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FIBONACCI REPRESENTATIONS

L. CARLITZ
Duke University, Durham, North Carolina

1. INTRODUCTION

We define the Fibonacci numbers as usual by means of

= = = >

FO 0, F1 1, F Fn + Fn—i (n = 1).

We shall be concerned with the problem of determining the number of repre-
sentations of a given positive integer as a sum of distinct Fibonacci numbers.
More precisely we define R(N) as the number of representations

(L.1) N = Fy FF e T,
where
(1.2) .k1>k2>"'> er 2;

the integer r is allowed to vary. We shall refer to (1.1) as a Fibonacci rep-
resentation of N provided (1.2) is satisfied.

This definition is equivalent to

(e o] oo
(1.3) I (1+yFn) = ZR‘(N) e
n=2 N=0

with R(0) = 1. We remark that Hoggatt and Basin [ 4] have discusseda close-
ly related function defined by

20 F o
(1.9 Ma+y D) = Y RNy .
n=1 N=0

*Supported in part by NSF grant GP-5174, (Received July, 1 967)
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194 FIBONACCI REPRESENTATIONS [Oct.

Comparing (1.4) with (1.3) it is evident that
(1.5) R'(N) = R(N) + R(N - 1)

Ferns [3] and Klarner [5] have also discussed the problem of represent-
ing an integer as a sum of distinct Fibonacci numbers. We recall that by a
theorem of Zeckendorf [1] the representation (1.1) is unique provided the kj

satisfy the inequalities

e _ > i = . _1)- >
(1.6) kj kj+1 2 (=1, , T - 1); kr 2
We call such a representation the canonical representation of N.
Rather than work directly with R(N) we shall find it convenient to define

the function A(m,n) by means of

(1.7) m@+x % oy = Z Alm,n)x"y" .
n=t m,n=0

It is easily seen that A(m,n) satisfies the recurrence

(1.8) Am,n) = Ah-m,n) + Ah-m,m-1) .

Also, as we shall see,

(1.9) R(N) = A(e(N),N) ,
where
(1.10) e(N) = Fk1_1+Fk2_1+"' +Fkr-1 s

and the ks are determined by (1.1); the value of e(N) is independent of the
particular Fibonacci representation employed. . In particular we may assume
that the representation (1.1) is canonical. Indeed most of the theorems of the

paper make use of the canonical representation.
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Inparticular it follows from (1.9) that for fixed n there is a unique value
of m, namely e(n), such that A(m,n) # 0.

It is helpful to make a short list of exponent pairs occurring in the right
member of (1.7), that is, pairs (m,n) suchthat A(m,n) # 0. Usingthe recur-
rence (1.8) we get the following:

11, 12|23[34 35|46, 47|5 8]

69, 6107 11| 8 12, 8 13| 9 14, 9 15 10 16 |

11 17, 11 18| 12 19, 12 20| 13 21| 14 22, 14 23| 15 24 |
"+ 16 25, 16 26| 17 27, 17 28| 18 29| 19 30, 19 31‘| 30 32|

21 33, 21 34| 22 85, 22 36| 23 37| 24 38, 24 39|

25 40, 25 41| 26 42| 27 43, 27 44| 28 45|

This suggests that for given n, there are just one or two values of m
such that A(m,n) # 0. As we shall see, this is indeed the case.

The first main result of the paper is a reduction formula (Theorem 1)
which theoretically enables one to evaluate R(N) for arbitrary N. While ex-
plicit formulas are obtained for r = 1,2,3 in a canonical representation, the
general case is very complicated. If, however, we assume that all the ks
have the same parity the situationis much more favorable. Indeed if we assume
that

N = F2k1 + oeee o+ szr (ky> <> kp= 1)
and put
jszks_ Ko+t (6 = 1, cr, v -1) Jr:kr ’
f.=8Gy s ip) =RM), S = 1+f+fh+-r +1f

then we have

So=1, Sy =ji1+1, Sp = (r+1Spqy-Spp (r=2)

In particular if j; = -+ = jp = j we have
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Sr _ z (—l)t (rt— t ) (j + 1)r—2t

2t r

Returning to (1.10) web show also that if kr > 2, then e(N) :{a‘iN},
the integer nearest to o~ IN, where o = (1 + A5)/2, while for kr =2, e(N)
= [@7IN] + 1.

Additional applications of the method developed in this paper willappear
later.

Section 2

As noted above, by the theorem of Zeckendorf, the positive N possesses

a unique representation

2.1) N = Fk1 + sz + .. +Fkr ,
with
(2.2) k., -k,,., 22 (=1,-+-,r-1); k_=22.

j jtt

When (2.2) is satisfied we shall call (2.1) the canonical representation of N.
Then the set of integers (ky,ky,***,ky) is uniquely determined by N and
conversely.

The following lemma will be required.

Lemma. Let

(2.3) N = F o+ +Fkr:Fj1+...+FjS ,
where
(2-4) k1> k2> cee > kr>- 2 j1> j2>...> JSZ 2

be any two Fibonacci representations of N. Then
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(2_5) Fkl_i 4 eee 4 Fkr—1 = Fj1_1 4 eee 4+ ]_:‘js__1

Proof. The lemma obviously holds for N = 1. We assume that it holds

up to and including the value N - 1. If ky = j; then (2.3) implies

e = e . <
Fi, F0 tFg = Ty e aF < N

and (2.5) is an immediate consequence of the inductive hypothesis. We may

accordingly assume that k; > j;. Since
+Fy+ Fg++ee +F =F -2,

we must have k; = j;+ 1. If ky = k; - 1 we can complete the induction as in

the previous case. If ky = ky - 2, (2.3) implies

(2.6) 2F, + F +"'+Fkr:Fj2+"'+FjS )

with ja < koo If jo< ko,

“es . < ces < <
o FFj S Fpt Fyhen 4 F < F < 2F
which contradicts (2.6). If j, = kg, (2.6) reduces to
F +F +-:++F =TF ++++F. < N.
ko ks kr is is
Then by the inductive hypothesis
(2.7 sz_l + st_i oo A P = F33—1 et Fyg
Since j;3 = ky -1, jy = kg = kg - 2, we have
F =F, =F, _+F, =F., +F. s
ky-1 i1 ji-t -2 =t et

so that (2.7) implies (2.5).
Finally there is the possibility Fk < Fk - 2. In this case (2.3) reduces
2 1
to
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(2.8) + F +...+Fk = F, +ee+ +F; = N'< N;
r J2

Pl ¥ g, is

each member of (2.8) is a Fibonacci representation of N'. By the inductive

hypothesis

(2.9) eee | 4 eoe +Fkr—1: F + eee + R

k-3 * Flpet jamt Jg-t

Since j1 -1 = ky -2, (2.9) implies

+ + oo = + ree + P
Fk1 Fkg-i Fkl‘_i Fj1—1 Fjg—l * F]S"1

and the induction is complete.
This evidently completes the proof of the lemma.
We now make the following
Definition. Let

= cee S 60> >
(2.10) N o= By ke P Gy k.2 2)

be any Fibonacci representation of the positive integer N. Then we define

(2.11) eN) = F _ +er +Fp 4

k1—1
It is convenient to define
(2.12) e(0) = 0.

In view of the lemma it is immaterial which Fibonacci representation of N
we use in defining e(N). In particular we mayuse the canonical representation
(2.1).

Section 3
Returning to (1.7) we put
* F
(3.1) By = [ @1+ x Dy ny,

n=1
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Then
o0 oo
dxy) = I 0+ XFH+FH+1) = II (1+yanFn+1)
n=i n=2
so that
1+ xy)d&E,xy) =P (y,x) .
Hence

[ee)
(1+xy) Z A(m,n)Xm+nyn = Z A(m,n)y™x" .
m,n=0 m,n=0
Comparison of coefficients yields
(3.2) Am,n) = A@-m,m) + An-m, m-1),

the recurrence stated in the Introductign.

In the next place it is clear from the definition of e(N) that(1.3) reduces

to
0 o9}
(3.3) M@+ oyt = 3 rew 2NN,
n=1 N=0
where R(N) is defined by
o [e 0}
-
(3.9 moaey™) = 30 RNy
n=2 N=0

It follows that
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(3.5) R(N) = Afe(N),N) .

In particular we see that, for fixed n, there is a unique value of m,
namely e(n), such that A(m,n) # O.

If we take m = e(n) in (3.2) we get
(3.6) R(N) = A(N - e(N), e(N)) + A(N - e(N),e(N) - 1)

Now let N have the canonical representation

(3.7) N = Fk1 4 eeo +Fkr

with kr odd. Then

eM) = Fy o+t T

N - e(N) = Fk1_2+ vt Fren -
Since k_ 2 3, it follows that
(3.8) N - e(N) = ele(N)) .
On the other hand, since
Fg+ Fgt+eoe +Fop g = Fot -1,
we have, for kr = 2t+ 1,

eN) -1 = F +"'+Fkr_1+(F3+F5+'”+F2t-1) ;

k1—1

the right member is evidently a Fibonacci representation, so that

i

e(e(N) - 1) © o Fiy -2t Fpt Fyteer +Fopp)

+ oo
Fk1—2

T R P R S R

N-e®™ -1.
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Thus
AN -e(N), eN(-1) = 0

and (3.6) becomes

R(N) Ale(e(N)), e(m)) .

In view of (3.8) we have

(3.9) R(N)

Il

R(e(N)) k . odd) .

Now let kr in the canonical representation of N be even. We shall
show that

(621:—1

(3.10) R(N) = R (Ny)) + (t-1) R(e2t2(Ny) ) ,

where k.= 2t ,
T

(3.11) Ny = Fk.1+'-' + Frpy
and
(3.12) et(N) = e(et’i(N) ), ") = N .

To prove (3.10) we take the canonical representation (3.7) with kr = 2t.
Then

(3.13) eN) = F +oeen +Fkr‘1 ,

k1—1

which is a Fibonacci representation of e(N) except when t = 1. Excluding

this case for the moment, we have as above

(3.14) N - eN) = e(e(N) .

Moreover
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e(N) -1 = Fki"’i oo + Fkr_1_1 + th_1 -1

Fk1—1+"' +Fkr—1'1+ (Fg+ Fytoee +Fopn) ,

ee(N) - 1) = Fkirz toeee +Fp -t (Fy+ Fyteee + Forg)
) = Fk1—2 + oo 4 Fkr—1_2 + th_z ’

so that

(3.15) ele(N) - 1) = ele()) .

Substituting from (3.14) and (3.15) in (3.6) we get
(3.16) R(N) = R(e()) + Re®) - 1) k, =2t > 2) .
When kr = 2, (3.13) gives
N - e(N) = Fk1-2 teee TP 2 = eleNy),
eN) -1 = Fk1-1 teee FFE 1= e(Ny)
Also since
e(N) = Fk1—1+ e P PR 1T Fp

we get

i

ele®) = Fy ,*+" *Fg 2 * Fy

il

N-eN+1.
It therefore follows from (3.5) and (3.6) that
(3.17) R(N) = Re®y)) k, = 2)

in agreement with (3.10).
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Returning to (3.16) we have first

(3.18) R(e(N)) = R(e*(N) (kr = 2t> 2) ,

by (3.9). Since

eN) -1=TF Feee #F ot (Fpt Fydeee + Fapy)

ky-1

it follows by repeated application of (3.17) and (3.9) that

ess R(e(N) - 1) R( ces +Fkr_1_2+F3+....+F2t_3)

Fk1—2 "

= R( 4+ oo +Fkr_1_3+F2+-.. +F2t—4)

Fk1—3
R(Fk1-2t+2 + oee + F.kr_1-2t+2)

R(e*-2 (N;) ) .

I

Thus (3.16) becomes

1l

(3.19) R(N) = R(e2(N)) + R(e?t-2(Ny) ) t>1.
Repeated use of (3.19) gives

R(N) = R(e?-2(N) ) +)t - DR(22(Ny) ) ;

finally, applying (3.17), we get (3.10) .

Combining (3.9) and (3.10) we state the following principal result.

Theorem 1. Let N have the cannonical representation

N = Fk1+.“+Fkr’

where

k. -k > 2 G=1,",r-1); k.2 2.

Then

203
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(3.20) RO = RET0N;) ) + ([$kp] - DRET(0N) )
where
Ny = Fy ot t T
Section 4

Since
Fop+Fy+ree +Fyp = Fotg - 1, Fy+Fg+ o +Fpt1=Fp »
it follows that
.1) e(Fyprs - 1) = Fyp , e(Fpp-1) = Fpp g - 1.
Also since
Fattg - 2 = Fy + Fg+ «oe + Fyt
Fot =2 = Fp+ Fg+ Fg++rv + Ftg
we get
(4.2) e(Fprry - 2) = Fpp-1, e(Fyr-2) = Fop_y-1.

Now by (3.6), for k 2 2,

1l

R(Fy) A(Fg_9, Fg_1) + A(Fg_p, Fg_q - 1)

R(Fk—i) + A(Fk_g, Freq - 1) ,

R(F -1) = A(F, -1-e(F,- 1), e(F, - D +AF, -1-e(F, -1),
e(Fk - 1) - 1).

Then by (4.1),
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A(Fat-g, Fat-1-1) = R(Fat-1-1), A(Fgp-qg, Fog-1) = 0,

so that
(4:.3) R(th) = R(th_l) + R(th_i - 1), R(th_;) = R(th_z) .
In the next place by (4.1) and (4.3)

R(Fpp - 1) = A(Fy_, Fopoq - 1) + A(Fppp, Fotq - 2)

R(FZt—i - 1) ’

R(Fat-1 - 1) = A(Fgt3-1, Foro) * A(Fpp 3 -1, Fapp - 1)

= R(Fyt_g - 1).
Hence we have
(4.4) R(F, - 1) = R(F,_ -1 k=2,
which yields
(4.5) R(Fk -1) =1 k 22) .

Substituting from (4.5) in (4.3), we get
R(Fy) = R(Fpt_q) +1, R(Fag_1) = R(Fyt2) »
which implies

(4.6) R(th) = R(F2t+1) =t t=z1).

We shall now show that R(N) = 1 implies N = Fk - 1. Let N have the

canonical representation

N = Fk1+-.. +Fkr .
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Then by (3.20)

(4.7) R TN ) = 1

and [ky/2] = 1, so that kr = 2 or 3. Since
ekr-i(Nl) = Fki-kr+1 Foee 4 Fkr—i'kr+1 ,

it is necessary that

[G,_ -k, +1/2] =1

and therefore

Similarly
k. - k, = 2 G=1,2,°**, r-2).
Hence we have either

N = Fop + Fopp + o0+ +Fp = Fop+1 -1

or
N = Fop+g+ Fopgt oo +Fg = Fopg - 1.
We may sum up the results just obtained in the following theorems.
Theorem 2. We have
(4.8) R(Fg) = [$4k] k22

Theorem 3. R(N) = 1 if and only if

= - >
N Fk 1, k=1,
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If we define R'(N) by means of

(o0} i oo N
(4.9) TTa+y ™ = Y Ry ,
n=1 N=0
then
(4.10) R'(N) = R(N) + R(N - 1)

and it follows immediately that
(4.11) R'(Fg) = [k]+1 (k22).
This result has been proved by Hoggatt and Basin [4].
Further results like (4.5) and (4.8) can be obtained by the same method.
For example we can show that
R(Fat1 - 2) = 1+ R(Fat - 2) t> 1,
R(Fot - 2) = R(Fg_q1 - 2) t>1) .
It follows that
(4.12) R(F
Consequently by (4.11) we have
(4.13) R(F -1 = [dk+D],
a result proved by Klarner [5, Th. 1].

Section 5

Theorem 1 furnishes a reduction formula by means of which R(N) can

be computed by arbitrary N. For example if
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(5.1) ' N=FJ.+F G-k=22, k-22)

k

that by (3.20)

R(N)

Il

REE) + (3] - DREHE))

= R(F, ).

j-k+1

)+ (Fk]- DRI, L,

Applying (4.8) we get
(5.2) RIN) = [$G-k+D]+ (3k]-D[3(G -k +2)] .
Again if

(5.3) N = F+F+F i-j22,j-k22, k=2),

k

then

= 1 -
R(N) = R(F, ., Fj—k+1) +([2k] - DRF, |, + Fj—k+2) .

