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GENERATION OF STIRLING NUMBERS
BY MEANS OF SPECIAL PARTITIONS OF NUMBERS

Daniel C. Fielder
Georgia Institute of Technology, Atlanta, Georgia

1, INTRODUCTION

Stirling numbers of the First and Second Kinds appear as numerical co-
efficients in expressions relating factorials of variables to powers of the var-
iable and vice versa. Riordan [1] investigates the properties of Stirling num-
bers in great detail, particularly with respect to recurrence formulas and
relationships to other special numbers.

In the series expansions on certain functions of logarithms, Adams [2]
develops and tabulates coefficients which run through positive and negative
indices. A rearrangement of Adams' table for positive indices together with
an appropriate alternation of sign yield Stirling numbers of the First Kind while
a different rearrangement for negative indices yields Stirling numbers of the
Second Kind,

An excellent summary of the properties of Stirling numbers including
recursion and closed form expressions for finding Stirling numbers is pre-
sented in a recent Bureau of Standards publication [3]. 1In this regard, it is
interesting to note that members of special partitions of numbers described
in the April, 1964, issue of this Journal [4] can also be used to develop

Stirling numbers. A discussion of this latter method follows.

2. DESCRIPTION OF COEFFICIENTS

Riordan uses the notation S(n,k) and s(n,k) for Stirling numbers of the
Second and First Kinds, respectively, where the integers n and k are pos-
itive. Stirling numbers of the First Kind, the sum of whose n and k is odd,
are negative. Adams chooses CI];, where n is a negative or positive integer
and k is zero or a positive integer. Although none of Adams' C's are nega-
tive, a negative value for n identifies a C equal to a First Kind Stirling num-
ber, neglecting sign. For convenience of manipulation, the obviously sub-

k k, re-

scripted (R for Riordan, A for Adams) indicates n R XA

R A’
place the n and k's, By direct comparison, it can be seen that

1



2 GENERATION OF STIRLING NUMBERS [Nov.

(1) ky = -n,
(applies for Second Kind only),
(2) _ np = kR +k A
3) np = n,
(applies for First Kind only).
(4) np = ky +k,

The above equations lead to

_kR
(5) Stn,,k,) = C_ ",
R’"R np kR
6 S
() kA - (A—nA’_nA)’
n_+k n
R "R R
(7) S, ky) = (-1) *C s
R’"R np kR
n 2n, -k .
A _ A . -
(8) CkA = (-1) s(n sy kA) .

Tabulations of a few Stirling numbers are given below.

Table 1 S(nR, kR)
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1968] BY MEANS OF SPECIAL PARTITIONS OF NUMBERS 3

Table 2 s(nR, kR)
nR\kR 1 2 3 4 5
1 1
2 -1 1
3 2 -3 1
4 -6 11 -6 1
5 24 -50 35 -10 1

In Adams' table, vertical entries for positive n , are, with appropriate
signs, First Kind Stirling numbers, and 45-degree, negative slope, diagonal

entries for negative n

A are Second Kind Stirling numbers.

3. GENERATION OF SECOND KIND STIRLING NUMBERS

The negative n A section of Adams' table suggests a numerical procedure
by which Second Kind Stirling numbers can be generated simultaneously with
the generation of members of the special partitions described in [4] For
example, in Table 3 consider a few column entries from Adams' table for n

A
= -4, Differences between the entries are included

Table 3
k A\n A -4 Differences
0 1 1
1 10 9
2 65 55
3 350 285

If the differences were known the table entries could be found easily. The dif-
ferences, however, do not stem from simple recursion formulas. If the man-
ner in which successive sets of Second Kind Stirling numbers are foundis
investigated, it is seen that the differences are sums of products whose range
is controlled by n A and k x As an example from Table 3 (n A= -4, k A = 3)
the products can be set up and sums formed vertically and horizontally as is

shown in (9).
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1 2 2x2 2x2x2
3 2x3 2x2x3
4 2x4 2x2x4
3x3 2x3x3
3Ax4  2x3x4
(9) 44 2x4x4 Vertical Sums
3x3x3
3x3x4
3x4x4
Ax4x4

1+ 9+ 55 + 285 = 350

Horizontal Sums

The significant fact demonstrated by (9) is that exclusive of the initial 'one,"
the multiplication signs, and the resultant summations, the array presented

by (9) is identically that found in the development of the partition set
PV(=2,<12]=1,<3]=2,=<4)

according to the methods described in [4] For the purposes of this paper,
the PV set designation implies that the set of partitions is arranged in col-
umns, each column consisting of partitions having exactly as many members

as the column number. Thus, the set designation

{1, PV(z2,=12/=1,<3|=2,<4)}

includes an initial '"one'' and the properly arranged partitions.

In general, the set
{1, PV(zz,s-nAkA|21,sk |22,5—nA)}

when interpreted as in (9) yields Adams'

for negative n A Through use of (1) and (2), itis seen that the Second Kind

Stirling number S(nR, kR) can be found from the set

{1, PV(=2, =k, - k)| =1, =, - kR[ =2,=kp)} .
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The method suggested above leads directly to

n
CkA
A

or S(nR, kR). An ALGOL language computer program for obtaining the parti-
tions described in [3] was developed as a result of student projects under the
author's direction. It is obvious that only a slight modification of this program
would be required to generate and store products (as the corresponding par-—

tition is formed) needed to obtain C's or S's directly as exemplified by (9).
4. GENERATION OF FIRST KIND STIRLING NUMBERS
Adams lists the following formulas for finding
C?A, CI:A, and CZIA

The sum forms are applicable for n A positive, but the product forms apply

for n A positive or negative,

(10) CZIA: 1
(11) CTA=1+2+3+...+(nA_1):nA(ng‘l)
A
Cy =1x2+1x3+1x4+...+1x(nA_1)
+2x3+2x4+... +2X(nA_1)
(12) F3x4+.s +3xm, - 1)

+ (0, -2, - 1)

nA(nA - 1)(nA - 2)(3nA -1)
24

Although Adams gives no formula for kA > 2, (10), (11), and (12) suggest that

tabulations of sums of products might be useful for an extension beyond k A "
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2. This is indeed the case as can be demonstrated in an example in which n A

5. Tabulations corresponding to the known formulas (10), (11), and (12) are

listed below. For reasons given later, crossed-out dummy entries areincluded.

1 i1 2 | 2 2=x2
| 3 I 3 2x3 .
| 4 1 4 2x4 Vesrtlcal
(13) I [ 3-%3 ums
1 1 3x4
b b A=x4
1
1=C}, 1+9 =10 =0}, 9+26 = 35 = C}

Horizontal Sums

Consider the possible extensions beyond (13) for k, = 3 and k N 4 shown

A
in (14).
232 232362 1 2%23%2
2x3 232363 1 2x%2%3
2x4 23234 I 2%234 Vertical
333 ] | 2e3e Sums
3x4 2x3x4 ! 2x3x4
4xed 23434 I 23dx4
14) 3%x3%x3 I 3%x3%x3
Ix3x4 I 3x3x4
Ixdxd I 3xdx4
dxdzd 1 4xdxd
1

26 + 24=50=C31 24 =C]

Horizontal Sums

Again, note that the crossed-out entries do not contributeto a sum. The exten-
sions exemplified by (14) yield the correct C} and Cj .

It is seen that exclusive of the initial 'ones' (where present), the multi-
plication signs, the crossed-out lines, and the resultant summations, the tabu-
lations of (13) and (14) are each a partition set of the type described earlier.
Further, it is seen that only those entries with repeating members are crossed
out. The success of (13) and (14) is not accidental. An investigation of the
breakdown of First Kind Stirling numbers reveals that the pattern of (13) and

(14) is general.



1968] BY MEANS OF SPECIAL PARTITIONS OF NUMBERS 7

Exclusion of the crossed-out entries changes a partition set to one with
non-repeating members. For identification, the designation changes to PuV'
One way of obtaining PuV sets would be to generate PV sets and ignore
repeating member partitions. This process is, of course, inefficient and can
be circumvented as will be shown later.

For the example given, the following implications can be expressed:

{1y ci =1
1, pve2, stEL=1z2,= 9} —=0c] = 10
(15) {1, P ve2,<slz1,=2[=2,= 9}—=cf = 35
{0, P V=4, =12]z2,= 3]z2,= 9}—=0cf = 50

{0, Vs, <12|=3,= 3]=2,= 4}—C} = 24 .

For the general case, the implication is that

kA +3 kA+3 kA
Pl Bt Skl BT et i B N ] I HCTNRYR BN
A A A
(16) -
k,+3 k k n
A A A A
-1+ s =k, - | ——=| -] = l|=2, =@, -D))=C_, n, =0
ZkA+2 A n,-1 n, A kA A
It can be observed from (16) that*
n
CkA
A
does not exist for k, = n,. The corresponding expression for Stirling num-

A A
bers of the First Kind is found through application of (7) to (16) as

*Brackets | | except where obviouslyused for references are usedinthe cus-
tomary mammer with real numbers to indicate the greatest integer less than
or equal to the number bracketed. See Uspensky and Heaslet [5].
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m_ -k_ +3 n_ -k, +3
R R R R
— |, P V{=2{n_ -k -1+ |7 , <fn, -k
ZnR—ZkR+2 u R R 2nR—2kR+2 R
(n -k | n. -k +3 |
R R R R
an - | =—7lo,-1|=n, -k, -1+ |57 "— |, =n, -k, -
np 1 R R R ZnR ZkR+2 R R
—n -k n, -k n.+tk
R_ R R_ R - ) R R
- — - =2,<n_, -1} —>(-1) s(n,, k) .
nR 1 nR R R’"R
= - /

5. REDUCTION OF PuV TO SIMPLER PV FORMS

As was indicated earlier, one way of obtaining the PuV partitions is
first to generate PV partitions and then to retain non-repeating member par-
titions. The repeating member partitions serve onlyas devices for successive
generation of partitions. Equations (13) and (14) illustrate graphically the
wastefulness of such a procedure. It is possible to generate simpler PV par-
titions which easily can be modified to yield the desired PuV partitions. The
method of doing this is described below. While this method applies particular-
ly for the partitions of this paper and is not intended to be general, it has the
computational feature of generating exactly as many PV partitions as are
needed for conversion to PuV partitions — no more!

A PuV partition applicable for this paper can be expressed as
(18) P_V(=2c, <ab|=c, <b|=2, <a)

whether either b = ¢ aloneor b =c¢ and b = ¢ + 1, depending on whether
the set (1 or O, PuV has one or two columns pf partitions. .(See (15) for
example). Assume that b = ¢. If the PV designation applied for (18), the
largest (and last) b-member partition would total ab and would appear as b
a's, (a,a,---,a). The u subscript, however, wouldnot permit this partition,

the closest approach being

(a-b+1, a-b+ 2, -+, a)

However, (@ -b+1, a=b+2,---,a) can be formed by member additionof
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@-b+1, a-b+1,---,a-b+1) and (0,1,2,°*+,b - 1) .
For a given b,
@-b+1, a-b+1,---,a-b+1)
is an acceptable last partition in a one-partition column PV set and has a
greatest member a -b + 1 and the sum ab - b(b - 1), The lower limits of the
new PV designation remainthe same as in (18), Thus, a member-by-member
addition of (0,1,2,++,b - 1) to the members of

(19) PV(=2,<ab - b(b - 1)|=b,<b|=2,<2-b+1)

produces the desired form of (18) where b = ¢, For the case of two columns

of partitions (i.e., b=1¢, b =c+1),

(20) PV(=2c¢c,<ac - c(c - 1)‘20,5.0'22,551 -c+1)

is augmented by (0,1,2,--+,c - 1) and

(21) PV(=2(c + )=a(c + 1) -c(c + 1)|=c + 1,<c +1|]=2,=<a - ¢

is augmented by (0,1,2,-++,c). An examplefor a = 4, b =3, ¢ = 2 follows.

PV(=4,=6[=2,=2[=2,=3) P V(=4,=12=2,=3]=2,=4)

»3 2,3,4

+ (0, 1) =———————

2,
(22) 2,
35

W W N
Lo DN DD

,4
,4
PV(=6,<6|=3,<3]>2,<2)

2,2,2 + (0,1,2)

Comparison of (22) with (14) shows the reduction in computation.

REFERENCES

1. J. Riordan, An Introduction to Combinatorial Analysis, John Wiley and
Sons, Inc,, New York, N.Y., 1958, pp. 32-49.
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ERATTA FOR
FACTORIZATION OF 2 X2 INTEGRAL MATRICES WITH DETERMINANT *1

Gene B. Gale
San Jose State College, San Jose, Calif.

Please make the following corrections to "Factorization of 2x2 Matrices

with Determinant +1," by Gene B. Gale, appearing in the February 1968 issue,

Fibonacci Quarterly, pp. 3— 22,

Page | Line Reads Should Read
5 6 d< 0 d= 0
5 -8 c= d c= d
o |- - ] e - s
9 5 ad-bc = ad-cd=(a-c)d= 0 ad-bc> ad-cd =(@a-c)d= 0
a r+1 a r + 1\
9 |-t <c w > (c d )
9 4 cd= 0 c,d= 0
11 -5
5 n
{12 3} N
12 | -6 ar = (a - 1)(r - 1) ar - (a - 1)(r-1)
15 | 6 d(rF)_+sF__,) d|@F, +sF_)
16 | -4 A,B A, B
. ab - bcl ad - bc
17 -9 pa | Bd

Continued on p. 112



ON A CHARACTERIZATION OF THE FIBONACC!I SEQUENCE

DONNA B. MAY
Wake Forest University, Winston Salem, N. Carolina

For the Fibonacci sequence defined by
F, =1, Fp=0
F =F +F

n n-1 n-2’

it is well known that for all n

(2) Fo1Fonn ~ Fp
We consider the converse problem, i.e., whether or not (1) can be derived
from (2).

