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THE LINEAR DIOPHANTINE EQUATION IN n VARIABLES 
AND ITS APPLICATION TO GENERALIZED FIBONACCI NUiBERS 

LEON BERNSTEIN 
Syracuse, New York 

1. SUMMARY OF RESULTS 

The solution of the Linear Diophantine Equation in n unknowns, viz. 

CjX-j + CoXo + a e B + C X = C I I L 6 n n 

with 

n > 2; c i ! c 2 5 ' , , , c n 5 c 

integers is a problem which may occupy more space in the future development 
of linear programming,, For n = 2 this is achieved by known methods — 
either by developing c2 / c j in a continued fraction by Euclid's algorithm or 
by solving the linear congruence Cĵ q = c(c2). For n > 2 refuge is usually 
taken to solving separately the equation cjXi + c2x2 = c and the homogeneous 
linear equation cjxi + c2x2 + • • • + c x = 0 and adding the general solution of 
the latter to a special solution of the former, This is usually a most cumber-
some method which becomes especially unhappy under the restriction that none 
of the unknowns x.(i = 3 / 8 , , n ) vanishes, since in the opposite case the rank 
of the Diophantine equation is lowered* The first part of the present paper, 
therefore, suggests a method of solving the linear Diophantine equation in 
n > 2 unknowns with the restriction x. f 0 (i = 1, • • • ,n) based on a modi-
fied algorithm of Jacobi-Perron; it is proved that if the equation is consistent* 
this method always leads to a solution; numerical examples illustrate the 
theory. 

In the second part of this paper these results are being used to state 
explicitly the solution of a linear Diophantine equation whose coefficients are 
generalized Fibonacci numbers,, The periodicity of the ratios of generalized 
Fibonacci numbers of the third degree is proved using rational ratios only* 
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2 THE LINEAR DIOPHANTINE EQUATION IN n VARIABLES AND [June 

Concluding, an explicit formula is s ta ted for the l imit ing ra t io of two s u b s e -

quent genera l ized Fibonacci numbers of any degree by m e a n s of two s imple 

infinite s e r i e s . F o r this purpose the author repeatedly ut i l izes r e s u l t s of his 

previous pape r s on a modified algori thm of J a c o b i - P e r r o n . 

2. THE STANDARD EQUATION 

A Linear Diophantine Equation in n unknowns 

(1*1) CjXi + c2x2 + «• ° • + c x = 1, n > 2 

will be called a Standard Equation of Degree n (abbreviated S. E. n) if the 

following r e s t r i c t i ons on i t s coefficients hold: 

a) c. a na tu ra l number for every i = 1, • • • , n 

n 

(1.2) 

b) 1 < ct < c2 < • • • < c 

c) ( C i , c 2 , - " s c n ) = 1 ; 
d) c. 7 c. . ; i , j ̂  1, i + j ^ n ; 

l 
e) 

i+3 
( V V °9'9 ^n-i* = d > 1; ki'kj = 1 ' " " ' n ; 

k. t k. ; ( i , j = l , - - - , n - 1) . 

A l inear Diophantine equation in m unknowns with in tegra l coefficients 

(1.3) a ^ i + a2y2 + • • • + a m y m = A, (m > 1; a. f 0; i = 1, • • • ,m) 

will be cal led t r iv ia l , if 

(1.4) a. = 1 for at leas t one i ; 

o therwise it will be called nontr ivia l . This notation i s justified; for let be 

la. I = 1 in (1.3). Then a l l the solutions of (1.3) a r e given by 

Yi> Y2> • • ' » y ^ Yi+1» • • • > y m ^ y in t ege r s , 1 < i < m ; 

y. = a. (A - aiyi - a?y? - • • • - a. v. - a. , v . , , - • • • - a y ) ; J i I 1 J 1 lJl i-ri-i l+ri+i nrm ' 

and similar for i = 1, i = m. 
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Let equation (1.3) be nontrivial ; it will be called reduced, if 

(1.6) (a1? a2, • • • , a m , A) = 1 

nonreduced, if 

(1.7) (al9 a2,° • • , a m , A ) = d > 1 . 

With the meaning of (1.7), (1.3) can always w* 1. o. g. be reduced by cancel l ing 

d from the coefficients a j , • • ° , a m , A. 

As is well known, (1.3) i s solvable if 

(1.8) (at, a2, e" , a m ) A , 

o therwise unsolvable. 

Theorem 1.1. Every reduced nontr ivia l solvable equation (1.3) can be 

t r ans fo rmed into an S. E. n. 

Proof. We obtain from the conditions of Theorem 1.1. 

(1.9) (a l 5 a 2 , • • • , a m , A ) = 1; Ja. j > 1, (i = 1, • • • , m) . 

Substituting in (1.3) 

(1.10) y. = Az. , (i = l , - « - , m ) 

we obtain 

(1.11) atZi + a2z2 + . . . + a m z m = 1 . 

Since (1.3) i s solvable, we have (aj, a2,s e - , a m ) A, which, together with (1.9), 

y ie lds 

(1.12) (al9 a2, • • • , a m ) = 1 . 

Let denote 
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(1.13) z k . = u k . if b k i = a k . ^ 0 , 

(1.14) z k . = -u k . if b k . = - a k . > 0 (lq = 1, • • • , m) . 

In v i r tue of (1.13), (1.14), equation (1.11) takes the form 

(1.15) bjUj + b2u2 + b m u m = l ; (b^bg,• •• , b m ) = 1 . 

We can now p r e s u m e , without loss of genera l i ty , 

(1.16) l < b 1 < b 2 < b 3 < - - - < b m . 

Let b . be the f i r s t coefficient in (1.16) such that 

(1.17) b . | b k . k > i , s = l , • - • , m - n ; m - n m - i ; i + l < k < m . 
1 | AVS S b 

Putt ing 

bkcj = U3* ' "(s = l , . . . , m - n ) 
(1.18) S S * 

U. + tiU, + toUt + • • • + t Ui, = V. , 
i 1 k4 * k2 m - n K m - n i 

we obtain from (1.15), (1.18) 

h<VLi + b9Uo + • • • + b . u. + b.v. + b u + • • • + b r .u« . = 1, 
n
 1 1 2 l i-i 1-1 i i rj rj r n - i *n-i 

( 1 . l b ) ; I 
b . A b , b , • • • , b r . ; i + 1 < r < m, (q = 1, • • • , n - i) . l I r-t' r 2

 x n - i q ' ^ ; 

We shal l prove 

(1,20) (bjL,b2, — , b . ^ b - . b ^ b y , • • • , b ^ . ) = 1 . 

Suppose, 

( b l f b 2 , ^ * , b i _ 1 , b i , b r i , b r 2 , • • • , Kn^) = d > i ; 

we would then obtain, in view of (1.17), 
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(bl9h2re° s b i 9 b i + l s • • • , b m ) = 

(bls b 2 , • • • , b^l9 b i s b k j , • • • , b k m _ n , b r i , • • • , b r n _ . ) > 

( b i , b 2 , - - - , b i _ 1 , b i , b r i , b r 2 , - - - , b r n _ i ) = d > l , 

c o n t r a r y to (1.15) 

If t he re exi; 

a s before; o therwise we obtain from (1.19) denoting 

If t he re ex i s t s a b r such that b r b r , (p > q) th is p r o c e s s i s repea ted 

(1.21) b j = h j * ® = 1 » # , - » i ) » u j = vj» (3 = 1* — , i ~ 1) I 
b r j = h i + j ; u r . = v . + j , (j = l , - - - , n - i ) , 

hjVj + h2v2 + . . . + h ^ + h . + l v i + 1 + • • • + h n v n = 1 f 

(1.22) i < h 1 < h 2 < . - . < h n ; ( h l f . . . f h n ) = 1, h . | h . ; j > i . 

I t should be noted thatf in v i r tue of (1.18), the va lues of u l 9 u^ . u^ ,* •• , u k 

a r e obtained from those of v. In (1.22) a s follows 

(1.23) u, , * • ° s Uk any in tege r s ; u. = v. - tiUv - • • • - t u, 
kj* Km~n J & I I * Ki m - n k m „ n . 

If the h. (i = 1, • • • , n) of (1.22) do not fulfill conditions e) of (1.2), we choose 

n different p r i m e s p. such that 
i 

(1.24) p. | h i h 2 « - h^ , (i = 1,•••,!!) ; p* > p2 Pn 

and denote 

(1.25) P1P2— P n = p>° v i = P [ l p x i »' c . ^ p . W , (i = 1,•••,!!) 

With (1.25) equation (1.22) takes the form (1.1). Since 

ct = hjpj *P = hjpgpg • • • p m > £4 , 

we obtain 
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(1.26) C l > 1 

We further obtain, for i >: 1, and in virtue of (1.24) 

c. = h .p^P < h . ^ p r 1 ? < h.^pT* P = c . , I r I l + n i + r i + 1 i+i ' 
( L 2 ? ) c . < c i + 1 (i = l f 2 , - . . , n - l ) . 

But 

(p^P, . * . , p~JP) = 1, and (h^hj, ••*, hn) = 1 , 

and since p. / h ^ • • • hn, we obtain, on ground of a known theorem 

(hiP^P, h 2 p^ , • • • , h ^ P ) = 1 , 

so that 

(1.28) (CijCg, • • • , cn) = 1 . 

We shall now prove that the numbers c. (i = 1, • • • , n) from (1.25) fulfill the 
conditions e) of (1.2). We shall prove it for one (n - 1) tuple of the c ; the 
general proof for any (n - 1) tuple is analogous. We obtain 

(cA, c2, • • • , c ^ i ) = (hjpi P, h2pj P, • • • , hn^p^i jP) = 

(hiP2P3 • • • Pn» h2PiP3 • • • Pn> • • •» nn-iPi *' * Pn-2Pn) ~ Pn > 1 • 

By this method we obtain^ indeed, generally 

(1.29) ( c^ , c ^ , . . * , x k n - i ) = p k n > 1, k. t k. for i t j . 

Thus Theorem 1.1 is completely proved, 
A Linear Diophantine Equation in n unknowns which satisfies conditions 

a),b),c),d) of (1.1) will be called a Deleted Standard Equation of Degree n 
(abbreviated ST. E. n). Let 
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h1v1 + h2v2 + •* * + h v = 1 

be an Sf, E. n. We have proved that every nontrivial reduced solvable Diophan-
tine equation can be transformed into an S\ E. n, whereby n "̂  2. 

An n-tuple of integers (xp x2, • • *, xn) for which 

(1.30) hixi + h2x2 + ••• + h x = 1 , 

is a solution vector of S\ E. n; i t will be called a standard solution vector, if 
x. ^ 0 for all i = l , °« 8 ,n e As already pointed out in the Summary of Results* 
we are aiming at finding a standard solution vector of Sf. E. n. Since in the 
Sf

0 E. n condition e) of (1.2) it is not fulfilled, there must be at least one (n -
1)-tuple of numbers among the hj, • • • , h n which are relatively prime. We 
shall presume, without loss of generality, 

(1.31) (h1?h2, • • • , V 1 ) = 1 

and let (xi9 x2, • • • , x n - 1 ) be a standard solution vector of 

liiVi + h2v2 + • • • .+ h n _ 1 v n _ i = 1 • . 

Then (xi9 x2, • • • , xn_l9 0) is a solution vector of the Sf
8 E. n, but it is not a 

standard solution vector; such one would be given by the n-tuple# 

(xls xg, • * • , xn- i - thn , t h n - i ) , 
t any integer, x ^ ^ thn . 

Thus the problem for an S?. E. n which is not an S. Ee n is reduced to find a 
standard solution vector of an Sf. E. n - 1; this can be either an S . E„ n - 1, 
or only an Sr. E. n - 1. 

Theorem 1.2, An S9 Es n has only standard solution vectors,, 
Proof, Let (xl9 x2, • • *, x -̂, 0, 0, •• • , 0) be a solution vector of an S„ JE. ji, 

and let x. ^ 0, (i = 1,* • • ,k). It is easy to verify that k >: 2, and let be k 
^ n - 1. The arrangement of the components of the solution vector can be 
assumed without loss of generality. Then 
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(1*32) c ^ + c2x2 + • •• + c , x k = 1 ; 

but s ince 

(ci .ez. " • . c
k . c k + i , . . . . c ^ ) 

we obtain 

(cl9c2rmm ><%) > P n > 1 

which i s inconsis tent with (1.32). This p roves Theorem 1.2, 

Le t again 

ifVi + h?Vo + • • • + • h v = 1 1 1 *.* n n 

be an ST. E. n and 

(1.33) h1v1 + h9v9 + • • • + h v = 0' 1 1 * * n n 

i t s homogeneous par t . We shal l denote 

(1.34) D ( h l s — 9 h n ) -

foi v l f l v1>2 • • • v i , n - 2 h i 
th 2 Y2$1 v2 > 2 • • • v2 s i i -2 h 2 

th v v n n, i n,2 v h 
n,n-2 n 

t, v. . any i n t ege r s , 
(i = ! , • • • , n ; j = ! , • • • , n - 2) 

Q x HT i s the a lgebra ic cofactor of the e lement a, (l,uo) K^n K9n 

F o r any v. . the following identi ty holds 

(1.36) B(ht, • . • , h n ) = h i H I t n + h2H2 s l l + • • • + h n H n j n = 0. 
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Theorem 1.3. Let (xl9 x2, • • • , xR) be a solution vector of an Sf. E. n and 
(Hi n ,H2 j I 1 ,• • • , H n n ) be any solution vector of its homogeneous part; then 
infinitely many solution vectors of ST

e E. n are given by 

(1.37) (Xi_ + H l j n f Xjs + H 2 f n , - - ,x i l + Hnfl l) . 

Proof. This follows immediately from (1.30), (1.36) adding these two 
equations. 

2. A MODIFIED ALGORITHM OF JACOBI-PERRON 

Pursuing ideas of Jacobi [ 2 ] and Perron [3], the author [ 1, a) - q)] has 
modified the algorithm named after the two great mathematicians (see especially 
[ 1, m), n), p)]; one of these [ 1, p)] will be used in the second part of this paper. 
In order to find a standard solution vector of an S?, Ee n, the author suggests a 
new modification of the Jacobi-Perron algorithm as outlined below. 

We shall denote, as usually, by V the set of all ordered (n - 1)-
tuples of real numbers (a1? a2, • • • , a ^ j ) , (n = 2, 3, • ••) and call V the 
real number vector space of dimension n - 1 and the (n- 1) -tuples its vectors. 
Let 

(2.1) a<°> = ( a f U V - . a ^ ) 

be a given vector in V _ , and let 

(2.2) b<V> = P , f > b f » , . . , b « ) 

be a sequence of vectors in V ,, which are either arbitrarily given or 
derived from a* ' by a certain tr« 
duce the following transformation 
derived from a* ' by a certain transformation of V . We shall now intro-

(2.3) T,« - a<™> - T B - L - r f ) - *f>. - . a S - b« 1) 
a« - bf > n-i n-i 

t(v) ., b(v) j v = 0 f l i < 
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If we define the real numbers A : ' by the recursion formulas 

A|X ) = 1; A^ = 0; (i, v = 0 ,1 , • " ,n - 1; i / v) , 

n-i 
Ajv+n) = A(v) + J- b(v)A(v4j)f ( i = 0 , . . . f n - l ; v = 0 . V ) 

3=1 

then, as has been proved by the author and previously stated by Perron, the 
following formulas hold 

(2.5) D v = 
A<V> A ( V + 1 ) . . . AF*-* 

A(v) A(v+i) . . . A(v+n-i) 
n~i n~i n - i 

( - 1 ) ^ . (v = 0 , 1 , . . . ) 

(2.6) ,(») = _1 J=1 J 1 
i A(v) + ^ n - i _(v)A(v+j) ' 

(i = 1, . . . , n - 1; v = 0, ! , • • • ) 

(2.5) is the determinant of the transformation matrix of Ta ; a further im-
portant formula proved by the author in [ l , p] is 

(2.6a) 

1 

a|0) 

af> 

a<°> 
n - l 

A | V + 1 ) • 

A< V + 1 > • 

A<v+1) • 

A ^ • n - l 

, , A(v+n-i) 

. . A | v + n - 0 

. . A (v + n - l ) 

, . A(v+n-l) 
n - i 

v = 0,1," 
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In the previous pape r s of the author the vec to r s b w e r e not a rb i t r a r i l y 

chosen, but der ived from the v e c t o r s a^ by a specia l formation law. The 

na tu re of this format ion law plays a dec is ive ro le in the theory of the modified 

a lgor i thms of J a c o b i - P e r r o n . Both Jacobi and my admired t eache r P e r r o n used 

only the formation law: 

(2.7) b j v ) = [ a | v ) ] , (i = l , - - - , n - 1; v = 0, 1, • • •) 

w h e r e [ x] denotes , as cus tomary , the g r ea t e s t in teger not exceeding x. In 
this paper the modification of J a e o b i - P e r r o n T s a lgori thm r e s t s with the follow-
ing different formation law of the b . 

& I 

blv) = 
biv) = 
b ( v ) = 
Dk 

- a<v> if a|v> f [a<v>]; 

= a|v) - 1 if a|v) = [a}v)l 

= [a[v)] (k = 2 , - - - , n 

(2.8) 

1; V = 0, ! , - • • ) • 

It may happen that for some v a . = ("a. 1 for every i. In this c a s e the 
1 (v) 

a lgor i thm with the formation law (2,8) mus t be r ega rded as finished, and b . 
= a. , (i = l , , , 8 , n - 1). The a lgor i thm of the v e c t o r s a as given by 

(2.3) is called per iodic if t he r e exist two in tegers p, q (p > 0, q > 1) such 

that the t ransformat ion T yields 

(2.9) T V + q = TV , (v = p , p + ! , - • • ) 

In c a s e of per iodici ty the v e c t o r s a (v = 0, p, • • • , p - 1) a r e said to form 

the preper iod , and the vec to r s a (v = p, p + 1, • • • , p + q— 1) a r e said to 

form the per iod of the algori thm; minp = s and minq = t a r e cal led r e s p e c t -

ively the lengths of the p reper iod and period; s + t i s cal led the length of the 

a lgor i thm which i s pure ly per iodic if s = 0. 

