
1967 AS THE SUM OF SQUARES 

BROTHER ALFRED BROUSSEAU, St. Mary's College, California 

With the coming of a new yea r , t h e r e i s always a tendency to find out 

whether the number that indicates i t has some special ma themat ica l p r o p e r t i e s . 

1967 i s , of cou r se , no square0 But t h e r e is a t h e o r e m that s t a t e s that any 

in teger can be r ep r e sen t e d as the sum of at mos t four s q u a r e s . Let u s inves t i -

gate the min imum number of squa re s that will add up to 1967. 

F i r s t , we note that the squa re of every even number is divisible by 4 and 

the squa re of every odd number on being divided by 4 gives a r e m a i n d e r of one. 

If 1967 i s to be the sum of the s q u a r e s of two n u m b e r s , one mus t be odd and 

one even, o therwise t h e r e could not be an odd sum. But the sum of two such 

s q u a r e s on being divided by 4 would give a r ema inde r of one, while 1967 on 

being divided by 4 gives a r e m a i n d e r of 3. Thus 196 7 cannot be the sum of two 

s q u a r e s . 

F o r t h r e e s q u a r e s , 1967 would have to be the sum of the squa re s of t h r e e 

odd numbers s ince the r e m a i n d e r on division by 4 i s 3. Now the squa re s of the 

odd numbers ending in 1, 3, 5, 7, 9 end respect ive ly i n l , 9, 5, 9, and 1. T a k -

ing these endings t h r ee at a t i m e , i t can be easily shown that only the combina-

t ions 1 , 5 , 1 and 9, 9, 9 give a l a s t digit of 7. So one sys temat ic way to p r o -

ceed i s to cons ider the var ious c a s e s corresponding to number s ending f i r s t of 

all in 5, namely: 5, 15, 25, 35. Subtracting out 25 ,225 , 625, and 1225 gives 

r e m a i n d e r s of 1942, 1742, 1342, 742. We can proceed by table as follows: 

742 1342 1742 1942 
1 741 1341 1741 1941 
9 661 1261 1661 1861 

11 621 1221 1621 1821 
19 381 981 1381 1581 
21 301 901 1301 1501 
29 501 901 1101 
31 381 781 981 

We can stop at 31 s ince this b r ings us to the halfway point with the l a r g e s t 

number 1942. Since no squa re s appear in the table , this d i sposes of the p o s -

sibili ty 1 ,5 ,1 as endings. Similar considera t ions apply for 9, 9, 9. Thus , the 

only possibi l i ty i s four s q u a r e s . One such represen ta t ion i s : 
1967 = 62 + 92 + 252 + 352 . 

* * * * * 
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ANOTHER GENERALIZED FIBONACCI SEQUENCE 

MARCELLUS E. WADDILL AND LOUIS SACKS 
Wake Forest College, Winston Salem, N . C . , and University of Pittsburgh, Pittsburgh, Pa. 

1. INTRODUCTION 

Recent issues of numerous periodicals have given indication of a renewed 
interest in the well-known Fibonacci sequence, namely 

(1) 1, 1, 2, 3, 5, 8, • • - , C n , 

where 
C = C ' + C . n > 3, with C1 = C2 = 1 . n n-i n-2 * l 

Some recent generalizations have produced a variety of new and extended results. „ 
A search of the literature seems to reveal that efforts to generalize the 

Fibonacci sequence have consisted of either (a) changing the recurrence rela-
tion while preserving the initial terms, or (b) altering the initial terms but 
maintaining the recurrence relation. A combination of these two techniques 
will be employed here. 

Heretofore, all generalizations of the Fibonacci sequence appear to have 
restricted any given term to being a function (usually sum) of the two preceding 
terms. In this paper we shall extend this by considering sequences in which 
any given term is the sum of the three preceding it. 

Since the set of all algebraic integers, i.e., all y such that y satisfies 
some monic polynomial equation, 

/ \ n , n - 1 . . . c\ 

p(x) = x + a x + * » < > + a i X + aQ = o , 

with integral coefficients and of degree greater than zero, is an integral domain 
under the operations of addition and multiplication, it was considered worth-
while to examine sequences in which the initial terms (hence all succeeding 
terms) are algebraic integers. It will be shown that certain special cases of 
such sequences are especially useful in the examination of the more general 
case. 
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2. THE GENERALIZED SEQUENCE { P } 

Specifically we cons ider the sequence 

(2) | P n | = P 0 , P i , P 2 , • • • • P n , • • • , 

where P 0 , P i , P 2 a r e given, a r b i t r a r y a lgebraic i n t ege r s , not all z e ro , and 

(3) P = P + P + P . n > 3 . 
n n - l n-2 n -3 ' 

It will a l so be convenient to cons ider a companion sequence, so to speak, 

(4) { R j = R0, Ri, R2. • • • . Rn> " • , 

whe re 

R0 = P i - P 0 , Ri = P 2 - P i . and for n > 2, 

(5) R = P , + P 0 
n n - l n-2 

F r o m (5) and (3), when n > 5, we have 

R = P + P = (P + P J + ( P + P 0 ) + (P + P J n n - l n-2 n-2 n-3 n-4 n-3 n-4 n-5 

= R + R + R 
n - l n-2 n-3 

Using (5) and (3) further, we have 

R4 = R3 + R2 + Ri 

R3 = R2 + Rj + RQ 

Hence for n > 3, 

(6) R = R + R + R 0 . 
n n-l n-2 n-3 
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Thus | R | is actually the special c a s e of (2) in which R0 = P i - P 0 , 

-Rl = p 2 - p i» R2 = p l + po° T n e usefulness of the sequence j R i wil l be 

evident in the development of j P I that follows. 

Two other specia l c a s e s of (2) should be mentioned at th i s t ime; namely 

the c a s e s in which P 0 = 0, P j = P 2 = 1 and P 0 = 1, ~Pt = 0, P 2 = 1 r e -

spectively, to give the sequences 

(7) 0, 1, 1, 2, 4, 7, 13, 24, 44, • • • , Kn, • • • , 

and 

(8) 1, 0, 1, 2, 3, 6, 11, 20, 37, e ' ° , L , • • • ' . 

We s e e immedia te ly that L0 = Ki - K0, Lj = K2 - K^, and for n > 2, 

(9) L = K + K n . 
n n - l n-2 

Hence we might cal l J K } a P - type sequence and J L | an R - t y p e 

sequence,, 

The sequence JK | was defined and d i scussed brief ly by M. Agronomoff 

T i l . The following t h r e e re la t ions involving var ious t e r m s of th is sequence 

w e r e d iscovered and proved by him: 

(10) K = K K + (K + K )K + K K 0 , 
x ' n+p p+l n p - l p n - i p n-2 

(11) K2ri = K2 , + K (K + K + K ) , x ' <*n n - i n
x
 n + i n - 1 n _ 2 ' 

(12) K , = K2 + K2 + 2K K 
x ' 2n-l n n - l n - i n-2 

T h e r e is only one basic identity h e r e because the l a t t e r two a r e evidently 

specia l c a s e s of the f i rs t one upon set t ing p = n and p = n - 1 respec t ive ly . 

F u r t h e r , it was conjectured in [ l ] that even though the sequence (7) was 

a Fibonacci - type sequence, it quite poss ib ly would p o s s e s s few of the i n t e r e s t -

ing p r o p e r t i e s which the Fibonacci sequence has , and even if it should, such 

p rope r t i e s would be much m o r e difficult to find due to the m o r e complex na tu re 

of the r e c u r r e n c e re la t ion de termining the sequence. 
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We tu rn now to an investigation of the sequence (2) and cons ider , among 

other fac ts , how (10), (11), and (12) occur as specia l c a s e s of m o r e genera l 

relations,, 

Pa ra l l e l ing the usual t r ea tmen t of the Fibonacci sequence, we obtain a 

c losed express ion for P s ince J P I sa t isf ies a difference equation. Thus 

(13) P n = B ^ + B2x* + B3x^ 

whe re xj, , x2, x3 a r e the t h r e e dist inct roots of the equation 

x3 - x2 - x - 1 = 0, 

and Bj , B2, B3 a r e constants depending on t he se roo t s as well as P 0 , P i , 

P 2 , and a r e de te rmined by the sys t em 

i Bt + B2 + B3 = P 0 

BtX! + B2x2 + B3x3 = Pi 

Bpdj + B2x | + B3x3
2 = P 2 . 

The values of x*, x2, x3, Bj , B2, B3 a r e such as to make (12) too c u m b e r -

some to be of any fur ther p rac t i ca l u s e in the succeeding development and hence 

will not be wr i t ten h e r e . 

A much m o r e useful way of r ep resen t ing the r e c u r r e n c e re la t ionfor j P J 

may be found as follows: In the notation of vec to r s and m a t r i c e s , we have by 

(3), 

( "Ps" 

p 2 

L P i . 

= 

" 1 1 1"] 

1 0 0 

.0 1 oj 

P21 
Pi 

LPOJ 

pr 
p 3 

L P 2 . 

= 

" l i i i 

1 0 0 

_0 1 Oj 

ps" 
p 2 

L P I _ 

= 

" i l l " 

1 0 0 

_ 0 1 0_ 

2 "p2] 
Pi 

.Poj 
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and by finite induction 

(14) 
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rp 
n 

P 
n-i 

P 

= 

" 1 

1 

0 

1 

0 

1 

1" 

0 

0 

n-2 "P2] 

P l 

. p o J 
F u r t h e r , a s imple induction proof gives 

(15) 

"1 1 f 

1 0 0 

p 1 q. 

n 

= 

K , _, L . . K n+1 n+l n 

K L K 1 
n n n - l 

-Kn-iLn-iKn-J 

so it might be said that j K I and i L | a r i s e "natura l ly" in the invest iga-

tion of { P j . 

Using (14) and (15), we find for n, p posi t ive in tegers that 

(16) 
" n+p 

"n+p-i 

L n+p-2. 

"K ^ L ^ K 
p+l p+i p 

K L K . , , x H P P P - 1 II n - i 
K L K 
• p-i p- i p - 2 J U n-2 

from which we immediate ly see that 

(17) 

(18) 

P ^ = K ^JP + L , P + K P 
n+p p+l n p+l n - l p n-2 

P = K P + L P + K P 2n n+i n n+l n - l n n-2 

= K P + (K + K )P + K P o n+l n n n - l n - l n n-2 

(19) P = K P + (K + K J P + K .P 0 
2n-i n n n - l n - 2 ' n - l n - i n-2 

Now sett ing P 0 = 0, P j = P 2 = 1, we have (10), (11), (12) as specia l c a s e s 

of (17), (18), and (19), respect ive ly , 

Since 
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n+p 
P 

n+p-i 

L n+p-2 J 

K . . . L . , J K . p+r+1 p+r+1 p+r 

K ^ L ^ K _,_ „ p+r p+r p + r - i 

p+r--i p + r - i p+r -2J 

n - r 

" n - r - i 

n - r - 2 
we also have 

(20) P u . = K ^ _ , P + L ^ P + K ^ P 
n+p p+r+i n - r p+r+1 n - r - i p+r n - r - 2 

for n, p , r posi t ive in t ege r s , r < n - 2, 

S imi lar ly for n, h, k posi t ive in t ege r s , we can show that 

(21) Pn+h+k = * h+k+iPn + L h +k+l n - i + n+k n - l ° 

Using (20) and (21), we have the following useful express ion: 

(22) 
"n+h+k 

Ln+h 

Kh+k+i hi+k+i^+k 1 
K h+i L h+i K h 

1 0 0 J 

ri I r 
1 0 0 

L° i °_ 

xx— u " p 2 

P i 

.po 

-,n-2 

It can be shown quite eas i ly that the sequence 

(23) P l f R2, P 2 , R3, P 3 , • • ' , P n , R n + 1 , 

i s genera ted by the ma t r i x 

that i s , 

r i 
i 

[ i 

i 
0 

0 

°1 
1 

OJ 

(24) 

r p i 
n 

R 
n. 

L ri-i-J 

= 

" I 1 <r 

1 0 1 

1 0 0 

n-2 " P 2 l 

R2 

. P iJ 
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It is an interesting and useful fact that this matrix is the transpose of the 
generating matrix for JP }. 

Using (24) in away analogous to that in which we established (21), we 
prove that 

(25) 

(26) 

P a.^, = K. M _^P + K, _,. R + IC , P A n+h+k h+k+l n h+k n li+k-i n-l 

Rn+h+k Lh+k+iPn + Lh+kRn + ^ k ^ n - i 

two relations which are not only interesting in themselves but which also give 

(27) 
•n+h+k 

R n+h 

«- n 

Kh+k+i K h+k K h + k - i ] 

L h+i \ L h - i 

1 0 0 J 

ri i o" 
1 0 1 

[ i o o, 

1 1 — <U " p 2 

R2 

. P i 

hi order to define P for negative n, we use (14) for n > 0 written 
in the form 

(28) 

r p -
n 

k+i 
P 

L n+2J 

= 

"0 1 0 " 

0 0 1 

_1 1 1_ 

n "Po l 

P i 

J>i\ 

Replacing n by -n in (28), we have for n > 0, 

(29) 

r p i 
- n 

P - n + i 

L -n+2-

= 

ro i o* 
0 0 1 

I I \ 

— i i 
"Po" 

P i 

. P 2 . 

= 

- 1 

1 

0 

- 1 1-

0 0 

1 0 

n fPo l 

P i 

. P J 
which together with (14) determines P for all n since P0? Pj, P2 are 
given. The same result is obtained upon replacing n by -n in (3) to get 

(30) P = P J J 0 - P J . - P J . ^ n > 0 8 -n -n+3 -n+2 -n+1 
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R i s a lso defined for negat ive n by (29) and (30) s ince 

R = P + P 
n n - l n-2 

This allows us to r emove the r e s t r i c t i on placed on n, p , r , h, k above. 

3„ LINEAR SUMS 

A la rge number of what we shal l cal l l inear sum re la t ions on t e r m s of 

the sequences j R | and j P f w e r e found and proved. Since an exhaustive 

l i s t i s not our a im, only a few of the m o r e in te res t ing ones a r e l is ted. No 

proofs will be given h e r e s ince the proofs may al l be made r a t h e r easi ly by 

finite induction. 

n 1 
(31) T P . = -i (P + P + P 0 - P 2 ) 

f-' l 2 n+2 n u * 
1=0 

n 3n-i 
(32) E P3i = E ?i + Po , 

i=i i=o 

n 
<33> E ^3i = Psn " Po » 

i=i 

n 
(34) E R3i+l = Psn+l " P i 

i=i 

T h e s e re la t ions obviously have special cases for the sequences K and L 

F o r example (33) becomes 

n 
(330 E Lsi = K3n . 

i=i 
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48 QUADRATIC AND CUBIC RELATIONS 

217 

An at tempt to pa ra l l e l the quadrat ic re la t ions of the Fibonacci sequence 

failed. A different approach was n e c e s s a r y and this was found in the u s e of 

the v e c t o r - m a t r i x represen ta t ion of P . We have the following in te res t ing 

quadra t ic form: 

(35) P ^ + P ^ + 2 P n - i P n _ 2 = P 2 P 2 n _ 2 + R 2 P 2 n - 3 + Pi P 2 n _ 4 . 

The proof of (35) follows by consider ing the left s ide of the re la t ion as 

the s c a l a r product of the vec to r s f p , R , P ,1 and f p , P , P 1 ^ L n n n - i j L nJ n - i ' n-2 J 
( recal l R = P + P ), and then us ing (14) and (24), we have n n - i n-2 

p2 + p2 + 2 P „P = f p , R , P J 
n n - i n - i n-2 I n n n - l j ' n - i 

n-2-1 

TP2, R2, P J 

ri i r 
1 0 0 

L° i °. 

