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PSEUDO-FIBONACC! NUMBERS

H. H. FERNS
Victoria, B.C., Canada

Consider the two interlocking recursion formulas
(1) O.,, = 0,+ P,
(2) P. =Oi+1+ AOi 0;=P; =1
in which M is a positive integer.
For reasons which will shortly become apparent we call 0i and Pi

pseudo-Fibonacci and pseudo-Lucas numbers, respectively.
In fact, eliminating first the O's and then the P's, from (1) and (2)

we get
(3) Oi+1 = 201+1 + )\Oi Og =0, 04 =1
(4 Pi+2 = 2Pi+1 + )\Pi Pyp=1, Py =1.

Thus the two numbers defined by (1) and (2) satisfy the same recursion
formula but with different initial values.

A Binet-type formula for each of On and Pn may be derived from
first principles [1]. We leave this as an exercise for the reader.

We shall prove by induction that

(5) o) = (1 + ‘\/1 +}\)n e (1 e ‘\/1 +A)n
n 2NT F

(6) p = A+ ATTN"+ - NTFD)"
n 2

We introduce the notation A = 1+ AT+ and B=1- A1+ A From
thus it follows that (Received 1963--revised Feb. 1968)
305



306 PSEUDO-FIBONACCI NUMBERS [ Dec.

A+B =2 A-B = 2AT + A
A? = 2A + )\ B2 = 2B + )
A? + B = 2(2 +)) A2 - B2 = 4\T + )
AB = -)
Hence
o _An_Bn p _An+Bn
n A-B n 2

It is immediately apparent from these two forms of O n and P n that
Oy = Py = 1. Since Oy = 2, (1) is satisfied for i = 1. Assume that it is
true for 1 = 2, 3, ***,k. Then

k k Ak k

_aAf_ B +B
O * P = TTE T3
_ 24K _ 28K 4 4K gRH_ 4kp o 4K
2(A - B)
_ %2 - B) - B2 - a) + aKM _ gk
2(A + B)
|kt glert ke gt
A <D
_ Ak'H _ B—k'H _ o
A-B k+1

This completes the proof of (5). A similar proof holds for (6).
If we let n = -k where k is a positive integer we find from (5) and (6)

that
(9) P
k k
(o) = - - and P = e .
-k -n€ ko nk

It is left as an exercise to show that O_, and P satisfy (1) and (2).
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In (5) and (6) let A = 4, We get

) 0,=2""F, and P =2"'L (=9
where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively.
Thus identities among 0n and P n may be transformed by means of
the equations in (7) into identities involving Fibonacci and Lucas numbers.
Some of the latter will be familiar. The purpose of this article is to find some
new or unfamiliar identities among the latter numbers.
We begin with (1) which we write in the form

Let i =1, 2, 3, °*+ n in this equation. Adding the resulting equations
we get

n

® ‘ Z Pi = Yhu T 1
i=1

Applying the equations in (7) to (8) we have

’

n
(8" AL = 2eF, -1
i=t

Next, eliminating 0, from (1) and (2) yields

1

1

T P

o, 4~ By)

Following the procedure used above we get
1

n
@ , Z O = 75X Ppyy - ¥
' i=1



308 SEUDO-FIBONACCI NUMBERS [Dec.

n
. i _ 2,50 :
(9" 22 F,= @1, -1

i=1

A formula for the sum of thefirst n O's with even numbered subscripts
is now derived. '

n

n : .
You = LAE
i=1

i=t

n n
x ! 5| A% - ) B
=1

i=t i

i}

1 [Az(Azn - 1) BB .- 1)]

A-BL a_ B? -1
(10)

. 1 [(A2132 _AZ)(AZD _ 1) - (A2B? - B2)(BM - 1)]
A-B AB2- A2 -B2+1 ]

- [“’@(Azn - BM) - (A2 . B 4 A - B?)]
- B ® - (A2 +BY) +1

1 AZ(A - B)Ogn - (A - B)Ogn+2 + (A - B)Oz
-5 | ]

A% - 2P, + 1

X202n - 02n+2 + 2
B N ) 073

Applying recursion formulas (1) and (3) to (10) takes the form

n
3 oy - B0 - 90 O -2 -BPmst 2 py

(102) BF DO T

i=1

From (10a) we get
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n
i 4
(10") ZZZlei =3 (2% Lyp-g + 1) .
i=1

For the special case in which A = 3 we have

_ 1],i i
Oi = Z[3 - (-1)]

Hence
n n n
R § i n
(09 You - 1Tt - Do
i=1 i=1 i=t
_ 9 ,.n n
= 33 o -1) - -

The following four identities are given without proof. Their derivation
follows the same procedure that was used above.

n
Ptz - 20+ + 2 -2
(11) Z Py = T3 A #£3
i=1
n N - 4 On+y +AQ - 2)Ogngy - A + 2
(11a) szi = R £
1=1
n !
_ 9 ,on n =
(11s) DBy = 0" -1+ 2 (A= 3)
=1
n .
(111) Do 2tLy = 4@ Fy - 1)

i=1
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To find the sum of the first n O's with odd numbered subscripts we use

n 2n n
201 = D0 -3 Oy

i=1 i=1 i=t

and make use of results already obtained. In this manner we get the following
four identities:

2 (A—1)02n+1—20m+14).
2 Oaty

i=1
< (A - HPay +A(A - 2)Pyn-g + 1 - A
i=1
n ‘
. .3 oh n
(128) EOzi_i =z 0 -1 +37 A =3
i=i ;
n r
(12") Z:!zi“'ing-i = % [?-anzn_z - 3] .
i=1
The next four are derived in a similar manner.
‘n Om-laz - 30+ + 1 ‘
(13) szi-l = -3 (A# 3)
i=1

n (A =~ 404 +A (A - 2)Op-2 + 1
(13a) ZPzi_1 = Y 5 14 # 3)

i=1
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n
(13s) Py =g -1 -3 (=9
=1
n
(13") ZZZi—iLgi_1 = Z(ZZHFm_Z + 1)
i=1

We now derive the sum of a series with alternating positive and negative

signs.
From (10') and (12') we get

2n-i

n n

L g _

2. R = DT aEy - 3 ety

i=1 i=t i=1
g2n+1

= —5— (Lon-2 - 2Lgp-y) - 2

Hence

2n+1 n+i n
i+, i i o2i
Z (-1)" lei = Z 2HIFyy - ZZZlei
i=1 i=1 i=1
22!1"'2

n

= (2Lon - Lon-g) - 2 .

From the last two equations we conclude that

n+i

n
i _ (=2)
(14) Y e, = e—en - L ) -2 .

=1

In like manner, beginning with (11') and (13') we get
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n
(15) Sently = M, - 2F, )+ 6
i=1

The following identities involve sums of squares. Derivation is given
for the first one only.
In several cases the final term is

oo - (M) .

