
FIBONACCI NUMBERS AND SOME PRIME RECIPROCALS 
R. S. BUCKNELL 

Chiangmai, Thailand 

The s e r i e s of Fibonacci n u m b e r s has been shown to bear some i n t e r e s t -

ing re la t ionships to the r ec ip roca l s of ce r t a in p r i m e number s . F o r ins tance, 

Maxey Brooke and C. R. Wall set up as P r o b l e m s B-14 (Fibonacci Quar te r ly , 

Vol. 1 (1963), No. 2, p . 86) to show 
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where F L = F , + F , F 0 = 0, Fi = 1. n+2 n+l n u 1 

The re la t ionship (1) is but a special c a se of the genera l p roper ty 

oo 
- n - i (3) E V 

n=i x4 - x - 1 

where x, an integer >29 i s the radix in t e r m s of which the number (x2 - x - 1) 

and the Fibonacci number s a r e expressed . Equation (3) is readi ly proved by 

consider ing 
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r 00 -i 

- L , F » X 1 " 
L n = 1 J 

since 

F i = F 2 = 1 

and 

t F _ x-11"1 - f) F x-11-1 - t F X-11"1 = 0 . L^ n+2 ^ n+i — n 
n=i n=i n=i 

Note that x2 - x - 1 may be composi te (e. g. , for x = 8, 13), but that x2 - x 

- 1 and x a r e re la t ive ly p r i m e . 

Another in te res t ing re la t ionship that has been d iscovered to exist between 

the s e r i e s of Fibonacci number s and the number 1/N = l / (x 2 - x - 1) i s ex-

emplified by the specia l c a s e where N = 109. It is found that the 108-digit 

per iod of 1/109 is 

0091743119266055045871559633027522935779816513761467889909256880733944-

95412844036697247706422018348623853211 . 

A general izat ion is poss ib le for the number N - x 2 - x - l - y 2 + y - l (x an 

in teger >2, y = x - 1) when 1/N is expanded in t e r m s of radix y. It will be 

shown that if the per iod of 1/N i s the (N - 1)-digit number 

N - l -
F N 

then the number 

N - l 
F n y 

n=i 
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has as i ts las t N - 1 digits the number P . 

Let the res idue , R, be defined by 

(4) 
N - l 

R = = E V n- l 

n=l 

The express ion 

N - l 

E V n- l 
n=i 

will be summed using 

F = 
n , n a - b 

n a - b 

where 

Then 

1 + V 5 , 1 - V 5 
a = — , b = — x 

N - l 
Z -n n - l F y 

4 nJ 
n=l 

N - l [ 7 n , n \ 1 
o a - b 1 n - l 
n=i 

N - l 
E Cay)n - (by)n]/(a - b)y 
n=i 

N_ ^ N-l-,-, n AT .. y FA T - + y FA T - 1 N - l ., J N - l J N y - 1 

y2 + y - i r + y - 1 
-N-l 

y + y 
- D F N - I + FN - x ] 
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Now consider the term 

urn 
_ z 
y2 + y - i 

Clearly no factor of y will divide y2 + y - 1, hence y ~ and y2 + y - 1 
are relatively prime, and since R is an integer, y ~ divides R. Thus 
R is a number ending in N - 1 zeros when expressed in terms of radix y, 
Since P contains not more than N - 1 digits, it follows that the number 

N-l 
V F y11"1 = P + R 
L^ nJ 

n=i 

has as its last (N - 1) digits the number P. 
• • * • • 
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RESIDUES OF FIBONACCI-LIKE SEQUENCES 

LAURENCE TAYLOR 
Oak Ridge, Tennessee 

In the February, 1964, issue of the Fibonacci Quarterly, Brother U. 
Alfred [ l ] advanced the conjecture (later proved by J. H. Halton p i ) that, 
when any Fibonacci number is divided by another Fibonacci number, one or the 
other of the least positive and negative residues is again a Fibonacci number. 
The object of this paper is to prove that the only Fibonacci-like sequence for 
which this is true is the Fibonacci sequence. If zero is excluded as a remain-
der, then the Lucas sequence has the above property. 

The proof falls naturally into two parts. The first part will be to show 
that every Fibonacci-like sequence, modulo any member of the sequence, is 
congruent to a sequence made up of a subsequence of the original sequence and 
the negatives of these values. The second part will be to show that these sub-
sequences are actually remainders of the divisor for only the Fibonacci and 
Lucas sequences. 

Obviously, a sequence has the property described above if and only if any 
non-zero integral multiple of it does. Since any divisor of two neighboring 
members of Fibonacci-like sequences divides every member of the sequence, 
we will consider only sequences with neighboring terms relatively prime. In 
what follows, H. will denote the i member of a general Fibonacci-like 
sequence defined by H. = H. + H. , where H0 and Hj are arbitrary. The 
set of integers will be denoted by I, the set of non-negative integers by P, 
and the set of natural numbers by N. 

PART I 

Since it is easily established by induction that 

H _Ll = F. H + F. ^ H 
m+k k m-i k+l m 

for all integers m and k, the following two lemmas readily follow. 
Lemma 1: H , . = F.H J (mod H ) for all integers i. 

m+i 1 m-i m . to 

Lemma 2: H . = F .H = (-l)i+1H ,. (mod H ) for all integers i. 
m-i -i m-i m+i m & 

298 
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It is known that any number must eventually divide one of the Fibonacci 

n u m b e r s , and that F ^ _ l = F n _ 2 F + ( - l ) n for all in tegers n. Applying these 

r e s u l t s and L e m m a 1, it i s not difficult to prove Lemmas 3 and 4. 

Lemma 3: Let n be any integer such that F = 0 (mod H ). Then 

H ^ = 0 (mod H ) . m±n m 

Lemma 4: F o r the n of Lemma 3, F 2 = (-1) (mod H ) . 
_ n „ 1 m ' 

Lemma 5: F o r the n of Lemma 3, and for all in tegers i, 

F H . = ( - l ) n + i + 1 H M. (modH ) . n - i m - i m-n+i m 

Proof: The proof i s by induction on i. Fo r i = 0, apply Lemma 3= 

F o r i = 1, apply Lemma 1. Assume that Lemma 5 holds for i = k - 1 and 

i = k - 2, or that 

F H n a = ( - l ) n + k H ^n a (mod H ) , n - i m-(k- l ) m-n+(k-l) m 

F H /f ov = ( - l ) n + k ~ 1 H Mn v (mod H ) . n - i m-(k-2) m-n+(k-g) m 

Subtracting the f i r s t formula from the second yields the expected r e su l t for i 

= k. Hence, the formula is c o r r e c t for all i E P . Lemma 2 can be used to 

extend the r e su l t to include negative in tegers . 

Lemma 6; Let t = nq + r . Then, if q G N and F_ = 0 (mod H ), 

H _,. = F F ^ H 4 (mod H ) . m-n+t r n - i m - i m 

Proof: The proof i s once again by induction on q. When q = 1, the 

express ion above becomes identical to L e m m a 1. Assume that Lemma 6 holds 

for q = k - 1, o r that 

H _,, = F. „ v F k ^H (mod H ) 
m-n+t t - (k- i )n n - i m - i m 



300 RESIDUES OF FIBONACCI-LIKE SEQUENCES Oct. 

m 
But, F , ,. * = F, , F + F, , F = F, . F (mod H ), s ince H t - (k- i )n t -kn n - i t-kn+i n t -kn n - i m 
divides F by hypothesis . Substituting back into the formula above, 

H - = F . . F k _ 1 H (mod H ). 
m-n+t t -kn n - i m - i m 

Hence, Lemma 6 is t rue for all q E N. 

Theo rem 1: F o r every i E I, t he r e ex i s t s a k E I , m - n ^ k 4 m, 

such that 

H. = ±H, (mod H ), 
I k m 

where n is the smal les t na tura l number such that F = 0 (mod H ). 
n m 

Proof: Let i = m - n + t, k = m - n + r , and t = nq + r , 0 L r L n. 

The c a s e q = 0 is t r iv ia l , s ince then t = p and i = k. The ca se q ^ 0 is 

equivalent to t < 0. But, by Lemma 2 and p rope r t i e s of congruences , 

H ^ = ( - l ) t + 1 H , A ( m o d H ) = ( - l ) t + 1 H . .. (mod H ) . 
m-n+t m-n+(-t) m - n m-n+(-t) m 

Since - t > 0, we need cons ider only the ca se t > 0 or q E N. By Lemma 6, 

H _,_. = F F q _ 1 H (mod H ). 
m-n+t r n - i m - i m 

By Lemma 1, 

F H = ( - l ) r + 1 H ( m o d H ). 
r m - i m - r m 

Substituting, 

H ^ = ( - l ) r + 1 F q ~*H (mod H ) . 
m-n+t n - i m - r m 

By Lemma 4, 

F 2 = ( - l ) n (mod H ) . n - i n r 

We must now dist inguish two c a s e s . 
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Case I : If q is odd, 

F q - i = (_1 )n(q- i ) /2 ( m Q d ^ ^ 

leading to H ,, = ±H (mod H ), where m - n 4 m - r £- m. 
to m-n+t m - r m -
Case 2: If q i s even, 

F q - i = ( _ 1 ) n (q-2) /2 F ( m o d H }< 
n - l n - i m 

By Lemma 5, 

F H = ( - l ) n + r + 1 H ^ (mod H ). 
n - i m - r m-n+r m 

Substituting these two r e s u l t s leads to 

H ^ = ( - l ) n q / 2 H M ( m o d H ). m-n+t m-n+r m 

where 0 4 r 4 n, s o m - n 4 m - n + r 4 m . 

In T h e o r e m 1, if H divides H., we can take k = m or k = m - n. m I 

While every H. divides some other m e m b e r of the sequence (see Lemma 3), 

it is n e c e s s a r y to notice that ze ro cannot appear as a m e m b e r of the subsequence 

of Theo rem 1 unless our Fibonacci - l ike sequence is the Fibonacci sequence i t -

self. Since ze ro can occur as a r e m a i n d e r in any Fibonacci - l ike sequence and 

s ince Theo rem 1, applied to Fibonacci n u m b e r s , leads to the t heo rem proved 

by Halton in [2"|, the only Fibonacci - l ike sequence which s t r ic t ly fulfills the 

r e q u i r e m e n t s of B ro the r Alfred1 s conjecture i s the Fibonacci sequence. 

In P a r t II, we will invest igate F ibonacc i - l ike sequences to de te rmine if 

any other sequence leaves r e s idues which, in all c a s e s , a r e e i ther ze ro or 

equal in absolute value to m e m b e r s of the or iginal sequence. 

PART n 

Now, if our sequence i s to have the des i r ed p roper ty , t he r e mus t be a 

set of e lements of the sequence whose absolute values a r e l e s s than that of 

H . The f i r s t observat ion to be made about F ibonacc i - l ike sequences is that m ^ 
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far to the r ight and to the left, the absolute values i n c r e a s e without l imit . 

Hence, we need only examine a smal l section of the whole sequence to d e t e r -

mine if it has the des i red p roper ty . 

T h e r e must be at l eas t one H. with a minimal absolute value, and, b e -
1 ' 

cause of the divergence of the sequence in both d i rec t ions , t h e r e can be only a 

finite number of such minima. 

L e m m a 7: If H0 is a minimum, |H0( > 2, then, if H$ > 0, the only 

poss ib le r e m a i n d e r equal in absolute value to a m e m b e r of the original sequence 

upon division by H_ is ±H0, and if B1 < 0, the only such r ema inde r for H2 

i s ±H0. 

Proof: If H0 is negative, we will obtain the negative of the sequence for 

H0 posi t ive . Hence, cons ider only H0 > 2. None of Hj, H2, H_i, H_2
 c a n 

be a min ima, s ince each of H.j = H0 > 2, i = ±1, ±2, leads to a contradict ion. 

If Hi > 0, to avoid |Hj| < H0 for some i, for the t e r m s nea r H0 we 

can have only the following: 

H^3
 = 

H^2 = 
H_i = 

H0 -
Hi = 

H2 = 

3H0 + 2a = 

-(H0 + a) 

2H0 + a 

H0 

3H0 + a 

4H0 + a 

H i •+ a 

H. = L.^Hn + F.a , a > 1 , 
i l+i u l -

whe re L and F a r e respec t ive ly the n Lucas and Fibonacci n u m b e r s . 

If Hi < 0, with the conditions above we obtain 

H. - ( - l ^ L . ^ H o + Fxx) , 

o r a new sequence which, except for changes in sign, i s the sequence for H^ > 

0 ref lected about H0. hi pa r t i cu l a r , H2 = - ( H 0 + a ) . 

Notice that the sequence d iverges for I i | > 2. F r o m the sequence above, 

it i s easy to see that the only r e m a i n d e r in the sequence for H_ will be ±H0 

when H| > 0, and when Hj < 0, the only r ema inde r for H2 will be ±H0. 
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L e m m a 8: If H0 is a minimum, jH0[ ^ 1 , and ne i ther H2 nor H~2 

i s a minimum, then the only r ema inde r equal in absolute value to a m e m b e r of 

the or iginal sequence upon divis ionby H_2 is ±H0 when Hj > 0, and the only 

such r e m a i n d e r for H2 is ±H0 when B1 < 0. 

Proof: Avoiding |H2| = jH ĵ and |H_2| = |H0| as well as |H.| < jH0| 

l eads to the formulae of L e m m a 7. 

Lemma 9: If H0 is a minimum, |H0 | ^ 2, then the re exist number s 

H. which leave r e m a i n d e r s which a r e nei ther ze ro nor equal in absolute value 

to a m e m b e r of the or iginal sequence. 

Proof: If any number H. is divided by H0, the r e m a i n d e r mus t be l e s s 

in absolute value than H0, the minimum of the sequence* Thus , if |H0| ^ 2, 

all r e m a i n d e r s cannot be ze ro because any two adjacent t e r m s a r e re la t ive ly 

p r i m e , and any non-ze ro r ema inde r i s a number not equal in absolute value to 

a m e m b e r of the or iginal sequence,. So H0 is a number H. for the l emma. 

Suppose we exclude division by H0. Since (H0, H^ = 1, Hi is not a 

minimum. Ei ther Hi is posi t ive or Hi i s negat ive. Without l o s s of gene r -

ality (see proof of L e m m a 7), we a s s u m e that Hi i s negat ive. By T h e o r e m 1, 

if n2 i s the l eas t na tura l number such that F n = 0 (mod H2), and if t' = qn2 + 

r , 0 < r < n2, for q an odd number? 

H2-n2+t = ^Hg.r (mod H2 ) . 

Now, H 2 _ r = H0 if and only if r = 2. If |H0| > 2, |H2| > 3 = F 4 , SO n2 A 

4, and at l eas t 0 L r < 4. Set t = qn2 + 3 for an odd number q, say q -

1. Substituting, we have H5 = ±H_i (mod H2) , and ±H_i ^ ±H0 (mod H2) by 

inspecting the proof of Lemma 7. Thus , we can take i = 2. 

L e m m a 10; If |H0| = 1 is a minimum, and ne i ther H2 nor H_2 is a 

min imum, then the re exist numbers H. which leave r e m a i n d e r s which a r e 

ne i ther ze ro nor equal in absolute value to a number in the or iginal sequence. 

Proof: Without loss of general i ty , we assume that Hi < 0. If |H2| > 3, 

so that n2 ^ 4, by L e m m a 8 we can use the s a m e proof as for Lemma 9. 

Since H2 is not a minimum, H2 f 1 and H2 f - 1 . The only remain ing ca se 

is when |H2| = 2, which leads only to the following sequence, 

• " , - 2 3 , 14, - 9 , 5, - 4 , 1, - 3 , - 2 , - 5 , - 7 , -12 , -19 , - 3 1 , -50 , • • • , 
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where 31 = 8 (mod -23) while neither ±8 nor ±15 is in the original sequence. 
Theorem 2: The only sequences which possess the property that, upon 

division by a (non-zero) member of that sequence, the members of the sequence 
leave least positive or negative residues which are either zero or equal in abso-
lute value to a member of the original sequence are the Fibonacci and Lucas 
sequences. 

Proof: By Lemmas 9 and 10, for a sequence to possess the above prop-
erty, its minimum must be either H0 = 0 or |H0| = 1 with one of H2 and 
H_2 also a minimum. 

If H0 = 0, we can have only the Fibonacci sequence. 
Considering the cases |H0| = 1 and |H2j = 1; |H0| = 1 and |H_2| = 1, 

leads to the Lucas sequence and the negative of the Lucas sequence. 
It can be shown that, since when Theorem is applied to Lucas numbers, 

for each L, , IL, I < |L I or L, = 0 (mod L ), that the Lucas numbers do k k | m| k m 
indeed have the property of Theorem 2D The Fibonacci numbers are known to 
also have this property, as proved by Halton in [2] . 

We have used a minimum value greater than 2 as a criterion to determine 
if there exist numbers H. which leave remainders which do not satisfy Theo-
rem 2. Another criterion is that such numbers H. exist if and only if |H.I f 

i I J! 
JH .1 for any j , where the sequence has been renumbered so that either HQ 
is the minimum or HQ is between the two minima H* and H_i. This second 
criterion requires a longer proof, but not a difficult one, done by examining all 
cases. 

Examining several sequences to aid in the formulation of the proofs given 
here led to an interesting question. If Brother AlfredTs conjecture is not true 
for a whole sequence, can it be true for some elements of the sequence, and if 
so, which ones? 
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ON m-TIC RESIDUES MODULO n 
JOHN H. 'E. COHN 

London, N . W . , England 

1. INTRODUCTION 

The object of this pape r i s to invest igate the va lues of the r e s idues mod-
m ulo n of x , where 0 ^ x ^ (n - 1), and in pa r t i cu l a r for the ca se n = m. 

We shall define 

S(n;m) = { x m (mod n)| 0 ^ x ^ (n - 1)} 

and 

$(n;m) = {x (mod n) I 1 ^ x ^ (n - 1), (n,x) = l } 

Clear ly $(n;m) is a subset of 2(n ;m) . We shall use the symbol $(n;m) to d e -

note the number of dis t inct e lements of $(n;m). Also whenever t he r e i s no r i s k 

of confusion we shall omit the symbol (mod n). We shall prove ce r t a in theo-

r e m s which will enable the work of computing S(n;m) to be reduced cons ide r -

ably, and conclude with a table of S(n;n). 

2. PROPERTIES OF $(n;m) 

T h e o r e m 1. H(n;m) = {xy [ x E $(n;m), y |n} 
m Proof. Suppose z E 2(n;m)a Then z = d (mod n). Now let y = (n,d). 

m m 
Then d = cy, (n,c) = 1, y n. Hence s = xy , where x = c E#(n ;m) . 
This concludes the proof of the theorem. In view of it, and the fact that for 

s eve ra l r e a s o n s $(n;m) i s r a t h e r e a s i e r to deal with, we shall f i rs t cons ider 

the p r o p e r t i e s of cj>(n;m)„ 

In the f i rs t p lace , we shall define the in teger l(n) for n > 2, as follows 

r r—1 
(if if n = p , where p is an odd p r i m e and r > 1, then l(n) = p 

(p - 1) 
(ii) if n = 2 r , then l(n) = 2 r ~ 1 if r = 1,2 and l(n). = 2 r ~ 2 if r > 3. 
(iii) if 

305 
( R e c e i v e d J a n * 5 1 9 6 5 ) 
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N r < 

n = II P, * , 
i=i 

then 

l(n) = l . c . m . { l ( P i
r i ) } s t = 1 , 2 , - , N , 

Then we have 

T h e o r e m 2. If 

k = (m, l(n)), 

then if k f l (n) , 

$(n;m) = $(n;k) , 

whe reas if k = l(n) , then $(n;m) = {1}„ 

Proof. 

#(n; l ) = {x|(n,x) = 1} 

i s a mult ipl icat ive Abelian Group whose s t ruc tu re is known 

*(n; l ) =
C l ( P i r i ) X C l ( P 2

r 2 ) X , - X C l ( P n r n ) " 8 ^ 
C l ( P l

r i ) X C l ( p 2
r 2 ) X ' " X C l ( p n

r i 1 ) C2 if 8|n 

Now 

l(n) = l . c . m . { l (p i r i ) } 

and so 
$(n;l(n)) = {1} , 

and c lea r ly l(n) i s the l eas t in teger for which this i s t r u e . Thus we have 

x = 1 (mod n) 

if 
(n, x) = 1 . 

Now if 
k = l(n) = (m,l(n)), 

then 
l(n) |m , 
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and so whenever (.n,x) = 1, x m = 1 (mod n), i. e. , $(n;m) = { l } . 