2n-4 "P2"j 

P i 

„PoJ 

[p2, R2J Pt] 
rp2n-

p2n-

Lp2n-

" 2 1 
-3 

-*J 

P2?2n-2 + Rj^Zn-S + PlP2n-4 

F o r P0 = 0, PA = P 2 = 1, (35) becomes 

(35* K2 + K2 + 2K K = K H n n - l n - l n-2 2n-l 

which is (12), It was shown that (12) i s a lso a specia l c a s e of (19), but (35) is 

not obtainable from (19) nor v ice v e r s a . 

One of the mos t in te res t ing re la t ions involving t e r m s of the Fibonacci 

sequence is the one 

C c - C2 = ( - l ) n 
n - i n+i n 
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T h e r e is a re la t ion of th i s na tu re for the sequence j P 1; however as may 

have been suspected, it has a cubic r a t h e r than a quadrat ic form,, The des i r ed 

re la t ion is 

(36) P 2 P + P 3 

n n-3 n - l 
P 2 P ^ n-2 n+i P P HP - 2 P P P n+i n - l n-3 n n - l n-2 P3

0 + 2Pf 

+ P 3 + 2P§Pi + 2P0P2i + P 2 P 2 - 2P!Pi - 2P 0 P iP 2 - P0P^ 

Before proving (36), we note that for P 0 = 0, V1 = P 2 •= 1, (36) becomes 

(37) K2K + K3 + K2 K - K K K - 2 K K K = 1 n n-3 n - i n-2 n+i n+l n - l n-3 n n - l n-2 

The proof of (37) follows from (9) and (15) by the use of de te rminan ts 

s ince 

K2K + K3 + K2 K _, - K ^ K K - 2K K K n n-3 n - l n-2 n+l n+i n - l n-3 n n - l n-2 

K K K n+l n - l n 

K n-2 n - l 

K K K n - l n-3 n-2 

K ^ L a., K 
n+l n+l n 

K L K H 
n n - l 

K L K 
n - l n - l n-2 

= 

1 1 1 

1 0 0 

0 1 0 

Proof of (36): Even though (36) may be verif ied in v e r y much the s a m e 

manner as (37), we adopt a different method of proof s ince this is m o r e eas i ly 

used in a genera l ized ve r s ion of (36). F i r s t , we s ta te the following l e m m a 

whose proof the r e a d e r can readi ly supply, 

Lemma: Let A be any 3 x 3 m a t r i x and le t x and y be th ree -d imens iona l 

vec to r s ; then the c r o s s product (Ax) X (Ay) is equal to the cofactor ma t r i x 

of A mult ipl ied by x X y; i» e. , 

(Ax) X (Ay) - (cofactor A) (x X y). 

Now the left s ide of (36) can be cons idered as the t r ip le s c a l a r product of the 
t h r e e vec to r s | P , . P , P 1, | P . P , P 1, and fp , P , P 1. 

L n+l n n - i j [_ n - l n-2 n -3 j |_ n n " 1 n " 2 J 
By (14) and the l emma, 
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rp i 
n - i 

P 
n-2 

P 
L n - 3 J 

X 

" P n 

P 
n - i 

P 
L n - 2 -

= 

* 1 1 f 

1 0 0 

. 0 1 0 . 

n-3 " P 2 " 

P i 

- P o -

X 

" i l l " 

1 0 0 

. 0 1 0 . 

n-3 " P 3 1 
P 2 

-PJ 

0 0 1 

1 0 - 1 

0 1 - 1 

v\ 
P3P0 

Pi 

- P2P0 

- P1P2 

- P 3 P 1 -

There fo re 

p 2 p 
n n-3 "n-i + P: 

n-2 n+l P , P P 0 - 2P P P n n+i n - l n-3 n n - i n-2 
r p -1 

n+i 

P 
n 

LPn-i-

" P n - i " 
P 

n-2 
P 

L n-3 J 

X 

rp 1 
n 

P n - i 

.Pn-J 

= [ p 4 , ps> p2] 
ri 1 o" 

1 0 1 

L1 ° °. 

n-3 . 0 0 

0 0 

0 1 

1" 

- 1 

-!_ 

n-31-
P? - P2P0 

p s p , 3-^0 P l P 2 

p i - P3P1 J 

= P4(P2i - P 2 P 0 ) + P3(P3Po - P2P1) + P 2 (P ! - P3P1) . 

which reduces to the r ight s ide of (36)„ 

Example: Suppose we let P 0 = 0, I>
1 = 1; then the r ight s ide of (36) 

becomes 

Po - 2Po + 2 . 

Setting th is express ion equal to ze ro and solving for P2 , we see that t h e r e 

exis t a lgebra ic in tege r s , say P0 3 P l 3 P2 s such that for the sequence J P \, 

p 2 p + p 3 + p 2 p 
n n-3 n - l n-2 n+l 

P P P + 2 P P P 
n+l n - i n-3 n n - i n-2 
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The l e m m a and (22) may be used a s in the prev ious method of proof to 

show that for h, k, n, m, t i n t ege r s 

(38) P P P + P P P + P P P 
v ; n+h n+m n+h+k+t n n+h+t n+h+k+m n+t n+h+k n+h+m 

- P P P - P P P - P P P 
n n+h+m n+h+k+t n+m n+h+k n+h+t n+h n+t n+h+k+m 

= (KhL 
h+k+i K h + k L h + i ) [ P t + 2 ^ P l P m ' P o p m + i ) + Pt+i(Popm+2 P 2 P m ) 

+ p
t ( p 2 p m + i - p i p m + 2 ) ] • 

T h e r e a r e many in te res t ing specia l c a s e s of this relation,, We mention 

a few. If P 0 = 0, Pt = P 2 = 1, (38) becomes 

(39) K , ,K . K . , , , ,, + K K ^ J K ^UjLl ^ + K ^ K ^ ^ K ^, ^ 
v ' n+h n+m n+h+k+t n n+h+t n+h+k+m n+t n+h+k n+h+m 

n n+h+m n+h+k+t n+m n+h+k n+h+t 

n+h n+t n+h+k+m 

v h h+k~i h+k h - l / v t - i m t m - r 

If k = h = t, m = 1, (39) becomes 

(40) K , K _,_, K . , + K K __ K _ , + K ^ . K . ^ K _ - K K ^ . K . . 
v ; n+i n+h n+3h n n+2h n+2h+i n+h n+h+i n+2h n n+h+i n+3h 

- K K2 _ K 2 , K _,_,_, = K. K , K , - K2 K , ; n+i n+2h n+h n+2h+i n - i h 2h-l h - i 2h 

and if t = h, k = m - h, (39) r educes to 

(41) K K _,_ , K ^ + 2K ^ , K ^ K ^, ^ - K K2 ^ - K2 K _ 
v ' n n+2h n+2m n+h n+m n+h+m n n+h+m n+m n+2h 

- K2 K ^ - - (K.K - K K J 2 

n+h n+2m \ h m - i m n - i ' 

In o r d e r that the above r e s u l t s be valid, we must choose h and k so 

that 

K n K n + k - i " K h + k K h - i " K h L h+k+i " K h+k L h+i * ° ' 
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for in the proof of (38), we a s s u m e that the ma t r i x 
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Kh+k+i 

h+i 

L i 

Lh+k+i 

Lh+i 

0 

Kh+k 

Kh 

0 

i s non-s ingular „ 

Using (27) we can find re la t ionships involving t e r m s of both the sequences 

| R J and | P j which reduce to an express ion independent of n0 For e x -

ample , i t may be proved that 

\ ) n+h+k+t^ n-tfi n+m n n+h+nr n+h+t^ n n+h+k+m n+m n+h+k' 

4- p CP R - R P 
n+tv n+h+k n+h+m n+h n+h+k+m 

] ~ ^ h + k - i ^ ' V k V i ' • 
[p^P^m - P0Pm+i) + P t + 1 ( P 0 P m ^ - P 2 P m ) + P t ( P 2 P m + i " p i p m + 2 ) ] 

It should be noted that no t e r m s of the sequence j R I appear on the r igh t s ide 

of (42) and a lso that the second factor on the r ight side of the equality sign in 

(42) i s the s ame as the second factor on the r ight side of (38). 

5. MISCELLANEOUS RESULTS 

We conclude with some misce l laneous r e s u l t s . The following l imit ing 

re la t ions may be es tabl i shed us ing (13) and the fact that rl9 r 2 , the two c o m -

plex roo ts of 

a r e such that 

x3 - x2 - x - 1 = 0 , 

r , = ro < 1 

(43) 

(44) 

V '4- n + 1 

l imi t - = — 
i—> oo n 

V3V33 - 19 + V 19 + 3V33 

l imi t 
n —>oo 

"n+h 1 - V 3 yg3" - 19 + V 19 + 3 Vg3 
3 • ) • 
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By induction the following theo rem may be es tab l i shed: 

T h e o r e m : F o r every posi t ive n, 

K4 n = KAn_t = 0 (mod 2) 

K 4n-2 = K4n-3 = 1 ( m o d 2) 

K4 n = 0 (mod 4) 

If we le t D(P0, P j , P 2 , • • • , P n ) be the de te rminant 

Po P i P 2 

Pi P . P., I ^ 2 n+i 

n n+i n+2 m 

i t can be shown that for n > 3, 

D(P0 , P l f P 2 , • • - , P n ) = 0 

This ma te r i a l i s taken from Some Genera l iza t ions and Extensions of the 

Fibonacci Sequence, a thes i s submit ted to the Univers i ty of P i t t sburgh by the 

f i r s t author in pa r t i a l fulfillment of r equ i r emen t s for the Ph„ D. degree . 

REFERENCE 
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RESTRICTED COMPOSITIONS 
S. G . MOHANTY 

McMaster University, Hamilton, Ontar io, Canada 

As a continuation of [6] and [7 ] , this paper deals with a restricted set 
of compositions of an integer (to be defined below) and presents extensions of 
some results of Gould [2] , [ 3 ] , [4 ] , by interpreting the compositions through 
the corresponding lattice paths. 

By the definition in [ ? ] , a (k + 1)-composition (tl9t2, ° • • , t^.+1) of an 
integer n (i„ e. , 

k+i 

E t. = n and t. > 1 
1 1 

i=i 

for every i) dominates another (k + 1)-composition (tj,tj,• • • , t^+ 1) of n if 
and only if 

3 3 
S \ - Z) *! for j = 1 . 2 , - - - ,k + l . 
i=i i=i 

Using the 1:1 correspondence in [6 ] , we associate with each (k + ^-composi-
tion of n a minimal lattice path (onward and upward path through lattice points) 
from (0,0) to (n - k - l,k) such that the directed distance measured along the 
positive direction of x-axis, of the point (n - k - l , k - j), j = 1,2, • • • , k 
from the path is 

3 

i=i 

Without any ambiguity, denote this path by 

223 
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1 — ' 1 2 ^•••'JL\-
i = i 

Thus, it is evident that to the set C(n;sil9 a2, • • • , a^) of (k + 1)-compositions 
of n, dominated by the (k + 1-composition (al3 a2, • • • , aj^+j) of n cor res -
ponds the set L(A1? A 2 J ' • • , A^) of lattice paths which do not cross to the left 
or above the path 

I Al9 A2,*' • , A^ I aj - 1, at + a2 - 2, • • • , ^2 a. 
i = i 

Let the number in the set C (equivalently in L) be represented by N(n;al9 a2, 
••• ,aj j) for k > 1, and by N(n) for k = 0. Trivially, 

(1) 

(2) 

N(n) 

N(h;a , jL,_V^i l ) = 
k - 1 

/ a + k - l \ 
V k / 

and 

(3) N(n;a1,a2,-"- ,&k) - 0 , 

if any a. is either zero or negative. 
Now consider the path 

[AJ,AJ 2 ' " ° " ' A k 

such that A\ < A. for all i0 Every path in L passes through one of the points 
(n - k - A!+ - 2, k - i), i = 0 ,1 , 2, • • • ,k, (A' = AM before moving to 
(n - k - A! - 1, k - i) and then reaches (n - k - l,k) not crossing [AJ, A2 , 
. . . , A y . Therefore, 
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(4) N(n;a 1 ,a 2 , - - - ,a k ) = N(n;aj - aj5a2s» • • sak)N(n) 
+ N(n;ai + a2 - &[ - aj, a3, • • • , ak)N(n;aJ) 
+ N(n;ai + a2 + a3 - a J - aj - a ,̂ a4, • • • , ak)N(n;ai, aj) 

/ k k \ 
'• + N b ; E a i " E allNCnsai, aj, • • • , a^ ) 

\ iFi i=i 7 

+ N(n)N(n;aJ,a5,...,aj5.) 

We note that whenever A! = A., 
I r 

N(n;ai + . . . + aj - a\ - • • • - aj, a|+1, • • • , ak) = 0 

It may be pointed out that relation (4) in some sense is a generalization of 
VandermondeT s c onvolution 

! ( • ) ( -H x ; y ) ' 
a further discussion of which is given later. 

By setting ^ = A! + 1 and a2 = a3 = • • • = ak = 1 in (4) and using 
(2) , we get the recursive formula 

(5) N(n;ai,aJ,--« ,a^) = 

/AJ + k \ k - i / A J - A! + k - i \ 
y \ J- E ( k

k „ X
i + 1 JN(Q;ai,aJ,...,al.1) 

which is the same as (9) in [ l ] and (2) in [8] , The solution of (5) is stated in 
the following theorem. 
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Theorem 1: 

(6) N C r i ^ a ^ . - ^ a k ) 

A, + k - 2 k-2 
k - 2 

AT + k - 3 
k-3 k - 3 

(A,7) 

) > ( A k - ! » 

) . 

0 0 

1 0 0 
Another way of expressing the number in L leads to 

/ A k - A 1 + k - l ^ 

/ A k _ 2 - A 1 + k - 3 \ 

/A k _ 3 -A 1 + k -4X 

( A , - A l ) 

Ai A2 Ak 

(7) N(n ;a 1 , a 2 , - . . , a k ) = E E . . . £ ' 1 
Xi=o x2=Xi xk=xk-i 

Ao A, 
a-i * k 

= E E - E i 
Xi=o x2=Xl xk=xk_A 

Ai A2 Ak 

+ E E ' 0 0 E 1,0 < a < Aj + 1 . 
Xj=a X2=X l

 x
k

= x k - l 

Substituting x. - a = x! for i = 1, 2, • •" ,k, the second term on the right hand 
side becomes 

Aj-a A2-a A, -a 
(8) E E ••• E 2 = N ( n ; a t - a ^ g , - - - , ^ ) . 

x}=0 xj==xj[ xk= Xk-i 

On the other hand, the first term can be written as 
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«-l A2 Ak a-1 A2 A3 Ak 

(9) E E ... E i = E E E ••• E 1 
Xi=0 X2=X l

 X k = X k - l X l = ° X2=° X 3 = X l X k = X k - l 

a - l Xj-1 A 3 A k 

- E E E ••• E 1 . 
Xf=l X2=0 X 3 = X l X ^ k . j 

whereas the last term in (9) can again be expressed as 

« - l Xj - i A 3 A 4 Ajj 0 -1 Xj - i x 2 - i A 4 A ^ 

- E E E E ... E '1+ E E E E ••• E i. 
x l ~ 1 x 2 = 0 x 3 = 0 x 4 = x 3 x k = x k - l X l = 2 X 2 = 1 xl=0 x 4 = x 3 x k = x k - l 

When we proceed in the above manner, the final expression for (9) is 

(10) E ("Di+1 h) N(n;A.+i + 1, a.+2, • • • , ̂  ) 

by noting that 

E E ••• E i = E E ••• E i = m 
x p i - i x2=i-2 Xj=o x-pO x2=o xi=o \ / 

and 

A i + i A i + 2 A k 

E E ••• E 1 = N(n;A. + 1, a.+2, • • • , ak ). 
V f ° Xi+2=Xi-M V * k - i 
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Thus it follows from (7), (8) and (10) that 
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k . / v 
g (-1)1 / " J N(n;A i + i + 1, a.+2, ' " , \ ) = N(n ; a i - a, a2, - - . , a k ) . 

