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-*-* Introduction,, As Is well known., a number of remarkable and inter-
esting relationships exist between the golden ratio of the Greeks and the num-
bers in the Fibonacci sequence,, Binetfs formula is one example of such a 
relationship and another is the familiar equation 

F 
-, 1 T n+i 

« = 1 + , , 1 = n ^ m » — 
1 + 1 + • • • 

where a = (1 + V5)/2 and F denotes the n Fibonacci number. In this 
paper, we derive other interesting relationships involving the Fibonacci num-
bers and the simple continued fraction expansions of multiples of the golden 
ratio. We also extend these results to obtain more general theorems about a 
certain class of quadratic surds. 

Specifically we establish necessary and sufficient conditions for integral 
multiples of the golden ratio to be of period one, obtain sufficient conditions 
for these multiples to be of period two and establish some partial converses 
for those of period two. We then generalize by replacing the golden ratio by 
arbitrary simple continued fractions of period one and then by arbitrary sim-
ple continued fractions of period two. Some results are exactly analogous 
while others are only partial. Some curious side results are also established. 

2. Results involving the golden ratio. We begin by considering the fol-
lowing table of simple continued fraction expansions of positive integral multi-
ples of a. Of course, these expansions are periodic and the repeating part of 
the expansion is indicated by dots in the style of Hardy and Wright [ 1] . 

Careful scrutiny of the table reveals a variety of patterns. Some of the 
patterns are only apparent but others, as Indicated by the theorems following 
the table are generally true. 

Note that small Latin letters will always be used to denote positive inte-
gers. Also, L will always denote the n Lucas number. 
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Theorem 1. Let n be a positive integer. Then na = [a,b ] if and only 
if n = Fgm-!, a = F 2 m , and b = L 2 m - 1 for some m ^ 1. 

Theorem 2a Let n be a positive integer. Then mx = [ a , l , c ] if and 
only if n = F2m» a = F 2 m + 1 , and c = L 2 m - 2 for some m ^ JL. 
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Theorem 3. If we admit the expansions a = [ 2 , 1 , - 1 , 1 , 3 ] and 4a = 

[ 6 , 1 , 0 , 1 , 8 ] , then for every integer r — 1, we have 

a) L2Ta = [L2 r+i , F 2 r , 5 F 2 r ], 

and 

b) ^2T-i^ = [L 2 r ~ 1, 1, F 2 r - i - 2 , 1, 5 F 2 r - i - 2] . 

Unlike T h e o r e m s 1 and 2, the converse of Theorem 3 i s not t rue as i s 

easi ly seen by consider ing the expansions of 4a, 16a, and 36a. The following 

t heo rem, however , p rov ides a pa r t i a l converse of the f i r s t a s s e r t i on of 

Theorem 3. 

Theorem 4. Let n be a posi t ive in teger . Then na = [ a , b , c ] if and 

only if nb = F 2 m , ab = F 2 m + 1 - 1, and be = L 2 m - 2 for some m — 1. 

Before proving these r e s u l t s we der ive two l e m m a s which incidentally 

provide unusual cha rac te r i za t ions of the Fibonacci and Lucas number s . 

Lemma 1„ The Pe l l equation x2 - 5y2 = -4 i s solvable in posi t ive i n t e -

g e r s if and only if x = L 2 n _ 1 and y = F 2 n _ 1 for n ^ 1. 

Proof. Since x = y = 1 is the l eas t posi t ive solution of the given equa-

tion, it i s well known [2] that every posi t ive solution is given by 

x + yV5 1 + N5 \ 2n~l 
2 / 

n _ i _ -

a_2 L, \ 2k J 5 +
 22n_2 L \2j - l) 5 

n- l n 

22n-2 *—' \ Z K / 22 n ' 
k=o j=i 

for n a 1. On the other hand, by Bine t ' s formula, 

• 2 1 1 -
1 j / l + V 5 \ 2 n - i / l - V 5 V n - i | 

•i = ^fjV-^2—; -\—2—j j 
J- v (2n - A sj_1 

2n-2 L \2 j - 1/ 2 - j = 1 
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and 

L 2n 

n-i 
1 V ^ #2n - 1\ 5k 

92n-2 ^ \ 2 k / Z k=o \ / 

Combining these three results we have that all positive integral solutions to 
x2 - 5y2 = -4 are given by x = L^n-i and y = F 2 n - 1 for n ^ 1 as claimed. 

Lemma 2. The Pell equation x2 - 5y2 = 4 is solvable in positive inte-
gers if and only if x = L2n and y = F 2 n for n ^ 1. 

Proof. As in the proof of Lemma 1, it is easy to show that 

p£r (1 + V5)k = L k + v5 Fk • k s ° 

where we take L0 = 2. Therefore, since x = 3, y = 1 is the least positive 
integral solution of the given equation, every solution in positive integers is 
given by 

x + AS - . (H^)" 
9J2 + (1 + \ 6 ) | n 

2 

k=o ^ v ' 

k=o k=o 

= L2n + V5 F 2 n . 
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where the last equality is a result of Lucas;[3, p„ 191]. Thus, all solutions 
in positive integers are given by x = L2n, y = F 2 n for n - 1 as claimed. 

We note in passing that Lucas |3, p. 199] observes that L2 - 5F2 = ±4 
and that Wasteels [4] proved that if 5x2 ± 4 is the square of an integer then 
x is a Fibonacci number., 

Proof of Theorem 1. By direct calculation we obtain 

r • i 2a - b + Vb2 + 4 [a,b] = ^ — 

Therefore, na = [a,b] if and only if 

(1) n = 2a - b and n ^ = ^b2 + 4 . 

The second of these equations is equivalent to 

b2 - 5n2 = -4 

and, by Lemma 1, this is solvable in positive integers if and only if n = F 2 m _ 1 

and b = L2 m_l e Finally, since F m + L m = 2 F m + 1 for every m, it follows 
from (1) that 

n + b F 2 m - i + L 2 m - i 
a = —-£ = g - = F 2 m 

and the proof is complete, 
The proofs of Theorems 2 and 4, which depend on Lemma 2, are exactly 

analogous to the proof of Theorem 1 and will therefore be omitted. Of course, 
Theorem 2 is the special case of Theorem 4 with b = 1. 

Proof of Theorem 3. Par t (a) follows directly from Theorem 4 with 
n = L 2 r , a = L2 r + 1 , b = F 2 r , c = 5F 2 r , and m = 2r since it is easily 

2 shown that L 2 r F 2 r = F 4 r , L2 r+1F2 r = F 4 r + 1 - 1, and 5F2 r = L4 r - 2. 
To obtain Part (b) we define the sequence /3. for cf ^ 1 by the following 

series of calculations which depend on Lemma 1: Let 



118 

Then 

and 

A LIMITED ARITHMETIC [Apri l 

01 = L2r-i<* - L 2 r + 1 

^ L 2 r - l " 5 F 2 r - i 
2 

-10 

+ 1 

+ 1 
\fE L 2 r _ ! + 5 F 2 r _ i 

± = i + 12 
^ ^5h2r^1 + 5F2T_t - 10 

= 1 + j82 , 

- V5 L 2 r _ 1 + 5 F 2 r _ 1 - 10 
_ = __ _ 

N/5 L 2 r - i - 5 F 2 r - ! + 10 
= F 2 r - l ~ 2 + Jo 

= F2T.t - 2 + ft , 

J ^ = 10 

^ *sfE L 2 r ^ t - 5 F 2 r - i + 10 

10(\/5 L 2 r _ ! + 5F2 r_1) 

-20 + 10(V5 -L2Y-1 + 5 F 2 r - i ) 

2 
= 1 + — — 

\ 5 L 2 r - i + 5F 2 r _ i - 2 

= i + pt , 

"JE La r - i + 5 F 2 r - i " 2 

= g 

\Z5L 2 r _ ! - 5 F 2 r _ ! 
= 5F 2 r _ j - 2 + 2 + 1 

= S F j r - j - 2 + j35 . 
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Since /35 = ft, the sequence now repeats and it follows that 

L2r_i<2 = L2 r - 1 + ft 

= L2r ~ 1 + TTT2 

= L 2 r - 1 + — 
1 + F2r-i - 2 + ft 

- [L2r-.i - 1, 1, F 2 r _ 1 - 2, 1, 5F2r_i - 2] 

as claimed, 
3. More general results. Since Fn+^/Fn is a convergent in the simple 

continued fraction expansion of (1 + sJ5)/2, the results of the preceding s e c -
tion suggest that one ask if there is any interesting connection between the 
simple continued fraction expansion of a quadratic surd £ and the simple con-
tinued fraction expansion of q £ where p / q is the n convergent to £. 
The following theorems, which generalize those of Section 2, answer this ques-
tion in the affirmative for surds of the form £ = [a, b] or 4 = [a, b, c ] , 

Theorem 5. Let £ = [a, b ] s let n be a positive integer, let PTJ\ 
denote the k convergent to £ and let t = q, + q. Then n£ = [ r , s ] 

if and only if n = q2m-2> r = P2m-2' an(* s = ^2m-2 ^o r some integer m ^ 
1. 

Theorem 6. Let §,n,pj/q, and t be as in Theorem 5. Then n£ = 
[u, v, w] if and only if vn = q2m_i, vu = p2m_j - 1, and vw = t2 m_i - 2 
for some integer m ^ 1. 

Theorem 7. Let £ = [a, b , c ] , let Py/\ D e the k convergent to 
£, let t k = Qk - 1

 + ( l k + 1 . and let sfe - P k - 1
 + Pk+1- T n e n > f o r e v e r Y integer 

r ^ 1, we have 

a ) ^2r^ ~ P2r» 2̂r» ^ ^2r 

b) ^ r - i = LP2r-i " " ! » ! > ^2r 
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°) t2r-1^ = [s2r_lJ q^-i, ( c2 + ^ K r l 

and 

d) t2 r£ = [ s 2 r - 1, 1, q2 r - 2, 1, (be + 4)q2 r - 2 ] 

Proof of Theorem 5. The convergents to £ = [a,b] a r e given by the 

difference equations 

Q = bq + q. 
TI n - i TI-2 

p = bp + p n *n *n- i *n-2 

with the init ial conditions q0 = 1, qt = b , p0 = a, and pA = ab + 1. These 

a r e easi ly solved to obtain 

i j/b + ^PTT\n+1 / b - ^b^7T\n+1| 

(2) a , ab + 2 
pn = 2 * V i + ^ ^ ' Vl ' 

where 

V ,/b - ^b^TrV , __ f b + \fb2 + 4 
n - l " I 2 

and i t i s easi ly shown by induction that t = q + Q for n ^ 0. 

Moreover , s ince [ a ,b ] = (2a - b + \ /b2 + 4 ) /2 , i t follows that n£ 

[ r , s ] if and only if the equations 

n(2a - b) = 2r - s , 

(3) . 
nN/b2 + 4 =Vs2 + 4 

s imultaneously hold. The second of these equations i s equivalent to 
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s2 - n2(b2 + 4) = -4 

and s = b , n = 1 i s c l ea r ly the minimal posi t ive solution. There fo re , every 
solution (s ,n) in posi t ive in tege r s i s given by the equation 

s + nN/^TT = 2 ( s + V
2
b2 + 4 ym~\ m=l,2,--., 

and it i s eas i ly shown by expanding the powers h e r e and in (2) that this r educes 

to 

s + n4>2 + 4 = t 2 m _ 2 + q 2 m - 2 v b 2 + 4 

Also, f rom the second equation in (2), we have 

n(2a - b) + s 
r " 2 

(2a - b)q2m_2 + t2 m_2 

2 

^2m-3 + tfcm-i "* b(^2m-2 
= a q 2 m „ 2 + g 

= a q 2 m ^ 2
 + Q2m-3 

= P2m-2 

s ince it i s eas i ly proved by induction that aq + q = p for all n. This 

comple tes the proof. 

Proof of Theorem 6. Note in pa r t i cu l a r that the preceding a rgument 

essent ia l ly shows that 

IA\ (b + \/b2 + 4) . ^ H 7 , ^ , 
(4) * - ^ *- = t k - 1 + q ^ v f a 2 + 4 , k ^ 1 .. 

Also, i t i s easi ly shown by induction that 



122 A LIMITED ARITHMETIC [Apri l 

m 

]C (k) b V i = q^-i 
fc=o 

m+i 

k=o 

m 

"I 
k=o 

m 
K 4- — 

and 

m 

lL (k) b \ - 2 = ̂ m-2 
k=o v ' 

Now, a s in the preceding proof, one can show that n£ = [u, v, w ] if and 

only if vw + 2 and vn a r e s imultaneously posi t ive in tegral solutions of the 

Pel l equation 

(6) (vw + 2)2 - (vn)2(b2 + 4) = 4 

and of n(2a - b) = 2u - w. Also, the general solution of (6) i s given by 

0 , fcr—r 0 b2 + 2 + b ^ b 2 + 4 (vw + 2) + vn \Jbil + 4 = 2 { > , m = 1,2, 

Using the equal i t ies in (4) and (5) this may be simplified to give 

„ I (b2 + 2) + b "A>2 + 4 ( _ i 2 + b(b + »7b2 + 4) i 
Z \ 2 ~ l ) 2 I 

m 
/m\ (b + N/'b2 + 4 ) ^ 

- 2-J \k/ k-i 
k=0 * 



1967] ON SIMPLE CONTINUED FRACTIONS 123 

m 

k=0 

m 

k=o k=o 

= t2m,t + \lb2 + 4 - q2m_t . 

Thus, vw + 2 = t2m_1, vn = q2m_l5 and 

vn(2a - b) + vw vu = —^ _ i 

(2a - b)q2m-i + t 2 i n - i - 2 

P2H1-1 " 1 

as in the preceding proof. 
Proof of Theorem 7. For 

( = [a.b.c] = a + -b c +Yb2°2 + — 

define 

A = f-a,. B=A + c, C = bA/c, 

and 

D = bB/c = C * b . 

The following identities are useful: 

a ) Q2k = 1 + cq2k+icl2k-i/b 
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b) qlk+i = b(q2k+2Cl2k + D / c 

c ) P2k = aQ2k + cq 2 k- i /b 

d> P2k+l = aq2k+i + ^2k 

e) (q2kB - cq 2 k + 1 /b)(q 2 k A + cq 2 k + 1 /b ) = c / b 

f) (q2kD - q2k+i)(q2kC + q2k+i) = b / c 

g) (q2k+iB - q2k+2 + D(q2k+iA + q2k+2 - 1) = q2k+2 + q2k - 2 = t2k+i - 2 

h) t 2 r = b t 2 r _ i + t 2 r_2 

i) t 2 r + i = c t 2 r + t 2 r _ i 

J) s2k = at2k + t2k_i 

k) s2k+i = at2k+i + c t 2 k /b 

2 9 
m) c t 2 k - bt2k+it2k-i = ct2kt2k+2 - b t2k+i = -b(bc + 4) 

n) ( t 2 r_iB - c t 2 r / b ) ( t 2 r . i A + c t 2 r / b ) = c(bc + 4) /b 

o) (t2 r_iD - t 2 r ) ( t 2 r „ iC + t 2 r ) = b(bc + 4 ) / c . 

T h e s e a r e proved in a s t ra ight forward manner . 

To prove 7a, we have by identity c) and the definition of B that 

q2kf = q2ka + q2kA 

= q 2 k a + cq 2 k _ i /b - cq 2 k _! /b + q2kA 

= P2k + Bq2k - cq2k+i/b » definition of B, 

= P2k + 1 / 0 1 -
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Using identity e) and the definitions of C, D and t2k, we have 

Pi = b(q2kA + c q 2 k + 1 / b ) / c 

= q2kC + Q2k+l » definition of C9 

= Q2k+i + Q2k-1 + Q2kC - q2k-i 

= *2k + q2kD - Q2k+i 

= t2k + 1/^2 • 

Using identity f) and the definitions of C and t2k» we have 

125 

We the re fo re have 

02 = c ta2kC + Q2k+i)/b 

= q2kA + cQ2k+i/b 

= cfa2k+i + Q2k-l)/b + <*2kA - cq 2 k - l /b 

= c t 2 k / b + I / f t . 

q2k^ = [P2k» t2k, c t 2 k /b ] , 

proving 7a. 

