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A FIBONACCI FUNCTION 
Francis D. Parker 

St. Lawrence Universi ty, Canton, N . Y . 

Eric Halsey [1] has invented an ingenious method for defining the Fib-
onacci numbers F(x)stwhen x is a rational number. In addition to the res t r ic -
tion that x must be rational, his calculations yield 

F(4.1) = 3.155, F(3.1) = 2.1, F( l . l ) = 1.1 , 

so that the Fibonacci identity 

F(x) = F ( x - 1) + F(x - 2) 

is destroyed. 
Fortunately, both of these defects can be remedied, and we can establish 

a function F(z) which (a) coincides with the usual Fibonacci numbers when Z 
is an integer, (b) is defined for any complex number z (c) is differentiable 
everywhere in the complex plane, and (d) is a real number when z is real, 

The construction is not difficult. Let A be the larger of the two roots 
of 

y 2 - y - 1 •= 0 . 

Then the Fibonacci formula 

xn > i \n x -n 
F ( n ) = A - ^ k 

V5 

could be applied directly for n a real number, but would be complex at, for 
example, x = 1/2. By replacing (-1) by a. real-function which takes on the 
value -1 for n odd and 1 for n even, we can extend F(n) to all real val-
ues of n. Such a function is cos 7m. Hence a Fibonacci function canbe written 
as 

1 



2 A FIBONACCI FUNCTION Feb. 1968 

F(z) = ^Z - (cos7Tz)A'"Z 

V5 

An examination of this function shows easily that the stated properties are in-
deed satisfied, 

It is possible to take this one step further. Any solution to the Fibonacci 
difference equation 

F(n) = F(n - 1) + F(n - 2) 

can be similarly treated to yield the equation 

F(z) = C:lXZ + C2 (cos 77-z)A~z 

where Ci and C2 are determined from initial conditions, 
In fact, it is possible to generalize even further and produce a similar 

formula for the solution of the difference equation 

f(n) .= af(n - 1) + bf (n -2). 

Such a formula is 

f(z) = Ctkz + c 2 b z (COSTTZ)A""Z , 

where A is a solution to the quadratic equation 

y2 - ay - b = 0 . 

In case these roots are equal, this formula takes the form 

f(z) = CiAz + C2zAz . 

1. Eric Halsey, "The Fibonacci Number Fu, where u is not an Integer," The 
Fibonacci Quarterly, Vol. 3, No, 2, pp. 147-152. 

• • * • * 



FACTORIZATION OF 2 X 2 INTEGRAL MATRICES WITH DETERMINANT ± 1 
Gene B. Gale 

San Jose State Col lege, San Jose, Ca l i f . 

1. CANONICAL PRODUCTS AND CANONICAL REPRESENTATIVES 

Let Z denote the integers and M2(Z) 

M2(Z) = U J M : a, b, c, d E Z , 

the set of 2 X 2 integral matrices. The matrices of M2(Z) which have in-
verses in M2(Z) are denoted by GL(25 Z), ie e0 , 

GL(2SZ) = | x G M 2 ( Z ) : det x = ±1} . 

We shall develop an algorithm which uses various properties of the Fibonacci 
numbers for expressing any element of GL(2S Z) as a product of powers of the 
matrices 

A = {11) - B - ( i j ) 

This of course implies that A and B generate GL(2, Z), a result which has 
been noted elsewhere [3]9 The algorithm forms part of the author1 s B, A. 
thesis written under the direction of B. Hunt at Reed College in 1957. 

1.1 Definition; A "canonical product" is any product of the form 

U = Aan B^ Aan"i B ^ " 1 8 ' ' A3"2 Bb2 Aa* Bb l = ( a J J. , 

where n ^ i and a. > o, b. ^ 0 where we assume strict Inequality except 
possibly at i = n and i = 1 respectively,, 

We note that 

3 



4 FACTORIZATION OF 2X2 INTEGRAL MATRICES [ F e b # 

An / 1 n \ , _>n / n + i F n \ 

where F is the n Fibonacci number of the following sequence: 

n: 0 1 2 3 4 5 6 7 : 8 9 10 11 12 13 14 15 16 17 18 
F : 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 n 

1.2 Theorem. If 

»- ( :5 )"( , 1 ; ) 
is any canonical product then a ^ c ^ 0, b ^ d > 0. 

Proof. The theorem is true for A and B the products with one factor. 
Suppose the theorem true for any product 

- ( : * ) 

of k factors. Then 

™ - ( i ; X . " d ) - ( , : ° - b ; d ) - : : 

c > c > 0 
d > d > 0 

hence the throrem holds for any product of k + 1 factors and hence, by induc-
tion, for any U. 
1.3 Corollary: Not both c and d are zero and 

i) a => c > 0 unless U = ( * ^ j " ^ ' n ~ ° 

ii) b > d > 0 unless U = ( n * 1 * ) = B A ^ B , n > 0 
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iii) c t d unless U = ( n ^ 1 " J = An - 1B2 , n == 1 
or 

U = (l n +
1

1 j = A ^ B A , n ^ : 

iv) a ^ b unless U = A or B . 
v) c > 0 unless U = t * * J = An 

vi) d < 0 unless U = / * jM = An ^ B . 

Proof. These are immediate consequences of the theorem and the fact 
that det U = ad - be = ±1. 

1,4 Corollary; If 

°- ( :5) ' ( ss ) 
then 

i) a - b > 0 implies c - d > 0 
ii) a - b < 0 implies c - d ^ 0 . 
Proof, i) a > b, c ^ d implies 

ad - be > bd - be > be - be = 0 

Hence ad - be ^ 2, which is impossible. 
ii) a < h, c > d implies b > - a ^ c > d ^ 0 and so b ^ 2, Hence 

ad - be < bd - be = b(d - c) — 2(-l) = -2 which is impossible. 

1.5 Theorem. Let 

u =fa h, 
l e d 

Hi!) 
be a canonical product. Then 
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1. a - b = 0 implies U = A, B. 
2. a - b < 0 implies U ends in A and a - b ^ c ~ d ^ 0 
3. a - b > 0 implies U ends in B and a - b — c - d ^ O . 

Proof. 1 follows from Corollary 1.3. 
2 and 3. The theorem is immediately verified for products of two factors 

*'-(iJ). = , - ( ; 0 ' A B - ( J . 1 ) - B * - 0 0 -
Suppose the theorem holds for products with k or fewer factors and 

» - ( S 5 ) 
is a product with k factors where k ^ 2. Then 

» » - ( : $ X i O - ( c * 5 c) 
and 

( a + b ) - a = b ^ l > 0 and b ^ (c + d) - c = d ^ 0 . 

Note b = 0 implies d = 0 which contradicts det U = ±1. Likewises 

«* • (: s)(J 1) - ( : : : s ) 
hence 

a - (a + b) = -b < 0 and c - (c + d) = -d and -b < -d < 0. 

Thus the theorem holds for products of k + 1 factors and hence for all canoni-
cal products by induction. 

Theorem 1.2 says that if 



1968] WITH DETERMINANT ±1 7 

is a canonical product then a ^ c ^ 0, and b ^ d ^ 0 while Theorem 1.5 
allows one to decide if the canonical product ends in an A or Ba Not every 
unimodular matrixsatisfi.es the conditions of Theorem 1.2 but the following 
theorem characterizes the situation. 

1.6 Theorem. (See [2").) Any matrix 

R =( t u) E GL(2,Z) 

different from I, A, B can, by suitable multiplications by powers of A and 
B, be brought to the form 

D - ( . '5 ) • 
where (a, bs c9 d) is some permutation of (|r|, \s\9 It I, |u|) and a ^ c ^ 0# 

b — d ^ 0. U is called a canonical representative of R. 
Proof. From the condition ru - st = ±1 we can conclude that no three 

of the quantities r9 s9 t, u can be negative and the remaining one positive or 
three of them positive and one negative. There are therefore three remain-
ing cases: 

1. r , s, t, u are all non-negative, 
2. r , s, t, u are all non-positive, 
3. Two of r, s$ t, u are negative, two are non-negative. 

In case 2 we note 

{-i-t)(i:)- U'i 
In case 3 we note 
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(j..:)fr : ) ( i ! ) - ( ? - 0 

While 

(' 0(J°H«0-
.The multipliers can be expressed as follows: 

XB ^ B A " 1 ( ' J ) - A - B . ( J l ) - ^ 

( i o ) ( i o) = \ o ij ' 

(; i)* • (-; -i) • 

Thus we have that 

/ r s \ / | r | |s |\ 

H t u jN = (,t1 J . 
where M and N are suitable products of powers of A and B. 
- |s | | t | = lru| - |st| = ±1 since 1 = |ru - st|=^ ||ru - |st|| and 
not possible Also operating with 

( : : ) 
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we can bring any element, in particular the largest, to the upper left position,, 
If 

is in this form, i. e . , a ^ b, cd ^ 0 then we may assume that b > d. For 
b < d implies ad - be ^ ad - cd = (a - c)d ^ 0 unless a = c* If a = c 
then 

( l o ) ( c d ) = ( a b ) has the property J J £ J J • 

Every unimodular matrix has 2 canonical representatives depending on whether 
a maximal element is brought to the upper left or upper right-hand corner. 
We now prove the converse of Theorem 1,2. 

1.7 Theorem. Every canonical representative of a unimodular 2 x 2 matrix 
is a canonical product. 

Proof. Let 

" - (c8 J ) 

be a canonical representative, i. e . , a ^ c ^ 0, b ^ d ^ 0. If the largest 
element of U = 1 then U = A, B and the theorem holds. Assume the theo-
rem is true for max(a,b) ^ r, where r ^ 1. Then there are two possibili-
ties for max(a,b) = r + 1: 

Case 1. 

Case 2. 

z = / a r + 1 \ 
\ c w / 
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We now analyze Case 1. We have that 0 ^ c, b, d < r + 1 otherwise r + 1 ; 
2 divides det Y = ±1. 

YB"1 / r + 1 b \ / 0 l \ / b r + l - b \ 
\ c d / \ l - 1 / ^ d c - d / 

If d = 0 then b = c = 1 and 

™-'-(s : ) - 0 0 - A ' 
Hence Y = A B is a canonical product. If d ^ 0 then c - d ^ 0 for other-
wise 

J det (YB 1] 

We need only establish that r + l - b > c - d to show that YB~ is a can-
onical representative. If 

det Y = (r + l)d - be = 1 

then 

(r + l)d - bd = 1 + be - bd 

and so 

(r + 1) - b = -1 + ~ ( c - d ) ^ c - d 

since b > d. If 

det Y = (r + l)d - be = -1 

then b, c > d since b, c < r + 1 . 
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Hence 

(r + l ) _ b = § ( c - d ) - ± = (c - d) +^jj - 1 j(c - d) - i 

= (c - d) + i [(b - d)(c - d) - l ] ^ c - d. 

Thus YB~" is a canonical product by induction hypothesis. This implies that 
Y must also be a canonical product* 

Case 2 is analyzed by an analogous treatment of ZA~ . The theorem 
then follows by induction 

2. THE ALGORITHM 

Let U E GL(2S Z). Theorem 1.6 describes how to obtain a canonical 
representative U for XL Theorem 1.7 asserts that U is a canonical product 
and Theorem 1.5 establishes whether U ends in an A or B» The following 
theorems provide a quantitative counterpart for Theorem 1.5. 

2.1 Theorem. If 

" - ( : a ) 

is a canonical product and a - b < 0 then U = UjA where 

and Ui ends in B* 
Proof. If a = 1 we consult Corollary 1.3. If a f 1 we note: 

1. b £ na since b = na implies aldet U = ±1 and a = 1, 
2. a ^ c since a = c implies a = 1. Then 

*Tal is the greatest integer less than or equal to a 
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T T A -n / a b \ / 1 - n \ / a - n a + b \ 
U A " ^ c d / ^ 1 / " \ c - n c + d / " Ui 

[Feb. 

Since 

N = 

a - (-na + b) > 0 . 

Hence if Ui i s a canonical product i t ends i n a B, If - nc + d < 0 then, r e -
cal l ing that a ^ 2, 

det Ui = a(-nc + d) - c ( -na + b) < -2 - c 

which i s imposs ib le . Hence -nc + d ^ 0. F u r t h e r 

r = - n c + d ^ - n a + b 

s ince 

-na + b ^ 0 

impl ies 

det Uj = a r - c ( -na + b) ^ a r = (a - l ) ( r - 1) 

= a r - a r + (a'+ r) - 1 ^ 2 + 1 - 1 = 2 

which i s imposs ib le . 

2.2 Lemma. 

1. 
n ^ a ^ n + 2 ^ V 5 + 1 . . . . _ _ < „- < < .— impl i e s b > F F . b F ^ 

n - i n+i 
n+i 

if n i s even, 

F F 
0 V 5 + 1 n+2 a n . . . , • „ 
2. — g < ^ < *- < ^ impl ies b > F 

n+1 n - i 
n+i 
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if n is odd. 
Proof. We prove 1 using continued fraction notation [ l , Chapter XJ. In 

the following the initial block of ones in the continued fraction symbols will be 
of length n - 1. Also we note 

[X0, Xlf • • • , XJJ, 1 ] = [X0 J Xlf • • • , Xn + l ] 

F 
Y±- = [1.1. •••.!] 

n-l 

is a convergent to 

V 5 + 1 f l 1 -, s = [ 1 , 1, - . J 

If we express 

jj = [a0, als • • •, am] 

as a continued fraction then by the continued fraction algorithm [ l , p. 140] 

TT1 TT 

a r-, -, •* - i - n _ a ^ n+2 
^ = [ 1 , 1, • • • . 1, an - 1 . a,,, a m ] since j r — < ^ F -

'n - i n+i 

i. e.., m ^ n - 1 and a0 = aA = • • • = an_2 

Letting 

[an-i' V " ' V] = an-i = I 

where (r, s) = 1 we have 
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A- = [l , 1, °00, l j < 1, !. '•••, 1, f U [ l , l , - - - , 1 , 2 ] 

Hence 

r F + sF • - F + F 2F + F F , 
2: = n n-i = s n n-i < n n-i __ n+2 
b rF + sF r _, , -, 2F + F • F ^ n-i n-2 - F + F n-i n-2 n+l s n-i n-2 

By the continued fraction algorithm 

r 
n-i s 

Now r / s = 1 implies 

£ = F n + 1 >V5 + 1 
b F 2 

n 

Hence r / s =* 1 and r ^ 2. Likewise, r = 2 implies s = 1 and 

a _ n+2 
& F a., 

n+i 

Hence r > 2. If 

(rF + sF „, r F 4 + sF ) = 1 n n-i n-i n-2 

then 

But 

b > rF "+ sF > F ^ = 2F + F 
n-i n-2 n+i n-i n-2 

d (rF + sF ), d (rF + sF ) T n n - i " l\ n-i n-2 
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impl i e s 

d | j r ( F - F ) + s(F 4 - F )} = r F + s F H n n - i n - i n-2 ' n-2 n-

Hence 

d ( rF i + Fo 

Also 

d f , d (rF, + sF . ), 1 ^ k ^ n 

impl ies d sF , j and hence ^ I k - l 

d F, , 1 ^ k ^ n , I k - r 

s ince (r, s) = 1, Thus d = 1, s ince the F, a r e re la t ive ly p r i m e , a fact 

which can be es tabl i shed in the s a m e r e c u r s i v e manner , 

The s a m e type of a rgument i s used in proving 2. 

2.3 Theo rem. If 

* = ( « * ) • a - b > 0 , b > d > 0 

then U = UiB n , whe re n i s de te rmined by locating a / b with r e s p e c t to the 

sequence of points 

F 2 F 4 F 6 V 5 + 1 F T F 5 F 3 

F i F 3 F 5 2 F 6 F 4 F 2 

and Ui i s a canonical product ending in A o r Uj = A,B» More p r e c i s e l y 9 

F F 
(1) -^—- < ^ < ^ — if n i s even ; 

n - i n+i 
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F F 
(2) -p - b F ' l f n 1S o d d ; 

n+l n-i 

(3) 2 = j r < ^ ,when n = 1 

Finally, if b = d = 1 or d = 0 we consult Corollary -1.3. 
Proof. We prove 1 and note that the proofs to 2 and 3 are analogous. 
Suppose 

F F 
n_ ^ a < n+2 V5 + 1 

F ~ b ~" F ' 2 
n-i n+l 

Then 

( a F , - b F -aF + b F ^ \ 

n-i n n n+i I 
c F - d F -cF + d F _,_ I 

n-i n n n+l / 
We first note that 

(aF ; - bF ) - (-aF + bF ,,) = aF ,, - bF ^0 <; 0 n-i n n n+i n+i n+2 

Hence, if we establish that Ui is a canonical product,then Ui ends in A or 
Ui = A2B. To show mat Ui is a canonical product we note that aF - bF 
> 0 and -aF + bF , > 0, since n n+i 

F F F 
n ^ a < n+2 < n+l 

F A b ~ F' F ' 
n-i n+i n 

This shows that the top row has positive entries. If we show 
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"n- i 
£ 
d 

"n+i 

(ii) n < a - c 
F " b - d n - i 

"n+i 

then the bot tom row i s posi t ive and the columns d e c r e a s e s ince the two 

equations 

(aF - b F ) - (cF - dF ) = (a - c)F - (b - d)F ^ 0 n - l n n - l n n - i n 

( -aF + b F ^ ) - ( -cF + d F _ ) = - ( a - c )F + (b - d)F ., ^ 0 n n+l n n+i n n+i 

a r e equivalent to (ii)0 We now note that 

a c 
b ~ d = ab - be 

bd bd 

for u s e in proving (i)5 

a a - c 
b " b - d 

ab - ad - ab + be 
"b(b - d) 

1 
b(b - d) 

for proving (ii)„ We conclude by proving (i) s ince (ii) i s s imi l a r . 

