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In a recent paper fs j the author proved that the binomial coefficient and 
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Moreover, the fact that the numbers R and A are orthogonal proved 
the elegant general result that for any two sequences f(n, k), g(n, k), then 

(5) f(n,k) = ^ g ( n , j ) R k ( j ) 

j=k 

if and only if 

n 
(6) g(n,k) = ^ f ( n , j ) A k ( j ) . 

j=k 

Notice that (5) and (6) do not imply (1) and (2); one at least of the special 
expansions must be proved before the inverse relation follows from (5)-(6). 

Finally, it was found that R and A satisfy the congruences 

R,(j) = 0 (modk) 
(7) K 

Afe(J) = 0 (modk) 

for all natural numbers j > k + 1 if and only if k is a prime. 
These congruences, together with the fact that R. (k) = A, (k) = 1 then 

showed that either of (1) and (2) implies that 

(8) (*\ s I"|1 (mod k) (k > 2) 

for all natural numbers n if and only if k is a prime. 
Naturally, similar congruences are implied for any f and g which sat-

isfy the pair (5)-(6). 
Now it is natural to look for an extension of these results to the more 

general situation where j . J is replaced by the q-binomial coefficient 

j=i 
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In the limiting case q = 1 these become ordinary binomial coefficients„ This 
is the motivation for the present paper., Ordinarily we omit the subscript q 
unless we wish to emphasize the base useds 

We follow the terminology in f2l and, since that paper is intimately con-
nected with the results below, the reader is referred there for detailed state-
ments and for further references to the literature,, Cf. also f l l . 

In the present paper we exhibit q-analogs of expansions (1) and (2) in 
terms of q-extensions of R and A* Moreover, the generating functions for 
R, (jj q) and A. (j, q) prove their orthogonal nature so that we obtain an elegant 
and direct generalization of the inverse pair (5)-(6) to the q-coefficient caseB 

By consideration of the expressions 

/ ^ R k ( j s q ) A (n,p) , y , Ak(j, q)R (n,p) , q f p , 
j=k j=k 

we are then able to obtain new expressions for q-Stirling numbers of first and 
second kind, with the ordinary Stirling numbers as limiting cases* 

Our emphasis is on the various series expansions involving R and A and 
a detailed study of arithmetic properties will be left for a separate paper* 

The principal results developed here are embodied in Theorems 1-16. 
Special attention is called t o l , 2, and 6, A few arithmetic results also appeare 

We begin by generalizing (2). Put 

i=0 

n 
n Ak(j,q), k > l 

Now, inverse relations (7.3)-(7.4) in [2] may be stated in the form 

XX 

(10) - F(n) = J ] (-l)n-i[j»] q ^ ^ ^ -I)/2f(J) 

if and only if 
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n 
(ID f(n) = J ] F*l F(j) . 

Thus 

Ak(^> = E (-Dn"j[^]q(n"3)(n-3"l) /2[i]. 

In this sum the bracketed term is zero for 0 < j < k so that the index j need 
range only from k to n, and it is then also clear that A, (n, q) = 0 for n < 
k. Moreover A, (k, q) = 1 for all k > 1 and any q„ Evidently we have 
proved 

Theorem 1. The q-binomial coefficient expansion of the bracket func-
tion is 

*» [i]-s[?]A
k^-[a+E[j]AkM. 

i=k j=k+i 

where 

(13) Ak(3,q) = 2 : ( » l ) j - d [ i ] q ( j " d ) ( j - d " l ) / 2 [ l ] 
d=k 

3 

i 
d=k 

= q3(3-i) / 2^ (_1}Hi[Tj pd(d-D/2 [d] 

with pq = 1. Cf. also Theorem 15. 
The indicated second form of (13) follows from the reciprocal transform-

ation ["21 

n 

k L Jp 
k(k-n) 

q n 
k 

for pq = 1 
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The sum may be written also as in the second form of (4) above. See Theorem 
15. 

The ease of finding (12) suggests that it should not be difficult to invert 
the formula. To do this9 i.-e., to derive a q-analog of (1), we shall proceed 
exactly as in the proof of Theorem 7 in [ s ] . We need a q-analog of the 
relation 

Zw Ik- l ) ( k) 
d=k ' 

which was exploited in [3] in the proof of Theorem 7 as well as in the study of 
the combinatorial meaning of R, (j). 

The q-binomial coefficient satisfies [2] the recurrence relations 

m n 1 r n l ^ n-k+i [ n 1 

and the second of these gives 

d-k Z-1H2HV]-
so that by summing both sides we have the desired q-analog 

(14) 2>"[Z:i] - [l] 
d-k 

We also recall the formula of Meissel [3] 

(15) 
m<x 

where fx is the familiar Moebius function in number theory. 
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We a r e now in a posi t ion to p rove 

T h e o r e m 2. The b racke t function expansion of the q-binomial coefficient 

i s given by 

(16) [J] -srfK«">-[i]+z[fiv"»' 
L J • j = k L J L J j=k+i L J 

where 

(17) Rk(j»q) E d-kfd- 1 

dlj 
d>k 

MO/d) 

Proof. As in [ 3 , p . 248] we have 

E ["nlY^ d-k f d - l l 
m z ^ q Ik-iJ 

j < n dlj 

U(j/d) 

Z«"K:i] E [^H 
d<n m < n / d 

E*"[2:i] - [;]• 
d<n 

by (15), then (14). 
This completes the proof s ince it i s evident that R, (j,q) = 0 for j < k 

and R, (k, q) = 1 for a l l k > 1 and any q. 

We next obtain a Lamber t s e r i e s expansion having R, (j,q) as coefficient. 

We need a q-analog of the formula 

(18) 
oo 

Z ® * 
n=k 

x (1 - x) k > 0 , 
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which was used in [3, p0 246]* 
By using (14), it easily follows that 

oo oo n 

n=k n=k j = k 

= q ^ ^ d - x r ^ f e - l,qx) , 

with S(0,qx) = (1 - qx)"1 , 

so that iteration yields the desired formula 

oo k 

(19) J] [kl xI1 = ^ n (1 " qix)"1 ' k - ° • 
n=k j=o 

We also recall [ 3 , (3)] 

CO 

(190 EljP = xk(l - x)-i(l - xV 1 , k > l , 
n=k 

We may now state 
Theorem 3. The number-theoretic function R, (j,q) is the coefficient 

in the Lambert series 

k 

(20) 
CO i CO 

I \ w f i ^ k n tt-,ix)-.^[»;J]<,»-^. 
j=k 1~X j=i n=k 

Indeed, the same steps used in [3 , p„ 246] apply here, One substitutes 
in (19) by means of (16), rearranges the series, and then uses (19T)„ Since we 
are only concerned with the coefficients informal gene rating functions no prob-
lem about convergence arises at this point, Later, in Theorem 16, we expand 
(20) as a power series in a variant form. The right-hand summation in (20) 
follows easily from (19), 
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The expansion inverse to (20) is just as easily found, and we state 
Theorem 4. The number-theoretic function A, (j,q) is the coefficient 

in the expansion 

(21) ]CAk(j'q)xJ ° {1"^x) k 

. . , . . 1 - x 
-pk 1=1 

Indeed, the proof parallels that in.[3, 252] in that one starts with (19*), sub-
stitutes by means of (12), rearranges, and applies (19). 

Now it is evident that the q-binomial coefficient , is a polynomial of 
degree k(n - k) in q, Thus it is evident from (4) and (17) that A, (j,q) and 
Rk-Cbq) a r e each polynomials in q. In terms of the formal algebra ofgenerat-
ingfunctions we may then equate corresponding coefficients in series to derive 
identities. Substitution of (20) into (21), and conversely, yields the following 
orthogonality relations which we state as 

Theorem 5. The numbers A, (j,q) and R, (j,q) are orthogonal in the 
sense that 

(22) 

and 

"V Rk(j,q)A (n, q) = 8^ , 
j=k 

(23) ^ A k ( j , q ) R . ( n , q ) =f i£ 
j=k 

Thus we have evidently also proved the quite general inversion 
Theorem 6. For two sequences F(n, k, q), G(n, k, q), then 

(24) F (n, k, q) = ^ G(n, j , q)Rk(j, q) 
]=k 
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if and only if 

n 
(25) G(n5ksq) = ^ F(n5 j , q)Ak(J,q) . 

j=k 

Again we note that Theorem 6 does not immediately imply Theorem 1 or 
Theorem 25 as one at least of these must be proved before Theorem 6 yields 
the other* The expansion and inversion theories are quite separate ideas* 

It was seen in [3, pa 24 7J that the number of compositions of n into k 
positive summandSj C. (n), is related to R, (j) by the formula 

(26) Ck(n) = ( k : i ) = 2 > k ( d ) 

din ( - ) 

which was then inverted by the Moebius inversion theorem to get that part of 
(3) above involving the Moebius function. Since that paper started from the 
number-theoretic interpretation of R, (j) and only later used the formula of 
Meisselto obtain the expansion without starting from the theory of compositions, 
it is of interest in the present paper to proceed in reverse, The Moebius inver-
sion theorem applied to (17) above gives us at once 

Theorem 7, The function R,(j,q) satisfies the q-analog of (26). 

(27) ^[1-4 =!>•<» 
din 

We now turn to the connections between R, (j,q) and A, (jsq) and the 
Stirling numberse A formula due to Carlitz was stated in [ l ] in the form 

(28) 
s=k 

[k] - ^ ( ; ) < q - l ) B " k S 2 f c B - k . q ) , 
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where S2(n, k, q) is a q-Stirling number of the second kind and, explicitly, 

S2(n,k,q) = < q - i r ^ -(29) 
3=0 

It is evident from the expansions which we have examined here that we 
may obtain formula (28) in quite a different manner,, 

Indeed, substitution of (2) into (16) above gives us at once 

n s 

(30) [I] =£(;)2X<l.q>AJ(s) . 
s=k j=k 

and this must agree with (28), so that we are left to assert 
Theorem 8. The q-Stirling number of the second kind as defined by 

(29) may be expressed as 

(31) (q - l)S"kS2(k, s - k, q) = ^ ^ ( j , q)A. (s) . 

j=k 

This is an interesting result, because when q = 1 the left-hand member 
is zero (k fi s), and the right-hand member is zero because of the fact of 
orthogonality of R. (j) and A.(s). As a corollary to this theorem we have 

K 3 
Theorem 9. The ordinary Stirling numbers of the second kind (in the 

author's notation [ l ] ) are given by 

(32) S2(k,n-k) = q^tq-l^J^I^O.^Afa) , 
3=k 

where R, (j,q) is given by (17) and A.(n) = A.(n, 1) is given by (4). 
It is natural to request a companion formula for the Stirling numbers of 

the first kind. To attempt this we next need a formula inverse to (28), as the 
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formula inverse to (30) is apparent* We proceed by making use of the q-inversion 
theorem expressed in relations (10)-(11) above, 

Put 

n 

(33) (*\ = J ] ( s ) f ( s ' k ^ ) • 
s=o 

then by (10)-(11) this inverts to yield 

(34) f(n, k, q) = £ (- l)1^ [*] q<*H)(n-M)/2 ^ 

It was found in [ l 5 (3*19)] that the q-Stirling numbers of the first kind 
as there defined could be expressed in the form 

(35) Sl(n, k, q) = (q - i r k ] T (-Dk"j ( I Z j ) [ »] qj( j+ l ) /2 . 

which may be rewritten as follows: 

Sl(n, n - k, q) = (q - ! ) * * £ ( - 1 ) ^ ( n ^ 1 ,) [ j ] J ^ 

n 
(q-D^SC-D^-^-J^]^ 

(q - l ) k - n J ] (-l)k-J (3\|-nJq(n-j)(n-j+1)/2) 

j=0 \ ' 

so that we may write 
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II 

(36) Sifo.n-k.q) = (1 - q ) ^ ! ^ [ *] (A q^M-DA^j o 

This looks somewhat like f(n, k, q) as given by (34), but with an important dif-
ference: the factor qn~"**. It seems rather difficult to modify the work so as to 
remove this factor and express f (n, k, q) easily in terms of Si(n, k, q). We 
could call f (n, k, q) a modified Stirling number of the first kind. We illustrate 
further the difficulty involved, Instead of (33) let us put 

(37) ""(") -EGW* 
' S=0 

This inverts by (10)-(11) to give 

g(n,k,q) =J](-l)n~J (n-j)(n-j-i)/2 

i=o 
( 0 «•* • 

and comparison of this with (36) yields at once 

(38) g(n,k,q) = q~n (1 - q)n kSi(n,n - k, q) 

This, however, leads to difficulty when we examine the analog of (30). Indeed, 
substitution of (12) into (1) gives us at once 

(39) (^EWEv1. Us,q) 

s.=k j=k 

However, expansion (37) gives us 

(40) 
n 

(k) =2[s]«ne<8'k'<3>. , 
S=0 
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and we may not equate coefficients since (39) requires the coefficient of the q-
binomial coefficient to be independent of n, but in (40) it is not, 

Of course, by (33) and (39) we do have 

(4i) Ew^ = E("i ) S"j[j]( i )q 
j=k j=k 

(s-j)(S-j-l) /2 

which is the best companion to (31) noted at this time* 
Another approach would be to develop a q-bracket function (q-greatest 

integer function) and proceed in a manner similar to the above by expanding the 
binomial coefficient I . J in terms of a q-bracket function and using this in 
relation (2) just as we here used relation (2) in (16) to get (30) and then (31)* 
The development of the q-analog of the greatest integer function will be left 
for a separate account 

It seems notwithout interest to exhibit a numerical example of (32)., From 
definition, S2(2, 3) = 1 • 1 •• 1 + 1 . 1 . 2 *+ l • 2 • 2 + 2 \ 2 • 2 = 15, being 
the sum of the 4 possible products, each with 3 factors (repetition allowed)s 

which may be formed from the first 2 natural numbers. The table of values of 
A.(n) in [3 , p0 254] and the formula (17) may be used, We find that 

S2(2,3) = S 2 (2 ,5-2) = lim^ (q - 1 ) - 8 ] £ R 2 ( J , q)A (5) 
3=2 

= lim (q - 1)"3(-8 + 6q(q+l) -4<-1+q2 + q3 + q4)+(q3 + q4 + q5'+ q6)) 

= lim1 (q - l )"3 (-4 + 6q + 2q2 - 3q3 - 3q4 - q5 + q6) = 15, 

the limit being easily found by 1?Hospital's theorem, 
We should remark for the convenience of the reader that the Stirling num-

bers appear in various forms of notation and the notations of Riordan [5JS 

Jordan [4] , and the author [ l ] are related as follows: 

(42) s(n,k) = s£ = ( - l ) n " k S i ( n - l , n - k ) , 
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and 

(43) S(n,k) = (s£ = S2(k,n - k) = A A ^ n . 

The Si and S2 notations are convenient because of the generating functions 

n n n oo 
(44) n (1+kx) = £ Sidi,k)xk

f n ( 1 - k x ) " 1 = £ s 2 ( n , k ) x k . 
k=o k=0 k=o k=o 

Also, in £l j will be found a discussion of the interesting continuation formulas 

(45) S2(-n- l ,k , l /q) = qkS1(n,k,q)f S ^ n - l , k, 1/q) - qkS2(n,k,q) . 