The proof of 7b is s i m i l a r and u s e s identity g) at a key point in the a rgu-

ment . The argument will not be p resen ted he re . 

To prove 7c, we note that 

^2r-lb = t 2 r _ j a + t 2 r _ iA 
= s2 r_i + t 2 r _ iA - c t 2 r _ 2 / b 

= s2 r_i + ( t2 r_iB - c t 2 r / b ) 

- Q c(bc + 4) /b 
S 2 r - i + t 2 r_!A + c t 2 r / b 

- s 2 r_ i 
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Pi = (b t 2 r - iA + c t 2 r ) / c (bc + 4) 

= Q2r-1 + (bt2r_iA + c t 2 r - c(bc + 4)q2 r_1) /c(bc + 4) 

= Q2r-i + ( t ) t 2 r - l A + ccl2r+l - c(bc + 3)q2 r_1) /c(bc + 4) 

= q 2 r - i + (bt2rA + cbq 2 r - c(bc + 2)q2 r_i) / c (bc + 4) 

= Q2r-i + (bt 2 r - iA + cbq 2 r - (be + 2){q2 r - q2 r_2)) /c(bc +• 4) 

= Q2r-i + (bt2r_iA - 2q 2 r + (be + 2)q2 r_2) /c(bc + 4) 

= Q.2r-l + (bt2r_iA - 2(cq2 r_i + q2r_2) + (be + 2)q2 r_2) /c(bc + 4) 

= Q2r-l + (bt2r-iA - 2cq 2 r _ i + bcq 2 r _ 2 ) /c (bc + 4) 

= Q2r-l + (bt2 r - iA - c(q 2 r _ i + q2 r_3)) /c(bc + 4) 

= q2 r_i + (bt2r_iA - c(t2r__2))/c(bc + 4) 

= Q2r-i + ft2r-ic - t 2 r , 2 ) / ( b c + 4) 

= Q2r-i + ( t 2 r- iD - t 2 r ) / ( b c + 4) 

-4- MbC + 4 ) / C 
q 2 r - i + (be + 4)(t2 r_iC + t 2 r ) 

1 
~~ ^2r- i 

and 

t 2 r - i A ~ c t 2 r / b 

= Q2r-i + £— = Q2r-i + 
a Vl2r-1 ' ~ 
P 2 j8i((bc2 + 4c)/b) 

P2 = (be2 + 4 c ) ; V b = ((be2 + 4c) /b)(q 2 r _ i + -X ) 
P2 

((be2 + 4c ) /b )q 2 r „ 1 + ~ - . 

Hence we obtain 

t 2 k - i f = [s2k-i» q2k-i» ((be2 + 4c)7b)q2k^i] . 

The proof of p a r t d) is s im i l a r and the argument i s omitted. 
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The following theorem, which i s s tated without proof, i s a pa r t i a l con-

v e r s e of T h e o r e m 7. 

Theo rem 8, Let f , p, , q, , s, , and t, be as in Theo rem 7 and let n, 

u, and v be posi t ive in tegers . 

a) If v i s such that b divides cv and n£ = [ u , v, c v / b ] , then n = q 2 r , 

u = t 2 r , and v = p 2 r for some posi t ive integer r . 

b) If n f = [ u , 1, v j , then n = q 2 r _ i , u = P2r-l - 1» a n d v = t 2 r - 2 for 

some posi t ive in teger r . 

Remark . When a s imple continued fract ion has a pa r t i a l quotient 1 the 

corresponding approximation of the convergent to the number in question i s not 

as good as when other in tegers a r e pa r t i a l quotients. T h e l T s c a n b e el iminated 

as a l l but the f i r s t pa r t i a l quotient if it is pe rmi t t ed to have - l ' s a s n u m e r a t o r s , 

The corresponding convergents would then be be t te r approximat ions than the 

or iginal ones . 

Setting about to purge the l ' s f rom the expres s ions obtained in T h e o r e m s 

2, 3b, 7b and 7d we r a n a c r o s s an in te res t ing pa t t e rn that allowed us to s i m -

plify the notation. Let u s define the symbol - [ a 0 , a l s a2, • • •] to be the 

express ion 

a0 
ai + -ZL 

1 a9 + • 

Although th is express ion might not always be meaningful,it is in the c a s e s we 

cons ider he r e . 

With the new notation we a r e able to r e s t a t e a few of the t h e o r e m s as 

T h e o r e m 9: 

a) F k a = ( - D k + 1 [ F k + 1 > L k ] . 

b) v = (-1)k[Lk+1' K> 5K]-
c) If i = [ a , b ] then q^ = (- l )k[>k> \ ] . 

d) If f = £SL, b , c 1 and k odd, then q, f = - fp^ ! t, l 
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e) If f = La,b,c] and k even, then t, g = - \s,, q,9 (be + 4)q, 1. 

The proofs are quite similar to the original proofs and are omitted. 

REFERENCES 

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 
Oxford University Press , London, 1954, Chapter 10. 

2. Wo J. LeVeque, Topics in Number Theory, Vol. 1, Addison-Wesley Pub. 
Co., 3hCo, Reading, 1956, 145-6. 

3. E. Lucas, "Theorie des Fonctions Numeriques Simplement Periodiques,f t 

Amer. J. Math,, 1(1878), 184-240. 

4. M. Jo Wasteels, nQuelques Properties des Nombres de Fibonacci," 
Mathesis, 2(1902), 60-63. 

• • * * * 

The Fibonacci Bibliographical Research Center desires that any reader 
finding a Fibonacci reference send a card giving the reference and a brief 
description of the contents. Please forward all such information to: 
Fibonacci Bibliographical Research Center, 
Mathematics Department, 
San Jose State College, 
San Jose, California 

• • • • * 

The Fibonacci Association invites Educational Institutions to apply for academic 
Membership in the Association. The minimum subscription fee is $25 annually. 
(Academic Members will receive two copies of each issue and will have their 
names listed in the Journal.) 



RECURRENCE RELATIONS FOR SEQUENCES LIKE fffn 

GARY G. FORD^ ' 
University of Santa Clara/ Santa Clara, California 

I n [ l ] the p rob lem of finding r e c u r r e n c e re la t ions for the sequences 

^ F F n K ^ F L n i ^ ^ L F n K ^ L L n } — w h e r e F n and L Q a r e the n Fibonacci 

and Lucas n u m b e r s , respec t ive ly — is proposed,, What follows i s an i nves t i -

gation of this p rob lem and some of i ts genera l iza t ions . 

Let r and s be any two nonzero e lements of a field F * = ( F , +,*)in 

which r i s defined in the usual way with the field opera t ions , +?
e. Define {U } 

and {V } by U = (r - s ) / ( r - s) and V = r + s for all i n t ege r s n„ 
i n J J n \ / / v / n & 

F u r t h e r m o r e , le t {H } be any genera l ized Fibonacci sequence consis t ing of 
in tegers — that i s H0 and H1 a r e in tegers and H = H + H for all 

i n t ege r s n„ Some r e c u r r e n c e re la t ions for sequences such as -[UJJ } and 

{ V J J } will be der ived h e r e . 

Let {g } be any sequence in n obeying the r e c u r r e n c e re la t ion g 

= (r + s)g - r s g for all i n t ege r s n. Then the re a r e constants C1 and C2 

in F * s u c h that g = Cxr + C 2 S for all i n t ege r s ns Define { x } s {Y } 

and {G } by X = Un , Y = Vn and G = g n for all in tegers ne L nJ J n n n ' n n n n tonn 
F r o m h e r e on, when n i s wr i t ten , unders tand that n can take on all in teger 

H n 
va lues unless o therwise indicated,, For convenience wr i te R = r and 

in S = s n 
Hr 

Consider the product G , 0Y . . . 
Jtrc, n+1 

Gn+2Yn+i = ^ n + 2 + ^n+^n+i + W 

= C x R n + 2 R n + i + C 2 S n + 2 S n + i + G 1 R n + 2 S n + i + C 2 R n + i S n + 2 

= C<R + C?S lo + R , S . .(C.R + C2S ) 1 n+3 L n+3 n+i n + r 1 n L VL' 

= G + (rs) n + 1 . G 
n+3 n 

Thus , 

H 
(1) G , = G Y J - (rs) *G 
v n+3 n+2 n+i v ! ..n 

Student 12 9 
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A coro l l a ry to (1) i s the re la t ive ly s imple r e c u r r e n c e re la t ion for { Y j . 

(2) Y , = Y Y , - (rs) n + 1 • Y 
v ' n+3 n+2 n+i x ' n 

When r s = ±1 , (2) is especial ly s imple ; 

r = | (1 + V5) and s = | (1 - V5) 

gives 

Hn+ 
( 3 ) L H n + 3 = L H n + 2

L H n + i " ( _ 1 ) n l L H n 

where L is the n Lucas number . n 
Consider the product Y G J * n+2 n+i 

Y ^ G ^ = CjR .R ^ + C2S S ^ + CtR , S , + C2R S , , n+2 n+i l n+2 n+i L n+2 n+i x n+i n+2 l n+2 n+i 

G , + R S , (CjS + C2R ) n+3 n+i n + r l n * n' 

But 

C l S
n + C 2 r n = (Ct + C2)Vn - (Cjr11 + C2sn) = g0Vn - g n 

Thus 

C-.S + C2R = g0Y - G 1 n L n &u n n ' 

and 

Hn+i Y• G , = G i o + (rs) (g 0 Y - G ) 
n+2 n+i n+3 x ' v&u n n ' 

That i s , 

<4) G n + 3 = Y n + 2
G n + i + <rs> " X " » V 
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Add (1) and (4) to get 

<5> 2 G n + 3 = G n + 1
Y „ + 2 + Gn+2Yn+1 " ^ V 

Now consider the product (r - s)2X Y A . * K f n+2 n+i 

<r - S > 2 X n + 1
X n + 2 = ( R n + 2 " S n + 2 > < R n + 1 " S n + 1 > 

= R n + 3 + Va " Rn+iWRn + S n > 
TT 

= Y - (rs) n+1Y . n+3 n 

Thus, 

H 
(6) Y = (r - s)2X , X' + (rs) n+1Y . 
v ; n+3 v n+2 n + l v ' n 

Some second-order recurrence relations can be obtained by using the 
following simple and easily verified identities -— which hold for all integers a 
and b — by putting a = H and b = H or a = H , 4 and b = H J * & n n+ l n+ l n 

•TT a T T 0 T T 
Ua+b = r U b + s U a 

Va+b = r X " (r " s)sbua = * \ + <r - B > r \ 
(r - s )Ua + b = r \ - B \ 

Some of the recurrence relations are 

(7) X , = R X _, + S X = S X + R X 
v ' n+2 n n+l n+i n n n+l n+l n 

Y 0 = R Y - ( r - s)S X 
n+2 n n+l n+i n 

= S Y , + (r - s)R X 
n n+i v n+l n 

= (r - s)R X , + S Y ' n n+l n+i n 
= -(r - s)S X ( + R , Y 

v ' n n+l n+l n 
From (7) it immediately follows that 
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(7f) 2X _,_. = X ^ Y - X Y ^ 
x ' n+2 n+i n n n+i 

2Y , = (r - s)2X X - Y , Y n+2 n+i n n+i n 

F o r a fixed Integer j define {Z } and {W } by Z = U H + j and 

W = V H +i. Thus , n n n T J ' 

(r - s)Z = p R - sh and W = r*R + s^S n n n n n n 

Now, 

(r - s)Z l o = r j R R - s3S , S 
v ' n+2 n+i n n+l n 

= R (r^R ^ - s^S , ) + S fr^R - s^S ) nv n+i n+r n + r n n ' 

- R S , (r3 - s j ) n n + r ; 

so that 

H 
(8) Z , = R Z + S Z - (rs) n S U. 

n+2 n n+l n+i n n - i j 

S imi la r ly , 

H 
(9) Z 1 = S Z + R Z - (rs) " R U. 
v ' n+2 n n+l n+l n n - i j 

Add (8) and (9) to get 

H 
(10) 2Z l o = Y Z _ + Y f Z - (rs) n Y U. 
x ; n+2 n n+l n+i n v ' n - i ] 

Also, 

W io = r J R , R + sJS , ,S n+2 n+i n n+l n 

= R ( A t , - s j S ,J + S , (rjR + s3S ) nKX n+i n+r n + r n n 

- R S (r j - s j ) n n + r 
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and 

(11) W n + 2 = (r - s ) R n Z n + 1 + S n + W n - (r - s ) ( r S ) \ _ U. 

Similar ly , 

H 
(12) W ^ = (s - r)S Z , + R , W - (s - r ) ( r s ) n R U. 
v ; n+2 v ' n n+i n+l n v fK ' n - i j 

Add (11) and (12) to get 

H 
(13) 2W ^0 = (r - s)2X Z ^ + Y , W + (r - s)2(rs) n X TJ. v ; n+2 v ' n n+l n+l n x / \ / n _ 1 j 

When r = (1 + N / 5 ) / 2 and s = (1 - \fE)/2, (10) and (13) become 

(14) 2 F H n + 2 + j = L H n F H n + 1 + j + L H n + 1 F H n + j - (-1) ^ H ^ F . 

2 L H n + 2 + j = 5 F H n F H n + i + j + L H n + i L H n + j + 5 ( - l ) " F ^ F . 

where F is the n Fibonacci number and L i s the n Lucas number . 
n n 

The techniques used above in deriving r e c u r r e n c e re la t ions a r e not en -

t i re ly inhibited when sequences of the type {Uf£ } and {Vj£ } , where {K } 

i s a sequence of in tegers obeying a l inea r , homogeneous r e c u r r e n c e re la t ion 

with constant coefficients, a r e considered. Let {K } obey the r e c u r r e n c e 

re la t ion 

m 
K = V p . K , 

n+m Z-J J n+m-j 
3=0 

where m i s a fixed in teger , and with p . , K being in tegers when n is non-

negative. Then {Vj£ } and {Uj£ } a r e defined for n nonnegative; if p 

± 1 , then the definition appl ies for all n. Repeated application of the identity 
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r n L 

a b 
U u = r Uu + s U gives U a s a l inear combination of U ., 

a+b b a b a1+a2+- • • a m a j ' 
j = l , 2 , - . . , m , with the coefficients being products of powers of r and s. 

By putting a. = p.K _., when n + m - j i s nonnegative, and by util izing 

repeatedly the ident i t ies 
U = - ( r s ) UU -n ' n 

U2 n = U V 611 n n 

U (2k+l)n ~ U n 

k - i 

( rs)1 3 1 + J ] ( r s ) j n 

3=0 

V. 2(k-j)n k > 1 

th m o rde r r e c u r r e n c e re la t ions a r e easily produced for {U^ } . {Vj^ \ may 

be t r ea ted s imi la r ly by repea ted application of the identity y ., = r a V , - (r -

s)s Uo and by uti l izat ion of the identi t ies a 
V = ( r s ) " n V -n v ' n 

V, 2kn V? - 2(rs) kn 
'kn 

k- i 

V TT , n n,k Y ^ / n n j = V (~r s ) + > (-r s )J 
n nv ' L~d v ' (2k+l) 

3=0 

<r " S>Ua+b = r X - sbva 

v. 2(k-j)n k >: 1 

A special ca se of i n t e re s t occurs when m = 3 and p. = 1, j = 1 ,2 ,3 . 

