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SOME FORMULAE FOR THE FIBONACCI SEQUENCE WITH GENERALIZATIONS 
GEORGE H. ANDREWS 

Pennsylvania State University, University Park, Pa. 

1. INTRODUCTION 

In this paper we shall study the following formulae for the Fibonacci 
numbers. 

00 

(1-1} Fn= ^ " ( [ i ^ - V - t o ) ] ) 
_, n=-oo v / 

(1.2) J}-lf([i(n - 1Q- fe)]) 
Q>=-QQ x / 

where ( 1 is the ordinary binomial coefficient, and [x] is the greatest 
integer function. 

In Section 2, we shall prove these formulae and shall show how directly 
they imply the following famous congruences [4; p. 150], 

(1.3) F / 5 \ =• 0 (mod p) , 

(1.4) Fp = f |J (mod p), 

where (—J is the Jaeobi-Legendre symbol. 
Chapter IV of Dickson's History, Vol. 1 [2; pp. 105-112] is devoted to 

studying (u^""1 - l ) /p (mod p). In particular, Einstein made several contri-
butions to this problem among which was the following. If p / 2, 

(2P""1 - l ) /p = 1 + 1/3 + 1/5 + • • • + 1/p - 2 (mod p) . 
"^Partially supported by National Science Foundation Grant GP 6663. 

113 



114 SOME FORMULAE FOR THE FIBONACCI SEQUENCE [Apr. 

We shall prove analogous formulae for 

and 

(*> - ( # 

in Section 3. Namely, if p s ±2 (mod 5), 

(1.5) Fp+i/p e 2(-l)^> J ] \ B
p / W (xnod p) . 

m=i, 5(mod io) 
|m|<p 

If p = ±1 (mod 5), 

d.6) Fp.yp 5 2(-i)̂ <p-1) 2 
m=5,7(mod io) 

| m | < p 

For all primes p, 

^ ' ' m=i,7(mod io) 
|m| < p 

In Section 4, we make the natural generalization of (1,1) and (1.2) by-
replacing 5 by an arbitrary odd number. This leads us immediately to an 
n-dimensional analog of the Fibonacci numbers which is closely related to one 
considered by Raney. 

In Section 5, we point out an application of these generalized sequences 
to the factorization of large numbers, and in Section 6, we discuss related 
sequences. 

Mfe) 
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2* T H E N E W F O R M U L A E 

Let us define 

F n ( b ) = ^ <-W[ | ( n„n
b„5 a ) ] ) • 

a=-ao \ ' 

Then if 0 = exp (2m/5)9 

(- l)b 

a=-oo 

4 qo 

_ ( - l ) b + n 

j=0 Qf=-op * ' 
5 

4 

5 
j=0 a=-oo 
4 

j=0 ( #=~oo 

QF=-00 ' J 
4 

»izlpj;p,&l"w«i-i8"J)a+r?,)n 

3=0 
b 4 

i ^ - J ] ^ - j b ( l - /3"J)(-2 cos 27rj/5)n 

j=i 
. 2 

i^T £ tfTJb
 + ^ b -(,-iW _ pJO**-*)) x 

j=l X (-2 c o s 277j/5)n 

b 2 
2("5

1) ] T ( e o s 2 ^ b / 5 - cos 2TH (b + l)/5) X 
j=l X (-2 cos 2nj/5)n . 
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Now 

I 
-2 cos 2TT/5 = -2 cos 87r/5 = ^(1 - 52 ) , 

and 

Hence 

-2 cos 4TT/5 = -2 cos Qn/5 = \{1 + 52) 

Fn(0) = J ( 2 + | ( l - 52)(4(1 - 5*))n + ~(2+§(l + 5*))(i (1+ 5*))n 

= 5-*(( | ( l + 5*))n+1 - < j<l -5*) ) n 4 1 ) 

= F , the (n+1) Fibonacci number [4; p. 148] . 

Fn(l) = - | (-1(1 - 5*) + | ( 1 +' 5*))(-J(l - 5^))n 

- 1 4 ( 1 + 5*)-+j(l - 5*))(£(1 + 5*))n 

= 5 ^ ( ( | ( l + 5^))n - ( { ( l - 5 * ) ) n ) 

= F , the n Fibonacci number [4; p. 148] . 

Thus we have (1.1) and (1.2). 
We now turn our attention to proving (1.3) and (1.4) utilizing (1.1) and (1.2). 

Our proof rests on the following elementary congruence 

where p is any prime. 
If p = 5m ± 2 9 then for any integer a, 

[Up - to)] f 0,p ; 

therefore by (2.1) p divides every term of the sum in (1.1) with n = p + 1, 
and (1.3) is established in this case. Utilizing (1.2) with n = p = 5m ± 2, 
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we may verify that (1.4) holds in this case* If 

n - 1 = p = 5m ± 1 , 

then by means of (1.1) we verify that 

F = -1 (modp), 

and by means of (1.2) with 

n = p = 5m ± 1 

we verify that F = 1 (mod p). Thus we have completely established (1.4) 
with p f 5, and 

F = F , - F = - 1 + 1 = 0 (mod p) p-i p+i p F 

establishes completely (1.3) with p ^ 5. Finally since F 5 = 5 we have (1.3) 
and (1.4) proved in this exceptional case as welL 

3. EINSTEIN FORMULAE FOR F . 
n 

This section is devoted to proving (1.5), (1.6), and (1.7). We shall uti-
lize the following congruence 

(3.1) p l a ) " - ( - W ^ " 1 (modp) , 0 < a < p 

In the following sums, we note that the only terms to be considered are those 
for which initially the lower entry of the binomial coefficient is in the open 
interval (0,p). We shall thus not trouble to indicate the range of summation 
until the final line in each case. 

From (1.1) with n - 1 = p = 2m + 1, 

(3.2) F2m+2 = f^(-ifL2m +\ _fca) = x j L ^ J -( p 
m-2-5aJ 
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Hence 

V i / P 5 Z X^trW + m-Sa-i] ( m o d P ) 

B 2 ( -Ufe - 1 ) ^ ' 7 _ W (modp). 
m=i,5(modio) 

|m| <p 

From (1.2) with n = p = 2m +. 1, 

(3.3) F 2m+i 2^^1} l ± ( 2 m - t a ) ) 2 ^ j U ~ ^ ) " ( m - 3 - t o j j 

Therefore if p is a prime ==±1 (mod 5), we have by (3.2) and (3.3) 

(3.4) F = F - F = V / P \ . / P \ l p-i p+l p Z~J j l m - 3 - f e l lni-2-5afl 

Hence from (3.4) with p = ±1 (mod 5) , 

m-k* / -vm+Qf F /„ = V JtiCZL , (-D p-i p Z»-/ ) m - 3 - 5a m - < 2 - 5a (mod p) 

a , .,xa 
= ( ) LJ p-7-lto + p-5-l ta (modP) 

IV-KP-D y ^ (H1) (w 
- 2(-1)2 F Z^ N

 P- ' ^ ' ^ p> 
ms5,7(modio) 

|m|<p 
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Finally from (3.3) with p = 2m + 1 

FP 

m=i?7(modio) 
|m|<p 

Thus we have established (1*5), (1*6), and (1.7)* 
Let us now consider a specific example. By (1*1) 

Fi4 = ( ^ ) - ( ^ - ^ g ) + ^ i ) + ( n ) = 1716-715-715+13 + 78 = 377 

By (1.3), 

* 1 4 / ± o - * | 1 3 _ n ^ 13 . 5 " 13 - 1 " 13 + 5 13 + 9 | . 
= 1 + 1 /4 - 1/6 - 1/9 + 1/11 = 1 + 1 0 - 1 1 - 3 + 6 = 3 (mod 13), 

and indeed, 

F14 /13 = 29 = 3 (mod 13) * 

4, GENERALIZATIONS 

In this section we discuss the natural generalization of (1*1) and (1*2)* 
We define 

(4.1) F. (b) = kn(b) - y \ - i f / n \ . 
a^oo ^ [ ( n » " b - ( 2 k + l )a ) ] j 
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Exactly as in Section 29 only now setting 

P = exp (27rt/2k + 1) , 

we obtain 

k 
vb 

3=1 

(4.2) F k (b) = | ~ ^ j ^ (cos (277bj/2k + 1) - cos (27r(b + 1)j/2k + 1)) X 

X (-2 cos (277j/2k + l ) ) n , 

where k > 0, n > 0. 
From (4.2) we may easily ascertain the linear recurrence in n satisfied 

by the F, (b). Consider the sequence of polynomials defined by 
K^n 

f0(x) = 1, fi(x) = x - 1, fk(x) = xfk-i(x) - fk_2(x) . 

Then the roots of f, (x) are 

-2 cos 277j/2k + 1, 1 < j < k 

[ 3; p. 264 ]. Hence from the elementary theory of finite difference (with 

E \ = Vr >' 

we have 

(4.3) fk(E)Fk n(b) = 0 . 

The n-dimensional Fibonacci sequence studied by Raney [5] has as its auxil-
iary polynomial D (x) [5; p. 347] where in our notation 

f„(x) = ( - l ) ^ l ( n - l ) x n D „ ( x - 1 ) . 
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Raney remarks that many of the elementary formulae related to the Fibonacci 
numbers maybe generalized to his sequences, and the same is true of F. (b)« 

j£,n 

Most of these results may be derived from (4.2); but the proofs are clumsy. It 
would be nice to relate these sequences to some set of matrices as Raney has 
done for his sequences;perhaps then easy proofs could be given for analogs of 
Theorems 7 and 8 of Raney1 s paper* 

5. FACTORIZATION OF LARGE NUMBERS 

As is well known the Fibonacci and Lucas numbers are closely related 
to Lucas1 s famous test for the primality of theMersenne numbers 2P - 1. We 
shall derive some similar necessary conditions for the primality of (kp - 1)/ 
k - 1 utilizing some analogs of the Lucas sequence which are related to the 
generalized Fibonacci sequences discussed in Section 48 For example, when 
k = 2, we shall prove the necessity part of Lucas's theorem on the primality 
of 2 q - 1 (with q = 3 (mod 4)) [4; p. 224], When k = 2 and q = 1 (mod 4), 
we shall prove the following resu l t 

Theorem 30 Let r be defined by 
— n J 

r* = 3 ' V i = rn " % • 

If q = 1 (mod 4) and M = 2q - 1 are both primes, then r = 3 (mod M )• 
~1 M. HI 

When k = 3 and q = 1 (mod 6), we have the following theorem,, 
Theorem 4, Let s0 = 1, to = -2, and in general 

s ± = s3 - 3s t - 3; t . = t ? ' + 3 s t + 3 . n+i n n n n+i n n n 

If q = 1 (mod 6) and M = y ( 3 q - 1) are both primes, then 

s = 4 (mod M ) , 

t = -11 (modM ) . 
q q 

Our first object in this section will be the derivation of a general theorem 
which will imply Theorems 3 and 48 
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Let A.(k) dene 
integers* We define 

Let A.(k) denote the set of all ordered j-tuples of the first k positive 

Li d) = V (~2 c o s 27mi / 2 k + D11— (-2 c o s 2OTI- / 2 k + D n 

K,n £—j 3 

where the summation is over all 

toi, • • • • n j ) E A.(k) 

We shall also need the polynomials 

m 

',«-Zfe)°"!i«--!^ 
J=0 

these polynomials have the property that 

cos 2mjS = w (cos /3) . 

Lemma 1, Let p be an odd prime, p = n (mod 2k + 1), 0 < n < 2k. 
Then there exists a rational integer a{k;y,n)9 which depends only on k, j , and 
n and not on the magnitude of p such that 

Lk,(k-i)p+i(j ) s a^r,n) (modp). 
Proof, Define nf to be n if n is even and n + 2k + 1 if n is odd; 

n* = |nf, Then in the ring of integers of Q(-2 cos 27t/2k + 1) 

^ / \ 
(-2 cos 27fj/2k + 1)P = (-2)p2~p+1 Y ^ I +

p
 + J cos 2<7r(2i + l)j/2k + 1 

i=o 

= -2 cos 2?ypj/2k + 1 (mod (p) ) 
s -2 cos 27mj/2k + 1 (mod (p) ) 

5 -2 cos 27m!j/2k + 1 (mod (p) ) , 
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where (p) is the principal ideal generated by p in the ring of integers of 
Q(-2 cos 2?r/2k + 1) and this first equality is from [1; p. 83], Consequently 

( 5 # 1 ) Lk,(k-i)p+i(:i) s ^ (?"2 COS 2 7 m f n i /2k + l)k""1(-2 cos 27mi/2k + 1) • • • 

• • • (-2 cos 2mi?n. /2k + l)k""1(-2 cos 2mi. /2k + 1) 
J 3 (mod (p) ) 

(5.2) = Y ^ (-2wn^ (cos 23111! /2k + l))k""1(-2 cos 2imi/2k + 1)« • • 

• • • (~2w (cos 2im. /2k + l))k"1(-2 cos 2im. /2k + 1) 
n* J J 

(mod (p))* 
We now define a(k;j;n) to be the expression appearing on the right side of 
(5.1) (or, what is the same thing, (5.2)). Now (5.2) shows that a(k;y,n) is a 
symmetric polynomial in cos 2nm/2k + 1, 1 < m < k; since these are the 
roots of f,(-2x) (c. f« Section 4), we see by the symmetric function theorem 
that a(k;j;n) is a rational number. On the 6ther hand, (5.1) shows that 
a(lq j;n) is an integer of the field Q(-2 cos 2w/2k + 1); since the rational inte-
gers are integrally closed in Q(-2 cos 2n/2k + 1), we see that a(k;j;n) must 
be a rational integer. Hence 

Lk,(k-i)p+i(J) s aik; j ; n ) ( m o d ( p ) * 
holds in the ring of integers of Q(-2 cos 2?r/2k + 1). Since this congruence 
involves only, rational integers, it must also hold in Z, the ring of rational 
integers. Thus Lemma 1 is proved. 

Corollary 1. If in Lemma 1, n = 1 or 2k, then 

Lk,(k-l)p+i<J> s Lk,k<J> , C m o d P ) • 

Proof. In (5.1) with n? either 2k or 2k + 2, we have 

Qf(k;j;n) = ] T (-2 cos 2imi /2k + l ) k • • • (-2 cos 2m. /2k + l ) k = Lfe (j). 
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The desired results now follow directly from Lemma 1. 
We now proceed to our main result. 
Theorem 1. Let k > 2 be an integer. Let 

°k, j = V j ^ ' • ' • ' xn> 

be the j elementary symmetric function of x ^ ' - j X ^ . Let g.(yi9 •• • »y^) 
be the polynomial with integral coefficients such that 

<rk|jfcf. •••,4) = 8,H,1.-".°k,k)-

Let 

vk ,o ( j ) = L k , i ® 

and 

vk,n+i<J> = g j ( \ n ( 1 ) ' ^ ' v k , n ( k ) ) ' 

If k* = g. c.d (k - 1, 2k + 1), define m = k*(2k + 1), and let </>(m) = m% 
$(mf) = mff where <fx is Euler?s totient function. 

If q > m and M = (K* - l ) /k - 1 are both primes, then there exist 
integers /3(k;j;i), 1 < i < mff depending only on k and j such that 

^ q ( J ) = £(k;j;n) (modMq) , 

if q = a (mod m"), where aj, ••• ,a .A. ffx constitute a reduced residue class 
system (mod mnK 

Proof. From the definition of L, (j), one easily verifies by induction 

*^at Lfckn® = v k ^ ° 0 n e a * s o m a y v e r i f y ^ a t ^ e r e s i (*ue oi M (mod 2k 
+ 1), say r, is completely determined by the residue of q (mod mfl)« There-
fore if both q > m and M are primes, 

vk,q( j ) = \M® = Lk,(k-i)M + i ^ s a{k; i' r ) ^ ^ M q } • 
T. 
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If we define 

0(k; j ; n) = a(k; j ; r) 

where q = a (mod mff)? then the theorem follows* 
For small values of k we may prove more explicit theorems. 
Theorem 2. (Lucas) Let r be defined by 

ft = 3, r ^ = r2 - 2 . 

If q s 3 (mod 4) and M = 2P - 1 are both primes, then r = 0 (mod M ). 
Proof. In Theorem 1, with k = 2S we find that for n > 0 

v2,n(2) = (-2 cos 2ir/5)2ll(-2 cos 47r/5)2n = (-l)2*1 = 1. 

-Also 

xf + xf = o-2
?i - 2CJ2J2 

Hence 

gi(yi»y2> = y! - 2y2 • 

Thus we see that r = v2jn(1)* 
As in Lemma 1, we have (mod M ) 

r = L M (1) = (-2 cos 4ir/5)(-2 cos 2ir/5) + (-2 cos 8ir/5)(-2cos4ir/5) 
H q 

= 2 (-2 cos 4TT/5)(-2 COS 2TT/5) = - 2 . 

Therefore 

r 2 = r + 2 ^ - 2 + 2 = 0 ( m o d M J . q-i q q ' 

Thus since M was assumed prime, 
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r =F 0 (mod M ) . 

This concludes the proof of Theorem 2. 
Proof of Theorem 3, We proceed exactly as in Theorem 2, except that 

now by Corollary 1 

r q 5 L2,Mq+i<D s H a d ) = 3. 

Proof of Theorem 4. In Theorem 1, with k = 3, we find that for n > 0 

•3,n<3) = (-2 cos 2ir/7)^(-2 cos 4ir/7)^(-2 cos §TT/1)^ = (-l)3 n = - 1 . 

Now 

xf + x | + xl = cr j f l - BaZAaZiZ + 3cr3,3 , 

and thus 

gi(yi.y2»y3) = A - 3yiy2 + 3y3 . 

Also 

X1X2 + xlxf + xfxf = crls2 - 3OJMOS,2<J&,3 + M U » 

and thus 

g2(yi»y2»ys) = yl - 3yiy2y3 + 3yf . 

Thus we see that 

s n = v3fn(l) 

and 

tn = v3,n(2) . 
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Utilizing Corollary 19 we have (mod M ) 

s q = L392Mq+i(l) = L3,s(l) = 4 ; 

tq = L392Mq+i(2) s L3j3(2) = -11 . 

