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ON THE NUMBER OF DIVISIONS NEEDED
IN FINDING THE GREATEST COMMON DIVISOR

DALE D. SHEA
Student, San Diego State College, San Diego, California

Let n(a,b) and N(@,b) be the number of divisions needed in finding the
greatest common divisor of positive integers a,b using the Euclidean algo‘—
rithm and the least absolute value algorithm, respectively. In addition to
showing some properties of periodicity of n(@,b) and Nfa,b), the paper gives
a proof of the following theorems:

Theorem 1. If n(a,b) =k > 1, then a +b 2> fk+3 and the pair (a,b)
with smallest sum such that n(a,b) = k is the pair (fk+1’ fk+2)’ where f; =
1, f, =1 and fn+2 = fn+1+fn’ n=1,2,3, " """.

Theorem 2. If N(@,b) =k > 1, then a+b 2> X1

with smallest sum such that N(a,b) = k is the pair (Xk’ X +xk_1), where

and the pair (@,b)

xy =1, X, =2 and X = 2Xk=1 +xk_2, k = 3,4, . These results may
be compared with other results found in [1], [2].

Since nf(a,b) = n(b,a), we canassume a < b. To prove the first theo-
rem, let n(a,b) = k and assume the k steps in finding (a,b) are

b=q1a+r1

a = (qyry + 1y

Te g = 91 T2 ™ kg
Trog = Y Teq

If k=1, then ry = 0 so b = qsa and the smallest pair (a,b) is (1,1) so

a=f13 b:fz, a+b=f3=2.

Note this case is not included in the theorem. In case k > 1, it is evident

that the smallest values of a,b will be obtained for r =1 and all the q's

k-1
= 1 except 9 which cannot be 1 but is 2. Thus the pairs (rk—l’rk—z)" te,
(a,b) are (1,2), =+, (fk+1’fk+2')' Since
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338 ON THE NUMBER OF DIVISIONS NEEDED [Nov.

a+b = f

k+1 T

2 = B o
the theorem is proved.

We have

Corollary 1. If a +b < fy .5» then n@,b) < k for k > 1.

For b = a +1i, i afixed positive integer so that b < 2a, the quantities
satisfy

1) nfa + mi, a + [m + 1]i) = n@@a,a +i), m = 0,1, 2, ---
This follows from the remark that if n(a,b) = k, then
n@ +b,2a+b) =k+1, k=1,2,3, .
This is evident since the first division would be (2a +b) = 1(a +b) +a and
n(@,a +b) = nf@,b) = k. Equation (1) is a consequence since each n is one

more than n(i, a + mi) = n(i,a). The periodicity is evident in the table of
values of n(a,b) for a < b < 2a.

a =1 1
2 12
3 123
4 1223
5 12343
6 122233
7 1233443
8 12242533
9 123234343
10 1223324433
11 12344345543
12 122224253333
13 1233353464443
14 12243432454533

15 123242334435 343
Fig. 1 n(ab) for b =a, a+1,***,2a -1
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To prove Theorem 2, assume the steps in finding (a,b) with n(@,b) = k

are

= Qa1

= Qory * Ty

Tk-3 T %-1Tk-2 T Tk
Tz T g Tien ’
where
i i S
0< ri<4a, 0< < 4y, ,0< 1 <ty .

Because of the restriction on the remainders, we must have qj,q3,°*" T

equal to or greater than 2. But since

2r, + ri+15 31‘i - T

i=1,"",k-1,

in each case, we obtain the smallest sum a +b with q3 = --+ = qQ = 2 and
with q¢ = 1. For k=1, wehave 1 =1-1 so a =b = 1. Set X, =r
For k > 1,

a =x = 2xk_1 + X o and b = X1 = X + X 1
Then
a+b = 2Xk+xk—1 = Xk+1'

This completes the proof of the theorem.
Corollary 2. If a+b < Xpe41? then N(a,b)< k for k > 1.
Figure 2 exhibits the periodicity (for i fixed):

@) N@,a +i) = N@ + mi, a + [m + 1]i), 1<i<a/2 ,

and the symmetry:
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(3) N@,a +i) = N@,2a -i), 1<i<a-1.
a=1
2
3 2 2
4 222
5 2332
6 22222
7 233332
8 2232322
9 23233232
10 223323322
11 2333333332
12 22224242222
13 233343343332
14 2233332333322
15 23232333323232
16 223232424232322
17 2333434334343322
18 22234242224243222
19 23333344334433333°2
20 2232233342433322322
21 2323332433334233323°2

22 223342334323433243322
23 2333434344334434343332
Fig. 2 N@,b) for b=a+1,+,22 -1

I wish to acknowledge the assistance of Professor V. C. Harris in

shortening the proofs.
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DIAGONAL SUMS OF GENERALIZED PASCAL TRIANGLES

V. E. HOGGATT, JR., and MARJORIE BICKNELL
San Jose State College, San Jose, California, and
Wilcox High School, Santa Clara, California

1. INTRODUCTION

A sequence of generalized Fibonacci numbers u(n; p,q) which canbein-
terpreted as sums along diagonals in Pascal's triangle appear in papers by
Harris and Styles [1], [2]. In this paper, Pascal's binomial coefficient
triangle is generalized to trinomial and other polynomial coefficient arrays,
and a method is given for finding the sum of terms along any rising diagonals

in any such array, given by (1 +xX + - +xr'1)n, n =91,2,3,°"" 3 yz2.

2. THE TRINOMIAL TRIANGLE

If we write only the coefficients appearing in expansions of the trinomial,

(1 +x+x%)", weare led to the following array:

1

3 3 1

6 7 6 3 1

10 16 19 16 10 4 1

15 30 45 51 45 30 156 5 1

21 50 90 126 141 126 90 50 21 6 1

T e
o U o W N R

Call the top row the zeroth row and the left column the zeroth column. Then,
let

1 - x)? a - x)3

be the column generators as the columns are positioned above. The general

recurrence for the column genérators is

341



342 DIAGONAL SUMS OF GENERALIZED PASCAL TRIANGLE [Nov.

. _ X
& Cpiz = Tox Cpa + Gy) -
Let
[>e] [oe]
G = Z Gn = Z ul; 0,1)x" .
n=0 n=0

The sum G in the general case will have for the coefficient of x" the number
u(n; p,a), which, as applied to the trinomial triangle, will be the sum of the

term in the left column and the nth

row and the terms obtained by taking steps
p units up and ¢ units to the right. That is, u(n; p,q) is a member of a
sequence of sums whose terms lie on particular diagonals of the trinomial tri-
angle. To find G, for p = 0 and q = 1, we use the method of Polya [3]
and the recurrence relation (1). Let S be the sum of the first n terms of

G.

X

Gy = 1_X(G1+Go)
Gy = _1_i{_§(G2 + Gy)
_ X
Gpr1 = T-x (Gn * Gn—l)
= =
Gpez = T-x (Gn+1 * Gn)
Summing vertically,
_ X
Sp T Gpag T CGpyg ~ G- G = 7T By Gy - Go Sy

2x _ X X
Sn<1-1_x)_Go(l-1_x)+G1+Gn+1<—-—1_x—1>—Gn+2.

It can be shown that lim G = 0 for |x|[< 1/, T > 2, so that
=00 1}
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_1s _ 1-x 1-2x X _ 1
S - * ] T - 3x°
a-x

1 - x)?

which was to be expected, since

1

== = 1 + 3x + 9x% + 27x% + 81x% + 245%5 + .-
1- 3x

s
where each coefficient is the sum of an appropriate row in the triangle. In
fact, each coefficient of < is u(m; 0,1) = 3%,

Now, let us consider u(n; p,1). Here

Gy = 1/(1 -x) and G} = xp+1/(1 - x)2

with recurrence

* _ X P Ax
2) Grn+2 T 1 -x (x Grn+1

(Notice that multiplication by xP and x2p allows for moving up p rows in

the triangle.) Following Polya's method of summing vertically as before,

sof 1 Xp+1 + X2p+1 ): 1 <1 i Xp+1) . Xp+1
n 1 - x 1-x 1-x a - x)?

Xp+1
* *
ATTx - YCha1 - Cnan -

Since, again, nligle; =0, for |x|< 1/r, r > 2, sothat

1

1-x - xp+]L _ X2p+1

* _ 1 * _
G _nll][»nwsn

Now, if p = 1, we get the generating function for the Tribonacci num-
bers, G = 1/(1 - x - x2 - x%), The Tribonacci numbers Tn (see [4]) are
1,1, 2, 4, 7, 13, 24, ---, where each term after the third is the sum of the
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preceding three terms. Thatis, u(n; 1,1) = Tn 410 For a particular verifi-

cation, the reader is invited in each case to perform the indicated division.
Now, if we let q = 2, then we must deal with every other term of the

column generator recurrence relation. To solve u(n; 0,2), Gy = 1/(1 - x),

Gy = x/(1 - x)3, and the recurrence (1) originally considered, leads to

2 2x x2
(3) G = X + )G - % .G .
2n+4 a-x° 1-x 2n+2 a - x)? 2n

Following the same method as before, we have, for
n
8, = 2 Gy »
i=0
2 2 2
Snl_zx"x+ X =G01_2_X___£_ + Gy + R,
1-x2 @@-x? 1 - x)? n

where Rn is a term involving G2n+4 and G2n+2' Again, since

lim G = 0, nl_ixilooRn =0, |x|<1/r, r> 2,

Ne»-co N

(o)
= G = __]'__._._.g_x_— = E u(n; O,Z)Xn

1 - 4x + 3x2 n=0

This gives us a generating function for sums of alternate terms of rows in the
trinomial triangle.
Let p=1 and g = 2 and return to Gy = 1/(1-%x), Gy = x%/(1 - x)? ,

and, from recurrence (3),

2 2x x2 e x2
Gt = x[—2—+ ¢ -2 X g
2n+4 ((1 _ x)? 1- x) 2n+2 a - x)? 2n
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where we must multiply by x and x* to account for moving up one row
through the trinomial array. Going to the Polya method again to find u(n; 1,2)
we have, for

n
-y

i=0
s;<1_(2x-x2)x (_x(Zx—x) + G+ R,
1 - x)? u-mz a - x? n

lim _
sothat ~O° R =0,

. *
where Rn involves only terms G2n+2 and G‘r2 447
|x|< 1/r, r > 2.

P S
S;<1 2x - x2 + X +X)=(1-2x+x2—2X2+X3+x2)/(1—X)3+Rn

1 - x)?
lim _» 1 - 2x + x3
G*= s* =
n—>o« n

1 -x)(1 - 2x - x2 +x% + x%)

which simplifies to

00

_ _ 2
1-x-X = Z u(n; 1,2.)xn
1-2x - x%+x% + x4 n=0

Returning now to the more general case, we find the generating function for the
numbers u(n; p,2). Using the recurrence relation (3), but allowing for mov-

ing up p rows in the triangle, and then summing vertically as before yields

g (1 (2x - x2)xP . x? + x°P ) 1 <1 L@2x - xz))
_ = == _Ex X - X))
n a-x? @-x? @ - x)?
p+1
+ = + Rn
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where again nlgnoo Rn = 0 for |xi < 1/r. Simplifying the above, and letting
lim

S =G
n—>°"n ?

9
(1 -2x+x e Xp+1)/(1 - X
1 - x)? - 2xp+1 + xp+2 + x2p+2

1 X xp+1 f n
= - X - = um; p,2) x .
1 - x? - axPTl o (P2 x2p+2 n=0

This agrees with the previous casesfor p =1, g = 2 andfor p =0, p = 2.

