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GENERALIZED FIBONACCI SUMMATIONS

JEREMY C. POND
Tilgate, Crawley, Sussex, England

INTRODUCTION
The operator A is defined [1] wy:
Arf(r,a,b eee) = f(r,a,beee) - f(r-1,a,b-c")
and its inverse Er is defined by:
ArErf(r, a,beee) = f(r,a,bee")

In this article we will make use of these two operators, which are analo-
gous to the differential and integral operators, to establish several summations
involving generalized Fibonacci numbers,

First some elementary properties of Ar and Zr will be needed., In
deriving these and in subsequent work the subscripts to the operators may be
omitted if this causes no confusion,

PROPERTIES OF Ar AND Er

L. A(f(r) +g) = (@) +g) - Er-1) +gr-1))

(f(r) - f(r - 1)) + (g(r) - g(r - 1))

(0.1) A(f(r) +g(r)) = Af(r) + Ag(r)

2. A(f(r) - gr)) = f(r) - gr) - f(r-1) - gr - 1)

fr) - (g) -gr-1)) +gr -1 (f(r) -f(r-1))

I

0.2 (f(r) - g(r)) = f(r)Ag(r) + g(r - DAL(r)

If g(r) is a constant then Arg(r) = 0 and putting g(r) = C in (0.2) we

have:
97

(Received June 1965)



98 GENERALIZED FIBONACCI SUMMA TIONS [Apr.

(0.3) A Cf(r) = CAL(r) if 4.C =0

This covers not only the case when C is a constant but also when it is

any function independent of r,

(0.4) At = @)

This follows immediately from the definition of a, sinch both left- and
right-hand members simplify to f(n +p) - f{n +p - 1),

4, Next some properties of 3, - Suppose: Xf(r) = g(r). Thenfrom the def-
initions of A and X:

gr) - gr-1) = f(r)
Summing these equalities with r taking values from 1 ton
n
gm) - g(0) = 2 £(r)
r=i
i.e,,
n
(0.5) 3fm) = ) f(r) + C )

r=i

where AnC = 0 but otherwise C is arbitrary, The connection between the
and the summation of f(n) is equivalent to that between indefinite and def-

inite integrals. In particular:

n
(0.6) 2 f(r) = Sfm) - (Sfm))

r=1

n=g
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5, From (0,5)

n
3 fn+s) = ) fr+s) +C
r=i
n+s S n+s
= Yfr)+ C-3 fr) = ) fx)+C
r=1 r=1 r=1

If we ignore the constants:

3 im+s) = (580 g

(0.7)
6.  In the definition of 3 put Af(r) in place of f(r)
ASAL(r)) = A(f(r))
ie.,
3Af(r) = f(r) +C
If we now ignore the constants
(0.8) 2Af(r) = f(r)
7, In (0.1) replace f(r) by 2f(r) and g(r) by 2g(r)

A(SE(r) +3g(r) ) = AZf(r) + AZg(r)

SASE(r) +3g(r) ) = Z(AXE(r) + AZg(r) )

(0.9) 2 (f(r) +g(r) = Zi(r) + 2g(r)

99



100 GENERALIZED FIBONACCI SUMMATIONS [Apr.

8, From (0.2) replace g(r) by h(r) and rearranging:
f(r)Ah(r) = A(f(r) + h(r) ) - h(r - 1)Af(r)
Let h(r) = Sg(r)
f(r) . g(r) = A(f(r) - Zg(r)) - Zg(r - 1) - Af(r)

Thus:

(0.10) 2(f(x) - g(r)) = f(r)zg(r) - Z(2g(r - 1) - Af(r))

This last result, analogous to integration by parts, will be made use of
in deriving most of the results which follow,
If f(r) = C where ArC = 0 we can write (0.10) as:

(0.11) 2Cg(r) = CZg(r)
THE SUMMATIONS
The generalized Fibonacci numbers may be defined by:
(1.1) H =H + H
for all integers n, If Hy=0 and H; = 1 we get the Fibonacci sequence

which is denoted (Fp).
Two facts about the generalized sequence will be needed, They are:

-m = p-n° = - 2
(L2) H _H . -H =D where D = H_jH; - H2 [2]
and
(1.3) ' H, =F H +FH

n+r r-in r nt
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1. First a very simple (but useful) summation,

AH, = H, -H,_ =H_,
Thus:
(1.4) qEHn - Hn+2
2. Eaan+S
Note that
A = 2 - a1 = Pl -y
_ .n g -l
Eaan+S = aH . . a T (a DH oy
_ a -1 n+i
aan+s+z 2 z Htst
Now using:
n+ _ n-+
2a Horgr = Zaan+s A H g
2 4 -
a+ta-1 — n-i,
T Eaan+s = aan+S+2 -a (a 1)Hn+s+1
multiplying by a2
9 _ n _ i n+
(@ +a-1)za Hn+s a HnJrS +a Hn+s+1
If a2+a-1#0 i.e., a# (-1 +V5)/2
. _ a n+i
(1.5) Sa'H . = —2— ", +alH L )
at+a-1

k
3. Sn Hn+s

101

Before attempting this summation we will find the particular sums when

k=0,1,2,
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k=0: this comes straight from (1.4)

(1.6) 2He = Hpen
k=1: 2By = 0H e, ~ T g
(1.7 = Mgy T Hpesas
=21 InfH o= 0®H - 3@n-DH
= 0y T B P P H
(L.8) = @+2H , (@ -2mH

Results (1.6), (1.7) and (1.8) suggest that there is a general form:

(L9) SnH L = AH L i B s

where Ak’ Bk are polynomials in n [3]

To determine the form of these polynomials consider:

(1.10) zlaan+S = n*H - san)H

n+s+2 n+s-+i

Now

k k
Ak = oK S ) (1;) KT 3 -y <1;) k-t
r=i

r=0

(1.10) now becomes:

_ r (k) k-r
znan+s = nan+s+z+ Z 1) (r) n H st

< r (k
nan+s+z * Z 1) (r) Ay Hprgrs T By rfnisty)
r=1
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k

_ k r (k

B R Z (-1) (r) Bk-—r Hn+s+2
r=i

k
rfk
* Z(—l) (r) Ay + Bep) Hotsts
r=1

Compare this with (1.9) and we have:

k
_ .k r(k
A = o+ Z(_l) (r) By »
r=1

(1.11)

k
B = DD <1;) Brer * By
r=1

(1.,11) and Ay = 1; By = 0 give us a wayto find Ak’ Bk for any non-negative
integer k, Using (1.9) we then have the required sum, This is not a verycon-
venient formula to deal with as the values of Ak’ Bk given at the end of this
article clearly show.

4 2 Han+s

This form is chosen rather than one with n +u and n + v as subscripts

because we can obtain this sum by putting n +u in place of n and letting s =

V- u
Consider:
AHanJrs = HnH1c1+s-2 * nts-1 n-
@ put s=1
= 2 3 2 =
AHanﬂ Hn L€ 2Hn Han+1
(o) put s=0
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2 = i = H2
AHn H H i.e., ZHan 5 Hn +

n-2 n+i

Combining these last two together
= 2
(1.12) 3 Hm(AHn + BHn +3) AHan Ht BH +
Now
AHn + BHn+3 =(A+ B)H + 2BHn+1
so recalling (1.3) we can make (1.12) the required sum if

A+B = F,_ and 2B =F_ .,

Let
=1 = -1 = 1
B = 3Fg and A Foy ~2Fg ZFs—3
(1.12) becomes:
=1 2
(1.13) EHan+s 2 (Fs—anHnﬂ * Fanw‘*z)
5 2 Han+an+s
Let
h) = H H_  -H = D"
n-1 nti n
see (1.2)
3 =
n-i an+1 Hn h(n)Hn

Now
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from (1.5)
Thus:

+ _ 3 = _ n
(1.14) EHn—iﬂanﬂ ZHn D(-1) Hn_1

We can sum H% by parts:

3 = . -
an Hn Han+1 2Hn—zﬂn—iHn
Rearranging:
3 = 2 = 2
(L15) 3IH HH 30 = BN +H HH o= HH
From (1.14) and (1.15) we have:
=1 2 -
(1.16) EHn_iHan+1 2<Han+1 + D(-1) Hn—i)
and:
3 =1 2~ pr-n2
EHn ﬁ(Hanﬂ D(-1) Hn—i)
We now have two particular cases of the summation required, If we had
2
ZHan +
as well as
sH
n

then by using the method of Section 4, we could generate E.H%Hn +r

2 = . - o
EHanH Hn+1 Han+1 2"Iqu--iﬂn Hn—

1

Han+1 2Han-H Han+1
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Thus:

12 = 1¢
(1.17) SHZH o= JHH H

Combining this with H; as promised:

2 = 1(F 2 -
(L.18)  ZH2H , = }(F,_(HH  -D(-1) H )+ FHH H )

To complete the generalization we require, in addition to the result just

derived,
2 Han-l-iHn+r
Now:
1 = 4 K
HnH]nrHHnﬂLr Hanﬂ(Fr-iHn Fan+1)
= F 2 2
Fr—iﬂanﬂ * FanHn+1

Using (1.18)

(1,19) SHH  H

7 = 1
nonH e 7F M H e H

r-1 n ntin2

b N 2 - -
+§F, @2, H o -DEDH)

All that remains now is to combine (1.18) and (1.19) in the same sort of

way.
= T 2 _pe-n™
zanHn+an+s Fs—lFr-i(Hanﬂ DED Hn—1)+Fs—1FanHn+1Hn+z
. . 2 - Do~
(1.20) TR HH  H o CFF ELH L - D 1)an)

Concentrating for the moment on the last term; this is:

2 _ - h - = H 2 + - n
FsFr(Hn+1Hn+2 DED) (Hn+1 Hn—i)) Fsrr(HnﬂHnﬂ D=1) Hn-i

— 2
* Hn+1(Han+‘z H‘n+1))

Substituting this in (1.20) we have:
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2SHH  H . = (FF -F _TF )D(—l)an_

n ntr n+s s-1"r-1 1

+ + 2
(Fs—iFr-l FsFr )Han+1

+ +
(FsFr FsFr--1 * FS~1Fr)Han+1Hn+2

and this simplifies down to:

eXH H  H  =(FF -F

DH )D(—l)an_ +H H H

F
s=1"1r=-1 1 s+r+n+1 n ntg

(1.21)
PUTTING IN THE LIMITS

We end by quoting the generalized summations with limits from 1 to n.

n
T _ a n+i _ n _
(2.1) Za Heps = 9 @ (Mg~ Hg) FarMy o ~Hgyy))
at+a-1
r=1
provided a?+a -1 # 0,
n
(2.2) Z I'kHr+s = AmH i T B g~ A0 g, = B O,
r=1
where Ak(n), Bk(n) can be generated from (1,11),
n
=1 - 2 -2
(2.3) HrHr+S ’Z(Fs—s(Hanﬂ Hoty) + FS(Hnﬂ H2))
r=1
n
= l — H — —_
(2.4) ZHrHr+SHr+t 2 (D(FsFt Fs—iFt—i)« 1)an—1 H—i)
r=i
* HgpinTntny — HaagrgHote)
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THE POLYNOMIALS A AND B

Let
X, m) = a; +amn Feee +anP +een +anq.
k P o

The table below gives the coefficients ap of the polynomials Ak’ Bk .

Xk(n) a ay a9 ag ay as
A, 0 0 0 0 0
B, 0 0 0 0 0 0
Ay 0 1 0 0 0 0
B, -1 0 0 0 0 0
A, 2 0 1 0 0 0
B, 3 -2 0 0 0 0
A -12 6 0 1 0 0
Bs -19 9 -3 0 0 0
Ay 98 -48 12 0 1 0
By 129 -76 18 -4 0 0
Aj -870 490 -120 20 0 1
B; -1501 795 -190 30 -9 0

REFERENCES

1. For a different symbolism and slightly different definition see "Finite Dif-
ference Equations,' Levy and Lessman, Pitman, London, 1959,

2, Solution to H-17, Erbacher and Fuchs, Fibonacci Quarterly, Vol, 2 (1964),
No. 1, p. 51.

