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A NOTE ON FIBONACCI QUATERNIONS

MATHULAKSHMI R. IYER
Indian Statistical Institute, Calcutta, India

A. F. Horadam has derived in [1] some results regarding Fibonacci
and generalized Fibonacci quaternions. The object of this note is to derive

some more relations connecting these two quaternions. Following [1] Qn and
Pn are defined as

(1a) p = Fp *iF  H§F L FKE L

(1b) o = Hy fH o+ GH +KH

where

(1c) i2 =3 =k =-1, ij=-jk=k, jk=-kj=1i, ki=-ik=7j.

Let us now consider the relation

Pn * an - [Hn + iHn+1 i an+z * an+3]
+q[F +iF IFpy ¥ kF .ol
Also from (1) of [1] we have
H =@-@F +aF .. .,
S0
P *+aQ = [@-QF +qF  J+i[@-F , +aF ]
tile-aF ,+aF) ] +k[E-aF  aF ) ]

FA[Fy AR T Iy YRl

This becomes after some simplifications
= p(Fn + iFn +

PPy T )

+ i i +
+ q(Fn+1 1Fn+2 * JFn+3 an+4)

1

225



226 A NOTE ON FIBONACCI QUATERNIONS

Hence,

P,+taQ, = pQ +dQ

or
@) Py = PQy 4@, - Q)
Py = PRy taQ,

by definition of Qn. Consider now the quantity

where _1-5n, Q.. are conjugate quaternions respectively of P, and Q.

PQ,-PQ = (H +iH  +jH +KH _)F -iF  -jF

[Oct.

kF

nn n*n n-+2 n n+ nt2 - onts
- (Hn - lHn+1 - JHn+z - an+3)(Fn+1Fn+1+JFn+2+an+3
= -~2Hn(Qn - Fn) + ZFn(Pn - Hn)
(3a) PnQ-n - PnQn = Z(FnPn - HnQn)
Dividing by PpQ, # 0,
% E_, (f_q ] 51)
Qn Pn Qn Pn
(3b) _ _
Qn - ZFn _ Pn - ZHn
Qn Pn
Again,
3
PnQn + PnQn = 22 Hn+iFn+i - 2iHn+1(an+2 * an+3)
=0
- 2an+z(iFn+1 * an+3) - 2an+3(iFn+1 * JFn+z)

)

)
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Using (1c) and simplifying we have,

= 2H F_+ 20 _(F KF,, +iF,,.)

+ - i +
) an+1 1Fn+3) 2Hn+3(F

n+ n--3

+ 2Hn+2(F iF_ . +iF_. )

n+ n+1 n+2

n+3~

Now using

we may write the above relation as

Pn’Qn * PnQn - ZHHFH - z[iHnﬂ * an+2 * an+3][iFn+1 * an+2 N an+3]
=20 F -2 -H)Q -F)
PnQn + PnQn = _Z(PnQn - Py - Qan)
(4) PnQn * PnQn = 2[PnFn * Qan - PnQn]

As P_ and Qn # 0, dividing by PnQn’

n Qn
Q - 2F 2H - P
QnQ +1 = s n _ 1
n n
or
Q. - 2F P - 2H
(4h) - SRR SO [ I ¢ SN (RPN
) Q P
n n

Also



228 A NOTE ON FIBONACCI QUATERNIONS [Oct.

PnQn - PnQn = (Hn * 1Hn+1 + an+2 * an+3)(Fn * iFn+1 * an+z + an-le)
- | -iH - H - KH OF -iF, - 3F - KF L)
= 2Fn(1Hn+1 + 3Hn+2 + an+3)
+ 2Hn(iFn+1 +HIF Lt anﬂ)
= 2F (P -H ) +2H Q - F)
@) PnQn - PnQn =2 [HnQn * FnPn - 2HnFn]
Theorem:

2 2 = -
Qn—i + Qn ZQ2n-1 3LG+z

Let us consider the left side of the relation.

