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A NOTE ON FIBONACCI QUATERNIONS 
MATHULAKSHIVtl R. IYER 

Indian Statistical Institute, Calcutta, India 

A, F. Horadam has derived in [ l ] some results regarding Fibonacci 
and generalized Fibonacci quaternions. The object of this note is to derive 
some more relations connecting these two quaternions. Following [ l ] Q and 
P are defined as n 

(la) Q = F + i F _ L + j F _ J _ + k F J _ 
^n n n+i J n+2 n+3 

(lb) P = H + iH. , + JH ^ + kH ^ 
n n n+i J n+2 n+3 

where 

(lc) i2 = j 2 = k2 = - 1 , ij = -jk = k, jk = -kj = i, ki = -ik = j 

Let us now consider the relation 

P + qQ = [H + iH + JH + kH _,_ ] n ^ n L n n+i J n+2 n+3J 

+ q fF + iF , + jF , + kF _,_o ] . n L n n+i J n+2 n+3J 

Also from (1) of [1] we have 

H = (p - q)F + qF , 4 , n F H n ^ n+i 
so 

P n + q Q n = C<P " q ) F n + q lW + ^ ^ WqFn+2^ 

+ J [<P-<l) W q F n J + k[(P-q)Fn+3+qFn+4] 
+ qfF + iF , + jF , + kF , ] . HL n n+i J n+2 n+3J 

This becomes after some simplifications 

= p(F + iF ^ + jF ^ + kF L ) ^ n n+i J n+2 n+3 
+ q(F ^ + iF ^ + jF , + k F , ) HV n+i n+2 J n+3 n+4 
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226 A NOTE ON FIBONACCI QUATERNIONS [Oct. 

Henee, 

or 

P + qQ = pQ + qQ . 

(2) 
p = pQ + q(Q - Q ) n ^*n 4V*n+i ^ n ' 
P = pQ + qQ 

by definition of Q . Consider now the quantity 

P Q - P Q n ^ n n ^ n 

where P , Q are conjugate quaternions respectively of P and Q . 

P Q - P Q = (H + ffl + JH ^ + kH ^)(F - iF _,_ - jF M - kF . ) n^n n n n n+i J n+2 n+3 n n+i J n+2 n+3 
- (H - iH ^ - ]H ± - kH , J ( F + iF + JF , + kF . J n n+i J n+2 n+3 n n+i J n+2 n+3 

= -2H (Q - F ) + 2F (P - H ) n n n n n n 

(3a) P Q . - P Q = 2(F P - H Q ) 
• n *n n n n n n n 

Dividing by P n Q n £ 0, 

(3b) 

Again, 

Q P n n 
Q P 

n n 
Q - 2F ^n n 

Q ^n 

/ F 1 

P - 2H n n 
P n 

P Q + P Q = 2 V H .F . - 2iH (iF + kF ) n*n n*n JLJ n+i n+i n+iu n+2 n+3' 
1=0 

2jH J F ± + kF _,) - 2kH _,_ (iF _ + jF _,_ ) J n+2 n+i n+3 n+3 n+i J n+2 
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Using (1c) and simplifying we have, 

227 

Now using 

= 2H F + 2H ^ ( F _,_, - kF + IF _, ) n n n+i n+i n+2 J n+3 

+ 2H , (F ^ + kF ^ - i F ")+2H ^ (F ^ - i F ^ + iF ^ ) n+2 n+2 n+i n+3 n+3v n+3 J n+i n+2 

i* = j2 = k2 = - 1 , 

we m a y wr i t e the above re la t ion a s 

P Q + P Q =• 2H F - 2ri-H _,_ + JH _, + kH , ITiF , + j F , + kF , ] 
n n n n n n n+i J n+2 n+sJL n+i J n+2 

2H F - 2(P - H )(Q - F ) n n n n n n 

(4) 

P Q + P Q = -2 (P Q - P F - Q H ) n n n n > n n n n n n 

P Q + P Q = 2TP F + Q H - P Q 1 n n n n L n n n n n n J 

As P and Q ^ 0, dividing by P Q , n n & J n ^ n 

Q P 
n , n _ 9 Q " + W ~ 2 

^ n n 

F H 

Q P ^ n n 

o r 

Q - 2F 2H - P 
n n . - _ n n -

Q — + 1 - — p 1 

(4b) 
Q - 2F n n_ + 1 = 

P - 2H n n + 1 

Also 
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P„Q„ - P J L = (H + iH . + jH A + kH ^ )(F + i F x + ]F A + k F ^ ) n n n n n n+i J n+2 n+3 n n+i J n+2 n+3 

- (H - iH _, - JH _,_ - kH ^ )(F - i F ^ - i F ^ - k F , ) 
n n+i J n+2 n+3 n n+i J n+2 n+3 

= 2F (IH ^ + JH _,_ + kH _,_ ) n n+i J n+2 n+3 
+ 2H (iF A + jF _,_ + kF _^) n n+i J n+2 n+3 

= 2F (P - H ) + 2H (Q - F ) n n n n ^ n n 

(4) P Q - P Q = 2 [ H Q + F P - 2 H F ] 
n * n n*n L n ^ n n n n n J 

T h e o r e m : 

Q2 + Q2 = 2Qn - 3L ^ n - i ^ n ^2n- i 2n+2 

Let u s cons ider the left s ide of the re la t ion, 

Q 2 + Q 2 = ( F + i F + j F + ^ )2 + ( F + i F + j F + k F )2 
^ n - i ^ n n - i n J n+i n+2 n n+i J n+2 n+3 

= TF2 - F 2 - F 2 - F 2 + F 2 - F 2 - F 2 - F 2 1 L n - i n n+i n+2 n n+i n+2 n+3J 

+ 2 [F (IF + jF , + kF , ) + F (iF , + jF ^ + kF . )] L n - i n J n+i n+2 n n+l J n+2 n+3 J 

+ [iF .4(jF , + kF . _ ) + j F , (iF , + kF _Lo)] L n + i J n+2 n+3 J n+2 n+i n+3 J 

+ [ iF (jF , + kF , ) + j F ,4<iF + k F . )] L n J n+i n+2 J n+i n n+2 J 

+ [kF _,_ (iF + iF ^ ) + kF ^ ( i F ^ + j F ^ )] 1 n+2 n J n+i n+3N n+i J n+2 J 

The f i r s t t e r m 

= F 2 _ F 2 _ (F2 + F 2 \ (F2 + F 2 ) 
* n - i * n+l v* n+i * n+2; v n+2 n+3' 

(A) 
[(F2 - F 2 ) + (F2 + F 2 ) + (F2 + F 2 , )] LV n+i n - i ; v n+i n+2; v n+2 n + 3 / J 

T(F + F , + F LV 2n 2n+3 2 

= - [12F0 + 7F0 ] L 2n 2n- i 4 

= - |"(F + F , + F 1 LV 2n 2n+3 2n+5J 

Now cons ider the t e r m s conta ining i, j , k, namely , 
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(B) 

There fo re 

Hence, 

A NOTE ON FIBONACCI QUATERNIONS 

2i -IF F , + F F , 1 + 21 L n n+i n n+lj J 

+ 2k| 

F F + F F n - i n+i n n+2 

F F . + F F _^ n - i n+2 n n+3 
= 2iFo + 2jFo ^ + 2kF _,_„ 2n J 2n+i 2n+2 

Q2 + Q 2 
^ n - i ^ n - [12F n + 7 F 1 L 2n 2n- i J 

+ 2iF + 2jFn ^ + 2kF0 , 2n J 2n+i 2n+2 

- [ 1 2 F 0 + 9F0 - 2 F . J L 2n 2n-i 2n-iJ 

+ 2iFOM + IF ^ + kF n , 2n J 2n+i 2n+2 

= - [ 3 F n ^ + 3 F n + l + 2 Q ; 2n+3 2n+iJ *2n-i 
= - 3 L , + 2Q 

2n+2 ^2n=i 

229 

Q2 +Q2 
T I - I ^ n 

2Q - 3L , 
^2n- i 2n+2 

Hence the theorem. 

Other in te res t ing re la t ions wil l be considered l a te r . 

REFERENCES 

1, A. F . Horadam, "Complex Fibonacci Numbers and Fibonacci Quaternions,T f 

Amer . Math. Monthly, 70, 3 ,1963. 
* * * * * 
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REMARK ON A THEORfM BY WAKSMAN 
EMANUEL VEGH 

Naval Research Laboratory, Washington, D. C. 

Let Q denote the set of primes Q = Q* U {l}, Z the nonnegative inte-
gers and V = {K :Q* < S } , where S = {m = Kn + p; n E Z and p = 1 
or p E Q such that p / K, p < K } U ( P £ Q:p|K}. Let U = (k:k E Z and 
each of the cp(k) integers 1 = a4 < a2 < • • • < a ,,* not greater than k and 
relatively prime to k, is a member of Q*}. We note that a2 E Q if k > 2. 

A. Waksman [1] has shown (with the aid of a computer search) that V = 
( 2 , 3, 4, 6, 8, 125 18, 24, 30;}. Trivially, 1 must also be a member of V. 
We shall show that U = V. It is known that U consists of the integers given 
above [2, p. 62]. 

Let 0 < t E Z and let 1 = at < a2 < ° • • < a ,,* be the integers not 
greater than t and relatively prime to t. 

(i) We prove first that U ' C V . If t E U (so that a. E Q*) then every 
positive integer relatively prime to t is a member of the set 

R = {tn + a. : n E Z, i •= 1, 2, • • • , <p{t)} . 

Now 1 E R and if q is a prime, then either q|t or q E R. Thus Q* < S, 
and t E V. 

(ii) We show now that V C U (using, in part, a method of Waksman). 
It is immediate that 1 and 2 (̂  V D Q. If 2 < t E V then by the Dirichlet 
theorem, there is a prime q such that q = a | (mod t). Since q E S, and 
q K t there is a prime p < t such that q E p (mod t). Thus p = a | (mod 
t). If a | < t then t| |a2 - p | <t , which implies p = a2, a contradication. 
Thus a | > t. If one of a. | Q (i = 3 , * " ,^(t», then a. > a2 > t, a con-
tradiction. Thus a. E Q* (i = 1,2,' • • ,<p(b))> and t E U. 

REFERENCES 
1. A. Waksman, f'On the Distribution of P r i m e s , " American Mathematical 

Monthly, 75 (1968), pp. 764-765. 
2. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 

Chelsea, New York, 1953. 

• • • • • 
230 



RECURRENT SEQUENCES IN THE EQUATION 
DQ2 = R2 + N 

EDGAR I. EMERSON 
Rt. 2, Box 415, Boulder, Colorado 

INTRODUCTION 

The recreational exploration of numbers by the amateur can lead to d is-
covery, or to a different way of looking at problems, because he often does not 
know the conventional approaches* Sometimes, as a form of amusement, I 
picked a quadratic expression at random, set it equal to a square and then tried 
to solve the resulting equation in positive integers. Whenever I was able to 
solve the problem I noticed that recurrency was evident. One of the most sat-
isfying results came from the solution of 5x2 =t 6y + 1 = y2 where the recur-
rent relationships involved Fibonacci and Lucas sequences. However, the 
method reported [ l j for this solution is not general. An improvement in the 
method resulted from exploring the Pell and Lagrange* equations* As exper-
imental data accumulated I was able to make some conjectures and when I d i s -
cussed the results with my friend, Professor Burton W, Jones, he urged me 
to try to prove them. For his encouragement, l a m grateful. 

The following are some of these conjectures: 
a) For any recurrent equation such as U - = cU + U - or U - = 

cU - U - , c constant and even, there exists at least one Pell equation such n n-1 ^ 
that the sequence of Xfs and of Yfs follow the given recurrent law. 

b) In a Pell equation if DY| = X\ + 1 then the recurrent law for the 
sequence of X's or Yfs is U n + 1 = cUn + Un_1 and if DY| = X*- 1 then the 
governing law is U - = cU - U -. 

c) In Lagrange equations having the same D as a Pell equation, there 
exists a recurrent law common to both. (Proof to be offered in another 
communication.) 

*The Lagrange equations Dy2 = x2 ± N , N > 1 will be discussed in another 
communication. 

231 



232 RECURRENT SEQUENCES IN THE PELL EQUATIONS [Oct. 

Since a method of developing the sequence of one of the variables, in a 
Pell equation, independent of the other is so easy and since the proof justify-
ing such treatment uses only elementary algebra, without the use of continued 
fractions or convergents, I thought that the method might be of interest. As 
will be demonstrated, problems, relating to the Pell equations which seem 
difficult, are solved in an almost trivial fashion by means of the theorems to 
be developed here. (Before continuing the reader is invited to try solving 
problems 1-5.) 

PART 1 - THE PELL EQUATIONS 
DY* = X* -(- l )nandDY* = X* - 1 

For a given D > 1 and not a square the complete* Pell equations are 
either of the forms 

(1) DY^ = X^ - ( - l ) n 

or 

(2) DY^ - X2
n - 1, n = 0, 1, 2, 3, . - • . 

While both of these equations have the trivial solution X0 = 1, YQ = 0, the 
key to the general solution is in finding Xl9 Yj, either by inspection or other-
wise. How this may be done by convergents is explained by Burton W. Jones 
p ] , C. D. Olds [3], R. Kortum and G. M c N e i l ^ and others in books on 

number theory. 
The least positive, non-trivial solution '(X^Yj) is variously called the 

minimal or fundamental or generating solution. Once this solution is found, 
the general solution is given by 

(3) Xn + Y n ^ = ( x i + YiA/D)n . 

*The equation DY* = X* - ( - l ) n , n = 0 ,1 ,2 ,3 , # • • , is complete. However, 
it is commonly treated as two equations, e. g. , DY|, = X|, - 1 and DY|, 

= X|, - + 1 , k = 0 ,1 ,2 ,3 , - • •. Unless otherwise stated, we will assume that 
for the given D, the Pell equation is complete and we are dealing with all pos-
sible solutions. 
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The sum of the rational terms in the binomial expansion of (Xj + Yi^O)*1 is 
Xn and the sum of the irrational terms is Y VD* That equation (3) gives all 
of the possible solutions was first shown by Robert D. Carmichael and later 
explained in his book Diophantine Analysis [5 ]. 

When the minimal solution (Xl9Yi) is substituted in equations (1) and (2) 
we have respectively the minimal equations 

(4) DY2 = X2 + 1* 

and 

(5) DY2! = X2i - 1 . 

In either case, and irrespective of the sign preceding 1, the general so-
lution is given by the single equation (3). 

PROOF OF THREE THEOREMS ON RECURRENCY IN THE PELL EQUATIONS 

Theorem 1. In the integer solution of a Pell equation, the sequence of 
Xfs is recurrent as is the sequence of Yfs according to the recurrent law, 
U - = cU ± U 1 , c = 2Xj. The + sign is used if the minimal equation is 
DY2 = Xi + 1 and the - sign is used if DY2 = X2 - 1. 

To prove this theorem we combine the minimal equations (4) and (5) so 
that 

(6) DY2 = Xi dt 1 . 

Then for reference we prepare, from the general solution (3), the following 
set of equations: 

(7a) (Xi + YiVD)1 1"1 = Xn_1 + Y n 4 ^ 

*If the minimal equation for a certain D is DY2 = X2 + 1 then there are s o -
lutions for DY2 = X2 ± 1. If the minimal equation is DY2 = X2 - 1 then the 
only solutions are for DY2 = X2 - 1. Thus DY2 = X2 + 1 is not solvable for 
all Dfs nor does it have a trivial solution. 
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(7b) (Xi + YiN/D) n = X +Y N/D 

(7c) (Xi + Yt N/D ) n + 1 = X n + 1 + Y n + 1 N/D . 

When X2! + 2XiYA N/D i s added to both s ides of DY\ = x\ ± 1 we obtain x } + 

2XtYi N/D + D Y I = 2X2i + 2XiYt N/D ± 1 o r 

(8) (Xj + Y i V D ) 2 = 2Xi(Xi + Y W D ) ± 1 . 

— n 1 
Multiplying both s ides of this equation by (XA + Yt \ /D) ~ we der ive 

(9) (Xi + Yi *T5 ) n + 1 = 2Xi(Xi + Yi N/D f dt (Xt + Yt N/D J11"1 . 

Now when the appropr ia te subst i tut ions a r e made in this equation from s e t (7) 
we get 

X _ + Y ^ VD - 2Xj(X + Y N / D ) ± (X - + Y , *1T5) n+1 n+1 l n n n - 1 n - 1 

and r ea r r ang ing this equation we have 

( 1 0 ) X n + 1 + Y n + 1 ^ = { 2 X i X n * X n - 1 > + < 2 X i Y n * V l W ° ' 

After equating the rat ional and then the i r r a t iona l t e r m s in (10) we finally der ive 

(11) X '= 2XjX + X , 
n+1 x n - n - 1 

and 
( 1 2 ) Y n + 1 = 2 X i Y n ± Y n - l • 

Thus the proof of T h e o r e m 1 i s complete and equations (11) and (12) a r e the 

equations of the Theorem. 

*The equations of the Theo rem s e e m s i m i l a r to express ions found for the con-
vergents of continued fract ions . F o r i n s t ance , the n u m e r a t o r of the n con-
vergent i s p = a p 1 + p 0. This equation s e e m s s i m i l a r to X = cX -

n n n—x n—& n n—x 
± X 0 but in the equations of T h e o r e m 1, + o r - s igns a r e used w h e r e a s n—u 
in the convergent express ion only the + sign a p p e a r s . 
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As a consequence of Theorem 1 we have 
Theorem 2. For every recurrent equation, U ,- = cU +U ., or 

Un+1 = c U n " U n 1 w n e r e c i s e v e n * there exists at least one Pell equation 
for which the sequence of either variable is governed by the given recurrent 
law. 

To prove this theorem we note from Theorem 1 that c = 2X^ whence 
Xi = c/2. When this value of Xj is substituted in the minimal equations 
DY2i = Xj ± 1 we have 

• ( « ) ' * 
DYi = m ± i 

Except for a trivial case9 

(t) § " ± i * • . 

therefore we can let 

( * ) 

2 
± 1 = D 

whence Yi = 1 and thus we have proved Theorem 2, If 

(s) f * > 
contains a square factor >1 there may be other solutions as demonstrated by 
problem 1. 

In equation (1), DY2 = X2 - ( - l ) n , we notice that when n = 2k then 

(13) DY|k = X | k - 1 

and when n = 2k + 1 then 

(14) D Y k+ l = X k + 1 + 1 > k = O . 1 ' 2 ' 3 ' ' " • 
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In order to study the sequence of every other term in a Pell equation we have 
Theorem 3. The sequence of every other X or Y in a Pell equation in 

recurrent. If the recurrent law for the Pell equation is U ^ = c U +U -
^ n+1 n n-1 

then the sequence of every other X or Y is 

U n + 3 = (o» + 2)Un + 1 - Un_x 

and if the recurrent law is U - = cU - U 1 then the sequence of every 
other X or Y is governed by 

U n + 3 " (c2 " 2 ) U n " U n - 1 ' 

We prove the two parts of Theorem 3 together using the ambiguous ± 
sign. 

