k=o x ' k=o 
n n 

T - ^ / « \ 2 
b) 

k=o N ' k=o 

Feb. 

k=0 X f k=0 X ' X ' 

H-107 Proposed by Vladimir Ivanoff, San Carlos, California. 

Show that 
F F F p+2n p+n p 
F ^0 F ^ F | - 0 q+2n q+n q 
F F F 

r+2n r+n r 
for all integers p, q, r, and n. 

H-108 Proposed by H. E, Huntley, Hutton, Somerset, U.K. 

Find the sides of a tetrahedron, the faces of which are all scalene t r i -
angles similar to each other, and having sides of integral lengths. 

H-109 Proposed by George Ledin, Jr«, San Francisco, California* 

Solve 
X2 + Y2 + l = 3XY 

for all integral solutions and consequently derive the identity: 

F 2 + F 2 + l = 3 F F 
*6k+7 *6k+5 -1 ^ 6 k + 7 ^ 6 k + 5 " 

H-110 Proposed by George Ledin, J r . , Son Francisco, California 

Evaluate the double sum 
n oo 

m = i 
l^ j-m 
k=i |_kJ 
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whe re [ x ] i s the g rea t e s t integer in x9 

H - l l l Proposed by John L. Brown, J r . , Pennsylvania State University, State 
College, Pennsylvania. 

Show that 

[C 
L n = "g" j l + 4 cos2 ^ L z J : m l for n > 1 . 

H-112 Proposed by L. Carl i fz, Duke University, Durham, N . Carolina. 

Show that, for n > 1, 

a) L* - L5 - L5 = 5 L L L ( 2 L
2 - 5 ( - l ) n ) n+i n n - i n+i n n - i n 

W F^ - F 5 - F 5 = 5F F F , (2F2 + ( - l ) n ) n+i n n - i n+l n n - i n 
c) L 7 - L7 - L7 = 7 L T L (2L2 - 5 ( - l ) n ) 2 

n+l n n - i n+l n n - i n 
d) F 7 - F 7 - F 7 , = 7F F F (2F2 + ( - l ) n ) 2 

n+l n n - l n+l n n - l n 

SOLUTIONS 

NO SOLUTIONS RECEIVED 

H-59 Proposed by D. W. Robinson, Brigham Young University, Provo, Utah* 

Show that , if m > 2, then the per iod of the Fibonacci sequence 0, 1, 

1, 2, 3, - •• , F , • * • reduced modulo m is twice the l eas t posi t ive in teger n 

such that F ,4 = (~l)nF . (mod m). n+l n - l 

H-60 Proposed by Verner E. Hoggatt, Son Jose State College, San Jose, Cal i f . 

It i s well known that if p, is the l eas t in teger such that F , = F 

mod 10 k , then pt = 60, p2 = 300 and p k = 1,5 x 10 k for k > 3. If Q(n,k) 

i s the k digit of the n Fibonacci , then for fixed k, Q(n, k) i s pe r iod ic , 

that i s q, is the leas t integer such that Q(n + q , , k ) = Q(n, k) mod 10. Find 

an explicit express ion for q, . 

H-62 Proposed by H. W« Gould, W« Virginia University, Morgantown, West 
Virginia (corrected). 
Find all polynomials f(x) and g(x), of the form 
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f(x + 1) = 2__j a - x i a - a n in teger 
3=0 
s 

g(x) = Y b . x , b . an in teger 

3=o 
such that 

2Jx2f3(x + 1) - (x + l)2g3(x)} + 3{x2f2(x + 1) - (x+ l)2g2(x)} 

+ (2x + l){xf(x + 1) - (x + l)g(x)} = 0 . 

LIMIT OF LIMITS 

H-61 Proposed by P, F. Byrd, San Jose State College, San Jose, Calif.(corrected) 

Let 

f , = 0 for 0 < n < k - 2, f, , , = 1 and 

k 

Show that 

Hence 

f , = / f . , for n > k 
n?k £-** n - j ,k 

3=i 

n+i,k 

f k 
l im Hm ' 

1 f _!.< 1 2 ' 

k—•(» n-8^oo n+i,k 

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

The sequence if 1 I °° obeys a r e c u r r e n c e whose auxi l iary polynomial 

i s 
£l x k k - i k-2 . 
f (x) = x - x - x - • • • - x - 1 

Let r 1 , r , , e • • , r, , be the k roo ts of f(x) = 0„ The k initial conditions 
ljK. 2j]£ JijK. 

given de te rmine constants b , , b , , * •" , b, , such that 
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k 

nsk *->* j9k ],k 

Now Miles [ ' 'General ized Fibonacci Numbers and Associa ted Matr ices , 1 ' Amer . 
Math. Monthly, Vol. 67, pp. 745-57] has shown that al l but one of the roots 

r . , l ie within the unit c i r c l e , so that jr . , 1 < 1 (1 < j < k). Note that 

f(l) = 1 - k < 0, f(2) = 1, and s ince f i s continuous, the remaining root 

r, T must be a r ea l number between 1 and 2 . Then b, , ^ 0, because k,k n k,k 
l im r . , = 0 (1 < j < k) while l im f . = oo. We also have 

n r . , 
l im - i ^ = 0 (1 < j < k) , 

k,k 
so that 

l im f , /f , J , = lim I V b. , r11, / Y! b. , r. , 
^ o o n ' k / n + 1 ' k n^oo \PL ^ k J 'k// \ j-i J'k ^k , 

= 1/r,, k I M/ Ak,k " 

We have a l ready shown r, , < 2. Now 

(2k)k - (2k)k"1(k + 1) - (2k)k"2(k + 1)2 - - - • - (2k)(k + l ) k " A - (k + l ) k 

< (2k)k - (2k)k - 1k - (2k)k"2k - . . . - (2k)kk _ 1 - k k - k k 

= 2 k k k - k k ( 2 k _ 1 + 2 k " 2 + • • • + 2 + 1 + 1) = 0 , 

k and division by (k-t 1) shows 

Since 

f(m)<° 
i < j t < i 

we have 2 > r, , > 2k/(k + 1), and invers ion gives the f i r s t r e su l t of the 
JtC,.K 

prob lem. The second r e su l t follows by taking l imi ts as k — • » . 

ODD ROW SUMS OF FIBONOMIAL COEFFICIENTS 

H-63 Proposed by Stephen Je rb ic , Son Jose State College, San Jose, California. 
Let F F • • • F 

-n/ A\ -i J -n/ \ m m ~ 1 m-n+i A . . 
F(m,0) = 1 and F(m5n) = — „ ^ =;—— 0 < n < m , 

n n - l x 
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be the Fibonomial coefficients, where F i s the n Fibonacci number . Show 
n 

2m-i m - l 
]T F(2m - l , n ) = 0 L2 i , m > 1 . 
n=o i=o 

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia. 
n 

Put S n = £ F < n > r ) 
r=o 

and 

(1) fn(x) = ^ ( - l ) r ( r + l ) / 2 F ( n , r ) x n - r . 
r=o 

Brennan (nFibonacci Powers and P a s c a l ' s Tr iangle in a Mat r ix , ? t Fibonacci 
Quar te r ly , Vol. 2, No. 2S pp. 93-103) has shown 

f (x) - (-l)n~2(x2 - L x + (-if"1)! J - x ) nx ' n - i n-2x 

whe re L is the n Lucas number . Setting x = \ / ^ l 7 . n = 2m + 1, we find 

f 7i) = iL f (-i) . 
2m+i 2m 2m-i 

Using (1) this becomes 

m m 
] £ F(2m + 1, 2r) + i ]T F ^ 2 m + * > 2 r + *) 

r=o r=o 
m - i m - l 

= L
2 m E F < 2 m " 1. 2 r + 1) + i L 2 m J2 F(2m - 1, 2r) , 

r=o r=o 

and so equating r ea l and imaginary p a r t s , taking absolute va lues , and adding 

we get S , = L S , which, with Si = 2 = L0, p roves the proposi t ion. 
& 2 m + i 2 m 2H1-1 1 u» J- r r 

ONE OF MANY FORMS 

H-64 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

Show 
F n+i i n i ( l - 2 i c o S J i L ) 

where F is the n Fibonacci number . n 

Solution by David Ze i t l in , Minneapolis, Minnesota-

F o r a general izat ion, let W0s Wls C ^ 0, and d fi 0 be a r b i t r a r y r e a l 

n u m b e r s , and define W , = dW _,. - cW , n = 0 , 1 , • • • , with d2 - 4c f 0„ 
n+2 n+i n 

We define V = W , n =" 0 , 1 , • • • , when W0 = 1 and Wt = d; and set Z 
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= W , n = 0 ,1 , • • • , when W0 = 0 and Wj. = 1* In terms of Chebyshevpoly-
nomials of the first kind, T (x), and of the second kind U (x), it is readily 
verified that 

(1) Z +1 , cn/2U (-$-) ; V e 2cn/2T (-*-) 
n+1 n \ 2 V 5 / n n\2VH / 

Since 

un« - 2* n (x - c»s J t t , ) , T„ W - 2 - n (x - cos <5ti)n), 

we obtain from (1) 

<2> V . - « " * & ? - ' - * ) 
n - ^ ^ " " " 9 ^ 1 ) 

(3) V. 
11 

J 
If d = 1 and c = - 1 , then Z = F and V = L . Since - 1 = i2, we ob-

n n n n 

tain from (2) and (3), respec t ive ly , 

<4) F n + 1 

. | ( 1 -2i cos ^Hrr ) 

, . a ( 1 . M e 0 B f i L i J ) n ) (5) 
11 

3 

Also solved by F, D. Parker, John L Brown, J r . , and the proposer. 

