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ON THE NUMBER OF DIVISIONS NEEDED 
IN FINDING THE GREATEST COMMON DIVISOR 

DALE D. SHEA 
Student, San Diego State College, San Diego, California 

Let n(a,b) and N(a,b) be the number of divisions needed in finding the 
greatest common divisor of positive integers a,b using the Euclidean algo-
rithm and the least absolute value algorithm, respectively. In addition to 
showing some properties of periodicity of n(a,b) and N(a,b), the paper gives 
a proof of the following theorems: 

Theorem 1. If n(a,b) = k > 1, then a +b > f, „ and the pair (a,b) 
with smallest sum such that n(a,b) = k is the pair (f, 1 , fk+2)» where it = 
1, f2 = 1 and f _,Q = f ^ + f , n = 1, 2, 3, • • • . 

* n+2 n+1 n 
Theorem 2. If N(a,b) = k > 1, then a + b > x, - and the pair (a,b) 

with smallest sum such that N(a,b) = k is the pair (x, , x, + x
k i )> where 

xj = 1, x2 = 2 and x, = 2x. - + x. 2 , k = 3,4,-•• . These results may 
be compared with other results found in [ l ] , [2], 

Since n(a,b) = n(b,a), we can assume a < b. To prove the first theo-
rem, let n(a,b) = k and assume the k steps in finding (a,b) are 

b = qi a + rj 
a = q2 rt + r2 

r k - 3 q k - l r k -2 + r k - l 
r k-2 = qk r k - l 

If k = 1, then rA = 0 so b = qAa and the smallest pair (a,b) is (1,1) so 

a = flf b = f2, a + b = f3 = 2 . 

Note this case is not included in the theorem. In case k > 1, it is evident 
that the smallest values of a,b will be obtained for r, 1 = 1 and all the qfs 
= 1 except q, , which cannot be 1 but is 2. Thus the pairs (r, - >rb-_o)>''' » 
(a,b) a re (1,2), • • • , tfk+1»^+2*)- Since 
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338 ON THE NUMBER OF DIVISIONS NEEDED [Nov. 

a + b = fk+l + fk+2 = fk+3 ' 

the theorem is proved. 
We have 
Corollary 1. If a + b < f.+3, then n(a,b) < k for k > 1. 
For b = a + i, i a fixed positive integer so that b < 2a, the quantities 

satisfy 

(1) n(a + mi, a + [m + l]i) = n(a, a + i), m = 0, 1, 2, ••• . 

This follows from the remark that if n(a,b) = k, then 

n(a + b , 2a + b) = k + 1, k = 1, 2, 3, ••• . 

This is evident since the first division would be (2a + b) = l(a + b) + a and 
n(a,a + b) = n(a,b) = k. Equation (1) is a consequence since each n isi one 
more than n(i, a + mi) = n(i,a). The periodicity is evident in the table of 
values of n(a,b) for a < b < 2a. 

a = 1 1 

2 12 

3 12 3 

4 12 2 3 

5 12 3 4 3 

6 12 2 2 3 3 

7 1 2 3 3 4 4 3 

8 1 2 2 4 2 5 3 3 

9 1 2 3 2 3 4 3 4 3 

10 1 2 2 3 3 2 4 4 3 3 

11 1 2 3 4 4 3 4 5 5 4 3 

12 1 2 2 2 2 4 2 5 3 3 3 3 

13 1 2 3 3 3 5 3 4 6 4 4 4 3 

14 12 2 4 3 4 3 2 4 5 4 5 3 3 

15 1 2 3 2 4 2 3 3 4 4 3 5 3 4 3 
Fig. 1 n(a,b) for b = a, a + 1, • • • , 2a - 1 
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To prove Theorem 2, assume the steps in finding (a,b) with n(a,b) = k 

are 

b = qja ± rj 
a = q2r! ± r2 

r k -3 q k - l r k - 2 ± r k - l 
r k -2 = qk r k - l 

where 

0 < r i < 7 a> 0 < r2< 4 r l 9 • • • , 0 < r f e - 1 < f r, k-2 " 

Because of the restriction on the remainders, we must have q2,q3,« • • »q. 
equal to or greater than 2. But since 

2r i + r . + 1 < 3 r . - r . + 1 , i = V . k - 1 , 

in each case, we obtain the smallest sum a + b with q2 = • • • = q, = 2 and 
with qt = 1. For k = 1, we have 1 = 1 » 1 so a = b = 1. Set x. = r. -. 
For k > 1, 

a = x k = 2 x k - l + Xk-2 a n d b = xkn-l = x k + x k - l 

Then 

a + b = 2xk + x k - 1 = x k + 1 

This completes the proof of the theorem. 
Corollary 2, If a + b < x. x , then N(a,b) < k for k > 1. 
Figure 2 exhibits the periodicity (for i fixed): 

(2) N(a,a + i) = N(a + mi, a + [m + l ] i ) , 1 < i < a/2 , 

and the symmetry: 
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(3) N(a ,a + i) = N(a ,2a - i), 1 < i < a - 1 . 