A q-polynomial was suggested in [ l ] which would include both Si and S2 as 
instances. The q-Stirling numbers as defined hi f l"J satisfy the generating 
relations 

(46) n (l + [k]x) = £ Si(n,k,q)xk, n (1 - tKJx)"1 = £ S2(n,k,q)xk, 
k=o k=o k=o k=o 

in analogy to (44). Here [kj is called a q-number and is defined by 

so that 

qlj^! [k] = k • 

The notation [k] must not be confused with that for the bracket function. 
Relations (31) and (41) suggest that we consider the following. By using 

Theorem 3 with base qs and substituting with Theorem 4 and base p, we 
find the identity 
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k oo n n 

(47) X
k n a - q

jxH = J2 *n n a - p V 1 ^ Rk(j,q)A.(n,P) . 
j=i n=k i=i j=k 

It will be recalled from [3 ] that for p = q the inner sum is merely a 
Kronecker delta. In view of Theorem 85 we may look on the sum 

(48) X R k ( J 5 q ) A j ( n ' P ) = f ( n ' k s P ' q ) 

j=k 

as a kind of generalized Stirling numberB 

Some of the results already found extend to real numbers instead of 
natural numbers only. The product definition (9) holds for n = x = real num-
ber. We may also extend the range of validity of (16) just as was done in the 
proof of Theorem 7 in [3 ] . Indeed we have 

Theorem 10. For two sequences F(x,k, q), G(x, k,q), then for real x 
and all natural numbers k 

(49) Ffc,k,'q) = J^ G(x5j9q)Rk(j,q) 
k<j<x 

if and only if 

(50) G(x,k5q) = ] T G(x,j,q)Ak(j,q) , 
k<j<x 

I where R and A are defined by (17) and (13). 
The proof uses nothing more than Theorem 5. 
The real-number extension of Theorem 1 most readily found is as follows. 
Theorem 11. For real x and natural numbers k 

k4j4x 
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The proof parallels that of Theorem 7 in [s]9 Note that the 'expansion' 

(52) 

k4j^x q 

is inc or recto What is really expanded in (51) is 

lr ' h ° w e v e r i n ^a c^ \T~ = Mk ' 

so that what one might first try from (50) does not hold, 

Similarly, a correct generalization of Theorem 2, by inversion of (51), 

is 

Theorem 12. For real x and natural numbers k 

(53) KG • £ [ f ] v - « 
k4j4x 

The failure of (52) suggests two new procedures. First, we may define 

a kind of q-greatest integer function (not the only possible definition) by 

(54) k ' q 

k4j4x L J q 

and secondly, we may introduce new coefficients such that 

(55) E[? 
k4j4x 

Bk(j»q) , 

but these are not easily determined. We shall leave a detailed discussion of 

such extensions for another paper. 
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Although we omit a detailed study of the arithmetical properties of the 

functions R,(j9q) and A, (j?q)9 we remark that such a study makes use of 
arithmetical properties of the q-binomial coefficients. Fray [6 ] has recently 
announced some results in that direction* In particular he announces the fol-
lowing theorem* Let q be rational and q ^ 0 (modp), and let e = exponent 
to which q belongs (mod p)e Let n = a0 + ea, 0 < a0 < e, and k = b0 + eb, 
0 < b0 < e„ Then 

(56) 
a 0 l / a\ 
bojvb/ (mod p) 

We do explore certain arithmetical properties which are of a different 
nature. First of all, (17) gives 

qRi(n,q) = ^ T q jn(n/d) 
din 

and by a theorem of Gegenbauer [ 3 , p6 256] this sum is always divisible by n 
for any natural number qe Thus we have the congruence 

(57) qRi(nsq) = 0 (mod n.) 

for all integers n9 q* This is trivial for Ri(n, 1) = Ri(n) = 0 for n > 2. 
On the other hand9 let n = p be a prime. Then we have for integers q 

(58) Ri(p,q) = q13"4 - 1 = 0 (modp), for (p, q) = 1 , 

this following from the Fermat congruence* Again this is trivial when q = 1. 
It is possible to obtain various identical congruences for the functions 

studied in this paper* If f(q) and g(q) are two polynomials in q with integer 
coefficients, we recall that f(q) = g(q) (mod m) is an identical congruence 
(mod m) provided that respective coefficients of powers of q are congruent, 
We shall call such congruences identical q-congruences* Thus we have 
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Theorem 13. The functions defined by (13) and (34) satisfy the identical 
q-congruence 

Ak(n,q) = f(n,k, q) (mod k) (k > 2, n = 1, 2, 3,- • •) 

if and only if k is prime, 
Proof. Apply (8) to (13) and (34). 
Another way of seeing this is to note that (33) and (39) imply 

n n 
f(n,k5q) = J2 Rk(])Aj(n»q) = Ak(n, q) + ] T Rk(j)A.(n,q) , 

j=k j=k+i 

and recall (7), whence the result follows. 
In similar fashion one can obtain various congruences involving the q-

Stirling numbers. 
As a final remark about identical congruences we wish to note the follow-

ing q-criterion for a prime. 
Theorem 14. The identical q-congruence (for k ^ 2) 

(59) (1 - q) k _ 1 = [k ] (modk) 

is true if and only if k is a prime. Here, the q-number 

[ k ] q = <qk - l)/(q - 1) . 

Proof. We shall use the easily established q-analog identity: 

(60) (q-D^E^^DV 
j = 1 

From this we have 
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Now it i s eas i ly seen that 

419 

k 01 if k = p r i m e and 1 < j < k - 1 

Hence it is t r iv ia l that (59) holds when k = p r i m e , 

A s s u m e then that (59) holds for a composi te k. Then we have (61) so 

that 

(?) , 1 < j < k - 1 . 

j = p5 whence k 

Let p be a primea d iv i sor of k. Then for some va lue o f j , 1 < j < k - 1, 
1 1 . Consider ing this in the form 
I P / 6 

k(k - 1) • • • (k - p + 1) 
p(p - 1 ) : 

we have (k, j) = 1, whence k i s re la t ive ly p r i m e to every factor k . - j in the 

n u m e r a t o r and. we have p(p - 1)1 I (k - l)(k - 2)»e • (k - p + 1). This impl ies 

that p | (k - j) for some j with 1 L j 4 k - 19 o r s ince plk (by hypothesis)9 

t he re fo re pi j which is imposs ib le . Thus the only poss ib i l i ty i s that k i s 

p r i m e itself. 

If we wr i t e out the congruence a s 

(1 - q ) k _ 1 = A -»-SL (mod k) , 

and mult iply through by 1 - q we have the equivalent identical congruence 

(62) (1 - q ) k = 1 - q k (mod k) 

if and only if k = p r i m e (k > 2). 

It was noted in [ 3 ] that E. M8 Wright f s proof of (8) was to show that (8) 

i s equivalent to the identical q-congruence (62). We note a typographical m i s -

take in [3, p . 24lj in that the identical congruence t h e r e should r ead 
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(63) (1 - x)P = 1 - xP (mod p) 

if and only if p is prime. 
The proof above for (59) is equivalent to Wright's proof of (62), however 

it is felt to be of interest to present it byway of the q-identity (61). Of course, 
the generating functions (1) and (2) show that (8) and (63) are equivalent. 

Since \jf\ was concerned with compositions and partitions, it is of interest 
to recall a theorem of Cayley to the effect that the number of partitions of n 
into j or fewer parts, each summand 4i , is the coefficient of q in the series 
expansion of the q-binomial coefficient 

m 
3 , k+i 

When | q. | ̂  1 and i-^oo, j —>oo, this reduces to EulerTs formula for the par-
tition of n into any number of parts at alL 

oo 
O (1 - q V 1 = l + £ P(n) qn . 

k=i n=i 

It is expected that the q-identities derived here have further implications for 
partitions and compositions. 

As another result we show that A, (n, q) may be written in such a way 
that the greatest integer function does not explicitly appear. This is analogous 
to relation (41) in C3J. We have 

Theorem 15. For the numbers defined by (13) we have 

(64) Ak(n,q) = £ < - l ) n - m k [ ^ _ \ ] ^-rnkMn-mk+OA 

14m4n/k 

Proof. Recall that 
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n 

L3 
= "n - l " 

3 
+ n -

_ J -
l ] 
1 J 

. n~3 

Then by (13) and this we have 

n - i 
A

k
(n'q) = E < - i > n " j n - 1 

3 
(n-j)(n-j-l)/2 

n - 1 
j - 1 

q n - j (ti-j)(n-j-i)/2 

£ (-l)n"j+1 n - 1 
j - l 

(n-j)(n-j+i)/2 . 1 - 1 
k 

3=1 

n - 1 
3 - 1 

(n-j)(n-j+l)/2 

3=i 

n - 1 
j - l 

(n-j)(n-j+i)/2 3 - 1 
k 

= y (_Dn-J | » - i 
k<3<n 

k l j 

[" 
(n-j)(a-j+i)/2 

which may then be wr i t ten as we indicates let t ing j = mk in the summation. 

An a l te rna t ive form of the power s e r i e s expansion for (20) i s eas i ly found. 

Indeed, the product on the r ight s ide of (20) may be wr i t ten as follows: 

k - i oo 

n a - q )̂-1 = n a - qV)-1 = n 
j+k 

3 = 1 j=o 3=o 
1 - xqq* 

However, Car l i tz [j7, pe 525J has noted the expansion (due to Cauchy [8J) 
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n ———r - L, —n\— t 

. n 1 - btqJ
 ft

 i q ; n 
j=o ^ n=o 

w h e r e 

n - i 

(b - a ) n = n (b - q j a ) 

3=o 

and 

n 

(q)n = n (1 ~ q 3 ) . 
3=1 

Setting a = q , b = 1, t = qx, we can obtain the des i r ed expansion. We 

s ta te the r e su l t a s 

T h e o r e m 16. The Lamber t s e r i e s for R, (j,q) m a y b e wr i t ten as apower 

s e r i e s in the form 

00 i °° (1 - Qk) 

(65) £„„«.,>-t-j-E-^-v,-* 
TT 1 - xJ

 A
 v^ n 

j=k n=o 
F u r t h e r r e s u l t s re la t ing to composi t ions and par t i t ions will be left for a 

future paper . 

REFERENCES 

1. H. W. Gould, "The q-St i r l ing Numbers of F i r s t and Second Kinds ," Duke 

Math. J B , 28 (1961), 281-289. 
x n 

2. H. W. Gould, "The Opera tor (a A) and Stir l ing Numbers of the F i r s t 
Kind , " Amer . Math, Monthly, 71 (1964), 850-858. 



1967] AND SOME NEW STIRLING NUMBER FORMULAS 423 

38 H9 W. Gould, "Binomial Coefficients, the Bracket Function, and Composi-
tions with Relatively Prime Summands,n Fibon^a^ 2(1964), 241-
260, 

40 Charles Jordan, Calculus of Finite Differences, Budapest, 1939; Chelsea 
Reprint, Ne Y., 1950, 

5, John Riordan, An Introduction to Combinatorial Analysis, New York, 19588 

6„ R. D. Fray, "Arithmetic Properties of the q-binomial Coefficient," 
Notices of Amer, Math, Soc*, 12 (1965), 565-566, Abstract No„ 625-70* 

78 L, Carlitz, "Some Polynomials Related to Theta Functions," Duke Math J . , 
24 (1957), 521-528. 

80 A, L0 Cauchy, "Memoire sur les Fonctions Dont Plusiers Valeurs, etc», " 
Comp, Rend. Acad, Sci. Par is , 17(1843), 526-534 (Oeuvres, Ser„ 1, VoL 
8, pp0 42-50)o 

• • • • • 

NOTICE TO ALL SUBSCRIBERS!!! 

Please notify the Managing Editor AT ONCE of any address change. The Post 
Office Department, rather than forwarding magazines mailed third class, sends 
them directly to the dead-letter office,, Unless the addressee specifically r e -
quests the Fibonacci Quarterly to be forwarded at first class rates to the new 
address, he will not receive it, (This will usually cost about 30 cents for first-
class postage ) If possible, please notify us AT LEAST THREE WEEKS PRIOR 
to publication dates: February 15, April 15, October 15, and December 15. 

The Fibonacci Bibliographical Research Center desires that any reader 
finding a Fibonacci reference send a card giving the reference and a brief 
description of the contents. Please forward all such information to: 
Fibonacci Bibliographical Research Center, 
Mathematics Department, 
San Jose State College, 
San Jose, California 



SPECIAL PROPERTIES OF THE SEQUENCE Wn(a,b;pyq) 
A . F . HORADAM 

University of New England, Armidale, N . S . W . , Australia 

1. INTRODUCTION 

Elsewhere in this journal [ l ] the sequence Jw (a,b;p, q)| has been 
introduced and its basic properties exhibited. Here we investigate three spe-
cial properties of the sequence, namely, the "Pythagorean" property (2), the 
geo metrical -paradox property (3), and the complex case (4), These are gen-
eralizations of results earlier published for the sequence {h (r, s) | = iw (r, 
r + s;l , -1)} which maybe consulted in [Y], [4 ] s [5] respectively. 

But observe that with reference to j h (r, s) J the notation in this paper 
varies slightly from that used in [2] , [ 3 ] , [4] and [5], Our properties in 
this paper form the second of the proposed series of articles envisaged in [ l ] . 
Notation and content of [ l ] are assumed, when required. 

Some interesting special cases of j w (a,b;p, q)} occur which we record 
for later reference (2): 

(1.1) integers a = l , b = 2, p=2, q = 1 
(1.2) odd numbers 
(1.3) arithmetic progression (common difference) 
(1.4) geometric progression (common ratio q) 
(1.5) FermatTs sequence u (3f 2) 
(1.6) Fermat 's sequence v (3,2) 
(1.7) Pel l 's sequence u (2,-1) 
(1.8) PelPs sequence v (2,-1) 

Sequence (1.1) has already been noted in [ l ] , while sequences (1.5) — (1.8) 
were mentioned in [j>]. However, sequences (1.2) — (1.4) have not been p r e -
viously recorded in this series of papers. 

2. THE "PYTHAGOREAN" PROPERTY 

Any w at all may be substituted in the known formula for Pythagorean 
triples s (u2 - v2)2 + (2uv)2 = (u2+v2)2. Writing u = w . , v = w + , we obtain 

1 

a 
a 
1 
2 

1 
2 

3 

a + d 

q 
3 
3 

2 
2 

2 

2 

q + 1 
3 

3 
2 

2 

1 

1 

q 
2 

2 

- 1 

-1 

4 2 4 
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(2.1) (w2 - w2 )2 + (2w ^ w ^ )2 = (w2 + w2 , )2 . 
x ; v n+2 n+r x n+2 n+r v n+2 n+r 

Next, using the recurrence relation w = pw - qw [ i j , we may 
express (2.1) in a variety of ways, some of them quite complicated Generally, 
we have 

(2.2) (pwn+1 - qwn)2 - w ^ J 2 + [2wn+1(pwn+1 - qw n ) j 2 

= [ftmn+1 -qwn)2
 + w ^ J ^ 

Assigned values of n, p, q (and a,b) may be inserted in this formula 
to yield various Pythagorean triples. For example, n = 0 with a = 1 (=w0)f. 
b = 2 (=Wi), p = 5, q = -1 (a fairly random choice) produces the Pythagorean 
set 117, 4 4, 125. 

More particularly, for the special sequences described in paragraph 1, 
we deduce, with n = 0 for simplicity, the following Pythagorean triples; 

(1.1) 
(1.2) 

(1.3) 
(1.4) 

(1.5) 

(1.6) 

(1.7) 
(1.8) 

5 

16 

2ad + 3d2 

a2q2(q2 -
40 

16 

21 

32 

- 1) 

2a2 

12 

30 
+ 6ad + 

2a2q3 

4 2 

30 

20 
24 

4d2 2a2 

a 

13 

34 
+ 6ad + 5d2 

2q2(q2 + 1) 

58 

34 

29 

40 

Triples for (1.2) and (1.6) just happen to coincide with n = 0 since w1 - 3, 
w2 = 5 for both sequences. No other values of n reproduce this coincidence 
for these two sequences. 

Our concern here is not so much with the general Pythagorean formula 
(2.2) as with the cases arising when p = 1, q = -1 since these restrictions 
lead to {h (r, s ) | , jf I and la [, In this respect, observe that, in (2.1), 
wn+2 " wn+i = ( wxrt + w n V ( w n 4 , " wn+i>• 

Substitution of p = 1, q = -1 in (2.2) yields 

(2.2)! (w w ^o )2 + (2w , w .4 )2 = (w2 + w2 )2 
' v n n+3 ; x n+2 n+i ; v n+2 n+i ' 
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with a similar result for the case p = - 1 , q = - 1 . No other values of p, q 
produce the term (w w )2. 

Thus we have the sequences whose n terms are 

(2.3) w (a ,b ; l , - l ) = af + bf < = h ( a , b - a) x n ? n-2 n-i n 

and 

(2.4) w n (a f b ; - l , - l ) = (-l)n(afn__2 - b f ^ ) = g ^ a . b - a ) (say) 

where the g- and h-notation are introduced for convenience. 
Putting a = r, b = r + s in (2.2)T, we derive the Pythagorean general-

ization for jh (r, s)} determined in [2] and [3] , namely, 

(2.5) (h h )2 + (2h A, h _, )2 = (2h ^ h _, + h2 )2 
y n n+3 n+i n+2 v n+1 n+2 n 

in which the right-hand side is merely an alternative expression for the sum 
of the squares in the right-hand side of (2.2)1. 

Examples of (2.2)f are, with (say) n = 0, a = 5, b = 2, from (2.3), 
452 + 282 = 552, and, from (2.4), 52 + 122 = 132. Illustrations of the Pytha-
gorean formula (2.5) have been given in [s]„ More especially, for the Fib-
onacci and Lucas sequences |f }, | a } the Pythagorean triples are, for 
n = 0, 3, 4, 5 and 8S 6, 10, respectively, while for n = 1 (say) they are 
5, 12, 13 and 7, 24, 25, respectively3 

As the properties of | h (r, s)} have been developed in [2] , it is thought 
worthwhile to examine some similar properties of the companion g-sequence 
relating to Pythagorean number triples. To this purpose we now direct our 
attention. 

Just as it was shown, in [3] , with reference to (2.3), that all Pythagorean 
number triples are Fibonacci number triples, so may we likewise demonstrate 
the same for (2,4). Instead of putting 

(2.6) a = x - y, b = y 

in (2.3), we substitute 
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(2.7) a = x + y, b = y 

in (2.4). In some of the concre te c a s e s of (2.3) and (2.4), some p a r t of the 

number t r i p l e s will be negative; for ins tance , in the second c a s e quoted above, 
the actual t r ip le i s - 5 , - 12 , 13. 

Many different, but re la ted , sequences give the s a m e t r ip l e , but for 

different values of n. F i r s t , take the c a s e p = 1, q = - 1 . Wri te x = w , 
^ H n+2 y = w as i n . [ 3 ] . Then by (2.3) 

(2.8) 
x = af + bf ^ n n+l 

y = af + bf J n - i n 

Solve (2.6). Hence 

( a = (-l)n(xf - yf Mi) 

l b = ( - l ) n * (xf , - yf ) , \ x x n - i J n 

w h e r e we have used the fundamental Fibonacci formula f2J 

f f f2 = ( _ l ) n + 1 . 
n+i n - l n 

Giving n all poss ib le in tegra l va lues , we obtain an infinite sequence of 

sequences of which a se lected few a r e 

h (y,x - y), h (x - y, - x + 2y) 
(2.10) ; n n 

h (-x + 2y, 2x - 3y)5 h (2x - 3y, -3x + 5y) , 

cor responding to n = - 1 , 0, 1, 2, respec t ive ly . 

