
DALHOUStiS 

THE FIBONACCI QUARTERLY 
THE OFFICIAL JOURNAL OF 

THE FIBONA CCI ASSOC I A TION 

•nftl 

8EWALS DEfi 

VOLUME 6 r " l 3 ^ * S * H NUMBER 2 

CONTENTS 

PART I - ADVANCED 

Genera l ized Fibonacci Summations . . Jeremy C. Pond 97 
Per iod ic i ty and Density of Modified 
Fibonacci Sequences L. R. Shenton 109 

On a Cer ta in In teger Assoc ia ted with a 
Genera l ized Fibonacci Sequence „ , T.W. Cusick 117 

On Q - Fibonacci Polynomials . Se I mo Tauber 127 

On the Genera l ized Langford P rob l em . Eugene Levine 135 

Fibonacci Sequence Modulo m • . A. P. Shah 139 

Advanced P r o b l e m s and Solutions . . . Edited by Raymond E. Whitney 3 42 

PART II - ELEMENTARY 

Mathemat ica l Models for the Study of the Propagat ion 
of Novel Social Behavior Henry Winthrop 151 

A T h e o r e m on Power Sums Stephen R. Cavior 157 

Recrea t iona l Mathemat ics Joseph S. Madachy 162 

F u r t h e r P r o p e r t i e s 
of Morgan-Voyce Polynomials . . . M. N. S. Swamy 167 

Scott*s Fibonacci Scrapbook ; . . . . . . Allan Scott 176 

L inear Diophantine Equations 
With Non-Negat ive P a r a m e t e r s and Solutions . . . Thomas M. Green 177 

E lemen ta ry P r o b l e m s and Solutions . . . . . . Edited by A. P. Hillman J 85 

P a s c a l ' s Tr iang le and Some 
Famous Number Sequences • . . . . ' . . . . . . . / . Wlodarski 192 

APRIL 1968 



THE FIBONACCI QUARTERLY 

OFFICIA L OR GA N OF THE FIBONA CCI A SSOCIA TION 

A JOURNAL DEVOTED TO THE 
STUDY OF INTEGERS WITH SPECIAL PROPERTIES 

EDITORIAL BOARD 

H. L. Alder V. E. Hoggatt, J r . 
Marjorie Bicknell Donald E. Knuth 
John L. Brown, Jr . George Ledin, Jr . 
Brother A. Brousseau D. A. Lind 
L. Carlitz 0. T. Long 
H. W. Eves Leo Moser 
H. W. Gould I. D. Ruggles 
A. P. Hillman D. E. Thoro 

WITH THE COOPERA TION OF 

P. M. Anselone Charles H. King 
Terry Brennan L. H. Lange 
Maxey Brooke James Maxwell 
Paul F. Byrd Sister M. deSales McNabb 
Calvin D. Crabill C. D. Olds 
John H. Halton D. W. Robinson 
Richard A. Hayes Azriel Rosenfeld 
A. F. Horadam M. N. S. Swamy 
Dov Jarden John E. Vinson 
Stephen Jerbic Lloyd Walker 
R. P. Kelisky Charles R. Wall 

The California Mathematics Council 

All subscription correspondence should be addressed to Brother U. Alfred, St. 
Maryfs College, Calif. All checks ($4.00 per year) should be made out to the 
Fibonacci Association or the Fibonacci Quarterly. Manuscripts intended for 
publication in the Quarterly should be sent to Verner E0 Hoggatt, J r . , Mathe-
matics Department, San Jose State College, San Jose, Calif. All manuscripts 
should be typed, double-spaced. Drawings should be made the same size as 
they will appear in the Quarterly, and should be done in India ink on either 
vellum or bond paper. Authors should keep a copy of the manuscript sent to 
the editors. 

The Quarterly is entered as third-class mail at the St. Mary?s College Post 
Office, California, as an official publication of the Fibonacci Association. 



GENERALIZED FIBONACCI SUMiATiONS , 
JEREMY C. POND 

Tilgate, Crawley, Sussex, England 

INTRODUCTION 

The operator A is defined [ l ] by: 

A r f ( r f a , b . . . ) = f ( r s a s b . . . ) - f(r - l . a . b -• •) 

and its inverse X is defined hjt 
r J 

A r 2 r f ( r , a , b - - - ) = f ( r , a , b - - - ) 

In this article we will make use of these two operators* which are analo-
gous to the differential and integral operators, to establish several summations 
involving generalized Fibonacci numberse 

First some elementary properties of A and 1 will be needed. In 
deriving these and in subsequent work the subscripts to the operators may be 
omitted if this causes no confusion. 

PROPERTIES OF A r AND £ r 

1, A(f(r) + g(r)) = (f(r) + g(r)) - (f(r - 1) + g(r - 1) ) 

= (f(r) - f(r - 1)) + (g(r) - g(r - 1) ) 

(0.1) A(f(r) +g(r) ) = Af(r) + Ag(r) 

2. A(f(r) . g(r) ) = f(r) . g(r) - f(r - 1) - g(r - 1) 

= f(r) • (g(r) - g(r - 1) ) + g(r - 1) . (f(r) - f(r - 1) ) 

(0.2) (f(r) . g(r) ) = f(r)Ag(r) + g(r - l)Af(r) 

If g(r) is a constant then A g(r) = 0 and putting g(r) = C in (0.2) we 
have: 

97 
( R e c e i v e d J u n e 1965) 
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(0.3) ArCf(r) = c y f r ) if ArC = 0 

This covers not only the case when C is a constant but also when it is 
any function independent of r. 

(0.4) Anf(n + p) = ( A r f ( r ) ) r ^ ^ 

This follows immediately from the definition of A sinch both left- and 
right-hand members simplify to f(n + p) - f(n + p - l) . 

4. Next some properties of X . Suppose: 2f(r) = g(r). Then from the def-
initions of A and 2 : 

g(r) - g(r - 1) = f(r) 

Summing these equalities with r taking values from 1 to n 

n 

g(n) - g(0) = E f ( r ) 
r=i 

i. e., 

n 
(0.5) Xf(n) = £ f(r) + C 

r=i 

where A C = 0 but otherwise C is arbitrary. The connection between the 
and the summation of f(n) is equivalent to that between indefinite and def-

inite integrals. In particular: 

(0.6) Z m = Sf(n) - £f(n))n = 0 

r=i 
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5, From (0.5) 

n 
2nf(n + s) = £ f ( r + s) + C 

r=i 

n+s s n+s 
= £ f(r) + C - £ f(r) = E m + C! 

r=i r=i r=i 

If we ignore the constants; 

(0.7) 2nf(n + s) = ( S / W ) r = n + s 

6(» In the definition of 2 put Af(r) in place of f(r) 

A(2Af(r)) = A(£(r) ) 

i. e . , 

SAf(r) = f(r) + C 

If we now ignore the constants 

(0.8) SAf(r) = £(r) 

7. In (0.1) replace f(r) by £f(r) and g(r) by £g(r) 

A(2f(r)+.2g(r) ) = AXf(r) + A2g(r) 

SAGf(r) + 2g(r) ) = 2(ASf(r) + AXg(r) ) 

i. e . , 

(0.9) S(f(r) + g(r) = 2f(r) + Ig(r) 
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8. From (0.2) replace g(r) by h(r) and rearranging: 

f(r)Ah(r) = A(f(r) • h(r) ) - h(r - l)Af(r) 

Let h(r) = Sg(r) 

f(r) . g(r) = A(f(r) . 2g(r) ) - 2g(r - 1) . Af(r) 

Thus: 

(0.10) 2(f(r) . g(r) ) = f(r)2g(r) - l(Ig(r - 1) . Af(r)) 

This last result, analogous to integration by parts, will be made use of 
in deriving most of the results which follow. 

If f(r) = C where A C = 0 we can write (0.10) a s : 

(0.11) 2Cg(r) = CSg(r) 

THE SUMMATIONS 

The generalized Fibonacci numbers may be defined by: 

(1.1) H f H + H 
v ' n ' n-i n-2 

for all integers n. If H0 = 0 and Hj = 1 we get the Fibonacci sequence 
which is denoted (Fn). 

Two facts about the generalized sequence will be needed. They a re : 

(1.2) H n - i H n + 1 - H* = D(- l ) n where D = H^Hj - H* [2] 

and 

(1.3) H , = F H + F H ' 
\ / n + r r_j n r n + 1 
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1. F i rs t a very simple (but useful) summation* 

A H n = H n " H n - i = H n- 2 

Thus; 

d'4) ?En = =U 
2- S a X + S 

Note that 

A n n n-i n- i , _ 
Aa = a - a = a (a - 1) 

i a X* = aX*rt " 2an_1 (a ' 1 ) H n + S + i 
n „ a - 1 v n+i .„ 

~ a l W t * T " i a n+s+i 
a 

Now using; 
S a G + l H n + S + I = S a X + S

+ a I 1 + l H n + s + 1 

^ ^ S a X + s = a X + s + 2 " a n " V " DH n + s + 1 a2 

multiplying by a2 

(a2
 + a - l ) S a X + s = a n " V + s

 + ^ X + s + i 

If a2 + a - 1 / 0 i. e . , a / (-1 ± VHj/2 

(1.5) X a X + s = - ^ — ; ( a n X + S
 + a X + s + 1 > 

a4 + a - 1 

3. 2 n k H _,_ 
^ n+s 
Before attempting this summation we will find the particular sums when 

k = 0 , 1 , 2. 
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k=0: this comes straight from (1.4) 

k=l: SnH[n+s = nH n + s ^ - . S H ^ 

M = ^ W a ~ Vs+3 

k=2: Sn2Hn+g = n * ^ - S(2n - l )H n + s + 1 

= n 2 * W " 2nHn+s+s + 2 I W 4
 + Hn+S+3 

<1.8) = <ta» + 2)Hn+s+2 + (3 - 2D) Hn+g+3 

Results (1.6), (1.7) and (1.8) suggest that there is a general form: 

^ 2 n \ + s = A k H n + s^ + B k H n + S + 3 

where A,9 B, are polynomials in n [3]. 
To determine the form of these polynomials consider: 

(1.10) l n \ + s = n \ + g ^ - 2(Ank)Hn+s+1 

Now 

Ank = nk - £ (-l) r (*) nk" r = X>1> 
r+i / k \ k - r 

r / ^ ' "' \ r / n 

r=o f=l 

(1.10) now becomes.9 

k 

s - V s - A w E<-i»r(r)»k"r y n+s+i 
r=i 

k 
= n X + s^ + E ( " 1 ) r (r) ^k-rVs+a + Bk-rHnW 

r=i 



1968] GENERALIZED FIBONACCI SUMMATIONS 103 

V r=l / 
n+s+2 

k 
V 1 < A _ -h IS 1 I ^ 

n+s+3 
r=i 

+ S ^ rMAk-r + Bk-r> K 

Compare this with (199) and we have? 

* k - ^ + Z<-»r(J)v, 
r=i 

( ia i ) 
k 

E<-«r(") =k = 2.<-« U< A k-r + Bk-r> 
r=i 

(1.11) and A0 = 1; B0 = 0 give us a way to find A, , B, for any non-negative 
integer k. Using (1. 9) we then have the required sum. This is not a very con-
venient formula to deal with as the values of A, , B, given at the end of this 
article clearly show. 

48 SH H , 
n n+s 

This form is chosen rather than one with n + u and n + v as subscripts 
because we can obtain this sum by putting n + u in place of n and letting s = 
v - u. 

Considers 

A H H ± = H H _,_ +H , H n n+s n n+s-2 n+s-i n-2 

(a) put s = 1 

AH H ^ = H2 i. e9 , £H2 = H H . n n+l n ' n n n+i 

(b) put s = 0 
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AH2 = H H . L e . , 2 H H , = H 2 n n-2 n+i ' n n+3 n+2 

Combining these last two together 

(1.12) 2Hn(AHn + BHn+3) = AHnHn+1 + B H ^ 

Now 

A H n + B H
n + 3 = <A + B>Hn + 2 B H n + i 

so recalling (1.3) we can make (1.12) the required sum if 

A + B = F and 2B = F s-i s 

Let 

B = £ F s and A = F g _ i - j F f l = ^ 

(1.12) becomes: 

(1.13) S H H ± = 1 ( F H H _,_ + F H2 ) 
v • ; ^ n n+s 2V s-3 n n+i s n+27 

5. 2H H , H , 
n n+r n+s 

Let 

h<n> = Hn-iHn+i - H n = ^ 

see (1.2) 

H H H , - H3 = h(n)H n-i n n+i n w n 

Now 

Ih(n)Hn = D I ( - l ) n H n = D(-l)nHn_i 



1968] GENERALIZED FIBONACCI SUMMATIONS 105 

from (1.5) 

Thus: 

<L14> S H n - i H n H n + i - 2 H n = D ^ X - i 

We can sum H3 by parts : 

SH3 = H • H H ^ - J H H H 
n n n n+i ^ n-2 n-i n 

Rearranging: 

(1.15) IB H H . + XH3 = H2H + H H H ^ = H H2 

x ' n-i n n+l n n n+i n-i n n+l n n+i 

From (1.14) and (1.15) we have: 

(1.16) 2H H H ,4 = i(H H2 + D(-l)nH ) 
v ' n-l n n+l 2X n n+i v ; n - r 

and: 

XH3 = i(H H2 - D(-l)nH ) n 2^ n n+i v ; n - r 

We now have two particular cases of the summation required. If we had 

IH2H , n n+i 

as well as 

IE3 

then by using the method of Section 49 we could generate SH2 H 

SH2H X =H - H H , - S H H • H n n+i n+i n n+i n-i n n-i 

= H H2 ~2H2H ,, +H2H ^ n n+i n n+l n n+i 
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Thus: 

(1.17) 2H2H ,4 = if i H ^ H _̂  ^ ' n n+i 2 n n+i n+2 

Combining this with H3 as promised; 

(1.18) SH2H , = 1(F 4(H H2 -D( - l ) n H ) + F H H _,_ H _,J 
y ' n n+r %x r - r n n+i v 7 n - r r n n+i n+2; 

To complete the generalization we require, in addition to the result just 
derived, 

SH H _,_H _,_ n n+i n+r 

Now: 

H H ^ H ^ = H H J _ ( F H + F H , ) n n+i n+r n n+r r - i n r n+r 
= F H2H , + F H H2 

r - i n n+i r n n+i 

Using (1.18) 

(1.19) SH H J A = IF H H , H ^ \ / *•< n n + 1 n + r 2 r _ ! n n+i n+2 

+ *F (H2 H . -D( - l ) n H ) 
2 r v n+i n+2 v 7 n7 

All that remains now is to combine (1.18) and (1,19) in the same sort of 
way. 

2XH H . H , = F F (H H2 -D(~l)nH ) + F F H H , H . 
n n+r n+s s-l r - r n n+i v ; n - r s-i r n n+i n+2 

(1.20) + F F H H . H , +F F (H2 H _̂  - D ^ l ) 3 ^ ) 
\ / s r - i n n+i n+2 s rx n+i n+2 v ; n ; 

Concentrating for the moment on the last term; this i s : 

F F (H2 H ^ -D(- l ) n (H , - H J) = F F (H2 H + D(-l)nH A s rv n+i n+2 v ; v n+i n-i7/ s r^ n+i n+2 v ; n-i 
+ H , (H H . - H2 , J ) n+r n n+2 n+i77 

Substituting this in (1.20) Ave have: 
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22H H ^ H ^ = (F F - F F iDf- l ) 1 ^ n n+r n+s v s r s - i r - r l ; n-i 
+ (F F + F F )H H2 

v s-i r - i s r ; n n+i 
+ (F F + F F + F F )H H ^ H _̂  x s r s r - i s-i r 7 n n+i n+2 

and this simplifies down to: 

2SH H . H . = ( F F - F F )D(-l)nH + H , , , H H , 
n n+r n+s v s r s-i r-r v ' n-i s+r+n+r n n+i 

(1.21) 

PUTTING IN THE LIMITS 

We end by quoting the generalized summations with limits from 1 ton, 

n 
(2.1) V arH . = — (an+1(H ^_ - H ) + an(H j . ̂  - H , ) ) 
1 ; Z-/ r+s o . _, x v n+s s ; v n+s+i s+r ' a4 + a - 1 r=i 

provided a2 + a - 1 ^ 0# 

(2.2) £ r\+s = V -̂W* + W S + 3 " V ^ s * " Bk<°>H
S+3 • 

r=i 

where A,(n)9 B,(n) can be generated from (l. 11). 

n 
(2.3) V H H _,_ = i ( F (E H ^ - HnHi) + F (H2 - H2) 
v ; L-J r r+s 2V s-3v n n+i u 1 ; sx n+2 2; 

r=i 

<2'4> £HrHr+S
Hr+t = f(D<FsFt " V n ^ X - i " H-i > 

r=i 

+ Hs+t+n+iHnHn+i " H s+t+i H ° H l ) 
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THE POLYNOMIALS A AND B 

Let 

X,(n) = a0 + a p + - . • + a n p + • • • + a n^ . 