Secondly, if (m, (n)) = k w h e r e 0 < k < l(n), then t h e r e exist in tegers 

a, b , c such that 

m = ak and k = bm - cl(n) . 

Hence if (n,x) = 1 we have 

and so 

Also, 

Thus 

m ak , a x k , , . 
x = x = (x ) (mod n) 

$(n;m) C $(n;k) 

k bm-cl(n) b m , , * 
x = x = x (mod n) 

xm = (x^) , (mod n) 

$(n;k) C #(n;m) , 

and so by our previous r e su l t 

#(n;k) = <i>(n;m) . 

Hence in cons ider ing $(n;m) we need only consider values of m which a r e 

d iv i so rs of l(n), 

T h e o r e m 3„ if 

and a)n, then 

Proof, Let 

Then 

38 PROPERTIES OF S(n;m) 

x = y (mod n) 

x = y (mod an) 

x = y + en , 

x - (y + en) 
a , a- i 

= y + acny + . , < , + 
+ a(cn) a _ 1 y + (cn)a 

y (mod an) s ince al n 
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This concludes the proof,, A s imple induction argument now shows that for any 

r , if x = y (mod n) and a|n then 

x a r = y a r ( m od a rn) 

and this gives immedia te ly 

T h e o r e m 4. 

2(a rn; a r m ) = { x a r ( m o d a r n) | x E 2(n;m)} 

w h e r e a is any factor of n. 

T h e o r e m 5. If n is squa re - f r ee , and if $(n;m) = <3?(n;l), then 2(n;m) 

= 2(n;l)* for by Theorem 1, 

S(n;m) = { x y m | x E *(n;m), y) n} 

= { x y m | (n»x) = i» ylnl 

Now cons ider any p r i m e factor p of n„ Since n is squa re f ree ( p m , n) = p 

and so the re exist in tegers a, b such that 

p • = ap + bn 
m = ap (mod n) and so (n, a) = 1 or p 

m Now if (n, a) = p then let af = a + n / p . Then (n, aT) = 1 and p = a'p (mod 

n)0 Hence p E 2(n;m), and so every p r i m e factor belongs to 2(n;m)0 Hence 

if m is any number between 1 and (n - 1) 

N s-
z = c n p . 1 

i ' 

where (c, n) = 1 and the p^ a r e p r i m e fac tors of n. Hence z = a (mod n). 

This concludes the proof, s ince c lea r ly 0 E 2(n;m)» 

Theorem 6, If k = (m, l(n)) then if 
N 

n = n P i r i 

i=i 
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N 1 ( P i r i ) 

— — - — unless 8 n and m is odd 
/ J j ( k , l ( P i

r i ) ) 
</)(n;m) = \ N l ( p . r i ) 

o rr ^ — ^ 8 l n a n d m i s °dd . 
2 l^ (k,l(v.Ti)) 

For , (n;m) = </>(n;k) and the r e su l t follows from the s t r u c t u r e of $ (n ; l ) , 
s ince when s n , k is odd if and only if m i s odd, 

4 . PROPERTIES OF 2(n;n) 

T h e o r e m 7. S(n;n) = {0, 1, 2,•• • • , (n - 1)} if and only if ( n, l(n)) = 1. 

Proof. (i) If 2(n;n) = {0, 1, 2, •• • , (n - 1)} then $(n;n) = $(n; l ) and 

so by T h e o r e m 6 ( n, l(n)) = 1. 

(ii) If ( n, l(n) ) = 1 then by Theorem 2 3>(n;n) = $(n;l) and so 

by Theo rem 5, 2(n;n) = 2(n; l ) s ince n mus t be s q u a r e - f r e e to make 

( n, l(n) ) = 1. 

T h e o r e m 8„ If l(n)|n, then 2(n;n) = {x |x |n} 6 This follows immedia te ly 

f rom T h e o r e m s 1 and 2, 
T h e o r e m 9, (i) if n = 2 r

5 then S(n;n) = {0 ,1} 

(ii) if n = 3 r , then 2(n;n) = { 0 , l , n - 1} 

; an odd p r i m e 
. t r , „ x l t 

r (iii) if n = p , where p is an odd p r i m e then 2(n;n) 

cons i s t s of the p different e lements 0, ±1, ±2 , • • • , ±{l(p - 1)} where 
r-i 

t = P o 

Proof, (i) if n = 2 , then s ince 2(2;2) = { 0 , l } , the resu l t follows 

by T h e o r e m 4. 
(ii) if n = 3 , then s ince 2 (3; 3) = { 0 , 1 , 2 } o r equivalently 

{ 0 , 1 , -1} it follows by T h e o r e m 4 that 2(n;n) = {0, 1, n - l } . 
r (iii) if n = p , then s ince l(p) = p - 1, (p, l(p)) = 1 and so by 

T h e o r e m 7, 2(p;p) = {0, 1, 2, ° ° ° , (p - 1)} or equivalently, {0, ±1, ±2, • • • , 

±2(p - 1)}. Hence by T h e o r e m 4, 

S(n;n) = { 0 , ± l > ± 2 t , - - - , ± { | ( p - l ) } t } t = p27"1 

r It m e r e l y r e m a i n s to show that all these p e lements a r e distinct., Now n = p , 
r—i r—l 

l(n) = p (p - 1), k = (n, l(n)) = p . Hence by Theo rem 6, 0(n;n) = p - 1. 
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Hence the e lements ±1, ±2 , • • • , ± ^(p - 1) a r e all dis t inct , and c l ea r ly they 

a r e all dis t inct f rom 0„ This concludes the proof. 

T h e o r e m 10. If n = 2p, p an odd p r i m e , then 

S(n;n) = { 0 , p , q, q + p| (q|p) = +1} 

Proof. l(n) = p - 1, and so k = (n, l(n)) = 2. Hence 

$(n;n) = <£>(n;2) = {x2|(z,x) = 1} , 

by Theorem 2. Hence by T h e o r e m 1, 

2(n;n) - ( a y n | s E *(n;2), y = 0 , 1 , 2 , p } 

Now y = 0 gives only the e lement 0, and s ince must always be odd, y = 

p gives only the e lement p. Also, 

2 P = 2 (mod 2) 

and 

2 P = 2 (modp) 

hence 

2 P = 2 (mod n) 

hence 

2 n = 4 (mod n) 

Thus 

2(n;n) = {0 ,p , z, 4z |z E «i>(n;2)} 
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Now 
Z = X 2 

where 
(n,x) = (p,x) = 1 

and 
4z = (2x)2 = y2 (mod n) 

where 
(yfn) = (2xs2p) = 2 . 

Hence 
2(h;h) = {09p/x2|(x,p) = 1} 

For each element of the form x2 there are now two possibilities,, 
(i) 0 < x2 (mod n) < p„ Then x2 = q where 0 < q < p, (q|p) = +1 

(ii) p < x2 (mod n) < 2pe 

Then 
(x + p)2 = x2 + 2px + p2 

= x2 - p (mod n) 

Hence 
x2 = p + q (mod n) 

where 
0 < q < p and (q|p) = +1 

This concludes the proof. 
r Theorem llfl If n = 2p where p is an odd prime* then 

S(n;n) = {O.p^q^p1* + q* | t = p1*"1, 0 < q < p, (q[p) = +l} 

Proofp For each p5 we shall prove the result by induction on r0 By the 
previous theorem, the result is true for r = 1. Now suppose that it is true 
for r = R, Thus 

2(2p ;2p ) = {0,p ,q ,q + p } where t = p 

Hence by Theorem 4, 
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S (2p R + 1 ;2 P
R + 1 ) = { X P | x G S ( 2 p R ; 2 p R ) } 

Now x = 0 gives x^ = 0 and x = p gives 

t . x = q gives 

t ^ R . x = q + p gives 

Also 

for if x is even, q is odd and vice-versa, 
Hence 

p T , R+i , , . 
x^ = q + p (mod n) . 

This concludes the proof, and gives, for example, 

2(2 - 3 r ; 2 - 3 r ) = { 0 , l , 3 r , 3 r + 1} 

2(2 • 5 r ; 2 • 5 r ) = {0, 1, 5 r - 1, 5 r , 5 r + 1, 2 • 5 r - 1} 

Theorem 12, If n = 4p, where p is an odd prime, then 

(i) if p = 3 (mod 4), 2(n;n) - {x2 j x = 0 , l , 2 , ° ° ° , p } 

xP - p p R 

= P ^ V 1 1 " 1 1 ' 1 -1) + PR+1 

= p (mod n) 

JP ft> T 1 . T3 4- R + 1 

xr = q = q where R = pt = p 

if = (q + p r 
T , t(p-i) R+l ^ tfp-2) 2R+1 = q + q ^ ; p + q w ' p 

, t R(p-i)+i ^ \ 
+ • » . + q p ^ ' + p P 

= q (mod p ) 

T , R+l , A R+i x 5 q + p (mod p ) 

p T ^ R+l , -. ox x^ = q + p (mod 2) 

( ^ 
\ 
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(ii) if p = 1 (mod 4), 

2(n;n) = {x2 | x = 0, p5 q where 0 < q < ps (qjp) = + l } 

Proof. By T h e o r e m 4S 

2(n;n) = {x2 | x E 2 ( 2 p ; 2 p ) } , 

and so by T h e o r e m 10, 

2(n;n) = {x21 x = 0S p5 q9 q + p , 

where 0 ^ q ^ p and (qlp) = +1} 

(i) if p = 3 (mod 4) then (-1 j p) = - 1 and so q takes exact ly half of 

the va lues 1, 2, • • • , (p - 1) and the o ther half a r e of the form p - q0 Now 

(q + p)2 - (p - q)2 = 4pq = 0 (mod n) 

Hence in this c a se 

S(n;n) = {x2 | x = 0 s l , 2 5
o c o

5 p } 

(ii) if p = 1 (mod 4) then (-lip) = +1 and so q takes half the va lues 

1, 2S • e ° , (p - 1), these s ame va lues being of the form (p - q) and again 

(q + p)2 = (p - q)2 (mod n) 

Hence 

2(n;n) = {x2 x = 0 s p s q , where 0 ^ q ^ p and (qjp) = + l } 

This concludes the proof, 

T h e o r e m 13B If l (n) |n and if n = r s where (r, s) = 1 and if R = r 
n (mod n) and S = s (mod n) a r e e lements of 2(n;n) then R + S = 1 (mod n). 

Proof, Since l (n) |n , i t follows from T h e o r e m 2 that <f>(n;n) = { l } . 
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Since n = r s and (r, s) = 1, (n, r + s) = 1 and so 

(r + s ) n = 1 (modn) . 

Now each of r and s i s a factor of (r + s) - r - s and so s ince r and s 

have no factor in common and n = r s , 

(r + s) = r + s (mod n) 

= R + s (mod n) 

Hence by the above r e m a r k , 

R + S = 1 (mod n) . 

5. TABLES OF 2(n;n) 

Our t heo rems enable us to compute tables of 2(n;n) fair ly eas i ly , a t 

l e a s t in the c a s e s that n can be factor ized into fai r ly smal l fac tors . By T h e o -

r e m 7, 2(n;n) cons i s t s of al l the r e s i d u e s when n i s a p r i m e , and so the re i s 

no need to calcula te the r e s idues in this case0 Also i t i s c l e a r that the e l ements 

0 and 1 always belong to 2(n;n)0 We give a table; giving 2(n;n) for al l va lues 

o ther than p r i m e s up to n = 100 and a lso for a few eas i ly calculable va lues 

between 100 and 1000. 

n 2(n;n) contains 0, 1, and 

4 no o the r s 

6 3 ,4 

_J3 no o the r s 

9 8 

10 4, 5, 6, 9 

12 4, 9 

14 2, 4, 7, 8, 9, 11 

15 al l r e s idues 

16 no o the r s 
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18 9,10 

20 5, 16 

21 6, 7, 8, 13, 14, 15, 20 

22 3, 45 5, 9, 11 , 12, 14, 15, 16, 20 

24 9, 16 

25 7, 18, 24 

26 3, 4, 9, 10, 12, 13, 14, 16, 17, 22, 23, 25 
27 26 

.28 4, 8, 9, 16, 21 , 25 

30 4, 6, 9, 10, 15, 16, 19, 21 , 24, 25 

32 no o the r s 

33 al l r e s idues 

34 2, 4, 8, 9, 13, 15, 16, 17, 18, 19, 2 1 , 2 5 , 2 6 , 3 0 , 3 2 , 3 3 

35 all r e s idues 

36 9, 28 

38 4, 5, 6, 7, 9 , 1 1 , 1 6 , 1 7 , 1 9 , 20, 23, 24, 25, 26, 28, 30# 35, 36 

39 5, 8 , 1 2 , 1 3 , 1 4 , 1 8 , 21 , 25, 26, 27, 3 1 , 34, 38 

40 16, 25 • 

42 7, 15, 21 , 22, 28, 36 

44 4, 5, 9, 12, 16, 25, 33, 36, 37 
45 8, 9, 10, 17, 18, 19, 26, 27, 28, 35, 37, 37, 44 

46 2, 3, 4, 6, 8, 9 , 1 2 , 1 3 , 1 6 , 1 8 , 23, 24, 25, 26, 27, 29, 31 , 32, 35, 
3 6 , 3 9 , 4 1 

48 16, 33 

49 18, 19, 30, 3 1 , 48 

50 24, 25, 26, 49 

51 al l r e s i d u e s 

52 9, 13, 16, 29, 40, 48 

54 27, 28 

55 10, 11 , 12, 21 , 22, 23, 32, 33, 34, 43 , 44, 45, 54 

|>6 8, 9, 16, 25, 32, 49 

57 7, 8 , 1 1 , 1 2 , 1 8 , 1 9 , 20, 26, 27, 30, 3 1 , 37, 38, 39, 45, 46, 49, 50, 
56 

58 4, 5, 6, 7, 9 , 13 ,16 , 20, 22, 23, 24, 25, 28, 29, 30, 33, 34, 35, 36, 
38, 42, 45, 49, 51 , 52, 53, 54, 57 

60 16, 21 , 25, 36, 40, 45 
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62 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28, 31, 32, 33, 35, 36, 38, 39, 40, 4 1 , 45, 
4 7 , 4 9 , 5 0 , 5 1 , 5 6 , 5 9 

63 8, 27, 28, 35, 36, 55, 62 

64 no o the r s 

65 all r e s idues 
66 3, 4, 9, 12, 15, 16, 22, 25, 27, 31, 33, 34, 36, 37, 42, 45, 48, 49, 55, 58, 60, 64 

68 4, 13, 16, 17, 21 , 33, 52, 64 

69 all r e s idues 

70 4, 9, 11, 14, 15, 16, 21 , 25, 29, 30, 35, 36, 39, 44, 46, 49, 50, 51, 56, 60, 64, 65 

72 9, 64 

74 3, 4, 7, 9, 10, 11, 12, 16, 21 , 25, 26, 27, 28, 30, 33, 34, 36, 37, 38, 40, 4 1 , 44, 46 
47, 48, 49, 53, 58, 62, 63, 64, 65, 67, 705 71, 73 

75 7, 18, 24, 25, 26, 32, 43, 49, 50, 51, 68, 74 

76 4, 5, 9, 16, 17, 20, 24, 25, 28, 36, 44, 45, 49, 57, 61 , 64, 68, 73 

77 all r e s idues 

78 12, 13, 25, 27, 39, 40, 51, 52, 64, 66 

80 16, 65 

81 80 

82 2, 4, 5, 8, 10, 16, 18, 20, 21 , 23, 25, 31, 32, 33, 36, 37, 39, 40, 41 , 42, 43, 45, 46, 
49, 50, 51, 57, 59, 61, 62, 64, 66, 72, 73, 74, 77, 78, 80, 81 

84 2 1 , 2 8 , 3 6 , 4 9 , 5 7 , 6 4 

85 all r e s idues 

86 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21 , 23, 24, 25, 31, 35, 36, 38, 40, 41 , 43, 44, 47, 
49, 52, 53, 54, 56, 57, 58, 59, 60, 64, 66, 67, 68, 74, 78, 79, 81, 83, 84 

87 all r e s idues 

88 9, 16, 25, 33, 48, 49, 56, 64, 80, 81 
90 9, 10, 19, 36, 45, 46, 54, 55, 64, 81 
91 all r e s idues 

92 4, 8, 9 ,12, 13, 16, 24, 25, 29, 32, 36, 41 , 48, 49, 52, 64, 69, 72, 73, 77, 81, 85 

93 2, 4, 8, 15, 16, 23, 27, 29, 30, 31, 32, 33, 35, 39, 46, 47, 54, 58, 60, 61 , 62, 63, 64 
6 6 , 7 0 , 7 7 , 7 8 , 85, 89 ,91 ,92 

94 2, 3, 4, 6, 7, 8, 9 , 1 2 , 1 4 , 1 6 , 17 ,18, 21 , 24, 25, 27, 28, 32=, 34, 36, 37, 42 ,48 , 49, 
50, 51, 53, 54, 55, 56, 59, 61 , 63, 64, 65, 68, 71, 72, 74, 75, 79, 81, 83, 84, 89 

95 all r e s idues 

96 33, 64 

98 3 2 , 4 4 , 4 9 , 6 7 , 7 9 , 8 6 
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99 8, 9, 10, 17, 18, 19, 26, 27, 28, 35, 36, 37, 44, 45, 53, 54, 55, 62, 63, 64, 71, 
72, 73, 80, 81, 82, 89, 90, 91, 98 

100 25, 76 

108 28, 81 

120 16, 25, 40, 81, 96, 105 

125 57, 68, 124 

128 no o the r s 

136 16, 17, 33, 120 

144 64, 81 

150 24, 25, 49, 51, 75, 76, 99, 100, 124, 126 

160 65, 96 

162 81, 82 

192 64, 129 

200 25, 176 

216 81, 136 

240 16, 81, 96, 145, 160, 225 

243 242 
250 124, 125, 126, 249 

256 no o thers 

272 17, 256 

288 64, 225 

300 25, 76, 100, 201, 225, 276 

320 65, 256 

324 81, 244 

360 81, 136, 145, 216, 225, 280 

384 129, 256 

400 176, 225 

432 81, 352 

480 96, 160, 225, 256, 321, 385 

486 243, 244 

500 125, 376 
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512 
544 

576 

600 

625 

640 

648 

720 

729 

768 

800 

864 

900 

960 

972 

1000 

no o the r s 

256, 289 

649 513 

25, 201, 225, 376, 400, 576 

182, 443, 624 

256, 385 

81, 568 

81, 145, 225, 496, 576, 640 

728 

256, 513 

225, 576 

352, 513 

100, 225, 325, 576, 676, 801 
256, 321, 3853 576ls 640, 705 

244, 729 

376, 625 
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CERTAIN LUCAS-LIKE SEQUENCES. 
AND THEIR GENERATION BY PARTITIONS OF NUMBERS 

DANIEL C. FIELDER 
Georgia Institute of Technology, Atlanta, Georgia 

1. INTRODUCTION 

An interesting paper by S0 L0 Basin in the April, 1964, issue of this 
th journal [1] develops the k Lucas number L, = S, where S, is the sum 

th of the k powers of the roots of 

(1) f(x) = a0x2 + ajx + a2 , 

in which a0 = 1, aj = a2 = - 1 . Although Basin?s S, originated from a 
demonstration of a property of Waring1 s formula, it is obvious, as Basin 
implies, that the same results could be obtained using Newton1 s formulas for 
S, in terms of elementary symmetric functions, 

In a previous paper [2 ] , the author tabulated S, from Newton1 s formu-
las for 

(2) f(x) = a0xn + ajx11 1 + • - • + a . 

The values of S, for k = 1(1)11 applicable for 1 < n ^ 11 are reproduced 
as Table 1* of this paper. 

It is proposed to examine the special case of (2), 

*/ v n n-i n-2 -
(3) f(x) = x - x - x - . . . - i , 

for n > 2 and to use Table 1 as a guide in extending the true Lucas sequence 
found from (1) to Lucas-like sequence s0 Also, a method by which partitions 
of numbers can generate terms of the Lucas-like sequences is presented. 

*This table is reproduced with all rights reserved, Reprinted by permission 
from the American Mathematical Society from Mathematics of Computation, 
Vol. 12, No. 63, pp. 194-198* Actually, it is S^ which is tabulated in [ 2] 
but is presented herein as Ŝ . to be consistent with this paper. 