U n + 1 = c U n ± U n -1 

then 

Un+2 = c U n + l ± U n 

and 

U n + 3 - c U n + 2 * U n + 1 

But 

therefore 

or 

Un+2 - c U n + l * U n 

U n + 3 = c ( c U n + l ± U n ) ± U n + l 

U a + 3 - c 2 U n + l * c U n * U n + 1 
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and 

Un +3 = < c 2 * 1 ) U n + l ± c U n 

But 

therefore 

±cU = ztu _,_- - U -n n+1 n-1 

Un+3 = ( o ^ D U ^ i U ^ - U ^ 

or 

( 1 5 ) U n + 3 = <c2 ± 2>Un+l - Un-1 ' 

With the derivation of equation (15) we have proved Theorem 3. For conven-
ience we let c2 ± 2 = c2 and then the equations of Theorem 3 become 

( 1 6 ) Uk+1 = C2Uk " U ? k - 1 ' U l = U ° ' U f l = U 2 

or 

Ui = Ul s W2 = U3 . 

The method of proof for Theorem 3 demonstrates that the properties of 
the sequences of Xfs or of Yfs in the Pell equations are simply the proper-
ties to be expected from considerations of the recurrent equations U 

n+1 
c U n ± U n - r 

EXAMPLES 
2 2 

Example 1, When D = 2 the minimal solution is 2Y* = X4 + 1, Yi = 
19 Xj = 1. From Theorem 1 we know that we must use the recurrent equa-
tion with the + sign and that the constant c = 2Xj = 2. Thus, the sequence 
of Xfs develops from X n + 1 = 2Xn +X _ r X0 = 1, X4 = 1. 
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X2 = 2Xi + X0 = 2 • 1 + 1 = 3 

X3 = 2X2 + Xj = 2 • 3 + 2 = 7 

X4 = 2X3 + X2 = 2 • 7 + 3 = 17 , 

e tc . Thus 

X = 1, 1, 3 , 7, 17, 4 1 , 9 9 , - • • . 

S imi la r ly for Y we have Y n + 1 = 2 Y + Y ^ Y0 = 0, Y* = 1. 

Y2 = 2Yi + Y0 = 2 • 1 + 0 = 2 

Y3 = 2Y2 + Yi = 2 • 2 + 1 = 5 

Y4 = 2Y3 + Y2 = 2 • 5 + 2 = 12 , 

e tc . , and 

Y = 0, 1, 2 , 5, 12, 29, 70,° " . 

Example 2. F o r D = 3 the min imal solution i s Xj = 2, Y* = 1 and 
2 2 

the min imal equation is 3Yi = XA - 1, whence the r e c u r r e n t law for D = 3 
is 

U n + l = c U n- U n- l ' c = 2X1 = 2 - 2 = 4 . 

Then 

X2 = 4Xt - X0 = 4 • 2 - 1 = 7 

X3 = 4X2 - Xj = 4 • 7 - 2 = 26 

X4 = 4X3 - X2 = 4 • 26 - 7 = 99, 

e tc . , and for the Yfs 

Y? = 4Yi - Y0 = 4 • 1 - 0. = 4 



1969] RECURRENT SEQUENCES IN THE P E L L EQUATIONS 239 

Y8; = 4Y2 - Yi = 4 • 4 - 1 = 15 

Y4 = 4Y3 - Y2 = 5 • 15 - 4 = 56, 

e tc . , and 

X = 1, 2, 7, 26, 9 9 , — 

and 

Y = 0, 1, 4 , 15, 5 6 , - • . 

PROBLEMS 

The following p rob lems i l l u s t r a t e the use of the t heo rems developed 

h e r e . Without knowledge of these t h e o r e m s , I bel ieve the p rob lems might be 

difficult to solve. 

P r o b l e m 1. The numbers 2024 and 32257 a r e consecutive values of 

one of the va r i ab les in a Pel l equation. What a r e the cor responding values of 

the o ther v a r i a b l e ? (There a r e two solut ions . ) 

P rob l em 2. F o r 8Y2 = X2 - 1 we have 

X = 1, 3 , 17, 9 9 , — 

Y = 0, 1, 6, 35, e o e 

and 

U _ = 6U - U - . n+1 n n - 1 

Find another Pe l l equation(s) for which this r e c u r r e n t law holds . 
P r o b l e m 3. P rove that 

Xi Y ± Y -
v - n n " 1 

n Yi 

and 
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v
 X * X n * \ - l 
n YtD 

Use the + sign if DY* = x\ + 1 and the - sign if DYi = X* - 1. Notice that 
in this problem the recurrent sequence of one variable is developed in terms 
of constants and the other variable. 

Problem 4. In a Pell equation where D = a 2 - 1 , a > l , prove that 
X ± X 1 = 0 m.od (Xj i 1) using corresponding signs on each side of the 
congruence. 

Problem 5. In Pell equations if DYj = xf + 1, prove: 

E X , i + X - Xj - 1 x. = _s±i—s—i__ 
j=l 

and 

3=1 

c = 2Xi 

Note that if c = 1 and the X?s are Lucas numbers and the Yfs are Fibonacci 
numbers then we have the summation equations for the Lucas and Fibonacci 

2 2 
sequences. If DYj = Xj - 1, show that the comparable summations are 

E x = ^ I ' V * 1 " 1 
j c - 2 

i r% Y ^ - Y -Yi 
L Y

3
 = n + 1

c , n
2 \ 0 = 2 X ^ 1 . 

5 = 1 

Problem 6, In each of the following equations find recurrent sequences 
of rational xfs such that y is integral. The ambiguous sign is used to avoid 
negative roots. 
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a) 3x2 ± 4x + 1 = y2 

b) 3x2 ± 5x + 2 = y2 

c) 2x2 ± 6x + 5 = y2 

d) 6x2 ± 5x + 1 = y2 

EPILOGUE 

In this part of the paper, some terms and notations are introduced which 
were found to be convenient, 

a) In the Pell equation, DY2 = X2 - ( - l ) n , n = 0 , l , 2 , 3 / , e , we no-
tice that as n increases, 1 is alternately subtracted and added to the X2 

term. Thus the equation is referred to as an alternating equation. For the 
equation DY^ = X^ - 1, n = 0 , l , 2 , 3 , - - - , l i s always subtracted from X2 

and is referred to as non-alternating. The term alternating Pell equation im-
2 2 

plies the minimal equation DYj = Xt + 1 and the recurrent law U - = cU 
+ U - , whereas the term non-altemating Pell equation implies DYf = x\ - 1 
and the recurrent law U - = cU - U - . I n this connection it is interesting 
to note that in recurrent equations where the nfs are negative, the neighbor-
ing terms in the sequence developed from U - = U - - cU have opposite 
signs and thus the signs in the sequence alternate. If U - = cU - U - and 
n < 1, the neighboring terms of the sequence have the same signs and the se-
quence is non-alternating. 

The use of non-positive nfs in the equations of Theorem 1 leads to the 
conjugate solutions of the Pell equations. 

b) In the recurrent equation U - = cU +U ., ,c > 1 is associated with 
n+1 n n-1 -

the + sign preceding the U 1 term and in the equation U - =.. cUfl - U -
c>l is associated with the - sign preceding the U - term. A convenient no-
tation for these recurrent equations is c + and c~. For example 6+ implies 
U ± 1 = 6 U +U - and 4r implies U _,, = 4U - U -. n+1 n n-1 ^ n+1 n n-1 

Since c + or c" indicates the manner in which the recurrent sequence 
is developed they are called the indicator, I, of the sequence. 

If a and /3 are the first two terms of a sequence, then the development 
of the sequence is completely determined by the indicator and the first two 
terms as l(a,0). For example, if I = 3 + , a = 2, 0 = 3 then 3 + , (2f3) d e -
fines the sequence and implies U - = 3U +U - , U0 = 2, Uj = 3. 
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Throughout my notes I have used this notation because of its convenience and 

brevity. 
Since each of the Pell equations, (1) and (2) have a unique recurrent law 

for a given D then it follows that they have a unique indicator but a given indi-
cator does not necessarily determine a Pell equation uniquely. 

c) If a sequence is determined by I, (#,j8) and a,j3 have a common 
factor, f, then all terms of the sequence contain this factor. Let a = fat 

and jS = fft then 

I, (<*,/3) = I, tfori.fft) = 1 , fiflufo) . 

The n term of the sequence can be developed from I, {ai9^) to the n 
term which is then multiplied by f and by this procedure we can use smaller 

numbers. 
d) Applying these concepts to the Pell equations we have for the general 

recurrent solution 

X = I, (1, Xt) 

Y = I, Yi(0,l) 

where I = 2Xt if DY? = x\ + 1 and I = 2Xj if DYi = X^ - 1. 
We see that in general for any Pell equation Y s 0 mod Y4. 
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UNIQUE REPRESENTATIONS OF INTEGERS 
AS SUMS OF DISTINCT LUCAS NUMBERS 

J. L. BROWN, JR. 
Ordnance Research Laboratory, 

The Pennsylvania State University, State College, Pennsylvania 

INTRODUCTION 
( I00 

The Lucas numbers, <L } , are defined by 
{ nJo 

LQ = 2 9 L i = 1 

and 

for n > 0. Then, 

for n > 0, where 

n+2 n+1 n 

n n+1 n-1 

F_i = l 5 F0 = 0 

and 

F = F - + F 0 (n > 1) n n-1 n-2 

define the Fibonacci numbers. It is well-known that the Lucas numbers are 
"complete" [ l l in the sense that every positive integer can be expressed as a 
sum of distinct Lucas numbers. In general, such representations are not 
unique; for example, 

4 = L3 = Li + L2, 12 = LA + L3 + L4 = L0 + L2 + L4 , 

etc. Our purpose in this paper is to show, by introducing constraints analo-
gous to those used in obtaining unique expansions of integers in Fibonacci 

243 
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numbers, that unique representations in terms of Lucas numbers are also pos-
sible. We show, as one example, that every positive integer n has a unique 
representation of the form 

(1) 
oo 

where a. = a. (n) is a binary digit (zero or one) for each i > 0 and the a. 

satisfy the following constraints: 

(2) a.Q' = 0 for i > 0 
l l + l 

(3) aQa2 = 0 . 

We recall that the constraint <*•<*•+1 = °» which precludes the use of two suc-
cessive Lucas numbers in the representation, is essentially the same require-
ment that gives unique representations in Zeckendorf's theorem for Fibonacci 
expansions ( [2] , [ 3 J )« T ^ e additional condition aQa2 = 0 reflects the par-
ticularity of the Lucas sequence. 

REPRESENTATION THEOREMS 

Before stating the main theorems, certain preliminary lemmas will 

prove useful. 
Lemma 1. 

L n - X = V l + L n - 3 + - + L l , 2 W 

for n > 2, 

where 

I 2Lt if n is even 

L2 if n is odd . 
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Proof. By induction, one easily proves 

^ n " 1 - L 2n- l + L 2n-3 + ' " + L 3 + 2 L t to > D • 

The Lemma statement combines these two identities. 
Lemma 2. 

n 

i=0 

Proof. Induction. 
Lemma 3. Let 

00 

n = = 7 Qf.L. , 

0 

where each a. is a binary digit such that 

i) a. a.,. = 0 for i > 0 
' I l+l 

ii) aQa2 = 0 

Such a representation for n is unique. 
Proof. Assume n has a competing representation, 

00 

n = I > i L i 
0 

with 7. binary, y.y.+ 1 = 0 for i > 0 and JQ 72 = 0. Assume, for a proof 
by contradiction, that the two representations are not identical, that i s , 
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Dvil' 
Then, let k be the largest value of i such that a. ^y.. Clearly k > 2, and 
since a, ^ y,9 we may assume without loss of generality that a, = 1, y. = 
0, It follows that, for some m < n, 

k-1 
m = E a i L i = Z y i L i • 

with a. = 1. Then 

L k • ZXLi -
o 

while from the coefficient constraints on the j y. | 

k-1 

E J. L. £ L. - +L. „ + •••+ L- 0(k) = L. - 1 , l l k-1 k-3 1,2V k ' 

the last equality from Lemma 1. Thus m > L, while m < L, - 1, a 
contradiction. 

Lemma 4. Let 

n =I> i L i & > 2) , 

where each p. is a binary digit such that 
I 

i) p. +jS.J_1 £ 0 for 0 < i < k - 2 
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ii) /30 + p 2 . £ 0 
iii) A = 1 . 

Such a representation for n is unique. 
Proof, Assume n has two representations in the given form; that i s , 

k m 
(4) n - £ ^ =£>iLi . 

i=0 i=0 

where jS. and 7. are binary digits satisfying 

3. = y = 1, j8. + £ . . ^ 0 k m I l+l 

for 0 < i < k - 2, 

for 0 < i < m - 29 

ft+ft ^ o9 ^ + ri+1 ^ o 

% + \ t 0 

Without loss of generality* we take m > k > 2. If m > k , then the right-
hand representation in (4), together with the coefficient constraints, implies 

I L + L ~ + ° • * + L2 + Li = L , i > L. , 0 (m even) m m-2 * x m+1 k+2 

L + L 0 + + L3 + Li + L0 = L .., > L. , Q (m odd) m m-2 6 i v m + i k+2 
But 

n=Z^iLi *SL1 = L k + 2 - ^ 
i=0 i=0 

a contradiction. Hence m = k in (4); that i s , 
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k k 
n = Z > i L i = E 7 i L i ' 

0 0 

or equivalently, 

k k 

Ifwe nowdefine a. = 1 - jS. and 8. = 1 - 7. for 0 < i < k and a. = 8. = 0 
for i > k, then 

00 00 

E a.h. = ̂  8.L. , 

with a. , 8 . binary digits satisfying 

aiVi = 8iVi = ° 

for all i > 0 and 

By Lemma 3, a. = 8- for i > 0 and thus /3. = y. for 0 < i < k, imply-
ing uniqueness of the representation. 

Theorem 1. Let n be a nonnegative integer satisfying 0 < n < L, for 
some k > 1. Then 

k-1 

(5) n = Z "i Li 

with a. binary digits satisfying 
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I) ^-^i+i = ° ^or i > 0 
ii) aQ Q>2 - 0 

Further, the representation of n in this form is unique, [if k - 1 < 2 in 
(5) s we define a2 = 0 so that ii) is automatically satisfied.] 

Proof. Uniqueness follows from Lemma 3. It remains to show such a 
representation exists. For a proof by induction on the index k, we verify 
directly that the theorem holds for k = 1 and k = 2. Now, assume as an 
induction hypothesis that the theorem holds for all k < k0 where k0 > 2. To 
show the theorem holds for k0 + 1, it suffices to consider an arbitrary integer 
n satisfying 

L. < n < L. J -k0 k0+l 

Then 

0 < n - L, < L, -. - L. = L, -k0 k0+l k0 K 0 - 1 

By the induction hypothesis, there exist binary coefficients y. such that 

k0-2 

E^Li n - L, 
k0 

with 

y . 7 i + 1 = 0 for i > 0, 70^2 = 0 

Then 

k0 

n = E y i L i 

where 
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Vi = °' \ = 1' 
so that n is representable in the required form with the given coefficient con-
straints. q. e. d. 

Theorem 2. Let n be a positive integer satisfying 

k-1 

Z>i < n *E Li 

for some k > 2. Then 

n = Z ^ i L i 

with j3. binary coefficients satisfying 

i) p + p £ 0 for 0 < i < k - 2 
ii) Po + ft t 0 

iii) £k = 1 • 

Further, the representation of n in this form is unique. 
Proof. Again, uniqueness is a consequence of Lemma 4. To establish 

the representation, note that 

k-1 k 

o o 

implies 

k k k-1 

°-ELi-n<ELi-ELi=Lk-
0 0 0 
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By Theorem 1, the integer 

k 
L. - n 

i 

0 

has a representation 
k k-1 

Evn = X X L i • 
0 0 

where the binary coefficients a. satisfy cn.a = 0 for 

0 L i 4 k - 2S a0a2 = 0 . 

Then 

k-1 k 
n = L k + E ( i ^ i ) L i = E ( i ^ i ) L i ? 

0 0 

where a, = 09 and the theorem follows on recognizing p. = 1 - a. (0 4 i 4 
k) as binary coefficients satisfying 

V W * ° 
for 0 < i < k - 2, j80 + 02 £ 0 and £k = 1. q. e„ d. 

Theorem 2 thus guarantees the representation for all positive integers 
>4e Representations for the positive integers 192,3 are immediate s namely 

1 = 0 • L0 + 1 * Li , 2 = 1 • L 0 J 3 = 1 • L0 +1 • Li . 

The constraint j80 + p2 ^ ° i s assumed not to be enforced in these three cases 
where the largest Lucas number appearing in the expansion is less than L2 = 3. 

z 



UNIQUE REPRESENTATIONS OF INTEGERS n , - q f i q 
^ AS SUMS OF DISTINCT LUCAS NUMBERS 

T h e o r e m 2 i s a dual to T h e o r e m 1 and co r re sponds to the dual of the 
Zeckendorf t heo rem for Fibonacci n u m b e r s [ 4 ] . 
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ASSOCIATION MEETING , 

The Fibonacci Associat ion held i ts Fal l Meeting on October 18th a t San 

Jose State College. Following was the P r o g r a m : 

MORNING SESSION 

9:30 a . m . SOCIAL GATHERING 
10:00 - 10:45 TEST FOR THE PRIMALITY OF MERSENNE NUMBERS 

Douglas Lind, Stanford Univers i ty 

10:45 - 11:30 WEB SEQUENCES 
George Ledin, J r . , Univers i ty of San Franc i sco 

11:30 - 12 Noon OPPORTUNITY FOR GENERAL DISCUSSION 

AFTERNOON SESSION 

1:15 — 2:00 FIBONACCI AND RELATED SERIES IN COMBINATORICS 
Prof. D. H. L e h m e r , Universi ty of Calif. , Berke ley 

2:00 - 2:45 MARKOV-FIBONACCI RELATIONS 
Prof. Gene Gale , San J o s e State College 

2:45 - 3:30 ITTS GENERALIZED! WHAT'S NEXT? 
Prof. V. C. H a r r i s , San Diego State College 

* * * * * 



COMPOSITIONS AND FIBONACCI NUMBERS 
V. E. HOGGATT, JR., and D. A. LIND 

San Jose State College, San Jose, California and University of Cambridge, England 

1, INTRODUCTION 

A composition of n is an ordered partition of n; that is , a representa-
tion of n as the sum of positive integers with regard to order. For example, 
4 has the eight compositions 

4 = 3 + 1 = 1 + 3 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 
= 1 + 1 + 1 + 1 . 

