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GENERATION OF STIRLING NUMBERS 
BY MEANS OF SPECIAL PARTITIONS OF NUMBERS 

Danie! C. Fielder 
Georgia Institute of Technology, A t lan ta , Georgia 

1. INTRODUCTION 

Stirling numbers of the First and Second Kinds appear as numerical co-
efficients in expressions relating factorials of variables to powers of the var -
iable and vice versa. Riordan [ l ] investigates the properties of Stirling num-
bers in great detail, particularly with respect to recurrence formulas and 
relationships to other special numberse 

In the series expansions on certain functions of logarithms, Adams [2^j 
develops and tabulates coefficients which run through positive and negative 
indices. A rearrangement of Adams1 table for positive indices together with 
an appropriate alternation of sign yield Stirling numbers of the Firs t Kind while 
a different rearrangement for negative indices yields Stirling numbers of the 
Second Kind. 

An excellent summary of the properties of Stirling numbers including 
recursion and closed form expressions for finding Stirling numbers is p re -
sented in a recent Bureau of Standards publication [3]. In this regard, it is 
interesting to note that members of special partitions of numbers described 
in the April, 1964, issue of this Journal [4] can also be used to develop 
Stirling numbers. A discussion of this latter method follows. 

2e DESCRIPTION OF COEFFICIENTS 

Riordan uses the notation S(n,k) and s(n,k) for Stirling numbers of the 
Second and Firs t Kinds, respectively, where the integers n and k are pos-
itive. Stirling numbers of the Firs t Kind, the sum of whose n and k is odd, 

n are negative. Adams chooses C,, where n is a negative or positive integer 
and k is zero or a positive integer. Although none of Adams! C!s are nega-
tive, a negative value for n identifies a C equal to a First Kind Stirling num-
ber, neglecting sign. For convenience of manipulation, the obviously sub-
scripted (R for Riordan, A for Adams) indicates n R , n . , k , k . r e -
place the n and kTs. By direct comparison, it can be seen that 

1 
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(1) 

(2) 

(3) 

(4) 
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k R = -nA 

n R = k R + kA 
(applies for Second Kind only), 

n R = nA \ 

n R = k R + kA 

applies for First Kind only). 

The above equations lead to 

(5) S(nR'kR> = C n R - k ' 

(6) 
llA Ck? = S^kA-nA'-nA)' 

(7) 
n R + k R n R 

s (n R ,k R ) = (-1) R R • C ^ . 

(8) 
n 2n -k 

C A = (-1) A A • s ( n , , n , - k . ) 'k , "A'"A A' 

Tabulations of a few Stirling numbers are given below. 

Table 1 S K . k - . ) 

n
R \ k R 

1 
2 
3 
4 
5 

1 

1 
1 
1 
1 
1 

2 

1 
3 
7 

15 

3 

1 
6 

25 

4 

1 
10 

5 

1 
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Table 2 s (n B ) k D ) 

n R \ k R 

1 
2 
3 
4 
5 

1 

1 
- 1 

2 
-6 
24 

2 

1 
-3 
11 

-50 
-6 1 
35 -10 

In Adams1 table, vertical entries for positive n . are, with appropriate 
signs, Fi rs t Kind Stirling numbers, and 45-degree, negative slope, diagonal 
entries for negative nA are Second Kind Stirling numbers. 

3. GENERATION OF SECOND KIND STIRLING NUMBERS 

The negative nA section of Adams' table suggests a numerical procedure 
by which Second Kind Stirling numbers can be generated simultaneously with 
the generation of members of the special partitions described in [ 4] . For 
example, in Table 3 consider a few column entries from Adams! table for n . 
= -4. Differences between the entries are included 

Table 3 

k . \ n . -4 Differences 

0 
1 
2 
3 

1 
10 
65 

350 

1 
9 

55 
285 

If the differences were known the table entries could be found easily. The dif-
ferences, however, do not stem from simple recursion formulas. If the man-
ner in which successive sets of Second Kind Stirling numbers are foundis 
investigated, it is seen that the differences are sums of products whose range 
is controlled by m. and k . . As an example from Table 3 (nA = -4, kA = 3) 
the products can be set up and sums formed vertically and horizontally as is 
shown in (9). 
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(9) 

1 2 
3 
4 

T+ 9 

2x2 
2x3 
2x4 
3x3 
•&x4 
4x4 

+ ~55~ + 

2x2x2 
2x2x3 
2x2x4 
2x3x3 
2x3x4 
2x4x4 
3x3x3 
3x3x4 
3x4x4 
4x4x4 
285 = 

Vertical Sums 

v 
350 

> Horizontal Sums 

The significant fact demonstrated by (9) is that exclusive of the initial Tbne,fT 

the multiplication signs, and the resultant summations, the array presented 
by (9) is identically that found in the development of the partition set 

PV(>2,<12|>1,<3|>2,<4) 

according to the methods described in [4] , For the purposes of this paper, 
the PV set designation implies that the set of partitions is arranged in col-
umns, each column consisting of partitions having exactly as many members 
as the column number. Thus, the set designation 

{ l , PV(>2,<12|>1,<3|>2,<4)} 

includes an initial fbneTf and the properly arranged partitions. 
In general, the set 

( l , PV(>2,<-n A k A |>d ,<k A |>2 ,<-n A )} 

when interpreted as in (9) yields Adams' 

c n A 
kA 

for negative n . . Through use of (1) and (2), it is seen that the Second Kind 
Stirling number S(n , k ) can be found from the set 

{l. PV(>2, <kR(nR - k R ) | >1 , ^ R - kR| ^2 ,<k R )} . 
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The method suggested above leads directly to 

kA 

or Sfn^jk-A An ALGOL language computer program for obtaining the part i-
tions described in [3] was developed as a result of student projects under the 
author's direction. It is obvious that only a slight modification of this program 
would be required to generate and store products (as the corresponding p a r -
tition is formed) needed to obtain C's or S!s directly as exemplified by (9). 

4. GENERATION OF FIRST KIND STIRLING NUMBERS 

Adams lists the following formulas for finding 

C0 , Ct , and C2 

The sum forms are applicable for nA positive., but the product forms apply 
A 

for n . positive or negative. 

nA 
(10) G0 = 1 , 

n n (n - 1) 
(11) Gi = 1 + 2 +'3 + • • • + (nA - 1) = - ^ - f 

n 
C2 = 1 x 2 + 1 x 3 + 1 x 4 + . . . + 1 x (nA - 1) 

+ 2 x 3 + 2 x 4 + . . . + 2 x(nA - 1) 

(12) + 3 x 4 + • • • + 3 x(nA - 1) 

+ 

+ (nA - 2 ) ( n A - l ) 

n A ( n A - l ) ( n A - 2 ) ( 3 n A - l ) 
24 

Although Adams gives no formula for k. > 2, (10), (11), and(12) suggest that 
tabulations of sums of products might be useful for an extension beyond k. = 
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2. This is indeed the case as can be demonstrated in an example in which nA 

= 5. Tabulations corresponding to the known formulas (10), (11), and (12) are 
listed below. For reasons given later, crossed-out dummy entries are included. 

(13) 

1 

1 = - p 5 

1 2 
3 
4 

1 + 9 = 10 = = C\ 

2 
3 
4 

9 + 
^ 

2 x 3 
2 x 4 
3-*-3 
3 x 4 
4 - * 4 

26 = 35 

Horizontal Sums 

Vertical 
Sums 

= C 

Consider the possible extensions beyond (13) for k. = 3 and k. = 4 shown 
in (14). 

(14) 

2x3 
2x4 

3x4 
4x4 

2x2x2 
2x2x3 
2x2x1 
2x3x3 
2x3x4 
2x1x1 
JXJXJ 
JXJX4 
3x4x4 
4x4x4 

26 + 24=50 = Cj} 

2x2x2 
2x2x3 
2x2x4 
2x3x3 
2x3x4 
2x4x4 

Ver t ica l 
Sums 

J X J X J * 

JX^tX1* 
A -gy A -wr-fA 

. 24 = CI 
-is. 

Horizontal Sums 

Again, note that the crossed-out entries do not contribute to a sum. The exten-
sions exemplified by (14) yield the correct C| and c | . 

It is seen that exclusive of the initial "ones'1 (where present), the multi-
plication signs, the crossed-out lines, and the resultant summations, the tabu-
lations of (13) and (14) are each a partition set of the type described earlier. 
Further, it is seen that only those entries with repeating members are crossed 
out. The success of (13) and (14) is not accidental. An investigation of the 
breakdown of Firs t Kind Stirling numbers reveals that the pattern of (13) and 
(14) is general. 



1968] BY MEANS OF SPECIAL PARTITIONS OF NUMBERS 

Exclusion of the c r o s s e d - o u t en t r i e s changes a par t i t ion se t to one with 

non- repea t ing m e m b e r s . For identification, the designation changes to P V. 

One way of obtaining P V se t s would be to genera te PV se ts and ignore 

repea t ing m e m b e r par t i t ions . This p r o c e s s i s , of c o u r s e , inefficient and can 

be c i rcumvented as will be shown la ter . 

F o r the example given, the following impl icat ions can be exp res sed : 

, 5 _ 

(15) 

{1} 
( l , P u V ( > 2 , < 4 | > l , < l | > 2 , < 4 ) } - ^ C 5

1 -

( l , P V ( > 2 , < ' 8 | > 1 , < 2 | > 2 , < 4 ) } — ^ C 2
5 = 

(0 , P V ( > 4 , < 1 2 | > 2 , < 3 | > 2 f < 4 ) } - ^ £ 3 | = 

{0S P V ( > 6 , < 1 2 | > 3 , < 3 | > 2 , < 4)}—^Cf 

1 

10 

35 

50 

24 

For the genera l c a s e , the implicat ion is that 

(16) 

k A + 3 

2k. + 2 • V *2 V 
k A + 3 

2k. +2 M K 

I + 
k A + 3 

2kA + 2 

- A " 1 

: 2 , < ( n A - l ) U ^ C j 

( n A - l ) 

0 . 

>kA 

It can be observed from (16) that* 

does not exis t for k . > n . . The cor responding express ion for St i r l ing num-

b e r s of the F i r s t Kind i s found through applicat ion of (7) to (16) a s 

^Bracke t s [ ] except where obviously used for r e f e r ences a r e used in the c u s -
t o m a r y manner with r ea l n u m b e r s to indicate the g r e a t e s t in teger l e s s than 
o r equal to the number bracketed . See Uspensky and Heas le t [5]. 
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R k R + 3 

2n R 2 k R + 2 
R ~ \ 

2n R 2 k R + 2 < n R R 

(17) 
n R " 

n R -

n R -

k R 
- 1 

kR_ 

n R - X 

I ( n
R " 1) 

n R " k R 

^ R - ^ " 1 

R 

n R - k R + 3 

2 n R " 2 k R + 2 ^ n R " k R 

n R + k R 
^ 2 , < n R - 1 M - * ( - l ) K s ( n R , k R ) 

5. REDUCTION OF P V TO SIMPLER PV FORMS u 

As was indicated e a r l i e r , one way of obtaining the P V par t i t ions is 

f i r s t to genera te PV par t i t ions and then to r e t a in non-repea t ing m e m b e r p a r -

t i t ions. The repeat ing m e m b e r par t i t ions s e r v e only as devices for success ive 

genera t ion of par t i t ions . Equations (13) and (14) i l lus t ra te graphical ly the 

wastefulness of such a procedure . It i s poss ible to genera te s imp le r PV p a r -

t i t ions which eas i ly can be modified to yield the des i r ed P V par t i t ions . The 

method of doing this is desc r ibed below. While this method applies p a r t i c u l a r -

ly for the par t i t ions of this paper and is not intended to be genera l , it has the 

computational feature of genera t ing exact ly a s many PV par t i t ions a s a r e 

needed for convers ion to P V par t i t ions — no more ! 

A P V part i t ion applicable for this paper can be exp re s sed a s 

(18) P i V(>2c , < a b | > c , < b | > 2 , ^a) 

whether e i ther b = c alone o r b = c and b = c + 1, depending on whether 

the se t (1 o r 0, P V has one o r two columns pf par t i t ions . (See (15) for 

example). Assume that lb = c. If the PV designation applied for (18), the 

l a r g e s t (and last) b - m e m b e r par t i t ion would total ab and would appear as b 

a ? s , (a, a, • • • , a ) . The u subscr ip t , however, would not pe rmi t this par t i t ion, 

the c loses t approach being 

(a - b + 1, a - b + 2, 

However, (a - b + 1, a - b + 2, • • • , a) can be formed by m e m b e r addition of 
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(a - b + l , a - b + l , - - - , a - b + l) and ( 0 , 1 , 2, • • • , b - 1) . 

F o r a given b , 

(a - b + i , a - b + l , - - - , a - b + l) 

i s an acceptable l a s t par t i t ion in a one-par t i t ion column PV se t and has a 

g r e a t e s t m e m b e r a - b + 1 and the sum ab - b(b - 1). The lower l imi t s of the 

new PV designation r ema in the s a m e a s in (18). Thus , a m e m b e r - b y - m e m b e r 

addition of ( 0 , 1 , 2, • • * , b - 1) to the m e m b e r s of 

(19) P V ( > 2 s ^ a b - b(b - 1) | > b , < b | > 2 ? < 2 - b + 1) 

produces the d e s i r e d form of (18) where b = ce F o r the ca se of two columns 
of par t i t ions (i. e9 , b = c, b = c + 1), 

(20) P V ( > 2 c s < a c - c(c - l ) | > c , ^ c | > 2 s ^ a - c + 1) 

i s augmented by ( 0 , 1 , 2, • • • , c - 1) and 

(21) PV(>2(c + l ) < a ( c + 1) - c(c + l ) | > c + l s < c + l | > 2 , < a - c) 

i s augmented by ( 0 , 1 , 2 , - • * ,c) . An example for a = 4, b = 3 , c = 2 follows. 

P V ( > 4 S < 6 | > 2 9 ^ 2 | > 2 ? < 3 ) P V ( > 4 , < 1 2 | > 2 3 < 3 | > 2 3 < 4 ) 

2 .2 2 ,3 2 , 3 , 4 
(22) 2 ,3 + (0,1) — • 2 ,4 i 

3.3 3,4 I 

PV(>6,<6J>3,^3l>:2,<2) 1 
2 , 2 , 2 + (0 ,1 ,2) 

Compar i son of (22) with (14) shows the reduct ion in computation. 
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* * * • • 

ERATTA FOR 
FACTORIZATION OF 2 X 2 INTEGRAL MATRICES WITH DETERMINANT ± 1 

Gene B. Gale 
San Jose State Col lege, San Jose, Ca l i f . 

Please make the following co r rec t ions to "Fac tor iza t ion of 2x2 M a t r i c e s 

with Determinant ±1, " by Gene B. Gale, appear ing in the F e b r u a r y 1968 i s sue , 

Fibonacci Quar te r ly , pp. -3 — 2 2 , 

Page 1 

5 

5 

8 

9 

9 

9 
i l l 
U2 
12 
15 
16 

17 

Line! 

6 

- 8 

- 3 

5 

-1 

4 
-51 

-6 

6 

-4 

-9 

Reads 

d < 0 

c < d 

llru - s t J 

ad - be > ad - cd = (a - c)d \ 

a r + 1 \ 
c w I 
cd > 0 

N 

a r = ( a - l ) ( r - 1) 
d ( r F k + sW 

A2B 
ab - be 

bd 

Should Read 
d ^ 0 

c ^ d 
||ru| - |st|| 

ad - be > ad - cd = (a - c)d > 0 

r + 
d 

' ) 
c ,d ^ 0 

n 

a r - (a - l ) ( r - 1) 

d 

A, B 

ad - be 

( r F k + s F k - i > 

bd 
Continued on p . 112 



ON A CHARACTERIZATION OF THE FIBONACCI SEQUENCE 
D O N N A B. MAY 

Wake Forest University, Winston Salem, N . Carolina 

For the Fibonacci sequence defined by 

Fj = 1, F0 = 0 
(1) 

F = F + F „, n > 2S n n-i n-2' * 

it is well known that for all n 

(2) F F - F 2 = ( - l ) n 

1 ; n-i n+1 n l ; 

We consider the converse problem, i. e. , whether or not (1) can be derived 
from (2). 

It is quite easy to prove by induction that if 

X X , . - X^ = (-1) 
n-i n+i n x ' 

and 

Xj - Xo — 1 , 

then 

X = X J + X . 
n n-i n-2 

Suppose, however, that x1 and x2 are chosen as arbitrary but fixed integers. 
In this case it will be shown that we cannot conclude (1) from (2), but we do find 
some interesting results, 

Consider the generalized sequence \H } defined by 

*This work was supported by the Undergraduate Research Participation P ro -
gram of the National Science Foundation through Grant GY-3026. 

11 
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H = H + H n ,<^ n n - i n-2 

H0 = Hj = p , p and q a r e i n t ege r s . 

Under this definition i t can be proved that 

(4) H n - i H n + i " H n = ( ~ 1 ) V "OP ~ q 2 ) , 

and converse ly , given equation (4) then (3) mus t follow. If p2 - pq - q2 = 1, 
then (4) i s the s ame as (2). 

There fore let us cons ider the in tegra l solutions of an equation of the form 

y 2 - x y - x 2 ± 1 = 0 

F i r s t of a l l it can be shown by induction that the Fibonacci n u m b e r s do satisfy 

th is equation. If (2) i s to c h a r a c t e r i z e the Fibonacci n u m b e r s then we m u s t 

show that the Fibonacci numbers a r e the only in tegra l solutions to this equa-

tion, and then the sequence { H }, with p , q chosen to satisfy 

(5) y2 - xy - x2 - 1 = 0 

would be the sequence | F }. However, given examples such a s : 

y = - 1 , x = 0; y = - 2 , x = 3; and y = - 5 , x = 8 

i t i s seen that (2) and (5) do not c h a r a c t e r i z e the Fibonacci sequence. 

The cha rac t e r i z ing t heo rem which can be proved i s : 

Theorem. If x and y a r e in t ege r s such that y 2 - x y - x 2 ± l = 0 and 
(1) if x and y a r e posi t ive , then x = F _ , y = F for some n, 

(2) if x and y a r e negat ive, then x = - F , y = - F for some n, 

(3) if e i ther x o r y i s negat ive and the o ther i s posi t ive , then x = F _ , 
y =-Fv, o r x = - F . y = + F for some n. J n n-r J n 

Proof: 

(1) Wasteels proved that if x and y a r e posi t ive in t ege r s such that 

y2 - xy - x2 ± 1 = 0, (y > x) 

then x and y a r e consecut ive Fibonacci n u m b e r s [ l ] . 
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(2) If x and y a r e negative ? then -x and -y a r e posi t ive and from 

the f i r s t r e su l t we know that - x = F . -y = F for some n8 
n - r J n 

There fo re , 

x = - F , y = - F n - i J n 

for some n. 
(3) If e i ther x o r y i s negative and the o ther posi t ive then: y2 - xy -

x2 ± 1 = 0 may be wri t ten 

(6) y2 = Ixllyl - x 2 ± l = 0, | x | > | y | 

Let | y | > 1. Then from Eq. (6) we find that | x | > | y | and | x | < 2|y| . F o r 

if | x l > 2 |y | then 

(7) x2 - (x [|y | - y2 •+ 1 = 0 

and 

| x | ( | x | - i yI) - y2*• 1 > 2 |y | | y | - y2 T 1 - y2 * 1 > 0. 