319 
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T a b l e 1 

S k f o r k = 1(1)11 

Si — — di/do, 

5 2 = ai2/ao2 — 2at/a$, 
53 = — ai3/a0

3 -f 3aifl2/ao2 — 3a3/ao, 
Si — 0i4/0o4 — 4ai2<z2/a0

3 4 (40i03 4- 202
2)/0O

2 — 4a4/a0 , 
5s = — 0i5/0o6 4 5ai3a2/ao4 — (5ai2a3 -f 5aiO2

2)/a0
3 4 (50i04 + Sa^a^)/a^ •— 5a&/a&, 

Si = ai6/ao« — 6a1
4a2/ao6+(6ai3a3H-9ai2a2

2)/ao4— (6ai2a4-f 120^^3-}- 2a2
3)/ao3 

-f- (60105 4 60<204 4- 3 0 3
2 ) / 0 Q 2 — 6a®/ao, 

57 = - aiVao7 4 7ai6a2/a0
6 - ( 7a / a 3 4 14ai3a2

2)/a0
6 

4- (7ai3a4 421ai 2 a 2 a 3 47aia 2
3 ) /ao 4 —(7fl2ia54l4aia2^447a22«3 47oia23)/ao3 

4 (7aia6 4 70*15 4 7a304)/0o2 — 7a7/ao, 
5 8 = 0i8/0o8 — 8oi6a2/0o7 4 (8ai5a3 4 20ai4a2

2)/a0
6 

— (80^04 4 32di30203 4 160i203
2)/0O

5 

4 (8oi3a6 4 24fli2a204 4 12ai203
2 4 240i02

203 4 2a2
4)/a0

4 

— (8ai206 4 160105505 4 I6010304 4 802
204 4 80203

2)/0o3 

4 (80107 4 80206 4 80305 4 404
2)/0o2 — 808/0O, 

S* = - 0i9/0o9 4 90!702/0O
8 - (90!603 4 270i602

2)/0o7 

4 (90i504 4 45a ^ 0 ^ 3 4 3O0i302
3)/0O

6 

— (90i405 4 36ai30204 4 180i303
2 4- 540i202

203 4 9ai02
4)/ao

5 

4 (90i306 4 27fli20206 4 270i20304 4 27ala2
2ai 4 270i0203

2 + 902
303)/0O

4 

— (90i207 4 180105506 4 18010305 4 901042 4 902
206 4 180550304 4 303

3)/0o3 

4 (9010s 4 90207 4 90306 4 9040B)/0o2 — 909/0O, 
5 l 0 = a^ /00 1 0 - IQ01W0O9 4 (lO0i703 4 350i602

2)/0o8 

— (1O0I 6 0 4 4 6O0i50203 4 5O0i402
3)/0O

7 4 ( 1 O 0 I 5 0 5 4 5O0i40204 

4 250i403
2 4 lOO0i302203 4 250i202

4)/0o6 - (1O0I 4 0 6 4- 4O0i30205 

4 4O0i30304 4 6O0i202
204 4 6O0i203

202 4 4O02
3030i 4 202

6)/0O
6 

4 (lO0i307 4 3O0i20206 4 3O0i20305 4 150i204
2 4 3O0i02

205 

4 60010^304 4 1O02
304 4 1502

203
2 4 1O0I0 3

3 ) /0O 4 

— (lO0i208 4 2O0i0207 4 20010306 4 20010405 4- 200550305 
4 1O02042 4 lOa2

206 4 lO03
204)/0o3 -4 (10aio9 4 1O0208 

4 100307 4 100406 4 50B
2)/0O2 — 1O0IO/0O, 

5 n = - ai
n/a0

u 4 II01W0O1 0 - ( l l0 i 803 4 44a1
702

2)/0O
9 

4 ( l l0 i 7 0 4 4 770i60203 4 7701
602

3)/0o8 - ( l l0 i 6 0 5 4- 6601*0204 
4 330i6023 4 1650i402

203 4 550i302
4)/0O

7 4 ( l l0 i 5 0 6 4 550i40205 

•4 550i40304 4 llO0i202
303 4 HO01W04 4- HOoi^j^s2 4- Il0i02

5)/0o8 

— (Il0i407 4 44-0i30206 4 440i30306 4 220i304
2 4 660i202

206 
4 1320i2020304 4 440i02

304 4 660i02
203

2 4 I I0 /03 4- 22ai2a/)/a0
b 

4 ( l l0 i 308 4 330i20207 4- 330i20308 4 330i20405 4 330i02
206 

4 66010J50305 4- 33010204
2 4 330i03

204 4 ll02
306 4 3302

20304 4 ll0a802)/0o4 

— (Il0i209 4 22010*08 4- 22010307 4 220i0406 4 11010s2 4- ll02207 
4 22020306 4 22020405 4 ll03#42 4 ll03

205)/0o3 4 (II0101O 4 H0209 
4 l l 0 3 0 8 4 H0407 -4 110606)/0Q2 ~ 1 l01l/0O. 
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The liberty of calling the sequence f! Lucas-like" appears justified since 
(1) (as used by Basin) is a special case of (3) and, moreover, the sequences 
do indeed share characteristics with the true Lucas sequences„ 

20 OBSERVED BEHAVIOR 

To identify terms of a sequence and at the same time to retain a Lucas 
flavor, the terminology L | ' is used to specify the k term of a Lucas-

(n) like sequence obtained from (3) for a given n > 20 For convenience, S^ ; = 
th (2) L^v

0 It is noted that L;_ is the true k"Ai Lucas number, L, . For any (n) 
"k • ^ ^ * — — ^k 

given k < 11 and 2 < n < 11, it is a simple matter to enter Table 1, reject 
all coefficients of a terms having subscripts greater than n and add the 

th numerical coefficients of the remaining a terms to obtain a k Lucas-like 
numbera The choice of signs in (3) automatically makes the signs of the num-
erical coefficients positive,, For examples 

(4) 
(2) 1 + 4 + (0 + 2) + 0 = 7 

The first seven terms of several Lucas-like sequences obtained in this manner 
are recorded in Table 2e For later use, a zig-zag line divides the table into 
two parts. For n = 2, it is seen that the difference between the first two 

n-i terms (those above the zig-zag line) is 2 (i. ea , 2 for n = 2), and that the 
sum of two consecutive terms determines the next term. For n = 3, the dif-

n~2 ference between the two first terms Is 2 , and the difference between the 
n-l second and third terms Is 2 . There are three terms above the zig-zag 

line0 For n = 3, the sum of three consecutive terms determines the next 
term. 

Table 2 
VALUES OF L (n) 

•N 
1 
2 
3 
4 
5 
6 
7 

n 1 

1 
1 
1 
1 
1 
1 
1 

2 

1 
3 
4 
7 

11 
18 
29 

3 

1 
3 
7 

11 
21 
39 
71 

! 4 

1 
3 
7 

15 
26 
51 
99 

5 

1 
3 
7 

15 
31 
57 

113 

6 

1 
3 
7 

15 
31 
63 

,120| 
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The obvious pattern is repeated for n = 4, 5, etc. 
One immediate conclusion is that each Lucas-like sequence is , in reality, 

the blend of two sequences,, The first sequence is 1,3,7,° • ° , 2 - 1 having 
n terms and governed within its range by the recursion formula 

(5) i f t = L f + 2k , (L<n> = 1) . 

The second sequence starts with the sum of the n terms of the first sequence. 
The first term is 

(6) L < ? = 2 n + 1 - n - 2 . 
\ / n + 1 

Succeeding terms are 

(7) i& - e \ + ^ - - 2) - 1 , 

(8) L<» = LW> + ( 2 n + 1 - n - 2) - (1 + 3) , 

W T ( 4 - T (n) + . . . + T (n) 
n+i 

In general, the second sequence follows the recursion formula 

(10) l i n ) = lin> + L ? > + • . . + L[n) (k > n + 1) 
v ' k k-i k-2 k-n v ' 

It is interesting to note from (7), (8), and (9) that at least one term of the 
first sequence appears directly in the summation for L ) ' for n ^ k ^ 2n„ 
After k > 2n, the influence of the first sequence is reduced. 

3. PARTITION CALCULATION OF SEQUENCE TERMS 
fn) Several methods are available for finding a particular L) ; . One method 

is the direct use of recursion formulas. Another is to solve the n order 
difference equation for the second sequence subject to the n conditions (or 
their equivalents) imposed by the first sequence. A. third method, discussed 
herein, is to assume that desired partitions of n are available and to use them 
as a combinatorial means of finding the L ) . 
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In Chrystalfs [3] notation, P(kppq) is the number of p-part part i -
tions of k, no member of which exceeds qe If the original value of q ex-
ceeds k + 1 - p, it can be replaced by q = k + 1 - p since there are the 
same number of partitions for q = k + 1 - p as for q ^ k + 1 - p„ However, 
for q < k + 1 - p it is obvious that less than P(k|p|<k + 1 - p) partitions 
exist. Suppose, now, that desired partitions can be called up at will and are 
available from this point on. The actual set of such partitions which have the 
same limitations as the enumeration counterpart is given the terminology 
PV(k|p|<q). 

If any S, of Table 1 is stripped of all terms except subscripts and super-
scripts (exponents) of the numerator a?s, there remains the conventional 
representation of all the partitions of ka The partition representation for 
k = 6 is exemplified in Table 3. It is seen that, in general, p ranges from 
k to 1. The quantity k • (p - 1)! divided by the product of the factorials of 
the exponents of a particular combination yields (neglecting sign) the numerical 
part of the contribution of that combination to S, . To illustrate, if k = 6, 
p = 3, the numerical coefficient associated with the partition 23 = 2,2, 2, is 
(6 x 2! )/3l = 2, This well-known result employs much the same reasoning as 
finding a coefficient of a multinomial expansion. The numerical coefficients 
for k = 6, n = 6, and the total 63 = iA ' are given in Table 3. Thus, 
once the exponents are found from the available partitions, iA ' follows. 

Table 3 
Pa r t i t i on 

Representa t ion 

I 6 

I 4 , 2 
' I 3 ,3 

12,22" 

124 

1 ,2 ,3 

23 

1,5 
24 

32 

6 

1 , 1 , 1 , 1 , 1 , 1 

1 , 1 , 1 , 1 , 2 

1 , 1 , 1 , 3 

1 , 1 , 2 , 2 

1 ,1 ,4 

1 ,2 ,3 

2 , 2 , 2 

1,5 

2 ,4 

3 ,3 
6 

PV(k[p|<q) 

PV(k|p|<q) 

PV(6|5|<2) 

PV(6|4j<3) 

PV(6|3J<4) 

PV(6|2|<5) 

PV(6ll |<6) 

Numer i ca l 1 
Coefficient 

(6 x 5! ) /6 ! = 1 

(6 x 41 ) /4 ! = 6 

(6 x 3! ) / 3 ! = 6 

(6 x 3 ! ) / ( 2 ! x 2!)' = 9 

(6 x 2! )/2.T = 6 

(6 x 2! ) / l = 12 

(6 x 2] ) /3 j = 2 

(6 x l j ) / l = • 6 

(6 x l ! ) / l = 6 

(6 x 1! )/2.f = 3 
(6 x O ! ) / l = 6 

Total = 63 
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As long as k ^ n, the sum of numerical coefficients obtained from the 
PV(k p ^ k + 1 - p)!s is the desired iS '. When k > n, the a terms with 
subscripts greater than n are zero. Since the corresponding products with 
numerical coefficients are zero, these numerical coefficients are not used. 
The elimination of these numerical coefficients is accomplished by limiting q 
to 1 < q < n and using only those partitions which result. Table 4 gives an 
example of this situation k = 6, n = 20 

Table 4 

Partition 
Representation 

l 6 

14,2 
12,22 

23 

1 ,1 ,1 ,1 ,1 ,1 
1,1,1,1,2 

1,1,2,2 
2,2,2 

None 
None 

PV(k|p|q) 

PV(6|6|1) 
PV(6|5|2) 
PV(6|4|2) 
PV(6|3|2) 
PV(6|2|2) 
PV(6|1|2) 

Numerical 
Coefficient 

1 

6 

9 

2 

0 

0 

Total =18 

The above methods have been successfully applied to digital computation of 
electrical network problems [4] in which the a coefficients had values other 
than ±1 and in which it was necessary to consider the signs of the resultant 
numerical coefficients, 
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REMARKS ON TWO RELATED SEQUENCES OF NUMBERS 
DANIEL C0 FIELDER 

Georgia Institute of Technology, At lanta, Georgia 

1. INTRODUCTION 

The expansion of (x + y) usually takes the form 

n+i 
(1) (x + y) =, L C(n,k)x y 

k=i 

where C(n,k) are the well-known binomial coefficients and are sequences of 
integers generated by the expansion (1). Another device for obtaining the C(n,k) 
i s , of course, Pascal?s triangle. 

Different sequences of numbers can be obtained from the coefficients 
resulting from the expansion of (x + y) in terms of (x + y )(xy) . Fur-

n n ther, a sort of inverse can be obtained by expressing (x + y ) in terms of 
(x + y) (xy) . In both cases the coefficients share characteristics with cer -
tain binomial coefficients and terms from sums of powers of roots of selected 
polynomials. In the inverse sequences, except for appropriate changes in 
sign, the numerical coefficients are those observed in a recently proposed 
approach to the generation of Lucas numbers from partitions of numbers [ l ] , 
The relationship between partitions of numbers and both sequence is outlined 
briefly. 

2. SEQUENCE OF THE FIRST KIND 

For brevity, let (x + y) = u = ut (interchangeably), let (x + y ) = u, , 
and let (xy) = v. The numerical coefficients of the resultant direct expansion 
shown below are called coefficients of the first kind. 

u 
u2 

u3 

— 
= 
= 

u l 
u 2 
u 3 

+ 

+ 
2v2 

3UiV2 

^ u4 = u4 + 4u2v2 + 6v4 

u5 + 5u3v2 + lOu-tV4 

u6 + 6u4v2 + 15u2v4 + 20 v6 

325 
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As might be suspected, the coefficients are binomial coefficients without the 
symmetrically repeated coefficients of the expansion (1). The coefficients of 
(2) form the half-Pascal triangle enclosed by solid lines below0 

3. SEQUENCE OF THE SECOND KIND 

A rearrangement of (2) yields 

(3) 

Uj_ = U 

u2 - u2 

u3 = u3 

u4 - u4 

u5 - u5 

u6 - u6 

- 2v2 

- 3uv2 

- 4u2v2 + 2v4 

- 5 u V + Suv4 

- 6u4v2 + 9 u V - 2v 

If the minus signs are temporarily neglected in (3), the diagram below il lus-
trates one of the simple additive methods by which the coefficients can be 
obtained. 

1 + 

(4) 

If signs are neglected, it is interesting to note that the sum of the coefficients 
for any given index is identically the Lucas number of that index. Additional 
comments on this will be made later. 
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4e INTERRELATIONS 

In [1 ] , the sums of the powers of roots of 

/ C \ -P/ \ n n - 1 n " 2 

(5) f (x) = x - x - x _ . . . _ i 

were obtained from a previously developed tabulation of Newton1 s formulas for 
powers of roots. The first few entries of that tabulation are given below with-
out literal coefficients and without negative signs, 

S± = 1, 

Si = 1 + 2, 

S3 = 1 + 3 + 3, 
(6) S4 - 1 + 4 + (4 + 2) + 4, 

55 = 1 + 5 + (5 + 5) + (5 + 5) + 5, 
56 - 1 + 6 + (6 + 9) + (6 + 12 + 2) (6 + 6 + 3) + 6, 

57 = 1 + 7 + (7 + 14) + (7 + 21 + 7) + (7 + 14 + 7 + 7) + (7 + 7 + 7)+7, 

Except for a missing final 1, the numbers as grouped in (6) are complete 
sets of binomial coefficients; hence, by selecting the appropriate numbers from 
(6), the coefficients for the first kind of sequence are readily obtained. 

The extraction of the coefficients for the sequence of the second kind is 
more interesting. The same sets of numbers as those for the first kind of co-
efficients are considered. If in (6) a number is not parenthesized, it is one of 
the second kind coefficients as well as one of the first kind coefficients. How-
ever, it can be observed that whereas a first kind coefficient is equal to the sum 
of numbers within parentheses, the corresponding second kind coefficient is 
equal to the last number only of the numbers included within parentheses. 

Without repeating the details covered in [ 1 ] , it can be stated that the 
second kind coefficients be used to obtain the powers of roots of (5) for the case 
n = 2. ' Proper choice of sign leads to the ultimate identification. 

In the previous paper [1 ] , it was shown that the k Lucas number can 
be generated from the two-part partitions of k„ The sum of the terms result-

th ing from operations on the partitions is equal to the k Lucas number. The 
same operation on partitions can be used for finding the second kind coefficients. 
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However, here the individual terms, not the sum, are used. Proper choice 
of sign must be made since the partition method generates only positive num-
bers . It may be added that this latter method is of advantage only if a rapid 
and convenient means for obtaining partitions is available. 
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RECURRING SEQUENCES 
Review of Book by Dov Jarden 
By Brother Alfred Brousseau 

For some time the volume, Recurring Sequences, by DovJardenhas been 
unavailable, but now a printing has been made of a revised version. The new 
book contains articles published by the author on Fibonacci numbers and r e -
lated matters in Riveon Lematematika and other publications, A number of 
these articles were originally in Hebrew and hence unavailable to the general 
reading public. This volume now enables the reader to become acquainted with 
this extensive material (some thirty articles) in convenient form, 

In addition, there is a list of Fibonacci and Lucas numbers as well as 
their known factorizations up to the 385th number in each case. Many new r e -
sults in this section are the work of John Brillhart of the University of San 
Francisco and the University of California, 

There is likewise, a Fibonacci bibliography which has been extended to 
include articles to the year 1962, 

This valuable reference for Fibonacci fanciers is now available through 
the Fibonacci Association for the price of $6,00, All requests for the volume 
should be sent to Brother Alfred Brousseau, Managing Editor, St. Mary!s 
College, Calif. ,94575. ^ ^ ^ ^ ^ 

The Fibonacci Association invites Educational Institutions to apply for Academic 
Membership in the Association. The minimum subscription fee is $25 annually. 
(Academic Members will receive two copies of each issue and will have their 
names listed in the Journal,) 



BASES FOR INFINITE INTERVALS OF INTEGERS 

D. E. DAYKIN and A . J . W. HILTON 
University of Malaya, Kuala Lumpur, Malaya 

and The U n i v e r s i t y , Read ing 
1. INTRODUCTION 

In this paper we discuss the problem of representing uniquely each mem-
ber of an arbitrary infinite interval of integers. The integers of the interval* 
and no others, are to be expressed as sums of terms of a sequence (b ) of 
integers. We also discuss the problem of representing uniquely each positive 
integer, and no other integer, as the linear combination of terms of a sequence 
(b ) of integers, where the coefficients in the linear combination are prescribed 
and have the value +1 or - 1 . In each problem, roughly speaking, we choose 
an integer k — 1 and require that any two terms of (b ) whose suffixes dif-
fer by less than k shall not both be used in the representation of any given 
integer. The precise definitions and results are in the next section, where we 
also show the way in which earlier work [l] by one of us (D. E..D.) is related 
to our definition of an (h,k) base. 

In a later paper we will discuss an analogous problem of representing 
uniquely each real number in the interval (0 ,c] , where c is any positive 
real number. Finally, we would like to thank Professor R0 Rado for his help-
ful suggestions in the preparation of this paper* 

2. STATEMENT OF RESULTS 

Throughout this paper, h, k and m are integers such that 

h + l > k > h ^ 0 , k ^ l a n d m ^ l . 

Also, unless we state otherwise for a particular sequence, the subscript of the 
first term of a finite or infinite sequence is the number 1, e. g. , 

(an) = (a^ag,---) . 

th We denote by (v ) the (h,k) Fibonacci sequence defined by 

329 
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(2.1) 
v = n n 
v = v + v , + (k -n n - i n - k N 

for 1 ^ n ^ k, 

- h) for n > k . 

An equivalent definition of this sequence was given (for h > 1) in [1] (p. 144). 
We denote by (u ) the (k,k) Fibonacci sequence and by (f ) the (2.2) 
Fibonacci sequence, which is clearly the original Fibonacci sequence (1, 2, 3, 
5, 8,13, 21,e • •) . Further, we write [a,b] for the interval of integers x, a 
< x < b, with the obvious interpretation when a = ~°° or b = +°°. 

Suppose (a ), (k ) is a pair of sequences of positive integers with the 
following property P. 