An a l te rna t ive way of simplifying the f i r s t t e r m on the r igh t of (9) i s 

Ak «- i A2 

• £ i - £ £ 
a - i A2 

£ £ 
x1=o x2

=:x1 xk^0 x i = 0 x 2 = x i x k = 0 

xk - i " 1 

£ 1 . 

where the sums in the l a s t t e r m for which x, - 1 i s negative a r e ze ro . 

Repetition of this p r o c e s s yields 

k / 
(12) £ ( -D 1 + 1 ( A k + i - i + 1 > J N ( n ; a 1 , a 2 , - . - , a k _ i ) = N(n;a1? a2, • • • , a k ) 

i=i \ i / 

for c = a1# Relation (12) has been obtained e a r l i e r in [ 7 ] , which i s equiva-

lent to (3) in [ l ] . 

When c = SL1$ the solution of e i ther (11) o r (12) i s s ta ted a s Theorem 2, 

for which a d i r ec t e l emen ta ry proof i s provided below. 

T h e o r e m 2: 

(13) N ( n ; a 1 , a 2 , - - - , a k ) 

-r) (v1) 
* (v) 

• ( \ + l ) 

• fr.v) 
• ft:.1) 

Proofs Obviously 
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0 0 

Using this in (7), we see that 

Ai A2 

xf=o x2=xt 

(:•) 

Ak-i 

E 
Xk-l=xk-2 

(VHY'XH-C) 
Or) > •••(:;) \ + * 

Ai A2 

E Z • 
Xj=0 X2=X! 

Ak-i 

•• £ 
V i xk-2 

(\+1) ft-)-0 

0 ° • • • ( k X - 1 2 ) | 

• • • • s 

» - (?) 
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The proof i s complete when the summat ion i s continued to the end, 

T h e o r e m s 1 and 2 give r i s e to an in te res t ing combinational identity on 

de te rminan t s , the d i r ec t proof of which i s not obvious. 

We check e i ther f rom the t h e o r e m s or d i rec t ly that 

(14) N ( n ; a 1 , a 2 , * « - , a k ) + N ( n ; a ! + a 2 , a 3 , - -» , a k ) = N(n;ai + l , a 2 , • • • , ak) , 

(15) N ( n ; l , a 2 , - - " , a k ) = N(n;a2, a3, • • • , a k ) 

and 

(16) N ( ] £ a. + j ; a ^ a ^ - ' ^ k j = N I £ aj + 1; a l 9 a 2 , - - • , ak J j = 1,2,-

A few impor tan t special c a s e s a r e cons idered below. 

Coro l la ry 1. 

•KT, -u x.v a / a + kb\ 
N(n;a,b^b) = — ^ ( k ) • (17) 

k - 1 

This i s d i rec t ly verif iable f rom ei ther one of the theorems 0 (Also see Theo -

r e m 1 in [6])„ 

In the next, we evaluate 

N ( a , b ; c , d ) = N(n ;a ,b , - • % b , c , d ^ \*^d) 

p - 1 q - 1 

which has been obtained by a different method as Theorem 3 in [ 6 ] , 

Coro l la ry 2. 

(18, Np>q<a,b;c,d, - £ < V ^^^^^ ( '%*/,' .- , ""J 

(q - i + l )b - c - (q - i)d / ( q - i + l ) b - c - q d + i \ 
x (q - i + l )b - c - qd + i \ i / 
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Proof: F o r c + q(d - 1) ^ qb, the r e s u l t i s immedia te , by taking A! = 

(a - 1) + (i - l)(b - 1), i = 1, 2, • ' 8 , p + q in (4) and applying Corol la ry 1. 

When c + q(d - 1) < qb, le t s(p i. s 4= p + q) be the l a r g e s t in teger so that 

c + s(d - 1) ^ sbo N (a ,b ;c ,d ) and N ( n ; a , b , • • • , b ) , expressed with the 
PJQ ^ T n ^ T 

help of (4), where p H 

(a - 1) + (i - l)(b - 1) i = l , 2 , ° ° ' , s , 

l)(d -
s + 2 , 0 8 * , p + q, 

A i ) (a - 1) + (p - l)(b - 1) + (c - 1) + (i - p - l)(d - 1) i = s + 1, 

lead to (18), after some simplification. 

F o r comple teness , we p r e sen t two m o r e special c a s e s which a r e known 

and can eas i ly be der ived. 

Coro l la ry 3; 

(19) N ( a , b ; c , l ) = ( a + C - 2 + ( P ; 1 ) ( b - 1 ) + P ^ ) 
P>q \ P + <i / 

P y ^ a / a + ( p + q - i ) b V c + q - ( q - i + l ) b - l 

"" i =4+i a + (p + q "" i)b V P + c * - i A i 

Coro l la ry 4; 

In his paper [ 2 ] , Gould has defined 

A <B y) = p I1* + yk) \v,y) - p + yk y k j 

and has shown that A, 0,y) sa t is f ies the re la t ion 

k 
(21) £ A . ^ , r ) A k _ . ( 8 , y ) = Ak(/3 + 8 , 7 ) 

i=o 
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Suppose that /3, y and 8 are non-negative integers0 Then (21) immediately 
follows from (4) and (17) by putting aA = /3 + 8, a.t = a3 = • • • = a, = y, a\ 
= 0, and aj = af

3 = • • • • = a* = y in (4). Relation (11) in [2] can similarly 
be verified. Also, the convolution (5.5) in [3] for t = 0 can be compared with 
(11) and their equivalence is easily established. 

In what follows, the results on restricted compositions are analogous to 
those on unrestricted compositions in Gould's pa^er [4j (Theorems 1 and 5 or 
equivalentry Theorem 6)„ Fix a2, a3, ° • ° , a^ and let 

i=2 

From (14), (15) and (16) we infer that 

(22) N(m + a4 + 1; a1? a2, • • •, a^) = £ N < m + i; a2 - 1 + i, a3, • • •, ak) 
i=i 

j3 L m + iJ N {m + i; a 2 - l + i, a3,-» • , akf 

where fz] is the greatest integer less than or equal to z and NJm + i;a2 - 1 
+ i, a3, • • • , a^| is the number of compositions in the set S(m + i;a2 - 1 + i, a3, 
• • •, ak) which is defined as follows: For i negative or equal to -zero, 

S(m + i; a2 - 1 + i, a3, • • • , ak) is empty; 
S(m + 1; a2ja3>. • • ,ak) = C(m + 1; a2, a3, • • • , ak) ; 

For i > 2, S(m + i;a2 - 1 + i, a3, • • • , ak) is the subset of C(m + i;a2 - 1 
+ i, a3? • • • , ak) with the property that if (x1? x 2 ) " , , x ] { ) E S(m + u;a2 - 1 + u, a3, 
• • • , ak), u = 1, 2, • • •, i - 1, then for r a positive integer (rx1? rx2, • • • , rx,) 
(£ S(m + i;a2 - 1 + i, a3, • • • , ak). Expression (22) corresponds to Theorem 1 
in [4]. 
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00 00 

j = 1 j=i 
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? [ m r 4 ] N ^ m + i; a2 - 1 + i> as, • • • , ak } 

i | i N { m + I ; a 1 - l + i,^...,ak}|[S+J.] 
oo 

m+i x J 

J 

m + i 
X E N { m + i ; a 2 - l + i , a 3 , - . - , a k [ m + 

1=1 ( l - x ) ( l - X ) 

by (3) in [4 j . Therefore, 

m+i 
x (23) E N { m + i; a2 - 1 + i , a3? • • • , a k } m + i 

i=i (1 - x ) 

= X) N(m + i + l;i, a2/--Jak)xm+1(l-x) 
1=1 

00 

= X)-N(m + i ; a 2 r - l + i , a3, — , a k ) x m 1 

i=l 

by (14), (15) and (16). But (23) can be written as 

00 
i 

(24) £ N { i ; a 2 - m - l + i , a 5 , - - - , ak}- x —r 
i=m+l 1 - x 

oo 

= H N d j a a - m - l + i jagj- ' - jakJx1 . 
i=m+i 

In order to extend the summation to i = 1, 2, • • • , m in (24), define 

•M-*/. - , , • x _ / 0 for i = 1,2 ,° • • , m 
N ( i ; a 2 - m - l + i , a 3 , - - - , a k ) ~ } N ( i ; a 2 _ m _ 1 + if g ^ . . . > a k ) for i = m+l, m+2-

Thus, following the procedure in [4 ] , 

(25) N|n;n + a 2 - m - l , a 3 , 8 9 % a k } - ^ N^(n;n + a 2 - m - l , a 3 , ' - % a k ) ^ | ~ I , 
iln \ / 
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which i s s im i l a r to that of T h e o r e m 5 in [ 4 ] . 

We finally r e m a r k that such r e su l t s can a lso be obtained for the number 

of la t t ice paths in the se t L.(Al5 A2, • • • ,A, ) defined as follows: 

L 0 ( A 1 , A 2 , - " , A k ) = L ( A i , A 2 , ' - ' , A k ) ; L.(A1? A2, • • • , A k ) i s the subset of 

L(AA + i, A2 + i, •»• , A, + i) such that if [ x l 9 x2, • • • , x ^ l E L (Al5 A2, • • • , A k ) , 

u = 0 , 1 , . . • , i - 1, then [ r x l 5 rx2 , • • • , r x k J ^ L^Aj , A2, • • • , A^ ) . 
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ENUMERATION OF CERTAIN TRIANGULAR ARRAYS 
D, P. ROSELLE 

University of Maryland, College Park, Maryland 

1. INTRODUCTION 
Let k be a posi t ive integer* We define the number s F (k) and N (k) 

„(k) + F . (k) (n > k) , n - l n - k ' 

by means 

(1.1) 

(1.2) 

of the r e c u r r e n c e s 

F (k) -n 

N . (k) = n -k 

F 

k 
= £ ^ ( ^ N n i<W (n ^ k ) > 

i=o V J / J 

with the init ial conditions 

(1.3) F (k) = n + 1 (0 < n < k) , 

(1.4) Nn(k) = ( k n n ) ( 0 < n < k ) , 
Note that ^ ' 

(1.5) F n ( l ) = N n ( l ) = 2 n , 

(1.6) Fn(2) = F n + 2 , 

(1.7) Nn(2) =• 3 .2 n _ 1 , 

where F . denotes the usual Fibonacci number (F0 = 0, F j = 1) . 

Given posi t ive in tegers m and k, put m - pk + r (1 < r < k) and 

let T(k, m) denote the number of a r r a y s 

(1.8) n u • • • n!knl9 k+i 9 ° e nu p\^nu p k+i • • • n l m 

n 2 , k+i ' ' ° n2> pkn2, pk+i ° " ' n2m 

p,pk p,pk+i pm 

np+l?pk+l " ' ° p+i, m 

w h e r e n1A is e i ther 0 or 1 and 

235 



236 ENUMERATION OF CERTAIN TRIANGULAR ARRAYS [Oct. 

(1.9) n.. > n. . , , > 0; n.. > n._,_, . > 0 , 
i] i,]+i ' 13 ~ 1+1,3 -

For example, T(2,5) and T(2,6) are the number of arrays 

x x x x x x x x x x x 
x x x x x x x 

X , X X , 

where each x is either 0 or 1 subject only to the conditions (1.9). As a 
further example, we have T{2,3) = 5, the arrays being 

1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 
1 , 0 , 0 , 0 , 0 . 

Indeed, we find that 

(1.10) T(k,n) = Fm(k) (m,k = 1,2,3, — ) . 

The numbers N (k) also occur in connection with triangular arrays of 
zeros and ones. We prove that 

(LID N ao = - £ |V j + Dk - I ] ( P 3 + Dn , 
j=o L J 

(1.12) £ Nn(k)xn = k ^ - 1 , 
n^o x - (1 - x) 

where p denotes a primitive k root of unity. 
Finally, we have included some one-line arrays which can be enumerated 

in terms of the numbers F (k) and N (k). 
n n 

The author wishes to thank Professor Carlitz for his aid in the prepara-
tion of this paper. 
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2. THE NUMBERS F (k) n 
F o r given posi t ive in tegers m and k, let T(k,m) denote the number 

of a r r a y s (1.8) subject to the conditions (1.9), 

To evaluate T(k,m), we f i r s t note that if nmi = 1 in (1,8), then n ^ = 

''' = n i , m - i = 1 anc* t h e r e a r e T(k,m - k) a r r angemen t s of the resu l t ing 

ma t r ix . On the other hand, if n l m = 0, then n 2 m = • • • = np+ 1 J i n = 0 and 

t h e r e a r e T(k, m - 1) a r r a y s poss ib le . This evidently yields 

(2.1) T(k ,m) = T ( k , m - 1) + T ( k , m - k) (m > k) . 

In the next p lace , it follows at once from (1.8) and (1.9) that 

(2.2) T(k,m) = m + 1 (1 < m < k) . 

Th is evidently completes the proof of 

T h e o r e m 1. The number of a r r a y s (1.8) subject to the conditions (1.9) is 

given by 

(2.3) T(k,m) = F m ( k ) (m,k = 1 , 2 , 3 , - - - ) . 

As an immedia te co ro l l a ry of (2.3) we have 

T h e o r e m 2. Let q, (n;p) denote the number of par t i t ions of n into at 

mos t p p a r t s , success ive p a r t s differing by at l eas t k. Then 

M 
(2.4) £ qk(n;p + 1) = F (k) , 

n=o 

whe re m = kp + r (1 < r < k) and M = m(p + l ) - k 

Indeed, using the generat ing function f"2l 

lm(m+i) 

2-f qi(n;m)x 
n=o 

tA 
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we eas i ly verify that , for k = 1, (2.4) r educes to (1.5). However, Chaundy 

£ l j has noted that , for k > 1, the generat ing function for q, (n;p) i s not 

known. 

30 THE NUMBERS N (k) n 

Given posi t ive in tegers m and k, put m = pk + r ( l 4 r 4 k) and, 

for 1 4 j 4 k, let N.(m,k) denote the number of a r r a y s 

(3.1) n t l • • • n l j k + 1 • • • nljPk-M • • • n l m 

n j i """ n j ,k+i • • • n j ,pk+i " *' n j m 
nj+k,k+i ' ' " nj+k,pk+i ° ' ' n j+k,m 

nj+pk,pk+l • ° • n j+pk,m » 

where n ^ is e i ther 0 o r 1 and the ny a r e non-negat ive in tegers subject to 

the conditions (1.9). F o r example , Ni(5,2) and N2(5,2) a re the number of 

a r r a y s 

X X X X X X X X X X 

X X X X X X X X 

X X X X X X 

X X X X 

X , X , 

respectively,, 

It follows from (3.1) and (1.9) that 

(3.2) N.(m,k) = ( . J | (1 4 m 4 k) , ("V1) 
(3.3) N.(m,k) = N.(m - l,k) + N.__ (m,k) (2 4 j 4 k; m > k) , 

(3.4) Ni(m,k) = Ni(m - l,k) + NR(m - k,k) (m > k) . 