Since 

n - l 

a 
b 

n+2 
"n+l 

, b 2: F. n+l 

by L e m m a 2.2. If 

£ 
d n - l 

then 
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3 F n - i d F n - i 
A. 
b d ' n-1 

[Feb. 

d F 
n - i 

which i s imposs ib le . Hence 

"n-i 
£ 
d 

Likewise 

impl ies 

F 
£ > n+l 

dF dF 
n+l 

1 
bd 

c 
d ' 

a c 
- b s d -

> 

F ~ n 

d F + " n 

J? i? 
n+l > n+2 

F ~ F ^ n n+l 

1 
F F 

n n+l 

which i s imposs ib le s ince 

F F ^ 
n n+l 

Hence 

—*—» 
F 

n 
F 4 n-1 

a 
b 

£ < 
d "" 

t 

F 
n+2 

F 
n+l 

'"n+l 
F n 

V5 + 1 
2 

F 
n+l 
F n 

c 
d 
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3e EXAMPLE 

/ 2 0 6 1575 \ 
U \ 79 604 J 

i s a canonical product ending in A7, s ince a - b = 206 - 1575 

So tha t 
206 

79 
1575 

604 

1575 
206 = 7 

206 
79 

133 
51 = Ui 

Then, 

" l e b b 133 " l e ^ ' l e b " F* 

hence Ui ends in B4» We note that 

206 133 
k 79 51 

2 -3 
-3 5 ) - ( i ") 

ends in A3
e Since 

13 47 
5 18 

[s]-
)(i'D-(: 13 8 

5 3 = U3 

* ? a 13 J 5 

hence U3 ends in Bb „ 
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ft sKi-0-0 0 = A 

There fo re 

U = AB5A3B4A7 . 

4. TABLE 

•S* = 'T = 2,0000000 
Jb o 1 T £ = § # = 1-6180338 

^ = I = 1.6666667 
r 4 o 

| 1 L = 9 | J = 1.6180328 
J? 15 blO 

4 1 = Ar = 1.6250000 
'13 

377 
233 1.6180258 

4 s = -5? = 1.6190476 
.b p < 5 l 

*J2 
F n 

144 
89 = 1.6179775 

| 1 L = | | = 1.6181818 
Fio 55 Zlfl 55 

34 = TH - = 1.6176471 

F i 3 = 233 
'12 144 = 1.6180556 Is 21 

13 = 1.6153846 

f j = ™ = L6180371 la 1.6000000 

! i l 1597 
r10 987 

= 1.6180344 I 4 = | = 1.5000000 

V 5 + 1 = 1.6180340 £2 = I = 1.0000000 
* 1 x 
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• • • • • 

EIRATJt 

P l e a s e make the following co r r ec t ions in " R e c u r r e n c e Relat ions for Sequences 
Like J F F }, " The Fibonacci Quar te r ly , Apri l , 1967, Vol. 5, No. 2, pp. 129-
136: 

1. Replace "nM by " F " in the f i r s t l ine of the th i rd pa rag raph on p0 129. 

2. Replace the equations of (7?) on page 132 by 

2X ± = X , Y + X Y ^ n+2 n+i n n n+i 
2Y _, = (r - s)2X X + Y ^ Y . n+2 n+l n n+l n 

3. Replace the MajM in the f i r s t l ine of p. 134 by Ma-jM . 

4. Replace the minus sign in the l ine preceding (15) on p. 134 by a plus . 

5. Delete the f i r s t "4ETT on the f i rs t l ine of page 136. 
• • * • • 

P l e a s e a l so c o r r e c t "A Shift Fo rmu la for R e c u r r e n c e Relat ions of Orde r m , f l 

The Fibonacci Quar te r ly , December 1967, Vol. 5, No. 5, pp. 461-4659 by r e -

placing the " p m
n in the sum on the l a s t l ine of p . 462 by n P m _ j " • 

• • • • -k 

P l e a s e make the following co r r ec t i on in 

?T The Fibonacci Quar te r ly , November , 1967, Vol. 5, No. 43 p . 370: 

In the fourth l ine f rom the bot tom, r ep l ace "difference of each pairM with 

"differences of the p a i r s . M 



ON A PARTITION OF GENERALIZED FIBONACCI NUMBERS 
S. G. Mohanty 

McMaster University, 
Hami l ton , O n t a r i o , Canada 

As a continuation of results in [ 4 ] , this paper deals with the concept of 
minimal and maximal representations of positive integers as sums of general-
ized Fibonacci numbers (G, F. N.) defined below and presents a partition of the 
G. F. N. in relation to either minimal or maximal representation. 

Consider the sequence {F }, where 

(1) and 
Fi = F2 = ••• = F r = 1, r A 2 

F, = F, + F, , t A r 
t t - l t - r 

Obviously, the sequence gives r ise to the sequence of Fibonacci numbers for 
r = 2. For this reason, we call {F,} a sequence of G.F.N. Clearly {F,} 
is a special case of Daykin's Fibonacci sequence [3], as well as of Harris and 
Stylesf sequence [6 ] . 

We remark that it is possible to express any positive integer N as a 
sum of distinct F.Ts, subject to the condition that F1} F2, • • ° , F are not 
used in any sum (reference: Daykin's paper [3]). In other words, we can have 

(2) N = £ aiFi 
i = r 

with a = 1 and a.• = 1 or 0, r 4 i A s. Here s is the largest integer 
such that F is involved in the sum. 

s 
Definition 1: In case (2) is satisfied, the vector (a , a , . ,•••., a ) of 
— r r+i s 

elements 1 or 0 with a = 1 , is called a representation of N in {F }, 
s z 

having its index as s. 
Definition 2: A representation of N in {F,} is said to be minimal or maximal according as a.a., . = 0 or a. + a.,. ^ 1, for all i =̂  r and i = to l l+j 1 1 + 3 

l , 2 , * - ' , r - l . 

2-2 
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Definition 2 is just an extension of that by Ferns [ 4] to r > 2. 
Now, we state some results in the forms of lemmas, to be used 

subsequently, 
Lemma 1: 
(i) Every positive integer N has a unique minimal representation; 

(ii) The index of the minimal representation of N (F < N < F , n > r) 
is n, If N = F , then a = a , = « - - = a = 0 . 

n r r+i n-i 
Lemma 2: 
(i) Every positive integer N has a unique maximal representation: 

(ii) The index of the maximal representation o f N ( F + - r < N < F + 

- r9 n > r) is n. If N = F , - r, then a = a , = • • • = a = 1» - / n + r r r + 1 n_j 

Lemma 3. If the minimal representation of 

N< = F n + r - r -N <Fu < W < F u + 1 , n > r, r <: u < n - 1) 

is 
(a , a . . • • • , a ) , \ r» r+1» u 

then the maximal representation of N 

( F ^ - F ^ ~ r < N < F J _ - F - r) n+r u+i n+r u 

is 

(1 - a , 1 - a , , , • • • , 1 - a , 1, 1, • • • , 1) 
r r+i u . Ĵ n, i. 

n - u 
and conversely. 

Note that Lemma 3 provides a method of construction of the maximal 
(minimal) representation, given the minimal (maximal) representation of 
integers. Furthermore, the last time a zero occurs in the maximal represen-
tation of N (F ^ - F ,, - r < N < F ^ - F - r ) f is at the (u - r + l)st 

n+r u+i n+r u 
position, that is , 1 - a = 0. 

Proof. The proof of Lemma 1 is given in [3] as Theorem C. (Also see 
Brown's paper [1].) A generalized argument similar to that in the proof of 
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T h e o r e m 1 in [2 ] would lead us to L e m m a 2 and Lemma 3. However, the bas ic 

s teps of the proof a r e indicated. 

F i r s t , we a s s e r t that 

n 

(3) V F. + r = F ^ . 
Z—• i r+n 

i=r 

When n > 2r - 1, 

J ] F. + r = Fr + • • • + F2r_2 + F2r_! + F2r + • • - + Fn 

i=r 

(since r = F 2 r _ i ) 

= F r + 1 + . . . + F 2 r . 1 + 2 F 2 r + F 2 r + 1 + . . . + F n 

= F -, • 
r+n 

When n < 2r - 1, (3) can a lso be checked. 

Next, we develop a method to cons t ruc t a max imal r ep resen ta t ion f rom 

the sys t em of min imal r epresen ta t ion , and finally show that this r ep resen ta t ion 

i s unique. 

When 

F , - r < N < F , - r , n + r - l n+r 

I . e . , 

n - i 

2 Fi ^ N ~ 2 Fi' ^ (3) ) 

i=r 

we get 
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n n n - i 

(4) N' = F n + r - r - N = £ F . - N «= £ F . - £ F j = F n . 

i=r i=r i=i 

Because of (4) and Lemma 1, le t us a s s u m e that 

F < N T < F ^ 5 r < u < n - 1 , u u+i 

and that NT has the min imal r ep resen ta t ion (a , a , • • • , a ). Thus , (b , 

b r + l J • • • , b n ) , whe re 

i l - a. , i = r , r + 1,. • • • , u, 

1 , i = u + 1, u + 2, • • • , n , 

i s a max imal r ep resen ta t ion of N as we can show that b . + b . . > 1 f rom 

a .a . + . = 0 for al l i ^ r and j = 1,25«»»5 r - 1. 
Suppose that two max imal r ep re sen ta t ions of N a r e given by 

N =• V a .F . = Y ^ a ' . F . , a = af . = 1 , 

i=r i=r 

with n > n ! . Lett ing n = c r + d, we obtain 

(5) V * a. F . > F + F + F + • • • + F ' r 
x ' L^J l i n n-2 n-3 n - r 

i=r 

+ F + F + • • • + F 
n - r - 2 n - r - 3 n-2r 

+ . . . 

+ F > v + 0 8 e + F > v n-(c-2)r-2 n - ( c - i ) r 

= F , + F + F + 0 8 9 + F ( - ( r - 1) n+l n - i n-2 n+2-r 

= F ^ A - (r - 1) . n + r - i 
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But 

nf nT n-i 

Ea'iFi "X/i "£Fi = V , - ' • by (3) . 
i=r i=r i=r 

This is a contradiction of (5) and therefore n = n?
0 

From 

n n 

N =XI(1-ai)Fi=Ea-ai)Fi 
i=r i=r 

it follows that 

n n 

N*=2>-a.)F. = Z ( 1 - a i ) F i 
i=r i=r 

which corresponds to two admissible minimal representations of N*. The proof 
is complete, due to Lemma 1. 

Definition 3: Define U(n;mi,,m2, • • • , mr) as the number of positive inte-
gers N satisfying the following: (the definition arises as a natural consequence 
of Lemma 1) 

(i) F <N < F , . n > r ; n n+i ' 
(ii) In the minimal representation (a , a , • • • , a ) of N, there are 

exactly m.af Ts among non-zero afs except a , such that a = i - 1 (mod r) 
i = l , 2 , - - - , r . 

An illustration of the definition for r = 3, might serve a useful purpose, 
Consider all integers N* Fi0 < N <• Fu and their respective minimal repre-
sentations are: 

19 = Fio, 20 = F3 + F10, 21 = F4 + F10, 22 = F5 + F10, 23 = F6 + F10, 
24 = F3 + F6 + F10, 25 = F 7 + F10, 26 = F3 + F 7 + F10, 27 = F4 + F7+Fi0» 
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Then we have 

U(10; Q, 0, 0) = 1, U(10, 1, 0, 0) = 2, U(10; 0, 1, 0) = 2, 

U(10; 0, 0, 1) = 1, U(10; 2, 0, 0) - 1, U(10, 1, 1, 0) = 1, 

U(10, 0, 2, 0) = 1 . 

It may be observed that a i s omit ted in the definition without any a m -

biguity, as it i s p r e s e n t in every representat ion* F u r t h e r m o r e , it i s s ignif i-

cant to note that Definition 3 gives r i s e to a par t i t ion of the G. F . N. 

Following the p rocedu re in [4 ] on pages 23 and 24, we can show that 

e i the r by rep lac ing F __ by F in the min imal r ep resen ta t ion of every Nj., 

F < N i < F , or by adding F in the min imal r ep resen ta t ion of every N2> 

F < No < F , , we get the min imal r e p r e s e n t a t i o n of eve ry N, F ^ N n - r L n - r + i te * J n 
< F • There fo re , U(n;ml 3 m 2 , 8 B • , m ) sa t i s f ies the following difference 

equations: 
F o r m > 1, 

U( rm;mi , m2, • • e
 3 m r ) = U ( r m - l ; m i , m2, *• 9 , m r ) 

+ U ( r ( m - l ) ; m i - l , m 2 , • * * » m r ) 

(6) I U ( r m + l ; m l 9 m2, • • • , m r ) = U(rm; m 1 , m 2 , • •• , m r ) 

I . + U ( r ( m - l ) + l ; m i , m 2 ? - l , » - • , m r ) 

' U ( r m + r - l ;m l 5 m2, •• • , m r ) = U( rm + r - 2 ; m 1 , m2, • • • , m r ) 

+ U ( r ( m - l ) + r - l ; m i , m2, • • • , m - 1) . 

Obviously, the boundary conditions given below can eas i ly be checked* T h e s e 

a r e : 

F o r n ^ r o r for any m. < 9* 

U t n ; ! ^ , m 2 , a • e , m r ) = 0 ; 
(7) { 
v ; ' for r ^ n < 2 r (L e«, for m = 1), 

TT/ x \ 1 when mi=mo=» • • = m r 
U(n;.m1 ?m2,e e e , m r ) = I L * L 

! 0 o therwise 
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T h e o r e m 1, 

(8) U(n;ml9m2,-- ,™-r) = 

r / M + m, \ 
n ( k 1 if n = 
" l \ m k / 

i+i / M + m \ 

2, \ •* ) 

r m + (r ~ 1) 9 

n 
if r / M + m. - 1\ 

k=j4. V ™k and 
0 < j < r - 2 , 

where 

M = m - 1 - ^ m. , 

i=i 

and 

0 
h a s the usua l meaning with 

( y ) " 1 m d (y) = 

when y < 0 o r when y • > x. 
Proof. Tr iv ia l ly , the r e s u l t s a r e t r u e when m = 1. We can a lso verify 

t he se exp re s s ions for m = 2. A s s u m e that these a r e val id for m <. m f . Now, 

U( r (m ! + 1); ml9 m2, • • • , m r ) 

= U( rm ! + r - 1; m4, m2, • • • , m r ) + U( rm ! ; mj - 1, m2,« 

r / M ' + H L X /W+m1\ r / M f + m k \ 
= £ \ mk ) " v - i - ^ k " \ -k ) ' 

r 
where M! = mf - 1 - Y\ m. 

i=i x 

(M1 + mj + 1 \ r / M' + m, \ 

m i / k=2 \ " k / 

• , m r ) 
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which establishes (8) for m = m! + 1 and j = 0, Similar verifications for 
m? + 1 and 0 < ) L r - 1 complete the proof of Theorem 1B 

Denoting 2 ! as the summation over ml9 m2, • • • , m r with the res t r i c -
{x 9 r Hon 

S m i = ^ » 
i = i 

we get the folio wings 
Corollary 1, 

(9) 

Proof, By induction, we shall prove the result, which is seen to be true 
for small values of n, 

X ^ r U C n ; m 1 , m 2 f . . . , m r ) = ^ - ( r - ^ - r \ 

(10) £ U(rm + j ; m1; m2, • • • , mr) 
[X9L 

= y l™'1*'2']?? U ( ( r - l ) ( m - n + v) + i ; m 1 , m 2 , . . - , m r _ 1 ) 

= Y, / m - ' " " 2 W ( r " : l ) ( m " l , , ) + i + , , " r + 1 ) , by induction hypothesis, 

= g / r m + i - ( r - D ^ - r - v - l \ by (1.13) of [5 ] , 

/ rm + j - ( r - l ) ( J t - r \ 

In addition to (10), a check for j = r - 1 establishes (9). 
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Coro l l a ry 1 impl ies that the number of i n t ege r s N, F < N < F , 

which r e q u i r e \± + 1 G. F. N. for minimal r ep resen ta t ion i s the r ight -hand 

express ion in (9), and this i s in ag reemen t with the value in [4J for r = 2. 
S imi la r to 

U ( n ; m 1 , m 2 , - - - , m r ) , 

we int roduce in the next definition 

V ( n ; m l s m 2 , - - , m r ) 

which co r r e sponds to the maximal represen ta t ion . 
Definition 4. Define 

a s the number of posit ive in t ege r s N with the following p r o p e r t i e s : 

(i) F ^ - r < N < : F , - r , n > r ; 
v ' n + r - i .-... n+r 

(ii) In the maximal r ep resen ta t ion (a , a , • • • , a ) of N, the re a r e 

exactly m.a ' s among a f s which a r e equal to z e r o , such that a = i - 1 (mod 

r ) , i = 1, 2, • - . , r . 

The definition i s not vacuous, because of L e m m a 2. As an i l lus t ra t ion 

for r = 3, cons ider all N, F1 0 - 3 < N < Ftl - 3. The maximal r e p r e s e n -

tat ions of these in t ege r s a r e : 

17 = F 3 + F 5 + F6 + F8 , 18 = F 4 + F 5 + F 6 + ,F 8 , 19 - F 3 + F 4 + F 5 + F 6 + F 8 , 
20 = F 4 + F 5 + F 7 + F 8 , 21 - F 3 + F 4 + F 5 + F 7 + F8 f 22 = F 3 + F 4 + F e + F 7 + F8f 

23 = F 3 + F 5 + F6 + F 7 + F 8 , 24 = F 4 + F 5 + F 6 + F 7 + F 8 , 
25 = F 3 + F 4 + F 5 + F6 + F 7 + F 8 . 

Thus , 

V(8;0,0 ,0) = 1, V(8 ; l , 0 ,0 ) = 2, V(8;0,1 ,0) = 2 

V(8;0,0 ,1) = 1, V(8;2,0 ,0) = 1, V(8; l , 1,0) = 1, V(8;0,2 ,0) *= 1. 
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Compare these with U(10;mI? m2, mg) and observe the correspondence, which 
is essentially the result in the theorem given below, 

Theorem 2. 