Applying (5.2) we get

(5.4) RON) = [$G-i+D]+(3G-k+D]-1)[3G-j+2)]
+(4k] - D{[3G -3+ D]+ G[i-k+2] -D[EG-j+2].
Unfortunately, for general N the finalresult is very complicated. How-

ever (5.2) and (5.4) contain numerous special cases of interest.
In the first place, taking k = 2, 3, 4 in (5.2), we get

(5.5) R(Fj +1) = [§G-1)] G=4)

(5.6) R(F; + 2) = [§G-2] G205

(5.7) R(F, + 3) =[3G-3]+[4G-2]1G=6).
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In the next place for the Lucas number Lk defined by
Lg = 2, Ly =1, Ly = Lig+ Ly k2 1),
since L, =F , +F_ (56.2) gives
R(Lg) = 1+2[3k-3] (k=3).
Hence
R(Lggty) = 2k - 1 k > 1)
(5.8)
R(Lyk) = 2k - 3 k> 1).
Since
2P = P P Py 0 3P T ey TP,
we get
(5.9) R@Fk) = 2 +2[ k-4)] k=24,
(5.10) REBF) =2 +3fk-4] k=24).

The identity

Loj Fit = Froni ¥ Flyj
yields
(5.11) R(IpjFk) = 2§+ @i+ D([4k] -j-1) (=2j+2);
for j = 1, (5.11) reduces to (5.10).

A few applications of (5.4) may be noted. For k = 2 we have

(5.12)

209

R(F;+Fj+2) = [§A-j+1)] +[$G-3[I0-j+2)]0-j=2,j 2 4).
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while for k = 3 we have
(5.13) R(F1+Fj +2) = [§G-j+D] + [3G-D][$GE-i+D]E=252> 2, j2 5).

Again, since

k k+ k k-2
it follows that
(5.14) R@4F) = 1+3[fk-4] k=24).
Section 6

As remarked above, direct application of Theorem 1 leads to very com-
plicated results for R(N). If, however, all the ks in the canonical repre-
sentation of N have the same parity simpler results can be obtained. If all
the ks are odd then by (3.9) ,

(6.1) R(Fk1+--- +Fkr) = R( + see +Fk

Fkl—i r"i) ’
we may therefore assume that all the kS are even.

It will be convenient to introduce the following notation. Put

(6.2) N = Faky + 0 + Fog, >

where

(6.3) ky > kg > eee > kp2 13

also put

(6.4) js:ks'ks—1 s=1, ", r-1); jr=kr

and
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(6.5) £, = Gy +++5 jp) = RO ,

where N is defined by (6.2).
Now by (3.20) and (3.9)

RMN) = R(Falyaky, + *** + Fak, g-ok) + kp - DR(Fok ok +2

+ oee + szr—i_zkr+2) o

By (6.4) and (6.5) this reduces to

(6-6) f(j1s crtey Jr) = f(ji’ ety jI'—l)

+(jr"1)f(j1: "‘:j _9? J _ +2)'

By (3.19) we have

R(Fok,-ak+2 * * o + Foky_j-aky+e)

= R(Faky-akyp * 00+ Fokp_g-2kp) + RFokyoky_gro oo+ Fogy oookp_+2)

so that

f(ji, cev, jrag, jr—l +2) = f(jj_s o, jr—i) + f(jls cery -3 jr-2t 2)

f(j1s°°'=jr—1) +f(j1»°”sjr—2) Foeee +f(j1) +1.

Thus (6.6) reduces to

6.7) I +(jr—1)(fr_2+--«+f1+1).
If we define

(6.8) Sr=fr+fr_1+”'+f1+1, 80:1 )

then (6.7) becomes
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fo-f =G-8, @22

and therefore

- (3 = >
(6.9) S, - (,+Ds,_ +8 =0 @22).

We may now state
Theorem 4. With the notation (6.2), (6.3), (6.4), (6.5), fr = R(N) is
determined by means of (6.9) with S5 = 1, 83 = j3+1 and

The first few values of Sr are given by
So =1, 83 =j1+t1, S =jgjat i1tz Sy = juholst jue*itis Tids - 1.
It is evident that Sr = S+ jr) is a polynomial in jg,*++,jr; indeed it is

a continuant [ 1, vol. 2, p. 494].

We have for example

i+ 1 -1 0 - 0
-1 g+l -1 ees 0

8, = 0 1 ggt 1l ees 0
0 0 0 i1

and
Sr(jl’jz’ cre, jp) = S(jr’ Jp-1 s j1) .

The latter formula implies

(6.10) R(Fgg, *+0* + Fak,) = R(Fg)+oer + Fokl)
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where

ki = kp, Ky = ky-kyp, ki = kj-kp g, v, kb = ky - ky.
When
(6.11) Ji = JZ = eses = jr = J ,

we can obtain a simple explicit formula for Sr‘ Since in this case

- {3 = > = E—
S,-(G+D1S,  +8, ,=0 (r2 2), So =1, 84 =j+1,
we find that
oo - o0
P R R e e i R T
=0 8=0
o0 oo
- +
- Z : 2:(_1)1: (St) G+ 1SS
s=0 t=0
~which gives
oo
- « -2
(6.12) S, = Z 1t (rt t)(J+ n*t
2<r

In particular, for j = 1, (6.12) reduces to

(6.13) sr =r+1 G=1 .

(6.14:) Jl = s =— jr_1 = j, jr = k .
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Then Si,+++,Sp_y are given by (6.12) while

(6.15) S, = k+1S,_ -8,
where S'r = S@,+**,j, kk It follows from (6.15) that
(6.186) fl. = fG,ee,jk) = ks, -8
In view of the identity
Loj+1 Fok = Fogroj + Fogtoj—2 *°*° +Fakooj
we get, using (6.13) and (6.16),
6.17) R(Lpj11Fok) = k-)@j+1)-2j k=>7j.
For k = j we have
(6.18) R(Lpj41Fpj) = 1 .
Note that
Loj1 Foj = Fgjra - 1, ILpj-1Faj = Fyjq-1.

When j = 2, we have

© o
E S xr+1 = 2= = E Fann s
_ 2
=0 1-3x+x =0
so that
(6.19) SI‘ = Fopts .

We now recall the identities
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Fy+ Fg e +Fgp = Fipu -1 @2 1),
Fy + Fg+ eov + Fppp = Fiy n=z1),
Fg + Fg+er + Fypog = FopFopy @2 1),
Fy+ Fg+re +Fapg = FopFonpey @2 1)

It follows readily, using (6.16) and (6.19) that

(6.20) R(Fipt1 - 1) = Fopig @ 20),
6.21) R(Fin) = Fon_y n 21,
(6.22) R(FopFon+1) = Fang n 21),
(6.23) R(FpFon-i) = Fan_y m=1).
(6.24) R(Fipq - 2) = Fyp h21,
(6.25) R(Fé, - 1) = Fyp 21,
(6.26) R(FopFop+1 - 1) = Fyp @=1),
(6.27) R(FynFon_g - 1) = Fan-g .

Combining (6.20) with (6.24), and so on, we get

(6.28) R'(Fan_q - 1) = Ty m>1),
(6.29) R'(F3n) = Fon+ =0,
(6.30) R'(FonFon+1) = Fonvg = @2 0),
6.31) R'(FonFon-1) = 2Fyn-4 m=1).
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We have also

(6.32) R(Fiy - 2) = Fon_y 21,
(6.33) R(Fin+1) = Fanoi nh21),
so that

(6.34) R'(Fin - 1) = Loy =1,

(6.35) R'(Fin+1) = Lop = 0).

Several of these results were obtained in [4].

In a similar way one can also prove the following formulas.

(6.36) R(FanFam) = R(Fopt+1Fam) = (0 - m) Fom + Fomy
(6.37) R(Fon Fam+1) = R(Fan+1Fam+1) = (- m) Fapy
Section 7

We shall now prove

Theorem 5. Let N have the canonical representation

(7.1) N = F +o+ +F .

ky

Then e(N + 1) = e(N) if and only if kr = 2.
Proof. Take kr = 2. Then

= LICINY +
N+1=T +: +Fg,  +Fy,

so that

eN+1) = Fk1_1+"- +Fp, 1t Fae

Since

[Oct.

(n=m),

> m).



1968] FIBONACCI REPRESENTATIONS

e(N) = Fees +Fkr—1"1+F1’

Fk1—1

it follows that e(N + 1) = e(N).
Now take kr > 2. Then

N+1=F +eee Tl + Ty

and

e(N+1) = Fk1—1+'.. +Fkr_1+1 .

But

e(N) = Fkr .

This completes the proof of the theorem.
If N is defined by (7.1) then

M = Fk1+1 +oeee o+ Fkr—lrl

+oee +Fkr-1< eN +1) .

217

satisfies e(M) = N. Moreover, by the last theorem, if kr = 2 then also

e(M-1) = N.
Consider
N +1 = Fk1+1+=-' +Fkr+1 + Fz.
Clearly

e(M+1) = F_+*** +F +1=N+1.

ky

Also, since F3 = 2, we have

M-2=F FF,  *t L

+ e
kyt

oM -2) = P+t 4T = N-1.
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It follows that one can have at most two consecutive numbers N, N +1,
such that e(N) = e(N + 1). This justifies the assertion about A(m,n) in the

introduction.

Section 8
Put
F=a~8n’ UL VPN L V]
n a - f 2
Then it is easily verified that
(8.1) N

Hence if N has the canonical representation
N = Fk1+"' +Fkr9
it follows that
(8.2) eN) - a1 N = g5t 4 gle Ly pkr

Consequently

e(N) - a‘1N1 < oMy Re ok

< a—2+a—4+... +Q-21’

-2
<9 L1 _1cgea.
1-a2 a? -1 o
If we put
a-IN = [o-IN] + € 0<E< 1,

where [a~IN] denotes the greatest integer <a-IN, then
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-0.62 <e(N) - [IN] - € <0.62.
This implies
(8.3) [@7IN] < e(N) S [a~IN]+ 1 .

If kr 2 3 it follows from (8.2) that

ie(N) - oz‘lNi Sad + @b 4201
< ad 1 - 11
1 - a2 ale? - 1) o? 2

and therefore
(8.4) eN) = {a"IN} k. > 2),

where {a/-lN} denotes the integer nearest to o~ IN .
Thus the value of e(N) is determined by (8.4) except possibly when kr :

= 2. Now when kr = 2 we have as above

a-5
,,.e(N)_a—lN_Z a-—z_a,—5_a,—7__,.. _a—2r~1>a—2 _
1-a2
_1 1 111,
o e -1) ot ot od
so that

0 <e(N) -aIN < 0.62.

It therefore follows that

(8.5) e(N) = [e”IN] + 1 k= 2).

We may now state
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Theorem 6. Let N have the canonical representation

N o= By b £ T

Then if kr > 2,

(8.6) eN) = {oIN},

the integer nearest o IN; if k.= 2,

(8.7) e(N) = [e-IN] + 1 .

We remark that (8.6) and (8.7) overlap. For example for

N =6 = F;+TFy, e6) = Fg +Fy = 4, [6a"1] = [3.72] = 3,
{6a~t} = {3.72} = 4.

However for

N =25 = Fg+ Fy + Fy, e(25) = Fy + F3 + Fy =16, [250-1] = 15,
{250-1} = 15 ,
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AR NEW ANGLE ON PASCAL'S TRIANGLE

V. E. HOGGATT, JR.
San Jose State College, San Jose, Calif.

1. INTRODUCTION

There has always been such interest in the numbers in Pascal's arith—
metic triangle. The sums along the horizontal rows are the powers of two,
while the sums alongthe risingdiagonals are the Fibonacci numbers. An early
paper by Melvin Hochster [6] generalized the Fibonacci number property by
using the left-justified Pascal Triangle and taking other diagonal sums, the
first summand being a one on the left edge and subsequent summands are ob-
tained by moving p units up and ¢ units to the right until one is out of the
triangle. Unfortunately, he required that (p,q) = 1. Harris and Styles[4]
produced a generalization of these concepts, and yet a further generalization
[5]. We present here a simplifying principle which will make the study of

generalizations such as those of Lind [8] easier.

2. COLUMN GENERATORS

Consider the columns of binomial coefficients in the left-justified Pascal

Triangle shown in (1). The generating functions for these columns of

/
/

w
w
=

@ <

A-% (T-xp 0T-xp 0T-37 Column Generator

N oth 15t gnd 3™ Column

(Beceived March, 1966) 291
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coefficients, indicated in (1), are given by the corresponding Maclaurin series.

That is,

%2 _ Z n(nz— 1) n_ Z (2) &

n=0 n=g
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as the coefficients of x™ Using the above generators, the generating function

for the sum of the binomial coefficients across the n°~ row of Pascal's Tri-

angle is
9} [e e}
k
- _ 1 X _ 1
Gx) —ng(x) T 1-x Z(l—x) - 1-x(1--X
k=0 k= 1-x
[e 8}
1 _ n_n
1 5% —ZZX o
n=0

This yields the familiar identity

() -+

j:

o

If, on the other hand, we multiply each generating function gk(x) by Ak

and sum again, we find

0 00
k
o = 2 M - i 3 (1)

k=0 k=0
[0 0]
= —7——-—1_ ;+A)X = E (]_—I—)\)nxn ,
n=0

Thus by equating coefficients of x" in each representation we get

M=

(’.1) A= @ Nt

J
=
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If we multiply the generating function gy (x) by appropriate powers of x,
this allows us to vertically shift the separate columns, aligning the numbers

along certain diagonals in a horizontal row,

3. THE RISING DIAGONAL SUMS

If we wish to sum the numbers along the rising diagonals, we modify the

column generators to be

2k - K
* _ X x> fn-= n
g = — ‘L( k >X .
- n=0

The diagonal sums, derived from (1), aré displayed with appropriate column

generating functions in (2). We now obtain a generating function

1 1
1 1
2 1 1
3 1 2
@) < 5 1 3 1
8 1 4 3
13 1 5 6 1

Column Generators
1-x 1 - x)2 1 -x)3

for the sums of the nth TOowW,

oo

& 1
Gx) = gx) = ;
é) k 1-x £

TN

k

2

X - 1 n
1—x> - 2 ‘Z Fn+1x ’
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a well known result.
4, GENERALIZED FIBONACCI NUMBERS

We now turn to the first generalization of the Fibonacci numbers due to
Hochster [6] and Harris and Styles [4]. These numbers are given by

)
u(mp,q) = Z <ni(_1 Py n > 0),

where [x] denotes the greatest integer <x. In particular, u(n;1,1) = Fn+1
and u@;0,1) = 2" To get these sums from the left-adjusted Pascal Triangle
we form sums beginning with the (n + 1)St one in the leftmost column and add
all the coefficients obtained by moving p units up and q units tothe right un-
til out of the Triangle. The column generators which yield such summands in

a horizontal line are

KLotra)
gk(x) = (T_X)W o
Thus
k
®. *® p+q
G = ) gk = Z =
1 - q
k=¢* * k=0 (1 - x) ‘
3)
(1-x%t

n
= el = up,)x” (Ptq =2 1; g2 0)
a-x9- X7 Z_:
n=0
This generating function was notgiven in [4], but is a special case of one given
in [9]. We note that in (3) p may be negative., If p =1 and g = 1, then

(3) becomes
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[e.e]
1 _ n
IHX_XZ_ZFIH'iX ’
n=0
while for q = 2 and p = -1 we have
o.6]
1"‘X2=EF2n+1X s
+
1-3x+x =0

so that there are also Fibonacci numbers in the falling diagonals.