This concludes Theorem 4* 
Theorem 5„ Under the conditions of Theorem 4, with the single change 

that q = 5 (mod 6)9 if both q and M are primes, then 

s s 4 (modM ). 
VI VI 

Proof, Since q = 5 (mod 6), M = 2 (mod 7). Hence by Lemma 1 we 
have (mod M ) 

s 
q 

L3s2Mq+lW = ^ ( " 2 C 0 S 4^ / 7 ) 2 (""2 C 0 S 2 t f l / 7 ) 

3 
= 4 ^ ( 2 cos2 2wj/7 - l)2(-2 cos 2wj/7) 

3 
= y ^ ( ( - 2 cos 2trj/7)2 - 4(-2 cos 2nj/7)8 

j=i +4(-2COS2TTJ/7)) 

= L3?5(l) - 4L3j3(l) + 4L8>i(l) 
= 16 - 16 + 4 = 4 . 

We now consider some numerical examples of the theorems we have 
proved. F i r s t take q = 5, M5 = 121 in Theorem 5. In this case 

n s (mod 121) tn (mod 121) 
0 1 -2 
1 4 -11 
2 72 -8 
3 -6 -59 
4 50 -66 
5 -18 
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Consequently Theorem 5 proves that 121 = |(35 - 1) is not a prime, and in-
deed 121 = l l 2 . 

Next we consider Theorem 4, with q = 7, M7 = 1093. In this case 

n s (mod 1093) t (mod 1093) 
0 1 -2 
1 4 -11 
2 193 -367 
3 -249 -386 
4 -510 -96 
5 -569 -78 
6 -127 -387 
7 4 -11 

Thus we see that 1093 = | ( 3 7 - 1) satisfies the necessity conditions of Theo-
rem 4, and indeed it turns out that 1093 is a prime. 

There appears to be a great number of possibilities for further work on 
the subjects treated in this section. One would hope that Theorem 1 could be 
strengthened to include sufficiency conditions for the primality of (kp - 1)/ 
(k - 1). Possibly the arithmetic of the fields Q(-2 cos (2?r/2k + 1)) would 
yield such results. 

6. RELATED SEQUENCES 

It is possible to exhibit a large number of sums similar to those given in 
(1.1), (1.2), or (4.1). To indicate the possibilities we list three such. 

00 

™ <W» =Z([l(n-b-Ii2k+l>«)] 
Qf=-0tf 

00 . 

(6'2) V = E("lf([|fe-b-(2k+l)2«)] 
a=-oo 
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00 

<6'3) ***** = Jj~»a ([|(n - b - (2k + l)(2n + 1))]) • 

Following the method of Section 2, we find 

k 
( 6 ° 4 ) S ^ n ^ = W+l S ( C 0 S 2 ? r b 3^ k + l ) + cos2irfo +1)j/2k+ 1) X 

j=l X (2 cos 27rj/2k + l ) n ; 

2k 
(6.5)' J k (b) = 2kTI J](costrb(4j + 2k + l)/(4k+2)+coSfr(b + l )X 

3=1 

X (4j + 2k + l) /4k + 2) (-2 sin 2wj/2k + l ) n ; 

k 2 k 

(6.6) K .̂ (b) = f ^ r j ^ (sintrb(4j + 2k + l)/(4k+2) + sintr(b + 1)X 

J=i 

X (4j + 2k + l)/4k + 2) (-2 sin 27rj/2k + l ) n . 

As in Section 4 (c. f. (4.3))9 we may give linear recurrence formulae for the 
above expressions as sequences in n. 

(6.7) (-l)k(E - 2)fk(~E)Gk9n(b) = 0 ; 

(6.8) E~*((E + 2)f^(E) - 2)Jkjn(b) = 0 ; 

(6.9) E_1((E + 2)f|(E) - 2)Kk?n(b) = 0 . 

Equations (6.7) through (6.9) are easily derived from Eqs. (6.4) through (6.6) 
utilizing the fact that the roots of (-l)k(x - 2)ffe(-x) are 2 cos 2irj/(2k+l), 
0 < j < k [3; p. 264] and the fact that the roots of x~*((x + 2)f^(x) - 2) are 
-2 sin 27rj/2k + 1, 1 < j < 2k [3; pp. 267-268}. 



, q n SOME FORMULAE FOR THE FIBONACCI SEQUENCE . - Q„Q 
WITH GENERALIZATIONS A p r * ±V * 

As is clear from their definitions, all these generalized sequences sat-
isfy congruences similar to (1.3) and (1.4). For example if p is an odd prime, 
p £ 2k + 1, then 

(6.10) K. (0) = 0 (mod p) . 
K,p 

If p is an odd prime, p ^ 2k + 1, p ^ ±1 (mod 4k + 2), then 

(6.11) J, (0) = 0 (mod p) . 
K,p 

If p = (2k + l)m + a is a prime with 0 < a ^ k, m ^ 2, then 

<6 '1 2 ) G k 5 p + c ( 0 ) s Fk,P+c<0) 5 ° ( m o d ?> • 

where 0 ^ c — a - 2. 

If p = (2k + l)m + a is a prime with k < a ^ 2k, m ^ 1, then 

<6 '1 3 ) Gk,p+c( 0 ) ^ F k ,P + c ( 0 ) s O&nodp) . 

where 0 ^ c ^ 2k - 2 - a. Equations (6.10) through (6.14) are proved exactly 
the way (1.3) and (1.4) were. 
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OVERLAYS OF PASCAL'S TRIANGLE 
MONTE B. BOISEN, JR. 

University of Nebraska, Lincoln, Nebraska 

The purpose of this paper is to demonstrate the versatility of the method 
presented byV, E„ Hoggatts Jr» It is hoped that the examples presented in this 
paper will demonstrate to the reader some of the research possibilities opened 
by this method* (See [1]«) 

THE METHOD 

The basis of the method lies in the concept of gene rating functions for the 
columns of a left-adjusted Pascal1 s triangle. From Figure 1, we see that the 
generating function for the k column is 

(1 - x)-k+i 

Extensive use will be made of these generating functions and certain variations 
of them* 
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(1 - x)5 

S O © 

. . . 

Fig6 1 Left--Adjusted P a s c a l s Triangle 
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ARRAY OVERLAYS 

Consider the two arrays A and B with integer entries: 

a44 
a33 a34 

a22 a23 a24 
a i i a i 2 a i 3 a14 

b l i 

*>12 b22 
b13 b23 b33 

^14 b24 b34 b44 

An overlay of A on B means that a sequence C = {c1? 03,e • •} is produced 
such that: 

c i = aii " bli 

c2 = aii " bi2 + a i 2 " b22 

c3 = a1A • b 1 3 + a12 • b23 + a13 • b3 3 + a22 • b2 2 

,y i-k 
c i Z-* 2l# ak+i MbM i-k 

k=o M=k+i 

where [s] as usual represents the greatest integer in s. 
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FOUR EXAMPLES 

Example I. Let us see what type of sequence we can expect if A and B are 
both left-adjusted P a s c a l s triangles (L e . , A is a left-adjusted P a s c a l s t r i -
angle placed on its side). The first few terms of such an overlay are 

1, 2, 5, 12, 29, ••• 

which suggests that there is a recursive relationship that is described by the 
rule 

U _, = 2U ^ + U . n+2 n+i n 

The verification that this recursion indeed holds for the whole sequence 
can be accomplished by noting that the coefficients of the expansion of (1 + x) 
represent the n row of P a s c a l s triangle and that in the overlay the n row 
of Pascal1 s triangle lies on the n column. Hence we arrive at the conclusion 
that the generating function for the sequence is 

1 . /i , \ X , /i , \2 ^ . , /i , \*l-i X + (i + x ) . — - — + d + x)2 x + . . . + u + x r 1 — — + ••• 1 ' X (1 - x)2 (1 - x)3 (1 - x)n 

1 1 1 
1 - x I- . x M l - 2 x - x 2 

\ 1 - X / 

The reader can easily verify that 

2x 

generates a sequence where the desired recursive relation holds. This example 
shows that, in spite of the seemingly formidable configuration of the elements 
of the sequence C, with the column generators one is able to cope with the si t-
uation easily. 
Example II: This example will concern itself with determining which arrays, 
when overlayed, will yield the Fibonacci sequence* In order to effect this, we 
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will begin with the generating function for the Fibonacci sequence which is 

1 1 + x / 1 i 
x2 i 1 __ x 2 ( l + x)s i 

1 + x ^ x 2 ( l + x)2
 M M x^^hl + x)n

 M 

1 - x 2 ( 1 - x 2 ) 2 ( l - x 2 ) n 

Remembering Example I, the presence of (1 + x) " in the n term 
suggests that the A array is a left-adjusted Pascal 's triangle. Then the B 
array must have column generators of 

1 + x x2(l + x) x4(l + x) o . m x ' ^ C L + x ) 
1 - x2 * ( 1 - x 2 ) 2 ' ( 1 - x 2 ) 3 ' ' ( l - x 2 ) n 

If one notes that x2 has replaced the x in Figure 1 and that the 1 + x nfills 
in" the void left by that replacement, then the array with these column genera-
tors is easily seen to be 

1 
1 
1 1 
1 1 
1 2 1 
1 2 1 
1 3 3 1 
1 3 3 1 

which is a doubled left-adjusted Pascal 's triangle* (Note that, for example, 
the spot a22 is not listed. Consider those spots to contain zero.) 
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Therefore we conclude that the Fibonacci sequence can be generated by 
overlaying the left-adjusted Pascal 's triangle on the doubled left-adjusted 
Pascal 's triangle* 
Example III; In this example the results from Example IE will be carried one 
more step toward a generalization. Instead of considering the Fibonacci s e -
quences a Fibonacci-like sequence will be considered., 

Ui = 1, U2 = 1, U3 = 1, U ^ = U j . + U ^ + U , 
1 L * 6 n + g n + 2 n + 1 n 

The generating function for this sequence is easily found, see [2]r to be 

1 - X2
 = 1 { x(l+X2) ] X 2 ( l + X 2 ) 2 , , X ^ l H h x 2 ) 1 1 ^ 

1 - x - x2 - x3 1-x2 (1-x2)2 ( l - x 2 ) n 

The presence of (1+x 2 ) " in the numerator of the n term suggests that 
the A array is 

1 98» 
0 . . . 

1 3 ••• 
0 0 ••• 

1 2 3 ••• 
0 0 0 ••• 

1 1 1 1 *** 

which is simply a left-adjusted Pascal 's triangle with a column of zeros placed 
in between each of its columns* Note that this array is not in the exact form of 
the array A but the analogous method of overlaying this array is obvious. We 
are now left with the generating functions 

i x x 2 . . . 
±9 9 9 J 

i - x 2 ( i - ^ r 
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which yield the array 

1 
0 1 
0 0 1 
0 1 0 1 
0 0 2 0 1 
0 1 0 3 0 1 
0 0 3 0 4 0 1 

Therefore, using the method of column generators9 we have found the 
proper arrays which overlay to form the given sequence* 
Example IV; Consider the generalized P a s c a l s triangle whose k row is 
determined by the coefficients of the expansion of 

r—i k 
(1 + x + • • • + x ) ; k = 0 ,1 , • • • and r > 2. 

Let this triangle b e the A-array and let 

1 
1 
1 1 
1 2 
1 3 1 
1 4 3 * . 

be the B-array. Note that the B-array is formed by "pushing" the columns 
th of Pascal 's triangle down so that the first entry of the k column appears in 

the 2k row; k = 0 ,1 , 2,» • • * Hence by our prior experience we know that 
the generator for the k column of the B-array is 
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2k 

/ i ' \ k + 1 (1 - x) 

By the method used In the previous examples, the generator for the 
sequence determined by overlaying A on B is 

+ (1 + x + • • • + x r 1) I — ~ j+ (l + . . . +.X1 
T r T i J \ ( l - x ) 2 

.1 2 / x4 \ 

\ ( l - x ) 8 / 

i 2 r + 1 

1 - X - X4 - « ° • - X 

It is easy to verify that 

i 2 r + 1 

1 - x - x4 - ° ° ° - x 

= iii + U2X + U3X2 + 

where 

r+1 r 
uj = 1, u2 = 1, u3 = 25 •*•, u r + 1 = 2 , u r + 2 = 2 

r+1 
u = / u . n Z ^ n - i 

i=l 

for n > r + 2* 
It is interesting to note that this sequence of u f s is precisely the se -

quence of the rising diagonal sums in the generalized Pascal 's triangle whose 
th T-¥Y 

k row is determined by the coefficients of the expansion of (1 + x + «°« + x •) ; 
k = 0,1,2, • • • . See[ 2] for the proof of this fact and p ] for a further discus-
sion of related subjects,, 

CONCLUSION 

The approach used in the preceding examples to find the sequence deter-
mined by overlaying an array A on an array B can be described as follows, 
Let Pk(x) = a l k + a 2 k x + . • • + a ^ " 1 , 
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and let GjJx) be the generating function for the k column of the B array; 
k = 0, 1,2, «•« . Then 

E PIWGIW 

i=0 

is the generating function that determines the desired sequence* 
Almost an unlimited number of problems of the type worked in this paper 

are now open to scrutiny. At the end of this paper there are two such problems 
stated. The first one is fairly straight forward and the ultimate answer is 
supplied. The second one seems to be a little tougher and might make a nice 
project for some ambitious student. 
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PROBLEMS 

Problem I; Let an unending row of urns be given, the first one labeled 0, the 
second labeled 1 and so forth. In the urn labeled ftkTf let there be k distin-
guishable balls; k = 0 ,1 , 2, * • ° • Suppose a man does a series of events with 
the n event, n = 0 ,1 , 2, • • • , described as follows: 

a) He reaches into the urn labeled Tln?! n + 1 times. The first time he 
takes out 0 balls, the second time 1 ball, the third 2 balls and so 
forth until the n + 1 time he removes all n balls each time replacing 
the balls he has previously removed. 

b) In general he reaches into the urn marked "n - j " n - 2j times taking 
out j , j + 1, • • • ,n - j balls respectively (againby replacement), j ^ 
0. 

c) This event ends when he has moved down the line of urns to the one 
labeled n - s such that n - s < s for the first time. 
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Since the balls are distinct, associated with each extraction of balls (Le«9 

each time the man reaches into an urn) there is a number which represents the 
number of ways the extraction could have occurred* Let S, be the sum of all 

th these numbers in the k event* The problem is to find a generating function 
that determines \S. / as its sequence* 

i=o 

Ans. 
( 1 - 3x + 2x2 1 - 2x + x3 

Problem IL Find two non-trivial arrays such that their overlay determines the 
sequence: 

U,A = XL = • * * = U - = 1 and XL = XL - + • • • + XL 0 1 n-1 k k-1 k-n 

for all k s> n . See [4]. 
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ON THE DENSITY OF THE k-FREE INTEGERS 
R.L.DUNCAN 

Lock Haven State College, Lock Haven, Pa. and 
Pennsylvania State University, University Park, Pa. 

Let T, denote the set of k-free integers and let T, (n) be the number 
of such numbers not exceeding n. Then the Schnirelmann and asymptotic den-
sities of T, are defined by 

T (n) 
(1) d(Tk) = inf - ~ -

and 

T.(n) 
<2> 6<V -n*S- -S - "TO 

respectively, where £(s) is the Riemann zeta function. Our purpose is to 
summarize and extend the known results concerning the relationship between 
d(Tk) and 6(Tk)9 

It has been shown by Rogers [1] that 

(3) d(T2) = : | | < - - ! = 6(T2) 

and it has been shown subsequently [2] that 

(4) 6(Tk) < d(Tk + J) ^ 6(Tk+1) . 

The fact that d(T, ) ^^(T,) is an immediate consequence of (1) and (2), More 
recently, it has been shown by Stark [3] that 

(5) d(Tk) < 6(Tk) 

Combining (4) and (5), we have 

140 
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(6) d(Tk) < 6(Tk) < cL(Tk+i) , 

io e. , the Schnirelmann and asymptotic densities of the k-free integers 
interlace. 

The proofs of (3) and (4) and the second part of (2) are elementary while 
the proof of (5) is made to depend on what seems to be a much deeper resu l t 
Thus it would be very desirable to have a correspondingly simple proof of (5). 

It is also easily shown [ 2] that 

d(Tk) > 1 - £ p - k 

from which it follows immediately that 

(7) d(Tk) > 2 - C(k) . 

We conclude this survey by showing that d(T, ) is much closer to 6(Tk ) 
o 6(Tk). 
To do this we define 

than to 6(Tk). 

(8) AW - 6 ( T k + i > : d y > 
( 8 ) A ( k ) - 6 ( T k + i ) - 6 ( T k ) 

since the numerator and denominator in (8) are both positive, the follow-
ing theorem yields the desired result, 

Theorem. A(k) < 2" k . 
Proof. By (2), (7) and (8) we have 

A * -n < "tfe " 2 + m - (c(k) - i ) 2 

A ( k _ i) < _ _ _ _ _ _ w r ~m' ak - i) , x" w^T) 

But 
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T(W~ "*" X ^ n > ^9 {(k - 1) _ 

n~i 

where 0(n) is Eulerfs function. Hence 

A(k- 1) < {(k) (f(k) - 1 ) 0 

Since 5(3) < 1,203, the desired result follows from the trivial estimate 

00 

«k) < i + 4 + -^+ f % £ i + 4 
2K 3 K V x K 2K 

k +
 3

2k 

It should be observed that this result also furnishes an alternative proof 
of the second inequality in (6). 
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SUMMATION OF INFINITE FIBONACCI SERIES 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

In a previous papers a well-known technique for summing finite or infin-
ite series was employed to arrive at a number of summations of Fibonacci and 
Lucas infinite series in closed form [1]. This work is rewarding but in real-
ity covers only a limited portion of the possible infinite series that can be con-
structed. Starting in general with an arbitrary Fibonacci or Lucas infinite 
ser ies , the probability that it has a closed sum is relatively small. One need 
only think of the sum of the reciprocals of the Fibonacci numbers themselves 
which to date has not been determined in a precise manner. 