The second of the sequences (2.10) a l ready occu r s in (2.6). A given 

Pythagorean t r i p l e may be der ived from any of these sequences if the c o r r e c t 

value of n i s a ssoc ia ted with it (since we a r e opera t ing on the s a m e 4 number s 

x - y, y, xf x + y in each sequence) . Examples a r e (i)s if x = 39 y = z*. 

the t r i p l e 5, 12, 13 i s obtained from the sequences h (2,1), . h (1,1), Ja (1,0) and 

h (091) when n = - 1 , 0, 1, 2 respect ively* (ii) if x = 4, y = 3, <the t r ip l e 
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7, 24, 25 is obtained from the sequences h (3,1), h (1, 2), h (2,-1), h 
(-1,3) when n = - 1 , 0, 1, 2 respectively. 

Correspondingly, in the case p = - 1 , q = - 1 , write x = w . , y = 
-w so that by (2.4) 

( x = ( - D n ( a f n - b f ) 
(2.11) n 

y = (-1) (-af + bf ) 

whence, solving with the aid of the fundamental Fibonacci formula quoted above, 
we have 

(2.12) 
a = xf + yf , 

n J n+i 
b = xf « + yf n+i J n 

leading to an infinite sequence of sequences of which a selected few are, for 
n = - 1 , 0, 1, 2, 

(2.13) 
gn(y» x - y), gn(x + y, ~x) , 

gn(x + 2y, -y), gn(2x + 3y, -x -y) 

respectively. With x = 3, y = 2, for instance, the triple -5 , -12, 13 
ar ises from gn(2, l ) , gn(5,-3), gn(7,-2), gn(12,-5) when n = -1 ,0 ,1 ,2 
respectively. Observe that the second sequence in (2.13) already occurs in 
(2.7). Had we written x = -w ,n, y = w , above, then of course we would 
\ / • n + 2 9 J n + 1 9 

have obtained the negatives of the values of a,b given in (2.12). 
Remarks similar to the other remarks for h (a,b,-a) in Tsl may be 

paralleled for g (a,b-a). 

3. THE GEOMETRICAL PARADOX 

A well-known geometrical problem requires a given square to be sub-
divided in a specified manner and re-arranged so as to form a rectangle of 
certain dimensions. In the process of re-arrangement, it appears as though 
a small area of one square unit has been gained or lost. This illusion is due 
to inaccurate re-assembling of the sub-divided parts. Precise re-arrangement 
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reveals the existence of a very small parallelogram of unit area included in 
the rectangle. Mathematically, the secret of the paradox lies with the Fib-
onacci formula quoted in Section 2. 

Previously in fV] I generalized this paradox to the sequence jh (r, s)L 
Our basic generalized formula now is 1 , with n replaced by n + 1, w 
w +« ~ w2

+ ~ eQ • As in j~4j, the construction guarantees two cases, n 
even and n odd, See Figs. 1, 2, 3. Clearly, the spirit of the standard 
construction is preserved only if q <c 0, Write qt = -q (qj > 0). From the 
figures* we see that the exigencies of the constructions impose the restriction 
p = qt - 1, so that the defining recurrence relation [ i j is now w _. = w 
+ w , the fundamental formula f l l is w w .n - w2 , = (-1) e, and the area n L J n n+2 n+i v ' 
of the parallelogram [_4j is e. Consequently, the only sequences for which the 
standard construction is applicable are w (a, b ; l , -1) = h (a, b - a) by (2.3), 

Briefly repeating the basic results proved in [VJ, we have, after calcu-
lations : 

(3.1) = Vw2 
n+i + ŵ  

n - i 
= Vw2 w* + w4 „ n n-2 

(3.2) 

(3.3) 
tan 0 = tan 

Tim ( ^ ) =a 

( 1 " n̂ " 8n } 

= t e< + 3w w n 
1 . n n-i 

tan y = , tan 8 
rn w , n 

n+i 

w n 
w « n-2 

(3.4) lim j T-2— J = a2. = 1 + at , 
n - ^ \ t / i 

where in (3.3) we have set 

(3.5) et = ab + a2 - b2 

Initially, in Fig. 3 we have 
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pw n - i 

q l W n 

n - i 

q l W n 

pw. n + l q j w n 

J 

V 

i 

V 
n 

< f 

qiWn_2. 

PW A 

* n - i qiwn 

BlHliriw 
pw n - i 

pwn+1 
*&L 

n+2 

Fig. 2 (n even) 

Fig, 3 (n odd) 

(P = Qi = 1 in Figs , 1-3) 
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(3.6) t a n $ n = tan ( y n + 8 n - TT/2) 

Eventually, af ter calculat ion this l eads back to (3.3). 

Worth noting i s the fact that (3,3) i s a cons iderable simplification of the 
fo rm for tan 0 given in [4 J. 

Concre te ins tances of the paradoxf with deta i ls of specific va lues for 

V V ^ns are t0 be f0Und in We 

4. THE COMPLEX CASE 

Label each of the fundamental constants a, b , p , q, e a s soc ia ted with a 

sequence different f rom iw I by a subsc r ip t symbolic of that sequence; that 

i s , for the sequence j h L for ins tance , e x p r e s s these constants a s a, , b, , 

v v v 
Define 

(4.1) 
d = w + iw , A (i2 = -1) 
•n n n+i v ' 
' = bu J - qau . + i(bu - qau ) 

n - i n n-2 v n ^ n - i ' 

us ing a known express ion f l ] for w . Hence 

|

d0 = a , = a + ib 

d l = b-, = b + i(pb - qa) 

After subst i tut ing u = pu _ - qu , we deduce f rom (4.1), (4.2) that 

(4.3) d = pd - qd n 
v ; n ^ n - i ^ n-2 

and 

\ = {b + i(pb - qa)} un__i - q(a +ib)un__2 

= (wj + iw 2 )u n _ i - q(w0 + iWi)un_2 

^ ' ' 1 = &* u qdn u 
1 n - i u n-2 = b , u - qa-j u n a n - i ^ d n-2 
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from (4.1), which is a form we could anticipate. Of course, we could have sub-
stituted w = au + (b - pa)u and obtained an equivalent result. Thus 

(4.5) { dn} = |w n (a + ib, b + i(pb - qa) ; p, q) \. 

Moreover, 

!

6 -, = p a , b , - q a?, - h\ 
d ^ d d ^ d d 

= (1 - q + ip)e 

after calculation. 
Fundamental properties of d are deducible in an analogous way to those 

of w f l l . Only the three most interesting general properties are stated for 
the record: 

(4.7) d d , - d2 = e , q1 * v ' n-i n+i n d H 

(4.8) (d d . )2 + (™2pqd , d . )2 = (-2pqd A d A +d2 )2 + 2c1c?d2 

\ / \ n n + g / V Ĵ H n + 1 n + 2 / \ fM n 4 . 1 n + 2 n / 1 2 n 

d , + q d 
(4.9) n+r H n - r 

d n d r 

(that is , the right-hand side of (4.9) is independent of a, b, n). In the Pytha-
gorean result (4.8), we have written 

(4.10) 
Ci = pd _. - qd , J - d i J- n + 2 M n + 1 n 

c 2 = Cj + 2d 

All these results are easy to verify using as appropriate (4.3) or (4.1) with w 
= Axx1 + B/3n [ l lbeing a convenient substitution on (4.7) and (4.9). Be it noted 
that with this approach we may need to use w w . - w w + = epq , which 
is a special case of f l j (4.18) for which r = t = 1. 

Particular cases of the above theoretical results lead back to those in 
f s ] . For example p = -q = 1 implies w (a,b;l ,-1) = h (a,b - a ) by (2.3) 
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Un4er these conditions, replace d by k . Then (4,6), for instance, gives 
[5]. 

(4.11) e k = e c e h , 

where c is the complex Fibonacci sequence for which a = b = 1 and f s j , 
(3.5), 

(4.12) e = 2 + i, e, = ab + a2 - b2 . 
c h 

Extending [5] we may define a generalized quaternion as: 

(4.13) q = w + iw ,. + jw , + kw ln 
i i n n+l J n+2 n+3 

with conjugate quaternion 

(4.14) a = w - iw ,, - jw ,_ - kw ,n j v TI n n+i J n+2 n+3 

where i2 = j 2 = k2 = - 1 , ij = -ji , jk = - kj, ki = -ik. 
From (4.13), (4.14), 

(4.15) wn = —g 

Finally, for the conjugate d it follows that 

(4.16) 

ad = 

bS = 

ea = 

ad 

\i 

~d 

(Note: Helpful advice from the referee has been incorporated into the early 
part of Section 2 and is hereby acknowledged.) 
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Send all communications concerning Advanced Problems and Solutions to 
Raymond Ee Whitney § Mathematics Departments Lock Haven State College f 

Lock Havens Pennsylvania 17745. This department especially welcomes prob-
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two months after publication of the problem, 

Notice: If any of the readers have not received acknowledgment for their solu-
tions in previous is sues, the editor will acknowledge them after receipt 
of notification of such omissions,, 

H-123 Proposed by D. Lind, University of Virginia, Charlottesville, Virginia. 

Prove 

n m 
F = y y £(m)s(k)F,, 

n Z^j Z^j n m k 
m=o k=o 

where Ŝ  * and ^r ' are Stirling numbers of the first and second kindsf r e -
r r th 

spectively3 and F is the n Fibonacci number. 

H-124 Proposed by J . A , H. Hunter, Toronto, Canada 

Prove the following identity* 

F2 L2 _ F2 L2 = FonFo/m+T1x 
m+n m+n m m m <HHi+n) 

th where F and L denote the n Fibonacci and Lucas numbers, respectively. 

435 
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H-125 Proposed by Stanley Rabinowi tz, Far Rockaway, New York 

Define a sequence of positive integers to be left-normal if given any string 
of digits, there exists a member of the given sequence beginning with this string 
of digits9 and define the sequence to be right-normal if there exists a member 
of the sequence ending with this string of digits. 

Show that the sequences whose n terms are given by the following are 
left-normal but not right-normal. 

a) P(n), where P(x) is a polynomial function with integral coefficients. 

tli 
b) P , where P is the n prime. 

c) n! 

th d) F , where F is the n Fibonacci number. ' n n 

SOLUTIONS 
EUREKA! 

H-59 Proposed by D. W . Robinson, Brsgham Young Univers i ty , Provo, U tah . 

Show that if m > 2* then the period of the Fibonacci sequence 0 ,1 , 2 ,3 , 
1 

that 
, F , • • • reduced modulo m is twice the least positive integer, n, such 

F ^ = (- l )nF (mod m) 
n+i v ; n-i v ; 

Solut ion by James E. Desmond, Tallahassee, F lo r ida . 

Let s be the period of the Fibonacci sequence modulo m. Then by defin-
intion, s is the least positive integer such that 

(1) F = 1 (mod m) and F = 0 (mod m). 
s~i s 

By the well-known formula 
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F , F - F2 = (-1) s+i s-i s v ' 
s 

We find that 1 = (-1) (mod m) which implies* since m > 29 that s =.2t for 
some positive integer t It is easily verified that 

t t+i 
(2) F2 t-i = FtLt_i + (-1)X = F t ^ L t + (-1)* . 

Since s = 2t we have by (1) and (2) that 

(3) ^ t^ t - i - ° (mod KI) if t is even, and 

(4) F ^ L t = 0 (mod m) if t is odd 

It is well known that 

(5) F 2 t = F t L t , and 

(6) (L t - i ,L t ) = (Ft- i , F t ) = 1 . 

Thus by (1), (3), (4), (5), and (6) we have 

F, = 0 (mod m) if t is even, and 
L, = 0 (mod m) if t is odd9 i8 e. , 

t+i 
Ft+i + (-1) F t - i = 0 (mod m) . 

n+i Now? let n be the least positive integer such that F + (-1) F _ = 0 
(mod m) and we obtain n < t We also find that F = 0 (mod m) if n is 
evens and L = 0 (mod m) if n is odd. Thus by (2) we havea F2 n-i = 1 
(mod m) and by (5), F 2 n = 0 (mod m). Since s is the period modulo m, it 
follows by definition that 2t = s < 2n„ Hence n = t. 

RESTRICTED UNFRIENDLY SUBSETS 

H-75 Proposed by Efouglas Lind, University of Virginia, Charlottesville, Virginia. 
Show that the number of distinct integers with one element ns all other 

elements less than n and not less than k, and such that no two consecutive 
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integers appear in the set is F , . 

Solution by J . L. Brown, Jr . j r Ordnance Research Laboratory, State Co l lege , Pa. 

Since each admissible set of integers must contain ns any given admis-
sible set is uniquely determined by specifying which of the remaining n - k - 1 
integers (k, k + 1, k + 2, • • • , n - 2) are included in the se t (Note that the 
integer n - 1 cannot be included since n is in each set and consecutive inte-
gers are not permitted, ) For each sets this information can be given concisely 
by a sequence of n - k - 1 binary digits, using a 1 in the m place (m = 
1, 2, • • • , n - k - 1) if the integer k + m - 1 is included in the set and 0 in 
the m place otherwise, 

If we require additionally that the terms of each such binary sequence 

(alsa2r •8 » a
n _k- i ) s a t i s f y ai<*i+i = ° f o r i = 1» 2, • • • , n - k - 2, then this 

requirement is equivalent to the condition that no two consecutive integers 
appear in the corresponding set. But the number of distinct binary sequences 
of length n - k - 1 satisfying a.a. , = 0 for i > 1 is known to be F , , , , to J & I i+i (n-k-i)+2 
= F , as required. [See The Fibonacci Quarterly, Vol. 2, No. 3, pp. 166-
167 for a proof using Zeckendorf's Theorem. ] 

FIBONOMIAL COEFFICIENT GENERATORS 

H-78 Proposed by Verner E. Hoggatt , J r . , San Jose State Co l lege , San Jose, C a l i f . 

(i) Show 

n - i 
x 

« - *> m=, 

(?) where 1 J are the binomial coefficients* 

(ii) Show 
uu 

-E[T] m 
X (1 - x - x2, 

v ; m=o 
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(1 - 2x - 2x2 + x; 
m 
2J 

m 

m=o 

(1 - 3x - 6x2 + 3x3 +X4) + x4x Z-/L3J 
m 

m=o 

where a r e the Fibonomial coefficients a s in H-639 Apr i l 1965, Fibonacci 

Qua r t e r ly and H-72 of Dec, 1965, Fibonacci Quar te r ly . 

The genera l iza t ion i s : Let 

m =J2(~ i) h(h+i)/2 

h=o 

then show 

k - i 

f(x) Er m 
| _ k - 1 

m x , (k > 1) . 

m=o 

Solution by L. Carlifz, Duke University. 

(i) This i s a specia l c a se of the binomial theorem,, 

(ii) The genera l r e su l t s can be viewed a s the q-analog of (i), namely 

k - i 

n d-qV î: {"W • 
3=o j - o 

where 

•k + j - i l - ( i - q
k ) q - a k + 1 ) - - - a - a ^ - 1 ) 

] ' ( l - q ) ( l - q 2 ) - . . ( l - q J ) H'1} 
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We shall also need 

k - i 

n d-qjx) = E H i ^ ' I f j z ! 
3=0 3=0 

Now take q = j3/a , <* = fal +Vs), j3 = {(1 -VH). Then 

F F * • • F / k \ _ _ ^ a - j ( k - j ) x k x k - i "k-j+i = a - (k- i ) j f k l 

(Compare ''Generating Functions for Powers of Certain Sequences of Numbers," 
Duke Mathematical Journal, Vol. 29 (1962), pp. 521-538, particularly p. 530.) 

Since 

we get, after replacing x by a x, the identity 

k-i - i 

3=0 j=o j=0 

A FOURTH-POWER FORMULA 

H-79 Proposed by J . A . H. Hunter, Toronto, Ontar io , Canada . 

Show 

F 4 + F 4 + F 4 = 2f2F2 + f - l ) n l 
n+1 n n-i L n J 
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Solut ion by M . N . S. Swamy, Nova Scotia Technical Co l lege , Ha l i f ax , Canada. 

F r o m the well-known identity^ 

we have, 

2 ^ + (-l)nJ 

Hence, 

F F _,_. - F 2 = (-I)1' n - l n+i n 

F ,F ^ + F 2 
n - i n+i n 

F 4 + F 4 + 2F 2 F 2 + 4 F 2 F ,F ^ n n n - i n+l n n - l n+i 

F 4 + F 2 ( F 2 + 4F F ) + 2F 2 F 2 

n nv n n - i n+i n - l n+i 

= F 4 4 + F2 r 
n n[_ 

(F. n+i 
F J 2 + 4F F ^ n - l n - l n+l + 2F2 F 2 

n - l n+i 

= F 4 + (F ^ - F J 2 ( F _,_ + F )2 + 2F 2 F 2 
n x n+l n - l v n+i n - l n - l n n+l 

F 4 + (F2 - F 2 )2 + 2F 2 F 2 
n l n+l n - i ; n - l n+l 

F 4 + F 4 + F 4
 4 n n+l n - l 

F 4 + F 4 + F 4 = 2 f 2 F 2 + ( - l ) n 
n+l n n - i ! 

n 

Also solved by Thomas Dence, F. D, Parker, and L. C a r l i t z . 