Some elementary properties of compositions have been given by Riordan [12, 
124-125], and a more extensive study has been made by MacMahon [9, 150-
216]. Isolated examples of composition formulas involving Fibonacci numbers 
have appeared sporadically in the literature (see [11], [ 13] , [14], [15], [16]). 
In an earlier paper [6] the authors established a general composition formula 
and its inversion of which the above are particular examples. This formula 
generalized a result of Moser and Whitney [11], and from it followed a num-
ber of further results. In this paper we review the previous results , continue 
their development, and show how these techniques can be used to prove cer-
tain Fibonacci identities. 

2. PREVIOUS RESULTS 

From direct expansion we find that the enumerator of compositions with 
exactly k parts is (x + x2 + • • •) . That i s , the coefficient of x in the 
resulting series is the number of compositions of n with k parts. If a sum-
mand j is given weight w., then 

(Wlx + w2x2 + • • • ) k = [W(x)]k 

maybe termed the enumerator of weighted k-part compositions. To obtain an 
explicit representation, put 

253 
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oo oo 

J2.1) C(x,y;w) = ^ [ W ( K ) ] k y k = T _ | W ) = ] T Cn k<w)x\k , 
k=0 k,n=0 

where w = {wi ,w2> , , °} . Using the formula for derivatives of composite func-
tions (see [12, p. 36]), 

7rk(n) 

where the sum is extended over all k-part partitions of n; that i s , over all 
solutions of ki + 2k2 + • • • + nk = n such that kj + • • • + kn = k. Since the 
number of distinct compositions obtainable from the above partition is the co-
efficient in (2.2), the omission of the coefficient calls for summation over 
compositions. We write 

£ 0.3) cQk(w) = 2 ^ w a w & 2 • • • w a k (n,k > 0) 
rk(n) 

where y, (n) indicates summation over all k-part compositions â  + • • • + a, 
of n. Specialize this by letting 

oo 

c(x) H c(x,i;w) = T^Q =2^c
n<w)xn (2.4) 

j- - vv \ A ; 

in which 
oo ' ' 

3 n ( w ) E Cn = Z w C n k ( w ) = jLj' (2.5) cn(w) = c^ = 7 ^ c
n ^ w ) = 7 ; W o " " w

a (n > 0) , 
k=l y(n) 
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where y(n) indicates summation over all compositions aj + • • • + a. of n, 
the number of summands k in the composition being variable. Equations (2.4) 
and (2.5) were given by Moser and Whitney [11]. 

To obtain an inversion formula for (2.5), note that 

-1 * ^ ' V ( - l ) k c W(x) = C(x) = 1 + / \ / JL-1) ca 

n=l \ y(n) u 
Hence 

*n = X/"3 (2.6) -w„ = ? (-Dkca • . . c . (n > 0) 
JLmd &i ak 
Mn) 

To help motivate the above, we note that it is shown in [5] and [7] that if 
a pair of rabbits produces w pairs of offspring at the n time point, and 

n th 
their offspring do likewise, then the total number of pairs born at the n time 
point is c . We shall see below in example (3d) that our results generalize the 
famous rabbit reproduction problem which led Leonardo of Pisa to discover the 
Fibonacci numbers originally. 

3. EXAMPLES AND ILLUSTRATIONS 

In this section we specialize the above results, obtaining the known 
instances of Fibonacci related composition formulas appearing in the l i terature, 
as well as some other results. 

Define the Fibonacci numbers F by 
n J 

Fi = F2 = 1. F n + 2 = F n + 1 + F Q ( a i l ) , 

and the Lucas numbers L by 

Li = 1, L2 = 3, L ^ = L ^ + L (n 2 1). 
1 l n+2 n+1 n 

We make use of several standard generating functions for Fibonacci and Lucas 
numbers, for which we refer the reader to [2]. 
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(3a) Letting w = 1 (n >. 1), so that 

W(x) = x + x2 + • • • = x / ( l - x), 

and using the convention I j n = 0 if k > n , we have 

c(x vw) = i + yW(x) . = xy 
Mx,y,w) 1 + x l y w f e ) 1 - x(1 + y) 

( 3 . 1 ) °° oo oo 

E ^/i _,_ \ n \ ^ \ V n \ n+1 k+1 

x (l + y)xy =2^2^{k)x y ' 

so that 

(3.2) c^w) •S-(l:l) 

is the number of compositions of n into k parts . This appears in [12], and 
can be verified by combinatorial arguments. 

It follows that 

(3.3) ? A = c (w) = > c , » = > l " : t l = (1 + D n " 1 = 2 n - 1 

OO OO 

r(n) k=0 k=l 

is the total number of compositions of n. For example, 4 has the 8 = 24"1 

compositions mentioned in the Introduction. 
(3b) Put w = n, which gives 

W(x) = x + 2x2 + 3x3 + • • • = x / ( l - x)2 . 

In this case, 
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oo 

C(X) - 1 = £—— = V V xn . 
1 . ^ 4 . ^ *—* 2 l 1 1 - 3x + x2 

n=l 

Then (2.5) yields 

i3A) °n = Zj *** ''' ak = F2n • 
r(n) 

which has been given by Moser and Whitney [11], and proposed as a problem 
in this Quarterly [16]. As an example, for n = 4 we have 

c4 = 4 + 2(3 • 1) + 2 • 2 + 3(2 • 1 • 1) + 1 . 1 • 1 • 1 = 21 = F8. 

(3c) Set 

Wj = w2 = 1, w = 0 (n > 3) , 

so that W(x) = x + x2, Then 

OO 

c« - i = x + x2 TF/ , 
! _ v _ ^2 Z ^ n+1 1 - X - X^ ., 

n=l 

and using (2.5) we get 

s (3'5) Cn = Z^ X = Fn+1 ' 
r (n ) ;a<2 

since in any composition with a. > 2, wa. = 0 annihilates the summand. 
Thus the number of compositions of n into l f s and 2fs is F -. This was 
proposed by Moser as Problem B-5 [14], 

(3d) Let wj = 0 and w = 1 (n>_ 2), giving 
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W(x) = x2(l + x + •••) = x2 / ( l - x) . 

1 - * - * * n=l 
Z v ^ • 

Then 

C(x) - 1 = 

so that by (2.5) we have 

(3.6) c = / 1 = F - . 
n I / n-1 

7(n);a>2 

Thus the number of compositions of n into parts greater than a unity is F -. 

In this case we have 

C^T^ ~ 1 = 1 - xay
+ xy) = * 2 y ^ ( l + x y ) J 

j=0 

j=0i=0 v / n=2k=l 

so that by (2.3) 

(3.7) cnk(w) •-S^-t'-i1) r k (n) ;a .> l 

is the number of compositions of n into k parts , each of which is greater 
than one. Then (2.5) shows 

(3.8) 
k=l x ' 
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which was f i r s t shown by Lucas [ 8, p. 186JJ. 

(3e) If 

W(x) = x + x3 + x5 + • • • = x / ( l - x 2 ) , 

then a calculation s i m i l a r to that in (3d) shows 

(3.9) cn k(w) z i-K+.v! 
y, (n);a. odd 

to be the number of k -pa r t composi t ions of n into odd p a r t s . Since 

(3.10) cn(w) Z '•Zfc-')-', 
y(n) ;a . odd k=l 

we may s ta te that the number of composi t ions of n into odd p a r t s i s F . 

(3f) Put 

ww = - = 7 Fo„ o xn 
OO 

z» 2 Z~J 2n-2 1 - 3x + x1 -
n=l 

so that 

•-T^E-Z'^*' C(x) 
n=2 

Then by (2.5) 

z , n -2 
(3.11) cn(w) = l_j F

2 a i - 2 - - - F 2 a k - 2 = 3 <n * 2> 
y(n);a >1 
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The inverse relation given by (2.6) is 

-F2n_2= £ <-W4"a-'-3ak"a= X ) <-1)k3n"2k < ^ 2 ) 
7(n ) ; a> l y (n ) ; a> l 

J J 

Since the summand depends only on the number of integers in the composition, 
we may use the value of c , (w) in (3d) to get 

(3'12) F2n = S ("1)k"1 (k : l ) 3n+1"2k (n " 1] ' 
k=l 

which was proposed as Problem H-83 in this Quarterly [17]. 
(3g) We shall establish some further Fibonacci identities via composi-

tion formulas. Let 

W(x) = x2 + 4x3 + 42X4 + • •. = x2/( l - 4x) 

so that 

C(x) 

Then with (2.5) we get 

<3'13> \ F 3n-3 

_ 1 - * 
"" X — — — — — — — — — 

1 - 4x - x2 

= E 4ai_2-
r ( n ) ; a > l 

oo 

n=l 
F 3n-3 X • 

-2 „ak-2 __ % ^n_2k 4 
y(n ) ; a> l 

J 

Again using the value for c , (w) in (3d), we find 

IF =yVn-k-lX\4
n-

2 3n-3 £.4 I k - 1 / 4 

k=l x ' 

(3.14) " " - v i " - - - - i ,"-2k 
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We can generalize this as follows. Fi rs t let s be odd, and set 

x2 \~\n-2 n 
= 1 - Lx = Z^Ls X W(x) 

i - x. . 
S n=2 

Then 

C(x) - 1 = 
1 - L x - x2 *' s -s n=l 

= FT^ F s (n- l ) X n 

We then get 

F s ( n - 1 ) / F s ~ 2 ^ L s " 2 

y(n);a.>l 

so using (3d) we have 

D -̂Lfc^H F
S ( n - - / F ~ = > . r . : " T i | L r 2 k (sodd) 

k=l 

For even s, a similar calculation with 

1 - L x ^ j s 
S n=2 

W(x) 

shows 

^v*s=2>k-1(n
1; - ; 1 )c2 k «•--> 
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The even and odd cases can be combined into 

<«=> ».h-i ) /*.-E,-u f c J ) U"u("S1k 
This result was recently posed as a problem [IB], 

We conclude this section by noting that Hoggatt [5], in connection with a 
study of the reproduction patterns of mathematical Fibonacci rabbits, has 
exhibited a number of generating functions W(x) which have particularly con-
venient corresponding gene rating functions C(x). Each of these has the natural 
combinatorial interpretation provided by (2.5) and (2.6). 

4. RELATIONS INVOLVING FIBONACCI GENERALIZATIONS 

In this section we consider composition formulas involving three distinct 
generalizations of the Fibonacci numbers. Most of these reduce to results 
contained in Section 3. 

(4a) Define the Fibonacci polynomials f (t) by 

fi(t) = 1, ,f2(t) = t, and fn+2(t) = tfn+1(t) + fn(t) ( n ^ l ) . 

It follows that f (1) = F . It can also be easily verified that the generating n n J & & 
function for these polynomials is 

(4.1) - = > j f (t) x n 

Letting W(x) equal to (4.1), we find 

C W - 1 = = > • f (t + Dx11 

1 - (t + l)x - x2
 n = Q 

OO 

Then (2.5) yields 
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y(n) 

As a special case given in [6] we get for t = 1 that 

(4.3) P = / • F ••• F 
n L^j &I a k 

fa) 

where P = f (2) is the Pell sequence discussed by Lucas [8 ] . 
(4b) Miles [10] has investigated the properties of the r-generalized 

Fibonacci numbers f defined for r ^ 1 by n,r J 

f = 0 (0 < n < r - 2), f - = 1 9 n9r r - l 9 r 
(4.4) 

r ' 
(n > r) . f = > f • 

n ' r ' ^ n-j ,r 3=1 

If follows that f - = 1 and f Q = F . The numbers f Q are the so-called 
n$± n ?z n n5o 

Tribonacci numbers studied by Feinberg [1]. It is not difficult to see that the 
generating function for the f is 

n,r 

(4.5) _ — _ 2 E _ = \ " f x
n 

-, 2 r / J n5r 
1 - X - X4 - • • • - X ^—*f 

n=r- l 

oo 

E 
For our first result, let W,(x) = x + x2 + • • • + x . Then 

OO 

/ J n+r-1 C(x) = 1 + 
n=l 

But it follows from (2.5) that c (w) is the number of compositions of n into 
parts not greater than r. Thus we see 
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(4.6) 7 1 = f A , 
Zmmed n+r - l , r 

y(n);a.^r 

which reduces to (3c) by putting r = 2. By letting r = 3 we also obtain a 
partial solution to Problem B-96 in this Quarterly [15]. 

We may get f in terms of a composition formula involving the n9r 
f. 1 in the following manner. Let I $r-~x 

r 
W(x) = — 

1 - x - • • • - x 0 
n=2 

oo 

-1 = ^ « t f n - 2 , r - l X 

Then 

oo 

C(x) - 1 = - = > f - -x n 

i r / J n - l , r - l 1 - X - • • • - X -
n=l 

Then from (2.5) we get 

(4.7) f = / f 0 - ••• f 
n,r JL-J aj[-2,r-l a k - 2 , r - l » 

y(n+l) 

where f = 0 if n < 0. We note that for r = 2, (4.7) becomes (3.6). The n,r 
inversion relation (2.6) gives 

- f n - l , r - l Z~d ( _ 1 ) f a i - l , r *' * f a k - l , r » (4.8) 
I l - X J J L - J -

y(n+D 

giving a formula for f - in terms of the f. B & n , r - l i ,r 
(4c) If w. = 0 (1 ^ j < r ) , w. = 1 (j ^ r ) , then W(x) = x x / ( l - x). 

Now Hoggatt [4] has shown 
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(4.9) — = / u(n;p - l , l ) x n , 
1 - x - xp *—* n=0 

where the u(n;p,q) are the generalized Fibonacci numbers introduced by 
Harris and Styles [3] defined by 

(4.10) u(n;p,q) = >T P ^ ) fo ^ 0) . 
i=0 

Then 

C(x) - 1 = x ~ 
1 - x - x 

n=r 

= y ^u(n-r;r- l ' , l )xn , 

so that 

E (4.11) cn(w) = ^ * = u(Q-r ; r - l f l ) 
y(n) ;a^r 

is the number of compositions of n into parts greater than or equal to r. It 
follow 
(3.6). 
follows from (4.9) that u(n; l , l ) = F + - , so that setting r = 2 in (4.11) yields 

On the other hand, letting W(x) = C(x) becomes (4.9) and we 
see 

E (4.12) ? 1 = u(n;p- 1,1) 
y(n);a = l ,p 

is the number of compositions of n into l f s and pfs . This reduces to (3.5) 
by letting r = 2. 
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ON. THE GROWTH OF %(n) 
P. ERDOS and I. K/(TAI 

Budapest, Hungary 

1.) Let d(n) denote the number of divisors of n9 log.n the k-fold 
iterated logarithm. It was shown by Wigert [1] that (exp z = ez) 

d W < « p ( ( l + 6 ) l o g » ] ^ B ) 

for all positive values of € and all sufficiently large values of n, and that 

d ( n ) > e x p ( ( l - e ) l o g 2 I ^ ) 

for an infinity of values of n. 
Let d, (n) denote the k-fold iterated d(n) (i. e. , 

di(n) = d(n), (dk(n) = d(dk_1(n))? k > 2 ). 

S. Ramanujan remarked in his paper [2] that 

d2(n) > 4 7 2 l ° g n 
* log log n 

and that 

d3(n)> ( l o g n ) l og log log logn 

for an infinity of values of n. 
Let ^. denote the k element of the Fibonacci sequence (i. e. 

* - l = °> l 0 = 1> *k=Vl + V2 ^ k>l ) . 

We prove the following: 

267 
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Theorem 1. We have 

(1.1) dk(n) < exp ( logn) K 

for all fixed k, all positive e and all sufficiently large values of n, further 
for every e > 0 

(1.2) dk(n) > exp ydog n) J 

for an infinity of values of n. 

It is obvious that d(n) < n, if n > 2. For a general n > 1, let k(n) 
denote the smallest k for which d, (n) = 2. We shall prove 

Theorem 2. 

(1.3) 0 < lim sup 1 *? ( n ) , < °° . 
^ log log log n 

2.) The letters c, c l 9 c 2 , ' * ' denote positive constants, not the same 
•H-v-

in every occurrence. The p.fs denote the i prime number. 
3.) Firs t , we prove (1.2). Let r be large. Put Nj = 2-3 ••• p , 

where the pTs are the consecutive primes. We define N2,* *' ,N, by induc-
tion. Assume 

S3 r2 

(3.D N = n P. , 
J i= l 1 

then 
. P i - 1 / \P2-1 / \ P i - x / \P2-J- / 

(3.2); N J + 1 = ( P l . . . p r i j ( P r i + 1 ' " P r i + r 2 ) - ( P r j L + . . . +3?s ^+1 

3 
PS.-1 

ri+* • • +rg 
) J 

From (3.2) d(N.+1) = N., and thus 
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(3.3) dk (Nk) = 2 r . 

Let S. and F. denote the number of different and all prime factors of 
N., respectively. We have 

(3.4) Sj = Tj = r , S . + 1 = r\ • 

Furthermore 

S. S. 
3 J 

(3.5) sj+2 = rJ+1 = E / > „ -1) < PS E y„ < ^r.s. i o g s . , 
V:=l * *>=1 

Since p^ < cj£ log £ for 4 > 2. Hence by (3.4) 

(3.6) S j + 2 < c S j + 1 S. log S. (j > 1) , 

follows. 
Using the elementary fact that 

X) log p. < cp^ < ci log l , 
i=l 

we obtain from (3.2), 

(3, 7) log N ] + 1 < ps E log P. < c s. r.aog r. )2 = cs.sj+1aog sj+1 )2 

J 1=1 

From (3.3), (3.4) we easily deduce by induction that for every £ > 0 
and sufficiently large r 

G r c r < 2 + € a , 2+€ r 3+€ 
SA = r , r4 = r , S2 = r , r2 ^ r , S3 < r , I s < r 

S k < r 1 ^ 1 , I k < r k . 
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Using (3.7), we obtain that 

log Nk < r 

whence 

/ l / i . -€\ 
dk(Nk) = 2 r > exp^( logN k ) K ) , 

which proves (1.2). 
4.) Now we prove (1.1). Let NOJNJ,* • • ,N, be an arbitrary sequence of 

natural numbers, such that 

d(Nj+1) = N. 

for j = 0 , V , k - 1. 
Let B denote an arbitrary quantity in the interval 

(log log Nfe) ° < B < ( loglogNk)C 

not necessarily the same at every occurrence 
We prove 

i 
(4.1) logN, > B ( l o g N 0 ) k , 

whence (1.1) immediately follows. 
In the proof of (4.1) we may assume that log N0 ^ (logNj) , with a 

positive constant 6 < 1/fL. . 
Let 

S l a.-l 
Ni = n q * . 

i=4 1 

Then 
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Since 

we have 

Hence 

i. e. 