In seeking the numbers u(n; 0,3), we need the recurrence relation

3x2 - 2x8 %3

Gz T T e ) T T

G,
X)3 3n

which, following the previous method, gives

2 3 3 2 _ 9.3
Snl_Sx—Zx_ X ' =11X1_3x 2x
@-x° @1-x3 - 1 - x?

2 3
+ 2x4 - X + R,
1 - x)* n
and
2 1-2 - 1
> ums 0,3)x" = 7 - 3§ = 1 + E gl
n=0 - n=0
In fact,
o _ 2 _ pt+2
Z u(n; p,3)x,n - 1 2x + x X

(1 - x)? - 3xPP2 4 gxPT3 _ 2PF3
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3. QUADRINOMIALS, PENTANOMIALS, AND HEXANOMIALS

If we consider the array of coefficients which arise in the expansion of

the quadrinomial (1 +x + x2 +x3)%,

11 1

2 3 4 3 2 1

3 6 10 12 12 10 6 3 1

4 10 20 31 40 44 40 31 20 10 4 1

L e S

and use the methods of the preceding section, the expressions given below can
be derived without undue difficulty. For the quadrinomial coefficients, the

generating functions are given by

where

x/(1 - x)2, Gy = x/(1 - x®, Gz = x/(1 - x4,
(8x2 - 3x3 + x%)/(1 - x)°

GO = 1/(1 - X), G1
Gy

1

It is easy to find that uf; 0,1) = 47 and ulm; 1,1) = Q 4

quadrinacci number given by 1, 1, 2, 4, 8, 15, 29, *-+, where each term

where Qn is the

after the fourth is the sum of the preceding four terms (see [4]). The gener-

ating function for Q, is 1/1 - x - x* - x3 - x%), and

1
p+l X2p+1 _ X3p+1

]
Z u(n; p,l)xn =
n=0 1 -x-x

From the recursion

_2x - x% x2 x>

(n+3) 2 G2(11+2) ’ 2 Gz(n+1) ' 1 - x)?

G ool Rl —_—
2 (1 - %) 1 - x)

GZn ?
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one finds
= 1-2 = .2n-1
3 um; 0,2)x" = 1-4;( =1+ 3 270700
n=0 - n=1
ad n 1 x2
Z ulm; 1,2) x = e S
n=0 1-2x -x2 +x% - x-x%;
o0 p+1
n l-x-X
Z ulp; p,2) x° = .
=0 a- x? - 2Xp+1 + Xp+2 _ X2p+2 _ X3p+2
Also, from
3x - 3x% + x8 3x2 - x3 x3
G = =" = . SR ¢ +——— G,
3(n+3) (1 - x)3 3(n+2) (1 - X)3 3(n+1) (1 - X)3 3n
one finds
= 1-3
E u(n; 0,3)Xn = __;L
n=0 1 - 5x + 4x?

If one continues in a similar way, the analogous results for the penta-

nomial becomes u(n; 0,1) = 5n;

0
2 ump,1)x" = =5) 21+1 3pt1 _ _dp+l
n=0 1—x—xp - x“P - x°P -xP
where u(m; 1,1) = 1, 1, 2, 4, 8, 16, 31, 61, -+, and each term after the
fifth is the sum of the preceding five terms:
= 1- 3
Z u(n; 0,2)xn = —_—
=0 1 - 6x + bx%
0 +1 2p+1
2 ulp2)x" = +1 : T xpz T n pz +2 _ _3pt2 _ _4pt2”
n=0 (1 - x)? - 2xP7h 4 xPTe _ gx®PTL | gAPTE 0P +xPF
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For the hexanomial, we can derive u(n; 0,1) = 6n;

©0

Z u(n; p,1) = 1 ;
" T A N e
- n 1 - 3x
nz=:0u(n; 0,2)x = e
i uln; p, 2)x" = 1 - x - P 2ptl
n=0 (1-x)? - 2xPFL 4 xPT2 _ 9, 20F1 | [ 2p+2 9p72 __4piZ __bpiz

In general, for a k-nomial (k terms) coefficient array, one discovers
that u(n: 0,1) = kK* and u(m; 0,k) = kn_l, n > 1. Now we can readily gen-

eralize our results.

4, GENERALIZATION OF TRINOMIAL CASE

In the quadratic equation y2 -ay +b = 0, let 2 = b = x/(1 - x). Then,

if vy and ry, are the roots of the above quadratic, let

k k X X
ry +I‘2 = Pk<‘——1 - x°’ —"1 — X>’

given by Py = 2, Py = x/(1 - x),
_ x 2 2x
Py = (1—x) FTTx

_ X
Prro = 7o% Ppn ¥

and satisfying

Pk) .

Now, the recurrence relation for the column generators for the trinomial case
is (et ¢ = k)

K
_ k+1 b4
Gk = PrCa ¥ D (1 - x) Gpk »
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leading to

- 1)k+1 Zp k

* .
Gk = X PkG(n+1)k —('__k—') o

where G;k = x"Pg nk to allow for moving p steps up through the triangle.

Then, summing vertically gives

k_2p+k

s L)X
sn<1 - Pk ——-—-——

=G @-PxP)+Gr+R_,
(1—x) ) k k n

where lim R =0, |x| <1l/r, r> 2.
n—>wo

Hence,

= 1 - kap) +xka

((1 . Pp - 0K + 1)¥x 2p+k> .
G 1-x

(l—X)

for the column generators defined in Eq. (1).
Applying the formula given by Bicknell and Draim [5],

[k/2] K . -i
_ k -i- 1) X
P = E Tﬁ-zi)zi!'<1-x> ’

[x] the greatest integer function, gives an explicit formula for G. Since G
is the generating function for the numbers u(n; p,k), we have resolved our
problem for the trinomial triangle. Harris and Styles [1] have solved the bi-
nomial case by summing diagonals of Pascal's triangle. Feinberg in [6] has
given series convergents for u(n; p,1) for the trinomial and quadrinomial
cases. We now move on to the solution of the general case for the array of

coefficients formed from polynomials of n terms.
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5. SYMMETRIC FUNCTIONS AND COLUMN GENERATORS:
THE GENERAL CASE

Let

Pe) = 2 - pe™ L 4 pa®2 - .l 4 (—1)jpjxn_j $ oo o (_ann ’

where pj is the jth symmetric function of the roots of P(x) = 0. (For a dis-
cussion of symmetric functions, see [7] and [8].) Now let p.(k) be the jth
symmetric function of the kth powers of the roots of P(x). Then

pim + n) - pym +n - 1)py + pylm +n - 2)py - «++ + (-1)np1(m)pn =0,

since each p; represents sums of the products of solutions which are geomet-
ric progression solutions to the original difference equation whose auxiliaty

polynomial is listed above. Thus we need n starting values for each such

sequence.
If
X

Grn+2 T 1-x (Gn+1 * Gn) ?

then
q
- g+tlf_ x
G(n+2)q - pi(Q)G(n_l_l)q + (—1) (1 — X) Gnq ’

where

p1(0) = 2, pi@) = x/@ - x);
and

X
pim + 2) = 1- % (pym +1) + py(m)) ,

with auxiliary polynomial
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2 X X

VY-1-xY T -x

This is the resolution of our trinomial case, expressed in a modified form.

The column generators for the quadrinomial case will be related by

+ G + G )

G = G n+1 n

n+3 1-x n+2

where

Guig)q = P1@Gy o) — P2@G g, + PG, -

Here, the auxiliary polynomial is

v3 - pi()y? + py()y - ps(1)

where
pi1) = ps(1) = -pp(1) = =
Now,
pok) = (i) - py(2k))/2
< k
p3(k) = <1 - X
Next,

2X
1-x

I

2
p1(0) = 3, py(1) = x/ - x), ps@) = (1 - x) *

and

X
1 -x

pim + 3) = (piym + 2) + pym + 1) + py@m)) .
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Notice that, since our values for p;y(@), pi(e), and p].(q) are defined sequen-
tially and since moving up p rows can be adjusted by multiplying by P

X", we
can solve the quadrinomial case. To derive ufn; p,q), we can use (Gi* =
ip
XTG

q)

q
* = P 2p 3p
G(n+3)q X pi(CI)G(n+2)q - X pZ(Q)G(n+1)q + X p3(Q)G;q ’

leading to

2 3
8, (1 - i@ + xPpy(@ - xPpy(@)) = Gyl - Ppy@) + x*Ppy(a))
2p _xP 4p
+ x Gq(l x"pylq)) +x qu + Rn ,

where lim Rn =0, |[x] <1l/r, v > 2.
n =0

Using formulas given by Bicknell and Draim [9] ,

q-3k

[o/3} 2] ' g-m-2k
o - BT g (2

= o g - 2n - 3K)!m!k!

/3 [q_;k] k

q q-

- Q@ - m - 2k - I)! | X q-m-3k
R = 3 r§0 @ - 2n - SROTmik! j<1 - x) 1) ’

q
ps@ = 1—§—_X ,» [x] the greatest integer
function,

we actually could write an explicit formula for G, the generating function for
the numbers u(n; p,q) for the quadrinomial case.

For the pentanomial case, we would go to

n+3 + Grn+2 + G'n+1 + Gn) ?
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with auxiliary polynomial

v - pi)y + pp()y? - ps(y + p(1) = 0,

where

pi(1) = pz(1) x/1 - x).

I

-pa(1) = -py(1)

il

Then we need

pi(0) = 4, py(1) = x/(@ - x), py(2)

p1(3) = (3x - 3x% + x%)/(1 - x)3,

1

(2x - x2)/(1 - x)?,

and
pifn + 4) = ;== (o + 3) + pyn + 2) + pyln + 1) + py@) );
pak) = (ik) - ps2k))/2,

ps) = (}(k) - 3p;(KIpyk) + 2p4(3K))/6, (see [7])

k
pek) = (—1)k<T—§_§-§> .

The relationship

* - <P * 2p 3p 4p
Glnra)g = X PG 30 = X PG00 + X TPs@G () - X PGy
G;q = lpqu, combined with our earlier techniques provides a general solu-

tion for u(n; p,q) for the pentanomial case, although it would be a messy com-
putation. However, if one notes some of the relationships between the p4(k)
for the polynomials

n-1 X n-2 n-3

-—T—:—}?(y +y +--.+y+1)=0
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for different values of n, much of the labor is taken out of the computation.
The expressions p;(k) are identical for the polynomial with n terms and the
polynomial with (n - 1) terms for k =1, 2, 3, «-, n-2; p;(0) = n forall

cases; and
% n
Pim +n-1) = % i%pi(m+m—1)
In fact,
pl(k) = ____L_k -1
1 - x)
for k=1,2, -+, n-1 for the polynomial with n terms. Thus, p;(k) can
be derived sequentially for any value of k for the polynomial with n terms
given by
yn—l_ X (n'2+... +y+1) =0.

1-x

We can sequentially generate all sums of powers of the roots of any polynomial
because we canget the proper starting values sequentiallyas well as find higher
powers sequentially.

