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PSEUDO-FIBONACCI NUMBERS 
H. H. FERNS 

Victoria, B.C., Canada 

Consider the two interlocking recursion formulas 

(i) o . + l = 0 l * p t 

(2) P i + i = 0 i + i + X O i 0 ^ = ^ = 1 

in which X is a positive integer. 
For reasons which will shortly become apparent we call O. and P. 

pseudo-Fibonacci and pseudo-Lucas numbers, respectively. 
In fact, eliminating first the Ofs and then the P f s , from (1) and (2) 

we get 

(3) O i + 1 = 2 0 . + i + XO. O0 = 0, Ot = 1 

<4) P i + 2 = 2 P i + 1
 + * P i P0 = 1, Pi = 1 • 

Thus the two numbers defined by (1) and (2) satisfy the same recursion 
formula but with different initial values. 

A Binet-type formula for each of O and P may be derived from 
first principles [ l ] . We leave this as an exercise for the reader. 

We shall prove by induction that 

(5) o = (1 + ^JTTxf - (1 - N / T T X ) 1 1 

n 2 N/1 + X 

(6) p = (1 + ^ / ^ T X ) n + (i _ N/TTX)n 

n 2 

We introduce the notation A = 1 + v l + X and B = l - * s / l + X . From 
thus it follows that ( R e c e i v e d 1 9 6 3 - - r e v l s e d F e b . 1968 ) 

305 
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A + B = 2 A - B = 2 N/1 + A 
A2 = 2A +A B2 = 2B + A 
A2 + B2 = 2(2 + A) A2 - B2 = 4N/TTT 

AB = -A 

Hence 

n An - B n - _ An + B n 

u n A - B n 2 

It is immediately apparent from these two forms of O and P that 
Ot = Pj = 1. Since Q2 = 2, (1) is satisfied for i = 1. Assume that it is 
true for i = 2, 3, • • • ,k . Then 

O + P = Ak - B k
 + Ak -f B k 

u k *k A - B 2 

2 A k -

Ak(2 

- 2Bk + Ak+1 - B k + I - A 1 ^ + ABk 

2(A - B) 

- B) - Bk(2 - A) + Ak + 1 - B k + 1 

2(A + B) 

Ak + 1 - B k + 1 + Ak+i - B k + 1 

2(A - B) 

AkHhl - B~ k + 1
 ft 

A - B Uk+i 

This completes the proof of (5). A similar proof holds for (6). 
If we let n = -k where k is a positive integer we find from (5) and (6) 

that 

°k Pk 
O . = - •—£- and P , = K k (~A)k " k (-A)k 

It is left as an exercise to show that O , and P , satisfy (1) and (2), 
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In (5) and (6) let X * 4. We get 

(7) On = 2n"*Fn and Pn *= 3n~*LM (A = 4) 
n n n n 

where FR and Ln are the n Fibonacci and Lucas numbers, respectively. 
Thus identities among On and P may be transformed by means of 

the equations in (7) into identities involving Fibonacci and Lucas numbers, 
Some of the latter will be familiar. The purpose of this article is to find some 
new or unfamiliar identities among the latter numbers. 

We begin with (1) which we write in the form 

p i = % - ° i • 

Let i = 1, 2, 3, ••• n in this equation. Adding the resulting equations 
we get 

<*» E : p i •- P * H : - I 
i=i 

Applying the equations in (7) to (8) we have 
# 

n 

<») X^Li *' ^X+i - 1} 

i=i 

Next, eliminating 0 | + 1 from (1) and (2) yields 

^ - r T T < p i + i - p i > 

Following the procedure used above we get 

n 
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n 

1=1 

[Dec. 

A formula for the sum of the first n O's with even numbered subscripts 
is now derived. 

n n 

E°* - S 
i=i i=l 

A2i - B2i 

A - B 

(10) 

A - B 

n n 

EA2i-L'B2il 
i=l i=i 

L _ |"A2(A2n - 1) _ B2(B2n - 1) 
A " B L" A2 - 1 " B 2 i*] 

1 f(A2B2 - A2)(A2n - 1) - (A2B* - B2)(B2n - 1)" 
A - B [" A2B2 - A2 - B2 + 1 

H X2(A2n - B2n) - (A2n+2 - B211*2) + A2 - B2)1 
A2 - (A2 + B2) + 1 

1 j"A2(A - B)Qai - (A - B)02n+2 + (A - B)02 "j 
i r r " S L A2 - 2P2 + 1 J 

A202n - 02n+2 + 2 
(X + 1)(A - 3) (A^ 3) 

Applying recursion formulas (1) and (3) to (10) takes the form 

J ^ (A + D(A - 4)02n_i + fc2 - A - 4)P2n_1 + 2 ,. , 
<10a) I - 0 2 i - — ( A + i H A + 3> <X ^ 

i=l 

3) 

From (10a) we get 
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2 > * F 2 i = | <22nL2n-i + 1) 
i=i 

309 

For the special case in which k = 3 we have 

O, - j f s 1 -(-!)'] 
Hence 

(10s) Z°2i = J 
i= i 

1 
4 

9 
32 

" n n • . 1 

Esi-I>>n 
_i=i i=l J 

(9n - 1) - f . 

The following four identities are given without proof. Their derivation 
follows the same procedure that was used above. 

(ID 

(Ha) 

(Us) 

X)P2i 
P2n+2 - 2 02n+2 + 2 - A 

A~^"3 <Xt 3) 
i= l 

A (A - 4 )0^+! +A(A - 2)02 n-i - A + 2 
2 ^ ?2i = " r — * & ^ 3) A - 3 
1=1 

I> 
i= i 

2i = $ (9Q - 1) + £ (A= 3) 

(11') £ 2 2 i L 2 i = 4(22 nF2 n - 1) 
i=l 
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To find the sum of the first n O's with odd numbered subscripts we use 

ii 2n n 

E°2i-i = £°i "Z^1 

i==i 1=1 i=i 

and make use of results already obtained. In this manner we get the following 
four identities: 

A • • fo " D02n+i - 2 O m + 1 - A 
<12> L < * - i - (X + i H A - * ' u « * 3) 

^ & " 4 ) P 2 n - i + X ( X " 2)P2il-2 + 1 - A 
(12a) 2 , 0 2 i _ ! (A + lHX - 3) ; ( A * 3 ) 

i=l 

(12s) E o 2 M ' - ^ ^ - D + j (X=53) 
i=i 

n 
(120 £2*i-»F2i_1 - | k ^ L ^ - 3] 

The next four are derived in a similar manner. 

« Om+2 - 3<>2n+i + 1 
(13) 2*ptf-» = r ~ r - 5 — " <M.a>' 

i=l 

" (A - 4 ) 0 2 0 . , + X ( A - 2)02n.2 + 1 
(13a) ^ ^ i " 1 *" ~~' A ~ * ^ l " ( A ? l 3 ) 

i=i 
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n 

(13s) S p 2 i - i = Tg (9n -' 1) - J (A = 3) 

(13') S22i~lL2l-l = ^ ^ F ^ + 1) 
i=i 

We now derive the sum of a series with alternating positive and negative 
signs. 

From (10») and (12f) we get 

2 (-D^VF. =t>2Zi-iF^-E2^i 
i=i i=i i=i 

22n+i 
= _ _ (I«2n-2 - 2 I j2n-l) - 2 

Hence 

2n+i n+i n 
J ( 4 ) i + V F . = £ 2 % 2 M . j ; 2 % 2 i 
i=i i=i i=i 

22n+2 
= _ — . (2Lm - L2 n-i) - 2 

From the last two equations we conclude that 

d4) Y* (-1} V F I = l z r - (2Ln - W - 2 

In like manner, beginning with (l l f ) and (13f) we get 
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(15) V ( - l ) i + V L . = (-2)n+1(F - 2F ) + 6 L~t l n-2 n-i 
i= i 

The following identities involve sums of squares. Derivation is given 
for the first one only. 

In several cases the final term is 

i r r r [(1 - ("X)I1)] • 

For brevity we shall denote this by ±R. 

<16> £ 0 ! = 2?r: 2(1 +X) 
i=l 

(X - 4)02 n + X( X- 2)02n-i + 2 - X 
X - 3 + R ( X / 3) 

(16s) 9n + 1 - 8n + 4(-3)n+1 + 3 '] (X= 3) 

(16') 

(17) 

f>%> = | [i-rtPa.t +
 (-4 )7 - 6] 

i=l 

n 

E*i-f 
i= i 

(X- 4)02 n + (X- 2)02n-i 
X- 3 - R (Xj« 3) 

(17s) 
i= i 

n+i + 8n + 12( -3)n - 12 (X= 3) 

(17') S 2 2 i L i = 2 

i=l 
2 « n + 1 P a . i - (-4)n + 1 + 14~ 
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i=i 
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(A - 4)02 n + A(A - 2)02 n-i + 2 - A 
A •- 3 

(18s) J ] (40*.+ P2) = - ^ [ 9 n + 1 + 8n - 9] 
i= i 

(180 2]2 2 i (5F2 + Lj) = 8[22nF2n_i - 1] 
i= i 

The proof of (16) follows: 

E ° i -
n r 

i= i 

A1 -
A -

1 
4(1 + A) 

1 
4(1 +A) 

1 
4(1 + A) 

B1 

B 

-i 

" n n n 

2 A 2 i + Z B 2 i -2 S ( A B ) i 
_i=i i=i i=i 

A 2 ( A 2 n _ 1 } ( B2 ( B2h ._ 1 } o 

I A 2 - 1 B 2 - 1 
ABT(AB)n - 1] 

AB - 1 J 

(B2 - l)A2n+2 - A2B2 + A2+(A2-l)B2 n + 2-A2B2 + B' 
A2B2 - A2 - B2 + 1 

Since 

A 2 - l = 1 + A + 2N/1 + A 

and 

B2 - 1 = 1 + A - 2N/1 + A 
we have 
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Z°l = 4n4 4(1 + X) 
i = i 

(1+X) (A2a+2 + B2n+2) - 2NJ1+X(A 2 1 1 ^ - B2n+2) + A2 + B2 - 2A2B2
M ._ . 

A 2 B 2 -A 2 -B 2 + 1 

1 
2(1 + 

1 
2(1 + 

• » • 

x ) | 

2(1 + X)P2n+2 - 4(1 + X)02n+2 + 2P2 - 2X2 

(X + 1) (X - 3) f 2 R 

PJQ-4 - 202n+2 + 2 - X 
X - 3 + R 

( X * 3) 

( X / 3) 

From (1) and (3) we get 

P2n+2 = 202n+2 = (X - 4)02ii + X(X - 2) 02n-i 

Hence 

E°i- 1 
2(1 + X) 

i = l 

(A - 4)02 n + X(X - 2)02 n-i + 2 - X 
X - 3 •+ R (X t 3) 

This completes the proof of (16). 
We consider next identities involving the sums of products. The proof 

of the identity 

(19) 2(1 + X)0 O = P - (-X)mP„ _ 
ii m n+m n-m. 

follows: 

2(1 + A)0 O v n m 2(1 + A) 
A E -,11 
A - B 
2 NSTTA 

A m - B m 

2 N / T + T 

An-nn + Bn+m ;_ A n B m _ A m B n 

.rH-m _, T-.n+m .m-jm/.n-m . .n-m 
A + B A B (A - B 

: p ^™ - ( - A ) m P n w 
n+m n-m. 
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From (19) we may write 

2(1 + A)02Oj = P3 - (-A)Pi 

2(1 + ^ 0 3 0 2 = P5 - (-X)2Pi 

2(1 + A)02 n + 10n = P 2 n + 1 - (-.A)nPi 

Adding these n equations gives 

n n n 

2d + A>xVoi+i = X X + i - L ( - A ) i p * 
i=i i=l i=i 

Using (13a) and the fact that Pj = 1 we have 

\ T ^ • ' (A - 4)0 2 n + i + (A - 2 ) 0 ^ + 4 - A 
(20) 2(l + A ) 2 ^ 0 1

Q
i + 1

 = " " — ^ - + R (x ^ 3) 
i = i 

For the case A = 3 we get 

(20S) 2°i°i+i = 125 [32n"^ + 4("3)n+1 " 8n ~ 15] (A = 3) 

i = i 

For A = 4 we have 

(2°f) ] ? 2 l F i F i+ i = I D8*** + I [1 " M ) n ] ] 
i=i 

The proofs of the three following identities are left to the reader,, 
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( 2 1 > 2 P n P ™ = P n + ™ + ( - ^ m P n ™ 
n m n+m n-m 

(22) 2 0 P = 0 , + (-X)mO 
n m n+m n-m 

(23) 2 P O = 0 ' - (-A)mO 
n m n+m n-m 

Following the same procedure that was used above we arrive at the fol-
lowing identities: 

J^ (A - 4)02n+i + A(A - 2)Ozn + 4 - A 
(24) 2 ^ P . P . + 1 = - - J B (A^ 3) 

i=l 

n 
(24s) X ] P i P i + i = A [32n"^ " 4<-3>n+1 " 8n - 393 & = 3> 

i=i 

(24») 
J. * 

^TVL.L .^ = 4 J W * - ± [1 - (-4)°]] 
i= i 

* (A - 4)P2n+1 + X(X - 2)P2n - X2 + X + 4 
(25) 2 Z > i + l ° i = (X + D(X - 3) — + R (^3> 

i=i 

(25s) J ] P i+ i 0 i = "A [32n+3 + 8n " 24("3)n " 3 l {X = 3) 

i=i 

n 

(25») 2 ^ 2 2 l L i + l F i = i [22nL2n " (_4)n " l ] 

i=i 

A , (X - 4 ) P m + 1 + X(X - 2)P2n - X2 + X + 4 
(26) 22J0 . + I L . = (x + i ) ( x - 3 ) R ° ^ 3) 

i=i 
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(26s) Z^°i-4Li = M t32n+3 + 8n + 24(-3)n - 5l] (X = 3) 
i = l 

xx 

(260 2 ^ 2 2 i F
i + 1 L i = i [22nL2n - 3 + (-4)n] 

1=1 

REFERENCE 

1. cf. N. N. Vorob'ev, Fibonacci Numbers, pp. 15-20, 
* * * * * 

(Continued from p. 369..) 

Let the function h be defined by h(s,1) = (3s + 4t, 2s + 3t). Using the 
method employed above, prove that all solutions in positive integers of Eq. (3) 
a re given by 

(17) ( V t n ) = h n < 1 ' 0 ) ' n = 1 , 2 , 3 , - - . 

To be continued in the February issue of this Quarterly. 
* * • * * 

[Continued from p. 384. ] 
according to the principles of a highly sophisticated harmonic system based on 
the canon of proportion of the Fibonacci Series: the system may yet prove to 
underlie other disparate aspects of Minoan design. * 

*As it does design of structures elsewhere in the Aegean contemporary or later 
than Minoan palatial construction. There is evidence that the 1:1.6 ratio was 
employed in design previously in the Early Bronze Age in Greece and western 
Anatolia (disseration, loc. ci t . ) . 