‘5, A FURTHER GENERALIZATION

In a new paper [5], Harris and Styles consider Pascal's Triangle with
each row repeated s times. The column generators for the new array can be

easily obtained. The column generator

1

g x) = ——3
k a - X)k+1

generates the coefficients in the kth column of aleft-adjusted Pascal Triangle,

and

1
hk(X) = &
1-x)

has the same coefficients as gk(x), except each nonzero entryis separated by

s - 1 consecutive zeros. We can modify the hk(x) to duplicate each nonzero

entry s times by multiplying itby 1+ x+ 2 +o00 +x° L Thus

* _ 1A xAeee +x _ 1
b ) = = = k .
a-x") 1-x@1-x")
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To align the coefficients of like powers of x requires

st
gl*;CX) = T -
(1-x0a-x°)

More generally, if we are interested in summing as before by going along
risingdiagonals in steps of p units up and g units to the right (see Section 4),
then the required column generators will become

X]L<;(p+sq)
kq °
1-x@a-x°)

grlx) =
The generating function for the numbers

o
p+sq n - pk

u(ip,g,8) = ) S @ > 0)
k=0 ak

investigated in [5] is thus

0 0 k

.
Z gﬁ(x)ﬂfxz Xpsqq

k=0 =0 \(1-x°)

G(x)

(4)

q ©
1-x5/@0-% _ 3

= 3 u(@m;p, g, s) < .
: +
a- x,s) - xPT8d

n=0

The horizontal sums will be finite if p+sq =21, s > 0, and g = 0, so again

p may be negative. For example, if p = -1, g =1, and s = 2, then
2)/ i
_ (@1-x%)/1-x) 1+x _ n
Gk = 9 B s Z FrnX o
(1-x°)-x 1-x-x
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so there are Fibonacci numbers even in the fallingdiagonals of the left-adjusted

Pascal Triangle with each row repeated s times.
6. THE TRIMMED PASCAL TRIANGLE

Let us return to the numbers u(n;p,q) of [4] (see Section 4). Suppose
we define u*(n;p,q) as havingthe same summation pattern (p units up and ¢
units to the right), but in Pascal's Triangle with the first m columns removed.
Letting gE(x) be the generating function for the kth column of this trimmed,

left-justified Pascal Triangle, it easily follows that

Klp+a)
m-+i+kq

*
g x) =
k (1-x)

Therefore the generating function for the numbers u*(n;p,q) is

o © k
* >\ 1 Xp+q 1 a- x)q—i
G (X) = g (X) = - . .
kz=0 5 (l’x)mﬂ g <(1'X)q> @-x™ (1—x)q—xp+q

We point out that if

f(x) = a =,

n=0
then

o n

SR IN DIEN B

n=0 \ j=o

so that multiplying the generating function for the u(m;p,q) by (1 - x)”! mere-
ly yields the generating function for the partial sums of the u(n;p,q). Repeated

application m times yields m-fold partial sums. Thus we note if we take
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rising diagonals on Pascal's Triangle with the left column of ones trimmed off,
the result will be the sum of the Fibonacci numbers, so that

Fy+ Fg+ oco +Fn=F -1,
while consideration of row sums gives

1+2+.00 +20 = 2% g
(see Figure 1). In general we have

11 2 3 5 8 13

n

Zu(k;p,l) =up+p+1 p,1) - 1.
k=0

We also note that the original generating function for the Fibonacci numbers,

=

o0
_ 1 _ n
T T e

n=0

becomes
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for Pascal's Triangle trimmed of the first m columns. Thus we have

o0 n
) = NY[fmt+k-1 F M
- 2 m-1 n-k ’
n=¢ k=0

a convolution of the Fibonacci numbers with the (m - 1)St column of Pascalls
Triangle. If the column of ones is deleted, so that m = 1, the generating

function for p = -1 and g = 2 is

2.8}
1 1-
G = 775 = = E Fm+ta X
1 - 3x + x? Py

so Fibonacci numbers are again in the falling diagonals.
Returning to the general case of the generating function for the um;p,q)
given in (3), we remark that in this particular case we can interpret the

sequence generated by

o]

_ )d-i-m
"g—'%)__ﬁrq - Z u*mp, ) XU (m o= 0,1,000),
0-x7-x n=0

7. A SURPRISE CONNECTION

In an important paper concerning unique representations of the positive
integers as sums of distinct Fibonacci numbers and the generalization of this

representation property, D. E. Daykin ([1], [2], [3]) studied the sequence

defined by
u =n (n=1,2,3,°",1‘),

= + n>r .
Yy Yoy T Uper ¢ )
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n-1

Now if r = 1, we get w o= 27 7, while if r=2, then u, = F . Consider

n+i
the generating function for the numbers uln; r - 1,1) ,

The initialvalues are u(m;r - 1,1) =1 for n =0,1,***,r - 1, and ulmyr - 1,1)

=n+2-r for n=1r, r+1, ¢c¢, 2r - 1, Thus
un=u(n+r-2;r—1,1)
for n > 1. Hence.the generating function for the w, is

xQ

E un+ 1 r-1, 1)XI1 = [———1———r— (L+x+eece +Xr—2):|/xr—1
l-x-%

=1

_a-x)/a-x

r
1-x-x

But this is a special case of (4). Thus the second generalized Fibonacci num-
bers uln;p,q,s) of Harris and Styles reduce to the u, by choosing s = 1,
q=1, and p=r1r-1.

D. E. Daykin also studied ([1], [2], [3]) the sequence

v}

n=i

defined by

=n @=1,2, °°°, 1),

= + +1 n>r.
V-1 Vn-r ( )

It can be easily verified that the numbers u (n+r - 2; r - 1,1), summed in

Pascal's Triangle with the first column deleted, obey the same recurrence
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relation and boundary conditions as the Vv, SO that v, = wh+r-2;r-1,1)

for n 2 1. Thus the generating function for the vy is

@ ¢4}

v x = E *h+r-2r-1,1)x" = 1

=0 n = 1-%x01-x-x")

8, SOME FURTHER RESULTS

Let f(x) be the generating function
0
fx) = Z a i .
n=0
Suppose we multiply each of the column generators gk(x) by the corresponding
coefficient ay and sum, yielding

[e ]

G = D a6
k=9
In many particular cases the results are quite interesting. For example, let
[ee]
1 n
fx) = ——— = E F X,
e 2 n+i
1-x-x n= .
X
g, x) = .
k a- X)k+1
Then
z k ® k
X 1 X
G 'ZFk+1 o oF CTox E:Fkﬂ (l—x)
k=0 k=0
[o.¢]
1 1-
= = =— = E Fopt1 X o
- x)(l X x* > 1-3x+x n=
-5 - =
(1-x)

Since in this case
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k ®
_ X _ n\ _n
g %) ———kﬁ—Z(k)x ’
1-x

we have that

n

n
Z Flers (k) = Fant -

=0
If, on the other hand, we put

2k
gk(x) = —X—k;q )
(1-x)

then we are multiplying F by the corresponding elements of the rising di-

k+1
agonals, and

— n - n _ X!
Ge =) Z(k )Fk+1 X _1—XZFk+1<1—x)
n=0 \ k=0 =0
1-x

1-2x+x -xt

Suppose that

(e o]

1-x 2 n

fx) = = F X .
1-2x-2x%+%° 2 nH

Then
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0 [H/ZJ 00 k
_ n-k 9 n_ 1 9 X
G(X)‘Z Z( k )Fkﬂx ~1-xZ:FK+1<1-x>
n=g \ k=0 k=0
- 1 -x

1-x

(1-x)(1-2 X_ o X Xs)

(1 -2x @1 -x

1 - 5x - 5x%

There are thus many easily accessible generating functions where the numbers

generated are multiplied by the corresponding elements on any of the diagonals

whose sums are the u(n;p,q). These methods were discussed in [7].
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PARTITIONS OF N INTO DISTINCT FIBONACCI NUMBERS

DAVID A. KLARNER
NMcMaster University, Hamilton, Ontario, Canada

INTRODUCTION
Suppose {an} is a sequence of natural numbers such that a4y T 24 +
a, n= 1,2,--+, and let A(n) be the number of sets of numbers {11, igy - }
such that n = a; +a; +-+-. When a_=TF , F or L _ (where as usual
1 2 n n n+i n

Fn and Ln are the n~ Fibonacci and Lucas numbers, respectively) we write

A@m) = R(n), T(m), or S(n), respectively. Among other things we proved

the following theorems in an earlier paper on this subject [4].

Theorem 1. If a < K=a +k a -ay n= 3,4, then
—_— n n n+i

(a) AK) = Al + Al -k-ay),

and

(b) AK) = A(an_H -k -ay).

Also, if a3 2 2 and 1< k< a; -1, then

(c) A(an_1+k—a2) = Ala_-k) = A

n g TE-2), o= 4,500

Theorem 2:

3
2
[

(a) 1 if, and only if, N = Fn+1_ 1, n=20,1,""

(b)

b
2z
I

2 if, and only if, N = F 3+Fn—1 or Fn+4-F -1,

n+ n
n=12,-°"".
() T(N)=3, ifandonlyif, N = Foas ™ F,- 1, Fots +Fn+1 -1,
Frag=Fp-L or Fo-F -1 n=L2-.

*Thispaper was written while the author was a postdoctoral fellow at McMaster
University, Hamilton, Ontario, 1967. .
Kl (Received July, 1967)
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d) T(Fn+k+2+2Fn+2 -1)=k, n=1,2,-++, and k = 4,5,«+- .

For several values of k Hoggatt found solution sets of T(x) = k; in
each case this solution set could be described as a finite set of sequenceshav-
ing the form b -1 where b_,_=b +b . Thus he was led to conjecture:

n n+2 n+i n
If {bn} is a sequence of natural numbers such that 1on+2 = bn+1 + bn’ then
T(bn -1 = T(anr1 -1 =k
for all sufficiently large n. Our main purpose in this note is to give proof of

Hoggatt's conjecture.

A REPRESENTATION THEOREM

Suppose ---, F_y, Fy, Fy, -+ is the extended sequence of Fibonacci

members; that is, F; = 0, F; =1, and F -F -F =0, -0 n =<oo.
mempers n+i n n

-1
Thus, we have

F_=D"F, n=1,2,
The following representation theorem should be compared with Zeckendorf's
theorem (see for example Brown [1], [ 2], or Daykin [3]); in particular, is
there a sequence essentially different from {Fn} which satisfies the conditions
of Theorem 3?
Theorem 3. For every pair of non-negative integers A and B there
exists a unique set of integers {kl, ce ,k]-} such that |ky - kg| 2 2 whenever

r #s, and

A = Fki + e 4 Fg, and B = Fk1+1+---+Fki+1.

Proof. If a set of integers {mi,' . ,mi} has |mr - msl 2 2 when-

ever r # s, Fm toeee + Fmi is called a minimal sum. There is a finite
1
algorithm A for converting Fm + Fm toeee + Fmi into a minimal sum if

FIn +oeee + Fmi is a minimal sum A: First, if m = mj for some j we can

1

convert F_ +-+-- +2F,_ .+« + Fy,. into a sum involving F's with dis-
my mj i

tinct subscripts since there is a maximal t such that 2F Fm—z teee +

Fm—zt is a part of this sum, and this can be replaced with
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+ 4 oo

Fm+1 Fm—i " Fm—zt+1 * Fm—zt—z ’
Second, if Fm + Fm toeee 4 Fmi is a sum involving F's with distinct sub-
scripts, a minimal sum can be obtained in a finite number of steps by succes-
sively replacing FV + Fv—i’ v maximal, with FV e Note that if A is applied

ee e + e oo i =
to Fn+m1 + Fn+m1 and an1 + + Fn + nj is the result when n = 0,
then tue same statement holds for n = 1,2, .

Consider the sequence {bn} defined by
bp = A, by = B, b =b ,,+b, n=0,1,-,
then it follows that

b =F A+F B, n=0,1,"""
n n-1i n
Using the algorithm A we are going to show by induction on A + B that for
every pair of non-negative integers A, B there exists a unique set of integers
{ki,-'- ,ki} such that 'kr - ksl 2> 2 when r # s, and

(1) AF,  * BF = Fpp *° +Fn+ki’ n=0,1,-:
If A+B =1, then
AFn—i + BFn
is Fn_1 or Fn, n=0,1,"** . Suppose the statement is true for every pair

of non-negative integers A,B with A+B <n (n2> 1). Thenif A+ B = n,
there exists a unique set of integers {ki, s ,ki} with lkr - ksl > 2 when

r # s, and

AP, (#BF = F b #F o

Now we can apply A to

(A~ 1>Fn—1 * BFn - Fn—i * Fn+k1 T T Fn+ki
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or

AF +(B+1)F =F +F +eee + F
n-i n n n n

+ky +k;

1

to find that there is at least one set of integers which satisfies (1) for every
pair of non-negative integers A,B with A+ B =n+ 1, But suppose AFn_1
+ BFn can be expressed as a minimal sum in two ways for n = 0,1,-+-, say

+ = 4 o000 4 = + oee
ARy T BE, Fn+r1 Fn+ri Fn+s1 Fn+Sj :

Thus, for every
;
n Zmax Ty, **c, Ty Sgy *t0, sj}

the number AFn + BFn has two representations as a sum of non-consecutive

Fibonaceci numbers (with positive subscripts); this contradicts Zeckendorf's
theorem which says that such representations are unique for every natural
number.

Corollary: If {bn} is a sequence of natural numbers such that

n+a bn+1+bn’ no=0,1,00

then there exists a unique set of integers {ki, cee, k]} withvl kr- kSI 2 2 when
r # s, such that

(2) bn = Fn+k1+.“+Fn“'ki’ n=0,1,°*" .,

Proof. Put by = A, by = B in Theorem 3, then (2) can be proved by

induction on n.

HOGGATT'S CONJECTURE

Theorem 4. Suppose {bn} is a sequence of natural numbers such that

b =Dh +b_, then there exists an N such that
n+i n

(3) T('bn -1) = T(bn+1 -1), n2N;
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in fact, if

= s 0 e > p i = 206 T
(4) b Fn+k1+ +Fn+ki , kj_ kj+1+2, j 1,200, i-1.
then N = 2 - ki" If ki ~ 2, the extended sequence found by substituting n =
-1, ee+, 2 - k; in (4) satisfies (3) for n 2 2 - k;.
Proof. The Corollary to Theorem 3 guarantees that lon has the (unique)
representation given in (4), so we can assume bn has this form. If i = 1,

Theorem 2(a) asserts T(Fn -1) =1 for n =1,2, =+, so0

1) = T(F 1)

Fn+k1 - ntkytt T

for n 2 2 -ky (infactfor n= 1-ky). Now assume i > 1. We have

< -1 = -
Fn+k1_ bn 1= Fn+k1+1 Fs »

for n2 3-k; = 2- ki, so Theorem 1(a) can be used to write

(5) T(bn -1 =Tk -F - 1) + T(F

- + - R
n n+ky : bn 1 - F)

n+k1+1

Suppose 1 <j =< i is the smallest member such that kj > kj+1 + 2, then

Fn+ki—1 - 1, if J =1,
6) F -b +1-F; =
n+ky+1 n +”°+Fn+ -1, if j <1.

F + F
n+kj~—2 n+kj+1 kj

Now (5) and (6) indicate that Theorem 4 can be proved by means of a
double induction on i and k- ky = k= 2; thus, for i, k=2 2 we define

proposition P(i,k): If {bn} is a sequence of natural numbers with

= 4 eee 4+
bl‘l Fn+k1 Fn+ki :

such that ky 2 kg +2, °=°, kiy 2 kj + 2, and ky - ky = k, then
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T(bn -1) = T(bn+1 -1)
forall n > 2 - ki'
To prove P(2,2) is true, suppose
bn - Fn+k1 * Fn+k2
with ky = kg - 2; then using (5) and (6) we have
(7) T(Fn+k1 + Fn+k2 -1 = T(Fn+k2 - 1) + T(Fn+kz—1 -1,
but
T(Fn+k2 -1 = T(Fn+k2-1 -1 =1
forall n 22 - ky.
Suppose P(2,k) is true for all k < K (K > 2), and suppose
bn - Fn+k1’ Fn+k2
with ky - kg = K, then using (5) and (6) we have
(8) T(Fn+k1 + Fn+k2 -1 = T(Fn-’rkz - 1) + T(Fn+k1-2 + Fn+k2 -1).
If
K =3, T(Fn+k2 -1) = T(Fn+k1—2 + Fn+k2 -1 = T(Fn+k1+1 -1 =1,

forall n=> 2 -ky If K> 3,

TE sgegmg ¥ Pty = D = T(Fn+k1+1 Tty

- 1) forall n=22-ky,
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so P(2,k) is true; thus, P(2,k) is true for all k= 2,

Now we suppose P(i,k) is true for all i <I (I> 2) and all k > 2;
there is no difficulty in showing that P(I,2) is true and that PI,K- 1) im-
plies P(I,LK) for K > 2, by using (5) and (6) just as before. This completes
the proof.

