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PRODUCTS OF FIBONACCI AND LUCAS NUMBERS

H. H. FERNS
Vietoria, B.C., Canada

Let Ux- denote a Fibonacci or a Lucas number and consider the product
1

UX1 UXz oo an .
We are interested in finding a general method by which this product may be
"expanded,' i.e., expressed as a linear function of Fibonacci or Lucas
numbers.
Beginning with the case in which n = 2 we find that there are four types
of such products. Using Binet's formulas it is easily verified that these may

be expressed as follows:

F L =F + ()R F
Xy Xg XytXy X4~Xg
= - epX
X4 FX2 FX1+X2 ( 1) FXi—Xz
L L =1L + (DXL
Xy X3 X1+X2 X1-Xy

1 X9
in sz B 5[["X1+X2 - 1) in—xz]'

From these four identities we make the following observations.

This "multiplication' is not commutative.

The product of a mixed pair (i. e. , one factor is a Fibonacci number and
the other is a Lucas number) is a linear function of Fibonacci numbers. The
product of a Fibonacci and Lucas number is a function of Lucas numbers.

The coefficient of the second term is (-1)*2 or -(-1)*2 according as Xy
comes from the subscript of a Lucas or a Fibonacci number.

The factor 1/5 occurs when both numbers in the product are Fibonacci.

1



2 PRODUCTS OF FIBONACCI AND LUCAS NUMBERS [Feb.

For convenience we denote -1 by € . Now consider €1 as playing a
dual role. As a coefficient of Lx or Fx it has the value (—1)Xi. As an oper-
ator applied to these numbers it reduces their subscripts by 2xi. With this in

mind, we may write

= X2 X2
= € = + (-

in LXZ -+ )FX1+X2 FX1+X2 1) FX1—X2
= - X2 = - (-

LX1 FXz - )FX {+Xo X1+X ( ) X1—X2
= X2 = ~1)%2

in sz 1+e€ )LX . in +x + (-1) in_xz

= (1-€X2 =1 - X2
Fx1 FXZ 1-e )Lx1+x2 5|:I"x1+xz D in-xz]’

We turn now to products containing three factors such as L L % F X
For the moment we shall understand that Lxl sz Fxs means (L L )

FXg . Then, making use of the above results, we have

= _1)%2
(LX1 LXZ)FX3 [LX1+X2 *+ 1) LX1-X2]FX3

=L F_ + (1%L
XqtXg * X3 X{-X9 X3

= F - () F + (1% x

X1tXotXs Xq+Xo-X3

- ()L

X|F
Xq-Xp¥xg X1 Xo-X3

= - (1%

X2
- + (- X
FXi‘*X2+X3 1 FX1+X2—X3 ( 1)

+
F - (1)FE .
X1-XptX3 . X{~X9-X3

Using el we arrive at the same result.
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L_L_F + €)1 - €33
Xy Xp X3 1+ €™ -« )Fx1+x2+x3

Il

X X
1+ €2 - (-1)73
( ) FX 11X tX3 ( 1) FX1+X2—X3

= _ (1%
F (-1) Fx1+x

X
+ (-1)72
Xitxotxg 2-X3 -1F

_ (1) X2tX3
X1—X2+X3 ( 1) X

F .
X{-X9-X3

Since

L+ €)1 -e™) =1+ %2 M 5N
we could proceed as follows:

X X X9 X
L_L_F 1+€72_ g3 _ g2’
X{ X3 X3 ( € € )FX1+X2+X3

I

X2 L1 ' _(LXetxs
TEDTFL e ™ SO (-1) X

FX1+X2+X3
in-xz-xs :
We leave it as an exercise to show that in(szFx3) when expanded by
any of these methods leads to the same result.
There are eight types of products, each.consisting of three factors. We

list them below.

X3 X3
Fy, s, Ly, (1+e™)A+e )FX1+x2+X3

_ X2 X3
inszLX3 1-e2)+e )FX1+X2+X3

X9 X3
+€ -
LX1 LXZ FX3 @ )1 -e )FX1+X2+X3
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in FXz Fxs - % (- €2)1-e X:;)FX1+xz+x3
Lx1 sz FX3 = % (1-€™)a- eXa)Lx1+x2+x3
Fe L, Fxy -é- 1+€X2)(- ex?')in ——
in FXz Lxs - -15; - €X3)in"'xz"'xs
insz LX3 = @+efas £X3)LX1+X2+X3

The preceding results are the bases for the following conjecture.
Let Ug; represent a Fibonacci or a Lucas number. Let p be the num-

ber of Fibonacci numbers in a product of both Fibonacci and Lucas numbers.
Let

U
X1+X2+' e +xn

denote a Fibonacci or a Lucas number according as p is odd or even. As a

X X
coefficient € ! has the numerical value (-1) ! but as an operator applied to

UX1+X2+' o0 +xn 4

it reduces the subscript of the latter by Z;{i .
Use

(1-exi) or (1+'€Xi)
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according as X, is the subscript of a Fibonacci or a Lucas number in the
product. Then

u
| l -1 Xy X3y ... Xn 7

UXi [R] A+ e™)(1+ed) (1€ )Ux1+x2+---+xn .
i=1 5 2

The proof of this conjecture is given at the end of this article. The following
example will illustrate

1
FisFpLypFy = 5 (1 - )@ + €)1 - e8)Fys

Il

21— €)(L+€0)(Fy5 - Fyp)

]

1
5 (L= €)(Fy5 - Fag + Fp5 - Fy)

% (Fgs - Fog + Fo5 - Fg - Fpy + F5 - Fy + Fy5)

1
5 (Fy5- Fag+ Fa5 - Fpy + Fis - Fg + F5 - Fy)

The above rule also applies if the product consists entirely of Fibonacei

or of Lucas numbers each with the same subscript. For example,

]

5 xy
LX (1+€)L5X

(1+468 +662X 1465+ €)1,

it

€ 5%

X 2x 3x 4x
L < + 4(-1) L3X +6(-1) LX + 4(-1) L—x + (-1) L_

5; 3x

o B el e s a®]

b
: + 5(- + .
L5 5(-1) L3 10 L

More generally, if n is an odd integer we have
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n-1
Do a+e®) L
X nx

n-1) x n-1)\_2x
Lnx+< 1 )e L(n—2)x+< 2 )e I"(n—4)x+' ’

n-1\_©-2)x n-1\) _@m-1)x
+(n— 2)6 L-(n—4)x+(n— 1)E L-(n-z)x

=
|

1]

Since

Making use of the identity

(B) * 6a) = (27)

the last equation may be written

n (_:_1.>X
n n—l)e 2 L

_ n)y x n) 2x
Iy = Lnx+(1)€ L-2)x (z) € Loyttt ( z

n-l

2

n _ xifn =

L, = Z(—l) (1) L-2i)x n=1,3,5,
o

Similarly, we get the following;:

[Feb.
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21
2" nx n-1
LQ = Z I:(_l) < ) (o 21)x] + 2(- 1) ( -g- ) (n, even)
i=0
n-1
2
o= Lo () &N ( ) F o2 (, odd)
5“2“ i=0
%_1 (x 1) 1
=(x+ n -
Fi = —%Z I:( 1)(X+1)1< )L(n 21)x} +2(-1) ( % ) far even)
52 i

The proof of the rule which has been used to express products of Fibon-
acci and Lucas numbers as linear functions of those numbers is a proof by
induction.

We have seen that it is truefor n = 2 and n = 3. Assume it istrue for
all integral values of n up to and including k. Then, if p is even

| l ' = cos Xl
& Uxi B ] s @+ e in.'l‘xz-l—- codxyp
i=1
Multiplying both members of this equation by LX +1 Ve get
k
| I = 1 X2) ou X
UXiLX+1 = —TEI (1 T € ) (1 + € )LX1+X2+' «ox) ka+1
i=1 2

5
X
(1+€e2)... (12€K) x

1}
'NI'U'I"'

]

5

k+1
% (LX1+X2+' * Rty

+ (-1

Xy#Ryhe » HRp-Xy +1)

1 0o Xk g+

1+ & 14+ 1+ € L
[.E] ( ) ( € )( ) Xq+Xogte o +Xk+1
5 2
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Next, multiplying both sides of equation (1) by FX 41 Wwe get
k
'ﬂ' . 1 b X
U_F = L+ €2)-ee (1 € X)L F
e I [g Xyt o XK T Xy
5

.__1_ 1+ EXZ)... 1z exk) X

X
% 1) k+1F

[FX1+X2+' s +Xk+1 - X1+X2+‘ . -+Xk_.xk+1]

1 A1

X2y ... Ky -
[2] 1+ €2) 1+ eX)1-ce )in+X2+---+xx<+1 .
52

Since both of these results agree with that given by the general rule for

n = k+1 the induction is complete for the case in which

= L
UX1+X2"* s HXp XytXpte * Xy

We leave the case in which

U =F
XptXgte o o Xy XqtKgte o otXyy

for the reader to prove.
We now consider the reverse problem; that is, the problem of finding a
general method of expressing

L and F
Xyt +4xp XytRoth o o4Xpy

as a homogeneous function of products, each of the type,

Fxy FXz T Fxy D Dy 7T Dy
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For simplicity let S? denote the sum of all products consisting of i
factors which are Fibonacci numbers and n -i which are Lucas numbers.

The number of such factors is, of course, (I:)
For example,

S$$=F F_L L +F_ F L L +F_ F_L L_ +
X X3 X3 X4 X1 X3 X3 Xy 1 X X X

+F F L L +F F L L +F F L
Xg X3 Xi %4 Xy X4 X5 X3

For later use we note that

n+1
S. L + S, = .
7% 41 i-1 X041

This follows from the identity

(3 (2) - 03

Tor the case n = 2 we readily prove (using Binet's formulas) that

1
= = +
FX1+X2 2 (LX1 FXZ in LXz)
1 2
= 3 S
L = @w 1 +s5F F )
-8 ip. 0] 2 X1 Xp Xy Xy

S+ 58%)

!
DOf =t

Using these two identities as a basis, we develop the following for n = 3
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= F g g

1

2|iLx1+x2 FX3 * Fx1+x2 Lx3]

1)1 1
3 [—2- (in LXz +5 in FXz )FX3 +-2- (LXl FX2 + in sz) LXB]

—1—LLF+5FFF+LFL+FLL
2 X1 X2 X3 X1 X3 X3 X3 X3 X3 X1 X3 X3

= L
(x1+x9)+x3

1

2 lZLXI'I'XZ LX3 *+o FX1+X2 FXg]
Il @ L +s5F. F )L +2@ F +F L ) F
212 Xy Txy Xy X9 X3 2 "Xy X X{ Xy X3

—1LLL+5FFL+5FLF+5LFF
22 | X1 X2 X3 X1 Xy X3 Xy X3 X3 Xy X3 X3

1 [s?, +5 sg] .
22

Proceeding in this manner we derive the following identities for n = 4

and n =

1.4 4
F = —|8] +
Xy+Xg+X3+%y 93 [Si 5 83]

1[5 5, =2q6
= = 5 + 548
Fx1+x2+x3+x4+x5 " [Si * 885 g]

) P 4 2 i
Lx1+X2+X3+X4 - 23 [So toSH e 84]
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= i[sg + 5s§+5252].

L
ESRES R SRRV Y

From the above results we conjecture the validity of the following identi-

ties which we will prove later.

‘ n-2
2 n
2) F = _1[S§1+SS§1+52 8151-]--.. + 5 Sn—l. (n, even)

XqtXgte o oy 2n-—l n-1
2
5 SE (n, odd)

=]

[\V]

n
_ 1 |n I S ] (n, even)
3) Lx1+x2+---+xn = _Zn—l[so +58; + 52 8] + + n

n-1
2 .n
5 Sn—l (n, odd) .

Before proceeding with the proofs of these identities we consider the

special case when xy = xy = -++ = x,, =x. Forthis case we get the following:

{ n

n-2
5 2
1 n n-1 n)y_ 3. .n-3
Fox = zn—l\:(l)FxLx *+o (3)FXLX * +z n-1
2

F
(5 <g) Fg:l (n,0dd)
|2
| n\ .h
1 |iLn_F S(n) 7 Ln—z 4o 4 5 (n) Fx (, even)
be XX

Lnx n-1
2 n n-1
5 (n _ 1)Fx LX] (n, odd)

Note, in particular, if n = 2 we get two well-known identities

-1
2 LX](n,even)

= L
FZX FX X

R Ry 2
L2X = 2(LX+5FX) .
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We have now to prove the identities (1) and (2). The proof isby induction
on n. Both identities are true for n = 2. We assume they are valid for all

integral values of n up to and including n = k.