It is quite easy to prove by induction that if

n-1 ntH Xr21 = ("
and
Xy T X = 1,
then

Suppose, however, that x; and x, are chosen as arbitrarybut fixed integers,
In this case it will be shown that we cannot conclude (1) from (2), but we do find
some interesting results,

Consider the generalized sequence { Hn} defined by

This work was supported by the Undergraduate Research Participation Pro-

gram of the National Science Foundation through Grant GY-3026.

11



12 ON A CHARACTERIZATION OF THE FIBONACCI SEQUENCE [Nov.

Hn = Hn—1 +Hn_

&)
Hy = Hy = p, p and g are integers.

2

Under this definition it can be proved that

- Z 12 = (12 - an -2
4) H-n_1Hn+1 Hn (-1) " (p*-ap-g-),

and conversely, given equation (4) then (3) must follow. If p? - pq-q? = 1,

then (4) is the same as (2).
Therefore let us consider the integral solutions of an equation of the form

yz_xy—xz:tlz()

First of all it can be shown by induction that the Fibonacci numbers do satisfy

this equation. If (2) is to characterize the Fibonacci numbers then we must

show that the Fibonacci numbers are the only integral solutions to this equa-

tion, and then the sequence {Hn%, with p,q chosen to satisfy

(5) V-oxy-x-1=0

would be the sequence {Fn} However, given examples such as:

y = -1, x=0 y=-2, x=23 and y = -5 x = 8

it is seen that (2) and (5) do not characterize the Fibonacci sequence.

The characterizing theorem which can be proved is:
If x and y are integers such that y* -xy — x24+1 = 0 and

Theorem,
, Y = Fn for some n,

(1) if x and y are positive, then x = Fn_1
= _Fn for some n,

(2) if x ‘and y are negative, then x = —Fn—i’ y
=F

(3) if either x or y is negative and the other is positive, then x -1’

v =—Fn or x = -F y = +Fn for some n.

n-1’
Proof:
(1) Wasteels proved that if x and y are positive integers such that

V-xy-xtl =0, (y=x

then x and y are consecutive Fibonacci numbers [1]
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(2) If x and y are negative, then -x and -y are positive and from

the first result we know that -x = Fn— -y = Fn for some n,

1’
Therefore,

for some n.
(3) If either x or y is negative and the other positive then: y? - xy -

x*+1 = 0 may be written
(6) v =lxllyl -x22+1 =0, |x[=]y]

Let |y|> 1. Then from Eg. (6) we find that
if 1x]= 2}y| then

x|>|y| and [x|<2y]. For

(7 2 - [x|y| -y F1 =0
and

Ix(xi-iy) - y¥F1=2ylyl - y¥*F1=5271>0.

Thus
/2 <|y|<Ix|

Let
x| -1yl =1zl

Then

0=<lz|< |x/2| <|y|

and substituting for |x| in (7)
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(lz| + Iyh? - (2| + [yhly| - 27 1=0
or
22+ Jylle] -y £ 1=,

S0 that Izl and |y| satisfy Eq. (6) and |z| is smaller than }xl or lyl If
'zl= 1 then ]y‘ =1 or 2 so that the theorem is true for iz| and |y] and
therefore for ly| and (|y| + |z|) or lx'

If ’zl = 1 we can repeat the above argument and find z; such that

24l = Iyl - Il

which satisfies Eq. (6) and is less than |z!

If |21| = 1 we can continue this process until eventually we find a |Zi|
such that ]zi| = 1. Otherwise we would find an infinite sequence of distinct
integers less than x and greater than 1.

If izi| = 1, then the theorem is true for |z| and |z | and also for

i-1

Izi_1| and (Izi_J + lzif) = |zi » and similarly for |Zi| and (|zi‘+ iz2|) = lzl

N

and finally for lx| and |y
We return to the original problem and consider Eq. (4). If

pP-pa-¢i-1=0
and p and q are positive, then this identity does indeed characterize the
Fibonacci sequence. If, however, p and g are both negative then this iden-
tity characterizes the negative of the Fibonacci sequence, and if either p or
q is negative while the other is positive then this identity may characterize
either the Fibonacci sequence or its negative. There is no way in this case to

determine which it will be.

REFERENCE
1. Wasteels, M. J., Mathesis (3), 2, 1902, pp. 60-62,

L2R 28 2% 2% ¢



THE GENERALIZED FIBONACCI OPERATOR

CHARLES J. A, HALBERG
University of California, Riverside, California

I. INTRODUCTION

Some years ago Angus E. Taylor and the author were looking for exam-
ples of operators for which spectra could be determined and classified. In the
course of this search we chanced upon a bounded linear operator F on the
sequence space %y, defined by the infinite matrix (fij )s

:{1ifi=j=1 ori=1, j>1
ij 0 otherwise

This operator has the interesting property that the norms of its consecutive
powers are consecutive Fibonacci numbers, which, as is well known, are

defined recursively by

f=0, £ =1 and £ =£f +f , n=2,

n n-1  n-2
The infinite matrix representations of the nth power of this operator have
column vectors suchthat the first n+1 terms of these vectors are, in inverted
order, truncated Fibonacci sequences. The spectrum consists of the unit disc

together with the point

the positive zero of the polynomial P(A) = A% - A - 1, sometimes called the
"golden mean" which is well known to be the limit, as n becomes infinite of
the positive nth root of the nth term of the Fibonaceci sequence. We appro-
priately enough dubbed this operator the '"Fibonacci Operator, "

In this paper we define an operator-valued function F of a nonnegative

real variable, such that for every nonnegative value of x there is associated

15



16 THE GENERALIZED FIBONACCI OPERATOR [Nov.

with the number x a bounded linear operator ¥(x) on the sequence space 171.
In addition, there corresponds to each nonnegative value of x:

(1) a sequence { fk(x)}

(2) a polynomial P‘X()\)

(3) an infinite matrix representation (fij ®) for F.

For the case x = 1, F(), {fk(1)§ s Py(A) and (fij(l)) are the Fibon-
acci operator, the Fibonacci sequence, the associated polynomial, and matrix
representation, respectively, For all other values of X, 0 < x <o, F(x) and
the entities referred to in (1), (2), and (3) above have interrelationships sim-

ilar to those possessed by their counterparts in the case x = 1,

II. PRELIMINARY DEFINITIONS AND NOTATION

The operators we shall consider will be bounded linear operators map-
ping the sequence space ,gi into itself, The space 21 congists of the set of
all absolutely convergent sequences of complex numbers ¢ = {51} under the

norm defined by

1€l = Se,l.

i=t

It can be shown (see for example [1]) that every member, A, of the
algebra [£;] of bounded linear operators which map ¢, into itself has a ma-

trix representation (aij ), such that the uniform norm of A is given by

M=W§%

If A isin [fi] s then the resolvent set of A, p(A), consists of the set
of all complex A for which the operator (AI - A)~, where I is the identity

operator, exists as a bounded operator, and the range of Al - T is dense in

L.
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The spectrum of A, . o(A), consists of the set of all complex numbers
which do not belong to p(A). The spectral radius of A, |o(A)|, is theradius
of the smallest circle, with center at the origin, which contains o(A). We

shall have occasion to make use of the following facts: (see 2)
. ni/n
2.1) lo@| = lim[a™]

(2.2) If |A] =|o(A)| we can represent (AI - A)~! by its Neumann

expansion,
I, _A"
A1 = &
()\I A) A +Z An+1
n=1

The function F which we wish to consider has for its domain the set of allnon-

negative real numbers and its range is contained in [ 121] . If we identify the

values of F(x) with their matrix representations under the standard basis, it

will be convenient to define F(x) as the sum of two matrices L and C(x).
The infinite matrix L = (Eij) is defined by

:{lifi—j =1
fzij | 0 otherwise .

When L is used as aleft multiplier on a matrix A, we might call it a "lower-
ing matrix, " Its effect on A can be crudely described as follows: Each row
of A is lowered one step, and the empty first row is replaced by zeros,

The infinite matrix C(x) = (cij (x)) is defined by

0 if j<[x]+1or i>1
c;;® = j-xif j=[x] +1 and i =1
1 if j>[x]+1and i=1,

where [x] denotes the greatest integer not greater than x, (Note that all
entries of C(x) below the first row are zero,) This matrix could be described
as ""partial column summer, "' As a left multiplier of a matrix A = (aij)’ it

produces the following effect, In each column of A the elements below the
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[x+1]5% row are summed, to this is added (1 - x+[x]) times the entry in
the [x+ l]st rowand the totalis entered as thefirst row entry of the corres-
ponding column of LA, All other entries in this column of LA are 0.

We are now ready to state our main theorem.

ITII. PRINCIPAL THEOREM

Theorem 1., Let F(x) be the member of [fi] defined by the infinite
matrix L+C(x), 0 =x <o, With F(x) there are associated
(1) a sequence {fk(x)}, defined by

0if k=20
f® =11if 0<k=([x+1]
B, (® ([x+1] -2f _ xH] (®) + (x - [x'_])fk_[xﬁ] (65]
if k> [x] +1

and

(2) a polynomial PX()\),
PX()\) = { )\[XH] - ([x+1] - X)}()\ -1)-1

such that the following relationships hold,

@) | | = Bifxig]® ~ ([x+1] - 96,6
n
= Z ff(x) +1

k=0

N _ \
() O'(F)—{)\,P(A)_O or‘}\tslf

; 1/n _ -

© i {86 - ([x+ 1] =) o) (x)} =|ore)| Ps(tgzolx( |
@ £ = £ 0@ J= Lk 0> [x+ 1]

where
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P = 1 0e).

Statement (d) merely says that the first k entries in any column after
the [x+ 1]St of the matrix Fk(X) are the truncated sequence {fk}lf in reverse
order,

Before proceeding with the proof, we note that in case x is an integer,
the sequence {fk(x)} is a sequence of integers similar to the Fibonacci
sequence; indeed {fk(l)} is the Fibonacci sequence and {fk(O)} starting with
£;(0) is the geometric progression with first term equal to 1and common ratio

2. In general, where x is an integer, the sequence {’fk(x)} has the following

properties;
(i) fox) = 0, H(® = fHx) = <=0 = fx+1(x) =1
fn(x) = fn—1(x) + fn—(1+x)(X) if n>x+1
n
(ii) £ ™ = Z f(x) + 1
k=0
(iii) lim {fn(x)}~1/ "= ap 0| = lom],
n—=>c0 ' P(N)=0
where
Py = 0T oy -1 -1
= X2 W
|
(iv) foer® = I |

We now turn to the proof of our theorem,

We shall let the matrix representation of Fn(x) be denoted by (fi(?) ().
However, to simplify the notation in the discussion that follows, we will omit
the argument x and represent Fn(x) and fi(?) (x) merely by F" and fi(;?)' We

shall also let
€ = 1-(x-[x])
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and
/=€e+x=1+][x].

With this notation the matrix representation of F(x) has the appearance:

06000 0€111---
1000« 00000 ==+
0100 <= 00O0O0O0 ==
0010+« 00O0O0O0 =" ’
0001 e 0000 0 o0-
where € appears in the first row of the fvth column,

Since F" = (L + C)Fn_i, we see from the description of the effects pro-

duced by L. and C as left operators that the kth row of F is thefirst row

of KM for 1=k < n, k aninteger. That is
- _k+H)
3.1 T L T S =
@.1) ki (k1) ij -
We also see that
() :{1 if k=n+]j
(3.2) e 0if k>n and k #n+j.

With the understanding that if n < 0 then fgl) = 0 and fﬁl) = fin =0
we can state the following lemma,

Lemma 1,
n-{-1

m) _ _c(n-f) E : )]
@) flm = efﬁm + fﬂn + f1(m+n—1)
=1

if m and n are positive integers,
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(b) f(n) = f(l’l 1) T Ef(n {) +(1 -

im

)fn ~f-1)

im

€
(fi(m+n—1) h f1(1n+n—2))

if m and n are positive integers and n = 2,

Proof, Part (a) follows easily from the fact that

0

(m) _ £(0-1)
fim = qu jm

=1

and formulas 3.1 and 3,2, Part (b) is obtained by computing f(
(a) and. subtracting the result from the expression for f( ) given in (a).

Lemma 2, If n is aninteger and n = 2 then

fgll’ll)l - g(m)f(n ) fl((rlln-izi) ’

where

0 if m</
g(m) =4 € if m =/
1 if m>f.

Proof, The result follows easily from the fact that

(o wa

Lemma 3, If m,n and k are positive integers and m > k, then f(n)

szn), If in addition k> /, then fg;) = f(n)

Proof, This result follows from an mduchve argument, That the conclu—
sions of the lemma hold for n =

that they hold for n = j,
= j -+ 1.