In the face of this situations what remains to be done? The present ar t i -
cle attacks this problem by attempting to accomplish two things.9 (1) Determin-
ing the relations among cognate formulas so that formulas can be grouped into 
families in which all the members of one family are expressible in terms of 
one member of the family and other known quantities; (2) Replacing slowly con-
verging sums by those that converge more rapidly. 

The combination of these two efforts has this effect Given families Alf 

A29 A35e ee » whose members are expressible in terms of summations a * ^ ? 
a35«*e , respectively. Then if these quantities a. can be related to other 
quantities a! which converge more rapidly, the problem of finding the sum-
mations in the various families is reduced once and for all to making precise 
determinations of a very few summations a! which can be found in a reason-
ably small number of steps* 

Such is the program* The purpose of the article is to give an illustrative 
rather than an exhaustive treatment. The investigation? moreover, will be 
limited to infinite series of the type: 

00 

Y^ 1 
/ j F F F F * e * F 
~¥ n n+kj n+k2 n+k3 n+kr 
n~~ i. • &• 

or of the form9 

143 
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v l l - l 

n=i 
F F F • • • F 

n n+kj n+k2 n+kr 

with all the Fibonacci numbers in the denominator different and the k. positive* 

NOTATION AND LANGUAGE 

To compress notation, the expression (F ) will mean 

F F 1 F 0 ••e F ,- . n n-1 n-2 n-r+1 

If there are k Fibonacci numbers in a denominator, we shall speak of this as 
a "summation of the k degree.TT 

CONVERGENCE OF THE SUM OF FIBONACCI RECIPROCALS 

We shall begin by establishing the fact that the sum of the reciprocals of 
the Fibonacci numbers: 

0 0 

n=l 

converges. This in turn will be sufficient in itself to enable us to conclude to 
the convergence of all sums of our two types since their terms are less than or 
equal to those of this series. 

Using the roots of the equation x2 - x - 1 = 0, namely, 

'1 + *s/5 , 1 - *s/5 
r = _ _ . a n d s = —.——— , 

we have 

n n 
(l) F n = £ - ^ S -

n N/5 
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Now s = - r . Hence when n is odd, 

l / F < V s / r 1 1 

and when n is even, it can be shown that 

l / F < V 5 / r n " 1 . 

This follows since the relation for n even, rn - r~n rn~ leads to rn -
rn~ > r~n, or finally r - 1 > r~ n which is certainly true for n _>_ 2? 
for n = l , r - 1 = r" . 

Thus in either case 

l / F < ^ / s / r 1 , for n > 2 

Hence 

(2) 
CM 00 

£vFn<£V^-T 
n=l n=l 

<s/5 
•T7F 

Since the summation of positive terms has an upper bound, it follows that it 
must converge. 

RELATIONS AMONG SECOND-DEGREE SERIES 

Essentially, there is only one first degree series of each type in the 
sense defined in this treatment, so that the first opportunity to relate series 
comes with the second degree. Here we have a special situation inasmuch as 
the alternating series can all be evaluated, the final result being: 

(3) 
00 

n=l 

(-I)" n-1 
F F 

nn+k 
F, kr" 

1 -EVA 
r being defined as before. The proof is as follows. 
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00 

i 2 - ^ L F n - l / F n ~ F n + k - l / F n + k J 
n=l 

lira 
K n 

j=l m=n-k+ 
n + k - l / m+k 

EwF3-kr_1 
j=i 

But the initially given summation also equals 

00 

n=l 

F F - F F n-1 n+k n n+k-1 
F F 

n n+k 

^-(-i)V 

n=l 
F F 

n n+k 

Equating the two values and solving gives relation (3). 
The non-alternating series of the second degree has closed formulas for 

the summation 

n=l 
F F n n+k 

when k is even. For the case k = 2, 

00 

n=l 
F n Fn+1 Fn+1 Fn+2 
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But this l ikewise equals 

2 ^ Fn Fn+2 n=l 

so that 

00 

(4) > i r ^ — = 1 
- n n+2 n=l 

F o r k = 4 5 the der ivat ion is a s follows. 

no oo 

Z-/ F
n
 F

n + 2 L-d Fn Fn+4 n=l n= l 

- ^ - I F , , - S F , . ^ F 
" " n E* n + 4 - 6 F n+2 = V^ 

n = 1 " n x n + 2 x n + 4 ^—^ F n F n + 2 F n + 4 

00 

" 2 ^ F - T I - F n+2 F n + 4 n=l 

00 

1 ' 2 1 * 3 / > F F 
^ - T n i • • • - x . n + 2 n= l 

Solving for the des i r ed summat ion , 

00 00 , 

5y_i_ = 2 V - J _ 
^ V F n F n + 4 Z - ' F n F n + 2 
n= l n= l 

5/6 
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so that 

ex? 

(5) / — ? = 2/3 - 5/18 = 7/18 . 
*-4 Fn Fn+4 n=l 

The process can be contained yielding: 

(6) Y ^ F / = 143/960 
^mm 4 n n+6 n=l 

and an endless series of formulas with a closed value. 
For k odd 

00 GO 00 

Zjv^T- 2Xf¥7^ = Xf Fn+1 Fn+3 n=l n==l n=l 
00 

• A + Z w 2
 = -1/2+1-1/2 

Therefore 

0 0 oo 

E l = I P 1_ 

F F ^ 2 / J F F 
- n n+3 *—7 n n 

(7) 2^^^ = ^ " - - 1 / 4 
A—7 n n+3 *—7 n n+1 
n=l n=l 

It is possible to proceed step-by-step to other formulas in the series . 
T h u s ^ 00 00 °° 

2 1 / J F F ^ ~ 52-jF F ±K 7 ^ F 'F ,,-*—T n n+3 iS—rf n n+5 ^—7 n+3 n+5 n=l n=l n=l 
CO 

= . _ 2 L _ _ i L . + V I 
1 - 2 1 - 3 2 - 5 ^ ^ F F - n n+2 n=l 
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Hence 

00 00 

/ J F F , . 5 / J F F _,-^ n n + 5 ^ n n + i 
1/10 + 1/5(1/2 + 1/3 + 1/10 - 1) 

or 

X 00 

(8) 2 ^b;= E "^ - i7/i5° • 
^ 1 n n + 5 ^ n n + 1 

In summary, for second-degree summations of the given types, apart from the 
results in closed form, the summations 

00 

i; F F - n n+k n=l 

with k odd are all expressible in the form 

00 

•+ b£»^r n=l 

where a and b are rational numbers, 

AUXILIARY TABLE 

In the work with these summations, the formula that is being employed 
to arrive at Fibonacci numbers which are to be eliminated is: 

<9> Fk W r " Fk+r Fk+n = ^ " V n 
or 

< 1 0 > F n = ^ r ~ [Fk F k + n + r " F k+r Fk+n] 
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Rather than use this for each instance it is found to be more convenient to make 
a table which indicates factors a and b in the relation: 

(11) F = a F , + b F r 
n n+k n+j 

The quantities F , are at the right; the quantities F . are at the top. The 
tabular values for any given pair are a,b in sequence. Thus, to express F 
in terms of F +„ and F 2 , the quantities a and b are -1 /3 and 8/3, 
respectively, so that 

n 

F = (-F ^ + 8F AO )/3 n n+6 n+2" 

Similarly, to express F +o in terms of F + g and F 5 , since the shift in 
subscripts is relative, we take the table values for F + 5 and F +~. Hence 

F ^ = (-F ^ +5F ^i/l n+3 n+8 n+5 ' 

Table I 
QUANTITIES a,b IN FORMULA (11) 

F n+6 

F n+k 

F n+2 
F 

n+3 F 
n+4 F n+5 

F ±* n+6 
F 
*n+7 

F n+1 
1,-1 
1.-2 
1/2(1, 

1 /3(1 , 

1 /5(1 , 

1/8(1, 

-3) 

-5) 

-8) 
-13) 

F J.. 
n+3 

F 
n+2 

- 1 , 2 
- 1 , 3 

1 / 2 ^ 1 , 

l / 3 ( - l 1 

,5) 

,8) 

1/5(01,13) 

F n+3 

2 , - 3 

2 , - 5 

1/2(2,-8) 

1/3(2,-13) 

F n+4 

-395 

-3 ,8 

l / 2 ( - 3 , 1 3 ) 

F n+5 

5,-8 

5,-13 -8,13 

THIRD-DEGREE SUMMATIONS 

For third-degree summations 
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there is one which has its sum in closed form. The derivation follows. 

00 

n=l 
F F F F F 

n n+1 n+2 n+1 n+2 
L+2Fn+3 J 2 

But this also equals 

Hence 

To find 

in terms of 

00 

n=l 

F - F n+3 n 

°W = 2 n+1 

(12) 
PC 

n=l 
F F F n n+2 n+3 

I 
4 

n=l 
Ty "P "P 

n n+2 n+4 

00 

n=l ^wT 
we use this result, arranging coefficients so that we obtain F in the numer-
ator and then eliminate it from the denominator. Thus 
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Y 2Fn+4-3Fn+3 _ y F_n_ 
+S F n Fn+?. F n+2 F n+4 *—* F n FnH-2 F n - n "n+2 "n+3 An+4 A—f "n "n+2 "n+3 n+4 n=l n=l 

_ 00 OP 

n=l * n=l 6 

Solving for the desired summation, 

00 _ « _ 
~"* 1 7 l \ ^ 1 

—7- nin+2xn+4 x u ° ^ — ' v xn+2'3 
n=l n=l 6 

^\ 1 7 1 ^^ ^ 1 

The procedure is similar at each step. There are two formulas (a) and (b) to 
be combined with appropriat 
mula (c) is obtained, either 
be combined with appropriate coefficients; a certain F is eliminated; a for 

n=l 6 

or one which has previously been expressed in terms of this quantity. 
It would occupy altogether too much space to present even a small por-

tion of the derivations. The sequence of steps, however, can be indicated by 
giving the denominators in the summations (a), (b), and (c) and between (b) and 
(c), the quantity F which was eliminated. The denominator of the desired 
summation is the same as (b) in this table. 



1969] SUMMATION OF INFINITE FIBONACCI SERIES 153 

Table II 
SCHEMATIC SEQUENCE FOR THIRD-DEGREE SUMMATIONS 

oo 

T 1 
if i f F F F 
n=l n n+a n+b 

Denominator (a) 

F F n n+2 

F F 
n n+2 

F F n n+3 

F F n n+1 

F n F n + 1 

F n F n + 1 

F F 
n n+2 

n n+3 

F n F n + 3 

F n+4 

F n+3 

F 
n+4 

F n+2 

F n+3 

F 
n+4 

F n+5 

F n+4 

F 
n+4 

Denominator (b) 

F 
n 

F 
n 

F n 

F n 

F n 

F n 

F n 

F n 

F n 

F n+2 

F n+3 

F n + 3 

F n+1 

F n+1 

n+1 

F 
n+2 

F 
n+4 

F 
n+4 

F n+5 

F 
n+4 

F n+5 

F n+3 

F 
n+4 

F 
n+5 

F n+6 

F n+5 

F n+6 

F r 

F n 

F n 

F n 

F n 

F n 

F n 

F 

F n 

F 
n 

Denominator (c) 

F 
n+2 

F 
n+2 

F n+3 

F n+1 

F n+1 

F n+1 

F n+2 

F n+3 

F J n + 3 

F n+4 F n + 5 

F n + 3 F n + 4 

F n+4 F n + 5 

n+2 n+3 

F n + 3 F n + 4 

F n+4 F n + 5 

F n+5 F n+6 

F n+4 F n + 5 

F n+4 F n+6 

and so on. 
The results can be summarized in the form 

00 

(14) /.J? F
 1 F = C + 

^ — ' n n+s n+t n=l 

where 

00 
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1ST ANT 

s,t 

1,3 

1,4 
1,5 

1,6 

1,7 
2,3 

2,4 

2,5 

2,6 

2,7 

3,4 

3,5 

3,6 

4,5 

4,6 

'S c AND d FORGIVEN s i 

c 

-1/4 
-7/36 

-71/450 

-509/4800 

-11417/162240 

1/4 

7/18 

71/300 

509/2880 

11417/101400 

-5/36 

-67/300 

-269/19 20 

19/225 

407/2880 

Table HI 
AND t IN FORMULA (14) 

1 
2/3 
7/15 
3/10 
5/26 
0 
-1 /3 
-1 /5 
-1/6 
-7/65 
1/3 
2/5 
1/4 
-1/15 
-1/6 

It should be apparent without formal proof that any summation of the third de-
gree with positive terms can be expressed in the form given by (14). A prac-
tical conclusion follows: It is only necessary to find the value of one summation 

n=l 6 

which can be done once and for all to any desired number of decimal places. 
Thereafter for formulas related to this summation their values can be found 
with a minimum of effort to any desired number of places within the limits 
established for the one basic formula. 

This method of relating a number of formulas to one formula can be con-
tinued to higher degrees though the complexities become greater. For exam-
ple 9 for seventh-degree expressions: 
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<-ir 

n=l n F jj-. - n+k. i= l i 

we can p roceed s t ep -by - s t ep accord ing to the following table. The quant i t ies 

(a), (b) , (c) and F have the same 

mat ion i s indicated by an a s t e r i s k . 

(a), (b) , (c) and F have the s a m e meaning a s in Table II. The des i r ed s u m -

Table IV 
SCHEMATIC SEQUENCE FOR SEVENTH-DEGREE SUMMATIONS 

WITH ALTERNATING TERMS 

Denominator (c) Denominator (a) 

( F n+6 \ 

^ n + 6 ^ 
(F ^ ) n + 6 ' 7 
and so on. 

(F ^ ) n+6 7 
(Fn+6\ 

^ n + 6 ^ 
and so on. 

^ n + 5 ^ F n+7 
(Fn+b\Fn+7 
and so on. 

(F ^ ) n+6 7 

(F . c ) 
n+6 7 and so on. 

Denominator (b 

*<F _ ) F J._ n+5 6 n+7 
*(F ) F v n + 5 ;

6 n+8 
*(F ) F 1 n + 5 ;

6 n+9 

^ n + S ^ n + T 
^ n + 5 ^ F n + 8 
( F n + 5 )

6
F n + 9 

^ 1 1 + 5 ^ F n+8 
( F n + 5 )

6
F n + 9 

(F ^ R ) F A _ 
n+5 g n+7 

^ n + S ^ n + S 

"n+5 

"n+5 

"n+5 

"n+5 

n+5 

"n+4 
7 
"n+4 

<W7 
(F ^ ) F MQ 

n+6 6 n+8 (F ^ ) F ^ n+6 g n+9 

( F n + 4 )
5

F n + 6 F n+7 

*Fn+4*5-Fn+6 F n+8 
*(F ) F F 1 n + 4 ;

5 n+6 n+9 

* ( F n + 4 )
5

F n + 7 F n + 8 
( F n + 4 )

5
F n + 7 F n+9 

?Fn+3>4 < W , 
( F n + 3 * 4

F n + 5 F n+6 F n+8 

GENERAL CONCLUSION 

It i s poss ib le to e x p r e s s all summat ions 

00 

n=l n F 
i = l 

n+k. 
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in the form 
00 

a + b 2 ^ (F ) 
n = l n + r x r 

where a and b are rational numbers; and all summations 

y* (-if-1 
r 

n=l n F. . . n+k. i= l l 

in the form 

c + d 
00 

i-if-1 

n = 1
 ( F n + r - l ) r 

where again c and d are rational numbers. 
The limitation of this approach is that it is not possible to proceed di-

rectly in one step to this final result as a rule. It is necessary to go through 
a series of formulas and should the desired summation be remote from the 
final objective, this could be a long operation. Once, however, the various 
formulas have been linked to the one formula, the problem of calculating these 
summations becomes relatively simple. 

This concludes the discussion of linking formulas of the same degree. 
We now proceed to a consideration of expressing a summation of lower degree 
in terms of one of higher degree so as to secure more rapid convergence. But 
first, formulas will be worked out giving upper bounds for the number of terms 
required to secure a summation result correct to a given number of decimal 
places. 

APPROXIMATING SUMMATIONS WITH GIVEN ACCURACY 

Assuming that we have related the summations of a given degree to one 
summation, it is only necessary to consider summations of the forms 
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00 00 

n=l ^ q n=l q 

Two cases will be taken up according as q is even or odd. 

q even 

From previous discussion, 

1/F < *j5/rn if n is odd 

l / F < *s/5/r ~ if n is even. n 

For 

q 

the result depends on the power of r found on the right-hand side of the in-
equality. These powers can be calculated by table as follows. 

n odd n even 
2n n - 1 
2(n + 2) 2(n + i) 
2(n + 4) 2(n + 3) 

2(n + q - 2 ) 2(n + q - 3 ) 
n + q - 1 

The sum in either case is 

If we want w terms of the summation 
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E (-l)11-1 

n=l ^ q 

st to give a result correct to t decimal places, the (w + 1) term must be less 

than 5 x 10" . Hence the condition for the desired upper bound is: 

1 < _ 5 . < 5 x KT* W~T ^q(w+l)+q(q-2)/2 
q 

which leads to 

t + ^ J ) l o g 5 „ a . log r 

_ _ — _ . — . _ < w 
q log r 

or 

dB) w > M | M t + i H ^ ) (3.34467)-f 

For example, if q is 8 and we want the result correct to 10 decimal places, 

w > .59814t- 2.74575 or w > 3.3565 . 

Hence four terms would be required. Data from this formula will be found in 
Table V. 

