FIBONACCI NUMBERS AND SOME PRIME RECIPROCALS

R. S. BUCKNELL
Chiangmai, Thailand

The series of Fibonacci numbers has been shown to bear some interest-
ing relationships to the reciprocals of certain prime numbers. For instance,
Maxey Brooke and C. R. Wall set up as Problems B-14 (Fibonacci Quarterly,
Vol. 1(1963), No. 2, p. 86) to show
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The relationship (1) is but a special case of the general property
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where x, an integer >2, is the radix in terms of which the number (x? - x - 1)

and the Fibonacci numbers are expressed. Equation (3) is readily proved by

considering
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e n
-[§:Fx"‘1]= 1
n
n=1

since
Fi = Fp = 1
and
& n-i e n-1i e n-i
Z—:Fn+2X - Z} F X - Z_: F x =0 .
n=i n=i n=1

Note that x? - x - 1 may be composite (e.g., for x = 8, 13), but that x% - x
-1 and x are relatively prime.

Another interesting relationship that has been discoveredto exist between
the series of Fibonacci numbers and the number 1/N = 1/(x% - x- 1) is ex-
emplified by the special case where N = 109. Itvis found that the 108-digit
period of 1/109 is

0091743119266055045871559633027522935779816513761467889909256880733944-
95412844036697247706422018348623853211 .

A generalization is possible for the number N-x*-x-1-y?+y-1 (x an
integer >2, y = x - 1) when 1/N is expanded in terms of radix y. It will be

shown that if the period of 1/N is the (N - 1)-digit number

N-1

then the number

N-1

F n-i
&5
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has as its last N - 1 digits the number P.
Let the residue, R, be defined by

N-1 et
(4) R = ) Fy ' -P.
n=1
The expression
N1 n-1
2 Fy
n=1
~ will be summed using
n n
_a -b
Fn T Ta-b
where
- 1+Vs L 1-V5
2 ’ 2
Then

N-1 N-1 n n
n-i _ a -b n-1i
Z Fny = Z [( 2 - b ) Yy ]

n=i n=i

N-1
= ¥ [ay” - 09"V - vy
n=1

_1 - (aY)N _ 1 - (by)NJ/(a_ b)y

1 - ay 1 - by
N N-1
:yFN_1+y FN—l_yN—l__1
v+ y -1 yVi+y-1

N-1

= ¥y _
> [yFN_1 + FN 1]
yety-1
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Now consider the term

N1
_y
v ty-1

Clearly no factor of y will divide y2+y -1, hence yN_l and y*+y-1
are relatively prime, and since R is an integer, yN_1 divides R. Thus
R is a number ending in N - 1 zeros when expressed in terms of radix vy,

" Since P contains not more than N - 1 digits, it follows that the number

Nl
S Fy ' =P+R
p— n

n=1

has as its last (N - 1) digits the number P.
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RESIDUES OF FIBONACCI-LIKE SEQUENCES

LAURENCE TAYLOR
QOak Ridge, Tennessee

In the February, 1964, issue of the Fibonacci Quarterly, Brother U.
Alfred [1] advanced the conjecture (later proved by J. H. Halton [2]) that,

when any Fibonacci number is divided by another Fibonacci number, one or the

other of the least positive and negative residues is again a Fibonacci number.
The object of this paper is to prove that the only Fibonacci-like sequence for
which this is true is the Fibonacci sequence. If zero is excluded as a remain-
der, then the Lucas sequence has the above property.

The proof falls naturally into two parts. The first part will be to show
that every Fibonacci-like sequence, modulo any member of the sequence, is
congruent to a sequence made up of a subsequence of the original sequence and
the negatives of these values. The second part will be to show that these sub-
sequences are actually remainders of the divisor for only the Fibonacci and
Lucas sequences.

Obviously, a sequence has the propertydescribed above if and only if any
non-zero integral multiple of it does. Since any divisor of two neighboring
members of Fibonacci-like sequences divides every member of the sequence,
we will consider only sequences with neighboring terms relatively prime. In
what follows, Hi will denote the ith member of a general Fibonacci-like
sequence defined by Hi+1 = Hi + Hi—l’ where H;, and H; are arbitrary. The
set of integers will be denoted by I, the set of non-negative integers by P,

and the set of natural numbers by N.

PART I

Since it is easily established by induction that

H H_ .,

m+k Fka—l + Fk+1 m

for all integers m and k, the following two lemmas readily follow.

!

Lemma 1l: H .= F.H (mod H_ ) for all integers i.
—_—— s 'mH i m-1 m

m-—
Lemma2: H . =TF H = (-1)ittyg
—_— m-1 -1 1m-1 m+i1
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(mod Hm) for all integersi.
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It is known that any number must eventually divide one of the Fibonacci
numbers, and that F;-1 = Fn—an + (1) for all integers n. Applying these
results and Lemma 1, it is not difficult to prove Lemmas 3 and 4.

Lemma 3: Let n be any integer such that Fn = 0 (mod Hm). Then

Hm:tn = 0 (mod Hm) .
Lemma 4: For the n of Lemma 3, ]?‘121_1 = (-1 (mod Hm) .
Lemma 5;: For the n of Lemma 3, and for all integers i,

)n+i+1

= (-1 (mod Hm )

Fn—iHm-i m-n+i

Proof: The proof is by induction on i. For i = 0, apply Lemma 3.
For i =1, apply Lemma 1. Assume that Lemma 5 holds for i = k-1 and
i =k-2, orthat

n+k

F (-1)" "H

i

k1) (mod Hm) ,

n—1Hm- (k-1) m-n-+(

B n+k-1
Fo oy (kg = G 7 H

m-n+(k-2) (mod Hm) .

Subtracting the first formula from the second yields the expected result for i
= k. Hence, the formula is correct for all i € P. Lemma 2 can be used to
extend the result to include negative integers.

Lemma 6: Let t = nq + r. Then, if q € N and Fn = 0 (mod Hm),

il

= q-1
Hrn-n+t = Fan—1Hm—1 (mod Hm) .

Proof;: The proof is once again by induction on q. When q = 1, the
expression above becomes identical to Lemma 1. Assume that Lemuma 6 holds

for q =k -1, or that

_ k-2
Hm—n+t = Ft—(k—1)n Fn—IHm—i (mod Hm) .
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(k-1)n - Ft—knFn—1 * Ft—kn+1Fn = Ft—knFn—1
divides Fn by hypothesis. Substituting back into the formula above,

But, Ft (mod H_), since H
_ m m

_ k-1
Hoonit = Fonfnoflmeg (mod Hm)'
Hence, Lemma 6 is true for all q € N.
Theorem 1: For every i€ I, thereexistsa K€ I, m-n £ k £ m,

such that

Hi = in (mod Hm)’
where n is the smallest natural number such that Fn = 0 (mod Hm)'

Proof: Tet i =m-n+t, k=m-n+7r, and t =ng+r, 04&£r < n
The case g = 0 is trivial, sincethen t = p and i = k. Thecase q £ 0 is

equivalent to t < 0. But, by Lemma 2 and properties of congruences,

H = (- 1)t+ "

mentt (mod Hm_n) = (-1)" 'H

_t) (mod Hm).

m-n+(-t) m-n-+(

Since -t > 0, we needconsider onlythe case t > 0 or g € N. By Lemmaé,

= q-1
Hm—n+t - Fan-iHm—1 (mod Hm)'

By Lemma 1,
. _ T+
Fer_1 = (-1)" 'H r (mod Hm)
Substituting,
- r+iq-1
H o ¢ = GO F7H - (mod Ho)
By Lemma 4,
2 -
Fn“1 = (-1) (mod Hm)

We must now distinguish two. cases.
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Casel: If gq is odd,

Fq-i - (_1)11((1—1)/2

nei (mod Hm )s

leading to Hm iHm—r (mod Hm), where m-n < m-r £ m.

