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ON SUMMATION FORMULAS AND IDENTITIES FOR FIBONACCI NUMBERS

DAVID ZEITLIN, University of Minnesota, Minneapolis, Minnesota

1. REMARKS ON THE PAPER OF BROTHER U, ALFRED

Alfred [1] has shown that

n-i m
m _ i i m
(L.1) Zk Frg = Z( DF 3@ ) +Cp
k=0 i=0 :

where C; is a constant independent of n and Ag() = g(n + 1) - gn), with

Alg(n) = A(Ai—ig(n)). The following result yields (1.1) as a special case:

Theorem 1, Let Hp4y = Hpyy+Hp, n = 0,1,°°-, with Hy =P and

H; =, Thenfor n=1,2,-°+, we have

n-i m m
. m i. i s
L2) ) KTH, =" (S) D 1) (i) FyiGmos [n
k=0 s=0 i=0
m m
m i. i s
JrHmrﬂz (S) Z('l)l(lf)inﬂGin—s n” + Cy
$=0 i=0
(r,m: 0:1:°"):
where
m m
i, i i, i
(1.3) Cp = -H_ D (-1)'(!)F3iGm - Hreg ) (1) () FrirCm
i=0 i=0

(r,m=0,1,°°),

and Gin (see [2]) are Stirling numbers of the second kind with the properties
that Gl =0 if i #0, G =1, i=0,1,-+-, G =0 if i#0, and G = 0
if i > s,
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Proof of Theorem 1. We assert that

n-1 m
(1.4) E kak+r = E -1)'Hyjimsr+ 8 @) + Cy
k=0 i

We notethat if Agl) = Ah(n), then gln) = h{) + Cy. Thus, using the A oper-

ator on both sides of (1.4), we obtain

m
@5 2, = D DHimirn e ¢ D7
1=0
m
- D Byt A ™)

i=0

Since @ + )™ - 2™ = A0™), wehave Ai(n + 1) = Ai(nm) + Ai+1(rlm ) Thus,

since Hp+y = Hp+y + Hp, (1.5) simplifies to
m .
m j j+1, m
(1.6) nH L= E ) Hjinirnd ™)
j:::
m
+ E (1) HyjmarA @™ ).
i=0
Let j+1 =i in the first sum of (1.6). Since Am+1(11m) =0, the right-hand

side sums cancel, except the term for i = 0, which yields ann 4p°

We proceed now to simplify (L.4), Since [2, Pe 9]

. o i
(1.7 Algl) = 1)t E (-l)k< )g(n+k) @ = 0,1,°°°) ,
k
k=0

we have for gm) = n'"
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i
i, m, _ i k(i m
(1.9) Aa™ = 1) e (k)(n )
k=0
i m
_ i k(i m\ ., m-s s
" Z(—l) (k)z (S> K8,
k=0 0

|S=

m 1

= Z (‘sﬂ) ns(-l)iz (¥ G{) S

s=0 k=0

since [2, p. 169, (3)]

i
o) viael - ) enk (11{) K (= 0,100 ,m) .
k=0

Buschman [3, p. 6, (12)] showed that
(1.10) Hoo = FH _ + P B
and thus from (1.10), with s = 2i and p = n+1r + 1, we obtain

(1.11) Hyij+n+r+1 = Failptr + FaitiHn+r+

Using (1.11), we obtain from (1.4)

n-1 m
m _ i, A, m
(1.12) E k Hk+r = Hn+r E (-1)Feid )

m
i i m
N Hn+r+12 :('1) in+1A(n )+ Ce
i=0
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If we substitute for Ai(nm) in (1,12) by (1.8), we obtain, upon interchanging
summations, (1.2). Add ann o to both sides of (1.2). Then, for n = 0,
all terms in the sums are 0 except for s = 0, and so we obtain C, as given
by (1.3).

If p=0and g =1, then H =F , and Cp (1.3) yields C; in (1.1).
For calculation purposes, (1.2) is more suitable than (1.,1), since Stirling num-
bers are tabulated. Moreover, (1.2) and (1.3) are inthe simplest formpossible.
Using the properties of Fn and G;, we note that the coefficient of Hn 4y I

T
(1.2) is a polynomial in n of degree m - 1, while the coefficient of Hn I
is a polynomialin n of degree m.

The following result is a generalization of Theorem 1:

Theorem 2, Let

P(x) =Zajxj, a £0 ,

=

where aj, j =0,1,°°*,m, are constants, Then for n = 1,2,°°°, we have

n-1 mjm m
_ i, . j\~1 s
(1.13) E PRH, , = Hn+r§ E (-1)" (i) Foi E aj(s)Gj-s n
k=0 s=0 | i=0 j=sti
m[m m
i, 3 j\~1i (Ls
+Hn+r+1}__: Z("l) () Foiq Zaj(s)Gj—s n~ + Cg
s=0 | i=0 j=s+i
(r,m = Oala"'),
where
m m
(1.14) C3 = —Hrz -1 )szZa].G;
i=0 j=i

m m
z : i, Z i

- HI"H. ("'1) (1! )F21+1 a_]GJ
i=0 j=i

r,m = 0,1,--°).
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Comments, If aj =0, j=0,1,o¢+,m-1, and a = 1, then (1.13)
and (1.14) reduce to (1.2) and (1.3), respectively. A special case of (1,13)
occurs when

m
coo(k - ZE:jj
k(k = 1)eee(k - m + 1) Smk )
=1

where (see [2, p- 142]) S r]n are Stirlingnumbers of the first kind, Then, since
(m) _ k
k = m! (m » we have

n-1i n-1

z : (m) _ k ’ -
k Hk+r~m! m Hk+r M =m+1, m+ 2, ).

k=0 k=m

Moreover, since a:i = Sr]n’ j=20,1,°"°,m, we have

m m

Yol -Sosiel - (wli)- bk
7] mj m-i 0 if i

= =

ol
BB
—

(see [2, p. 182, (1)]). Using (1.10), we obtain from (1.14)

(1.15) C5 = (™

+1

(m!) (FamHy + FymaiHrr) = D7 () Hymer+g

It should be noted that Cs in (1.14) was obtained from (1.13) for n = 0. For
Pk = k(m), the same value of Cs (1.15) is also obtained from (1.13) for
n=01+,m-1 (m 21). Let P =k™ in(1.13), where a = sgﬂ, and
let (1.13) be written as follows:

n

(1.16) Zk(m)Hk+r - n(m) Hn+r
k=0

- m
= Ll(m’n)Hn+r + Lz(m,n)Hm_r_l_1 - 1) (@m!)H

°

2m-+r+1
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We obtain from (1.16)

(1917) (—1)m(m! )H2DG+I'+1 = Li(m, n)Hn+I- -+ Lz(m, Il)Hn+r+1
m=0,1,°°°,m - 1),

From (1,10) with p =n+r+1 and s = 2m - n, we obtain
(1.18) Hom+r+t = Fom-nHn+r + Fomttennir+1 o

If we substitute for Hym+p+q in (1.17) by (1.18) and then equate coefficients of

Hy4p and Hpipsy in (1.17), we obtainthe following identities:

m{m m
m = z : Lo yF: 2 : i) qd ol S
(1.19) 1) () Fem-pn = (-1) (i) Fy <s> SmGj—s n
8=0 }i=0 j=s+i
(n: 0’1’oou,m_1; m=1,2,'“),
mf{ m m
m i/ j j ~1 s
1.200 D™ @!)Fympisy = Z ) Fiaq Z (;) slcllln
s=0 i=0 j=s+

= 0,1,°*°,m-1; m = 1,2,°*°).

By repeated additions, one obtains {interchanging summations inthe final result)

m m m
1L.21) D@ Fpmigen = Z(—l)i(i!)in+kZ Z <;>sr3n Gji__s n®
=

5=0 \j=s+i

&k =01-;n=0,1,-*»,m-1; m = 1,2,-)

Proof of Theorem 2. Noting that AmHP(n) = 0, we find, imitating the

proof of Theorem 1, that
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n-i m
E P(k)Hk+r = E (—-1)1Hzi+n+r+1 AIP(n) + Cg
k=0 i=0
m m
_ i i i :
= H .. E (-1)'Fp; A P() + Hpirty E (-1)'Fyi41 A'P(n) + Cq
i=0 i=0
Since m m
Pm) = E aJnJ, A'P@) = E a.a'@)
=0 j=0

and using (1.8), we have

m m m
ZO(—l)leiAlP(n) = Z(-—l)lei Zaj Ale)
i= i=0 j=0

m m j
= - i . i1 ] i S
E (1) Foi E aj(l.)z<s) Gj—sn
i=0 j=0 s=0
m m ( m
= = i, o3 j i‘ S
> etar ) 1y :aj(s) Gl ln
i=0 s=0 \ j=s
m [ m m
= - i 3t . j i S
E g ( 1) (ln )le aj <S> Gj—-S n 9
§=0 | i=0 j=s+H

" since

m j m m

ZZf(s,j) = ZZf(s,j) and Gji_s =0 if j-s<i .
j=0 s=0 s=0 j=8

The value of Cs is obtained from (1.13) for n = 0.

2, REMARKS ON THE PAPER BY R. REICHMAN

The operator A, where Agh) = g(n+1) - gln), is referred to as the
forward difference operator, while the operator V, where Vg) = g(n) -gl~1),
is referred to asthebackward difference operator, Indeed,

i i
(2,1) Vig(n) = Z(-l)s (;) gln - 8) = (—1)123(—1)k (i{) g ~i+k) .
5=0 k=0
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If we compare (2.1) and (1.7), we note that

(2.2) Vig(n) = Aig(n - i) (i = 0,1,°0°) ;
and if g) = n™, we have
(2.3) Vi(nm) = Ai(n -)™ G =0,1,°c,m+1),

Reichman [4] gave the following results:

©.4) Z Z(-l) P iVin™) + ¢,

i=0
n m .
(2.5) kasz = Z(—1)1F2n+1—ivl(nm) + Cs
k=0 i=0
n
(2,6) kaFZk_1 = Z(—l) Fa iV (™) + Cg .
=0 i=0

Rao [5] generalized (2.4) and gave

n

m
@.7) kank - Z D g VI ™) + CF

k=0 i=0

The following results contain (2.4), (2.5), (2.6) and (2.7) as special cases.
The notation is consistent with Theorems 1 and 2,

Theorem 3, For n = 0,1,°c°3r = 0, 1, 42, **+, we have
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n
@8 D PloH
k=0

m
i, i (i) i
1'G@)F, z 1)'a, (s) G| p°

j=s+i

m
= -Hm+r§ -1)°
S=0

m ) m m ’
+ Hoptr+t E -1)° (‘1)Sas +Z(_1)l(i!)Fi—1 Z(_l)Jaj(;)GJ'l-S' -
s=90 i=1 j:S+i

+C7 (m: 071>°'°)’

where

m m
@9  Cr = H|a +E(—1)i(i!)Fi Z(—l)jajG§
i=0 j=i

m m ¥
- Hpag |2 + ) D' P (Dlagl].
i1 =i

Proof of Theorem 3. Since VPm + 1) = P + 1) - Pn), we have
viPrm) = ViPm + 1) - VP + 1), and VP + 1) = 0. Thus, imitating
the proof of Theorem 1, we find that

n m
Z:P(k)szﬂC = Z(—1)1H2n+r+1_ivlp(n) + Cq
k=0 i=0
m m . .
- H2n+r2(-1)iF_iViP(n) + Hypprr Y (D'FyiV'P@) + Gy
i=0 i=0

since Hyn+p+i-i = F_jHon+r+ Fy-iHan+r+1, which is obtained from (1.10) where
2n +r + 1. Using (2.1) and (1.9), we obtain

I

S =-iand p
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- - . j .
W= i Z :(-1)S<JS)G1
S=0

Since

m

vipw) = Zajvinj ,

=0

we have

Z(—l)F VP —ZuF ZZ(-DS“LJ () i_snS

- imo 5=0 .
- Zi! F_iz<—1)snsz(-1)jaj (]s) G‘jj[—s
i=0 §=0 j=s
Z(—l) Z'F. Z(l)] () ol |n®.

=s+i

Additional s1mp11f10at10ns are obtained by noting that F_ i = (—1)1-!_1 and

F o)) T (-1) F _,» The value of Cy is obtained from (2.8) for n = 0.

Comments, We notethat (2.5) and (2.6) are special cases of (2.8). Suppose
now

m
P = (™ - Z(-vjsjnkj

Since (-k)(m) = (<K)(-k-1)e** (-k-m+1) = (-1)™'k(k + 1)e+ (k + m - 1), wehave

n

k+m-~-1
Z(-k)(m)sz+r = 1) (m'>z< ) Hylrr s

k=0
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-

Thus, from (2.9), with a; = 0 and aj = (—1)]'81:';[19 j = 1,°°°,m, we obtain
(using (1,10))

and
m

m

SRS T B jai 1 if i

(2.10) E,(l) aJ.Gj smGJ [0 pra
=i

=i

N S

2.11) Cr = (D)F H -F_H_)

= —(m,!)(F_er * Fi—erﬂ) = -(m! )Hr+1-m

The following result, derived via forward differences, is an alternate
form of Theorem 3, which was derived via backward differences.

Theorem 4, For n = 0,1,¢¢e; v = 0, 1, 2,22+, we have

n
2.12) Zp(k)ﬂzk+r
k=0

m m m
— i, ] i s
= Hop+r E (-1) (L'»)Fi_2 E aj (s) Gj-s n
s=0 |i=t j=s+i
m [m m
+H 1)) F; z a (1) el tpf+c
an+r+i 1Fj1 ils is 7
s=0 | i=0 j=s+i
(m = 0’ 1’0 ° -) )
where
m m m m
i i i,. i
(2.13)  Cqg=H |ag~- E (—1)1(11)Fi_2§ ajG; - Hyty (—1)1(1:)Fi_1§ aGil .
i=1 j=i i=0 j=i

Comments. If we compare (2.8) with (2.12), we conclude that for arbi-

trary 255 j=0,1,°°°,m,



12 ON SUMMATION FORMULAS [Feb.

(2.14) (—1)S+1 1) (1.)F Z(—l)J () al

j=s+i
m m
= — i i1 . j 1
E 1) F, E 2 (S> GJ_S
i=1 j=s+i

(s = 0,1,°++,m - 1);

@.15) (1) Z( D Fi Z 1), () Gl

j=s+i

m m
- Z{.-l)l(iz )Fi-q Z a; (i) Gl_
=

j=s+i

(s = 0,1,"",:[!1) .

For a, = srln, j=0,1,+,m, (2.14) and (2.15) with s = 0, yield (noting (2.10)),

respectively,

m m
m-1, _ i, gl Al - cao) .
2.16) (D™ ) Fy,, _Z<_1> (L)FiZ(—l) sJG)  m=1200)

m m
@17 DPm!)Fy =Z(-1)i(i!)Fi_1Z (_1)jsxjnG§ (m = 0,1,°°°) .
Addition of (2.16) and (2.17) gives

@.18) (1™ (m!)Fp,_ —Z( 1l >F1+1Z<- Mslal =1z

Since L][1 = Fn ut Fn- 0 addition of (2.17) and (2.18) gives
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@19) D™ L, —Z(-l) (it )LIZ‘ Disich =1z

i=0

We note that (2.17) may be written as
@.200  m!)Fy,_i[-1+)™] = Z( i) F Z( 1)JSJ
(m = 1,2, )

Thus, for m = 2n, n = 1,2,°°-, (2.20) gives

2n-1 2n
@.21) Z (—1)1(1!)}5‘1_12( pis] l L0 =1z
i=0 =1

Since ([2, pp. 149, 171))

n-1 _ 2n\ _ on-1
Son _'(2>_"G2n ’
(2.21) may be written as
m-2 a L
(2.22) (2n)! @n - DFyy_y = z D) Fiq E (-1’s),G:
=0 j=i
(n = 17 2, ° 00

Suppose now

m
Pl = k™ =Zs}3;nkj
j=1

13
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in (2.12). Noting (2.10), we obtain from (2.13)

@2.23)  Cp= (1™ mt)(Fm_oHy + Fm_iHr) = D™ m! ) Hpimog

If we rewrite (2.12) as
‘ n
(2.24) E k(m)H2k+r = Litm,n)Hpir + Lylm,n)Hypirsq + C;
k=0
we obtain from (2.24)

2.25)  -D™m!)Hppy 1 = Lim, n)Hyptp + Ly(m, n)Hypspty @=0,1,-,m-1) .