a = 1 1 
2 2 

3 2 2 

4 2 2 2 

5 2 3 3 2 

6 2 2 2 2 2 

7 2 3 3 3 3 2 

8 2 2 3 2 3 2 2 

9 2 3 2 3 3 2 3 2 

10 2 2 3 3 2 3 3 2 2 

11 2 3 3 3 3 3 3 3 3 2 

12 2 2 2 2 4 2 4 2 2 2 2 

13 2 3 3 3 4 3 3 4 3 3 3 2 

14 2 2 3 3 3 3 2 3 3 3 3 2 2 

15 2 3 2 3 2 3 3 3 3 2 3 2 3 2 

16 2 2 3 2 3 2 4 2 4 2 3 2 3 2 2 

17 2 3 3 3 4 3 4 3 3 4 3 4 3 3 2 2 

18 2 2 2 3 4 2 4 2 2 2 4 2 4 3 2 2 2 

19 2 3 3 3 3 3 4 4 3 3 4 4 3 3 3 3 3 2 

20 2 2 3 2 2 3 3 3 4 2 4 3 3 3 2 2 3 2 2 

21 2 3 2 3 3 3 2 4 3 3 3 3 4 2 3 3 3 2 3 2 

22 2 2 3 3 4 2 3 3 4 3 2 3 4 3 3 2 4 3 3 2 2 

23 2 3 3 3 4 3 4 3 4 4 3 3 4 4 3 4 3 4 3 3 3 2 

Fig. 2 N(a,b) for b = a + 1, • • • , 2a - 1 

I wish to acknowledge the a s s i s t a n c e of P r o f e s s o r V. C. H a r r i s in 

shor tening the proofs . 
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DIAGONAL SUMS OF GENERALIZED PASCAL TRIANGLES 

V. E. HOGGATT, JR., and MARJOR1E BICKNELL 
San Jose State College, San Jose, California, and 

Wilcox High School, Santa Clara, California 

1. INTRODUCTION 

A sequence of generalized Fibonacci numbers u(n; p,q) which can be in-
terpreted as sums along diagonals in Pascal* s triangle appear in papers by 
Harris and Styles [1] , [2]. In this paper, Pascal 's binomial coefficient 
triangle is generalized to trinomial and other polynomial coefficient a r rays , 
and a method is given for finding the sum of terms along any rising diagonals 
in any such array, given by ( l + x + »»- + x r ~ 1 ) , n =91,2,3,°** * Y"Hr£. 

2. THE TRINOMIAL TRIANGLE 

If we write only the coefficients appearing in expansions of the trinomial, 
(1 + x + x2) , we are led to the following array: 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

1 

3 

6 

10 

15 

3 

7 

16 

30 

1 

6 

19 

45 

3 

16 

51 

1 

10 

45 

4 1 

30 15 

1 6 21 50 90 126 141 126 90 50 21 6 1 

Call the top row the zero row and the left column the zero column. Then, 
let 

GQ - 1 -> Gj - - , G2 1 X (1 - x)2 (1 - x)3 

be the column generators as the columns are positioned above. The general 
recurrence for the column generators is 

341 



342 DIAGONAL SUMS OF GENERALIZED PASCAL TRIANGLE [Nov. 

(1) G ^ = ., X (G _,, + G ) . 
n+2 1 - x n+1 n 

Let 

G = E G = E u(n; 0,l)xn 

•n=0 n n=0 

The sum G in the general case will have for the coefficient of x the number 
u(n; p,q), which, as applied to the trinomial triangle, will be the sum of the 
term in the left column and the n row and the terms obtained by taking steps 
p units up and q units to the right. That i s , u(n; p,q) is a member of a 
sequence of sums whose terms lie on particular diagonals of the trinomial t r i -
angle. To find G, for p = 0 and q = 1, we use the method of Polya [3] 
and the recurrence relation (1). Let S be the sum of the first n terms of 

n 
G. 

G2 = T 4 I E ( G I + GO) 

G3 = j 4 ^ ( G 2 + Gi) 

G _L- = ., X (G + G - ) n+1 1 - x n n-1 

G -L-o = T^— (G _,- + G ) n+2 1 - x n+1 n 

Summing vertically, 

S n + Gn+2 + G n + 1 " * " <h = T T x (Sn + G n + 1 " G« + Sn> 

^ - T^) - ^ " rH) + G* + G n + i ( r^E -1) -G> 

It can be shown that lim G = 0 for | x | < l/fr, r > 2, so that 

n+2 
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G = n - * « n 1 - 3 K ^ ( 1 - X ) 2 ( 1 _ _ x ) 2 j 1 - 3x ' 

which was to be expected, since 

1 = 1 + 3x + 9x2 + 27x3 + 81x4 + 245x5 + 
1 - 3x 

where each coefficient is the sum of an appropriate row in the triangle. In 
fact, each coefficient of x is u(n; 0,1) = 3 n . 

Now, let us consider u(n; p , l ) . Here 

G^ = 1/(1 - x) and Gj = x p + 1 / ( l - x)2 

with recurrence 

(2) G* = T^— (xP G* - + x 2 p G* ) . 
n+2 1 - x n+1 n 

(Notice that multiplication by x p and x p allows for moving up p rows in 
the triangle.) Following Polyafs method of summing vertically as before, 

\\L i - x J i - x y i - xj (1 - x)2 

+ I ^ E " ^ G n + 1 - Gn+2 

Since, again, l im^G = 0, for | x | < 1/r, r > 2, so that 

G* = lim S* = 
n ^ ° ° n ' 1 - x - x p + 1 - x 2 p + 1 ' 

Now, if p = 1, we get the generating function for the Tribonacci num-
bers , G = 1/(1 - x - x2 - x3). The Tribonacci numbers T (see [4]) are 
1, 1, 2, 4, 7, 13, 24, • • • , where each term after the third is the sum of the 
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preceding three terms. That i s , u(n; 1,1) = T -. For a particular verifi-
cation, the reader is invited in each case to perform the indicated division. 