(10) V ( n ; m 1 ) m 2 J . . . 5 m r ) = { u ( n f r - i ; m i , m2, • • • , 
when n < r 

m r ) otherwise 

Proof. It is readily checked from the last part of Lemma 2(ii) that 
VO^m^ m2, • • • , mr) = 1 for every n ^ r, when mt = m2 = • • • = m r = 0. 
Therefore, we shall discuss the proof when m.fs are not simultaneously equal 
to zero. 

Let n = rm + j , m ^ 0 and j = 1, 2, • • • , r. A direct verification of 
the theorem for m = 0,1 is simple. Then, assume that it is true for m S m!

0 

By induction, we have to show that it holds good for m = m! + 1. 
Putting j = l, the set of integers counted in 

V(r(m! + l) + l;ml3 m2,. • . , mr) 

can be partitioned into two sets, 

iNif> F
r(mf+2)+i " Fr(mf+i) ~ r < N i - F

r(mT+2)+i " F r ~ r 

and 

I N2f> F
r(mt+2)+i ~ Fr(m!+i)+i ~ T< N s ~- Fr(mT+2)+i ~ Fr(m?-H) " r ' 

each having property (ii) of Definition 4„ By Lemma 3, we see that the maxi-
mal representation of every Nj has a

r/mf+1\ = ! a n d ^ (m '+ iHi = *• There-
fore, 

• . ' j 

, N * = N i " F r ( m ' + l ) + i • F r ( m > + 2 ) - i " ^ < < < F r ( m I + | ) - F r - r 

has the maximal representation as that of Nt without the last element 
ar(m!+i)+i * 
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whereas m.!s corresponding to Nj have not changed from those correspond-
ing to Nj. Due to this 1:1 correspondence, the number in JNj} is the same 
as that in { N^f which is equal to 

V(r(m! + ljjmj, m2, • • • , m r ) . 

Using Lemma 3 again, we see that { N2 [ is in 1:1 correspondence with the set 

I No}, F , ^ ^ N £ - * - F , T j , ,„ , i D> r(mr+i)~ l r(mT+i)+i 

such that in the minimal representation of N2 , there are exactly m. a^s 
among non-zero aTs including the last one, with a = i ~ 1 (mod r), i = 1,2, 
V* • , r. The number in {N*J is then equal to 

U(r(mf + l);mx - 1, m2, • • • , m r ) . 

Hence, 

V(r(mf + 1) + 1; mt, m2, • • • , m r ) 

= V(r(mT + 1); ml3, m2, • • • , m r ) + U(r(mT + 1)5111! - 1, m2, • • • , m r ) 

= U(r(mf + 2) - 1,-m^ m2, • • • , m r ) + U(r(mT + 1);]% - 1, m2, • • • , m r ) 

by induction hypothesis, 

= U(r(mT + 2); m1? m2, • • • , m r ) 

by (6). 
The cases for H j 4 r can be treated analogously and thus the theorem is 
proved. 

As a concluding remark we say that Vfs define a partition of the G.F.N. , 
which in view of Theorem 2, is the same as given by UTs. An application of 
partition is discussed elsewhere by the author. 

I express my sincere appreciation to the referee and to Professor V. E. 
Hoggatt, J r . , for their suggestions and comments. 
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ERIATft 
Please make the following changes In articles by C. We Trigg, appear-

ing in the December, 1967, Vol. 5, No. 5, issue of the Quarterly; 
"Getting Primed for 1967" — p. 472s In the fifth line, replace "2669" with 

"2699." 

"Guriosa in 1967" — ppa 473-476: On p. 473, place a square root sign 
over the 9 in "73 = -••• . " 
On p. 474, (C), delete the " I " after 
the second 7B 

Onp, 474, (F), delete the " + " inside 
the parentheses* 
Onp. 475, (I), the last difference 
equals "999. " 

"A Digital Bracelet for 1967" — pp. 477-480: On page 478, line 7, replace 
the first "sum" with "sums. " 

• , • • • • 



A COMBINATORIAL PROBLEM INVOLVING FIBONACCI NUMBERS 
J . L. Brown, J r . 

The Pennsylvania State Universi ty, University Park, Pa. 

In Advanced Problem H-70 (this Quarterly, Vol. 3, No. 4, p8 299)f 

Cm A9 Churchy Jr0 proposed the following combinatorial results 
"For n = 2m, show that the total number of k-combinations of the 

first n natural numbers such that no two elements i and i + 2 appear 
together in the same selection is F2 . and if n = 2m + 1, the total is & m+2 ' 
F F + . t ! (Solution appears in £l J ) 

The purpose of this note is to consider by a different method a more gen-
eral combinatorial problem which includes Church1 s problem as a special ease* 
As in the latter problem, the explicit solution will be seen to be expressible 
entirely in terms of Fibonacci numbers9 

PROBLEMS Given the set S consisting of the first n positive integers 
and a fixed integer v satisfying 0 < v <n , how many different subsets A 
of S (including the empty subset) can be formed with the property that af - a" 
fi v for any two elements af, a" of A (that i s , subsets A such that integers 
i and i + v do not both appear in A for any i = 1, 2, • • • , n - p) ? 

Church1 s problem is then recovered from the above formulation on taking 
v = 2. 

For the solution of the general problem, we let n = m + r with m an 
integer and 0 =£ r ^ p9 so that n = r (mod v)m Each subset A of S can be 
made to correspond to an ordered binary sequence of n terms, («i,«2» * * * »a )• 
by the rule that a. = 1 if i G A and a. = 0 if i (£ A9 For a given subset 
A and its corresponding binary sequence (aisa2§*«»9a ), we define v ordered 
binary sequences Alf A2,»*»,Aj/ as follows § For l < j < r , 

and for r < j ^ v 

3 4 
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Note that each of the terms al9a29 *e ° 9a i s included In one and only one of 
these sequences^ since for j = 1, 2, • • • , v - 1, the sequence A. contains all 
a..fs with i = j (modi/) while Ap contains all a . f s with 1 = 0 (mod v). 

Now If the subset A under consideration satisfies the problem constraint^ 
then clearly none of the sequences JA.f1' can contain two consecutive ones; 
conversely, If A contains both i and I + v for some i0 satisfying 1 < I0 

^ n - v9 then the sequence A, , where k = i0 (mod v) will contain two suc-
cessive onese Thus the subset A under consideration will satisfy the given 
constraint If and only If each A. (j = 1, 29 • • • , v) is a binary sequence without 

J 
consecutive ones. But it is well known ([2], Problem 1(b), pe 14; £3 j , pp@ 166-
167) that the total number of binary sequences of length t without consecutive 
ones is ~P..9 Since each of the r sequences AlsA2»@e%A has length m + 
1 and each of the remaining v - r sequences A , • • *, Av has length m, it 
follows that the total number of subsets of A with the desired property is 

r V—T 
F F m+3 m+2 

To obtain Church1 s results we take v = 2 and let n = 2m + r where 
r = 0 or r = 1, so that n = r (mod 2). Then the total number of k-combina-
tlons of the first n Integers such that no elements 1 and I + 2 appear together 
is 

F° ^ F2 . = F^ if r = o (n even) 
m+3 m+2 m+2 v 

and 
F , F . i f r = 1 (n odd) . m+3 m+2 v ' 

Additional references dealing with the case v = 2 may be found In [ 1]|. 
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known for the numbers of subsets of 1»2,.3,., ,,,-n without constraints^. V.E.H, 
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CIRCULARLY GENERATED ABELIAN GROUPS 
David A. Smith 

Duke University, Durham, North Carolina 

1. INTRODUCTION 

A group will be cal led n - c i r c u l a r l y genera ted if i t has a set of n(>3) 

g e n e r a t o r s x1? x?, • • • , x such that x.x. ia = x.in for all i, where the 
& 1' *' n 1 1+1 1+2 

addition of subsc r ip t s i s modulo n. This notion was suggested to the author 

by a p rob lem in the Amer ican Mathemat ica l Monthly [1 ], which can be ph ra sed 

as follows: Show that a 5 -c i r cu la r ly genera ted group is cyclic of o r d e r 11. The 

p rob lem of de termining the s t r u c t u r e of c i r cu l a r l y genera ted groups in genera l 

appears formidable . They a r e not all abelian, for the fami l ia r quaternionic 

group [ 2, p . 8 ] c l ea r ly has this p rope r ty for n = 3. F u r t h e r m o r e , if we don' t 
ins i s t that the g e n e r a t o r s all be dis t inct , any dicyclic group is 6 - c i r cu l a r ly 

jYi—l 2—m genera ted with gene ra to r s S, T, ST, S , S T, and ST, in the notation 

of [ 2, p . 7 ] , However, the s t r u c t u r e of c i r cu l a r ly genera ted abelian groups 

can be completely de termined , as will be shown below. 

It should be observed that an n - c i r c u l a r l y genera ted group on x j , x2, 

' * * , x i s c l ea r ly genera ted by xA and x2, so if it i s abelian, it mus t e i the r 

be cycl ic o r the d i r ec t sum of exactly two cycl ic subgroups. F u r t h e r m o r e , 

any c i r c u l a r l y genera ted abelian group i s thehomomorphic image of an abelian 

group for which the c i r c u l a r re la t ions a r e defining re la t ions , so we will con-

fine our attention to that case . 

Henceforth (G, +) will denote an abelian group with g e n e r a t o r s x1? x2, 

• • • , x and defining re la t ions* n & 

(1) x. + x . + 1 = x . + 2 , i = 1, 2, - • • , n . 

whe re addition of subsc r ip t s i s modulo n. 

Supported in p a r t by NSF grant Number GP-4473. 
*G i s i somorphic to F / N , w h e r e F i s the f ree abelian group on n g e n e r a t o r s 

t j , t2, • • • , t n and N i s the subgroup genera ted by all e lements of the form 

t. + t . , , - t . , , under the cor respondence x.<->t. + N„ This means is imply 
I i + i 1+2 ^ „ 1 1 *- J 

that all r e la t ions in G a r e consequences of the given re la t ions (1). 
36 
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The o r d e r s of the cycl ic summands of G turn out to be var ious Fibonacci 

and Lucas n u m b e r s . We denote by F (respect ively, L ) the m F i b -

onacci (Lucas) number , with the usual ini t ial conditions F 0 = 0, L0 = 2, F* 

= Li = 1. Then the r e s u l t s to be proved below m a y b e summar i zed as follows: 

T h e o r e m 1. If 4jn, then G is the d i r ec t sum of two cyclic subgroups, 

one of o r d e r F , . the o ther of o r d e r 5 F , . 
n/2 n/2 

Theo rem 2. If 2|n and 4 | n , then G is the d i rec t sum of two cyclic 

subgroups, each of o r d e r L / . 

T h e o r e m 3. If 2 | n and 3Jn, then G is the d i rec t sum of two cyclic 

subgroups, one of o r d e r 2, and the other of o r d e r j L . 
T h e o r e m 4. If (n, 6) = 1, then G i s cyclic of o r d e r L . 
Note that the d i rec t sum of cyclic groups of o r d e r s k and m i s i tself 

cycl ic of o r d e r km if and only if (k, m) = 1. It follows that the only cyclic 

group included among the f i r s t t h r e e c a s e s is that for n = 45 s ince F 2 = 1 

(see (10) below). The f i r s t eight c a se s in which G is cyclic a r e those for 

which n = 4, 5, 7, 11, 13, 17, 19, 23, and the cor responding o r d e r s a r e 

5, 11 , 29, 199, 521, 3571, 9349, 64079. T h e s e number s a r e all p r i m e except 

the l as t , which is 139 t i m e s 451. Thus , the s ma l l e s t cyclic group G in our 

l i s t whose o r d e r is composi te is the one for n = 23. 

We a lso obse rve that every Fibonacci number with even subscr ip t appears 

among the cyclic summands in Theorem 1, Given any in teger m > 2, m d i -

v ides F, , whe re k is the per iod of the Fibonacci sequence modulo m, and 

k is even [ 5, Coro l l a ry to T h e o r e m 1 and T h e o r e m 4 ] . Hence a cyclic group 

of o r d e r m is ahomomorph ic Image of at l ea s t one of the groups l i s ted above,, 

F o r m = 2, we can take one of the groups of T h e o r e m 3„ 
Coro l la ry . Every finite cycl ic group is n - c i r c u l a r l y genera ted for some 

n„ 

28 SOME FIBONACCI AND LUCAS RELATIONS FOR REFERENCE 

(2) F + F ^ = 3 F 
w m-2 m+2 m 

(3) F ^ - F . = 4 F 
m+3 m-3 m 

(4) F ^ - F , = L ^ 
m+3 m~ I m+i 
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F + F ^ = L J 4 m m+2 m+i 

[Feb, 

(6) 

(7) 

F - F = F + 2F 
Hl+3 HI-2 m+2 Hl- I 

2 F ^ - F = 5F 
m+2 m-3 m 

(8) 

(9) 

3 F _ + F = 2 F _,_ m+3 m m+4 

If 3|ms then 2 |F 
I I T 

(10) 

(11) 

(12) 

If 3|ms 2 | m , then 4 |L 
m 

2F F , + F 2 _,_ = L 2 m + 1 m m - i m+2 j m ^ 

2 F m+2 F m+i " Fm~~i " L2m+i 

Relat ions (2) — (10) a r e easys and for the mos t p a r t weIl-knowns c o n s e -

quences of the definitions® Relat ions (11) and (12) m a y b e new; the i r proofs a r e 

left a s e x e r c i s e s for the reader. 

3e A REDUCTION OF THE PROBLEM BY MATRICES 

The defining re la t ions for G may be wri t ten in ma t r i x form: 

AxL = 0 , 

w h e r e x = ( x 1 ? x 2 , « " , x n ) and 

A 

1 1 
0 1 

o . . . 
- 1 0 

- 1 0 • • • 
i _ i o . . . 

O i l 
0 1 

0 
0 

- 1 
1 

-1 0 0 

The re la t ion ma t r i x A can be reduced via e l ementa ry row and column o p e r a -

t ions (over the in tegers) to a form from which one can r ead off the s t r u c t u r e of 

G as a d i rec t sum of cyclic groups [ 3 5 4 ] 0 Rather than apply the s tandard p r o -

cedure for th is s we make some observa t ions about the m a t r i x A« B y adding 
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suitable multiples of each of the first n - 2 rows to the last two rows? we can 
reduce A to a matrix of the form 

B 
(13) 

a b 
c d 

where B is the (n - 2) by n matrix consisting of the first n - 2 rows of A0 

In this forms it is clear that G is generated by x and x subject to the 
relations 

<i4) (c X T ) = 0, 

and that an expression for each of the other x?s in terms of these two can be 
read off from the matrix (13): 

x = x - x ,, x ft = x , - x t> = 2x , - x § n-2 n n-l n-3 n-i n-2 n-i n 

etc. ThuSg it suffices to determine the integers a, b, c, d and the structure 
of an abelian group with relations (14). Observe that row operations involving 
the first n - 4 rows of A do not affect the last two columns,, 

Lemma la After reducing the first k columns of A to zero below the 
diagonal (0 < k < n - 4 , the last two rows of A have the form: 

° - ° (~vk+\+i <-1)kFk 
^L__iL 1 -U *k + 2 I u *k+1 

The proof is by induction on k* Simple induction proofs of this sort will 
be omitted0 

In particulars after n - 4 column reductions, the last four rows and 
columns of (the new) A have the form: 
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1 
0 

<~l)n + 1 F 
n -3 

( - l ) n F 
n-2 

1 

1 

V̂* 
M)n+1F , 

- 1 

1 

1 

0 

0 

- 1 

1 

1 
n - 3 

[Feb. 

L e m m a 2, After n - 2 column reduct ions , A i s reduced to the form 

(13), w h e r e a = d = 1 + ( - l ) n + 1 F , b = 1 + ( - l ) n F n _ 2 , and c = ( - l ) n F . 

Proofo Use the obvious row opera t ions to reduce the f i r s t and second 

columns of (15) to z e ro below the diagonal, 

F o r each of the c a s e s in T h e o r e m s 1-4, we will u s e e l emen ta ry row 

opera t ions to reduce the m a t r i x of (14) to one of the forms 

(16) / p 0 \ / k r r \ 
\kr r j ' ^ p 0 J 

w h e r e p , r , k a r e integers,, Then it i s c l e a r that G i s the d i r ec t sum of the 

cyclic groups genera ted by x and x kx i i - i* and that these have o r d e r s 

jpl and j r j , respectively* In pa r t i cu l a r , G i s cyclic when r = 1, 

4, THE STRUCTURE OF G FOR EVEN n 

Henceforth we will wr i t e each re la t ion involving x j and x by wri t ing 
& n - l n J to 

only the two coefficients„ Thus , we have reduced the p rob lem to the p a i r of 

defining re la t ions (with the o r d e r r e v e r s e d from that given above): 

R 1 

R 2 

( - I F F . n 

1 + ( - l ) n + 1 F n - i ' 

1 + ( - l ) n + 1 F 
n - i 

1 + (-1)11 F 
n - 2 

F o r each k > 2, define the re la t ion Rk to be the sum of the re la t ions 
R(k - 1) and R(k - 2). Then one ver i f ies by induction the genera l form 

Rk • k - i 
( _ l ) * - k - i F 

n-k+i 
( _ l ) n " k F 1 ° 

n-k 
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Clearly, any two consecutive ones of these relations are defining relations for 
G. 