Now, it is well known that, given all the sums of the powers of the roots,
p1(0), p;(1), p1(2), + -, pi(0), for a given fixed polynomial, one can determine
the other symmetric functions of the roots in terms of the p;(k). (See [7],
[8].) Waring's formula gives

(PN - (py@KNT2 + (pgBKNTE + - (pylmi) ™

k) = -1)F
P ) (-1) o rm)

cee 1, gt2, .
(ry! rol T3t ) 2 3 m

Ty + Ty + gt oeee +I'm=1‘

ry + 219 + 3rgt e +mrm=m
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Also, the generating functions for the coefficients arising in the expansion of

-1.k
1) can be derived sequentially by Gy =

the n-nomial (1 +X +x% +ee0 +x°
i i+1 -

/1 -x"", i=0,1,2,°°" ,n-1, G, = (@a-x" 1_ 1)/1 - x)n+1, and

Gpyp =%/ -%)+ (G +G, 4+ +Gy+Gy+Gg) Thus, for the polynomial

with n terms, by taking G; q - xlpqu, letting

n-1

_ i+1 3
=X DR @G, 1)

G*
(1n+n_ 1)(1 i=1

and using the methods of this paper, the generating function for the numbers
u(n; p,q) could be derived.

In [11] it was promised a proof that, for p = 1,

io: u(o;p, Vx" = 12 il (r-T)p+l
n=0 l-x—xp - xPT i Cx p

for the general r-nomial triangle induced by the expansion

AL +x+x2+eee + x5 0H° n=0,1,2,3,"" .
This follows from the definition. Let the r-nomial trianglebeleft justifiedand
take sums by starting on the left edge and jumping up p and over 1 entry re-
peatedly until out of the triangle. Thus,

n(r-l)]
p+1 -k
ump,1) = Y " Kk pz )
=0
where
n n(r-1) .
A +x+x2+eee +x51) = :n} x .
j=0 N

th

The r-nomial coefficient row and jth column of

r;} is the entry in the n
r

the generalized Pascal triangle. Thus

1 . p 2p p(r-—l)]n
= [x@ +x" + x™F +.-0 +x
1-x@+xP +xP +... +xp(r_D7 nz=:0
[n(r—l):l
00 p+1
zn —kkps & .
r

n=0 k=0
(Continued on p. 393.)
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GENERATING FUNCTIONS

L. CARLITZ
Duke University, Durham, North Carolina

1. INTRODUCTION

With an arbitrary sequence of (complex) numbers {an} = {ao,ai,az,- . }

we associate the (formal) power series
(1.1) alx) = Z a_ x".

The definition is purely formal; convergence of the series neednot be assumed.
The series (1.1) is usually called an ordinary generating function.
Let {bn} = {bo,bi,bz,- . } be another sequence and

bx) = 2. b, X"
n=0

the corresponding generating function. We define the sum of { an} and {bn}

by means of
{an} + {bn} = {cn}, c, =a +bh @=0,1,2:);

then clearly

ex) = 3 ¢ x' = ak + bk .
n=0

Similarly, if we define the product

{a b} = {o,}s

*Supported in part by N.S. F. grant GP-7855.
359
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by means of

n
(1.2) pn = kgo ak bn—k = 0,1,2,---) ’

then it is easily seen that

px) = pnxn = ax) bx) .
n=0

The product defined by (1.2) is called the Cauchy product of {an} and {bn}.
In contrast with (1.1) we may define the exponential generating function

(1.3) AR) = Y a < /n!
n=0

which again is a formal definition. The product is now defined by means of

[~}
— n .
(1.4) p, = kZ;:O (k) a b |

this is known as the Hurwitz product and is of particular interest in certain
number-theoretic questions (see for example [15, p. 147]).

One can develop an algebra of sequences using either the Cauchy or
Hurwitz product. In either case multiplication is associative and commutative
and distributive with respect to addition. Moreover the product of two se-

" quences is equal to the zero sequence

{zn} = {0,0,0,-+-}

if and only if at least one factor is equal to {zn}; thus the set of all sequences
constitute a domain of integrity.
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In the present paper, however, we shall be primarily interested in show-
ing how generating functions canbe employed to sum or transform finite series
of various kinds. We shall also illustrate the use of generating functions in
solving several enumerative problems. For a fuller treatment the reader is
referred to [18].

In the definitions above we have considered only the case of one dimen-
sional sequences. This can of course be generaliied in an obvious way, namely

with the double sequence {am n} we associate the series
]

0 0
1.5 aey) = L Ta K0y
m=0 n=0 ’

Also factorials may be inserted as in (1.3). Indeed, there is now a certain

amount of choice; for example both

0 ) m n 0 ]
(1.6) Y Xa I3 Ya xTyw
m,n m!n! —~ “m,n
m=0 n=0 m=0 n=0

are useful. As we shall see in Section 10, other possibilities also occur.

More generally, we may consider

«© ny np
(1.7) a(xy,se- ’Xk) = Z ~ ani’”. B Xy v Xy
n:l’--o ’nk_o

and its various modifications as in (1.6). Of particular interest in the theory

of numbers is the Dirichlet series

0

(1.8) > a /n®;
n=1

the product is now defined by

(1.9) p, = 2 a by .
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We may think of (1.8) as a generalization of (1.7). For let qj,ds,°"* 2Oy de-

note the first k primes and let a, = 0 unless

_ o6 Tk
n = g3 g+ qg .

If we put

it follows that

[ele]

S = —s e o0 —S
(1.10) 112::1 al’l /n = a(q1 ’ sqk ),

where the right member is defined by (1.7).
2. As a first simple illustration of the generating function technique, we

‘take the binomial expansion

2.1) 1+ x)™ = % (m) £=
. k H

where, to begin with, we assume m is a nonnegative integer. Combining
(2.1) with

we immediately get

k
2.2) > (?)(ﬁs) = <m;“> (k= 0,1,2,°*+) .
s=0

It is to be understood that the binomial coefficient (E) =0if k>n or k<O,
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Each side of (2.2) is a polynomial in m and n. Since (2.2) holds for all
nonnegative values of m,n it follows that it holds when m,n are arbitrary

complex numbers.

It is convenient to introduce the following notation:

@, =a@+1)y--@+n-1), @) =1.

(-a)
a\ _ k k
<k) =

It is easily verified that

and that (2.2) becomes

© (-k)_(@) (b - a)
. s 'S _ k
@.3) D D O

In 2.3) a and b are arbitrary except that b is not a negative integer.

The formula

m
(2.4) z (<" (’f) (ﬁ) = { ;o

n)
n)

N

is very useful. The proof is quite simple. We may evidently assume m > n.

{6 - 6 E

it is clear that the left member of (2.4) is equal to

m
£) & el g - (e

and (2.4) follows at once.

Since
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As an immediate application of (2.4) we have the following theorem:

If
& k
(2.5) bn = kz (—1) (E)ak (Il = 0’1,2"”)
=0
then
L k
(2.6) an = kZ:O (-1) (E)bk M = 0,1,2,+*)

and conversely.
It is of interest to express the equivalence of (2.5) and (2.6) in terms of

generating functions. As above, put
0 -]
AR) = 2 a xn/n! , B = E b xn/n! .
n n
n=0 n=0
Then (2.5) becomes

2.7 B&x) = € A(-x)
while (2.6) becomes

(2.8) AX) = € B(-x).

It is easy to extend the above to multiple sequences. If

2.9) .3 n(1)3'+km oy g
‘ ma T o kz=:O 3 i \k) %3k
then
m n
- itk (m) {n
2.10) bm,n j{:o kgo (-1) (J) (k)a].’k
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and conversely. Moreover if

% mn 0 m n
Alx,y) = m,zn:=0'am’n i{_n-!%!—’ B(x,y) = m,zn=0 bm,n?ﬁ?ﬁ?

then

2.11) A,y) = Y B(x,-y)

and

(2.12) B&,y) = €Y A(x,-y) .

3. As a second illustration we shall prove the formula

oo k) - B

This result isa slight generalization of a formula due to Greenwood and Gleason
[ 10] and Gould [9].
Put

e BOE Y e 5K

Then

ozo: A £ i x Yfy+n-k né'!{ n £
m=0 " Kk=o\K n rik \I0 - K

11
.
Lgs
S
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oo 0
m n _ 4+ - n n
Z_w Am,nt u = E( t Z v @+t u
m,n=0 k=0

o0

) (ﬁ) 51 -y - )Y EL

k=0

I

= Q-u-t0 V1Y <§> 1oy -k
k=0

= @-u- T 14t - u- W) ¥,

so that

(3.2) Y oA @0 - Ar97a - T

m, n= o, h a-u- tu)y+1

On the other hand,

o0 m n + + k [+
@3 2B t7= 3 YTETHWIRS * o
m=p 0 k=0 m—k m -

)6
(

a - tw* (A - -1
1-u- twyt

- i = y-x+njfy+n-kyk n
= 2 K n-k Jt s
1=



1969] GENERATING FUNCTIONS 367
so that by (3.3),

(3.4) S B ¢ - @97 - )
m,n=0 (- u - tw)*

Comparing (3.4) with (3.2), (3.1) follows at once.
We remark that if we put

a,b,C 0 (a)k(b)k(c)k
3Fz[ &4 - 2 T @ e

then (3.1) becomes

n) [y +n\ o -X,-y,-m 7 _ (x)(y +n}) o [X-y-n,-n,-m
m n J3 2| -y-n,n-m-+1 n 372 ~y-n,x-m+1 |’

which is a special case of a known transformation formula [1, p. 98, ex. 7].

4, A set of polynomials An(x) that satisfy
(4.1) AlR) = nA & @=0,1,2,--),

n-1

where the prime denotes differentiation, is called an Appell set. It is easily

proved that such a set may be defined by

[2e] o0
(4.2) Y A®zY/n = &Y a
n=0 n=0

where the a are independent of x. Also it is evident from (4.1) that

3 A (X) _ n n n-k
(4.3) 0 = kzz:o k) 2 X .

This formula is sometimes written in the suggestive form

AR = &+a)t,
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where it is understood that after expansion of the right member, ak is re-
placed by a.

It also follows at once from (4.2) that

L kfn) k
4.4) kz=%) (-1) <k>x A& =a .

We may view (4.3) and (4.4) as an instance of the equivalence of (2.5) and (2.6).

If ag # 0, we may define the sequence {bn} by means of

D/ _J1 (@m=0)
(4.5) k§=:0 (k)ak bk = {0 >0,

or equivalently A(z)B(z) = 1, where
0
B(z) = Z b zn/n!
n=0 "

It then follows from (4.2) and (4.5) that

n _ 0/
4.6) X" = kz=;0 (k)bk A&

As an illustration we take the Bernoulli polynomial Bn(x) defined by

ze™” _ 2 n .
“4.7) — = 2 B ®z/n ;
e’-1 n=0

the Bernoulli number B, = Bn(O) is defined by

(=]
Z _ n
(4.8) = = 3 B, z /n!
e’ -1 =0
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Since

it follows that

n _ - 1 n
4.9) P YR (k)Bn—k(X) :

By means of (4.7) we can easily obtain the following basic properties of

Bn(x).

n

4.10) Bn(x +1) - Bn(X) = nx ,

(4.11) B (1-x = (1)"B &,

“.12) k_lB +3) o kB kx) & =1,2,3,-0¢)
. ;) n X E = n = 949Dy .

Closely related to Bn(x) is the Euler polynomial En(x) defined by

2e™% - n
(4.13) = = 2 E &z /n
2 +1  n=0

Corresponding to (4.10), (4.11), (4.12) we have
_ o.h
(4.14) En(x + 1) + En(x) = 2x |,

n
(4.15) E0-%=()'E®,

k-1 \
(4.16) Y (D°E, <x + E) = k"B (x) ( odd) ,
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k-1
1) Y 1)°B_, <x + E) = -2ilE () k even).
s=0 2k

For further developments the reader is referred to [14, Ch. 2].
5. Another important Appell set is furnished by the Hermite polynom-
ials which may be defined by

(2]

(5.1) e2xz-z2 =3 Hn(x) z%/nt!
n=0

Differentiating with respect to x we get

(5.2) H;l(x) = 2nH (&)

n-1

so that the definition (4.1) is modified slightly. If we differentiate (5.1) with
respect to z we get

[=e]

_y2
Z H . ®z%n = 2 - z)ezxZ z
n=0 n+l

so that

(5.3) x) = ZXHn(x) - 2an (x) n>1).