Corollary:

| k+2 =
T(F . * F -1 -[ 5 ] kyn = 2,3, .,

Proof: Combining (7) and (8) and related results we have

2, if k = 12,3,

(9) TE , +F -1 =

1+T(Fn+ 2+Fn-1), if k =4,5,°°".

k-

The proof follows by induction on k in (9).
Theorem 5. Suppose { bn} is a sequence of natural numbers such that

then T(bn), T(br1 + ),**° form arithmetic pro-

gressions for all sufficiently large n.

), +++, and R ), R .,

Proof. The proof that T(bn), T(bn +2),"° forms an arithmetic pro-
gression follows the proof of Theorem 4, except that we use the fact that a
term-by-term sum of two arithmetic progressions is also an arithmetic pro-
gression. Theorem 4 and this last result imply R(bn), R(b][l +2),- <o forms
an arithmetic progression because R(N) = T(N) + T(N - 1), so R(bn) +
T(bn - 1).

SOLVING T(x) = j

In the last section we showed that T(x) = T(y) for every pair
X,y € Sk, 0, k) = _{Fn+k1 Fooee Fn+ki -1Lin=2-ky 3-kiooo),
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where
ki 2 kg + 2, o0, ki_y = ki + 2 ;
since
S(kls“':ki) = S(k1+ k,"":ki +k)3

we will assume ki = 0. The next theorem asserts that every solution x of
T() = j is contained in one of a finite collection of sets S(ky,+«+,kj) for
appropriate sets of numbers {ki, eeo, ki} .

Theorem 6. (a) Every non-negative integer is contained in exactly one

of the sets S(kj,++°,k;), where {ki, XL kj} ranges over all sets of integers
such that

ki2 kg + 2, ¢+, ki = ki+2, kj =0,

() If x,y Slky,°**,k;), then

ky + 2
T) = T(y) < [ > .

(c) There exists a finite, non-empty collection of sets S(ry,*+<, 1), S(sy,

***,8m )+ such that T(x) = j if, and only if, x & S(ry,**+,rm) U S(sy,
Sp)U e+ .

Proof. (a) This is a reformulation of Zeckendorf's Theorem. (b) The
result is true when i = 1 or 2 by Theorem 2(a) and the Corollary to Theorem
4, respectively. Now (5) and (6) can be used to prove (b) by induction; the
main point of the proof is indicated by the following inequality:

(10) T(F

1) = T(Fn+k2 +oee o+ Fn+k1 -1)

+ T(Fn-kk.-z +ooe + Fn+ki - 1)

ki"JI'kHZ] e . o
1+[-—2ﬂJ=L 5 s lf]'—].,

ki] "k1—2j+2jl [k1+2" N
[7 +|_"“T—2 3 J,lf3>1-

+e0o + F -
n+ky n+kj
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(c) Every number is in exactly one of the sets S(ky,*+-,k;) by (a) of this
Theorem; but x € Sj = {X:T(X) =j} and x & Sky,+++,ki) implies Sy, =<°
ki) is contained in Sj since T(x) = T(y) = j for every y € S(ky,*+-,kj) by
Theorem 4. There are only finitely many sets {ki, see, ki} such that

k‘l'2 ky + 2, 0, kig 2 ki + 2, kj = 0,
and

kg + 2

In
e

s0 S]. is a finite union of sets S{ry,++<,1rym), S(Sy,c°+,Sp)ye++ . The cor—
ollary of Theorem 4 implies Sj is non-empty for j = 1,2,*°*; a different
collection of solutions of T(x) = j was givenin [4].

Let t(ky,*+-,kj) = T(x), where x € S(ky,*++,kj); then if i = 1, we
have t(0) = 1 which is Theorem 2(a). For i > 1, if j is the smallestnhum-
ber such that kj > kj +4 T 2, then (5) and (6) may be formulated as

tlky, *o0, ky) + 1, if j =i
tlkg + ooe +Kj) +t(kj - 1,kj+2, cee, ki)

e s < s _
if j i, kj kj+1+3’

(11) t(kj_s ctty kl) =

thy + *oo +kg) * ol - 2, k

. .<- >
it j <1, kj_kj+1+4.

j+1’q oo

Using Theorem 6(b) and (11) we can find all solutions of T(x) = j witha
finite amount of checking., This checking would be made easier if we had a
non-iterative method for computing t(ks,*°*,k;j), but so far we have not been

able to find a closed formula for t(ky,***,k;) .
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MORE ABOUT THE “GOLDEN RATIO™ IN THE WORLD OF ATOMS

J. WLODARSKI
Porz-Westhoven, Federal Republic of Germany

In an earlier article (The Fibonacci Quarterly, Issue 4, 1963) the author
reported some fundamental asymmetries that appear in the world of atoms.

It has been stated in this article that the numerical values of all these
asymmetries approximately are equal to the ""golden ratio" ("'g. r. ).

Two of these asymmetries were found:

1. In the structure of atomic nuclei of protons and neutrons, and

2. In the distribution of nucleons in fission-fragments of the heaviest

nuclei appearing in some nuclear reactions.

Recent theoretical studies suggest that an element containing 114 protons
and 184 neutrons may be comparitively stable and therefore this hypothetical
substance could be produced possibly in some nuclear reactions [1].

One possible reaction involves bombarding element 92 (uranium) with ions
(atoms stripped of one or more electrons) of the same element 92, which should
yield a hypothetical compound nucleus 15[x]*" that could break up asymmetri-
cally and produce a nucleus with 114 protons:

92U + U 1oy [x 16> 11y [y]P%8 + (YD1 + 12n;
12 neutrons (n) would be left over from the reaction [2].

Remark: Both hypothetical (with no names) products of this reaction are
designated with the symbols [x] and [y] respectively. '

It turns out that the ratio of 114 protons and 184 (298 - 144 = 184) neu-
trons of the hypothetical element 114 is equal to 0.6195 and differs from the
"g, 1. '"-value (if we limit the "g. r. "-value to four decimalsbehind the point) by
0.0015 only.

[Continued on p. 249. ]




CONTINUOUS EXTENSIONS OF FIBONACCI IDENTITIES
ALAN M. SCOTT

Phoenix, Arizona

1. INTRODUCTION

Some attention has been given to extending the domain of definition of
Fibonacci and Lucas numbers from the integers to the real numbers (see, for
example, [1]). We give here what seems to be the most natural continuous
extension from the point of view of recurrence relations. We then show how
several familiar identities have quite natural continuous analogues, providing
some support for our contention that these extensions are ''the' continuous real

extensions of the Fibonacci and Lucas numbers.

2. CONTINUOUS EXTENSIONS
We wish to find real-valued functions U(x) satisfying the difference
equation
(1.1) U®) - ¢4Ux-1) - coUx-2) = 0 ,

where c; and c, are real constants. Let a and b denote the roots of the

characteristic polynomial

2

X% - C4X - Cy

of (1), where we assume a and b are nonzero real numbers. The quadratic

formula gives

Then

a®-cja-cy = 0,

so, for any real x, multiplying this by a* > gives

(Received September, 1966) o5
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X x-1 X-2 _
a -ca - Coa =0,

Similarly,

X X-1 X-2
b" - e - cyb

Hence
Ulx) = k@ + kb~ ,

where k; and ky; are any real constants, satisfies (1.1). If a > 0 and b >
0, then U(x) is a continuous real function. However, if a > 0 and b < 0,
as in the Fibonacci case, then b~ assumes imaginary values, so U(x) does
not immediately give us the real-valued continuous extension we seek. But

since ¢4 and cy are real, we see
V) = Re(U(x))

is a real function satisfying (1.1). This V(x) will have the nice properties we
are looking for.
Let us make these ideas explicit for the Fibonacci and Lucas case. Here

then we let ¢y = ¢ = 1, so that

a = 31+VB) >0, b=13i1-VE<o.

Letting

. i
we see since e~ = -1,

X

b = (1)%BF = €™¥g% = gX(cos mx + i sin mx) .

To find the continuous Fibonacci extension F(x), we use the initial conditions
F(0) = 0, F(1) = 1 to produce the system
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0=k1+k2, 1=k1a+k2b,

which has the solution k; = -k; = 1/V/5. Then
< o x X _ gX
@.1) F(x) = Re[@* -1b*)/V5] = &2 —F coSmx

\5

Similar consideration for the Lucas extension L(x) obeying (1.1) with the ini-
tial conditions L(0) = 2, L(1) = 1 give

(2.2) Lx) = a*+p% cosmx .

Note that if n is an integer, it follows from the recurrence relation and the

chosen initial conditions that

Fn) = Fn, L) = L,

where Fn and Ln denote the usual Fibonacci and Lucas numbers, ‘respec-
tively. Hence F(x) and L(x) are continuous (indeed, infinitely differentiable)

real-valued extensions of the Fibonacci and Lucas numbers.

3. CONTINUOUS IDENTITIES

We give in this section the continuous analogues of some familiar Fibon-

acci and Lucas identities. It follows immediately from (2.1) and (2.2) that

(8.1) Fx+1)+Fx-1) = L& .

By multiplying out the left side, and using 8 = a~!, one can easily verify that

(3.2) Fx + )F(x - 1) - F2(x) = cosmx.
This is a particularly neat generalization of the Fibonacci identity

F F2 = ()",

F -
n+i" n-1 n
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Similarly, one can show

(3.3) Lx)? - Lix + 1)L(x - 1) = 5cosmx ,
which generalizes

o

2 _ = -
Ln Ln+1Ln—1 5(-1

Equations (2.1) and (2.2) can be solved for 2= to give

(3.4) a* = L& +V5Fx)} ,

which leads to the deMoivre-type formula

(3.5) (M)n _ L(nx) + V5F (nx)

2 2
Slightly less satisfying is the easily checked formula
3.6) FRL& = HFex+ @™ - g%)/\NG},
which reduces to Fyp = FnLn for n integral. Similarly,
3.7) Flx+ 1)? + F®? = {F@x+1) + @455},
which generalizes
and also

(3.8) Fx+1)2-F(x-1)%= [Fx+1)-Fx-1)][Fx+1)+F(x-1)] = Fx)Lx).

We have indicated here how one might continuously extend most Fibonacci

and Lucas identities. The functions F(x) and L(x) can be differentiated and
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integrated using standard formulas, but the results are notparticularly simple.
Finally, we note that the above ideas may be carried out to extend general
second-order recurring sequences to continuous functions, as indicated in Sec-
tion 2. However, because of increased complexity, we do not state the more

general results here.
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[Continued from p. 244. ]

It is well known that the number of protons Z in the lightest stable nuclei
is, as a rule, equal to the number of neutrons N. When the atomic number Z
increases, the proton-neutron ratio in the nucleus Z/N decreases gradually
from 1.0 to about 0.63.

The ratio of Z/N in theheaviest practical stable nucleus (yU%%) — found
in nature — reaches already the value 0,620, but with the still heavier hypo-
thetical element 114 this ratio (114/184 = 0.6195) would yield (if this element
could eventually be created) one of the best approximations to the "g, r. ""-value
found in the world of atoms. )

It is interesting to note that the ratio of protons of fission-fragments in
above nuclear reaction (70/114 = 0.6140) also lies inthe range of the "g.r. "~
value and differs from this value by 0.0040 only.
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions
to Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745, This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit
solutions or other information that will assist the editor. To facilitate their
consideration, solutions should be submitted on separate signed sheets within

two months after publication of the problems.

H-136 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California,
and D. A. Lind, University of Virginia, Charlottesville, Virginia.

Let {Hn§ be defined by Hy =p, Hy =q, H , =H  +H (021

where p and ¢ are non-negative integers. Show there are integers N and
< <

k such that Fn+k Hn_ Fn+k+1

if p and g are allowed to be non-negative reals instead of integers?

for all n > N. Does the conclusion hold

H-137 Proposed by J. L. Brown, Jr., Ordnance Research Laboratory, State
College, Pa.

GENERALIZED FORM OF H-70: Consider the set S consisting of the
first N positive integers and choose a fixed integer k satisfying 0 < k < N.
How many different subsets A of S (including the empty subset) can be
formed with the property that a' - a' # k for any two elements a', a'" of A:
that is, the integers i and i+ k do not both appear in A forany i = 1,2,
eee, N- kL.

H-138 Proposed by George E. Andrews, Pennsylvania State University, University
Park, Pa.
If Fn denotes the sequence of polynomials F; = Fy = 1, Fn = ]5‘n_1 +

n-2 provethat 1+ x+x%+ e+ + P71 divides }?‘pJri for anyprime p =

X "F .,
n-2
+2 (mod 5).

250
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H-139 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Put

-
Fn Fn+1

A = Fn+k—«1 Fn

n e e .
LFn+1 Fn+2
An An+k
An+(m—1)k An

M =
o Anrak

Evaluate det M .

Fn+k -1

e o o o

nt+k-2

At (m-1)k

An+ (m-2)k

e o o o

For m = k = 2 the problem reduces to H-117 (Fibonacci Quarterly,

Vol. 5, No. 2 (1967), p. 162).

H-140 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia

For a positive integer m,

let o = a(m) be the least positive integer

such that F, = 0 (mod m). Show that the highest power ofa prime p dividing

FiF; =+ F, is

o0

Z [

n
Of(pk):l

where [x] denotes the greatest integer contained in x. Using this, show that

the Fibonacci binomial coefficients

m-r+i

F_F F
m| _ ~m m-i
[I‘] Fin‘ e FI‘

are integers.

(r >0)
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H-141 Proposed by H. T. Leonard, Jr., and V. E. Hoggatt, Jr., San Jose
State College, San Jose, California.

Show that
-1]
7T
(a) "L F
a 2k + 1) T2(n-(2k+1)) " 2k+1
=0
n \
) (2k r1) Takn
n
2]
LZn + Ln \
o 23 (5w

=0

H-142 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va.

With the usual notation for Fibonacci numbers, F, =0, F; =1, F

n+i
=F +F_ ., show that
n n-1
By 1+V5 \ [/ 1+\V6
(1-w5> T-5 TNV )l
2 n+1i
=0 k n-k
where

(X) = x(x - 1)(x - 2)---(X—j+1)/j!
\

is the usual binomial coefficient symbol.
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SOLUTIONS
ORIGINAL COMPOSITION

H-88 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose,
California (Corrected),

Prove that

n
E : n n
Famk (k) = LomFomn

k=0

Solution by M, N, S. Swamy, Nova Scotia Technical College, Halifax, Canada.

Let
n
§ : n
5 = Fymk <k>
k=0
n n
_ 1 n am k 1 n iam k
-\7§§<k)‘p”\75 n) (gém)
k=0 k=0
= % [(1 +ptmy™ 1+ q4m)n:]
where
ptq=1, pqg = -1; or (pg)?™ =1
Hence,

s = = [{(pq)zm * p4m}n - {(pq)zm + q‘-‘m}n]

V5
- :‘_/1___ [pmm (0 + )1 _ gmon(em 4 gam )n:‘l
5
- (i 4 gy P - g"PT)

V5

n
LZm F2mn
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Therefore,
n .
n n
E Femk ( k) = LymFamn
k=0

Also solved by John Wessner, L. Carlitz, and F. D. Parker.

FINE BREEDING

H-96 Proposed by Maxey Brooke, Sweeny, Texas, and V. E. Hoggatt, Jr., San Jose
State College, San Jose, California (Corrected).

Suppose a female rabbit produces Fn(Ln) female rabbits at the n*“

Y

time point and her female offspring follow the same birth sequence, then show
that the new arrivals, Cn’ (Dn) at the nth time point satisfies

Coyp = 2C, +C 3 C1=1, Cj=2

and

- 4yt
D ., 3Dn+( 1)

Solution by Douglas Lind, University of Virginia.

Hoggatt and Lind [”The Dying Rabbit Problem, ' to appear, Fibonacci
Quarterly] have proved the following result: Let a female rabbit produce Bn

female rabbits at the n™ time point, her offspring do likewise, and put

n=1

Then the number R][1 of new arrivals has the gene rating function

[e]
B "2—‘ n_ 1
R(X) = RnX - m 5

n=0
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where we use the conventionthat Ry = 1 (the original femalebeingborn at the

0" time point). We apply this result to the cases (i) Bn = Fn’ and (ii) Bn

=L .
n
(i) If B. = F_, then
n n
o0
Bx) = E F x" = X s
h 2
= 1-x-x
80
Rx) = 1+ X
1-2x-x%

It is clear from the generating function that here the Rn = C11 obey the recur-
rence relation C = 2C + C_ along with Cy =1, Cy = 2, thus estab-
n-+y n+i n
lishing the desired result.
(ii) The recurrence relation proposed is incorrect, the proper one being

shown below. If Bn = Ln’ then

Q0
: 2
Bx) = i L gt = XH2E
n 2
1-x-x

n=i
so that
+ 9x2
R(X):————‘g'ﬁ(uz——:l-}-._)(___zé.__ R
1- 1-2x - 3x?
1-x-x%
Now
5 1
5 2 -
X + 2% __“%Jr 12 + 4 .