N0 = n a . 
i= l 1 

a.-l a.-l 
21 < - 1 N i > 

a. < c log Nj_ 

(log 2)Si < log N0 = S l o g or < (log log Ni + c)Si 

log N0 = BSi 

We need the following: 

L e m m a . Suppose that for some in teger j , 1 < j < k - 1 , 

(4.2) Q: 
y i - 1 r A - i 

N. 

where Q l 9 • • • , Q* a r e different p r i m e numbers and 

I I I 
(4.3) A > B S i J ; Q. > BSi 3 " 1 , y. > BSj3*2 (i = ! , • • • , A) 

Then e i ther 

(4.4) 

o r 
(4.5) 

l o g N j + 1 > (log N0) 

Pr-1\ 
N. , xc r > i > 

where r1 ? • • • , r c a r e different p r i m e s and 

(4.6) C > B S ^ r . > BSx3, p.> BSi3 (i = 1 , - - - , C ) 

To prove the l e m m a , l e t 

N . ^ 
3+1 

3 + 1 8 . -1 
n t . 1 , t . p r i m e s 

Since d ( N . + 1 ) = N j t by (4.2), 
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A y . - l 
(4.7) n Q.1 

i=l x 
n 8. = N. 

i 3 

Assume first that there is a 5. which has at least 21 (not necessarily 
distinct) prime divisors amongst the Q.. We then have 

^k 
log N > \8. log t. > ISp- 8. HfeSiM J > 

2£, L 
> (BSi) K ^ (log N0) K , 

if N0 is sufficiently large, i .e . (4.4) holds. Then by (4.2), the number D of 
6Ts, each of which contains a prime divisor amongst the Qfs satisfies the 
inequality 

(4.8) D> A £ (y. - 1) > A - miny2 > A B S ^ 2 > BS^"2 J"1 = BSt
J 

Z k . - * * k 
i= l 

Without loss of generality, we assume that these 8?s are S i , * " , 8 and tA 

> t2 > • • • > tp in (4.7). Since at least one Q divides S^i < D), by (4.3), 
we have 

I. -
8. >BS1

J . 

Furthermore it is obvious that tp D i^-s > D. By choosing 

C = D - \ , r. = t., £. = 8. (i = 1,---,C) , 

we obtain (4.5) and (4.6). 
This completes the proof of the Lemma. 
Now (4.1) rapidly follows. Indeed, the validity of (4.4) for some j , 1 < 

j < k - 1, immediately implies (4.1). So we may assume that (4.4) does not 
hold for j = ! ,• • • ,k - 1. Now we use the Lemma for j = 1, • • • ,k - 1. Since 
Ni has St different prime divisors ([1/2 Si ] of these is greater than SA) 
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the conditions (4.2), (4.3) a re satisfied for j = 1. Hence (4.5)-(4.6) holds, 
L e. , the conditions (4.2)-(4.3) hold for j = 2. By induction we obtain that N. 
has at least 

BSj 1 

distinct prime factors each with the exponent greater than BSj . Let 

Nk H n V . 

Since 

log % > | E P i 

we have 

logN k > B S ^ " 1 k " 2 = BttogNo) k 

Consequently (4.1) holds. 
5.) Proof of Theorem 2. Using (1.1) in the form 

d2(n) < exp I (log n ) 2 / 3 ) 

for n > c, and applying this k times, we have 

(5.1) log d2k(n) < ( logn) ( 2 / 3 ) , when d2 k_2(n)> c. 

Equation (5.1) implies the upper bound in (1.3) by a simple computation. 
For the proof of the lower bound we use the construction as in 3). Let r 

be so large that 

cSJ + 10ogSJ + 1)»<j£j 

in (3.6). Using that 
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l o g N . + 1 < ( logN. ) 2 +€ . 

Thus 

k 
l b g N k < a o g N i ) ( 2 +€) , 

hence by taking logarithms twice, 

K(Nk) > k > C l l og3N k , 

which completes the proof of (1.3). 
Denote by L(n) the smallest integer for which log nT , x < 1. We con-

Li\ll) 
jecture that 

i E K(m) 
n 

m=l 

increases about like L(n), but we have not been able to prove this. 
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CORRECTION 

On p. 113 of Volume 7, No. 2, April, 1969, please make the following 
changes: 

Change the author's name to read George E. Andrews. Also, change the 
name "Einstein," fourth line from the bottom of p. 113, to "Eisenstein. " 

• • • • * • 



II IN THE FORM OF A CONTINUED FRACTION WITH INFINITE TERMS 

N. A. DRAIIVi 
Ventura, California 

n = _ 2 _ 2 4 4 6 i 6 j _ 8 
2 l ° 3 6 3 e 5 9 5 ° 7 9 7 

n = 2 2 2 4 4 6 6 
l e l ° 3 ° 3 8 5 e 5 e 7 

for which the success ive products 9 a s n-*-oo9 a r e : 

(Wallis) 

4 8 32 128 768 P n 
1 ? 39 9 s 4 5 ' 225? ' ° 8 q 

for which the ordinal n u m b e r s a r e l s 2 , 39 • • • , ns * ° * .. 

These products a r e identical with the convergents 5 after the f i r s t two5 

of the following continued fraction with infinite t e r m s 9 for which the ordinal 

n u m b e r s a r e - 1 ? 0, 1, 2 , 39 • • • , n. 

n= 4 
1 + 1 

1 + 1 
0 + 1 

1 + 2 - 3 
1 + 3 - 4 

1 + . 
9 6 (n - l )n 

These C. F . convergents a r e , when spun out in ordinal success ion: 

d 4 4 8 32 128 768 ^n 
4 ? 2 ' I9 39 9 9 45 9 2259 ° ' ' q 

The s e r i e s cor responding to the infinite C. F0 i s : 
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4 7 b WITH INFINITE TERMS u c t ' L3Dy 

n - A 9 + 9 4 + 8 32 , 128 768 , , .n-1 p n - l 0 - 4 - 2 + 2 - - + - _ — + _ _ I 1 W + . . . + ( - l ) 
TI 

the p - and q being the products as found above in the successive products 
for n . 

(The author acknowledges with appreciation the help of Lavar Rigby, 
Instructor for Computers at Ventura College, who checked the convergence 
trend of the subject continued fraction for 11 on an IBM 1620.) 

* * * * * 

(Continued from p. 336) 

ELEMENTARY PROBLEMS AND SOLUTIONS 

B-153 Proposed by Klaus-Gunther Recke, Gottingen, Germany. 
Prove that 

FiF3 + F2F6 + F3F8 + ••• + F FQ = F F ^ F 0 t 1 . 10 4 b * ° n 3 n n n+1 2n+l 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

Since FiF3 = F ^ F s , we need only show that when we add one to n, 
the increase on the left side of the equation is the same as that on the right. 
The increase on the left side is F F ; and, using the solution to B-152 with 

n on 
m = 2n, 

F F = F F n 3n n 2n+n 
= F (F F - F F ) 

nl*2n+l n+1 r 2 n - l n - l ; 

= "F F ]? _ F F F 
r n n+1 2n+l n- r n 2n-1 

which is just the increase on the right side of the equation. 

Also solved by Clyde A. Bridget, Herta T. Freitag, Serge Hamelin (Canada), John W. 
Milsom, C B. A. Peck, A. G. Shannon (Boroko, T. P. N. GJ, Carol A. Vespe, C C 
Yalavigi (Mercara, India), David Zeitlin, and the Proposer. 

* * • • • 



ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to 
Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit 
solutions or other information that will assis t the editor. To facilitate their 
consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problem. 

H-158 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

If f (x) be the Fibonacci polynomial as defined in H-127, show that 
(a) for integral values of x , f (x) and f Ax) a re prime to each other 

(b) 
n n 

1 + E ( l / f 2n - l f 2n + l > * " * Z (1 / f2nf2n+2 > = * 
1 

H-159 Proposed by Clyde Bridger, Springfield College, Springfield, Illinois. 

Let 

D 
k ,k c - d 

and 

k c - d 

E k = c k
 + dk j 

where c and d are the roots of z2 = az + b. Consider the four numbers e, 
f, x, y, where e = c and f = d are the roots of z2 - z E , + (-b) = 0 and 
y is the harmonic conjugate of x with respect to e and f. Find y when 
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x = ^ . ( M 0 ) . 
nk 

H-160 Proposed by D. and E. Lehmer, University of California, Berkeley, California. 

Find the roots and the discriminant of 

x3 - (-l)k3x - LOI = 0 . 3k 

H-161 Proposed by David Klarner, University of Alberta, Edmonton, Alberta, Canada. 

Let 

a i + a2+" • *+a.=n 

where the sum is extended over all compositions of n and the contribution to 
the sum is 1 when there is only one part in the composition. Find an asympto-
tic estimate for b(n). 

SOLUTIONS 
MULTI-VARIABLE SERIES 

H-126 Proposed by L. Carlitz, Duke University, Durham, No. Carolina. 
th Let F and L denote the n F i b o n a c c i a n d Lucas numbers, n n 

respectively. Sum the series 

_ _ _ m n 
F F L , x y 

m n m+n J 

oo oo 

E F F F + xmyn, V 
m n m+n J / i 

m,n=0 m,n=0 
Sum the series 

OO OO 

E _, ^ m n \ ^ T T m ] 

F F x y 9 / L L x y 
m n y 9 / J m n J 

m ,n=0 m ,n=0 
m+n even m+n even 
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Sum the s e r i e s 

S = V* F + F + F A x m y a
 ZP 

/ A n+p p+m m+n J 

m,nsp=0 

Solution by the Proposer. 

Put 

F n = ^ - f » L n = "* + ̂ ' a = T(1 + ^ > » ^ = f(1 

so that 

OO 

F n x n = 5 . 
A 1 - X - X̂  

n=0 

Then 

oo 

Si = / F F F , x y m+n J 

m,n=0 

1 I \ ^ -̂  -̂  m+n m n \ " "̂  „ „ J H 
s- ( 7 F F tf x y - > F F p 

a - p J / J m n J / j m n r 

m ,n=0 m sn=0 

+n m n 
x y 

ox ay fix £JT_ 
a _ / 3 U - ax - a2x2 l-ay-aty2 1 - fa-fix2 1 - ftr - ^2y2 

Since 1 - x - x2 = (1 - ax)(l - fix), i t follows that 

1 - ax - #2x2 = (1 » a2x) (1 + x) s 

1 - fix - 02x2 = (1 - j32x)(l + x) , 

so that 
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s = h | _ £ 2 L _ oy i3x py { 
(a - j8)(l + x)(l + y) ( 1 - ohi 1 - Q>2y 1 - 02x 1 - j32y ) 

= xy a2[ 1 - ff2(x + y) + j^xy] - ff2[ 1 - a^x + y) + cfey] 
~ ( a . /3 ) ( i ;x ) ( l + y) (i . 3 X + x2)(l - 3y + y2) 

This reduces to 

Sl = xy - x V 
(1 + x)(l +• y)(l - 3x + x2)(l - 3y + y2) 

•E 
m,n=( 

oo 

E „ _, m+n m n , \ ^ _ _, ^Jii+n m ] F F # x y + • 7 F F /3 x y 
m n J / J m n ^ J 

So = > F F L _, x m j n 
L ' - m n m+n J 

m,n=0 

+n m n 
m n ^ 

m,n=0 m,n=0 
®y + fix fly 

1 - ox - a2x2 1 - ay - a2y2 1 - j3x - j32x2 1 - jSy - /S2y2 

1 I <*x ay + fix Py I 
( 1 + X ) ( 1 + y ) ( 1 - a2x 1 - <*2y 1 - £2x 1 - /32yf 

xy a2 \1 - j82(x + y) + j^xy] + ft2 fl - a2(x + y) + o4xy] 
( 1 + x ) ( 1 + y ) ( 1 - 3 x + x 2 ) ( l - 3y + y2) 

L2 - 2(x + y) + L2xy 
±y _ _ _ ; 

( 1 + X ) ( 1 + y> (1 - 3x + x*)(l - 3y + y2) 

and therefore 

So = 3xy - 2xy(x + y) + 3x2y2 

(1 + x)(l + y)(l - 3x + x2)(l - 3y + y2) 

Clearly 
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oo I oo oo 

E F F xmyn = | V F F x m
y

n + Y " (-l)m+nF F x m
y

n f 
m n 2 I / J m n *-J m n 

msn=0 i m9n=0 m,n=0 
m+n even 

= l { _ _ HL_ _ + 2ESL. I 
4 { (1 - x - x2)(l - y - y2) (1 +x - x2)(l + y - y2)) 

xy (1 + x - x2)(l + y - y2) + (1 - x - x2)(l - y - y2) 
2 (1 - Sx2 +- x4) • ( 1 - 3y2 + y4') 

= x y - (x2 + y 2 ) x y + x2y2 + x 3 ^ 

(1 - 3x2 +x4) • (1 - 3y2 + y4) 
Similarly, 

00 I OO OO \ 

E T _ m n 1 1 V^ T T m n , \~^ / -*\**i+nx T m n f L L x y = T r < > L L x y + > (-1) L L x y > 
m,n=0 m n 2 (mV=0 m n m^O J 

m + n e V 6 n
 = 1 ( 2 - x ) ( 2 - y ) , ( 2 + x ) ( 2 + y ) 

2 ( l - x - x 2 ) ( l - y - y 2 ) ( l + x - x 2 ) ( l + y - y 2 ) 

= 1 (2 -x)(2 - y ) ( l + x - x 2 ) ( l + y - y2) + (2 +x)(2 +y)( l - x - x2)(l - y - y2) 
2 (1-3X2+X4) • ( l - S y a + y 4 ) 

4 + xy - 6(x2 + y2) + 5x2y2 + x3y3 

( 1 - 3x2 + x 4 ) - ( 1 - 3y2 + y4) 
Now for the last ser ies , we have 

(a - /3)3 m9n,p=o 

= 1 y ^ (Q2m+2n+2p ^ ^2m+2n+2p ) x m V 
(a - £)3 mJn5>=o 

. 1 V V (a21*1**1"^ /f+P _. ^n+p^m+n+p ) x m y n z p 
(a - /3)3 m,n9p=0 m,nsp 

(a - # 3 I (1 - a2x)(l - a2y)(l - a2z) (1 - £2x)(l - 02y)(l - /32z) 

(a - /3)3 { x,yfz (1 - cv2x)(l + y)(l + z) x9y,z (1 - /52x)(l + y)(l + z) J 
1. S x - 3Sxy + 8xyz 1 y ^ __x _ _ _ 
5 (1 - 3x + x2)(l - 3y + y2)(l - 3z + z2) 5 x,y9z (1 - 3x + x2)(l + y)(l + z) 
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The sums 

£ . Z 
m,n,p x,y,z 

indicate summation over all permutations of the letters indicated. 
We find, after some computation, that 

g _ b - 5c - 2ac + 2bc - b2 + c2 

(1 + x)(l + y)(l + z)(l - 3x + x 2 ) ( l - 3 y + y 2 ) ( l - £ z + z 2 ) 

where 

a = x + y + z, b = yz + zx+ xy, c = xyz . 

For z = 0 the above result reduces to 

E F + F F x m
y

n = x y - x2y2 

m,n=0 m n ( l + x ) ( l + y ) ( l - 3 x + x 2 ) ( 1 . 3 y + y 2 ) 

in agreement with the first result, where 0° = 1, by convention. 

Also solved by A. Shannon, Boroko, T. P. N. G. 

Note: Due to an editorial e r ro r , problem H-120 was also listed as H-127. 

MOD SQUAD 

H-128 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

Let F and L denote the Fibonacci and Lucas numbers, respectively. 

Show that 

_ 02n+3 ^Sn+3 / , nlv 
F = 2 - 2 (mod 11), 
L = 22n + 23n (mod 11) 
n 

Generalize. 
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Solution by the Proposer. 

Let p be any prime = ± 1 (mod 10). Then it is known (Dmitri Thoro, 
"An Application of Unimodular Transformations 9

f? Fibonacci Quarterly, 2(1964), 
291-295) that 5 is a quadratic residue (modp), so let x0 be a solution of x2 

^5 (modp). Since x0 and p - x0 are both solutions of this, one of which is 
odd, we may assume x0 is odd, say x0 = 2a - 1 . Then 

2a - 1 = ^ 5 , a = (1 + *JE)/2 , 

so that a2 - a - 1 = 0 (mod p). Hence x - a divides x2 - x - 1 (mod p), show-
ing that 

x2 - x - 1 = (x - a) (x - b) (mod p) 

for some integer b. It follows that u = cja + c2b obeys 

u , 0 = u , - + u (mod p) , n+2 n+1 n F 

where cj and c2 are arbitrary constants. 
We first evaluate ci and c2 when u = F (mod p). When n = 0 , 1 , 

we find 

ci + c2 = 0 (mod p) 

cia + c2b = 1 (mod p), 

which has a solution if and only if a ^ b (mod p), which is clearly the case 
here. We see that then cj = l /(a - b), c2 = - l / ( a - b), so 

n _ , n 
F n s a - " b

 ( m o d p ) ' 

Similarly, 

L n = a + b (mod p). 
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These may be considered the Binet forms for the Fibonacci and Lucas num-
bers in the integers modulo p. 

The above problemiollows from this by noting 

x2 - x - 1 = (x - 4)(x - 8) (mod 11) , 

and that 1/(4 - 8) B 8 (mod 11). 

Also solved by L. Carlitz, Duke University, and A. Shannon, Boroko, T. P. N. G. 

RADICAL TSCHEBYSHEV 

H-129 Proposed by Stanley Rabinowitz, Far Rockaway, New York. 

Define the Fibonacci polynomials by fj(x) = 1, f2(x) = x, f .ofe) = 

xf - (x) + f (x), n > 0. Solve the equation 

(x2 + 4)f^(x) = 4k(-l)n""1 

in terms of radicals, where k is a constant. 

Solution by C B. A. Peck, Ordnance Research Laboratory, State College, Pennsylvania. 

It is stated in The American Mathematical Monthly, 1968, p. 295, that 

where 

i n _ 1 fn(x> = Un-1 ( l * ) • 

TT / A \ sin n0 
U . (cosy) = —.—TT 

n-1 sin B 

Thus 

( - l ) n ~¥(x) = U^_ 1 (^ ix) = s i ^ t a c o s " 1 ^ ix)/sin2 ( c o s ' 3 ^ ix) 

= 4 sin2(n cos" 4 *x) / ( 4 + x 2 ) 
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Thus 

(x2 + 4)f2 (x) = (-lf'h sin2(ncos _ 1 ^ix) 

By comparison, 

k = sin2 (n cos"" - | ix) 

whence 

x = -2 i cos ( i s i n - 1 ^ ) 

Note: The proposer obtained the solution, 

i „ , i 
x = i (1 - 2k + 2 ^Ik^^k)Zn + (1 - 2k - 2<s/k2 - k p n , 

where any (2n) root may be taken in the first radical and the (2n) root of 
the second radical is chosen so that their product is unity. 

Also solved by A. Shannon, Boroko, T. P. N. G. 