The proof of (3.2) is not difficult; (3.3) and (3.4) a r e proved in exactly the s ame 

way as (2.1). 
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Using (3.3) with j = k, we see that 

Nk_1(m,k) = Nk(m,k) - N k (m - l,k) , 

and, in genera l , 

(3.5) Nk_.(m,k) = £ ( - l ) r 0) N k (m - r ,k) (1 < j < k - 1) 

Compar ing (3.4) and (3.5), we obtain the r e c u r r e n c e 

r=o \ / 
(3.6) N k (m - k,k) = £ (-D r / N k ( m " r ' k ) ' 

r=o 

which should be compared with (1.2). 

F o r k• = 1,2 the r e c u r r e n c e (3.6) is easi ly handled. Indeed, it follows 

from (3.2) that (3.6) is in agreement with (1.5) and (1.7). Note that (1.7) and 

(3.5) imply 

(3.7) Ni(m,2) = 3°2 m " 2 (m > 2) . 

To solve the r e c u r r e n c e (3.6) for genera l k, we make use of some r e -

sul ts f rom the calculus of finite differences [3J . Let p denote a p r imi t ive 

k root of unity and note that the cha rac t e r i s t i c polynomial of the r e c u r r e n c e 

is 

(x - l ) k - 1 , 

whose roo t s a r e p - 1 (j = 0 , 1 , 2 , • • • , k - 1). Thus t h e r e a r e constants A0 , 

Aj , • • • , A k - 1 such that 

k - i 
(3.8) Nk(n,k) = Z A V - D n . 
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We show that 

(3.9) *j = E [(p"5 + 1)k " x ] (0- j - k " 1] ' 

first noting that we may extend the recurrence (3.6) and define N, (0,k) = 1. 
To prove (3.9), we have, for 0 4 r 4 k - 1, 

E r<P-i + Dk - i l (pj + Dr = E ( J ) E ( t
r ) E pj(t"s) 

j=o L J s=o V / t=o \ z I j=o 

-'£(00Mk+*r)-
which, using (3.2), implies (3.9). 

It follows from (3.8) and (3.9) that 

(3.10) Nk(n,k) = \ g [ (p" j + l ) k - l ] (pj - l ) n , 

so that 

(3.1D N k ( n ) k ) ^ E ( ^ E (j) . 
s=o \ / r=s(mod k) \ / 

If we define generating functions 

(3.12) F , (x ) = f; N(n,k)xn (1 < j < k) , 
J JJ,= 0 j 

then it is clear from (3.2) and (3.3) that 

(3.13) (1 - x J ^ F y f e ) = Fkl(x) 0 = 2 f 3 , - - - , k ) 
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Moreover , us ing (3.4), we have 

F k k ( x ) = x - k ( l - x)F k i (x) - * * * _ - / ) 

Compar ison with (3.13) then yields 

(3.14) F. (x) - (x - 1)(1 - x) 
x - (1 - x) 

(3.15) F. .(x) = (X " , 1 ) ( 1 " X ) , (1 L j 4 k) . 
k J x - (1 - x ) k 

We s u m m a r i z e the r e s u l t s of th is sect ion by stat ing 

Theo rem 3. Let N.(n,k) denote the number of a r r a y s (3.1) subject to 

the conditions (1Q9). Then N.(n,k) sa t i s f ies (3.6), (3.10), and has generat ing 

function (3.15). 

48 SOME ONE-LINE ARRAYS 

Let S, (nj) denote the number of one- l ine a r r a y s 

(4.1) n1n2n3n4«"0 , 

where the n. a r e non-negat ive in tegers , subject to the conditions 

(4.2) n. A n . + 1 + k (J = 1, 2, 3, • • •) . 

It is c l ea r f rom (4.1) and (4.2) that 

Sk(n) = 1 (n < k) , 

n -k 

r=o 
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which impl ies 

Sk(n) = Sk(n - 1) + Sk(n - k) (n > k) . 

Thus an easy induction es tab l i shes 

Theo rem 4„ The number of a r r a y s (4.1) subject to the conditions (4.2) 

is given by 

(4.3) Sk(n) = 1 (1 4 n 4 k) , 

(4.4) Sk(n) = Fn_k(k) (n > k) 

In pa r t i cu l a r note that (4.3) and (4.4) yield 

(4.5) S2(n) = F n (n = 1 ,2 ,3 , • • • ) 

Returning to the number s F (k), we see from (1.1) and (1.3) that 

n 
(4.6) 

r=o 
F

nk+j
(k) - 1 = £ Wi*> (14 j -k) 

In the next p lace , for 1 < j < k, let S, .(n*) denote the number of 

a r r a y s (4.1), where the n a r e non-negat ive in tegers subject to the conditions 

(4.7) n r ^ n r + l (r * j (mod k) ) , 

n
r > n

r + 1 <r = 3 (mod k) ) . 

It is immedia te from (3.7) that 

(4.8) Sk . ( l ) = j ( 1 4 j 4 k) , 

n 
(4.9) S

k j j + 1 < n ) = 1 + X S
k j W (1 4 j 4 k - 1) , 
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n-i 
(4.10) Skl(n) = 1 + E Sj.fr) . 

r=i 

We shall show that 

<4-n) Skjfr + 1) = F r t f j - 1 ( k ) (1 < j < k) . 

The proof of (4.11) is by induction, the case r = 0 being in agreement with 
(4.8). 

Assuming (4.11) for r < n - 1, we see from (4.10) that 

V n + ^ = F (n-0k ( k ) + F n k - i « • 

which implies 

(4.D Ski(n + 1) = Fnk(k) 

Using (4.6), (4.9), and (4.12), we obtain successively 

Sk)j+1<n + 1) = 1 + E ^ ^ ( k ) = Fnk+j(k) • 

which proves 
Theorem 5. The number of arrays (4.1) subject to the conditions (4.7) 

is given by (4.11). 
Finally, we can use the numbers N.(n,k) to enumerate certain one-line 

arrays. For 1 < j < k, let R, .(n) denote the number of arrays 

(4,13) n ni n2 n3
 e ° ° , 

where 
(4-14) n r > n r + 1 (r £ j (mod k) ) , 

n r > k + n r + 1 (r = j (mod k) ) 
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It follows that 

[Oct 

(4.15) R. .(] 
kj 

w - ( v ) (0 4 n L k) 

(4.16) R
k j ^ = % R

k | j . i < s ) (2 ^ ] 4 k) , 
s=o 

(4.17) 
n - k 

R (n) = ^ R (s) (n > k) 
s=o 

kkv 

and we deduce 

Theo rem 6. The number of a r r a y s (4.13) subject to the conditions (4.14) 

i s given by 

(4.18) Rk j(n) = N.(n,k) (1 < j < k) . 

F o r convenience of r e fe rence , we give the following tab les of F , (k) n+kv 

and N.(n,k). 

Wk ) : 

^ N J 
1 

2 

3 

4 

5 

6 

7 

1 

4 

5 

6 

7 

8 

9 

10 

2 

8 

8 

9 

10 

11 

12 

13 

3 

16 

13 

13 

14 

15 

16 

17 

4 

32 

21 

19 

19 

20 

21 

22 

5 

64 

34 

28 

26 

26 

27 

28 

6 

128 

55 

41 

36 

34 

34 

35 

7 

256' 

89 

60 

50 

45 

43 

43 
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N.(n,k): 

j 

1 x 
1 1 
2 

1 

2 

3 

1 ' 

2 

3 

4 

K1 

i i 
2 

2 

3 

3 

3 

4 1 
4 

4 

4 

1 

1 2 

H2 
3 

2 

3 

4 

2 

3 

4 

5 

2 

4 

3 

6 

3 

6 

10 

3 

6 

10 

15 

3 

8 

6 

12 

4 

10 

20 

4 

10 

20 

35 

4 

16 

12 

24 

8 

18 

38 

5 

15 

35 

70 

5 

32 

24 

48 

18 

36 

74 

10 

25 

60 

130 

6 

64 

48 

96 

38 

74 

148 

25 

50 

110 

240 

• 7 

128 

96 

192 

76 

150 

298 

•60 

110 

220 

460 

8 

256 

192 

384 

150 

300 

598 

130 

240 

460 

920 

5. ADDITIONAL PROPERTIES 

The above table of values for N.(n,k) suggests the formulas 

(5.1) i <-ui (?) Nk_ (n,k) 
0 (2 k, n > k) , 

2Nk(n - k, k) (2 K k, n > k) , 

(5.2) N
n + r ( n + km - r,k) = Nn_r(n + km + r, k) (n A r) 

(5.3) N (km + r , k) - 2N _ ^ k m + r , k) 

To prove (5.1), we have, using (3.5) and (3.6), 

]=o V / 
Nk_.(n,k) E < - « r ( r ) N k < t t - r ' k ) k | " 1 < - 1 > r , " J ( k I r ) 

r=o 

^k+i k - i 
= (-D^1 E ("I)" fc) Nk(n 

r=o \ / 

= (1 + ( - l ) k + 1 )N k (n - k,r) , 

j=0 

r,k) 

which implies (5.1). 
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In the next place, it follows from (3„5) and (3o10) that 

(5.4) N (n,k) = £ [ V + D k " l l (PT + l ) n + j " k P" j r (1 4 j 4 k; n A k) 
k - l 

r=Q 

so that 

k - l 
(5.5) N <n,k) = £ M E ( n ; A ( l A j - k ; 

J s=o V / r=s+j (mod k) \ / 

It is clear from (5.4) that 

N + r (n + km - r,k) = ^ \ V + D 2 1 ^ - (P* + l ) 2 n + k m - r ] p - s < n + r > 
n s=o L 

= V f"(p"s + D211"1"1^111 _ / p - s + 1)2n+km-rl ps(n+r) 
s=o L 

= E1 r ^ s + D 2 n + k m - ( p s + D 2 n + k m - r i p-sfo-r) 

which completes the proof of (5.2). We remark that (5»3) is an immediate cor-
ollary of (5.2). 

Note that (5.2) requires only that n ^ r. This follows because (5.4) is 
valid for all non-negative j„ 
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NOTE ON A COMBINATORIAL IDENTITY IN THE THEORY OF BI-COLORED GRAPHS 

H. W. GOULD* 
West Virginia University, Morgantown, W. Va . 

In connection with an enumeration problem arising in the theory of 
labelled bi-colored graphs, Ce Y. Lee [2] has obtained the following identi-
ties. Defining N(a,b;n) by the expansion 

ab a v 
(1) 2 > a , b ; n ) x n = £ < - l ) a 4 l H k f J j { l - (1 + x ) k } b 

n=o k=o ^ ' 

and noting the lemma 

b kj kb b 

<*> -Z2>'»= Z Zf( iJ) • 
j=oi=o i=o j = < ^ > 

where <x>.= the smallest integer >x, Lee was able to show that 

from which as a special case he deduced the apparently novel formula 

It may be of interest therefore, to point out that the formulas may be 
written in much simpler form inasmuch as the introduction of <x> leads to 

* Supported by National Science Foundation Research Grants G-1409 5 and GP-482. 
247 
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unnecessarily complicated relations. Indeed it will be shown that relation (4) 
is essentially trivial and may be generalized by methods of finite differences. 
The simple nature of relation (4) was also missed in reviews of the paper [4l , 
[5]. 

In order to determine N from expansion (1) it is not necessary to invoke 
(2) and instead we shall merely make use of the fact that 

( ; ) - • 
for m < p 

when m and p are integers with p > 0, m > 0. 
From (1) we have in fact 

ab a b 
|>a ,b ; n)x n = £( - l ) a + b + k ( * ) £ (-l)J (J>) (1 + ^ 
n=o k=o j=o 

a b , v y v m 

k=o j=o W W n=Q \ I 

m a b I \ i \ i \ 

Y\—C\ lr=0 i=n \ / \ / \ / n^o k=o j=o 

provided only that m ^ ab., 
Consequently we have 

without any essential need for the restriction on range of summation in (3). 
Of course, some terms are zero, but it is convenient to allow these to stand 
in the indicated formula. 

Then when we choose a = b = n in order to obtain the identity (4) found 
by Lee, we see that this would appear more elegantly in the form 
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£?>,kM#)(») 
and we shall show in a simple way that this generalizes to give the relation 

for any real value of ce 

As for the proof, this comes from the familiar fact that when f(x) is a 
polynomial of degree < n inx , say 

f ̂  = Z ai ^ 5 
i=o 

then 

<8 ) E ^ ^ k ) ^ "J _n 
0, n < r , 

k = 0 ( ( -1)%! 

I n • d x Since I ^ I is a polynomial of degree n in x we have 

z<-^©(°+-*) 0, n < r , 

k = 0 — ' , (-d) . r = n , 

this being true for all real values of c and d. The identity is not new, and 
appears for example in Schwatt [3, 104] and has been used by the writer [ l ] 
in another connection0 

Thus 
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3=0 

so that 

H:)t : k i )— 
n n / \ / v , , i .Y n 

k=o7: WW\ n / £J \k/ 

but this is clearly n! by the familiar Euler theorem about n differences of 
n powers of the natural numbers, or we may again apply (8). 

If we define 

do N^cn) = y y (-i)a+b+k^ / aVbVc + k r ' a \ / b \ / c + k j \ 

k=o j=o v k A j A n / 

with N(a,b, 0,n) = N(a,b;n), then we have the extension of (1) as 

(11) ] T N(a,b,c,n)xn = (1 + x ) C ^ ( - l ) a W " Vl - (1 + x)kf 
n=o k=o V k / 

and it would be of interest to know whether this yields any interesting result 
about labelled bi-colored graphs. 
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ftDVANCED PROBLEMS AND SOLUTIONS 
Edited By 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to 
Raymond Whitney, Mathematics Department, Lock Haven State College, Lock 
Haven, Pennsylvania, 17745* This department especially welcomes problems 
believed to be new or extending old results. Proposers should submit solu-
tions or other information that will assist the editor, To facilitate their con-
sideration, solutions should be submitted on separate signed sheets within three 
months after publication of the problems,, 

H-119 Proposed by L* Car isfz, Duke Univers i ty , Durham, N o * Ca ro l i na . 

Put 

H < » . n . ^ | | | ; - ^ * ( - i ) ( ) - ) ( - " - ' ) ( » - - _ » - i ) 
/ 

/ n - j + p - k \ / p - k + i \ 
• \ p - k A •* ; 

Show that H(m,n,p) = 0 unless m, n,p are all even and that 

min(m,n*p) t v. 
xT/o O O \ x ^ t i\T (m + n + p - r )J 
H(2m,2n,2p) = £ (-1) r , r , ( m _ r ) , g _ r ) , fe _ r ) , = 

(The formula 

H(2m, 2n) / m + n \ 2 

{ m ) • 

where 

»«-.-> - s£«-« i ^( i r ) ) (""j 1 + J )C-=r , X m "i -"" J ) 
251 
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is proved in the Fibonacci Quar te r ly , Vol. 4 (1966) , pp. 323-325.) 

H-120 Proposed by M . N . S . Swamy, Nova Scotia Technical College, Halifax,, 
Canada. 

The Fibonacci polynomials a r e defined by 

fn+1(x) = x . fn(x) + fn_lW 

fi(x) = 1, f2(x) = x . 