—n+t
Case 2: If q is even,

Fit - Cppla-2)/ep

n-1 n-1i (mod Hm)'
By Lemma 5,
Fn—iHm—r = (_1)n+r+1Hm—n+r (mod Hm)'
Substituting these two results leads to
H T (mod H_).
m-n+t m-n+r m

where 0 £ r £ n, so m-n<m-n+r< m.

In Theorem 1, if Hm divides Hi’ we can take k = m or k= m - n.
While every Hi divides some other member of the sequence (see Lemma 3),
it is necessary to notice that zero cannot appear as amember of the subsequence
of Theorem 1 unless our Fibonacci-like sequence is the Fibonacci sequence it-
self. Since zero can occur as a remainder in any Fibonacci-like sequence and
since Theorem 1, applied to Fibonacci numbers, leads to the theorem proved
by Halton in [2], the only Fibonacci-like sequence which strictly fulfills the
requirements of Brother Alfred's conjecture is the Fibonacci sequence.

In Part II, we will investigate Fibonacci-like sequences to determine if
any other sequence leaves residues which, in.all cases, are either Zero or

equal in absolute value to members of the original sequence.

PART II

Now, if our sequence is to have the desired property, there must be a
set of elements of the sequence whose absolute values are less than that of

Hm' The first observation to be made about Fibonacci-like sequences is that
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far to the right and to the left, the absolute values increase without limit.
Hence, we need only examine a small section of the whole sequence to deter-
mine if it has the desired property.

There must be at least one Hi with a minimal absolute value, and, be-
cause of the divergence of the sequence in both directions, there can be only a
finite number of such minima.

Lemma 7; If Hj is a minimum, |H0[ 22, then, if H;y > 0, the only
possible remainder equalin absolutevalueto a member of the original sequence
upon division by H“2 is +H), and if Hy < 0, the onlysuchremainderfor H,
is +H,.

Proof: If H, is negative, we will obtain the negative of the sequence for
Hy positive. Hence, consider only H; 2 2. None of H;, Hy, H;, H., can
be aminima, since each of Hil = Hy 2 2, i = %1, +2, leadsto a contradiction.

If Hy >0, toavoid |Hj| < Hy for some i, for the terms near Hy we

can have only the following:

H_3: 3H0+201=H1+a

Ho, = -(Hy + )

H.; = 2Hy) + «

Hy = Hy

Hy = 3H) + o

Hy = 4H) + o

Hi = Li+1H° + Fia/ , a>1,

where Ln and Fn are respectively the nth Lucas and Fibonacci numbers.

If Hy < 0, with the conditions above we obtain

H o= (1)L

+ Kol
i 1+1H0 Fy )

or a new sequence which, except for changes in sign, is the sequence for H;>
0 reflected about Hy,. In particular, H, = -(H; +a).

Noticethat the sequence diverges for | i| > 2. From the sequence above,
it is easy to see that the only remainder in the sequence for H_2 will be +H,

when Hy > 0, and when H; < 0, the only remainder for H, will be +Hj.
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Lemma 8: If Hp is a minimum, [Hy|= 1, and neither H; nor H_,
is a minimum, then the only remainder equal in absolute valueto a member of
the original sequence upon divisionby H_, is +H; when H; > 0, and the only
such remainder for H, is +tH; when H; < 0.

Proof: Avoiding [Hy| = [|Hy| and [H_,| = |H0| as well as lHl, < [Ho|
leads to the formulae of Lemma 7.

Lemma 9: If Hy is a minimum, |H0| 2 2, then there exist numbers
Hi which leave remainders which are neither zero nor equal in absolute value
to a member of the original sequence.

Proof: If any number Hj is divided by H;,, the remainder must beless
in absolute value than H;, the minimum of the sequence. Thus, if |H0l 2 2,
all remainders cannot be zero because any two adjacent terms are relatively
prime, and any non-zero remainder is a number not equal in absolute value to
a member of the original sequence. So H; is a number H; for the lemma.

Suppose we exclude division by H, Since (Hyp, H;) = 1, H;y is nota
minimum. Either Hy is positive or H; is negative. Without loss of gener-
ality (see proof of Lemma 7), we assume that Hy is négative. By Theorem 1,
if n, is the least natural number such that Fn2 = 0 (mod Hy), and if t = qny+

r, 0<r<mny, for q an oddnumber;

H2—1’12+t = in_r (mod HZ ) .

Now, Hyy = Hy if andonly if r = 2. If |H0[ 22, [H) 23=TF,; so ny2
4, and atleast 0 £ r < 4. Set t = gny + 3 for an odd number q, say q =

1. Substituting, we have Hy= +H_; (mod Hy), and *H_; # zH; (mod Hy) by

|

inspecting the proof of Lemma 7. Thus, we can take i = 2.

Lemma 10: If [Hy| = 1 is a minimum, and neither H, nor H_, is a
minimum, then there exist numbers Hi which leave remainders which are
neither zero nor equal in absolute value to a number in the original sequence.

Proof: Without loss of generality, we assume that H; < 0. If |H2| 2 3,
so that ny 2 4, by Lemma 8 we can use the same proof as for Lemma 9.
Since H, is not a minimum, H, # 1 and H, # -1. The only remaining case

is when |H2| = 2, which leads only to the following sequence,

ce, _28, 14, -9, 5, -4, 1, -3, -2, -5, -7, -12, -19, -31, =50, - -,
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where 31 = 8 (mod -23) while neither +8 nor +15 is in the original sequence.

Theorem 2: The only sequences which possess the property that, upon
divisionby a (non-zero) member of that sequence, the members of the sequence
leaveleast positive or negative residues which are either zero or equal in abso-
lute value to a member of the original sequence are the Fibonacci and Lucas
sequences.

Proof: By Lemmas 9 and 10, for a sequence to possess the above prop-
erty, its minimum must be either Hy = 0 or |[Hy| = 1 with one of H, and
H_, also a minimum. '

If Hy = 0, we can have only the Fibonacci sequence.

Considering the cases |[Hy| = 1 and |H2| =1; |Hy =1 and lH_2| =1,
leads to the Lucas sequence and the negative of the Lucas sequence.

It can be shown that, since when Theorem is applied to Lucas numbers,
for each Lk’ Lk < Lm‘ or Lk = 0 (mod Lm), that the Lucas numbers do
indeed have the property of Theorem 2. The Fibonacci numbers are known to
also have this property, as proved by Halton in [2].

Wehave used a minimum value greaterthan2 as a criterion to determine
if there exist numbers Hi which leave remainders which do not satisfy Theo-
rem 2. Another criterion is that such numbers Hi exist if and only if IHJI #
IH_].I for any j, where the sequence has been renumbered so' that either H.O
is the minimum or H; is between the two minima H; and H_;. This second
criterion requires a longer proof, but not a difficult one, done by examining all
cases.