The table below gives the coefficients a of the polynomials A, , B, . 

Xk(n) 

A0 

B0 

Ai 

Bi 

A2 

B2 

A3 

B 3 

A4 

B 4 

A5 

B 5 

a0 

1 

0 

0 

- 1 

2 

3 

-12 

-19 

98 

129 

-870 

-1501 

a i 

0 

0 

1 

0 

0 

-2 

6 

9 

-48 

-76 

490 

795 

a2 

0 

0 

0 

0 

1 
0 

0 

-3 

12 

18 
-120 

-190 

a 3 

0 

0 

0 

0 

0 

0 

1 
0 

0 

-4 

20 

30 

&4 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 
0 

- 5 

a 5 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 
1 

0 
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PERIODICITY AND DENSITY OF MODIFIED FIBONACCI SEQUENCES 
L. R. SHENTON 

University of Georgia, Athens, Georgia 

1, INTRODUCTION 

Periodicity of the last digit (or last two digits and so on) in a Fibonacci 
sequence has been discussed by Geller [ l ] , use being made of a digital com-
puter, and solved theoretically by Jarden [ 2 ] , We may regard this as a per-
iodic property of the right-most significant digit(s). There is a similar property 
for truncated Fibonacci sequences, the truncation being carried out prior to 
addition and on the right. Although this seems to be a somewhat artificial pro-
cedure it is the arithmetic involved on digital computers working in "floating 
point.,T The periodic property was noted by chance during a study of e r ror 
propagation. 

We generate a modified Fibonacci sequence from the recurrence 

(1) u = u + u n (n = 2 , 3 , " •) v ; n n-i n-2 v 9 9 f 

where for the moment u0 and ut are arbitrary, but we retain only a certain 
number of left-most significant digits. To be more specific we work in an x-
digit field (x = 1, 2, • • •) so that members of the sequence take the form 

(2) un = njiigng... n x , 

where m = 0 ,1 , • • • , 9 (j = 1, 2, • • •., x). In the addition of two such numbers 

n i n 2 8 e e > n x + N 1 N 2 . - - , N x 

the sum is the ordinary arithmetic sum provided there is no overflow on the 
left; if there is an overflow then the sum is taken to be the first x digits from 
the left, the last digit on the right being discarded. In other words we are 
merely describing "floating point" arithmetic infrequent usage (to some base or 
other) on digital machines,, For example, denoting the exponent by the symbol 
E, ' 

( R e c e i v e d August 1966) 1 0 9 - , 
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1-digit field 4 EO + 5 EO = 9 EO 
6 EO + 7 EO = 1 E l 

2-digit field 17 EO + 82 EO = 99 EO 

99 EO + 9 EO = 10 E l . 

C a r e i s needed when the number s being added do not belong to the s ame digit 

field. Thus 

6 EO + 1 E l = 1 E l 

74 EO + 14 E l = 21 E l 

and so on. We confine our at tention in this note to a r i thmet i c to ba se ten and 

d i scus s some in te res t ing and challenging p rope r t i e s of Fibonacci sequences in 

floating point a r i thmet i c which have come to light af ter extensive work on an 

IBM 1620 computer . 

2. CYCLE DETECTION AND PERIODIC PROPERTIES 

One digit field 
Take any two one-digi t non-negat ive n u m b e r s (not both zero) and se t up 

the modified Fibonacci sequence; then sooner o r l a t e r the sequence invar iably 

leads into the cyclic s i x - m e m b e r s e t 

(3) 1, 1, 2, 3 , 5, 8 . 

F o r examples we have 

(a) 3 EO, 6 EO, 9 EO, 1 E l , 1 E l , 2 E l , 3 E l , 5 E l , 8 E l . 

(b) 4 E O , 1EO, 5 EO, 6 EO, 1 E l , 1 E l , 2 E l , 3 E l , 5 E l , 8 E l . 

(c) 1 EO, 0 EO, 1 EO, 1 EO, 2 EO, 3 EO, 5 EO, 8 EO, 1 E l . 

I t i s convenient to drop the E-f ield symbol and indicate a change of E-field by 

a s t a r . Thus (a) - (c) become 
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(A) 3, 6, 9, 1*, 1, 2, 3, 5, 8 ; 
(B) 4, 1, 5, 6, 1*, . 1 , 2, 3, 5, 8; 
(C) 1, 0, 1, 1, 2, 3, 5, 8, 1* ; 

where a change of field applies to all members of the sequence following a 
starred member, A proof of this cyclic property depends on two facts »e first 
a Fibonacci sequence (modified or not) is determined if any two consecutive 
members are given, and second in view of the non-deer easing nature of the 
sequences, 1* must occur with a non-zero predecessor thus leading into the 
cycle (if it occurred with a zero predecessor the cycle would already be 
established). 

Two-digit field 
For this there is the invariant 34-term cycle 

10, 16, 26, 42, 68, 11*, 17, 28, 45, 73, 11*, 18, 
29, 47, 76, 12*, 19, 31, 50, 81, 13*, 21, 34, 55, 
•89, 14*, 22, 36, 58, 94, 15*, 24, 39, 63 . 

Reading by columns, a few examples are 

37 

21 

58 

79 

13* 

20 

33 

53 

86 

13* 

21 

45 
64 

10* 

16 

74 

00 

74 

74 
14* 

21 

35 

56 

91 

14* 

23 

37 

60 

97 

15* 

24 

02 

91 

93 

18* 

27 

45 

72 

11* 

18 

04 
04 

08 

12 

20 

32 

52 
84 

13* 

21 

91 

19 

11* 

12 

23 

35 

58 

93 

15* 

24 

18 

16 

34 

50 

84 

13* 

21 

56 

93 

14* 

23 

37 

60 

97 

15* 

24 

77 
34 

11* 

14 

25 

39 

64 

10* 

16 

99 
50 
14* 

19 

33 

52 

85 

13* 

21 
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sequences being terminated as soon as the cycle is joined* 

x-digit field 
Fields of length up to ten have been partially investigated with the follow-

ing results: 

Digit Field 

X 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Cycle Length 

L(x) 

6 
34 
139 
67 

3652 
7455 
79287 
121567 
1141412 
4193114 

Of course a completely exhaustive search for cycles is more or less out of the 
question; our search has involved some fifty or more cases with the four-digit 
field decreasing to less than five for the nine- and ten-digit fields. To say the 
least, the search in the fields of eight or more digits has been scanty; with this 
reservation in mind we remark that for the cycles so far found only the four-
digit field yields different members in the 67-member cycle; in this case, there 
appear to be eight different cycles. 

In passing we note that a modified Fibonacci sequence in an x-digit field 
2X 

must eventually repeat with cycle length less than 10 . For the sequence is 
2X 

determined by two consecutive members, and 10 is the number of different 
ordered pairs of x-digit numbers on base ten. Interest in the periodicity is 
heightened by the reduction in the observed cycle length as compared to the 
possible cycle length. 

To identify the cycles the least number u and its successor u for 
the various fields x are as follows: 

x 1 .2 3 4 4 4 4 4 4 4 4 

u 1 10 104 1004 1006 1010 1012 1015 1019 1026 1029 n 

u , 1 16 168 1625 1627 1634 1637 1642 1649 1660 1665 n+i 
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x 5 6 7 8 9 10 
u n 10002 103670 1616568 16167257 161803186 1618033864 

u ,4 16184 167741 2615662 26159171 261803054 2618033786 
n+l 

With these values the complete cycles can be generated without introducing 
alien members. It will be observed that the ratio u . /u is near to its ex-

n+i n 
pected value (1+V5) /2 = 1,6180339885 and increasingly so as the field length 
increases. In fact for the last six fields the ratio is as follows; 

x 5 6 7 8 9 10 . 

u , / u 1.618076 1.618028 1.6180340 1.61803397 1.618033985 1.6180339887 n+i n 

Cycle Detection 

Since members of a cycle beginning with a nine are far less common than 
for other leading digits, as we shall illustrate in the sequel, cycles are easiest 
to detect if a search is made for its largest members. Thus if we list the 
members beginning with nine and their successors, all we have to do is to gen-
erate a sequence until a matching pair appears. Cycle lengths are then readily 
picked up by sorting into order of magnitude the output of largest members at 
any given stage. The largest members in the various cycles we have found are 

Field Length Largest Member 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

8 
94 

958 

9705, 9765, 

99810 

999916 

9999866 

99998612 

999998685 

9999999229 

9854, 9917 
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3. FRACTION OF CYCLE WITH SPECIFIED LEADING DIGIT 

An examination of the two-digit field cycle shows that 11 members have 

leading digit unity whereas only one member has leading digit nine. Is there 

an indication here of a general property? With this in mind an analysis of all 

the cycles available is given in Table le 

Table 1 

Fraction of Members of a Cycle with Stated Leading Digit for Different Fields 

x = field length y = leading digit entry = corresponding fraction 

^ 
1 

2 

3 

4 

4 

4 

4 

4 

4 

4 

4 

5 

6 

7 

8 

9 

y i 
.33333 

,32353 

.30216 

.29851 

.31343 

.29851 

.29851 

.29851 

.29851 

.29851 

.29851 

.30121 

.30101 

.30103 

,30104 

.30103 

2 
.16667 

.17647 

.17266 

.17910 

.16418 

.17910 

.17910 

.17910 

.17910 

.17910 

.17910 

.17607 

.17612 

.17608 

.17609 

.17609 

3 n 

.16667 

.11765 

.12950 

.13433 

.13433 

.11940 

.11940 

.11940 

.11940 

.13433 

.11940 

.12486 

.12488 

.12494 

.12494 

.12494 

4 
",00000 

,08824 

,09353 

,08955 

,08955 

.10448 

,08955 

,10448 

,10448 

,08955 

,10448 

,09693 

,09698 

,09691 

.09691 

,09691 

5 
.16667 

.08824 

.07914 

.07463 

.08955 

.07463 

.08955 

.07463 

.07463 

.07463 

.07463 

.07914 

.07914 

.07918 

.07918 

.07918 

6 
.00000 

.05882 

.07194 

.07463 

.05970 

.05970 

.05970 

.07463 

.07463 

.07463 

.07463 

.06709 

.06694 

.06695 

.06694 

.06695 

7 
.00000 

.05882 

.05036 

.05970 

.05970 

.05970 

.05970 

.05970 

.05970 

.05970 

.04478 

.05805 

.05795 

.05799 

.05799 

.05799 

8 
.16667 

.05882 

.05755 

.04478 

.04478 

.05970 

.05970 

.04478 

.04478 

.04478 

.05970 

.05093 

.05124 

.05116 

.05116 

.05115 

9 
.00000 

,02941 

.04317 

.04478 

.04478 

.04478 

.04.478 

.04478 

.04478 

.04478 

.04478 

.04573 

.04574 

.04576 

.04575 

.04576 

This table of fractional occurrences is of considerable interest Notice that as 

the field size increases the fractional values become smoother for a given value 

of x. Moreover the fractions become closer to log10(y + 1) - log10y as x in-

creases. In fact we have 
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y 

i 

2 

3 

4 

5 

6 

7 

8 

9 

logio (y + i)/y 

.301030 

.176091 

.124939 

.096910 

.079181 

,066947 

.057992 

.051153 

.045758 

For the nine-digit field the fractional values agree with those of the logarith-
mic difference to six decimal places excepting the two values for y = 8, 9, 
for which there is a discrepancy of one in the last decimal place. 

It is interesting to recall that certain distributions of random numbers 
follow the "abnormal'' logarithmic law. For example^ it has been observed 
that there are more physical constants with low order first significant digits 
than high, and that logarithmic tables show more thumbing for the first few 
pages than the last. The interested reader in this aspect of the subject may 
care to refer to a paper by Roger S. Pinkham [3]. Pinkham remarks that the 
only distribution for first significant digits which is invariant under a scale 
change is log10(y + 1). Following up the idea of the effect of a scale change we 
have taken each field cycle and multiplied the members by k = 1, 2$ • • • , 9 and 
compared the fractional occurrence of members with a given leading digit. A 
comparison over the kfs for a particular field shows remarkable stability. 
The results of a field of five are given in Table 2m Results for larger fields 
show about the same stability. 

5. CONCLUDING REMARKS 

A number of interesting questions suggest themselves as follows.0 

(a) Is there an analytical tool which could be used to formulate the mod-
ified Fibonacci series for a specified field length? Perhaps one of 
the difficulties here, as pointed out by a referee* is the tTone-way" 
nature of the sequences generated. 
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Table 2 

Densi ty of M e m b e r s of Cycle According to Leading 
For Scaled-Up Field of Five 

Apr. 1968 

Scale Fac to r k Leading Digit y 

Digit 

x = 5 

\ y i 
k=l 

2 

3 

4 

5 

6 

7 

8 

9 

.30093 

.30120 

.30093 

.30093 

.30093 

.30093 

.30093 

.30093 

.30120 

2 

.17606 

.17606 

.17634 

.17606 

.17606 

.17606 

.17606 

.17606 

.17579 

3 

.12486 

.12486 

.12486 

.12513 

.12486 

.12486 

.12486 

.12486 

.12513 

4 

.09693 

.09693 

.09693 

.09693 

.09721 

.09721 

.09666 

.09693 

.09666 

5 

.07913 

.07913 

.07913 

.07913 

.07941 

.07913 

.07941 

.07913 

.07913 

6 

.06709 

.06709 

.06681 

.06709 

.06681 

.06709 

.06709 

.06681 

.06681 

7 

.05778 

.05778 

.05805 

.05778 

.05805 

.05778 

.05805 

.05832 

.05805 

8 

.05148 

.05148 

.05120 

.05120 

.05093 

.05120 

.05120 

.05120 

.05148 

9 

.04573 

.04545 

.04573 

.04573 

,04573 

.04573 

.04573 

.04573 

.04573 

(b) Have all the per iods been found for fields of length up to x' = 10 ? 

A r e the per iod lengths the s a m e for a given field length and a r e t he r e 

c a s e s s i m i l a r to x •= 4 in which the re a r e s eve ra l per iods of the 

s a m e length? 

(c) Is t he r e an asymptot ic value for l (x) , the cycle length, when x i s 

l a rge ? 

(d) Is the fact that the densi ty of o c c u r r e n c e of sequence m e m b e r s , with 

a specified leading digit, follows the so -ca l l ed logar i thmic law, when 

x i s not smal l , t r iv ia l o r s ignif icant? 
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ON A CERTAIN INTEGER ASSOCIATED WITH A GENERALIZED FIBONACCI SEQUENCE 
T. W. CUSICK* 

University of I l l inois, Urbana, Il l inois; Churchill College, Cambridge, England 

1. INTRODUCTION 

A genera l ized Fibonacci sequence m a y b e defined by specifying two r e l a -

t ively p r i m e in tegers and applying the formula 

(1) y = py , + y s 
J n ^ n - l J n -2 

w h e r e p is a fixed posi t ive in teger (p = 1 gives a Fibonacci sequence), 

If y0 i s the sma l l e s t non-negat ive t e r m de te rmined by (1), then y^ ^ 

(p + l)y0 with s t r i c t inequality for y0
 > 1 except in the c a s e y0 = yj = 1. In 

o r d e r to avoid t r iv ia l exceptions to va r ious s ta tements below, we a s s u m e with 

no r e a l loss of genera l i ty that yj > yo > 0 in all that follows. 

It has been shown in [1] that the Fibonacci sequences can be o r d e r e d 

using the quantity yf - y0yi - yo° Similar ly , the genera l ized Fibonacci sequences 

defined in (1) may be o rde red using the quantity D defined by 

D = yi - py0yi - yo . 

It may be of in t e re s t to de te rmine for given p the poss ib le values of D 

and how many genera l ized Fibonacci sequences can be assoc ia ted with a given 

value of D. 

We solve completely the c a s e s p = 1, 2 which, as will be seen, a r e 

essen t ia l ly s imp le r than the c a s e s p ^ 3„ Our proofs make u s e of the c l a s s i -

cal theory of b inary quadrat ic forms of posi t ive d i s c r i m i n a n t 

d = p2 + r . 

A good t r ea tmen t of this subject is found in [2 ] , which we re fe r to frequently 
as a sou rce of the proofs of well-known r e s u l t s . 
*Research Student 

(Received December 196?) 
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Let S be the set of posi t ive in tegers D such that the congruence 
P 

n2 = d mod 4D 

has solutions for n« We prove the following: 

T h e o r e m 1, F o r p = 1, 2, S is the set of poss ible va lues of the in teger 
2 2 

D = y1 _ py0yi - y0 assoc ia ted with the genera l ized Fibonacci sequence defined 

by (1). 