For the summation 

00 

y i 
j ^ ^n+q-l 'q 

to have the result correct to t decimal places, 
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00 00 / ' 

V i < V ^\. 
£-"* '^k+a-l* ^ qk-Hi(q-2)/2 
k=w+l K ^ q k=w+l 

,q/2 
rqw+q2/2 [ l + r"q + r"2q < 5 x 10_ t 

or 

7^72 ~^ < 5 x l 0 _ t 

This leads to the inequality 

t + i S ^ l o g 5 - l o g ( l - r - q ) - 3 i i f L 
w > — — ——— 1 — — — 

q log r 

The term 

-log (1 - r""q) = r " q + - ~ - + ~ 
2q -3q 

.-q + r -2q + r - 3 q . . . = _ L <r 

This replacement is in the safe direction* Hence 

r q - l 

(16) w > 4.78514t + 3.34467(q - 2) _ 3 + 
q 2 q 2 ( r q - l ) q l o g r 

Similar considerations applied to the case of q odd give the following results. 
For the summation with alternating terms: 

M\ w s 4.78514t , 3.34467 (q - 2) (q2 - 1) 
( 1 " W > q~" + 2q 2 q ~ 
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For the summation with all terms positive: 

n*\ w s 4.78514t 3.34467(q - 2) 4.78514 (q2 - 1) 
( 1 8 ) q 2q q ( r q _ 1} ~ 2q ' 

Table V 
UPPER BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS 

TO t DECIMAL PLACES FOR THE SUMMATION 

t 
5 

10 
15 

20 

25 

30 

50 

100 

2 

11 

23 
35 

47 

59 

71 

119 

239 

q 
4 

5 

11 
17 

23 

29 

35 

59 

119 

6 

3 

7 
11 

15 

19 

23 

38 

78 

00 

E 
n=l 

8 

1 
4 

7 

10 

13 

16 

28 

58 

(-Dn 

(F 
v n+q-

10 

2 
4 

6 

9 

11 

21 

45 

Table VI 

- 1 

T 
q 

12 

2 

4 

6 

8 

16 

36 

14 

2 
3 

5 

12 

29 

16 

1 

3 

9 

24 

18 20 

1 
6 4 
20 16 

U P P E R BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS 
TO t DECIMAL PLACES FOR THE SUMMATION 

00 ' j ' ' 
1*> 7 p 5 

h=l v n + q - l ' 

t 
5 

10 
15 
20 

25 

30 
50 

100 

2 

13 

25 
37 
49 

61 

73 

121 

240 

4 

6 

12 
17 
23 

29 

35 
59 

119 

6 

3 

7 
11 
15 

19 
23 

39 
78 

8 

1 

4 
7 
10 

13 

16 
28 

58 

10 

2 
4 
6 

9 

11 
21 

45 

12 

2 
4 

6 

8 
16 

36 

14 

2 
3 

5 
12 

29 

16 

1 

3 
9 

24 

18 

1 
6 

20 

20 

4 

16 
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Table VH 
UPPER BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS 

TO t DECIMAL PLACES FOR THE SUMMATION 

t 
5 

10 

15 

20 

25 

30 

50 

100 

1 

23 

47 

71 

95 

119 

143 

239 

478 

q 
3 

8 

16 

24 

32 

40 

48 

79 

159 

5 

4 

9 

13 

18 

23 

28 

47 

95 

00 

z 
n=l 

7 

2 

5 

9 

12 

15 

19 

32 

67 

(-Dn 

7F~ 
n+q-

9 

3 

5 

8 

11 

13 

24 

51 

-1 

q 

n 

i 

3 

5 

7 

9 

18 

40 

13 

1 

3 

5 

6 

14 

32 

15 

1 

2 

4 

10 

26 

17 

1 

2 

8 

22 

19 

5 

18 

Table VIE 
UPPER BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS 

TO t DECIMAL PLACES FOR THE SUMMATION 
oo 

t 
5 

10 

15 

20 

25 

30 

50 

100 

1 

31 

55 

79 

103 

127 

151 

246 

486 

3 

8 

16 

24 

32 

40 

48 

80 

160 

5 

4 

9 

14 

18 

23 

28 

47 

95 

WW 

n=l 

7 

2 

5 

9 

12 

15 

19 

32 

67 

1 

n+q-

9 

3 

5 

8 

11 

13 

24 

51 

q 

n 

I 
3 

5 

7 

9 

18 

40 

13 

1 

3 

5 

6 

14 

32 

15 

1 

2 

4 

10 

26 

17 

1 

2 

8 

22 

19 

5 

18 

These tables indicate impressively the gain in efficiency obtained by expressing 
lower-degree summations in terms of ahigher degree summation. The method 
of achieving this will now be taken up. 
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LOWER DEGREE SUMMATIONS 
IN TERMS OF HIGHER DEGREE SUMMATIONS 

The program to be carried out illustrating this process will consist in 
starting with 

00 

n=l 

and establishing a chain of formulas reaching to 

00 

5^. 
The first step in this chain is found in a result given in the Fibonacci Quarterly 
[2] 9 namely: 

oo 
n~l XNt-'-i;^ n=l n=l 6 

The next step is as follows. 

00 ^ 00 _ 00 

F__ ,., F._ , n F. 
n =l 3 n = ] _ iX "*-*• AA'^ n ~ i n+2'3 4—f n n+1 n+4 ^—• n+1 n+2 n+4 

+ V M£ n-1 
1 • 1 • 3 / J F F A- F , Q A , ~ n n+1 n+3 n=l 

= -1 /3 + 1/4 = - 1 / 1 2 . 

It is possible to express 
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(-1) n-1 

n=l 
F F F 

n n+1 n+4 

in terms of 

00 

n=l b 

Starting with 

•(-I)1 n-1 

n=l 
i F F F F F F 
L n n+1 n+3 * n+1 n+2 n+4. 

1-1-3 

and noting that 

Fn+2 Fn+4 + F n Fn+3 = ^ ^ + 2 Fn+2 F n + 3 

1/3 
Zy( Fn44)

5
 + ^ F n n=l & n=l 

( - ! ) • 
n-1 

F F n+1 n+4 

Hence 

E (-i)11-1
 = i ir» i 

- FnFn+lFn+4 ~ 6 " 2 L4K+ 
n=l n=i n+4'5 

Substituting into (19), 

(20) L (-D-
n=l 

n-1 

n+?3 

oo 

A !L\y i 
n=l 
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The next step is as follows. 

^L ( F n + 3>4 F n + 5 " <F
n+4>!Fn-«3 J = I ' l ^ - S - B 

Z" r . F m 4 g n 4 6 - g n g i » r t 1 

00 00 _ 

= 2 > jg r-y j r— + 3 2 
*—4 V n+2'o n+5 n+6 A — ' 

1 
*—f v tn+2'3

 xn+5 x'n+6 *-* F n Fn+1 Fn+3 Fn+5 Fn+6 
n—I u n=l 

o y ,(-Dn 

W Q+6 » 
We shall not derive the relations for the fifth-degree summations in terms of 

00 

7 F — r ~ = s * 
n=l ( n + 4 5 

but simply state them. 

00 

3S 1 
2~S (Fn+J Fr IF J F ± , F . 20 " 4800 • - . n+2« n+5 n+6 n=l ° 

00 

1 _ 7S 29 
F F j.i F « ^ Q F _ F _ 40 9600 —^ n n+1 n+3 n+5 n+6 n=i 

Substitution leads to the result 
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(21) V * 1 - Jl_ + 40 X ^ (-if'1 

"5=1 'n+4'5 ™ ^ W n + 6 V 

The final stage is as follows. 

00 

§ (_1)I1" IKJS
 Fn+7 + 'We FnJ = T ^ 5-8-21 ' 

The numerator of the combined terms inside the brackets is 

,n-l 
F
n +6 Fn+8 + Fn Fn+7 = 4 Fn+4 Fn+6 + 5 Fn+4 Fn+5 +

 3 ^ 

Letting 

-E 
oo ., 

~1
 ( F n + 3 * 4

 F n + 5 F n + 7 F n + 8 

and 

00 -

B - V . ^ 

c =E IF^7 
n=l a 

the result can be written as 

M-2-3-5-8.21 = 4A + 5B + 3C 

Similarly, 
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2 ("i)n_1 
+ w~jwr^r r j <F_Q) - 1*1.2.3.8.13.21-+—f n+3V n+7 3 v n+4/

4
v n+87 

The numerator of the combined terms within the brackets is 

F JA F AQ + F F _ = -F ^ F _ + 6 F ^ F J_t, + 3(-l)n*"1 
n+4 n+8 n n+5 n+4 n+6 n+4 n+5 

leading to: 

1 
M-2-3.8.13.21 = -A + 6B + 3C 

Solving with the previous relation in A, B, and C gives: 

A 53 3C 
A = 1900080 29 ' 

It can also be shown that 

A = ± \ ^ (-1>n~1 + 73 
91 Z»J ^ 7 ? ~ 2981160 ° 

n=l 7 

This enables us to arrive at the final conclusion 

(99. X^ (-I)*"1 _ 589 273 V ^ 1 
(22) ^ ^ 3 7 " ™rc*" ~^Z«f K^ 

n=l ' n=l a 

Thus a chain has been extended from 

00 00 

E^ to STF^ =- i i =r • , — ' a 

n=l n=l 
n+8'9 
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Connecting the initial and terminal links 

167 

(23) L _i_ = 
F „ 

n=l 

46816051 16380 
13933920 319 

oo 

n=l 

Another advantage of a summation such as 

00 

E l 
n=l 

is that it lends itself readily to calculation. At each stage one factor i s added 
to one end of the denominator and deleted from the other. Table EK shows the 
calculation of this summation to thirty plus decimal places. The factor applied 
at each stage to the result on the preceding line is shown at the left. 

Table IX 

Term 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Factor 

1/55 
1/89 
2/144 
3/233 
5/377 
8/610 
13/987 
21/1597 
34/2584 
55/4181 
89/6765 
144/10946 
233/17711 

SUM 

CALCULATION OF V T ^ - T 
n=l xxn+8' 

81 

Term Multiplied by 1033 

4488 97507 72103 

61772 

91705 

1273 

16 

86765 

31311 

68490 

39937 

21749 

285 

3 

71328 

52205 

97215 

44405 

64520 

83614 

24375 

75700 

4940 

65 

4571 52276 20648 18372 

01838 

96397 

79734 

77496 

24602 

32687 

26986 

99139 

33864 

00445 

85511 

1124 

14 

59844 

684 

067 

799 

317 

957 

042 

060 

634 

704 

588 

721 

988 

800 

195 
456 
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With the aid of this value 

00 

n=l 

i s found to be to twenty-five decimal places 

3.35988 56662 43177 55317 20113 . 

CONCLUSION 

In this paper two types of infinite Fibonacci series have been considered. 
Methods have been developed for expressing series of the same degree in terms 
of one series of that degree. In addition a path has been indicated for proceed-
ing from series of lower degree to those of higher degree so that more rapid 
convergence may be attained. These two approaches plus the development of 
closed formulas in a previous article should provide an open door for addi-
tional research and calculation along the lines of sums of reciprocals of Fib-
onacci series of various types. 
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Send all communications concerning Advanced Problems and Solutions to 
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solutions or other information that will assist the editor. To facilitate their 
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two months after publication of the problems. 

Editorial Note: Keep those problem proposals coming, Folks! 

H-153 Proposed by J. Ramanna, Government College, Mercara, India. 

Show that 

( l ) 4 7 „F3k+lF3k+2 ( 2 F3k+1 + F6k+3) ( 2 F3k+2 + F 6k+3 ) F3n+3 

n 
Mi) 16 7 F F F (2 F2 - F2 F2 ) = F 8 

S J 3k+1 3k+2 6k+3 6k+3 3k 3k+3 3n+3 ' 
0 2r Hence generalize (i) and (ii) for F „ 3 . 

H-154 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that for m, n, p integers >0, 

i , j ,k^0 
E / m + l \ / n + l \ / p + l \ 

\̂  j + k + 1J yi + k + 1 f\i + j + 1/ 

m n p 

X^ \ ^ \ V m - a + b\ / n - b + c\ /p - c + a \ J U L ( b ( c ) a j ' 
rt_n u _ n rt_n \ / \ x a=0 b=0 c=0 

and generalize. 
169 
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H-155 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Haliiax, Canada. 

The Fibonacci polynomials are defined by 

f , - (x) = x f (x) + f - (x) n+1 n n-1 

with fi(x) = 1 and f2(x) = x. Let z = f (x)f (y). If z satisfies the 
r 5 S r S X*jS 

relation 

r+4,s+4 r+3,s+3 r+25s+2 r+ l , s+ l r , s 

show that 

a =' c = -xy, b = -(x2 + y2 + 2) and d = 1. 

H-156 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

n oo oo 

n=0 " k=l n=-*> k=0 

E n(n+1) n V q ' 
n=-oo k=0 

- - (k+D2
 k 

where 

(q)n = ( l - q ) d - q 2 ) - " (1 - q11) . 

H-157 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

by 
A set of polynomials c (x), which appears in network theory is defined 

cn+1(x) = (x + 2)cn(x) - c ^ j W (n > 1) 



1969] ADVANCED PROBLEMS AND SOLUTIONS 171 

with 

c0(x) = 1 and c^x) = (x + 2)/2 . 

(a) Find a polynomial expression for c (x) . 
(b) Show that 

2cn(x) = bn(x) + bn - 1(x) = Bn(x) - Bn - 1(x) , 

where B (x) and b (x) are the Morgan-Voyce polynomials as de-
fined in the Fibon^cci^Quai^ VoL 5, No. 2, p. 167. 
Sh< 

(d) If 
(c) Show t h a t 2 c 2 (x) - c 0 (x) = 1 n ^ n 

Q = (x + 2) 
1 • ; ] • 

show that 

\ % 

k-i 
" V i l 
-Cn-2J 

- | ( Q n - Q n " " 2 ) for (n > 2) 

Hence deduce that c , - c - - c2 = x(x + 4)/4 n+1 n-1 n x " 

SOLUTIONS 
A T L A S T 

H - 9 8 Proposed by George Ledin, Jr., San Francisco, California. 

If the sequence of integers is designated as J , the ring identity as I, 
and the quasi-inverse of J as F , then (I - J) (I - F) = I should be satisfied. 
For further information see R. G. Buschman, f'Quasi Inverses of Sequences," 
American Mathematical Monthly, VoL 739 No. '4, HI (1966), p. 134. 

Find the quasi-inverse sequence of the integers (negative, positive, and 
zero). 
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Solution by the proposer. 

The sequence u + 2 == au - + bu with initial conditions u0 fi 1, uj, 
has the quasi-inverse 

v ^0 = Av , - + Bv , n+2 n+1 n 

where 

A = a + u t / (1 - u0), B = b / ( l - u0) 

with initial conditions 

v0 = -u0 / (1 - u0), V! = - u t / ( l -u 0 ) 2 . 

Since the sequence of integers is defined by the recurrence relation 

u , 0 = 2u , - - u n+2 n+1 n 

with initial conditions UQ = 0, u^ = 1, its quasi-inverse is then 

v J 0
 = 3v ,- - v n+2 n+1 n 

with initial conditions VQ = 0, v^ = - 1 which yields 

0, - 1 , - 3 , - 8 , - 2 1 , -55, -144, - 3 77, . . . • , - F ^ , " • . 

SUM PRODUCT! 

H-120 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

The Fibonacci polynomials are defined by 

fi(x) = 1, f2(x) = x . 

If z = f (x) • f (y), then show that 
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(i) z satisfies the recurrence relation, 

Zn-Ht = ^ ' zn+3 " ( x 2 + ^ + 2 ) zn+2 " ^ * V l + z n = ° * 

n 
(li) (X + Y)2 ' X/r = (V2 - Vl> - (xy - 1 , ( V l " Zn} • 

1 
Solution by C.B.A. Peck, Ordnance Research Laboratory, State College, Pennsylvania. 

( i ) zn+4 = W W k ^ 
= ( x W x > + W x ) ) ^ n + 3 ^ + W * » 
= xyz n + 3 + xf n + 3(x) f n + 2 (y ) + yf n + 3 (y) f i i + 2 ( X ) ^ ZR+2 

= xyzn+3 + (x2 + y2 + 2) z n + 2 - z n + 2 

+ x W x ) W y ) + y f
n + i < y > W x ) 

so that 

znn4 - x y z n+3 " (x* + ** + 2 )zn+2 = ~ x y V l " ^ + 1 W V y ) 

" y W y ) f n ( x ) - z n + xyVl + x W x ) f n ( y ) + x y V l 
+ y f n+l ( y ) fn ( x ) = x y z n + l ~ V a s d e s i r e c L 

(ii) n = 2: by expansion9 

(x + y)2(l +xy) = (x3 + 2x)(y3 + 2y) - 1 - (xy - 1)( (x2 + l)(y2 +' 1) - xy). 

Thus for an inductive proof we need only to show the r. h. and 1. h. increments 
equal. The r. h. one is 

V 2 " V l - ( x y " 1 ) ( V l - z n } - Vl + z n-2 + ( x y " 1 ) ( z n " V l > 
= zn+2 " ^ n + l + 2 ( x y " 1 ) z n " ^ n - l + z n - 2 ' 

which by (i) is 

(x2 + y2 + 2)zn + 2(xy - l )z n = (x + y)2zn , 

the 1. h. one. 



174 ADVANCED PROBLEMS AND SOLUTIONS [Apr, 

Also solved by the proposer, B. King, A. Shannon, L. Carlitz, and C. Bridger. 

IN SUMMATION 

H-121 Proposed by H.H. Ferns, University ot Victoria, Victoria, B.C., Canada. 

Prove the following identity. 

where F is the n Fibonacci number, m, A are any integers or zero and 
k is an even integer* or zero. 

Write the form the identity takes if k is an odd integer. 
Find an analogous identity involving Lucas numbers. 

Solution by the proposer. 

The following identities will be required. 

(1) a k F - QfmF. = (-l)kF . w m k s m-k 

(2) j3kF - /3mF. = (-l)kF . , w r m ^ k N m-k ' 

where a = (1 + AJ5)/2, j8 = (1 - ^ ) / 2 and F = (an - &*')/'*JE. 
The proof of (1) follows. The proof of (2) i s similar 

a F - ff F, = a —£-— I - a ( —— 1 

% m-k 
= F m-k • 

since k is even. 
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Identities (1) and (2) may be written as follows: 

(3) 1 + ( j A - ) *" = (^-) «k Cm t k) 
\ m-k/ \ m-k/ 

(4) 1 + / J ^ V = (j^)ek (m̂ k) . 