For brevity we shall denote this by #R.

n
(A- 4)0211 + A(A- 2)0211_1 + 2 - A
2 = 1
(16 ) 0 = 55 3 +R| (A# 3
i=1
n h
(168) Zozi = T'12"§ [9““ - 8n + 4(-3)"1 + 3 (A= 3)
i=t -
n
. n+ T
as)  Yain = & [atimy, « ATo0
i=1
" (A- 40,0 + (A- 2)O
_ 1 - 2N = 4)Uan-1
(a7) P =3 —3 - R (A% 3)
i=1
n
(17s) ZP‘;’ = % [9““ + 8n + 12(-3)% = 12] (A= 3)
i=t

n
. £+
am) 2221 12 = 2[22n+1 Fop-1 - ﬂ_s__*_li]

i=1
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n
()\ - 4‘.)02n + A(}\ - 2)021-1_1 + 2 - A
2 2| =
a8 3 fa + ok + B = — (A # 3)
i=1
n
2 2\ _ 1 n+i _
(18s) Y @0+ P2 = - [9" 4 8n - 9] A=3
i=1
n
(18") D 2A(5F2 + L) = 8[2MFy - 1]
i=1

The proof of (16) follows:

- — [ud B2
2o =Z[’K_-;T3—]

i=1 i=1
n n n
_ 1 2i 2i i
TIT TN ZA + 2B '2Z(AB)
i=1 i=1 j=1
_ 1 AAR 1) | BB _ 1) 2 AB[(AB)" - 1]
T 4@ ) -
A? -1 B2 -1 AB -1
_ 1 (BZ - 1)A2n+2 _ A2B2+A2+(A2_ 1)B2n+2_AZBZ+B2 + 2R
4(1 + >\) AZBZ _ AZ _ BZ + 1
Since
A2 -1 = 1 + x4+ 2NT + X
and

B -1 = 1+ ) - 2NT ¥ X

we have
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n
Z o? = 1 1 +}\)(A2n+z+an+2) -2\ +}\(A2n+2 _ an-**z) +A2+B2- 2A2B2+2R
i=1. Py A?BZ-A2-B%2+1
1 2(1 + N Pyp+g - 4(1 + NOgn+y + 2P - 222
D) BFr DD L R
1 Pzn-)? - 20211"'2 + 2 - A
EEIESY X =3 *R O£ 3
From (1) and (3) we get
Pontg = 20gp+9 = (A - 49Oy + AN - 2) Opn-yg
Hence
- ) 1 (A - 40y + A - 2)Opng + 2 = A |
P ey A= 3 TRIAAS
e

This completes the proof of (16).
We consider next identities involving the sums of products. The proof
of the identity

_ m
(19) 20+N00 =P -CN"P
follows:
3
n n m m
2(1 + NO_O_ = 2(1 +2) A -B | |A -B
, 2T+ | [ 2NT
_ An+m + Bn+m _ Aan _ AmBn
2
_ Al.‘l"'m + Bn+m ) AmBm( An—m _ Bn—m

2 2

m
Phem - -2 Prom °
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From (19) we may write

2(1 + )\)0201 Py - (—)\)Pi

2(1 + N030; = Ps5 - (-1)?Py

© o o © o o & © o s e ® o

2(1 + 7\)02n+10n = Pop+i - (—.-)t)npi .
Adding these n equations gives
n n n
_ i
2(1 + x)ZoioH]l ’szm -Z(—A) P
i=1 i=1 i=1

Using (13a) and the fact that P; = 1 we have

= O - 90gpt1+ ( - 2)0p +4 - A
(200 2(1 +A)Zoi0i+1 = ~—3 +R
i=1

For the case A = 3 we get

n
+
(20) E 00,4, = g [3™% + 43" - 8n - 15]
i=t
For )X =4 we have
n
(207) Z:ZZiFiFiH - % [szZn + % [1 - (—4)n]]
i=1

The proofs of the three following identities are left to the reader.

315
O #3)
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(22)

(23)
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[Dec.
— _y)Mp

2P P =P TENTR
_ m

20an B o1rx+m Y Op-m

m
2P, On Opim ~ Y Op-m

Following the same procedure that was used above we arrive at the fol-

lowing identities:

(29)

(24s)

(24"

(25)

(25s)

(25"

(26)

n (- 4)Ogn+1 + AA = 2)Ogn +4 - A
2) PP = =3 -R (M3
i=1
n
= 1 rom+s _ n+i _ a9 -
z::r’ipi+1 = [3 4(-3) 8n - 39] (= 3)
—
n
2i - m 1 n
Zz ILL,, =4 [2 Fon -3 [1- (4 ]]
i=1
(M - 4)Pap+1 + AN - 2Py - A2+ 2+ 4
ZZP1+1 i T A+ 1A - 3) *R 0#3)

me = —14 [3%% + gn - 24(-3)" - 3] (1 =9)

n

4
E AL, F. = 2 [22Ly - 4" - 1]
i=1

- 9P+ + A - 2P - A2+ A+ 4
A+ 1A -3

ZZOHI i T

i=1

-R W£3
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n
1
(26s) ZoiﬂLi = 5 [3%13 4 gp + 24(-3)R - 51] (A= 3)
o
n
E ‘ 2i = 4
(261) 2 1Fi+1Li = = [28Lyy - 3 + (-4)"]
i=t
REFERENCE

1. cf. N. N. Vorob'ev, Fibonacci Numbers, pp. 15-20.

A 2 A A

(Continued from p. 369..)

Let the function h be defined by h(s,t) = (3s + 4t, 2s + 3¢). Using the

method employed above, prove that all solutions in positive integers of Eq. (3)
are given by

(17) (8,5t) = B'(1,0, n=1,2,3 .

To be continued in the February issue of this Quarterly.
Ak kK

[Continued from p. 384. ]
according to the principles of a highly sophisticated harmonic system based on

the canon of proportion of the Fibonacci Series: the system may yet prove to

underlie other disparate aspects of Minoan design. !

1As it does design of structures elsewhere in the Aegean contemporary orlater

than Minoan palatial construction. There is evidence that the 1:1.6 ratio was
employed in design previously in the Early Bronze Age in Greece and western
Anatolia (disseration, loc. cit.).

L B A



NOTE ON A PAPER OF PAUL F. BYRD, AND A SOLUTION OF PROBLEM P-3

H. W. GOULD* ‘
‘Wast Virginia University, Morgantown, W. Va.

Paul F. Byrd [1] has shown how to determine the coefficients Cl in the
expansion '
(o]
(1) LR = Y e, ®
i=0

where f is an arbitrary power series

[+ o}
ix) = Zanxn ,

n=g
and the polynomials ¢nn(x) are defined by the recurrence

(2) ¢ (X) - 2X¢ (X) - ¢n(X) = 0’ ¢6(X) = 0, ¢1(X) =1,

n+2 n+i

or, equivalently, by the generating function
e o}
- 92 - {2 -1 = n
(3) @ - 2xt - t?) Z b4
n=o

It is our object to point out that the expansion theoryinvolvedis a special
case of a general treatment given by the author in [3]. In that paper the
writer has studied generalized Humbert polynomials defined by the generating

function
o0
m n
4) (C - mxt + yt P = Zt Pn(m, X Vs b C)e
n=0

*Supported by National Sciences Foundation Research Grant GP-482,

(Received Nov. 1965) 318



NOTE ON A PAPER OF PAUL F. BYRD,
AND A SOLUTION OF PROBLEM P-3

The polynomials Pn include the polynomial systems of Louville, Legendre,
Tchebycheff, Gegenbauer, Pincherle, Humbert, Kinney, Byrd, and several
others. In particular, it is clear that

Dec. 1968 319

(5) ¢n+1(x) = Pn‘(zi X, -1,-1, 1) o
It is shown in [3] that P (m,x,y,p,C) satisfies
- - - - - = >
(6) CnP mn - 1 p)xPn_1 +0-m mp)me_m 0b, n>m2>1

of which (2) is a corresponding special case.