From (1.10) with p = 2n+r+1 and s = m - 2 - 2n, we obtain

(2.26) Hytmot = Fm-g-onHon+r + Fm-i1-anHon+r+1

If we substitute for Hyy.,_ 4 in (2.25) by (2.26) and then equate coefficients of

Hon+y and Hyptr+y in (2.25), we obtain the following identities:

m m m
@27 1D™m!)Fme soom =Z Z(—l)l(i!)Fi_z Z (JS ) shal gl [o°
j=s+i

s=0 | i=1

m m m
.28 (1)™m)Fypsom =Z Z(—l)i(j!)Fi_i Z (JS) sll;nc;ji_s n®
s=0 | i=0 j=s+i

n=01,--,m-1;, m=1,2,-*)

Proof of Theorem 4. It is readily verified that
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n-1 m
(2.29) E P()Hykry = E 1)'Hpnir-14i A'P@) + Cy
=0 i=0

m
Hopsy| -P@) +Z )'Fy, Alpm)

i=1
m
+ Hoptr+1 E ¢1'Fi_; A'P) + C¢
i=0

since Hypip_1+i = Fi-gHop+r + Fi-iHyp+r+i, which is obtained from (1.10)
where s =i-2 and p = 2n +r + 1. The simplification of (2.29) to the form
(2.12) proceeds in the same manner as in the proof of Theorem 2., The value
of Cy (2.13) is obtained from (2.12) for n = 0,

The following result, derived via backward differences, is an alternate

form of Theorem 2, which was derived via forward differences. Since

1

m
D D g VPO + G

i=0

n
(2.30) ZP(k)Hk_I_r
k=0

m
Hyip [P@) +Z(—1)1Fi+1ViP(n)
i1
m
+ Hn+r+1z CDFVP@ +c

i=0
Wwe may now state
Theorem 5, For m = 0,1,°°°;n = 1,2,°°° ,
- m m
=1

n-i m
- s o J J i 8
(2.31) E PH,, = Hn+r§ {-1) z it Fiqg E (-1) 8 <S> Gi g |n
k=0 8=0 i j=s*i |
m m m
+H (-1)5 it F; -da. (1) al n°
n+r-+i - s hit2 ils j-s
S=0

i=0 j=s+i

+Cy
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where
m m m m

(2.32)  Cy = -Hp ) ilFiy Z(—I)JajG; - Hrs1) il Fiag Z(-l)JajG;
i=1 j=i =0 j=i

r,m = 0,1,°°¢) ,

Comments. If we compare (1.13) with (2.31), we conclude that for arbi-

trary aj, j=10,1,e00,m,

m m
(2.33) DCD@IT| Y 2 (33) Gy
i=1 j=s+i
m m . .
= (D®) ) #F| Y -D'a (JS) G
i=t j=s+i
(s=0,1,°"*, m-1) ;
m m
@34) D DU Faar] Y. a, (;) Gy
i=0 j=s+i

m m
EVIPICE Ny oia (i) i
= (-1) Z il Fyap Z 1'a, (s) G g
i=0 j=s+i
(5:011:"'3 m) .
For a; = (_1)351311, j=0,1,-+-,m, (2.33) and (2.34) with s = 0, yield (noting
(2.10)), respectively

m m
(2.35) miFyy = Y CD'EDF Y (Ds) G]?
i=1 =i

(m = 1:2"'") H



1967] AND IDENTITIES FOR FIBONACCI NUMBERS

m m
. L
(2.36) miF ., = Z(—l) (1!)F21+1Z(—1)JSIJnG; (m = 0,1,07+) .
i=0 =i

Suppose now

m
Pk = (0™ = 3 (plsid
it

in {2.31). Then

n-1i n-1
(m) _ m k+m-1
2 0™ = (0T mn Y Sl S
and from (2.32) we obtain
{2.37) Cs = -m!)(Fm+iHy + Fy+Hr+) = -mD)Hm4r+g

We note that (2.4) and (2.7) are special cases of (2.30).

3. ADDITIONAL RESULTS

In terms of forward differences it is readily verified that

n-1 m
i—ict i
(3.1) > P®Hgy = S 02 i 101 AP@) + Cy
k=0 i=0

m
i .
H3n+rz (-1)'27 Py, A'P)
i=0

m
e .
+ H3n+r+1z 12 Ey, A'PR) + Gy

i=0

17
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Moreover, in terms of backward differences, it is readily verified that

n m
3.2 Y PMHer = 3 D2 Hyniari VPO + G
k=0 i=0
m .
= Hypir ) D2, viPm)
1=0

m
i )
+ H3n+r+1z -2 Fz_iVIP(n) + Cg .
i=0

The following result is a restatement of {3.1) and (3.2):

Theorem 6, For n = 1,2,°°°; r = 0,%1,42,°2», we have

n-1 m [m m
- iy omiete | i L
(3.3) Z PHzk+r = Hpr Z Z (-1)"GN27 " Fyig Z 8 (S) Gj—s
k:O s=0 { i=0 j:s+i |
m{m m
1jigye—i-1 j i
+HSn+r+1Z Z(—l) ()27 Faig Z 8 (Js) Gj—s
s=0 | i=0 j=s+i
+ Cg (m = 0,1,-++) ,
where
m m
- ipeyo—i-1 i
(B4 Gy = -Hp ) (1627 Fy,| ) a0
i=0 j=i
m m
iyo—i-1g | i
- HI‘+1 E ('1) (1!)2 F21_1 Z aJGJ
i=0 j=i

For n=20,1,°-: v = 0,%1,£2,--+, we have
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n m " m m
39 L PWHr = A 3 (0% T2 e 3 oy (1) ol |
k=0 s=0 i=0 j=s+i
m m m
s sy o—i-1 j j i §
e 3 07| T e 3 eyl | b
=0 i=0 j=sH
+ Cg (m =0,1,°-°) ,
where
i m
(3.6) Cg=Hplag-Y i277F, ;1> 1lag
g = Hr| 2 Z 1-i Z( )'a,G;
i=0 j=i
m m
Lol i
- Hpyg ) i127 T Fagl )0 1) a,Gy
i=o0 j=i

Comments. Add P{n)Hzp+y to both sides of (3.3). Then, comparing (3.3)

and (3.5), we conclude that for arbitrary aj, = 0,1,°°°,m,

m ‘ m
iy o-im1, i\ .i
3.7 a+ Z -1)' @2 FZH' Z 2, <S) Gy
i=0 j=sH
m m
_ s Lo—i-1 . j j i
= (D) w2 Ty > ¢ aj(s) G g
i=p j=s+i
(S = 0’ 1,' :m) H
m m
i omiedn, i\ Ai
(3.8 D (D' Fag| Y aj<s) G g
i=0 j=sH

m m

B S R 5 | i. (] i - oes

= D% Y 2T TR | ) D) aJ.(s) G gl G-0Lm
i=0

j=s+i
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For a, = ijn’ j=0,1,2++,m, (3.7) and (3.8) with s = 0, yield (noting (2.10)),

respectively

m m
2 1o~ M-1 = it -i-1 : _ igh gt = oso

(3.9) m! 27 Py 21.2 Fy-i Z( V)Gl =120,
= —
m

(3.10) m! 2 g = Y it IR, E (‘1)331311(}; m = 0,1,°+°),
i=0 i

which maybe simplified by noting that ¥y_j = (—1)1Fi_1 and Fy_j= (—1)1+1Fi_2,
I oa = »'s), j =01, ,m, (.7 and (3.8) with s = 0 yield,

respectively,

(3.11) ()2 ™ F
m m
= Dent a2 Ry Y (s e mo= 1z
: =
(3.12) —(mz)z‘]““‘1Fm_2
Z (IRCE R E v's]c (m = 0,1,-**)

By repeated additions, (3.9) and (3.10), as well as (3.11) and (3.12), give similar

identities for Lucas numbers, Ln
Suppose now

m
Pl = k™ = Y sdid
j=
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in (3.3). Then, from (3.4), we obtain

+1 -m-1i
DM mn2 M (FymgHy + Fym-gHr4q)

Csg

+{ - -
1™y el

From (1.10) with p = 3n+r+1 and s = 2m - 2 - 3n, Wwe obtain
Hom+r-1 = Fom-2-snHsn+r + Fom-1-snHsn+r+1 .

If we substitute for Cg in (3.3) and then equate coefficients of Hgp+r and

Hsn+r+1, we obtain the following identities:

3.13) D™ m)2 ™ Fomozosn

m m m
_ iy yomitin i) o A S
- Y T e e 3 (Y shel |
s=0 | i=0 j=s+i

m=0,1,o++,m-1; m=1,2,2--),

(3.14) (—1)m(m!)2—m—1F2m—1—3n

m m m
S i) o i s
= 2D enlan2 g Y (S) SRR )
s=0 | i=0 j=s+i

= O,l,‘“,m—l;m=1,2,--~).

Suppose now

m
P = (0 = 3 elslid
=
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in (3.5). Then from (3.6), we obtain

—-m-1 -m-1
Cg = -m!)2" ™ (F By + FoomHr+t) = -@)2 " Hyipem .

4., GENERALIZATIONS

Let a, b, Uy and Uy be arbitrary real numbers, and consider the follow-

ing three sequences:

(4:-1) Un+z = aUn+1 + bUn, ab = 1, a 7é -1, (n = 0, 1,'“") )
(4.2)  Up+y = alps + Up, a # 0, n=0,1,°°°) ,
(4.3)  Up+a = Up+q + bUp, b = 0, = 0,1,+) , .

We note that (4.1), (4.2), and (4.3) reducetothe Fibonacci sequence for the proper
choices of a and b. We shall obtain summation formulas, using both forward
and backward differences, for each of the three sequences, as defined by (4.1),
(4.2), and (4.3), which yield the previous results, i.e., Theorems 2, 3, 4, 5,
and 6, as special cases for the proper choices of a and b, We have already
seen how certain procedures may be used to obtain various identities from our
Theorems 2,+°°,6, In view of space limitations, no attempt will be made to
usetheseprocedures to fully exploit the general results obtained inthis section.
Identities given in the proofs of Theorems 2 and 3 will be used to obtain the
explicit formulas cited in our general theorems, whose proofs are similar to
that used for Theorem 2 (if forward differences are involved) or to that used
for Theorem 3 (if backward differences are involved). We shalluse repeatedly

the following identity [3, p. 6, 12]
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(4.4) Up+s = bobsUp-y + ds+Up

where ¢; = 0, ¢; = 1, and ép+y = app+{ + bep, n = 0,1,°°-. We note that
(4.4) yields (1.10) for a = b = 1. All results in this section are valid for the
parameter range, r = 0, 1, +2,..., P(k) (see Theorem 2) is defined as

before. For negative subscripts, we define
(4.5) U_p = (UVn - Up)/(-b)n o =1,2,°") ,

where Vo = 2, Vi =a, and Vp4y = aVp4+ +bVpy, n = 0,1,°+- . We note
that ¢_p = b /D)2, n = 1,2,°°+ .
(i) Let U, satisfy (4.1). Since

n-1 m
@6 Y PWUger = 3 D@ + D)7 Ugner_paai AP0) + Cy
k=0 i=0
o .
= DUger 3 D@2 + 07y, ATPE)
i=0
m .
+U3n+r+1z 12 + b)_i—1¢2i_1 A'P@) + CF
i=0

and

n m
(4.7) Z P Usletr Z(_nl(az + b)) Wsnirte-i V' P@) + Ch

k=0 i=0
m
. o
= DUspar 9 (D@2 + D)7y V'P@)
i=0

m
b Ugprt 3 CDa2 + 07y VIP@) + CF

i=0
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We may now state

Theorem 7. Let Up satisfy (4.1), ‘,and m = 0,1,°°-,

For n = 1,2,°"

we have
n-1
@8 D PMUkir
k=0
m
= bUsp+r D) @2 + p ois a, <J> G.i_ n°
Z Z =Zs+ i\s) "i-s

3) ! ns+C;,

m
‘ U3n+r+1Z Z‘ Do b Y (]
s+i

=

where
m m
@9 cF = _bUrZ<_1)1(n)(a2 b by ZajG;
i=0 =i
m m
i, —i-1
- Ur+1§ :(-1>1<1z)(a2 + )7t 4’21'12"" Gl
i=0 j=i

For n=0,1,+», and m = 0,1,*°°, we have

n
(4.10) Z P Ugicrr
k=0

= bU3n+rZ(—1) Zl. (a2 + p)~ it bi-i Z (-1)a, () i

j=s+

m m
. . . . s N
J n -+ Cg,

m
e Y 0| Yt 0| Y el (1) of,
S=0 i=0

j=s+i
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where

) m m
(4.11) Cy = Up|ag - bz it (a2 + b) "y z (—l)JaJ.G;
i

i=0
m m
- Upn Y _itlat + 7, ) Cla 6l
im0 =i

For a = b = 1, Theorem 7 yields Theorem 6.
(ii) Let Un satisfy (4.2). Since

n-i m
(4.12) E PR)Uspry = E D2 MUy poiti AP@) + CF
k=0 i=0

1l

m
Uner|-P@) + ) (D' 7lg;, alp@)

i=1
m
+ Umntr+t E 1'a ¢y a'P@) + CF
i=0

and
n m

(4.13) Zp(k)mkﬂ = E ) Yy s VP@) + CF
k=0 i=0

m
= Upptr Z(_l)la_l—ld)_i v'P)

i=0

m
i it .
+ Upptp+ E D2 ¢y VP@) + Cf

i=0

we may now state
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Theorem 8. Let Un satisfy (4.2), For n,m = 0,1,---, we have

n
@14 D POV
k=0
m

m § m y
2 : 2 : isyy i1 j i s
= Usp+r -D'aat iy aj (;) Gj—s n
j

§=0| i=1 =g+

m j m

i,y —i-1 j i s *
e * Ut E DHEaT ey E a2 (Js) Gj—s n” + C7 ,
=0 1

8= { i j=sti
where

m m

i.,y.-1-1 i
4.15) CT = Uyl g _v(—l) it)a ey, ZajGj
i=1 j=i

m

m.
- Ur+1Z(—1)l(ﬂ ya~iles Zaja;
i=0

=

For n,m = 0,1,°*+, we have

n
@16 ) PRV
k=0

m

m m
a3 e 5 e (1) of,
s=0 =

i=0 j=sti

m m m
RN S R )3 T T B RS CY R
§=0 =0

i j=s+i

*
+ Cy ,



1967] AND IDENTITIES FOR FIBONACCI NUMBERS

27
where
m m 7
@1n  Cy = Upla, —Zil a” g Z(-Djajc}]?
i=0 j=i
) m m
- Ur+1Zi! a e, s Z(-l)jajG§
Fn =

For a =1, (4.14) and {4.15) yield Theorem 4; and (4.16) and (4.17) yield
Theorem 3.

(iii) Let U, satisfy (4.3). Since

n-1 m
(4.18) E P Uiy = 2 1) Upapastas AP0 + CF
k=0

i=0

i

m
bUn+rZ(~1)ib—i_i¢2i alp@)

i=0

m
iy .
+ Un+r+1 E (—1)1b ! i+ AlP(n) + C;

i=0
and
n m
@19) ) POUr = Y (DT UpVP0) + €
k=0 i=0

Il

m
BUper| 7P + ) 159 P 0)

i=1

m
+ Un+r+1§ D' 14, VPM) + CF
i=0
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We may now state

Theorem 9. Let Un satisfy (4.3). For m = 0,1,°°*; n = 1,2,°°*, we

have
n-1
(4.20) E PR Uty
k=0
m
- 2 : -i-1 j i s
= bUn+rZ ( 1) (1' )b ¢21 Z aj (S) Gj"s n
s=01 i=0 j=s+i
m[m m i
+ Un+r+1z Z:(-l)l(i! b gy E a; <JS ) Gjl_s n® + cf ,
$=0| i=0 j=sti
where
m m
@.21)  CF = -bUp ) (1'ab oy Z X
i=0 j=i
m
- Up+y E -1) (1' )b—l— ¢21+1 E ]G; °
i=0 j=1i

For m = 0,1,°°+; n=1,2,°++, we have

n-1 m " m m
(4.22) ZP(k)Uk+I' = bUn'l'I‘Z(‘l)s Zi! b—i_1¢i+1 Z 1)] < ) ji_s
k=0 5=0 i=1 i=s
m m m
¥ Umrﬂz(—l)s Zixb‘i‘1¢i+g Z 1, (;) Gl
s=0

i=0 j=s+i

*
+ Cg )

where

-
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m m
4.23) Cj; = —bUrz it iy 2 (_1)jajG§
i=1 j=i
m

m
i o
- Ur+1§ :1zb i E 1%aGi{.
=i '

i=0

For b =1, (4.20) and (4.21) yield Theorem 2; and (4.22) and 4.23)
yield Theorem 5.

5. APPLICATIONS FOR A SUMMATION FORMULA

Recently, the author [6] proved the following result:
Lemma 1, Let U, i=0,1,°e¢,p - 1, be arbitrary real numbers, and

let un, n=20,1,---, satisfy a homogeneous, linear difference equation of
order p with real, constant coefficients.

(5.1) boun+p + biun+p—1+"' + bplln = 0 (bobp )’é O) °

Let x be a real number. Then

" p T n p-i[ k )
(5.2) - E bixi Z :ukxk - z E b{lin -+ | n+i+k
i=0 k=0 k=0| j=0
p-1| k

k
- E E bjug_j[x 3

k=0 | j=0
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o P.Z-:1 [%2 bjuk-j] K

(5.3) E ukxk = xLj=

k=0 =0

The series in (5.3) converges for| x| < | Al, where A is the root of bpxP+ ...
+ byx + by = 0 with the smallest absolute value.