Thus 

|x/2l < | y | < | x | 

Le t 

| x | - | y | = | z l 

Then 

0 < | z | < |x/2 | < | y | 

and substi tut ing for [x| in (7) 
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(|z| + |y|)2 - (|z| + |y|)jy| - y2 * 1 = 0 

or 

z2 + |y| |z| - y2 ± 1 = 0, 

so that |z| and |y| satisfy Eq. (6) and |z| is smaller than |x| or |y|. If 
|z I = 1 then |y| = 1 or 2 so that the theorem is true for |z| and |y| and 
therefore for |y| and (|y| + |z|) or |x|. 

If |z| > 1 we can repeat the above argument and find zt such that 

kl = |y| - lzl 
which satisfies Eq. (6) and is less than |z|. 

If [Zil > 1 we can continue this process until eventually we find a |z.| 
such that IzJ = 1. Otherwise we would find an infinite sequence of distinct 
integers less than x and greater than L 

If |z. I = 1, then the theorem is true for z. | and z. and also for 
I I I I I I I I 1i i 1~I1 i l l I I 
' z i - i ' a n d ^ ' z i - i ' + izil) = I2!-? '5 a n d s i m i l a r l y f o r | zil a n d ( | z i l + |z2l) = lz | 
and finally for |x| and |y|. 

We return to the original problem and consider Eq. (4). If 

p2 - pq - q2 - 1 = 0 

and p and q are positive, then this identity does indeed characterize the 
Fibonacci sequence. If, however, p and q are both negative then this iden-
tity characterizes the negative of the Fibonacci sequence, and if either p or 
q is negative while the other is positive then this identity may characterize 
either the Fibonacci sequence or its negative. There is no way in this case to 
determine which it will be. 

REFERENCE 
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THE GENERALIZED FIBONACCI OPERATOR 

CHARLES J . A , HALBERG 
University of Cali fornia, Riverside, California 

I. INTRODUCTION 

Some years ago Angus E„ Taylor and the author were looking for exam-
ples of operators for which spectra .could be determined and classified. In the 
course of this search we chanced upon a bounded linear operator F on the 
sequence space i1? defined by the infinite matrix (fji), 

f = ( 1 if i = j = l or i = l , j > l 
ij ( 0 otherwise 

This operator has the interesting property that the norms of its consecutive 
powers are consecutive Fibonacci numbers* which, as is well known* are 
defined recursively by 

f0 = 0, L = 1 and f = f + f , n > 2 . 0 5 1 n n-i n-2 

The infinite matrix representations of the n power of this operator have 
column vectors such that the first n+1 terms of these vectors are, in inverted 
orders truncated Fibonacci sequences. The spectrum consists of the unit disc 
together with the point 

i + yjjT 
2 

the positive zero of the polynomial P(X) = A2 - A - 1, sometimes called the 
"golden mean" which is well known to be the limit, as n becomes infinite of 

th th 
the positive n root of the n term of the Fibonacci sequence. We appro-
priately enough dubbed this operator the "Fibonacci Operator. " 

In this paper we define an operator-valued function F of a nonnegative 
real variable, such that for every nonnegative value of x there is associated 

15 
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with the number x a bounded linear operator F(x) on the sequence space /1# 

In addition, there corresponds to each nonnegative value of xt 
(1) a sequence jf, (x)} 
(2) a polynomial P (X) 

x 
(3) an infinite matrix representation (f. .(x)) for F(x). 
For the case x = 1, F(l) , {fk(l)|* Pi(X) and (f..(l)) are the Fibon-

acci operator, the Fibonacci sequence, the associated polynomial, and matrix 
representation, respectively,, For all other values of x, 0 < x ^ o o , F(x) and 
the entities referred to in (1), (2), and (3) above have interrelationships sim-
ilar to those possessed by their counterparts in the case x = 1. 

n . PRELIMINARY DEFINITIONS AND NOTATION 

The operators we shall consider will be bounded linear operators map-
ping the sequence space JL^ into itself. The space £t consists of the set of 
all absolutely convergent sequences of complex numbers f = {£.} under the 
norm defined by 

iifii-ftal. 
i=i 

It can be shown (see for example [l]) that every member, A, of the 
algebra [ ̂  J of bounded linear operators which map 11 into itself has a ma-
trix representation (a..), such that the uniform norm of A is given by 

00 

||A|| = sup £ Ja.. | . 
i=i 

If A is in [ i j , then the resolvent set of A, p(A), consists of the set 
of all complex X for which the operator (XI - A)"1, where I is the identity 
operator, exists as a bounded operator, and the range of XI - T is dense in 

A. 
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The spectrum of A, . cr(A), consists of the set of all complex numbers 
which do not belong to p(A). The spectral radius of A, |cr(A) | , is the radius 
of the smallest circle, with center at the origin, which contains cr(A). We 
shall have occasion to make use of the following facts* (see 2) 

(2.1) | <T(A)| = l i m | | A n | | l / n 

n->oo' 

(2„2) If | \ | > | c r ( A ) | we can represent (XI - A)"*1 by its Neumann 
expansion, 

00 

X n + 1 

n=i 

The function F which we wish to consider has for its domain the set of all non-
negative real numbers and its range is contained in [ i j . If we identify the 
values of F(x) with their matrix representations under the standard basis, it 
will be convenient to define F(x) as the sum of two matrices L and C(x). 

The infinite matrix L = {jt..) is defined by 

0 = / 1 ^ i - J = 
xi j f 0 otherwise 

When L is used as a left multiplier on a matrix A, we might call it a "lower-
ing matrix, M Its effect on A can be crudely described as.follows: Each row 
of A is lowered one step, and the empty first row is replaced by zeros, 

The infinite matrix C(x) = (c..(x)) is defined by 

0 if j < [ x] + 1 or i > 1 
if j = [ x] + 1 and i = 1 
if j > [ x] + 1 and i = 1 , 

c..(x) = j - x if j = [x] + 1 and i = 1 

where [x] denotes the greatest integer not greater than x, (Note that all 
entries of C(x) below the first row are zero,) This matrix could be described 
as "partial column summer,ff As a left multiplier of a matrix A = (a..), It 
produces the following effect In each column of A the elements below the 
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[x + l ] s t row are summed, to this is added (1 - x + [x]) times the entry in 
the [x + l ] s t rowand the totalis entered as the first row entry of the co r res -
ponding column of LAe All other entries in this column of LA are 0. 

We are now ready to state our main theorem. 

Ill, PRINCIPAL THEOREM 
Theorem 1. Let F(x) be the member of [ / J defined by the infinite 

matrix L + C(x)9 0 < x < :^)a With F(x) there are associated 
(1) a sequence jf ,(x)}, defined by 

0 if k = 0 
fk(x) = j 1 if 0 < k < [x + l ] 

W* + ( t X + Xl - X>fk-|x+i] « + <X - [^-[rt] « 
if k > [xj + 1 

and 
(2) a polynomial P (A), 

x 

PX(X) = { X [ x + l ] - ([x + 1] - x)|(X - 1) - 1 

such that the following relationships hold. 

(a) I Fn(x) || = fQH{x+2] (x) - ([x + 1] - x)fn+1(x) 

(x) 

k=o 
+ 1 

(b) -<r(F) = < X; P(X) = 0 or | X j < 1 1 

(c) &> (Vx) " ^ + 21 " x>fn-[rt] «} l / n = hF<x»| = J ^ > P(X)=o' 

(d) f.(x) = f[f) (X), j = 1, •••, k, n > [x + 1] l(j+l-k)nv 

where 
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Fk(x) = (S(x)). 

Statement (d) merely says that the first k entries in any column after 
the [ x + l ] s of the matrix F (x) are the truncated sequence { i } in reverse 
order. v t 

Before proceeding with the proofs we note that in case x is an integer, 
the sequence (tJx)} is a sequence of integers similar to the Fibonacci 
sequence; indeed {f, (1)} is the Fibonacci sequence and {f, (0)} starting with 
f^O) is the geometric progression with first term equal to land common ratio 
2„ In general, where x is an integer, the sequence {t (x)} has the following 
properties; 

(i) f0(x) = 0, ii(x) = f2(x) = . . . = fx+i(x) = 1 

f (x) = f (x) + f , ^ x (x) if n > x + 1 nv ' n - r ; n-(i+x)v ; 

(ii) w / x > = E fk(x) +1 
k=o 

(iii) l im {f (x)}l / n = sup | x | = | o r ( F ) | , 
n—>co n P(\)=0 

where 

P( \ ) = (\X+i - 1) (\ - 1) - 1 

(iv) W l ( x ) = HFn(xHI ' 

We now turn to the proof of our theorem. 
We shall let the matrix representation of Fn(x) be denoted by (f:^(x))„ 

However, to simplify the notation in the discussion that follows, we will omit 
the argument 
shall also let 
the argument x and represent Fn(x) and f.. (x) merely by F and f\ \ We 

= 1 - ( x - [x]) 



20 

and 

THE GENERALIZED FIBONACCI OPERATOR [Nov. 

i = £ + X = 1 + [x] 

With this notation the m a t r i x r ep resen ta t ion of F(x) has the appearances 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 € 1 1 1 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

where € appea r s in the f i r s t row of the t column. 
Since F = (L + C)F 9 we see from the descr ip t ion of the effects p r o -

duced by L and C a s left ope ra to r s that the k row of F i s the f i r s t row 

of F n " k + 1 for 1 k < n, k an in teger . That i s 

(3.1) 
(n) 

*kj 
f (n-i) 
Vl)3 

= f(n-k+i) 1 < k n. 

We a l so see that 

(3.2) 
rn) = I 1 if 
q I 0 if 

k = n + j 
Tq n and k ^ n + j 

With the unders tanding that if n < 0 then f.\' = 0 and f: ' = f. = 0 

we can s ta te the following lemma. 

L e m m a 18 

(a) f(n) 
lm €f (n-i) 

im 

n - £ - i 

5=i 

f(j) + f 
im i(m+n-i) 

if m and n a r e posi t ive integers,, 
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^ (n) = f(n-i) + €f(n-[) + _ f(n-£-i) 
1 ' im im im x ; im 

' i(m+n-i) i(m+n-2)' 

if m and n are positive integers and n > 2. 
Proof. Part (a) follows easily from the fact that 

.(n) = Y^f f(r 
1]^ Z ^ « ji 

3=1 

and formulas 3.1 and 3e28 Par t (b) is obtained by computing f' * from part 
(a) and.subtracting the result from the expression for v ' given in (a). 

Lemma 2. If n is an integer and n > 2 then 

f(n) = g./TT1xf(n-i) + f (n-i) ± l m gmhi + t1 ( m + 1 ) , 

where 

0 if m«< I 
g(m) = \ € if m = / 

1 if m > £ . 

Proof. The result follows easily from the fact that 

00 

f(n) =Y"f(n~i) 9 f 
i m Z^ y 3m 

3=1 

Lemma 3. If m9n and k are positive integers and m > k, then f j * 
> f ^ . If in addition k > £9 then f^ = f j ^ . 

Proof. This result follows from an inductive argument That the conclu-
sions of the lemma hold for n = 1 is evident From the induction hypotheses 
that they hold for n = j , it quickly follows from Lemma 2 that they hold for 
n = j + 1. 
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Since from Lemma 3, f y = f^ for all k and m such that k > £ 
and m > £s we make the following definition, 

Definition. 

f0 = 0S f =: $ (l+,\ if n is a positive integer. 

From the definitions of £ and € and Lemmas 1 and 39 it follows that 
\ f (x)} is the sequence defined in Par t 1 of the conclusion of Theorem 1. 

Lemma 4. The norm of F is given by 

k=0 
F n = 7 . fk + l 

Proof, Since 0 < € < 1 and all the entries of the first row of the 
matrix (f..) are nonnegative, it follows from part (b) of Lemma 1 that all the 
elements of the first row of the matrix (f:. ;) are nonnegative. From equa-

th 1^ th fn) 
tion 3.1 we see that the j component of the m column vector of (f.\ ') is 
given by 

f(n) = (n-j-M) 
jm 1m 9 J 

From this equation and equation 3.2 it follows since all the components are 
f(n; 
ij 

nonnegative that the it norm of the m column vector of (fj.') is given by 

3=1 

fjj) + 1 
lm 

From Lemma 3 we see that the £ 1 norm of the (£ + l ) s column vector of 
(f.. ) is greater than or equal to the ^ norm of any other column vector of 
that matrix. The definition of | |Fn| | and that of the sequence {f. } now imply 
that 
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n 

k=o 

This completes the proof of Lemma 40 

It is a simple matter to use the result part (b) of Lemma 1 to conclude 
that 

YJ fk + * " W + i ~ €fn+i * 
k=o 

This result together with Lemma 4 gives part (a) of part 2 of the conclusion of 
Theorem 2. 

Lemma 5, The formal inverse matrix (g...) of the matrix representation 
of XI - F is defined by 

where 

and 

blj = P(\j" — if j > i 
\ 2 

P ( \ ) = \l+1 --K - e\ - (1 - e) 

- A T : + - A r b . . if i > j 
Xl-J-H x l - l 1] 

x i - i lj 
b, . if i < j 
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Proof, The Neumann expansion for (XI-F)""1 converges provided | \ | > | c r ( F ) | . 
Since 

it is clear that the Neumann expansion for (XI - F)"1 converges provided | \ | 
> 2. We, however, are only using the Neumann expansion as a device to ob-
tain the formal matrix inverse of the matrix representation of (XI - F). If we 
let the matrix for (XI - F)""1 be denoted by (g..)9 then since 

^-F)_ 1 = £ + E ^ F * 

n=i X 

it follows that 

6.. ^ f . ( n ) 

SiJ X JL«. n+l 
n= i X 

But from 3.1 and 3,2 we see that; 

f(n) = 
ij 

.(n-i+i) . . . . ^ 
fJ. ' if 1 I < n, 

6. , . , x if i > n . i(j+n) 

Thus 

oo f(n-i+i) 

n=i ^ 
(3.3) gy = 

oo f(n-i+i) 

i-j+i ' E " ^ if * a J + 
X n=i V 
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If we now cons ide r the m a t r i x (g..) a s the sum of two m a t r i c e s (a. .) and 
i j i ] 

(b..) where 

(3.4) a.. : 1 

x i - j+ i 

0 if i <= j , 

if i ^ j . 

we see that 

00 f(n-i+i) 

n=i k 

If i > 1 we s ee that 

oo f(n"i + 1) oo f ( k ) 

A. 1 A. 
n=i k=i 

_ 1 Y ^ ij _ 1 ^ 
, i - i Zw ,k+i . i - i Dlj 
X k=i X X 

By using p a r t b of L e m m a 1, we can solve for va lues b , . a s follows; 

00 j?(k) £ 00 ^(k) 

b , . 
k=i k=2 

• 4 + L ^ jfc 
k=2 

or 
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f 
b i j x2 + x bij + ^ % +

 x*+i b ij 

e + - 4 ^ r if j * jL .£-j+2 ,^-j+S 

i if J - i . 

and therefore 

(3.6) \ = 
.1+1 

£+1 X -X - €X - (1 - c ) 

X« + fl - 6) , 
,i-j+3 

X"1 

if 3 

if j > £ 

Remembering that g.. = a.. +b . . the conclusion of the lemma follows from 
equations 3.3, 3.4, 3.5, and 3.6. 

From Lemma 5 it is easy to see that the matrix (g..) can be schemati-
cally presented as the linear combination of two matrices as follows: 

<v 

1_ 1 
X 

xk x k " * 

0 0 

0 0 
X 
i 1 1 0 

0 0 

\%) h % • • 

h(1W2)
(t ) 

X X " 

x2 x2 

h^W^) 
X3 X3 

• h%) 1 1 

h(£)(e) 1 1 
X X X 

h^fc) 1 1 
x2 x2 x2 

h<®(€) 1 1 
x3 x3 x3 

where 

hO>(0 = Xe + (1 - e) 
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is a factor of each element in each of the first L columns of the second 
matrix. The first of the above matrices is the matrix representation of 

00 

k=i 

and the value of its norm is 

""1 = Z ^ U | k 
k=i IM 

if X > 1. The value of the norm of the second matrix is 

max 

W - - l + ' x - i 

provided | X | > 1. 
From these facts we can infer that (XI - F)"1 i s defined and a bounded 

operator on X^ into JLV provided | x | > l and X. is not a zero of P(X), and 
that (XT - F ) - 1 i s either not defined or i s unbounded if X is a zero of P(X) or 
I X I < 1. We thus conclude that the resolvent set of F, 

P(F) = {X | x | > l and P(X) t 0 , 

and therefore the spectrum of F, 

cr(F) = {x I x l s r l or P(X) = o} . 
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This proves part 2.b of our theorem since if we recall that X ?- [x + l] and 
€ = ([x + l] - x) we see that the polynomial P(\) is precisely the polynomial 
P (X) defined in the theorem by: 

x 

p a > = { \ t x + 1 ] - ( [ x + i] - x ) } ( \ - i) 

Lemma 6. For any given value of x, 0 < x < oo, P (X) has precisely-
one real zero, r , with modulus greater than 1 and 1 < r < 2. 

X X 
Proof. As a function of the real variable £ 

Px(£) = ( £ Z - e)(f - 1) - 1 = f£+1 - {l - ei - (1 - e) 

and 

It is a simple matter to verify that P ! (£) > 0 if £ > 1 and P (1) = - 1 . 
From this we infer that P (£) has precisely one zero greater than 1 and 

x 
since P (2) > 0, that M s zero lies strictly between 1 and 2 if x ^ 0, If 
£ < -1 and JL is odd then Pf (f) < 0 and P (-1) > 0. If £ < -1 and X is 

x x 
even, then Pf (£) > 0 and P (-1) > 0. From these facts it follows that P (£) 

X X -X-

has no negative zeros with modulus greater than 1. This completes the proof 
of the lemma. 

Lemma 7- If r is the positive real zero of P v ( \ ) , 1 < r < 2, and 
X X A 

if fju is any other zero of P„(\) , then \\i\ < r . 
x x . . 