Lett ing A = r n and B = s n , D = U K and E = V K , then U , = 
&

 un n ' n ^ n n ^ n ' a+b 
aTT bT T r UK - s U g i v e s D a 

(15) D = A A D + A B D , + B B J ) 
n+3 n n+i n+2 n n+2 n+i n+i n+2 n 

= A A D + B B D + A B D 
n n+l n+2 n n+2 n+l n+i n+2 n 

and 

2D , , = 2 A A D , + B 0E D , + B , E , D n+3 n n+i n+2 n+2 n n+i n+2 n+l n 

Simi lar ly , 
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2D = 2B B ,D + A E D + A E D . 
n+3 n n+i n+2 n+2 n n+i n+2 n+l n 

Thus, 

4D = 2(A A t + B B , )D + E E T) + E E D 
n+3 n n+i n n+r n+2 n n+2 n+i n+l n+2 n 

But 

so that 

A A , + B B L •= A (A , + B , ) - B , (A - B ) n n+i n n+i n n+i n+r n + r n n 7 

= A E i4 - B M ( r - s)D n n+i n+i n 

= B E , + A j (r - s)D , 
n n+i n + r n 

2(A A , + B B J ) = E E , + (r - s)2D D ' 
v n n+i n n+r n n+i v ' n n+l 

and 

(16) 4D = (E E , + (r - s)2D D , )D ^ + E E J D ^ + E E , D 
v ' n+3 v n n+i v ' n n + r n+2 n n+2 n+i n+l n+2 n 

Also, V a + b = r a V b - (r - s)s U a and (r - s)Ua+fc> = r a V b - s VR give 

<17> En+3 = A n A n+i E n+2 " A n B n+2 E n+i + B n+i B n+2 E n 

= A A E + B B E . - A B E 
n n+l n+2 n n+2 n+i n+i n+2 n 

and 

2E 0 = 2A A E 0 - (r - s)B D E , - (r - s)B , 0D , AE 
n+3 n n+l n+2 ^ ' n+2 n n+i v ' n+2 n+i n 

Simi lar ly , 

2E 10 = 2B B E , + (r - s)A , D E + (r - s)A D E 
n+3 n n+l n+2 v ' n+2 n n+l v ' n+2 n+i n 

Thus , 
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4E 4E , = 2(A A + B B )E A + (r - s)2D D E 
n+3 v n n+i n n+r n+2 l ; n n+2 n+i 

+ (r - s)2D ,.D E x ; n+l n+2 n 

and 

(18) 4E ^ = (E E ^ + (r - s)2D D )E + (r - s)2D D E 
n+3 n n+l v ' n n+i ; n+2 v ; n n+2 n+i 

+ (r - s)2D ,,D , 0E . v n+l n+2 n 

Given D0, Dl f D2, E0, Et and E2, (16) and (18) completely de te rmine {D } 
and {E } , for n > 0, 1 nJ 
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AN APPLICATION OF UNIFORM DISTRIBUTIONS 
TO THE FIBONACCI NUMBERS 

R. L. DUNCAN 
Lock Haven State College, Lock Haven, Pennsylvania 

(n ^ 3) be the Fibonacci 

It i s known [1] that the 

Let a* = 1, u9 = 2 and u = u + a 
1 L n ' n - i r n - 2 

numbers and le t p be the number of digits in \x . 

number of divisions r equ i r ed to de te rmine (pt ,pi ) by the Euclidean Algo-

r i t h m i s n. Also, i t i s shown in the proof of L a m e ' s t heo rem [2] that 

n < l o g £ 1, where £ = 1 + \l5 

A s i m i l a r a rgument [ l ] shows that 

n > 
p - 1 

log £ 

Combining these r e s u l t s , we have 

(1) 
log £ TogT 

It has been shown by Brown [3] that the upper bound in (1) i s a t tained for 

infinitely many n. The object of this note i s to show that both the upper and 

lower bounds in (1) a r e at tained for se t s of values of n having posi t ive density. 

Let <P be the fractional p a r t (mantissa) of log M . Then, s ince p = 

l + TlogM ] , we have p = 1 + log M L B nJ n r Also, s ince 

,n+i 
V5 

we have 

(2) P = 1 + (n + 1) log £ - log ^ 5 - <f> + o( l) . 

137 
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Hence 

[April 

n - 1 
P - 1 
1* _ 2 . + l ° S J ^ + * n 
log | log | log | w 

and i t follows that 

P - 1 n 1 
n - 1 < -T 1 T + 56 

log £ 4 r n 

for all sufficiently l a rge n. Thus 

n - 1 < 
P - 1 2_n 
log | 

and 

n - 1 
p - 1 *n 
log ^ 

if 

*n ~ 20 

and n i s sufficiently l a rge . 

It a l so follows from (2) that 

P n < (n + 1) log £ - log \I5 + - ^ + o(l) 

or 

n - 1 > log | 

log N/5 

log 5 
10 2 + o(l) 
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Hence 

_9_ 
10 

and it follows that 

and 

n - 1 > log £ 

n - 1 > log £ 

n - 1 log ? 

when 

\ ~ 10 

and n i s sufficiently l a rge . 

The des i r ed r e su l t will follow when we show that the Sequence { log \i } 

i s uniformly dis t r ibuted modulo one [ 4 ] . By (2) we have 

log JU = (n + 1) log 5 - log N/5 + o(l) . 

Thus , for every posi t ive integer h, 

exp (27rih log pt ) = exp (-27rih log \l5) exp (o(l)) exp (27rih (n + 1) log £) 

= c ( l + o(l)) exp (27rih (n + 1) log £) , 
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where c is a constant. 
Hence 

m m 
exp (27rih log \i ) = c V j exp (27iih(n + 1) log £) + o(m) . 

n=i n=i 

since log § is irrational, the sequence {(n + l ) l o g £ | is uniformly distributed 
modulo one and it follows from WeyPs criterion that the sequence {log u } is 
uniformly distributed modulo one. 
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THE HEIGHTS OF FIBONACCI POLYNOMIALS 
AND AN ASSOCIATED FUNCTION 

V. E. HOGGATT, JR., and D. A . LIND 
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Define the sequence of Fibonacci polynomials {f (x)} by 

fi(x) = 1, f2(x) = x; fn(x) = xfn_l(x) + fn_2(x) ( n - 3) 

Then it has been shown [3] that 

i—n \ 1 ' 
(i) 

i i 

j=0 

where [x] represents the greatest integer contained in x. Since f +1(x) = 
i U (ix/2), where the U (x) are the Chebyshev polynomials of the second 
kind, we note that the Fibonacci polynomials are essentially the Chebyshev 
polynomials. Define the Fibonacci sequence { F I- by Ft = F2 = 1, F = 
F + F (n > 3), and the Lucas sequence {L } by ht = 1, L2 = 3, L 
= L + L (n > 3). It then follows from these recurrence relations that n-i n-2 ' 
f (1) = F . By the height of f (x), denoted by m(n), we mean the greatest 
coefficient of f (x), that is n 

n-1) m(n) = max j l " j x | (j = 0 , 1 , . . . , [(n - 1)/2J) . 

Since the coefficients in (1) are diagonals of Pascal!s Triangle, the m(n) are 
the maximum entries along these diagonals, and they form the pattern ex-
hibited below. Interest was first aroused in these numbers when it was ob-
served that if the heights m(n) and m(n + 1) were in adjacent columns, then 
they were in the ratio of consecutive Fibonacci numbers (e. g. , 1:2, 4:6 = 2:3, 
21:35 = 3:5). Although this is not true in general, some interesting proper -
ties derived from these ratios were found. 
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© 

1 © © 4 1 

1 ̂ S5 /(&io 5 * 

1 ' 9 ^ 36 *\ „. 

In order to define these cross-over ratios, we must first verify that this 
initial pattern continues, so that the only changes in the column pattern are 
lateral jumps of one column. We do this in the following: 

Theorem 1. Denote logical implication by ,r=s>n. Then 

<*> (:) - (J ; i) - (" il) ^ : i) - ( k : i) - (2: i) 
Proof. We prove (i), the other parts using similar techniques, (i) is 

trivial for n < k + 1. Assume n - k > 2, so that denoting logical equivalence 
by n <=£>" we have 

f k l ~ ( k + i r n ( k + 1 ) ~ ( n - k ) ( n - k - l ) = > n ( k + l ) + n - k - 2 = (n-l)(k+2) 

^ ( n - k ) 2 - 2 + 8-5(n-k) = ( n - k - 2 ) ( n - k - 3 ) ^ / £ ~ M ^ ( ^ + 2 / ' 
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A little reflection will show that these results imply that if 

m(n) = fy. t h e n m ( n + l ) = ( U
v

+ 1 ) or ( / + ^ 

Call the column of ones the 0 column, and label the other columns of Pascal 's 
Triangle consecutively. Choose n such that m(n) appears in the (k - 1) 
column and m(n + 1) appears in the k column. Then r1 = m(n)/m(n + 1) 
is called the k cross-over ratio. By Theorem 1, r, is well-defined and 

unique. 
Theorem 2. For r, as defined above we have — k 

r k = k/[£(k + 1 + Vsk2 - 2k + 1)] 

where [x] denotes the greatest integer contained in x. 
Proof. If n is the greatest integer for which 

then clearly 

is the greatest height in the (k - 1) column. This criterion is equivalent to 

nk > (n - k - l)(n - k) <^^*n2 - ( 3 k - l ) n + k 2 - k < 0 . 

The greatest n for which this holds is the greatest integer contained in the 
largest root of 

n2 - (3k - l )n+k2 - k = 0 

so that 
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n --= [|(3k - 1 + V5k2 - 2k + 1) ] 

Thus 

rk = (k - i ) / ( k) = irrtn = ^(k.+ iH-Va^kT-i),. 

This result makes computation of the cross-over ratio for a given column 
simple. A limited evaluation of the expression in the denominator is given 
later in the paper. From Theorem 2 we may conclude 

Theorem 3. For a = (1 + V5)/2, we have 

lim r = 1/a n_*oo n 

Proof. Since 

n/{f(n + 1 + V W - 2n + 1)} < r < n/{*-(n - 1 +V5n2 - 2n + 1)} , 

the result follows from 

lim n/{ |(n + 1 + V W - 2n + 1)} = lim n/{^-(n - 1 + V5n2 - 2n +1)}=1/a 
n-— oo 

It has been shown [4J that 

lim F / F ,„ = lim L / L , = 1/a , n-*cjo n n+i n-*oo n n+i 

so it is not surprising to observe that F / F is a cross-over ratio for 
n ^ 2, and L / L is one for n ^ 4. It is our aim to prove this holds in ' n n+l 
general. 

Theorem 4. Let h(k) = [ |(k + 1 + V5k2 - 2k + 1)]. Then h(F ) = F^+ 

for n ^ 2, and h(L ) = L for n ^ 4. 
' n ' n+l 

Proof. We will prove h(F ) = F , the proof for Lucas numbers in-
volving no new ideas. Since x - 1 < [x] ^ x, the assertion is equivalent to 
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| ( F n - 1 + VSF^ - 2F n + 1) < F n + i * f (F n + 1 + V 5 F ^ - 2 F Q + 1) . 

The right side is equivalent to 

( 2 F n + i " F n - 1 ) 2 = <Ln ~ 1 ) 2 ~ 5 F n " 2 F n + 1 

« L ^ - 5 F ^ 2 ( L n - F n ) = 4 F n _ i . 

Now it is known [2; Identity XI] that L2 - 5F2 = 4( - l ) n , so the last inequality 
is valid for n > 2. The case n = 2 is verified directly. The left side is 
equivalent to 

(2F - F + I)2 = (L + l)2 > 5F2 - 2F + 1 n+i n ' v n n n 

<=>L2 - 5F2 > -2(L + F ) n n v n n ' 

<^>4( - l ) n > -4F , ^ n+i 

which is valid for n=^ 1, completing the proof. 

Theorem 5. F / F „ is a cross-over ratio for n — 2, and L / L ' 
n n+i n n+i 

is a cross-over ratio for n — 4. 
Proof. By Theorems 2 and 4 we have r-̂ , = F / F for n - 2, and 

J F n n+i ' r T = L / L , for n ^ 4. L n n+i 
We mention in passing that the results of Theorem 4, 

Fn+i = Ci(Fn + X + V 5 F n " 2 F n + ^ ( n ~ 2 ) 

L , = [4(L + 1 +V5L2 - 2'L + 1)] ( n ^ 4) , n+l L 2 v n n n / J V ' ' 

form an essentially different solution to Problem B-42 [ l ] , perhaps an im-
provement over the published solution since the value of n is not required. 

We shall apply these results in a test to determine whether a given inte-
ger is a Fibonacci number, but we need first to establish a certain property 
of Fibonacci-type sequences. 
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Theorem 6. Define a Fibonacci sequence {f } by specifying two inte-
gers fn and f 1, along with the recurrence relation f = f + f . Then 
° u l' a n n-i n-2 

l fn+ 1-Wn- ^ l = k i - ' A - 4 l = ° 

for all n 2: 0. 
Proof. We proceed by induction. The statement is true for n = 0. 

Assume it is true for n = k ^ 0. Then 

D = k+i - Wk - £ I = 14+1
 + f

k + i f k + f
k

+ f L i + f
k + 1

fk - %+i ~ f
k +i fkl 

- I ff + f >2 _ f /f . f \ _ f2 I = f2 _ f f _ f2 I 

so the assertion is true for n = k + 1, completing the induction step and the 
proof. 

Now for the Fibonacci sequence D = | F2 - FJFQ - FjJ |-= 1. Since h(F ) 
= F , , all Fibonacci numbers F satisfy n+iJ n J 

h2(F ) - F h(F ) - F2 = 1 n ' n n nl 

We shall show that only Fibonacci numbers satisfy this equation, thus provid-
ing a necessary and sufficient condition for an integer to be a Fibonacci 
number. 

Theorem 7. Let m be a positive integer, and g(m) = |h2(m) - mh(m) 
- m2|. Then m is a Fibonacci number if and only if g(m) = 1. Also, m ^ .7 
is a Lucas number if and only if g(m) = 5. 

Proof. We have shown above that if m is a Fibonacci number then 
g(m) = 1. Now assume g(m) = 1, and we wish to show m is a Fibonacci 
number. Since h(m) ^ m, we may form a decreasing Fibonacci sequence 

(2) h(m), m, h(m) - m, 2m - h (m) , ' " ' , ii9 f0 , 

where f0 is the least nonnegative term of this sequence. Then f^ ^fu for 
if f A > f0 > ±ft, then there is another term of the sequence ".JLj such that 



1967] AND AN ASSOCIATED FUNCTION 147 

0 ^ JLj = fj - f0 < f0 contradicting the definition of f0, while if f0 = -̂fl9 f0 -
(fj - f0) = 0 is another term of the sequence <f0, again contradicting the 
definition of f0. Thus it = 2f0 4- a where a > 0. But by Theorem 6, 1 = 
g(m) = | (2 f0 + a)2 - (2f0 + a)f0 - f2 | = | f2 + 3af0 + a2j, and since f0 and a are 
nonnegative integers, we must have f0 = 0, a = 1, so that ft = la Hence 
m is a member of a Fibonacci sequence which begins with f0 = 0 and f1 - 1; 
that is , m is a Fibonacci number. 

We now prove the latter half of the theorem,, Suppose m => 7 is a Lucas 
number L . For the Lucas sequence D = 5, and so by Theorems 4 and 5 we 
have g(m) = 5e Now assume g(m) = 5 where m > 7, and as above let f0 

be the least nonnegative term in a decreasing Fibonacci sequence defined in(2)8 

Clearly f0 > 0, for f0 = 0 implies 5 = g(m) =|fj - f^o - fo| =jfi. Also, 
as in the first section, f0 < ^iu so f1 = 2f0 + a where a > 0„ Then 5 ~ 
g(m) = I (2f0 + a)2 - (2f0 + a)f0 - f\ = |f2 + 3af0 + a2 , and since f0 and a. are 
positive integers, we must have f0 = a = 1, so that ft = 3„ Thus m belongs 
to a Fibonacci sequence with f0 = 1, fi'= 3; that i s , m is a Lucas number. 

