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PRODUCTS OF FIBONACCI AND LUCAS NUMBERS 
H. K. FERNS 

Victoria,' BJC., Canada 

Let U denote a Fibonacci or a Lucas number and consider the product x i 

u u eoe u 
xt x2 x n 

We are interested in finding a general method by which this product may be 
"expanded," i . e . , expressed as a linear function of Fibonacci or Lucas 
numbers. 

Beginning with the case in which n = 2 we find that there are four types 
of such products* Using Binet!s formulas It i s easily verified that these may 
be expressed as follows; 

F L = F A + (-1)X2 F 
X i X2 Xi+X2 Xi~X2 

L F = F ^ - (-l)*2 F , 
X i X2 Xi+X2 Xi~X2 

L L = L A +(™1)X2L 
X i X2 Xi+X2 X i -X2 

F F - 1 
ti A - (-D*2 L x i x2 5 L xi+x2 xi-x2 

From these four identities we make the following observations. 
This "multiplication" Is not commutative. 
The product of a mixed pair (i. e. , one factor i s a Fibonacci number and 

the other is a Lucas number) is a linear function of Fibonacci numbers. The 
product of a Fibonacci and Lucas number Is a function of Lucas numbers. 

The coefficient of the second term is (-1)X2 or ~(-l)X 2 according as X2 
comes from the subscript of a Lucas or a Fibonacci number. 

The factor 1/5 occurs when both numbers in the product are Fibonacci, 
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For convenience we denote -1 by € . Now consider € * as playing a 
dual role. As a coefficient of L or F it has the value (-1) *. As an oper-
ator applied to these numbers it reduces their subscripts by 2x.. With this in 
mind, we may write 

F L = (1 + €X2)F ^ = F _,_ + (~1)X2F 
Xj X2 X!+X2 Xt4x2 Xi-X2 

L F = ( 1 -€X 2 ) F _,_ = F A - (~1)X2F 
Xl X2 Xi+X2 Xi+X2 Xj-X2 

L L = (1 + €X2)L A = L A +(-l)X2L 
Xl X2 Xi+X2 Xi4x2 Xi~X2 

F F = (1 - cX2)L ^ = i |L ^ - (-1)X2L 1 
xt x2 xj+x2 5[ Xi+x2 x r x 2 J 

We turn now to products containing three factors such as L L F . 
x i x 2 X3 

For the moment we shall understand that L r L F, means (L L ) 
xi x2 x3 xj x2 F . Then, making use of the above results , we have 

X3 

(L L )F = f"L ,_ + (-1)X2L I F Xi x2 x3 L x i + x2 Xi~x2J : 

= L _, F + (-1)X2 L F 
Xi+X2 X3 X i -X 2 X3 

= F A . - (- if3 F _, + (~1)X2 x 
Xi+X2+X3 Xi+X2-X3 ^ 

X TF _,_ - (-if3 L 1 
|_ Xi-X2+X3 Xi-X2-X3J 

= F • M M - (-1)X3 F . + (-if2 X 
Xi+X2+X3 Xi+X2-X3 

X F • - (-1)X2+X3 L 
- xi-x2+x3 x r x 2 - x 3 

Using € we arrive at the same result, 
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L L F = (1 + €X2)(1 - €X 3)F 
Xi X2 X3 . , V ;JrXi+X2+X3 

(1 + €X 2)F - (-1)X3F 
X!+X2-+X3 Xi+X2-X3 

F - (-1)X3F + (-1)X2F - (~1)X2+X3 X 
• " x i - ^ 2 ^ 3 ' Xi+X2-X3

 K ±} * X r X 2 + X 3
 l 1} X 

X F 
x r x 2 ~x 3 

Since 

(1 + €X 2 ) ( 1 - €X 3 ) = 1 + €
X 2 _ €X3 _ eX2+X3 > 

we could proceed as follows: 

L L F = ( l + €X 2 - e
X 3 - e

X 2 + X 3 ) F 
xi x2 x3 x1+x2-bc3 

X F 
Xi-x2-x3 

We leave it as an exercise to show that L (L F v ) when expanded by 
xi x2 x3 

any of these methods leads to the same resulL 
There are eight types of products* each consisting of three factors. We 

list them below. 

F L L = (1+€X 2 ) (1 + €X 3)F . _, xj x2 x3 xi+x2+x3 

L F L = ( 1 -€X 2 ) ( 1 + €X 3)F A , 
X i X2 X3 * Xi+X2+X3 

L L F = (1 + €X 2 ) ( 1 »€X 3 ) F _, . 
Xi X2 X3 Xi+X2+X3 



PRODUCTS OF FIBONACCI AND LUCAS NUMBERS [Feb. 

F F F = i ( l™-€X 2 ) ( l -€X 3 )F ^ • 
x t x2 x3 5 Xi+x2+x3 

L F F = i ( l -€X 2 ) ( l -€X 3 ) L _, ^ xi x2 x3 5 Xi+x2+x3 

F L F = 4 ( l +€X 2 ) ( l _€x 3 ) L xi x2 x3 5 v n ' X!+x2+x3 

F F L = i ( l -€X 2 ) ( l + €X3)L ^ M xi x2 x3 5 Xi+x2+x3 

L L L - (1+€X2)(1+€X3)L ./• xi x2 x3 Xi+x2+x3 

The preceding resuJ.ts are the bases for the following conjecture. 
Let Ux. represent a Fibonacci or a Lucas number. Let p be the num-

ber of Fibonacci numbers in a product of both Fibonacci and Lucas numbers* 
Let 

Xi+x2+- ••+xn 

denote a Fibonacci or a Lucas number according as p is odd or even. As a 
x- x,« 

coefficient € l has the numerical value (-1) but as an operator applied to 

Xi+X2+» • • +Xn 

it reduces the subscript of the latter by 2K. • 
Use 

(1 - €^ ) or (1 + € 1) 
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according as s 
product. Then 
according as x. is the subscript of a Fibonacci or a Lucas number in the 

u 
T T u = - ^ r ( 1 ±€X 2 ) ( 1 ±€X 3 ) ••• ( H €Xn)u A M ' 
i * x. jE 1 xi+x2+° • • +xn 
i= l r-L2J 

The proof of this conjecture i s given at the end of this article. The following 
example will illustrate 

F 1 5 F i 2 L 1 0 F 8 = ± ( 1 «€1 2 ) ( 1 + €1 0 ) ( 1 -€8 ) F 4 

= i ( l - €1 2 ) ( l + €i ° ) (F 4 5 -F 2 9 ) 5 U- - €" M ± t fc~MJ?45 - ^ 29/ 

= i ( l - €i 2 ) ( F 4 5 - F 2 9 + F 2 5 » F 9 ) 

= i (F45 - F29 + F2 5 - F9 - F 2 i + F5 - Fj + F_15) 

= | (F45 - F29 + F2 5 - F 2 i + F15 - F9 + F 5 - Fi ) . 

The above rule also applies if the product consists entirely of Fibonacci 
or of Lucas numbers each with the same subscript. For example, 

L x = ^ ^ S x 

= ( l + 4 e x + 6 €2 x + 4 €3 x + * 4 x ) L 5 x 

- L5x + 4 ( - 1 ) X L 3 x + 6 ( - 1 ) 2 X L x + 4 <A X
 + ( " 1 ) t e L - 3 x 

= L 5 x + [4(-l)X + (-1)X] L 3 x + [6(- l ) 2 x + 4 ( - l ) 2 x ] L x 

= L 5 x + 5(- l)XL3 x + 10 Lx 

More generally, if n is an odd integer we have 
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(1 + e^r1 L 
nx 

= L + nx 
* 2 X T 

(n-4)x 

-2)x 

Since 

L_k = (-1)-Lk , 

we get 

LA = L + x nx '(v)-(::ij (Q-2)X (VM^j e2 xL (n-4)x 

*••• *[(QUH±)]fc\ • 
Making use of the identity 

( n \ + ( n ) = (n + 1) 
I ml In - mI \ m / 

the last equation may be written 

L n = L 
x nx 

_, / n \ xT _,_ / n \ 2xT ^ , f n - l ) A 2 J1 

+ {l)€ L(n-2)x + {2} € L(n-4)x + "" + \ — / € 

n~l 
2 

i=0 x ' 

n = 1, 3, 5, 

Similarly, we get the following: 
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£ - 1 
2 •i - E K 1 (") v * J -<-«|x f I ) 

i = 0 «- \ / J 

(n, even) 

n-1 
2 

- i i E <-«<x+1,i (°) w 
2 i=0 

(n9 odd) 

£ . 1 
2 r 

F11 = 
.2 i=0 
4 E <-»htl,i(i)v 2i)x + 2(-l) 

| (x+D /n fi') (ns even) 

The proof of the rule which has been used to express products of Fibon-
acci and Lucas numbers as linear functions of those numbers is a proof by 
induction. 

We have seen that it is true for n = 2 and n = 3. Assume it is true for 
all integral values of n up to and including k. Then, if p is even 

k 

(l) TTux. = "fin (1 * €*2)'" (1 ± €*k) 

i= l 
xj-bt2+» • • +xfc 

Multiplying both members of this equation by L - we get 

TT". i-i ' 5 bi 

S] 
(1± €X2) ••• (1± € k ) X 

y (T, -J- (-1) L 
^ Xi+x2

+' • °+ xk+i x4+X2+-•-Hxk-xk + 1 

f*2 — (1 + €A2) • • • (1 ± € K ) ( l + € K<t i)L. fc+li 
Xi+x2+- - -+x k + 1 
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Next, multiplying both sides of equation (1) by F - we get 

nU F = - * ( i + €
x2) . . . ( i ± €

X k ) L F 

x i xk+l m x i + x2+ 8 • e + xk x k + 1 

- ( H e*2) ••• (1± eXk) X 

5L2. 

X F - (-1) k + 1 F 
Xl+x2+- • • +xk+1 Xi+x2+-• .+xk-xk + 1 

1 ( 1 ±€X 2 ) ^ - ( l ±€X k ) ( l - » € k + 1 ) F _, ^ ^ 
[E] Xi+x2+-•-+xk+1 

Since both of these results agree with that given by the general rule for 
n = k + 1 the induction is complete for the case in which 

U = L 
XffX2+* • »+Xn Xi+X2+« • -+Xn 

We leave the case in which 

U = F 
Xi+X2+» • »+Xn Xi+X2+« • »+Xn 

for the reader to prove. 
We now consider the reverse problem; that i s , the problem of finding a 

general method of expressing 

L , _L and F , , 
xi+x2+* * a + xn XJ-HX2+" • *+xn 

as a homogeneous function of products, each of the type, 

F v F • • • F x . L x , . 1 Lx. • • • L x 
x l x2

 x i i+l xi+2 x n 



1969 ] PRODUCTS OF FIBONACCI AND LUCAS NUMBERS 9 

For simplicity let S. denote the sum of all products consisting of i 
i 

factors which are Fibonacci numbers and n - i which are Lucas numbers* 
The number of such factors is9 of course 

For example s 
• ( " ) • 

Sf = F F L L + F F L L + F F L L + 
* Xi X2 X3 X4 Xi X3 X2 X4 Xj X4 X2 X3 

+F F L L +F F L L +F F L L 
X2 X3 X| X4 X2 X4 Xi X3 X3 X4 Xi X2 

For later use we note that 

S n L + S n
1 F = S n + 1 

1 xn+l 1 " 1 V>-1 l 

This follows from the identity 

(H-K;1) 
For the case n = 2 we readily prove (using Binetfs formulas) that 

1 
Fx1 +x2

 = 2 ( L x 1
F x 8

 + F x 1
L x a ) 

1 „2 
2 = ; s | 

t̂-̂  - i ^ ^ + 5 ̂  V 
\ (S2

0 + 5S2
2) . 

Using these two identities as a basis, we develop the following for n = 3 
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= F 
Xi+X2+X3 (X1+X2)+X3 

L ^ F + F ^ L 
Xi+X2 X3 Xj+X2 X3 •if 

2 [2 

2 2 L 

= ±fe + 5 S|] 

(L L + 5 F F )F + 4 ( L F + F L ) L xi x2 X! x2 x3 2 xi x2 xt x2 x3 

L L F + 5 F F F + L F L + F L L 
22 [ Xi x2 x3 xt x2 x3 xj x2 x3 Xi x2 x3 

^ X ^ + X s (Xi+X2)+X3 

2 2 L 

2 2 L 

L. L + 5 F L F 
Xi+X2 X3 Xi+X2 X3 

i(L L +5F F ) L +|(L F +F L ) F 2 xt x2 Xi x2 x3 2 xi x2 xi x2 x3 

L L L + 5 F F L + 5 F L F + 5 L F F 
22 [ x i x2 x3 Xi x2 x3 Xi x2 x3 xi x2 x3J 

So + 5 S2 

Proceeding in this manner we derive the following identities for n = 4 
and n = 5: 

" Xi+X2+X3+X4 2 3 
Si + 5 S3 

F Xi+X2+X3+X4+X5 
= ±\sl + 5 S | + 52S| 

2 4 L 

Xi+X2+X3+X4 23L 
+ 5 Ŝ  + 52 s j 
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x1+x2+x3+x4+x5 
SA + 5SSJ. + 5 2 S | 

F r o m the above r e s u l t s we conjecture the validi ty of the following iden t i -

t i e s which we will p rove l a t e r , 

(2) F xi+x2+- • »+xn n - 1 

n -2 
2 n ^n , _ ^n t _o 0 n , , J 5 S -

St + 5S 3 + 5* S5 + • • • + / n - 1 
v n - 1 

5 2 S n 
n 

(n, even) 

(n, odd) 

(3) L Xi+x2+» • 9+xn 9 n - l !S5? + 5 ^ + 52S? + -
2 g n 

+ 1 n 

n - 1 

5 2 S* n - 1 

(n, even) 

(n, odd) . 

Before proceeding with the proofs of these ident i t ies we cons ider the 

specia l c a s e when x4 = x2 = • • • = x^ = x. F o r th is c a s e we get the following^ 

"nx « n - l M F L*"1 + 5 (*W La" 
\1) x x y3y x x 

+ . •. + 

/ n -2 

s 2 / MB*" 1 ! 
In - I I x 

£d- "I 
,. 2 W xJ 

(n3even) 

(n9odd) 

nx 
1 

, n - l 
n , r- / n \ ^2 _ n -2 j + 51 0 F L x \2j x x 

.2 /n\ F n 
W x. 

\ n - l W L 
/ X X 

(n, even) 

(n, odd) 

Note , in pa r t i cu la r s if n = 2 we get two well-known ident i t ies 

and 
F 2 x = F x L x 

L2x = i H + 5 F ^ • 
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We have now to prove the identities (1) and (2). The proof is by induction 
on n. Both identities are true for n - 2, We assume they are valid for all 
integral values of n up to and including n = k. 

Then 

(4) F. X!+X2+* " *+Xk k - 1 S ^ + 5 s ! f + 5 2 s | f + < 

(5) L xi+x2+"°+xk k - 1 
k lr « IT 

SQ + 5 S f + 5<J S f + • 

k-2 

5 2 < i k-l_ 
k-1 

K 2 Gk 

5 S k _ 
k 

52SJ* 
k - 1 

5 2 S k 

5 Sk-lJ 

(k, 

(k, 

<k. 