A PLEASANT SURPRISE 

H-80 Proposed by J . A* H . Hunter, Toronto, Canada, and Max Rumney, London, 
England (corrected) . 

Show 

r=o r=o 
2r+5 
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Solution by L. Carlitz, Duke University 

This Is correct for n = 09 so we assume that n > 0e Since 

F = 4-TTT- > « = Ki + V5), /s =Jki -V5 > , "n a - p 

we have 

n 

r=o ' r=o 
E(:)n«-E(;)[«,rM-'«-i>r+H 
^ r=0 

aHa2 + l ) n + 13*0* + l ) n . 

On the other hand 

n-l n-i 

£(VK«^£(V)<«!r+,-^+i> 
r=o r=o 

= a*(a2 + 1 ) n " 1 - && + 1 ) n ~ 1 

or - j8 

Thus it suffices to show that 

aHa2 + if"1 + £4(02 + i)11-1 = (a - £) [> V + i)11"1 „ £5^2 + 1 } n- i ] 

The right side is equal to 

aHa2 + l ) n " \ + £6(/32 + l)11^1 + aHa2 + I)11"1 + jS'flS* + I)11"1 

= <*%2 + I)11 + iS4^2 + I)11 . 

Remark. More generally we have 
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n-i 
443 

Z L j ( r ) Fkr+2k " F k Z - / \ r j F2kr-H>k 
r=o r=o 

for k odd and n > 0. 

Also solved b y M . N . S* Swamy, F. D..Parker7 and Douglas Lsnd ugl 
• • • • • 

A NOTE OF JOY 

We have received with great pleasure the announcement of the forth-
coming Journal of Recreational Mathematics under the editorship of Joseph S. 
Madachy6 Volume 1, Number 1 Is to appear in January^ 1968. The journal 
"will deal with the lighter side of mathematics^ that side devoted to the enjoy-
ment of mathematics; it will depart radically from textbook problems and dis-
cussions and will pre sent original^ thought -provoking, lucid and exciting articles 
which will appeal to both students and teachers in the field of mathematics. n 

The journal will feature authoritative articles concerning number theorys geo-
metric constructions, dissectionSs paper foldings magic squares* and other 
number phenomena. There will be problems and puzzless mathematical bio-
graphies and histories. Subscriptions for the Journal of Recreational Mathe-
matics are handled by Greenwood Periodicals^ Inc. , 211 East 43rd St., New 
York5 N. Y„ 10017. We wish this valuable and Important journal all possible 
success. B , W E , • • • • • 



—RECREATION CORNER—^ 

POPULATION EXPLOSION 
BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

It appears that the time has come for the puzzlist to update some of the 
old-time conundrums. Take, for example, the type of problem in which some 
forty or fifty people are lined up in a circle and then beginning at a certain 
one, the group is decimated until there are only nine people left* The prob-
lem would be to choose one of the safe spots. 

Now with the population explosion and the advent of the computer, the 
puzzle of the future may run like this. At 3:52 P. M. of December 2nd, all 
citizens are warned that there is to be a selection of numbers for the purpose 
of determining who will not pay an extra 5 percent income tax. The executives 
being very fair-minded make plain what the plan is: Starting with 1,000,000 
and working backward every third number is to be selected in cyclic fashion 
until there are only two numbers left. Those persons who select one of these 
two numbers will not have to pay the extra 5 percent income tax. 

Evidently, a very fair plan and extremely educational. Anybody who is 
stupid enough to select a number congruent to 1 modulo 3 deserves to be penal-
ized for his lack of mathematical ability. But of course there are 666,665 
other numbers that have to be dodged. The bureaucrats allow twenty-four hours 
for choosing a number. Here is where the Ancient Order of Puzzlists comes 
in. By having ready at hand some quick and efficient method for finding the 
two favored numbers, they can render a distinct service to their fellow citizens. 

What are the two favored numbers and is there some reasonably simple 
method of finding them? 

The answer and the method of arriving at it will be published in February, 
1968. 

* • •* * • 

444 



A PRI1ER FOR THE FIBONACCI NUiBERS: PART ¥1 
V . E, HOGGATT, JR. , A N D D. A . LIND 

San Jose State College, San Jose, Cali fornia, and University of Virginia, Charlottesville, Va . 

1. INTRODUCTION 

We shall devote this part of the primer to the topic of generating func-
tions. These play an important role both in the general theory of recurring 
sequences and in combinatorial analysis. They provide a tool with which every 
Fibonacci enthusiast should be familiar. 

2. GENERAL THEORY OF GENERATING FUNCTIONS 

Let a09 al9 a2s • • * be a sequence of real numbers. The ordinary gen-
erating function of the sequence ja J is the series 

A(x) = a0 + &tx + a2x2 + ••• = / . a
n

x -
n=o 

Another type of generating function of great use in combinatorial problems 
involving permutations is the exponential generating function of i a i, namely 

E(x) =. a0 + ajx/ll + a2x2/2l + . . . = V \ x11/n! . 
n=o 

For some examples of the two types of generating functions, first let 
a = a . The ordinary generating function of j a 1 is then the geometric 
series 

(2.1) A(x) = ^ L _ = £ a V , 
n=o 

4 4 5 
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while the exponential generating function is 

E(x) = e a x = ^ a n x n / n j 

n=o 

Similarly, if a = na , then 

00 

A / x ax \~"> n n 
A(x) = — ^ = y na x , 

(1 - ax)2 ^—' 

, s ax V~^ n n / , 
(x) = axe = y na x /n; , 

n=o 
(2.2) 

n=o 

each of these being obtained from the preceding one of the same type by differ-
entiation and multiplication by x. A good exercise for the reader to check his 
understanding is to verify that if a = n2 , then 

00 

A(x) = xfx±n = y n2xn s 
(1 - x)3 ^ n=o 

E(x) = x(x + l)eX = / _ n 2 x /nj 

n=o 

(Hint; Differentiate the previous results again.) 
For the rest of the time, however, we will deal exclusively with ordinary 

generating functions, 
We adopt the point of view here that x is an indeterminant, a means of 

distinguishing the elements of the sequence through its powers. Used in this 
context, the generating function becomes a tool in an algebra of these sequences 
(see [3]). Then formal operations, such as addition, multiplication, differen-
tiation with respect to x, and so forth, and equating equations of like powers 



1967] A PRIMER FOR THE FIBONACCI NUMBERS^ 447 

of x after these operations merely express relations in this algebra^ so that 
convergence of the series is irrelevant 

The basic rules of manipulation in this algebra are analogous to those 
for handling polynomia l If | a i, Jb L and |c } are real sequences with 
(ordinary) generating functions A(x), B(x), C(x) respectively^ then A(x) + 
B(x) = C(x) if and only if a + b = c , and A(x)B(x) = C(x) if and only if 

c
n
 = anbo + an~ibi + • • • + ajbn-i + a0bn . 

Both results are obtained by expanding the indicated sum or product of gener-
ating functions and comparing coefficients of like powers of x* The product 
here is called the Cauchy product of the sequences ja I and J b k and the 
sequence ic i is called the convolution of the two sequences ja | and j b L 

To give an example of the usefulness and convenience of generating func-
tions^ we shall derive a well-known but nontrivial binomial identity. Firs t note 
that for a fixed real number k the generating function for the sequence 

\ I n/ k(k - 1). - • (k - n + 1) 

i s 

Ak(x) = (1 + x)k 

by the binomial theorem. If k is a nonnegative Integer, the generating func-
tion is finite since 

(2.3) 

by definition Then 

| k ] = 0 If n 7 k > 0 or n < 0 

Ak(x) = (1 + x)k = (1 + x)k m ( l + x ) m = A^ m (x)A m (x) 

Using the product rule gives 



448- A PRIMER FOR THE FIBONACCI NUMBERS 

n=o x ' n=o x ' \n=o x / \ n = o / 

[Dec. 

so that equating coefficients of x shows 

(») -tfrX-"') 
This can be found in Chapter 1 of [ 8]. 

If the generating function for j a \ is known, it is sometimes desirable 
to convert it to the generating function for j a , I as follows. If 

A(x) = ^ a
n

x I 1 » 
n=o 

then 

A(x) - a0 £v/ 
n=o 

This can be repeated as often as needed to obtain the generating function for 

Generating functions are a powerful tool in the theory of linear recurring 
sequences and the solution of linear difference equations. As an example, we 
shall solve completely a second-order linear difference equation using the tech-
nique of generating functions. Let j c I be a sequence of real numbers which 
obey 



1967 ] A PRIMER FOR THE FIBONACCI NUMBERS 449 

n+2 ^ n+i ;
H n $ ~ 9 

where c0 and c1 are arbitrary,, Then by using the Cauchy product we find 

(1 - px + qx2) V^ c x = c0 + (Cj - pc0)x + 0 • x2 + 
n=o 

= c0 + (Ci - pc0)x = r(x) , 

so that 

( 2 e 4 ) x , ^ = r{*L r n e x = — n x px + qx^ n=0 ^ H 

Suppose a and b are the roots of the auxiliary polynomial x2 - px + qs so 
the denominator of the generating function factors as (1 - ax) (1 - bx). We 
divide the treatment into two cases, namely, a ^ b and a = b. 

If a and b are distinct (i. e a , p2 - 4q ^ 0), we may split the generat-
ing function into partial functions, giving 

(2>5) EM = r ^ = _A_+ _A_ 
1 -• px + qx2 (1 - ax)(l - bx) 1 - ax 1 - bx 

for some constants A and B. Then using (2.1) we find 

OO uu LKJ uu 

Ev11 = A E a V + B Z b V = E(Aa11 + BhU)xn • 
n=o n=o n=o n=o 

so that an explicit formula for c is 

(2.6) c = Aa11 + Bbn 

\ n 
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Here A and B can be determined from the Initial conditions resulting from 
assigning values to c0 and clB 

On the other hand, if the roots are equal (i. e . , p2 - 4q = 0), the situa-
tion is somewhat different because the partial fraction expansion (2.5) is not 
valid. Letting r(x) = r + sx, we may use (2.2), however, to find 

00 00 
n r + sx „ x T~^ /> , ^ n n E n r -i- sx , x ^-^ , , _ n ] 

c x = _ _ = ( r + sx) \ (n + l)a x 
n (1 - ax)2 ^ 

n=o v ; n=o 00 00 

E t t , i\ n , n-iv n v ^ „ , / x , x n n 

(r(n + l)a + sna )x = > ((r + s/a)n + r)a x , 
n=o n=o 

showing that 

c n = (An + B)an , 

where 

A = r + s/a, B = r 

are constants which again can be determined from the initial values c0 and clo 

This technique can be easily extended to recurring sequences of higher 
order. For further developments, the reader is referred to Jeske f6 l , where 
a generalized version of the above is derived in another way. For a discussion 
of the general theory of generating functions, see Chapter 2 of £8] and Chap-
ter 3 of [ 2 ] . 

3. APPLICATIONS TO FIBONACCI NUMBERS 

The Fibonacci numbers F are defined by F0 = 0, Fj = l , and Fn-f.2 

- F - F = 0 , n > 0. Using the general solution of the second-order dif-
ference equation given above, where p = I, q = - I , r(x) = x, we find that 
the generating function for the Fibonacci numbers is 
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60 

(3.1) F(x) = — X
 = \>^x

n
 o 

1 - X - X2 £mmJ 

The r e a d e r should actual ly divide out the middle p a r t of (3.1) by long division 

to s ee that Fibonacci number s rea l ly do appear as coefficients. 

Since the roo ts a = (1 + V 5 ) / 2 and P = (1 - V 5 ) / 2 of the auxi l iary 

polynomial x2 - x - 1 a r e d i s t i n c t we see from (2.6) that 

(3.2) F , = Ac/1 + B/3n . 
n ^ 

Putt ing n = 0 ,1 and solving the resu l t ing sys tem of equations shows that 

A = l / \ / 5 = l/(a ~ p), B = - l / \ / 5 , 

es tabl ishing the fami l ia r Binet forms 

n 0 n 
(3,3) Fn = °-^L-

• n a - p 

We shal l now turn around and u s e this form to de r ive the or iginal generat ing 

function (3.1) by using a technique f i rs t exploited by BL W. Gould [ s j 0 Suppose 

that some sequence | a I has the generat ing function 

AW =Y,v • 
n=o 

Then 

oo 
A (ax) - A(Px) 

<3'4> — ^ J 3 
n=o f n=o 

In par t icular* if a = 1, then A(x) = 1/(1 - x), so that 
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Ft*) = - L ( : i_ . _ i _ \ = x 
r w or - j8-l 1 - ax 1 - PxJ 1 - x -

[Dec . 

X2 

Next we use (3,1) to prove that the Fibonacci numbers a r e the sums of 

t e r m s along the r i s ing diagonals of P a s c a l ' s Tr iang le . We w r i t e 

oo 

E 
n=o 

n 1 - X - X2 1 - (x + X2 ) •E= 
n=o 

x > x n ( l + x ) n 

oo n 0 0 _ 11 , L / V OO 11 / v 

E^Efê -EE® 
n+k+i 

n=0 k=o 

Rm- i ) /2 ] 

n=o k=o 

oo U*i-1)/2J / \ 

-ELE -v1 ' m=i j=o 

w h e r e [ m ] denotes the g rea t e s t in teger contained in m. The inner sum is 

the sum of coefficients of x in the preceding sum, and the upper l imi t of 

summat ion is de termined by the inequality m - j - 1 < j s reca l l ing (2.3). The 

r e a d e r is urged to c a r r y through the deta i ls of this typical generat ing function 

calculat ion. Equating coefficients x shows that 

(3.5) F = n 

[ (n- l ) / 

j=o -I-) 
linking the Fibonacci number s to the binomial coefficients. 

It follows from (3„1) upon division by x that 

(3.6) G(x) 
1 - X - X̂  

oo 

E 
n=o 

F _!_.,' X 

n+i 

Differentiating this yields 
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x + 1 . _ / 1 W l + 2x \ = V ^ ( 

x - x 2 ) 2 \ l - x - x 2 / \ l - x - x 2 / ^ n *»- ^^^ -ir-Hiu^h) ->>»'«•"• 
Now 

oo 
1 + 2x X \ n 

2 Z^J n+i 1 - X - X' - A 

n=o 

where the L are the Lucas numbers defined by Li = 19 n J L > 

Li = 1, L2 = 3, L ^ = L ,, + L , n > 0. l L n + 2 n+i n
3 

Hence 

oo \ / oo \ oo / n 

n=o / \ n=o / n=o \k=o 
G'(x) =j > F _ x " | j > L ^ x " ! = ? I 7 . F - . k + 1

L
k + 1 l x I 1 

so that 

n 

XX-kA+i = <n + 1 ) F n + 2 > 
k=o 

a convolution of the Fibonacci and Lucas sequences* 
We leave it to the reader to verify that 

(1 - x)(l - x - x2) . - _ . ^ - ^ ——=y 
1 - 2X + X3 AmmJ 

( Fn+ 2 " ^ 

Also 



454 A PRIMER FOR THE FIBONACCI NUMBERS [ Dec. 

(1 - x)(l - x - x2) 1 - x 1 - x - x2 I L-i 1\L*J n i 
\ n=o J \ n=o 

oo I / n 
n HE F . l x 

n=o \ j=o 

Equating coefficients shows 

n 

j=0 , 

which Is really the convolution of the Fibonacci sequence with the constant 
sequence 11, 1, 1, • * - \ . 

Consider the sequence | F , |°° , where k f 0 is an arbitrary but fixed 
integer. Since 

kn 0kn 
F = •£ — £ -

kn n 
a - j8 

we have 

/ 00 CO 

F x̂* = _i__( V«lmxn - W ^ V 
n=o \ n=0 n=0 

= 1 / 1 _ 1 \ = 1 / (ak-Pk)x 
( 3 ' 7 ) « - / 3 \ l - A " 1 -BkxJ a - 4 l - ( « k + / S k ) x + ( A k ) x 2 i 

F k X 

1 - Lkx + (-l)kx2 

where we have used aB = -1 and the Binet form L = a + /3 for the Lucas 
r n 

numbers. Incidentally, since here the integer in the numerator must divide 
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all coefficients in the expansion* we have a quick proof that F, divides F , 
k nk 

for all n, A generalization of (3.7) is given in equation (4.18) of Section 4, 
We turn to generating functions for powers of the Fibonacci numbers. 

First we expand 

a - £ / (a - j3)2 

Then 

00 / OO 00 00 \ 

( " - ^ \ n = o 

(a? - j3)2\ 1 - a2x 1 - aj3x 1 - j32x 

This also shows that 

(1 - a2x)(l - arjSxHl - j32x) 1 - 2x - 2x2 + x3 

<F2 > obeys 

F2 2 F 2 - 2F2 + F2 = 0 . 
n+3 n+2 n-M n 

We r e m a r k that Gouldf s technique (3a3) may be applied to Ffx)s and leads to 
exactly the same result* 

]n general9 to find the generating function for the p power of the Fib-
onacci numbers, first expand F p by the binomial theorem. This gives F p 

as a linear combination of a , a ^~ £' , a • • , a p p~ , /3 p so that as 
above the generating function will have the denominator 

(1 - cPx)(l - Q P ' W ' " (1 - o ^ x M l - j3Px) . 

Fortunately, this product can be expressed in a better way. Define the Fib-
fkl onomial coefficients I „ I by 
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F, F F k - r+ i 
F i F 2 

(r > 0); = 1 

[ D e c . 