Then
k-2 7
2 k
5 S k, even)
1 k k k k-1 ?
@ F = —=— | §; + 585 + 528 +00 + -
) R N O [ 1 3 5 o1 .
2 Kk
5 Sk J (k, odd)
K -
2k
58 (k, even)
R T D S S k
(5) LX1+X2+--«-+xk = <7 | S0 + 58y +5% 8, + + 2
2 k-1
2 &k
5 Sk_1d (k, odd)
Now

(6)

LX1+X2+' R E ARy L(X1+X2+' * X R

1
- E[Lx1+x2+- .ot ka +1 *o Fx1+x2+- o X ka +1]'

Applying (4) and (5) to the right member of (6), we get

1 |k k
7 L L = —=7(SoL, +5SyL +e--
O %1 zk-l[o R
k
52 SE L (k, even)
+ Ker1
k-1

2 k
5 S , L k, odd)
k-1 Xk +1 :|
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1 k k
8 F F = cm— -+ s a6
®) Xyt e Rl Xy g 2k—l [Si ka+1 55 ka+1 *
k-2
5 2 Slli_lFx (k, even)
+ k+1
k-1
5 2 sﬁ T } (k, odd) .
k+1

Substituting in (6) from (7) and (8) and regrouping we get the following:

e+ k k
L =S +5(Sy L +S; F
spphe s T <2 Xear X1<+1>

+ 52 sffLX +s§‘F + e
k+1 g1
k
52 SE Lx + Slli—l FX ) (k, even)
+ k+1 k+1
k-1
5 2 S, Fla (k, odd)
Hence
k
2 k+1
5§ k +1, even)
LX1+X2+' LI +Xk+1 = S%)<+1 + 5 S§{+1 + 52 SE1{+1+-" + k
k-1
5 2 s‘éﬁ (k + 1, odd)
This completes the proof of (3). The proof of (2) is similar.
ok Kk A K
ERRATA FOR
PSEUDO-FIBONACCI NUMBERS
H. H. Ferns

Victoria, B.C., Canada

Please make the following changes in the above-entitled article appearing
in Vol. 6, No. 6:

p. 305: in Eq. (3), O, should read: O,,.. Onp. 306, the 6 line from the
bottom: B X" ghould read: B on page 310, in Eq. (12), 20,  should
read: 2)\02n; in Eq. (13), 30

o 41 1 - Equation (17), on
p. 312: (A- 2)02“_1 should read: A(A- 2)02n_1. Equation (18s) on p. 313:
4‘0% should read: 40%.‘ In line 3, p. 314, 20, ., should read 20
Eq. (20), p. 315: (A~ Z)O2n should read A( A- 2)02n .

L3R 2 SR 2%

should read: 302n +

ontg’ 2nd



sequence {wn(a,b; p,q)} and established its fundamental general arithmetical
properties, as well as certain special properties of it.
sequence is related to Tschebyscheff functions and to some combinatorial func-
tions used by Riordan [8]. This is the third of a series of articles developing

the theory of {wn(a,b; p,q)}, as envisaged in [5] Notation and content of

TSCHEBYSCHEFF AND OTHER FUNCTIONS
ASSOCIATED WITH THE SEQUENCE {w, (ab; pa)i

A. F. HORADAM
University of New England, Armidale, Australia,
and University of Leeds, England

1. INTRODUCTION

Previously in this journal [5] and [6], I have defined a generalized

[5] and [6] are assumed when the occasion warrants.

(1.1)

and

1.2)

For subsequent reference, we reproduce the Lucas results [7]

[n/2]
u @0 = Z(—l)k(

n - k) n-2k k
p q
k=0

p

[n/2] )
o0 = nF By (" k) pn g
k=0

with reciprocals [ 3 ]

(1.3)

and

[n/ 2]

.k
by~ Z ( E) - (k;r—ll)]un—Zk(p’ch
k=0

14

In this article, the
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ASSOCIATED WITH THE SEQUENCE {w_(a,b; p,q)} 15
[n/2]
k
(1.4) p’ = Z ﬂ) Voo ©:00° @9 = 1) ,
k=0

respectively. Consequently, it follows that (p = -q = 1).

/2]
(1.5) £ = Z “l;k
k=0
from (1.1), and
/2] _
(1.6) 1 = E - <nk'k)
k=0

from (1.2), with appropriate reciprocals from (1.3) and (1.4).
Making use of (1.1) above together with the first of the forms given in
(2.14) [5], we may express W as

g
7)) W @bpa) = aZ(—l)k<“ . k)pn'quk
&
+ b - pa) Z (_1)k<n—11{—k)pn—1-2qu

k=0
2, TSCHEBYSCHEFF FUNCTIONS

Write
(2.1) X = cos 6
(2.2) p=2x, q=1
so that

@.3) d= 2ising (i=V-1) .
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Define

(2.4) W= wn(a, 2x; 2x,1) = acosnf + (2 - a)sinngcot g .

Using Simpson's formulae (reference Lucas [7]),

2cos@ sin (n+ 1)6 - sin n@

2.5) 2 cosé cos (n+ 1)9 - cos né

b

sin (n + 2)6
cos (n+ 2)6

we deduce that
2.6) Vnr2 T PV T Wy o

as required by the definition of wn(a,b; p,q) given in[5], in conjunction with
(2.1) and (2.2). Notice that (2.1) and (2.2) ensure [5] that

(2.7) e = 4(@ - l)coszo - az ,
whence, for {un}, for which a = 1,
(2.8) e = -1 ,
while for {vn}, for which a = 2,
2

(2.9) e = -4 sin“9 .

Immediately from (2.4) we have the Lucas substitutions [7]

[n/ 2]
@.10) u (2x,1) = SLOT 16 =Z 1)k (“k' k) @x)h-2K
=0

and
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[n/2]
_ _ k n (n-k n-2k
(2.11) vn(Zx,l) = 2cos nf = Z (-1) E——k< Kk )(ZX)
k=0
with reciprocals
[n/2]
(2.12) ex)” = Z [( ﬁ)— (k 2 >]un_2k(2x, 1)
k=0
and
[n/z]
k=0

where we have used (1.1)-(1.4).
But, the expressions in (2.10) and (2.11) exactly describe the Tscheby-

scheff functions Un(x) and 2Tn(x) = tn(x) respectively (T, = %to =1). That

0
is,

(2.14) w, (1,2%; 2x,1) = w @x,1) = U ) = 2xU () -U &)
and
(2.15) wn(2,2x; 2x,1) = vn(2x, 1) = ZTn(x) = 2(xUn_1(x) —Un_z(x)) .

Special cases are

2.16) w (1,11, = u @l = U@ = U @ -0, ,6

and

.17 w @111 = v (1,1) = 2T (@) = U, ;&) -20,_,@ .
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Generally,
(2.18) Wn(a, b; 2x,1) = bUn—l (%) «aUn_z(X)

By means of the wn-notation, relationships among Tschebyscheff poly-
nomials may be conveniently expressed, Recalling the known result [8], for

instance, that
(2.19) Tn(x) = 2xTn_1(x) - Tn_z(x)
we may, writing for brevity,

(2.20) w, = Wn(Z,ZX; 2x, 1) ,

express it in the form

(2.21) w_ - 2Xw - W
n n

-1 n-2 °

Equations (2.4), (2.10) and (2.11) enable us to express every formula in
the theory of our second-order recurrences as a corresponding formula involv-
ing trigonometrical functions. [Observe that ¢ = 1 invalidates any special-

ized application to the sequences {hn}, {fn} and {ln}, for all of which q=

—1.] 1 ’ )

Corresponding to the fundamental formula W W T w][21 = eqn_rui__1
((4.5) in [5]), for instance, we have
2
aZ{ cos (n + r)§ cos (n-1r)g - cos ng }
(2.22) .2
+ (2 - a)2 cot?e {sin (n+1)6 sin (n-1)6 ~sinng = e _s_tgz_rg
sin" @

where e is given by (2.7). For {un} and {vn}, we obtain

2.23) Sin (n+r+1)¢ sin @ - r+ 1)8 - sin’@+1)¢ = -sin°re
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and

(2.24) cos (n+r)d cos (n -r)6 - coszne = —sin2 re ,

in which e is given by (2.8) and (2.9), respectively. Both results (2.23) and
. . 2 2 _

(2.24) are easy to verify., The particular result w + eu T awy ((4.6) [5])

derived by setting r = m implies the identity
cos 2né - coszna = —s'm2 né
in (2.24).

Other trigonometrical identities are not hard to detect, but it is interest-

ing to discover just how they are disguised. As further examples, we note that

2 2 _
PWppg = P - Wy AW, =0
((3.3) [5]), and
I
Wn+r Td Wn~r _
= Vv
W I
n

((3.16) [5]) lead to, respectively,

(2.25) 2 cos@ sin (n+ 3)8 - 4 coszo - 1)sin(n+2)§ +sinné = 0
(2.26) 2 cosf cos (nt 2)8 - 4 00520 - 1)cos (n+1)¢ + cos (n-1)8 =0
and

sin mFr+ 19 +sin m~-r+ 1)g
sin(n+1)0

(2.27) = 2 cos ré

cos (n+ 1)§ + cos (n-r)é
cos né

2.28) 2 cos ré

where, in each pair of identities, the first refers to {un} and the second to

{vn}. A formula also worth investigation is
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aw n+(b-pa)w

e+ wW_ W -qw

m+n-1 = m n m-1 Wn—l

((4.1) [5]). Furthermore, the summationformula (3.4) [5] indicates expres-
sions for

n-1

E cos k@

k=0
and
n-1
Z sin k+ 1) .

k=0

Similar remarks apply to the formulae for sums of squares and cubes.

Instead of (2.1)-(2.3), we may put

(2.29) y = cosh¢ = cosi¢
(2.30) p =2y, q=1

so that

(2.31) d = 2sinh¢ = -2isini¢

and hence derive a set of parallel results for hyperbolic functions.
Apart from the Carlitz [3] reference quoted earlier, other sources of
information regarding the relationships among Tschebyscheff polynomials and

Fibonacci-type sequences are, say, Buschman [1] and Gould [4]

3. COMBINATORIAL FUNCTIONS

From (1.1), we have, using the combinatorial function Ln(x) used in
Riordan [8],
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/2]
n-k\ k
(3.1) un(l,—x) = Z ( K >x = Ln-l(x) .
k=0
Then, by the second half of the expression (2.14) [5],
2 2
3.2) w_(a,b; 1,%) = b E <n—11{-k)xk+ax§ (“'kz'k)xk
k=0 k=0
= bLn_z(x) + aan_S(x)
et -a-gl farg™toa-g™t
20,2 | o152
‘ 1
where, forbrevity, g = (1 + 4x)2.
More particularly, notice that
(3'3) Wn(ls 1; 19 _X) = un(ls —X)

affords an alternative expression for the known recurrence relation [8]

(3.4) Lo ® =L ,0+xL [LO =1,L, = 1+x]
while
(3.5) Wy (2,15 1,-%) = v, (1,-%)

is an alternative expression for the combinatorial function [8]

(3.6) Mn(x) = L2n—1(X) + xLG_3(x) ‘m>1).

Of course,

(3.7) L. =f
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(3.8) Mn(l) = 12n .

4, OTHER FUNCTIONS

Besides these combinatorial functions and Tschebyscheff functions
(themselves involving trigonometrical and hyperbolic functions), other func-
tions are related to the Fibonacci-type recurrences. In this respect, a recent
article by Byrd [2] is worth emphasizing, particularly as, it seems, his work
offers possibilities for generalization, In this article, Byrd considers the
expansion of analytical functions in a certain set of polynomials which can be
associated with Fibonacci numbers, Bessel functions and modified Bessel
functions are involved in the process.

Throughout, we have assumed that p2 # 4q. The degenerate case pz
= 4q has been discussed by Carlitz [3], who relates it to the Eulerian poly-
nomial, and, briefly, by the author [5]
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THE BRACKET FUNCTION AND FBNTENE'-WARD GENERALIZED BINOMIAL COEFFICIENTS
WITH APPLICATION TO FIBONOMIAL COEFFICIENTS

H. W. GOULD _
West Virginia University, Morgantown, West Virginia

INTRODUCTION

In 1915 Georges Fontené (1848-1928) published a one-page note [4] sug-
gesting a generalization of binomial coefficients, replacing the natural numbers
by dn arbitrary sequence An of real or complex numbers. He gave the fun-

damental recurrence relation for these generalized coefficients and noted that
n

for An = n we recover the ordinary binomial coefficients, while for An =q
-1 we obtain the g-binomial coefficients studied by Gauss (as well as Euler,
Cauchy, ¥. H, Jackson, and many others later),

These generalized coefficients of Fontené were later rediscovered by the
late Morgan Ward (1901-1963) in a short but remarkable paper [16] in 1936
which developed a symbolic calculus of sequences, He does not mention
Fontené, TFailing to find other pioneers we shall call the generalized coef-
ficients Fontené-Ward generalized binomial coefficients. We avoid the syni—
bolic method of Ward in our work,

Since 1964, there has been an accelerated interest in Fibonomial coef-
ficients. These correspond to the choice An = Fn’ where Fn is the Fibon=-

acci number defined by
with

This idea seems to have originated with Dov Jarden [11] in 1949, He actually
states the more general definition but only considers the Fibonomial case.
Fibonomial coefficients have been quite a popular subject in this Quarterly
since 1964 as references [1], [9], [10], [13], and [15] will tell.  See also
[17]. :

23
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Because of the restricted nature of the three special cases of Fontené-

24 [Feb.

Ward coefficients cited above, and because so many properties may be ob-
tained in the most general case, we shall develop below a number of very
striking general theorems which include a host of special cases among the
references at the end of this paper, Despite an intensive study of all available
books and journals for twenty years, it is possible that some of our results
have been anticipated or extended, Indeed certain notions below are familiar
in variant form and we claim only a novel presentation of what seems obvious.
However a large body of the results below extend apparently new results of the
author [7], [8] and we obtain the following elegant general results: Represen-
tation of Fontené-Ward coefficients as alinear combination of greatest integer
(bracket function) terms; Representation of the bracket function as a linear
combination of Fontené-Ward coefficients; A Lambert series expansion of a
new number-theoretic function; A powerful inversion theorem for series of
Fontené-Ward coefficients; and some miscellaneous identities including abrief
way to study Fontené-Ward multinomial coefficients by avoiding a tedius argu~
ment of Kohlbecker [13],

The present paper originated out of discussions with my colleagues,
Professors R. P. Agarwal and A, M. Chak, about the feasibility of extending
Ward's ideas to broader areas of analysis and number theory. Chak [3] has
developed and applied Ward's symbolic caleulus of sequences to discuss num-
erous generalized special functions. ' .

Every result below can be immediately applied to the Fibonacei triangle,
or new variants thereof, and the inversion theorem given below is expected to
be especially useful to Fibonacci enthusiasts, Such inversion theorems are
valuable tools in analysis and have not been previously introduced or applied
for Fibonomial coefficients, We may even take our sequence An to be the

non-Fibonacci numbers and study a non-Fibonomial triangle.