P. Each integer N E [1,°°] has a unique representation 

N = a. + a. + . . . + a. 

where a = a(N) and i , - i ^ k for 1 ^ v < a. 
x ' v+i v 

It is shown in [1] (Theorem D) that if (a ) is increasing and the pair 
(a ), (k ) have the property P then kj ^ k2 — kj + 1, k2 = k for v ^ 2, 

n n th ~ V 

and (a ) is the (kl9k2) Fibonacci sequence. This result leads us to make 
the following definition. 

Definition 1. A finite or infinite sequence (b ) of integers is an (h,k) 
base for an interval [ a , b ] if each integer N £ {0} U [a,b] has a unique 
representation 

(2.2) N = b. + b. + ••• + b. , 

where 

a = a(N), i2 ^ it + h if a > l , and iy ^ i y + k for 1 <v < a 9 

and further, if N is an integer which can be expressed in the form (2.2) then 

N E {0} U [a ,b] . 

Notice that the representation of 0 in the form (2.2) is the empty sum. 
Theorem 1 is a statement in this notation of another result proved for 

h > 1 in the earlier paper ([1 ], Theorem C). This result can easily be shown 
to be true for h = 0 also, 

Theorem 1. The first n terms (v1? v2, • • • , v ) of the (h,k) Fib-
onacci sequence (v ) form an (h,k) base for [ l , v . - 1] , and (v ) forms 
an (h,k) base for [ 1, °°"|. 
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Our first new results, Theorems 2-6, are concerned with the existence 
of (h, k) bases for the infinite interval [m, 00] with m ^ 1, and for the infin-
ite intervals [™m5oo] and [-00,00]. We conjecture that there is no (h,k) base 
for [ m, 00 ] when m ^ 3, but have only been able to prove the following theorem, 

Theorem 2. If m > 1 and (b ) is an increasing sequence of integers, 
b ^ (2,3,4,° • • , 2 ,•••)> t n e n (b ) is not an (h,k). base for [m,oo]# How-
ever, (b ) = (2, 3,4,«° ® , 2 , s # ° ) is an (h,k) base for [m,°o] if and only 
if h = k = 1, and m = 28 By the statement that (b ) is an increasing se -
quence, we mean that bA ^ b2 — ° ° ° . 

It is easier to deal with the intervals [-m, <*>] and [-°o,°o], provided that 
h = k. However, we have been unable to settle the question of the existence of 
(h,k) bases for these intervals when h ^ k. 

Theorem 30 If -m is a negative integer then there exists a (k,k) base 
for [-m,°o]. 

For the set of all integers, [-00,00], there are infinitely many (k,k) 
bases, and in fact we can choose the sign which each term of a (k,k) base is 
to have, subject to the condition that the signs change infinitely often0 

Theorem 4„ Let (s ) be a sequence such that 

i s E {-1,1} for n ^ 1 , and 
n 

s e s _ = -1 for infinitely many n > 1 . 

Then there is a (k,k) base (b ) for [ -00,00 ] with s b > 0 for n ^ 1. 
For k = 2, we give an explicit example of a (k,k) base for [ -m,oo ] in 

terms of the Fibonacci sequence (f ). We first represent m in the form 

(2.4) m = f. + f. + • • • + f. , 
1 ; 11 i2 ia

 s • 

where 

i ^ > i + 2 for 1 ^ v v+1 v 

The existence and uniqueness of this representation is proved by Theorem 1. 
Next we le 
as follows 
Next we let (s ) be the sequence defined in terms of the suffixes i of (2.4) 
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s. = - 1 for 1 <• v < a 

(2.5) 
x v^ i 

s = 1 o therwise . n 

Then an explicit formula for a (2,2) b a s e for [-m,*>] is given in : the follow-

ing theorem* 

T h e o r e m 5, Let - m be a negative integer , let the sequence (s ) be de -

fined as in (2.5), and let 

!

s f i f s ' s = 1) 

n , n .- n n~1 , for n > l S f , if S • S J = - 1 n n - i n n - i 
Then (b ) i s a (2,2) b a s e for [ -m,oo] « 

Similar ly , we have an explicit formula for a (2,2) b a s e for [-oojooj, in 

t e r m s of the Fibonacci sequence (f ). We p r e s c r i b e the sign of each t e r m of 

the b a s e , subject to the condition that the signs change infinitely often. 

T h e o r e m 6. If the sequence (s ) sa t i s f ies (2.3) and the sequence (b ) 

is de te rmined in t e r m s of (s ) by the re la t ions (2*6), then (b ) i s a (2,2) 

b a s e for r-<xy»] with s b > 0 for n > 1, L J n n 

So far we have been concerned with unique r ep resen ta t ions of in tegers as 

s u m s of t e r m s of a base . It is in te res t ing to cons ider the p rob lem of uniquely 

r ep resen t ing in tegers as l inear combinat ions of t e r m s of a sequence (b ) of 

in t ege r s , where the coefficients in the l i nea r combination a r e p r e s c r i b e d and 

have the value +1 or - 1 . We f i r s t make the following definition. 

Definition 2. Let a sequence S = (s ), where s E {- l» l} for n ^ 1, 

be given. A sequence (b ) of in tegers is an ( h + l , k ; S ) b a s e for [0,°o] if 

each in teger N G [ 0,oo] has a unique represen ta t ion 

(2.7) N = s b . + s ,b . + •• • + Sib. 
a it a-l i2

 l ia 

where 

a = a(N), i 2 - ii + h + 1 if a > 1, 

a n d i y + 1 ^ i y + k for 2 ^ v < a 
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and further, if N is an integer which can be expressed in the form (2.7) then 
NE- [0,oo] . 

th Theorem 1 shows that the (h,k) Fibonacci sequence (v ) is an (h,k) 
base for [l,°o]. It follows that (v ) is an (h,k) base for the set of all non-
negative integers, [0,oo], and we have been able to determine the conditions 
under which (v ) is an (h + 1, k;S) base for this same set of integers. 

Theorem 7. The (h,k) Fibonacci sequence (v ) is an (h + l,k;S) base 
n+l for [0,oo] if and only if s = (-1) for n — 1. 

In our last theorem we give an explicit formula for the terms of (v ), the 
th n 

(h,k) Fibonacci sequence. It is well known that the terms of the Fibonacci 
sequence (f ) are sums of the elements in the diagonals of Pascal 's triangle, 
and Theorem 8 extends this result. 

Theorem 8. 

(2.8) v = E / n - h + < k - l > < 2 - i > ) f o r n * i . 
n i=k-h V i / 

Here, as usual, (, J denotes the binomial coefficient a! /(a - b)! (b!). 

3. PROOF OF THEOREM 2 

We assume that the sequence (b ) is increasing and is an^(h,k) base 
for [m,oo], and in each of the first three cases we deduce a contradiction of 
definition! of an (h,k) base by finding a number which has two representations 
in the form (2.2). 

Lemma 1. b = n + m - 1 for 1 — n — m + h. 
n 

Proof. As the sequence (b ) is increasing, it is strictly increasing, so 
that bi = m and 

(3.1) b ^ m + n - 1 for n ^ 1 . 
x n 

The smallest number of the form (2.2) with a > 1 is b* + bj+k, and, by (3.1), 
bj_ + bi+h — 2m + h. Hence b = m + n - 1 for all n — 1 such that m + n - 1 
< 2m + h; i. e. , n — m + h. This proves Lemma 1. 

We consider now the various cases. 
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Case [ 1 ] . m ^ 3. Then by Lemma 1, 

k>i + bh+s = m + (m + h + 3 - 1) = (m + 1) 

+ (m + h + 2 - 1) = b2 + bh+2 • 

Case [ 2 ] . 1x1 = 29 k > 1. By Lemma 1, b = n + 1 for 1 < n < h + 2, 

and so bi + bi+n = 4 + h, ht + b2+h = 5 + h, and b 2 + b2+h = 6 + h. Clear ly , 

6 + h is the l a r g e s t number which can be r ep re sen ted in the form (2.2) with 

i — 2 + h and a = 2. However, the sma l l e s t number which can be r e p r e -

sented with a = 3 i s 

bl + b-t+h + b1+h+k - 4 + h + b3+fr > 4 + h + 6 + h > 1 0 + h . 

There fo re b3+h = 7 + h. But ht + b3+h = 2 + (7 + h) = 9 + h, so that 8 + h 

has no rep resen ta t ion with i^ ^ 3 + h. Hence b4+|1 = 8 + h. But then we have 

b l + b4+h = 2 + (8 + h) = 3 + (7 + h) = b2 + b3+h . 

Case [ 3 ] . m = 2, k = 1, h = 0. Then by Lemma 1, bi = 2 and b 2 

= 3. There fo re the r ep resen ta t ions of 4, 5, 6 and 7 a r e bi + bl3 bi + b2, b 2 

+ b 2 and bj + bi + b2 respect ive ly . The number 8 cannot be r ep re sen t ed in the 

form (2.2)-with ifl, ^ 2. Hence b3 = 8. S imi lar ly the number 9 cannot be r e p -

resen ted with i^ ^ 3. Hence b4 = 9. But then ht + b4 = 2 + 9 = 3 + 8 = b 2 

+ b3. 

We have now only to deal with the c a s e s when m = 2, k = 1, h = 1. 

It follows, therefore , from the contradic t ions obtained in the f i rs t 3 c a s e s that 

if (bn) is an (h,k) base for [m,oo]5 then h = k = 1 and m = 2. 
n—i Case [ 4 ] . h = k = 1, m = fy = 2, b2 = 3 and b n = 2 for n > 3. 

In this c a s e (bn) i s a (1,1) b a s e for [2,00] . 

F o r let N — 2 be an in teger . If N is even, then i ts r ep resen ta t ion in 
the form (2.2) is the binary represen ta t ion , which i s unique. If N is odd, then 

N - 3 i s even, and so the represen ta t ion of N is the binary represen ta t ion of 

N - 3 together with b2; hence this r ep resen ta t ion i s also unique,, 
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Notice that, for p ^ 3, each of the number s 2, 3, • • • , 2 P _ 1 - 2, 2 P _ 1 

p-1 - 1 , 2 F + 1, and no o the r s , can be r ep re sen t ed in the form (2.2) using (bj, 

b 2 , • # • , b _ ). This fact i s used in the proof of the next case . 

Case \5]. h = k = 1, m = 2, (bn f (2, 3, 4, 8, - • • , 2n~\ • • • ) . Again 

we a s s u m e that (bn) i s inc reas ing and is an (h,k) b a s e for [m,oo], so that, 

by Lemma 1, bj = 2 and b 2 = 3. Let p > 3 be an integer . Suppose that 

bp f 2P~ , and, if p > 3, also suppose that b3 = 4, b4 = 8, • • ° /b p _ 1 = 2P~2. 

Then, by the r e m a r k at the end of the l a s t c a s e , bp > 2 + 1. But then 2 

has no r ep resen ta t ion in the form (2.2), which cont rad ic t s definition 1 of an 

(h,k) ba se . This comple tes the proof of Theo rem 2. 

4. PROOFS OF THEOREMS 3, 4, 5 and 6 

Throughout this sect ion, namely L e m m a s 2-8 and the proofs of T h e o -

r e m s 3-6, the sequences ( t n ) , ( a n ) , (dn) and (e n ) a r e as defined immed ia t e ly 

below. We let ( t n ) be a sequence such that t E {-1, l } for n > 1. The t h r e e 

sequences ( a n ) , (dn) and (e n ) a re s imul taneously defined by induction in 

t e r m s of the sequence ( t^) . F i r s t we put a* = tj and dn = e n = 0 for n < 0„ 

If n > 1 and we have defined the t e r m s d , e for v < n - 2, and the t e r m s 

a for 1 < v < n - 1, then we define d , e _ and a as follows. v n - i n - i n 
i) d i s the l a rges t , and e , i s the sma l l e s t of the number 0 and ; n - l & n - i 

the number s r ep re sen t ab l e in the form 

(4.1) a. + a. + • • • + a. 
11 19 X 

w h e r e 

la 

i < n - 1 and i ,, . > i + k for 1 < v < a a v+i v 

1 A ON d - e . + 1 if t = + 1 
(4.2) a = < n - i n -k n n l e - d . - 1 if t = - 1 N n - i n - k n 

The re la t ion (4.2) i s c l ea r ly t r u e for n = 1 also. 

Lemma 2. (i) F o r all n, 0 < d J < d and e < e J < 0o _ ___ n_i n n n _ 1 

(ii) F o r n > 1, t a > 0* v ? n n 
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Proof, (i) Follows immediately from the definitions of (d^) and (en). 
(ii) For n ^ 1, if t^ = +1, then, by (4.2) and part (i), 

a = d - e , + 1 ^ 1 . 
n n-i n-k 

The proof when t = -1 is similar and completes the proof of Lemma 2. 
Lemma 3„ For n ^ 1, if t = +1, then d = d , + a and e = n n n-k n n 

e , and if t = - 1 , then e = e , + a and d = d n - r n n n-k n n n-l 
Proof, (i) We assume that t = +1 and show that e = e . Since 

• w n n n-i 
t = +1, by Lemma 2(ii), a > 0. The number e J i s , by definition, the 
n ' J x / J n n-l ' J ' 

smallest of the number 0 and the numbers representable in the form (4.1), and since a > 0, no smaller number can be formed by adding a . Hence n J & n 
e = e . Similar reasoning shows that d = d if t = - 1 . n n-i & n n-l n 

(ii) We assume that t = +1 and show that d = d , + a . x ' n n n-k n 
From the definition of (cL), d ^ d . + a „ We suppose that d > d . + 

v n " n n-k n ^ n n-k 
a , so that d = d , + a for some r > 0. Hence d . + a > 
n n n-r -k n- r n- r -k n - r 

d , + a . However by Lemma 2(i), d < d , , so that a — a . 
n-k n J v " n - r -k n-k' n - r n Since t = +1 it follows from Lemma 2(ii) that a > 0. Therefore a > 

n v ' n n- r 
0 and so t _ = +1. Therefore, by (4.2), 
(4.3) d - a , + l ^ d - e j + l . 
v ! n - r - i n- r -k n-i n-k 

However, by Lemma 2(i), d ^ d and -e , — -e , , which con— 
3 J W J n-l n - r - i n-k n- r -k 

tradicts (4.3) and so proves that d = d , + a . The proof that if t = -1 
v ' * n n-k n ^ n then e = e , + a is similar. This completes the proof of Lemma 3. n n-k n ^ ^ 

Lemma 4. For all n, the finite sequence (als a2, ° • • , an) is a (k,k) 
base for fe , d 1. L n nJ 

Proof. We use induction upon n. When n < 1, (alf a2,° • • , a n ) = <p9 

the empty set. Since e = d = 0 , the lemma is true in this case. * J n n 
Let m ^ 1, and suppose the lemma is true for n < m. Then (al9 a2, 

° • • , a , ) is a (k,k) base for fe , ,d , 1. From (4.2) and Lemma 2(i), ' m-k ; v ' ' L m-ks m-kJ \ / \ /» 
if t = +l then a + e , > d , , and if t = -1 then a + d , < m m m-k m-k m m m-k 
e , . Therefore (a*, SL9, • • • , a , , a ) is a (k,k) base for m-k v 1$ l9 m-k m7

 o
 v ' } 

fe , , d , 1 M fe , + a , d , + a ] . L m-k m-kJ ^ L m-k m m-k mJ 
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Also by the induction hypothesis, (ala a2, ° • • , a ) is abase for [e _ , 
d™ J - B y (4°2h i f t = + 1 t h e n d + 1 = a + e , , and if t = -1 m-l J /s m m-i m m-ks m 
then e - 1 = a + d , 0 Since also, from Lemma 2(i), 

m-i m m-k ' W J 

Te . d 1 D [e , f d , 1 L m - r m-i J — L m-k* m-kJ 

it follows that (a1s a2,° • • , a m ) is a (k.k) base for Te , , d , + a 1 if t \ i> t> m/ v » / L m - k ' m-k mJ m 
=+1 , or for fe , + a ,d ] if t = - 1 . Hence, by Lemma 3, (a*, a*. 

L m-k ms m-i J m * J 9 x v i9 
BO° s a ) is a (k.k) base for fe , d 1. m7 \ » / L m mJ 

Lemma 4 now follows by induction* 
Proof of Theorem 4. Suppose t = s for n ^ 1, where (s ) is the 

— rf n n J \ n / 

sequence defined in (2.3). Then (t ) has the additional property that t • t 
= -1 for infinitely many n ^ 1. It is then clear from Lemmas 2(ii) and 3 that 
d ~*-oo and e -* -oo as n -* °°, so that, by Lemma 4 (a ) is a (k,k) base 
for [-00,00], We have already shown (Lemma 2(ii)) that a t > 0 for n ^ 1, 
so that Theorem 4 is proved, 

Only part (i) of the following lemma is needed in this section. Part (ii) is 
used in Section 5e We let N (Jt) be the number of finite sequences (ils i2,8 • • , 
ia) of positive integers such that 

(4.4) 1 < i^ < n, i2 > it + i if a > 1, and i ^ i + k for 2 ^ v < a ; 

and are only interested in the values I = h and £ = h + 1. 
Lemma 5. (i) For n ^ 1, N (h) = v ,4 , 

(ii) For n > 1, N n ( h + 1} = V n + 1. 
Proof, (i) By Theorem 1, for n ^ 1, there is a 1:1 correspondence be-

tween sums of the form v. + v. + ° • • + v. with condition (4.4) applied with 
ft = h, and the integers in fO, v ,4 - l ] e Hence N (h) = v . . 

L n+i J n n"r"i 
(ii) If each finite sequence (i1? i2, •• • »ia) of positive integers, 

with condition (4.4) applied with ft = h, is transformed by putting it = ]1 and 
i + 1 •= j for 2 ^ v ^ ce , then we obtain all but one of the finite sequences 
(3i» J2*° °8 *3a) o f positive integers, where 1 < j ^ < n + 1, j 2 ^ j 4 + h + 1 if 
a ^ 1 and j + > j + k for 2 ^v < a 0 The finite sequence we do not obtain 
i s (Ji) 9 when j x = n + 1. Therefore, by part (i), N (h + 1)• = v + + 1 for 
n > 1. Hence N (h + 1) = v + 1 for n > 2. As part (ii) is clearly true when 
n = 1, the proof of Lemma 5 is completed 
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Lemma 6. 

u M j for n — k n-k+i 
(d - d ) - (e - e ) = { 1 for 1 < n < k 

n n - i n n - l J 
• for n < 1 . 

The sequence (u ) i s the (k,k) Fibonacci sequence. 

Proof. By L e m m a 5(i), N (k) = u , for n > 1. The re fo re it follows 
— J n n+i from L e m m a 4 that d - e = u ,, - 1. Hence for n > 2, n n n+i 

(d - d , ) - (e - e J = (d - e ) - (d - e J n n - l n n - i n n n - i n - i 
= (u _,_ - 1) - (u - 1) 

n+i n 

!

u , , for n > k , 
n-k+l 

1 for 2 < n < k . 

The r e su l t is easi ly seen to be t r u e for n = 1 and i s t r iv ia l ly t r ue for n < 1. 

Th is p roves Lemma 6. 

L e m m a 7e If k = 2, then aj = tj and for n > 1, 

a 
n 

t f if t • t = 1 , 
n n n n - l 

t f if t • t = - 1 . 
n n - l n n - l 

The sequence (f ) is the (2,2) Fibonacci sequence (1, 2, 3, 5, 8, * • • ) . 

Proof. By definition aA = t i . 