* * * * * 



NOTE ON A PAPER OF PAUL P. BYRD, AND A SOLUTION OF PROBLEM P-3 

H. W. GOULD* 
-Wast Virginia University, Morgantown, W. Vav 

Paul F. Byrd [l] has shown how to determine the coefficients c, in the 
expansion 

oo 

(i) tw = i;ck0k+1(x), 

i=o 

where f is an arbitrary power series 
00 

f (x) = Y, v n > 

n=o 

and the polynomials <p (x) are defined by the recurrence 

(2) (f»n+2(x) - 2x0n+1(x) - 0n(x) = 0S <j»@(x) = 0, ^(x) = 1, 

or9 equivalently* by the generating function 

00 

(3) (1 - 2xt - t2)""1 = ]T V i W i ? 1 * 
n=o 

It is our object to point out that the expansion theory involved is a special 
case of a general treatment given by the author in [3], In that paper the 
writer has studied generalized Humbert polynomials defined by the generating 
function 

00 

(4) (C - mxt + y t m ) p = ^ t nPn(m, x, y, p, C) . 
n=o 

^Supported by National Sciences Foundation Research Grant GP-482. """ 
( R e c e i v e d Nov. 1965) 3 1 8 



IQAQ NOTE ON A P A P E R OF PAUL F , BYRD, 
D G C r X AND A SOLUTION OF PROBLEM P-3 d i a 

The polynomials P n include the polynomial systems of Louville, Legendre, 
Tchebycheff, Gegenbauer, Pincherle, Humbert, Kinney, Byrd, and several 
others. In particular, it is clear that 

(5) *n+1(x) = P n (2 ,x , -1 , -1 ,1) . 

It is shown in [3] that P (m,x, y,p,C) satisfies 

(6) CnP - m(n - 1 - p)xP + (n - m - mp)yP = 0 , n > m > 1 
n n~* 1 n—m 

of which (2) is a corresponding special case* 
It is also shown that 

k=o 

with the corresponding inversion 

[n/m] y v 
/o\ #p\ / \& \^ 1 i\k ip - n + ki p + mk - n ^n-k-p k^ > „% 

(8) Pl(-mx) = Z, W) f k ) yTT^C yW m w ' C ) ' 
x ; k=o 

For Byrdfs special case (5) these reduce to his relations 

k=o 

and 

(10, «,)» . £ MJ^ i^ -WW-
k=o 
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This, incidentally, solves his problem P-3 [ l , page 29] and in a simpler man-
ner than the complicated induction solution given in [4]. Actually, relations 
(7) and (8), and hence also (9) and (10), are special cases of the general inver-
sion relations [2, (6.3), (6„4)] found by the writer: 

[n/m] / \ 
(ID F W = £ ( e - n

k
+ m k j f ( n - m k ) 

k=o 

if and only if 

[n/mj / \ 

(12) f(n) = £ ( - D k \ P ' k + k j P p + + k k - " n n F ( n - m k ) -
k=o 

Proof of the reciprocal nature of (11) and (12) in turn depends upon gen-
eral addition theorems for the binomial coefficients, typified by the relation 

n 
(13) ] T (p+qk)Ak(a,b)An - k(c,b) = ?(^ + ^qan A^(a + Cih) f 

k=Q 

where 

A / ,v a / a + bkl 
A k ( a ' b ) = iT+bk U / ' 

a,b, c = any real numbers. 
This relation actually was given in 1793 byHeinrich August Rothe inhis Leipzig 
dissertation, and it is implied by relations in Lagrange's 1770 memoir on solu-
tion of equations. The reader may refer to a series of papers by the writer 
(since 1960) in the Duke Mathematical Journal, and to papers in the 1956 and 
1957 volumes of the American Mathematical Monthly. Though not widely 
known, these general addition theorems enter into something on the order of 
several hundred papers in the literature. For example, a special case of (13) 
when b = 4 was used by Oakley and Wisner to enumerate classes of Flexagons. 
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We wish to note that relations (11) and (12) were used by the writer [2] to 
establish certain results about quasi-orthogonal number sets. The relations 
in [3] may be looked on as a generalization of the Fibonacci polynomials. 
Finally we note that Byrdss formula (4*4) for the coefficients c. in (1) above 
are found in the limiting case from the corresponding expansion (6,9)-(6.10) 
found by the writer [3] for expressing an arbitrary polynomial as a linear 
combination of generalized Humbert polynomials* The formulas are too com-
plicated to quote here. 
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ON THE EXISTENCE OF AN INFINITUDE OF COMPOSITE PRIMITIVE 
DIVISORS OF SECOND-ORDER RECURRING SEQUENCES 

DOV AND MOSHE JARDEN 
Hebrew University, Jerusalem, Israel 

1. INTRODUCTION 

Let a f 0, /3 = 0, J a | > |j8j, be any two complex numbers, such that 
a + p and a/3 are two relatively prime integers* Then the numbers 

n n ~ a - j3 n- i , n-2^ , , 0 n - i a n , 0n 
n o f - j S ^ ^ ' n 

a re integers, since they are expressed as rational integral symmetric func-
tions of the roots a,p of an algebraic equation 

z2-- (a + jS)z + o0 = 0 

with integral coefficients with leading coefficient unity., One may readily ver-
ify that {D } and {S } ar 
• •* L nJ nJ 

common recursion relation 

ify that {D } and {S } are second-order recurring sequences satisfying the 

X = (a + j8)X - a$X„ . n n-i n-2 

(Since Do = 0f D | = 1; S0 = 29 S4 = a + 0 , the recursion relation again 
shows that the numbers D , 3 are integers*) One may also easily verify 
that D2n = DnSn • 

Adivisor > 1 of D , n > 1, is said to be primitive (ors characteristic) 
if it is relatively prime to any D. with 1 < i < n* The greatest primitive 
divisor of D is denoted by Df» A divisor > 1 of S , n > 1, is said to be n J n n 
primitive (or: characteristic) if it is relatively prime to any S. with 0 < i < 
n. The greatest primitive divisor of S is denoted by S? • From D ^ = 
D S one may easily deduce that 

(1) DJn - Sn . 
d e c e i v e d Nov* 1 9 6 6 - - r e v i s e d 196?) 

322 
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For any prime p dividing a certain D. with i > l s a (p) denotes the 
smallestpositive subscript nf such that plD . Thus p is a primitive divisor 
of D M 9 a(p) 

By F we denote the product 

(2) F = n ®* 
n d 

d n 

where pt is the Moebius function® 
R. D. Carmichael showed in [1] that for any n ^ 4, 6, 12 there is 

(3) Df = F 
x ' n n 

except when n = a(p)p \ p being a prime factor of D , X > 1, in which case 

(4) Df = i F . 
n p n 

He showed furthermore that if n = a(p)p\ X > l f then p is the greatest di-
visor of n, except when p = 2, and a(p) = 3* 

Furthermore Carmichael showed* for a9p real* the following inequalities 

n 

where <f> *s Euler1 s totient function, and m{n) is the number of distinct prime 
factors of n. 

The main result achieved by Carmichael is the following 
Theorem XXHL If a and p are real and n f- 1,2,6, then Dn con-

tains at least one characteristic factor, except when n = 12, a +'j8 = ±1, ofi 
= - 1 . 

In the present paper the above Carmichael1 s results are generalized for 
any two complex numbers a f 05 p fi 0$ J a\ > | p\, such that a + p and ap 
are two relatively prime integers* (Howevers the exact value of n beginning 
with which any D contains at least one characteristic factor, iS not calculated 
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here . ) Furthermore, starting from (2), we deduce an asymptotic formula (6) 
for F which is stronger than the inequalities given by Carmichael. Finally, 
the method of proof used here is slightly simpler than the one used by 
Carmichael, The main results proved here a re the existence of an infinitude 
of composite D! for any a, p; of composite DJn for afi f • ; and of com-
posite DJn+1 for (a-j3)2 f C3> or (a - 0)2 = • and op ^ ~ Q 

2. ASYMPTOTIC FORMULA FOR D' 
n 

By (2) 

djn d|n d|n 

+E^)^(i-(i)d}-iog^)i:^(s). 
d|n L J d|n 

Noting that 

and 

2 M(S) d = *<n) , 
d|n 

E*(S1 -• 
d|n 

for any n > 1, we get 

<5) log F Q = loga . <J>(n) + J ] ji( j j j log<J 1 - ( § ) }>, for any n > 1 . 
djn 
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Let us evaluate 

325 

d|n I J 

Note that for any 0 < q < 1 there exists a positive constant A, such that, for 
any complex z, for which | z| =^q, there is 

| l og ( l + z)| < A|z | - f 

where by log (1 + z) the principal value of log is understood. Indeed, 

log (1 + z) - z z£ 
z X " 2 3 

is an analytic function in the circle | z - 1| < q < 1, hence it is bounded there. 
, we have, for any d > 1, -M ^ q. Hence Now, putting q = § 

2 WIN MS)' 
d|n d|n 

"^ ! - ( ! ) ' 
d=i 

* >-(§)' 

Allil'Hiirfn-^t 
d=i ' M a i 

Ifl B , 

where B is a positive constant. 
Hence, by (5) it follows that 

(6) log F n = log a • 0(n) + 0(1) 

Now, by (3), (4), wo have the following 
Theorem 1. There is 

(7) logD^ = log a • 0(n) + 0(1) f 
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exceptwhen n = a(p)p \ X > 1, p being a prime factor of D7, in which case 
it is 

(8) log D^ = log a . </>(n) - log p + 0(1) . 

Now, by assumption, a@ is an integer, and | a | > |j3|, therefore 

M 2 > \a\ *\p\ = lots') 2*1 , 

hence 

\a\ > 1, Hog of j ^loglo/i > 0 * 

By a theorem in [2 ] , p. 114, there exists a positive constant C, such that 

^ > logClogn £ o r n > 3 • 

On the other hand p|n, hence log p s log n. Hence, by Theorem 1, 

C n (9) log D ; > (log or| • *(D) - log p - B > log| a\ ^ g n " l o g n " B " n ^ 00 

which means that: 

Theorem 2« Beginning with a certain positive n, D has at least one 
primitive factor* 

Remark. The e r ro r term 0(1) in (7) cannot be refined, since if n is a 
prime, then 

I»(SW{-(§)] --*{i-§}**.{i-(§)}; V-i>-!^ 
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Theorem 3. 

J2w 
t̂  n 

converges, 
Proof, From (9) It follows that there is a positive constant D such that, 

for all n ^ 1, 

C*n 
s i loglogn 

n B 
e *n 

Hence 

n=i n=i 

36 MAIN RESULTS 

Lemma 1* Be N the sequence of natural numbers, S a subsequence of 
N, and A a reduced arithmetic progression* Then, an infinitude of D* is 
composite for 

I) n E S or II) n E N ~ S 

according as 

1) any or II) no 

prime member of A is a factor of a certain D f , n E S. 
Proof. 1) Suppose any prime member of A is a factor of a certain BK 

n E S, and that there is a positive integer n0 such that any D ! , where n E 
S, n > n0, is a prime* Let q be the greatest prime factor of D f , n - n0. 
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Then, by Theorem 3, and noting that 

E i = 00 

pEA 

where p denotes a prime number, we have 

nGN n nGS n pGA 
P>q 

whence oo > oo , which is absurd. Thus, I) is proved. 
II) Suppose no prime member of A is a factor of a certain D ! , n E S. 

Then, noting that any prime p ][ 2(a - p)2ap is a factor of a certain Df ([1], p. 
45, Theorem XII), any prime member of A not a factor of 2(a-f})2a($ ia a fac-
tor of a certain D f , n E N - S, and n) follows as above. 

Theorem 4. There is an infinitude of composite D*. 
Proof. The theorem is an immediate consequence of Lemma 1, noting 

that any prime p ^ 2(a - j3)2cq3 is a factor of a certain D f . 
Lemma 2. If b is an integer, and b f • , then there exists an odd 

prime p, such that f —J = -1* where I —1 is Legendre's symbol. In particular, 
I) If b = ±m2pl9 • • • , p r , where r ^ 1 and Pi, • • •, p are distinct 

primes, then there exists an integer u = 1 (mod 4), where (u, 4pi,--«« ,p r ) = 
1, such that, for any prime p = u (mod 4pl9 * • •, p r ) , it is 

(S)-
II) If b = -m2, then for any prime p = -1 (mod 4) it is 

Q> 
Proof. [ 2 ] , p. 75. 
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Lemma 3. Let p be an odd prime. If p| ax2 •+ by2 for some integers 
a, b, x, y, and p ^ (x,y), then 

Proof. Since p | (x,y), p cannot divide both x and y. Thus, without 
loss of generality, we may assume that p ^ . Then there exists an integer z, 
such that yz = 1 (mod p). Hence, from ax2 + by2 = 0 (mod p) it follows that 

(axz)2 = -ab (mod p), 

whence 

( * ) - » • • 

Lemmas 2, 3 imply the following: 
Lemma 4. I) If b = ±m2pi,e e •, p r , where r ^ 1 and p^ 8 a e , p r are 

distinct primes, then there exists an integer u = 1 (mod 4), where (u,4pj, 
• • • > Pr) = * » s u c n &&U ^ o r a n y prime p = u (mod 4plf • • •, p r )s it is p f x2 

+ by2 for any integers x, y, such that p f (x, y). 
II) If b = pa2 and p j / (x,y), then p | x2 + by2 for any prime p = -1 

(mod 4). 
Theorem 5. If ap f • , then there is an infinitude of composite DJn. 
Proof. One may readily verify that 

D2n+l = D&+i - afil% . 

On the other hand, (D , . D ) = 1 ( f l l , p. 38, Corollary). Hence, putting 
n+i n L J 

in Lemma 4: 

b = -o-jS, x = D . , y = D , 
r> n+i J n ? 

and noting that, according to the assumption, b = -afi f - P ] , there exists a 
reduced arithmetic progression A, no prime member of which divides D2n+r. 
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Hence, no prime member of A is a factor of D£n+le The theorem follows by 
Lemma, 1, I I ) . 

Theorem 6. If 

(a - P)2 f ± D , 

or 

n) (a - /3)2 = D and a? £ JJ , 

then there is an infinitude of composite D^+j 8 

Proof. One may readily verify that 

(9) S^ = (a - £)2D^ + 4 ( ^ ) n . 

I) Suppose that (a - /3)2 f i f ] , Then (a - j3)2 = ±m2p1? • •*, p r , where 
r ^ 1 and pA,e • •, p r are distinct primes,, Then, by Lemma 2, I), there is 
an integer u, such that 

(10) u = 1 (mod 4) , 

(11) (u, 4p 1 ,«*- ,p r ) = 1 , 

(12) p = u (mod 4p1?»* *,Pr) 

implies 

~{a-$)2 , = _x 

for any prime p. 
Consider the pair of congruences 

!

x = u (mod 4pl9 • • • , p r ) 

x = 1 (mod 4QJS) 
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From the identity 

(a +/5)2 -4cfi = (a - 0 ) 2 , 

and from the assumption 

(a?+/3 , flj8) = 1 , 

i t follows 

1 = fe^,plf...,pr) ^ (o0, ±m 2 Pi , -«- ,p r ) =• (oj8,(or-|8.)2) = 1 .. 

Hence 

(4pl9»-»,pr94^iS) = 4(pl9
ee',pr,<*j3) = 4 . 

But, by (10), 4|u - 1, hence (13) has a solution u!, i. e . , 

(14) uf = u (mod 4p1? ••• , p r ) , uf = 1 (mod 4ofi) . 