Now, if we let q = 2, then we must deal with every other term of the 
column generator recurrence relation. To solve u(n; 0,2), GQ = 1/(1 - x), 
G2 = x / ( l - x)3, and the recurrence (1) originally considered, leads to 

(3) ° 2 n + 4 = ( ( 7 ^ + v ^ r ^ 2 - -^' °2» 
Following the same method as before, we have, for 

^ • 5 ° - ' 
i^ X^ 

(1 - X)2 (1 - X): 
\ = Go/l - ^ " x2 \ 
J \ (1-X)2/ 

sn I1 ' TT^b + TrH;) = G° I1 ~ T^T, )+ °2 + R n 

where R is a term involving G? * and G~ ? . Again, since 

nUffio Gn = °> r f c A = ° ' l x ' < 1 / r ' r > 2> 

lim S = G = — L ^ M = V U(n; 0,2)xn 
n " ^ n 1 - 4x + 3x2 nt-0 

This gives us a generating function for sums of alternate terms of rows in the 
trinomial triangle. 

Let p = 1 and q = 2 and return to G0 = 1/(1 - x ) , G2 = x2/( l - x)2 , 
and, from recurrence (3), 

G* , „ = x /_JE1_ + ^ W . „ - J£U£. G;_ K. 2x \ -A- x • x 
'2n+4 " ~ Ul~Z~tf + ^T^/G2n+2 " 7 7 ^ 2 -to 
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where we must multiply by x and x2 to account for moving up one row 
through the trinomial array. Going to the Polya method again to find u(n; 1,2) 
we have, for 

1=0 

s * L _ (2x - x2)x + ^J_xj\ = G*L _ x(2x - x 2 ) \ + G | 
a \ ( 1 - x ) 2 ( 1 - x ) 2 / "V (1 -X)2 / 

where R involves only terms G* ,„ and G* , . , so that ^ R = 0, n J 2n+2 2n+4 n - > « n 
| x | < 1/r, r > 2. 

S * / 1 - 2 X - X 2 + X 3 + X 4 U (1 - 2x +X2 - 2x2 + x 3 + X 2 ) / ( 1 _ x )3 + R 
nV (1 - x)2 / n 

„*_ lim 0 * _ 1 - 2x + xJ 
G*= *"" Sw = 

*->* n (i _ X)(i - 2x - x2 + x3 + x4) 

which simplifies to 

1 - x - x^ = £ u(n; l ,2)xn . 
1 - 2x - x2 + x3 + x4 n=0 

Returning now to the more general case, we find the generating function for the 
numbers u(n; p,2). Using the recurrence relation (3), but allowing for mov-
ing up p rows in the triangle, and then summing vertically as before yields 

s f± (2x - x2)xp
 [ x2 • x 2 p \ _ 1 L xp(2x - x2) \ 

nV (1 - x)2 ( 1 - x ) 2 / 1 ' x \ " (1 - x)2 / 

x p + 1 
+ — + R , 

(1 - x)» n 
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where again _^ R = 0 for |xj < l / r . Simplifying the above, and letting 
lim „ _ n 

n ^ ° ° n ~ G ' 

(1 - 2x + x 2 * x p + 2 - x p + 1 ) / ( l - x) 
(1 - x)» - 2xP+1

 + X P + 2 + x 2 P + 2 

- P+l °° 
1 - X - X^ Y^ / n\ n 

= " 72 „ p + l ^ p+2 , 2p+2 = E u ( n ; P ) 2 ) x . 
(1 - xr - 2x^ + x^ + x ^ n=0 

This agrees with the previous cases for p = 1, q = 2 and for p = 0, p = 2. 
In seeking the numbers u(n; 0,3), we need the recurrence relation 

G = " G + x G 
G3(n+2) ( 1 _ x ) 3

 G3(n+1) ( 1 _ x ) 3
 G3n • 

which, following the previous method, gives 

L 3x2 - 2x3 x3 

(1 - x)3 (1 - x)3 

1 / _ 3x2 - 2x 3 \ 
1 - * \ ' ( 1 - x ) 3 / 

+ 2 x 2 - x 3 + R , 
(1 - x)« 

and 

In fact, 

u(n; 0,3)x = ^ = 1 + 2^ 3 x 

n=0 1 " 6X n=0 

1 - 2x + x2 - x P + 2 
YJ u(n; p,3)xn = 

n = 0 (1 - x)3 - 3XP+2 + 2xP+3 - x 2 P + 3 
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3. QUADRINOMIALS, PENTANOMIALS, AND HEXANOMIALS 

If we consider the array of coefficients which arise in the expansion of 
the quadrinomial ( l + x + x 2 + x 3 ) , 

1 
1 1 1 1 
1 2 3 4 3 2 1 
1 3 6 10 12 12 10 6 3 1 
1 4 10 20 31 40 44 40 31 20 10 4 1 

and use the methods of the preceding section, the expressions given below can 
be derived without undue difficulty. For the quadrinomial coefficients, the 
generating functions are given by 

G , o — •=- (G , 0 + G ,.. + G ) 
n+3 1 - x n+2 n+1 n 

where 

G0 = 1/(1 - x), Gi = x / ( l - x)2, G2 = x / ( l - x)3, G3 = x / ( l - x)4, 
G4 = (3x2 - 3x3 + x 4 ) / ( l - x)5 . 