FIBONACCI RELATED NUMBER 

H-65 Proposed by J . Wlodarski, Porz-Westhoven, Federal Republic of Germany* 

The units digit of a positive integers M9 is 9e Take the 9 and put it on 
the left of the remaining digits of M forming a new integer s Ns such that 
N = 9Me Find the smallest M for which this is possible* 

Solution by Robert H. Anglin, Danville, Va«, and Murray Berg, Oakland, Calif* 

n 
M = 9 + X^x.101 

i=i 
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n 
N = £ x.101 + 9 - 1 0 n = 9M 

1=1 

ION = 90M = V x.101 + 9 0 - 1 0 n = M - 9 + 90»10 n 

89M = 9(10 n + 1 - 1) 

= 9( lQ n + 1 - 1) = 8 9 9 9 9 ° - 9 9 1 
M 89 89 

By per forming the actual division the f i r s t ze ro occurs when the quotient i s 

M = 1011 23595 50561 79775 28089 88764 04494 38202 24719 

Wlodarski notes 

M = 1043 + 10" V 2k 
m=l 10 

where [ x ] i s the g rea te s t in teger function in x. 

Also solved by Marjorie Bicknell, James Desmond, A . B. Western, J r . , C.B.A, 
Peck, and the proposer, 

A STIRLING NUMBER SOLUTION 

H-661 Proposed by Douglas Llnd, University of Virginia, Charlottesville, Va . , and 
Raymond E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

k 
Let V a.y ,. = 0 

be a l inear homogeneous r e c u r r e n c e re la t ion with constant coefficients a,. 
Let the roots of the auxi l iary polynomial 

k 
L a x 3 = 0 
j=o J 

be r l 9 r2 , • o o , r m and each root r j be of mult ipl ici ty m^ (i = 1,2, • • • , m ) . 

J e s k e (Linear R e c u r r e n c e Relat ions — P a r t I, Fibonacci Quar te r ly , Vol, 

No. 2, pp. 69-74) showed that 

. m . - i oo ,n m r . t l 
v y * = y e

 i £ b..tj . 
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He a lso s ta ted that f rom this we may obtain 

m.- i 
m __ i <*) y = V r . V b . . i r Jn ~ l A-* ij 1=1 3=0 

(i) Show that (*) i s in genera l incor rec t s (ii) s ta te under what conditions it yields 

the c o r r e c t r e su l t , and (iii) give the c o r r e c t formulation,, 

Solution by the proposers• 

Let s. = m. - 1, and put 
i i ^ 

oo ,n m r . t i 

" Y 
r 

oo ,n m r . t i 

YW = E w = E*1 E bf . 
n=o n m i=i i=o 1J 

Now define n , v = n(n - ! ) • • • (n - s + 1), n , ^ = 1, and for k = 1, 2, • • • , m let 

so that 

Yk(t) 

.(t) = 

= e 

oo s k 

E E 
v=o j=o 

oo S k 

" k 

E 
j=o 

b, . 
kj 

b, .tj 

kj 

v! 

= E E bkir> + J ) . . * 
v+j 

V=0 ]=0 
Wv T J '(j) F ^ T J ! 

F o r p = 0 , 1 , • • • s s, put 

oo fv+p 
Yk-nft) .= E V k ( v + P)(P) ¥^rw ksp v=o 

Differentiating th is n t i m e s and set t ing t = 0, 

/ v oo ,v+p-n 
y W ( 0 ) = y b v ( v + } t _ ^ 

k,p ^ kp kx ^ ( p ) (v + p - n)! t=o 

, n -p n,, - P \ 
= b, r, ^n , x = r, (b, n , xr, ^ ) . 

kp k (p) kv kp (p) k 
Thus applying the inve r se t r a n s f o r m (393)9 we find 

s, 
yn = Y(n)(0) = g E YW (0) = g rn ^ 

k=ip=o ^sP i=i 1 j= 0
 XJ {V 1 

m m r 1 

-J 



78 ADVANCED PROBLEMS AND SOLUTIONS [Feb. 

which is the correct form. 
(ii) If m. = 1 (i = 1,2,« • • ,» ! ) , then since n,^ = n°, Jeskefs form gives the 
correct result. Also, since n^x = n1, his result will be correct if all roots of 
multiplicity two are one, and there are no roots of greater multiplicity. For 
higher multiplicities his form almost never gives the correct result. 
(i) We need only take a recurrence whose auxiliary equation does not satisfy 
the conditions of (ii) to form a counterexample to (*). 

Also solved by P. F. Byrd and D. Ze i t l i n . 

Editorial Comment; The b. . in the first displayed equation above are arbitrary 
constants. The b. . in the second displayed equation are also arbitrary con-
stants. In this sense Jeske is correct. However, most readers would probably 
incorrectly infer that after you have determined the specific constants for a 
given problem one can then use these in the second displayed equation which, of 
course, is not true in all cases. V. E„ EL 

AN INTERESTING ANGLE 

H-67 Proposed by J . W. Gootherts, Sunnyvale, California. 

Let B = (B 0 ,Bi , - - - ,B ) and V = (F , F , . . . . , F , ) be two vectors us l9 n m m+i m+n 
in Euclidian n + 1 space. The B.fs are binomial coefficients of degree n and 
the F .Ts are consecutive Fibonacci numbers starting at any integer m. 

Find the limit of the angle between these vectors as n approaches infinity. 

Solution by F. D. Parker, Sony at Buffalo, N . Y . 

We start with the formula 

cos2e = S^JDL , 
|B|1V|* 

where B - V is the scalar product of B and V, and |B | , | v | represent the 
magnitudes of B and V, respectively. 

The following results are easy to verify by mathematical induction: 

(1) B . V = F , 
x ; m+2n 

(2) | B | = 
• v ^ ) 
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(3) | V | = \/F , F , ^ - F F 
v ' I I v m+n m+n+i m - i m 

Thus . »2 
[ B - V | 2

 =
 ( F m + 2 n ) _ 

|B | 2 |V | 2 l2n) (F A F M ^ - F F~~) 8 p I n I v m+n m+n+i m - i m 7 

But 
(F )2 

lim — Y~ = ° a n d 

n—#-oo m+n m+n+i m - i m 

l im / 2 n \ 
n - ^ o o \ n J 

, , l im c o s # = 0, and 
= GO and hence ' 

' n»-̂ -Qo 
l i m 0 = ,r/2 

n «-#-oo 
Also solved by the proposer. 

MANY ROADS TO MORGANTOWN 

H-68 Proposed by H. W. Gould, W, Virginia University, Morgonfown, W . Va« 

P r o v e that 
n i 2 

E l n^ . -
> F _ ! , n > 1 

k=i k n+2 
with equality only for n = 1, 2„ 

Solution by the proposer, 

The well-known identity 

E ^ E B j = nEA.B. + | t t (\ - A )(B - B.) 
i=i j=i J i=i i=i j=i J J 

y ie lds the specia l c a se 

n n n n (A. - A . ) 2 

i 3 

i= i j= i 3 i = i j = i i 3 

whence it i s evident that for posi t ive A f s we have the inequality 

n n 

1-1 j= i J 
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with equality only when A. = A. for all 1 < i < n, 1 < j < n. The application 

to the Fibonacci number s F (with F (J = F +F a and Fi = 1, Fo = 1) 
n n+i n n - l i * £ > 

i s evident f rom the formula 

% F i = F n + 2 " 1 • 
1=1 

so that we find 
n -» 2 

y l > _B! 
.^J F . " F - 1 
i=i l n+2 

with equality only for n = 1, 2. 