Proof, The proof is by contradiction. If we assume P fix) = 0 and \\x\ > r > 1. then L " > r ^ and therefore u. - e > r f - €> 0 since 0 < 
x 9 in x ir-i x 

e < 1. From this last result the following chain of inequalities follows: 

x 

hence 
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1 + T—h— < 1 + —~—- = r 
H -€ J- - x 

v - € 
X 

since 

and therefore 

r x " x €r x " ( 1 ~ €) = ° s 

1 + I I x 

or 

since 

1 + 
|1 - € 

< 1 + 
|n'-« 

But m. < r is a contradiction of our assumption that |j. > r . 
X X 

From Lemmas 6 and 7 and the definition of spectral radius* we immedi-
ately deduce the second equality in part 2.c.of the conclusion of Theorem 1„ 
That i s , 

k(F(x))| sup I 
P (X)=0 

xv ' 

M 

The first equality of part 2ec of the conclusion of Theorem 1 is an immediate 
consequence of part 29a of Theorem 1 and the fact, 2.1, that 

|a(F(x))l = lim [|Fn(x)| | l /n . 

We have now completed the proof of Theorem le 
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IV. A PROPERTY OF |a(F(x))| 

We conclude this paper with the following theorem. 
Theorem 2. The spectral radius of F(x) is a strictly decreasing con-

tinuous function of x, x > 0, and 

(a), xHmJcr(F(x))| = 1 

(b) xllmo|a(F(xJ)| = 2 . 

Proof. From Theorem 1 we know that 

|a(F(x))| = r x 

where r is the only real root of P (i), |f | > 1, and 1 < r < 2. Let us 
X X X 

assume that n is a positive integer and 

n - 1 < x < y < n . 

It now follows that r > r, ^ The proof is by contradiction. 
Assume r ^ r . Then x y 

and 

P (r ) = (rn - c )(r - 1) - 1 = 0 

where 

e x = [x + l] - x . 

From these equations and the assumption that r < r , it follows that 
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or 

n n _̂  ^ n r - r < € - e = x - y ^ 0 y x x y J 

and therefore r ^ r which is a contradiction to our assumption that r ^ r 0 y x F x y 
Since we have shown that r is strictly decreasing as x increases and 

is therefore strictly increasing as x decreases for 

n - 1 < x < n , 

we see that if 

n - 1 <* y < n, 

then the following limits exists 

lim , r = a and lim r = o . 
x-*-y+ x x-* -y- x P 

Therefore, since 

x ^ y 6 * = e y • 

x ^ y +
 p

x(rx> = V a ) = ° x -y - P«tr*) = p y w ' 

But since 

has only one real root, namely r . it follows that r = a = fB and therefore 
,y «y 

lim r = r x - ^ y x y 
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or r is a continuous function of x on x 

n - 1 < x ^ n . 

It is riot difficult to see that 

lim r - r x - • n x n 

where n is any positive integer. Firs t it is clear that as 

x-n+' W ^ C - ^ ^ " 1 ' - ^ 0 

and 

ex = (n + 1) - x , 

provided 

x < n + 1 , 

hence 

x l i m n + P x ( r x ) = (7
n+1 - l)(y - 1) - 1 = 7 ^ - y n + 1 - y = 0 = Pn(y) 

where 

lim , r = y . x—*-n+ x 

Similarly as x -#-n , 

W = (rx - ^K - 1) - 1 = 0 

and 

€x - n - x, provided x > n - 1, hence 
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x l im n - P x ( r x ) = (S n - 0)(6 - 1) - 1 = 8 n + 1 - 8 n - 1 = 0 = - % — , 

where 

lim - r = 6 . 
X—IHQ. X 

Since both y and 6 must lie between 1 and 2 and P (£), I ^ H u has p re -
cisely one real root we infer that y = 5 or r is continuous at x = n for 

x 
n an arbitrary positive integer. 

It now follows that r is a continuous function of x for all x > 0 and x 
r is a strictly decreasing function of x* 

Finally we shall show that 

For assume 

lim r = 1 
x-*-oo X 

lim r 
x-*-oo x 

where r > le In this case 

L M . e \ lim Jr1- J - € > = lim — x -4^00 J x x V x -^oo r 

since for all x >* 0 

r L J _ € = 
x x r - 1 

x 

But it is clear that 

X X 
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becomes a r b i t r a r i l y l a rge a s x approaches infinity and there fore cannot have 

r - 1 

a s a l imit . This cont rad ic t s our assumpt ion that r > 1. 

That 

Him r = 2 x - ^ 0 x 

follows immedia te ly from the fact that 

P0(A) = X2 - 2A . 
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• • * • • 
A CURIOUS PROPERTY OF A SECOND FRACTION 

Mar jor ie Bicknell 
A. C. Wilcox High Schools Santa Cla ra , California 

In the Apri l , 1968 Fibonacci Qua r t e r ly (p. 156), J . Wlodarski d i scussed 
some p r o p e r t i e s of the fraction 878/323 which approx imates e. Cons ider the 
a p p r o x i m a t i o n of rr c o r r e c t to six dec imal p laces given by 355/113 = 
3.141592+. The sum of the digi ts of the n u m e r a t o r i s 13, and of the denomina-
tor , 5. 13/5 = 1 + 8/5, o r one added to the bes t approximation to the "Golden 
Ra t io n using two one-digi t n u m b e r s . Also, 

355 = 300 + 55 
113 100 + 13 J 

where 55 and 13 a r e Fibonacci n u m b e r s . 
Taking 355/226 a s an approximat ion of TT/2 l eads to the observat ion that 

355 = 377 - 22 
226 233 - 7 

where 377/233 approx imates the golden ra t io and 22/7 approx imates n, and 
377 and 233 a r e Fibonacci n u m b e r s . 



A LINEAR ALGEBRA CONSTRUCTED FROi FIBONACCI SEQUENCES 
PART I: FUNDAMENTALS AND POLYNOilAL INTERPRETATIONS 

J . W. GOOTHERTS 
Lockheed Missiles & Space Co . , Sunnyvale, Cal i f . 

The purpose of this paper is to demonstrate the construction of a linear 
algebra with whole Fibonacci sequences as elements* Sequences of complex 
numbers are considered; hence, this is an algebra over the complex field. 

To be of more than curious interest, of course, the algebra must lead 
somewhere. The vector space leads to geometric interpretation of sequences. 
The ring leads to polynomial interpretations, and in particular, to binomial 
expressions. Part II will deal with functions and Taylor series representations. 

Only a knowledge of modern algebra at the undergraduate level is required 
to follow the discussion in Part I. A smattering of topology is required for 
Par t II. Proofs are elementary and are usually based on definitions. In some 
cases, the reader is asked to fill in the details himself. We begin with.0 

Definition 1.1. A Fibonacci sequence U = (U[), i = 0 , 1 , e o e , is a s e -
quence that has the following properties0 

1. u0, Uj are arbitrary complex numbers, 
2. u , = u + u , n = 1,2,6 e • . 

n+i n n - r 
2P will denote the set of all Fibonacci sequences. Any sequence may be 

extended to negative subscripts by transposing the recurrence formula; i. e . , 
u = u LJ - u . n-i n+i n 

A list of special sequences follows0 

A =• ( l , a , a 2 , °°°)s OL 

B= ( l f 0 f 0 V . - ) . j8= ^ ^ 
F = (0, 1, 1, 2, • • •) 
I = (1, 0, 1, 1, •••) 

L = (2, 1, 3, 4, •••) 
O = (0, 0, 0, . - . ) 

In addition to this, we use the symbols C, R, and Z for the complex, reals , 
and integers, respectively. 

35 
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Definition 1.2. For all U, V G 3 , U = V<=>u. = v., i = 0 ,1 , 2, • • • . 
Definition 1.3. For U, V G J , U + V = (u. + v . ) , i = 0 ,1 , • • • . 
Definition 1.4. For a E C, U G J , aU = (au.), i = 0 ,1 , • - • . 
Theorem 1.1. 3" is a vector space. 
Proof. It is a well-known fact that sums and scalar products of Fibonacci 

sequences yield Fibonacci sequences. The reader is asked to fill in the r e -
mainder of the proof from the definition of a vector space. The zero vector is 
(0, 0, • • • ) , and any additive inverse is given by -U = (-UQ, -\\i3 • •••) . 

Theorem 1.2. The dimension of 2f is 2. 
Proof. Consider the vectors I, F, and O, and suppose that al + bF = 

O. By definitions 2, 3, and 4, the first two terms yield a = b = 0. If we in-
sist that a or b be non-zero, then al + bF = U ^ O. We now find that a = 
u0, b = Uj. From û E + UjF = U we find from the n term that u0F + u4F 
= u « which is a well-known property of all Fibonacci sequences. Hence, an 
arbitrary vector is uniquely determined by two linearly independent vectors in 
F, and the theorem is proved. 

Theorem 1.3. F is isomorphic to V2(C), the vector space of all ordered 
pairs of complex numbers,, 

Proof. Any vector space is isomorphic to the vector space of n-tuples 
of its components relative to a fixed basis. Hence, for 

U G 3D, U = u^ + U i F f r ^ U ^ - ^ ^ U i ) e V2(C) . 

As a consequence of Theorem 1.3, we may agree to identify an arbitrary 
sequence U = (u.), i = 0 ,1 , • ' ' ,• with the pair (u^u^, and write U = (UQ,^) . 

Property 2 of definition 1.1 has been suppressed, so we turn our attention to the 
construction of a ring that will bring this property back into evidence. 

Definition 1.5. For U , V E J , UV = (u0, v0 + UJVJ, uQv1 + VLJVQ + u1v1 ). 
Theorem 1.4. 3P is a commutative linear algebra with unity I = (1,0). 
Proof. The reader is asked to fill in the details again. 
Associated with each sequence is a complex number, called the charac-

teristic number, that describes many properties of the sequence in the algebra. 
Definition 1.6. The characteristic number C(U) of a sequence U = (u0, 

Uj) is the complex number UQ + u0Uj - Uj = u0u2 - uf. 
Theorem 1.5. C(U) ^ O^^U has a multiplicative inverse U G J , 
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Proof, If U has an Inverse (x,y)s then (u0,u1)(x,y) = (l90)o 

This is equivalent to the equations 

u0x + Uly = 1 
(1) 

u0y + u4x + Ujy = 0 . 

Since either u0 =/ 0 or ut ^ 05 we may reduce equations 1 to 

2 9 
X(UQ + UQUJ - U J ) = U0 + Uj 

(2) 
y(^0 + U0Ui " u i ) = " U l • 

The remainder of the proof is obvious. 
Corollary 1.1. If C(U) ^ 0S then 

U " 1 = ^ (u2> ™ui) • 

Corollary 1.2. C(U) = 0<=>U = a ( l , a ) , b(l,/3). 
Proof. Solve the equation Ug + UQUJ - u\ = 0 for u 0 /u t . 
The sequence F = (0,1) plays a major role in the algebra as a shifting 

operator, and brings property 2 of definition 1.1 back into evidence. 
Theorem 1.6. F ^ = (u , u , )9 n G Z. v n* n+r 
Proof. Note that 

FU = (O.lHu^Uj) = (ul9u0+Ui)9 

and that 

F^U = (-1,1)010,^) = (uru0 5u0) . 

The res t of the proof follows easily by mathematical induction. 
Theorem 1.7. CCF1^) = (~l)nC(U)5 n E Z. 
Proof. Note that 

C(FU) = u2i + u ^ - u | = u\ + U^UQ + Ul) - (u0 + Ui)2 

= -(ug + UoUi-u?) = -C(U) . 



38 A LINEAR ALGEBRA CONSTRUCTED [Nov. 

The res t of the proof follows easily by induction. 
Theorem 1.8. C(U) £ 0, and n ^ m<=>FnU, F u are linearly inde-

pendent in dr. 
Proof, We test for linear independence by setting a(u ,u ) + b(u , 

u
 + 1) = (0»0). This is equivalent to the two equations 

au + bu , = 0 
(3) n n + 1 

au + bu , = 0 . m m+i 

Since all u. 7̂  0, we may reduce equations 3 to 

(4) a(u u J j - u , u ) = 0 . w x n m+i n+i m ; 

n / m by hypothesis, so let m = n + k, and use the identities u = u , = 
u F. , + u ..F, and u , = u I I 1 = u L F , + u , F , . Equation 4 may n k+i n+i k m+i n+i+k n+i k-i n+2 k ^ J 

now be reduced to 

(5) a(u u _ - u2 )F, =aC(FnU)F1 = 0 
w x n n+2 n+r k v ; k 

Since C(F1TJ) = (-l)nC(U) ^ 0, and F, ^ 0 in general, we must conclude 
that a = 0, which in turn implies that b = 0. 

The converse is proved by assuming that a, b are not both zero. We 
can, without loss of generality, assume that a ^ 0, which implies that u u 
- u^+1 = 0. Thus CfF^U) = 0 =>C(U) = 0. 

An alternate form of the product in "3* is now given. 
Theorem 1.9. UV = u0V + UjFV = v0U + VjFU. 
Proof. The proof follows immediately from definition 5. 
Multiplication in the ring is equivalent to a linear transformation in the 

vector space, or symbolically, UV = U(V) = V(U), where U(V) means U 
transforms V. This can be written in matrix form 

(6) UV = (YQsvt) 
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Any sequence of complex numbers can be decomposed into two sequences 
of real numberse 

Theorem 1.10. U = X + iY, where U E 1(C) s and X J 6 ^(R). 
Proof. The reader is asked to supply the details. 
The vector space in T is obviously a unitary 2-space, and the res t r i c -

tion of ? to real sequences yields a Euclidean 2-space. Some interesting 
geometric interpretations follow from this, but lack of space prevents further 
exposition here. 

POLYNOMIALS IN J OVER C 

The polynomial interpretation of T leads to some interesting results. 
We now establish the conditions for writing polynomials with sequences as 
Tlndeterminantsn and coefficients In the complex field. 

Theorem 1.11. C is embedded in 3 \ 
Proof, Let iptC—>~¥ be defined by the rule: i//(a) = (a, 0) = al, V'a E C. 

We ask the reader to complete the proof. 
Integral powers of Fibonacci sequences make sense as a consequence of 

our definition of multiplication in 3\ The classic conditions for writing poly-
nomials exist, so that p(X) = a0 + atX + • • • + a X makes sense, but this is 
not the whole story. p(X) is a linear combination of the elements X G J , 
and can be expressed uniquely as a linear combination of any two linearly inde-
pendent elements in 3 \ If it so happens that C(X) ^ 0, then by theorem 1.8, 
X, FX are linearly independent, and there exist k0, kj E C } not both zero, 
such that p(X) = k0X + kjFX. But K = (k0skt) E ?J, and by theorem 1.9, 
p(X) = KXe The linear independence of powers of X does not exist in poly-
nomials in J over C. This explains why each of the hundreds (possibly thou-
sands) of known summations involving Fibonacci numbers is expressible as a 
linear combination of at most two Fibonacci numbers. The addition formula 
for elements of a Fibonacci sequence is a case in point, which can easily be 
derived in 3; Try It for an exercise. 

The sequences I n = I = (1,0) and F n = (F 4, F ) may be written 
n down termwise by inspection. L follows easily. 

Theorem 1.12. L2k = 5k(F2kml, F 2 k ) , and L2 k + 1 = 5k(L2k, L2k+1)9 

Proof.8 L2 = (2,1) (2,1) = 5(1,1) = 5F2, from which L2k = 5kF2 k. 
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L2k+i = L2kL = 5kF2kL m 

Several formulas for the general case U will be given. 
Definition 1.7. The term of U bearing the subscript k will be desig-

n st 
nated (U ) , , k = 0,1,2,-»- (the k term is actually the (k+1) term by 
ordinal count). 

Lemma 1.1. Let c. E C, i = 0, ! , • • • , n , and let U E ?. Then 

Zciui =(Eci(ul)o.X!vui)i 
i=o \ i=o i=o 

Proof. The reader is asked to supply the details. 
Theorem 1.13. 

n 
/TTn, \ ^ /n\ n-i i^ 
<u >k+i = 2 _ , ( i j u o u i F k + r 

i=o 

Proof. 

n 
TTn , _ , ^,n \ ^ / n \ n-i i „ i 
U = (u^+UjF) = 2 ^ ( i ) u ° U l F 

i=0 

Lemma 1.1 and definition 1.7 supply the remainder of the proof. 
An alternate form of theorem 1.13 is 
Theorem 1.14. 

k, . xn ok, , 0 xn 
(un)k + 1 = -

a-fi 

Proof. Substitute the Binet formula, 

J a-fi 
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into theorem 1.13, and reduce it to the form shown. 
Example 1.1. Consider the generating function 

(7) D n = (I + F k ) n = Y ( n ) F k i >" • E (") 
1=0 

where 

<8> <Dn)J+i = Z (i) Fki+j • 
i=o 

If k = 1, I + F = (1,0) + (0,1) = (1,1) = F2, and 
n 

W <Dn)j+i=(F2n)j+1 = F
2n+j=I](")Fi+j 

i=o V ! 

If k = - 1 , I + F 1 = (1, 0) + (-1 ,1) = (0,1) = F, and 

n 
) n ) J + r ( F n V r F n + J = E ( i ) r - i 

i=l 
(10) (D' 

But since F ,. ~ = (-1) F-_-* w e n a v e 

<"> Fn^ • la l i ) H ) H + , F H . E (") H 
1=0 

If k = 2, I + F2 = (1,0) + (1,1) = (2,1) = Le From Theorem 1.12, we get 

(12) 5 n / 2 F n + j E u ) F 2 i+ j » f o r e v e n n> a n d s ( n ^ 2L
n+j = %\ HF2i+j' f o r o d d n-
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This may be generalized for even k. If the reader will verify that I + F 4 m = 
L 2 m F 2 m , and I + F 4 m + 2 = F 2 m + 1 F 2 m L s then he may compute (Dn).+j[, and 
complete the problem. 

Much of what we know about polynomials may be applied to polynomials 
in 3P over C. The possibilities of generating term-by-term Fibonacci rela-
tions is unboundede 

ADDITIONAL NOTES 

1. Let M be the set of all matrices of the form 

u = U uo + uj* w e e 

and let the operations be the usual operations of matrix algebra. Then M is 
isomorphic to F. 

2. Let c[x] be the set of polynomials in x over C, and let s(x) = x2 - x -
1. Then C [x] /s(x) is the ring of residue classes of polynomials over C 
modulo x2 - x - 1. Each residue class has the form [u0 + u-̂ x] with opera-
tions defined by 

K + u i x ] + [vo + v ix] = K + vo + ( u i + vi)xl 

[u0 + utx] [v0 + vjx] = [u0v0 + n1vi + (u0V! + u ^ + u ^ J x ] . 