Let 

At = = r - ^ - and v = m 

j 1 F 
m-k m-k 

From (3) and (4) we derive the following: 

(5) (i + ^ r - a + ^ m ) = A « n k - $*> 

(6) (1 + / ^ m ) n + (l + ^ m ) n = / ( ^ + Z ^ ) 

From (5) we get 

n 

i=l 

(7) > . m ^ F , = » n F r :(fV "mi nk 

th u denotes me r n 
we obtain 

If L denotes the n Lucas number then L = an + ^ and from (6) n n 

i=l 
(8) > ( " ) ^ L m i = ^ - 2 . 
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We now add corresponding members of (7) and (8) and simplify the result 
by applying the identity 

F + L = 2 F ̂  n n n+1 

This gives 

£&)•>'. <»> > .m-'iW -"iw-i 
i=l 

Adding corresponding members of (7) and (9) and applying the recursion 
formula 

F + F = F n n+1 n+2 

to the result yields 

<10) > f"»^Fxni+2= ^ . W " 1 mi 
i=l 

Repeating the last operation on (8) and (9) and on each successive pair of 
identities derived in this manner we get 

JWteK^ = te) F n k + X " r X ( m ^ k ) 

If k is an odd integer this identity takes the form 

t^&^-m Fnk+X " FX ( m ' k ) 
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Beginning with the two identities 

* k L - ^ A . = (-l)kL . m k m-k 
i^L + ^ £ m F , - ( - l ) k L . m k m-k 

and following the procedure adopted above we arrive at the identity 

i=l 
where 

a)-mfe)'---te)" nk+A A 

F mi+ \ i f i i s o d d 

Jmi+X ^ m L . . . if 1 is even 

and k is an even integer or zero. If k is an odd integer this identity takes 
the form 

S^tek'-fej Lnk+X ~ LA 

Examples. If A = 09 m = 1, k = 2 the first identity gives us the well-known 
formula 

i=l 

The same values for these parameters when substituted in the second identity 
gives the not-so-well-known formula 

-(;)6Fi + (s)^-(;)6iF«+(;)5^-(s)6,F 

Also solved by L. Carlitz, and A. Shannon. 
STIRLING PERFORMANCE 

H-123 Proposed by D. Lind, University of Virginia, Charlottesville, Virginia 

5 + . . . = ( _ 1 ) " L O „ - 2. J2n 

Prove 
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n m 
F - y y ^(m)s(k) p t . 

n / *- JL^J n m k 
m=0 k=0 

where S and $ are Stirling numbers of the first and second kinds, re» 
r r tli 

spectively, and F is the n Fibonacci number* 
Solution by the proposer. 

Stirling numbers are defined by 

n 
(m) m x(x - 1) • • • (x - m + 1) = Y ^ S^m)x: 

m=0 
n 

:n = Y ^ j^ m ) x(x - ! ) • • • (x - m + 1) 

m=0 
n 

n ^ x 
m=0 

Letting a = (1 + V5)/2, b = (1 - VB)/2, we have 

(1) 

Similarly j 

n 
n ^ a 

m=0 
n m 

n = ] C ^m)a(a " 1] ' *' (a - m + 1) 

= ^ Am) y • 
m=0 k=0 

( k ) a k 
m 

n m 

It follows 
m=0 k=0 

n m 

( n O s « b k p 
m 

<**-**)/* = Z Z 4m)sm (ak " bk)/ ^ • 
m=0 k=0 

which is the desired result. 
£(1) may be found in Jordan1 s Calculus of Finite Differences? page 183J 

Also solved by David Zeitlin. 
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BINET? 

H-124 (Corrected). Proposed by J.,A. H. Hunter, Toronto, Canada. 

Prove the following identity: 

"p2 T 2 -p2 T 2 = T? xp 
m+n m+n " m m 2n 2+(2m+n) ' 

where F and L denote the n Fibonacci and Lucas numbers, respectively, 

Solution by Paul Smith, University of Victoria, Victoria, B.C., Canada. 

A routine computation shows that: 

r , m + n /3m+nv, m+n , ^m+nvi2
 r , m 0 m w m^ ^m^ 2 

F2 L2 - F2 L2 = ^ ~* " ^ " " ^ " ^ ^ ^ ** 
m+n m+n m m , ax2 

(a - PY 
= (^4 ( m + n ) + j 3 4 ( m + n ) - 1) - (*4 m i- £ 4 m - 1) 

(a - 02 
= (a4 ( m H'n ) + / ^ + ^ ) , d*i ^ (g4m + /g4n) 

(or - £)2 

^2n __ ^2nj (Q2(2m+n) _ ^2(2m+n)) 
= — ^ T ^ p • — ^ § j -

F2nF2(2m+n) 8 

(It i s merely necessary to observe that ap = -1 . ) 

.Also solved fey C. Bridger, M. Bicknell, A. Shannon, C.B.A. Peck, J. Wessner, F. D. Parker, 

M. N. S. Swamy, and R. Whitney. 

* * * • # 



A FOUR-STEP ITERATION ALGORITHM TO GENERATE x in x z + M f = T 
EDGAR KARST 

University of Arizona, Tuscon, Arizona 

Given xt = 3, x2 = 20, x3 = 119, x4 = 696, and x5 = 4059, we may-
generate all further x by the simple procedure outlined below: 

20 - 3 = 17 = 42 + 1 
119 - 20 = 99 = 102 - 1 
696 - 119 = 577 = 242 + 1 
4059 - 696 = 3363 = 582 - 1 
6.24 = 144, 1 4 4 - 4 = 140, 1402 + 1 = 19601, 19601+4059 = 23660 = x6 

6-58 = 348, 348-10 = 338, 338 2 - l = 114243, 114243 + 23660 = 137903 = x7 

6-140 = 840, 840-24 = 816, 8162 + 1 = 665857, 665857 + 137903 = 803760 = x8 

6-338 = 2028, 2028-58 - 1970, 19702-1 = 3880899, 3880899+ 803760 =46846;59=x9 

The author has taken time to check some of the newer l ists against print 
e r ro rs . The list in [ 1 , p. 123] should read y8 = 1136689 (instead of 113689). 
The last column of the list in [2 , p. 284] gives the first differences up to x2o 
- X|9. There are no print e r rors . The list in [3 , p. 1041 should read x6 = 
23660 (instead of 23360) and x16 = 1070379110496 (instead of 1070387585472), 
and correspondingly in the column x + 1 there. 

REFERENCES 

1. Albert H. Beiler, Recreations in the Theory of Numbers, New York, 1964. 
2. Otto Emersleben, Uber zweite Binomialkoeffizienten, die Quadratzahlen 

sind, und Anwendung der Pellschen Gleichung auf Gitterpunktanordnungen. 
Wissench. Zeitschr. der Ernst-Moritz-Arndt-Universitat Greifswald„ 
XVI (1967), pp. 279-296. 

3. T. W, Forget and T, A. Larkin, 'Pythagorean Triads of the Form x, 
x + 1, z Described by Recurrence Sequences," the Fibonacci Quarterly, 
Vol. 6 (June 1968), pp. 94-104. 
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THREE M P H A N l i E EQOATSONS • PART I I ' 
IRVING ADLER 

North Bennington, Vermont 

6@ THE PELL EQUATIONS 

Equation (3) is the special case d = 2 of the equation 

(18) s 2 - dt2 = 1 , 

where d is positive and is not a perfect square* Equation (18) is known as the 
Pell equation0 Another way of solving Eq. (3) is provided by the following 
theorem concerning the Pell equations found in most text books on the theory of 
numbers. (For a proof of the theorem, see [2].) 

Theorem: If (s 'fc-) is the minimal positive solution of Eqa (18), then 
every positive solution is given by 

(19) sn + tnV3 = (B1 + t x V3) n , n > 0. 

(A solution (s,t) is called positive if s > 0, t > 0.) The minimal positive 
solution of Eq, (3) is (3,2). Then, according to this theorem, all positive solu-
tions are given by 

(20) s n + t n V 2 = ( 3 + 2 \ / 2 ) n , n = 1 , 2 , 3 , — a 

Equations (15) and (16) are easily derived from Eq. (20) as follows: 

s n + ' n ^ = ( 3 + 2 X / 2 ) I 1 = ( 3 + 2 V ^ ) D 4 ( 3 + 2 v / 2 ) = ( s n - l + Vl^3 + 2 v / 2 ) 

= (3s - + 4t 1 ) + ( 2 s - + 3t i)V2 . x n-1 n - l ; x n-1 n - 1 ' 

Therefore s = 3s + 4t _,, and t = 2s + 3t . . 
n n-1 n - 1 ' n n-1 n-1 

7. RECURRENCE RELATIONS 
If (x ,z ) is one of the sequence of non-negative solutions of Eq0 (1) 

with n > 29 we can derive fromEqs. (7) and (8) a formula that expresses x 
*Part I appeared In the December 1968 Issue., n 
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as a linear function of x ., and x n3 and a formula that expresses z as a 
n-1 n -2 ' * n 

linear function of z - and z 0„ If we replace n by n - 1 in Eqs. (7) and n—i n*-z 
(8), we get 

<21> V l - 3xn-2 + 2V2 + 1 • 

<2 2> V l = 4 x n-2 + 3 V2 + 2 ' 

From (21) and (22) we get 

<23> 2V2 = V l " 3V2 " 1 • 

(24) 4xn_2= V l " 3 V 2 " 2 -

Then, from Eqs. (7), (22) and (23), 

xn = 3 x n - l + 2 Vl + 1 ' 

Xn= 3Vl+2<4V2+3zn-2+2>+1' 

x n = 3 V l + 8 V 2 + 6 V 2 + 5 ' 

xn = 3Vl + 8 xn-2 + 3 < V l " 3 xn-2 " X> + 5 ' 

(25) xn = 6xn_1 - xn_2 + 2 . 

Similarly, from Eqs. (8), (21) and (24), 

zn = 4 V l + 3 V l + 2 -

z n = 4<3xn-2 + 2V2 + « + 3Vl + 2 • 

Zn= 1 2 V 2 + 8 V 2 + 3 V l + 6 « 

z 
n 

= 3 ( V l - 3 V 2 - 2 > + 8 V 2 + 3 V l + 6 
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(26) z = 6z - - z n . 
x ' n n-1 n-2 

EXERCISES 
th 5. Let (u , v ) be the n solution in positive integers of Eq« (2), 

n > 2* Use Eqs9 (12) and (13) to derive the recurrence relations 

(27) u = 6 u . - u + 2 9 x ' n n-1 n-2 9 

(28) v = 6v n - v 0 . x ' n n-1 n-2 

68 Let (s , t ) be the n solution in positive integers of Eqe (3), n 
> 2e Use Eqs. (15) and (16) to derive the recurrence relations 

<29> S n = 6 s n - l - s n -2 • 

<30> fcn = 6 t n - l - fcn-2 • 

80 CLOSED FORMULAS 

If a s e q u e n c e y ' 0 , y - 9 y 2 » •* e ;>y79 • • • is defined by specifying the values of 
the first few terms and determining the values of the rest inductively by means 
of a linear recurrence relation, then there is a standard technique for finding 
a formula that expresses y in terms of n8 For example, it can be shown 
that if the recurrence relation is the equation 

(3D y n + 2 - 6y n + 1 + yn = 0 . 

then 

(32) y n = o i r ; + c 2 r ° , 

where r1 and r are the roots of the characteristic equation 

(33) E 2 - 6E + 1 = 0 , 
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and the constants c- and c are determined by the values of y.. and y . 
(See [3] for a proof of this assertion.) The roots of (33) are 3 + 2\/2 and 3 
- 2 \ / 2 . So in this case 

(34) yn - c 1 ( 3 + 2 V 2 ) n + c 2 ( 3 - 2 \ / 2 ) n 

The recurrence relations for z , v , s and t all have the form (31) 
n' n n n v ' 

with characteristic equation (33). Hence the closed formulas for z , v , s 
and t all have the form of Eq, (34), and differ only in the values of the con-
stants c- and c9* To determine the constants in the formula 

zn - C;L(3 + 2 V 2 ) n + c2(3 - 2 \ / 2 ) n , 

we make use of the fact that z = 1 and z = 5. Then 

1 = c1(3 + 2 \ /2) 0 + c2(3 - 2V2)° , 

5 = c1(3 + 2V2) 1 + c2(3 - 2V2) 1 . 

Therefore c + c = 1 and c^ - c = J V 2 . Consequently, c1 = i ( 2 + V 2 ) , c 2 

= i ( 2 - V2)9 and 

(35) a = i ["(2 + \ /2) (3 .+ 2 \ /2 ) n + (2 - V 2 ) (3 - 2 V 2 ) J . 

EXERCISES 

7. Determine the values of c. and c 2 in each of these closed formulas: 

(36) s n = c.L(3 + 2 \ /2 ) n + c2(3 - 2V2) n ; 

(37) tn = c 1 ( 3 + 2 \ / 2 ) n + c 2 ( 3 - 2 \ /2 ) n ; 

(38) v = 0,(3 + 2 \ / 2 ) n + c Q ( 3 - 2 \ /2 ) n . 
n X ct 

It can be shown that if the recurrence relation defining a sequence [y } 
is the non-homogeneous equation 
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(39) y n + 2 - 6yn + 1 + y n = 2 , 

then 

n , n (40) yn =O,T\X
+ c9r" - i n T l 1 2 2 9 

where r and r are the roots of (33), and c- and c are determined by the 
values of y_ and y , . The recurrence relations for x and u have the form 0 1 n n 
of (40). Hence the closed formulas for x and u , after evaluation of the 
constants c- and c~, are 

(41) xn = J |(1 + V2)(3 + 2\/2)n + (1 - V2)(3 - 2\/2)n - 2J , 

(42) un = i f(3 + 2V2)n + (3 - 2V2)n - 2 ] . 

9. HOW EQUATIONS (1), (2), AND (3) ARE RELATED TO EACH OTHER 

The sequence of non-negative integers {z | , jv | and jt } which 
arise in the solution of Eqs. (1), (2) and (3), respectively, all satisfy the same 
recurrence relation (31). This shows that the solutions of Eqs„ (1), (2) and (3) 
are intimately related to each other. We shall now derive the equations that 
relate them to each other from the closed formulas for x , z , s , t , u 

ns n5 n9 n3 n 
and v . The formulas for z , x and u are Eqs. (35), (41) and (42), r e -
spectively. The formulas for s . t and v obtained in Exercise 7 are 
* J n' n n 

(36') s n = i [(3 + 2 \ /2) n + (3 - 2 V ^ ) n ] , 

(37') t n = ^ [(3 + 2V2)n - (3 - 2 \ /2) n ] , 

(38') vn = 8 L(3 + 2 V ^ ) n " <3 " 2V/2)nJ . 

By solving Eqs. (42) and (38') for (3 + 2V2) n and (3 - 2 \ /2 ) n , respectively, 
we find 

(43) (3 + 2V2)n = 2u + 2 V2v + 1 , 
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(44) (3 - 2 \ /2 ) n = 2u - 2V2v + 1 . 

Making these substitutions for (3+ 2 \ /2 ) n and (3 - 2 \ /2 ) n in Eqs. (41) and 

(35), we obtain the following equations relating the solutions (x , z ) of Eq. 
(1) to the solutions (u ,v ) of Eq. (2): 

(45) x = u + 2v , s ' n n n s 

(46) z = 2u + 2v + 1 . x ' n n n 

If we solve Eqs. (45) and (46) for u and v , we get these equations: 

(47) u = z - x - 1 , • n n n ' 

(48) v = i (2x - z + 1). v ' n ^v n n ; 

EXERCISES 

8. Use Eqs. (36!), (37T), (43) and (44) to derive these equations relating 
the solutions (s , t ) of Eq,, (3) to the solutions (u ,v ) of Eq. (2): 

(49) s = 2u + 1, x 7 n n * 

(50) v t = 2v , x ' n n 9 

(51) un = - i ( s n - l ) f 

(52) v = i t . \ / n ^ n 

9. Use the results of Exercise 8 and the paragraph that precedes it to 
derive these equations relating the solutions (s , t ) of Eq, (3) to the solu-
tions (xn ,zn) of Eq. (1): 

(53) s = 2z - 2x - 1 , 
v ' n n n 
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(54) t = 2x - z + 1 , 
n n n > 

(55) x = i (s + 2t - 1) , x ' n ^ n n ' ' 

(56) z = s + t . x ' n n n 

10. Without using the closed formulas (41), (35), (42) and (38f) for x , 
z , u and v , respectively, verify that if (x ,z ) is a solution of Eq. (1), 
in non-negative integers, and u and v are defined by Eqs. (47) and (48), 
respectively, then u and v a re non-negative integers, and (u ,v ) is a 
solution of Eq. (2). Also verify, conversely, that if (u ,v ) is a solution of 
Eq, (2) in non-negative integers, and x and z are defined by Eqs. (45) and 
(46), respectively, then x and z are non-negative integers, and (x ,z ) 

is a solution of Eq. (1). (See [ l ] , pp. 20-21..) 

11. Without using the closed formulas for x , z , s , and t , verify & ns n n' n* J 

that if (x ,z ) is a solution of Eq9 (1) in non-negative integers, and s and 
t are defined by Eqs. (53) and (54), respectively, then s and t are non-
negative integers, and (s , t ) is a solution of Eq. (3). Also verify, con-
versely, that if (s , t ) is a solution of Eq. (3) in non-negative integers, and 
x and z are defined by Eqs. (55) and (56), respectively, then x and z 
are non-negative integers, and (x ,z ) is a solution of Eq. (1)„ 

If we drop the subscripts in Eqs. (45) through (56), each pair of equa-
tions, (45) and (46), (47) and (48), (49) and (50), (51) and (52), (53) and (54), 
aind (55) and (56), defines a linear transformation that converts one of the 
Eqs. (1), (2) or (3) into one of the other two. 