GAUCHE PASCAL 

H-131 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Consider the left-adjusted Pascal triangle. Denote the left-most column 
of ones as the zeroth column. If we take sums along the rising diagonals, we 
get Fibonacci numbers, Multiply each column by its column number and again 
take sums, C , along these same diagonals. Show Cj = 0 and 

i i 

n + 1 / e Q n - j 
F . 

3 

Solution by L. Carlitz, Duke University. 

Clearly, 

11 9.4 <r» X J / 2j<n 
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Hence 

Since 

n=0 n=0 2 p n 

00 00 

j=0 n=0 

oo 

5=o 
jx2ja-xrj_1 

X 2 

a - ) 2 ^ 

oo 

y^(j+Dx2j(i-xrj 

X2 / . X2 \ " 

-2 
= X 2 ( l - X - X 2 ) 

1 - X - X2
 n 

n=0 

oo 

i t follows a t once that 

C 
n 

' j=o 
E F . F . . 3 n-j 

^4to solved by D. Zeitlin, Minneapolis, Minnesota; A. Shannon, Boroko, T. P. N. G., 
and E. Frankel. 

• • • * • 



ASSOCIATED. ADDITIVE DECIMAL DIGITAL BRACELETS1" 
CHARLES W. TRIGG 
San Diego, California 

A bracelet is one period of a simply periodic series considered as a 
closed sequence with terms equally spacedaround a circle. Distances between 
terms may be measured in degrees or in spaces. A bracelet may be regener-
ated by starting at any arbitrary point to apply the generating law. A bracelet 
may be cut at any arbitrary point for straight line representation without loss 
of any properties. 

A digital bracelet may be constructed by starting with a pair of digits, 
affixing the units1 digit of their sum, again affixing the units1 digit of the sum 
of the last two digits, and continuing the process. (Some bracelets generated 
from a sequence of four digits have been discussed previously [ l ] , [2]). This 
is equivalent to using the recurrence formula u 2 = u +u - and, in the 
decimal system, reducing each sum modulo 10. When all operations of addi-
tion and multiplication are reduced modulo 10, the computations are in a mod-
ular arithmetic dealing with individual digits. In it 1, 7, 9, 3 and 2, 6, 8, 
4 and their reverses are cyclic geometric progressions (G. P.) which them-
selves are bracelets. 

The 60-digit [3] Fibonacci bracelet (F), so called since it is one period 
of the units1 digits of the Fibonacci ser ies , is generated by uj = 0, u2 = 1. 
Five associated bracelets [4] result from other generating pairs , as follows; 

A(l): 0 0*00 B(3); 0 5 5 f 0 5 C(4): 2684*26 

D(12); 13 4 E(20): 0 2 2 4 6 

718 0 6 6 2 8 

976 0 8 8 6 4 

392f13 0 4 4 8 2 f 0 2 

F(60); 0 1123 5 8 31 4 5 9 4 3 7 

07741 56178 53819 

0 9 9 8 7 52796 51673 

03369 54932 5 7 2 9 1 ' 0 1 

Presented at the March 11, 1967 meeting of the Mathematical Association of 
America, Southern California Section. 

287 
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The number in parentheses following the identifying letter is the number 
of ordered digit pairs in the bracelet. Except in A, this is the same as the 
number of digits in the bracelet — the length of the bracelet. Together, the 
six associated bracelets contain all 102 ordered digit pairs. 

PROPERTIES OF ASSOCIATED BRACELETS 

1. The number of digits in each bracelet is a factor of 60. This is in 
accord with the observation by Wall [ 5] that the length of any digital period 
resulting from u0 ^ 0, uj. ^ 1 divides the length of the Fibonacci digital 
period. 

2. The sum of diametrically opposite digits is zero. Hence, the sum of 
the digits at the vertices of any inscribed polygon with an even number of sides 
is zero. The sum of the digits in every bracelet is zero. 

3. The digits of C form a cyclic G. P. As the bracelets are arranged, 
the same G. P. appears in four of the digit columns of E and in the sums of 
its four rows. The reverse G. P. appears in 1 column of D, 4 columns of F , 
the sums of the four rows of D, the sums of the four rows of F , the sums of 
the rows of the last pentad column of F , and when the rows of F are broken 
up into triads in the sums of the rows of four of the five triad columns. 

The cyclic G. P. , 1, 7, 9, 3, appears in 2 columns of D, 8 columns 
of F , and the sums of the rows of the first two pentad columns of F. 

The trivial G. P. of 0?s which matches A, appears in the remaining 
digit column of E, and in the sums of the rows of the second column of triads 
in F. The remaining digit columns leading the pentad columns in F are in 
trivial G. P. fs of 0*s, 5fs9 and 5fs, which match B horizontally. 

4. Bracelets D and F may be written in the terms: 

D: 1 3 4 7 
1 8 9 7 
6 3 9 2 * 1 3 

F: 0 1 1 2 3 58314 5 9 4 3 7 07741 

56178 53819 0 9 9 8 7 52796 

5 1 6 7 3 03369 5 4 9 3 2 5 7 2 9 1 * 0 1 
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The sums of successive rows of D and of F are 5f 5S 0, a cyclic 
permutation (c. p.) of 8, The digit columns of D and F and the sums of the 
rows of the pentad columns in F are c* p„f s of the sets obtained by separately 
adding the digits oi C to the digits of B. The digits in each of these sets are 
congruent modulo 5. 

5. Bracelets E and F may be written in the forms? 

E . - 0 2 2 4 F: 0 1 1 2' 3 5 8 3 1 4 5 9 

6 0 6 6 4 3 7 0 7 7 4 1 5 6 1 7 

2 8 0 8 8 5 3 8 1 9 0 9 9 8 7 5 

8 6 4 0 2 7 9 6 5 1 6 7 3 0 3 3 

4 4 8 2 * 0 2 6 9 5 4 9 3 2 5 7 2 9 1 ? 0 1 

Each row of E sums to 8 and each row of F sums to 2. Each quartet 
in the first column of F sums to 49 the other quartets sum to 9. 

Each digitcolumn consists of distinct even digitsor of distinctodd digits* 
It follows that every even digit occurs with the same frequency in E. Also9 in 
F the frequency of every even digit is the same9 and the frequency of every 
odd digit is the same (and twice that of the even digits). 

In E the digits in each column are in arithmetic progression with the 
successive common differences being 6, 8, 4, 29 a c.p. of C. In F the 
digits in each column are in arithmetic progression with the successive com-
mon differences being 49 29 69 8, 49 29 6, 89 49 29 69 89 again involving a 
c. p. of C. 

ASSOCIATION BY ADDITION 

Each of the bracelets A 9 B 9 C 9 D 9 E9 F is produced by the same recur-
rence formula. Consequently, proceeding clockwise, if the digits of the two 
bracelets are consecutively matched and added 9 the resulting sequence must 
follow the same formative law. But the six bracelets exhaust the 100-pair 
field, so the sequence created by the addition must duplicate all or part of one 
of the six bracelets. 

The digits of each bracelet9 as tabulated, are numbered consecutively 
from the left. In the additions a selected bracelet will be considered to be 
operated on by itself or by a shorter bracelet repeated. If the length of the 
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selected bracelet is not a multiple of the length of the operator bracelet, then 
each is repeated to a total length equal to the 1. c. m. of the two lengths. 

The digits of the operator bracelet are successively matched with the 
initial digit of the selected bracelet in a series of additions. A particular 
addition is identified by the sequence number of the matching digit (m. d.) of 
the operator. The addition may produce a clockwise rotation (r.) of the se-
lected bracelet or a change to another bracelet (b. c.) . 

Thus, when the third digit of D is matched with the initial digit of 
another D, the addition produces a b. c. into a series of 4 Bfs. 

1 3 4 7 1 8 9 7 6 3 9 2 1 3 4 7 1 8 9 7 6 3 9 2 

4 7 1 8 9 7 6 3 9 2 1 3 7 8 4 2 6 8 4 2 6 8 4 2 

5' 0 5 5 ' 0 5 5» 0 5 5 ' 0 0 7 1 8 9 7 6 3 9 2'1 3 4 

and when C operates on D with the second digit of C matching the initial 
digit of D, the result of the addition is an r. of D through nine spaces or 
270° from the position of the selected D. 

Any bracelet operated on by A is not changed, which is equivalent to a 
rotation through 360°. 

B operated on by B produces two rotations of B and one conversion to 
ATs. Thus 

B m. d. r» or b. c. B r. Operator 

1 A7s 120° B 
2 120° 240° B 
3 240° 360° A 

C operated on by A, B, and C gives the following results: 

C m. d. r. or b. c. C r. Operator 

1 90° 90° C 
2 180° 180° C 
3 Afs 270° C 
4 270° 360° A 
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When the 3-digit B operates on the 4-digit C9 four Bfs and 3 Cfs are in-
volved, The additions produce three D bracelets, with their initial digits 120° 
apa r t 

D operated on by A, B§ C, and D produces: 

B m , d , 

1 

2 

3 

C m . d . 

1 

2 

3 

4 

r , o r b» c9 

240° 

3 C f s 

120° 

r . o r b» c. 
90° 

270° 

180° 

4 B f s 

D m . d . 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

r , o r be c. 

3C«s 
300° 

4 B f s 

3 C ' s 
30° 

60° 

A*s 
210° 

150° 

3 C f s 
4 B f s 
330° 

D r . 

30° 

60° 
90° 

120° 

150° 

180° 

210° 

240° 

270° 

300° 
330° 

360° 

Opera to r 
D 

D 

C 

B 

D 

C 

D 

B 
C 

D 
D 
A 

With reference to a fixed D, the initial digits of the C?s generated by the D 
and B operators occur at 30° intervalss as do the initial digits of the Bfs 
produced by the D and C operators• 

E operated on by A9 B5 C, D, and E gives: 

C m . d . 

1 

2 

3 

4 

r . o r b . ce 

216° 

288° 

144° 

72° 

E_ m„ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A. r . o r b . c. 
90° 

324° 

5 C f s 

54° 

234° 

180° 

5 CfS 

126° 

18° 

E r . 
18° 

36° 

54° 

72° 

90° 

108° 

126° 

144° 

162° 

Opera to r 
E 

E 

E 
C 

E 
E 

E 

C 
E 

(continued on next p») 
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E m . d . 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

r . o r b . c. 
36° 

A ' s 
198° 

162° 

252° 

5 C?s 

270° 

306° 

108° 

5 C ' s 

342° 

E r . 
180° 

198° 

216° 

234° 

252° 
270° 

288° 
306° 

324° 

342° 

360° 

Opera to r 
E 

E 

C 

E 

E 

E 

C 

E 

E 

E 

A 

With reference to a fixed E, the initial digits of the Cfs produced by the E 
operator a re 18° apart. When D repeated five times operates on E repeated 
three times, F?s in twelve different positions are produced. When B r e -
peated twenty times operates on E repeated three times, F fs in three dif-
ferent positions are produced. With reference to a fixed E, the F fs pro-
duced by operator B are 120° apart, and those produced by operators B and 
D considered together are 24° apart. 

F operated on by A, B, C, D, E, and F produces: 

B m . d . 
1 

2 

3 

C m . d . 

1 
2 
3 

4 

r . o r b . 
3 E ' s 

240° 
120° 

i \ _ o r b . 
144° 

72° 
216° 

288° 

c. 

c. 

D m . d . 
1 

2 
3 

4 

5 

6 
7 
8 

9 
10 

11 

12 

,4- n \ 

r . o r b . c. 
312° 

336° 

3 E » s 

24° 

192° 

3 E f s 
168° 
264° 

3 E * s 
96° 
48° 

3 E f s 

E m . d . 
1 

2 

3 

4 

5 
6 
7 
8 

9 
10 

11 

12 

13 

r . o r b . c . 
90° 

342° 
36° 

5 D ' s 
234° 

270° 
108° 

5D«s 
18° 

198° 
180° 

5 D ' s 
162° 
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E m. d. 
14 

15 

16 

17 

18 

19 

20 

r. or b. 

126°  

252°  

20 Bfs 

306°  

54°  

324°  

5D's 

F operating on F produces thirty rotations of F , one Afs, two 20 Bfs , 
four 15 Cfs, eight 5 Dfs, and three 15 Efs . The rotations of F produced 
by all the operators neatly drop in at 6° intervals. 

Beginning at 6° s the successive operators were: 

•FFEDFEFDEFFCFFEDFEFBEFFCFFEDFE 
FDEFFCFFEBFEFDEFFCFFEDFEFDEFFA . 

With reference to a fixed F , the initial digits of the Bfs produced by the 
various operators are 6° apart, as are the initial digits of the Cfs, the Dfs, 
and the Efs produced by the various operators* 

In general any one of the six associated bracelets with length p may be 
rotated through any desired multiple of 360°/p by operating on it with the proper 
associated bracelet of the same or shorter length and using the appropriate 
m.d. 

Each of the operators produces rotations symmetrically distributed about 
180°, so that when all the operator letters of the successive rotations of a se-
lected bracelet are listed, a palindromic sequence is formed. 

When the various operators produce bracelets other than the one oper-
ated on, the initial digits of the derived bracelets of the same type are equally 
spaced, when referred to the initial digit of the selected brace le t 

When the length of a shorter bracelet does not divide that of a longer one 
(as in the cases of B and C, B and E, D and E), then the operation of 
fiie shorter bracelet on the longer one always produces a bracelet of length 
equal to the 1. c„ me of the lengths of the two bracelets involved. With refer-
ence to a fixed position of the longer bracelet, initial digits of the bracelets 
produced by the addition are equally distributed around a circle. 
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ASSOCIATION BY MULTIPLICATION 

Since multiplication is repeated addition, it follows that multiplication of 
any one of these digital bracelets by a positive digit will either rotate the 
bracelet or convert it into another.bracelet The rotations and conversions of 
the bracelets in the first column upon multiplication by the digits at the heads 
of the columns are shown in the body of the following table. 

B 

C 

D 

E 

F 

8 

A 
90° 

C 
90° 

E 

4 

A 
180° 

C 
180° 

E 

2 

A 
270° 

C 
270° 

E 

6 

A 
360° 

C 
360° 

E 

3 

B 
90° 

270° 

90° 

27(f 

9 

B 
180° 

180° 

180° 

180° 

7 

B 
270° 

90° 

270° 

9(f 

1 

B 
360° 

0° 

360° 

0° 

5 

B 
A 

B 
A 

B 

The Cfs produced by multiplying D by 8, 4, 2, 6 in order go into 
each other by counterclockwise 90° rotations. The Efs produced from F 
behave similarly. 

To indicate that multiplication by 9 rotates a bracelet through 180 is 
equivalent to saying that the diametrically opposite digits sum to zero. 
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LINEAR RECURSION RELATIONS - LESSON FIVE 
RECURSION RELATIONS OF HIGHER ORDER 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

The considerations applied to linear recursion relations of the second 
order form a patternfor dealing with relations of higher order. Given a linear 
recursion relation of the k order: 

(1) T _,_- = a /T + a2T - + • • • + a. T . , - , 
n+1 l n z n-1 k n-k+1 

where the quantities a. and T. are real , there would be an auxiliary equation 

(2) x - 2Ltx - a2 x • • • - ak = 0 , 

for which there could be real and distinct roots, multiple real roots or com-
plex roots conjugate in pairs. The major difficulty that ar ises in a relation of 
this type is the problem of determining the roots which ordinarily would be 
approximate in value. 

As an example, consider one extension of the Fibonacci sequences, 
namely, adding the last three terms, or adding the last four te rms, and so on. 
The recursion relations and corresponding auxiliary equations would be: 

(3) T _,_- = T + T - + T 0 and x3 - x2 - 1 = 0 v n+1 n n-1 n-2 

<4) T n + 1 = T n + Vl + T n -2 + T n - 3 and x* - x3 - x* - x - 1 = 0 . 

If we look at the general type of this equation: 

/r\ k k-1 , k-2 , k-3 , , . -
(5) x = x + x + x +--- + X + 1 , 

it appears that since 

(6) 2 k - 1 = 2 k _ 1 + 2 k " 2 + 2 k " 3 + . • . + 2 + 1 , 

295 
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there should be a root near-2. The following table gives an approximation to 
this root for various values of k. 

k 

3 

4 

5 

6 

7 

8 
9 

Approximation to Root 
n e a r 2 

1.83928676 

1.92756198 

1.96594824 

1.98358285 

1.99196420 

1.99603118 
1.99802948 

Approximations, such as these, to real or complex roots can be determined, 
but expressing T in terms of them does not seem very satisfying. Never-
theless, as will be seen in a subsequent lesson, such evaluations of roots of 
the auxiliary equation provide interesting information regarding the generated 
sequence. 

MULTIPLE ROOTS 

The case of multiple roots calls for additional consideration. If a poly-
nomial equation 

^ k , k-1 , k-2 , n 
(7) a0 x + aA x + a2 x +--- + a, = 0 

has a root of multiplicity s, then (7) can be written: 

(8) (x - r ) S F(x) = 0 , 

where F(x) is a polynomial of degree k - s. Clearly, this equation and the 
equations formed by setting the first s - 1 derivatives equal to zero are all 
satisfied by r. This provides a clue for dealing with roots of any multiplicity 
when found in the auxiliary equation of a recursion relation. For concreteness, 
let us consider a root r of multiplicity 3. 
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Let the equation having this multiple root be: 

(9) x3 - ax2 - fox - c = 0 . 

Multiply both sides of the equation by x n to obtain: 

/in\ n+3 n+2 , n+1 n ~ 
(10) x - ax - bx - ex = 0 

Take the derivative and set the resulting polynomial equal to zero. 

(11) (n + 3)xn+2 - a(n + 2)xn + 1 - b(n + Dx11 - cnx 1 1 - 1 = 0 

Repeat this operation on (11). 

(12) (n + 3)(n + 2)xn + 1 - a(n + 2)(n + Dx11 - b(n + Dnx11"1 - cn(n - Dx1 1"2 = 0. 

The multiple root r must satisfy the relations (10), (11), and (12) so that on 
replacing x by r and multiplying (11) by r and (12) by r2 we have the fol-
lowing three recursion relations for r. 

,-„* n+3 n+2 , , n+1 , n 
(13) r = a r + br + cr , 

(14) (n + 3) r n + 3 = a(n + 2)rn + 2 + b(n + l ) r n + 1 + c n r n , 

(15) (n + 3)(n + 2) r n + 3 = a(n + 2)(n + l ) r n + 2 + b(n + l ) n r n + 1 + cn(n - Dr11 . 

On the basis of these recursion relations the indicated expression for T is: 

(16) T = A n ( n - l ) r n + Bnr1 1 + Cr11 . 