(k, 

even) 

odd) 

even) 

odd) 
Now 

(6) L = L , x 
x1+x2+- • »+xk+xk + 1 = (xi+x2+» • -+xk )+x k + 1 

T T + 5 F F 
[ X l + X 2 + ' • 8 + Xk X

k + 1 Xi+X2+- • »+Xk Xk+1< 

Applying (4) and (5) to the r ight m e m b e r of (6), we get 

(7) L L ^ _,_ L 
xi+x2+— +xk x k + 1 

Jc-1 S?L +5S^L +• 
xk4-l x k + l 

52S^L 
+ { K x k + l 

k - 1 

5 2 s{^ - L k - 1 x, fc+1 

(k, even) 

(k, odd) 
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(8) F F -
Xi+x2+-..+xk x k + 1 2 k - l x k + l x k + l 

k -2 

| 5 2 S k , F 
+ I k " X *k+l 

k - 1 
5 2 S k F k x, 

(k, even) 

(k, odd) 
*k+l J 

Substituting in (6) f rom (7) and (8) and regrouping we get the following: 

Xi+X2+- • '+Xk+I 
= S T 1 + 5 ( S J L +S^F ) 

\ k+1 x k + l / 

+ 5 2 ( s ? L + S ^ F \ + 
\ x k + l x k + l / 

5 2 S k L + S k 

\ k x k+ l k 

k - 1 
2 5 S, F. M k k+1 

- 1 x k + i / 
(k, even) 

(k, odd) 

Hence 

Js+1 , r Js+1 , ,,? Jk+1 5 2 S k + 1 (k + 1, even) 
L Xi+x 2

+ ' - • + x k+ i = S?"r± + 5 ^ " f " 1 + 52sft""L + . - . + 

5 2 Sk*J (k + 1, odd) 

This comple tes the proof of (3). The proof of (2) is s imi l a r , 
• • • * • 

ERRATA FOR 
PSEUDO-FIBONACCI NUMBERS 

EL H. F e r n s 
Vic to r i a , B„C„ , Canada 

P l e a s e make the following changes in the above-ent i t led a r t i c l e appear ing 
in Vol. 6, No. 6: 
p . 305: in Eq. (3), 0 . + 1 should read : C^ . On p. 306, the 6 l ine from the 

bot tom: B ~ k + 1 should reads B k + 1 . On page 310, in Eq, (12), 2 0 2 n should 

r ead : 2X0 ; in Eq, (13), 30 should read : 30 2 + 1 . Equation (17), on 

p . 312: ( X - 2 ) 0 2 x should read : X( X- 2)0 _ r Equation (18s) on p . 313: 
40? should read : 4 0 ? . In l ine 3 , pe 314, 20 o , 0 should r ead 2 0 0 _,_„, and 

1 1 atonr/u ^n+^d 
Eq. (20), p . 315: (-\- 2 ) 0 9 should r e a d X( X - 2 ) 0 9 . 

An • • * * • ^ n 



TSCHE6YSCHEFF AND OTHER FUNCTIONS 
ASSOCIATED WITH THE SEQUENCE { w „ (a,fe; p,q)[ 

A. F. HORADAM 
University of New England, Armu'dale, Australia, 

and University of Leeds, England 

1. INTRODUCTION 

Previously in this journal [5] and [6] , I have defined a generalized 
sequence jwn(a,b; p ,q ) | and established its fundamental general arithmetical 
properties, as well as certain special properties of it. In this article, the 
sequence is related to Tschebyscheff functions and to some combinatorial func-
tions used by Riordan [8] . This is the third of a series of articles developing 
the theory of jw ( a , b ; p , q ) | , as envisaged in [ 5 ] . Notation and content of 
[5] and [6] are assumed when the occasion warrants. 

For subsequent reference, we reproduce the Lucas results [?] 

[n/2] 
(1.1) un(p;q) = ^ ( - l ) k ( n - p

k ) p n - 2 k q k 

k=0 

and 

[n/2] , v 

(1.2) vn(p,q) = ^(-1) - ^ k j p q 
k=0 \ / 

with reciprocals [ 3 ] 

[n/2] 

* -gK0-( -2 V 2 k < P ' * q 

and 

14 
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[n/2] 
(la4) pB = 2 (k) V2k fe.q>qk fy*** = 1} • 

k=0 

respectively. Consequently, it follows that (p = -q = 1). 

&/2] 
(1.5) f„ = 

k=0 
n 2 ^ \ k J 

from (1.1), arid 

(1.6) 
[n/2] 

n ZLr n - k, \ k J 
k=0 

from (1.2), with appropriate reciprocals from (1.3) and (1.4). 
Making use of (1.1) above together with the first of the forms given in 

(2.14) [5] , we may express w as 

in 
-i ~> , •_ v V \ i i k / n - k\ n-2k k 
(1.7) wn(a,b,p,q) = a ^ f l ) ( k ) p q 

^ \ T * , . v k / n - l - k X n-l-2k fc 
^"pa) zLr ( * ( k ) p q + 

k=0 
2. TSCHEBYSCHEFF FUNCTIONS 

Write 
(2.1) x = cos 0 
(2.2) p = 2x , q = 1 

so that 

(2.3) d = 2i sin 0 (i = V 1 ! ) . 
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[n/2] , 
(2.11) vn(2x,l) = 2 c o s n « = ^ (- l ) k ^ / n " k j (2x)n" 

17 

2k 

k=0 

with reciprocals 

(2.12) (2x)1 

&/2]r 

k=0 
V2 k(2x,l) 

and 

(2.13) <2x)u = 
[n/2] 

k=0 

where we have used (1.1)-(1.4)9 

But, the expressions in (2.10) and (2.11) exactly describe the Tscheby-
scheff functions U (x) and 2T (x) = tn(x) respectively (TQ = i t 0 = l ) . That 
is , 

(2.14) w n ( l , 2x ;2x , l ) = un(2x,l) = Un(x) = ^ x U ^ x ) - U ^ x ) 

and 

(2.15) wn(2,2x;2x, l ) = vn(2x, 1) = 2Tn(x) = 2(xUn_1(x) - Un_2(x) ) 

Special cases are 

(2.16) w n ( l , l ; l , l ) = u n ( l , l ) = Un(i) = U H ( i ) - U n - 2 ( i ) 

and 

(2.17) wn(2,1; 1,1) = v n ( l , l ) = 2Tn(i) = ^ ^ ( i ) - 2Un_2(i) 



18 TSCHEBYSCHEFF AND OTHER FUNCTIONS [Feb. 

Generally, 

(2.18) w n (a ,b ;2x , l ) = b u
n „ l ( x ) "~a Un-2( x ) ' 

By means of the w -notation, relationships among Tschebyscheff poly-
nomials may be conveniently expressed. Recalling the known result [8] , for 
instance, that 

(2.19) Tn(x) = 2xTn_1(x) -T n _ 2 (x) 

we may, writing for brevity, 

(2.20) wn = wn(2,2x; 2x, 1) , 

express it in the form 

(2.21) % - 2 X < V l - o>n_2 . 

Equations (2.4), (2.10) and (2.11) enable us to express every formula in 
the theory of our second-order recurrences as a corresponding formula involv-
ing trigonometrical functions. [Observe that q = 1 invalidates any special-
ized application to the sequences jh | , jf | and j l }, for all of which q = 
- 1 . 1 > > > 

2 n- r 2 
Corresponding to the fundamental formula w w - w = eq u

T _ i 
((4.5) in [ s ] ) , for instance, we have 

2 2 
a | cos (n + r)0 cos (n - r)o - cos n$ \ 

(2.22) 2 2 2 \ sin^rfl 
+ (2 - a) cot e jsin(n+r)0 sin(n~r)0 - s in n6 J• = e ~ 2 

sin 6 

where e is given by (2.7). For |u [ and |v I, we obtain 

2 2 
(2.23) sin (n + r + 1)6 sin (n - r + 1)6 - sin (n+ 1)0 = -sin r0 
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and 

2 2 
(2.24) cos (n+ r)0 cos (n - r)0 - cos n0 = -sin r0 , 

in which e is given by (2.8) and (2.9), respectively. Both results (2,23) and 
2 2 

(2.24) are easy to verify. The particular result w + eu = aw ((4.6) [5]) 
derived by setting r = m implies the identity 

2 . 2 
cos 2n0 - cos n0 = -sin n0 

in (2.24). 
Other trigonometrical identities are not hard to detect, but it is interest-

ing to discover just how they are disguised. As further examples, we note that 

pwn + 2 - (p2 - q)wn + 1 + q 2 w n - 1 = 0 

((3.3) [5]), and 

w , + q w n+r ^ n-r „ 
w r 

n 
((3.16) [5]) lead to, respectively, 

/ 2 
(2.25) 2 cos0 sin (n + 3)0 - (4 cos 0 - l)sin(n+2)0 + s inn0 = 0 

1 2 
(2.26) 2 cos<9 cos (n + 2)0 - (4 cos 0 - l)cos (n+l)0 + cos (n-l)0 = 0 

and 

(2.27) J B l n ( n + r + l ) f l + B l n ( n - r + l ) g _ = c o g ^ 
v ' ; I sin (n+1)0 

(2.28) I coB(n + T ) g + c o s ( n - r ) g . = 2 c o s r$ 
v ; l cos n0 

where, in each pair of identities, the first refers to ju | and the second to 
jv j . A formula also worth investigation is 
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aw , + (b - pa)w , . = w w' - qw . w ., m+n v ^ ' m+n-1 m n ^ m-1 n-1 

((4.1) [5]), Furthermore, the summation formula (3.4) [V] indicates expres-
sions for 

n-1 

2 cos k# 
k=0 

and 

n-1 
V ^ sin (k + 1)0 
k=0 

Similar remarks apply to the formulae for sums of squares and cubes. 
Instead of (2.1)-(2.3), we may put 

(2.29) y = cosh 4> = cos i<j> 

(2.30) p = 2y, q = 1 

so that 

(2.31) d = 2sinh</> = -2i sin i$ 

and hence derive a set of parallel results for hyperbolic functions. 
Apart from the Carlitz [3J reference quoted earl ier , other sources of 

information regarding the relationships among Tschebyscheff polynomials and 
Fibonacci-type sequences a re , say, Buschman [_1J and Gould [V]. 

3. COMBINATORIAL FUNCTIONS 

From (1.1), we have, using the combinatorial function L (x) used in 
Riordan [s], 
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[n/2] 

(3.1) un(l>-x)= £ n k k x k = L n - l ( x ) ' 
k=0 

Then, by the second half of the expression (2.14) [5] , 

(3.2) wn(a,b;l,-x) = b £ (" ' £ " *)* + **£ ( ° "k " V 
k=0 k=0 

= bLn_2(x) + axLn_3(x) 

I 2 V > * 2 n " 1 g 2 1 

where, for brevity, g = (1 + 4 x ) . 

More particularly, notice that 

(3.3) w n ( l , l ; 1,-x) = un( l , -x) 

affords an alternative expression for the known recurrence relation [_8J. 

(3.4) Ln_l (x) = Ln_2(x) + xLn_3(x) [LQ = 1 ,1^ = 1 + x] 

while 

(3.5) w
2 n

( 2 j l ; l j " X ) = V 2n ( 1 '~ x ) 

is an alternative expression for the combinatorial function [8J 

(3.6) Mn(x) = L2n_^1(x) + xL2n_3(x) (n > 1) . 

Of course, 

(3.7) Ln_ l ( l ) = fn 
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(3.8) Mn(l) = l 2 n . 

4. OTHER FUNCTIONS 

Besides these combinatorial f u n c t i o n s and Tschebyscheff functions 
(themselves involving trigonometrical and hyperbolic functions), other func-
tions are related to the Fibonacci-type recurrences. In this respect, a recent 
article by Byrd \_2j is worth emphasizing, particularly as , it seems, his work 
offers possibilities for generalization In this article, Byrd considers the 
expansion of analytical functions in a certain set of polynomials which can be 
associated with Fibonacci numbers. Bessel functions and modified Bessel 
functions are involved in the process. 

2 2 
Throughout, we have assumed that p ^ 4q. The degenerate case p 

= 4q has been discussed by Carlitz [ s j , who relates it to the Eulerian poly-
nomial, and, briefly, by the author |V] . 
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THE BRACKET FUNCTION AND FONTENE-WARD GENERALIZED BINOMIAL COEFFICIENTS 
WITH APPLICATION TO FIBONOMIAL COEFFICIENTS 

H. W. GOULD 
West Virginia University, Morgantown, West Virginia 

INTRODUCTION 

In 1915 Georges Fontene (1848-1928) published a one-page note [4] sug-
gesting a generalization of binomial coefficients, replacing the natural numbers 
by an arbitrary sequence A of real or complex numbers. He gave the fun-
damental recurrence relation for these generalized coefficients and noted that 
for A = n we recover the ordinary binomial coefficients, while for A - q11 

- 1 we obtain the q-binomial coefficients studied by Gauss (as well as Euler, 
Cauchy, F . H, Jackson, and many others later). 

These generalized coefficients of Fontene were later rediscovered by the 
late Morgan Ward (1901-1963) in a short but remarkable paper [16] in 1936 
which developed a symbolic calculus of sequences. He does not mention 
Fontene", Failing to find other pioneers we shall call the generalized coef-
ficients Fontene-Ward generalized binomial coefficients. We avoid the sym-
bolic method of Ward in our work, 

Since 1964, there has been an accelerated interest in Fibonomial coef-
ficients. These correspond to the choice A = F , where F is the Fibon-
acci number defined by 

F = F + F 
n+1 n n~l 

with 

F 0 = 0, F x = 1 . 

This idea seems to have originated with Dov Jarden [ll] in 1949. He actually 
states the more general definition but only considers the Fibonomial case. 
Fibonomial coefficients have been quite a popular subject in this Quarterly 
since 1964 as references [ l ] , [9] , [lO] , [13], and [15] will tell. See also 

23 
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Because of the restricted nature of the three special cases of Fontene'-
Ward coefficients cited above, and because so many properties may be ob-
tained in the most general case, we shall develop below a number of very 
striking general theorems which include a host of special cases among the 
references at the end of this paper. Despite an intensive study of all available 
books and journals for twenty years , it is possible that some of our results 
have been anticipated or extended. Indeed certain notions below are familiar 
in variant form and we claim only a novel presentation of what seems obvious. 
However a large body of the results below extend apparently new results of the 
author [7], [8] and we obtain the following elegant general results: Represen-
tation of Fontene-Ward coefficients as a linear combination of greatest integer 
(bracket function) terms; Representation of the bracket function as a linear 
combination of Fontene-Ward coefficients; A Lambert series expansion of a 
new number-theoretic function; A powerful inversion theorem for series of 
Fontene'-Ward coefficients; and some miscellaneous identities including a brief 
way to study Fontene-Ward multinomial coefficients by avoiding a tedius argu-
ment of Kohlbecker [ l3] . 

The present paper originated out of discussions with my colleagues, 
Professors R. P . Agarwal and A. M. Chak, about the feasibility of extending 
Ward!s ideas to broader areas of analysis and number theory. Chak [3] has 
developed and applied Ward!s symbolic calculus of sequences to discuss num-
erous generalized special functions. 

Every result below can be immediately applied to the Fibonacci triangle, 
or new variants thereof, and the inversion theorem given below is expected to 
be especially useful to Fibonacci enthusiasts. Such inversion theorems are 
valuable tools in analysis and have not been previously introduced or applied 
for Fibonomial coefficients. We may even take our sequence A to be the 
non-Fibonacci numbers and study a non-Fibonomial triangle. 

FONTENE-WARD COEFFICIENTS: DEFINITION AND PROPERTIES 
By the Fontene-Ward generalized binomial coefficient with respect to a 

sequence A we shall mean the following: 
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and we also require that 

» {"} - o whenever k < 0 or k > n 

The sequence A is essentially arbitrary but we do require that A = 0 and 
A i- 0 for n > 18 Ward [16] took A = 19 and there is no loss of general-
ity in doing that. However we cannot in general simplify very much and we 
shall retain A1 as arbitrary,, One has only to multiply Ward's sequence by 
A- to obtain our resul ts . When no confusion can occur as to our choice of the 
basic sequence A we shall omit the subscript A in our notation (1). We use 
braces to set our coefficients apart from ordinary and q-binomial coefficients. 