10. FORMULAS FOR GENERATING SIMULTANEOUSLY SUCCESSIVE 
SOLUTIONS OF EQUATIONS (1), (2), AND (3) 

From Eqs. (45) and (50) we get 

(57) x = u + t 
s * n n n 

From Eqs. (45), (46), (12) and (13), we get 
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(58) n+1 
x + z n n 

(59) v = v + z 
n+1 n n 

Then, s ta r t ing with u = 0, vft = 0, and applying r ecu r s ive ly the sequence 

of E q s . (49), (50), (57), (56), (58) and (59), we can genera te in success ion s Q , 

V V V ur vr sr t v x l 3 t„ and so on. 
1 ' u 2 9 v 2 ' " 2 ' "2' " 2 ' 2 ' 

The f i r s t ten non-negative solutions to E q s . (2), (3) and (1), r espec t ive ly , ob-
tained in this way, a r e tabulated below. 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(u , v ) | 

(0, 0) 

(1, 1) 
(8, 6) 

(49, 35) 

(288, 204) 

(1681, 1189) 

(9800, 6930) 

(57121, 40391) 

(332928* 235416) 

| (1940449, 1372105) 

(s , t ) I 
x n' n7 1 
(1, 0) 

(3, 2) 

(17, 12) 

(99, 70) 

(577, 408) 

(3363, 2378) 

(19601, 13860) 

(114243, 80782) 

(665857, 470832) 

(3880899, 2744210) 

(x , z ) x n' n7 

(0, 1) 

(3, 5) 

(20, 29) 

(119, 169) 

(696, 985) 

(4059, 5741) 

(23660, 33461) 

(137903, 195025) 

(803760, 1136689) 

(4684659, 6625109) 

EXERCISE 

12. Find ( u 1 0 , v 1 0 ) , ( s 1 0 , t 1 ( ) ) and ( x ^ . z ^ ) . 

1 1 . SOLUTIONS WITH EVEN OR ODD INDEX 

It is of in te res t to examine separa te ly the even-numbered solutions (x2>, 

z 2 . ) , ( u 2 i , v 2 i ) and ( s 2 l , t 2 l ) of E q s . (1), (2) and (3), r espec t ive ly , and the 

odd-numbered solutions ( x
2 i+ i> Z 2 i+i '> ^U2i+1'V2i+17 a n d ^ S 2 i + l , t 2 i + l / * T h e s e 

solutions can be exp re s sed in t e r m s of the solutions ( x . , z . ) , (u . ,v . ) and 

( s . , t . ) . F o r example , we know from Eq. (20) that 

S 2 i + t 2 i V 2 (3 
( 

2V2)21 = [(3 + 2V2)1J (s. + t . V 2 ) 2 

That i s , 
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S2i + t 2 i V ^ = (Sf + 2tf) + 2 s i f c i ^ -

There fo re 

(60) s 0 . = s ? + 2t? = 2 s 2 - 1 = 1 + 4 t 2 , 
x ' 2i i l l i s 

and 

(61) t 0 . =• 2s. t . . 
x ' 2i i i 

By using E q s . (48), (50), (54), (55), (56), (60) and (61), we can show that 

(62) x 0 . = 2 t . ( t . + s . ) = 2t .z . = 4z. v. = 2z. (2x. - z. + 1) , v ' 2i r i v i i i i i v i i ; J 

and 

(63) z 0 . = t 2 + z? = (2x. - z. + l ) 2 + z 2 . 
v ' 2i i i x i i ' i 

By using E q s . (49), (50), (51), (52), (60) and (61), we can show that 

(64) u„ . = 2 t 2 = 8v? , 
K ' 2i 1 1 ' 

and 

(65) vrt. = s.t . = 2v .s . = 2v.(2u. + 1) 
v ; 2i i i i i v i ' 

By invoking Eqs* (58) and (59), we can show that 

(66) u 2 . + 1 = (vt + v l + 1 ) 2 = ( u . + 1 - u . ) 2 , 

and 

(67) v 0 . . - = z. (v. + v., J 
x ' 2i+l i v i i+ r 



190 THREE DIOPHANTINE EQUATIONS - PART II [Apr. 

The following equations are also easily derived: 

(68) s 2 . + 1 = 2 z f + ( v i + v . + 1 ) 2 = 2 z f + ( z i + t . ) 2 , 

(69) t M + 1 = 2 z l + ( v l + v l + 1 ) = 2 2 ^ + t j ) , 

(70) x 2 . + 1 = (z. + 2x.-M)2-zf , 

(71) z 2 l + 1 = ( z i + 2 x . + l ) 2
 + z J , 

12. SUM AND DIFFERENCE RULES 
The following rules are either already included among the equations we 

have derived so far^ or are easily derived from them. 

(56) s. + t. = z. , 
v ' i l l 9 

(72) S l - t . = z w , 

(73) u l + v . = u l + 1 - v . + 1 = | ( z . - 1) , 

(74) u. - v. = u. n + v. , = i(z. . - 1) , 
v ' i I i - l i - l i - l ' 

(58) z. + x. = u . + 1 

(47) z. - x. = u. + 1 , 
v ' i l l 

(75) s 2 i + t 2 i = fcf + \ ' 

(76) s 2 l - t2. = tf + z2_x . 

(77) U 2 i + V 2 i = 2 V V i + W • 

(78) u2. •- v2 . = 2v. (t. - z.) , 

(79) z2 . + x2 . = (z. + t . ) 2 , 
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(80) Z 2 i - X 2 i= < W 2 - Sf ' 

(81) s 2 i + l + t2 i+ l = 3 ( t l + z 1 ) ' i
+ 2 t 1 z l + 2 , 

<82> S2i-*-l " ^ i ^ ! = Z2t = 

<83> U 2 i + 1 + V 2 i + 1 = 2Vl(Wl>' 

(84) U2i+1-V2i+1 = 2 V V L + W • 

(85) Z 2 i + 1 + X 2 i + 1 = 2(Z. + 2 X l + l ) 2 , 

(86) z 2 . + 1 - x 2 . + 1 = 2zf , 

(87) Z 2 . + 1 - (x2 .+ 1 + 1) = (u{+1 - u . ) 2 . 

13. HISTORICAL NOTE 
Dickson's History of the Theory of Numbers, Vol. II, contains scattered 

notes about Eqs. (1) and (2), and denotes a sixty-page chapter to the Pell equa-
tion, of which Eq. (3) is a special case. (See [4].) Some of the more interest-
ing facts cited by Dickson are reproduced below. 

Concerning Eq. (I). 
Fermat showed that if (x, z) is a solution of Eq. (1), then so is (3x + 

2z + 1, 4x+ 3z + 2). (See Eqs. (7) and (8).) 
C. Hutton (1842) found that if p /q is the r convergent of the con-

tinued fraction for the square root of 29 then p D - and 2q q are consec-
utive integers, and the sum of their squares is equal to q0 . 1 . 

2 2 P. Bachmann (1892) proved that the only integral solutions of x +y = 
2 z , z > 0, x and y consecutive, are given by 

x + y + z \ / 2 = ( 1 + V 2 ) ( 3 + 2V2) , k = 0 , l , 2 , " 8 . 

R. W. D. Christie (1897) expressed the solutions of Eq. (1) in terms of 
th continuants. The continuant C(a..,a ,«• • s a ) is the r order determinant 
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o 
in which the term u„„ of the principal diagonal is equal to a.s (i = 1, • • • , r ) , 

1, • °•, r - 1), immediately under the principal diagon-
, r ) , immediately above 

each term u.+- ., (i 
al is equal to - 1 , and each term u. - ., (i = 2, • 

i—±, i 
the principal diagonal, is equal to 1, and every other term is equal to 0. Let th Q r stand for the r order continuant C(2,- .»,2) in which all the diagonal 
elements are 2, and define 2n = 1. Christie observed that the positive inte-
gral solutions of Eq. (1) are given by 

x = Qo + Qi + r + Q« r = 1,2,-2 r - l ' r 2r ' 
This result was proved by T. Muir (1899-1901). 
Concerning Eq. (2). 

Euler (1732) found solutions to Eq. (2) in the following way: He started 
with the identity of Plutarch (about 100 AD), 

.2 

ByEq. (2), 

9 2 
Then 8v + 1 = (2u + 1) . Let s = 2u+ 1, and t = 2v. Then s and t sat-
isfy Eq. (3), which Euler solved by using his general method for solving the 
Pell equation. 

Euler proved, too, that u and v satisfy Eq. (2) only when 

8u(u + 
2 

JL + i = 

u(u + 1) 
2 

(2u 4 

2 
= V 

a +jB a - 0 
v = t£— 

4V2 

where 



1969] THREE DIOPHANTINE EQUATIONS — PART II 193 

<*= ( 3 + 2 V 2 ) n , j3= ( 3 - V 2 ) n
5 n = 0 , l , 2 , - - - . 

From this result, he derived the recurs ion formulas given byEqs. (27) and (28), 
E. Lionnet (1881) stated that 0,1 and 6 are the only triangular numbers 

whose squares are triangular numbers. This assertion was proved by Moret-
Blanc (1882), In the notation of Section 2, Lionnet?s result is that S(T(n)) = 
T(m) only if n = 0,1 or 3. Since S (T(0)) = 0 = T(0), S (T(l)) = 1 = T ( l ) , 
and S(T(3)) = 36 = T(8), It follows from LIonnetfs result that the equation 
S(T(n)) = T(S(n)) has only the trivial solutions (0,0) and (1,1). 

Concerning Eq9 (3). 
2 2 Among those who worked on solving equations of the form S - dt = 1 

were DIophantus (about 250 AD), and Brahmegupta (born 598 AD). 
The general problem of solving all equations of this form was proposed 

by Fermat in February 1657. Hence an equation of this form should be called 
a Fermat equation. It came to be known as the Pell equation as a result of an 
e r ror by Euler, who incorrectly attributed to Pell the method of solution given 
In Wallis? Opera. 

Lagrange gave the first proof that every Pell equation has Integral solu-
tions with t i- 0 if d Is not a square. 

Others who contributed to the voluminous literature on this equation are 
Legendre, Dirichlet and Gauss. 
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LINEAR RECURSION RELATIONS - LESSON FOUR 
SECOND-ORDER LINEAR RECURSION RELATIONS 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

Given a second-order linear recursion relation 

(.1) T . 1 = a T + b T 1 , 
n+1 n n-1 

where a and b are real numbers and the values T. of the sequence are real 
as well, there is an auxiliary equation: 

(2) x2 - ax - b = 0 , 

with roots 

a + Va 2 + 4b" 
2 

a - Va 2 + 4b 
2 

As is usual with quadratic equations, three cases may arise depending on 
whether 

a2 + 4b > 0, roots real and distinct; 

(4) a2 + 4b = 0S roots real and equal; 

a2 + 4b < 0, roots complex numbers. 

CASE 1. a2 4- 4b > 0. 
In previous lessons we have considered cases of this kind. It has been 

noted that the roots may be rational or irrational. There seems to be nothing 
to add for the moment to the discussion of these cases. 

194 

(3)' 
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CASE 2. a2 + 4b, = 0. 

The presence of multiple roots in the auxiliary equation clearly requires 
some modification in the previous development. If 

x2 - ax - fo = 0 

n n-1 , n-2 A 
x - ax - bx = 0 . 

Since the equation has a multiple root (a/2), the derivative of this equation 
will have this same root. Hence 

(5) nx11"1 - a(n - l )x n " 2 - b(n - 2)xn~3 = 0 

is satisfied by the multiple root also. 
Thus the multiple root, r , satisfies the following two relations: 

(6) 

n n-1 , , n-2 
r = ar + br 

n t -v n - 1 , , t «v n-2 
nr = a(n - l ) r +b(n-2)r 

The result is that if we formulate T as 

(7) 
T = A n r n + B r n 

n 
m A / , i\ n+1 , -o n+1 
T - = A(n+l)r +Br 

it follows that 

(8) 

T . „ = a T , 1 + b T n+2 n+1 n 
= A [a(n + l ) r + bn r 

A t , 0v n+2 , _, n+2 = A(n + 2)r +B r 

n+1 ,, ni 
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so that the form of T is niaintained. 

EXAMPLE 
Find 

tion corresponding to the linear recursion relation 
Find the expression for T in terms of the roots of the auxiliary equa-

T _,, = 6T - 9T , n+1 n n-1 

if TA = 4, T2 = 7. Here the auxiliary equation is x2 - 6x + 9 = 0 with a 

double root of 3. Hence T has the form 
n 

T = Anx3n + Bx3n . n 

Using the values of Tj and T2 

4 = Ax3 + Bx3 

7 = 2Ax32 + Bx32 

with solutions A = -5 /9 , B = 17/9. Hence 

T = :-5nx3n + 17x3" = 3n-2 1 ? ) 
n 9 L^ J 

It may be noted that for any non-zero multiple root r , the determinant of the 
coefficients in the set of equations for TA and T^ is 

r r 

2 r 
= - r 3 

which is not zero, so that these equations will always have a solution. 
CASE 3. a2 + 4b < 0. 

The case of complex roots is quite similar to that of real and distinct 
roots as far as determining coefficients from initial value equations is con-
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cerned. However , s ince we have specified that the t e r m s of the sequence and 

the coefficients in the r ecu r s ion re la t ion a r e r e a l , t he r e will have to be a 

special re la t ion between A and B in the express ion for T : 

T = A r n + B s n . 
n 

Note that r and s a r e complex conjugates , so that r and s a r e of the 

form P + Qi and P - Qi respec t ive ly , where P and Q a r e r ea l . If T i s 

to be r e a l , then A and B mus t be complex conjugates a s well . 

EXAMPLE 

Find the express ion for T in t e r m s of the roo ts of the auxi l ia ry equa-

tion for the l i nea r r ecu r s ion re la t ion 

T 1 = 3 T - 4 T 1 , n+1 n n - 1 

with Tj = 5, T2 = 9. Here the auxi l ia ry equation i s : 

x2 - 3x + 4 = 0 

with roots 

3 + i V 7 • 3 - i *J1 
r _ , s 2 

Then 

5 = A r + Bs 

9 = A r2 +Bis2 

f rom which one finds that 

A = 21 - H i JS/7 ^ = 21 + H i AJ7 
A 28 ' 28 
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Accordingly, 

n „ f21 - 11W7 \ n _, / 21 + 111 N/7 \ n Ln " \ "28 / r I 28 J3 

AN ANALOGUE 

Because of the similarities among second-order linear recursion rela-
tions it is possible to find close analogues among them to the Fibonacci and 
Lucas sequences. Let us consider as an example the second-order linear r e -
cursion relation 

T x 1 = 3 T + T' . 
n+1 n n-1 

The auxiliary equation is 

x2 _ 3 x _ 1 = 0 

with roots 

- 1 + \/13 _ 1 - N/T§ 
r _ _ , s - _ _ . 

If the initial terms are taken as T0 = 0, T4 = 1, T2 = 3S then 

1 = Ar + Bs 

3 = Ar2 + Bs2 , 

with resulting values A = 1/ N/T3 and B = - 1 / AJ13 SO that 

T _ r n - s n _ r n - s n 

-s/IS r " s 

has precisely the same form as the expression for F with 13 replacing 5 

under the square root sign. 
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If the relation V^ = T ^ + T _1 is used to define the corresponding 
,?Lucas" sequence, the terms of this sequence are: 

V0 = 2, Vi = 3, V2 = 11, V3 = 36,— . 

Solving for A and B from 

3 = Ar + Bs 

11 = Ar2 + Bs2 

gives values of A = 1, B = 1, so that 

Vn = r n + s n 

in perfect correspondence to the expression for the Lucas sequence. As a r e -
sult of this similarity, many relations in the Fibonacci-Lucas complex can be 
taken over (sometimes with the slight modification of replacing 5 by 13) to 
this pair of sequences. Thus: 

T 0 = T V 2n n n 
T = T 2 4- T^ 
x2n+l n n+1 

T ,T - - T2 = {-if""1 
n+1 n-1 n 
V0 = V2 + 2{- l ) n + 1 

2n n 
V + V _,_0 = 13T _,, n n+2 n+1 

V2 + V2 = 13 (T2 + T2 ) . n n+1 n n+1 

PROBLEMS 
1. For the sequence T | = 1, T2 = 3, obeying the linear recursion relation 

T- ,- = 3 T + T -n+1 n n-1 

show that every integer divides an infinity of members of the sequence. 
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2. For the corresponding rtLucasn sequence, prove that if m divides n, where 
n is odd, then V divides V . m n 
3. Find the expression for the sequence Tj = 2, T2 = 5 in terms of the roots 
of the auxiliary equation corresponding to the linear recursion relation 

r T n = 4 T + 4 T ., . n+1 n n-1 

4. Prove that the second-order linear recursion relation 

T ± 1 = 2T - T -n+1 n n-1 

defines an arithmetic progression. 
5. If Ti = a, T2 = b , find the expression for T in terms of the roots of 
the auxiliary equation corresponding to T - = 4T - 4T - . 
6. If Tj = i, T2 = 1 and T - = -T - , find the general expression for 
T in terms of the roots of the auxiliary equation. 
7. T t = 3, T2 = 7, T3 = 17, T4 = 43, T5 = 113,-•• a re te rms of a second-
order linear recursion relation. Find this relation and express T in terms 
of the roots of the auxiliary equation* 
8. For the second-order linear recursion relation T , 1 = 5 T + T - find 

n+1 n n-1 
the particular sequences analogous to the Fibonacci and Lucas sequences and 
express their terms as functions of the roots of the auxiliary equation. 
9. For Ti = 5, T2 = 9, T ^ = 3T - 5T - , find T in terms of the roots 

1 4 n+1 n n-1 n 
of the auxiliary equation. 

10. If 

(-66 + 13 A / 3 3 " V 5 + *J~33\n ^ / - 6 6 - 1 3 ^ 3 3 \ / s - /s/33\n 

n \ 33 ) \ 2 J \ 33 ) \ 2 J 

determine the recursion relation obeyed by T and find Tj and T2. 

[ See page 210 for Solutions to Problems. ] 

• • • • • 



SOME RESULTS ON FIBONACCI QUATERNIONS 
MUTHULAKSHMI R. IYER 

Indian Statistical Institute, Calcutta, India 

1. INTRODUCTION 

Recently the author derived some results about generalized Fibonacci 
Numbers [3J. In the present paper our object is to derive relations connecting 
the Fibonacci Quaternions [ l ] and Lucas Quaternions 9 to use a similar termi-
nology, with the Fibonacci Numbers [2J and Lucas Numbers [4] as also the 
inter-relations between them* In Section 3, we give relations connecting 
Fibonacci and Lucas Numbers; in Section 4, we derive relations of Fibonacci 
Quaternions to Fibonacci and Lucas Numbers, and in 5, Lucas Quaternions 
are connected to Fibonacci and Lucas Numbers. Lastly, in Section 6 are listed 
the relations existing between Fibonacci and Lucas Quaternions. 

