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FIBONACCI REPRESENTATIONS 
L. CARLITZ 

Duke University, Durham, North Carolina 

1. INTRODUCTION 

We define the Fibonacci numbers as usual by means of 

F0 = 0, F t = 1, F _,_ = F + F , (n > 1). 
U ' 1 ' n + 1 n n_i 

We shall be concerned with the problem of determining the number of repre-
sentations of a given positive integer as a sum of distinct Fibonacci numbers. 
More precisely we define R(N) as the number of representations 

(1.1) N = F. + F. + • • • + F t , 
kj k2

 K r 

where 

(1.2) kt > k2 > • • • > k r > 2 ; 

the integer r is allowed to vary. We shall refer to (1.1) as a Fibonacci rep-
resentation of N provided (1.2) is satisfied. 

This definition is equivalent to 

00 00 

(i.3) n d + y n) = S H ( N ) y N 

n=2 N=o 

with R(0) = 1. We remark thatHoggatt and Basin [4] have discussed a close-
ly related function defined by 

* > T ? ^ TVT 

(1.4) n d + y n) = J]R'f(N)y . 
n=i N=o 

^Supported in part by NSF grant GP-5174. ( R e c e i v e d J u l y , 1967) 
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194 FIBONACCI REPRESENTATIONS [Oct. 

Comparing (1.4) with (1.3) it is evident that 

(1.5) Rf(N) = R ( N ) + R ( N - 1 ) 

Ferns [3] and Klarner [5] have also discussed the problem of represent-
ing an integer as a sum of distinct Fibonacci numbers. We recall that by a 
theorem of Zeckendorf [1] the representation (1.1) is unique provided the k. 
satisfy the inequalities 

(1.6) - - - k . - k . - ^ 2 (j = 1, • • • , ! • - 1); k ^ 2 . 
j j+i J r 

We call such a representation the canonical representation of N. 
Rather than work directly with R(N) we shall find it convenient to define 

the function A(m,n) by means of 

00 F F °° 
(1.7) 0 ( l + x \ n + 1 ) = £ A(m,n)xmyn . 

n=i m,n=o 

It is easily seen that A(m,n) satisfies the recurrence 

(1.8) A(m,n) = A(n - m,n) + A(n-m,m - 1) . 

Also, as we shall see, 

(1.9) R(N) = A(e(N),N) , 

where 

(1.10) e(N) = V i + V i + " ' + V i ' 

and the k are determined by (1.1); the value of e(N) is independent of the 
s 

particular Fibonacci representation employed. . In particular we may assume 
that the representation (1,1) is canonical. Indeed most of the theorems of the 
paper make use of the canonical representation. 
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In p a r t i c u l a r it follows from (1,9) that for fixed n there is a unique value 

of m, namely e(n), such that A(m,n) f 0. 

It i s helpful to make a shor t l i s t of exponent p a i r s occu r r ing in the r ight 

m e m b e r of (1.7), that i s , p a i r s (m,n) such that A(m,n) f 0. Using the r e c u r -

r ence (1.8) we get the following: 

1 1 , 1 2 ) 2 3 ( 3 4, 3 5 | 4 6, 4 7 j 5 8 j 

6 9, 6 10 j 7 11 j 8 12, 8 13 j 9 14, 9 15 j 10 16 j 

11 17, 11 18 j 12 19, 12 20 | 13 21 | 14 22, 14 23 | 15 24 | 

• • • 16 25, 16 26 j 17 27, 17 28 | 18 29 | 19 30, 19 31 | 30 32 j 

21 33, 21 34 | 22 35, 22 36 | 23 37 | 24 38, 24 39 \ 

25 40, 25 41 | 26 42 | 27 43 , 27 44 | 28 45 | 

Th i s sugges ts that for given n, there a r e jus t one o r two va lues of m 

such that A(m,n) f 0. As we shal l s ee , this i s indeed the ca se . 

The f i r s t main r e s u l t of the pape r i s a reduct ion formula (Theorem 1) 

which theore t ica l ly enables one to evaluate R(N) for a r b i t r a r y N. While e x -

pl ic i t fo rmulas a r e obtained for r = 1, 2, 3 in a canonical r ep resen ta t ion , the 

genera l case i s ve ry complicated. If, however, we a s s u m e that al l the k 
s 

have the same pa r i ty the si tuation i s much m o r e favorable. Indeed if we a s s u m e 

that 

N = F 2 k i + - - + F 2 k r (kj> - • • > kY> 1) 

and put 

j s = V k s + i ( S = l j " " ' r " 1 ) ; j r = k r ' 

fr = £ ( J i . ' ' • . Jr) = RON), S r = 1 + fi + f2 + • • • + fr , 

then we have 

S0 = 1 , Sj = j j + 1, S r = ( j r + DSj-.i - S r_2 (r > 2) 

In p a r t i c u l a r if j j = • • • = j r = j we have 



196 FIBONACCI REPRESENTATIONS [Oct. 

= £ (-l) t( r
t"t)(J + D1 S - - — - - - - - • - * - 2 t 

r 
2t<r 

Returning to (1.10) we show also that if k > 2, then e(N) = { ^ _ 1 N } , 

the integer nearest to a^N, where o? = (1 + N/5)/2, while for k = 2, e(N) 
= [a^N] + 1. 

Additional applications of the method developed in this paper will appear 
later. 

Section 2 

As noted above, by the theorem of Zeckendorf, the positive N possesses 
a unique representation 

(2.1) N = F. + F, + ••• + F, 
ki k2 kr 

with 

(2.2) k. - k > 2 (j = 1, • • •, r - 1); kf > 2 . 

When (2.2) is satisfied we shall call (2.1) the canonical representation of N. 
Then the set of integers (k^ k2, • • •, k r ) is uniquely determined by N and 
conversely. 

The following lemma will be required. 
Lemma. Let 

(2.3) N = F k i + . - . + F k r = FJi + - . . + F J s , 

where 

(2.4) ^ > k2 > • • • > k r ^ 2 ; j t > j 2 > • • • > j g > 2 

be any two Fibonacci representations of N. Then 
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(2.5) F. + • • • + F k 1 = F . + • • • + Fi _i . 

Proof. The l e m m a obviously holds for N = 1. We a s s u m e that it holds 

up to and including the value N - 1. If kj = j j then (2.3) impl ies 

F. + •" • + Fu = F . + • • • + F ; < N k2
 K r ] 2 3 s 

and (2.5) i s an immedia te consequence of the inductive hypothesise We may 

accordingly a s s u m e that k^ > j ^ . Since 

• • • F 2 + FQ • + • • • + F = F _,_' - 2 -, L 6 n n+2 

we mus t have kj = j j + 1. If k2 = kj - 1 we can complete the induction as in 

the prev ious c a s e . If k2 = kj - 2, (2.3) impl ies 

(2.6) 2F. + F. + • • • + F k ' = F . + • ' • + F i o , 
k2 k3

 Kr j 2 3 s 

with j 2 < k2. If J 2 < k2> 

F . + • • • + F , < F 2 + F 3 + • ' • • + F . < F . < 2 F . , 
32 3 s ^ d k2- i k2+l k2 

which con t rad ic t s (2.6). If j 2 = k2? (2.6) r educes to 

F + F + - . . + F, = F . + • • • + F . < N . k2 k3 k r 33 3 S 

Then by the inductive hypothesis 

(2.7) F, + F, + • • • + F k * = F . +• • • + Fi * . v ' k2 - l k3- l k r i 33-i 3s l 

Since j j = kA - 1, j 2 = k2 = k4 - 2, we have 

F. = F . = F . + F . = F . + F . 
k i - i 31 J i - i Ji-2 J i- i 32~l 

so that (2.7) impl ies (2.5). 
F inal ly t he re i s the poss ibi l i ty F, < F, - 2. In th is c a se (2.3) r educes 

to 
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(2.8) F. + F. + . . . + F. = F . + • • • + Fi = Nf < N ; 
ki-2 k2 k r j 2 3 s 

each m e m b e r of (2.8) i s a Fibonacci r ep resen ta t ion of N! . By the inductive 

hypothesis 

(2.9) . . . F . + F, + • • • + F, • A = F . + . . . + F i i . 
kj-3 k2-i kr - i j 2 - i J s 

Since ji - 1 = kj - 2, (2.9) impl ies 

F. + F. + • • • + F t „i = F . + F . + • • • + F- i ki k2- i Kr-1 J i - i j 2 - i 3s - 1 

and the induction i s complete . 

This evidently comple tes the proof of the l emma. 

We now make the following 

Definition. Let 

(2.10) N = Ff e + • • • + F k r & ! > • • • > k r > 2) 

be any Fibonacci r ep resen ta t ion of the posi t ive in teger N. Then we define 

(2.1D e(N) = F f c i - 1 + . . . + F k r . t . 

It i s convenient to define 

(2.12) e(0) = 0 . 

In view of the l emma i t i s i m m a t e r i a l which Fibonacci r ep resen ta t ion of N 

we use in defining e(N). In p a r t i c u l a r we m a y use the canonical r ep resen ta t ion 

(2.1). 

Section 3 

Returning to (1.7) we put 

(3.1) cDfey) = II (1 + x F n y F n + 1 ) 
n=i 
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Then 

00 00 

(D(x5xy) = n (1 + xFa+ Fn+i> =• fl (l + y F n x F n + 1 ) , 
n=i n=2 

so that 

(1 +. xy)<i>(x,xy) = <f> (y,x) . 

Hence 

oo oo 
(1 + xy) \ ^ A(m,n)x y = Y^ A(msn)y x 

m,n=o m9n=o 

Comparison of coefficients yields 

(3.2) A(m,n) = A(n - m, m) + A(n - m , m - 1) , 

the recurrence stated in the Introduction 
In the next place it is clear from the definition of e(N) that(1.3) reduces 

to 

00 °° , x 

(3.3) n (l + x F n y
F n+l ) = £ R(N) x e ( N ) y N , 

n=i N=0 

where R(N) is defined by 

00 

(3.4) n (l + y * n ) = 
n=2 

00 

= ' £ R(N)yN 

N=0 

It follows that 
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(3.5) R(N) = A(e(N),N) . 

In p a r t i c u l a r we see that, for fixed n, there i s a unique value of m, 

namely e(n), such that A(m,n) f 0. 

If we take m = e(n) in (3.2) we get 

(3.6) R(N) = A(N - e(N), e(N)) + A(N - e(N),e(N) - 1) . 

Now let N have the canonical r ep resen ta t ion 

(3.7) N = F ,_ + • • • + F k ki k r 

with k odd. Then r 

e(N) = F k H + • •• H - F ^ i , 

N - e(N) = F k i _ 2 + • • • + F k r _ 2 . 

Since k ^- 3, it follows that r 

(3.8) N - e(N) = e(e(N)) . 

On the o ther hand, s ince 

F 3 + F 5 + • • • • + F 2 t _ i = F 2 t - 1 , 

we have, for k = 2t + 1, r 

e(N) - 1 = F k + • • • + F k r - i + (F3 + F5 '+ . . . + F 2 t _ i ) ; 

the r ight m e m b e r i s evidently a Fibonacci r epresen ta t ion , so that 

e(e(N) - i) = Ff c _2 + • • • + ^kr^-2 + (F2 + F 4 + • • • + F 2 t _ 2 ) 

= F. + • • • + Fk __2 + F k .2 - 1 
ki-2 K r - i ^ K r L 

= N - e(N) - 1 . 
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Thus 

A(N - e(NL e(N( - 1) - 0 

and (3.6) becomes 

R(N) - A(e(e(N))5 e(N)) . 

In view of (3.8) we have 

(3.9) R(N) = R(e(N)) (kr odd) . 

Now let k in the canonical representation of N be even. We shall 
show that 

(3.10) R(N) = R(e2t"1(N1)) + (t - 1) R(e2t~2 (Nj) ) , 

where k = 2t , r 

(3.11) Ni = F k i + . - . +Fkr_t 

and 

(3.12) e V ) = e(et"1(N)), e°(N) = N • . 

To prove (3.10) we take the canonical representation (3.7) with k = 2t. 
Then 

(3.13) e(N) = F ^ + ••• + F k r _ 1 , 

which is a Fibonacci representation of e(N) except when t = 1. Excluding 
this case for the moment, we have as above 

(3.14) N - e(N) = e(e(N)) . 

Moreover 
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e(N) - 1 = F k i - 1 + • • • + F k r - r l + F 2 t _ i - 1 

= F k r - i + ' ' ' + ^r-f1 + ( F 2 + F 4 + *" * + F 2 t - 2 ) ' 

e(e(N) - 1) = F k _2 + • • - + F k r _ r 2 + (F4 + F 3 + • • •. + F 2 t _ 3 ) 

= F
k l - 2 + ' " + F k r _ r 2 + F2 t -2 > 

so that 

(3.15) e(e(N) - 1) = e(e(N)) . 

Substituting f rom (3.14) and (3.15) in (3.6) we get 

(3.16) R(N) = R(e(N)) + R(e(N) - 1) (k = 2t > 2) 

When k = 2, (3.13) gives 

Also since 

N - e(N) = F k ^ 2 + . . . + F k r _ _ r 2 = e(e(Ni)) , 

e(N) - 1 = F ^ ^ + • • • + F k r _ r l = e(Ni) 

e(N) = F k i _ 1 + --« + F k r _ r i + F 2 , 

we get 

e(e(N)) = F k i _ 2 + - - - + F k ^ r 2 + Ft 

= N - e(N) + 1 . 

I t there fore follows from (3.5) and (3.6) that 

(3.17) R(N) = R(e(Ni)) (k R = 2) 

in ag reemen t with (3.10). 
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Returning to (3.16) we have f i r s t 

(3.18) R(e(N)) = R(e2(N)) (k = 2t > 2) , 

by (3.9). Since 

e(N) - 1 = F k i _ 1 + . - + F k r _ r l . + (F2 + F 4 + . . . + F 2 t _ 2 ) , 

it follows by repea ted application of (3.17) and (3.9) that 

• • • R(e(N) - 1) = B ( F k _ 2 + . . . - + F k r _ r 2 + F 3 + - - - + F 2 t - 3 ) 

= R ( F k i - 3 + " ' * + F k r _ r 3 + F 2 + • • • + F 2 t _ 4 ) 
= R ( V 2 t + 2 + o s e + F k r - r ^ 2 ) 

= R(e 2 t " 2 (Ni>) . 

Thus (3.16) becomes 

(3.19) R(N) '= R(e2(N)) + R(e2 t"2(Ni) ) (t > 1) . 

Repeated use of (3.19) gives 

R(N) = R(e2t~2(N) ) + )t - l )R(e 2 t - 2 (Ni) ) ; 

finally, applying (3.17), we get (3.10) . 

Combining (3.9) and (3.10) we s ta te the following pr inc ipa l r e s u l t 

T h e o r e m 1. Let N have the cannonical r ep resen ta t ion 

N = F k i + . . - + F k r , 

whe re 

kj - k
j + 1 ^ 2 .(J = 1, • • • , ! • - 1); k r ^ 2 . 

Then 
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(3.20) R(N) = R(ekr"1(N1) ) + ( [ f k r ] - D R t e ^ ' V i ) ) , 

where 

Ni = F, + •• • + F k 4 . 1 kj Kr-1 

Section 4 

Since 

F2 + F4 + ••••• + F 2 t = F2t+i - 1, F4 + F3 + - +F 2 t _! = F 2 t 

it follows that 

(4.1) e(F2 t + 1 - 1) = F 2 t , e ( F 2 t - 1) = F2t_i - 1 . 

Also since 

F2t+i - 2 = F4 + F6 + • • • + F2t , 

F 2 t - 2 = F2 + F 5 + F7 + • • • + F2t-i , 

we get 

(4.2) e(F2 t + 1 - 2) = F 2 t - 1, e(F2 t - 2) = F2 t - i - 1 . 

Now by (3.6), for k > 2, 

R(Fk) = A(Fk_2, Fk .x) + A(Fk„2 ,Fk„i - 1) 

= R(Fk_i) + A ( F k . 2 , F k ^ - 1) , 

R(Fk - 1) = A(Fk - 1 - e(F k - 1), e(Fk - l)) + A ( F k - l - e ( F k - l ) , 
e ( F k - l ) - l ) . 

Then by (4.1), 
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A(F2t-2, F2 t - i - 1) = R(F2t_! - 1), A(F2t_1) F 2 t - 1) = 0 , 

so that 

(4.3) R(F2t) = R(F2t_1) + R(F2t_1 - 1), R(F2t_j) = R(F2t_2) . 

In the next place by (4.1) and (4.3) 

R(F2t - 1) = A(F2t_2, F2 t_! - 1) + A(F2t_2,F2t_1 - 2) 

= R(F2t_i - 1) , 

R(F2t_! - 1) = A(F2t_3 - 1, F2t_2) + A(F2t_3 - 1, F2t_2 - 1) 

= R(F2 t-2 - 1 )• 

Hence we have 

(4.4) R(Fk - 1) = R(Fk_t - 1) (k > 2) , 

which yields 

(4.5) R(Fk - 1) = 1 (k > 2) . 

Substituting from (4.5) in (4.3), we get 

R(F2t) = R(F2t_1) + l, R(F2t_i) = R(F2t_2) , 

which implies 

(4.6) R(F2t) = R(F2t+i) = t ( t > l ) . 

We shall now show that R(N) = 1 implies N = F, - 1. Let N have the 
canonical representation 

N = F
k l

 + - " + F k r • 
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Then by (3,20) 

(4.7) R (e k r " 1 (N 1 ) ) = 1 

and [ k r / 2 ] = 1, so that k = 2 o r 3. Since 

i t i s n e c e s s a r y that 

[(k A - k + l ) / 2 ] = 1 L r - i r ' 

and therefore 

k „ - k = 2 r - i r 

S imi la r ly 

k. - k._ i = 2 (J = 1, 2, • • ' , r - 2 ) . 

Hence we have e i the r 

N = F 2 r + F 2 r _ 2 + . . . + F 2 = F 2 r + 1 - 1 

o r 

N - F 2 r + i + F 2 r - i + • • • + F 3 = F 2 r + 2 - 1 . 

We may sum up. the r e s u l t s jus t obtained in the following t h e o r e m s . 

T h e o r e m 2. We have 

(4.8) R ( F k ) = [ I k ] (k > 2 ) 

T h e o r e m 3. R(N) = 1 if and only if 

N = Ff e - 1, k > 1 
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If we define R! (N) by means of 

(4.9) | - y ( 1 + y*n) = J^ R*(N)yN , 
n=l N=0 

then 

(4.10) R'(N) = R(N) + R(N - 1) 

and it follows immediately that 

(4.11) RT(Fk) = [ J k ] + 1 (k > 2) . 

This result has been proved by Hoggatt and Basin [4]. 
Further results like (4.5) and (4.8) can be obtained by the same method, 

For example we can show that 

R(F2 t + 1 - 2) = 1 + R(F2t - 2) (t > 1) , 

R(F2t - 2) = R(F2t_i - 2) (t > 1) . 

It follows that 

(4.12) R(Fk - 2 ) = ' [ J (k - D] (k > 3) . 

Consequently by (4.11) we have 

(4.13) R ? ( F k " 1] = [ ^ ( k + 1 ) ] ' 

a result proved by Klarner [5, Th. 1] . 

