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SOME FORMULAE FOR THE FIBONACCI SEQUENCE WITH GENERALIZATIONS

GEORGE H. ANDREWS
Pennsylvania State University, University Park, Pa.

1. INTRODUCTION

In this paper we shall study the following formulae for the Fibonacci

numbers.

= (23 n-1
(1.1) Fn = Z(-l) <[_%_ (Il -1 - 5&)]) s

n=-oo
,17'

o0 N
B o n
(1.2) - z :('1) ([%(n -1 - 5a)]>

=-00

where (&

is the ordinary binomial coefficient, and [x] is the greatest
integer function.
In Section 2, we shall prove these formulae and shall show how directly

they imply the following famous congruences [4; p. 150].

(1.3) F /5\ = 0 (mod p) ,
(3

1]

(1.4) Fp (—g) (mod p),

where (—S) is the Jacobi-Legendre symbol.

Chapter IV of Dickson's History, Vol. 1 [2; pp. 105-112] is devoted to
studying (up"1 - 1)/p (mod p). In particular, Einstein made several contri-
butions to this problem among which was the following. If p # 2,

@ - 1)/p = 1+1/3+1/5+++-+1/p-2 (modp).
*Partially supported by National Science Foundation Grant GP 6663.
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114 SOME FORMULAE FOR THE FIBONACCI SEQUENCE [Apr.

We shall prove analogous formulae for

and

in Section 3. Namely, if p = 2 (mod 5),

(1.5) Fp+1/p = 2(_]_)%@-1) Z 5 2/ (mod p) .

m=1, 5(mod 10)
[mf<p

If p= 1l (mod 5),

% m+1)f-1
- o 172(P-1 5 m
(1.6) Fp_i/p = 2(-1) Z = (mod p) .

ms=s5,7(mod 10)
|m|<p

For all primes p,

(1.7) <Fp - (—S-))/p = 2(_1)'%([3-—1) Z 5p . mm (mod p).

m=4,7(mod 10)
|m| <p

In Section 4, we make the natural generalization of (1.1) and (1.2) by
replacing 5 by an arbitrary odd number. This leads us immediately to an
n-dimensional analog of the Fibonaceci humbers which is closely related to one
considered by Raney.

In Section 5, we point out an application of these generalized sequences
to the factorization of large numbers, and in Section 6, we discuss related

sequences.
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2, THE NEW FORMULAE

Let us define

F_()

Then if B = exp (2mi/5),

F _(b) =

SIS (-1>5°"’B([1}(n I 50,)])

a=-co

(-1) Z Z (-1) B](Ol—b)< (nri a)})

4
b+n . . n
(-1) Z -jb (-a+n)
5 B ) E (-1)aBJ 8 <[%01 ])

o

Z BJ(n-—b)

(- 1)b+n Z B - 2]& (n>

a=-00

5 ()

b+n 4 . : ;
H__ N gl gy g
i=o
b A .
LD S P - p7I)(-2 cos 2mi/s)

e
-

(-1 b

1 (ﬂ-jb N ij _ B-j(b+1) _ Bj(bﬂ)) X

.Mm

j X (-2 cos 2mj/5)"

o 1

2("1) Z (eos 2mjb/5 - cos 2mj(b + 1)/5) X

i=1 X (-2 cos 2mj/5)"
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Now
1
-2 cos 2m/5 = -2cos 87w/5 = (1 - 52) ,
and
1
-2 cos 4m/5 = -2 cos 6m/5 = }(1 + 5) .
Hence
F () = =@2+2(1 shda - syt s Leslaest byn
L0 = 5@+50 - 5)(3Q - 5%))" + £ @2+5(1+5))¢ (1+5%))
1
= shg s - (ja - st
= F ., the (n+1)St Fibonacci number [4; p. 148] .
1
F @O = - %(—%(1 -5%) +i@+ 5%))(»%(1 - 5%))n

Lgaash rpa-shygasshn

1
s+ 5P - (G- s

F» the n® Fibonacei number [4; p. 148] .

Thus we have (1.1) and (1.2).
We now turn our attention to proving (1.3) and (1.4) utilizing (1.1) and (1.2).

Our proof rests on the following elementary congruence

py _ J1 if a=20,p
2.1) (a) - {0 otherwise (mod p) ,

where p is any prime.

If p =5mt2, then for any integer o,

[ - 5] # 0,p ;

therefore by (2.1) p divides every term of the sum in (1.1) with n = p+ 1,
and (1.3) is established in this case. Utilizing (1.2) with n = p = 5m + 2,
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we may verify that (1.4) holds in this case. If
n-1=p=5m=+1,
then by means of (1.1) we verify that

Fp+1 = -1 (mod p),

and by means of (1.2) with
n=p-=>5mz=1l

we verify that Fp = 1 (mod p). Thus we have completely established (1.4)
with p # 5, and '

Fp_1 = Fp+1— Fp = -1+1 =0 (modp)
establishes completely (1.3) with p # 5. Finally since F; = 5 we have (1.3)

and (1.4) proved in this exceptional case as well.

3. EINSTEIN FORMULAE FOR F‘n .

This section is devoted to proving (1.5), (1.6), and (1.7). We shall uti-
lize the following congruence

(3.1 p_1<g> = -(-D%*a"! (mod p), 0<a<p

In the following sums, we note that the only terms to be comsidered are those
for which initially the lower entry of the binomial coefficient is in the open
interval (0,p). We shall thus not trouble to indicate the range of summation
until the final line in each case.

From (1.1) with n-1 =p = 2m + 1,

It

o0 20
_ a p p p
(3.2) Fom+p = Z(’l) <[%(2m+ 1 - 5a)]) Z <m-— > ‘<m-2—5a> .

=-00
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Hence

( 1)m+oz (_1)m+a'

Pty /P EZ {—m_— 5 m - 5x - 2} (mod p)

o+

Hp-1) (-1) (S
2(pf0y "L e mod p)

2 (-1)_%(13_1) Z 3 = (mod p) .

m=1,5(mod 10)
[m| <p

From (1.2) with n = p = 2m + 1,

on ran S o) - Zlfe) )

== o0 ==

Therefore if p is a prime =11 (mod 5), we have by (3.2) and (3.3)

(3.4) Foy = Fouy - Fp = O

Hence from (3.4) with p = #1 (mod 5) ,

e o]
_ (-1 (-1
Fo /P = Z mo3-5a "Tm-2-5a ( Modp)
o=-0
= 2t "™ cu” €U | mod p)
= p-7-T0a¢  p-b- P
m+1 _l
= 2(yte-? Z 5p L0 (mod p) .

m=5,7 (mod 10)
|m|<p
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Finally from (3.3) with p = 2m + 1

(- ()5

(_1)m+a (_1 m-o
ST e

o o
-2 <-1>"}(‘°’”23 D T * p- ’(7—})10a$ (mod p)

1 !m + 2 ’ (:l)
2(—1)_2{13_1) E : 2 L tmod p) .

p-m

m=1,7 (mod 10)
m]<p

Thus we have established (1.5), (1.6), and (1.7).
Let us now consider a specific example. By (1.1)

_ {18 13 13 13 13} _ =
Fy = (6) - (4) - <9) + (1> +<11) = 1716 -715- 715+ 13+78=377

By (L.3),
_ 1 1 1 1 1
Fu/13 = 2\ g "5 -5 - T -1 55 1359
= 1+1/4-1/6-1/9+1/11 =1+10-11-3+6 = 3 (mod 13),
and indeed,

F14/13 =29 = 3 (mod 13) °

4, GENERALIZATIONS

In this section we discuss the natural generalization of (1.1) and (1.2).
We define

o0
(4.1) F, () = 1% n .
k,n ;w (g{(n -b- 2k + 1)a)]>
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Exactly as in Section 2, only now setting
B = exp @mi/2k+1),

we obtain

(4.2) Fk,n(b) =

pof bo

k
b
1(51)1 Z(cos (2mbj/2k + 1) - cos (2alb + 1)j/2k + 1) X
=

X (=2 cos (2mj/2k + 1))°,
where k> 0, n > 0.

From (4.2) we may easily ascertain the linear recurrence in n satisfied
by the Fk n(b). Consider the sequence of polynomials defined by
t]

fQ(X) = 1, fi(x) =x-1, fk(x) = ka_i(x) "fk_z(x) .

Then the roots of fk-(X) are
-2 cos 2mi/2k + 1, 1<j<k

[3; p. 264 ]. Hence from the elementary theory of finite difference (with

we have
(4.3) fk(E)Fk,n(b) =0 .

The n-dimensional Fibonacci sequence studied by Raney [5] has as its auxil-

iary polynomial Dn(x) [5; p. 347] where in our notation

£ 6 = (i1 o p &) .
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Raney remarks that many of the elementary formulae related to the Fibonacci
k n(b)'
Most of these results may be derived from (4.2); but the proofs are clumsy. It

numbers maybe generalized tohis sequences, and the same is true of F

would be nice to relate these sequences to some set of matrices as Raney has
done for his sequences;perhaps then easy proofs could be given for analogs of

Theorems 7 and 8 of Raney's paper.

5. FACTORIZATION OF LARGE NUMBERS

As is well known the Fibonacci and Lucas numbers are closely related
to Lucas's famous test for the primality of the Mersenne numbers 2P _ 1. we
shall derive some similar necessary conditions for the primality of &P - 1)/
k - 1 utilizing some analogs of the Lucas sequence which are related to the
generalized Fibonacci sequences discussed in Section 4, For example, when
k = 2, we shall prove the necessity part of Lucas’s theorem on the primality
of 29 -1 (with q = 3 (mod 4)) [4; p. 224]. When k = 2 and q = 1 (mod 4),
we shall prove the following result.