In [6], (5.2) was used to obtain a closed form for

n
E kpxk
k=0

If xy is a value of x such that

p
E biX(:% =0,
i=0

then

is obtained from (5.2) by applying L'Hospital's rule.
As before, let

and consider u = P(k)qu+r, k=20,1,*+, where q = 1,2,--+;r =0, %1,

+2,-++, and
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(5.4) Wpg + diWneq + dgwn = 0, dydy # 0, 63 -4dy # 0, @ = 0,1,2¢),
If o and B are the roots of x%+ djx +d, = 0, then Uk = qu +r satisfies

(5.5) Uk_|_2 - Vqu+1 + d(lek =0 k = 0,1,°¢0) ,

since (x - od)(x - pd) :Xz—VqX+dgi, where V= A +pR, o= 0,1,000,

with Vy = 2, Vy = -dy, satisfies (5.4). We note that P(k)quH. is a solution
of a homogeneous, linear difference equation of order 2m + 2 with real, con-

stant coefficients whose characteristic equation is given by

(5.6) [ - 0 - pO]TT = 6 - vx + aH™ = 0,

Since

am-+2
s
% - qu + a3 ymH = E bom+e-sX s
§=0

we have that

2m-+2
(1 - Vgx + dglxz)m+1 = 2 ijJ .
j=0

In [2, p. 30, example 3], it is shown that

m-+1
(5.7) by = 1)’ Z (m § 1) ( jl_ i) v;i-idgl‘l"l’ (G=10,1, "% 2m+2)

i=0
- Thus, (5.2), in which p =2m + 2 and bj defined by (5.7), yields a closed form

n
) k
E P(k) qu X o
k=0

for
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[Feb.
It w = Hp, then dy = dy = -1, Vg = Lq, and (5.2) yields
n
+1
6.8 -1 - Lgx + (DB ploHg
k=0
am+1 [ k ’
_ . n+i+k
- Z ijp(n T LAk - g | X
k=0 | j=0
o+l [k 7
1 k e © 00
_ E E b]P(k - J)Hq(k—3)+r X (Il = 0, 1, ) N
k=0 | j=0
where (see {5.7))
m+1
(5“9) bJ — (_1)J(q+1) E (_1)1 <m :‘ 1) < J i 1>L(211—j (J = 0’ 1,0 0o, 2m + 2)9
i=0
¥ P) = (m) _ kY . .
k) =k = ml in (5.8), we conclude that for arbitrary x,
om+ |k
n+1+k—j n+i+k
(5.10) E b, ( m J) Hy (+1+k-j)+r | X
k=0 } j=0
2m-+1 k
_ k-j k
o Z‘%( m )an«:—jm x
k=0 j=0

(n = 0,1,°°*, m ~ 1; m = 1’2’009)

If n =0 in (5.10), the coefficient of X2m+2 must be 0, i.e.,

2m-+1

(5.11) Z b, (2“‘ T2 j) Hy@miz-jir = 0 (m = 1,2,+0) .

=



1967] AND IDENTITIES FOR FIBONACCI NUMBERS 33

¥ Pk = {- k)(m) ~0"m r)<k * E - 1) in (5.8), we conclude thatfor

arbitrary x and n = 0,

am+1 |

.12) Z Zb( Sivm >Hq(1+k—j)+r K

2m-+1

"2 Zb< T g g s Lz,
J=

m-2

In (5.12), the coefficient of < must be 0, i.e.,

2m-+1

(5.13) Z bj ( om :nl - ) Hq(2m+2-j)+r =0 (m '= 1,2,°0°) .
j:O

I Pk
author [7, p. 105, (5)], using a different procedure.

1, then (5.8) yields a result which has already been proved by the

11

Noting that wy, = cos mé and wp = sinné satisfy wpiy - 2cosOwp+y +
wp =0, n = 0,1,°+s, with V; = 2 cosné, where 6 # 0,m, 0 <6 < 2,

we obtain from (5.2) the following two identities:

n
(5.14) -[1 - 2{cos gf)x + Xz]mﬂz P(k){_ 008 (g + r)O}Xk

sin (gk + 1)@
k=0
2m-+1 ]
cos [qmn+1+k-j) +r 0} n+i+k
Z ZbP(n+1+k—J){Sm Eq(n+1+k~j)+r]0 X
k=0 | j=0 .
am-+i

cos [alk - j) +r] @ k (n
Z pr(k {sm%q(k—j)w]a}x =0 L)

where (see (5.7))
. m-1
_ j m+1 i 2i-j - vee .
(5.15) ;= (-1) }: ( i ) (j i )(2 cos q8) (j=0,1,*°,2m+2),
i=0
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The relative simplicity of our results, (5.14) and (5.15), may be compared with
the less general (as well as less elegant) results obtained by Schwatt [8,
pp- 217—219], who used the differential operator, (xd/dx)™.

For choices of P{k) = k(m)
as {5.11) and {(5.13)) the identities (pairwise)

or (-k) (m) , we obtain (in the same manner

am-+H C ]
2m+2 - j}fcos|q@@m +2 -j) +r 0}2 -
(5.16) E bJ.( m ){ sin [q(zm +2 - J) + 1] 0 (m=1,2--),
=0
am+

, 3m+1-j\fcos[q@@m+2-j +r]el_ _
.17 Z bj( m ){Sin [q(2m+2-j)+r]6}“ 0 (= 1,2000).

j=0
Identities (5.16) and {5.17) may be transformed to hold for hyperbolic functions

by recalling that cosh (i8) = cos¢ and sinh (i¢) = i sing.

As an application of (5.3), we have

Q0
(5.18) (1 - Vgx + dix? )mHZ P (&)Wl

k=0
skt |k
= 2 ijP(k - Pwg(k-j)+r Xk s
k=0 | j=0

where loj is defined by (5.7).
It is desirable to have check formulas for the computed values of bj‘ In

our discussion, consider bj’ as given by (5.7), where

2m+2
(5.19) @ - Vgx + d9x2)™* = E ijJ (m = 0,1,°2°).
=

We may set x = 41 in (5.19). A substantial reduction in the effort required

to evaluate all the bj’ j = 0,1,°++,2m + 2, is afforded by noting that
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(5.20) bam+a-j = dg(m+1—3)bj G = 0,1,000, m+1) ,

To prove (5.20), multiply both sides ef (5.19) by dg(mﬂ) , and so
2m-+2

(5.21) @ - dyVx + Q%) Z bj d(zjl(m+1)xj
j=0

Replacing x in (5.21) by x/dg, we obtain (in reverse order)

2m-+2 2m-+2
(5.22) &2 - Vgx + df)™t = E bjdg(m““J)XJ = E bomt2-X 3
J:O j:0

and thus (5.20) is obtained by comparing the coefficients of % in the sums in
(5.22).

Let t = 1,2,°++, andlet gt+1(x) = 0 (where gt+{x) is a polynomialin
x of degree t + 1) be the characteristic equation determined by Hgk +p+ Then
the characteristic equation determined by W = P(k)Hglk+r is given by

{g-t+1(x)]m+1 = 0. Since

(t+1) (m+1)

[Xt+1gt+1(1/X)] m-+i - § : bJXJ R
j=0

(5.2) may be applied to yield a closed form for

n
t k
Z P qu+rX °
k=0

A formidable obstacle in this procedure is the complex nature of the bj’ which

involve multiple summations,
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: ; 2 2 2 2
As a simple example, consider Hn i where Hn ity ZHn w2ty ~ 2Hrl -
+H, =0, and gy(x) = x® - 2x* - 2x + 1. Then x’g(1/x) = 1 - 2x - 2x? +x3

and

3{m-+1)
2 m-+i - ]
1 - 2x - 2x2 + %) _ijx .

i=0

Using the binomial theorem and then applying (5.7) (with the proper change of

notation for the coefficients), we obtain

m-+i

m-+i m + 1 i i
(1 - 2x - 2x% +x9) = Z( i )(—ZX) [1+x- &¥2)]
i=0
m-+ 2i 3m-+3
D TRED WD 3
i=0 k=0 j=0
where
i
Ck :Z(;)<k-s-s)(—1/2)k~s (k:0:15°'°: Zi) ’
S=0
and
m+i
_ m+ 1 ;
(5.23) b]. = Z ( i ) (—2)10]._1
i=o0
m-+i i
_ ~j i fm+1 s [i s
= (-2) Z 221< i )Z(—Z) (S) <J._i_s)
i=0 s=0

G = 0,1,°°+, 3m + 3) .

Thus, from (5.2) with p = 3m + 3 and w = P(k)HIZ{
is defined by (5.23)),

i Ve obtain (where b].
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(5.24) -1 - 2x - 2x* + %3 mHZP(k) k+r

k=0
3m-2 3m+2
9 Il+1+k
E E bP(n+1+k )Hn+1+k ]+rX E E bP(k jYH2 k]+r
k=0 | j=0 k=0 | j=0

Recalling the manner by which (5.11), (5.13), (5.16), and (5.17) were
obtained, we may now state the following result:
Theorem 10. Let

(t+1) (m+1)
(5.25) [Xt+1gt+1(1/X)] m+l Z ij] (m =1,2,°--).
j::
Then
(t+1) (m+1)-1
t+Dm+1)-j) 4t -
(5.26) Z bj ( m ) Hq(tm+t+m+1—j)+r -

i

@t,m = 1,2,e005 T =0, 21, 3,+++) ;

(t+1) (m+1)-1

t+Dm+1)-j-1+m)t =
(5.27) Z bj < o m ! ) Hq(tm+t+m+1—j)+r -0

j=0
(Qt,m = 1,2,°¢¢; v = 0, 31, ¥2,°°°) .

We note that (5.26) and (5.27) are identical for m = 1.
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6. REMARKS ON THE PAPER BY LEDIN [ 9]

From our (2.31) with r = 0, H_=F, and P() = K™ (sothat a =1

a. =0, j=0,1,e0,m-1), we conclude (see 9, (3a), (3b) for notation)

j

6.1) E k+1 J G=0,1,°¢°) ,
k:
j k
6.2) Mz,j E k! Fk+2G] G =0,1,°°°) ,
k=0
From [9, (6a)], we obtain for i = 3
i A
6.3) Zk' FiwGy - 00 G =0,1,00)

Thus, the assertion [9, (66)] is valid only for i = 1,) (with j = 0,1,°-¢) and

=3(=1,2,++). Since FkJr F1 1Fk+2 1 sz+1 (see (1.10)), we obtain

from [9, (6b)], using (6.1) and (6.2) above, that
j
= J i = a0 e
6.4 M, Z e J Z(k + D'F, G=120-"2) .

k=0

Noting (6.1), (6.2), and (6.4), we are tempted to define

J
= k 3 = ® 00
—Zleij G = 0,1, ) .
k=0
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It should be noted that (6.1) and (6.2) are not uniquely defined. In the
notation of [9, (8)], our (1.2) (with r = 0 and Hk = Fk) can be written as

6.5) S(m,n - 1) = FnPs(m,n) + Fn—1P2<m’n) + C(m) ,

where (using 9, (2b), (3b) )

(6.6) cm) = )™M o @010

Thus, from (1.2), we obtain

j
6.7 M, = 1)) Z(—l)k(k! )Fy +2G1.< G

= 0’ 1,--. s
i )
k=0
)
N,k k
= — ] — 1 = oo
6.8 M= €D DS RIF, LG (= 0100
k=0
Since Msj =M, j + 1\/[1j for j = 1,2,°°*, we obtain from (6.7) and (6.8) that
j Po=
(6.9) = (-1) E (—1) (k.)FZk i G =1,2,--°)
Since F2k+i_ = F1-1F2k+1 Fi—zFak (see (1.10)), we obtain from [9, (Gb)],

using (6.8) and (6.9), that

i—4

j
(6.10) M= (—1)32(—1)k(k! )Fy s (G 3 Z(k+1)JF
k=0

=0
(]“1,2: °') °

From (6.4) and (6.10), we conclude that

(6.11) (-—1)32(_1) (k')sz—m . J Z:k'Fkﬂ i (G = 1,2005i=0,1,000).
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It should be noted that [9, (7c)] was obtained from [9, (6a)], using |9,
(7a)]. Since 9, (7c)] is a linear difference equation of second order in i, its

solution is

i-38
6.12) Py = B Pnn) + F_ P aon) - ) (- WUF
k=0 (i:3,4!"') o

Using (6.12) and (1.10), [9, (8)] can be simplified to

(6.13) Sm,n-b) = F P m,n) +F_, P mn) + (-1)1“11\/[2’m
h~2
_Z(n -RUF - 1-nTE L (h=2,3,000) .
k=0

Since P;(m,n) = (—1)mP3(m, -n) |9, (9)] can be simplified (using |9,
(6a), (7c)]) to

n
m _ m
(6.14) E h-k+1) Fk = Mi,an+1 + 1\/[2,an+2 +n
k=1

- (_ 1)m+1

(Pz(m,—n) + Pi(m:_n)) (m =1,2,¢¢- ) °

Since (see |9, (A1)]) Pi(m,n) = D™Qun,-n+1i-1), where Qm,n)
are the Weinshenk polynomials in n of degree m (see reference [8] citedin
[9]), it follows that

m

(6.15) Q(m,n) = (-1)™P,(m,n) :Z (Ijn) Mi’jnm—j

=0

Thus (6.15), where 1\/[1 Kk is defined by (6.1), affords a closed form for the co-
efficients of Q(m,n). From (6.12), with n replaced by -n, we obtain the

following recursion relation for the Weinshenk polynomials:
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6.16) Qm,n+i-1) = Fi_iQ(m,n +1) + Fi-ZQ (m,n)
i-3
—Z(n+k)mFi_1_k (i = 3,4,°°°) .
k=0

In [9, (7a)] there is defined

m
6.17) Pi(m,n) = Z (-1)j (T) Mi’jnm_j (m =0,1,°°°).
j=0

If we apply the well-known inverse pair relations,

m m
k ok
(6.18) A = z (-1) <1£) B, B = z (-1) (IE) A
k=0 k=0

to (6.17), we obtain as its inverse
m
- 2 : j (m -y -] -
6.19) Mi,m = -1) (J) Pi(],n)n (m = 0,1,°°") .
j=0
Since Pi(j,n) = (—l)jQ(j, -n+1i-1), we obtain from (6.19)

(6.20) M.

E
1l
™M

(1;1) QG,-n+1i - )™

From (1.19), we obtain for n = 0, recalling (6.9),

1l

m
(6.21) P nr, =l
=1

m=1,2,"*°) .
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From (1.20), we obtain for n = 0, recalling (6.8),
m
m _ iqd - cen
(6.22) CDT@OF, L= Y DS M (o= 0,10
j=0
From (2.35), we obtain, recalling {6.9),
m
R — j = cen
(6.23) mF = Z SIM, i (m=1,200) .
=t

From (2.36), we obtain, recalling (6.8),

m
1 = j = o e
(6.24) mF_ ZSmMZ,]. (m = 0,1,00+).
j=0

If we set b = 2 in (4.3), then Un = (-1)® is a solution of (4.3). In
(4.20), set P(k) = k™ so that an =1 2 =0, j=01, - ,m-1 Thus,
(4.20), with b = 2 and r = 0, gives a closed form for

1l

n-1
Z (- 1)kkm
k=0
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THE Q MATRIX AS A COUNTEREXAMPLE IN GROUP THEORY

D. A. LIND, University of Virginia, Charlottesville, Va.

If g is an element of a group G, then ofg), the order of g, is defined
tobe the number of distinct elements of G in the set {e, gii, giz, oo -}, where
e is the identity of G. This is equivalent to defining o(g) to be the number
of elements in the cyclic subgroup of G generated by g. It is an easy conse~
quence that the order of g equals the least positive integer n such that gn =
e. If no such integer exists, g is said to be of infinite order.

In an abelian group H (i.e., ab = ba for all a,b € H) it is easy to
show that the product of two elements of finite order must again be of finite
order. Indeed, if ofa) = m, o{p) = n for some a,b & H, then (ab)mn =
(aIIl)n(bn)n1 =M™ = e, so ofab) < mn., However, this does not necessarily
hold in general, as shown in the following counterexample involving the Q
matrix.

Let G be the multiplicative group of all nonsingular 2x2 matrices, and
let

be elements of G. One can check that B2 = 8% = I, the identity matrix, so
that R and S are of finite order. But

1.
RS = [1 0] - Q 1)
the Q@ matrix. Now Basin and Hoggatt [1] have shown that
F F
n_ n _ n+i n
n
for any n > 0. Thus RS has infinite order.

(See page 80 for reference.)
44



ON A CERTAIN KIND OF FIBONACCI SUMS™

GEORGE LEDIN, JR., Institute of Chemical Biology, University of San Francisco, San Francisco, Calif.

INTRODUCTION

The sum

n
S(m,n) = z:kka
k=1

(where Fk is the kth

Fibonacci number) has been studied for particular val-
ues of m. The cases m = 0 and m = 1 are well known [1,2]. The case
m = 3 was proposed as a problem [3] by Brother U, Alfred of St. Mary's
College, California; this problem was later solved [4] by means of transla-
tional operator techniques and linear recurrence relations [5]. This method
of solution [4] can be generalized for arbitrary positive integral values of m,
but it usually will involve the time-consuming, error-inviting procedure of
solving 2m + 2 simultaneous equations in 2m + 2 variables, which is already
a complicated task for m = 3.