1 is evident. From the induction hypotheses
it quickly follows from Lemma 2 that they hold for

21

Y from part
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Since from Lemma 3, fiﬁ) = fglr)l for all k and m such that k> [
and m > J/, we make the following definition,
Definition,

_ - (n) . . e .
f, 0, fn fi(["-i) if n is a positive integer,
From the definitions of { and € and Lemmas 1 and 3, it follows that
{ fn(x)} is the sequence defined in Part 1 of the conclusion of Theorem 1,

Lemma 4, The norm of F" is given by

n

o= E £+ 1

k=0

Proof, Since 0 < € =1 and all the entries of the first row of the
matrix (f. ]) are nonnegative, it follows from part (b) of Lemma 1 that all the
elements of the first row of the matrix (f( )) are nonnegative, From equa-
tion 3,1 we see that the ]th component of the mth column vector of (f( )) is

given by

R
]m Im ’ - °

From this equation and equation 3.2 it follows since all the components are

th

nonnegative that the [,1 norm of the m~ column vector of (fi(;l)) is givenby

n
2 :lm :
=

From Lemma 3 we see that the [ norm of the (/ + 1)St column vector of
(f( )) is greater than or equal to the ﬁl norm of any other column vector of
that matrix, The definition of HF ” and that of the sequence { fk} now imply
that
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n
“Fn” = Z fk t 1.,

k=0

This completes the proof of Lemma 4,
It is a simple matter to use the result part (b) of Lemma 1 to conclude

that

n
Z fet1= fn-t{LH - €y
k=0

This result together with Lemma 4 gives part (a) of part 2 of the conclusion of

Theorem 2,
Lemma 5, The formalinverse matrix (gij) of the matrix representation

of M -~ ¥ is defined by

re *+ (1 - €) iijE

£+ )\fj—j+3
Py T P L ury=y
)\Z
where
Py = ¥l —en - -6,
and
1 1 .
i-j+H i-1 blj i iz
X
gij B 1 .
T b1 if i <j
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Proof, The Neumann expansionfor (\I-F)~! convergesprovided b\l = |0(F) [

Since

= Jim [P < v - 2,
—>0

| o(m)

it is clear that the Neumann expansion for (\I - F)~! converges provided |\ |
=2, We, however, are only using the Neumann expansion as a device to ob-
tain the formal matrix inverse of the matrix representation of (I - F), If we

let the matrix for (I - F)~! he denoted by (gij }» then since

n=i A
it follows that
5 o ™
g, = Z_LL
ij X )\n-H
n=i

But from 3.1 and 3.2 we see that:

f{?_iﬂ) if 1 i<n,

@ =
ij P
6:’1,(j+n) if i=n
Thus
o0 f(n—i+1)
lel‘+1 ifi<j,
(3.3) 8. =
H wo_p(n=it)

1 Z 1j P
i=-jH * n+i it i=j.
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If we now consider the matrix (gij) as the sum of two matrices (aij) and
(bij) where

0 ifi<j,
3.4) 3 =

— if i=3j .
—i+
)\1]1

we see that

If i> 1 we see that

o {0 o )

L N R A
(3.5) i Z "I Nk
n=i k=1
(k)
oo &b 4 b
i1 kH i1 VL
N X

By using part b of Lemma 1, we can solve for values blj as follows:

o gk ® ¢k
b, =Y Ao =4 +Z :_1.]___
1j )\k+1 \ : )\k'H

k=1 k=2

(k-1) =L (k-2-1) ) e
Sy (7 renra - o™+ figney - gy
A S
k=2

or
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f
1j 1 € (1 - ¢
b, = L +2b. +5b. + by,
1j N2 A 1j X”- 1j N
€ 1-¢€
— + - if j=
‘ )\1.—] +2 )\l -j+3 /t
+
‘ Lot j= 4,
\ \
and therefore
Ne+ (1-€) if i< ,Q
BT
)\l+1 X
(3.6) b = : .
j £+1 _ _ _
N N -€x-(1-¢€) 1 if =4
2
\ N
= a,, +b,. the conclusion of the lemma follows from

Remembering that g.. .
ij ij ij
equations 3.3, 3.4, 3.5, and 3.6.
From Lemma 5 it is easy to see that the matrix (gi].) can be schemati-

cally presented as the linear combination of two matrices as follows:

% 0 0 0 ] 19 e oo b 11

2 Y Y
@)= |+ L Lo L% 0% n®e 11
ij X X N P(\) X X Yo%

11 1, 19nP9 %P9 11

Nkt N ¥R Moo
where

h(J)(e) - Ae * (1 - €

£+1-j
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is a factor of each element in each of the first £ columns of the second

matrix, The first of the above matrices is the matrix representation of

I+E L
=1

and the value of its norm is

W

if l )\l > 1, The value of the norm of the second matrix is

(o () )
@l = bl +y_ Bl s
k=1 2|

max

NI B
-1~ 1 LM

provided |>\1> L

From these facts we can infer that (M - F)™! is defined and a bounded
operator on A, into ,Zi provided |)\|.> 1 and ) is nota zero of P(\), and
that (M - F)~! is either not defined or is unbounded if \ is a zero of P(\) or
l)\l < 1, We thus conclude that the resolvent set of F,

p(F) = {x\ Ix|>1 and Py £0

~ and therefore the spectrum of F,

o(F) = {x‘ IN|=1 or Poy = 0} .
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This proves part 2.b of our theorem since if we recall that £ = [x+1] and
€ = ([x+1] - ® we see that the polynomial P(\) isprecisely the polynomial
PX()\) defined in the theorem by:

P o) ={n =] _x+1)-mlo-p-1.

Lemma 6., For any given value of x, 0 < x=<oo, PX(x) has precisely

one real zero, s with modulus greater than 1 and 1 < ro = 2.

Proof, As a function of the real variable ¢

€@ -1 -1 = M ¢

P (£) -€f-(1-e)

and

]

Pl(£) = (65 - @+ (¢ - LAt = (L neF - LEt e
It is a simple matter to verify that P =0 if £¢>1 and P (1) = -L
From this we infer that Px(g) has precisely one zero greater than 1 and
since P_(2)> 0, that this zero lies strictly between 1 and 2 if x £0, If
¢ <-1 and £ isodd then P!(§) < 0 and P _(-1) >0, If ¢ < -1 and L is
even, then P;{(f) > 0 and PX(—l) > 0, From thesefacts it follows that PX(§ )
has no negative zeros with modulus greater than 1, This completes the proof
of the lemma,

Lemma 7, If ro is the positive real zero of PX()\), 1< re =<2, and
if p is any other zero of PXO\), then M =r.

Proof, The pro;f is by contradiction, If we assume Px(“) = ( and lpl
|.

Z .
> r_>1, then ];.L >r}f and therefore ‘p,l -€> r}ﬁ——e> 0 since 0 =

x
€ < 1, From this last result the following chain of inequalities follows:

hence
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1 1
+ < _— =
1 [ 1+rﬂ—e x
B X
since
L+
re —rl—erx— (1-€¢) =0,
and therefore
1+ ,,1 <r_,
A X
bt - el
or
o] <.,
since
lu| = |1+ zl <1 1 .
po—€ lpvz—el

But lpi =r isa contradiction of our assumption that p=r_,

From Lemmas 6 and 7 and the definition of spectral radius, we immedi-
ately deduce the second equality in part 2,c.of the conclusion of Theorem 1,
That is,

loE@)| = sw )]
PX()\)=0

The first equality of part 2,c of the conclusion of Theorem 1 is an immediate

consequence of part 2,a of Theorem 1 and the fact, 2,1, that

|

lo®eE)| = lim |

We have now completed the proof of Theorem 1.
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IV. A PROPERTY OF |o(F(x))|

We conclude this paper with the following theorem,
Theorem 2, The spectral radius of F(x) is a strictly decreasing con-

tinuous function of x, x= 0, and
(@) . A [oF®) | = 1
() dmloFEE)| = 2 .

Proof, From Theorem 1 we know that

loE)| = r,

where r_ is the only real root of P_(¢), €] =1, and 1< r =2 Letus

assume that n is a positive integer and

n-1< x<vy<n,

It now follows that r.>r v The proof is by contradiction,
Assume r = r,y. Then

P (r.) = (r]; —e -1 -1 = 0

and
P (r ) = (]1 - )(r - l) - I = 0

where
= [x+1] -x.

€x

From these equations and the assumption that ro < r_, it follows that
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or

r -r. =< e_-€e. = X-y <0
and therefore ry < re which is a contradiction to our assumptionthat vr_=r_,
Since we have shown that r is strictly decreasing as x increases and
is therefore strictly increasing as x decreases for
n-1< x<n,
we see that if
n-1< y<mn,

then the following limits exist:

lim r =« and _lim

X=-y+ "X xamy- 'x B
Therefore, since
lim €. = €_ ,
X =y X y

o

lim PX(rX) = P_y(a) =

lim P_(r_ )
X =y + X oo X'V X

- P (E) -

But since
P&, l£l=1,

has only one real root, namely ry, it follows that ry = a = f and therefore

lim r. =r
X =y X y
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or r_ is a continuous function of x on
n-1<x<n,
It is not difficult to see that
xh;Eln s = '

where n is any positive integer, Firstitis clear that as

+ R s O Sy 1 =
X=e1n , PX(rX) = (rX ex)(rX 1)~-1=0
and
€. =m+1) -x,

provided

X <n-+1,
hence

. n-+i n+2 n+i

Amo Py = 0 -Dy-D -1 =Y -y -y =0 = P
where

X]ﬂnn+ I'X =7 .

Similarly as x ==n" ,
Pa)=("-e)r. ~1)-1=0
X{X (X €X(X

and

€x -~ n - x, provided x>n - 1, hence
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n+i

Jim -P (r ) = (" -0 -1 -1 =5 6% -1

I
[w]
|

where

Ay~ T = 0.
Since both Yy and 0§ must lie between 1 and 2 and Pn(.f), |§ |>1, has pre-
cisely one real root we infer that y= 6 or ro is continuwous at x = n for
n an arbitrary positive integer,
It now follows that re is a continuous function of x for all x> 0 and
r. is a strictly decreasing function of x,

Finally we shall show that

lim r. = 1,
X —=»00 X
For assume
lim r_=r
X =00 X
where r = 1, In this case
lim srl‘Xﬂ-] - € l= lim 1 R
X—»oo) X x4 X -»ooI'X—'l r-1

since for all x> 0

But it is clear that



34 THE GENERALIZED FIBONACCI OPERATOR Nov. 1968

becomes arbitrarily large as x approaches infinity and therefore cannot have

1
r -1

as a limit, This contradicts our assumption that r > 1,
That

im r_ = 2
Xep(} X

follows immediately from the fact that

PoN) = A% -2x,
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A CURIOUS PROPERTY OF A SECOND FRACTION

Marjorie Bicknell
A, C. Wilcox High School, Santa Clara, California

In the April, 1968 Fibonacci Quarterly (p. 156), J. Wlodarski discussed
some properties of the fraction 878/323 which approximates e. Consider the
approximation of 7 correct to six decimal places given by 355/113 =
3.141592%. The sum of the digits of the numerator is 13, and of the denomina-
tor, 5. 13/5 = 1 + 8/5, or one added to the best approximation to the "Golden
Ratio'" using two one-digit numbers. Also,

355 _ 300 + 55
113 ~ 100+ 13 °
where 55 and 13 are Fibonacci numbers.
Taking 355/226 as an approximation of 7/2 leadsto the observation that
355 _ 377 - 22
226 233 -7
where 377/233 approximates the golden ratio and 22/7 approximates 7, and
377 and 233 are Fibonacci numbers.




A LINEAR ALGEBRA CONSTRUCTED FROM FIBONACCI SEQUENCES
PART I: FUNDAMENTALS AND POLYNOMIAL INTERPRETATIONS

J. W. GOOTHERTS
Lockheed Missiles & Space Co., Sunnyvale, Calif.

The purpose of this paper is to demonstrate the construction of a linear
algebra with whole Fibonacei sequences as elements. Sequences of complex
numbers are considered; hence, this is an algebra over the complex field,

To be of more than curious interest, of course, the algebra must lead
somewhere, The vector space leads to geometric interpretation of sequences,
The ring leads to polynomial interpretations, and in particular, to binomial
expressions, Part II will deal with functions and Taylor series representations,

Only a knowledge of modernalgebra at the undergraduate level is required
to follow the discussion in PartI, A smattering of topology is required for
Part I, Proofs are elementary and are usually based on definitions. In some
cases, the reader is asked to fill in the details himself, We begin with:

Definition 1.1, A Fibonacci sequence U = (uj), i = 0,1,**+, isa se-
quence that has the following properties:

1. uy, uy; are arbitrary complex numbers,

2. un+1 = un + un_i, n=1,2,°°"

F will denote the set of all Fibonacei sequences, Any sequence may be
extended to negative subscripts by transposing the recurrence formula; i, e,,
u = u

n-1 - n+ on
A list of special sequences follows:

A = (lsasazs"’)ﬁ @ = 1—; :
1-3\/5

B:(l’B’B2,...), B = 5

F=4(,1,1, 2, °°°)

I=(,0,1,1, ")

L = (Z’ 1’ 39 4’ -ou)

O = (O’ Os O, ao-)

In addition to this, we use the symbols C, R, and Z for the complex, reals,
and integers, respectively,

35
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Definition 1.2, Forall U, V& d, U = Veu = v, 120,120,
Definition 1,3. For U, VEJF, U+V = (u, + Vi)’ i=0,1,+--,
Definition 1.4, For a& C, UE JF alU = (aui), i=0,1,¢.
Theorem 1.1. ¥ is a vector space.