3. A STANDARD SOLUTION VECTOR OF S. E. n 

Let 
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(3.1) CJXJ + c2x2 + • • • + c n x n = 1 

be an S. E. n; let the given vector a' ' in V have the form 

(3.2) a(0) = (a{0 )
f . . . ,4-i)5 *? = ci+i/ci ^ = V " . n - 1 ) . ' 

The main result of this chapter is stated in 
Theorem 3.1, Let the vectors a* ' be transforms of the vector â  ' 

from (3.2), obtained from (2.3) by means of the formation law (2.8); then there 
exists a natui 
integers, viz. 
exists a natural number t such that the components of the vector a' ' are 

(3.3) a( t ) = ( a P , • • . , a ^ ) , a.(t) integers (i = 1,-• • ,n - 1) 

a i s 

Proof. We obtain from (2.8), since ci / c 2 and, therefore, [aj ] ^ 

.(o) (3.4) b | u ; = [c i + 1 / c j ] , (i = 1,• • • , n - 1) . 

From (3.4) we obtain 

c . + = b. 'cj + c. , (c. ' an integer) , 

0 < c.(1^ < c ̂  ; c ^ = cj9' (i = 1, • •- , n - 1) I n n i' v 9 s i 

From (3.2), (3.4) and (3.5) we obtain 

c c - c ( l ) 

a(o) _ b(0) = ! i+L _ i + i * 
i i Cj c 4 

(3.6) ^ . i p . ^ , ^ . ^ . ^ . (k = v . , . n . , 

and from (3.6), in view of (2.3) 
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(3.7) 

so that 

ai0) =41/^ • fl = l . - . » - D . 

bi(1) = [ ° { + , / 0 ^ ' d = 2 . . . . . n - l ) ; 
(3.8) bj1* = [cJVoP] . if ePjof* . 

b^ = (ojV0!0)-1 ' i f ^ M * • 

If e\ = 1, Theorem 3.1 Is true with t = 1; let uss therefore, presume that 
c j f ' > 1. Of the two possible cases* viz, I) c j 1 ' c | ^ and II) c f / c f , we 
shall first investigate case II). Here we obtain 

ci+i = b i l ) c i ! ) + c i 2 ) * (c{2) a n i n t e S e r ) » 

(3.9) 0 < c.(2) < c^2) ; c^2) = c ^ , (i = 2,®8 %n - 1) ; 

0 < Cl
(2) < c<2) 
1 n 

We obtain^ comparing (3,5) and (3.9) 

(3.10) 0 < Cj(2) < c P 

Before investigating case I), we shall prove the following 
Lemma 3.1.1. Let the vector a'v* in the modified algorithm of Jacobi-

Perron with the formation law (2.8) and the given vector (3.2) have the form 

oai) a ( v ) = ( _ s „ ^ . . , ^ f (v = 0 ? l r . e ) 

then 
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(3.12) (c<V>,cf>, . . . , c < V > ) = l . 

Proof. The lemma is correct for v = 0, in virtue of (3.1) and (3.2). 
Let it be true for v = ks viz. 

(3.13) a<k> = 4 g (of». c f , . . . . o W ) , ( c ( k ) , c l k ) , . . . , 4 k ) ) = 1 . 
c i 

From (3.13) we obtain 

integers, (i = 1, • • • , n - 1). 
(3.14) 

n ^ (k+i) ^ (k) 0 < c: ; < c\ ' 

Let us denote 

,(k) _ (k+i) 
(3.15) <>} ' = % 

(3.16) ( c r ^ c ( k + 1 ) , . . . , c f 1 ) ) = d . 

If d = 1, Lemma 3. 1.1 is proved; let us , therefore, presume 

(3.17) d > 1 . 

We then obtain from (3.14), (3.15), (3.16) 

(3.18) d|c(k+1>; c f ^ = c<k> ; d|cg> . (i = ! . . . . . » - 1) . 

so that 

(3.19) (c<k), c2
(k), • • - , c j p ) = > d > 1 ; 

but (3.19) contradicts (3.13), and the assumption that d > 1 is false which 
proves the lemma. We shall return to case I) and presume 
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(3-20) °i1)|ci+)
1 ' a = 1 . 2 , - - - . m ) . 

In view of Lemma 3.1.1, the restriction holds 

(3.21) m < n - 2 , 

since, permitting m = n - 1, we would obtain 

(o{V...oJ>) = cf>- 1 , 

contrary to Lemma 3.1.1. It then follows from (3.20), in view of (2.8) 

# = (b<» + Dof> ; o « = b«oi*> . ( i = , - - , m ) ; 

o « . . - e f o J * + o & , l * o » ^ o j * 
f3 221 ' 'm + 2 "m+i"1 "m+i ' "•" "m+i 

_(l) = b ( l ) C ( D + C ( 2 ) 
m+2+j m+i+j J m+i+j 

,(2) ^ „(i) 
"m+i+j 0 < c ^ . < + . < c } u , (j = 1, • • • , n - m - 2) . 

From (3,7), (3.22), we obtain, denoting 

(3.23) C!(l) = c® 

a}1* - bj(l) = 1 ; a.(1) - b.(l) = 0 , (i = 2 , - - , m ) ; 

(3.24) a « - b « = c<*> /cfe> ; 
1 ' m+i m+i m + i / n 

a(1> - b ( l > • = o » , / c « , ( j = i , . . . , n - m - 2 ) . m+i+j m+i+j m+i+j/ n * u ' ' 

From (3.24) we obtain, in view of (2.3), 

a(2) = 0 , (i = l , . . . , m - l ) ; ^ = c® /c® ; i $ x 99 n m m+i/ n 

(3,25) 

n =0£**i/°n' 0 - V - . n - m - 1 9 ; a ^ = 1 
(2) 

aN ' m+j 
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The reader should well note that all the a r ' (i = 1,* • • , n - 1) have the same 
(o) (o) 1 (2) / (2) (2) 

denominator c w ; for if a : ' = 0 we put a:7 = 0 / e w ; if av ' = 1, we put 

a(2) = 0 » / 0 « 
n-i n / n 

Combining (3.5) and (3.22), we obtain 

(3.26) 1 < C S + 1 < C i 1 ) < : Cl * 

From (3.25) we obtain, in view of (2.8) and recalling that 

c^L^- < ci1* - c(2 ) , (3 = l , - « - , n - m - 2 ) , m+i+j * n ' VJ 9 } 

(3.26a) b f = - 1 ; b ^ = 0 ; (i = l , . . . , n - 3 ) b j ^ = 1 , 

and from (3.25), (3,26a) 

a(2) _ b(2) = 1 ; a(2). _ b(2). = 0 f (i = l , . . . , m - 2) ; 

a(2) (2) = c(2) / c ( 2 ) 
(3 27) m m ni+i / n 

a2+j " bS+3 = o S W 0 ? ' 0 = V• • .n - m - 2) ; 
a<2> - b<2> = 0 . n-i n-i 

From (3.27), we obtain, in view of (2.3), 

af> - 0 , (i - ! , • • • , m - 2 ) ; a j j ^ - c » + 1 /«? •• 
(3.28) a

m _ 1 + j - Cm+i+3 
a(3) = Q a(s) = x 
n-2 n-i 

j/0? ' (j = l . - " . n - m - 2 ) ; 

We shall now prove the formula 
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ajk+1> = 0, (i = l , . . . , m - k ) ; a ^ = c<2> / c <2> ; i v 7 m-k+i m+i / n 

(3,29) 

k = 2, • • • , m - 1 . 

Proof by induction. Formula (3.29) is valid for k = 2, in virtue of 
(3.28), Let i t be true for k = v, viz, 

a (v + I = 0, (i = i . . . . . m-v) ;a< k + 1 > = o « / > i ' K 9 » n m _ v + i m + i / n 

<3-30> am-v+1+3 = C 2 + 1 + j / C " 2 ) • O = V • • . » " m - 2) ; 
(V+1) = 0 , (s = l , . . . ,v - l ) ; a£? = 1 a n-v-i+s 

From (3.30) we obtain, in virtue of (2.8) and (3.22) , 

(3.31) b|v+1> = - l ; b ^ = 0, (i = l , . . . , n - 3 ) ; b j ^ > = 1 , 

and from (3.30) and (3.31), 

a(v+D _ hW = 1 ; a ^ - b ™ = 0 , (i = l f • . • , m - v - 1); 

(V+i) _ (V+i) = (2) / (2) . 
m-v+i m-v+i m + i / n ' 

n 32> Jv + 1> - b ( v + I ) = o W / c ( 2 ) ft = 1 ••• n - m - 2) ; 
(3.32) a

m-v+i+j bm-v+i+j C m+i+i / c n ' ° x« ' n m &) ' 
(v+i) _ b (v+i) = o s (s = 1 . — . V - 1 ) 

n-v-i+s n-v-i+s l ' 
a (v + l ) _ b (y+ l ) = 0 
n-i n-i 

From (3.32) we obtain, in view of (2.3), 
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Jv+2) 
1 a ; • - . = o, (i = l , . . . , m - v - l ) ; a ^ > = c<2> /a® ; ' v ' ' ' m-v m+i/ n 

,(V+2) _ „(2) 
] / n <3-33> a m - n j = C m + i + j / <C • 0 = 1. ' • ' > n - m - 2) ; 

a ^ > = 0, (8 = l . . . . . v ) ; a ^ > = 1 . 
n-v-2+s ' l ' ' ' n-i 

But (3.33) is formula (3.29) for k = v + 1; thus formula (3.29) is completely 
proved, We now obtain from (3.29), for k = m - 1, 

a ( m ) = 0 • a i m ) = c(2) / c ( 2 ) • a i ° ' a2 c m + i / c n ' 

(3.34) a ^ f = c 2 + 1 + . / c ® , (j = 1, • • • ,n - m - 2) ; 

a(m) = = _ 2 ) (m) = x 
n - m + s 9 x 9 9 / n _ 1 9 

and from (3.34), in virtue of (2.8) and (3.22) 

/o or-x T-(m) - , (m) „ ,. - oV , (m) . 
(3.35) bj ; = - 1 ; b j + i

; = 0 , (I = l , - - - , n - 3 ) ; b ^ ' = 1 . 

From (3.34), (3.35) we obtain 

(m) __ (m) _ (m) _ (m) = (2) / (2) 
H - Di ~ 1. H &2 c m+i / c n 

(3.36) a2
(+f - b ^ = c ^ / c ^ , (j = l . . . - . , n - m - 2) ; 

(m) (m) = ( s = i , . . . , m . i ) , 
n-m+s n-m+s ' v ' ' ' ' 

and from (3,36), in view of (2.3) 

P* - <&/•? : air" - •&*,/•?. « - V-,n-»-a>; 
(3.37) 

a(m+i) 
n-m-i+s 0 , (s = ! , • • • , m - 1) ; a ^ ' = 1 
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From (3.37) we obtain, in virtue of (2.8) and (3.22), 

(3.38) b<m+1> = 0 , (i = l , . . . , n - 2 ) ; b ^ = 1 . 

and from (3.37), (3.38) 

a(m+1) _ jnm, = c(2) / (2) 
i i m+i+3 / n 

(3.39) ^ ~ b ^ + 1 ) = c g + 1 + j / / c f , 0 = 1 . ' ' • . n - m - 2) 

a ( m + 1 ) _ h ( m + 1 ) = 0 f * = 1 • • • nrt 
an-m-i+s bn-m-i+s ° ( s lf >m> 

From (3.39) we obtain, in virtue of (2.3) 

(m-t*) = (2) / (2) fi = 1 . . . n - m - 2̂  • 
a j c m + i + j / cm+l • 0 X' , n m *> ' 

a ( ^ ) = 0 j ( s = ! , . . . , m ) ; a<mHi!> = c<2> /c<2> , 
n-m-2+s ' y ' ' f n-i n / m+i 

or 

a(m+2) = c M / c r ) ( fl = V . . . » - m - 2 ) ; 

<^ e^2+s - o. <* = v . - ) ; e ^ = - r * /cim+2)» 
c £ + i = c f + 2 > , (i = l ) . . . , n - m - l ) ; c j ) = c f + 2 ) . 

From (3.7), (3.9), we obtain 

a(D _ b.(D _ e(2) / (i). „(i). _ b(i). = g>. / (l) 

(3.41) 
(j = V . n - 2 ) 

and from (3.41), in view of (2.3), 
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( 0 = c_(2) 
n 

(3.42) aj2) = o[% / o ? ) , 0 = 1, • . . , n - 1 ) ; c 

We have thus obtained two chains of inequalities 

0 < cf> < c?> < c, ; 0 < c | m ^ < el1) < c, 

If Cj or c | ' = 1, Theorem 3.1 is proved. Otherwise we deduce from 
(3.40) or (3.42), which show that the vectors ar2' and a* "' have the same 
structure of their components, how the algorithm is to be continued. In any 
case we obtain a chain of inequalities 

(mk) ( n v p (m2) 
0 < Cj, < C4 < • • - < : C l < cj ' < Cj , 

(3.43) 
m2 = 2 if cj1) 4 c2

(1) ; m2 = m + 2 if c ^ | c ^ , ••• 

( mi) and since the c. ' are natural numbers, we must necessarily arrive at 

(3.44) c p = 1, t = m k > 1 . 

This proves Theorem 3.1. 
We are now able to state explicitly the standard solution vector of the 

S. E. n (3.1) and prove, to this end, 
Theorem 3.2. A solution vector of the S. E. n is given by the formula 

X = (xpx2$**-,xn); x. = ( - l ^ ^ B . ^ , 
(3.45) 

(i = V - - , n ) 

where the B. are the cofactors of the elements of the n row in the i,n 
determinant 
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A^ At2) • ' ' 4+U) 
21 

(3.46) D t+l 

(t+i) A(t+2) A (t+n) 

\ (t+l) (fri*) e e e A(t+n) 
I n-i n-l n-l 

In D,+ t has the meaning of (3.44) and the 

A. (v) (i = 0, 1, • • • , n - l ; v = t + 1, t +'2,• • • , t + n) 

have the meaning of (2.4) and are obtainable from the modified Jacobi-Perron 

algorithm of the given vector a ^ from (3.2) by means of the formation law 

(3.8). 

Proof. We shall recall that, in virtue of the formation law (3.8) all the 
numbers b: ' and, therefore, the numbers 

i s s 

A) 
i 
(V) 

are integers. For c\ = 1 we obtain 

(i = 0, 1, • • • , n - 1; v = 0, 1, • • •) 

(t) _ 

a « . = ( o P . o P . . . . . o « ) = ( a P . » ' . - £ , ) . 
(3.47) 

b.« = a « = c % , 
1 1 1+1 ' 

(i = 1, • • • , n - 1) . 

Recalling formulas (2.4), (2.6), and (3.2), we obtain 

a: 
I 
(0) -

Af +I!g af)Af+J> 

AF^^W) 
1 
(t+n) 

,(t+n) 
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so that 

(3-48) c i + 1 / C l = Af + n > / A r > . ( i = l , - . . , n - l ) . 

From (3.48) we obtain 

c = c,A(t+n) A i t + n ) 
ci+l C l l / A° » 

and, since (e1,c2,» • • 9cn) = 1, 

(3.49) ( c ^ c ^ / i p * . o1AT)AitHi ) .---.o1A£f>/Ar)) = 1 

and from (3.49), in virtue of a known theorem, 

(c 1 Ar ) ,c 1 Ar ) ,o 1 Ap) , . . . ,c 1 A^) = A^K 

or 

(3.50) c1(Arn), Ar n ) , 4t+n), ' A n - i > 
- A(*n) 

From (2.5) we obtain 

D t+i 

(t+i) .(t-n) (t+n) 

UjW) AjW) . . . A(t+n) 

, (t+i) (W) . . . A(t+n) 
1 n-i n-i n- i 

(-D (t+l)(n-i) 

so that 

(3.51) (Arur'Arv-.AW) = i 
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F r o m (3.50), (3.51), we obtain 

23 

(3.52) = Aft+n> 

and from (3.48), (3.52), 

(3.53) c i + 1 = A. ( t + n ) , (i = 0 , l , . . . , n - l ) 

(3.53) i s a m o s t decis ive r e su l t ; we obtain, in v i r tue of i t , 

(3.54) D t+l 

k(t+l) A(t-H8) 

A ^ ) A p > 

At*'* ot 

A(t+i) ( t a ) 
n - i n - i 

A ( t+n- i ) 
n - i n' 

- (-1) 
(t+i)(n-i) 

and from (3.54), denoting the cofactors of the c^ in D , . by B i (i = 1,# • • ,n) 

E B. c. = (-1) i,n I v ' 
(t+i)(n-i) 

i = i 

o r , mult iplying both s ides of this equation by (-1) (t+i)(n~i) 

(3.55) z «•*> 
(t+i)(n-i) B . )c . = 1 , i,n7 I 

i = i 

which p roves T h e o r e m 3,2. 

4. NUMERICAL EXAMPLES FOR SOLUTION OF Sf. E. n and S. E. n 

In th is chap te r we shal l i l l u s t r a t e ou r theory with t h r e e numer i ca l 

examples . 
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Let the S!. E. 4 have the form 

(4.1) 53x + 117y + 209z + 300u = 1 . 

The given vector a' ' has the components 

(4.2) a|0) = . 1 1 7 / 5 3 ; a2
(0) = 209/53; a|°* = 300/53 . 

Carrying out the modified Jacobi-Perron algorithm (2.8) for the vector (4.2), 
we obtain the sequence of vectors 

hf = (2, 3, 5) ; 

b( 1 ) = (4, 3, 4) ; 

(4.3) 
b( 2 ) = (0, 1, 1) ; 

b( 3 ) = (1, 2, 3) ; 

b( 4 ) = (1, 0, 2) . 

We find that a(4) = b ( 4 ) , so that 

(4.4) t = 4; t + 1 = 5 . 

From (4.3) we calculate easily, in virtue of (2.4) 

(4.5) 

A^5) = 4; A^6) = 5; A^ = 24; A^8) = 53 . 

A(5> = 9 ; AJ6) = 11; A<7) = 53; A<8) = 117 

A^5) = 16; A | 6 ) = 20; A | 7 ) = 95; A | 8 ) = 209 

A! 5 ) = 23; Ai6) = 28; A£7) = 136; A! 8 ) = 300 
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Since here (t + l)(n + 1) = 503 = 15, the determinant (3.54) is of the follow-^ 
ing form 

(4.6) 

4 5 24 53 
9 11 53 117 

16 20 95 209 
23 28 136 300 

-1 

from which we obtain, developing D5 in elements of the last column 

53 • 3 + 117 • 3 + 209 - (-1) +300- (-1) = 1. 

A solution vector of (4.1) i s , therefore, given by 

(4-7) X = (3, 3, - 1 , - 1 ) . 

Since X is a standard solution vector, there is not need to transform (4.1) 
into an S. E. 4. 