2„ TERMINOLOGY AND NOTATIONS 

Following the terminology of A„ F. Horadam | _ l j , we define the n 
Fibonacci Quaternion as follows: 

Q n * F n + i F n + l + ^Fn+2 + k F : n+3 

where F is the n Fibonacci Number and i , j ,k satisfy the relations of the n 
Quaternion viz: 

i2 = j 2 = k2 = - 1 , ij - ji = k; jk = -kj = i; M = -ik = j . 

th Now on the same lines we can define the n Lucas Quaternion T say 
as 

T = L + iL . - + jL , Q + kL _,_Q n n n+1 J n+2 n+3 

th where L is the n Lucas number. Also, we will denote a quantity of the 
form 

201 
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F n " i V l ^ F n - 2 " k F n - 3 

by Qn* and 

F + IF - + j F 0 + kF Q n n - 1 J n -2 n - 3 

by Q— Similar notations hold for T + and T - , that i s s 
J ^ n n* n 

L - IL n + jL 0 - kL Q = T # n n - 1 J n -2 n~3 n* 

and 

L + IL . + jL . + kL 0 = T - . n n - 1 J n -2 n~3 n 

Now we proceed to de r ive the re la t ions one by one. All these r e s u l t s a r e 

obtained from the definitions of Fibonacci Numbers and Lucas N u m b e r s , given 

by 

n , n 
F = l^JL. , L = (a» + b n } 

V5 

for all n» where a and b a r e the roo t s of the equation 

x2 _ x _ i = o , 

obtained from the Fibonacci and Lucas r e c u r r e n c e re la t ions . The roo ts a r e 

connected by 

a + b = 1, a - b = y/E 9 

and ab = —1 
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SECTION 3 

Cons ider the following re l a t ions : 

203 

(1) F L = F 
n+r n+r 2n+2r 

(2) 
Therefore 

(3) 

F L = F 0 0 
n - r n - r 2n -2 r 

F -L _, + F L = F Q L 0 
n+r n+r n - r n - r 2n 2r 

(4) 

(5) 

(6). 

Therefore 

F -L _, - F L = F 0 L 0 
n+r n+r n - r n - r 2 r 2n 

F _, L = F 0 + ( - l ) n ~" r F 0 n+r n - r 2n 2 r 

F n - r L n + r F 2 n " (""1) F 2 r 

(7) 

and 

(8) 

(9) 

(10) 

F ^ L + F L _,_ = 2 F 0 n+r n - r n - r n+r 2n 

F ^ L - F L ^ = 2 ( - l ) n " r F 0 n+r n - r n - r n+r 2 r 

F _, L = F 0 _ + ( - I F F n+r n 2n+r r 

F L _, • = F Q _, - ( - I F F n n+r 2n+r r 

So 

(11) 

(12) 

F ^ L + F L ^ = 2 F 0 a . n+r n n n+r 2n+r 

F ^ L - F L ^ = 2 ( - l ) u F 
n+r n n n+r • r 

(13) F L = F + (-1) F 
n+r n+s 2n+r+s v ; r-
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(14) F L _,_ = F , , + ( - l ) n + S + 1 F 
n+s n+r 2n+r+s r~s 

(15) F ^ L ^ + F ^ L ^ = 2 F O J _ _ L 
n+ r n+s n+s n+r 2n+r+s 

(16) F ^ L ^ - F ^ L ^ = 2( - l ) n + S F 
n+r n+s n+s n+r r - s 

SECTION 4 

In this section, we give the list of relations connecting the Fibonacci 
Quaternions to Fibonacci and Lucas Numbers. The simplest one is 

(17) Qn - i Q n + 1 - j Q n + 2 - k Q n + 3 = L n + 3 

Consider 

(18) Q n - l Q n + l " < = ( - D n [ 2 Q i - 3 k ] 

( 1 9 ) < £ - l + < £ = 2 S n - l - 3 L 2 n + 2 

(20) Q ^ + J - Q ^ _ 1 = Q n T n = ( 2 Q 2 n - 3 L 2 n + 3 ) + 2 ( - l ) n + 1 ( Q 0 - 3k). 

( 2 1 > V2 Q n- l + V W " 6 F n V l " 9F2n+2 + ^ ^ V l ) " 3k> 

(22) 

(23) 

%-!%•* " < + l = ( - « n [ 2 + « + 3j + k ] 

Q n - l Q n + l " Qn-2Qn+2 = ^ . [ " o " k ] + *<rlf+1 [ Q , - 2k] 

<2 4 ) Q n -3 V 2 + Q n Q n + l = 4 Q 2 n - 2 " 6 L 2 n + l 

<25> Q n - 1 + Qn+1 = 6 F n + l V l " 9 F 2n + 3 + 2^\-2) 

Also the remarkable relation 

(26) g n + r
+ ^ - 1 ) Q n - r = 

Q n 
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( 2 7 ) Q n + l - r Q n + l + r " Q n + 1 = ^ ^ ^ ^ 2 ^ % " 3 r> 1 

Now we turn to re la t ions of the form: 

(28) Q n + r L Q + r - Q 2 n + 2 r + ( - l ) n + r Q 0 

( 2 9 ) Q n - r L n - r = Q 2 n - 2 r + ^ ^ O 

( 3 0 ) WW + Q n - r V r = Q 2 n L 2 r + ^̂ "X 

(31) Q L , - Q L = F 0 T 0 
n+r n+r n - r n - r 2r 2n 

(32) Q ^ L = Q 0 + (~l)n""rQ0 
7 Ti+r n - r ^ 2 n 2 r 

(33) Q L _, = Q 0 + ( - l ) n ~ r + 1 Q 0 * 7 i i - r n+r ^ 2 n ^ 2 r * 

(34) Q _,_ L + Q L _ L = 2 Q 0 + (- l ) n~" rL0 QA ' ^ n + r n - r ^ n - r n+r ^ 2 n 2 r * 0 

(35) Q ^ L - Q L ^ = ( - l ) n " r F 0 TA x ' ^ n + r n - r ^ n - r n+r 2r 0 

(36) Q , L = Q 0 , + ( -D n Q 
v ' ^ n + r n ^ 2 n + r v ' ^ r 

(37) Q L = GL - ( - l ) n Q* v ; ^ n n+r ^ 2 n + r x ; ^ r 

(38) Q ± L + Q L , = 2Q 0 _,_ + ( - l ) n L QA v ' ^ n + r n n n+r ^2n+r r 0 

(39) Q n + r L n - Q n L n + r o ( - l ) - F r T 0 

( 4 0 ) W t = Q2n+r+t + <-»n+\-t 

<4 1> V t L n + r " Q 2 n + r + t + ( " 1 ) n + r + l Q ^ 

The re fo re ; 

(42) Q j L ^ + Q . J L a . = 2Q 0 ^ L, + ( - l ) n + t L J 3 A 
^ n + r n+t TL+t n+r ^2n+r+t v r - r * 0 
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( 4 3 ) Q n + r L n + t " Qn+tLn+r = ^ X ^ O 

(44) 

(45) 

(48) 

(49) 

(50) 

(52) 

(53) 

(54) 

(56) 

Q n + r F n - r ~ 5 [T2n " ( - 1 ) n " r T 2 r ] 

Q n - r F n + r = 5 [T2n " ^ " ^ a r ] 

( 4 6 ) V r F n - r + V A + r = k [ 2 T 2n " ( - 1 ) n " r L 2 r T o ] 

<47> < W F n - r " V r F n + r = ^ ^ r S ) 

W n = i [ T 2n + r " ^ r ] 

Q n F n + r = I [ T 2n + r " ^ l ] 

V n + V m x = \ [ 2 T 2 n + r " < - « V o ] 

(51) Q ± F - Q F ± = ( - l ) n + 1 F QA 
^n+r n ^n n+r r*0 

Qn+rFn+t ~ 5 [T2n+r+t " ( " 1 ) Q T r - t J 

Qn+tFn+r = 5 [T2n+r+t " ( _ 1 ) Q * T r = l J 

Qn+rFn+t + Qn+tFn+r = 5 [2T2n+r+t " ( _ 1 ' L r - t T o ] 

(55) W n * " Wn+r = ^ X - t S ) 

Wn-r + ^ X - A + r = I [ T 2n ( 1 + < " » ' >" ^ ' ^ r " < " « X ] 

r-t 
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(59) Q F , + ( - 1 ) 0 /F = 4 
v ; ^n+r n+t * ; ^n+t n+r 5 

T 2nW 1 + ( - 1 > r > 
- - H)n + tTr„t - ( - i f + r + t T ^ t 

SECTION 5 

In this section we give the results connecting Lucas Quaternions T 
Fibonacci and Lucas Numbers. The simplest is: 

(60> T n " i T n+ l - JTn+2 " k Tn+3 = 1 5 F n+3 

(6« W W = Q2n+2r " ^ " X 

(62) T F = Q - (- l)n + rQA 
n - r n- r 2n~2r 0 

(63) T _,_ F _ + T F = Q 0 LOT. - 2( - l ) n + r Q A x ' n+r n+r n - r n- r 2n 2X 0 

(64) T _, F , - T F = F0 T 0 
v ' n+r n+r n - r n- r 2r 2n 

<65> Tn+rFn-r = %n " ^ " X 

<66> Tn-rVr = Q2n + ^ " ^ 

( 6 7 ) T n + r F n - r + Tn-rFn+r = 2%n ' t ' ^ S ^ O 

<68> T n + r F n - r " T n - r F n + r = ^ ^ V o 

(69) T F = Qrt - (-l)nQ 
v ; n+r n ^2n+r v ; ^ r 

<70> T n F n+r = Q 2 n + r + ^ X 

<71> T n + r F n + T n F n+r = 2Q2n+r " ^ \ % 

(72) T ^ F - T F ^ = (~l)n+1F TA 
n+r n n n+r r 0 
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(73) Wn* =Q2n^-(-A-t 
( 7 4 ) T r + t F n + r = Q2n+r+t + ( " 1 ) n + r Q? r t 

So 

( 7 5 ) T n + r V t + T n + t F n + r = * W * " ^ + K t % 

( 7 6 ) T n + r F n + t " T n + t F n + r = ( " ^ V o 

( 7 7 ) T n + r L n - r = T2n + ^ " ' ^ r 

( 7 8 ) VrVr = T2n + W^r 

( 7 9 ) T n + r V r + T n - r L n + r = 2 T 2n + ^"'Vo 

( 8 0 ) T n + r L n - r " T n - A + r = ^ ^ V o 

( 8 1 ) T n + r L n = T 2n + r + < " « % 

(82) T L ^ = T _,_ + (-l)nT* 
n. n+r 2n+r v ' r 

(83) T , L + T L ^ = 2T0 _,_ + (-l)nL TA 
n+r n n n+r 2n+r r 0 

( 8 4 ) T n + r L n " T n V r = ^ ^ r % 

( 8 5 ) W n + t = T 2n + r + t + ^ ^ r - t 

( 8 6 ) V t L n + r = T 2n + r + t + ^""Vt 

( 8 7 ) T
n + r V t + T n + t L n + r = 2 T 2n + r + t + ^ " V l ^ O 

( 8 8 ) T n + r L n + t " T n + t V r = ^ ^ H - t S 

i89) T n + r L n - r + ^X-A+r = V1 + <-»*> + ̂ " ' ^ i T < - « X 
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<90) T n + r F n - r + ^ V ^ = I [ Q 2n ( 1 + ^ " ^'\r 

(91> T n + r F n + t + ( - 1 ) r V n + r = I [ S n + r + t ( 1 + ( - 1 ) r ) 

- (-Dn+tQr_t + (-Dn+r+tQ*_t] 

<92> T n + r L n + t + ^ \ + t \ + v = T 2 a + r t ( 1 + {~lf) + ^ V t 

SECTION 6 

Lastly, in this section we obtain the inter-relations between the Fibonacci 
and Lucas Quaternions 

(93) Q L + T F = 2Q„ 
n n n n 2n 

(94) Q L - T F = 2(-l)nQ„ 
n n n n 0 

(95) Q + T = 2Q _,, 
' n n n+1 

(96) T - Q = 2Q , 
' n n n-1 

(97) 

(98) 

T n + Q n = 6 [ 2 F n Q n " 3 F 2 n + 3 ] + 4 ^ % 

T n " Q n = 4 [ 2 F n Q n - 3 F 2 n + 3 + ( - 1 ) n T o ] 

(99) T n Q n + T ^ Q ^ = 2T 2 n _ 1 - 15F 2 n + 2 

(100) T n Q n - T ^ Q ^ = 2 Q 2 n _ 1 - 3 L 2 n + 2 + M-lf(QQ-3k) 

( 1 0 1 ) T n Q n + l " T n + l Q n = 2 ( " 1 ) n [ 2 Q l " 3 k ] 

<102> T n + A + s " T n + S Qn + r = ^ - U ^ 1 W o 
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(Continued from p. 200.) 
SOLUTIONS TO PROBLEMS 

1. For any modulus m, there are m possible residues ( 0 , 1 , 2 , " • ,m - 1). 
Successive pairs may come in m2 ways. Two successive residues determine 
all residues thereafter. Now in an infinite sequence of residues there is bound 
to be repetition and hence periodicity. 

Since m divides T0, it must by reason of periodicity divide an infinity 
of members of the sequence. 
2. n = mk» where m and k are odd. V can be written 

n 
T7 , nivk , , m x k 
V = (r ) + (s ) , 

which is divisible by V = r + s . 
_ J m _ 

3„ r = 2 + 2i >s/2, s = 2 - 2i *s/2. 

\ • {^y*(i^y 
4. The auxiliary equation is (x - I)2 = 0, so that T has the form 

T = Anx l n + B x l n = An + B . n 

5. 

(Continued on p. 224.) 

T = 2 n 
n 

/ b - 2a\ ^ 4a - b 

• • • • • * 



FIBONACCI-LUCAS INFINITE SERIES - RESEARCH TOPIC 
BROTHER ALFRED BROUSSEAU 
St. Mary's'College, California 

It is almost an understatement to say that the Fibonacci Quarterly bristles 
with formulas. A review of this publication, however, reveals that there are 
very few that involve summations with Fibonacci or Lucas numbers in the de-
nominator. Five problems in all seem to summarize the extent of what has 
been done along these lines in the Quarterly to February, 1966 (see references 
1 to 9 inclusive). The purpose of this paper is to begin the process of filling in 
this gap by capitalizing on a well-known and favorite method in series summa-
tion and to provide an initial set of formulas which may form the groundwork 
for more extensive developments by other researchers . 

The method to be employed may be illustrated by the case of 
00 

J^nln + 1) • 
This can be written in the alternate form 

£ [l/n-l/(n + D] . 
n=l 

Let S be the sum of the first n terms of either the original series or of the 
corresponding n parentheses in the remodeled series. It follows that 

Sn = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + . . . + [l/(n - 1) - l /n ] . 

Intermediate terms add up to zero in pairs with the result that: 

. Sn = 1 - l /n . 

Now by definition, the sum of an infinite series is given by the limit of the par-
tial sums, S , as n goes to infinity. 

Hence 

t lMn + l) - S - n U K o Sn - 1 . 
n=l 

This method with some interesting variations will be employed in working out 
formulas which will provide in closed form the sums of various Fibonacci-
Lucas series. 

211 
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Case 1. (1) S contains two terms. (2) The terms of the revised series go 
to zero as n goes to infinity. 

The example given above would correspond to this type. As an il lustra-
tion, consider the summation: 

00 

n=l 
The sum of the first n parenthesis is : 

Sn = (1/F2 - 1/F3) + (I/F3 - 1/F4) + . . . + [ l / F n + 1 - l / F n + 2 ] 

or 

But 

S = 1 - 1/F ^ 
n n+2 

S = lim S = lim (1 - 1 / F ^ ) = 1 n->oo n n->oo* n+2 

F - F F 
i / F , - i / F - n + 2 n + 1 -n+1 ' n+2 F , - F . 0 F , - F ^ ' n+1 n+2 n+1 n+2 

Accordingly 
00 F 

(i) £ T—f- = 1 • 
n=l n+1 n+2 

Case 2. (1) S contains more than two terms. (2) The terms of the revised 
series to to zero as n goes to infinity. 

Example. 

£ [ 1 / F n - l / F n + 3 ] 
11=1 

Sn = ( 1 / F i - I/F4) + (1/F2 - 1/F5) + (I/F3 - 1/F6) 
+ (I/F4 - 1/FT) + • • • + (1/Fn - l / F n + 3 ) 

Sn = 1 / F l + 1/F2 + I/F3 - 1 /Fn + 1 - l / F n + 2 - l / F n + 3 . 

Hence S = lim S = 1 + 1 + 1/2 = 5/2 . 
n - ^ 0 0 n 

But 
1/F - 1/F ^Q = (F LQ - F ) /F F ^Q = 2F ^ - / F F ^ . / n ' n+3 K n+3 n ' n n+3 n+1' n n+3 

Hence 
00 F 

(2) £ Y^~ = 5/4 
n=l n n+3 
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Case 39 (1) S^ contains two terms. (2) The terms of the revised series 
approach a limit other than zero. 