First , suppose that n = 4q, and let m = 2q. Then we have the defining 
relations 

R(m - 2 ) F - F ^ , F + F -
m-3 m+3 m-2 m+2 

R(m - 1 ) F + F ^o , F + F ^ 
m-2 m+2 m-i m+l 

Using (2) and (3), we rewrite these as 

R ( m - 2 ) -4F , 3F 
m m 

R ( m - l ) 3F , -F 
m m 

Add 3 times R(m - 1) to R(m - 2), and we have the relation matrix 

3 F - F 
m 

5 F 
m 

r) 
in the form (16), which completes the proof of Theorem 1„ 

Now suppose n = 4q + 2, and again let m = 2q0 Referring again to the 
general form for the relation Rk, we have defining relations 

R m F
m - i " F

m + 3 • F
m

 + F m + 2 

Rtm + 1) r
m

 + F
m + 2 • F m + i - F m + 1 

Using (4) and (5), we have the relation matrix 

-L ^ L m+i 
L m + i 

'm+i J 
0 / 

in the form (16), which completes the proof of Theorem 2, 

5, THE STRUCTURE OF G FOR ODD n 

The proofs of Theorems 3 and 4 appear to require separate consideration 
of six cases, depending on the congruence class of n modulo 128 
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Case L Let n = 12q + 1 and m = 6q„ Refe r r ing again to Rk in the 

prev ious sect ion, we have the defining re la t ions 

R(m - 1 ) F ™ F ^ 5 F + F _ L 
x m-2 m+3 m - i m+2 

R m F + F ^ 3 F - F ^„ . 
m - i m+2 m m+i 

Use (3) and (6) to r e w r i t e these a s 

R ( m - 1) - 2 F , - F J _ , 5 F , + F J 
m - i m+2 m - i m-4 

Rm F 4 + F , _ , - F , 
m - i m+2 m - i 

We ignore the re la t ions Rk for k > m and define R(m + 1) by adding 5 t i m e s 

Rm to R(m - 1): 

R(m + 1) ' 3 F + 4 F ,o , F A . 
v m - i m+2 m-4 

F o r k > 1, define R(m + k) by adding 4 t i m e s R(m + k - 1) to R(m + k - 2). 
One obtains by induction (using (3)) the genera l fo rm: 

k+i R(m + k) ^3^+1,Fm_j + iF3^+3Fm+2s (-1) F m _ 3 k - l . 

In par t icu la rs for k = 2q - 2 and 2q - 1, we have the defining re la t ions 

R ( 8 q - 2) F F + 4 - F F , . - 5 
H m-5 m - i 4 m-3 m+2 

R(8q - 1) F F + | F F ± , 1 
x H m-2 m - i L m m+2 

Add 5 t i m e s R(8q - 1) to R(8q - 2) to get a m a t r i x of the form (16) with r = 

10 Hence G i s cyclic of order, 

(F + 5 F )F + 4 (F + 5F )F ^ 
m-5 m-2 m - i ^ m-3 m m+2 

2 F F + F 2 ^ 
m m - i m+2 

= L. 2m+i 

= L . n 
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(Formulas (7) and (11) w e r e used here*) 

Case IL Let n = 12q + 5 and m = 6q + 2* This l eads to the s a m e equa-

t ions R(m - 1)5 Rm, and R(m + k) as in Case L In p a r t i c u l a r for k = 2q 

- 1 and 2qa we have 

R(8q + 1) F F + f F F ^ , 3 
^ m-4 m - i c m-2 m+2 

R(8q + 2) F 2 + 4 - F ^ F v , - 1 
H m-i L m+i m+2 

As in Case I, this l eads to a cyclic group whose o r d e r (using (8) and (11)) i s 

(F + 3 F )F + + ( F + 3 F , J F 
m-4 m - i m - l * m-2 m+l m+2 

= 2 F F + F 2 ^ 
m - 1 m m+2 

= L-2m+i 

= L . 
• n 

Case EL Let n = 12q - 5 and m = 6q - 39 F r o m the genera l form Rk 

we have re la t ions 

R m F m - l " F m + 2 > F m+2 

R < m + 1> F m + 2 ' F m - ! ' 

F o r k > 1, R(m + k) is defined to be R(m + k - 2) minus four t i m e s R(m ^ 

k - 1)0 Using (3) and induction on ks we have 

R(m + k) B L F 3 k ^ F I I 1 - i + (» l ) k + 1 F 3 l^ lFm+2 , F m „ 3 k + 2 

In pa r t i cu l a r , for k = 2q - 2 and 2q - 1 , we have 

R(8q - 5) 4-F F - F " F ^ , 5 
^ * • m-6 m - i m-4 m+2 

R(8q - 4) 4 V 3 F m - i + V l F m » 2 » 1 • 
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Again G is cyclic, and the order L is computed as in Case I, using (12) in-
stead of (11). 

Case IV. Let n = 12q - 1 and m = 6q - 1. Then relations Rm, R(m 
+ 1), and R(m + k) are as in Case in. For k = 2q - 1 and 2q we have 

R(8q-2) -4-F F + F F . 3 
^ ^ m-5 m-i m-3 m+2 

R(8q - 1) 4- F F + F F , , 1 . 
^ ^ m-2 m-i m m+2 

Again G is cyclic of order L , using (8) and (12) as in the previous cases. 
This completes the proof of Theorem 4. 

Case V. Let n = 12q + 3 and m = 6q + 1* The relations Rm, R(m + 
1), and R(m + k) are the same as in Case HI. For k = 2q and 2q + 1, we 
have 

R(8q - 1 ) • 4 F F ^ - F F ^ , 2 

R(8q + 2) - f F2 + F "F ^ , 0 . 

By (9), the first entry in R(8q + 1) is even, hence we have a matrix of the form 
(16) and G is the direct sum of two cyclic groups, one of order 2, the other 
(by (1$ of order £ L 2 m + 1 = { Ln . 

Case VI. Let n = 12q - 3 and m - 6q - 2* Then we have the same 
relations as in Case I. For k = 2q - 2 and 2q - 1, we have 

R(8q - 4) F F + j F F _̂ , -2 
x ^ m_3 m-i L m-i m+2 

R(8q - 3) F F , + | F 
^ m m-i l 

2 
m * m-i z * m+2 

As in Case V, this leads to the direct sum of a cyclic group of order 2 and 
one of order £ L , which completes the proof of Theorem 3, 
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6, A FURTHER CONSEQUENCE 

It is easy to verify that the second entries in each of the relations appear-
ing in each reduction process above are, except for sign, the remainders in 
the Euclidean Algorithm, applied to the two entries of relation Rl . Thus the 
smallest non-zero entry appearing is their greatest common divisor,, 

Corollary, If n is even, then 

(F , F~ - 1) x n n-l 

If n is odd, then 

(F , F +1) = { *' " u r . 
x n n-l J 1, otherwise „ 
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CONJUGATE GENERALIZED FIBONACCI SEQUENCES 
Charles H. King 

San Jose, Cal i fornia 

1. INTRODUCTION 

The famous rabbit problem of Leonardo Fibonacci gives the sequence 

(1) 1, 1, 2, 3, 5," 8, 13, 21, 34, 55, 89, — 

where each element is the number of rabbits present in that time period. In 
1634, Albert Girard discovered the law, 

(2) U ^ = U _̂ + U 
v ; n+2 n+i n 

for the sequence (1). Any pair of positive integers U and U substituted 
in (2) generates a sequence; if \J1 - 1 and U2 = 2 the Fibonacci Sequence is 
generated and XJt = 1, U2 = 3 generates the Lucas Sequence. 

Consider any pair (a , a ) used in the generating function (2); if a 
> a + then a must be the first element of the sequence, because no positive 
integer added to a will make the sum smaller, and the same sequence may 
be generated by the pair (a , a ) thus the restriction a < a with no 
loss of generality. Continuing with the pair (a , a ) thus restricted the 
generating function (2). U = U , J - U • shows that as n decreases the & & \ /• n_1 n + 1 n 

elements in the sequence become smaller and thus there must be a least posi-
tive element. In the case of the Fibonacci Sequence there are two equal least 
positive elements both one. Let a1 be the least positive element for some 
sequence and a2 the next element for increasing n then the pair (a1? a2) 
characterize the sequence. 

If the pair (al9 a2) have a common factor, (al5 a2) = k, then all elements 
of the sequence have the same common factor and the sequence may be repre-
sented by another relatively prime pair (aj, a2) = 1 where, 

46 
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When the elements of the sequence generated by (aj, aj) are multiplied by k 
the original sequence is recovered* A sequence is a primitive sequence if 
(al5 a2) = 1. For any pair where a2 >- 2, then 2aj < a2s If 2aj ^ a2 then 
there would be some a0 >• 0 such that a0 + aA = a2 where a0 <: aj and a1 

would not be the least positive element Thus any sequence generated by (2) 
may be defined by a positive pair of integers (als a2) = 1 and 2a1 <• a2* The 
exception, of course, is the Fibonacci Sequence. 

2a DEFINITION OF CONJUGATES 

From the pair (als a2) it has been shown that SLt is the least positive 
element in the sequence that (alfa2) defines,, but there is also a number a0 

satisfying (2), a0 + at = a2„ For the Fibonacci Sequence a0 = 0 and a0 = 2 
for the Lucas Sequence, If negative elements are allowed then there is an a__ 
satisfying a + a0 = aA and a , a , a ™ can be found. Thus there are 
values positive or negative for all a_ . 

The absolute values of the elements of the sequence formed by a__ form 
a sequence which is called the conjugate sequence of the original positive se-
quence. The element a0 is the zero element of both sequences. If the ele-
ments of the conjugate sequence equal the elements of the original sequence 
(if a = | a I) the sequence is called self-conjugate. The Fibonacci and Lucas 
Sequences are the only self-conjugate Fibonacci-Type sequences. Given a pair 
(al5 a2) defining a sequence, the pair (a*, a2) defining Its conjugate sequence 
may be found by solving the equations, 

(o) a.j ~ a2 — za, a2 za2 — oa , 

These pairs (al5 a2) and (a*, a*) are called conjugate pairs. The conjugate 
sequences and pairs are illustrated In the table below. 

(a1? a2) 

(1,1) 
(1,3) 

(1,4) 

(2,5) 

( a l ^ a 2 ) 

(1.1) 
(1,3) 

(2,5) 

(1,4) 

6 - 4 

" 3 

7 

•2 

9 

U-3 
2 

-4 

-7 

-5 

U-2 
-1 

3 

5 
4 

U - i 

1 

-1 

-2 

-1 

U0 

0 

2 

3 

3 

U4 

1 

1 

1 

2 

U2 

•1 

3 

4 

5 

u3 
2 

4 

.'5 
7 

u4 
3 

7 

9 

12 



48 CONJUGATE GENERALIZED FIBONACCI SEQUENCES [Feb. 

3. THE CHARACTERISTIC NUMBER D 

With any pair (alf a2) there is a number D determined by the equation 

(4) D = a* - a i (aj + a2) 

A table of D less than 1000 is given in [ l ] , For a pair (al5 a2) determining 
a D there is associated another conjugate pair (except (1,1) and (1,3) that 
also determine the same D. These pairs are conjugate pairs as defined above. 
All prime D greater than 5 have the form P. = (10k ± 1) and all composite 
D are in the form, 

(5) D = 5a0p?lP?2P«3 . . . P ^ n 

all P. are prime D of the form (10 k ± 1). 
There may be more than one set of conjugate pairs that give a D. For 

D less than 1000, the number of conjugate pairs associated with any D may 
be found from the factorization of D as follows, 

(6) D = 5<*0p?ip«2... p Q * 

1 One oair I a ° ^ ° ' 0 r 

1. One pair <j a n y ^ = 2 
2. Two pair, «0 = 0, all d. < 2, and at least 2 distinct P. 

Any two adjacent elements U , U from any primitive sequence sub-
stituted in the generating function, 

(7) U • U ^ + (U +U ^ ) 2 

\ / n n + 1 v n n+i/ 

will give a number from the set of D3. From the Fibonacci Sequence 

[1,1] - * S , [1,2]—*-Ll, [2,3]—^31, [3,5]—^79 . 
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When a D is determined by (7) a conjugate pair that determine the same D by 
(4) may be found from the adjacent elements used in (7). Let (F , F ) be 

n n+i 
the adjacent elements that give D from (7) then a conjugate pair that deter- ~ 
mine the same D from (4) is 

For example the Fibonacci Sequence 1, 1, 2, 3, 5, 8, 13, • • • take the adja-
cent pair [2,3] in (7); this gives D = 31. The conjugate pair that give D = 
31 from (4) is (2, 7), (3, 8) and from (8) where 

F - 2, F _,_ = 3, F _ = 5, F ,_ = 8 , n ' n+i n+2 ' n+8 

the pair is also (2, 7) (3, 8). 
If (7) is used to generate DTs by using all adjacent elements in all pr im-

itive sequences then all D will be generated and each will appear the number 
of times equal to the number of conjugate pairs associated with it. 

REFERENCE 

1. Brother U. Alfred, "On the Ordering of Fibonacci Sequences," The Fibon-
acci Quarterly, 1 (4), 1963, pp. 43-46, 

* * • • * 

ERRATA 
Please make the following corrections on the article, "A Primer for the 

Fibonacci Numbers, Par t VI, " appearing in the December, 1967, Vol. 5, JSfo.5, 
issue of the Fibonacci Quarterly, pp. 445-460; 

p. 446: In the fifth line from the bottom, replace "indeterminant" with 
"indeterminate. " 

p„ 452s In the line before relation (3.5), insert " o f before x . 
p. 455s In the ninth line from the bottom, replace (3.3) by (3.4). 

* * * * • 

Please make the following correction in the Vol. Index, Vol. 5, No. 5, 
December, 1967, issue of the Fibonacci Quarterly.8 Change S. D, Mohanty to 
S. G. Mohanty on p* 495 . 

* • • * * 
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Send all communications concerning Advanced Problems and Solutions to 
Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit 
solutions or other information that will assist the editor. To facilitate their 
consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problems. 

H-126 Proposed by L. Carl i tz, Duke University. 

Let F and L denote the n Fibonacci and Lucas numbers, respec-n n ^ 
tively. Sum the series 

m n E ^ _, _, m n \ ^ ^ -, T m i 

F F F , x y , > F F L , x y 
m n m+n J Z—' m n m+n J 

m,n=o m,n=o 
Sum the series 

00 

L-d m 
m,n=o 

m-hi even 

Sum the series 

„ m n 
F x y , 

n J ' 

S = 
00 

53 
m,n,p= =0 

s T T m n 
L L x y 

m n J m,n=o 
m+n even 

_ _ „ m n p F . F . F , x y z^ n+p p+m m+n J 

50 
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H-127 Proposed by M . N . S . Swamy, Nova Scotia Technical College, Halifax, 
Canada. 

The Fibonacci polynomials are defined by 

f .(x) = x . f (x) + f (x) (n A 2) 
n+r ' nv ; n - r ' 

fji(x) = 1 and f2(x) = x 9 

If z = f (x) • f (y), then show that 

(i) z satisfies the recurrence relation 

z , - x y * z , - (x2 + y2 + 2)z , - xya z . + z = 0 * n+4 J n+3 v J ' n+2 J n+i n 

(ii) (x + y)2 ^ z r = ( z n ^ - zn_t) - (xy - l ) (zn + 1 - zn) 

H-128 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Let F and L denote the Fibonacci and Lucas numbers, respectively, n n 
Show that 

F n = 22 n + 3 - 23 n + 3 (mod 11) , 

L = 22n + 23n (mod 11) . 
n 

Generalize. 

H-129 Proposed by Stanley Rabinowitz, Far Rockaway, New York. 

Define the Fibonacci polynomials by fj(x) = 1, 

fi(x) = 1, f2(x) = x9 fn^(x) = xfn+1(x) + y x ) , n > 0 

Solve the equation 
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(x2 + 4)f2 (x) •= 4k(- l ) n"1 

in terms of radicals, where k is a constant, 

SOLUTIONS 

GREATEST POWER OF TWO IN N 

H-81 Proposed by Vassili Da lev, Sea Cliff, New York. 

Find the n term of the sequence 

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, • • • 

Solution by J . L. Brown, J r . , Ordnance Research Laboratory, State Co l lege , Pa. 

Let u denote the n term of the sequence for n > 1. Then for n 
> 1, each integer n has a unique representation in the form 

n = 2k<n) . r(n) , 

where k(n) is a non-negative integer and r(n) is an odd integer >1. The 
given sequence is formed by the rule u = r(n). 

Also solved by Thomas Dence, L. C a r l i t z , and C . B. A . Peck. 

LEHMERfS FAMOUS PROBLEM GENERALIZED 

H-82 Proposed by V . E. Hoggatt , J r . , San Jose State Co l l ege , San Jose, C a l i f . 

If f0(x) = 0 and fi(x) = 1, fn+2(x) = xfn+1(x) + y x ) , then show 

n=i v ' 

Solution by M . N . S . Swamy, Nova Scotia Technical Co l lege , Ha l i f ax , Canada. 
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Let tan #n = l / f (x). Then 

f2n+2(x) " f2n(x) _ * W i ( x ) 
tan (02n - 0mn) = i + f2n(x)f2n^(x) = 1 + f2 n(x)W2(x) 

It may be easily established by induction that, 

fn-i« Wx> - *n<x> = ™n 

Hence, 

xf2n+i(x) x 
tan (02n - #2n+2) ~ ~ ' 

^n+1(x) f2n+i(x) 

Or, 

tan_1[l/f2n(x)] - tan_1[l/f2n-H,(x)] = tan-1 [x/f2n+i(x)] 

Hence, 

i 
M) = tan_1{^-( - *»' ) w^ci" 

Now f2(x) = x, Also, as m«*-oof tan" (l/f2m+2(x))-^0o Hence, 

00 

" 1
r - 2 _ = tan"1 i f2n+1(x) x X^tan" 1 „ x ,.., •= t a n 

JL.T-

Note: Since f (1) = F , the n Fibonacci number, we get the interesting 
result that, 
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oo 
-i IT X "^ -i 1 

tan l = T = > tan = 
4 Z - ^ F2n+1 

l 

This i s Lehmer !s famous result. 

Also solved by Joseph D. E. Konhauser. 

ANOTHER CUTIE 

H-83 Proposed by Mrs. Will iam Squire, Morganrown, West Virginia. 

Show 

LT-J 

X>"(?:i) m+i-2t _ 

where [x] is the greatest integer function. 