Section 5 

Theorem 1 furnishes a reduction formula by means of which R(N) can 
be computed by arbitrary N. For example if 
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(5.1) N = F. + F k (j - k > 2, k £2) 

that by (3.20) 

R(N) = R(ek"1(Fi)) + ( [ | k ] - D R ^ " 2 ^ ) ) 

= R ( F j _ k + 1 ) M [ 2
1 k ] - l ) R ( F . _ k + 2 ) . 

Applying (4.8) we get 

(5.2) R(N) = [ J(J - k + 1)] + ([ Jk] - 1)[1 (j - k +2)] . 

Again if 

(5.3) N = F. + F. + F k (i - j > 2, j - k > 2, k > 2 ) , 

then 

R(N) = R(F._k + 1 + F._k + 1) + ([J k] - DR(Fi_k + 2 + F._k + 2) . 

Applying (5.2) we get 

(5.4) RON) = [£(i - j + D] + ([J(j - k+ Ij] - 1) [Jtt - j + 2)] 
+ <[Jk] - l ) { [ J ( i - j + l)] + (2

1[j-k + 2] - l ) [ J f t - j + 2)J 

Unfortunately, for general N the final result is very complicated. How-
ever (5.2) and (5.4) contain numerous special cases of interest. 

In the first place, taking k = 2, 3, 4 in (5.2), we get 

(5.5) R(F. + 1) = [ j(j - 1)] (j 2 4) 

(5.6) R(F. +2) = [Ki -2)] (j > 5) 

(5.7) R(F. + 3) = [ £(j - 3)] + [J(J - 2)] (j 2 ' 6) . 
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In the next place for the Lucas number L defined by 

L0 = 2, Li = 1, Lk+t = L^ + Lk_i (k > 1) , 

since L k = F k + 1 + F ^ , (5.2) gives 

R(Lk) = 1 + 2[J ( k - 3)] (k > 3) . 

Hence 

(5.8) 

Since 

R(L2k+1) = 2k - 1 (k > 1) 

R(L2k) = 2k - 3 (k > 1) 

2 F k = Vi + Fk-a ' 3 F k = Fk+2 + Fk-2 • 

we get 

(5.9) R(2Fk) = 2 + 2[J (k - 4)] (k > 4) , 

(5.10) R(3Fk) = 2 + 3[J ( k - 4 ) ] (k > 4) . 

The identity 

L23 F k = Fk+2j + F k -2 j 

yields 

(5.11) R(L2jFk) = 2j + (2j + •!)([ J k] - j - 1) (k > 2j + 2) ; 

for j = 1, (5.11) reduces to (5.10). 
A few applications of (5.4) may be noted. For k = 2 we have 

(5.12) R(Ft + F j + 2 ) = [ J ( i - j + D] + [ l ( j -3 ) ] l [ i ( i - j + 2 ) ] ( i - j > 2 , j > 4). 
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while for k = 3 we have 

(5.13) R ( F . + F . + 2 ) = [ K i - j + D] + [ 2
1 (5 -4 ) ] [ 2

1 ( i - j+2) ] ( i > j > 2, j > 5) . 

Again, s ince 

4 F k = F k + 2 + F k + F k - 2 ' 

i t follows that 

(5.14) R ( 4 F k ) = 1 + 3 ( j (k - 4)] (k > 4) . 

Section 6 

As r e m a r k e d above, d i r e c t application of Theo rem 1 leads to ve ry c o m -

plicated r e s u l t s for R(N). If, however, al l the k in the canonical r e p r e -
s 

sentation of N have the s ame pa r i ty s imp le r r e s u l t s can be obtained. If a l l 
the k a r e odd then by (3.9) , s 

(6.1) R ( F k i + . . . + F k r ) = R ( F k i _ I + . . - + F k r _ 1 ) 

we may therefore a s s u m e that a l l the k a r e even. 

It wil l be convenient to in t roduce the following notation. Put 

(6.2) N = F 2 k l + • • • + F 2 k r , 

where 

(6.3) ki > k2 > • • • > k r > 1 ; 

a l so put 

(6.4) i = k - k (s = 1, • • • , r - 1) ; j • = k J s s s - i ' J r r 

and 
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(6.5) fr = f(j l f . . . , ] r ) = R(N) , 

where N i s defined by (6.2). 

Now by (3.20) and (3.9) 

R(N) = R ( F 2 k l _ 2 k r + . - + F 2 k r ^ _ 2 k r ) + (k r - l )R(F 2 k l _ 2 k r +2 

+ •.*• + F 2 k r _ r 2 k r + 2 ) • 

By (6.4) and (6.5) this r educes to 

(6.6) f(j l f . - « , j r ) = f(j l 9 • . . , j r ^ ) 

+ ( j r - Df(]i. • • • • i r _ 2 » J r - i + 2 ) ' 

By (3.19) we have 

R ( F 2 k r 2 k r + 2 + • • • + F2k r - 1 -2k r +2) 

= R(F2k!-2kr + • • • + F 2 k r - l - 2 k r ) + R(F2k1-2kr-.i+2 + ' * '+ F2kr_2-2kr_1+2 ) » 

so that 

f (Jl» • • • • Jr-2> J r - i + 2) = f (j1? • • • , j r - i ) + f(ji, • • • , jr-3> j r _ 2
 + 2 ) 

= «3i> ° ' e > J r - i ) + f(3i/" ' *. 3r-2> + •'" • + f (J i) + 1 • 

Thus (6.6) r educes to 

(6.7) fr = fr_i + ( j r - l)(fr_2 + . « + fi + 1) . 

If we define 

(6.8) S r = fr + fr_i + . . . + f i + l , So = 1 , 

then (6.7) becomes 
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fr " fr_! = ^ " D ^ i ( r * 2 ) 

and therefore 

(6.9) S - (j + 1) S + S = 0 (r > 2) . 
r J r r - i r-2 

We may now state 
Theorem 4. With the notation (6.2), (6.3), (6.4), (6.5), f = R(N) is 

determined by means of (6.9) with S0 = 1, St = ji + 1 and 

f = S - S . r r r - i 

The first few values of S r are given by 

S 0 = 1, Si = J! + 1, S 2 = JiJ2 + ji + J2> S 3 = J1J2J3 + 3iJ2 + JiJS + 3233 + 32 " *• 

It is evident that S = S(jj, • • • , j r ) is a polynomial in ji, •••»jr; indeed it is 
a continuant [ 1, vol. 2, p. 494]. 

We have for example 

3 1 + 1 
- 1 

0 

1 0 

- 1 

32 + 1 
- 1 

0 

0 

- 1 

33 + 1 

0 

• 
• 
• 

0 

0 

0 

* 3 + 

and 

Sr(ji>32> " • » 3r) = S(j r , j r _ i , • • • , ji) . 

The latter formula implies 

(6.10) R(F2kl + . . . +F 2 k r ) = R(F2kJ+--- + F 2 k p , 
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where 

k[ = k r , kj = ki - k r , kj = ki - k r_i , • • •, k^ = k4 - k2 . 

When 

(6.11) ji = j 2 = ••• = j r = j 

we can obtain a simple explicit formula for S . Since in this case 

S r - (j + DSr_1 + Sr__2 = 0 (r > 2) , S0 = 1, Si = j + 1 , 

we find that 

^ S r x r = ( 1 - (J + Dx + x2)"1 = ^ x s ( J + l - x ) s 

r=o s=o 

EE^'(•.)«•» s-t s+t 
X 

s=o t=o 

which gives 

(6.12) • • • Sr = ] P (-l)t ( r " t j(J + l)r"2t 

2t<r 

In particular, for j = 1, (6.12) reduces to 

(6.13) S r = r + 1 (5 = 1) 

For certain applications it is of interest to take 

(6.14) ji = ••• = j r _ i = j , ' j r = k . 
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Then Sl5 • • •, S r - 1 are given by (6.12) while 

(6.15) ST = (k* 1) S - S 
r r - i r-2 

where S! = S(j, • • • , j , k\ It follows from (6,15) that 

(6-16) ft. = f ( J , . . . , j , k ) - k S M - S r _ f 

In view of the identity 

L2j+1 F2k = F2k+2j + F2k+2J-2 + " * + F2k-2J 

we get, using (6.13) and (6.16), 

(6.17) R(L2j+1F2k) - (k - j)(2j + 1) - 2J (k > j) . 

For k = j we have 

(6.18) R(L2 j + 1F2 j) = 1 

Note that 

L2j+1 F2j = F4j+1 - 1> L2j-1F2J = F4J-1 - 1 

When j = 2, we have 

V s xr+i = — * — =y"F2nxn, 
r=o n=o 

so that 

(6.19) S r = F 2 r + 2 

We now recall the identities 
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F 4 + F 8 + • • • + F 4 n = F2
2 n + 1 - 1 (n > 1) , 

F 2 + F 6 + • • • + F 4 n _ 2 = F l n (n > 1) , 

F 3 + F r + • • • + F ^ = F 2 n F 2 n + i (n ^ 1) , 

F j + F 5 + • • • + F 4 n . 3 = F2nFm_t (n * 1) . 

It follows readi ly , using (6.16) and (6.19) that 

(6.20) I K F ^ + I - 1) = F 2 n +i (n ^ 0) , 

(6.21) R ( F | Q ) = F 2 n _ t (n > 1) , 

(6.22) R(F2 nF2n+i) = F 2 n _j (n > 1) , 

(6.23) R ( F 2 n F 2 n - i ) = F 2 n _ ! (n ^ 1) . 

(6.24) R ( F 2 n + i - 2) = F 2 n (n > 1) , 

(6.25) R(F |n - 1) = F 2 n (n ^ 1) , 

(6.26) R(F 2 n F 2 n + i - 1) = F 2 n (n > 1) , 

(6.27) R ( F 2 n F 2 n - i - 1) = F 2 n - i . 

Combining (6.20) with (6.24), and so on, we get 

(6.28) R ' ( F 2 n - i - l ) = F 2 n (n > 1) , 

(6.29) R ' (F ln ) = F 2 n + i (n > 0) , 

(6.30) R ' ( F 2 n F 2 n + 1 ) = F 2 n + 1 (n> 0) , 

(6.31) RMFanFjn-!) = ZF^^ (n > 1) . 
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We have also 

(6.32) R(F2
2n - 2) = F2 n_2 (n > 1) , 

(6.33) RCFfn+t) - F2 n_! (n > 1) , 

so that 

(6.34) R T ( F | n - 1) = Lan-i (n > 1) , 

(6.35) Rf(Fin + 1) = L2n (n > 0) . 

Several of these results were obtained in [4]. 
In a similar way one can also prove the following formulas. 

(6.36) R ( F 2 n F 2 m ) = R(F 2 n + 1 F 2 m ) = (n - m) F 2 m + F2 m_i (n > m) , 

(6.37) R(F 2 n F 2 m + 1 ) = R(F2n+iF2m+i) = (n - m) F 2 m + 1 (n > m) . 

Section 7 

We shall now prove 
Theorem 5. Let N have the canonical representation 

(7.1) N = F k i + . . . + F k r . 

Then e(N + 1) = e(N) if and only if k = 2. 
Proof. Take k = 2. Then 
— r 

N + 1 = F ^ + • • • + F k r _ i + F3 , 

so that 

e(N + l) - Ffc i_1 + --- + F k r _ r l + F 2 . 

Since 



1968] FIBONACCI REPRESENTATIONS 217 

e(N) = F k i _ i + . e . + F k r _ r l + F 1 } 

it follows that e(N + 1) - e(N). 
Now take k > 2. Then r 

N + 1 = F k ! + " ° + F k r
 + F 2 

and 

e ( N + l ) = F k i _ i + . . - + F k r _ ! + 1 . 

But 

e(N) = F + • • • + F k i r l < e(N + 1) . 

This comple tes the proof of the theorem. 

If N i s defined by (7.1) then 

M = F k i + 1 + • • • + F k r + 1 

sa t i s f ies e(M) = N. Moreover , by the l a s t theorem, if k = 2 then a lso 

e(M - 1) = N. 

Consider 

N + 1 = F k i+ i + ° " + F k r + 1 + F 2 

C lea r ly 

e(M + 1) = F k + • • • + F k r + 1 = N + 1 

Also, s ince F 3 = 2, we have 

M - 2 = F. , , + • • • + F k + 1 kj+i K r - i 

e(M - 2) = F k + • • • + F k r _ i = N -• 1 
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It follows that one can have at most two consecutive numbers Ns N + 1, 
such that e(N) = e(N + 1). This justifies the assertion about A(m,n) in the 
introduction. 

Section 8 

Put 

n a - p ' . 2 ' P 2 

Then it is easily verified that 

(8.1) a^F = F - £ n 

n n-i 

Hence if N has the canonical representation 

ki K r 

it follows that 

(8.2) e(N) - a-1 N = 0K l + $** + • . . + 0 ki , nfe , , nkr 

Consequently 

| e(N) - a - 1 ^ £ <Tkl + <Tk2 + . . . + a~kr 

< a'2 + a~4 + • • • + o r 2 r 

c - 2 1 1 
< — + —±— = ± < 0.62 

1 - <H a2 _ j ^ 

If we put 
# - % = [cr^N] + E (0 < E < 1) ,' 

where \ [ or *N] denotes the greatest integer ^a--*N, then 
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-0.62 < e(N) - [or1]*] - G < 0.62 . 

This impl ies 

(8.3) [ c r ^ N ] < e(N) < [a~1N] + 1 . 

If k > 3 it follows from (8.2) that 

|e(N) - cr^N] <.a~z + cT5 + • • • + ^ - 2 r _ 1 

< a~~* = 1 J _ < 1 
1 - a~2 a(a2 - 1) a2 2 

and therefore 

(8.4) e(N) = { > " % } (k > 2) , 

where {a-^N} denotes the in teger n e a r e s t to o ^ N . 

Thus the value of e(N) i s de te rmined by (8.4) except poss ib ly when k 

= 2. Now when k = 2 we have a s above r 

• • • e(N) - <*"% ^ a~2 - a~5 - a'1 - • • • - a " 2 r _ 1 > a~2 - — 
1 - QT 

a2 az(a2 - 1) a2 aA az 

so that 

0 < e(N) - cr^N < 0.62 . 

It the re fore follows that 

(8.5) e(N) = [ > " % ] + l (k .= 2) 

We may now s ta te 
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Theorem 6. Let N have the canonical representation 

N = F. + . . c + p . . 
ki K r 

Then if k > 2, r 

(8.6) e(N) = {>-%} , 

the integer nearest Qf_1N ; if k = 2 , 

(8.7) e(N) = [cr^N] + 1 . 

We remark that (8.6) and (8.7) overlap. For example for 

N = 6 = F5 + F2, e(6) - F4.+ F 1 '= 4, [6a-1] = [3.72]= 3, 

{6a-1} = {3.72} = 4. 

However for 

N = 25 = F8 + F4 + F2, e(25) = F 7 + F3 + F1 = 16, [25a-1] = 15, 

{25cr-l} = 15 . 

REFERENCES 

1. J .L. Brown, J r . , nZeckendorf!s Theorem and Some Applications, " Fibonacci 
Quarterly, Vol. 2 (1964), pp. 163-168. 

2. G. Chrystal, Algebra, Vol. 2, New York, 1950. 
3. H. H. Ferns, MOn the Representation of Integers as Sums of Distinct Fib-

onacci Numbers, M Z^2I}^£L^M^£Ill., Vol. 3 (1965), pp. 21-30„ 
4. V. E. Hoggatt and So L. Basin, "Representations by Complete Sequences, " 

Fibonacci Quarterly, Vol. 1, No. 3 (1963), pp. 1-14. 
5. D. Klarner, "Representations of N as a Sum of Distinct Elements from 

Special Sequences, " Fibonacci Quarterly, Vol. 4 (1966), pp. 289-306. 
• . * • * • 



A NEW ANGLE ON PASCAL'S TRIANGLE 

V. E. HOGGATT, JR. 
San Jose State College, San Jose, Cal i f . 

.1. INTRODUCTION 

There has always been such interest in the numbers in Pascal1 s a r i t h -
metic triangle» The sums along the horizontal rows are the powers of two, 
while the sums along the rising diagonals are the Fibonacci numbers* An early 
paper by Melvin Hochster [6] generalized the Fibonacci number property by 
using the left-justified Pascal Triangle and taking other diagonal sums, the 
first summand being a one on the left edge and subsequent summands are ob-
tained by moving p units up and q units to the right until one is out of the 
triangle. Unfortunately, he required that (p,q) = 1» Harris and Styles [4] 
produced a generalization of these concepts, and yet a further generalization 
[5 ] . We present here a simplifying principle which will make the study of 
generalizations such as those of Lind [8] easier* 

2, COLUMN GENERATORS 

Consider the columns of binomial coefficients in the left-justified Pascal 
Triangle shown in (1)8 The generating functions for t h e s e columns of 

(i) < ; 

( 1 - x ) 
.th 0 

(S) (?) ' © (°) 
(1 - X)2 

, S t .nd 
(1 - x)* (1 - x)*-

r>rd 

Column Generator 

Column 

d e c e i v e d March, 1966) 221 
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coefficients, indicated in (1), are given by the corresponding Maclaurin series. 
That is , 

.00 00 

n=o n=o 

X 

(1 - x)2 

X2 

(1 - x)3 

k 
X 

(1 - x) 

00 

= ]Tnxn 

n=o 

n=o 

00 

n=o 

•t Ct> 
n=o 

oc 

n=c 

n 
x , 

where we have used the usual convention that 

© = 0 

for n < k. We should note that the column generators 

* k W = ,, X , k + l <k = 0 , 1 , 2 , - . . ) 
(1 - x) 

automatically align the binomial coefficients 

(?) • (?)•• • • • (») 
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n as the coefficients of x , Using the above generators, the generating function 

for the s 
angle is 
for the sum of the binomial coefficients across the n row of Pascal 's Tri 

k 

GW =Z%(x)=r^Z(T^r) 
k=o k=o * ' ( 1 - x ) 

00 

n=o 

This yields the familiar identity 

2 n . 
\ J / 

j=o 

k If, on the other hand, we multiply each generating function g, (x) by A 
and sum again, we find 

00 °° / \ k 

G(XS x) = i ] xkgk(x) = ^ x ; (TXX * X 
k=o k=o x 

n=0 

Thus by equating coefficients of x11 in each representation we get 

t (?) *n -
j=0 

(1 + X)n . 
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If we multiply the generating function g^(x) by appropriate powers of x, 
this allows us to vertically shift the separate columns, aligning the numbers 
along certain diagonals in a horizontal row, 

3. THE RISING DIAGONAL SUMS 

If we wish to sum the numbers along the rising diagonals, we modify the 
column generators to be 

2k 
* k W =

 h ,k+l (1 - x) n=o 

The diagonal sums, derived from (1), are displayed with appropriate column 
generating functions in (2). We now obtain a generating function 

(2) < 

1 1 
1 1 
2 i _ 1 
3 i _ — - 2 
5 i _ 3 1 
8 l _ 4 3 
3 ! _ 5 _6 

'. (!) (V) ( V ) (°-a3) -
V 

Column Generators 
1 - x (1 - x)2 (1 - x)3 

for the sums of the n row, 

G(x) 
£=0 ^^fi(^)k = r7^8F^' 
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a well known result. 