The method outlined in this paper is much more elementary, and the
work required in finding a particular sum is reduced to several simple inte-
grations., The procedure discussed below not only facilitates the computation
of these sums, but it is also a useful tool in the solution of other problems,
such as the problem of Fibonacci "centroids' proposed by the author [6], cer-

tain aspects of Fibonacci convolutions, and the like,

THEORY
Consider the sum
n
m
) Dk F, = S(m,n) = F_, P,(m,n) + F_P (m,n) + C(m)
k=1

*This paper was originally presented at the Fibonacci Association Meeting of
21 May 1966.

45
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where F, denotes the kth Fibonaceci number (Fy = 0, F; = 1, Fgiy = Fiyy
+ Fg), Py(m,n) and Py(m,n) are polynomials in n of degree m, and C(m)
is a constant depending only on the degree m,

Thus we can write

(22) Py(m,n) = ayun™ + ap_n™~1 4+ .0 4+ an + a

m-1

(2b) Py(m,n) = byn™ + byn

1

+ <« + bn + by

Theorem 1,
C(m) = -b,
Take S(m,0) = F;Py(m,0) + FyP,(m,0) + C(m) from (1))
0 = Py(m,0) + C(m) but Py(m,0) = b, from (2b)) .

Inspection of the first few values of m (see Table I') leads us to thefol-

lowing determination of the polynomials (2a) and (2h).

m
- J{m m—j

(32) Py(m,n) = ) (-1) (j ) M, i)

j=

m
(3b) Py(m,n) = Z (-1)} ( I;‘n) Mz’jmm_J

j=0
where (IJT? are the binomial coefficients, and M; j and M, j arecertain
numbers, the law of formation of which is yet tobe determined (refer to Table II).

Theorem 2,
n
(4a) Pym + 1,n) = (m + 1)._’. Pi(m,n)dx + aj
0

n

(4b) Pym + 1,m) = (m + 1) [ Pym,x)dx + b}
0
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) Table I
LIST OF FIBONACCI SUMS OF THE TYPE

S(m, n) =Zk21 K™F, = F_, P,(m,n) + F P (m,n) + C(m)
S(0,n) = F (1)+F (1) -1
S(1,n) = Fn+1(n -2) + Fn(n -1)+2
S(2,n) = FnH(nZ - 4n + 8) + Fn(n2 -2n+5)-8
S(3,n) = Fn+1(n3 - 6n% + 24n - 50) + Fn(n3 - 3n2 + 15n - 31) + 50
S(4,n) = Fn+1(n4 - 8n3 + 48n% - 200n + 416) + Fn(n4 -4n3+ 30n2 - 124n+
+ 257) - 416
S(5,n) = Fn+1(n5 - 10n* + 80n® - 500n% + 2080n - 4322) +

+ Fn(n5 - 504+ 50n% - 310n? + 1285n - 2671) + 4322
S(6,n) = F_, (nf - 12n° + 120n% - 100003 + 6240n2 - 25932n + 53888) +

n+i
+ Fn(n6 - 6n% + 75n% - 620n3 + 3855n% - 16026n + 33305) -
- 53888
S(7,n) = F__ (n' - 14nf + 168n5 - 1750n% + 14560n% - 90762n% +
n+1

+ 877216n - 783890) + Fn(n7 ~ 7nb + 105n° - 10850t +
+ 8995n° -~ 56091n2 + 233135n - 484471) + 783890
S(8,n) = F _,,m® - 16nT + 224n° - 2800n° + 29120n* - 242032n% +
+1508864n% - 6271120n + 13031936) + Fn(n8 - 8nT+ 140n8 -
- 1736n° + 17990n? - 14957613 + 932540n2 ~ 3875768n +
+ 8054177) - 13031936
8(9,n) = Fn+1(n9 - 18n8 + 288n7 - 4200nf + 52416n° - 544572n4 +
+ 4526592n° - 28220040n% + 117287424n - 243733442) +
+ Fn(n9 - 9n® + 180n7 - 2604n® + 32382n° - 336546n! +
+ 2797620n% - 1744095602 + 72487593n - 150635551)
+ 243733442
S(10,n) = Fn+1(n1° - 20n® + 360n8 - 6000n” + 87360n°% - 1089144n° +
+11316480n%- 94066800n% + 58648712002 - 2437334420n +
+ 5064892768) + Fn(n10 - 10n°+ 22508 - 3720n7 + 53970n8 -
- 673092n% + 6994050nt - 58136520n% + 362437965n% -
- 1506355510n + 3130287705) -~ 5064892768
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Table II
LIST OF THE M;,j AND M,,j NUMBERS
j My, j My, j
0 1
1 2
2 8
3 31 50
4 257 416
5 2671 4322
6 33305 53888
7 484471 783890
8 8054177 13031936
9 150635551 243733442
10 3130287705 5064892768
1
(52) aj = 1-(m+1)f (Pym,x) + Pylm,x))dx
0
1
(5b) by = 1 - (m + 1) [ (Pym,x) + 2P;(m,x))dx
0
Proof.
Prove (4a) first. Using (3a) we have
n n m
(m + 1) ( Py(m,x)dx = (m + 1) / > 1)) (‘;“) My, Jax =
oj j=o n
m
= m+ 1)) vy, 5 (I;‘) / P ax =
j=0 0
—, )\ o™ - j m+ 1) _m+i-j
S et (5) S - X entn (7 )
= =0

= Py(m + 1,n) - a
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49
=m + 1, avalue which is missing from the summa-
tion sign.) A similar proof establishes (4b).
Now,
1
aj = Pym + 1,0) = Pym +1,1) - (m +1) [ Pilm,x)dx
0
and
b, =

1
0 Pz(m + 1’ O)

Pym + L,1) - (m + 1) f Pylm,x)dx

0

and since S(m +1,1) =1 =Py(m + 1,1) + Py(m + 1,1) + C(m + 1)
-bj by Theorem 1) then

I}

(Clm +1) =

1 1
1= m+1) [ Pym,x)dx + al + (m + 1) [ Pylm,x)dx
0 0
and the value of a:) follows. A similar manipulation yields the requiredvalue

of Dy .

Corollary 1

dPy(m + 1,n) dPy(m + 1,n)
an = (m + 1)P1(m9n)§_—__

T =

m(m + 1)Py(m, n)
dn

Corollary 2

drPl(m, n)

T

drPZ(m,n)
m@m - 1)ec*(m - v + 1)Py(m - r,n);
dn

= =m(m - 1)ec-
dn

co(m - r+1)Py(m - r,n) .
Corollary 3

Pz(m, 1) = ay

(refer to (2a, 2b)).
Example 1

n
Problem. Obtain the sum Z KF, .

k=1
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Solution. We know

n
P =F , +F -1 (u=0.
k=1

So the polynomials are P(0,n) = 1, Py(0,n} = 1, Now, applying Theorem 2,

n n
Pi(l,n) = fldx + a:) = n + a:) and Py(1,n) = f 1dx+b(') = n + b:)

9 0

i

1
al=1- [@Q+Ddx=1-2=-1 and Dby=1- [ @Q+2dx=1-3=-2
0 0

Thus, the required sum is equal to Fn+1(n - 2) + Fn(n - 1)+ 2,

Example 2

Problem. Obtain the sum

n
> K°F, .
k=1

Solution, From Example 1, we know

n
Zka = F -2 +F -1 +2
k=1

So the polynomials are Py(l,n) = n-1, Py(I,n) = n-2, Now, applying

Theorem 2

n n
Py(2,n) = zf (x - V)dx + af =n? - 2n +a; and Py(2,n) = Zf (x - 2)dx +bj = n¥- 4n+Dbj

0 0
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1 1
aa=1—2f(x—1+x—2)dx=1—2 f(zx-s)dx=1_2(1-3)=1+4=5
0 0

1 1
bp=1-2f(c-1+2x-9dx=1-2 [(Bx-5)dx=1-(3-10) = 1+7
0 0

1l
5]

Thus, the required sum is equal to Fn+1(n2 - 4n + 8) + Fm(n2 - 2h +5) - 8,

Theorem 3.
If u, are the "generalized' Fibonacci numbers (i. e., numbers obeying
the Fibonacci recurrence relation, but with different initial conditions) with

the properties uk+2 = Uk +uk’ U = q, U = p, [7]’ then
n
m
Zk w = u . Py(mn) + upP;(m,n) + Km),
k=1

where P, and P; are polynomials defined as above (3a, 3b) and K(m) =
- (pbg + qag ).

In Theorem 3 we have stated a simple and useful result. The proof of
this theorem is trivial, since U = pF) + qu_ . [7] Two particular cases
are most interesting. The Fibonacci case (p = 1, g = 0) hasbeendiscussed
above; the Iucas case (p = 1, g = 2) is also quite simple (refer to TableIIl).

At this stage it seems clear that a study of the polynomials Py(m,n) and
Py(m,n) and of the numbers My,j and Mp,j pose by themselves an interest-

ing problem. The intuitive bounds
My,j+1 2 2(G + l)Mi,j My, j+1 2 2@ + 1)1VI2’J‘ G 2 1)

hold for all cases shown on Table II and can be proven by total induction using
the formulas developed for a:) and b). A very.curious relationship exists
between these numbers; this relationship, and the fact that these numbers are
members of a whole class of numbers Mj,j can be appreciated effectively in

Table IV. Horizontal addition of two consecutive Mj,j numbers is the basic
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Table III
LIST OF LUCAS SUMS OF THE TYPE

s~ n . m _
Tm,n) =), - k'L =L P(m,n) + L P (m,n) + K@m)

T(O,n) =L (1) +L (1)-3

T@,n) = Ln+1(n -2) + Ln(n -1)+4

T(2,n) = Ln+1(n2 -4n+8) + Ln(n2 - 2n+ 5)— 18

T(3,n) = Ln+1(n3 - 6n% + 24n - 50) + Ln(n3 - 3n% + 15n - 31) + 112

T@4,n) = Ln+1(n4 - 8n% +48n? - 200n + 416) + Ln(n4 - 4n% + 30n% - 124n
+257) - 930

T(5,n) = Ln+1(n5 - 10n? + 80n® - 500n? + 2080n - 4322) +

+ Ln(n5 - 5n + 50n® - 310n2 + 1285n - 2671) + 9664

I

]

B B B B B
I
B~ W N =R O

8
I

principle in the construction of Table IV; the results of successive horizontal
additions can be followed with the aid of the broken lines. The following illus-

tration should clarify the process:

1 _5 _31
AN - AN —~
AN — AN ~7
\1+5%6 — _ . 5+31=36
il - - 6+36/§42
- Mo_
L 2+6=8 _BMM2=50
v AN - \
24 gz 50

These zig-zag relationships imply the second-order linear difference equation

- - G- 3)
(62) M= MM Gi-3

(i =34, 5,°¢°; j=0, 1, 2,e°°)

the solution of which is shown in Eq. (6b) .
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Table IV
INTERDEPENDENCE CHART FOR THE Mi i NUMBERS

257 2671
N Ve N 7
AN 7 N 7
N / AN 7
288L _ _ 2928
T——824—_ T —-—3216
T —366——_ ——3540
// N —~—3906
y N N
- N
416 ~4322
7 N e
~N 7 N 7
N 7 N 7
466— _ _ 4738
——524—_ _ _ T ——5204
T ——592— _ _ T ——5728
7N —~——6320
AN 7 \\
7 \\ 7 N
673< 6993
7 N Ve
~ / \\ //
54 7666
T ——848— _ _ T ——8420
T T —958 — _ — ——9268
YN —~— 10226
7 \ ~ N
/ N Vz \\
130 1088Z 11314
s AN /
\\ // AN //
_ 12185 12402
_ T T—1368— T —13620
T 1542 — T T —14988
/ \ T T —16530
/ N / N
/ \ / \\
203Z 1745% 18275
N e N /
// \\ Ve
2 TioasT 200207
T 2180 — _ _ T —21968
———2446 _ ———24148
’ — — 26594
/
/ \ s N
306 Na7594 99346
7 N /
\\ \\ /
30587 _ 32098”
T ——3404—__ <~ T —35156
~— 3796~ — ~ —— 38560
/ — -
, N - 42356
/ \ v AN
\ e AN
445 4241 46597
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-4
= - j
6b) M= MM - D e D g
=0

where Fi represents the ith Fibonacci number.
The interdependence of the fundamental set of numbers My, j and My j

is noted from the formulas

j

j
(6c) My,j = Z(—l)h (%1) Mp,j-h and My, j = Z (%1) My,j-h
h=0

h=0

The interdependence of the complete set of numbers Mi i is evidenced withthe
?

formulal:

J-1
(6d) My = G- et (1]1) M; h
h=0

with j 2 0, Mio=1, M“:iZl.
H 3
David Zeitlin, in a paper to be published in the FibonacciQuarterly, 2has

shown that the following relationship holds:

j
B h
(6e) M, - th B3 Py
h=0

where ,‘SI; are the Stirling numbers of the second kind.
The polynomials P; and P, are, similarly, special cases of a more

general case of polynomials.

The author is indebted to Dr. Verner E. Hoggatt, Jr. for pointing out this re-
lationship through personal correspondence.
2The author acknowledges the referee for this interesting remark,
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. m
(72) P (m,n) = > (—1)jMi,j (Ijn) p-
=0

which are interrelated in the following ways:
(7b) P; +h(m, n) = Pi(m,n - h)

(7c) Pi(m,n) = Pi_l(m,n) + Pi_z(m,n) -n+3- i)m

These properties (7) enable us to obtain the following formula, thus generalize

1):

(8) Sm,n - h) = Fn-h+1Pz 4h(m, n) + Fn-hP1+h(m’ n) + C(m)
We have investigated sums of the form
Fy+ 20F, + 3 F; +++ + (o - 1)an_1 +nF

and it seems quite natural* that we apply our results to the "convolution type'

sums of the form
an1+(n—l)mF2+(n-2)mF3+“. + oME + F

Theorem 4.

n
m _ _ — P¥
©® Y @-k+17F = R@n) = M F o+ M, F - PXm,n)
k=1

*Mathematicians' beloved excuse.
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where M, .m and M, are partmular cases of the M i numbers (see
Table IV) and Py(m, n) (the ""conjugate" of the polynomial Ps(m,n)) is defined

as follows

m
* _ m) m-j
(10) Pylm, n) ZMM (J) n
=0

A list of these '""convolution-type'' sums is provided in Table V,

Table V
n LIST OF SUMS OF THE TYPE
;(n -k + D™F = Rmyn) = My F o+ M, F - Psmn)

m=0 R(0,n) =Fn+1+Fn- 1

m=1 R(1,n) = 3Fn+1 + ZFn - o + 3)

m=2 R = 13F ., +8F - (0% + 6n + 13)

m =3 R@n) = 81F _ +50F - (3 + 9n? + 39n + 81)

m =4 R@n) = 673F  +416F - (n? + 12n% + 78n% + 324n + 673)

m =5 R(n) = 6993F  +4822F - (@® + 15nt + 130n° + 810n2 + 3365n + 6993)

If Q(m,n) are the Weinshenk polynomials in n of degree m [8], then
(11) Pim,») = Qm,n+i-1) and Pm,n) = 1™Qm,-n +1i- 1)
The above relationships (11) follow from the fact that P*i‘(m, n) = (—1)mPi(m,—n).

The constant term is then C(m) = Pi(m,1) = Q{m, 1), and the original sum (1)

can be further written as follows:

(12)  Stm,n) = DT{F_, Qm,-n + 1) + F Qm,-n) - QGm, Df

The theoretical interest that these sums arouse is beyond doubt the pri-

mary motive for their scrutiny. Weinshenk [8] has applied some of these
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results toa problem of reflection of light. The problem of centroids [6] can be

dealt in a more general manner with the aid of an auxiliary function defined by

13) G(r,s,n) =

The problems investigated in this paper are far from being completely
solved. Although we could have generalized the subscripts in all our sums [9],
we purposely avoided this. However, some questions of importance have not
been answered. Some of these questions are:

1. Could the theory of S(m,n) be extended to negative m? (Allwe need
to study is m = -1, since the rest of the sums can be obtained with the aid of

the algorithms developed in this paper; notice that

azPi (m, n)

Pi(_l, Il) = lim W

m—>0
2. Could the theory of S(m,n) be extended to rational (and to real) [10]

m? If this is possible, what can be said about complex m?

3. What is the possibility of studying sums of the type

n
Ste,s,m) = ) krFE
k=1

with the aid of standard techniques?
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1 LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM OF TERQUEM
AND AN EXTENSION OF FIBONACCI NUMBERS

C. A. CHURCH, Jr. and H. W. GOULD, W. Virginia University, Morgantown, W. Va.

In this paper we give a simplelattice point solution to a generalized per-
mutation problem of Terquem and develop some elementary results for the
extended Fibonacci numbers associated with the permutation problem.