We note that Theorem 6 is also implied by the result of Long and Jordan 
[ 5] that the only solutions of the diophantine equation |x2 - 5y2 = 4 are x -
L , y = F . . • • " n' J n 

Define 
h (k) for n > 0 

by 
h0(k) = k and hn(k) = h{hn_1(k)} 

for n a 0„ Then 

is a sequence of integers for each choice of k. Values of h (k) for 1 < k < 
10 and 0 ^ n ^ 9, which were computed by Terry Brennan, are given in 
Table 1. It appears from the Table that 

obeys either a homogeneous or nonhomogeneous Fibonacci recurrence relation. 
We prove this holds in generaL 
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Table 1 
Values of h (k) 

kN 1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

n 0 

I 
2 

3 

5 

5 

6 

7 

8 

9 

10 

1 

2~ 

3 

5 

6 

8 

10 

11 

13 

14 

16 

2 

3~~ 

5 

8 

10 

13 

16 

18 

21 

22 

26 

3 

5~~ 

8 

13 

16 

21 

26 

29 

34 

35 

42 

4 

8~ 

13 

21 

26 

34 

42 

47 

55 

56 

68 

5 

13~~ 

21 

34 

42 

55 

68 

76 

89 

90 

110 

6 

21~~ 

34 

55 

68 

89 

110 

123 

144 

145 

178 

7 

34~~ 

55 

89 

110 

144 

178 

199 

233 

234 

288 

8 

55~~ 

89 

144 

178 

233 

288 

322 

377 

378 

466 

9 

89 

144 

233 

288 

377 

466 

521 

610 

611 

754 

Theorem 8. For each choice of k the sequence {h (k)} obeys one of 
the following recurrence relations: 

h (k) = h (k) + h (k), n = 0 , 1 , " ° (Fibonacci homogeneous) 

h (k) = h (k) + h (k) - 1, n = 0 , l , - # * (Fibonacci nonhomogeneous) 

Proof. The assertion is true for k = 1 since h (1) = F obeys the 
first relation. We thus consider k ^ 1. We shall use the property that x - 1 
< [ x ] < x to show that h2(k) = h0(k) + hA(k) or h0(k) + h^k) - 1. We shall 
then use induction to prove this initial recurrence continues to hold throughout 
the sequence. For sake of brevity we let throughout the rest of the paper 

hn(k) EE h n , h0(k) = k, ht(k) = h(k) = h , and »<£=" 

mean TTif!?0 From the definition we have 

A(h - 1 +V5h2 - 2h +~i) < h , <4(h + 1 +V5h2 - 2h + 1) . 2V n n n ' n+i ^v n n n ' 

Then 
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h2(k) > k + h(k) - 1 <= 1 (h - 1 + V 5 h 2 - 2h + 1) ^ k + h - 2 

<5=>5h2 - 2h + 1 > (2k + h - 3)2 

h2 > k2 + kh - h - 3k + 2 

k2 + j (k 2 + k + kVsk2 - 2k + 1) - }(k - 1 + 

V 5 k 2 - 2k + 1) - 2k + 2 < ±(k - l ; + 

V s k 2 - 2k + l ) 2 

8 < 8k 

which i s valid. Also 

h2(k) < k + h(k)<=> £(h + 1 + V5h2 - 2h + 1) < k + h + 1 

<=s> 5h2 - 2h + 1 < (2k + h + l ) 2 

< ^ 4h2 < 4(k2 + kh + h + k) 

<s= (k + 1 + V s k 2 - 2k + l ) 2 ^ 4k2 + 

2(k + l)(k - 1 + V 5 k 2 - 2k + 1) + 4k 

<s=> 4 ^ 4k 

which i s t r ue . Together these imply 

h2(k) = k + h(k) or k + h(k) - 1 . 

We now show in the homogeneous case that this r e c u r r e n c e continues. Assume 

h. . + h. = h. _, for i = 1 , 2 , • • - , n where n ^ 2. 
l - i l i+ l 

We will prove that 

h + h , = h o , n n+i n+2 

that i s 
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*<hn+l - l + V 5 h W ~ 2 V l + 1 ) " hn + hn+i * ±KH + X ' 
+V5h 2 - 2h + 1). n+i n+i ' 

The r ight s ide i s equivalent to 

(2h + h , - l ) 2 ^ 5 h 2
M - 2 h H + l v n n+i ' n+i n+i 

<=> h2 + h h A - h < h2 
n n n+l n n+i 

^ > h2 - h h - h2 < h n n n- i n - i n 

• <= M - h^o - 4 * n2 < hn 

(3) <= | i (h 0 + 1 +V5h 2 - 2h0 + l ) 2 - {h0(h0 - 1 +V5h 2 - 2h0 + 1) 

<^> | i ( h 0 + 1 + V 5 h 2 - 2h0 + 1)| < h2 

<= |{(h0 + 1 +V5h 2 - 2h0 + 1)| ̂  hi + 1 < hi + h0 = h2 . 

But this l a s t s ta tement i s t r u e , verifying the r ight s ide. The left side i s equiva-

lent to 

5h2 - 2h + 1 < (2h + h + l ) 2 

n+i n+i v n n+i ' 

<^>h2 < h2 + h h + h + h n+i n n n+l n+l n 

<^> -(h2 - h h - h2 ) < 2h + h = h v n n n - i n - i n n - i i n+2 

which i s cer ta in ly t r ue in light of (3) and Theorem 6. Proof of the nonhomogen-

eous ca se u se s essent ia l ly the s a m e techniques , although it i s m o r e c o m p l i -

cated and i s there fore omitted. 

It is na tura l to ask for which in tegers k the sequence {h (k)} is homo-

geneous and for which it i s nonhomogeneous. 

Theorem 9. The sequence {h (k)} is nonhomogeneous if and only if 
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(4) h2(k) < k2 - k + kh(k) . 

Proof0 Using Theorem 8 it follows that {h (k)} is nonhomogeneous if 
and only if 

k + h(k) = h2(k) - 1 

i(h + 1 + V5h2 - 2h + 1) < k + h 

5h2 - 2h + 1 < (2k + h - l)2 

h2 < k2 - k + kh . 

However the characterization of the k which obey (4) seems difficult. 
It appears that numbers of the form k. = F + 1 (m > 5) satisfy (4), but 
there are others. 

From the recurrence relations of Theorem 8 we may establish the fol-
lowing generating functions using standard techniques. If {h (k)} is homo-
geneous , 

P(x) 
•1 - x - x z 

n=0 

E vk>xn • 
where p(x) = {h(k) - k}x + k; if {h (k)} is nonhomogeneous, 

q(x) = E hn(k) X" ' (1 - x)(l - x - x2) 
v /v ' n=o 

where q(x) = (h2(k) - 2h(k)}x2 + (h(k) - 2k}x + k. 
Finally we rhow an interweaving of the numbers h (k) in Table 1. 
Theorem 10. For r ^ 0 let M (n) be the number of integers not 

r OO 

greater than n which do not appear in. the sequence {h (j)}._ . Then for n 
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M (h (k)) = h (k) - h (k) . rv i r " rr ' n-r ' 

Proof. We begin by observing that if s > t then h(s) > h(t). First 
assume n = r , so that h _ (k) = h0(k) = k. The k distinct integers h (1), 
• • • ,h (k) are the only members of {h (])}._ not greater than h (k), so that 
M (h (k)) = h (k) - k = h (k) - h _ (k), as required. Now assume n ^ r , 
and let h (k) = m. Then h (k) = h (m), so by the above n _ r \ / n \ / r \ /> J 

Mr(hr(m)) = hr(m) - h0(m) 

which implies 

M (h (k)) = h (k) - h (k) , rv xv " xv n-rv ' 

the desired result. 
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ON LAME'S THEOREM 
J . L. BROWN, JR. 

Ordnance Research Laboratory, The Pennsylvania State University, State College, Pa. 

We define the Fibonacci numbers ju.t as follows: 

' ' UL = 1, u0 = 2, u , 0 = ~u , . + u for n > 1 . 
1 2 n+2 n+1 n 

In a recent note, Re L. Duncan has shown [l] that the determination of the 
greatest common divisor, (u + 1 , u ), for any n ^ 1 by means of the Euclid-
ean A l g o r i t h m a l w a y s r e q u i r e s a number of divisions n satisfying 
the inequality, 

where p is the number of digits in u and 

e = 1 + ^ 
S 2 

Duncan then contrasts the classical Lame result [2] for this case, namely 

n<T-JL
7+ 1 , log f 

and concludes that Lame's theorem is virtually the best possible. [Recall 
Lame's theorem asserts that if a and b are positive integers, then the num-
ber of divisions, n, required to determine (a, b) by the Euclidean Algorithm 
satisfies the inequality, 

n < 7-2— + 1 , log f 

where p is the number of digits in the smaller of the two integers a and b.] 
153 
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Our purpose here is to show that when Lame's bound for the number of 
divisions n in the algorithmic determination of (u , u ) is written in the 
equivalent form 

n"K?J + 1 

then there exist infinitely many pairs of consecutive Fibonacci numbers u and 
u + 1 such that the determination of (u , u ) by the Euclidean Algorithm 
requires exactly 

+ 1 

divisions. Thus the integer 1 which appears in Lame's bound 

pn 
+ 1 > Ll0g £J 

cannot be reduced, and in this sense, Lame's theorem cannot be improved. 

From consideration of tables, we find that to determine the g. c. d. of 
each of the pairs, u^ = 8 and u - 13, u - 89 and U-- = 144, u _ - 987 
and u l f , - 1597, a number of divisions is required that is equal to the Lame 
bound. Note that the smaller number in each pair contains exactly one less 
digit than the larger number; this property will also be imposed in the general 
analysis. It is not clear a priori that there are infinitely many such pairs for 
which the Lame bound is realized. For example, the next logical pair, U- ~ 
= 6765 and u^n = 10946, requires only 19 divisions but the Lame result 
gives an upper bound of 20. 

THEOREM 1: There exist an infinite number of distinct positive integers 
n such that the determination of (u.+ 1 , u j by the Euclidean Algorithm r e -
quires exactly n divisions with n satisfying 
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(1) n > 
^n 1 

l o g £ 2 ' 

PROOF; It i s known [ l ] that the a lgor i thmic determinat ion of (u , u ) 

r e q u i r e s exactly n divisions; i t r e m a i n s to prove (1) holds for infinitely many 

va lues of n. 

Fo r n ^ l , BinetT s formula [3J s ta tes 

£n+l _ /n+ l 

where 

and 

V5 

t= l_±vf 
b 2 

1 -Vs" 

Thus , 

(2) 

Since 

*n+l 
n V? 

rn+1 

V5 

C < 1 , l im •i w-» _2_ 
n+1 

= u 
n— 00 v ^ " n 

Choose € > 0 such that 

(3) l o g V f _ _ 2 €_ > : L 5 
log £ log f 

[This i s poss ib le s ince 

logViT = 0. 350 

and log f = 0. 208] . 
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Corresponding to this value of €, ^ a positive integer n such that 

*n+l 
log u - log £ 

n . vf 
< 6 for n > n , 

o ' 

or, equivalently, 

(4) | logu - (n+1) log £ + logVS"| <€ for n> n . 

Now, p , the number of digits in u , is given by p = log u + 1, where 
the square brackets denote the greatest integer contained in the bracketed quan-
tity. 

Clearly, 
(5) log u = p - 1 + 0 where 0 < 6 < 1 , 

to n ^n n n 

and (4) becomes 
(6) |p n - (1- 0n) - (n+1) log £ + log VS~ | < € (n>nQ) . 

Since (5) holds for arbitrary n, we also have 

(7) log u , - = p ^ - 1 + $ . . with 0 < 8 , _, < 1 , 
& n+1 *n+l vn+l n+1 

where p .' is the number of digits in u ,... ^n+1 & n+1 

Subtracting (5) from (7), we find 

<8> l o g ^ i i = ( D + 1 - p j + ( f l i + 1 - « n . u V1n+1 ^n' VC7n+l °h' 
n 

But it is well-known that 

v U n + 1 f 

hm = f ; 
n -*oo n therefore, for the previosuly chosen € > 0, -] a positive integer n ' such that 

for n > n ' , o 
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( P n + 1 - P n ) + (0n +l ~ V - l o ^ 

We further restr ict n so that 
(10) P . 1 - P = 1 

*n+l ^n 

157 

< € 

is satisfied; that is , u is required to have exactly one more digit than u . 
Since 

lim u = + oo n* 5 

n -*oo 
it is clear that (10) is satisfied for infinitely many values of n. With this addi-
tional restriction on n, equation (9) yields 

or noting 0^+± > 0 , 

(11) 0n>(l-log£) - e 

From (6), 

(12) P - (1 - 0) - (n+1) log i + log \^~< € (n>n ) . 

If we now choose n > max (n , n ') and such that (10) is satisfied, then using 
(11) in (12), 

(13) p n - log f - (n+1) log £ + l o g V ^ - € < €' , • 

or 

(14) n > 
2 + logV5 _ 2€ 

log £ log £ log i 

Using (3), we conclude that for n > max (n , n') and satisfying (10), 

(15) P 
n > n 1 

log£ 2 as asserted. q. e. d. 
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According to Lame's theorem [2], the number of divisions n required 
to determine (u -, u ) is bounded above (strong inequality) by 

p » + 1 , 
log£ 

or equivalently 

T Pr," 
+ 1 F Pn 

( 1 6 ) u-= i , „ „ > 

On the other hand, (15) asser ts that 

for infinitely many values of n. Under certain circumstances, the bounds in 
(16) and (17) are equal. We first prove a simple lemma: (cf. [4], Theorem 
6.3, p. 72): 

LEMMA: Given a irrational, -] infinitely many integers n such that 
n a - [ n a ] > - . 

PROOF: If ^ n such that n a - [ n a ] > — for all n > n , the proposition 
is proved; otherwise, forgiven n > 0, -] n with n > n such that na = [na] 
+ /3with 0<p<- 03 irrational). 

Choose k such that 

2 

Then, letting N = 2 n, we have 

kVi<^<4 or f<2Vl . 

Na = 2 k [na |+ 2k/3 . 

Since 2k/3 c 1, [Na] = 2k[na] and Na - [Na] = 2k/3 > | . 

Thus, A arbitrarily large integers n with n a - [ n a ] > — as asserted. 
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The following theorem shows that Lamefs result 

~ [l0g£] 
is the best possible. 

THEOREM 2: There exist infinitely many distinct values of n such that 
etermination (u _ u ) 1 v n+1, n7 

divisions where n is given by 
the determination (u u ) by the Euclidean Algorithm requires exactly n 

n =feJ 0 9 - - L E R I * 1 

PROOF: From Theorem 1, - infinitely many values of n such that 

n"[i5?+2j» (19) 

The proof of Theorem 1 shows that if p M is the number of digits in u M where 
L be found s-

teger value > p M and such that (19) is satisfied. 
M = max(n , n') + 1, than an n can be found such that p assumes any in-v o o ^ n —jL-

The Lemma assures us that there are infinitely many values of p > p M 

such that 

<20) _in I ' M , 1 

logf "[logf] 2 

and each of these values of p can be combined with an appropriate value of 
n such that (19) is satisfied. But (20) implies 

[logf 2J [log* J [log*! 

Thus (19) in combination with Lame's bound n <h -? + 1 shows 

proving the theorem. q. e. d. 
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The above results have been proved using only elementary techniques. 
A more concise proof can be obtained using some theorems on the uniform dis-
tribution (mod 1) of sequences; this will be the subject of a forthcoming note 
by R. L. Duncan. 
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* * * * * 

CORRECTION 

Please correct the last phrase of fTA Recursive Generation on Two-Digit 
Integers,TT appearing on page 90 of the April 1965 issue of the Fibonacci Quar-
terly to read: "so that it takes the five odd digits to generate the set. M 

Edward Rayher points out that there are only nine two-digit generators. 
Eliminated from the published set should be n24fT which obviously comes from 
the 21 at the end of the line preceding it in group (4), and n47TT which follows 
37 in the sequence of the same group. 