Theorem 2» F o r p = 1, 2, let r be the number of dis t inct odd p r i m e s 

dividing 4D/(d,4D)e Then except for the t r iv ia l ca se p = D = 2 the re a r e 

2 * d is t inct p a i r s y0, yt such that D = y* - pyoyi - yo and y0, yj genera te 

a genera l ized Fibonacci sequence defined by (1), i. e . , t he re a r e 2 d i s -
t inct sequences assoc ia ted with the given value of D. 

The ca se p = 1 of Theorem 1 has been previously proved in [3 ] , 

2, REMARKS FOR THE CASE OF GENERAL p 

Our problem i s to de te rmine all posi t ive in tegers D which a r e p rope r ly 

r ep r e s en t ed (i. e*, a r e r ep re sen t ed with x and y re la t ive ly pr ime) by the form 

Q = x2 - pxy - y2 

with the r e s t r i c t i o n that 

(2) x > (p + l )y 2= 0 

We denote the quadrat ic form ax2 + bxy + cy2 by (a, b , c ) 0 We say the 

o rde red pa i r (x, y) = (a9y) i s a p rope r represen ta t ion of m by (a, b , c) if 

a and J a r e re la t ive ly p r i m e and aa2 + bay + c7 2 = m6 

L e m m a 1« Let (a9y) be a p rope r r ep resen ta t ion of the posi t ive in teger 

D by the in tegra l form (a, b9 c) of d i sc r iminan t de Then t h e r e exist unique 

in tege r s j3s8$n satisfying 

a8 - py = 1 
(3) 0 < n < 2D 
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(4) n2 = d mod 4D 

and such that the t ransformat ion 

(5) x = ax1 + /3y? 

y = 7x? + 8yf 

r ep l aces (a, b , c) by the equivalent form (D, n, k) in which k i s de te rmined 

by 

n2 - 4Dk = d 

Proof, This i s a c l a s s i c a l r e su l t ([2, pe 74, Th„ 58]) . 
Coro l la ry . Q p roper ly r e p r e s e n t s a posi t ive Integer D only if D b e -

longs to the se t S . 
p 

Following [2, p, 74] we call a root n of (4) which sa t is f ies (3) a m i n i -

mum root* Since n i s a root of (4) if and only if n + 2D is a lso a root , the 

number of minimum roo ts i s half the total number of roo t s s By Lemma 1, a 

p rope r represen ta t ion of D by a form (a s b # c) is assoc ia ted with a unique 

min imum root of (4)» 

L e m m a 2. Every automorph (5) of the in tegra l form (a ,b , c) of d i s -

c r iminan t d, where a, b5 c have no common div isor 1, has 

(6) a = {(u - bv) j8 = - cv 7 = av 8 = | ( u + bv) , 

w h e r e u and v a r e in tegra l solut ions of 

(7) u2 - dv2 = 4 . 

Conversely , if u and v a r e in tegra l solutions of (7), the n u m b e r s (6) 

a r e in tege r s and define an automorph. 

Proof. This i s a c l a s s i ca l r e su l t ([2, p* 112, Ths 87]). 

L e m m a 30 F o r given D In S , t h e r e i s assoc ia ted with a given m i n i -

mum root n of (4) at mos t one p rope r r ep resen ta t ion of D by ( 1 , - p , - 1 ) , 

which sa t is f ies (2). 
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Proof. Let (a»j) be a proper representation of D by (1,-p,-1) s a t -
isfying (2) and associated with the minimum root n of (4). For the given D 
and n, it is clear that any proper representation (af,yT) of D by (1,-p,-1) 
is the first column of a matrix 

where A is the matrix of some automorph of (1, -p, -1). Thus it is enough 
to show that (a\ yf) does not satisfy (2) unless A is the identity matrix. 

Since the smallest positive solution of the equation (7) is obviously (u, v) 
= (p2 + 2,p), it follows from Lemma 2 that every automorph of (1,-p,-1) is 
of the form 

m 
A = r p 2 + i pi r-1 ° i J = i 

LP IJ L° -1J m = 0, 

or 2 
,±1,±2,— 

We need only consider non-negative m, because for negative m (a\ 
y) clearly has components of opposite sign. Obviously (a\ 7T) does not 
satisfy (2) for j = 1 and any m ^ 0. For j = 2, m = 0, (o/f,7?) = (a,y) 
satisfies (2) by hypothesis; but this is false for j = 2, m - 1 because 

(p + l)(pa? + y) ^ (p2 + l)a + p y . 

Then by induction (a* ,y') does not satisfy (2) for j = 2 and any m ^ 1. 
This proves the lemma. 

3. CASE p = 1 OF THEOREM 1 

Lemma 4. Sj is made up of 
1. The integers 1 and 5 
2. all primes =1 or 9 mod 10 
3. all products of the above integers ^0 mod 25. 
Proof. By definition, SA is the set of positive integers D such that 

the congruence 
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(8) n2 s 5 mod 4D 

has solutions for n, Thus we must have D ^ 0 mod 25 and D odd, since 

So it is enough to show that (8) is soluble for odd prime D if and only if D = 
5, or D = 1 or 9 mod 10o 

By the definition of the Legendre symbol, (8) is soluble for odd prime D 
if and only if 

But then by quadratic reciprocity and the fact that D is odd 

(§\ = (R\ = | l if D = l or 4 mod 5 
\pj \5 J 1-1 if D = 2 or 3 mod 5 

which implies the desired resul t 
Lemma 5. If D belongs to Sp then (1, - 1 , -1) properly represents 

D9 Further, associated with each minimum root of (8) there is at least one 
proper representation satisfying (2) with p = 1. 

Proof, We consider each of the minimum roots of (8). Let (a9y) be a 
proper representation of D by (1, - 1 , -1) associated with a given minimum 
root n, 

We may suppose a > 0S y > 0. For if a < 0, y < 0, we consider 
(~a, -y)m If one and only one of a9y is negative we may suppose it is aB 

Then we apply the automorph 

(9) x? = 2x + y 
y! = x + y 

of (1, - 1 , -1) successively to (a, y)9 getting the sequence 

( a ,y ) , ' ( 2a + y, a + T ) , • • - , (f2 m+ia-. W » W * + W-iT). 'e e 
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th where f. is the i member of the Fibonacci sequence 1, 1, 2, 3, 5, ° ° • , If 
for some m we have 

(10) W l « l > W i ? > 

then 

is a proper representation with both members positive, as desired. But (10) 
must be true for some m because y = k\a\ for some rational k > 0 and 

a2 - ay - y2 > 0 

implies 

k < (1 +VSJ72 ; 

whereas from the continued fraction expansion of (1 + Vs ) /2 we have 

! < .3 < 8 < . . . < ^ _ < . . . < 1 + V 5 
2 5 ^m- i 2 

and 

lim f<2m
 = 1 + VE 

m—^oo f2m-1 '2 

Given a proper representation (a ,y) with both members positive, we 
apply the inverse of the transformation (9) successively, getting the sequence 

(a,y), (a - y, - a + 27) , ••• , 

( f2m-ia ™ §tmy> ~"f2ma + W+l?)» e ° * 
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Since the successive first members make up a decreasing sequence of positive 
integers so long as the corresponding second members are positive* we must 
reach an m such that 

W + i ^ > f2ma a n d hm+sV < *2m+2a-

Then 

(f2m+1« - f2my , -f2m« + f2m+iy) 

is a proper representation satisfying (2) with p = 1. 
All transformations used above of course have determinant 1, so that 

the minimum root n associated with the originally given proper representa-
tion is not changed 

4. CASE p = 2 OF THEOREM 1 

Lemma 6@ S2 is made up of 
1. the integers 1 and 2 
28 all primes =1 or 7 mod 8 
3. all products of the above integers ^0 mod 4S 

Proof. By definition, S2 is the set of positive integers D such that the 
congruence 

(11) n2 = 8 mod 4D 

has solutions for n. Thus we must have D ^ 0' mod 4„ Then the result fol-
lows from the fact that for odd prime D 

(2\ J 1 if D s 1 
ID/ | - 1 if D=-3 

= 1 or 7 mod 8 
3 or 5 mod 8 

Lemma 7, If D belongs to S2, then (1, -2 , -1) properly represents D. 
Further^ associated with exactly half of the total number of minimum roots of 
(11) there is at least one proper representation satisfying (2) with p = 2e 
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Proof. We consider each of the minimum roots of (11). Let (a, 7) be 
a proper representation of D by (1, -2, -1) associated with a given minimum 
root n. 

We argue as in Lemma 5 that we may suppose a < 0, y < 0. For if 

a < Q9 y < 0 we consider (-a, -7) . If one and only one of a ,7 is negative, 
we may suppose it is a » Then we apply the automorph 

n*\ x ' = 5 x + 2 y 

( 1 Z ' yT =. 2x + y 
of (1, -2 , -1) successively to (a, 7), getting the sequence 

( a ,7 ) , (5a + 27, 2a + 7 ) , • • • , 
(S2m+ia + g2m7, g2m<* + g2m-i?)> ••• 

where g. is the i member of the generalized Fibonacci sequence 1, 2, 5, 
12, 29, •• • . If for some m we have 

(13) g2mlal > g2m-i7 , 

then 

(-S2m+la - S2m>> -S2ma " g2m-i>) 

is a proper representation with both members positive. But as in the proof 
of Lemma 5 a consideration of the continued fraction for 1 + Vi" shows that 
(13) must be true for some m. 

Given a proper representation (a, 7) with both members positive, we 
apply the inverse of the transformation (12) successively, getting the sequence 

(a, 7), (a - 27, -2a + 57), • • • , (g2m-i« - g2m^» "g2m^ + g2m+i'>V' • 

Since the successive first members make up a decreasing sequence of 
positive integers so long as the corresponding second members are positive, 
we must reach an m such that 

^ m + i ? > g2m°' a n d Stm+zY < S2m+2« • 
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Then 

(«o» 7o)r(&>m-ia " g2m7» -g2m« + g2m+iT) 

satisfies 

aQ > (5/2) yQ , 

and exactly one of (a 0, y0) and 

( " l ^ i ) = ( 5 a 0 - 1 2 y 0 , 2aQ - 5y0) 

s^isfies (2) with p = 2. 
The transformation which takes (a0* To) ^° (ai> Ti) n a s determinant -1 

and (a0, y0), (aj, 7i) are associated with different minimum roots of (11)9 Thus 
the last statement of the lemma is easily verified. 

58 PROOF OF THEOREM 2 

Lemma 8. Let (c, m) = 1. Then 

x2 = c mod m 

has 2 r w roots if it has any roots, where r is the number of distinct odd 
primes dividing m and w is given by 

if 4 does not divide m 
if 4 but not 8 divides m 
if 8 divides m . 

Proof. This is a well-known result ([2, p8 75, Th„ 60])e 

For p = 1, 2, let r be the number of distinct odd primes dividing 
4D/(d,4D). It is easy to verify using Lemma 8 that the congruences (8) and 

r+i (11) have 2 roots. Then Theorem 2 follows from Lemmas 3, 5, and 7. 

1 0 
1 
2 
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6. CONCLUDING REMARKS 

We comment briefly on the reasons for confining detailed discussion 
above to the cases p = 1, 2. 

Let h(d) be the number of distinct non-equivalent reduced forms of dis-
criminant cL We can make little progress if h(d) > 1, because for such d 
the problem of determining all positive integers properly represented by 
(1, -p, -1) even without the restriction (2) is unsolved* We remark that h(d) = 
1 for p = 1,2,3,5,7, but h(d) = 2 for p = 4, 6a 

However, it is not enough simply to confine ourselves to the study of those 
p for which h(d) = 1. We have seen that for p = 1, 2 the converse of Lem-
ma 1 Corollary is true and for any properly representable D a proper rep-
resentable D a proper representation satisfying (2) can be found. However, 
for p > 3 there exist integers D which are properly represented by (1, 
-p, -1) but which have no proper representation satisfying (2), and it is not 
simple to describe the subset of S composed of such integers, 
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ON Q^FIBONflCCI POLYNOMIALS 
SELMO TAUBER 

Portland State College, Portland, Oregon 

INTRODUCTION 

Throughout this paper we shall use the following notations 

Y Y - Y • fan)- s 2 . . . g 
a2 n 

s l~ a l s2~a2 sn~an 

Let F0s Fi9 F2$ *e * , F , *»• be the sequence of Fibonacci numbers* 
i. e„ 0, 1, 1, 2S 3S 5S 8, •• s . According t o [ l ] we define n5 ms k > 0. 

n n s (1) Q(x;l , -F,n) = T7(x,k,n) = n (1 - x F
k + m ) = E A(k?n,s)x& , 

m=i s=o 

(2) ri(xs k§ 0) 

(3) K - \ B(k, n, m)rj (x, k, m) 

m=o 

(4) 1 - B(k,0,0)7j(x,k,0) •, 

(5) A(k,n, s), B(k,n5m) = 0 for n < m , n < 0S m < 0 

The A and B numbers are quasi-orthogonal. (For a set of comprehensive 
definitions of orthogonality and quasi -or thogonality cf„ [3].) Thus 

( R e c e i v e d F e b r u a r y 1967) 
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n 

(6) 

s=m 

^ B(k,n,s)A(k,s,m) = 8™ , 

where 8 is the Kronecker Delta. 
Still according to [l] the A and B numbers satisfy the difference 

equations 

(7) A(k,n,m) = A(k,n - 1, m) - Fn + kA(k,n - 1, m - 1) 

(8) B(k,n,m) = ( F m ^ ^ f *B(k,n - l ,m) - ( F m ^ ) " 1 B ( k , n - 1, m - 1) , 

where the e r ro r in Eqs. (10) and (12) of [l] has been corrected. 

2. BASIC RELATIONS 

According to the preceding definitions we can write 

P 
n 

m=i " "A m=l " " x m=p+l 

T,<x,k,n) = n d-xFk+m) = n d-xFk+m) n d-xFk+m) 

n 
= T](x,k,P) n ( i - x F k + m ) 

m=p+i 

In the last product we take m - p = s, m = s + p , so that for m = p 
+ 1, s = 1, and for m = n, s = n - p, thus 

n n-p 
11 (1'xFk+m) = ° ^ " ^ k + o + s * = *?(*.* +P. n - p ) , 

m=p+i " s=l y 

i. e. . 

(9) ?)(x,k,n) = ?7(x,k,p)?7(x,k + p, n - p) , 
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or, 

(10) T?(x,ksn + p) = 77(xsk,p)77(x5k + p,n) 

By substitution into (10) of the polynomial form for the 7)Ts we obtain 

(11) y A(ksn + p,m)x 

m=o z A(k,p,s)x" 

s=o 

A(k + p,n, t)x 

t-o 

so that equating the coefficients of same powers of x we have with s + t = m, 

(12) A(k,n + p, m) = \ A(k, p, s)A(k + p , n s m - s) 

-s=0 

which is a convolution formula for the A numbers. Also 

= \ ^ B(k, n, m)??(x, k, m) , ?P = \ ^ B ( k + p ,p , s)??(x,k + p, s) 

m=o s=o 

hence, 

n+p 
n+p 

= y ^ B(k,n + pst)7?(x,k,t) 

t=e 

/ B ( k , n, m)77(x, k, m) 

m=o 

Y^B(k + p, p5 s)?7(x, k + p, s) 

s^o 

( E ( 2 ) * m | j > s | j jB(k ,n ,m)B(k + p5p?s)77(x,k,m)T](x,k + p,s) 
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By comparing the coefficients of r\ (x, k, t) and using (10) with m + s = t we 
obtain 

t 

(13) B(k ,n+p , t ) =• S B(k,n,m)B(k + p ,p , t - m) , 

m=o 

c,n +p, t ) =• 7 B(k,n,i 

which is a convolution formula for the B numbers. 

3. LAH TYPE RELATIONS 

According to [2] we have for k ^ h 

(14) \ A ( k , n , s ) B ( h , s , m ) = L(k,h,n,m) 

s=m 

n 

(15) \ ^ A ( h , n , s)B(k, s,m) = L(h,k5n,m) 

s=m 

n 

J T?(x,i,: (16) r?(x,j,n) = J T?(x,i,m)L(j,i»n;in) s 

m=o 

where k, h = i , j , with i ^ j . Again according to [2] there is a quasi-
orthogonality relation between the Lah numbers: 

(17) \ L ( i , j , n , s ) L ( j , i , s , m ) = 8 ^ 

s=m 
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Still according to [2] the recurrence relation for Lah numbers is 

(18) L(i, j , n ,m) = [ 1 - ( F j + n / F i + m + i ) ] L ( i , j s n - 1, m) 

+ ( F J 4 n / F i + m ) L ( i f j f n - l f m - l ) . 

4. GENERALIZATION TO THREE VARIABLES 

Although we could generalize to p variables we prefer to limit ourselves 
to p = 3 for the sake of simplicity. Let 

n 
7)(X.y. z; k,h, j ; n) = H (3 - x F k + m - yF - zF ) 

m=i J 

(19) = ( ^ 3 > ' r R - B B ' t|j)A(ki'hfj;nfnfn;pfBft). 
• x y z , r + s + t < n . 