Let n ^ 2 and t • t , = 1. By Lemma 3, if ti = +1 then a = d -n n - i J l n n 
d and e = e a = e , and if t = - 1 then a = e - e ^ and d = n-2 n n - l n-2 n n n n-2 n 
d , = d . Also, by L e m m a 2(i), 0 < d < d and e < e ^ < 0. Hence n - l n-2 J n-2 n n n-2 

a ={t (d - d • ) - (e - e J } n L n n n-2 n n-2 J 

= t {(d - d ) - (e - e J + (d - d J - (e H - e )} nL n n - i n n - l n - i n - 2 ' n - l n-2 J 
( t (f + fn_ ) if n > 3 | 

= k V " ^ I1)"" if n= 2 J ^ y L ™ ^ a 6 , 
{ nx n - i I 

- t f . n n 

Now let t • t = - 1 . Then s imi l a r ly by L e m m a s 2(i) and 3, 
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I d - d , if t = +1 , 

n n - i n ? 

e - e , if t = - 1 , n n - i n = t {(d - d ) - (e - e .)} nLX n n - i n n - i J 
= t f j9 by L e m m a 6 . n n - i J 

This p roves L e m m a 7„ 

Proof of T h e o r e m 6. We take k = 2. We suppose that t = s for 
^ n n 

n > 1, where (s ) i s the sequence defined in (2.3). Then, by T h e o r e m 4, 
(a ) i s a (2,2) b a s e for T 1 with a s > 0 for n ^ 1. But bv L e m -

n L J n n J 

m a 7, &i - Sj and 

I s f if s n • sn__i = 1 I 
a = \ r .o - / for n ^ 1. n J s f , i f s • s , = - 1 1 f n n - l n n - i / 

The re fo re the sequence (a ) i s the s a m e as the sequence (b ) defined in the 

s ta tement of T h e o r e m 6. Hence (br,) i s a (2,2) ba se for [-00,001 with a b 
11 L J n n 

> 0 for n > 1. This p roves T h e o r e m 6. 
L e m m a 8. F o r n ^ 1, if x i s an in teger such that -u , + 1 < x ^ 0 
„_____——- ' o n + i 

then t h e r e exis ts a choice of (t1? t2, ° • • , t^) for which e = x. 
Proof. We u s e induction upon n„ If ' t j = +1 then ei = 0, while if tj 

= - 1 then ei = - 1 ; s ince -u2 + 1 = - 1 , the L e m m a i s t r u e in the c a s e when 

n = 1. 
Let m > 2 be an in teger and suppose that the L e m m a i s t r ue for 1 < n 

< m„ Then if -u + 1 < x < 0 t h e r e ex i s t s a choice of (t1? t2, • • • j t ^ ^ ) , 

which we denote by (t\, t ' , • • • , t m _ i ) , for which e = x. Hence, if we 
^ m—1 

choose ( t l 9 1 2 , °8 s , t m ) to be (tj, t j , - " , Vm_i, +1), then by L e m m a 3, e = x. 

However, suppose that 

(4.5) -u , < x < -u 
m+i m 

Then 

(4.6) x + u 
m 

There fo re , by (4.5) and (4.6), 
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-u . + 1 + u ,, , ^ x + u ,, , < 0 if m ^ k , m+i m+l -k m+i -k 
(4.7) and 

- u _ + l + l ^ x + 1 ^ 0 . m+i 

But, f rom (2.1), 

-u , , + 1 + u . . i f m ^ k , m+i m+l -k 
(4.8) -u + l = I - u ^ + 1 + 1 if 2 < m < k . 

m J m+i 

There fo re , by (4.7) and (4.8), 

I (-u + 1) ^ x + u , , , < 0 if m > k, and 
(4.9) m m 1 - k 

I (-u + l ) 2 = x + 1 ^ 0 if 2 < m < k . 
\ m 

There fo re , by the induction hypothesis and (4.9), t he r e ex i s t s a choice of 

( t l 9 1 2 , • • • , t m _ i ) , which we denote by (t?1? t^, • • • , t ^ ^ ) , for which 

(4.10) e A 
m - l 

/ x + u , , if m ^ k ; 1 m+l -k 

x + 1 if 2 < m < k , 

If we choose (t1? t 2 , ' " ' , t m ) to be (t^, t£, • * • , t m - 1 , -1 ) , then by Lemma 3, 

d = d 4, and so by Lemma 6, m m - i J 

I e , - u , . i f m ^ k , I m - l m+l -k 
( 4 , 1 1 ) e m J e - 1 if 2 < m < k . 

m - l 

Hence, by (4.10) and (4.11), e = x. 

L e m m a 8 now follows by induction. 

Proof of T h e o r e m 3. If p i s an in teger such that -u + 1 < - m then, 

by L e m m a s 4 and 8, t h e r e ex i s t s a choice of (t1? t2, • • • , t p ) , which we denote 

by (tT, V, • • • , t' ), such that (a1? a2, ° • • , ap) i s a (k,k) ba se for [ - m , dp ] . 
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Then, if t = t^ for 1 < n < p and t = +1 for n > p, by Lemmas 3 and 
4, (a1? a2, • • •, an) is a (k,k) base for [ - m , d ] for n > p. By Lemmas 2 (ii) 
and 3, d — oo as n-^oo, Hence (a ) is a (k,k) base for [-m,oo]8 

Proof of Theorem 5. We take k = 2. We suppose that t = s for — — —, fr n n 
n > 1, where (s ) is the sequence defined in (2.5). By (2.4), i > iv+ 2 
for 1 < v < a, and so, by (2.5) and Lemma 2(ii), for n > i + 1, 

(4.12) e = a. ^ + a. _̂  + • • • + a. ^ . 

However, by Lemma 7, aj = Sj and 

I s f if s • s , = +1 I n n n n-i / 

f .f J for n > 2 s f , if s • s = -1 n n-l n n-i I 
Hence the sequence (a ) is the same as the sequence (bn) defined in (2.6). 
But by (4.13) and (2.5), a j v + 1 = Sj +1£j[ = -fj for 1 < v < a. Hence, by 
(4.12) and (2.4), e = -m for n > ia + 1. From Lemmas 2(ii) and 3, d -* oo. 
as n-*oo, and so, by Lemma 4, (bn) is a (2,2) base for [-m,oo], 

5. PROOF OF THEOREM 7 

Let S = (sn) be a sequence such that s E {-1> 1} for n > 1, let m 
be a positive integer, and let (i1? i2,e " • , i#) be a finite sequence of positive 
integers such that 

(5.1) i2 > ii + h + 1 if a > 1 and i > i v + k for 2 < v < a . 

Lemma 9. If (i1? i2, • • • , i^,) = <f>, the empty set, then 

SiVh + S2Via-i + ' ' ' + S^vii = ° • 

Lemma 10. If si = +1 then s^yi + S2VJT + • •e + s^v^ ^ 0. 
Proof. Let sj = 1. If a = 1, then s.v,- + SpV-,- + • • • + ŝ v-.v = v* 

> 1. If or > 1 then 
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s i% + s*%-i + - * ' + S^vii " % " (%-i + % . 2
 + ' ' ' + v i i } 

~ V ia " ( v W + 1 " 1 ) s by T h e o r e m 15 

- 1-

Thi s , together with Lemma 9, p roves L e m m a 10. 
n+i Proof of Sufficiency. Suppose that s = (-1) for n — 1, and that 

i ^ m. Since (vn) i s a s t r i c t ly inc reas ing sequence, it follows that if a ^ 1 

then SiVjL + s2Vi + • • • + s^Vj ^ v^ — v . Hence, and in view of L e m -

m a s 9 and 10, 

(5.2) 0 ^ slViQf + S2V1Q/_1 + • - + s0?vi l =£ v m . 

We show now that any two dist inct finite sequences ( i l 5 i 2 !
t , o , i ^ ) which 

satisfy (5.1) yield dis t inct va lues of s-̂ v-; + s2v.; + • • e + s v- • Suppose 

the re fore that two such dist inct finite sequences a r e (ji, j 2 , • • • , ]p ) and (g1? 

g2»'" V» Sy)« We suppose without loss of general i ty that v ^ —. v , and c o n -

s ider t h ree c a s e s . 

Case [ l ] . |8 = 1. Then 

SlVj^ + S . V j ^ + . . . + SpVh = VJ^ 2> V g y ^ S l V g y + S 2 V g y _ 1 + ^ + S y V g i 9 

Case [ 2 ] , j8 = 2. Then 

> 2 3)3-1 

Case J 3 ] . jS 

Then 

* + Si3V3r = v3/3 - v3,3-i 

" v3/3 " v3/3-h-l 

^ V j ^ " V k = ̂ r1, lf k = h 1 

= 2. 
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h) 

> V J ^ 

" v ^ 

^ 

= VJ/3 

" v g y 

- VJ/3-l 

- VJ/3-k 

- v j ) 3_k - (k - 1 

- 1, by (2.1) , 

> S l V g y + S 2 V g y + . . . + s v 
-i y Si 

By Lemma 5(ii), the number of dis t inct finite sequences (il9 i2, • ° - , i#) 

with ia < m which satisfy (5.11) i s v + 1. There fo re , s ince any two such 

dis t inct finite sequences yield dis t inct va lues of s^v; + S2VJ; + • • ° + s^Vj , 

and in view of (5.2), it follows that (v1? v2, • •• , v m ) i s an (h + 1, k;S) b a s e 
n+i for [ 0 , v m ] when s = (-1) for n > 1. The sufficiency of the condition 

follows. 

Proof of Necess i ty . Suppose that (vn) is an (h + l ,k;S) base for [ 0, 
°o]e We show that s = (-1) for n ^ 1* Clear ly s$ = +1, for o therwise 

n n+i 
slVi = - 1 , a contradiction,, We suppose that s = (-1) for 1 ^ n ^ m 
and that s = (-1) , and deduce a contradict ion in every c a s e . 

Case [ 1 ] . m = 1. Then st = s 2 = +1. We wr i t e M = v h + 2 - v l e If 

a = 1 and ia > h + 2 then SJVJL + s2v-; + • • • + s Vj = v ^ > M, whe rea s 

if a = 1 and ia < h + 1 then 

M - v h + 2 - V l 

= Vl + Vh+2-k + ( k - h ) " ^ ** {ZA) 

= | V h+i + v2 ~ vi> i f h = k ' 
( v u + 1 + Vi + 1 - v1? if h + 1 = k, 

h+l ia 1 w * ta-i a xi 

On the o ther hand if a > 1 then i > h + 2, and so 

s i v i a + S 2 % - i + ° " + S * v i i - % + v i * - i " ( v ^ - 2 + %-3 + ' * ' + V 

- V i ^ + V**-l " ( % - 2 + 1 " 1 ) J 

by T h e o r e m 1, 

> v,- + 1 

> v, ̂  > M . 
h+2 
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Hence M f Sf^ + s2v-i + • • • + S^VJ, for any finite sequence (i l s i2, 

••••>!#) satisfying (5.1), which cont rad ic t s our assumption that (vn) i s an 

(h + l ,k ;S) b a s e for [0,oo]. 

Case [ 2 ] . m > 1. We wr i t e 

(5.3) N = Siv7 v, , + SoV/ x, , + • • • + s v, + s Vi . 
v ' 1 (m-i)k+h+2 2 (m-2)k+h+2 m h+2 m+i * 

It follows from L e m m a 10 that N ^ 0. If m = 2 then N = v. ,, 
k+h-2 ^u ,„ - v i ^ v i ,u , = V/ v. ,, , , while if m > %•, then h+2 2 k+h+2 (m-i)k+h+2 

Hence 

~ v(m-i)k+h+2 '^v(m-2)k+h+2 v (m-s) k+h+2 

= v / HM^U, - (v/ v, ± u ± , + (k - h)) + 1, by (2.1) (m-i)k+h+2 (m-2)k+h+i J 

< v 
(m-l) k+h+2 " 

0 " N " V(m-l)k+h+2 • 

Now N i s the only number of the form S{Vi + s2v; + • • • + s VJJ with 

a = m + 1 and i a — (m - l )k + h + 2. Hence, by the proof of the sufficiency, 

{n: n = S j v ^ + s ^ ^ + • • • + s ^ ; i f f < ( m - l ) k + h + 2 a n d a < m } 

U { N - 2 s m + l V l } = {0, 1, 2, • • • • v ( m _ l ) k + h + 2 } . 

There fo re , by (5.4), N can be put in the form 

with a < m. Hence, and by (5.3) N has two rep resen ta t ions in the form N = 

s-tV; + s2v^ + ••• + s VJ_ , which cont rad ic t s our assumpt ion that (v n ) i s 

an ( h + l , k ; S ) b a s e for [0,oo]. 
n+l We conclude there fore that s = (-1) for n > 1. Th is comple tes 

the proof of Theo rem 7. 
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6. PROOF OF THEOREM 8 

We show that if (v n ) Is defined by (2.8) then the defining re la t ions (2.1) 

of the (h5k) Fibonacci sequence hold, 

If a < b then I , J = 0. Hence the infinite sum of (2„8) contains only a 

finite number of non-ze ro t e r m s . In fact, for 1 ^ n ^ k, the re la t ion (2.8) 

r e d u c e s to 

rn + k - 2> 

T - - i o r (7) 
--ft if k = h, o r v = I 1 1 if k = h + 1, and so the f i r s t of the re la t ions (2.1) 

holds. On the o ther hand, if n > k, by checking each s tage with h = k and 

h + 1 = k, and using the fact that 

GMVM:::). 
we have 

v + v . + (k - h) n - i n -k 
- / n - l - h + ( k - l ) ( 2 - i ) \ 

1)+ S 1 ) 
i=k-h x i ' 

°o / n - k - h + ( k - 1)(2 - i) \ 
+ Z ) 

i=k-h V i ' 
00 / n - 1 - h + (k - 1)(2 - i ) \ °° / n - l - h + (k-

£ ( ) - T, ( : . 
i=i \ I / i=i+k-h * i - 1 

- l / n - l - h + ( k - l ) ( 2 - i ) \ 
(k-h) + E 

i=i ' V i / 
/ n - l - h + ( k - 1)(2 - i) \ / 

+ \ i - i ^ 
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- / n - h + ( k - l ) ( 2 - i ) \ 

i=k-h \ i / 

= v , a s requ i red . 
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A NEW IMPORTANT FORMULA FOR LUCAS NUMBERS 

Dov J a r den 
J e r u s a l e m , I s r a e l 

The formula 

Lion 
(1) — - ( L ^ - 3)2 + (5F 2 n ) 2 

L2n 

may be eas i ly verif ied putting L = a + jS , . 

n 0n 
F = ^ - ^ , * 0 = - l - f 

n V5 
Since for n > 0, (1) gives a decomposi t ion of L 1 0 n / L 2 n into a sum of 

2 s q u a r e s , and s ince any d iv isor of a sum of 2 s q u a r e s i s - 1 (mod 4), it follows 

that any p r imi t ive d iv i sor of L^n* n > 0, is - 1 (mod 4) . 

* * * * * 



SOME PROPERTIES ASSOCIATED WITH SQUARE FIBONACCI NUMBERS 
JOHN H. HALTON 

Brookhaven National Laboratoryf Upton,, Long Island, New York 

1. INTRODUCTION 

In 1963, both Moser and Car l i tz [11 ] and Rollet t [12 ] posed a p rob lem. 

Conjecture 1, The only squa re Fibonacci n u m b e r s a r e 

F 0 = 0, F_i = F i = F 2 = 1, and F l 2 = 144 . 

Wunderl ich [14 ] showed, by an ingenious computational method, that for 

3 < m < 1000008, the only squa re F is F1 2; and the conjecture was proved 

analytic ally by Cohn [ 5 , 6, 7 ] , B u r r [ 2 ] , and Wyler [ 1 5 ] ; while a s i m i l a r r e -

sult for Lucas number s was obtained by Cohn [ 6 ] and Bro the r Alfred [1]„ 

Closely assoc ia ted with Conjecture 1 is 

Conjecture 2. When p is p r i m e , the sma l l e s t Fibonacci number d iv i s -

ible by p is not divis ible by p2„ 

It is known (mostly from Wunderl ich?s computation) that Conjecture 2 

holds for the f i r s t 3140 p r i m e s (p < 28837) and for p = 135721, 141961, and 

514229* Clear ly , Conjecture 2, together with C a r m i c h a e P s theorem (see [ 4 ] , 

T h e o r e m XXIII, and [ 9 ] , Theo rem 6), which a s s e r t s that , if m ^ 0, with the 

exception of m = 1, 2, 6, and 12, for each F t h e r e i s a p r i m e p , such 

that F i s the sma l l e s t Fibonacci number divis ible by p (whence F is not 
m J ^ m 

divis ible by p2 and so cannot be a squa re , if Conjecture 2 holds), impl ies 

Conjecture 1; but not v ice v e r s a , If Conjecture 2 holds , then the divisibi l i ty 

sequence theorem ( [ 9 ] , T h e o r e m 1) can be s t rengthened to say that, if p i s 

an odd p r i m e and n ^ 1, then 

(1) <*(p,n) = p or(p) . 

In the notation of [ 9 ] , Conjecture 2 for a given p r i m e p s ta tes that 

F , v i s not divis ible by p2, Th i s , by L e m m a 8 and Theo rem 1 of [ 9 ] , is 

*This work pe r fo rmed under the auspices of the U. S„ Atomic Energy 
Commiss ion . 

The p r e s e n t pape r i s a r e v i s e d v e r s i o n of a r e p o r t w r i t t e n under 
a u s p i c e s of t h e U. 3* AEC w h i l e t h e a u t h o r . w a s a t Brookhaven 
N a t i o n a l L a b o r a t o r y , Upton9 L . ' I . , N . Y. (Repor t N©eAMD/38^ BNL9300). 
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equivalent to 

(2) a(p2) = pa(p) o 

Since v.(p) i s the highest power of p dividing F . , , this is equivalent to: 

(3) v(p) = 1 . 

By Lemma 11 of [ 9 ] , p divides one and only one of F , F , and F , 

namely F > ^ , where \(p) = p - (5/p) and (5/p) is the Legendre index,, 

Thus , if p > 5, s ince \(p) i s not d iv is ib le ,by p , while it is divis ible by 

<*(p), (2) is equivalent to 

(4) F , v i s not divis ible by p2 , 

and inspect ion of the c a s e s p = 2, 3, and 5, shows that the equivalence holds 

for t hese p r i m e s a lso. Final ly, (4) i s equivalent to: 

(5) F F ,, i s not divisible by p2 
p - l p+l J * 

This paper p r e s e n t s ce r t a in r e s u l t s obtained in the cou r se of invest igat ing 

the two Conjectures , the l a t t e r of which i s s t i l l in doubt* 

2. A THEOREM OF M. WARD 

We begin with a t heo rem posed as a p rob lem (published posthumously) by 
Ward [ 13] . A different proof from that givenbelow was obtained independently 
by Car l i tz [ 3 ] . 

T h e o r e m A„ Let 

(6) <fc&) = £ x S / s 
s=i 

and 
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(7) k (x) = (xP"1 - l ) / p ; 

then, for any p r i m e number p — 5, p2 divides the sma l l e s t Fibonacci num-

b e r divis ible by p if and only if 

(8) c ^ ) ( | ) = 2kp ( I ) (mod p) . 

Proof, We shall show that (8) is t r ue if and only if (5) is falseQ We 

shal l use the congruence (see [ 1 0 ] , page 105) that, when 1 — t — p - 1, 

(9) - I f ) = ( - D t 1 (modp) K') 
and F e r m a t T s theo rem (see [ 10] , page 63), that 

(10) if (a,p) - 1, a p - 1 = 1 (mod p ) 

The ident i t ies 

( ID F = •.-^IHTff2)"! 
(12) F ^ i = F ^ + F ^ . 

<14> ^ + ( - l ) n = F n _ i r n + 1 . 

and 

(15) 3F 2 + 2 ( - l ) n = F 2 + F 2 , 
v ' n n - l n+l 

a r e well known (see [ 8 ] , equations (3), (5), (64), (65), (67), and (95) with 

m = l)o F r o m then it follows that (since (1 ±V5)2 = 2(3 ± V5) ) 



350 SOME PROPERTIES ASSOCIATED [Nov9 

, T \ " 2 Q 

il6) = F 4 n / F 2 n = F f f i . i + F 2 n + 1 = 2F2 + F ^ + F ^ 

= 5F^ + 2 ( - l ) n = 5 F n _ 1 F n + 1 - 3 ( - l ) n . 

Now, s ince p > 5, p is odd and -£(p - 1) i s an in teger . By (6) and 

the factor £ = 6 p [ | ( p - 1)] I is p r i m e to p and makes both fa. v(5/9) (7), 
and k (3/2) into in tegers . Thus, modulo p , by (6), (9), (16), (7), and '(10), 

-i |(t)P<5v.v. + 3 > - 2 } 
= -5"1P[S(P " Ifl '• V . V > /P) + ' (^)P"' ' 2kf 

• ' • 2kp (l) - S < V V / P ) ' 

whe re f and g a r e in tegers p r i m e to p , and F F / p is an integer. 