D. R. Kapreker calls these generators f ,self-numbers" in his 21-page 
pamphlet, "The Mathematics of the New Self Numbers, " personally published 
by him inDevlali, India in 1963. He lets the generated sequences run to infinity 
rather than reducing the numbers modulo 100 so that they lead to loops. 

C W . TRIGG 
• * * * * 



ADVANCED'PROBLEMS AND SOLUTIONS 
Edited By 

V . E. HOGGATT, JR. 
San Jose State College, San Jose, Cal i f . 

Send al l communicat ions concerning Advanced P r o b l e m s and Solutions to 

Raymond Whitney, Mathemat ics Depar tment , Lock Haven State College, Lock 

Haven, Pennsylvania,, This depar tment especial ly welcomes p rob lems believed 

to be new o r extending old results, , P r o p o s e r s should submit solutions o r other 

information that will a s s i s t the editor , To faci l i tate the i r considerat ion, solu-

t ions should be submit ted on s e p a r a t e signed shee ts within t h r e e months after 

publication of the problems,, 

NOTICE; PLEASE SEND ALL SOLUTIONS AND NEW PROPOSALS TO 
PROFESSOR RAYMOND E„ WHITNEY, MATHEMATICS DEPART-
MENT, LOCK HAVEN STATE COLLEGE, LOCK HAVEN, PA, 

H-1 I3 Proposed by V . E. Hoggatt , J r . , San Jose State, Co l lege , San Jose, C a l i f . 

I f 

^ R ( n ) x
n = | | <i + xFi; 

n^o" j=i 

then show 

i) R(L 2 n - 1) = R(L2 n+i - 1) = 2n n > 2 

ii) R ( L
n + 3 + 1 } = 2 n n - 2 

(In "Representa t ions by Complete Sequences,TT Oct. 1963 Fibonacci Quar te r ly , 

T h e o r e m 3 s t a tes 

^ ( L 2 n _ i ) = R(L 2 n ) = 2n - 1 (n > 1) 

This should r e a d n > 2B) 

H-114 Proposed b y W i l l i a m C . Lombard and V . E. Hoggatt , J r . , San Jose State 
Co l lege , San Jose, C a l i f . 

Show that the sequence L0 = 2, L^ = 1 and L = L + L (n > 0) 

is complete,, 

Show that , if any L, (k > 2) is deleted, then the deleted sequence is 

s t i l l complete . 
161 
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Show that, if L0 or LA or (L. and L.; k > j > 2) is (are) deleted, 
3 K 

then the deleted (doubly deleted) sequence is incomplete,, 

(See H-53, Vol , 3, No. 1, page 45, Fibonacci Quarter ly.) 

H-115 Proposed by Stephen Headley, San Jose State College, San Jose, Cal i f . 

If 
^ R ( n ) X n = ]"]"<1 + X1 

n=o 1=0 

where L. is the i Lucas number, show R(L2 n) = R(L2n+i) = n + 1, 

H-.116 Proposed by V .E . Hoggatt, J r . , San Jose State College, San Jose, Cal i f . 

If 
00 00 

^R(n)Xn =J J (1 +XL3) , 
n=o j=o 

then for n > 0 show 

i) R t F ^ ) = R(F4n+i) = R(F4n+2) = F2n+i 

ii) R(F4n+3) = F2n+2 

H-117 Proposed by George Ledin, J r . , San Francisco, Cal i f . 

Prove 

F F F F 
n+3 n+2 n+l n 

F F F F 
n+2 n+3 n n+l 

F ^ F 
n+l n 

F F 
n+3 n+2 

T? T? TT TT 

n n+l n+2 n+3 

F2n+6F2n 

H-118 Proposed by George Ledin, J r . , San Francisco, Cal i f . 

Solve the difference equation 

C _,_ = F _,_ C _, + C n+2 n+2 n+l n 

th with Ci = a, C2 = b, and F is the n Fibonacci number, 
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SOLUTIONS 

A MANY SPLENDORED THING 

H-69 Proposed byM.N.S . Swamy, UniversityofSaskatchewan, Regina, Canada 

Given the polynomials B (x) and b (x) defined by, 

bn(x) = xB^^x) + b
n_!<x) tn > 0) 

Bn(x) = (x + D B ^ f e ) + \_t&) (n > 0) 

b0(x) = B0(x) = 1 

It is possible to show that 

r=o 
and 

V -Efn - r ' 1 ) r 
x 

bn(x) = > • i: : i x r 

r=o 

It can also be shown that the zeros of B (x) or b (x) are all real3 negative 
n n & 

and distinct* The problem is whether it is possible to factorize B (x) and 
b (x). I have found that for the first few values of n, the result n 

Bn« = TT [x + 4 cos2 (rfi) • f] 
r=i 

holdSo Does this result hold good for all n? Is it possible to find a similar 
result for b (x) ? n 
Solut ion by John C . Sjoherg, Car l i s le , Pennsylvania 

L e t fanfc) = bn(x2) 

W i & ) = xBn(x2) n > 0 
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then 

with 

and 

f ^ (x) = xf ^ ( x ) + f (x) , n+2 n+iv n ' 

f0(x) = 1 and fj(x) = x 

f t ] , . 
2r 

l I x 
\ r / 

r=o 

Thus 

[?] 
fn(2i cos y) = ^ ( * r

 r ) (2 i ) n " 2 r (cos y) 

We have by definition that 

r /o- \ -n s in (n + l )y 
f (2i cos y) = 1 ——r -1 

n J s in y 

The ze ros of f (2i cos y) a r e then n J 

y = r 1 1 for r = 1 ,2 ,3 , • • • , n 
n + 1 

and the ze ros of f (x) a r e then n 

r7r x = 2i cos — — r for r = 1,2, 3, " " a , n n + 1 

We have there fore that 

2n 

^ ) ="ft ( x - 2 i c o s 2 j r?r ) 
r=i 
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n 

bn(x) = T ~ [ ( * + 4cos»_£fT) 

r=i 

Similar ly 

TT( B (x) = I I / x + 4 cos2 TTr 

Since 

with 

we have 

nv I I I 2n + 2 
r = 1 

f (x) = xf (x) + f (x) n n - i n-2v 

f0(x) = 1 and fi(x) = x , 

Also solved by the Proposer. 

f (1) = F ^ n n+i 

NO SOLUTION 

H-70 Proposed b y C . A . Church, J r . , West Virginia University, Morgantown, 
West Va. 

F o r n = 2m show that the total number of k-combinat ions of the f i r s t 

n na tu ra l number s such that no two e lements i and i + 2 appear toge ther in 

the s a m e select ion i s F 2 , . and if n = 2m + 1, the tota l i s F , F 
m+2 m+2 m+3 

Add i t iona l Comment by the Proposer. 
A corresponding p rob lem for c i r cu l a r permuta t ions may also be posed 

using Kaplanskyfs second l e m m a [ same r e f e r e n c e ! which leads in th is c a s e to 

Lucas number s . That is 9 the number of ways of se lect ing k objects , from n 

a r r a y e d on a c i r c l e , with no two consecut ive is 
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Another solution to the problem of choosing k elements from among 
1, 2,e a ° , n such that i and i + 2 do not both occur, is given by M. Abramson 
[Explicit Expressions for a Class of Permutation Problems, Canadian Mathe-
matical Bulletin, 7(1964), 349]c Namely, there are 

z(n-2i^+i)(v) 

waySo This, of course, suggests a couple of binomial identities, when his ans-
wer is compared with mine,, 

A VERY PRETTY RESULT 

H-71 Proposed by John L. Brown, Jr. ,Penn . State University, State College, Pa. 

Show 

2n 

i>k(in)°k-\^° 
2n 

k=o 
2 k * F k - 0 

See also H-770 

Solution by the Proposer. 
Let 

so that 

a = I ; V B b - j - v 5 

^ a - b j -r k , , k 
Y = _ and L = a + b 

K V5 K 
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2x1 

5n = (2a - l)2n = £ (2a)k (~l)2n-k (?) 
and 

2n 
5n = <i - 2b)2n = Y * (-l)k(2b)k 

k-o 
(?) 

Add to get 

2n / \ 
2-Sn = ] P ("1)k ( ? ) 2* <ak + b k) 

k=o 

or 

Subtract to get 

t <-»* (?) 2 k (a k - b k ) 

k=o 

or 

2n 

°-2>>k*k-'(?K 
k~o 
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GENERALIZED FIBONOMIAL COEFFICIENTS 

H-72 Proposed b y V e r n e r E . Hoggatt , J r . , San Jose State Co l lege , San Jose, C a l i f 

Let u = F , , w n nk 
positive integer; and let 

Let un = F ^ , where F ^ is the m Fibonacci number, and k is any 

[ml = Tml Tmi =
 U m " ° u * 

0 m | n u u ,• ••ui u u 
L -1 L J u J n n-l. L m-n m-n-l 

' U i 

then show 

* W Ljlk L n J + L (m-n)k |? - l j 
This problem and many others related are thoroughly discussed in a pap-

er, "Fibonacci Numbers and Generalized Binomial Coefficients," to appear soon 
in the Fibonacci Quarterly, 

• • • • - * • • 

CORRECTIONS 

Please make the following corrections on the paper, I?On a Certain Kind 

of Fibonacci Sums," Vol. 5, No. 1, pp. 45-58, Fibonacci Quarterly: 

Page 46: In Eq. (4a), change P1(m,n)dx to P1(m,x)dx 

Page 49: In Corollary 1, the denominator of the second fraction should be dn 

instead of dnr . Delete the first m following second = sign. 

Page 51: Change the first part of the last paragraph to read: 

At this stage it seems clear that a study of the polynomials P^m.n) 

and P2(m,n) and of the numbers My and M2j is of basic importance to 

the development of any further theory. The numbers M^ j and M2j pose by 

themselves an interesting problem. The intuitive bounds... 

In the last two lines, change Mt . to M. . . 

Page 54: In the last line, change case to class . 

Page 56: In the table title, add an asterisk to P3 , i . e . , Pg(m,n) 

In the last line before Eq. (12), change written to rewritten. 

Page 58: Delete the extra with in Reference 8. Gr. [_. 3R. 
• * • * • 



EDITORIAL 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

The Fibonacci Quarterly and the Fibonacci Association are now in their 
fifth year. In retrospect two things stand out strongly: one, the decision to 
start such a specialized magazine; two, the inclusion of two sections, advanced 
and elementary. The first was evidently a risk, both from the financial stand-
point and, in the minds of some, from a consideration of the possibility of ex-
hausting the field. Neither of these eventualities has proved substantial. 
Support in the form of subscriptions, memberships, sustaining memberships 
and more recently page charges has been sufficient to provide for continued 
publication and even a bit of expansion. As to the second danger, the flood of 
articles after the first initial steps has continued to grow until now it has be-
come something of a problem. 

The other risk, the establishment of two sections, was probably in the 
minds of some not desirable, since they may have thought that this would tend 
to lower the academic level of the magazine. Apparently, our readers , includ-
ing the libraries of major colleges and universities, have not reacted adversely. 
However, in the course of time, with the pressure of articles demanding pub-
lication and the tendency to publish what was on hand, the elementary section 
has become more and more advanced. The result is that some of our readers 
have begun to lose heart. 

With this situation in mind, action has been set afoot to revitalize the 
elementary portion of the Fibonacci Quarterly by the appointment of a special 
editor with the thought of promoting material of value to the readers of this 
section of our magazine. Already, it has been decided to have a Recreation 
Corner and another entitled "Let's Do Some Research.fT The purpose of the 
present editorial is to point out that while there is a superabundance of articles 
on hand, there are not sufficiently many articles of good quality suitable for 
the elementary section. More importantly, the type of article desired will be 
made explicit. 

For the average reader of mathematical articles, I would presume that 
the major objection to what is available on the market is that it is NOT 

169 
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READABLE. Usually, an article will start off with three, four or five refer-
ences, assume everything that is in them and then launch quickly into further 
developments. Anybody who would want to follow the discussion intelligently 
would have to go back and work through the articles listed before being able to 
do anything with the most recent addition. Usually, none of the articles is 
READABLE. They are compressed, cryptic, truncated in their manner of 
presentation, so that in effect anyone who desires to find out what is being said 
has to start with paper and pencil and work through everything step by step. 
Given the general lack of time available, most people simply stop at the first 
roadblock, get some idea of what the article is about and pass on. 

In the elementary section, we need articles that can be READ. This 
means that they should start with well-known ideas, should provide examples 
of the basic patterns which lead to conjectures, should give the proofs of the 
main theorems clearly, simply and completely, should go on to numerical i l lus-
trations of the theorems, and in general, should be sufficiently explicit so that 
a very good high school student, a good college student, a high school teacher, 
an interested amateur can READ the material without having to go through all 
the development on paper while still possibly remaining in doubt as to whether 
he has the idea or not. 

Writers of articles for this section should be warned of the twin evils of 
compression and impression: compression, to put the ideas in as small a com-
pass as possible; impression, to work up such a framework as to overawe the 
uninitiated. On the contrary, there should be a definite attempt to keep the 
number of definitions to a minimum, to use as little special notation as pos-
sible, to attempt to express ideas in simple direct English as well as in 
formulas. 

There is a great wealth of material in the past issues of the Fibonacci 
Quarterly awaiting the deft touch of able expository writers. At present, this 
valuable material is a closed book to all but a relatively small number of 
specialists. Writers are also encouraged to consider the sub-title of the 
Fibonacci Quarterly: nA Journal devoted to the study of integers with special 
properties. " While we certainly favor articles on Fibonacci numbers, a little 
variety especially in the elementary section would be very welcome indeed. 

* * • * * 



A FIBONACCI GENERALIZATION 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

It is well known that the sum of any ten numbers of a Fibonacci sequence 
is divisible by 11. For example, starting with 11, 15 and proceeding to 26,41, 
67, 108, 175, 283, 458, 741, the sum of these ten terms is 1925 which is divisi-
ble by 11, the quotient being 175, the seventh member of the set of ten successive 
terms. This can be proved to hold in general, for if we start with any two 
numbers a, b, the successive terms are a + b, a + 2b, 2a + 3b, 3a + 5b, 
5a + 8b, 8a + 13b, 13a + 21b, 21a + 34b, the sum of which is 55a + 88b which 
on being divided by 11 gives a quotient of 5a + 8b, the seventh term of the set 
of ten terms. 

This curious property might lead one to speculate on the possibility of 
having various sets of successive terms of a generalized Fibonacci sequence 
divisible by some common quantity. To analyze the situation let us start with 
terms Tt = a, T2 = b, the usual Fibonacci relation. 

T ,, = T + T A n+i n n-i 

Thus T3 = a + b, T4 = a + 2b, T5 = 2a + 3b, T6 = 3a + 5b, T7 = 5a + 8b, 
etc. It appears that the coefficients of a and b are Fibonacci numbers from 
the sequence (1,1,2, 3,5, 8,13, • • •) with the general formula being 

However, what we are considering is the sum of a certain number of terms of 
this sequence. We want to find what: 

n 
] T T k •= Tt + T2 + T3 + . , . + Tn 

k=i 

equals in terms of a, b, and the Fibonacci numbers. Now it will be observed 
that the coefficients of a in the summation are the Fibonacci numbers 

171 
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1 . 1 , 2 , 3 . - " , F o SF with an extra 1, so that by the usual formula for the 9 9 9 9 ' n-3' n-2 J 

sum of the Fibonacci numbers, the coefficient of a in the sum must be F ; 
» n' 

the coefficient of b is simply the sum of the Fibonacci numbers up to and 
including F , so that this coefficient is F , - 1 , Thus & n-i* n+i 

n 

E T, = F a + (F , - l)b , k n v n+i ' 
k=i 

We are looking for a common factor of this sum, no matter what values a and 
b may have. Thus, we seek common factors of F and F , - 1. In the case 

J ' n n+i 
n = 10, F10 = 55, F u - 1 = 88, so that the common factor is 11. A little 
experimentation leads to the following table. We begin with 10 and go to 
higher values. 