It is easy to find that u(n; 0,1) = 4n and u(n; 1,1) = Qn+1> where Qn is the 
quadrinacci number given by 1, 1, 2, 4, 8, 15, 29, • • • , where each term 
after the fourth is the sum of the preceding four terms (see [4]) . The gener-
ating function for Q is 1/(1 - x - x2 - x3 - x4) , and 

J ] u(n; p,l)xn = 
n=0 1 - x - x ? + 1 - x 2 P + 1 - x 3 P + 1 ' 

From the recursion 

O-v- __ "V* "5T "V" 
G2(n+3) =

 ( 1 _ x ) 2
 G2(n+2) +

 ( 1 _ x ) 2
 G2(n+1) +

 ( 1 _ x ) 2
 G2n ' 
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one finds 

00 00 

E , A <r»\ n 1 - 2x i , v o2n-l n u(n; 0,2)x = ± _ , = 1 + 2-, 2 x J 
n=0 " n=l 

1 - x - x2 
£ u(n; l 9 2 ) x n 

n=0 1 - 2x - x2 + x3 - x4 - x5 ; 

£ u ( n ; p , 2 ) x n = 1 - x - x* 
n=0 (1 - x)» - 2xP+1 + xP+ 2 - x 2 P + 2 - x 3 P + 2 

Also, from 

r _ 3x - 3x2 + x3 ^ 3x2 - x3^, x3 

3 ( n + 3 ) (1 - x)3 3 ( n + 2 ) " (i . x)3 3(n+l) +
 ( 1 __ x ) 3

 G3n ' 

one finds 

/ ^ o\ n 1 - 3x 
u(n; 0,3)x n=0 1 - 5x + 4x2 

If one continues in a similar way, the analogous results for the penta-
nomial becomes u(n; 0,1) = 5 ; 

]£ u(n; p , l ) x n = 
n=0 1 - x - X P + 1 - x 2 P + 1 - x 3 P + 1 - x 4 P + 1 

where u(n; 1,1) = 1, 1, 2, 4, 8, 16, 31, 61, • • • , and each term after the 
fifth is the sum of the preceding five terms: 

£ u(n; 0,2)xn = 1~ te 

n=0 1 - 6x + 5x2 

1 - x - xP + 1 - x 2 ? + 1 
22 u (n; p ,2)x - 2 2 3 4 ^ 

n=0 (1 - x r - 2xr + x^ - 2x ^ + x ^ + x ^ + x ^ 
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For the hexanomial, we can derive u(n; 0 ,1) = 6 ; 

2 ] u ( n ; p , l ) x ; 
n=0 1 - x - x 1 ^ - x F - x F - x ^ - x F 

oo 

E / n oX n 1 - 3x u(n; 0,2)x = t _ 6x I 

n=0 

<*> _ p+1 2p+l 
r i b ^ ^ P , 2 ) X Q = (1 -x)2 - 2xP+1

 + xP+2~-X2x2P+1
 + x 2 P + 2 - x 3 P + 2 - x 4 ? + 2 - x 5 P + 2 

In general, for a k-nomial (k terms) coefficient ar ray , one discovers 
that u(n; 0,1) = k and u(n; 0,k) = k " , n > 1. Now we can readily gen-
eralize our results. 

4. GENERALIZATION OF TRINOMIAL CASE 

In the quadratic equation y2 - ay + b = 0, let a = b = x / ( l - x). Then, 
if r i and r2 are the roots of the above quadratic, let 

r i + r2 = P k l l - x ' 1 - x I' 

given by P0 = 2, Pj = x / ( l - x), 

I 1 - X J + 1 - X * 

and satisfying 

Pk+2 1 - x ( Pk+l + P k ) 

Now, the recurrence relation for the column generators for the trinomial case 
is (let q = k) 

G(n+2)k " PkG(n+l)k + ("1 } + ( r ^ ) Gnk » t-r 
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leading to 

y lXk+l 2p k 
%+2)k " X ^kU(n+l)k {1 _ ,k % k 

where G*. = x PG . to allow for moving p steps up through the triangle. 
Then, summing vertically gives 

4-V-^FH (1 - P , x p ) + G* + R , k k n 

where lim R = 0, | x | < l / r , r > 2. 
n—>°o 

Hence, 

/ ( l - x)k - xPp, (1 - x)k + ( - l ) k x 2 p + k 

G ( 1 ^ ) - i 4 ^ < 1 - V p » + r f G k 

for the column generators defined in Eq. (1). 
Applying the formula given by Bicknell and Draim [5] , 

[k/2] 
P k | ^ (k - 2i)I i! " I 1 - xf 

[x] the greatest integer function, gives an explicit formula for G. Since G 
is the generating function for the numbers u(n; p,k), we have resolved our 
problem for the trinomial triangle. Harris and Styles [1] have solved the bi-
nomial case by summing diagonals of Pascal*s triangle. Feinberg in [6] has 
given series convergents for u(n; p , l ) for the trinomial and quadrinomial 
cases. We now move on to the solution of the general case for the array of 
coefficients formed from polynomials of n terms. 
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5. SYMMETRIC FUNCTIONS AND COLUMN GENERATORS: 
THE GENERAL CASE 

Let 

P(x) = x n - PiX11"1 + p 2 x n ^ - . . . + (-l)jp.xn"3 + . . . + (- l)npn , 

where p. is the j symmetric function of the roots of P(x) = 0. (For a dis-
J th 

cussion of symmetric functions9 see [7] and [8].) Now let p.(k) be the j 
th ^ 

symmetric function of the k powers of the roots of P(x). Then 
Pi(m + n) - p^m + n - l)pj + p^m + n - 2)p2 - . . . + (-l)np1(m)pn = 0 , 

since each p$ represents sums of the products of solutions which are geomet-
ric progression solutions to the original difference equation whose auxiliaty 
polynomial is listed above. Thus we need n starting values for each such 
sequence. 