Hina -1 2

2
Also, multiplying (5.1) by e’ , we get

n _ - n!
(5.4) (2x)" = zgf(ann-zk‘x’

In the next place it follows from (5.1) that

00 m n

2x (w+v)-ul-v? 2x(u+v)-(u+v)? 2
3 Hm(x)Hn(x)u,V, o o2Xiv)-uf-vi o 2x(utv)-(utv)® 2uv
m,n=0

oy & 2 eun)® X aPt
_ 2uv n = lauv) —_
= e Z Hn(X)(ll +v) /n! = Z: K Z Hm+n(x) m!n! °
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Equating coefficients we get

(5.5) Hm x) Hn x)

n
3
=
2.
B
[\]
e
)
o —
B
St
=]

=0 )Hm+n— 2k &) .

Similarly we have the inverse formula

min{m,n)

k. k , n
(5.6) H & = g:jo (-1)"27k! (k) (k> H (&H &) .

The formulas (5.5), (5.6) are due to Nielsen [13]; (5.5) was rediscovered
by Feldheim [8]. The above proof is due to Watson [ 20] .
Another interesting formula is

5.7 Y H H () z°/n! = (1 - 422) % exp xyz —14_(x:tz_; y')z?

We note first that

0 nk
Z Hn+k(x) er Ltqv = Z H (X) (Z + t)
n, k=0 T

_ o 2x(zH)- ()
_ 2x7-7 2(x-z)t-t?
= e e

_ 2%z-7? i o (x—z)f
- ° — 'k K

Equating coefficients, we get

* 2
(5.8) Z Hn+k(x)zn/n! = eZXZ z Hk(x - z),
n=0

which reduces to (5.1) when k =
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Since, by (5.1),

_ k n! n-2k
(5.9) Hn(X) = 2k2<:n (-1) o oot (2x) R
we have
o0
n

n;() H (x) H (y)z"/n!

0 n-2k

k (2x) n

=2 2 1 H (y) z

n=0 2k<n kT - 2K)! “'n
= i (_1)kM H (y)

n, k=0 k!n! n+2k

o 2k = n
_ k z (2xz)
= 0 B Hp )

0 2k _Ax2,,2
_ Z (_Dkng e4xyz 4x47, sz(y - 2xz)

k=0 :

2k k

_ 4xyz-4x%z? < kz s (2k)! 2k-2s
= e k;) ("‘1) —k_!— E;O (—1) m (2y - 4XZ)

(o]
_ 4xyz-4x2z? k 2k + 2s)! 2k+2s 2k
= e k§=o 0" SrERTE e Qy - 4xz)™ .
H]

Since

@t = 25 ),

we get
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A2 2 ¢
e4xyz 4x°7, Z (_1)k k+s 22522k+zs
k,s=0 stk! (3)

@y - 4:»(Z)2k

2

*° (k +-1)
Z s!

s (ZZ)ZS

Ax2p? 2k 2k
_ eéJlxyz 4x%7, X (_l)kz 2y 1;' 4xz)

5=0
T Rl 2k 2k
_ e4xyz 4x47, S ‘(—1)k 7" (2y - 4xz)

kel
- 1 - 4g2)7%"2
k=0 '

-1
z 2 )
a - 4x?) eXp{4Xyz _ oax?g? _ 222y - 4xz) }
1 - 4z2

1
(1 - 4x2)  exp {4xyz - 42 + yz)zz}
1 - 422

This completes the proof of (5.7). The proof is taken from Rainville
[16, p. 197].
6. The formula of Saalschutz [1, p. 9],

n () @ 0, (e -a)l-b)

(6.1) . = ,
= ko) (d)y ) lc-a-D)

where
6.2) c+d=-n+a+h+1,

is very useful in many instances.

If we replace ¢ by c¢ -n, (6.1) becomes

n (n) @ M), @-a)@-b),

(6.9 ‘ - ,
kgo ki (0—n)k1d)k Td—)n(d -a - b)ﬂ

where now

(6.4) c+d=a-+b+1.
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Now by {6.3)
s@-a@-b, = @-a-b)y, L o) 0
fr x! (d)n = n! = k Zc—nikidik
k @), ®) © (d-a-h)
= Z (1" k k & Y
k n=0 v
) k @ Py i a+h-d

E(l)—m—)—( x)

Thus (6.3) is equivalent to

d-a-b

(6.5) F@,b; d; x) = (1 - x) Fd - a,d - b;d; x) ,

where F(@,b; d; x) denotes the hypergeometric function.
It is customary to prove (6.5) by making use of the differential equation
of the second order satisfied by F(a,b;c;x). We shall, however, give an in-

ductive proof of (6.1) which we now write in the form

kI (c), (), (), @, ’

(6.6)
k=0

where
(6.7) c+d=a+b+1.

Let

Zn: @ + n)k(b)
S (a3bscyd) = ( 1) ’
n k=0 ( > ) @

where a,b,c,d satisfy (6.7). Then
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B kfn) &R DOL a0y
S @,b,c,d) = (-1) @ " (-1)
n+l P (k o) Wy kg) kO @y

n k(n) (@+n+ 1)k (b)k
(-1) — {lc +k)d +k) - @+n+k+1)(b+k).
kZ=,0 kJ el @y { }

Now put

c+kd+k)-@+n+k+ Db +k) Ad + k) + B(c + k),

where A,B are independent of k. Then

(6.8) d-cA =(c-hb@a-c+n-+1),

: (c-dB =Wd-b@E@-4d+n+1).

It follows that
S _@,byesd) =28 @+ 1,b,c+1,d +5S @+ 1,b,0,d + 1)
n_l_l”S cn s H] dn LS B .

Assuming that (6.6) holds, we therefore get

(c - D)@ -D+ 1)

(c-b+1) (d-h)
A
(aab9c=d) - = (C)n(d + 1)n

B
S = = + =
n+1 c T e D @ d

(c-b+1) - @d-b+1)
= e L {A(d-b) (c-b-+n) (d+n)+B(c-Db) (d-b-+n) (c+n)}

n+l" 'n+l

By (6.8),

@ - ¢){A@ - b)(c - b + n)d + n) + Blc - b)d - b + n)(c + n)}

c-bd-b{lc-b+n{d+n@-c+n+1)-(d-b+n)c+n)@-d+n+1)}
c-b@-b{c-b+nd+nd-b+n) - d-b+n)c+n)ic-b+n)}
c-bd-b)lc-b+nd-b+nd-c).

Therefore
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c-b) .- b)n+1

SO ’

@,b,c,d) =

n+1

which completes the induction.

As an application we take (6.6) in the form

(—k).l(a + k)j(-a +b +c + 1)j _ @ - b)k(a - c)k
it + 1)j(c + 1)J. © + 1)k(c + l)k !

k
(6.9) >
=0

where now a,b,c are arbitrary. Then

ql (a-)k(a - b)k(a - C)k Xk
o k!'( + 1)k(c + 1)k

® k(k)(a) -2t b+e+ 1),
_ 2 X i
B k! Z il (b -+ 173.(0 + 1)3.

© (a) (—a +Db +c + 1), © (a + 2j)
= i} j k k
=2 ¢ J'(b+1)j(c+Dj Q—E‘—X ’

K=
so that we have

© (a)k(a - b)k<a - c)k k (a) (—a +b+c+ 1)

J
Z BBFD D, X ?0 - J.<B+1>rc m x @ -

-a-2

(6.10)

If we take a = -2n, x = 1; (6.10) reduces to

2n (-2n), (-2n - b), (-2n - ¢) @2n)t b +c + 2n + 1)
—~ k k k _ n n
(6.11) 1;2;0 S VN T T VN GV

In particular, for b = ¢ = 0, (6.11) becomes Dixon's theorem:

2n 3 f
(6.12) ij 1k (ﬁ?) = (op) Bt
=0

(n!)3
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Note also that (6.10) implies, for a = -n, b =¢ = 0,

n Ay . .
(6.13) D @3 SRR DI LN LI PN ) B
k=0 2i<n (1)@ - j)¢

and in particular

n p :
(6.14) 3 <§>3 = Y Pt on-2
=0 2i<n (1)@ - j)

a result due to MacMahon. For other proofs of these formulas see [17, pp. 41,
42].
7. We now turn to some problems involving multiple generating func-

tions. To begin with, we take

1 -1
(1-2x-2y+x:-2xy+y%) 2 = I:(l—x—y)2—4xy:]2
1

- @-x-y oty |?
@-x-y?

_ o« Pr @y
r§=: ér) a-x- y)2r+1

v I R

r=0 s,t=0
i m n min%x:n,n) (m + n)!
= Xy Tl (e ) (1) *
mon=0 = rir!(m-r)! (n-r)!

Since

min(m,n) (m + n)! m +n) 2@ ) _ [m +n}?
r;() Hrm-a-0 | m = r/\r/ \ m !

we have
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-1 o
2 2
(7.1) (1-2x-2y+xt-2xy+7y%) = 2 (mn‘; n) S
m,n=0 .

This is in fact a disguised form of the generating function for Legendre

polynomials;
-1

(7.2) 1 - 2xz + z2) . 3 Pn(x) .
n=0

However to save space, we shall not elaborate this point.

One can extend (7.1) in various ways. For example, we can construct

the generating function for the Jacobi polynomial

k n-k
@B = 5 (n+efn+p)(x - X+1\
@3 P —k§0<n_kX k >< 2 )( =)

It is known that

(7.4) T @Bt - 2Rl L% -+ R

where
R = (1 - 2xz + z2) .

For a proof of (7.4) see, for example, [16, p. 140].
If we put

u =%(x—1)z, V=—%~(x+1)z,
we have

1
(7.5) R =[(1-u-v?-4u]?



1969] GENERATING FUNCTIONS 379

and (7.4) becomes

(7.5) Z (OH';: +k><ﬁ+f{+k>ujvk = 2a+B R_l(l—u+v+R)—a(1+u—-v+R)Tﬁ
i,k=0

with R defined by (7.5).
We shall now give a simple proof of (7.6). Consider the expression

@+ 1)j+k(ﬁ + 1)j+k (_1)j+kxj1k

1-0%ta-pFl T ) :
0 jik! @ + l)k(ﬁ+ 1)3. 1 - X)J+k(1 _ y)3+k

k=
S (_1)]+k (oz+1)j+k(ﬁ+1)J+k g k f: (@+j+k+1) (B+j+k+1) &y
i, k=0 jtk! (a/+1) (B+1) ro8=0 r!s!
= m n (m) (-n), (@+m-+1) (,8+n+1)
k k
= 2 @+ (@+1) X7 ) ¥
mn=0 % T S0k0 TR @+ 16+ 1)
The inner sum is equal to
% (—m)j (8+n+ 1)j k () @+m + 1) ) (-n)_ (-m)
=0 it B+ 1)j =0 ki{o + 1)k B+ 1)m o+ 1)][1
by (2.3), which vanishes unless m = n. It follows that
ca-ly b1 s fa+ik)(BrirR)__CAE 1
(7.7) (1-x) 1-y > j k JHK ik I-xy °
j, k=0 (1-x) " "(G-y)
Now put
— X P
S s DR e e
Then
1 - x = _____2____ 1 - y = 2 1- Xy = R

1-u+v+R"’ 1+u-v+R> (1-x00-7y
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and (7.7) reduces to (7.6).