If z = f (x) . f (y) then show that 

(i) z sa t is f ies the r e c u r r e n c e re la t ion, 

z ,. - xv • z lo - (x2 + y2 + 2)z , - x y z , + z = 0 . n+4 J n+3 x J n+2 J n+l n 

n 
(ii) (x + y)2 • ]T z = (z , - z ) - (xy - l)(z _,_, - z ). x J V r n+2 n - l v J x n+l n 

H-121 Proposed by H, H. Ferns, University of Victoria,, Victoria, B.C., Canada. 

Prove the following identity. 

?j° Vk Fmi+K =\FnTkj 
1=1 X 

Fnk+A " FX <m * k> > 

w h e r e F is the n Fibonacci number , m, A a r e any in tegers o r ze ro and 

k is an even in teger or ze ro . 

Wri te the form the identity t akes if k i s an odd in teger . 

Find an analogous identity involving Lucas number s . 

H-122 Proposed by R. E. Whitney, Lock Haven State College, Lock Haven, Pa„ 

Let F denote the n Fibonacci number expres sed in b a s e 2. Con-
n th 

s ide r the o r d e r e d a r r a y F - ^ F s ° ° ° . Let g denote the n digit of th is 
a r r a y . Find a formula for g . If poss ib le , genera l ize for any base . 
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H-70 Proposed by C . A e Church, J r . , W e V i rg in ia U n i v 9 / Morgantown, W . V i r g i n i a . 

For n = 2m5 show that the total number of k-combinations of the first 
n natural numbers such that no two elements i and i + 2 appear together in 
the same selection is F2 , and if n = 2m + 1, the total is F F , 

m+2 m+2 m+35 

Solut ion and comments by the proposer-

For his quick solution of the "probleme desmenages" Kaplanskyf2l gives 
two results for combinations with restricted positions. We state them in the 
following form: 

The number of k-combinations of the first n natural numbers, on a 
line, with no two consecutive is 

a) r ~ : • n ; o< k<^j- i / n - k + l \ I k I 
if arranged on a circle, so that 1 and n are consecutive, the number is 

n / n - k \ 
n - k 1 k J (2) ^ ^ x r : ~ l , 0 < k < | 

See also [4, p0 198Je Summed over k, (1) and (2) give the Fibonacci and 
Lucas numbers, respectively,, 

For the problem as stated we use (1). 
The restriction that i and i + 2 cannot appear in any selection can be 

stated as (a) no two consecutive even integers appear and (b) no two consecu-
tive odd integers appears 

If n = 2m, a k-combination with the stated restrictions will be made 
up of s integers from among the m even, no two consecutive, and k - s 
from among the m odd, no two consecutive Thus there are 

k 
(3) v / m - s + 1 \ / m - (k - s) + l \ 

k\ s A k-s / 
k-combinations of the first 2m natural numbers such that i and i + 2 do not 
appear. 
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Summing (3) over k we get the total number 

2R?] k F2 = V y / m - s + l \ / m - ( k - s ) + 1\ 
m + 2 ~ feo s=o\ s A k ~ S / 

with the usual condition that 

(>) 
0 for b > a > 0 

For n = 2m + 1 we choose s from among the m even integers, no 
two consecutive, and k - s from among the m + 1 odd integers, no two con-
secutive, to get that there are 

k 
(4) 

s=< 

yx / m - s + l \ / m - (k - s) + 2 \ 

k\ s )\ k-s / 
k-combinations of the first 2m + 1 natural numbers such that i and i + 2 do 
not appear. 

Summed over k, (4) gives the total number 

m+l k 
F F 

m+2 m+3 •fisr-.-r-t-n 
It is also of interest to consider the circular analog of this problem by 

way of (2)0 

For n = 2m, 2 and 2m are taken to be consecutive as are 1 and 2m. 
- 1. By the same argument as before we find that there are 

k 
v-̂  m ^ m - s s=o (m - s\ m /m - (k - s) \ 

s J m - (k - s) \ k - s J 

circular k-combinations such that i and i + 2 do not appear and a total of 
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2 H k 
L2 = V V m ('m - s \ ni / m - (k - s ) \ 

m S s=o m - s I s / m - *k " s^ V k " s / ' 

F o r n = 2m + 1, 2 and 2m a r e consecutive as a r e 1 and 2m + 1 and 
we have the total 

m k 
L L ^4 

m m+l 
V V m / m ~ s \ m + l / m - (k - s) + l \ 
fco s^o m " s I s / m - * - s ) + 1 \ k - s / 

Mixed r e s u l t s can also be obtained using both (1) and (2). F o r example , 

one can take l inear combinations on the evens and c i r cu l a r combinations on 

the odds. 

R e m a r k s . The prob lem posed in H-70 f i r s t appeared in the l i t e r a tu r e in 

a paper by N. S. Mendelsohn ["3J; an explicit formula was not obtained. The 

f i rs t explicit formula was given by M. Abramson [l, l emma 3j„ AbramsonTs 

solution for the number of k-combinat ions such that i and i + 2 do not 

appear together is 

W / n - 2k + s + 2 \ / k - s \ 

k\ k-s M s ) 
REFERENCES 

1. M. Abramson, "Explici t Express ions for a Class of Permuta t ion P r o b -

l e m s , " C a n a d ^ J M a ^ 7(1964), pp. 345-350. 

2. I. Kaplansky, Solution of the "P rob l eme des Menages, M Bull. Amer . Math 

Soco , 49(1943), 784-785. 

3. N. S. Mendelsohn, "The Asymptotic Ser ies for a Cer ta in Class of P e r m u -

tat ion P r o b l e m s , Canad. J. of Math. , 8(1956), pp. 234-244. 

4. J . Riordan, An Introduction to Combinator ial Analys is , New York, 1958. 

H-73 Proposed by V .E . Hoggatt,Jr8/ San Jose State ColIege/ San Jose, Cal i f . 

Let f0(x) = 0, ft(x) = 1 
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and fn+2(x) = xfn + i (x) + fn(x) , n - 0 

and let b (x) and B (x) be the polynomials in H-69; show 

f ^ (x) = xB (x2) , 2n+2 nv 

and 

f <x) = b (x2) . 2n+l n 

Thus t he re is an int imate re la t ionship between the Fibonacci polynomials , f (x) 

and the Morgan-Voyce polynomials b (x) and B (x)„ 

Solut ion by Douglas L ind , U n i v . of V i r g i n i a , Char lo t tesv i l le , V i r g i n i a . 

Usingthe explicit r ep re sen ta t ions of B (x) and b (x) given in H-69, and 

of f (x) given in B-74, we find 

2n-2r+i c t . 
x = f2n+2(x) > 

2n-2r - , v 

These re la t ions have been given by Rc Ae Hayes \_ "Fibonacci and Lucas Po ly-
nomia l s , " (Mas te r ' s Thes is ) ; equations (3.4-1) and (3 .4-2)] . 

H-77 Proposed by V . E . Hogga t t , J r 0 / San Jose State Co l lege , San Jose, C a l i f . 

Show 

2n+i / _ , i \ 

= hi) F2k+2j+l _ 5 L2n+2k+2 

for al l in tegers k. Set k = -(n + 1) and der ive 

5W F - ^ n 
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a resu l t of S. G. Guba P rob l em No* 174, Issue No, 4, July-August 1965, p . 
' 73 of Matematika V. SkSle. 

Solution by L. Carlifz, Duke University, Durham, North Carolina. 

Since 

n 0 n 
L = a + B , F = — 

where 

n ^ s n a - p ' 

a = | (1 + V 5 ) 5 ]8 = I (1 - V 5 ) 

1 + Q'2 = o^V5 , 1 + p2 = -pV5 , 

it follows that 

n / \ n / \ k+2^ 

= a k ( l + a2) - £ k ( T + j32)n 

a - j8 

= ( a k + n - ( - l ) n /3 k + n ) (V5) n 

V 5 

( 5 ( n - l ) / 2 L , A (n odd) 
_ J k+n 

( 5 F k + n (n even) , 

thus general iz ing the s ta ted result0 In pa r t i cu l a r , for k = -n , we get 

§(")*-
j 2 . 5 M / 2 (nodd) 

J I 0 . (n even) . 

Note that 



-2n-i+2j 
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2 f 7 2 n + l \ F _ f / 2 n + l \ F +
2 ^ / 2 n + l \ 

-5(";l)w^£(T1)', 
S(2"-/) 

2n+i-2j 

3=l 

so that 

2 > . i „ r i F 2 J + 1 

Sfr1) F 2 j + i " 5 n 

Similarly, we have 
n / \ 

SO ';) Lk+2. = « k a + C 2) n + /ska + /s2)r 

fck+n + ( - l ) n^k + n) (V5)n 

i 5 L, , (n even) 

k+n 
5 ( n + 1 ) / V (n odd) . 

k+n In particular, since 

gfflw-W •$(?)--*-?(T) -2n+2j 

so that 

LATE ACKNOWLEDGEMENT: Problems H-64, H-71, H-72, H-73, and H-77 
were also solved by M. N. S. Swamy. 

* * * * « -



DIRECT CALCULATION OF k-GENERALIZED FIBONACCI NUiBERS 
IVAN FLORES 

Brooklyn, New York 

SUMMARY 

A formula i s developed for d i r ec t calculat ion of any k-generaKzed F i b -

onacci number u. , without i te ra t ion . 
3 s K 

DEFINITIONS 

The o rd ina ry Fibonacci number u. i s defined by 
3*2 

(1) u. = u. + u. (i > 2) V ; 3*2 ] - l ,2 J-252 U ~ 7 

with the additional conditions usual ly imposed 

(2) u0.2 = 0; uU2 = 1 . 

The k -gene ra l i zed Fibonacci number u. , i s defined a s the sum of i t s 

k p r e d e c e s s o r s 

( ' u j , k Uj~isk Uj-2#k U j -k s k 

i=j-k 

together with the init ial conditions 

(4) u j j k = 0 (0 L j L k - 2); V l j k = 1 

A table of u. , f rom k = 1 to 7 and j = 0 to 15 i s found in Table 1. 
3»K 

259 
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Table 1 
Fibonacci Numbers u. , for Various Values of i and k ]5k 

ki 
1 

2 

3 

4 

5 

6 

7 

P 
0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

2 

1 

1 

0 

0 

0 

0 

3 

2 

1 

1 

0 

0 

0 

4 

3 

2 

1 

1 

0 

0 

5 

5 

4 

2 

1 

1 

0 

6 

8 

7 

4 

2 

1 

1 

7 

13 

13 

8 

4 

2 

1 

8 

21 

24 

15 

8 

4 

2 

9 

34 

44 

29 

16 

8 

4 

10 

55 

81 

56 

31 

16 

8 

11 

89 

149 

108 

61 

32 

16 

12 

144 

274 

208 

120 

63 

32 

13 
233 

504 

401 

236 

125 

64 

14 

377 

927 

773 

464 

248 

127 

15 

610 

1705 

1490 

912 

492 

253 

16 

TERM RATIO 

The key to direct calculation is the existence of a fixed ratio r, between 
successive u. , ! s so that in the limit we have 

(5) lim ]+i;k 
n—>oo u. , k 

(6) 

If such a ratio can be founds an approximate calculation is simple. 
Vorob'ev [ s ] has shown that for k = 2, this requires the solution of 

q̂  = q^"1 + q^~2 

which for q f 0 reduces to 

(7) q2 - q - 1 = 0 

for which the roots are 

.(8) r i = Lz^l * -0.6180 and r2 = ^ y ^ - * 1.6180 , 

If f is any Fibonacci sequence obeying the difference equation f 
where s& means "approximately equal to* " 

If f is any Fibonacci sequence obe 

fn " fn-i = °3 t h e n f
n

 h a s t h e f o r m <s e e E4]* 

(9) fn = bi ri + b2r2 
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Since ( r ^ < 0.7, j r^j < \ 9 so that | r p | < l / 2 n
e Hence t he re ex i s t s an 

such that for all n > Ns u n 2 is the g rea tes t in teger to b2rf, and we wr i t e 

261 

N 

(10) u
js2 * V 2 0 > N) 

To evaluate the constants ht and b2, we use the init ial conditions 

(ID 
b l + b2 = u0j2 = 0 

h1T1 + b2r2 = u l s 2 = 1 , 

which yield 

(12) K - 1 U 1 

bi = —: , b2 = — V 5 V 5 

An exact express ion for u. i s hence the fami l ia r Binet form 

(13) u = 
hl V5 H-(^)] 

GENERALIZATION 

To find an express ion for the k -genera l i zed Fibonacci n u m b e r s , let us 

f i r s t seek solutions to (3) which form a geomet r ic p r o g r e s s i o n say aq . Then 

(3) leads to a genera l form of (6), 

(14) 

Thus 

(15) 

J J-1 j ~ 2 • , j - k 
aqJ = aqJ + aqJ + • • • + aqJ 

j - k , k k - i 
aq (q - q q - 1) = 0 . 

Since we a r e looking for solutions which a r e not identically zero,, we can 

a s s u m e a ^ 0 and q f 0o There fore we see 

(16) k k-i 
q - q - q - 1 = 0 
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, th This k degree equation has k complex roots, say r t ^, r2 ^5 • • •, 

r, , . Now Miles [5j has shown that these roots are distinct, that all but one 
of them lie within the unit circle in the complex plane, and that the remaining 
root is real and lies between 1 and 2. Hence with a suitable choice of sub-
scripts we may write 

(17) 

(18) 

Kkl-< x (1^ ^ k - x ) > 
1 * rk ,k * 2 

Since the roots are distinct, the Vandermond determinant 

(19) 

1 ri,k i ,k 
1 r2,k r2,k 

1 r. . rf . k,k k,k 

k-i r l ,k 
k-i 

r2,k 

k-i 
rk,k 

f 0 , 

and Jeske f4j has shown that the general solution can be written 

(20) u. j , k Eb-r-*-* I I, 
i = i 

To evaluate the constants b., we use the initial conditions 
i 

k 
% Vi i = ° (m = ° ' 1 ' , ° , ' k - 2) > 

(21) 
1=1 

k 

i=l 
k- i 
,k ? V?-- = 1 

This system has a unique solution by (19) which can be found using Cramer 's 
rule. This yields 
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k 

<22) b i - n <ri,k ' V k r l 

QF=1 

so that (20) becomes 

(23) v = M £ (rî  - W 
W i 

Recalling (17) and (18), we remark that as j becomes large ri , becomes 
the dominant term in (23), so that as before there exists an N such that for 
all j > N, u. . is the nearest integer to b, rj" , . We may therefore write 

(24) u j ; k * b k 4 k (j > N) . 

It follows from (24) that 

u. 
(25) lim - C M = r . u. , k,k 

J->00 J,k 

and more generally 

(26) lim ! & k = r m 

APPROXIMATIONS 

We first note that as k—>oo the sequence u. , , approaches the geo-
J-K,K 

metric progression of powers of two, 

1, 2, 4, 8, 16, 32, 64, 

as can be seen from Table 1. It follows that 
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(27) l im r k k = 2 . 
k—^oo ' 

See Table 2 for calculated va lues of the pr inc ipal root r. , for k = 2 to 19, 

which gives s t r ik ing verif icat ion of (27). 