3. Solution to B-29, Parker, Fibonacci Quarterly, Vol, 2 (1964), No., 2,
p. 160,
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PERIODICITY AND DENSITY OF MODIFIED FIBONACCI SEQUENCES

L. R. SHENTON
University of Georgia, Athens, Georgia

1. INTRODUCTION

Periodicity of the last digit (or last two digits and so on) in a Fibonacci
sequence has been discussed by Geller [ 1 ], use being made of a digital com-
puter, and solved theoretically by Jarden [2] We may regard this as a per-
iodic property of the right-mostsignificant digit(s), There is a similar property
for truncated Fibonacci sequences, the truncation being carried out prior to
addition and on the right. Although this seems tobe a somewhat artificial pro-
cedure it is the arithmetic involved on digital computers working in ''floating
point. "' The periodic property was noted by chance during a study of error
propagation,

We generate a modified Fibonacci sequence from the recurrence
(1) u = u +u m=2,3,"°")

where for the moment u; and u; are arbitrary, but we retain only a certain
number of left-most significant digits, To be more specific we work in an x-

digit field (x = 1,2,.++) so that members of the sequence take the form

= ] cee TN
(2) u nyneng <

where n; = 0,1y°¢+,9 (G = 1,2,°*°,x), In the addition of two such numbers

nyhg * e, nX+N1N2""NX

the sum is the ordinary arithmetic sum provided there is no overflow on the

left; if there is an overflow then the sum is taken to be the first x digitsfrom
the left, the last digit on the right being discarded, In other words we are
merelydescribing ""floating point' arithmetic in frequent usage (to somebaseor
other) on digital machines, For example, denoting the exponent by the symbol

E,
(Recelved August 1966) 109
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1-digit field 4EO+5EO =9 EO
6 EO+7EO = 1E1

2-digit field 17 EO + 82 EO
99 EO + 9 EO

99 EO
10 E1 .

Care is needed when the numbers being added do not belong to the same digit
field, Thus

6EO+1E1=1E1
74 EO + 14 E1 = 21 E1

and so on, We confine our attention in this note to arithmetic to base ten and
discuss some interesting and challenging properties of Fibonacci sequences in
floating point arithmetic which have come to light after extensive work on an
IBM 1620 computer.,

2, CYCLE DETECTION AND PERIODIC PROPERTIES

One digit field
Take any two one-digit non-negative numbers (not both zero) and set up
the modified Fibonacci sequence; then sooner or later the sequence invariably

leads into the cyclic six-member set

(3) 1, 1, 2, 3, 5, 8 .

For examples we have

(a) 3 EO, 6 EO, 9EO, 1E1,1E1, 2E1, 3E1, 5E1, 8E1,

() 4EO,1EO, 5 EO, 6 EO, 1E1, 1E1, 2E1, 3El, 5E1, 8 El,
(c) 1 EO, 0 EO, 1 EO, 1 EO, 2 EO, 3 EO, 5 EO, 8 EO, 1 E1.

It is convenient to drop the E-field symbol and indicate a change of E-field by

a star, Thus (a) - (¢) become
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(A) 3’ 6, 9’ 1*’ 1! 2’ 3’ 5} 8 ;

(B) 4’ 19 59 6’ 1*’ 1’ 2, 3, 5, 8;

(©) 1, 0, 1, 1, 2, 3, 5 8 1%;

where a change of field applies to all members of the sequence following a
starred member. A proof of this cyclic property depends on two facts: first
a Fibonacci sequence (modified or not) is determined if any two consecutive
members are given, and second in view of the non-decreasing nature of the
sequences, 1* must occur with a non-zero predecessor thus leading into the
cycle (if it occurred with a zero predecessor the cycle would already be

established).

Two-digit field

For this there is the invariant 34-term cycle

10,
29,
89,

16,
47,
14*,

26,
76,
22,

42,
12%,
36,

68,
19,
58,

11*,
31,
94,

17,
50,
15%,

28, 45, 173,
81, 13*, 21,
24, 39, 63 .

11*,
34,

18,
55,

Reading by columns, a few examples are

37 45 74 02 04 91 18 56 77 99
21 64 00 91 04 19 16 93 34 50
58 10* 74 93 08 11* 34 14* 11* 14~
79 16 74 18 12 12 50 23 14 19
13* 14* 27 20 23 8 37 25 33
20 21 45 32 35 13 60 39 52
33 35 72 52 58 21 97 64 85
53 56 11 84 93 15*  10* 13*
86 91 18  13* 15% 24 16 21
13* 14* 21 24
21 23

37

60

97

15*

24
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sequences being terminated as soon as the cycle is joined,

x-digit field
Fields of length up to ten havebeen partially investigated with the follow-

ing results:

Digit Field Cycle Length
X L(x)
1 6
2 34
3 139
4 67
5 3652
6 7455
7 79287
8 121567
9 1141412
10 4193114

Of course a completely exhaustive search for cycles is more or less out of the
question; our search has involved some fifty or more cases with the four-digit
field decreasing to less than five for the nine- and ten-digit fields, To say the
least, the search in the fields of eight or more digits has been scanty; with this
reservation in mind we remark that for the cycles so far found only the four-
digit fieldyields different members inthe 67-member cycle; in this case, there
appear to be eight different cycles.

In passing we note that a modified Fibonacci sequence in an x-digit field
must eventually repeat with cycle length less than 102X. For the sequence is
determined by two consecutive members, and 10 is the number of different
ordered pairs of x-digit numbers on base ten, Interest in the periodicity is
heightened by the reduction in the observed cycle length as compared to the
possible cycle length,

To identify the cycles the least number u, and its successor u for

n+i
the various fields x are as follows:

x 1 2 3 4 4 4 4 4 4 4 4
u 1 10 104 1004 1006 1010 1012 1015 1019 1026 1029
u 1 16 168 1625 1627 1634 1637 1642 1649 1660 1665
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X 5 6 7 8 9 10
u, 10002 103670 1616568 16167257 161803186 1618033864
oy 16184 167741 2615662 26159171 261803054 2618033786

With these values the complete cycles can be generated without introducing
alien members, It will be observed that the ratio Uy / u is near to its ex-
pected value (1 +V/5)/2 = 1.6180339885 andincreasingly so as the field length

increases, In fact for the last six fields the ratio is as follows:

X 5 6 7 8 9 10

un+1/uh.1'618076 1.618028 1.6180340 1.61803397 1.618033985 1.6180339887

Cycle Detection

Since members of a cycle beginning with a nine are farless common than
for other leading digits, as we shall illustrate in the sequel, cycles are easiest
to detect if a search is made for its largest members. Thus if we list the
members beginning with nine and their successors, all wehave to do is to gen-
erate a sequence until a matching pair appears. Cycle lengths are then readily
picked up by sorting into order of magnitude the output of largest members at

any given stage. The largest members in the various cycles we have foundare

Field Length Largest Member
8

94

958

9705, 9765, 9854, 9917
99810

999916

9999866

99998612

999998685

10 9999999229

W N

© o 9 o »
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3. FRACTION OF CYCLE WITH SPECIFIED LEADING DIGIT

An examination of the two-digit field cycle shows that 11 members have
leading digit unity whereas only one member has leading digit nine, Is there
an indication here of a general property? With this in mind an analysis of all
the cycles available is given in Table 1.

Table 1 :
Fraction of Members of a Cycle with Stated Leading Digit for Different Fields

x = field length y = leading digit entry = correspounding fraction

v 1 2 3 7 5 6 7 8 9
.33333 |.16667 |.16667 |.00000 |.16667 | .00000 |.00000 |.16667 |.00000

.32353 |,17647|,11765|,08824 {,08824 | ,05882 | ,05882 |,05882 |.,02941
.30216 |, 17266 |,12950 |.09353 |.07914 | ,07194 | .05036 | ,05755 |.,04317
.29851(.17910 |.13433 |,08955 |.07463 | .07463 |.05970 |,04478 | .04478
.31343 |.16418|,13433 {,08955 [.08955 | .05970 | .05970 |,04478 |,04478
.29851 |, 17910 (.11940 |,10448 |.07463 | .05970 |.05970 | .05970 |,04478
.29851 ,17910 |.11940 {.08955 |.08955 | ,05970 |,05970 | ,05870 |.04478
.29851 |,17910|.11940 |,10448|,07463 | ,07463 | .05970 | ,04478 |,04478
29851 |,17910 | ,11940 | ,10448 |, 07463 | .07463 | .05970 |,04478 |,04478
.298511,17910.13433,08955|.,07463 | ,07463 |.05970 | .04478 |,04478
.29851(,17910 |,11940 {,10448 {.07463 | .07463 |.04478 | ,056970 |.04478
.30121,17607|,12486,09693 |.,07914 | .06709 | ,05805 | ,05093 .04573
.30101 |, 17612,124883|,09698{,07914 | ,06694 |.05795 | 05124 |,04574
.30103 |, 17608 |,12494 |,09691 |,07918 | .06695 |,05799 | ,05116 |,04576
.30104 |,17609|.12494 | ,09691 |,07918 | ,06694 {.05799 |,05116 |,04575
.30103 ],17609,12494 1,09691 |,07918 | ,06695 {.05799 },05115 |,04576

N R R S I T T - O U R Oy &)

This tabie of fractional occurrences is of considerable interest, Noticethat as
the field size increases the fractional values become smoother for a given value
of x. Moreover the fractions become closer to logyy + 1) - logyy as x in-

creases, In fact we have
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y logyy (y + 1)/y

.301030
.176091
.124939
.096910
.079181
.066947
.057992
.051153
.045758

© o a1 O G B W P

For the nine-digit field the fractional values agree with those of the logarith-
mic difference to six decimal places excepting the two values for y = 8,09,
for which there is a discrepancy of one in the last decimal place.

It is interesting to recall that certain distributions of random numbers
follow the "abnormal" logarithmic law. For example, it has been observed
that there are more physical constants with low order first significant digits
than high, and that logarithmic tables show more thumbing for the first few
pages than the last, The interested reader in this aspect of the subject may
care to refer to a paper by Roger S, Pinkham [8] . Pinkham remarks that the
only distribution for first significant digits which is invariant under a scale
change is logyy(y + 1). Following up the idea of the effect of a scale change we
have taken each field cycle and multiplied the members by k = 1,2,-..,9 and
compared the fractional occurrence of members with a given leading digit, A
comparison over the k's for a particular field shows remarkable stability,
The results of a field of five are given in Table 2, Results for larger fields

show about the same stability.

5, CONCLUDING REMARKS

A number of interesting questions suggest themselves as follows:

(a) Is there an analytical tool which could be used to formulate the mod-
ified Fibonacci series for a specified field length? Perhaps one of
the difficulties here, as pointed out by a referee, is the "one-way"

nature of the sequences generated,
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Table 2

Density of Members of Cycle According to Leading Digit
For Scaled-Up Field of Five

Scale Factor k Leading Digit y X =5
1 2 3 4 5 6 7 8 9

=1| .30093|.17606 |.12486|.09693 | .07913 | .06709 | .05778 | .05148 |.04573
.30120.17606].12486 {09693 | .07913 | .06709 | .05778 | ,05148 |.04545
.30093.17634].12486(.09693 | .07913 | .06681 | .05805 | ,05120 |.04573
.30093.17606 | . 12513 .09693 | .07913 | .06709 | .05778 | ,05120 |.04573
.30093(.17606.12486 (.09721 | ,07941 | .06681 | .05805 | .05093 | ,04573
.30093(.17606|.12486|,09721 | .07913 | .06709 | .05778 | ,05120 | .04573
.30093(.17606.12486 [ .09666 | ,07941 [ .06709 | .05805 | .05120 | .04573
.30093|,17606|.12486|.09693 | .07913 | .06681 | .05832 | .05120 | .04573
.30120.17579].12513|.09666 | .07913 | .06681 | .05805 | .05148 | .04573

© 00w N o U1 o~ W N

(b) Have all the periods been found for fields of length up to x = 10?
Are the period lengths the same for a given field length andare there
cases similar to x = 4 in which there are several periods of the
same length?

(c) Is there an asymptotic value for 1(x), the cycle length, when x is
large?

(d) Is the fact that the density of occurrence of sequence members, with
a specified leading digit, follows the so-called logarithmic law, when

x is not small, trivial or significant?
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ON A CERTAIN INTEGER ASSOCIATED WITH A GENERALIZED FIBONACCI SEQUENCE
T. W. CUSICK*
University of Illinois, Urbana, Illincis; Churchill College, Cambridge, England

1. INTRODUCTION

A generalized Fibonacci sequence maybe defined by specifyingtwo rela-

tively prime integers and applying the formula

D Y T PVpog T Vp e
where p is a fixed positive integer (p = 1 gives a Fibonacci sequence).