If we add the redundant operation 

afuQ+Ujx] = [aug + a u j x ] , 

then C[x]/s(x) is a linear algebra, and furthermore, C[x]/s(x) is isomor-
phic to 5". 
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ROMANCE IN MATHEMATICS 
Marjorie Bicknell 

Ao C. Wilcox High School, Santa Clara, California 

The dome of the famous Taj Mahal, built in 1650 in Agra, India, is ellip-
soidaL Now, the ellipse has the geometric property that the angles formed by 
the focal radii and the normal at a point are congruent Also, it is a fundamen-
tal principle of behavior of sound waves that the angle of incidence equals the 
angle of reflection. Thus, sound waves issuing from focus A and striking any 
point on the ellipse will be reflected through focus B„ 

The builder of the Taj Mahal, Shan Jehan, used these basic principles 
well in his memorial to his favorite wife who was called Taj Mahal, Crown of 
the Palace. Honeymooners who visit the shrine are instructed to stand on the 
two foci which are marked in the tile floor. The husband whispers, TfTo the 
memory of an undying love," which can be heard clearly by his wife who is 
more than fifty feet away but by no one else in the room. 

REFERENCE 
Kramer, Edna E , , "The Mainstream of Mathematics, " Premier (paperback), 
New York, 1961, p. 152. 



A LINEAR ALGEBRA CONSTRUCTED FROM FIBONACCI SEQUENCES 
PART I I : FUNCTION SEQUENCES AND TAYLOR SERIES OF FUNCTION SEQUENCES 

J , W. GOOTHERTS 
Lockheed Missiles & Space Co . , Sunnyvale, Cal i f . 

In Part I, the algebra 3D was constructed from the set of complex Fib-
onacci sequences. Finite polynomial and binomial interpretations were con-
sidered. We now consider a class of functions defined in 3f, which are models 
of prototype functions in C. These are extended to include Taylor series 
representations. 

We first consider an auxiliary algebras which is constructed from bits 
and pieces of easily recognizable structures. As in Part I, many of the proofs 
are elementary^ and the reader is asked to fill in the details himself. 

Definition 2.1 Let G = j(a, b) :a, b E C \, and define equality and three 
operations as follows: For (a l sa2)3 (b1,b2) E G9 c E Cs 

1. (al5a2) = (b1,b2)<=^a1 = bl 3 a2 = b2 . 
2. (al3 a2) + (his b2) = (at + b l s a2 + b2): 
3. (al 3a2)(bl sb2) = (a.tbpa2h2), 
4. c(al5a2) = (calsca2) . 
Theorem 2.1 G is a commutative linear algebra with unity (1,1). 
Proof. The reader is asked to fill in the details. 
Definition 2.2 Let (f>:F—-»G be a function defined by the rule: 

(^(u^Uj) = (Uj + auj , u0 + )3UJI) for all U E X 

Theorem 2.2. (f>ij —> G is an isomorphism. 

Proof: 4> is obviously a 1-1 linear transformation from the vector 
space $ onto the vector space G. We need only show that <f> preserves^ 
multiplication. For U, V E 19 

44 
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(1) <f>(UV) = <^(U0V0 + UjVi, UQVJ + U ^ + UjVi) 

= (U0V0 + UiVj + <* (U0Vi + UJVQ + UjVi) , U0V0 + UjVi 

+ jStUoVi+UiVo + UjVi)) 

= (U0V0 + O^UoVj + UJVQ) + (Of + l J U ^ i , U0V0 

+ /8(u0Vi + UJVQ) + (/3 + l j u^ i ) 

= ( (u 0 +au 1 ) (v 0 + ov^^Uo + jSujXvo+iSVi)) = <f>(U)</>(V) . 

The mapping 0 was motivated by considering the linear factors of the 
characteristic number; i. e s , 

C(U) = UQ + UflUj - u | = (Uo + aUjXUo + jSUi) . 

Some fundamental vectors are mapped as follows: 
1. 0(A) - 0(1, or) = (1 + a2,0) 
2ffl 0(B) - 0(l? /3) - (0,1 + jg2) 
3. 0(1) = 0(1,0) = (1,1) . 

As B determine the coordinate planes, and I determines a plane of symmetry, 
which will become significant later. A characteristic number for each 

X - (xlfx2) G G 

can be defined as 

C (X) = xt x2 . 

Thus for U G ' J , C(U) - C(0(U))e 

Definition 263 Let f be an arbitrary function defined on a domain D C 
Cs Define a corresponding f: DXD—>G by the rule: 

f(X) = t(Xi,X2) = (f(X,)ff(X2)). 

whenever no confusion will exists we will agree to identify f with f and 
write f(X) = f(X). 
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Definition 2.4. If f is defined on D C C , and if U '= (Uj, Uj) E ¥ is 
such that 

u0 + aul9u0 + /Suj E D, 

define 

f* : ^ ( D X D J - ^ F 

by the rule: 

f*(U) = ^ ( f f c ) ) , 

where X = 4>(U)9 or more simply 

f *(U) = ^fy^fU) . 

The notation used herein for composition of maps i s : the order of events 
reads from left to right, or 

c^fc/fV) = </>""* (^(</>(u))) . 

We may again agree to identify f with f whenever no confusion will result, 
and say f *(U) = f(U) = f(U) . 

Theorem 2.3. The formula for f * is 

f(u0+ ar.Ui) - f(u0 + fiut)). 

Proof. The proof follows directly from Definition 2.4. 

Corollary 2.1. If f(x) = c (a constant), then f*(U) = c l . 

Corollary 2.2 f*(al) = f(a)I. 
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The reader may verify that the functions defined above are well-behaved 
Fibonacci sequences, and are thus, elements of 5s, The reader may further 
verify the following identities for some elementary functions? For U, V E 3P, 

1. exp U exp V = exp (U + V) 
2. exp (-U) = (expU)""1 

3. sin2 U + cos2 U = I 
4. sin U cos U = -^ sin 2U 
5. sin U (cos U)*"1 = tan UB 

All operations must, of course, be those defined in if'. The brute force 
approach required by Theorem 2.3 and the subsequent arithmetic in 3P can be 
tempered by a trick? do the arithmetic in G. 

Example 2816 Show that 

sin (U + V) = sin U cos V + cos U sinV. 

Since 

sin (x + y) = sin x cos y + cos x sin y 

is an identity in C, definition 2.1(1) gives 

(2) (sin(x1 + yj), sin (x2 + y2)) = (sin xt cos yt + cos xt sin yt 9 

sin x2 cos y2 + cos x2 sin y2) 

as an identity in G9 We appeal now to definition 2.3 for the left side of (2) and 
to definition 2.1(2), (3) for the right side. 

(3) sin ((x4 +yi ) , (x2 +y2)) - (sin xl9 sin x2)(cos y1? cos y2) + 

(cos Xj, cos x2) (sin yl9 s iny 2 ) . 

We now reverse our position and appeal to Definition 2.1 for the left side and 
Definition 2.3 for the right side of (3). 

/ \ / \ / \ 
(4) sin ((xlsx2) + (yi,y2)) = sin(x1,x2) cos (y1,y2) 

+ cos (xj, x2) sin (Yi, y2) , 
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(5) sin (X + Y) = sin X cos Y + cos X sin Y . 

Definition 2.4, together with Theorem 2.2, yields 
(6) sin* (U + V) = sin* U cos* V + cos* U sin* V . 

the asterisk may be omitted because of our previous agreement. 
We have proved in example 2.1 that 

sin (x + y) = sin x cos y + cos x sin y £ C —* sin (U + V) = sin U cos V 
+ cos V sin V C3?. 

Notice that, although the work was done in G, no element of G is evident in 
the final resu l t This is why G was called an auxiliary algebra in the 
introduction. 

SOME SPECIAL FUNCTIONS 

We could continue to define and explore Fibonacci function sequences ad 
infinitum, but we shall limit the discussion to two very elementary ones. Firs t 
a theorem must be proved, 

Theorem 2.4. If f and f"-1 both exist on a subset of C, then 

(f*)-* = (f-1)* 

on the corresponding subset of J . 
Proof, f *(U) is known from Theorem 2.3. Then 

(7) f*(U)-^f(X) - (fix^tfix^^irHUx^if-HfiXz))) 

= (xl9 x2) = X • U . 

From Definition 2.4, we have 

(8) (r^fcxi)),ri(f(xjs))) - ^ ( f " 1 ) * ' (f*(U)). 
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Since </>~1 is a mapping, 

so 
U = (f^)*(f*(U)) , 

(f-if = (i*)"1 . 

A very fundamental function is now given by: 
Definition 2.5. For U , V E J : , define U = exp 
When written in terms of the components of Us Vs 

(9) (uo + auj) -(uo + jSuj) ) . 

Since In z is a many valued function., some trouble may arise from Defini-
tion 2.5. The author offers the conjecture that no trouble will arise. Perhaps 
one of the readers will explore this possibility, 

If V = nl, Definition 2,5 is specialized to Theorem 1.14. Another e le-
mentary but interesting set of relations are the multiple n roots of a sequence. 

Theorem 2.5. There are n2 distinct ifi1 roots of U ^ 0 £ J , 
Proof. Let 

r 4 = juo + auil* r 2 = jUo + ^Uij , 

and 

a . (i = 0, V ' , n - i) 

be the complex roots of unity. Then 

(10) Ul/n = ^ j (a-h^-p-^ioyr^ - r2<o.) . 

If N is the number of possible solutions* then clearly N < n2. We must show 
N <£ n2. Assume the contrary; i . e . , there are at least two identical solutions* 
which must be termwise equal. 
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(11) a - 1 ^ ^ - / J -^cy . = arhiQ)^ - P'%^ 

r ^ - r2co. = rlCok - T2<OZ . 

Both co. 7̂  oi. and o>. ^ (o^ must hold or the hypothesis is contradicted immed-
iately. Thus, 

(12) or2 (OJ. - w£) = /Jrj (a>i - cok) 

r2(co, -ct>£) = rt fe>. - a>k) . 

If we substitute from the second equation into the first, 

(13) c*(a>. - o k ) = jStoj - cok) , 

which is clearly impossible unless OJ. = a>,. This in turn implies that co. = 
I K 3 

OJW. Thuss the hypothesis is contradicted, and the theorem is proved. 
The reader is invited to find the four square roots of F2 = (1,1) (cf. 

Theorem 1.12). 

TAYLOR SERIES REPRESENTATIONS 

In order to use the very useful concept of Taylor series representations 
of complex functions, a definition of convergence in 3 must be formulated. 
A very short excursion into topology (metric spaces) will furnish the necessary 
foundation. Let d be the usual metric on C defined by 

d(z1?z2) - jz2 - z j | 

for all zi9 z2 E C. The next few theorems are so elementary that the proofs 
are omitted; however, they must be stated. Since the underlying set of G is 
CXC, we may give 

A 
Definition 2.6. Let d : GXG—>R be defined by the rules 

d(X, Y) = maxfcLfx^Vi), d(x2,y2)) = max (\y1 - xt , y2 - x2 ) . 
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Theorem 2.6. d is a metric; hence, (G9 d) is a metric space. 
An open sphere in G of radius r about the point X is 

Sr(X) = \ Y G G :d(X s Y) ^ r }. 

If 

^ ( X ) = U, ^ ( Y ) = V , 

then 

*-i(Sr(X)) = S*(U) = {v G aFrmaxClvo-Uo + a ^ i - U i ) ! , 
jv0 ~ u0 + j8(Vi -Ui) | ) £ rf. 

If we restr ict ? , G to real numbers, then 

is the interior of a golden rectangle with diagonal of length 2r, centered on U, 
and parallel to the vector I, and with short sides parallel to A, and long 
sides parallel to B„ This fact should delight any true Fibonaceiphile, and 
motivates: 

Definition 2.7. Let d*: 3FX.3P -»R be defined by the rule: 

d*(U,V) = max ( | v 0 - u 0 + a ( V j - U ^ I ^ V Q - u 0 + yS(Vj - ux) | ) . 

Theorem 2.7. d* is a metric; hence, (F, d*) is a metric space. 
Theorem 2.8. </>:(3F, d ) —>(G, d) is a homeomorphism. 

By design the metric spaces QP, d*)s (G, d) are topologically equiva-
lent. The necessary groundwork has now been laid for the theorem on 
convergence. 

Theorem 2.9. If 
00 

f ( z ) = 5Z a i (z - zo)x 

i=o 

is a Taylor series for z E S f (z0), then 
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oo 
f*(U) = S ai(U " ZoI)i f ° r U E Sr( Z o I ) * 

i=o 

Furthermore: 

00 

(f*(U))k
 = X I a i ( ( U " ^ k ' k = 0 , 1 , - - - . 

i=o 

Proof. Let zl5 z2 E Sr(z0). Then for any e >0, there are Nj, N2 such 
that for n > max(Nl9 N2)s we have 

n 

(14) J2 a i (zi : z o ) X G S€(f(Zl)) , and 
i=o 

n 

(is) ^T ai (z2 - zo)1 es€(f(z2» . 

i=o 

Since these sums are in the coordinate spaces of G, we have 

n 
( 1 6 ) ]Cai ( ( Z l " Z o ) 1 ' (Z2 " Z o ) i ) G S€(f(Zi),f(z2)) . 

i=o 

But by the definitions of operations in G, 

(17) ((zj - z 0 ) \ (Z2 - ZQ)1) = (zj - z 0 , z2 - ZQ)1 

= ( ( z l f z 2 ) - ( Z Q . Z O ) ) 1 

= (Z - Z0)x for i = 0, l , - - - . 

Hence, 
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n 

(18) Z]ai (Z " Z ° ) 1 G ^(f(Z)) • 
i-o 

Let U = 4>-HZ). Then 

u e <t>-Hsr(z0)) 

or 

U G S*(ZoI) . 

By Theorem 2.8S 

n 

(19) XX (U " z 0 J ) k e S*(f*(U)). 
i=o 

Since CXC is the underlying set of 5* and G, and since CXC is always 
complete as a metric space, the limits exist, which proves the first statement 
of the theorem. 

Now consider a partial sum with remainder in G. 

n 
(20) f(Z) - J / . ( Z - ZQ)1 = (el9e2) . 

i=o 

Since this is a finite sum, write the k term under the mapping c/r1 . 

n 

(21) (f(U))k ~ ^ a i ( ( u " z o I ) \ = (e i ,e2 ) k = (E) k . 
wi=o 

From the first part of the proof, E—> Oi and by definition (O). = 0. Hence 
(E), —>0 for each k and the theorem is proved. 
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Example 2.2. Let 

(22) (1 - zf( k + 1 ) - > I *V x J zx for z G S^O) £(k
t
+1)*' 

i=o \ / 

be the prototype complex function. Clearly -^F E S*(0). By Theorem 2,9 we 
may write 

00 / v 

(23) (I - |F)-(k+1> = 2 ( k k 1 ) ( ^ 1 

i=o \ ' 

Reducing the left side of equation 23 yields 

(24) (I - - fF)~(k + 1 ) = (((1,0) - (O,! ) )" 1 )^ 1 

= (2 (2 , - l ) - i ) k + 1 = 2 k + V k + 2 

st Taking the (j + 1) term from each side of equation 23 gives 

?2k+2+j " ] C ( k k 1 y 7 t L • (25) 2 k + 1 F 2 k + 2 + i = > ( ~ t
 A ) - ^ - , k = 0 , 1 , 2 , - - - , 

j = 0, ±1, ±2, 
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SYMBOLIC SUBSTITUTIONS INTO FIBONACCI POLYNOMIALS 

V. E. HOGGATT, JR. , and D. A . LIND 
San Jose State College, San Jose, Ca l i f . , and University of Virg in ia, Charlottesvil le, Va . 

1. INTRODUCTION 

Symbolic equations give a compact way of representing certain identities. 
th For example* if F and L denote the n Fibonacci and Lucas numbers, n n 

respectively, then two familiar identities may be written 

n 2n k 
(1 + F) n = F , FK = F k , 

(1 + L) n = L2 n, L k = L k , 

where the additional qualifiers F = F, , L = L, indicate that we drop 
exponents to subscripts after expanding. Further material on symbolic re la-
tions i s given in [6, Chapter 15] and [7], Here we make a similar "symbolic 
substitution'1 of certain sequences into the Fibonacci polynomials. We then 
find the auxiliary polynomials of the recurrence relations which the resulting 
sequences obey. Finally, we extend these results to the substitution of any 
recurrent sequence into any sequence of polynomials obeying a recurrence 
relation with polynomial coefficients. 

2. SYMBOLIC SUBSTITUTION OF FIBONACCI NUMBERS 
INTO FIBONACCI POLYNOMIALS 

The Fibonacci numbers F are defined by 
n J 

F, = F2 = 1, F n + 2 = F n + J + F n , 

and the Lucas numbers L by 
n J 

L-j = 1* Lo = 3S L , = L . . + L . 1 s l s n+2 n+i n 

55 
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Define the Fibonacci polynomials f (x) by 

fi(x) = 1, f2(x) = x, f^Cx) = rfn+t(x) + fn(x) . 

Consider the sequence {a } given by 

a = f (F), F k = F, , n nv " k ' 

that i s , a is the symbolic substitution of the Fibonacci numbers into the n 
Fibonacci polynomial. The first few terms are 

at = 0, a2 = l s a3 = 1, a4 = 4, a5 = 6 . 

We give four distinct methods of finding the recurrence relation obeyed by the 

v 
The first method applies a technique used by Gould [3]. Write the 

Fibonacci polynomials as in Figure 1. Our approach to find a is to multiply 

x3 + 2x 
x4 + 3x2 + 1 
x5 + 4X3 + 3x 
x6 + 5X4 + 6x2 + 1 

Figure 1 

r th 
the coefficient of x by F and sum the coefficients in the n row. Now 
it is known [10] that 

a) i„w -Z (u->- V- 2 '"' , 
j=o \ J / 
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where [x] represents the greatest integer contained in x, Thus the columns 
of coefficients in Figure 1 are also those of PascaPs Triangle* so that the gen-

th erating function g,(x) for the k column is 

g,(x) = (i - x) -k 

Using Gould?s technique^ we first find that the generating function for the k 
r column with the coefficient of x multiplied by F is 

th 

[(1-ax) k - ( l - j 8 x f k ] / ( a - j3) 

(2) ^(-^(fy-^jx? 
j=0 

k 
J/ (1 - x - x2) (a - /3) 

E'-«i+,(r)v 
3=0 

a-x-x^r . 

where 

a = (1 + V§)/2, |3 = (1 - V§)/2 

We then make all exponents corresponding to coefficients of f^x) to be n 1 by 
2k—l multiplying the above by x \ which gives the row adjusted generating func-

th tion for the k column to be 

h, (x) = 
2k-i 

x 
a - /3 

[ ( l - a x f k - ( l - j 3 x f k ] 

Then 

G(x) = ^ a n x n = i : h k ( x ) = ^ 
n=i k=i ' £ I1 -x^x Ik oo 

X2 

k t - i l 1 - ^ 

(3) 

a - 0 

x2 

1 - cnx 1-fo 
1 - X2 

1 - a x 1 - x2 

1 - j3x 
1 - x - 3x2 + x3 + x4 
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Result (3) also follows from Problem H-51 [9]. This states that 

/ A ( x ) t 1 - (2 - x)t + <1 - x - x?)1? ' 
k=i 

where 

3=0 

Thus using (2), 

Qt« - £ (-l),+1 Q F,J 

00 00 ^ 

G(x) = ] [ ; h k ( x ) = x - ^ Q k ( x ) — ^ ~ 
k=i k=i V1 "~x x / 

1 - x - 3x2 + x3 + x4 

The auxiliary polynomial for the recurrence relation obeyed by the a is 
therefore 

(4) y4 - y3 - 3y2 + y + 1. 