4. GENERALIZED FIBONACCI NUMBERS 

We now turn to the first generalization of the Fibonacci numbers due to 
Hochster [6] and Harris and Styles [ 4 ] . These numbers are given by 

u(n;p,q) = J ] I11." l p | (n > 0) , 
i=o \ f 

where [x] denotes the greatest integer <x. In particular, u(n; l , l ) = F 
and u(n;0,1) = 2 . To get these sums from the left-adjusted Pascal Triangle 

st we form sums beginning with the (n + 1) one in the leftmost column and add 
all the coefficients obtained by moving p units up and q units to the right un-
til out of the Triangle, The column generators which yield such summands in 
a horizontal line are 

g jx) = 
k(p+q) 

k (1 - x ) k q + 1 

Thus 

00 -, °° I P+q ) k 

G(x) = V g,(x) = - I - V \-Z--4 
f", k i - x z - ) ( 1 _ x ) q 
k=o* k=o v 

(3) 
q-i °° 

(1~x)
 p+q = Yl u foP'^ 1 1 <p+c* - x; <* - ° > -(1 - x P - x^ ^ 

N n=o 
This generating function was not given in [4], but is a special case of one given 
in [9]0 We note that in (3) p may be negative. If p = 1 and q = 1, then 
(3) becomes 
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CO 

—, - z w • 1 - X - X2 

n=o 

while for q = 2 and p = -1 we have 

00 . 

- 2^j F2n+l x » 
1 - 3x + x2 

n=o 

so that there are also Fibonacci numbers in the falling diagonals. 

5. A FURTHER GENERALIZATION 

In a new paper [5], Harris and Styles consider Pascal 's Triangle with 
each row repeated s times. The column generators for the new array can be 
easily obtained. The column generator 

gt(x) 
k (1 - x) k + 1 

generates the coefficients in the k column of a left-adjusted Pascal Triangle, 
and 

Vx ) = - 7¥H 
U - x S ) 

has the same coefficients as gk(x), except each nonzero entryis separated by 
s - 1 consecutive zeros. We can modify the h. (x) to duplicate each nonzero 

s-i entry s times by multiplying it by 1 + x + x2 + • • • + x . Thus 

I t i i S — l 

, , . + x + • •• + x 
n. AX) = 

k s k + 1 s k 

( l - x s ) ( l - x ) ( l - x s ) 
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To align the coefficients of like powers of x requires 

ks 
g*(x) = _ _ J £ _ 

s k ' ( l - x ) ( l - x S ) 

More generally, if we are interested in summing as before by going along 
rising diagonals in steps of p units up and q units to the right (see Section 4), 
then the required column generators will become 

k(p+sq) 
g*(x) = _ J L _ _ 

kq 
( l - x ) ( l - x S ) 

The generating function for the numbers 

Lp+sqJ / n - pk 
u(n;p9qss) .= Y ] I s I (n > 0) 

^ \ qk ' k=o 

investigated in [5] is thus 

00 00 / , \ k 
00 ' p+sq G(X) = £ gjw - r h E 

(4) 

x* 
q 

k=0 k=0 \ ( l - x S ) 

s q 

( 1 - x ) / ( l - x ) = y u ( n ; p , q , s ) x n . 

( l - x S ) q - x P + s < l ^ 0 

The horizontal sums will be finite if p + sq > 15 s > 0, and q ^ 0, so again 
p may be negative. For example? if p = - 1 , q = ls and s = 2, then 

G(x) = ( l - * 2 > / ( l - * ) = _ _ I ± 2 E _ = V F -xn
 s 

n=o 
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so there are Fibonacci numbers even in the falling diagonals of the left-ad justed 
Pascal Triangle with each row repeated s times. 

6. THE TRIMMED PASCAL TRIANGLE 

Let us return to the numbers u(n;p, q) of [4] (see Section 4). Suppose 
we define u*(n;p,q) as having the same summation pattern (p units up and q 
units to the right), but in Pascal 's Triangle with the first m columns removed. 

th Letting g£(x) be the generating function for the k column of this trimmed, 
left-justified Pascal Triangle, it easily follows that 

xk(p+q) 
g k ( x ) " ~ ,m+i+kq ( 1 - x ) 

Therefore the generating function for the numbers u*(n;p,q) is 

k 00 

G*(x) = £ g*(x) = — i - £ 
k=o ( 1 " x ) k=o 

X ? M i (i - x)q-f 

( l - x ) — \ ( l - x ) q / ( l - x ) m ( l - x ) q - x p + q 

We point out that if 

f (x) = Z an ** ' 
n=o 

then 

f(x) 

so that multiplying the generating function for the u(n;p, q) by ( l - x ) " 1 mere-
ly yields the generating function for the partial sums of the u(n;p, q). Repeated 
application m times yields m-fold partial sums. Thus we note if we take 
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rising diagonals on Pascal 's Triangle with the left column of ones trimmed off, 
the result will be the sum of the Fibonacci numbers, so that 

Ft + F2 + • • * + F . = F , - 1 , 1 ^ n n+2 9 

while consideration of row sums gives 

1 + 2 + • • • + 2 n = 2 n + 1 - 1 

(see Figure 1)* In general we have 

1 2 4 7 12 20 33 

Figure 1 

V ^ u(k;p,l) = u(a + p + l; p, 1.) - 1 . 

k=o 

We also note that the original generating function for the Fibonacci numbers, 

G ( X ) = 7 - f ^ = E F n + 1 * n ' 1 - X - X 
n=o 

becomes 

G*(x) = i — • 
(1 - x)iXi 1 - x - x* 
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for Pascal1 s Triangle trimmed of the first m columns. Thus we have 

00 1 II 

n=o k=o 

n 
x 

st a convolution of the Fibonacci numbers with the (m - 1) column of Pascal1 s 
Triangle. If the column of ones is deleted, so that m = 1, the generating 
function for p = -1 and q = 2 is 

G(x> = T ^ • 7 - T ^ = Z F 2 n + 2 x" • 
1 - 3x + x^ A ~ n=0 

so Fibonacci numbers are again in the falling diagonals. 
Returning to the general case of the generating function for the u(n;p, q) 

given in (3), we remark that in this particular case we can interpret the 
sequence generated by 

( 1 _ x ) q „ x P + q = I i U ( n ; P ' q ) X f a - 0 ' 1 . - ) 
n=o 

7. A SURPRISE CONNECTION 

In an important paper concerning unique representations of the positive 
integers as sums of distinct Fibonacci numbers and the generalization of this 
representation property, D. E. Daykin ([1], [2], [3]) studied the sequence 

00 
nJ 

n=o 

defined by 

u n = n (n = 1,2,3, • • • , r) , 

u = u + u (n > r) 
n n-i n - r 
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Now if r = 1, we get u = 2n~1
9 while if r = 29 then u = F _,_. Consider 

n n n+i 
the generating function for the numbers u(n; r - 1,1) , 

:—~T = J2u(n; 
1 - x - x ^^ 

n=o 

r - 1 9 1) x • . 

The initial values are u(n;r - 1,1) = 1 for n•' = 091,* • • , r - 1, and u(n;r - 1,1) 
= n + 2 - r for n = r, r +19 • • • , 2r - 1„ Thus 

u = u(n + r - 2; r - 1, 1) n ' 

for n 2 1, Hence, the generating function for the u is 
t> & n 

\ " \ ( n + r; r - 1, l )xn = 
n=i 1.- x - % 

- (1 + x + ••• + x r 2) f r - i x 

1 - x - x"1" 
(1 - x 1 ) / (1 - x) 

r 

But this is a special case of (4). Thus the second generalized Fibonacci num-
bers u(n;p9q9s) of Harris and Styles reduce to the u by choosing s = r9 

q = 1, and p = r - 1* 
D„ E. Daykin also studied ([1], [2], [3]) the sequence 

n=i 

defined by 

v = n (a = 1, 2, • • • , . r ), 
v = v + v + 1 (n > r) . n n-i n - r 

It can be easily verified that the numbers u (n + r - 2; r - 1,1)9 summed in 
Pascal 's Triangle with the first column deleted9 obey the same recurrence 
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relation and boundary conditions as the v , so that v = u*(n + r - 2; r - 1,1) 
for n 2 1. Thus the generating function for the v is 

& & n 

/ j vnxn = y ^ u * ( n + r - 2; r - 1, l)xn = 
(1 - x ) ( l - x - x r ) 

n=o n=o 

8. SOME FURTHER RESULTS 

Let f (x) be the generating function 

f(x) = ZXxI1 • 
n=o 

Suppose we multiply each of the column generators gk(x) by the corresponding 
coefficient a, and sum, yielding 

00 

G(x) = 2 ^ \^k(x) " 
k=o 

In many particular cases the results are quite interesting. For example, let 
00 

f(x) = 7 - i - - = Z Fn+ixI1> 
1 - X - X4 

n=o 
k 

* k W =
 h

 X , k + i ' (1 - x) 

Then 
00 k °° k 

G(x) = Z Fk+1 JT^kTI = T ^ ' E Fk+i ( r r r ) 
k=o ( 1 - x ) k=o 

( 1 - x ) M - - £ - - _ ± x - o A . A n=() 
\ X ~ X ( 1 - x ) 2 , 

1 - 3x + x2 £-J 
F 2 n + i x • 

Since in this case 
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^ = ^ H = 2 (J) *" ' 
11=0 

we have that 

£ '*, (n
k) " F 2 n + 1 

k=o 

If, on the other hand, we put 

2k 
g k ( x ) = ~ " — E + i ' K (1 - x)K * 

then we are multiplying F, by the corresponding elements of the rising di-

agonals, and 

w - £ £ (\'k)**iK " T ^ Z V,(r^) 
n=o\ k=o / k=o 

1 - x 
1 - 2x + x3 - x4 

Suppose that 

f (x) = 1 - * = y F2 xn 
l - 2 x - 2 x 2 + x3 ^ n + 1 

n=o 

Then 
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n=o \ k=o / k=o 

1 - x 

(1 - x ) / l - 2 _ £ _ _ 2 — ^ — + — — 
\ * " X (1 - x)2 (1 - x) 

(1 - 2x) (1 - x) ^ 
1 - 5x - 5x2 

) 

There are thus many easily accessible generating functions where the numbers 
generated are multiplied by the corresponding elements on any of the diagonals 
whose sums are the u(n;p,q). These methods were discussed in [7]. 
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PARTITIONS OF N INTO DISTINCT FIBONACCI NUMBERS 
DAVID A . KLARNER 

McMaster University, Hamilton, Ontar io, Canada 

INTRODUCTION 

Suppose ( a } i s a sequence of na tura l number s such that a = a + 
a , n = 1, 2, • • • , and le t A(n) be the number of se t s of numbers {i1 ? i2, • • •} 

such that n = a,- + aj + • • • . When a = F , F , j o r L (where a s usual 1l 12 , n n n+i n 
F and L a r e the n Fibonacci and Lucas n u m b e r s , respect ively) we wr i t e 

A(n) = R(n)9 T(n), o r S(n), respec t ive ly . Among other tilings we proved 

the following t heo rems in an e a r l i e r paper on this subject [ 4 ] . 

T h e o r e m 1. If a < K = a + k a ,, - a2? n = 3, 4, * • a , then — — n n n+i * 

(a) A(K) = A(k) + A(a n _ i - k - a2) , 

and 

(b) A(K) = A(a n + 1 - k - a 2 ) 

Also, if a2 ^ 2 and 1 ^ k < a2 - 1, then 

(c) A(a n _ i + k - a2) = A(an - k) = A ( a n + i + k - a2) , n = 4, 5, 

T h e o r e m 2: 

(a) T(N) = 1 if, and only if, N = F - 1, n = 0, 1 , ' • • . 

(b) T(N) = 2 if, and only if, N = F n + 3 + F n - 1 o r F n + 4 - F n - 1, 
n = l , 2 , - » 

(c) T(N) = 3, if and only if, N = F n + g + F Q - 1, F n + g + F n + i - 1, 

V e ^ n " 1 ' o r F n + e ~ F n + i " ^ n = 1. 2, • • • . 

* T h i s p a p e r was wr i t ten while the author was a pos tdoc to ra l fellow at McMaste r 
University, Hamilton, Ontario, 1967. ( R e c e l y e d J u l y > 1 % ? ) 

235 
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(d) T ( F n + k + 2 + 2 F n + 2 - 1) = k, n = 1, 2, • • • , and k = 4, 5, • • - . 

F o r s eve ra l values of k Hoggatt found solution se t s of T(x) = k; in 
each case this solution se t could be desc r ibed as a finite set of sequences hav-
ing the form b - 1 where b , = b , + b . Thus he was led to conjecture: 

& n n+2 n+i n J 

If ( b } i s a sequence of na tu ra l n u m b e r s such that b ,n = b , + b , then 1 nJ ^ n+2 n+l n 

T(b - 1) = T(b _,_ - 1) = k n n+l 

for al l sufficiently l a rge n. Our main purpose in this note i s to give proof of 

Hoggatt !s conjecture . 

A REPRESENTATION THEOREM 

Suppose • • • , F _ l s F 0 , F j , • • • i s the extended sequence of Fibonacci 

e r s ; that 

Thus , we have 

m e m b e r s ; that i s , F 0 = 0, F* = 1, and F , - F - F = 0, -oo^ n < oo u » i n + 1 n n_t 

F - n = ( - 1 > n + l F n ' n = 1 ' 2 ' " ' ' 

The following represen ta t ion theorem should be compared with Z e c k e n d o r f s 

theorem (see for example Brown [ 1 ] , [ 2 ], o r Daykin [ 3 ]); in pa r t i cu l a r , i s 

the re a sequence essen t ia l ly different from \ F } which sa t i s f ies the conditions 

of T h e o r e m 3? 

T h e o r e m 3. F o r every pa i r of non-negat ive in tege r s A and B the re 

ex i s t s a unique set of in tegers ( k j , • • • , kj} such that | k r - k s | > 2 whenever 

r f s, and 

A = F k j + • • • + F k . and B = F ^ + - + F k . + 1 . 

Proof. If a set of in tegers {mt, • • • , m.} has | m - m l ^ 2 when-

eve r r f s, F + . . . + F i S called a min imal sum. T h e r e is a finite 

a lgor i thm h, for convert ing F + F + . . . + F m . into a min imal sum if 

F + • • • + F™. i s a min imal sum &: F i r s t , if m = m. for some j we can m i m i J 
conver t F + . . . + 2 F W . + • • • + F ^ . into a sum involving FTs with d i s -

m j m ] m i 
t inct subsc r ip t s s ince there i s a max imal t such that 2F + F + • • • + ^ m m-2 
F , i s a p a r t of this sum, and this can be replaced with 
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F + F + . . . + F + p 
m+i m - i m-2t+i m-2t-2 

Second, if F ^ + F ^ + • • • + F m . i s a sum involving F f s with d is t inc t s u b -

s c r i p t s , a min imal sum can be obtained in a finite number of s t eps by s u c c e s -

sively replac ing F + F , v maximal , with F . Note that if & i s applied 
t o F„+™ + • • • + F M and F , + • • • + F + n. i s the r e s u l t when n = 0, 

n+mj n+mA n+n* n j ' 
then tne s a m e s ta tement holds for n = 1, 2, • • • . 

Cons ider the sequence {b } defined by 

b 0 = A, bi = B, b ^ = b _ + b , n = 0 , 1 , • • • , u i n + 2 n + 1 n J J ? J 

then i t follows that 

b = F A + F B, n = 0, 1,'" . n n - i n 

Using the a lgor i thm 2\ we a r e going to show by induction on A + B that for 

eve ry p a i r of non-negat ive in t ege r s A, B the re ex is t s a unique se t of i n t ege r s 

{kj , • ' ' , k j such that Ik - k I > 2 when r f s, and 
1 r SI 

(1) AF 4 + BF = F J_. + • • • + F Ml , n = 0, 1, • • • . 
n - i n n+k* n+k-

If A + B = 1, then 

AF + BF n - i n 

i s F _ o r F , n = 0 , 1 , • • • . Suppose the s ta tement i s t rue for eve ry p a i r 

of non-negat ive in tegers A, B with A + B ^ n (n ^ 1). Then if A + B = n, 

the re ex is t s a unique se t of in tegers {k1? • • • , kj} with Ik - k I > 2 when 

r f s, and 

AF + BF = F ^ + • • • + F _,_, . n - i n n+ki n+ki 

Now we can apply E to 

( A + 1 ) F + BF = F + F ,. + • • • + F . n - i n n - i n+ki n + k i 
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o r 

AF + (B + 1)F = F + F _,_. + • • • + F ,. n - i n n n+kj n+kj 

to find that t he re i s a t l e a s t one se t of in tege r s which sa t i s f ies (1) for every 

p a i r of non-negat ive in t ege r s A,B with A + B =• n + 1. But suppose AF 

+ BF can be expressed as a min imal sum in two ways for n = 0 , 1 , • • • , say 

AF + B F = F ^ + . . . + F _ L = F _ L +••• + F _,_ . n - i n n+r i n+rj n+s* n+sj 

Thus , for every 

n -̂  max \ r l s , r i 5 s ^ • • • , s j } 

the number AF _ + BF has two rep resen ta t ions a s a sum of non-consecut ive 

Fibonacci n u m b e r s (with posi t ive subscr ip ts ) ; this con t rad ic t s Zeckendorf ' s 

theorem which says that such r ep resen ta t ions a r e unique for every na tu ra l 

number . 

Coro l l a ry : If {b } i s a sequence of na tu ra l number s such that 

• *> ^ = b ,, + b , n = 0, 1, • • • , 
n+2 n+i n 

then the re ex i s t s a unique se t of i n t ege r s {kj , * • *, kj} with k - kc 

r fi s, such that 

> 2 when 

(2) b = F ^ + • • • + F _,, , n = 0 , V . 
n n+kj n+kj 

Proof. Put bo = A, bi = B in Theorem 3, then (2) can be proved by 

induction on n. 