Zeiti m and Desmond used the Arithmetic-Harmonic mean inequality. Brown used 
the Schwarz inequality* 

Further results are: 

£ 1 n2 

fi B; * H - H2 • n - x (Zeitlin) 

k=i k n+2 c 

A i - > = -5? , n > 1 (Hoggatt) 

h FL n n+i 

Also solved by D. Ze i t l in , John L Brown, Jr.- A/LN.S. Swamy, D. Lind, C.B.A. 
Peck, and John Wessner. 

SOME BELATED SOLVERS' CREDITS 

H-37 Dermott A . Breault 

H-48 John L. Brown, J r . , and Charles R. Wall 

H-52 C.B.A. Peck, F. D. Parker, and D. Lind 

H-57 John L. Brown, J r . , Charles R. Wai l , MarjorieBicknell, F.D. Parker, and 
M . N . S . Swamy 

H-58 David Klarner 

H-74 John I , Brown, Jr. 
* * * * * 

Continued f rom page 44. 
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RELATIONS INVOLVING LATTICE PATHS AND CERTAIN SEQUENCES OF INTEGERS 
DAVID R. STOCKS, JR. , Arl ington State College, Arl ington, Texas 

Relat ions involving ce r t a in special p lanar la t t ice paths and ce r t a in 

sequences of in tegers have been studied previously [ 1 ] , [ 2 ] . We will s ta te c e r -

tain bas ic definitions which pe r t a in to these s tud ies , develop additional r e s u l t s 

involving other p lanar la t t ice pa ths , and finally, indicate genera l iza t ions of 

these r e s u l t s for la t t ice paths in k dimensional space . For convenience of 

r e fe rence some of the definitions a r e col lected together and p re sen ted in P a r t 1. 

The remain ing ma te r i a l will be found in P a r t 2. 

P a r t 1 

In Euclidean k-d imensional space the se t X of points such that p belongs 

to X if and only if each coordinate of p i s an in teger i s cal led the unit la t t ice 

of that space . 

The s ta tement that P i s a la t t ice path in a ce r t a in space means that P 

is a sequence such that 

1) each t e r m of P i s a member of the unit la t t ice of that space , and 

2) if X i s a t e r m of P and Y is the next t e r m of P and x^ and yi 

a r e the i coordinates of X and Y respec t ive ly , then ]x^ - y j = 

1 or 0 and for some j , |XJ - y j | = 1. 

If each of X and Y is a point of the unit la t t ice in Euclidean k-d imens ional 

space , then the s ta tement that the la t t ice path P i s a path from X to Y means 

that P i s finite, X is the f i r s t t e r m of P, and Y i s the l a s t t e r m of P0 If 

P i s a la t t ice path, X i s a t e r m of P, and Y is the next t e r m of P , then 

by the s tep \XtY] of P i s meant the line in terval whose end points a r e X 

and Y. 

A la t t ice path P in Euclidean 2 o r 3-space i s said to be s y m m e t r i c with 

r e spec t to the l ine k if and only if it i s t rue that if X i s a point of some s tep 

of P , then e i ther X i s a point of k or t he re ex is t s a point Y of some step 

of P such that k i s the perpendicular b i sec to r of the l ine in terval [X, Y ]. 

Suppose that S = [ (xi9yt), (x2,y2)] i s a s tep of some la t t ice path P in 

Euclidean 2-space9 S i s said to be x - inc reas ing if x2 -xt = 1 and x -dec rea s ing 

81 
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if x2 - xt = - 1 . The t e r m s y - i n c r e a s i n g and y - d e c r e a s i n g a r e s imi la r ly 

defined, A s tep i s sa id to be xy - ine reas ing if i t i s both x - inc rea s ing and 

y - inc rea s ing . To say that S i s x - inc reas ing only means that S i s x -

inc reas ing but nei ther y - i nc r ea s ing nor y-decreasing„ P is said to be x -

monotonically inc reas ing if and only if i t i s t r ue that if 2 i s a s tep of P , 

then 2 is not x -dec rea s ing . The t e r m y-monotonical ly inc reas ing is s i m i -

la r ly defined. A s tep 2 is said to be ver t i ca l if it i s ne i ther x - inc reas ing nor 

x -dec rea s ing . A s tep 2 is said to be horizontal if it i s ne i ther y - i n c r e a s i n g 

nor y -d ec r e a s in g . The s ta tement that the path P is duotonically inc reas ing 

means that P i s both x-monotonically inc reas ing and y-monotonical ly 

increas ing . 

P a r t 2 

In Euclidean 2 - space a path from (0,0) to (n,n) i s said to have p roper ty 

G if and only if: 

1) i t i s duotonically inc reas ing , 

2) it i s s y m m e t r i c with r e s p e c t to the line x + y = n, and 

3) no s tep of i t which contains a point below the l ine x + y = n is 

ve r t i ca l . 

A path having p roper ty G will be cal led a G-path. 

Theorem 1 (Greenwood) 

Let g(0) = 1 and g(l) = 1. Fo r each posi t ive in teger n > 2, le t g(n) 

denote the number of G-paths from (0,0) to (n - 1, n - 1). The sequence 

{g(0)> g U h •8 ° J g(n) J ° ° • } i s the Fibonacci sequence. 

Proof. By definition g(0) = g(l) = 1. Suppose n = 2. The only G-paths 

f rom (0,0) to (1,1) a r e {(0,0), (1,0), (1,1)} and {(0,0), (1,1)}, thus g(2) = 2. 

F o r n = 3, the G-paths from (0,0) to (2,2) a r e {(0,0), (1,0), (2,0), (2,1),(2,2)}9 

{(0,0), (1,0), (2,1), (2,2)} and {(0,0), (1,1), (2 ,2)} , so that g(3) = 3. 

Suppose n > 4. Each G-path from (0,0) to (n - 1, n - 1) has a s i t s 

init ial s tep e i ther [ (0,0), (1,0)] or [(0,0), (1,1)] . If a G-path has as i t s init ial 

s tep [(0,0), (1 ,0)] , then5because of symmetry, i t s t e rmina l s tep i s [(n - 1 , n - 2), 

(n - 1, n - 1 ) ] ; and thus it contains as a subsequence a G-path from (1,0) to 

(n - 1, n - 2). But the number of G-paths from (1,0) to (n - l , n - 2) i s the 

number of G-paths from (0,0) to (n - 2, n - 2), i. e. , g(n - 1). 

Likewise, if a G-path has as i t s initial s tep [(0,0), (1,1) ], then i ts 

t e rmina l s tep i s [(n - 2, n - 2), (n - 1 , n - l ) ] > and i t contains a s a subsequence 
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a G-path from (1,1) to (n - 2, n - 2). The number of such G-paths i s the 

number of G-paths from (0,0) to (n - 3 , n - 3), which is g(n - 2)0 Thus 

g(n) = g(n - 1) + g(n - 2). 

The s ta tement that a path in Euclidean 2-space has p roper ty H means 

that it has p roper ty G and i s such that one of i t s t e r m s belongs to the line 

x + y = n. A. path having proper ty H will be cal led an H-path. 

Obviously, if n i s a posi t ive in teger , then the se t of all H-paths from 

(0,0) to (n,n) i s a p rope r subset of the se t of all G-paths from (0,0) to 

(n,n); y e t , u s i n g an a rgument s im i l a r to the above, we may es tabl i sh the 

following. 

Theorem 2„ 

Let h(0) = 1 and,for each posi t ive in teger n, le t h(n) denote the num-

b e r of H-paths from (0,0) to (n,n). The sequence {h(0),h(l) ,« • • ,h(n),« • . } 

i s the Fibonacci sequence,, 

An obvious but in te res t ing coro l la ry is that the number of H-paths from 

(0,0) to (n,n) i s the number of G-paths from (0,0) to (n - 1, n - 1). 

Greenwood has d i scussed G-paths [1J . A method of enumerat ion dif-

ferent f rom that used by Greenwood leads to the following [ 2 ] , 

Theorem 3. 

Let 

z ( l , i ) 

z(2,i) = i - 1 , where [ ] denotes the g rea te s t in teger function, 

z(3,i) = z(3,i - 1) + z(2,i - 1) 

z(4,i) = z(4 5 i - 2 ) + z (3 , i - 2 ) , 

z(2n,i) = z (2n , i - 2) + z(2n - l , i - 2) , 

z ( 2 n + l , i ) = z (2n+ l , i - 1) + z(2n , i - 1) 
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with the restriction that z(k,i) = 0 if k > i. For each positive integer i, 
let 

i 

f(i) = X/( k j i ) 

fc=i 

The sequence {f(i) |i = 1, 2, • • • } is the Fibonacci sequence. 