The second method uses the generating function for f (t). Zeitlin [10] 
has shown that 

H(x,t) = — 2 L — ; = l > t ) x n 

1 - tx - x* 
n^o 

Since 
an = [yoO -fn03)l/(a -ft , 
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G(x) = HfoQQ -H(x , j3 ) 
a -j3 

59 

a -j3 1 - ax - x2 1 - /3x - x2 

l - x - 3 x 2 + x 3 + x4 

the s a m e a s (3)e 

The th i rd method suggested to the au thors by Kathleen Weland, v a r i e s the 

pa t t e rn in F igure 1. Wr i te the Fibonacci polynomials as in F igure 2e Then i t 

follows from (1) that the genera t ing function in powers of y for the k column 

x4 

X2 

+ 3x2 

+ 4x3 

+ 2x 

+ 3x 

+ 1 

+ 1 

from the r igh t i s 

F igure 2 

k k+i 
* y 

( i - y 2 ) 
k+l 

where powers of y for t e r m s on the s a m e row a r e equal. Then multiplying the 

k column by F , ? putting x = 13 and summing gives 

G(y) _z_yF / i 
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Now 

00 
k 

Z^x'k' K z 
k=0 1 ~ Z - Z2 

so that 

G(y) = £-
1 - y - 3y2 + y3 + y4 

agreeing with our (3). 
Our fourth method uses a matrix approach. It follows by induction that 

if 

R(x) = (J -J). 

then 

R(x) = \ y i fn->/ (n"0) 

Since f (1) = F , we have nv ' n' 

Rn(l) = Qn = ( / + 1 

V n n-i / 

Then the upper right corner of f (Q) is a . Letting 

R(Q) - » q-Q I A 
i I o r 

where I is the identity matrix and 0 is the zero matrix, since we may mul-
tiply partitioned matrices by blocks, we then have 
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Sn(Q) WQ> 
fn(Q) 

fn(Q) 

WQ> 

By the Cay ley-Hamilton Theorems R(Q) satisfies its own characteristic poly-
nomial p(x)8 Since a is one of the entries of R (Q)? it obeys a recurrence 
relation whose auxiliary polynomial is p(x)9 The desired polynomial is thus 

(5) p(x) = det[xl - R(Q)] = det 

/ x - 1 -1 -1 0 \ 
-1 x 0 -1 
-1 0 x 0 

\ 0 -1 0 x / 

= x4 3x2 + x + 1 , 

which agrees with (4). 
A slight extension of the second method will handle second-order recur-

rent sequences,, A generalization of the matrix method will be described later* 
and the most general solution to our problem, based on the second method, will 
be given in the last section* 

Let W obey 

Wn+2 = PWn+i " *Wn> P2 " *q ^ 0 , 

and let a ^ b satisfy 

x2 - px + q = 0 

Then 

a + b = ps ab = q , 

and there are constants C and D such that 

W = Can + Dbn 
n 

for all values of n. We consider the sequence 
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c = f (W), W1* = W, . n i r n k 

It is easily seen that 

c = Cf (a) + Df (b) , 

implying 

00 

K(x) = y ^ ^ x 1 1 = CH(x5a) + DH(x,b) 
n=o 

D 

(6) 

Putting 

1 - ax - x2 1 - bx - x2 

(C + D)(l - x2) - abfCa-1 + Db'^x 
1 - px + (q - 2)x2 + px3 + x4 

W0(l - x2) - qxW-i 

1 - px + (q - 2)x2 + px3 + x4 

p = 1, q = - I , W0 - 0, Wj = 1 

makes W = F , and K(x) reduces to G(x). 

3. A PROPERTY OF 2-BY-2 BLOCK DETERMINANTS 

If, in the previous section, we had evaluated 

det[x[ - R(Q)] = detf *[ Q ^ ) 

by formally expanding the right side as a usual determinant and taking the de-
terminant of the result, we would have obtained the correct answer; that i s , 
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det 
( * 

.a - i 
xE = det (x2! - xQ - I2) 

We shal l encounter such types of 2-by-2 block de te rminan ts while genera l iz ing 

the m a t r i x approach to symbolic subst i tu t ions , so i t i s convenient to s ta te the 

following 

T h e o r e m : Let A = (a. .) and B = (b..) (i, j = 1 , - • • ,n) by any n - b y -

n m a t r i c e s . Then 

(?) D(k5m) = detf / A I ml \ = det (AB - krnl) , 

where k and m a r e any r ea l cons tants . 

Proof. The r e su l t i s fami l ia r when k = 0 [4, Section 5 .4] . Then a s s u m e 

k / 0, and cons ide r 

D(k,m)=det 

/ a l l a12 
a21 a22 

a n i an2 
k 0 
0 k 

\ 0 0 

i m m 0 

a 0 0 nn 
0 b u b1 2 

0 b 2 1 b2 2 

k b ni un2 

0 \ 
0 

m 

b l n 

b2n 

n n / 

We e l iminate the bot tom row by multiplying the n column by b . A and 
th sub t rac t ing f rom the (n + j) column for j = 1, • • •, n, and expanding along 

the bot tom row to yield 

k ( - l ) n d e t 

a i l ai2 

a n l an 2 

k 0 

a i , n - i m " a n i b n i / k 

' * a n 9 n - i "" a n n b n i A 
" 0 b „ 

0 0 - - k b n - i ? i 

bnr. A | *-munn 

HI - a ^ b ™ A 

Jm 

b n - i 5 n / 
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Repeating this p r o c e s s of e l iminat ion on the resul t ing bot tom row for n - 1 

m o r e t imes gives 

/ n 

m - £ a y b j j / k 

n , _,vn^ D(k,m) = k (-1) det 

V 3=1 
S a .b. / k 

(ZA nj j i 

\ 
• 1 a i jkjn / k 

3=1 

X a .b. /k , 

n n 
Now (-1) = (-1) , and for an n -by-n m a t r i x M, 

(-k) det M = det (-kM) , 

so that 

D(k,m) = det (AB - krnl) . 

A slightly m o r e genera l form of the above T h e o r e m was located a s a p rob lem 

in [4, Section 5.4] , 

4. A GENERALIZED MATRIX METHOD FOR SYMBOLIC SUBSTITUTIONS 

We shal l now extend the m a t r i x technique used in Section 2. Given a r b i -
th t r a r y m a t r i c e s A and B of the s a m e squa re dimension, let the (r,s) en t ry 

b of B A be the n m e m b e r of the sequence j b L We find the auxi l ia ry 

polynomial for the r e c u r r e n c e obeyed by 

d = f (b), b = b, . n nv ; s k 

C lea r ly the (r,s) en t ry of f (B)A' i s d . We a lso have 

Rn(B) f W*>A 
fn(B)A 

fn(B)A 

f ffi)A 
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It follows that the sequence jd } obeys a recurrence relation whose auxil-
iary polynomial is the characteristic polynomial p(x) of R(B)9 Using (7), the 
latter becomes 

(8) p(x) = det[xI-R(B)] = det 

= det[(x2 - 1)1 - xB] . 

The following are some particular cases of this resu l t 
(i) Substitution of Fibonacci numbers. For B = Q} as defined aboves 

we obtain (5). 
(ii) Substitution of second-order recurrent sequences. Let W be as 

defined in Section 2, and let 

A - / W l W°) B - / P -*) 
A \ w 0 w-lyf' B yi o) • 

Then 

/ W .. W \ 
n __ / n+i n \ 

^ A ~ W W f 
\ n n-i / 

so letting r = 1, s = 2, we have b = W . In this case 

p w - d - ^ - ^ - " r^) 
= x4 - px3 + (q - 2)x2 + px + 1 , 

agreeing with (6). 

(iii). Substitution of Fibonacci polynomials. There is nothing to restr ic t 
jb \ itself from being a sequence of polynomials. To illustrate this, put A = 
I and B = R(t), so that if we let b be the upper right term of B A, b = 
f (t). Then the sequence 

fn[f(t>], f^t) .= y t ) , 

xl - B - I \ 
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obtained by symbolically substituting the Fibonacci polynomials f (t) into the 
Fibonacci polynomials obeys a recurrence relation whose auxiliary polynomial 
is 

det[(x2 - 1)1 - xR(t)] = x4 - tx3 - 3x2 + tx + 1. 

(iv) Substitution of Fibonacci numbers with subscripts in an arithmetic 
progression. Let the sequence {r | be generated by 

r - FSf (F k ) , F m = F . n nv ' m 

that i s , the sequence is formed by replacing x by F , in the Fibonacci 
polynomials. Now y = F , obeys 

Applying (ii), with p = L, and q = (-1) , we see that the required auxiliary 

polynomial is 

x4 - Lkx* + [ ( - l ) k - 2]x2 + Lkx + 1 . 

(v) Substitution of powers of the integers. Let e (k) = e = n for 
fixed k > 0. We find the auxiliary polynomial of the recurrence obeyed by 

g = f (e), e == e . &n nv n m 

It is easy to show by induction that 

*?- i°J-u:V 
and in general that 
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/ 1 
1 

B11 = 

0 \ 

.)(r-l) °8' (S) 

/ I 
n 

67 

o\ 
0 

r / r \ r - i / r \ 

Then the lower left term of f (B, ) Is g . The desired polynomial is thus 

p(x) = det[(x2 - 1)1 - xBk] = det 

/x 2 - x - 1 0 . . . 0 
x2 - x - 1 • - - 0 

\ 

X2 - X - 1 

= /v2 = (x* - x - 1) 
k+i 

where the • indicates Irrevelant termse Notice that when k = 0 the auxiliary 
polynomial is x2 - x - 1, which agrees with f* ' = F 

m (vi) Substitution of powers of Fibonacci numbers,, Let v, = F, , m a 
fixed integer. Consider 

f (v), v = v, 

th m 
We require a matrix whose n power has F as an entry. Such a matrix is 
provided by Problem H-26 [8_]e Let B = (b ), where 

m rs 
/ 

r s 
r - 1 

m + 1 - s 

for rs s = l , - ' , m + l, Then putting r = m + 1, s = 1, we have that the 
th n m 

(r.s) entry of B is indeed F . Thus 
and in this case the auxiliary polynomial is 

( r , s ) t h entry of B n is indeed F m
e Thus the ( r , s ) t h entry of f (B ) is h , 

m+1 p(x) = det[(x2 - 1)1 - xB ] = x det x2 - 1 I - B _ 
m 
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Put (x2 - l ) / x = y. Now det(yl - B ) has been evaluated [l;2;5] to be 

m+i 
det(yI-Bm) = ] P (-l)(m"r)f " ^ 

r=o 

m + 1 
r 

r 
y , 

where 

m m-i m-r+i . _ nv \m\ . 
F . F , - . . F <* > °); LoJ = * 

Now 

so that 

? = x"v-i)r-x;^j(3r)x"23' 

m+i r 
^ j+(m-r)(m-r+i)/2 

r=o 3=0 

m + 1 
r 

r \ m+r-23+1 

2H1+2 

S=0 

m+i 

2>u [ (m-r) (m-r+i)+s-m-r-i] /2 

r=o 

m + 1 
r |s-m-r-l}/2l 

where in the last expression the summand is zero if (s - m - r - l ) /2 is not 
an integer. 

This result may be extended to powers of an arbitrary second-order 
recurrent sequence {W }, described in Section 2, by using the matrix C 
( c r s ) f w h e r e 

r s • ( - - 1 ) 
\ m + 1 - s / 

r+s-m m+i-r 
p q 
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for r , s = l , 9 ° ° , m + l9 F o r a d i scuss ion of C see [ s i . Let t ing u = 
n n m n 

(a - b ) / (a - b), where a and b a r e a s in Section 2S define 

u u m m - i u m - r + i 
u,u< iu2 

(r > 0) 

Then the coun te rpar t to (9) i s 

(10) p(x) 
m+i r 
\ ~ ^ V ^ / _ i ) m + 1 _ r " J / . n \ ( m - r + i ) ( m - r + 2 ) / 2 

r=o j=o 

J ( -q)1 m + 
r JuW 

Hl+r-2j+l 

In pa r t i cu la r , (10) i s the auxi l ia ry polynomial for the r e c u r r e n c e re la t ion obeyed 

by the symbolic substi tution of \ F , } for p rope r choices of the p a r a m e t e r s . 

The m a t r i x method developed h e r e i s m o r e genera l than previous ly ind i -

cated. In pa r t i cu la r , the full power of (7) has not been exploited. F o r example , 

let \ p (x)} be any sequence of polynomials (numbers) obeying 

( i i ) Pn+2(x) = g(x)Pn+1(x) + hpn(x) , 

where g(x) i s any polynomial In x independent of n, and h i s a r ea l con-

s t a n t Let the sequence {b } be genera ted by the m a t r i c e s A and B as 

before. We shall find the auxi l ia ry polynomial of the r e c u r r e n c e re la t ion 

obeyed by 

s = p (b), b = b, . n nx ' k 

Now the (r, s) en t ry of p (B)A i s s . Also, if 

F(B) 
/ g ( B ) [ h l \ _ j P2(B) | P l (B) \ 

\TT7/# G(B) =\Pi(B) Po(B)/ ' 
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Fn(B)G(B) 
0' 

A 
/ WB>A 

V W B > A 
Pn+1(B)A 
Pn (B) A 

Since s is an entry in the right-hand matrix, it follows that the sequence 
{ s j obeys a recurrence relation whose auxiliary polynomial is the charac-
teristic polynomial of F(B). Using (7), the latter reduces to 

-hi det[xl - F(B)] = det f ** " j ( B ) 
xl 

= det[(x2 - h)I - xg(B)] . 

Putting g(x) = x, h = 1, p4(x) = 1, and p2(x) = x specializes this to 
(8). As another illustration of this result, we note that T (x) and U (x), the 
Chebyshev polynomials of the first and second kind, respectively, obey (11) for 
g(x) = 2x, h = - 1 , along with 

T0(x) = 1 = U0(x), Tj(x) = x, and Ut(x) = 2x . 

Then the sequences defined by the symbolic substitutions 

Tn(F), Un(F), F~ = F k , 

each obey a recurrence relation whose auxiliary polynomial is 

(12) det[ (x2 + 1)1 - 2xQ] = x4 - 2x3 - 2x2 - 2x + 1 

59 A GENERAL RESULT 

Here we extend the second approach in Section 2 to obtain the most gen-
eral solution to our problem. Let {q (x)} be any sequence of polynomials 
obeying the k order recurrence relation 
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k 
0 " Z ^ aj(x)Vj(x)? ao(x)\(x) ^ ° J 

j=° 

where the a.(x) are polynomials independent of n„ Put 

k 

Q(x,t) =2a j ( x ) t i 9 

so that 

M(x,t) = ̂ W t ? = H I . 
n=o 

where P(x,t) is a polynomial in x and t of degree < k in t. Suppose {A } 
th n 

is a sequence satisfying an m order recurrence relation with constant coef-
ficients whose auxiliary polynomial has distinct roots r1? r25- • • s r m . Then 
there exist constants Bi9 B2s

 e • *, B such that 

m 
A.. = ' 

i=i 

= Y B.rn 

n / J l i 

Define JD } by 

D n = VA>> A ^ A k ' 

Then 

m 

n 
i = i 
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so that 
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" J ^ J^B.P(r.,t) 

n=o 

r(t) = r]t) 
Q(rl9t) . . . Q(r m , t ) s(t) > 

1=1 i = i 

where the degree of r(t) < mk, and the degree of s(t) = mk. Therefore { D } 
obeys a recurrence relation whose auxiliary polynomial is 

(13) t m k s ( l / t ) 
m 
n 
i=i 

V\ 
3-0' 

k-j 

Continuing with the illustration of the preceding section, for Chebyshev 
polynomials of both kinds we have 

k = 2, a0(x) = a2(x) = 1, a1(x) = ~2x , 

and if A = F we see n n 

m = 2, vt= (1 +V5) /2 , r2 = (1 - \ / 5 ) / 2 . 

The desired polynomial is then 

(t2 - 2r4t + l)(t2 - 2r2t + 1) = t4 - 2t3 - 2t2 - 2t + 1 , 

in agreement with (12). 
It happens that (13) is valid even if r4, • •*, r m are not distinct Then 

this generalization actually yields the matrix method as a special case. To 
see this, put 

k = 2, a0(x) = 1, a^x) = -g(x)5 a2(x) = -h, 

and let b be the (r,s) entry of B A, where A and B are m-by-m 
matrices. Then obeys a recurrence relation whose auxiliary polynomial 
is 
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det(xI-B) = ( x - r j ) . . . (x - r m ) 

From (13) 9 we have that the sequence 

{^(b)}, bk = bk , 

obeys a recurrence relation whose auxiliary polynomial is 

m 
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Pi(t) = n [ t 2 - g ( r . ) t - h ] ( 
i=i 

On the other hand, by (8) we find that the matrix method gives the required 
polynomial as 

p2(t) = de t [ ( t 2 -h ) -g(b) t ] 

To show pj(t) = p2(t), we note B is similar to 

C = 

/ v1 0 • • • 0 \ 

u i m / 

so that g(B) is similar to g(C). We also have 

g(C) 

I g(ri) o ... o ^ 
g(r2) -•• 0 

V &\ H I 7 / 

where the * indicates irrevelant entries. Since similar matrices have the 
same characteristic polynomial, 

m 
p2(t) = det[(t2 - h ) - g(C)t] = O [t2 - h - tg(r . ) ] = Pl(t) . 

i=i 
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However, the matrix method has the advantage that the roots r l s • • • , r of the 
characteristic polynomial of B do not have to be known. 