If 

Gn+2 " T ^ (Gn+l + G n ) 

then 

where 

and 

G(n+2)q = P^G(n+l)q + ^ ^ (j^f °nq • 

Pl(0) = 2, P l ( l ) = x / ( l - x)j 

Pi(m + 2) = ± _ x (pi(m + 1) + pj(m)) 

with auxiliary polynomial 
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xr2 __2L 
1 - x J 1 - x " 

This is the resolution of our trinomial case, expressed in a modified form. 
The column generators for the quadrinomial case will be related by 

G , o, = .. (G . n + G , - + G ) 
n+S 1 - x n+2 n+1 n 

where 

G(n+3)q = Pi((l)G(n+2)q " p2( q ) G(n+l)q + p3( q ) Gnq ' 

Here, the auxiliary polynomial is 

y* - Pi(i)y2 + p2(Dy - Ps(D 

where 

Now, 

P l ( l ) = p3(l) = -p2(l) = - ^ 

p2(k) = (p2i(k) - P l(2k))/2 

^k 
P3(W = (-j 

Next, 

Pl(o) = 3, P I (D = x/d - x), Pl(2) = ( T 4 I E ) 2 + r? 2x_ 
x 

and 

Pi(m + 3) = y-~— (Pl(m + 2) + P l (m + 1) + p^m)) 
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Notice that, since our values for Pi(q), p2(qh and p.(q) are defined sequen-
tially and since moving up p rows can be adjusted by multiplying by x p , we 
can solve the quadrinomial case. To derive u(n; p ,q) , we can use (G* = 

leading to 

Sn(l -x P
P l (q ) + x2pp2(q) - x3pp3(q)) = G0(l - xP

Pl(q) + x2pp2(q)) 

+ x 2 p G q ( l - xp
Pliq)) + x 4 p G 2 q + Rn , 

where lim R = 0, | x | < l / r , r > 2 . 
n—*~oo 

Using formulas given by Bicknell and Draim [YJ, 

[q-3k1 
i* [ ^ 3 ] L £ J Q(q - m - 2k - 1)1 / x \ ^ - 2 k 

PlW - V V l<f- 2n - 3k)Im!k! \ 1 - x l 
k=0 n=0 ^ \ / 

0*3 q / 3 — J q(q - m - 2k - 1)? m I x \q~k, ^q-m-Sk n (n) - V* V qiq - ni - ^K - i ; : . I X I , -y 
P2W - } , 2 , 7Zrr2R - 3k)!m!k! T ^ ( _ 1 ) _A. % "5PH2n - 3k) n=0 n=0 ^ !m!k! I 1 - x I 

/ x \ q 
p3(q) = [•=——I , [x] the greatest integer 

V / function-

we actually could write an explicit formula for G5 the generating function for 
the numbers u(n; p,q) for the quadrinomial case. 

For the pentanomial case, we would go to 

X <G_Q + G _ . + G _ , + G ) , n+4 1 - x v n+3 n+2 n+1 n ' 
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with auxiliary polynomial 

y4 - pjUJy3 + p2(l)y2 - p3(l)y + p4(l) = 0 , 

where 

P l ( l ) = p3(l) = -p2(l) = -p4(l) = x / ( l - x) . 

Then we need 

Pl(0) = 4, P l ( l ) = x / ( l - x), Pl(2) = (2x - x 2 ) / ( l - x)2, 

Pi(3) = (3x - 3x2 + x 3 ) / ( l - x)s , 

and 

P l ( n + 4) = ~ ^ (Pl(n + 3) + P l(n + 2) + P l (n + 1) + Pl(n) ); 

p2(k) = (pf(k) - P l(2k))/2 , 

p3(k) = (p3!(k) - 3Pl(2k)Pl(k) + 2Pl(3k))/6, (see [7]) 

p4(k) = ( - l ) k ' 

The relationship 

G(n+4)q = x PPi ( £ l ) G(n +3)q - x 2 PP2^ ) G(n+2)q + ^ ^ ( n + D q " ^ G , , , . 

G* = x PG. s combined with our earlier techniques provides a general solu-
•^VL •'•VI 

tion for u(n; p,q) for the pentanomial case, although it would be a messy com-
putation. However, if one notes some of the relationships between the pi(k) 
for the polynomials 

y _ j - — ^ (y + y + - - • + y + l) = o 



1969] DIAGONAL SUMS OF GENERALIZED PASCAL TRIANGLE 355 

for different values of n, much of the labor is taken out of the computation. 
The expressions Pi(k) are identical for the polynomial with n terms and the 
polynomial with (n - 1) terms for k = 1, 2, 3, • • • , n - 2; p^O) = n for all 
cases; and 

Pitm + n - 1) = •=-—-1 V Pitm + m - i) I 
1 " x \6£ I 

In fact, 

Pl(k) = — - ± - r - 1 
(1 - xf 

for k = l , 2, • • • , n - l for the polynomial with n terms. Thus, Pi(k) can 
be derived sequentially for any value of k for the polynomial with n terms 
given by 

n-1 x . n-2 , , , -v A 
y - T~^~x ( y + • • • + y + i) = o . 

We can sequentially generate all sums of powers of the roots of any polynomial 
because we can get the proper starting values sequentially as well as find higher 
powers sequentially. 

Now, it is well known that, given all the sums of the powers of the roots, 
Pl(0), Pi(l)» Pi(2), 8 e ° 9 Pi(n), for a given fixed polynomial, one can determine 
the other symmetric functions of the roots in terms of the Pi(k). (See [ 7 ] , 
[ 8].) Waring1 s formula gives 

Pm(k> = ( -D r 
(P l(k))r i • (Pl(2k))r2 • (Pi(3k))r3 • • • (P l(mk))r m 

(rj! r2! r3! • • • r< ) ( l r j . 21"2 . 31"3 . . • m ' " 1 ) 

r t + r2 + r3 + • • • + r m = r 

r t + 2r2 + 3r3 + • • • + mr = m 
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Also, the generating functions for the coefficients arising in the expansion of 
the n-nomial (1 + x + x2 + • • • + xn~" ) can be derived sequentially by G4 = 
xV(l - x ) i + 1 , i = 0 ,1 ,2 , - • • , n - 1, Gn = ((1 - xf'1 - l ) / ( l - x ) n + 1 , and 
G n + 1 = x / ( l - x) • (Gn + Gn_1 + • • • + G2 + Gt + G 0 ) . Thus, for the polynomial 
with n te rms, by taking G* = xipG. , letting 

n-1 . , -
W n - l ) q " . £ ^ Pi(q)G*m+n-l-i) 

and using the methods of this paper, the generating function for the numbers 
u(n; p,q) could be derived. 