Let p be a prime satisfying p = 1 (mod 4c*j8). If aft is odd, then, accord-
ing to the properties of the Jacobi symbol 

( ? ) - ( # ) - & ) - ' • 
If af$ is even, then p = 1 (mod 8), and aft = 2 t, where k ^ l and 2 [ t. 
Then 

(f)-(if(tWf)-(*)-'• 
in both cases 
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Combining the last result with (11), (12) and (14), we conclude 

(15) <u', 4 P l , . . . , P r ) = 1 , 

(16) If p = uf (mod 4p4, • • • , p r ) , then 

( -fr-P>2 \ = /-<*£(<*-ff)2\ = _x f 

for any prime p. 
We shall now show that if 

(17) p = uT (mod 4p4, • • • , pr ) , 

then p f DJn. Indeed, if p|D£n, then, by (1), pjS^, hence p|S^. 
(9), 

p l ^ - j S ) ^ + 4(or/3)n . 

Putting in Lemma 3: 

x = Dn, y = 2, a = (a -j3)2, b = (apf, 

we have 

If n is even, then 

/ - (qp)n(g-p)»\ 

= / - W n ( g - j 8 ) 8 \ = / - (<* - f f ) 2 \ 

If n is odd, then 



1968] SECOND-ORDER RECURRING SEQUENCES 33a 

Both cases contradict (16). The theorem now follows from (17), (15), and 
Lemma 1, II). 

II) Suppose (a - P)2 = m2, where m is an integer and a/3 fi - Q . Then 
(9) becomes 

(18) S£ - (mDn)2 + 4(q8)n . 

This formula implies, by Lemma 3, if 

(19) p|D§n 

(and hence p|S^), then 

m 1 , 

for any odd prime p. Consider now the three following cases. 
Case 1; ap = n2 • 2 , where k ^ 0. Then, if p = -1 (mod 8), then 

m - G)(!f - - • 
and hence, by (19), p j[ DJn . 

Case 2: a/3 = n2 • 2 • qls ••• ,qr» where k ^ 0, r ^ 1, q4, • - • , q r a r e 
distinct odd primes, and t = qj, •e •, q^ = 1 (mod 4). 

Consider the pair of congruences 

( x •= - 1 (mod 8) 
(20) I 

x = 1 (mod t) 

Since (t, 8) = l, (20) has a solution u. This solution satisfies 

(21) (u, 8t) = 1 . 



334 
ON THE EXISTENCE OF AN INFINITUDE 
OF COMPOSITE PRIMITIVE DIVISORS OF 
SECOND-ORDER RECURRING SEQUENCES 

Dec. 1968 

If p •- u (mod 8t) is a prime, then 

(22) (=?=) • mm --© - -> • 
and hence, by (19), p / DJQ • 

Care 3; Everything as in Case 2, except that t = -1 (mod 4). 
Choose a quadratic nonresidue c modulo q ,̂ i. e . , 

( * ) -
= -1 . 

Consider the system of congruences 

(23) 

x = -1 (mod 8) 
x = c (mod qi) 
x = 1 (mod q2> 
x = 1 (mod q r ) 

If r ^ 2, or the system 

(24) 
(x = -1 (mod 8) 

(x = c (mod qj) 

if r = 1. Since q1? • • •, q r are distinct odd primes, (23) and (24) have a solu-
tion v. v satisfies: 

(25) (v, 8t) = 1 , 

If p = v (mod 8t) is a prime, then 

(26) W- ,kn /A\n 
(-1X+1) 

[Cont on p. 406.] 

-'f 

= 1 
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i . INTRODUCTION. 

In this paper we discuss the problem of representing uniquely each real 
number in the interval (0, c ] , where c is any positive real number, as an 
infinite series of terms selected from a sequence (b ) of real numbers. We 
choose an integer k ^ 1 and require that any two terms of (b ) whose suf-
fices differ by less than k shall not both be used in the representation of any 
given real number. The precise definitions arid results are given in the next 
section* 

In an earlier paper [2] we discussed an analogous problem of represent-
ing the integers in arbitrary infinite intervals* 

2* STATEMENT OF RESULTS 

Throughout this paper k ^ 1 is an integer. Also the subscript of the 
initial term of any sequence is the number 1; e. g*, (c ) = (cj, c2, ° * • ) . 

In order to prove our main result, which is theorem 2, we need a result 
which we give in a slightly generalized form as Theorem 1* Let (c ) be a 
sequence of positive real numbers which obey the linear recurrence relation 

(2 «1) a^n+k + a2cn+k-i + 9#° + a k c n + i ~ c n = 0 

for n ^ 1, where a ,̂ • • • , ajj are non-negative real numbers independent of 
n, and at ^ 0, The auxiliary polynomial g(z) of this recurrence relation is 
given by 

g(z) = ajzk + a2zk"1 + • • * + a. z - 1 . 

It is clear that g(z) has just one positive real root p , and that this root is 
simple, 

( R e c e i v e d March 1965) 335 
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Theorem 1, If the sequence (c ) is strictly decreasing, and p is 
smaller than the modulus of any other root of g(z), then p < 1 and c = Ap 
for n ^ 1, where A is a positive real constant. 

We now define a k-series base for the interval of real numbers (0, c ] , 
where c is any positive real constant. This is analogous to the concept of an 
(h, k) base for the set of integers as an interval; this concept was given in the 
earl ier paper [ 2 ] . 

Definition. A sequence (b ) of real numbers is a k-ser ies base for 
(0,c] if each real number r E (0, c] has a unique representation 

(2.2) r = b. + b. + ••• 
i i 12 

where 

• 1 r H * 1 » + k 

for v — 19 and further, every such series converges to a sum r E (0, c ] . 
k It is clear that the polynomial f(z) = z + z - 1 has just one positive 

real root 0, that 0 is a simple root, and that 0 < 1 . Let R be a real num-
ber. We now enunciate our main result. 

Theorem 2. Let (b ) be a sequence of real numbers such that b ^ — n R 
b . > 0 for n ^ 1. Then (b ) is a k-ser ies base for (0,0 1 if and only n+i n J 

if 

b = eR + n 

n 

for n ^ 1. 
It is not true that all k-series bases are decreasing. For instance, 

when k = 2, the series (1 ,2 ,0 ,0 2 , • • • ) is a k-ser ies base for ( 0 , 2 + 0 ] . 
However, A. Oppenheim has shown that if the sequence (b ) is a k-series 
base for (0, c] for some e > 0, and if N is an integer such that b — b 
^ 0 for n — N then b = A# for n > k, where A is some positive con-
stant. It is not known if all k-ser ies bases (for k ^ 2) are ultimately 
decreasing. 

It follows from Theorem 2 that the sequence 
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(2.3) «rN+1, e-m\.-.,e-\ e\ e»,...) 

is a k-series base for (0,0"" ] , where N is any positive integer. Hence if 
r is any positive real number, and L and M are positive integers such that 
both 6" ^ r and 6" > r , then the k-ser ies representation of r in terms 
of the sequence (2.3) with N =? L is the same as with N= M. For shortness, 
therefore, we can refer to this as the ?0-representation1 of r . Then, if an 
initial minus sign is used in representing negative numbers, we can give a 
unique '©-representation1 for any real number. A '©-representation* of real 
numbers is akin to decimal representation, but is much more closely related 
to binary representation since when k = 1 the f6-representation1 and the 
binary representation of the same real number are the same (for when k = 1, 
e = J). 

A further observation is that any sum T of a finite number of terms of 
*0_j.j D i n 

the sequence (6 ,8 9*°*)9 where R is any real number, in the form 

eh + eh + . . . + 0*0-1. + Av-i 

where i + 1 — iv
 + k for 1 ^ v < a, can be written in the form 

00 

T 

where i^+1 ^ ip + k for v ^ 1, simply by putting 

(2.4) fl^-1 = ^Ji<^vk 

(The relation (2.4) follows from the relations 

00 

yv 
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and 

for n ^ 0? both of which are very easily proved*) This fact is analogous to 
e • 

the decimal equation 1 = 0*9 or the binary equation 1 = 0.1, 

3e PROOF OF THEOREM 1 

We first prove Lemina 1, an equivalent form of which occurred originally 
in [3 ] and was also quoted in [4] . 

Lemma 1. If Qtl9a29® • * 9a^ are real numbers then there exists an in-
creasing sequence (nj) of positive integers such that 

exp (in.a )—>1, exp (in.of )—=>ts «®a exp (ima )—->1 as j-~>oo* 
J 1 ] 6 J P 

Proof. For x a real number, let x be the number differing from x by 
a multiple of 2TT such that -*r < x ^ 7r. We prove the lemma by showing that 
if we are given any positive real number € > 09 and any .positive 'integer N, 
then we find an integer n ^ N such that 

no7 < e for 1 ^ s ^ p9 

Let M be the region in p-dimensional space in which each coordinate ranges 
from - i r to 7r. Let the range of each coordinate be 'divided into m equal 
par ts , where 

€ 

is an integer. Then M is divided into wP equal parts . Consider now the 
m p + 1 points 

(NM3?IS Ni/a2?
 e 9 % Nwar ) for 1 < y < n r . 

IT 

One part of M must contain two of these points; let the corresponding indices 
be vi and 2̂* Then clearly 
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for 1 ^ s ^ p, and 

I n - î l > i . 

We put 

n = N\vt - P2 | 5 

this proves Lemma 1, 
Since 

in the form 
Since (c ) obeys the recurrence relation (2.1), c can be expressed 

u / v s 

* -x: 2>vk (3.1) c„ = > I > n X s J n for n ^ 1 , 
s=i \ t=o 

where the numbers (a are the distinct roots of g(z), the number (v_ + 1) is 
s s 

the multiplicity of the root f for 1 ^ s ^ u, and the numbers B , are suit-
able complex constants. Let = f f . We consider two cases. 

Case 1. B t = 0 when (s,t) £ (sf
f0). Then by (3.1), 

(3.2) c n = B s f Q P n for n ^ 1 . 

Since ci5 p > 0 it follows by (3.2) that 

Bs*o ~ J 9 

a positive constant, Since (c ) is a decreasing sequence* p < 1. Hence the 
theorem is true in this case. 

Case 2. B , f 0 for at least one pair (sft) fi (sf
f0). This implies that 

k ^ 2. We shall deduce a contradiction. By rearranging the terms in (3.1) if 
necessary, there is a number p where 1 < p < u, and a number q9 where 
G < q < min (vj, V2» • ° • $ Vp) such that 
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(i) For 1 ^ s ^ p , B g q f 0, |fs| = j£i| and B g t = 0 for q < t < 

V 
(ii) for p < s ^ u, if |fg| = | £ | then Bgf. = 0 for q < t < vg, and 

if |fg|?> jfij then B g t = 0 for 0 ^ t ^ vg. 
Then by (3.1) 

P 

(3.3) %=Jjsq»% + R • 
s=i 

y n where R is the sum of a finite number of non-zero terms of the form Cn f g , 
where C is a complex constant and either If J = |fij and y < q, or If J < 
Ifl j Our assumption implies that either 

(3.4) jfi) => p or q > 0 . 

If |fg| < |fi] then n^jfgl n / l f i | n ->0 as n ^ c o . Hence 

(3.5) R / | f i | n n q ^ 0 as n ^ o o . 

For 1 < s ^ p, let f = r exp (i a ), where r and or are the 
s s s s s 

modulus and argument of f „, respectively. Then by (3.5) and (3.4) respectively, 

(3.6) R / r ? n q ->0 as n->oo 

and either 

(3.7) r ! > p or q > 0 . 

Further, let w be the smallest positive integer such that when n = w, E ^ 
0, where 

P 

E = / B„ exp (inc* ), for n ^ 1 . 
n JLmJ SCL s 

s=i 
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The number w exists, for otherwise B = 0 for 1 :< s <. p. From (3.3) 
sq 

and (3.6) 

B exp (two? ) • exp (i(n - w)a ) + 0(1) as n -> oo. 
SQ S S 

By Lemma 1 there exists a sequence (n.) of positive integers such that 

(3.8) 

It is clear from (3.8) that E is real and positive; since (c ) is a decreasing 
sequence, we have also that r* < 1 and hence p < 1 . 

By (3.7) and (3.8) there exists an integer m such that 

c 
n. L_ = E + 0(1) 

w 
as J - > • 

c c /rA 
m = m ' l * 
m m i 

p rj m 

in "m f "A I q ^ ( C l \ 1-k 
— = — * f — I . • *aH > l -p - i P m m q \ P / 

""i mH \ r / 

Hence, 

% (Ci\ m - f c H N / c * \ m-k+2^ J C A m 
(3.9) c i . > c i ^ > 0 8 e > c > I -— I p > I — I p > •••>!—J p 

7 m-k+i m-k+2 m \ p / \ P / \ P / 

Therefore, 

(3.10) c m fc = a ^ + a 2 c m - 1 + •- . .+ a k c m _ k + 1 > [jj (ajp111 + ajp111"1 + 

m-k+i v + • • • + afe ) 

Using (3.9) and (3.10) we find in a similar way that 
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c m« •k-t> ( ? ) 

and 

•x • '• 
c y E i ^ . m - k - 2 

D l - k - 2 

and so on, until 

C i > (?)•• 
a contradiction. Hence Case 2 does not occur. This proves Theorem 1. 

4. PROOF OF THEOREM 2 

R The sequence (b ) is clearly a k-ser ies base for (0,6 ] if and only n 
if 

U) 
is a k-series base for (0,1]. Hence without loss of generality we assume 
that R = 0, so that we shall be discussing k-ser ies bases for (0,1] . 

Lemma 2. 

0 0 

0 for n Z 0 . 

k Proof. Since 6 is a root of f (z) = z + s - 1 and 0 < 6 < 1, we see 
that 
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-V) 
for m ^ 0e Since 0 < 1 it follows that 

00 

1 t 

^=0 

and hence 

00 

~n \ "\n+H-i>k 
for n ^ 0 , 

V=0 

as required* 
Proof of sufficiency. We show that (0 ) is a k-series base for (0,1]. 
Let 0 < x ^ 1* Firs t we construct inductively a sequence (i ) of pos-

itive integers such that i ,„ ^ i,, + k for v ^ 1, and 

1+k m " 
(4,1) 0 m ^ x -S^B V > 0 , 

l*=i 

for m ^ 1. The integer i | is chosen so that 

and since 8+6 = 1 we see that 

0ii-i+k = 6 I i - i _ 0 i i > x _ e i i > 0 m 
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Let t ^ 1 be an integer and suppose that i*, i2, • • • , it are chosen so that (4.1) 
holds for m = t, and i ., ^ i + k for 1 ^v < t. Then we choose i, ,4 

Vwr\ V VT\ 
such that 

(4.2) eWl . X -VA>> 
l^t 

Hence 

t+i 
9 Vf * = ^t+r _ 0Vi > x _ ^ e - > o . -3? 

From (4.2) and the assumption that (4.1) holds for m = t it follows that 

6 * > 0 t+1 . 

Hence i ,+ ^ i, + k. The construction of the sequence (i ) follows by 
induction. 

Since 6 < 1 it follows from (4.1) that there exists a representation of 
x in the form 

00 

(4.3) x 
oo 

where ii — 1 and i ^ i " + k for v ^ 1. 
This representation of x is unique. For otherwise we may assume 

without loss of generality that 

, 00 . 00 

2>v -L*v • v=i v=l 
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where it ^ 1 and iJ/+1 ^ ip + k for u ^ 1, j t ^ 1 and j - 5^ + k for 
v ^ 1, and ii < j 1 # Then 

oo . oo oo . •. 
u 

by Lemma 2. Hence ii > ji - 1, which contradicts the assumption that i* •< 

Since 6 ^ 0, no non-positive numbers can be represented in the form 
(4.3), By Lemma 2, 

00 

V + * = i 

and so 1 is the largest number which has a representation in the form (4.3). 
Hence (6n) is a k-ser ies base for (0,1]. This completes the proof of the 
sufficiency. 