We show first that this relation continues to hold for succeeding values of n if 
it is true for three consecutive values. For if 

(17) T n + 1 = A(n + l ) n r n + 1 + B(n + Dr114"1 + C r n + 1 , 
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and 

(18) T n + 2 = A(n + 2)(n + Dr114"2 + B(n + 2)rn + 2 + C r n + 2 , 

then 

T _,_„ = a T ^0 + b T x 1 + c T n+3 n+2 n+1 n 

is equal to: 

( 1 9 ) Tn+3 = A ( n + 3 ) ( n + 2 ) l , n + 3 + B ( n + 3 ) l , n + 3 + C r I 1 + 3 

on the basis of relations (13), (14), and (15). 
Given three initial values Tj , T2, and T3, the relations they should 

satisfy on the basis of (16) would be: 

Tt = Br + Cr 

(20) T2 = 2Ar2 + 2Br2 + Cr2 

T3 = 6Ar3 + 3Br3 + Cr3 

The determinant of the coefficients of the unknowns A, B, C has a value of 
-2r6, so that if r is not zero, there are unique solutions for A, B, and C. 
Thus three initial values T1? T2 and T3 can be expressed in the form given 
by (16). It follows that this form will continue to hold for all values of n. 

It may be noted in passing that if the multiple root has a value of 1, T 
reduces to a polynomial in n. 

Example. Express the terms of the recursion relation 

T n + 1 = 7 T n - 1 7 T n - l + 1 4 T n - 2 + 4 T n - 3 " 8 T n -4 

in terms of the roots of the auxiliary equation: 

x5 - 7x4 + 17x3 - 14x2 - 4x + 8 = 0. 



1969] LINEAR RECURSION RELATIONS 299 

By synthet ic division th ree equal r o o t s , 2 , a r e found and the res idua l quadra t ic 
has the roots 

1 + ^ 5 , 1 - ^ 5 " 
— a n d — ' 

Accordingly , 

T n + 1 = A n ( n " 1 ) x 2 n + B n x 2 n + C x 2 n + D l , n + E s J 1 

where 

1 + N/5 , 1 - N/5 
r = g a n d s = " g 

Example . F o r the r ecu r s ion re la t ion 

T ^ = 3T - 3T - + T 0 , n+1 n n - 1 n-2 

with init ial values T j = 5, T2 = 8, T3 = 17, e x p r e s s T in t e r m s of the 

roots of the auxi l i a ry equation. 

This equation is 

x3 - 3x2 + 3x - 1 = 0 , 

which has a t r ip le root of 1. Thus 

T + - = An(n - 1) + Bn + C , 

a polynomial in n. Then 

5 = B + C 

8 = 2A + 2B + C 

17 = 6A + 3B + C , 
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leading to the values A = 3, B = - 3 , C = 8, so that 

T , = 3n2 - 6n + 8 . n+1 

PROBLEMS 

1. Find the recursion relation satisfied by 

T = 3n2 - 5n + 4 + 2x5 . 
n 

2. Given the recursion relation 

T = 6T - 11 T - + 6 T 9 , 
n+1 n n-1 n-2 

and initial values 

Ti = 8 , T2 = 15, T3 = 22 . 

Express the general term T in terms of the roots of the auxiliary equation. 
3. S is the Fibonacci sequence 3, 7, 10, 17, 27,- •• , and Rn is the geo-
metric progression 5, 15, 45, 135,* •• 

T = R +S„ n n n 

n 
Find the recursion relation for T 
4. If T = 3n + 2 + 2( - l ) n + F , find the recursion relation for Tn-
5. If T* = 13, T2 = 15, T3 = 22 and T n + 1 = 4Tn - T ^ - 2TR_2 express 
T in terms of the roots of the auxiliary equation of this recursion relation. 

n 
(Solutions are on p. 302 .) 

• * * • • 
NOTICE 

The two fine elementary books, The Introduction to Fibonacci Discovery 
and Fibonacci and Lucas Numbers, are each available for $1.50 from Brother 
Alfred Brousseau, St. Mary's College, California 94575. 



A NOTE ON FIBONACCI NUMBERS IN HIGH SCHOOL ALGEBRA 
MARJORIE BiCKNELL 

Wilcox High School, Santa Clara, California 

With the number of topics in the course of study for algebra, the teacher 
isnft often looking for an additional unit of work, but rather for short excur-
sions into related material to spark student interest. This note describes such 
a bypath. 

When teaching the multiplication and division of polynomials, excellent 
interest-catchers are available. In multiplication, compute (x + 1) from its 
definition and then display the coefficients of (x + 1) , n = 0,1,* • • ,6 in the 
Pascal Triangle arrangement. Students readily find patterns in this array of 
numbers. One interesting pattern is the sums of ascending 45° diagonals — the 
Fibonacci sequence. Students can be asked to look for additional patterns and 
to report back to the class after their findings. In .dividing polynomials when 
discussing the arrangement of terms in the divisor and remainders 9 let students 
compute a few terms of 

X -r- ( 1 - X - X 2 ) = X + X2 + 2X3 + • • • + F X + • • • 

n 

and 
1 -r- (1 - 2x) = 1 + 2x + 4x2 + • • • + 2nxn + • •. . 

The teacher can easily check how the work is progressing while walking around 
the room because of the pattern of the quotients. 

When doing computations with radicals, let students make a table with 
headings 

n. <A fP, an + A (an - (P)/(a - 0) 

for 

a = (1 + \ / 5 ) / 2 , jS = (1 - \ / 5 ) / 2 , n = l 9 2 ?
e B O ,10 , 

301 
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and then describe as many patterns observed as possible. You will be amazed 
at the results. Since 

(an - (f)/(a - fi) = F n , cP+fP = L n , 
and 

an = (L + F \ /5 ) /2 9 V 1 = (L - F V5)/2 , n n v n n v / 

for the Fibonacci sequence defined by 
Fi = F2 = 1, F = F + F 

1 * n n-i n-2 
and the Lucas sequence defined by 

Li = 1, L? = 3, L = L + L . 
1 ' * ' n n-i n-2 

the teacher can readily check the results. 
If you have found interesting uses of the Fibonacci numbers in high school 

teaching, you are invited to send a description to the Fibonacci Quarterly. 
• • • • • 

Continued from page 300. 

SOLUTIONS TO LINEAR RECURSION RELATIONS PROBLEMS 

1. T ^ = 8T - 18T - + 16T 0 - 5T Q 
n+1 n n-1 n-2 n-3 

2. T = -5/2 + 7 x 2 n - (7/6) 3 n 

3. T ,- = 4T - 2T - - 3T „ 
n+1 n n-1 n-2 

4. T J - = 2 T + T - - 3 T 0 + T > I 
n+1 n n-1 n-2 n-4 

* * * * * 



MULTIPLE FIBONACCI SUMS 
JOHN IVIE 

Student, University of California, Berkeley, CaSifornia 

L INTRODUCTION 

Let us define the Fibonacci numbers by means of the recurrence relation 

( 1 ) F n + 2 = F n + 1 + F n ™th ^ = 1, F2 = 1 

To derive a formula for the sum of the first m Fibonacci numbers, write (1) 
as F = F 2 " F

n + i 9 a n ^ let n = 1,2 ,3 , -•• ,m, as shown below* 

Fj[ = F3 - F2 

F2 = F4 - F3 

F = F - F 
m-1 m+1 m 

Adding, we have 

m 

«> £ Fk = Fm+2 " 1 • 
k=l 

a well-known and useful result. In this paper, we shall be concerned with a 
generalization of (2) and its subsequent derivation, as well as another possible 
result. 

II. DERIVATION OF FORMULA 

Without stating in exact form the generalization which we shall consider, 
let us proceed inductively. Summing both sides of (2), we obtain 

303 
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P m p P P 
E E \ = £ (Fm+2 -1) = E Fm+2- z 1 = V V P » 

m=l k=l m=l m=l m=l 

as is easily seen. Summing this again, 

q p m q q q q 

E E E \ = E (Fp+4 - F4 - p) = £ Fp + 4-£ F4- £ p. 
p=l m=l k=l p=l p=l p=l p=l 

To evaluate this, we use the well-known formula 

(1 + 2 + • • • + q) = £q(q + 1) , 

the sum of the first q natural numbers, to give 

q p m 

£ £ £ 
p=l m=l k=l 
E E E \ = Fq+6 - F 6 - q r 4 - a(a_Lil 

If we sum this result again, we have 
r q p m r 

q=l p=l m~l k=l q=l 
r r r r 

= E V e " £ F 6 - E ^ 4 - E 
q=l q=l q=l q=l 

To evaluate 

\ £ qfa + i ) > 2 
q=i 

we use the fact that the sum of the first r triangular numbers is the r tet-
rahedral number, giving 
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r q p m 

Z-, Z^ Z^ L* r k r+8 *8 r * 6 2 *4 3! 
q=l p=l m^l k=l 

Let us now generalize this procedure to the case of n summations, 
Thus s we consider sums of the form 

a n V l a 2 a i 

E E ••• E E v • 
a n - l = 0 a n - 2 = 1 a l = 0 a 0 = 0 

where the limits in the summation are members of the sequence of arbitrary 
constants, 

Examining the specific cases we have worked out, we see that the first 
term of our general result will be of the form F 2 , the second of the form 
F~ . The third will be a F 0 oS and the fourth 

2n n 2n-2 

F a A a (a + l) /2 = F 0 , E a -2n-4 n n 2n-4 n-1 

In general9 we need to evaluate sums of the form 

To do this, we have the following result [1]. 
a a - a . 

n n-1 1 Z E - E -Z-^+y1). 
a =1 a 0=1 a =1 n-1 n-2 0 

where f is the r figurate number of order a , and r is the number of 
summations plus one. Thus, we conjecture that 
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(3) 

n n-1 1 n-1 

l-j /LJ Z-J r a 0 *a +2n Zl> *2(n-r) I r / 
a =1 a =1 a =1 r=0 
n-1 n-2 0 

IE. PROOF OF FORMULA 

Let us now prove our conjecture (3) by induction on n. By the principle 

of mathematical induction, we first check for n = 1, which is obviously for-

mula (2), and is thus true. We then assume (3) is true for n = s, and show 

that n = s + 1 is also true. Thus, we have to show 

V l / B - 1 /a + r - l \ \ 
<4> £ (Fas +2s-I>2(s-r)( \ ) \ 

LJ r2(s+l-r)\ r / 

a =1 \ s r=0 
s 

Fa +2(s+l) 
s + i r=0 

To find the first summation on the left-hand side, we can easily derive 

s+1 

( 5 ) /LJ F a +2s = Fa ^+2 (s+1) " F2+2s * 
- s s+1 

V1 

To find the second summation, consider 

a , . s-1 a 
1+1 _ / a + r - l \ S + 1 / a - 1\ /a + s - l - l \ 

a =1 r=0 a =1 
s s 

<6> = F2s £ (so l ^ ^ S l f H E l ^ ) 
a =1 a =1 a =1 

s s s-
It can easily be established by induction that for n ̂  r, 

CK;1)--^)-("-)• 
Thus, applying (7) to (6), 
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a 
„ , ^ _ / a + r - 1 \ / a „ H - r - l \ 

a - r=0 x r 7 r=i x r / 
s=l 

Substituting (5) and (8) into (4), we obtain 

F F fF ^B+1 + r " 1VF 
as+1+2(s+l) 2+2s Z-* 2(s-r+l)\ / a

 + i + 2 < s + 1 ) 
r=l 

s 
^ * 2 ( s - r + l ) l I 
-p=n \ x / 

which proves our proposed formula. 
We remark that this general formula is true for all recurrence relations 

of the form 
f l 0 = f ,- + f , f 1 = a , f 0 = b , 
n+2 n+1 n 1 2 

where a and b are arbitrary integers. Thus, 

a a i a i ^ i 
n n " 1 X n"X / a +" r - 1\ 

faA
 fa +2n 2~J f2(n-r) I I 

a ,=1 a =1 a =1 u n r=0 \ r / n-1 n-2 0 

In particular, this result is true for the Lucas numbers defined by 

L l 0 — L , - + L 3 L-j — 1, Lo — 3 . n+2 n+1 n3 -1 ^ 

IV. OTHER RESULTS 

We shall develop a formula similar to (3), but which is derived by a dif-
ferent method and gives rise to a new identity. To use this method, we need a 
result of Hoggatt [2] , namely that if 

oo oo 

£W - ^ . / , tte» -JS5L. . W £ E ... Ea .)x° . 
n=0 [1 " x ' n=0 \ / 
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where there are m summations in the coefficient of x . Thus, the multiple 
sums are the convolutions of the a.!s with the elements of the m column of 

3 
PascalTs left-adjusted triangle. Letting 

f(x) = J ] F n x n = x(l - x - x2) X , 
n=0 

then 

f(x) 
\ ^ l 9 

( 1 _ X ) - ^ = ^ L _ V ( _ 1 ) 3 / - ^ X 3 
1 - x - x 2 ^ \ J / 

oo 

= 1 W m +j- l\jn 
l - X - X ^ V 1 / 

( 1 - x ) 1 - x - x * - ~ - ~ 0 

j+1 
1 . 1 ^ 

\ 3 / 
3=0 

If we carry out the indicated long division, then 

oo / n \ °° / n 
f(x) = EE-^k = E EVifr1)"" (1 - ^ 

1 X ' n=0 \ / n=0 \ j=0 

Equating coefficients of x , and using the notation of (3), we get 

a a 0 a. a 
n n-2 I n . / \ <•> E E - E v E v l - V 1 ) ' 

a»-r° V2-0 ao-° J=° 

By equating (3) and (9), we derive the following identity 

We now note that this method can be used to find a general formula for 
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a n V l a l 

vr° v r ° ao=0 

where < b. > is a sequence of real numbers. Since 
l JJo 

oo 

f (x) = E b x 1 1
 f 

n=0 n 

then 

f(x) 
(1 - x) 

oo oo oo / v 

L b n x • ( 1 - x ) = L b n x • £ ( j x 
n=0 n=0 n=0 V / 

- j j f^ - 'C-v - 1 ) ) ' -
by definition of the Cauchy product of two infinite series. Thus, 

a a „ a^ a 
n n-1 1 n 

2^ 2-J '" 2^ a 2 ^ a -j \ j / ' 
a =0 a =0 a =0 3=0 

n-1 n-2 0 J 

This then gives a generalization of (10) for recurrence relations of the 
form 

n+2 n+1 n 1 2 

where a and b are arbitrary integers, namely 
a -1 

The author wishes to thank Dr. Verner E. Hoggatt, J r . , for all of his 
helpful suggestions and criticisms. 
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2. V. E. Hoggatt, J r . , "A New Angle on Pas calfs Triangle," Fibonacci Quar-

terly, Vol. 6, No. 4, p. 228. 
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A BRAIN TEASER RELATED TO FIBONACCI NUMBERS 
OLOV ALVFELDT 

Bromma, Sweden 

A Swedish manufacturer of scientific instruments, LKB-Produkter AB, 
of Bromma, Sweden, has formed a tradition of sending out New Year's greet-
ings in the form of mathematical brain teasers. A recent LKB brain teaser 
concerned a numerical problem encountered by the commander of a space ship 
and some members of his crew, which is composed of men from the Earth as 
well as men from Mars , Neptune and other planets. 

THE PROBLEM 

One day when calculating the distance which the ship had made, the Mar-
tian navigator, Lu, working with the decadic computer in the control room, 
obtained as a result a number the first five digits of which were 10112 and 
which had the property that if its last digit were moved to the first position a 
multiple of the number was formed. 

Lufs complanetarian, Ku, tried to reconstruct Lufs number by manual 
calculation and was able to find a number beginning 10112 and also showing the 
desired property in regard of multiplication. However, Kufs number had only 
a little less than one-third as many digits as had Lufs. 

A crew member of Neptune by name Elkeybub, who was known as a gen-
ius in mental calculation, was then called in to settle the dispute thatLu and Kii 
had got into because of the discrepancy between the numbers they had found. 
Elkeybub started the cells of his gray matter and soon came forth with his r e -
sult: a number having one more digit than had Lufs , but otherwise fulfilling 
the same requirements as did Lu!s and Kufs numbers. 

The questions posed were: (1) why did not Lu, Ku, and Elkeybub get the 
same number, and (2) what numbers did they get? 

THE GENERAL SOLUTION 

It is easily shown that a number, N, having the property of being trans-
formed into a multiple of itself when its last digit is moved to the first position 
has the form 

310 
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a, N - s j ^ a , 
where 

c = the last digit of N, 
B = the base of the number system, 
n = the number of digits of N 
f = the multiplicity factor (=Nf/N, where Nf is the number obtained 

by moving c to the first position), 
By simple reasoning we find that the following relationships hold between the 
parameters: 

(2) 2 ^ f ^ c < (B - 1) 

(the case f = 1, or Nf = N, is disregarded as being trivial), 
That there exists for every set of (B,c,f) a value of n such that N is 

an integer can be shown by means of Fermatfs theorem 

(3) x ^ m ) = i m o d m , 

where x and m are integers having no common factor , and <$<m) is the num-
ber of integers less than m and prime to it. 

Now, if B and (fB - 1) have no common factor, Eq. (1) will give an 
integer value of N for 

(4) n = 0(fB - 1) . 

It is immediately seen that b and (fB - 1) can have no common factor, and 
Eq. (4) holds true. 

If (fB - 1) is prime, we get 

(5) n = fB - 2 . 

If (fB - 1) is composite, that i s , 

(6) fB - 1 = d q e r ••• f • d ^ 1 , e 5* 0 , - . . 
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we get 

(7) n = 0(fB - 1) = d q _ 1 ( d - 1) • e r " 1 ( e - ! ) • • • . 

It should be pointed out that the values of N obtained from Eq. (1) and 

e i the r of E q s . (5) o r (7) will not n e c e s s a r i l y be the sm a l l e s t values poss ib le , a 

factor of 0(fB - 1) some t imes being sufficient to produce an in tegral value of 

N. 

This o c c u r s , for (fB - 1) p r i m e , with those values of (fB - 1) for 

which B i s not a p r imi t ive root . F o r B = 10 (the decadic system) we have 

(fB - 1) = 19, 29, 39, • • • , 89. Of t he se , 39, 49, and 69 a r e composi te . Of 

the p r i m e va lues , 19, 29 and 59 have 10 as pr imi t ive root : 

1018 = 1 mod 19 I n . = 18 
I m m 

1028 = 1 mod 29 } , o r l O ^ 1 = 1 mod p n . = 28 . * ^ min 

1058 = 1 mod 59 I n . = 58 
/ m m 

F o r the remaining p r i m e s , 10 i s not a p r imi t ive roo t , and we have 

1013 E 1 mod 79, o r l O ^ " 1 ^ 6 = 1 mod p , n . = 13 , 
' ^ m m 

and 

1044 = 1 mod 89, o r 10 k " 1 ^ 2 = 1 mod p , n . = 44 . 9 ^ ' m m 

In the ca se of the composi te values of (fB - 1), the i r p r i m e fac tors will 

decide whether <£(fB - 1) o r a factor thereof will be the s m a l l e s t n that s a t -

is f ies Eq. (1). Here we get 

fB - 1 tf>tfB - 1) n 
101 = 1 mod 3 m m 

3 9 = 3 - 1 3 1 0 « ' B l , n o d l 3 2 - 1 2 = 2 6 6 

49 = 72 106 = 1 mod 7 6 • 7 = 42 42 

69 = 3 • 23 1022 = 1 mod 23 2 • 22 = 44 22 
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Note that in the case N(10,7,5), we have one of the very rare cases 
where c is a factor of (fB - 1), that i s , (fB - l ) / c = 7, and since 106 = 1 
mod 7, N(10,7,5) gives n . = 6. & mm 

An interesting property of N is related to the following reasoning: 

N(B,c,f) = c(Bn - 1)/(£B - 1)9 

N(B9c + l9f) = (c + l)(Bn - l)/(fB - 1)9 

N = (Bn - l)/(fB - 1) = N / c . c c 

Also, if Ni = c(Bn - l)/(fB - 1) is an integer, then 

N. = c (B m - l)/(fB - 1)9 i = 1 , 2 , 3 , - - , 

a re integers too, which means that any N gives rise to an infinite number of 
such numbers, formed by cyclic repetition of N. 