Let the S!. E. 4 have the form 

(4.8) 37x + 89y + 131z + 401u = 1. 

Proceeding as before, we obtain for the D,+ of (3.54) 

(4.9) 

1 

2 

3 

10 

2 

5 

7 

22 

7 

17 

25 

76 

37 

89 

131 

401 

= 1 • 

which gives the solution vector for (4.8) 

(4.10) X = (-6, -2, 0, +1) 

Since this vector has a zero among its components, we have to transform the 
S!. E. 4 of (4.8) into an S. E. 4. Here we choose 
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(4.11) P = 2 - 3 • 5 • 7; x = 30x!; y = 42yf; z = 70z!; u = 105u! . 

Now the S!. E, 4 takes the form of an S. E. 4, viz. 

(4-12) 1110x! + 3738y' + 9170z! + 42105uT = 1 . 

Carrying out the algorithm (2.8) of the given vector 

(4.13) a(0) = (3738/1110, 9170/1110,42105/1110) 

we obtain the vectors t r ' 

b ( 0 ) = (3, 8, 37); b( 1 ) = (0, 2, 2); b( 2 ) = (0, 1, 1) ; 

(4.14) b( 3 ) = (0, 0, 1); b( 4 ) = (29, 17, 54); b ( s ) = (1, 1, 2) ; 

b( 6 ) = (1, 0, 2) . 

Here 

t = 6, t + 1 = 7, (t + l)(n - 1) = 21, D7 = -1 

after calculating the A: ' , the determinant D7 from (3.54) becomes 

(4.15) 

3 272 552 1110 

10 916 1859 3738 

25 2247 4560 9170 

114 10318 20930 42105 

-1 , 

which gives the standard solution vector of (4.12) 

(4.16) Xf = (198, -23, -10, -1) , 

and, in view of (4.11) the standard solution vector of (4.8) 

(4.17) X = (5940, -966, -700, -105) . 
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Let the SJE. 5 be 

(4.18) 73x + 199y + 471z + 800u + 2001v = 1 

Proceeding as before, we obtain for the determinant (3.54) 

(4.19) 

4 

11 

26 

44 

L10 

21 

57 
136 

230 

576 

21 

57 
135 

230 

576 

22 

60 

142 

241 

603 

73 

199 

471 

800 

2001 

= 1 

which gives the vector solution 

(420) X - (0, -2, 0, 3, -1) e 

Since this vector has zero components, we have to transform the S!. E. 5 (4,18) 
into an S. E8 5e Here we choose 

(4.21) P = 2 • 3 • 5 . 7 * 11; x = 210x!; y = 330y!; z = 462zf; y = 770u!; 
v = 1155v? . 

The S8 E. 5 takes the form 

(4.22) 15330xf + 65670yf + 217602z! + 616000u! + 2311155v! = 1 . 

Carrying out the algorithm of the given vector 

(0) _ / 65670 217602 616000 2311155 
(4.23) ax 15330 9 15330 9 15330 9 15330 / " 

we obtain the vectors b^ ' 

b(0) = (4,14,40,150); b(1) = (0,0,2,3); b ^ = (0,0,0,1); 

(4,24) b(3) = (1,0,0,1); b(4) = (14, 8,1,18); b(5) = (1,0,0,1) ; 

.(6) (1,0,2,6); b(7) = (1,1.0.2);. b(8) (0,2,0,9) 



28 THE LINEAR DIOPHANTINE EQUATION IN n VARIABLES AND [June 

Here 

t = 8, t + 1 = 9, (t+ l ) ( n - 1) = 36; 

(v) after calculating the A„l ' , the determinant D9 from (3.54) takes the form 

(4.25) 

95 

407 

1349 

3818 

4323 

99 

424 

1405 

3978 

14925 

790 

3384 

11213 

31744 

119100 

1681 

7201 

23861 

67547 

253428 

15330 

65670 

217602 

616000 

2311155 

1 , 

which gives the standard solution vectors of (4.22) and (4.18) 

(4,26) XT = (1053, 26, -2, 13, -11) , 

(4.27) X = (221130, 8580, -924, 10010, -12705) 

5. THE CONJUGATE STANDARD EQUATIONS 

DEFINITION. The Diophantine equations 

clxi + C 2 X 2 + + cnxn ci , (v = l , . . . , t - 1) ; 

(j = l , . . . , n ) ; 

from (3.11); t from Theorem 3.1, 

c. from (1.2) , 

will be called Conjugate Standard Equations. 
In this chapter we shall find a solution vector for a conjugate standard 

equation and prove, to this end, 
Theorem 5.1. A solution vector of the conjugate standard equation (5.1) 

th is given by the vector whose j component is 

(5.2) x . = el)(v^(ti-DB(^) 9 {Y= v . . f t . 1 } 
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where the B. ' a r e the cofactors of the e lements in the n row of the 
de te rminan t 

(5.3) 

A(v+l) 

A | V + 1 ) 

A (v + i ) 
n - i 

A r 2 ) •• 
A r 2 ) •• 
A(v+i) . . 

n - i 

A (v+n-i) 

. Ap**"1* 

. A(v+n-i) 
n - i 

c i 

c2 

c 
n 

If (x\ , x% , • • • , x* *) i s a solution vec tor of the s tandard equation 

c l x l + C2X2 + C X = 1 , 
n n 

then (5.2) i s different from 

(•••, xjS . - • ) = ( . . . , x{°M0 ),--)0 = l , 2 , - - - ,n ) . 

Proof. As can be eas i ly ver i f ied from the proof of T h e o r e m 3 .1 , 

the re la t ion holds 

(5.4) a ^ = c f ^ / c f ^ , (v = 1, 2, . . . ) ; c}' ,w (o) 

We shal l f i r s t prove the formula 

n - i 
(5.5) A a<*> a<2> n - i n - l a ^ , ( v = l f 2 , . . . ) 

We obtain, for v = 1, in view of (2.4), 

n - i 
<*> + T a « A ^ ) = a « A0W = a « f r*4 3 3=1 n - i n - i 
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so that formula (5.5) is correct for v = 1. Let it be correct for v = k, viz. 

n-i 
<5.e> Af> • 2 .«A<"+» - £&.•• a« , * - lA-) 

j = l 

From (2.3) we obtain 

a)"' = far" ' / a:. . ' ) + D: ' , u - &,• • • ,u-x;k-l,2,- • •) 
(5.7) 3 

,f> = (aj^ /aj^>) + bf> . (J = 2.....n-l;1 

af> = ( l / a j ^ ) + bf» 

Rearranging the left side of the (5.6) by substituting there for a: ' the values 

from (5.7), we obtain 

n-i / a(k+i)A(k+j) 

AP.aPAr^El J ^ - + b f ) A ^ > ] a(k+i) 
5=2 \ n-i 

00 (2) o(k) 
a w a w • • • av ' 
n-i n-i n-i 

The left side of this equation has the form 

(k+i) n-i / a(k+i)A(k+j) \ n-i 

a n - i j=2 \ a n - i / j=2 

(k+i) _n- i (k+i) (k+j) Ao X J S , a H A0 + j A ? ) + ^ b ( k ) A ( k + j ) 
n-i 

a ( k + l ) 

a n - i \ i=i 

= (A^ + %^M+i))/^+A°k+n) = ( A ° k + 1 ) + % a f + 1 ) A ° k + 1 + j ) 
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We thus obtain 

n-i 
Aj (k+i) + T ^ a ( k + i ) (k+i+j) 2>l a(fc«) = a ( f l a « . . . a(k) 

n-i n-i n-i n-1 ? 

or 

n-i 
(5.8) A<k+1> + £ a j ^ A p j = a « a « 

n-i n-l 
. a ( t«) 

n-i 
3=i 

But (5.8) is (5.5) for v = k + 1, which proves (5.5). From (5.4), (5.5), we 
now obtain 

n-i 

A r> + x> ) A o v + j ) = 
j=i 

4»" of> 
,(v-i) 

n-i 
(5.9) A™ + ^ a f ) A(v + j ) = e / o p * . (v = 1 . 2 , . . . ) 

The reader should note that (5.9) holds for v = 0, too. We shall now return to 
formula (2.6. a), viz. 

i An •• 
a|°> A | V + 1 > •• 

a!°> A i v + 1 ) •• 

a(o) A (v + l ) . 
n - i n - i 

. A(V+Q-i) 

. A ( v + n - i ) 

. A (v+n- i ) 

A(v+n-l) 
A n - i 

i_ lLv(n-i ) 

A(v) +V n _ 1 a ( v ) A ( v + j ) 
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Substituting h e r e the va lues of a. ' f rom (3.2) and for 

n - i 

A^ + ] n alv)Aov+i) 

3=1 

from (5.9), we obtain 

A (v+i) 

c2/Cl Af+1) -

ca/ct Af+1) " 

(v+i) 

A(v+n-i) 

A(v+n-i) 

(v+n-i) 
A2 

n 2 n - i 
, . A(v+Q-i) 

n - i 

(-D v(n-i) 

/ (v) 

o r , multiplying both s ides by Cj and interchanging the f i r s t and the l a s t row 

of the de te rminant , 

(5.10) 

^ (V+i) A (V+2) 

A (V+i) A(V+2) 

A (V+i) A(V+2) 

A (V+i) A(V+2) 
n - l n - i 

Arn- ! ) ot 

Ar^ os 

A (v+n-i) 
n - i 

= (-1) 
(v+i)(n-iWv) 

F r o m (5.10) we obtain 

0 B(v+i) + _ R(v+i) c l J 3 i , n + ^ ^ . n + ' 
c B(v+D = , ^ ^ + 1 ) ^ - 1 ) (v) 
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or, multiplying both sides by (-1)^V 1>'n~1' 

(5.11) Z ^ ^ ^ ^ ^ = ^ ' 
j=l 

(5ell) proves the first statement of Theorem (5el). To prove the second state-
ment, we have to show that c\ ' cannot be a divisor of all the 

. ^(v+iHn-iWv+i) ,. 1 . 
xj = (-1)1 /v ; B ^ n

 ; , (j = 1, - . , n) 

To prove this, we recall formula (2.5), viz. 

(5.12) D v + 1 = ( - i ) ^ l ) ( n - i ) , 

so that 

(v+n) (v+i) A(v+n) (v+n) (v+i) = (v+i)(n-i) 
Ao ^i ,n + A i ±52,n + e 9 e n-i n,n { ' > 

or 

(5.13) A r n ) *l + Af + n ) x2 + • • • + A ™ xn = 1 . 

From (5.13) we obtain 

(5.14) (xi9 x2, — >xn) = 1 , 

and since c{* > 1 for v < t, the second statement of Theorem 5. l i s proved. 
It should be stressed that the case 

c(v1) = c(v2) = . . . = cjvk) 

is possible (1 < k < t). In this case we shall consider the conjugate equa-
tions CJXJ + c2x2 + • • • + c x^ = c\ 3 , (j = 1,° • • ,k) as different ones, since 
each of them will provide a different solution of (5.1) for the same c\ ' . 
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We shall solve some conjugate standard equations of (4.12), viz. 

lllOx1' + 3738y! + 9170zT + 4210u! = 1 . 

We calculate easily 

(5.15) eft = 408; eft = 290; c[® = 219; c(4) = 4; cjjs) = 2; t = 6. 

Calculating the A. on basis of (4.14) we obtain a solution of 

1110xf + 3738yT + 9170zf + 42105u! = 219 , (v = 3) 

Xf = (-31, -2, 0, 1 ) 

Similarly we obtain a solution of 

1110x! + 3738y? + 9170z! + 42105u! = -4 (v = 4) 

Xf = (-15, %9 1, 0 ) 

It should be well noted that the solution vectors of the conjugate standard equa-
tions are not necessarily standard solution vectors. 

6. GENERALIZED FIBONACCI NUMBERS 

The generalized Fibonacci numbers are defined by the initial values and 
the recursion formula as follows 

E f ) = F f > = ••• = F<n> = 0, F<n> = 1 ; 1 i n - i • ' n 

(6.1) 
*SL-I>8 ; k + l . n - 2 . 8 . 

j=0 

The numbers F : ' (i = 1, 2, • • •) will be called generalized Fibonacci numbers 

of degree n and order i. They are calculated by the generating function 
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(6.2) x1 1"17(1 - x - x* x1) =JjP^1 . 
1=1 

Let denote 

(6.3) f(x) = x n + x1"1 + . . . + x - 1 

f(x) from (6.3) is called the generating polynomial. This can be transformed 
into 

(6.4) f(x) = (xn+1 - 2x + l)/(x - 1), x / 1 . 

The equation 

n+i 
(6.5) ( x - l)f(x) = x - 2x + 1 = 0 , x £ 1 , 

has 2 real roots and (n - 2)/2 pairs of conjugate complex roots for n = 2m 
(m = 1,2,•••) and one real root and (n - l ) /2 pairs of conjugate complex 
roots for n = 2m + 1 (m = 1, 2,e * • ) . This is easily proved by analyzing the 
derivative of f(x). The roots of f(x) are , of course, irrationals. From (6.2) 
we obtain 

(6.6) F^n) = F^n) (x1,X2,*--,Xh). < v = l , 2 , - - - ) 

where F ' 1 1 ' (xlf x29 • • • , xn) is a symmetric function of the n roots of f(x). It 
will be a main result of the next chapter to find an explicit formula for the ratio 

(6.7) lim F& A f . 
V—>oo / 

In the case of the original Fibonacci numbersf viz, n = 2, this is a well-
known fact As can be easily verified from (6.2), the F ' ' have the form 

V ' ' I (m = 0 , l , ' - - - ) . 
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From (6.8) we obtain easily 

(6.9) lim F(2> / F ( 2 ) = (\/5 + l ) /2 
i—^GO m+i / m l v ' 

Of course, for generalized Fibonacci numbers, a limiting formula analogous to 
(6.9) can be given by infinite series, as will be solved in the next chapter. We 
shall use the notation 

(6.10) D (n) 

F(n) F(n) 
v v+i 

F(n) F(n) 
V+i V+2 

v+n-i 
F<n> v+n 

F(n) F(n) 
v+n-i v+n 

7(n) 
u v+2n-2 

(v = 1,2, — ) 

We shall prove the formula 

( 6 a i ) D(n) = (_1}(n(n-i)/2)+(v--i)(n-i) 

Proof by induction. We obtain from (6.1) 

D (n) 

Fp> 
Ff> 
F<n> x 3 

Ff) 
Ff) 
Ff)---x 4 

e e . 

o » • 

F ( n ) 
n 

F<n) n 
F ( n ) F ( n ) 

n n+i 
F (n) F (n) 

n+i n+2 

P(n) F(n) 
n n+i 

?(n) 
'2n~i 

0 

0 

0 

1 

0 

0 

o . . . 

n+i 

1 

1 F«> 
n+i 

1 F f ) F<n) n+i n+2 

F ( n ) 
2n-i 
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(6.12) D W = (_1}n(n-l)/2 ? ( n = 2 > 3 , . . . ) „ 

We further obtain from (681) 

37 

D<n> = 
V 

F<n> I 
V 

F ( n ) j 
v + i 

FW> j 
v + n - i 

(-if-1 

F ( n ) 
V 

! F ( n ) 
V+1 

F ( n ) 
v + n - i 

V+1 

V+2 

v + n 

F<n> 
V 

F<n> 
v + i 

F ( n ) 
v + n - i 

F ( n ) 
v - i 

F<n> 
V 

F<n> 
v+n-2 

V+1 

Fw . 
V+2 

F W . 
v + n 

. F
( n > 
v+n™ 

. F
( n ) 

v + n -

v+2n 

F(*> . 
V+1 

FC) • 
V+2 

v+n 

F ( n > 
V 

F < n ) 
v+i 

F W 
v + n - i 

. F ^ 
v+n-2 

. . F W 
v + n - i 

. . F<n> 
V+2n-3 

( F ( n ) + 
2 v v - i 

( F ( n ) + 
1 V V 

F ( n ) 
v + n -

F<n> 
v + n 

Fw 
v+2n 

^ n - i 

(n) + n - i 
-3 v+n-2 " i j = i 

. . F < n ) 

v+n-2 

v + n - i 

. . F
( n ) 

v+2n-3 

F ( n ) . . . 
v + i 

F ( n ) . . . 
V+2 

F ( n ) . . . 
v + n 

F w 
v - i 

Fw 
V 

F ( n ) 
v+n-

i 

-2 

= 

F ( n )
+ . ) 

v - i + j ' 
F<*>. ) v+j ; 

F ( n ) 
v+n-2+ 

•2 1 

F(n) 1 
v+n-2 1 

F<n> 
v + n -

F v+2n-

i 

-3 

= 

• 

We have thus proved the formula 

(6.13) DyW = ( - l ) 1 1 " 1 ^ . 
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From (6.13) we obtain 

D W = ( - D - ^ = (-irVi^X-, = = ( • 

. ^ (v- iMn- i^n) 

which, together with (6.12), proves (6.11). We have simultaneously proved 
Theorem 6.1. A vector solution of the S\ E. n 

(6.14) %»* + '&* + -•+*$**>-1 

is given by the formula 

(6.15) x i = < 
^(^n-D/W-iXn-i) (. = v . . i n ) f 

l . n 

th where the B. are the cofactors of the elements in the n row of the deter-i,n 
minant (6.10). 

We shall now turn to the periodicity of the algorithm for ratios of cubic 
Fibonacci numbers and prove 

Theorem 6.2. The Jacobi-Perron algorithm of the two irrationals 

(6.16) a|0) = lim (F(3> / F ( 1 ) ; a f = lim ( F ( 3 ) / F < 1 ) 
v ' 1 V—>oo v V+3/ V+2' l V__>oc V V+4/ V+2 

is periodic; the preperiod has the length S = 2 and the form 

(6.17) 

The period has the length T = 6 and the form 

(6.18) 

0 
0 
0 
0 

0 
0 
0 

2 

2 
2 
2 , 

1 » 
4 

1 . 
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Proof. We shall first prove the following inequalities 

(6.19) F ^ < F ^ < 2F<J3 , (v = 3 ,4 , . . . ) ; 

(6.20) 3 F | 3 | 2 < F ^ | 4 < 4F[3|2 , v as above . 

From 

F (3) = F (3) + F ( 3 ) + F ( 3 ) (3) (3) ^ f 
V+4 V+3 V+2 V+i V+i ' V+2 ' 

we obtain 

We further obtain 

but 

therefore 

F (3 ) ^ F (3) 
V+4 V+3 

F (3) = 2 F ( 3 ) _ F (3) __ F (3) _ (3) ) 

V+4 V+3 l V+3 V+2 V + l ' 9 

F J J , - F<J, - F% = F<?> - 0, for v = 8.4,. 