FONTENE-WARD COEFFICIENTS: DEFINITION AND PROPERTIES
By the Fontené-Ward generalized binomial coefficient with respect to a

sequence An we shall mean the following:

) {n} _ {n} - Aphue T Apoienn with {n} - {n} -1
K, ~ \kf T RA_ A 0 n
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and we also require that

(2) {E} =0 whenever k< 0 or k>n.
The sequence An is essentially arbitrary but we do require that AO =0 and
An # 0 for n >1, Ward [16] took A1 = 1, and there is no loss of general-
ity in doing that., However we cannot in general simplify very much and we
shall retain Al as arbitrary. One has only to multiply Ward's sequence by
A1 to obtain our results., When no confusion can occur as to our choice of the
basic sequence An we shall omit the subscript A in our notation (1). We use
braces to setour coefficients apart from ordinary and q-binomial coefficients.

With this definition we can now exhibit the Fontené-Ward Triangle:

1
1 1
Ay
- 1
1 —2-3— —2-3- 1
1 1
1 192 1
1 1%2 N
cn e e
1 122 19253 1%2 1
) Ar Arhg AAghs AsAghs Arlg Aq )
Ay Ay AjAjAg AjAghg Ay Ay

It is evident that the triangle is symmetrical inthe sense that

3) {E}={n‘1k} 0<k<n

We can make the definition (1) more symmetrical by introducing generalized

factorials, We can define
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1
@ {§}= SRR ’
where
]t = AA ;- AA with [o]t=1.

This is equivalent to the previous definition and allows us to adapt a number of
familiar binomial coefficient identities to our study. For example, it is clear
that we have

) R IR i B

which we shall need later,
The basic recurrence relation for the Fontené-Ward coefficients was
given by Fonten€ and is as follows:

® - 00 - ooy B

In this, change k to n - k and apply (3). We find that

A - A

@ fof - e = Y

n-k

In general An - Ak # An-k' The fraction does equal 1 when we set Aj =i,
and the fraction equals qk when we set Aj = (q] -1)/(q - 1). Fonten€ is cor-
rect that we get g-binomial coefficients with AJ. = q] -1, but it is better to
include the factor q - 1 in the denominator so that we can also assert that
li A, = j
q 1_1;.1 j .
making the g-case then agree with ordinary natural numbers.
In the Fibonomial coefficient case, when Ak = Fk’ write
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F - F
®) fn,k) = —B—K

Fn—k
It is easily verified that f satisfies the recurrence

(9) fo+1, k+1) = fn,k) +fm-Lk-1) .

By induction it then follows that

10) fm+r, k+r) = Fr+1f(n,k) + Frf(n—l,k—l) .

From this one may easily find

F -1
_ n-k+1
(11) fo,k) = F —————-———~Fn_k +F

which may also be derived directly from (8) and the relation

12) F ™ P Foer1 T Freea Pk

27

There are then an abundance of ways to modify f(n,k) using known Fibonacci

relations, and the particular way we might interpret f(n,k) determines the

nature of the Fibonomial relations which will followfrom our general theorems.,

An important observation is this: f(n,k) is independent of n in the case

of ordinary and q-binomial coefficients, but not in the Fibonomial case. This

makes the possibility of having certain expansions generalize depend onthe way

in which we can modify the recurrence.

We return to relation (6) and sum both sides with respect to the upper

index, Clearly we obtain the relation

2\ A -A :
3 Zk—ﬂxl;—ﬂ{g:;} - {1,
-

which is the analogue of the familiar formula
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> (1) - ()
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Relation (13) will be very important to us in what follows.

We next define Fontené-Ward multinomial coefficients inthe obvious way:

n
TaA.
i=1 !

n —
(14) {k ,k X ..,k }— k k K B
1’2 T 1 2 r
l l Ai ) I IAi ) | IA[
=1 i=1 i=1

subject to n = k1+k2 Tt kr‘ For Ai =i these pass over to the ordinary
multinomial coefficients. What is more, (14) satisfies the following special

relation: Set r = 2 and write k1= a, k2= b with a+ b = n., Then

) fawf = {20

in terms of our original definition (1). Moreover, trinomial and higher order
coefficients are products of ordinary Fontené-Ward generalized binomial

coefficients:

o e Y eeen

an {a’bf‘c’d} = {2} {n;a} {“'2"*’} , atb+c+d=n,

n _ Jnl fn-al fn-a-bl jn-a-b-c -
12 {a,b,c,d,e} - {a}{ b } { c }{ d }’a+b+°+d+e w

and the general result follows at once by induction. This is a well-known de-
vice for ordinary multinomial coefficients and the application here is thatonce
one proves that the Fontené-Ward binomial coefficient is an integer for some
sequence An’ then the Fontené-Ward multinomial coefficienis, by the above

relations, are integers, being just products of integers. This circumvents



1969] WITH APPLICATION TO BINOMIAL COEFFICIENTS 29

the tedius argument of Kohlbecker [13] for multinomial Fibonomial coef-
ficients, for example.

Making use of the ideas developed so far and paralleling the steps in a
previous paper [8], we are now in a position to state and prove our first major
result, We have

Theorem 1. The Fontené-Ward generalized binomial coefficient may be

expressed as a linear combination of bracket functions by the formula

o g [0 5 Blnes - S BT nen

where the number-theoretic function R is defined by

A -A
o) D W R LTI
djj

with p(n) being the ordinary Moebius function in number theory.

Proof. Again we use the formula of Meissel

> B - 1. 521,

m<x

and apply this to formula (13) precisely as was done in [8] The result follows
at once. It is easily seen that Rk(k,A) = 1, There will be no confusion of
Rk(j,A) with Rk(j,q) in the former paper if we merely make a convention that
whenever we have a sequence we denote it by a capital letter and then (20) is
meant. Thus Rk(j,F) would mean the Fibonomial case. Thus our first theo-
rem expands the Fibonomial coefficient as a linear combination of bracket
functions,

The expansion inverse to this requires a little more care. It was found
in [8] by means of a certain inversion theorem for g-binomial coefficients.
We must pause and establish the corresponding inversion principle for the
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most general case. Suppose we set
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n
@1) tw = ) 0" e em
k=0

Then we find: g(©0) = £(0).
fa) = -g0) +gQ),
whence
g@) = (1) +£(0) .
Then

A2
@) = g0 -3 £M @

from which we find
A2 AZ
8@ = (@) 3 I+ (5 ~1]10.

Similarly it is easily found that

A A [A A, /A
3 3 (%2 3 (A2
3) = @)+ = £@)+ 2|2 - 1)@y +[1+ ——(——- 2))f(0)
g(3) ) A ) A1(A1 ) ( A \A]
- {S’}f(s) + {i}f(2)+ {S}Bzf(1)+ {g}BSf(O) :

and it appearsthat the B . are independent of n -and any number may be found

k
in succession. This is quite correct, for we may readily solve the system of

equations necessary to determine such Bk coefficients as will invert (21).
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The next step gives

Put

(22) gn) = Z {E} B f(n-k , with By =B, =1,

k=0 B2 = A2 /A1 -1, ete.

It is easily seen by an inductive argument that Bk is independent of f and n.

On the one hand, (22) would require us to have

1 ntl
(23) gn+1) = Z {n; 1} B 0+ 1-K) =Z{n;1} By f0) -
=0 =0

On the other hand we have from (21) that

n

far 1) = gary+ Yy )" g

k=0
whence
n
- +
g+ = tar 1) -y 0 e =
k=0
n k
-ty U (e
k=0 0
by (22}, =

D D) M e T L
=0 k=i
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This expansion must agree with (23) if the induction isto proceed, so we equate
coefficients of f(j) to determine a recurrence relation for Bk' At the same
time we apply the identity (5) and we have the result that

n
- n-k n+1-j .
(24) Bn+1_]. = E (-1) { k - § }Bk—j , for 0<j<n.

=

In particular set j = 0., We find the remarkably simple recurrence

n
25) B, = Z (-1)“4‘{“; 1}Bk, valid for n >0 .
k=0

From this it is easily seen that we can summarize our recurrence for
Bn in the single formula

= o

v Il

n
n-k (n 1, for n
(26) Z 1) {k} Bk - ;0, for n
k=0
This in turn can be given a handy symbolic expression

@7) {B-l}n=6111=31’ a

0
0, 1

v I

if we just adopt an umbral binomial theorem that

n

by i = 24k} e -

k=0

We shall next evaluate the B coefficients explicitly.

The sequence Bn is determined uniquely by the relation (26), and we
can easily solve this by means of determinants. The result of this can be put
in the form
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-1 1 0 0 oo 0

1 _{2} 1 0 0
n

@8 B. = (1) |-1 {1}

validfor n > 1.

The n-by-n determinant and the recurrences (25)-(26) allow usto com-
pute as many B's as needed.

It was no accident that we write (26) as (27) and as a Kronecker delta,
for not only does (26) allow us to invert (21) to obtain (22), but the converse is
also true, (26) allows us to invert (22) back to (21). We have in fact

Theorem 2. For sequences f and g,

n
9) tw = Y "R e
k=0

if and only if

n

(30) g = ) {ab B0

k=0

where Bk satisfies recurrence (26), and is given explicitly by (28).
To illustrate the proof we will show that (30) implies (29), assuming
(26). We have

o0

k
=0

Zn: ™ o et = }i SIS
k=0 k=0

n

= Z{?}fm:i (1)K {“k“j}Bk - tw)
=0

=0
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as required, for relation (26)-(27) is equivalent to the Kronecker delta

[Feb.

n-j

@ oI ke = 5

k=0

The reader should have no difficulty in showing that (29) implies (30),
relation (31) again being what is needed to cancel out unwanted terms,

These relations are nothing more than extensions of the familiar inver-
sions given in [6], [7], [8].

The application and use of Theorem 2 for Fibonomial expansions needs
little elaboration. It allows often to solve for something given implicitly un-
der the summation sign.

As was done in [6]and [8] we need some small variations of Theorem 2.

It is easy to see that the theorem can be stated in the equivalent form

n
(32) tw = 0 {ihew
k=0
if and only if
n
(33) g = D D {ihB 00 .
k=0
And we also have
n
(34) tw = > {1} e
k=0

if and only if
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n

(35) g = ) 0" {ihe g
k=0

It is this last form of our theorem that will be used now to find an expansion
inverse to Theorem 1. Our steps are the same as in [8].

Theorem 3., Thebracket function maybe expressed as a linear combina-

tion of Fontené-Ward generalized binomial coefficients by the formula

@ [

where the coefficients Qk(j,A) are given by

n n

Wb+ 20 it aa =3 aam

=kt1 =k

37 Qi 4) - Z o ]
dok

and the B's are given by (26)-(28).

Proof. Assume expansion (36) for unknown Q's. Then by the inversion
pair (34)-(35), with f(n) = [n/k] and g{n) = Qk(n,A), and writing j for k
in (34)-(35), the result is immediate, ‘

Hence as a Fibonacci item, this theorem allows one to express the
bracket function in terms of Fibonomial coefficients.

The next order of work in [8] was to see if the two expansions, bracket
in terms of binomial and conversely, implied 2 more general inversion theo~
rem; i.e,, whether we can now show that our coefficients R and Q are
orthogonal in general. Our success in doing this would depend on getting the
Lambert series for R and an inverse series for Q. The binomial theorem
was used to obtain the latter in [8] and this expansion, the binomial theorem,
is more troublesome in our general situation. However we can obtain next the
Lambert series for R,

Let us note a general series lemma: For a function f = f(x,y),
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o ©_ oo
(38) E Zf(d’n) = 2: E:f(d,md)
n=1 d/n =1 m=1

This is merely the limiting case of relation (20) in [7] for example.

Theorem 4, The Lambert series expansion for Rk(j,A) is given by

A

0 : 00 - A
(39) > R 0:4) £ D D ey v “‘k{ﬁji}xn.
=k 1-% k

Proof. First of all the ordinary Moebius inversion theorem applied to

relation (20) inverts this to yield

(40) —n:A—ipi { n - 1} = ZR(d,A) ,

which may itself be looked on as a valuable expansion of the Fontené-Ward
generalized binomial coefficients in terms of the function Rk(d,a). This is

merely the generalization of the combinatorial formula

C, () = <E:i> :ZRk(d) )

dn

found in [7].

Multiply (40) through by x" and sum both sides on n. We find
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A - A 1 ©
n n- n - n _ ro.
) A feiih = 20 oxman

=1 djn

n=

o0 oo
> R @8, by 68
=1 m-1

o0 00 00 d
= E R (d,A) E 0 - E R, (d,A) —X—
K K 3
=1 =1 1

The lower limits of summation in the result can be changed to k instead of 1
since the Fontené-Ward coefficients and Rk are each zero for the first k -
1 terms on each side, This proves the theorem.

We have given some detailed steps to illustrate precisely what happens,
But let us now try to carry over the binomial theorem. It turns out that we do
not need the binomial theorem in a very strong form,

To find the series expansion inverse to (39), we recall the bracket func-

tion series (of Hermite) from [8];

k

[*.9]
@1) Z[{{l—]x“ - m k> 1.

n=k

Substitute the expansion of [n/k] in terms of Fontené-Ward coefficients, and

we get
k L2 1
42) — D ICEESDIRA TR
n=k j=k
- f_:Qk(j,A) - x)i{’j‘}x“ :
7k =

The last inner sum is not conveniently put into closed formby a binomial theo-

rem, but we can transform it as follows:
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0 . @ .
sy e 3215477
J J J
n=j n=j+1

and we can now apply the original Fontené recurrence (6) and we recall that

A0 = 0 so that < can be counted in the sum. The resultis the formula

_ SN (n n _ ™ nfn-1 An_An-j
@ a-n) {54 =205 A '
n=j n=j

This formula is the general counterpart of the familiar formula

W
1-
( X)2(> - x

used in [7, pp. 241,252]. The corresponding g-analog in [8,p. 407] was

@ _X);i‘; [?]xn = xJ-Ijll- @a- xqi) .

The reader may find it interesting to find the corresponding Fibonomial form.