It is also shown that

[n/m]
(M P m,xyp,0 = (E) (rll’:ll;k> p-n+an-kk o on-mk
k=0

with the corresponding inversion
[n/m] k k k-p_k
-n+ + - ~k-
O ()emr = X et prpr) pmeen oionky L n

For Byrd's special case (5) these reduce to his relations

[n/z] k k
n- n-2
(9) e = D ( . ) (22)
k=0
and
[v/7]
(10) (zx)n Z ("'1) ( ) ik,:-ll ¢n+1 Zk(x) °

k=0
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This, incidentally, solves his problem P-3 [1, page 29] andin a simpler man-
ner than the complicated induction solution given in [4] . Actually, relations
(7) and (8), and hence also (9) and (10), are special cases of the general inver-
sion relations [2, (6.3), (6.4)] found by the writer:

[n/m)]
(11) F(n) = Z (P - nk+ mk) f(n - mk)
k=0

if and onlz if
[0/m]
12) tw = Y (-1)“(p F(a-mk) .

=0

-n+kl p+mk-n
k p+tk-n

Proof of the reciprocal nature of (11) and (12) in turn depends upon gen-
eral addition theorems for the binomial coefficients, typified by the relation

n
13) Y @+a0A @bA (b = REIAIWM 4 q.cp)
k=4

where

_ a a + bk
Apla,b) = =g ( K ) s
a,b, ¢ = any real numbers.

This relation actually was given in 1793 by Heinrich August Rothe inhis Leipzig
dissertation, and it is implied by relations in Lagrange's 1770 memoir on solu-
tion of equations. The reader may refer to a series of papers by the writer
(since 1960) in the Duke Mathematical Journal, and to papers in the 1956 and
1957 volumes of the American Mathematical Monthly. Though not widely

known, these general addition theorems enter into something on the order of

several hundred papers in the literature. For example, a special case of (13)
when b = 4 was used by Oakley and Wisner to enumerate classes of Flexagons.
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We wish to note that relations (11) and (12) were used by the writer [2] to
establish certain results about quasi-orthogonal number sets. The relations
in [3] may be looked on as a generalization of the Fibonacci polynomials.
Finally we note that Byrd's formula (4.4) for the coefficients ¢y in (1) above
are found in the limiting case from the corresponding expansion (6.9)-(6.10)
found by the writer [3] for expressing an arbitrary polynomial as a linear
combination of generalized Humbert polynomials. The formulas are too com—
plicated to quote here.

REFERENCES

1. Paul F. Byrd, "Expansion of Analytic Functions in Polynomials Associated
with Fibonacci Numbers, ' Fibonacci Quarterly, 1 (1963), No. 1, pp. 16-
29, Note Problem P-3, p. 29.

2. H. W. Gould, "The Construction of Orthogonal and Quasi=Orthogonal Num-
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3. H. W. Gould, "Inverse Series Relations and Other Expansions Involving
Humbert Polynomials, '" Duke Math. J., Vol. 32, pp. 697-711, Dec. 1965.

4, Gary McDonald, Solution of Problem P-3, Fibonucci Quarterly, 3 (1965),
pp. 46-48.

5. C. O, Oakley and R. J. Wisner, "Flexagons," Amer. Math. Monthly, 64
(1957), pp. 143-154,
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ON THE EXISTENCE OF AN INFINITUDE OF COMPOSITE PRIMITIVE
DIVISORS OF SECOND-ORDER RECURRING SEQUENCES

DOV AND MOSHE JARDEN
Hebrew University, Jerusalem, lIsrael

1. INTRODUCTION

Let a#0, B =0, || > |B|, be any two complex numbers, such that
a+p and of are two relatively prime integers. Then the numbers

M- 611 n-i n-2 n-i n n
S c—— + 4 e 4 = +
D — o o B B, S o B

are integers, since they are expressed as rational integral symmetric func-

tions of the roots «,B of an algebraic equation
z: - (@ +B)z +of =0

with integral coefficients with leading coefficient unity. One may readily ver-
ify that {Dn} and {Sn} are second-order recurring sequences satisfyingthe

common recursion relation
X = (@ + B)X - ofX R
n ( B) n-1i 3 n-2

(Since Dy =0, Dy =1; Sy =2, S;=a+pB, the recursion relation again
shows that the numbers Dn’ Sn are integers.) One may also easily verify
that Dgy = DpSp .

Adivisor >1 of Dn’ n > 1, is said tobe primitive (or: characteristic)
if it is relatively prime to any Di with 1 < i < n. The greatest primitive
divisor of Dn is denoted by D;l. A divisor >1 of Sn’ n > 1, is said to be
primitive (or: characteristic) if it is relatively prime to any 8 with 0 < i <
n. The greatest primitive divisor of Sn is denoted by S;l. From Dy, =
Dnsn one may easily deduce that

(1) Din = Sh .
(Received Nov. 1966--revised 1967)
322
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¥or auy prime p dividing a certain Di with i > 1, a (p) denotes the
smallestpositive subscript n, suchthat pan. Thus p is a primitive divisor
of D

a(p)”
By Fn we denote the product

2) F =11D

where w is the Moebius function.
R. D. Carmichael showed in [1] that for any n # 4, 6, 12 there is

P =
(3) D! = F
except when n = a(p)p*, p being a primefactor of Dn’ A Z 1, in which case

1
P =
4) Dn 5 F .

He showed furthermore that if n = a(p)p*, A > 1, then p is the greatest di-
visor of n, except when p = 2, and alp) = 3.
Furthermore Carmichael showed, for o, real, the following inequalities

wln)-1 (n)-1
)2 <F, < V2

where ¢ is Euler's totient function, and w({n) is the number of distinct prime
factors of n.

The main result achieved by Carmichael is the following

Theorem XXII. If o and B are real and n # 1,3,6, then Dn con-
tains at least one characteristic factor, except when n = 12, a+8 = %1, off
= -1,

In the present paper the above Carmichael's results are generalized for
any two complex numbers ¢ # 0, 8 £ 0, ]al > ] B such that a+8 and of
are two relatively prime integers. (However, the exact value of n beginning

with which any Dn contains at least one characteristic factor, i%not calculated
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OF COMPOSITE PRIMITIVE DIVISORS OF :

here.) Furthermore, starting from (2), we deduce an asymptotic formula (6)
for Fn which is stronger than the inequalities given by Carmichael. Finally,
the method of proof used here is slightly simpler than the one used by
Carmichael. The main results proved here are the existence of an infinitude
of composite D;l for any a,B; of composite D, for of #(} and of com-
posite D4y for @-8)% # 1, or @-B)% =[] and of #-LL

2. ASYMPTOTIC FORMULA FOR D]'a

By (2)
d
log F, =) i [g) logDy = ) () loe5f = loga) | k(§) a
d|n djn d|n
+Z u(%) log {1 - (%)d - log(a-ﬂ)zu(g).
djn d|n
Noting that

and

forany n > 1, we get

d
(5) logF = loga-¢(n)+2u(%)‘ log 1-(%) , forany n> 1.
d/n
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Let us evaluate

5 u(3) 11 - (E).

d|n

325

Note that for any 0 <q =< 1 there exists a positive constant A, such that, for

any complex z, for which | z' =q, thereis
|log (1 +z)[ = A|z|,
where by log (1 + z) the principal value of log is understood. Indeed,

log(1+2) _ , _z_ 2 |
z 2% 3

is an analytic function inthe circle |z - 1| <qg <1, hence it isbounded there.

d
Now, putting g =| %i’ we have, for any d > 1, 'gl =q. Hence

g s 121" 1= st (2151 5 s s-(2

d|n d|n

o0
<AZ|g|d=Al§7| 1/3
d=1 1“'5]

where B is a positive constant.
Hence, by (5) it follows that

(6) log F, = loga -« ¢ +0(1).

Now, by (3), (4), we have the following
Theorem 1. There is

(7) logD! = loga - ¢m) +0(1),
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exceptwhen n = a(p)p*, A =1, p being a prime factor of D‘I"l, in which case
it is

(8) log D! = loga - ¢() - log p + 0(1) .
Now, by assumption, of is an integer, and |a| > [B|, therefore
1% > el 1B =laB| =1,
hence
lel > 1, llogel =loglai >0.
By a theorem in [2], p. 114, there exists a positive constant C, such that

Con

o) > log logn

for n > 3 .