Examining several sequences to aid in the formulation of the proofs given
here led to an interesting question. If Brother Alfred's conjecture is not true
for a whole sequence, can it be true for some elements of the sequence, and if

80, which ones?
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ON m-TIC RESIDUES MODULO n

JOHN H.E. COHN
London, N. W., England

1. INTRODUCTION

The object of this paper is to investigate the values of the residues mod-
ulo n of x, where 0 =x= n - 1), and in particular for the case n = m.
We shall define

Tmm) = {x" (modn)| 0=x=@m-1}
and

®(n;m) = {xm (modn)l 1=x= (@m-1), m,x) =1}

Clearly ®(n;m) is a subset of Z(n;m). We shall use the symbol ¢(n;m) tode-
note the number of distinct elements of ®(n;m). Also whenever there is no risk
of confusion we shall omit the symbol (mod n). We shall prove certain theo-
rems which will enable the work of computing = (n;m) to be reduced consider-

ably, and conclude with a table of =(n;n).

2. PROPERTIES OF &(n;m)

Theorem 1. T(n;m) = {xymlxe d(n;m), y|n}

Proof. Suppose z € Z(n;m). Then z = d™ (mod n). Now let y = (n,d).
Then d = cy, (m,c) = 1, yn. Hence s = xym, where x = cmeqa(n;m).
This concludes the proof of the theorem. In view of it, and the fact that for
several reasons &(n;m) is rather easier to deal with, we shall first consider
the properties of &(n;m).

Inthe first place, we shall define the integer 1(n) for n = 2, asfollows

# if n = pr, where p is an odd prime and v > 1, then 1(n) = pr_1

-1
(ii) if n = Zr, then 1(n) = 2t if p = 1,2 and 1(n), = 2"
(iii) if

if r= 3.

305
(Received Jan.,1965)
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N -
n = 1] by L,
i=1

then

1m) = Leom {1}, t = 1,2,++,N

Then we have

Theorem 2. If

k = (m, 1(n)),
then if k # 1(),
dn;m) = en;k) ,
whereas if k = 1(n), then &(m;m) = {1}.
Proof.
em;1) = {x|@n,x 1}

is a multiplicative Abelian Group whose structure is known

C,, ryy, X C,, Ty Xe:eXC rp, if 8 /fn
Bm:1) = 1(pg %) 1(py %) 1pn™ ™)
c X-n. xc T
C1pM % 1, 1pn'™)

C2 if 8 In
Now

1) = Le.m{l (p;'h}
and so
om;lm) = {1} ,
and clearly l(n) is the least integer for which this is true.

Thus we have

: Xl(n) = 1 (mod n)
if
(n,x) = 1.
Now if
k = 1) = (m,l(n)),
then

1(n)|m ,

[ Nov.
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and so whenever (n,x) = 1, x" = 1 {modn), ie, ®mnm) = {1}.

Secondly, if (m, (n)) = k where 0 = k = 1(n), thenthere exist integers
a,b,c such that

m = ak and k = bm - cl(n)

Hence if (n,x) = 1 we have

X0 = Xak = (Xa)k (mod n)
and so

dn;m) C dn;k)

Also,

Xk _ Xbm—cl(n) - Xbm (mod 1)

= )™, (modn)

Thus

®(n;k) C dn;m) ,
and so by our previous result

®(n;k) = ®n;m)

Hence in considering &m;m) we need only consider values of m which are

divisors of 1(n).

3. PROPERTIES OF Z(n;m)

Theorem 3. if

x = y (mod n)
and ajn, then
x2 = ya (mod an) .
Proof. Let
X =y +cn.
Then
x* = (y + cn)a

a a-1
:y —|—acny + o000 4

)a-l

+afcn)” 'y + (cn)al

= ya1 (mod an) since an .
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This concludes the proof. A simple induction argument now shows that for any

r, if x = y (mod n) and ajn then
xal = ya' (mod a’n)

and this gives immediately

Theorem 4.
Z(a’n; a¥m) = {x8"(mod aTn)| x € Z(n;m)}
where a is any factor of n.
Theorem 5. If n is square-free, and if &n;m) = &n;1), then Z(n;m)

= 2(n;1)s for by Theorem 1,

S(n;m) = {xymlx € &(n;m), yin}

1l

{Xym l n,x) = 1, y|n}

Now consider any prime factor p of n. Since n is square free (p™,n) = p

and so there exist integers a,b such that

p:apm+bn

apm (mod n) and so (n,a) = 1 or p

Now if (n,a) = p thenlet a' = a+n/p. Then (n,a') = 1 and p = a'pm (mod
n). Hence p € Z(n;m), and so every prime factor belongs to Z(n;m). Hence

if m is any number between 1 and (n - 1)

where (c,n) = 1 and the p; are prime factors of n. Hence z = a™ (mod n).
This concludes the proof, since clearly 0 € Z(n;m).

Theorem 6. If k = (m,1l(n)) then if
N
n = I p't
i=1
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I‘.

N iy h)
n—= unless 8|n and m is odd
it (k,l(pil))
¢m;m) = N e 1)
ol T T if 8n and m is odd .
i1 (k,l(pi 1)

For, (mm) = ¢(n;k) and the result follows from the structure of &(n;1),

since when s n,k is odd if and only if m is odd.

4. PROPERTIES OF ZX(n;n)

Theorem 7. Z(n;n) = {0,1,2,°+, (n - 1)} if and only if ( n,1m)) = 1.
Proof. (i) If Z(mmn) = {0,1,2,**,(m - 1)} then &®(mn) = ®(n;1) and
so by Theorem 6 ( n,1(n)) = 1.
(i) If (n,Im) ) = 1 then by Theorem 2 &(n;n) = &n;1) andso
by Theorem 5, Z(n;n) = Z(n;1) since n must be square-free to make
(n, 1) ) = L
Theorem 8. If 1(n)| n, then Z(n;n) = {xn|x!n} This follows immediately
from Theorems 1 and 2.
Theorem 9. (i) if n = 2%, then Z(mn) = {0,1}
(i) if n = 3", then Z(mmn) = {0,1,n - 1}
(iii) if n = pr, where p is an odd prime then Z(n;n)
consists of the p different elements 0, +1, izt, cee, i{%(p - 1)}t where
t = pr—1,
Proof. (i) if n = 27, then since =(2;2) = {0,1}, the result follows
by Theorem 4.
(ii) if n = 3%, then since =(33) = {0,1,2} or equivalently
{0,1,-1} it follows by Theorem 4 that Z(n;n) = {0,1,n - 1}.
(iii) if n = pr, then since 1(p) = p-1, (p,1(p)) = 1 and so by
Theorem 7, Z(p;p) = {0,1,2,°°°, (- 1)} or equivalently, {0,+1,42,++-,
+3( - 1)}. Hence by Theorem 4,

Smm) = {0,241, 225 -+, e{dp - DJE} ¢ = pret

It merely remains to show that all these p elements are distinct. Now n = pr,
-1 ~1
1m) = pr pP-1), k= (Mm,1n)) = pr . Hence by Theorem 6, ¢(n;n) = p - 1.
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Hence the elements +1, izt, SRR -%(p -1) t are all distinct, and clearly they

are all distinct from 0. This concludes the proof.

Theorem 10. If n = 2p, p an odd prime, then

Z(n;n) = {0,p,0hq+pl (qlp) = +1}

Proof, I(n) = p-1, andso k = (n,I(n)) = 2. Hence

Il

Hmn) = d(n;2) = {xzi(z,x)

1},

by Theorem 2. Hence by Theorem 1,

Z(nsn) = {aynls € ®n;2), y = 0,1,2,p}

Now y = 0 gives only the element 0, and since must always be odd, y =
p gives only the element p. Also,

2P = 2 (mod 2)

and

2P = 2 (mod p)
hence

2P = 2 (mod n)
hence

2" = 4 (mod n)
Thus

Z(yn) = {0,p,z,4z|z € &n;2)}
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Now
z = x*

where

mx = (@,x) =1
and

4z = (2x)% = ¥  (modn)
where

(ysn) = (2%,2p) = 2 .