8. We shall now extend (7.1) in another direction, namely alarger num-
ber of variables. Consider first

_% = [ r
[@-x-y-2¢-a2]? = T (r) W -
r=0 l=x-y-2)
Since
2r-1 — f[2r +k k
Q-x-y-" = ¥ <rk &+y+z)
k=0
-]
_ 3 (2r+s+t-+u)! St
o fsy @DISTTU yz o
s Ly ™
we get

-1 X o ,
[(1—X—Y—Z)Z—4Xyz]2 Z (21>(xyz)r Z (2r+s+t+u),xsytzu

1 at 1 3t
= r s, tou=0 2r)l s! thul
= ; xMyYaP min(gn.p) (men+p-r)!
= ) _ ~-1)! (b-
- =Nl e I CR IR ()

Now by (6.1)
min{m,n,p) (m+n+p- o) _@min+pp (—m)r(—n)r(—p)r
5 vt - r)in-r)p -1t ~ minlp! = rirt(-m-n- p)r
(m +n + p)! o+ 1)m(p * 1)m
= Tminip! mi@n+p +1)m

_ {m +1n)! m +p)! (0 +p)!
m!m!n!n!plp!

- (A
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Finally therefore we have

-L i
8.1) [A1-x-y-z)%-4xyz] ¢ = Z (mn-ll-n)<n:l'p)<p -;m) 2 yn ZzP .

m,n,p=0

To carry this further a different approach seems necessary. In the
expansion

a-vyti= i (if’j>vj

=\

replace v by v/(1 - w) and multiply by (1 - w)_l. Then

w5 i) i
@-v-w j=20<’)
- i f: (1+]>(j+k vjwk.
§20 k=0 k

Next replacing w by w/(1 - x), we get

S5 ( ¢ J) (J‘ : k)(k + r>vjwer.
0 k=0 r=0 k r

Now replace x by x/(1 - y). This yields

Ms

1-w - x)i i
[@-wva-x - w]l+1 j

™38

(8.2) [@-wa-y-x' _ > i i‘
[1-Va-x-3)-Q-pwl'™ =0 k=0 r=0 s=0

()C)Ee e

Now multiply both sides of (8.2) by uiy_1 and sum over i. It follows that

]
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_14 -1
(8.3) {(1 -V1l-x-y)-0Q-yw-[Q-w1-y) -xluy 1}

EZZ > (1fr3) ]l:k k;r I';'Sulvjweryslo
i=0 j=0 k=0 r=0 s=0 \ ?

We are concerned with that part of the multiple sum that is independent of y.
The left member of (8.3) is equal to

-1
{[(1—v)(1—x)—w+u(1—w)] -(1-v-wy- (1—w—x)xy_1}

- - L(l—v—w)y+(1—w—x)uy—1]r
r=0 [(1-v)1-%x)-w-+u(l-w)]

r+1

Expanding the numerator by the binomial theorem, it is clear that the terms

independent of y contribute

i (21‘) 1-v- w)r(l - W - x)r u’
r=0 \ ¥ [A-vA-%)-w+u @ - W)]2r+1

fl

-1
{(fl-vA-%-w+u @ -w]2-4u(l-v-w@d-w-x)} 2
[

Il

{@-u-v-w-x+uw+vx)? - duvwx} %

We have therefore proved

= o 2 fi+i\firk\k+re\[r+i\ij k_r
(8.4) é)j;)g0r=0<j><k>< r><i )uvwx

= {l-u-v-w-x+uw+vx? - duvwx} ¢ .

=

We now specialize (8.4) by taking u = w, v = X. Since

2
(1-2u-2w+u2+w?) - 4uPw? = (1-u-v)2(1-2u-2v+u?-2uv+vd)
= (1-u-v)?[(1-u-v) - 4uv],

Eq. (8.4) becomes
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L
(8.5) > Hm,nu"™" = @ -u- v)_l[(l-u—V)2 - 4uv] ?
m,n=0

where

i+] -itjjfi+n-jyfm-i+n-j
(8.6) H(m,n) = 1}_:()]2_2()( )( i )(n_j>< noj )

If we multiply (8.5) by 1 - u - v and apply (7.1), we get

(8.7) H(m,n) - H@m - 1,n) - H(m,n - 1) = <m]; n>2 ,

an identity due to Paul Brock [2], [3]. We remark also that (8.5) implies

n
(8.8) Him,n) = Z 2 (r . S>2< e s)

r=0 s=0

Also, since

I

1-u- v)_l[(l -u-v)?- 4uv]—%
r=0

> < )(uv) (1-u-v) 2r-2

s i

o0
2r r @Qr+s+t+1)! s t
<r) (uv) szt:~0 Gr+ i st & *V
b=

pInmn) h  m o4+ 1
IR A Gr) D) -t

m,n=0 =0

it follows that

min(m,n)
o () )

For the generalized version of (8.4), see [4], [6], [18, Ch. 4].
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9. We shall now briefly discuss some enumerative problems. The
problem of permutations with a given number of inversions was called to the
writer's attention by H. W. Gould. Let {ai,ag,- .. ,an} denote a permutation
of {1,2,-~- ,n}. The pair a.i,aj is called an inversion provided that i < j
but a; > aj. Thus {1,2,-++,n} has no inversions, while {n,n-1, .. ,1}
has n(n - 1)/2 inversions. Let B(n,r) denote the number of permutations of
{1, 2, *0e, n} with r inversions. Clearly, 0 < r < n( - 1)/2,

From the definition, it follows that

T
9.1) Bl + 1,r) = Z B(n,r - s) .

s=0

s_<_n

This recurrence is obtained when the element n+1 is adjoined to any permu-
tation of {1,2,+-+,n}. Now put

n{n-1)/2
B, &) = Y, B, r)x" .
=0
Then by 9.1),
n(n+1)/2 s &
B 1 ® = > x 3 B@m,r-s)
r=0 s=0
s<n
sn‘ Sn(n—l)/2 r
= X Bm,r)x ,
s=0 r%
so that
©.2) Boy® = @+ x+ e +x")B ().

Since Bix) = 1, (9.2) yields

2) cee (1= x"
©.3) 8.6 = 1 -x@a - x) - a-x)
1 -x)
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Thus, for example,
B(@m,0) = 1, B@,1) =n-1, B@®2) =40+ 10 -2 @>1),
B@,3) =+ o -7 @>2),

Bm,4) = 2‘11 n(n + 1)@ - n - 14) n> 3.

From (9.3), we get the generating function

1-x

= n
9.4) Eﬁ%wzﬂmnzTT_——’

X - Z

where
K, = (1-x0-x).-- Q-x), &=1.

This is the first occurrence in the present paper of a generating function with
denominator (x)n ; see the remark in Section 11 below.

If we make use of Euler's formula

o0

b 4
9.5) na-x4 L (_1)k ng(3k+1)
=1 k=—co

]

1-x-xt+xPexlox2oxB5+...

we obtain an explicit formula for B(n,r) when r < n. For example, we have

B(n,4) <n13>_(n§z>_<n;1> (n > 4),
B(n,5)=<ng4>-<n13>_<““§2)+1 > 5,
B(n,6)=<n+5)-‘<n;4)—<n13)+n (n > 6)
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If we rewrite (9.3) in the form

n-l)

B) = (L+ X)L +x+x%)eee (Lx+oee +x ,

we obtain the following combinatorial theorem: B(,r) is equal to the number

of (integral) solutions x;,Xp,++,X, of the equation

(9.6) Xyt Xt vx =T

subject to the conditions

0<x

k<k k =1,2,",n).

We remark also that (9.3) implies

nh-1)/2
Bm,r) = n! ,
r=0
n(n-1)/2
S D'B@,r) =0 @>1),
r=0
n(n-1)/2 n

5. rB(@,r) = n! Z -1% (g) = %n(n—l)-n!
r=0 k=1

For references, see [12, pp. 94-97].
10. As a second enumerative problem, we consider permutations with a

given number of rises. If {ai,az,- .o ,an} is a permutation of {1,2,' e ,n},

aj, aj +1 is a rise provided aJ. < aj 41 By convention there is always a rise
preceding ay. For example, the permutation {3,4,1,2} has 3 rises.
Let An K denote the number of permutations of {1,2,”' ,n} with k
H

rises. Then we have the recurrence

(10.1) A = @-k+2A o +EA

The proof is simple. Let {ai,- .. ,an} be a permutation of {1,2,- .. ,n}. If

a. < a, and we place n + 1 between a, and a, the number of rises is
i i+l i i+l
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unchanged. If, however, 2y > 2190 the number of rises is increased by 1;
this is also true when n + 1 is placed to the right of a.

It is also clear from the definition that
(10.2) An,l = An,n =1 n = 1,2,3,"*);
the permutations in question are {n, n-1, ¢--, 1} and {1,2,7" :n}s re-
spectively. By means of (10.1) and (10.2), we can easily compute the first few

values of An K

1

1 1

1 4 1

1 11 1 1
1

26 66 26 1

If, in a given permutation {ai,az,- oo ,ak}, we replace 2, by n - ay + 1
k =1,2,---,n), it follows that

(10.3) A . = A

n,k n,n-k+1 °

Also it is evident that

(10.4) él Ay = o
Put
4 k-1
Alx) = 1, A () = 1;::1 An,kx n=1,2,3,"°).
Then it can be shown that
(10.5) l-x . S - A 2%/t

e - x n=0
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We shall not give the proof of (10.5). It is indeed easier to define An(x) by
means of (10.5) and show that the other properties follow from this definition.
For references, see [5], [18, Ch. 8].
The symmetry property (10.3) is not obvious from (10.5). This suggests
the following change in notation. Put

(10.6) A(r,s) = Ar+s+1,r+1 .
Then by (10.3),

(10.7) A(r,s) = A(s,r).

Also (10.5) implies, after a little manipulation,

X _
(10.8) F(x,y) = —=& = A(r,s) .
Ui Z e

Another symmetrical generating function is

(10.9) 1 + xF(x,y)) (1 + xF(x,y)) = 2 A(r,s)
r,s=0

=¥ _ .

(r + 8)!

The denominator in the right members of (10.8) and (10.9) should be noticed.
11. We conclude with a few remarks about q-series; an instance has

appeared in (9.4). Simple examples are

(L1 ma-x"s"' =% /e,
n=0 n=0
[>] 0 i
(11.2) 0a+x" = ¥ 220V,
n=0 n=0

where as above
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o =1, &, = @0-x0-x)-@1-x").

A more general result that includes both (11.1) and (11.2) is

(11.3) n l-ads _ ¢ rj-(a)n "
. n=0 “/n

n=0 1 - x"z
where

@ =1, (@, = 1 -a)d-ax):-@1- ax™ 1)

o

To prove (11.3), put

it 1 axn = n
F(Z) = _______n._z. = A[)_Z .
n=01-x12 n=
where An is independent of z. Then
_ 1 -2z
Fxz) = T F(z) ,
so that
o0 o0 n
(l—az)ZA Mg = (l—z)ZAnz
n=0 = n=0
This gives
n _ n-1
(l—X)An— (1 - ax )An_1 ,

and (11.3) follows at once.