The classical permutation problem of Terquem [12] has been stated by
Riordan [10, p. 17, ex. 15] in the following manner. Consider combinations
of n numbered things in natural (rising) order, with f(n,r) the number of r-
combinations with odd elements in odd position and even elements in even posi-
tions, or, what is equivalent, with f(n,r) the number of combinations with an
equal number of odd and even elements for r even and with the number of odd
elements one greater than the number of even for r odd.

It is easy to show that f(n,r) = f(a- 1, r - 1) + f{n - 2,r), with £(n, 0)
= 1, and explicitly

n-+r
(1) fo, 1) = [ 2 ] )
r
Moreover,
n
(@) f) = Zf(n, r) = fa - 1) + £ - 2)
=0

so that f(n) is an ordinary Fibonacci number with £(0) = 1 and £(1) = 2.

A detailed discussion of Terquem's problem is given by Netto [8, pp. 84-
87 ] and Thoralf Skolem [8, Pp- 313-314] has appendednotes on an extension of
the problem in which the even and odd question is replaced by the more generai
question of what happens when one uses a modulus m to determine the position

of an element in the permutation.

*Research supported by National Science Foundation Grant GP-482.
59
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More precisely, for a modulus m > 2, Skolem's generalization maybe
stated as follows. From among the first n natural numbers let f(n,r;m) de-
note the number of combinations in natural order of r of these numbers such

that the jth element in the combination is congruent to j modulo m. That is,

(3 flo,r;m) = N{aiaz-”ar: 1<a;<a < "< ar <n, a; = j (mod m)}

= 1

1<a<ag<---<ap<n
aj = j {mod m)

Consider the array in Fig. 1, where the last entry is r + km, with

- [25)
m

since r +km < n implies that the largest integral value of k cannot exceed

(n - r)/m. This array contains those, and only those, elements from among

1,2,°°¢,n which may appear in a combination., That is, the jth column con-

sists of all those elements <n in the same congruence class (mod m) which

may appear in the jth position.

A = (0,0

1 2 3 ——— r X
i+ 2+ m — 3+m —_—— r+m
1+2m 2+2m — 3+2m —— +2m
|
{

| | | | I
| | | | | |
1+km —-l—2+km _L—3+km_i —_ L_r+km_i

B = (I"S)

Y Fig, 1

From the lattice appended to the array in Fig, 1, we can systematically
write out the desired combinations, and evaluate f(n, r;m).

To get the desired result, let "a path from A to B' mean a path along
the vertical and horizontal segments of the lattice, always moving downward or
from left to right (we take the positive x~-axis to the right, the positive y-axis
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downward, thus agreeing with the informal way of writing down the permutations).
Each such path will generate a combination of the desired type, and conversely,
as follows: Starting at A each horizontal step picks up an entry and vertical
steps line up entries, Now, it is well known how many lattice paths there are
from a = {(0,0) to B = (r,s). MacMahon [7, Vol 1, p. 167] shows that this

number is precisely
r+ s
- .

In our case s = [(n - r)/m],, Thus we have at once that

4) fln, r;m) = r+[nr_nr] = [wﬁ{:—yﬁ]

IS r

as found by Skolem, Terquem's (1) follows when m = 2. To illustrate, we
consider some examples.

Example 1. Let n = 12, r = 3, m =4, Then the corresponding array

1 2 3
LS——&»L——G 7
‘——-—-9——3——-»10—15——»»11——»-

and the ten combinations are

is

1 2 3 i 6 7 5 6 7 9 10 11
1 2 7 1 6 11 5 6 11
i 2 11 1 10 11 5 10 11

and the particular combination 5, 10, 11 corresponds tothe path indicated by
arrows, Informally, one writes out the combinations by paths from the left
column to the right column, moving horizontally and/or diagonally. The clue
to a systematic count is found by superimposing the rectangular grid.
Example 2, Let n = 12, r = 4, m = 3. Thenthe corresponding array

is
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1 2 3 4
4 —pr—p=5 —Pt— 6 7
7 8 v o ) — ol 1) —p

and the fifteen combinations are

1 2 3 4 1 2 9 10 4 5 6 7
1 2 3 1 5 6 7 4 5 6 10
1 2 3 10 1 5 6 10 4 5 9 10
1 2 6 7 1 5 9 10 4 8 9 10
1 2 6 10 1 8 9 10 7 8 9 10

and the combination 4, 5, 9, 10 corresponds to the path indicated by arrows.

It is felt that our proof shows atruism of mathematics: one may often find
a simpler proof by embedding a given problem (Terquem!'s) in a more general
setting. The lattice point enumeration we used is well known, but may not be
apparent in the original problem because of its specialized form.

The extended Fibonacci numbers, in analogy to (2), are now defined by

n [n + (m - l)r]
() fm) = () = Z m ;
r=0 r

and it is not difficult to verify that they satisfy the recurrence relation

6) fp@ = fn - 1) + fm@ - m) .

For example, with m = 3 we have the sequence 1,2,3,4,6,9,13,19,28,---,
By well-known theorems in the theory of linear difference equations, if the dis-
tinct roots. of the equation

(7) t -t -1=20

are ty, ty,e+-ty> then there exist constants Cyp such that
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m
8 = E o
(®) f,0 Cty -
_ r=i
This generalizes the familiar formulas
n n
=2 - b = a4 R
Fnﬁa—b’ Ln~a+b,

63

for the Fibonacci~Lucas numbers. The constants Cr may be determined from

the system of m linear equations in Cr:

0} _Z-Cr‘ci'=j+1, for j =0,1,2 cec, m -1 ,

For example, when m = 3, an approximate solution of the equation (7) is given

by

t; = 1.4655 ,
(10) t, = -0.23275 + 0,79255i ,
ty = -0,23275 - 0,79255i ,

where i%? = -1. Relations (5) through (9) are given by Skolem [8, 313-314].

When m = 3 the exact solution of (7) is given by

t1:A+B+%; s
1 A+B _A-B
(11) tp =5 - =5 *t=5— V3,
1 A+B A-B
h=g-"g -z V3o
where
A =3 V2L = 1.0237 approx.

o]
=

=
IQ
|

= 0,10854 approx.
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As a partial check on the values of the roots, we note the following theorem

from the theory of equations. ILet

m m m-1
(12) nt¢-t)=1t -t -z .
= !
Then
n
m m
(13) Zt?=z A, 1-m) ", n>1,
j=1 k=0
where

B a a + bk
Al b) = =k ( K )

This may be compared with the well-known [2, 3, 4, 5] expansion

Q0
(14) Xa = Z Ak(a,b)zk , with z = ,
k=9

which was actually found by Lagrange in his great memoir of 1770 (Vol. 24 of
Proc. of the Berlin Academy of Sciences) and which leads at once to the general
addition theorem discussed in [2, 3, 4, 5] as first noted by H. A. Rothe;
See relation {20), this paper.

m-1

For the equation t™ -t -z = 0, we define the power sums of the

roots tj by

m
(15) St) = ZtI; .
j—i
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Since thn_l +z = t'-fjn , we find that

m m m
Sh-1) +zSh - m) = Z {tr;—i + ztx;"m} = Z tnj—m<tr;l‘1 + z) = Z t?_mtljn,
j:i j::1 j::l

so that S(n) itself also satisfies a Fibonacci-type recurrence
(18) Sth) = S - 1) + zSm - m) .

Using the values z = 1, m = 3, the previous roots (10) yield the approximate
values (by log tables): S(1) = 1, S(2) = 0.9998, S(3) = 3.9995, and S{4) = 5
very nearly. This gives a partial check on (10),

In any event, we may consider the sequence defined by (13), (15), (16)as

a kind of extended Fibonacci sequence. In particular,

o
[n;l - (m - 1k

(17) S(n)-——z -I—l_—:_—(InI—lT—]jE(n Kk )Zk, n21,
k=0

satisfies (16) just as (5) satisfies (6). There are similarities and contrasts if
we compare (17) and (5). We also call attention to another such result given
recently by J, A, Raab [9], who found that the sequence defined by

[

_ n - rk\ _n-k(r+1)  k
(18) X, = Z K > a b
k=0
satisfies
(19) X = ax + bx o

n n-1i n-r-i



66 LATTICE POINT SOLUTIONS OF THE GENERALIZED PROBLEM [Feb.

Formula (13) is substantially that given by Arthur Cayley [1]. The classical
Lagrange inversion formula for series is inherent in all these fornulas, One
should also compare the Fibonacci-type relations here with the expansions
given in [5]. For m = 3, (17) gives the sequence 1,1,4,5,6,10,15,21, 31,

o0 0
°

We also call attention to the two well-known special cases

2

2
Z (n 1—( k) Zn-zkzk _ X -y
L X-.y

k=0

and
Z n-k} n 2n—zk--izk - X+ y
k n -k Xty

where x = 1+Vz +1, vy = 1-Vz + 1. F_and L occur when z = 4,

Relations (17) and (5) differ because the initial conditions differ. For
z = 1, {17) satisfies precisely the same recurrence as {(5). If the initial
values were the same then we would have found a formula for the permutation
problem not unlike (17). There are many papers (toc numerous to mention) in
which complicated binomial sums are found by lattice point enumerations. The
convolutions in[ 2, 3,4, 5] may mostly be found by such counting methods. We
also note the recent papers of Greenwood [6] and Stocks [1i] wherein the
Fibonacci numbers occur,

The convolution addition theorem [2, 3,4,5] of H. A. Rothe (1793)

n
(20) DA EDA  (eh) = A @+ b
k=0

valid for all real or complex a,b,c (being a polynomial identity in these), has

been derived several times by lattice point methods. We mention only a novel
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derivation by Lyness [13]. Relation (20) has been rediscovered dozens of times
since 1793, and its application in probability, graph theory, analysis, and the
enumeration of flexagons, etc,, shows that the theorem is very useful. Infact,
it is a natural source of binomial identities. We should like to raise the ques-
tionhere asto whether any analogous relation involving the generalized Terquem
coefficients (4) exists. It seems appropriate to study the generating function
defined by

. [a + (b - 1)n]
(21) T(x;a,b) = Z ( b ) .

n
n=0

for as general a and b as possible. If b is a natural number and a is an
integer >0, the series terminates with that term where n = a, as is evident

from the fact that a + (b - 1)n < bn for n > a and the fact that 1; = 0 for

k < n when n > 0, provided k 2 0, We also note that for arbitrary complex

a and |x[< 1
[e o]
- al .n _ a
Tksa,1) = Z <n> X a+x",
n=0
so that in this case we do have an addition theorem:
T(x;a,1)T(x;c,1) = T(xa+c,1) .
This, of course, corresponds to the case b = 0 in formula (20); the relation

implies the familiar Vandermonde convolution or addition theorem.

There does not seemtobe any especially simple closed sum forthe series

o o - i ([a + (g- 1)k]) ([c + (b —bI)(n - k)])

k n-k
k=0

which occurs in
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(e 2]
T;a,b)T(x,c,b) = Z XnCn(a, c,b)

n=0

for arbitrary b.

10.

11.

12,

13,
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ADVANCED PROBLEMS AND SOLUTIONS
Edited by V. E. HOGGATT, JR., San Jose State College, San Jose, Calif.

Send all communications concerning Advanced Problems and Solutions to
Raymond Whitney, Mathematics Department, Lock Haven State College, Lock
Haven, Pennsylvania. This department especially welcomes problems believed
to be new or extending old results. Proposers should submit solutions or other
information that will assist the editor. To facilitate their consideration, solu-
tions should be submitted on separate signed sheets within three months after

publication of the problems.

NOTICE: PLEASE SEND ALL SOLUTIONS AND NEW PROPOSALS TO
PROFESSOR RAYMOND E. WHITNEY, MATHEMATICS DEPART-
MENT, LOCK HAVEN STATE COLLEGE, LOCK HAVEN, PA,

H-103 Proposed by David Zeitlin, Minneapolis, Minnesota.
Show that n

!
8 Z F3k+1F3k+2Fsk+3 F sn+3
k=0

H-104 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Show

L X
m

e ¢}
k k
= 5(F + XL )X,
m+i_g9 Z 2mk (k+1)m
1-5F X+ (175X o

where Lm and Fm are the mth Lucas and Fibonacci numbers, respectively.

H-105 Proposed by Edgar Karst, Norman, Oklahoma, and S. O. Rorem, Davenport,
lowa.

Show for all positive integral n and primes p > 2 that

m+ 1P -nP =6N+1 ,

where N is a positive integer. Generalize.

69
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H-106 Proposed by L. Carlitz, Duke University, Durham, N. Carolina.

Show that n n
n\? _ n n+k
» 2 (k)= Z(0) (") o
k=0 =0
n n
n\? _ n n+k
g X () - () (04 )
k=0 k=0

H-107 Proposed by Vladimir lvanoff, San Carlos, California.

Show that
Fp+27f1 FP+n FP
Fq +on Fq n Fq =0
Fr+zn Fr+n Fr

for all integers p, q, r, and n.

H-108 Proposed by H. E. Huntley, Hutton, Somerset, U.K.

Find the sides of a tetrahedron, the faces of which are all scalene tri-

angles similar to each other, and having sides of integral lengths.

H-109 Proposed by George Ledin, Jr., San Francisco, California.

Solve
X2 +Y2+1 = 3XY

for all integral solutions and consequently derive the identity:

1 = 3F

2 2
F6k+7 * F6k+5 * 6k+7F6k+5

H=110 Proposed by George Ledin, Jr., San Franciseco, California

Evaluate the double sum
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where [ x] is the greatest integer in x.

H=111 Proposed by John L. Brown, Jr., Pennsylvania State University, State
College, Pennsylvania.

Show that
{E]
2 2k - 1 (@
L =1 1+4cosz—T—<—5) for n > 1.
k=1

H-112 Proposed by L. Carlitz, Duke University, Durham, N. Carolina.

Show that, for n > 1,

5 _ 15 _ 15 = 2 _ 51\

a) fg- - L8 =5L LL @L-5(1)"

5 5 _ 5 - " 2 _1R

b) Fl. - F-F  =5F FF QF+ (1))
2

7 T _ 11 = 2 _ 5t

c) Ln+1 Ln Ln—i 7Ln+1LnLn-1(2Ln 5(-1)")
2

T _pl _wl = 2 _t

d Fn+1 n Fn—-l 71?n—HFnFn—1(2]?1& D)

SOLUTIONS

NO SOLUTIONS RECEIVED
H=59 Proposed By D. W. Robinson, Brigham Young University, Provo, Utah.

Show that, if m > 2,

1, 2, 3,+°-, Fn’ *++ reduced modulo m is twice the least positive integer n
_ n

such that FnJr1 = 1)'F

then the period of the Fibonacci sequence 0, 1,

- (mod m).

H-60 Proposed by Verner E. Hoggatt, San Jose State Collége, San Jose, Calif.

=F

It is well known that if Pr is the least integer such that Fn +pk n

mod 105, then p; = 60, p, = 300 and pg = 1.5x 105 for k > 3. If Qn,k)
is the kth digit of the nth Fibonaceci, then for fixed k, Q(n,k) is periodic,
that is % is the least integer such that Q(n + 9 k) = Qn, k) mod 10. Find

an explicit expression for e

H-62 Proposed by H. W. Gould, W. Virginia University, Morgantown, West
Virginia (corrected).

Find all polynomials f(x) and gfs), of the form
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r
fx+1) = Z ajxj aj an integer
j=0
S
glx) = ijxj, b]. an integer
j=0
such that
223 + 1) - x + D2P@| + 3{x2x + 1) - (x + 122}
+ @x+ Dixfx+1) - &+ Dg} = 0.

LIMIT OF LIMITS

H-61 Proposed by P. F. Byrd, San Jose State College, San Jose, Calif. (corrected)

Let
fn,k =0 for 0<n<k-2 fk—i,k =1 and
k
= >
fn,k fn-j,k for n2 k
j=1
Show that
1 fn k 1 1
= < = < =+ A4S D00 ,
2 fn+1,k 2 2K
Hence
f
lim  lim 2E - 2

k=00 nesco ntik

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia.

The sequence {fn k} ®  obeys a recurrence whose auxiliary polynomial
187 p=g
is

flx) = x - X - x S S

Let ri,k’ rz,k’ LN rk,k be the k roots of f(x) = 0. The k initial conditions

given determine constants bi,k’ bz,k’ T, bk,k such that
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k
= n
fhok 2 PikTik
=1

Now Miles [”Generalized Fibonacci Numbers and Associated Matrices," Amer.
Math. Monthly, Vol. 67, pp. 745-57] has shown that all but one of the roots
rj,k lie within the unit circle, so that Irj,kl <1(1 < j< k). Note that
f(1) =1-k <0, £f(2) =1, and since f is continuous, the remaining root
rk,k must be a real number between 1 and 2. Then bk,k # 0, because

lim ', =0(@1< j < k) while lim f =0, We also have
Nesoo 1K D00 115K

rn
ik

lim =0 (1<j<k ,

n
n=s-00 I
k,k

so that

k n ‘ k n-+i
D bj,krj,k) ;é LR B e

lim fn’k/fnﬂ,k = lim <

1 ==-00 1) === OO

We have already shown T < 2. Now
— — —1
ek - @S k1) - @S A1) - @&+ D Sk DE
< e @ k- ek - - e o KK S

=2kkk-kk(2k'1+2k"2+--- +2+1+1) =0 ,

and division by (k + 1)k shows

Since

2k
Legeis 2o
we have 2 > Tk > 2k/(k + 1), and inversion gives the first result of the

problem. The second result follows by taking limits as Kk==oo.
ODD ROW SUMS OF FIBONOMIAL COEFFICIENTS

H-63 Proposed by Stephen Jerbic, San Jose State College, San Jose, California.