Qfl—i * lel - (Fn—i * iFn * J.Fn+1 * an+2 2 (Fn * iFn+1 * jFn+2 * an+3)2
= [P =T - Foy ~ Fray * Fo = Py~ Frg = Fhg ]
+2 [Fn-i(iFn * an+1 * an+2) * Fn(iFnﬂ * an**z * an+3 )]
* [iFn+1(an+2 * an+3) * an+2(iFn+1 + an-Ps )]
+ [iFn(anﬂ * an+2) * an+1(iFn + anﬂ)]
* [KF),GF, +3F) )+ KF GGF)  +3F) )]

The first term

2 _ w2 _ (T2 2 _ 2 2
Fn—i Fn+1 (Fn+1 + Fn+2) (Fn+2 + Fn+3)

_ (w2 _ 2 2 2 2 2
[(Fn+1 Fn—i) * (Fn+1 * Fn+2) * (Fn+2 * Fn+3)]

(A)

- [(an +F s T F2n+5]

1l

- [12F2n +TF, 1]

Now consider the terms containing i, j, k, namely,
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. + ] + 0]
4 [FnFnﬂ FnFn+1] 2] [Fn—iFnﬂ + FnFnﬂ]

(B) + 2k[Fn_1Fn e N ﬂ]
= 21F2n * 23F2n+1 * 2szn-I-z
Therefore
2 2 =
Q_ +Q2 [12F2n + 7F2n_1]
+ 21F2n + 2]F2n+1 + 2kF2n+2
= - [12F2n + 9F2n_1 - 2F2n—1]
+ Zinn + jFZn—H + kF2n+2
- [3F2n43 * 3F2n+1] +2Qny
- —3L2n+2 * 2an=1
Hence,
2 2 = -
Qn—i * Qn 2Q2n—1 3L2n+2

Hence the theorem.

Other interesting relations will be considered later.

REFERENCES

1. A. F. Horadam, "Complex Fibonacci Numbers and Fibonacci Quaternions, !
Amer. Math. Monthly, 70, 3,1963,

* &k A ok K
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REMARK ON A THEOREM BY WAKSMAN
EMANUEL VEGH
Naval Research Laboratory, Washingten, D. C.
Let Q denote the set of primes Q@ = Q*U {1} » Z the nonnegative inte-
gers and V = {K:Q* < SK}, where S, = {m=Kn+p; n€EZ and p = 1
or p EQ suchthat p /K, p< K} U {p EQ:p|K}. Let U = {k:k € Z and

each of the ¢(k) integers 1 =a; <ay< ...< a not greater than k and

relatively prime to k, is a member of Q*}. We(pr(xlf))te that a, € Q if k > 2,

A. Waksman [1] has shown (with the aid of a computer search) that V =
{2, 3, 4, 6, 8, 12, 18, 24, 30}. Trivially, 1 must also be a member of V.
We shall show that U = V. It is known that U consists of the integers given
above [2, p. 62].

Let 0<t€&EZ and let 1 =a;< a3< +++ < ago(t) be the integers not
greater than t and relatively prime to t.

(i) We prove firstthat U CV. If t EU (so that a, € Q*) then every

positive integer relatively prime to t is a member of the set
R = {tn+ai:nE Z, i=1,2, ", 0t).

Now 1 €R and if q is a prime, then either q|t or g € R. Thus Q* £ St
and tE& V.

(ii) We show now that VC U (using, in part, a method of Waksman).
It is immediate that 1 and 2€¢ VN Q. If 2 < t €V then by the Dirichlet
theorem, there is a prime g such that g = a% (mod t). Since q €& St and
g/t thereis a prime p < t such that g = p (modt). Thus p = a3 (mod
t). If a <t then tHa% - pl <t, which implies p = a}, a contradication.

Thus a% > t. If one of a, ¢ QG =3, ,¢lt), then a, >al>t, a con—
tradiction. Thus a, € Q* (i =1,2,""",¢t), and tE U.
REFERENCES

1. A. Waksman, "On the Distribution of Primes," American Mathematical
Monthly, 75 (1968), pp. 764-765.

2. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen,
Chelsea, New York, 1953.

* ok Kk ok Kk
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RECURRENT SEQUENCES IN THE EQUATION
DQ*=R?+ N

EDGAR I. EMERSON
Rt. 2, Box 415, Boulder, Colorado

INTRODUCTION

The recreational exploration of numbers by the amateur can lead to dis-
covery, or to a different way of looking at problems, because he often does not
know the conventional approaches. Sometimes, as a form of amusement, I
pickeda quadratic expression at random, set itequal to a square and then tried
to solve the resulting equation in positive integers. Whenever I was able to
solve the problem I noticed that recurrency was evident. One of the most sat-
isfying results came from the solution of 5x%+ 6y +1 = y%2 where the recur-
rent relationships involved Fibonacci and Lucas sequences. However, the
method reported [1] for this solution is not general. An improvement in the
method resulted from exploring the Pell and Lagrange* equations. As exper-
imental data accumulated I'was able to make some conjectures and when Idis—
cussed the results with my friend, Professor Burton W. Jones, he urged me
to try to prove them. For his encouragement, I am grateful.