With this definition we can now exhibit the Fontene'-Ward Triangle: 

1 
1 1 

A2 1 .-* 1 
Al 

A i A i 

1 t± A4A3 A4 -
Al A1A2 Al 

Ag A ^ A5A4 A5 -
Al A1A2 A1A2 Al 

1 \ V l A6A5A4 A6A5 t l i 
Al A 1 A

2
 A1A2A3 A1A2 Al 

tl V i A7A6A5 A7A6A5 A7A6 \ 1 
1 A1 AXA2 AjAjjAg A ^ A g A ^ A1 

It is evident that the triangle is symmetrical in the sense that 

We can make the definition (1) more symmetrical by introducing generalized 
factorials. We can define 
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(4) 

where 

fc}- — w |kjl [n - kjl 

M '• = Vn-i "• Vi wlth C°]'- = i • 

This is equivalent to the previous definition and allows us to adapt a number of 
familiar binomial coefficient identities to our study. For example, it is clear 
that we have 

(5) ft} {)) - {°l ft : » • 
which we shall need later. 

The basic recurrence relation for the Fontene-Ward coefficients was 
given by Fontene and is as follows: 

(6) \k) " \ k ) " { k - l j Ak 

In this, change k to n - k and apply (3), We find that 

© - { ! : » - M ^ 
In general A - A, J A , . The fraction does equal 1 when we set A. = j , 
and the fraction equals qK when we set A. = (qJ - 1) /(q - 1). Fontene" is cor-

i rect that we get q-binomial coefficients with A. = qJ - 1, but it is better to 
include the factor q - 1 in the denominator so that we can also assert that 

lim. A. = j 
q -> i J 

making the q-case then agree with ordinary natural numbers. 
In the Fibonomial coefficient case, when A, = F, , write 
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F - F. 
(8) f(n,k) - n K 

n-k 

It is easily verified that f satisfies the recurrence 

(9) f(n + 1, k + 1) = f(n,k) + f(n - 1, k - 1) . 

By induction it then follows that 

(10) f(n+ r, k+ r) = F^f^k) + Frf(n-l,k-l) . 

From this one may easily find 

F — 1 
(11) f(n5k) = F - £ d £ l _ + P 

n-k 

which may also be derived directly from (8) and the relation 

<12> F n = F k Fn-fcf 1 + F k - l F n - k ' 

There are then an abundance of ways to modify f(n9k) using known Fibonacci 
relations, and the particular way we might interpret f(n,k) determines the 
nature of the Fibonomial relations which will followfrom our general theorems. 

An important observation is this: f(n,k) is independent of n in the case 
of ordinary and q-binomial coefficients, but not in the Fibonomial case. This 
makes the possibility of having certain expansions generalize depend on the way 
in which we can modify the recurrence. 

We return to relation (6) and sum both sides with respect to the upper 
index. Clearly we obtain the relation 

which is the analogue of the familiar formula 
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3=k 

Relation (13) will.be very important to us in what follows. 
We next define Fontene-Ward multinomial coefficients in the obvious way: 

<i4) L k * . . . , k > 
n 

"A. 
1=1 l 

k- k k ' 
l ' "2 ' *'V 1 r.2 T 

TTA^TTA^-TTA. 
1 = 1 L = l 1 = 1 

subject to n = k +kQ + • - . + k . For A. = i these pass over to the ordinary 1 & r t 
multinomial coefficients. What is more, (14) satisfies the following special 
relation: Set r = 2 and write k = a, k = b with a + b = n, Then 

<15> {a"b} - {1} 
in terms of our original definition (1). Moreover, trinomial and higher order 
coefficients are products of ordinary Fontene-Ward generalized binomial 
coefficients: 

w> {..U - ft {" b" *} • • • - • • • 

<"» {. .b%.d}-ft>{nbm}{-rb}.»+^ '—• 

(18) {.,b,nc,d,e} - {:} f b l {°-r b }{" ' a d- b - o >- + b - + —. 
and the general result follows at once by induction. This is a well-known de-
vice for ordinary multinomial coefficients and the application here is that once 
one proves that the Fontene-Ward binomial coefficient is an integer for some 
sequence A , then the Fontene-Ward multinomial coefficients, by the above 
relations, are integers, being just products of integers. This circumvents 
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the tedius argument of Kohlbecker [13] for multinomial Fibonomial coef-
ficients, for example. 

Making use of the ideas developed so far and paralleling the steps in a 
previous paper [8], we are now in a position to state and prove our first major 
result. We have 

Theorem 1. The Fontene-Ward generalized binomial coefficient may be 
expressed as a linear combination of bracket functions by the formula 

ft)-[5]tEB]V'''-E[!]v.i. 
j=k+i j=k 

where the number-theoretic function R is defined by 

with /x(n) being the ordinary Moebius function in number theory. 
Proof. Again we use the formula of Meissel 

m<x 

and apply this to formula (13) precisely as was done in [8]. The result follows 
at once. It is easily seen that R,(k,A) = 1. There will be no confusion of 
R (j,A) with Rk(j,q) in the former paper if we merely make a convention that 
whenever we have a sequence we denote it by a capital letter and then (20) is 
meant. Thus Rk(j,F) would mean the Fibonomial case. Thus our first theo-
rem expands the Fibonomial coefficient as a linear combination of bracket 
functions. 

The expansion inverse to this requires a little more care . It was found 
in [8] by means of a certain inversion theorem for q-binomial coefficients. 
We must pause and establish the corresponding inversion principle for the 
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most general ease. Suppose we set 

(21) f(n) = ] T (-l)n~k \l\ g(k) 
k=0 

Then we find: g(0) = f(0). 

f(1) = -g(0) + g(l) , 

whence 

g(l) = f ( l ) + f (0) 

Then 

A 2 f(2) = g(0) - / g(l) + g (2 ) , 
A l 

from which we find 

g(2) = f(2)+ -£ f(l) + M - l ) f(0) 

Similarly it is easily found that 

[Feb. 

f(0) g(3) = f(3) + %L f (2)+ ^ ( ^ - l ) f d ) + ( l + ^ ( ^ " 2 ) j 

and it appears that the B, are independent of n and any number may be found 
in succession. This is quite correct, for we may readily solve the system of 
equations necessary to determine such B, coefficients as will invert (21). 
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The next step gives 

A 4 
B 4 = " 1 + A ;(-fc(S-i)-S@ 

Put 

(22) g(n) = 2 {k} Bk f(n " k) ' Wlth B 0 = B l = l j 

k=0 B 2 = A2 /A - 1, etc. 

It is easily seen by an inductive argument that B, is independent of f and n. 
On the one hand, (22) would require us to have 

n+1 n+1 
(23) g(n+i) = ETk1Bkf(n+i~k)=E{nr}Bn+i-jf«) • 

k=0 ]=0 

On the other hand we have from (21) that 

f(n + 1) = g(n + 1) + 5 3 ("1)n+1"k l ^ 1 } ^ ) > 
k=0 

whence 

(n+l) = f(n+l)-X;(-l)n+1-k{n;1}g(k) 
k=0 

-.^^5:^-k{':i}Eft>v*-»-
kpO j=0 
n n 

» « . -<*+»»+E«»2>"*{,,i1}fi}BM 
i=o k=j 
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This expansion must agree with (23) if the induction is to proceed, so we equate 
coefficients of f(j) to determine a recurrence relation for B. . At the same 
time we apply the identity (5) and we have the result that 

<24> v n = E <-i)n~k {nk-Y j K - j •for ° - j -n 

In particular set j . = 0. We find the remarkably simple recurrence 

n 
(25) B n + 1 = ] T (-l)n~k j n + 1 | B k , valid for n > 0 . 

k=0 

From this it is easily seen that we can summarize our recurrence for 
B in the single formula 

V / -\\n"k / n l -R _ 1, for n = 0 , ( 2 6 ) LJ e i ) \ k / B k " 0 , for n > 1 . 
k=0 

This in turn can be given a handy symbolic expression 

if we just adopt an umbral binomial theorem that 

l x + y } n =S{k}xkyn-k • 
k=0 

We shall next evaluate the B coefficients explicitly. 
The sequence B is determined uniquely by the relation (26), and we 

can easily solve this by means of determinants. The result of this can be put 
in the form 
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1-1 1 0 0 

1 - O 1 

1-1 (-1) n {1} -{» 

•i)n, -H)n {?}. <-i)n$. 
' \ n - 2( 

' \n - 2f' ~\n - 1/ 

valid for n .> 1. 
The n-by-n determinant and the recurrences (25)-(26) allow us to com-

pute as many B's as needed. 
It was no accident that we write (26) as (27) and as a Kronecker delta, 

for not only does (26) allow us to invert (21) to obtain (22), but the converse is 
also true, (26) allows us to invert (22) back to (21). We have in fact 

Theorem 2. For sequences f and g, 

(29) f(n) = 2 ( - 1 ) n ' k { S } g W 
k=0 

if and only if 

(30) g(n) =E{k1Bn-kf<k> • 
k=0 

where B, satisfies recurrence (26), and is given explicitly by (28). 
To illustrate the proof we will show that (30) implies (29), assuming 

(26). We have 

k=0 k=0 j=0 

-Efi}<®E«-i>,H"k{\",K-«« 
j=0 k=0 
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as required, for relation (26)-(27) is equivalent to the Kroneeker delta 

k=0 

The reader should have no difficulty in showing that (29) implies (30), 
relation (31) again being what is needed to cancel out unwanted terms. 

These relations are nothing more than extensions of the familiar inver-
sions given in [6 ] , [ ? ] , [ 8 ] . 

The application and use of Theorem 2 for Fibonomial expansions needs 
little elaboration. It allows often to solve for something given implicitly un-
der the summation sign. 

As was done in [6] and [8] we need some small variations of Theorem 2. 
It is easy to see that the theorem can be stated in the equivalent form 

(32) f(n) = ^ K ) k { k } g ( k ) 

k=0 

if and only if 

(33) g(n) = £ K)k {1} Bn„kf(k) 
k=0 

And we also have 

(34) f(n) = Y^{k} g(k) 

k=0 

if and only if 
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*<-> - E ™** {1} Bn.tf« . 
k=0 

It is this las t fo rm of our theorem that will be used now to find an expansion 

inverse to T h e o r e m 1„ Our s teps a r e the s a m e as in [ 8 ] , 

T h e o r e m 3, The b racke t function m a y b e e x p r e s s e d as a l inear combina-

tion of Fontene-Ward genera l ized binomial coefficients by the formula 

j=fcM ]=k 

where the coefficients Q, (j,A) a r e given by 

J 

d-=k 

and the B ! s a r e given by (26)-(28). 

Proofo Assume expansion (36) for unknown Q'se Then by the invers ion 

p a i r (34)-(35), with f(n) = [ n / k ] and g(n) = Q, (n,A), and wri t ing j for k 

in (34)-(35), the r e su l t is immedia te , 

Hence as a Fibonacci i t em, this t heo rem allows one to e x p r e s s the 

b racke t function in t e r m s of Fibonomial coefficients. 

The next o r d e r of work in [ 8 ] was to see if the two expansions , b racke t 

in t e r m s of binomial and converse ly , implied a m o r e gene ra l inversion theo -

r e m ; i 8 e „ , whether we can now show that our coefficients R and Q a r e 

orthogonal in g e n e r a l . Our succes s in doing this would depend on getting the 

Lamber t s e r i e s for R and an inverse s e r i e s for Qe The binomial t heo rem 

was used to obtain the l a t t e r in [ 8 ] and this expansion, the binomial t heo rem, 

is m o r e t roublesome in our genera l s i t u a t i o n However we can obtain next the 

Lamber t s e r i e s for R, 

Let us note a gene ra l s e r i e s l emma: F o r a function f = f (x ,y) , 

1969] 

(35) 

(37) Qk^A)=E(-i)j"dla 
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oo oo oo 

<38> ZE f ( d ' n ) = ZZf(d,md) 
n=l din d=l m=l 

This is merely the limiting case of relation (20) in [7] for example. 

Theorem 4. The Lambert series expansion for R, (j,A) is given by 

x1 
(39) . ~ , *, 

00 A.. - A . 

& M r 5 - ? ^ ( - ^ 
Proof. First of all the ordinary Moebius inversion theorem applied to 

relation (20) inverts this to yield 

k din 

which may itself be looked on as a valuable expansion of the Fontene-Ward 
generalized binomial coefficients in terms of the function R,(d,a) . This is 
merely the generalization of the combinatorial formula 

°kW = (£:!) =ZX(d> • 
din 

found in [ 7] . 

Multiply (40) through by x11 and sum both sides on n, We find 
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° ° V A - A 

n=l K n=l din 
A) 

go WJ 

= ] C S x i n d Rk(d'A) > by (38> > 
d=l m=l 

_°°. °° d 

= £ vd'A> Exmd = X X ( d > A> T 2 ^ d=l m=l d=l 

The lower limits of summation in the result can be changed to k instead of 1 
since the Fontene-Ward coefficients and R, are each zero for the first k -

k 
1 terms on each side. This proves the theorem. 

We have given some detailed steps to illustrate precisely what happens. 
But let us now try to carry over the binomial theorem. It turns out that we do 
not need the binomial theorem in a very strong form. 

To find the series expansion inverse to (39), we recall the bracket func-
tion series (of Hermite) from [8] ; 

^ LfcJ (l - x) (1 - x*) 

Substitute the expansion of [n/k] in terms of Fontene-Ward coefficients, and 
we get 

(42) 
,_k 

n=k j - k 

k °° 

j=k n=j 

The last inner sum is not conveniently put into closed form by a binomial theo-
rem, but we can transform it as follows: 
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n=i n=i+l x 7 

and we can now apply the or iginal Fontene r e c u r r e n c e (6) and we r eca l l that 

A = 0 so that x* can be counted in the s u m . The re su l t is the formula 

co GO x A - A 

,43, ' - I E U K - S ' I ; : ! } - 8 ^ 1 • 
n=j n=j 

This formula is the g e n e r a l counterpar t of the f ami l i a r formula 

(1 - x ) 
00 

- , , (1 - x)3 

n=j x ; 

used in [ 7 , p p . 2 4 1 , 2 5 2 ] , The corresponding q-analog in [ 8 , p . 407] was 

( 1 - x ) E [ j ] x n = x3fl"(1-xqi) • 
n=j i=l 

The r e a d e r may find it in teres t ing to find the corresponding Fibonomial f o r m . 