Then it has been shown [ ? ] that 

P P+i 
Qp(x) = O (1 - a ^ V x ) = V ( - l ) J 0 + 1 ) / 2 r p J" ! p . 

F o r example, 

Qi(x) 

Q2(x) 

Qs(x) 

Q4(x) 

1 - X - X^ 

-1 - 2x - 2x2 + x3 

1 - 3x - 6x2 + 3x3 + x4 

1 - 5x - 15x + 15x3 + 5x4 

Since any sequence obeying the Fibonacci r e c u r r e n c e re la t ion can be wr i t ten in 

the form Aa + Bj3 , Q (x) i s the denominator of the generat ing function of 
th P 

the p power of any such sequence* The n u m e r a t o r s of the genera t ing func-

t ions can be found by s imply multiplying through Q (x). F o r example , to find 
the genera t ing function of 

{Fn+2}' 
we have 

F* x n = r(x) 

n=o 2x 2x<* + x6 

Then r(x) can be found by multiplying Q2(x), giving 

:(x) = (1 - 2x - 2x2 + z?)(l + 4x + 9x2 + 25X4 + • • • ) 

= 1 + 2x - x2 + 0 • x3 + - • • = 1 + 2x - x2 . 

Th is i s (4.7) of Section 4. However, for fixed p , once we have obtained the 

generat ing functions for {^H, {F^ I »B" * »{ Fn+p}» t h e o n e f o r { F n+kf f o l ~ 

lows d i rec t ly f rom the identity of Hoggatt and Lind [ 4 ] 
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(3,5) FP+k
 = ^ 1 ) ( P " J ) ( P " J + 3 ) / 2 [ j l [fl ( T ^ ) 

j=0 L J I J \ k-j / 
F P 

"n+j 

where we use the convention F0 / F 0 = 1. For example9 for p = 1 this gives 

F _u = F. F ^ + F. F n+k k n+i k-l n 

Using the generating function for i F > in (3.4) and <JF 1 in (3.1), we get 

00 00 00 

n=o n=o n=o 

F. + F . x k k-l 
1 - x - x2 

In facts one of the main purposes for deriving (3„5) was to express the generat-
ing function of <FP , / as a linear combination of those of \ F P k • • • , s F p

+ >0 

Alternatively 5 to obtain the generating function of < F p
+ , l from that of 

<F^?, we could apply k times in succession the technique mentioned in Sec-
tion 2 of finding the generating function of j a I from that of ja I, 

The generating function of powers of the Fibonacci numbers have been 
investigated by several authors (see [3JS L5j, and [7])* 

4. SOME STANDARD GENERATING FUNCTIONS 

We list here for reference some of the generating functions we have 
already derived along with others which can be established in the same way. 

(4.1) — 2 = > F x11 

1 „ x - x2 Z - f n 

n=o 
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(4.2) 

(4.5) 

00 

_ , = x p x 

.1 - x - x* Z ^ n+1 

n=o. 

(4.3) £ J 1 x _ = V L xn £• 1 - X - X2 JL—i n 

n=o 

(4.4) • 1 + 2 X =VL , xn 

1 - X - X 
n=o 

•S-2 x ^ n+i ' 

1 - 2x - 2x2 + x3 

n=o 

= V F ^ X 1 1 

+ X3 Z ^ n 

(4.6) L ^ 5 = > F
2 x11 

1 - 2x - 2x2 + x3 ^ - f n + 1 
n=0 

' 00 

oo 
(4.7) 1 + 2X-X* = y F , n 

1 - 2x - 2x2 + x3 £—i n + 2 

n=o 

00 

(4.8) — £ = \ F F A x11 

1 - 2x - 2x2 + X3 Z ^ n n + i 
n=o 

(4.9) 4 - 7x - x = V L 2 *n 

1 - 2x - 2x2 + x3 *—i n 
n=0 

(4.10) l + 7 x - 4 x 2
 = \ ^ L 2 n 

1 - 2x - 2x2 + x3 £-J n + 1 

n=o 
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oo 
(4.11) 9 - 2x - x2 _ = \ \2 x n 

1 - 2x - 2x2 + x3 

n=o 
n+2 ' 

oo 
(4,12) x - 2 x j ^ £ = y ^ F 3 x n 

1 - 3x - 6x2 + 3x3 + x4 Z » i n 

n=o 

DO 

(4.13) — I - " 2X - X l — = V V , xn 
1 _ 3x - 6x2 + 3x3 + x4 *-J n 

oc 
1 + -5x - 3x2 - x3 _ir™^ n (4.14) ± i- -ox - ox-..- x- ^ ^ " ^ _̂ 3 ^ 

q 4 y ^ n+2 1 - 3x - 6x2 + 3x3 + x' 

(4.i5) 8 + 3 x - 4 x 2 - x 3 = y v + 3 x » 
1 - 3x - 6x2 + 3x3 + x4 X—f̂  n d 

n=o 

(4.16) 2 x - — = > F F F x
n 

v # n n+l n+2 

00 

n=o 

1 - L.x + (-l)kx2 2-d k n ' X 
k n=o 

F r + ^^X rx \ ^ 
(4.18) — I £ £ _ = X F x n 

1 - L, x + (-l)kx2 Z ^ k n + r 

k n=o 
Many thanks to Kathleen belaud and Allan Scott. 
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I SHIFT FORMULA FOR RECtJRREICE RELATIONS OF ORDER m 
G A R Y G . FORD 

Student, University of Santa Clara, Santa Clara, California 

th It is well known that if F. is the i Fibonacci number^ then 
i 

y = y y + y y 
n+k+l n+i k+i n k 

for all integers n9 k* A generalization of this identity to recurrence relations 
of any order m is given here* 

Let m be a positive integer and let P I J P 2 S ° 8 0
? P (p ^ 0) be 111 ele-

ments of a field F. Furthermore^ let |y. i and | U. i be two sequences in F 
obeying the recurrence relation whose auxiliary polynomial is 

m-l 

2LJ 
P(x) = x m - > . p ^ . x ' 

j=o 

and let JU. I have the initial values 

and 

Then, 

U0 = Ui = ••• = U = 0 
u l m»2 

U = 1 . 
m-i 

m-i j 

(1) yn+k = 2^2^p^iu^-j-^ 
j=o i=o 

for all integers n and k. 

461 
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The proof of (1) is by Induction on k* Let n be f ixed F o r 0 < k < m 
It Is c l ea r that 

^ i i r / m ~ i k 

0 If j < k 

p U = 1 if i = k 
(2) > ̂ -Vtlf^ 

i=o ( > p .U. ^ . = U. ^ . = 0 if k < j < m 
8 f <{ m~1 k+ i - j - i k+m- j - l J 

'i=o 

F r o m (2) it Immedia te ly follows that (1) holds for k = 0 5 1 , • • • , m - 1„ F r o m 

here., applicat ions of the r e c u r r e n c e re la t ion (corresponding to P(x)) for jy.J. 

and | U . | , in both the forward and backward d i rec t ions , eas i ly p rove that if 

(1) holds for k = h? h + 1,fl • *, h + m - 1? then (1) holds for k = h - 1, h, • • • •, 

h + m8 By application of finite induction, It follows that (1) holds for al l i n t e -

g e r s n, k„ 

Let P(x) = (x - r j ) (x - r2)° • ° (x - rm) in an extension G of F and sup-

pose that G is of c h a r a c t e r i s t i c zero0 F u r t h e r suppose that the r . a r e p a i r -

wise distinct,, Define D, as the de terminant produced by the p r o c e s s of sub -

sti tuting the vec to r ( r j , r 2 , • • • , r ) for the m row (rf1"" , r 2 "~ » \*-y 

r " ) in the Vandermonde determinant of r j , r2, • e s , r . It is proven in £ l j 

that for every Integer k, 

(3) U. = k 
k D , m-l 

The c a s e for repet i t ions among the r . Is handled in the following way: Start 

with the form for U, in (3) ands pre tending that the r . a r e r e a l , apply 

L?Hospi ta l f s Rule success ive ly a s rT—>rT for a l l repe t i t ions rT = r T among 

the r . . 
3 
A combination of (1) and (3) now c o m e s with ease* Still taking the r . to 

be pa i rw i se dist inct s define E, as the de terminant produced by the p r o c e s s of 

rep lac ing the element r, of the m row of D, by 

m-i j 

EV * r k + i - j - i 

j=o I=o 
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and this for h = 1, 2,» •• , m. Then combination of (1) with (3) yields: For 
every integer k, 

<4> yk = I T - • 
m-i 

The case for repeated roots is handled as with (3). In [2] identities akin to (4) 
are developed. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A . P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Department of Mathematics and StatisticsY Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or 
solution should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets in the format used below. Solutions should be 
received within three months of the publication date. 

B-124 Proposed by J . H. Butchart, Northern Arizona University, Flagstaff, Ar iz . 

Show that 

00 

y^(a-/2i) = 4 , 
i=o 

where 

a0 = 1, SLt = 1, a2 = 2 , - - -

are the Fibonacci numbers. 

B-125 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Is 

n 

k=3 

ever an integer for n > 3 ? Explain. 

464 
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B-126 Proposed by J . A . H . Hunter, Toronto, Canada 

Each distinct letter in this alphametic stands, of course, for a particular 
and different digit. The advice is sound, for our FQ is truly prime. What do 
you make of it all ? 

R E A D 
F Q 

R' E A D 
F Q 

D E A R 

B-127 Proposed by Charles R. W a l l , Universi ty of Tennessee, K n o x v i l l e , Tenn. 

Show that 

2nL = 2 (mod 5) , 

2nF = 2n (mod 5) . 

B-128 Proposed by M . N . - S . Swamy, Nova Scotia Tech. Co l lege , Ha l i fax , Canada. 

Let f be the generalized Fibonacci sequence with fj = a, f2 = b , and 
f , = f + f . Le t g be the assoc ia ted genera l ized Lucas sequence defined n+i n n - i &n to 

by g = f + f _, . Also let S = f, + f, + . . . + f . It is true that S4 = g4 
J s n n-i n+l n 2 l n 4 &4 

and S8 = 3g6. Generalize these formulas0 

B-129 Proposed by Thomas P. Dence, Bowling Green State Univers i ty , Bowling 
Green , O h i o . 

For a given positive integer, k, find 

lim (F ., / L ) . 
n —»oo n+k n ' 

B-130 Proposed by Douglas L ind , Universi ty of V i r g i n i a , Char lo t tesv i l le , V a . 

Let coefficients c.(n) be defined by 



466 ELEMENTARY PROBLEMS [Dec. 

(1 + x + x 2 ) n = c0(n) + c^njx + c2(n)x2 + . . . + c2n(n)x2n 

and show that 

2n 
c2n(2n) 

j=0 L J 

2XL 

Generalize to 

k n 

(1 + x + x2 + . . . +xK) ( 

B-131 Proposed by Charles R. W a l l , Univers i ty o f Tennessee, K n o x v i l l e , Tenn. 

Prove that for m odd 

L + L A 5F 
n-m n+m _ n 

F + F A L 
n-m n+m n 

and for m even 

F + F F 
n-m n*m _ __n 

L + L ^ L 
n-m n+m n 

SOLUTIONS 

Note: In the last issue, we inadvertently omitted M. N. S. Swamy from 
the solvers of B-100, B-101, and B-104. 

FIBONACCI-LUCAS ADDITION FORMULAS 

B-106 Proposed by H. H. Ferns, Victoria, B.C., Canada. 

Prove the following identities: 



1967 ] AND SOLUTIONS 467 

2F._1_. = F.L. + F.L. 1+] l ] j l 

2L. ,. = L.L. + 5F.F. . 
1+3 i 3 i J 

Solution by Charles R. W a l l , Universi ty o f Tennessee, K n o x v i l l e , Tennessee. 

From the Binet formulas we have 

F,L, + KL. = — iia1 - p1)(J + ft*) + (c^ - ^ ( a 1 + /31)! _1_ 
1 j ] * "VH" 

and 

= ^ ( « i + j -0i+h = 2F.+. , 

L.L. + 5F.F. = (a1 + p1)(a1 + / 3 ] ) + (a1 -fi1)(ai - j8 J ; 

2(ai+J + j 8 i + J ) = 2L.+. . 

Also solved by John H. Biggs, Douglas L ind, W i l l i am C . Lombard, C . B. A . Peck, 

A . G. Shannon, M« N . S. Swamy, John Wessner, David Z e i t l i n , and the 

proposer. 

AN APPROXIMATION 

B-107 Proposed by Robert S. Seamons, Yakima Va l ley Co l lege , Yak ima, Wash. 

th Let M and G be respectively the n terms of the sequences (of 
Lucas and Fibonacci) for which Mn = M^ - 2 , Mt = 39 and Gn = G ^ + 
G _ , Gj = 1, G2 = 2. Prove that 
^n-2 

M H = 1 + T V 5 G 1 , n L m J 

where m = 2n - 1 and [xj is the greatest integer function. 

Solution by Douglas L ind, Universi ty o f V i r g i n i a , Char lo t tesv i l le , V a . 
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In standard notation we have M = L and G = F , . where F 
,, n 2

n n n + 1 n 

and L are the n Fibonacci and Lucas numbers, respectively. The prob-
lem then becomes to show 

V = [ 1 + V J r V ] • 
which follows immediately from Problem B™89. 

Also solved by W i l l i a m C . Lombard, C . B. A . Peck, A . G. Shannon, David 

Z e i t l i n , and the proposer. 

G E N E R A L I Z E D F I B O N A C C I N U M B E R S 

B-108 Proposed by V . E. Hoggatt , J r . , San Jose State Co l lege , San Jose, .Ca l i f . 

Let Ui = p, y2 = qs and un + 2 = u n + i + un. Also let Sn = ut + u2 + . . . 
+ u . It is true that S6 = 4u4 and S10 = l lu7. Generalize these formulas. 

Solut ion by Douglas L ind , Universi ty of V i r g i n i a , Char lo t tesv i l le , V a . 

The p r o b l e m should r e a d S6 = 4u5. The fac t that 

4k-2 

/ J
 u i = L2k-iu2k+i 

i=i 

where L is the n Lucas number, appears in the solution of Problem 4272, 
American Math, Monthly, Vol. 56 (1949), p. 421. 

Also solved by W i l l i a m C . Lombard, F. D. Parker, C . B. A . Peck, A . G . Shannon, 

M . N . S. Swamy, Charles R. W a l l , David Z e i t l i n , and the proposer. 

SECOND-ORDER D I F F E R E N C E E Q U A T I O N 

B-109 Proposed by V . E. Hoggatt , J r . , San Jose State Co l lege , San Jose, C a l i f . 

Let r and s be the roots of the quadratic equation x2 - px - q •= 0, 
(r ^ s). Let U = (r - s )/(r - s) and V = r + s . Show that 
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V = U ,4 + qU 
n n+i H n - i 

Solut ion by Charles W . Tr igg, San Diego, C a l i f o r n i a . 

so 

-rs, 

V i + q U n - i = ^ + 1 " s I 1 + 1 ) / ( r - s) + (-rsXr1 1"1 - s n ~ V ( r - s) 

= [ r (r - s) + s (r - s ) ] / ( r - s) 

= V . 

Also solved by Harold Don A l l e n , J . H . Biggs, Douglas L ind, W i l l i am C . 

Lombard, F. D. Parker, C . B. A . Peck, M . N . S. Swamy, Charles R. W a l l , 

John Wessner, David Z e i t l i n , and the proposer. 

AN INFINITE SERIES EQUALITY 

B-110 Proposed by L. Ca r l i t z , Duke Univers i ty , Durham, N . Caro l i na . 

Show that 

00 
n 

(-1) 

n=o n=o 

Solution by the proposer. 

F n = oc - p 5 L n = a n + / 3 n , a = 4 ( 1 + V 5 ) S 0 = f ( l - VH") 

Then 
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00 

n=o n=o 

oo 

" l + a ~ 2 ( 2 n + 1 ) 
a-p)^-1— 

n=o 

00 00 
-(2r+i)(2n+i) = (a-i3)y^y^(-i)r^ 

n=o r=o 

w^m r -

-2(2r+i) 
r=(f 

( g -^£^"- ) r
t t ^ r=0 

r 

r=o 

oo 
r 

2^+i + R2T+1 

^L^^r-f 2r+i 

ANOTHER SERIES EQUALITY 

-111 Proposed by L. C a r l i t z , Duke Univers i ty , Durham, N o . Caro l ina . 

Show that 

°° n oo 

n=o ^JSp 

Solut ion by the proposer. 
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00 00 

F2(2n+i) H f / ^ a 2 ( 2 n + 1 ) H 2 ( 2 n + i ) 
n=o n=o • ' p 

= (a-/nV-^ JL 
Z^a 2 * 2 n + 1 ) i . a"4(2n+1) n=o 

00 00 

2(2r+i)(2n+l) a^)y^(-l)ny^a" ( 
n=o "r^o 

0 0 -2(2r+i) E - ^ r - n 

1 + a 4 
_ -4(2r+i) 

r=o 

CO 

( 
r^o ^ 

00 

Z - ^ i L 2(2r+i) 
r=o 

• • * • * 
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GETTING PRIMED FOR 1967 
CHARLES W. TRIGG 

San Diego, California 

(A) 1967 = 7(281) = 7(17 + 67 + 197) 

= (2 + 5) (2 + 19 + 17 + 67 + 79 + 97) 

= (2 + 5) (5 + 107 + 109) 

(B) 1967 = 7 + 977 + 983 

= 11 + 479 + 487 + 491 + 499 

= 11 + 311 + 313 + 317 + 331 + 337 + 347 

= 67 + 223 + 227 + 229 + 233 + 239 + 241 + 251 + 257 

= 53 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 

= 11 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113 + 127 + 131 

+ 137 + 139 + 149 + 151 + 157 + 163 

= 19 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 

+ 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 

= 7 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 

+ 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 

+ 109 + 113 + 127 + 131 + 137. 