55 

89-1 

144 

233-1 

377 

610-1 

987 

1597-1 

2584 

4181-1 

6765 

10946-1 

17711 

28657-1 

11 • 5 

11-8 

8 • 18 

8 • 29 

29 • 13 

29 "• 21 

21 • 47 

21 • 76 

76 • 34 

76 • 55 

55 • 123 

55 • 199 

199 • 89 

199 • 144 

It appears that we have two cases. When n is of the form 4k + 2, the com-
mon factor is a Lucas number and the quotients are successive Fibonacci num-
bers ; while if n is of the form 4k, the common factor is a Fibonacci number 
and the quotients successive Lucas numbers. More precisely, the intuitive 
relations would seem to be as follows: 
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4k+2 

£ T j = F 4k+2 a + ( F 4 k + 3 - l )b 

= L 2k+l F 2k+l a + L2k+iF2k+2D 

= L 2k+l( F 2k+l a + F2k+2D) 

= L2k+lT2k+3 

and for the other c a s e : 

4k 

J2 Tj = F4ka + (F%+1 - Db 

= L 2 k F 2 k a + F 2k L 2k+ l b 

= F 2 k ( L 2 k a + L 2 k + 1 b ) 

= F 2 k ( F 2 k - l a + F2k*> + F 2 k + l a + F2k+2°) 

= F2k(T2k+l + T2k+3) 

The formula F 2 n = F n L n i s well known. T h e r e a r e two other formulas 
F4n+3 ~ 1 = L2 n+iF2 n +2 and F 4 n + 1 - 1 = L 2 n + 1 F 2 n which need to be justified. 

We f i r s t verify them for sma l l values of n. F o r n = 0, the f i r s t formula 

gives F 3 - 1 = 2 - 1 o r 1 and LAF2 = 1 « 1 and hence i s 1 as well . F o r 

n = 1, the f i r s t formula has on the left F7 - 1 = 13 - 1 or 12 and on the 

r igh t , L 3 F 4 = 4 • 3 or 12. Thus the f i r s t formula holds for smal l va lues of 

n,» S imi la r ly , the second can be verif ied for these smal l va lues . We now 

a s s u m e that the va r ious fo rmulas hold up to F^+2 a ^ d that F^Q = F^L holds 

in genera l . Then 

F4n+i " 1 = L 2n+i F n 

F4n+i = L2n+iF2n+l 

Adding F 4 n + 3 - 1 = L 2 n + 1 F 2 n + 2 

Then F 4 n + 4 = F 2 n + 2 L 2 n + 2 

Adding F 4 n + 5 - 1 = F 2 n + 2 L 2 n + 3 
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Hence, s ince these formulas hold for smal l values of n a s shown, i t follows 

that they can be proved to hold for any value of n by r ea son of mathemat ica l 

induction. Thus the intuit ive formulas a r e seen to hold in genera l . 

As a numer ica l i l lus t ra t ion of these fo rmulas , consider the s e r i e s s t a r t -

ing with a = 8, b = 11 . 

Fac tor iza t ion In Symbols 

1 • 19 LjTg 

1 • 68 F2(T3 + T5) 

49 L3T5 

k 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

T k 
8 

11 

19 

30 

49 

79 

128 

207 

335 

542 

877 

1419 

2296 

3715 

6011 

9726 

15737 

25463 

41200 

66663 

107863 

174526 

282389 

456915 

739304 

1196219 

1935523 

3131742 

* T
k 

8 

19 

38 

68 

117 

196 

324 

531 

866 

1408 

2285 

3704 

6000 

9715 

15726 

25452 

41189 

66652 

107852 

174515 

282378 

456904 

739293 

1196208 

1935512 

3131731 

5067254 

8198996 

3 • 177 F4(T5 + T7) 

11 - 128 L5T7 

8 • 463 F6(T7 + T9) 

29 - 335 L7T9 

2 1 - 1212 F8(T9 + Tn) 

76 • 877 L 9 T l t 

55 • 3173 F 1 0 (T t l + T13) 

199 • 2296 L U T 1 3 

144 • 8307 F12(T13 + T15) 

521 • 6011 L13T15 

377 • 21748 F14(T1B + T17) 
• * • • • 



FIBONACCI AND LUCAS NUMBERS 
IN THE SEQUENCE OF GOLDEN NUMBERS 

ROBERT PRUiTT 
San Jose State College, San Jose, California 

Beginning with the golden rectangle with base 2 and altitude \[5 - 1, one 
may proceed to construct a sequence of numbers which represent altitudes 
(shortest sides) of the nested golden rectangles, 

(1) \l~5 - 1, .3 - \R5, 2 \ / 5 - 4 , 7-3^5" , 5^5" - 11, 18 - 8N/55 ••- . 

We shall call this the sequence of golden numbers. These numbers, as one 
may suspect, are closely related to Fibonacci numbers, as is suggested by 

th Theorem 2 below. First , however, we need to observe that the n golden 
number may be expressed by the following recursive formula: 

th Theorem 1. If g denotes the n golden number, then g = 1/2 gt • 
g n - f 

Proof. This follows immediately from the method of finding the altitude 
of a golden rectangle given its base (details left for the reader). 

As an immediate consequence we have a corollary: 

= (slE - l ) n 

2n- i 

We next observe after considering the first few golden numbers that 

Theorem 2. g = g ' - g , 
&n ten-2 ton-i 

Proof. Using the form for g given in the Corollary to Theorem 1, 
we have 

175 
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gn-2 g n - i 
(N/5 - l ) n 2 (N/5 - l ) n * 

.n-3 ^n-2 

3? • (N/5 - l ) n 2 _ 2 • (N/5 - l ) n 1 _ 2(N/5 - l ) n 2 [2 - \/5 + J 
, n - i ^n-i rtn-i 

2(\/5 - l ) n - ( 3 - ^5) =
 Z ^ b 1 } 2 - = (^5 - 1) 

2 n - i 2n~l 2 n - i 
n 

= Sn 

Another r a t h e r in te res t ing observat ion i s that the coefficients of rad ica l 5 

appear to be the sequence of Fibonacci numbers with a l te rnat ing s igns . We 

may formal ize the conjecture after observing that a s a r e s u l t of a mul t ip l ica-

tion by (N/5 - l ) / 2 , the s igns of each t e r m of the golden n u m b e r s a l t e rna te 

and the n golden number may be exp re s sed in the form 

g = ( - l ) n 1 a • N/5 - b 
&n x ' n n 

where a and b a r e posi t ive in t ege r s . 

Theo rem 3. If 

x i i - l 
g = ( -1)" r a • N/5 - b 1 & n v ' L n nj 

r e p r e s e n t s the n golden number , then a i s the n Fibonacci number , 

F . n 
Proof. 

x n- i 
g = g . ^5 x = L21 . 5 a _ v5b - /s/5a + b 1 
&n+i &n 2 2 L n n n n-l 

(-1) 
(a + b ) (5a + b ) 

n n ' rp n n 
: _ ___ V5 _ _ 

a + b 5a + b 
• a . = —-?r and b tj = r 

n+i 2 n+i 2 
Then 
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a + b A 3a + b 
a + a = " a + - 5 = L _ £ = ! = _ 5 l i n - i 

n - i n n- i 2 2 

and 

a + b , 5a + b 
a + D + - 3a + b , 

n n 2 2 _ n - i n - i 
n+l 2 2 • " 2 

= a + a —> a = F n - i n n n 

Yet another observat ion m a y b e made from the sequence (1). It i s s ta ted: 

T h e o r e m 4. If g and g a r e any two success ive golden n u m b e r s , 
— ton &n+i J 

then F • g + F • g , = 2. n+i ton n ton+l 
Proof. Using the represen ta t ion for F developed in the proof of 

Theo rem 3 , we wr i t e 

F + b 
F ^ = -2-75 - -* b = 2F ^ - F 

n+l 2 n n+i n 

The re fo re , we may e x p r e s s g and g in t e r m s of Fibonacci number s 

only: 

and 

g = ( - l ) n \F \15 + F - 2F ) &n • ' • v n n n+r 

g = ( - l ) n ( F V5 + F - 2F J 5 n+i K ' v n+i n+i n+2; 

Thus we obtain: 

F * £ + F • £ = ( - l ) n V F • F \/5 + F • F - 2F 2 
n+i g n n gn+i l ; L n r

n + i N O r r
n
 r

n + i ^ n + I 

- F - F . N / 5 - F - F + 2 F - F 1 n n+i n n+i n n+2J 
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Recal l ing the fundamental identity 

F • F 1H = F 2 + ( - l ) n , n ^ 2, n - l n+i n x ' ' ' 

i t follows that 

F • g + F • g = ( - l ) n _ 1 r - 2 F 2 + 2(F2 + ( - l ) n + 1 ) l = 2 n+i &n n &n+i v ' L " r
n + i v± n+i v ; 'J 

Recal l ing the represen ta t ion for g used in the proof of Theorem 4, 

g = ( - l ) n _ 1 ( F N/5 + F - 2F ^ ) bn K K n n n + r 

we observe that 

F - 2F 4 = F - 2 [ F + F 1 = - F - 2F n n+i n L n - l nJ n n - l 

which gives us the following a l t e rna te fo rms for the n golden number : 

g = ( - l ^ ' ^ F • gi - 2F ,) & n v / \ n bi n-i7 

or 

g = (-.l)n_1(Ny5F - L ) ton v ' v n n 7 

where L i s the n Lucas number . We now s ta te our final r e su l t . n 

Theorem 5. g n = (~l)n~\^Fn - L n ) 

Proof. Follows from the identity 

L = F + F ,, . n n - l n+i 

• * • * * 



A MARKOV LIMIT PROCESS INVOLVING FIBONACCI NUMBERS 
JOHN D. NEFF 

Georgia Institute of Technology, Atlanta, Georgia 

Consider the two-state Markov chain with transition matrix 

P =' 3! / 1 - a a \ 
h \ b 1 - b J 

where 0 < a < 1, 0 < b < 1 and 0 < a + b < 2. The branch probabilities 
may be displayed (Fig. 1) on a tree diagram for this chain. 

Figure 1 

The above matrix P has a fixed vector a = (at, 1 - at) and limiting matrix 

A = lim 
n-*oo 

/ at 1 - at \ 

\ oil • 1 ~ al I 

for 0 < a^ < 1. The entries ĉ 1 and (1 - o )̂ maybe interpreted as the limit-
ing proportion of times that the process is in state s1 and s2, respectively, 
as the number of steps, n, increases indefinitely. 

For example, the Markov chain transition matrix 
179 
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St / 1 / 3 2 /3 \ 
s2 \ 1/4 3/4 / 

2 

2/3 
3/4 

has fixed vector 

a = (n - nj 
and the p r o c e s s would be expected to be in s ta tes sA and s2 in a r a t io of 3: 

a s the number of s teps i n c r e a s e s indefinitely. 

Fo r the specia l c a s e 

P = 
s i 
s2 (° l ) 

\ b 1 - b / 

(0 < b < 1), the fixed vector a is 

/ _ b ^ \ 
tt " I 1 + b '1 + b J 

using the indicated b ranch probabi l i t ies from the m a t r i x P . However, we 

dele te the b ranch probabi l i t ies f rom the t r e e and display only the t rbaret T 

b r anches of the t r e e (Fig. 2). 

F igure 2 

Instead of read ing "out" the t r e e ( i . e . , left to r ight ) , we r e a d " a c r o s s " the 
t r e e ( i . e . , f rom top to bot tom), so that in the f i r s t s tep , si appea r s once 



= u^, where u^ i s the (n + 1) Fibonacci number in the sequence u0 = 1, 
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and s2 appea r s twice; in the second s tep s 1 appea r s twice and s2 appea r s 
t h r e e t i m e s , and so on. 

Denote by N( l , n ) the number of t imes that s 1 appea r s in the n s tage , 

with N(2,n) defined s imi la r ly , (n = 0 , 1 , 2, 3 , • • • ) . It i s apparent that N( l , n ) 
vst 

„ , _. i s tne in + l 
n n 

n1 = 1, u2 = 2, u3 = 3, u4 = 5, e tc . Similar ly , the total number of en t r i e s 

in the n s tage i s given by N( l , n ) + N(2,n) = u and a l so r e a d N(2,n) = 
u in - N(l,n) = u i o - u = u , . Thus , continuing to r e a d " a c r o s s " the t r e e , 

n+2 v ' ' n+2 n n+i ,, & ' 
the propor t ion of t imes that s2 appears in the n s tage i s 

N(2,n) Un+l 
N( l , n ) + N(2,n) u n + 2 ' 

and this propor t ion has a well-known l imit ing value 

V5 - 1 T n+i 
a = — = h m 

2 u 
n - ^ oo n + 2 

Thus , cons ider the case 

s 

I M5 - 1 3 - ^ 5 I 
\ 2 2 / 

The fixed vector i s 

a s (^3__JW , ^ _ l ) = ( . 3 8 2 . . - , . 6 1 8 - . . ) , 

and so the p r o c e s s would be expected to be in s ta te s2 approximately 61.8% of 

the t i m e , a s n i n c r e a s e s indefinitely, us ingthe indicated branch probabi l i t ies . 

On the other hand, using only the cor responding " b a r e " t r e e , the l imi t ing p r o -

port ion of t imes that s2 will appear in the n "column" (stage) will be the 

s a m e propor t ion , a s the number of s teps i n c r e a s e s indefinitely. 
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• • • * • 

CORRECTIONS 

Please make the following corrections on the paper, nOn Summation For-
mulas and Identities for Fibonacci Numbers," Vol. 5, No. 1, pp. 1-43, Fibon-
acci Quarterly: 

Page 22: In Eq. (4.3), change b = 0 to read b £ 0 . 
In the reference on the last line, add parentheses around 120 

Page 36: In the first line of Eq8 (5e23), change c. to read c. . 0 
a - j - ! j - ! 

Page 38: In the second line, insert brackets around the reference. 
In the first line following Eq. (6.3), change i = 1) to i = 1,2 

Page 39: In the first line following Eq. (6.5), add brackets around reference. 
Page 40: In EqQ (6.15), change Pt(m,n) to read P^mj-n) . t>* Z , 

* * * * * 
NOTICE 

George Ledin, J r . has been appointed by The Fibonacci Association to collect 
and classify all existing Fibonacci Identities, Lucas Identities, and Hybrid 
Identities. We request that readers send copies of their private lists (with 
possible reference sources) to 

George Ledin, Jr . 
445 Monticello 
San Francisco, Calif. 94127 

for inclusion in the planned booklet. 

* * * * * 

Verner E. Hoggatt, J r . , 
Director 



EXTENDED COMPUTATIONS OF TERMINAL DIGIT COINCIDENCES 
D. A . LIND 

University of Virginia, Charlottesville, Virginia 

In [1] Brother U. Alfred asked the following question: What Fibonacci 
numbers of index less than 10,000 have terminal digits coincident with the 
index? Recently in this Quarterly, Gerald R. Deily [2] gave an answer by 
directly computing these coincidences with the aid of a computer. We note 
that in Table III of Mr. Deily's article the digits !f65,T should be added to the 
last number in each of the lines 14 to 21. Here we extend these computations 
to indices less than 100,000. The results, given in the table below, were ob-
tained on an IBM 1620 computer using a FORTRAN program logically similar 
to Mr. Deilyfs. As a point of observation, we note that all entries are of the 
form 480n + 5 or 480n - 95, with the four exceptions 60,001, 61,249, 62,501, 
and 63,749. 

The author expresses his appreciation to the Air Force Office of Scientific 
Research and to the Applied Mathematics Laboratory of the Aerospace Re-
search Laboratory for the use of the computer. 