Solution by M . N . S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

We know that the Chebyshev polynomial S (x) is given by 

Ln/23 
(1) 

i=.n V ' 

Also, S (x) satisfies the difference equation 

S (x) = xS (x) - S ! (x) , nv ' n - r ; n-2v ' 

with 

S0 — 1, S| - x 



1968] 

Hence9 

ADVANCED PROBLEMS AND SOLUTIONS 55 

S (x) 
IT ; v5"^~ 

, n+i 
»x + Vx2 - 4f I x -V : :2 - 4 

\ n+ ln 

Or, 

w*K-*~> 
+ V 5 \ n + 1 (3 ^ X n + 1 

^ f 
= A j/i^vsy^2 __ /i-vsy^ = F. 2n+2 

Hence, F 2 n = S Q - ^ S ) . Therefore, from (1) we get 

: 2 m 

[(m-i)/2] 

3=0 

Changing j to (t - 1) we have, 

[(m+i)/2] 

E ^ - ( w ) 3 m+i-2t = F 2m 
t F i 

ALPHA AND BETA, AGAIN! 

H-85 Proposed by H. W. Gould/ West Virginia University, Morgantown, W. Va. 

Let 

D = f x n ~ f f x1 1]* n n L n Jr 

where 
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with 

i _,_ = f + f n+i n n - i 

f0 = i± = 1, x = (1 + VS)/2, 

and f~zj = greatest integer £z (so that z - ["zl = fractional part of z). Prove 
(or disprove) the existence of the limits 

Lim D9„ = 0.27 ••• = A J2n 
n—•oo 

and Lim D2 n + 1 = 0.72 
n —•oo 

= B with A + B = 1 

Generalize to case of 

t V i = p^n + ^ n - i * 

where p and q are real and |j.0 and \xt are given. 

Solution by L. Carlitz, Duke University. 
Put 

so that 

= J(l+V5), y = | ( l - \ ^ j , 

n+i n+i 
f = x - y 
n 

x - y 

2n+i n n+i 
9 D = 5 ULJL-

n x - y 

2n+i n n+i x - x y 
x - y 

Then 

4n+i 
D - x - y 
D2n " x - y 

4n+i 

x - y 

4n+l 4n+i o M 

£ zl = F4n + 1 zJ = F4n + 2L^2f 
x - y 4X1 x - y 41i 

n+2 

y2 + l 
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Since - 1 < y < 0 i t follows that 

57 

0 < y2 . y4n-H> 

y 2 - i 
< 1 (n > 0) 

Thus 

Therefore 

lim _._ _ 

x4 n + 1 - y 
x - y 

y2 = 

- F D - y2 - y4n+2 

y2 + i 

1 _ 2 5 - V5 
n = oo '2n 2 + 1 x2 + 1 5 + V 5 10 V 5 \ 2 

Simi lar ly 

D. 2n+i 
x431*3 + y _ [ ^ + y' 

~ x - y L x ~ y 

•x4n+3 x 4 n + 3 + y = „ , y 4 1 1 ^ + y = ^ f _ T + r 
x - y •4 n +2 x - y 

F4n+2 
y2 + i 

Since 

V2 + y 4 n + 4 

0 < z ~ — * < 1 , 
y2 + i 

we have 

L x " y . 
iT2 4- Tr4ll+4 y* 4- y^ 

- F^+2 s D2n+i ~ 1 ~ 
y2 + l 

^ _ 5 + V 5 _ _JL.-. / 1 +V5 > 
H m D 2 n + 1 = 1 - - E — -

1 1 = 0 0 y2 + l x2 + l 10 V 5 2 

• * • * • 



RECREATION CORNER 
SOLUTION 

POPULATION EXPLOSION 

Brother Al f red Brousseau 
St. Mary's Col lege, Ca l i f . 

The problem began with 28 people. Starting with the 28th and working 
backward taking every third person, it was found that the final two places were 
the 18th and the 8th. Then for 29, when one takes one step to 26, one is back 
to the case of 28, so that the answers are 16 and 6„ Going to 30, the answers 
regress back to 14 and 4. This continues until one arrives at 31 with answers 
12 and 2. At the next step 2 is replaced by a larger number at the other end 
of the scale. Starting with 32, one obtains 10 and 31. Again one can continue 
to 36 with solutions 2 and 23. The next step gives 37.with solutions 36 and 21„ 
The mode of procedure should be evident. The steps are summarized in the 
following table,, 

N 

618 

800 

926 

1200 

1389 

1799 

2083 

2698 

3124 

4047 

4685 

6070 

7027 

9104 

10540 

13656 

Pi 

616 

252 

925 

377 

1387 

567 

2081 

852 

3122 

1276 

4684 

1914 

7026 

2872 

10539 

4307 

P2 

364 

799 

547 

1198 

820 

1798 

1230 

2697 

1845 

4045 

2769 

6068 

4154 

9103 

6231 

13654 

N 

28 

32 

37 

48 

55 

71 

82 

106 

123 

159 

184 

238 

275 

356 

412 

534 

Pi 

18 

10 

36 

14 

54 

22 

81 

33 

121 
49 

182 

74 

274 

112 

411 

167 

P2 

8 

31 

21 

46 

32 

70 

48 

105 

71 

157 

107 

236 

162 

355 

243 

532 

58 
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N 

15810 

20483 

23714 

30724 

35571 

46086 

53356 

69128 

80033 

103692 

120049 

155537 

180073 

233305 

270109 

349957 

405163 

524935 

607744 

787402 

911616 

130009000 

Pi 

15808 

6462 

23713 

9693 

35569 

14539 

53354 

21810 

80032 

32714 

120048 

49072 

180072 

73608 

270108 

110412 

405162 

165618 

607743 

248427 

911614 

734846 

* * * * * 

ERRATA 

P2 

9346 

20482 

14020 

30723 

21029 

46084 

31544 

69127 

47317 

103690 

70976 

15536 

106464 

233304 

159696 

349956 

239544 

524934 

359316 

787401 

538973 

362205 

Please make the following corrections to the article "The Bracket 

Function, Q-Binomial Coefficients, and Some New Stirling Number Formulas, " 

by H. W. Gould, appearing in the December, 1967, Vol. 5, No. 5, issue of the 

Fibonacci Quarterly, pp. 401-423; 

p. 410: In the line after (3), replace "left" by "led. " 

p. 411: In relation (33), replace { a J by 

p. 415: In relation (50), after sigma, replace G(x, j ,q) by F(x, j ,q ) . 
* * * * * 



RECREATIONAL MATHEMATICS 
Joseph S. Madachy * 

4761 Bigger Rd. , Ket ter ing, Oh io 

This column, hopefully, will s e r v e the need for mathemat ica l r e l a x a -

tion and make the r e a d e r look again a t the o ther a r t i c l e s in the Fibonacci 

Qua r t e r ly with a mind m o r e recep t ive to the fascination of ma themat ics . 

Actually, r e a d e r s of th is Jou rna l a r e a l r eady incl ined this way s ince this 

Jou rna l i s devoted to the study of one of the mos t fascinating s e r i e s of n u m -

b e r s eve r d iscovered. 

N u m b e r s , Fibonacci o r o the rwise , will not a lways be touched upon — 

mathema t i c s , after a l l , i s m o r e than that. I look forward to comments and 

contr ibut ions f rom r e a d e r s . 

DIGITAL DIVERSIONS 

E x p r e s s the Fibonacci n u m b e r s us ing the ten digits once only and in 

o r d e r and only the common mathemat ica l opera t ions and symbols . T r y to 

avoid expres s ions included in b r a c k e t s indicating the n e a r e s t whole in teger . 

You should be able to extend the l i s t below. It would be in te res t ing to d e t e r -

mine the l a r g e s t poss ib le Fibonacci number so exp res s ib l e , o r to see in how 

many different ways a given number can be expressed . 

F 1 = F 2 = 1 = 0 - 1 + 2 - 3 + 4 - 5 - 6 - 7 + 8 + 9 

F 3 = 2 = 0 + (1)(2) - 3 + 4 - 5 - 6 - 7 + 8 + 9 

F 4 = 3 = 0 - 1 + 2 - 3 - 4 + 5 - 6 - 7 + 8 + 9 

F 5 = 5 = 0 + 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 

F 6 = 8 = 0 + (1)(2) + 3 + 4 - 5 - 6 - 7 + 8 + 9 

F 7 = 13 = 0 + 1 + 2 + 3 - 4 - 5 + 6 - 7 + 8 + 9 

F 8 = 21 = 0 - 1 + 2 + 3 + 4 - 5 - 6 + 7 + 8 + 9 

F 9 = 34 = 0 + (1)(2) + 3 + 4 - 5 + 6 + 7 + 8 + 9 
_ . 

Ed i to r of The Jou rna l of Recrea t ional Mathemat i c s : co-au thor , with J . A. H. 
Hunter , of Mathemat ical D ive r s ions : author of Mathemat ics on Vacat ion: 
f o r m e r owner -pub l i she r -ed i to r o f t h e defunct Recrea t iona l Mathemat ics 
Magazine. 

60 
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F10 = 55 = 0 + 12 + 34 + 5 - 6 - 7 + 8 + 9 
Fn = 89 = 0 + 1 + 2 + 34 + 56 + 7 - 8 - V 9 
F12 = 144 = 0 + 1 + 2 + 3 + 4 + 5 1 + 6 + 7 - 8 + 9 

A DUDENEY PROBLEM 

Henry Ernest Dudeney (1857-1930), one of Englandfs foremost puzzlists 
once posed the following problems "It will be found that 32,547,891 multi-
plied by 6 (thus using all the nine digits once, and once only) gives the prod-
uct 195, 287, 346 (also containing all the nine digits once, and once only). Can 
you find another number to be multiplied by 6 under the same conditions ? 
Remember that the nine digits must appear once, and once only, in the num-
bers multiplied and in the producttT 

Dudeney, in [Y], included this problem, with the answer (6)(94, 857,312) 
= 569,143, 872. Martin Gardner, in editing this book, added two solutions 
supplied by Victor Meally: (6)(89, 745,321) = 538,471,926 and (6)(98, 745, 231) 
= 592,471,386. With the help of a table constructed in 1963 by Harry L. 
Nelson of Livermore, California, I found that there are actually 87 solutions 
to this problem. These are listed in Table 1. 

An obvious variation on DudeneyTs problem is to ask the same question, 
but include zero as the tenth digit. There are 174 10-digit solutions derivable 
from Table 1 by simply appending a zero to one of the factors and the product 
Examination of the table discloses many additional 10-digit solutions with the 
zero not at a terminal position,, For example, the first three listed each yield 
two additional 10-digit solutions: 

(6) (201, 578, 943) = 1,209,473,658 
(6)(215,078,943) = 1,290,473,658 
(6) (230,158,794) = 1,380,952,764 
(6)(231, 508, 794) = 1,389,052,764 
(6)(245,098,731) - 1,470,592,386 
(6) (245, 987,301) = 1,475,923,806 

I leave it to the reader to find the other 10-digit solutions derivable from 
the tablee However, I feel sure there may be other 10-digit solutions to the 
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Solutions to Dudeneyfs 

6.x 21578943 = 

6 x 23158794 = 

6 x 24598731 = 

6 x 24958731 = 

6 x 27548913 = 

6 x 27891543 = 

6 x 27893154 = 

6 x 28731594 = 

6 x 28943157 = 

6 x 29415873 -

6 x 31275489 = 

6 x 31542789 = 

6 x 31578942 = 

6 x 31587294 = 

6 x 32458971 = 

6 x 32547891 = 

6 x 32714589 = 

6 x 32897541 = 

6 x 41527893 = 

6 x 41957283 = 

6 x 41957328 = 

6 x 41957823 -

6 x 41958273 = 

6 x 42195783 = 

6 x 42319578 = 

6 x 42719583 -

6 x 42731958 = 

6 x 42789153 = 

6 x 42819573 = 

129473658 

138952764 

147592386 

149752386 

165293478 

167349258 

167358924 

172389564 

173658942 

176495238 

187652934 

189256734 

189473652 

189523764 

194753826 

195287346 

196287534 

197385246 

249167358 

251743698 

251743968 

251746938 

251749638 

253174698 

253917468 

256317498 

256391748 

256734918 

256917438 

6 x 42985731 

6 x 43152789 

6 x 43195728 

6 x 43219578 

6 x 43271958 

6 x 45719283 

6 x 45719328 

6 x 45728193 

6 x 45731928 

6 x 45781923 

6 x 45782193 

6 x 45819273 

6 x 45827193 

6 x 47328591 

6 x 47532891 

6 x 48572931 

6 x 48579231 

6 x 48591273 

6 x 48912753 

6 x 49285731 

6 x 52487931 

6 x 52874931 

6 x 52987431 

6 x 71528943 

6 x 71954283 

6 x 71954328 

6 x 72819543 

6 x 72854931 

6 x 72985431 

1 
-Digit Problem 

= 257914386 

= 258916734 

= 259174368 

= 259317468 

= 259631748 

= 274315698 

- 274315968 

= 274369158 

= 274391568 

= 274691538 

= 274693158 

= 274915638 

= 274963158 

= 283971546 

= 285197346 

= 291437586 

= 291475386 

= 291547638 

= 293476518 

= 295714386 

=314927586 

= 317249586 

= 317924586 

= 429173658 

=431725698 

= 431725968 

=436917258 

- 437129586 

= 437912586 

6 x 73195428 = 

6 x 78195423 = 

6 x 78219543 = 

6 x 78549231 = 

6 x 78942153 = 

6 x 78943152 = 

6 x 79854231 = 

6 x 81954273 = 

6 x 82719543 = 

6 x 85473291 = 

6 x 85491273 = 

6 x 87249531 = 

6 x 87294153 = 

6 x 87315294 = 

6 x 87495231 = 

6 x 87941523 = 

6 x 89145327 = 

6 x 89532471 = 

6 x 89532714 = 

6 x 89745321 = 

6 x 94152873 -

6 x 94857123 = 

6 x 94857213 = 

6 x 94857312 = 

6 x 95248731 = 

6 x 97328541 = 

6 x 98541273 -

6 x 98724531 = 

6 x 98745231 = 

439172568 

469172538 

469317258 

471295386 

473652918 

473658912 

479125386 

491725638 

496317258 

512839746 

512947638 

523497186 

523764918 

523891764 

524971386 

527649138 

534871962 

537194826 

537196284 

538471926 

564917238 

569142738 

569143278 

569143872 

571492386 

583971246 

591247638 

592347186 

592471386 
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problem that are not derivable from the table. At this point, I can only hope 
that someone will use a computer to find all the 10-digit solutions to this par -
ticular problem. 

The Nelson table mentioned previously was constructed in answer to a 
query I had made concerning the solution to the problems What two or more 
factors containing the nine (or ten) digits once only yield a product containing 
the nine (or ten) digits once only? Nelson1 s computer-calculated table listed 
all 2, 624 solutions to the 9-digit case (zero excluded). (See [ 4 l for a dis-
cussion of this table.) The work involved in finding all the 10-digit solutions 
was not done. Included in Nelsonfs table are all the solutions to two other 
variations on Dudeney* s problem. Substitute 3 or 9 in place of 6 as a factor. 
There are 335 solutions to the (3) (A) = B variation and 144 solutions to the 
(9) (C) = B variation, where A contains eight distinct digits (excluding zero 
and 3), B contains nine distinct digits (zero excluded,) and C contains 
eight distinct digits (zero and 9 excluded). Interested readers may obtain one 
free copy of these (3)(A) = B and (9)(C) •= B tables simply by requesting 
them. Please, only one copy. If you want more, include at least five cents 
postage for every two copies. 

ANOTHER DUDENEY PROBLEM 

Dudeney once asked what numbers have cube roots equal to the sum of 
their digits. Excluding the trivial I3 = 1, Dudeney [ 2 ] gave the five solu-
tions! 512, 4913, 5832, 17576, and 19683. That is , 512 = (5 - 1 + 2)3 = 83; 
(4 + 9 + 1 + 3)3 = 173; and so on. 

Some years ago, I asked T. Charles Jones, then a student at Davidson 
College in Davidson, North Carolina, to run a computer search for solutions 
to this problem for n roots to n = 101. (The requests I sometimes put to 
people are not often trivial!) Elsewhere [~4J I!ve shown how one might sys-
tematically search for these rather interesting numbers. These numbers — 
which, by the way, lack a precise name* — can be written as 

N = abed»° * = ( a + b + c + d + °o») = p . 

*In [ 4 ] numbers which are representable, in some way, by mathematically 
manipulating their digits are called narcissistic. Closely related to the above 
numbers are those which are equal to the sum of then^h powers of their digits; 
e. g. , 153 = I3 + 53 + 33. Such numbers are called Perfect Digital Invariants 
(PDI!s) by Max Rumney of England, who has studied them extensively £5j* 
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where abed . . . r e p r e s e n t s the digits of N, and ( a + b + c + d + «-«) r e p r e -

sen t s the sum of the digi ts of N. Table 2 l i s t s the 432 values of P which, 

when re l a t ed to the n power, yield an N, the sum of whose digits i s equal 

to P . 

One of the in te res t ing a spec t s of th is p rob lem i s that t h e r e i s a t l eas t one 

r ep re sen t a t i ve for eve ry n f rom n = 2 to n = 101, with a max imum n u m -

b e r (13) of r ep resen ta t ions at n = 25. T r iv i a l r ep resen ta t ions such a s 1 = 

1 a r e not l is ted. The g r e a t e s t number of t imes that a given P o c c u r s i s 

fives P n = N for P = 90 and n = 19, 20, 21 , 22, and 28. The fully p r in t ed -

out n u m b e r s total 19 computer shee t s , but r e a d e r s might be i n t e r e s t ed in s e e -

ing s eve ra l of the l a r g e r examples . 

n P = N (Sum of the digi ts in N i s equal to P) 

1811 6 = 13 26958 06363 75768 00539 94757 97274 10881 

18716 = 22 35968 62152 63449 25885 78257 92399- 57441 

4994 3 = 10 43094 03484 75692 24451 60376 10004 44524 

27960 69557 10166 43340 61295 76^132 73343 

99292 16069 53092 75509 14486 32354 72591 

73992 71499 

99975 = 92770 86733 90001 46643 21616 99937 58761 27716 

93772 92872 78273 34425 52852 00275 13591 27714 

15647 08297 24430 57342 37029 14944 28952 64407 

21199 26192 76548 53218 72362 23108 52440 33783 

01874 09642 00691 ' 32958 96038 80592 97398 10590 

35077 08174 61752 22250 74999 

The l a r g e s t known number of this type i s 1468101 which contains 320 digi ts 

— whose sum i s 1468. 