The second-named author was supported in part by the Undergraduate 
Research Participation Program at the University of Santa Clara through NSF 
Grant GY 273. 
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FIBONACCI SEQUENCES WITH IDENTICAL CHARACTERISTIC VALUES 
EUGENE LEViNE 

C. W. Post College, Long Island University, Brookvil le, N . Y . 

A Fibonacci sequence is viewed herein as an integer sequence 

n=-oo 

which satisfies the recursion 

(1) f = f + f n 
v n n-i n-2 

for all n. 
Following [ l ] , it is convenient to associate two Fibonacci sequences with 

each other if one can be transformed into the other by a relabeling of indices. 
Also, it is apparent that jf [ satisfying (1) implies that j - f j satisfies (1) 
and it is convenient to associate a sequence with its negative. These remarks 
lead to 

Definition. Two Fibonacci sequences jf } and jg !• are equivalent if 
and only if there exists an integer k such that either 

(i) g = f ?1 for all n; v ; ton n+k 

or 

(ii) g = -f ,, for all n8 v ; &n n+k 

In [ l ] , the discussion pertains to Fibonacci sequences such that there is 
no common divisor d > 1 of every term in the sequence (or equivalently, of 
any two consecutive terms). In this paper, we will be interested in all integer 
sequences satisfying (1). However, when there is no common divisor (>1) of 
the sequence, we will call the sequence primitive,, 

A well-known identity satisfied by Fibonacci sequences is 

75 
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(2) f _,_ f - f2 = ±D 
v n+i n-i n 

where D > 0 and the sign alternates with ne We call the integer 

D = If ^ f - f2 

I n+i n-i n| 

the characteristic of the sequence \f }. The reader may verify that if (f } 
is equivalent to \g\ then ff } and \g } have the same characteristic. 

A table is presented in [l] of all D < 1000 for which there exists a 
primitive sequence, Also3 all primitive sequences (up to equivalence) having 
these characteristics are provided, Such a table leads one to ask the following 
two questions: 

(1) For a given integer D > 0$ how many Fibonacci Sequences are 
there (up to equivalence) having the characteristic D? 

(II) For a given D > 0S how many primitive Fibonacci sequences are 
there (up to equivalence) having the characteristic D? 

This paper is devoted to providing a complete answer to each of these 
questions. 

For this purpose3 we let 

a = I±*£ 
2 

and we consider the field extension U(a) obtained by adjoining a totheration-
als. The domain of algebraic integers in R(a) then consists of all numbers of 
the form A + Bo? > where A and B are rational integers. It is well known (see 
[ 2]) that one has unique factorization in this domain of integers. The units in 

±n this domain are precisely numbers of the form ±a and all primes (up to 
associates) are 

(I) Vs" = 2a - 1 
(ii) all rational primes of the form 5k ± 2 

(Hi) numbers of the form A + BQ! and A + Bo?s where a is the conjugate 
of o>9 i. e . , 

5 = i-^£ 
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and |(A + Bo?) (A + Bo>) is a rational prime of the form 5k ± l . 
We may assign to each Fibonacci sequence an integer f in R(a )* 

namely* the sequence {f | is assigned the Integer f = f0 + f^. It Is easily 
verified that the assignment of Integers in this manner provides a one-to-one 
correspondence between Fibonacci sequences and integers in R(o?). Letting 
f - = A + Bo? be an Integer In R(o?) we denote by S(f) the unique sequence 
assigned to f (i. e„, the sequence determined by f0 = A, ft = B). 

The assignment S(f) preserves addition in the sense that if S(f t) = 
{ f j and S(f2) = { g j , then S ( ^ + f2) = {fn 4 - g J . It might also be r e -
marked that the correspondence S(f) allows one to define a product of two 
Fibonacci sequences in a natural way® Namelyf for two Fibonacci sequences 
S(^j) and S(f2) , the product sequence Is defined as S(f1f2)« I n this way, 
one has a ring of Fibonacci sequences which Is isomorphic to the ring of inte-
gers in R(a). 

Two integers f4 and f2 in R(a) are called associates If ^ = ef2 
±n for some unit £ (which is one of the integers *oi ). It follows that 'two 

sequences S(^1) and S(f2) ^r© equivalent If and only if ^ and f2 are 
associates* 

For a given integer f = A + Ba, we define the (absolute) norm N(f) 
in the usual way as N(f) = if f" I, where f = A + BcS® One can easily verify 
that the characteristic D of a Fibonacci sequence S(f) is simply N(f). 

As a result of the above remarks, we find that questions (I) and (II) reduce 
to questions about Integers in R(a). Namely, (1) and (II) are equivalent to 
asking i 

(la) How many integers In R(a) (up to associates) have a given norm D? 
(Ha) How many Integers In R(a) (up to associates) with no rational inte-

ger divisor d > 1 have a given norm D ? 
To resolve these questions we introduces 

P* = {set of all positive rational Integers n such that every prime 
divisor of n is of the form 5k ± 1/ 

and by convention 1 belongs to P*; 

o>(n) = number of distinct prime divisors of n; 
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d|n, d > 0 d n , d > 0 
d=±l(mod 5) d=±2(mod 5) 

r(n) = d+(n) - d j n ) , 

where r(0) = 1 by convention. (To illustrate, w(60) = 3, d+(60) = 3, dJ60) 
= 3, r(60) = 0). The answers to (I) and (II) may now be provided in a compact 
form as follows? 

Theorem 1. For D > 0, there are exactly r(D) Fibonacci sequences 
(up to equivalence) having characteristic D. 

Theorem 2C There exists a primitive sequence having characteristic 
D > 0 if and only if D = n or D = 5n9 where n belongs to P*e For such a 
characteristic D, the number of (inequivalent) primitive sequences is exactly 
2C0(n)

s 

Proofs; Letting 

^ r a hi bo \ Ci ck 
D = 5 p^pg2 ••• P j ^ q i 1 - - - qk

K 

be the prime factorization of D, where p. is a prime of the form 5m ± 1 and 
q. a prime of the form 5m ± 2 it follows that all integers in R(a) having 
norm D are 

n K 
(3) A + Ba = €(V5)a n (At + B . G O ^ A . + B.5)1* fi q ^ A 

i=i j=i J 

where € is a unit, s. +1. = b. , c. of necessity is even, and A. + B.a is a 
prime In R(tx) having norm p.. Thus, the number of integers (up to associ-
ates) having norm D Is the number of ways we can vary each s. with 0 < s. 
< b.. The number of such choices for the s. is the product 11 (1 + b . ) . The 
latter expression (combined with the fact that all c. must be even) is equiva-
lent to Theorem 1. 

This equivalence is a counting exercise which can be ascertained in the 
following way. The factor 5 of D has no effect upon the value of r(D). 
Letting 
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h , k 
D = n pf1 n q? . 

i=i j=i J 

one has r(D) = r(D). The divisors of 5 are the terms in the expansion 

h , k 
(4) n ( 1 + P . + - - - +P . 1 ) n (l + qu + °°° +q]

CJ) . 

By replacing each p. with the value +1 and each q. with the value -1 in (4), 
the resulting expansion will yield a term of +1 for each divisor of the form 
5m ± 1 and a term of -1 for each divisor of the form 5m ± 29 Thus* the 
expansion of the modified expression Is merely r(D). If any c. is odd the 
factor (1 + (-1) + • • • + (-1) 3) Is zero which yields r(D) = 0S If all c. are 

c* even, then the factor corresponding to q. is (1 + (-1) + • • • + (-1) 3) = 1 and 
the resulting expression for r(D) becomes n (1 + b.) which Is the desired 
resu l t 

Theorem 2 is obtained by realizing that for (3) to have no rational inte-
ger divisor f>l), one must have a = 0 or 1, c. = 0 for all j , and the 

3 k 
only choices for s. are 0 and b.. Thuss tie re are 2 choices for s.f 
which is theorem 2, 

As a final note* it should be pointed out that the proofs of Theorems land 
2 proceed in a manner analogous to that which one could take in determining 
the number of representations of an integer N as the sum of two squares (see 
Theorem 278 of [ 2])0 In this latter problem one utilizes the ring of gaussian 
integers whereas in the problems considered above we have relied upon the 
ring of integers in R(a). It would appear that the above results should extend 
to other recursions of the form f = af + bf provided one has unique 

n n-i n-2 
factorization in the underlying ring of integers. 

For a related paper, see Thoro [3]. ' 
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THE TWIN PRIME PROBLEM 
AND GOIDBACH'S CONJECTURE IN THE GAUSSIAN INTEGERS 

C. A. HOLBEN AND J . H. JORDAN 
Washington State University, Pullman, Washington 

1. PRELIMINARIES 

The set of Gaussian Integers denoted by G is the set {a + bi}, a and h 
real integers and i the "imaginiary unit,ff It is well known that G with the 
usual two operations is an integral domain and that the division algorithm holds, 
if for any a and j5 ^ 0 in G, there are y and 6 in G such that a = py+ 
d, where |6|— |j3|. Since the division algorithm holds on G, the domain is 
a unique factorization domain. 

A Gaussian prime is a Gaussian integer, p, such that: 
i) \p\ ^ 1 and 

ii) if & divides p then \a\ = 1 or a = ep where e in G and |e j = 1. 
Here divides means that if a divides p. then there is a Gaussian Integer y 
such that ay = p. 

The Gaussian Primes can be separated into the following three classes: 
i) if p is a positive real prime of the form 4k + 3, the +p and ±ip 

are Gaussian primes. 
ii) if p is a positive real prime of the form 4k + 1, the p can be e x -

pressed uniquely as p = a2 + b2 and the expression generates the 8 Gaussian 
Primes ±a±bi and ±b±ai. 

iii) ±l±i are Gaussian Primes. 
A Gaussian integer, p, is said to be even if 1 + i divides p. An easy 

method of recognizing even Gaussian Integers is the following: 
A Gaussian Integer, p = a + bi, is even if, and only if, 2 divides a + b 

or in other words, if a and b have the same parity. 
Consider the figure which plots the Gaussian Primes in the square with 

vertices at ±50±50i. 

2. TWIN PRIMES 

A meaningful definition is sought for twin primes in the Gaussian Integers. 
We have a preference for the following, 

81 
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Definition: Two Gaussian Primes p1 and p2
 a r e called Gaussian twin 

primes if p4 - p2 = (1 + i)e where Ie\ = 1. 
Our reason for preferring this definition is that ±l±i are the only even 

primes, and in the real case primes are twins if their differences are ±2. 
Notice in the figure the relative scarcity of primes that are not twins, 

the smallest odd ones being 17±12i and their associates. It is perhaps c o i n -
cidence but 17 + 12i = 20.8+, which is fairly close to 23, which is the s m a l l -
est odd real primes, which is not a twin. Notice that 23 and 24+i are twin 
Gaussian Primes and that 47 is not a twin in either system. This serves to 
point out that there is little, if any, connection between numbers being real 
twin primes and being Gaussian Twin Primes. 

There are two possibilities of definitions for triplets of primes in the 
Gaussian Integers. The most natural seems to us to be 

Definition 2. Three Gaussian Primes, pi, p2, P3 are called Gaussian 
triplet primes if pt - p2 = p2 -P3 = (1 + i)€ where |€| = 1. 

An example of these triplets would be 20 + 3i, 21 + 4i, and 22 + 5i. The 
alternate definition would be for the less restrictive condition on the Ts: 
P i ~ P2\ ~ P2 ~ P3 = 1 + *• Examples of this less restrictive condition for 
the triplets would be 

(2A) 10 + i, 11, and 10 - i 
(2B) 19 + lOi, 20 + H i , and 21 + lOi. 
The only real primes that could be considered triplets would be 3, 5, and 

7. But it can be noticed from the figure that there are many Gaussian triplet 
primes. 

There are also several possibilities for definitions for Gaussian quad-
ruplet primes. The one we prefer is the more restrictive. 

Definition 3: Four Gaussian primes, pl9 p2, p$9 and p4 are Gaussian 
quadruplet primes if pt - p2 = p2 - p3 = P3 - p4 = (1 + i)e where |c! = 1. 

Two examples of these are the primes 31 + 26i, 32 + 27i, 33 + 28i, 
34 + 29i; and 16 + 19i, 17 + 18i, 18 + 17i, and 19 + 16i. 

The less restrictive definition would have 

| Pi - P21 =\P2-Pz\ = | P 3 - P 4 ( = j 1 + i | ' 

This would not only allow the first definition, but would allow forms like 



1968] AND GOLDBACH?S CONJECTURE IN THE GAUSSIAN INTEGERS 83 

(3A) 25 + 12i, 26 + 111, 27 + lOi, and 25 + 9i, o r 

(3B) 49 + 34i9 48 + 35is 49 + 36i5 and 48 + 35i o r 

(3C) 24 + 5i, 25 + 4i, 26 + 5is and 25 + 6i. 

A fur ther loosening might be imposed on the r e s t r i c t i o n s to allow forms 
like 43 + lOi, 44 + 9i, 45 + Si, and 43 + 8i by making the condition in the 
definition that for some j \p, - p. I = 1 + iL for k f j * 

The mos t r e s t r i c t i v e definition for quintuplets would be 

Definition 4: The Gaussian P r i m e s pj , p2? P3? p& and p5 a r e Gauss ian 

quintuplet p r i m e s if Pi - p 2 = P2 - P3 = P3 - P4 = p& - P5 = (1 + i)c where | e | 

= 1. 

Several l e s s r e s t r i c t i v e definitions could be posed that would allow a 

va r i e ty of fo rms such a s the zigzag: 13 + 2i, 14 + i9 15 + 2i, 16 + i, and 17+ 

2L We do not wish to l i s t examples of these forms e 

We do wish to notice the following: 

Theorem 1: T h e r e a r e only finitely many Gauss ian quintuplet p r i m e s 

and they a r e ±5±2i, ±4±i5 ±3, ±2±i, ±l±2i , ±3is ±l±4i , ±2±5L 

Proof: A specia l division a lgor i thm for 2 + i a s s e r t s that for any 

Gauss ian Integer 7, the re a r e Gauss ian In tegers a and fi such that J = 

a(2 + i) + p with hS < 1, hence p = 0 o r ±1 o r ±i. (See represen ta t ion C 

of [ l ] for details.,) 

Now cons ider 

pt = a(2 + i) + p with \p\ < 1, and suppose that the € in the theorem 

i s - 1 , then 

i) if P = 0 then (2 + i)a = pt 

ii) if p = 1 then p 2 = (2 + i)(a + 1) 

iii) if P = i then p4 = (2 + i)(a + 2 + i) 

iv) if P = - 1 then p 5 = (2 + i)(a + 2 + i) 

v) if P = - i then p 3 = (2 + i)(a + 1) 

So in any c a s e , 2 + i i s a factor of one of the p . f s . Hence at l ea s t one of the 

p . f s i s composi te un less the p. i s (2 + i)S, where 8 = 1. This only h a p -

pens when the p . ? s a r e in the set specified in the theorems* Simi lar a r g u -

men t s can be given for € = 1 o r ±i. 
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There are several other definitions that could arise, but we choose to 
start guessing about the definitions we now have: 

Conjecture A: There are infinitely many Gaussian twin primes., 
Conjecture B: There are infinitely many Gaussian triplet primes. 
Conjecture C: There are infinitely many Gaussian quadruplet primes. 
It is clear that if conjecture C is true then the others would be true, and 

if conjecture A is false, then the others would be false. It seems to us that all 
three should be either true or false together, but this is only our opinion. 

One theorem that can be stated positively about the primes that form a 
square of twin primes like those of example 3C is the following: 

Theorem 2: If a ± 1 + bi, a + (b ± l)i are primes with |a| + |b | >5 , 
then a and b are both multiples of 5 and neither is zero. 

Proof: Since these four numbers are primes, none is divisible by 2 + i 
nor 2 - i. The strong division algorithm for 2 + i gives a + bi = (2 + i)a + 8 
where 8 < 1. But if 8 r= 1, then (a - 1) + bi = (2 + i)a; if 8 = i, then 
a + (b - l)i = • (2 + i)a; if 8 = - 1 , then a + 1 + bi = (2 + i)a; and if 8 = - i , 
then a + (b + l)i = (2 + i)a so 8 = 0. A similar argument implies that for 
a + bi = (2 + l)/3 + r) then 7) = 0. So not only 2 + i but also 2 - i divides 
a + bi; hence (2 + i)(2 - i) = 5 divides a + bi, hence 5 divides each compo-
nent a and b. 

Notice that if b = 0 then a + 1 and a - 1 are both primes which is 
impossible because if a + 1 is even, 2 divides it, and if a + 1 and a - 1 are 
both odd, one is of the form 4k + 1, which is not a Gaussian prime. A simi-
lar argument settles the case a = 0. 

Corollary. If p l 9 p2, P3» an(* Pi a r e a s e^ oi Gaussian primes as des-
cribed in theorem 2, then there does not exist a Gaussian prime p f p. such 
that p = p. + (1 + i)e. for |€| - 1. 

Proof. Notice that the eight odd numbers that surround this set have the 
property that they differ from a + bi by ±2±i or ±l±2i hence are divisible 
by either 2 + i or 2 - i since a + bi is divisible by both. 

This means that forms like 3C that are not near the origin can not have 
an additional prime attached a checker move away. 
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3, GOLDBACH'S CONJECTURE 

There are several possibilities for generalizing Goldbachfs conjecture. 
One possibility would be 

Conjecture D: If a is an even Gaussian Integer, then there are Gaussian 
Primes p± and p 2 such that a = p1 + p2. 

This seems to us to be a poor generalization of Goldbach?s conjecture. 
It is more the generalization of the statement, "Every even integer is either 
the sum or difference of two positive primes. " 

Since positive is meaningless in the Gaussian Integers, we would like to 
somehow purge the possibility of allowing differences to creep in. These two 
possibilities occur: 1) Insist the I pi and p2 lie in that same half plane, or 2) 
insist that \pA and p 2 be < m. We however prefer this one. 

Conjecture E: If a is ah even Gaussian Integer with \a\ > \/z, then 
there are Gaussian Primes, p1 and p2, such that a = p4 + p2 and the angles 
PiOa and aOp2 are <45°. 

It is easy to see that conjecture E implies conjecture D and both of the 
two alternatives mentioned. 

Conjecture E has been verified for all even Gaussian Integers in the figure. 
Certain conditions stronger than conjecture E might be asserted by r e -

ducing 45°. The a may have to be increased in absolute value to avoid cer-
tain exceptional cases. For example 

Conjecture F: If a is an even Gaussian Integer with \a\ > VlO, then 
there are primes p4 and p 2 with angles p^Oa and #0p2 < 30° and a = p4 + 

This has also been verified for the even integers in the figure. Note that 
1 + 3i, 3 + i, and 2 and their associates require 45°. 