Let F F
m m-i
F F .

n n-i

Fm—n+1

F(m,0) =1 and F(m,n) = T,

0<n<m ,
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be the Fibonomial coefficients, where Fn is the nth Fibonacci number, Show

2m-1 m-1
> F@em-1,n = [ Ly, m=>1.
n=0 i=0

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia.

n
Put s, = 2 Fi,1)
=0
and
n
() L6 = 3 0P i, T
r=0

Brennan ("Fibonacci Powers and Pascal's Triangle in a Matrix, " Fibonacci
Quarterly, Vol. 2, No. 2, pp. 93-103) has shown
= N-2, 9 _ - n-1 -
f& =D -L x+ D7) 6x)

n-1
where Ln is the nth Lucas number. Setting x =v/-1, n = 2m + 1, wefind
f2m+1(1) - lemfzm—i(_l)

Using (1) this becomes

m m
D F@m+1,2r) +i ) F2m+1,2r +1)

=0 r=0
m-i m-1
= L, 2;0 F2m - 1, 2r+1) +iL, IZ::OF(Zm - 1,21,

and so equating real and imaginary parts, taking absolute values, and adding
we get Szm 4 Lzmszm—i which, with 8; = 2 = L, proves the proposition.
ONE OF MANY FORMS

H-64 Proposed by Douglas Lind, University of Virginia, Chrarlof'resvillxe, Virginia,

n .
F = JI <1—Zicosnjnl) .

) +
=1

Show

where Fn is the nth Fibonacci number.

Solution by David Zeitlin, Minneapolis, Minnesota.

For a generalization, let Wy, Wy, C # 0, and d # 0 be arbitrary real

3 - ~ = P i 2
numbers, and define Wn+2 de_k1 an, n=0,1, , with d2 - 4¢c # 0.

We define V. = W, n =0,1,-+, when Wy =1 and W; = d; and set Z_
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= Wn’ n=20,1,°--, when Wy = 0 and W; =1. In terms of Chebyshev poly-

nomials of the first kind, Tn(x), and of the second kind Un(x), it is readily
verified that

o z. =™y ( d > ; v o= 2% ( d )
o 2\ G n D\ 2Ve
Since
_ o0 in _.n1 2 @j-nn
Un(x) = 2 iI=]1 (x - cos = 1) . Tn(x) = 2 jI;I1 <X— cos 5= ) s

we obtain from (1)

_ n/2 5[ d in
(2) Zn+1 = ¢ jll1<\/__—;- - 2 cos =T 1) ,
n .
3 v o= M2 H(—i - 2 cos ———-———(232_1)[1)
n =1\Ve n

¥ d=1 and ¢ = -1, then Z =F and V_ = L . Since -1 = i?, we ob-
n n n n

tain from (2) and (3), respectively,

- in
(4) Fn+1 = j];[1(1-2.1 cosn+1) ,
n .
(5) L =H(1_'2icos(—2-3'—1)—rl)
n =t 2n

Also solved by F. D. Parker, John L. Brown, Jr., and the proposer.

FIBONACCI RELATED NUMBER

H-65 Proposed by J. Wlodarski, Porz-Westhoven, Federal Republic of Germany.

The units digit of a positive integer, M, is 9. Take the 9 and put it on
the left of the remaining digits of M forming a new integer, N, such that
N = 9M. Find the smallest M for which this is possible.

Solution by Robert H. Anglin, Danville, Va., and Murray Berg, Oakland, Calif.

n .
_ i
M= 9 + gxilo
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n .
N = ¥ x107% 9.10" = oM
=
2 i n ’ 1
10N = 90M = 3 x,10° + 90.10° = M - 9 + 9010
i=t
soM = 9(1o™! _ 1)
M - 9(0™ _ 1) _ 89999--- 991
- 59 59

By performing the actual division the first zero occurs when the quotient is
M = 1011 23595 50561 79775 28089 88764 04494 38202 24719

Wlodarski notes - w F
M = 10% + [1041 —ﬂ]

m=1 10™

where [x] is the greatest integer function in x.

Also solved by Marjorie Bicknell, James Desmond, A. B. Western, Jr., C.B.A.
Peck, and the proposer.

A STIRLING NUMBER SOLUTION

1-66' Proposed by Douglas Lind, University of Virginia, Charlottesville, Va., and
Raymond E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania.

k
Let J;O ajyn+j =0

be a linear homogeneous recurrence relation with constant coefficients aj.

Let the roots of the auxiliary polynomial

ko
Yax) =0
=0 1

be ry,ry+°°,ry and each root ri be of multiplicity mij (i=1,2,+-,m).

Jeske (Linear Recurrence Relations — Part I, Fibonacci Quarterly, Vol.

No. 2, pp. 69-74) showed that

m,.-1
) n m r.t

1 .
t _ i j
LVpar =2 X byt o
n=0 1=1 j=o
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He also stated that from this we may obtain
m,—1

mod i
* =
(*) Y, z_: r, Z bijn .

i=1 J=0
(i) Show that (*) is in general incorrect, (ii) state under what conditions it yields
the correct result, and (iii) give the correct formulation,
Solution by the proposers.

Let 8, = m, - 1, and put

m r.t

Y(t)—Zynn, e 1th]
n=0 i=1 j=0
Now define n(s) =nfm- 1) -s+1), n(o) =1, and for k=1,2,---,m let
rkt Sk
Y, 0 = e ) katJ
so that =0
w Sk EtVﬂ
Yk(t) - 2__: ; bk] v!
v=0 j=0
s .
o "k 4
e = j RE

For p = 0,1,---,sk put
vip

_ v t
Yk,p(t) = ‘?:_:Obkprk(v + p)(p) &Pt

Differentiating this n times and setting t = 0,

vp-n

Y™ (o) = ib (V +p) Py =120k, _n 1 P).
k,p & ) iv +p- it =0 kp k () "k kp (p)k

Thus applying the inverse transform (3.3), we find

m,.-1
i

Y, —Y(n)(O)—E}:Yn)(o) Z TIIZ b..

k=1 p=0 =1 j=0 ij (J) 1
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which is the correct form,

(i) If m, = l, i=1,2,2++,m), then since n(o) = nY% Jeske's form givesthe
correct result, Also, since n(l) =nl, his result will be correct if all roots of
multiplicity two are one, and there are no roots of greater multiplicity. For
higher multiplicities his form almost never gives the correct result.

(i) We need only take a recurrence whose auxiliary equation does not satisfy

the conditions of (ii) to form a counterexample to (*).

Also solved by P. F. Byrd and D. Zeitlin.

Editorial Comment: The bij in the first displayed equation above are arbitrary
constants, The bij in the second displayed equation are also arbitrary con-
stants. In this sense Jeske is correct. However, most readers would probably
incorrectly infer that after you have determined the specific constants for a
given problem one can then use these in the second displayed equation which, of

course, is not true in all cases. V. E. H.

AN INTERESTING ANGLE
H=-67 Proposed by J. W. Gootherts, Sunnyvale, Culvifornia.

Let B = (B, Byy°oe°, Bn) and V = (Fm, Fm+1’ N Fm+n) betwo vectors
in Euclidian n + 1 space. The Bi's arebinomial coefficients of degreen and
the Fm _I_i's are consecutive Fibonacci numbers starting at any integer m.

Find thelimit of the angle betweenthese vectors as n approaches infinity.

Solution by F. D. Parker, Sony at Buffalo, N.Y.
We start with the formula

. 2
costg = BV
IBIY v

where B - V is the scalar product of B and V, and |B|, |V| represent the

magnitudes of B and V, respectively.

The following results are easy to verify by mathematical induction:

@ BV = Fhem

@) |B| =ﬁ)
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@) Ivl = \/Fm+nFm+n+1 " FneFm
Thus
2
|B-v[]r _ F o)
9 9 2n - n
IB| HVI n) (Fm+nFm+n+1 Fn-if m)
But
. (Fm+2n)2
lim = 0 . and

F F -
Ne=p-00 — MM+AN M+N0+1 Fm-—1 m

lim cos@ = 0, and
=00

lim (2n

= and h
n o n) s d hence

lim 0= m/2 .
N =00

Also solved by the proposer.
MANY ROADS TO MORGANTOWN
H-68 Proposed by H. W. Gould, W. Virginia University, Morgantown, W. Va.

Prove that

- —— n>1
1Fk n+2

2
1 > n

Me

=
I

with equality only for n = 1,2.
Solution by the proposer.

The well-known identity
n n n L&
gAi j;i B; = niz_:_iAiBi - DID I A(B; - B;)

yields the special case

n n

1 1< j

e pe=d 2 — e
bu By Ly K n+z.Z‘. AA. ’
i=1 J:i i

whence it is evident that for positive A's we have the inequality
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with equality only when Ai = Aj forall 1 £i<mn, 1< j<n Theapplication

to the Fibonacci numbers Fn (with Fn+1 = Fn + Fn_1 and Fy =1, Fy = 1)

is evident from the formula

so that we find
L,
Fi - F 1 ’

with equality only for n = 1,2

Zeitlin and Desmond used the Arithmetic-Harmonic mean inequality. Brown used
the Schwarz inequality.

Further results are:

1 n

m— > - .
k§=1 Hk > Hn+2 s n=>1 (Z eitlin)
n 1 n? >

17‘“5 2 T sy, n 21 (Hoggatt)
=1 Kk n n+i

Also solved by D. Zeitlin, John L. Brown, Jr., M.N.S. Swamy, D. Lind, C.B.A.
Peck, and John Wessner.

SOME BELATED SOLVERS' CREDITS

' H=-37 Dermoft A. Breault
H-48 John L. Brown, Jr., and Charles R. Wall
H-52 C.B.A. Peck, F. D. Parker, and D. Lind

H-57 John L.Brown, Jr., Charles R. Wall, MarjorieBicknell, F.D. Parker, and
M.N.S. Swamy

H-58 David Klarner
H-74 John L. Brown, Jr.

* & ok A
Continued from page 44.
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RELATIONS INVOLVING LATTICE PATHS AND CERTAIN SEQUENCES OF INTEGERS

DAVID R. STOCKS, JR., Arlington State College, Arlington, Texas

Relations involving certain special planar lattice paths and certain
sequences of integers have been studied previously [1], [2]. We will state cer-
tain basic definitions which pertain to these studies, develop additional results
involving other planar lattice paths, and finally, indicate generalizations of
these results for lattice paths in k dimensional space, For convenience of
reference some of the definitions are collected together and presentedin Part 1,

The remaining material will be found in Part 2,
Part 1

In Euclidean k-dimensional space the set X of points suchthat p belongs
to X if and only if each coordinate of p is an integer is called the unitlattice
of that space.

The statement that P 1is a lattice path in a certain space means that P
is a sequence such that

1) each term of P is a member of the unit lattice of that space, and

2) if X isatermof P and Y is the next term of P and x; and yj

are the ith coordinates of X and Y respectively, then [xi -Yil =
1 or 0 and for some j, ﬁxj —yjﬂ = 1.
If each of X and Y is a point of the unit lattice in Euclidean k-dimensional

space, then the statement that the lattice path P is a pathfrom X to Y means

that P is finite, X is the first term of P, and Y is the last term of P, If
P is a lattice path, X is a termof P, and Y is the next term of P, then
by the step [X,Y] of P is meant the line interval whose end points are X
and Y.

A lattice path P in Euclidean 2 or 3-space is said tobe symmetric with
respect to the line k if and only if it is true that if X is a point of some step
of P, then either X is a point of k or there exists a point Y of some step
of P such that k is the perpendicular bisector of the line interval [X,Y ]

Suppose that S = [(x4,yy), (X5,y5)] is a step of some lattice path P in
Euclidean 2-space. 8 is said tobe x-increasing if x, -x; = 1 and x-decreasing

81
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if xy -xy = -1, The terms y-increasing and y-decreasing are similarly
defined, A step is said to be xy-increasing if it is both x-increasing and

y-increasing, To say that S is x-increasing only means that S is x-

increasing but neither y-increasing nor y-decreasing, P is said to be x-

monotonically increasing if and only if it is true that if X is a step of P,

then £ is not x-decreasing, The term y-monotonically increasing is simi-
larly defined. Astep X is said to be vertical if it is neither x-increasing nor
x-decreasing. A step X is said to be horizontal if it is neither y-increasing

nor y-decreasing, The statement that the path P is duotonically increasing

means that P is both x-monotonically increasing and y-monotonically

increasing,
Part 2

In Euclidean 2-space a path from (0,0) to (n,n) is said tohave property
G if and only if:

1) it is duotonically increasing,

2) it is symmetric with respect to the line x+y = n, and

3) no step of it which contains a point below the line x +y = n is

vertical,

A path having property G will be called a G-path,

Theorem 1 (Greenwood)

Let g(0) = 1 and g(1) = 1, For each positive integer n = 2, let g(n)
denote the number of G-paths from (0,0) to (n -1, n - 1), The sequence
{g(0), g(1),°+-,gM),---} is the Fibonacci sequence,

Proof, By definition g(0) = g(1) = 1. Suppose n = 2, The only G-paths
from (0,0) to (1,1) are {(0,0),(1,0),(1,1)} and {(0,0), (1,1)}, thus g(2) = 2,
For n = 3, the G-paths from (0,0)to(2,2) are {(0,0),(1,0),(2,0),(2,1),(2,2)},
{(0,0),(1,0),(2,1),(2,2)} and {(0,0),(1,1),(2,2) }, so that g(3) = 3.

Suppose n = 4, Each G-path from (0,0) to (n -1, n - 1) has as its
initial step either [(0,0),(1,0)] or [(0,0),(1,1)]. If a G-path has as its initial
step [(0,0),(1,0)],then,because of symmetry, its terminal step is [(n-1, n-2),
(n -1, n-1)];andthusit contains as a subsequence a G-path from (1,0) to
(n -1, n - 2), But the number of G-paths from (1,0) to (n - 1,n - 2) is the
number of G-paths from (0,0) to (n-2, n-2), i.e,, gn-1).

Likewise, if a G-path has as its initial step [(0,0), (1,1) ]s then its

terminalstep is [(n -2, n - 2), (n -1, n-1)], andit contains as a subsequence
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a G-path from (1,1) to (n -2, n - 2)., The number of such G-paths is the
number of G-paths from (0,0) to (n -3, n- 3), which is g(n - 2), Thus
gn) = gn - 1) + gn - 2),

The statement that a path in Euclidean 2-space has property H means
that it has property G and is such that one of its terms belongs to the line
x+y = n, A path having property H will be called an H-path,

Obviously, if n is a positive integer, then the set of all H-paths from
(0,0) to (n,n) is a proper subset of the set of all G-paths from (0,0) to
(n,n); yet,using an argument similar to the above, we may establish the
following,

Theorem 2,

Let h(0) = 1 and,for each positive integer n, let h(n) denote the num-
ber of H-paths from (0,0) to (n,n). The sequence {h(0),h(1),--,h(n),--- }
is the Fibonacci sequence. '

An obvious but interesting corollary is that the number of H-paths from
(0,0) to (n,n) is the number of G-paths from (0,0) to (n -1, n~ 1),

Greenwood has discussed G-paths [1] . A method of enumeration dif-
ferent from that used by Greenwood leads to the following [ 2].

Theorem 3,

Let

z(1,i) = 1,

z(2,1) = [i ; 1] . where [] denotes the greatest integer function,
z(3,i) = z(3,i-1) + z(2,i-1) ,

z(4,i) = z(4,i-2)+2z(3,i-2) ,

z(2n,i} = z(2n,i-2) + z(2n - 1,i - 2),

z2n+ 1,i) = z(@n+ 1,i -1) + z(2n,i - 1) ,
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‘with the restriction that z(k,i) = 0 if k >i, For each positive integer i,
let

The sequence {f(i) ]i =1,2,..- } is the Fibonacci sequence,

The proof is direct and is omitted. A geometric interpretation of the
numbers z(k,i) and f(i) is given in [2].

It is interesting to note the sequence obtained by considering paths in
3-space that are analogous to H-paths in 2-space, In Euclidean 3-space,a
path from (0,0,0) to (n,n,n) is said to have property F if and only if it is
such that:

1) it is symmetric with respect to the line z = (n/2) in the plane x +

y=n,

2) if the step [Py, P,] of it is z-increasing only, then P, belongs to the

plane x+y = n,

3) if S is a step of it which is not z-increasing only, then either S is

x-increasing only, y-increasing only, or xyz-increasing, and

4) some term of it belongs to the plane x+y = n.