I found, quite by accident , one example of P = N where the sum of the 

digi ts in N i s equal to n : 

270 = 1 ,180 ,591 ,620 ,717 ,411 ,303 ,424 . 
A r e t h e r e any m o r e of this type? 
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Table 2 

N = P , Where the Sum of the Digits in N equal P 

_n P 

2 9 

3 8, 17, 18, 26, 27 

4 7, 22, 25, 28, 36 

5 28, 35, 36, 46 

6 18, 45, 54, 64 

7 18, 27, 31, 34, 43, 53, 58, 68 

8 46, 54, 63 

9 54, 71, 81 

10 82, 85, 94, 97, 106 

11 98, 107, 108, 117 

12 108 

13 20, 40, 86, 103, 104, 106, 107, 

126, 134, 135, 146 

14 91, 118, 127, 135, 154 

15 107, 134, 136, 152, 154, 172, 

199 

16 133, 142, 163, 169, 181, 187 

17 80, 143, 171, 216 

| 18 172, 181 

19 80, 90, 155, 157, 171, 173, 181, 

189, 207 

20 90, 181, 207 

21 90, 199, 225 

22 90, 169, 193, 217, 225, 234, 256 

1 23 234, 244, 271 

24 252, 262, 288 

25 140, 211, 221, 236, 256, 257, 

261, 277, 295, 296, 298, 299, 

1 337 

26 306, 307, 316, 324 

n 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

JL 

305, 

90, 

305, 

396 

170, 

367, 

388 

170, 

423 

387, 

378, 

388, 

414, 

485, 

468, 

449, 

250, 

432 

280, 

461, 

542, 

280, 

360, 

360, 

574, 

350, 

666 

370, 

270, 

589, 

307 

160, < 

314, 

331, 

386, 

352, 

412, 

388, 

424 

421, 

495 

469 

523 

441, 

487, 

499, 

548, 

523, 

503, 

478, 

592 

559, 

513, 

290, 

637, 

265, 292, 301, 328 

325, 332, 341 

338, 346, 356, 364, 

387, 443 

359, 378, 406, 422, 

463 

414, 451, 477 

422, 433, 469, 477, 

468, 486, 495, 502 

523, 531 

508, 511, 526, 532, 

572 

549, 576, 603 1 

523 

514, 522, 544, 558, 

567, 575, 595, 603, 

631, 667 

340, 350, 360, 533, 

648, 661, 695 



66 RECREATIONAL MATHEMATICS [Feb„ 

Table 2 

n P 
50 685 

• 51 360, 

52 625, 

53 648, 

54 370, 

55 677, 

56 684 

57 370, 

58 667, 

59 370, 

60 694, 

61 440, 

62 855, 

63 793, 

64 430, 

65 818, 

66 837, 

67 450, 

926, 

68 837 

69 540, 

70 540, 

71 917, 

72 901, 
73 853, 

74 936, 

75 630, 

76 1044 

77 1061 

78 964, 

(Continued fi 

666, 685 

688, 736, 739 

683, 703, 746 

603, 657, 667, 739 

683 

460, 719, 748, 793, 802 

721, 754 

440, 693, 845 

784, 792, 793 

490, 758, 815, 833 

865 

827, 836, 846 

829, 871 

856, 891, 928 

864, 927 

859, 865, 866, 869, 874 

934 

936, 962, 963, 1016 

882, 909 

991 

1062 
882, 928, 1006, 1015 

1008, 1009, 1018 

964, 999, 1016, 1053 

, 1075, 1093 

, 1062, 1088 

1117, 1126, 1134 

x>m P. 6 
n 
79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

v 610, 1031, 1043, 1054, 1064, 

1091, 1108, 1133 

1044, 1071, 1134, 1144 

1062, 1196 

1048, 1111, 1134, 1231 

730, 1115, 1151, 1207 

1188 

1051, 1103, 1165, 1183, 1277 

1134, 1225 

1187, 1216, 1224, 1232, 1278, 

1288 

730, 1084, 1147, 1183, 1186, 

1206 

1151, 1232, 1358 

1306, 1422 

720, 1208, 1233, 1253, 1261, 

1278 

720, 1296, 1359 l 

810, 820, 1396 

1285, 1287, 1303, 1327, 1332, 

1339, 1341, 1444 

820, 1323, 1342, 1351, 1385 

1387 

1237, 1322, 1324, 1361, 1367, 

1397, 1442 

1359 

1322, 1403, 1405, 1441 

1363, 1378, 1408, 1414, 1489 

1423, 1468. 
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A FIBONACCI VARIATION 

Everyone tries his hand at variations on the Fibonacci theme, Mark 
Feinberg[3] has given us the Tribonacci andTetranacci numbers, for example, 
where the terms of the series are the sums of the previous three or four terms, 
respectively. I hate to be excluded, so here?s mine, The results turned out 
to be interesting, if not exactly stupendous,, Form the F series in each 
term is the sum of the NEXT TWO terms, and which starts with 0F = 0 and 
jF = 1. The series, then, is 

0, 1, - 1 , 2, - 3 , 5, -8 , 13, -21, 34, -55, etc. 

Note that if n is zero or even, the ' F = -F ; if n is odd, then F = 
9 n n n 

F . Can anyone do anything with this ser ies? 

SOME FIBONACCI QUERIES 

What Fibonacci numbers are integral multiples of the sums of their 
digits ? For example, 

F8 = 21, 2 + 1 = 3, and (3) (7) = 21; F12 = 144, 1 + 4 + 4 = 9, and 
(9) (16) = 144; F18 = 2584, 2 + 5 + 8 = 19, and (19)(136) = 2584e 

I 'm sure there are more, Are there an infinite number of them? Are they a 
function of n? 

Somewhat related to the above is the problem of finding F^ = N, such 
that N = nk, where k is a positive integer. For example, 

Fj = 1; F5 = 5; F12 = 144 (here k = 12); F25 = 75025 (here k = 3001) 

Is there a formula relating these? 



RECREATIONAL MATHEMATICS Feb. 

REFERENCES 

Dudeney, Henry Ernest, 536 Puzzles and Curious Problems, edited by 
Martin Gardner, Charles Scribner?s Sons, N. Y. , 1967, pp. 41 and 257. 

Ibid, pages 36-37 and 253. 

Feinberg, Mark, "Fibonacci-Tribonacci,!f Fibonacci Quarterly, Vol. 1, 
No. 3 (October 1963), pp. 71-74. 

Madachy, Joseph S. , Mathematics on Vacation, Charles ScribnerTs Sons, 
N. Y., 1966, Chapter 6. 

Rumney, Max, "Digital Invariants,TT Recreational Mathematics Magazine. 
No. 12 (December 1962), pp. 6-8. 



ON THE TRAIL OF THE CALIFORNIA PINE 
Brother Al f red Brousseau 
St. Mary's Col lege, Ca l i f . 

The statements in books about pine cones9 sunflowers 9 pineapples and 
other natural objects manifesting Fibonacci numbers in their structure are 
interesting, but they are bloodless and academic when compared to the actual 
experience of seeking out and examining these things* The present account 
concerns a series of events which began in the summer of 1966 when the author 
started collecting cones of the California pines with a view to observing and 
verifying Fibonacci relations* 

Being located at Huntington Lake in the Sierra Nevada with a number of 
pine species in the near vicinity., there was a good opportunity to begin the work 
of collection* With pine trees of several species all about and with cones in 
profusion lying on the grounds there seemed to be no problem,, However9 all 
these fallen cones were open and here was the first big surprise: it is difficult? 

if not impossible9 in many cases to follow the spirals on open cones* There is 
a notable element of uncertainty involved which could lead one to using his 
imagination rather than examining the spirals objectively! 

It seemed that the only thing to do was to go about looking for fresh closed 
cones. This was not too difficult for the lodgepole pine (Pinus Murrayana) but 
provided a problem with the yellow (Pinus ponderosa) and Jeffrey (Pinus Jeff-
eryi) pines, These are large trees and in our area the cones few in number 
were very high* However ? it was possible to collect a fresh cone of each of 
these species as well as samples of immature closed cones that were found on 
the ground* 

Then followed a hike in the Kaweah Mountains during which many fine 
specimens of what was taken to be the limber pine (Pinus flexilis) were ob-
served,, However9 only one fresh cone was collected* though a number of good 
open specimens were gathered. 

On returning to base camp5 it was found that the rodents had taken advan-
tage of my absence to upset the boxes in which the fresh cones were stored and 
of course they had one or more sumptuous meals at my expense* This meant 
starting all over again with greater security measures against these predators* 

69 
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A large cardboard box with a substantial board and heavy rock on top of it 
seemed to provide ample protection. 

A special trip was made to the vicinity of Cow Creek (near Mt. Tom) to 
collect sugar pine (Pinus Lambertiana) cones. There were many immature 
fallen cones on the ground and these were procured in quantity. Such cones 
apparently do not come open subsequently, so that with their fine symmetry 
and large size they furnish an ideal means of bringing out Fibonacci relations. 

The white bark pine (Pinus albicaulis) grows at an altitude of from 8,000 
to 12,000 ft. Specimens were found on Kaiser Ridge. However, another hazard 
for the pine cone collector was highlighted at this point. In this area there 
were not too many trees with cones. But more disappointing, those that had 
them in quantity had been visited by the Clark nutcracker (or Clark crow) which 
pecks away at the cones on the trees and gets at the nuts inside. Thus it was 
not possible to find one good cone. Furthermore, those cones that are on the 
ground deteriorate so that even here, the one or two open cones collected were 
very fragile, 

At the end of the season in the mountains, therefore, the following species 
had been obtained either in the form of fresh cones or open cones; lodgepole 
pine, yellowpine, Jeffrey pine, silver pine (Pinus monticola), what was believed 
to be limber pine, sugar pine, and white bark pine. On the way down to the 
valley, there were many digger pines (Pinus Sabiniana) and some fine open 
specimens were gathered from the ground. 

Thus eight species in all had been obtained with the following still await-
ing collection: 

One-needled pinon (Pinus monophylla) 
Pinus edulis (edible pinon pine) 
Four-needled pinon (Pinus quadrifolia) 
Bristlecone pine (Pinus aristata) 
Foxtail pine (Pinus Balfouriana) 
Bishop pine (Pinus muricata) 
Santa Cruz Island pine (Pinus remorata) 
Beach pine (Pinus contorta) 
Torrey pine (Pinus Torreyana) 
Monterey pine (Pinus radiata) 
Knobcone pine (Pinus attenuata) 
Coulter pine (Pinus Coulteri) 
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The work of collecting was continued at St. Mary?s College in September, 
1966, this institution being located in Contra Costa County about twenty-five 
miles from San Francisco* The Monterey pine was found on the property. 
The knobcone pine was located on what is known as Moraga Ridge in the vicinity 
of a small settlement named Canyon. In the ML Diablo area5 a fresh digger 
pine cone was found as well as a green Coulter pine conea This latter pine is 
not too easy to identify especially in the Mt8 Diablo area as the tree grows 
there along with digger pines from which it is difficult for the amateur to dis-
tinguish it, One certain means of identification is the longer wing on the seed 
of the Coulter as compared to the digger. The Coulter pine cone is a magnifi-
cent large specimen ranging in length from eight to twelve inches* 

A special trip was made to Tioga Pass to collect the one-needled pinion 
pine conee Not knowing exactly where these t rees were to be found, it was 
necessary to grope around. However, about eight miles beyond the pass on the 
East side, a prominent group of bushy looking trees was observed on the left 
side of the road. These were indeed one-needled pinions. After scrambling 
up steep cliffs to gether specimens, it was found that the Clark nutcracker had 
again been doing his work* There were quite a few cones on the ground but 
these dry cones are badly out of shape though not without their artistic aspect* 
They would render tracing spirals impossible. A number of intact fresh green 
cones was obtained as well as samples of the needles* These latter are most 
interesting,, As the name implies, the needles come individually and are not 
in groups of 2, 3, or 5 as with most pines. They are round and sharply pointed! 

Bishop pine cones had been found earlier in the spring on the Point Reyes 
Peninsula,, A special trip was made up the coast to Sonoma, Mendocino and 
Humboldt Counties to look for the beach pine* A friend indicated that trees 
were located just above Fort Ross. These were found and cones collected* 
However, on returning home, comparison seemed to indicate that what was 
in hand was the bishop pine! It was only later on another occasion that the 
beach pine was found. This tree is similar in some respects (especially in its 
cone) to the lodgepole pine* A couple of specimens were located along the road 
going up the coast, but since according to the guide book there were specimens 
in the vicinity of Albion, this area was explored. Li the neighborhood of this 
settlement there seemed to be none of these t rees . However, a road leading 
inland was followed for a few miles. t h i s led to a plateau area with strange 
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looking soil and here an abundance of these beach pines was found. They ap-
peared to be somewhat stunted in their growth due no doubt to the poor nature 
of the soil in which they grow. There is also a dwarf variety of this species 
(Bolanderi) one example of which was apparently found* A forest of these dwarf 
trees is located according to information just south of Fort Bragg. 

A trip to San Diego provided an opportunity to study the Torrey pine* 
This is a species endemic to California growing naturally only at Del Mar 
(north of San Diego) and on Santa Rosa Island (one of the Channel Islands). 
There are only about 3,000 trees of this species in existence. As a result, 
they are protected to a large extent in Torrey Pines State Park. It was possible 
to find some trees outside the limits of this park and collect one or two of these 
very interesting and distinctive cones. 

On this same trip an excursion was made to the East with the hope of dis-
covering somepinon pines, but these were not in evidence. As a compensation, 
however, some interesting Fibonacci specimens (cholla cactus and ocotillo, 
e. g.), were picked up in the Anza Borrego Desert. 

On still another trip to Redding, it was possible to secure two fresh 
digger pine conesa This was something of an effort as it was necessary to 
climb to the top of a t ree fifteen or twenty feet high, to wrestle with these cones 
and drop them to the ground. The result was a pair of bruised and badly 
gummed-up hands. 

It was reported that the foxtail pine was located in the Yollo Bolly Moun-
tains and in particular on Mt. Scott (just over 6,000 ft.). Following directions 
that had been received, this location was found after a trip into the back country 
amid none too good weather conditions. Various rugged looking trees with 
cones closed by recent rains were located near the crest and cones and branch-
lets collected. On returning and submitting these specimens for identification 
to Dr. Thomas Howell of the Academy of Sciences in San Francisco, it was 
found that there were no cones of the foxtail pine among them but only cones of 
the silver pinel 

On this same trip some very fine specimens of knobcone pine were ob-
tained West of Redding. 

Later in the year, a correspondent in Santa Fe, New Mexico, was con-
tacted and in this way cones of Pinus edulis were obtained. 

Thus at the end of this first season there were just four holdouts of the 
twenty specimens of pine in California, namely; the four-needled pinon, the 
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bristlecone, the foxtail (so it was thought) and the Santa Cruz Island pine* 
Specimens were studied at the Academy of Sciences in San Francisco where it 
was noted, for example, that the Santa Cruz Island pine is very close to the 
bishop pine with which it used to be identified,, 

The point of collecting all these cones was to use them as part of an ex-
hibit exemplifying Fibonacci relations in nature* The following lessons of ex-
perience show how different the book approach to these matters is from actual 
contact o 

In the first place9 it was possible to take open cones and close them by 
soaking them in water* This would take care of a particular exhibit that one 
would want to make. However, it was found that if such cones were slightly 
dried and then covered with white glue, one or more coats would be sufficient 
to keep them closedl 

In the second place, most of the fresh cones that were collected dried and 
in due time opened so that all the effort involved in gathering them was mis -
placed. There are cones (such as those of the Monterey pine and the bishop 
pine) which normally remain closed; but if a cone opens on drying, there is not 
much point in having a fresh cone because sooner or later it will open anyhow* 

In examining pine cones, it was found that there are two principal ways 
of noting the Fibonacci relations* One is to take a particular set of spirals and 
count their number: this should be a Fibonacci number* The other is to start 
at some particular bract and follow two spirals proceeding from it until they 

j 
meet again,, Then the number of bracts along each spiral required to go from 
one intersection to the next should be a Fibonacci number. 

It was noted likewise that in many cones there are more than two spirals 
going through each bract, If there are spirals one, two, and three, for example, 
any two of these spirals can be related and in each case there will be Fibonacci 
number s* 

For exhibit purposes the following means of bringing out these relations 
can be used* In accord with the first system each spiral can be painted a given 
color, so that the number of colors automatically shows the number of spirals. 
Following the second system, the spirals issuingfrom one bract can be colored 
differently or map pins of different colors, one for each spiral, can be used* 

Part two of the pine cone project was completed in the summer and fall 
of 19678 Once again the mountains were visited, but this time the idea was to 
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find cones and collect them before the birds had done their work. As a result, 
it was possible to secure some excellent specimens of the cones of the white 
bark pine. These are things of beauty, roundish in shape and purple in colorl 
Furthermore, they were immediately covered with white glue so that they would 
hold their appearance and not fall apart or deteriorate. Similarly, fine speci-
mens of silver and yellow pine were obtained in their fresh state and glued. 

It must be reported that this gluing of fresh specimens seems to work 
well for small cones such as the white bark pine cone and the foxtail cone. 
But the larger cones, such as those of the yellow and Jeffrey pine, opened in 
spite of the glue. Better results were obtained for these latter cones by tak-
ing an older cone, soaking it in water and then gluing. Presumably, the answer 
may be that the once open cone on being closed has small cracks between the 
bracts which are filled with glue and thus the bracts are held more strongly 
together. 