In particular, for a = xk, (11.3) becomes



k+n-1
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k 00
k-1 © (X)
- -1 n n
(11.4) ma-x"2"=3 T 7 = Z[
n=0 n=0 Xn n=0 n
where
x)
k] k
= 0 <n<Kk .
[n ixinixik_n
-k k
If we take a = x = and replace z by X z we get
k-1 k 1
(11.5) I a-x" =3 (_1)n[ﬁ]x2n(“‘”z“.
n=0 n=0
_ k k
Note that when x = 1, n reduces to nl
It also follows from (11.3) that
0 n n-k
(11.6) kgo[k} @ 0 2" = @b,

for arbitrary a,b. Specializing a,b or using (11.5), we get

aL.7) i [k Iil s] [2] Xs2_ks+ms _ [ml;r n] )

=0

which evidently generalizes (2.2).
The function

o) = M @ - )7L
=0

n
] Z ’

[Nov.

can be thought of as an analog of the exponential function. This suggests the

definition (compare (4.2) ),



1969] GENERATING FUNCTIONS 391

(11.8) eftz) Y a 2/&_ = 3 A M/,
n=0 BopTo P n

where a, isa function of x that is independent of t and z. Using (11.1), we
get

L rn n-k
(11.9) A® = 2 [k] a t .

If we define the operator A by means of
Af(t) = £(t) - fxt),
it follows at once from (11.9) that
(11.10) AA M) = @ -xDA 0 .

Conversely if a set of polynomials in t satisfy (11.10), then there exists a
sequence {an} independent of t such that (11.8) holds.

The special case a, = 1 is of particularinterest. Put

00
eltz)e@) = 2 H 02/,
n=0

so that

Zn: ny .k

H () = [ ]t :

n k=0 k

For properties of these and related polynomials, see [7], [11] R [19]. The
Hn(t) are in some respects analogous to the Hermite polynomials. We cite the

bilinear generating function
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ariy 3 Hn(u)Hn(V)Zn/(X)n _ e(z)efuz)e(vz)euvz)

n=0 e(uvz?)

® n
1 1 - xuvz

n=0 (1 - xnz)(l - xnuz)(l - XnVZ)(l - xnuvz)

2

which may be compared with (5.7). For proof of (11.11), see [7].
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EXPLICIT DETERMINATION OF THE PERRON MATRICES
IN PERIODIC ALGORITHMS OF THE PERRON-JACOBI TYPE
WITH APPLICATION TO
GENERALIZED FIBONACCI NUMBERS WITH TIME IMPULSES

LEON BERNSTEIN
lllinois Institute of Technology, Chicago, lllinois
and
HELMUT HASSE
University of Honolulu, Honolulu, Hawaii

0. By the Perron maftrices P, inan n-dimensional algorithm of the
Jacobi-Perron type [1] we understand the analogue to the 2-dimensional

matrices
Pe1 P
%G1 % |

built up from two consecutive ""convergents'

o 3

’
U1 A

of an ordinary continued fraction.
As explained in detail in Chapter I of a previous joint paper of ours [2]

these n X n matrices P are defined recurrently by
Pp =P A k=0,1,-),

with the initial condition

P_1 =1 (n-rowed unit matrix) ,
where the matrices
0 0 a.ok
a
1k
Ak = (k = 0,1, ) ’
1 an-l,k

394
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are built up from the 'partial quotients"

aOk = 1’ a]k, PR a’n_l’
in the algorithm, which in the special case n = 2 of ordinary continued frac-
tions reduce essentially to only one 2 in each step.

From this recurrent definition it follows that the Perron matrices P _

are built up from an infinite sequence of n-termed columns mk—l in the fornll
Peor = B Meg) o

satisfying the recurrency formulae

0.1) 2ok™e-n F T T o1 k1 k20,

with the initial condition that

Em—n = WO,.-. ’S.m—l = Wn..]_
are the columns of the n-rowed unit matrix I.
In the present paper the entries of the Perron matrices Pk-l shall be
denoted by pg_)(n_v,), where the super- and subscripts V = 0,°°*,n -1 and

V' = 0, -+ ,n - 1 indicate the lines and columns, respectively:
0»: e, n-1
0, ++,n-1

Thus the recurrency formulae (0.1) with the initial conditions (0.2) become

W) )

Pk—l = (pk—(nuw) V lines <V

V'
V' columns

o

n-1
k>0
0.9 ) = ¥ v (V . )
v

it aV' pk—(n—V') = O, , N - 1
with
) W {1 for v = V'}
(0.4) —-vt) T Cur T o for v £

(entries of the unit matrix I).
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@) would be the A(k+n).

We shall consider only purely periodical algorithms. Let { be the

In Perron's original paper [2] these p

length of the period. Then in the recurrency formulae (0.3) there are only £
different n-termed coefficient sets av,k W' = 0,°*°,n - 1), which recur
periodically. In our first, purely algebraic part these £ sets will be con-
W =
m A=
0y+++, £-1). For the sake of algebraic generality and formal symmetry we
o

include in this stipulation also the coefficients a,

sidered as algebraically independent indeterminates and denoted by a

which in the actual algo-
rithm are throughout equal to 1.
For purely periodical algorithms, the infinite sequence of recurrency

formulae (0.3) reduces to a finite system

n-1 k 0

vy _ (0} —0,+ -~ 1
(0.5) Ppoogy = Z A1 P(kg-n)- (n-v1) ,),\:g’ . ’l‘i
Lt =0, ,n-

of £ linear recurrencies with the n linearly independent initial conditions
0.4).
We shall chiefly be concerned with the special case of period length ¢ =

1, where there remains only one single linear recurrency

n-1

) _ w) k>0
(0.6) P’ = Z ByPie_(n-v) (v - 0,--"-,n-1>

=0

with the n linearly independent initial conditions (0.4). In this case we shall
obtain the following simple explicit expressions for the entries pév) of the

Perron matrices Pp (last column):

W) = 2 : Kot o« +k
Pl Likg,-++ K _ . )=k+(n-v) ( ol
Kgs®+ e,k > 0

0.7)
ko #oee K, Ky o kn-1< k>0 )

kg + -« +kn_1

with summation restricted by the linear form
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(0.8) L(ko, ceey, kn—l) = nko + (n - 1)1{1 + ecoe 4 lkn—l

in the summation variables kg, ,kp_1, and with the polynomial coefficients

0.9)

ko, e kn—l ko! oe e kn_l!

< kg +eee + kn_1> ) (o + = +k N
The procedure by which we reachour aim (0.7) is the very old method
of Euler, viz., to translate the recurrency formula (0.6) for the sequences

pl({l-)) into algebraic expressions for the generating functions

p(V)(X) = Z pl({V)Xk v=0,+,n-1),
k>0

and to determine the power series coefficients p, ' from those algebraic

®)
i k
expressions.

In the general case of arbitrary period length £ we shall show that the
same object can be achieved in principle. The explicit formulae, however,
would be so complicated that one can hardly expect to write them down in ex-
tenso, but for simpler special cases. As an example, we shall carry through
in extenso the very special case £ = 2 with n = 2, i.e., the case of purely
periodic ordinary continued fractions with period length 2.

There is, however, a special case of a more general type in which we
can obtain as definite a result as (0.7). Amongst the numerous periodic algo-
rithms, discovered by the first author in previous papers*, a particular period
structure prevails, viz., of length £ = n and with the following specialization
of the coefficients in (0.5):

d, 0,v1)

(0.10) ag,‘) =t a vt = 0, ¢+e,n-1),

17l

where

*See the complete list of references in [3].
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_ 0 for A+vi<n
(0.11) an\’V') T 1 for A +V'>n

is the so-called "numbertobe carried over' in the addition of the n-adic digits

AV, In this important case we shall derive from (0.7) the following
generalization:

(0.12) o) = t—[%]—l Z

L(ko,. .o ,kn_1)=k+(n-v)

<k0+... +kn—1>k0 E +kV
LR R Y

X

kgreeHs o kg koo < k>0 )
ces vV =0,°°,n -1
0 n-1

We shall come back to another significance of this case in our second
chapter.

CHAPTER I: ALGEBRAIC FOUNDATIONS

1. We begin with considering the special case of period length ¢ = 1.
To the recurrency formula (0.6), viz. ,

n-1

. " = > ey G20

V=0
with the initial canditions (0.4), viz.,

1.2) pf‘&_w) e e =0em-1

we let correspond the characteristic polynomial

n-1

i
F=F(x)=1—Zav,xnv ;

Ur=0

and the n generating functions
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NCIN Z p;(:) Kk
>0

Now

Xn-v'p(u) _ awpk(:)xkﬂn-w)

-
V
S

) k
il (p-vr) X

M 1

W
§

—pt

) Kk
AP -pr) X

k>0

) k

v
- a  .p X
o< k< mv)-1 VK- (n-V')

=0 VI k- (n-V1)

v-p?
a,X for v <V

0 for V' > v

the latter because the summation condition 0 < k < (n - ¥') - 1 is equivalent
to -(n - V") < k- (n-v') < -1, sothat theinitial conditions (1.2) are applicable.
Summation over V' then yields

n-1
V) W _ V) k
FPY - P = ) Z AP v | X F
k>0 \ V1=0

v
v-v!
'+>: Ap® ‘
V=0

Here the negative terms on theleft and right are equal to each other on account

of the recurrency formula (1.1). This gives the algebraic expressions
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)
o = f*_F_ with A%
(1.3) v
=A% =Y a2 w0,
V=0

®)

for the generating functions P 7.

2. In order to obtain explicit expressions for the recurrent sequences

)

Ps we have to develop the rational functions (1.3) into power series in x.

The power series for 1/F is obtained easily from the geometrical series:

n-1 k
1 _ n-
F = aw X
k> 0\ V=0
~ ko +oeee o+ kn-l
ok . >o\kp ik )%
(2.1) 0°" " ¥po1Z e
s ako akn—l mk0+(n—1)1«:1+---+1kn_1
0 n-1
_ 3 <k0+"'+kn-1>ako_._akn-1 X
B coe _ ’
0\L@=k\ %0’ 7 Ky /0 n-1
with the linear form
(2.2) L@m) = nko + (0 - 1)1«:1 + oree + 1kn_1

in the summation variable vector

M = (ko, teey, kn—l) .
In what follows the summation variables kg,++-,k,_1 are throughout silently
supposed to be 0. The solutions ® of L@ = k correspond to the partitions

of k into summands from 1,°<+,n; their number pn(k) is well known.
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In order to obtain from (2.1) the power series for the rational functions
p(v) in (1.3), we have to multiply by the single terms awxv'w of the poly-
nomials A(V) in the numerator and then sum up over V', Multiplicationby one
of these terms and subsequent transformation of the summation yields in the
first place

v-pt
% kg +ooe +E

1
F >0 L(sm)=k<ko’ s kn-1>

oS R e
X 2g ] n-1

(ko + oo +kn—1>
kK., °°+, k
k>0 \ Lr)=k-(@-v*) \ "0 n-1

k ,+1 kn—l K
'a '°"a °

ako .. X
0 ! n-1

In order to simplify the subsequent summation over V! we have here formally
admitted terms with L(kg,**,k,_1) < 0, which actually vanish because the

summation condition is empty. Summationover V! thenyields the development

o . T ZV 5 (ko Foee +kn_1>

k>0 \ V=0 L (®)=k- -v*) ks ey Ry
Ko Kt k1l &
X aO aw an—l X

for the generating functions, and thus the explicit expressions

’ k 4 cee0 k
vy _ Z E 0 1
p - ( kO, see kn—l >
2.3) V10 LER)=k- (-01)

for the recurrent sequences in question.
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3. As alast step, the sum (2.3) of polynomials in ag,*++,a, 1 can be
put into canonical form, i.e., represented as a single polynomial in aj,"**,

a_ .. This is achieved by a further transformation of summation which, in its

n-1
turn, allows to reverse the order of the two summations.