Reducing the angle to 0° doesn?t work since 4, 8, 12 e • • have no repre-
sentatives as the sum of two Gaussian Primes. There might be some sacred 
angle 0 , which is the dividing point for the truth or falsity of the appropriate 
conjecture or perhaps if 0 > 0 then for all \a\ > N^ the appropriate conjec-
ture may be true. There might be a universal shaped region that depends on 
\a\ such that the primes p4 and p2 would fall in that region, with this region 
in some ways minimal. 

(Continued on p. 92.) 



ON THE LINEAR DIFFERENCE EQUATION WHOSE SOLUTIONS ARE THE • 
PRODUCTS OF SOLUTIONS OF TWO GIVEN LINEAR DIFFERENCE EQUATIONS 

MURRAY S. KLAMK1N 
Scientific Laboratory, Ford Motor Company, Dearborn, Michigan 

It was shown by Appell f l l that if u^ and u2 denote two linearly inde-
pendent solutions of 

| D 2 + p(t)D + q(t)ly - 0 

2 2 

then ul5 u-jU25 u2 denote three linearly independent solutions of the third-order 
linear differential equation 

<D3 + 3pD2 + (2p2 + pf + 4q)D + (4pq + 2qT)ly = 0 . 

Watson [2l shows that if 

<D2 + iiy = 0, | D 2 + j l w = 0 , 

then y = vw satisfies the fourth-order differential equation 

D j ̂ - 2 ( i + j)y + (r+J0y j = _(I _ JJ ( I ^ m 

Bellman [3] gives a matrix method for obtaining Appell1 s result and notes that 
the method can be used to find the linear differential equation of order mn 
whose solutions are the products of the solutions of a linear differential equation 
of order m and one of order n. 

We now obtain analogous results for linear difference equations, 
Let <A > and <B > denote sequences defined by the second-order linear 

difference equations 

(1) A ^ = P A + Q A A , 
x ' n+i n n ^n n-i 

(2) B ± = R B + S B . 
n+i n n n n-l 

86 
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ARE THE PRODUCTS OF SOLUTIONS OF TWO GIVEN LINEAR 

DIFFERENCE EQUATIONS 
w h e r e A0, A1? B0, Bt a r e a r b i t r a r y and P ,Q , R 5 S a r e given, 

If Mi and u2, Vj and v2 denote p a i r s of l inea r ly independent solutions 

of ( l ) and (2 ) , r e spec t ive ly 5 then we f i r s t obtain the t b i r d - o r d e r l inea r difference 

equation whose solution i s given by 

kill? + kgujug + k3u2 

where the k.Ts a r e cons tants . Squaring (1) and let t ing C = A , we obtain 

(3) C ^ = P 2 C + Q 2 C , + 2 P Q A A . 
n+l n n n n - l n n n n - i 

o r 

(4) C _ , - P 2 C - Q ? C 4 = 2 P Q A AP A + Q A J ' n+l n n n n - i n n n - i n - i n - l n - l n-2 

= 2 P P Q C .+ 2 P Q Q A A o . n n - i n n - l n n n - i n - l n-2 

By d ec r e a s ing the index n by 1 in (3),- we can e l iminate A A to obtain 

(5) P ,C ^ = P (P P + Q )C + P Q (P P + Q J C , 
n - l n+l n n n - l ^ n n n - i n n n - i n n - i 

- P Q Q 2C n n n - i n-2 

o 

We now obtain the fou r th -o rde r equation whose solution i s given by kjuj 

+ kjUi + k2uiu2 + ksUjuJ + k4u|8 Cubing (1) and let t ing D = A 3 , we obtain 

(6) D ^ - P 3 D - Q3D = 3P 2 Q A2A A + 3P Q2A A 2 
x ' n+l n n n n - i n*n n n - l n n n n - l 

= 3P 2 Q A2A + 3P Q2A 2(P A , +Q^ A ) n n n n - l n n n - l n - l n - l n - l n-2 

o r 

(7) D ^ - P 3 D - Q 2 ( 3 P P + Q )D = 3P 2 Q A 2 A 4 s n+l n n n ' n n - i n n - l n n n n - l 

+ 3 P Q 2 Q A 2A = ' 3 P 2 Q ' A (P A +Q A J 2 
n * n *n-i n - l n-2 n*n n - i n - i n - l n - l n - 2 ' 

+ 3P Q 2Q A 2A n n n - i n - l n-2 
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or 

(8) D _L, - P3D - Q (3P P O + 3P2P 2 + Q2)D 
n+1 n n n n n-i n n n-i n n-i 

= 3P Q Q (2P P +Q )A 2A + 3P2Q Q 2A 2A ' . n^n n-i n n-i ^n n-i n-2 n V ^ n - i n-2 n-i 

By reducing the index of n by 1 in (6), we can then solve (6) and (8) f o r 
A 2A . Then by substituting this expression in (7), we can obtain the desired 
difference equation. 

To find the fourth-order equation satisfied by 

kiUiVi + k2uiv2 + k3U2V! + k4u2v2 , 

we multiply (1) by (2) and let E = A B , to give 

(9) E ^ - P R E - Q S E = P S A B + R Q B A 4 
n+i n n n n n n-i n n n n-i n n n n-i 

= P S B (P A +Q A J n n n-i n-i n-i n-i n-2 
. + R Q A (R B / + & „B J n n n-i n-i n-i n-1- n-3 ' 

or 

(10) E _ L - P R E - ( P P S + R R Q + Q S ) E = P S Q B A 0 7 n+i n n n n n-i n n n-i n ^n n n-i n n n-i n-i n-2 
+ R Q S A B = P S Q A (R B + S B ) n n n-i n-i n-2 n n n-i n-2 n-2 n-2 n-2 n-3 
+ R Q S B (P A +Q A J n n n-i n-2 n-2 n-2 n-2 n-3 

or 

(11) E , - P R E - - ( P P - S + R R Q + Q S )E 4 n+i n n n n n-i n n n-i n n n n-l 
- (P S Q R + R Q S P )E 0 n n*n-i n-2 n^n n-i n-2 n-2 

= P Q S S A B + R S O Q B A n n-i n n-2 n-2 n-3 n n-l n n-2 n-2 n-3 

By now reducing the index n by 2 in (9) and by 1 in (10), we can then eliminate 
A B n and n-2 n-3 
ence equation. 
A B n and B 0A from (9), (10), and (11), to obtain the desired differ n-2 n-3 n-2 n-3 
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If here P , Q , R , S are independent of n, the equations simplify 
and the elimination is rather simple. This special case gives a solution to 
part (i) of proposed problem H-127 by M. N. S. Swamy (Fibonacci Quarterly, 
Feb. , 1968, p. 51), i. e . , "The Fibonacci polynomials are defined by 

fn+1fe> = xfn(x), n > 2 , 

fi(x) = 1 and f2(x) = x . 

If z = f (x)f (y), then show that (i) z satisfies the recurrence relation 

z , A - xyz LO - (x2 + y2 + 2)z , - xyz , + z = 0 . fr 
n+4 J n+3 J n+2 J n+i n 

We now extend Bellmanfs matrix method, with little change, to difference 
equations. 

F i rs t we give an analogous lemma for difference equations. 
Lemma. Let Y and Z denote, respectively, the solutions of the matrix 

difference equations 

EY - A(n)Y , Y(0) = I , 

EZ = ZB(n) , Z(0) = I , 

then the solution of 

EX = A(n)XB(n) , X(0) = C , 

is given by X = YCZ. (Here EY(n) = Y(n + 1)). An immediate proof follows 
by substitution. 

We now apply this result to finding the third-order linear difference equa-
tions whose general solution is ciuf + 2c2U;]iU2 + C3UJ5 where uj and u2 are 
linearly independent solutions of 

(12) < E2 + p(n)E + q(n) U = 0 . 
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Without loss of generality, let u^ and u2 be determined boundary conditions 

u i ] n = 0 = . 1 , EUi]n=o = 0 , 

u2]n=o = ° > EU2]n=o = 1 • 

Setting Eu = v, (12) is equivalent to 

Eu 
Ev 

v , 
-pv - qu 

If we now let 

A(n) = 0 1 
-q(n) -p(n) 

The matrix solution of 

is given by 

Eu = A(n)U , U(0) = I , 

U = 
Uj(n) u2(n) 

Euj(n) Eu2(n) 

and the solution of 

EV = VA(n) , V(0) = I , 

by V = U , the transpose of U. From our lemma, the solution of 

(13) EX = AXA , X(0) = C , 

is given by X = UCU . Taking C to be the symmetric matrix 
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c l c 2 

II C2 c 3 || 

we see that X is given by 

II X l X 2 II 
X = 

II X 2 X 3 II 
where 

2 2 
Xi = CjUi + 2c 2 UiU2 + C3U2 , 

X2 = C-iU-iEUi + C2(UjEU2 + ^ E U j ) + C3U2EU2 , 

x3 = c{En\ + 2c2(Eu1)(Eu2) + C3EU2 . 

Equation (13) can be written as 

Exj_ EX21 

Ex2 Ex3 
= 

0 1 

1 -q -p i- j * l x 2 

1 x 2 ^ 3 
8 

1 0 -q 

1 -Pi 

and which is also equivalent to the system 

Exi = x3 , 

Ex2 = qx2 - px3 , 

Ex3 = q2Xi + 2pqx2 + p2X3 . 

Eliminating x2 and x3, we obtain the third-order linear difference equation 
corresponding to (5). Similarly;, eliminating xj and x2, we obtain the equation 

2 2 

whose general solutionis CJEUJ + 2c2(Eui)(Eu2) + c3Eu2; eliminating xt an4 
X3? we obtain the equation whose general solution is 

CiUiEui + c2(uiEu2 + u2Eui) + C3U3EU3 • 
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DIFFERENCE EQUATIONS 

In stating our lemma, we ignored any discussion of the dimensionality of 
Y and Z. It is clear that the result is valid if A(n) and Y are r x r ma-
trices, B(n) and z s x s matrices, and C and X r x s matrices. 

Using the same technique as before, but with much more computation, 
we can obtain the linear difference equation of order r s whose solutions are 
the products of order r and one of order s. 

REFERENCES 
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Products of Solutions of Two Given Linear Differential Equations," Boll. 
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* * * * * 

(continued from p. 85.) 

4. REMARKS 

Generalizing these famous conjectures leads to a multitude of conjectures 
in the Gaussian Integers. Some such as the infinitude of twin primes appears 
easier to settle and some such as the quadruples of primes seem less attain-
able than the real case does. 

See p. 80 for a Firs t Quadrant Graph of Gaussian Primes. 
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LAH NUMBERS FOR FIBONACCI AND LUCAS POLYNOMIALS 
SELMO TAUBER 

Portland State College, Portland, Oregon 

I. INTRODUCTION 

In [l] the Fibonacci and Lucas Polynomials are defined as follows: 

(1) f0(x) = 05 fi(x) = 1, fn+2(x) = xfn+l(x) + fjK), n > 0 , 

ands 

(2) Luc0(x) = 2, LMCn(x) = fn+1(x) + ^ ( x ) , n ^ 0 . 

It is easily seen that 

[n/2] n 
/ m - , . \~^ _.n-2m n-2m-i \~^ _ . s s-l 
(3) yx) = 2^ Fln x = Z, F l n X ' 

m=o s=o 

where n and s have same parity (n - s - 2k), [n/2] is the largest integer 
contained in n/2 , ie e e , 

r / ? 1 _ | (n/2) if n is even 
( 4 ) Ln/2J ~ \ ( n _ 1 } / 2 if n is odd 

andf 

,n-2m _ / n - m - l \ _ . s / (n + s - 2 ) /2 \ (5) F i " " " = / n - m - l \ s = / ( n + ; 
* ' TI i m p n \ (n n y m Js * n \ (n - s)/2 / 9 

FiS ~. 0, for s < l , n < l , n < s , n - s =2k + l, 
n 9 9 9 9 

It follows from (2) that 
1 ' 93 
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[(n+i) A] n 
,ns T / x "ST^ T n-2m n-2m \~"^ _ s s 
(6) Lucn(x) = 2 l ^ n X = / j L u n X ' 

m=o s=o 

where n and s have same parity (n - s = 2k), 

and, 

,_, T n-2m / n - m \ , / n - m - 1 \ T s / n + s - . l f / Z n - s i , . 
<7> L u n = { m ) + ^ m - 1 } L u n = n \ — " x j ' / \—fsl> 

LuS = 0, for n < 0, s < 0, n < s, n - s = 2k + 1, and Lug = 2 . 

2. FIBONACCI AND LUCAS COEFFICIENTS OF THE SECOND KIND 
s s The numbers Fi and Lu will be called Fibonacci and Lucas coefficients n n 

of the first kind. According to [2] , [3] , and [4] we call the numbers fi and 
s lu , defined hereafter, Fibonacci and Lucas coefficients of the second kind: n 

[.(n+i)/2] n+i 
/n. n \ ~ ^ ,,.n+i-2m „ . . \ ^-.s f , * (8) x = > n ,, f (J „ (x) = / fi ,„ f (x) , v ; / JI n+i n+i-2nr ' JL«J n+i s^ ' ' 

m=o s=o 

g 
where n + 1 - s = 2k, fi = 0, for n - s = 2k + 1, n < 1, s < 1, n < s, 

[n/2] n 
(9) x n = \ ^ lu n " 2 m Luc (x) = Y ^ luS Luc (x) , 

/ J n n-2nv ' / j n sv ' 
m=o s=o 

where n - s = 2k, luS = 0, for n - s = 2k + 1, n < 0, s < 0, n < s . 

According to the general theory seen in [2] , [3], and [4], the coefficients 
s s Fi , fi , on the one hand, w ir 

are quasi-orthogonal, i. e9 , 

s s s s Fi , fi , on the one hand,, and the coefficients Lu , lu , on the other hand, w ir ir ir 
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(n-m)/2 
m = ^m 

2k d n s 

k=0 
(10) ^ F i n " 2 k f L n ^ = 8-

(n-m)/2 

k=o 

/ i i \ x T n " 2 k i HI _m 
(11) / Lu lu , = S 
v ' L^J n n-2k u n 

^m . where 8 is the Kronecker-delta. 

3. NUMERICAL VALUES AND RECURRENCE RELATIONS 

HI 
Using (1) and (2) we obtain the following table of values for Fi 

limited here to m, n < 11 : 

m= 1 2 3 4 5 6 7 8 9 10 
n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

2 

0 

3 

0 

4 

0 

5 

1 

0 

3 

0 

6 

0 

10 

0 

1 

0 

4 

0 

10 

0 

20 

1 

0 

5 

0 

15 

0 

1 

0 

6 

0 

21 

1 

0 

7 

0 

1 

0 

8 

1 

0 
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I t will be obse rved that the sum of coefficients in one row i s equal to the F ibon-

acc i number cor responding to i t s n, i. e . , f (1) = F . 

10 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

LO 

2 
0 
2 
0 
2 
0 
2 
0 
2 
0 
2 

1 
0 
3 
0 
5 
0 
7 
0 
9 
0 

1 
0 
4 
0 
9 
0 

16 
0 

25 

1 
0 
5 
0 

14 
0 

30 
0 

1 
0 
6 
0 

20 
0 

50 

1 
0 
7 
0 

27 
0 

1 
0 
8 
0 

35 

1 
0 
9 
0 

1 
0 

10 
1 
0 

T X 

Lu 

I t i s eas i ly seen that 

(12) _ . m ^ . m -c-m-i F i = F i + F i n n-2 n - i 

which i s sa t isf ied by (5), a s can be eas i ly checked. 

(13) _ m T m , _ m - i Lu = Lu + Lu . n n-2 n - i 

for n > 1, m > 1, but for m = n = 1 we have 

Lu l _ |Lu° 0 

It i s necessary to introduce the function N(n) which i s 

(13a) „ . . ( 1 i f n / 1 
N < n > = { 1/2 if n = 1 

which al lows u s to wr i t e 

(13b) Lu 
m _ m , -T / XT m - i -= Lu + N(n)Lu J n-2 v ; n - i 
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for any in teger m and n. 
According to (9) and (12) of [4] It follows that taking p = l , k = 2, the 

fi^-coefflcients sat isfy the re la t ion 

(14) fim = nm^ - f*+1
 s 

x n n - i n - i ' 

m and the lu -coefficients the re la t ion 

/ii-\ , m _ 1 , m - i 1 , m+i 
(J-5) hi = ——r lu - , . , lu « 
v n N(m) n - i N(m + 2) n - i 9 

but s ince m > 2, N(m + 2) = 1, thus 

(15a) luJJ1 = lu^yN^) , m+i lu J n - i 

The n u m e r i c a l va lues of the Fibonacci and Lucas coefficients of the second kind 

can be obtained e i the r from (10) and (11) o r f rom (14) and (15a). Thus , for 

n, m < 10. 

n= 1 2 3 4 5 6 7 8 9 10 
m 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
0 
-1 
0 
2 
0 
-5 
0 
14 
0 

n= 0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1/2 
0 
-1 
0 
3 
0 

-10 
0 
35 
0 

-126 

1 
0 
-2 
0 
5 
0 

-14 
0 
42 

1 

1 
0 
-3 
0 
10 
0 

-35 
0 

126 
0 

1 
0 
-3 
0 
9 
0 

-28 
0 

_ ™ _ 

1 
0 
-4 
0 
15 
0 

-56 
0 

210 

1 
0 
-4 
0 
14 
0 

-48 

~T" 

i 
0 
-5 
0 
21 
0 

-84 
0 

1 
0 
-5 
0 
20 
0 

4 " 

1 
0 
-6 
0 
28 
0 

-120 

1 
0 
-6 
0 
27 

5 

1 
0 
-7 
0 
36 
0 

1 
0 
-7 
0 

6 

1 
0 
-8 
0 
45 

1 
0 
-8 

7 

1 
0 
-9 
0 

1 
0 

-

8 

1 
0 
10 

fim 
n 

1 
9 

1 
0 

10 

, m lu . 
n 

1 
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It is easily seen that for n and m having same parity, i. e . , n - m = 
2k, the Fibonacci and Lucas coefficients of the second kind are 

/-im -P-m t i x ( n _ m ) / 2 / n \ / 

<16> & n = (-1* ^(n-m)/2Jm / n ' 
and 

(17) lu™ = ( - l ) m ( " jN (m + 1) , 

where N(m + 1), according to (13a) equals 1 if m ^ 0, and l /2 if m = 0. 

4. LAH NUMBERS 

According to [5] and [6] the Lucas-Fibonacci and the Fibonacci-Lucas 
Lah numbers are defined by the two relations 

n+i 

(18) Lucn(x) = YJ C f m ( x ) ' 
m=o 

and 

(19) 
[(n-i)/2] 

f (x) = Y ^ X11"1""21^ Luc 4 nl (x) n / J n n- i -2k l ' 
k=o 

n - i 

7 k Luc (x) , 
m 

m=o 

where n and m are of the same parity, i8 e . , n - m = 2p. 