Proof of necessity. We show that if the sequence (b ) is a k-ser ies 
base for (0,1], and if b n + 1 s> b n > 0 for n s> 1, then b n = 6n for n s> l . 

For shortness we write bo = 15 but as stated earlier, by the sequence 
(b ) we mean the sequence (bl5b29

oee)* The sequence (b ) is strictly de-
creasing, for if b. = b. for i f- j then clearly some numbers have more than 
one k-series representation* For n ^ 1 we define 

B = r | r = Y \ ; ii = n, i ^ i „ + k for v * 1 . 
I JmmwJ V I 
1 P=l > 

We denote by B the least upper bound of B . Since (b ) is a positive 
strictly decreasing sequence it follows that 

oo 
(4,4> 5» =X>"k f°r Q S 1 
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and 

(4.5) B ^ B ^ ^ 0 for n ^ 1. 
n n+i 

It follows from (4.5) that there exists a non-negative real number I such 
that B "^ * as n ^oo. But, by (4,4) 

n 

oo / m \ oo 

so that ^ = 0. Hence 

(4.6) B —>0 as n-5> oo 
n 

We now prove by induction upon n that 

(4.7) B ,, = b 
n+i n 

for n ^ 0. Since (b ) is a k»series base for (0,1] it follows from (4.5) 
that Bf = 1, and so (4.7) is true when n = 0. Let m ^ 1 be a positive inte-
ger and suppose as an induction hypothesis that (4,7) is true for 0 ^ n ^ m. 

If b > B then there is no k-series representation for -|(b + 
B ,.,)« Suppose that b < B ,.. Then we can construct inductively a m+i m m+i J 

sequence (j^) of positive integers, where ji = m and j + •— j + k for 
v ^ l , such that for v ^ 1 there are infinitely many positive integers n 
satisfying 

B _ + •! e B. if i/ = l , 
m+i n j 

or 

(4.8) B ^ - b . - b. - • • • - b. + - G B. if v ^ 2 . 
Bi+i Ji 32 J - n J - i 

By (4.5) and the induction hypothesis, 
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u A l xa-i m m+i 

and so there are infinitely many positive integers n such that 

B + I e B . 
m+i n m 

Let S1^ 1 be an integer and suppose that the first 5 - 1 terms of (jp) 
are chosen. Then for infinitely many- positive integers n9 

B . . + - G B . , if 5 = 2 m+i n i-
J 6 - i 

B ^ - b . - b . ^ • • • - b. + ~ E B . , if 6 ^ 2 . m+i Ji J2 J6„2 n J f l - 1 

Hence 
00 

B ,, - b. - b. - ••• - b . + » e l J B. 
i=j J. +k J 6 - i 

m+i ji 

for infinitely many positive integers n* Therefore 

B j . - b. - b . - ••• - b . ^ 0 
m + i Ji J2 J 6 „ 4 

However* if B , = b . + b. + •• ° + b. , then* by replacing b. by its 
m+i Ji J2 35-1 J6-i 

k-ser ies representation we obtain a k-series representation for B dif-
ferent from the k-series rep re sentation given in (4,4), and this contradicts the 
fact that (b ) is a i 
integer q such that 

fact that (b ) is a k-series base* Therefore by (4.6) there exists a positive 

Hence 

B . - b . - b . - ••• - b . > B „ 
m+i Ji j 2 Jg_1 q 

B , - b. - b. - • • • - b . + ™ 6 1 / B. 
m+i Ji J2 j . n v y i 



348 BASES FOR INTERVALS OF REAL NUMBERS [Dec. 

for infinitely many positive integers n. Hence there exists j c — i + k such 
o 8-i 

that 

B ., - b. - b. - . . . - b . + - £ B . m + 1 Ji 32 3g-.1 n 38 

for infinitely many positive integers n. The construction of the sequence (j ) 
follows by induction. 

We deduce from (4.8) that for v > 1, 

0 < B _,_ - b. - b. - — - b . =£ B . 

and by (4.6) it follows that 

00 

B 
L-d j 7 . 

This k-series representation for B is different from that given in (4.4), 
which contradicts the fact that (b ) is a k-ser ies base. Hence B , = b s 

n m+i m 
and it follows by induction that (4.7) holds for all n ^ 0. 

By (4.4), for n ^ 0, 

OQ 00 

Bn+i = ^ L A + i + ^ k = bn+i +J^bn+kH-i+i'k = b]t l+1 + Bn+k+l J 

Z^=0 V=Q 

and therefore, by (4.7) 

b = b , + b ,, for n ^ 0 . n n+i n+k 

The number 0 is the positive real root of the auxiliary polynomial f (z) 
+ z - 1 of this recurrence relation. The modulus of 

f(z) is greater than 0. For if | z | < : 0 , then since 6 ^ 1 , 

k = z + z - 1 of this recurrence relation. The modulus of any other root of 
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|f(z)| = | l - z ( l + z k ^ ) | ^ 1 - | z | ( l + |z|k""1) =- 1 - 0 ( 1 +A*-1) = 0 , 

whilst if f(z) = 0 and | z | = 0 , then 

1 - | z | - | l - z | = l - | z | - | f ( z ) - z + l | = l - | z | - | z | k = 0 , 

so that 

| l - z | = 1 - | z | , 

and hence arg z = 0 so that z = 0. 
By Theorem 1, therefore, for some positive constant A, b = A0n for 

n — 1. However, we have shown that (0 ) is a k-ser ies base for (0,1], 
and so it follows that A = 1. This completes the proof of the necessity and of 
Theorem 2. 
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Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney* Mathematics Departments Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit 
solutions or other information that will assis t the editor. To facilitate their 
consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problems* 

H-143 Proposed by Charles R. W a l l , Univers i ty of Tennessee, Knoxvt l le , Tenn. 

Let JH I be a generalized Fibonacci sequence and, by the recurrence 
relation, extend the definition to include negative subscripts. Show that 

n 
(i^ L 2 3 + 1 zL* Hl2j+i)k = H(2j+i)(n+i)H(2j+i)n - H0H.(2j+i) , 

k=o 

n 

Gi) L2j+1 2 J H(2j+i)k = H<2j+i)(Q+i) - H_(2j+i) , 
k=§ 

n 
( i i i ) L2J £ ( - D ^ I j k = (-l)nH2j(n+i)H2jn - H0H„.2j , 

k=o 

and derive an expression for 

n 

<iv) E <-«*=* • 
k=o 

350 
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H-144 Proposed by I* Carlitz, Duke University, Durham, No. Carolina. 

A, Put 

00 

[a - x)d - y)(i - axMi - by)]-1 = ] T A
m$n

xmyn • 
msn=o 

Show that 

L^J nsn 
n 1 - abx2 

n,n (1 - x)(l - ax)(l - bx)(l - abx) 

B. Put 

(1 - x H ( l - y)-i(l - axy)^X= ^ V n ^ ^ ° 
m?n=o 

Show that 

Y " B x11 = (1 - x T ^ l - ax)"" A. 

n =0 

-145 Proposed by Douglas Lind, University-of Virginia, Charlottesville, Va, 

I f 

ei e<r e-r 
n = Pi 1 P2 4 *-* P r 

i s the canonical factorization of n, let A.(n) = ei + • • • + er® Show that A (n) 
- A(Frs) + 1 for all n, where F is the n Fibonacci number* 
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H-146 Proposed by J . A . H. Hunter, Toronto, Canada. 

Let P be the n Pell number defined by Pi = 1, P2 = 2, and P n+2 
= 2P + + p . Prove that the only square Pell numbers are Pj = 1, and P7 

= 169. 

H-147 Proposed by George Ledin, J r . , University of San Francisco, San Francisco, 
California. 

Find the following limits* F, is the k Fibonacci number, L, is the 
k®1 Lucas number, TT = 3 .14159-- , a = (1 + \ /5 ) /2 = 1.61803-••, m = 1, 
2 , 3 , - - - . 

Xi = 

x2 

x3 = 

XA = 

x, 

n+i 
n->oo 

lim 

lim n —>o 

*F n 
F 

m n 
m n 

F 
m n 

"""n 

limA 

limA n-—>o 

F | 
m n 

n 

i L - 2 1 n 
n 

SOLUTIONS 

SUM DAY 

H-103 Proposed by David Ze i t l i n , Minneapolis, Minnesota. 

Show that 
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n 
8 2^ F3k+1 F3k+2 F6k+3 = F3 n+3 . 

k=o 

Solut ion by C . B. A . Peck, Ordnance Research Laboratory, State C o l l e g e , Pa. 

We suppose known that 

F2x+i = F
x + F x + 1 

and that 

F F _,_ = (-1)X + 1 + F* . 
X X+2 X+l 

Then 

F2x-3 = F x - 2 + F x - i = ( F x - F x _ 2 ) 2 + (F x _i - F x _ 2 ) 2 

= F 2 + F 2 + F 2 + F 2 - 2 F F - 2 F F 
X X - l X-2 X-3 x X-2 X - i X-3 

= F 2 + F 2 + F 2 + F 2 _ 2 ( ( - l ) X " 1 + F 2 + (-1)X""2 + F 2 ) 
X X- i X-2 X-3 X - i X-2 

= F 2 - F 2 - F 2 + F 2 = F 2 - F + F 2 

X X - i X-2 X-3 X 2X-3 X-3 

whence 

2F2X-3 - F x + Fx__3 . 

Now, the identi ty to be proved i s c l e a r l y t rue for n = 0 and we need only show 

that the r igh t - and left-hand s ides i n c r e a s e by the s a m e amount when n i s r e -

placed by n + 1. The r ight-hand i n c r e a s e i s 

F3n+6 - F3n+3 = (Fsn+6 ~ F3n+3 HF3n+6 + F3n+3MF3n+6 + F3n+3) • 

The f i r s t fac tor i s 

F 3 n + 5 + F3n+4 - F 3 n + 3 = 2F 3 n + 4 e 
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The second is 

^sn+g + F3n+4 + F3n+3 = 2F3n+5 • 

Thus the total is 

4F3n+4 Fsn+5 (Fsn+e + F3n+3) . 

The left-hand side increase is 

8 F 3 n + 4 F 3 n + 5 F Q l + 9 * 

These increases are equal if 

2Fgn+9 = F 3n+6 + F 3n+3 5 

which we have already proved. 

Also solved by F. D . Parker, Charles R. W a l l , and J . Ramanna. 

GENERATOR TROUBLE 

H-104 Proposed by Verner E. Hoggat t , J r „ , San Jose State C o l l e g e , San Jose, 
C a l i f o r n i a . 

Show 

L x 0© 
— — — S — 5 £ _ • = T 5k(F2mk + xL(2k+i)m)x2k , 
1 - 5F x + (-l)m+15x2 ~ 

m k=o 

where L and F _ are the m Lucas and Fibonacci numbers, respectively. 

Solut ion by David Z e i t l i n , M inneapo l i s , M innesota . 

Using (14) and (16) in my paper, f?On Summation Formulas for Fibonacci 
and Lucas Numbers," this Quarterly, VoL 2, No. 2, 1964s pp. 105-107, we 
obtain, respectively 
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(1) "d - L2my + y2) Yl F2mkyk = F 2 m y , 
k=o 

00 

(2) (1 - L2my + y2) J ] L ( 2 k + i ) m y k = L m + (L3m - L m L 2 m ) y 
k=o 

= L m + ( - D l n + I L m y , 

since 

L m " ("^ (L3m - L m ^ m ) • 

For y = 5x2
f we obtain 

00 
-k / T . , T . , 2k J] 5 (F2mk + xL(2k+i)m)x2 

k=o 

L x(l + 5F x + 5( - l ) m + i x 2 ) L x 
m m m 

since 

1 - 5L2mx2 + 25x4 1 - 5F x + 5(- l)m + 1x2 

L 2 m = 2 ( - l ) m + 5 F ^ 

and so 

1 - S L ^ x 2 + 25x4 » (1 + 5F m x + 5(» l ) m + 1 x 2 ) ( l -5F^x + 5(-l)m + 1x2K 

Also solved by Anthony G, Shannon (Australia). 

m 
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OF P R I M E I N T E R E S T 
H-105 Proposed by Edgar Karst , No rman , Ok lahoma , and S» O . Rorem, Daven-

por t , I owa . 

Show for all positive integral n and primes p > 2 that 

(n + l ) p - np = 6N + 1 , 
where N is a positive integer. Generalize. 

Solut ion by E. W . Bowen, Univers i ty of New England, Aus t ra l i a . 
Let b be a prime* m a positive integer, and fi the least positive r e s -

idue of m modulo b - 1, L e . , for some integer k, m = k(b - 1) + /x where 
0 < fx < b - 1. 

Clearly n = 0 = n^(mod b) if n is a multiple of b. If n is not a 
multiple of b, we have by Fermat 's theorem, 

n " = 1 (mod b) , 

from which we infer 

m k(b- i )+ /x ik.M t A u\ 
n = n = 1 n = n (mod b) . 

Thus, for all integers n we have 

n = n (mod b) . 

Using A to denote the difference operator by which 

Af(n) = f(n + 1) - f(n) , 

and noting that A ri = fi I , we obtain 

A n = pel (mod b) . 

and in particular, with /* = 1, 

An m = 1 (modb) if m - 1 (mod b - 1) . 

If bi, b2, • • • , b s are different primes, we infer immediately that 
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• A n m = 1 (mod bib2°°°bs) if. m s 1 (mod (bi - l ) - -«(b s - 1)) . 

This is a generalization of the required result since., with 2 and 3 as the primes, 
b| f we find that for any odd m5 and hence for m = p > 2S Anm = 1 (mod 
6)9 i. e . , (n + 1) - n = 6N + 1 for some integer N; N is obviously posi-
tive when n is positive and m > 2. • 

Examples of other results obtained from • ares 

A n m s 1 (mod 10) if m = 4k + 1 , 

An m = 1 (mod 30) if m = 8k + 1 . 

Summing gives a further generalization of *i 

(n + r) - n = r (mod bj • • •. b s ) 

if 

m = 1 (mod (bi - 1) •• • (bs - 1)) . 

Also solved by J . A . H . Hunter , Brother A l f red Brousseau, David Singmaster, 
Steven We in t raub , and Anthony Shannon. 

BUY MY NOMIAL? 

H-106 Proposed by L„ C a r l i t z , Duke Un ivers i t y , Durham, N o . Caro l i na . 

Show that 

£®—£(Nik>~ k=o x ' k=o 
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Solution by David Zeitlin, Minneapolis, Minnesota, 

If 

[Dec. 

P(x) == 
k=o 

2 k 
x 

and 

««-E(k)( n :>-» n - k 

then P(x) s Q(x) is a known identity (see Elementary Problem E 799, American 
Math. Monthly, 1948, p. 30). If a and j3 are roots of x2 - x - 1 = 0, then 

Ln = a n - M n , F n = ( < * n - i 3 n ) A / 5 , 

and thus 

(a) P(a2) + P$ 2 ) = Q(a2) + Q<£2) 

(b) P(g2) - P<j82) = Q(a2) - Q(fi2) 
V5 %/5 

3BE DETERMINANT! 

H-107 Proposed by Vladimir Ivanoff, San Carlos, California, 

Show that 

F F F 
p+2n p+n p 

TP "C" "C1 

q+2n q+n q 
F . F . F 

r+2n r+n r 

= 0 

for all integers p, q, r and n. 
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Solut ion by Co C . Y a l a v i g i , Government C o l l e g e , Merca ra , I nd i a . 