On the other hand p|n, hence log p = log n. Hence, by Theorem 1,

Cen
(9 logD! > |log @| + ¢@) - logp - B > log|al TogTogn logn-Bmw,

which means that:

Theorem 2. Beginning with a certain positive n, Dn has at least one
primitive factor.

Remark. The error term 0(1) in (7) cannot be refined, since if n is a
prime, then

QI™®

Z}L(%) log 1—(%)(1 = -log l—g- + log 1-(
dn

a

2 )
) —>-log 1-B
n-yo

#
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Theorem 3.
co
1
DT
n=1 ©°

converges.
Proof. From (9) it follows that there is a positive constant D such that,
forall n =1,

Cen
log log n
D = Iﬂ_i_gz D-n?
n
e .n

Hence

3. MAIN RESULTS

Lemma 1. Be N the sequence of natural numbers, S a subsequence of
N, and A a reduced arithmetic progression. Then, an infinitude of Dh is

composite for

D neE s or I) nE N-S

according as
1) any or ) no

prime member of A is a factor of a certain D;a’ n €8S.

Proof. 1) Suppose any prime member of A is afactor of a certain D;l.
n €8, and that there is a positive integer n; such that any Dl'l’ where n €
S, n = ny isaprime. Let g be the greatest prime factor of D;l, n =n,.
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Then, by Theorem 3, and noting that
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whence o > o, which is absurd. Thus, I) is proved.

II) Suppose no prime member of A is a factor of a certain D;l, n € S.
Then, noting that any prime p [ 2( - 8)%B is a factor of a certain D;l ([1] p.
45, Theorem XII), any prime member of A not afactorof 2(e-B)%p ia a fac-
tor of a certain D, n EN- S, and 1) follows as above.

Theorem 4. There is an infinitude of composite D;l.

Proof. The theorem is an immediate consequence of Lemma 1, noting
that any prime p ]’ 2(@ - B)%aB is a factor of a certain D;l.

Lemma 2. If b is an integer, and b # [, then there exists an odd
prime p, such that ( 1;- = -1, where g is Legendre's symbol. Inparticular,

) I b = im?py,+++,pr, where'r =1 and py, .-+, p, are distinct
primes, then there exists an integer u = 1 (mod 4), where (u, 4py,***,pr) =
1, such that, for any prime p = u (mod 4py,***,pr), itis

()=
p

II) If b = -m?, then for any prime p = -1 (mod 4) it is

OFEY

Proof. [ 2], p. 75.
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Lemma 3. Let p be an odd prime. If pla.x2 + by? for some integers
a, b, x, y, and pf (x,y), then

()

Proof. Since p']’ (x,5), p cannot divide both x and y. Thus, without
loss of generality, we may assume that p,K/. Thenthere exists an integer z,
such that yz = 1 (mod p). Hence, from ax?+by? = 0 (mod p) it follows that

(axz)? = -ab (mod p),

whence

Lemmas 2, 3 imply the following:

Lemma 4. I) If b = #m?%y,+**,pp, where r =1 and py,***,pr are
distinct primes, then there exists an integer u = 1 (mod 4), where (u,4p;,
***,py) = 1, such that, for any prime p = u (mod 4py,***,pr), itis p j’ x2
+by? for any integers x,y, such that p} x,y).

I) I b=m? and pJ (x,y), then pf x®+by® for any prime p = -1
(mod 4).

Theorem 5. If of # [ ], then there is an infinitude of composite Djy,.

Proof. One may readily verify that
DZn'H = D%H‘l - CZBD%I .

On the other hand, (D
in Lemma 4:

e Dn) =1 ([1], p. 38, Corollary). Hence, putting

b = -o8, x =D = D

n+y’ y n ’

-of # -[_], there exists a
reduced arithmetic progression A, no prime member of which divides Dyp+r.

]

and noting that, according to the assumption, b
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Hence, no prime member of A is a factor of Dbp+s. The theorem follows by
Lemma. 1, IT).
Theorem 6. If

330 [Dec.

1)) @-pB)2 # ] ,

or

m @-p% =] and o #{] ,

then there is an infinitude of composite D44 .

Proof. One may readily verify that
(9) 8 = @ - P+ 4ep)" .
I) Suppose that (@ -8)% # # . Then (@ -pB)% = +tm?py,"**,py, where

r =1 and py,***,pyr are distinct primes. Then, by Lemma 2, I), there is
an integer u, such that

(10) u =1 (mod4) ,
(11 (u, 4py,***,pp) = 1,
(12) | p = u (mod 4py,* ., Ppy)
implies

(-(a —6)2)= .
p

Consider the pair of congruences

for any prime p.

e
1]

u (mod 4py,+++,pr)
(13)
1 (mod 4aB)

o]
I



1968] SECOND-ORDER RECURRING SEQUENCES 331
From the identity

(@ +p) - 408 = (@ -p)?,
and from the assumption
@+B,0B) = 1 ,
it follows
1 = @B,py,-++5pr) = @B, tm’py,«++,pr) = @B, @-B)H) = 1.

Hence

1
S

(4p13 . '9pr94ﬂ'ﬁ) = 4(p1s"' Qp]:‘sa’ﬁ) =
But, by (10), 4|u - 1, hence (13) has a solution u', i.e.,
(14) u' = u (mod4py,-**,pyp), u' = 1 (mod 4eB) .

Let p be a prime satisfying p = 1 (mod 40B). If of is odd, then, accord-
ing to the properties of the Jacobi symbol

(%) - (8) - (&) -+

Zkt, where k =1 and 2 [ t.

]

If of is even, then p = 1 (mod 8), and of
Then

in both cases
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Combining the last result with (11), (12) and (14), we conclude
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(15> (u'1 4p1,"',Pr) =1 ’

(16) If p=nu' (mod 4py,+++,pr), then

- -8)2 ) _ (B -8R} _
p p ’
for any prime p.

We shall now show that if

(17) p=u (mod 4py,***,pr)

then p | Din. Indeed, if p|Dyn, then, by (1), p|Sh, hence p|Si. Hence, by
9),

pfl - B)DZ + 4@p)” .
Putting in Lemma 3:
x=D, y=2 a = @-p) b = @),

we have

-@p) (e - B2 ) -
¢ :

If n is even, then

Lo [ed)e-p2Y _ (-(a -/3>2>
P P ’

If n is odd, then
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1 = ( -@8) @ - B)z) _ (—aB(a - B)z)
p P '

Both cases contradict (16). The theorem now follows from (17), (15), and
Lemma 1, II).

II) Suppose (@ - B)?2 = m?, where m is an integer and @ # { . Then
(9) becomes

(18) $2 = (mDyp )% + 4(B8)™ .

This formula implies, by Lemma 3, if
(19) p|Din

(and hence p|S}), then

(—(aB)n) -1,
p

for any odd prime p. Consider now the three following cases.
Case 1: of = n?. 25, where k = 0. Then, if p = -1 (mod 8), then

(=55) - () -

and hence, by (19), p [ D, .
Case 2: of = n?- 2k- dg *°*Qdy, where k =0, r =1, q,°**,qy are
distinct odd primes, and t = q4,°*°*,qyr = 1 (mod 4).