Proof. It is awell-knownfact that sums and scalar products of Fibonacci
sequences yield Fibonacci sequences, The reader is asked to fill in the re-
mainder of the proof from the definition of a vector space. The zero vector is
(0, 0, +=+), and any additive inverse is given by -U = (-ug, ~ty, **-) .

Theorem 1.2, The dimengion of F is 2,

Proof, Consider the vectors I, ¥, and O, and suppose that al +bF =
O. By definitions 2, 3, and 4, the first two terms yield a = b = 0, If we in-
sist that a or b be non-zero, then al +bF = U # O. We now find that a =
g b = u. From ugld +wF = U wefind from the 0P term that LU L
= U which is a well-known property of all Fibonacei sequences. Hence, an
arbitrary vector is uniquely determined by two linearly independent vectors in
F, and the theorem is proved,

Theorem 1.3. F is isomorphic to V,(C), the vector space of all ordered
pairs of complex numbers,

Proof. Any vector space is isomorphic to the vector space of n-tuples

of its components relative to a fixed basis. Hence, for
U EF, U=yl+uyFs2Uaea(upy) € Vo(C) .

As a consequence of Theorem 1.3, we mayagree to identify an arbitrary
sequence U = (ui), i=0,1,"", with the pair (ujuy), and write U = (uy,uy).
Property 2 of definition 1.1 has been suppressed, so we turn our attention to the
construction of a ring that will bring this property back into evidence.

Definition 1.5. For U,V EF, UV = (uy vy + uyvy, ugvy +uyvy + uyvy ).

Theorem 1.4. F is a commutative linear algebra with unity I = (1,0).

Proof. The reader is asked to fill in the details again,

Associated with each sequence is a complex number, called the charac-

teristic number, that describes many properties of the sequenceinthe algebra,

Definition 1,6, The characteristic number C(U) of a sequence U = (uy,
uy) 1is the complex number ud + uguy - ui = uguy - uj.

Theorem 1,5, C(U) # 0<=>U has a multiplicative inverse vle s,
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Proof, If U has an inverse (x,y), then (upuy)(xy) = (1,0).

This is equivalent to the equations

ux + uyy = 1
1

u0y+u1X+u1y =0 .
Since either u; # 0 or u; # 0, we may reduce equations 1 to

X(u% +ugy - u) = oup tuy
(2)

2 2
y(ug + uguy - uy)

= -ui .
The remainder of the proof is obvious.
Corollary 1.1, If C(U) # 0, then
-1 1 -
U - C(U) (112, 111)

Corollary 1,2, C(U) = 0<=>TU = a(l,a), b(1,).

Proof, Solve the equation u} + ugu; - u = 0 for uy/u; .

The sequence F = (0,1) plays a major role in the algebra as a shifting
operator, and brings property 2 of definition 1.1 back into evidence,

Theorem 1.6, F U = (un, u ne 7.

Proof. Note that

n+)?

FU = (0, I)(up,uy) = (ug,ug +uy),

and that

F MU = (-1, 1) (uguy) = (W-Ug, Ug) .

The rest of the proof follows easily by mathematical induction,
Theorem 1.7. C(F'U) = (-1)"C(U), n € Z.
Proof, Note that

— 1.2 2 _ .2
C(FU) = uy + 1.11112 - 112 = U_1 + ui(uO + ui) - (uO +u1)2

—(g%+u0u1—u§) = -C(@) .
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The rest of the proof follows easily by induction.
Theorem 1.8, C(U) # 0, and n # m<>F U, FU are linearly inde-
pendent in F,

Proof, We test for linear independence by setting a(un, L 1) +b(um,

u +1) = (0,0). This is equivalent to the two equations
au -+ bun o 0

(3
au bum o 0

Since all u, # 0, we may reduce equations 3 to

4) a(unu ) = 0

-u u
m-+i n+i m

n # m by hypothesis, so let m = n +k, and use the identities u, = =

n+k
uan+1 + un+1Fk and Wy = Uik = un+1Fk—1 + un+sz‘ Equation 4 may
now be reduced to
- 2 = =
(5) au o - ul, ) =aC (FU)F, =0

Since C(F'U) = (-1)"C(U) # 0, and Fp # 0 in general, we must conclude
that a = 0, which in turn implies that b = 0.

The converse is proved by assuming that a,b are not both zero. We
can, without loss of generality, assume that a # 0, which implies that uu
-u?, =0, Thus C(F'U) = 0 =C(U) = 0.

An alternate form of the product in F is now given,

Theorem 1.9. UV = wV +uFV = voU + vyFU,

Proof, The proof follows immediately from definition 5.

+2

Multiplication in the ring is equivalent to a linear transformation in the
vector space, or symbolically, UV = U(V) = V(U), where U(V) means U

transforms V. This can be written in matrix form

Ug Uy Vo Vi
(6) UV = (vp,vq) u utu ) (ug,uy) v, VetV
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Any sequence of complex numbers canbe decomposed intotwo sequences
of real numbers,

Theorem 1.10, U = X +1iY, where U € ¥(C), and X,Y € F(R).

Proof, The reader is asked to supply the details.

The vector space in ¥ is obviously a unitary 2-space, and the restric-
tion of ¥F to real sequences yields a Euclidean 2-space. Some interesting
geometric interpretations follow from this, but lack of space prevents further

exposition here,

POLYNOMIALSIN ¥ OVER C

The polynomial interpretation of ¥ leads to some interesting results,
We now establish the conditions for writing polynomials with sequences as
"indeterminants'' and coefficients in the complex field,

Theorem 1.11. C is embedded in ¥,

Proof, Let ¥:C—>7F be defined by the rule: yy(a) = (a,0) = al, Va & C.
We ask the reader to complete the proof.

Integral powers of Fibonacci sequences make sense as a consequence of
our definition of multiplication in ¥, The classic conditions for writing poly-
nomials exist, so that p(X) = ap+aX +-- + aan makes sense, but ’Fhis is
not the whole story, p(X) is a linear combination of the elements x'e ¥,
and can be expressed uniquely as alinear combination of any two linearly inde-
pendent elements in JF. If it so happens that C(X) # 0, then by theorem 1.8,
X, FX are linearly independent, and there exist k; k; € C, not both zero,
such that p(X) = kX +KFX, But K = (kp,ky) € ¥, and by theorem 1.9,
p(X) = KX, The linear independence of powers of X does not exist in poly-
nomials in ¥ over C. This explains why each of the hundreds (possibly thou-
sands) of known summations involving Fibonacci numbers is expressible as a
linear combination of at most two Fibonacci numbers, The addition formula
for elements of a Fibonacci sequence is a case in point, which can easily be
derived in F, Try it for an exercise.

The sequences M=1-= (1,0) and o= (F
down termwise by inspection, L™ follows easily.

Theorem 1.12, LK = 5Ky, Fy), and LM = 5K(Ly, Topyy).

Proof: 12 = (2,1)(2,1) = 5(1,1) = 5F%, from which 12K = 5KF2K,

n—1’ Fn) may be written
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Lokt = 12k, = 5kF2kL .

Several formulas for the general case U" will be given,

Definition 1,7. The term of U" bearing the subscript k will be desig-
nated (Un)k, k =0,1,2,.-+ (the k term is actually the (k+ 1)St term by
ordinal count),

Lemma 1,1, Let c; € C, i=0,1,+++,n, andlet U € F Then

n n n
E i_ E : i § : i
CiU - Ci(U )0 ’ Ci(U )1 .
i=0 i=0 i=o0

Proof, The reader is asked to supply the details.
Theorem 1.13.

n
n n\ n-i i
U ey =Z<1>u0 Uik g
i=p
Proof,
n
vt = (uOI+‘u1F)n = E <I;)u?—luiFl .
i=o0

Lemma 1,1 and definition 1,7 supply the remainder of the proof,
An alternate form of theorem 1,13 is
Theorem 1,14,

ak(uO + aui )n - Bk(uo + Bu1 )n

a-p

Uy =

Proof, Substitute the Binet formula,
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into theorem 1,13, and reduce it to the form shown,

Example 1.1, Consider the generating function

n
(7) D" = @+ 7! = Z (’2) P
i=p
where
n
n - n
(8) D)y = Z (1) Fli
i=g
If k=1, I+F = (1,0)+(0,1) = (1,1) = F%, and
n
n . _ L n
) Oy = (7). = P —Z(Q o
i=0
If k=-1, I+F "= (1,0)+(-1,1) = (0,1) = F, and
n
n _ n — — n
(10 By = F gy ™ Frg Z<1)F—i'+j :
i=1
. R
But since F—(i—j) = (-1) Fi—j’ we have
n
_ n i-j+1 -
(11) Flg = Z (1) (-1) L
i=0

If k=2, I+F = (1,00 +(3,1) = (2,1) = L. From Theorem 1,12, we get

n

n
(12) 5][1/2Fﬂ+j =3 (I;)inﬁ , for even n, and 5(][1—1)/2Ln+j = Z(?)ngﬂ', for odd n.
i=0 i=0
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This may be generalized for even k, If the reader will verify that I + F4M =
Loy F2™, and I+ F4M72 = F, . F2ML, then he may compute (Dn)j +p? and

complete the problem.

Much of what we know about polynomials may be applied to polynomials
in ¥ over C. The possibilities of generating term-by-term Fibonacci rela-
tions is unbounded,

ADDITIONAL NOTES

1. Let M be the set of all matrices of the form

uo u1
U = u u0+u1 N uO,U1€ C,

and let the operations be the usual operations of matrix algebra. Then M is

isomorphic to F.

2. Let c[ x| be the set of polynomials in x over C, and let s(x) = x* - x -
1. Then C [x] /s(x) is the ring of residue classes of polynomials over C
modulo x* - x - 1. Each residue class has the form [uj +u;x]| with opera-
tions defined by

[g +ugx] + [vo+vyx] = [ug+vy+ (g +vy)x]
[wg + ugx] [vg + vix] = [ugvg +ugvy + (ugvy +ugve + ugvy)x] .
If we add the redundant operation
alug +ux| = [auy +aux],

then C[x]/s(x) is a linear algebra, and furthermore, C[x]|/s(x) is isomor-
phic to ¥,
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ROMANCE IN MATHEMATICS

Marjorie Bicknell
A. C. Wilcox High School, Santa Clara, California

The dome of the famous Taj Mahal, built in 1650 in Agra, India, is ellip-
soidal. Now, the ellipse has the geometric property that the angles formed by
the focal radii and the normalat a point are congruent. Also, it is a fundamen-
tal principle of behavior of sound waves that the angle of incidence equals the
angle of reflection. Thus, sound waves issuing from focus A and striking any
point on the ellipse will be reflected through focus B.

The builder of the Taj Mahal, Shan Jehan, used these basic principles
well in his memorial to his favorite wife who was called Taj Mahal, Crown of
the Palace. Honeymooners who visit the shrine are instructed to stand on the
two foci which are marked in the tile floor. The husband whispers, '"To the
memory of an undying love, " which can be heard clearly by his wife who is
more than fifty feet away but by no one else in the room.

REFERENCE
Kramer, Edna E., "The Mainstream of Mathematics, " Premier (paperback),
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A LINEAR ALGEBRA CONSTRUCTED FROM FIBONACC! SEQUENCES
PART II: FUNCTION SEQUENCES AND TAYLOR SERIES OF FUNCTION SEQUENCES

J. W. GOOTHERTS
Lockheed Missiles & Space Co., Sunnyvale, Calif.

In Part I, the algebra F was constructed from the set of complex Fib-
onacci sequences. Finite polynomial and binomial interpretations were con-
sidered. We now consider a class of functions definedin ¥, which are models
of prototype functions in C. These are extended to include Taylor series
representations.

We first consider an auxiliary algebra, which is constructed from bits
and pieces of easily recognizable structures. As in Part I, many of the proofs
are elementary, and the reader is asked to fill in the details himself,

Definition 2.1 Let G = {(a, b):a,b € C}, and define equality and three
operations as follows: For (aj,a,),(by,by)E G, c€ C,

1. (agay) = (b bp)eay = by, 2, = by.

2. (a,29) + (by,by) = (a3 + by, a9 +by).

3. (apay)(bgby) = (agby, a5hy).

4. c(a,a9) = (cay,cag) .

Theorem 2.1 G is a commutative linear algebra with unity (1,1).

Proof, The reader is asked to fill in the details.

Definition 2.2 Let ¢:F—G be a function defined by the rule:

buy,uy) = (uy + auy, uy + Buy) forall U EF.

Theorem 2.2. ¢:¥— G is an isomorphism.

Proof: ¢ is obviously a 1-1 linear transformation from the vector
space ¥ onto the vector space G. We need only show that ¢ preserves.

multiplication. For U,V &€ ¥,

44
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Il

(1) BUV) = dugvy + ugvy, ugyy + ugvy + uyvy)
= (agvo +ugvy + a(Uevy T ugvy +ugvy), gV +ugvy

+ Bugvy +uyve +ugvy))
= (ugvp + @ (ugvy +ugvy) + (@ + 1uyvy , vy

+ B(ugvy +ugvy) + (B + Duyvy)

= ((ug +@ uy)(vy + avy), g + Buy) (Ve + Bvy)) = GOPV) .