We will call a path an F-path if it has a property F.

We define f(0) = 1; and.,for each positive integer n, let f(n) denote the
number of F-paths from (0,0,0) to (n,n,n), We note that (1) = 2 and f£(2)
=5, If n>2, then each F-path has as its second term either (1,0,0),
(0,1,0), or (1,1,1), If an F-path from (0,0,0) to (n,n,n) has as its second
term (1,0,0) or (0,1,0), then it has as its next to last term (n,n -1, n) or
(n -1, n, n) respectively, The number of F-paths from (0,0,0) to (n,n,n)
which have as their second term either (0,1,0) or (1,0,0) is the number of
F-paths from (0,0,0) to (n -1, n -1, n - 1), Hence,the number of F-paths
from (0,0,0) to (n,n,n) whose second term is either (1,0,0) or (0,1,0) is
2f(n - 1). Similarly, the number of F-paths from (0,0,0) to (n,n,n) whose
second term is (1,1,1) is f(n - 2), Hence,if n > 2, then f(n) = 2f(n - 1) +

f(n - 2),
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It is noted that the expression f(n) = 2f(n - 1) + f(n - 2) is the special
case of the Fibonacci polynomial fn(x) = xfn_i(x) + fn—z(x) for fy(x) = 0,
fix) = 1, and x = 2,

Using the methods of finite difference equations we may obtain an expres-
sion for calculating f(n) directly. Consider again the recursion relation f(n)
= 2f(n - 1) + f(n - 2) in the form of the second order homogeneous difference

equation
fm + 2) - 2fn + 1) - fm) = 0 .
The corresponding characteristic equation
r> -2r -1 =0
has roots
ry = 1+n~N2 and Ty = 1 -N2 ,
The general solution of the above difference equation is

fn) = Cy1 + NN + Co(1 -2 .

Using the initial conditions of £(0) = 1 and £(1) = 2, the constants C; and

C, are found to be
(N2 + 1)/242 and (N2 - 1)/242

respectively, so that we have finally

_ @+ \fi)nﬂ - a - @)11+1
2 N2

f(n)

An analysis similar to that used to obtain the recursion relation for
F-paths in 3-space suffices to show that in k-dimensional space the number
of paths from (0,0,0,--.,0) to (n,n,n,--.,n) that are analogous to F paths

in 3-space satisfies the recursion relation f(n) = (k - 1)f(n - 1) + f(n - k + 1),
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CHAINS OF EQUIVALENT FIBONACCI-WISE TRiANGI.E‘S
DEWEY C. DUNCAN, Los Angeles, California

Considerthe infinite set of ordered and equally dispersed Fibonacci num-
bers, Fn+ih’ i=20,1, 2,--+,n, h, arbitrary positive integers. Thetriangle

havingvertices at the points designated by the rectangular cartesian coordinates

has the area

F,F ) (F

n+h nteh’ Tnesh”?  Fpag Foesn)

Fnfsh ™ Tofm = FonFan = Fnlon
which is noted to be independent of n and depends only upon the dispersion of
the Fibonacci numbers used for coordinates of the vertices.

PROOF
Twice the area of the specified triangle is equal to the absolute value of
the determinant

Fn Fn+h 1

Fn+zh Fn+3h
n+4h Fn+5h 1

whose expanded form, simplified by the identity

Fop = FpFan 7 Fpodfy o
reduces to
2 2
AFn—H + BFn+1Fn + CFn ’
wherein

A= Fy e " Fn - FaFan ~ Fufan

B = thFsh—1 * F5thh-1 * Fh—1F4h N Fsh

“FonFme - FaFanos ~ Fnfanes - Fono
¢ = th-1F5h—1 * Fh—1F4h—1 i F3h-1

P et ™ FooFones = Ty -

By use of the identity cited above, the fundamental relationship Fn + Fn o

F one may easily prove that A = -B = -C, Furthermore, since

n-+2’

2 2 =
Fn+1 - Fn+1Fn - Fn 1 ,

the area of the triangle is observed to be half the value of

87



88 CHAINS OF EQUIVALENT FIBONACCI-WISE TRIANGLES Feb, 1967

FF5+FF4—FF -F,F. . Q.E.D

2h” sh h™ 4h h™2h sh™ 4h

COROLLARIES

1. For any positive integral value of h there are 2h chains of Fibonacci-wise
triangles; i.e., triangles of equal area extending along thetwo series of vertex
points whose rectangular cartesian coordinates are equally dispersed Fibonacci

numbers. In each chain consecutive triangles have two vertices in common.,

2. By exhibiting the fundamental relationship of Fibonacci numbers as Fn o
Fn = Fn— ;2 one may define the Fibonacci numbers for zero and negative indices,
to wit, Fy = 0, F_1 =1, F_2 = -1, F_3 = 2, and quite generally, F_n =
(—1)n+1Fn. Accordingly, the 2h chains of Fibonacci-wise triangles extend

indefinitely in both directions.

3. Again, the Fibonacci relationship

is observed to be valid for all real values of k for the added two compatible

definitions

Fk:k for 0 <k £1, and Fk:1 for 1< k<2,
Hence one obtains a non-denumerably infinite set of Fibonacci-wise chains of
triangles for any prescribed positive integral value of h, wherein individual
triangles of neighboring chains extend continuously along the sets of real

Fibonacci numbers employed as rectangular cartesian coordinates of vertices.

* ok ok kK



ITERATED FIBONACCI AND LUCAS SUBSCRIPTS
D. A. LIND, University of Virginia, Charlottesville, Va.

Raymond Whitney [3] has proposed the problem of finding recurrence
relations for the sequences Un = FFn’ Vn = FLn’ Wn = LLn’ and Xn =
LFn’ where Fn and Ln arethe nt!' Fibonacci and Lucas numbers, respect-
ively. In this note we give the required recurrence relations for more general

sequences of the form Yn = FHn’ Z = LHn’ where the Hn are generalized

n
Fibonacci numbers introduced by Horadam.
We will make use of several identities. It follows from the Binet forms

for Fibonacci and Lucas numbers that

(1) 2F = F +L
2 F _,=3@ -F) .
(3) L2 - 5F2 = 4(1)" ,
(4) 2L, = 5F +L .

From these H. H. Ferns [1] has shown

(5) F . = %(\J5F§1 + 40T+ F)

n+i

n
(6) Loy = %(\stlzl - 20617 + L ).

Equation (5) implies

(7 F_ = %N5Ffl + 4D - F) .

n-1

We shall also require

(8) Fan + F F R

Fm+n+1 m+ n+l

©) L+t = FmIn * Frnlpu o

which are found in [2; Section 5]. Finally, it is convenient to define s(n) = n?

I
-t

- 3[n%3], where [ ] denotes the greatest integer function. Since s(n)
if 3{n while st) = 0 if 3In, it follows that
89
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5@ - (yFn =t

90

First consider the sequence YIl = FHn’ where HIl obeys Hn+2 = HnJr_1

+ Hn" Then using (8), (7), and (5), we find

Yo T FHyyy = FHptHy = FHp 0P8 © P FHpH

=%‘FHn(\/5F%1 + 4(_1)Hn+1 - FHn+1) +"}FHn+1 (\;/51?%n + 4(_1)Hn + FHn)

n-+1
[ \/sz L M1 Hoty Y, \/5Y2+4(_1)Hn ]

H =F, then Y = U_ and we have
n n n n

[ VU2 4SO g ﬂ\/5U3+4(—1)S(1rlj ] (n > 0)

n+ n
whileif H = L , then Y = V_ and we find
n n n n
_ 1 2 S(Yl+1) 9 sin ]
Vo = V5V 40D v+ 4c0*® | >0

Now consider the sequence Zn = LHn’ where Hn is as before, Using

(9), (2), (3), and (6}, we see

Z g = LHpy = LHp o Hy = FE-10H) * T L A

) 1
= TLHnLHn-!-i - TLHHFHH+1 + FHn+1LHn+1

~ 1 i 2 Hn+1 2 7 Hn
= i Ly, HEV - 4DPM)/5VELE -4

4
-1 ] 2 Hy 1 _ Hy ]
L [Znﬂzn V(@2 - 4D )@ - 4D )
Nowif H = F , then Z =X and we get
n n n n

s{n+1) s(n)
Xy = Xy * VO, - 4050 4 |

n+2

andif H = L , wehave Z_ = W_ and
n n n n

n

W, = 1[‘W W+ x/(w2 -4@1)5(““))(\7&7;_4(-1)5(“)) ]

See page 86 for References. A h o



SUMMATION OF Zaﬂ kka+r FINITE DIFFERENCE APPROACH

BROTHER ALFRED BROUSSEAU, St. Mary's College, California

Let it be proposed to discover an expression for the summation

n
m
Ezkﬁk
k=1

or more generally

n
m
Zk Fk+r

k=1

where m and r are positive integers. One possible approach is a modified
version of finite differences. Given an expression f(n) where n is a positive

integer, the usual finite difference relation is
Af(n) = f(n + 1) - f(n)
The adapted finite difference pertains to a quantity of the form

fﬁ,ﬂml

where f is a function of n and Fibonacci numbers involving n in their sub-

scripts, We shall define

Af [n, F(n)] = f[(n + 1), F(n+1)j| - f[n,F(n):’

For example,

A@m?Fp) = (o + 1)%F, - n’F,

n?Fp_; + (2n + 1)Fpqyq

91
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ktr

Likewise we define A ' to be the inverse of A so that
-1
2 - n?
AT [n*Fpy + (20 + 1)Fpyy] n Fn + C

where there is an arbitrary summation constant C which may involve Fibonacci
numbers but these as well as other constituent elements must be free of n..

For our purposes it turns out to be more convenient to seek the value of
n-i
m
Zk Fk+r
k=1
Let this summation be denoted by ¢[n, F(n)]. Then

n n-i
- m m _ .m
A¢[n, Fy] = E ::k Flerr -: :k Fle =0 Frp
k=1 k=1

n-1
Thus
- — m — "1 m
¢[n, Fp)] = E KTF . = AT (0™Fpyy)
k=1

We need then simply to evaluate this inverse finite difference in order to obtain
an expression for the summation,

We develop certain relations for this purpose.

(1)  AMFpir+y) = @+ DFpipss - 0Fpipyy = 0Fpir + Frirge
(2)  A@Fpipyq) = 0PFpyp + @0+ DFpipey = D*Fpip + AD)Fripss

and in general

(3 AMMFpip+;) = nPFpip + AQM)Fripts
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Using formula (1)
(4) AT @Fpip) = nFpipey - A (Fpipss) = 0Fnepsy - Frepss + C.
Then from this result and (2)
AT 02F ) = nFpepsy - (20 4+ DFpypsg+ 2Fpipss + C
= 0Pyt - AODFpypis + A0 Fyipy 5+ C

The general formula that suggests itself is

-1
(6) A (ann+I-) = ann+r+1 - A(nm)Fn+r+3 + Az(nm)Fn+r+5 Foeee
m
’ tot, m
(-1 A" ™) Fpppiotyq + C
t=0

I

That this result is correct may be shown by calculating
-1
A[A "mMFp. )]

from the summation in (6). The result is n™Fu, as can be readily seenfrom
the fact that apart from the first term in the expansion all succeeding terms

cancel in pairs, The results for the first two terms will show the pattern,

A(ann+r+1) = ann+r + A(nm)Fn+r+2 by (3)

ARA@™) Friprg ] = -A@ + 1)PFpipry + A@) i
= A@)Fpypsy - AMO™) Fpyprg + AQD)Fpypg

= -AMM)Fpipsy - AZ0M) Fripsg

Hence (6) provides the required formula apart from making explicit the coef-
ficients in terms of n and calculating the undetermined constant, The former
are given subsequently in tables; the latter may be obtained as shownbelow for

the particular case in which m = 5,

We set n = 2 in (6) so that
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Fpy = 32Fpig - 211 Fpyg + 570 Fpyq - 750 Fppg + 480 Fpyqy - 120 Fpyq + C

bt [F_‘eb.

Using the formulas
Fo = FkeiFnk * FilFnok-1
and

k-1
F,o= (17 (FiFnikst - FlorFoek)

C is found to be 16679 Fr+9 + 10324 FI’+8 .

Table 1
COEFFICIENTS OF A(n™)

m 1 n n? ns n? n® né n’ n® n?
1 1
2 1 2
3 1 3 3
4 1 4 6 4
5 1 5 10 10 5
6 1 6 15 20 15 6
7 1 7 21 35 35 21 7
8 1 8 28 56 70 56 28 8
9 1 9 36 84 126 126 84 36 9

10 1 10 45 120 210 252 210 120 45 10

Table 2
COEFFICIENTS OF A%mn™)

m 1 n n? nd nt n® né n? nd

2 2

3 6

4 14 24 12

5 30 70 60 20

6 62 180 210 120 30

7 126 434 630 490 210 42

8 254 1008 1736 1680 980 336 56

9 510 2286 4536 5208 3780 1764 504 72

1022 5100 11430 15120 13020 7560 2940 720 90

-
(=}
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Table 3
COEFFICIENTS OF A3(n™)
1 n n? nd n n® nb n’
6
36 24
150 180 60
540 900 540 120
1806 3780 3150 1260 210
5796 14448 15120 8400 2520 336
18150 52164 65016 45360 18900 4536 504
55980 181500 260820 216720 113400 37800 7560 720
Table 4
COEFFICIENTS OF A4(nm)
1 n n? nd nt n® nb
24
240 120
1560 1440 360
8400 10920 5040 840
40824 67200 43680 13440 1680
186480 367416 302400 131040 30240 3024
818520 1864800 1837080 1008000 327600 60480 5040
Table 5
COEFFICIENTS OF A5(n™M)
1 n n? nd nt n®
120
1800 720
16800 12600 2520
126000 134400 50400 6720
834120 1134000 604800 151200 15120
5103000 8341200 5670000 2016000 378000 30240
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w o =N » E

10

© oo =3 E

10

[ee]

10

n m

k=1 k
Table 6

COEFFICIENTS OF A8(n™)

SUMMATION OF X F

ktr

1 n n? n
720
15120 5040
191520 120960 20160
1905120 1723680 544320 60480
16435440 19051200 8618400 1814400

Table 7
COEFFICIENTS OF AT(n™M)

1 n n?
5040
141120 40320
2328480 1270080 181440
29635200 23284800 6350400

Table 8
COEFFICIENTS OF A%(nm)
1 n
40320
1451520 362880
30240000 14515200

Table 9
COEFFICIENTS OF A%n™)

m 1 n
9 362880
10 16329600 3628800
Table 10

COEFFICIENTS OF A(nM)

m 1

10 3628800

|Feb,

151200

n3

604800

1814400
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Table 11
SUMMATION CONSTANTS

Summation Constants

Fr+3
_Fr+6

-+
7Fr+5 5 Fl’+4

-37 F1“+6 - 24FT+5
242 Fr+7 + 147 Fr+6

-1861 FI‘+8 - 1139 Fr+7

16679 F]H_9 + 10324Fr+8
~-171362 Fr+10 - 106089 Fr+9
1981723 Fr+11 + 1224729 Fr+10

-25453505 Fr+12 - 15726832 FI__}_11

QDOOQO:CD)—POJN)—‘B

[
=

To be able to write out a complete formula one uses formula (6) and the

various tables, The case m = 7 is given below,

=y
7 = 7 - 8 5 4 3 2
mk Fk+r n Fn+r+1 (Th® + 21 n° + 35n*+ 35n° + 21 né+ Tn -+ 1)F11+-r+3
k=1
+ (42n% + 2100t + 49013 + 630n% + 434n + 126) F
n+r+s
- (210n% + 1260n3 + 3150n% + 3780n + 1806) F
n+r+7
3 2
+ (840 n® + 5040 n® + 10920 n + 8400)Fn+r+9
_ 2
(2520 n? + 12600 0. + 16800) F . + (5040 n+ 15120)F .
- 5040F ..

CALCULATION BY FINITE DIFFERENCES
Except for the smaller values of m, the explicit formulas given above
in terms of n are apt to involve undue calculations. These canbe obviated by
going directly to finite differences and using formula (6).

For example, to calculate
49

E 5
k Fk+7

k=1

we would first write down the values of k® for k = 50, 51, etc,
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Then

N [k5]k=50

AZ[ks]k=5o

A3[k5]k=50

AR

AB[kS]lFso =

The value

SUMMATION OF =} k™ F [Feb,

k=1 k+r
FINITE DIFFERENCE APPROACH

k k5

50 312500000
51 345025251
52 380204032
53 418195493
54 459165024
55 503284375

34502521 - 312500000 = 32525251
380204032 - 2 - 34502521 + 312500000 = 2653530

418195493 - 3 - 380204032 + 3 - 345025251 - 312500000
159150

459165024 - 4 + 418195493 + 6 - 380204032 ~ 4 - 345025251
+ 312500000 = 6240

120

of the summation is:

312500000 Fy, - 32525251 Fgy + 2653530 Fgy - 159150 Fgy + 6240 Fgg - 120 Fig

+ 242 Fyy + 147TF 5

which can either be calculated directly or sum of the terms can be unified and

the number of multiplications of large numbers can be decreased.