(C) 1 + 9 + 6 + 7 = 23 

12 + 92 + 62 + 72 = 167 

13 + 93 + 63 + 73 = 1289 

14 + 94 + 64 + 74 = 10259 

l1 + 92 + 63 + 74 = 2669 

l4 + 91 + 62 + 73 = 389 

I4 + 93 + 62 + 71 = 773 

I1 + 94 + 63 + 72 = 6827 

762 + 91 2 = 14057 

(D) 2 = ( \ / l96)/7 

3 = - 1 + V 9 - 6 + 7 

5 = 1 - 9 + 6 + 7 

472 
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7 = 

11 = 

13 = 

17 = 

19 -

23 -

29 = 

31 = 

37 = 

41 = 

43 = 

47 = 

53 = 

59 = 

61 = 

67 = 

71 = 

73 = 

79 = 

83 = 

89 = 

- 1 + 9 + 6 - 7 

1 + 9 - 6 + 7 

I 9 (6 + 7) 

1 +V"9 + 6 + 7 

19 (-6 + 7) 

1 + 9 + 6 + 7 

l(s/9!)(6) - 7 
(1 + 9 - 6)1 + 7 

1 - (s/9)i +6(7) 
- I 9 + 6(7) 
HS/9I)(6) + 7 

1(9) (6) - 7 

(1 + 9) (6) - 7 

1 - 9 + 67 

1(9) (6) + 7 

(1 + 9) (6) + 7 
1 + V 9 + 67 

1( 91) + 67 

1 + (\/9j)(6 + 7) 

- 1 + (\/9S + 6 ) (7) 

1(96) - 7 

In every case above, the expression for the prime has the digits of 1967 
in that order. 

(E) Of the twelve two-digit numbers that can be written with the digits of 1967, 
there are seven primes, including two palindromic pairs* 

17, 71; 79, 97; 19, 61, and 67, 

Of the twenty-four three-digit numbers that can be written with the digits 
of 1967, eleven are prime; including three palindromic pairs: 

167, 761; 179, 971; 769, 967; 197, 617, 619, 691, and 719. 

(Article continued on p8 476) 



CUR10SA IN 1967 
CHARLES W. TRIGG 

San Diego, California 

(A) 1967 = (-1 + 9 + 6 - 7)(196 - 7 + 9 1 - 6 + 7) 

= -12 + (34) (56) + 78 - V § 

= 0! +11 +2(3I ) (4! ) + (5) (6) (7) (8) - V 9 

= 2° + 21 + 22 + 23 + 25 + 27 + 28 + 29 + 210 

(B) 196710 = 117E12 = 152&u = 26259 = 36578 = 5510? = 130356 

*= 303325 = 1322334 = 22002123 

= 111101011112, a pa l indrome. 

(C) (119161 71) (I 1! 916! 7!) = 0 , where !x i s subfaetorial x. 

(D) Expressed in Fibonacci n u m b e r s : 

1967 = 1 - 8 + 377 + 1597 

= 1597 + 377 - 5 - 2 

= 1 + 13 + 34 + 89 + 233 + 1597 

= 1 + 2 + 3 + 8 + 13 + 21 + 34 + 55 + 89 + 144 + 233 + 377 + 987 

(E) F o u r squa re s can be formed from the digi ts of 1967, namely: 196, 169, 

961, and 16, which l a t t e r a lso is a fourth power„ 

1967 = (42 - 32)(52 + 162) 

- 1442 - 1372 = 9842 - 9832 

= l 2 + 22 + 32 + 42 + 52 + 62 + 82 + 92 + 102 + l l 2 + 122 

+ 142 + 152 + 162 + 172 + 202 

(F) 1967 = (1111 - 111 - 11)(1 + 1) - 11 

= 222 • 22 + 2 2 + 2 + 2 / 2 - 2 /2 

= (3 + 3) (333) - 3 3 + 3 - 3 / 3 

+ 4 ( 4 + V 4 ) - 4 / 4 

= (555 - 5/5)(5 - 5/5) - 5(55 - 5) + 5/5 

= (666 + 6/6) (6 + 6 + 6)/6 - 6(6) + (6 + 6)/6 

474 
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777 + 77(7 + 7) + (777 + 7)/7 

(888 + 88 + 8 - 8/8)(8 + 8)/8 + 8/8 

(999 - V 9 ) ( 9 + 9 ) / 9 - - 9 \ / 9 + (9 + 9)/9 

(G) Here a r e seve ra l ways in which 1967 can be wr i t ten using conventional 

mathemat ica l symbols and one 1, nine 9 f s , six 6fs5 and seven 7?s in o r d e r 

f rom left to r ight . 

1967 = 19(99 + 999/999) + 66 + 66/66 + 7(777 - 777) 

= 19(99 + 999/999) + 66(66/66) + ^m"m^ 

= 19(99 + 999/999) + 6(66/6 - 6/6) + 7(777/777) 

= 1(999 + 9/9) + 9 ( 9 9 + V 9 - . 6 / 6 - 6/6) 

+ 6(6 - 7 + 77/7) + 7(7/7) 

(H) If to 1967 i t s r e v e r s a l i s added5 and the p r o c e s s repea ted 

s e v e r a l t i m e s , a pa l indromic number i s produced in five 

operations,, 

1967 
7691 
9658 
8569 

18227 
72281 
90508 
80509 

171017 
710171 
881188 

(I) 7691 - 1967 = 5724, 5724 - 4275 = 1449? 9441 - 1449 = 79929 

7992 - 2997 = 4995, 5994 - 4995 = 99, a pa l indromic number after 

five subtractions» 

(J) If the digits of 1967 be wr i t ten in descending o rde r before r e v e r s a l and 

subtract ion and the p r o c e s s be repea ted continuously: 

9761 - 1679 = 8082, 8820 - 0288 = 8532, 

8 5 3 2 - 2 3 5 8 = 6 1 7 4 , 7 6 4 1 - 1 4 6 7 = 6174, 

Thus K a p r e k a r f s constant 6174 i s reached in t h r ee operations* 



476 

(K) 

The c i rculant 

GUraOSA IN 1967 Dec. 1967 

1 9 6 7 

7 1 9 6 

6 7 1 9 

9 6 7 1 

-32(23)(29) 

1 7| 
6 9 divides 

1 9 
7 6 divides 

1 9 6 7 

9 9 9 6 

6 9 9 9 

7 6 9 1 

1 9 6 7 

9 6 7 6 

6 7 6 9 

7 6 9 1 

1 9 6 7 

9 1 1 6 

6 1 1 9 

7 6 9 1 

1 9 6 7 

9 6 6 6 

6 6 6 9 

7 6 9 1 

1 

9 

,6 

|7 

9 

0 

0 

6 

6 

0 

0 

9 

7 

6 

9 

1 

= 4 5 2 . 

that i s , 

that i s , 

= 33(43) 

1 9 6 7 

9 6 7 0 

6 7 0 0 

7 0 0 0 

• * * * 

3(11)2 
= - i l 

9 (11) (19) 
-3(19) -33 

1 9 6 7 

9 7 7 6 

6 7 7 9 

7 6 9 1 

= 74 

= 32(113) 

(Continued f rom p. 473„) 

Of the twenty-four four-digi t n u m b e r s that can be wr i t t en with the digi ts 

of 1967, seven a r e p r i m e : 

1697, 6197, 6719, 6791, 6917, 6971, and 7691 . 

(F) 1 9 

6 7 47, 

• • • • • 



A DIGITAL BRACELET FOR 1967 
CHARLES W. TRIGG 

San Diego, California 

A bracelet is one period of a simply periodic series considered as a 
closed sequence with terms equally spaced around a circle,, Thus distances 
between terms may be measured in degrees. A bracelet may be regenerated 
by starting at any arbitrary point to apply the generating law^ A bracelet may 
be cut at any arbitrary point for straight line representation without loss of any 
properties. 

A digital bracelet may be constructed by starting with a sequence of four 
digits, affixing the units 'digit of their sum, again affixing the units' digit of the 
sum of the last four digits and continuing the process, 

Starting with 19&7 this process will generate the sequence 

1 9 6 7 3 5 1 6 5 7 9 7 8 1 5 ••• 

in which four odd digits and one even digit alternate throughout Since there 
are only 54 sets of four ordered odd digits, the sequence must repeat in not 
over 5(54) or 3125 operations. In fact, it does repeat after 1560 operations 
producing a bracelet of 1560 digits. The complete bracelet i s given on 
page 480. 

This bracelet could be said to belong to 1967, but 1560 years have an 
equal claim to it, for example, the following from the twentieth century: 

1901 

1903 

1907 

1912 

1917 

1923 

1929 

1930 

1932 

1933 

1935 

1937 

1938 

1941 

1947 

1949 

1951 

1952 

1953 

1956 

1957 

1958 

1967 

1973 

1974 

1978 

1979 

1983 

1985 

1987 

1991 

1992 

1994 

1996 

1997 

By retaining only the units1 digits in the generation of the series we 
actually reduced each sum modulo 10. To be consistent we will reduce mod-
ulo 10 the results of all operations (such as multiplication) to which the ele-
ments of the bracelet are subjected. Thus we deal only with digits in a modular 
arithmetic wherein 3, 9, 7, 1 is a cyclic geometric progression. 
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In o r d e r to es tabl i sh re la t ionships between equidistant digits the b r a c e l e t 

may be wri t ten in s eve ra l rows of va r ious but equal lengths so that each digit 

column cons i s t s of equidis tant digits . 

Digits 180° apa r t may be wri t ten in two r o w s : 

19673 51657 97815 15231 17211 15859 79051 51297 97253 77295 39631 •• • 

91437 59453 13295 95879 93899 95251 31059 59813 13857 33815 71479 ••'• 

So each p a i r of d iamet r ica l ly opposite digits sum to ze ro , and the sum of al l 

the digi ts in the b r a c e l e t i s ze ro . 

All the digits 120° apa r t in the b r a c e l e t may be exhibited in t h ree rowss 

19673 51657 97815 15231 17211 15859 79051 51297 97253 77295 39631 •• • 

97411 39473 37033 39833 37695 77879 15275 93417 57091 77497 77015 •• • 

59071 75035 31217 11091 11259 73437 71839 11451 11811 11473 59419 • • • : 

Each column of pentads is composed of two odd-digit , one even-digi t , and two i 

odd-digit columns. Each pentad column sums to 55055. The digit columns : 

encompass all the se t s of t h r e e odd in t ege r s that sum to 5 except 5, 5, 5 and 

al l the se t s of th ree even in t ege r s , o ther than 0, 0, 0, which sum to zero . 

When the digi ts of the b r a c e l e t a r e wr i t ten in four equal rows the digits I 

in each column a r e 90° apar t . Thus ; 

19673 51657 97815 15231 17211 15859 79051 51297 97253 77295 39631 • • • ' 

37819 53851 71435 35693 31633 35457 17053 53671 71659 11675 97893 •• • • 

91437 59453 13295 95879 93899 95251 31059 59813 13857 33815 71479 ' • • : 

73291 57259 39675 75417 79477 75653 93057 57439 39451 99435 13217 • • • ' 

Each column of digits i s a cyclic permuta t ion of 39 9, 7, 1; 6, 8, 4, 2; 5, 5, 

5, 5; o r 0, 0, 0, 0. Hence each column i s in geomet r i c p rog re s s ion with r = 

3. So success ive mult ipl icat ion by 3 will ro ta te the b r a c e l e t counterclockwise ' 

in 90° jumps . The s ame r e su l t i s obtained by multiplying the b r a c e l e t by 3 , 9, 

7, 1 in o rde r . The sums of the pentads form the a r r a y 
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6 

8 

4 

2 

4 

2 

6 

8 

A DIGITAL BRACELET FOR 1967 

0 

0 

0 

0 

.2" 2 
6 6 

8 8 

4 4 

8 
4 

2 

6 

2 

6 

8 

4 

4 

2 

6 

8 

6 0 

8 0 

4 0 

2 0 

2 

6 

8 

4 

Each of these columns Is in Ge P„ with r = 3. 

When the digits of the b r a c e l e t a r e wr i t ten In five equal rows the digi ts 

in each column a r e 72° a p a r t Thus 

19673 51657 97815 15231 17211 15859 79051 51297 97253 77295 39631 . • 

69173 01157 47315 65731 67711 65359 29551 01797 47753 27795 89131 • • 

19123 51107 97365 15781 17761 15309 79501 51747 97703 77745 39181° -

14173 56157 92315 10731 12711 10359 74551 56797 92753 72795 34131 • -

19178 51152 97310 15736 17716 15354 79556 51792 97758 77790 39136 • • 

Each c o l u m n i s a cycl ic permuta t ion of 0, 5, 5, 5, 5; 2, 7, 7, 7, 7; 4, 9, 9, 9, 

9; 6, 1, 1, 1, 1; o r 8, 3 , 3 , 3 , 3e Each of these se t s de r ives f rom the f i r s t 

se t by addition of an even d ig i t The sum of the digits in every pentad i s even, 

and al l five pentads in a column have the s ame sum. 

When the digits of the b r a c e l e t a r e wr i t ten in s ix equal rows , the digits 

in each column a r e 60° a p a r t Thus 

19673 51657 97815 15231 17211 15859 79051 51297 97253 77295 39631 - . 

51039 35075 79893 99019 99851 37673 39271 99659 99299 99637 51691 • • 

97411 39473 37033 39833 37695 77879 15275 93417 57091 77497 77015 - • 

91437 59453 13295 95879 93899 95251 31059 59813 13857 33815 71479 »-

59071 75035 31217 11091 11259 73437 71839 11451 11811 11473 5 9 4 1 9 -

13699 71637 73077 71277 73415 33231 95835 17693 53019 33613 33095 • • 

The digit columns a r e cycl ic pe rmuta t ions of one of the four pa l indromes 159951, 

208802, 357753 , o r 406604, a l l of which a r e mul t ip les of the f i r s t one; o r of 

the b r a c e l e t s s y m m e t r i c a l about a d i ame te r 193917, 286824, 37931, o r 462648, 

a l l of which a r e mul t ip les of the f i r s t one, The sum of the digits in each of the 

pentads i s even, and the sums of the pentad-digi ts in each column of pentads 

form a cycl ic permuta t ion of one of the four even sequences l i s ted above. 
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The Complete 1560-Digit Bracelet 

19673 

99211 

55853 

31879 

53839 

99019 

31677 

39653 

97893 

75631 

15275 

71491 

17479 

35851 

31611 

33815 

97275 

11417 

19471 

75035 

53637 

75833 

39451 

73617 

73415 

59239 

57013 

91077 

77699 

51657 

37235 

17671 

59037 

33837 

99851 

11653 

37819 

77633 

55459 

93417 

59497 

77037 

93811 

97859 

71479 

15893 

35615 

13273 

31217 

95453 

93833 

99435 

71615 

33231 

37213 

15095 

59891 

15499 

97815 

77217 

15411 

99839 

19077 

37673 

59295 

53851 

91695 

31813 

57091 

99491 

77453 

33859 

91437 

11899 

55257 

79231 

57271 

11091 

79433 

71457 

13217 

35479 

95835 

39619 

93631 

75259 

79499 

15231 

77239 

17097 

99075 

37415 

39271 

51017 

71435 

11631 

35233 

77497 

37011 

91819 

57675 

59453 

73875 

93439 

51073 

77273 

11259 

99457 

73291 

33477 

55651 

17693 

51613 

33073 

17299 

17211 

15837 

39877 

13655 

77093 

99659 

97477 

35693 

11697 

31071 

77015 

91235 

97613 

53031 

13295 

33893 

95699 

11271 

91033 

73437 

51815 

57259 

19415 

79297 

53019 

11619 

33657 

77251 

13251!1967 

15859 

31453 

13891 

95431 

91257 

99299 

53277 

31633 

35491 

97411 

39855 

11079 

77857 

71211 

95879 

33871 

93013 

11035 

73695 

71839 

59093 

39675 

99479 

75877 

33613 

73099 

19291 

53435 

79051 

35671 

19011 

31835 

59677 

99637 

95891 

35457 

93259 

39473 

75293 

73651 

77677 

59611 

93899 

95273 

71233 

97455 

33017 

11451 

13633 

75417 

99413 

79039 

33095 

19875 

13497 

57079 

51297 

93035 

13611 

73831 

99277 

51691 

31497 

17053 

95813 

37033 

93495 

57811 

77891 

75473 

95251 

79657 

97219 

15679 

19853 

11811 

57833 

79477 

75619 

13699 

71255 

99031 

33253 

39899 

97253 

19831 

19235 

57697 

51039 

73011 

11877 

53671 

79095 

39833 

19493 

77611 

53873 

93271 

31059 

75439 

91099 

79275 

51433 

11473 

15219 

75653 

17851 

71637 

35817 

37459 

33433 

51499 

77295 

13835 

99693 

91639 

35075 

57473 

35277 

71659 

37493 

37695 

51871 

53097 

19033 

33411 

59813 

17075 

97499 

37279 

11833 

59419 

79613 

93057 

15297 

73077 

17615 

53299 

33219 

35637 

39631 

95217 

75495 

97837 

79893 

15657 

17277 

11675 

39495 

77879 

73897 

95015 

51219 

95611 

13857 

91279 

91875 

53413 

59071 

37099 

99233 

57439 

31015 

71277 

91617 

33499 

57237 

17839 

• . • • • • 



A GENERAL FIBONACCI FUNCTION 
RICHARD L. HEIMER 

Airborne Instruments Laboratory, Deerpark, L.S., N . Y . 