Final ly , we subst i tute expansion (43) into (42) and we find the formula 

inverse to (39); i . e . , we have proved 

Theorem 5 . The coefficients Q,(j ,A) satisfy the genera t ing expansion 

1 X j=k n=j J 

We may write the two expansions of Theorems 4 and 5 in the forms 
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xJ 
(45) XXG'A ) ~~J = f(X'k) ' 

j=k 1 ~ 

and 

00 Jj 
(46) ^ Q ^ ^ J f ^ x J ) = — ^ , 

where f (x, j) is the power series 

n=j j n=j 

and we may now see easily that substitution of (45) into (46), and conversely, 
yields our desired orthogonality of R and Q9 Thus we evidently have 

Theorem 6. The functions R and Q as defined by (20) and (37) satisfy 
the orthogonality relations 

n n 

(48) X X ( j ' A ) Q j ( n ' A ) = 8 k = ^ Q k ° ' A ) R j ( n s A ) ' 
j=k j=k 

Consequently, we also have proved the very general inversion theorem for two 
sequences that held for the previous cases [ ? ] , [ 8 ] . That is we have 

Theorem 7. For two sequences f(xsk,A), g(x,k,A), then 

(49) f(x,k,A) = ^ g(x5j,A)Rk(j,A) 
k<j<x 

if and only if 
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(50) g(x,k,A) = 2 ^ f(x,j,A)Qk(j,A) . 
k<j<x 

CONCLUSION 

In the present paper we have given a sequence of seven main theorems, 
generalizing all of the corresponding results previously found for ordinary and 
q-binomial coefficients to the most general situation for Fontene-Ward gener-
alized binomial coefficients. As a single byproduct we have results universally 
valid for the popular Fibonomial triangle. The inversion theorems given here 
are expected to suggest other inversion theorems in the most general setting, 
which can then be applied to any special case that is covered by the Fontene-
Ward Triangle. 
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CONVERGENCE OF THE COEFRCIENTS IN A RECURRING POWER SERIES 
JOSEPH ARK IN 
Nanuet, New York 

1. INTRODUCTION 

In this paper we use the following notation 

oo \ k oo 
w 1 \ ^ (k) w 

„ 1 _ X c x 
w Ev* -E 

k w=0 / w=0 

(For convenience, we shall write c instead of c . ) 
w w 

We define 

Evw = F ( x ) ^ ° 
w=0 

for a finite f, 

t m d 

£ v w = TT<i-v>w = «<*> 
W=0 W=l 

for finite t and m, where the d ^ 0 and are positive integers. The r w fi 
0 and are distinct and we say Jr^ is the greatest | r | in the j rwJ . 

2. THEOREM 1 

If 

F(x)/Q(x) = 2 ] u w x w , 
w=0 

41 
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then 

(2.1) lim iu / u .1 (for a finite j = 0 ,1 ,2 , ' • •) 
n—*>oo j n / n-j j J 

converges to | r j | 9 where the r ^ 0 in Q(x) are distinct with distinct mod-
uli and | rA j is the greatest j r | in the J r I. 

Proof* It has been shown by Poincare [ 1 ] that 

(2.2) lim u / u , 
n-^>oo n / n-i 

converges to some root (r) in Q(x). (We must then prove that this root (r) 
in Q(x) is (rj j .) 

Let 

m 
(2.3) MW = J J (l-rwx) W , 

w=i 

where the p are positive integers or =0 and 
w 

di + P i = d2 + p2 = . . . - p w + dw = k (k = 1, 29 3, • • •) 

for a finite w = 1, 2, 3, • • •, m. 
Then* 

m 
M(x)Q(x) = " P J (1 - r w x ) k = 0k(x) 

w=i 

so that 

(2.4) F(x)M(x)/Q(x)M(x) = F(x)M(x)/<^(x) 

- Ev* - !>•*' 
w=o w=o 
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where it is evident 

u n = c(k,n) . 

Now let 

4 ( x ) = \ cw (where v is finite) , 
w=0 

where combining this with (2,4), we write 

oo. 
(2.5) F W M W / ^ W - ^ c(k .- 1, w)xW 

w=0 

c. •w w 

Vw=0 / \w=0 

and combining coefficients leads to 

v v 
(2.5.1) cfc-l.n) =^cfcn-w)cw = £ V 

W=0 W=0 
k = 2 ,3 ,4 , - • • . 

In (2.5.1), we replace k with k + 1 (where k = 1,2,3, •••) where 
combining this result with (2.2) leads to 

11m |c(k + l ,n)/c(k + l , n - 1)1 converges to some root (r) in Q(x). 
S l — ^ o o i B 

For convenience, we write the convergence as 

(2.5.2) c ( k + l , n ) = g k + i c ( k + l , n - l ) . 
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Combining (2.5.1) with k replaced by k + 1 with (2.5.2), it is easily shown, 
that for a finite v, we have 

(2.5.3) c (k ,n) /c (k ,n- 1) = gk 

v / v 
= y c ( k + l , n - w ) c iy c(k + l , n - w - l ) c 

w=0 / w=0 

= V i > 

so that 

(2-5.4) g k + 1 = gk = . . . = g I . 

Thus to complete the proof of Theorem 1, it remains to show that 

Then we consider the following (we refer to (2.3) ) 

m oo 
(2.6) (^(x))"1 = T T (1 - i ^ x ) " 1 = Y ^ e(m,w)xw (for a finite m) 

W=l W=0 

for the convergence properties of e(m, n)/e(m,n - 1)9 where the lr j are 
I W j 

distinct and | r j | is the greatest root 
NOTE. For convenience, we write 

e(m, n)/e(m, n - j) = ir (for a finite j = 0 ,1 , 2, • • •) , 

in place of 

Inn |e(m,n)/e(m, n - j) j converges to \rj | , 
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For m = 1, we have 

00 

(2.7) ( i » nx)" 1 = ^ e(1> w> x W > 

w=0 

where 

e(l, n) = r n , 

so that 

e ( l , n ) / e ( l , n - j ) = r j 

For m = 2, we have 

00 

(2.8) [(1 - rlX) (1 - rax)]""1 = ^ e(2,w) 
w=0 

where 

e(29n) = (rn' - r n )/(vt - r2) , 

w 
X 

so that 

e(2,n)/e(2,n - j) = rj 

It now remains to consider for finite m = 3, 4, 5, e 

/ ^ V1 t 

s=0 s=l 

for a finite t = 8,4, 5, •* 8 , where UQ = 1. 
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Equating the coefficients in this leads to 

t 

(2.10) Un = X X ~ s V s (U0 = 1> • 
s=l 

and 

t-1 
Ui = U0at ra l , U2 = Uiat r a l + U 0 a t ^ % U t = ^ U ^ . 

s=0 

Also, since in (2.9), we have 

t t-1 

TTVv> = i-Easxt"s • 
s=l s=0 

we may write 

t t-1 

(2.1D T f V v = x t - Z v s • ° • 
s=l s=0 

We now combine (2.10) with (2.11) and write 

s-1 
t-s (2.12) - ^ + E ( v E V H r - 8 ) 

s=2 V r=l r 

Multiplying (2*12) by x and combining the result with 

x 

t-1 Uixt = Ui S s 

s=0 
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in (2.11) leads to 

47 

(2.13) x t+i 
U 2 x t " 1 + E ( U r + 3 - E U r ^ s V s ^ j 

r=o s=o ' 

t - r -2 

+ Utao . 

Now, multiplying (2.13) by x and combining the r e s u l t with 

^ s=o 
a s x 

in (2.11)9 we then have 

(2.14) x t+2 
U ^ 1 + E ( U r h l - Z U r t - s V s - i ) 

. tr-Y-2 

r=o 

+ a0U2 

We continue in the exact way we found (2.13) and (2.14) for n - 1 s teps to get 

t-3 
(2.15) J**-1 - U n x M + 5 ] 

r=o 
u. n+r+1 JLJ n + r - s a t - s - i I 

s=o ' 

x t - r - 2 

> i + U a0 = U x ' - 1 + R(x) + U a. . n-i u n n- i o 

We now continue (2.15) with (2.11) to get the following t equations 

r'+n_i = V*"1 + R(ri) + Vl a° ' 
(2.16) 

rt+n-i = t - l + R ( } 
n t 
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Next, we cons ider the t equations obtained from (2.16). These t equations 

in the t unknown can be solved by C r a m e r f s ru le to obtain 

(2.17) U D 2 = Dl (n) , 

where Djdi) and D2 a r e the de te rminan t s given below: 

(2.18) 

(2.19) 

Dt(n) = 

D, = 

- t+n-

t+n-
r t 

t~i r j 

•r* 

-1 

-1 

t-2 

*r :-
t-2 

r i 

t-2 
r t •• 

r i 

' r t 

r j 

" r t 

1 

1 

l l 

1 

We now rep lace n with n - 1 in (2.17) to get 

(2.20) 

and dividing (2.17) by (2.20), we get 

IT D2 = Dj (n - 1) , n - i L 1 

(2.21) U n / U n - i = D l ( n ) / D l ( n " 1] 

Since the r ^ 0 and a r e dist inct , then one root (say | r i | i s g r e a t e r 

than the o ther roo t s , and we wr i t e 

(2.22) t+n-2 ^ t+n-2^ U n / U n - i = ( D i ( n ) / r p ^ ) / ( D 1 ( n - l ) / r r 1 1 ^ ) 

t+n—7 Now in (2.22) we le t r i ' (in the numera to r ) divide every t e r m of the f i r s t 
t+n—2 column in (2.18) and rA (in the denominator) divide every t e r m in the f i r s t 

column of (2.18) (with n rep laced by n - 1). Then if we l e t n ->oo i t i s e v i -

dent that 
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lim tU /U ! = I r J . n ->oo| n n- i | 1 | 

49 

Now for a finite t we write 

lim U . /U . n -> oo I n-j n-j-i r J (j = 0 ,1 , 2, • • •, t - 1) , 

so that 

(2.24) lim U /U J n ^ool n n-tl 

Multiplying the F(x) in (1) with 

uu 

S=0 

in (2.9), we write 

(2.25) 
w=o / \ s=o / s=o 

C xS , s 

where comparing the coefficients we have 

(2.26) n Z-^ n-i b 
s s 

s=o 

Now, since f is finite, and by the results in (2.23), we write 

C = ri Y ^ U b = ri C 
n * / J n -s - i s 1 n-i * s=o 
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where combining this with the r ^ 0 and are distinct (so that we may add that 
th 
1. 
the r, have distinct moduli), leads to the completion of the proof for Theorem 

From (2.7), (2.8), and (2.17), the following corollary is immediate: 
Corollary. If 

t 

s=i s=o 

where the r ^ 0 and are distinct, then 
s 

(2.27) It is always possible to solve for the U (n = 0 ,1 , 2,* • •) 
as a function of the r . 
——— — s 

SECTION 3 

Let 

-k 

w=i / w=l w=o 

t oo 
„(k) w cw x 

(CQ = 1 and k = 1, 2, 3, • • •) for a finite t = 2, 3,4, • • • and the given roots 
r ^ 0 and are distinct. We also define 
w 

t t 

^r^n+w-r" 
s(x) = Z E a-c— ~xW_1 = ° 

w=i r=w 

and 

b = Z a w x 7 W-2 
a ;" 
w 

W=2 
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where *Xi ^ 0 and is a root in S(x) = 8(xt) = 0. 
We then have the following: 
Theorem 2. If 

c0 = 1, ci = aic0, c2 = atcj + a2c0, e •e 

t-i 

and 

3t ~ J L w+i t-w-i 
w=o 

p.. = a4(k + n - j ) (j = 1, 2, 3, • • •, n) , 

then 

(3.1) 

qm+i = b*n " m ^ 2 k + n ~ m ~ ^ 
(m = l , 2 , 3 , - - - , n - l ) 

nc ( k ) / c ( k ) = E /G (k, n = 1, 2, 3, • • •) , 
n ' n-i n ' n 9 

where E and G are the determinants given below. n n 

(3.1.1) E = n 

Pi 

- 1 

0 

0 

0 

0 

02 

P2 

- 1 

0 

0 

0 

0 

qa 

P3 

- i 

0 

• 0 

0 

0 

q4 

P4 

0 

0 

0 

0 

0 

q5 

0 

0 

0 

0 

0 

0 

- i 

0 

0 

0 

0 

0 

p n - l 
- 1 

0 

0 

0 

0 

% 

p 

*It should be noted that since the a! s are constant for a fixed t, that the root 
xi will be determined as a variable* since it is a function of the c and will, 
of course, change values for different n- n 
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|P2 qs o o o 

1-1 P3 Q4 0 0 

-1 p4 q5 0 
(3.1.2) G = 

n 

0 

0 0 -1 p5 q6 

0 0 0 0 0 

0 0 0 0 0 

0 0 

0 0 

0 0 

0 0 

[Feb 

0 | 

0 

0 

0 

Proof. Let 

(3.2) 1 = 1 IvjfE 
W=l ' \ W=0 

C X 
w 

w 

- 1 V i \ \ 
0 -1 p 

(for a finite n) , 

where the a and the c are identical to those in (3). Then multiplying and 
combining the terms in (3.2) leads to S(xi) = S(x) = 0 in (3). 

Now, taking each side of (3.2) to the k power, we write 

vk 

(3.3) 1" = 1 •E 
w=i 

w a x w 

( k = 2 , 3 , - - ) , 
vw=o 

(where, of course, xj is a root in (3.3) ). 
Using the corresponding values in (3), we write (3.3) as 

(3.3.1) 1 = (1 - aix - bx' 
\w=o 

( k ) X W
+ J ( K ) 

w 

Differentiation of (3.3.1) leads to 

k(alX + 2bx2) I ^ c^k) + J(x) j = (1 - axx - bx* )l ^ nc£k)xn 

\ w = i 
+ W(x) 

<w=o 
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and by compar ing coefficients, we conclude that 

(3.4) nc^ k ) = a i ( k + n - l ) c ^ + b(2k + n - 2)cf^ 

for 

k = 2, 3 , . . . , n = 2, 3, • • - , e0
(k) = 1 and c | k ) = ajk . 

(k) When we divide (3.4) by c , we get 

n c ( k ) 
n /i . i \ _. M2k + n - 2)(n - 1) , . 0 0 v - 7 0 - = a ! ( k + n - l ) + —Tgr ™ (n,k = 2, 3, • • •) , 

c (n - l )c 
n - i n - i 

^ ~ 
n-2 

which in turn, along with CQ = 1 and ci = aik, impl ies (along with the 

values of p and q in (3))9 

(k) 
nc q 2 , qs , , q n - i . %. (3-5) Jr =̂  + ^ + ?r + - + ^ : : + ^ = K(n)-
V i - n - i ' n 

We complete the proof of T h e o r e m 2 with E u l e r f s s ta tement [2] 

K W = E n / G n ; 

and we re so lve for the case when k = 1 with (2.27). 

Coro l la ry . In 

TT«-v»-k-h-Zvw =1+£ 
w=i \ w=l / w=i 

t \ - k 
1 \ 00 - , ^ (k) w = 1 + > e x 

w 

i t i s always poss ib le to solve for 
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(3.6) n c n k ) / c S i = K ( n ) = E n / G n ( k a n d n = 2 s 3 f ' ' *) 

when t = 2, 3,4, or 5, if the r ^ 0 and are distinct. 
w 

Proof. In (2.27), it is seen that the c maybe determined. Now, since 
t - 1 = 1, 2, 3, or 4, then the roots (each root is a function of the c ) in 
S(x) .(in 3) may always be found, so that we will obtain values for the p and 
q. We then complete the proof of the corollary by observing that E and G 
are both functions of the p and q. 

In conclusion: We solve when t = 1 and we write 

( 1 - r ) " k = f V k ) x w (d<k) = l , r ^ O ) 
X f j W 

w=o 

Now, differentiating, we have 

w=0 ' w=i 
xkrf > d r ' V M = f ^ w d ^ k ) x w 

and comparing the coefficients leads to 

nd(k> o d(k + 1) r k 
n n-i 

so that 

n n-i 
^k+n-w) 
w 

w=i w=o 

J f w d f - w > = r n j j ( k + n - w - l ) d < 

and we then have 

d W = rn(k + n - 1)! /n! (k - 1)! 
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RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to 
Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes p r o b -
lems believed to be new or extending old results . Proposers should submit 
solutions or other information that will assist the editor. To facilitate their 
consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problems. 

H-148 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida 

Prove or disprove: There exists a positive integer m such that 

m times 

is composite for all integers n > 5. 

H-149 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn. 