F ( l <= 2F<8> , 
V+4 V+3 

which proves (6.19). We further obtain 

F (3) = F (3) + F (3) + F (3) 
V+4 V+3 V+2 V+i 

= n ? (3 ) + F (3) + F ( 3 ) } + F (3) + F (3 ) 
1 V+2 V+I V ; V+2 V+l 

= 2F(3) + 2F(3) + F( 3 ) 

V+2 V+l V 
= 2F(3) + (F(3) + F( 3 ) + F( 3 ) ) + F( 3 ) - F( 3 ) 

v+2 l v+i v v - i ; v+i v-i 
= 3 F ( 1 + F ( l - F ( 3 ) ; 

V+2 V+i V - i 
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but 

F(3i - F( 3 ) = F( 3 ) + F(3)
rt > 0 for v > 3 , 

V+l V- l V V-2 ' 

therefore 

F ( l - 3F ( 1 
V+4 v+2 

Since 

F (3) = F (8 ) + F (3) + F (3) = (3) + 2 F ( 3 ) + F (3 ) ^ (3) + (3) 
V+2 V+l V V- l V V- l V-2 V V-2 

for v > 3, we obtain 

F ( 3 ) . F (3 ) = F (3 ) + F (3) < F (3) 
V+l V - l V V-2 V+2 ' 

and, therefore, from the previous result 

V+4 V+2 

which proves (20). 

We shall now carry out the algorithm of Jacobi-Perron for the numbers 

,6.21, a » - F « / * » , a?> - , « , / * » , , v £ 1 2 . 

Though the proof is carried out for the rationals 

F (3 ) / F ( 3 ) d F (3) / F ( 3 ) 
^ V + S / V+2 a n C l V + 4 / V+2 * 

and not for their limiting values, the reader will understand, after having 
read Chapter 7, that this is permissible. 

We obtain from (6.19), substituting v - l for v, and in virtue of v > 
12, 
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F<3> <cF0) < 2F(3) ; 1 < F ( 3 ) / F( 3 ) < 2 
V+2 V+3 v+2 ' V + 3 / V+2 * 

so that 

(6.22) bi(0) = [ai
(0)] = 1 . 

From (6.20), we obtain 

3 <F(3> / F ( 3 > < 4 , 
V + 4 / V+2 

so that 

(6.23) bj°> = [a|°>] = 3 . 

From (6.21), (6.22), (6.23), we obtain 

4* = l / ( a ! 0 ) - b ^ ) = I / ( ( F ^ / F ^ ) - 1 ) 

' F ( 3 ) \ F (8) 
V±4 _ 3 V+2 = F (3) _ 3 F ( 3 ) / (3) + (3) 
,(3) / F(3) + F ( 3 ) V 4 v+2/ v v+l v ' 

F% I -v+l • ' v 

but, as has been proved before, 

we thus obtain 

F(3) _ 3F(s) = F(s) + F(3) 
V+4 V+2 V V-2 ' 

F (3) + F (3) F (8) 
(6.24) a ^ = T, V~2 ; 4* = , V + 2

 M 
1
 F (3) + F (3) 2

 F (3) + F (3) 
v+i v v+i v 

Since 
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0 < F ( 3 ) + F(3) < F(3) + F ( 3 ) 
V V-2 V+i V ' 

we obtain 

0 <c /pte) + Y^ )/(F® + F^3') < 1 ; 
y v v-2 v+i v ' 

since further 

F(3) / (F(3) + F(3) = (3) + (3) + (3) ) / F(3) + (3) = 

v+2 v+i v ' v v+i v v - r v v+i v ' 

1 + ( F ( 3 ) / (F ( 3 i + F ( 3 ) ) ) , and s i n c e F ( 3 ) < F(3> + F ( 3 ) , 
v v-i v v+i v / ; ' v-i v+l v ' 

we obtain 

(6.25) bfi = 0; b2
(l) = 1 . 

From (6.24), (6.25), we obtain 

l/(aP-bP) = <F& + F « > > / < F « + F J ! 1 ) ; 

a f > - b f > = ( F » , - F » 1 - p W ) / ( P » 1 + P«) 

F(3) / (F(3) + F(3) . 
V-l K V+l V ' ' 

we thus obtain, in virtue of (2.3) 

F<8> F ( 3 ) + F ( 3 ) 

( 6 ' 2 6 > ^ F ( 3 ) + F ( 3 ) '** F ( 3 ) + F ( 3 ) 
V V-2 V V-2 

From (6.26) we obtain, since 

0 < F
( 3 ) < F(S) + F( 3 ) , 0 < F( 3 ) / (F ( 3 ) + F( 3 ) ) < 1 , 
v-i v v-2 ' v-i y v v-2; ' 

and further, since 
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( F (3 ) + F ( 8 ) } / ( F (3) + F(3) } = 2 F ( 3 ) + (3) (3) / (3) + (8) = 
1 v+i v ; l v v-2; l v v-i v-2; M v v-2; 

= (2F(3) + 2F(3) + F( 3 ) + F( 3 ) ) / (F ( 3 ) + F( 3 ) ) = 1 V V-2 V~3 V - 4 ; M V V - 2 ; 

= 2 + ( (F(3)
D + F( 3 ) )/(F( 3 ) + F( 3 ) ) ) < 3 , 

v x V-3 V-4 V V~2 

so that 

(6,27) b{2) = 0; b|2 ) = 2 . 

From (6e26), (6*27), we obtain9 on basis of the previous results 

l/(a?>-.bf>) = ( P f + F ^ / F ^ ; 

a2
(2)-b|2> = ((FWi + F j > ) . / ( F « + F » a ) ) - 2 - ( F j ! | + FW4)/(F« + 

we thus obtain, in virtue of (283)5 

(6.28) 

Since 

F ( 3 ) + F ( 3 ) F ( 3 ) + F(8) 
(3) y - 3 y - 4 e (3) __ y y -2 

4
 F (3) * 2

 F(3) 
v-i v-i 

F(3) + F (3) < F (3) + F(3) + F (3) = (3) 
V-3 V-4 V-3 V-4 V-2 V- i 

we obtain 

b(3) = [ a ( 3 ) } = 0 

We further obtain 

r<3> + F(3) = FC) + 2 F ( 3 ) + F( 3 ) 

V V-2 V- l V-2 V-3 
F(3) + ( F (3) + F (3) + F (3) ) + F (3) _ (3) 

V- l x V-2 V-3 V - 4 ; V-2 V-4 

2 F
( 3 ) + F(3) - F(3) • 
V-l V-2 V-4 
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Therefore 

F
( 3 ) + F(3) 

2 F ( 8 ) < F (8) + F (3) < 3 F ( 3 ) . < V V-2 
V- l V V-2 V- l p (3) 

(6.29) v-l 

b<3) = 0 ; b2
(3) = 2 . 

From (6.28), (6.29), we obtain 

aP-bf» = ((FW + P ^ / P ^ ) ^ 

= ,F<3> - F
( 3 ) ) / F ( 3 ) = (F ( 3 ) + F ( 3 ) / F ( 3 ) . 

1 V-2 V - 4 V V- l V V-S V - 5 / V - i ' 

so that, in virtue of (2.3), 

F(3) + F ( 3 ) F (3) 

/« <™ a<4> = v " g v " 5 • a<4) = v-l 
( 6 ' 3 0 ) ^ F (3) + F ( 3 ) ' •« F (3) + r ( 3 ) 

V»3 V-4 V-3 V-4 

From (6.30) we obtain 

b<4> = [a<4>] = 0 , 

and further 

F(3) = F (3) + F ( S ) + F ( 3 ) = 2 ( F ( 3 ) + (8) ) + F ( 3 ) 
V- l V-2 V-3 V-4 v V-3 V-4 7 V-5 

so that 

F(3) / ( F ( 3 ) + F ( 8 ) } = 2 + ( F (3) / ( F ( 8 ) + F ( 8 ) ) } 
V - i / * V-3 V - 4 ; * V - 5 / V V-3 V - 4 ; ' » 

or 
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2 < (F(3) / ( F ( 3 ) + F( 3 ) ) ) < 3 , 
1 V- l / v V-3 V-4; ; ' 

which finally yields 

(6.31) b^4) = 0; b2
(4) = 2 

From (6.30), (6.31), we obtain 

l / ( a < 4 ' - b f ' ) = (F(3> + F(3) ) / ( F ( 3 ) + F (3 ) } 
/ v 1 1 ' x V-3 V-4 7 v V-3 V-5 ' 

a f ) _b<4> = F ( 3 ) / (F< 3 > + F(3> ) , 
L i V-5/ v V-3 V-4' 

so that, in virtue of (2.3), 

F(3) F(s) + F (3 ) 
,fi , ,» „(5) = V-5 „(5) = V-3 V-4 
M ^ F(3) + F (3 ) ' a \ F(3) + F (3 ) 

V-3 V-5 V-3 V-5 

From (6.32) we obtain 

[a<5>] = b<5> = 0 , 

and further, 

(F(3) + F<3) ) / (F ( 3 > + F<3' ) 
1 V-3 V-4 7 V-3 V-5; 

F
( 3 ) + F ( 3 ) 

= (F(8) + F (S) + F (8 ) + F (3 ) ) , / ( F ( 3 ) + F (3 ) ) = 1 + _ ^ Z 6 Xl_7 
1 V-3 V-5 V-6 V-7; 7 l V-3 V-57

 F(s) + F(3) 
V-3 V-5 

so that 

< ((F(3) + F ( 3 ) j / ( F ( 3 ) + F ( 3 ) J ) < 2 , 
u V-3 V-47/ v V-3 V-57 / ' 

which yields 
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(6.33) b|5 ) = 0; b|5 ) = 1 . 

From (6.23), (6.33), we obtain easily 

F ( s ) + F ( 3 ) : F (s ) + F ( 3 ) 
IKW\ a ( e ) = V " 6 V " 7 - fl(e) = V ~ 3 v ~ 5 

(6.34) a, 3) , a2 g) 
V-5 V-5 

From (6.34) we obtain 

GO-b}«J = [aW-| = o 

and further 

F(3) + F ( 8 ) = F (3) + 2 F ( 3 ) + F ( 8 ) = 3 F ( 3 ) + 2 F ( 3 ) + F (3) 
V-3 V-5 V-4 V-5 V-6 V-5 V-6 V-7 

= 3F(3) + (F(3) + F(3) + F(3) ) + F(3) - F( 3 ) 

V-5 V-6 V-7 V-87 V-6 V-8 
= 4F(3) + F(3) + F( 3 ) < 4F(3) < 4F(3) + 5F(3) ; 

V-5 V-7 V-9 V-$ V-6 V-5 

therefore, 

so that 

4 < ( ( F ( 3 ) + F ( 3 ) ) / F ( 3 ) ) < 5 , 
v v v _ g v - 5 y V-5 ' 

(6.35) b[6) = 0; b2
(6) = 4 . 

From (6.34), (6.35), we obtain 

l/(aj«>-bf>) = ( F ^ / ( F ( J 6 + F ^ ) , 

aJO-bjO = (F<3> + F « ) / F « , 
i i v V-7 V-9 / V-5 

so that, in virtue of (2.3) 

F ( s ) + F ( 3 ) F (3) 
(P. 36} a ( 7 ) = V ~ 7 v ~ 9 • a W = V ~ 5 
( 6 - 3 6 ) & 1

 F(>) + F ( 8 ) ' &2
 F (3) + F ( 3 ) • 

V-6 V-7 V-6 V-7 
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From (6.36) we obtain 

b« = [aP] = 0 . 

and further 

F(3) / ( F ( 3 ) + F (3) } = ( F (3) + (3) + (8) ) /(F(3) + (3) } 
V - 5 / V V-6 V - 7 ; V V-6 - V-7 V - 8 ; / l V-6 V - 7 ; 

= 1 + (F(3) / (F ( 8 > +F<3> ) ) , 
v V - 8 / V-6 V-7 

so that' 

(6.37) b^7) = 0 ; b2
(7) = 1 . 

From (6.36, (6,37), we obtain 

l / ( a f > - b f > ) = (F<3> +F<3> ) / (F ( 3 > +F<8> ) , 
/ \ 1 1 ' \ v _ 6 v -7 / V-7 V-97 

a P - b P = F<"> / ( F « +F<3>) , 
I i V - 8 / V-6 V-7 

so that, in virtue of (2.3), 

F(3) F(8) + F ( s ) 

(R <J» a(8) = v " 8 • ai8 ) = - ^ ^=-7 
( 6 ' 3 8 ) * F (3) + F ( 3 ) ' ^ F (3) + F ( 3 ) 

V-7 V-9 V-7 V-9 

Substituting in (6.38) for v the value 

(6.39) v = u + 7 , 

we obtain 

F(3) p (3) + p ( 3 ) 
(G4fl\ a ( 8 ) = u " 1 - . a ( 8 ) = u + 1 u 
( 6 ' 4 0 ) ^ F ( 3 ) + F ( 3 ) ' ^ F ( 3 ) + F ( 3 ) 

U U-2 U U-2 

Comparing (6,26) with (6,40), we see that 
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(6.41) a^8) = a^2) ; a^8) = a^2) for u = v->+oo , 

which proves the first statement of Theorem 6.2. The forms of the preperiod 
(6.17) and the period (6.18) is verified by the formulas (6.22) and (6.23, 25, • • • , 
35, 37). 

Applying Theorem (5.1) to the Jacobi-Perron algorithm of the numbers 

F<3> / F ( 3 ) F(3) / F ( 3 ) 

V+3/ V+2 ' V+4/ V+2 

(this Theorem holds for any algorithm (2.3), as long as the formation law of the 
b : ' generates integers) and singling out the denominators 

,(2) = 1,(3) M 
V V-2 

1 V-3 ' V-4 ' 

we obtain, on ground of (6.41) and the vector equations a* ' = aS', sr ' = a.( ', 

(6.42) 

c(2+ek) = F(3) + F ( 3 ) 
1 V-7K V-2-TK 

C l - F v _ i - T k * 
c(4+6k) = (8) + (S) 

1 V-3-7k V-4-7k 

From (6.42), we obtain, in virtue of (5.3), where n = 3, 

(6.43) 

(3+6k) (4+6k) (3) 
A 0 A C ^ + 2 
A(3+6k) (4+6k) (s) 

1 i V+3 
A(3Kk) A(4+ek) p(,J 

V+4 

F (3) + F (3) v > 7k + 3 . 
V-7K V-2-7K' 

Substituting in (6.43) v = u + 7k, we obtain that a solution vector of the ST.E.3 

(6.44) ,(3) 
L U+2+Tk 

r(3) 
" U+3+7k 

,(3) 
" U+4+7k 

rW + F
( 3 ) 

" U U-2 

k = 0, ! , - • • ; u = 3,4,-
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is given by 

49 

(6.45) 

A(3+ek) A(4 + 6k) _ A(4+ek) A(3+ek) s 

(3+6k) (4+6k) (4+6k) (3+6k) 

A(3+6k) (4+fik) _ A(4+6k) A(3+6k) 

Substituting in (6.44) u = 5S we obtain that (6.45) i s a solution vec to r of 

(6.46) >Ff(L+1) + yF7
((k+i)+i + z F ^ + g ) ^ = 3 . 

We fur ther obtain from (6.42)s in v i r tue of (5.3)? 

(6.47) 

Substituting in (6.47) v = u + 7k, we obtain that a solution vec to r of the S!.E„3 

P(3) + F(S) + ^ ( 3 ) 
l+2+7k y u+3 
k = 0 , 1 , • • • ; u = 4S 5, • 

L(4+ek) 

(4-Hfc) 
KM 

(4+6k) 
A 2 

A ( 5 + 6 k) 

(5+6k) 
•r\j_ 

A(5 +ek) 

F(«) 
V+2 

F (3) 
V+3 

F(») 
V+4 

= F<3> , 
v-i-7k 

(6.48) xFu+2+7k + yFu+3+7k + zFu+4+rk F u - i ' 

is given by 

(6e49) 

X 

y 

z 

= A]4 + 6 k> A<5+6k> 

= A < 4 + 6 k ) A [ 5 + 6 k ) 

= A r k ) Ai5+ek) 

_ A ( 5 + 6 k ) A(4+Bk) . 

(5+6k) (4+6k) . 
" A 2 A 0 ' 

(5+6k) (4+6k) 
- An A l 

We obtain from (6.48), for u = 6, that the equation 

<6-5°> X Ff(k+l)+i + y F f ( k + ^ + ZFf(k+i)+3 = 2 

has the vec to r solution (6*49). 
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We further obtain from (6.42), in virtue of (5.3) 

[June 

(6.51) 

A(5+6k) A(6+6k) F (3) 
V+2 

A(5+6k) A(6+6k) (s) 
i i v +g 
(5+ek) A(6+6k) __(3)* A. "V+4 

= F (3) + F ( S ) 
V-3-7k V-4-7k * 

Substituting in (6.51) v = u + 7k, we obtain that a solution vector of 

(6.52) xK. , . . + JKL^, + zF î, = A + A ; r<3) 
" U+2+7k 

A*) 
L U+3+7k 

r(3) 
" U+4+7k U-3 U-

k = 0, ! , • • • ; u = 6,7,. 

is given by 

(6.53) 
„ _ A (5+6k) (6+6k) (6+6k) (5+6k). __ (5+6k) (6+6k) (6+6k) (5+6k) 
X - Aj A 2 - Aji A 2 J y - A 2 A 0 - A 2 A 0 

(5+6k) (6+6k) (6+6k) (5+6k) 
- A Q Aj z = AJ 'A± 

We obtain from (6.52), for u = 9, that a solution vector of 

(6.54) x-p(3) + v -p( ) + Z F ' 3 ' = 6 
7(k+l)+4 Y *7(k+l)+5 Z J J7(k+l)+6 b 

is given by (6.53). 
We shall give a few numeric examples for this theory. If we put k = 1 

in (6.50), we obtain 

x F $ + y F $ + z F $ = 2 . 

From (6.49), we calculate easily 

x = -20; y = -2 ; z = 7 

so that 

(6.55) 7F}? - 2F$ - 20F$. = 2 
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We calculate easily 

FJip = 927; F$ = 1705; F$ = 3136, 

which verifies (6.55). 
If we put k = 1 in (6.54), we obtain 

XF<3
8> + yF<? + Z P < J = 6 . 