HOGGATT'S CONJECTURE 

Theorem 4. Suppose { b } i s a sequence of na tu ra l number s such that 

b , = b . + b , then the re ex i s t s an N such that n+2 n+l n 

(3) T(.b - 1) = T(b ^ - 1), n > N; 
n n+i 
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in fact, if 

( 4 ) b n = F n + k l
 + - " + F n + k i ' k j ^ k

j + l + 2> J = V » . i - l . . 

then N = 2 - k.. If k. > 2, the extended sequence found by subst i tut ing n = 

- 1 , • • • , 2 - kj in (4) sa t i s f ies (3) for n > 2 - kis 

Proof. The Coro l l a ry to Theo rem 3 guaran tees that b has the (unique) 

r ep resen ta t ion given in (4), so we can a s s u m e b has this form. If i = 1, 

Theorem 2(a) a s s e r t s T(F - 1) = 1 for n = 1,2, • • • , so 

T(F M, - 1) = T(F _ul '- 1 ) 
n+ki n+ki+i 

for n > 2 - ki (in fact for n -̂  1 - kj )• Now a s s u m e i > 1, We have 

F ^ < b - 1 < F ^ _,, - F 3 , n+kj n n+ki+l 6 

for n ^ 3 - ki ^ 2 - k., so Theorem 1(a) can be used to wr i t e 

(5) T(b - 1) = T(b - F ^ - 1) + T(F ,. , - b + 1 - F3) n n n+ki n+ki+i - n ° 

Suppose 1 < j < i i s the s ma l l e s t m e m b e r such that k. > k. + 2, then 

(6) F ^ ^ . , - b„ + 1 - F 3 

F ^ - 1, if j = i , n+ki-i J 

n + k l + 1 n F +I + F , . + . . . + F + . - 1, if j < 1. 
1 n+kj-2 n+kj+t n+kj J 

Now (5) and (6) indicate that Theo rem 4 can be proved by m e a n s of a 

double induction on i and kt - k2 = k > 2; thus, for i, k ^ 2 we define 

proposi t ion P ( i , k ) : If {b } i s a sequence of na tu ra l number s with 

b = F ,. + • • • + F ,. , n n+ki n+kj * 

such that k t >: k2 + 2, ° ° % ki_i ^ ki + 2, . and kA - k2 = k, then 
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T(b - 1) = T(h ' - 1) n n+i 

for a l l n 2 2 - k.. 
I 

To prove P(2,2) Is t r u e , suppose 

b = F ^ + F ,. n n+ki n+k2 

with k2 = ki - 2; then using (5) and (6) we have 

(7) T(F ,. + F ^ - 1) = T(F ^ - 1) + T(F ^ j - 1) , 
n+ki n+k2 n+k2 n+k2-i 

but 

T ( F n + k 2 - » = T O ^ - 1) = 1 

for al l n > 2 - k2 . 

Suppose P(2,k) i s t rue for a l l k < K (K > 2), and suppose 

n n+ki n+k2 

with ki - k2 = K, then using (5) and (6) we have 

(8) T(F _,. + F ^ - 1) = T(F ^ - 1) + T(F ^ + F ,. - 1) . 
n+ki n + k 2

 n + k 2 n+ki-2 n+k2 

If 

K = 3, T(F _,, - 1) = T(F _,, + F M - 1) = T(F ., ^ - D = 1 , ' n+k2 n+ki-2 n+k2 n+ki+i 

for a l l n -^ 2 - k2, If K > 3, 

T(F _,, + F j , - 1) = T(F _,. ^ + F _,. • - 1) for a l l n > 2 - k2 , n+ki-2 n+k2 n+ki+i n+k2+l L 
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so P(2,k) is true; thus, P(2,k) is true for all k ^ 2. 
Now we suppose P(i,k) is true for all i < I (I > 2) and all k > 2; 

there is no difficulty in showing that P(I, 2) is true and that P(I,K - 1) im-
plies P(I,K) for K > 2, by using (5) and (6) just as before,, This completes 
the prooL 

Corollary: 

T(F ^ + F - 1) = n+k n 
k + 2 , k,n = 2 , 3 , ' 

Proof: Combining (7) and (8) and related results we have 

( 2, if k = 29 3, 
(9) T(F + F - 1) = 

n K n l + T t F ^ + F - 1 ) , i f k = 4,5,-1 n+k-2 n 

The proof follows by induction on k in (9). 
Theorem 5. Suppose ( b } is a sequence of natural numbers such that 

b . = b , + b , n+2 n+i n 

then T(b ), T(b + ), • • • , and R(b ), R(bn+ ) , 8 8 0 form arithmetic pro-
gressions for all sufficiently large n, 

Proof. The proof that T(b ), T(b + 2 L " ° forms an arithmetic pro-
gression follows the proof of Theorem 4, except that we use the fact that a 
term-by-term sum of two arithmetic progressions is also an arithmetic pro-
gression, Theorem 4 and this last result imply R(b ), R(bn + 2) , e o° forms 
an arithmetic progression because R(N) = T(N) + T(N - 1), so R(b ) + 
T(b - 1). n 

SOLVING T(x) = j 

In the last section we showed that T(x) = T(y) for every pair 
x,y€= S(k l f - - - ,k i ) = { F n + k i + --- + F

n + k . - I m = 2-k l 9 3 - klf • • •} , 
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where 

k i ^ k2 + 2, ••••, ki_t ^ k i + 2 ; 

since 

S(ki ,--«,ki) = S(ki + k , - - . , k i + k)f 

we will assume k. = 0. The next theorem asserts that every solution x of 
T(x) = j is contained in one of a finite collection of sets S(ki, • • • , k [ ) for 
appropriate sets of numbers {ki, • • • , ki} . 

Theorem 6. (a) Every non-negative integer is contained in exactly one 
of the sets S(ki, • • • , lq), where {k^ • • • , kj} ranges over all sets of integers 
such that 

ki > k2 + 2, • • • , k j . ^ ki + 2, ki = 0 

'(b)- If x ,y S(ki, ••• ,44), then 

"ki + 2 
T(x) = T(y) < 

(c) There exists a finite, non-empty collection of sets S(rj, • • • , r m ) , S(si, 
• • • » s m ) , * « - such that T(x) = 3 if, and only if, x E S(ri, • • • , % ) U S (sl9 

s n ) U • • • . 
Proof, (a) This is a reformulation of Zeckendorf's Theorem, (b) The 

result is true when i = 1 or 2 by Theorem 2(a) and the Corollary to Theorem 
4, respectively. Now (5) and (6) can be used to prove (b) by induction; the 
main point of the proof is indicated by She following inequality: 

(10) T(F M + • • • + F ^ - 1) = T(F ^ : + • • • + F _,, - 1) n+kj n+Iq n+k2 n+kt 
+ T(F ,. + ••• + F ,. - 1) n+k.-2 n+ki 

.1 3 x 

> 1. 
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(c) Every number is in exactly one of the sets S(ki, • • • , kj) by (a) of this 
Theorem; but x E S = (x:T(x) = j} and x E S(kl9 • • • ,ki) implies S(k1? - ••• , 
kj) is contained in S since T(x) = T(y) = j for every yE S(k4, • • • J k i ) by 
Theorem 4. There are only finitely many sets {ki, • • •, k[} such that 

ki £ k2 + 2, • • • , ki„! ^ ki + 2, kj =' 0, 

and 

ki + 2 
^ j 

so S. is a finite union of sets S(rj, • • • , r m ) , S(sj, • • •, s n ) , • • • . The c o r -
ollary of Theorem 4 implies S. is non-empty for j = 1, 2, • • •; a different 
collection of solutions of T(x) = j was given in [4 ] • 

Let t(kij«»°?ki) = T(x), where x E S(ki, • • • ,ki) ; then if i = 19 we 
have t(0) = 1 which is Theorem 2(a). For i > 1, if j is the smallestnum-
ber such that k. > k. + 2, then (5) and (6) may be formulated as 

(11) t(klf • • • , ki) 

t(k2, , ki) + l, if j = i 

t(k2 + • • • + ki) + t(kj - l,kj+2, • • • ,ki) 
if j < i, k. = k. , , + 3 , 

t(k2 + ••• +k i ) + t(k. - 2 , k . + 1 , - - 5 k i ) 
if j < i, k. > k . ^ + 4 . 

Using Theorem 6(b) and (11) we can find all solutions of T(x) = j with a 
finite amount of checking. This checking would be made easier if we had a 
non-iterative method for computing t(kl9 • • • , kj), but so far we have not been 
able to find a closed formula for t(kl9 • • •, kj) . 
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MORE ABOUT THE ^GOLDEN RATIO" IN THE WORLD OF ATOMS 

J . WLODARSKI 
Porz-Wesrhoven, Federal Republic of Germany 

In an earlier article (The Fibonacci Quarterly, Issue 4, 1963) the author 
reported some fundamental asymmetries that appear in the world of atoms. 

It has been stated in this article that the numerical values of all these 
asymmetries approximately are equal to the ^'golden ratio" ("g. r.fT). 

Two of these asymmetries were found: 
lo In the structure of atomic nuclei of protons and neutrons, and 
2. In the distribution of nucleons in fission-fragments of the heaviest 

nuclei appearing in some nuclear reactions. 
Recent theoretical studies suggest that an element containing 114 protons 

and 184 neutrons may be comparilively stable and therefore this hypothetical 
substance could be produced possibly in some nuclear reactions [1]. 

One possible reaction involves bombarding element 92 (uranium) with ions 
(atoms stripped of one or more electrons) of the same element 92, which should 
yield a hypothetical compound nucleus i84[x]476 that could break up asymmetri-
cally and produce a nucleus with 114 protons: 

92U238 + 9 2U2 3 8->1 8 4 [x;F-->1 1 4 [yp + 70Yb16s + 12n; 
12 neutrons (n) would be left over from the reaction [2]. 

Remark: Both hypothetical (with no names) products of this reaction are 
designated with the symbols [x] and [y] respectively. 

It turns out that the ratio of 114 protons and 184 (298 - 144 = 184) neu-
trons of the hypothetical element 114 is equal to 0.6195 and differs from the 
"g. r. "-value (if we limit the Tfg. r. "-value to four decimals behind the point) by 
0.0015 only. 
[Continued on p. 249, ] 



CONTINUOUS EXTENSIONS OF FIBONACCI IDENTITIES 
ALAN M. SCOTT 
Phoenix, Arizona 

INTRODUCTION 

Some attention has been given to extending the domain of definition of 
Fibonacci and Lucas numbers from the integers to the real numbers (see, for 
examplej [1]). We give here what seems to be the most natural continuous 
extension from the point of view of recurrence relations. We then show how 
several familiar identities have quite natural continuous analogues, providing 
some support for our contention that these extensions are "the" continuous real 
extensions of the Fibonacci and Lucas numbers. 

2. CONTINUOUS EXTENSIONS 
We wish to find real-valued functions U(x) satisfying the difference 

equation 
(1.1) U(x) - CiU(x - 1) - c2U(x - 2) = 0 , 

where cA and c2 are real constants. Let a and b denote the roots of the 
characteristic polynomial 

X2 - CjX - C2 

of (1), where we assume a and b are nonzero real numbers. The quadratic 
formula gives 

Ci + \ c i + 4c2 c t - \ c i 
- * , b = : r -

4co 

Then 

%r - c j a - C£ = 0 

X—2 
so, for any real x, multiplying this by a gives 

(Received September, .1966) 
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X X - l X-2 n 

a - c^a - c2a = 0 , 

Similarly, 

b - Cib - c2b = 0 . 

Hence 
U(x) = k i a

x + k2bx , 

where kj and k2 are any real constants, satisfies (1.1). If a > 0 and b > 
0, then U(x) is a continuous real function. However, if a > 0 and b < 0, 

x as in the Fibonacci case, then b assumes imaginary values, so U(x) does 
not immediately give us the real-valued continuous extension we seek. But 
since c^ and c2 are real, we see 

V(x) = Re(U(x)) 

is a real function satisfying (1.1). This V(x) will have the nice properties we 
are looking for. 

Let us make these ideas explicit for the Fibonacci and Lucas case. Here 
then we let ci = c2 = 1, so that 

a = 1(1 + V5) > 0, b - 1(1 - V5) < 0 . 

Letting 

a - i = p = _b > 0 , 

we see since e = - 1 , 

b x = (-l)xj8x = e1Tix/3x = iSx(cos7rx+i sinTTx) . 

To find the continuous Fibonacci extension F(x), we use the initial conditions 
F(0) = 0, F(l) = 1 to produce the system 
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0 = kj + k2, 1 = kja + k2b , 

which has the solution ki = -k2 = 1/V5. Then 

(2.1) F(x) = Re[(aX-bX) /V5] = a ~P c o s ^ 
V5 

Similar consideration for the Lucas extension L(x) obeying (1.1) with the ini-

tial conditions L(0) = 2, L(l) = 1 give 

(2.2) L(x) = aX+/3Xcosnx . 

Note that if n is an integer, it follows from the recurrence relation and the 

chosen initial conditions that 

F(n) = F , L(n) = L , n n 

where F and L denote the usual Fibonacci and Lucas numbers, respec-

tively* Hence F(x) and L(x) are continuous (indeed, infinitelydifferentiable) 

real-valued extensions of the Fibonacci and Lucas numbers. 

3. CONTINUOUS IDENTITIES 

We give in this section the continuous analogues of some familiar Fibon-

acci and Lucas identities. It follows immediately from (2.1) and (2.2) that 

(3.1) F(x+ 1) + F(x - 1) =• L(x) . 

By multiplying out the left side, and using (3 = a"1, one can easily verify that 

(3.2) F(x +' l)F(x - 1) - F2(x) = COSTTX* 

This is a particularly neat generalization of the Fibonacci identity 

F F • - F 2 = ( - l ) n 

n+ln-1 n l i ; ' 
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Similarly, one can show 

(3.3) L(x)2 - L(x+ l ) L ( x - 1) = 5coS7TX , 

which generalizes 

L2 - L L = 5(- l ) n . n n+i n-i 

Equations (2,1) and (2.2) can be solved for ax to give 

(3.4) aX = 2
1{L(x) + V 5 F ( X ) } , 

which leads to the deMoivre-type formula 

(3.5) / L(x) + V 5 F ( x ) \ n _ L(nx) + V5F(nx) 

Slightly less satisfying is the easily checked formula 

(3.6) F(x)L(x) = l{F(2x) + (a2X - iS2X)/\y5> , 

which reduces to F2n = F L for n integral. Similarly, 

(3.7) F(x + l)2 + F(x)2 = 2
1{F(2X + 1) + (a2 X + 1+^2 X + 1)/V5}} 

which generalizes 

F2 , + F2 = F 2 n + 1 , n+i n 411 l 

and also 

(3.8) F ( x + 1 ) 2 - F ( x - 1 ) 2 = [F(x+l ) -F(x- l ) j ; [F (x + l) + F ( x - D ] = F(x)L(x). 

We have indicated here how one might continuously extend most Fibonacci 
and Lucas identities. The functions F(x) and L(x) can be differentiated and 
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integrated using standard formulas, but the results are not particularly simple. 
Finally, we note that the above ideas may be carried out to extend general 
second-order recurring sequences to continuous functions, as indicated in Sec-
tion 2. However, because of increased complexity, we do not state the more 
general results here. 

REFERENCES 

1. Eric Halsey, nThe Fibonacci Number F where u is Not an Integer,M 

Fibonacci Quarterly, 3 (1965), pp. 147-152. 

2. F. D. Parker, "A Fibonacci Function,TT Fibonacci Quarterly, Feb. 1968, 

[Continued from p„ 244, ] 

It is well known that the number of protons Z in the lightest stable nuclei 
is , as a rule, equal to the number of neutrons N. When the atomic number Z 
increases, the proton-neutron ratio in the nucleus Z/N decreases gradually 
from 1*0 to about 0.63. 

The ratio of Z/N in the heaviest practical stable nucleus (92U238) —found 
in nature — reaches already the value 0*620, but with the still heavier hypo-
thetical element 114 this ratio (114/184 = 0.6195) would yield (if this element 
could eventually be created) one of the best approximations to the ng. r. f'-value 
found in the world of atoms. / 

It is interesting to note that the ratio of protons of fission-fragments in 
above nuclear reaction (70/114 = 0.6140) also lies in the range of the fTg. r . "-
value and differs from this value by 0.0040 only. 

REFERENCES 
1. "Onward to Element 1269 » Scientific American, Vol. 217 (October 1967), 

p. 50. 
2. G. T. Seaborg, "Zukunftsaspekte der Transuranforschungff* Physikalische 

Blatter, Heft 8 (August 1967)* pp. 354-361. 
*This is an abstract from the statement that the Nobel-Prize-winning chemist 
G. T. Seaborg made on the occasion of receiving the Willard-Gibbs-medal on 
20 May 1966 in Chicago. 

* * * • * 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit 
solutions or other information that will assist the editor. To facilitate their 
consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problems. 

H-136 Proposed by V . E. Hoggat t , J r . , San Jose State Co l l ege , San Jose, Ca l i f o rn i a , 
and D. A . L ind , Universi ty of V i r g i n i a , Char lo t tesv i l l e , V i rg in ia . 

Let J H j be defined by Hi = p, H2 = q, Hn+2 = Hn + 1 + Hn (n I> 1), 
where p and q are non-negative integers. Show there are integers N and 
k such that F ,, < H ^ F ,, ,, for all n > N. Does the conclusion hold n+k n n+k+l 
if p and q are allowed to be non-negative reals instead of integers? 

H-137 Proposed by J . L„ Brown, J r . , Ordnance Research Laboratory, State 
Co l l ege , Pa. 

GENERALIZED FORM OF H-70: Consider the set S consisting of the 
first N positive integers and choose a fixed integer k satisfying 0 < k ^ N. 
How many different subsets A of S (including the empty subset) can be 
formed with the property that af - aM f k for any two elements af, aTT of A: 
that is , the integers i and i + k do not both appear in A for any i = 1,2, 
• • •, N - k. 

H-138 Proposed by George E. Andrews, Pennsylvania State Un ivers i ty , Universi ty 
Park, Pa. 

If F denotes the sequence of polynomials Fj = F2 = 1, F = F + 
x ~ F , prove that 1 + x + x2 + • • • + xp divides F for any prime p = 
±2 (mod 5). 

250 
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H-139 Proposed by L. Carl i tz, Duke University, Durham, North Carolina. 

Put 

A = n 

n+i 
F F 

n+k-i n 

F F 
n+i n+2 

F 
" n+k- i 

n+k-2 

M = 

n+k 
n+(m-i)k n 

n+k 

n+(m-i)k 
\ i+(m-2)k 

n+2k n 

Evaluate det M . 

F o r m = k = 2 the p rob l em reduces to H-117 (Fibonacci Quar te r ly , 

Vol. 5, No. 2 (1967), p . 162). 

H-140 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia 

F o r a posi t ive in teger m , let a = a(m) be the l e a s t posi t ive in teger 

such that F = 0 (mod m) . Show that the h ighes t power of a p r i m e p dividing 

F i F 2 • • • F n i s 

L 
k=i 

®(p ) 

w h e r e [ x ] denotes the g r e a t e s t in teger contained in x. Using th is , show that 

the Fibonacci b inomial coefficients 

F F e ' • e 
m m - i F m - r + i 

FiF2^ (r > 0) 

a r e i n t ege r s . 



252 ADVANCED PROBLEMS AND SOLUTIONS 

H-141 Proposed by H. T. Leonard, Jr. , and V . E. Hoggatt, Jr . , San Jose 
State College, San Jose, California. 

Show that 

[Oct 

(a) 
'3n 

[n-i] 
+ 2

nF lJ^J 
( n ) \ 2 k + l) L2(n-(2k+i)) 2k+i 

(b) 
L2n - L n 

nl 
"*1 

L̂  ( 2 k +v L2k+i 

(e) 
L2n + L n W L2k 

H-142 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va. 

With the usual notation for Fibonacci numbers, F0 = 0, Fj = 1, F 
"n+i 

= F + F . show that n n-l 

v n / 1 +VITA / 1 + V 5 . , 

=0 \ k n - k 

where 

(t) = x(x - l)(x - 2)- • • (x - j + l ) / j ! 

is the usual binomial coefficient symbol. 
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SOLUTIONS 

ORIGINAL COMPOSITION 

H-88 Proposed by Verner E. Hoggat t , J r , , San Jose State Col lege, San Jose, 
Ca l i fo rn ia (Corrected). 