The following are some of these conjectures:

a) For any recurrent equation such as U
cU_ -U

n n-1°
that the sequence of X's and of Y's follow the given recurrent law.

=CUn+Un— or Un+ =

n+1 1 1
¢ constant and even, there exists at least one Pell equation such

b) In a Pell equation if DY] = X3 +1 then the recurrent law for the

sequence of X's or Y's is U, =cU +U , andif DY} = Xj - 1 then the

n+1
governing law is Un +1 = cUlrl - Un—l’

c) In Lagrange equations having the same D as a Pell equation, there
exists a recurrent law common to both. (Proof to be offered in another

communication. )

*The Lagrange equations Dy? = x2 + N, N > 1 will be discussed in another
communication,

231



232 RECURRENT SEQUENCES IN THE PELL EQUATIONS [Oct.

Since a method of developing the sequence of one of the variables, in a
Pell equation, independent of the other is so easy and since the proof justify-
ing such treatment uses only elementary algebra, without the use of continued
fractions or convergents, I thought that the method might be of interest. As
will be demonstrated, problems, relating to the Pell equations which seem
difficult, are solved in an almost trivial fashion by means of the theorems to
be developed here. (Before continuing the reader is invited to try solving
problems 1-5.)

PART | — THE PELL EQUATIONS
DY2 =X2 -(I)"andDY. = X2 -1

For a given D > 1 and nota square the complete* Pell equations are
either of the forms

2 = w2 _ (B
@ DY! = X2 (-1)
or
2) DY§1=X§1—1, n=20,1,2,3, -

While both of these equations have the trivial solution X4, = 1, Y, = 0, the
key to the general solution is in finding Xj, Y4, either by inspection or other-
wise. How this may be done by convergents is explained by Burton W. Jones
[2], C. D. Olds [3], R. Kortum and G. McNeil[4] and others in books on
number theory.

The least positive, non-trivial solution (X4,Y4) is variously called the
minimal or fundamental or generating solution. Once this solution is found,
the general solution is given by

(3) X +Y AND = (X + Y,;ND)"

*The equation DYJZa = ijn “ )% n=0,1,2,8,"*", is complete. However,

P . 2 - 2 _ 72
it is commonly treated as two equations, e.g., DYZk X2k 1 and Dsz 41

= X22k+1 +1, k=0,1,2,3,-+-. Unless otherwise stated, we will assume that
for the given D, the Pell equation is complete and we are dealing with all pos-
sible solutions.
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The sum of the rational terms in the binomial expansion of (X;+ Yy ND)" is
Xn and the sum of the irrational terms is Yn ND. That equation (3) gives all
of the possible solutions was first shown by Robert D. Carmichael and later
explained in his book Diophantine Analysis [5 ].

When the minimal solution (X;,Y;) is substituted in equations (1) and (2)
we have respectively the minimal equations

@) DY] = X% + 17
and
(5) DY = Xj - 1.

In either case, and irrespective of the sign preceding 1, the general so-

lution is given by the single equation (3).

PROOF OF THREE THEOREMSON RECURRENCY IN THE PELL EQUATIONS

Theorem 1. In the integer solution of a Pell equation, the sequence of
X's is recurrent as is the sequence of Y's according to the recurrent law,
Un+1 = CUn iUn—l’ )
DY? = X +1 and the - sign is used if DY} = X - 1.

To prove this theorem we combine the minimal equations (4) and (5) so

that

c = 2Xy. The + sign is used if the minimal equation is

©) DY = X5 +1 .
Then for reference we prepare, from the general solution (3), the following

set of equations:

n-1 _
(7a) Xy + Yi'\/-ﬁ) = Xn—l + Yn_l'\[—]_)-

¥ If the minimal equation for a certain D is DY% = X% + 1 then there are so—
lutions for DY? = X% + 1. If the minimal equation is DY = X3 - 1 then the
only solutions are for DY? = X2 - 1. Thus DY? = X% +1 is not solvable for

all D's nor does it have atrivial solution.
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— n p—
(7o) Xy + Y4ND) =X +Y ND
= n+1 —
(7c) Xy + Y4ND) =X 1*Y, \ND .