Fibc 

k 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Table 2 
onacci Roots 

rk 
1.6180340 

1.8392868 

1.9275621 

1.9659483 

1.9835829 

1.9919642 

1.9960312 

1.9980295 

1.9990187 

1.9995105 

1.9997556 

1.9998779 

1.9999390 

1.9999695 

1.9999845 

1.9999925 

1.9999962 

1.9999981 

F r o m (25) we get then 

u , 
(28) l im l im 3 *'K = 2 , 

k - > o o j-9>oo U j j k 

which was stated in an equivalent form by P . F . Byrd [ l l . We shal l now show 
- k that b, i s approximately r, , in the s ense that 
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l im b. / r " . = 1 . , ^ k / k,k 

265 

To prove (29), f i r s t r eca l l that 

k ( r k , k ~ ^ k ^ " ( r k , k - r k - i , k ) 

Since 

k k - i x - x x - 1 = (x - r l j k ) • • • (x - r ) k,k' ' 

and 

f(x) = ( x - l ) ( x k - x k " 1 x - 1 ) = x k + 1 - 2 x k
+ l 

= ( x - l ) ( x - r i k ) - . - ( x - r. . ) , k,k' 
we find . , 1 

f ' ( r k ) k ) = (k + l ) r ^ k - 2 k r £ k = ( r ^ - iHr^ - r 1 > k ) - . • ( r ^ - r k _ 1 > k ) 

Hence 

k,k 
k " ( k + i ) r k ) k - 2 k r k ; k 

f rom which (29) follows, s ince r , +
k - 2 r k fe = - 1 . Then for sufficiently l a rge 

j and k we may wr i t e 

(30) u j j k * r £ k . 

Call the approximation for u. . in (24) u! , . Then using (20), the e r r o r 

commit ted by this approximation i s 

(31) w. , = 1 1 . . - ul , j , k j , k j s k | 

k - i 

i = i 

By (17) Ir. , | < 1 for 1 L i 4 k - 1, so the t r iangle inequality shows 
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k- i . k - i 
w. , ^ E M lr- i I < E |b-| • j 5 k ~ £ j I i | | i ,k| . t j I i | 

Note that the f i r s t inequality in (32) shows that 

(33) l im w. . = 0 , 
J->oo J 

so that for fixed k the e r r o r tends to z e ro as j becomes l a rge , giving fo r -

mal justification to (24). 

EXTENSION 

In the nea r future tab les of b, will be p r e p a r e d by compute r s . These , 

together with r, , wil l provide an excellent approximation for u. , using an 

analytic p rocedure . 

The author e x p r e s s e s h i s apprecia t ion to Da A. Lind and V„ Eo Hoggatt, 
J r . , for helping in p r e p a r i n g th is paper . 
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EQUATIONS WHOSE ROOTS ARE T IE nth POWERS 
OF T IE ROOTS OF A GIVEN CUBIC EQUATION 

N . A , DRAiMand MARJORIE BICKNELL 
Ventura, Cal i f , and Wilcox High School, Santa Clara, Cal i f . 

Given the cubic equation 

x3 - c ^ 2 + c2x - c3 = 0 , 

with roo t s r l 5 r 2 , r 3 j the p rob lem of this paper i s to wr i te the equation 

._ o , n n IK o , n n n n n IK n n n 
(1) x6 - (ri + r2 + r3 )x* + ( r ^ + r ^ g + r 2 r 3 )x - r ^ ^ 

= x 3 ™ C ( l ? n ) x 2 + C ( 2 s n ) X ~ C ( 3 5 n ) = ° 

whose roo t s a r e r^ , r 2 , r 3 , and whose coefficients a r e expressed in t e r m s 

of the coefficients c l 5 c2 , c3s of the given equation0 

This paper extends to the cubic equation a study init iated by the solution 

of a s i m i l a r p rob lem for the quadrat ic by the s a m e authors [ 1 1 . Ju s t a s a 

specia l quadrat ic equation leads to a re la t ionship between the n Fibonacci 

number and a sum of binomial coefficients, so does a specia l cubic equation 
th 

r e l a t e the n m e m b e r of a Tribonacci sequence to a sum of products of b i -
nomial coefficients. Some Lucas identi t ies also follow. 

The summat ion for init ial values of powers of roo t s by e lementary theory 

y ie lds the f i r s t five en t r i e s in the table below. Examination of this sequence 

r e v e a l s an i t e ra t ive pa t t e rn ; namely, that if 

c
( l j n ) = r i + r2 + r 3 ? n > 0 s 

then 

C ( l , n ) = C i C ( l 9 n - l ) " C 2 C ( l 3 n-2) + C 3 C ( l 3 n-3) J 

which i s easi ly proved, s ince each root , and hence sums of the r o o t s , sa t i s f ies 

the original equation,, 

267 
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Sums through eighth powers appear in the table below. The r ight -hand 

column gives the sum of the absolute values of the coefficients for each value 

of n. 

a 
n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

> 

3 

c l 

C? 
cl 
*\ 

cf 
c? 
c7i 

°\ 

- 2c2 

- 3 0 ^ 2 

- 4 c i c 2 

- 5 0 ^ 2 

- 6cfc2 

- 7c5c2 

- 8cfc2 

+ 

+ 

+ 

+ 

+ 

+ 

c d 

2 c 2 

5 ° l c 2 

9c2
lC2 -

Ucfcjj 

20c^c| 

8 c l c 3 ~ 

n n n 
n )

 = r i + r 2 + r 3 

+ 3c3 

+ 4 0 ^ 3 

+ 5 0 ^ 3 - 5C2C3 

2 c | + 6c^c3 - 120^203 

- 70^1 + 7cjc3 - 21c5c2c3 + 7c 

- 16cfc| + 2c£ 

oZC-jC2Co + 24c j C ^ + 1 2 c ^ c | -

+ 3c3
2 

\cz + lci 

" 8c2c | 

r 2 c 3 

Coefficient 
Sums for n 

3 

1 

3 

7 

11 

21 

39 

71 

131 

It i s possible to perce ive the genera l ized number pa t te rn for sums of n powers 

of the roo t s by extending the table above and breaking down the sum in t e r m s of 

coefficients of powers of c3. If ip i s the coefficient of c 3 / n ! in the sum 

n n n 
r l + r 2 + r 3 

then 

• 0 = c^ - nc^"2c2 + n(n - 3 ) c f " 4 c | / 2 ! - n(n - 4)(n - 5 ) c ^ " 6 c | / 3 ! + . . . 

ip1 = n c j " - n(n - 4 ) ^ " c2 + n(n - 5)(n - 6)c1~ cf/21 

- n(n - 6)(n - 7)(n - 8 ) c f " 9 c f /3 ! + • - -

ip2 = n(n - 5)cf*6 - n(n - 6)(n - 7)c? ' 8c2"+ n(n - 7)(n - 8)(n - 9)c?~i 0cjj/2! 

- n(n - 8)(n - 9)(n - 10)(n - l l ) c f ~ 1 2 c ^ / 3 ! + - . . 
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leading to the t h r ee equivalent express ions below0 Fo r CjCgCg ^ 0, 

[n /3 j 

(2) r ? + r f + r3
n = £ c 3 % k / k ! , 

k=o 

[(n-3k)/2] 
\~^ , ^ m n-2m-3k m . _. .,.. .. _ rt. . , 

^ k = 2 ^ t"1) c i c2 n(n - m - 2k - l ) ! / ( n - 2m - 3k)!m; , 
m=o 

[n/3J [ (n-3k)/2 

(3) r? + rf + r3
n = J ] ^ (-1) n(n - m - 2k - 1)1 n-2m-3k m k 

(n - 2m - 3k)Jm!k! C l °2 ° 3 

k=o m=o 

[n/3][(n-3k)/2] 
n = V V* (-1) n / n - m - 2 k - l \ / n - m - 3 k \ 
3 2Lt 2^ n - m - 3k \ k ) \ m ) (4) T1 + r 2 + r 3 = 

k=o m=o 
Ky n-2m-3k m k X c i c2 c3 , 

where [n] i s the g rea t e s t in teger ^ n and I J i s a binomial coefficient. 

Notice that the coefficients of c$ a re the s a m e as the coefficients which a r o s e 

in studying the roo ts of the quadrat ic in [1J . The r e i t e r a t i ve re la t ionship of 

the t e r m s c n . sugges ts a proof by mathemat ica l induction for the t h r ee 

formulae l i s ted , and such a proof has been wri t ten by the au thors . For the 

sake of brev i ty , the proof i s omitted. A der ivat ion of the above formulas 

could a lso be done using War ing ' s formula and Newton's ident i t ies (see [ 2 ] ) . 

Thus far , we have found a way to e x p r e s s the coefficient for x2 in our 

genera l p rob lem. The coefficient for x, 

n n n n n n 
C(2,n) = r i I > 2 + r i I > 3 + r 2 r 3 ' 

has a s im i l a r computation. In the auxil iary cubic equation 

, n n w n n w n n . _ 
(x - rir2 )(x - rtT3 )(x - r 2 r 3 ) = 0 

notice that c. . is the coefficient of x2. When n = 1, the above cubic (z, n; 
b e c o m e s , upon mult ipl icat ion, 
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x3 - ( r ^ + r 1 r 3 + r2r3)x2 + (rl |r2r3 + r 1 r^r 3 + r 1 r 2 r | ) x - r^r^r | 

= X3 - C2X2 + CjCgX - C§ = 0 . 

Comparing this equation with the equations of our or iginal p rob lem, we can 

apply the th ree formulae a l ready der ived for cM v to find c / 0 s if we r e -^ J J ( l , n ) (2,n) 
place c1 by c2? c2 by c^Cg, and c3 by c | . For example , from Equation (4), 

if c ^ C g fi 0, our formula for c , 2 . becomes 

[n/3] [(n-3k)/2] 
<K vnvn + vnrn + r n r n - V V (-1) n(n - m - 2k - 1)! 
(5) r t r 2 + r i r 3 + r 2 r 3 - ^ Z , ^ n ~ ^ n ~ ^ 3 k ) ! m! k! 

k=o m=o 
m n-2m-3k 2k+m 

In p r a c t i c e , when ra i s ing the roo ts of a given equation, It is s imple r to uti l ize 

the method of i te ra t ing functions than to substi tute into the formulae , especial ly 

as n becomes l a r g e r . An example worked by each method follows. 

Given the equation 

x3 - 6x2 + l l x - 6 = 0 , 

wr i te the cubic whose roo t s a r e the fourth powers of the roo ts of the given equa-

tion, without solving for the roo t s . 

(A) By substi tution; F r o m the table given e a r l i e r or from Equations (3) 

and (5), the des i r ed cubic Is 

x3 - (cf - 4CjC2 + 2c2 + 4c1c3)x2 + (e2 - 4 0 ^ 0 ^ + 2G\C\ + 4c2c3)x - c3 = 0. 

Substituting 

c i = 6, c2 = 11 , c3 = 6 

yie lds 

x3 - 98x2 + 1393x - 64 = 0 
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with roo ts l 4 , 24, and 34. As a check, the roo t s of the given equation a r e 

1, 2, and 3. 
(BJ By i te ra t ion: To get c . . , we wish to wr i te the sequence 

C ( l , 0 ) ' c ( l , l ) ' C ( l , 2 ) ' C ( l , 3 ) ' C ( l , 4 ) ' 

Now 

C ( l , 0 ) = 3 ' C ( l , l ) = C i = 6> C ( l , 2 ) = °21 " 2C2 = 36 - 22 = 14 

By the i te ra t ion re la t ionship , 

3(1,3) = C i C ( l 5 2 ) - C 2 C ( l , l ) + ^ ( l 5 0 ) 

C ( l 4 ) = 6 ( 6 ) ~ n ( 1 4 ) + 6 ( 3 6 ) 

Similar ly , 

r 2 
' (2 ,0) " " ' "(2,1) " " ' "(2,2) 
c / o m = 3, c / 0 1N = 11 , c / 0 Q^ = c2 - 20^3 = 49. 

Since 

C(n,2) = C 2 C ( 2 , n - l ) ~ C*C3c(25n-2) + C3c(2 ,n-3) 

substi tut ion yie lds 

c 3 ) = 251 and c ^ = 1393 , 

yielding the s a m e cubic as in (A). 

Next let us tu rn our attention to severa l special cubic equations. F i r s t , 

for the cubic 

x3 - x2 - x - 1 - 0, c ( l j 0 ) - 3, c ( l j l ) - 1, c ( l ^ 2 ) 
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and oux repeat ing mul t ip l i e r s in the i t e ra t ive re la t ionship a r e 1, 1, 1. Then, 

c ( l , 3 ) = 1 ( 3 ) + 1 ( 1 ) + 1 ( 3 ) = 7 ' °(1 4) = 7 + 3 + X = U ' 

' " ' C ( l , n ) = C ( l , n - 1 ) + C ( l , n - 2 ) + C ( l , n - 3 ) -

For this pa r t i cu la r equation we have a spec ies of Tr ibonacci n u m b e r s , any t e r m 

after the th i rd being the sum of the th ree preceding t e r m s , with the entry t e r m s 

3 , 1 , 3 . By Equation (4), the n t e r m T in this Tr ibonacci sequence is 

[n/3] [(n-3k)/2] 

n i—J JL-J n - m 
k=o m=o 

( - l ) m n / n - m - 2 k - l \ / n - m - 3 k \ 
m - 3 k \ k / \ m / 

Notice that the sums of the coefficients in the table given for. c,., . a r e these 
( l , n ) 

s a m e number s . It is in te res t ing to r eca l l that the special equation 

x2 - x - 1 = 0 

led to a formula re la t ing the n member of the Fibonacci sequence to a sum 

of binomial coefficients in the e a r l i e r study of the quadrat ic equation [ 1 ] , 

Consider ing the special equation 

x 3 - x 2 + x - l = 0 

with roo t s 1, ±V^T, we can wr i te the following from Equation (4): 

[ n / 3 ] [(n-3k)/2] - I l if n is odd 

Zu Z . n - m - 3k ^ k H m I . f Q = 
k=o m=o ' x ' ' 

Of more i n t e r e s t , however, a re the following identi t ies for the n Lucas 

number L , defined by 
n ' J 
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Li = 1, L2 = 3, Ln = ~Ln-i + Ln_2 . 

We subst i tute in Equation (3), using 

; r i = a = (1 + N/5 ) /2 , r 2 = p = (1 - N /5 ) /2 , 

and let t ing r 3 va ry . If r 3 = 1, Equation (3) cannot be used direct ly because 

c2 = a/3 + (3 + a = 0, 

and 0° is not defined, But, by following the derivat ion for Equation (3), it i s 

seen that , if c2 = 0, c^g £ 09 

[ n / 3 ] 
/ofX n n n \-^ n(n - 2k - 1)1 n-3k k 
(3!) r , + r2 + r3 = £ (n - 3k)!k! C* °* 

k=o 

Since 

c1 = a + fi + 1 = 2, c3 = a/3 = - 1 , 

and 

n J I L = a + B n p 

subst i tut ion gives 

K 3 ] . k n-3k 
(-1) 2 n(n - 2k - 1)] 

k=o 
L n + X LJ (n - 3k)I k! 

In genera l , if 

r 3 = P, P ^ 1, P £ - 1 , P ^ 0 , 
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Equation (3) gives 

[n/3] [(n-3k)/2] m + k . ^ m - s k , ^ m k 
T + n n - V V (-1) n(n - m - 2k - 1)1 (p + 1) (p-1) p 

n + p 2-J 2-J (n - 2m - 3k>! m* k! 
k=o m=o 

Similar ly , Equation (31) gives the following two identi t ies using 

rt = a, r 2 = p, r 3 = - I /N/5" , 

and the known re la t ionship for Fibonacci n u m b e r s , 

F n = {an-/3n)/M5 . 