From (6.53), we calculate easily 

x = -38; y = -29; z = 27 , 

so that 

(6.56) 27F2
(Q) ~ 2 9 F ^ - 3 8 F $ = 6 . 

We calculate easily 

F $ = 5768; F ^ = 10609; F | ^ = 19513 

which verifies (6.56). 

7. THE GENERATING POLYNOMIAL 
OF GENERALIZED FIBONACCI NUMBERS 

The main purpose of this chapter will be the statement of an explicit for-
mula for the limiting value of the ratio 

?(n) / F ( r 
" v - i / v 

(n) 

of two successive generalized Fibonacci numbers of degree n > 2. To this 
end, we shall investigate the generating polynomial f(x) from (6.3) recalling 
a few results of the author stated in a previous paper [ l . p)]. We obtain from 
(6.3) 
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f(0) = - 1 ; f(l) = n - 1 > 0 ; 

n-i 
f'(x) = J2 (n " tyx11"1""1* > 0 for x > 0. 

Therefore f(x) has one and only one real root w in the open Interval (0,1), 
so that 

(7.1) w
n + w n l + " » + w - l = 0; 0 < w < l 

We shall now carry out the modified Jacobi-Perron algorithm of the numbers 

s 
(7.2) a<0) = 2 3 w 8 " 1 , (s = l , - - - , n - l ) , 

i=o 

which are the components of the given vector a' \ These have, therefore, the 
form of (7.2), viz. 

(0) , i (°) ? _L . i (o) n - i , n-2 , , -a } 7 = w + 1; ao ' = wd + w + 1; • • • ; a v ' = w + w + • • • + 1. 1 l n-i 

Then the numbers a' ' are functions of w, viz. 
s 

(7.3) a^v) = af}(w) , (s = V •• ,n - 1; v = 0, V •) . 
s s 

For the formation law of the rationals b*v' we use the formation law 
s 

(7.4) b^v) = a f V ) • (s = l , - , n - 1; v = 0 , 1 , ' " ) . 

The author has proved in [ l . p)] that under these assumptions the modified 
Jacobi-Perron algorithm of the given vector (6.2) is purely periodic; the length 
of the period is T = 1, and it has the form 

(7.5) b( V / = 1, (s = l , - - - , n - l ; v = 0, l , - - - ) . 
s 
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As has been proved by the author in 1. p) 9 the formula holds 

(7.6) w = ^ ^ (Af " 1 } / A ^ ) , 

where the AQ ' have the meaning of (2.4). From (2,4) and (7.5)s we obtain 

A^0) = 1 . 

A<2) = 0 = Ff> , 

Since 

A(n-i) = 0 = (n) 

A<n) = A ^ + ^ b f A® = 1 + £ A«> = 1 . 
j=l j=i 

we have 

u n 

We have thus obtained 

(7.7) A^l} - F^n) , (v = 1 , 2 , - - - ) . 

We shall now prove that (7.7) holds for any i > 1, viz. 

(7.8) AjV) = F^n) , (v = 1 , V ' ) . 

Proof by induction. In virtue of (7.7) formula (7.8) is correct for V = 1, 
2S' ° ° SH, Let (7.8) be correct for 

(7,9) v = k, k + 1, • • • , k + (n - 1) , k > 1 
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We shall now prove that (7.8) is correct for v = k + n. We obtain from (2.4) 
and (7.5), (7.9) 

n - i 

A(k+n) = A(k) + £ b(k) A 

3 = 1 

5=1 

3=1 

which proves formula (7.8). 
Combining (7.6) and (7.8), we obtain the formula 

(7.10) w - lim (Flix; / FVil) ) V - l / V 

Theoretically (7.10) is a very significant formula and answers the questions 
posed in (6.7). But practically it is of no great value, since neither w nor 
F ' n ' can be calculated easily because of lack of an explicit formula for either 
of them. This problem will be solved in the forthcoming passages. 

The polynomial x " - 2x + 1, x / 1, has the same roots as the gener-
ating polynomial f(x) = x11 + x11" + • • • + x - 1. Particularly, it has one, and 
only one, real root in the open interval (0,1), viz. w from (7.1). In a p re -
vious paper [ l . p)] the author has proved the following 

Theorem. Let be 

n+1 (7.11) F(w) = w - 2w + 1 = 0 , 0 < w < 1 . 

If we carry out the modified algorithm of Jacobi-Perron for the given vector 
â  ' with the components 



1968] ITS APPLICATION TO GENERALIZED FIBONACCI NUMBERS 55 

(7.12) a(») = ws , (S = l . . . . , n - l ) ; a<°> s v ' n w - 29 

then the algorithm becomes purely periodic; the length of the period is T = n 
+ 1, and it has the form 

(7.13) + 

0 0 

If, for v > v0, 

(7.14) 
,(v>l .n-i i (o) 

, (0)1 L(v+n) 

Un( V + J ) l 
A o < m < 1 

then 

(7.15) w = lim (Af-yA^ ) • 

We thus have only to prove that (7.14) holds for the modified algorithm of Jacobi-
Perronof (7,12). We obtain from (2.14) and (7.13) 

Ai 0 ) l; A0
(v) = 0, (v = l , - - - , n ) ; A0

(n+1) = 1; 

(7.16) At* « A? + Z ^41+i) = bj> At* = 2 

n 

Af*> = AJO + jbwAjw) = b»Aj»*> = 22 
j=i 

We shall now prove 
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(7.17) A r i + V ) = 2 \ (v = 0 , V , n ) . 

Proof by induction. (7.17) i s correct for v = 0 , 1 , 2, in virtue of (7.16). 

Let it be correct for v = k; viz. 

(7.18) A (n + l + k ) = 2 k } {k = 0il>...>n_1) . 

F r o m (7.18) we obtain 

A ( n + i + k + i ) = A(^)+^b(k+DA(k+i+3) = b ^k + i ) A (n + i + k ) 

= 2 

3=1 
2 k = 2 k + l 

which p roves (7.17). We further obtain from (7.16)9 (7.17) 

A (n + 1 + n + i ) = A (n + i ) + £ b ( n + i ) A ( n + H 3 ) 

(7.19) 

= 2 + b ^ + i )
 A r i + n ) = 2+b j> Af+i+j) 

= 2 + (-2) • 2n = 2 - 2n+1; | A r i + n + 1 > | > f i f • 2n
s n > 3, 

I . (n+l+n+i) I \ 2n + 1 I A (n+i+n) 
l A o I " ~n + 1 ' I ° 

We now deduce f rom (7.17), (7.19), 

(7.20) (n+i+v)| 2 n + 1 
n + 1 

A(n+v) for v = 0 , 1 , " • •, n + 1 

and shal l p rove genera l ly 

(7.21) A (n + i + v ) 2 n + l 
n + 1 

(n+v)\ (v = 0 , ! , - • • ) 
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Proof by induction. Let be 

(7.22) A(n+i+v) 2n + 1 | (n+v) | 
n + 1 A^ J , for v = k, k + 1, • • • , k + n - 1. 

(7„22) i s c o r r e c t for k = 0 , 1 , 29 in v i r tue of (7„20)0 We now obtain, in v i r tue 

of (2.4), (7.13), 

. (n+i+k+n) _ (k+n) 
A A — An 

n 
V b ( n + k ) A(k+n+j) 

5=i 
A ( k + n ) + b ( k + n ) A ( k + n + n ) 

Af+n) ± 2Aik+n+n> . 

(7.23) A ( n + i + k + n ) | ^ 2 | A ( k + n + n ) | _ | A ( k + n ) | 

But from (7.22) we obtain 

(n+k) n + 1 1 (n+k+i) 
- 2n + 1 

/ \ 2 

/ n + l \ I .(n+k+2) 
\2n~TI/ 1A° I 

/ n + l \ n |A(k+n+n)j 
(sr+i) |A° 1 s v 

(k+n) [ ^ / n + l \ n I A (k+n+n) | 

F r o m (7.23), (7.24) we obtain 

(7.24) ^ " " ' ^ ( ^ r H ) |AO 

(7.25) 

We shal l now prove 

(7.26) 

We have to prove 

iAr+k+n)| ^ ^ . ( ^ ^ l A r 1 ^ ! 

2 „ / j L t l f > .2" 
\x 2n + lj n 

2n_+J 
+ 1 , for n = 3,4,« 
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/ n + l \ n ^ 0 1 ^ , ^ /2n + i \ n 
2 - o—Til >2 - —— , or n + 1 < —-~r- or y2n + 1/ n + 1 yn + 1 / 

n + 1 < 

But, for n > 3, 

1 + 

We shall prove 
(;)• ^T + (°) (sVi) 2 - ( i + rh)°-

(ij ' n~Ti + ^ 2 / \n~+~l) ' n + 1 < 1 + 

or 

or 

n2
 + n3(n - 1) 

n + 1 o / . 1 x 2 
2(n + l)4 

2(n + 1)J 

or 

n X 2 ( n + l ) 2 

But, for n > 3, 

n2(n - 1) > 2n2 > 6n = 2n + 4n > 2n + 12 > 2n + 2 

= 2(n + 1) . 

Thus (7.26) is proved. 
From (7.25), (7. 26), we obtain 

A (n+i+k+n) . 2n + 1 I A(k+n+n) 
Ao I n + 1 A ° 1 ' 
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which p roves (7.21). 

F r o m (7.21) we obtain 

59 

(7.27) 4 k + v ) | /2n + 1 \ k i 
\ n + l / » A0

(v)j , (k + v > n + 1) 

We shal l now prove formula (7.14). We obtains s ince 

|ajo) | = V < 1 , 
L«»l = o n 

2 - w s 

(j = 1, • • • , n - 1) ; 

n > 3 , 

A.whi:ii:,iK"||Ari)i 

|a«||Ar» 
E ^ l A o 

(v+j) 

/o nv I A (v+n)| 8 

(2 - w ) AJ ; 

But from (7.22) we obtain 

A (v+j) / n + l \ n ~ 3 

|^2n + 1/ A (v+n) 

the re fore 

AH + E S 
,(o) 

(o) 

(v+n) 

, ( v + j ) , n - i / n + l \ n " 
*,1=Q \ 2 n + l / 

MilLMD. ^ l i i lM) 
- n + 1 \ / 0 n. 
1 " a l + i i < 2 - w > 

(2 - w n ) n 

so that 

(7.28) AH+g;1 .(«) t(v+j)| 

,C) A (v+n) 
(n + 1) 

(2 - w n ) n \ 2 n + 1/ 
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We shal l now prove 

(7.29) ( n + l ) / n <£ 2 - \ v \ n ^ 3 . 

We obtain from 

n+i F(x) = x - 2x + 1 , 

F(0) = 1, F( l ) - 0; F?(x) = (n + l ) x n - 2 ; 

the re fo re 

F!(x) < 0 for 0 < x n < 2/(n + 1) , 

F!(x) > 0 for x n > 2/(n + 1) . 

Since w Is the only root in the open in te rva l (0.1), we obtain 

(7.30) w V _^_ 
n + 1 

F r o m (7.30) we obtain 

2 _ _JL_ < 2 - wn 

n + 1 

I t i s easy to prove the following formula 

n_±_l < 2 2 
n + 1 e 

With (7.31) and the p rev ious r e s u l t (7.29) i s proved. F r o m (7.28), (7.29), we 

obtain 
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(7.32) 
AiV) k(v+j) 

,(o)| U ( v + n ) 
/n + l \ n 

\2n + iy * 

But (7e32) ver i f ies (7.14) with 

(7B33) m = 1 \ 2n + 1/ 

We shall u s e a formula for the A J ^ of an a lgor i thm with the per iod (7.13) 

proved by the author in [ l . p)] , viz, 

(7.34) 

s 
((s+i)(n+i)+k) , k V / i ( n + 1) + s + k - i \ i 

A o ~ b AJ { i(n + l ) + k Z 

i=o 

b = 2; z = -2' n+l (s = 0 , l , - - - ; k = 0 , l , - - - ,n) 

Writ ing in formula (7.15) v = (s + l)(n + 1) + 1, we obtain 

= sltojAf+1><n+VAf+l) (n+l )+1)) . 

and, using (7.34), 

(7.35) w = l im ^ i = o l ; \ (n + l ) i 
^i f (n + l ) i + s - i J2(n+i)i 

s—^,00 o v s / -i\i / ( n + l ) i + s + 1 - i \ 9 (n+ i ) i 
i=o 

2 ^ ( - i r ( % T i ) i V : f *i2 

Compar ing (7.10) and (7.35), we obtain the wanted re la t ion 

F(n) 
(7.36) l im -~-\ 

s - ^ o o „(n) U, ^ 
^i ( (n + l ) i + s - i L(n+i)i 

(a + 1)1 M 1 l i m g=o e i ) 

2 s-^Soo v^s , . , i / (n + l ) i + s + 1 - i \9(n+i)i 
(n + l ) i + 1 
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DANIEL C. FIELDER 
Georgia Institute of Technology, Atlanta, Georgia 

1. INTRODUCTION 

The positive integers h, n, and k are used as parameters to postulate 
a set of rules for generating a family of sequences of positive integers. It is 

th 
shown that some of the sequences are directly related to sums of the k 

th powers of roots of selected n degree polynomials in which the coefficient 
tb 

of the (n - h) ~ power is zero. The remaining sequences are the Lucas-like 
sequences described in a previous paper [ l l plus a transition sequence. 

2, FIRST-TYPE SEQUENCE 
th For a given ns the k- member of a sequence is u, . For each h, 

n has the values specified by n > h + 1, There are , in general, four types 
of behavior within a sequence. A general sequence is formularized in (1) with 
boundaries between types of behavior Indicated by xxxxx, ooooo, or . 

For the special case h = 1, there are no values above the xxxxx di-
vider. By interpreting a summation as zero when its upper limit is zero, it 
is seen that the first term (i. e, , the k = 1 term) for h = 1 appears "between 
the xxxxx and ooooo dividers and is zero,, For h > 2 there are always 
some terms for each type of behavior^ and the first term of a sequence is 
always one* Some examples are given In Table 1. 

Table 1 

k 

1 
2 

3 

4 

5 

6 

7 

8 

h=l,n=2 
0 

0000000 
2 

0 

2 

0 

2 

0 

2 

h - l 9 n = 6 
0 

0000000 
2 
3 

6 

10 
17 

21 

38 

h=3,n=7 

1 

3 
xxxxxxx 4 

0000000 
11 

21 

42 
78 

139 

h=5,n=8 
1 

3 
7 

15 
-xxxxxxx 26 

0000000 
57 

113 

223 
64 
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(1) 

u, = 21 - 1 In 

u, = 2 - 1 , (general term) 

0h-i . u, = 2 - 1, 
h-i,n ' 

xxxxxxxxxxx 
h-i 

uhn = £ V • b=i 
ooooooooooo 

Uh+i,n ~ \ j ~ Ubn , 

k - i 

- u m + h + 1 , 

(1 < k < h - 1) 

(k = h) 

V = | £ Ubn I - Vh,n + k feeneral t e r m > 

n-i 
u = V u, i - u , nn 1 fe bnf n-h,n 

(h + l < k < n ) 

*n+i,n ( J^ Ubn J n+l-h,n 

k > n + 1 

u 

k-i 

kn 1 £ V J " Vh,n (geneml te rm) 

b=k-n 

It is interesting to note that there are h - 1 terms prior to a xxxxx 
divider and n terms prior to a dividere Inspection of (1) shows that 

k for h > 2 the first h - 1 terms follow the pattern 1, 3, 7, 15, 31, • • • , 2 
- ! , • • • . For values of k > h, it is seen from (1) that u, is found from a 
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sum which includes u, ! s in an order which would be consecutive except for 
an always excluded u, , term. Behavior of the first-type sequences is in-
cluded in tables in the Appendix for h = 1(1)5, n = 1(1)11, and k = 1(1)11. 

3. A USE OF THE FIRST-TYPE SEQUENCE 

For selected h and n, the k term of a first-type sequence is the 
same as s! , the sum of the k powers of the roots of 

(2) f(x) = a0x + a4x + a2x + • • • + a , 

if the choices a0 = 1, a, = 0, and all other afs = -1 are made. Verifica-
tion over a limited range can be made by direct comparison of Table 1 of [ 1 ] 
and the corresponding table of the Appendix. The interpretation i s , of course, 
that SJ_' = u, for a given h. 

4. SECOND-TYPE SEQUENCE 

The first-type sequence applied for n > h + 1 and the u, ! s were 
identically the sji1' ?s in that range. If for 2 < n < h the s j n ' ! s are cal-
culated and interpreted as u, ! s , the u, ! s so determined are members 
of a second-type sequence. The tables of the Appendix include second-type 
sequences. 

n—h For n < h - 1, (2) does not have an a, x term, and does not have 
the missing term resulting from a = 0. Since the Lucas-like sequences of 
[ l] are found from (2) with no missing terms, the second-type sequences are 
the Lucas-like sequences for n < h - 1. 