(20) T?(x,y,z; k , h , j ; 0) = 1 . 

To find an inversion formula for (19) we use (3), ie e e , 

y^B(k?r9i x = y B (k, r, m)T] (x, k9 m) 

m=o 

s 

\ jB(hss s ] yS = } B(hsssp)r/(y?h,p) 

p=o 

t 
t y^B(j,t9( q)^7(z5jsq) , 

q=o 

so that 
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t = / £ < 3 ) , m | g , pjg , q | J )B(k , r ,m)B(h,s ,p)B( j , t ,q ) -r s x y z . 

(21) 
r)(x, k, m)r?(y, h, p)r?(z, j , q) 

Z , m l o ' p | o ' q 10 lB(k»h»35 r, s,t; m, p, q)-

• 7](x,k,m)?7(y,h,p)?](z,j,q) , 

where 

(22) B(k,h, j ; r , s , t ; m,p,q) = B(k, r,m)B(h, s,p)B(j, t ,q). 

5. QUASI-ORTHOGONALITY RELATIONS 

If in the second form of (21) we substitute according to (1) we obtain 

m 

xrySz = ( Z V m | J , ' p | j j J , q|Q JB(k,h,j ; r, s,t; m , p , q ) \ ^A(k,m,a)xa . 

a=o 

2 A(h,p,b)y \ A(j,q,c)zC , 

b=o c=o 

= l E ( 6 ? m | o ' P\l ' q l o ' a ! cT 9 b l o J c | o ] B ( k ' h ' ^ r , s , t ; m , p , q ) 

A(kjtm,a)A(h,p,b)A(j,q,c)xay zC . 

Since the A and B numbers are zero under the conditions stated in the intro-
duction we can extend the limits m, p, q of the summation to n, change the 
order of summations, and obtain after taking out the zero coefficients 

(23) I ]T ( 3 ) , m |^ , p]®, q | c JB(k ,h , j ; r , s , t ;m,p ,q)A(k ,m,a)A(h ,p ,b ) . 

• A(j ,q ,a) .= 8^8Q . 
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This relation is actually nothing but the product of three relations of the form 
given by (6). 

6. RECURRENCE RELATIONS 

By writing 
7)(x,y,z; k,hf j ; n + 1) = (3 - x F k + n + 1 - y F h + n + 1 - zF.+n+i)7?(x,y,z;k,h,j,n) 

and substituting according to (19) and equating the coefficients of the same 
monomials we obtain 

A(k,h,j ; n + i,.n + l , n + l ; r , s,t) = 3A(k,h, j ; n ,n ,n; r, s,t) 

(25) - Fk+n+iA (k? h ' *;n'n'n; r " ls s$ V " Fh+n+lA ( k j h ' *; n>n> n ; r » s " x> *) 
- F.+ n + 1A(k,hs j ; n ,n ,n; r 5 s , t - 1) , 

which is a recurrence realtion satisfied by the A numbers. 
To find a recurrence relation satisfied by the B numbers we use (8) and 

obtain 

B(k, r, m) = (Fm+1+k)""1B(k5 r - .1, m) - (Fm+k)~1B(k, r - 1, m -1) 

B(h, s, p) = ( F ^ ^ f *B(h, s - 1, p) - ( F ^ f *B(h, s - 1, p - 1) 

BO, t, q) = ( F q + l + . )_1B(j, t - 1, q) - (F q + j f ^ ( j , t - 1, q - 1) , 

and by multiplying these three relations by each other and using (22) we have 
the following recurrence relation for the B numbers: 

B(k, h, j ; r , B, t; m, p, q) = ( F m + 1 + k F p + i + h F q + 1 + . ) _ 1 . 
• B(k,h, j ; r - 1, s - l , t - 1; m,p,q) 

- < F m + i + k V i + h V i r l B ( k , h , J ; r " 1 , S " l j t ~ 1; m ' P ' q " 1} 

- < F m + l + k F p + h F q + i + J r l B ( k ' h ' j ; r " h S ' h t ~ 1 ; m ' P " h * 

- ( F m + k V i + h V i + j r l B ( k ' h ' J ; r " 1 , S " 1 , t " 1; m " 1 , P ' q ) 

+ ( F m + 1 + k F p + h F q + j ) _ 1 B ( k , h , j ; r - 1, s - l , t - 1; m,p - l ,q - 1) 

+ (F m + k F p + 1 + h F q + . ) " 1 B(k ,h , j ; r - l , s - l i t - l ; 'm - l ,p ,q - 1) 
+ ( F m + k F p + h F q + 1 + j ) _ 1 B ( k , h , j ; r - 1, s - l . t - l , m - l . p - l,q) 

" ( F m+k F p+h F q+J ) _ 1 : B ( k ' h ' j ; r " *' S " lft ~ l ! m " 1 , P " 1 , q " 1} ' 
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7. CONCLUDING REMARKS 

(i) Equations (7), (8), (12), (13), (18), (25), and (26) indicate that the co-
efficients A and B involved are particular solutions of corresponding par-
tial difference equations which may be of in teres t 

(ii) Although in this paper we have assumed that the numbers F, are 
Fibonacci numbers the same relations would hold for any sequence that is de-
fined for k being a positive integer or zero. 

(iii) We have not attempted to define Lah numbers corresponding to the 
A and B numbers in the case of several variables although this seems possible. 
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ON THE GENERALIZED LANGFORD PROBLEM 

EUGENE LEVINE 
Gulton Systems Research Group, Inc. , Mineola, New York 

For n a positive integer, the sequence SLP • • • , a2n is said to be a per-
fect sequence for n if (a) each integer i in the range 1 < i < n appears 
exactly twice in the sequence, and (b) the double occurrence of i in the 
sequence is separated by exactly i entries. Thus 4 1 3 1 2 4 3 2 is a per-
fect sequence for n = 4. The problem of determining all integers n having 
a perfect sequence is posed in [l] and resolved in [2] and [3]. In particular, 
n has an associated perfect sequence if and only if n = 3 or 4 (Mod 4). 

In [4], the problem is generalized by introducing the notion of a perfect 
s-sequence for an integer n. Namely, a perfect s-sequence for n (with s, 
n > 0) is a sequence of length sn such that (a) each of the integers 1, 2, v • , 
n occurs exactly s times in the sequence and (b) between any two consecutive 
occurrences of the integer i there are exactly i entries. The problem of 
determining all s and n for which there are perfect s-sequences is then 
posed in [4]. (The existence of a perfect s-sequence for any n with s > 2 is 
yet in doubt.) It is shown in [4] that no perfect 3-sequences exist for n = 2, 
3, 4, 5, and 6. 

The following theorems expand upon the above results pertaining to the 
non-existence of perfect s-sequences for various classes of n and s. 

Theorem 1. Let s = 2t. Then there is no generalized s-sequence for 
n = 1 or 2 (Mod 4). 

Proof. Let p. denote the position of the first occurrence of the integer 
i (1 < i < n) in the sequence. The integer i then occurs in positions p., 
p. + (i + 1), • • • , p. + (s - l)(i•+ 1). The sn integers p. + j(i + 1) (with i = 1, 
• • • ,n; j = 0 ,1 , • • • , s - 1) are however the integers 1,. . . , sn in some order. 
Thus 

n s-i sn 

EE{Pi + j ( i +1)} = E k -: 

i=i 3=0 k=i 

Letting 
(Received June 1966) 
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n 
p = • E Pi • 

i=i 

the latter equality yields 
s r , (s - l)s <(n + l)(n + 2) A_ sn(sn + l) 

or 

P = n | ( s + l ) n - (3s - 5)\ 
4 

Inasmuch as P is an integer, the numerator N = n{(s + i)n - (3s - 5) | must 
be divisible by 4. But for n E 1 (Mod 4), 

N = (s + 1) - (3s - 5) = -4t + 6 = 2 (Mod 4) , 

where s = 2t, which is impossible. Similarly, for n = 2 (Mod 4), 

N = 2{2(s + 1) - (3s - 5)} = -4t + 14 = 2 (mod 4) 

which is also impossible. 

We now extend the results in [4] by proving there is no 3-sequence for 
n = 2, 3, 4, 5, 6, or 7 (Mod 9). Actually we show somewhat more in the next 
theorem. 

Theorem 2. Let s = 6r + 3 (with r >. 0). Then there is no perfect s-
sequence for any n = 2, 3, 4, 5, 6, or 7 (Mod 9). 

Proof. Let q. denote the position that integer i occurs for the (3r + 
2) time (i. e . , q. is the position of the "middle" occurrence of i). Then i 
occurs in positions q. + j(i + 1) for j = -2(2r + 1), -3r, • • • , 3r, (3r + 1). 
The sn integers q. + j(i + 1) (with i = 1,• • • ,n; j = »(3r + 1),• • • ,3 r + 1) 
are then the integers 1, 2, 3, • • * , sn in some order. Thus 
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n 3r+i sn 

i=i j=-(3r+i) k=i 

Letting 

n 

i = i • 

and noting that the linear terms on the left-hand side of the last equation cancel, 
we have 

s Q + 2 / O r + D(3r + 2)s| |(n + l)(n + 2)(2n + 3) _ ±\ 

sn(sn + i)(2sn + 1) 
6 

Cancelling out s and collecting terms yields Q = M/l§> where the numerator 
M is given by 

M = (198r2 + 198r + 50)n3 - (81r2 + 27r - 9)n2 - (117r2 + 117r + 23)n . 

Inasmuch as Q is an integer, the numerator M must be divisible by 9. But 

M = 50n3 - 23nl = 5(n3 - n) (Mod 9). 

It is easily verified from the latter that for the values of n under considera-
tion, namely, n = 2, 3, 4, 5, 6, or 7 (Mod 9) we have M = 3 or 6 (Mod 9). 
Thus M is not divisible by 9 which provides a contradiction. 
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FIBONACCIAN ILLUSTRATION OF L'HOSPITAL'S RULE 

Al lan Scott 
Phoenix, Arizona 

In [1] t he r e is the s ta tement : using the convention F 0 / F 0 = 1." [ F = 
F ^ + F *> F 0 = 0 , F i = 11. . • n+i n-2 u * J 

In this note it will be shown how the equation F 0 / F 0 = 1 follows na tura l ly 

from LTHospital 's Rule applied to the continuous function 

F = - A - ( (£x _ 4TX COSTTX) [</> = 2"1(1 + V § ) ] 
X \ / 5 

F obviously reduces to the Fibonacci numbers F when n = 0, ±1 , 

±2, ±3, • •• . Then 

(</> - <t> cos 7rx) 

= V1L 
V§ 

(</> - <f)~ COS TTX) 

dx (<f> - <f> COS TTX) 

^ (<f)X - $ X COS 7TX) 

x-o Jx=o 

(log <())<}) - (log<ft 1)<t> COS TTX + <fo~ TTSin TTX 

(log <f))(f> - (log <t>~ ) 0 " cos irx + 4>~ IT sin -rrx 

log<fr - log <f = 

log<t> - log $"" 

x=o 

(Continued on p. 150.) 



FIBONACCI SEQUENCE MODULO m. 
A . P . S H A H 

Gujarat University, Ahmedabad 9, India 

Wall [l] has discussed the period k(m) of Fibonacci sequence modulo m. 
Here we discuss a somewhat related question of the existence of a complete 
residue system mod m in the Fibonacci sequence. 

We say that a positive integer m is defective if a complete residue sys-
tem mod m does not exist in the Fibonacci sequence. 

It is clear that not more than k(m) distinct residues mod m can exist 
in the Fibonacci sequence, so that we have: 

Theorem 1. If k(m) < m, then m is defective. 
Theorem 2. If m is defective, so is every multiple of m. 
Proof. Suppose tm is not defective. Then for every r, 0 < r < m -

1, there exists a Fibonacci number u (which, of course, depends on r) for 
which u = r (mod tm). But then u = r (mod m), so that m is not 
defective. 

Remark: The converse is not true; i. e. , if m is a composite defective 
number, it does not follow that some proper divisor of m is defective. For 
example, 12 is defective, but none of 2, 3, 4 and 6 is. 

r Theorem 3. For r > 3 and m odd, 2 m is defective. 
Proof. The Fibonacci sequence (mod 8) is 

1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, • • • . 

The sequence is periodic and k(8) = 12. It is seen that the residues 4 and 6 
r do not occur. This proves that 8 is defective. Since for r > 3, 2 m is a 

multiple of 8, the theorem follows from Theorem 2. 
Theorem 4. If a prime p = +1 (mod 10), then p is defective. 
Proof. For p = +1 (mod 10), k(p) (p - 1) ( [ l ] ) , and hence k(p) < p 

- 1 < p. Therefore by Theorem 1, p is defective. 
Theorem 5. If a prime p = 13 or 17 (mod 20), then p is defective. 
Proof. Let u denote the n Fibonacci number. Since [l] for p = 

±3 (mod 10), k(p)|2(p + 1), it is clear that all the distinct residues of p that 

( R e c e i v e d F e b r u a r y 1967) 1 3 9 
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occur in the Fibonacci sequence are to be found in the set \ul9 u2, u3, • • • , 
u2(p+i)i. We shall prove that for each t, 1 < t < 2(p + 1), 

(5.1) u, = 0 or u, = ±u (mod p) , 

for some r, where 1 < r < (p - l ) /2 . 
Granting for the moment that (5.1) has been proved, it follow s that all 

the distinct residues of p occurring in the Fibonacci sequence are to be found 
in the set 

(5.2) JO, tfcuj, ±u2, ± u 3 , - - - , ± u m | , 

where m =.(p -. l ) /2 ; or, since Uj = u2 = 1, the set (5.2) may be replaced 
by 

(5.3) {0, ±1, ±u3, ±u4, • • • , ± u m | . 

But this set contains at most 2(m - 1) + 1 = p - 2 distinct elements. 
Thus the number of distinct residues of p occurring in the Fibonacci sequence 
is not more than p - 2 . Therefore p is defective. 

Proof of (5.1). It is easily proved inductively that for 0 < r < p - 1, 

(5.4) u p _ r = (-1) u r + i (mod p) 

and that for 1 < r < p + 1 

(5.5) up+i+r
 E "Ur ( m o d p ) • 

We note that since p = +3 (mod 10), p u + , u = -1 (mod p) [2, Theorem 
180], (5.4) and (5.5) are valid for all sulch primes. Replacing r by (p - l ) /2 
- s in (5.4), we get for 0 < s < (p - l ) /2 . 

(5.6) u h + g = (-1)S+1 uh_g (mod p) , where h = (p + l ) /2 . 

In particular, we note that p u for m = (p + l ) /2 , p + 1, 3(p + i ) /2 and 
2(P + 1). 
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(5.5) and (5.6) clearly imply (5.1). This completes the proof. Combining 
Theorems 4 and 5, we have 

Theorem 6. If a prime p = 1, 9, 11, 13, 17 or 19 (mod 20), then p 
is defective. 

Remarks: This implies that if p is a non-defective odd prime, then p 
= 5 or p = 3 or 7 (mod 20). While it is easily seen that 2, 3, 5 and 7 are 
non-defective, the author has not been able to find any other non-defective 
primes. 

From Theorems 2 and 6, we have 
Theorem 7. If n > 1 is non-defective, then n must be of the form n 

- 2 m , m odd, where t = 0, 1, or 2 and all prime divisors of m (if any) 
are either 5 or =3 or 7 (mod 20). Finally, we prove 

Theorem 8. If a prime p = 3 or 7 (mod 20), then a necessary and suf-
ficient condition for p to be non-defective is that the set 

|0 , ±1, ±3, ±4, . . - . , i u h | , 

where h = (p + l ) /2 , is a complete residue system mod p. 
Proof. The formulae (5.5) and (5.6) still remain valid. However, for 

primes p •= 3 (mod 4), we cannot prove that p u, • (in fact, p/ |%). So that all 
distinct residues of p occurring in the Fibonacci sequence must be found in 
the set 

JO, ±1, ±u3, ±u4, ••• , ±uh[ 

Since this set contains only p numbers, it can possess all the p distinct 
residues of p if and only if it is a complete residue system mod p. 

The author wishes to express his gratitude to Professor A. M. Vaidya 
for suggesting the problem and for his encouragement and help in the prepara-
tion of this note. 

REFERENCES 

1. D. D. Wall, "Fibonacci Series Modulo m,"Amer, Math. Monthly, 67(1960), 
pp. 525-532. 

2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 
Oxford, 1960 (Fourth Edition). 

* * * * * 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to 
Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes 
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate 
their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problem. 

H-131 Proposed by V , E. Hoggatt , J r . , San Jose State Co l lege , San Jose, C a l i f . 

Consider the left-adjusted Pascal triangle. Denote the left-most column 
of ones as the zeroth column. If we take sums along the rising diagonals, we 
get Fibonacci numbers. Multiply each column by its column number and again 
take sums, C , along these same diagonals. Show Ct = 0 and 

n 
c , = T F .F. 

n+i L^ n-j j 
J=o 

H-132 Proposed by J . L . Brown, J r . , Ordnance Research L a b . , State Co l lege , Pa. 