Below, n is taken to be 2s + 1 and 2s respec t ive ly . 

f ( 2 S + l ) / 3 J , n , w „ ^k,2S-3k+i 
F 9 

s+i _ v-* (2s + 1) (2s - 2k) ! (-1) 4 1/58+1 = E 2S+1 ~ X/° ~ /_j / r t _ s-k+i 
—Q (2s - 3k + l ) ! k ! 5 ^ 

[ 2 s / 3 J k ?s-3k 
T + i / , s _ V 2s(2s - 2k - 1) I (-if 4 2 S 3 k 

L 2 g + 1/5 - > : —£ 
^ (2s - 3k)J k! 5 S K 
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_Jt iATE!J I INTERESTS IN THE FIBONACCI SERIES II 
CALCULATION OF FIBONACCI NU1BEIS AND SUMSFROM THE BINOIIAL 

JOSEPH MANDELSON 
U.S. Army Edgewood Arsenal, Maryland 

As mentioned in an e a r l i e r paper 5 my i n t e r e s t in the Fibonacci s e r i e s 

s t emmed from the observat ion (in 1959) that the p r e f e r r e d ra t ios developed in 

the r e s e a r c h of my colleague., EL El lner s and l a t e r included in Depar tment of 

Defense Handbook H109 [ l j s were 1, 2, 3S 5, 8. When the supposition was 

tested^ that al l p r e f e r r e d ra t ios would come from the Fibonacci ser ies^ the 

next ra t io was calcula ted and was found to be 13. Then i t was noted that the 

sample sizes., Acceptable Quality Levels (AQLfs)s and lot s ize ranges of al l 

sampl ing s t andards s ince the or ig ina l work in this field by Dodge and Romig 

£2] were s e r i e s approximately of the type : 

(1) u ^ = u , . + u 
v ; n+2 n+i n 

It s eemed self-evident that , in some way,, the Fibonacci s e r i e s mus t be i n t i -

mate ly connected with some probabi l i ty dis t r ibut ion such as the Binomial e x -

pansion, Through a l i t t le a lgebra ic juggling such a connection was quickly 

es tab l i shed a s follows : 

The method of finite differences^ descr ibed in Chrys ta l [3 ] yields i n t e r -

es t ing r e s u l t s . If success ive differences be taken between adjacent Fibonacci 

n u m b e r s : 

(2) d = u , , - u 
v ; i,n n+i n 

a s e r i e s of f i r s t - o r d e r differences dt n i s generated* In the s a m e way5 a 

s e r i e s of s econd-o rde r differences may be genera ted : 

(3) d = d _,, - d, 
v ' 2,n i, n+i i,n 

H i g h e r - o r d e r differences may be genera ted in accordance with the genera l 

re la t ionsh ip : 
275 
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( 4 ) ^ n = d(k~i)*(n+l) " d(k-l),n 

Taking the Fibonacci series itself, u , to constitute the zero order of 
differences d0 n and if j is some given value of n, and k is the order of 
differences, we get the following table; 

k j 

*o 
dt 

d2 
^3 

<*4 

d5 

<*6 
d, 

d8 

d9 
d10 

= 1 

1 

0 

1 

-1 

2 

-3 

5 

-8 

13 

-21 

34 

2 

1 

1 

0 

1 

-1 

2 

-3 

5 

-8 

13 

-21 

3 

2 

1 

1 

0 

1 

-1 

2 

-3 

5 

-8 

13 

4 

3 

2 

1 

1 

0 

1 

-1 

2 

-3 

5 

-8 

5 

5 

3 

2 

1 

1 

0 

1 

-1 

2 

-3 

5 

6 

8 

5 

3 

2 

1 

1 

0 

1 

-1 

2 

-3 

7 

13 

8 

5 

3 

2 

1 

1 

0 

1 

-1 

2 

8 

21 

13 

8 

5 

3 

2 

1 

1 

0 

1 

-1 

9 

34 

21 

13 

8 

5 

3 

2 

1 

1 

0 

1 

10 

55 

34 

21 

13 

8 

5 

3 

2 

1 

1 

Q 

11 

89 

55 

34 

21 

13 

8 

5 

3 

2 

1 

1 

12 

144 

89 

55 

34 

21 

13 

8 

5 

3 

2 

1 

13 

233 

144 

89 

55 

34 

21 

13 

8 

5 

3 

2 

14... et< 

377 u 
n 

233 

144 

89 

55 

34 

21 

13 

8 

5 

3 

It may be seen that as k, the order of differences, and j are increased 
without limit, the table of d, and j forms, both horizontally and vertically, 
four Fibonacci series centering on each zero, such that the two series, one 
above and one to the right of each zero are positive in all their terms while the 
series to the left and below each zero have alternate negative terms. In e s -
sence, the latter series constitute the negative branch of the Fibonacci series, 
u . -n 

We can calculate un, n = k +j , from the differences d . as follows: 

(5) „ = d . + k d . + J % ^ d . +
 k * - y - 2> d . + . . . + £ dt. 

Ts+j 0,] 1,] 2! 2,3 3! 3,3 k! k,j 
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where & i s d of the o r d e r k as shown in the table and u. = d .. The 
*>J 3 3 0 , 1 

coefficients of the d, t e r m s r e p r e s e n t those of the Binomial Expansion, 
(a + b) K . 

Example 1, 

Calculate u , + . when k = 7, and j = 3 (u, . = u1 0) 

U7+3 = d0j3 + 7d1?, + ^ p d2}3 + ^ | © d,53 + . . • + | [ d7j3 

= 2 + 7 ( 1 ) + 1M ( 1 ) + I M ( 5 ) 7(6)(5)(4) 
W 2 W 3(2) l U j 4(3) (2) ( 1 ' 

+ 7(6) (5) (4) (3) 7(6) (5) (4) (3) (2) 7[ 
5(4) (3) (2) l x ; (6) (5) (4) (3) (2) l ; 7! [ ^ 

_ 42 210 840 2520 ,5040 , 9 . . - , Q, 
- 2 + 7 + — (1) + — (0) + - ^ (1) + — (-1) + ~ ^ (2) + l(-3) 

= 2 + 7 + 2 1 + 0 + 3 5 - 2 1 + 1 4 - 3 = 55 = u10 . 

The sum of consecutive t e r m s of the Fibonacci s e r i e s i s given by? 

n=j+k-i 

Example 2a 

Calculate the sum of k = 9 consecut ive Fibonacci number s s ta r t ing with 
uj U = 4) . 

n=j-Hk-i n=9+4-l=l2 9 x 8 .„. . 9 x 8 x 7 ... , 9 x 8 x 7 x 6 ,.., 
£ u

n= E un=9(3)+-T-(2)+-Tlri-(l)+ 4 x 3 x 2 (1) 
n=j n=4 

9 x 8 x 7 x 6 x 5 . , 9 x 8 x 7 x 6 x 5 x 4 9 x 8 x 7 x 6 x 5 x 4 x 3 
5 x 4 x 3 x 2 W 6 x 5 x 4 x 3 x 2 {) 7 x 6 x 5 x 4 x 3 x 2 ^ 

9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 9[ , „, 
8 x 7 x 6 x 5 x 4 x 3 x 2 l ) . 9! ( } 

= 27 + 72 + 84 + 126 + 0 + 84 - 36 + 18 - 3 = 372 

n=i2 
J^ u = 3 + 5 + 8 + 13 + 21 + 34 + 55 + 89 + 144 = 372 
n=4 
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I t i s noted that d. . = d , . such that when i - k = ±p3 dn i s the same n u m -k,3 o,k-j J F 3 ° 
e r i ca l ly and i s posi t ive when p i s posi t ive o r when p i s negative and o d d 

However, d0 i s negative when p i s negative and even. 

Since d0, the z e r o - o r d e r of difference, i s the same as the Fibonacci 

s e r i e s , u , equations 5 and 6 may be wri t ten in t e r m s of u provided ref-

e rence i s made to the p rope r sign of u. , when j - k i s negative* Thus , 

examining the table of d. and j f o rms , i t may be seen that d0 •; = u-j, d1 * 
= d0 -;_! = U4 1 ? etce Hence, equations 5 and 6 may be r e c a s t a s follows: 

k+] 3 3-1 2! 3-2 3! 3-3 k! j - k 

and 

n=j+(k-l) 
k! (8r T u = k u . + ^ | r ^ u . + ^ ^ u . + . . . + ^ u . , . „ 

v ; LJ n 3 2! ]- i 3! j =2 k! j - ( k - i ) 
n=j 

^Provided the sign of u. , i s : 

Pos i t ive when j - k i s posi t ive 

Pos i t ive when j - k i s negative and odd 

Negative when j - k i s negative and even. 

Also, u0 = 0o 

Example 3, Let j = 3 and k = 7. Calculate u , + . = u10 

,7x6 ,7x6x5 , 7 x 6 x 5 x 4 7x6 x 5 x 4 x 3 

u1 0 - u 3 + 7u2 + -F-u1 + - T F r u 0 + - r x 3 x 2 *-i + -TTTZTirr* 
7 x 6,x 5 x 4 x 3 x 2 7!_ 
6 x 5 x 4 x 3 x 2 U~3 7! U~4 

= 2 + 7(1) + 21(1) + 35(0) + 35(1) + 21(-1) + 7(2) + l(-3) 

= 2 + 7 + 21 + 0 + 3 5 - 2 1 + 1 4 - 3 = 55 = u10 

Example 4. Let j = 3 and k = 7, Calculate 

n=j+(k-i) 

T. u 
n=3 

n=3+7-i=9 

= E u 
n=3 
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V * ,1 - 7n 4- 7 x 6 „ 4. 7 x 6 x 5 „ , 7 x 6 x 5 x 4 M 7 x 6 x 5 x 4 x 3 
E U n - 7 u 3 + - 2 - ^ 2 + - 3 ^ y - u 1 + 4 x 3 x 2 U 0 + 5 x 4 x 3 x 2 ^ 

7 x 6 x 5 x 4 x 3 x 2 7[ 
6 x 5 x 4 x 3 x 2 U~2 7! U~3 

= 7(2) + 21(1) + 35(1) + 35(0) + 21(1) + 7(- l ) + 1(2) 

'= 14 + 21 + 35 + 0 + 21 - 7 + 2 = 86 

= u3 + u4 + u5 + u6 + u7 + u8 + u9 

= 2 + 3 + 5 + 8 + 13 + 21 + 34 = 86 

NB. The n u m b e r s in pa ren theses in Examples 3 and 4 a r e the numer ica l va lues 

appropr ia te for u._, with signs as provided above, 

I t i s ag reed that the above equations do not provide the l ea s t labor ious 

way of calculat ing u o r S u but they do show that t he re i s a re la t ion between 

the Fibonacci s e r i e s and the Binomial . 
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EXISTENCE OF ARBITRARILY LONG SEQUENCES OF CONSECUTIVE MEMBERS 
IN ARITHMETIC PROGRESSIONS DIVISIBLE BY ARBITRARILY MANY DIFFERENT PRIMES 

DOV JARDEN 
Hebrew University, Jerusalem, Israel 

It is well known that there exist arbitrarily long sequences of consecutive 
positive integers that are all composite, e. g. , (n + 1)! + 2, (n + 1)! + 3, • • • , 
(n + 1)! + (n + 1). This statement can also be formulated thus: for any given 
positive integer n there exist n consecutive composite positive integers 
each of which has at least one prime divisor. The following is a twofold gen-
eralization of the last statement. 

Theorem. In any infinite arithmetic progression 
(1) ax + b, a, b integers, a ^ 0, x = 1,2,3,- •• 
and for any two positive integers, n, v, there exist n consecutive members 
each of which is divisible by at least v different primes. 

Proof. (By induction on v ). Since a ^ 0, we have a < 1 or a § 1. 
We may suppose, without loss of generality, a ^ 1, since if a < 1 we can 
consider the progression -ax - b, the members of which have the same abso-
lute values as the corresponding members of (1). Thus for x > (1 - b)/a, 
(1) is an increasing sequence of positive integers >1. Since any integer > l i s di-
visibleby at least one prime, our statement is valid for v = i . From the valid-
ity of the statement for v we shall prove its validity for v+ 1. As a matter of 
fact, let 2 < aA < a2 < • • • < a be n consecutive members of (1) each of which 
is divisible by at least v different primes. Consider the sequence of n consec-
utive positive integers (a )l2a+al9 (a )\ 2a+a2,*",(a )\ 2a+a . For 2 L &i L a, 4 a 
we have r,_ ^2, 

(an)!2a + ak = ak W (an)! 2a + J |"(2 . 3 • 4 • - • ak_i . ak . ak+1 . . . an)(an)! a 
ak J k L ak 

= ak[(2- 2. 4 . . . a k - i - a ^ - . . an)(2- 3- 4- • - a k - . - an)a-

The sum in brackets is composed of two terms, one divisible by ak, the other 
being 1. Thus, this sum is coprime with a, , and since it is greater than 1, 
it is divisible by a prime not dividing a,. Hence (an)! 2a + ak is divisible by 
v + 1 different primes, for any 1 < k < n. On the other hand, since a, is 
a member of (1), thus of the form ax + b, we have (an)! 2a + ak = b (mod a), 
thus (an)! 2a + ak is a member of (1), which completes the proof of the theorem. 

• • • • • 
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A PROPERTY OF LINEAR RECURSION RELATIONS 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

If one selects the basic Fibonacci recursion relation, 

(1) U ^ - Un + 1 - Un = 0; (n ^ 0) U0 = 0, Ut = 1 , 

and applies the well-known series transformation f l ] , 

(2) y(t) =XI u k t k / k ! ' 

one obtains a linear differential equation with a characteristic equation, 

(3) V = n2 - n - 1 = 0 . 
v ' n 

It is easily verified that the recursion relation satisfied by |V I is 

(4) V J ^ - 2 V J + V = 2 . 
v ' n+2 n+l n 

It seemed reasonable to consider the relationship between (1) and (4). When 
the relationship was investigated, a rather unusual result was obtained. A 
characterization of recursion relations of polynomials was also obtained from 
the results. To carry out the investigation, it was expedient to introduce some 
terminology. 

Let a linear recursion relation of order p with constant coefficients be 
denoted by 

n+p 
Li(U) = \ ^ a. U. = b for all n ^ 1; a = 1 . 

i=n 
281 
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When we apply the series transform (2) to the above, we obtain 

V Y y ( l ) = be 

The characteristic equation of this differential equation is , 

] C ainl 0 . 

Let 

Define 

P 
Vn = ^ a . n 1 ; (n > 1) V0 = a0 . 

o 

n+p 

**<*> = E di-nVi = C; d;p = 1 , 
i=n 

as the conjugate recursion relation of L^U). The dTs and C will shortly be 
determined explicitly. Since d = 1, it may be shown, as follows, that for 
fixed order p, L2(V) is unique. 

Clearly for any particular recurrence relation, L^U) = b, IV 1 is 
unique. Suppose L2(V) were not unique. Then 

n+p 

(5) H(V) = J2 di-nVi = C' 
i=n 

and 

n+p 

(6) VUV) = Y ^ df.f V. = C,f; d! = dn = 1 , 
/ J l~n i P P 
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are two distinct normalized recurrence relations for j V L For any fixed p5 

the series transformed differential equations for (5) and (6)s effected by (2), 
th would be distinct p order linear differential equations with identical boundary 

conditions and the same solution^ 

y(t) =J]vi t i / i ! • 

Note that the series for y(t) converges for all t, since 
by 

V is dominated 

and thus V n = 0(nP)e 

Max 
i=o? • • • , p 

a. 
i 

x ^ \ i 
/ n 

By linearity properties of the solutions of linear differential equations 
with constant coefficients^ this is impossible. Hence (5) and (6) are Identical, 

Thus L2(V) is the normalized recursion relation of order p, satisfied 
by JV 1. We shall say that L^U) i s self-conjugate If and only if 

Li(U) - L2(U) . 