For s = o- + it let 

P(s) = 2 P"S > 

where the summation is over the pr imes. Set 

56 
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oo 

y~/(n)n~S = [H-P(s)]-1 , 
n=l 

00 

\^b(n)n"s = [l-P(s)J"1 . 
n=l 

Dete rmine the coefficients a(n) and b(n). 

H-150 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada 

Show that 

n - 1 p 

25Z) 2 u^-1 = F4n+(n/3)(5n* ~ l4)' 
p= l q=i I ^ T 

where F is the n Fibonacci number . 

H-151 Proposed by L. Carlitz, Duke University, Durham, N. Carolina 

A. Put 

WW 

2 , 2 ' \ ^ A m n 
( 1 - a x - b x y - c y ) = ^ A

m , n x y 

m9n=0 

Show that 
00 _ 1 

\ ^ A n n x n = k - 2bx+ (b2 - 4ac)x 2 > *9 

B^ Put 



58 ADVANCED PROBLEMS AND SOLUTIONS [Feb. 

00-

(1 - ax - bxy - cy)~x = } M B m n x m y n 

m,n=0 

Show that 

X X , ^ = {<l-bx)2-4aox}-* 
n=0 

H-152 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif. 

Let m denote a positive integer and F the n Fibonacci number. 
Further let |ck}°° be the sequence defined by 

,m ^m „ m ~ 
1 k ^ - ' n n ' n >n=1 

TV1 1 

2 ~ copies 

Prove that ]c, [ is complete; i . e . , show that every positive integer, n, K k=l 
has at least one representation of the form 

n = 7 a f eck , 

where p is a positive integer and 

a. = 0 or 1 if k = 1, 2, • • •, p - 1 

a = 1 
P 

C.f. V. E. Hoggatt, J r . , and C. King, Problem E1424, American Mathemat-
ical Monthly, Vol. 67 (1960) r p . 593 and J . L. Brown, J r . , "Note on Complete 
Sequences of Integerss

n American Mathematical Monthly, Vol. 67 (1960), pp. 
557-560. 
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SOLUTIONS 

POWER PLAY 

H-109 Proposed by George Ledin, Jr., San Francisco, Calif. 

Solve 

x 2 + y 2 + 1 = 3xy 

for all integral solutions and consequently derive the identity 

F 2 + F 2 + 1 = 3F F 

Solution by H. V. Krishna, Manipal Engineering College, Manipal, India 

Let the equation in question be expressed as 

(1) (x-3y/2)2 - 5(y/2)2 = -1 . 

The general solution of (1) is therefore given by 

(2) x - (3y/2) = i {(p + VEq)2^1 + (p - VSq)2*"1} 

(y/2) = l/<2V5){fe+ VSqJ^^-Cp-VSq)211"1} 

where (p5q) is a particular solution of (1), 
Hence (2) reduces to y = F 2 ^ and x = (1/2)(L2n-l+ 3 F2n-l^ f o r p = 

J and q = | . 
On using L 2 n _ 1 + F 2 n m l = 2F2 n, 

x = i { 2 ( F 2 n + F 2 n ^ ) } = F 2 n + 1 , 

whence the desired identity follows for n = 3(k + 1). 

Also Solved by A. Shannon. 
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TRIG OR TREAT 

H-lll Proposed by John L. Brown, Jr., Pennsylvania State University, State College, Pa. 

Show that 

[n/2 ] , 
L. = | | | l + 4 c o s 2 ^ l ( r f ) > f o r n > l 

k=l h=1 V 

Solution by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

We know f rom the solution of P r o b l e m H-64 (Fibonacci Quar te r ly , Vol. 

5 , F e b . 1967, p . 75), that 

K n IB odd, then 

2n+l 

L 2n+l 

n i ) 2 n + 1 i > 

j = l ' k=n+2 l ; 

.h-tM.S*±$j±„ 
2n+l 

i= l < ' k=n+2 l 

Lett ing j = (2n + 2 - k) in the second product , we get 
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- fr[i - - f&^-ffr1 - « - {'- %0$i 
5=1 

(1) 

-TT{ 1 + 4 cos 2 2j 
2n + 

3=1 

1 7T ) 
T " - 2 > 

Similar ly S 

(2) 2n T T < 1 + 4 cos 
1=1 

2 £L 
2n 2 f 

Hence f rom (1) and (2) we have the r equ i r ed r e s u l t . 

Also solved by Charles Wall, Douglas bind, and David Zeitlin. 

VIVA LA DIFFERENCE 

H-112 Proposed by L. Carlitz, Duke University, Durham, N. Carolina. 

a) 

b) 

c) 

d) 

Show that , for n > 1, 
.5 T 5 , . n L° - L , = 5L ^ L L ,(2LT - 5 ( - l ) n ) n+1 n n - 1 n+1 n n - l x n ^ ' ' 

.2 
Jn 
.2 x- .- • F - F ° - = 5F , . F F - ( 2 F * + ( - l ) n ) 

n+1 n n - 1 n+1 n n-V n v ' ' 
L 7 - L 7 - L 7

 n = 7L X 1 L L , (2L2 - 5 ( - l ) n ) 2 
n+1 n n - 1 n+1 n n - l v n x ' ' 

F 7 - F 7 - F 7 - = 7F . , - F F , (2F 2 + ( - l ) n ) 2 
n+1 n n -1 n+1 n n - l x n v ' ' 

Solution by the proposer. 

F o r p a r t s c) and d) , take x = L , y = L 1 in the identity 

( x + y ) - x - y 2 2 * 
7xy (x + y) (x + xy + y ) 

Since 

61 

we get 

S imi la r ly , s ince 

L 2 + L L - + L 2
 n = 2 L 2 - 5 ( - l ) n , n n n - 1 n - 1 n x ' ' 

L 7 - L 7 - L 7 = 7L , n L L . (2L2 - 5 ( - l ) n ) 2 
n+1 n n - 1 n+1 n n - 1 1 n v ' ' 
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F 2 + F F - + F 2 - = 2F 2 + ( - l ) n , n n n-1 n-1 n v ' * 

we get 

F
7 - F

7 » F 7 = 7F . - F F - (2F2 + ( - l ) n ) 2 . n+1 n n-1 n+1 n n-V n v ' ' * 

Parts a) and b) follow in a similar manner, by selecting x = L , • y = L - ; 
x = F , y = F - i n the identity 

(x+ y)5 - x5 - y5 = 5xy(x+ y)(x2 + xy + y 2 ) . 

Also solved by Charles Wall 

MINOR EXPANSION 

H-117 Proposed by George Ledin, Jr., San Francisco, Calif. 

Prove 

Fn+3 Fn+2 Fn+1 F n 
F • F F F 

n+2 n+3 n n+1 
F F F F n+1 n n+3 n+3 F F F F n n+1 n+2 " n+3 

F F 
2n+6 2n 

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pa. 

The determinant (first evaluated in 1866) 

abed 

bade 

cdab 

deb a 

(a - b - c + d) (a ~ b + c - d) (a + b - c - d)(a+b+c + d) 

In this case the product is 

V V l + V l > W F n + 4 + F n + 2 > 
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from the recurrence 

F . - = F + F , . n+1 n n-1 

The identities 

and 

L = F . - + F -n n+1 n-1 

F 0 = F L 2n n n 

now complete the proof. 

Also solved by David Zeitlin, A. Shannon, D. Jaiswal, J. Biggs, F, Parker, S. Lajos, 
H. Krishna, and Stanley Rabinowitz 

GOOD COMBINATION 

H-119 Proposed by L. Carlitz, Duke University, Durham, N. Carolina 

Put 

H(D,,n,p, - E E s <-«,+i+k('r)(!*+k)(k T-i ' ) ( - r - r J ) 
|=0 j:=0 k=0 

Yn - j + p - k \ / p - k+ i \ 

Show that II(mfn9p) = 0 unless m ? n ,p are all even, and that 
min(mjn,p) 

r=0 
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(The formula 

\2 
H(2mf2n) ' ™ ( - ; ° ) 2 • 

where 

m n 

H«m>n>. E E <v+i (' v) (m 7 + J ) ( ' » - rJ) (m "• - r J ) 
1=0 j=0 

is proved in the Fibonacci Quarterly, Vol. 4 (1966), pp. 323-325.) 
Solution by the proposer. 

As a special case of a more general identity (SLAM Review, Vol. 6 (1964) 
pp. 20-30, formulas (3.1) ), we have 

l l * " ' , l 6 

l l L2 l3 l4 l5 l6 
u l u 2 U3 U4 U5 U6 

[ l - U]_ - u2 - u3 - u 4 - u5 - u6 + U l u 4 + u;1u5 + u2u4 + u2u5 + u2u( 

+ u3u5 + u3u6 + u4u6 - U l u 3 u 5 - u 2 u 4 u 6 J 2 - 4U lu2u3u4u5u6 J" 5 

In this identity, take 

U4 = ~ U r U5 = " V U6 = ~U3 

Changing the notation slightly we get 
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^ H(m,n,p) u m v n vP = {(1 - u 2 - v 2 - w 2 ) 2 + 4u 2 v 2 w'' 2 2 2 P 

m,n,p=o 

2r 2 r 2 r 
" w 

00 00 

E . n v r / 2 r \ 2 r 2 r 2 r V ^ / 2 r + n V : (-1) J u v w 2 ^ ( n )<U 

i-O V 7 n=0 V 7 

2 2 2 n 
+v +w ) 

r=0 

2 r 2 r 2 r w 
v w X 

v \ ^ (2r + i + j + k)T. 2i 2j 2k 
Z ^ (2r)UT„jlkl 

U,k=0 

oo min(m,n9p) 
V ^ 2m 2n 2p \ T * , i x r w 

= Z.J u v w 2-f ( } x 

m9njp=0 r=0 

x (m + n + p - r ) l 
rf

e r i (m - r ) l (n - r ) l (p - r ) i 

Comparing coefficients we get 

min(m9n,p) 

H(2m,2n.2p) = £ ( - l ) r
 r , r L ( l f - + r H ( 7 - " r ) l ^ - r)l 

r=0 

It does not s e e m poss ib le to s u m the s e r i e s on the r ight , 



IDENTITIES INVOLVING GENERALIZED FIBONACCI NUMBERS 
MUTHULAKSHM! R. IYER 

Indian Statistical institute, Calcutta, India 

L INTRODUCTION 

Ke Subba Rao [4], and more recently V, C. Harris [l] have obtained 
some identities involving Fibonacci Numbers F defined by 

Ft = 1, F2 = 1, F n = Fn_i + Fn„2 n * 3 . 

Our object in this paper is to obtain similar results for the generalized Fib-
onacci Numbers H as defined by A. F» Horadam [ 2] , 

H4 = p, H2 = p + q 

and 

H = H 1 + H 0 n -^ 3. n n~l n™2 

The numbers p and q are arbitrary. By solving the difference equation for 
H by the usual procedure it is easy to see that 

H = - i - [ l a n - m b n ] [3] 
n 2 *JE 

where 

1 = 2(p - qb), m = 2(p - qa) 

and a and b are the roots of the quadratic equation x2 - x ~ 1 = 0 , We call 

1 + N/5 , 1 - N/5 

so that 
66 



Feb. 1969 IDENTITIES INVOLVING GENERALIZED FIBONACCI NUMBERS 67 

a + b = 1, ab = - 1 , a - b = *JI> • 

By making use of these results we get 

1 + m = 2{2p - q), 1 - m = 2q *JS , 

4- !m = p2 - pq - q2 = e (say). 

th It is also easy to see that H = pF ^ qF - where' F is the n Fibonacci 
ii n n - i n 

number given by 

an - b n 

N/5 

SECTION 2 

In this section we obtain certain identities for the generalized Fibonacci 
numbers. From result (9) of [2] we have the identity 

H r - 1 + H r = ^ ~ *> H 2 r - 1 " e F 2 r - 1 " 

In this relation putting r = 2535
 s s % n in successions adding and simplify-

ing, we arrive at the result 

n 

(1) £ H r = Fn[<P + 2 q ) H n * e F n - l 1 * M [ ( - l f " ^ ' 
r= l 

Consider now H 2 r - 1 = V^2r-l + q F 2r -2 S 0 t i i a t 

n n n 

JLmj jar—1 L J xar—X " ̂ «rf -fi&r""j& 
r=l r=l r=l 

From the formula for F this sum reduces to 
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n 
( 2 ) E H 2 r - 1 = H2n " H2 + H l 

r=l 

(3) E H2r = H2n+1 " H 2n+l 1 
r=l 

On the same lines we get the following identities 

(4) 

(5) 

(6) 

XX 

EH3r-2 = 2LH3n"H2 + H l J 
r=l 

XX 

E H3r-1 = 2 LH3n+l " H l J 
r=l 

xx 

£ H3r = 2 L H 3 n + 2 " H 2 j 
r=l 

n 
( 7 ) Z H 4 r - 3 = F 2n - l H 2n " H 2 + H l 

r=l 

( 8 ) E H 4r -2 = F2nH2n 
r=l 

n 

JLJ 4 r - l 2n 2n+l 
r=l 
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n 

<1 0 ) £ H 4 r = F 2n + l H 2n + l " H l 
r=l 

n 
(11> X H 2 r - 1 = I tH2n ( H 2 n - l + *W + 2 n e + q ( q " 2*>)] 

r = l 

n 

<12) E H 2 r = I t H 2 n + l ( H 2n + *W ~ 2ne " P<P + 2^ 
r=l 

Let us now consider product terms as follows: 

n 

<13) E H2r-2H2r-l = i CHLl + HL " ne " <P + q)(^ + 2q)^ 
r=l 

n 

< 1 4 ) E H2r-lH2r = I [H2n + H L l + - - <p2
 + q2) ] 

r = l 

n 

<15> E H 2 r - l H 2 r + l = 7 [ H 2 n + l < H 2 n + H 2 n + 2 > + 3 n e ~ ^ + 2 q ) ] 
r = l 

n 

<1 6 ) Z H 2 r H 2 r + 2 = \ [ H 2 n + 2 < H 2 n + l + H 2n + 3> " 3 n e " <P + ^ + <^ 
r=l 

Corresponding to the identity 

F r " W r + k = <" 1 ) r _ k F k 

for the generalized Fibonacci numbers we get in the generalized Fibonacci 
numbers the identity 
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(17) H2 - H . H M. = (~l)r*"keFf 
r r -k r+k k 

Now consider the suras 

( 1 8 ) E H2r~2H2iM-2 = I [H2n+l ( H2n + H 2n + 2 } " 7 ™ " ^ + * « + 1 0 « ^ 
r=l 

(19) E H2r-lH2r+3 = I EH2n+2(iWl + ^ ^ * 7ne " ^ H 3 p + q ) ] 
r=l 

Evaluating the quantity H i r H k + iH, + 2 we get 

(20) H k
H

k + l H
k + 2 = H k + 1 + ( - 1 ) k _ 1 e H k + l 

Therefore 

H 2 r - l H 2 r H 2 r + l = H L + e H 2 r 

Hence 

n n n 

E H2:r-1 H 2 r H2r+1 = E H L + e E H 2 r ' 
r=l r=l r=l 

After simplification this becomes, 

<21) E H 2 r - l H 2 r H 2 r + l = I [<HL-1 " H l> + e ( H 2 n + l " H i>] 
r=l 

(22) E^iWr'X^^-^A-iH 
r=l 
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Now 

Ho = (pF0 + qF 0 - ) 3 . 2r F 2r ^ 2 r - l 

On expanding the right side* taking the sum from r = 1 to n and simplifying 
we get the relation 

n 

<23> E H 2 r = I [<H2n+l " H?> - 3 e<H2n+l " H l » 
r=l 

n 

<24> E H 2r H 2 r~ l = I [ ( H 2 n H L l " *\> + e » 2 n ™ l " H l « 
r = l 

n 

<25> E H 2 r H 2 r ^ l = J ^ a n - l ^ L l " H l q 2 } + e ( H 2 n " H 2 >1 
r = l 

n 

<26> EHL-l=lf(H2n-^) + 3 e < H 2 n - ^ 
r=l 

From the formula for H we can find the sums of the following.-

n 

^ E r H r = n H n + 2 " H n + 3 + H 3 
r=0 

n 
(28) E <-1>rrHr = t("1): 

r=0 

n 

(29) £ ( - « r H a r = | [ (-Dn+1(H2n + H 2 n + 2 > " (P + *»1 
r=0 

(n + 1)H n-1 H • n - 2 
+ (3q - 2p)] 
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n 
(30) E ^ X r + l = I [(-1)n(H2n+l +H2n+3) + <*-">] 

r=0 

(31) 

(32) 

E rH2r = [nH2n+l " H l ] " [H2n " H
2 ] 

r=0 

E rH2r+l = nH2n+2 " [H2n+1 " Hl] 
r=0 

(33) £ <-l)rrH2r = ̂(-^((n + DH^+nH^)-^-^)] 
r=0 

n 
(34) E <-«r'H2r+1 = i[(-l)n((n+l)H2n+1+nH2ri+3)-Hl] 

r=0 

It is easy to see that the list of identities given by K. Subba Rao can be extended 
to Fibonacci Quaternions defined by 

Q = F + iF , . + iF ^ + kF ^0 . ^n n n+1 J n+2 n+3 

The author is very grateful to Dr. J. Sethuraman for valuable suggestions. 
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GOLDEN TRIANGLES, RECTANGLES, AND CUBOIDS 
MARJORIE BICKNELL and VERNER E. HOGGATT, JR. 
A. C. Wilcox High School, Santa Clara, California, and 

San Jose State College, San Jose, California 

1. INTRODUCTION 

One of the most famous of all geometric figures is the Golden Rectangle, 
which has the ratio of length to width equal to the Golden Section, 

<t>= (l + V 5 ) / 2 . 