If y, is the smallest non-negative term determined by (1), then y; =
(p + 1)y, with strict inequality for y, = 1 except in the case y; = y; = 1. In
order to avoid trivial exceptions to various statements below, we assume with
no real loss of generality that y; = y, = 0 in all that follows.

It has been shown in [1] that the Fibonacci sequences can be ordered
using the quantity v - yoy1 - y%. Similarly, the generalized Fibonacci sequences

defined in (1) may be ordered using the quantity D defined by
2 2
D = yi- pyoyt1 - Yo -

It may be of interest to determine for given p the possible values of D
and how many generalized Fibonacci sequences can be associated with a given
value of D.

We solve completely the cases p = 1, 2 which, as will be seen, are
essentially simpler than the cases p = 3. Our proofs make use of the classi-

cal theory of binary quadratic forms of positive discriminant.
d =pl+r.

A good treatment of this subject is found in [2], which we refer to frequently

as a source of the proofs of well-known results.

*Research Student
(Receilved December 1965)
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Let Sp be the set of positive integers D such that the congruence
n’ = d mod 4D

has solutions for n. We prove the following:

Theorem 1. For p = 1,2, Sp is the set of possible values of the integer
D = y% - PYoy1 - y% associated withthe generalized Fibonacci sequence defined
by (1).

Theorem 2. For p = 1,2, let r be the number of distinct odd primes
dividing 4D/(d,4D). Then except for the trivial case p = D = 2 there are
21“+1--p distinct pairs y;,y; such that D = y% - PYoVi - y% and yy, y4 generate
a generalized Fibonacci sequence defined by (1), i.e., there are 2r+1—p dis-
tinct sequences associated with the given value of D.

The case p = 1 of Theorem 1 has been previously proved in [3].
2. REMARKS FOR THE CASE OF GENERAL p

Our problem is to determine all positive integers D which are properly

represented (i. e. , are represented with x and y relatively prime) by the form
Q = xX-pxy-y?

with the restriction that

(2) x= p+ly= 0

We denote the quadratic form ax®+bxy +cy*? by (a,b,c). We say the
ordered pair (x,y) = (@7¥) is a proper representation of m by (a,b,c) if
a and Y are relatively prime and ac? +bay +c¥? = m,

Lemma 1. Let (o,Y) be a proper representation of the positive integer
D by the integral form (a,b,c) of discriminant d, Then there exist unique

integers B, 8,n satisfying

ad -BY =1
(3) 0=n < 2D
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4) n® = d mod 4D
and such that the transformation

(5) x = ax' + By!

y = Yxt + ayl

replaces (a,b,c) by the equivalent form (D,n,k) in which k is determined
by

n% - 4Dk = d

Proof, This is a classical result ([2, p. 74, Th, 58]).

Corollary. @ properly represents a positive integer D only if D be-
longs to the set Sp .

Following [2, p, 74] we call a root n of (4) which satisfies (3) a mini-
mum root, Since n is a root of (4) if and only if n + 2D is also a root, the
number of minimum roots is half the total number of roots. By Lemma 1, a
proper representation of D by a form (a,b,c) is associated with a unique
minimum root of (4).

Lemma 2, Every automorph (5) of the integral form (a,b,c) of dis-

criminant d, where a,b,c have no common divisor 1, has

(6) a = 3 - bv) B = -cv Y = av 8= tu+nwv),
where u and v are integral solutions of

7) w - dv? = 4,

Conversely, if u and v are integral solutions of (7), the numbers (6)
are integers and define an automorph,

Proof, This is a classical result ([2, p, 112, Th. 87]).

Lemma 3, For given D in Sp, there is associated with a given mini-
mum root n of (4) at most one proper representation of D by (1,-p,-1),

which satisfies (2),
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Proof. Let (a,y) be a proper representation of D by (1,-p,-1) sat—
isfying (2) and associated with the minimum root n of (4). For the given D
and n, it is clear that any proper representation (@',y') of D by (1,-p,-1)

is the first column of a matrix

1 1
SN R
y o Ly &
where A is the matrix of some automorph of (1, -p,-1). Thus it is enough
to show that (@', ¥') does not satisfy (2) unless A is the identity matrix.
Since the smallest positive solution of the equation (7) is obviously (u, v)

= (p%+2,p), it follows from Lemma 2 that every automorph of (1,-p,-1) is

of the form

' m

j
A = pE+1 p -1 0 j=1or 2
p 1] o -1] m = 0,%1,%2,---

We need only consider non-negative m, because for negative m (o',

Y) clearly has components of opposite sign. Obviously (', Y') does not
satisfy (2) for j =1 and any m = 0. For j=2, m =0, @,7Y") = (@7)
satisfies (2) by hypothesis; but this is false for j = 2, m = 1 because

P+ Dipa +7v) = (@ + Do + py.

Then by induction (¢',Y') does not satisfy (2) for j =2 and any m= 1.

This proves the lemma.
3. CASE p =1 OF THEOREM 1

Lemma 4. S; is made up of

1. The integers 1 and 5

2. all primes =1 or 9 mod 10

3. all products of the above integers #0 mod 25.

Proof. By definition, S; is the set of positive integers D such that

the congruence
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(8) n? = 5 mod 4D

has solutions for n, Thus we must have D # 0 mod 25 and D odd, since

§-

So it is enough to show that (8) is soluble for odd prime D if and only if D =
5 or D=1 or 9 mod 10,
By the definition of the Legendre symbol, (8) is soluble for odd prime D

(e

But then by quadratic reciprocity and the fact that D is odd
5\ _ (D :{1ifD510r4mod5
D 5 -1 if D = 20r 3 mod 5

which implies the desired result,

if and only if

Lemma 5. If D belongs to S, then (1, -1, -1) properly represents
D, Further, associated with each minimum root of (8) there is at least one
proper representation satisfying (2) with p = 1,

Proof, We consider each of the minimum roots of (8). Let (a,y) bea
proper representation of D by (1,-1,-1) associated with a given minimum
root n,

We may suppose a >0, 7y >0, For if <0, y< 0, we consider
(-a, =y). If one and only one of a,y is negative we may suppose it is a.
Then we apply the automorph

©) = 2x+ty

X!
y'=x+y
of (1,-1,-1) successively to (a,7y), getting the sequence

@sy), Ca+7Y, a+¥), <=+, (Hm+2 HmYs Hrm® + fhm-1¥)s ***
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th

where fi is the i~ member of the Fibonaceci sequence 1,1,2,3,5,°-, If

for some m we have
(10) fym lal >y 7
then

(-fm+12 - HmY s ~fom® - Hm-17)

is a proper representation with both members positive, as desired. But (10)

must be true for some m because vy = kla| for some rational k > 0 and
a - ay -¥2 >0
implies
k < (1+V5)/2 ;

whereas from the continued fraction expansion of (1 +1/5)/2 we have

fom < 1+V5

< eee <
fom—1 2

=t
A

pojeo
A

[$1] e ]

and

lim fom 1 +\5

m~—>o00 oy 2

Given a proper representation (a,y) with both members positive, we

apply the inverse of the transformation (9) successively, getting the sequence

(s 7)s (=Y, -+ 2Y), -,

(fom-1% = LY, -m@® + fyY)s oo
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Since the successive first members make up a decreasing sequence of positive

integers so long as the corresponding second members are positive, we must

reach an m such that

f2m+1‘)’ > f2ma and f2m+3’)’ < f2m+2a o

Then

(fom+1a = Hmy s -Tm® + fHym7)

is a proper representation satisfying (2) with p = 1.
All transformations used above of course have determinant 1, so that
the minimum root n associated with the originally given proper representa-

tion is not changed.

4, CASE p = 2 OF THEOREM 1

Lemma 6, S, is made up of

1, the integers 1 and 2

2, all primes =1 or 7 mod 8

3, all products of the above integers #0 mod 4,

Proof, By definition, S, is the set ofpositive integers D suchthat the

congruence
(11) n? = 8 mod 4D

has solutions for n, Thus we must have D # 0 mod 4, Then the result fol-

lows from the fact that for odd prime D

2\ _ {1 if D = 1or 7mod 8
D -1 if D=3 or 5 mod 8

Lemma 7, If D belongs to S,, then (1,-2,-1) properly represents D,
Further, associated with exactly half of the total number of minimum roots of

(11) there is at least one proper representation satisfying (2) with p = 2,



124 ON A CERTAIN INTEGER ASSOCIATED [Apr.

Proof, We consider each of the minimum roots of (11). Let (a,?y) be
a proper representation of D by (1,-2,-1) associated with a given minimum
root n,

We argue as in Lemma 5 that we may suppose a< 0, Y < 0, For if

a < 0, Y<O0 weconsider (-a,-7Y). If one and only one of a,Y is negative,

we may suppose it is a., Then we apply the automorph

X'

yl

5x + 2y
C2x +y

o

(12)

of (1,-2,-1) successively to (a,7y), getting the sequence

(@sY), (B + 2Y, 2a +7Y), se-,

(Bam+2 * Zam?Ys Bam® T Sam-1Y)s *°°

th

where g is the i member of the generalized Fibonacci sequence 1, 2,5,

12,29,+++ , If for some m we have

(13) gom lal > Zom-1Y »

then

(-8om+12* =~ €2m?Y> —Lome -~ Lam-1Y)

is a proper representation with both members positive, But as in the proof
of Lemma 5 a consideration of the continued fraction for 1+ V2 shows that
(13) must be true for some m,

Given a proper representation (a,?Y) with both members positive, we
apply the inverse of the transformation (12) successively, getting the sequence

(ayY)y (=27, -2a +5Y), **°, (Zam-1@ ~ Zam?Ys ~Bam® * g2m+17),,' °°

Since the successive first members make up a decreasing sequence of
positive integers so long as the corresponding second members are positive,
we must reach an m such that

Sam+1Y > Smm0@ and Zym+gY < Cam+2® .
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Then

(cgs Y0)=(82m-12 - C2mY > ~8am® * Bam+1Y)

satisfies
ay > (5/2)v, ,
and exactly one of (ag, vy and
(1, ¥) = (Seg = 1279, 209 - 57
srtisfies (2) with p = 2,
The transformation which takes (ag, ¥g) to (a3, y;) has determinant -1

and (ag, Yg)s (@, ¥4) are associated with different minimum roots of (11), Thus

the last statement of the lemma is easily verified,

5, PROOF OF THEOREM 2

Lemma 8, Let (c,m) = 1, Then
x = ¢ modm

has 2r+w roots if it has any roots, where r is the number of distinct odd

primes dividing m and w is given by

0 if 4 does not divide m
w = {1 if 4 but not 8 divides m
2 if 8 divides m ,

Proof, This is a well-known result ([2, p. 75, Th. 60]).

For p = 1,2, let r be the number of distinct odd primes dividing
'~ 4D/(d, 4D). It is easy to verify using Lemma 8§ that the congruences (8) and
(11) have 2r+1 roots, Then Theorem 2 follows from Lemmas 3, 5, and 7,
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We comment briefly on the reasons for confining detailed discussioh
above to the cases p = 1,2,

Let h(d) bethe number of distinct non-equivalent reduced forms of dis-
criminant d, We can make little progress if h(d) > 1, because for such d
the problem of determining all positive integers properly represented by
(1, -p, =1) even without the restriction (2) is unsolved, We remark that h(d) =
1 for p=1,2,3,5,7, but hid) = 2 for p = 4,6.