Hence

E(n;n) = {Osp,le(xip) = 1}

For each element of the form x* there are now two possibilities,
(i) 0 =x*(modn)<p. Then x* = q where 0 < q <p, (qjp) = +1
(i) p <% (modn) < 2p,

Then
(x + p)? = =2 + 2px + p?
= x* - p (modn)
Hence
% = p +q (modn)
where

0 <q <p and (qlp) = +1
This concludes the proof,

Theorem 11, If n = 2]pr where p is an odd prime, then
oy r t r t S o =
Zmm) = {0,p7,q,p +q |t =p ,0=q=p,(qp =+1}

Proof, For each p, we shallprove the result by induction on r. By the
previous theorem, the result is true for r = 1,
for r = R, Thus

Now suppose that it is true

R, R R t.t, R R
Z(2p 32p ) = {0,p ,q,q +p } where t=p

Hence by Theorem 4,
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R+, R+ R, . R
Z(2p 32p ) = {xpl x €EZ(2p 32 )}

Now x = 0 gives =0 and x = pR gives

P = pPR
R+1, pR-R-1 R+
=p - 1) +p
= pRJr1 (mod n)
X = qt gives
1
&L = qtp = qT where R = pt = pR+
_t, R
x=q +tp gives
t R
I

T , t(p-1) R+, t(p-2) 2R+ (p-1
= qb o+ g"PTIRRT M) ( )

2
+ ooo + qtpR(p_l)+1 + pRp

T R+
= q (mod p )
T R+ R+
= q +p (mod p™ )
Also &L = qT + pRH (mod 2)

for if x is even, ¢ is odd and vice-versa,

Hence
P qT + pR+1 (mod n) ,
This concludes the proof, and gives, for example,

2@2-3%2.3% = {0,1,3%,3" + 1}

[ Nov,

2@2.57%2.5%) = {0,1,5" - 1,5',5  +1,2° 5 -1}

Theorem 12, If n = 4p, where p is an odd prime, then

(i) if p = 3 (mod4), Z(min) = {x*|x = 0,1,2,-++,p}
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(ii) if p = 1 (mod 4),
Zmm) = {x*|x = 0, p, ¢ where 0 =g <p, (@jp) = +1}
Proof, By Theorem 4,
Zmm) = {x* | x€X@2ps2p)},

and so by Theorem 10,

Zmm) = {=| x = 0,p, ¢, g+ p ,

where 0 =9g=pand (qp) = +1}

(i) if p = 3 (mod 4) then (-1|p) = -1 and so q takes exactly half of
the values 1,2,.--,(p - 1) and the other half are of the form p - g. Now

(@+pP?-(@-92 = 4pg = 0 (mod n)
Hence in this case
Zmm) = {x*|x = 0,1,2,°**,p}

(ii) if p = 1 (mod 4) then (—1‘13) = +1 and so g takes half the values

1,2, ,(p - 1), these same values being of the form (p - q) and again
(@+p? = (p-9? (modn)

Hence
Z(nm) = {le x = 0,p,q, where 0 =q =p and (qlp) = +1}

This concludes the proof,
Theorem 13, If 1(n)|n andif n = rs where (r,s) = 1 andif R = o
(modn) and S = s" (mod n) are elements of Z(n;n) then R+ S =1 (mod n).

Proof, Since 1(n)|n, it follows from Theorem 2 that &(n;n) = {1i}.
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Since n = rs and (r,s) =1, (m,r+s) =1 and so

(r + s)n = 1 (modn) .

. n n n .
Now each of r and s is a factorof (r+s) -r -s andsosince r and s

have no factor in common and n = rs,

(r +s) = o+ s (mod n)

1l

R + s (mod n)
Hence by the above remark,

R+S =1 (mod n) .

5, TABLES OF Z(n;n)

Our theorems enable us to compute tables of Z(n;n) fairly easily, at
least in the cases that n can be factorized into fairly small factors, By Theo-
rem 7, Z(nsn) consists of all the residues when n is a prime, and so there is
no need to calculate the residues inthis case, Alsoit is clear that the elements
0 and 1 always belong to 2(n;n). We give atable; giving Z(n;n) for allvalues
other than primes up to n = 100 and also for a few easily calculable values

between 100 and 1000,

n Z(n;n) contains 0, 1, and
4 no others

6 3,4

8 no others

9 8

10 4, 5, 6, 9

12 4, 9

14 2, 4,7, 8,9, 11

15 all residues

16 no others
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18 9,10

20 5, 16

21 6, 7, 8, 13, 14, 15, 20

22 3, 4, 5, 9, 11, 12, 14, 15, 16, 20

24 9, 16

25 7, 18, 24

26 3, 4, 9, 10, 12, 13, 14, 16, 17, 22, 23, 25

27 26

28 4, 8, 9, 16, 21, 25

30 4, 6, 9, 10, 15, 16, 19, 2i, 24, 25

32 no others

33 all residues

34 2, 4, 8, 9, 13, 15, 16, 17, 18, 19, 21, 25, 26, 30,32, 33

35 all residues '

36 9, 28

38 4,5,6,7,9,11,16,17,19, 20, 23, 24, 25, 26, 28, 30, 35, 36

39 5,8,12,13, 14, 18, 21, 25, 26, 27, 31, 34, 38

40 16, 25

42 7, 15, 21, 22, 28, 36

44 4, 5, 9, 12, 16, 25, 33, 36, 37

45 8, 9, 10, 17, 18, 19, 26, 27, 28, 35, 37, 37, 44

46 2,3,4,6,8,9,12, 13, 16, 18, 23, 24, 25, 26, 27, 29, 31, 32, 35,
36,39,41

48 16, 33

49 18, 19, 30, 31, 48

50 24, 25, 26, 49

51 all residues

52 9, 13, 16, 29, 40, 48

54 27, 28

55 10, 11, 12, 21, 22, 23, 32, 33, 34, 43, 44, 45, 54

56 8, 9, 16, 25, 32, 49

57 7,8,11,12,18,19, 20, 26, 27, 30, 31, 37, 38, 39, 45, 46, 49, 50,
56

58 4,5,6,7,9,13, 16, 20, 22, 23, 24, 25, 28, 29, 30, 33, 34, 35, 36,
38,42,45,49, 51, 52, 53, 54, 57

60 16, 21, 25, 36, 40, 45
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62  2,4,5,7,8,9,10, 14, 16, 18, 19, 20, 25, 28, 31, 32, 33, 35, 36, 38, 39, 40, 41, 45,
47,49, 50, 51, 56, 59

63 8, 27, 28, 35, 36, 55, 62

64 no others

65 all residues

66 3,4,9,12,15, 16, 22, 25, 27, 31, 33, 34, 36, 37, 42, 45, 48,49, 55, 58, 60, 64

68 4, 13, 16, 17, 21, 33, 52, 64

69 all residues

70 4,9, 11,14, 15, 16, 21, 25, 29, 30, 35, 36, 39, 44, 46, 49, 50, 51, 56, 60, 64, 65

72 9, 64

74 3,4,7,9,10,11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36, 37, 38,40, 41, 44, 46
47,48,49, 53, 58,62, 63, 64,65,67, 70, 71, 73