According to the definition of Lucas polynomials given by (2) it follows 

that 



1968] FOR FIBONACCI AND LUCAS POLYNOMIALS 99 

/ 9 m m (0 if m / n ± l 
( 2 0 ) ^n = \i if m = n ± l 

and 

(21) k^ = (-1)^ m ^ ^ ( m + l ) , m ( n - m - i ) ^ 
n 

where n and m are of opposite parity, i. e0 , n - m = 2k + 1, and N(m) is 
defined by (13a). 

According to (8) and (9) of [5], and (3a) and (3b) of [6] we obtain 

n 
(22) X» = £ F i > ^ = ( - D ^ - ^ N C m - M ) , 

s=m 

where n and m have different parity, i. e . , n - m = 2k + 1, and 

,onx V^ T s 4 X . m m ( 0 if m / n i 1 
(23) > Lu fi. , = u, = \ * '* . -, 
v ' ^—' n s+i Ha { 1 if m = n ± 1 

s=m-i 
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LAH NUMBERS FOR R-POLYNOMIALS 
SELMO TAUBER 

Portland State College, Portland, Oregon 

1. INTRODUCTION 

According to [ l ] , [2] , and [3] , given two sequences of polynomials, 
P-^x, n) and P2(x,n), n = 0 ,1 , 2, • • • . 

n 
m m (1) Pk(x,n) = Y, c k , n

x V k = 1 » 2 » 
m=o 

m (la) C, = 0, for n < m, m < 0, n < 0, 

and the inverse expansion 

(2) x11 = £ D ^ n P k ( x , m ) k = 1,2, 
m=o 

(2a) D k = 0 , for n < m , m < 0 , n < 0 , 

the coefficients C, and D, are called respectively Generalized Stirling 
Numbers of Firs t and Second Kind of the polynomials P, (x, n). Examples of 
such numbers can be found in [3] , [4] , and [5]. 

Let then 

n 
(3) Pk(x,n) = £ L ^ h , n P h ( x ' m ) ' k ' h = 1 , 2 j k ^ h , n = 0 , l , 2 , 

m=G 

m (3a) L, , = 0, for n < m, m < 0, n - ^ 0 

100 
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More explicitly, 

n n s 

Pk(x,n) = £ C ^ n x s = E C k s n Z D S s V ' m ) • 
s=o s=o m=o 

s=o m=o 

n n 
= EPh(X'm)ECk,nDM • 

m=o s=m 

so that 

n 
(3b) L,m, = y ^ c f Df . 

s=m 

HI The coefficients L, , are called Generalized Lah Numbers for the two k,h,n — — 
sequences of polynomials P, and P. , k ^ h, k9 h = 19 20 

2e QUASI-ORTHOGONALITY 

Under the conditions stated* the generalized Stirling numbers of first and 
second kind for a given sequence of polynomials P, (x9n) are said to quasi -
orthogonal to each other (cf. [ 3] if 

<4> EC^m = <' 
m=s 

This result is proved in [3] for both the Q- and R-polynomials, but since the 
proof does not use the structure of tie polynomials it is true for any sequence 
of polynomials as defined by (1)9 
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Similarly the generalized Lah numbers for two sequences of polynomials 
P, and P, are quasi-orthogonal to the generalized Lah numbers for the 
sequences of polynomials P, and P, , i. e 8 , 

n 

(5) £ C* L? , = 8s . 
v ; ^ k,h,n h,k,m n 

m=s 

This result is proved in [ 2] for the Q-polynomials, but here again the proof 
does not use the structure of the polynomials, thus is valid for any two sequences 
of polynomials as defined by (1). 

3e RECALL ABOUT R-POLYNOMIALS 

In [2] we have studied the generalized Lah numbers for two sequences of 
Q-polynomials. We shall now study the same for R-polynomials as defined in 
[ 3 ] , i. e e , 

n 
(6) R(x,n) = £ Cjj 

m=o 

m m 
x 

(7) R(x, n + 1) = [K(n + 1) + L(n + l)x] R(xs n) 

n 
+ J^ [M(m + 1) +N(m + 2 ) x ] C ^ x m , 

m=o 

(8) R(x,0) = K(0) 

n 
(9) x11 = £ D^R(x s m) . 

m=o 

In order to simplify the results in [3] it was assumed that L = 1. Letting 
N(n + 1) + 1 = P(n) il 
recurrence relations 

m m 
N(n + 1) + 1 = P(n) it was proved that the numbers C and D satisfy the 
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(10) C™ = [K(n) + M(m + 1)]^ + P ^ C ^ 1 

(11) D™ = -[K(m + 1) + M ^ j D ^ / p ^ ) + D ^ - y P(n) . 

In the following we shall consider two sets of R-polynomials R.|(xf n) and 
Ro(xf n) and the corresponding generalized Stirling numbers ^cfi,* C?L> and 
I m m \ { 9 ' 
<Dj n , D2 n> which all satisfy the conditions given in sections 1 and 2e The 

m m 
generalized Lah-numbers for the two sequences are Llf2fn an(* L29ifn » They 
satisfy conditions (3a)9 (3b)f and (5)0 We shall assume that Lj(n) = L2(n) = le 

4e RECURRENCE RELATIONS 

According to relations (6) through (9) we can write 

n+i 
R2(xfn + 1) = X C 2^n+i x m 

s=0 
n 

s s 
n 

= [K2(n + 1) + x]R2(xfn) + £ [M2^ + 1) + N2(s + 2 )x]c£ n x'" 
s=o 

and, according to the definition of the generalized Lah-numbersf 
n+i 

R ^ n + l) = Yl LM*n+iRi(x>m) » 
m=o 

so that 

n+i n 
(12) E L ^ n + ^ C x . m ) = K2(n + 1) £ L ^ R ^ m ) 

m=0 m=o 
n 

+ E L M , n xRj(xfm) 
m=o 

n s 
+ E M2(s + l)C2

S
fn E K$Ri (^m) 

s=o m = 0 

n s+i 
+ EN 2 ( s+2 )C 2

S
f n £ D j f g + i R ^ m ) . 

s=o m=o 



104 LAH NUMBERS FOR R-POLYNOMIALS 

On the other hand we have 

[Nov. 

RA(x, m + 1) = [KA(m + 1) + xJR^x, m) 

+ E [ M ^ + 1) + Ni(p + 2 ) x ] c £ m x13 

p=0 

thus 

(13) xR^Xjm) = R ^ m + 1) - Ki(m + l J R ^ m ) 

m 

" E tMl(P + « + N i * + 2)xlcl,m *?• 
p=0 

Substituting (13) into (12), and reorganizing the last two terms with the help of 
(la) and (2a), we obtain 

n+i n 
E L?l,n-HRiC*:m) = K2(n + 1) £ L ? l . n Rl<*. m> 

m=o m=o 

+ E L2,i,n Ri(x, m + 1) - Ki(m + l)Ri(x, m) 
m=0 L m 

- E [Mi(P + 1) + Ni(P + 2 ) x ] c i , m »P 
p=o 

n n 

+ ERi(x 'm) E M2(s + l)cln^s 
m=o s=m 
n+i n 

+ V Ri(x,m) £ N 2 (s+2)C 2
S , n D^ s + 1 , 

m=0 s=m-i 
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or, interchanging the indices m and s$ 

n+i n 
(14) E I ^ n + i R l ( * * m ) = K2(n + 1) £ L g n R i t e m ) 

m=o m=o 
n n 

+ E LaTi.nHiCx.m + 1) - £ L ^ K ^ m + IJR^x, m) 
m=o m=o 
n s p 

" L L 2 ^ n L M i ( P + 1)c?,s E DgjRi^m) 
S=G p=o m=o 

n s p+i 
" E Lli9n E Ni(P + 2 ) C ? , s , E D g ^ R i f r m ) 

s=o p=o m=o 
n n n+i n 

+ E R l ( ^ m ) E M2(s + l)C2 9 nD1 ? s + £ Ri(xfm) £ N2(s + 2)C2%D^S+1 
m=o s=m m=o s=m-i 

The fourth and fifth quantities on the right-hand side of (14) can be written 
as follows: 

(15) E L2
S,i>n E M,(p + l ) c £ s 2 D ^ p R ^ m ) 

s=o p=o m=o 

= IX(x,m) 2 L2
S,1)n £ Mt(p + l)C?>sD^p, 

m=o s=o p=m 

n s p+i 
(16) £ L2S,l,n £ Ni(P + 2 ) c ? ,s E D^p + IR1(x,m) 

s=o p=o m=o 

n+i n s 
= E Ri(x,m) E L v , n E Njtp+ 2 ) 0 ^ 0 ^ 

m=o s=o p=m-i 

Substituting (15) and (16) into (14) we obtain by equating the coefficients of 
Ri(xf m) 
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(17) Lv ,n+ i = K2(n + 1) - K^m + 1) L ^ l j n + L J J ^ 

E L2,i,n E Ml(p + l ) c f , s D ^ p + £ Nj(p + 2)C?>S D ^ p + 1 
s=m-i p=m p=m-i 

n n 
+ Z M2(s + l)C2

S
pn D £ S + Z N2(s + 2)C^ nD™s + 1 , 

s=m s=m-i 

or, changing n into n - 1, 

(18) L2™,n = K2(n) - Kt(m + 1) L ^ . j + L ^ . j 

" E Lf.l.n-l E Ml(P + DC?,SDjfp + £ Nt(p + 2)C?,SD£P+1 
s=m-i p=m p=m-i 

n-i n-i 
+ D M2(s + l J C ^ n - j D ^ + ^ N2(s + 2 )C 2 Vi D^s+i 

s=m s=m-i 

Relation (18) is the recurrence relation for the generalized numbers L2>ljI1. A 
similar relation for the Lah-numbers L^ 2 n will be obtained by interchanging 
the indices 1 and 2 in (18). 

5. EXAMPLE 

We illustrate by the following example based on examples I and II of sec-
tion 5 of [3] . Thus: 

iq(G0 = of + 1 , M^a) = (a - l ) 2 , Ni(a) = 0, K2(a) = a f M2(a)=Q?, 
N2(«) = a , 

where the index 1 corresponds to example I and the index 2 to example II of 
section 5 of [3]. The numerical values of Cln are those of C , of DljEL 

m m m m m 
those of D of example I, while Co „ and Do u those of C and D of 

n » • n m n 

example II. Under these conditions we obtain the following for L2yljI1: 
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(19) Lj^n = (n - m - 2)L£lflM + L J ^ 
107 

n-i 
" X ) L2,is,n-
s=m-i 

n-i 

p=m 

+ X (s + 2>C2,n-lDi,s+l 
s=m-i 

+ . £ (s + i)C2sfn_iD™ 
s=m 

m 
s 

m= 
n: 
0 

1 

2 

3 

4 

1 
-4 

42 

-1488 

99680 

3 

-54 12 

2124 -696 

-170640 67440 

60 
-8880 360 
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THE EXISTENCE OF PERFECT ^SEQUENCES 
EUGENE LEVINE 

C. W. Post College, Long Island University, Brookvil le, N . Y . 

For s and n positive integers, a sequence al9 a2,e • • , a s n of length sn 
is called a perfect s-sequence for the integer n if (a) each of the integers 
1, 2, • • • , n occurs exactly s times in the sequence and (b) between any 
two consecutive occurrences of the integer i there are exactly i entries. 
Thus 4 1 3 1 2 4 3 2 is a perfect 2-sequence for n = 4. The problem of 
determining all n having a perfect s-sequence is posed in [l] for s = 2 and 
in [4] for s > 2. 

It is shown in [3] that a perfect 2-sequence exists for an integer n if 
and only if n = 3 or 4 (mod 4), and furthermore, an explicit 2-sequence is 
presented for each such n8 

The question of the existence of a perfect s-sequence for any n with 
s > 2 is then raised in [4] and [5]. The problem is partially answeredin [5] 
by providing necessary conditions on n in the case where s is either a mul-
tiple of 2 or 3. In the particular case s = 3, a necessary condition that there 
exist a perfect 3-sequence for n is n = 1, 0, or 1 (mod 9). 

The following examples lead one to believe that for s = 3, the above 
conditions are almost sufficient* Namely, we exhibit perfect 3-sequences for 
n = 9, 10, 17, 18, and 19. 

The case n = 9: 

1 9 1 6 1 8 2 5 7 2 6 9 2 5 8 4 7 6 3 5 4 9 3 8 7 4 3 

The case n = 10 (with 10 denoted by <\>) : 

1 ^ 1 6 1 7 9 3 5 8 6 3 0 7 5 3 9 6 8 4 5 7 2 ^ 4 2 . 9 8 2 4 

The case n = 17: 

17 15 3 16 9 10 3 1 12 1 3 1 13 14 9 6 10 

15 17 5 16 12 6 11 9 5 13 10 14 6 7 5 8 15 

12 11 17 16 7 4 13 8 2 14 4 2 7 11 2 4 8 

108 
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The case n = 18: 

18 16 5 17 11 4 2 9 5 2 4 14 2 15 5 4 11 9 

16 18 12 17 13 6 7 8 14 9 11 15 6 10 7 12 8 16 

13 6 18 17 7 14 10 8 3 15 12 1 3 1 13 1 3 10 

The case n = 19: 

19 17 13 18 4 11 8 2 16 4 2 9 15 2 4 8 13 11 14 
17 19 9 18 12 8 16 5 7 15 11 13 9 5 14 10 7 12 17 

5 6 19 18 16 7 15 10 6 3 14 12 1 3 1 6 1 3 10 

From the above examples, one has 

Conjecture. For n > 8, a necessary and sufficient condition that there 
exist a perfect 3-sequence for n is n = - 1 , 0, 1 (mod 9). 

The necessary condition stated in the above conjecture is proved in [5], 
Actually, the results of [5] are a special case of: 

Theorem L Let s = pt where p is a prime. A necessary condition 
that a perfect s-sequence exist for an integer n is 

n = - 1 , 0, 1, 2, •' • • , or p - 2 (mod p2) . 

Proof. Suppose a perfect s-sequence ai, *8 •, a s n exists. Then for an 
integer i occupying positions cj, c2, e 8 e , cg , we have 

c. = Ci + (j - l)(i + 1) (j = l , - - - , s ) . 

If i jk -1 (mod p), the positions c. range over the residue classes mod p in a 
manner such that each residue class has an equal number t of occurrences. 

On the other hand, for a fixed i such that i = -1 (mod p) the positions 
c. are all congruent to each other mod p„ Letting r be a residue of p, 0 < 
r < p - 1, we define N(r) as the number of integers i = -1 (mod p) such that 
the common residue of cj, • • • , Cg is r. 

We now let b(n, p) denote the number of integers i such that 1 < i < n 
and i = -1 (mod p). Then, observing that the total number of positions in 
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the sequence aj, • • •, agn congruent to r (mod p) must be nt, it follows.,(by 
counting the number of such positions filled by integers i in the range 1 < i 
< n) that 

t • b(n,p) + sN(r) = nt . 

Thus, all N(r) have the common value N expressed by 

n + pN = n - b(n, p) = 
* \ 

where [] is the greatest integer function. Representing n by n = kp + q 
with -1 4 q 4 p - 2 it follows that pN = k and n = p2N + q, whence n is 
out in the assumed range of values. 

The fact that theorem 1 is in some sense strong for s = 3 does not com-
pletely reflect what oonditions are required on n for s > 3. In particular, 
if a power (greater than 1) of a prime divides s the conditions on n can be 
improved over that presented in theorem 1. We shall only treat the case where 
p2 s $with p a prime) although a more general result can be proved for p s 
with k arbitrary. 

Theorem 2. Let s = p2t where p is a prime. A necessary condition 
that a perfect s-sequence exist for an integer n is 

n = - 1 , 0, 1, 2, • • • , or p - 2 (mod p3) . 

Proof. Let the integer i (with 1 < 1 < n) occupy positions cl9 • • • , c s 

in a perfect s-sequence for n, Then 
c. = ej + (j - 1) (i + 1) j = i , . . . , s . 

We consider three categories for the integer i as follows: 
I.) For the 

n+ l l 
P- J 

integers i with i + 1 ^ 0 (mod p) the positions c^- ' -^Cg range over the 
residue classes (mod p2) in such a manner that each residue class occurs 
exactly t times 
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II.) For the 

111 

fn + 1 
P 

- n + 1 

integers i with i + 1 = 0 (mod p) and i + 1 ^ 0 (modp2) the positions cl9 

• • ' , c s range over the residue classes clf Cj + p, • • • , ct + (p - l)p (mod p2) 
in a manner whereby each such residue occurs exactly pt times. We let N(r) 
for r = 0 ,1 , • • • , p - 1 be the number of i in this category with ct = r (mod 

P). 
HE.) For the 

"n + 1" 

integers with i + 1 = 0 (mod p2) the positions c l s
8 e * s c s all belong to the 

same residue class (mod p2)e 

We let M(q) for q = 0,19 • • ° , p2 - 1 be the number of i in this category 
with Cj = q (mod p2 )e 

Letting q be a residue of p2 with q = r (mod p), the number of posi-
tions in the s-sequence for n that are congruent to q (modp2) is nt. Thus 

nt = t<n n + 1 + ptN(r) + p2tM(q) 

or 

P2M(q) = n + 1 pN(r) . 

The latter implies that M(q) is identical for all residues q of p2 having the 
common reduced residue r (mod p)8 Letting L(r) denote this identical 
value, 

n + 1 
p2-i 

E 
q=0 

p-l 

M(q) = p ^ L ( r ) 
r=o 
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hence , p divides 

n + 1 

. P2 . 

But f rom theo rem 1, n + 1 = p2d + e where e = 0 , 1 , 2, • • • , o r p - 1, hence 

d = pdT and n + 1 = p3d! + e which i s the d e s i r e d resu l t . 

The author wishes to e x p r e s s h is apprec ia t ion to Dr . I rv ing Gabelman of 

Rome A i r Development Cen te r for h i s helpful suggest ions in behalf of the e x a m -

p le s provided here in , 
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Continued from p . 1 0 

18 

18 

J_^ 1 ±± ? dF n - i 
| a c | -> 
b " dj 

~ bd n-i 
F J n 'c 
F d n-i ! 

c F n + i - n+ l : 

d F 
n - i 

bd b d 

d F n - i 

n+2 

n+i 
• • • • • 

£ 
d 

n - i 

'n+i 

c 
d 

F 

- 1 
" dF A n-i 

F 
n+l n+2 

"n+i 

This specia l i s sue is completely supported by page c h a r g e s . 
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