It follows that (8) is t rue if and only if (F F + 1 /p) = 0 (mod p), and this 

cont rad ic t s (5), proving the theorem,, 

3. ANOTHER CONJECTURE 

We end the paper with an examination of a conjecture , which impl ies the 

f i r s t conjecture (known now to be t rue) , in a r a t h e r different way from Con-

jec tu re 2. The underlying r e su l t i s 

T h e o r e m Bo Let p be a p r i m e , and suppose that t h e r e ex is t s a posi t ive 

in teger M, such that 

(i) for no integer n, p r i m e to p and g r e a t e r than M, is F a squa re 

or p t imes a square ; and 
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(ii) if n i s posi t ive and not g r e a t e r than N, and F is a square o r p 

t imes a squa re , then F, i s ne i ther a squa re nor p t i m e s a square , when k 

is the l eas t in teger g r e a t e r than M, such that k /n is a power of p; 

then no F at all is a squa re o r p t imes a square for m > M* 

Proof. Suppose that (i) and (ii) hold, and that F is a squa re or p 

t i m e s a square . In contradict ion of the theorem, let m > M. Then, by (i), 

m is divisible by p« Let m = pmi , and w r i t e F = AB2C2, F = BC2D, 
J * l m mj 

whe re D divides A and A is 1 or p . This makes F a squa re o r p 

t imes a squa re , and divisible by F . Now, by the well-known identity (see 

[8, equation (35)], o r [9]* equation (8)] ) 

(17) F F = y ( P ) F h " 1 F p " h F, 
m mj X*. I h i m i m i - l h 

we get that 

B(A/D) = BC*D V (A F h ' 2 F P ~ \ Fh + pF*5"1 

A^ I h i mi m i - i h ^ mi-m i - l 

Also, (F - 1, F ) = 1, so B mus t divide p; that i s , B is 1 o r p; y mi mi ^? ^ ' 
and again D is 1 or p . It follows that F , too, is a squa re o r p t imes 

1 J, 

a squa re . Arguing s imi la r ly , we see that, if m = p m , then F is a 
squa re o r p t imes a square,, This will continue until (m ,p) = 1, and then, 

t S 

by (i) 1 ^ m < M. But then, by (ii), if p m = m . i s the l eas t such num-
" S S S —L 

b e r g r e a t e r than M, s ^ t, and F m cannot be a s q u a r e or p t imes a 

square,, This contradict ion shows the c o r r e c t n e s s of the theorem. 

Conjecture 3. T h e r e is no odd in teger m > 12, such that F is a 

squa re o r twice a square,, 
T h e o r e m C Conjecture 3 impl ies Conjecture 1. 
Proof. Conjecture 3 s ta tes condition (i) of T h e o r e m B, when p = 2 and 

M = 12. The only F , with 1 < m < 12, which a r e s q u a r e s o r twice 

squa re s a r e F j = F 2 = l s F 3 = 2, F 6 = 8, and F1 2 = 144. However, the 

cor responding F, a r e F i 6 = 3° 7°47 and F24 = 25 • 32 • 7 • 23, and ne i the r 

is a squa re o r twice a squa re . Thus (ii) holds also, whence the conclusion of 

T h e o r e m B, which includes Conjecture 1, i s es tabl ished. 
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4. PYTHAGOREAN RELATIONS 

We c lose this pape r by a r a t h e r c lo se r examination of Conjecture 3, 

using the ident i t ies (12) and (13), with the well-known resu l t , that the re la t ion 

(18) x2 + y2 = z2 

holds between in tegers if and only if t h e r e a r e in tegers s and t, mutually 

p r i m e and of different p a r i t i e s , and an in teger u, such that 

(19) x = (s2 - t 2 )u , y = 2stu, and z = (s2 + t 2 )u . 

Conjecture 3 leads us to examine the p r o p e r t i e s of Fibonacci n u m b e r s 

F , which a r e squa re s or twice s q u a r e s , for odd in tegers m. We obtain 

the following r a t h e r r e m a r k a b l e r e s u l t s . 

T h e o r e m D, If m i s odd, F i s a squa re if and only if t h e r e a r e 

in tege r s r , s, and t, such that m = 12r ± 1 , s > t ^ 0, s i s odd, t is 

even, (s, t) = 1, and 

(20) F 6 r = 2st , F 6 r ± 1 = s2 - t2 . 

Proof, Since m is odd, put m = 4n ± 1, de termining n uniquely. 

Then, by (12), 

(21) F m = F 4 n ± 1 = F^ n + F 2
n ±i . 

Thus F i s a squa re if and only if F ^ , F2n±i» a ^ d A/F~~ form a Py thagor -

ean t r ip le t . Since (F 2 n , F2 n±i) = 1» u = 1, and this pa i r is (s2 - t 2) and 

2st , while F ^ i = . ( s 2 ± t 2 ) 2 » This gives that s and t a r e mutual ly p r i m e 

and of different p a r i t i e s , with s ^ t > 0. By (12), F ^ i = F 2 + F 2 . Since 

(F , F ) = 1, not both number s a r e even, whence F2 n : t i is e i ther odd o r 

the sum of two odd s q u a r e s , which must be of the form 8k + 2. Since 2st is 

divis ible by 4, it follows that 

(22) F 2 n = 2st , Fm±1 = s2 - t2 . 
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A l s o , by (13), 2st - F ^ F ^ + F n + 1 ) = F ^ F ^ + F n ) . Since this m u s t be 

divis ible 'by 4, and (F , 2 F n _ + F ) = ( F , 2 ) , F mus t be even, so that n 

= 3 r (since F 3 = 2); whence m = 12r ± 1, a s s ta ted in the t heo rem, and (22) 

becomes (20). Finally, s2 - t2 = F 2 + F2 _ i s of the form 4k + 1, being the 

sum of an odd and an even square . Thus s mus t be odd and t even, a s was 

a s s e r t e d . 

Since Conjecture 1 i s valid, i t follows from T h e o r e m D that, if r ^ 2, 

the equations (20) a r e not sat isf ied by any in t ege r s r , s, and 6. 

T h e o r e m E„ If m i s odd, F i s twice a squa re if and only if t h e r e 

a r e i n t ege r s r , s, and t , such that m = 12r ± 3 , s ^ t > 0 , s and t a r e 

both odd, (s, t) = 1, and 

(23) F 6 r = s2 - t2, F 6 r ± 3 = 2 s t . 

P r o of. We p roceed much a s for T h e o r e m De Let m = 4n + la Then, 

by (21), Fm and F 2 n ±i mus t both be odd (since they cannot both be even), 

so that F2 n±i i s even (since one out of eve ry consecut ive t r ip le t of Fibonacci 

n u m b e r s , one i s even, and i t s index i s a mult iple of 3). Thus 2n ± 1 = 6r ± 3 , 

whence m = 12r ± 3 , a s s ta ted in the theorem. I t i s eas i ly ver i f ied that , 

s ince 2n = 6r ± 2 and 2n ± 1 = 6r ± 1, and 

(24) 
F6r+2 + F 6r+l ~ F6r+3» F6r+2 " F 6r+i ~ F

6 r » 

F 6 r _ 2 + F 6 r „ j ; = F 6 r , F 6 r „ 2 - Fg-p.j = - F 6 r _ 3 . 

equation (21) yields that 

2 F 1 2 r ^3 ~ (F6r-t2 + F 6 r : t l ) + ( F 6 r ± 2 " F 6 r ± 1 ) 

(2 5) = F 2 + F2 

6r x
 6r±3 

Thus F i s twice a square if and only if F 6 r , F 6 r i 3 , and V 2 F 1 2 r i 3 fo rm a 

Pythagorean t r i p l e t Clear ly , s ince F 3 = 2 and F 6 = 8, F 6 r i s divisible 

by 8, but F 1 2 r ^ 3 and F 6 r ± 3 a r e divisible by 2, but not by 40 Thus u = 2 

and F 6 r and F 6 r i . 3 a r e of the forms 2(S2 - T2) and 4ST, where S > T > 0, 

(S, T) = 1, and S and T a r e of opposite p a r i t i e s . In fact, 
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(26) F 6 r = 4ST and F 6 r ± 3 = 2(S2 - T 2 ) , 

s ince 4ST is c l ea r ly divis ible by 8. Put S + T = s and S - T = t; then (23) 

holds , and c l ea r ly s ^ t ^ 0, (s , t ) = 1, and s and t a r e both odd, as 

s ta ted in the theorem. 

We finally note that Conjecture 3 holds if, for r ^ 2, the equations (23) 

a r e not sat isfied by any in tegers r , s, and t. 
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1967 can be made from two 2's, three 3fs, four 4!s, five 5!s, 

six 6fs? or seven 7fs with the aid of eighteen toothpicks and 
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A GENERATING FUNCTION ASSOCIATED WITH THE GENERALIZED 
STIRLING NUMBERS 

ROBERT FRAY 
Florida State University, Tallahaslee^Florida 

1. INTRODUCTION 

E. T. Bell [2] has defined a set of generalized Stirling numbers of the 
second kind S, (n,r); the numbers Sj(n,r) are the ordinary Stirling numbers 
of the second kind,, Letting X(n) denote the number of odd Si(n + 1, 2r + 1) 
Carlitz [ 3] has shown that 

00 n °° n n+i 
X Mn)xn = n (1 + x2. + x2 ) . 
n=o n=o 

In Section 3, we shall determine the generating function for the number 
of odd generalized Stirling numbers S2(n,r). Indeed we shall prove the fol-
lowing theorem, 

Theorem, Let cu(n) denote the number of odd generalized Stirling num-
bers S2(n + r, 4r); then 

£ o>(n)xn = n (1 + x3"2 + x2 ) . 
n=o n=o 

Later Carlitz [4] obtained the generating function for the number oi 
Si(n, r) that are relatively prime to p for any given prime p. It would be oi 
interest to obtain such a generating function for the generalized Stirling num-
bers S, (n, r). At present the apparent difficulty with the method used herein 
is that, except for the case k = 2 and p = 2, the basic recurrence (2.4) for 
S, (n, r) with k > 1 is a recurrence of more than three terms, whereas for 
the cases that have been solved we had a three-term recurrence,, In Section4, 
we shall discuss this problem for the numbers S2(n, r) and the prime p = 3; 
several congruences will also be obtained for this case, 

*Supported in part by NSF grant GP-1593. 
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2. PRELIMINARIES 

The numbers S, (n, r) maybe defined by introducing an operator r which 
transforms t into (e - 1) . Powers of r are defined recursively a s 
follows: 

(2.1) r t = T(T t ) , 

where u is a positive integer,. We shall also define T°t = t . The general-
ized Stirling numbers are then defined by 

(2.2) '- T V = r! 2]Sk(n3r) L-

Hence Si(n, r) is the ordinary Stirling number of the second kind (see [ 5* 
pp. 42-43]) and S0(n, r) = 8(ns r) , the Kronecker delta. From (2.1) and (2.2) 
we can readily see [ 2, p„ 93] that 

n 
(2.3) Si+k( n s r ) = X^ S i ( n 3 i ) S k ( i ' r ) 

J i=r •* 

Hence the numbers S, (n, r) can be derived from the ordinary Stirling numbers 
of the second kind by repeated matrix multiplication (see [ 5, p. 34]). 

Becker and Riordan [1] have studied some of the arithmetic properties 
of these numbers; in particular, they obtained for S, (n, r) the period modulo 
p, a prime. In the same paper they derived the following basic recurrence 
modulo p (equation (5.4)): 

(2.4) Sk(n + pS,r) , ^ E IS + { " *) s > ' i )Sk i ( i + 1 > T ) 

j=o i \ ] / J J 

s / - \ 
+ E ( s + k - ! ~ j | S. (n, r - pJ) (mod p) 

j=* I k - 1 J k 
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3C PROOF OF THEOREM 

F o r p = 2 we have from (2.4) that 

S2(n + 4, r) = S2(n + 1, r) + S2(n, r - 4) (mod 2) 

Hence if we le t 

n 

(3.1) Sn(x) = ] P s 2 ( n , r ) x r , 

r=o 

it follows that 

(3.2) Sn+4{x) + Sn+1(x) + x4Sn(x) = 0 (mod 2) .. 

Let ai, a2, a3, and a± be the roo t s of the equation 

y4 + y + x4 = 0 

in F [ y ] , where F = GF(2,x)5 the function field obtained by adjoining the 

inde te rmina te x to the finite field GF(2). Also let 

4 

(3.3) </>n(x) = J V . 
3 = 1 

Then from the definition of the aTs we see that 

/ • 

$ 0 ( x ) = <f>t(x) = <f>2(x) = $ 4 (x ) = 0, <£3(x) = 1 . J 
I 

Moreover 

(3-4) 4>n+4(x) = « n + 1 (x ) + x ^ n ( x ) ; 

hence 



1967] WITH THE GENERALIZED STIRLING NUMBERS 359 

<£5(x) = 0, </>6(x) = 1 . 

Now put 

(3.5) Sn(x) = (x3 + x + l )0 n (x ) + x ^ n + i ( x ) + x0 n + 2 (x ) + 0 n + 3 (x ) . 

Then 

S0(x) = 1 S2(x) = x 

33 Si(x)' = x S3(x) = x3 + x + 2 

Refer r ing to the table at the end of the pape r we see that by (3.1) 

S (x) = S (x) (mod 2) n n 

for n = 0, ' l , 2, and 36 There fo re we see f rom (3.2), (3.4), and (3.5) that 

(3.6) Sn(x) = Sn(x) (mod 2) 

for a l l non-negat ive in tegers n* 

F r o m (3.3) we have with a l i t t l e calculat ion that 

n=o j=l ^ 

t3 

1 + t3 + x4t4 

n=o 3k+j+3=n 

k ) *fl . 
J x 

therefore 

(3.7) * (x) = V ( ) 
Y \ n - 3 k - 3 / 

x4(n-3k-3) 
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Combining (3.1), (3.5), (3.6) and (3.7) we have 

r=o k \ ' 

x \Y( k \x4(n-3k-3) + Y I k \x^ 
X ( ^ ^ - 3 k - 3 J x ^ n - 3 k - - l j x 

x2 Y( k \ x4(n"3k-2) +x*Yl k ^ x ' M n - 3k-2iX X Y\n-3k-3/ 
x4(n-3k-

(mod 2) 

Compar ing coefficients we see that 

S2(n,4j) = ( j ! x ) (j = n - 3 r - 3) 

(3.8) 
S2(n, 4j + 1) = / r ] (j = n - 3r - 3 o r n - 3r - 1) 

S 2 ( n , 4 j + 2 ) = [*") (j = n - 3r - 2) 

S2(n,4j + 3) = ( * ) (j = n - 3r - 3) , 

w h e r e the modulus 2 is understood in each congruence, 

Let 0.(n) denote the number of odd S2(n,k), 0 < k < n, with 

k = j (mod 4) (j = 0 , 1 , 2 , 3 ) . 

By the f i rs t congruence in (3.8) we see that 

S2(n + 1, 4j + 4) = | r | (mod 2) (j = n - 3r - 3) , 

and hence 

(3.9) 0ofo + D = W 

Simi lar ly s ince 

S2(n + 29 4j + 4) = / A (mod 2) (j = n - 3r - 2) 



1967] WITH THE GENERALIZED STIRLING NUMBERS 361 

it follows that 

(3.10) 0o(n + 2) = 02(n) . 

In a l ike manne r we obtain 

flito = 03 fa) + 02(n + 1) 

= 0o(n + 1) + 0o(n + 3) ; 

the second equation follows from (3.9) and (3.10). Since al l 0.(n) may be 

e x p r e s s e d in t e r m s of 0Q(YL) it wil l suffice to de te rmine the generat ing func-

tion for 0o(n) alone. 

Now by (3.8) 

S2(2n5 4j) = ( _r
 ± | (mod 2) (j = 2n - 3r - 3) . 

F r o m this it follows that 

S2(2n, 4j) = 0 (mod 2) 

un less 

j = r + 1 (mod 2) . 

Hence if we le t 

r = 2r? + s9 j - 1 = 2j? + s (s = 0,1) , 

then 

S2(2n3 4j) = j r
f j (mod 2) (jf = n - 3r? - 2s - 2) , 

and the re fo re 
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(3.11) 00(2n) = e2(n) + 03(n - 1) 

= 0o(n + 2) +6>0(n) . 

Similarlyj s ince 

S2(2n + 1), 4j) = / _r
 x J (mod 2) (j = 2n - 3r - 2) , 

we have 

S2(2n + 1 ,4j) = 0 (mod 2) 

un less 

r = j = 1 (mod 2) • 

Letting 

r = 2rT + 1, j - = 2jT + 1 

we get 

S 2 ( 2 n + l , 4 j ) = | r
f j (mod 2) (jT = n - 3r» - 3) . 

The re fo re 

(3.12) 0o(2n + 1) - 03(n) = 0o(n + 1) . 

If we le t 

<o(n) = 0o(n + 4) 

we obtain f rom (3.11) and (3.12) that 

o>(2n) = o>(n) + o>(n - 2) 
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and 

o>'(2n + 1) = &)(n - 1) . 

Since 0O(D = 80(2) = 0O(3) = 0, we have o>(n) = 0 for n < 0, and these 
equations for co(n) a r e valid for al l n = 0 , 1 , 2? • 8» . Hence we have 

^ o>(n)xn = J2 ^ (2n)x 2 n + ^ co(2n + i)x: 

n=o n=o n=o 

2n+i 

^ co(n)x2n + J^ w ( n " 2 ) x 2 n + ^ w(n - 1) 
n=o n=o n=o 

x2n+i 

oo 
2n (1 + x3 + x4) V * co(n)x; 

n=o 

n a + x3*2 +x2 n + 2) , 
n=o 

and the t heo rem is proved* 
F r o m this genera t ing function we see that o>(n) a lso denotes the number 

of par t i t ions 

n = n0 + ni • 2 + n2 . 22 + n3 • 23 + • • - (n. = 0, 3,4) . 

40 THE CASE p = 3 

We shal l now cons ider the above p rob l em for the p r i m e p = 3e Since 

the work is s i m i l a r to that of Section 3, many of the deta i ls will be omitted,, 

F r o m (2.4) we have 

(4.1) S2(n + 9, j) = 2S2(n + 35 j) + 2S2(n + 1, j) + S2(n3 j - 9) (mod 3) . 

The re fo re le t t ing 
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n 
(4.2) Sn(x) - £ s 2 ( n , j ) x 3

 f 

j=0 

we have 

(4.3) S (x) = 2S <x) + 2S (x) + x9S (x) (mod 3) 
n+9 n+3 n+i n 

Let ai, a2, • • • , a9 be the roo t s of the equation 

y9 + y3 + y - X9 = 0 

in F [ y ] , where F = GF(3 ,x) . Then if 

<b (x) = \ ^ a . 

we see that 

(4.4) <f>Q(x) - <^(x) = . . . = </>7(x) - 0, 08(x) = 1 . 

Moreover 

(4.5) <*> ^ (x) = x9</> (x) - <f> MM -<£ ^ ( x ) , ^n+9 ^n n+l n+3 

and hence 

(4.6) <J>9{x) = <t>10(x) = . . . = 4>13(x) = </>15(x) = 0, <j>u(x) = <£16(x) = - 1 . 

If we let 

f0(x) = S0(x) + S2(x) + S8(x) 

fi(x) - Si(x) + S7(x) 
(4.7) 

f2(x) = S0(x) + S6(x) 

f.(x) =• S8„j(x) 
J (j = 3, 4, . . . , 8) 
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and 

(4.8) Sn(x) = £ f j < X ) V j ( x ) , 

it is clear from (4.3), (4.4), • • •, (4.8) that 

(4.9) Sn(x) = SQ(X) (mod 3) (n = 0,1, 2, • • •) . 

As in Section 3 we see that 

k\fi\f_-nh
x»h 

n=o n=o 6k+8+r=n 2J+h=r * ' * ' 
and hence 

,4.10, * „ « - £ < - D ° + t ^ ) ( n . e k
, . , . s j ) ^ * ' t « ) . 

By expanding (4.8), comparing coefficients and combining terms we have, 
for instance, from (4.2), (4.9), and (4.10) that 

S2(n + 9, 9h + 9) = J ] (-l)n + k lk)[l) (mod 3) 

and 

but 

S2(n+8, 9h+8) = J ] (-l)n+k (^j(^) (mod 3) , 

S2(n+8, 9h + 6) s £ (-Dn+kjQ(i) ^ j ' l ) ^ 1 ) ) <™d3> > 
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where the summations are over all nonnegative integers j and k such that 
h = n - 6k - 2j. The numbers S2(n, 9h + j) for j = 0,1,- • • • , 5 are more 
compile at ed. 

At this point the method employed in Section 3 seems to fail. As was 
mentioned in Section 1, the apparent difficulty in this case is the fact that the 
recurrence (4.1) is a four-term recurrence. If we consider the generalized 
Stirling number S3(n, r) and the prime p = 2 we again get a four-term recur-
rence; the development of the problem in this case is very similar to our work 
in the present section. 