When X; +2X;Y;nND is added to both sides of DY; = X3+ 1 we obtain X} +
2X, Y4 ND + DY = 2X5 + 2X,¥;ND + 1 or

(8) Xy +Y4ND)? = 2X;(Xy + Y4ND) # 1

Multiplying both sides of this equation by (X; + Yy '\/ﬁ)n_l we derive

n+1

©) Xy + Y ND)T = 2xy(Xy + Y ND)R £ Xy + Y ND)PT

Now when the appropriate substitutions are made in this equation from set (7)
we get

Xy T Y ND = 2X(X +Y ND) = (X, +Y ,~ND)

and rearranging this equation we have

(10) X .+Y ND .

- ND = (2X1Xn + Xn- 1) + (2X1Yn + Yn-

n+1 1)

After equatingthe rationaland thenthe irrational terms in (10) we finally derive

(11) X 4 = 2X4X *X
and
(12) Y, = 2XY Y ;.

Thus the proof of Theorem 1 is complete and equations (11) and (12) are the-

equations of the Theorem.”

*The equations of the Theorem seem similar to expressions found forthe con-

vergents of continued fractions. For instance, the numerator of the nth con-

vergent is P, =2,P, 1P, o This equation seems similar to Xn = cX
+ Xn_2
in the convergent expression only the + sign appears.

n-1
but in the equations of Theorem 1, + or - signs are used whereas
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As a consequence of Theorem 1 we have
Theorem 2. For every recurrent equation, Un 1= cUn +Un_1

Un 4= cUn - Un_1 where c is even, there exists at least one Pell equation

for which the sequence of either variable is governed by the given recurrent

or

law.

To prove this theorem we note from Theorem 1 that c¢ = 2X; whenee
Xy = ¢/2. When this value of X; is substituted in the minimal equations
DY_%L = Xﬁ +1 we have

DY;

I
N
[ le)
N—

oo
4+
[y

Except for a trivial case,

therefore we can let

whence Y; = 1 and thus we have proved Theorem 2. If

contains a square factor ~>1 there may be other solutions as demonstrated by
problem 1.
In equation (1), DY?rl = X%l - (-1)®, we notice that when n = 2k then

2 -2 _
(13) Dsz = sz 1

and when n = 2k +1 then

(14) D 1, k =10,1,2,3,"""

2 — 2
Yors1 = ka1 T
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In order to study the sequence of every other term in a Pell equation we have
Theorem 3. The sequence of every other X or Y ina Pell equation is
recurrent. If the recurrent law for the Pell equation is Un 41 = cUn + Un-

1
then the sequence of every other X or Y is

= (c2 -
U (c +2)Un +1 U

n+3 n-1

and if the recurrent law is Un 1= cUn - Un—l then the sequence of every

1
other X or Y is governed by

= (02 _ 92) _
Un+3 = (c® - 2) Un Un—l .

We prove the two parts of Theorem 3 together using the ambiguous +

sign.
Un+1 = CUn % Un—l
then
Un+2 = cUn_*_1 + Un
and
Un+3 = cUn+2 * Un+1 :
But
Un+2 = CUn+1 * Un
therefore
Un+3 = c(cUn_‘_1 + Un) + Un+1
or

= a2
U —cUn+

n+3 * CUn *Upn

1
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and
— (2
Un+3 = 2 1)Un+1 * cUn

But

el = U - U
therefore

— (2

Un+3 = (¢4 l)Un+1 iUn+1 - Un—l
or
— (2

(15) Un+3 = (c :tZ)Un+1 —Un_1 .

With the derivation of equation (15) we have proved Theorem 3. For conven-

ience we let c? + 2 = ¢, and then the equations of Theorem 3 become

(16) u!

k+1 Uk

= U -Ug g

U} = Up, U = U,
or
Ul = Uy, U} = Us.

The method of proof for Theorem 3 demonstrates that the properties of
the sequences of X's or of Y's in the Pell equations are simply the proper-
ties to be expected from considerations of the recurrent equations Un 1=
cUn + Un—l'

EXAMPLES

Example 1. When D = 2 the minimal solution is 2Y; = X3 +1, Yy =
1, X; = 1. From Theorem 1 we know that we must use the recurrent equa-
tion with the + sign and that the constant ¢ = 2X; = 2. Thus, the sequence

of X's develops from Xn 41 = 2X) +Xn_ Xp=1, X3 =1.