For n = h - 1 and n = h, the second-type sequences are the same 
since setting a, = 0 in each case produces equations (2) differing only by a 
root factor (x - 0) which contributes nothing to the sum of powers of roots. 
The sequence for n = h > 2 accordingly is equal to the Lucas-like sequence 
obtained for n = h - 1. Alternatively, it is seen that the sequence for n = fa 
> 2 is related to the second-type sequences. This is demonstrated in (3) 
which is applicable for n = 3i > 2 only. 
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(3) 
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u l n . . - 2 i - 1 

67 

u, = 2 - 1 (general term) 

h-isn 

xxxxxxxxxxxxx 

h-i 
hn / - ' bn b=i 

ooooooooooooo 

(1 < k < h - 1) 

(k = h) 

uh+i,n = ( f o E u b n ) " U l n 

U to = \ b | _ n
U b n j " V n , n (general term) / (k > h + 1) 

Comparison of (3) with (1) indicates that (3) is essentially (1) with the 000000000 
and boundaries coalesced, Thuss it is seen that a second-type 
sequence for n = h > 2 is a transition between Lucas-like sequences and a 
first-type sequence. 
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5. APPENDIX 

[June 

Table 2 h = 1 

k/n 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

2 

0 
2 

0 

2 

0 

2 

0 

2 

0 

3 

0 

2 

3 

2 

5 

5 

7 

10 

12 

17 

22 

4 

0 

2 

3 

6 

5 

11 

14 

22 

30 

47 

66 

5 

0 

2 

3 

6 

10 

11 

21 

30 

48 

72 

110 

6 

0 

2 

3 

6 

10 

17 

21 

38 

57 

92 

143 

7 

0 

2 

3 

6 

10 

17 

28 

38 

66 

102 

165 

8 

0 

2 

3 

6 

10 

17 

28 

46 

66 

112 

176 

9 

0 

2 

3 

6 

10 

17 

28 

46 

75 

112 

187 

10 

0 

2 

3 

6 

10 

17 

28 

46 

75 

122 

187 

11 

0 

2 

3 

6 

10 

17 

28 

46 

75 

122 

198 

Second-Type Sequence 
First-Type Sequences 

Table 3 h - 2 

k/n 

1 

2 

3 

4 

5 
6 

7 

8 
9 

10 

11 

1 

1 

1 

1 

1 

1 

1 

1 

1 
1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 
1 

1 

1 

3 

1 

1 

4 

5 

6 

10 

15 

21 
31 

46 

67 

4 

1 

1 

4 

9 

11 
16 

29 

39 

66 

111 

179 

5 

1 

1 

4 

9 

16 
22 

36 

67 
114 

188 

313 

6 

1 

1 

4 

9 

16 

28 

43 

73 

130 

226 

386 

7 

1 

1 

4 

9 

16 

28 

50 

81 
139 

246 

430 

8 

1 

1 

4 

9 

16 

28 

50 

89 

148 

256 

452 

9 

1 

1 

4 

9 

16 

28 

50 

89 
157 

266 

463 

10 

1 

1 

4 

9 

16 

28 

50 

89 
157 

276 

474 

11 

1 

1 

4 

9 

16 

28 

50 

89 
157 

276 

485 

i 
Second-Type Sequences 

First-Type Sequences 
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Table 4 h - 3 
k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

3 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

Second-Type 
Sequences 

4 

1 

3 

4 

11 

16 

30 

50 

91 

157 

278 

485 

5 

1 

3 

4 

11 

21 

36 

64 

115 

211 

383 

694 

6 

1 

3 

4 

11 

21 

42 

71 

131 

238 

443 

815 

First-

7 

1 

3 

4 

11 

21 

42 

78 

139 

256 

473 

881 

-Type 

8 

1 

3 

4 

11 

21 

42 

78 

147 

265 

493 

914 

.9 

1 

3 

4 

11 

21 

42 

78 

147 
274 

503 

936 

Sequences 

10 

1 

3 

4 

11 

21 

42 

78 

147 

274 

513 

947 

11 

1 

3 

4 

11 

21 

42 

78 

147 

274 

513 

958 

Table 5 h 
k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

~T~ 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2~ 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

3 

1 

3 

7 

11 

21 

39 

71 

131 

241 

442 

814 

Second-Type 
Sequences 

4 

1 

3 

7 

11 

21 

39 

71 

131 

241 

442 

814 

5 

1 

3 

7 

11 

26 

45 

85 

163 

304 

578 

1090 

6 

1 

3 

7 

11 

26 

51 

92 

179 

340 

648 

1244 

7 . 

1 

3 

7 

11 

26 

51 

99 

187 

358 

688 

1321 

First 

8 

1 

3 

7 

11 

26 

51 

99 

195 

367 

708 

1365 

9 

1 

3 

7 

11 
26 

51 

99 

195 

376 

718 

1387 

10 

1 

3 

7 

11 

26 

51 

99 

195 

376 

728 

1398 

-Type Sequences 

11 

1 

3 

7 

11 

26 

51 

99 

195 

376 

728 

1409 
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Table .6 h = 5 

k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2_ 

1 

3 

4 

7 

11 

18 

29 

• 47 

76 

123 

199 

3_ 

1 

3 

7 . 

11 

21 

39 

• 71 • 

131 

241 

443 

815 

' 4 

1 

3 

T 
15 

26 

51 

99 

191 

367 

708 

1365 

" 5_ 

1 

3 

7 

15 

26 

51 

99 

191 

367 

708 

1365 

6 

1 

3 

7 

15 

26 

57 

106 

207 

403 

788 

1530 

7_ 

1 

3 

7 

15 

26 

57 

113 

215 

421 

828 

1618 

8 

1 

3 

7 

15 

26 

57 

113 

223 

430 

848 

1662 

9_ 

1 

3 

7 

15 

26 

57 

113 

223 

439 

858 

1684 

10 

1 

3 

. 7 

15 

26 

57 

113 

223 

439 

868 

1695 

11 

1 

3 

7 

15 

26 

. 57 

113 

223 

439 

868 

1706 

Second-Type Sequences F i r s t - T y p e Sequences 

6e REFERENCE 

1. D. C„ F ie lde r , "Cer t a in Lucas -L ike Sequences and the i r Generat ion by 

Par t i t ions of N u m b e r s / 1 Fibonacci Quar t e r ly , Vol. 5 , No. 4S Nov . , 1967e 

pp, 319-324. * * * * * 
ERRATA 

SCOTT'S FIBONACCI SCRAPBOOK 

In the equations on p. 176., p lease a r r a n g e all the exponents in ascending o rde r . 
Also on p. 176, p lease change the sign in the l ine beginning with P4(x) to a plus 
instead of minus . On p. 191 (continuation of ScottTs a r t i c le ) , p l ea se make the 
l ine beginning with P5(x) read as follows: 

P5(x) - 3125•+. 7768x - 15851x2 - 9463X^ 1976)1+ 243x5 

On page 166, p l ease make the following c o r r e c t i o n s : In P ^ x ) , change the next -

to l as t number to 2689x6„ In P5&), change the las t number on the f i r s t l ine to 

read : 594, 362x5. In Pe(x), change the las t number on the f i rs t l ine to r ead : 

85,906, 862x4, and the following number to 21,282,070x5.In P7(x), p l ea se change 

the las t number of the f i r s t l ine to read : 3,730,909,778x3, and the following n u m -

b e r to 2,311,372,054x4„ * * * * * 



BERNOULLI NUMBERS* 
L. CARLITZ 

Duke University, Durham, North Carolina 

1. INTRODUCTION 

The purpose of this paper is to discuss some of the properties of the 
Bernoulli and related numbers and to indicate the relationship of these numbers 
to cyclotomic fields, We shall use the notation of Norlund [25]. 

The Bernoulli numbers may be defined by means of 

00 

(1.1) f--=HBn TZ <lx|<2^ • 
n=o 

This is equivalent to 

(1.2) > C ) B r = B n ( n > l ) . EG) 
r=o 

together with B0 = 1. 
It is convenient to write (1.2) in the following symbolic form: 

(1.3) (B + l ) n - B n (n > 1) 

where it is understood that after expansion of the left member we replace B 
by B k . 

We next define the Bernoulli polynomial B (a) by means of 

k 

oo ax ^—^ n 

e - 1 

It follows that 

^Supported in part by NSF Grant GP 1593. 
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(1.5) 

or symbolically 

(1.6) 

Bn<a> = 2 ^ 1 r P r a 

r=0 

Bn(a) = (B + a) n 

Moreover, we have from (1.4) 

(1.7) Bn(0) = B n 

(1.8) Bn(a + 1) -B n (a) = na11-1 , 

(1.9) B^a) = nBn_j(a) 

The polynomial B (a) is uniquely determined by means of (1.7) and (1.8). 
Additional properties of interest are 

(1.10) Bn( l - a) = (-l)nBn(a) 

and the multiplication theorem. 

k-i 
(1.11) BnW=kwJ]BBi(a+5) 

s=o 

valid for all integral k > 1. Nielsen [24] has observed that if a polynomial 
f (a) satisfies 

k-i 

fn(ka) ^ ^ E ^ ^ l ) 
s=o 

for some k > 1 then we have 
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f (a) = C • B (a) , 

where C i s independent of a. 

It i s not difficult to show that 

(1.12) B 2 n + 1 = 0 ( n > 0) 

and that 

(1.13) (-lf~\n > 0 (n> 0) . 

The Eu le r number s E may be defined by means of 

00 n 
(i.i4) — ^ — = y E ~ 

n^o 

which i s equivalent to 

(1.15) (E + l ) n
 + (E - l ) n = { 0

2 £ = °) (n > 0) 

It follows that 

(1.16) Ejjn+i = 0 ( n > 0) 

while 

(1.17) ( - 1 ) % ^ 0 (n > 1 ) 

the E 2 n a r e odd in tege r s . 

The E u l e r polynomial E (a) i s defined by means of 

~ ax w n 
(L18> - T — = E E n < a > ST 

e + 1 • n=o 
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It follows that 

(1.19) E n = 2 n E n ( l / 2 ) 

Clearly 

(1.20) E n (a + 1) + En(a) = 2a11 

Corresponding to (1.10) and (1.11) we have 

(1.21) E (1 - a) = (-l)nE (a) , 
n n 

k-i 
(1.22) En(kx) = k n ] T ( - l ) S E n U + | j (k odd) , 

s=o 

(1.23) En(kx) = ^ £ ( - D S E n + 1 ( a + f ) (k even) . 
s=o 

2. THE STAUDT-CLAUSEN THEOREM 

The B are rational numbers, as is evident from the definition. The n ' 
denominator of B2 n is determined by the following remarkable theorem. 

Theorem 1. We have, for n > 1, 

(2-1) B 2n = G 2 n " / j p » 
p-iJ2n 

where G2n is an integer and the summation on the right is over all primes p 
(including 2) such that p - 1 divides 2n. 

For example, we have 
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We shall sketch a proof of Theorem 1. It follows from (1.1) that 

». = E r a E <-»B (=) •" • (2.2) 
k=0 s=0 

Now it is familiar that 

K 
1 v * / ixk-s /k\ n 
kj- L H ) [B) S 

s=o 

is an integer (Stirling number of the second kind). Thus (2.2) becomes 

k=o 
B„ = > ^ r j c ( n*k) 

where c(n,k) is an integer. In the next place if a > 2S b > 2? ab > 4, we 
can easily verify that (ab - l)J/ab is integral. Hence in the right member of 
(2.2) it is only necessary to consider k = 4 and k equal to a prime p. Since 

p-i p- i 

s=o s=o 

/ -1 (mod p) (p - l |n, n > 0) 
" ( 0 (modp) (p - l|n) , 

(2.2) reduces to 

(2.3) B2n = G|n- £ ' § + i^"1)8 (2) ^ 
p-i|2n s=o 

where G ^ is an integer. But 
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3 

y ° V l ) S ( g ) s2 n = -3 - 3 2 n = 0 (mod 4 ) 
s=o 

so that (2.3) reduces to (2.1). 
Hurwitz [ l 2 ] has proved the following elegant analog of theStaudt-Clausen 

theorem. Let £(u) be the lemniscate function defined by means of 

(2.4) £'2(u) = 4^3 ( u ) -45(u) . 

We may put 

(2.5) 
^ E . . _.4 n-2 

C(U)
 ll2 Z ^ 4n (4n-2)! 

(The E in (2.5) should not be confused with the Euler number defined by (1.14).) 
Corresponding to (2.1) we have 

(2.6) E =G + I + 1M^E± 
x f n n 2 p 

where G is an integer and the sum on the right is over all primes p '= 1 (mod 
4) such that p - 1 divides 4n; moreover, a is uniquely determined by means 
of 

p = a2 + b2, a = b + 1 (mod 4) . 

Hurwitz1 s proof makes use of the complex multiplication of the function 
£(u). However the present writer [ ? ] has proved the following generalized 
Staudt-Clausen theorem in an elementary manner. 

Put 

(2.7) f(x) - y ^ a n x n / n : (ai = 1} 

n=i 
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where the a are arb 
function is of the type 
where the an are arbitrary rational integers and assume that the inverse 

0 0 

(2.8) \(x) = J2 Cnx I 1 /n (Cl = 1)? 

n=i 

where the c are integers. Note that the denominator in (2.8) is n9 not nl, 
Now put 

(2.9) 

Then we have 

x -E"̂ /-' f(x) 
0 

(2.10) a = G - Y ^ 
Pn n / J p p 

p-ljn 

I cn/(p-i) 

where G is integral and the summation is over all primes p such that p - 1 
divides n. 

When f(x) = e x - 1, X(x) = log (1 + x), (2.10) reduces to (2.1). 

3. KUMMER!S CONGRUENCES 

Kummer obtained certain congruences for both the Bernoulli and Euler 
numbers that are of considerable importance in applications. We state first 
the result for Euler numbers. 

Theorem 2. Let r > 19 n > r and let p denote an arbitrary odd prime. 
Then 

S=0 
(3-D > . (-1)° C J E

n+s(p-i) s ° ( m o d P r ) -
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A more general result is contained in Theorem 3. Let r > 1, e > 1, 
e- i n > re and put w = p (p - 1), where p is an odd prime. Then 

s=o 
(3-2) > ' (-1)° C ) E n + g w = 0 (modp r e ) 

For the Bernoulli numbers we have Theorem 4. Let r > 1, e > 1, 
e—l fr 

n > re and put w = p (p - 1), where p is a prime such that p - 1 j n. 
Then 

/o ov \ ~ ^ / ivS / r \ n+sw A , , re. 
(3.3) ^(-1) J I T T ^ ^ ° <mod P >• 

s=o x ' 

For proof of these theorems see Nielsen [24, Ch. 14] or Bachmann [26]. 
Note that p = 2 is excluded in Theorems 2 and 3. Frobenius [9] has proved 
a result for the case p = 2. There is a fallacious proof in Bachmann's book. 

Vandiver [19] obtained a result like (3.3) without the denominator n + 
sw but under more restrictive hypotheses. He proved that 

(3.4) 

where 

a > 0 , r > 0 , a + r < p - l , 

For more general results in this direction see [3]. 
The quotient B / n occurring in (3.3) is integral (mod p) provided p -

1 -}- n. More precisely we state 
Theorem 5. If p is prime and p - 1 i 2n, p |n then the numerator of 

r B2 n is divisible by p . 
The case p - l|2n is covered by the following supplementary theorem. 

s=o 
E (-1)S u Vsxp-i)s ° < m o d p r - 1 > > 
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Theorem 6. Let p r (p - l)jn. Then p r divides the numerator of 

• Ban + J - 1 . 

For proof of Theorem 6, see [3] , 

4. RECURRENCES 

In addition to the fundamental recurrence (1.2)9 the B satisfy many 
more recurrences. Many are derived in Nielsen1 s book. The following two 
occur in a paper by D. H. Lehmer [ l3J. 

r=o 

n 

(4.2) £ (St5)B«r« = | (6n + 5) . 
r=o 

In all the known recurrences the number of terms is of order An, where 
A is a positive constant. Thus it is of interest to ask whether B can satisfy 
a relation of the form 

k 

Z Ar(n)Bn-r = AW • 
r=o 

where the A.(n) and A(n) satisfy certain restrictions and k is independent 
of n. 

We may state 
Theorem 7. The equation 

k 

(4.3) Z A r ( n ) B n-r = A(n) (n > No) 

r=o 
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where A0(n) is a polynomial in n with integral coefficients, A^n),- • • , A, (n), 
A(n) are arbitrary integral-valued functions of n and k is independent of n, 
is impossible. 

Theorem 8. The equation 
k 

(4.4) SAr ( n ) En-r = A(n) (n > N o ) ' 
r=o 

where A0(n), AA(n), • •••, A^(n), A(n) are polynomials in n with integral co-
efficients and k is independent of n, is impossible. 

Theorem 7 is proved by means of the Staudt-Clausen Theorem; Theorem 
8 by means of Kummer's Congruences. For these and more general results, 
see [5], [6]. 

5. IRREGULAR PRIMES 

A prime p is said to be regular if it does not divide the numerator of 
any of the numbers 

(5.1) B2, B4, • - . , B p ^ 3 . 

The prime p is irregular if it does divide the numerator of at least one of the 
numbers (5.1). The motivation for these definitions will appear presently. 

The first few irregular primes are 

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293. 

It might appear that the irregular primes are relatively rare . Actually, 
it is not known whether infinitely many regular primes exist. In the opposite 
direction we have 

Theorem 9. The number of irregular primes is infinite. 
This theorem is due to Jensen; for the proof see [23, p. 82], A simpler 

proof is given in [2]. Jensen proved a slightly stronger result, namely that 
there exist infinitely many irregular primes congruent to 5 (mod 6). This r e -
sult has very recently been improved by Montgomery [14]. 



1968] BERNOULLI NUMBERS 81 

Theorem 10. Let T be a fixed integer >2e Then there exist infinitely 
many irregular primes that are not congruent to 1 (mod T). 

Paralleling the above definition^ we may say that a prime p is i rregu-
lar relative to the Euler numbers provided it divides at least one of the Euler 
numbers 

(5.2) E 2 , E 4 , - - - , E p _ 3 . 

Theorem 11. There exist inifiniteiy many primes that .are irregular 
relative to the Euler numbers, 

For proof see [2]. Here again nothing is known about the number of reg-
ular primes relative to the Euler numbers. Also it is not known how the two 
kinds of regular primes are related. 

6. CONNECTION WITH CLASS NUMBERS AND FERMATfS LAST THEOREM 

Let p denote a fixed odd prime and put £ = eVi/p. Let h = h(£) de-
note the class number of the cyclotomic field Q(£)» ^ i s customary to put 

(6.1) h = AB; 

A is called the first factor of the class number and B is called the second 
factor8 The number B appears as the quotient of two determinants involving 
logarithms of units; it is equal to the class number of the real field Q(£ + £ ""1)a 

It is of considerable interest to know when h is divisible by p. We have 
the following criterion. 

Theorem 12. The class number of Q(£) is divisible by p if and only 
if p is irregular. 

It can be proved that if p divides B then necessarily p divides A. 
This yields 

Theorem 13. pjh<^p(Ae 

Vandiver [18] has proved 
Theorem 14. Let n > 1. Then A satisfies 

(6.2) A = 2-l/2(P™3)p n B (modpn) , 
s sp +i 
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where the product is over s = 1, 3, 5, • • • , p - 2. 
When n = 19 (6.2) reduces to 

A = 2~1/2(P~3)p n B g + 1 (mod p) 
s p 

Now by Theorem 4 with r = 1 we have 

Sp+1 __ S+l , A \ it , n\ 
^TT ~ JTT <m o d P) (i £ s < P - 2) ; 

for s = p - 2 we have by the Staudt-Clau'sen Theorem 

pBp(p-2)+i = P B(p-i)2 S ^ ( m ° d p ) ' 

Thus (6.2) reduces to 

4 l/2(p-3) 
(6.3) A = (172^13)); ° B2s ( m o d P)-

S -L 

Kummer has proved the following result concerning Fermat' s last theorem. 
Theorem 15. If p is regular the equation 

(6.4) « p + /3P + i/p = 0 (asp,p e Q(£)) 

has only the trivial solution a = 0 = ^ = 0. 
Nicol, Self ridge and Vandiver [16] have proved that FermatTs last theo-

rem holds for prime exponents less than 4002. 
The equation (in rational integers) 

(6.5) xP + yP + zp = 0 (p | xyz) 

is known as the first case of Fermat 's last theorem. 
It has been proved that if (6.5) is satisfied then 

(6.6) 2 P = • 2 (mod p2) 
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and 

(6.7) 3 P = 3 (mod p2) 

Indeed considerably more is known in this direction. 
It has also been proved that if (6.5) holds then 

(6.8) B . = B = B = B n = 0 (mod p) . 
v ' p-3 p-5 p-7 P~9 v 

Finally we state some criteria involving the Euler numbers. Vandiver 
[20] has proved that if (6.5) is satisfied then 

(6.9) E p ^ = 0 (modp). 