TERMINAL DIGIT COINCIDENCES WITH INDEX 
BETWEEN 10,000 AND 100,000 

10945 
11045 
11425 
11525 
11905 
12005 
13345 
13445 
13825 
13925 
14305 
14405 
15745 
15845 
16225 
16325 
16705 
16805 
18145 
18245 
18625 

18725 
19105 
19205 
20545 
20645 
21025 
21125 
21505 
21605 
22945 
23045 
23425 
23525 
23905 
24005 
25345 
25445 
25825 
25925 
26305 
26405 

27745 
27845 
28225 
28325 
28705 
28805 
30145 
30245 
30625 
30725 
31105 
31205 
32545 
32645 
33025 
33125 
33505 
33605 
34945 
35045 
35425 

35525 
35925 
36005 
37345 
37445 
37825 
37925 
38305 
38405 
39745 
39845 
40225 
40325 
40705 
40805 
42145 
42245 
42625 
42725 
43105 
43205 
44545 

183 
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44645 
45025 
45125 
45505 
45605 
46945 
47045 
47425 
47525 
47905 

48005 
49345 
49445 
49825 
49925 
50305 
50405 
51745 
51845 
52225 

52325 
52705 
52805 
54145 
54245 
54625 
54725 
55105 
55205 
56545 

56645 
57025 
57125 
57505 
57605 
58945 
59045 
59425 
59525 
59905 

60001 
60005 
61249 
61345 
61445 
61825 
61925 
62305 
62405 
62501 

63745 
63749 
63845 
64225 
64325 
64705 
64805 
66145 
66245 
66625 

66725 
67105 
67205 
68545 
68645 
69025 
69125 
69505 
69605 
70945 

71045 
71425 
71525 
71905 
72005 
73345 
73445 
73825 
73925 
74305 

74405 
75745 
75845 
76225 
76325 
76705 
76805 
78145 
78245 
78625 

78725 
79105 
79205 
80545 
80645 
81025 
81125 
81505 
81605 
82945 

83045 
83425 
83525 
83905 
84005 
85345 
85445 
85825 
85925 
86305 

86405 
87745 
87845 
88225 
88325 
88705 
88805 
90145 
90245 
90625 

90725 
91105 
91205 
92545 
92645 
93025 
93125 
93505 
93605 
94945 

95045 
95425 
95525 
95905 
96005 
97345 
97445 
97825 
97925 
98305 

98405 
99745 
99845 

REFERENCES 

1. Brother U. Alfred, "Exploring Fibonacci Numbers with a Calculator," 
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2. Gerard R. Deily, "Terminal Digit Coincidences Between Fibonacci Num-

bers and Their Indices," Fibonacci Quarterly, 4(1966), Vol. 2,No. 1, pp 
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PYTHAGOREAN TRIANGLES AND RELATED CONCEPTS 

H. B. HENNING 
Raytheon Company, Space and Information Systems Division, Sudbury, Mass. 

INTRODUCTION 

The familiar Pythagorean theorem 

(1) a2 + b2 = c2 

(a, b) = length of two sides of a right triangle 
c = length of the hypotenuse 

has an infinite number of integer solutions, e, g. 

a 

b 

c 

3 

4 

5 

5 

12 

13 

8 

15 

17 

7 

24 

25 

as Diophantus of Alexandria first demonstrated and tabulated in the third cen-
tury [1] . Many of his tabulated entries, however, produce right triangles 
which differ only in scale, representing redundant or reducible solutions. This 
paper presents a method for generating only irreducible-integer (''fundamental") 
solutions and studies some of their common properties: 

1. The hypotenuse length is always an odd number, 
2e One side Is always odd, one side always even* 
3e The even length is always divisible by four0 

4e Hypotenuse ± even side Is always a perfect square, 
Hypotenuse ± odd side is always twice a perfect square,, 

50 Taking m and n as any distinctly odd and even numbers with no 
common factor (m n), the complex quantity s 

(m + jn)2 = (one leg) + j (other leg) 

and its modulus 
185 
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j m + jn|2 = (hypotenuse) 

always generate a fundamental triangle and conversely. Equivalently, 
the acute angles always correspond to 

arg. (m + jn)2 = 2 tan x ( — J =2 tarn p 
\ m / 

and its complement: p = twice or half of some rational number <1. 
6. Any line segment of length (2k + 1) or 4k, k = 1, 2, 3, • • • , consti-

tutes a leg of at least one fundamental triangle; more in many cases. 
7. The necessarily non-integer nature of solutions to a + b = c , 

n > 2, (Fermat!s Last Theorem) can be proved for n = 4k, k = 1, 
2, 3,«•• . 

8. In a rectangular parallelopiped of integer dimensions and Integer 
length diagonal^, two of the dimensions must be even while the third 
dimension and the diagonal itself must be odd. 

GENERATION OF FUNDAMENTAL SOLUTIONS 

One method for generating fundamental solutions rewrites (1) as 

(2) b = \/(c + a)(c - a) 

suggesting the special case: (c + a) = m2, (c - a) = n2. More generally we 
might set (c + a) = rjm2, (c - a) = r2n2, where neither integer r contains 
any repeated factors,, A necessary condition for an integer solution then is 
vt = r2 or equivalently, a = r(m2 - n2)/2, b = rmn, c = r(m2 + n2)/2. 

Substitutions rf = (r/2), m! = (m + n) and n! = (m - n) will yield 
equivalent expressions, except for (trivially) interchanging the roles of a and 
be This equivalence helps to explain why choices of m (or mT) and n (or 
n!) as 

(i) both odd numbers 
(ii) both even numbers 

(iii) one odd and one even 
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a r e al l redundant [ 2 ] , We will choose (iii) for the mos t compact e x p r e s s i o n s : 

(3) a = m2 - n2 b = 2mn c = m2 + n2 

subject to fur ther condition that m and n p o s s e s s no common factors0 None 

of the b - f ac to r s can then divide evenly into e i the r a o r c; the solution i s i r -

reducible , Appropr ia te choices of m and n will thus genera te all fundamen-

tal solutions. 

INITIAL PROPERTIES OF FUNDAMENTAL TRIANGLES 

P r o p e r t i e s 1 through 5 follow d i rec t ly f rom Equation (3) and condition 

(iii). Thus , 

P r o p e r t y 1 c = hypotenuse = m2 + n2 = (odd) + (even) = odd 

P r o p e r t y 2 a = m2 - n2 = (odd) 

P r o p e r t y 2 and 3 b = 2mn = 2 (even) = 4 — = 4 (integer) 

P r o p e r t y 4 c ± b = ( m ± n ) 2 ; e ± a = (2m2; 2n2) 

P r o p e r t y 5 (m + jn)2 = (m2 - n2) + j2mn = a + jb 

FUNDAMENTAL TRIANGLES WITH A COMMON SIDE 

In P r o p e r t y 6, a chosen value of 

(4) b = 2mn = 4k( (k = 1, 2, 3 , • • •) 

will provide one o r m o r e p e r m i s s i b l e combinations of m and n, leading to as 

many fundamental t r i ang les with the s a m e even s ide. Resolution of a = m2 -

n2 into any dis t inct odd fac tors (m + n) (m - n) will l ikewise provide choices 

of 
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/r-v _ (m + n)2 + (m - n)2 

\3/ C ~~ ey 

(6) b = ( m + n ) 2 - (m - n)2 

yielding fundamental t r iangles with the same odd side. 

Regarding the number of such triangles,, we may e x p r e s s 

b _ 9 x A a2 ofg ^ N (7) mn = - = 2 . r ^ 1 • r 2
2 . r 3 " . . . r N 

where the r ^ r e p r e s e n t dis t inct odd p r i m e fac tors r a i s e d to an in teger power, 

Since m and n contain no common mult iple, r . 1 can be assoc ia ted with 

e i ther m o r n but not both (e .g . , « . = 5, m *+> r ? , n -^ r? i s forbidden), 

giving two poss ible choices. The N + 1 fac tors (counting 2X) will l ikewise 
N+i give 2 poss ible ways of express ing m and n, except that m must always 

identify a s the l a r g e r of the two0 Half of these ways, however, have s imply e x -

changed the ro l e s of m and n with the o ther h a l t We therefore obtain 2 / 2 

= 2 p e r m i s s i b l e p a r i s of m and n, and 2 fundamental t r iangles with the 

same even-length side,, 

Again, 

ft Po % 
(8) a = S P . S 2

2 • • • S N
i N - C . D 

where the S. a r e odd, p r i m e fac tors . We can s imi la r ly assoc ia te each S. 
1 N 1 

with e i ther C (odd) o r D (odd) in a total of 2 different ways. Should we 
specify C = (m + n) as the l a r g e r and D = (m - n) as the s m a l l e r , the n u m -

b e r of dis t inct poss ib i l i t ies r educes to (2 ) /2 = 2 [3^ and indicates as 

many fundamental t r iangles with the s ame odd side. Since a-values (odd 

numbers) occur twice as frequently as b -va lues (multiples of 4) in an o rde red 

sequence of i n t ege r s , they may quite reasonably exhibit only half the potency 

of b -va lues in generat ing fundamental t r ianglesa 
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ORDERED TABULATIONS OF FUNDAMENTAL TRIANGLES 

The a - and fo-schemes in fact provide two means for o rde red tabula-
tionSj viz* 

b 

mn 

m 

n 

a 

c 

4 

2 

2 

1 

3 

5 

8 

4 

4 

1 

15 

17 

12 

6 

6 | 3 

1 , 2 

35 j 5 

37 | 13 

16 

8 

8 

1 

63 

65 

20 

10 

10 j 5 

1 , 2 

99 | 21 

101 , 29 

30 

1 

899 

901 

60 

30 

1 = : 

2 | 

221 | 

229 , 

10 

3 

91 

109 

6 

5 

11 

61 

Table I. I l lus t ra t ion of b -Scheme of Tabulation 

a 

m + n 

m - n 

b 

c 

3 

3 

1 

4 

5 

5 

5 

1 

12 

13 

7 

7 

1 

24 

25 

9 

9 

1 

40 

41 

11 

11 

1 

60 

61 

13 

13 

1 

84 

85 

15 

1 

112 

113 

15 

•5 

3 

8 

Lid 

105 

1 

5512 

5513 

105 

35 , 21 

3 ] 5 

608 , 208 

617 , 233 

id 

d 

88 

137 

Table II. I l lus t ra t ion of a-Scheme of Tabulation 

These tab les help to i l lus t r a t e the self-evident conclusions: 
1) Fo r any specified even side, t he re is always a fundamental t r iangle 

whose hypotenuse and odd side differ by 2 (corresponds to n = 1). 

2) F o r any specified odd side the re is always a fundamental t r iangle 

whose hypotenuse and even side differ by 1 (corresponds to m - n 

= 1). 

FERMAT'S THEOREM 
2 

The preceding analysis has applied the identity (m2 - n2) + (2mn)2 = 
2 

(m2 + n2) which might be r ewr i t t en as 
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(9) d4 + e4 = f4 

where d = Vm2 - n2, e = \ /2mn and f = \/m2 + n2 corresponds to line seg-
ments as in Fig. 1. 

m 2n 
2m n 

Thus, 

(10) 

Figure 1. Graphic Constructions Expressing d4 + e4 = f4 

d = Vf2 - 2n2 = yj(i + nV2)(f - nVJ) 

cannot assume integer values unless f. contains a factor of \/2, i. e., (9) has 
no integer solutions. Similarly, 

(11) (d?)4k + (eT)4k = (f?)4k; k = 1, 2, 3, • 

finds no integer solutions since we may set dT and f! = 

REC TANGULAR PARALLELOPIPEDS 

Some of these results apply directly to integer-sided rectangular paral-
lelopipeds; we shall refer to Fig. 2. According to this figure, 

(12) a2 + b2 = d2 - c2. = (d + c)(d - c) 
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Figure 2. Diagonally Cut Half of Rectangular Parallelopiped 

Suggesting that d + c - (a2 + b2)/r and d - c = r = some factor of a2 + b2, 
Thus, 

(13) (2d - r ) r = (2c + r)r = a2 + b2 

where non-fractional values of c impose the condition 

r < Va2 + b2 + 1 - 1 . max 

Even values of r imply even values of a and b, while odd r demand 
mixed odd/even values for a and b. At least one dimension in any pair of 
dimensions must therefore be even; i. e. , two of the three dimensions must be 
even. The third dimension must be odd (to prevent reducibility) while 

(14) d2 = a2 + b2 + c2 = (even)2 + (even)2 + (odd)2 

further requires an odd-length diagonal. 
One particular scheme for generating parallelopipeds might thus begin 

by choosing the odd-length dimension and one of the even ones; call them 
and b. Evaluate a2 + b2 (now always odd) and determine the upper bound on 
r Below this bound, suitable choices of r must qualify as factors of a2 

+ b2 and are now, likewise, always odd [4] . o These choices give values of c 
and d via Eq. (13) and suggest the following tabulation. 
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Quantity 

a 

b 

a2 + b 2 

r < 
m a x -

r 

c 

d 

Comments 

One Odd, 
One Even 

Always Odd 

Always Odd 

= (a2 + b2 - r 2 ) / 2 r 

= (a2 + b2 + r 2 ) / 2 r 

Sample Solutions 

1 

2 

5 

1 

1 

2 

3 

1 

8 

65 

7 

5 [ 1 

4 [ 32 

9 J 3 3 

2 

9 

85 

8 

5 [ 1 

6 [ 42 

11 J 4 3 

5 

10 

125 

10 

5 , 1 

10 l 62 

15 | 63 

Table III. Scheme and Solutions for Fundamental Rectangular 
Para l l e lep ipeds 

CONCLUSION 

P r o p e r t i e s 2, 3, and 8 a r e the mos t useful s ince they lead d i rec t ly to 

the generat ion and tabulation of fundamental solutions. The remain ing p r o p e r -

t i es have no such d i rec t application but may r e p r e s e n t a r e a s of further study. 

BIBLIOGRAPHY AND NOTES 

1. G. Gamow, One, Two, Three6 - • Infinity, Viking P r e s s , New York, 1958, 

p. 30, p r e s e n t s these solutions as a = r + V 2 r s , b = a + V 2 r s , c = r + 

s + \ / 2 r s . 

20 Choice (i) r e q u i r e s r = 1 for a fundamental solution. Choice (ii), in p r i m e 

notation, r e q u i r e s r ! = l / 2 and cont radic ts the assumption of Integral r . 

Expres sed in t e r m s of unpr imed quanti t ies moreove r it becomes indis t in-

guishable f rom (i). Choice (iii) s imi la r ly r e q u i r e s r = 2. In t e r m s of 

p r i m e d quant i t ies , it a lso r educes to the form of (i). 

3. The or iginal 2 ways can be grouped into p a i r s , indist inguishable except 

that one chooses C as the l a r g e r while the o ther chooses C as the s m a l l e r 

of the two fac tors . Specifying C > D val idates only one m e m b e r from 

each pa i r , having the 2 or iginal poss ib i l i t ies . 

48 An a l ternat ive scheme might have s t a r t ed with both even-length d imensions , 

allowing both odd and even values for r . 

* • -k * • 



ACHIEVING THE "GOLDEN RATIO" 
BY GROUPING THE "ELEMENTARY" PARTICLES 

J . WLODARSKI 
Porz-Westhoven, Federal Republic of Germany 

"The mystery presented by the multiplicity of 'elementary1 particles 
seems to be rapidly reaching a climax and perhaps even a solution. The idea 
is gaining ground that all the known particles can be grouped into a few large 
families and that within each of these fsupermultipletsf all the particles can be 
regarded as the mathematical equivalents of one another. n 

This has recently been published in a scientific magazine [1] , 

As a matter of fact, super multiple ts of 35 or 56 members can accommo-
date most of the well-established particles. 