TABLE 
Generalized Stirling Numbers of the Second Kind S2(n, r) 

n ^ v 
1 

2 

3 

4 

5 

6 

7 

8 

1 

1 

2 

5 

15 

52 

203 

877 

4140 

2 

1 

6 

32 

175 

1012 

6230 

40819 

3 

1 

12 

110 

945 

8092 

70756 

4 -

1 

20 

280 

3465 

40992 

5 

1 

30 

595 

10010 

6 

1 

42 

1120 

7 

1 

56 

8 

1 
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IDENTITIES FOR PRODUCTS OF FIBONACCI AND LUCAS NUiBERS 
D. E. DAYKIN and L. A . G . DRESEL 

University of Reading, Reading, England 

The Fibonacci numbers F and Lucas numbers L may be defined by 
n n J J 

(1) F = (cP- - Pn)/(a -p) and L = a11 + /3n 

where n is any integer, a =-£(1 + V§) and f}= -|(1 - Vo), so that 

(2) a -p = V5 and a@= -1 . 

Recently Brother Alfred Brousseau asked for generalizations of the 
identity 

F2k% = F ^ - 4_ £ 

proved by I. D. Ruggles in [ 1 ] , and as a result V. E. Hoggatt, -D. Lind, 
C. R. Wall [ 2 ] , and Sheryl B. Tadlock [3] between them gave seven further 
identities. In this note we point out that these eight identities belong to the 
family of sixteen identities given in Theorem 1 below. Furthermore, we show 
that this theorem can be proved by a very simple method which can be used to 
generate identities for arbitrary products of Fibonacci and Lucas numbers. 

Theorem 1. If i, j , ss and t are integers such that i + j = 2s and 
i - j = 2t, then 

(3) (5F.F. or L.L.) = (5F2 or L2 ) ± (5F2 or L2) ± (0 or 4(-l) t ) . 
i j -^3 s s t t 

where either term may be chosen at will in the first three brackets; in addition 
i$ j may be chosen as being either both even or both odd. The choice of term 
in the last bracket and the sign preceding it depend on the combination of the 
previously mentioned four choices, but the choice of the first + sign depends 
only on the parity of i and on the term chosen from the first bracket If we 
fix the two choices to be made on the left side of the identity, then the four 

367 
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ident i t ies obtained by varying the choices made on the r ight side a r e deducible 

f rom each o ther by application of the well-known identity 

5 F 2 = L2 _ 4 ( . 1 } n 
n n x ' 

This fact was used by Sheryl B. Tadlock in [ 3 ] , 

To obtain fur ther ident i t ies such a s those of T h e o r e m 1, we cons ider an 

a r b i t r a r y product of Fibonacci and Lucas number s . In o ther words we le t 

m, n, i0, il3' • • , j l 3 j 2 , " •8 be any in t ege r s with m, n > 0 and put 

(4) P = 5 m F . F . • • • F . L. L. • • • L. , 
1i h hm h h Jn 

(5) Q = 5 m F . F . • • • F . L. L. • • • L. . 
1o 1 i ^ m h h 3n 

Notice that P contains an even and Q an odd number of Fibonacci number s 

F . . i 
F i r s t we d i scuss P„ By (2) we have 5 = (a - p)2m-! so substi tuting 

f rom (1) in (4) and expanding we see that P i s s y m m e t r i c in a,/3 and i s 

the re fore a sum of 2 2 m + n " 1 t e r m s of the form ±(or p* + crfi ) , But by (1), 

(2) we have 

(6) a p 0 q + a V = (a(3)q(ap-q + fi^) = ( - l ) q L p _ q . 

H e n c e P can be exp res sed as the difference of two sums of Lucas number s . 

Now suppose that the sum of the subsc r ip t s occur r ing in (4) i s even, so 

that we have 

(7) i j + i2 + • - • + i 2 m + J! + J2 + • ' e + J n
 = 2 s 

for some in teger s. Then for each of the t e r m s in the e x p a n -

sion of (4) we have p + q = 2s , and so p - q i s a lso even. Putt ing p - q = 

2t in (6) and noting that 

a P - q + ^ P - q = azt + £2t = (Q{t „ i g t ) 2 - + 2(a^)t = SF2 + 2 ( - l ) t 

= (a* + /31)2 - 2(a/3)t = L* - 2 ( - l ) t , 
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we see that our genera l t e r m i s of the form 

±(a p j8 q + a q / 3 P ) = ± ( - l ) q L 2 t = ± ( - l ) q [5F2 + 2 ( - l ) t ] 

= ± ( - l ) q [L2 - 2 ( - l ) t ] 6 " 

Thus we have shown that the product P given by (4) can be expressed , in a 

l a rge number of ways , a s a sum 

an example we give the identity 

l a rge number of ways , a s a sum of t e r m s ±(5F^ or 1?) and t e r m s ±2. As 

5 F 2 i F 2 J L 2 k L 2 h = 5 F 2 + j + k + h + L ^ ^ + 5 F 2 + j _ k + h + ^ _ f c _ h 

-5F? ._,, . - 5F? . , , - L? . T , - L? . , , , 1-3+k+h l- j+k-h i- j -k+h 1-3-k-h 

The r igh t -hand side of this identi ty i s of c o u r s e only one of the 28 poss ib le 

exp res s ions of this form* though many of these would involve a fur ther t e r m 

4C, where C i s an in teger in the range -4 < C < 4S 

Final ly we d i scuss the product Q given by (5), Substituting f rom (1) and 

expanding we see that Q i s a sum of 2 2 m + n t e r m s of the form 

±(aV(f - aqpP)/(a -p) = ±(-l)qFp_q , 

so that Q can be exp re s sed in t e r m s of Fibonacci number s F . The re i s no 

immedia te analogue for Q to the r e s u l t s obtained by (7) for P0 However s if 

each of i0s i i , •ffl e ? 3i>-fe> •'*B is divis ible Joy 3? then in our genera l t e r m we have 

p - q = 3 r and 

F p - q = {adT " @3T)/{a ' & = f5Fr + 3 ( - 1 ) r F
r ] ° 

In th i s way one can obtain Q a s a sum of t e r m s ±[ 5F3 + 3( - l ) F ] , for e x -

ample (after some r e - a r r a n g i n g of t e rms) we have 

F 3 i L 3 j L 3 k = 5 [ F 3 + j + k + ( - l ) k
F i ? + j _ k + ( - D J F 3 _ . + k - M ) V i + j + k ] + 
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To the E d i t o r : 
The lemma proven by M. Bieknell and V- E. Hoggatt,Jr. 

in 'Fibonacci Matrices and Lambda Functionsf,The Fibonacci 

Quarterly, Vol. 1 (April 1963),page *+9 was essentially 

established in my note 'Theorem on Determinants1, Mathemat-

ics Magazine Vol. 3*+ (September 1961), page 328. Namely, 
rIf the difference of each pair of corresponding elements 

of any two columns (rows) of a determinant are equal, then 

any quantity may be added to each element of the determin-

ant without changing its value.l 

Charles W. Trigg 



FIBONACCI FUNCTIONS 
MERRITT ELMORE 

San Jose City College, San Jose, Cal i f . 

1. INTRODUCTION 

T h e r e i s a sequence of continuous functions of one var iab le having many 

of the p r o p e r t i e s of the Fibonacci sequence of n u m b e r s , with some intr iguing 

va r i a t ions . Der iva t ives and in tegra ls of these functions a r e easi ly found, and 

lead to m o r e re la t ions involving Fibonacci number s . Other topics of calculus 

can undoubtedly be applied to these functions with ve ry useful and in te res t ing 

r e s u l t s . 

Let an, a1s a9,e - * be a sequence such that a ,, = a + a . Then 
0? l 5 l> ^ m + i m m - i 

the power s e r i e s 

00 1 
a.x 

y = 
i=o 

sa t i s f ies the differential equation 

(i) y n - yf - y = o 

whose solution i s ctea + C2e^ , where a and /5 a r e the roo t s of u2 - u - 1 

= 0, 

OL = —5 and p = . 

If the sequence { a } i s the Fibonacci sequence {F } , then a0 = 0 

and a,t = 1, so that we get the boundary conditions x = 0, y = 0, yf = l e 

This y ie lds (see [1] ) 

ax. _ j3x m m 
(2) y = - - £ — and F = - z^— 

V5 m V5 
371 
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On the other hand, if the sequence {a } i s the Lucas sequence {L }, 

then a0 = 2 and a1 = 1, so that we get the boundary conditions x = 0, y = 

2, yT = 1, yielding 

(3) y = e + e^ and L = a + B 

The wri t ing of (1) in the form y!T = y1 + y i s very suggest ive: the sum 

of the function and i t s f i r s t der ivat ive is the second der iva t ive . And genera l ly , 

if y i s any solution of (1), we see that 

,., v (m+l) (m) (m-l) 
( la) yv .= yv ' + yv ; 

This sugges ts that we use the notation 

ax __ /3x , v 
f0(x) = ^ ^ — , fj(x) = fj(x), f2(x) = f»(x), f3(x) = fj3'(x), 

\/5 

and so forth. Thus 

, , m ax ^m jSx 
(4) f (x) = f0K '(x) = ^ -

m ^5 

giving us the sequence of functions {f (x)} with the p roper ty that 

(5) f , (x) = f (x) + f (x) 
v ; m + r ' n r ' m - r ; 

We shall r e f e r to these functions as Fibonacci functions. 

Likewise if l0(x) = eaX + e ^ , l t(x) - lj(x), l2(x) = ro
T(x), e t c . , we have 

/rtX i / \ i(ni)/ v m ax , nm Bx 
(6) l m (x ) = 10

V ;(x) = a e + p eH 

(7) 1 (x) = 1 (x) + 1 (x) 
v ; m + r ' n r ' m - r ' 

and these functions will be cal led Lucas functions h e r e . 
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Evidently, F 0 = f0(O) = 0, Ft = it(0) = 1, F 2 = f2(0) = 1, F3 = f3(0) 

m m 
(8) F = f (0) = &— 

\I5 

with s imi l a r r e s u l t s for Lucas n u m b e r s . 

Let us define 

-k ax n-k Bx ^ i n 
/m -c / \ oi e - B e r i / \ -k ax -k £x 
(9) f , ( x ) = - - c f l_ (X) = a e + p eH 

V5 

With the unders tanding that fj (x) is the k ant ider ivat ive of f0(x), and 
(-k) 

s imi la r ly for 10
V ; (k ) , we can easi ly verify that all the preceding r e s u l t s (2) 

through (8) hold for m a negative integer . 

2. GRAPHS 

Elementa ry notions of calculus regard ing in t e r cep t s , s lope, s y m m e t r y , 

extent , c r i t i ca l points , points of inflection, e tc . , may be used in plotting the 

graphs of these functions. F igure 1 shows the graphs of some of the Fibonacci 

functions f (x). m 
Note f i r s t of all that the y - in te rcep t of the curve y = f (x) is F . 

Observe a lso that the functions with even subsc r ip t s a r e monotonic in -

c r ea s ing , and extend from -oo to +oo both horizontal ly and ver t ica l ly . The 

functions with odd s u b s c r i p t s , however, a r e never negative (since (3 < 0), and 

each has one re la t ive minimum. 

In fact, f2k-i(x) ' where k i s any in teger , has i t s r e l a t ive minimum at 

the ze ro of f2k(x)> which i s a lso the x at which f2k-2(x) n a s i t s P o m t °f 

inflection. 

Let us the re fore cal l these points x2k> That i s , x2k is such that 

(10) f2k(x2k) = 0 

Let the min ima of f2k-i(x) be cal led y2k« Thus 
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GRAPHS OF THE FUNCTIONS f (x) 

y = £ « = 
,.m_ax_ jn Bx 

(ID 

Fig. 1 

Y2k = f2k-i(x2k) 

Some manipulation and calculation result in 

(12) 4k 1 
x?k = — l o g £ » -0 .86k 

V5 a 

(13) Y2k = [-Z 8 
2k 

x k k 
e * (0.65) , where xfe 

| x 2 k 

Thus the minima of fg^.^x) occur at points evenly spaced along the neg-
ative x-axis and have values in geometric progression, which approach 0 as 
x—•-«>. 

Because 
v - P2 x 2k 
y 2 k ~ e 
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at these min imum poin t s , they l ie on the graph of y = ^ e (see the dot ted- l ine 
curve in Fig8 1). 

Since 

f2k+i(X2k) = f2k<X2k) + f2k-l(X2k) = °  + Y2k = y2k 

and s ince 

f2k+2(x2k) = f2k+l(x2k) + f2k(x2k) = Y2k + ° = Y2k 

we see that the graphs of 

f2k-i(xK f2k+i(x)3
 a n d f2k+2(x) 

al l i n t e r s e c t at (x2 k , y 2 k ) . 

Likewise 

f2k+3(x2k) = f2k+2(x2k) + f2k+i(x2k) = 2^2k > 

etc . ; and induction leads to 

X k X k 
(14) f2k+j (x2k) = F jy 2 k = Fje , or f m (x 2 k ) = F m _ 2 k y 2 k = F m _ 2 k e 

which i s a specia l iza t ion of the m o r e genera l re la t ion to be der ived in the next 

sect ion. 

30 AN IMPORTANT IDENTITY 

That the identity 

F , = F ,F + F F , m+n m - i n m n+l 

for Fibonacci number s has a coun te rpar t for the Fibonacci functions can be 

invest igated by subst i tut ing into i t s r ight s ide : 
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f (x)f (x) +• f (x)f (x) = m - r nx ' m ' r r ' 

m - i ax n m - i Bx n #x _n fix m c*x n m fix: n+l ax Ji+l /5x of e - /3 e^ g e - ; 3 e r a e - /3 e^ cy e - /3 e r 

V 5 # V 5 V 5 ° V 5 

ax~\~Bx Multiplying and simplifying using a/3 = - 1 , the t e r m s in e p vanish , 

giving us 

m+n- i . . , *>* lax , . m + n - L , n?x 2fix a (1 + al)e + [3 (1 + /3*)e M 

5 

whence 

1 + a2 = aV5, 1 + j32 = -(3\/5 

lead to 

f (x)f (x) + f (x)f H(x) = f A (2x) m - i ' nx ' n r ; n+iv ' m+nx ; 

We see then that the formula is the same except for the impor tan t change 

in the argument . We genera l ize this by repeat ing a lmos t exactly the s ame 

s t e p s , and obtain 

(15) f fu + v) = f (u)f (v) + f (u)f iv ) x ' m+nv ' m ~ r nv ' m n+iv ' 

4. APPLICATION OF (15) TO GRAPHS 

Using the identity (15) with m = 2k, n = 0, u = x 2 k s and v = t , we 

obtain 

f2k<x2k + t) = f2k-i(x2k)f0(t) + ^kt^k)^) = y2kfo(t) + ° a ii(t) 

x, 
(16) f2 k(x2 k + t) = e Kf0(t) 



1967] 

Similarly 
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(17) f2k+i(x2k + t) = e f^t) 

Hence each of the graphs can be obtained from the graph of either y = 
f0(x) or y = f-^x), according to whether m is even or odd, by expanding it 

xk by the factor e and translating it -x2^ units to the left. 
Since f0(x) and fj(x) in turn can be written as 

(18) f0(x) = 2£ i s i n h ^ f 
V5 l 

fi(x) 

X 
, 2e2 

cosh | - r x + cosh 

all of the graphs are distortions of hyperbolic sine or cosine curves through 
multiplication by V e 

5. INTEGRALS 

From the definition of f (x), the antiderivative of f (x) is f (x). 
This leads to a wealth of problems involving Fibonacci numbers, two of which 
follow. (See Fig. 2„) 
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Let A = the area under the curve f2k+1(x) between x = x2k and x = 0, 

and above the x-axis. Then 

o o 

A = J f2k+i<X)dx = f2k(x) J = f2k(°) ~ f2k(X2k) = F 2 k - 0 = F 2 k 
x2k x2k 

More generally, 

r2n x t x 

(19) / f , (x)dx = F ftTe - F , e n 

v 7 f ni+r ' m-2k m-2n / 
x2k 

Use of (15) and formulas for differentiation and integration lead to many others. 

6. IDENTITIES 

Many of the familiar identities for Fibonacci and Lucas numbers, besides 
(15), also have their counterparts for these Fibonacci and Lucas functions. 
Obtaining them is often merely a matter of substitution of 

m ax nm Bx , n 

f ( x ) = * e - P e , 1 (X) = a
meax + flme^ 

m Vs m 

into one side of the identity, and the use of such relations as a + /3 = 1, a/3 
- 1 , a2 + 1 = orV5, etc. 

Thus, for example, one easily obtains 

(20) f H(x)f (x) = f2 (x) + ( - l ) m e X 

v ' m - r ' m+r ' mx ' K f 

(21) 1 (x) = f (x) + f Ax) v ' m m - r m+iv 

(22) 5f^(x) = l^(x) + (-'l)m"14eX 

(23) f_m(x) = (-l)m + 1eXfm(-x) 
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(24) 
i (x) +V5f (X; 
m n r ' 
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i - km 
(kx) + V 5 f k m ( k x ) 

Note that the cor responding ident i t ies for the Fibonacci and Lucas n u m -

b e r s e m e r g e immedia te ly when x = 0o 

F r o m the formula (15) a l ready t r ea t ed come such f ami l i a r - appea r ing 

ident i t ies as 

(25) f 2 m . i (2x) = ^ ( x ) + f*m(x) and f2 m(2x) = f m (x ) l m (x ) 

(26) f 3 m - i (3x) = ^ ( x ) + 3f m m i (x)f^(x) + f3m(x) , and 

f3 m(3x) = 3f^_H(x)f_(x) + 3 f _ _ ( x ) f ^ ( x ) + 2f^(x) 
m - i m m - i m 

while a general iza t ion by induction on k and p y ie lds 

(27) km+p *•> - £ (•) w£.«4 
i=o 

By using (15) to wr i t e 

f (u)f (v) - (-1) f (u)f M(v) - f ^ ^ ( u + v) 

and 

^ W ^ M = (-1*2 f m + 2 < u ) W v ) - fm+n+3<u + v> 

and adding, one obtains 

f (u)f (v) = (-1)2 
n r ' n ' } Wu>Wv) " W ^ + v> 

Repeat ing the p r o c e s s , and the use of induction lead to 

(28) f
m < u ) y v ) = (-D f , (u)f , (v) - F f , , (u + v) m+r ! n+rN ' r m+n+rv 
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Multiplication of (28) by f (u) gives 

[Oct. 

^ O U y v ) = (-Dr{fm + r(u)[fm(u)fn + r(v)j - F r [ f m (u) f m + n + r (u + v)]} 

while the use of (28) to expand the expressions in the square brackets here 
yields 

(-D 2r f2 j . W f a. (v) - 2F f ^ (u)f ^ ^ (u + v) + F2 1 _>_ ^ (2u + v)l 
m + r \ / n+2rx ; r m+rN ' m+n+2rN ' r 2m+n+2rv 'J 

whence induction leads to 

(29) f^WfJv) = (-Dk rS(?)(- l ) 1F i
r tJr^fn4k r^m( i u + v) mx ' nN 

.1=0 

These two formulas are counterparts of two given by Halton [2J, In 
exactly the same way as he did, (29) can be used to develop a host of identities 
by choosing particular values of m, n, k, and r„ 

It is interesting to note that 

(30) F f (v - u)eU = ( - l ) r 

\ / m mv ; v ' 
lrc.A--v\ I •n4_T, \ / -p\ / r m 

is a ''sibling" of (28), having been derived by substitution using (4), as a counter-
part of the same formula 

F F = ( - l ) r rF m n F - F F m+r n+r r m+n+r ] • 
One is intrigued by the conjecture that they are both special cases of a more 
general formula in which no capital F*s appear. 

7. FIBONACCI FUNCTIONS OF TWO VARIABLES 

Suppose | a I is replaced by jf (xU in the series 
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i i 
1 

1=0 

to give a function of two variables $(x, y). 

(31) *(x,y) = f0(x) + f^xjy + f2(x) | J + fs(x) f j 

Differentiating term-by-term, we obtain 

^ § | ^ = fl(x) + f2(x)y + f3(x) | + f ^ ) 1^ + . . . 

^ > = 0 + fl(x) + f2(x) | f + f3(x) f f + f4(x) 4 f + . 