1 - 2x - 3x° 1 - 3x 1+x
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so that

D =R = (6/12)3™) + /91D @ > 1.

n+i
)

It follows that Dy = 1, and that DI1+1 = 3Dn + (-1 , the correct relation.

BINOMIAL, ANYONE?

H-97 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Show
(a) i.(nz :E 1nkn n+k
&) o o) () te
() < n2 _ > n-kfn\ fn+k\ F
O - e (1) e

If

and
n .
Qe = Z(ﬁ)(n . k)<x SR
k=0

then P(x) = Q(x) is aknown identity (see elementary problem E799, American
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Math., Monthly, 1948, p, 30). If @ and § are roots of xX2-x-1 = 0, then
Ln =o+ Bn, Fn = " - ,Bn)/\/g, and thus

(a) Pl@ + P@) = Q@ +QEB),
since

@- DMK 4 g o P o @)K gaynk

I

ST
) (P@ - PE)AVE = Q@ - QB)/V5

since
@ - 1)n—k(ﬁ ~ 1)n—k - (_1)n—k(ﬁn—k _ an—k)
_ n-k
= -(1)"TWEF
PRODUCTIVE SUMS

H-99 Proposed by Charles R. Wall, Harker Heights, Texas.

Using the notation of H-63 (April 1965 FQJ, p. 116), show that if o =
P ,
@ +V6)/2, I m n(a-1)/2 ()
T—]\/ana =1+ 3 (1) F@n,m)a
n=1

n=1
m m
-]—-IL a 313 =1 + Z (_l)n(n+1)/2 F(n,m)a"n(m"l"l) ,
= " n=1
where -
_ F Fm—l m-n+1
Fn,m) = T EF - F .
172 n

Solution by Douglas Lind, University of Virginia.

We use the familiar identity

m-1 m

(%) "I"T~(1 S = 3 (_1)nqn(n—1)/2 [mJ &

n
n=o ’ n=0
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where

[m _ (1_qm)(1“qm—1)... (1_qm—n+1
n

1-q@-g)--(1-q"

If B =(1-V5)/2, then \@Fna_n =1-@/a)" Putting q = /@, then
[m] _ an2~mn.F(n,m) ,

and putting x = g in (*} gives

m m m
MOVEEE = 11 (-d) = ¥ (DPFa,m)g0/%ntmn
n=1 n=i n=g
m
_ Z (_1)n(n-1)/2F o, m)a—n(mﬂ)
n=g
where we have used of = -1.

Similarly, Lna_n =1- (B/oz)m, so putting g = /@ and x = -q in (¥)

gives
m m m
- 2
I L o N L g = Y ) F@, m)qn(n—l)/zan mn_ a0
n=1 n=i n=o
m
= 2, Fl, m)qn(nﬂ)/ Zanz'mn
n=o
m
= 2. (—l)n(m-i)/ZF (@, m)afn(mﬂ)
n=0

Also solved by M.N. S. Swamy.
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PYTHAGOREANS AND ALL THAT STUFF

H-101 Proposed by Harlan Umansky, Cliffside Park, N. J., and Malcolm Tallman,
Brooklyn, N. Y.

Let a,b,c,d be any four consecutive generalized Fibonacei numbers (say
H1 = p and H2 = q and Hn+2 = HnJr1 + Hn, n 2 1), then show

(cd - ab)2 = (ad)2 + (2bc)2
Let A = LkLk+3’ B= 2Lk+1Lk+2’ and C = L2k+2 + L2k+4“ Then show
A2 . BZ - c2

Solution by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada.

Now
(ed - ab)? = [cb +c) - blc - b)]?
2 2
= (2 +1%) = (c-Db?) + (2be)?
= (¢ + b)?(c - b)* + (2bc)? = d2a% + (2bc)?
Hence
(1) (cd - ab)? = (ad)® + (2be)?
Since L the Lucas number, is also a generalized Fibonacci sequence

k’
with

Li =p =1, Iy =q =3,
we have that for the four consecutive Lucas numbers Lk’ Lk+1’ Lk+2’ Lk+3’
2 2 2 — a2 2
@ Dyl = Dyclye)™ = @yly )7+ QL By ))° = AT+ B

Now
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Cpepg ey = Dcliery) = Tay My * Ty - Ty My - Tyy)

12 2 - 2 2
Ly T iy ™ gy T F )0+ (Frep,  F)

_ 2 _ 2
(Figg ¥ 2Fp )5+ @F ) - Fryy)

= 5(F%, +F% ) = 5F

(3) k+2 k+1 ak-+3

= (F )+ (F

2k+3 * sz+1 2k+s * F2k+3)

-+ =
sz:+z Lzk+4 C

Thus, from (2) and (3) we have,
A% + B? = %,

Also solved by J. A. H. Hunter and A. G. Shannon.

* ok A Kk &

[Continued from p. 285]
RECURRING SEQUENCES — LESSON 1

ANSWERS TO PROBLEMS

1 a = nn + 1); Tn+3 = 3Tn+2 - 3Tn+1 + Tn
2. a_=3n-2; Tn+2 = ZTn_H 0
3. a =n% T, = AT L - 6T, +4T . =T,
4, Te+k = 1,8,3,1,1/8,1/8, for k = 1,2,8,4,5,6, respectively
5. T, = VI+TZ
6. Tn+4 = 4Tn+3_6Tn+2+4Tn+1_Tn
Toey = 8Ty
8. Tn_|_3 = 3Tn+2_3Tn+1+Tn

9, T2n—1 = a, Tgn = 1/3.

10. Tn+1 =1/@2 - Tn)

x * ok kK

1968

2F2k+3 * (F2k+5 - F2k+4) * (F2k+2 " sz+1) * F2k+3



IS ERATOSTHENES 0UT?

GEORGE LEDIN, JR.
Institute of Chemical Biology, University of San Francisco, San Francisco, Calif.

Two thousand years ago the Alexandrian geographer-astronomer
Eratosthenes, a friend of Archimedes, devised a procedure for obtaining a
listof primes. His procedure is usuallyidentified as ''the Sieve' and basically
consists of writing a table of consecutive integers starting from 1 and crossing
out all multiples of 2, 3, and so on; all those numbers which remain undeleted
are the primes sought. This procedure can be extended to larger tables from
1to N, but when N is large, the sieve is indeed a cumbersome tool. Never-
theless, Eratosthenes' procedure is the only general way of obtaining primes
in an orderly fashion today. Extensive tables have been compiled, but no for-
mula that would yield the nth prime for a given n has been found yet; many
a mathematician doubt that such a formula exists. When confronted with the
question, ""What is the nth prime?' all a mathematician can do is look in a
table of primes, and if asked, "Is this number a prime?'" the mathematician
may not be able to reply at all, for although there are tests for primality, they
might not be applicable or may prove insufficient, and if the number given is
too large, it might not be listed in the tables. The puzzling aspect of the situ-
ation is that, although prime numbers are not randomly distributed along the
sequence of integers, their distribution has so far defied all attempts at exact
description. Despite the countless efforts, number-theorists are not happy
with the idea of settling for the ""simple-minded" Eratosthenes' Sieve.

This paper presents two elementary glimpses of modified but simple
approaches to the Sieve. The first one is a slight improvement on the original
procedure of Eratosthenes, although it is basically the same method, cleverly
disguised.

Consider the "Semi-Tribonacci' sequence

T L2, 4, 5, 7, 8 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, -
k =1, 2,3 )

which obeys the recurrence relation
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Notice that all multiples of 3 are absent, since

To = 3k -1
and
Tok+1 = 3k + 1 .
The closed-form formula for these Semi-Tribonacci numbers is:
(1) T, =4k - 3+ 305 k=1,23"")
k 2 4 y 3 Ly Iy
Now, if we write the above sequence cancelling all Tk such that
= >
(2) Tk = Tn {mod 2Tn+ 3) (Tk Tn)

1 (mod 5), Tk = 2 (mod 7), Tk = 4 (mod 11), etc.)

we obtain the '"Deleted Semi-Tribonacci Sequence:"

(i. e., cancel all Tk

T :1, 2, 4, 5, 7, 8 10, 13, 14, 17, 19, 20, 22, <+, k= 1,2,3,"*)

And here we can state the following result:
All numbers
Pk 49 = 2Tk + 3

are prime numbers, and, in fact, all primes (except 2 and 3) are represented

in this way. Thus
P =5, 7, 11, 13, 17, 19, ««¢ (k = 1,2,3,°++),

The above may seem quite astonishing at first sight. The reader is
invited to convince himself that this is, however, true. But, unfortunately, it
is only the Sieve covered up. The core of the problem lies in the solution of

the following congruences
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®) 4T, = (6n - 3 - (-1)") (mod 120 + 6 - 2(-1)")
which is, to put it mildly, quite a problem by itself.

The second glimpse offers a simpler disguise, but cleverer. Consider
the array

12 17 22 27 32 cee
10 17 24 31 38 45 oo

16 27 38 49 60 71 oee

The arrayis symmetric about its maindiagonal, for as itis readily seen,
each kth row and kth column are equal, and the numbers are obtained from
arithmetic progressions. The differences are: first line, 3, second line, 5,
third line, 7, and so on. We are now prepared to formulate the following
statement:

If the number N is a member of the above array, then 2N+ 1 is com-
posite; however, if N is not found in this array, then 2N+ 1 is prime. (2N
+ 1 is prime if and only if N is not a member of the above array.)

The proof is very simple. Designate the nth term of the kth row (or

kth term of the nth column) by a1 Then, since

— - = + -
. 4 + 3@ - 1), 2, 7+ 5@n -~ 1),

etc. , in general we have

6)) A = 1+ 3k + (L+20)0 - 1)

or more simply
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(6) a =k+ 2k + I)n =

ok = n+ (@n + 1k

An

Now suppose N is found in the array. Then N = k + (2k + 1)n and therefore

2N + 1 2(k + 2k + I)n) + 1 = 2k + 1 + 4kn + 2n = 2k + 1

+2n(2k + 1)

11

2k + 1)(2n + 1)

whichmeans that 2N + 1 is the product of at least two factors (neither of which
is unity) and hence, composite. The converse is proven similarly.

The following example may be useful to compare the powerfulness of the
array (4) as opposed to the naive Sieve. Let us suppose that we wanted to find
out whether 437 was or was not a prime. Using the rudimentary approach of
the Sieve, we would test for divisibility of all primes up to

[V4E37] = 20,
that is, we would see if 437 is divisible by 3, 5, 7, 11, 13, 17, and 19. In-
stead of proceeding this way, let us apply the reasoning provided to us by the
array's approach.

If 437 is nota prime, we can find an N in the array such that
2N + 1 = 437,
This would yield N = 218, Is 218 a member of the array? If it is, we should
be able to find it as some nth element of some kth row. Thus, we shouldbe

able to solve for n the equation

k+ @2k + 1)n = 218

(if we fail, this would mean that 218 is not in the array, and that 437 is

prime). First, we find a bound on k by solving the quadratic

2kk? + k) = 218,

and this yields
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k2 +k-109 = 0

or k = 10,
Thus,
k = 10, = 208/21 (no good)
k= 9, = 209/19 = 11
and we get

ag’ﬂ = 3.11,9 = 218,

Therefore 218 is contained in the array, and 437 is not prime.

In fact, if we had tried it using the Sieve method we would have found out,
sooner or later, that 437 = 19 . 23, For large numbers, the array test is
tedius although shorter than Eratosthenes'.

Nowadays, with the advent of superfast computers, much of the sieve
work is done electronically at very high speeds. Still, the job of classifyin/fg
larger numbers as primes is verydifficult and can onlybe simplified by choos-
ing specific patterns within sequences of identifiable properties. That, for
example, is the case of the 3,376-digit number (211:28 _ 1) which belongs to
the "Mersenne! family of primes and is presently considered the largest known
prime number. Other, modern, more effective sieves are inevitably based on
the Sieve or its principle.

Despite the fact that mathematics has progressed immeasurably and con-
temporary mathematicians have the benefit of ultra-sophisticated tools and
techniques, Eratosthenes! method has survived the severe test of twenty cen-
turies. Indeed, Erathosthenes is still not out.

* Kk kX &



FIBONACC! NUMBERS AND THE SLOW LEARNER

JAMES C. CURL
Tracy High School, Tracy, Calif.

Fibonacci numbers havebeen used with remarkable success with talented
mathematics students from elementary school through graduate level university
mathematics. They have been used as both a part of the basic curriculum and
as enrichment material.

During the past year I became interested in the possibility of using Fib-
onacci numbers with a group of twenty-five freshman students in a "low level"
basic mathematics class, the required ninth grade general mathematics course
designed to fulfill the mathematics requirerient for the freshman year. My
interest in using Fibonacci numbers was a result of having met considerable
frustration in trying to get the class to achieve a basic facility with the funda-
mental operations using real numbers. After a semester's work with review,
explanations, and drill, the class still had difficulty with the same problems.

Before continuing, I should define '"low level" to place the balance of my
remarks in proper context. During the fall of this past academic year, the
students in the class were given a battery of tests including the Differential
Aptitude Test, the Gates Reading Survey, and the Lorge Thorndike Intelligence
Quotient Test. I compiled a table of the scores on these three tests utilizing
the verbal I. Q. score, the numerical ability percentile ranking, and the com-
posite score onthe Gates Reading Survey. The following information was com-
piled as a result of the research; two-thirds of the class had a numerical abil-
ity percentile ranking of fifteen percentile or lower. One-half of the class read
at the sixth grade level or lower. One-halfof the classhad I. Q. scores of less
than ninety. Only four students were reading at the ninth grade level orhigher.
Two students ranked above the fiftieth percentile on the numerical ability, and
only four students had . Q. scores of better than one hundred.

Irving Adler in his address at the California Mathematics Council, North-
ern Section, meeting at Davis during the spring of this year suggested that as
teachers we are being a little unrealistic if by repeating the same material we
believe we are able to do what competent teachers have failed to do during a
student's first eight years. With much the same philosophy I decided to refine

266
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my goals for the course after the first semester. Basically, I hoped to:

(1) effect a change in attitude toward mathematics,

(2) have some of the students get excited over learning something,

(3) achievebasic skills in the four operations working with realnumbers.

With the above goals in mind I introduced a five-week unit on Fibonacci
numbers via a presentation on the board. Very little introduction was given:
I simply announced that we would be working with something new, Fibonacci
numbers. The class reaction was a collective, "WHAT ? ? ?", I then pro-
ceeded to write 1,1,2 on the board and asked the class to follow along as I
wrote the next number down; they were to see if they could find out how I was
getting the sequence of numbers.

After writing down severalmore terms of the sequence, the class caught
on to the pattern. Within a very short time the entire class was volunteering
the next number. We continued until we had the first twenty numbers written
down. We then discussed how we could find the numbers of the sequence and
ended the session with the simple explanation, "add the first two numbers and
you get the third; add the second and third numbers and you get the fourth,°-"
Although in the contextof this articleI will utilize a formal notation to express
Fibonacci patterns, no attempt was made in class at this time to express the
patterns with a general notation.

I next asked the students to writedown on a paper the first fifty terms of
the Fibonacci sequence. If they were not able to finish in class, they were
welcome to do so at home. To my delight the majority of the class had worked
on the first fifty and several had worked on getting the first one hundred Fib-
onacci numbers.

On the second day I handed out a ditto with the first one hundred Fibonacci
numbers written down. After checking the values for their numbers, we dis-
cussed the notation Fy, Fy, F3, ° which I had used on the ditto. Wecalled
the notation the Fibonacci code for telling which Fibonacci number we were
discussing. I encouraged each student to use the notation when he worked with
a pattern.