Let 

(1) D = 
" pi+rn 
" P2+rn F 

"P , + r n 

Pi+n pi 
• • - • • • • F F 

p2+n p2 

F , F F 

On simplifying the first column of this determinant by the use of 

it is easy to show that 
F . . . = F . , F . + F . F . 4 

D = F 
rn 

F F F F 
"Pi+l pi+(r-i)n pi+h pt 
F F / v F F 

p2+i p2+(r~i)n p2+n p2 

\ + 1 + i FPr + 1^(r»Dn "Vi^1 V i 
(2) 

+ F 
"rn-i 

Pi pi+(r-l)n F F Pi+n pi 
F F / v F F 

P2 p2+(r-i)n p2+n p2 

F F ^ . 
Pr+i Pr+i+( r™l)n 

F F 
Pr + 1

+n p r + 1 

359 

when the subtraction of F times the first column and F A times the last 
n n-i 

column from the last but one column in the first determinant reduces it to zero 
and the second determinant also vanishes* 

Therefore the desired result follows for r = 2* 

Also solved by F. D . Parker, David Z e l t l i n , Anthony Shannon, C . B„ A , Peck, 
Douglas Lsnd, W i l l i a m Lombard, Charles R. W a l l . 

* •* .* * • 



THREE DIOPHANTINE EQUATIONS "PART I 
IRVING ADLER 

North Bennington, Vermont 

lo INTRODUCTION 

This article deals with the three Diophantine equations 

(1) x2 + (x + l)2 = z2 

(2) u2 + u = 2v2 

(3) s2 + 21? = 1 . 

These equations have been studied by various methods for hundreds of 
years , and their solutions in positive integers are well known, (See the h is -
torical note at the end of Part II, Feb.) However, as often happens with old 
problems, people not aware of the long history of these equations keep redis-
covering them and their solutions. An article recently submitted to the Fib-
onacci Quarterly dealt with Eq. (1), and solved it by transforming it into 
Eq. (3). Elementary Problem B-102 in the December 1966 issue of the Quar-
terly (page 373) also links Eq. (1) and the solution to Eq. (3). Another article 
recently submitted to the Quarterly deals with Eq. (2), 

The three equations are essentially equivalent because, as we shall see 
in Section 9, each can be transformed into each of the other two by a linear 
transformation. 

2. WHY THE EQUATIONS KEEP COMING UP 
The equations come up over and over again because they arise in a nat-

ural way from some basic problems of number theory. 
A. When the general solution of the equation x2 + y2 = z2 is studied, it 

is natural to consider the special case in which x and y are consecutive inte-
gers . This leads to Eq. (1). 

B. When people play with figurate numbers, and, in particular, with the 
triangular numbers 

360 
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T(u) = | u ( u + 1) , 

and the square numbers 

S(v) = v2 , 

they soon observe that 

36 = S(6) = T(8) . 

This observation naturally suggests the problem of finding all the triangular 
numbers that are also square numbers* This problem leads to Eqe (2). 

C. There is no rational number s/t equal to the square root of 2. That 
is9 there are no positive integers s and t such that 

(4) S2 - 2t2 = 0 . 

However, it is possible to obtain rational approximations to the square root of 
2 with e r ro r s smaller than any prescribed amount The search for rational 
approximations with a small e r ror naturally leads to consideration of the equa-
tion obtained from Eq. (4) by requiring the right-hand member to be 1 instead 
of 0. This leads to Eqe (3). 

3. SOLUTIONS BY TRIAL AND ERROR 

One way of finding some positive integers that satisfy Eq0 (1) is to sub-
stitute first 1, then 2S e tc , , for x in the expression x2 + (x + I)2 to identify 
values of x which make the expression a perfect square,, Similarly, solutions 
of Eq. (2) can be found by identifying by trial and er ror some positive integral 
values of u that make 

fu(u + 1) 

a perfect square. And solutions of Eq, (3) can be found by identifying some 
positive integral values of t that make 1 + 2t2 a perfect square. Anyone with 
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patience and a table of squares, or who has access to a computer can discover 
in this way at least a few of the solutions of each of the three equations. 

It will be useful to us to identify not only positive solutions, but non-
negative solutions. The first five non-negative solutions of Eqs. (1), (2), and 
(3) are shown in the table below: 

Solutions of 
Equation (1) 
X 

0 

3 

20 

119 

696 

z 

1 

5 

29 

169 

985 

Solutions of 
Equation (2) 
u 

0 

1 

8 

49 

288 

V 

0 

1 

6 

35 

204 

Solutions of 
Equation (3) 
s 

1 

3 

17 

99 

577 

t 

0 

2 

12 

70 

408 

4. CAN WE COMPUTE MORE SOLUTIONS 
FROM THOSE WE ALREADY HAVE? 

Once we have the first few solutions of one of these equations, we may, 
by inspecting them, find a relationship by which more solutions can be calcu-
lated. To facilitate the formulation of such a relationship, let us index the 
solutions of each equation in order of magnitude, with the non-negative integers 
0, 1, 2, • • • , respectively, used as indices. Then, in this notation, 

x0 0, z0 = 1, xt = 3, zi x2 = 20, z2 = 29, 

Are there, perhaps, formulas that permit us to calculate x and z in etc 
terms of x 
guess that they are linear. Assume that 

and z ? Let us assume there are such formulas, and let us 
n-i n-i 

(5) a V t + b V i + c 

(6) dx + ez + f • n-i n-i 
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Then we have to use only the first four values of x and z to determine what 
the values of a, b, c, d, e and f must be. Taking n equal to 1, 2, and 3 
in succession, we get the following systems of equations; 

3 = a ° 0 + b * l + c I 5 = d « 0 + e - l + f 
20 = a * 3 + b«5 + c < 2 9 = d « 3 + e * 5 + f 

119 = a • 20 + b - 29 + c , /169 = d • 20 + e • 29 + f . 

Solving these systems of equations, we find that 

a = 3, b = 2, c = 1, d = 4, e = 3, and f = 2 . 

Equations (5) and (6) are merely guesses. However, the fact that the values of 
a, b , c, d, e and f that we calculated on the basis of these guesses turns out 
to be integers, and small ones, at that, is presumptive evidence in favor of 
these guesses. Let us continue operating with these guesses. If Eqs* (5) and 
(6) are true, then they must take this form: 

(7) x = 3x +-2z + 1 , 
n n-d n-i 

(8) z = 4x + 3z + 2 . 7 n n-i n-i 

We can obtain more evidence for or against our guesses by using Eqs. (7) and 
(8) to calculate x4 and z4: 

x4 = 3(119) + 2(169) + 1 = 696 ; 
z4 = 4(119) + 3(169) + 2 = 985 . 

Since these values of x4 and z4 calculated by means of Eqse (7) and (8) agree 
with the values of x4 and z4 in the table, the evidence tends to support the 
correctness of Eqs„ (7) and (8). We now know that Eqs. (7) and (8) are true 
when n = 1, 2, 3, or 4. This gives us the confidence to seek a proof that 
they are true for all positive integral values of n. The proof is given in the 
next section* 
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EXERCISES 
fVi 

1. Let (u , v ) be the n positive integral solution of Eq. (2). If we 
assume that 

and 
u = alu + bv u + c , n n-i n-i ' 

v =•' du + ev , + f , n n-i n-i * 

then what values must a, b, c, d, e and f have in these formulas? 
2. Let (I 

we assume that 
2. Let (S , t ) be the n solution in positive integers of Eq. (3). If 

and 

s = as + bt + c , n n-i n-i ' 

t = ds + et + f , n n-i n-i 

then what values must a, b, c, d, e and f have in these formulas? 

5. PROOF THAT SUCCESSIVE SOLUTIONS ARE LINEARLY RELATED 

The preceding section led to the conjecture that successive solutions of 
Eq. (1) are related by the linear Eqs. (7) and (8). To prove the conjecture, it 
is necessary to show that 

A. If (x , z ) is a solution of Eq. (1), then (x , z ) defined by 
n—l n—i n n 

Eqs. (7) and (8) is also a solution; 
B. If we take x0 = 0 and z0 = 1, then every solution of Eq. (1) can be 

obtained by starting with (XQ, Z0 ) and making repeated use of Eqs. (7) and (8), 
to generate solutions with greater and greater values of x and z.* 

Proof of A. Suppose that (x , z ) is a solution of Eq. (1). Then we 
want to show that 

<3Vi + 2Vi+1- V i + 3V. + 2 ) 

*The proof given here is adapted from that given in [ 1] . 
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is also a solution of Eq. (1). To simplify the notation for the proof, let us 
drop the subscripts. In this simplified notation, we are assuming that 

X2 + (X + I ) 2 = Z2 , 

and we want to show that 

(3x + 2z + 1)2 + (3x + 2z + 2)2 = (4x + 3z + 2)2 . 

(3x + 2z + l)2 + (3x + 2z + 2)2 

= 18x2 + 24xz + 8z2 + 18x + 12z + 5 

= 16x2 + 24xz + 8z2 + 16x + 12z + 4 + (2x2+ 2x+ 1) 

= 16x2 + 24xz + 9z2 + 16x + 12z + 4 

= (4x + 3z + 2)2 . 

in view of the fact that 

2x2 + 2x + 1 = x2 + (x + l)2 = z2 . 

Proof of B. Equations (7) and (8) determine a function 

f : (x,z)—>(x',z') 

as follows: 

(xf = 3x + 2z + 1 , 
(f) J 

f zf = 4x + 3z + 2 . 

If we solve these equations for x and z, we obtain the inverse function 

(g) fef
fzf)->fe,z) 

defined by 
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!

x = 3xf - 2zf + 1 , 

z = -4x? + 3z» - 2 . 

fg = i = the identity function. Then 

ffgg = f(fg)g = fig = fg = i , 

and, in general, 

i V = i 

for every positive integer n. That i s , 

fngn(x,z) = (x,z) . 

We shall show first that if (x, z) is a solution of Eq. (1), with x > 0, z > 0, 
then 

fccijZj) = g(x,z) 

is a solution of Eq. (1) with x* 2, 0, and zj > 0, and zj < z. If 

X2 + (X + I ) 2 = Z2 , 

then 

x\ + (x| + I)2 - 2xf + 2xi + 1 = 2(3x - 2z + I)2 + 2(3x - 2z +' 1) + 1 

= 18x2 + 8z2 - 24xz + 18x - 12z + 5 

= 16x2 + 8z2 - 24xz + I6x - 12z + 4 + (2x2 + 2x + 1) 

= 16x2 + 9z2 - 24xz + 16x - 12z + 4 , 

since 
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2x2 + 2x + 1 = x2 + (x + I)2 = z2 9 

then 

xf + (xj + I ) 2 = M x + 3z - 2)2 = zf . 

Therefore (x^Zj) is a solution of Eq* (1). Now we aim to show that xj > 0, 
zj > 0, and z\ < z. The condition xj > 0 is equivalent to 3x - 2z + 1 > 0„ 
or 2z < 3x + l. The condition that zj > 0 is equivalent to ~4x + 3x - 2 > 0S 

or 3z > 4x + 2, The condition zt < z is equivalent to -4x + 3z - 2 < z, or 
z < 2x + 1. So we shall show that 

z < 2x + 1, 2z < 3x + 1 , 

and 

3z > 4x + 2 . 

z2 = 2x2 + 2x + 1 = 4x2 +' 4x +. 1 - 2X2 - 2x 

= (2x + I)2 - 2x(x + 1)< (2x + I)2 , 

since x > 0, and hence 2x(x + 1) > 0. Therefore z < 2x + 1. Since 

z2 = 2x2 + 2x + 1 , 

and x > 0, then 

9z2 = 18x2 + 18x + 9 > 16x2 + 16x + 4 ~ (4x + 2)2 . 

Therefore 3z > 4x + 2» 

4 z2 = 8x2 + 8z + 4 = 9x2 + 6x + 1 ~ X2 + 2x + 3 . 

Since x > 0, we see from the table of solutions of Eqe (1) that x > 3* Then 
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x2 > 3x = 2x + x > 2x + 3 . 

Then 

2x + 3 - x2 < 0 . 

Consequently 

4z2 < 9x2 + 6x + 1 = (3x + I)2 , 

and 

2z < 3x + 1 . 

We have shown that if (x, z) is a solution of Eq. (1) for which x > 0 and 
z > 0, then 

(xi,Zi) = g(x,z) 

is a solution for which xj > 0, zj > 0, and z^ > z. If xA > 0 we can repeat 
the process to obtain a solution 

(X2,Z2) = g (X i ,Z i ) = g2(x, Z) , 

with x2 > 0, z2 > 09 and z2 < zj. Continuing in this way as long as x. > 
0, i = 1, 2jB * •, we get a descending sequence of positive integers z > zj > 
z2 > •• • . Since this sequence must terminate, there exists a positive integer 
n for which 

(x , z ) = g (x, z) 
N n n & N ' 

is a solution of Eq„ (1) with x = 0. Then z = 1, and M / n n ' 

(0,1) = (x n ,z n ) = gn(x,z) . 
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Then 

^(0 ,1) = ^g n (x ,z ) = (x,z) . 

This completes the proof of Par t B. 
If we return now to the notation of Eqs. (7) and (8), we can say that all 

solutions of Eq. (1) are given by the formula 

(11) ( V z n ) = fQ<°»1>» n = 1 .2 .3 , - - -

where f is defined by (9), 

EXERCISES 

3. Exercise 1 leads to the conjecture that successive solutions ofEq. (2) 
a re related by the equations 

(12) u = 3u + 4v + 1 , 
n n-i n-i ' 

(13) v = 2u + 3v + 1 . 
n n-i n-i 

Let the function g be defined by 

g(u,v) = (3u + 4v + 1, 2u + 3v + 1) . 

Using the method employed above, prove that all solutions in positive integers 
in Eq. (2) are given by 

(14) ( V V n ) = ^(O^O), n = 1 , 2 , 3 , — 

4. Exercise 2 leads us to the conjecture that successive solutions of 
Eq, (3) are related by the equations 

(15) s = 3s + 4t 
n n-i n-i ' 

(16) t = 2s + 3t 
n n-i n-i 

(Continued on p. 317.) 
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DONALD-A. PREZIOSI 
Instructor in Classical Airehaoelogy, Yale University, Nev> Haven, Conn. 

During 1964-66 a study was undertaken of the remains of Bronze Age con-
struction in the Aegean Basin in an attempt to establish certain underlying prin-
ciples of Minoan, Mycenaean, and other Aegean architectural design. Some 330 
structures at 90 sites were examined and measured; evidence for planning and 
layout-procedures, andfor modular and proportional design canons were sought 
The results of the project, presented (June 1968) in partial fulfillment of the 
requirements for a doctoral degree at Harvard* are outlined below, i 

Between ±2000 BG and ±1500/1400 BC, Minoan Crete generated the first 
large-scale, complex townscapes in Europe and a sophisticated architecture 
comparable to the contemporary architectures of Egypt and the Lewant* During 
this period a number of large structures, known conventionally as "palaces,." 
were constructed at Knosses, Phaistos and Mallia, and (slightly later) at Kato 
Zakro, Gournia and Plati (Fig. 1). The largest of these, atKnossos, maybe-
enclosed within a square roughly 150 meters on a side* The palaces are gen-
erally similar in groundplan; each consists of a solid mass of construction 
pierced by a central courtyard and elsewhere by smaller courts and light-wells* 
The outer trace is not uniplanar but consists of a series of recesses and pro-
jections of varying size* The buildings are in most cases two stories in ele-
vation (in certain sections perhaps taller); one palace, at Phaist s, spreads 
over some seven terraces of varying height* The first three palaces named 
also have extensive paved courtyards bordering their western facades; in all 
cases building material is stone, frequently in the form of finely squared 
masonry blocks, particularly on the outer facades* 

The remains have come to light only since the turn of the century;2 since 
that time Crete has become one of the most thoroughly explored areas of Greece; 

!AU measurements here are metric; Bronze Age in Greece; Earlys ±2700-

2Begin,ning with the excavations at Knossos by Sir Arthur Evans in 1899; final 
publication: A* Evans9 The Palace of Minos at Knoss ., 4 vols*, 1921-1936; 
3h 1900 the palace at Phaisto'sbegantobe uncovered* L. Pernier and L. Banti, 
11 Palazzo Mincico di Festos, 2 vols , , 1935 and 1951. 