However, it is notenough simply to confine ourselves to the study of those
p for which h(d) = 1, We have seen that for p = 1,2 the converse of Lem-
ma 1 Corollary is true and for any properly representable D a proper rep-
resentable D a proper representation satisfying (2) can be found, However,
for p >3 there exist integers D which are properly represented by (1,
-p, -1) but which have no proper representation satisfying (2), and it is not

simple to describe the subset of Sp composed of such integers,
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ON Q-FIBONACCI POLYNOMIALS

SELMO TAUBER
Portland State College, Portland, Oregon

INTRODUCTION

Throughout this paper we shall use the following notations

by by by,
o) by by b,

z: Z: E:zz(’sia’s2a"”na
1 2 n

S{Fay  SyTap Sn=an

Let Fp, Fy, Fy, =, F , - be the sequence of Fibonacei numbers,
i.e,0,1, 1, 2, 3, 5, 8, **+ ., According to[1] we define mn, m, k = 0,

n n

®  QE1,-F,n) = n(xkn) = [ 1-xF )= ¥, Ak, n,8)x° ,

m=1 $=0
(2) nx,k,00 = 1 ,

n
3) < = E B(k, 1, m)n (x,k, m)

m=9
(4) 1 = BKk,0,0m(xk,0) ,
(5) Ak,n,s), Bk,n,m) = 0 for n<m, n<0, m<o0,

The A and B numbers are quasi-orthogonal, (For a set of comprehensive

definitions of orthogonality and quasi-orthogonality cf, [3] .) Thus

(Received February 1967) Lo
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n

(© D Benoamsm = 8
(

s=m
where 611:1 is the Kronecker Delta,
Still according to [1] the A and B numbers satisfy the difference
equations
) Ak,n,m) = Ak,n - 1, m) - Fn+kA(k,n -1,m-1)
-1 -1
(8) B(k:n: m) = (Fm+1+k) B(kﬁn -1, m) - (Fm+k) B(k’n -1, m - 1) ’

where the error in Egs, (10) and (12) of [1] has been corrected,

2. BASIC RELATIONS

According to the preceding definitions we can write

n p n
nx,k,n = II (1- XFk+m) = I (1- ka+m) m a- XFk+m)
m=1 m=1 m=p+1

h
= Nx, k, p) 11 a- XFk+m) .
m=p+i

In the last product we take m -p = s, m = s +p, so that for m = p

+1, s =1, andfor m =n, s =n - p, thus

n n-p
n q-zr_, )=1 @-xF ) = 7%,k +p,n-p),
m=p+1 ktm® o ktps

9) nx,k,n) = nxkpnxk+p, n-p ,



1968] ON Q-FIBONACCI POLYNOMIALS 129

or,
(10) Nxk,n+p) = nxk,pmx,k +p,n) .

By substitution into (10) of the polynomial form for the 7n's we obtain

n p n
E : m _ 2 : s 2 : t
(11) Ak,n +p,mx = Ak, p, 8)x Ak +p,n,tx |,
m=0 s=0 t=0

so that equating the coefficients of same powers of x wehave with s +t = m,

m

(12) A(k,n +p,m) = 2 Ak, p,s)A(k + p,n, m - s)

“S=0

which is a convolution formula for the A numbers, Also

n p
& = E Bk,n,m)n(x,k,m) , x =Y Bk +p,p,s)nxk+p,s),

m=0 S=0

hence,

n+p
Ly Z B(k,n + p, )n(x, k, 1)

t=e

n P
D "B n, myns, k, m) > B+ pp, 905k + 1)

m=0 S=0

= (Z(Z)’ m

n

0> S

E)B(k, n, m)B(k + p, p, s)n(x, k, m)n(x,k + p, s) .
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By comparing the coefficients of n(x,k,t) and using (10) with m+s =t we
obtain

t

(13) Bk,n +p,t) = E Bk,n, m)Bk +p,p,t -m) ,

m=0
which is a convolution formula for the B numbers.

3. LAH TYPE RELATIONS

According to [2] we have for k # h

n
(14) E Ak, n,s)Bt,s,m) = L(,h,n, m)
s=m
n
(15) E A(,n,s)Bk,s,m) = L(h,k,n, m)
s=m
n
(16) (X, j,n) = E n(x, i, mL{j,i,n,m) ,
m=0

where k,h = i,j, with i # j. Again according to [2] there is a quasi-
orthogonality relation between the Lah numbers:

n

(17) ZL(i,j,n, S)LG,1,8,m) = 8"

S=m
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Still according to [ 2] the recurrence relation for Lah numbers is

(18) Lajonm) = [1- @, /Fyn) 0 - 1,m)

+ (Fj+n/Fi+m)L(i,j,n -1,m-1) .

4, GENERALIZATION TO THREE VARIABLES

Although we could generalize to p variables we prefer to limit ourselves
to p = 3 for the sake of simplicity, Let

. n
NX,y,2; k,h,jsmn) = 13- ka+m - th+m - sz+m)
m=1
(19) = <Z(3),r|g , SIB1 N tlg)A(k,h,j;n,n,n;r, S, 1)-
-xryszt, r+s+t=<n,
(20) ‘ n(x,y, 2 k,h,js 0) = 1.

To find an inversion formula for (19) we use (3), i.e.,

r

x* Z Bk, r, m)n(x, k, m)

m=0

]

s E B(h,s,p)’?(y,hsp)‘

p=0

B
I

t

2t :ZB(j,t,q)n(z,j,q) s

q=0

so that
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t .
x%%t=<2@%mw,pﬁ,q%)ﬂhnmmm»mmmuw-

(X, k, m)n(y, h, p)n(z,J, Q)

(21)
3 t .
= ( > ),mlg, plz > g lo )B(k,h,J; r, s, m,p,q)-
n(x, kK, m)n(y, h, p)n(z,j,ad) »
where
(22)

B(k,h,j; r,s,t; m,p,q) = Bk, r, m)B(h,s,p)B(,t, q).

5, QUASI-ORTHOGONALITY RELATIONS

If in the second form of (21) we substitute according to (1) we obtain

m
x"y%2t = (Z(g). mlg, plg ’ qlf) )B(k:h,j; r, s, t; m,p, q) E Ak, m,a)x" -
a=0
P q
b . c
A(h, p, b)y AG,q,0)z" ,
=0 c=0

=<Z(6’)m|3, plg - al5 - 2y b|g,‘c|g>B(k,h,j;r,s,t;m,p,q)

Ak, m, 2)Ah, Py D)AG, 4, )52y 28

Sincethe A and B numbers are zero under the conditions stated in the intro-

duction we can extend the limits m,p,q of the summation to n, change the
order of summations, and obtain after taking out the zero coefficients

(23)

t .
<Z<3), m|> p|p qIC)B(k,h,J;r, s, t; m, p, QA (k, m, a)A(h, p, b) -

+ A(,q,2) = 8;8;82 .
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This relation is actually nothing but the product of three relations of the form
given by (6).

6, RECURRENCE RELATIONS
By writing
nxy 2z khijin+1)=(3- kaJrn_H “YF T sz_,_nH)n(x,y,z;k,h,j,n)
and substituting according to (19) and equating the coefficients of the same
monomials we obtain
Ak,h,jsn+1,n+1,n + Lr,s,t) = 3Ak,h,j; n,n,n; r,s,t)
(25) - Fk+n+1A(k’ h,jn,n,nsr-1,s,t) - Fh+n+1A(k’ h,j; n,n,n; r,s-1,1t)

- Fj_mﬂA(k,h,j; n,n,n; r,s,t -1) ,

which is a recurrence realtion satisfied by the A numbers.

To find a recurrence relation satisfied by the B numbers we use (8) and
obtain

-1 -1
Bk, r,m) = (Fm+1+k) Bk, r - 1,m) - (Fm+k) Bk, r-1,m-1)
_1 -—
B(h,s,p) = (F ) Bls - 1,p) - (F ) 'Bhs-1Lp-1)
. _ o _ S P _
B(J:'%Q) - (Fq+1+j) B(J,t 1sq) (Fq+j) B(]’t ‘19(1 1),

and by multiplying these three relations by each other and using (22) we have
the following recurrence relation for the B numbers:

. L = —t
B(k: h’ .]9 r-Q S’ t5 m’ p! q) - (Fm+1+ka+1+th+1+j )
B(kshs.]; r- 1=S - lst - 1; mspsq)

-1 .
'(Fm+1+ka+1+th+j) Bk,h,jsr-1,s -1,t - 1; m,p,q - 1)

-1 .. . _
~(F gt pin Frag) BOSBBT = 1,5 = 1,6 - 13 m,p - 1,9)

-1 oo _ g
'(Fm+ka+1+th+1+j) Bk,h,js5r-1,s-1,t-1; m~1,p,q)
-1 .
+(Fm+1+ka+th+j) Bk,h,j5 r-1,s -1,t - 15 m,p -1,q-1)
-1 .. g B
+(Fm+ka+1+th+j) Bk,h,jsr-1,s-1,t-1;m~-1,p,q~1)

-1 .. _ _ _ _ _
+(Fm+k]?p+th+1+j) B&k,h,j5r-1,8s-1,t-1,m~-1,p-1,q)

—(Fm+ka+th+j)‘1B(k,h,j; r-1,s-1,t-1;m-1,p-1,q-1).
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7. CONCLUDING REMARKS

(i) Equations (7), (8), (12), (13), (18), (25), and (26) indicate that the co-
efficients A and B involved are particular solutions of corresponding par-

tial difference equations which may be of interest,

(ii) Although in this paper we have assumed that the numbers Fk are
Fibonacci numbers the same relations would hold for any sequence that is de-

fined for k being a positive integer or zero,

(iii) We have not attempted to define Lah numbers corresponding to the

A and B numbers inthe case of several variables although this seems possible,
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ON THE GENERALIZED LANGFORD PROBLEM

EUGENE LEVINE
Gulton Systems Research Group, Inc., Mineola, New York

For n a positive integer, the sequence a,,*::,ay, is said to be a per-
fect sequence for n if (a) each integer i in the range 1< i< n appears
exactly twice in the sequence, and (b) the double occurrence of i in the
sequence is separated by exactly i entries. Thus 41312432 is a per-
fect sequence for n = 4. The problem of determining all integers n having
a perfect sequence is posed in [1] and resolved in [2] and [3]. In particular,
n has an associated perfect sequence if and only if n = 3 or 4 (Mod 4).

In [4] , the problem is generalized by introducing the notion of a perfect
s-sequence for an integer n. Namely, a perfect s-sequence for n (with s,
n > 0) is a sequence of length sn such that (a) each of the integers 1,2,---,
n occurs exactly s times in the sequence and (b) between any two consecutive
occurrences of the integer i there are exactly i entries. The problem of
determining all s and n for which there are perfect s-sequences is then
posed in [4] . (The existence of a perfect s-sequence for any n with s > 2 is
yet in doubt.) It is shown in [4] that no perfect 3-sequences exist for n = 2,
3, 4, 5, and 6. '

The following theorems expand upon the above results pertaining to the
non-existence of perfect s-sequences for various classes of n and s.

Theorem 1. Let s = 2t. Then there is no generalized s-sequence for
n = 1 or 2 (Mod 4).

Proof., Let p; denote the position of the first occurrence of the integer
i (1 =1i=n) in the sequence, The integer i then occurs in positions p;»
p; + GA+1),---, p; + (s -1)(i+ 1). The sn integers p; *+ ji+ 1) (with 1 = 1,
se+,n; j =0,1,--+,s8 - 1) are however the integers 1,-..,sn in some order.
Thus

n s-i sn
I)IIESTEETEED o
k=1

i=1 j=0

Letting
(Received June 1966) 135
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n
P=2p
i=1

the latter equality yields

(s-1s fu+1Hn+2) _ sSn(sn+1)
sP + 5 { 5 1} 5

or

n{(s + 1)n - (3s - 5)}

P = 1

Inasmuch as P is an integer, the numerator N = n{(s +1)n - (3s - 5)} must
be divisible by 4. But for n = 1 (Mod 4),

I

N =(s+1)-(@Bs-5 = -4t+6 = 2 (Mod 4) ,

where s = 2t, which is impossible. Similarly, for n = 2 (Mod 4),

N

1

2{2(s +1) - (3s - 5)} = -4t+14 = 2 (mod 4)
which is also impossible.

We now extend the results in [4] by proving there is no 3-sequence for
n=2 3,4, 5, 6, or 7 (Mod9). Actually we show somewhat more in the next
theorem,

Theorem 2, Let s = 6r +3 (with r > 0), Then there is no perfect s-
sequence for any n =2, 3, 4, 5, 6, or 7 (Mod 9).

Proof, Let 9 denote the position that integer i occurs for the (3r +
2)th time (i. e., 9 is the position of the "middle'" occurrence of i), Then i
occurs in positions ¢ +j(i+1) for j = -2(2r+1), -3r, ++-, 3r, (3r+ 1)
The sn integers 9 +ji+1) (with i = 1,**",n; j = -Br+ 1), **,3r +1)
are then the integers 1, 2, 3, ***, sn in some order., Thus
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n 31+ . sn
E Z {qi+j(i+1)} =Z k2 .
k=1

i=1 j=-(3r+1)

Letting

n
Q=) & ,
i=1

and noting that the linear terms onthe left-hand side of thelast equation éancel,

we have

fBr+1)@Er+2)s\fn+Ym+2)(@n+3) -\
sQ + 2l 6 }{ 3 1}

_ sn(sn +1)(2sn + 1)
6

Cancelling out s and collecting terms yields Q = M/18, where the numerator

M is given by
M = (198r% + 198r + 50)n3 - (81r2 + 27r - 9)n? - (117r% + 117r + 23)n .