In [11] it was promised a proof that, for p = 1, 

£ u(n;p,l)xn = - j g - j tflffrn 
n=0 1 - x - xF - x F - ••• - xv , F 

for the general r-nomial triangle induced by the expansion 

(1 + x + x2 + ••• + x*""1) n = 0 , 1 , 2 , 3 , - - - . 
This follows from the definition. Let the r-nomial triangle be left justified and 
take sums by starting on the left edge and jumping up p and over 1 entry r e -
peatedly until out of the triangle. Thus, 

Tntr-iyi 
k i 1 J(n -u(n;p,l) = E 

k=0 ( 
kp) 

k 
r 

where 
n n(r- l ) 

(1 + x + x2 + • • • + xr* 
- n n^r-lj ( > 

-1) = E h p . 
j=0 C 3 ) r The r-nomial coefficient < . v is the entry in the n row and j column of 

the generalized Pascal triangle. Thus 

i - x ( i + X P + X 2 P + . . . + x P ( r - 1 ) ) £ b L 

f n ( r - m 
L P ^ - h n 

(Continued on p. 393 .) 

kp( | x n 
k \ r^ 
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GENERATING FUNCTIONS 

L. CARLITZ 
Duke University, Durham, North Carolina 

1. INTRODUCTION 

With an arbitrary sequence of (complex) numbers (a i = {a 0 ,a i , a 2 , ' • y 
we associate the (formal) power series 

(1.1) a(x) = £ a x11. 
n=0 

The definition is purely formal; convergence of the series neednot be assumed. 
The series (1.1) is usually called an ordinary generating function. 

Let (b } = {bo,b1jb29*e •} be another sequence and 

b(x) = E b x11 

n=0 

the corresponding generating function. We define the sum of ( a } and (b } 
by means of 

f a } + f b } = f c ) , c = a + b (n = 0,1,2,- • •) ; 1 nJ l n} l nJ n n n 

then clearly 

c&) = Yl c x = a^x) + b(x) 
n=0 n 

Similarly, if we define the product 

Supported in part by N. S„ F. grant GP-7855. 
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by means of 

(1.2) p n = E a k b n _ k 01 = 0 . 1 . 2 . . . . ) . 
k=0 

then it is easily seen that 

00 

p(x) = £ p x n = a(x) b(x) . 
n=0 

The product defined by (1.2) is called the Cauchy product of {a } and (b }. 
In contrast with (1.1) we may define the exponential generating function 

00 

(1.3) A(x) - £ a xn/n! 
n=0 n 

which again is a formal definition. The product is now defined by means of 

(ll4) P» = k ? 0 ( k ) *k Vk; 

this is known as the Hurwitz product and is of particular interest in certain 
number-theoretic questions (see for example [15, p. 147]). 

One can develop an algebra of sequences using either the Cauchy or 
Hurwitz product. In either case multiplication is associative and commutative 
and distributive with respect to addition. Moreover the product of two se-
quences is equal to the zero sequence 

{zn} = {0,0,(V--} 

if and only if at least one factor is equal to {z }; thus the set of all sequences 
constitute a domain of integrity. 
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In the present paper, however, we shall be primarily interested in show-
ing how generating functions can be employed to sum or transform finite series 
of various kinds. We shall also illustrate the use of generating functions in 
solving several enumerative problems. For a fuller treatment the reader is 
referred to [18]. 

In the definitions above we have considered only the case of one dimen-
sional sequences. This can of course be generalized in an obvious way, namely 
with the double sequence {a } we associate the series 

00 OO 

(1.5) a(x,y) = £ E a x m y n . 
m=0n=0 m ' n 

Also factorials may be inserted as in (1.3). Indeed, there is now a certain 
amount of choice; for example both 

oo oo jxi n oo oo 
(1.6) E E a i ^ - , E E a x m yn/n! 

a re useful. As we shall see in Section 10, other possibilities also occur. 
More generally, we may consider 

(1.7) a ( x l 5 . . . , x k ) = £ a *i •• • \ 
n l f . . . ,%=0 19 K 

and its various modifications as in (1.6). Of particular interest in the theory 
of numbers is the Dirichlet series 

(1.8) E an /nS ; 
i n n=l 

the product is now defined by 

(1.9) p *= E a b 
*n r s 

rs=n 
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We may think of (1.8) as a generalization of (1.7). For let qi,q2J- • • ,qk de-
note the first k primes and let a = 0 unless 

n = qj1 q2̂  • • • qk • 

If we put 

it follows that 

a — a * n 
n f i , - - - , fk 

(1.10) £ a n / n s = a ( q r s
J . . . , q - s ) 

n=l 

where the right member is defined by (1.7). 
2. As a first simple illustration of the generating function technique, we 

take the binomial expansion 

(2.1) (1 + x) = \ I , ] x 
k=0 Y7 

where, to begin with, we assume m is a nonnegative integer. Combining 
(2.1) with 

(1 + x)11 = "= §(")" 
we immediately get 

It is to be understood that the binomial coefficient f, 1 = 0 if k > n or k < 0 . 
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Each side of (2.2) is a polynomial in m and n. Since (2.2) holds for all 
nonnegative values of m9n it follows that it holds when m,n are arbitrary 
complex numbers. 