Theorem 3. Let T be defined by

ry =3, r =r: -2,

24

If q=1(mod4) and Mq
When k= 3 and g

Theorem 4. Let s

-1 are both primes, then rq = 3 (mod Mq Yo

1 (mod 6), we have the following theorem.

1, ty = -2, and in general

= 3 - -3 = -+
S, 44 s3 -3s t -5 tn+1 t?l 3t t3 .

If q=1(mod6) and Mq ="%—(3q - 1) are both primes, then

]
il

4 d s
(mo Mq)

o
|

-1 .
1 (mod Mq)

Our first object in this section will be the derivation of a general theorem

which will imply Theorems 3 and 4.
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Let Aj (k) denote the set of all ordered j-tuples of the first k positive
integers. We define

L o = Z (-2 cos 2my /2k + 1)™.. (-2 cos 2 /2k + )"

where the summation is over all
(ng, **+,n.) € A.(k) .
J J
We shall also need the polynomials

m

Wm(x) = Z (2;;1> xzm_zj(l—xz)j;

j=0
these polynomials have the property that

cos 2mpB = W (cos B) .

Lemma 1, Let p be an odd prime, p =n (mod 2k +1), 0 < n < 2k,
Then there exists a rational integer a(k;j;n), which depends only on k,j, and
n and not on the magnitude of p such that

Ly (egprs® = @05 5 n)  (modp) .

Proof. Define n' to be n if n is even and n+2k+1 if n is odd;
nx = %n'. Then in the ring of integers of Q(-2 cos 27n/2k + 1)
Hp-1)

Po-pHi p . .
(-2)"2 Z (m A 1) cos 2x(2i + 1)j/2k + 1
i=0

(-2 cos 2mj/2k + 1)P

1l

-2 cos 2mpj/2k + 1 (mod (p) )

1l

-2 cos 2mj/2k+ 1 (mod (p))

n

-2 cos 2m'j/2k+1 (mod (p) ) ,

mn
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where (p) is the principal ideal generated by p in the ring of integers of
Q(-2 cos 2n/2k + 1) and this first equality is from [1; p. 83]. Consequently

6D Lo gpn® = Z (-2 cos 2mny/2k + 1) "H(-2 cos 2m,/2k + 1) ++ -

eee (-2 cos 2m'n, /2k + 1)¥"Y-2 cos 2m. /2k + 1)
J (mod (p) )

(5.2) = Z (-2w__ (cos 2my /2k + 1)""!(-2 cos 2my/2k + 1)+ -

cos (—2Wn* (cos Z'Jrnj /2k + 1))k_1(—2 cos 27mj /2k + 1)
(mod (p)).

We now define a(k;j;n) to be the expression appearing on the right side of
(5.1) (or, what is the same thing, (5.2)). Now (5.2) shows that a(k;j;n) is a
symmetric polynomial in cos 2mm/2k+ 1, 1 < m < k; since these are the
roots of fk(-Zx) (c. f. Section 4), we see by the Symmetrib function theorem
that o(k;j;n) is a rational number. On the other hand, (5.1) shows that
a(k;j;n) is an integer of the field Q(-2 cos 2@/2k + 1); since the rational inte-
gers are integrally closed in Q(-2 cos 2n/2k + 1), we see that a(k;j;n) must

be a rational integer. Hence
L (egpr® = @ls in)  (mod (b))

holds in the ring of integers of Q(-2 cos 2a/2k + 1). Since this congruence
involves only rational integers, it must also hold in Z, the ring of rational
integers. Thus Lemma 1 is proved.

Corollary 1. Ifin Lemma 1, n = 1 or 2k, then

Lk:(k-i)p'l‘i(j) = Lk,k(j) (mod p .

Proof. In (5.1) with n' either 2k or 2k + 2, we have

alsfn) = > (-2 cos 2my /2k + 1) +++ (-2 cos 2m /2k + nE=1, L
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The desired results now follow directly from Lemma 1.
We now proceed to our main result.
Theorem 1. Let k > 2 be an integer. Let

Ok, = o-k’j(xp cee, Xn)

be the jth elementary symmetric function of xy,**+,xi. Let gj (yi, ceeL Vi)
be the polynomial with integral coefficients such that

0 (Xk o e 9 Xk) = (U LN ) o' )
3 A - e P % S
Let

Vk, o(j) = Lk, 1(j)
and

Vk,n+1(j) = gj (Vk,n(l), cee "ﬁ(’n(k) ) .

If ke=g.c.d k-1, 2k +1), define m = k#x(2k +1), and let ¢(m) = m?!,
$m') = m" where ¢ is Euler's totient function.

If q >m and Mq = 9 - 1)/k - 1 are both primes, then there exist
integers B(k;j;i), 1 < i < m" depending only on k and j such that

‘i{’q(j) = B(kjn) (mod Mq) ,

if q = a, (mod m'"), where aj,°**,a

S constitute a reduced residue class

system (mod m').

Proof. From the definition of Lk,n(j)’ one easily verifies by induction
that Lk’kn(j) = Vk,n(j). One also may verify that the residue of Mq (mod 2k
+ 1), say r, is completelydetermined by the residue of q (mod m'"). There-
fore if both ¢ > m and M'q are primes,

Vk’q(j) = Lk,kq(j) = Lk,(k—i)Mq+1(i) = ak; j; 1) (mod Mq) .
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If we define
Blis 3 n) = ak; jr)
where q = a, (mod m!"), then the theorem follows.

For small values of k we may prove more explicit theorems.
Theorem 2. (Lucas) Let r, be defined by

¥ = = 2 —
bl 3, Ties = Tp 2.
If q =3 (mod4) and Mq = 2P -1 areboth primes, then rq_1 = 0 (mod Mq).
Proof. In Theorem 1, with k = 2, we find that for n > 0

v3,n(2) = (-2 cos 2n/5)7 (-2 cos 4n/5)? = (-1 = 1.
Also
xj+ x5 = 0} -20,, .
Hence

g1y, y2) = ¥i - 2y2 .

Thus we see that r, = va,n{1)
As in Lemma 1, we have {(mod Mq)

r = (1) = (-2 cos 44/5)(-2 cos 2n/5) + (-2 cos 87/5)(-2 cos 4n/5)

L
2,M -+t
d q

2(-2 cos 4n/5)(-2 cos 2n/5) = -2,

Therefore

Thus since Mq was assumed prime,
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rq_1 = 0 (modMq).

This concludes the proof of Theorem 2.

Proof of Theorem 3. We proceed exactly as in Theorem 2, except that

now by Corollary 1

= L 1) = Lyo(1) = 3.
I‘q 2,Mq+1( ) 2,2( )

Proof of Theorem 4. In Theorem 1, with k = 3, wefind thatfor n = 0

Vs,n(3 = (-2 cos 20/ (-2 cos 4n/T) (-2 cos 6x/7)8 = (1) = L.

Now
x+x3+x3 =03, - 303,103, + 3033 ,
and thus
g1, y2»vs) = ¥i - 3yiyz + 3ys -
Also
xix) + ] + «dxd = 0, - 303,103,005,3 + 3035
and thus

2
221, Y2 ¥3) = V3 - 3yiyays + 3y3 .

Thus we see that

Sn = V3,n(1)

and

tn = V3’n(2) o
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Utilizing Corollary 1, we have (mod M q)

Lg,3(1) = 4 ;

]|

s =L 1
q 3,2M+1(1)

tq = L3’2Mq+1(2) = L3,3(2) = -11 .

This concludes Theorem 4.
Theorem 5. Under the conditions of Theorem 4, with the single change

that q = 5 (mod 6), if both g and Mq are primes, then

Sq = 4 (mod Mq).

Proof. Since ¢ = 5 (mod 6), Mq = 2 (mod 7). Hence by Lemma 1 we

have (mod Mq)

3
Sq = Lg,ZMqﬂ(l) = Z(-z cos 4mj/7)*(-2 cos 2mj/7)
j=1
3
Z(z cos? 2mj/7 - 1)2(-2 cos 27j/7)
j=1

1l
IS

3
= Z((-z cos 27j/7)% - 4(-2 cos 2mj/7)?
j=1 +4(-2 cos 27j/7))

= L3’5(1) - 4:L3’3(1) + 4L3,1(1)
=16 - 16 + 4 = 4,

We now consider some numerical examples of the theorems we have
proved. Firsttake q = 5, My = 121 in Theorem 5. In this case

n sy (mod 121) tlrl (mod 121)
0 1 -2

1 4 -11

2 72 -8

3 -6 -59

4 50 -66

5 -18
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Consequently Theorem 5 proves that 121 = %(35 - 1) is nota prime, and in-
deed 121 = 112,
Next we consider Theorem 4, with q =7, My = 1093. In this case

n s, (mod 1093) t (mod 1093)
0 1 -2
1 4 -11
2 193 -367
3 -249 -386
4 -510 -96
5 -569 -78
6 -127 -387
7 4 -11

Thus we see that 1093 = (37 - 1) satisfies the necessity conditions of Theo-
rem 4, and indeed it turns out that 1093 is a prime.

There appears to be a great number of possibilities for further work on
the subjects treated in this section. One would hope that Theorem 1 could be
strengthened to include sufficiency conditions for the primality of «P - 1)/
(k - 1). Possibly the arithmetic of the fields Q(-2 cos (27/2k + 1)) would
yield such results.

6. RELATED SEQUENCES

It is possible to exhibit a large number of sums similar to those given in
(1.1), (1.2), or (4.1). To indicate the possibilities we list three such.