370 
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N - * KATO ZAKRO 

501 

oJ MILES 
CRETE Qp 

Fig* 1 Minoan Palatial Complexes 
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scores of settlements, large and small, have come to light on this island not 
much larger than Long Islands Surprises still come forth; one of the six 
palaces mentioned above (Kato Zakro)was discovered in 1963, and last Summer 
(1967) a new town belonging to the Early Bronze Age (±2700 — ±2000 BC) was 
uncovered on the South coas t 

Despite the archaeological familiarity of Minoan remains, a thorough 
study of the architecture has yet to be published? which fact is partly respon-
sible for a good deal of misinformation about its nature* Another contributing 
cause is the great contrast Minoan architecture makes with Greek temple 
design of a millenium later; the great complexity and seeming irregularity of 
the former have provided more than one Classical scholar, trained to appreci-
ate the apparent clarity and simplicity of the Greek temple, with nearly insup-
erable obstacles to understanding,1 

There are other factors contributing to the general misunderstanding, the 
most relevant here being that the palaces (and most notably Knossos) under-
went periodic rebuilding and remodelling during the centuries of their use. 
This has tended to obscure the fact that each large complex was designed 
initially as a coherent whole* Archaeological research has shown that in some 
cases (e. g. , Phaistos)2 different sections of a palace were constructed at dif-
ferent times: necessarily, construction of such enormous structures would 
have been phased for varying reasons. The view of Arthur Evans that the 
palace of Knossos "became" a single structure as a result of the coalescence 
of separate buildings bordering a central piazza is today not widely held. 

Unlike the later Greek temple, the Minoan palace was not designed with 
bilateral symmetry as its overriding principle; the organizing principles are 
somewhat more complex and are only now beginning to be understood. That 
one of the keys to the solution involves the ratios of a Fibonacci Series will 
2As late as 1957, the author of one of the major textbooks on Greek architec-
ture could write "It appears that the Minoans did not object to disorderly 
planning as such; they obviously saw no advantage in symmetry and may have 
been lovers of the picturesque at all costs; in fact their architecture resem-
bles their other ar ts in showing no sense of form. M A. W. Lawrence,, Greek 
Architecture (Penguin, 1957), 34. 

2The earlier palace at Phaistos was built in at least four separate phases, be-
ginning on the south and working north, E. Fiandra, "I periodi struttivi del 
primo palazzo di Festos, " Kritika Khronika 15/16 (1961-62) 112 ff. Never-
theless, the entire plan is" a unity, as demonstrated by a study of the 
measurements. 
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become apparent below. Within the last decade the researches of Prof. Graham 
of Toronto have provided a number of initial insights into the nature of Minoan 
metrology*1 He postulated the existence of a builders' modules (which he called 
the "Minoan Foot") used in the layout of thepalacess the value was set at .3036.2 

That Graham1 s conclusions were premature was shown by the results of 
the aforementioned project, in which some 12*000 measurements were made on 
structures both on Crete and elsewhere in the Aegean and Greece: evidence of 
four modules was found* Of the 330 structures examined, 217 revealed clear 
evidence of modular usage (or at least were sufficiently well-preserved to ad-
mit of careful measurement): 

MODULE A_ B C D other3 

values .2704 .3380 .4330 .3036 
times found: 104 67 17 20 9 

An immediate curiosity was that the distinction in usage revealed no con-
sistent geographical or chronological pattern; L e., A was not found in area X 
to the exclusion of B, C, and D9 nor was its use limited to one chronological 
period within the Bronze Age, e t c Indeed, the impression was gained that a 
builder was more or less free to choose any of the four in laying out his 
structure. 4 

A comparison was then made of the scales based on each module (Fig, 2); 
it was noted that there were certain consistent points of contact among the 
scales of a single unit of measurement. The relationship may be expressed 
geometrically (Fig. 4); if a rectangle is constructed with the short side equal 
to .5408, and the long side .676 (= 2 x .338), then the diagonal = 2 x .434. The 
relationship is 10:16 or 5:8. It is of interest also that the diagonal bisecting 

i j . W. Graham, The Palaces of Crete (Princeton, 1962) ch* XDI, w. refs. 
2Graham?s study involved a sample of measurements of palace sections simi-
lar in design at various places; a by-product of a study of window-recesses, 
the author did not have as his purpose a comprehensive metrological examin-
ation of architectural remains of the Bronze Age in Greece. 

3Six structures yielded evidence of a module of .40, three of .45a 
4As if (to use a New Haven example) Brockettfs street grid of 1643 employed 
rods and each of the Yale colleges was laid out on a different system (meters, 
feet, fathoms, etc.) . Examples may be found in World Weights and Measures, 
UN Handbook M/2l/rev« 1. (1966), for simultaneous usage of several systems 
in a given country. 
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MODULE A B C D 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 
100 

.2704 

.5408 

.8112 
1.0816 
1.3520 
1.6224 
1.8928 
2.1632 
2.4336 
2.7040 
2.9744 
3.2448 
3.5152 
3.7856 
4.0560 
4.3264 
4.5968 
4.8678 
5.1376 
5.4080 
6.7600 
8.1120 
9.4640 
10.8160 
12.1680 
13.5200 
14.8720 . 
16.2240 
17.5760 
18.9280 
20.2800 
21.6320 
22.9840 
24.3360 
25„6880 
27.0400 

.3380 

.6760 
1.0140 
1.3520 
1.6900 
2*0280 
2.3660 
2.7040 
3.0420 
3.3800 
3.7180 
4.0560 
4.3940 
4.7320 
5.0700 
5.4080 
5.7460 
6.0840 
6.4220 
6.7600 
8.4500 
10.1400 
11.8300 
13.5200 
15.2100 
16.9000 
18.5900 
20.2800 
21.9700 
23.6600 
25,3500 
27.0400 
28.7300 
30.4200 
32.1100 
33.8000 

.4330 

.8660 
1.2990 
1,7320 
2.1650 
2.5980 
3.0310 
3.4640 
3.8970 
4.3300 
4.7630 
5.1960 
5.6290 
6.0620 
6.4950 
6.9280 
7.3610 
7.7940 
8.2270 
8.6600 
10.8250 
12.9900 
15.1550 
17.3200 
19.4850 
21.6500 
23.8150 
25.9800 
28.1450 
30.3100 
32.4750 
34.6400 
36.8050 
38,9700 
41.1350 
43.3000 

.3036 

.6072 

.9108 
1.2144 
1.5180 
1.8216 
2.1252 
2.4288 
2.7324 
3.0360 
3.3396 
3.6432 
3.9468 
4.2504 
4.5540 
4.8576 
5.1612 
5.4648 
5.7684 
6.0720 
7.5900 
9.1080 
10.6260 
12.1440 
13.6620 
15.1800 
16.6980 
18.2160 
19.7340 
21.2520 
22.7700 
24.2880 
25.8060 
27.3240 
28„8420 
30.3600 

note also: 
21 
34 
55 
89 
144 
233 
377 
610 

5.6784 
9.1936 
14.8720 
24.0656 
38.9376 
63.0032 
101.9408 
164.9440 

7.0980 
11.4920 
18.5900 
30.0820 
48.6720 
78.7540 
127.4260 
206.1800 

9.0930 
14.7220 
23.8150 
38.5370 
62.3520 
100.8890 
143.2410 
244.1300 

6.3756 
10.3224 
16.6980 
27.0204 
43.7184 
70.7388 
114.4572 
185*1960 

Fig. 2 Partial Scale of Values of the Four Modules 
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METRIC 

e678 
1.08 
1*352 

11.52 
2802 
2*16 
2.704 
3.04 
3.38 
4.056 
4.33 
59408 
6.07 
6.76 
8.112 
9*10 
9,464 

. 9,72 
10*82 
11.24 
12,16 
13.52 
14.872 
15.21 
16.224 
18,20 
20.28 
21e22 
21.64 
27,04 
30.36 
33.80 
4Qe56 
47.32 
54*08 
60.72 

•67 .60 
75«80 

,2704 
2.5 
4 
5 

7.5 
8 

10 

15 
18 
20 

25 
30 

35 
38 
40 

45 
50 
55 

60 

75 

80 
100 

125 
150 
175 
200 

250 

.3380 
2 

4 

6 

m 
9 

10 
12 
13 
16 
18 
20 
24 
27 
28 

: 32 

36 
40 
44 
45 
48 

60 

80 
90 

100 
120 
140 
160 
180 
200 

(approximate) 

.4330 

2«5 

u» 0 

5 

7 

10 

14 
. 

21 

25 
26 
28 

35 

42 

49 
50 

70 

125 
140 

175 

.3036 

4*5 
5 

9 
10 
11 

18 
20 

30 

32 
. 36 

37 
40 
45 

50 

60 

70 

90 
100 

\ 1 8 0 
200 

250 

-Fig* 3 Similar Metric Dimensions with Disparate Modular Values 
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Fig. 4 Geometric Interrelationships of the Four Modules 
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the central axis is .3025 (.3036 = D>. Using .3380 as base integer, a F ibon-
acci Series may be generated in which all four modules appear: 

.3380 / .6760/ 1.014/ 1.690 / 2.704 / 4 .394/ 7.098/11.49/18.60/30.1. 
1 2 3 5 8 13 21 34 55 89 

(vs. .3380 (actual found values) 2.704 4.33 30,36) 
The value of the first integer9 *3380? was tentatively taken as the base 

unit of measurement on which the three variations depend. 
This quadripartite system forms the basis of the harmonic system of 

Minoan architectural design., and brings into focus the complicated system of 
relative proportions of various subsections of a structure. An excellent exam-
ple is the western-facade section of the palace at Mallia (Fig. 5). 

The section with which we are concerned consists of three subsections 
further articulated into three wall-planes, two projections and one recess per 
subsection* The designer gave the wall-planes the proportions shown in Fig* 6S 

A = 8, B = 5 + 5 + 5, C = 8. The Fibonacci integers (base = 2 x .338 = 
.676) are also indicated; 

SECTIONS A B C 
SUBSECTION: 1. 2. 3 4f 5, 6 79 8, 9 

(actual) 3*31/3*13/3*31 6*03/6*06/6.09 3*72/2*82/3*65 
(ideal) 3*38/ r /3*38 6*02/6*02/6*02 3*72/ r /3e72 

INTEGER NO*: 4 / r /4(= • 10) 10 / 10 / 10 9 / r / 9 , 
where r = remainder (i* e*, Al, A3$ C79 C9 were staked out from outer edges 
inward; r having a metrological value of null)* Note also that both A and 
C approximate in toto the 11th Fibonacci Integer of this series (9*75 vs* 9*75 
(A) and 10*19 .(C)); the latter is in e r ror by *445 or one unit of Module G (*433)s 

the module generally used in the layout of the palace* 
The system of proportions employed by the Minoan architect in the de-

tailed articulation of the perimetral walls extends also to the underlying grid 
of a palace1 s groundplan* While space prohibits detailed examination of the 
procedures in a palace1 s layout? the following general points may be noted*1 

The palaces of Knossos5 Phaistos and Mallia share the following design-
characteristics* Each plan may be generated by a series of steps involving a 

•^Factors such as solar orientation of buildings., as well as alignment of cer -
tain building axes on prominent landscape features, play a role in design also9 
as yet not fully understood* Cf* V* Scully ? The Earthg the Temple and the 
Gods (Yale 1962 and 1968) ch* 2; and below, n* 11* 
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Fig, 5 Mallia Palace 
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Fig, 6 Analysis of Mallia West Facade 
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grid based on a rectangle with the proportion 5s8 (160B x 200 B). The basic 
rectangle was presumably laid out with pegs and ropes of fixed length,, The 
center point was found (by means of diagonals or rope, which would have to be 
200 C in length1), and four quadrants were further indicated. The two eastern 
quadrants will delimit the central court, the two we stern the west-central block 
of the palace* At the center of the overall rectangle (or along an EW axis pas-
sing through that point) was constructed a room of (presumably) some ritual 
significance, the so-called Pillar Crypt 

The entire palace may be generated by subdivisions or additions of fixed 
modular size to the central grid-rectangle; the procedures vary in detail among 
the palaces. It is noteworthy that the subdivisions of a grid coincide generally 
with the functional subdivisions of a palace* 

A Palace maybe described as a grid of squares of varying size, the sizes 
determined by a sequence of interrelationships based on proportions such as 
3:5, 5:8, 8:13, e tc . , as well as 1:2, and 1:1. Figure7gives an indication of 
the manner in which the designer generated his plan* Square 2 of this west 
facade of Knossos is related to 3 as 3:5: square 5 is to square 4 as 2:3. It is 
also notable that the number of long storage magazines in each grid-block is 
directly related to the modular size of each square; thus, squares of 30 units 
have three magazines, those of 50 have 5, etc, 

The use of Fibonacci numbers also pervades the design of non-architectural 
items made by the Minoans. A simple example is shown in Fig. 8, the famous 
Sarcophagus of Haghia Triadha near Phiastos, whose painted sides are an im-
portant source of information on Minoan funerary ritual. The various parts of 
this limestone coffin reveal the relationship 1, 2, 3, 5. 

A more complex example is the design of a large gaming board found in 
the Knossos palace. The nature of the game is not yet understood; pieces r e -
sembling chess pawns have been found, whose bases in size match the diameters 
of the circles of the inlaid board. The design may be analyzed as indicated in 
the diagram; the sequence of six integers with .067 as base is found in various 
subsections of the board; overall proportion is 8:13 (Fig. 9). 

*The Egyptians occasionally used as a module the remen or diagonal of a square 
laid out in normal cubits (W. M. F. Petrie, Ancient Weights and Measures 
(London 1926) 41 and passim. 
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Fig* 7 Analysis of Knossos West Facade 
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Fig. 8 Analysis of Flank of Haghia Triadha Sarcophagos 
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Fig, 9 Analysis of Knossos Gaming Board: Fibonacci Proportions 
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This brief consideration of various aspects of Minoan design and its r e -
lation to the Fibonacci system1 would best be concluded with the following ob-
servation* We are not now in a position to understand the full significance of 
the harmonic system of Minoan design* The principles of the Fibonacci system 
were certainly understood, as evidenced by the monuments themselves. Whether 
these principles were a trade secret of a small class of artisans or more wide-
ly understood is not known. 2 Of several scripts used by the Minoans during 
their history, only one* the last one to be employed, has been deciphered; it 
is a primitive form of Greek, and it was employed for bureaucratic purposes 
(listing of commodities, produce, etc.) only; no literature survives, and we 
certainly have no mathematical t reat ises . 3 

It is now known that contemporary Egyptian architecture reveals design 
principles based in part on the Fibonacci system;4 it has been known for some 
time that early in the palatial period Minoan craftsmen were employed in the 
construction of at least one major Egyptian monument.5 It would seem reason-
able to assume that such a situation would provide an opportunity for the dif-
fusion to Crete of the principles of this system. If this was the case,6 it should 
be borne in mind that it was only the principles which were diffused, for the 
Minoan system is grounded in a Minoan metrological system, and the Egyptian 
is based on a native cubit-measure system.-

Whatever the case, the essential point remains: inlaying the foundations 
of architecture in Europe, the Minoan architect designed his structures 

d i scussed in detail as it applies to some 50 structures in the author's d isser-
tation, "Minoan Palace Planning and its Origins" (Harvard 1968) Chapter HI 
(unpublished). 