Finally, we substitute expansion (43) into (42) and we find the formula

inverse to (39); i.e., we have proved

Theorem 5, The coefficients Qk(j,A) satisfy the generating expansion

(44)

A -A
1 -5 ZQK(JA)Z {Jﬂl}if-—pj

n—] J

We may write the two expansions of Theorems 4 and 5 in the forms
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N <
(45) R, (,A) - = f(x,k) ,
]Z:l; K0 =5 = )
and
X k
(46) Doaba i) = ¢,
=k 1-x

where f(x,j) is the power series

> nfn-1\ *n Anq SN fn | .n
1) o) = )« {j-l}T-l=<l-x>Z{j}x ’

n=j n= j

and we may now see easily that substitution of (45) into (46), and conversely,
yields our desired orthogonality of R and @. Thus we evidently have
Theorem 6., The functions R and Q@ as defined by (20) and (37) satisfy

the orthogonality relations

n

n
@9) D R GAQEA) = BE = ) QAR (,A)
j=k . .=k

Consequently, we also have proved the very general inversion theorem for two

sequences that held for the previous cases [7], [8]. That is we have
‘ ;“]georem 7. For two sequences f(x,k,A), gx,k,A), then

49) | fkA) = ) g ARG,A)
k<j<x

if and only if
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(50) gx,k,A) = E f(X,J',A)Qk(J',A) .
k<j<x
CONCLUSION

In the present paper we have given a sequence of seven main theorems,

generalizing all of the corresponding results previously found for ordinary and

g-binomial coefficients to the most general situation for Fontené-Ward gener-

alized binomial coefficients. As a singlebyproduct we have results universally

valid for the popular Fibonomial triangle. The inversion theorems given here

are expected to suggest other inversion theorems in the most general setting,

which can then be applied to any special case that is covered by the Fontené-

Ward Triangle.

9.
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CONVERGENCE OF THE COEFFICIENTS IN A RECURRING POWER SERIES

JOSEPH ARKIN
Nanuet, New Y ork

1. INTRODUCTION

In this paper we use the following notation

[0 o] k [0}
\'4 _ } : (k) w
E Cc._X = c. ' x ,
W w
w=0 w=0

W)

(For convenience, we shall write Cy instead of Cy

We define
f
waxw = F(x) # 0
w=0
for a finite f,
t m
w=0 w=1

for finite t and m, where the dW # 0 and are positive integers. The ry #

0 and are distinct and we say |ry| is the greatest |r] in the !rwl.

2. THEOREM 1

If

FE/QK = ) ux"

W
w=0

41
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then

. ! - s .
(2.1) nllgloo Iun/un—j l (for a finite j = 0,1,2," ")

converges to |r“, where the ry # 0 in Q) are distinct with distinct mod-
uli and |ry] is the greatest |r| in the Irwl.
Proof. It has been shown by Poincare [1] that

2.2) nl—i£>noo Uln/un—i

converges to some root (r) in Q(x). (We must then prove that this root (r)
in Q&) is |r¢].)
Let

b
(2.3) M = || a-r 0",

where the p, are positive integers or =0 and

d1+p1=d2+p2=“.=pw+dw=k (k=1’293s“')
for a finite w =1, 2, 3, **+, m.
Then,

m
MEQE) = | | G- 0" =¢. 6 ,
wW=1

so that

(2.4) FE)ME&)/QEIME)

F M ()/8, ()

v o] ¢ o]

Z cl, wx"

W0 w=0

I
N
éi

b

1
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where it is evident

u. = c(k,n)

Now let

v
¢>k(X) = Z cgi) " (where v is finite) ,

w=0

where combining this with (2.4), we write

Q0.
(2.5) FEIME/ ¢, _ ) = Z olk - 1, wx"
w=0
v o]
= Z chW Z c(k,w)xw) ,
w= w=0

and combining coefficients leads to

v v
(2.5.1) C(k -1, n) = Z c(k,n - W)CW = Z un_w CW ’
w=0 w=0

k=2,3,4,"--

In (2.5.1), we replace k with k+1 (where k =1,2,3,---) where
combining this result with (2.2) leads to

ngnw fetk + 1,n)/clk + 1,n - 1)| converges to some root (r) in Q).

For convenience, we write the convergence as

(2.5.2) ck+1,n) = gk+1c(k+1,n—1) .
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Combining (2.5.1) with k replaced by k+ 1 with (2.5.2), it is easily shown,
that for a finite v, we have

(2.5.3) clk,n)/clk,n - 1) = 8,
v v
= Zc(k+ 1,1[1-w)cW Zc(k+1,n—vv—1)cW
w=0 w=0
T By
so that
(2.5.4) gk+1 = gk = se e = g1 .

Thus to complete the proof of Theorem 1, it remains to show that

[g1] = |rd] -

Then we consider the following (we refer to (2.3) )

m : -
(2.6) (9&)7! = ﬂ‘r (1- rwx)_1 = Z e(m, w)x" (for a finite m)
w=1 w=0

for the convergence properties of e(m,n)/e(m,n - 1), where the |rW| are
distinct and |ry| is the greatest root.
NOTE. For convenience, we write

em,n)/e(m,n - j) = rJ1 (for a finite j = 0,1,2,:-+),

in place of

nligoo Ie(m, n)/e(m,n - j)| converges to lr” :
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For m = 1, we have

e.2]

@2.7) (1-r) " = Z e, w) x" ,
w=0
where
e(l,n) = r? )
so that
e(l,n)/e(l,n - j) = rJi
For m = 2, we have
o0
(2.8) (@ -1 Q-10]" = Z e2,w) x"
w=0
where
e@,n) = @7 - 2/ - 1)
so that

(2.9)

e2,n)/e(2,n - j) = ri

It now remains to consider for finite m = 3,4,5, -

t-1 -1 t
(1 —Z asxt-s> =T]_ - I‘SX)_1

s=0 s=1

for a finite t = 3,4,5, **°, where U, = 1.

9

, let

[e.]
1 +Z USXS ,

S=

45
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Equating the coefficients in this leads to

t
(2.10) Un = E 2 g Un-s (Ug = 1) ,
s=1
and
t-1
Uy = Up A_q + Uy = Uy at_1+U0 at—Z’W’Utz E Usas .
s=0

Algo, since in (2.9), we have

-1
ll(l-rx) --1Zasx .
s=0
we may write
t -1
(2.11) ii(x—r)=xt—z ax> = 0
’ ' 8 s
s=1 g=0

We now combine (2.10) with (2.11) and write
t -1 t-8
(2.12) X Ux Z( Z Uraf;ﬂ' S)x
r=1
Multiplying (2.12) by x and combining the result with
t-1

U1xt = Uy E asxs

g=0
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in (2.11) leads to

t-3 r
B b1 X t-1-2
{2.13) x' = Upx FE A (Ur—kg ‘z :Ur+z-sat—s-1>x

=0 S0
-+ Ujao .

Now, multiplying (2.13) by x and combining the result with

t-1
Uth = Uz ( E aSXS>
s=0 4
in (2.11), we then have
t-3 T
t+2 -1 t-r-2
@.14)  x' = U +Z : (Ur+4 _Z Ur+3—sat—s—1)x
= 8=0

+ aoUz B

We continu€ in the exact way we found (2.13) and (2.14) for n - 1 steps to get

' t-3 iy
tHn-1 _ -1 N t-r-2
(2.15)  x = Up* +§ : (Un+r+1 z :]“jn+r—sa1:—s—1>X
=0 s=0
_ -1
+ Un--ia‘) = Ux "+ R(x) + U _2 -

We now continue (2.185) with (2.11) to get the following t equations

tn-1
ry

t-1
UnI"1 + Rlry + Un___1 ay »

(2.16) e e e e e e e e s e e e e ey

Ij:—l-n—-i =7 rt—:!, + R(rt) + T

t nt n-1 20 *



48 CONVERGENCE OF THE COEFFICIENTS [Feb.

Next, we consider the t equations obtained from (2.16). These t equations

in the t unknown can be solved by Cramer's rule to obtain
(2.17) UnD2 = Di(n) ,

where D;j() and Dy are the determinants given below:

. ttn-1 t-2
ry ry ry 1
(2.18) Difm) =| :
t+n-1 t-2
rt I't rt 1
TS LTS o I |
(2.19) D, =
t-1 t-2
rt rt rt 1

We now replace n with n -1 in (2.17) to get

(2.20) U, ,D: = Dia-1),

and dividing (2.17) by (2.20), we get
(2.21) U_/U__ = Diy) /Dik - 1)

Since the ry # 0 and are distinct, then one root (say |r1| is greater

than the other roots, and we write

(2.22) U /U = D) /i) ye-1)/e )

Now in (2.22) we let r}+n_2 (in the numerator) divide every term of the first

column in (2.18) and ri:+n—-2 (in the denominator) divide every term in the first
column of (2.18) (with n replaced by n - 1). Then if we let n > itis evi—

dent that
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(2.23) n]igloolUn /Un—il = Iril .

Now for a finite t we write

It LA /Un—j—ll =y (G =0,1,2,0+,t-1) ,
so that
. Z |t
(2.24) n131>11w|Un /] = |

Multiplying the F(x) in (1) with

in (2.9), we write

f 0 o0
(2.25) <Z waw><z sts> = Z Cq <,
w=0

5=0

where comparing the coefficients we have

. f
(2.26) C_ = E U b, .
n n-s s
=0

Now, since f is finite, and by the results in (2.23), we write

49
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where combining this with the r # 0 and are distinct (so thatwe may add that
the r

¢ have distinct moduli), leads to the completion of the proof for Theorem
1.

From (2.7), 2.8), and (2.17), the following corollary is immediate:
Corollary. If

t
ﬂ-(l Srx)t = ius 5 W, =1,

81 5=0

where the ry # 0 and are distinct, then

(2.27) It is always possible to solve for the U, m=0,1,2,""")
as a function of the r
SECTION 3
Let
¢ ko w
2 w _ I I -k _ § : k) _w
1- a, X = a- rwx) = c, X
w=1 w=1 W=0

(cék) =1 and k=1,2,3,-+) for a finite t = 2,3,4,--

and the given roots
ro # 0 and are distinct. We also define

t t
a - 2 : 2 : w-1 _
St) A lhtw-r" 0

wW=1 r=w

and
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where *x; # 0 and is a rootin S®®) = S(x;) = 0.
We then have the following:
Theorem 2. If

cp =1, ¢y = ajeg, cy = ajyeq + asey,

t-1
A Z B+t Ct-w-1
wW=0

and
pJ =a1(k+n_j) (j=1,2,39”'9n) ?
Aty = bh-m)@k+n-m-1)
(m=13233"":n_1)
then
k& , k) _ -
(3.1) ne /cn_1 = En /Gn k,n=1,2,3, )

where En and Grn are the determinants given below.

P1 d2 0 0 0
-1 pp @ O 0

(3.1.1) g =0 1 ®m @ 0

0 0

0 0

0 0

0 0

-1 Ppy
0 -1

51

el

*1t should be noted that since the a's are constant for a fixed t, that the root

xq will be determined as a variable, since it is a function of the c

of course, change values for different n.

and will,
n
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P2 a3 0 0 0 0 0 0

-1 Ps3 o7} 0 0 e 0 0 0

0 -1 pg g5 O e 0 0 0
(3.1.2) Gh=lo o -1 p g 0o 0 0

0 0 0 0 0 -1 Py, q

0 0 0 0 0 0 -1 pn

Proof. Let
t n

(3.2) 1 = (1 -Zawxw) ( Z Cy xw> (for a finite n) ,

W=1 wW=0

where the a and the ¢, are identical to those in (3). Then multiplying and

combining the terms in (3.2) leads to S{xy) = S(x) = 0 in (3).
Now, taking each side of (3.2) to the kth power, we write

t S n
(3.3) 1k = 1 —Z awxw Z cévk) <V J(x)
w=1 w=0

(k=2,3,"'),

(where, of course, xy is a root in (3.3) ).

Using the corresponding values in (3), we write (3.3) as

n
(3.3.1) 1=@-ax-b)s Z BV 56
wW=0

Differentiation of (3.3.1) leads to

n n
k(asx + 2bx?) Z cr(lk) +Ix = 1- a,x - bx? )(Z 1‘101(11{)xn
w=i

W=0

+ W(x)
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and by comparing coefficients, we conclude that

(3.4) ncr(lk) = ayk +n - 1)<:I(1k_)1 + b(2k +m—2)cr(lli)2
for
k=284, n=23,-+-, cék) =1 and cgk) = aik .
When we divide (3.4) by cx(lk_)1 , we get
nc(k)
B = agktn-1) L b@ktn - 2)(1({‘)1‘ D k=23,
c n - e
n-i n-{
Ciki
n-2

which in tarn, along with cék) =1 and c§k) = a4k,

values of p and q in (3)),

k)
ne o5 ds q q,
n n-1
. = [ N A T Sl S g
(3.5) C(k5 P15 7 b Pp, Py Kin)
n-i !

We complete the proof of Theorem 2 with Euler's statement [2]
K@) = E /G, ;

and we resolve for the case when k = 1 with (2.27).
Corollary. In

t t -k

-k w _
l-r x) = [1- a_x = 1+
w w
W=t

=1

[
QO@
"

it is always possible to solve for

),

53

implies (along with the
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(3.6) ncr(lk) /cr(lli)1 = Km) = En /Gn k and n =2,3,-+°)

when t = 2,3,4, or 5, if the ro # 0 and are distinct.

Proof. In (2.27), it is seen that the ¢  maybe determined. Now, since
t-1=1,2,3, or 4, then the roots (each root is a function of the cn) in
S() (in 3) may always be found, so that we will obtain values for the p and
q. We then complete the proof of the corollary by observing that En and Gn
are both functions of the p and q.