It is convenient to introduce the following notation: 

(a)n = a(a + ! ) • • • (a + n - 1)? (a)0 = 1 

It is easily verified that 

ft - <-»k ^ 
and that (2.2) becomes 

« <-k)s(a)s _ (b - a ) k 
(2,3)

 s to^^r = " ^ -
In (2.3) a and b are arbitrary except that b is not a negative integer. 

The formula 

/o• A\ v^ / -i\k-n/m\ / k \ j 1 (m = n) 
( 2 ' 4 )

 k ? 0
 {'1] \n) [n) = \ 0 (m * n) 

is very useful. The proof is quite simple. We may evidently assume m > n. 
Since 

0$-8M 
it is clear that the left member of (2.4) is equal to 

f ) k| M»k-°f::) • (:) <-«"-
and (2.4) follows at once. 
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As an immediate application of (2.4) we have the following theorem: 
If 

(2.5) b n = ? ("1)k(k)ak ( n = O ' 1 ' 2 ' " " ) 

then 

(2.6) a n = | o ( - D ^ b , (ri = 0 , 1 , 2 , . . . ) 

and conversely. 
It is of interest to express the equivalence of (2.5) and (2.6) in terms of 

generating functions. As above, put 

AW = E a n xn/ni , B(x) = £ b xn/n! 
n=0 

Then (2.5) becomes 

(2.7) 

while (2.6) becomes 

(2.8) 

" n ' 
n=0 

B(X) : 

A(x) = 

» —' \-~r 

= exA(-x) 

= e x B(-x) . 

It is easy to extend the above to multiple sequences. If 

m n .,i # \ / \ 
(2-9) a = E E <-l>J"*MfcW L. 

then 

m n 
(2.io) b m n = E E <-1>,*lT; v k n k 

m > n j=0k=0 *3 / ^ ' h 

viH-k/ml n l w i l l | a . 
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and conversely. Moreover if 

x
m ~ n J30 „Hi__n 

A(x,y) = T a i i , B(x,y) = V b •X-JT 
m,n=0 m ' n m l n ! mfS-0 m ' n m l n ! 

then 

(2.11) A(x,y) = e X + y B(-x 9 -y) 

and 

(2.12) B(x,y) = e x + y A( -x , -y ) 

3. As a second illustration we shall prove the formula 

-l„(*-k)(y+°-k)%l(y-^")Ui(y:- - k 
k k 

This result is a slight generalization of a formula due to Greenwood and Gleason 
[10] and Gould [9]. 

Put 

'*=
 k?ow(-n-k) \»~r V n = i:0(y"r%x-k)(y;-kk)-m 

~m 

Then 

£oA™>«m = k?o(k A+n" / J j > - k ) 

= | 0 f e ) ( y + r k ) t k ( i + t)n' 
t m 
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oo °° / \ °° / \ 
L . ,m n r x | .k v y + n - k yi , . n n n V n * U = ^ I k j * £ l n / ( 1 + « u 

m,n=0 k=0 \ / n=0 \ ' 

= a - u - t u r ^ E (J) tka-u-tu)k 

= (1 - u - tu)"y"X [ l + t(l - u - tu)] X , 

so that 

X / i J _ _ \ X 

(3.2) E A t m u n = ( 1 + t ) ( 1 - ^ 
A m,n ,., ^ vv+l 

m,n=0 ' (i _ U _ tuK 

On the other hand, 

\ 1 - t u / 

(y + r ) u r (i - tu^-y- 1 - 1 

p / y + r j u r ^ / y - x + r + k j t k u k 

V y> | y - x + n \ / y + n - k\ k n 
n t 'ok t 'o l k A n " k ) ' 

(1 - t u ) X
v + f = (1 - t u ) ^ " 1 

(1 - u - tu)y+1 

= E 
r= 
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so that by (3.3), 

(3.4) Z B tmu] m n _ (1 + t)A(l - tu) 
A ^ J 1 1 / I j. \ V + 1 

m,n=0 (1 - u - tu r 

Comparing (3.4) with (3.2), (3.1) follows at once. 
We remark that if we put 

[a,b,cj 
, F j d.ej = 

£ (a)k(b)k(c)k 

3*2"- - J " £0"EWkJ^ 

then (3.1) becomes 

/ n \ /y + n\ „ [ - x , - y , - m l = [ x j Iy + nl rx -y -n , -n , -m] 
I ml I n 13 2L-y-n,n-m+lJ \tri/ \ n / 3 2[_-y-n,x-m+l J 

which is a special case of a known transformation formula [1, p. 98, ex. 7] . 
4. A set of polynomials A (x) that satisfy 

(4.1) A^(x) = nAn_1(x) (n = 0 , 1 , 2 , - - ) , 

where the prime denotes differentiation, is called an Appell set. It is easily 
proved that such a set may be defined by 

(4.2) X) A n « ***** = ^ E a n zR/Rl » 
n=0 n n=0 

where the a are independent of x. Also it is evident from (4.1) that 
n 

n / \ , 
n-k (4.3) A ^ ) = g V ' 

This formula is sometimes written in the suggestive form 

An(x) = (x + a) n , 
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k 

where it is understood that after expansion of the right member, a is r e -
placed by a, . 

It also follows at once from (4.2) that 

(4.4) | o ( - l ) k ^ x k A n _ k ( x ) = a n . 