* k & K Kk



ON RATIOS OF FIBONACCI AND LUCAS NUMBERS

G. F. Feeman, Williams College, Williamstfown, Massachusetts

Recently the author has conducted in-service training sessions in mathe-
matics for the elementary school teachers of the Williamstown, Massachusetts
public schools, During a session on the lowest common multiple and greatest
common divisor of two positive integers, two teachers observed that if the two
numbers are in the ratio 2:3, then the sum of the numbers is equal to the dif-
ference between their lowest common multiple and their greatest common divi-
sor, It is shown in [2] that this is the only ratio for which this relationholds.

Of course, one gets similar relations for other ratios,  For example, if
the two numbers are in the ratio 3:5, then twice their sum is equal to the sum
of their lowest common multiple and their greatest common divisor, Again it
is shown in [2] that this is the only ratio for which this relation holds. This is
not always the case since, for example, both ratios 5:7 and 4:11 yield the
result that three times the sum of the numbers is equal tothe sum of their low-;
est common multiple and their greatest common divisor,

If one specializes to the Fibonacci and the Lucas sequences, one gets
theorems of the type given below, in which families of such relations are ex-
hibited and formulas for finding all ratios satisfying these relations are obtained.

Let {Fn} be the sequence of Fibonacci numbers, where Fy = 1, Fy=1
and Fpyy = Fy+ Fpyy for n =1,

Let {L,} be the sequence of Lucas numbers, where L; =1, Ly=3
and Lp4y = Ly + Ly for n = 1,

The following known results are assumed. (See [1] or [3].}

(i) Neighboring Fibonacci numbers are relatively prime,
s n

(11) F%l"‘i = FnFn+2 + ("1) o

(1) Fon-y = FpFnet - Fpo1Fpe

(iv) Neighboring Lucas numbers are relatively prime,

(V)  Fy, = FyLy
(Vi) Ly = Fp + Fpi.

99
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For the remainder of the article, let a and b be natural numbers,
Denote by [a,b] the lowest common multiple of a and b and by (a,b) the
greatest common divisor of a and b,

Theorem 1: (1) If a and b are in the ratio Fy:Fyyy, then
Fpi(@ + b) = [a,b] + (-1)™a,b) for n = 2.
(2) Let c and d be relatively prime natural numbers with
b = (c/d)a. If Fp_y(a+b) =[a,b]+ (-1)%(a,b) for n = 3, then the number of
solutions for the ratio c:d is one-half the number of divisors of ¥,_,F,, and

among the solutions is the ratio F:Fp,.;.

Proof: (1) Suppose b = (Fn/F,,q)a. Then a = Fy .k, b= Fpk, (a,b) = k

and [a,b] = FpFpyk, for k a natural number. Then

Fper@+Dh) = Fpog(Fp+ Fpypk = Fp jFpepk = (Fpyy - F )P0k

1l

Fpet (Fp+ Fppq)k = FpFpiok

FnFntk + (Fhyy - Fp Fpigdk

[a,b]+ (-1)%@,b) , for n = 2,

(2) If b = (¢c/d)a, where c and d are relatively prime, then a = dk,
b = ck, (a,b) = k and [a,b] = cdk, for k a natural number. Then

Fp.t@ +b) = [a,b]+ (-1)™a,b) for n =3

implies

Fp_q(c + d)= cd + (-1)" ,

for which we wish to find all positive integral solutions, Solving for c, we get
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n
Fpqd - (-1) F2_, - (-)"
cC = —————— = Fn__1 Fo—
d - Fp, d-F,_
so that by (ii),
Fn-oFn

¢ = Fpoy *+ -
d - Fpoy

ase d >» ¥, forif O<d<Fn then ¢ < 0.

-1

: an obvious symmetry in these solutions so

thatif ¢ = A, d = |
ber of distinet solutions fo
Fp-sFn.

ion, then so is ¢ = B, d= A, Thus the num-

ratio c:d is one~-half the number of divisors of

Finally, if d = ¥Fpey, fhen

and the ratio ¥F,:¥,., is among the solutions. This completes the proof.

(1) ® a and b are in the ratio 21:34, then

Example: If n = 8, then Fy., =8, ¥, 4 =13, Fp = 21, and F,yy =34,

13(a + b) = [a,b]+ (ab) .

(2) If b = (c/d)a, then 13(a+b) = [a,b]+ (a,b) implies that

168

¢ =18+ 913

168 has 16 divisors, so there are 8 distinct solutions, They are: 14:181,
15:97, 16:69, 17:55, 19:41, 20:37, 21:34, and 25:27, among which is the
Fibonacci pair 21:34.

The following lemma is needed for the proof of the second theorem.,
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Lemma: Fypp gy = Fpiqlppe - LpLpyy for n = 2,

Proof: The proof is by induction, The identity is easily verified for n = 2,

Assume it is true for n = k, so that
Fok-1 = Freilikrs = LikLicey
Then

Fort = Fok + Fokoy = Frli + Frglies - LicDicey
= Frlg + (Fep - FidLics - LicDicrq
= Fglk + Firo(Lies = Lighy) - Frelps - Ll
= Frrolirs = Fieralaers - Felierr - (Liere = Digr ) Ly

= Frioljers = Lgtqliere + Lihg(Ligty = Fto = Fk)
But
Lkt = Fiyp - Fg = 0
by (vi), so that

Fopt1 = Freoligrs - Lkl s

completing the induction step and the proof,
Theorem 2: (1) If a and b are in the ratio Ly:Lyyy, then

Foii@ +b) = [ab]+ Fyyy(@,b) for n= 2,

(2) If a and b are in the ratio Fp_,:F,._;, then

Fn+1(a + b) = [a,b] + an"'i(a’b) fOI‘ n= 3 .

(8) Let ¢ and d be relatively prime natural numbers with
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b = (c/d)a. I Fpy(@a+Db)= [ab]+ Fyy_4(a,b) for n= 2, then the possible
ratios c:d are determined from the divisors of (F}4+; - Fop-;). Among

these ratios is Ly:Im+y. For n =3, Fp_o:Fp_y is also a solution,

Proof: (1) Suppose

L,

b = a .,
L+

Then
a = Lpyik, b = Lpk, (a,b) = k and [a,b] = LpLpyk

for k a natural number, Then

Fpe1(a,b) = Fpyq(lp + L)k = Fppglpok

Using the lemma, we get

Fpiq(@ + b) = (Fopog + Lnlnsydk

so that

Fl’H—i(a + b) = [a’b] + FZn—l(a9b) ’

as required.

(2) I

then

a = Fp 4k, b= Fpok, (a,b) = k and [ab] = Fp_ Fpok

for k a natural number. Then, using (iii),
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Fp1@ + b) = Fpy(Fpog + Fpp)k = FpyyFpk

(Fon-1 * Fp-1Fp-p)k

1l

[ab] + Fop_y(@,0)
as required,
(38) If b = (¢/d)a, where ¢ and d are relatively prime, then, once
again
a = dk, b = ck, (a,b) = k and [a,b] = ecdk ,
for k a natural number, The relation
Fpe(a + b) = [ab] + Fypq(a,b)

implies

Fpegle + d) = cd + Fypy
Solving this equation for c, we get

_ 2
Fppgd - Fopoy . Ft1 = Fapog
C = ~———re— 4 ————
d - Fnq o+l d - Fp+q

We seek positive integral solutions for ¢ and d. The possible ratios c:d
are determined from the divisors of (F%J,1 - Fon-1) -

Using the lemma, we show that ¢ = Ly, d = Ly4y is a solution, By
symmetry, ¢ = Lp;q, d = L, is also a solution, So let d = Lp4y. Then

Fotslney = Fony Foeslntg - Foeglnee + Lnlngg

Ln+g = Fnig Lnt1 = Fnq

CcC =

Fpt(Ln+y = Ipte) + Lnlnet ~InFneg © Inlnsg

n
Ln+1 = Fnay Lo+t = Fory
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The situation here differs from that in the second part of Theorem 1,
for not all solutions are obtained by considering the case d >Fp+,. For
example, let d = Fp_y, Then, using (iii),

Fp+yFn-y = Fon-1 FpeaFn-g = FpFpig + FpogFpoe

c = =
Fn-1 = Fniy Fpn-1 - Fn+y

“Fp+1Fpg + FnoyFno

Fn-
Fn-y = Fnty -

Thus the ratio Fp_y:Fp_; is a solution, This completes the proof of the

theorem,

Examgle: If n= 7, then Ln = 29, Ln+1 = 47, Fn_2 = 5, Fn_i = 8, Fn+1
= 21 and an_i = 233.
(1) and (2): If a and b are in the ratio 29:47 or 5:8, then

21(a + b) = [a,b] + 233(a,b) .
(3): If b = (c/d)a, then
21(a + b) "= [a,b] + 233(a,b)

implies that

~ 441 - 233 208
c o= 21+ T ——2 = 2l 4 F

The divisors of 208 are 1, 2, 4, 8, 13, 16, 26, 52, 104 and 208, The solu-
tions are 22:229, 23:125, 25:73, 29:47, 34:37 and 5:8. Among these ratios
are 29:4:7 = Ln:Ln+1 and 5:8 = Fn—2:Fn—1 .
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ELEMENTARY PROBLEMS AND SOLUTIONS
Edited by A, P. HILLMAN, University of New Mexico, Albuquerque, New Mex.

Send all communications regarding Elementary Problems and Solutions
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or
solution should be submitted inlegible form, preferably typed in double spacing,
on a separate sheet or sheets in the format used below. Solutions should be

received within three months of the publication date.
B-106 Proposed by H. H. Ferns, Victoria, B.C., Canada.

Prove the following identities:

2F. . = F.L. + F.L. ,
i+ 1] ji

2Li+j = LiLj + 5FiFj .
B-107 Proposed by Robert S. Seamons, Yokima Valley College, Yakima, Wash.

Let Mn and Gn be respectively the nJEh terms of the sequences {of
Lucas and Fibonacci) for which M = ME_,-2 M;=3, and G =G_,

Gn 9 Gy =1, Gy = 2. Prove that

M, - 1+[VEe,]

n

where m = 2" -1 and [X] is the greatest integer function,

B-108 Proposed by V. E. Hoggatt, Jr., San Jose State College, San .J@se,.chlif,

Let uy = p, yp = ¢, and U, = un+1+un. Alsolet Sn =uytug Foece

+u_. It is true that Sg = 4uy and 8y = 1lluy. Generalize these formulas.
n .

B-109 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Let r and s be the roots of the quadratic equation X -px-q = 0,

(c #8). Let U = @™ - ™) /tr - s) and v = 2+ g™, Show that

V. = U . +4qU
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B-110 Proposed by L. Carlitz, Duke University, Durham, N, Caroli’na;
Show that

1 T

=vi S &l

Fon+i Z Lon-+1
n=0

NE;

B
=)

B-111 P;oposed by L. Carlitz, Duke University, Durham, N. Carolina.

Show that ( 1)n \/_ 00 1
= G
) Z Lin+e
n=6

8

n=0
SOLUTIONS
LUCAS NUMBERS MODULO 5
B-88 Proposed by John Wessner, Melbourne, Florida.

Let 1, Ly, Ly, Lg o+ be the Lucas numbers 2, 3, 7, 18,°++. Show
that

Lok = 2(—1)k {mod 5) .
Solution by J. A. H. Hunter, Toronto, Canada

All mod 5)wehave: Ly = 1, Iy = -2, Ig = -1, Ly, = 2, Ly =1, Iy=-2,
etc., so it follows that Lyt

i

-2 and Lg = +2, Hence Ly = 2‘(—-1)k(mod 5).

Also solved by James E. Desmond, H. H. Ferns, Joseph D. E. Konhauser,

Dougles Lind, F. D. Parker, C.B.A. Peck, Jeremy C. Pond, David Zeitlin,
and the proposer.

A CLOSE APPROXIMATION

B~89 Proposed by Robert S. Seamons, Yakima Valley College, Yakima, Wash.

Let Fn and Ln bethe nth Fibonacci and nth Lucas numbers, respect-
ively. Let [x] be the greatest integer function. Show that Lgy = 1 +
[\/5F2m] for all positive integers m.

Solution by Douglué Lind, University of Virginia, Charlottesville, Va.

From the Binet forms for Frl and Ln’ the statement is equivalent to
Q2 4 g2 = [ 4 p2M M) where o = (1+V5)/2, = (1-V5)/2. But
1/2 > p2M > 0 for m > 0, so we have
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@M 4 gam < g2 g 4 ] < g2 4 g2 4 g

which implies o™ + g2M = [1 + oM _ pIM], as desired.

Also solved by James E. Desmond, H. H. Ferns, C.B.A. Peck, Jeremy C. Pond,
David Zeitlin, and the proposer.

'B-90 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.
Let by, by, - be the sequence 3, 7, 47,--+ with recurrence relation

b = b2 - 2. Show that the roots of
N+ n

Xt - 2h x +4 =0
n

are expressible in the form c + dV5, where ¢ and d are integers.

Solution by David Zeitlin, Minneapolis, Minnesota.

- 2. The recursion relation

The roots are b_+~Nb? -4 = b_+/b
n n n n+1
Thus,

may be written as U_ ., = (bn + Z)Un, where U = b -2 Ug=1

U n U n n
§+1=H §+1:n(bk+z)=5n(bk+z)
1 k=1 k k=1 k=2
n-i n-1i
_ - 2
_S.I_I(bj+1+2) 5Ebj,
=t =t
or
n-1
-2 =5 II p?
n+i j=1 ]
Thus,
n-1
c=b, and d =+ I b.,, n=2,3,-"-
n =1 j

Also solved by James E. Desmond, H. H. Ferns, Douglas Lihd, C.B.A. Peck,
Jeremy C. Pond, John Wessner, and the proposer.
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CONVERGENCE OF SERIES

B-91 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

If Fn is the r;Eh Fibonacci number, show that
[e0)
> WEp)

j_—_

converges while

diverges.

Solution by Jeremy C. Pond, Sussex, England.

F
(%)/(Fl )= ;4.1»1;\/5 > 1 a8 Neso00

n n=1 n

and so
o0

Z“/Fj)

j=t

converges by d'Alembert's test. Also,

(1/1nFn)/(1/n) —*1/1n(1 ;\/5) > 0

and so 1/In Fj and 1/n diverge together.

Also solved by C. B. A, Peck and the proposer.
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GREATEST COMMON DIVISOR

B-92 Proposed by J. L. Brown, Jr., The Pennsylvania State University.

Let (x,y) denote the g.c.d of positive integers x and y. Show that

(Fm,Fn) (Fm m+n) = (Fn, Fm+n) for all positive integers m and n.

I. Solution by Joseph D. E. Konhauser, Univ. of Minnesota, Minneapolis, Minn.

We use the well-known identity

Foen = Fooifm © FoFme
and the fact that two consecutive Fibonacci numbers are relatively prime.
Let d = (Fm,Fn) then, from (1) dIFm+n‘ Let e=(Fm+n, Fm) then,
from (1), eiF , since (F ) = 1. On the one hand, e[d(since eIF
n m’ m+1 m
and elF ). On the other hand, dle (since le and le ). Therefore,
n m m+n
d = e; that is, (Fm ) = (F

(F _,F)=(F_,F_

). In like manner, it follows that
m’ m+n

Il. Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia.
It is well known [N. N. Vorobyov, The Fibonacci Numbers, page 23,

Theorem 4] that (F , F )
(m n)*

ately from the easﬂy establlshed fact that (m,n) = (m,m + n) = (n,m + n).

. The desired result thenfollows immedi-

Also solved by Thomas P. Dence, James E. Desmond, John E. Homer, Jr.,
C.B.A. Peck, Jeremy C. Pond, David Zeitlin, and the proposer.

Ln MODULO n
B-93 Proposed by Martin Pettet, Toronto, Ontario, Canada
Show that if n is apositive prime, Ln = 1 (mod n), Isthe conversetrue?

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia.

From the Binet form we have

L VA + @ -vEY) = 2'“(% <?) sj/2{1+(-1)j}>
_n+1z[;1/02]< ) , j=0
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where [x] denotes the greatest integer contained in x. Now if n is prime,
(rzlj)E 0 (mod n) (j =1,2,"", n/2),

so that

L
n

(3) /2“'1 = 172" (mod n).

By Fermat's Lesser Theorem, .‘Zn_1 = 1 (mod n), so that Ln = 1 (mod n) if

~ll

n is prime.
I have not been able to prove or disprove the converse of this statement.

A calculation by computer indicates that the converse is true for n < 700.

Also solved by the proposer who stated that the converse is false and gave 705,
2465, and 2737 as the first few composite values of n.

L3R 2 2 28 ¢

NOTICE

George Ledin, Jr. has been appointed by The Fibonacci Association to collect
and classify all existing Fibonacci Identities, Lucas Identities, and Hybrid
Identities. We request that readers send copies of their private lists (with

possible reference sources) to

George Ledin, Jr.
445 Monticello
San Francisco, Calif, 94127 .

for inclusion in the planned booklet.

Verner E. Hoggatt, Jr.,
Director
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