2One of the primary ritual S3/mbols of Minoan Crete, the ndouble-axen sign, 
incised on walls within the palaces, may be an ideogram of the 5:8 triangle of 
Fig. 4; for a similar situation, cf. A, Badawy, Ancient Egyptian Architec— 
tural Design (UCLA 1965) 40-46. 

3Cf. J. Chadwick, The Decipherment of Linear B (New York 1958); M. Ventris 
and J. Chadwick, Documents in Mycenaean Greek (Cambridge 1959) 117. 

4A. Badawy9 op. c i t . , part IV. 
5W. M. F. Petrie, Illahun, Kahun and Gurob (London 1891) ch. 3. 
6Ibid., 14. A measuring rod of .676± was found at Kahun (| = .338) which .(not 
being an Egyptian measure) might be connected with the Minoan workmen 
employed in the construction of the pyramid of Sesostris n . On the other 
handj Levantine workmen were also employed there; there is no firm basis 
for deciding to whom the rod should be attributed. 
[Continued on p* 317* ] 



RECREATIONAL MATHEMATICS 

Joseph S, Madachy 
4761 Bigger Rd. , Ket ter ing, Oh io 

A FIBONACCI CONSTANT 

I would like to introduce a new constant, if it hasn?t been done before. 
If you evaluate the continued fraction 

1 + 1 
2 + 3 

5 + 8 
13 + 21 

etc. 

you obtain 1.3941865502 • • • . Readers of this Journal will note immediately 
that the terms of this continued fraction are successive Fibonacci terms. Per -
haps someone will evaluate this constant to many more decimal places, give 
it a reasonably good name (or Greek letter), and discover some interesting 
properties of the number. 

INSTANT DIVISION 

If you wish to divide 717948 by 4 merely move the initial 
other end, obtaining 179487. This is about as instant as you can be — 
Much larger numbers can be divided just as easily: 

9,130,434,782,608,695,652,173 

can be divided by 7 by transposing the initial 9 to the end, obtaining 

1,304,347,826,086,956,521,739 . 

An article by Charles W. Trigg [l] described three methods of finding 
the smallest integer N, such that when its initial digit, d, is transposed to 

385 

7 to the 
or is i t? 
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the right end of the integer, the result is N/d. Trigg1 s article restricted d 
to a single digit and N as the smallest integer satisfying the condition. The 
Idea of instant arithmetic is not new, having appeared in the Fibonacci Quar-
terly [2, 3] and elsewhere [4, 5J. 

I wondered If there were other integers, N, such that when any one or 
more of the initial digits were transposed intact to the right, the result would 
be N/k, where k is any integer. In other words, as an example, Is there an 
integer which can be divided by 7 by moving its initial digits, 317, to the right? 
The answer is yes. Although not all integers possess the desired property, 
there are an infinite number of integers that do. 

Trigg [ l ] shows that, for single-digit transposition 

where d is the initial digit to be transposed to the right and F is the proper 
fraction which, when written as a decimal for one period, or cycle, repre-
sents the integer sought If d = 4, for example, we have 

F = 16/39 = .410256410256 • • • . 

Therefore, the smallest integer which can be divided by 4 by transposing the 
initial digit to the right is 410256. 

Now, I will show how to find integers such that the transposition is not 
restricted to single digits, nor need N be divisible by the transposed digits. 
Following Trigg's format, let D represent the initial digit or digits to be 
transposed from left to right, k the divisor of N, the integer sought. Then 

N = 0.D ••• D ••• D-«- . 

If D has n digits, we multiply by 1 0 , 

10nN = D - - - D - - - D . - . 

and 
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N/k = 0 . - - - D - - - D - - - . 
Therefore 

or 

10nN - N / k = D, 

(1) N = Dk 
10nk - 1 

This now allows us to find an N for any in teger values of D and k* 
Here are s e v e r a l examples,8 

N = (with no dec imal point) D 

6 

9 

73 

7 

317 

n 
1 

1 

2 

1 

3 

k 

2 

7 

37 

317 

7 

12/19 = 631,578,947,368,421,052 
63/69 = 9,130,434,782,608,695,652,173 

2701/3699 = 730,197,350,635,306,839,686,401 

2219/3169 = (see below) 

2219/6999 = (see below) 

2219/3169 .= (with no dec imal point) 700,220,889,870,621,647,207,320,921,-
426,317,450,299,779,110,129,378,352,792,679,078,573,682,-

549 (72 digits) 

2219/6999 = (with no dec imal point) 3,170,452,921,845,977,996,856,693,-
813,401,914,559,222,746,106,586,655,236,462,351,764,537,-
791,113,016,145,163,594,799,257,036,719,531,361,623,089,-
012,716,102,300,328,618,374,053,436,205,172,167,452,493,-

213,316,188,026,860,980,140,020,002,857,551,078,725,532,-
218,888,412,630,375,767,966,852,407,486,783,826,260,894,-
413,487,741,091,584,512,073,153,307,615,373,624,803,543,-
363,337,619,659,951,421,631,661,665,952,278,896,985,283, -

611,944,563,509,072,724,674,953,564,794,970,710,101,443,-
063,294,756,393,770,538,648,378,339,762,823,260,465,780,-

825,832,261,751,678,811,258,751,250,178,596,942,420,345,-
763,680,525,789,398,485,497,928,275,467,923,989,141,305,-
900,842,977,568,224,032,004,572,081,725,960,851,550,221,-
460,208,601,228,746,963,851,978,854,122,017,431,061,580,-
225,746,535,219 (583 digits) 
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Instant division in other bases can be done also. We have, for any base 

N = D k 

b \ - 1 

but, since b in base b is always 10, we have 

Dk 
N = 

10nk - 1 

So the same equation used before works in any base as long as d, n, k, 10 k 
- 1, and all calculations are in the given base. Some examples: 

N Base 

Three 

Four 

Five 

D 

12 

23 

13 

n 

2 

2 

2 

k 

2 

3 

31 

101/122 = 1202122110201001 

201/233 = 23032332220312131331101 

1003/3044 = 1310022231202000303 

BIZLEY'S PROBLEM AND INSTANT MULTIPLICATION 

In the solution to [5] the Editor notes that M. T. L. Bizley said a more 
difficult problem would be to determine all rational numbers q/p such that an 
integer can be found which will increase in the ratio p:q when the digit on the 
extreme left is moved to the extreme right. Trigg's work in [ l ] brought me to 
the general solution to the problem of instant division, and that general solu-
tion allowed me to solve Bizleyfs problem. A solution to BizleyTs problem 
would automatically enable one to multiply instantly by transposing digits from 
left to right. 

In Equation (1) above substitute q/p for k, obtaining 

(2) N = - ^ a 
10 q - p 

A few solutions are given below. 
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P JL _ _ _ _ ?L 
3 2 1,176,470,588,235,294 
3 2 2,352,941,176,470,588 
7 11 3,203,883,495,145,631,067,961,165,048,543,689 
3 2 4,705,882,352,941,176 
2 3 428,571 
7 3 11,262,798,634,812,286,689,419,795,221,843,003,412,969,-

283,276,450,511,945,392,491,467,576,791,808,873,720,136,-
518,771,331,058,020,477,815,699,658,703,071,672,354,948,-
805,460,750,853,242,320,819 (146 digits) 

In the examples above, moving D to the right multiplies N by p/q. 
However, there are certain restrictions on the values of D, p, and q 

in Equation (2), otherwise the results obtained by using the equation are not 
solutions. For example, if we let D = 6, p = 3, and q = 2, we obtain 

N = 7,058,823,529,411,764 

which is not a solution for two reasons: the initial digit, 7, is not equal to 
D, nor is the integer produced by transposing the 7 to the right in the ratio 
3:2 to the calculated N. 

Tentatively, I have found that, for proper solutions Dq must be less 
than (q/p)(10nq - p). Perhaps readers can provide further insight, or pro-
vide definite criteria. 

NOTE: In [3 , problem 2] it is proven that there is no integer which is 
doubled when the initial digit is transposed to the r ight However, I found 
several integers which almost meet the condition: 

124999 ••• 999 and 125000 ••• 000 
249999 ••• 999 and 250000 ••• 000 
374999 ••• 999 and 375000 ••• 000 

By including as many 9fs or 0fs as necessary, you can get as close to d o u b -
ling as you desire,. It is possible* however, to*double by moving two or 
more digits to the r ight Let D = 10, p = 2, and q = 1 to obtain 

N = 102,040,816,326,530,612,244,8972959L18_3J673i469^ 

1968] 
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TRIANGLE DISSECTIONS 

Mel Stover first asked Til if it is possible to cut an obtuse triangle in 
smaller triangles, all of them acute. It was proven that it can be done and that 
no more than seven acute triangles are necessary [2] . Martin Gardner [ i j 
showed that a square can be dissected into no less than eight acute triangles, 
and then asked if a square could be dissected into less than eleven acute i sos-
celes triangles. In the following paper by V. E. Hoggatt, J r . , and Free 
Jamison, the answer is given. 

DISSECTION OF A SQUARE INTO n ACUTE ISOSCELES TRIANGLES 

VERNER E. HOGGATT, JR., AND FREE JAMISON 
San Jose State College, San Jose, Calif. 

In answer to Martin Gardner1 s query l~3J as to whether a square can be 
dissected into less than eleven acute isosceles triangles, the answer is in the 
affirmative. We will also show that a square can be dissected into n acute 
isosceles triangles for n > 10. 
Step 1: The 10-Piece Dissection 

Dissect a square into the four triangles shown in Figure 1. 
Jamison f4l applies the lemma implied by Figure 2. Thus, since t r i -

angle A may be dissected into seven acute isosceles triangles, it follows that 
a square may be dissected into 10 acute isosceles triangles. 

Figure 1 Figure 2 
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Step 2, 

If, In Figure 3 (which is Triangle A of Figure 1), we cut off an isosceles 
triangle of vertex angle 15 , the remaining triangle is obtuse with A_ = 15°, 
B = 97.5°, and £ = 67.5°. In [5] it was proven that any obtuse triangle can 
be dissected into eight acute isosceles triangles. However, if an obtuse t r i -
angle is such that B * 90°s B - A < 90°, and B - £ < 90°, then only seven 
are needed., Thus, we can also cut a square into eleven acute isosceles 
triangles* 

Figure 3 
Step 3. 

Let the triangle with angles 15°, 97.5°, and 67*5° (which can be cut into 
seven already) have an isosceles triangle with vertex angle 15° removed, 
leaving a triangle with angles 15°, 67,5°, and 97.5° which can be cut into seven 
acute isosceles triangles. Thus we can now cut a square into twelve acute 
Isosceles triangles. But this last step can be repeated as many times as 
needed to get any n ^ 10 (recall we already have 10, 11, and 12). However, 
at the point where you had the 10-piece dissection, you can draw lines joining 
the midpoints of, say, the equilateral triangle (in Fig. 1) to go from 10 to 13, 
Then Steps 2 and 3 can go from 13 to 14 to 15. You can then cut one of the 
remaining equilateral triangles Into four equilateral triangles. 

Thus, for any large n, we may have mostly equilateral triangles if 
desired, or, for that matter, one of any shape as in the 10-piece dissection. 
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LINEAR. RECURSION RELATIONS 
LESSON TWO 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

Recursion relations can be set up at wilL There is, however, a par-
ticular type known as the linear recursion relation which by its simplicity, 
range of application, and interesting mathematical properties deserves special 
consideration. In this lesson, the linear recursion relation will be described 
and the method of expressing its terms by means of the roots of an auxiliary 
equation analyzed. These basic ideas will be applied and amplified in greater 
detail in succeeding articles. 

The term "linear" in mathematics is used by way of analogy with the 
equation of a straight line in the plane where the variables x and y do not 
enter in a degree higher than the first. By extension, there are linear equa-
tions in more variables which characterize the plane in three-space, the hyper-
plane in four-space, etc. By further analogy, one speaks of linear differential 
equations in which the dependent variable and its derivatives are not found in a 
degree higher than one. In this context it is natural to call a recursion r e l a -
tion of the form: 

(1) T n + i = a iT n + a2Tn„1 +a 8 T n _ 2 + • • ' + a r T n - r+ i 

where the a. are constants, a linear recursion relation. If a is the last 
non-zero coefficient, then this would be spoken of as a linear recursion r e l a -
tion of order r. 

Note that there is no allowance for a constant term. This, however, is 
no restriction. If, for example, 

T _,_ = 3T - 2T + 4T + 8 n+i n n-i n-2 

then since 

T = 3 T - 2 T + 4 T + 8 n n-i n-2 n-3 

393 



394 LINEAR RECURSION RELATIONS [Dec* 

It follows by subtraction that 

T , = 4T - 5T + 6T - 4T n+i n n~i n-2 n~3 

so that a linear recursion relation of the standard form (1) can be obtained 
from this variant. 

LINEAR RECURSION RELATION OF THE FIRST ORDER 

The linear recursion relation of the first order is 

(2) T , = r T 
n+i n 

In which each term is a fixed multiple of the previous term. Evidently, this 
i s the recursion relation of a geometric progression. In terms of the tech-
nique that Is being developed for relating the terms of the sequence with the 
roots of an auxiliary equation, we set up the equation corresponding to this 
recursion relation, namely: 

(3) x - r = 0 

which has the one root r* The term of the sequence can be written as a mul-
th tiple of the n power of this root* thus: 

T = ( a / r ) r n . n / 

That this term satisfies the recursion relation (2) follows from (3), since-:on 
substituting r for x, we have* 

r = r , 

and on multiplying both sides by r ' , 
n n-i 

r = r - r 
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Note that the powers of the root have the same recursion relation as the terms 
(2)! So if 

V i = ( a / r ) r n + 1 

and 

n+i n 
r = r • r , 

T ^ = r ( a / r ) r n '= r T . n+i ' ' n 

Perhaps due to the simplicity of this case, the considerations are confusing! 
But let us pass on to a second-order linear relation where the operations are 
not so obvious. 

SECOND-ORDER LINEAR RECURSION RELATIONS 

In a subsequent article, these relations will be taken up in all possible 
detail to cover the various situations that may arise. But here we shall s tart 
with a simple example to show how the method operates. 