0
_ n .
Q=-00
_ X o n .
6.2) Tea® = Z(-l) <[%<n_b_ (2k+1)2a)]) :
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Q0
Q = ¢ ( -
(6.3) Ky n® = Z 1) ([-%_(n ~b - @k +1)(2n+ 1>)]> '

=- 0

Following the method of Section 2, we find

k
6.4) G () =52 D (cos 2nbj2le+1) + cos 2n(b+1)j/2k +1) X
i=1 X (2 cos 2mj/2k + 1)
2k
1 .
6.5 3y b =5y Z (cosmb(@j+ 2k +1) /(4k+2)+ cosa (b +1) X
=t
X (4 + 2k + 1)/4k + 2)(-2 sin 2mj/2k + 1)
Kk 2k
_ =(-1) . . .
(6.6) K () = Z=Hr ) (sinwb(d + 2k + 1)/(@+2) + sinm b + 1)x
=t

X (4 + 2k + 1)/4k + 2) (-2 sin 2mj/2k + 1)

As in Section 4 (c.f. (4.3)), we may give linear recurrence formulae for the

above expressions as sequences in n.

(6.7) )E@E - 2, E)Gy () = 0
._.1 _ .

{6.8) E ((E+2)ff{(E) - Z)Jk’n(b) =0 ;
-1 _

6.9) E (E + 2)ff{(E) - Z)Kk,n(b) =0 .

Equations (6.7) through (6.9) are easily derived from Egs. (6.4) through (6.6)
utilizing the fact that the roots of (—l)k(x - Z)fk(—x) are 2 cos 2nj/(2k+1),
0<j<k [3 p. 264] and the fact that the roots of x M + 2)f12<(x) - 2) are
-2 sin 2mj/2k + 1, 1 <j < 2k [3; pp. 267-268].
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As is clear from their definitions, all these generalized sequences sat-

130 Apr. 1969

isfy congruences similar to (1.3)and (1.4). For example if p is an oddprime,
p #2k+1, then

(6.10) Kk’p(O) = 0 (mod p) .
If p is an odd prime, p # 2k +1, p # #1 (mod 4k + 2), then

(6.11) (0) = 0 (mod p) .

Jk,p

If p=@k+1)m+a isaprimewith 0 <a =k, m =2, then

6.12) Gy 0) = F (0) = 0 (mod p) ,

»ptc k,ptc

where 0 =c =a - 2,
If p=@k+1)m+a isa prime with k < a =2k, m =1, then

(6.13) 0) = (0) = 0 (modp),

Gk,p+c Fk,p+c

where 0 =c¢ =2k -2 -a, Equations (6.10) through (6.14) are proved exactly
the way (1.3) and (1.4) were.
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OVERLAYS OF PASCAL'S TRIANGLE

MONTE B. BOISEN, JR.
University of Nebraska, Lincoln, Nebraska

The purpose of this paper is to demonstrate the versatility of the method
presented by V. E. Hoggatt, Jr. It is hoped that the examples presentedin this
paper will demonstrate to the reader some of the research possibilities opened
by this method. (See [1].)

THE METHOD

The basis of the method lies in the concept of generating functions for the
columns of a left-adjusted Pascal's triangle. From Figure 1, we see that the

generating function for the kth column is

k
X

a - X)k+1
Extensive use will be made of these generating functions and certain variations

of them.

row 0
row 1
row 2

Trow 3

O R
w
=

°
°
°
e
°

column |

1
1
1
1
row 4 1
0
1

generating
function

1 - x)? (1-x3 (1 -x?*
Fig. 1 Left-Adjusted Pascal's Triangle
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ARRAY OVERLAYS

Consider the two arrays A and B with integer entries:

ag See
agg ag °°-°

azz A3 Ay
231 a2 A3 Ay "

by baz gz
byy by bz by

An overlay of A on B means that a sequence C ={cy, cp,*+*} is produced
such that:

cy = ayy° by
Cy = ayc by +tap - by

€3 = ayy e bz +agy- bygt+agg by +axp- by

Rt

i-k
-
¢ = Z 214 MPM i-k

k=0 M=k+1

where [s] as usual represents the greatest integer in s.
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FOUR EXAMPLES

Example I. Let us see what type of sequence we can ‘expect if A and B are
both left-adjusted Pascal's triangles (i.e., A is a left-adjusted Pascal's tri-

angle placed on its side). The first few terms of such an overlay are
1, 2, 5, 12, 29,

which suggests that there is a recursive relationship that is described by the
rule

nt2 2Un+1 * Un :
The verification that this recursion indeed holds for the whole sequence
can be accomplished by noting that the coefficients of the expansion of (1 + x)"
represent the nth row of Pascal's triangle and that in the overlay the nth row
of Pascal's triangle lies on the nth column. Hence we arrive at the conclusion

that the generating function for the sequence is

2 n-i

-11 + (1 +x) X + (1 + x)? —x +...+(1+X)n'1 = n+--~
o (1 - x)? 1-x? (1-x)
1-x (1—-"(11#‘1 1-2x-x2
- X
The reader can easily verify that
1

1 -2x - x%

generates a sequence where the desired recursive relation holds. This example
shows that, in spite of the seemingly formidable configuration of the elements
of the sequence C, withthe columngenerators one is able to cope with the sit-
uation easily.

Example II: This example will concern itself with determining which arrays,

when overlayed, will yield the Fibonacci sequence. In order to effect this, we
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will begin with the generating function for the Fibonacci sequence which is

1 :1+x 1 )
1-x-x% 1- x? 1_x2(1+xf}

S x2Q + x)* + e .+—---—-—-—X2(n_1)(1 +x)n+.

1 -x2 (1-x2)2 1 - x2)"

Remembering Example I, the presence of (1 +x)% ! in the nth term
suggests that the A array is a left-adjusted Pascal's triangle. Then the B

array must have column generators of

1+x  x(+x i+ .. L0 4
1-x (1-x) @-=) @-x)®

If one notes that x® has replaced the x in Figure 1 and that the 1+ x "fills
in' the void left by that replacement, then the array with these column genera-

tors is easily seen to be

N T
L WO N R
O D k.

-

which is a doubled left-adjusted Pascal's triangle. (Note that, for example,
the spot ay; is not listed. Consider those spots to contain zero.)
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Therefore we conclude that the Fibonacci sequence can be generated by
overlaying the left-adjusted Pascal's triangle on the doubled left-adjusted
Pascal's triangle.

Example III: In this example the results from Example Il will be carried one
more step toward 4 generalization. Instead of considering the: Fibonacci se-

quence, a Fibonacci-like sequence will be considered,

Up=1 Up=1 U =1 U, =0, +U.  +0U,

The generating function for this sequence is easily found, see [2], to be

1 - x? -1 +x(1+x2) +x2(1+x2)2 A (1 +x2)?

1-x-xt-x8 1-x? (1-x2%)% (1-x2)"

The presence of (1 + x2 >n—1 in the numerator of the nth term suggests that
the A array is

o N O =
O W o W o
°
°
.

which is simply a left-adjusted Pascal's triangle with a column of zerosplaced
in between each of its columns. Note that this array is not in the exact form of
the array A but the analogous method of overlaying this array is obvious. We

are now left with the generating functions
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which yield the array

X (=R e N e B = N = N
° e =T - A
°» W O N O =
°s S W O =

cee h O© M

s o bt

° s

.q

Therefore, using the method of column generators, we have found the
proper arrays which overlay to form the given sequence.
Example IV: Consider the generalized Pascal's triangle whose kth row is
determined by the coefficients of the expansion of

r-i )k

A+ x+eeo +x ;. k=0,1,°¢c and r = 2.

Let this triangle be the A-array and let

T = = = T = I
= W N e

be the B-array. Note that the B-array is formed by '"pushing' the columns

of Pascal's triangle down so that the first entry of the kth column appears in
' the 2kth row; k= 0,1,2,°¢* . Hence by our prior experience we know that
the generator for the kth column of the B-array is
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2k
X

a- X)k+1

By the method used in the previous examples, the generator for the
sequence determined by overlaying A on B is

2
?T:l'gf+(1+X+"'+Xr_1)<'—}2_")+ (1+....+Xr'1) < x! >+

1 - x)? a-x)?®

r+1 °
1-X-Xt coee =X

It is easy to verify that

1
- = Uy + UK + ugx® + eeo
1-xXx-%X-see =X
where
r+1 r
u =1, u =1, ug = 2, ce°, ur+1—2 , ur+2=2 ’
r+1

for n > r+ 2.

It is interesting to note that this sequence of u's is precisely the se-
quence of the rising diagonal sums in the generalized Pascal's triangle whose
kth row is determined by the coefficients of the expansionof (1 + x + e + xm'l) 3
k=0,1,2," . See[ 2] for the proof of this fact and [3] for a further discus-

sion of related subjects.
CONCLUSION

The approach used in the preceding examples to find the sequence deter-
mined by overlaying an array A on an array B can be described as follows.

B k-1
Let Pk(x)—a1 X +ose +a X

*ag kS

k
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and let Gk(x) be the generating function for the kth column of the B array;
k =0,1,2,°°= . Then

(o o]
Z P, (X)Gri x)
i=0

is the generating function that determines the desired sequence.

Almost an unlimited number of problems of the type worked in this paper
are now open to scrutiny. At the end of this paperthere aretwo suchproblems
stated. The first one is fairly straight forward and the ultimate answer is
supplied. The second one seems to be a little tougher and might make a nice

project for some ambitious student.
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PROBLEMS

Problem I: Letan unending row of urns be given, the first one labeled 0, the
second labeled 1 and so forth. In the urn labeled "k' let there be k distin-
guishable balls; k = 0,1,2,°°+ . Suppose a man does a series of events with
the nth event, n = 0,1,2,°°* , described as follows:

a) He reaches into the urn labeled "™n" n~+ 1 times. The first time he
takes out 0 balls, the second time 1 ball, the third 2 balls and so
forth until the n + 1 time he removes all n balls each time replacing
the balls he has previously removed.

b) Ingeneral he reaches into the urn marked "™a - j" n - 2j times taking
out j, j+1,°°°,n -j balls respectively (againby replacement), j=
0.