During the first week, including the introduction, the class participated
in what Brother Alfred terms group research. The classdeveloped the pattern

for
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F?l = Pk -k
for k = 1 using the group research method. Instead of stating the problem
in the preceding form, each person was asked to pick out some Fibonacci num-
ber and square it. Then they were to take the product of the two Fibonacci
numbers on either side of the number that had been squared. Finally they were
to find the difference between the square and the product. The results were
tabulated on theboard and the class was asked to tryadifferent Fibonacci num-
ber. Again the results were written down. The majority of the students quickly
saw that we were getting 1 for an answer; however, when I requested that the
subtraction must be done in the same order each time a Fibonacci number had
been selected, some of the students remarked that you couldn't subtract a
larger number from a smaller one. We then had a delightful discussion about
directed numbers and ended with the generalization that the answer was 1 if
we chose a Fibonacci number with an odd code and -1 otherwise., I discussed
(_1)n+1 with the more capable students as a way of expressing the pattern.
The class then worked the next day on extending this pattern for different
values of k. We started with group research again for k = 2 and found the
difference of |1( I then had the class work at their desks finding the patterns
for other values of k, but notuntil I had encouraged them to make a conjecture
about what they might find. It was a much surprised group of students when the
next value of k did not give then |1| for an answer. Iwas amused at their
discovery that different values of k gave what appeared to them to be quite
unrelated answers. Although the students became frustrated easily and I found
it necessary to spend time helping each one, the problem allowed each student
to continue at his own pace. After considerable work, one of the students sud-
denly saw that the result was a Fibonacci number squared. Some other stu-
dents were finding this result and sharing their discovery with others around
them. It was at this time that I felt I was achieving some of my goals.

The next problem presented was written down in the following way.
1+1=2;1+1+2 =4 1+1+2+3=7;¢0-

I asked the students to write down the numbers in Fibonacci code, and

the class was asked to find a pattern in the answers. It was necessary to give
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some direction by asking if the answer was close to some Fibonacci number,

Finally we wrote down the result in the form
Fi+Fy+1=2+1=3
Fi+ Fp+F3+1=4+1=5

I then asked for a verbal generalization from the students and it was decided
that if one was added to each of the sums, we obtained a Fibonacci number. I
asked them to givethe Fibonacci code for the number and we then tabulated our

results on the board.

Fy+Fyg=TFy-1, Fi+Fy+F3=Fg-1°°°Fy+Fgtoees +Fn = Fn+2_1'
This was another attempt to have the students use notation to express the pat-
terns rather than just verbalizing the result in English. Earlier I had sug-
gested that each student should use a notebook to write down the results of the
previous work and I requested that they write down what we had done on the
board. Although many of the students felt uncomfortable with the notation and
indicated that they did not like using Fn, they understood that the notation
said the same as "the sum of the first n Fibonacci numbers can be found by -
going two more Fibonacci numbers and subtracting 1."

After the students had worked with the pattern for finding the sum of the

Fibonacci numbers, I asked them to find
Fy+ Fyp + Fgteee Ty

in sixty seconds for abrief quiz. It is interesting that approximately one-third
of the class was not able to connect the problem to our previous work; one-
fourth of the class found the result correctly; and the remainder of the class
used the right idea in trying to find the solution but could not remember which
Fibonacci number they should get even though they knew that if they added one
to the result they would get a Fibonacci number. However, considering the

make-up of the class, I was very encouraged.
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We next worked on
Fo+ Fy+Fgtoeeo +Fyy &

I placed the problem on the board in the above form: and was pleasantly sur-
prised to find a general acceptance of the notation at this point. There was a
little concern over the expression 2n and we spent some time answering the
question of the value of 2n for n =1, n=2, n =3, etc. The students
indicated they understood; however, as we went on, I had to continually remind
the students of this form for the even index in the Fibonacci code.

We then went on to
Fy+ Fg+ Fgt+oeeo + Fopy o

Again there was concern over 2n - 1, and we had another chance to discuss
an algebraic expression. This was a second opportunity to introduce the con-
cept of the variable without making the process a painful experience.

Interest at this point was running high and I felt that the class was shar-
ing-my enthusiasm. Eventhose who usually were apathefic to anyof the mater-
ial presented during the first semester were becoming involved.

I then presented
ISR I

At this point there was a little negative reactionthat this problem was too hard;
some of the students indicated that this problem should be in an algebra class
rather than Math I. Since we had discussed scientific notation earlier in the
year working with googols and googolplexes, I reviewed what the exponent 2
represented in each term of the series.

The presentation became a little more detailed this time and I found a
great number of the students independently making out a table of squares of
the Fibonacci numbers to help them find the pattern. I was very enthusiastic
over the idea that some of the students were voluntarily doing more than was
required. The pattern was finally established but not until we had a chance to

discuss what was meant by a factor. In particular
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FZ+ 7+ 72 = 6

was an excellent opportunity to both illustrate that they should use the sum of
several terms before trying to establish the pattern and to see that the factors
would be Fibonacci numbers if they were not the trivial set of 1 and 6. The
results of the ensuing discussion were too extensive to record here, but let it
suffice to say that we discussed division, multiplication, exponents, factoring,
prime numbers, addition, and general notation without appearing to meet any
negative reaction.

I was very pleased with our progress but felt that if I were to maintain
the existing level of enthusiasm I would have to try to vary the class activity
more than I was doing via the presentations on the board and individual work.
As such, I decided to have the class work in groups.

Thus, at the end of the second week I told the class that we would start
working in groups the following week. I asked seven students, who I felt could
act as group leaders, to make three lists of four students each for their pos-
sible groups. I indicated I would try to form their groups from these lists.
With this done, I reviewed what had been accomplished during the first two
weeks,

On Monday I indicated who was to be in each group and handed out two
dittos. One summarized our work up till then; and the second was a set of 15

problems which would be done in their group work, Table 1.

Table 1
1. Find the sum of the Lucas numbers.
2. Find the sum of Ly + Ly + Ly + Ly + Lg + °°*
3. Determine the sum of L, + Ly + Lg + Lg + ¢°° .
4, What is the sum of the squares of the Lucas numbers?
5. Form F} + F§; ¥} +¥; 7 + Fi; etc
6. Do the same as in No. 5 for the Lucas numbers,
7. Find the sum of Ly + Lg + Lg + Lyg + Lyg°°° .
8. Determine the sum of Ly + Lig+ Lyg + Lygee- .
9., Find the sum of Lg + Ly + Lyy + Lys + Lgg°°°
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10. Determi Table 1 (Continued)

10. Determine the sum of L, + Lg + Ljy + Lyg + Lgg=° .

11. Find a pattern which works for Nos. 7, 8, 9, and 10.

12, Find FyL; and F3L; and their difference; find FyL, and F3L, and their
difference; F3L, and F,;L, and their difference; etc.

13. Find F3L3 and F3L; and their difference; continue as in No. 12.

14, Find F;L; and F,Ly and their difference; continue as in No. 13.

15. The process begun in Nos. 12, 13, and 14 can be continued to spacings of

three, four, five, etc. Can you find a pattern in the answers?

Each group was to consist of the leader and three students to work with the
leader in the group. I placed the seven groups in clusters about the room with
the following directions:

(1) If a member of the group had a question, he was to ask the group
leader.

(2) The group leader would discuss problems with me so as to explain
the problems to the group.

(3) The individuals in the group, excluding the leader, would receive
their grade based on their work in the group, their notebooks, and
an oral test.

(4) The group leaders would receive their grades based on their under-
standing of the Iﬁaterial discussed, and more importantly on how
much knowledge they could impart to each student in their group,
i. e., their grades rested on how much their group knew.

Before actually placing them in groups we discussed a second sequence,
the Lucas sequence. For homework they were to find the first twenty-five
terms of the sequence starting with 1, 3,4, etc. We also discussed the nota-
tion Ly, Ly, Lg,*+* for the Lucas numbers.

Although the class was homogenous in that it was basically low ability,
there was enough diversity in ability so that the leaders were sufficiently ad-
vanced in the material to meet their obligations. I believe that much of the
success we had in the group work was based on the selection of the groups and
the ability of the seven group leaders.

For the next three weeks I worked with the group leaders and the groups

themselves encouraging, explaining, and making sure that each group got the
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help it needed. I tried to work with each leader and group at least once each
day, but I was pleasantly surprised with the way in which the groups main-
tained their enthusiasm and worked in as mature a fashion as could be desired
when I was busy with other groups. Quite often I worked with entire groups
discussine one problem. In many cases the group leaders displayed remark-
able behavior in directing the research and explaining to the students in their
groups a particular pattern. I was particularly impressed with the patience
and understanding displayed by the group leaders.

At the end of the first week in groups, I asked each group leader to sub-
mit a progress report on his group. Following is an example of the type of
response I received.

"Our group has progressed fairly with one exception,* * x NowIsee how
hard it is for a teacher to try to teach her something. She just won't even
try to learn, and when I tell her to try, she sais I can't. Sometimes she
catches on, but after she gets to apart that is toohard forher (she thinks)
she quits and talks or else just plain forgets it. I don't know what I'1l do’
if she won't learn, ¢« "

Each student in the group was to keep a record of his work and the pat-
terns discovered were to be listed. I collected these notebooks at the end of
each week and was extremely pleased with the results. I wish it were possible
to include one of the notebooks in the article. Again let it suffice to say that
the notebooks do justice to those collected from students in a freshman algebra
course.

During the third week in groups I had each student go before the class
using the overhead projector. They were to present the solution to one of the
problems from the work done during the five weeks. This problem was given
to them when they went up to the overhead projector. They were allowed to
take their lists of Fibonacci and Lucas numbers with them to the projector.

The presentations were of fine quality with the students explaining how
they were establishing the patterns. I might add that the patterns were not
memorized but rediscovered while working in front of the class with the over-
head projector. I tried to present a problem geared to the ability of each stu-
dent and I started the presentations with students who would present their pat-
terns in a good style to serve as examples for the other students. During

many of the presentations it was necessary to make suggestions via questions
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as to what should be done. I made everyattempt to make sure thatenough help
was given so that the stident eventually was able to find the pattern. Grades
for the oral presentations were based onhow well the presentation was delivered
and the amount of help given to the student. During the presentations, the other
students were asked to trythe pattern at their desks. It was fascinating to see
the involvement of the class in some cases as the person giving the presenta-
tion would struggle with a pattern.

Generally speaking, the oral presentations were a highlight of the five
weeks, Iam sure the class approached the presentations with some less en-
thusiasm, but the cooperation was very satisfying from the majority of the
students.

With the conclusion of the unit, grades were given out to each student if
such were requested. The student reaction to the work on Fibonacci numbers
was very positive. One girleven went so far as to saythat the material should
be part of the required curriculum for the ninth grade.

The results of the five weekunit on Fibonacci numbers were very encour-
aging. The change in student attitude, one of the three goals, was readily ob-
served. Since the unit waspresented later in the year, there was no opportunity
to observe whether the changes in attitude observed would have transferred to
work presented earlier in the year.

The material presented following the unit involved working with areas,
volumes, perimeters, and circumferences of basic geometric figures. Again
the material was new to the class and the student reaction was one of accept-
ance and willingness to work on the problems. Although there was not a great
deal of enthusiasm present, the reaction of the class was satisfying, consider-
ing we were in the last six weeks of the school year.

I am looking forward to expanding the Fibonacci unit for next year with
three classes to include work on phyllotaxis and geometric relationships. Also,
I hope to present the unit earlier in the year to explore more fully the transfer

of changes of attitude toward mathematics in general.

LEL A O & 4



AMATEUR INTERESTS IN THE FIBONACCI SERIES Il
RESIDUES OF u, WITH RESPECT TO ANY MODULUS

JOSEPH MANDE LSON
U.S. Army Edgewood Arsenal, Maryland

Dickson [1] reports that '""J. L. Lagrange [2] noted that the residues of
Ak and Bk with respect to any modulus are periodic. " Ak and Bk are de-
scribed by indicating that '"Euler [3] noted that

@ +VD)¥ = A+ Bk\/b_

implies

"

A, = F@ VO + - VB)©], B, = 1/__ [a +VD)* - @ - VB)¥]
2Vb

With this as a hint I tried empirically to determine whether Lagrange's idea
would work with the Fibonacci series, - This may not be immediately appar-
ent but simple empirical trials developed a number of significant revelations.
Thus, starting with uy = 1, u, = 1, ug = 2, etc., the residues for consecu-
tive u modulus 5 are: 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4,
1, 0. This series then repeats itself endlessly, illustrating Lagrange's perio-
dicity. This is generally true of every modulus tried from 2 to 94. Each
modulus has a characteristic period which displays various individual regular-
ities. Thus, the above period, modulus 5, is broken up by zeros into 4 groups
of 5 residues each including zero. The following is a resume. of the character-
istics of all groups and periods determined for all moduli investigated. We
define

Group: The residues, starting with the residue from u; = 1 and contin-
uing to and including the first zero residue obtained after dividing consecutive
u - '

Period: The residues, starting with the residue from u; = 1 and con-
tinuing to and including the first zero residue which follows a residue of 1, ob-
tained after dividing consecutive u,. From this point, the second period and

all succeeding periods will exactly duplicate the first.
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Examining the period of modulus 5 given above, from the above defini-
tions, the first group comprises 5 digits, viz., 1, 1, 2, 3, 0. The period com-
prises 4 groups, containing 20 residues and ending 2, 2, 4, 1, 0.

The characteristics determined in the light of the above are:

1. The sum of all residues in a period (but not, in general, in a group),
is divisible by the modulus without remainder. Thus, for modulus 5, the sum
of the residues in the period is 40 which is divisible by the modulus.

2. The number of groups in a period is always 1, 2, or 4.

3. Xf the size of a group is n, then w and more generally u,, are
exactly divisible by the modulus.

4, If Pn .and Pn are prime factors of the modulus Pannz, the group
and period of the modulus are divisible by the group and period respectively of
the Pn's. For example, modulus 10 is factored by Pni = 2 and Pnz = 5.
The group and period of 2 are 3 and the group and period of 5 are 5 and 20 re-
spectively. The group size for modulus 10 is 15 (divisible by 3 and 5); the
period, modulus 10, is 60, divisible by 3 and 20. This fact permits ready
check of groups and period calculated for composite moduli.

It is evident that the finding listed as 3 above is not particularly helpful
in determining the u, which a given prime modulus will divide, if the group
size for that modulus must be determined by actualdivision of consecutive u .
Thus, the prime 103 is found to have a group of n = 104. To determine that
ujgq is divisible by 103 by dividing 104 consecutive w and knowing that uyg
contains 22 digits, not to mention the large numbers which precede uyy,
seems to be prohibitively laborious. Fortunately; early in the calculation of
groups and periods I found a way to calculate these without any dividing at all!
This was determined when it was noted that the residues are additive according

to the usual Fibonacci series rule:

until the last residue is equal to or greater than the modulus.

At this time we subtract the modulus from this large residue. If thelat-
ter is equal to the modulus, the residue is zero and the group and/or period
ends. If it is larger, the difference is set down as the residue in the place of

the larger figure. This residue is then added to the previous residue and the
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sum is compared with the residue as before. This procedure continues until
the group and/or period is determined. As can be seen, all manipulations are
additions and subtractions, division is never required.

Example 1. To determine the group and period for modulus 10.

Start with uy = 1, the residue, ry = 1. Add this to uy = 0 and we get

the second residue ry = 1. Add r; to

This is still smaller than modulus 10, so we continue.
ro+trg=1+2 =14 = 3. r3+ry = 2+3 =15 = 5. rpt+try=3+5=rs=38.
Now,
rs+rg = 5+8 = 13.
This is larger than modulus 10 so we subtract 10 and get r; = 3. Now we add
rg+r;=8+3 =11 .
Again, this is larger than the modulus; we subtract 10 and get rg = 1. Now
we add
Ty+trg=3+1 =19 =4, r1r3+r9g=1+4 =11p=5. r9+Tr)p=4+5=r)3=09
Now

I‘10+I’11=5+9=14.

Subtract 10 and we have 1y = 4.

1'11+I‘12=9+4=13

from which ry3 = 3.
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r12+r13=4+3=r14=7.
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Finally
rig+try =3 + 7T = 10

which is exactly equal to the modulus. When we subtract 10 the result ry; = 0
and the group ends. Since ry # 1, the period is not yet complete and is de-
termined by continuing the procedure. Thus, listing consecutive residues

starting with ryy we get
7 0, 7, 7, 4,1, 5,6, 1, 7, 8 5, 3, 8 1, 9, O
ending the second group but the period continues:
9,938, 175,2,79,6,5 1,6,7 3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0

Here the period ends, comprising 4 groups of 15 residues each. Notice that
the second period begins exactly the same way as the first: 1, 1, 2, 3, etc.
Since all periods are calculated the same way and all periods, regardless of
modulus, start with 1,1, it is obvious that all periods will be exact duplicates
of each other and there is no point in continuing operations. Since the group
size n, modulus 10, is 15 uy; must be divisible by 10. We find uy; = 610,
divisible by 10.