Prove that 

n 

/ A
 F 4mk []A = L2I1 

n 
/ n \ Yi 

j2mF2mn 

Solut ion by M . N . S, Swamy, Nova Scotia Technical Co l l ege , H a l i f a x , Canada. 
L e t 

n 

S 
~ k ^ 

where 

Hence, 

-2>-*(l) 
»-=0 

k=o w k=o 

= - 4 [(H-p4m)n- (l + q^)n] 

p + q = 1, pq = - 1 ; o r (pq)2 l n = 1 

s = - L ri(pq)2m + p 4m^n _ | ( p q ) 2 n i + q i m J n | 

= 1 I"p2nin (p2in + q2Hi)n _ q2mn(p2m + q2m) n l 
V5"L ^ 

= (p2m + qZmjn W ~ q ) 

L2m F 2mn 
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Therefore, 

i r ^ / \ 
/ J

 F4mk ( k ) = L2mF2mn 
k=o 

Also solved by John Wessner, L. C a r l i t z , and F. D . Parker. 

FINE BREEDING 

H-96 Proposed by Maxey Brooke, Sweeny, Texas, and V . E. Hoggat t , J r . , San Jose 
State Co l l ege , San Jose, Ca l i fo rn ia (Corrected). 
Suppose a female rabbit produces F (L ) female rabbits at the n"1 

time point and her female offspring follow the same birth sequence, then show 
that the new arrivals, C , (D ) at the n time point satisfies 

C , = 2C + C ; Ci = 1, Co = 2 
n+2 n+i n . 1 A 

and 

D . =3D + ' ( - l ) n + 1 
n+l n 

Solut ion by Douglas L ind , Universi ty of V i r g i n i a . 

Hoggatt and Lind ["The Dying Rabbit Problem,ff to appear, Fibonacci 
Quarterly] have proved the following result: Let a female rabbit produce B 

th n 

female rabbits at the n time point, her offspring do likewise, and put 

QO 

B(x) 
n=i 

Then the number R of new arrivals has the gene rating function 

R(x) =2^x I 1 = r-rw 
n=0 
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where we use the convention that R0 = 1 (the original female being born at the 
0 time point)» We apply this result to the cases (i) B = F , and (ii) B 

n n 7 n L . 
n (i) If B = F , then n n 

0 0 

B(x) = > F n x n = — - ^ _ 
n=l 1 - x - x2 

SO 

R(x) = 1 + 
1 - 2x - xJ 

It is clear from the generating function that here the R = C obey the recur-
rence relation C . = 2C . + C along with Ci = 1, C? = 29 thus estab-

n+2 n+i n & l * 
lishing the desired result. 

(ii) The recurrence relation proposed is incorrect., the proper one being 
shown below* If B = L , then n n 

00 

,4-,,-B(X) = > L xn = ^ L l J x L 
n=i n l - x - x 2 

so that 

• D / \ 1 14- x + 2x2 

R(x) = — , 0 7" = 1 + —— — 
!__2Lt2xi_ L2X-3X* 

1 - X - X2 

Now 

A 1 
x + 2x2 _ 2 , 12 ^ 4 

-—— _ _ _ - + _ _ -f _ — _ 
1 - 2x - 3x2 1 - 3x 1 + x 
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so that 

D = R = (5/12) (3n) + (1/4) (- l)n (n > 1). 
n n 

n+l It follows that DH = 19 and that D , = 3D + (-1) , the correct relation. 1 n+i n 

BINOMIAL, ANYONE? 

H-97 Proposed by L. Carl i tz, Duke University, Durham, North Carolina. 

Show 

n / v2 

Solution by David Ze i t l ln , Minneapolis, Minnesota. 

I f 

P W . > »v *k 

and 

S)(° QW - > . r " ) r J k ) ( K - i ) n " k 

k=o 

then P(x) = Q(x) is a known identity (see elementary problem E799, American 
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Math. Monthly, 1948, p„ 30). If a and /3 are roots of x2 - x - 1 = 0, then 
Ln = a1 + /5n, F n = (an - /3n)/V5, and thus 

(a) T?(a) + P(/3) = Q(a) + Q(p) , 

since 

(a - l ) n " k + (fi - l ) n " k = (apf-k + «Sa2)n-k 

= ( - l ) n " \ _ k , 
(b) (P(or) - P(/3))/V5 = (Q(a) - Q(/3))/V5 

since 

<* - Dn-k(^ - Dn-k = (-Dn-V~k - ^ k ) 
= _ ( - l ) n - k ( ^ ) F n _ k 

PRODUCTIVE SUMS 

H-99 Proposed by Charles R. Wall, Harker Heights, Texas. 

Using the notation of H-63 (April 1965 FQJ, p. 116), show that if a 
( l + \ / S ) / 2 , m 

nVSF a a^ = 1 + 2 (-l)n(n-1)/2F(n,m)a-n(m+1) 
n=l n=l 
m A T -n 1 ^ £ i , 1xn(n+l)/2 _ , . -n(m+l) j j L ^ a = 1 + L K) F(n,m)« v ' 5 

n=l n=l 

where F F — F 
_ , v m m-1 m-n+1 F(n,m) = 

1 2 n 

Solution by Douglas Lind, University of Virginia* 

We use the familiar identity 

m-i m 

W "TT'd-A) = E (-l)nqn(n-l)/2pjxn, 
n=o n=o 
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[ml /- m w - m-ix M m-n+i 
(1 - q )(1 - q ) «•« (1 - q 

( l - q ) ( l - q 2 ) - . . ( l - q n ) 

If p = (1 - \/E)/2, then A/5F a n = 1 - (p/a)n. Put t ing q = p/a, then 

n*-mn. = a F ( n , m ) , 

and putting x = q in (*) gives 

m 
o X/EV. T*1 o /i n \ V / i x n w \ n(n+l)/2 n 2 -mn 
l i V 5 F a = U (1 - q ) = 2-» (-D F(n ,m)q " or 

n=i n=i 

m 

n=o 

vn(n-i) /2_ / . -n(m+i) 
= E ( - l ) n U l - W / ' F ( i i f i n ) a -

n=o 
where we have used op = - 1 . 

Similar ly , La = 1 - (P/a) , so putting q = p/a and x = -q in (*) 

gives 

m 
n L a ~ n 

n 
n=i 

m 
n /i . iiv V / i\n-r,/ \ n(n-i)/2 n 2 -mn/ ,n n (l + q > = 2L (-1) F (n ,m)q a (-q) 

n=i 

m 

n=o 

n(n+i)/2 n 2 -mn F(n 5 m)q " a 

n=o 

m 
= Z ( - l ) n ( n + l ) / 2 F ( n > m ) a - n ( m + 1 ) 

n=o 

Also soived by M . N . S. Swamy. 
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PYTHAGOREANS AND ALL THAT STUFF 

H-101 Proposed by Harlan Umansky, Cl i f fs ide Park, N . J . , and Malco lm Tol lman, 
Brook lyn, N . Y . 

Let a ,b9c9d be any four consecutive generalized Fibonacci numbers (say 
H1 = p and H2 = q and H n + 2 = H n + 1 + H ^ n > 1), then show 

(cd - ab)2 = (ad)2 + (2bc)2 

Let A = L k L k + 3 ? B = 2 1 ^ 1 ^ , and C - L £ k + 2 + L ^ . Tnen show 

A2 + B2 = C2 . 

Solut ion by M . N . S. Swamy, Nova Scotia Technical Co l l ege , H a l i f a x , Canada* 

Now 

(ed -ab ) 2 = [c(b + c) - b(e - b)]2 

= (c2 + b2)2 = ( c 2 - b 2 ) 2 + (2bc)2 

= (c + b)2(c - b)2 + (2bc)2 = d2a2 + (2bc)2 

Hence 

(1) (cd - ab)2 = (ad)2 + (2bc)2 

Since L, , the Lucas number, is also a generalized Fibonacci sequence 
with 

Li = p = 1, L2 = q = 35 

we have that for the four consecutive Lucas numbers Lk>
 L

k + 1 , Lk+2? L ^ + 3 ' 

(2) (L. M L T MO - L. L. _,, )2 = (L. L. M )2 + (2L. , ,L. ,_ )2 = A2 + B2 
' k+2 k+3 k k+i k k+3 k+i k+2 

Now 
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( Lk+2Lk+3 " L k L k + i ) = Lk+2(Lk+2 + L k + l ) _ Lk+l ( Lk+2 " L k + i ) 

= L k + 2
 + L k + 1 = ( F k + 3 + F k + i ) 2 + ( F k + 2

 + F k ) 2 

= ( F k + 2 + 2 F k + i ) 2 + ( 2 F k + 2 - F k + i ) 2 

(3) = ^ U ^ k i * = 5F2k+3 
= 2F + (F - F ) + (F + F ) + F 

^ 2k+3 U 2k+5 * 2k+4' U 2k+2 2k+i' 2k+3 

2k+2 2k+4 

Thus , from (2) and (3) we have, 

A2 + B2 = C2 , 

Also solved by J . A . H . Hunter and A . G . Shannon. 

• • • • • 

[Continued from p. 285] 

RECURRING SEQUENCES - LESSON 1 

ANSWERS TO PROBLEMS 

1. a = n(n + 1 ) ; T ^ = 3T - 3T + T 
n n+3 n+2 n+i n 

2. a = 3n - 2; T Mn = 2T ^ - T 
n n+2 n+i n 

3. a = n3; T , i = 4T , - 6T ^ + 4T , - T 
n n+4 n+3 n+2 n+i n 

4 - Tgn+k = 1, 3, 3 , 1 , 1 / 3 , 1 / 3 , for k = 1,2, 3 ,4 , 5, 6, respec t ive ly 
5. T ^ = V l + T2 

n+i n 
6. T ^ = 4T ^ - 6T ^ + 4T ^ - T 

n+4 n+3 n+2 n+i n 
7. T , 4 = aT 

n+i n 
8. T ± = 3 T ± - 3 T , + T 

n+3 n+2 n+l n 

9. T 2 n _ ! = a, T 2 n = l / a 
10. T _Lj = 1/(2 - T ) n+i n 

• * * • • 



IS ERATOSTHENES OUT? 
GEORGE LEDIN, JR. 

Institute of Chemical Biology, University of San Francisco, San Francisco, Cal i f . 

Two thousand years ago the A l e x a n d r i a n geographer-astronomer 
Eratosthenes, a friend of Archimedes, devised a procedure for obtaining a 
listof primes. His procedure is usually identified as Mthe Sieve" and basically 
consists of writing a table of consecutive integers starting from 1 and crossing 
out all multiples of 2, 3, and so on; all those numbers which remain undeleted 
are the primes sought.. This procedure can be extended to larger tables from 
1 to N, but when N is large, the sieve is indeed a cumbersome tool. Never-
theless, Eratosthenes' procedure is the only general way of obtaining primes 
in an orderly fashion today. Extensive tables have been compiled, but no for-
mula that would yield the n prime for a given n has been found yet; many 
a mathematician doubt that such a formula exists. When confronted with the 
question, "What is the n p r ime?" all a mathematician can do is look in a 
table of primes, and if asked, "Is this number a pr ime?" the mathematician 
may not be able to reply at all, for although there are tests for primality, they 
might not be applicable or may prove insufficient, and if the number given is 
too large, it might not be listed in the tables. The puzzling aspect of the situ-
ation is that, although prime numbers are not randomly distributed along the 
sequence of integers, their distribution has so far defied all attempts at exact 
description. Despite the countless efforts, number-theorists are not happy 
with the idea of settling for the "simple-minded" Eratosthenes1 Sieve. 

This paper presents two elementary glimpses of modified but simple 
approaches to the Sieve. The first one is a slight improvement on the original 
procedure of Eratosthenes, although it is basically the same method, cleverly 
disguised. 

Consider the "Semi-Tribonacci" sequence 

T • 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 2,2, 23, ••• 
(k - 1, 2, 3, •••) 

which obeys the recurrence relation 

Tk+3 = Tk+2 + T k + i " T k ; T* = ! ' T2 = 2 . 

261 
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Notice that a l l mul t ip les of 3 a r e absent , s ince 

T 2 k = 3k - 1 

and 

T 2 k + 1 = 3k + 1 . 

The c losed- fo rm formula for these Semi-Tr ibonacc i number s i s : 

(1) T k = | k - (f + 4 ( - l ) k ) (k = 1 , 2 , 3 , " ° ) 

Now, if we wr i t e the aibove sequence cancell ing al l T, such that 

(2) T. = T (mod 2T + 3 ) (T > T ) 
k n n k n 

( i . e . , cancel al l Tfc = 1 (mod 5), T, = 2 (mod 7), T, = 4 (mod 11), e tc . ) 

we obtain the "Deleted Semi-Tr ibonacc i Sequence:n 

Tfc : 1, 2, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 22, • • • , (k = 1 , 2 , 3 , • • •) 

And h e r e we can s ta te the following resu l t : 

All n u m b e r s 

P l a . n = 2T. + 3 
k+2 k 

a r e p r i m e n u m b e r s , and, in fact, al l p r i m e s (except 2 and 3) a r e r ep re sen t ed 

in this way. Thus 

P k + 2 = 5, 7, 11, 13, 17, 1 9 , . . . (k = 1 , 2 , 3 , - • • ) . 

The above may seem quite astonishing at f i r s t s i g h t The r e a d e r i s 
invited to convince himself that this i s , however , t rue . But, unfortunately, it 
i s only the Sieve covered up. The co re of the p rob lem l ies in the solution of 
the following congruences 
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(3) 4Tk s (6n - 3 - (- l)n) (mod 12n + 6 - 2(- l ) n ) 

which is , to put it mildly, quite a problem by itself. 
The second glimpse offers a simpler disguise, but cleverer,, Consider 

the array 

(4) 

4 
7 

10 

13 

16 

7 

12 

17 

22 

27 

10 
17 

24 

31 

38 

13 

22 

31 

40 

49 

16 

27 

38 

49 

60 

19 

32 

45 

58 

71 

The array is symmetric about its main diagonal, for as it is readily seen, 
th th 

each k row and k column are equal, and the numbers are obtained from 
arithmetic progressions. The differences are: first line, 3, second line, 5, 
third line, 7, and so on. We are now prepared to formulate the following 
statement: 

If the number N is a member of the above array, then 2N + 1 is com-
posite; however, if N is not found in this array, then 2N + 1 is prime, (2N 
+ 1 is prime if and only if N is not a member of the above array0) 

The proof is very simple. Designate the n term of the k row (or 
k term of the n column) by a , . Then, since 

a n l = 4 + 3(n - 1), RR2 = 7 + 5(n - 1), 

e tc , , in general we have 

(5) a n k = 1 + 3k + (l + 2k)(n - 1). 

or more simply 
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(6) a , = k + (2k + l)n = a. = n + (2n + l)k 
nk kn 

Now suppose N is found in the array. Then N = k + (2k + l)n and therefore 

2N + 1 = 2(k + (2k + l)n) + 1 = 2k + 1 + 4kn + 2n = 2k + 1 
+ 2n(2k + 1) 

= (2k + l)(2n + 1) 

which means that 2N + 1 is the product of at least two factors (neither of which 
is unity) and hence, composite,, The converse is proven similarly. 

The following example may be useful to compare the powerfulness of the 
array (4) as opposed to the naive Sieve. Let us suppose that we wanted to find 
out whether 437 was or was not a prime. Using the rudimentary approach of 
the Sieve, we would test for divisibility of all primes up to 

[V437] = 20 , 
that is , we would see if 437 is divisible by 3, 5, 7, 11, 13, 17, and 19. In-
stead of proceeding this way, let us apply the reasoning provided to us by the 
arrayTs approach. 

If 437 is not a prime, we can find an N in the array such that 

2N + 1 = 437 . 

This would yield N = 218. Is 218 a member of the array? If it is , we should 
th th 

be able to find it as some n element of some k row. Thus, we should be 
able to solve for n the equation 

k + (2k + l)n = 218 

(if we fail, this would mean that 218 is not in the array, and that 437 is 
prime). First , we find a bound on k by solving the quadratic 

2(k2 + k) = 218 , 

and this yields 
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k2 + k - 109 = 0 

or k = 10, 
Thus, 

k = 10, n = 208/21 (no good) 
k = 9, n = 209/19 = 11 

and we get 

a9,li = all,9 = 2 1 8 » 

Therefore 218 is contained in the array, and 437 is not prime. 
In fact, if we had tried it using the Sieve method we would have found out, 

sooner or later, that 437 = 19 • 23» For large numbers, the array test is 
tedius although shorter than Eratosthenes1. 

Nowadays, with the advent of superfast computers, much of the sieve 
work is done electronically at very high speeds,, Still, the job of classifying 
larger numbers as primes is very difficult andean only be simplified by choos-
ing specific patterns within sequences of identifiable properties. That, for 
example, is the case of the 3,376-digit number (211*213 - 1) which belongs to 
the "Mersenne" family of primes and is presently considered the largest known 
prime number. Other, modern, more effective sieves are inevitably based on 
the Sieve or its principle. 

Despite the fact that mathematics has progressed immeasurably and con-
temporary mathematicians have the benefit of ultra-sophisticated tools and 
techniques, Eratosthenes' method has survived the severe test of twenty cen-
turies. Indeed, Erathosthenes is still not out. 

* * * * * 



FIBONACCI MU1BERS AND THE SLOW LEARNER 
JAMES C . CURL 

Tracy High School, Tracy, Cal i f . 

Fibonacci numbers have been used with remarkable success with talented 
mathematics students from elementary school through graduate level university 
mathematics,, They have been used as both a part of the basic curriculum and 
as enrichment materiaL 

During the past year I became interested in the possibility of using Fib-
onacci numbers with a group of twenty-five freshman students in a "low level" 
basic mathematics class, the required ninth grade general mathematics course 
designed to fulfill the mathematics requirement for the freshman year. My 
interest In using Fibonacci numbers was a result of having met considerable 
frustration in trying to get the class to achieve a basic facility with the funda-
mental operations using real numbers. After a semester1 s work with review, 
explanations? and drill, the class still had difficulty with the same problems. 

Before continuing, I should define "low level" to place the balance of my 
remarks in proper context During the fall of this past academic year, the 
students in the class were given a battery of tests including the Differential 
Aptitude Test, the Gates Reading Survey, and the Lorge Thorndike Intelligence 
Quotient T e s t I compiled a table of the scores on these three tests utilizing 
the verbal I. Q. score, the numerical ability percentile ranking, and the com-
posite score on the Gates Reading Survey* The following information was com-
piled as a result of the research; two-thirds of the class had a numerical abil-
ity percentile ranking of fifteen percentile or lower* One-half of the class read 
at the sixth grade level or lower. One-half of the class had I. Q. scores of less 
than ninety,, Only four students were reading at the ninth grade level or higher* 
Two students ranked above the fiftieth percentile on the numerical ability, and 
only four students had I. Q. scores of better than one hundred, 

Irving Adler in his address at the California Mathematics Council, North-
ern Section, meeting at Davis during the spring of this year suggested that as 
teachers we are being a little unrealistic if by repeating the same material we 
believe we are able to do what competent teachers have failed to do during a 
student1 s first eight years. With much the same philosophy I decided to refine 

266 
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my goals for the course after the first semester* Basically 9 I hoped to: 
(1) effect a change in attitude toward mathematics, 
(2) have some of the students get excited over learning something., 
(3) achieve basic skills in the four operations working with real number s* 
With the above goals in mind I introduced a five-week unit on Fibonacci 

numbers via a presentation on the board* Very little introduction was given: 
I simply announced that we would be working with something new9 Fibonacci 
numbers. The class reaction was a collectives TfWHAT ? .? ?n* I then pro-
ceeded to write 1,1, 2 on the board and asked the class to follow along as I 
wrote the next number down; they were to see if they could find out how I was 
getting the sequence of numbers* 

After writing down several more terms of the sequence.* the class caught 
on to the pattern. Within a very short time the entire class was volunteering 
the next number, We continued until we had the first twenty numbers written 
down. We then discussed how we could find the numbers of the sequence and 
ended the session with the simple explanation^ ??add the first two numbers and 
you get the third; add the second and third numbers and you get the fourth9 ° ° • M 

Although in the context of this article I will utilize a formal notation to express 
Fibonacci patternss no attempt was made in class at this time to express the 
patterns with a general notation 

I next asked the students to writedown on a paper the first fifty terms of 
the Fibonacci sequence0 If they were not able to finish in class, they were 
welcome to do so at home™ To my delight the majority of the class had worked 
on the first fifty and several had worked on getting the first one hundred Fib-
onacci numbers. 