1 1’
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X2=2X1+X0=2'1+1=3
X3=2X2+X1=2‘3+2=7
Xy = 2% + Xy = 2-7+3 =17 ,

etc. Thus
xX=1,1,3,7, 17, 41, 99,°-* .
Similarly for Y we have Yn+1 = 2Yn +Yn_1, Yo=0, Yy =1

Yy = 2Y; + Yy =2+-1+0 = 2

1!

[ 3V]
[\
KR
Jay
I

(4]

Y; = 2Yy; + Yy

Yy = 2Y3 + Yy =2+ 5+2 =12,
efc. , and
Y =90,1, 2, 5, 12, 29, 70,"°"° .
Example 2. For D = 3 the minimal solution is X; = 2, Y; = 1 and
the minimal equation is 3Y§ = Xi - 1, whence the recurrent law for D = 3

is

n+1 n n-1

Then

26

>
I}
N
b

(-]
1
bl

g
I}
S
-3
1
I\
il

)
e
]
N
£
i
2
1l
NN
Do
[«
1
-3
Il

99,
etc. , and for the Y's

Y2=4Y1—Y0=4:‘1—0=4:
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Yy = 4Y, - Yy = 4-4-1=15

Y4 4Y3—Y2 5'15-4=56,
ete. , and
X =1,2,17, 26, 99,---

and

o
I

= 0, 1, 4, 15, 56, .

PROBLEMS

The following problems illustrate the use of the theorems developed
here. Without knowledge of these theorems, I believe the problems might be
difficult to solve.

Problem 1. The numbers 2024 and 32257 are consecutive values of
one of the variables in a Pell equation. What are the corresponding values of
the other variable? (There are two solutions.)

Problem 2. For 8Y% = X% -1 we have

X = 1, 35 179 99,

Y = 0,1, 6, 35, °°°
and

U =6Un—U

n+1 n-1 °

Find another Pell equation(s) for which this recurrent law holds.
Problem 3. Prove that

and
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_ Xan + Xn—l

Y, = YD

Use the + signif DY} = X} +1 and the - signif DY} = X} - 1. Notice that
in this problem the recurrent sequence of one variable is developed in terms
of constants and the other variable.

Problem 4. In a Pell equation where D = a2 -1, a > 1, prove that

Xn an—l = 0 mod (X; +#1) using corresponding signs on each side of the
congruence.

Problem 5. In Pell equations if DY = X} + 1, prove:

n

ZX ) X TX,-%X-1
j c

=1

and

Y . +Y -Y,
E y = o , c=2X,.

Note that if ¢ = 1 and the X's are Lucas numbers and the Y's are Fibonacci
numbers then we have the summation equations for the Lucas and Fibonacci

sequences. If DY% = Xﬁ - 1, show that the comparable summations are

n

Z % = T R R
j c-2

=1

n

- Y "Y "Yi

E Y, = —ﬂc—_nz— , c=2Xy, Xy # L.
=1

Problem 6, In each of the following equations find recurrent sequences

of rational x's such that y is integral. The ambiguous sign is used to avoid
negative roots.
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a) 3% + 4x + 1 = y?
b) 3% + 5x + 2 = y?
c) 2x2 + 6x + 5 = y?
d) 6x2+5x + 1 = y?
EPILOGUE

In this part of the paper, some terms and notations are introduced which
were found to be convenient.

a) In the Pell equation, DY?l = X}Zfl - 1" n=0,1,2,3,""", we no-
tice that as n increases, 1 is alternately subtracted and added to the X2
term. Thus the equation is referred to as an alternating equation. For the
equation DYf1 = Xfl -1, n=0,1,2,3,---, 1 isalways subtracted from X2
and is referred to as non-alternating. The term alternating Pell equation im-
cU

n+l n
+ Un-l’ whereas the term non-alternating Pell equationimplies DY% = X% -1

plies the minimal equation DY% = Xi + 1 and the recurrent law U

and the recurrent law Un 1= cUn - Un—l' In this connection it is interesting
to note that in recurrent equations where the n's are negative, the neighbor-
ing terms in the sequence developed from Un-l = Un 41" cUn have opposite
signs and thus the signs in the sequence alternate. If Un-l = cUn - U][1 41 and
n <1, the neighboring terms of the sequencehave the same signs and the se-
quence is non-alternating.