Probably many of us who have an interest in Fibonacci series have 
plotted F as a function of n on graph paper* If we connect the points with 
straight line segments on cartesian coordinate papers we achieve a contin-
uous piecewise linear Fibonacci Function (see Fig» 1). 

15 + 

0 ff-nri i n i i i r 
0 5 

Fig* 1 The Fibonacci Function 

This Fibonacci Function has many interesting properties other than at 
the integral values of the n. In fact, this function gives r ise to the concept of 
F , where x is any real number. 

If we tabulate the function5 it becomes easier to discern the relation-
ships involved,, 

PARTIAL TABLE OF THE FIBONACCI FUNCTION 
F Versus x (tenths) 

X 

0 
1 
2 
3 
4 
5 
6 
7 

0 

0 
1 
1 
2 
3 
5 
8 

13 

Orl 

.1 
1 

1.1 
2.1 
3*2 
5.3 
8.5 

13.8 

0.2,' 

.2 
1 

1.2 
2.2 
3.4 
5.6 
9.0 

14.6 

0.3 

.3 
1 

1.3 
2.3 
3.6 
5.9 
9.5 

15.4 

0,4 

.4 
1 

1.4 
2.4 
398 
6.2 

10.0 
16,2 

0.5 

.5 
1 

1.5 
2.5 
4e0 
6e5 

10.5 
17*0 

0.6 

.6 
1 

1.6 
2.6 
4*2 
6.8 

11.0 
17.8 

0.7 

.7 
1 

1.7 
2.7 
4.4 
7.1 

11.5 
18*6 

0.8 

.8 
1 

1.8 
2.8 
4.6 
7.4 

12.0 
19.4 

Q»9 

.9 
1 

1.9 
2.9 
4.8 
7.7 

12.5 
20.2 

\A a 
0 

.1 

.1 

.2 

.3 

.5 

.8 

(Example: F6o3 = 9.5) 
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One immediately notes that between x = 0 and x = 1, F = x. B e -
cause of this, it is convenient to set 

x = n + r , 

where n is an integer and r is the balance less than unity. Thus: 

F = r r 

i+r 
F 
2+r 

F . = 3+r 
F 
4+r 

F , = n+r 

1 

1 + r 

2 + r 

3 + 2r 

F + F 4r n n-i 

F = F + F r x n n-i 

One may also observe in any column in the table, that any particular 
entry is the sum of the preceding two entries, i. e . , 

F = F +F 
X+l X X-l 

Other interesting properties that are obvious by inspection include: 

2 F , = F . 
n+o. 5 n+2 

„ .p T where L is the Lucas number. 
n+o. 333 n+i ' 

Not so obvious is the fact that there are relationships between the squares 
and the products of the entries in any column of the table. In fact 

F 2 = T(F )(F ^ ) - l l + r2 + r x |_v x - r v x+r J 

and when r is the golden ratio (0.618034) 
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F2 IA = (F )(F ,_ ) x golden v x-i ' x x+i; 

The proof is left to the reader. 
Note also that this function allows any Fibonacci-type sequence to be 

normalized into the r, 1, 1 + r form* For example, a 2, 10, 12, 22- •• 
sequence converts to a 0. 2, 1 • • * general type sequence by dividing by 10. 

CONCLUSION 

In general, this particular method of expressing the Fibonacci Function 
has the potential of being a rich area of Fibonacci discovery. Possibilities 
include verification and reformulation of all Fibonacci formulae,, Also an in-
verse table of F f s versus all the real numbers maybe formed and investigated* 

Because this function represents the normalization of all Fibonacci-type 
sequences, any results should demonstrate broad fulfillment of the goals of 
the investigator. 
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A 1ESULT FOR HERONIAN TRIANGLES 
J . A . H. HUNTER 

Toronto, Ontario, Canada 

Arising from some particular solutions communicated to me by Mr, W. 
W8 Horner, I developed what seemed to be a new approach to the general prob-
lem of Heronian triangles® The results were interesting. 

In such a triangle all three sides, and also the area, must be integral. 
Hence all three altitudes must be rational, as must be the sines of all three 
angles. It can be shown that the sides of such a triangle are divided into ra -
tional segments by the altitudes so that the cosines are also rational. 

Now consider a Heronian triangle with sides a, b, c, with angle C con-
tained by sides a and b9 

Say, sin C = 2xy/(x2 + y2), cos C = (x2 - y2)/(x2 + y2), where x and y 
are positive integers, x > y. 

Using the cosine formula: 

cos C = (a2 +b 2 - c2)/2ab = (x2-y2)/(x2 + y2) 

So, 

(x2 + y2)c2 = (x2 + y2)(a2 + b2) - 2 ( x 2 - y 2 ) a b . 

[(x2 + y2)c]2 = (x2 + y2)2a2 - 2C*4 - y4)ab + (x2 + y2)2b2 

= j > 2 + y 2 )a] 2 - 2(x4 - y4)ab + (x2 - y 2 ) ^ 2 + 
+ 4x2y2b2 

= [fx2H-y2)a - (x2 - y 2 )b] 2 + (2xyb)2 , 

which has the fully general integral solution* 

(x2 + y2)c = (m2 + n2)t J m and n any positive integers, 
(x2 + y2)a - (x2 - y2)b = (m2 - n2)t ) m > n. And t a common ra -

xyb = mnt 1 tional divisor or multiplier. 

Then 
484 
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xy(x2 + y2)a = [xy(m 2 - n2) + (x2 - y2)mn].t J 

xy(x2 + y2)b = (x2 + y2)mnt \ 

xy(x2 + y2)c = xy(m2 + n2)t 1 

Without loss of generality* say t = xy(x2 + y2)k, them 

a = j y.y(m2 - n2) + (x2 - y2)mn] k J where k is any 

b = (x2 + y2 )mhk > rational common 

c = xy(m2 + n2 )k J divisor or multiplier, 

The Heronian formula for area of a triangle is: 

A = Vs(s ~a ) ( s -~~bj(s - c) , 

where 

2s = s + b + c . 

Hence5 substituting for a, b, cs we have: 

Area = xymn(xm - yn)(xn + ym)k2 . 

The results cover all Heronian triangles, 

. • • • • • 

A NOTE OF SADNESS 

Mark Feinberg, a sophomore at the University of Pennsylvania, died Oct 
29, 1967, from injuries sustained in an automobile-motorcycle collision* It 
is a tragic loss to the Editorial Staff of the Fibonacci Quarterly Journal, as 
Mark had already published two articles in our pages„ Included in this issue 
is a paper he last submitted, 

This young scholar, Mark Feinberg, was both a brilliant young student 
and a winner of many prizes and scholarships, ( C o n t i n u e d on page ^+90 ) 



A LUCAS TRIANGLE 
MARK FEINBERG 

Student, University of Pennsylvania, Philadelphia, Pennsylvania 

It i s well known that the Fibonacci Sequence can be der ived by summing 

diagonals of Pasca l 1 s Tr iangle , How about the Lucas Sequence? Is t he r e an 

a r i thmet ica l t r iangle whose diagonals sum to give the Lucas Sequence? 

One such t r i ang le i s genera ted by the coefficients of the expansion (a + 

b ^ f e . + 2b) : 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

column r 

, 1 3 4 7 11 

v 3 ^ W 
1 ^ 9 7 9 y 1 / /V V 

\ 1^ 1 20 30 25 

1 ^ 8^ 27 50 55 

1 ^ 9 35 77 105 1 'WO 44 112 182 

1 11 54 156 294 

18 

2 

11 

36 

91 

196 

378 

29 

2 

13 

49 

140 

336 

47 76 123 ••• 

2 

15 2 

64 17 2 

204 81 19 2 

9 10 11 

The sum of the number s on row n i s 3 X 2 n - l F o r row n 

1 + 6 + 14 + 16 + 9 + 2 = 48 = 3 X 2 4 

The n row has n + 1 t e r m s e Each number of this Lucas Tr iang le i s 

the sum of the number above it and the number to the left of that one. Except 

for the f i r s t columns the sum of the f i r s t R n u m b e r s in column r equals the 

R number of column r + 1: 

2 + 5 + 9 + 1 4 = 30 

4 8 6 
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For r > 1, any number of the triangle can be expressed as 

nl (n - 1)1 
(r - 1)1 (n - r + 1)1 (r - 2)1 (n - r + 1)1 

For example, the 5th number of row 7 is 55: 

•W3i + # 3 T = 35 + 20 = 55 

Actually, one can find row n of this Lucas Triangle by adding row n of 
Pascal1 s Triangle to row n - 1 of Pascal1 s Triangle: 

1 

1 

1 

1 

J> * 
2 1 \ 
1 1 / 
3 3 
1 2 

4 6 
1 3 

2 

> 1 3 

O * 
4 1N 

3 1^ 

Figure 1 

This fact is not extremely surprising. By summing the n diagonal of 
the Lucas Triangle, one is actually simultaneously adding the (n + l ) s t and the 

st st 
(n - 1) diagonals of Pascal*s Triangle. The (n + 1) diagonal of Pascal 's st Triangle adds up to F ; the (n - 1) , diagonal sums, to F - and one 
Fibonacci-Luc as identity is ; 

F ^ + F 4 = L . n+l n-1 n 

The vertical columns of the Lucas Triangle are of interest. Notice that 
the second column, r = 2, is equivalent to enumeration. From the general 
expression, any number in this column is 

nl ( n - 1)1 
11 (n - 1)1 01 (n - 1)1 
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The R number c 
ber can be expressed as 

The R number of this column is on row n = R. Thus the R num-

RI (R- 1)1 
i! (R - l) : o: (R - i ) : 

Any number in the third column, r = 3, is given by 

nj (n - 1)1 
"22 ( a - 2)1 12 (n - 2)1 

The R number of this column is on row n = R + 1. The R number is 
then given by 

(R + 1)1 R! 
2T(R - i): m i " 3 ! ! ! 

= (R + 1)1 + 2(R2) = R2 (R + 1 + 2) = R(R + 3) = R2 + 3R 
22 (R - 1)1 22 (R - 1)2 2 2 

The 6th number of the column is 27: 

36 + 18 27 . 

One can generalize to say that the R number of the column which be-
gins on row n = N is given by 

(R + N - 1)2 (R + N - 2)2 
N2"(R - 1)2 IN - 1)2 (R - 1)2 

The 4th number of the column which starts on row n = 6 is 140: 

(4 + 6 - 1)2 (4 + 6 - 2)2 _ 92 , 8 2 _ _ 
62 (4 - 1)2 + 52 (4 - l ) ~ " "gTsF "sTsT - 84 + 56 - 140 

Pascal 's Triangle is symmetric. Flipping the Triangle around doesnTt 
change it. Not so with the Lucas Triangle. Rotating the Lucas Triangle 180° 
gives: 
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row n 
1 
2 

3 

4 

5 

6 

7 

column r 

2 3 . 5 8 13 

1 / //// 2 l / / / y \*/* y / / / 
K5 /i>7> 

2 ^ 7 9 / ^ 5 .1 
2 ^ 9 ^ 16 . 14 6 

/ / X 

Z ' \ \ ' 25 30 20 
2 M 3 36 55 50 
2 / 1 5 49 91 105 
2 17 64 140 196 

21 
/ / 

1 

7 

27 

77 

182 

34 55' 89 

1 
8 1 

35 9 1 
112 44 10 1 

• 1 0 

Summing diagonals of this arrangement gives the Fibonacci Sequence* 
This can be explained by referring to Figure 1* The n diagonal of the ro-
tated Lucas Triangle is the sum of the n and n + 1 Pascal diagonals* 
The n Pascal diagonal of the rotated Lucas Triangle sums to 

F + F , = F , . n n+i n+2 

The second column of this rotated triangle is composed of the odd num-
bers, Any number in this column can be expressed as 

nl ( n - 1):,. 
(n - 1)11! (n - 2)11! 

Since the R number of the column is on row n = R3 the above expression 
is equivalent to 

_ _ _ _ _ i < R - *>* 
(R - 1): II (R - 2)1 1! 

RI R + R - 1 = 2 R - 1 . 

Perhaps the most interesting of all the Lucas Triangle's vertical columns 
is the third column of the rotated arrangement Here5 the R number is R2

0 

The expression for any number of this column is 
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nl (n - 1)1 
(n - 2)1 21 (n - 3)1 21 ° 

Since the R number of the column is on row n = R + 1, the R number 
is given by 

(R+ 1)1 • RI 
(R - 1 ) : 21 (R - 2):1T 

= (R + 1)1 + (R- 1)(RI) = R K R + l + R - l ) 
" (R - 1)121 (R - 1): 21 

_ R(2R) = R 2 

~2 * • 

In general, the R number of the column which begins on row n = N 
of the rotated triangle is 

(R + N'- 1)! (R + N - 2)1 
(R- l)JNi. . (R - 2)1 N! 

For example, the 5th number of the column beginning on row n = 4 is 
105: 

(5 + 4 - 1): (5 + 4 - 2)! = _8l_ 71 
(5 - 1): 41" (5 - 2)! 41 41 4S 31 41 

n-l 
In conclusion, the coefficients of the expansion (a + b) (a + 2b) pro-

duce an interesting Lucas Triangle, This triangle is not, however, unique, 
Quite conceivably, utilization of various other Fibonacci-Lucas identities will 
lead to different and, perhaps, even more interesting Lucas Triangles, 

• • • • • 

Mark's younger brother, Andrew, is also a Science Fair Champion, and 
we hope soon weTll have the privilege of publishing his first mathematics paper. 

The following are Mark!s Fibonacci Quarterly papers: 
1. Fibonacci-Tribonacci Oct 1963 
20 New Slants Oct. 1964 
3. Lucas Triangle Dec 1967 

• • • • • • 



VOfJiE INDEX 

ALLEN, Harold Don* P r o b l e m Solved: B-109, p . 469. 

ALEXANDERSON, G. L„ P r o b l e m s Solved: B-102, p, 289; P rob l em Proposed 
B-123, p . 2888 

ANGLIN, Rober t Ho P r o b l e m Solved: H-65, p . 75. 

BERG;, Murray0 P rob lem Solved: H-65, p . 75. 

BICKNELL, Marjor ie c "Equations Whose Roots a r e the n P o w e r s of the 
Roots of a Given Cubic Equa t ion ," (Co-authored with N. A. Dra im) , pp» 
267-274. P r o b l e m s Solved: H-65, p8 76; H-575 p . 80. 

BIGGS, John H. P r o b l e m s Solved: B-100, p. 467; B-109, p . 469. 

BREAULT, Dermot t A. P r o b l e m Solved: H-37, p. 80. 

BRIDGER, Clyde A, P rob lem Proposed : B-94 , p.., 203. „ P rob l em Solved: 
B-94, p0 203. 

n TVI 
BROUSSEAU, Bro the r Alfred. "Summation of %: A k F. _, Fini te Difference 

^ k = i k+r 
A p p r o a c h , " pp. 91-98. Edi tor ia l , pp. 169-170. "A Fibonacci Gene ra l -
ization, Tf pp. 171-174. "196 7 a s the Sum of Squares , " p.. 208. "Popu-
lation Explosion,Tf p . 444. P rob lem Proposed : B-95 , p . ,204.'. P r o b l e m 
Solved: B-95 , p . 204. 

BROWN, J . L. , J r . "On L a m e ' s T h e o r e m , " pp. 153-160e P r o b l e m s P r o -
posed: H - l l l , p. 71; B-92, pa 111; H-71 , p . 166; B-118, p . 287. P r o b -
l e m s Solved: H-64, p . 75; H-68, p . 80; H-48, p . 80; H-57, p . 80; H-74, 
p . 80; H-71 , p . 166; H-75, p . 438. 

BUCKNELL, R. S. . "Fibonacci Numbers and Some P r i m e R e c i p r o c a l s , " pp» 
294-297. 

BUTCHART, J . H. P r o b l e m Proposed : B-12.4, p* 4640 

BYRD, P . F . P rob l em Proposed : H-61 (correc ted) , p . 72; P rob lem Solved: 
H-66, p . 78. 

CARLITZ, L. P r o b l e m s Proposed : H-106, p . 70; H-112, p . 71; B-110, pp. 
108, 409; B - l l l , pp. 108, 470; B-116, p . 202; B-117, p . 202; H-119, 
p . 251. P r o b l e m s Solved: B-98, p . 206; B-99, p . 207; H-77, p . 257; 
B-100, p . 288; B-104, p . 292; B-110, p . 469; B - l l l , p . 470; H-78, 
p . 439; H-79, p . 441; H-80, p . 442. 