While it is evident that even this procedure is laborious for large prime
numbers it is much easier than consecutive divisions of w . While short cuts
such as this are possible in empirical investigations of the Fibonacci series,

it is impossible to avoid labor altogether.

REFERENCES
1. Dickson, History of the Theory of Numbers, 1, 1919, Chapter XVII, p. 393.
2. Cited in Dickson as: "Additions to Euler's Algebra 2, 1774, Sections 78-
79, pp. 599-607, Euler, Opra Omnia (1), 1, 619, "
3. Cited in Dickson as "Novi Connior. Acad. Petrop., 18, 1773, 185; Corum.
Arith., 1,554."
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RECURRING SEQUENCES— LESSON 1

BROTHER ALFRED BROUSSEAU
St. Mary's College, California

The Fibonacci Quarterly has been publishing an abundance of material
over the past five years dealing in the main with the Fibonacci sequence and
its relatives. Basic fo the entire undertaking is the concept of RECURRING
SEQUENCE. In view of this fact, a series of some eight lessons hasbeen pre-
pared covering this topic. In line with the word "lesson,' examples of princi-
ples will be worked out in the articles and a number of "problems" will be
included for the purpose of providing "exercise' in the material presented.
Answers to theseproblems will be included on another page so thatpeople may
be able to check their work against them.

In this first lesson, the idea of sequence and recursion relation will be
considered in a general way. A sequence is an ordered set of quantities. The
sequence is finite if the set of quantitiesterminates; it is infinite if it does not.

The prototype of all sequences is the sequence of positive integers: 1,2, 3,4,

5,++-. Other sequences, some quite familiar, are the following:
1, 3, 5, 7,9, 11, 13, ="
2, 4, 6, 8, 10, 12, 14, 16, ---
1, 2, 4, 8, 16, 32, 64, -
2, 6, 18, 54, 162, 486, ***
1, 2, 6, 24, 120, 720, 5040, 40320, -
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, -
1, 4, 9, 16, 25, 36, 49, 64, -
1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, -

For convenience of reference, the terms of sequences can be identified
by the following notation: ay, aj, as, a4, as ***, ag, *°°« One of the commor
ways of providing a compact representation of a sequence is to specify a for-
mula for the nth term. For the positive integers, a, = n for the odd inte-
gers 1, 3, 5, 7, ==+, a, = 2n -~ 1; for the even integers 2, 4, 6, 8, »--
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a = 2n. The nth terms of the remaining sequences given above are listed
herewith.
1,2, 4, 8, 16, 82, *++, a_= 2"
2, 6, 18, 54, 162, 486, -, a, = 23
1, 2, 6, 24, 120, -+, a, = n!
1, 3, 6, 10, 15, 21, 28, =++, a_ = n +1)/2
1, 4, 9, 16, 25, 36, ---, a = n’
1, 1/2, 1/3, 1/4, **-, a = 1/n .

There is, however, a second way of specifying sequences and that is the
recursion approach. The word recursion derives from recur and indicates
that something is happening over and over. When in a sequence, there is an
operation which enables us to find a subsequent term by using previous terms
according to some well-defined method, we have what can be termed a recur-
sion sequence. Again, the prototype is the sequence of positive integers which
is completely specified by giving the first term a; = 1 and stating the recur-
sion relation

4y T Ay +1 .
This is the general pattern for a recursion sequence; one or more initial terms
must be specified; then an operation (or operations) is set down which enables
one to generate any other term of the sequence.

Going once more to some of our previous sequences, the recursion rep-

resentations are as follows:

1, 3, 5, 7, v¢+, a3y = 1; n+1=an+2'
2, 4, 6, 8, ***, ay = 2; an+1=an+2.
1, 2, 4, 8, 16, ***, a1 = 1; Ay T 2an .

2, 6, 18, 54, 162, ,a4 = 2; a4y T 3an.

1, 2, 6, 24, 120, ***,a;=1; an+1=(n+1)an.

Is it possible in allinstances to give this dualinterpretation to a sequence,

that is, to specify the nth term on the one hand and to provide a recursion
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definition of the sequence on the other? Is it not wise to say in an absolute
manner what is possible or impossible in mathematics. But at least it can be
stated that sequences which are readily representable by their nﬁEl term may
be difficult to represent by recursion and on the contrary, seq.uences which
can be easily represented by recursion may not have an obvious nth term.

For example, what is the recursion relation for the sequence defined by:

Or on the other hand, if a; = 2, a; = 3, ag =5, and

n+i a

what is the expression for the nth term?

However, in most of the usual cases, it is possible to have both the nth
term and the recursion formulation of a sequence. Many of the common se-
quences, for example, have their nth term expressed as a polynomial in n.
In such a case, it is possible to find a corresponding recursion relation. In
fact, for all polynomials of a given degree, there is just one recursion rela-
tion corresponding to them, apart from the initial values that are given. Let
us examine this important case.

Our discussion will be based on what are known as finite differences.

Given a polynomial in n, such as f(n) = n? +3n -1, we define
Af(n) = f(n +1) - £(n)
(Read "the first difference of f(n)!" for Af(n).) Letus carryout this operation.

Afn) = m+1)2+3m+1)-1- (@%+3n-1)

Afn) = 2n + 4 .
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Note that the degree of Af(n) is one less than the degree of the original poly-
nomial. If we take the difference of Af(n) we obtain the second difference of
f(n). Thus

A@) = 2@+ 1) +4- 2n+4) = 2

Finally, the third difference of fn) is A% () = 2 - 2 = 0. The situation por-
trayed here is general. A polynomial of degree m has a first difference of
degree m - 1, a second difference of degree m - 2,+++, an mth difference
which is constant and an (m + 1)St difference which is zero. Basically, this
result depends on the lead term of highest degree. We needonly consider then

what happens to f(n) = n™ when we take a first difference.

Afn) = (+ 1)m - = nm + mnm—1 oee _nm

Af(n) = mn™ ™+ .o+ terms of lower degree, Thus the degree drops by

1.
Suppose we designate the terms of our sequence as Tn. Then
ATn = Tor ~ Th
2 =T _ _ ~ = _ .
A Tn Tn+2 Tn+1 (Tn+1 Tn) Tn+2 2Tn+1 Tn
3 - m _ _ _ 4
a Tn rI1r1+3 2Tn+z i Tn+1 (Tn+2 2Tn+1 Tn)
or
3 = ' - -
ATn Tn+3 ?,TmJr2 + 3Tn+1 Trl .

Clearly the coefficients of the Pascal triangle with alternating signs are being
generated and it is clear from the operation that this will continue.
We are now ready to transform a sequence with a term expressed as a

polynomial in n into a recursion relation. Consider again:

T =n‘+3n-1,
n
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Take the third difference of both sides. Then
ASTn = A%(n%+3n-1)
But the third difference of a polynomial of the second degree is zero. Hence

- -+ - =
Tn+3 3Tn+2 3Tn+1 Tn 0

or

Tpeg = 3Tpay = 3Ty T Ty
is the required recursion relation for all sequences whose term can be ex-
pressed as a polynomial of the second degree in n.
An interesting particular case is the arithmetic progression whose nth

term is
Tn =a+@m-1d,

where a is the first term and d the common difference. For example, if

a is 5 and d is 4,

T, = 5+4@-1) = 4n-1.

In any event, an arithmetic progression has a term which can be expressed as
a polynomial of the first degree in n. Accordingly the recursion relation for

all arithmetic progression is:

or

= 2T -T .
Tn+2 n+i n

The recursion relation for the geometric progression with ratio r is

evidently
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Tn+1 = rTn .

For example, 2, 18, 54, 162, «++ is specified by a; = 2, Tn+1 = 3Tn.
This takes care of our listed sequences except the factorial and the re-

ciprocal of n. For the factorial:

Tn+1 = (n+ 1)Tn .

However, we do not have a pure recursion relation to a subsequent from pre-
vious terms of the sequence. We need to eliminate n in the coefficient to

bring this about. Now

n=T /T

n'’ n-1
and
n+1 = Tn+1/Tn .
Thus
Tn+1 /Tn - Tn /Tn—i =1
so that
Tn+1 - Tn (Tn * Tn—i) / Tn—1 *

Again for T = 1/n, we have

n = 1/Tn, n+1l = l/Tn+1’ 1/T l—l/Tn=1

nt+

so that

Tn+1 = Tn/(1+Tn) .
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L

8.

9.

10.

PROBLEMS

Find the nth term and the recursion relation for the sequence: 2, 6, 12,
20, 30, 42, 56, °°* ,

Find the nth term and the recursion relation for the sequence: 1, 4, 7,
10, 13, 16, °*° ,

Determine the nth term and the recursion relation for the sequence: 1,
8, 27, 64, 125, 216, 343, **° ,

For T; =1, Ty =3 and Tow = T /Tn_1

the nth term. (It may be more convenient to do this using a number of

, finda form of expression for

formulas. )
Find the recursion relation for the sequence with the term Tn =v/n.
What is the recursion relation for a sequence whose term is a cubic poly-
nomial in n?

If a is a positive constant, determine the recursion relation for the
sequence with the term T][1 = 3",

Find a recursion relation corresponding to T = TIl +2n + 1 which does

notinvolve n except in the subscripts nor a corrl;;itant exceptas a coefficient.
Find an expression(s) for the n? term of the sequence

the recursion relation T T ., =1, where T; =a (a not zero).

For the sequence with.term Tn = n/(n + 1), find a recursion relation with

n occurring only in subscripts.

See page 260 for answers to problems.
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EVEN PERFECT NUMBERS AND SEVEN

ROBERT W. PRIELIPP
Wisconsin State University, Oshkosh, Wisconsin

Over the years number theory has given both professional and amateur
mathematicians many hours of frustration and enjoyment. The study of perfect
numbers is an area of the theory of numbers which dates back to antiquity.

A positive integer n is a perfect number if and only if the sum of its
positive integer divisors is 2n. For example, 28 is a perfect number since

the positive integer divisors of 28 are 1, 2, 4, 7, 14, and 28 and
1+2+4+7+ 14+ 28 = 56 = 2 x 28 .,

The first few perfect numbers are 6; 28; 496; 8,128; 33,550,336; and 8,589,056,
Notice that each of these perfect numbers is even. Although no odd perfect
number has ever been found, mathematicians have been unable to prove that
none exists. Itis also unknown whether or not the number of perfect numbers
is infinite.

Euclid showed that if n is 2 positive integer of the form 2p—1(2p - 1)
where 2P -1 isa prime then n is a perfect number., Later Euler established
that every even perfect number is of the Euclid type. A necessary condition
that 2° -1 bea prime is that p be a prime. Thus all even perfect numbers
have the form zp‘i(zp -1} where p is a prime number.

I p=3 then 2°7'@P - 1) = 28 whichis a multiple of 7. Since 3 is
the only multiple of three which is a prime number, all other prime numbers
are of the form 3j+ 1 or 3j+ 2. A careful investigation of the even perfect

numbers different from 28 given above yields the following table.

D 2P 1P _ 1y p oP 1P _ 1)

2 6 = 7-0+6 7 8128 = 7. 1161 + 1
5 496 = T+ 70 +6 13 33550336 = 7 » 4792905+1
17 8589869056 = 7 - 1227124150 + 6

This leads us to conjecture that if n = 2p—1(2p - 1) is an even perfect nhumber

different from 28 then n is of the form 7k + 1 or 7k + 6 according as p is
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of the form 3j+1 or 3j+ 2. Before attempting to prove this conjecture, we
shall establish some preliminary results.

Lemma 1. For each positive integer w, 22" = 7t + 1 for some positive
integer t.

Proof. 28 =8 =7+:1+1, Assume that 2°¥ = 7r+ 1. Then

s(xt) _ axts

2 2 = 2% .93 = (Tr+1)8="7(8r+1)

and the lemma follows by the principle of mathematical induction.

3Z+1

Lemma 2. For each nonnegative integer z, 2 = 7s + 3 for some

nonnegative integer s.

Proof. If z = 0 then 23Z+1 =2="T7°0+2, Assume that 23y+1 = Tm
+ 2. Then
PO L pBYHIR 3R L 8 L m 4 2)8 = T(Bm+2) +2

and the lemma follows by the principle of mathematical induction.
Theorem. If n = 2°7'@2P - 1) is an even perfect number different from
28 then n is of the form 7k+ 1 or 7k+ 6 according as p is of theform 3j
+1 or 3j+2.
Proof. n # 28 implies that p # 3, Since p is a prime number and p
# 3, p is either of the form 3j+ 1 or 3j+ 2.
Case 1. p=3j+1. Then p-1=3j and 2°71 = 2% = 7t+1 by
Lemma 1. Hence 2P = 2. Zp"1 = 14t + 2, from which it follows
that 2P -1 = 14t+ 1. Thus n = 2P7'@P - 1) = (7t + )4t + 1) =
7(14¢ + 3t) + 1.
Case2. p =3j+2 Thenp-1=3j+1 and 2P7" = 29" = 754 2
by Lemma 2. Hence 2P = 2. 9Pt = 145+ 4, from which it follows
that 2P -1 = 14s+3, Thus n = 2P7'@P - 1) = (7Ts + 2)(14s + 3) =
7(14s + 7s) + 6.

3§+

Let n be an even perfect number. It can be shown that if n # 6 then n
vields the remainder 1 when divided by 9; if n # 6 and n # 496 then n ends
with 16, 28, 36, 56, or 76 when n is written in base 10 notation; and if n

# 6 then n has the remainder 1, 2, 3, or 8 when divided by 13,

[Continued on p. 304. ]
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ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by A. P. Hillman
University of New Mexico, Albuguerque, N.M.

Send all communications regarding Elementary Problems and Solutions
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106, Each problem or
solution should be submitted inlegible form, preferably typed indouble spacing,
on a separate sheet or sheets in the format used below. Solutions should be

received within three months of the publication date.
B-142 Proposed by William D. Jackson, SUNY at Buffalo, Amherst, N, Y.

Define a sequence as follows: A; = 2, A, = 3, and An = An—iAn—z for

n > 2. Find an expression for An'

B-143 Proposed by Raphael Finkelstein, Tempe, Arizona.

Show that the following determinant vanishes when a and d are natural

numbers:

Fa F3.+d Fa+2d
Fotsd Fard Fatsd

Fa+6d Fa+7d Fa+8<jl

What is the value of the determinant one obtains by replacing each Fibonacci

number by the corresponding Lucas number?

B-144 Proposed by J. A. H. Hunter, Toronto, Canada

In this alphametic each distinct letter stands for a particular but differ-
ent digit, all ten digits being represented here. It mustbe the Lucas series,
but what is the value of the SERIES?
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ONE
THREE

START
L

SERIE S

B-145 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Given an unlimited supply of each of twodistinct types of objects, let f(n)
be the number of permutations of n of these objects such thatno three consec-

utive objects are alike. Show that f(n) = 2Fn+1’ where Fn is the nth
onacci number.

Fib-

B-146 Proposed by Walter W. Horner, Pittsburgh, Pennsylvania,
Show that 7 = Arctan (1/Fgy) + Arctan Fap+q + Arctan Fop+g o
B-147 Proposed by Edgar Karst, University of Arizona, Tucson, Arizona,
in honor of the 66th birthday of Hansraj Gupta on Oct, 9, 1968,

Let

S = (1/3+1/5) + (1/5+ 1/7) + -+ + (1/32717 + 1/32719)

be the sum of the sum of the reciprocals of all twin primesbelow 2!%.. Indicate
which of the following inequalities is true:

@ S<m?6, () /6 <S <\e (c) Ve<S.

SOLUTIONS

NOTE: The name of A. C. Shannon was inadvertently omitted from the list of

solvers of B-109,

LINEAR COMBINATION OF GEOMETRIC SERIES
B-124 Proposed by J.H.Butchart,Northern Arizona University,Flagstaff, Arizona.