M. Gut [10] has proved that if 

(6.10) x2P + y2P = z2P (p |xyz) 

is satisfied, then 

(6.11) E H E = E „ = E n = E ,, = 0 (modp) . 1 ; p-3 p-5 p-7 p-9 p-ii v ^ 

7. CONCLUDING REMARKS 

The references that follow include mainly papers that have been referred 
to above8 Vandiver in his expository paper [22] remarks that some 1500 papers 
on Bernoulli numbers have been published! 

For Fermat 's last theorem, the reader is referred to Vandiver1 s expos-
itory paper [21] as well as Dickson [8], Hilbert [ l l ] and Vandiver-Wahlin [23]. 

For the Euler numbers and related matters see Salie [17]. 
We conclude with some remarks about real quadratic fields. Let p be a 

prime = 1 (mod 4) and let E = 1/2(t + uVp) > 1 denote the fundamental unit 
of Q( vf>). Ankeny, Artin andChowla [l] have conjectured that u £ 0 (mod p); 
Mordell [15] has proved the following results: 

(1) If p is regular then u ^ 0 (mod p). 
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(2) If p = 5 (mod 8) then u = 0 (mod p) if and only if B v/2 ~ 0 
(mod p)„ Chowla had proved (2) for all p =. 1 (mod 4). 
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THE QUADRATIC FIELD Q(V5) AND A CERTAIN DI0PHANT1NE EQUATION 
D.A.Lind, 

University of Virginia, Chariottesvi I le,Va. 

1. INTRODUCTION 

We establish here a characterization of the Fibonacci and Lucas numbers 
while determining the units of the quadratic field extension Q( \/5) of the 
rational field Q. Using an appropriate norm on Q(\/E)9 we also find all solu-
tions to the Diophantine equation x2 - 5y2 = ±4 and solve a certain binomial 
coefficient equation. Except for the definitions of basic algebraic structures, 
the treatment is self-contained, and so should also serve as a brief introduc-
tion to algebraic number theory. We hope the reader sees the beauty of one 
branch of mathematics interacting profitably with another, wherein both gain. 

For the definitions of group, ring, and field, we refer the reader to [ l ] . 
Let u be an element of the field of complex numbers C. We say u is an 
algebraic number if there is a polynomial 

(1) p(x) = a n x n + a ^ x 1 1 " 1 + • • • + ajx + a0 (a. G Q, an ^ 0) 

with coefficients in Q not all zero which is satisfied by u, i. e9 , such that 

p(u) = a u + a u + • • • -f-ajU + ao = 0 . 

Thus Vi" and i = V^ l" are algebraic numbers, while rr is not Among,all 
the polynomials satisfied by u, there is one of least positive degree, say of 
the form p(x) in (1). Since p(u) = 0 implies a^pfu) = 0, we may choose 
p(x) with leading coefficient 1, i. e . , so that p(x) is monic* The monic 
polynomial of least positive degree satisfied by u is called the minimal poly-
nomial of u. For example, the minimal polynomial of |V2~ is x2 - -jj. The 
reason we insist that the leading coefficient of p(x) be 1 is that with this pro-
vision the minimal polynomial is unique (see [ l , Chap. 14]). 

An algebraic number is said to be an algebraic integer if its minimal 
polynomial has integral coefficients. For example, any rational r is an 

86 
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algebraic number (it satisfies x - r) , but among the rationals only the integers 
are algebraic integers (the reader should prove this). For this reason the 
ordinary integers are sometimes referred to as rational integers8 An alge-
braic number u ^ 0 is called a unit if both u and u™1 are algebraic inte-
gers,, As an example* -1 and i are units. A unit should be distinguished 
from the unit (multiplicative identity) element 1 of the field* although the unit 
element is also a unit 

3. THE QUADRATIC FIELD Q(V5) 

Denote by Q(\/§) the smallest field contained in the field of real num-
bers R which contains both Q and V5. We first expose the form of the 
elements in Q(\/5). 

Theorem 1. Q(\/5) = | r + sV5 |r , s E Q } . 
Proof. Denote the right side in Theorem 1 by S. Then since the e le-

ments of S are formed using the field operations from those in Q and \ZE~9 

we have S C Q(\/5). But we claim S is already a field, Clearly it inherits 
the necessary additive and associative properties from Rf and the product of 
any two elements in S is easily shown to be again in S. Hence we must only 
show the existence of inverses in S. If r + s\/5~ ^ 0, then 

1 _ = rj^s/5 = _ r / ^ ^ _ \ V ^ e s . 
r + s \ /5 r2 - 5s2 r2 - 5s2 \ r2 - 5 s 2 / 

Since Q(\/5) is the smallest subfield of R containing Q and \/E9 we have 
Q(\/5) C S. Thus S = Q(V5). 

Because of the irrationality of V^T we note that two elements in Q(\/5) 
are equal if and only if they are equal componentwise* i0 e. , a + b v 5 = c + 
dV5 for a , b , c , d G Q if and only if a = c and b = d. QO/5) is called a 
quadratic field because it is formed by adjoining y/E to Q, and the minimal 
polynomial of V5 is a quadratic, 

We next describe the set Q.(\/5) of algebraic integers in R which also 
occur in Q(\/5). 

Theorem 2. The set Q.(\/5) of algebraic integers in Q(V§y consists of 
precisely the numbers | ( a + b V 5 ) * where a and b are integers such that 
a = b (mod 2). 
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Proof. Using T h e o r e m 1, any number u in Q(V§) niay be e x p r e s s e d 

as u = (a + b V 5 ) / c , where the in tege r s a, b , and c have no common f a c -

tor except ±1. We may a s s u m e b ^ 0 to exclude the t r iv ia l c a se when u is 

ra t ional . Then the monic polynomial of lowest degree sat isf ied by u i s 

_ a + b V 5 \ / _ a - b V ^ \ = x 2 _ / 2aV + a^ -sb^ ^ 

If u i s to be an a lgebra ic in teger , then the coefficients 2a / c and (a2 - 5b2) 

/ c 2 mus t be in tegers . Thus 4a2 / c2, (4a2 - 20b2) /c2
5 and hence 2 0 b 2 / c 2 

mus t al l be in t ege r s , so that c |2a and c2J20b2
5 where n | m means n divides 

m. Now any p r ime factor p ^ 2 of c mus t divide both a and b by the 

above* con t r a ry to our assumpt ion that a, b , c have no common factor except 

±1. S imi lar ly 4jc i s imposs ib le , so the only choices left a r e c = 1 and 

c = 2. 

If c = 1, p(x) has in tegra l coefficients and u i s an a lgebra ic in teger . 

In this c a s e u has the form |(2a + 2bV5), and 2a = 2b - 0 (mod 2), so the 

conclusion of the theorem i s t rue . If c = 2, then (a2 - 5b 2 ) / c 2 = (a2 - 5b 2 ) /4 

i s an in teger if and only if a and b a r e e i ther both odd o r both even, o r 

equivalently a = b (mod 2). Hence the t heo rem a lso holds h e r e , complet ing 

the proof. 

We r e m a r k the Q.(\ /5J actual ly forms a r ing because it i s c losed under 

multiplication. The r e a d e r is u rged to verify the deta i ls . 

We next invest igate the quest ion of units in Q ( \ / 5 ) . F i r s t note that by 

definition if uA and u2 a r e uni t s , then u1? uj"1, u2, u^"1, - u t a r e all in Q.( \ /5) . 

Using T h e o r e m 2, i t i s s t ra ight forward to verify that then u ^ , ( u ^ ) " 1 , u ^ 1 , 

(UjU^"1)"1, ( - u ^ - 1 a r e a lso in Q.(\ /5) . Hence u ^ , u ^ 1 , and -ut a r e uni ts 

in Q(\/E)e In pa r t i cu la r , if u i s a unit, so i s u _ 1 . 

The Gauss ian in tegers J a r e the se t of complex number s with in tegra l 

r e a l and imaginary pa r t s . A useful function from J to the nonnegative i n t e -

g e r s i s the n o r m defined by |a + b i j ~ 2? + b2
8 This n o r m i s handy because 

j x y | * | x | | y | for x, y G J , so i t p r e s e r v e s the mult ipl icat ive s t r u c t u r e of J . 

We now introduce an analogous function on Q . ( \ /5 ) . If u = | ( a + b V 5 ) G Qj 

( V 5 ) J define the n o r m of u by 
N(u) = | ( a + b \ /5)^(a - b V 5 ) = |<a2 - 5b2) . 

(2) p(x) 
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The reader should verify that N(u) is always an integer (possibly negative), 
and that N(UiU2)= NfUjJN^) for all ul5u2 E Q..(V5J. We use this norm to 
obtain a characterization of units. 

Theorem 3. An element u E Q.(\/5) is a,unit if and only if N(u) = ±1. 
Proof. If u is a unit, then u, u-"1 E Q.(\/5), so that 1 = N(l) = 

Nfuu-1) = N(u)N(u_1). Since N(u) and N(u_1) are integers, N(u) = ±1. Con-
versely, if u - |(a + b\ /5) E Q.(V5) such that N(u) = ±1, then 

{(a + bV5) }(a ™ b V5) - ±1 , 

so that 

u"1 = ±-|(a - b\ /5) ^ Q ^ V i j 

by Theorem 2. Thus u is a unit. 
Using the norm function on Q.(\/5) and recalling that a unit in Q(V5) 

must already be in Q.(V5)» we can obtain a complete accounting of the units 
in Q(V5). Let a = (l + \ /5 ) /2 E Q.(\/5)„ Then N(a) = - 1 , so by Theorem 
3 a is a unit in Q(\/5). By the above remarks we therefore know that ±a9 

±c*2, ±«3, • • • , ±1, fof"1, ± *~2, • • • are units in Q(\/5). Thus in contrast with 
the Gaussian integers J, where the only units are ±1, ±i, in Q(\/5) there 
are units of either sign as large or as small as we please. 

Theorem 4. The numbers 

(3) ± a n , ±a""n (n = 0, 1, 2, •••) 

are the only units in Q(\/5). 
Proof. We first prove there is no unit between 1 and a . Suppose that 

there is a unit u E Q.(\/5) such that 1 < u < a . By Theorem 2, u = Ux + 
y V^j j where x and y are integers. Then by Theorem 3 

±1 = N(u) = 2 ^ d = ( i ^ ) ( x ^ l ) , 

so that using 1 < u we find 
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-J.(x + yV5) < -1 < |(x + yV5)|(x - y\/5) < 1 < j(x + yV§) . 

Dividing by u / 0 yields 

(4) - I < i(x - yVH) < 1 . 

Adding (4) to 1 < u < a gives 

0 < x •< 1 + a , 

showing that x = 1 or 2. But in either case there is no integer y such that 
1 < u < a holds. This contradiction shows there is no unit between 1 and a. 

Now to finish the proof. Suppose u ^ 0 is a unit, where we may assume 
u is positive since -u is also a unit. Then either u = ot , or there is an 

n n+i ~n —n 
integer n such that ot < u < ot . Now ot is a unit, implying a u also 
is. But then 1-< oT u < a, which was shown impossible in the first part of 
the proof. Hence the onfy units in Q(\/5) are given in (3). 

We now use Theorem 4 to give a characterization of Fibonacci and Lucas 
numbers. But we first need, 

Theorem 5. Define the Fibonacci numbers F by F0 = 0, Fj = 1, 
F , = F , + F , and the Lucas numbers L by Ln = 2, LH = 1, L ,n = n+i n+i n' n J u 2 n+2 
L _,_ + L . Then n+i n 

a11 = 4<L + F V5) . 2X n n v ; 

Proof. We establish this by induction. It is certainly true for n = 0 ,1 . 
If it is valid for n = k, k + 1, simply adding the corresponding equations 
together with the fact that « 2 = a + « shows it holds for n = k + 2, 
completing the induction step and the proof. 

Theorem 6. The algebraic number 4(a + b\/E) €E Q(V5) is a unit if and 
only if a = L and b = F for some integer n. 

Proot This is a combination of Theorems 4 and 5. 
Thus we have characterized the Fibonacci and Lucas numbers in terms 

of the units in Q(\/5). We note in passing that since ot is a unit of Q( \/l>), 
Theorem 2 implies F = L (mod 2). 
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An application of these properties of Q(\/5) to prove the converse of a 
familiar property of the Fibonacci numbers has been given by Carlitz [2] . This 
type of development is capable of generalization to Q(V3j# where d maybe 
assumed to be a squarefree integer. One striking fact is that the analogue of 
unique factorization of elements into powers of irreducible (prime) elements 
holds for only a finite number of d (d = 5 is one of them). For further in-
formation about this, we refer the reader to [3; Chap. 15] for a number theo-
retic approach, and to [l; Chap. 14] for an algebraic one. 

4. THE SOLUTION OF x2 - 5y2 = ±4 

We show here how the solutions of the Diophantine equation x2 - 5y2 = ±4 
may be easily obtained as a byproduct of the preceding algebraic material. 
Note that N(a) = - 1 , so that N(an) = (~l)n. Then if u E Q.(V§), N(u) = 1 
if and only if u = «2 n , and N(u) = - 1 . if and only if u = a2n+i for some in-
teger n. This observation leads to the 

Theorem 7. (i) All rational integral solutions of x2 - 5y2 = 4 are given 
by x - L2n, y = F 2 n , and (ii) all of x2 - 5y2 = -4 by x = L2n+1, y = F 2 n + 1 

(n = 0, ±1, ±2 , . - . ) . 
Proof, (i) Since N(«2n) = 1, Theorem 5 shows that the purported solu-

tions actually satisfy x2 - 5y2 = 4. Conversely, If x2 - 5y2 = 4, then x =. y 
(mod 2) and N[l(x + yV§)] = 1. By the preceeding remarks, ^{x + y\/5)= 
a2n for some n, so that by Theorem 5 x = L2n, y = F 2 n , showing that these 
are all the solutions, 

(ii) As in (i), N(a2 n + 1) = -1 and Theorem 5 show that x = L2n+1, y = 
F2n+i are actually solutions. On the other hand, if x2 - 5y2 = -4, then x = 
y (mod 2) and N[|{x + y V§)] = - 1 . Then | (x + y V5) = a2n+1 for some n3 

so by Theorem 5 x = L2n+1} y = F2n+i, completing the proof. 
We remark that Theorem 7 was proved by Long and Jordan [4] by using 

the classical theory of the Pell equation, from which the result follows easily. 
Theorem 7 also provides a characterization of Fibonacci and Lucas numbers 
analogous to Theorem 6, but in terms of a Diophantine equation. 
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5. THE SOLUTION OF A CERTAIN BINOMIAL COEFFICIENT EQUATION 

We shall use the preceding results to solve completely the seemingly un-
related binomial coefficient equation, 

<*> (") - ( I ; !)• 

For example, the three solutions of (5) with smallest n are 

(5)-0)-1-(")-(1«)-*, o''(^)-(«)-
Firs t note that by cancelling common factors, (5) is equivalent to 

n(k + 1) = (n - k)(n - k - 1) , 

or 

k2 + (1 - 3n) k + n2 - 2n = 0 . 

This quadratic in k has a solution in integers if and only if its discriminant 
5n2 + 2n + 1 is a perfect square, say 

5n2 + 2n + 1 = t2 . 

Then 

25n2 + lOn + 1 = 5t2 - 5 + 1, 

so that 

(7) (5n + I)2 - 5t2 = -4 , 

which is the form of the Diophantine equation which we solved in the previous 
section. Then by (ii) of Theorem 7, (7) has an integral solution if and only if 
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x = L2r+ij y = F2r+i, and x H 1 (mod 5), the last condition being imposed 
so that n is an integer. Now it is easy to verify that L 2 r + 1 = 1 (mod 5) if 
and only if r is even, say r = 2s, so all solutions of (7) are given by 

L4S+1 " 1 

n = _ _ . s t = F 4 s + 1 . 

Using the Binet form for Fibonacci and Lucas numbers, we have 
L4S+1 " 1 

n = _ = FgsFgs+j . 
Also, 

k = 2" " = ^ 3 F 2S F 2S+ l ~ 2 " F4S+l) = F2S-2F2S+1 • 

Hence all solutions of our original equation (5) are given by 

n = F2sF2S+i s k = F2S_2F2S+1? s = 1, 2, 3, • • • , 
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PYTHAGOREAN TRIADS OF THE FORM X, X + 1 , Z 
DESCRIBED BY RECURRENCE SEQUENCES 

T. W. FORGET and T. A . LARKIN 
Lockheed Missiles & Space Company, Sunnyvale, California 

The term Pythagorean Triples or Triads is applied to those integers 
which describe all right triangles with integral sides. The sub-class which is 
the subject of this paper, is restricted to those of sides x, x + 1, V2x2 + 2x+l . 
It is obvious that the smallest such triangle has sides 3, 4, 5. The problem 
is to find a general method of sequential progress through the family of all such 
triangles. In the course of this development, and consequent to a solution of 
Pell !s equation, it is shown that these triangles bear a curious relationship to 
a series which, with the exception of a single coefficient, is identical with the 
Fibonacci series. 

It can be shown that in a right triangle x2 + y2 = z2, primitive solutions 
are given by integers a,b such that x = a2 - b2, y = 2ab and z = a2 + b2 

where a > b, and (a, b) are relatively prime. This paper will be concerned 
with triangles in which y = x ± 1, or x2 + (x ± l)2 = z2, the primitive solu-
tions of which also take this form. 