Let F1 ~ 1, F2 = 1, "F : j = F . + F for n > 0, Define the Fib-
I £ * n +2 n + i n 

onaeci sequence. Show that the Fibonacci sequence is not a basis of order k 
for any positive integer k; that is , show that not every positive integer can 
be represented as a sum of k Fibonacci numbers, where repetitions are 
allowed and k is a fixed positive integer. 
H-133 Proposed by V . E.Hoggat t , J r . , San Jose State Co l lege , San Jose, C a l i f . 

Characterize the sequences 
n ~2 

i. F = u + V* u, 
n n Z-^ J 

j = l 

142 
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n-2 n-4 i 
F = u + Y%. + V V u . 

n n L^ j Z^J JL*J ] 

143 

u i . 

n-2 n-4 i n-6 m i 

„ = »» + EvEEvEEE "J 
j=i i=i j«=i m=i i=i j=i 

F = 

by finding s ta r t ing values and r e c u r r e n c e re la t ions . G e n e r a l i z e 

H-134 Proposed by L. Carlife, Duke University 

Evaluate the c i rcu lan t s 

" n+k *" * n+(m-i)k 

n+(m-i)k n "n+(m-2)k 

F , F i • • • F 
n+k n+2k n 

n n+k n+(m-t)k 

n+(m-l)k n "Jn+(m-2)k 

L n + k L n + 2 k , e e L n 

H-135 Proposed by James E. Desmond, Florida State University, Tallahassee, Fla, 

PART I : 

Show that 

u/«i 
>**• E ( V , r ! d < v • 

d=o 

where j > 0 and [ j / 2 ] i s the g r e a t e s t in teger not exceeding j / 2 . 

PART 2s 

Show that 

F (j+i)n 
[ j / 2 ] / j - d \ j -

n Z - J I d / n 
d=o V ' 

• z d ^ f n + i j d 
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where j > 0 and [ j / 2 ] is the greatest integer not exceeding j / 2 . 

SOLUTIONS 
RECURSIVE BREEDING 

H-89 Proposed by Maxey Brooke, Sweeny, Texas 

Fibonacci started out with a pair of rabbits, a male and a female. A 
female will begin bearing after two months and will bear monthly thereafter. 
The first litter a female bears is twin males, thereafter she alternately bears 
female and male. 

Find a recurrence relation for the number of males and females born at 
the end of the n month and the total rabbit population at that time. 

Solution by F. D. Parker, Sf. Lawrence University 

The number of females at the end of n months, F(n), is equal to the 
number of females at the end of the previous plus the number of females who 
are at least three months old. Thus we have 

F(n) = F(n - 1) + F(n - 3) . 

The number of males at the end of n months, M(n), will be the sum of 
the males at the end of the previous month, the number of females at least 
three months old, and twice the number of females who are exactly two months 
old. Thus 

M(n) = M(n - 1) + F(n - 3) + 2(F(n) - F(n - 2)) . 

The total rabbit population is the same as it would be if each pair of off-
spring were of mixed sex, that is , 

M(n) + F(n) = 2f(n) , 

where f(n) is the n Fibonacci number. 
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DIVIDED WE FALLJ 

H-92 Proposed by Brother Alfred Brousseau, St. Mary's College, California 

Prove or disprove: Apart from Ft, F2, F3, F4, no Fibonacci number, 
F. (i > 0) is a divisor of a Lucas number. 

Solution by L. Carlitz, Duke University 

Put 

Ln = a n + / 3 n , Fn = ( « n - p V ( a ~ P), 

where 

•a = | ( 1 + V5), )8= J ( l - V5) . 

Also put n = mk + r, 0 < r < k. Since 

n , ^n • r . mk o m K , o^ik, r , _r. • a + /3 = a (a - (5 ) + p (a + /J ) , 

it follows from F, L that F, £ L . Since 8 is a unit of Q K / 5 ) it fol-k| n k| r p ^ v ^ 7 

lows that F, L . Nowfrom L = F + F , J we get L < F . for r > 2. k| r r r - i r+i to r r+2 
Hence we need only consider F , I I . However this implies F , I F 

J r+i| r r+i I r - i 
which is impossible for r > 2„ Therefore F, L is impossible for k >̂ 4. 

Also solved by James Desmond. 

OOPS!! 

H-93 Proposed by Douglas Lind, Univ. of Virginia, Charlottesville, Virginia. 
(corrected). 
Show that 

n-i 
F = II (3 + 2 cos 2k 7r/n) 

n k=i 



146 ADVANCED PROBLEMS AND SOLUTIONS [Apr. 

n-2 
L = 0 (3 + cos (2k + l)7j/n) 

n k=o 

where n is the greatest integer contained in n/2. 

Solution by M . N . S . Swamy, Nova Scotia Technical College, Halifax, Canada. 

We know from Problem H-64 (FQ, Vol 3, April 1965, p. 116) that, 

F = 
n - i / . \ 

' = n I 1 - 2 i c o s ^ , 
n j=i \ n / 

where i ~ V-T. 
If n is odd, 

F2n+i n ( l ~ 2 i c o s ^ ) 

n . x 2n j 

I I I 1 - 2i cos 2n 
1 x ' n+i 

n v 2n 

m \ n L2iC0SJjL_\ 

1 1 v ^ 1 1 i 

n (i-aooB^) n [i^icos^i-^)] 
j=i > ' k=n+l 

Letting j = (2n + 1 - k) in the second product we get 

F2n+i = n [ l - 2 i c o s ^ n ^ - 2 1 - 8 2^fi)n(1 + 2iC0S 2^1) 

= n ( l + 4 0 O B » ^ L ) = n ( 3 + 2 c o s ^ ) . - . (A) 
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Similarly when n is even, 

2n-i 
F?ri = f i l l - 2i cos J -?2n n ^ l - 2 i c o s ^J 

II I 1 - 2i cos g ) II I 1 + 2i cos | ~ ) . J 1 + 2i cos I J 

= n I 1 + 4 cos2 

n-i 

2n I 

- n/3+-2<x>s3gj •-. (B) 

From (A) and (B) we see that 

k=i X ' 
(G) 

Hence, 

2n-i 
F2n = 

k 
I! I 3 + 2 cos ̂  ) 

n (3 + 2008^) n (3 + cos f J 
i=2,4,...2{TT=T) j^ij3,...,2,(n-2)+i 

Letting i ~ 2k and j = (2k + 1) we have 
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n - i . v n-2 

F 2 n = n | 3 + 2 cos n / 3 + 2 c o s ? f \ n [ 3 + 2 COB i ? L ± i k \ 

: = l ^ •/ k=o V / k= 

F n I l 3 + 2 c o s ^ 
k=o ' 

iH 
Since F 2 n = F

n L n , we have 

^/n[3 + 2coB^«] (D) 

k=0 

Also solved by L. C a r l i t z . 

ANOTHER IDENTITY 

H-95 Proposed by J . A . H. Hunter, Toronto, Canada. 

Show 

FU + ̂ FU = \K^ + (-vkK 

Solut ion by M . N . S . Swamy, Nova Scotia Technical Co l lege , Ha l i f ax , Canada. 

TT = F F + F F 
n - k n -(k+i) -k n+i 

= (^Vk+i + ^ FkVt • 

s ince 

F = (-1)^ F -n v 7 n 

Hence, 

(~ l ) k F , = F R , 4 - F, F ,., * ' n - k n k+i k n+i 
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Also , 

F ,, = F F, + F, F ^ . n+k n k - i k n+i 

Hence we have, 

F 3 , + ( - l ) 3 ^ F 3 , = (F F + F F )3 + fF F - F F ^3 
n+k [ 1} n -k l n k - i * k n + i ' < n k + i \ n + i ' 

Or , 

I = F ' , + ( - l ) k F 3 , =• F 3 ( F 3 , + F 3 ) n+k v ' n -k nv k+i k - r 

+ 3 F n P k F n - h t F k - i < F n F k - i + F k F n - H ) 

- 3 F n F k F n + 1
F k + 1 ( F n F k + 1 - F k F

n + 1 ) 

= F n < F k + i + Fk-i)(Fk+l " Fk-i " Wk- t* 

" ^nVn+i^+i " Fk-i) + 3 F n F k F n + 1 ( F k + 1
 + F k -

= F n L k <Fk+i " F k - i > 2 + F k + i F k - i 

+ 3F F,2F2 , L, n k n+i k 

= L, F 3 (F.2 + F, _,_ F, J - 3F 2 F 2 F _,_ L, + 3 F F 2 F 2 , L. k nv k k+i k - i ' n k n+i k n k n+i k 

Using the identi ty, 

Fl - Wk- i = wk 

we obtain 

1 = L k F n( 2 F k + ("1)k) + VAVn^t " V 
= L. F?(2F 3 + 3 F F , F ) + (-1) F 3 K k kv n n n+l n - r x ; n k 

Now, 
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F3n = F
n

F 2n - i + F2nFn+i 

= F (F2 + F2 ) + (F F + F F _,_ )F _,_ nv n-i n7 x n n-i n n+i7 n+i 

= F3 + F F2 , + F F (F , + F J n n n+i n-i i r n+i n- i 7 

= F3 + F (F2 + 2F F + F2 ) + F F (F + F ) n nx n n n-i n- i 7 n-i nv n+i n-l7 

= 2F3 + 2F 4 F (F + F ) + F 4 F F .4 n n-i nv n-i n7 n-i n n+i 

= 2F3 + 3F F F •, 4 n. n-i n n+i 

Substituting this in (1) we get 

1 = LkFkF3n + ("DM Lk 

Therefore, 

^n-Hc + ^ ^ n - k = '̂[^a + ( " D M ] 

Also solved by Charles R. Wal l . 

LATE ACKNOWLEDGEMENTS 
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• • • • * 

(Continued from p. 138.) 

All known Fibonacci equations using F are theoretically generalizable 
to equations using F . For some examples, see [ 2] . See [3] also. 

REFERENCES 
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2. Allan Scott, "Fibonacci Continuums, M unpublished. 
3. F. D. Parker, "Fibonacci Functions,M Fibonacci Quarterly, Vol. 6, No. 

1, pp. 1-2. 
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MATHEMATICAL MODELS FOR THE STUDY OF THE PROPAGATION 
OF NOVEL SOCIAL BEHAVIOR 

HENRY WINTHROP 
University of Southern Florida, Tampa, Florida 

Suppose we wish to develop a mathematical model for the spread of novels 
social behavior, such as rumors, newly coined words, new hobbies or habits, 
new ideas, etc. Let us illustrate the development of a highly simplified model 
of this sort, where we are concerned only with behavior which spreads on a 
person-to-person basis. We shall assume that all individuals who are capable 
of being potential transmitters of the new behavior adopt it after only one single 
exposure to it. We shall further assume that all potential transmitters contact 
exactly m different persons per unit time. Finally, we shall assume a popu-
lation sufficiently large so that no convergence effects occur during the initial 
period of growth, By this we mean a population of potential converts whose 
size, in relation to the actual number of increasing converts, in great enough 
for practical purposes to warrant the assumption that those who are spreading 
the novel social behavior will meet for quite some time only individuals who 
have not as yet been subject to contact with i t This last assumption can be ex-
pressed by stating that the rate of repetitious contacts with those who already 
display the novel behavior in question, is zero. 

Under these several constraints it can be shown that the increment of 
growth, G., at any time t = i will be given by 

(1) G. = m(m + I)1™1 i > 1 

and the cumulative or total growth, N(t), in the number of persons who exhibit 
the novel social behavior at time, t, will be given by 

(2) N(t) - (m + l ) t , 

where equation (2) holds only for discrete time instants, that is , where t = 1, 
2, . . . . 

( R e c e i v e d F e b r u a r y 1967.) 1 5 1 
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We now assume that every person possesses a circle of acquaintances 
and that, for each person in the population, there are exactly D persons in his 
circle of acquaintances,, We further assume that each person succeeds in con-
tacting all of these D persons only after k units of time have elapsed. In 
short, D = mk. When t > k + 1 each person continues to exhibit the novel, 
social behavior but he no longer transmits it to anyone else. G0 is defined as 
one. When k units of time have elapsed, the population of converts to the new 
behavior is N(k). When t = k + 1, G0 will cease to transmit the new behavior 
but he will still exhibit it. We therefore have 

(3) N(k + 1) .= [N(k) - G0] m + N(k) 

(4) - N(k)Y - G0m , 

where Y = (m + 1). 
At time instant, t = k + 2, the number of people who cease to be t rans-

mitters will be Gl9 and N(k + 2) will be given by the following recursion 
relationship. 

(5) N(k + 2) = [ N(k + 1) - G j m + N(k + 1) 

(6) = N(k + 1)Y - Gjin 

Substituting equation (4) into equation (6) we obtain 

(7) N(k •+ 2) = [N(k)Y - G0m] Y - Gjin 

which in turn becomes 

(8) N(k + 2) = N(k)Y2 - m(G0Y + Gt) 

If we proceed to develop the recursion relationships exhibited in equa-
tions (3) through (8), we obtain the following model for 1 < i < 6. 
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N(k + 1) = N(k)Y - G0m 

N(k + 2) = N(k)Y2 - mY°(G0Y + Gt) 

N(k + 3) = N(k)Y3 - mY(G0Y + Gt) - G2m 

(9) N(k + 4) = N(k)Y4 - mY2(G0Y + Gj) - mY°(G2Y + G3) 

N(k + 5) = N(k)Y5 - my3(G0Y + Gt) - mY(G2Y + Gs) - G4m 

N(k + 6) = N(k)Y6 - mY4(G0Y + Gt) - mY2(G2Y + G3) - mY°(G4Y + G5) 

From the preceding it can be readily seen that if we wish to determine 
the value of N(k + i) and if i is even, then 

N(k + i) = N(k)Y* - mYi""2(G0Y + Gt) - mYi""4(G2Y + G3) -
(10a) 

- mY1"6(G4Y + G5) mY1"1(G._2Y + G . ^ ) , 

while if i is odd, then 

N(k + i) = N ^ Y 1 - mY1_2(G0Y + Gt) - mYi""4(G2Y + G3) 
(10b) . 

- m r l ;(G. Y + G. J - G . m 
v l - 3 1 - 2 ' l - l 

Both equations (10a) and (10b) can be summarized formally as follows. 

i-i 
(11) N(k + i) = N(k)Yi - m ] T G ^ " 1 " 1 1 , 1 .< i < k 

n=0 

If we substitute (m + 1) for Y into equations (10a) or (10b) and the ap-
propriate value of G. as given by equation (1), then N(k + i) can be computed. 
The computed value will reflect the propagation or cumulative growth of the 
novel social behavior, under all the assumptions and conditions which have been 
mentioned above. 
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We now define 

i - l i - i 

(12) 
n=o n=i 
/ -J n L-*t n 

But by equation (1) we have 

(13) G = m(m + I)11"1 = mY11'1, n > 1 

Hence 

i - l 
- 2 (14) A = -mY1"1 - m2^P Y1 

n=l 

-2 (15) = -mY1"1 - m2(i - 1)Y* 

If we now substitute the value for A, as given by equation (15), for the 
second expression on the right-hand side of equation (11), we obtain 

(16) N(k + i) = N(k)Yi - mY1""1 - m2(i - IJY1"2, 1 < i < k 

There are two justifications for the constraint that 1 < i < k„ First is 
the fact that the growth of the novel behavior will be initially exponential, if 
the potential population of converts is very much larger than the actual and in-
creasing population of converts for a relatively modest time period occurring 
at the beginning of the growth phenomenon in question. The actual length of 
the growth interval assumed i s , of course, 2k units of time. The second 
reason for assuming the constraint that 1 < i < k is that the substitution of 
i = 0 in either equations (10a), (10b) or (16), or their analogues, would make 
no sense. The correction for the fact that transmitters of the novel social 
behavior possess only a limited circle of acquaintances, D, holds only for 
those situations in which converted individuals have begun to exhaust their 
circles of acquaintanceship and, in mathematical terms, this means that i ^ 0. 
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Substituting (m + 1) = Y in equation (16) will yield 

(17) N(k + i) = (m + l ) k + 1 - m(m + l)1""1 - (i - l)m2(m + l)1""2 

(18) = (m + l)1""2 (m + l ) k + g - m2(i - 1) - m(m + 1) 

i -2 k+2 
(19) = (m + 1) (m + 1) - m(im + 1) 

The equivalence of either equation (10a) with equation (16) or equation (10b) 
with equation (16), can be seen from the relations given by equations (12) through 

(15). 
The argument of the preceding exposition suggests to some extent how 

the mathematical model may be of use to the sociologist for a variety of phe-
nomena which are of interest to him. 