75 7, 18, 24, 25, 26, 32, 43, 49, 50, 51, 68, T4

76 4, 5, 9, 16, 17, 20, 24, 25, 28, 36, 44, 45, 49, 57, 61, 64, 68, 73

77 all residues

78 12, 13, 25, 27, 39, 40, 51, 52, 64, 66

80 16, 65

81 80

82 2,4,5,8,10, 16, 18, 20, 21, 23, 25, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 45, 46,
49, 50, 51, 57, 59, 61, 62, 64, 66, 72, 73, 74, 77, 78, 80, 81

84 21,28, 36,49, 57, 64

85 all residues

86  4,6,9,10,11,13,14,15,16,17, 21, 23, 24, 25, 31, 35, 36, 38, 40, 41, 43, 44, 47,
49, 52, 53, 54, 56, 57, 58, 59, 60, 64, 66,67, 68, 74, 78, 79, 81, 83, 84

87 all residues

88 9, 16, 25, 33, 48, 49, 56, 64, 80, 81

90 9, 10, 19, 36, 45, 46, 54, 55, 64, 81

91 all residues

92 4,8,9,12,13, 16, 24, 25, 29, 32, 36,41, 48, 49, 52, 64, 69, 72, 73, 77, 81, 85

93 2, 4,8,15,16, 23,27, 29, 30, 31, 32, 33, 35, 39, 46, 47, 54, 58, 60, 61, 62, 63, 64
66, 70, 77, 78, 85, 89, 91, 92

94 2,3,4,6,7,8,9,12,14,16,17,18, 21, 24, 25, 27, 28, 32, 34, 36, 37,42,48, 49,
50, 51, 53, 54, 55, 56, 59, 61, 63, 64, 65,68, 71, 72, 74, 75, 79, 81, 83, 84, 89

95 all residues

96 33, 64

98 32,44,49,67,79, 86
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99 8,9,10,17,18, 19, 26, 27, 28, 35, 36, 37, 44, 45, 53, 54, 55, 62, 63, 64, 71,
72,73, 80, 81, 82, 89, 90, 91, 98

100 25, 76

108 28, 81

120 16, 25, 40, 81, 96, 105

125 57, 68, 124

128 no others

136 16, 17, 33, 120

144 64, 81

150 24, 25, 49, 51, 75, 76, 99, 100, 124, 126

160 65, 96

162 81, 82

192 64, 129

200 25, 176

216 81, 136

240 16, 81, 96, 145, 160, 225

243 242

250 124, 125, 126, 249

256 no others

272 17, 256

288 64, 225

300 25, 76, 100, 201, 225, 276

320 65, 256

324 81, 244

360 81, 136, 145, 216, 225, 280

384 129, 256

400 176, 225

432 81, 352

480 96, 160, 225, 256, 321, 385

486 243, 244

500

125, 376
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512
544
576

600
625
640

648
720
729

768
800
864

900
960
972
1000

ON m-TIC RESIDUES MODULO n

no others

256,

289

64, 513

25, 201, 225, 376, 400, 576

182,
256,

443, 624
385

81, 568
81, 145, 225, 496, 576, 640

728

256,
225,
352,

100,
256,
244,
376,

513
576
513

225, 325, 576, 676, 801
321, 385, 576, 640, 705
729
625
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CERTAIN LUCAS-LIKE SEQUENCES
AND THEIR GENERATION BY PARTITIONS OF NUMBERS

DANIEL C. FIELDER
Georgia Institute of Technology, Atlanta, Georgia

1. INTRODUCTION

An interesting paper by S. L. Basin in the April, 1964, issue of this
journal [ 1] develops the k™ Lucas number Ly = S where §; is the sum

of the kth powers of the roots of
(1) f(x) = agx® + ax + a, ,

in which a; = 1, a; = a, = -1, Although Basin's Sy originated from a
demonstration of a property of Waring's formula, it is obvious, as Basin
implies, that the same results could be obtained using Newton's formulas for
Sk in terms of elementary symmetric functions.

In a previous paper [ 2], the author tabulated Sk from Newton's formu-
las for

(2) f(x) = agx’ +ax Heee ta .
The values of Sk for k = 1(1)11 applicable for 1 = n = 11 are reproduced
as Table 1% of this paper.

It is proposed to examine the special case of (2),

(3) fx) = K - oo 21,

for n= 2 and to use Table 1 as a guide in extending the true Lucas sequence
found from (1) to Lucas-like sequences. Also, a method by which partitions

of numbers can generate terms of the Lucas-like sequences is presented,

*This table is reproduced with all rights reserved, Reprinted by permission
from the American Mathematical Society from Mathematics of Computation,
Vol, 12, No. 63, pp. 194-198, Actually, itis S, which is tabulated in [ 2]
but is presented herein as Sj. to be consistent with this paper.

319
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Table 1
Sk for k = 1(1)11
S1 = — ai/a,,
Sz = al"/ao? - 2&2/00,
S; = — al"’/llos + 30102/1102 - 3(13/110,
Si = ar'/ad* — 4ar’ar/ad® + (4a.a; + 2a.?)/ac* — 4aq/ao,
Ss = — a1%/ac® + Sarfax/adt — (Saias + 5a.1a5%)/ad® + (5a.1a¢+ Saxas)/ad* — 5as/ao,

Se = alﬁ/ao“——ﬁal“az/ao“-l- (6013a3+9a12a22)/a0‘— (60120'44'12‘111120«:9"‘Za'!a)/aroJ
+ (6a1as + 6a2a4 + 3as?)/ac* — 6as/ao,
Sr = — 017/007 + 711'1"(12/110s — (7Tar'as + 1411'130'22)/110“l
+ (7Tar’a4+21a,2a2a3+7a105%) /ac* — (Ta*as+ 14a.a.04+ Ta%as+ Taia%;) /add
+ (Ta:as + Tasas + Tasas)/ae® — 7Ta:/ao,
Ss = ar¥/ad® — 8afas/ay’ + (8aitas + 20aras?)/ac
—_ (8014(14 + 320130203 + 16&12032)/005
+ (8aas + 240:2a-.a4 + 12a:2a32 + 24a.a2tas + 2a54)/ac
— (8ai2as + 16a.a:as + 16a.1asas + 8as’as + 8asas?)/aq?
+ (80101 + 8(12(15 + 8[13(16 + 4042)/002 - Sas/ao.
Sg = — aﬁ’/aog + 9(11702/1108 —_ (9(1160,3 + 27&15022)/007
+ (9ar’as + 45a1*asas + 30ar’as®)/ac
— (9ar'as + 36aazas + 18ar’as? + 54a.’aslas + 9a.a:t)/ac®
-+ (901305 + 27(112112(15 + 27(112(13114 <+ 27(11(122(14 + 27a.a:a3® + 90230«3)/00“‘
— (9a?a; + 18aia:as + 18a1asas + 9a.a + 9as?as + 18a:a:a4 + 3as’)/ad®
+ (9a1as + 9aqa7 + 9asas + 9a4a5)/ac* — 9as/ao,
Sm = allo/ao“’ - 1001302/009 + (1011170-3 -+ 35016012)/008
-_ (10(116(14 + 600150203 + 50014023)/007 + (100«1505 + 5001402(1‘
+ 25ar'as® + 100as’aras + 25aas*)/a® — (10ai'as + 40ar’aqas
+ 40a*azas + 60a,%aq.’as + 60a:as’as + 40as*asa: + 2a,.°)/ao®
+ (100,13(17 + 300«120«204 + 300120305 + 150.12(1«42 + 3001(12205
+ 60a1a:a3a4 + 10as’as + 15a7’as? + 10a1a5%)/a
— (10a’as + 20a1a:a7 + 20a.a30¢ + 20a1a4a5 + 20a:a3a5
+ 10a:a4 + 10as%as + 10as?as)/ad® + (10a1as + 102405
+ 10asa7 + 10a.as + 5as®)/as® — 10a10/a,
S“ = — alu/au“ + 110190.2/(10“) — (lldlsﬂvs + 440,\71122)/0,09
+ (11ai7as + 77a:%a0as + 77a:%a5%)/a® — (11a.°as + 66a,°a:a,
+ 33a.%a% + 165a:'as’as + 55ar’as?)/a¢’ + (11a:°as + 55a.'aqas
+ 55ai'asas + 110a%a:°as + 110ar’as’as + 110a°a203 + 11a.1a:°)/ac
- (11(1:407 + 44&130205 + 44013030-5 + 220«13&42 + 66&12(122[15
+ 132a+2asa304 + 44a1a7%aq + 66a1a2%as® + 1lasies + 22a:%a5%)/ao®
+ (11ar’as + 33a:2a2a7 + 33a1%asa6 + 33alasas + 33a1a.%a6
+ 66a1a+a:a5 + 33a10:04’ + 33a1as’as + 11as'as + 33as’asa4 + 11as’as)/ae
— (11as’as + 22a.a:a5 + 22a,a5a7 + 22810406 + 11a1as® + 11as%a;
+ 22a.a3as + 22a:a4a5 + 110308 + 11as’as)/ad® + (11a1810 + 11aqa,
+ 1lasas + 1lasar + 1lasae)/ae® — 11au/a..
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The liberty of calling the sequence ""Lucas-like' appears justified since
(1) (as used by Basin) is a special case of (3) and, moreover, the sequences