The use of non-positive n's in the equations of Theorem 1 leads to the
conjugate solutions of the Pell equations.

b) In the recurrent equation Un 41" cUn+Un_1,c > 1 is associated with
1 nt1 = %V~ Ung
c>1 is associatedwith the - sign preceding the Un—l term. A convenient no-
+

the + sign preceding the Un- term and in the equation U

tation for these recurrent equations is ¢t and c-. For example 6% implies

U, =60 +U_

0+l and 4~ implies Un+1 = 4Un -U

Since c* or1 ¢~ indicates the manner in which I::h:} recurrent sequence
is developed they are called the indicator, I, of the sequence.

If  and B are the first two terms of a sequence, then the development
of the sequence is completely determined by the indicator and the first two
terms as I(x,B). For example,if I = 3%, o =2, g =3 then 3%, (2,3) de-

fines the sequence and implies Un 41 = 3Un +Un-1’ Uy =2, Uy =3.
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Throughout my notes I have used this notation because of its convenience and
brevity.

Since each of the Pell equations, (1) and (2) have a unique recurrent law
for a given D then it follows that theyhave a unique indicatorbut a given indi-
cator does not necessarily determine a Pell equation uniquely.

¢) If a sequence is determined by I, (@,B) and «,f have a common
factor, f, then all terms of the sequence contain this factor. Let o = foy
and B = fB; then

I, (O./,ﬁ) =1, (fai,fﬁi) =1, f(ai’ﬁi) .

The nth term of the sequence can be developed from I, {1,81) to the nth

term which is then multiplied by f and by this procedure we can use smaller
numbers.
d) Applying these concepts to the Pell equations we have for the general

recurrent solution

I’ (1, Xi) ‘

I’ Yi(os 1)

= 9xX if DY = X2 — oxT i 2 _ <2
where I = 2X; if DYy = Xj+1 and I = 2X; if DY; = Xi- 1L

We see that in general for any Pell equation Yn = 0 mod Yj.
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UNIQUE REPRESENTATIONS OF INTEGERS
AS SUMS OF DISTINCT LUCAS NUMBERS

J. L. BROWN, JR.
‘Ordnance Research Laboratory,
The Pennsylvania State University, State College, Pennsylvania

INTRODUCTION
| fp, 1 ;
The Lucas numbers, !Lnfo , are defined by
Ly = 2, Ly = 1
and
Ln+2 = Ln+1 +Ln
for n > 0. Then,

for n > 0, where

and
F =F +F =1

define the Fibonacci numbers. It is well-known that the Lucas numbers are
"'complete!! [1] in the sense that every positive integer can be expressed as a
sum of distinct Lucas numbers. In general, such representations are not

unique; for example,
4=L3=L1+L2, 12=L1+L3+L4 = L0+L2+L4,

etc. Our purpose in this paper is to show, by introducing constraints analo-

gous to those used in obtaining unique expansions of integers in Fibonacci

243
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numbers, that unique representations interms of Lucas numbers are also pos-
sible. We show, as one example, that every positive integer n has a unique
representation of the form

[o o]
Q) n = Z"’i L,
0

where o, = ai(n) is a binary digit (zero or one) for each i 2 0 and the @

satisfy the following constraints:

(2) a.a, ., =0 foriZ20
i'i

(3) Qg Qy = 0 .

We recall that the constraint oo, = 0, which precludes the use of two suc-
cessive Lucas numbers in the representation, is essentially the same require-
ment that gives unique representations in Zeckendorf's theorem for Fibonacci
expansions ([2] ’ [3]). The additional condition opay = 0 reflects the par-
ticularity of the Lucas sequence.

REPRESENTATION THEOREMS

Before stating the main theorems, certain preliminary lemmas will
prove useful.
Lemma 1.
L -1=1L +Ln +eee +L1’2(n)

for n 2 2,

where

2Ly if n is even
Lg,m) =

Ly, if n isodd.
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Proof. By induction, one easily proves

- = so0 >
Loptr = 1 = Ligy # Loy o+ *Latly (02 1)

L, -1 =1L +L toeee + g+ 2Ly (02 1),

2n 2n-1 2n-3

The Lemma statement combines these two identities.

Lemma 2.

n

= E >
Ln+2 1+ Li for n=2 0.
i=

Proof. Induction.

Lemma 3. Let

0

n = a L, ,
2311

0
where each o is a binary digit such that

o = . >
i) @ 0 fori=20

ii) Aylg = 0

Such a representation for n is unique.

Proof. Assume n has a competing representation,

o0
n = E ‘)’iLi
0

245

with 'Yi binary, ‘Yi‘yi+1 =0 for i 20 and Y% = 0. Assume, for a proof

by contradiction, that the two representations are not identical, that is,
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w )
Zlyi""il’é 0.
0

[Oct.