The proportions of the Golden Rectangle appear consistently throughout c lass i -
cal Greek ar t and architecture. As the German psychologists Fechner and 
Wundt have shown in a series of psychological experiments, most people do 
unconsciously favor "golden dimensions" when selecting pictures, cards, mi r -
rors , wrapped parcels, and other rectangular objects. For some reason not 
fully known by either art ists or psychologists, the Golden Rectangle holds great 
aesthetic appeal. Surprisingly enough, the best integral lengths to use for 
sides of an approximation to the Golden Rectangle are adjacent members of 
the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, ••• , and we find 3 x 5 and 5 x 8 
filing cards, for instance. 

Suppose that, instead of a Golden Rectangle, we study a golden section 
triangle. If the ratio of a side to the base is 

<£ = a + V5)/2 , 

then we will call the triangle a Golden Triangle. (See [2] , [3] . ) 
Now, consider the isosceles triangle with a vertex angle of 36°. On bi-

secting the base angle of 72°, two isosceles triangles are formed, and ABDC 
is similar to A ABC as indicated in the figure: 

73 
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0 y x 

Since AABC-ABDC, 

AB 
BD 

BC 
DC ' 

or, 

so that 

I = x 

x y - x 

j r - yx - xd = 0 

Dividing through by x2 / 0, 

l ! _ I > i = 

The quadratic equation gives 

f = (1 + V5)/2 = 0 

as the positive root, so that A ABC is a Golden Triangle. Notice also, that, 
using the common altitude from B, the ratio of the area of AABC to AADB 
i s <f>* 



1969] GOLDEN TRIANGLES, RECTANGLES, AND CUBOIDS 75 

Since the central angle of a regular decagon is 36°, AABC above shows 
that the ratio of the radius y to the side x of an inscribed decagon is 

4> = (1 + \/5)/2 . 

Also, in a regular pentagon, the angle at a vertex between two adjacent diagon-
als is 36°. By reference to the figure above,, the ratio of a diagonal to a side 
of a regular pentagon is also <j>. 

2. A TRIGONOMETRIC PROPERTY OF THE ISOSCELES GOLDEN TRIANGLE 

The Golden Triangle with vertex angle 36° can be used for a surprising 
trigonometric application. Few of the trigonometric functions of an acute angle 
have values which can be expressed exactly,, Usually, a method of approxi-
mation is used; mostvalues in trigonometric tables cannot be expressed exactly 
as terminating decimals, repeating decimals, or even square roots, since they 
are approximations to transcendental numbers, which are numbers so i r r a -
tional that they are not the root of any polynomial over the integers. 

The smallest integral number of degrees for which the trigonometric 
functions of the angle can be expressed exactly is three degrees. . Then, all 
multiples of 3° can also be expressed exactly by repeatedly using formulas 
such as sin(A + B). Strangely enough, the Golden Triangle can be used to de-
rive the value of sin 3°, 

In our Golden Triangle, the ratio of the side to the base was 

y/x = (1 + V5)/2 . 

Suppose we let AB = y = 1. Then 

1/x = (l + V5) /2 ' , 

or, 

x = (\/5 - l ) /2 . 

Redrawing the figure and bisecting the 36° angle, 
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we form right triangle AYC with YC = x/2. Then, 

sin 18 ° = I£ = £ V5 - 1 = J_ 
AC 2 2 * 

Since sin2A + cos2A = 1, 

cos 18 o = y/lO + 2V5 = \A/5<ft 

Since sin (A - B) = sin A cos B - sin B cos A, 

sin 15° = sin (45°- 30°) = V l . Y l _ I . YI V6 - V2 
2 2 2 2 

Similarly, using cos (A - B) = cos A cos B + sin A sin B, 

cos 15 o _ \ / 6 + \ / 2 
4 

Again using the formula for sin (A - B), 

sin 3° o s in(18°-i5°) = ( ^ i ^ ^ p l ) . ^ ^ j ^ J ^ E \ 

= ^|"(V5 - D(V6 + V2) - 2(V§ - l)(/5 + V5 ) J 

as given by Ransom in [ l ] . 
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3. GOLDEN RECTANGLE AND GOLDEN TRIANGLE THEOREMS 

77 

While a common way to describe me Golden Rectangle is to give the ratio 
of length to width as 

0 = (1 + y/E)/2 , 

this ratio is a consequence of the geometric properties of the Golden Rectangle 
which are discussed in this section. 

Theorem. Given that the ratio of length to width of a rectangle is k > 1. 
A square with side equal to the width, canbe removed to leave a rectangle sim-
ilar to the original rectangle if and only if k = (1 + \/E)/2 . 

Proof. Let the square PCDR be removed from rectangle ABCD, 
leaving rectangle BPRA. 

c 

w 

n 

p 

w / - w | 

w 

If rectangles ABCD and BPRA have the same ratio of length to width, then 

k = w = 1 
/ - w w " 

Cross-multiplying and dividing by w2 ^ 0 gives a quadratic equation in — 
which has 

w 

( l + V 5 ) / 2 

as its positive root. If 
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1 = (1 + V 5 ) / 2 = <t>, 
W 

[Feb. 

then 

w 
w i.« i 

w 
0 - 1 = 0 

so that both rectangles have the same ratio of length to width. 
Theorem. Given that the ratio of length to width of a rectangle is k > 1. 

A rectangle similar to the first can be removed to leave a rectangle such that 
the ratio of the areas of the original rectangle and the rectangle remaining is 
k, if and only if 

k = (1 + \ / 5 ) / 2 . 

Further, the rectangle remaining is a square* 
Proof, Remove rectangle BPRA from rectangle ABCD as in the 

figure: 

II / - * JC I 

w 

Then 

area ABCD 
area PCDR 

fw 
w i [_y 

But, 
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'w = 1 - k 
wTT^x) w K * 

79 

if and only if 

w 
/- = 1 

or w = / - x or PCDR is a square. Thus, our second theorem is a conse-
quence of the first theorem, 

Analogous theorems hold for Golden Triangles. 
Theorem. Given that the ratio of two sides a and b of a triangle is 

a/b = k > 1. A triangle with side equal to b can be removed to leave a t r i -
angle similar to the first if and only if k = (1 + \ / 5 ) / 2 . 

Proof. Remove AABD from A ABC. 

If A ADC - ABAC9 then 

AC 
BC 

DC 
AC 

or 

b 
a 

a - b 
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Cross multiply, divide by b2 ^ 0, and solve the quadratic in a/b to give 

a/b = ( l + v ^ / 2 . 

as the only positive root. 
If 

a/b = (1 + VB)/2 , 

then 

DC/AC = (a - b)/b = a/b - 1 = (\/5 - l ) /2 

and 

AC/BC = b /a =* 2/(1 + \ /5) = (VJ5 - l ) /2 = DC/AC . 

Since is in both triangles, A ADC ^ ABAC. 
Theorem. Given that the ratio of two sides of a triangle is k > 1. A 

triangle similar to the first can be removed to leave a triangle such that the 
ratio of the areas of the original triangle and the triangle remaining is k, if 
and only if k = (1 + y/Z)/2a 

Proof. Let AADC - ABAC, such that BC/AC = AC/DC = k. 

If the ratio of areas of the original triangle and the one remaining is k, 
since there is a common altitude from A, 
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ir = area ABAC = (BC)(h/2) BC/AC _ k 
areaABDA (BC - DC)(h/2) BC/AC - DC/AC " k - 1/k ' 

Again cross-multiplying and solving the quadratic in k gives k = (1 + \ / 5 ) /2 . 
If 

k = (1 + V 5 ) / 2 , 

then 

BC/AC - AC/DC = (1 + \ / 5 ) / 2 , 

and the ratio of areas BC/(BC - DC) becomes (1 + \/5)/2 when divided 
through by AC and then simply substituting the values of BC/AC and DC/AC. 

If 

k = (1 + y/E)/2 = BC/AC , 

and the ratio of areas of ABAC and \ ABDA is also k, then 

. BC/AC k 
K BC/AC - DC/AC k - x 9 

which leads to 

x = k - 1 or DC/AC = (1 + V5)/2 - 1 = 2/(1 + y/E) 

so that 

AC/DC = (1 + V§)/2 

and ABAC is similar to A ADC. 

4. THE GENERAL GOLDEN TRIANGLE 

Unlike the Golden Rectangle9 the Golden Triangle does not have a unique 
shape. Consider a line segment CD of length 



82 GOLDEN TRIANGLES, RECTANGLES, AND CUBOIDS [Feb. 

0 = (1 + \ /5 ) /2 . 

Place points E, G, and F on line ^Off* such that CE = 1, EG = GF = 0 as 
in the diagram. 

Then9 ED = 0 - 1 and 

CE/ED = 1 (0 - 1) = 0 , 

CF/DF = (20+ 1)(0 + 1) = 0 3 /0 2 = 0 , 

so that E and F divide segment CD internally and externally in the ratio 0. 
Then the circle with center G is the circle of ApoILonius for CI) with ratio 
0. Incidentally, the circle through C, D, and H is orthogonal to circle with 
center G and passing through H, and HG is tangent to the circle through 
C, D, and H. 

Let H be any point on the circle of Apollonius. Then CH/HD = 0 , 
CG/HG = 0 , and ACHG - AHDG. The area of ACHG is 

h(l + 0 ) / 2 = h0 2 /2 , 

and when AHDG is removed* the area of the remaining ACHD is h.0% so 
that the areas have ratio 0 . Then, ACHG is a Golden Triangle, and there 
are an infinite number of Golden Triangles because H can take an infinite num-
ber of positions on circle G. 
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If we choose H so that CH = <f> + 1, then we have the isosceles 36-72-
72 Golden Triangle of decagon fame. If we erect a perpendicular at D and 
let H be the intersection with the circle of ApoUonius* then we have a right 
golden triangle by applying the Pythagorean theorem and its converse. In our 
right golden triangle ACHG, CH = $ W s HG = <j>9 and CG = $2. The two 
smaller right triangles formed by the altitude to CG are each similar to 
ACHG, so that all three triangles are golden. The areas of AHDG, ACDH9 

and ACHG form the geometric progressions, 

vW/29 (V?/2)$, (V$/2)tf* . 

Before going on9 notice that the right golden triangle ACHG provides an 
unusual and surprising configuration. While two pairs of sides and all three 
pairs of angles of ACHG and ACDH are congruent, yet ACHG is not con-
gruent to ACDH! Similarly for ACDH and AHDG. (See Holt [4] .) 

(e- — • 4 + i - _ - _ — ™ _ ^ 

5. THE GOLDEN CUBOID 

H. E. Huntley [5] has described a Golden Cuboid (rectangular parallele-
piped) with lengths of edges a, b , and c, such that 

a : b : c = (/> : 1 : (̂ >" 

The ratios of the areas of the faces are 

< f r : l:<f> 
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and four of the six faces of the cuboid are Golden Rectangles. 
If two cuboids of dimension 

0 " 1 X 1 X 0""1 

are removed from the Golden Cuboid, the remaining cuboid is similar to the 
original and is also a golden cuboid, 

If a cuboid similar to the original is removed and has sides b, c, and 
d, then 

b : c : d = <f> 

so that 

c = d<f), b = d$9 a = d<}? . 

The volume of the or ig ina l i s abc = $6d3, and the volume r emoved i s bed = 
<£?d3. The r e m a i n i n g volume i s $ > 6 - $ 3 ) d 3 . The r a t i o of the volume of the 
o r ig ina l to the volume of the r e m a i n i n g cuboid i s 

<^6d3
 = <fr3

 = 2 + V 5 =_ 3 + V 5 = , 2 

(4>6-<£3)d3 < £ 3 - l 1 + V 5 4 
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6. LUCAS GOLDEN-TYPE RECTANGLES 
85 

Now, in a Golden Rectangle, if one square with side equal to the width is 

removed, the resulting rectangle is similar to the original. Suppose that we 

have a rectangle in which when k squares equal to the width are removed, a 

rectangle similar to the original is formed, as discussed by J . A. Raab [ 6 ] . 

In the figure below, the ratio of length to width in the original rectangle and in 

the similar one formed after removing k squares is y : 1 = 1 :x which gives 

x = l / y . Since each square has side 1, 

y - x = y - 1/y = k, 

ors 

y 2 ~ k y - l = 0 . 

-H 

Let us consider only Lucas golden-type rectangles. That is , let k = L 
st where Lrt , is the (2m+l) Lucas number defined by 2m+l ' 

2m+l' 

L = 2, L = 15 L = L + L 0 0 1 n n-1 n-2 

A known identity is 

(^•N*;- k ^ k . 

where a and /3 are the roots o f x - x - 1 = 0 
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In our problem, if 

k = L 2m + 1 ' 

then 

becomes 

so that 

or 

but 

y2 - ky - 1 = 0 

y 2 " - L 2 m + 1 y - l = 0 

2m+l 
y = a 

a 2m+l 
y = P 

» 2m+l 
y = a • 

is the only positive root. Then 

, / 2m+l n2m+l 
x = l / a = -/3 

On the other hand, suppose we insist that to a given rectangle we add one 
similar to it such that the result is k squares long;. Illustrated for k = 3, 
the equal ratios of length to width in the similar rectangles gives 

- = ""T""^ or ky - y = 1 or y - ky + 1 = 0. 
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k - y ->j 

y 

2m 2ni 2m 
Now, let k = L ; then y =a o r y = fS . H e r e , of c o u r s e , y =/3 , 

zm 
so that 

n 2 m 2m 
k ~ y = L 0 - j3 = « 

Both of these c a s e s a r e 9 of c o u r s e , in the plane; the r e a d e r is invited to 

extend these ideas into the thi rd dimension. 