The proof is direct and is omitted. A geometric interpretation of the 
numbers z(k,i) and f(i) is given in [2] , 

It is interesting to note the sequence obtained by considering paths in 
3-space that are analogous to H-paths in 2-space. In Euclidean 3-space, a 
path from (0,0,0) to (n,n,n) is said to have property F if and only if it is 
such that: 

1) it is symmetric with respect to the line z = (n/2) in the plane x + 
y = n , 

2) if the step [P l 9 P 2 ] of it is z-increasing only, then P1 belongs to the 
plane x + y = n , 

3) if S is a step of it which is not z-increasing only, then either S is 
x-increasing only, y-inereasing only, or xyz-increasing, and 

4) some term of it belongs to the plane x + y = n. 
We will call a path an F-path if it has a property F„ 
We define f(0) = 1; andsfor each positive integer n, let f(n) denote the 

number of F-paths from (0,0,0) to (n,n,n)c We note that f(l) = 2 and f(2) 
= 5. If n > 2, then each F-path has as its second term either (1,0,0), 
(0,1,0), or (1,1,1). If an F-path from (0,0,0) to (n,n,n) has as its second 
term (1,0,0) or (0,1,0), then it has as its next to last term (n,n - 1, n) or 
(n - 1, n, n) respectively. The number of F-paths from (0,0,0) to (n,n,n) 
which have as their second term either (0,1,0) or (1,0,0) is the number of 
F-paths from (0,0,0) to (n - 1, n - 1, n - 1). Hence,the number of F-paths 
from (0,0,0) to (n,n,n) whose second term is either (1,0,0) or (0,1,0) is 
2f(n - 1). Similarly, the number of F-paths from (0,0,0) to (n,n,n) whose 
second term is (1,1,1) is f(n - 2). Hence, if n > 2, then f(n) = 2f(n - 1) + 
f(n - 2). 



1967] AND CERTAIN SEQUENCES OF INTEGERS 85 

It i s noted that the express ion f(n) = 2f(n - 1) + f(n - 2) i s the specia l 

c a se of the Fibonacci polynomial f (x) = xf _ (x) + f (x) for f0(x) = 0, 

fj(x) = 1, and x = 2. 

Using the methods of finite difference equations we may obtain an e x p r e s -

sion for calculat ing f(n) directly,, Consider again the r ecu r s ion re la t ion f(n) 

= 2f(n - 1) + f(n - 2) in the form of the second o r d e r homogeneous difference 

equation 

f(n + 2) - 2f(n + 1) - f(n) = 0 '. 

The cor responding c h a r a c t e r i s t i c equation 

r2 - 2r - 1 = 0 

has roo t s 

rt = 1 + \f2 and r2 = 1 - <{2 . 

The genera l solution of the above difference equation is 

f(n) = Ci(l + N/"2)n + C2(l - -\f2)n . 

Using the init ial conditions of f(0) = 1 and f(l) = 2, the constants Ct and 

C2 a r e found to be 

(A/2 + l)/2\l2 and (N/2 - l)/2\[2 

respec t ive ly , so that we have finally 

f ( n ) = (1 + ^ ) n + 1 _ ; (1 - ^ ) n + 1 

2 \[2 

An analys is s i m i l a r to that used to obtain the r ecu r s ion re la t ion for 

F -pa ths in 3-space suffices to show that in k -d imens iona l space the number 

of paths from (0,0,0 , -•• ,0) to (n,n,n,» • • ,n) that a r e analogous to F paths 

in 3-space sa t is f ies the r ecu r s ion re la t ion f(n) = (k - l)f(n - 1) + f(n - k + 1). 
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CHAINS OF EQUIVALENT FIBONACCI-WISE TRIANGLES, 

DEWEY C. DUNCAN, Los Angeles, California 

Consider the infinite set of o rde red and equally d i spe r sed Fibonacci num-

b e r s , F
n + i i 1 » i = 0, 1, 2, • • • , n , h, a r b i t r a r y posi t ive in t ege r s . The t r i ang le 

having v e r t i c e s at the points designated by the rec tangula r c a r t e s i an coordinates 

has the a r e a (Fn> W ' (Fn+2hs FnH-3h)s (Fn+4hs Fn+5h ' 

F F + F F - F F - F F 2h sh h 4h sh 4h * h 2 h 3 

which is noted to be independent of n and depends only upon the d i spers ion of 

the Fibonacci numbers used for coordinates of the ver t ices* 

PROOF 

Twice the a r e a of the specified t r i ang le i s equal to the absolute value of 

the de terminant 

'n+2h 

"n+h 
" n+3h 

" n+4h n+5h 

whose expanded form, simplified by the identity 

reduces to 

F = F F + F F 
a+b b a+i b - i a 

AF* + BF F + CF2 
n+i n+l n n 

where in 
A = F , F , + F , F . - F , F , - F , F . , 2h 5h h 4h 3h 4h h 2h 
B = F F + F F + F F + F , 
15 2h 5h-l 5h 2h-i J j h » r 4 h *3h 

- F F sh 4h-i 
C = F F + F F + F 
u 2h»i 5h-i H - A h - i 3h-i 

F F - F F - F 
4li 3h-i h 2h-i r 5 h 

F F - F F 
* 3 h - r 4 h - i h - i 2h-i 5h-i 

By u s e of the identity cited above3 the fundamental re la t ionship F + F 

F » one may easi ly p rove that A = - B = - C . Fur the rmore* s ince 
n+i 

F 2 - F F n+i n+i n F 2 
n ± 1 

the a r e a of the t r i ang le Is observed to b0e half the value of 
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F 2h F 5h + F h F 4 h - F h F 2 h - F 3h F 4h • Q« E - D« 

COROLLARIES 

lo F o r any posi t ive in tegra l value of h t h e r e a r e 2h chains of F ibonacc i -wise 

t r i ang les ; Le . , t r i ang les of equal a r e a extending along the two s e r i e s of ve r t ex 

points whose r ec tangu la r c a r t e s i an coordinates a r e equally d i spe r sed Fibonacci 

n u m b e r s . In each chain consecutive t r i ang les have two v e r t i c e s in common. 

2. By exhibiting the fundamental re la t ionship of Fibonacci n u m b e r s as F -

F = F , one may define the Fibonacci numbers for ze ro and negative indices , 

to wit, F 0 = 0, F = 1, F = - 1 , F = 2 , and quite general ly , F 
n+i - 1 - 2 - 3 n 

(-1) F . Accordingly, the 2h chains of F ibonacc i -wise t r i ang les extend 
indefinitely in both d i rec t ions . 

3. Again, the Fibonacci re la t ionship 

F + F = F 
k *k+i k+2 

i s observed to be val id for al l r e a l va lues of k for the added two compatible 

definitions 

F, = k for 0 < k < 1, and F, = 1 for 1 < k < 2 . 
k k ~~ 

Hence one obtains a non-denumerably infinite set of F ibonacc i -wise chains of 

t r i ang les for any p r e s c r i b e d posi t ive in tegral value of h, wherein individual 

t r i ang les of neighboring chains extend continuously along the se t s of r e a l 

Fibonacci n u m b e r s employed as r ec tangu la r c a r t e s i a n coordinates of v e r t i c e s . 

• • • • • 



ITERATED FIBONACCI AND LUCAS SUBSCRIPTS 

D. A . U N D , University of Vi rg in ia, Charlorfesvilie, V a . 

Raymond Whitney C 3 has proposed the p rob lem of finding r e c u r r e n c e 

re la t ions for the sequences U = FT? , V' = FT, . , W = LT , , and X = ^ n *n n ±Jn' n -hiJ n 
L p 9 w h e r e F and L a r e the i r " Fibonacci and Lucas n u m b e r s , r e s p e c t -x n n n 
ively* In th is note we give the requ i red r e c u r r e n c e re la t ions for m o r e genera l 

sequences of the form Y = F g , Z = L J J , where the H a r e genera l ized 

Fibonacci numbers introduced by Horadam. 