In conclusion: We solve when t = 1 and we write
k _ R (k) (k)
t-r.)° =§ d; x" @ =1 r#0 .
w=0

Now, differentiating, we have

] [«
xkr ( Z d‘(NkH)xw) = Z wdg{) "
w=1

wW=0

and comparing the coefficients leads to

nd(k) _ gqlkt1) rk
n n-1
so that
n n-i
wd, en-w) _ ™ (k+n-w-1)d (ktn-w)
I I w I l w
w=1 w=0

and we then have

dg‘)’ = Pk +n- 1! /n! (k- 1)
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
L ock Haven State College, L ock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions to

- Raymond E. Whitney, Mathematics Department, Lock Haven State College,

Lock Haven, Pennsylvania 17745, This department especially welcomes prob—

lems believed to be new or extending old results, Proposers should submit

solutions or other information that will assist the editor. To facilitate their

consideration, solutions should be submitted on separate signed sheets within
two months after publication of the problems.

H-148 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida

Prove or disprove: There exists a positive integer m such that

m times

is composite for all integers n > 5,

H-149 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn.

For s =0+ it let

Ps) = 3 p°

where the summation is over the primes. Set

56
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o0
Z:a(n)n_S = [1+ P@s)] -1
n=1
0
ban™ = [1-P@e)] ™ .

n=1
Determine the coefficients a(n) and b(n).

H-150 Proposed by M. N. S. Swamy, Nova Scotia Techni cal College, Halifax, Canada

Show that

2: 2 - 2
25 For-1 Fun® (n/3)(6n° - 14) ,

where Fn is the nth Fibonaceci number.

H-151 ‘P‘roposed by L. Carlitz, Duke University, Durham, N. Carolina

A, Put
oo
L ax® bxy - o) = A X0
( X Xy = ¢y ) m,n y .
m, n=0
Show that
2, -4
A Xn={1—2bx+(b2-4ac)x2} .
n,n
n=
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0.

-1 _ 2 : m_n

(1 - ax - bxy - cy) Bm,nx vy .
=

n=0
Show that
[o 0]
n _ 2 -1
E B X = {@-bx)* - 4acx}7? .
n=0

H-152 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Let m denote a positive integer and Fn the n‘:h Fibonacci number,

Further let {ck}w L be the sequence defined by

(M _m m ®
{Ck}k_—l :{Fn’ Fn"“’Fn }D.:l
gm-1 copies

Prove that {ck };1' is complete; i.e., show that every positive integer, n,

has at least one re—presentation of the form

n o= Xl o
=1

where p is a positive integer and

ai=0 or 1 ifk=1,2,°°,p-1

a =1
p
C.f. V. E, Hoggatt, Jr., and C. King, Problem E1424, American Mathemat—

ical Monthly, Vol., 67 (1960), p. 593 and J. L. Brown, Jr,, "Note on Complete

Sequences of Integers,' American Mathematical Monthly, Vol. 67 (1960), pp.
557-560,
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SOLUTIONS
POWER PLAY

H-109 Proposed by George Ledin, Jr., San Francisco, Calif.

Solve
x2 + y2 +1 = 3xy

for all integral solutions and consequently derive the identity

2 2 _
Forrrt Forrs ¥ 1= 3Fgir7Fg1ers -

Solution by H. V. Krishna, Manipal Engineering College, Manipal, India

Let the equation in question be expressed as

@) x-3y/2)% - 55/2% = -1 .

The general solution of (1) is therefore given by

(2) X - (3y/2) = % {(p + \/5—q)2n-1 + (p - \/gq)Zn-l}
w/2) = 1/@V5) {(p + VB2l - p-vEg2! }

where (p,q) is a particular solution of (1).

Hence (2) reduces to y = F2n-1 and x

[

(1/2)(L2n_1+ 8F, ) for p=

1 - 1
z and q = 3.

On using L2n—1 * F2n-1 = ZF211’

= 1 =
x = 2{2(F2n+ FZn-l)} Font1 *

whence the desired identity follows for n = 3(k + 1),

Also Solved by A. Shannon.
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TRIG OR TREAT

H-111 Proposed by John L. Brown, Jr., Pennsylvania State University, State College, Pa.

Show that

Ln/ 2]

L = | ! {1+4cos22}3—_—-1—<z>}f0r n>1,
n n 2

k=1
Solution by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada.

We know from the solution of Problem H-64 (Fibonacci Quarterly, Vol,
5, Feb. 1967, p. 75), that

n

_l, . 2 -l . _
Ln = {1-21cos on ;, i V-1l .

=1

I n is odd, then

2nt+l
- o Ci-nm(
L2n+1 l I {1 2i cos 20 + 1)

1

n 2nt+1
=|I o; @2j-1m i, _ o 2k - D)
{1 2i cos 2(20 + 1) | 1 - 2icos 2@n+ 1)

j=1 k=n+2

2m+ 1) -1
-{1—200&: o+ 2 77'}

2ntl .
l I . 2j -1 I | . 2k - 1)
= {1—21008 XZ—(JZ-n—_-i-_lL”;}' {1—21005 2(2n+g }

k=n+2

Letting j = (2n+ 2 - k) in the second product, we get
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n n
=‘l_]' . 2 - ) ] i . 2i -1
L2n+1 | [1 - 2i cos iz_(J2n_+L17:| [1 - 2i cos {77- iz"(JzF)TT)T}]

=1 =1
1)
n
- l I 22i-1 @
{1+4cos onF 1" 3 }
=1
Similarly,
n
= 22 -1 = }
(2) L_?'n l l {1 + 4 cos on 2 |
71

Hence from (1) and (2) we have the required result.

Also solved by Charles Wall, Douglas Lind, .and David Zeitlin.
VIVA LA DIFFERENCE

H-112 Proposed by L. Carlitz, Duke University, Durham, N. Carolina.

Show that, for n 2 1,

a) Lflﬂ - Li - Li_l = 5L +1LnLn_1(2Li - 5(-1)1

b) Foet = Fo = Focg = ¥y Py g @F, * )

o LY71+1 B r71 - LI’Z-l B 7Ln+1LnLn—1(2Li:21 - 5(_1)n)2
d) FZ o 171- F;_l = 7F_ F F__ 1(2Fﬁ + 2

Solution by the proposer.

1l

For parts c¢) and d), take x=L , y= L in the identity

n n-1
71 7 2 2.2
®+ty) -x -~y = Txyx+yx +xy+y)
Since
2 2 n 2 n
Ln+ LnLn—1+ Ln—l = 2Ln—5(—1) ,
we get
L7 7 7

_ 2 0i2
w1 " Tn 7 T T Mg T Gy D)
Similarly, since

61
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2 2 _ 2 n
P Fufpay ¥ Fpog = 25,7 D)
we get
7 A 2, .ni2
Frir " Fn = Fuag = W FpFp GF + CDF) .

Parts a) and b) follow in a similar manner, by selecting x = Ln’ y = Ln-l;

X = Fn’ y = Fn—l in the identity

5 5 5 2 2
x+y)y -x -y = 5xy(x+y)x +txy+y’).
Also solved by Charles Wall.

MINOR EXPANSION

H-117 Proposed by George Ledin, Jr., San Francisco, Calif.
Prove
nt+3 "n+t2 " ntl

n+2 “nt3 " n nhlf o o F
n+1 n+3 2 2nt6 ~ 2n

n ntl " n+2 " nt+3

n

=

n

s N |
ol N B
I A B

=

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pa.

The determinant (first evaluated in 1866)

abed
badc
cdab
dcba

= @a-b-ctd@-b+c-d@a+rb-c-d@+rb+tect+d).

In this case the product is

ot T P ) F s F g ¥ Frug)
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from the recurrence

The identities

and

now complete the proof,

Also solved by David Zeitlin, A. Shannén, D. Jaiswal, J. Biggs, F. Parker, S. Lajos,
H. Krishna, and Stanley Rabinowitz

GOOD COMBINATION

H-119 Proposed by L. Carlitz, Duke University, Durham, N. Carolina

Put

H(m,n,p) =

r

T
=

n-j
=0 k=0

Show that ﬁ(m,n,p) = 0 unless m,n,p are all even, and that

min(m,n,p)

- _ r m+n+p=-r)
H(@m, 2n,2p) = Z D) A -1 -0 et

r=0

n p
Z Z 1i+j+k(i+j)<j+k)(k+m-i)(m—i+n—j
-1) j k m -i

)
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(The formula

m (o)
H@m,2n) = m ’

where

m n
om0 T e (1) () (22 (i )

=0 j=0

is proved in the Fibonacci Quarterly, Vol. 4 (1966), pp. 323-325.)

Solution by the proposer.
As a special case of a more general identity (SIAM Review, Vol, 6 (1964)

pp. 20-30, formulas (3.1) ), we have

i+ i

[o o]
z : (‘1“2) (‘2“3)(‘3“4 LW\ [ist i\ [igt iy
4 1 13 1.4 15 16 11

. s 2
11, coe ,16=0

3
Uy Ug Ug Uy U5 Ug
= - - - - - - -+ +
3 [1 u1 u2 u3 u4 u5 u6 u1u4+glu5 u2u4+u2u5+u u6
- w - uu,u.? - 4u |-
Upugls ~ Ually 6] 1194344 5 (

[\

Dl

T gy T uglg * U lg

In this identity, take

Uy = mUgs Ug = =Uy, U = =Ug o

Changing the notation slightly we get
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0 2 1
_ 3
E H(m,n,p) u vt WP = {(1—u2—v2—vv2) +4u2 v2 W2 }
m,n,p=o
[e.o]
) (_1)r o u21"721“WZI'
Z r (1_u2_V2_W2)21+1
=0
e o) 0
+
- Z (-1)r (2:>u2rV2rW2r§ ;(2rn n}(u2+v2+w2)n
=0 n=0

(0.0}
_ Z (_1)r<2;>u2rv2rwzr v
=0

co
c t o o
x E @r+i+ij+k)} u21V23W2k

@r)titjlkl

1,j,k=0
0 min{m,n,p)
_ E ; UIZmVZnWZp 2 : (_l)r %
m,n,p=0 =0

« m+n+p-1n!
rrim-r)lo-o)lE-r)

Comparing coefficients we get

min(m,n,p)
r m+nt+tp-r)

rrlm-r)i@a-1l@p-r

H(2m, 2n,2p) = (-1) .
r=0

It does not seem possible to sum the series on the right,

* & W ok &



IDENTITIES INVOLVING GENERALIZED FIBONACCI NUMBERS

MUTHUL AKSHM!I R. IYER
Indian Statistical Institute, Calcutta, India

I. INTRODUCTION

K. Subba Rao [4], and more recently V. C. Harris [1] have obtained

some identities involving Fibonacci Numbers Fn defined by
Fi =1, Fz = 1, Fn = Fn_1 + Fn-z n=3,.

Our object in this paper is to obtain similar results for the generalized Fib-

onacci Numbers Hn as defined by A. F. Horadam [2],
Hy=p, Hyp =p+gq

and

The numbers p and g are arbitrary. By solving the difference equation for

HI1 by the usual procedure it is easy to see that

H o= 1 [a"-mb®]  [3]

n 2 ‘\/3
where
1=20p-qgb), m = 20p - qa)

and a and b are the roots of the quadratic equation x* - x-1 = 0, We call

1+ a5 b_l—\/ﬁ
- 2

so that
66
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a+b=1 ab=-1, a-b= a5 .
By making use of these results we get

1+m = 2@p-q), 1-m =295,
$m =p?-pq - = e (say.

It is also easy to see that Hn = pFn # an-l where Fn is the nth Fibonacci
number given by

n_bn

5

SECTION 2

In this section we obtain certain identities for the generalized Fibonacci
numbers. From result (9) of [2] we have the identity

2 —1 H
H tH = @-9Hy ,-eFy 4.

In this relation putting r = 2,3, <°°, n in succession, adding and simplify—
ing, we arvive at the result

n
2 n
(1) Do HL = F [+ 20H +eF _ [+pa[-D7-1] .
r=1
Consider now H?..r—l = pFZr—l + qF2r_2 s0 that

n n n
DoHy g =D, Fo g ta) Ton o

r=1 == r=1

From the formula for Fn this sum reduces to
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n
(2) Z Hyp1 = Hpp - Hy+ Hy
r=1
n
@) Z HZr = H2n+1 - Hl
r=1

On the same lines we get the following identities

n
1
@ D Hyp =3 [Hsn'H2+H1]
r=1
n
=1
) D Hg =3 [H3n+1 - Hl]
r=1
n
1
©) D Hy =3 [H3n+2 - Hz}
r=1
n
(@) 2 Hy s = Fon-1Hap = Hy + Hy
r=1
n
®) D Hyp = FyHy
r=1
n
(9) Do Hyy = FpHy

r=1
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n
(10) D Hyp = ForgHy g - Hy
r=1
n
2 1
(1D 2o Hypq =5 [Hy (Hy y +Hy ) +2ne +q(q - 2p)]
r=1
n
2 1
(12) 2 Hyp = 5 [Hyp,y (Hy +Hy o) - 2ne - p(p + 29)]
r=1

Let us now consider product terms as follows:

n
1.2 2
(13) D Hy oHy y = F [Hyy g +Hy -ne - (p+a)fp+20)]
r=1
n
1.2 .2 2. 2
(14) D Hy gHy = 5 [Hy +Hy ., +ne- (" +q)]
=1
n
(15 S H, (H, .. =%[H, (H, +H, . )+3ne-pp+20]
2r-1"2r+1 5 2n+1" " 2n 2n+2
r=1

[y

n
(16 D HyHyrys = 5 [Hanyp®onyg +Hypyg) - 3ne - @+ 0@+ )]
r=1

Corresponding to the identity

for the generalized Fibonacci numbers we get in the generalized Fibonacci

numbers the identity-
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- r—k 2
@an Hr-—kHr-!-k 1) k
Now consider the sums
nh
8 Y H, JHy .o =% [Hy @, +H, )-Te- @+ 2pq+ 10g7)]
or-2fopig = F Hynyg Hynto p” + 2pq + 10q
r=1
n
) Y H, H .. =%[H @ ) + Tne - (p+q)(3p+q)]
or-1t2r+3 = 5 HopeaHonig " Hopua P
r=1