The mapping ¢ was motivated by considering the linear factors of the

characteristic number; i.e.,
— 1,2 2 _
CU) = uy + uuy - uj = (ptauyd{uy+puy).

Some fundamental vectors are mapped as follows:
1. dA) = ¢@,e) = 1+ a%0)
2. ¢@B) = &(1,8) = 0,1+ 2%
3. ¢@® = $(1,0) = (1,1) .

Il

1!

A,B determine the coordinate planes, and I determines a plane of symmetry,

which will become significant later. A characteristic number for each
X = (X:%)€E G
can be defined as
CX) = x% .
Thus for U €F, C(U) = C(P(U)).

Definition 2,3 Let f be an arbitrary function defined on a domain D C
C. Define a corresponding f: DxD—>G by the rule:

00 = B m) = (E6x)s ).

whenever no confusion will exist, we will agree to identify T with £ and
write £(X) = £(X).
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Definition 2,4, If f is defined on D CC, and if U = (u,uy) € T is
such that

uy + auy,uy + Buy €D,
define
*: ¢ D XD)—>F
by the rule:
) = ¢~ ),
where X = ¢(U), or more simply
) = T '(v).

The notation used herein for composition of maps is: the order of events

reads from left to right, or
¢t ) = ¢~ (Fdw)) .

We may again agree to identify f*with T whenever no confusion will result,
and say £*U) = f(U) = £(U) .

Theorem 2,3, The formula for f* is

) = = 1 5 (o My + ouy) - B, + Buy) ,

fug+ auy) - fuy + Buy)).

Proof, The proof follows directly from Definition 2.4,
Corollary 2,1, If f(x) = ¢ (a constant), then f*(@U) = cI.

Corollary 2,2 f*(@l) = f@)I,
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The reader may verify that the functions defined above are well-behaved
Fibonacci sequences, and are thus, elements of ¥, The reader may further
verify the following identities for some elementary functions: For U,V €F,

1, expUexpV =exp (U + V)

2. exp (-U) = (expU)”

3, sinfU+cos?U =1

4, sinUcos U =4sin 2U

5, sin U (cos U)~! = tan U,

All operations must, of course, be those defined in . The brute force
approach required by Theorem 2,3 and the subsequent arithmetic in F can be
tempered by a trick: do the arithmetic in G,

Example 2,1, Show that

sin (U+7V) = sinU cos V +cosUsinV,
Since
sin (x+y) = sinxcosy-+cosxsiny

is an identity in C, definition 2,1(1) gives
(2) (sin(xy + yq), 8in (X5 + yy)) = (sin Xy cos y; + cos x; sin 'y, ,

sin Xy COS yy + COS Xy 8in yy)

as an identity in G, We appeal now to definition 2,3 for the left sideof (2) and
to definition 2,1(2), (3) for the right side,

(3) sin ((xy +¥1)s (X9 T ¥9)) = (sin xy, sin x;)(cos yy, cos Vo)

(cos x;, €08 Xy)(sinyy, sin yy).

We now reverse our position and appeal to Definition 2.1 for the left side and
Definition 2,3 for the right side of (3).

~ N A
4) Sin (X4, X9) + (V15 V2)) = sin(xy, Xp) €oS (¥, ¥2)

A JAN
+ 608 (x4, %) $11 (1 ¥2)
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A A ”~ A A
(5) sin (X+Y) = sinXcos Y+cos XsinY,
Definition 2,4, together with Theorem 2,2, yields
(6) sin* (U + V) = sin* U cos* V + cos* U sin* V.,

the asterisk may be omitted because of our previous agreement,

We have proved in example 2.1 that
sin(x+y) =sinxcosy+cosxsiny€ C—+sin (U+V) = sinUcosV
+cos VsinV €F,

Notice that, although the work was done in G, no element of G is evident in
the final result, This is why G was called an auxiliary algebra in the

introduction,
SOME SPECIAL FUNCTIONS

We could continue to define and explore Fibonacci function sequences ad
infinitum, but we shall limit the discussion to two very elementary ones, First
a theorem must be proved,

Theorem 2.4, If f and f~! both exist on a subset of C, then

(-1 = (1)

on the corresponding subset of ¥,
Proof, f*U) is known from Theorem 2.3, Then

1
(£(x1), £(xy)) == (E71(£(x4)), £1(E(x2)))

é-1
(X %) = X =T,

1l

d A
(7 £*(U) —1(X)

From Definition 2,4, we have

-1
®) (E1Ex)» £1(E)) — (€1 EXO) ).
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Since @ -! is a mapping,

U = (&Y &) ,

o)
= @t
A very fundamental function is now given by:
Definition 2,5. For U,V € ¥, define U’ = exp (V In U).
When written in terms of the components of U, V,
v 1 votavy VotBYy
U = (a~Y(uy + auy) - B7Huy + Buy) s
a-p
votavy VotBVy
(9) (uo + a'LI1) - (uO + Bui) ) .

Since In z is a many valued function, some trouble may arise from Defini-
tion 2,5, The author offers the conjecture that no trouble will arise., Perhaps
one of the readers will explore this possibility,

If V = nI, Definition 2,5 is specialized to Theorem 1,14, Another ele-
mentary but interesting set of relations are the multiple nth roots ofa sequence,

Theorem 2.5, There are n? distinct nth roots of U # 0 €3.

Proof, Let

I'Ii = |u0+a/u1l, 1‘][21 = |‘10+13111‘ s
and
¢y (1=0,1,7",n-1)
be the complex roots of unity, Then

1/n 1 _ _
(10) U “a B (o lryw, - B Iy, Tyw; - rzwj) .

J

If N is the number of possible solutions, then clearly N < n?, We must show
N 4 n?, Assume the contrary; i.e., there are at least two identical solutions,

which must be termwise equal,
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- - _ _ -
(11) x riwi - ,8 irzwj = 11'1(1)1{ - B 1r2wl,

I‘iﬁ)i - I'Za).

T Tiwy T Ty

Both w; # wy and @ # w, must hold or the hypothesis is contradicted immed-

iately. Thus,

It

(12) Ty (wj - wz) Bry (wi - wk)

rp(wp mwp) = Ti g - wy) -
If we substitute from the second equation into the first,
(13) a(wi - Uk) = B(ﬂ)l - wk) F]

which is clearly impossible unless w; = . This in turn implies that w; =
wp, Thus, the hypothesis is contradicted, and the theorem is proved,

The reader is invited to find the four square roots of F? = (1,1) (cf.
Theorem 1,12),

TAYLOR SERIES REPRESENTATIONS

In order to use the very useful concept of Taylor series representations
of complex functions, a definition of convergence in 3 must be: formulated,
A very short excursion into topology (metric spaces) will furnishthe necessary
foundation, Let d be the usual metric on C defined by

d(z4,29) = ‘zz —Zis

for all z,,z, € C. The next few theorems are so elementary that the proofs
are omitted; however, they must be stated, Since the underlying set of G is
CXC, we may give

Definition 2,6, Let 3 : GXG—>R be defined by the rule:

A%, ) = max@(x,yy), dim,y) = max (y; - x|y - %)) .



1968] FROM FIBONACCI SEQUENCES 51

PaN
Theorem 2,6, d is a metric; hence, (G,/d\) is a metric space,

An open sphere in G of radius r about the point X is
A\ FaS
5, = {Yec:dx,v cri.
it
$7IX) = U, ¢7HY) =V,

then

I

?

¢718,0) = s*)

lvg - uy + B(vy -upl|) £ rf.

v e F:max ([vg-up+ afvy - uy)

If we restrict ¥,G to real numbers, then

¢~1(8_(X)

is the interior of a golden rectangle with diagonal of length 2r, centeredon U,
and parallel to the vector I, and with short sides parallel to A, and long
sides parallel to B, This fact should delight any true Fibonacciphile, and
motivates:

Definition 2,7, Let d*: FXF¥ - R be defined by the rule:

d“(U,V) = max (’vo—u0+ a(vy ~u1){,lvo—u0 + By - w)l) .

Theorem 2.7, d* is a metric; hence, (F,d*) is a metric space,
Theorem 2.8. ¢:(¥,d*)—>(G,d) is a homeomorphism,

By design the metric spaces (¥,d*), (G,a\) are topologically equiva—~
lent, The necessary groundwork has now been laid for the theorem on
convergence,

Theorem 2,9, If

o0
f) = ) a (- z)
=0

is a Taylor series for z &€ Sr (zg), then
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o0
*U) = Z 8, (U - zg)' for U €Szl .

{=0

Furthermore:

), =Y a(U-zhd), . k=01,
k i k
i=0

Proof, Let zj,2zy € S.(zy). Then for any € >0, there are Ny, N, such

that for n > max(Ny, Ny}, we have

n
(14) Z 2; (2 - zo)i € S¢(f(zy)) , and
i=
n
(15) L a; (zp - 20)" € Se(f(z5)) .
i=0

Since these sums are in the coordinate spaces of G, we have

n

(16 D e - g0 s - ) € Belhtag) )
i=0

But by the definitions of operations in G,

i
(24 - Zgs 29 — Zg)

(17) (21 - 2o)s (zg - Z9)))

1]

(215 7) = (Zgs 7))’
(Z - Zg)" for i=0,1,---

I

Hence,
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n
(18) Z a, (Z - 7o) € 8¢ (5(2) ) .
i=0
Let U = ¢~4Z). Then
U € ¢71(8,(Z))
or
UE S (zd) .
By Theorem 2,8,
n
(19) D e - e starm).
i=0

Since CXC is the underlying set of ¥ and G, and since CXC is always
complete as a metric space, the limits exist, which proves the first statement
of the theorem.

Now consider a partial sum with remainder in G,

n

(20) B2) - D a2 = eper) .

i=0
. - - . th . -1
Since this is a finite sum,writethe k™ term under the mapping ¢~1.
n
(21) (EU)y - E a,((U - zi)')y = (ep &)y = (B) .

~i=0

From the first part of the proof, E— O, and by definition (0)k = 0. Hence
(E)k —>0 for each k and the theorem is proved,
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Example 2,2, Let

m a -
22) 1 -2 ED - Z(kg 1) 2t for z € 5,(0)

i=0

be the prototype complex function. Clearly 4F € S1(0). By Theorem 2.9 we

may write

03 » .
(23) a- %F)'(kﬂ) = Z( k; 1)(7}1?)1 :

i=o

Reducing the left side of equation 23 yields

-1, k+1

24) @ -4 = @,0) - 0,47

(2(2, -~ EF o KT R

il

Taking the (j+ 1)St term fromeach side of equation 23 gives

X, F
k+1 ~f k+i i+j
(25) 2 F2k+2+j —:": k ! _111' 3 k = 0:1:2"“3
piay 2 N
i=0 i= 0, £1, +2, -+ .
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SYMBOLIC SUBSTITUTIONS INTO FIBONACCI POLYNOMIALS

V. E. HOGGATT, JR., and D. A, LIND
San Jose State College, San Jose, Calif., and University of Virginia, Charlottesville, Va.

1, INTRODUCTION

Symbolic equations give a compact way of representing certain identities,
For example, if Fn and Ln denote the n‘Ch Fibonacci and Lucas numbers,

respectively, then two familiar identities may be written

m
a+n"=rF", =1,
k
-+ =1m Ko L,
where the additional qualifiers Fk = F Lk = L, indicate that we drop

Kk’ k
exponents to subscripts after expanding, Further material on symbolic rela-

tions is given in [6, Chapter 15] and [7]. Here we make a similar "symbolic
substitution' of certain sequences into the Fibonacci polynomials, We then
find the auxiliary polynomials of the recurrence relations which the resulting
sequences obey, Finally, we extend these results to the substitution of any
recurrent sequence into any sequence of polynomials obeying a recurrence
relation with polynomial coefficients,

2, SYMBOLIC SUBSTITUTION OF FIBONACCI NUMBERS
INTO FIBONACCI POLYNOMIALS

The Fibonacci numbers Fn are defined by

55
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Define the Fibonacci polynomials fn(x) by
B0 =1, £5(9 = x £ (0 = xf (9 + X .

Consider the sequence {an} given by

a = (), F=F
n

n k ?

that is, a, is the symbolic substitution of the Fibonacci numbers into the nth

Fibonacci polynomial, The first few terms are
a; =0, a5 =1, ag =1, a4 = 4, a5 = 6 ,

We give four distinct methods of finding the recurrence relation obeyed by the
a.
The first method applies a technique used by Gould [3]. Write the

Fibonaceci polynomials as in Figure 1, Our approach to find a, is to multiply

X

Xt  +1

o+ 2x

# o+3x2 +1

x0 +4x3  + 3x

x +54 +6x2 +1

Figure 1

the coefficient of x by Fr and sum the coefficients in the nth row, Now
it is known [10] that -

@ D> <n—3i - 1>Xn—zj—1 ,
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where [x] represents the greatest integer contained in x, Thus the columns
of coefficients in Figure 1 are also those of Pascal's Triangle, so that the gen-
erating function gk(x) for the kth column is

-k
g(® = (1-%" .
Using Gould's technique, we first find that the generating function for the kth

column with the coefficient of x" multiplied by Fr is

(-0 - @ -89 /@-p)

K /

. / . . .
2) = E <—1>]“(§‘><a] -phd /(1 -x-2)5a - p)
| J=0

k

= Z (—1)j+1<§‘>1«“jxj 1-x-2)%,

j:

where
a = (@1+V6/2, B =@-VH/2.