491 



492 VOLUME INDEX [Dee, 

CHURCH, C. A . , J r . , "La t t i ce Point Solution of the General ized P rob l em o f 
T e r q u e m and an Extension of Fibonacci Numbers , T f (co-authored with 
H8 W. Gould), pp. 59-68. P r o b l e m Proposed : H-70, pp. 165, 253. 
P rob l em Solved: H-70, p . 253. 

COHN, J o h n H . E. "On m - T i c Res idues Modulo m , " pp. 305-318. 

DAYKM, D. E. "Identi t ies for P roduc t s of Fibonacci and Lucas N u m b e r s , " 
pp. 367-369. "Bases for Infinite In te rva ls of In tegers , " pp. 329-345. 

DENCE, Thomas P . P r o b l e m s Proposed : B-101 , p . 288; B-129, p . 465, 
P r o b l e m s Solved: B-101 , p . 288; B-92, p. I l l ; H-79, p . 441. 

DESMOND, J a m e s . P r o b l e m s Solved: H-65, p . 76; H-68, p . 80; B-88 , p . 108; 
B-89, p . 109; B-90, p . 109; B-92, p . I l l ; H-59, p. 436. 

DRAIM, N. A. "Equations Whose Roots a r e the n Power s of the Roots of a 
Given Cubic Equation, " (co-authored with Mar jor ieBickne l l ) , pp. 267-74. 

DRESEL, L. A. G. "Identi t ies for P roduc t s of Fibonacci and Lucas Numbers , " 
pp. 367-369. 

DUNCAN, Dewey C. "Chains of Equivalent F ibonacci -Wise T r i a n g l e , " pp. 87-
88. P r o b l e m s Solved: B-95 , p . 204; B-98, p . 206; B-99, p . 207. 

DUNCAN, R. L. "An Application of Uniform Distr ibut ions to the Fibonacci 
Numbers , " p p . 137-140. 

EDGAR, Gerald. P rob l em Proposed : B-112, p . 201. P r o b l e m s Solved: B-101 , 
p . 289; B-103, p . 291. 

ELMORE, Mer r i t t . "Fibonacci Funct ions , " pp. 371-382. 

FEEMAN, G. F . "On Rat ios of Fibonacci and Lucas Numbers , " pp. 99-106. 

FEINBERG, Mark. "A Lucas Tr iang le , " pp. 486-490. 

FERNS, H. H. P r o b l e m s Proposed : B-106, pp. 107, 466; B-115, p . 202; 
H-121, p . 252; B-104, p. 292. P r o b l e m s Solved: B-88 , p . 108; B-89 , 
p . 109; B-90, p . 109; B-104, p . 292; B-100, p . 467. 

FIELDER, Daniel C. "Cer ta in Lucas -L ike Sequences and The i r Genera t ionby 
Pa r t i t i ons of N u m b e r s , " pp. 319-324. " R e m a r k s on Two Related Sequences 
of Numbers , " pp. 325-328. 

FLORES, Ivan. "Direc t Calculation of k -Genera l ized Fibonacci N u m b e r s , " 
pp. 259-266. 

FORD, Gary G. " R e c u r r e n c e Relat ions for Sequences Like F p , " pp. 129-
136, "A Shift F o r m u l a for R e c u r r e n c e Relat ions of Orde r m, " pp. 4 6 1 -
463. 



1967] VOLUME INDEX 493 

FRAY, Rober t . "A Generat ing Function Associa ted with the Genera l ized 
St i r l ing Numbers , " pp0 356-366. 

FREITAG, Her ta T. P r o b l e m s Solved: B-100, p . 288; B-101 , p . 289; B-102, 
p . 289. 

GOOTHERTS, J. W. P r o b l e m Proposed : H-67, p . 78. P rob l em Solved: H-67, 
p . 78. 

GOULD, H. W. "La t t i ce Point Solution of the Genera l ized P r o b l e m of Te rquem 
and an Extension of Fibonacci Numbers , " pp. 59-68. "Note on a Combin-
a tor ia l Identity in the Theory of Bi -Colored G r a p h s , " pp. 247-250. f*The 
Bracke t Function, q-Binomial Coefficients, and Some New Stir l ing Num-
b e r F o r m u l a s , " pp. 401-423. P r o b l e m s Proposed : H-62 (corrected) , 
p . 71; H-68, p . 79. P rob l em Solved: H-68, p . 79. 

HALTON, John H. "Some P r o p e r t i e s Associated with Square Fibonacci Num-
b e r s , " pp. 347-354. 

HEADLEY, Stephen. P r o b l e m Proposed : H-115, p . ' 1 6 2 . 

HEIMER, Richard L. "A Genera l Fibonacci Function, " pp. 481-483. 

HENNING, H. G. "Pythagorean Tr i ang le s and Related Concepts ," pp. 185-1929 

HILLMAN, A. P . E lementa ry P r o b l e m s and Solutions Edited, pp. 107-112; 
201-207; 287-293; 464-471. 

HILTON, A. J , W. "Bases for Infinite In tervals of In tegers , " pp. 329-345. 

HOGGATT, V. E. , J r . "The Heights of Fibonacci Polynomials and an Assoc i -
ated Function, " pp. 141-152 (co-author: D. A, Lind). "Fibonacci Num-
b e r s and Generated Binomial Coefficients, " pp. 383-400. "A P r i m e r for 
the Fibonacci Number s : P a r t VI, " pp. 445-460 (co-author: D. A. Lind)a 
P r o b l e m s Proposed : H-104, p0 69; H-60, p . 71; B-108, pp. 107, 468; 
B-109, pp. 107, 468; H-113, p0 161; H-114, p . 161; H-116,p. 162; H-73, 
p . 255; H-77, p . 256; H-78, p. 438. P r o b l e m s Solved: B-108, p . 468; 
B-109, p . 469. Advanced P r o b l e m s and Solutions Edited, pp. 69-80, 
161-168. 

HOMER, John E. , J r . P r o b l e m Solved: B-92 , p . 111. 

HORADAM, A. F . "Special P r o p e r t i e s of the Sequence W (a ,b ;p , q ) , " pp. 424-
434. n 

HUNTER, J . A. H. "A Resul t for Heronian T r i a n g l e s , " pp. 484-485. P r o b -
l e m s Proposed : B-100, p . 288; B-126, p . 465; H-124, p. 435; H-79, 
p . 440; H-80, p . 441. P r o b l e m s Solved: B-88 , p . 108; B-100, p . ' 288. 

HUNTLEY, H. E. P r o b l e m Proposed : H-108, p . 70. 

IVANOFF, Vlad imir . P r o b l e m Proposed : H-107, p . 70. 



494 VOLUME INDEX [Dec 

JACKSON, Will iam T. P rob l em Solved: B-100, p8 288, 

JARDEN, Dov« "Exis tence of Arb i t r a r i l y Long Sequences of Consecutive Mem-
b e r s in Ar i thmet ic P r o g r e s s i o n s Divisible by A r b i t r a r i l y Many Different 
P r i m e s j f ? p . 280* "Simultaneous P r i m e and Composi te M e m b e r s in Two 
Ari thmet ic P rogress ions* M p8 286 (co-authored with Moshe Ja rden ) . "A 
New Important F o r m u l a for Lucas Numbers , " p, 346. 

JARDEN, Moshe, "Simultaneous P r i m e and Composi te Member s in Two Ar i th -
met ic P r o g r e s s i o n s , " p . 286 (co- authored with Dov Ja rden) . 

JERBIC, Stephen. P r o b l e m Proposed : H-63, p . 73, 

JORDAN, J . A. "A Limited Ar i thmet ic on Simple Continued F r a c t i o n s , " pp. 
113-128 (co-authored with C. T. Long). 

KARST, Edgar . P r o b l e m Proposed with S. O, R o r e m : H-105, p* 69. 

KLARNER, David. P r o b l e m Solved: H-58, p . 80. 

KONHAUSER, Joseph D. E. P r o b l e m s Solved: B-88 , p . 108; B-92, p . 111. 

KRAVITZ, Sidney. P r o b l e m Solved: B-95 , p . 204. 

LEDIN, George, J r . "On a Cer ta in Kind of Fibonacci Sums ," ppc 45-58. " C o r -
rec t ions to !On a Cer ta in Kind of Fibonacci S u m s 1 , " p . 168. P r o b l e m s 
Proposed : H-109, p0 70; H-110, p . 70; H-117, p . 162; H-118, p . 162. 

LIND, D. A. "The Q Matr ix a s a Counterexample in Group Theory , " p . 44. 
" I t e ra ted Fibonacci and Lucas Subscr ip ts , " pp. 89-90; "The Heights of 
Fibonacci Polynomials and an Associa ted Function, " pp. 141-152 (co-
authored with V. E. Hoggatt). "Extended Computations of T e r m i n a l Digit 
Coincidences, " pp. 183-184. "A P r i m e r for the Fibonacci Number s : P a r t 
VI, " pp. 445-460 (co-authored with V. E. Hoggatt, J r ) . P r o b l e m s P r o -
posed: H-64, p . 74; H-76, p. 76; B - 9 1 , p . 110; B-113, p . 201; B-97, 
p . 205; B-98 , p . 206; B-99 , p0 206; B-103 , p . 290; H-75, p . 437; H-123, 
p . 435; B-125, p . 464; B-130, p. 465. P r o b l e m s Solved: H-61 , p . 72; 
H-63 , p . 74; H-64, p . 74; H-66, p . 77; H-52, p . 80; H-68, p . 80; B-88 , p . . 
108; B-90,.»p, 109; B - 9 1 , p. 110; B-92, p . I l l ; B -93 , p . I l l ; B-77, p . 
205: B-98 , p . 206; B-99 , p . 207; H-73, p . 256; B-100, p . 288; B-101 ,p . 
289; B-103 , p . 292; B-104, pe 292; B-105, p. 293; H-80, p. 433; B-106, 
p . 467; B-107, p . 467; B-108, p . 468; B-109, p. 469. 

LOMBARD, Will iam C. P r o b l e m Proposed : H-114, p # I61 e P r o b l e m s Solved: 
B-100, p . 288; B-101 , p . 289; B-106, p0 467; B-107, ps 468; B-108, 
p . 468; B-109, p . 469. 

LONG, C. T„ "A Limited Ar i thmet ic on Simple Continued F r a c t i o n s , " pp. 113-
128 (co-authored with J . H, Jordan),, 

MANA, Phil . P r o b l e m s Proposed : B-90, p. 109; B-96 , p . 204; B-120, p„ 287; 
B-121 , p . 287; B-105, pe 292. P r o b l e m s Solved: B-96, p . 205; B-105, 
p . 292; B-90, p . 109* 



1967] VOLUME INDEX 495 

MANDELSON, Joseph* "Amateur In t e r e s t s in the Fibonacci Ser ies II — Cal -
culation of Fibonacci Numbers and Sums from the Binomial , M pp. 275-
279. 

MERCER, Rober t L. P rob l em Solved: B-105, p . 293. 

MILSON, J o h n W . P rob l em Solved: B-101 , p . 289. 

MOHANTY, S. D. "Res t r i c t ed Composi t ions , " pp. 223-234. 

MONTLEAF, A. J . P r o b l e m Proposed : B-122, p. 288. 

N E F F , John D. MA Markov Limit P r o c e s s Involving Fibonacci N u m b e r s , " 
pp. 179-182. 

PADILLA, Gloria C. P r o b l e m Proposed : B-114, p . 201. 

PARKER, F . D. P r o b l e m s Solved: H-64, p . 75; H-67, p . 78; H-5J , ,p. 80; 
H-52, p . 80; B-88 , p . 108; B-94, p . 203; B-98 , p . 206; B-100, .p. 288; 
B-101 , p . 289; B-104, p„ 292; B-108, p . 468; B-109, p . 469; . H-79, p . 
441; H-80, p , 443a 

PECK, C. B. A. P r o b l e m s Solved: H-65, p. 76; H-68, p . 80; 1 H-*52,-,.p.. 80, 
B-88 , p . 108; B-89 , p . 109; B-90, p . 109; B - 9 1 , p . 110; JB-92, p . I l l ; 
B-97, p . 205; B-100, p . 288; B-106, p. 467; B-107, p . 468; B-108, p . 
468; B-109, p . 469. 

P E T T E T , Mart in . P r o b l e m Proposed : B-93 , p . 111. P rob l em Solved: B-93 , 
p . 112. 

POND, J e r e m y C. P r o b l e m s Solved: B-88 , p . 108; B-89, p. 109; B-90, p„ 109; 
B - 9 1 , p . 110; B-92, p . 111. 

PRUITT, Robert , "Fibonacci and Lucas Numbers in the Sequence of Golden 
N u m b e r s , " pp. 175-178. 

RABINOWITZ, Stanley. P r o b l e m Proposed : H-125, p . 436. 

ROBINSON, D. W. P r o b l e m Proposed : H-59, p . 71e 

ROREM, S. O. and Kar s t , Edgar . P r o b l e m s Proposed : H-105, p . 69; H-59, 
p . 436. 

ROSELLE, D. P . "Enumera t ion of Cer ta in Tr i angu la r Ar rays , T f pp. 235-246. 

RUMNEY, Max. P r o b l e m Proposed : H-80, p . 441. 

SACKS, Louis . "Another Genera l ized Fibonacci Sequence, " pp. 209-222 (co-
authored with Marce l lus E. Waddill). 

SEAMONS, Rober t S. P r o b l e m s Proposed : B-89 , p . 108; B-107, pe 107, 467, 
P r o b l e m s Solved: B-89 , p . 109; B-107, p . 468. 

SHANNON, A. G. P r o b l e m s Solved: B-100, p . 288; B-104, p . 292; B-106, 
p . 467; B-107, p . 468; B-108, p . 468. 

SJOHERG, John C. P r o b l e m Solved: H-69, p . 163. 

STOCKS, Douglas R . , J r . "Relat ions Involving Lat t ice Pa ths and Cer ta in 
Sequences of In tegers , pp. 81-86. Cor rec t ions to above, p . 194. 



496 VOLUME INDEX Dec. 1967 

SWAMY, M. N. S. P r o b l e m s Proposed : H-699 p . 163; H-120, p . 252; B-128, 
p . 465. P r o b l e m s Solved: H-68, p . 80; H-57, p . 80; H-6B,pfc 165; B-94, 
p. 203; B-98 , p. 206; B-99, p . 207; H-64, p . 25b; H-71 , p . 258; . H-72, 
p . 258; H-73, p . 258; H-77, p . 258; H-79, p . 441; H-80, p . 443; 'B-JLOO, 
p . 46S; B-101 , p . 466; B-104, p . 466; B-106, p . 467; B-108, p... 468; B -
109, p . 469. 

TAYLOR, Laurence . "Res idues of F ibonacc i -Like Sequences , " pp. 298-304. 

TRIGG, Char l e s W. "Cor rec t ion to fA Recur s ive Generat ion on Two-Digit 
I n t e g e r s 7 , " p . 160„ "Picking Away at 1967 , " p . 355. " L e t t e r to the 
Edi tor , " p . 370. "Getting P r i m e d for 1967, " pp. 472-473. "Cur iosa in 
1967 , " pp. 474-476. "A Digital Brace le t for 1967 , " pp. 477-480. P r o b -
l e m s Solved: B-95 , p . 204; B-108, p . 469. 

WADDILL, Marce l lus E. "Another Genera l ized Fibonacci Sequence," pp. 209-
222 (co-authored with Louis Sacks). 

WALL, Char les R. P r o b l e m s Proposed : B-127, p. 465; B -131 , p . 466. P r o b -
l e m s Solved: H-48, p . 80; H-57, p . 80; B-106, p . 466; B-108, p . 468; 
B-109, p . 469. 

WALTON, Howard L. P r o b l e m Solved: B-98, p . 206. 

WELAND, Kathleen. "Some Rabbit Product ion Resu l t s Involving Fibonacci 
N u m b e r s , " pp. 195-200. 

WESSNER, John. P rob l em Proposed : B-88 , p . 108. P r o b l e m s Solved: H-68, 
p . 80; B-88 , p . 108; B-90 , p . 109; B-106, p . 467; B-109, p . 469. 

WESTERN, A. B . , J r . P r o b l e m Solved: H-65, p . 76. 

WHITNEY, Raymond E. "A P r o p e r t y of Linear Recurs ion Re la t ions , " pp. 2 8 1 -
285. P r o b l e m s Proposed : H-66, p . 76; H-122, p . 252. P r o b l e m Solved: 
H-66, p . 77. Advanced P r o b l e m s and Solutions Edited: pp. 2'51-258;.c 
435-443. 

WLODARSKI, J . "Achieving the 'Golden Ratio* by Grouping the 'E l emen ta ry ' 
P r inc ip l e s , " pp„ 193-194. P r o b l e m Proposed: H-65, p . 75. P r o b l e m 
Solved: H-65, p . 75. 

WOOLUM, Jim„ Problem Proposed : B-119, p . 287. 

ZEITLIN, David. "On Summation F o r m u l a s and Identi t ies for Fibonacci Num-
b e r s , " pp. 1-43. Correc t ion to above, p . 182. P rob l em Proposed : H-103, 
p0 69; P r o b l e m s Solved: H-64, p . 74; H-66, p . 78; B-98 , p . 206; B-99, 
p . 206; B-100, p . 288; B-101 , p . 289; B-104, p . 292; H-68, p . 80; B-88 , 
p . 108; B-89, p . 109; B-90, p. 109; B-92, p . I l l ; B-106, p . 467; B-107, 
p . 468; B-108, pe 468; B-109, p . 469. 

• • • • • 