¢) This event ends when he has moved down the line of urns to the one

labeled n - s such that n - s < s for the first time.



1969] OVERLAYS OF PASCAL'S TRIANGLE 139

Since theballs are distinct, associated with each extraction of balls (i.e.,
each time the man reaches into an urn) there is a number which represents the
number of ways the extraction could have occurred. Let Sk be the sum of all
these numbers in theoo kth event. The problem is to find a generating function

that determines {Si as its sequence.
i=0

Ans. 1 - X
1 - 3x +2x2 1-2x+x3

Problem II. Find two non-trivialarrays such that their overlay determines the
sequence:

Upy=Uj=c++ =0 ;=1 and U =T +eee 4T

k k-1 k-n

for all k =n. See [4].
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ON THE DENSITY OF THE k-FREE INTEGERS

R. L. DUNCAN
L ock Haven State College, L ock Haven, Pa. and
Pennsylvania State University, University Park, Pa.

Let Tk denote the set of k-free integers and let Tk(n) be the number
of such numbers not exceeding n. Then the Schnirelmann and asymptotic den-
sities of Tk are defined by

_ Tk(n)
(1) d(Tk) = inf —
and
T, (n)
_ . k 1
@ Ty ) = lig —— =

respectively, where {(s) is the Riemann zeta function. Our purpose is to
summarize and extend the known results concerning the relationship between
d(T)) and O(T,).

It has been shown by Rogers [1] that

53 _ 6 _
(3) d(Ty) = g5 < ;{ = 0(T,)

and it has been shown subsequently [2] that

) 5(Tk) < dT, )= o(,.,) .

k+1 k+i

The fact that d(Tk) 56(Tk) is an immediate consequence of (1) and (2). More
recently, it has been shown by Stark [3] that

(5) d(Tk) < G(Tk) .

Combining (4) and (5), we have

140



Apr. 1969 ON THE DENSITY OF THE k-FREE INTEGERS 141

(6) d(Tk) < 6(Tk) < AT, L)) .,

k+
i.e., the Schnirelmann and asymptotic densities of the k-free integers
interlace.

The proofs of (3) and (4) and the second part of (2) are elementary while
the proof of (5) is made to depend on what seems to be a much deeper result.
Thus it would be very desirable to have a correspondingly simple proof of (5).

It is also easily shown [2] that

-k
amy) > 1 -Zp
p

from which it follows immediately that
) d(Tk) > 2- Lk .

We conclude this survey by showing that d(Tk + 1) is much closer to o(T,,.)
than to 5(Tk).

To do this we define

k+1

B d(T1<:+1 )

) - 0(T )

o(T, . )
k+1
(8) Alk) =
0Tyt

since the numerator and denominator in (8) are both positive, the follow-
ing theorem yields the desired result.

Theorem. Ak) < 27k |

Proof. By (2), (7) and (8) we have

1
"2 g - a2
1 1 {(k)

Alk - 1) < i
W ®-D ' k-1

But
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o
Lk -1) _ 2 : -k
....—g—(k—)- = q5(n)n > g(k)s
n=i

where ¢@) is Euler's function. Hence
Ak - 1) < k) (LK) - 1) .

Since {(3) < 1.203, the desired result follows from the trivial estimate

Q

.o 1 1
k) < 14—z + —=— + /
Zk Sk

3

EPI
2 3

Mol

1969

It should be observed that this result also furnishes an alternative proof

of the second inequality in (6).
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SUMMATION OF INFINITE FIBONACCI SERIES

BROTHER ALFRED BROUSSEAU
St. Mary's College, California

In a previous paper, a well-known technique for summing finite or infin-
ite series was employed to arrive at a number of summations of Fibonacci and
Lucas infinite series in closed form [1]. This work is rewarding but in real-
ity covers only a limited portion of thepossible infinite series that canbe con-
structed. Starting in general with an arbitrary Fibonacci or Lucas infinite
series, the probability that it has a closed sum is relatively small. One need
only think of the sum of the reciprocals of the Fibonacci numbers themselves
which to date has not been determined in 2 precise manner.

In the face of this situation, what remains to be done? Thepresent arti-
cle attacks this problem by attempting to accomplish two things: (1) Determin-
ing the relations among cognate formulas so that formulas can be grouped into
families in which all the members of one family are expressible in terms of
one member of the family and other known quantities; (2) Replacing slowly con-
verging sums by those that converge more rapidly.

The combination of these two efforts has this effect. Given families Ay,
Ay, Asz,c**, whose members are expressible in terms of summations aj,as,
ag,**+, respectively. Then if these quantities a; can be related to other
quantities ai which converge more rapidly, the problem of finding the sum-
mations in the various families is reduced once and for all to making precise
determinations of a very few summations ai which can be found in a reason-
ably small number of steps.

Such is the program. The purpose of the article istogive an illustrative
rather than an exhaustive treatment. The investigation, moreover, will be

limited to infinite series of the type:

§ : 1
Fn Fn+k1 Fn+k2 Fn+k3 e Fn+k

n=1

or of the form:

143
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©
Z (_l)n—l
e Fn Fn+k1 Fn+k2 o Fn+kr

with all the Fibonacci numbers in the denominator different and the ki positive.

NOTATION AND LANGUAGE

To compress notation, the expression (Fn) will mean
r

Fn Fn—l Fn—2 o Fn—r+1

If there are k Fibonacci numbers in a denominator, we shall speak of this as

a "summation of the kth degree. "

CONVERGENCE OF THE SUM OF FIBONACCI RECIPROCALS

We shall begin by establishing the fact that the sum of the reciprocals of
the Fibonacci numbers:

0

Z 1/1?n

n=1

converges. This in turn will be sufficient in itself to enable us to conclude to
the convergence of all sums of our two types sincetheir terms arelessthan or
equal to those of this series.

Using the roots of the equation x2 - x -1 = 0, namely,

r=1+2\/3ands=.];L2_'\.[_§_ .
we have
oo
(1) F = -2
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Now s = -r 1. Hence when n is odd,

1/F < G / r
and when n is even, it can be shown that

1T, VE /L

This follows since the relation for n even, o™ rn'1 leads to r" -

rn_l >r 2, or finally r-1> po2ntl

-1

which is certainly true for n > 2;
for n=1, r-1=r

Thus in either case
1/Fn < »\]'ET/rn_l, for n> 2.

Hence

(@) Zl/Fn< Z «E/rn'l = —F f/§ -
n n=1

=1

Since the summation of positive terms has an upper bound, it follows that it

must converge.

RELATIONS AMONG SECOND-DEGREE SERIES

Essentially, there is only one first degree series of each type in the
sense defined in this treatment, so that the first opportunity to relate series
comes with the second degree. Here we have a special situation inasmuch as

the alternating series can all be evaluated, the final result being:

k

= n-1
" _ 1 -1
®) T T, kr™" - E Fig /Fj

e =1

r being defined as before. The proof is as follows.
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0
Z[Fn—l/ o~ Frac1/ Fn+k] =

n=1

k n
= ol E :Fj—l/Fj - 2 : Frti-1/ T |~
j=1 m=n-k+1
k
_ ‘ -1
= E ‘Fj-l/Fj -kr .
1
But the initially given summation also equals
Q0
Foo1 P = Fn P
=] Fn Fn+k
o n
Sy
— Fn Fn+k
n=1

Equating the two values and solving gives relation (3).
The non-alternating series of the second degree has closed formulas for

the summation

o0

DT
Fn Fn+k

n=1

when k is even. For the case k = 2,

o0

E : 1 _ 1 -1
Fn Fn+1 Fn+1 Fn+2

n=1
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But this likewise equals

Q0

2wt
F F
Py n  n+2
so that
o0
1
(4) E T 1
s n n+2
n=1

For k = 4, the derivation is as follows.

o o]
=ZFH+4— 3Fn+2 =Z F
- Fn Fn+2 Fn+4: Fn Fn+2 Fn+4

il It
- 1
- ™
) 1
+ &
- ot
i oY |,
03 5|
' g
M 'P
5|
=
o
= e
+
)
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so that
o0

(5) E F—}f— - 2/3 - 5/18 = 7/18.
) n nt+4

The process can be contained yielding:
o0
(6) E —F—}?l— = 143/960
n- n+6

=1

and an endless series of formulas with a closed value.

For k odd
o0 cO oC
E _1_. - 2 E _—1— = E ———1—-_.
o FnFn+1 FnFn+3 Fn+1 Fn+3
=1 n=1 n=1
[e0]
- -1 E 1 - -
=75+ T = -1/2 +1 = 1/2 .
n nt+2
n=1
Therefore
0 (e 0]
2 : 1 _ 1§ : 1
™ F_F -2 F_ F - 1/4 .
n nt+3 n ntl
n=1 n=1
It is possible to proceed step-by-step to other formulas in the series.
Thus e ® ®©
DI B n ) D ers:
n n+3 n nt+b n+3 " n+d
= n=1 1
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Hence
o0 0
1 1 1
—_— = = = - 1/10 + 1/5(1/2 + 1/3 + 1/10 - 1)
FF 5 F F
- n nt+b - n n+l
n=1 n=1
or
0 ]
1 _ 1 1
®) z:m-ﬁz:ﬁj—l*wm'
= =y n n

In summary, for second-degree summations of the giventypes, apart from the

results in closed form, the summations
(o ¢]
2
Fn Fn +k

n=1

with k odd are all expressible in the form

1
a+h E e
FnFn+1

where a and b are rational numbers.