The transformation, leading to this, is
(3.1) ky, >k, -1.

Itis true that by it the silent summation condition k, > 0 is transformed
into kvl > 1. However here, too, after the transformation, the summation
may again be extended formally over all kvg > 0, because the polynomial co-
efficients with a negative term in the "denominator' vanish, if only the sum of
all terms in the "numerator' is non-negative. The truth of this assertion is
easily seen by expressing the factorials in the definition (0.9) of the polynomial
coefficients as values of the Gamma-function and observing that this function
has no zeros at all, and has poles only at 0, -1, -2,<++, Thatthe "numerator"
here is non-negative, is seen as follows. Under the transformation (3.1),

according to the definition (0.8), one has

L) —> L) - @ -v")

and hence
i k, + + 1)+ +k
(3.2) o _ Z 3 0 " v n-1
. Pk = 4] kO’ e, kV'..]_’ eee k 1
V1=0 L@ER)=k+(n-v) n-
X ako o0 akv' D) akn_l
0 4] n-1

Here the sum of all terms in the "numerator' is surely non-negative, because
L) =k+m-v) >k+12> 1 and hence not all ky,+--, n-1 vanish.

Since by this transformation the inner summation condition in (3.2) has
become independent of the outer summation variable V', the order of the two

summations may now be reversed:
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e B (Do) )

L @»)=k+(@n-v) \v'=0 vt * n-1
(3.3)
kg k
n-1
Xag oo an_l

Thus the polynomial (2.3) has already been put into canonical form. But,
moreover, it is even possible to consummate the inner sum in (3.3). For, by

definition

)

(k0+... + (kV' - 1)+ +kn_1) ) (k0+... + (kV' 1)+ e +kn—1
kg, oo, kw -1, -, kn—l ko! ---Tkv, -1 ... kn_ll
kg+.ee +k ) k
n-1 14
= . (also for k, =0) .
(ko s s kn-l kg + +kn_1 2
and hence
v
Z (ko + + (kw - 1) + + kn_1>
Dreo ko 9 9 kV' -1 ’ ’ n-1
(3.4) -
(ko'l‘ +k 1) ko’l'" +kv
kg » ’kn—l kg + + kn_1
Thus (3.3) yields our first chief result
kg + ¢ +k
w 0 n-1
p ) = Z (k k X
k 0 » H n-1
L(m)=k+(n-v)
(3.5)
y k0+...+kv ako...akn"l kZO
kg + o Kk 0 n-1 *\v=0,-",n-1

as announced in (0.7).

We remark that (3.5), conveniently interpreted, holds even for k > -n,
i. e., including the initial values corresponding to k = —-(n - V') ' = 0,°+- ,
n - 1). For in these cases the summation condition L) = V' - ¥ has no non-

negative solutions if V' < Vv, only one such solution, viz., kg,***,k = 0,

n-1
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if V' = V, and only such solutions with kg,--- ’kv = 0 if V' > U Hence for
Pt < V the sum is 0 by the usual convention for empty sums, for V' > V itis
also zero with regard to the factor

and for V' =V itis 1 if this factor of the indeterminate form 0/0 is under-
stood as 1.

It is furthermore perhaps not useless to remark that for the first initial
condition (1.2), i.e., for V = 0 this result can also be written in the simpler
form

k, 4otk k, +1 k k
(3.6) pig) = E ( 0 n-1 | a 0" g1l md &k > 0)
- n-1

kO”’”"k 0
Lér)

as is already clear from the intermediate result (2.3).

4. Since operating with polynomial coefficients, and in particular with

their fundamental recurrency property

n-1

@ Z(ko+--- +(kw—1)+...+kn_1) =(k0 + o +kn—1
Yr=0 Koottt =1tk Ko oo sk g

(special case ¥ = n -1 of (3.4)), is not so familiar and handyas in the special
case n = 2 of binomial coefficients, we attach here the following simple re-
duction of the former to the latter.

From the definition (0.9) one has

(ko 4 ene +kn_1) } (k0+... +kV o
kO y v, kn-l kO , e, kV
(4.2)
X((kO + k) kg e +kn—1>
?

kg + 00tk , k , k

vl n-1
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forany ¥ =1,"*+,n- 2. For V = 1, the first factor on the right is the bi-
nomial coefficient
ko + ky
ko

Iterating this case of (4.2) in the second factor on the right, and putting

]

kb k

0
k' =k +k
(4.3) : o 1
k;l—l = k0+k1+... +kn—1 .

one obtains the reduction

w () L () ()
N cee 1 i i °
k0 ’ ? kn—l k0 lKl kn—2

Application of this reduction to our final result (3.5) yields the equivalent

expression

o Z (- (2
k STAG Kh-2

S@)=k+(n-V)

4.5)
- 1 ~k?
kl'/ akb ak'l kb . akn—l kn-z k>0
R oM n-1 Vo= 0,+7,n-1
where
(4.6) s@r) = kb + eee + k;l—l

is the simpler linear form obtained by the transformation (4.3) from L¢nr) in
(2.2). The silent summation condition ko,- .. ’kn—l > 0 is transformed in 0

S Kyt S K
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Special cases of the formulae (4.5), with n = 2 and n = 3, have re-
cently been developed by Arkin-Hoggatt [ 4].

5, We now turn to the general case of an arbitrary period length £. To
the £ recurrency formula (0.5), viz. ,

) k>0
(5.1) puu Z 31 P14 0)- (n-b") (?\ =0, ,n - 1)
V=0

with the initial conditions (0.4), viz. ,

62 o =) =0 n )

we let correspond the £ polynomials

F(A) - F(}\)(}() Z a(A) n-v!
p1=0

and the n generating functions
4 4 Z V) k

We split these polynomials and functions into components, corresponding to the

residue classes mod £ of the x-exponents:

I
FN) - Z r%) with Fy,‘) FA) )
(5.3) AT=0
OB L0 o
S V=0 v

n-Y'=)\"mod y
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I

p® = > p(v.,) with p;(t..) p;(z},.) ®) =

AN=0
(5.4)
_ W) KLy An
- Z: Prgan X .
k>0

In order to translate the recurrency formulae (5.1) with the initial con-

ditions (5.2) into algebraic expressions for the generating functions, we multi-

A)_n-v* ™)

ply, for each fixed A and V, the terms a, X of a component F)\' by

that component p)(? for which

(5.5) A 4+ A" =X mod? .

Subsequently we sum up, first over the V' with

(5.6) n-v = A"mod{ ,

and then over the £ pairs A',A" with (5.5). According to the congruences
(5.5) and (5.6), we put

5.7 -v) +Am =Xt

with an integer h > 0. The whole procedure will be quite analogous to that in
Section 1 for the special case £ = 1. In the first place, one has

A _n-v' (V) o _w) (RL+X ")+ (n-V?)
1(1- oy = Za Plegay 1%

Il

Z a kl;z)ﬂ” (k+h)e +2 by 5.7))

_ 2N ) ko4
= E v p(k h)ﬂ_,_)\vx
kZh

Kh

1l
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_ n_w kg )
= 2pr Py ) - (n-vm)®
k>0

. W [ SEDY
Z A P g 40)-(n-vt)®
0<k<h-1 -

_ @) Ko +)
-2 B Phegn) - (n-vn)®
k>0

_ a,(,),\)xv'w for V' =V -2 mod! and V' < V'}
0 otherwise

The latter one sees as follows. The summation condition 0 < k < h-1 im-

plies, again by (5.7), the inequality chain

Nn<L-0-MLA-@-v)S K +)-0-v)L (-1 +2am"

—-v) = @ -1,

so that the initial conditions (5.2) are applicable. They say that almost all

terms of the sum in question vanish, save only one with

k+ N -m-v)=-(0-v), or else, ki + ) =v -

Such a term can occur only if V' =V - X mod ¢ and V' L V. If these condi-
tions are satisfied, it actually occurs, because then the equation ki + A =V -

V' has a solution k > 0 with
kK =@ -v")-A< @-V) -2 = -A"<h,

and hence kK < h - 1.
Summation over the ¥' = 0, ,n -1 with n-V' =A'mod ¢, accord-

ing to (5.3) now yields
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n-1
@) 0), ) _ ) _@) \ kA
Exy’ = exr oy = ‘Z Z B P4 - | * +
>0 V=0

n-V'=A'mod {

v
CY e

V=0
n-V'=)\' mod!
V-V'=Amod/

and summation over the pairs A', A" with X + A" = A mod ¢ further yields

n-1
M) W) ) _ W W)
Z F)\l P)\n - P}\ - - Z Z a'V' p( {4+))-(-") X

AM+A "'=mody kZO V=0

n-1
xk2+)L + E aV(),‘)xV_V'
V'=0
V-V'=Amod!

Here the negative terms ontheleft and right are equal to each other on account
of the recurrency formulae (5.1). Thus the following system of { linear equa-

w) W)

tions for the £ components P)\” of the generating function P results:
Y EW B A0 g 40
A A "= mod!d

(5.8) n-1
_
= AWV = Z al(f'x)xv v

V=0

V-V'=xmod{

)

The matrix of its coefficienta )is built up from the components F,\', of the

. Lines and columns of this matrix are speci-
fiedby A and A" = A - X mod { (not by A and A'). Written out fully, it
is the matrix

characteristic polynomials F
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(0) (0) 0)
Foo B 0 H
o | F (1) F(1) o F(1)
(F)\—N') A lines 1 0 2
A'' columns M
F(ﬂ—l) F(ﬁ—l) L. F(ﬂ -1)

2-1 e-2 "7 %0
Here ) - )' on the left is to be understoodas reduced to itsleast non-negative
residue mod ¢ .
Now let

= g0
D = K™,

) lines
A" columns

denote the determinant of this matrix and (D;)i))\,,) its transposed adjoined
matrix. Then the linear system (5.8) has the solution

g-1
[PV OV %)
kaNA

W _ T S
(5-9) P)\” - D ’ (}\ - 0’ H L - 1) .

From this one obtains the following algebraic expressions for the generating
functions themselves:

2-1/9-1
()] V)
Z ( Z DA_A")A

(5.10) P(V) _ A=0\ x"=0

= . w=0,",n-1) .

w)

In order to obtain explicit expressions for the recurrent sequences p" ’,
one has to develop these rational functions of x into power series in x. This
seems however extremely difficult. One would first have to find a sufficiently

o))
A=A
In the following two sections we illustrate this on the next-simplest case

smooth expression for the determinant D and its minors D

¢ = 2 and carry it through to the end under the special assumption n = 2.
After what has been delineated in the preceding sections, we can be brief in
doing this.



1969] BERNSTEIN AND HASSE 411

6. In the special case £ =2 we have to consider two alternating re-
currency formulae

) (v)
Pok = Z A Pok-(n-v1)

V'=0

V)
Pok+1 ~ E by,p k+1) (n-v1)
Vi=0

for each of the n linearly independent initial conditions

@) - W

p-—(n—V') - eV' (V:V' = Os P 1)

For the sake of easier readability, we here have distinguished the two coef-

W

ficient sequences, hitherto denoted by 8y s instead by the upper indices A =
0,1 by writing them with two different letters a,b. In the same manner we

denote the polynomial pairs FO‘) and A(A’V) (A =0,1) now by F, G and

A V) LW

“s» B"", respectively.