We will make u s e of s eve ra l ident i t ies . It follows from the Binet fo rms 

for Fibonacci and Lucas number s that 

(1) 2F ^ = F + L , 
n+i n n 

(2) -F = 4(L- - F ) , 
n - i l n n 

(3) L2 - 5F2 = 4 ( - l ) n , 
n n 

(4) 2L ^ = 5F + L o 
N n+l n n 

F r o m these H„ H„ F e r n s £11 has shown 

(5) F n + 1 = | ( v i 5 F ^ + 4 ( - l ) n + F n ) , 

(6) L n + 1 = ^ 5 l £ - 2 0 ( - l ) n
 + L n ) 

Equation (5) impl ies 

(7) F Q _ I = { ( s f o * + 4 ( - l ) n - F n ) . 

We shal l a lso r e q u i r e 

(8) F _,_ ^ = F F + F ^ .F , 4 , v ' m+n+l m n m+i n+l 

% m+n+l m n m+i n+i 

which a r e found in [2; Section 5]» Final ly, it i s convenient to define s(n) = n2 

- 3 f n 2 / 3 j 9 where [ ] denotes the g rea te s t in teger function,, Since s(n) = 1 

if 3Jn while s(n) = 0 if 3In, it follows that 
89 
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,s(a) (-1)" (_l)Fn = ( . D 1 ^ 

F i r s t consider the sequence Y = FTJ , w h e r e H obeys H , = H ,_ 
1 n *% n J n+2 n+l 

+ H „ Then us ing (8), (7), and (5), we find 
Yn+2 = FHn-f2

 = F H n + i + H n = F H n + r l F H n
 + F H n + 1 * H n + i 

| F H n ( ^ + 4 ( V ^ - FH n + i ) + i F H n + 1 (X/SF^ + 4(-l)Hn + FH n) 
r n+ l 

M 5Y* 4 ( ~ l ) H n + 1 + Y ,_ V 5 Y 2 + 4 ( ~ l ) H n 

n+l n+l n 

H H = F 9 then Y = U and we have n n n n 

U n+2 2 U N / S U 2 + 4 ( ~ l ) s ( n + i ) + U ^ > / 5 U 2 + 4 ( - l ) s ( n ) 
. n n+i n+l n (n > 0) 

while if H = L , then Y = V and we find n n n n 

Vn+2 = f [ V n V , 5 V n + 1
+ 4 ( - 1 ) S ( n + 1 ) + \+/5K + 4<-l)i Mxiy (n > 0) 

Now cons ider the sequence Z = L J J , w h e r e H i s as before . Using 

(9), (2), (3), and (6), we see 

Zn+2 = L H n + 2 = L H n + 1 + H n = F H n + 1 - i L H n + F H n + 1 L H n + i 

= T L H n
L H n + 1 - | L H n F H n + 1 + ^ ^ + 1 

|LH L „ ^ + ̂ V(L?_ - 4 ( - l ) H ^ ) / 5 V5(LL - 4 ( - l ) ^ ) T ^ H n ^ H n + i ^ T V V ^ H n + 1 

Z JL +V(Z* , - 4 ( - l ) H n + 1 ) ( Z n - 4 ( - l ) H n ) n+l n n+i u 

Now if H = F , then Z = X and we get n n n n ° 

Xn+2 ~ h X X + \f(X\ - 4{~l ) s ( R + l ) ) (X 2 - 4 ( - l ) s ( n ) ) n+l n n+i n 

and if H = L , we have Z = W and n n n n 

n+2 2 W W + V & 2 T ^ 4 ( - l ) D ^ ' r x 0 ( W 2 - 4 ( - l ) O U i / ) n+l n n+i n 
^51+55^172 At i\sfaK 

See page 88 for Refe rences . 



SUMMATION OF S j | = 1 k Tk+r F I N I T E D I F F E R E N C E APPROACH 

BROTHER ALFRED BROUSSEAU, St. Mary's College, California 

Let it be proposed to discover an expression for the summation 

! > • % 

k=i 

or more generally 

where m and r are positive integers. One possible approach is a modified 
version of finite differences. Given an expression f(n) where n is a positive 
integer, the usual finite difference relation is 

Af(n) = f(n 4- 1) - f(n) 

The adapted finite difference pertains to a quantity of the form 

f[n- V)] 
where f is a function of n and Fibonacci numbers involving n in their sub-
scripts. We shall define 

A f [ n ' V | = f [ ( n + 1 ) ' F (n+l ) ] - f [ n 'F(n)] 
For example, 

A(n2Fn) = (n + l ) 2 F n + 1 - n2Fn 

= n2Fn_i + (2n + l ) F n + 1 

91 



92 SUMMATION OF 2 ^ k m F k + [Feb. 

Likewise we define A~ to be the inverse of A so that 

A _ 1 [ n 2 F n - i + (2n + DF n + 1 ] = n2Fn + C 

where there is an arbitrary summation constant C which may involve Fibonacci 
numbers but these as well as other constituent elements must be free of n. 

For our purposes it turns out to be more convenient to seek the value of 

n-i 

E 
k=i 

k FT , k+r 

Let this summation be denoted by $ [ n , F / n \ ] , Then 

n n-l 

A4>[n,F(n)] = X ) k H l F k + r " E ^ k + r = ^ 
k=i k=i 

Thus 
^ n ' F ^ = X/^k+r = ^ " ' ( ^ F n + r ) 

k=i 

We need then simply to evaluate this inverse finite difference in order to obtain 
an expression for the summation. 

We develop certain relations for this purpose. 

(1) A(nF n + r + 1 ) = (n + l ) F n + r + 2 - n F n + r + 1 = n F n + r + F n + r + 2 

(2) A(n2Fn+r+1) = n 2 F n + r + (2n + l ) F n + r + 2 = n 2 F n + r + A(n2)Fn + r + 2 

and in general 

(3) A(nmFn+r+i) = n m F n + r + A(nHi)Fn+r+2 
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Using formula (1) 

(4) A (nF n + r ) = n F n + r + 1 - A (Fn + r + 2) = n F n + r + 1 - F n + r + 3 + C . 

Then from this result and (2) 

A ~ V F n + r ) = n 2 F n + r + 1 - (2n + l ) F n + r + 3 + 2 F n + r + 5 + C 

= n 2 F n + r + 1 - A(n2)Fn+r+3 + A2(n2)Fn+r+5 + C 

The general formula that suggests itself is 

(6) A_ 1(nniFn + r) = n m F n + r + 1 - A(nm)Fn + r + 3 + A2(nm)Fn + r + 5 + . . . 
m 

= J ] ' ( " 1 ) t A t ( n m ) F n + r + 2 t + 1 + ° 
t=0 

That this result is correct may be shown by calculating 

AtA-Wn+r)] 

from the summation in (6). The result is n m F n + r as can be readily seen from 
the fact that apart from the first term in the expansion all succeeding terms 
cancel in pairs. The results for the first two terms will show the pattern, 

A ( n m F n + r + 1 ) = nHi F n + r + A(nm)Fn + r + 2 by (3) 

A£A(nm)Fn + r + 3] = -A(n + l ) m F n + r + 4 + A (n m ) F n + r + 3 

= -A(nm)Fn + r + 4 - A2(n^)F n + r + 4 + A(nm)Fn + r + 3 

= -A(nm ) F n + r + 2 - A 2 ( n m)F n + r + 4 . 

Hence (6) provides the required formula apart from making explicit the coef-
ficients in terms of n and calculating the undetermined constant. The former 
are given subsequently in tables; the latter may be obtained as shown below for 
the particular case in which m = 5. 

We set n = 2 in (6) so that 
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F r + 1 = 3 2 F r + 3 - 2 1 1 F r + 5 + 5 7 0 F r + 7 - 7 5 0 F r + 9 + 480 F r + 1 1 - 1 2 0 F r + 1 3 + C 

Using the formulas 

and 
F n - F k + 1 F n _ k + F ^ . ^ 

F = ( - D ^ F f e F n + f c H - F k + 1 F n + k ) 