On the second day I handed out a ditto with the first one hundred Fibonacci 
numbers written down* After checking the values for their numbers, we dis-
cussed the notation Fj , F2? F3? ••• which I had used on the ditto* We called 
the notation the Fibonacci code for telling which Fibonacci number we were 
discussing* I encouraged each student to use the notation when he worked with 
a pattern* 

During the first week5 including the introduction:, the class participated 
in what Brother Alfred terms group research,, The class developed the pattern 
for 
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F2 - F ,. F , n n+k n-k 

for k = 1 using the group research method. Instead of stating the problem 
in the preceding form, each person was asked to pick out some Fibonacci num-
ber and square it* Then they were to take the product of the two Fibonacci 
numbers on either side of the number that had been squared. Finally they were 
to find the difference between the square and the product. The results were 
tabulated on the board and the class was asked to try a different Fibonacci num-
ber. Again the results were written down. The majority of the students quickly 
saw that we were getting 1 for an answer; however, when I requested that the 
subtraction must be done in the same order each time a Fibonacci number had 
been selected, some of the students remarked that you couldn't subtract a 
larger number from a smaller one. We then had a delightful discussion about 
directed numbers and ended with the generalization that the answer was 1 if 
we chose a Fibonacci number with an odd code and -1 otherwise. I discussed 
(-1) with the more capable students as a way of expressing the pattern. 

The class then worked the next day on extending this pattern for different 
values of k. We started with group research again for k = .2 and found the 
difference of 11 j . I then had the class work at their desks finding the patterns 
for other values of k, but notuntil I had encouraged them to make a conjecture 
about what they might find. It was a much surprised group of students when the 
next value of k did not give then j 1 j for an answer. I was amused at their 
discovery that different values of k gave what appeared to them to be quite 
unrelated answers. Although the students became frustrated easily and I found 
it necessary to spend time helping each one, the problem allowed each student 
to continue at his own pace. After considerable work, one of the students sud-
denly saw that the result was a Fibonacci number squared. Some other stu-
dents were finding this result and sharing their discovery with others around 
them. It was at this time that I felt I was achieving some of my goals. 

The next problem presented was written down in the following way. 

1 + 1 = 2; 1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7; • • • 

I asked the students to write down the numbers in Fibonacci code, and 
the class was asked to find a pattern in the answers. It was necessary to give 



1968] FIBONACCI NUMBERS AND THE SLOW LEARNER 269 

some direction by asking if the answer was close to some Fibonacci number,, 
Finally we wrote down the result in the form 

F t + F2 + 1 = 2 + 1 = 3 

F l + F2 + F 3 + 1 - 4 + 1 = 5 

I then asked for a verbal generalization from the students and it was decided 
that if one was added to each of the sums, we obtained a Fibonacci number. I 
asked them to give the Fibonacci code for the number and we then tabulated our 
results on the board* 

F t + F 2 = F 4 - 1; F i + F 2 + F3 = F 5 - l ; . - - - 'F i + F2 + --- + F n = F n + 2 - 1 . 

This was another attempt to have the students use notation to express the pat-
terns rather than just verbalizing the result in English,, Earlier I had sug-
gested that each student should use a notebook to write down the results of the 
previous work and I requested that they write down what we had done on the 
board. Although many of the students felt uncomfortable with the notation and 
indicated that they did not like using F , they understood that the notation 
said the same as "the sum of the first n Fibonacci numbers can be found by 
going two more Fibonacci numbers and subtracting 1.Tt 

After the students had worked with the pattern for finding the sum of the 
Fibonacci numbers, I asked them to find 

Ft + F2 + F3 + • •• + F25 

in sixty seconds for a brief quiz* It is interesting that approximately one-third 
of the class was not able to connect the problem to our previous work; one-
fourth of the class found the result correctly; and the remainder of the class 
used the right idea in trying to find the solution but could not remember which 
Fibonacci number they should get even though they knew that if they added one 
to the result they would get a Fibonacci number,, However, considering the 
make-up of the class9 I was very encouraged, 
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We next worked on 
i 

F2 + F4 + FQ + . • . + Fm . 

I placed the problem on the board in the above form; and was pleasantly sur-
prised to find a general acceptance of the notation at this point. There was a 
little concern over the expression 2n and we spent some time answering the 
question of the value of 2n for n = 1, n = 25 n = 39 etc. The students 
indicated they understood; however, as we went ons I had to continually remind 
the students of this form for the even index in the Fibonacci code. 

We then went on to 

Fi + F3 + F5 + . . . + F2 n- i . 

Again there was concern over 2n - 1, and we had another chance to discuss 
an algebraic expression,, This was a second opportunity to introduce the con-
cept of the variable without making the process a painful experience. 

Interest at this point was running high and I felt that the class was shar-
ing-my enthusiasm, Even those who usually were apathetic to any of the mater-
ial presented during the first semester were becoming involved. 

I then presented 

F | + F2 + F | + • • • + F2 . 

At this point there was a little negative reaction that this problem was too hard; 
some of the students indicated that this problem should be in an algebra class 
rather than Math L Since we had discussed scientific notation earl ier in the 
year working with googols and-googolplexes, I reviewed what the exponent 2 
represented in each term of the series* 

The presentation became a little more detailed this time and I found a 
great number of the students independently making out a table of squares of 
the Fibonacci numbers to help them find the pattern* I was very enthusiastic 
over the idea that some of the students were voluntarily doing more than was 
required. The pattern was finally established but not until we had a chance to 
discuss what was meant by a factor,, m particular 
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F i + Eg + F3 = 6 

was an excel lent opportunity to both I l lus t ra te that they should use the sum of 

s e v e r a l t e r m s before t rying to es tabl i sh the pa t te rn and to see that the fac tors 

would be Fibonacci n u m b e r s if they w e r e not the t r iv ia l se t of 1 and-6. The 

r e s u l t s of the ensuing d i scuss ion w e r e too extensive to r eco rd h e r e , but let i t 

suffice to say that we d i scussed division, mult ipl icat ion, exponents, factoring, 

p r i m e n u m b e r s , addition, and genera l notation without appear ing to m e e t any 

negat ive reaction,, 

I was ve ry p leased with our p r o g r e s s but felt that if I w e r e to maintain 

the exis t ing level of en thus iasm I would have to t ry to va ry the c l a s s activity 

m o r e than I was doing via the p resen ta t ions on the board and individual w o r k 

As such, I decided to have the c l a s s work in groups* 

Thus , a t the end of the second week I told the c l a s s that we would s t a r t 

working in groups the following week. I asked seven s tudents , who I felt could 

ac t a s group l e a d e r s , to make th ree l i s t s of four s tudents each for the i r p o s -

sible groupSo J indicated I would t ry to form the i r groups from these l i s t s . 

With this done, I reviewed what had been accomplished during the f i r s t two 

weeks . 

On Monday I indicated who was to be in each group and handed out two 

di t tos . One summar i zed our work up t i l l then; and the second was a se t of 15 

p rob lems which would be done in the i r group work, Table 1. 

Table 1 

1. Find the sum of the Lucas n u m b e r s . 

2. Find the sum of ~Lt + L2 + L5 + L7 + L9 + • • * . 

3. De te rmine the sum of L2 + L4 + L6 + L8 + °e • . 

4. What i s the sum of the squa re s of the Lucas n u m b e r s ? 

5. F o r m F{ + F | ; Y\ + F|j ; F | + F * ; etc0 

6. Do the s a m e as in No. 5 for the Lucas n u m b e r s . 

7. Find the sum of Li + L5 + L9 + L13 + L17 • • ° . 

8. De te rmine the sum of L2 + Lg + LJQ + L14 • • • . 
9. Find the sum of L3 + L7 + L | j + L15 + L^g • • * . 
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10. Determi Table 1 (Continued) 

10. Determine the sum of L4 + L8 + Li2
 + Li6 + L2o •" • . 

11. Find a pattern which works for Nos. 7, 8, 9, and 10. 
12. Find FiL2 and F2Lj and their difference; find F2L2 and F3L2 and their 

difference; F3L4 and F4L2 and their difference; etc. 
13. Find FiL3 and F3Lj and their difference; continue as in No. 12. 
14. Find FAL4 and F4Lj and their difference; continue as in No. 13. 
15. The process begun in Nos. 12, 13, and 14 can be continued to spacings of 

three, four, five, etc. Can you find a pattern in the answers? 

Each group was to consist of the leader and three students to work with the 
leader in the group. I placed the seven groups in clusters about the room with 
the following directions: 

(1) If a member of the group had a question, he was to ask the group 
leader. 

(2) The group leader would discuss problems with me so as to explain 
the problems to the group* 

(3) The individuals in the group, excluding the leader, would receive 
their grade based on their work in the group, their notebooks, and 
an oral test. 

(4) The group leaders would receive their grades based on their under-
standing of the material discussed, and more importantly on how 
much knowledge they could impart to each student in their group, 
i. e . , their grades rested on how much their group knew. 

Before actually placing them in groups we discussed a second sequence, 
the Lucas sequence. For homework they were to find the first twenty-five 
terms of the sequence starting with 1, 3, 4, etc. We also discussed the nota-
tion L^ L2, L3, • • • for the Lucas numbers. 

Although the class was homogenous in that it was basically low ability, 
there was enough diversity in ability so that the leaders were sufficiently ad-
vanced in the material to meet their obligations. I believe that much of the 
success we had in the group work was based on the selection of the groups and 
the ability of the seven group leaders. 

For the next three weeks I worked with the group leaders and the groups 
themselves encouraging, explaining, and making sure that each group got the 
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help it needed. I tried to work with each leader and group at least once each 
day, but I was pleasantly surprised with the way in which the groups main-
tained their enthusiasm and worked in as mature a fashion as could be desired 
when I was busy with other groups. Quite often I worked with entire groups 
discussine one problem. In many cases the group leaders displayed remark-
able behavior in directing the research and explaining to the students in their 
groups a particular pattern. I was particularly impressed with the patience 
and understanding displayed by the group leaders. 

At the end of the first week in groups, I asked each group leader to sub-
mit a progress report on his group. Following is an example of the type of 
response I received* 

"Our group has progressed fairly with one exception,* * *. Now I see how 
hard it is for a teacher to try to teach her something. She just won11 even 
try to learn, and when I tell her to try, she sais I canft Sometimes she 
catches on, but after she gets to apar t that is too hard for her (she thinks) 
she quits and talks or else just plain forgets it. I donft know what Pll do' 
if she wonft learn* • • •ff 

Each student in the group was to keep a record of his work and the pat-
terns discovered were to be listed, I collected these notebooks at the end of 
each week and was extremely pleased with the results. I wish it were possible 
to include one of the notebooks in the article. Again let it suffice to say that 
the notebooks do justice to those collected from students in a freshman algebra 
course. 

During the third week in groups I had each student go before the class 
using the overhead projector* They were to present the solution to one of the 
problems from the work done during the five weeks. This problem was given 
to them when they went up to the overhead projector. They were allowed to 
take their lists of Fibonacci and Lucas numbers with them to the projector. 

The presentations were of fine quality with the students explaining how 
they were establishing the patterns. I might add that the patterns were not 
memorized but rediscovered while working in front of the class with the over-
head projector. I tried to present a problem geared to the ability of each stu-
dent and I started the presentations with students who would present their pat-
terns in a good style to serve as examples for the other students. During 
many of the presentations it was necessary to make suggestions via questions 
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as to what should be done, I made every attempt to make sure that enough help 
was given so that Jhe st.ident eventually was able to find the pattern. Grades 
for the oral presentations were based on how well the presentation was delivered 
and the amount of help given to the student During the presentations, the other 
students were asked to try the pattern at their desks* It was fascinating to see 
the involvement of the class in some cases as the person giving the presenta-
tion would struggle with a pattern* 

Generally speaking, the oral presentations were a highlight of the five 
weeks* I am sure the class approached the presentations with some less en-
thusiasm, but the cooperation was very satisfying from the majority of the 
student s„ 

With the conclusion of the unit, grades were given out to each student if 
such were requested* The student reaction to the work on Fibonacci numbers 
was very positive,, One girl even went so far as to say that the material should 
be part of the required curriculum for the ninth grade. 

The results of the five weekunit on Fibonacci numbers were very encour-
aging. The change in student attitude, one of the three goals, was readily ob-
served* Since the unit was presented later in the year, there was no opportunity 
to observe whether the changes in attitude observed would have transferred to 
work presented earlier in the year. 

The material presented following the unit involved working with areas, 
volumes, perimeters, and circumferences of basic geometric figures,, Again 
the material was new to the class and the student reaction was one of accept-
ance and willingness to work on the problems. Although there was not a great 
deal of enthusiasm present, the reaction of the class was satisfying, consider-
ing we were in the last six weeks of the school year» 

I am looking forward to expanding the Fibonacci unit for next year with 
three classes to include work on phyllotaxis and geometric relationships,, Also, 
I hope to present the unit earlier in the year to explore more fully the transfer 
of changes of attitude toward mathematics in generaL 

*• * • * • 
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RESIDUES OF u p WITH RESPECT TO ANY MODULUS 

JOSEPH MANDELSON 
U. S. Army Edgewood Arsenal, Maryland 

Dickson [ l ] reports that n J . L0 Lagrange [2] noted that the residues of 
A, and B, with respect to any modulus are periodic. n A, and B, are de-
scribed by indicating that "Euler [3] noted that 

(a + V b ) k = Ak + BkVb~ 

implies 

A, = f [ ( a + V b ) k + ( a - V b ) k J , B, = -^— [(a + V b ) k - (a - Vb) k ] " 
k k 2\47 

With this as a hint I tried empirically to determine whether Lagrangefs idea 
would work with the Fibonacci series, u . This may not be immediately appar-
ent but simple empirical trials developed a number of significant revelations. 
Thus, starting with uj = 1, u2 = 1, u3 = 2, etc., the residues for consecu-
tive u , modulus 5 are: 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 
1, 0. This series then repeats itself endlessly, illustrating Lagrange?s perio-
dicity, This is generally true of every modulus tried from 2 to 94. Each 
modulus has a characteristic period which displays various individual regular-
ities. Thus, the above period, modulus 5, is broken up by zeros into 4 groups 
of 5 residues each including zero. The following is a resume of the character-
istics of all groups and periods determined for all moduli investigated. We 
define 

Group: The residues, starting with the residue from u* = 1 and contin-
uing to and including the first zero residue obtained after dividing consecutive 
u • n 

Period: The residues, starting with the residue from u* = 1 and con-
tinuing to and including the first zero residue which follows a residue of 1, ob-
tained after dividing consecutive u . From this point, the second period and 
all succeeding periods will exactly duplicate the first. 

275 
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Examining the per iod of modulus 5 given above, from the above defini-

t ions, the f i r s t group c o m p r i s e s 5 digi ts , v iz . , 1, 1, 2, 3, 0. The per iod c o m -

p r i s e s 4 groups , containing 20 r e s idues and ending 2, 2, 4, 1, 0. 

The c h a r a c t e r i s t i c s de te rmined in the light of the above a r e : 
1. The sum of a l l r e s i d u e s in a per iod (but not, in genera l , in a group), 

i s divisible by the modulus without r ema inde r . Thus , for modulus 5, the sum 

of the r e s idues in the per iod i s 40 which i s divisible by the modulus . 

2. The number of groups in a per iod is always 1, 2, o r 4. 

3. If the s ize of a group i s n, then u and m o r e genera l ly u a r e 

exact ly divis ible by the modulus . 
40 If P .and P a r e p r i m e fac tors of the modulus P P , the group ni n2 n-i n 2 

and per iod of the modulus a r e divisible by the group and per iod respec t ive ly of 

the P Ts . F o r example , modulus 10 i s factored by P = 2 and P = 5 , n ^ J ni n2 

The group and per iod of 2 a r e 3 and the group and per iod of 5 a r e 5 and 20 r e -

spectively,, The group s ize for modulus 10 i s 15 (divisible by 3 and 5); the 

per iod , modulus 10, i s 60,, divisible by 3 and 20. This fact p e r m i t s ready 

check of groups and per iod calculated for composi te moduli . 

It is evident that the finding l is ted as 3 above i s not pa r t i cu l a r ly helpful 

in de termining the u which a given p r i m e modulus wil l divide, if the group 
s ize for that modulus m u s t be de te rmined by actual division of consecut ive u . 

J n 
Thus , the p r i m e 103 i s found to have a group of n = 104. To de te rmine that 

U104 i s divis ible by 103 by dividing 104 consecut ive u and knowing that ui04 

contains 22 digi ts , not to mention the l a rge number s which p recede U394, 

s e e m s to be prohibi t ively labor ious . For tunate ly ; ea r ly in the calculat ion of 

groups and per iods I found a way to calcula te these without any dividing at all! 

This was de te rmined when it was noted that the r e s idues a r e additive according 

to the usual Fibonacci s e r i e s ru l e : 

u , = u + u , A n+2 n n+l 

until the l a s t r e s idue is equal to o r g r e a t e r than the modulus . 

At th is t ime we sub t rac t the modulus from this l a rge r e s idue . If the l a t -

t e r is equal to the modulus , the res idue i s ze ro and the group a n d / o r per iod 

ends . If i t i s l a r g e r , the difference i s s e t down a s the r e s idue in the place of 

the l a r g e r f igure. This r e s idue is then added to the previous res idue and the 
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sum is compared with the res idue as before . This p rocedure continues until 

the group a n d / o r per iod i s de te rmined . As can be seen, a l l manipulat ions a r e 

additions and subt rac t ions 3 division i s neve r requ i red . 

Example 1. To de te rmine the group and per iod for modulus 10. 

Star t with uj = 15 the r e s idue , rA = 1. Add this to UQ = 0 and we get 

the second res idue r2 = 1. Add r i to 

r2 = l + l = r 3 = 2 . 

This i s s t i l l s m a l l e r than modulus 10, so we continue. 

r 2 + r 3 = 1 + 2 = r 4 = 3. r 3 + r 4 = 2 + 3 - r 5 = 5. r 4 + r 5 = 3 + 5 = r 6 = 8. 