We see that 

d<t>(x, y) = d<ft(x, y) 
dx by 

and likewise it can be verified that all the second partial derivatives are the 
same, all the third partial derivatives are the same, e t c Let us therefore 
adopt the notation 

*0(x,y) = *(x,y) , <Mx,y) = * % * > = d - % ^ . bx by 

A (x vx = a2<fo(x,y) = d2<fr(x,y) = a2<fr(x,y) . m a 
d x 2 axdy d y 2 

so that 

(32) 0 (x>y) = a f̂ry) = y f (x) £ = Yi +.(y) £ 
\ / v m \ »J / r s / j m+iv ; i! / j m+r J / i! * 1 = 0 1 = 0 
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where r and s are positive integers such that r + s = m. Note that 

(33) 4>m(x,0) = f m (x) , <Am(0,y) = f m (y) , and * m ( 0 , 0 ) = F m 

Expand <f> (x, y) into a power s e r i e s in two variables at (0,0): 

</>m(x,y) = </>m(o,o) + 
r ^ ^ ( 0 , 0 ) d*m(o,o) 

ŝ 2 + 2xy 
bx2 

I F + x F _ + y F , 4 m m+i J m+i 2! x2F m+2 

" ^ ^ " y - +y2
 ay2 J" 

+ 2xyF _̂  + y2F , 1 + ••• J m+2 J m+2 J 

= F + F (x+y) + F (* + yli + F <2L± j £ i + 
m m+i l! m+2 2] m+s 3] 

Thus 

(34) $ m ( x ' y ) = f m ( x + y ) 

a m e « ( x + y ) __ ^me/3(x+y) 
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1. INTRODUCTION 

The first time most students meet the binomial coefficients is in the 
expansion 

(x + y)n = £ h) xn-y . n * o , 
j=o W . 

where 

w (l) ~ ("n1) + (ill) * ::0 < m < n 

Consistent with the above definition is 

(9\ n\ = n(n - 1) • •• 2 9 1 = nl 
{ } [ml m(m - 1) • • • 2 • 1 (n - m)(n - m - 1) • • • 2 • 1 ml (n - m)! 

where 

n! = n(n - 1) • • • 2 - 1 and 01 = 1 . 

Given the first lines of Pascal 's arithmetic triangle one can extend the table to 
the next line by using directly definition (2) or the recurrence relation (1). 

(Received O c t . , 1965) 3 8 3 
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We now can see just how the ordinary binomial coefficients I I are 
related to the sequence of integers 1, 2, 3, ° ° • , ks • • • . Let us generalize this 
observation using the Fibonacci sequence. 

IL THE FIBONOMIAL COEFFICIENTS 

Let the Fibonomial coefficients (which are a special case of the general-
ized binomial coefficients) be defined as 

F F ° °° FoFi n n-i L i 

(F F -•• FoFiMF F . • • • FoFT) 
m m m-l d l m-n m-n-1 L l 

, 0 < m ^ n , 

and 

= 1 , 

where F is the n Fibonacci number3 defined by 
n J 

F = F H + F S F 1 = F 2 - 1 . n n-i n-2 L * 

We next seek a convenient recurrence relation, like (1) for the ordinary bi-
nomial coefficients j to get the next line from the first few lines of the 
Fibonomial triangle3 the generalization of which will come shortly. 

To find two such recurrence relations we recall,the Q-matrix, 

Q 

for which it is easily established by mathematical induction that 
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/ F ^ F 
Q • [C r 

n - i / 

The Laws of Exponents hold for the Q-ma t r i x so that 

Q n = Q m Q n " m 

Thus 

n+l 
F F 

v n n - i / 

F ^ F 
m+l m 

F F ) / n -m+i n - m \ 
I F F J 
\ n - m n - m - i J 

F ^ F _ + F F F ^ HF + F F 
m+l n -m+i m n - m m+l n - m m n - m 

F F , + F F F F + F F 
, m n-m+i m - i n - m m n - m m - i n -

yielding, upon equating cor responding e lements , 

(A) F = F F + F F , (upper right) , 
n m+l n - m m n - m - i ^ b 

(B) F = F F , + F F (lower left) 
n m n-m+i m - i n - m 

T h e s e two identi t ies will be v e r y handy in what follows,, 

Define C so that 

m 

F F 4 n n - i F ? F 2 * 1 

(F F • • • F 2 F i ) ( F F 
m m - i * l n - m n - m - l 

"FP71 = Fn° 

With C defined above, then 
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n - 1 
m = F C and 

n - m 

n -
m -

1 
1 = F C m 

Returning now to identity (A), 

F = F F + F F 
n m+i n - m m n - rn - i 

we may wr i t e for C f 0 

F C = F (F C) + F (F C) 
n m+l n - m n - m - i m 

but s ince 

= F C , n 
n - 1 

F C , and n - m 
n - 1 

m - 1 
= F C , m 

we have der ived 

(D) n 

m 
m+l 

"n - 1 

m 

+ F 

n - m - l 

n -

m -

1 

1 

Simi lar ly , us ing identi ty (B), one can es tabl i sh 

(E) n " 

m 
= F m - i 

n - 1" 

m 
+ F 

n-m+i 

n -

m -

1 

1 

It is thus now easy to es tab l i sh by mathemat ica l induction that if the 
n ^ Fibonomial coefficients I " I a r e in tegers for an in teger n (m = 0 , 1 , • • • , n), 

then they a r e in tegers for an in teger n + 1 (m = 0 , 1 , 2, • • • , n + 1). 

Recal l ing 
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L = F _ + F , , m m+i m - l 

then adding (D) and (E) yields 

(3) 
n - 1 

+ L 
n-mJ 

n - 1 

m - l 

w h e r e L is the m Lucas number , a r e su l t given in p rob lem H-5 , Fibonacci 

Qua r t e r l y Journa l , Feb„ , 1963, page 47„ F r o m (3) it i s h a r d e r to show that 

is an in teger . 

With a slight change in notation, le t us r e t u r n to ident i t ies (A) and (B), 

(A) F = F F + F F 
nf mf+i n f -m f mf n ? - m ? - l 

(B) F = F F + F F 
n? mT n ? -m f +i m ? - i nT-mT 

F o r k > 0, let nf = nk and mf = mk, then 

(A?) F = F F + F F 
v nk mk+l k(n-m) mk k(n-m)- i 

(B') nk mk k(n~m)+i m k - i k(n-m) 

Let u = F , . Then one can show, in a manner s i m i l a r to above, using n nk 
(Af) and (BT), that if 

U U • • • UpUi 
n n - l ^ L 

(U U _, • • • UoUi ) (U U J • ° °* UoUi ) 
m m - l * L n - m n - m - i * x 

, 0 < m < n , 
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1 . then 

m 
" km+i 

-Ik 

n - 1 
+ F k (n -m)- i 

n - 1 

m - 1 -Ik 

and 

" km-1 
Jk 

n - 1 

m 
+ F k(n-m)+l 

-Ik 

n - 1 

m - 1 

or , adding these two, 

n 

m 
= L, km 

n - 1 

m 
+ L, k(n-m) 

n - 1 

m - 1 -Ik 

a general iza t ion of (3). We note h e r e each u is divis ible by F, andweTd get 

the s a m e genera l ized binomial coefficients f rom 

u = F . / F . , n nk k 

IIL THE FIBONOMIAL TRIANGLE 

P a s c a l ' s a r i thmet ic t r i angle 
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1 
1 

1 2 

1 3 

1 4 6 

1 5 10 

(»)(") - Q 
r 

has been the subject of many studies and has always generated interest, We 
note here to get the next line we merely use the recurrence relation 

(n) = ln" V (n'x) 
\ ml \ m I \m- 1 / ' 

Here we point out two interpretations, one of which shows a direction for 
Fibonacci generalization. The usual first meeting with Pascal 's triangle lies 
in the binomial theorem expansion, 

(x + y)n = t 0) *n""V • 
j=o W 

However, of much interest to us is the difference equation interpretation. The 
difference equation satisfied by n° is 

(n + 1)° - n° = 0 f 

while the difference equation satisfied by n is 

(n + 2) - 2(n + 1) + n = 0 . 

1 

1 

3 1 

4 1 

10 5 1 

• • • ( . : . ) ( : ) 
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For n2 the difference equation is 

(n + 3)2 - 3(n + 2)2 + 3(n + I)2 ~ n2 - 0 . 

Certainly one notices the binomial coefficients with alternating signs appearing 
here, In fact, 

/ m + l \ 

( , ) ( -
£ <-DJ ( j (n + m + 1 - j ) m = 0 
j=o 

It is this connection with the difference equations for the powers of the integers 
that leads us naturally to the Fibonomial triangle. 

Similar to the difference equation coefficients array for the powers of the 
positive integers which results in Pascal 's arithmetic triangle with alternating 
signs, there is the Fibonomial triangle made up of the Fibonomial coefficients, 
with doubly alternated signs* We first write down the Fibonomial triangle for 
the first six levels, 

1 1 

1 1 1 

1 2 2 1 

1 3 6 3 1 

1 5 15 15 5 1 

1 8 40 60 40 8 1 

th The top line is the 0 row and the coefficients of the difference equation sat-
k st 

isfied by F are the numbers in the (k + 1) row. Of course, we can get 
the next line of Fibonomial coefficients by using our recurrence relation (D), 
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n 

m 
= F m+i 

"n - 1" 

m 
+ F 

n - m - l 

" n -

m -

1 

1 
, 0 < m < n 

We now r e w r i t e the Fibonomial t r i angle with appropr i a t e s igns so that the rows 

a r e p r o p e r l y signed to be the coefficients in the difference equations sat isf ied 

F o 
n 

F 1 
n 

n 
F 3 

n 

F 5 
n 

1 - 1 

1 - 1 - 1 

1 - 2 - 2 +1 

1 - 3 -6 +3 +1 

1 - 5 -15 +15 +5 - 1 

1 _8 -40 +60 +40 - 8 - 1 

Thus , f rom the above we may w r i t e 

F 2 - 2F 2 
n+3 n+2 2F* + F 2 

n+i n = 0 

and 

F 4 - 5F 4 - 15F4 + 15F4 + 5F 4 , - F 4 = 0 n+5 n+4 n+3 n+2 n+l n 

In J a r d e n f 1] and Hoggatt and Hil lman [ 2 ] i s given the auxi l ia ry polynomial 
m for the difference equation sat isf ied by F , 

m+i 

E 
h=o 

m + 1 

h 
(_1}h(h+l)/2 x m + i - h 
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which shows that the sign pattern of doubly alternating signs persists . For an 
interesting related problem, see [5] and [6], 

IV. THE GENERALIZED FIBONOMIAL TRIANGLE 

If, instead of the Fibonacci Sequence, we consider the sequence 

u = F . (k = 13 2 ,3 , -n nk 

there results another triangular array for each k > 0 which all have integer 
entries,, We illustrate with F^* The recurrence relation is 

= F 2m-1 
J 2 

"n - 1" 

m 
+ F2(m-n)+i 

0 

n -

m -

1" 

1 

and 

~n~ 
n 

2 

n 
0 - 1 

The first few lines, with signs, are given below: 

*2n : 

An'-
F2n : 

F 3
2 n : 

*2I1 • 1 

1 

1 

-55 

1 

- 2 1 

1 

- 8 

385 

- 3 

+56 

+1 

+b 

-21 +1 

-385 +55 -1 

We are saying that the difference equation satisfied by F^n is 
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F2n+ 1 0 - 5 5 F f n + 8 + 3 8 5 F 2 n + 6 " 3 8 5 F m + 4 + 5 5 F 2 n + 2 - F | n = 0 . 

The a lgebra ic s igns of each t r iangle (singly a l ternat ing or doubly al ternat ing) 

wil l be de te rmined by the second row by the auxi l iary polynomial of F, which 

is 

x2 ~ L.X + ( - i r . 

F o r the genera l s econd -o rde r r e c u r r e n c e re la t ion 

u I O = p u 1 + q u , q ^ 0 , 
n+2 ^ n+l ^ n Z1 

the auxi l iary polynomial i s given in [2 ] to be 

m-t-i 
E (-ir 
h=o 

m + 1 
(_ vh(h-i)/2xm+i-h 

whe re 

m + 1 

h 

is the genera l ized binomial coefficient which in our c a s e becomes 

m + 1 

h 

Thus for a l l genera l ized Fibonomial t r i ang les the genera l ized Fibonomial c o -

efficients with appropr ia te s igns p r e s e n t a r r a y s which a r e the coefficients of 
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^m the difference equations satisfied by the powers, F, , of the Fibonacci 
sequence. 

V. A GENERAL TECHNIQUE 

Three simple pieces of information can be used to directly obtain the 
auxiliary polynomials for F. 

Lemma. If sequence u is such that 

(E2 + pE + q)u = 0 

and sequence v is such that 

(E2 + pfE + qT)v s 0 , 

where 

x2 + px + q = 0 and x2 + p'x + qf = 0 

have no common roots, then the sequence 

w = Au + Bv n n n 

is such that 

(E2 + pE + q)(E2 + pfE + qT)w = 0 , 

for arbitrary constants A and B. See problem B-65, Fibonacci Quarterly 
Journal, April, 1965, page 153. 

The auxiliary polynomial for F , is 

x2 - Lkx + ( - l ) k . 

The Binet Form for 
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and 

F m = (am - pm)/(a - fi) 

L = a + B m 

w h e r e 

a = (1 + V 5 ) / 2 and £ = (1 - V g ) / 2 . 

Suppose we wish to find the auxi l iary polynomial assoc ia ted with3 say5 

T?3 
x 2n 

3 
6n _ ^4no2n + ^ n ^ & i _ am. 

I a - p ) 

'a2n _ pm\\ 

5(or - /5) 

1 I ™6n /Q6n 
= - | { — "• £— - 3 (^) 2 n 

( a = 0 
= 5" (F6n " 3 F 2 n ) • 

Now, the auxi l ia ry polynomial for •=• F 6 n is 

- 3 
and for -=- F 2 n i s 

Thus the auxi l ia ry polynomial assoc ia ted with F 3 i s 

(x2 - 18x + l)(x2 - 3x + 1) = x4 - 21x3 + 56x2 - 21x + 1 
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We i l l u s t r a t e the technique with F 5 

n 

"n \ « - p ) 

5n _ ^ n ^ n + -^sn^n __ xo^sn + 5 ^ 4 x 1 __ 5̂11 

25 (a - )8) 

= ^ ( F 5 n - 5(aj3)nF3 n + 10(a j8 )^F n ) . 

The auxi l ia ry polynomials a r e 

25 F5n ' x2 - L5x - 1 = x2 - l l x - 1 

i ( - l ) n F 3 n : x2 + L 3 x - 1 = x2 + 4x - 1 

^ F : x2 - L l X - 1 = x2 - x - 1 
25 n A 

so that the auxi l iary polynomial for F 5 is 

(x2 - l l x - l)(x2 + 4x - l)(x2 - x - 1) = x6 - 8x5 - 40x4 + 60x3 

+ 40x2 - 8x - 1 

which the r e a d e r should check with the a r r a y in Section IE with the Fibonomial 

Triangle* 
This technique can thus be used to find the factored form or r e c u r r e n c e 

m re la t ionship for the auxil iary polynomials for any F , (m = 0, 1, 2, • ° ° ) . See 

[ 1] and [ 3] and pa r t i cu l a r ly [ 4 ] , 

VL. THE GENERAL SECOND-ORDER RECURRENCE 

Consider the sequence u0 = 0 , m = 1, and u = pu + qu , for 

n ^ 0, Define the genera l ized binomial coefficient 
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U U • • • UoUi 

u2ui) 
i n t . n n - i L J i ^ ^ -• 
< > = — -_—— . _—_ i < ni < n - 1 

m (u u • • • UoUi) (u u - - - " " * m m - i L l n - m n - m - i 
with 

Start ing with 

then 

:n+i q g n \ 
I * n 

:n q g n - i / 
R n = 1 ""* " I . n > 1 , 

can be eas i ly es tabl ished by mathemat ica l induction. Thus we can eas i ly obtain3 

as in Section II, that 

g n g m+l g n - m q g m g n - m - 1 

g n ~ g m g n - m + l q g m - l g n - m 

Thus , we can immedia te ly w r i t e 

(F) in\ = g < n " H +qg | n " H 
v ' (m) &m+l ( m f H B n - m - i | m - 1) 

and 

in) ( n - l l ( n - 1 ) 
| m f H & m - l ( m / & n - m + l \ m - If 

We can now examine some specia l c a s e s . If p = 2 and q = - 1 , then g = n* 

The above ident i t ies become ord inary binomial coefficientsf 

U) --*-i> (VV*• - - •» S."-1. 
and adding yields 

\ mj \ m J \ m - 1/ 
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Thus we can conclude that the binomial coefficients a r e in tegers and that the 

product of any m consecut ive posi t ive in tegers i s divisible by m- fac to r i a l . 

Since the Fibonomial coefficients a r e i n t ege r s , then the product of any m con-

secut ive Fibonacci number s (with posi t ive subscr ip ts ) is exactly divisible by the 

product of the f i rs t m Fibonacci numbers 0 

If, on the o ther hand, p = x and q = 1, then g (x) = f (x), the F i b -

onacci polynomials , and the rows of the genera l ized binomial coefficients 

a r r a y a r e indeed the coefficients, with doubly a l te rna ted s igns , of the difference 

equations sat isf ied by the powers of the Fibonacci polynomials , which a r e 

f0(x) - 0, fife) = 1, and fn+2(x) = xfn+1(x) + y x ) , n ^ 0o The resu l t ing 

genera l ized binomial coefficients a r e m o n i c polynomials w i t h in tegra l 

coefficients„ 

V n . THE FIBONACCI POLYNOMIAL BINOMIAL COEFFICIENT TRIANGLE 

The f i r s t few Fibonacci polynomials a r e 

fi(x) = 1, f 2(x) = x, f3(x) = x2 + 1, f4(x) = x3 + 2x, f5(x) = x4 + 3x2 + 1, 

and the f i r s t few l ines of the Fibonacci polynomial t r iangle a r e 

1 

f° (x) : 1 - 1 
n 

f4(x) : 1 - x - 1 
n 

f^(x) : 1 -(x2 + 1) -(x2 + 1) +1 

f3 (x) : 1 -(x3 + 2x) -(x2 + l)(x2 + 2) +(x3 + 2x) +1 

{ o } { ? } 8 ° e { m } - • { n - l } { n } 3 
where the double s igns a r e to be at tached to the i ^ as r equ i red . 

We a r e saying 

£ + 4 ( x ) - (x3 + 2x)f3
i+3(x) - (x2 + l)(x2 + 2)^ + 2 (x) 

+ (x3 + 2x)f3 (x) + f3(x) = 0 n+i n 
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The next l ine can be obtained by us ing r e c u r r e n c e re la t ion (F), 

< F ) {m} = W^VK-nw^™:1!}' 
w h e r e 

M-H:} -
This t r i angu la r a r r a y co l lapses into the Fibonomial t r i ang le when x = L, F r o m 

(F) it is easy to es tabl i sh by induction that < ? a r e monic polynomials with 

in tegra l coefficients. F o r every in tegra l x we get an a r r a y of integers,, 

VHL THE CHEBYSHEV POLYNOMIALS OF THE SECOND KIND 

The Chebyshev polynomials of the second kind a r e 

EL0(X) = 1, ui(x) = 2x, and un + 2(x) = 2x un + 1(x) - un(x) . 

If 

gn(x) = u n - 1 W , 

then 

g0(x) = 05 gi(x) = 1 , 

and we have the conditions for our P a s c a l t r i ang le rows to have singly a l t e r -

nat ing signs to ref lect the difference equations for the powers of g (x). Since 

g (x/2) a lso sa t is f ies th i s , the Fibonacci polynomials and the Chebyshev 

polynomials yield al l poss ib le P a s c a l t r i ang les with in tegra l coefficients,, 

IX. THE FINAL DISCUSSION 

In [ l ] and [ 2 ] it is given that the auxi l iary polynomial assoc ia ted with 

the genera l s econd -o rde r r e c u r r e n c e 

y , - p y , + q y J Q f o , 
Jn+2 ^ J n + i H J n ^ 
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i s 

^ (_l)h ( _ q )
h < h - 1 ) / 2 x m + l - h 

h=o f > 

Thus , if the columns of P a s c a l ' s genera l ized binomial coefficient t r i angle is 

left justified with the f i r s t column on the left being the 0 column then m u l -

tiplying the h column by q yields a modified a r r a y whose coef-

ficients along each row (with singly a l ternat ing s igns if Chebyshev re l a t ed or 

doubly a l te rna t ing if Fibc 
T. 

equations sat isf ied by u 

doubly a l te rna t ing if Fibonacci re la ted) a r e the coefficients of the difference 
m 
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