AUXILIARY TABLE

In the work with these summations, the formula that is being employed

to arrive at Fibonacci numbers which are to be eliminated is:

_ k-1
®) B Franar ™ Foar Fom = -1) Fofn
or
(10) F = ﬂk—_i F, F F F
n Fr k “kintr T T ktr k+n]
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Rather than use this for each instance itis found tobe more convenient to make

a table which indicates factors a and b in the relation:

(11) Fn = aFn—'—k +bFn+j‘

The quantities Fn 4 2re at the right; the quantities Fn + are at thetop. The
tabular values for any given pair are a,b in sequence. Thus, to express Fn

in terms of Fn+6 and F the quantities a and b are -1/3 and 8/3,

n+2’
respectively, so that

F_ = (-F +6+8Fn+2)/3

Similarly, to express F in terms of Fn 48 and Fn 450 Since the shift in

n+3 5°
subscripts is relative, we take the table values for Fn +5 and Fn +2° Hence
Fn+3 = (—Fn+8 + 5Fn+5 )/2
Table I
QUANTITIES a,b IN FORMULA (11)
Fn+j
Fn+k
Fn+1 Fn+2 Fn+3 Fn+4 Fn+5 Fn+6
Fn +2 1,-1
Fn+3 1.-2 -1,2
Fn+4 1/2(1,-3) -1,3 2,-3
Fo.5 1/3(1,-5) 1/2(-1,5) 2,-5 -3,5
Fn+6 1/5(1,"8) 1/3(—1;8) 1/2(23"8) “398 5:‘8
Fn+7 1/8(1,-13) 1/5(01,13) 1/3(2,-13) 1/2(-3,13) 5,-13 -8,13

THIRD-DEGREE SUMMATIONS

For third-degree summations
o0

1
Z Fn Fn+a Fn+]o

n=1
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there is one which has its sum in closed form. The derivation follows.

o0
§ :[ 1 B 1 ]= 1
= Fn Fn+1 Fn+2 Fn+1Fn+2Fn+3 2
But this also equals
2 [*3)
E Fn+3 - Fn =2 F1r1+1
n=1 (FH+3) 1 e Fn+3 4
Hence
oC
1 1
(12) E — - = =
- FnFn+2Fn+3 4
n=1
To find
o0
2T
oy Fn -Fn+2 n+4
in terms of
00
2T
H]
n=1 Fni2’s

we use this result, arranging coefficients so that we obtain Fn in the numer-

ator and then eliminate it from the denominator. Thus

o0

[e o]
2§ :F F 1F '32 :F F 1F
n nt2 n+3 n n+2 n+H4

n=1 n=1
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o (o]
IS R P S
v Fn Fn+2 Fn.+3 Fn+4 oy Fn Fn+2 Fn+3 Fn+4
[=2] o0
= E.-* 1 - 1 1 +§ : 1
- (Fn+4)3 1-1-2°1-2°3 - tFn+253
Solving for the desired summation,
®. e
(13) ZEIFF ¥ =T7§“Z}§§:
e D nd2 Tn+d n+2 3

The procedure is similar at each step. There are two formulas (@) and () to
be combined with appropriate coefficients; a certain Fr is eliminated; a for-
mula (c) is obtained, either

2]
E 1
n=1 Fn+2 3

or one which has previously been expressed in terms of this quantity.

It would occupy altogether too much space to present even a smalil por-
tion of the derivations. The sequence of steps, however, can be indicated by
giving the denominators in the summations (a), (b), and (c) and between (b) and
(c), the quantity Fi' which was eliminated. The denominator of the desired
summation is the same as (b) in this table.
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SCHEMATIC SEQUENCE FOTIE;b’}‘(;Ig{D—DEGREE SUMMATIONS

DI

n=1 Fn Fn+a Fn+b
Denominator (a) Denominator (b) F Denominator (c)
Fn Fn+2 Fn+4 Fn Fn+2 Fn+5 Fn Fn+2 Fn+4 Fn+5
Fn Fn+2 Fn+3» Fn Fn+3 Fn+4 Fn Fn+2 Fn+3 Fn+4
1:‘n Fn+3 Fn+4 Fn Fn+3 Fn+5 Fn Fn+3 Fn+4 Fn+5
Fn Fn+1 Fn+2 Fn Fn+1 FJa+3 Fn Fn+1 Fn+2 Fn+3
Fn F1c1+1 Fn+3 Fn Fn+1 Fn+4 Fn Fn+1 Fn+3 Fn+4
Fn o1 T Fo o1 Fres Fn P+t Frra s
Fn Fn+2 Fn+5 Fn Fn+2 Fn+6 Fn Fn+2 Fn+5 Fn+6
Fn Fn+3 Fn+4 Fn Fn+4 Fn+5 ' Fn Fn+3 Fn+éL Fn+5
Fp Fris Fnag Fo Frea Frie Fy Fo+3 Fng Fnie

and so on.

The results can be summarized in the form

2 : 1
(14) —_— = c +dS
Fn F1c1+s Fn+t

where
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Table I
CONSTANTS ¢ AND d FOR GIVEN s AND t IN FORMULA (14)

1,3 -1/4 1

1,4 -7/36 2/3
1,5 -71/450 7/15
1,6 -509/4800 3/10
1,7 -11417/162240 5/26
2,3 1/4 0

2,4 7/18 -1/3
2,5 71/300 -1/5
2,6 509/2880 -1/6
2,7 11417/101400 -7/65
3,4 -5/36 1/3
3,5 -67/300 2/5
3,6 -269/19 20 1/4
4,5 19/225 -1/15
4,6 407/2880 -1/6

It should be apparent without formal proof that any summation of the third de-
gree with positive terms can be expressed in the form given by (14). A prac-

tical conclusion follows: It is onlynecessarytofind the value of one summation

o0
DT
Fn+2 3

n=1

which can be done once and for all to any desired number of decimal places.
Thereafter for formulas related to this summation their values can be found
with a minimum of effort to any desired number of places within the limits
established for the one basic formula.

This method of relating a number of formulas to one formula canbe con-
tinued to higher degrees though the cbmplexities become greater. For exam-

ple, for seventh-degree expressions:
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(_Dn—l
7

n=1 l] F
i=1 ki

we can proceed step-by-step according to the following table. The quantities
(@), (b), (c) and Fr have the same meaning as in Table II. The desired sum-
mation is indicated by an asterisk.

Table IV
SCHEMATIC SEQUENCE FOR SEVENTH-DEGREE SUMMATIONS
WITH ALTERNATING TERMS

Denominator (a) Denominator (b) Fr Denominator (c)
(Fn+6)7 *( n+5 ) ) F1r1+7 Fn (Fn+7)7
(Fn+6)7 *( n+5) Fn+8 Fn (Fn+6) P Fn+8
(Fn+6 )7 (Fn+5 )6 Fn+9 Fn (Fn+6 )6 Fn+9
and so on.

*
(Fn+6)7 (F n+5) Fn+7 Fn+5 (F n+4) Fn+6 Fn+7
(Fn+6 ) 7 (F n+5) Fn+8 Fn+5 *E 4) Fn+6 Fn+8
(Fn+6)7 (F n+5) Fn+9 n+5 *® n+4) Fn+6 Fn+9
and so on.
Foes)g Fnaz Fnis) Fnes  Fras "Fpea); Frar Foas
F n+5) Fn+7 (F n+5) Fn+9 Fn+5 ( n+4) Fn+7 Fn+9
and so on.
(Fn+6) 7 (F n+5) Fn+’7 Fn+4 *( n+3) (F n+7 )3
(Fr6), (Fn+5) Fois n+d (F n+3)4 n+5 Tn+6 Fnes
and so on.

GENERAL CONCLUSION

It is possible to express all summations

n=1 .l] Fn K
i=1 i
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in the form

0]
§ : 1
a+b "(_——T—' ’
Fn+r——1 r

n=1

where a and b are rational numbers; and all summations

r

n=1 ]I Fn +k
i= i
in the form
[0 o]
c + d E 'Z_——(—l)n—l ’
n=1 Fn+r—1) T

where again ¢ and d are rational numbers.

The limitation of this approach is that it is not possible to proceed di-
recﬂy in one step to this final result as a rule. It is necessary to go through
a series of formulas and should the desired summation be remote from the
final objective, this could be a long operation. Once, however, the various
formulas have been linked to the one formula, the problem of calculating these
summations becomes relatively simple.

This concludes the discussion of linking formulas of the same degree.
We now proceed to a consideration of expressing a summation of lower degree
in terms of one of higher degree so as to secure more rapid convergence. But
first, formulas will be worked out giving upper bounds for the number of terms
required to secure a summation result correct to a given number of decimal

places.
APPROXIMATING SUMMATIONS WITH GIVEN ACCURACY

Assuming that we have related the summations of a given degree to one

summation, it is only necessary to consider summations of the forms
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Q0 oo
2 :TF‘—T'andE :rLr
=7 ool Fntg-1

n=1 n=1

Two cases will be taken up according as q is even or odd.

g even

From previous discussion,
1/F < N, ™ if n is odd
l/Fn < '\/g/rn—l if n is even.

For

1
tFn+q-1j
q
the result depends on the power of r found on the right-hand side of the in-
equality. These powers can be calculated by table as follows.

n odd n even

2n n-1

2(n + 2) 2(n + 1)

2 + 4) 2(n + 3)

2 +q - 2) 2@ +q - 3)
n+q-1

The sum in either case is

@ + q(gz- 2)

If we want w terms of the summation
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= 1
(S50
ZFn+q— 1) q

n=1

to give a result correct to t decimal places, the (w + 1)Stterm must be less

than 5x 10_t. Hence the condition for the desired upper bound is:

1 < 52 5x10°¢
@, +q) L4W+1)+q(q-2)/2
q
which leads to
- 2
t+ ulogS-—q—logr
2 2
< w
q log r
or
4,78514 , . (q - 2) q
(15) w o> p t+ % (3.34467) - 3

For example, if q is 8 and we want the result correct to 10 decimal places,
w > .59814t - 2,74575 or w > 3.3565
Hence four terms would be required. Data from this formula will be found in

Table V.