Consider the pair of congruences

-1 (mod 8)
(20)

e
" w
I 1

1 (mod t)

Since (t,8) = 1, (20) has a solution u. This solution satisfies

(21) (u, 8) = 1
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If p~u (mod 8t) is a prime, then

o) QO

and hence, by (19), pJ Di, .
Czce 3: Everything as in Case 2, except that t = -1 (mod 4).
Choose a quadratic nonresidue ¢ modulo ¢y, i.e.,

CRS

Consider the system of congruences

x = -1 (mod 8)

x = ¢ (mod gy)
(23) x = 1 (mod q3)

x = 1 (mod qy)
If r =2, or the system

x = -1 (mod 8)
(24)

x = ¢ (mod qy)

if r = 1, Since q4,°*°,qyr are distinct odd primes, (23) and (24) have a solu-

tion v. v satisfies:
(25) (V, 8t) =1 ’

If p = v (mod 8t isa prime, then

(26) (ia%ﬁ) = ('—pl)(é)kn %)n - e [ (g)]n

i
!
T~

———
2o
o
—
-
v

o

H
—

Q

] I"‘
p —
=3

1l

[

[Cont. on p. 406.]
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1. INTRODUCTION .

In this paper we discuss the problem of representing uniquely each real
number in the interval (0,c], where c is any positive real number, as an
infinite series of terms selected from a sequence (bn) of real numbers. We
choose an integer k = 1 and require that any two terms of (bn) whose suf-
fices differ by less than k shall not both be used in the representation of any
given real number. The precise definitions ard results are given in the next
section.

In an earlier paper [2] we discussedan analogous problem of represent-

ing the integers in arbitrary infinite intervals,

2. STATEMENT OF RESULTS

Throughout this paper k =1 is an integer. Also the subscript of the
initial term of any sequence is the number 1; e.g., (cn) = (cg,C9,°°° ).

In order to prove our main result, which is theorem 2, we need a result
which we give in a slightly generalized form as Theorem 1. Let (cn) be a

sequence of positive real numbers which obey the linear recurrence relation
(2.1) aiCptk + aCn+k-1 + e Fagent1-c =0

for n =1, where ay,¢¢°,a2g are non-negative real numbers independent of
n, and a; = 0. The auxiliary polynomial g(z) of this recurrence relation is
given by

glz) = aizk + agzk-14 e taz - 1.

It is clear that g(z) has just one positive real root p, and that this root is

simple.

(Received March 1965) 335
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Theorem 1. If the sequence (cn) is strictly decreasing, and p is
smaller than the modulus of any other root of g(z), then p <1 and e, = Apn
for n =1, where A is a positive real constant.

We now define a k-series base for the interval of real numbers (0,c],
where c is any positive real constant. This is analogous to the concept of an
(h,k) base for the set of integers as an interval; this concept was given in the
earlier paper [2].

Definition. A sequence (bn) of real numbers is a k-series base for

(0,c] if each real number r € (0,c] has a unique representation
(2.2) T =b, +h +eee |

where

for v=1, and further, every such series converges to a sum r € (0,c].

It is clear that the polynomial £(z) = zk +z ~ 1 has just one positive
real root 0, that 0 is a simple root, and that 6 <1. Let R be a real num-
ber. We now enunciate our main result.

Theorem 2. Let (b_) be a sequence of real numbers such that bnz

n

bn+1 >0 for n =1. Then (bn) isa k-series base for (O,QR] if and only

if

_ pRin
bn—G

for n = 1.

It is not true that all k-series bases are decreasing. For instance,
when k = 2, the series (1,2,0,6%+++) is a k-series base for (0,2+6]
However, A. Oppenheim has shown that if the sequence (bn) is a k-series
base for (0,c] for some ¢ > 0, and if N is an integer such that bn = bn H
= 0 for n = N then bn = A" for n > k, where A is somepositive con-
stant, It is not known if all k-series bases (for k = 2) are ultimately
decreasing.

1t follows from Theorem 2 that the sequence
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(2.3) (9_N+1, 6“N+2,""V96_19 903 919"')

is a k-series base for (O,G_N], where N is any positive integer. Hence if
r is any positive real number, and L and M are positive integers such that
both 6 ~¢ and ™M > r, thenthe k-series representation of r interms
of the sequence (2.3) with N = L is the same as with N=M. For shoriness,
therefore, we can refer to this as the '6-representation' of r. Then, if an
initial minus sign is used in representing negative numbers, we can give a
unique 'O-representation' for any real number. A 'O-representation' of real
numbers is akin to decimal representation, but is much more closely related
to binary representation since when k = 1 the 'O-representation' and the
binary representation of the same real number are the same (for when k = 1,
6 =1

A further observation is that any sum T of a finite number of terms of

+
R 1’9R+2,.”)’

the sequence (@ where R is any real number, in the form

i i i i1
T = 01+02+.00 +0% 0%

where iV_H = iv +k for 1 = v <o, canbe written in the form

T=E ol |

V=i

where i, b = i,+k for v=1, simply by putting

o0

2.4) gia‘i =§ :gia"""k ,

v=i

(The relation (2.4) follows from the relations
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and

e‘ia—1+nk - eia+nk + eia-1+(n+1)k
for n = 0, both of which are very easily proved.) This fact is analogous to
the decimal equation 1 = 0.9 or the binary equation 1 = 0.1,

3. PROOF OF THEOREM 1

We first prove Lemma 1, an equivalent form of which occurred originally
in [3] and was also quoted in [4].

Lemma 1. If ay,ap,c¢- 2»0p are real numbers then there exists an in-
creasing sequence (nj) of positive integers such that

exp (injafi) —>1, exp (i_njozz)—el, ceo @xp (injap)—él as j—>oo,

Proof. For x a real number, let ¥ be the number differing from x by
a multiple of 27 such that -w =X =7. We prove the lemma by showing that
if we are given any positive real number € > 0, and any positive ‘integer N,
then we find an integer n = N such that

no | < € for 1=s=rp

Let M be the region in p-dimensional space in which each coordinate ranges
from -7 to 7r. Let the range of each coordinate be divided into m equal
parts, where

2
€

m =

is an integer. Then M is divided into mP equal parts. Consider now the

mP +1 points

(Nvay, Nvaz,'“,Nvozp) for 1 =v =mP.

One part of M must contain two of these points; let the corresponding indices

be vy and v;. Then clearly

NZV]_ - Va ;C’Z;

27

<

& mn
<€
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for 1 =s =p, and
i vy - vzl =1,
We put
n = Ny - »| ;

this proves Lemma 1.
Since (cn) obeys the recurrence relation (2.1), c, can be expressed

in the form
u Vs
- z : E : n
(3.1) c, = ntBst £s for n =1 ,
s=1 t=0 .

where the numbers £ are the distinct roots of g(z), the number (v  +1) is

the multiplicity of the root {s for 1 =s =u, andthe numbers BS are suit-

t
able complex constants. Let = £,. We consider two cases.

Case 1. B, =0 when (s,t) # (s',0). Then by (3.1),

(3.2) c =B_,p  for n=1.,

a positive constant, Since (cn) is a decreasing sequence, p < 1. Hence the
theorem is true in this case.

Case 2. B, # 0 for at least one pair (s,t) # (s',0). This implies that
k = 2, We shall deduce a contradiction. By rearranging the terms in (3.1) if
necessary, there is a number p where 1 =<=p =u, and a number g, where
0 =g = min (vj, Vg, ,vp) such that
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(i) For 1 =s =p, Bsq% 0, |§S|=i§1| and By, =0 for g =t =
Vg
(ii) for p <s =u, if lfsl=|§1|then By
if |§S|> |é1| then B, = 0 for 0=t =v_

. s
Then by (3.1)

t=0 for q <t =V and

p
= g,n

(3.3 c, E Bog® &, * R,

s=1
where R is the sum of a finite number of non-zero terms of the form Cnyf §9
where C is a complex constant and either |§5| = l’fil and ¥ <gq, or ’fﬁ, -
‘ﬁi Our assumption implies that either
(3.4) |&l =p or q=>0.
1t Igﬁl < |&] then Y|és| "/1¢4]" >0 as n->co. Hence

(3.5) R/|§1|nnq >0 as n-> .