From the pair of characteristic polynomials

n-1
_t
F = F) = 1 - aV,an=F0+F1,
V=0
n-1
_pt
G =Gk =1- bx = Gy + Gy,
V=0

each decomposed in its even and odd components, algebraic expressions for the

generating functions

Py = me )

likewise decomposed, are found as follows.
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The linear equation pair (5.8) for the component pair P(()V), P(lv) has the

Fo Fy
G Gy

matrix

with the determinant
D = FQGO - FiGl ’

and with the transposed adjoined matrix

Gy -Fy
-Gy F,

The terms on the right are

AW - Z aV,xV—V'

V=0
v-v'=0mod 2

V=0
V-v'=lmod 2
Hence the solution (5.9) for the components is

GroA(v)

- FiB(V) (V) —GIA(V) + FoB(V)
Pt = —F5, -0

p¥) -

and the generating functions (5.10) themselves are

Gy - Gi)A(V) + (Fy - Fi)B(V)

FoGo - Fi03

W)

(6.1) P
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It is worth remarking that this can be written in such a way that only the
characteristic polynomials F,G themselves, not their components, figure in

it. For, the component pairs are given by

Folx) = L(’L“;L_(‘X) ,  Fy®) = _}’:EE)_'Z_F('_X) ,
Go(X) = -G-;()(l;_c-(;}g , Gi(X) = G(X) -zG(—X) ,

Thus the determinant becomes

FX)G(-x) + F(-x)G(x)

D(X) = 3 )

and the generating functions become

¢xAM ) + FxBY )

(6.2) pM ) = T

7. Under the special assumption n = 2, one has

no
]

F =1-a;x -z (1 - ax?) - ax ,

G =1-bx -bx: = (1-bx?)-hbx ,
AQ =g | A® < g,
BO = o [ B® - px ,
D = (1 -2agx?) (1 - bpx?) - abx?
=1- (3 + by + aghy)x? + abxt ,
o0 _ a9 + agbgx - dgbgx® ’ L _ ay + (by + ayby)x - aghyx®

D D

The power series development of 1/D is
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2. (g + by + aby)x? - aghyxt )~
k>0

o=

ko, kg >0\ 1

=2 2. (-1)k1<k° ; ki)(ao + by + 3-1101)k°(aob0)ki 2k
k>0 ko+2ky= 1

From this, one obtains easily the following power series developments for the

even and odd components of the two generating functions:

2~ agbox? i
P —p = 2 2 - l)ki(k°+k>(a0 +bg+a by )k°a§1+lb0k1:| x2K

I

k>0 | g2k =k

vl = (_1)k1<k0+kk1—1>(a0 R N e
k>0] kp+2k =k 1
| (kp>1)

ko k kil 2k+1
(—1)k1<k°;1k1)b1(a0+b0+a1b1) °a 1+1b 1]

(0) agby
D

1l

k>0 [k0+2k1=k

a
(7.1) P(()l) = T)i' = Z { Z . (- 1)k1 (ko + k) ay@y+ by +ayby )koagibgi]xk

I

10/ kgt2K=
(bo + a1b1 )X - a0b0x3
pM - 5 = > M
k>0 k0+2k1=k

ko k ‘
X (ko 1:1 k1> (by + 24by) @y + by + a4hy) lag 1b%’<1:|X2k+1

-z [ > 1)“‘:1("‘01:1 ky - 1)><

k>0 kg 2k =k
(s>1)
% (ao + b() + albi )ko 1 k1+1bk1+1] 2k+1 .

The sums in square brackets — or in the first and fourth cases, more exactly,

their differences — are the looked for explicit expressions for the recurrent
sequences

(0) 0) (1) (1)
Pog » Porrq 204 Poyis Popig
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8. We finally come to consider the important special case, where { =

n, i.e., the period length coincides with the dimension of the algorithm, and

OV

where n? indeterminate recurrency coefficients a are specialized to com-

m
binations of only n+1 indeterminates 2, and t as specifiedin (0.10), (0.11),
viz. ,
d_(\,v)
N _ " . n o_ J0 for A+ 1< n
(8.1) a t a, with d () = 1 for A+ >anf"

In this case the recurrency formulae (0.5) specialize to

N = G ) ( k>0 )
V H

Prnap = 2o t 2P kn+) - (n-1)

with the n linearly independent initial conditions (0.4), viz. ,

(8.3) pgl)q_w) = ez(jl,/)

W, =0, *,n-1)
These recurrency formulae can be reduced to those of the special case
t = 1, but with new coefficients. For this purpose consider the modified

sequences

k+1 (V)

-0 _
(8.4) pkn+)\ =t pk_n+A *

w)

They satisfy again the initial conditions (8.3). Now the p" ‘-subscripts on the

right of (8.2) reduce as follows to the canonical form on the left:
kn+2) -@-v) =k -n+ Q-+ = (k-1+dn(>\,v'))n+N

with 0 < X< n- 1.
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Hence,

-w) _ kd LYY )
(8.5) Pkn+))-(mn-v1) = v P kn-+))-(n-")

From (8.4), (8.5), we

obtain the following transformation of the recurrency
formulae (8.2):

- _ k+1 (v)
Penin = b Prnin

n=1 k+1+d_(A,V")
ot

1l

/ a p(v)
V=0 V'Y ( nt)- (n-v')

]

n"_‘l —(V)
u?:() BP (- (aovr)

Thus the modified sequences pl;g:_))\ satisfy the linear recurrency (0.6) with

the modified coefficients ta,,, and, as already said, with the same initial
conditions (0.4). According to (0.7), they are therefore given explicitly by

p'(V) - . ko + eee o+ kﬂ)x
kot en)= N+ @-v) \ K0 ¢+t 0 En
(8.6) -
y kO + eeo + kV tk0+ +kn_1ak0 o akn-l
ko + ces + kn—l 0 n-1

( k>0
V=0,"**,n-1 ’

Going back to the original sequences pr(1Vk)+>\ by (8.4) and replacing the

no longer necessary detailed subscripts nk+A by simply k, we obtain our
second chief result,
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kg +e00 + ky x
E Ko, oo 5 K
L@r)=k+(n-v) n
kK + «eo +kV k0+...+k k k

(8.7) X 0 t l’l—la 0 cer g n-1

k, + ¢ +k 0 n-1

0 n-1
kZO
VvV =0,°**,n-1

as announced in (0.12). The remark after (3.5), concerning validity even for

k > -n, i.e., including the initial values holds obviously for (8.7) as well.
Application of the reduction (4.3), (4.4) of polynomial to binomial coef-
ficients to this result yields, in analogy to (4.5), the equivalent expression

_[.'5]_1
1}
pff) I & > (k1)<k5> k! 4 y
S@r)= +(n-v) k(') ki kh-z
(5.5) y kb tk;l-lakbak'l“kb K1k 2
. K 0“1 n-1

k>0
V=0,,n-1

CHAPTER II. GENERALIZED FIBONACCI NUMBERS WITH TIME IMPULSES
9. It is known from the history of mathematics [5] that the original
Fibonacci numbers Fk’ named after their discoverer, and defined by the

recurrency formula

(9.1) F = Fk + F

k-2 (2 1)

k+1

with the initial values
9.2) =1, F, =1,

describe the mathematical structure of a biological process in nature, viz.,
of the way rabbits would multiply if no outside factors would interfere with this
idealized fertility. From a purely speculative viewpoint this recurrencydefin-
ition could be replaced by a variety of other structures. So, for instance, the
initial values could be replaced by others, as was done by E. Lucas. Thus

(9.2) by (in new notation) becomes

(9.2") Ly =1, L, = 3,



418 FIBONACCI QUARTERLY [Nov.

Orthe dimension 2 of the recurrency could be increased to any n > 2, as was
done by the first author [3] who substituted (9.1), (9.2) by

n n n
(9.3) From = Fie 0 * Pyl k>1,
n n n
9.4) Fioeeo,F 1 =0, F =1.

This generalization to higher dimension could be carried further by considering

recurrencies with constant weights ao,- e ’an—l given to the preceding terms,
viz. ,
n n n
9.5) Fk+n = aOFk + oeeent an—le+n—1 k>1
with arbitrary initial values
n n
FiootF

Formula (9.5) is actually the recurrency law (0.6) of our introductory section.

The question which is the natural generalization of the original Fibonacci
numbers is idle. The answer to it depends on the viewpoint one takes and is a
matter of mathematical taste and preferences. Raney [6], for instance, has
proposed a generalization widely different in viewpoint and preferences from
those mentioned above.

From a purely biological, or even mechanical, viewpointone would rather
expect that a process in nature, depending on n preceding positions, would
not go on with such an idealized uniform law of passing to the next position as
are those mentioned above, but rather with additional impulses, acting on this
law, which are themselves functions of time. It is already a daring presump-
tion that such impulses, imposed by nature, would be recurring regularly.
But the purely mathematical applications which will be given in a subsequent
paper are some justification for the subsequent new, and in the view of the
authors, more '"natural' generalization.

For this proposed generalization of the Fibonacci numbers we modify the

recurrency law (9.5), i.e., (0.6) by time impulses in the shape of a constant
time factor t # 0, attached to some of the weights g, 01

to the more general recurrency law (0.5) of our introductory section. As ini-

+,a according

tial values we admit throughout the n linearly independent standard sets (0.4).
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From them any set of n initial values may belinearly combined, and the cor-
responding recurrent sequence will then be obtained from those corresponding
to (0.4) by the same linear combination.

10. Before we apply the general results (8.7), (8.8) of our first chapter
to special cases of the generalized Fibonacci numbers with time impulses, let
us make some preliminary remarks.

1.) The restriction of summation

L) = nky + @ - kg ++o¢ +1k , =k + @-V)

1

in the sums (8.7) with multinomial coefficients

kg + ..o + k
(ko"”' ’kn—1>
n-1

can be removed by eliminating the last summation variable kn—l (the only one

with coefficient 1) on the strength of that restriction, viz. , by putting

(10.1) kn-l =k+ @n-"V) - (nk0 + sea + 2kn_2)

wherever kn—l ocecurs in the terms of the sum. It is convenient to combine
this elimination with the reduction (4.2) of the multinomial coefficients of order

n to such of order n - 1 and binomial coefficients. Thus the formulae (8.7)

become
) _ Sobr) &+ (0 - V) - Lw)
P 7 k ...Zk (ko’“':k 2 Sofm) )X
0°" "7 **n-2 b~
y kO +oees + kv y
kK + (@ - V) - Lyw)
(10.2) k- ‘i]+(n-v)_1_Lo(m)
xt - X
kg kg ko k+@-v)-Lo@r)-Sobr)
Xag 24 22 8n-1
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0B (e (< )
kpote ook, o\ 07 *Tn-2 0
B
(10.21) k, kq k o k+l-Lo@R)-Sy(m)
Xag 83 "3 9

with the reduced linear forms

Loem) = (n— 1)k0 + oo + lkn_ So(m) = ko + .00 + k

2’ n-2 °
For confirmation of (10.2), (10.2'), notice that with the help of these twolinear
forms the substitution (10,1) takes the form

kn-l

=k + (n —V) - Lo(‘m) - So(sm) .
Notice further that the silent summation condition kn-l > 0 is trans-

formed into the upper limitation of summation

Loe.m) + So(s.m) S k + (n -V) .

This limitation may be passed over silently by the following conventions. For
Lybr) < k + (n - v) no convention is necessary, because in this case the binom-
ial coefficient vanishes if Sy(m) > k+ (@ -v) - Loér); in partic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>