Evaluating the quantity Hk 1 k g We get

(20) Bl Bg = Hpyy + 1) Heiq
Therefore
H H, H = H3 + eH
2r-1 7 2r T 2r+l T 2r 2r

Hence

n

r=1 =]

After simplification this becomes,

n

@1 D Hyy (Hp Hyop = [(Hz 417 H ytely g -
r=1
n
(22) St ud = 2 (@ - ®H) +elfo-20)-

n
D Hpo g Hy Hpo EH tep Hy.
r=1

)]

0" }]
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Now
3 _ 3
Hop = ©Fgp+aFgp g -

On expanding the right side, taking the sum from v = 1 to n and simplifying
we get the relation

n
3 1 .3 3 .
(@3) 2 Hyp = 7 (W5 - HY) - Seliyy ) - Hy)]
r=1
n
2 1 2 2.
(24) Z HZrHZr—l T2 [ (HZnH2n+1 -4q HZ) * e(H2n—1 - Hl)]
r=1
n
2 _ 1 2 2 )
(25) D HyHy o= g [y (Ho g - Hia) + e, - Hy)l
r=1
n
2 1..3 3
(26) E Hop-1 = 7 [y - o)+ 3elHy, - o
r=1

From the formula for Hr we can find the sums of the following:

n
@7 D rH = nH ., -H o+H
r=0
n
(29) 3 0T, = [ {(n +DH - Hn_z} (3¢ - 20)]
r=0
n
(29) 20 0y, = 5 [0, tHy ) - 0+ 20)]

r=0
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n
T 1 n
(30) Z -1) H21'+1 =3 [(_1) (H2n+1 + H2n+3) * (2p—q)]
r=0
n
(31) D rH, = [nH211 - Hl:] - [H2n - HZ]
r=0
n
(32) 2 THypy = MHy - [H2n+1 - Hl]
r=0 '
n
(33) > DT, = : [(_1)n((n +1H, +nH, )= (H, _Hl)]
=0
n
(34 PO S [("1)n((n * DHppiq *0Hypg) - Hl]

r=0

It is easyto see that the list of identities given by K. Subba Rao can be extended
to Fibonacci Quaternions defined by
Q, = F +iF ,, +iF kKF ..

o2 T s

The author is very grateful toDr. J. Sethuraman for valuable suggestions.
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GOLDEN TRIANGLES, RECTANGLES, AND CUBOIDS

MARJORIE BICKNELL and VERNER E. HOGGATT, JR.
A. C. Wilcox High School, Santa Clara, California, and
San Jose State College, San Jose, California

1. INTRODUCTION

One of the most famous of all geometric figures is the Golden Rectangle,
which has the ratio of length to width equal to the Golden Section,

b= (1++5)/2 .

The proportions of the Golden Rectangle appear consistently throughout classi-
cal Greek art and architecture. As the German psychologists Fechner and
Wundt have shown in a series of psychological experiments, most people do
unconsciously favor '"golden dimengions' when selecting pictures, cards, mir-
rors, wrapped parcels, and other rectangular objects. For some reason not
fully known by either artists or psychologists, the Golden Rectangle holds great
aesthetic appeal. Surprisingly enough, the best integral lengths to use for
sides of an approximation to the Golden Rectangle are adjacent members of
the Fibonacci series: 1, 1, 2, 3, 5, 8, 13,-+- , and we find 3x 5 and 5x 8
filing cards, for instance.

Suppose that, instead of a Golden Rectangle, we study a golden section
triangle. If the ratio of a side to the base is

$=01+Vh/2 ,

then we will call the triangle a Golden Triangle. (See [2], [3].)

Now, consider the isosceles triangle with a vertex angle of 36°. On bi-
secting the base angle of 72°, two isosceles triangles are formed, and ABDC
is similar to AABC as indicated in the figure:

73
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Since AABC~ABDC,

AB _ BC

BD DC °
or,'

Yy - ,

X y - X
so that

Dividing through by x2 # 0,

The quadratic equation gives
I=@a+vo/2 = ¢

as the positive root; so that AABC is a Golden Triangle. Notice also, that,
using the common altitude from B, the ratio of the area of AABC to AADB
is ¢. ’
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Since the central angle of a regular decagon is 36°% AABC above shows

that the ratio of the radius y to the side x of an inscribed decagon is
¢ = (1+V5)/2

Also, in a regular pentagon, the angle at a vertex between two adjacent diagon-
als is 36° By reference to the figure above, the ratio of a diagonal to a side
of a regular pentagon is also ¢.

2. A TRIGONOMETRIC PROPERTY OF THE ISOSCELES GOLDEN TRIANGLE

The Golden Triangle with vertex angle 36° can be used for a surprising
trigonometric application. Few of the trigonometric functions of an acute angle
have values which can be expressed exactly. Usually, a method of approxi-
mation is used; mostvalues in trigonometric tables cannot be expressed exactly
as terminating decimals, repeating decimals, or even square roots, since they
are approximations to transcendental numbers, which are numbers so irra-
tional that they are not the root of any polynomial over the integers.

The smallest integral number of degrees for which the trigonometric
functions of the angle can be expressed exactly is three degrees. Then, all
multiples of 3°can also be expressed exactly by repeatedly using formulas
such as sin(A + B). Strangely enough, the Golden Triangle can be used to de-
rive the value of sin 3°

In our Golden Triangle, the ratio of the side to the base was
y/x = (1 +V5)/2 .
Suppose we let AB =y = 1. Then
1/x = 1+V5)/2 ,
or,

x=0n5-1/2 .

Redrawing the figure and bisecting the 36° angle,
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Since sinA + cos?A = 1,

cos 18°

_V10+2VE _ VGG
4 2

Since sin(A - B)

sin A cos B - sin B cos A,

sin 15° = sin (45° - 30°) = ﬁﬁ_% VZ o M_ .

2 2 2
Similarly, using cos(A - B) = cos A cos B + sin A sin B,

6 + 2

o _
cos 157 = 7

Again using the formula for sin(A - B),

4

s <20 - (2. ()

- -1-16—[(\/3—1)(\/6‘+\/'2‘)-2(\/§-1>(V5+\/3>]

as given by Ransom in [1].
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3. GOLDEN RECTANGLE AND GOLDEN TRIANGLE THEOREMS

While a common way to describe the Golden Rectangle is to give the ratio
of length to width as

¢ =(1+\/§)/2 ’

this ratio is a consequence of the geometric properties of the Golden Rectangle
which are discussed in this section.

Theorem. Given that the ratio of length to width of a rectangle is k > 1.
A square with side equal to the width.canbe removed toleave a rectangle sim-
ilar to the original rectangle if and only if k = (1+/5)/2.

Proof. Let the square PCDR be removed from rectangle ABCD,
leaving rectangle BPRA.

C P B
w w
D w l=w §,
R N
3 ! -

Cross-multiplying and dividing by w? # 0 gives a quadratic equation in -VI‘-’

which has
(1+5)/2

as its positive root. If
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= (1+\/§)/2 = ¢’

i~

then

so that both rectangles have the same ratio of length to width.
Theorem. Giventhat the ratio of length to width of a rectangle is k > 1.
A rectangle similar to the first can be removed to leave a rectangle such that

the ratio of the areas of the original rectangle and the rectangle remaining is
k, if and only if

k= (1+4/5)/2

Further, the rectangle remaining is a square.

Proof. Remove rectangle BPRA from rectangle ABCD as in the
figure:

C P B
w
D | —x X A
R
le 1 N
< 71
Then
area ABCD _ {w

area PCDR  w(]- X)

But,
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if and only if

or w= [ -x or PCDR is a square. Thus, our second theorem is a conse-
quence of the first theorem.

Analogous theorems hold for Golden Triangles.

Theorem. Given that the ratio of two sides a and b of a triangle is
a/b = k > 1. A triangle with side equal to b can be removed to leave a tri-
angle similar to the first if and only if k = (1 +1/5)/2.

Proof. Remove AABD from AABC.

if AADC ~ ABAC, then

or
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Cross multiply, divide by b? # 0, and solve the quadratic in a/b to give
a/b = (1 +1/5)/2

as the only positive root.
If

a/b = 1 +V5)/2 ,

then

DC/AC = (a-b)/b = a/b-1 =(\/5-1)/2

AC/BC = b/a =2/(1++/5) = \/5-1)/2 = DC/AC.

Since ZC is in both triangles, AADC ~ ABAC.

Theorem. Given that the ratio of two sides of a triangle is k > 1. A
triangle similar to the first can be removed to leave a triangle such that the
ratio of the areas of the original triangle and the triangle remaining is k, if
and only if k = (1 +1/5)/2.

Proof. Let AADC ~ ABAC, such that BC/AC = AC/DC = k.

If the ratio of areas of the original triangle and the one remaining is k,

since there is a common altitude from A,
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_ area ABAC _ __ (BO)(b/2)  _ BC/AC -k
area ABDA (BC -DC)(h/2) = BC/AC -DC/AC  k - 1/k

Again cross-multiplying and solving the quadratic in k gives k = (1 + V/5)/2.
If

k= @1+4+5)2,
then
BC/AC = AC/DC = (1 + /56)/2,
and the ratio of areas BC/(BC - DC) becomes (1 +1/5)/2 when divided
through by AC and then simply substituting the values of BC/AC and DC/AC.
If
k = (1+4/5)/2 = BC/AC,

and the ratio of areas of ABAC and, ABDA is also k, then

BC/AC k

BC/AC - DC/AC ~ k-x °’

k =

which leads to
x =k-1 or DC/AC = (1 +V5)/2-1=2/(1++/5)
so that
AC/DC = (1+5)/2
and ABAC is similar to AADC.

4. THE GENERAL GOLDEN TRIANGLE

Unlike the Golden Rectangle, the Golden Triangle does not have a unique
shape. Consider a line segment CD of length '
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¢ = @+5)/2 .

Place points E, G, and F on line CD suchthat CE =1, EG = GF =¢ as
in the diagram.

AR

Then, ED =¢ -1 and

CE/ED = 1@¢-1) =4¢,
CF/DF = (2¢+ 1)(d+1) = 3 P2 = ¢,

so that E and F divide segment CD internally and externally in the ratio ¢.
Then the circle with center G is the circle of Apollonius for CD with ratio
¢. Incidentally, the circle through C, D, and H is orthogonal to circle with
center G and passing through H, and HG is tangent to the circle through
C, D, and H.

Let H be any point on the circle of Apollonius. Then CH/HD = ¢,
CG/HG =¢, and ACHG ~ AHDG. The area of ACHG is

h(1 +¢)/2 = hd?/2 ,

and when AHDG is removed, the area of the remaining ACHD is h¢/2, so
that the areas have ratio ¢. Then, ACHG is a Golden Triangle, and there
are an infinite number of Golden Triangles because H cantake an infinite num-

ber of positions on circle G.
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If we choose H so that CH = ¢ + 1, then we have the isosceles 36-72-
72 Golden Triangle of decagon fame. If we erect a perpendicular at D and
let H be the intersection with the circle of Apollonius, then we have a right
golden triangle by applying the Pythagorean theorem and its converse. In our
right golden triangle ACHG, CH =¢Vh, HG =¢, and CG =2 The two
smaller right triangles formed by the altitude to CG are each similar to
ACHG, so that all three triangles are golden. The areas of AHDG, ACDH,
and ACHG form the geometric progression,

V@72, (Ve/2é, (Vb/ad? .

Before going on, notice that the right golden triangle ACHG provides an
unusual and surprising configuration. While two pairs of sides and all three
pairs of angles of ACHG and ACDH are congruent, yet ACHG is not con-
gruent to ACDH! Similarly for ACDH and AHDG. (See Holt [4].)

c

—— ¢ +1 >

5, THE GOLDEN CUBOID

H. E. Huntley [5] has described a Golden Cuboid (rectangular parallelo-
piped) with lengths of edges a, b, and c, such that

a:b:c=¢:1:¢"

The ratios of the areas of the faces are

(I):l:(jJ_1 .
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and four of the six faces of the cuboid are Golden Rectangles.

If two cuboids of dimension
¢ Px1x ¢!

are removed from the Golden Cuboid, the remaining cuboid is similar to the

original and is also a golden cuboid,

/ //
7 —1
) / e ¢
7/
~2 , ¢‘I P ¢—| 1
. ) )
- | 1 —1
¢ ! y @ 1
i 1
$e ¢ >

If a cuboid similar to the original is removed and has sides b,c, and
d, then

so that

C=d¢sb=d¢2’ a=d¢3'

The volume of the original is abc = ¢d%, and the volume removed is bed =
$d®. The remaining volume is @°-¢°)d®. The ratio of the volume of the

original to the volume of the remaining cuboid is

$fd | % _2+VE _3+VE _ 4o
@ -¢%)a?  $P-1 1+/5 :



1969] GOLDEN TRIANGLES, RECTANGLES, AND CUBOIDS 85
6, LUCAS GOLDEN-TYPE RECTANGLES

Now, in a Golden Rectangle, if one square with side equal to the width is
removed, the resulting rectangle is similar to the original. Suppose that we
have a rectangle in which when k squares equal to the width are removed, a
rectangle similar to the original is formed, as discussed by J. A. Raab [6]
In the figure below, the ratio of length to width in the original rectangle and in
the similar one formed after removing k squares is y:1 = 1:x which gives

x = 1/y. Since each square has side 1,

y-x=y3-1/y =k,

or,

e
< Y 7

Let us consider only Lucas golden-type rectangles. That is, let k = L2m+1’

where L is the (2m+1)St Lucas number defined by

2m+1

where a and B are the roots of x2 -x-1=20,
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In our problem, if

then

becomes

so that

or

but

is the only positive root,

k= Lomr °

2
y ~ky-1=0

2 _
y L2m+1 y -1 0
2m+1
y =«
2m+1
y =B ,
-« 2m+1
Then
+ +
x = 1/a2m1=_32m1 .