Inasmuch as Q is an integer, the numerator M must be divisible by 9. But

M = 50n° - 23n = 5m3 -n) (Mod 9).
It is easily verified from the latter that for the values of n under considera-
tion, namely, n = 2, 3, 4, 5, 6, or 7 (Mod 9) we have M =3 or 6 (Mod 9).
Thus M is not divisible by 9 which provides a contradiction,
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FIBONACCIAN ILLUSTRATION OF L'HOSPITAL'S RULE

Allan Scott
Phoenix, Arizona

In [1] there is the statement: using the convention Fy/F, = 1. [Fn =

F o +*F o Fo=0F =1].

In this note it will be shown how the equation F, /FO = 1 follows naturally

from L'Hospital's Rule applied to the continuous function

FX = \—/—5— @" - ¢ cos mx) [ = 2711 +1/5)]

FX obviously reduces to the Fibonacci numbers Fn when n = 0, 1,
12, 3, *** . Then

—1-— d) - ¢ cosmx)

\/—— B di @ - ¢ cos mx)
\/—

FO — (" - ¢ cos mx) -qu- @* - ¢ cos mx)

xX=0 x=0

(log ¢~ - (log )¢ ™ cos mx + ¢ X mrsin mx
(log )™ - (log "1 ¢ ™ cos mx + ¢ = sin wx -

_ logé - log ¢ -1
log¢ - log ¢!

(Continued on p. 150.)



FIBONACC! SEQUENCE MODULO m

A, P, SHAH
Gujarat University, Ahmedabad 9, India

Wall [1] has discussed the period k(m) of Fibonacci sequence modulo m,
Here we discuss a somewhat related question of the existence of a complete
residue system mod m in the Fibonacci sequence,’

We say that a positive integer m is defective if a complete residue sys-
tem mod m does not exist in the Fibonacci sequence.

It is clear that not more than k(m) distinct residues mod m can exist
in the Fibonacci sequence, so that we have:

Theorem 1. If k(m) < m, then m is defective.

Theorem 2, If m is defective, so is every multiple of m,

Proof, Suppose tm is not defective, Then for every r, 0 =r=<=m -

1, there exists a Fibonacci number u (which, of course, depends on r) for

which w o= (mod tm). But then u = (mod m), so that m is not
defective,

Remark: The converse is not true; i.e., if m isa composite defective
number, it does not follow that some proper divisor of m is defective. For
example, 12 is defective, but none of 2, 3, 4 and 6 is,

Theorem 3. For r= 3 and m odd, 2'm is defective.

Proof. The Fibonacci sequence (mod 8) is
1s 19 2’ 3’ 53 09 5: 5’ 29 7: 1, 0: 1: 1: 2: 39 5:"' .

The sequence is periodic and k(8) = 12. It is seen that the residues 4 and 6
do not occur, This proves that 8 is defective, Since for r = 3, 2'm isa
multiple of 8, the theorem follows from Theorem 2.

Theorem 4. Ifa prime p = +1 (mod 10), then p is defective.

Proof. For p = +1 (mod 10), k(p) (p - 1) ([1]), and hence k(p) < p
- 1< p. Therefore by Theorem 1, p is defective,

Theorem 5. If a prime p = 13 or 17 . (mod 20), then p is defective,

Proof, Tet u denote the o Fibonacei number, Since [1] for p =
+3 (mod 10), k(p)|2(p + 1), it is clear that all the distinct residues of p that

(Received February 1967) 139
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occur in the Fibonacci sequence are to be found in the set {ul, Uy, Ug, =" °,

uz(p+1)} . We shall prove tha,t for each t, 1<t<2p+1),

(5.1) u, = 0  or u, = fu (mod p) ,
for some r, where 1< r < (p - 1)/2.

Granting for the moment that (5.1) has been proved, it follow s that all
the distinct residues of p occurring in the Fibonacci sequence are to be found

in the set
(5.2) %O’ fuy, dup, Fug,c e,y % s

where m = (p - 1)/2; or, since u; = uy, = 1, the set (5.2) may be replaced
by

(5.3) ‘ {0, +1, #ug, #uy, +--, dum} .

But this set contains at most 2(m - 1) +1 = p - 2 distinct elements.
Thus the number of distinct residues of p occurring in the Fibonacci sequence
is not more than p - 2, Therefore p is defective,

Proof of (5.1), It is easily proved inductively that for 0 < r=p-1,

(5.4) u L = (-1)1"“11anrjl (mod p)

and thatfor 1 < r <p+1

(5.5) = -u, (mod p) .

Uptir

We note that since p = 43 (mod 10), p Uprp Yy = -1 (mod p) [2, Theorem
180]. (5.4) and (5.5) are valid for all such primes. Replacing r by (p - 1)/2

- s in (5.4), we get for 0 < s = (p - 1)/2.

s+
)

(5.6) u = (-1 w, _, (modp), where h=(p+ 1/2.

h+s

In particular, we note that plu ~for m = (p + 1)/2, p+1, 3(p+1)/2 and
2(p + 1).
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(5.5) and (5.6) clearly imply (5.1). This completes the proof. Combining
Theorems 4 and 5, we have

Theorem 6, Ifaprime p =1, 9, 11, 13, 17 or 19 (mod 20), then p
is defective,

Remarks: This implies that if p is a non-defective odd prime, then p
=5 or p = 3or 7 (mod20), While it is easily seen that 2, 3, 5 and 7 are
non-defective, the author has not been able to find any other non-defective
primes.

From Theorems 2 and 6, we have

Theorem 7. If n > 1 is ndn—defective, then n must be of theform n
- Ztm, m odd, where t = 0, 1, or 2 and all prime divisors of m (if any)
are either 5 or =3 or 7 (mod 20), Finally, we prove

Theorem 8, Ifa prime p = 3 or 7 (mod 20), then a necessary and suf-
ficient condition for p to be non-defective is that the set

o, w1, w0, 5, e, wm)

where h = (p +1)/2, is a complete residue system mod p.

Proof., The formulae (5.5) and (5.6) still remain valid, However, for
primes p = 3 (mod 4), we cannot prove that p‘uh (in fact, p/uy). So thatall
distinct residues of p occurring in the Fibonacci sequence must be found in

the set
{0, #1, fug, Fug oo, duyl

Since this set contains only p numbers, it can possess all the p distinct
residues of p if and only if it is a complete residue system mod p.b

The author wishes to express his gratitude to Professor A. M. Vaidya
for suggesting the problem and for his encouragement and help in the prepara-

tion of this note.
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions to
Raymond E, Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745, This department especially welcomes
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate
their consideration, solutions should be submitted on separate signed sheets

within two months after publication of the problem.

H-131 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Consider the left-adjusted Pascal triangle. Denote the left-most column
of ones as the zeroth column. If we take sums along the rising diagonals, we
get Fibonacci numbers, Multiply each column by its column number and again

take sums, Cn’ along these same diagonals. Show C; = 0 ‘and

. n
Oy = 20 Fnoy B
=0

H-132 Proposed by J.L. Brown, Jr.,Ordnance Research Lab., State College, Pa.

Let F;, =1, Fy.=1, F =F + F_ for n> 0. Define the Fib-
n+2 n+yq n

onacci sequence, Show that the Fibonacci sequence is not a basis of order k

for any positive integer k; thatis, show that not every positive integer can

be represented as a sum of k Fibonacci numbers, where repetitions are

allowed and k is a fixed positive integer.,

H-133 Proposed by V.E.Hoggatt, Jr., San Jose State College, San Jose, Calif.

Characterize the sequences

n-2

. ' _ -
L. Fn = Uy +24 u].
=t

142
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ii. = u +Zu +Zzu

i=1 j=t
i n-¢ m i
iii, Fn=u +Zu +ZZu +Z ZZ u
i=1 j=1 m=1 i=1 j=1

by finding starting values and recurrence relations. Generalize,

H-134 Proposed by L. Carlitz, Duke University

Evaluate the circulants

Fa Fpg " Fn+(m—1)k Ly Lo *7° Ln+(m—1)k
Frrm-gk Tn " Formegk |, [Porme-gk T 777 Pk
Fn+k Fn+2k o Fn Ln+k Ln+2k s Ln

H-135 Proposed by James E. Desmond, Florida State University, Tallahassee, Fla.

PART I:
Show that
[j/Z] j-d d d
: _ Z j- j-2d,
] +1 = d 2 ( 1) ’
d=¢

where j= 0 and [j/2] is the greatest integer not exceeding j/2.
PART 2:
Show that

LiZ2) j -d -2d +1)d
- Z j- i- (n+1
F(j+1)n = T ( d ) = 1)

d=o
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where j =0 and [j/2] is the greatest integer not exceeding j/2.

SOLUTIONS
RECURSIVE BREEDING

H-89 Proposed by Maxey Brooke, Sweeny, Texas

Fibonacci started out with a pair of rabbits, a male and a female, A
female will begin bearing after two months and will bear monthly thereafter,
The first litter a female bears is twin males, thereafter she alternately bears
female and male,

Find a recurrence relation for the number of males and females born at

the end of the nth month and the total rabbit population at that time,

Solution by F. D. Parker, St. Lawrence University

The number of females at the end of n months, F(n), is equal‘ to the
number of females at the end of the previous plus the number of females who

are at least three months old. Thus we have
Fmn) = Fm-1) +Fmn -3).

The number of males at the end of n months, M(n), will be the sum of
the males at the end of the previous month, the number of females at least
three months old, and twice the number of females who are exactly two months
old, Thus

M@) = M@ - 1) + F@ - 3) + 2(Fm) - F@n - 2)).

The total rabbit population is the same as it would be if each pair of off-

spring were of mixed sex, that is,

M) + F(n) = 2fmn) ,

where f(n) is the nth Fibonacci number,
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DIVIDED WE FALL!

H-92 Proposed by Brother Alfred Brousseau, St. Mary's College, California

Prove or disprove: Apart from F,, Fy, F;, F,, no Fibonacci number,

Fi (1> 0) is a divisor of a Lucas number,

Solution by L. Carlitz, Duke University
Put

n

L, =a +B% F = (@ - gY/(a« - B),
where
a=4@+Vh, B=4a-vH.
Alsoput n = mk+r, 0<r <Xk, Since
o+ g% = @™ - g™ 4 gMa" 4 g,

it follows from Fk\Ln that Fklﬁkar. Since g is a unitof QW) it fol-

lows that Fk‘Lr' Now from Lr = Fr—1 + Fr+1 we get Lr < Fr+2 for r> 2.

Hence we need only consider F However this implies F (F

r+1‘Lr' rH| r-1
which is impossible for r = 2. Therefore Fk ‘ Ln is impossible for k > 4,

Also solved by James Desmond.

OOPs!!

H-93 Proposed by Douglas Lind, Univ. of Virginia, Charlottesville, Virginia.
(corrected).

Show that

1
(3 + 2 cos 2k 7/n)
1

5]
Il
=k
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n-2
L= I (3+cos (2k + 1)7/n)
n k=0

where n is the greatest integer contained in n/2.
Solution by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada.

We know from Problem H-64 (FQ. Vol. 3, April 1965, p. 116) that,

-1 .
F = H(l-ZicosLnE),

n .