A 35-member family can be formed by grouping 17 of the known mesons 
that have negative parity. Eight of these particles: the pion (TT) triplet, the 
kaon (K) quartet and the eta (rj) singlet have a spin of zero, and therefore only 
one spin state each (0). 

The following nine mesons: the rho (p) triplet, the phi ((/?) singlet, the 
omega (GO) singlet and another kaon quartet have a spin of one, or three spin 
states each (-1, 0+1). 

The total is 8 x 1 + 9 x 3 = 35 spin states. 

A 56-member family consists of the known 56 baryons or 56 antibaryons. 
They have positive parity. Eight of these particles: the proton-neutron (or 
nucleon) doublet, the lambda (A) singlet, the sigma (I) triplet and the xi (E) 
doublet have a spin of 1/2, and therefore two spin spates each (+1/2, -1/2). 

The following ten particles: the delta (A) quartet, another sigma triplet, 
another xi doublet and the omega (O) singlet have a spin of 3/2, or four spin 
states each (+3/2, +1/2, -1 /2 , -3/2). 

The total is 8 x 2 + 1 0 x 4 = 56 spin states. 

It has already been reported that as well as in the world of plants, some 
ratios in the world of atoms yield approximately the value of the "golden ratio" 
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BY GROUPING THE "ELEMENTARY" PARTICLES 

Now it has turned out that by grouping the "elementary" particles, the 
ratio of two "magic" numbers - sp in states of the "elementary" particles also 
yields a near value of the "golden ratio." 

As a matter of fact, the ratio of 35/56 is 0.625 and differs from the 
"golden ratio" value by 0.007 only. 

REFERENCES 
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52-54. 

2. J. Wlodarski, "The !Golden Ratio' and the Fibonacci Numbers in the World 
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3. J. Wlodarski, "The Fibonacci Numbers and the 'Magic' Numbers," The 
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NOTICE TO ALL SUBSCRIBERS!!! 

Please notify the Managing Editor AT ONCE of any address change. The Post 
Office Department, rather than forwarding magazines mailed third class, sends 
them directly to the dead-letter office. Unless the addressee specifically r e -
quests the Fibonacci Quarterly to be forwarded at first class rates to the new 
address, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR 
to publication dates: February 15, April 15, October 15, and December 15. 

• . • • • • 

CORRECTION 

On "Relations Involving Lattice Paths and Certain Sequences of Integers," Vol. 
5, No. 1, pp. 81-86, Fibonacci Quarterly, please add the following: 
"Work on this paper was supported in part by the Coordinating Board of the 
Texas College and University System. " 
Also, please change the authorTs name on p. 81 from David to Douglas. 

• * • • • 



SOME RABBIT PRODUCTION RESULTS INVOLVING FIBONACCI NUMBERS 

KATHLEEN WELAND 
University of Santa Clara, Santa Clara, California 

Let us consider a pair of rabbits born in the 0-th month which produce 
B1 offspring pairs when they are one month old, B9 offspring pairs when they 
aire two months old and so on8 The sequence of numbers 

B r B2> B 3 , . . . B n , . . . 

is called the birth sequence, and let its generating function be 

B(x) = T Bnxn , 
n=0 

where Bft = 0. 

Suppose each pair of offspring also produces B offspring pairs when 
it is n months old. Let the number of new arrivals at the n-th month be Rn, 
and let 

R(X) = V R xn 

where Rn = 1. Let the total number of rabbits alive at the end of the n-th 
month be T , and let n 

T(x) = > Tnx' 

where Tn = 1. We will assume that there are no deaths. 

Student 
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It has been shown (see [1], [2]) that 

and 

T(x) = (l-x)(l-B(x)) 

The purpose of this paper is to show some particular cases in which there are 
interesting relationships between B(x), R(x), and T(x). 

When 
oo 

) = £ ~n+2 

then 

When 

then 

When 

B(x) = 2 ^ x 

n=0 

TW = E F n + i x I 1 

n=0 

B(x) = 2 (2n-l)xn 

n=2 

T<*> = £ FLix I 1 

n=0 

oo 

B(x) = £ (6 Cn-i + 1 )x11 ' 
n=2 
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where the C a r e t e r m s of the Pel l sequence defined by C = 0, C = 1, 

C n + 2 = 2 ° n + l + C n ' t h e n 

n=0 

It i s conjectured that when 

TW = E Fn+lxI1 
—-„ n + 1 n=0 

the cor responding B(x) will have B ^ 0 for all n. This has been demon-

s t r a t e d for p ^ 7 . 

Hoggatt showed in [1], sect ion 4, that when 

F k + l x " ( " 1 ) X 
(1) B(x) = K + 1 

then 

and s imi l a r ly when 

^ k - i * 

RW = E W * , 
n=0 

F, l X - ( - l ) k x 2 

(2) B(x) = 

then 

u w 
RW = g Fkn-l^ • 
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By merely changing the sign of the second term of the numerator of 
equations (1) and (2), we obtain the following results, which depend on the 
parity of k. When 

then for k odd we have 

g [Un+i(V2>-Fk-lUnL
k/2)] (3) R(x) = 1 + ? . |U_n(L1/2)-F1^ ,U LT / 2 ) | x n + 1 

where the U (x) are Chebyshev polynomials of the second kind defined by 
UL(x) = 0, U,(x) = 1, U ' (x) = 2xU ,-(x) + U (x). 0X ' V ' n+2v ' n+1 ' nv ' 

For k even we have 

(4) 
oo ^ 

where the f (x) are the Fibonacci polynomials defined by fL = 0, f.. = 1, 
fn+2(x^ = ^ n + l ' ^ + fn(x^- S i m i l a r l y w h e n 

F, l X +(- l ) k x 2 

B(x) = — "̂i 

then for k odd we get 

(5) R(x) = 1+ £ [un+1(V2)-Fk+lUn(V2ilxn+1 
n=0 L -J 
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while for k even we find 

oo 

(6) R(x> = g [WLk>-F
k+iVLk>]xI1 • 

where U (x) and f (x) a r e defined above. 

Two other poss ib i l i t ies occur when L, is subst i tuted for F, in equa-

t ions (1) and (2). When 

B<x) = TTr * — 
1 L k - l x 

then for k odd 

2 , [Un+1<5/2 Fk)-Lk-lUn(5/2 Fk>) 
n=0 L J 

(7) R(x) = 1 + 2 . |U . ( 5 / 2 F J - L , U ( 5 / 2 F , ) | x n + 1 

F o r k even, 

(8) 

Similar ly , when 

OO _ 

n=0 L J 

L, l X + ( - l ) k x 2 

B(x) = W 
1 L k + l x 
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then for k odd, 

R(x) = 1+ ^ ' " — — - , . , _ v , J i+ l E [Vl< 5 / 2 Fk>-Lk+lUn(5/2 Fk>V n=0 L J 

and for k even, 

op 

R<x> = g [W5 Fk>-L
k +iV5 Fk>>n • 

Note that equations (7) through (10) a r e the Lucas duals to equations (3) through 

(6). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited By 

A . P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or 
solution should be submitted in legible form, preferably typed in double spac-
ing, on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

B-112 Proposed by Gerald Edgar, Boulder, Colorado 

Let f be the genera l ized Fibonacci sequence (a ,b) , i . e . , f = a, 

f0 = b , and f , „ = f + f _.. Le t g be the assoc ia ted genera l ized Lucas 2 n+1 n n - 1 &n & 

sequence defined by g = f - + f , -. P rove that f g = bf0 1 + af0 oa 
^ J n n - 1 n+1 n°n 2 n - l 2n-2 

B-113 Proposed by Douglas Lind, Univ. of Virginia, Charlottesville, Va. 

Let (x) denote the fractional part of x, so that if [x] is the greatest 
integer in x, (x) = x - [x]. Let a = (1 + N/5)/2 and let A be the set {(a), 

(a2), ( a 3 ) , . . . } . Find all the cluster points of A. 

B-114 Proposed by Gloria C. Padilla, Univ. of New Mexico, 
Albuquerque, New Mexico 

Solve the division alphametic 

PISA 
FIBONACCI 

where each letter is one of the digits 1, 2, . . . , 9 and two letters may repre -
sent the same digit. (This is suggested by Maxey Brooke's B-80.) 

201 
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B-115 Proposed by H. H. Ferns, Victoria, B.C. , Canada 

F r o m the formulas of B-106: 

2F .^ . = F .L . + F .L. 
1+3 1 3 3 1 

2L.^. = 5F .F . + L . L . 
i+3 1 3 1 3 

one has 

F 0 = F L 2n n n 

F Q = (5F 3 + 3F L 2 ) /4 3n v n n n 7 

L 0 = (5F 2 + L 2 ) /2 2n v n n ' 

LQ = (15F 2L + L 3 ) /4 3n v n n n ' 

Find and prove the genera l formulas of these types. 

B-116 Proposed by L. Carlitz, Duke University, Durham, N . Carolina 

Find a compact sum for the s e r i e s 

00 m n 
£ F2m-2nX ^ 

m, n=0 

B-117 Proposed by L. Carlitz, Duke University, Durham, N . Carolina 

Find a compact sum for the series 

°° m n 

E F 2 m - 2 n + l X y 

m, n=0 
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SOLUTIONS 
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TERMS OF A DETERMINANT 

B-94 Proposed by Clyde A . Bridges-, Springfield Jr. College, Springfield, II 

Show that the number N of non-ze ro t e r m s in the expansion of 

K = 
n 

aj bj 0 0 0 . . . 0 0 0 

- 1 a2 b2 0 0 . . . 0 0 0 

0 - 1 a3 b 3 0 . . . 0 0 0 

0 0 0 

0 0 0 

0 - 1 a - b 1 n - 1 n - 1 

0 0 - 1 a 

i s obtained by rep lac ing each a. and each b. by 1 and evaluating K . Show 

further that N = F , - , the (n + 1) s t Fibonacci number . 
n n+1 v ' 

Solution by F. D. Parker, St. Lawrence University, Canton, N .Y . 

Expanding by the l a s t column, we have K = a K ., + b 1 K 0 . Hence, ^ b J n n n - 1 n - 1 n -2 

if N i s the number of non -ze ro t e r m s in the expansion, we have N = N -n v • » n n_-j_ 

+ N 0 . But N = 1, N 0 = 2, so that N = F ^ . n -2 1 ' 2 9 n n+1 

Also solved by M . N . S . Swamy and the proposer. 
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A FIBONACCI FACTORIAL 

B-95 Proposed by Brother U . A l f r e d , St . Mary 's Co l lege , C a l i f o r n i a . 

What is the highest power of 2 that exactly divides 

F 1 F 2 F 3 • • • F100 ? 

Solution by Charles W . Tr igg , San Diego, Ca l i f o rn i a . 

For n > 3 , F k is divisible by 2n if k is of the form 2n~2 . 3(l+2m), 
F, is divisible by 2 but by no higher power of 2. Hence, the highest power 
of 2 that exactly divides F1F2F3 . . . F100 is 

[(100 - 3(/6 + 1] + 3[(100 + 6(/l2] + 4[112/24] + 5[124/48] 

+ 6[148/96] + 7[196/192] or 80. 

As usual, [x] indicates the largest integer in x. 

Also solved by Sidney K rav i t z , Dewey C . Duncan, and the proposer. 

Editorial note: The results in the above solution indicate that the answer may 
also be expressed as 

[100/3] + 2[100/6]+ [100/12]+ [100/24]+ [100/48] 

+ [100/96] = 3 3 + 3 2 + 8 + 4 + 2 + 1 = 80. 

LIMITED PARTITIONS 
B-96 Proposed by Phil Mana , U n i v . o f New M e x i c o , A lbuquerque, New M e x . 

Let G be the number of ways of expressing the positive integer n as 
an ordered sum aA + a2 + . . . + a with each a. in the set 1, 2, 3. (For 
example, G3 = 4 since 3 has just the expressions 3, 2 + 1, 1 + 2, 1 + 1 + 1.) 
Find and prove the lowest order linear homogeneous recursion relation sat is-
fied by the G . 

J n 
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Solution by the proposer. 

205 

Removing the fors t t e r m at (which is 1, 2, or 3) f rom all allowable sums 

for an n > 3 gives all allowable sums for n - 1 , n - 2 , and n -3 in unique fashion. 

Hence G = G + G + G^ Q for n > 3. T h e r e i s no lower o r d e r l inear ii n—j. n~~ u n~'o 
homogeneous r e c u r s i o n re la t ion for the G s ince 

Gi 
G2 

G, 

G2 

G3 

G3 

G4 

G5 

1 2 4 
2 4 7 

4 7 13 
t 0. 

DENSITY OF THE FIBONACCI NUMBERS 

B-97 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Let A = {a^} be an inc reas ing sequence of number s and le t A(n) d e -

note the number of t e r m s of A not g r e a t e r than n. The Schnirelmann densi ty 

of A i s defined as the g rea t e s t lower bound of the r a t i o s A(n)/n for n= l , 2 , 

. . . . Show that the Fibonacci sequence has densi ty ze ro . 

Solution by the proposer. 

Let a = (1 + ^5 )72 , and F = {F } _ be the Fibonacci sequence. It i s 
n _2 n n ~2 

easy to show by indiction that a < F for n > 0, so that F(n) <loga(n+2) . 

Then since 0 ^ F(n) /n , 

log (n+2) F(n) ^ .,,___ &av ' 0 < l im —1-J < l i m n ~ n-*°° n—° 
0, 

so that the densi ty of F i s 0. 

Also solved by C.B.A. Peck. 
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A COMPACT FINITE GENERATING FUNCTION 

B-98 Proposed by Douglas L ind, Universi ty o f V i r g i n i a , Char lo t tesv i l le , V a . 

Let F be the n Fibonacci number and find a compact express ion for 

the sum 

S (x) = FHX 2 + Fox3 + . . . + F x". n 
n"J 

Solution by G lo r ia C . Pad i l la , Universi ty o f New M e x i c o , Albuquerque, N . M . 

One eas i l y sees that 

n+1 n+9 
(x2 + x ~ 1) S (x) - -x + (F - + F ) x + F x . 

Hence 

S (x) = (-x + F ± 1 x n + l + F x n + 2 ) / ( x 2 + x - 1). 

Also solved by L. Ca r l i t z , Dewey C . Duncan, F. D . Parker, M . N . S. Swamy, 

Howard L. W a l t o n , David Z e i t l i n (who pointed out that the result is a special 

case o f formula (5) o f his paper " O n summation formula for Fibonacci and Lucas 

numbers" this Quar te r l y , V o l . 2 , N o . 2 , 1964, p . 105), and the proposer. 

COMPACT INFINITE SUM 

B-99 Proposed by Douglas L ind, Univers i ty o f V i r g i n i a , Char lo t tesv i l l e , V a . 

S2(x) S2(x) 
T(x) = Si(x) + ~YT + - 3 T " + • • ' ' 

where S (x) i s a s defined in B-98. 
TV ' 

Solut ion by David Z e i t l i n , M inneapo l is , Minnesota . 
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F r o m B-98 , we obtain 

. °Q ^ n 

( l - X - X * ) T ( x ) = _X2 ^ - ^ y -
n=0 

OO 

-E 
(n+1) F n + 1 x » + 1 

- + ex. 
(n + 1) n=0 v ; 

Let a and b be the roo t s of 

x 2 - x - 1 = 0. 

Then 

, oo n ax bx \—> F x e - e = \ n 
a-b *-A n! ' 

n=0 

and 

_ oo n+1 
x ( a e " - l ) e b x ) _ V ( n + 1 ) F n + l x 

a-b ^ - * (n+1) ! (n+1) ! n=0 v ; 

Thus , 

. ax bx 
r2\ TM = . v 2 e " e ) / a e a x - b e b x \ M a-b J" (1 - x - x*) T(x) = - x 2 \ a-b /-** - ^ / + e x ' 

Also solved by L. Carlifrz, Dewey C. Duncan/ M . N . S . Swamy, and the proposer. 
* * • • • 