For the summation

o0
P
el Fn+q—1 q

to have the result correct to t decimal places,
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Z qu+q(q—2572

<
k=w+1

[2.9]
1

k=w+1

q/2
T

or

52 4

<5x 10
qu"'qz/é 1 - I‘_q

This leads to the inequality

- - 2
t+(£‘172-)logs—log(l—rq)—g-—l-%g—E
qlogr

W
The term

-2q -3q
r + r

-dy _ .-q
-log 1 -1 *) r ot 3

<r—q+r—2q+r—3q-.- = 1

This replacement is in the safe direction. Hence

4,78514¢t 3.34467(q - 2)
16 > +
(16) w aq 2q

-1
@2 - I)glog r

-4
5+

Similar considerations applied to the case of q odd give the following results.
For the summation with alternating terms:

4,78514t , 3.34467 (q-2) (g®-1)
17 + -
(an v Tg 2q 2q
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For the summation with all terms positive:

4:.785141: 3.34467(q - 2) 4.78514 (qz— 1)

(18) w oD
q 2q q(rq -1) 2q

Table V
UPPER BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS
TO t DECIMAL PLACES FOR THE SUMMATION

(_1)n-1
n=1 (Fn+q-15q
Q e

t 2 4 6 8 10 12 14 16 18 20
5 1 5 3 1
10 23 11 7 4 2
15 35 17 17 4 2
20 47 23 5 10 6 4
25 59 29 19 13 9 6
30 71 35 23 16 11 8 1
50 119 59 3 28 21 16 12 9 6 4

100 239 119 78 58 45 36 29 24 20 16

Table VI

UPPER BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS
TO t DECIMAL PLACES FOR THE SUMMATION

Y‘ (F n+q- 1 )

q
t 2 4 6 8 10 12 14 16 18 20
5 13 1
10 25 12 7 4 2
15 37 17 11 7 4 2
20 49 23 15 10 6 4
25 61 29 19 13 9 6
30 73 35 23 16 11 8 1
50 121 59 39 28 21 16 12 9 6 4

100 240 119 78 . b8 45 36 29 24 20 16
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Table VII
UPPER BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS
TO t DECIMAL PLACES FOR THE SUMMATION

0 (_Dn-l
71 Fpigo1 5q
q

t 1 3 5 7 9 11 13 15 17 19
5 23 8 4 2
10 47 16 9 5 3 1
15 71 24 13 9 3 1
20 95 32 18 12 8 5 3
25 119 40 23 15 11 7 5 2 1
30 143 48 28 19 13 9 6 4 2
50 239 79 47 32 24 18 14 10 8 5

100 478 159 95 67 51 40 32 26 22 18

Table VIII
UPPER BOUNDS FOR THE NUMBER OF TERMS REQUIRED FOR RESULTS
TO t DECIMAL PLACES FOR THE SUMMATION
o0
1

)

n=1 n+q-1
g

t 1 3 7 9 11 13 15 17 19
5 31 8 4 2

10 55 16 5 1

15 79 24 14 9 3 1

20 103 32 18 12 8 5 3

25 127 40 23 15 11 7 5 2

30 151 48 28 19 13 9 6 2

50 246 80 47 32 24 18 14 10 8 5

100 486 160 95 67 51 40 32 26 22 18

These tables indicate impressively the gain in efficiency obtained by expressing
lower-degree summations in terms of ahigher degree summation. The method
of achieving this will now be taken up.
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LOWER DEGREE SUMMATIONS
IN TERMS OF HIGHER DEGREE SUMMATIONS

The program to be carried out illustrating this process will consist in
starting with

oo
DY,
n=1

and establishing a chain of formulas reaching to

%
1

The first step in this chain is found in a resultgiven in the Fibonacci Quarterly

[2], namely:
o0 [ee]
1 1)
—_— = 3 +
2o iy
n=1 = n=1 T2 3

The next step is as follows.

Q0 o] o0
(_1)n-1 (- 1)n 1 (__1)n—1
(19) ) " FF F " F T T
el n+2’g = n n+l “n+4 oy n+l "n+2 "nt+4

S +V ™!

1.1 — Fn For1 Fpes

-1/3+1/4 = -1/12.

It is possible to express
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0

(_Dn—-l
z :F F F
e n n+l n+4
in terms of

Q0
I
Fn+4 5

n=1

Starting with

00
E : (-t [ 1 . 1 11
= N e

and noting that

_ n-1
Fn+2 Fn+4 + Fn Fn—i—3 1) + 2Fn+2 n+3
o0 Q0
-1
1 2 : )"

1/3 = T +2 —_—
=2 Fn+4 5 = FnFn+1Fn+4
=1 n=1

Hence
[*.2] Q0
E: (L =1_1§: 1
- FnFn+1Fn+4 6 2 o m
n=1 n=1
Substituting into (19),
1 Q0

(20) ) _ 52 1
F_ -72 I ) (F"'+'T4
n= 3 n= 5
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The next step is as follows.

Q0

2 : 1 1 _ 1
[Tn+3)4 Fn+5 (Fn+4)4 Fn+6 ] 1-1-2-3-8

n=1

- ) :
=2 2—‘ 1 +3 E 1
=1 TFn+2) Fn+5 Fn+6 Fn Fn+1 Fn+3 ¥ F

3 =1 n+5 " n+6

Q0

+ 3 E -(—T—(_l)n
n=1 Fn+6 7

We shall not derive the relations for the fifth-degree summations in terms of

but simply state them.

o0
PR s e s
(Fn+2)3 Fn+5 Fn+6

n=1

le
oltn
1

o0

z : 1 _ 78 _ 29
n=1 Fn Fn+1 Fn+3 Fn+5 Fn+6 40 3660

Substitution leads to the result
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= == n-1

2 : 1 40 (-1)
(21) = =

— (Fvd) 2640 11 E : [ .

n=

The final stage is as follows.

2 : )i 1[ 1 1 _ 1
n+5r n+7 (Fn+6j6 Fn+8 1:1:2-3:5-6-31

n=1

The numerator of the combined terms inside the brackets is

_ n-1
Fn+6 Fn+8 *+ Fn 1:"n+7 = 4 Fn+4 Fn+6 +5 Fo+a Fn+5 +3(-1)
Letting
o0
A= Z (_l)n—l
= (Fn-lg) 4 Fn+5 Fn+7 Fn+8
o0
B = z . e
F F
n=1 n+3)4 n+8 3
and

the result can be written as

1

113535837 - 4A + 5B + 3C .

Similarly,
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o0
(_l)n—l 1 + 1 _ 1
Zn=1 (Fn+3)4(Fn+7)3 (Fn+4)4(Fn+8)3 1.1:2.3.8:13-21

The numerator of the combined terms within the brackets is

F F = -F +3¢21

Fn+4tFn+8+ n nt5 n+4F

n+6 6 Fn+4 Fn+5

leading to:

1
1-1°2-3-8-13-21

=~-A+6B+3C
Solving with the previous relation in A, B, and C gives:

53 3C

A = 19050080 ~ 29 °

It can also be shown that

00
A = = (_1)n—1 PR
91 iFn+6;7 2981160 °
n=1

This enables us to arrive at the final conclusion

00

22 0™t _ 589 273 1
W )y~ 71900080 ~ 29 N
- n+6 7 — n+8 9
n=1 n=1
Thus a chain has been extended from
[oe] (2.
_1_ to E 1
Fn (Fn+8]9
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Connecting the initial and terminal links

co [e2]
1 _ 46816051 . 16380 1
23) § ;'F'; = 13933920 ' 319 § : S
n=1 n=1 9

Another advantage of a summation such ag

o0
PIL ~rn
n=1 Fn+8 9

167

is that it lends itself readily to calculation. At each stage one factor is added

to one end of the denominator and deleted from the other. Table IX shows the

calculation of this summation to thirty plus decimal places. The factor applied

at each stage to the result on the preceding line is shown at the left.

Table IX
- . & 1
CALCULATION OF M) --—-—-—T—(Fn+89
Term Factor Term Multiplied by 10%3
1 4488 97507 72103 71328
2 1/55 ' 81 61772 86765 52205
3 1/89 91705 31311 97215
4 2/144 1273 68490 44405
5 3/233 16 39937 64520
6 5/377 21749 83614
7 8/610 285 24375
8 13/987 3 75700
9 21/1597 4940
10 34/2584 65
11 55/4181
12 89/6765
13 144/10946
14 233/17711

SUM 4571 52276 20648 18372

01838
96397
79734
77496
24602
32687
26986
99139
33864
00445
85511
1124
14

59844

684
067
799
317
957
042
060
634
704
588
721
988
800

195
456
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With the aid of this value

L)

27
F

n

n=1
is found to be to twenty-five decimal places
3.35988 56662 43177 55317 20113 .

CONCLUSION

In this paper two types of infinite Fibonacci series havebeen considered.
Methods have been developed for expressing series of the same degree interms
of one series of that degree. In addition a pathhasbeen indicated for proceed-
ing from series of lower degree to those of higher degree so that more rapid
convergence may be attained. These two approaches plus the development of
closed formulas in a previous article should provide an open door for addi-
tional research and calculation along the lines of sums of reciprocals of Fib-
onacci series of various types.
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY

Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions to
Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit
solutions or other information that will assist the editor. To facilitate their
consideration, solutions should be submitted on separate signed sheets within
two months after publication of the problems.

Editorial Note: Keep those problem proposals coming, Folks!