7e GENERALIZED GOLDEN-TYPE CUBOIDS 

Let the d imensions of a cuboid be a : b : c = k and remove a cuboid 

s i m i l a r to the f i r s t with dimensions b : c : d = ke Then 

2 3 
c = dk, b = dk , a = dk 

The volume of the or iginal is 

abc = k d , 

the volume removed is 

bed = k 3 d 3 

and the remaining volume is 

( k 6 - k
3 ) d 3 . 
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The ratio of the original volume to that remaining is 

k d k 

Now, let this ratio equal 

( k 6 - k V k 3 - i 

k 2 / L Q = k 2 / 2 

which leads to 

0 = k3 - 2k - 1 = (k + l)(k2 - k - 1) 

with roots 

and having 

k = - 1 , (1 ± Vij/2 

k = (1 + VS)/2 

as its only positive root. 
Now consider ahypercuboidin ahyperspace of 6 dimensions, with dimen-

sions a : b : c : d : e : f = k. Remove a hypercuboid of dimensions 

b : c : d : e : f : g = k , 

and the ratio of the original volume to the volume remaining is 

U ^ S 61 2 1 1 6 

abcdef _ g k _ k 
abcdef - bcdefg ~ 6/T 21 . 15 " . 6 ., g (k - k ) k - 1 

since 

2 3 4 5 6 
f = kg, e = k g, d = k g, e = k g, b = k g, a = k g 
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2 Now set this ratio equal to k /L or, 

o 

I 6 I 3 

k k 
k 6 - l 

which leads to 

with roots 

k
6 _ 4k 3 - 1 = 0 

2 2 

2 where a> and a> are cube roots of unity. Then 

k = a = (1 + VE)/2 

is the only positive real root. 
Suppose we have a cuboid in a hyperspace of 4m + 2 dimensions. Let 

this have edges 

V V V " • • a4m+2 ' 

and cut off a cuboid similar to it so that 

b- = a = a : a • • • • : a = a : a : a : « » » : a : a 
1 2 3 4m+2 2 3 4 4m+2 4m+3 

This implies that the dimensions are related by 

. 4m+3-n a = k a . ^ 0 
n 4m+3 

for n = 1,2, •• • ,4m + 3. The volume of the original cuboid is nowa a a • • • 
a^ , « while the volume of the cuboid cut off is a a • • »a, SLA , n. The r e -4m+2 2 3 4m+2 4m+3 
maining cuboid has volume equal to the difference of these, making the ratio of 
the original volume to that remaining 
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a i a
2 V a 4 m + 2 _ a i k 4 m + 2 

a 2 a 3 ' ' ' a4m+2( a l " a4mrH3) V a4m+3 k 4 m + 2 - 1 

Now let us let this volume ratio equal to 

k 2 m + 1 / L 9 + 1 , 2m+l ' 

st where L2 + 1 is the (2m+l) Lucas number, yielding 

k 4 m + 2 - L9 + 1 k 2 m + 1 - 1 = 0 
2m+l 

whose only positive root is 

a = (l + \ / 5 )/2 . 

2 The proof is very neat* Since a(3 = -1 for a and /3 the roots of x - x - 1 
= 0 and since L = a +Bn

i we can write 
n ^ ' 

, = a 2 m + l 2m+l + f l 2m+l _ a4m+2 = a 2 m + l L _a4m+2 
* p ' 2m+l 

and rearrange the terms above to give 

fe4m+2 " L 2 m + l k 2 m + 1 " 1 = (k 4 m + 2 - a 4 m + 2 ) " L 2 m + 1 ( k 2 m + 1 - « 2 m + 1 ) 

= ( k 2 m + 1 - a 2 m + 1 ) ( k 2 m + 1
 + « 2 m + 1 - L 2 m + 1 ) 

- 2m+l 2m+l w l 2m+l 0 2m+l x = (k - a )(k - 0 ) = 0 . 

st Thus9 k-€t(js)., jSc*)., where a>. are the (2m+l) roots of unity, so that 

k = a = (l + \ /5 ) /2 

is the only positive real root. 
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Now, let us return to the volumes of the cuboids in the hyperspace of 
4m + 2 dimensions. Let us set a = a. . Then, since k = a , the volume 
of the original cuboid is 

V l " a l a 2 9 " a 4 m + 2 ~ a « « « • • • « 

and the volume of the cuboid removed is 

17 - o o o « - 4m+2 1 2 3 ^4m+l 
V0 - a 0 a 0 •«• aA , n a , , 0 = a a a a * • • a 

2 2 3 4m+2 4m+3 

making the volume of the cuboid remaining 

XT 4m+2 _T4m+l , 4m+2 1V 
V l " 2 = a * * 

where T is the n triangular number. But, 

4m+2 - T ^,2m+l 
"" X = L 2 m + I a 

so that the remaining cuboid is made up of L . - square cuboids with total 
volume 

4m+2 1 2 3 4m+l , , 2m+l, 
a a a a ••• a (L2m+1 * ' 

Thus we have generalized the Golden Cuboid of Huntley [5] and also the golden-
type rectangle of Raab [ 6 ] . 
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1. INTRODUCTION 

In [ l] Professor Horadam has defined a certain generalized sequence 

{wn} = {wn(a,b; p,q)} : w0 = a, wt = b 

and 

w = pw - qw (n — 2) 
n ^ n-i ^ n-2 

for arbitrary integers a and b. The n term of this sequence satisfies a 
relation of the form: 

w = Aan + Bpn 
n ^ 

where 

A - b " *& . -R - aQf " b 
A " a - p ' * " a - p 

a and P being the roots of the equation x2 - px + q = 0. He also mentions 
the particular cases of {w } given by 

wn( l ,p ; p,q) = un(p,q) 

wn(2,p; p,q) = vn(p,q) 

w n ( r , r + s; 1,-1) = hn(r, s) 

w (1,1; 1,-1) = f '•= u (1, -1) = h (1, 0) 
n ' ' n n. n 

w (2,1; 1,-1) = 1 = v (1,-1) = h2 (2, -1) 
n n n L ' 

wherein F n and Ln are the famous Fibonacci and Lucas sequences respectively. 
92 
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SECTION 2 

In this paper our object is to derive some relations connecting the sums 
of the above sequences up to n terms. 

We shall derive aformulafor the sum of the most general sequence {w } 
and thereby obtain the sums of the other sequences, 

Theorem: 

A bTQ - aqT 
L w r = a + 1 - p + q 
r=o 

where 

and 

T = 1 - A n n 

A = u - qu n n H n-i 

Consider 

Ewr = AI>r + BI>r 
r=o r=o r=o 

b - a/3 an+1 - 1 aa - b pR+i - 1 
a - p a - 1 a - p p - 1 

This becomes, after simplification by using the facts (a + ft) = p, ap = q, 
a « p = d 

[(a + b - ap) + aq(un_i - q u ^ ) - b(un - q u ^ J j / d - p + q) 

Set. 
u - qu = A n ^ n-i n 
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Then, this becomes 

[(a + b - ap) + aqA n - l - b A j / U - p + q). 

[a(l - p + q - q + q A n - i ) + b ( l - A n ) ] / ( l - p + q) 

a + [-aq(l - A ^ ) + b(l -X n )] / ( l - p + q) 

let now 

1 " \ " T n • 

therefore we finally obtain 

n bT - aqT 4 
n n-i (1) ^T w „ = a + — ^ — r - r r r ^ + 

r - 1 - p + q 
r=o 

Hence the result* 
From this we can obtain immediately the sums of 2u , 2 v r , 2 F , 2 L , 

etc. 

2 ur (Ps q) 

r=o 

is obtained by letting a = 1, b = p in (1) 

n pT - qT 
LVP'^ = 1 + l - p + q 
r=o 

(2) 

J]ur(P.q) = T n + i / ( 1 _ P + q ) ' " 
r=o 
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n 

E Vn (p' <*> 
r=o 

can be obtained by putting a = 2, b = p, p, q in. (1) 

r=o 
(3) 

r=o 

In particular, 

and 

Swr(l , 1; 1,-1) = 2 F r = Su r ( l f - 1 ) = Shr(l f 0) 

S w r ( 2 , 1 ; 1,-1) = XLr = s v r ( l f - l ) = Sh r (2 , -1) . 

a) y^ urd, -i) 
r==o 

is derived by putting a = b = p = 1, q = -1 in (1). 
In this case A = u + u = u ., . Therefore n n n-i n+i 

A (1 - u ) + (1 - u ) 
2 u t ( l i . l ) - l + — H f ? T ^ ^ 
r=o 

i - [ d - u + 1 ) + a - u )] 
n+i n 
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n 

2>*a.-i> = w 1 - * * * - 1 [ * ] " ' V 
r=o 

This can be verified for any n. 
(ii) To get 2v (1» -1) let a = 2, b = p = 1, q = -1 in (1). Here also 

A. = u ... So n n+i 

* ( l - u ) + 2 ( l - u ) 
I/r<l,-l) = * + f - 1 - 1 
r=o 

= 2 - [ 3 - 2u - . u x i ] L n n+iJ 

= u + u _̂  - 1 n n+2 
= v . - 1 • • • (LJ 

n+2 n 

This also can be very easily verified for any n. 

(iii) Now to evaluate 

]Cvp,q ) 
r=o 

set 

a = p, b = p + q, p = 1, q = -1 

in (1). Here again 

K = Vi = Vl • 

Then 
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n 

J j i r ( p , q ) = p - [ ( p + q) ( l - Fn + 1) + p(l - Fn)J 
r=o 

= (P + ^ F
n + l + P F n ~ ( p + q ) 

= ( p F n + 2 + q F n + 1 ) - ( p + q) 

]Th r (p ,q ) = hn+2 - (p + q) by [2] . . . <Lm) 
r=o 

ls 1.5 (1..), (1...) can be proved for all (+ve) integers n by induction. We l i i i l l 
shall here prove (1) as an illustration. Let us suppose that 

k - - « bT, - aqT, 

r 1 - p + q 
r=o 

Next let us add w, to both sides, to get 

k + 1 bT - aqT 
w = a + —P r - r - i + w, 2 ^ ^ r - - • ~ i _ p + "q— • "k+i 

r = 0 ' b ( 1 " \ + ^ k - i ) ~ a q ( 1 ~ Vi + ^Uk-2 ) 

= a + — — - - — 1 - p + q 

+ Aak+1 + B|Sk+1 

*, TT + b ( l - u + q U ) - a q ( l - u + qu k _ 2 ) 

(4) 2_,wr = a + rrrrr 
r=o 

+ buk - a q u ^ 

C " a + 1 - -P + q Cb(1 " V l + q U k ) " a q ( 1 - \ + q V i } 3 

^ !1 b T . ^ - aqT. Y w = a + k±L_U& 
Z ^ r 1 - p + q 
r=o 
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Equation (4) is of the same form as (l)f with k replaced by k + 1. Hence, etc* 
Similarly other results can be proved for all positive integral values of 

n. 
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In the previous lesson9 the technique of relating the terms of a linear 
recursion relation to the roots of an auxiliary equation was studied and illus-
trated. The Fibonacci sequences are characterized by the recursion relation: 

(1) T ,., = T + T , , x J n+1 n n-1 % 

which is a linear recursion relation of the second order having an auxiliary 
equation: 

(2) x2 = x + 1 

or 

(3) x2 - x - 1 = 0 

The roots of this equation are : 

(4) r = ^ - and s = ± ^ 

From the theory of the relation of roots to coefficients or by direct calculation 

it can be ascertained that: 

(5) r + s = 1 and rs = -1 . 

It follows from what has been developed in the previous lesson that the terms 
of any Fibonacci sequence can be written in the form: 

(5) T n - a,xn + bs n , 

99 
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where a and b are suitable constants* For example, let 

T x = 2, T 2 = 5 

The relations that must be satisfied are: 

2 = ar + bs 

2 - U K 2 

5 = a r + bs 

These give solutions: 

a = 15±^5. a n d . = 1 5 - V5 a 1Q ana b 1Q 

so that 

ln 10 r 10 -

Let us apply this technique to what is commonly known as the Fibonacci 
sequence whose initial terms are F- = 1 and F 0 - 1. Then 

1 = a r + bs 

2 ^ , 2 1 = a r + bs 9 

with solutions 

1 
a -

and 

v^ 

b = --i 
\ / 5 

so that 
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n n 
(6) F - ±—Z-§L 

the BINET FORMULA for the Fibonacci sequence. 
Similarly, for the Lucas sequence with L 

1 = a r + bs 

3 = a r + bs 9 

one obtains a = 1, b = 1, so that: 

(7) L = r + s s w n * 

the BINET FORMULA for the Lucas sequence. 

THE. GOLDEN SECTION RATIO 

With this formulation it is easy to see the connection between the Fib-
onacci sequences and the Golden Section Ratio. To divide a line segment in 
what is known as "extreme and mean ratio" or to make a Golden Section of the 
line segment,, one finds a point on the line such that the length of the entire 
line is to the larger segment as the larger segment is to the smaller segment. 
To produce an exact parallel with the Fibonacci sequence auxiliary equation, 
let x be the length of the line and 1 the length of the larger segment. Then: 

x : 1 = 1 : 1 - x , 

which leads to the equation 

x
2 _ x « i = o . 

Clearly, we are interested in the positive root 

i + Vs" 
r = —zr— 

1 and L = 3 , 
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The other root s = - 1 / r is the negative reciprocal of r , the Golden Section 
Ratio. (It may be noted that 

I = Vs"-1 
r 2 

is also considered the Golden Section Ratio by some authors. This is a matter 
of point of view: whether one is taking the ratio of the larger segment to the 
smaller segment or vice-versa.) 

USING THE BINET FORMULAS 

The Binet formulas for the Fibonacci and Lucas sequences are certainly 
not the practical means of calculating the terms of these sequences. Alge-
braically, however, they provide a powerful tool for creating or verifying 
Fibonacci-Lucas relations. Let us consider a few examples. 
Example 1 

If we study the terms of the Fibonacci sequence and the Lucas sequence 
in the following table: 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

F n 

1 
1 
2 
3 
5 
8 

13 
21 
34 
55 

it is a matter of observation that: 

F 4 L 4 = 3 X7 = 21 

F C L, = 5 X 1 1 = 55 
5 5 

and in general it appears that: 

n 

1 
3 
4 
7 

11 
18 
29 
47 
76 

123 

= F 

= F. 10 



1969] LESSON THREE - THE B1NET FORMULAS 103 

F L = F Q . n n 2n 

Why is this s o ? Using the Binet formula for F ? , 

2n 2n . n n. 
T. r - s (r - s ) , n . nv ^ T 
Y = — = J — -J- (r + s ) = F L 

2n , /=• . / r v ; n n 
V5 \/5 

Example 2 

has a factor 

kn kn , k , n ., k / 1 

F = r ZA— = (LA^ZJ^L. 
k n V5 V5 

k k 
r " S - F 

Vs" 

which p roves that if k is a d iv isor of the subscr ip t of a Fibonacci number 

F 9 then F, divides F . m k m 

Example 3 

By taking success ive values of k9 one can intuitively s u r m i s e the 

formula : 

F + F F 2 = ( _ D ^ + 1 F 2 
n+k n-k n x ' k 

To prove this re la t ion , use the Binet formula for F e This g ives : 

F F ^ 2 r P + k - s n + k r n - k - s n - k (rQ - s n ) 2 

n+k n-k n y/r~ ' ^ 5 

= r 2 n + s 2 n - r n + k s n " k - r
n - k s n + k - r 2 n + 2 r V - s 2 n 



3 . 
4 . 