C i s found to be 16679 F r + 9 + 10324 F r + 

Table 1 
COEFFICIENTS OF A ( n m ) 

m 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

m 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

6 

14 

30 

62 

126 

254 

510 

1022 

n 

2 

3 

4 

5 

6 

7 

8 

9 

10 

n 

6 

24 

70 

180 

434 

1008 

2286 

5100 

n2 

3 

6 

10 

15 
21 

28 

36 

45 

n3 

4 

10 

20 

35 

56 
84 

120 

n4 

5 

15 

35 

70 

126 

210 

n 5 

6 

21 

56 

126 

252 

Table 2 
COEFFICIENTS OF A2(n 

; 

n2 

12 

60 

210 

630 

1736 

4536 

11430 

n 3 

20 

120 

490 

1680 

5208 

15120 

n4 

30 

210 

980 

3780 

13020 

n 6 

7 

28 

84 

210 

m ) 
n5 

42 

336 

1764 

7560 

n7 

8 

36 

120 

n* 

56 

504 

2940 

n8 

9 

45 

n7 

72 

720 

10 

90 
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m 
3 

4 

5 

6 

7 

8 

9 

10 

m 

4 

5 

6 

7 

8 

9 

10 

1 

6 

36 

150 

540 

1806 

5796 

18150 

55980 

1 

24 

240 

1560 

8400 

40824 

186480 

818520 

Table 3 

COEFFICIENTS OF 

n n2 

24 

180 60 

900 540 

3780 3150 

14448 15120 

52164 65016 

181500 260820 

n3 

120 

1260 

8400 

45360 

216720 

Table 4 

COEFFICIENTS OF 

n 

120 

1440 

10920 

67200 

n2 

360 

5040 

43680 

367416 302400 

A3( nm) 

n4 

210 

2520 

18900 

113400 

A4(nm) 

n3 

840 

13440 

131040 

1864800 1837080 1008000 

n5 

336 

4536 

37800 

n4 

1680 

30240 

327600 

n* 

504 

7560 

n5 

3024 

60480 

Table 5 

COEFFICIENTS OF A 5 (n m ) 

m 

5 

6 

7 

8 

9 

10 

1 

120 

1800 

16800 

126000 

834120 

5103000 

n 

720 

12600 

134400 

1134000 

8341200 

n2 

2520 

50400 

604800 

5670000 

n3 

6720 

151200 

2016000 

n4 

15120 

378000 

720 

5040 

30240 
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m 

6 

7 

8 

9 

10 

1 

720 

15120 

191520 

1905120 

16435440 

Table 6 
COEFFICIENTS OF A6(nm) 

n 

5040 

120960 

1723680 

19051200 

n2 

20160 

544320 

8618400 

n3 

60480 

1814400 151200 

Table 7 
COEFFICIENTS OF A7(nm) 

m l n n2 n3 

7 5040 

8 141120 40320 

9 2328480 1270080 181440 

10 29635200 23284800 6350400 604800 

Table 8 
COEFFICIENTS OF A 8 (n m ) 

m 
8 

9 

10 

1 
40320 

1451520 

30240000 

n 

362880 

14515200 

Table 9 
COEFFICIENTS OF A9(nm) 

n' 

1814400 

m l n 
9 362880 

10 16329600 3628800 

Table 10 
COEFFICIENTS OF A 1 0 (n m ) 

m 

10 3628800 
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m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 11 
SUMMATION CONSTANTS 

Summation Constants 

F r+3 
- F r+6 
7F , + 5 F , r+5 r+4 
-37 F , - 24 F , 

r+6 r+5 242 F _ + 147 F ^ 
r+7 r+6 -1861 F ^o - 1139 F L̂  

r+8 r+7 16679 F ^ + 10324F i o 
r+9 r+8 -171362F , - 106089 F , 

r+10 r+9 1981723 F _ + 1224729 F ^ 4 A r+i i r+io 
-25453505 F ^ - 15726832 F , „ 

r+i2 r+11 

k=i 

To be able to wr i t e out a complete formula one uses formula (6) and the 

va r ious t ab les . The c a s e m = 7 is given below. 

k7 FT ^ = n7 F ^ _^ - (7n6 + 21 n5 + 35 n4 + 35 n3 + 21 n2 + 7n + 1)F , ^ k+r n+r+i v n+r+3 

+ ( 4 2 n 5 + 2 1 0 n 4 + 4 9 0 n 3 + 630n2 + 4 3 4 n + 126) F , , v n+r+5 
- (210n 4 + 1260n3 + 3150n2 + 3 7 8 0 n + 1806) F , L 

v / n + r + 7 + (840 n3 + 5040 n2 + 10920 n + 8400)F ^ _,_„ ^ n+r+9 
- (2520 n2 + 12600 n + 16800) F . , .. + (5040 n + 15120)F , ,.Q 

n-i r+ 11 n+r+iu 
- 5040 F ^ ^ 

n+r+15 

CALCULATION BY FINITE DIFFERENCES 

Except for the s m a l l e r values of m, the explicit formulas given above 

in t e r m s of n a r e apt to involve undue calcula t ions . These can be obviated by 

going d i rec t ly to finite differences and using formula (6). 

F o r example , to calculate 

£ k5 F 
*k+7 

we would f i r s t wr i t e down the va lues of k5 for k = 50, 5 1 , e tc . 
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FINITE DIFFERENCE APPROACH 

k 
50 

51 

52 

53 

54 

55 

k§ 

312500000 

345025251 

380204032 

418195493 

459165024 

503284375 

Then 

A [ k 5 ] k = 5 0 = 34502521 - 312500000 = 32525251 
A2[k5]k=50 = 3 8 0 2 0 4 0 3 2 - 2 * 34502521 + 312500000 = 2653530 
A 3 L k 5 ] k ^ 5 0 = 418195493 - 3 • 380204032 + 3 - 345025251 - 312500000 

= 159150 

A 4 [ k ° ]k= = 4 5 9 1 6 5 0 2 4 " 4 ' 418195493 + 6 • 380204032 - 4 • 345025251 
+ 312500000 = 6240 

A5[k5]k=50 = 1 2 0 

The value of the summat ion i s : 

312500000 F5 8 - 32525251 F6 0 + 2653530 F6 2 - 159150 F 6 4 + 6240 F6 6 - 120 F 6 8 

+ 242 F 1 4 + 147F13 

which can e i ther be calculated di rect ly o r sum of the t e r m s can be unified and 

the number of mult ipl icat ions of l a rge numbers can be dec reased . 

* • * • * 



ON RATIOS OF FIBONACCI AND LUCAS NUMBERS 
G . F. Feeman, Wi l l iams Col lege, Wi l l iamstown, Massachusetts 

Recently the author has conducted in-service training sessions in mathe-
matics for the elementary school teachers of the Williams town, Massachusetts 
public schools,, During a session on the lowest common multiple and greatest 
common divisor of two positive integers, two teachers observed that if the two 
numbers are in the ratio 2:3, then the sum of the numbers is equal to the dif-
ference between their lowest common multiple and their greatest common divi-
sor. It is shown in [2] that this is the only ratio for which this relation holds. 

Of course, one gets similar relations for other ratios. For example, if 
the two numbers are in the ratio 3:5, then twice their sum is equal to the sum 
of their lowest common multiple and their greatest common divisor. Again it 
is shown in [2] that this is the only ratio for which this relation holds. This is 
not always the case since, for example, both ratios 5:7 and 4:11 yield the 
result that three times the sum of the numbers is equal to the sum of their low-
est common multiple and their greatest common divisor. 

If one specializes to the Fibonacci and the Lucas sequences, one gets 
theorems of the type given below, in which families of such relations are ex-
hibited and formulas for finding all ratios satisfying these relations are obtained. 

Let {Fn} be the sequence of Fibonacci numbers, where F t = 1, F2 = 1 
and F n + 2 = F n + F n + 1 for n > 1.' 

Let {LJQ} be the sequence of Lucas numbers, where L1 = 1, L2 = 3 
and 1^+2 = Ln + Ln+i for n ^ 10 

The following known results are assumed. (See [1] or [3 ] , J 
(i) Neighboring Fibonacci numbers are relatively prime. 

(ii) F n + 1 = F n F n + 2 + ( - l ) n . 

(iii) F2n_i = F n F n + 1 - Fn_ tFn_2 

(iv) Neighboring Lucas numbers are relatively prime. 

(v) F 2 n = F n L n 

(vi) Ln + 1 = F n + F n + 2 . 
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For the remainder of th^ article, let a and b be natural numbers. 

Denote by [a ,b] the lowest common multiple of a and b and by (a,b) the 

greatest common divisor of a and b. 

Theorem 1; (1) If a and b are in the ratio Fn:Fn + 1 , then 

Fn_t(a + b) = [ a ? b ]+ (-l)n(a,b) for n > 2. 

(2) Let c and d be relatively prime natural numbers with 

b = (c/d)a. If Fn_1(a + h) = [a ,b]+ (-l)n(a,b) for n > 3, then the number of 

solutions for the ratio cid is one-half the number of divisors of F-n-2Fn, and 

among the solutions is the ratio Fn:Fn + 1 . 