We then make all exponents corresponding to coefficients of f (x) to be n~! by
multiplying the above by XZk—i”, which gives the row adjusted generating func-

tion for the k™ column to be

2k-1

h(® = g—_—g [a- ox -1 - Bx)“k] .

Then

o] n 00 X_l o0 ( X2 )k 00 XZ k
G = = h = —_— - —

®) 1;1 An* kgi o ¢ ngi 1-ax S\ 1- Bx
(3) 2 2 ]
_ _xt 1-ax 1-Bx _ x?
a-p =2 %2 1-x-3x2+x +xt
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Result (3) also follows from Problem H-51 [9] This states that

o0 K <t
ZQk(X)t T 1-@-xt+-x-XD)E
k=1

where
k
- it [k j
QR =Y 1) <]> P

j=0

Thus using (2),

@0 00 k
GW = Y = XY@ <_i_2 )
k=1 k=1 l-x-x

XZ
1-x-3x2+x3+xt

The auxiliary polynomial for the recurrence relation obeyed by the a, is
therefore

(4) vt -y -8yt y + 1L,

The second method uses the generating function for fn(t). Zeitlin [10]

has shown that

[0 o]
Hix ) = —— =an(t)xn.
1-tx - x —

Since

a = [L@-f@)]/@-p,
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H(x,@) - H(x,p)
a-p

G(x)

1 X _ X
a-p 1-ax-x2 1-fBx-x2

52
1-x-3x%+x3+xt

the same as (3).

The third method suggested to the authors by Kathleen Weland, varies the
pattern in Figure 1, Write the Fibonacci polynomials as in Figure 2, Then it
follows from (1) that the generating function in powers of y for the kth column

1
X
x2 + 1
x3 + 2x
x4 + 3x? +1
xP + 4x3 + 8x

Figure 2

from the right is

k_k+1
X

k+1 ?
1-y%)

where powers of y for terms on the same row are equal., Then multiplying the

kth column by Fk’ putting x = 1, and summing gives
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Now

so that

G(y) =

agreeing with our (3).

SYMBOLIC SUBSTITUTIONS

. oo
} :szk = .
]
k=0 l1-z-%z
y2

[Nov.

Our fourth method uses a matrix approach,

if

then

R'(x) =

Since fn(l) = Fn, we have

R%q) =

w - (3]

£ £

£ £
F

Qn - <Fn+1
n

H
1-y-3y+y+y

1t follows by induction that

> m=0).

Then the upper right corner of fn(Q) is a .

R@Q = <1

I
0

Letting

).

where 1 is the identity matrix and 0 is the zero matrix, since we may mul-

tiply partitioned matrices by blocks, we then have



1968] INTO FIBONACCI POLYNOMIALS 61

£14,@ | £,@
Q[ T@

RY@ =

By the Cayley-Hamilton Theorem, R(Q) satisfies its own characteristic poly-
nomial p(x). Since a, is one of the entries of f{n(Q), it obeys a recurrence

relation whose auxiliary polynomial is p(x). The desired polynomial is thus

x-1 -1 -1 0

_ -1 x 0 -1
(5) p(x) = det[xI - R@Q] = det | _, o x 0
0 -1 0 X

]

#-x3-32+x+1,

which agrees with (4),

A slight extension of the second method will handle second-order recur-
rent sequences, A generalization of the matrix method will be described later,
and the most general solution to our problem, based onthe second method, will
be given in the last section,

Let VVn obey

W = pW

- 2
n+2 n+i an, p 4 # 0,

and let a # b satisfy
X -px+q =0,
Then
a+b=p, ab=gq,
and there are constants C and D such that

W, o= ca™ + pp"

for all values of n, We consider the sequence
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[¢]
n

£ (W), wE = ’Wk .

It is easily seen that

(@]
Il

Cfn(a) + Dfn(b) s

implying

=N
K(x) = }_Jc < = CH(x,a) + DH(x,b)

_ C . D

1 -ax - x 1 - bx - x2

_ (C+D)(d -x) - ab(Ca~! + Db~H)x
1-px+(q - 2)x% +pxd + xt

Wo(l - x) - qxW_

(6) =
1-px+(qg-2)xt+px+ x4

Putting
p = 1’ q = _1, W():O,Wi::l
makes VVn = Fn’ and K(x) reduces to G(x).

3. A PROPERTY OF 2-BY-2 BLOCK DETERMINANTS

If, in the previous section, we had evaluated

det[xI - R@)] = det<§ - ;{})

by formally expanding the right side as a usual determinant and taking the de-

terminant of the result, we would have obtained the correct answer; that is,



1968] INTO FIBONACCI POLYNOMIALS 63

-1 xI

We shall encounter such types of 2-by-2block determinants while generalizing

det(XI_ —I>=det(x21—xQ—Iz).

the matrix approach to symbolic substitutions, so it is convenient to state the
following
Theorem: Let A = (aij) and B = (bij) (i,j = 1,°++,n) byany n-by-

n matrices, Then

) Dk, m) = det< %}—%) = det (AB - kmI) ,

where k and m are any real constants,

Proof, The result is familiar when k =0 [4, Section 5.4] . Then assume

k # 0, and consider

aj ap 7 ap om0 e 0

Ay 8y e+ dp 0 m

Dk, m)=det | an; apy °*- a 0 0 m
k 0 LA 0 b11 b12 cee bln
0 k e 0 b21 b22 e b2n

0 0 s k by by *cc b

We eliminate the bottom row by multiplying the nth column by bnj /k and
subtracting from the (n + j)th column for j = 1,--+,n, and expanding along

the bottom row to yield

Ay Ay v Ayp-g M - apgbpy [k ee - abpn /k
n
k(_l) det ani anz e a’n,n—l - annbn1 /k et m - an_nbnn /k
kK 0 =+ 0 by coo bin

0 0 - k bp-1,1 Tt bn-1,n /
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Repeating this process of elimination on the resulting bottom row for n -1

more times gives

/ n n
=1 =

2
Dk,m) = K'(-1)" det

n n
-3 b. /k o0 - .b. ]
j : ambJl / m j§1 amb]n /k

Now (—1)nz = (—l)n, and for an n-by-n matrix M,
(-k)" det M = det (-kM) ,
so that
Dk,m) = det (AB - kml]) .

A slightly more general form of the above Theorem was located as a problem
in [4, Section 5.4].

4, A GENERALIZED MATRIX METHOD FOR SYMBOLIC SUBSTITUTIONS

We shall now extend the matrix technique used in Section 2. Given arbi-
trary matrices A and B of the same square dimension, let the (r,s)th entry
bn of B"A De the nth meraber of the sequence %bn}. We find the auxiliary
polynomial for the recurrence obeyed by

k

d =f@®), b =b

Kk

i

Clearly the (r,s)th entry of fn(B)A is dn‘ We also have

— Q‘ i an(B)AJ £ (B)A
oA T®A |T_BA




1968] INTO FIBONACCI POLYNOMIALS 65

It follows that the sequence {dn} obeys a recurrence relation whose auxil-
iary polynomial is the characteristic polynomial p(x) of R(B). Using (7), the
latter becomes

-8Bl -1)
I xI}

(8) p(® = det[xI - R(B)] = det(

1l

det[(x? - 1)I - xB] .
The following are some particular cases of this result.

(i) Substitution of Fibonacci numbers. For B = Q, as defined above,
we obtain (5).

(ii) Substitution of second-order recurrent sequences, Let Wn be as
defined in Section 2, and let

Then

so letting r = 1, s = 2, we have bn = Wn. In this case

X -1-px ax
det( -X x2—1)

X -pxd + (g -2 +px+1,

p(x)

]

agreeing with (6').

(iii), Substitution of Fibonacci polynomials, There is nothing to restrict

{bn} itself from being a sequence of polynomials, To illustrate this, put A
I and B = R(t), so thatif we let bn be the upper right term of BnA, b][1
fn(t). Then the sequence

1]

£, o o= £ 0
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obtained by symbolically substituting the Fibonacci polynomials fn(t) into the
Fibonacci polynomials obeys a recurrence relation whose auxiliary polynomial

is
det[(* - 1)I - xR(t)] = x*-tx -3 +tx+ 1.

(iv) Substitution of Fibonacei numbers with subscripts in an arithmetic
progression. Let the sequence {rn} be generated by
m

r. = stn(Fk), r=F

n m *

that is, the sequence is formed by replacing X by F in the Fibonacci

nk+s
polynomials, Now Yy = Fnk+s obeys

‘ - k
Yty = Pidpr - CD Yy

Applying (ii), with p = Lk and q = (—l)k, we see that the requiredauxiliary
polynomial is

x+1.

- L + [(—1)k - 2] + Ly

(v) Substitution of powers of the integers. Let en(k) =e, = nk for
fixed k= 0, We find the auxiliary polynomial of the recurrence obeyed by

_ m
gn—fn(e), e =e. .

n
@

It is easy to show by induction that

and in general that
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/r\ r r 'In'\nr r -t fr
\r) r-1 0 i\r r-1)" 0
Then the lower left term of fn(Bk) is 8 The desired polynomial is thus

2 -x-1 0 eee 0 \

p(x) = det|(z? - 1)I - ka] = det

-+1
= - x -

where the « indicates irrevelant terms. Noticethat when k = 0 the auxiliary

polynomial is x* - x - 1, which agrees with fr(ll)= Fo.

(vi) Substitution of powers of Fibonacci numbers, Let Vi = Ff{n , m a

fixed integer, Consider

- k _
hn = fn(v), Vo=V .

. . m
We require a matrix whose n~ power has F_~ as an entry., Such a matrixis

provided by Problem H-26 [8] Let Bm = (brs), where

b :'/ r-1
rs (m+1—s

for rys = 1,°¢+,m+ 1, Then putting r =m+1, s =1,

th ‘ n . . m th ‘ .
(r,s) ~ entry of Bm is indeed Fn‘ Thus the (r,s) entry of fn(Bm) is hn’

we have that the

and in this case the auxiliary polynomial is

Xt -1

p(x) = det] (= —1)I—me] = 7 get ( - \)I_Bm .
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Put (=% -1)/x =y, Now det(yl - B, ) has been evaluated [1:2;5] to be

m-+i

_ _ r
det(sT - B ) = Y (-pTD@mT rﬂ)[m; 1]yr :
r=0

where
[m - ¥ Fm—1 Fm—r+1 r > 0): mi _ 1
tI‘ FIFz" Fr ( )’ 0 ’
Now
r \
2 = x T2 -1)F = —y[F) Y
y o2 -1 =y ] ,
i=0
so that

m+ r
(9) pE) = ZZ (-1 D) (@-T /2 [m: 1](;) it

=0 j=0
am-+2 I’m—l:—i / q
_ (m-r) (m-r+i)+s-m-r-1| /2im+1 r s
- Z [Z (—1)[ | |: r J({s-—m-r—l}/z) X
S=0 r=0

where in the last expression the summand is zero if (s ~m - r - 1)/2 is not
an integer,

This result may be extended to powers of an arbitrary second-order
recurrent sequence {Wn}, described in Section 2, by using the matrix CIn =

(c..), where

rs

c = r-1 r+s-m_m+i-r
rs m+1-5/P d
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for r,s = 1,-*+,m+1, For a discussion of C,, see [5] Letting u_ =

(an - bn)/(a -b), where a and b are as in Section 2, define

(r = 0) = 1.

m] _ "m"m-1""" Ym-r+ fm] _
r Uy -+ U l_O_i
u r u

Then the counterpart to (9) is

m+i T .
(10) px = Z Z(_I)mﬂ_r—j(_q) (m-r+1) (m-r+2)/2 [m; 1'|| (r) OFT-2jH
\

4\
r=0 j:0 u 7

Inparticular, (10)isthe auxiliary polynomial for the recurrence relation obeyed
by the symbolic substitution of (Fgllﬁs} for proper choices of the parameters.

The matrix method developed here is more general than previously indi-
cated. In particular, the full power of (7) has not been exploited. For example,

let {pn(x)} be any sequence of polynomials (numbers) obeying

(11) Pp® = P, (9 +hp (9,

where g(x) is any polynomial in x independent of n, and h is a real con-
stant, Let the sequence { bn} be generated by the matrices A and B as
before, We shall find the auxiliary polynomial of the recurrence relation

obeyed by

s, = p,0), b-=b

Now the (v, s)th entry of pn(B)A is So Also, if

/ 2(B) hI)
F(B) =

I 0,
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Alo /p ®A | p .BA"
n _ - n+2 | "ntl

Since s, is an entry in the right-hand matrix, it follows that the sequence

then

{ sn} obeys a recurrence relation whose auxiliary polynomial is the charac-

teristic polynomial of F(B). Using (7), the latter reduces to

(51 - g Lm)

det[xI - F(B)] = det( - o
= det[(x? - h)I - xg(B)] .