Example. 
00 
y fF /L - - F ^ / L 1 - ^ L n n-1 n+1 n J 

Sn = (Fj /L 0 - F2 /L i ) + (F2 /LA - F3 / L ^ + ^ ^ F ^ ^ - F ^ ) 

S = F I / L Q - F ^ / L . n x u n + 1 ' n 
S = lim (1/2 - F ^ / L ) = 1/2 - lim Fn+1 

n—>oo n+1 n n—=>oo F +F n-1 n+1 F / F 
S = 1/2 - lim n " + 1

 y _ n - 1 . n ^ c o l + F ^ / F ^ 

If r be the Golden Section ratio 
1 + >s/5 

lim F , - / F - = r2
 e 

n->oo n+1 n-1 
Hence 

S = 1/2 - r2 / ( I + r2) = (1 - r 2 ) /2 ( l + r 2 ) . 
On the other hand, 

F L - F ,-L - t -,ai-
F /L , - F +1 /L = n n_ ^Lim = J - l ) . . n ' n-1 n+1 n L . L L 1 L 

n-1 n n-1 n 
Therefore 

(3) y (-1) = r - 1 - ^ 
£ l L n -1 L n 2(r2 + 1) ~ /0 

Case 4. S contains more than two terms* (2) The terms of the revised 
series approach a limit not zero. 

Example. 
00 

£ < V l / * n - Fn+2/F
n+3> n=l 

Sn = (F„ /Ft - F3 / F 4 ) + (Fj / F 2 - F4 /FB) + (F2 / F 3 - F5 / F e ) 
+ (F3 / F 4 - F8 / F 7 ) • • • (F n _ 3 / F n _ 2 - F n / F ^ ) 
+ ( F n-2 / F n - 1 " F n + 1 / F n+2 > + ( V l ^n " F n + 2 / F

n + 3 > 
Sn = F0 / F l + F l / F 2 H- F2 / F 3 - F n / F n + 1 - F n + 1 / F Q + 2 - F n + 2 / F n + 3 

S = lim S = 0 + 1 + 1/2 - Sr"1 = % ^ = i - ^ T . 
n -^oo n 2r 2 
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Now 

F - /F - F , 9 /F ^ = ^ V t , " FnFn+2 = 2(-l)n/F F ^ . 
n-1 ' n n+2 ' n+3 F F ^ Q ' n n+3 

n n+3 
Therefore 

n=l n n+3 

ANOTHER FAMILY OF SUMMATIONS 
Additional formulas can be developed by having sums of two terms in each 

parenthesis with the signs before the parentheses alternating. 
Example 1. 

SG = t ( -D*- 1 [ V ( F k L k + 1 ) + V ( F k + 1 L k + 2 ) ] • 
k=l 

Then 

SQ = l / (P 1 L l ) + ( - l > n - 1 l / ( P l H . 1 I ^ ^ ) 
S = n 1 ^ Sn = 1 / 3 

On the other hand, 

"^ 4-1 "^ -i-9 "*" "^ "^ -1-1 ^ J 9 -1-9 
l / ( F n L n + l ) + l / ( F n + l L n + 2 ) = *F F ^ - L A ^ 0

 = F F ^ L ^ L _ ' 
n n+1 n+1 n+2 n n+1 n+1 n+2 

Accordingly 
oo (-1) L 9 n 4 . o 

(5) E r^—ir^r— = 1/3 

n=l n * n+1 n+1 n+2 
Example 2. 

t+o(-Dn-1[l/^+r-M/F^_r_1] 
n=r+2 

Sn = . ^ r * + 1 / F ^ " ( 1 / F l r + 3 + ^FP + " + ^ ' ^ K ^ v - l ^ ^ V 
2r+l , ^ / n+2r-l 

S = 
zr+i , - / n+^r-i . / 

L = E <-i)J"1/Fi + E (-D7 F? 
n j=l ' 3 j=n+l / 3 

S = Mm S = 2 v + 1 / -nj-l / -2 • n-~*» n 2^ ("1)J / F< 
j=l ' 3 

But 
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l / F 2 + 1/F2
 n n+r ' n - r - 1 

F 2 + F 2 

n - r - 1 n+r 
F 2 F 2 

n+r n - r - 1 

F 2 r + 1 F 2 n - 1 
F 2 F 2 

n+r n - r - 1 

Allowing for the fact that F 2 r + 1 i s a constant factor in all t e r m s , it then fol-
lows that: 

(6) 
. . . a i - i -

oo (-1) F 2 n - l 
n=r+2 F 2 F 2 . 

n+r n - r - 1 

.. 2 r + l . , 

T
JL- E ^A? 
2 r + l j= l ; J 

SOME ADDITIONAL FORMULAS 

Additional formulas together with an indication of the breakdown sums 

from which they w e r e der ived a r e given below* 

(7) 

Der ived from 

E (-D: n - l 2n+2 

n=l L2 L2 
n n+2 

= 8/45 . 

n=l 

(8) 

der ived f rom 
r F F F n=l n n+2 n+3 

1/4 

1/2 E F F F 
n= l L n n+1 n+2 

F F F n+1 n+2 n+3 

(9) 

der ived f rom 

"n+3 
" F F F F n= l n n+2 n+4 n+6 

= 17/480 

n=l F F F 
L n n+2 n+4 

Tp Tp Tp 
n+2 n+4 n+6 

(10) 

der ived from 

E '4n+3 
F F F F n=l 2n 2n+l 2n+2 2n+3 

E[1/(F2F2_)-1/(F 

1/2 

n=l "2n+2 2n+3 )] 
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(11) 

derived from 

(12) 

derived from 

00 

SV2/<F
n

Fn+4> = 17/6 
n=l 

2 0/Fn - l/Fn+4) 
n=l 

£ (-1>n'lr- - x 
n=:1 F2 F2 

n 1 n n+1 

00 

£ < ^ - ^ + l / F n + l > 
n=l 

, - v i i - 1 , oo (-1) L ,-
E n+1 _ i 

F F , F n " n=l n n+1 n+2 
derived from 

derived from 

derived from 

derived from 

n=l 
00 / - . \ I1 -1 \ - (-1) _ 3 - r 

(14) k ^^^Ts = ^ ^ 
00 

S . ( L 3 n - 3 / L 3 n _ L 3 n / : L 3 n + 3 ) 

n=l 

« ( - l ) n _ 1 F 3 
(15) Z — = 1/8 

n = 1 F 3 n F 3 n + 3 

| (-I)11"1 [ l / F | n + l / F 3 n + 3 ] 
n=l 

(16) £ (-1)11"1 = 150 r - 1 - 83 
U b ; ^ F F _ 150 

n=l n n+5 

2 ( F
n - l / F n - F n - K / F n + 5 > 

n=l 
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(17) 
» (-if"1 F 

n=l 

6n+3 
F F 6n 6n+6 

1/16 

(18) 2n+5 
" F F F F F F 

n=l n n+1 n+2 * n+3 * n+4 * n+5 
1/15 

der ived from 
f F _i 
" ' F F 1 n=l L n n+1 

F n+2 F n + 3 F F F F n+2 n+3 n+4 n+5 

(19) 

der ived from 

(20) 

der ived from 

oo / i\n-l 
Lj F F 

n= l 2 n - l 2n+3 
= 1/6 

00 

£ <-D3 

n=l 

n - 1 
. F F F 
L 2 n - l 2n+l 2n+l 1 2n+3J 

2n 
n= l n+2 n-2 

I—; = 85/108 

X[ l /F^ 2 -1 /F^ 2 ] 
n=l L 

CONCLUSION 

Two main l ines of development a r e open for continuing this r e s e a r c h : 

(1) Building up a collection of formulas ; (2) Finding additional methods for 

a r r iv ing a t the summat ion of infinite F ibonacc i -Lucas s e r i e s . 

R e s u l t s , whether in the form of isolated formulas (with proof) , o r o ther 

m o r e extensive developments should be repor ted to the Edi tor of the Fibonacci 

Quar t e r ly . 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico, 87106. Each problem or 
solution should be submitted in legible form, preferably typed in double spac-
ing, on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of receipt 
of their contribution are asked to enclose self-addressed stamped postcards. 

B-160 Proposed by Robert H. Atiglin, Dan River Mills, Danville, Virginia. 

Show that, if x = F n F n + 3 , y = S F ^ F ^ , and z = F ^ , then x* 
+ y2 = z2. 

B-161 Proposed by John Ivie, Student at University of California, Berkeley, California 

Given the Pell numbers defined by P 2 = 2P + 1 + P .., P0 = 0, P* = 
1, show that for k > 0; 

[(k-l)/2] 

« Pk= £ ( 2 r \ l 2 r -
r=0 

k 

W P 2k=E(r) 2 r p r • 
r = l 

B-162 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California 

Let r be a fixed positive integer and let the sequences Uj,U2,* * • sat-
isfy u = u - + u . , + • • • + u for n > r and have initial conditions Ui 

J
m n n-1 n-2 n- r * 

= 2J""1 for j = l ,2 j***,r . Show that every representation of U as a sum 

218 



Apr. 1969 ELEMENTARY PROBLEMS AND SOLUTIONS 219 

of distinct u. must be of the form u Itself or contain explicitly the terms 
u n - l s Un-2J " " ' un r+1 an(^ s o m e representation of u . 

B-163 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico 

Let n be a positive integer. Clearly 

(1 + N/5)n = a + b ^ 9 x n n 9 

n-1 with a and b integers. Show that 2 is a divisor of a and of b . 

B-164 Proposed by J. A. H. Hunter, Toronto, Canada. 

A Fibonacci-type sequence is defined by: 

G . 0 = G , - + G 
n+2 n+1 n 

with Gi = a and G2 = b* Find the minimum positive values of integers a 
and b9 subject to a being odd, to satisfy: 

G - G ^ - G2 = - l l l l l ( - l ) n for n > 1, 
n-1 n+1 n 

B-165 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Define the sequence |b{n)j by 

b(l) = b(2) = 1, b(2k) = b(k), and b(2k + 1) =b(k + 1) + b(k) 

for k > 1. For n > l f show the following: 

(a) b ( [ 2 n + 1 + ( - l ) n ] / 3 ) = F n + 1 , 

(b) M p . ^ + H) 1 1 ]^ ) = Ln . 
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SOLUTIONS 

A MULTIPLICATIVE ANALOGUE 

B-142 Proposed by William D. Jackson, SUNY at Buffalo, Amherst, N.Y. 

Define a sequence a s follows: AA = 2, A2 = 3 , and A = A -A 2 

for n > 2. Find an express ion for A . 

Solution by J. L. Brown, Jr., Pennsylvania State University, State College, Pa. 

Let B = InA for n > 1. Then B 4 = In 2 , B 2 = In 3 and B = B -n n — * • • * . - • n n - 1 
+ B Q for n > 2. C lea r ly n—& 

B = F . 0 • In 2 + F - • In 3 n n -2 n - 1 

for n > 2 , o r 

A = 2 n ~ 2 • 3 n " 1 
n 

for n > 2. 
Also solved by Christine Anderson, Richard L. Breisch, Timothy Burns, Herta T. Freitag, J. A. H. 
Hunter (Canada), John Ivie, Bruce W. King, Leslie M. Klein, Arthur Marshall, C. B. A. Peck, John 
Wessner, Gregory Wulczyn, Michael Yoder, David Zeitlin, and the proposer. 

THE DETERMINANT VANISHES 

B-143 Proposed by Raphael Finkelstein, Tempe, Arizona. 

Show that the following de te rminan t van ishes when a and d a r e na tura l 

n u m b e r s : 

F a F a + d F a+2d 

F a+3d F a+4d F a+5d 

I F a+6d F a+7d F a + 8 d | 

What i s the value of the de te rminan t one obtains by replacing each Fibonacci 
n u m b e r by the cor responding Lucas n u m b e r ? 
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Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico 

Let r = F 6 d / F 3 d and a = F g d + 1 - r F ^ . Then 

r F 3 d + S F 0 = F 6 d and r F 3 d + 1 + s F l = FQd+1 . 

It follows by induction that 

Fn+6d - r F n + 3d + s F n 

for all n; in particular, it is true for n = a, n = a + d, and n = a + 2d. 
Hence the three rows of the matrix are linearly dependent and the determinant 
is zero. 

If each Fibonacci number is replaced by the corresponding Lucas num-
ber , the determinant will also be zero by similar reasoning. 

Editorial Note: It can be shown that r = L^, and s = (-1) 
Also solved by F. D. Parker, C. B. A. Peck, David Zeitlin and the proposer. 

LUCAS ALPHABETIC 

B-144 Proposed by J. AsH. Hunter, Toronto, Canada. 

In this alphametic each distinct letter stands for a particular but differ-
ent digit, all ten digits being represented here. It must be the Lucas ser ies , 
but what is the value of the SERIES? 

ONE 
T H R E E 
START 

L 
S E R I E S 

Solution by Charle s W. Trigg, San Diego, California 

Since they are the initial digits of integers, none of 09 T, S, or L can 
be zero. Proceeding from the left, clearly S = 1, E = 0, and T is 8 or 
9. In either event, H + T > 10, so T = 8. Then from the units1 column, 
L = 3. 
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The three integer columns then establish the equalities: 

N + R + 1 = 10 
0 +:R + A + 1 = I + 10 

H + 8 + l = R ' + 1 0 . 

Whereupon, N + H = 10 and (N,H) = (4,6)' or (6,4). But H = R + 1, so 
R = 5, H = 6, N = 4. 

Then 0 + A = I + 4, and 0 = 9, A = 2, 1 = 7. (0 and A may be 
interchanged.) Consequently, S E R I E S = 105701. 
Also solved by Richard R. Breisch, Timothy Burns, A. Gommel, Edgar Karst, John Milson^ 
C. B. A. Peck, John Wessner, Michael Yoder, and the proposer. 

BINARY N-TUPLES 

B-145 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Given an unlimited supply of each of two distinct types of objects, let f(n) 
be the number of permutations of n of these objects such that no three con-
secutive objectives are alike. Show that f (n) = 2F , i , where F is the 
th n 

n Fibonacci number. 
Solution by Bruce W. King, Adriondack Community College, Glen Falls, N.Y. 

Call a permutation of the required type an Admissible n permutation," 
and let A and B be two of the distinct types of objects. A list of admissible 
n + 1 permutations can be constructed in the following way: 

(a) For each admissible n permutation ending in A, adjoin B on the 
right; for each distinct admissible n permutation ending in B, 
adjoin on the right. 

(b) For each distinct admissible n - 1 permutation ending in A, adjoin 
BB on the right; for each distinct* admissible n - 1 permutation 
ending in B, adjoin AA on the right. 

Certainly the resulting list contains only admissible n•+ 1 permutations. 
Furthermore, there is no possibility of duplication because the permutations 
described in (b) end with two identical le t ters , but those described in (a) end 
with two different letters* Lastly, no n + 1 permutation is unobtainable in 
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this way. For , if there were such a permutation, either the n - 1 permuta-

tion excluding its last two letters 5 or the n permutation excluding its last 

letter would have to be admissible. Consequently, we see that 

f(n + l) = f(n^ 1) +f(n) . 

The rest is an easy proof by induction. 

By direct enumeration, f(3) = 6 = 2F4. If f(n) = 2F - for integers 

n 1 N9 then 

f(N + 1) = fOU - 1) + f(N) = 2 F N + 2 F N + 1 = 2(FN + F N + i ) = 2 F N + 2 

and the proof is complete. 
Also solved by J. L. Brown, Jr., C. B. A. Peck, Michael Yoder, and the proposer. 

ANGLES OF A TRIANGLE 

B-146 Proposed by Walter W. Homer, Pittsburgh, Pennsylvania 

Show that tr = Arctan ( l / F 2 n ) + Arctan F 2 n + 1 + Arctan F 2 n + 2 . 

Solution by C. B. A. Peck, Ordnance Research Lab., State College, Pa. 

F r o m the solution to H-82 (FQ9 69 19 52-54)9 we get 

Arc tan ( 1 / F 2 n ) = Arc tan ( l / F 2 n + 2 ) + Arctan d / F 2 n + 1 K 

The r e su l t now follows from Arc tan x + Arc tan (1/x) = 7r/2. 

Also solved by Herta T. Freitag, John Ivie, Bruce W. King, John Wessner, Gregory Wulczyn, 
Michael Yoder, and the proposer, 

TWIN PRIMES 

B-147 Proposed by Edgar Karst, University of Arizona, Tuscon, Arizona, in honor of the 
66th birthday of Hansraj Gupta on Oct. 9, 1968, 

Let 
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S = (1/3 + 1/5) + (1/5 + 1/7) + • • • + (1/32717 + 1/32719) 

be the sum of the sum of the reciprocals of all twin primes below 215. Indicate 
which of the following inequalities is true; 

(a) S K TT2/6 (b) 7r2/6 ..< S < Ve (c) *Je < S 

Solutions by Paul Sands, Student, University of New Mexico, Albuquerque, New Mexico, and the 
proposer. (Both used electronic computers.) 

True inequality 
Number of pairs of primes involved 
S, to six decimal places 

Proposer 
• ( b ) 

55 

lo647986 

PaulJ3ands 
(b) 
55 

1.648627 

(Continued from p. 210.) 
6. 

• • • * • 

T = -(-i)11 
n 

T _,, = 5T - 6T -n+1 n n-1 
T = 2 n + S11"1 

n 
5 + <s/29 

2 
n n 

s 
V29 

5 - <̂ 29 

with terms 1, 5, 26, 135, 

n 
3+WIT 

rn + s n with terms 5, 27, 140, • • 

s = 
3 - iN/11 

/ 3 3 - 1 6 W l l \ n / 3 3 + 16i>v/ll\ n rn = \ £ 5 — ) * +{ 55 ) S 

10. T _,_- = 5 T + 2 T -; T< = 3, T2 = 7 . 
n+1 n n-1 * * 

* * • • • 
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BINDERS NOW AVAILABLE 

The F ibonacc i Associat ion is making available a binder which 
can be used to take ca re of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

f,« . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ronica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high from the 
bottom of the backbone, round c o r n e r e d , fitted wi th 
a 1 1/2 " mult iple mechan i sm and 4 heavy w i r e s . n 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is da rk 
g reen . There is a sma l l pocket on the spine for holding a tab 
giving year and volume. These la t te r w i l l be supplied with each 
o rder if the volume or volumes to be bound a r e indicated. 

The p r ice per binder is $3.50 which includes postage ( r ang ing 
from 50£ to 8Q£ for one b inder ) . The tabs will be sent wi th the 
rece ip t or invoice. 

All o r d e r s should be sent to: Brother Alfred Brousseau , 
Managing Edi tor , St. Mary1 s College , Calif. 94575 