< = i
For 1 =s =p, let fs r exp G ozs), where ry and a  are the

modulus and argument of fs respectively. Then by (3.5) and (3.4) respectively,

(3.6) E’»/rlil n? >0 as n>w
and either
(3.7) ry >p or q>0.

Further, let w be the smallest positive integer such that when n = w, En #

0, where

p

En = E Bsqexp (lms)" for n=1.

=1
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The number w exists, for otherwise BSq =0 for 1 <s< p. From (3.3)
and (3.6)

S . i . itn -
ha BSq exp (1wozs) exp (i w)as) +0(1) as n-> oo
s=1

By Lemma 1 there exists a sequence (nj) of positive integers such that

C
n.

(3.8) —nJ— = E,+01) as j>».
r1] nd
J
It is clear from (3.8) that EW is real and positive; since (cn) is a decreasing
sequence, we have also that ry < 1 and hence p < 1.
By (3.7) and (3.8) there exists an integer m such that

C C r m (¢
JE P P

Hence,

Ci Cy Ci
m-k+i m-k+2 m
(3.9) Cm-k+ z cm—k+2> > > (?)p 2 (F) p > o> (7) P

Therefore,

Cq -1
(3.10) Crok ~ #Cm tagem-oytecc e o > (—’3-) (a,pm +a, pm +

- 1 -
koot m k+1) - (_E_>pm k .

Using (3.9) and (3.10) we find in a similar way that
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1\ m-k-q
k-1~ (_ﬁ_)p

Cy
m-k-2
cm—k—z> < >p

and

LRE Y

and so on, until

Ci
¢y 2> "p—p,

a contradiction. Hence Case 2 does nof occur. This proves Theorem 1.

4., PROOF OF THEOREM 2

The sequence (bn) is clearly a k-series base for (O,GR] if and only
if

is a k-series base for (0,1]. Hence without loss of generality we assume
that R = 0, so that we shall be discussing k-series bases for (0,1].
Lemma 2.

Proof. Since 6 is a rootof f(z) = zk +8-1and 0<H<K 1, we see

that
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m 00 +
nHtvk _ ont k.ww _ ,n+i 1 _ o™ _ pn
29 0 E 0" =0 <1_6k>———9———9.

V=9 V=0

for m = 0. Since 6 <1 it follows that

0
91+Vk =1,
V=0
and hence
e o}
R - E :9n+1+vk £ n=0,
V=0

as required.
Proof of sufficiency. We show that ©") is a k-series base for (0, 1].

Let 0 <=x =1, First we construct inductively a sequence (iy) of pos-

itive integers such that iv = iV +k for v =1, and

-+
im—i+k m i,
4.1) 6 EX—EG >0 ,
V=4

for m = 1. The integer i; is chosen so that
Gii—l = x > 9i1

and since 6 + 9k = 1 we see that

911—1'1'1{ - Gii—i _ 611 >x- Bil >0,
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Let t =1 be an integer and suppose that iy, is,-<+,i; are chosen so that 4.1)

holds for m =t¢t, and J‘LV Ziv+k for 1 =v <t Then we choose i

+ t+

such that

i, -1 t i i
4.2) g i 2x-§9V>6t+1 .

=g

Hence

. . . !

i, -1tk i, -1 i

ot o gt g™y Yy gV =0,

v=1i

From (4.2) and the assumption that (4.1) holds for m = t it follows that

i, -1tk i, -1
ot > g tH

Hence i, = it+k. The construction of the sequence (iv) follows by

t+1
induction.
Since 0 <1 it follows from (.1) that there exists a representation of

X in the form

00

i
(4.3) x=ZGV ,

V=1

=i -+ =1,
piy =1, k for v =1

This representation of x is unique. For otherwise we may assume

where i; =21 and i

without loss of generality that

oo, o .
z elV - E 9 JV
v=1

V=1
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where iy =1 and i =i,+k for v =1, j =1 and j =j,+k for

v+ v+

v =1, and iy < jj. Then

. i j jitvk ji-1
911<§9”=§eys§9 o
V=1

V=1 V=0

1l

by Lemma 2. Hence i; = j; - 1, which contradicts the assumption that iy <
J1e

Since 6 >0, no non-positive numbers can be represented in the form
(4.3). By Lemma 2,

and so 1 is the largest number which has a representation in the form (4.3).
Hence (0") is a k-series base for (0, 1]. This completes the proof of the
sufficiency.

Proof of necessity. We show that if the sequence (bn) is a k-series
base for (0,1], andif b, =b >0 for n =1, then b =6" for n =1

For shortness we write by = 1, but as stated earlier, by the sequence

(bn) we mean the sequence (by,by,+++). The sequence (bn) is strictly de-
creasing, for if bi = bj for i # j then clearly some numbershave more than

one k-series representation. For n =1 we define

= = s iy = i =i + = .
Bn rlr biV, iy n, i, =i, k for v =1
V=i

We denote by En the least upper bound of Bn' Since (bn) is a positive
strictly decreasing sequence it follows that

n n+vk
V=0

(4.4) B = E b for n=1
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and

B = B > =
4.5) Bn Bn+1 0 for n=1.

It follows from (4.5) that there exists a non-negative realnumber { such
that En—>ﬂ as n >o. But, by (4.4)

fo'e] m o)
= i B = ﬂ
Zb1+Vk mh};“ Z b1+vk * B1+(m+1)k § :b1+vk 5
v=0 V=9 V=)
so that £ = 0. Hence
(4.6) _En—>0 as n—> o .

We now prove by induction upon n that
“.7) B = b

for n = 0. Since (bn) is a k-series bhase for (0,1] it follows from (4.5)
that By = 1, and so (4.7) is true when n = 0. Let m = 1 be apositive inte-
ger and suppose as an induction hypothesis that (4.7) is true for 0 =n <m.

If bm > B then there is no k-series representation for %(bm +

m-+1

Bm+1)' Suppose that bm< Bm+1

sequence (jv) of positive integers, where j; = m and jV+1 = jv+k for

v =1, such that for v = 1 there are infinitely many positive integers n

. Then we can construct inductively a

satisfying

m-i

or

— 1
4.8 B . -b. -b, —ees -b, +ieB, if v=2.
“.8) mH T iy T Vi j n &8 1

By (4.5) and the induction hypothesis,
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b0=§1>b1= s T e > ] =B =

and so there are infinitely many positive integers n such that

= 1
Bm+1 +HEBm o

Let 6= 1 be an integer and suppose that the first § - 1 terms of (j,)
are chosen. Then for infinitely many positive integers n,

— 1 . _

&Bmﬂ FEEBy . HME=2

= 1

B__ -b, -b, -ec-b +:EB, ,if 6>2.

l m+ T Ui g Jgy B dg

Hence

o)

B -b -b, —eee-h +xeg B

L S PR ooy B i

i=j6_1+k

for infinitely many positive integers n. Therefore

B .. -b -b -eee-b =0,
s T PR i1

However, if B =p, +b, +eoo +b,_ , then, by replacing b, by its
m+1 AE IR 364 3614
k-series representation we obtain & k-series representation for Bm + dif-
ferent from the k-series representationgiven in (4.4), and this contradicts the
fact that (bn) is a k-series base. Therefore by (4.6) there exists a positive

integer q such that

Hence

B -b, -b, =c°° -bh, += U B.
mt1 Tjy g i5_4 n © i
i=j6_1+k
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for infinitelymany positive integers n. Hence there exists j& =j 61 + k such
that

= 1
B -b, -b, = +«co =D, + = & B,
mH Jg-y B € is
for infinitely many positive integers n. The construction of the sequence (j,)
follows by induction.
We deduce from (4.8) that for v = 1,

0 <B -b, -b, —es-bh, =B,
m+1 A1 J2 Ju_y Iy

and by (4.6) it follows that

00
Bm+1 = E ij .
v=1

This k-series representation for -ﬁm is different from that given in (4.4),

+1
which contradicts the fact that (bn) is a k-series base. Hence T:jm
and it follows by induction that (4.7) holds for all n = 0.