Then, let k bethelargest value of i such that @ # “/i. Clearly k 2 2, and

since o # Y ., we may assume without loss of generality that «

& = 1’ 'yk =
0. It follows that, for some m < n,
k k-1
m = oL, = Y.L. ,
2 : i z: i
0 0
with ak = 1. Then
k
E >
ozi Li > Lk ’
0
while from the coefficient constraints on the {}'i } R
k-1
E < = -
)i Li < Lk-1+Lk—3 + + Ll,z(k) Lk 1,
0

the last equality from Lemma 1. Thus m > L

K while m< L, -1, a
contradiction.

k

Lemma 4. Let

where each ,Bi is a binary digit such that

i) ﬁi+ﬁi+17£0 for 0 <i<k-2
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ii) Bo + By # 0
iii) B =1.

Such a representation for n is unique.

Proof. Assume n has two representations in the given form; that is,

k m
) n =ZﬁiLi =Z Y%L

i=0 i=0

where ﬁi and Yi are binary digits satisfying

By = Y =1 B+By £ 0

for 0<i<k-2,

Bot By #£0, %+,  # 0

for 0< i

IN

m - 2,

Yo+ Y # 0.

Without loss of generality, we take m > k 2 2. If m >k, then the right-

hand representation in (4), together with the coefficient constraints, implies

. Lm+Lm_2+---+L2+L1 = Lm+12 Lyso (m even)
Lm+Lm_2+---+L3+L1+L0=Lm+12 Lo (m odd) .
But
k k
n =ZBiLi < ZLi = Lyyp -1
i=0 i=0

a contradiction. Hence m = k in (4); thatis,
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K K
n = E:BiLi = ZViLi ,
0 0

or equivalently,

K K
2(1 - BL, =Z a- %L, .
0 0

If we nowdefine ozi=1—,6’i and 8i=1— 71 for 0 i<k and o, =8, =0
for i 2 k, then

o0 o0

E oL, = E 5.L. ,
11 11

0 0

with @ 61 binary digits satisfying
% %41 = 884y 0
forall i 2 0 and
agay = &gby = 0.
By Lemma 3, o = § for i 20 and thus B, =%, for 0 <i £k, imply-
ing uniqueness of the representation.

Theorem 1. Let n be a nonnegative integer satisfying 0 < n < Lk for
some k 2 1. Then

5) n = Z o L,

with @ binary digits satisfying
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2 = i >
i) 4o 0 for i >0

ii) apay = 0

Further, the representation of n in this form is unique. [If k-1< 2 in
(5), we define @y = 0 so that ii) is automatically satisfied.]

Proof. Uniqueness follows from Lemma 3. It remains to show such a
representation exists. For a proof by induction on the index k, we verify
directly that the theorem holds for k = 1 and k = 2. Now, assume as an
induction hypothesis that the theoremholds for all k < k; where ky > 2. To
show the theoremholds for kj+ 1, itsufficesto consider an arbitrary integer

n satisfying

L <n

<
o S 0 S D1

Then

0<n-L L

koS Vgt~ ey = Lip-1
By the induction hypothesis, there exist binary coefficients A such that

ko-2

n-Ly = Z"i Ly
0

with
Y, Y41 = 0 for i 20, %% =0.
Then
ko
" =Z"1Li
0

where
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‘yko__l = 0’ ‘yko = 1 ki

sothat n is representable inthe required form with the given coefficient con-

straints. d.e.d.

Theorem 2. Let n be a positive integer satisfying

k-1 k

E L.<n§§ L,
1 1

0 0

for some k > 2. Then

k
n = E Bi Li

0
with Bi binary coefficients satisfying
. <ji<k-
i) ,Bi+ﬁi+17£0for0_1_k 2
ii) By + By # 0O
iii) Bk =1

Further, the representation of n in this form is unique.
Proof. Again, uniqueness is a consequence of Lemma 4. To establish
the representation, note that

k-1 k
E L.<n SZLI
0 0

implies
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By Theorem 1, the integer

k
L, - n
z : i
0
has a representation
k k-1
Z L.,-n = a. L, ,
i Z : i7i
0 0
where the binary coefficients @ satisfy Qe = 0 for
Oé’.iék—z, QyQy = 0.
Then
k-1 k
n = Lk+ E (1—cei)Li = E (1—ozi)Li ,
0 0

where o = 0, and the theorem follows on recognizing /31 =1- o 0cic

k) as binary coefficients satisfying

B+ Byq * O

1

for 0 <i<k-2, Bp+B; # 0 and ‘Bk =1, d.e.d.
Theorem 2 thus guarantees the representation for all positive integers

>4, Representations forthe positive integers 1,2,3 are immediate, namely

1=0-Lyg+1+Ly, 2=1+Lj 3 =1eLy+1:Ly.