5 . 

6 . 

7. 

F = F ( 3n V 
F r = F ( 

5n ir 
3n nv 

5n i r 
For the Fib 
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PROBLEMS 

1, Prove that 

LQ = L 2 + 2 ( - l ) n + 1 . 
2n n * ' 

2. Using the Binet formulas, find the value of: 

L F - - F L - . 
n n-1 n n-1 

). Determine the expression for the cofactor of F . 
). Determine the expression for the cofactor of F . 
). Find the expression for the cofactor of L , 
). Find the expression for the cofactor of L , 

For the Fibonacci relation with T- = 39 T 2 = 7, find the expression for 

T in terms of powers of r and s. 
8. Using the binomial expansion, find an expression for F in terms of 

powers of 5 and binomial coefficients. 
9. Do likewise for L . 

10, Assuming the relation 

L + L . 0 = 5F . - , 
n n+2 n+1 * 

2 2 
determine an equivalent single Fibonacci number for F + F ,- using the 
Binet formula. 

[Continued on p. 106. ] 
EiRiTA FOR 

I L B i AUEHA CONSTRUCTED FROM FIBONACCI SEQUENCES 
J. W. GOOTHERTS 

Lockheed Missiles & Space Company, Sunnyvale, Calif. 

Please make the following changes in the above-entitled article, appear-
ing in Vol. 6, Noa 5, November 1968: 

On page 36., change the eighth line from the end to read: 
Definition 1.5. For U , V G ? , UV = (u0v0 + u ^ u ^ + UJVQ + UJVJ). 

Equation (3) on p. 38 should read: 

(38) 
au + bu = 0 n m 
au . - + bu , - = 0 . n+1 m+1 

On p. 42, 11 lines from the end, change the " F " to a script *3\ 
On p. 49, in the equation preceding Eq. (10), change a. to ft). 

• • • • * • 



BOOK REVIEWS 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

FIBONACCI AND LUCAS NUMBERS 
Verner E. Hoggatt, J r . 

Houghton Mifflin Company has just released a 92-page booklet in its En-
richment Series entitled "Fibonacci and Lucas Numbers" by our Editor, V. E. 
Hoggatt, J r . 

If a first impression is valid, this contribution to mathematical literature 
might be characterized by three words: richness, variety, lucidity. Richness 
and variety are manifest in relating the Fibonacci and Lucas numbers to many 
interesting facets of mathematics. The Golden Section Ratio and some unusual 
geometry receive attention in the early part of the book. Number theory comes 
into play in the periodic properties of the Fibonacci and Lucas numbers. The 
prolific Pascal triangle receives its share of attention. The algebra of simple 
matrices and representation of integers open up many doors to further research 
and study. Finally, relations with nature round off the treatment and point to 
the mysterious connection of mathematics with the real world which has 
fascinated man for untold centuries. 

Some examples of lucidity would be the very slick way in which the Binet 
formulas are introduced; the handling of asymptotic ratios and their relation to 
the Golden Section in Chapters 5 and 6; the treatment of periodicity of remain-
ders in Chapter 8; the explanation of Fibonacci numbers in nature in Chapter 
13. 

A helpful feature of the book is an appendix giving solutions of many of the 
problems in the book. 

This book should prove a boon to young and old who wish to enter that 
magic door which leads to the wonderful world of Fibonacci. All too often we 
receive pleas for books and materials dealing with this field. There is now a 
ready answer to these requests for help. 

This booklet l ists for $1.40, and is also available from the Fibonacci 
Association. 

INVITATION TO NUMBER THEORY 
Oystein Ore 

As part of its New Mathematical Library, Random House (The L. W. 
Singer Company) has just released a booklet, "Invitation to Number Theory," 
by Oystein Ore. 

As everyone knows, number theory is a type of mathematics which has 
fascinated amateur and professional over the centuries. The questions it raises 
are often quite easy to understand and therefore appealing to the mathematical 
enthusiast who does not have a great background in mathematics. 

The booklet takes up aspects of number theory that are within the range 
of a good high school student; pr imes, divisors of numbers, greatest common 
divisor and least common multiple, the Pythagorean problem, numeration sys-
tems, and congruences* 

One of the noteworthy features is the way in which the author relates his 
treatment to the history of mathematics. The following examples bring out this 
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point: figurate numbers, the Euclidean algorithm for finding the greatest com-
mon divisor, perfect numbers, amicable numbers, the Pythagorean problem, 
ancient systems of numeration, and Mersenne numbers. 

On the other hand, up-to-date developments are not neglected. There is 
an interesting discussion of the largest primes discovered by the factorization 
of Mersenne numbers. In connection with number bases, computers and their 
mode of arithmetic are introduced. 

Finally, the author has introduced interest features throughout the book: 
magic squares, games with digits, days of the week as related to congruences, 
tournament schedules. 

The book contains problems to be solved and has a section entitled "Solu-
tions to Selected Problems.t f 

The list price is $1.95. 
• • • • • . 

[Continued from p. 104. ] 

SOLUTIONS TO PROBLEMS 

2(- l ) n 

L 2 n + ^ ) 

5. 

6. 

T - 10 + V 5 n + 10_-_V5 sn 
lLn 5 r 5 

L = 2 
n 

-n+l 

10. • 2 n + l -

• • • • • 



aEMEHTARI PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLMAN 
University of New Mexico, Albuquerque, N. Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. Pe Hillman9 Department of Mathematics and Statistics, Uni-
versity of New Mexico,, Albuquerque* New Mexico9 87106. Each problem or 
solution should be submitted in legible form, preferably typed in double spac-
ing , on a separate sheet or sheets in the format used below. Solutions should 
be received within three months of the publication date, 

Contributors (in the United Stated) who desire acknowledgement of receipt 
of. their contributions are asked to enclose self-addressed stamped postcards. 

B-154 Proposed by S. H. L. Kung, Jacksonville University, Jacksonville, Florida 

What is special about the following "magic" square? 

11 

8 

20 

7 

25 

2 

13 

17 

24 

5 

14 

3 

15 

18 

23 

19 

22 

6 

10 

16 

21 

1 

9 

12 

4 

B-155 Composite of Proposals by M. N. S. Swamy, Nova Scotia Technical College, 
Halifax,.Canada, and Carol Anne Vespe, University of New Mexico, Albuquerque, N. Mex. 

th 
Let the n Pell number be defined by P = 0 , P = 1, and P = 

2P , + P . Show that n+1 n 

Pn+aPn+b " Pn+a+bPn = ("1 ) P a P b 8 

B-156 Proposed by Allan Scott, Phoenix, Arizona. 

Let F be the n Fibonacci number, G = F , - 2n9 and H be the n * n 4n ' - n • 
remainder when G is divided by 10, n J 
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(a) Showthat the sequence I ^ jH , E L y is per iod ic and find the r e p e a t -

ing block. 

(b) The las t two digits of G g and G - 4 give Fibonacci numbers 34 and 89 

respec t ive ly . Are the re any o ther c a s e s ? 

B-157 Proposed by Klaus Giinther Recke, University of Gottingen, Germany. 

Let F be the n Fibonacci number and j g }• any sequence . Show 

that 

n 

/ , t e k * 2 + g k t l ~ ° g k ) F k = gn+2 F n + g n + l F n + l " g l • 
k=l 

B-158 Proposed by Klaus Giinther Recke, University of Gottingen, Germany. 

Show that 

n 

^ ( k F k ) 2 = [ (n 2 + n + 2 ) F 2
+ 2 - (n2 + 3n + 2 ) F 2

+ r (n2+ 3n + 4 ) F 2 ] / 2 . 

k=l 

B-159 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn. 

Let T be the n t r i angu la r number n(n + l ) / 2 and let #(n) be the 

Eu le r tot ient . Showthat $(n) | $(T ) for n = 1,2, • • • . 

SOLUTIONS 

NOTE: The name of Ms Ne S. Swamy was inadvertently omit ted f rom the l i s t s 
of . so lvers of B-118 , B-119 , and B - 1 3 5 . 

A P E L L ANALOGUE 

B-136 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex. 

Let P be the n Pe l l number defined by P = 1, P 0 = 2, and P ^ n J 1 ' 2 ' n+2 
= 2 P ' - + P .- Showthat n+1 n 
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p 2 + p 2 = p 
n+1 n 2n+l 8 

Solution by J. E. Homer, Union Carbide Corporation, Chicago, 111. 

By induction on k it is eas i ly shown that P.T = P, . -P A T , + P, PXT , ., „ 
J J N k+1 N-k k N - k - 1 

Letting N = 2n + 1 and k = n the des i r ed r e su l t follows. 

Also solved by Clyde A. Bridger, Timothy Burns, Herta T. Freitag, J. A. H. Hunter (Canada), 
John Ivie, D. V. Jaiswal (India), Bruce W. King, Douglas Lind, C. B* A. Peck, A. G. Shannon 
(Australia), M. N. S. Swamy (Canada), Gregory Wulczyn, Michael Yoder, and the proposer. 

ANOTHER P E L L IDENTITY 

B-137 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex. 

Let P be the n t h Pe l l number . Show that P 0 , - + P Q „ = 2P^ , - - 2 p f 
n 2n+l 2n n+1 n 

- < - D n . 

Solution by Carol Vespe, University of New Mexico, Albuquerque, N. Mex. 

Let r = 1 + V 2 and s = 1 - V2« Both s ides of the identity a r e of the 

fo rm 

9 n 9 n 
e 1 ( r " ) + c 2 ( r s ) n + c 3 ( s ) 

with constant c ! s . Hence both s ides satisfy a r e c u r r e n c e re la t ion 

y n+3 = Vn+2 + klVl + k 0 y n ' 

with constant k T s . There fo re the identity is proved for a l l n by the easy v e r -

ification for n = l s 2 9 and 3 . 

Also solved by Clyde A. Bridger, Herta T. Freitag, J. E. Homer, John Ivie, D. V. Jaiswal 
(India), Bruce W. King, C. B. A, Peck, A. G. Shannon (Australia), M. N. S. Swamy (Canada), 
Gregory Wulczyn, Michael Yoder, and the proposer. 

B-138 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Show that for any nonnegative integer k and any integer n > 1, t he r e 
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is an n~by-n m a t r i x with in tegral en t r i e s whose top row is R . - J ^ , . 2 , * *' 
F, . and whose de te rminant is 1. k+n 

Solution by J. E. Homer, Union Carbide Corporation, Chicago, 111. 

T h e g . c . d , of ( F , + 1 , F , . 2 , •* • , F , . ) is 1 . There ex i s t s an n -by-n 

m a t r i x (Problem E1911, Amer i can Mathemat ica l Monthly, Aug. - S e p t . , 1966) 

with in tegra l en t r i e s whose top row is F , + 1 , F , + 2 ? • 

t e rminant is t h e g . c . d . of ( F f c f l , F ^ * *°°9 F k + n ^ 

Solution for n>4 by A. C. Shannon, ACER, Hawthorn, Victoria, Australia. 

F , + and whose de-

k+l 
k+2 
0 

F *k+2 
F k+3 

0 

F k+3 
0 
1 

F k+4 
0 
0 

"k+n-2 
0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 . . . 

1 
0 

0 

k+n-1 
0 

"k+3 
•k+2 

F ^ k+n 
\ + n - l 

•k+n-2 

• k + 3 

•k+2 

k+1 

Also solved by Michael Yoder and the proposer. 

B-139 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif. 

2 n - l Show that the sequence 1 ,1 9 1 S 1 $ 4 , 4 , 9, 9^25,25, •• • defined by a5 
2 

a, = F is complete even if an a- with j < 6 is omit ted but that the 
sequence is not complete if an a. with j > 7 is omi t ted . 

Composite of solutions by C. B. A. Peck, Ordnance Research Laboratory, 
State College, Pennsylvania, an d the proposer. 

Let S = a , + n 1 
and S, 

+ a . Then it is eas i ly seen that S, 
2 n 2 

7 - F 
m - 1 • 

0 = 2F F ,n 2m m m+1 

2 m - l 2m m+1 
J . L . Brown f s c r i t e r ion (Amer . Math. Monthly, Vol. 68 , pp . 557-560) 

s t a t e s that a nondecreas ing sequence of posi t ive in tegers b - , b p , • • • with b = 

1 is complete if and only if b + - 1 1 + b- + • • • + b for n = 1,2, •• • . 
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Thus it suffices to show that 

(A) a n + 1 < 1 + Sn - a. for 1 < i < 6 and n > i 

and 

(B) a n + 1 > 1 + Sn - a. for i > 6 and some n > i , 

There is no loss of generality in letting i = 2k. Then (B) follows with 
n = i = 2k since k > 49 1 - F ^ < 1 - 22 = - 3 , and 

V l = * i l > 1 + F^-l-Fk~l = 1 + S 2k-1 = 1 + S2fc-a2k= 1 + S n " a i ' 

One easily checks (A) when n < 6. With n = 2m - 1 and m > 4, (A) is 
clear since S n 
3, (A) holds if 
clear since S - a. contains a +- = a as a term* With n = 2m and m > 

or if 

a ^ = F 2 , . < 1 + S - a = S - 3 - 2F F , - - '3 n+1 m+1 n 6 n m m+1 

F , - (2F - F • . - ) > 3 m+lv m m+17 

or if 

F _ (F - F -•)' > 3 , m+lv m m - 1 7 - 9 

which is true for m > 39 

B-140 Proposed by Douglas Lind, University of Virginia, Charlottesville,' Va. 

Show that F . > F F, if a and b are integers greater than 1. ao a u 

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pa. 

ab > a + b - 1 for this is true for a9b = 2 and differentiation with r e -
spect to b with a fixed shows that the l . h . s . increases faster than the r .h„s 9 
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in b (and, by symmetry, in a). Then from 

F F + F F = F m n m-1 n-1 m+n-1 

(see Fibonacci Quarterlys Vol. 1, No. 1, p . 66)9 

F > F = F F + F F > F F 
ab a+b-1 a^b a - l V r a ^ b ' 

Also solved by J. E, Homer, D. V. Jaiswal (India), A. C. Shannon (Australia), 
M. N. S. Swamy (Canada), Michael Yoder, and the proposer. 

B-141 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn. 

Show that no Fibonacci number F nor Lucas number L is an even 
n n 

perfect number. 

Solution by the proposer. 

Recall that an even perfect number greater than 6 must leave a remainder 
of 1 upon division by 9 and must be a multiple of 4. An even perfect number 
greater than 28 must be a multiple of 16. 

If F ' s 1 (mod 9), then n = 1, 2, 10, 18, or 23 (mod 24); if 16JFn 

then n = 0 (mod 12). These two sets have no common elements. 
If Ln = 1 (mod 9), then n = 1 or 11 (mod 24). If 4 |Ln then n == 3 

(mod 6). Again we have an empty intersection. 
Problem H-23 asked if there were any triangular Fibonacci numbers 

beyond 55. If the answer to that question is "no" then the Fibonacci half of the 
above is immediate. 

* * * * * 
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BINDERS NOW AVAILABLE 
The F ibonacc i Associat ion is making available a binder which 

can be used to take ca r e of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

" . . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ronica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high from the 
bottom of the backbone, round c o r n e r e d , fitted wi th 
a 1 1/2 " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is da rk 
g reen . There is a sma l l pocket on the spine for holding a tab 
giving year and volume. These la t te r w i l l be supplied with each 
o rder if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3.50 which includes postage ( r ang ing 
from 50£ to 80£ for one b inder ) . The tabs will be sent wi th the 
rece ip t or invoice. 

All o r d e r s should be sent to : Brother Alfred Brousseau , 
Managing Edi tor , St. Mary1 s College, Calif. 94575 