Putting g(x) = x, h =1, pyx) = 1, and py(x) = x specializes thisto
(8). As another illustration of this result, we note that Tn(x) and Un(x), the
Chebyshev polynomials of the first and second kind, respectively, obey (11) for
g(x) = 2x, h = -1, along with

Tyx) = 1 = Upx), Tiyx) = x, and Uyx = 2x .

Then the sequences defined by the symbolic substitutions

k _
Tn(F)! Un(F)’ F = Fk:

each obey a recurrence relation whose auxiliary polynomial is
(12) det[ (2 + I - 2xQ] = x*-2x3-2x> -2x+1.
5. A GENERAL RESULT
Here we extend the second approach in Section 2 to obtain the most gen-

eral solution to our problem. Let {qn(x)} be any sequence of polynomials

obeying the kth order recurrence relation
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k
0 =Z 8,09, (9, ag®a® # 0,
j=0

where the aj (x) are polynomials independent of n. Put

k
Qx.t) =Zaj<x)tj ,

J=0
so that
= P(x,t)
— n o_ X,
M(x,t) = Zq_n(x)’c = Q)
n=0

where P(x,t) is a polynomial in x and t of degree <k in t. Suppose {An}
is a sequence satisfying an mth order recurrence relation with constant coef-
ficients whose auxiliary polynomial has distinet roots ry,ry,---,rpy. Then
there exist constants By, By, - -, Bm such that

Define { Dn} by

Then
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so that
® m ™ B.P(r., t)

n _ _ i it r(t) = r®
2 Pul = DB Qe QD -cr Qg d s
n=0 i=1 i=1

where the degree of r(t) < mk, and the degree of s(t) = mk. Therefore { Dn}

obeys a recurrence relation whose auxiliary polynomial is

m k
(13) 50/t = 1 Zléj (r; T
i=t1| j=o'

Continuing with the illustration of the preceding section, for Chebyshev

polynomials of both kinds we have
k = 2, ao(X) = az(x) = 1, ai(X) = -2x )

andif A. = F_ we see
n n

m=2, r;=1+V5)/2, 1r,=(1-V5)/2.

The desired polynomial is then
(2 -2rt +1)(t2 - 2rt + 1) = th-2t3 - 282 -2t + 1,

in agreement with (12).
It happens that (13) is valid even if ry,**,r,, are not distinct. Then
this generalization actually yields the matrix method as a special case. To

see this, put
k=2, aO(X) =1, ai(X) = —g(x), az(x) = 'h:
and 1e1:'~_‘bn be the (r,s)th entry of B"A, where A and B are m-by-m

matrices, Then { bn} obeys a recurrence relation whose auxiliary polynomial
is
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det(xI -B) = (x-1y)+-- (x—rm) .
From (13), we have that the sequence
k
{q'ﬂ(b)}’ b = bk H
obeys a recurrence relation whose auxiliary polynomial is

m

py(t) = I1 [t - g(r;)t - h].
1=1

On the other hand, by (8) we find that the matrix method gives the required

polynomial as
po(t) = det[(t* - h) - g()t] .

To show py(f) = py(t), we note B is similar to

so that g(B) is similar to g(C). We also have

glry) 0 cer 0
g(C) = sl) 00,
* g(r,)

where the * indicates irrevelant entries., Since similar matrices have the

same characteristic polynomial,

m
pp(t) = det[(t2-h) - gC)t] = I [t - h -tg(r,)] = pst)
1=1



74

SYMBOLIC SUBSTITUTIONS

. 1968
INTO FIBONACCI POLYNOMIALS Nov. 19

However, the matrix method has the advantage that the roots ry,---, r. of the

characteristic polynomial of B do not have to be known,

The second-named author was supported in part by the Undergraduate

Research Participation Program at the University of Santa Clara through NSF
Grant GY 273.
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FIBONACCI SEQUENCES WITH IDENTICAL CHARACTERISTIC VALUES

EUGENE LEVINE
C. W. Post College, Long Island University, Brookville, N. Y.

A Fibonacci sequence is viewed herein as an integer sequence

which satisfies the recursion

1) f = f + f

for all n,

Following [1] , it is convenient to associate two Fibonacei sequences with
each other if one can be transformed into the other by a relabeling of indices.
Also, it is apparent that {fn} satisfying (1) implies that | —fn} satisfies (1)
and it is convenient to associate a sequence with its negative, These remarks
lead to

Definition. Two Fibonaceci sequences {fn} and {gn} are equivalent if

and only if there exists an integer k such that either

) gy fn+k for all n;

or

(ii) gy = -fn ik for all n,

In [1] , the discussion pertains to Fibonacci sequences such that there is
no common divisor d > 1 of every term in the sequence (or equivalently, of
any two consecutive terms). In this paper, we will be interested in all integer
sequences satisfying (1). However, when there is no common divisor (>1) of
the sequence, we will call the sequence primitive,

A well-known identity satisfied by Fibonacci sequences is

75
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(2) frr Ty - f%l = 4D

where D = 0 and the sign alternates with n. We call the integer

D = lfn+1 fet - f%l‘
the characteristic of the sequence { fn}. The reader may verify that if {fn}
is equivalent to {gn} then { fn} and {gn} have the same characteristic.

A table is presented in [1] of all D < 1000 for which there exists a
primitive sequence, Also, all primitive sequences (up to equivalence) having
these characteristics are provided, Such a table leads one to ask the following
two questions:

(I) For a given integer D = 0, how many Fibonacci Sequences are

there (up to equivalence) having the characteristic D?
(II) For a given D = 0, how many primitive Fibonacci sequences are
there (up to equivalence) having the characteristic D?

This paper is devoted to providing a complete answer to each of these

questions.

For this purpose, we let

and we consider the field extension R(®) obtained by adjoining « to the ration-
als. The domain of algebraic integers in R(a) then consists of all numbers of
the form A + Ba,where A and B are rationalintegers. It is well known (see
[ 2]) that one has unique factorization in this domain of integers. The units in
this domain are precisely numbers of the form J_rozin and all primes (up to
associates) are
i Vb =2a0-1
(ii) all rational primes of the form 5k + 2
(iii) numbers of theform A + Ba and A + Ba, where « isthe conjugate
of o, i.e.,

1-V5

a = B}
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and i(A + BQ) (A + BO?)‘ is a rational prime of the form 5k + 1,

We may assign to each Fibonacci sequence an integer ¢ in R ),
namely, the sequence {fn} is assigned the integer &= f, +fo, Itis easily
verified that the assignment of integers in this manner provides a one-to-one
correspondence between Fibonacci sequences and integers in R(@), Letting
¢ = A+Ba be an integer in R(@) we denote by S(¢) the unique sequence
assigned to ¢ (i.e., the sequence determined by f, = A, f; = B),

The assignment S(¢) preserves addition in the sense that if S(&;) =
{t} and s(&) ={g}, then s(¢&; + &) = {f +g }. It might also be re-
marked that the correspondence S(¢) allows one to define a product of two
Fibonacci sequences in a natural way, Namely, for two Fibonacci sequences
S(£4) and S(&,), the product sequence is defined as S(£;¢;). In this way,
one has a ring of Fibonacci sequences which is isomorphic to the ring of inte-
gers in R(a).

Two integers ¢; and &, in R(x) are called associates if & = e¢,
for some unit € (which is one of the integers :hain). It follows that two
sequences S(&;) and S(&,) are equivalent if and only if ¢; and &, are
associates,

For a given integer ¢ = A +Ba, we define the (absolute) norm N(¢)
in the usual way as N(£) = if 3 |, where E= A +Bd@, One can easily verify
that the characteristic D of a Fibonacei sequence S(£) is simply N(£).

As a result of the above remarks, we find that questions (I) and (II) reduce
to questions about integers in R(a)., Namely, () and () are equivalentto
asking:

(fa) How manyintegers in R(a) (up to associates) have agiven norm D?

(la) How many integers in R(x) (up to associates) with no rationalinte-

ger divisor d > 1 have a given norm D?

To resolve these questions we introduce:

P = {set of all positive rational integers n such that every prime
divisor of n is of the form 5k +1

and by convention 1 belongs to P*;

w(n) = number of distinct prime divisors of n;
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d,(m) = > 1 d m = Z 1
dln,d > o dln,d >0
d=+1(mod 5) d=+2(mod 5)

rm) = d,(m - d_(),

where r(0)
=3, 1(60)

form as follows:

1 by convention, (To illustrate, w(60) = 3, d_(60) = 3, d_(60)

0). The answers to (I) and (II) may now be provided in a compact

Theorem 1, For D = 0, there are exactly r(D) Fibonacci sequences
(up to equivalence) having characteristic D.

Theorem 2, There exists a primitive sequence having characteristic
D=0 ifandonlyif D = n or D = 5n, where n belongs to P*., For such a
chair)acteristic D, the number of (inequivalent) primitive sequences is exactly
. Zw n . .

Proofs: Letting

a by b b ¢ c
D = 5°pilpy? *** p hqii._. q k
h k
be the prime factorization of D, where p; is a prime of the form 5m + 1 and
qj a prime of the form 5m + 2 it follows that all integers in R(«) having
norm D are

h koo
(3) A+Ba = VB I+ B + @ ¢
i=1 =t

i
prime in R(x) having norm p;. Thus, the number of integers (up to associ~

where € is a unit, S5 + 1:i = b., cj of necessity is even, and Ai + Bioz is a

ates) having norm D is the number of ways we can vary each S with 0 < 8
=< bi' The number of such choices for the 8; is the productfil a1+ bi)' The
latter expression (combined with the fact that all Cj must be even) is equiva-
lent to Theorem 1.

This equivalence is a counting exercise which can be ascertained in the
following way. The factor 5% of D has no effect upon the value of r(D).
Letting



1968] WITH IDENTICAL CHARACTERISTIC VALUES 79

one has r(D) = r(ﬁ), The divisors of D are the terms in the expansion

h ek .
(4) [ @apteee +p7) I (LHg+ee +q)).
i=1 ! j=1 J

By replacing each p; with the value +1 and each qj with the value -1 in (4),
the resulting expansion will yield a term of +1 for each divisor of the form
5m + 1 and a term of -1 for each divisor of the form 5m # 2, Thus, the
expansion of the modified expression is merely r(ﬁ). If any cj is odd the
factor (1 + (-1) ++.- + (-1)cj) is zero which yields r(’B) =0, If all Cj are
even, then the factor corresponding to qj is 1+ (-1) +-0- + (—l)cj) = 1 and
the resulting expression for r(D) becomes Iil(l +bi) which is the desired
result,

Theorem 2 is obtained by realizing that for (3) to have no rational inte-
ger divisor (>1), one must have a = 0 or 1, (?j =0 tigr all j, and the
only choices for s; are 0 and bi' Thus, there are 2 choices for 8;»
which is theorem 2,

As a final note, it should be pointed out that the proofs of Theorems 1 and
2 proceed in a manner analogous to that which one could take in determining
the number of representéttions of an integer N as the sum of two squares (see
Theorem 278 of [ 2]). In this latter problem one utilizes the ring of gaussian
integers whereas in the problems considered above we have relied upon the
ring of integers in R(x). It would appear that the above results should extend
to other recursions of the form £ =af | Hofn__2 provided one has unique
factorization in the underlying ring of integers,

For a related paper, see Thoro [3].
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THE TWIN PRIME PROBLEM
AND GOLDBACH'S CONJECTURE IN THE GAUSSIAN INTEGERS

C. A, HOLBEN AND J. H. JORDAN
Washington State University, Pullman, Washington

1. PRELIMINARIES

The set of Gaussian Integers denoted by G is the set {a +bi}, a and b
real integers and i the "imaginiary unit." It is well known that G with the
usual two operationsis an integral domain and that the divisionalgorithm holds,
if forany ¢ and B # 0 in G, thereare Y and 0 in G such that ¢ = By+
&, where [6|= |8|. Since the division algorithm holds on G, the domain is
a unique factorization domain.

A Gaussian prime is a Gaussian integer, p, such that:

i) {p] =1 and

ii) if @ divides p then o] = 1 or @ = ¢ where € in G and [e|= 1.
Here divides means that if o divides [. then there is a Gaussian Integer 7Y
such that ay = B.

The Gaussian Primes can be separated into the following three classes:

i) if p is a positive real prime of the form 4k + 3, the #p and zip
are Gaussian primes.

ii) if p is a positive real prime of the form 4k + 1, the p can be ex—
pressed uniquely as p = a? + b? and the expression generates the 8 Gaussian
Primes tatbi and tbtai.

iii) +1+i are Gaussian Primes.

A Gaussian integer, B, 1is said to be even if 1 +1i divides . An easy
method of recognizing even Gaussian Integers is the following:

A Gaussian Integer, 8 = a + bi, is even if, and only if, 2 divides a +b
or in other words, if a and b have the same parity.

Consider the figure which plots the Gaussian Primes in the square with
vertices at £50+50i.

2. TWIN PRIMES

A meaningful definition is sought for twin primes in the Gaussian Integers.

We have a preference for the following,
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Definition: Two Gaussian Primes p; and p, are called Gaussian twin
primes if py - py = (1 + i)e where lel= 1.

Our reason for preferring this definition is that +1+i are the only even
primes, and in the real case primes are twins if their differences are +2.