Show that
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Qo
E (i /2") = 4 ,
i=0

where
ag = 1, af = 1, a3 = 2,°°°
are the Fibonacci numbers.
Solution by R. L. Mercer, University of New Mexico, Albuquerque, N. Mex.

Convergence of the series follows from

n:@oo (an+1 /an) =@+ \/5)/2

and the ratio test. Let T be the value of the series. Then

~00 (@ ¢] [o.0]
_ i i+2 i+1
T = E (ai+2—ai+1)/2 = 4 E ai+2/2 - 2‘ ai+1/2
i=0 i=0 i=0

and
T = 4(T - a5 - a1/2) - 2(T - ay)
Solving, we find
T = 2(ag + a4) = 2a9 = 4.,

Also solved by Dewey C. Duncan, Bruce W, King, J. D. E. Konhauser, F. D.
Parker, C. B. A. Peck, A. C. Shannon (Australia), John Wessner, David Zeitlin,

and the proposer.
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EDITORIAL NOTE:

Since - o
f(X) = ——;_ = Z F Xn = axi
1-x- x2 n+i Z i
n=0 i=0
Substituting
-1
x = §< \/-'- 1 _ (1 +‘\/5\
2 2 )
yields

while £(-1/2) = 4/5.

A NON-INTEGRAL SUM

B-125 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Is

n
~ 1
k=

ever an integer? Explain.

Solution by Dewey C. Duncan, Los Angeles, California.

The summation

L

Fy

™ s

=
1l
w
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is never an integer, since

(1) For n = 3, 4, 5, the summation yields 1/2, 5/6, 31/30, respectively.

(2) For n > 5, the summation yields a sum that is greater than 1 and less
than 1.5, since

Fak-1 Fak-+ Fok Fok+o

_— S g——

Fok = Fak+o Fok+1  Fak+g
and

F
nli—m Fn = \/52_ -
=P hH

From

2
Fok-1Fok+1 - Fok = (-1)%k

one implies that for all k > 1,

Fok Fok Fok-1 Fok-1
< < <
Fak+2 Fok+1 Fok Fak
Therefore, since
Bso_ 2
T, 3

we conclude that, for k > 3,

A
ol Do

k+1

Consequently,
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o0
Y o <2 (@ e/ @],
k=s &
whence,
[o0]
Y. & < 3/2 QE.D.
k=3

Also solved by R. L. Mercer, C. B. A. Peck, and the proposer.
GOOD ADVICE

B-126 Proposed by J. A. H. Hunter, Toronto, Canada.
Each distinct letter in this alphametic stands, of course, for aparticular

and different digit. The advice is sound, for our FQ is truly prime. What do

you make of it all?

READ

FQ
READ
—FQ
DEAR

Solution by Charles W. Trigg, San Diego, California.

From the units' column R is even. Since 2R+ 1 = D, then (R,D) =

(2,5) or (4,9).

If (R,D) = (4,9), then (since FQ is prime) Q =3 and F=1,2,5,7,
or 8. Furthermore, 2F + A + 2 is a multiple of ten. Thus (F,A) = (1,6),
(5,8) or (8,2). But each of these pairs leads to a value of E which duplicates

another digit.

If (R,D) = {(2,5) then (since FQ is prime) Q = 1, and F = 3,4,6 or 7.
Now 2F + A+ 1 is a multiple of ten, so (F,A) = (6,7) is the sole solution.
10 - 2 or 8. The unique reconstruction of the addition is

Il

Whereupon E
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2875
61
2875
61
5872

Additional solution by David Zeitlin, Minneapolis, Minnesota.

0841
79
0841
79
1840

Also solved by H. D. Allen (Canada), A. Gommel, R, L. Mercer, John W, Milsom,
C. B. A. Peck, and the proposer.

CONGRUENCES

B-127 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tennessee.

Show that

2nLn 2 (mod 5) ,

2n (mod 5) .

a0
n

Solution by John Wessner, Melbourne, Florida.

We proceed by induction. Both results are true for n = 1,2. If we

assume that the first for n = k and n = k+ 1, then we have

k

oK1, k+1

2 (mod 5), 2 'L 2 (mod 5) .

1l

Kk K+ -

Combining these,

JktL = 225

ke | _ Loy
- (F2:2°L) = 2@2+2+-2) = 2 (mod 5).

k+
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Similarly, in the second case we assume

_ k+2 -
2 Fk = 2k (mod 5), 2 Fk-l-z =z 2(k + 1)(mod 5) .

Combining these gives

ki, k
Flegg #2271

22kk+1)+2.2k = 12k+4

ktsg ~
2 Fk+2 = 2(2

i

2{k + 2)(mod 5) .

Also solved by Herta T. Freitag, R. L. Mercer, C. B, A, Peck, A, C. Shannon
(Australia), Paul Smith (Canada), David Zeitlin, and the proposer.

GENERALIZED SEQUENCES

B-128 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada.

Let fn be the generalized Fibonacci sequence with f; = a, f3 = b, and

£ ., =1 +£f .
n+i n  n-i
by g, =f ¥ .. Alsolet S =fj+f+++ +L. It is true that § = g

and 8g = 3gg Generalize these formulas.

Let gy be the associated generalized Lucas sequence defined

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pennsylvania.

By induction,

s =f - 5, fn = Fn_1f2+Fn_2f1 R
and
= Ln_ifz + LIl—Zfi o

Thus

Stn = Iz -f = Fm-1- Dfy = Ffy

and
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Fongont+z = Fon(Lont+ify + Lonfy) .

These are equal, since

Fin = Fonlon

and

Fun-1 -1 = Foplon+1

Thus we have

S;n = Fopgon+a »

P. S. Sn = fn+2 - fy occurs in B-20, FQ, Vol. 2, pp. 76-77,

Also solved by Bruce W. King, A. C. Shannon (Australia), David Zeitlin, and
the proposer.

MODIFIED GOLDEN RATIO

B-129 Proposed by Thomas P. Dence, Bowling Green State University, Bowling
Green, Ohio,

For a given positive integer, k, find

lim (F

n-—">c0 n+k/Ln) °

Solution by Bruce W. King, Burnt Hills — Balston Lake H.S., Burnt Hills, N. Y.

Leta = (1+V5)/2 and b = (1 - V5)/2. Then [b/a] < 1 andit follows
that (b/2)® >0 as n >o. Hence

F /Ly = @ AR 1) = @ VAL - /)™ Y1+ b/a)"]

approaches ak/\/é— as n goes to infinity.

Als? solved by R. L. Mercer, C. B, A, Peck, A. C. Shannon (Australia), Paul
Smith (Canada), John Wessner, and the proposer,
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MULTINOMIAL COEFFICIENTS

B-130 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Let coefficients c]. (n) be defined by
@+x+x2)" = com) + ci@m)x + cy)x? + * + + +cgp (n)x2
and show that
E cj(n) 2 = cyn(@n) .
j=0

Generalize to

.
A+x+x2+ o +x) ,

Solution by David Zeitlin, Minneapolis, Minnesota.

Let
.2 k2
Q) = Qk,l’l(x) = (1 +x +xX+eee +X )
= qo(n) + g(n)x + ga(n)x? + o + qkn(n)xkn
Since
FQ /%) = Q)
we have

q.(n) = .(n
qJ( ) qkn_]( )
for i = . . kn .
or j = 0,1,°°+,kn. Equating coefficients of x in

2n n
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we obtain

kn kn
q,@n) = 3 q (g @)= 2 [a,@73*.
r=0 r=0

Also solved by R. L. Mercer, R. W. Mercer, A, C, Shannon (Australia),
and the proposer.

A FIBONACCI-LUCAS IDENTITY

B-131 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tennessee

Prove that for m odd

5F
n-m ntm _
+ L
n-m n+m n
and for m even
F +F F
n-m ntm _ _n
L + L L
n-m n+m n

Solution by John Wessner, Melbourne, Florida.

The following properties of the Fibonacci and Lucas numbers can easily

be proved by the use of the Binet formula: (1) For odd values of m,

SF F_ ,
m n"m

F +F L F .
n-m n+m n m

L + L
n-m n+

Il

(2) for even values of m,

[Continued on p. 304. ]



RECREATIONAL MATHEMATICS

Joseph S. Madachy
4761 Bigger Rd., Kettering, Ohio

Before I go on with new business, readers of this column should make the
following corrections in the February 1968 issue of the Fibonacci Quarterly
(Vol. 6, No. 1):

Page 64: In 18716, the fifth group of five digits should read 87257 and not
78257,

Page 67: The last few words in the fifth line under ""A Fibonacci Varia-

tion'" should read ' .. nF series in which each..."
Page 67: Under '"Some FibonacciQueries,'" for Fy3 = 2584, correct the
addition to read 2+ 5+ 8 +4 = 19,

Some browsing by myself through past issues of the Fibonacci Quarterly

disclosed an article by Dewey C. Duncan [2] in which Mr. Duncan anticipated
— in a slightly different manner — my Fibonacci variation [4, page 67]. I had
formed an hF series in which each term is the sum of the next two terms,
starting with (F = 0, F = 1:
o, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55,

ete.

Mr. Duncan introduces Fibonacci number relationships involving zero and
negative indices, with

Fo =0, Fy=1 Fy=-1, Fg=2

and, generally, F—n = (-1) Fn' The Duncan series thus formed is
o, 1, -1, 2, -3, 5, -8, 13, -21, 34, -59,

etc. , which is identical to the nF series given previously.

299
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If n is zero or even, we have F_n = —Fn and nF = ’Fn for n odd,
wehave F =F and F =F .
-n n n n

Such is the beauty of the Fibonacci numbers and their variations!

PRODUCTS WITH DIFFERENT FACTORS CONTAINING THE SAME DIGITS

The following collection was derived from the Nelson table described in
[4, pp. 61-63]. The list shows products withtwo sets of factors containing the
same digits, e.g. (6)(4592) = (56)(492). Trivial solutions or those derived

from simpler forms, are not listed. For example

(23)(794) = (23)(794)

(6)(500) = (600)(5)

and others similar to the above are excluded.

The list contains one set of factors (the Sth set) in which the digits are in
the same order, and four sets of factors (the first four)in which the digits are
in reverse order.

If the list proves incomplete, I would deeply appreciate new results found
by readers.

(Factors)y (Factors), Product
(6)(21) = 126 126
(3)(61) = 153 153
(50)(6) = (60)(5) 300

(4)(567) = (7)(6)(54) 2,268
(6)(3128) = (23)(816) 18,768
(4)(72)(86) = 24,768 24,768
(6)(4592) = (56)(492) 27,552
(7)(3942) = (73)(9)(42) 27,594
(9)(3465) = (63 x495) 31,185
(53)(781) = (71)(583) 41,393
(9)(7128) = (81)(792) 64,152

(4)(56)(729) = (9)(24)(756) 163,296
(6)(93)(428) = (248)(963) 238,824
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(7)(62)(918) = (9)(51)(728) 334,152
(92)(8736) = (96)(8372) 803,712
(6)(7)(84) (531) = (8)(413)(567) 1,873,368
(82)(53671) = (562)(7831) 4,401,022

(8) (935721) = (9)(831752) 7,485,768

(24)(756)(813) = (54)(273168) 14,751,072
(9)(76)(25143) = (57)(493)(612) 17,197,812
(4)(86)(53217) = (216)(84753) 18,306,648
(34)(96)(5721) = (576)(32419) 18,673,344
(4)(657)(8213) = 21,583,764 21,583,764
(9)(561)(4372) = (594)(37162) 22,074,228
(64)(78)(9251) = (96)(572)(841) 46,180,992

In the April 1968 issue of the Fibonacci Quarterly [5, p. 166], I had

asked you to demonstrate that no consecutive set of Fibonacci numbers could

be used to form a magic square. In any nxn (n must be greater than 2)
magic square composed of n® positive integers, the magic constant (the sum
of the integers in each row, column, and long diagonal) is the sum of all the
integers divided by n. Therefore, any integer appearing in a magic square
must be smaller than the magic constant.

The demonstration involves showing that the largest integer appearingin
an array of consecutive Fibonacci numbers is larger than the magic constant
— hence such a magic square is impossible.

The sum of the first p Fibonacci numbers is Fp+2 - 1, where Fp+2
is the ( + Z)th Fibonacci number. The sum of any q consecutive Fibonacci

numbers, where Fp is the first and qu_1 is the last term is

(Fp+q—l—1 -1 - (Fp+1 -1) = Fp+q+1 - Fp+1 °

Let F_ be the first integer in a series of n? consecutive Fibonacci

2

numbers. The largest will be Fp+n2 and the sum of these n® terms will

-1
be

(1) F - F =8

pnd+1 p+ array
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where Sarray’ then, is the sum of the integers in an nxn array of n® con-

secutive Fibonacci numbers., From equation (1) we can write

2)

<F
Sarray I1p+nz+1

Three consecutive Fibonacci numbers, starting with F are:

p+n?-1

Fp+n?'-1 ? Fp+n2 ’ Fp+n2+1

where

Fp+n2+1 - »Fp+n2—1 " Fp+n2 .

Also, in any set of thfee consecutive Fibonacci numbers (excluding the first
three 1, 1, 2), we have

Z <

Fp+n2 Fp +n?-1 Fp+n2— 1
or

Fp+n2 = Fp+n2_1 -+ K ,
where

<
K< Fe, -
Then
Fp+n2+1 - Fp+n2-1 * Fp+n2-1 K= 2Fp+:r12-1 TK-.

Since K < F we have

p+n®-1

<
2Fp+n2_1 + K 3Fp+n2_1

or
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< 1
F1o+nz+1 3I‘p+n2—1

From inequalities (2) and (3) we have

@)

<
Sarray 3Fp+nz-1

If we divide (4) by 3 we obtain

Sarrax < -
3 pthé-1

That is, the magic constant for a 3 x 3 array of 9 consecutive Fibonacci

numbers will be less than the largest Fibonacci number in the array. It fol-

lows that
S
AV <, 0, (<3
n ptn-1
where (Sarray )/n is the magic constant for an n x n array, is also true —

and so consecutive Fibonacci numbers cannot be used to construct magic
squares.

Some general results concerning Fibonacci numbers and magic squares
appear in [1]. There Brown proves the general case that no set of distinct
Fibonacci numbers can form a magic square.

Also in [ 3] Freitag shows a magic square constructed with Fibonacci
numbers and sums of Fibonacci numbers. One magic square is shown which
has terms, each of which is composed of the sum of two Fibonacci numbers.

This last item raised a trick question which I pass on to readers: Cana
magic square be constructed in which each term is the sum of two consecutive

Fibonacci numbers?

This column for the December 1968 issue will contain an article by Free
Jamison and V. E. Hoggatt, Jr., on the dissection of a square into acute isos-
celes triangles — an extension of a familiar idea. Also, as a result of some
work by Charles W. Trigg appearing in the July 1968 issue of the Journal of

Recreational Mathematics, I'll present some recreations in instant division.
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* ok ok kK

It is also relatively easy to demonstrate that a positive integer n is a

perfect number if and only if the sum of the reciprocals of the positive integer

divisors of n is 2.

If you have some free time why don't you investigate the topic of perfect

numbers or, better yet, why don't you suggest it as apossible project for some

talented student in one of your high school mathematics classes?

* &k ok ok Kk

[Continued from p. 298. ]

With these the desired results are immediately available.

Also solved by Herta T. Freitag, C. B. A. Peck, A. C. Shannon (Australia),
and the proposer.

* ok ok ok Kk
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BINDERS NOW AVAILABLE

The Fibonacci Association is making available a binder which
can be used to take care of one volume of the publication at a time.
This binder is described as follows by the company producing it:

"....The binder is made of heavy weight virgin vinyl,
electronically sealed over rigid board equipped with
a clear label holder extending 2 -3/4'" high from the
bottom of the backbone, round cornered, fitted with
a 1 1/2 " multiple mechanism and 4 heavy wires.'

The name, FIBONACCI QUARTERLY, is printed in gold on the
front of the binder and the spine. The color of the binder is dark
green. There is a small pocket on the spine for holding a tab
giving year and volume. These latter will be supplied with each
order if the volume or volumes to be bound are indicated.

The price per binder is $3.50 which includes postage (ranging
from 50¢ to 80¢ for one binder). The tabs will be sent with the
receipt or invoice.

All orders should be sent to: Brother Alfred Brousseau,
Managing Editor, St. Mary's College, Calif. 94575