The crowning achievement of the summer was a quick trip to the Alta 
Peak area near Sequoia National Park. It was reported that the foxtail pine 
could be found there at high altitudes. In this whirlwind trip, the issue was 
long in doubt: there seemed to be nothing along the slopes but very rugged 
looking silver pines. As the tree line was approached, however, two some-
what smaller specimens were observed which raised hope. Closer examina-
tion showed all the characteristics of the foxtail pine: needles of about an inch 
length, cones that were definitely different from those of the silver pine and 
open cones on the ground that corresponded to what had been observed at the 
Academy of Sciences in San Francisco. There were only two scraggly trees 
but they represented the end of a long search. 

SEQUEL 
The final act of the pine cone search came inthefalL In conjunction with 

a mathematics conference in Squaw Valley at the end of September, it was de-
cided to go to the Bishop area and proceed to Onion Valley west of Independence 
to collect the limber pine. The reader may recall that the author thought he 
had this specimen in the summer of 1966 when hiking in the Kaweak area. 
However, these cones turned out to belong to the foxtail pine, so that all the 
effort in Yollo Bolly Mountains and the dash to Alta Peak was superflousl 

Onion Valley is a very interesting area about nine thousand plus feet, 
'reached by a good mountain road from Independence. According to an article 
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read after the trip, there are eight species of pine within a few miles of this 
point, the author claiming this to be the greatest density of distinct pine species 
in the world* Some very interesting trees and cones were found and specimens 
collected* However, on being brought to Dr8 Howell at the Academy of 
Sciences, it was found that they were excellent specimens of foxtail pinej 

Likewise on this trip it was possible to collect some specimens of the 
bristlecone pine, a unique tree growing at an altitude of over 10,000 ft in poor 
dolomite solL These trees are the oldest living thing in the world, ages of 
3,000 years being common and some trees being over 4,000 years old. 

In a subsequent trip to the Southern part of the State, a day was taken to 
do some collecting in the neighborhood of Aguanga (south of San Bernardino) 
and on Mt San Gorgonioe The first location is a very small settlement on the 
roatd with no pine trees in sight However, inquiry led to information regard-
ing what the local people call Pine F la t There, the four-needled pinon was 
found in quantity and specimens procured. 

Not too far beyond this point, what must be literally known as a windfall 
came to hand. Cresting a gentle pass, trees with very large cones were noted* 
Investigation showed that they were Coulter pines9 However, the cones on the 
ground were old and broken, while those on the trees were so high it was very 
difficult to get at thenx Continued search revealed a tree with its top broken 
off t there on the ground was about eight feet of a twenty-five to thirty foot tree 
with two very large cones on It] Apparently, these cones were sufficiently 
heavy to snap off the top of the tree in a wind! 

About four-thirty in the afternoon after considerable motoring, Poopout 
Hill parking lot on Mt San Gorgonio was reached. After about an hour and a 
half of brisk walking up the trails the elusive limber pine was found. Specimens 
were collected for about half an hour and the return trip begin. However, 
darkness set in at seven o!clock so that there was a full hour of hiking in the 
dark, though the moon made the going somewhat less difficult] 

At the end of this trip, there was a certain feeling of satisfaction; all 
cones of all California pine species except the Santa Cruz Island pine which is 
located on this particular Channel Island had been collected, 
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SPIRAL PATTERNS ON CALIFORNIA PINES 

The following designations of spiral patterns do not make any pretense of 
completeness. Actually bracts can be lined up into sequences in many ways. 
The following are simply some of the more obvious patterns which have been 
observed. 

As for notation, 8-5, for example, means that starting from a given 
bract and proceeding along two spirals, 8 bracts will be found on one spiral and 
5 on the other when going to the next intersection of the spirals. 

Pinus albicaulis (Whitebark pine) 5-3, 8-3, 8-5 
Pinus flexilis (Limber pine) 8-5, 5-3, 8-3 
Pinus Lambertiana (Sugar pine), . . 8-5, 13-5, 13-8, 3-5, 3-8, 3-13, 3-21 
Pinus monticola (Western white pine, Silver pine) . . 3-5 
Pinus monophylla (One-leaved pinon) 3-5, 3-8 
Pinus edulis 5-3 
Pinus quadrifolia (Four-leaved pinon) 5-3 
Pinus aristata (Bristlecone pine) . . . . . . . . 8-5, 5-3, 8-3 
Pinus Balfouriana (Foxtail pine) 8-5, 5-3, 8-3 
Pinus muricata (Bishop pine) 8-13, 5-8 
Pinus remorata (Santa Cruz Island pine) . . . . . 5-8 
Pinus contorta (Beach pine) . . . . . . . . . . 8 - 1 3 
Pinus Murrayana (Lodgepole pine, Tamarack pine) . . 8-5, 13-5, 13-8 
Pinus Torreyana (Torrey p i n e ) . . . . . . . . . 8-5, 13-5 
Pinus ponderosa (Yellow pine) . . . . . . . . . 13-8, 13-5, 8-5 
Pinus Jeffreyi (Jeffrey pine) 13-5, 13-8, 5-8 
Pinus radiata (Monterey pine) 13-8, 8-5, 13-5 
Pinus attenuata (Knobcone pine) 8-5, 13-5, 3-5, 3-8 
Pinus Sabiniana (Digger pine) 13-8 
Pinus Coulteri (Coulter pine) 13-8 

* * * • * 



A MAGIC SQUARE INVOLVING FIBONACCI NUMBERS 
Herta T. Freifrag 

Hollins Col lege, V i rg in ia 

Is there anything peculiar in the magic square 

.13 89 97 34 
110 21 63 39 
68 94 55 16 
42 29 18 ' 144 ? 

As is well known, the arrangement derives its name from the property 
that the sum of all numbers contained in either a row, or a column, or a diag-
onal is a constant, in this case 233, which we will refer to as the "magic num-
ber, " MN. 

It seems that knowledge of such square number arrays, not necessarily 
four-by-four, were known in China as far back as 2200 B»CB, but apparently it 
was only in the 16th Century that this idea has reached the Christian Occident, 
From that time onward, this topic has not only held its attraction in a recrea-
tional manner, but mathematicians of rank, among them Leonhard Euler, have 
given it serious attentione 

Here is a suggestion for designing a whole set of four-by-four magic 
squares with the added property that each of the entries is the sum of two Fib-
onacci numbers (which may, of course, under appropriate conditions, be a 
Fibonacci number itself) and the magic number is itself a Fibonacci number — 
even a pre-assigned one, if one so desires,, 

We will first construct an addition table, denoting by fn., i E {l, 2S • • • , 8} , 
the n. Fibonacci number* 

i 
If we wish to retain the positions of the numbers in the main diagonal 

8 

M N=XXi 
i = i 
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n2 

113 

n4 | 

I f J n 5 

nt n5 
f + f 
n2 n5 

| f + f 
n3 n5 _ 
f + f n4 n5 

f 
n6 

f + f 
ni <n6 
n2 —-^£l\ 

___n3-^ n*/ 

f + f n4 n6 

f n7 
f + f ni n7 

A + f _ -/ n2 n7 

\ n 3 I T ? — 

f + f n4 n7 

f I n 8 J 
£ + f " | ni n8 

- f + f 
n2 n8 
f + f 

~_ n3 n8 
f + f n4 n8 

A r r a y 1 

There fo re , we must r e a r r a n g e the posi t ions of the o ther number s . The minor 

diagonal a l ready does show the des i r ed p roper ty . Studying the design of our 

a r r a y , a grouping of the non-diagonal numbers into p a i r s of pos i t ions , which 

a r e s y m m e t r i c with r e spec t to the cen te r of the square , as indicated by the 

guide l ines , suggests itself. We now pe r fo rm an Interchange of the two n u m -

be r s in each pa i r . After this t ransformat ion , our a r r a y becomes : 

f + f 
nt n5 

f + f 
n3 n8 
f + f n2 n8 
f + f n4 n5 

f + f n4 n7 
f + f n2 n6 
f + f 
n3 % 
f + f 

f + f n4 n6 
f + f n2 n7 
f + f n3 n7 
f + f nt n6 

f + f 
nj n8 
f + f n3 n5 
f + f 
n2 n5 
f + f 
n4 n8 

A r r a y 2 

Then MN, as computed from the f i r s t row, equals 

2(f + f ) + f + f + f + f ni n4 n5 n6 n 7 n 

F o r this number , however, to equal 

Z^J n. ' 
i=i 
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the condition 

79 

f + f = f + f , nt n4 n2 n3 

forces itself upon us. Analogously, we would need to stipulate that 

f + f = f + f . n5 n8 n6 n7 

If we wish to obtain an array which has the properties of a magic square with-
out further restrictions, an interchange of the subset of four numbers which 
form a square arrangement at the right-hand top of Array 2 with the cor res -
ponding one on the left-hand bottom needs to be resorted to. This transforma-
tion leads to: 

f + f 
ni n5 

f + f 

f + f n4 n6 

f + f 
n2 n7 

f + f n4 n7 

f + f 
n2 n6 

f + f ni n8 

f + f 
n3 n5 

f + f 
n2 n8 

f + f 
n4 n5 

f + f n3 n7 

f + f 
ni n6 

f + f 
n3 n6 

f + f ni n7 

f + f 
n2 n5 

f + f 
n4 n8 

Array 3 

Array 3 gives us a prescription for an infinite set of magic squares, such 
that each entry is the sum of (at most) two Fibonacci numbers. 

However, we may wish to have a Fibonacci number for our MN. We 
need to superimpose the set of conditions: n. = ni + 2i - 3, i E J2, 3, , 8{. 
Now our magic square reads 

a a+7 

f + f 
a+3 a+13 

f + f a+5 a+9 

f + f a+1 a+n 

f + f a+5 a+ll 

f + f 
a+l a+9 

f + f , 
a a+13 

f + f 
a+3 a+7 

f + f a+i a+13 

f + f 
a+5 a+7 

f , + f _, 
a+3 a+n 

a a+9 

f + f a+3 a+9 

f + f a a+n 

f + f 
a+l a+7 

f + f 
a+5 a+13 

Array 4 
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whe re , for s impl ic i ty ' s sake , we symbolized ii} by a. A r r a y 4 gives us the 

m e a n s for s t ruc tu r ing an infinitude of magic s q u a r e s . Obviously, we may even 

p r e - a s s i g n a magic number , we wish to obtain. Since MN nowbecomes f , 

the n Fibonacci number will be obtained by let t ing the p a r a m e t e r a equal 

n - 14. 

But we may super impose one m o r e r e s t r i c t i on . Our a im now is to con-

t r i v e a magic square of the kind just desc r ibed but with the added p r o p e r t y that 

al l e lements in the major diagonal a r e Fibonacci n u m b e r s , r a t h e r than sums 

of two Fibonacci n u m b e r s . Then — see A r r a y 3 — the r e s t r i c t i o n s : 

% = n5 = 

n3 = nt + 

n4 = n! + 

n6 = nt + 

n7 = ni + 

n8 =-ni + 

ni + 1 

3 

5 

2 

4 

5 

need to be observed, and the a r r angemen t below (Array 5) will s e r v e our needs . 

Again, we adopt the simplified symbol ism. 

f 
a+2, 
f + f 
a+3 a+6 
f + f a+2 a+5 

f + f a+1 a+4 

f 
a+6 

a+3 

f + f ^ a a+6 

a+i + a+3 

a+i + a+6 

f + f a+l a+5 

a+5 

f + f , a a+2 

f 
a+4 

a a+4 

2 f a + 1 

a+7 

A r r a y 5 

The magic number MN = f is again p r e - a s s i g n a b l e , and all en t r i e s 

in our major diagonal a r e Fibonacci n u m b e r s . We may tes t our scheme by 

wishing to obtain the 1 3 ' Fibonacci number , 233, as our magic number . Then 

a = 5, and our magic squa re becomes the one quoted at the beginning of th is 

paper . 



A SEQUENCE OF POWER FORMULAS 
Brother Al f red Brousseau 
St. Mary's Col lege, Ca l i f . 

Star t ing with the fami l ia r formulas 

(1) F a_, = F + F 
n+i n n - i 

(2) F 2 = 2F 2 + 2F 2 - F 2 

n+l n n - l n-2 

in which a power of a Fibonacci number is exp res sed as a l inea r combination 

of the s a m e power of success ive Fibonacci number s one is led to seek additional 

fo rmulas of th is type. 

F o r the th i rd degree one can s t a r t with 

F 3 = F 3 + 3 F 2 Y ' + 3F F 2 + F 3 

n+l n n n - l n n - l n - l 

F 3 .= F 3 - 3F2 F + 3F F 2 - F 3 
n-2 n n n - i n n - l n - l 

F 3 = - F 3 + 6F 2 F - 12F F 2 + 8F3 
n-3 n n n - l n n - i n - l 

which r e su l t f rom cubing fami l ia r l inea r relations,, To a r r i v e at the de s i r ed 

power re la t ion , it i s n e c e s s a r y to e l iminate the t e r m s that a r e not s imple 

powers . Multiplying the f i r s t re la t ion by a9 the second by b and adding the 

r e s u l t to the th i rd yields the following re la t ions for th is el imination. 

a - b + 2 = 0 

a + b - 4 = 0 

f rom which b = 3 and a = 1. This gives the de s i r ed re la t ion of the th i rd 

deg ree : 

(3) F 3 = 3F 3 + 6F 3 - 3F3 - F 3 

n+l n n - i n-2 n-3 
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This method can be pursued making use of coefficients without wri t ing 

out complete express ions . F o r the fourth degree this gives a table : 

F 4 1 4 6 4 1 
n+1 

F 4 1 - 4 6 - 4 1 
n-2 F 4
 n 1 - 8 24 -32 16 n-3 

F 4 16 -96 216 -216 81 
n-4 

This table leads to the following equations for el iminating the middle t e r m s . 

a + b - 2 c - 2 4 = 0 

a + b + 4c + 36 = 0 

a - b - 8c - 54 = 0 

f rom which a = 1, b = 15, c = 5, and d = - 1 . This leads to the re la t ion: 

(4) F 4 , = 5F 4 + 15F4 - 15F4 - 5F4 - F 4 

n+i n n - i n-2 n-3 n-4 

Fifth and sixth deg ree re la t ions a r e : 

(5) F 5 = 8F 5 + 40F 5 - 60F 5 - 40F 5 + 8F 5 + F 5 

n+l n n-l n-2 n-3 n-4 n-5 
(6) F 6 , = 13F6 + 104F6 - 260F6 - 260F6 + 104F6 + 13F6 - F 6 

n+l n n - l n-2 n-3 n-4 n-5 n-6 

Since the a lgebra at th is point was becoming labor ious , the coefficients 

w e r e s e t u p in tabular form for the purpose of d iscover ing a pa t te rn . The 

heading i s the degree ; the number s below a r e the success ive coefficients of the 

t e r m s on the r ight-hand s ide of the re la t ion. 

jL 

1 

1 

2 

2 

2 

- 1 

3 

3 

6 

- 3 

- 1 

4 

5 

15 

-15 

- 5 

1 

J> 
8 

40 

-60 

-40 

8 

1 

_6 

13 

104 

-260 

-260 

104 

13 

- 1 
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It was observed that one column can be obtained from the previous column by 
multiplying by a Fibonacci number and dividing successive products by certain 
Fibonacci numbers in reverse order* Thus to go from the column headed 4 
to the column headed 53 multiply each quantity in the 4 column by 8 and di-
vide successive products by 5, 3, 2, 1, 1 respectively. To go from column 
5 to column 63 multiply each quantity in column 5 by 13 and divide by 8, 
55 3, 2, ls 1 respectively. The new elements in each column at the end are 
all l f s with a plus or minus sign, the order being two minuses, two 
etc. 

With the aid of this empirical result, the table was continued to higher 
powers, 

rl 
21 

273 

-1092 

-1820 

1092 

273 

-21 

-1 

S 
00

 

34 

714 

-4641 

-12376 

12376 

4641 

-714 

-34 

1 

9 

55 

1870 

-19635 

-85085 

136136 

85085 

-19635 

-1870 

55 

1 

12 
89 

4895 

-83215 

-582505 

1514513 

1514513 

-582505 

-83215 

4895 

89 

-1 

n. 
144 

12816 

-352440 

-3994320 

16776144 

27261234 

-16776144 

-3994320 

352440 

12816 

-144 

-1 

11 
233 

33552 

-1493064 

-27372840 

186145312 

488605194 

-488605194 

-186135312 

27372840 

1493064 

-33552 

-233 

1 

11 
377 

87841 , 

-6324552 

-187628376 

2063912136 

8771626578 

~-14169550626 

-8771626578 

2063912136 

187628376 

-6324552 

-87841 

377 

In each instance the coefficients were checked by applying the formula to one 
particular value of n. 

^ ^ ^ & • & 



BOOK REVIEW 
536 PUZZLIES AND CURIOUS PROBLEMS 

by Henry Ernest Dudeney 
Edited and with an Introduction by Martin Gardner 

Some very pertinent information about the author and this collection of 
mathematical problems may be gleaned from the introduction by Martin 
Gardner. Quote: 

"Henry Ernest Dudeney . „. was England's greatest maker of puzzles, 
With respect to mathematical puzzles, especially problems of more than 
trivial mathematical interest, the quantity and quality of his output sur-
passed that of any other puzzlist before or since, in or out of England.TT 

He was noteworthy for the originality of his work and his desire to give 
credit where credit was due when borrowing other people's ideas. He was un-
usually skillful in geometrical dissections and an expert in magic squares of 
various types. He was the first to apply the term "digital roots" in recrea-
tional mathematics. 

The present volume combines two of his books which have been out of 
print since 1958, namely, "Modern Puzzles" and Puzzles and Curious 
Problems." The puzzles have been rearranged and reclassified with American 
words replacing British, American currency substituted for English, e tc . , to 
adapt the material to the U. S. public. 

A rapid survey of the volume brings about a number of encounters with 
old familiar favorites, but there is material to spare for just about every one, 
except possibly the puzzle specialist. 