=
where i = V-1,
If n is odd,

2n

- . jTr

Fopq = 11 (1 - 2i cos ﬁlﬁ)

j=t
n an

= - 9 _dm - 9 dm
[I<1 210052n+1>l'[ (1 2i cos 2n+1)
1 n+i
n n

= _ o jm \ . __k
I1 (1 2Zicos 27— I1 [1+21cos7r(1 —2n+1)]
= / k=nt

Letting j = (2n + 1 - k) in the second product we get

n

n

_ . jr . jT

Fop+q = H<1—21 cos 513—4‘_1)“<1+21 cos é;ll_'*'_l)
1 1

n n
_ ] - _2jm
H<1+4cos2 2n+1> H<3+2cos 2n+1> (A)

1 1
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Similarly when n is even,

J

n-1 n-1
= M{1-2icost® | M {1+2icosi). [1+2icosT
2n 2n 2

1 1

2n-1
Fyy = \1—21 cos %;)
=1

n-i

= I <1+4cos“-21)
=" on

= H(3+Zcos%jlrﬁ-) .+ (B)

From (A) and (B) we see that

n-1
= 2km
F, = H<3+2005 n) (C)
k=1
Hence,
2n-1
Fyy = 1 (3+Zcos1—<7—7>

= I1 (3+Zcos%> I1 <3+cos %T)
i=2,4,---2(TFI) j:1’3’...’2,(~h-:—2)+1

Letting i = 2k and j = (2k +1) we have
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n-1 n-2
Fon = H<3+Zcos %) H<3+200s Lz_l‘%ﬂﬁ)
k=1 k=0
n-z
=F Il {3+2cos @_k+_1)_”§
n n
k=0

Since Fyn = FpLy, , we have

n-2
Ln: IT [3+ZCOS i——-—L—Zk;]‘"] -+ (D)
=0
Also solved by L. Carlitz.
ANOTHER IDENTITY

H-95 Proposed by J. A. H. Hunter, Toronto, Canada.

Show

k k
3 - 3 = 2 - 3
Flag T D Fn—k Ly FiFan + (-1)Fy

Solution by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada.
Fn—k - FnF-(k+1) * F—an+1

k k-1
(-1) FpFpy, + (D7 FF L,

1l

k+1

since

__n—i
Fo= () F .

Hence,

k _
CDTF = FpFry - FeFoy
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Also,

Fn+k = Fan—1+ Fan-H :

Hence we have,

3

~1\3k w3 = 3 - 3
n+k + (1) Fn—k (Fan—i * Fan+1) * (Fanﬂ Fan+1)

Or,

ot
n

k .
3 _ 3 = 3 (T3 M nk]
Fn+k +(-1) Fn—k Fn(FkH * Fk—1)

+ 3]E‘anFn—HFk—1(Fan—1 + Fan+1)

- 3FanFnﬂFk-H(FanH - Fo)

It

3 2 R Y] -
F ey ¥ P ) Fieyy = Fioy ~ Fr Frey)

_ T 2 2 2 12
3]5‘1r1Fan+1(Fk+1 Fk—1) * SFanFnﬂ(Fkﬁ * Fk-1)

3 2
Fn L Fk—l) * Fk+1 Fk-—i

+F)(F

k Flets

-3F:F, F_ (F

n k n+ F

k+1 ket~ Ty

2 2
+ SFanFn +1Lk

il

-3F2FF , L, +3F F2F?

3 (T2
Lan(Fk+Fk+1Fk—1) n k nti k n k n+1Lk

Using the identity,

k
2 — —4 —
Fk Fk+1Fk—1 (-1)

we obtain

k
= 3 2 _ 2 n _
I Lan<2Fk + (-1) ) + 3LkaFnrn+1(Fn+1 Fn)

@ L F2(2F3 +3F F | F +—1kF3L
kk( n ) T (-1) n

n n+ n-i k

Now,
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Fon = F Fm-1+ FonFn+y

F_(F2 +F2)+(FF +F F  )F
n n-i

n n-i n nt’ ntH
3 2
F FnFn+1 Fn 1Fn(Fn+1 Fn—i)
= T3 4+ r2 + F2 +
Fn Fn(I‘n 2FnFn_1 F ) Fn 1Fn(Fn+1 Fn-i)

]

2F3 +2F  F (F
n n

+F)+F _ F F
n-1 n

n-1 n nH

1]

3+
ZF 3Fn 1FnFn+1

Substituting this in (1) we get

k
= 2 + (= 3
I L, F§ Fsn (l)FnL

k' k k

Therefore,

k ‘ PN
3 - 3 = 2 - 3
Fpae PO Fp e = Iy [Fka T Fnj]

Also solved by Charles R. Wall.
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(Continued from p. 138.)

All known Fibonacci equations using Fn are theoretically generalizable
to equations using F_. For some examples, see [2]. See [3] also.
REFERENCES

1. V. E. Hoggatt, Jr., and Douglas Lind, '"Power Identities for Second-Order
Recurrent sequences,'' Fibonacci Quarterly, Vol. 4, No. 3, Oct. 1966,

2. Allan Scott, "Fibonacci Continuums, " unpublished.

3. F. D. Parker, "Fibonacci Functions," Fibonacci Quarterly, Vol. 6, No.
1, pp. 1-2.

* ok ok ok &



MATHEMATICAL MODELS FOR THE STUDY OF THE PROPAGATION
OF NOVEL SOCIAL BEHAVIOR

HENRY WINTHROP
University of Southern Florida, Tampa, Florida

Suppose we wishto develop a mathematical model for the spreadof novel,
social behavior, such as rumors, newly coined words, new hobbies or habits,
new ideas, ete. Let us illustrate the development of a highly simplified model
of this sort, where we are concerned only with behavior which spreads on a
person-to-person basis, We shall assume that all individuals who are capable
of being potential transmitters of the new behavior adopt itafter only one single
exposure to it, We shall further assume that all potential transmitters contact
exactly m different persons per unit time. Finally, we shall assume a popu-

lation sufficiently large so that no convergence effects occur during the initial

period of growth, By this we mean a population of potential converts whose
size, in relation to the actual number of increasing converts, in great enough
for practical purposes to warrant the assumption that those who are spreading
the novel social behavior will meet for quite some time only individuals who
have not as yet been subject to contact with it. Thislast assumption canbe ex-
pressed by stating that the rate of repetitious contacts with those who already
display the novel behavior in question, is zero.

Under these several constraints it can be shown that the increment of

growth, Gi’ atany time t = i will be given by

(1) Gizxmm+1fﬂ, i=1

and the cumulative or total growth, N(t), inthe number ofpersons who exhibit

the novel social behavior at time, t, will be given by

2) N = m+ 1t

where equation (2) holds only for discrete time instants, that is, where t = 1,
2, oo

(Received February 1967) 151
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We now assume that every person possesses a circle of acquaintances
and that, for each person in the population, there are exactly D persons inhis
circle of acquaintances, We further assume that each person succeeds in con-
tacting all of these D persons only after k units of time have elapsed. In
short, D = mk, When t =k + 1 each person continues to exhibit the novel,
social behavior but he no longer transmits it to anyone else. G, is defined as
one. When k units of time have elapsed, the population of converts to the new
behavior is N(k), When t = k+ 1, G, willceaseto transmit the newbehavior
but he will still exhibit it, We therefore have

(3) Nk +1) = [N(k) - Gy m+N(K)

i

(4) N(k)Y - Gym ,
where Y = (m + 1).
At time instant, t = k + 2, the number of people who cease to be trans-

mitters will be G;, and N(k + 2) will be given by the following recursion

relationship,
(5) Nk +2) = [N(k+1) - Gy m+Nk+1)
(6) = Nk +1)Y - Gm

Substituting equation (4) into equation (6) we obtain

(7) Nk +2) = [NKY - Gm] Y - Gm

which in turn becomes

(8) Nk +2) = NKY? - m(GyY + Gy)

If we proceed to develop the recursion relationships'exhibited in equa-
tions (3) through (8), we obtain the following model for 1 =i < 6.



1968]  OF THE PROPAGATION OF NOVEL SOCIAL BEHAVIOR 153
Nk +1) = NKY - Gym |
Nk +2) = N(k)YZ - mYYG,Y + Gy)
Nk +3) = NK)Y® - mY(GyY + Gy) - Gom
(9) Nk +4) = NKY! - mY3(GyY + Gy) - mYYG,Y + Gs)
Nk +5) = N(K)Y® - my}(GyY + Gy) - mY(G,Y + G3) - Gym

N(k +6) = N(k)Y®-mY4G,Y + Gy) - mY2(GyY +Gyg) - mYY(G,Y +Gy)

From the preceding it can be readily seen that if we wish to determine

the value of N(k +1i) andif i is even, then

Nk +i) = NRY - mY %(G,Y + Gy - mY 4G,Y + Gy -
(102)

- mY' G+ Gy - -mY G, Y + G, ),

while if i is odd, then

Nk +i) = N(k)Yi - in'z(GoY +Gy) - in_4(G2Y +Gg) e
(10D)

i-(i-1) _
-mY VTG Y+ 6 ,) -G m

Both equations (10a) and (10b) can be summarized formally as follows,

i-1
(11) Nk +i) = NRY - mZ GnYi—i_n, 1<i=k
n=0

If we substitute (m + 1) for Y into equations (10a) or (10b) and the ap-
propriate value of Gi as given by equation (1), then N(k + i) canbe computed.
The computed value will reflect the propagation or cumulative growth of the
novel social behavior, under all the assumptions and conditions which have been

mentioned above,
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We now define
i-1 i-1
(12) A = -mz Gnyl‘i‘n = -my! —mE GnYH'“
n=0 n=i

But by equation (1) we have

(13) G, = m(m + - My, n=1
Hence
i-1
(14) A= -my !- mZZ Vel
n=1
(15) = cmY ! - m26 - Y

If we now substitute the value for A, as given by equation (15), for the
second expression on the right-hand side of equation (11), we obtain

(16) Nk+i) = NOY - m¥ ' - m¥i-1)Y?% 1=i=k

There are two justifications for the constraint that 1 = i<k, Firstis
the fact that the growth of the novel behavior will be initially exponential, if
the potential population of converts is very much larger than the actual and in-
creasing population of converts for a relatively modest time period occurring
at the beginning of the growth phenomenon in question, The actual length of
the growth interval assumed is, of course, 2k units of time. The second
reason for assuming the constraint that 1 = i = k is that the substitution of
i = 0 in either equations (10a), (10b) or (16), or their analogues, would make
no sense, The correction for the fact that transmitters of the novel social
behavior possess only a limited circle of acquaintances, D, holds only for
those situations in which converted individuals have begun to exhaust their

circles of acquaintanceship and, in mathematical terms, this means that i # 0.
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Substituting (m +1) = Y in equation (16) will yield

(17) Nk +i) = (m+ 1)k+”l - m(m + 1)1'1 - @1 -1)m2m + 1)1‘Z
(18) = m+1)7? m+ )5 -G - 1) - mm + 1)
(19) = m+ 1) m+ 1) - mam + 1)

The equivalence of either equation (10a) with equation (16) or equation (10b)
with equation (16), canbe seenfrom the relations given by equations (12) through
(15).

The argument of the preceding exposition suggests to some extent how
the mathematical model may be of use to the sociologist for a variety of phe-
nomena which are of interest to him,

Models for behavioral diffusion theory have been developed over the last
two decades. They may be highly sophisticated or relatively simple, mathe-
matically speaking, Sophisticated examples of models for diffusion theory,
intended for some specifically designed experiments, may be found in the work
of Rapoport [1] An early and systematic development of a predominantly
algebraic treatment of diffusion theory, intended for experimental designs of
an aggregative type, was worked out by Winthrop [ 2]. Theformulation of some
early ad hoc models intended for empirical use, was undertaken by Dodd [3] .
The relationship of Dodd's S-Theory to those formulations of diffusion theory
for which the present writer has been responsible, has been worked out jointly
by Dodd and Winthrop [4] . The model presented in this paper is an example
of the strictly algebraic type of model. Models of this kind make it somewhat
easier to present the exposition of diffusion theory.
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CURIOUS PROPERTY OF ONE FRACTION
J. Wlodarski
Porz-Westhoven, Federal Republic of Germany

It is well known that an integral fraction, with no more than three digits
above the line and three below, gives the best possible approximation of the
famous mathematical constant '"e'.

This fraction is 878/323. In decimal form (2,71826 +-+) it yields the
correct value for "e'" to four decimal places.

If the denominator of this fraction is subtracted from the numerator the
difference is 555.