do indeed share characteristics with the true Lucas sequences,

2, OBSERVED BEHAVIOR

To identify terms of a sequence and at the same time to retain a Lucas

)

flavor, the terminology Ll({][l is used to specify the kth term of a Lucas-
like sequence obtained from (3) for a given n = 2, For convenience, s -

) @) th N
Lk . It is noted that Lk is the true k™ Lucas number, L,. For any

given k= 11 and 2= n=< 11, itis a simple matter to enter Tallsle 1, reject
all coefficients of a terms having subscripts greater than n and add the
numerical coefficients of the remaining a terms to obtain a kth Lucas-like
number, The choice of signs in (3) automatica\lly makes the signs of the num-

erical coefficients positive. For example:

(4) Lf)=1+4+(0+2)+0=7.

The first seven terms of several Lucas-like sequences obtainedin this manner
are recorded in Table 2, For later use, a zig-zag line divides the table into
two parts, For n = 2, itis seen that the difference between the first two
terms (those above the zig-zag line) is 2 (i. e., " for n = 2), and that the
sum of two consecutive terms determines the next term, For n = 3, the dif-
ference between the two first terms is 2n—2’ and the difference between the
second and third terms is Zn_i. There are three terms above the zig-zag

line, For n = 3, the sum of three consecutive terms determines the next

term,

Table 2
VALUES OF Lf{“)

K\Nn 12|34 )] 5] 6

11} 15| 15| 15
11 21| 26§ 31| 31
18| 39| 51| 57| 63
291 71| 991 113 | 120

GO U W N
[ g W
-3
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The obvious pattern is repeated for n = 4,5, ete.
One immediate conclusion is that each Lucas-like sequence is, in reality,
the blend of two sequences, The first sequence is 1,3,7,°°°, o - 1 having

n terms and governed within its range by the recursion formula

(5) SRS A A

The second sequence starts with the sum of the n terms of the first sequence.

The first term is

m _ ot

(6) Ly, =2 -n-2.
Succeeding terms are

m _ @ n-+
(7) Lo, =L +@ -n-2-1,

) +1
(8) Lr(ffr’g = Lflrfer(zn -n -2 -(1+3),
©) T 2 R

n+i

In general, the second sequence follows the recursion formula

M - @ . 0 () =
(10) Lk = Lk—1+Lk—z+'” +Lk-n k=nt+1).

It is interesting to note from (7), (8), and (9) that at least one term of the
()

first sequence appears directly in the summation for Lk for n= k= 2n,

After k > 2n, the influence of the first sequence is reduced.

3. PARTITION CALCULATION OF SEQUENCE TERMS

Several methods are available for finding a particular ngn)' One method
is the direct use of recursion formulas, Another is to solve the nth order
difference equation for the second sequence subject to the n conditions (or
their equivalents) imposed by the first sequence. A third method, discussed

herein, is to assume that desiredpartitions of n are available and to use them

(n).

as a combinatorial means of finding the Lk
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In Chrystal's [ 3] notation, P(k Iplsq) is the number of p-part parti-
tions of k, no member of which exceeds q. If the original value of g ex-
ceeds k+1-p, it can be replaced by q = k+1 -p since there are the
same number of partitions for ¢ = k+1-p asfor q= k +1 -p. However,
for ¢ = k+1-p it is obvious that less than P(k]p}sk +1 -p) partitions
exist, Suppose, now, that desired partitions can be called up at will and are
available from this point on, The actual set of such partitions which have the
same limitations as the enumeration counterpart is given the terminology
PV (| pkq).

If any Sk of Table 1 is strippedofall terms except subscripts and super-
scripts (exponents) of the numerator a's, there remains the conventional
representation of all the partitions of k, The partition representation for
k = 6 is exemplified in Table 3. It is seen that, in general, p ranges from
k to 1. The quantity k- (p - 1)! divided by the product of the factorials of
the exponents of aparticular combination yields (neglecting sign) the numerical
part of the contribution of that combination to Sk' To illustrate, if k = 6,
p = 3, the numerical coefficient associated with the partition 2% = 2,2,2, is
(6 x2')/3! = 2. This well-known result employs much the same reasoning as
finding a coefficient of a multinomial expansion. The numerical coefficients
for k =6, n =6, and the total 63 = LéG) are given in 'fa)ble 3. Thus,

n

once the exponents are found from the available partitions, Lk follows.

Table 3
Reprosomtation PV(k|pfg Cootciont
16 1,1,1,1,1,1 PV (k|p=q) (6 x5!')/6! =1
14,2 1,1,1,1,2 PV(6]|5=2) (6 x4)/4' = 6
13,3 1,1,1,3 (6x3/3" =6
12, 22 1,1,2,2 PV(6]4=3) 6x3)/@2 x2!) =9
124 1,1,4 (6x2')/2! = 6
1,2,3 1,2,3 PV (6|3]=4) (6x2)/1 = 12
23 2,2,2 (6x2/38 = 2
1,5 1,5 6x1)/1 =6
24 2,4 PV (6|2=5) 6x1)/1 = 6
32 3,3 (6 x11)/2! = 3
6 6 PV (6]1]=6) (6x0)/1 =6
Total = 63




324 CERTAIN LUCAS-LIKE SEQUENCESAND THEIRGENERATI ON
BY PARTITIONING OF NUMBERS

As long as k = n, the sum of numerical coefficients obtained from the
PV(kp=k+1-p)'s is the desired Ll(;n). When k =n, the a terms with
subscripts greater than n are zero. Since the corresponding products with
numerical coefficients are zero, these numerical coefficients are not used.
The elimination of these numerical coefficients is accomplished by limiting q
to 1= g = n and using only those partitions which result. Table 4 gives an

example of this situation k = 6, n = 2.