METHODS OF CALCULATING N(B,c,f) 

(1) By solving n from Eqs. (5) or (7) and inserting n, B, c, and f 
into Eq. (1). 

(2) By dividing c by (fB - 1) (neglect the decimal point!) until c 
appears as remainder, after which the quotient will repeat periodically, the 
period being equal to N. 

(3) By a step-by-step multiplication 

f • N(B,c,f) = Nf , 

bearing in mind that the digit in the second position of the multiplicand (N) 
shall be equal to the digit in the first position of the product (N!). 

(4) By a step-by-step division 

N'/f = N(B,c,f) , 

which is the reciprocal to the multiplication method: the digit in the (n-1) 
position of the dividend (Nf) shall be equal to the digit in the n position of the 
quotient, etc, 

N c 
N c + 1 
N c + 1 
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(5) By means of Fibonacci's numbers: 

N = £ a.B11-1 - E a-B"1 , 
i=l i=l 

where a. = a. Q + (B - f) a. - , aj = 1, a2 = c - f. 
1 1—^ 1—X 

The first term in Eq. (8) can be shown to be equal to 

S = cBn/(fB - 1) , 

and the second term, 

Thus 
S' = S/Bn = c/(fB - 1) 

N = S - Sf = c ( B n - l ) / ( f B - l ) . 

To illustrate method No. (5), we calculate Ku*s number, N(6,5,5): 

a i 
a2 = 
a3 = 
a4 = 
a5 = 
a6 = 
a7 
a8 
a9 

aio 
a u 
ai2 
a 13 
a u 
a l 5 
aie 
a17 

ais 
aie 
a20 
a2i 
. a . 

c • 
a j + 
a2 + 
a3 + 
e tc . 

E 
(B -
(B -
(B -

- f)a2 
- f)a3 
- f)a4 

1 
0 

1 
1 

2 
3 

5 
12 
21 

3 3 
54 
131 

22 5 
4 00 
1 025 

142 5 
24 54 
4 323 
1 122 1 

155 44 
31 205 

. . . 

101,124,045,443,151, '•• 
^~N(6T5~,57 

* * * * * 



RECREATIONAL MATHEMATICS 
'DIFFERENCE SERIES*' RESULTING FROM SIEVING PRIMES 

JOSEPH S. MADACHY 
4761 Bigger Road, Kettering, Ohio 45540 

Sieving techniques are notoriously simple, and yet tedious, means of 
listing primes. By successively eliminating integers divisible by 2, 3, 5, 7, 
1 1 '* ' * » !^!i> o n e has left all the primes less than N. 

This paper will deal not with the list of integers which remain after each 
sieving procedure but with the differences between members of the remain-
ing list of integers. The mathematical knowledge required to follow this ma-
terial is strictly elementary (which may be one reason I continued working at 
it — if it had required more advanced mathematics, I might have drowned in a 
sea of mathematical notation). 

If N consecutive integers are listed and all the even integers eliminated, 
a series of odd integers remains: 

(A) 1, 3, 5, 7, 9, I I , - - - . 

The difference between each successive term in (A) is 2, and the number of 
integers in series (A) is N/2. 

If now all integers in series (A) which are divisible by 3 a re eliminated, 
the following series of integers remains: 

(B) 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, • • * . 

The number of integers in this series is 2N/6 (fractions are deliberately not 
reduced since the numerators and denominators are important as we shall see). 
The differences between successive terms in series (B) is now 

4, 2, 4 , 2, 4, 2, 4 , 2, 4 , 2, 4 , • •• , 

which shows an obvious period of two terms, 4, 2. The sum of the members 
of this period is 6, or 2 x 3 . Recall that series (B) was produced by elimi-
nating integers divisible by 2 and 3, 

315 
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El iminat ing in tege r s divis ible by 5 from s e r i e s (B) produces 

(C) 1, 7, 1 1 , 13, 17, 19, 23 , 29, 3 1 , 37, 4 1 , 4 3 , 47 , 49 , 53 , • • • . 

The number of in t ege r s in this s e r i e s is 8N/30, and the differences between 

success ive t e r m s in s e r i e s (C) a r e 

6, 4 , 2 , 4 , 2 , 4 , 6, 2 , 6, 4 , 2 , 4 , 2 , 4 , 6, 2 , 6 , ' " 

which h a s an e i g h t - t e r m per iod 

6„ 4 , 2 , @ , 2 , 4 , 6, 2 . 

(The c i rc led in teger will be explained l a t e r . ) The sum of the m e m b e r s of this 

per iod i s 30, o r 2 X 3 X 5 . 

B e a r with m e for one m o r e round and note what happens when in tege r s 

from s e r i e s (C) which a r e divis ible by 7 a r e e l iminated: 

1, 1 1 , 13 , 17, 19, 2 3 , 29, 3 1 , 37, 4 1 , 4 3 , 47 , 53 , 59, 

( D ) 6 1 , 67 , 7 1 , 73 , 79, 83 , 89, 9 7 , 1 0 1 , 1 0 3 , 1 0 7 , 1 0 9 , 1 1 3 , 1 2 1 , 

127, 131 , 137, 139, 143, 149, 151 , 157, 163, 167, 169, 173, 179, 181 , 

187, 191 , 193, 197, 199, 209, 211 , 2 2 1 , 223 , 227, 229, 233 , 239, 2 4 1 , - • • 

The number of in tegers in th is s e r i e s is 48N/210, and the difference s e r i e s 

der ived from s e r i e s (D) has 48 t e r m s in i ts period: 

10, 2 , 4 , 2 , 4 , 6, 2 , 6, 4 , 2 , 4 , 6, 6, 2 , 6, 4 , 

2 , 6, 4 , 6, 8, 4 , 2,(3), 2 , 4 , 8, 6, 4 , 6, 2 , 4 , 

6, 2 , 6, 6, 4 , 2 , 4 , 6, 2 , 6, 4 , 2 , 4 , 2 , 10, 2 . 

The sum of these 48 t e r m s i s 210, o r 2 X 3 X 5 X 7 . 
The difference s e r i e s developed above have a number of intr iguing p r o p -

e r t i e s . Reader s undoubtedly will find m o r e than I. 

The f i r s t n o n - p r i m e s to appea r in s e r i e s (A), (B), (C), and (D) a r e 9, 

2 5 , 49 , and 121 , respec t ive ly . These a r e 32. 52. 72 , and l l 2 . If success ive 
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prime divisors are p l 9 p2, p3, p4, ••• where pA = 2, then the first non-
prime in these series is pL+y If integers divisible by H a r e eliminated from 
series (D), the first non-prime will be 132, or 169 (p5 = 11, p6 = 13). 

The sum of the terms in a difference series is P1P2P3P48 e • Pn- T n e n^xt 
difference ser ies , obtained from series (D) by eliminating integers divisible 
by 11, would have a sum of 2 X 3 X 5 X 7 X 11, or 2310. The number of terms 
in the difference series can also be calculated. Note that the number of inte-
gers remaining in the four series (A), (B), (C), and (D) are determined as 
follows: 

(A): 

(B): 

(C): 

CD): 

N 
2 

N _ /N\ ill = 2N 
2 \ 2 / \ 3 l 6 

2N / 2 N \ / I \ 
6 - ^ 6 ^ 5 ; = 

8N 
30 

48N 
210 

Going on to series (E) (left for readers with patience to develop), we have 

480N 
2310 

terms remaining. Generally, the number of integers remaining from the first 
N integers after elimination of integers divisible by successive pt> p2? P3, P4* 
••• • Pn> is : 

(p2 - D(P8 " D(P4 " D " 8 ( P n - DN 
P1P2P3P4 "° Pn 

The number of terms in the resulting difference series is 

(p2 - l)(Ps - D(P4 - D - " ( P n - 1) . 
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Each difference series is derived from the first (piP2P3P4° • -p n ) + 1 integers 
in the original set of N consecutive integers. The last term in the period of 
any difference series is 2. The first term in the period of any difference se r -
ies is p n + 1 + 1. 

If d is the number of terms in a difference series (d > 2) then the 
d/2 term is of special interest. These are the circled terms in the differ-
ence series shown perviously. If we ignore the final 2, I conjecture that the 
difference series are symmetrical about the d/2 term. I also think that this 

th d/2 term will always be 4. 
Since we can calculate the number of terms in a difference ser ies , the 

point of symmetryj and the last term, we can write a complete period of any 
difference series by sieving only half as many integers. However, as we suc-
cessively eliminate integers, the work will still be rather prohibitive. Going 
to p6 = 13, the resulting difference series has 5760 terms, at p7 = 17 there 
will be 92,160 terms. Perhaps other relationships within orbetween difference 
series will be found by readers — and reduce the labor involved. 

The sum of the.terms in one period of a difference series seems to be 
directly related to the differences between primes which are members of ari th-
metical progressions of primes. Karst* lists all arithmetical progressions of 
primes with 12 to 16 terms, and the difference between primes in a progres-
sion is often the sum of a difference series. 

Difference series have been used to quite a limited extent in computer 
searches for primes. Except for 2, all even numbers are eliminated by sim-
ply adding 2 to the previous odd number. This automatically saves the com-
puter half the work of searching for primes. Only one out of every two, or 
fifty percent, of the integers from 1 to N need be examined for primality. 

If the second difference series above (4,2) is used, only 33%of the inte-
gers from 1 to N need be examined. The third difference series (6, 4, 2, 4, 
2, 4, 6, 2) would reduce this to about 27% the next difference series (with 48 
terms) would reduce this to about 23% and the next two difference series (with 
480 and 5760 terms, respectively) would reduce this to about21%and 19%, r e -
spectively. Not much gain in search efficiency is achieved after the third dif-
ference series is exploited* Further study of these difference series is required. 

^Edgar Karst, n12 to 16 Primes in Arithmetical Progression," Journal of 
Recreational Mathematics, Vol. 2, No. 4 (October 1969) , p. 

— ! * • — ~ ' — — ^ ^ ^ ^ ^ 



ON DETERMINANTS INVOLVING GENERALIZED FIBONACCI NUMBERS 
D. V. JA1SWAL 

Hofkar Science College, Indore, India 

In this note we shall evaluate some determinants whose elements are the 
Generalized Fibonacci numbers, T , defined by the relations: 

Ti = as T2 = bs T ^ = T . + T . 
1 4 n+2 n+1 n 

We can express 

T = Cor11 + D/S11, n ^ 

where a9p a re the roots of the equation X2 - X - 1 = 0, and C and D are 
constants. The Fibonacci numbers, F , are obtained by taking a = b = 1, 
and the Lucas numbers, L , by taking a = 1, b = 3. 

We shall make use of the following well known identities: 

(i) F = ( - l ) 1 1 "^ , 
-n n 

(ii) T J = T F ,- + T nF , 
x m+n m n+1 m-1 n 

( i i i ) T n + 1 " T n - 1 = a T 2n-2 + b T 2 n - l ' 

( i v ) T m - l T n " T m T n - l = < - « m ' \ - m D ' 

and shall also use th.e formulae, 

r+1 (v) T ^ F ^ + (-1) T F = T _,_ _,_ F f 
m+r n+r m n m+n+r r 

The truth of this formulae can be establisheds either by induction over r9 

or by substituting the values of F and T in terms of a and fi . 

L THIRD-ORDER DETERMINANT 
We shall show that 

319 
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(1.1) 
p+m p+m+n 

r T 
q+m q+m+n 

"r+m " r+m+n 

for all integers p, q, r , iri, and n. Using (ii), we can write 

T k + m + n = T k + m F n + l + T k + m - l F n ' ( k = P , q ' r ) 

hence the determinant on the left-hand side can be written as 

n+1 
p+m p+m 
q+m q+m 
r+m r+m 

+ F 
T T T I 

p p+m p+m-1 
T T T 

q q+m q+m-1 
T T T 

r r+m r+m-1 
Obviously the first determinant vanishes. The second, on subtracting 

the elements of the 3rd column from those of the 2nd, reduces to 

T T T 
p p+m-2 p+m-1 

T T T 
q q+m-2 q+m-1 

T T T 
r r+m-2 r+m-1 

Now on subtracting the elements of the 2nd column from the 3rd, we 
obtain 

p p+m-2 p+m-3 
r T T 
q q+m-2 q+m-3 

F T T 
r r+m-2 r+m-3 

Thus alternately subtracting the 2nd and the 3rd columns from one an-
other, the process can be continued to reduce the suffixes. At a certain stage, 
if m is even, 1st and 2nd columns will become identical; and if m is odd, 1st 
and 3rd columns will become identical. Hence for every value of m, even or 
odd, the determinant vanishes. 
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2. EVALUATION OF THE DETERMINANT 

We shall now evaluate the determinant* 
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A = 
T + k T + k 

p p+m 
T + k' T + k 

q q+m 
T + k T + k 

r r+m 

T p + m + n + k 

T + k 
q+m+n T _L , + k r+m+n 

where k is an arbitrary constant and p, qs r5 m9 and n are integers. 
On writing the determinant as the sum of eight determinants, and using 

(1.1) and the property that a determinant vanishes if two columns are identi-
cal, we obtain 

A = 
p+m 
q+m 
r+m 

k 

k 
k 

+ 

e ie • ' 

G e o + 
. . . 

= K-F 
ml 

IT T - i 
p P- i 

T T 1 
q q - i 

T T - 1 
r r - 1 The first determinant by using (iv) can be written as 

= D-K-F [(-D^F + (-D^F + ( - l ^ 'V 1 
m[_ q-r r -p p - q j 

Hence 

(2.1) A = D-K (-1)% . - (-1)PF + (-1)PF 
r-q r-p _ q-p 
F - F ^ + ( - l ) m F m m+n n 

X 

3. FOURTH-ORDER DETERMINANTS 
We shall now evaluate the determinant, 

A = 

jTn+3 Tn+2 Tn+1 
T T T n+2 n+3 n 
T T n+1 n n+3 

T T n+1 n+2 

n+1 
r 
n+2 

r 
n+3 
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It can be easily shown that the determinant, 

[Oct 

a b e d 
b a d e 
c d a b 
d c b a 

= [(a + b)2 - (c + d)2] • [(a - b)2 - (c - d)2] 

Hence we obtain 

A = C(Tn+3 + T n + 2 ) 2 - <Tn+l + V'l X 

(3.1) 

on using (iii). 

X t(Tn+3 " Tn+2) (T n+1 
Tn>2] 

(T2 - T2 ) • (T2 
u n + 4 n+2' u n + l T2 , ) n-1 

feT2ni4+OT2n+5)-6lT2n-2+bT2n.l) 

4. EVALUATING THE CIRCULANT 

We now evaluate the circulant, 

n+k 
n+(m-l)k n 

n+(m-l)k 
rn+(m-2)k 

n+k n+2k 

Let w be any one of the m numbers 

w r = cos - ^ + i s i n ^ , (r = l , 2 , 3 , - - - , m ) 

m so that w = 1 , and 

Si = wi + w2 + W3 + • • • + w = 0 
S2 5 wj w2 + = 0 

Sm = WiW2W3W4 w m = ( - l ) . ( - l ) m = ( - l ) m + 1 
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Hence we get 
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m 
(4.1) TT (y - w

r
z ) = y' 

r = l 

m in z 

There fo re a s d i scussed In [ 8 ] 

(4.2) 

A = f j (Tn + w r T n ^ + ... + w ^ 1 T n + ( m _ 1 ) k ) 

" c o ^ l - w * * 1 1 * ) D A l - w T V •n 
r = l 

m 

1 - w r # 1 - w r / 3 k 

r = l 

(T - T . ) - (-1) w (T . - T ,, -v. ) n n+mk r n -k n + ( m - l ) k ' 

(1 - w ^k)( l -w p) 

( T n " T n + m k ) " ( " 1 ) ( T n - k " T n+Cm-l )k ) ' 
m 

(1 _ amk) (1 - J*0*) 

( T n " T n + m k ' " ( - 1 ) ( T n - k " T n - f ( m - l ) k ) 

l + H f 1 - L mk 

5. EACH ELEMENT IS THE PRODUCT OF TWO NUMBERS 

We shall evaluate 

m+n 
F • T F 8 T 

n+p m+n+p n+p+q m+n+p+q 
A = |F • T F - T F e T 

n+r m+n+r n+r+p m+n+r+p n+r+p+q m+n+r+p+q| 
F 6 T F • T F e T 

n+s m+n+s n+s+p m+n+s+p n+s+p+q m+n+s+p+q| 

and shal l show that | A j i s independent of n. 