Now, the iterated cross sum of the numerator is 5 and the same cross
sum of the denominator is 8. The ratio 5/8 gives the best possible approxima-
tion to the "Golden Ratio' with no morethan one digit inthe numerator and one

in the denominator.
* Kk k Kk Kk



A THEOREM ON POWER SUMS

STEPHEN R. CAVIOR
State University of New York at Buffalo

Allison [1, p. 272] showed that the identity

n p n q
(1) z <" = E x° Mm = 1,2,3,:++)
X=1 x=1

holds ifandonly if r =1, p =2, s =3, and q = 1. In this paper we con-
sider the more general problem of finding polynomials

s
fx) = Z aixi' and gx = Z bixi
i=0 i=0
over the real field which satisfy
) {ta) + - +ifP = fg) +-o rem}? m=1,2,3"),

where r, p, s and q are positive integers,

First we note that

n r
E fx) = E aiSi ,
x=1 i=0
where
n
Sk = E xk, k =0,1,2,-
x=1

Thus the left member of (2) becomes
(Received February 1967 ) 157
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a

nr+1 p
+ e
r r+1 € ’

since Sr is a polynomial in n having degree r + 1 and leading coefficient

1
r+1

Similarly the right member of (2) becomes

so (2) can be written

nr+1 'p ns+1
(3) gar -:F-__i_—1+...‘ =3bs +...§

For (3) to hold we must have

(4) (r+1p = (s+1)q

and

lar p
) (r+1> B

Case 1, Suppose p = d. From (2) we find f(n) = gm), n = 1,2,3,*++,

b q
s
(s+1> °

so f(x) = g(x).

Case 2. Suppose p # q. We may assume without loss of generality that
p>q and (p,q) = 1. We will also assume that a, = bS = 1. Following
Allison [op. cit.] we see that for (3) to hold we must have r =1, p =2, s
=3, and q = 1. Specifically,
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(6) (S1+2950)% = S5+ bySy +bySy + Sy .

Using well-known formulas for Sk’ k =0,1,2,3, we write (6) as

™ {n(n2+ 1) , a n}‘l _ {n(n; 1) }2 + b2{n(n + 1}6(2n + 1)} + by n(r;+ 1) + by,

Rewriting (7) in powers of n, we find

n4 1 \3 1 22_114 1b2 3
. z+avn+ gra) =gt
by by
2 — e
+ 6+6+b0n_

bZ
2 = 3
’ 2 b b
1 1, 2.1
) <§+a9 TiTEhE
b2 bl
0= F T3 *h

(10) Zaij b= ¢ (=012

Since the determinant !ai].\ # 0, we can solve for by, by, by in terms of a,.

Eagy calculations show

(11) bo = —32, ) b1 = 232"'3., b2 = 3a 3
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where a, is replaced by a for simplicity. Thus
(12) fix) = x+a, gx = x +3ax®+ (2% - a)x - a?

When a = 0, (12) yields the result of Allison,
If we do not require a, = bS = 1, itis interesting to note that for arbi-
trary p,q one can always find non-monic polynomials f(x), g(x) to satisfy

(2). Specifically f(x) and g(x) are chosen to satisfy

n n
(13) }:g(x) = n9, Zg(x) = 1P,
X=1 x=1

If (13) holds, obviously (2) does.

In general the construction of a function ft(x) satisfying

(14) St = a' ¢ = 1,2,3)

is recursive. First note that fj(x) = 1. We find ft+1(x) as follows., Recall
that

n
t+1

E xt=?T1+stnt+ + s

x=1
Thus

n

T 1
(15) t+1) 2 {xt -8 0 - - sifi(x)} = ™,

x=1
SO

t
_ t

(16) £, = E+1]x - E 818y (%)

k=1
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We summarize these results in the following,

Theorem, The solutions of (2) are as follows, If p = q, f(x) is arbi-
trary and g(x) = f(x). If p # q, the only monic solutions occur when p = 2
and q =1, in which case f(x) and g(x) are defined by (12), where a is an
arbitrary real constant, Non-monic solutions for that case can be found using
(13).

As an example of these results. suppose that p = 3 and q = 4. By (14)

and (17) we have

n 3 n / 4
E (4= - 6x2 +4x - 1)) = E Bx2-3x+1)) , (Mm=1,2,3,-%-).
x=1 | x=1
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A NUMBER PROBLEM

J. Wlodarski
Porz-Westhoven, Federal Republic of Germany

There are infinite many numbers with the property: if units digit of a
positive integer, M, is 6 and this is taken from its place and put on the left
of the remaining digits of M, then a new integer, N, will be formed, such
that N = 6M. The smallest M for which this is possible is a number with
58 digits (1016949 - -+ 677966).

Solution: Using formula

6x &
= 3 Z an X Py
1-4x - x2 n=0

with x = 0,1 we have 1,01016949 --+ 677966, where the period number (be-

hind the first zero) is M.*
*1016949152542372881355932203389830508474576271186440677966,

(Continued on p. 175.)




RECREATIONAL MATHEMATICS

JOSEPH S." MADACHY
4761 Bigger Road, Kettering, Ohio

DIGITAL DIVERSIONS

In the February 1968 issue of The Fibonacci Quarterly, I had asked

readers to work at expressing Fibonacci numbers using the ten digits once
only, inkorder, and using only the common mathematical operations and sym-
bols. V. E. Hoggatt, Jr., the General Editor of this Journal, came up with
a set of equations which, though not exactly what I had in mind, are of special
interest because of their versatility. All ten digits are used and logarithms
are required.

We start with

log, 2" = n

or

log 2 = 2"

-.»2
(n raZicals)
then
log,{log 2) = n
{n rad{czm)
This leads to
0+ Togys iy, [Tog 8 - 4/0 - D] = 1

or

0 -+ log 7 [10g e (8 /00 - 7)] = n

{n radicals)

The study of all this eventually leads to the following:
162
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log, (log m) =
N
( n radicals)

which further leads to the desired ten-digits-in-order form for any Fibonacci

number, Fn

1og(0+1+2+3+4)/5 (10g\/\/_m_ﬁ 9 = L

(Fp radicals)

How about something more along these lines?

A PENTOMINO TILING PROBLEM

Ever since Solomon W. Golomb's article [1] appeared, much time has
been devoted to the study of polyominoes and their properties. Polyominoes
are configurations made up of squares connected edge-to-edge. The figures

below show the first nine members of the polyomino family:

DB@ il I__JI __U

The first is a monomino, the second is a domino. The third and fourth
figures are the two trominoes. The remaining figures are the five tetrominoes,
Continued construction shows there are twelve pentominoes — those made with
five squares. The pentominoes have proven so popular that they have had
names assigned to them corresponding to their resemblance to certain letters

of the alphabet. They are shown below.
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[] | O | ]
U vV W X Y Z

Many polyomino problems have been posed, but here's apentomino prob-

lem from Maurice J. Pova of Lancanshire, England: Find irregular patterns
of the twelve pentominoes which form tessellation patterns; i, e. , which cover
a plane. There are 2339 distinct 6 x 10 rectangles which can be made from
the pentominoes, but we are looking for irregular patterns. Three examples

found by Povah are shown below. You should be able to find others.

sar=a

1
|
L

|

T

117
L
[]

L(__

The third figure has a bonus feature: the checkerboard pattern is main-
tained throughout the tessellation. The black and white squares fall on the

same parts of each pentomino as it repeats in the plane,

ARE FIBONACCI NUMBERS "NORMAL"?

A "normal' number is one which containsthe statistically expected num-
ber of each of the digits and combinations of digits. A random 100-digit num-
ber, if normal, oughtto contain approximately 10 zeroes, 10 ones, 10twos, and
so on, For larger numbers, one could check for the expected occurrences of
the pairs 10, 11, 12, 13, ===, 97, 98, 99, There is even a '"poker hand" test
for large enough numbers, in which groups of five digits are examined to see

if the statistically expected number of '"busts, ' "one pair," '"full house, ' and
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other poker hands are present. Such a statistical study has been made of the
digits of 77[2]

I wondered if the Fibonaceci numbers are normal., There are at least two
ways of attacking the problem. The first method consists of examining each
Fibonaqci number and counting the number of distinct digits. By so doing I

found some typical results.

Number of Number of each of the following digits
Fn digits in FI1 0 1 2 3 4 5 6 7 8 9
Fig9 21 1 3 3 1 3 3 1 2 2 2
Fso0 105 9 8 19 8 7 11 11 11 11 10
Fio00 209 20 13 21 18 21 23 26 21 20 26

Fo is reasonably normal; Fgo, has more twos than expected; Fyg hasa
slightly low count of ones,

The second method consists of noting the cumulative sums of the digits,
I did this ﬁp to Fyp counting all the digits in all those 100 Fibonacci numbers.

The results are tabulated below,

Number of each of the following digits to Fy,
0 1 2 3 4 5 6 7 8 9
110 . 136 107 102 111 95 95 117 92 106

The total number of digits in the first 100 Fibonacci numbers is 1071,
The distribution of the digits to F,y, appears to be reasonably normal, except
for the some*}\zhat'large number of ones.

Furthér work on this matter might lead to interesting speculation —
depending on the results. The work of counting digits is tedious, but a com-
puter could be programmed to—-calculate the Fibonacci numbers, count their
digits, and print cumulative totals as well. Other statistical tests could be
applied with the aid of a computer., '
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OBSERVATION

Has anyone noticed thisbefore? While tryingto see if the Fibonacci num-
bers could be used to make magic squares, I discovered that no setofconsecu-

tive Fibonacci numbers could be so used, Can you demonstrate this?
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continued from p. 191.)
0 P, (x) k=0, 1, 2,
YRl "= k . 3.4,5.6,7
n=o ™ 1-21x-273x2+1092x3+ 1820x4--1092x5- 273x8 + 21x 7+ x8

Py(x) = x(1 - 20x - 166x2 + 313x3 + 166x* - 20x° - x5)

Py(x) = 1 - 20x - 166x% + 318x% + 166x* - 20x° - x6

Py(x) = 1 + 107x - T74x% - 1654x3 + 1072x¢  +270%x5-21x6-x7

Py(x) = 128 - 501x - 2746x% - 748x% + 1364x% + 252x5 - 22x6 - x7

Py(x) = 2187 + 32,198x - 140,524x% - 231,596x° + 140,028x* + 34,922x5 - 2687x5

, - 128x7
Ps(x) = 78,125 + 456,527 - 2,619,800x% - 3,840,312x% + 2,423,126x* + 594,364x5
- 46,055x8 - 2187xT7

Pg(x) = 2,097,152 + 18,708,325x - 89,152,812x% - 139,764,374x3 + 85,906,864x?
+21,332,070x5 - 1,642,812x8 - 78,125x7

Pq(x) = 62,748,417 + 483,369,684x - 2,429,854,358x2 - 3,730,909, 776x3 +

+2,311,422,054x* + 570,879,684x5 - 44,118,317x8 - 2,097,152x".
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FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS

M. N. S. SWAMY
Nova Scotia Technical College, Halifax, Canada

1. INTRODUCTION

A set of polynomials Bn(x) and bn(x) were first defined by Morgan-
Voyce [ 1] as,

) b (®) = xB _ () +b _ (X @= 1)
(2) Bn(X) = (x+ 1)Bn—1(X) + bn—i(X) n= 1)
with

(3) by(x) = By(x) = L

In an earlier article [ 2], a number of properties of these polynomials Bn(x)
and bn(x) were derived and these were used in a later article to establish
some interesting Fibonacci identities [ 3]. We shall now consider some fur-
ther properties of these polynomials and establish their relations with the

Fibonaceci polynomials fn (x).