Now, 

r 5 + r 6 = 5 + 8 = 13 . 

This i s l a r g e r than modulus 10 so we sub t rac t 10 and get r 7 = 3. Now we add 

r 6 + r 7 = 8 + 3 = 11 . 

Again, this i s l a r g e r than the modulus; we sub t rac t 10 and get r 8 = 1. Now 

we add 
r 7 + r 8 = 3 + 1 = r 9 = 4 . r 8 + r9 = 1 + 4 = r10 = 5, r 9 + r10 = 4 + 5 = rn = 9. 

Now 

r10 + r t l = 5 + 9 = 14 . 

Subtract 10 and we have r^2 = 4. 

vn + r12 = 9 + 4 - 13 

from which r ^ = 3. 
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n 
^12 + r1 3 = 4 + 3 = r1 4 = 7 . 

Final ly 

r1 3 + r1 4 = 3 + 7 = 10 

which i s exactly equal to the modulus . When we sub t rac t 10 the r e su l t r1 5 = 0 

and the group ends. Since r^4 f 1, the per iod is not yet complete and i s d e -

te rmined by continuing the p rocedure . Thus , l is t ing consecutive r e s idues 

s t a r t ing with r j 4 we get 

7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0 

ending the second group but the per iod continues: 

9, 9, 8, 7, 5, 2 , -7 , 9, 6, 5, 1, 6, 7, 3, 0,-3, 3, 6, 9, 5 ,4 , 9, 3,-2, 5, 7, 2, 9 , 1 , 0 

Here the per iod ends , compr i s ing 4 groups of 15 r e s idues each. Notice that 

the second per iod begins exactly the s a m e way a s the f i r s t : 1, 1, 2, 3, e tc . 
Since a l l pe r iods a r e calculated the s a m e way and a l l pe r iods , r e g a r d l e s s of 

modulus , s t a r t with 1 ,1 , it i s obvious that al l per iods will be exact dupl icates 

of each other and the re i s no point in continuing opera t ions . Since the group 

s ize n, modulus 10, i s 15 ui5 mus t be divis ible by 10. We find u j 5 = 610, 

divis ible by 10. 

While i t i s evident that even this p rocedure is labor ious for l a rge p r i m e 

n u m b e r s it i s much e a s i e r than consecutive divis ions of u • While shor t cuts 
n 

such a s this a r e poss ib le in emp i r i ca l invest igat ions of the Fibonacci s e r i e s , 

i t i s imposs ib le to avoid labor a l together . 
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RECURRING SEQUENCES-LESSON 1 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

The Fibonacci Qua r t e r ly ha s been publishing an abundance of m a t e r i a l 

over the pas t five y e a r s dealing in the main with the Fibonacci sequence and 

i t s r e l a t ives . Basic to the en t i re undertaking i s the concept of RECURRING 

SEQUENCE. In view of this fact, a s e r i e s of some eight l e s sons has been p r e -

pa red covering this topic. In line with the word "lesson, r f examples of p r i n c i -

p les will be worked out in the a r t i c l e s and a number of " p r o b l e m s " will be 

included for the purpose of providing " e x e r c i s e " in the m a t e r i a l p resen ted . 

Answers to these p rob l ems will be included on another page so that people may 

be able to check the i r work agains t them. 

In this f i r s t lesson, the idea of sequence and r ecu r s ion re la t ion will be 

cons idered in a genera l way. A sequence is an o rde red se t of quant i t ies . The 

sequence is finite if the set of quanti t ies t e rmina tes ; it i s infinite if it does not. 

The prototype of al l sequences is the sequence of posi t ive in t ege r s : 1, 2, 3 ,4 , 

5, • • • . Other sequences , some quite fami l ia r , a r e the following: 

1, 3, 5, 7, 9, 11, 13, •"• 

2, 4, 6, 8, 10, 12, 14, 16, ••• 

1, 2, 4, 8, 16, 32, 64, 

2, 6, 18, 54, 162, 486, • •• 

1, 2, 6, 24, 120, 720, 5040, 40320, ••• 

1, 3, 6, 10, 15, 21 , 28, 36, 45, 55, ••• 

1, 4, 9, 16, 25, 36, 49, 64, • • • . 

1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, ••• 

F o r convenience of re fe rence , the t e r m s of sequences can be identified 

by the following notation: a1? a2, a35 a4? a55
 0 9 o

? a n , ° • * * One of the C0JH1HOF 

ways of providing a compact r ep resen ta t ion of a sequence is to specify a fo r -

mula for the n t e r m . F o r the posi t ive i n t ege r s , a = n; for the odd i n t e -

g e r s 1, 3, 58 7, • • ' , a = • 2n - 1; for the even in tegers 2, 4, 6, 8, • • • 

279 
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a = 2n<, The n t e r m s of the remaining sequences given above a r e l i s ted 

herewith . 

1, 2, 4, 8, 16, 32, • • • , a = 2 n ~ 1 

n 
2, 6, 18, 54, 162, 486, • • • , a = 2 • 3 n ~ 

1, 2, 6, 24, 120, • • • , a = n! 

1, 3, 6, 10, 15, 21 , 28, • • • , a = n(n + l ) / 2 

1, 4, 9, 16, 25, 36, • •• , a = n2 

1, 1/2, 1/3, 1/4, • • • , a n = 1/n . 

T h e r e i s , however., a second way of specifying sequences and that i s the 

r ecu r s ion approach. The word r e c u r s i o n de r ives from r e c u r and indicates 

that something i s happening over and over . When in a sequence, there is an 

operat ion which enables us to find a subsequent t e r m by using previous t e r m s 

according to some well-defined method, we have what can be t e rmed a r e c u r -

sion sequence. Again, the prototype i s the sequence of posi t ive in tegers which 

i s completely specified by giving the f i r s t t e r m a^ = 1 and s ta t ing the r e c u r -

sion re la t ion 

a , J = a + 1 . n+i n 

This is the genera l pa t te rn for a r ecu r s ion sequence; one o r m o r e init ial t e r m s 

mus t be specified; then an operat ion (or operat ions) i s se t down which enables 

one to genera te any o ther t e r m of the sequence. 

Going once m o r e to some of our previous sequences , the r ecu r s ion r e p -

resen ta t ions a r e as follows: 

1, 3, 5, 7, • •• , ai = 1; a _, = a + 2 . 
1 n+i n 

2, 4, 6, 8, • • • , a4 = 2 ; a ^ ~ a + 2 . 
1 n+i n 

1, 2, 4, 8, 16, • • • , at = 1; a ^ = 2 a . 
1 n+i n 

2, 6, 18, 54, 1 6 2 , - • • , ai = 2; a ± = 3 a . 
1 n+l n 

1, 2, 6, 24, 120, • • • , ax = 1; a n + 1 = (n + l ) a n . 
Is i t poss ib le in al l ins tances to give this dual in te rpre ta t ion to a sequence, 

that i s , to specify the n t e r m on the one hand and to provide a r e cu r s ion 
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definition of the sequence on the other? Is it not wise to say in an absolute 
manner what is possible or impossible in mathematics. But at least it can be 
stated that sequences which are readily representable by their n term may 
be difficult to represent by recursion and on the contrary, sequences which 
can be easily represented by recursion may not have an obvious n term. 
For example, what is the recursion relation for the sequence defined by: 

Or on the other hand, if a* = 2, a2 = 3, a% = 5, and 

7a + 5a n n-i 
a , = 

n+i a , n 
n-2 

what is the expression for the n term? 
However, in most of the usual cases, it is possible to have both the n 

term and the recursion formulation of a sequence* Many of the common se -
quences, for example, have their n term expressed as a polynomial in n. 
In such a case, it is possible to find a corresponding recursion relation. In 
fact, for all polynomials of a given degree, there is just one recursion rela-
tion corresponding to them, apart from the initial values that are given. Let 
us examine this important case. 

Our discussion will be based on what are known as finite differences. 
Given a polynomial in n, such as f(n) = n2 + 3n - 1, we define 

Af(n) - f(n + 1) - f(n) 

(Read nthe first difference of f(n)n for Af(n).)- Letus carry out this operation. 

Af(n) = (n + l)2 + 3(n + 1) - 1 - (n2 + 3n - 1) 

Af(n) *= 2n + 4 . 
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Note that the degree of Af (n) is one less than the degree of the original poly-
nomial. If we take the difference of Af (n) we obtain the second difference of 
f(n). Thus 

A2f(n) = 2(n + 1) + 4 - (2n + 4) = 2 

Finally, the third difference of f (n) is A3f (n) = 2 - 2 = 0. The situation por-
trayed here is general. A polynomial of degree m has a first difference of 
degree m - 1, a second difference of degree m - 2, • • •, an m difference 

st which is constant and an (m + 1) difference which is zero. Basically, this 
result depends on the lead term of highest degree. We need only consider then 
what happens to f (n) = n when we take a first difference. 

Ai(n) = (n + 1) - n = n + mn • • • -n 

1. 

or 

m—l Af(n) = mn + • •• terms of lower degree. Thus the degree drops by 

Suppose we designate the terms of our sequence as T . Then 

AT = T - T 
n n+i n 

A2T = T' - T ^ - (T , - T ) = T _ L - 2T ^ + T n n+2 n+i n+i n n+2 n+l n 
A3T = T ^ - 2T _, + T - (T ^ - 2T •+ T ) n n+3 n+2 n+i n+2 n+i n 

AdT = T' - 3T _, + 3T _, - T n n+3 n+2 "n+i n 

Clearly the coefficients of the Pascal triangle with alternating signs are being 
generated and it is clear from the operation that this will continue. 

We are now ready to transform a sequence with a term expressed as a 
polynomial in n into a recursion relation. Consider again: 

T = n2 + 3n - 1 n 
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Take the third difference of both sides. Then 

A3T = A3(n2 + 3n - 1) n 

But the third difference of a polynomial of the second degree is zero. Hence 

T - 3 T + 3 T - T = 0 n+3 n+2 n+i n 
or 

T _ L = 3 T _ J _ - 3 T _ J _ + T n+3 n+2 n+i n 

is the required recursion relation for all sequences whose term can be ex-
pressed as a polynomial of the second degree in n. 

An interesting particular case is the arithmetic progression whose n 
term is 

T = a + (n - l)d , n 

where a is the first term and d the common difference. For example, if 
a is 5 and d is 4, 

T n = 5 +4(n - 1) = 4n - 1 . 

In any event, an arithmetic progression has a term which can be expressed as 
a polynomial of the first degree in n. Accordingly the recursion relation for 
all arithmetic progression is : 

A2 T = 0 n 

T ^ = 2T , - T • n+2 R+l n 

The recursion relation for the geometric progression with ratio r is 
evidently 
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T _,_. = rT . n+i n 

For example, 2, 18, 54, 162, ••• is specified by SLt = 2, T + = 3T . 
This takes care of our listed sequences except the factorial and the r e -

ciprocal of n. For the factorial: 

T , = (n + 1)T . n+i n 

However, we do not have a pure recursion relation to a subsequent from pre-
vious terms of the sequence. We need to eliminate n in the coefficient to 
bring this about. Now 

n = T /T 4 
n ' n-i 

and 

n + 1 = T , / T n+i n 

Thus 

T _,_ / T - T / T A = 1 n+i n n n-i 

so that 

T = T (T + T ) / T , . 
n+i n n n-i n-i 

Again for T = l /n, we have 

n = 1/T , n + 1 = 1/T ^ , l /T M - 1/T = 1 
' n * ' n+i n+i n 

so that 

T , = T / ( l + T ) . n+i n n 
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PROBLEMS 

lo Find the n term and the recursion relation for the sequence: 2, 6, 12, 
20, 30, 42, 56, 
Find the n t 
10, 13, 16, ••• 

2o Find the n term and the recursion relation for the sequence: 1, 4, 7, 

3* Determine the n term and the recursion relation for the sequence: 1, 
8, 27, 64, 125, 216, 343, e 8° „ 

4„ For Ti = 1, T2 = 3 and T n + = T / T . _ , find a form of express ion for 
the n term. (It may be more convenient to do this using a number of 
formulas,,) 

5„ Find the recursion relation for the sequence with the term T = \ZnT 
60 What is the recursion relation for a sequence whose term is a cubic poly-

nomial in n? 
7. If a is a positive constant, determine the recursion relation for the 

sequence with the term T = a . 
8. Find a recursion relation corresponding to T ,, = T + 2n + 1 which does 

^ & n+l n 
not involve n except in the subscripts nor a constant except as a coefficient, 

9. Find an expression^) for the n term of the sequence 
the recursion relation T T ,, = 1, where Ti = a (a not zero). 

n n+i i 

10o For the sequence with term T = n/(n + J), find a recursion relation with 
n occurring only in subscripts,, 

See page 260 for answers to problems. 

• * * • • 



EVEN PERFECT NUMBERS AND SEVEN 
ROBERT W. PRIELIPP 

Wisconsin State University, Oshkosh, Wisconsin 

Over the years number theory has given both professional and amateur 
mathematicians many hours of frustration and enjoyment. The study of perfect 
numbers is an area of the theory of numbers which dates back to antiquity. 

A positive integer n is a perfect number if and only if the sum of its 
positive integer divisors is 2n. For example, 28 is a perfect number since 
the positive integer divisors of 28 are 1, 2, 4, 7, 14, and 28 and 

1 + 2 + 4 + 7 + 14 + 28 = 56 = 2 x 28 . 

The first few perfect numbers are 6; 28; 496; 8,128; 33,550,336; and 8,58,9,056. 
Notice that each of these perfect numbers is even. Although no odd perfect 
number has ever been found, mathematicians have been unable to prove that 
none exists. It is also unknown whether or not the number of perfect numbers 
is infinite. 

Euclid showed that if n is a positive integer of the form 2P~ (2P - 1) 
where 2P - 1 is a prime then n is a perfect number. Later Euler established 
that every even perfect number is of the Euclid type. A necessary condition 
that 2P - 1 be a prime is that p be a prime. Thus all even perfect numbers 
have the form 2P (2P - 1 ) where p is a prime number. 

If p = 3 then 2P"1(2P - 1) = 28 which is a multiple of 7. Since 3 is 
the only multiple of three which is a prime number, all other prime numbers 
are of the form 3j + 1 or 3j + 2. A careful investigation of the even perfect 
numbers different from 28 given above yields the following table. 

p 2P~1(2P-1) p 2P- 1 (2 P -1) 
2 6 = 7-0 + 6 7 8128 = 7 - 1161 + 1 

5 496 = 7 • 70 + 6 13 33550336 = 7 • 4792905+1 

17 8589869056 = 7 • 1227124150 + 6 

This leads us to conjecture that if n = 2P~ (2P - 1) is an even perfect number 

different from 28 then n is of the form 7k + 1 or 7k + 6 according as p is 

286 
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of the form 3j + 1 or 3j + 2. Before attempting to prove this conjecture, we 
shall establish some preliminary results* 

Lemma 1, For each positive integer w, 2$w = 7t + 1 for some positive 
integer t. 

Proof. 23 = 8 - 7 • 1 + 1. Assume that 23 w = 7r + 1. Then 

23(X+1) = 23X+3 = 2 3 X e 2 3 = ( 7 r + 1 ) 8 = : 7 ( 8 r + 1 ) 

and the lemma follows by the principle of mathematical induction. 
Lemma 2. For each nonnegative integer z, 2 = 7s + 3 for some 

nonnegative integer s. 
Proof. If z = 0 then 2 3 z + 1 = 2 = 7 - 0 + 2. Assume that 2 3 y + i = 7m 

+ 2. Then 

2 3(y+l )+i = 2 (3y+i)+i = 2 3y+i . 2 3 = ( ? m + 2 ) Q = 7 ( 8 m + 2 ) + 2 

and the lemma follows by the principle of mathematical induction. 
Theorem. If n = 2P~ (2P - 1) is an even perfect number different from 

28 then n is of the form 7k + 1 or 7k + 6 according as p is of the form 3j 
+ 1 or 3 j + 2 . 

Proof, n ^ 28 implies that p f 3, Since p is a prime number and p 
f 3, p is either of the form 3j + 1 or 3j + 2, 

Case 1. p = 3j + 1. Then p - 1 = 3j and 2 P _ 1 = ^ = 7t + 1 by 
Lemma 1. Hence 2P = 2 • 2P~ = 141 + 2, from which it follows 
that 2P - 1 = 14t + 1. Thus n = 2P"1(2P - 1) = (7t + l)(14t + 1) = 
7(14t2 + 3t) + 1. 
Case 2. p = 3j + 2. Then p - 1 = 3j + 1 and 2P~1 = 2^+1 = 7s + 2 
by Lemma 2. Hence 2P = 2 • 2P~1 = 14s + 49 from which it follows 
that 2P - 1 = 14s +'3. Thus n = 2P" i(2p - 1) = (7s + 2)(14s + 3) = 
7(14s + 7s) + 6. 

Let n be an even perfect number. It can be shown that if n fi 6 then n 
yields the remainder 1 when divided by 9; if n / 6 and n ^ 496 then n ends 
with 16, 28, 36, 56, or 76 when n is written in base 10 notation; and if n 
7̂  6 then n has the remainder 1, 2, 3, or 8 when divided by 13. 
[Continued on p. 304. ] 

* • • • • 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by A. P. Hillman 

University of New Mexico, Albuquerque, N . M . 

Send all communications regarding Elementary Problems and Solutions 
to Professor A» P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or 
solution should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets in the format used below. Solutions should be 
received within three months of the publication date. 

B-142 Proposed by W i l l i a m D. Jackson, SUNY at Buf fa lo, Amherst, N . Y . 

Define a sequence as follows: Ai = 2, A2 = 3, and A = A ,A „ for ^ * * n n-1 n-2 
n > 2. Find an expression for A • 

B-143 Proposed by Raphael F inke ls te in , Tempe, Ar izona* 

Show that the following determinant vanishes when a and d are natural 
numbers: 

I F F F , I 
a a+d a+2d 
a+3d a+4d a+5d 

S F F F I 
I a+6d a+7d a+8d | 

What is the value of the determinant one obtains by replacing each Fibonacci 
number by the corresponding Lucas number? 

B-144 Proposed by J . A . H . Hunter, Toronto, Canada 

In this alphametic each distinct letter stands for a particular but differ-
ent digit, all ten digits being represented here. It must be the Lucas series, 
but what is the value of the SERIES? 

288 
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ONE 
T H R E E 
S T A R T 

L 
S E R I E S 

B-145 Proposed by Douglas L ind , Universi ty of V i r g i n i a , Char lo t tesv i l l e , V a . 

Given an unlimited supply of each of two distinct types of objects, let f(n) 
be the number of permutations of n of these objects such that no three consec-
utive objects are alike. Show that f(n) = 2F + , where F is the n Fib-
onacci number. 

B-146 Proposed by Wal ter W , Horner, Pit tsburgh, Pennsylvania. 

Show that 77 = Arctan (1/F2 n) + Arctan F2n+i + Arctan F2n+2 • 

B-147 Proposed by Edgar Karst, Universi ty of A r i zona , Tucson, A r i zona , 
in honor of the 66th bi r thday of Hansraj Gupta on O c t . 9 , 1968, 

Let 

S =• (1/3 + 1/5) + (1/5 + 1/7) + • • • + (1/32717 + 1/32719) 

be the sum of the sum of the reciprocals of all twin primes below 215.. Indicate 
which of the following inequalities is true: 

(a) S < TT2/6, (b) TT2/6 < S < v£~ (c) Ve < S . 