Before we state and prove the central theorem^ we shall need a lemma and two 
preliminary theorems, 

Lemma: 

X > « j ( n + p - j ) p - k | 
3=0 

0 if k = 1,2, .- . ,p 

p! if k = 0 . 

The proof of the above is an elementary albeit tedious exercise in induction and 
Is given as elementary problem^ E12535 in f2jB 
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Theorem 1: 

P 
v„ = 1 

o 
= > a.n ; a = 

implies 

P 
J = ' 

3=o t'-O^--' 
Proof. If we use the polynomial expression for V , in J, the coeffi-

cient of a , in J is 
p-k 

j=° 

By the lemma, 

Theorem 2: 

implies 

J = p!a = p! QED. 

Li(U) = b; a = 1 

P 

P-'O L2(V) = ; ( ( - D J ( J v n + p . . = P : 
j=0 

Proof. The characteristic equation of the series transform of Lj(U) is 
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P 

X N n i = ° • 
o 

Thus 
P 

o 

and by Theorem 1, the result follows0 

Theorem 3: If L^U) is of order p, then a necessary and sufficient 
condition that L^U) be self-conjugate is that 

LI(U) = £ ( -D J ( P )v n ^ = P! 
j=0 ^ 3 ' 

The proof follows from Theorem 2 and the uniqueness of L2(V). 
In the light of the above we have 
Corollary; Every polynomial of degree p has the same recursion rela-

tion and a recursion relation of the type given in Theorem 3 yields a polynomial 
expression in closed form,, 

If we choose p = 2, a1 = a0 = - l , b = 0 we obtain (1) above. The 
conjugate of (1) is (4)a Thus the Fibonacci relation is not self-conjugate,, 

It would be interesting to see if there are other classes of functions which 
yield a fixed recursion relation for all members of some subclasses of the 
class of functions,, Since the types of solutions of linear recursion formulae 
with constant coefficients are quite restricted, one would have to consider 
more general relations to obtain results of much consequence. 
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SIMULTANEOUS PRIME AND COMPOSITE MEMBERS 
IN TWO ARITHMETIC PROGRESSIONS 

DOVand MOSHE JARDEN 
Hebrew University, Jerusalem, Israel 

Theorem, Any one of two non-identical infinite reduced arithmetic 
progressions has an infinitude of prime members the corresponding members 
of which in the other arithmetic progression are composite. 

Proof. Be 
(1) ax + b, (a,b) = 1, x = 1 , 2 , 3 , . . . 
/ON . j / JX -i i o o a ^ c or b ^ d 
(2) ex + d, (c,d) = 1, x = 1,2,3,-** 
two non-identical infinite arithmetic progressions. We may suppose, without 
loss of generality, a ~ 1, c — 1, since if, say, a ^ 1, we can consider 
the progression -ax - b, the members of which have the same absolute val-
ues as the corresponding members of (1). Suppose, contrary to the assertion 
of the theorem, that one of the progressions, say (1), has only a finite number 
of prime members the corresponding members of which in the other progres-
sion are composite. Thus, there is a positive integer N such that N >) d J 
in case a = c, and 

in case a ^ e, and such that, for any positive integer x ^ N, ex + d is a 
prime if ax + b is a prime. ByDirichlet, (1) has an infinitude of prime mem-
bers. Hence, there is a positive integer x0

 > N such that ax0 + b is a prime, 
whence, by the assumption, also cx0 + d is a prime. If a = c, then b £ d, 
and ax + b ^ ex + d for any x. If a ^ c, then ax + b - ex + d only for 
x = (d - b)/a - c). Since x0

 > N ~̂ (d - b)/(a - c) we have ax0 + b ^ cx0 + d. 
Thus the arithmetic progression a(cx0 + d)x + (ax0 + b), x = 1, 2, 3, • • • , is 
reduced. Hence, by Dirichlet, there is a positive integer xt such that a(cx0 

+ d)xj + (ax0 + b) is a prime. Now put x2 = (cx0 + d)x1 + x0. Since c ^ 1, 
x0

 > N ^Id I, x1 ^ 1, we have x2
 > x0 > N. Thus ax2 + b = a(cx0 + d)xt + 

(ax0 + b) is a prime with x2 ^ N, while cx2 + d = c(cx0 + d)x1 + (cx0 + d) = 
(cx0 + d)(cx1 + 1) is evidently composite with x2 > N, since both cx0 + d, 
being a prime, and cxt + 1, with c ^ 1, xt ^ 1, are integers > 1 . The 
contradiction to the assumption thus obtained proves the theorem. 

• • • • • 
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B-118 Proposed by J . L. Brown, J r . , Pennsylvania State Univers i ty , 
State Co l l ege , Pa. 

Let Fj = 1 = F2 and F n + 2 = F n + 1 + F for n > 1. Show for all n > 
1 that 

E (Fk/2k) < 2 . 
k=i K 

B-119 Proposed by J im Woolum, Clayton Va l l ey High School , Concord, C a l i f . 

What is the area of an equilateral trapezoid whose bases are F and 
F ,„ and whose lateral side is F ? n+i n 

B-120 Proposed by Phil Mana , Universi ty o f New M e x i c o , A lbuquerque, N . M e x . 

Find a simple function g such that g(n) is an integer when n is an 
integer and g(m + n) - g(m) - g(n) = mn, 

B-121 Proposed by Phil Mana , Universi ty of New M e x i c o , A lbuquerque, N . M e x . 

Let n, q, d, and r be integers with n > 0, d > 0, n = qd + r, and 
0 < r < d. Prove that 

F n = ( F d + 1 ) q F r (mod F d ) . 

287 



288 ELEMENTARY PROBLEMS AND SOLUTIONS [Oct. 

B-122 Proposed by A . J . Mont leaf, Univ. of New M e x . , Albuquerque, N . Mex, 

Show that 

s in |(2k + 1)0 / s i n 6 = 2 cos 2k0 + 2 cos 2(k - 1 ) 0 + 2 cos |2(k - 2)0 | 

+ • • • + 2 cos 20 + 1 

and obtain the analogous formula for F/ r t l , x / F in t e r m s of Lucas number s , & (2k+i)m/ m 

B-123 (From B-102, Proposed by G . L. Alexanderson, U n i v . of Santa C la ra , 
Santa C la ra , C a l i f o r n i a . 

Show that all the posi t ive in tegra l solutions of x2 + (x ± l ) 2 = z2 a r e 
given by 

x = (p )2 _ (p )2 . z = (p )2 + (p )2 n = ! 2 , • • • ; 
n n+l n ' n n+i n ' ' 

whe re P is the Pe l l number defined by P i = 1, P? = 2, and P , = 2P (J 
n J L L n+2 n+i 

+ P . 
n 

SOLUTIONS 

A NON-HOMOGENEOUS DIFFERENCE EQUATION 

B-100 Proposed by J . A . H . Hunter, Toronto, Canada. 

Let u , = u , + u - 1, with ui = 1 and u? = 3. Find the general n+2 n+l n v L & 

solution for u . n 

Solut ion by F. D. Parker, St . Lawrence Univers i ty , Canton, N . Y . 

n n 
The genera l solution of the difference equation i s u = c ia + c2b + 1, 

where cj and c2 a r e a r b i t r a r y constants , a = (1 + V § ) / 2 and b = (1 - V 5 ) / 

2. Since uj = 1 and u2 = 3, we find the pa r t i cu l a r solution to be 

u = ± a11"1 - A b*-i + i = 2 F + i . 
n V5 V5 n-A 

Also solved by L. Car l i tz i ; Herta T. Fre i tag; W i l l i a m T. Jackson; Douglas L ind ; 
W i l l i a m C . Lombard; C . B . A . Peck; L t . A . G . Shannon, R . A . N ; David Z e i t l i n ; 
and the proposer. 
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A SEQUENCE OF SEQUENCES 

B-101 Proposed by Thomas P. Dence, Bowling Green State Univ. , Bowling Green, 
Ohio . 

Let x. be defined by x, = 1, x = n, and x. „ = x. + x. . i,n J i,n 2,n i+2,n i+l,n i,n 
Expres s x. as a function of F and n0 ^ i,n n 

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia 

We c la im x. = F . + (n - 1)F. . This i s c l ea r ly t r u e for i = 1, 2 and 
l j n l l—i 

all n. Since both express ions obey the s a m e second-o rde r r e c u r r e n c e r e l a -

tion in i and ag ree in the f i rs t two va lues , they must coincide for al l i and 

n. 

Also solved by Gerald Edgar, Herta T. Freitag, Will iam C. Lombard, John W. 
Milson, F. D. Parker, David Ze i t l in , and the proposer. 

NOTE: The p rob lem editor mi s s t a t ed the p rob lem as M Express x. in 

t e r m s of F and nM ins tead of M Express x. in t e r m s of n and F . . M 
n ^ i,n I 

The p r o p o s e r intended that F . in the solution pr in ted above be expres sed 

in t e r m s of F . , as one might do, for example, us ing the r e su l t of B-42. 

PELL-PYTHAGOREAN TRIPLES 

B-102 Proposed by Gerald L. Alexanderson, Univ. of Santa Clara, Santa Clara, 
Cal i f . 

The Pel l sequence 1, 2, 5 ,12, 29, • • • is defined by Pi = 1, P 2 = 2 and 

P , = 2P , + P . Let (P ^ + i P )2 = x + iy , with x and y r ea l and n+2 n+i n n+i n n J n n J n 
le t z = x + iy 1. P r o v e that the number s x ., y , and z a r e the lengths n I n J n | n J n n to 

of the s ides of a r ight t r i ang le and that x and y a r e consecut ive in tegers & & n J n & 

for every posi t ive integer ne A r e t h e r e any o ther posi t ive in tegra l solutions 

of x2 + (x ± I) 2 - z2 than (x, z) = (x , z ) ? 

Solution by Herta T. Freitag, Hollins, Virginia* 

(A) z = I x + iy = Vx2 + y£ ; hence x , y , and z may be interpre— \ n I n J n | n J n ' n J n n J ^ 
ted as lengths of the s ides of a r ight t r i a n g l e 

(B) To show that y - x = 1: N J n n 
Since x - P2 , - P 2 and y = 2P . P , we need to show that 

n n+l n J n n+l n 
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J2P V - p2 + p2 I = 1 . I n+l n n+l n | 

Proof by mathematical induction: 
(1) 2P2Pi - v\ + v\ = 1, hence the statement is correct for n = 1. 
(2) Assume the formula correct for n = k, i. e. , assume that: 

2P, ,,Pf - P* + P,2 I = 1 • I k+i k k+i k I 

Then, 

| 2 P k + 2 P k + i " Pk+2 + P k + 1 | = | 2<2Pk + 1 + P k ) P k + 1 - <2Pk+1 + P k ) 2 + P k + 1 | 

= lpk+1 - 2 pkpk+l - pkl = 1 • 
This, however, means that correctness of the statement for n = k causes 
its correctness for n = k + 1, and the query is settled. 

(C) No, there are no other positive integral solutions of x2 + (x ± l)2 = z2 

than (x, z) = (x , z ). This, however, is only a hunch; I was unable to 
establish the unicifTT„ 

Also solved by the proposer. 

NOTE: See proposed problem B-123. 

AN INCREASING SEQUENCE 

B-103 Proposed by Douglas fund, U n i v . o f V i r g i n i a , Char lo t tesv i l l e , V a . 

L e t 

a = ] C F, (n ^ 1), 
n ~ d din 

where the sum is over all divisors d of n. Prove that j a I is a strictly 
increasing sequence. Also show that 

00 F x11 °° 
Z n v^ n 

= > a x - n *-' n n=i 1 - x n=l 
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Solution by Gerald Edgar, Boulder, Colorado. 

F o r n ^ 1, we have 

Observe that 

n + 1 Afr^SJlX d ~ L n+l n+l 
d (n+l) 

ai = 1 = F 2 , 
a2 = 2 = F 3 , 
a3 - 3 = F 4 , 

and tha t for n > 3, s ince (n - 1) | n and (n - 2) | n, 

n-3 
a = Z F , 4 F +. Y F . = F + F - 1 < F ^ n Ti d n f-j l n n - l n+l 

din i=l 

so that in all c a s e s for n y 1, we have a < F t j . 
n n+l 

There fo re , for al l n > 1, a ^ a , , so that \ a \ is a s t r i c t ly in-
n n+l ( n > J 

c rea s ing sequence,, Also, we have 

2 anxn = £ / E FA xn 

n=i n=i \ d | n I 

00 / 00 

- zL I ]C x j F / i ( rea r ranging t e r m s ) 
d=i Id ln J a 

00 

£ 
d=: 
;(s-")* 

KIT?) ' -
• d oo F ,x 

d=i 1 - x a 



292 ELEMENTARY PROBLEMS AND SOLUTIONS [ O c t . 

Also solved by the proposer. 

TELESCOPING SERIES 

B-104 Proposed by H . H. Ferns, V i c t o r i a , British Co lumb ia . 

Show that 
oo F 
v ^ 2n+l 1 
^-< L L L ^ 3 
n = i n n + i n+2 

where F and L a r e the n Fibonacci and n Lucas n u m b e r s , n n 
respec t ive ly . 

Solution by L. Carl i tz , Duke University, Durham, N . C . 

It is easi ly verif ied that 

F L - F L = F n+i n+2 n+2 n 2n+l 

Thus 

2n+i A f n+l n+2 1 2 N+2 N F ^ , , Nf / F„ t J F._,„ \ F 2 F , 

n^l L n L n+ l L n+2 £ i I L n L n + l Ln+lLn+2 I L i L 2 LN+iLN+2 
) 

and the re fo re 

oo F 
E 2n+i = 1. 

L L L ^ 3 
n=i n n+l n+2 

Also solved by Douglas L ind , F. D. Parker, L t . A . G . Shannon, David Z e i t l i n , 
and the proposer. 

A PERIODIC SEQUENCE 

B-105 Proposed by Phil Mana, University of New M e x . , Albuquerque, New Mex. 

Let g be the number of finite sequences c1} c2, o , o , c n , with ci = 1, 

each c. in | o , l } , ( c ^ c
i + 1 ) never (0,0), and (c., c.+ 1 ? c . + 2 ) never (0,1,0). 
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Prove that for every integer s > 1 there is an integer t with t < s3 - 3 and 
g an integral multiple of s. 

Solut ion by Douglas L ind , Universi ty o f V i r g i n i a , Char lo t tesv i l l e / V a . 

Acceptable sequences of length n can be produced by appending a M l n 

to all sequences of length n - 1, and a M110" to those of length n - 3„ Then 
all n-sequences not included are not acceptable since they violate the given 
restraints. It follows that g^ = g ^ + g ^ . Put Ik = fek> gk+1» gk + 2)- Each 
I determines the entire sequence g by using the above recurrence relation,. 
Thus modulo s > 1, if I. = I , then j g £ is periodic with period S j - k . 
Now there are (s - l)3 possible distinct triplets (a,b, c) modulo s such that 
a, b, c $ 0 (mod s). Also (s - I)3 < s3 - 5 for s > 1. Thus either one of 
li, I 2 , ' " , Is_5 contains a 0, in which case there is a t < s3 - 3 such that g 
= 0 (mod s), or I. = I (mod s) for some j , k < s3 - 3 with j 4= kB But 
then | g 1 has period t = j - k > 0, so g, = g0 = 0 (mod s), where here 
t < s3 - 3, 

Also solved by Robert L. Mercer and the proposer„ 

* • * • • 
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