[Feb.

On the other hand, suppose we insist that to a given rectangle we addone

similar to it such that the result is k squares long.

the equal ratios of length to width in the similar rectangles gives

or ky - y2

Illustrated for k = 3,

=1 or yz—ky+1=0.



1969] GOLDEN TRIANGLES, RECTANGLES, AND CUBOIDS 87

f———— Ky ———y

<
==
A A

2
Now, let k = L__; then y =a ooor y = Bzm. Here, of course, y =32m,

2m
so that

k-y:LZm_B =a °

Both of these cases are, of course, in the plane; the reader is invited to

extend these ideas into the third dimension.

7. GENERALIZED GOLDEN-TYPE CUBOIDS
Let the dimensions of a cuboid be a :b :c = k and remove a cuboid

similar to the first with dimensions b : ¢ : d = k., Then

2 3

c = dk, b = dk, a = dk .
The volume of the original is
abc = k6 d3 ,
the volume removed is
bed = k3 d3 ,

and the remaining volume is

-3 a .
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The ratio of the original volume to that remaining is

643 ) 3
& -had Ko

Now, let this ratio equal

which leads to

0=k -2k-1-= k+ E: -k - 1)

with roots
k=-1, (tV5/2,
and having

k = 1+ V5)/2

as its only positive root.

[Feb.

Now consider a hypercuboid in a hyperspace of 6 dimensions, with dimen-

sions a:b:c:d:e:f = k. Remove a hypercuboid of dimensions

b:c:d:e:f:g = k ,
and the ratio of the original volume to the volume remaining is

abcdef _ g6k2 ! k6

- - 6 ’
abcdef - bedefg g6(k21 _ k15) o1

since

2

f=kg e=kig d=kg e=kg b=1kg a-kg.
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Now set this ratio equal to k2/L

3 %
¥ K
Wop 4
which leads to
k6 - 4k3 -1 =0

with roots

k =a,0a , wza,ﬁ,wlﬂ, w'zp,
2 -
where w and w are cube roots of unity. Then

k=a= 1+V5)/2

is the only positive real root.
Suppose we have a cuboid in a hyperspace of 4m + 2 dimensions. Let

this have edges

Bpo B Bgs "tTs By kg 0

and cut off a cuboid similar to it so that

1 g B3¢ Tt Byre T Bg BByt R PR mes

This implies that the dimensions are related by

a = k4m+3—na
n 4m+3

for n=1,2,**+,4m + 3. The volume of the original cuboid is nowa_a _a_---

123
ile t i i cee -
a4m+2 while the volume of the cuboidcut off is a2a3 a4m+za4m+3. The re

maining cuboid has volume equal tothe difference of these, making the ratio of
the original volume to that remaining
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al k4m+2

818983 " itn

8933t Byng@y ~Bymeg) AT Ay AWT2
Now let us let this volume ratio equal to
k2m+1 / L2m+1 ,
where L2m+1 is the (2m+1)St Lucas number, yielding
k4:1rn+2 _ L2m+1 k2m-1r1 -1=0
whose only positive root is
a= (1+15)/2
The proof is very neat. Since a8 = -1 for a and B8 the roots of x-x-1
= 0 andsince L = o +B", we can write
(1 = 2mtlg2mil g2mil,  dmi2 "2m+1L2m+1 _dm2

and rearrange the terms above to give

4m+2 2m+1 _ 4m+2 4m+2 2m+1 2m+1
k - L2m+1k -1 = (k -a ) - L2m+1(k -a )
_ 2m+1 2m+1, . 2m+1 2m+1
(k - )k +a _L2m+1)
2m+1 2m+1, , 2m+1 2m+1
= (k -a ) (k -8B )y = 0.

Thus, k =awj, Bw]., where wj are the (2m+1)St roots of unity, so that

k= a= (1+V5/2

is the only positive real root.
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Now, let us return to the volumes of the cuboids in the hyperspace of

4m + 2 dimensions. Let us set a = a Then, since k = a, the volume

4m+3°
of the original cuboid is

V. = aa 4m+2 1 2.3 | 4m+2

1 1%2 """ Bgmeg T 2

and the volume of the cuboid removed is

V. = aa 4m+2 1 2 3 4mtl

2%g """ a4m+2a4m+3 - a

making the volume of the cuboid remaining

T
+ +
V. -V _a4m2a4m1

4m+2
17 V2 T (a

-1

where Tn is the nth triangular number, But,

so that the remaining cuboid is made up of L square cuboids with total

2m+1
volume

4m+2 1 2 3 4m+1 2m+1
a a o a ML ¢ 4 (L2m+1a )

Thus we have generalized the Golden Cuboidof Huntley [5 ] andalso the golden-
type rectangle of Raab [6].
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SUMS INVOLVING FIBONACCI NUMBERS

MUTHUL AKSHMI R. IYER
Indian Statistical Institute, Calcutta, India

1. INTRODUCTION

In [1] Professor Horadam has defined a certain generalized sequence

{Wn} = {Wn(alb; D;Q)}: Wo = a, Wy = b

and

W= pW__ - QW __ n = 2)

for arbitrary integers a and b. The nth
relation of the form:

term of this sequence satisfies a

where

a and B being the roots of the equation x% - px+q = 0. He also mentions
the particular cases of {wn} given by

w Lppad = u 9

w @,p;p,a) = v (0,0

wn(r, r+s; 1,-1) = hn(r, s)
n

wn(l, 1;1,-1) = f = u 1, -1 = hn 1, 0)

wn(2,1; 1,-1) = 1n = Vn(l,—l) = hy (2, -1)

wherein ¥, and L, are the famous Fibonacci and Lucas sequences respectively.
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SECTION 2

In this paper our object is to derive some relations connecting the sums
of the above sequences up to n terms.
We shall derive a formula for the sum of the most general sequence {wn}

and thereby obtain the sums of the other sequences.

Theorem:
n bT_ - aqT
w = g + __.9___1—1
Z r l1-p+g
r=0
where
T =1-2A_,
n n
and
An Uy WMy
Consider

‘ n n n
dow, = AY o" +BY "
r=0 r=9 r=0

a - B a-1 a - B B-1 ‘

This becomes, after simplification by using the facts @ +p) =p, aof = q,
a-f=d

[@+Db - ap) +aqlu, . -aqu _,)-b, - qu, )]/ -p+a)

Set
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Then, this becomes

[@+b - ap) + agh__ -bA 1/ -p+0Q)
[a@ - p+a-a+ar ) +b(1 -2 )]/Q-p+a)
a+ [-ag(l- A _)+b@A-2)]/0-p+aq)

let now

1- }\n = Tn s
therefore we finally obtain
n‘ an - aan_1
@ DV mat—ToIg T

=0
Hence the result.

From this we can obtain immediately the sums of Zur, EVT,EFI,, ) Lr’

etc.

is obtained by letting a = 1, b = p in (1)

n

) pT, -aT,_
Zur(P’CI) =1+ —12'__—5—_,_—3—'1'
‘ r=0
(2)
n

Y u o = T, /0-prae
r=0
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can be obtained by putting a

@)

In particular,

and

(i)

n
Z v.(0,q) =
r=0

n.
Z V.., Q)
r=0

Zwr(l, 1 1,-1) = ZFr

Z‘Wr(Z, 1, 1,-1) = ZLr

n

Z v, ;9

r=g

SUMS INVOLVING FIBONACCI NUMBERS

2, b =p,p,q in (1)

is derived by putting a = b = p

In thiscase A =u_+u
n n

n

Zur(l,—l)

r=0

n-i

1]

pT

T

_ 2 + n-2q n-i

1-p+aq

T -qT

n-+i

n
Z ur(l’ -1
=0

1-p+gq

n-i

Eur(l, -1) = Zhr(l, 0)

Zvr(l, -1) = Zhr(2,—1).

i, g =-1 in (@),

=0 Therefore

I TR
1-1-1

1-[@-w )+ @-u)]
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n
3w, -1 = w,, - 1=Fy, -1 (3] -++ )
r=0

This can be verified for any n.

(ii) To get z:vr(l,-l) let a=2, b=p=1 ¢q=-1 in (1). Here also

= . S
}xn U 0

n

Al-u )+2(1-u)
— n+i n
Zvr(l,-l) = 2 + T
r=)
=2~-[3- 2u, - un+1]
= u.n + un-Pz -1
= Yy, - 1 e )

This also can be very easily verified for any n.

(iii) Now to evaluate

n
Zhr(p, a ,

=0
set

a=p, b=p+q, p=1, g =-1

in (1). Here again

Then
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n
D b0 = b - [+ Q@ -TFyy)+pl-T,)]
=0

+aF 4 +pF -®+q

= PF 5 *dF ) - +q)

n
Zhr(p’q) = hn+2 - (p +d by [2] (liii)

r=0

1, li’ (lﬁ), (liﬁ) can be proved for all (+ve) integers n by induction. We

shall here prove (1) as an illustration. Let us suppose that

k ka - aqu_1
@ D e
r=9

Next let us add Wy + to both sides, to get

kit bT, - aqT
W = q + ——li————-li-—i + W
r 1 - p +q k+1
=0
B b1 - w + quk_i) - aq(l - uk_1+quk_2)
= g +
1-p+a
+ Aak+1 + BBk+1
k-+1
b -u +qu ) -aql-uw_ +aqu )
4) w_ = a+ - =1 =
T 1-p+taq

=0
+ buk - aquy '

1
T g P - ey ay) - ad@ - uy Faw )]

k+1
ka 4y " aqu

L per

[
I_gé

1}

[

r=0



98 SUMS INVOLVING FIBONACCI NUMBERS Feb. 1969

Equation (4) is of the same form as (1)! with k replaced by k + 1. Hence, etc,
Similarly other results can be proved for all positive integral values of

n.
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LINEAR RECURSION RELATIONS
LESSON THREE-THE BINET FORMULAS

BROTHER ALFRED BROUSSE AU
St. Mary’s College, California

In the previous lesson, the technique of relating the terms of a linear
recursion relation to the roots of an auxiliary equation was studied and illus-

trated., The Fibonacci sequences are characterized by the recursion relation:

(1) T = T +T _

nt+l 1°

which is a linear recursion relation of the second order having an auxiliary

equation:

(2) xz =x + 1

or

(3) xz—x—1=0.

The roots of this equation are:

4) = EE\—@— and s = —1—‘—2——-\/5

From the theory of the relation of roots to coefficients or by direct calculation

it can be ascertained that:
(5) r+s =1 and rs = -1 .

It follows from what has been developed in the previous lesson that the terms

of any Fibonacci sequence can be written in the form:

) T = ar + bs"
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where a and b are suifable constants, For example, let

The relations that must be satisfied are:

2 = ar + bs

5 = ar2+ bs2

These give solutions:

p = 1B-V6

and 10

_ 15+\5
10

so that

T = 15+ /5 U 15 -\/5 g

n 10 10

[Feb.

Let us apply this technique to what is commonly known as the Fibonacci

sequence whose initial terms are F, = 1 and F2 = 1, Then

1

[
Il

ar + bs

1= ar2+bsz .

with solutions

. 1
g = I
V5
and
b:__"_-:l-_
V5

so that
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(6) = 70—

the BINET FORMULA for the Fibonacci sequence,

Similarly, for the Lucas sequence with L, = 1 and L2 =3,

1

juny
1]

ar+ bs

3 = ar2+bsz )

one obtains a = 1, b = 1, so that:

(7) L =1 +s8 5
the BINET FORMULA for the Lucas sequence,

THE GOLDEN SECTION RATIO

With this formulation it is easy to see the connection between the Fib-
onacci sequences and the Golden Section Ratic. To divide a line segment in
what is known as "extreme and mean ratio" or to make a Golden Section of the
line segment, one finds a point on the line such that the length of the entire
line is to the larger segment as the larger segment is to the smaller segment.
To produce an exact paralilel with the Fibonacci seqguence auxiliary equation,
let x be the length of the line and 1 the length of the larger segment. Then:

x:1 = 1:1-x,

which leads to the equation

XZ—X—].:O

Clearly, we are interested in the positive root

= l...._..____;- \'/B_
5 °
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The other root s = -1/r is the negative reciprocal of r, the Golden Section
Ratio. (It may be noted that

_ AVGB-1

1 - AV5-1
r

is also considered the Golden Section Ratio by some authors. This is a matter
of point of view: whether one is taking the ratio of the larger segment to the

smaller segment or vice-versa.)

USING THE BINET FORMULAS

The Binet formulas for the Fibonacci and Lucas sequences are certainly
not the practical means of calculating the terms of these sequences. Alge-
braically, however, they provide a powerful tool for creating or verifying
Fibonacci-Lucas relations. Let us consider a few examples,

Example 1
If we study the terms of the Fibonacci sequence and the Lucas sequence

in the following table:

n n n
1 1 1
2 1 3
3 2 4
4 3 7
5 5 11
6 8 18
7 13 29
8 21 47
9 34 76
10 55 123
it is a matter of observation that:
4L4= 3X7 =21 = F8
515 = 5X11 = 55 = F10

and in general it appears that:
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FnLn = F2n .