SOLUTIONS 

N O T E : The name of A . C . Shannon was inadver tent ly omi t ted from the list of 

solvers of B-109, 

L I N E A R C O M B I N A T I O N OF G E O M E T R I C SERIES 

B-124 Proposed by J .H .Butchar t ,Nor thern Ar izona Univers i ty ,F lagsta f f , A r i z o n a . 

Show that 
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00 

i=o 

where 

a0 = 1, a4 = 1, a2 = 2 , " 8 

are the Fibonacci numbers. 

Solution by R. L. Mercer, University of New Mexico, Albuquerque, N . Mex. 

Convergence of the series follows from 

n & ^ V = CL+v€)/2 

and the ratio test. Let T be the value of the series. Then 

-00 00 00 

i=o i=o i=o 

and 

T = 4(T - a0 - at/2) - 2(T - a0) -

Solving, we find 

T = 2(a0 + ai) = 2a2 = 4 . 

Also solved by Dewey C . Duncan , Bruce W . K i n g , J . D . E, Konhauser, F. De 

Parker, C . B. A . Peck, A . C . Shannon (Aust ra l ia ) , John Wessner, Dav id Z e i t l i n , 

and the proposer. 
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EDITORIAL NOTE: 
Since „ x 

f(x) = 1 = y F . x n = y a.x1 

1 - x - x * ^ n + 1 . ^ J 

n=o i=o 

Substituting 

X 2 < 2 \ 2 / 

yields 

00 

i=0 ! - I - 4 

while f(-l/2) = 4/5. 

V. E.H. 

A NON-INTEGRAL SUM 

B-125 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va, 

Is 

n 
v JL 
i-i F . 
k=3 k 

ever an integer? Explain. 

Solution by Dewey C. Duncan, Los Angeles, California. 

The summation 
n 
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is never an integer, since 

(1) For n = 3, 4, 5, the summation yields 1/2, 5/6, 31/30, respectively. 
(2) For n > 5, the summation yields a sum that is greater than 1 and less 

than 1.5, since 

F 2k- i F2k+i F2k F2k+2 

F2k ^2k+2 ' F2k+i < F2k+3 ' 

and 

lixn ^ - - ^ 

From 

n + i 

F2k-iF2k+l - F2k = (~D2k 

one implies that for all k > 1, 

F2k F 2 k F2k_i F2 k_! 
F2k+2 F 2 k + 1 F 2 k F 2 k 

Therefore, since 

_ = 2 
F4 3 ' 

we conclude that, for k > 3, 

F 
LJL_ < 1 
F k + i 3 

Consequently, 
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D if- < \ [1 + (2/3) + (2/3)2 + (2/3)3+ - ] , 
k=3 k 

whence, 

00 

Y, Y~ < 3/2 Q.E.D. 
k=3 k 

Also solved by R. L. Mercer, C. B, A . Peck, and the proposer. 

GOOD ADVICE 

B-126 Proposed by J . A. H. Hunter, Toronto, Canada. 
Each distinct letter in this alphametic stands, of course, for a particular 

and different digit. The advice is sound, for our FQ is truly prime. What do 
you make of it all? 

READ 
FQ 

READ 
FQ 

DEAR 

Solution by Charles W. Trigg, San Diego, California. 

From the unitsf column R is even* Since 2R + 1 = D, then (R,D) = 
(2,5) or (4,9). 

If (R,D) = (4,9), then (since FQ is prime) Q = 3 and F = 1,2,5,7, 
or 8. Furthermore, 2F + A + 2 is a multiple of ten. Thus (F,A) = (1,6), 
(5,8) or (8,2). But each of these pairs leads to a value of E which duplicates 
another digit 

If (R,D) = (2,5) then (since FQ is prime) Q = 1, and F = 3,4,6 or 7. 
Now 2F + A + 1 is a multiple of ten, so (F, A) = (6, 7) is the sole solution. 
Whereupon E = 10 - 2 or 8, The unique reconstruction of the addition is 
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2 8 7 5 

6 1 

2 8 7 5 

6J. 
5 8 7 2 

Addi t iona l solut ion by David Z e i t l i n , M inneapo l i s , Minnesota. 

0841 

7 9 

0841 

7_9 

1840 

Also solved by H . D . A l len (Canada), A . Gommel , R. L. Merce r , John W . M i l som, 
C . B. A . Peck, and the proposer. 

CONGRUENCES 

B-127 Proposed by Charles R. W a l l , Universi ty of Tennessee, K n o x v i l l e , Tennessee. 

Show that 

2 n L = 2 (mod 5) , 
n 

2 n F = 2n (mod 5) . n 

Solut ion by John Wessner, Me lbourne , F lo r ida . 

We proceed by induction. Both r e s u l t s a r e t rue for n = 1,2. If we 

a s s u m e that the f i r s t for n = k and n = k + 1, then we have 

2 k L k = 2 (mod 5), 2 k + 1 L k + 1 = 2 (mod 5) . 

Combining these , 

0k+2L, ^ = 2(2 k + 1 L. _,_. + 2 • 2 k L, ) = 2(2 + 2 • 2) 5 2 (mod 5) . 
2 k+2 k+i k 
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Simi lar ly , in the second ca se we a s s u m e 

2 k F k = 2k (mod 5), 2 k + 2 F k + 2 = 2(k + l)(mod 5) . 

Combining these gives 

2 k + 2 F . ^ = 2 (2 k + 1 F , ^ + 2 • 2 k F , ) k+2 k+i k 

= 2 2(k + 1) + 2 • 2k = 12k+ 4 

=? 2 ( k + 2)(mod 5) . 

Also solved by Herta T. Fre i tag , R. L Mercer , C . B. A . Peck, A , C . Shannon 
(Aust ra l ia) , Paul Smith (Canada), David Z e i t l i n , and the proposer. 

GENERALIZED SEQUENCES 

B-128 Proposed by M . N . S. Swamy, Nova Scotia Technical Co l l ege , H a l i f a x , Canada* 

Let f be the genera l ized Fibonacci sequence with fy = a, f2 = b5 and 

f . 4 ~ f + f • Let g be the assoc ia ted genera l ized Lucas sequence defined n+i n n - i &n & Vl 

by g = f . + f ^ . Also let S = f< + f2 + • • • + f . It i s t rue that S4 = g4 J &n n - i n+i n l * n 4 to4 

and S8 = 3g6. Genera l ize these fo rmulas . 

Solut ion by C , B. A . Peck, Ordnance Research Laboratory, State Co l l ege , Pennsylvania. 

B y i nduc t i on , 

n n+2 * n n - i ^ n-2 L 

and 

g = L ,f2 + L fi . &n n - i * n-2 -1 

Thus 

s4n = hn-z ~ h = (F4n-i - l)h = F4nfi 

and 
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F2ng2n+2 ~ F2n(L2n+if2 + L2nfi) • 

These are equal, since 

F4n = F2nL2n 

and 

F4n-l - 1 = F2n.L2n+i • 

Thus we have 

s4n = F2n^2n+2 • 

P. S. S = f + - f2 occurs in B-20, FQ, Vol. 2, pp. 76-77. 

Also solved by Bruce W . K i n g , A . C . Shannon (Aust ra l ia) , David Z e i t l i n , and 
the proposer. 

MODIFIED GOLDEN RATIO 

B— 129 Proposed by Thomas P. Dence, Bowling Green State Un ivers i ty , Bowling 
G r e e n , O h i o . 

For a given positive integer, k, find 

lim (F ^ / L ) . n—>oo n+k n 

Solut ion by Bruce W . K i n g , Burnt Hi l ls - Balston Lake H . S . , Burnt H i l l s , N . Y . 

Let a = (1 + V§)/2- and b = (1 - V5)/2. Then |b/a| < 1 and it follows 
that (b/a) ^ 0 as n->oo. Hence 

F n + k / L n = (ak + k - bn+k)/V5"(an + b n ) = (ak / V § ) [ l - ( b / a ) n + k ] / [ l + (b/a)n] 

approaches a A/5~ as n goes to infinity. 

Also solved by R. L. Mercer , C . B. A . Peck, A . C . Shannon (Aust ra l ia) , Paul 
Smith (Canada), John Wessner, and the proposer. 
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MULTINOMIAL COEFFICIENTS 

B-130 Proposed by Douglas Lind, University of Virginia, Charlottesville, V a . 

Let coefficients c.(n) be defined by 

297 

(1 + x + x2) = c0(n) + Ci(n)x + c2(n)x2 + • • • + c3n(n)x; 2n 

and show that 

2n 
/ J c.(n) 2 = c2n(2n) . 

3=0 

Generalize to 

(1 + x + x2 + • • • + x ) . 

Solution by David Z e i t l i n , Minneapolis, Minnesota. 

Le t 

Q(x) = Qk n(x) = (1 + x +• x2 + • • • + x 
kn 

Since 

we have 

x ^ Q d / x ) = Q(x) , 

qjW = V - j ( n ) 

kn for j = 0 ,1 , • •• •, kn. Equating coefficients of x in 

k 2 n (~ k 
(1 + x + • • ' + x ) = (1 + x + — +x ) 
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we obtain 

kn kn 

V(2n) = E Vn)V-r(n) = S l%^f • 
r=o r=o 

Also solved by Ra L. Mercer , R# W , Mercer , A . C . Shannon (Aust ra l ia ) , 
and the proposer. 

A FIBONACCI-LUCAS IDENTITY 

B-131 Proposed by Charles R. Wal l , University of Tennessee, Knoxviile, Tennessee 

P r o v e that for m odd 

L + L _,_ 5F 
ii" m n+m _ n 

F + F , L 
n - m n+m n 

and for m even 

F + F _,_ F 
n - m n+m _ _ji 

L + L ^ L 
n - m n+m n 

Solut ion by John Wessner, Me lbou rne , F lo r ida . 

The following p r o p e r t i e s of the Fibonacci and Lucas number s can eas i ly 

be proved by the use of the Binet formula: (1) F o r odd values of m, 

L + L _,_ = 5F F 
n - m n+m n m 

F + F ^ = L F 
n - m n+m n m 

(2) for even values of m, 

[Continued on p. 304. ] 

L + L ^ = L L , 
n - m n+m n m 

F + F ^ = F L . 
n - m n+m n m 

•k it • • • 



RECREATIONAL MATHEMATICS 
Joseph S. Madachy 

4761 Bigger Rd. , Ket ter ing, Oh io 

Before I go on with new business, readers of this column should make the 
following corrections in the February 1968 issue of the Fibonacci Quarterly 
(Vol. 6, No. 1): 

Page 64: In 18716, the fifth group of five digits should read 87257 and not 
78257. 

Page 67: The last few words in the fifth line under "A Fibonacci Varia-
tion" should read "• • • F series in which each. . . f f 

n 
Page 67: Under "Some Fibonacci Queries," for F18 = 2584, correct the 

addition to read 2 + 5 + 8 + 4 = 19. 

Some browsing by myself through past issues of the Fibonacci Quarterly 
disclosed an article by Dewey C. Duncan [2] in which Mr. Duncan anticipated 
— in a slightly different manner — my Fibonacci variation [4, page 67], I had 
formed an ,.F series in which each term is the sum of the next two terms, 

n 
starting with 0F = 0, AF = 1: 

0, 1, - 1 , 2, - 3 , 5, -8 , 13, -21 , 34, -55, 

etc. 
Mr. Duncan introduces Fibonacci number relationships involving zero and 

negative indices, with 

F0 = 0, "F_i = 1, F_2 = - 1 , F_3 = 2 

n+i and, generally, F = (-1) F . The Duncan series thus formed is 

0, 1, - 1 , 2, - 3 , 5, -8 , 13, -21 , 34, -55, 

e tc . , which is identical to the F series given previously. 

299 
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If n is zero or even, we have F = -F and F = -F for n odd, 
-n n n n we have F = F and F• = F . -n n n n 

Such is the beauty of the Fibonacci number s and the i r var ia t ions! 

PRODUCTS WITH DIFFERENT FACTORS CONTAINING THE SAME DIGITS 

The following collection was der ived from the Nelson table desc r ibed in 

[ 4 , pp. 6 1 - 6 3 ] . The l i s t shows products with two se t s of fac tors containing the 

s ame digi ts , e . g . (6)(4592) = (56)(492). T r iv i a l solutions o r those der ived 

from s imp le r f o rms , a r e not l i s ted. F o r example 

(23) (794) = (23) (794) 

(6) (500) = (600) (5) 

and o the r s s i m i l a r to the above a r e excluded. 
th The l i s t contains one se t of fac tors (the 8 set) in which the digi ts a r e in 

the s a m e o r d e r , and four s e t s of fac tors (the f i r s t four) in which the digi ts a r e 

in r e v e r s e o r d e r . 

If the l i s t p roves incomplete , I would deeply apprec ia te new r e s u l t s found 

by r e a d e r s . 

(Fac to r s ) ! 

(6)(21) 

(3) (51) 
(50) (6) 

(4) (567) 

(6) (3128) 

(4)(72)(86) 

(6) (4592) 

(7) (3942) 
(9) (3465) 

(53)(781) 

(9) (7128) 

(4) (56) (729) 

(6) (93) (428) 

(Factors ) 2 

= 126 
= 153 

= (60) (5) 

= (7) (6) (54) 

= (23) (816) 

= 24,768 

= (56) (492) 

= (73) (9) (42) 
= ( 6 3 x 4 9 5 ) 

= (71) (583) 

- (81) (792) 

= (9) (24) (756) 

= (248) (963) 

P roduc t 

126 

153 

300 

2,268 

18,768 

24,768 

27,552 

27,594 

31,185 

41,393 

64,152 

163,296 

238,824 
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(7)(52)(918) = (9)(51)(728) 334,152 

(92)(8736) = (96)(8372) 803,712 

(6)(7)(84) (531) = (8)(413)(567) 1,873,368 

(82)(53671) = (562) (7831) 4,401,022 

(8) (935721) = (9)(831752) 7,485,768 

(24) (756) (813) = (54)(273168) 14,751,072 

(9)(76)(25143) - (57)(493)(612) 17,197,812 

(4) (86) (53217) = (216)(84753) 18,306,648 

(34) (96) (5721) = (576)(32419) 18,673,344 

(4) (657) (8213) = 21,583,764 21,583,764 

(9) (561) (4372) = (594)(37162) 22,074,228 

(64) (78) (9251) = (96)(572)(841) 46,180,992 

In the Apri l 1968 i s sue of the Fibonacci Qua r t e r ly [5, p . 166] , I had 

asked you to demons t r a t e that no consecut ive se t of Fibonacci n u m b e r s could 

be used to form a magic squa re . In any n x n (n m u s t be g r e a t e r than 2) 

magic squa re composed of n2 posi t ive i n t ege r s , the magic constant (the sum 

of the i n t e g e r s in each row, column, and long diagonal) i s the sum of a l l the 

i n t ege r s divided by n„ The re fo re , any in teger appear ing in a magic squa re 

m u s t be s m a l l e r than the magic constant . 

The demons t ra t ion involves showing that the l a r g e s t in teger appear ing in 

an a r r a y of consecut ive Fibonacci n u m b e r s i s l a r g e r than the magic constant 

— hence such a magic square i s imposs ib le . 

The sum of the f i r s t p F ibonacci n u m b e r s i s F , - 1, where F 
th p 2 P 

i s the (p + 2) Fibonacci number . The sum of any q consecut ive Fibonacci 
n u m b e r s , where F i s the f i r s t and F , i s the l a s t t e r m i s 

p p+q-i 

(F - 1) - (F - 1) = F - F 
1 p+q+i ; l p+i ; p+q+1 p+i 

Le t F be the f i r s t in teger in a s e r i e s of n2 consecutive Fibonacci p 
n u m b e r s . The l a r g e s t will be F , 2 and the sum of these n2 t e r m s wil l 

° p+n - i 
be 

(1) F , o, - F , = S 
p+n4+i p+l a r r a y 
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w h e r e S , then, i s the sum of the i n t ege r s in an n x n a r r a y of n2 con-
a r r a y - t o J . 

secut ive Fibonacci n u m b e r s . F r o m equation (1) we can wr i t e 

(2) S < F o 
a r r a y p+n4+i 

T h r e e consecut ive Fibonacci n u m b e r s , s t a r t ing with F 2
 a r e : 

F p + n 2 - i ' F p+n 2 ' Fp+n2+i 

whe re 

p+n^+i p+n^-i p+n'5 . 

Also, in any se t of th ree consecut ive Fibonacci n u m b e r s (excluding the f i r s t 

t h ree 1, 1, 2), we have 

JH A _ JH rj ^ JC O 
p+n4 p-ftr-i p*Hr-i 

o r 

where 

F , o — F . o ^ + K p+n4 p+n4-i 

K < F ^ 2 < p + n - i 

Then 

F _,_ 2_L, = F ^ 9 + F _ L 2 + K = 2 F _ L 2
 + K p+nH-i p + n M p + n M p+n - l 

Since K < F , 2 „ we have p+n^-i 

2F ' 2
 + K < 3 F J . 2 < p + n - i p+n4-i 

o r 
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p+n^+i p+rr-i 

From inequalities (2) and (3) we have 

(4) S < 3F M 2 . 
array p+rr-i 

If we divide (4) by 3 we obtain 

S array < v 
3 p+n2-i * 

That is, the magic constant for a 3 x 3 array of 9 consecutive Fibonacci 
numbers will be less than the largest Fibonacci number in the array* It fol-
lows that 

S 
_ 2 * 2 £ < F , (n < 3) 

n p+n4-i 
where (S )/n is the magic constant for an n x n array, is also true — 

array to J 

and so consecutive Fibonacci numbers cannot be used to construct magic 
squares. 

Some general results concerning Fibonacci numbers and magic squares 
appear in [1]. There Brown proves the general case that no set of distinct 
Fibonacci numbers can form a magic square, 

Also in [ 3] Freitag shows a magic square constructed with Fibonacci 
numbers and sums of Fibonacci numbers. One magic square is shown which 
has terms, each of which is composed of the sum of two Fibonacci numbers„ 

This last item raised a trick question which I pass on to readers: Can a 
magic square be constructed in which each term is the sum of two consecutive 
Fibonacci numbers? 

This column for the December 1968 issue will contain an article by Free 
Jamison and v . E. Eoggatt, J r . , on the dissection of a square into acute i sos-
celes triangles — an extension of a familiar idea. Also, as a result of some 
work by Charles W. Trigg appearing in the July 1968 issue of the Journal of 
Recreational Mathematics, Fll present some recreations in instant division* 
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[Continued from p. 287. ] 

It is also relatively easy to demonstrate that a positive integer n is a 
perfect number if and only if the sum of the reciprocals of the positive integer 
divisors of n is 2. 

If you have some free time why don!t you investigate the topic of perfect 
numbers or, better yet, why don!t you suggest it as apossible project for some 
talented student in one of your high school mathematics classes? 

• * • • • 

[Continued from p. 298. ] 

With these the desired results are immediately available. 

Also solved by Herta T. Freitag, C. B. A . Peck, A . C. Shannon (Australia), 
and the proposer. 

. * • • • • 
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