Notice in the figure the relative scarcity of primes that are not twins,
the smallest odd ones being 17+12i and their associates. It is perhaps coin—
cidence but !17 + 12i| = 20.8+, which isfairlyclose to 23, which isthe small—
est odd real primes, which is not a twin. Notice that 23 and 24+i are twin
Gaussian Primes and that 47 is not a twin in either system. This serves to
point out that there is little, if any, connection between numbers being real
twin primes and being Gaussian Twin Primes.

There are two possibilities of definitions for triplets of primes in the
Gaussian Integers. The most natural seems to us to be

Definition 2. Three Gaussian Primes, py, Py, p3 are called Gaussian
triplet primes if Py - py = py -p3 = (1 +i)e where |€|= 1.

An example of these triplets would be 20 + 3i, 21 + 4i, and 22 + 5i. The
alternate definition would be for the less restrictive condition on the 's:
'pi - pzl = 'pz - p3~ = ‘1 + ii. Examples of this less restrictive condition for
the triplets would be

(2A) 10 +1i, 11, and 10 -1i

(2B) 19 +10i, 20+ 11i, and 21 + 10i.

The only real primes that could be considered triplets would be 3, 5, and
7. But it can be noticed from the figure that there are many Gaussian triplet
primes.

There are also several possibilities for definitions for Gaussian quad-
ruplet primes. The one we prefer is the more restrictive.

Definition 3: Four Gaussian primes, pi, p3, P3,» and p; are Gaussian
quadruplet primes if p; - py = py - p3 = Py - py = (1 +i)e where le| = 1.

Two examples of these are the primes 31 + 26i, 32+ 27i, 33 + 28i,
34 +29i; and 16 +19i, 17 + 18i, 18 + 17i, and 19 + 16i.

The less restrictive definition would have

‘P1-P2‘ :\Pz—Psl =\p3~P4l = ‘1+il-

This would not only allow the first definition, but would allow forms like
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(3A) 25+ 12i, 26 + 11i, 27+ 10i, and 25+ 9i, or
(3B) 49 + 34i, 48 + 35i, 49 + 36i, and 48 + 35i or
(3C) 24 + b5i, 25+ 4i, 26+ 5i, and 25 + 6i.

A further loosening might be imposed on the restrictions to allow forms
like 43 + 10i, 44 + 9i, 45+ 8i, and 43 + 8i by making the condition in the
definition that for some j ‘pk - pj‘ = ‘1 + i‘, for k # j.

The most restrictive definition for quintuplets would be

Definition 4: The Gaussian Primes py, p3, p3, pg» and ps are Gaussian
quintuplet primes if py - py =Py -P3 = ps -pg = py - p5 = (1 +i)e where |e|
=1,

Several less restrictive definitions could be posed that would allow a
variety of forms such as the zigzag: 13 +2i, 14 +1i, 15+ 2i, 16 + i, and 17+
2i. We do not wish to list examples of these forms.

We do wish to notice the following:

Theorem 1: There are only finitely many Gaussian quintuplet primes
and they are +5+2i, +4<+i, +3, =*2=i, ==1+2i, =+3i, =*1+4i, =*2+bi.

Proof: A special division algorithm for 2 +i asserts that for any
Gaussian Integer 7V, there are Gaussian Integers a and B such that Y =
a(2 +1i) + B with JB‘ <1, hence B =0 or +1 or #i. (See representation C
of [1] for details.)

Now consider

Py = a@ +i) +p with ’B! <1, and suppose that the € in the theorem

is -1, then

i) if B =0 then (2+1i) =Py
ii) if B = 1 then py = (2 +i)l@ + 1)
iii) if B =i then py = 2 +i)la+2 +1i)

iv) if B = -1 then p5 = 2+ i)+ 2 +1)
v) if B -i then p3 = 2 +i)l@+1)

Il

So in any case, 2 +1i is a factor of one of the pj'S. Hence at least one of the
pJ.'S is composite unless the pj is (2 +1i)§, where ‘8' = 1. This only hap-
pens when the pj's are in the set specified in the theorems. Similar argu-

ments can be given for € = 1 or +i.
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There are several other definitions that could arise, but we choose to
start guessing about the definitions we now have:

Conjecture A: There are infinitely many Gaussian twin primes.

Conjecture B: There are infinitely many Gaussian triplet primes.

Conjecture C: There are infinitely many Gaussian quadruplet primes.

It is clear that if conjecture C is true then the others would be true, and
if conjecture A is false, then the others would be false. It seems to usthat all
three should be either true or false together, but this is only our opinion.

One theorem that can be stated positively about the primes that form a
square of twin primes like those of example 3C is the following:

Theorem 2: If a+1+bi, a+ (b+1)i are primes with |a] + bl >5,
then a and b are both multiples of 5 and neither is zero.

Proof: Since these four numbers are primes, none is divisible by 2 +1i
nor 2 -1i. The strong division algorithm for 2 +i gives a+bi = 2 +i)a +8
where lﬁl <1. But if 8§=1, then (@-1) +bi= (2 +i); if 8§ =1, then
a+b-1i=@+i); if §= -1, then a+1+bi=(2+i and if 5§ = -i,
then a+ (b+1)i = (2+i)e so 8§ = 0, A similar argument implies that for
a+bi=(2+1)8+mn then = 0. So not only 2+i but also 2 -1i divides
a +bi; hence (2 +i)(2 -i) = 5 divides a + bi, hence 5 divides each compo-
nent a and b.

Notice that if b = 0 then a+1 and a -1 are both primes which is
impossible because if a +1 is even, 2 divides it, andif a+ 1 and a -1 are
both odd, one is of the form 4k + 1, which is not a Gaussian prime. A simi-
lar argument settles the case a = 0.

Corollary. If py, p3, p3, and py are a set of Gaussian primes as des-
cribed in theorem 2, then there does not exist a Gaussian prime p # p]. such
that p = P + (1 +i)e for €| = 1.

Proof. Notice that the eight odd numbers that surround this set have the
property that they differ from a +bi by +2%i or +1i2i hence are divisible
by either 2 +i or 2 -1i since a +bi is divisible by both.

This means that forms like 3C that are not near the origin can not have

an additional prime attached a checker move away.
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3. GOLDBACH'S CONJECTURE

There are several possibilities for generalizing Goldbach's conjecture.
One possibility would be

Conjecture D: If o is an even Gaussian Integer, then there are Gaussian
Primes p; and p, such that a = p; + ps.

This seems to us to be a poor generalization of Goldbach's conjecture.
It is more the generalization of the statement, "Every even integer is either
the sum or difference of two positive primes. "

Since positive is meaningless in the Gaussian Integers, we would like to
somehow purge the possibility of allowing differences to creep in. These two
possibilities occur: 1) Insist the| p; and py lie in that same halfplane, or 2)
insist that |p1‘ and ‘pzl be < loz

. We however prefer this one.

Conjecture E: If o is ah even Gaussian Integer with |a| > V2, then
there are Gaussian Primes, p; and p;, such that o = p; + py andtheangles
pi0c and alpy are <45°

It is easy to see that conjecture E implies conjecture D and both of the
two alternatives mentioned.

Conjecture E has been verified forall even GaussianIntegers inthe figure,

Certain conditions stronger than conjecture E might be asserted by re-
ducing 45°. The o« may have to be increased in absolute value to avoid cer-
tain exceptional cases. For example

Conjecture F: If o is an even Gaussian Integer with o] > V10, then
there are primes p; and p, with angles p0o and «0p, < 30° and o = py +
Py.

This has also been verified for the even integers in the figure. Note that
1+3i, 3+i, and 2 and their associates require 45°

Reducing the angle to 0° doesn't work since 4, 8, 12 °+* have no repre-
sentatives as the sum of two Gaussian Primes. There might be some sacred
angle §, which is the dividing point for the truth or falsity of the appropriate
conjecture or perhaps if 6 >0 then for all [l > Ny theappropriate conjec-
ture may be true. There might be a universal shaped region that depends on
{er| such that the primes py and p; would fall in that region, with this region

in some ways minimal.

(Continued on p. 92.)



ON THE LINEAR DIFFERENCE EQUATION WHOSE SOLUTIONS ARE THE
PRODUCTS OF SOLUTIONS OF TWO GIVEN LINEAR DIFFERENCE EQUATIONS

MURRAY S. KLAMKIN
Scientific Laboratory, Ford Motor Company, Dearborn, Michigan

It was shown by Appell [1] that if u; and uy denote two linearly inde-

pendent solutions of
{D2 +pt)D + q(t)}y =0,

then ui, wuy, uj denote three linearly independent solutions of the third-order
linear differential equation

{D3 + 3pD?% + (2p? + p' + 4q)D + (4pqg + Zq')}y =0.
Watson [2] shows that if
{D2+1}v =0, {D2+J}w =0,
then y = vw satisfies the fourth-order differential equation

y' 20+ )y + T+ Iy _
T % -I-Jy, T£I.

Bellman [3] gives a matrix method for obtaining Appell's result and notes that
the method can be used to find the linear differential equation of order mn
whose solutions are the products of the solutions of alinear differential equation
of order m and one of order n.

We now obtain analogous results for linear difference equatiens.

Let {An} and {Bn } denote sequences defined by the second-order linear
difference equations

(1) An+1 - PnAn * QnAn-l ’
(2) Bn+1 - Ran * San—i ’
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DIFFERENCE EQUATIONS

where Aj, Ay, By, By are arbitrary and Pn’Qn’ Rn, Sn are given.

Nov. 1968 87

If uy and uy, v4 and v, denote pairs of linearly independent solutions
of (1) and (2), respectively, then we first obtain the third-order linear difference

equation whose solution is given by

kyuf + kpugu, + lguj

where the ki's are constants. Squaring (1) and letting Cn = Aé, we obtain

_ 52 2
@) Cott = PpCn " QCps ™ 21)nQnAnAn—l
or
2 0?2 =
(4) Cn+1 - Pncn Qﬁcn—i 21)nQnAn—i(Pn—iAn—i " Qn—iAn—z)
- 2PnPn—1QnCn—1 " 2PnQnQn—1An—1An—z *
By decreasing the index n by 1in (3), we can eliminate An—iAn—z to obtain
() Pn-icn+1 - Pn(PnPn—i * Qn)cn * Pn—iQn(PnPn—i * Qn)Cn—i

-PQQ 2

nn n-1i n-2

We now obtain the fourth-order equation whose solution is given by kiu:{
+ klu? + koufu, + kguiu'g + kyu3. Cuhing (1) and letting Dn = AI:’;, we obtain

3 3 - 2 2 2 2
©) Dn+1 - PnDn - QnDn—i 31)nQnAnAn—i * 31)nQnAnAn—i
_ 2 2 27 2
3PnQnAnAn—i * 31)nQnAn-1(Pn-iAn—i +Qn—1An—2)
or
- P3 -Q2 = 2 2
(7) Dn + PnDn Qn(3PnPn_1 + Qn )Dn- 1 SPnQnAnAn—i
2 2 - 2 2
* 31)nQn(')'n—iAn—1An-2 3PnQnAn—1(Pn—1An—1 " Qn-iAn—Z )

2 2
* 3PnQnQn—1An—1An—2



88 ON THE LINEAR DIFFERENCE EQUATION WHOSE SOLUTIONS ARE [Nov.

or

- P3 - 2 2 2
®) Dn+1 PnDn Qn(3P:nPn—1Qn+3PnPn—1+Qn)Dn—1

- 2 2 24 2
3PDQIIQ1’1-1(2P1’1P1’1-1 - Qn)An—iAn—z * 3P1’1Q1’1Q1’1—1An—2A1’1—1 *

By reducing the index of n by 1 in (6), we can then solve (6) and (8) for
An—?An-z' Then by substituting this expression in (7), we can obtain the desired
difference equation.

To find the fourth-order equation satisfied by
kiugvy + Kougvy + Kgupvy + kKqupvy

we multiply (1) by (2) and let En = Aan, to give

(9) En+1 - PanEn - QnSnEn—1 PnSnAan—l + RnQanAn-i

PnSan—i(Pn—iAn-i " Ql’l-iAn—Z)

1
* RnQnAn—i(Rn—1Bn—1 * Sh—i-Bn—?s)
or
(10) En+1 - PanEn - (PnPn—isn * Ran-1Qn * Qnsn)En—i - PnSnQn—1Bn—1An—2
* RnQnSn—iAn—iBn—z - 1)nSnQn—1An—2(Rn—2Bn—2 * Sn-an—s)
* RnQnSn—iBn—zt‘Pn—zAn—z * Qn—zAn—3)
or

(1) En+1 - PanEn - (PnPn—isn * Ran—iQn * QnSn)E

- (PnDnQn—iRn—z * RnQnSn—ipn—z)En—z

n-1

- PnQn—1SnSn-zAn—2Bn—3 * Rnsn—1QnQn—an—2An—3 '

By now reducing the index n by 2 in (9) and by 1 in (10), we canthen eliminate
A B and B_ A from (9), (10), and (11), to obtain the desired differ—

n-2° n-3 n-2 n-3
ence equation.
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If here Pn’ Qn’ Rn’ Sn are independent of n, the equations simplify
and the elimination is rather simple. This special case gives a solution to

part (i) of proposed problem H-127 by M.N.S. Swamy (Fibonacci Quarterly,

Feb., 1968, p. 51), i.e., "The Fibonacci polynomials are defined by

fn+1(x) = an(X), n>2,
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