By (4.4), for n =0,

1 bm’

[e¢} o0

B = = -+ = + B

Bn+1 n+it+rk bn+1 § :bn+k+1+vk bn+1 Bn+k+1 ?
V=0 V=0

and therefore, by (4.7)

b =b + b for n =0,

n n+i n+k

The number 6 is the positive real root of the auxiliary polynomial £(z)

= zk +z - 1 of this recurrence relation. The modulus of any other root of

f(z) is greater than 6. For if |z| <0, then since 6 <1,
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lt@)] = [1-2@+2°") =1 - |z)a+]45H = 1-6a+6Y =0

9

whilst if f(z) = 0 and |z| =0, then

1-|g -]1-2|=1-|z|-|f@z)-2z+1 =1—|z|-|zlk=0 ,

so that

|1-2 = 1-]af ,

and hence arg z = 0 so that z = 0.

By Theorem 1, therefore, for some positive constant A, bn = A" for

n =1, However, we have shown that ©@") is a k-series base for 0,1],

and so it follows that A = 1. This completes the proof of the necessity and of
Theorem 2.
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions
to Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit
solutions or other information that will assist the editor. To facilitate their
consideration, solutions should be submitted on separate signed sheets within
two months after publication of the problems.

H-143 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn.

Let Hn be a generalized Fibonacci sequence and, by the recurrence
relation, extend the definition to include negative subscripts. Show that

n
(i) Loj+1 ZH%zjﬂ)k = Hj+1) (a+1) Hej+n - HoH_(2j+1) »
k=0
n
(i) Lyjt1 ) Hejrok = Hejt)t) - Ho@j+)
k=0
n
(iii) sz Z (-1)kH§jk = (—l)anj(n+1) ngn - Hy H_.gj ’
k=0

and derive an expression for

n
(IV) Z (- l)kf'lzjk .

k=0

350
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H-144 Proposed by L. Carlitz, Duke University, Durham, No. Carolina.

A. Put
co
_ _ _ _ -1 _ m n
[ - 01 - pa - ax)(1 - by) > Ap X8
m,n=g
Show that
[v.]

Z A n _ 1 - abx?
nn = -390 -a00d - ™A - abx) °

n=o
B. Put
Qo
-1 -1 - _ m n
1-x"'1 -y - axy)" A= Z Bm,nx v .
m,n=o
Show that
».e]
w9 n - _ -1 _ -\
> B % @ - 27 - ax)"A.
n=0

B-145 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

if
ey ey e
n = piipz*z'” Prr

is the canonical factorization of n, let A(n) = ey +++« + ep Show that A (n)

< A(Fn) +1 for all n, where Fn is the nth Fibonacci number,
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H-146 Proposed by J. A. H. Hunter, Toronto, Canada.

Let P_ be the n™ Pell number defined by Py = 1, P; = 2, and P_,,

= 2Pn w7 Pn’ Prove that the only square Pell numbers are Py = 1, and Py
= 169,

H-147 Proposed by George Ledin, Jr., University of San Francisco, San Francisco,
California.

Find the following limits, Fk is the k‘rh Fibonacci number, Lk is the
k™ Lucas number, 7 = 3,14159:++, o = (1 +1/5)/2 = 1.61803:++, m = 1,
2’ 3’ soe

th

F
_ . n+i
Xy = plim, e
F
n
F
m
XZ = nlim I;n
=l 5
F
. nm
% = g | S
F
n
F
. nIn
Xy = Glimy |
n F
n
Ln -2
X5 = nlimo n
SOLUTIONS
SUM DAY

H-103 Proposed by David Zeitlin, Minneapolis, Minnesota.

Show that
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n

4
8 Z Fak+1 Fk+2 Fek+s = Fan+s
k=0

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pa.

We suppose known that

2
Fox+1 = Fa + Fiyy

and that
X+ 2
Fxe+2 = (-1) + Fx+1 o
Then
Fogg = Fa o+ Fiy = (Fx - Fxp)? + (Fx_q - Fxop)?
=F2 +F +F +F2 _ _2F F__-2F_ F
X x-1 x-2 x-3 X7 x-2 X-1" X-3
= T2 + 72 4+ F2 o+ 72 - ooenE L o4+ wp¥? 4 o2
FX FX_1 Fx-z Fx—s 2{(-1) + Fx—i (-1) + FX—Z)
:FZ_FZ _FZ +F2 =F2—F +F2 ,
X x-1 X-2 X-3 X 2X-3 X-3
whence

2Fpx3 = Fx + F&j .
Now, the identity tobe proved is clearlytruefor n = 0 and we need only show
that the right- and left-hand sides increase by the same amount when n is re-
placed by n + 1. The right-hand increase is

9 2
Fin+g - Fanss = (Fan+g - Fants)(Fantg + Fants)(Fin+g + Finsg) .

The first factor is

Fan+s + Fan+g -~ Fapts = 2F3p+y o
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The second is
Fan+s + Fan+g + Fan+s = 2Fan+5 .
Thus the total is
4Fsn+s Fan+s (Fin+e + Finss) .
The left-hand side increase is
8Fsn+4 Fsn+5 Fan+e «
These increases are equal if
2Fgu+s = Fin+g + Fints »
which we have already proved.

Also solved by F. D. Parker, Charles R. Wall, and J. Ramanna.

GENERATOR TROUBLE

H-104 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose,

California.
Show
me = k 2k
= 57 (Famk *+ XL(ok+1)m )X
1- 5F x + (-1) 52 g

where Lm and Fm are the mth Lucas and Fibonacci numbers, respectively.

Solution by David Zeitlin, Minneapolis, Minnesora.

Using (14) and (16) in my paper, "On Summation Formulas for Fibonacci
and Lucas Numbers, " this Quarterly, Vol. 2, No. 2, 1964, pp. 105-107, we

obtain, respectively
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2]
1) (1 - Lomy + ¥) E FomkyS = Fomy ,
k=0
oo}
k
(2 (- Lmy +y) ) Lektmy = Ly + (Lym - LmLem)y
k=0 _
+
= Ly + D™y,
since
+1
Ly = D™ (Lgm - LmIem) -
For y = 5x%, we obtain
[¢.]
I k
Z 5*(Fami * XL(kH)m %"
k=0
L_x(1 + 5F_x + 5(-1)™"2) L_x
_ _m m - m
1 - 5Lymx? + 25 1- 5F_x + 5(-D™"x2
since
Lom = 2(-1)™ + 5F3,
and so

1 - SLomat + 26x4 = (1 + 5Fmx + 5-1)™ xH(1-5F_x+5(-1™""x2),

Also solved by Anthony G. Shannon (Australia).
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OF PRIME INTEREST

H-105 Proposed by Edgar Karst, Norman, Oklahoma, and S. O. Rorem, Daven-
port, lowa.

Show for all positive integral n and primes p > 2 that

@+1)P -nP =6N+1 ,
where N is a positive integer. Generalize.

Solution by E. W. Bowen, University of New England, Australia.