Models for behavioral diffusion theory have been developed over the last 
two decades. They may be highly sophisticated or relatively simple, mathe-
matically speaking. Sophisticated examples of models for diffusion theory, 
intended for some specifically designed experiments, may be found in the work 
of Rapoport [ l ] . An early and systematic development of a predominantly 
algebraic treatment of diffusion theory, intended for experimental designs of 
an aggregative type, was worked out byWinthrop [2 ] , The formulation of some 
early ad hoc models intended for empirical use, was undertaken by Dodd [3 ] , 
The relationship of Dodd1 sS-Theory to those formulations of diffusion theory 
for which the present writer has been responsible, has been worked out jointly 
by Dodd and Winthrop [4]. The model presented in this paper is an example 
of the strictly algebraic type of model. Models of this kind make it somewhat 
easier to present the exposition of diffusion theory. 
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CURIOUS PROPERTY OF ONE FRACTION 
J. Wlodarski 

Porz-Westhoven, Federal Republic of Germany 

It is well known that an integral fraction, with no more than three digits 
above the line and three below, gives the best possible approximation of the 
famous mathematical constant n e n . 

This fraction is 878/323, In decimal form (2,71826 •• •) it yields the 
correct value for MeM to four decimal places. 

If the denominator of this fraction is subtracted from the numerator the 
difference is 555. 

Now, the iterated cross sum of the numerator is 5 and the same cross 
sum of the denominator is 8. The ratio 5/8 gives the best possible approxima-
tion to the "Golden Ratio" with no more than one digit in the numerator and one 
in the denominator. 

• • • • * 



A THEOREM ON POWER SUMS 
STEPHEN R. CAVIOR 

State University of New York at Buffalo 

Allison p., p. 272] showed that the identity 

n \ 

i>r 
x=i I 

P 
= 

/ n \ q 

1 X=l 1 
(n = 1,2,3,- ••) (1) 

holds if and only if r = 1, p = 2, s = 3, and q = 1. In this paper we con-
sider the more general problem of finding polynomials 

r s 

f(x) = 2J aixl and sw = z^ bixl 

i=o • i=o 

over the real field which satisfy 

(2) |f(l) + ••• +f(n)fP = |g(l) + ••• +g(n)}q (h = 1 , 2 , 3 , - " ) , 

where r, p, s and q are positive integers. 
Firs t we note that 

Sf« = Z a i s i ' 
x=i i=0 

where 

s k = X)xkj k = ° ' 1 ' 2 '" 
X F l 

Thus the left member of (2) becomes 
( R e c e i v e d F e b r u a r y 1967 ) 157 



158 A THEOREM ON POWER SUMS [Apr. 

( r+l ) P 

{a — T T + • • • } , J r r + l \ 

since S is a polynomial in n having degree r + l and leading coefficient 

r + 1 ' 

Similarly the right member of (2) becomes 

s+i ) q 

i, n , f 

so (2) can be written 

P 
n # f = 1, nr 

*r r + 1 ""' ( s s + 1 

r+l ) { - s + 1 

(3) K — + ••• ={K 7TT+ •" 

For (3) to hold we must have 

(4) (r + l)p = (s + l)q 

and 

(5) (r + l j = (sAj 

Case 1. Suppose p = q. From (2) we find f(n) = g(n), n = 1, 2, 3, •••••, 
so f(x) = g(x). 

Case 2. Suppose p / q. We may assume without loss of generality that 
p > q and (p, q) = 1. We will also assume that a = b = 1. Following 

r s 
Allison [op. cit.] we see that for (3) to hold we must have r = 1, p = 2, s 
= 3, and q = 1. Specifically, 



1968] A THEOREM ON POWER SUMS 

(6) (Si + a0S0)2 = S3 + b2S2 + bjSj + b0S0 . 

Using well-known formulas for S, , k = 0 ,1 , 2 ,3 , we write (6) as 

(7) |aft±ii+aon|, = jmpij\h^m±jmL±Myhi s(|±i) 

Rewriting (7) in powers of n, we find 

^(§* - ) - * (§ '« . ) ' * ' -? • ( ! • * ) -
( 8 ) / i b2 b A , / b 2 bi 

+ U + T+T)n 8 + T + T + N 

Equating coefficients in (8) yields 

(9) 

a0 

> • 

0 

— 

= 

= 

b2 

~3 

1 
4 ' 

b2 

6 

b2 ht 

+ b0 

Let a0 be arbitrary and regard (9) as the linear system 

2 

(10) XXjb j = c i & = '°»V2). 
3=0 

Since the determinant a.. ^ 0, we can solve for b0, hi3 b2 in terms of 
Easy calculations show 

(11) b0 = -a2 •, bj = 2a2 - a, b2 = 3a , 
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where a0 is replaced by a for simplicity. Thus 

(12) f(x) = x + a, g(x) = x3 + 3ax2 + (2a2 - a)x - a2 

When a = 0, (12) yields the result of A Hi son. 
If we do not require a = b = 1, it is interesting to note that for arbi-

trary p, q one can always find non-monic polynomials f(x), g(x) to satisfy 
(2). Specifically f(x) and g(x) are chosen to satisfy 

\ g(x) = nq, N g(x) = n p (13) 

x=l x=i 

If (13) holds, obviously (2) does. 
In general the construction of a function f, (x) satisfying 

(14) Sft(x) = n* ( t = 1,2,3,-••) 

is recursive. First note that fj(x) = 1. We find ft+1(x) as follows. Recall 
that 

n 

Z * t + 1 f 

t n , t , , 
x = 7—rr + s j i + • • • + Sjn 

t + 1 t 
x==i 

Thus 

(15) 

so 

(t + l > y ^ { x t - stft(x) s ^ x ) j = n t + 1 , 

x=l 

t 

(16) ft+1(x) = (t+ 1) xu - > sj^x)} . 

k=i 
)xt ILI Skfk(j 
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We summarize these results in the following. 
Theorem. The solutions of (2) are as follows. If p = q, f(x) is arbi-

t rary and g(x) = f(x). If p ^ q, the only monic solutions occur when p = 2 
and q = 1, in which case f(x) and g(x) are defined by (12), where a is an 
arbitrary real constant Non-monic solutions for that case can be found using 
(13). 

As an example of these results suppose that p = 3 and q = 4. By (14) 
and (17) we have 

13 ( n , 4 

(3x2 - 3x + 1) J , (n = 1, 2, 3, • • •) 

x=l 1 \ x=l 

' \ (4X3 - 6x2 + 4x - 1) = J \ ^ 

REFERENCE 

1. Allison, !fA Note on Sums of Powers of Integers,?T American Mathematical 
Monthly, Vol. 68, 1961, p. 272. 

• • * * * 

A NUMBER PROBLEM 
J. Wlodarski 

Porz-Westhoven, Federal Republic of Germany 

There are infinite many numbers with the property: if units digit of a 
positive integer, M, is 6 and this is taken from its place and put on the left 
of the remaining digits of M, then a new integer, N, will be formed, such 
that N = 6M. The smallest M for which this is possible is a number with 
58 digits (1016949 • • • 677966). 

Solution: Using formula 

— £ = 3£ F 3 c x n . 
1 - 4x - x2 n=o 

with x = 0,1 we have 1,01016949 * • • 677966, where the period number (be-
hind the first zero) is M.* 
*1016949152542372881355932203389830508474576271186440677966* 
(Continued on p, 175.) 
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DIGITAL DIVERSIONS 

In the February 1968 issue of The Fibonacci Quarterly., I had asked 
readers to work at expressing Fibonacci numbers using the ten digits once 
only, in order, and using only the common mathematical operations and sym-
bols., V. Eo Hoggatt, Jre , the General Editor of this Journal, came up with 
a set of equations whichs though not exactly what I had in mind, are of special 
interest because of their versatility., All ten digits are used and logarithms 
are required., 

We start with 

log22 

o r 

log ^ l = 2 
( n raaicals) 

then 

This leads to 

log2ttog - _ ? ) = n 
( n radicals) 

0 + log,. • v , log _ J log _ ( 8 - 4)/(9 - 7 ) = 1 

0 + log (5- l) /2 ^gz-TSfjTs <8- - 4 ) /< 9 - 7) 

( n raaicals) 

The study of all this eventually leads to the following: 
162 



1968 RECREATIONAL MATHEMATICS 163 

log2 (log , m) = n 

( n radicals) 

which further leads to the desired ten-digits-in-order form for any Fibonacci 
number j F : 

log( 0 + 1 + 2 + 3 + 4 ) / 5 0 o g ^ _ 9) = F 
yLe+7+8 

(Fn radicals) 

How about something more along these lines? 

A PENTOMINO TILING PROBLEM 

Ever since Solomon W„ Golomb's article [1] appeared, much time has 
been devoted to the study of polyominoes and their properties., Polyominoes 
are configurations made up of squares connected edge-to-edge. The figures 
below show the first nine members of the polyomino family: 

D 

The first is a monomino* the second is a domino0 The third and fourth 
figures are the two trominoes„ The remaining figures are the five tetrominoes9 

Continued construction shows there are twelve pentominoes — those made with 
five squares,, The pentominoes have proven so popular that they have had 
names assigned to them corresponding to their resemblance to certain letters 
of the alphabet* They are shown below* 

N P T 
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U V W X Y Z 
Many polyomino problems have been posed, but here 's a pentomino prob-

lem from Maurice J„ Pova of Lancanshire, England: Find irregular patterns 
of the twelve pentominoes which form tessellation patterns; i0 e„, which cover 
a plane» There are 2339 distinct 6 x 10 rectangles which can be made from 
the pentominoes, but we are looking for irregular patterns„ Three examples 
found by Povah are shown below. You should be able to find others,, 

LT 

E 

3 5 b 
ZI 

r 

1 > 

[[ 

• • • ' j r " " " 

J i 

^ T 1 
r i 

cz] 
ri r n 11 

The third figure has a bonus feature: the checkerboard pattern is main-
tained throughout the tessellation. The black and white squares fall on the 
same parts of each pentomino as it repeats in the plane„ 

ARE FIBONACCI NUMBERS "NORMAL"? 

A "normal" number is one which contains the statistically expected num-
ber of each of the digits and combinations of digits, A random 100-digit num-
ber, if normal, ought to contain approximately 10 zeroes, 10 ones, 10 twos, and 
so on0 For larger numbers, one could check for the expected occurrences of 
the pairs 10, 11, 12, 13, • • • , 97, 98, 990 There is even a "poker hand" test 
for large enough numbers, in which groups of five digits are examined to see 
if the statistically expected number of "busts, " "one pair, " "full house, " and 
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o the r poker hands a r e p resen t . Such a s ta t i s t i ca l study has been made of the 

digi ts of wT2T 

I wondered if the Fibonacci n u m b e r s a r e no rma l . T h e r e a r e at l eas t two 

ways of at tacking the problem. The f i r s t method cons i s t s of examining each 

Fibonacci n u m b e r and counting the number of d is t inct digi ts . By so doing I 

found some typical r e s u l t s . 

Number of Number of each of the following digits 
F digits in F 0 1 2 3 4 5 6 7 8 9 

• n & __n _ _ . 

21 1 3 3 1 3 3 1 2 2 2 

105 9 8 19 8 7 11 11 11 11 10 

209 20 13 21 18 21 23 26 21 20 26 

F1 0 0 i s reasonably no rma l ; F5 0 0 has m o r e twos than expected; F100o has a 

sl ightly low count of ones . 

The second method cons i s t s of noting the cumulat ive sums of the digi ts . 

I did th is up to F1 0 0 counting all the digits in all those 100 Fibonacci n u m b e r s . 

The r e s u l t s a r e tabulated below. 

Number of each of the following digits to F1 0 0 

0 1 2 3 4 5 6 7 8 9 

110 136 107 102 111 95~ 95 117 "92 106 

The total number of digits in the f i r s t 100 Fibonacci number s i s 1071. 

The d is t r ibut ion of the digits to F1 0 0 appea r s to be reasonably n o r m a l , except 

for the somewhat l a rge number of ones . 

F u r t h e r work on this m a t t e r might lead to in te res t ing speculat ion — 

depending on the r e s u l t s . The work of counting digi ts i s tedious , but a c o m -

pu te r could be p r o g r a m m e d to ca lcula te the Fibonacci n u m b e r s , count the i r 

d ig i t s , and p r in t cumulat ive to ta ls a s well. Other s ta t i s t i ca l t e s t s could be 

applied with the aid of a computer . 

F i00 

F500 

Fi000 
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OBSERVATION 

Has anyone noticed th is be fo re? While t rying to see if the Fibonacci n u m -

b e r s could be used to make magic s q u a r e s , I d i scovered that no se to f consecu-

tive Fibonacci n u m b e r s could be so used. Can you demons t ra t e t h i s ? 

REFERENCES 

1„ Solomon We Golomb, f C h e c k e r b o a r d s and Polyominoes , f f Amer , Math. 

Monthly, V o l 61 , No, 10 (December 1954), pp0 675-682. 

2. R. K. Pa th r i a , "A Sta t is t ica l Study of Randomness Among the F i r s t 10,000 

Digi ts of 7T3
U Mathemat ics of Computation, V o l 16, No9 78 (April 1962), 

pp. 188-197. 
• • • • • 

Continued from p. 191.) 

oo „ P.(x) k = 0 , l , 2 , 
£ F 7 x n = _ - _ _ J l _ _ _ „ — , 3,4,5,6,7 
n=o n l ~ 2 1 x - 2 7 3 x 2 + 1092x3 + 1820x 4 ~1092x 5 -273x 6 + 21x 7 +x 8 

P0(x) = x( l - 20x - 166x2 + 318x3 + 166x4 - 20x5 - x6) 
Pi(x) = 1 - 20x - 166x2 + 318x3 + 166x4- 20x5 - x6 

P2(x) = 1 + 107x - 774x2 - 1654x3 + 1072x4 + 2 7 2 x ^ - 2 1 x 6 - x 7 

P3(x) = 128 - 501x - 2746x2 - 748x3 + 1364x4 + 252x5 - 22x6 - x7 

P4(x) = 2187 + 329198x - 140,524x2 - 231,596x3 + 140,028x4 + 34,922x5 - 2687x6 

- 128x7 

P5(x) = 78,125 + 456,527x - 2,619,800x2 - 3,840,312x3 + 2,423,126x4 + 594,364x6 

- 469055x6 - 2187x7 

Pg(x) = 2,097,152 + 18,708,325x - 89,152,812x2 - 139,764,374x3 + 85,906,864x4 

+ 21,332,070x5 - 1,642,812x6 - 78,125x7 

P7(x) = 62,748,417 + 483,369,684x - 4,429,854,358x2 - 3,730,909,776x3 + 

+ 2,311,422,054x4 + 570,879,684x5 - 44,118,317x6 - 2,097,152x1 

* * * * ^ 



FURTHER PROPERTIES OF MORGAN-VOYCE POLYIOi l lLS 
M . N 8 S. SWAMY 

Nova Scotia Technical College, Halifax,. Canada 

1. INTRODUCTION 

A se t of polynomials B (x) and b (x) were f i r s t defined by Morgan-

Voyce [ l ] a s , 

(1) b (x) - x B (x) + b (x) n^ ; n-r ; n-r ; ( n > 1) 

(2) Bn(x) = (x + l )Bn_ l (x) + b n ^ ( x ) (n > 1) 

with 

(3) b0(x) = B0(x) = 1. 

In an e a r l i e r a r t i c l e [ 2 ] , a number of p rope r t i e s of these polynomials B (x) 

and b (x) were der ived and these were used in a l a t e r a r t i c l e to es tab l i sh 
nx ' 

some in te res t ing Fibonacci ident i t ies [ 3 ] . We shall now cons ider some fur -

the r p r o p e r t i e s of these polynomials and es tab l i sh the i r re la t ions with the 

Fibonacci polynomials f (x). 

2. GENERATING MATRIX 

The m a t r i x Q defined by, 

(4) Q 
(x + 2) 

1 

may be cal led a s the generat ing ma t r ix , s ince we may es tab l i sh by induction 

that , 

(5) Q11 = 

( R e c e i v e d F e b r u a r y 1 9 6 ? ) 

B r 
B 

n 

167 

-B. 