H-153 Proposed by J. Ramanna, Government College, Mercara, India.

Show that

n

. 2 Z = 6
@) 4 E :F3k+1F3k+2 @ Fo i1 Fores)@F g0 + Forrg) = Fapug
0

n

.s 2 2 2 = T8
(ii) 16 § :F3k+1 Fot2 Forrs @ Foras ~ Fai Faprs) =Fapig -
0

Hence generalize (i) and (ii) for F2r

3n+3 °
H-154 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Show that for m, n, p integers >0,

Z m+1 n+1 p+1
<j+k+l)<i+k+1)(i+j+1>
19]sk20
m n
=v %(m-a+b><n—b+c)(p—c+a)
Lot hood hrd\ ¢ 2 ’

and generalize.
169
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H-155 Proposed by M.N.S. Swamy, Nova Scotia Technical Coilege, Halifax, Canada.

The Fibonacci polynomials are defined by
fa® = xf &+ &

with f;(x) = 1 and f,{x) = x. Let Zp g = fr(x)fs(y). If Zpg satisfies the

relation

b d =z = 0 ,

Z +az + bz +cz -+
r+4, s+4 r+3, 8+3 r+2,s+2 r+l, s+1 r,s

show that
a=c¢=-xy, b=-x+y?+2) and d=1.

H-156 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Prove the identity

n
2 o0 0
qn Zn _ k _ ng n qk (k+ 1) k
G @-q) q z z
n=0 k=1

q
f=o =0 2k

00 o0 2
_ 2 : q‘n(n-%-l) Zn§ q(kﬂ) Z—k
< CU—

n=-co k=
where

@, = Q-a@-a?) - @-g").

H-157 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada.

A set of polynomials cn(x), which appears in network theory is defined
by

cp® = &+ 2)e &) -c (&) > 1)
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with

cx) = 1 and cx) = (x+2)/2.

(2) Find a polynomial expression for cn(x) .
(b) Show that

ch(x) = bn(x) + bn_l(x) = Bn(x) - Bn—l(X) )

where Bn(x) and bn(x) are the Morgan-Voyce polynomials as de-
fined in the Fibonacci Quarterly, Vol. 5, No. 2, p. 167.
2 (%) = =
{c) Show that 2cn(x) 02n(x) 1.
(d) 1f

_ [ x+2) -1
Q = [ 1 O] H
show that

C -C
[ n n'l] = 2@ -Q"%) for 2.

Ch-1 “®n-2

Hence deduce that ¢ clzrl = x(x +4)/4.

n+1 %n-1"

SOLUTIONS
AT LAST

H-98 Proposed by George Ledin, Jr., San Francisco, California.

If the sequence of integers is designated as J, the ring identity as I,
and the quasi-inverse of J as F, then (I -J){I - F) = I should be satisfied.
For further information see R. G. Buschman, "Quasi Inverses of Sequences, '
American Mathematical Monthly, Vol. 73, No. 4, III (1966), p. 134.

Find the quasi-inverse sequence of the integers (negative, positive, and

Zero).
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Solution by the proposer.

The sequence W o = au + bun with initial conditions uy # 1, uy,

+2 n+1

has the quasi-inverse

v = Av

n+2 n+1 + an ’

where

A =a+uy;/ 1-up), B=b/(1 -1uy
with initial conditions

vg = -up/ (1 -ug), vyi=-uy/(1-ug)?.

Since the sequence of integers is defined by the recurrence relation

Upeg = 24y — Uy

with initial conditions uy = 0, uy = 1, its quasi-inverse is then
Vnt2 © 3Vn+1 ~ Vn

with initial conditions vy = 0, vy = -1 which yields

0, -1, -3, -8, -21, -55, -144, -377,---,—F2n,"'

SUM PRODUCT!
H-120 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada.

The Fibonacci polynomials are defined by

fn+1(x) = X fn(x)+fn_1(x)

fi(X) = 1, fz(X) = X.

If z, = fr(x) . fr(y)’ then show that
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(i) z, satisfies the recurrence relation,

= . - (x2 2 - . =
Zopg = XV Zpus - Y42z o -xyc oz gtz =0,

n
n
(1) (& +y)? - z :Zr = (Zn+2 - Zn—l) - &y - 1)(zn+1 - Zn) :
1

Solution by C.B.A. Peck, Ordnance Research. Laboratory, State College, Pennsylvania.

. YL L)

o) + £ o) (7T o) + £, o ()

= xyz gt X o) £ o) + ¥l o) £ &) # Z 42
= xyzpg 6y 2z, - g,

+ xfh+1(x) fn+2 ) + yfn+1 ) fn+2 ()

so that

2 4 o2 =
Z g~ XVZ 3" 2 +y2+ 2)zn+2 = -XyZ .- xfn+1(x) fn(y)
- vf, +1(y)fn(x) -z, txyZ gt an+ 1(x)fn(y) +XYZ g
+yl O £ & = xyz - Zy» as desired.

(ii) n = 2: by expansion,

173

x+y)21 +xy) = & +2x) (5 +2y) - 1- &y- D( &2+ 1D +1) - xy).

Thus for an inductive proof we need only to show the r.h. and 1. h. increments

equal. The r.h. one is

Z
n+2

= z - XYzt 2y - l)zn - XyZ, 4 tZ o

n+2

which by @) is

x2 +y2+ Z)Zn +2(xy - 1)zn = (x+ y)zzn R

the 1. h. one.

-Z, 1" xy - 1)(Zn+1 - zn) -z g7 Z o + (xy - 1)(zn - Zn—l)
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Also solved by the proposer, B. King, A. Shannon, L. Carlitz, and C. Bridger.

IN SUMMATION
H-121 Proposed by H.H. Ferns, University of Victoria, Victoria, B.C., Canada.
Prove the following identity.

n

oo /F \} -
n k _ m
Z (i) Fm—k Fmi‘l")\ - Fm_,k Fnk‘*’A - FA (m # k) .
=1

where Fn is the nth

Fibonacci number, m, A are any integers or zero and
k is an even integer or zero.

Write the form the identity takes if k is an odd integer.

Find an analogous identity involving Lucas numbers.

Solution by the proposer.

‘The following identities will be required.

k. m. _ k
(1) ¢F_ -o F_ = (-1) Fm—k

(2) FF, - BF

k
1\ k -1 Fn

-k ?

where o = (1+ ~5)/2, B = (1- AB)/2 and F, = @ - 8%/ nB.
The proof of (1) follows. The proof of (2) is similar

akF -afka:ozk -——--———Cvm"ﬁm - —-—-—-ak—ﬁk)
m \5 NG
am+k _ ak ﬁm _ am+k e ﬁk
NG

m-~-k ,m-k
= akBk 9—-——-:-@—-——
&5

~1EF

i

m-k
= Fx
since k is even.
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Identities (1) and (2) may be written as follows:

Fi F K
(3) 1+ (5 M = Fm o (m # k)
m-k \ m-k
Fk m Fm k
4 1+\g— B = A7 B (m # k)
m-k m-k
Let
F F
k m
p= o and v= =2
Fm—k Fm-k
From (3) and (4) we derive the following:
n n
(5) 1 +pd™) - @+ wf™) =R K
n n
(6) @ +;Lam) +(1+/.LB =p (oz +Bnk)
From (5) we get
n .
§ ‘< )# (aml ml) - Vn(ank_ Bnk)
i=1
n

ny i _.n
(7) E <i)"" Fmi_ v Fnk .
1=

If Ln denotes the nt“h Lucas number then Ln =+ Bn and from (6)

we obtain

®) Z(r;) wt L, o= "L -2
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We now add corresponding members of (7) and (8) and simplify the result
by applying the identity
F +L = 2F

n n n+l’

This gives

ny i _ n
®) 2 :(i)“ Fmisg = ¥ Foen =1

Adding corresponding members of (7) and (9) and applying the recursion

formula

to the result yields

n
/ .
n} i _ n
(10) z :(\i)“ Frmita = ¥ Fogao - 1 -

i=1

Repeating the last operation on (8) and (9) and on each successive pair of

identities derived in this manner we get

n F i ¥ n
n k m
N=—)F ., ={=—]F -F (m # k)
;( 1><Fm—rk> mi+A (Fm—k> nk+A T A

If k is an odd integer this identity takes the form

n ) Fk i _F n
ifn = m
Zl:(—l) <1><Fm—;) Fmit T (Fm—k) Foenn ) 72
1=
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Beginning with the two identities

k m._, _ k

L - NBaF = (1)L
m. k

‘BkLm+ n5 B szr(-l) Lm—k

and following the procedure adopted above we arrive at the identity

i+1 .
§n : n 5[17] Fk ' ¢i _ Lm nL L
i Lm—k m Lm—k nk+a ~ A

i=1

where
if i is odd

if i is even

ol - {me
m Lmi+)\

and k is an even integer or zero. If k is an odd integer this identity takes

the form

n [i+1] i n
- F . -L
n 2 k i m
.] 5 — ] (-¢_) = <——) L -L
Z ( 1) <Lm—k> m Lok nk+A A
i=1
Examples. If A=0, m = 1, k = 2 thefirst identity gives usthe well-known

IHERES

Ti=1

formula

The same values for these paraméters when substituted in the second identity

gives the not-so-well-known formula

n n nj\ o N)cor (D) g3 oo = (1) -
_<1)5F1 + (2)5L2 - <3)5 Fy + <4>5 Ly <5)5 Fy + 1"L, - 2.

Also solved by L. Carlitz, and A. Shannon.
STIRLING PERFORMANCE

H-123 Proposed by D. Lind, University of Virginia, Charlottesville, Virginia

Prove
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n m
- (m) (k)
Fy = Z anmsm Fk i
m=0 k=0

(s)
r th
spectively, and Fn is the n™ Fibonacci number.

where S and Si,s) are Stirling numbers of the first and second kinds, re-

Solution by the proposer.