Table 4
Representation PV pla Costiicient

16 1,1,1,1,1,1 PV(6|6[1) 1
14,2 1,1,1,1,2 PV(6]5[2) 6
1%, 22 1,1,2,2 PV(6[4]2) 9
23 2,2, 2 PV(6]32) 2
None PV(6]2]2) 0

None PV(6]1]2) 0

Total = 18

The above methods have been successfully applied to digital computation of
electrical network problems [4] in which the a coefficients had values other
than +1 and in which it was necessary to consider the signs of the resultant

numerical coefficients.
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REMARKS ON TWO RELATED SEQUENCES OF NUMBERS

) DANIEL C. FIELDER
Georgia Institute of Technology, Atlanta, Georgia

1. INTRODUCTION

The expansion of (x + y)n usually takes the form

n+i
1) x+ " = > C(n, kK
=1

t

where C(n,k) are the well-known binomial coefficients and are sequences of
integers generated by the expansion (1). Another device for obtaining the C(n,k)
is, of course, Pascal's triangle.

Different sequences of numbers can be obtained from the coefficients
resulting from the expansion of (x + y)n in terms of (xk + yk)(xy)n_k. Fur-
ther, a sort of inverse can be obtained by expressing (Xn + yn) in terms of
(x + y)k(xy)n_k. In both cases the coefficients share characteristics with cer-
tain binomial coefficients and terms from sums of powers of roots of selected
polynomials., In the inverse sequences, except for appropriate changes in
sign, the numerical coefficients are those observed in a recently proposed
approach to the generation of Lucas numbers from partitions of numbers [ 1].
The relationship between partitions of numbers and both sequence is outlined

briefly.
2. SEQUENCE OF THE FIRST KIND

For brevity, let (x+y) = u = u; (interchangeably), let (xk + yk) = Uy,
and let (xy) = v. The numerical coefficients of the resultant direct expansion

shown below are called coefficients of the first kind,

U= oy
u? = uy + 2v?
u? = uy + 3uyv?
(2 ut = uy + duv? + evt
ud = ug + 5ugv?: + 10uyvt
ub = ug + 6uv? + 15uvt + 20v8

325
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As might be suspected, the coefficients are binomial coefficients without the
symmetrically repeated coefficients of the expansion (1). The coefficients of

(2) form the half-Pascal triangle enclosed by solid lines below.

A
/ 1\

1\
1y

-~

3. SEQUENCE OF THE SECOND KIND

A rearrangement of (2) yields

uy = u
u = u? - 2v?
uz; = ud - 3uv?

(3) u, = ut - 4udv? o+ 2vt
u; = ub - 5ulv? + Suvt

ug = u® - 6utv® + guivt - 2vS

If the minus signs are temporarily neglected in (3), the diagram below illus-

trates one of the simple additive methods by which the coefficients can be

obtained,
1+ | _
\\ T 1+2 =3
1% _
.\\\ 2+ 0 =
1 3 0
4 N 445 =9
14 2 0
1 5°5 0
A\Y
1 6 9 2

If signs are neglected, it is interesting to note that the sum of the coefficients
for any given index is identically the Lucas number of that index, Additional

comments on this will be made later.
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4, INTERRELATIONS
In [1], the sums of the powers of roots of
(5) ftx) = ¥ - x - X -eee =1

were obtained from a previously developed tabulation of Newton's formulas for
pbwers of roots. The first few entries of that tabulation are givenbelow with-

out literal coefficients and without negative signs,

S = 1,
S; = 1+ 2,
S; = 1+3+3,
(6) Sy = 1+ 4+ (4+2) + 4,
Se = 1+5+(5+5) +(5+5) +5,
Se = 1+6+(6+9) + (6+12+ 2)(6 + 6 +3) + 6,
Sp = 1+ T+ (T+14) + (T +21+7) + (7T + 14+ T+T)+HT+T+T)+T,

Except for a missing final 1, the numbers as grouped in (6) are complete
sets of binomial coefficients; hence, by selecting the appropriate numbers from
(6), the coefficients for the first kind of sequence are readily obtained.,

The extraction of the coefficients for the sequence of the second kind is
more interesting. The same sets of numbers as those for the first kind of co-
efficients are considered. If in (6) a number is not parenthesized, itis oneof
the second kind coefficients as well as one of the first kind coefficients, How-
ever, it canbe observed thatwhereas a first kind coefficient is equal tothe sum
of numbers within parentheses, the corresponding second kind coefficient is
equal to the last number only of the numbers included within parentheses.

Without repeating the details covered in [1], it can be stated that the
second kind coefficients be used to obtain the powers of roots of (5) for the case
n = 2. Proper choice of sign leads to the ultimate identification,

In the previous paper [1], it was shown that the kth Lucas number can
be generated from the two-part partitions of k, The sum of the terms result-
ing from operations on the partitions is equal to the kth Lucas number, The

same operation onpartitions canbe used for finding the second kind coefficients,



328 REMARKS ON TWO RELATED SEQUENCES OF NUMBERS

However, here the individual terms, not the sum, are used. Proper choice
of sign must be made since the partition method generates only positive num-
bers. It may be added that this latter method is of advantage only if a rapid

and convenient means for obtaining partitions is available,
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RECURRING SEQUENCES

Review of Book by Dov Jarden
By Brother Alfred Brousseau

For some time the volume, Recurring Sequences, by DovJarden has been
unavailable, but now a printing has been made of a revised version. The new
book contains articles published by the author on Fibonacci numbers and re-

lated matters in Riveon Lematematika and other publications. A number of

these articles were originally in Hebrew and hence unavailable to the general
reading public. This volume now enables the reader to become acquainted with
this extensive material (some thirty articles) in convenient form.

In addition, there is a list of Fibonacci and Lucas numbers as well as
their known factorizations up to the 385th number in each case. Many new re-
sults in this section are the work of John Brillhart of the University of San
Francisco and the University of California.

There is likewise, a Fibonacci bibliography which has been extended to
include articles to the year 1962,

This valuable reference for Fibonacci fanciers is now available through
the Fibonacci Association for the price of $6.00. All requests for the volume
should be sent to Brother Alfred Brousseau, Managing Editor, St. Mary's
College, Calif., 94575, PN
The Fibonacci Association invites Educational Institutions to apply for Academic
Membership in the Association. The minimum subscription fee is $25 annually.
(Academic Members will receive two copies of each issue and will have their

names listed in the Journal. ) N
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1. INTRODUCTION

In this paper we discuss the problem of representing uniquely each mem-
ber of an arbitrary infinite interval of integers. The integers of the interval,
and no others, are to be expressed as sums of terms of a sequence (bn) of
integers. We also discuss the problem of representing uniquely each positive
integer, and no other integer, as the linear combination of terms of a sequence
(bn) of integers, where the coefficients in the linear combination are prescribed
and have the value +1 or -1. In each problem, roughly speaking, we choose
an integer k = 1 and require that any two terms of (bn) whose suffixes dif-
fer by less than k shall not both be used in the representation of any given
integer. The precise definitions and results are in the next section, where we
also show the way in which earlier work [1] by one of us (D. E.D.) is related
to our definition of an (h,k) base.

In a later paper we will discuss an analogous problem of representing
uniquely each real number in the interval (0,c], where c¢ is any positive
real number. Finally, we would like to thank Professor R. Rado for hishelp-

ful suggestions in the preparation of this paper,

2, STATEMENT OF RESULTS

Throughout this paper, h,k and m are integers such that
h+1=k=h=0, k=1 and m= 1.