Proof: (1) Suppose b = (Fn/Fn + 1)a. Then a = Fn+1k, b = Fnk, (a,b) = k 

and [a ,b]= FnFn+1k, for k a natural number. Then 

Fn+1(a + b) = Fn^(Fn-f Fn+1)k = Fn.4Fn^2k = (Fn+1 - Fn)Fn+2k 

= F t t H (F n +F n + 1 )k - FnFn + 2k 

= FnFn+ik + (F2
n+i - FnFn + 2)k 

= [ a f b ]+ (-l)n(a,b) , for n > 2 . 

(2) If b = (c/d)a, where c and d are relatively prime, then a = dk, 

b = ck, (a,b) = k and [a ,b] = cdk, for k a natural number. Then 

F
a - i ( a + b> = [ a > b ] + (-l)n(a,b) for n > 3 

implies 

F ^ f c + d)= cd + (-l)n , 

for which we wish to find all positive integral solutions. Solving for c, we get 
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Fn_l Ci - ( - l ) n Fl_t - (-if 
c = = F n _ t + 

d - F n - i d - Fn_{ 

so that by (ii), 

c = Fn-i 
11-2-^11 

d - F n ^ 

We need T ' • "- <;,>i the c;ase d > ^ . for if 0 < d < F , then c < 0. 
v-i n~i5 

The totsj: iu . i b r .- ' . ae^ ; -i roUifew^ a ^ o and d i s given by the number of 
divisors of v ir / ,, 8̂ > f.i^f J° ap obvioi o symmetry in these solutions so 

that if c - A, rf P ^ \ f i ' ^TLU «V)i\ GO is c = B, d = A. Thus the n u m -

b e r of dist inct nc<)vil'rr„ V '- * r?-i j «?-d is one-half the number of d iv i so rs of 
^n-2^n* 

Fiu?v?y. iC rl ~ <lH t ii-3-»« 

< 1 n - 2 - ^ n 

x n 
= F n - i + F n _ 2 

and the ra t io F n :F T 1 + 1 i s among the solutions, This comple tes the proof, 

Example : If n = 8, then ' Fn_2 = 8, F n - 1 = 13, F n = 21, and F n + 1 = 3 4 . 
(1) If a and b a r e in the ratio 21:34, then 

13(a + b) = [ a , b ] + (a5b) . 

(2) If b = (c/d)a, then 13(a + b) = [ a , b ] + ( a , b ) implies that 

168 
c = 13 + d - 13 

168 has 16 divisors , so there are 8 distinct solutions. They are: 14:181, 

15:97, 16:69, 17:55, 19:41, 20:37, 21:34, and 25:27, among which is the 

Fibonacci pair 21:34. ' 

The following lemma is needed for the proof of the second theorem. 
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Lemma: F2 n_1 = F j - ^ L ^ - L n L n + 1 for n ^ 2. 

Proof: The proof is by induction. The identity is easily verified for n = 2. 
Assume it is true for n = k, so that 

F2k-i = Fk+iLk+2 " LkLk+l 

Then 

F2k+i = F2k + F 2k- i = F k L k + Fk+iLk+2 - L k L k H 

= F k L k + (Fk+2 - Fk)Lk+2 - L k L k + i 

= F k L k + F k + 2 ( L k + 3 " L k + i ) " F k L k+2 " L k L k + i 

= Fk+2Lk+3 " Fk+2Lk+i " F k L k + i - (Lk+2 - L k+i ) L k+i 

= Fk+2Lk+3 " Lk+iLk+2 + L k+i ( L k+i ~ Fk+2 " F k ) -

But 

Lk+i - Fk+2 ~ F k = ° 

by (vi), so that 

F2k+i = Fk+2Lk+3 " Lk+iLk+2 » 

completing the induction step and the proof. 
Theorem 2: (1) If a and b are in the ratio Ln:Ln + 1 , then 

Fn+1(a + b) = [a ,b] + F2 n^(a,b) for n > 2 . 

(2) If a and b are in the ratio F n _ 2 :F n - 1 , then 

Fn+i(a + b> = [a>b] + F2n~i(a>b) for n ^ 3 . 

(3) Let c and d be relatively prime natural number s with 
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b = (c/d)a. If Fn+1(a + b)= [a9b ]+ F2n_1(a,b) for n s 2, then the possible 
ratios c:d are determined from the divisors of (F^+j - F2n-.1)„ Among 
these ratios is Lĵ Lft-fj* For n — 3, Fn-2*Fn--i ^ also a solution. 

Proof: (1) Suppose 

b = zr—— a 
•MB+i 

Then 

a = Ln+1k, b = Lnk, (a,b) = k and [a,b] = LnLn + 1k , 

for k a natural number. Then 

Fn + i (a,b) = Fn + 1(Ln + Ln + 1)k = F n + 1 L n + 2 k . 

Using the lemma, we get 

Fn+1(a + b) = (F2n-i + LnLn + 1)k , 

so that 

Fn+1(a + b)= [a,b] '+ F2n«1(a,b) , 

as required. 

(2) If 

then 

b = 
F n-2 

F n - i 

a = F n - i k > b = F n -2 k > (a>°) = k a n d [a>b] " F n - i F n - 2 k 

for k a natural number. Then, using (iii), 
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Fn+1(a + b) = F ^ F ^ + Fn_2)k - Fn + 1Fnk 

= (F2n-i + F n - i F n - 2 ) k 

= [a ,b] +. F ^ a . b ) , 

as required. 
(3) If b = (c/d)a, where c and d are relatively prime, then, once 

again 

a = dk, b = ck, (a,b) = k and [a ,b] = cdk , 

for k a natural number, The relation 

Fn+1(a + b) = [a ,b] + F2n„i(a9b) 

implies 

Fn+1(c + d) ± cd + F 2 I W 

Solving this equation for c, we get 

Fn+1d - F2 n- i ^ F n + 1 - F2 n_1 

c = _ _ _ _ _ = F n + l + ^ - ^ r ¥ ^ 

We seek positive integral solutions for c and d. The possible ratios c:d 
are determined from the divisors of (Fn+t - F2n_1) . 

Using the lemma, we show that c = Ln, d = Ln + 1 is a solution. By 
symmetry, c = L n + j , d = L n is also a solution. So let d = Ln+1. Then 

Fn+iLn+i ~ F2n-i _ Fn+iLn+i ~ Fn+iLn+2 + LnLn+l 
Ln+i "" Fn+i Ln+i ~ Fn+i 

Fn+i(Ln+i - Ln+2) + LnLn+i "LnFn+i + LnLn+i 
= — = = Ln . 

Ln+i ~ Fn+i Ln+i ~ Fn+i 
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The situation here differs from that in the second part of Theorem 1, 
for not all solutions are obtained by considering the case d >Fn+lo For 
example, let d = Fn_lffl Thens using (iii), 

F n+i F n- i - F
2n- i F

n * l F n - i - F n F n + 1 + F n - 1 F n „ 2 
Q = : =T , . . 

F n - i - Fn+i F n - i - Fn+i 

-Fn+iFn-2 + F n- i F n-2 
? n- i " ^ " r n ~ 2 

Thus the ratio F
n - 2 : F n - i *s a solution,, This completes the proof of the 

theore m„ 

Example: If n = 7, then Ln = 29, Ln + 1 = 47, Fn_2 = 5, Fn„t = 8, F n + 1 

= 21 and F2 n-i = 233. 
(1) and (2): If a and b are in the ratio 29:47 or 5:8, then 

21 (a + b) = [asb] + 233(a,b) 

(3): If b = (c/d)a, then 

21(a + b) '= [a,b] + 233(a,b) 

implies that 

c = 2 1 + M1^|33 = 2 1 + 208 
d - 21 " d - 21 

The divisors of 208 are 1, 2, 4, 8, 13, 16, 26, 52, 104 and 208. The solu-
tions are 22:229, 23:125, 25:73, 29:47, 34:37 and 5:8. Among these ratios 
are 29:47 = L ^ L ^ i ' and 5:8 = F ^ i F ^ . 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by A . P„ H I L L M A N , University of New Mex ico , Albuquerque, New M e x . 

Send all communicat ions regard ing Elementary P r o b l e m s and Solutions 

to P r o f e s s o r A. P . Hil lman, Depar tment of Mathematics and Sta t i s t ics , Uni-

ve r s i ty of New Mexico, Albuquerque, New Mexico 87106. Each problem o r 

solution should be submitted in legible form, preferably typed in double spacing, 

on a s epa ra t e sheet or sheets in the format used below. Solutions should be 

received within t h r ee months of the publication date . 

B-106 Proposed by H. H. Ferns, Victoria, B.C. , Canada. 