Stirling numbers are defined by

n
Xl = 1) oo (x—m+1)=Z Sr(lm)xm
m=0

n
x" = Zﬂx(lm)x(x-l)"' x-m+1).

m=0
Letting a = (1+ V5)/2, b = (1 - V5)/2, we have

n
? o= Zﬁlgm)a(a—l)'“ (a-m+1)

m=0

n m
; ) kz(; s gk

0

©
i

1)

Similarly,

n m
b= 3D gy

m=0 k=0
It follows
n m
A
TR DI ol <X RV
m=0 k=0

which is the desired result.
[(1) may be found in Jordan's Calculus of Finite Differences, page 183.]

Also solved by David Zeitlin.
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BINET ?
H-124 (Corrected). Proposet'i by J. A. H. Hunter, Toronto, Canada.

Prove the following identity:

2 2 _ w272 =
Fm—l-n Lm+ FmLm 1-"ZnF2+(2.m+n) ?

where Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively.

Solution by Paul Smith, University of Victoria, Victoria, B.C., Canada.

A routine computation shows that:

) uam-m_ﬁm+n)(am+n+ﬁm+n)l~]2_ [(am-Bm)(am+Bm)f

2 2 _F2 2
F L FmLm

m-n m+n @ - p?

) (a4(m+n) + B4(m+n) ~1) - (a4m + ﬁ4m _1)
@ - B)?

) (a4(m+n) + B4(m+n)) _ Cl,2n 32n (a4m + B4n)
(@ - B)?

} (a2n _ 6'2n) ' (02(2m+n) _ BZ(me))

() (@-p)
= F

an F2@m+n) *

(It is merely necessary to observe that af = -1.)

Also solved by C. Bridger, M. Bicknell, A. Shannon, C.B.A. Peck, J. Wessner, F. D. Parker
M. N. S. Swamy, and R. Whitney.

»
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A FOUR-STEP ITERATION ALGORITHM TO GENERATE x in x2- [x+l]2 = yz

EDGAR KARST

University of Arizona, Tuscon, Arizona

Given x; = 3, x; = 20, x5 = 119, x4 = 696, and x; = 4059, we may
generate all further x by the simple procedure outlined below:

20-3 = 17 = 42+1

119-20 = 99 = 102-1

696 - 119 = 577 = 242 + 1

4059 - 696 = 3363 = 582 -1

6.24 = 144, 144 - 4 = 140, 1402+ 1 = 19601, 19601+4059 = 23660 = x4

6-58 = 348, 348-10 = 338, 33821 = 114243, 114243 +23660 = 137903 = xq
6140 = 840, 840-24 = 816, 8162+1 = 665857, 665857 +137903 = 803760 = xq
6-338 = 2028, 2028 - 58 = 1970, 1970%- 1 = 3880899, 3880899 + 803760 =4684659 =xy

The author has taken time to check some of the newer lists against print
errors. The list in [1, p. 123] should read yg = 1136689 (instead of 113689).
The last column of the list in [2, p. 2847 gives the first differences up to xy
- xq9. There are no print errors. The listin [3, p. 104} should read xg =
23660 (instead of 23360) and x33 = 1070379110496 (instead of 1070387585472),

and correspondingly in the column x + 1 there.
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1. Albert H. Beiler, Recreations in the Theory of Numbers, New York, 1964,

2. Otto Emersleben, Uber zweite Binomialkoeffizienten, die Quadratzahlen

sind, und Anwendung der Pellschen Gleichung auf Gitterpunktanordnungen.
Wissench. Zeitschr. der Ernst-Moritz-Arndt-Universitat Greifswald,,
XVI (1967), pp. 279-296.

3. T. W. Forget and T. A. Larkin, 'Pythagorean Triads of the Form x,
x + 1, z Described by Recurrence Sequences,' the Fibonacci Quarterly,
Vol. 6 (June 1968), pp. 94-104.
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THREE DIOPHANTINE EQUATIONS — PART I”

IRVING ADLER
North Bennington, Vermont

6. THE PELL EQUATIONS

Equation (3) is the special case d = 2 of the equation
(18) s¥ - dt” =1 ,

where d is positive and is not a perfect square, Equation (18) is known as the
Pell equation. Another way of solving Eq. (3) is provided by the following
theorem concerning the Pell equations found in most text books on the theory of
numbers. (For a proof of the theorem, see [2].)

Theorem: If (sl,tl) is the minimal positive solution of Eq. (18), then

every positive solution is given by
(19) s, Tt VA = (s + tlva>“, n > 0.

(A solution (s,t) is called positive if s > 0, t > 0.) The minimal positive
solution of Eq. (3) is (3,2). Then, according to this theorem, all positive solu-

tions are given by
(20) s, *t V2= G+2v2)", n=1,2,3--.
Equations (15) and (16) are easily derived from Eq., (20) as follows:

s, tt V2= (3+ 2v2)® = 3+2v2 3+ 2vE) = (5,47t VAE+2V2

= (s, *t4t )T @s 4t 3t:n_1)\/2~ .

n-1

= = +
Therefore S, Ssn_1+ 4tn—1’ and tn an—l Stn—l .

7. RECURRENCE RELATIONS
If (xn,zn) is one of the sequence of non-negative solutions of Eq. (1)

with n > 2, we can derive from Egs. (7) and (8) a formula that expresses X,
*Part I appeared in the December 1968 Issue.
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as a linear function of X1 and X o andaformula that expresses z  asa

linear function of Z, 1 and Z o0 If we replace n by n-1 in Egs. (7) and

(8), we get

(21) X4~ 3xn_2+ :Zzn_2 +1,
(22) Zpq = 4Xn—2 +3z, o * 2.
From (21) and (22) we get

(23) 2Zn-2 = Xiq 3Xn—2 -1,
24) 4% o = Zpq T 32, 5 2.

Then, from Egs. (7), (22) and (23),

= + +
X, 3% 1 2z, 4 1.

X = 8% t2(x otz ,+2) 1.

= +
Xn Elxn_1 + 8Xn—2 + 6zn_2 5,

+ 3(X

NPEL NP R

X = 3x

+ 8x
n n=-1 n

-2
(25) X = 6xn_1—-x + 2.,

n n-2

Similarly, from Egs. (8), (21) and (24),

z, = x 4t sz, 4 % 2.
7 = 4@x, gt 2z, ot 1)+ 82 4 Y 2.
z = 12xn 2+ Szn_z + 3Zn—1 + 6.
z, = 3(zn—1 - 3z 2 2) + 8zn_2+ 3z -1 + 6.,
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(26) z, = 6zn_1 “Zpo e

EXERCISES

5. Let (un, vn) be the nth solution in positive integers of Eq. (2),

n 2 2., Use Egs. (12) and (13) to derive the recurrence relations
(27) u = 61,1n -u

(28) Ve T 6vn_1 = Vp-g -

6, Let (sn,tn) be the nth solution in positive integers of Eq. (3), n

2 2. Use Eqgs. (15) and (16) to derive the recurrence relations
(29) 5 = 6s
(30) t = 6tn -t

8. CLOSED FORMULAS

If a sequence AT AN SURAREN S PRRE is defined by specifying the values of
the first few terms and determining the values of the rest inductively by means
of a linear recurrence relation, then there is a standard technique for finding
a formula that expresses Y in terms of n. For example, it can be shown

that if the recurrence relation is the equation

(31) Vipg =y TV, = O
then

_ n n
(32) Yn T C1T1 T Cofg

where ry and r, are the roots of the characteristic equation

(33) E“-6E+1 = 0,
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and the constants ¢y and c, are determined by the values of Y1 and Yoe
(See [3] for a proof of this assertion.) The roots of (33) are 3+ 2\/2 and 3

- 2\/2_. So in this case

(34) v, = ey 3+ 2V2)" + ¢y (3 - 2v/2)"

The recurrence relations for Zos Vs 8 and tn all have the form (31)
with characteristic equation (33). Hence the closed formulas for Zps Vo 8y
and t all have the form of Eq. (34), and differ only in the values of the con-
stants ¢, and Cqe To determine the constants in the formula

z = c1(3+2\/§)n+ c2(3—2\/§)n ,

we make use of the fact that Z =1 and zy = 5, Then

1= ¢, (3+2V2)°+ cy(3 - 2v3)? |

5= o 3+2VE) ¢, (3 - 2v2)! .

Therefore ¢, + ¢, =1 and ¢, - ¢, = i\/2. Consequently, c, = Ie+ \/5),02

= %(2-V?2), and

(35) a = z}[(2+\/§) B+2V2)" + 2 -V2) 3 - 2\/5)“] .

EXERCISES
7. Determine the values of ¢y and Cy in each of these closed formulas:
(36) s, = ¢ 8+2V2)" + ¢,3 - 2V2)"
(37) t, = c, 3+ 2V +cy(3 - 2V ;
(38) v, o= ¢ 2v2)" + ey(8 - 2v2)" .

It can be shown that if the recurrence relation defining a sequence {yn}
is the non-homogeneous equation
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(39) yn+2 - 6yn+1 + Yn = 2 9
then

= n n_3
40) Y clr1 + czrz 3

where r, and r, are the roots of (33), and c, and ¢, are determined by the
values of Yo and Yy The recurrence relations for X and w have the form
of (40). Hence the closed formulas for X and s after evaluation of the

constants ¢, and ¢ are

1 2°
(41) x, = 1 [(1 FV2)E+2Vv2) (- V2)6 -2V - 2} ,
(42) w, = t[Erevatr e-2vE” - 2],

9. HOW EQUATIONS (1), (2), AND (3) ARE RELATED TO EACH OTHER
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