On us ing (v) 9 we can wr i t e 

F T + ( -1 ) P + 1 F T = F T 
n+p m+n+p n m+n p m+2n+p 
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Hence multiplying 1st column by (~l)p , ( - l r ^ , and adding respectively 
to the 2nd and 3rd columns, we obtain 

A = F F _^ P p-tq 

m+n m+2n+p m+2n+p+q 

^n+r " Tm+n+r Tm+2n+2r+p m+2n+2r+p+q 
?n+s ' Tm+n+s Tm+2n+2s+p m+2n+2s+p+q 

= F F F 
P p+q q 

F T n m+n m+2n+p m+2n+p-l 
pi rp rp ryi , 
n+r m+n+r m+2n+2r+p m+2n+2r+p-lj 

7 T T T i 
"n+s m+n+s m+2n+2s+p m+2n+2s+p-l! 

on using (ii). 
Now alternately subtracting the 3rd and 2nd columns from one another, 

we can write 

A = F F F ( - l ) m + P 

P q P-HT 

F • T n m+n T 0 T l 
F • T T T 

n+r m+n+r 2r 2r+l 
F • T T T 

n+s m+n+s 2s 2s+l 
= F F F ( - l ) m + ^ • DfF T F - F T F + 

p q p+q L n m+n 2s-2r n+r m+n+r 2s 
+ Fn+sTm+n+sF2rJ 

on using (iv). 
Now on expressing the numbers in terms of a and /3, we can write 

F T Fn 
n+s m+n+s 2r -i[ m+2n+2s+2r m+2n+2s-2r 

+ ^+S^-2r ~ Tm+2r>] 
Hence we have 

«•« A " J ' p V H " ^ .»[, fT - T ) + 
u m + 2 r - 2 s m+2s-2r ' 

+ t - W ^ m ^ r " Tm+2r> " ( " 1 ) r ( T m - 2 s " Tm+2s)J 

Also it is obvious that I AI is independent of n. 
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6. ONCE AGAIN THE FOURTH ORDER 

We shall now show that 
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(6.1) A = 

F T F T F T 
p p+m p+a p+m+a p+b p+m+b 

F T F T 
q q+m q+a q+m+a 

F T F T 
r r+m r+a r+m+a 

F T q+b q+m+b 
F T r+b r+m+b 

F T F T F T 
s s+m s+a s+m+a s+b s+m+b 

F T p+c p+m+c 
F T q+c q+m+c 
F 'T I 

r+c r+m+c 
F T 

s+c s+m+c 

0 , 

for all integers p9 q, r9 s9 m9 a9 b9 and c, 
a+1 Multiplying 1st column by (-1) ( - l ) b + 1 , (-1) c+1 and adding to the 

2nd9 3rd, and 4th columns, respectively; and using the formula (v), the deter-
minant reduces to 

F • F, • F '. a b c 

p p+m 2p+m+a 2p+m+b 2p+m+c 
"FT T rV T T1 

q q+m 2q+m+a 2q+m+b 2q+m+c 
r r+m 2r+m+a 2r+m+b 2r+m+c 

T? T 1 TH T HP 
s s+m 2s+m+a 2s+m+b 2s+m+c 

Expanding along the 1st column and using the result (1,1), the determi-
nant vanishes. This can be generalized for the n order determinants. 

7. PARTICULAR CASES 

Let us take a = b = 1, then T = F and D = 
(i) On putting m = n in (1.1), we get 

F F F 
p p+n p+2n 

TT TP TP 

q q+n q+2n 
F F F 

r r+n r+2n 

= 0 

— a problem suggested by Vladimir Ivanoff [ 4 ] . 
(ii) On taking p = a, q = a + 3d, r = a + 6d, m = n = d in (1.1), 

we get 
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" a+3d 

' a+6d 

"a+d 
ja+4d 

"a+7d 

a+2d 

a+5d 

"a+8d 

= 0 

— a p rob lem suggested by Raphael Finkels te in [ 7 ] . 
(iii) On taking p = n , q = n + 1, r = n + 29 m = n = 1 in (2.1), 

we get 

(7.1) 

"n+1 

+ k 
+ k 

F Jf> + k n+2 

n+1 
F ^ 0 + k n+2 
F ^Q + k n+3 

F n + 2 + k 

F n + 3 + k 

F n + 4 + k 

= ( - l ) -k - [(-l)1 n+1 ( - i ) n + ( - i ) n ] x 

X [ F j - F t - F 2 ] 

= k . ( - l ) n + 1 

— a p rob lem suggested by Bro the r U. Alfred [ 2 ] . 

(iv) We obtain from (3.1) 

"n+3 

"n+2 

n+1 F 

n+2 

n+3 
F 

n+1 

n+1 

n+3 

"n+2 

n+1 
7 

"n+2 

"n+3 

F 2n+6 ' F 2 n 

— a p rob lem suggested by George Ledin [5 ] , 

(v) We obtain from (4.1) 

n+k 
F n + ( m - l ) k F n 

"n+k n+2k 

n+(m- l )k 
n+(m-2)k 

*. - w>m - '-"""V* F n + ( m - l ) k ) m 

1 " L m k + ( - 1 } 
mk 

— a p rob lem suggested by L. Car l i tz [6 ] . 
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(vi) On taking m = 0 in (5.1), we get 

n 
F 2 

n+p F 2 
n+p+q 

]?2 F 2 F 2 
n+r n+r+p n+r+p+q 

F 2 F 2 F 2 
n+s n+s+p n+s+p+q 

= h F -F • F ¥ l 4 f l ( - l ) n " * [ P f t f l _ ^ + ( - 1 ) S F 9 . - ( - l ) r F p q p-*q 2 s - 2 r 2 r 

on us ing r e s u l t (L). 

(vi)-(a) On subst i tut ing p = q = l 9 r = 1, s = 2 , we get 

IF2 F 2 F2 
1 n n+1 n+2 

I p2. F 2 F 2 
1 ri+1 n+2 n+3 

n2 F 2 F 2 
n+2 n+3 n+4 

= | <-l)n+1< 

= 2 ( - l ) n + 1 

(F2 + F 2 + F 4 ) 

— a p rob lem suggested by Bro the r U. Alfred [ 1 ] . 

(vi)-(b) On subst i tut ing p = q = 2, r = 29 s = 49 we get 

F 2 
n 

F^ n+2 n+4 
?2 F 2 
"n+4 n+6 

F2 F 2 
n+2 n+4 

F 2 F 2 n+6 

n+8 

= | . 3 • ( - l ) n - (3 + 3 - 21) o 
n+1 = 18 (-1) 

—- a p rob lem suggested by Bro the r U. Alfred [3]e 

(vii) On taking m = 1 in (5, 1) , we obtain 
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F F n n+1 F n+p "n+p+1 "n+p+q "n+p+q+1 
"F* TP TT1 "P1 TT TP 

n+r n+r+1 n+r+p n+r+p+1 n+r+p+q n+r-Jp+q+1 
TP TP "F1 TT "17 TT* 

n+s n+s+1 n+s+p n+s+p+1 n+s+p+q n+s-*p+q+l 

= ¥ F r - F q - W - 1 ) n + P [ ( F 2r-2s+l " F l+2s-2r* + 

+ (-Ds(Fl_2r - r1+2r) - ( - D ' t P ^ - F 1 + 2 S ) 

= — F F F 5 p q p+q 
\ n + P f 

<"« F [ - ( F 2 s - 2 r + l " F 2s-2r- l> + 

+ (-»S+1<F2r+l ~ F2r-1> + ^ ^ s + l ~ F 2 s - l ) l 

= i ( - l ) n + P + 1 F F F TF + (-1)SF - ( - l ) r F 1 
5 v 1 ; p q p-KjL*2s-2r K l} *2r l 1 ; * 2 s J 

(vii)-(a) On taking p = q = r = 1, and s = 2, we have 

F F ^ n n+1 

F n + l F n + 2 

F n + 2 F n + 3 

F n + l F n + 2 
F F n+2 n+3 

Fn+3Fn-*4 

F F 1 n+2 n+3 

F n + 3 F n + 4 
F F 

n+4 n + 5 | 

= i (- l)n (F2 + F2 + F4) 

= (-Dn 

(viii) On taking m = 0 in (6.1), we get 

p2 
P 

F 2 
q 

p2 
r 

F l 

p2 
p+a 

F 2 
q+a 

F 2 
r+a 

F 2 

F 2 
p+b 

F 2 
q+b 

F 2 
r+b 

F 2 
s+b 

F 2 
p+c 

p2 
q+c 

F 2 
r+c 

jp2 
s+c 

= o , 

for all integers p , q, r , s, a, b , and c. 
B. On taking a = 1, b 

(i) On taking p = a, q = a + 3d, r = a + 6d, m = n = d in (1.1), 
we get 

3, we have T = L and D = 5. ' n n 
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Ja+d "Ja+2d 
La+3d La+4d La+5d 
La+6d La+7d La+8d 

a problem suggested by Raphael Finkelstein [7], 

(ii) We obtain from (2.1) that 

L + k I, + k L ? + k 
p p+m p+n 

I L + k L ^ + k L , + k 
q q+m q+n 

L + k L L + k L J + k 
r r+m r+n 

-5 

F + k 
P 

F q + k 

F + k 
r 

F , + k p+m 
F _,_ + k q+m 
F ^ + k r+m 

F , + k p+n 
F ^ + k q+n 
F ^ + k r+n 

for all integers p s q, r9 m9 and n„ 
(iii) We obtain from (3.1) 

n+3 

n+2 

n+1 

n+2 
Jn+3 

Jn+1 

n+1 

n+3 

n+2 

n+1 

n+2 

n+3 

= (L, 2n+4 + 3 L2n+5) ( L2n-2 + 3 L 2 n - l ) 

= 25 F 0 _ F 0 2n+6 2n 

= 25 

F F F F 
n+3 n+2 n+1 n 

F F F 
n+2 n+3 n 

F F 
n+1 n 

n+1 
Fn+3 Fn+2 

Fn+1 Fn-*2 Fn+3 
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(iv) We obtain from (4.1) 

L n Ln+k " 0 Ln+(m-l)k 
Ln+(m-l)k L n " " Ln+(m-2)k 
? , 

Ln+k Ln+2k • " L n 

=
 ( L n " Ln+mk) ~ ( - 1 > (Lnk " Ln+(m-l)k ) 

l - L ^ - M - l ) " * 

— a problem suggested by L. Carlitz [6 ] . 
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Send al l communicat ions r ega rd ing E lemen ta ry P r o b l e m s and Solutions 

to P r o f e s s o r A. P . Hi l lman, Depar tment of Mathemat ics and S ta t i s t i c s , U n i -

ve r s i ty of New Mexico, Albuquerque, New Mexico, 87106, Each problem o r 

solution should be submitted in legible fo rm, p re fe rab ly typed in double s p a c -

ing, on a s epa ra t e shee t o r s h e e t s , in the format used below. Solutions should 

be rece ived within th ree months of the publication date , 

Cont r ibu tors (in the United States) who d e s i r e acknowledgement of r ece ip t 

of the i r contribution a r e asked to enclose se l f - addressed s tamped pos t ca rds , 

B-166 Suggested by David Zeitlin's solutions to B-148, 149, and 150. 

Le t a and b be dis t inct n u m b e r s , U = (a - b ) /(a - b ) , and V = 

a + b . Es tab l i sh genera l iza t ions of the formulas 

(a) F , = F L L • • • L . -
( 2 t n ) n n 2n ^ 1 ^ 

*> L n + l L n + 3 + 4 ( - « = 5 F n F n + 4 

of B-148 and B-149 in which one dea ls with U and V instead of F and 
n n n 

L . n 

B-167 Proposed by A. G. Shannon, University of Papua and New Guinea, Boroko, 
T. P. N. G. 

Let L be the n Lucas number defined by L j = 1, L2 = 3 , and 

L l 0 = L - + L for n ^ 1. F o r which values of n i s n+2 n+1 n 

nL ^ > (n + 1)L ? n+1 n 

B-168 Proposed by S. H. L. King, Jacksonville University, Jacksonville, Florida. 

Using each of s ix of the nine posi t ive digi ts 1 , 2 , ' • • , 9 exactly once , 

form an in teger z such that each of z , 2 z , 3z, 4z , 5z , and 6z contains the 

s ame six digi ts once and once only. 

331 
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B-169 Proposed by C. C Yalavigi, Government College, Mercara, India. 

Prove the following identities: 

(a) F4 + F4 , + F4
 (1 = 2(F F , - F ( 1 ) 2 

n n-1 n+1 n n-1 n+1 

(b) F 5 + F 5 - - F* = 5F F J M (F F , - F 2
( 1 ) 

n n-1 n+1 n n-1 n+1 n n-1 n+1 

where Fi = F2 = 1 and F , - = F + F -. Show that these are two cases 1 L n+1 n n-1 
of an infinite sequence of identities. 

B-170 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let the binomial coefficient 1 1 be zero when m < r and let 

OO 

j=0 

Show that S ^ 0 - S ( 1 + S = 0 and hence S ^Q = -S for n = 0,1,2,- • • . n+2 n+1 n n+3 n 

B-171 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let I ] = 0 for m ^ r and let 

•.-S(v)-T n 

3=0 

Obtain a fourth-order homogeneous linear recurrence formula for T . 

SOLUTIONS 

CORRECTION. In the solution to B-128 in Vol. 6, No. 4 (Oct. 1968), line 2 
from the bottom of p. 295 should read: 

S4n = f4n+2 " f2 = ( F4n+l " 1 ) f2 + F 4n f l ' 
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and line 5 from the top of p. 296 should read: 

F4n+1 " * = F2nL2n+l 8 

COMMENT. Mr. J . D. E. Konhauser, Macalester College, St* Paul, Minne-
sota, sent in the following on B-130a: 

The five-disk problem is discussed in Mathematical Recreations and 
Essays by W. W. R. Ball, revised by H. S. M. Coxeter in 1938, on pages 97-
99. Included is a reference to a 1915 paper by E. H. Neville in the Proceed-
ings of the London Mathematical Society, second ser ies , Vol. xiv, pp. 308-326. 

ADDITIONS TO LISTS OF SOL VERS: Problem B-143 was also solved by D. V. Jaiswal 
(Indore, India), Amanda Neel, and A. G. Shannon (Boroko, T P. N G.) Problem B-143 
was also solved by D. V. Jaiswal and A. G. Shannon. Problem B-146 was also solved by 
D. V. Jaiswal and A. G. Shannon. 

TELESCOPING PRODUCT 

B-148 Proposed by David Englund, Rockford College, Rockford, Illinois, and Malcolm 
Tollman, Brooklyn, New York. 

Let F and L denote the Fibonacci and Lucas numbers and show that n n 

F , = F L L0 L . ••" L . -
(2*11) n n 2 n 4 n <2Wn) 

Solution by Douglas Lind, Cambridge University, Cambridge, England. 

By the well-known formula F-« = F L , we have J zn n n 

F , = F . - L . - = F . 9 L 9 L = — = F L L— L . - . 
2*n 2 ^ 21>"1n 2 ^ 2 n 2*-2n 2 W n n n 2 n 2 * ^ 

Also solved by Christine Anderson, Serge Hamelin (Canada), Bruce W. King, C. B. A. 
Peck, A. G. Shannon (Boroko, T. P. N. GJ, Carol A. Vespe, Michael Yoder, David Zeitlin, 
and the proposer. 

A. QUADRATIC IDENTITY 

B-149 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that 
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L _LI L J.Q + 4 ( - l ) n + 1 = 5F F ^ . n+1 n+3 n n+4 

Solution by Carol A. Vespe, Student, University of New Mexico, Albuquerque, New 
Mexico. 

Let a = (1 + */5)/2 and b = (1 - *$>)/2. Since both sides of the equa-
tion are of the form 

C l (a 2 ) n + c2(ab)n + c3(b2)n , 

with constant c., it suffices to note that the identity holds for n = 0 , 1 , and 
2. 

Also solved by Clyde A. Bridger, Juliette Davenport, Herta T. Freitag, Serge Hamelin 
(Canada), Bruce W. King, H. V. Krishna (Manipal, India), Douglas Lind,JohnW.Milsom, 
C B. A. Peck, A. G. Shannon (Boroko, T. P. N G.), C C Yalavigi (Mercara, India), 
Michael Yoder, David Zeitlin, and the Proposer. 

ANOTHER QUADRATIC IDENTITY 

B-150 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that 

L2 - F2 = 4F -F _,-n n n-1 n+1 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Let U and V be solutions of W , 
n n n-f 

Ui = 1, V0 = 2, and \Ti = a. Noting that 

Let U and V be solutions of W ^Q = a W , - + bW , where U0 = 0, n n li'Tu n+i n 

V = 2U ^ - aU = Un ± 1 + bU -n n+1 n n+1 n-1 

we obtain 

(1) V2 - a2 U2 = 4bU - U _Ll 
w n n n-1 n+1 

The desired result is obtained from (1) with a = b = 1, Vn = L n , and UR 

= F . n 
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Also solved by Clyde A. Bridger, Juliette Davenport, David Englund, Herta T. Freitag, 
Serge Hamelin (Canada), John E. Homer, Jr., Bruce W. King, H. V. Krishna (Manipal, 
India), Douglas Lind (England), John W. Milsom, C B. A. Peck, Gerald Satlow, A. G. 
Shannon (Boroko, T. P. N. GJ, Carol A. Vespe, Michael Yoder, and the Proposer. 

MISSING TERMS 

B-151 Proposed by Hal Leonard, San Jose State College, San Jose, California. 

Let m = L1 + L2 + ' 8 8 + L be the sum of the first n Lucas numbers,, 
Let 

n L. 
Pn(x) = II (1 + x *) = a 0 + a i x + — + a m x m . 

i=l 

Let q be the number of integers k such that both 0 < k < m and a, = 0. 
Find a recurrence relation for the q . 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Note that 

m = m n = Li + L2 + . . . + LR = hR+2 - 3 

and that q is the number of integers in { l , 2 , 3 , e •e ,m - l\ that are not ex-
pressible in the form 

Ci LA + c2 L2 + •• • + c L ; c. E {o,l} for 1— i— n . 

A generalization of this problem is dealt with by David A. Klarner in "Repre-
sentations of N as a Sum of Distinct Elements from Special Sequences," 
Fibonacci Quarterly, Vol. 4S Noe 4 (Dec. 1966), pp. 289-306. 

Using 

m 2k = L i + L2 + L3 + • • ° + L 2 k = L3 + L5 + L7 + • • • + L ^ ^ 
m 2 k - l = ^ + L2 + • • • + L g ^ j = Li + (L4 + Le + • • • + L 2 k ) , 
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and formula (43) on page 303 of Klarner 's paper, one has 

<*2k = m2k - <F* +•*•, + • " + F 2 k + 2 ) = L 2 k + 2 - 3 - (F 2 k + 3 - F3) 

q2k-l = m 2 k - l " F* " <F* + FT + • " + F 2 k + l ) = L 2 k + l - 3 - 1 

~ ( F 2 k + 2 ~ F 4 ) -
Now L = F ... + F T leads to q = F ^n - 1 for all n. Hence n n+1 n-1 TI n+1 

(V2
 + X) = (Vl + 1} + K + » o r \+2 = Vl + qn+1 

Also solved by Serge Hamelin (Quebec, Canada), C. B. A. Peck, and Carol A. Vespe. 
Hamelin gave the homogeneous recursion formula qn+3 = 2qn+2 ' Qn ' 

FIBONACCI ADDITION FORMULA 

B-152 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Prove that 

Fm+n F m + l F n + l F m - l F n - l 

Solution by John E. Homer, Jr., Lisle, Illinois. 

From the well-known formulas 

F = F F + F F 
m+n+1 m+1 n+1 m n 

F , - = F F + F - F ' , m+n-1 m n m-1 n-1 

we have 

F F - F F = F - F = F 
m+1 n+1 m-1 n-1 m+n+1 m+n-1 m+n 

Also solved by Clyde A. Bridger, Juliette Davenport, David Englund, Herta T. Freitag, 
Serge Hamelin (Canada), Bruce W. King, H V. Krishna (Manipal, India), Douglas Lind 
(England), John W. Milsom, C B. A. Peck, A. G. Shannon (Boroko, T. P. N G.), 
Carol A. Vespe, C. C. Yalavigi (Mercara, India), Michael Yoder, and the Proposer. 

[Continued in p, 276e } • • • • * 
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