P r o v e the following identities* 

2 F . . . = F . L . + F .L . , 
i+3 1 3 3 1 

2 K . = L.L. + 5 F . F . . 
1+3 1 3 1 3 

B-107 Proposed by Robert S. Seamons, Yakima Valley College, Yakima, Wash. 

Let M and G be respec t ive ly the n t e r m s of the sequences (of 

Lucas and Fibonacci) for which M n = M^_t - 2, Mi = 3, and G n = G ^ + 

G o5 Gi = 1, Go = 2e P rove that n-25 l L 

M = 1 + K / 5 G 1 , n L V m J 

where m = 2 n - 1 and [ x ] i s the g rea t e s t integer function,, 

B-108 Proposed by V . E. Hoggatt, J r . , San Jose State College, San Jose, Cali f . 

Let Ui = p , y2 = q, and u n + 2 = u n + 1 + uno Also le t S n = Ui + u2 + • • • 

+ u . It i s t r u e that S6 = 4u4 and S10 = l l u 7 . Genera l ize these formulas . 

B-109 Proposed by V . E. Hoggatt, J r . , San Jose State College, San Jose, Cal i f . 

Let r and s be the roo ts of the quadrat ic equation x2 - px - q = 05 

(r f s ) . Let U = (r11 - s n ) / ( r - s) and V = r n + s n . Show that 

V = U _, + qU , . n n+i ^ n - l 
107 
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B-110 Proposed by L. Carlitz, Duke University, Durham, N. Carolina. 

Show that oo oo 
y i = V 5 V < ^ 
X—4 r 2 n+i £-*> L 2 n+i 
n=o n=o 

B-111 Proposed by L. Carl i tz, Duke University, Durham, N . Carolina. 

Show that °° n oo ^ 

£—J F4n+2 £~* L4n+2 

SOLUTIONS 
LUCAS NUMBERS MODULO 5 

B-88 Proposed by John Wessner, Melbourne, Florida. 

Let L0, L2, L4, Lg, • • • be the Lucas numbers 2, 3, 7, 18, • • •. Show 
that 

L2k = 2( - l ) k (mod 5) 

Solution by J . A . H. Hunter, Toronto, Canada 

All (mod 5) we have: LA = 1, L2 = -2, L3 = - 1 , L4 = 2, L5 = 1, L6 = -2 , . 
etc . , so it follows that L4t+2 = -2 and L^ = +2. Hence L2k = 2(-l) (mod 5). 

Also solved by James E. Desmond, H. H. Ferns, Joseph D. E. Konhauser, 
Douglas Lind, F. D. Parker, C.B.A. Peck, Jeremy C. Pond, DavidZei t l in , 
and the proposer. 

A CLOSE APPROXIMATION 

B-89 Proposed by Robert S. Seamons, Yakima Valley College, Yakima, Wash. 

Let F and L be the n Fibonacci and n Lucas numbers, respect-n n > r 
ively. Let [x] be the greatest integer function. Show that L 2 m = 1 + 

[\/5F2m] for all positive integers m. 

Solution by Douglas Lind, University of Virginia, Charlottesville, Va. 

From the Binet forms for F and L , the statement is equivalent to 
n n 

0,2m + £2m = [1 + a2m - £ 2 m ] , where a = (1 + V5)/2, j8 = (1 --V5)/2. But 
1/2 > /3 2 m > 0 for m > 0, so we have ° 
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^ m + £2m < ^2m „ 2̂111 + x < a 2 m + ^ m + x 

which impl ies a2111 + / 3 2 m = [ l + # 2 m - / 3 2 m ] , a s des i r ed . 

Also solved by James E. Desmond, H. K-. Ferns, C.B.A. Peck, Jeremy C Pond, 
David Ze i t l in , and the proposer* 

B-90 Proposed by Phil Mana, University of New Mexico, Albuquerque, N . Mex, 

Let bj , b2 , • • • be the sequence 3, 7, 47, • • • with r e c u r r e n c e re la t ion 

b , A = b2 - 2. Show that the roo t s of n+i n 

x2 - 2b x + 4 = 0 n 

a r e express ib le in the form c + dV5, where c and d a r e in t ege r s . 

Solution by David Zei t l in , Minneapolis, Minnesota. 

The roo t s a r e b ± \ / b 2 - 4 = b ± x/b ,, - 2. The r e c u r s i o n re la t ion n n n v n+i 
may be wr i t ten as U n + 1 = (bn + 2)Un, where U n = b n - 2, U4 = 1. Thus , 

U n XL, n n 
n±i = n _*±i = n (b, + 2) = 5 n (bk + 2) 

U i k=i U k k=i k k=2 k 

n-i n-i 
= 5 n (b . + 1 + 2) = 5 n b2 

j=i J j=i J 

or 

Thus , 

n-i 
b - 2 = 5 FI b2 

j = 1 3 

n - i 
c = b , and d = ± II b . , n = 2 , 3 , 

Also solved by James E. Desmond, H„ H« Ferns, Douglas Lind, O B . A * Peck, 
Jeremy C, Pond, John Wessner, and the proposer* 
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CONVERGENCE OF SERIES 

B-91 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va, 

If F is the n Fibonacci number, show that 

I>/Fj> 
i=i 

converges while 

Z( 1 / l n Fj ) 

j=3 

diverges. 

Solution by Jeremy C* Pond, Sussex, England* 

Fn+l 1 +\/5 = — ^ v > 1 as n— • ( 
n 

and so 

converges by d'Alembert's test. Also, 

( l / l n F n ) / ( l / n ) - ^ l / l n ( ^ - i ^ j > 0 

and so 1/ln F. and 1/n diverge together. 

Also solved by C* B. A, Peck and the proposer* 
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GREATEST COMMON DIVISOR 

B-92 Proposed by J* L. Brawn, Jr*, The Pennsylvania State University, ; 

Let (x,y) denote the g« c» d of posi t ive in tegers x and y. Show that 

(F ,F ) = (F , F , ) = (F , F , ) for all posi t ive in tegers m and n„ v m5 n m5 m+n n m+n . 

I , Solution by Joseph D. E. Konhauser# Univ. of Minnesota, Minneapolis, Minn, 

We use the well-known identity 

F = F F + F F 
m+n n - l m n m+i 

and the fact that two consecut ive Fibonacci numbers a r e re la t ive ly p r i m e . 

Let d = (F , F ) then, from (1) d |F . Let e = (F , , F ) then, m n • m+n m+n m 
from (1), e |F , s ince (F , F , J = .1. On the one hand., eld (since e |F 

v / ? | n? x m9 m+r s v i m and e | F ). On the other hand, die (since d |F and d |F , ). There fo re , I n 7 > i \ | m | m + n ' » 
d = e; that I s , (F , F ) = (F , F , ). In l ike manner . It follows that 

' v m ' n m? m+n ' (F , F ) = (F , F k x m? n7 nJ m+n7 

I I . Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

It i s well known [N. N8 Vorobyov, The Fibonacci Numbers , page 23, 

Theorem 41 that (F , F ) = F , x* The des i r ed r e su l t then follows I m m e d i -J v m n (m,n) 
ately from the easi ly es tabl ished fact that (m,n) = (m,m + n) = (n,m + n). 

Also solved by Thomos P. Dence, James E. Desmond, John E. Homer, J r . , 
C.B.A. Peck, Jeremy C. Pond, David Zeitlin, and the proposer. 

L MODULO n 
n 

B-93 Proposed by Martin Pettet, Toronto, Ontario, Canada 

Show that If n i s a posi t ive p r i m e , L = 1 (mod n). Is the converse t r u e ? 

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia* 

From the Binet fo rm we have 
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where [x] denotes the greatest integer contained in x. Now if n is prime, 

( 2 j ) = ° ( m o d n> 0 = l>2>'-> n / 2 ), 

so that 

\ 1 (S)/2""' = ^ ' ^ •> • 
By FermatTs Lesser Theorem, 2 ~ = 1 (modn), so that L = 1 (mod n) if 
n is prime. 

I have not been able to prove or disprove the converse of this statement. 
A calculation by computer indicates that the converse is true for n < 700. 

Also solved by the proposer who stated that the converse is false and gave 705, 
2465, and 2737 as the first few composite values of n. 

* * * * * 

NOTICE 

George Ledin, J r . has been appointed by The Fibonacci Association to collect 
and classify all existing Fibonacci Identities, Lucas Identities, and Hybrid 
Identities. We request that readers send copies of their private lists (with 
possible reference sources) to 

George Ledin, J r . 
445 Monticello 
San Francisco, Calif. 94127 

for inclusion in the planned booklet. 

Verner E. Hoggatt, J r . , 
Director 

* • • • • 