Let b be a prime, m a positive integer, and w theleast positive res-
idue of m modulo b - 1, i.e., for some integer k, m = k(b - 1) + u where
0O<pu< b-1.

Clearly ™ = 0 = n*mod b) if n is a multiple of b. If n is not a

multiple of b, we have by Fermat's theorem,

nb_1 = 1 (modb),

from which we infer

o= nk(b_1)+""5 lkn“ =n (modb) .

Thus, for all integers n we have
2™ = 0" (modn).
Using A to denote the difference operator by which
Af(n) = fn + 1) - f@) ,
and noting that Ap'n”' =Mt, we obtain
A'UL 2™ = mx! (modb) .

and in particular, with & = 1,

An™ = 1 (modb) if m = 1 (mod b - 1).

If by, by, ***,bg are different primes, we infer immediately that
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* An™ = 1 (mod bybye+bg) if m = 1 (mod by - Deeelbg - 1))

This is ageneralization of the required result since, with 2and 3as the primes,
bi, we find that for any odd m, and hence for m = p > 2, an™ =1 (mod
6), ine., @+ 1)m -n™

tive when n is positive and m > 2.

= 6N + 1 for some integer N; N is obviously posi-
Examples of other results obtained from * are:

™ = 1 (mod10) if m = 4k + 1,

B>
=}
n

An" =1 (mod 30) if m = 8 + 1 .
Summing gives a further generalization of *:

@+1™-n™ = r (mod byeeebg)

if

m = 1 (mod (by - 1)eec(bg - 1)) .

Also solved by J. A. H. Hunter, Brother Alfred Brousseau, David Singmaster,
Steven Weintraub, and Anthony Shannon.

BUY MY NOMIAL?

H-106 Proposed by L. Carlitz, Duke University, Durham, No. Carolina.

Show that
n ) n
(2) > <11;> Lok = D, (Iﬁ) (n x k) Lok
k= k=

g > (1) - S () e

k=
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Solution by David Zeitlin, Minneapolis, Minnesota.

It

n

Px) = Z (E)zxk
k=0
and
n
Q) = 3 (ﬁ) (" Yo - 0

k=0

then P(x) = Q) is aknown identity (see Elementary Problem E799, American
Math, Monthly, 1948, p. 30), If ¢ and B are rootsof x-x -1 =0, then

L, =o' +8% F =€ -G,

n
and thus
(@ P@?) + P@YH = Q@d + QB?
) PE?) - PEH) _ Q@ - QB

V5 V5

BE DETERMINANT!
H-107 Proposed by Vladimir lvanoff, San Carlos, California.
Show that

Fotm Tpm Fp

Form Fogm Fq| = O

'Fr-i-zn Fr+n Fr

for all integers p,q,r and n,
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Solution by C. C. Yalavigi, Government College, Mercara, India.

Let
pitrn p1tn Fp1
1) D = Fp2+rn eo  eee Fp2+n sz
+
L M Ppy ™ Pryy
On simplifying the first column of this determinant by the use of
Fiyg = FigFy * BTy
it is easy to show that
i F eoe .
pi+ pt(r-in "prm Fpy
D=Fu oyt FP2+(1‘~1)n - sz+n P2
F F F F
Ppg™t Ppygtr-in Prig Pryy
(2)
F F
P1 pyt(r-1)n pim 'py
F F
* F e, P2 pat(r-1n prn P2
F F F F
Pryy  Prygtr-tn Prpy™ Py

when the subtraction of Fn times the first column and Fn—

' times the last

column from the last but one column in the first determinant reduces it to zero

and the second determindnt also vanishes.

Therefore the desired result follows for r = 2.

Also solved by F. D. Parker, David Zeitlin, Anthony Shannon, C. B. A. Peck,
Douglas Lind, William Lombard, Charles R. Wall.

& o ok &



THREE DIOPHANTINE EQUATIONS —PART |

IRVING ADLER
North Bennington, Vermont

1. INTRODUCTION

This article deals with the three Diophantine equations

(1) X2 + (x + 1)% = z2
2) u? +u = 2v?
(3) s2 + 282 = 1.

These equations have been studied by various methods for hundreds of
years, and their solutions in positive integers are well known. (See the his-
torical note at the end of Part II, Feb.) However, as often happens with old
problems, people not aware of the long history of these equations keep redis-
covering them and their solutions. An article recently submitted to the Fib-
onacci Quarterly dealt with Eq. (1), and solved it by transforming it into
Eq. (3). Elementary Problem B-102 in the December 1966 issue of the Quar-
terly (page 373) also links Eq. (1) and the solution to Eq. (3). Another article
recently submitted to the Quarterly deals with Eq. (2).

The three equations are essentially equivalent because, as we shall see
in Section 9, each can be transformed into each of the other two by a linear

transformation.

2. WHY THE EQUATIONS KEEP COMING UP

The equations come up over and over again because they arise in a nat-
ural way from some basic problems of number theory.

A. When the general solution of the equation x*+y? = z? is studied, it
is natural to consider the special case in which x and y are consecutive inte-
gers. This leads to Eq. (1).

B. When people play with figurate numbers, and, in particular, with the
triangular numbers

360
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T(u) = ‘!‘U.(ll + 1) s

and the square numbers

they soon observe that

36 = S(6) = T(8) .

This observation naturally suggests the problem of finding all the triangular
numbers that are also square numbers. This problem leads to Eq. (2).
C. There is no rational number s/t equal to the square root of 2. That

is, there are no positive integers s and t such that
(4) -2t =0,

However, it is possible to obtain rational approximations to the square root of
2 with errors smaller than any prescribed amount. The search for rational
approximations with a small error naturally leads to consideration of the equa-
tion obtained from Eq. (4) by requiring the right-hand member to be 1 instead
of 0. This leads to Eq. (3).

3. SOLUTIONS BY TRIAL AND ERROR

One way of finding some positive integers that satisfy Eq. (1) is to sub-
stitute first 1, then 2, etc., for x in the expression x*+ (x +1)% to identify
values of x which make the expression a perfect square. Similarly, solutions
of Eq. (2) can be found by identifying by trial and error some positive integral

values of u that make
Fu(u + 1)

a perfect square. And solutions of Eq. (3) can be found by identifying some

positive integral values of t that make 1 + 2t® aperfect square. Anyone with
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patience and a table of squares, or whohas access to a computer can discover
in this way at least a few of the solutions of each of the three equations.

It will be useful to us to identify not only positive solutions, but non-
negative solutions. The first five non-negative solutions of Egs. (1), (2), and
(3) are shown in the table below:

Solutions of Solutions of Solutions of
Equation (1) Equation (2) Equation (3)
X | = u | v s |t
0 0} o0
5 1)1 31 2

20 | 29 8] 6 17| 12
119 | 169 49 | 35 99 | 70
696 | 985 288 | 204 577 | 408

4. CAN WE COMPUTE MORE SOLUTIONS
FROM THOSE WE ALREADY HAVE?

Once we have the first few solutions of one of these equations, we may,
by inspecting them, find a relationship by which more solutions can be calcu-
lated. To facilitate the formulation of such a relationship, let us index the
solutions of each equation in order of magnitude, with thenon-negative integers
0, 1, 2, -+, respectively, used as indices. Then, in this notation,

etc. Are there, perhaps, formulas that permit us to calculate X and z, in
terms of Xy and zn-1? Let us assume there are such formulas, and let us

guess that they are linear. Assume that

(5) X = ax +bz][l +c ,

(6) z, = dxn_1 + ezn_1 + f .
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Then we have to use only the first four values of x and z to determine what
the values of a, b, ¢, d, e and f must be. Taking n equalto 1, 2, and3

in succession, we get the following systems of equations:
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