A. If x is odd and 

x = a2 - b2 and x + 1 = 2ab, 

then 

-1 = a2 - 2ab - b2 

-1 = a2 - 2ab - b2 + b2 - b2 

-1 = a2 - 2ab + b2 - 2b2 

-1 = (a - b)2 - 2b2 

B. If x is even and 
94 



PYTHAGOREAN TRIADS OF THE FORM X, X + 1, Z 
June 1968 DESCRIBED BY RECURRENCE SEQUENCES 95 

x = 2ab and x + 1 = a2 - b2 (Note: In A, x was odd and 
in B, x is even in order to 
account for all possibilities.) 

then 

+1 = a2 - 2ab - b2 

+1 = (a - b)2 - 2b2 

Let p = a - b and q = b, then by A and B above 

(1) ±1 = p2 - 2q2 . 

Equation (1) is an example of PellTs equation. By inspection, the small-
est integral solution greater than zero of this equation is p = 1, q = 1. 

Equation (1) can be factored into 

(P - qv^) (p + qv§) = ±1 

which, when raised to the n power, becomes 

(p - qV£)n (P + qV2)n = ±1 

Specifically 

(1 - V2) n (1 + V § j n = ±1 

since p = 1, q = 1 is a solution of equation (1). 
Now let 

(2) p n + qnV2" = (1 + V2)n 

then 

(3) Pn - q ^ = (1 " \/2f 
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Then, by solving these simultaneous equations, 

(4) p n - 1/2 [(1 + v £ ) n + (1 - V2)n] 

(5) q - - ^ [(1 + V 2 ) n - (1 - V§jn] 
2V2 

Since p = 1, q = 1 is the smallest solution of equation (1), then the general 
solution is given by (2) or (3) above and, therefore, by (4) and (5). (This can 
be found in most texts on Number Theory.) 

Adding equations (4), (5) 

(4a) p n = 1/2 [(1 + V 2 ) n + (1 - V2)n] 

(5a) q = - ± - [(1 + V2) n - (1 - V^)n] 
2V2 

-^- jV2( l + V§j n +\ /2( l -V2) n + (1 + V2)n - (1 V2) n ] 
2V2 

- i ~ [(V2 + 1) (1 +V2)n - (l - v§) (1 - V2)n] 
2V2 

- ± - [ ( 1 + V 5 ) n + 1 - (1-V2)n + 1] 
2V2 

V i 

Since p = a - b and q = b, then *n Hn ' 

a = Pn + \ 

or 

a = \ + 1 

and, of course, 
b = qn 

P + 
\ 

(6) P + % 
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Equation (2) can be rewritten 

Pn+i + ViV*= (l + V^) n + i 

= (l + V§)n(i + V§j" 

= (pn
 + qnV2j (i + v§) 

= p n + p n V 2 + qnV2 + 2qn 

= (pn + 2 q n ) + \ ^ " ( p n + qn) 

But 

*n %L TL+I 

(7) < p ,, = p + 2q 

Rewriting equations (7), (6) and subtracting, 

<7'a> Pn-i = Pn-2 + 2 V 2 

<6'a> V . = Pn-2 + V 2 

W . Pn-i = Vi + V 2 

Now7 rewriting equation (6) 

<6-b> % = Pn-i + V i 

Substitute equation (8) 

(9) 
%L Ttl-i Tl-2 Ti-1 

% Si- i Ti-2 

In both A and B above, the term 2ab was used, once for x and once for 
x + 1. If p and q satisfy p2 - 2q2 = - 1 , then x + 1 = : 2ab. If p and q sat-
isfy p2 - 2q2 = +1, then x = 2ab. Equations (2) and (3) state that the only way 
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for the negative portion of equation (1) to be satisfied is for (1 - V§)n to be 
negative. If (1 - V5) is negative, then x + 1 = 2ab; if (1 - \/2)n is posi-
tive, then x = 2ab. Since (1 - V§) is a negative term (\/2 > 1), (1 - V§) 
is positive when n is even and negative when n is odd. Now the formula for 
one side of the triangle becomes 

n m 9 i x for even values of n 
* ' TiTi+i ( x + 1 for odd values of n 

We have now developed a recurrence relationship for the q terms in relation 
to previous q terms (equation 9). 

Except for the coefficient 2 of q _ , this is the Fibonacci Series. Note 
that in this same manner the expression p = 2p __ + p can also be proved. 

Until now nothing has been formulated concerning the hypotenuse or z 
term of the Pythagorean Triple. Since squaring and taking the root of very-
large numbers is difficult, it would be advantageous to have a recursive for-
mula for the z terms. We propose to prove that 

(11) \ = <kn+i 

is such a formula. Then any Pythagorean Triad of the form x, x + 1, z can 
be found recursively by using equations (9), (10), and (11). Further, by use 
of equation (6), any two consecutive q terms can be found and the sequence 
proceeds from there. See Appendix A. Proof for equation (11) follows. 

From A and B above, two conditions are possible, either x = a2 - b2 

and x + 1 = 2ab or x = 2ab and x + 1 = a2 - b2. In either case, 

x2 + (x + l)2 = (a2 - b2)2 + (2ab)2 . 

As stated before, 

2ab = 2%%+1 

for the n triad. Also, 
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a2 - b2 = q2+1 - <£ 

since 

a = V l and b = qji 

Then, 

x2 + (x + I)2 = ^ + 1 - q ^ 2
 + ( 2 % V l ) 2 

= qn+1 - 2 ^ + J + < + 4 ^ 

= qn+1 + 2q^ q ^ + q£ 

Vx2 + (X + 1)2 = Zn = q£+1 + q£ 

To prove equation (11) all that remains is to prove that 

q2n+ I = q 2 ^ + q£ 

To do this we will prove by induction on k that 

Qbn+i = %+2 %n-k + ak+iq2n-(k+i) . 

If k = 0 

%i+i = 2(*2n + Q2n-i 

°l2n = 2q2n-i + %i-2 

ta+i = 2 [2q2n»i + q2n»2] + <fcn-i 

If k = 1 
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O211+1 = 502n-l + 2<l2n~2 

Notice now that q2n+i i s r ep r e sen t ed in t e r m s of 

(O3 = 5> 02n-i)» (02 = 2> a n d 02n-2)« 

A s s u m e that the k re la t ionship i s of the form 

02n+i = Ok+2 02n-k + 0k+i02n-(k+i) 

Cer ta in ly the f i r s t re la t ionship i s t r u e a s we have jus t shown. A s s u m e the 

k re la t ionship i s true* Then, 

9211+1 = Ok+2 02n-k + 0k+i02n-(k+i) 

F r o m equation (9) we know 

02n-k = 202n-k- i + 02n-k-2 

Then 

cl2n+l = 0k+2 [2cfcn-k-i + cten-k-2] * 0k+i02n-k-i 

02n+i = 20k+2 02n-k-i + Ok+2 02n-k-2 + 0k+i02n-k-i 

O211+1 = 02n-k-i [2Ok+2 + Ok+i] + Ok+2 02n-k-2 

Since 

20k+2 + Ok+i = 0k+3 > 

02n+i = Ok+3 02n-k-i + Ok+202n-k-2 

s t 
This i s the (k + 1) re la t ionship and this p roves the genera l equation induc-
tively. Specifically, when k = n - 1, 
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%11+i = <l(n-l)+2 Q2n-(n-i) + "Q(ii-i)+i <kn- [(n-i)+i] 

Then this completes the proof for equation (11). 
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APPENDIX A 

[June 

n 

1 

2 

3 

4 

5 

6 

7 

% 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Zi = 

H 

jio 

Hi 

1 

2 

5 

12 

29 

70 

169 

408 

985 

2378 

5741 

13860 

33461 

80782 

195025 

470832 

1136689 

2744210 

6625109 

15994428 

38613965 

93222358 

225058681 

2 % V i 
4 

20 

120 

696 

4060 

23360 

137904 

803760 

4684660 

27304196 

159140520 

927538920 

5406093004 

31509019100 

183648021600 

1070387585472 

6238626641380 

36361380737780 

211929657785304 

1235216565974040 

xi 

x2 

x3 

x4 

X5 

x6 

X? 

x8 

x9 

x10 

xii 

x12 

xi3 

xi4 

x15 

x16 

x17 

x18 

xi9 

x20 

\ 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

X 

3 

20 

119 

696 

4059 

23360 

137903 

803760 

4684659 

27304196 

159140519 

927538920 

5406093003 

3150919100 

183648021599 

1070387585472 

6238626641379 

36361380737780 

211929657785303 

1235216565974040 
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APPENDIX A (Continued) 

2Wi = I x 
n 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

zi2 

zi3 

zi4 

z15 

z16 

z17 

ZI8 

z19 

^n 

54339720 

= 1311738121 

3166815962 

= 7645370045 

18457556052 

= 44560482149 

107578520350 

= 259717522849 

527013566048 

= 1513744654945 

4074502875938 

= 9662750406821 

23400003689580 

= 56462757785981 

136325519261542 

= 329113796309065 

794553111879672 

41 z20 = 1918220020068409 
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x 
3 

20 

119 

696 

4059 

23360 

137903 

803760 

4684659 

27304196 

159140519 

927538920 

5406093003 

31509019100 

183648021599 

1070387585472 

6238626641379 

36361380737780 

211929657785303 

1235216565974040 

x + 1 

4 

21 

120 

697 

4060 

23361 

137904 

803761 

4684660 

27304197 

159140520 

927538921 

5406093004 

31509019101 

183648021600 

1070387585473 

6238626641380 

36361380737781 

211929657785304 

1235216565974041 

• • * • • 

z 
5 

29 

169 

985 

5741 

33461 

195025 

1136689 

6625109 

38613965 

225058681 

1311738121 

7645370045 

44560482149 

259717522849 

1513744654945 

9662750406821 

56462757785981 

329113796309065 

1918220020068409 



GENERALIZED RABBITS FOR GENERALIZED FIBONACCI NUMBERS 
V.E.Hoggat t^Jro 

San Jose State Col lege, San Jose, Cal i f e 

1. INTRODUCTION 

The original Fibonacci number sequence arose from an academic rabbit 
production problem (see [l] and [5] , ppe 2-3). In this paper we generalize 
the birth sequence pattern and determine the sequences of new arrivals and 
total population, We shall obtain the Fibonacci sequence in several different 
ways, 

2. GENERAL BIRTH SEQUENCE 

Consider a new-born pair of rabbits which produce a sequence of litters. 
th th 

Let the number of rabbit pairs in the n litter, which is delivered at the n 
time pointy be B . Assume that each offspring pair also breeds in the same 
manner. Clearly B0 

The array (1) will aid us in our formalization. Let 
0, and the B are nonnegative integers for n ^ 1. 

B(x) - 2 Bnxn 

n=0 
(B 0 = 0) 

(1) 

R 0 -

R i = 

R2 = 

Ro — 

1 
B|RQ 

-^2 0 ~^~ i i 

BgRn + B 2 R j **" Bjlv> 

1 R = B R + . . . + BiRn-i \ n n o 1 ii i 

oo oo 
R(x) = E R^x* (R0 = 1), and T(x) = £ Tnxn (T0 - 1) 

11=0 n=o 

be the generating functions for the birth sequence, new arrival sequence, and 
total population sequence, respectively. Remembering that B0 = 05 it is clear 
that 

n-i n 
R = Z B .R. = T B .R. (n > 1) . 

n £> n-j j H. n - j ] v - / • 
(2) 

J=0 J=0 

1 0 5 
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Noticing that (2) gives the incorrect result R0 = 0 instead of the correct R0 = 
1, we have 

oo oo / n \ 
R ( x ) -• 1 = -1 + £ R x1 = £ ( £ B R 1 xn . 

j=o J n=oyj=o J y 
= R(x)B(x) , 

so that 

(3) R(x) 

and 

1 - B(x) 

R(x) - 1 B ^ R(x) 

Now 

n 
T = y; R. , 

3=0 J 

so by summing the array (1) along the diagonals we can also write 
n-i T n = 1 + ? Bn-jTJ = X + S VjTj • 11 j=o J J j=o J J 

since B6 = 0. Thus 

so that 

T(x) - Y^T^ = T(x) B(x) » 

(4) T(x) = RM_ 

B(x) = 1 

(1 - x ) ( l - B(x)) 1 - x ' 

1 
(1 - x)T(x) 

3e SOME INTERESTING SPECIAL CASES 

The original Fibonacci rabbit problem has the birth sequence generating 
function as 

n=o 
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Here the new-born rabbit pairs mature for one period and then each pair gives 
birth to a new rabbit pair at each time point thereafter in their private times, 
Using (3), 

00 

R(x) = = = ]^F x , 
! * l - x - x 2 

1 - x 

while equation (4) yields 

T(x> = + = — ^ — = y F + x n . 
/ x2 \ 1 - x - X2 ^ n + 1 (l-x)\l-f^j ! x x

 n=0 

Thus both the new arrival sequence and the total population sequence are 
Fibonacci sequences (see the chart in [ l ] , p8 57)e 

We may also get Fibonacci sequences in other ways. Let 

B(x) 
1 - x 2 

Then 
00 

and 

T(x) = -±±i- = x>n+2xn. 
1 - x - x̂  n=o 

In this birth sequence a rabbit pair produces and rests in alternate time periods. 
If5 on the other hand, 

B(x) = x + x2
 9 

then 
00 

m - \ = Z>n+1xn 
1 - (x + x^) n=o 

and 
00 

(1 - x) (1 - x - x2) n~o 
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Suppose instead 
00 

Then 

B(x) = — £ — - ] T n x n • 
(1 - X)2 11=0 

2 00 

R(x) = - i i ^ l _ = ! + £ F2n x11 , 
1 - 3x + x2 n=0 

and 

T(x) = L z * _ = ^ F 2 n + 1 x n .. 
1 - 3x + x2 n=o 

Suppose we let the pair produce with a birth sequence which is the Fib-
onacci sequence. Then 

B(x) - — ^ — , 
1 - X - X* 

R ( x ) = ^ L 2 L l 2 L = ! + ] T c ^ xn ^ 
1 - 2x - x2 n=o 

where C0 - 05 Ct = 1, and C = 2C + + C n (n >: 0). We note that if 

f0(x) = 0, fi(x) - 1, and fn+2(x) = ^ ( x ) + fnW 

define the sequence of Fibonacci polynomials {f (x)}, then C = f (2). 
There is a typographical e r ror in Weland [6]. When 

oo / n \ 
B(x) = E 1 + E * C ) x n , 

n=2\ j=i J / 

then 
00 

T(x) = E ^ x 1 1 , 
n=o 

where the C are the same as in the example immediately above. 

4. SOME FURTHER FIBONACCI RESULTS 

Since F, + F,. = L, , and every k Fibonacci number obeys the 
recurrence relations 
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yn+2 ~ kyn+i " ^ y n ' 

we can now gi.ve the following r e s u l t s . If 

F, x - ( - l ) k x 2 oo 
w 1 - F , x k+i k A ' k - i 

k - i j=o 
then 

If 

then 

If 

then 

If 

then 

1 - K x oo 
R(x) = 7~rfr^= s Fkn+1 *n 

1 - L, x + (-1) x* n=o 
F k . x - ( - i r s ? oo 

B(x) = * _ — = x R + x2F2 L F x f , 
w 1 - F, , x k - i k /-^ k+i s 

k+i 3=0 

1 - F, , 4x oo 

1 - L k x + (-1) x2 iFo to ' 

(F, - l ) x + (F - ( - l ) k )x2 
B(x) = k + 1 k * 

( l - x ) ( l - F k _ i X ) 

00 

T(x) = E F ^ x n 

n^o 

(F, - l ) x + ( R _ - ( - l ) k )x2 k-i ' v k+1 
B(x) = k l ^ (1 - x)( l - F k + 1 x ) 

T « = E F ^ . . / . 
n=o 

We conclude th is sect ion with two final examples . Suppose the b i r th sequence 
i s given by B 0 = Bt = 09 B = 2n - 1 (n > 2). Then we find 
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F 
-1 

R(x) = y ^ F F _ x n 
v ' L-j n - i n+2 

n=o 

and 
00 

"n+i T(x) = £ F* * • 
n=o 

We must not leave out the Lucas birth sequence. If 
00 n+1 x 

1 - x - x* n=o 

then 

•2 - ^ ~ , % 1 - x - x4 \ ^ ~ n 
R<x> = l - 3 x = L R n x 

n=o 

with 

R0 = 1, Rt = 2, R = 5 - 3 n ~ 2 n > 2 

5. BIRTH SEQUENCES YIELDING GENERALIZED FIBONACCI NUMBERS 

The generalized Fibonacci numbers u(n; p, q) of Harris and Styles [2] 
have the generating function [4] 

(1 - x)q V" / x n 

^ ~ ^ - j ^ = Lu(n;p, q)x . 

(1 - x) - x̂  n n=o 

If 
xP+ q 

B(x) = 

then 

(1 - x)q 

(1 - rfq_1 
T(x) = - ^ ^ r - (q > 1) 

(1 - x)q - xP+ q 



1968] FIBONACCI NUMBERS 111 

We note that here the birth sequence { B } starts with p + q - 1 zeros (matur-
n st 

ing periods) and then proceeds down the (q - 1) column of the left-justified 
P a s c a l s Triangle [4]. We note further that if 

xP+ q 

B(x) = x + 
(1 - x)^"1 

n - \q~1 °° 
R ( x ) = _ U -.39 = £ u ( n ; p 5 ^ xn ( q > 2 ) 

(1 - x)q - xP q n=o 

In this case B0 = 09 Bj = l f B. = 0 (j = 2S*• • s p + q - l) s and the sequence 
ndJ 

then proceeds down the (q - 2) column of the left-justified Pascal1 s Triangle, 
It was this interesting problem that inspired further research resulting in this 
paper9 

6. A SECOND GENERALIZATION 

Harris and Styles [3] gave a further generalization of the Fibonacci num-
bers by introducing the numbers 

p+sq /fn - i -f 
u(n; ps q, s) = V * • L i=o 

where [x] represents the greatest integer contained in x, It is shown in [4] 
that the generating function for these numbers is 

1A ( * - * > / ( * - » > = yu(n; p, q, s) xn 

( l - x s ) - x P + s 1 U 

If 

D+sq 
B(x) = - E 

d - x S ) q 
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then 

s q / 

Therefore the birth sequence yielding u(n; p, q, s) as the total population 
sequence begins with p + sq - 1 zeros (maturing periods) and then has the 

st entries of the (q - 1) column of the left-justified Pascal1 s Triangle alternated 
with s - 1 zeros. The pair thus alternately produces and then rests for s - 1 
periods after maturing for p + sq - 1 periods* 

Note: Lucile Morton has now completed her San Jose State College Master1 s 
Thesis, "The Generalized Fibonacci Rabbit Problem,n and the results will be 
written up in a paper to appear soon in the Fibonacci Quarterly. 
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