2. GENERATING MATRIX

The matrix Q defined by,

- | &+2) -1

may be called as the generating matrix, since we may establish by induction
that,

) Q" = 5" B

(Recelved February 1967)
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Hence,
P Pn-t _ By = Bpy) ~Bpoy ~ Bpoy) - Q" -t
b by, Byt~ Bpy) “Byp " Byy)
(6) ="t Q-1
Since the determinant of Q = 1, we have
-B2 = -
(7) Bn+1 Bn—i Bn 1
and
- x+1 -1
n n-1i ! I
_ = Q - I = = X
bn—i bn—z 1 -1
or
-h2 =
®) bn+1bn—1 bn x

3. Bn AND bn AS TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

Letting cos@ = (x + 2)/2 in the identity

sin(m+1) 6+ sin (n - 1) = 2 sin (ng) cos o

we have
sin (n + 1)8 sin (n - 1)6 _ sin nf _
sing " sin @ x+2) sin 6 (4=x=0,
with
sin@+ DO _ 4 for m = 0
sin 8

n

(x+2) forn

11
=
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Thus,

sin (n + 1)6

sin 6
satisfies the difference equation for Bn' Hence,

9) B () = SOl (-4 < x = 0)

sin ¢

Similarly, if cosh¢ = (x +2)/2, then

_ sinh n+1)¢
(10) B (x) S h (x = 0)
Since b. = B_ -B_ ., we have
n n~ T n-i
_ cos (2n+1)0/2
(11a) b (%) = W (-4 < x <0)
and

cosh (2n + 1)¢/2
cosh @/2

(11b) b (®) = (x = 0)

4, DIFFERENTIAL EQUATIONS FOR Bn(x) AND bn(X)

It has been shown earlier [2] that
n n
i _ n+k-1 k _ k _k
(12) Bn(x) = E ( n-k ) X = E c, X
=0 k=0

and

n n
(13) b (%) = E (gfi)%‘ = E df

169
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Hence
ck+1 (n+"k+2)
n _\n- -1/ _ m-Kmn+k+2)
k n+k+1 (2k + 3)(2k + 2)
®n n-k

k+i

Thus, the coefficients of xk and x of Bn(x) are related by

k

14 Kk - 1)c§ + 40k + 1k cﬁﬂ + 3k o

+6(k + 1)cﬁ+1 -n@ + 2)c§ =0---
But the coefficient of Xk in the expansion of

x*B"+4xB' +3xB' +6B' -nn+2)B
n n n n n

is the same as the left-hand side expression of (14). Hence, Bn(x) satisfies

the differential equation
(15) x(x +4)y" +3(x+2)y' —nmn+2)y = 0

Similarly, starting with (13) we can show that bn(x) satisfies the differential

equation
(16) X(x+4)y"+2x+ 1)y -nn+ 1)y =0

Using (15) and (16) we shall now derive some identities for Bn(x) and
bn(x). We have from (15)

X(x+ 4)(B) - B ) +3(x+ (B - B} _) -n(a+ B+ F D - VB -

or,

x(x+4)bﬁ + 3(x + Z)b;1 - nn + 1)]3][1 - an -+ 1)Bn_1 =0 .
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Using (16) this may be reduced to
(eX)) (x+4b! (x) = 1B (x) + M+ B _ (9 .
Hence,

(18) (x+4(!, -bl) = @+ DB, +@+2B -nB - @+ B

~Differentiating (1) we get,
1 _ R = 1
(19) b, -b = xBl +B
Substituting (19) in (18) and simplifying we have

(20) x(x + 4)B;1(X) = an_H(x) -n+2)B__ (%)

n-4
From (20) we may derive that
(21) X(x+4)b (x) = mnb (¥ +b (x)-m+Db (¥ .

5, INTEGRAL PROPERTIES

It has been shown earlier [2] that,

B . ® -B _(®
(22) f b (9dx = -t 17’

¢ being an arbitrary constant. We also know that,

-)'m + 1)

B (0) = m+1); B_(-4)
23) n n

R _ n
b (0) = 1 ;b (-4) = (-1)"(2n +1)

Hence, from (22) and (23) we have the two special integrals,

0
(24a) f Byp(x) dx = 4/(2n + 1)

!
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and
0
(24D) f Bon+(x) dx = 0
4
Since
n
B2(x) = > Bm
0
we have
0 n
(25) SR ax =Y 4/(2m+ 1)
4

0

Similarly, the following integrals may be established:
0 0

fbf1 ® dx = = [ by (0 dx = 4/(2n + 1)
-4 T -4

0

f B (B, (®dx = 0
-4
0 0 n
_{ b (®) B () dx = - __4[ b, (B (Hdx = -4 37 1/(2m + 1)

0

n

0
_! b (b (x) dx = -4 - 8 1(2m + 1)
1

[Apr.



1968] FURTHER PROPERTIES OF MORGAN-VOYCE POLYNOMIALS

0 n
_!Bn_,_i (®) B, (x) dx = 4 21: 1/@2m + 1)

0 n-i

: b @b _(x)dx = 823 1/@m+1)+4/@n+1) -8
- 1

0 n-1

f b2 (x) dx = 8 > 1/@m+1) + 4/(2n + 1) ,
_4 1

6. ZEROSOF B (x) AND b ()

173

From (9) we see that the zeros of Bn(x) are given by sin (n + 1)@ = 0.

Hence,
6= (rm/@+1), r=12-+,1n,
Therefore,
- r
x+2) = 2¢osn+l'n'
or,

r
n+1

IME]

x=—4sin2{ } r=1,2,""*, n.

Similarly, the zeros of bn(x) are given by

11

1’2’..., n.

—4sin2{zr_l-7—7} , T

2r +1 2

Thus the zeros of Bn(x) and bn(x) are real, negative and distinct.
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7. Bn(x), bn(x) AND fn(x)

The Fibonacci polynomials fn(x) are defined by

(26) £ = xfn(x) + fn_i(x) n=2)
with
fix) = 1 and fHix) = x .

It is also known {4] that

[(n-1)/2] (

27) f® = 2

n-j- 1) xn-zj-—i ,
j=o

]

where [n/2] is the greatest integer in (n/2). Hence

n , n
fnr(®) = 2:(2;13_3)§c2n_ZJ = 2 (Efi)(xz)r

j=0 =0

I

b, ()
from (13). Hence,

(28) b (%) = fpax) .
Now

fon+3®) - fpr(®) = xfhn4a(x)

or

b &) = b ) = xfyp(x)

Hence from (1) we have
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xX* B (x) = x iy (%)

or

(29) B () = < fnig (%)

Thus, Bn(x), bn(x) and fn(x) are interrelated,

(See also H-73 Oct. 1967 pp 255-56)
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(Continued from p. 161,)

(Compare this problem with H-65 and above solution formula with the

formula

e o)
2X _ Z Fan e
1-4x - x2 n=0

in the Fibonacci Quarterly, Vol. 2, No. 3, p. 208.)
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SCOTT'S FIBONACCI SCRAPBOOK

ALLAN SCOTT
Phoenix, Arizona

The following generating functions are submitted to continue the list in
"A Primer for the Fibonacci Numbers, Part VI," by V. E. Hoggatt, Jr., and
D. A. Lind, Fibonacci Quarterly, Vol. 5, No. 5, 1967, pp. 445-460. From

time to time, as space permits, more generating functions and special results
will be placed in this column in order that they may be properly recorded.

Thanks to Kathleen Weland for verifying these.

o P, (x)
z 3, x" = k k=0,1,23
prd n 1- 3x - 6x%+ 3x3 +x!

P(x) = 8 - 23x - 24x% + x?

Py(x) = 1 + 24x - 23x% - 83

Py(x) = 27 - 17x - 11x% - x3

P3(x) = 64 + 151x - 82x% - 27x2
= ; n Pk(x)
ZF¢+1<X = k=0,1,2,3,4
— " 1 - 5x - 15x2 + 15x% + 5x4 - x5

Py(x) = x - 4x% - 4x + x¢

Pix) = 1 - 4x - 4x2 + x3

Py(x) = 1 + 11x - 14x® - 5x3 + x4

Py(x) = 16 + x - 20x2 - 4x% + x4

Py(x) = 81 - 220x - 244x% - 79x% + 16x?

Q0
e K 1 - 8x - 40x% + 60x3 + 40x% - 8x5 - x

k=0,1,2,3,4,5

Py(x) = x - 7Tx* - 16x® + 7x? + %P
Pyx) = 1 - 7x - 16x% + T3 + x4
Py(x) = 1 + 24x - 53x% - 39x® + 8x! + xb

(Continued on p. 191)
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LINEAR DIOPHANTINE EQUATIONS WITH NON-NEGATIVE PARAMETERS
AND SOLUTIONS

THOMAS M. GREEN
Contra Costa College, San Pablo, California

1. INTRODUCTION

Solving equations, where we are required to find only the integral solu-
tions, has some historical interest. These equations are known as Diophantine
equations, after Diophantus of Alexandria, the first to treat these problems in
an algebraic manner.

There are innumerable problems that result infirst degree equations with
two unknowns, where it is required to find integral solutions, Such an equation

is called a linear Diophantine equation and is written as
(1) ax + by = n,.

It is usually stipulated that the parameters, a, b and n, are also integers.
However, if these parameters are rational numbers, (1) can be easily trans-
formed so that each parameter becomes integral,

Equation (1) is indeterminant in that there is an unlimited number of
solutions, and if we did not require integral solutions, the problem of finding
a solution would be simple. If, however, we restrict the solutions to be inte-
gral, the problem of finding these solutions is no longer simple, and in fact
there may be no solution. Yet, if a solution does exist, the total number of
solutions is still unlimited.

The problem warrants more attention by the added restriction that the
solutions be non-negative pairs, If this restriction is imposed upon the par-
ameters as well, then if a solution exists, the number of solutions is finite,
The problem of finding these solutions and determining the number of such
solutions has occupied much attention throughout the history of number theory
[1, Chap. II].

The purpose of this paper is to give an explicit formula for the general
solution of (1) and to establish the relationship that exists between the param-

eters when no solution exists,

(Received December 1966)
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2. PRELIMINARY REMARKS

Before developing the relationships above some remarks pertaining to
historical developments, topical concepts, and the existence of solutions are
in order,

Euler proved that Eq. (1) is solvable in integers when (a,b) = 1, i.e.,
they are relatively prime [ 1, p. 47|, and Gauss proved that the equivalent of
(1) is solvable in integers if and only if (a,b)in [1, p. 54]. In view of these
results and the general conditions imposed on (1), i. e., the solutions and par-
ameters are to be non-negative integers, there is no loss of generality by
assuming (a,b) = 1.

If (x4,yy) is a solution of (1) in integers and (a,b) = 1, then all other

solutions will be given by

X = x4 + bj
(2)
y =y - aj

where j is an integer[ 2, p. 29].

It is for this first solution that we seek an explicit formula, This can be
accomplished easily with the Fermat-Euler Theorem applied to the congruence
ax = n (modb). Such a result has advantages over other methods of solution,
such as, algorithms involving a succession of recursive steps. The Fermat-
Euler Theorem involves the concept of Euler's function, denoted ¢(b), which
is equal to the number of natural numbers less than b that are coprime with

b. An explicit formula for this value is given by

- S S TR AT I D _ 1
@) d)(b)_b.(l P1) (1 Pz) (1 Pr)’

where py, P, ++-, P, are the different prime factors of the natural number
b {2, p. 24]. The statement of the Fermat-Euler Theorem then becomes

[3, p. 63]

(4) a®® = 1 (mod )
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Assuming that a, b and n are non-negative and (a,b) = 1, then if
either a or b equals 0 or 1, then the determination of the solution of (1)
becomes a simple case. Hence, in what follows we assume that both a and b
are greaterthanl., This implies that a # b, since if a = b, then (a,b) =
(a,a) = a, but (a,b) = 1, hence a = b = 1, a contradiction.

As a final remark we might consider the graphical representation of this
problem, Under the imposed restrictions, the graph of equation (1) is con-
fined to the first quadrant, We note that (1) with non-negative parameters
represents the family of all line segments whose endpoints are the rational
points of the x and y axes. Thus, the line segment determined by the end-

points

has the equation

rgx + spy = pr.

This is a form of (1) where rq = a and sp = b, and pr = n. Now we are
ready to examine the general solution.
3. THE SOLUTION

The explicit formula involves the concept of the principal remainder

modulo m, for which we may use the following notation:
DFN, (PRINCIPAL REMAINDER):
(5) [y modm)] = x iff x =y (modm) and 0 < x=<=m-1

The following lemma, that is easily verified, though not essential to the deriva-

tion of the explicit formula, makes the solution of a specific example feasible,
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Lemma,

n n
(6) [l y; modm)jj = TI i y; (mod m)]] (mod m) .
i=1 i=1

As a special consequence of this lemma we may note that,
n n
(7 [ v (modm)] = [y (modm)]" (modm).

Since the number of solutions of (1) will be finite, the method of solution will
be to find the minimum positive integral value of x (or y), and then to find
the corresponding value of y (or x) which will necessarily be maximum and
then to subtract multiples of a (or b) to obtain the set of all possible non-
negative solutions of (1). The following formula for the minimum value of x
is essentially due to Bouniakowski, and independently, Cauchy [ 1, pp. 55-56].

Theorem, If the equation, ax + by = n, has non-negative parameters,
a, b, and n, and a= 1 and b= 1, and (a,b) = 1, then whennon-negative
integral solutions exist, the minimum non-negative integral value of x, which

satisfies the equation such that y is also a non-negative integer, is given by

$(b)-1 (mod b)] .

(8) min [[na

Proof. The remarks made inSec. 2 claimthat there is no essential loss
of generality by assuming the above conditions, It is important to note that we
must assume a value of n such that non-negative solutions do exist. There
does exist a f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>