Consider then a linear recursion relation 

(4) T d = 5T - 6T 
N n+i n n-i 

If all terms are brought to one side and equated to zero, the result is : 

(5) T ,. - 5T + 6 T = 0 . N ' n+i n n-i 

If now the successive terms are replaced bypowers of x one obtains the auxil-
iary equation 

(6) x2 - 5x + 6 = 0 

whose roots are r = 3, s - 2. Since they satisfy the equation (5), it follows 
that 
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r2 = 5r - 6 
s2 = 5s - 6 

Since we may multiply by any power of r or s, 

( 7 ) rI1+1 = 5 r n - Gr11"1 

s n + 1 = 5 s n - es11"1 

Note that the powers of r and s satisfy the same recursion relation (4) as the 
terms of the sequence T . Hence if we express these terms as linear c o m -
binations of powers of r and s, we should obtain expressions that satisfy the 
recursion relation (4). Set 

T = a r ^ + bfl11-1 

T = ar11 + b s n 
n 

where a and b are constants. Then 

T = 5T - 6T = a(5rn - 6 ^ ) + b(5sn - 6s11""1) n+i n n-i 

or 

T , = a r + bs n+i 

so that the form of the term persists for all values of n once it is established 
for two initial values. 

What this implies is that given any two starting values Tj = p, T2 = q 
it is possible to find a sequence 

T = a3 n + b 2 n 
n 

satisfying the recursion, relation (4). Consider the particular case p = 2 
q = 7. Then we should have: 
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2 = a . 2 + b«3 
7 = a • 22 + b - 3 2 

397 

Solving for a and b we obtain a = -1 /2 , b = 1, so that in general, 

T = (- l /2)2n + 3 n 

If the roots r and s are real and distinct with rs f 0, it will always be 
possible to solve the above set of equations for the determinant of the coef-
ficients of the equations: 

p = ar + bs 
a = ar2 + bs2 

i s 

= rs(s - r) 

which is not zero if r s f 0 and s f- re 

These considerations can be extended to relations of higher order. For 
example, suppose we wish to express the terms of a sequence beginning with 
3, 8, 14 in the form: 

T = a2 n + b3 n + c5 n 
n 

It is simply necessary to set up a recursion relation with roots 2, 3, and 5. 
Thus the auxiliary equation would be 

(x - 2)(x - 3)(x - 5) = 0 

or 

x3 = 10x2 - 31x + 30 
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so that 

' T = 10 T - 31T + 30T 
n+i n n-i n-2 

giving sequence terms as follows: 

3, 8, 14, -18, -374, -2762, -16566,- •• 

To express T in terms of the powers of the roots use the initial values 
to form equations as follows, 

3 = 2a + 3b + 5c 

8 = 4a + 9b + 25c 

14 = 8a + 27b + 125c 

from which a = -5/6 , b = 2, c = -4/15. Thus 

T = (-5/6)2n + 2 • 3 n + (~4/l5)5n . 

Evidently, there are many questions that require further study; the case 
of equal roots of the auxiliary equation; what happens if the roots are irrational; 
the situation in which the roots are complex; and various combinations of these 
cases. Such matters will receive attention in a number of subsequent lessons. 

PROBLEMS 

1. Find the recursion relation for the sequence beginning 3, 10 with 
terms in the form 

T = a + 2% , n 

and calculate the first ten terms of the sequence. 
2. Given the sequence beginning with 5, 12 having a recursion relation 

T _,_ = 8T - 15T 4 , n+i n n-i 
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express T as a linear combination of powers of the roots of the auxiliary-
equation. 

3. The sequence 
5, 13, 61, 349, 2077, 12445, 74653, 447901,••• 

obeys a linear recursion relation of the second order. Find this relation and 
express T as a. linear combination of powers of the roots of the auxiliary 
equation, 

4. A sequence with initial terms 3, 7, 13 has an auxiliary equation 

x3 - 6x2 + l l x - 6 = 0 . 
Express the term T as' a linear combination of powers of the roots of this 
equation, 

5. A third-order recursion relation governs the terms of the sequence: 
1, 6, 14, 45, 131, 396, 1184, 3555, 10661, 31986, 95954, 287865, 863589 . 
Determine the coefficients in this recursion relation and express the term T 

n 
as a linear combination of powers of the roots of the auxiliary equation., 

LESSON TWO SOLUTIONS 

1. T = -4 + (7/2) 2 n 

n • 

Firs t ten terms^ 3, 10, 24, 52, 108, 220, 444, 892, 1788, 3580. 

2* T - (13/6) 3 a + (-3/10) 5 n 
n 

T = 17/5 + (4/15) 6n 

T _,_ = 7T - 6T , n+i n n-i 

T - -2 + 3*2a + (-1/3) 3 n 
n 

T , = 3 T + T - 3 T 0 n+i n n-i n-2 

T = 1/4 + (7/8)(-l)n + (13/24) 3 n 

* * * * * 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A . P. H1LLMAN 
University of New Mexico, Albuquerque, New Mex. 

Send all communications regarding Elementary Problems and Solutions 
to Professor A* P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico 87106. Each problem or 
solution should be submitted In legible form, preferably typed in double spac-
ing, on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date, 

B-148 Proposed by David Englund, Rockford C o l l e g e , Rockford, I l l i no i s , and 
Ma lco lm To l lman, Brooklyn^ New Y o r k . 

Let F and L denote the Fibonacci and Lucas numbers and show that 
n 11 

F, t v = F L L0 L ••• L/of-i \ • 
(2%) n n 2n 4n (21 TI) 

B-149 Proposed by V . E. Hoggat t , J r . , San Jose State C o l l e g e , San Jose, C a l i f . 

Show that 

L M L L + 4 ( - l ) n + 1 = 5F F ± i . n+i n+3 n n+4 

B-150 Proposed by V . E. Hoggat t , J r . , San Jose State Co l lege , San Jose, C a l i f . 

Show that 
L2 - F2 = 4F F ^ . n n n-i n+i 

B - 1 5 1 Proposed by Hal Leonard, San Jose State C o l l e g e , San Jose, C a l i f . 

Let m = Lj + L2 + • • • + Ln be the sum of the first n Lucas numbers. 
Let 

Pn(x) = n ( l + x 1 ) = a0 + ajx + - + amxm . 
i=i 

Let q be the number of integers k such that both 0 < k < m and a, = 0. 
Find a recurrence relation for the q . 

n 
400 
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B-152 Proposed by Phil Mana, University of New Mexico, Albuquerque, N . Mex. 

Prove that 

m+n m+i n+i m-i n-i ° 

B-153 Proposed by KIaus-Gunther Recke, G o t t i n g e n , Germany. 

P r o v e that 

F{F% + F2F3 + F3F9 + • • • + FnF3n = FnFn+iF2n+i « 

SOLUTIONS 
GOLDEN RATIO AGAIN? 

B-130a Proposed by Sidney K r a v i t z , D o v e r , N . Jersey. 

An enterprising entrepreneur in an amusement part challenges the public 
to play the following game. The player is given five equal circular discs which 
he must drop from a height of one inch onto a larger circle in such a way that 
the five smaller discs completely cover the larger one. What is the maximum 
ratio of the diameter of the larger circle to that of the smaller ones so that the 
player has the possibility of winning? 

Partial Solut ion by the Proposer. 

With the centers of the smaller circles placed at the vertices of a regular 
pentagon, the smaller circles cover the larger one with a ratio of diameters 
equal to the golden ratio (1 + \ / 5 ) / 2 . There may exist another arrangement of 
the five circles which results in a smaller ratio. 

EVEN AND ODD SEQUENCES 

B-131a Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn. 

Let JH I be a generalized Fibonacci sequence, i. e . , H0 = q* Hi = p, 
Hn+2 = H +1 + H * Extend, by the recursion formula, the definition to include 

negative subscripts,, Show that if SH I = IH I for all n, then JHn| is a 

constant multiple of either the Fibonacci or the Lucas sequence. 
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Solution by David Zeitlin/ Minneapolis, Minnesota. 

and since F = (-1) F , we have 

IH I = (-l)n(qF - (p - q)F )j = IqF 4 - (p - q)F I. J - n J • ' H n- i F H/ n I p n-i F n | 

If ! 
= 01 

Ht = H.i , then (a) p - q = p or (b) p - q = -p. If (a) holds, then q 
and H ~ pF ;• if (b) holds, then q = 2p, and 

H = 2pF . - p F = pL . 
n K n+i ^ n ^ n 

Remark. Let U and V be solutions of 
m n 

W , = aW , + bWn f n+2 n+i n 

where U0 = 0, Ui = 1 and V0 = 2, Vt = a (if a = b = 1, then Un = F n 

and V ' = L ). If n n7 

\hUw-n\ = | W n 

for all n, then {W } is a constant multiple of either {u } or {v }• 

Also solved by Herta T . F re i tag , John I v i e , D . V . Jaiswal ( Ind ia ) , Bruce W . K i n g , 

C . B. A . Peck, A . C . Shannon (Aust ra l ia ) , and the proposer. 

EXPONENT PROBLEM 

B-132 Proposed by Charles R .Wa l l ,Un ive rs i t y of Tennessee, K n o x v i l l e , Tenn . 

Let u and v be relatively prime integers. We say that u belongs to 
the exponent d modulo v if d is the smallest positive integer such that u 
= 1 (mod v). For n > 3 show that the exponent to which F belongs modulo 
F , is 2 if n is odd and 4 if n is even, n+i 
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Solution by the proposer. 

From 

F A F 4 - F2 = (- l ) n 
n+i n-i n 

we have 

F^ E ( - l ) n + 1 (mod F n + 1 ) , 

Now F £ 1 (mod F ') as 1 / F < F , for n > 3. If n is odd then n n+i n n+i 
F2 = 1 (mod F , ). If n is even then F2 = -1 (mod F , ). Now n n~r"i n n"+i 

F 3 = - F = F (mod F , ) 
n n n-i n+i 

and F / 1 as n ^ 4 (since n is even). But then 

F4 = (~1)2 = 1 (mod F _,_ ) . n n+i 

Also solved by D. V . Jaiswal (India) and A . C. Shannon (Australia). 

AN OLD P R O B L E M IN FIBONACCI CLOTHES 

B-133 Proposed by Douglas Lind/ University of Virginia, Charlottesville, V a . 
s r 

L e t r = FJOOO anc* s = Fiooi° °^ ^ e ^wo numbers r and s , which 
is the larger? 

Solution by Phil Mana, University of New Mexico, Albuquerque, N . Mexico. 

Since (In x)/x is monotonically decreasing for x > e, 

(In r ) / r > (In s ) / s 

or 

In r*/ r > In s 1 / 8 . 
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Since In x is monotonically increasing for x > 0, this implies that vi'v> 

s^s. Hence r S > s r . 

Also solved by Will iam D. Jackson, George F. Lowerre, Arthur Marshall, C.B.A. 
Peck, D. Ze i t l i n , and the proposer. 

A TELESCOPING SUM 

B-134 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Define the sequence ja } by 

aA = a2 = 1, a2k+i = a2k + a2k-i » 

and 

a2k = \ 

for k > 1. Show that 

n n 

2_s\ = a2n+i - h 2^ a 2 k~1 = a 4 n + 1 " a2n+i • 
k=i k=i 

Solution by M . N . S. Swamy# Nova Scotia Technical College, Hali fax, Canada. 

n n 
]T}ak = ^ a 2 k = (a3 - at) + (a5 - a3) + ••• + (a2n+i - a2n_i) 
k=i k=i 

= a2n+i - at = a2n+t - 1 . 

Then, 
n n h n 2n n 

£ a2k-i = Sa2k-i + Z a2k " Xa2k = £ ak - ]Tak 
k=i k=i k=i k=-i k=i k=i 

= (a4n+i ~ !) - (a2n+j - 1) = a^+j - a 2 n + i . 
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Also solved by L. Carlitz, Herta T. Freitag, John Ivie, D. V. Jaiswal {India},
Bruce W. King, George F. Lowerre, C. B. A. Peck, A. C. Shannon (Austrqlia),
C. R. Wall, Howard L. Walton, David �������� and the proposer.

GENERALIZED SUMS

B-135 Proposed by L. Carlitz, Duke University, Durham, No. Carolina.

Put

n-1 n-1

Show that, for n � 1,

F,' = 2n - F Ln' = 3·2n - Ln+2' :.n n+2 '

Solution by Charles R. Wall, University of ���������� Knoxville; Te,nnessee.

Let {Hn} be a generalized Fibonacci sequence, and define

n-1
H' "" H 2n - k- 1n LJ k

k=o

Then we claim that

(A) H'·n

for all n � 1.
Identity (A_ can be verified for small n; assume that (A) holds for n.

Then 'since

(H ·-H )+H -(H -H)n+3 n+1 n+2 n+2 n+1

we have
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n 
H

n + i = E H ^ - Hn + 2H; = 2n+iH2 - 2Hn+2 + Hn » 2«+\ •- H ^ . 
k=o 

Thus (A) holds for all n > 1. To obtain the identities given by Carlitz, we 
note that F2 = 1, L2 = 3. 

Also solved by Herta T. Freitag, D9 V . Jaiswal (India), Bruce W. K ing , C.B„A. 
Peck, A . C. Shannon (Australia), David Ze i t l i n , and the proposer. 

* • • * • 

ERRATA 

Please make the following correction in the October Elementary Problems and 
Solutions: In the third equation from the bottom, on p. 292, delete 

F2k F 2 k F2k*i F2k-i 
F2k+2 ^2kH K F 2 k

 < " T ^ ~ 

and add, instead, 

F2k F2k+2 F2k+! F2k-i 
F2k+2 X Fifcf? K F 2 k + 2

 K "FiF 

* * * * * 

[Continued from p. 334. ] 
Hence, by (13), p \ DJn 

In each case we have found a reduced arithmetic progression no prime 
member of which is a factor of a certain D|n . Hence, by Lemma 1, II), there 
is an infinitude of composite DJn+j. 

REFERENCES 

1. R. D. Carmiehael, "On the Numerical Factors of the Arithmetic Forms 
a n ± / 3 n , " Annals of Mathematics, 15 (1913-1914), pp. 30-70, 

2. W. J . LeVeque, Topics in Number Theory, I (1958). 

* • * * • • 



ANY LUCAS NUMBER L5p, FOR ANY PRIME p > 5 , HAS AT LEAST 
TWO DISTINCT PRIMITIVE PRIME DIVISORS 

DOV JARDEN 
Hebrew University, Jerusalem, Israel 

Proof, It is well known that, for any positive integer n9 L5 n /L = A B , 
where 

A = 5F2 - 5F + 1, B = 5F2 + 5F + 1, A < B , (A , B ) = 1 , n n n n n n ? n n' n' n 

where F denotes a Fibonacci number (compare* e«g., Recurring Sequences, 
Jerusalem, 1966, pp. 16-21. For n = 5 we haves A = 101, B = 151, 
and the statement is true. In order to prove it for p > 5, it is sufficient to 
show that the greatest non-primitive divisor of Lgp, p > 5, is smaller than 
A , hence the greatest primitive divisor of Lgp is greater than B , hence 
both A and B have primitive divisors, and since (A , B ) = 1, A has n n F n n n 
a primitive prime divisor a, B has a primitive prime divisor b, and a 

Now, the greatest non-primitive divisor of L5p is L5L = 11L , and 
we have to show that 11L < A for any prime p > 5, We shall show that 

p p 

11L < A for any positive integer n > 5, The proof is based on the follow-
ing two inequalities: 
(1) 

(2) 

Equation (1) is easily verified for n = 3,4. If (1) is valid for n, n + 1, its 
validity for n + 2 follows by addition of the corresponding inequalities side-
wise. Similarly (2) is shown* Hence 

H L n < 1 1 . 3 P n = 3 3 F n < 5(Fn - l ) F n = 5 F ^ - F n 

< 5F2 - F + 1 = A .-n n n 
This completes the proof* 

* ' • * • • * 

L < 3F n n 
33 < 5(F -n 

(n> 2) , 

1) (n > 5) 
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