The constraint By + By # 0 is assumed not to be enforcedin thesethree cases

where thelargest Lucas number appearing inthe expansion islessthan L, = 3.
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UNIQUE REPRESENTATIONS OF INTEGERS
AS SUMS OF DISTINCT LUCAS NUMBERS

Theorem 2 is a dual to Theorem 1 and corresponds to the dual of the

Oct. 1969

Zeckendorf theorem for Fibonacci numbers [4]

1.

2.
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=== ASSOCIATION MEETING ==

The Fibonacci Association held its Fall Meeting on October 18th at San

Jose State College. Following was the Program:

MORNING SESSION

9:30 a.m. SOCIAL GATHERING

10:00 — 10:45 TEST FOR THE PRIMALITY OF MERSENNE NUMBERS
Douglas Lind, Stanford University

10:45 — 11:30 WEB SEQUENCES
George Ledin, Jr., University of San Francisco

11:30 — 12 Noon OPPORTUNITY FOR GENERAL DISCUSSION

AFTERNOON SESSION

1:15 — 2:00 FIBONACCI AND RELATED SERIES IN COMBINATORICS
Prof. D. H. Lehmer, University of Calif. , Berkeley

2:00 — 2:45 MARKOV-FIBONACCI RELATIONS
Prof. Gene Gale, San Jose State College

2:45 — 3:30 IT'S GENERALIZED! WHAT'S NEXT?
Prof. V. C. Harris, San Diego State College
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COMPOSITIONS AND FIBONACCI NUMBERS

V. E. HOGGATT, JR., and D. A. LIND ‘
San Jose State College, San Jose, California and University of Cambridge, England

1. INTRODUCTION

A composition of n is an ordered partition of n; thatis, a representa-
tion of n as the sum of positive integers with regard to order. For example,
4 has the eight compositions

4 =34+1=14+3=2+2 24+41+1=142+1=1+1+2

1+1+1+1

1

Some elementary properties of compositions have been given by Riordan [12,
124-125], and a more extensive study has been made by MacMahon [9, 150—
216]. Isolated 2xamples of composition formulas involving Fibonacci numbers
have appeared sporadicallyin the literature (see [11], [13], [14], [15],[16]).
In an earlier paper [6] the authors established a general composition formula
and its inversion of which the above are particular examples. This formula
generalized a result of Moser and Whitney [11], and from it followed a num-
ber of further results. In this paper we review the previous results, continue
their development, and show how these techniques can be used to prove cer-

tain Fibonacci identities.

2. PREVIOUS RESULTS

From direct expansion we find that the enumerator of compositions with

exactly k parts is (x + x2 + -~ )k_

That is, the coefficient of < in the
resulting series is the number of compositions of n with k parts. If a sum-
mand j is given weight Wj’ then

ko (wek

Wix + Wox? + -+ )

maybe termed the enumerator of weighted k-part compositions. To obtain an

explicit representation, put

253
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]
, _ 1 : n k
(2.1) Cx,y;w) = E [W(x) S TOyWE E cnk(w)x Vo,
k,n=0
where w = {wy,wy,***}. Using the formula for derivatives of composite func-

tions (see [12, p. 36]),

Kn

2.2) ¢ - Wn m,k > 0),

where the sum is extended over all k-part partitions of n; that is, over all
solutions of kj + 2ky + -+ + nkn =n such that ky+--+- + k, = k. Since the
number of distinct compositions obtainable from the above partition is the co-
efficient in (2.2), the omission of the coefficient calls for summation over

compositions. We write

£2.3) cnk(w) = E waiwaz"' wak n,k > 0)
'yk(n)
where 7k(n) indicates summation over all k-part compositions a; +--- + a

of n. Specialize this by letting

(2.4) Co = Cho,Liw) = T = E ¢, (w)x"
n=0

in which

(2.5) c_(w)

=
i)
o
=}
]
o
=
W/—\
S
1l
<
©
R
<
=)
A\
A=
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where ¥(n) indicates summation over all compo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>