Why is this so? Using the Binet formula for F2n R

r2n _ SZn (rn _ Sn) n
Fon = % = v @+ st = F L
Example 2
n n
. _ rkn _Skn (rk) B (sk)
kn V5 V&

has a factor

which proves that if k is a divisor of the subscript of a Fibonacci number

F_, then F, divides F__.
m k m

Example 3
By taking successive values of k, one can intuitively surmise the

formula:

+
n k+1F2

2 _
Fork Fpoe = Fp = D K

To prove this relation, use the Binet formula for F. This gives:

2 rn+k _ Sn+k rm—k _ Sn—k (rn - Sn)2
Forkt nk ~ L : -
V5 V5 5
= 20, (20 otk n-k orkgotlk (204 o D (20
~ rn_ksn_k(er B Zrksk+ s2k) _ k1.2
= - - = (-1) Fy.
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PROBLEMS
1. Prove that
2 n+1
= + 2(- .
LG Ln 2(-1)

2. Using the Binet formulas, findthe value of:

LnFn—l - FnLn—l °
3. an = Fn( }, Determine the expression for the .cofactor of Fn'
4, F5n = Fn( ). Determine the expression for the cofactor of Fn'
5, L3n = Ln( ). Find the expression for the cofactor of Ln'
6. L5n = Ln( ). Find the expression for the cofactor of Ln‘
7. For the Fibonacci relation with T, = 3, T, = 7, find the expression for

1
Tn in terms of powers of r and s.

2

8. Using the binomial expansion, find an expression for Fn in terms of
powers of 5 and binomial coefficients,
9. Do likewise for Ln‘

10. Assuming the relation

Ln+ Ln+2 - 5Fn+1 ?

determine an equivalent single Fibonacci number for thl + Fr21+1 using the

Binet formula,
[Continued on p. 106. ]
ERRATA FOR
K LINEAR ALGEBRA COWSTRUCTED FRCM FIBONACCH SEQUENCES

J. W. GOOTHERTS
L ockheed Missiles & Space Company, Sunnyvale, Calif.

Please make the following changes in the above-entitled article, appear-
ing in Vol. 6, No. 5, November 1968:
On page 36, change the eighth line from the end to read:
Definition 1.5. For U,VEF, UV = (uyvy +uyvy,uevy + ugvp + ugvy ).

Equation (3} on p. 38 should read:

au_+bhu_ =0

n m

au 4 F bum_‘_1 =0.
On p. 42, 11 lines from the end, change the "F' to a script ¥F.
On p. 49, in the equation preceding Eq. (10), change A to ©, .

* ok kA & ¥

(38)



BOOK REVIEWS

BROTHER ALFRED BROUSSEAU
St. Mary's College, California

FIBONACCI AND LUCAS NUMBERS
Verner E. Hoggatt, Jr.

Houghton Mifflin Company has just released a 92-page booklet in its En-
richment Series entitled "Fibonacci and Lucas Numbers" by our Editor, V. E.
Hoggatt, Jr.

If afirstimpression is valid, this contribution to mathematical literature
might be characterized by three words: richness, variety, lucidity. Richness
and variety are manifest in relating the Fibonacci and Lucas numbers to many
interesting facets of mathematics. The Golden Section Ratio and some unusual
geometry receive attention inthe early part of the book. Number theory comes
into play in the periodic properties of the Fibonacci and Lucas numbers. The
prolific Pascal triangle receives its share of attention. The algebra of simple
matrices and representation of integers open up many doors to further research
and study. Finally, relations with nature round off the treatment and point to
the mysterious connection of mathematics with the real world which has
fascinated man for untold centuries.

Some examples of lucidity would be the very slick way in which the Binet
formulas are introduced; the handling of asymptotic ratios and their relation to
the Golden Section in Chapters 5 and 6; the treatment of periodicity of remain-
ders in Chapter 8; the explanation of Fibonacci numbers in nature in Chapter
13.

A helpful feature of the bookis an appendix giving solutions of many of the
problems in the book.

This book should prove a boon to young and old who wish to enter that
magic door which leads to the wonderful world of Fibonacci. All too often we
receive pleas for books and materials dealing with this field. There is now a
ready answer to these requests for help.

This booklet lists for $1.40, and is also available from the Fibonacci
Association.

INVITATION TO NUMBER THEORY
Oystein Ore

As part of its New Mathematical Library, Random House (The L. W.
Singer Company) has just released a booklet, '"Invitation to Number Theory,"
by Oystein Ore.

As everyone knows, number theory is a type of mathematics which has
fascinated amateur and professional over the centuries. The questions it raises
are often quite easy to understand and therefore appealing to the mathematical
enthusiast who does not have a great background in mathematics.

The booklet takes up aspects of number theory that are within the range
of a good high school student: primes, divisors of numbers, greatest common
divisor and least common multiple, the Pythagorean problem, numeration sys-
tems, and congruences.

One of the noteworthy features is the way in which the author relates his
treatment to the history of mathematics. Thefollowing examples bring out this
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point: figurate numbers, the Euclidean algorithm for finding the greatest com-
mon divisor, perfect numbers, amicable numbers, the Pythagorean problem,
ancient systems of numeration, and Mersenne numbers.

On the other hand, up-to-date developments are not neglected. There is
an interesting discussion of the largest primes discovered by the factorization
of Mersenne numbers. In connection with number bases, computers and their
mode of arithmetic are introduced.

Finally, the author has introduced interest features throughout the book:
magic squares, games with digits, days of the weekas related to congruences,
tournament schedules.

The book contains problems tobe solved and has a section entitled '"Solu-
tions to Selected Problems. "

The list price is $1.95.

* ok Kk ok ok

[Continued from p. 104. ]
SOLUTIONS TO PROBLEMS

2. 2=t
) n
3. Ly, * (1)
4 L, + (1)L, _+1
¢ 4n : 2n
n+l
5. L, * (-1)
n+1l
+ (= +1
6, L4n -1 LZn
_10+\5 n+1o—\/§Sn
(e T, =735 T 5

8. F = z'“+1[n+5<g> +52<g) +53(r71) ]
- 2~n+1[1+5(g> +52<2) +53(g) ]

10. ‘ F211+1 :

©
-
I

* Kk Kk &k



ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN
University of New Mexico, Albuquerque, N. Mexico

Send all communications regarding Elementary Problems and Solutions
to Professor A, P, Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuguerque, New Mexico, 87106, Each problem or
solution should be submitted in legible form, preferably typed in double spac-
ing, on a separate sheet or sheets in the format used below. Solutions should
be received within three months of the publication date,

Contributors (in the United Stated) who desire acknowledgement of receipt

of. their contributions are asked to enclose self-addressed stamped postcards.

B-154 Proposed by S. H. L. Kung, Jacksonville University, Jacksonville, Florida

What is special about the following '"magic' square ?

il 2 14 19 21
8 i3 3 22

20 17 15 6 9
7 24 18 10 12

25 5 23 16 4

B-155 Composite of Proposals by M. N. S. Swamy, Nova Scotia Technical College,
Halifax,Canada, and Carol Anne Vespe, University of New Mexico, Albuquerque, N. Mex.

Let the nth Pell number be defined by P, =0, P, = 1, and Pn+2:

0 1
+
2Pn " Pn' Show that

1

rP__P

naFoth ~ L

_ n
wratbtn ~ 1 PPy -

B-156 Proposed by Allan Scott, Phoenix, Arizona.

Let Fn be the nth Fibonacei number, Gn: F, ~-2n, and Hn be the

4n
remainder when Gn is divided by 10.
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(@) Showthat the sequence Hy ,H3,H 4 is periodic and find the repeat-

ing block,
(b) The last two digits of G9 and G1 4 give Fibonacci numbers 34 and 89

respectively. Are there any other cases?

B-157 Proposed by Klaus Giinther Recke, University of Gottingen, Germany.

Let Fn be the nth Fibonacci number and { gn} any sequence, Show

that

n
E :(gk+2+gk+1 “8IF T 8o Tyt BpiFur T &
=1

B-158 Proposéd by Klaus Giinther Recke, University of Gottingen, Germany.

Show that

n
2 : 2 2 2 2 2 2 2
kF )" = [(n *o+2)F o - @ +3n+ 2F -0+ 3+ 4HF ]/2.
=1

B-159 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn.

Let Tn be the nth triangular number n(n+ 1)/2 and let $(n) be the
Euler totient. Show that ¢(n)| #(T,) for n=1,2,... .

SOLUTIONS

NOTE: The name of M. N. S. Swamy was inadvertently omitted from the lists
of solvers of B-118, B-119, and B-135.

A PELL ANALOGUE

B-136 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.

Let Pn be the nth Pell number defined by P, = 1, P2 = 2, and Pn+

+ Pn’ Show that

1 2

= 2Pn+1
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2 2 _
Pt Pn = Popug -

Solution by J. E. Homer, Union Carbide Corporation, Chicago, I11.

By induction on k it is eadsily shownthat PN = Pk+1PN—k + PkPN-k-l’

Letting N = 2n+ 1 and k = n the desired result follows.

Also solved by Clyde A. Bridger, Timothy Burns, Herta T. Freitag, J. A. H. Hunter (Canada),
John lvie, D. V. Jaiswal (India), Bruce W. King, Douglas Lind, C. B. A. Peck, A. G. Shannon
(Australia), M. N. S. Swamy (Canada), Gregory Wulczyn, Michael Yoder, and the proposer.

ANOTHER PELL IDENTITY

B-137 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.

th Cop2  _ op2
Let PK1 be the n™ Pellnumber, Showthat P 1+P2n ZPI]_,_1 2Pn

- =",

2n+

Solution by Carol Vespe, University of New Mexico, Albuquerque, N. Mex.

Let = 1+ V2 and s = 1 - V2. Both sides of the identity are of the

form

n n
cl(rz) + cz(rs)n + 03(52)

with constant c's. Hence both sides satisfy a recurrence relation

=k k k

+
Yots = EoVprg T Ki¥pe T KoYy o

with constant k's. Therefore the identity is proved for all n by the easy ver-

ification for n = 1,2, and 3.

Also solved by Clyde A. Bridger, Herta T. Freitag, J. E. Homer, John Ivie, D. V. Jaiswal
(India), Bruce W. King, C. B. A. Peck, A. G. Shannon (Australia), M. N. S. Swamy (Canada),
Gregory Wulczyn, Michael Yoder, and the proposer.

B-138 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Show that for any nonnegative integer k and any integer n > 1, there
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is an n-by-n matrix with integral entries whose top row is Fk+1’Fk+2’ see,

F and whose determinant is 1.
k+tn

Solution by J. E. Homer, Union Carbide Corporation, Chicago, I11.
The g.c.d. of (Fk:+1’ Fk+2"“’Fk+n) is 1. There exists an n-by-n
matrix (Problem E1911, American Mathematical Monthly, Aug.-Sept., 1966)

with integral entries whose top row is Fk+1’ Fk+2’ ses, Fk+n and whose de-

terminant is the g.c.d. of (F

1’ Frergr 00 Fiep)-

Solution for n> 4 by A. C. Shannon, ACER, Hawthorn, Victoria, Australia.

Fier Five Fres Frrr " Flans T Fien

Fiys Fiig 0 0 e 0 0 Fng
0 0 1 0 ces 0 0 Flinos
0 0 0 0 cee 1 0 Fiis
0 0 0 0 e 0 Flis Fl i
0 0 0 0 ... 0 Flpo Fiiq

L -

Also solved by Michaei Yoder and the proposer.

B-139 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, Calif.

Show that the sequence 1,1,1,1,4,4,9,9,25,25,++- defined by a2n_1 =
Bon = Fi is complete even if an 2 with j £ 6 is omitted but that the
sequence is not complete if an aj with j > 7 is omitted.

Composite of solutions by C. B. A. Peck, Ordnance Research Laboratory,
State College, Pennsylvania, and the proposer.

Let S =a,+ ... +a_, Then it is easily seen that S
n 1 9 B D)
and Sy 7 Fam T T 7 Fmer

J. L. Brown's criterion (Amer, Math, Monthly, Vol. 68, pp. 557-560)

om = 2FmFmet

states that a nondecreasing sequence of positive integers bl’bz’ <+« with b1=

i i i < eo o = cee
1 is complete if and only if bn+1 S 1+ b1+ + bn for n= 1,2, .
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Thus it suffices to show that

< - j < i
(A) a4q S 1+Sn 2 for 1£i<6 and n>i
and
®) a1 > 178, -a, for i>6 andsome n 2i,

There is no loss of generality in letting i = 2k, Then (B) follows with

n=1i= 2k since k 24, 1—F12<_1S1e22=—3, and
a = F2 > 1+F2 -F2 =1+8 = 1+8,, -a,, =1+8 _=-a
nt+l k+1 kt1 k-1 2k-1 2k 2k n “i°

One easily checks (A) when n< 6, With n=2m-1 and m 2> 4, (A) is

clear since S_-a, contains a =a asaterm, With n=2m and m2
n i n+l n

3, (A) holds if

or if

Frt1@Fy - Fryq) 23
or if

Fm+1(Fm - Fm—l) 23,

which is true for m > 3,

B-140 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Show that F ab ~ Fan if a2 and b are integers greater than 1,

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pa.

ab > a+b -1 for this is true for a,b = 2 and differentiation with re-
spect to b with a fixed shows that the 1.h,s. increasesfasterthanthe r.h.s.
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in b (and, by symmetry, in a), Then from

Fan * Fm—an-l - Fm+1r1--1

(see Fibonacci Quarterly, Vol. 1, No, 1, p. 66),

=FaF +F F_F

Fab ” Farb-1 bt Fac1Fp-1> FaFp -

Also solved by J. E. Homer, D. V. Jaiswal (India), A. C. Shannon (Australia),
M. N. S. Swamy (Canada), Michael Yoder, and the proposer.

B-141 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn.

Show that no Fibonacci number Fn nor Lucas number Ln is an even

perfect number,

Solution by the proposer.

Recall thatan even perfect number greater than 6 must leave a remainder
of 1 upon division by 9 and must be a multiple of 4. An even perfect number
greater than 28 must be a multiple of 16,

I F =1 (mod9), then n=1,2 10,18, or 23 (mod24); if 16an
then n = 0 (mod 12), These two sets have no common elements.

¥ L =1(mod9), then n=1 or 11 (mod24). If 4L then n=3
(mod 6)., Again we have an empty intersection.

Problem H-23 asked if there were any triangular Fibonacci numbers
beyond 55. If the answer to that question is '"no" then the Fibonacci half of the
above is immediate,

* ok ok kK
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