Also, unless we state otherwise for a particular sequence, the subscript of the

first term of a finite or infinite sequence is the number 1, e.g.,

(an) = kaja Agy° ')

We denote by (vn) the (h,k)th Fibonacci sequence defined by
329
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v, = n for 1 =n =k,
(2.1)
n

:Vn—1+vn—k+(k_h) for n >k ,

An equivalent definition of this sequence was given (for h = 1) in [1] (p. 144).
We denote by (un) the (k,]k)th Fibonacci sequence and by (fn) the (Z.Z)th
Fibonacci sequence, which is clearly the original Fibonacei sequence (1,2, 3,
5,8,13,21,: ). Further, we write [a,b] for the interval of integers x, a
=x =b, with the obvious interpretation when a = -« or b = +w,

Suppose (an), (kn} is a pair of sequences of positive integers with the
following property P.

P. Each integer N € [1,] has a unique representation

N =a, +a, +... +a,
14 19 1oy

+1—iv zk for 1 =v <a,
It is shown in [1] (Theorem D) that if (an) is increasing and the pair
)s (kn) have the property P then ky =k, = ky+1, ky = k for v= 2,

where o = N) and iV

(a
anrél (an) is the (ky, kz)th Fibonacci sequence. This result leads us to make
the following definition,

Definition 1. A finite or infinite sequence (bn) of integers is an (h,k)
base for an interval [a,b] if each integer N & {0} U [a,b] has aunique

representation
(2.2) N="5»b +hb, +--- +h ,
where

a = oN), i,z i;+h if ¢ =1, and iv+1’>‘iv+k for 1=v=<a ,

and further, if N is an integer which can be expressed in the form (2.2) then
Ne{o}uU[ab].

Notice that the representation of 0 in the form (2.2) is the empty sum,
Theorem 1 is a statement in this notation of another result proved for
h = 1 in the earlier paper ([1], TheoremC). This result can easily be shown
to be true for h = 0 also,
Theorem 1. The first n terms (vy, V9, ---, Vn) of the (h,k)th Fib-
onacci sequence (vn) form an (h,k) base for [1’Vn+1 - 1], and (Vn) forms

an (h,k) base for [1, «].
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Our first new results, Theorems 2-6, are concerned with the existence
of (h,k) bases for the infinite interval [m,0] with m # 1, and for theinfin-
ite intervals [-m, ] and [-«, ], We conjecture that there is no (h,k) base
for [m,~]when m =3, but have onlybeenable to prove the following theorem,

Theorem 2, If m =1 and (bn) is an increasing sequence of integers,
b, #(2,3,4,°0+,2%%,.0.), then (b)) ismotan (h,k) basefor [m,»]. How-
ever, (bn) = (2,3,4,°°- ,Zn_i,---) is an (h,k) base for [m,w] if and only
if h=k =1, and m = 2, By the statement that (bn) is an increasing se-
quence, we mean that by = by = ---

It is easier to dealwith the intervals [-m,«] and [ -w,w0], providedthat
h = k, However, we have been unable to settle the question of the existence of
(h,k) bases for these intervals when h # k,

Theorem 3. If -m is a negative integer then there exists a (k,k) base
for [-m,o].

For the set of all integers, [-w,»], there are infinitely many (k,k)
bases, and in fact we can choose the sign which each term of a (k,k) base is
to have, subject to the condition that the signs change infinitely often,

Theorem 4, Let (sn) be a sequence such that

s, € {-1,1} for n =1, and
(2.3)
S_° S = -1 for infinitely many n = 1.

n n-i
Then there is a (k,k) base (bn) for [ -w] with Snbn> 0 for n= 1,
For k = 2, we give an explicit example of a (k,k) base for [-m,e] in

terms of the Fibonacci sequence (fn). We first represent m in the form

(2.4) m = f +f +eco +f
14 1y 1o
where
3 > 1 ~ < s
1V+1~1V+2 for 1=sv=<=a,

The existence and uniqueness of this representation is proved by Theorem 1.
Next we let (sn) be the sequence defined in terms of the suffixes iv of (2.4)

as follows
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= -1 for 1=v = «

(2.5)

n
Il

1 otherwise.

Then an explicit formula for a (2,2) base for [-m,»] is given in.the follow-
ing theorems.
Theorem 5. Let -m be a negative integer, let the sequence (sn) be de-

fined as in (2.5), and let

i
-

Snfn if sn' 81

] = = - =

(2.6) by sy and b](1 s f i s . s - 1 for n= 1.
n n-1 n  n-i

Then (bn) is a (2,2) base for [ My ] e

Similarly, we have an explicit formula for a (2,2) base for [ ], in
terms of the Fibonacci sequence (fn). We prescribe the sign of each term of
the base, subject to the condition that the signs change infinitely often.

Theorem 6. If the sequence (sn) satisfies (2.3) and the sequence (bn)
is determined in terms of (Sn) by the relations (2.6), then (bn) is a (2,2)
base for [-c0] with snbnz 0 for n= 1.

So far we havebeen concerned with unique representations of integers as
sums of terms of a base. It is interesting to consider the problem of uniquely
representing integers as linear combinations of terms of a sequence (bn) of
integers, where the coefficients in the linear combination are prescribed and
have the value +1 or -1. We first make the following definition.

Definition 2. Let a sequence S = (sn), where S, S {—1,1} for n= 1,
be given. A sequence {bn) of integers is an (h + 1,k;S) base for [0,o] if

each integer N € [0,0] has a unique representation

2.7 N =sbh +s b, + sib,
a1y a-1"1y %%
where
a = o), i, iy +h+1ifa >1,
and s >

= -+ =y <
i, i, k for 2 o
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and further, if N is an integer which can be expressed in the form (2.7) then
NE [0,0].

Theorem 1 shows that the (h,k)th Fibonacci sequence (Vn) is an (h,k)
base for [1,0]. It follows that (v,) is an (h,k) base for the set of all non-
negative integers, [0,o0], and we have been able to determine the conditions
under which (vn) is an (h + 1,k;S) base for this same set of integers.

Theorem 7. The (h,k)th Fibonacci sequence (Vn) is an (h + 1,k;S) base
for [0,0] if and only if S, = (-1) for n= 1.

n+1
In ourlast theorem we give an explicit formula for the terms of (vn), the
(h,k)th Fibonacci sequence. It is well known that the terms of the Fibonacci
sequence (fn) are sums of the elements in the diagonals of Pascal's triangle,
and Theorem 8 extends this result.

Theorem 8.

n . i
i 1

(2.8) v.o= 2 <n—h+(k-1)(2—i)) for n= 1.
“Eoh

Here, as usual, (g) denotes the binomial coefficient a!/(a - b)! (b!).

N

3. PROOF OF THEOREM 2

We assume that the sequence (bn) is increasing and is an.(h,k) base
for [m,~], and in each of the first three cases we deduce a contradiction of
definition1 of an (h,k) base by finding a number which has two representations
in the form (2.2).

Lemma 1. bn =n+m-1 for 1=n=m+h

Proof. As the sequence (bn) is increasing, it is strictly increasing, so

that by = m and
(3.1) bn2m+n—1forn21.

The smallest number of the form (2.2) with ¢ = 1 is by + b4y, and, by (3.1),
by + by+ph = 2m + h. Hence bn =m+n-1 forall n= 1 suchthat m+n-1
< 2m +h; i.e., n = m+h, This proves Lemma 1.

We consider now the various cases.
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Case [1]. m= 3. Then by Lemma 1,

1l

by + bptg = m + (m + h + 3 - 1) (m + 1)

+{(m+h+2-1) = by + bpty

Case[2]. m=2, k> 1. ByLemma 1, b =n+1for 1=n=h+2,
and so by + by+y = 4+h, by +bytyh = 5+h, and by + by = 6 +h. Clearly,
6 + h is t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>