-B 
n - i 

n-2 
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Hence , 

n - i 
- b 

n - i 

n-2 

(B - B J - (B - B ) 
1 n n - i 7 v n - i n-2 7 

(B - B ) - (B - B ) 
x n - i n-2 7 x n-2 n -3 7 

(6) = Q n * (Q - I) 

= cf-Q11"1 

Since the de te rminan t of Q = 1, we have 

(?) 

and 

V i Bn-i ~ Bl = -1 

n n - i 

n - i n-2 
= Q - I I = 

x + 1 - 1 

1 - 1 

o r 

(8) b , b - b2 = x 
n+i n - i n 

3. B n AND b n AS TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 

Letting cos d = (x + 2)/2 in the identi ty 

s in (n + 1) 0 + s in (n - 1)0 = 2 sin (no) cos 0 

we have 

with 

s in (n + 1)0 s in (n - 1)0 = s in nfl 
s i n * sinO ( x 2 ) sinO ( 4 ~ x ~ 0 ) ' 

s in (n + 1)0 = 1 
s inO for n = 0 

= (x + 2) for n = 1 . 
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Thus, 

sin (n + 1)9 
sin 6 

satisfies the difference equation for B . Hence, 

(9) B (x) = sin.fr + 1)0' ( - 4 < x < 0 ) 
w n w sin 0 v ; 

Similarly, if cosh <f> = (x + 2)/2, then 

Since b. = B - B , we have n n n-i 

cos (2n + 1)0/2 
~nN"' cos (Ha) bjx) = ^WTe/T ("4 * x * °> 

and 

™ v*> • "'SffVV'*" <"»> 
4. DIFFERENTIAL EQUATIONS FOR B (x) AND b (x) 

It has been shown earlier [2] that 

n 
ri2) B„(x) = > . i " ; : ^ ) ^ =J^\*k 

and 

k=o ' k=o 

n 

•£(::£)* -2< 
k=o x 7 k=o 

(i3) bn(x> = y . ( : ; : K = > . O k 
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Hence 

^k+i / n +"k + 2 \ 
3n = \ n - - 1/ = (n ~k)(n 

k / n + k + l \ (2k + 3) 
c n I n - k I 

Thuss the coefficients of x and x of B (x) are related by 

(14) k(k - l ) c k + 4(k + l)k c k + 1 + 3k c k + 6(k + l ) c k + 1 - n(n + 2)ck = 0 

But the coefficient of x in the expansion of 

x2B" + 4 x B'! + 3x B! + 6 B! - n(n + 2)B n n n n v ' n 

is the same as the left-hand side expression of (14). Hence, B (x) satisfies 
the differential equation 

(15) x(x + 4)y" + 3(x + 2)y! - n(n + 2)y = 0 

Similarly, starting with (13) we can show that b (x) satisfies the differential 
equation 

(16) x(x + 4)y" + 2(x + l)yT - n(n + l)y = 0 

Using (15) and (16) we shall now derive some identities for B^(x) and 
b (x). We have from (15) 

x(x + 4)(B^ - B J ^ ) + 3(x + 2)(B; - B ^ ) - n(n + 2)BR + (n + l)(n - l)Bn_1 

or, 

x(x + 4)b£ + 3(x + 2)b^ - n(n + l)bR - nBn - (n + l)Bn_1 - 0 
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Using (16) this may be reduced to 

(17) (x + 4)b^(x) = nBn(x) + (n + l JB^fx ) . 

Hence, 

(18) (x + 4)(b^+1 - b^) = (n + l )B n + 1 + (n + 2)Bn - nBn - (n + l J B ^ 

Differentiating (1) we get, 

(19) b ' - b! = x B ' + B 
x ' n+i n n n 

Substituting (19) in (18) and simplifying we have 

(20) x(x + 4)B^(x) = nBn+1(x) - (n + 2)Bn^(x) 

From (20) we may derive that 

(21) x(x + 4)b^(x) = nbn+1(x) + bn(x) - (n + l)bn_1(x) . 

5. INTEGRAL PROPERTIES 

It has been shown earlier [2] that, 

r B (x) - B (x) 
(22) y b n ( x ) d x - (n + 1 )

n l
 + c 

c being an arbitrary constant We also know that, 

B (0) = (n + l); B (-4) = (-l)n(n + 1) 
(23) 

b n ( 0 ) = X ; V - 4 ) = (-l)n(2n + 1) 

Hence, from (22) and (23) we have the two special integrals, 

o 
(24a) f B2n(x) dx = 4/(2n + 1) 

" 4 
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and 

o 
(24b) f B2n+1(x) dx = 0 

- 4 

Since 

n 
B^x) = £ B 2 m 

o 

we have 

o n 
(25) jf B^ (x) dx = £ 4/(2m + 1) 

~4 n o 

Similarly, the following integrals may be established: 

o o 
/ b^ (x) dx = - / b 2 n + 1 (x) dx = 4/(2n + 1) 

/ B n ( x » V i W ^ = 0 

/ bn(x) Bn(x) dx = - / bn+1(x)Bn(x)dx - -4 £ l /(2m + 1) 

/ bn(x)bn+1(x) dx = -4 - 8 X 1(2 m + 1) 
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O n 
/ B n + 1 (x) Bn_i(x) dx = 4 J2 i / C 2 ^ + 1) 

J b n + l ( x ) h^x) dx = 8 £ 1/(2m + 1) + 4/(2n + 1) - 8 
- 4 1 

n-i 
J b2 (X) dx = 8 53 l / (2m + l) + 4/(2n + 1) 

-4 n 
1 

6. ZEROS OF B (x) AND b (x) 
i r ' n w 

From (9) we see that the zeros of B (x) are given by sin (n + 1)0 
Hence, 

0 = (r7i)/(n+ 1), r = 1,2, - - . , n . 

Therefore, 

(x + 2) = 2 cos —— rr v ' n + 1 

or, 

x = -4 sin2 ^ ^ — j - • -|r ? , r = 1, 2, • • • , n 

Similarly, the zeros of b (x) are given by 

-4s in2{frrr°f} > r = 1, 2 , • • • , n. 

Thus the zeros of B (x) and b (x) are real, negative and distinct 
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7. B (x), b (x) AND f (x) 

The Fibonacci polynomials f (x) are defined by 

(26) fn+1(x) = x fn(x) + fn-1(x) (n => 2) 

with 

f;i(x) = 1 and f2(x) = x . 

It is also known [4] that 

E(n-i)/2] 
(27) yx) = £ 

3=0 

where [n/2] is the greatest integer in (n/2). Hence 

w > = E(2VJ)-2n"2j = E 
j=0 r=0 

= bn(x2) , 

from (13). Hence, 

(28) bn(x2) = f2n+1(x) . 

Now 

WsW - Wi(x) = XVHJW 

or 

bn + J(x»)-bn(x») = xf2n+2(x) 

Hence from (1) we have 

/„ _, _ A x„-,j., 

[V-lW 
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x2Bn(x2) = xf2n+2 (x) 

or 

(29) Bn(x2) = ± f2n+2 (x) 

Thus, B (x), b (x) and f (x) are interrelated, 

(See a l s o H-73 O c t . 1967 pp 255 -56 ) 
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• • • • * 

(Continued from pe 161.) 

(Compare this problem with H-65 and above solution formula with the 
formula 

00 
2 x v^ •& n 

T~A 2 = ^ 3 n X 

1 - 4x - x4 n=o 

in the Fibonacci Quarterly, Vol. 2, No. 3, p. 208.) 
• • • * • 



SCOTT'S FIBONACCI SCRAPBOOK 
ALLAN SCOTT 

Phoenix, Arizona 

The following generating functions are submitted to continue the list in 
"A Primer for the Fibonacci Numbers, Part VI, M by V. E. Hoggatt, J r . , and 
Do A. Lind, Fibonacci Quarterly, Vol. 5, No. 5, 1967, pp. 445-460. From 
time to time, as space permits, more generating functions and special results 
will be placed in this column in order that they may be properly recorded. 
Thanks to Kathleen Weland for verifying these. 

0 ,1 ,2 ,3 
00 

n=o 

^)(x) = 8 - 23x -
\(x) = 1 + 24x -

?2(x) = 27 - 17x 

Pk(x) 

1 - 3x - 6x2 + 3x3 + x4 

24x2 + x2 

23x2 - 8x3 

- l l x 2 - x3 

P3(x) = 64 + 151x - 82x2 - 27x2 

/ Xfk^ = k - 0, 1, 2, 3, 4 
*~i n + k 1 - 5x - 15x2 + 15x3 + 5x4 - x5 

n=o 
P0(x) = x - 4x2 - 4x + x4 

Pi(x) = 1 - 4x - 4x2 + x3 

?2c P2(x) = 1 + l l x - 14x2 - 5x3 

P3(x) = 16 + x - 20x2 - 4x2 + x4 

P4(x) = 81 - 220x - 244x2 - 79x3 + 16x4 

E P, x) 
F s . , x = 

A
 n + k 1 - 8x - 40x2 + 6 Ox3 + 40x 4 - 8x5 - x6 

n=o k=0f 1, 2, 3,4, 5 
P0(x) = x - 7x2 - 16x3 + 7x4 + x5 

Pi(x) = 1 - 7x - 16x2 + 7x3 + x4 

P2(x) = 1 + 24x - 53x2 - 39x3 + 8x4 

(Continued on p. 191) 
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LINEAR DiOPHANTINE EQUATIONS WITH NON-NEGATIVE PARAiETERS 
AND SOLUTIONS 
THOMAS M . GREEN 

Contra Costa College, San Pablo, California 

1. INTRODUCTION 

Solving equations, where we are required to find only the integral solu-
tions, has some historical interest. These equations are known as Diophantine 
equations, after Diophantus of Alexandria, the first to treat these problems in 
a.n algebraic manner. 

There are innumerable problems that result in first degree equations with 
two unknowns, where it is required to find integral solutions, Such an equation 
is called a linear Diophantine equation and is written as 

(1) ax + by = n . 

It is usually stipulated that the parameters, a, b and n, are also integers. 
However, if these parameters are rational numbers, (1) can be easily t rans-
formed so that each parameter becomes integral. 

Equation (1) is indeterminant in that there is an unlimited number of 
solutions, and if we did not require integral solutions, the problem of finding 
a solution would be simple. If, however, we restr ict the solutions to be inte-
gral, the problem of finding these solutions is no longer simple, and in fact 
there may be no solution. Yet, if a solution does exist, the total number of 
solutions is still unlimited. 

The problem warrants more attention by the added restriction that the 
solutions be non-negative pairs. If this restriction is imposed upon the par-
ameters as well, then if a solution exists, the number of solutions is finite,, 
The problem of finding these solutions and determining the number of such 
solutions has occupied much attention throughout the history of number theory 
[ l , Chap. II] . 

The purpose of this paper is to give an explicit formula for the general 
solution of (1) and to establish the relationship that exists between the param-
eters when no solution exists. 
(Received December 1966J 
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29 PRE LIMINARY RE MARKS 

Before developing the relationships above some remarks pertaining to 
historical developments, topical concepts, and the existence of solutions are 
in order, 

Euler proved that Eq. (1) is solvable in integers when (a,b) = 1, L e.., 
they are relatively prime [ 1, p. 47], and Gauss proved that the equivalent of 
(1) is solvable in integers if and only if (a, b)|n [ 1, p. 54]. In view of these 
results and the general conditions imposed on (1), L e e , the solutions and par-
ameters are to be non-negative integers, there is no loss of generality by 
assuming (a, b) = 1„ 

If (XpYi) is a solution of (1) in integers and (a,b) = 1, then all other 
solutions will be given by 

x = xt + bj 
(2) 

y = Yi - aj 

where j is an integer [ 2, p9 29]. 
It is for this first solution that we seek an explicit formula. This can be 

accomplished easily with the Fermat-Euler Theorem applied to the congruence 
ax = n (modb). Such a result has advantages over other methods of solution, 
such as, algorithms involving a succession of recursive steps. The Fermat-
Euler Theorem involves the concept of Euler*s function, denoted <£(b), which 
is equal to the number of natural numbers less than b that are coprime with 
be An explicit formula for this value is given by 

(3) * < b > = b - ( 1 - i ) - ( 1 " i ) - ( 1 - i } 
where Pj, p2, • • • , p r are the different prime factors of the natural number 
b [ 2, p. 24]. The statement of the Fermat-Euler Theorem then becomes 
[3 , p. 63] 

(4) a*(b) = 1 (modb) 
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Assuming that a, b and n are non-negative and (a,b) = 1, then if 
either a or b equals 0 or 1, then the determination of the solution of (1) 
becomes a simple case. Hence, in what follows we assume that both a and b 
are greater than 1. This implies that a £ b, since if a = b, then (a,b) = 
(a, a) = a, but (a,b) = 1, hence a = b = 1, a contradiction. 

As a final remark we might consider the graphical representation of this 
problem. Under the imposed restrictions, the graph of equation (1) is con-
fined to the first quadrant. We note that (1) with non-negative parameters 
represents the family of all line segments whose endpoints are the rational 
points of the x and y axes. Thus, the line segment determined by the end-
points 

has the equation 

rqx + spy = pr. 

This is a form of (1) where rq = a and sp = b, and pr = n. Now we are 
ready to examine the general solution. 

3e THE SOLUTION 

The explicit formula involves the concept of the principal remainder 
modulo m, for which we may use the following notations 

DFN. (PRINCIPAL REMAINDER): 

(5) [[ y (mod m)]| = x iff x = y (mod m) and 0 < x < m - 1 

The following lemma, that is easily verified, though not essential to the deriva-
tion of the explicit formula, makes the solution of a specific example feasible. 
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Lemma. 

(6) II yi (mod m) 
i=i 

n [[ y. (mod m)]] (mod m) 
1=1 

As a special consequence of this lemma we may note that, 

(7) [[ y (mod m)]] = [[y (mod m)] (mod m) . 

Since the number of solutions of (1) will be finite, the method of solution will 
be to find the minimum positive integral value of x (or y), and then to find 
the corresponding value of y (or x) which will necessarily be maximum and 
then to subtract multiples of a (or b) to obtain the set of all possible non-
negative solutions of (1). The following formula for the minimum value of x 
is essentially due to Bouniakowski, and independently, Cauchy [ 1, pp. 55-56]. 

Theorem. If the equation, ax + by = n, has non-negative parameters, 
a, b, and n, and a > 1 and b > 1, and (a, b) = 1, then when non-negative 
integral solutions exist, the minimum non-negative integral value of x, which 
satisfies the equation such that y is also a non-negative integer, is given by 

(8) X m l n = flna^-^modb)! . 

Proof. The remarks made in Sec. 2 claim that there is no essential loss 
of generality by assuming the above conditions. It is important to note that we 
must assume a value of n such that non-negative solutions do exist. There 
does exist a finite number of values of n, for a given a and b, such that 
the equation will not have the non-negative solutions that we are seeking. This 
is proved in the next section. Formula (8) is independent of this consideration, 
therefore, we could obtain an erroneous value of X . if used without c i r -

mm 
cumspection, however, we would soon be aware of the er ror when the attempt 
to solve for the corresponding value of y was made. 

The equation ax + by = n is equivalent to the congruence 

(9) ax = n (mod b) . 
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Now by the Fermat-Euler Theorem if we multiply both sides of (9) by a * ^ - 1 , 
we obtain 

(10) x = n • a*(b) 1 (mod b) , 

whereby, the least value of x is the principal remainder # 

(11) X m . n = [ n. a ^ - V o d b)]j Q. E. D. 

Using the same principals we may derive a formula for X 

(12) X m a x = [ ^ ] - [ - f n ( m o d a ) ] . a ^ ^ ^ m o d b ) j , 

where [ ] denotes the greatest integer function. 
Proof. Equation (1) is equivalent to the congruence, 

(13) by = n (mod a) . 

Now if m = |[n(mod a)]], then b • y = m (mod a). Therefore, 

(14) by e { m, m + a, m + 2a, • • • , m + ka} . 

where k = [ n / a ] . We note that m + ka = n, hence, this is the maximum 
value that b • y can achieve. By substituting these values of b • y into (1) 
we obtain the corresponding values of x, that is , 

(15) x e | k, k - 1, k - 2, • • • , k - k } # 

in that order. Therefore, there is an integral solution of (1) when 

ja + m 

is an integer, where 0 < j < k. This situation is equivalent to the congruence 
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(16) ja + m = 0 (mod b) . 

The corresponding value of x is 

(17) x = k - j . 

Now since (a,b) = 1, we can solve (16) for j by using (4), theFermat-
Euler Theorem. This gives 

(18) j = - m a ^ ^ f m o d b ) . 

Now that j has been found, we can find x from (17). Since k represents the 
maximum value that x can be, we will have the maximum integral value of 
x that satisfies (1) by subtracting the least value of j from k as represented 
in (17). That least value of 5 is the principal remainder, |[_j_ (mod b ) | . By 
substituting for k, j , and m in (17), we arrive at (12). Q. E. D. 

Corollary. If a non-negative integral solution of (1) exists and (a, b) = 1, 
then there are at least 

[£] 
and at most 

solutions. 
Proof, We note that (13) has just one solution such that 0 < y < a [3 , 

p„ 51], Therefore, from (14) we also note that there are at least [k /b] . and 
at most [k/b] + 1 solutions. Also, since k = [ n / a ] , the corollary is proved. 

4. THE NON-EXISTENCE OF SOLUTIONS 

Even when a and b are relatively prime, in deference to Sec. 2, there 
will be cases when (1) has no solutions, due to the restriction that they be non-
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negative. Natural ly , we would wish to know jus t what c a s e s have no solut ions, 

the re fore , i t i s n e c e s s a r y to s ta te the following. 