The book is well printed and put together in an attractive manner (see 
cover photograph p. 68). There are also answers to alleviate the danger of 
complete psychological frustration. 

The publisher is Charles Scribner's Sons (1967) and the book sells for 
$7.95. 

Brother Alfred Brousseau 
St. Mary's College, Cali f . 

* * • * • 
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THE FIBONACCI DRAWING BOARD 
DESIGN OF THE GREAT PYRAMID OF GIZEH 

C o l . R. S. Beard 
Berkeley, Ca l i f . 

The comments on the Great Pyramid of Gizeh by Herodotus (484 to 424 
B. C.) contained the statement that "The base was a square* The base side 
was 800 feet. The height was equal.1T 

Apparently some student of the dimensions of this pyramid has interpreted 
this 'obscure1 statement to mean that the square of the vertical height of the 
pyramid is equal to the area of each of its triangular faces. 

Such an imaginative interpretation is not acceptable evidence. It also 
credits the Egyptians of 3000 B. C8 with familiarity with the golden section. 
However, the facts fit the theory remarkably well. 

The elevation of the face triangles of the pyramid is made the unit of 
measure in the accompanying cross section of the pyramid* Let k symbolize 
the golden section ratio of -JV5 - f. 

If the square of the vertical height of the pyramid equals the area of one 
triangular face, each such face is a golden rectangle that has been halved on one 
diagonal and rejoined on its long sides. The base of the pyramid is then a 2k 
x 2k square and it has an altitude of Vk. Each quarter section of the 2 x 2k 
golden rectangle in the sketch has the area of one triangular face. The inscribed 
ellipse has one focus at the apex of the pyramid* A circle of radius l i s cen-
tered on the base. The inscribed regular decagon has sides of k length. The 
sides of the inscribed regular pentagon has sides of the same length as the 
sloping edges of the pyramid* 

Such relationships would certainly have appealed to these Egyptian mas-
ters of practical geometry. 

The Great Pyramid is now about 750 ft. square at the base. It is 451 ft. 
high and has a small flat deck on top. Sir William Mathew Flanders Petrie 
made an exceptionally accurate survey of the pyramid in the early 1880!s. On 
the basis of his painstaking studies, he concluded that the original base of the 
pyramid was 755.73 ft. square and that its original height was 481.33 ft. 

Under the Herodotus design, a base of 755e73 ft. would correspond to the 
2k dimension in the drawing* This would make the height of the pyramid 
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THE GREAT PYRAMID. 

Item Intact-feet Slant Height Ratio. k«^5~»o.6raa34.' 

Height- 481.33 \k « o.786isi 5qyare of Height-^81^=231679. 
B a s e . - (755.73)* (ak)Zas(l.Z36068)2 HceTrianqle«^x61l.93x755.73«231229. 

Slant Height- 611.33 jk|s = 1.175570 *• 37 7.87 
611,33 -0 .6175 377,87 , 

481.33 
S0.785I 
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755.73 

or 480*65 ft. 
Surprisingly the dimensions of the pyramid conform equally well to a 

second and a third theory as to its design. 
A widely held second theory makes the height of the pyramid equal to 

the radius of the circle that has a circumference equal to the perimeter of the 
base of the pyramids 

4 X IDD@ iO _ AQn - -

2 ^ 4 8 1 ' n 

Sir William Petrie himself was thoroughly convinced that the Egyptians 
constructed the pyramid with aheight-to-width-of-base ratio of seven to eleven* 

~ x 755.73 = 480.92 . 

Herodotus reports that 100*000 men labored for 30 years to construct 
this gigantic exhibit of personal egotism,, This massive structure has probably 
settled morel than the variations in these computed heights*, Nobody will ever 
know its true original height and early Egyptian knowledge of the golden section 
remains unconfirmed So roll the dice and choose your own theorye 
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BOOK REVIEW 

MATHEMATICAL QUICKIES 
Charles W„ Trigg 

Mc-Graw-Hill Book Company, New York, 1967, xi +210pp0 $7.95 

Mathematical "Quickies" were introduced in March, 1950, by Charles 
W. Trigg, when he was serving as editor of the Problems and Questions De-
partment of the Mathematics Magazine. A Quickie is a problem whose solution 
appears at first encounter to require laborious methods, but which by proper 
insight can be disposed of with dispatch,, The Quickies caught on at once and 
have retained their popularity in the Mathematics Magazine ever since, 

This book is divided into two parts0 In the first part is a superb collec-
tion of 270 Quickies, chosen from such diverse fields as arithmetic, algebra, 
plane and solid geometry, trigonometry, number theory, and recreational 
mathematics (magic squares, dissections, cryptarithms, e t c ) . In the second 
part appear elegant solutions to the Quickies. The problems are all interest-
ing, stimulating, and challenging, and a reader should try to solve them him-
self before peeking at the ingenious solutions offered in the second part of the 
book; he may even on occasion come up with a superior solution,, 

There is roomfor cleverness in mathematics, and this feature of problem 
solving is excellently illustrated in this book. The material should appeal to 
mathematics enthusiasts of all ages and levels of sophistication, and should be 
invaluable in the arsenals of school teachers and college instructors. It is 
hoped that Dean Trigg, who is one of the country's outstanding problemists, will 
dip into his great collection of Quickies and, at some date not too far in the 
future, give us Some More Mathematical Quickies, 

Howard Eves 
University of Ma ine , OronoT 'Me. 

• • • • • 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by A. P. Hillman 

University of New Mexico, Albuquerque, N . M . 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or 
solution should be submitted in legible form, preferably typed in double spac-
ing, on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

B-130 Proposed by Sidney Kravifrz, Dover, New Jersey 

An enterprising entrepreneur in an amusement part challenges the pub-
lic to play the following game. The player is given five equal circular discs 
which he must drop from a height of one inch onto a larger circle in such a 
way that the five smaller discs completely cover the larger one. What is the 
maximum ratio, of the diameter of the larger circle to that of the smaller ones 
so that the player has the possibility of winning? 

B»-131 Proposed by Charles R. W a l l , Univers i ty o f Tennessee, K n o x v i l l e , Tenn. 

Let {H } be a generalized Fibonacci sequence, i. e. , H0 = q, Hi = p, 
H = H + H . Extend, by the recursion formula, the definition to include 

n+2 n+l n i 
negative subscripts. Show that if |H_ I = |H for all n, then {H } is a 
constant multiple of either the Fibonacci or the Lucas sequence. 

B-132 Proposed by Charles R. W a l l , Univers i ty o f Tennessee, K n o x v i l l e , Tenn. 

Let u and v be relatively prime integers. We say that u belongs to 
the exponent d modulo v if d is the smallest positive integer such that u 
= l ( m o d v ) . For n > 3 show that the exponent to which F belongs modulo 
F ,, is 2 if n is odd and 4 if n is even. n+l 

B-133 Proposed by Douglas L ind , Universi ty o f V i r g i n i a , Char lo t tesv i l l e , V a . 

Let r = F1000 and s = F1001. Of the two numbers r and s , which 
is the larger? 
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B-134 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va . 

Define the sequence j a \ by aA = a2 = 1, a2k+i = a2k + a2k-i> anc* 
a2k = \ ^ o r • k > 1. Show that 

n 
a 2k- i = a4n+l " a2n+i 2 ^ a

k
 = a ^ + l - *> ^ 

k=i k=i 

B-135 Proposed by L. Carl i tz, Duke University, Durham, North Carolina 

Put 

k=o k=o 

Show that, for all n > 1, 

F ' = 2 n - F _,_„, V = 3 • 2 n - L ^ . n n+25 n n+2 

SOLUTIONS 

GENERALIZATION OF F L = F ^ i + F 2 n _ 2 

B-112 Proposed by Gerald Edgar, Boulder, Colorado 

Let f be the genera l ized Fibonacci sequence (a ,b) , i . e . , f̂  = a, f2 

= b , and f , = f + f ,. Let g be the assoc ia ted genera l ized Lucas s e -tt* l n n - i &n & 

quence defined by g n = f ^ + fn+r P r o v e that f n g n = b f a i „ 1 + afm_2. 

Composite of solutions by David Ze i t l i n , Minneapolis, Minnesota and Phil Mana, 
University of New Mexico, Albuquerque, New Mexico. 

Let r and s be the roo t s of x2 - x - 1 = 0. Then f and g a r e of 
n &n 

the form Cjr + c2s and hence f g , f2n_i, anc* fzn-2 a r e a ^ °̂  t n e f ° r n i 

kjr2*1 + k2C-l) n + k3s: 2n 

and hence al l sat isfy the difference equation 
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(E) y , - 2v - 2y + v = 0 
Jn+3 yn+2 ^n+i ^n 

whose auxi l iary polynomial i s 

(x - r 2 ) (x - r s ) (x - s 2 ) = x3 - 2x2 - 2x + 1. 

Since both s ides of the d e s i r e d formula 

W f
n&n

 = bf2n-i + ^211-2 

sat isfy (E)9 formula (F) i s es tabl ished by verifying it for n = 0, 1, and 2 and 

then using (E) and mathemat ica l induction to p rove i t for n > 0o 

Also solved by Thomas P. Dence, Douglas L ind , D. V - Jaiswal ( India) , Stanley 
Rabinowi tz , A . C . Shannon (Austra l ia) , M . N . S. Swamy (Canada), and the 
proposer. 

CLUSTER POINTS 

B-113 Proposed by Douglas L ind , Univers i ty of V i r g i n i a , Char lo t tesv i l le , Va* 

Let (x) denote the fract ional p a r t of x5 so that if [ x J i s the g rea t e s t 

in teger in x, (x) - x - . [ x ] . - Let a = (1 + V 5 ) / 2 and let A be the se t {(a) , 

(a2) , (a3) , ° • °} . Find al l the c lus t e r points of A. 

Solution by the proposer. 

If b = (1 - V 5 ) / 2 , it i s fami l ia r that L = a + b , where L i s the 
th n n 

n " Lucas number , which i s an integer* Since - 1 < b < 0, given E > 0§ 
t h e r e i s an N such that for al l k > N we have 

0 < b 2 k = L 2 k - a2 k < G . 

It follows that (a2 k ) - > 1 . Similar ly , t he r e i s an M such that for all k > M 

we have 

0 < „b2k+l = a2k+l _ L 2 k + i < G 9 

so (a2 k 1) ->0 o Clear ly these a r e the only poss ib le c lu s t e r points of A0 
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OUR MAN OF PISA 

B-114 Proposed by Gloria C. Padilla, University of New Mexico, Albuquerque, 
N . M . 

Solve the division alphametic 

PISA 
FIB | ONACCI ' 

w h e r e each l e t t e r i s one of the digits 1, 2, • ° ° , 9 and two l e t t e r s may r e p r e -

sent the s a m e digit. (This i s suggested by Maxey Brooke ' s B-80 . ) 

Solution by the proposer. 

One solution i s the following: 

3 4 1 8 
1 4 3 | 4 8 8 7 7 4 

IDENTITIES FOR F, AND L. kn kn 

B-115 Proposed by H. H. Ferns, Victoria, B.C. , Canada 

From the formulas of B-106: 

2 F . , . = F .L . + F .L . 
i+J i ] 3 i 

2L.J_. = 5 F . F . + L.L. 
1+3 1 3 1 3 

one has 

Foy, — F L 
m n n 

F 3 n = (5F3 + 3F L 2 ) / 4 6ii n n n ' 

L 2 n = (5F* + l £ ) / 2 
n n 

-^n L 3 n = (15F2 L + L3 ) /4 6n x n n n ' 

Find and p rove the genera l fo rmulas of t hese types . 
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Solution by Stanley Rabinowitz, Far Rockaway, New York. 

The formulas look neater when expressed in matrix form. Putting i = 
(k - l)n and j = n in the formulas of B-106 gives 

« ft)-ft *:)&;; 
Repeated application of this formula gives the desired solution: 

( W = 2 k ( 5 F n L n / ( 2 ) 

since F0 = 0 and L0 = 2. 
Note: From (R) or the formulas of B-106, one can obtain the proposer1 s 
formulas: 

1 [ k / 2 ] i / k + l \ 
F(k+l)n = 7k Z ^ 5 ' \ k - 2 i / F n + 1 Ln~H s 

i=o 

[(k+i)/2] 
L = JL V 51 / k + 1 \ F 2 i L

k + 1 " 2 i 

^(k+On 2k Z ^ I k + 1 - 2 i j n n 

i=o 

Also solved by David Zei t l in and the proposer. 

A GENERATING FUNCTION 

B-.116 Proposed by L. Carlitz, Duke University, Durham, No. Carolina. 

Find a compact sum for the series 

00 

E -P m n 
±,2m-2nx y • 

m, n=o 
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Solution by David Zei t l tn , Minneapolis, Minnesota. 

If W ^ = aW ^ + bW , then n+2 n+i n 

W0 + (Wi - aW0)t ~ t 
(i) — = 2 ^ w,_tj 

1 . at - bt2 

k=o 

Since W, = F 2 ^ i p sa t is f ies W, = 3W, - W. , we have 

E m
 F - 2 n + (F2-2n - 3F_ 2 n )x 

F2Hl-2nx ~ —" ! — r — — — -
1 - 3x .+ x2 

m=0 

Since F . = ( - l r F . , we have the d e s i r e d sum, S, 

S = _ 1 l(3x - Dy^F 2 n y n -xVF 2 n _ 2 y n 

i - 3x + x2 \ *-i *-i ) 
v n=o n=o / 

1 / (3x - l )y x ( - l + 3y) 
1. - 3x + x2 \ 1 - 3y + y2 1 - 3y + y2 

- x - y 

(1 - 3x + x 2 ) ( l - 3y + y2) 

Also solved by Douglas Lind, D. V . Jaiswal (India), M . N . S . Swamy (Canada), 
and the proposer. 

ANOTHER GENERATING FUNCTION 

B-117 Proposed by L. Carli tz, Duke University, Durham, N o . Carolina. 

Find a compact sum for the s e r i e s 

E ^ m n 

F2in-2n+iX y m, n=o 
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Solution by David Zeitlin, Minneapolis, Minnesota. 

Using (1) in B-116, we have 

" m _ F-2n+l + (F3_2n - 3F_2n+1)x 
/ A

 F2m-2n+lx 

1 - 3x + x2 
m=o 

Since F . = ( - l r F. , we have the desired sum, S, 
-J 3 

( 00 00 ^ 

(1 - 3x) V F 2 n . i y
n + x y F2n_3yn 

n=o n = 0 / 
( (1 - 3x)(l - 2y) + x(2 - 5y) \ 
\ 1 - 3y + y2 1 - 3y + y2 / 

1 - 3x + x^ 

xy - 2y - x + 1 
(1 - 3x + x2)(l - 3y + y2) 

Also solved by Douglas L ind , D. V . Jaiswal ( India) , M . N . S . Swamy (Canada), 
and the proposer. 

* • • • • 

The Fibonacci Association invites Educational Institutions to apply for academic 
Membership in the Association. The minimum subscription fee is $25 annually. 
(Academic Members will receive two copies of each issue and will have their 
names listed in the Journal.) 

The Fibonacci Bibliographical Research Center desires that any reader 
finding a Fibonacci reference send a card giving the reference and a brief 
description of the contents. Please forward all such information to: 
Fibonacci Bibliographical Research Center, 
Mathematics Department, 
San Jose State College, 
San Jose, California 



FORMULAS FOR DECOMPOSING F 3 n / F , Fgn / F n and L 5 n /l^ < 

INTO A SUM OR DIFFERENCE OF TWO SQUARES 

Dov J a r den 

J e r u s a l e m , I s r a e l 

(1) F 3 n / F n = L£ - ( - l ) n 

(1.1) F g n / F g n = L 2
n - 1 = ( L m - l ) ( L 2 n + 1) 

(1-2) F3(2 n + 1) /Fjjn+i = L l n + 1 + 1 

(2) F m / F n - (L2 n + ( - l ) n ) 2 - (-l)nL& 

(2.1) F 1 0 n / F 2 n = (L4 n + 1)2 - L i n = (L4 n + 1 - L 2 n ) ( L 4 n + 1 + L 2 n ) 

(2.2) F5(2 n + 1) / F 2 n + 1 = (L 4 n + 2 - l ) 2 + Lla+i 

(3) L 5 n / L Q • = (L2 n - ( - l ) n 3 ) 2 + ( 5 F n ) 2 

(3.1) L l o n / L 2 n = (L4 n - 3)2 + (5Fn)2 

(3.2) L5(2n+1) / L 2 n + 1 = (L 4 n + 2 - 3)2 - (5F2 n + 1) 2 = ( L 4 n + 2 - 3 - •5F 2 n + 1 ) (L t o + 2 - 3 + 5F2 n + 1) 

The formulas (1), (2), (3) can be eas i ly ver i f ied by putting 

n Qn 
Y = g - , L = a + 0 , a/3 = - 1 , 

n a - B n r > r 

and, for (3), also a - j3 = Vl>. 

Since for n > 0, (3.1) gives a decomposi t ion of L ^ / L ^ into a sum of 

two s q u a r e s , and" s ince any divisor of a sum of two squa re s i s '= 1 (mod 4), it 

follows that any p r imi t ive d iv isor of L1 0 n , n > 0, i s =1 (mod 4), 

• * • • • • 
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BINDERS NOW AVAI LAB LE 

The F ibonacc i Associat ion is making available a binder which 
can be used to take ca r e of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

" . . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ronica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high from the 
bottom of the backbone, round c o r n e r e d , fitted w i th 
a 1 1/2 n mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is da rk 
g reen . There is a s m a l l pocket on the spine for holding a tab 
giving year and volume. These la t te r w i l l be supplied with each 
o rder if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3.50 which includes postage ( r ang ing 
from 50£ to 80£ for one b inder ) . The tabs will be sent wi th the 
rece ip t or invoice. 

All o r d e r s should be sent to : Bro ther Alfred Brousseau , 
Managing Edi tor , St. M a r y ' s College, Calif. 94575 