Theorem, The equation ax + by = n, where a, b , and n a r e non-

negative in t ege r s and ab ^ 0 and (a, b) = 1, will not have in tegra l solutions 

> 0 when n = ab - (ja + kb), where j , k = 1, 2, 3 , • • • . 

Proof. A s s u m e (1) has a non-negat ive in tegra l solution and that n = ab 

-- (ja + kb) for some j and k. Then 

(19) ax + by = ab - ja - kb 

(20) a(x + j) + b(y + k) = ab 

Let X = x + j and Y = y + k; then, 

(21) aX + bY = ab. 

It i s impor tan t to note that X, Y, a, and b a r e all g r e a t e r than o r equal to 

one. F r o m (21) we obtain 

bY bY 
(22) b = X + — . o r b - X = — 
^ •7 a . a 

Now b = X i s an in teger , the re fore a divides Y, s ince a and b a r e r e l a -

t ively p r i m e . Suppose Y / a = r , then b - X = b r , but this i s imposs ib le 

s ince al l the quant i t ies a r e posi t ive in t ege r s , the re fore , t he r e i s a contradict ion. 

Q. E. D. 

It was proved by E„ Lucas [ 1, p. 68] that t he r e a r e | (a - l)(b - 1) such 

va lues of n which afford no solutions. He a l so gave a method to de te rmine if 

a given c a s e was solvable, but i t involved long computat ions. 

59 AN EXAMPLE 

Find all the non-negat ive in tegra l solutions of 20x + 14y = 410. (20,14) 

= 2, the re fore , by dividing through by 2 we have the p a r a m e t e r s 10, 7, and 

205. Now since 205 > 10-7 and (10,7) = 1 we can solve for X . . 
x f min 
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a ^ ^ m o d b ) ] ) 

p O S - l O ^ ^ ' V o d ? ) ] ] 

= ([205- 105(mod 7)]] 

By using the Lemma, this simplifies to 

Xmin = P ' S M m o d ? ) ] ] 

= [ [2 .3 .9 -9 (mod 7)]] 

= [ 2 - 3 - 2- 2 (mod 7)]j 

= |[3 (mod 7) | 

= 3 . 

By substituting X . into the original equation we obtain Y_ 
J b mm & max 

10-3 + 7y = 205 

y - 25 

Now subtract multiples of a, (10). In this case y G {25, 15, .5}. The cor-
responding values of x are found by adding multiples of b, (7). In this case 
x E { 3 , 10, 17 \. The three pairs of non-negative integral solutions of the 
original equation are (3, 25), (10, 15) and (17,5). 
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Send all communicat ions regard ing Elementa ry P r o b l e m s and Solutions 

to P r o f e s s o r A, P , Hillmans Depar tment of Mathemat ics and Statistics^ Uni-

v e r s i t y of New Mexicos Albuquerques New Mexico^ 87106. Each prob lem o r 

solution should be submit ted in legible form., preferably typed in double s p a c -

ing, on a s epa ra t e sheet o r sheets in the format used below* Solutions should 

be rece ived within t h r ee months of the publication date* 

B-136 Proposed by Phil Mana , Universi ty o f New M e x i c o , A lbuquerque, N . M e x . 

Let P be the n Pe l l number defined by Pi = 1, P? = 2, and P ln 
n • J 1 d n+2 

= 2P ^ + P . Show that -P* + P 2 = P ^ . n+i n n+l n 2n+l 

B-137 Proposed by Phi I Mana , Universi ty o f New M e x i c o , A lbuquerque, N . Mex . 

Let P be the n Pe l l number . Show that P2 n+i + ?2n = 2 P n + i - 2 P n 
- ( - l ) n . n 

B-138 Proposed by Douglas L ind , Universi ty o f V i r g i n i a , Char lo t tesv i l l e , V a . 

Show that for any non-negat ive in teger k and any in teger n > ' 1 t he r e 

i s an n by n ma t r i x with in tegra l en t r i e s whose top row is F, , F k + o ' " ' " ». 

F, , and whose de terminant is 1. k+n 

B-139 Proposed b y V . E . Hoggatt , J r . , San Jose State Co l lege , San Jose, C a l i f . 

Show that the sequence 1, 1, 1, 1, 4? '4, 9, 99 25, 255 • • • defined by 
a 2n- i = a2n = F.jn i s complete even if an a. with j < 6 i s omitted but that the 

sequence i s not complete if an a. with j ^ 7 i s o m i t t e d 

B-140 Proposed by Douglas Undf Universi ty o f V i r g i n i a , Char lo t tesv i l le , V a . 

Show that F , > F F, if a and b a r e in t ege r s g r e a t e r than 1. 

185 
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B-141 Proposed by Charles R. Wall , University of Tennessee, Knoxville, Tenn. 

Show that no Fibonacci number F nor Lucas number L i s an even 
n n 

perfect number . 

SOLUTIONS 

ERRATUM 

A line was omitted in the pr int ing of the solution of B-95 in Vol. 5, No, 2, 

p, 204* The submitted solution follows: 

Solut ion by Charles W . Tr igg , San Diego, Ca l i f o rn i a . 

F o r n ^ 3, F, i s divis ible by 2 if k i s of the form 2 ~2° 3(1 +2m) , 

m = 0 , 1 , 2, ° • • . If k i s of the form 3(1 + 2m), F, i s divisible by 2 but by 

no h igher power of 2. Hence, the highest power of 2 that exactly divides F i F 2 F 3 

e o " F10o i s 

[(100 - 3)/6 + 1] + 3[(100 + 6 ) / l 2 ] + 4 [112 /24]+5[124 /48] + 6[148/96] + 7[196/192] 

o r 80. As usual , [ x ] indicates the l a r g e s t in teger in x. 

A PARTIAL SUM INEQUALITY 

B-118 Proposed by J . L. Brown, J r . , Pennsylvania State Univers i ty , State 
Co l l ege , Pennsylvania. 

Let F i = 1 = F 2 and F n + 2 = F n + l + F for n > 1. Show that for al l 
n > 1 that 

n 

( F k / 2 k ) < 2 . 

k=i 

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia, 

F r o m the s tandard generat ing function 

2 
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i v - 7 -̂7 
k=l 1 - x - x* 

which converges for |x| <2/(l+V5)., we find for x = £ that 

00 

k=i 

from which the result follows,, 

Also solved by E. M . C la rk , Lawrence D . G o u l d , John I v i e , C l i f f o rd J u h l k e , 

Bruce W . K i n g , Geof f rey Lee, Robert L. Mercer , F. D . Parker, C . B. A . Peck, 

J . Ramanna, A . C . Shannon, John Wessner, Dav id Z e i t l i n , and the proposer. 

A FIBONACCI TRAPEZOID 

B-119 Proposed by J im Woo lum, Clayton Va l l ey High School , Concord, C a l i f . 

What is the area of an equilateral trapezoid whose bases are F and 
F ,, and whose lateral side is F ? n+l n 

Solut ion by F. D. Parker, St . Lawrence Univers i ty , Canton, New Y o r k . 

The difference between the two bases is F , so that the base angles of 
the trapezoid are 77/3, and the altitude is F V3/20 Thus the area is given by 
V"3Fn(Fn+1 + F n _i ) /4 . This result can be simplified to V3F 2 n / 4 . 

Also solved by Herta T. Fre i tag, Lawrence D. G o u l d , J . A . H . Hunter, John 

I v i e , Bruce W . K i n g , Geof f rey Lee, Douglas L ind , John W . M i l som, C . B. A . 

Peck, A . C . Shannon, John Wessner, and the proposer. 
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A TRIANGULAR NUMBERS RELATION 

B-120 Proposed by Phil Maria, University of New Mexico, Albuquerque, N . Mex. 

Find a s imple function g such that g(n) i s an in teger when n i s an 

in teger and g(m + n) - g(m) - g(n) = mn. 

Solution by J . A . H. Hunter, Toronto, Canada. 

Taking sui table in tegra l va lues for m and n we find that : 

g(2) = 2g(l) + 1 g(3) = 3g(l) + 3 

g(4) = 4g(l) + 6 g(5) = 5g(l) + 10 

The sequence 1, 3S» 6, 10 sugges ts t r i angu la r n u m b e r s . Hence, taking 

g(l) = 1, we have: g(n) = n(n + l ) / 2 . But g(l) may be any posi t ive in teger , 

so we take the generak function: 

g(m) = m(m + 2k + l ) / 2 , k an in teger . 

Also solved by L. Carl i tz, E. M . Clarke, Douglas Lind, C. B. A . Peck, 
J . Ramanna, David Ze i t l in , and the proposer. 

A CONGRUENCE MODULO F d 

B-121 Proposed by PhilMana, University of New Mexico, Albuquerque, N . Mex. 

Let n, q, d and r be in tege r s with n > 0, d ^ 0, n = qd + r , and 

0 ^ r < d. P r o v e that 

F n = F d + 1 ) q F r (mod F d ) . 

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

Vinson [ "The Relation of the P e r i o d Modulo m to the Rank of Appari t ion 

of m in the Fibonacci Sequence," Fibonacci Quar te r ly , 1(1963), No. 2, 37-45] 

has shown that 
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q 
F = F n qd+r 

j=0 

Hence 

F = F ^ F = F** F (mod F , ) 
n d- i r d+i r d 

s ince 

r
d + i = Fd-i ( m o d V • 

Also solved by David L. Estrin and the proposer. 

ANALOG OF A MULTIPLE ANGLE FORMULA 

8-122 Proposed by A. J . Mont leaf, University of New Mexico, Albuquerque, N . M . 

Show that 

s i n [ ( 2 k + l ) 0 ] / s i n 0 = 2 cos[2k0] + 2 c o s [ 2 ( k - l )0] + 2 c o s [ 2 ( k - 2)0] +e »e + 

+ 2 cos [20] + 1 

and obtain the analogous formula for F/oT , ,x / F in t e r m s of Lucas numbers,, & (2k+i)m m 

Solution by Paul A . Anderson, University of Minnesota, Minneapolis, Minn. 

The s ta ted formula i s wel l known (see, for example, Taylor , Advanced 

Calculus , pc 729)9 The analogous formula for F,. , v / F is — . ? f & (2k+i)m ' m 

• ^ 2 = ( - l ) k m + ( » l ) ( k + l ) m L + ( - l ) ( k + 2 ) m L + . . . + ( - l ) 2 k m L 1 . F m 2m 4m 2km 

The proof i s by induction on k, F o r k = l s 
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F 3 m 3 m , 3 m • . • 
6 _ a - b _ 2m / , .m , ,2m _ J , . .m 

F — ~m m a ( a b ) + b = L2m + (-1) » "m a - b 

where 

1 + V5 . , 1 - V5 
a = —^ , b = —-

If 

F k 

(2k+i)m - (-1) 2LJ 2mi ' F 
m . , 

then 

+ , um F(2k+l)m (2t«)m + .(2fcf2)m+.. ^ m a ( 2 k + l ) m - b ( 2 k + l ) m 

L(2k+2)m + (-1} — F — = a + b + ( - 1 } I T — m 
m a - b 

a(2k+3)m , (2k+3)m+ m. (2k+2)m a ( 2 k + 2 ) m , m + ( ^m, (2k+i)m b(2k+i)niv 

m , m a - b 

a ( 2 k + 3 ) m _ b ( 2 k + 3 ) m _ F ( 2 k + 3 ) m 

m , m F 
a - b m 

Also solved by A . C. Shannon and the proposer. 

SQUARE SUM OF SUCCESSIVE SQUARES 

B-123 (From B-102, Proposed by G . L. Alexanderson, University of Santa Clara, 
Santa Clara, California) 

Show that all the positive integral solutions of x2 + (x ± l)2 = z2 are 

given by 

xn = (Pn+1)2 - (Pn)2 ; zn= (Pn+1)2 + (Pn)2; n = 1,2,-••; 
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where P n is the Pell number defined by P t = 1, P2 = 2, and P n + 2 = 2P n + 1 

+ P . n 

Solut ion by Phil Mana , Universi ty of New M e x i c o , A lbuquerque, New M e x i c o . 

Letting w = 2x ± 1 changes x2 + (x ± I)2 = z2 into w2 - 2z2 = - 1 . Let 
Z be the ring of the integers and let Z V2 be the ring consisting of the real 
numbers a = z + bV2 with a and b in Z* Let V consist of the positive 
real numbers a = a + bV2 of z[V2J such that a2 - 2b2 = - 1 , Then V can 
be shown to be a group under multiplication* Since V has no number between 
1 and 1 + y/2, it follows that V is the cyclic group generated by 1 + V 2 . 
The odd powers (1 + V2) ~ lead to a2 - 2b2 = - 1 . Therefore the positive 
integral solutions of w 2 - 2 z 2 = - l are obtained by equating "rational" and 
"irrational" parts of w + z V2 = (1 + V2)211"1, i. e0, 

wn = [ d + V S ) * 1 - 1 ^ ! - V2)2n"1]/25 zn = [(1 + VI)211-1 - (1 - V S ) * 1 - 1 ] ^ . 

The desired formulas then may be found using the analogue P = [(1 + V2) 
- (1 - V2)n] /2V2 of one of the Binet formulas. 

Also solved by A . C . Shannon and the proposer. 

• • • • • 
(Continued from p. 176) 

P3(x) = 32 - 13x - 99x2 - 32x3 + 9x4 + x5 

P4(x) = 243 + 1131x - 1952x2 - 1271x3 + 2 57x)+ + 3 2 x 5 

P5(x) = 3125 + 7768x - 15851x2 - 9752x3 + 1944x4 -t 243x5 

R(x) 

2: F* x n ~ k 
n + k 1 - 13x - 104x2 + 260x3 + 260x4 - 104x5 - 13x6 + x7 

k = 0 ,1 .2 ,3 ,4 ,5 ,6 
P0(x) = x(l - 12x - 53x2 + 53x3 + 12x4 - x5) 
Pi(x) = 1 - 12x - 53x2 + 53x3 + 12x4 - x5 

P2(x) = 1 + 51x - 207x2 - 248x3 + 103x4 + 13x5 - x6 

P3(x) - 64 - 103x - 508x2 - 157x3 + 117x4 + 12x5 - x6 

P4(x) = 729 + 6148x - 16,797x2 - 16,523x3 + 6,668x4 + 831x5 - 64x6 

P5(x) = 15,625 + 59,019x-206,063x2~182,872x3+76,644x4 + 9413x5 

- 72 9x6 

P6(x) = 262,144+lJ4185937x-452455372x2-3,985,856x3 + l,634,413x4 + 202J396x5 

- 15 625x^ 
(Continued on p. 166.) 



PASCAL'S TRIANGLE AND SOiE FAMOUS NUiBER SEQUENCES 

J . WLODARSKI 
Porz— Westhoven, Federal Republic of Germany 

The Fibonacci sequence has a well-known re la t ionship to ce r t a in diagon-

a l s of P a s c a l f s Tr iang le . 

Another in te res t ing re la t ionship exis t s between the double number s of 

Pasca l 1 s Tr iangle and each of two sequences well known in a tomic and nuc lea r 

physics , 

One of these two sequences r e p r e s e n t s the number s of e lec t rons (2, 8, 

18, 32, 503'a')9 and another — the n u m b e r s of nucleons (2, 8, 20,* •• and 

28, 50, 82, 126 , ' * •) in the occupied shel l s t r u c t u r e s of atoms~ and the i r n u c -

lei respect ive ly . 
The detai ls a r e shown in the following figure. 

eve ry adjacent pa i r 
of number s sums up 
to the number of 
e lec t rons in the o c -
cupied shel l of the 
a tom, e. g. , 2+6=8, 
6 + 12 = 18, e t c / 

l i t t le M magic ' ' 
nucleonic 
n u m b e r s 

2. (Fibonacci numbers ) 

•1 2-1 2*2 2-3 2*5 2»8 
ig "mag ic" nucleonic n u m -

b e r s (sums of two n u m b e r s on 
the 2 and 4 lines) 

126 

P a s c a l ' s Tr iangle (with double numbers) 

R e m a r k . The definition does not exclude: 0 + 2 = 2. 
• • * * • 
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BINDERS NOW AVAILABLE 

The F ibonacc i Associa t ion is making available a binder which 
can be used to take c a r e of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

11. . . • The binder is made of heavy weight v i rg in vinyl, 
e lec t ronica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high from the 
bottom of the backbone, round c o r n e r e d , fitted w i t h 
a 1 1/2 " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is d a r k 
g reen . There is a s m a l l pocket on the spine for holding a tab 
giving year and volume. These la t te r w i l l be supplied with each 
o rde r if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3.50 which includes postage ( r ang ing 
f rom 5Q£ to 80£ for one b inder ) . The tabs wil l be sent w i th the 
rece ip t or invoice. 

All o r d e r s should be sent to : Brother Alfred Brousseau , 
Managing Edi tor , St. M a r y ' s College, Calif. 94575 