We may view (4.3) and (4.4) as an instance of the equivalence of (2.5) and (2.6). 
If a0 ^ 0, we may define the sequence (b } by means of 

n' 

<«> j^Kv.HJ £;S, 
or equivalency A(z)B(z) == 1, where 

B(z) = £ b zn/n! 
n=0 n 

It then follows from (4.2) and (4.5) that 

<4-6> xn = k4(k)bkVk<x) • 

As an illustration we take the Bernoulli polynomial B (x) defined by 
n 

xz °° 
(4.7) ^ f - = Z B (x ) zn/n! ; 

e -1 n=0 

the Bernoulli number B = B (0) is defined by 
n n J 

(4.8) - j i - = E B n z n / n ! 
e - 1 n=0 n 
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Since 

it follows that 

e z - 1 f zn 

(4-9) ^-g,Fh(j)Bn.kW 

By means of (4.7) we can easily obtain the following basic properties of 
Bn(x). 

(4.10) B (x + 1) - B (x) = nx11 , 

(4.11) Bn(l - x) = (- l)nBn(x) , 

k-1 , \ -
(4.12) £ B n ( x + f | = k nBn(kx) (k = 1,2,3,-••) . 

Closely related to B (x) is the Euler polynomial E (x) defined by 

xz 
(4.13) - £ _ = £ E(x) zn/n! 

2Z + 1 n=0 n 

Corresponding to (4.10), (4.11), (4.12) we have 

(4.14) En(x + 1) + En(x) = 2xn , 

(4.15) En( l - x) = (- l ) nEn(x) , 

*>H-
k-1 

(4.16) £ ( - l ) S E n (x + J ) = k n E n (kx) (k odd) , 
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(4.17) £ (-if B n + 1 (x + { ) = - | ± 1 En(kx) (k even) . 

For further developments the reader is referred to [14, Ch. 2] . 
5. Another important Appell set is furnished by the Hermite polynom-

ials which may be defined by 

9 °° 
(5.1) e 2 x z - z = £ H (x) z % ! . 

n=0 n 

Differentiating with respect to x we get 

(5.2) H^(x) = 2nHn_1(x) 

so that the definition (4.1) is modified slightly. If we differentiate (5.1) with 
respect to z we get 

£ Hn i 1(x)zn/n! = 2(x - z ) e 2 x z " z 2 , 
A n+1 n=0 

so that 

(5.3) H
n + l ( x ) = 2 x H

n
( x ) " 2 n H

n - l ( x ) (n > X) • 

z2 
Also, multiplying (5.1) by e , we get 

<5-4) (2x>n = 9 £ k!(n?2k); Hn-2k(x) ' 
2k<n 

In the next place it follows from (5.1) that 

T H (x) H (x) J i v = e 2 x ( u + v ) - u 2 - y 2 = e
2 x ( u + v ) - ( u + v ) 2 e 2 u v 

*-* n m n m!n! 
m,n=0 

0 °° oo k oo m n 
= e 2 u v £ H (x)(u + v)7n! = £ % ^ - £ H A W ^ T 

n=0 n k=b k !
 m * = 0 m + n m ! n ! 
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Equating coefficients we get 

min(m,n) . # \ / i 
(5.5) H (x)H (x) = £ 2kk! H ? H r a ^ . W 

k-=Q i k / U / m+n-2kv 

Similarl y we have the inverse formula 

min(m,n) , , / \ / \ 
(5.6) H _, (x) = V (-l)K2Kk! If) ( f ) H . (x)H . (x) . 

m+n | ^ 0 Ik I Ikl m-k n-k 

The formulas (5.5)s (5.6) are due to Nielsen [13]; (5C5) was rediscovered 
by Feldheim [8], The above proof is due to Watson [20] . 

Another interesting formula is 

(5.7) £ H (x)H (y) zn/n! = (1 - te'^expl43^ " 4 ( x ' + ?** j 
n=0 n n I 1 - 4z 2 ) 

We note first that 

£ H^(x)^L = £ H (x)^-LiL 
n^O n + k n I k ! n^O n n ! 

2x(z+t)-(z+t)2 

2xz-z2 2(x-z)t-t2 
e e 

2xz-z2 v^ TT / \ t e L Hk(x-z)FT 
k=0 K K' 

Equating coefficients, we get 

(5.8) £ Hn+k(x)zn/n! = e 2 x z _ z 2 H.(x - z) , 
n=0 

which reduces to (5.1) when k = 0. 
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Since, by (5.1), 

(5.9) H n W = ^ (-Dk
 k, ( / I 2k), (2x)n-2k 

we have 

£ H (x) H (y)z7n! 
n=0 n n 

<x> . *n-2k 
S £ <"« k ^ W , H n ( y ) Z

n 
n=0 2k<n K ' l n 4K'- n 

» . ._ ,n n+2k 

E (-l)k^£Hn + 2 k(y)( |?.L 
k=0 n> n=0 n + J K n-

g(_l)k^e4xyZ-4XV xz) 
k=0 K ' 4 k 

.«*-*«£ *,"££ W)» , , ^ 1 ^ «, . W"» 
4xyz-4x2z2 v / i \ k (2 k + 2s) ! 2k+2s ,„ . ,2k 

k g = 0 ^ if(2k)! (k + s); z ( 2y - 4xz) 

Since 

(2k)! = 22kk! ( f ) k , 

we get 
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^4xyz-4x2z2 y - j - k ^ k + s 22s 2k+2s 
k,s=0 s!k! (J)k 

2«"»z——"(2y _ 4xz) 2 k 

= e 4xy Z -4xV £ ( 1}k Z
2 k(2y - 4xz)2 k £ ( k + l>s ( 2 z ) 2s 

k4) k ! s=0 s ! 

= e4xyz-4x2z2 J ( _ 1 ) k z2k(2y - 4xz)2 k
 ( 1 _ 4 z 2 ) - k - f 

k=0 

"I = ( 1 - 4 x 2 ) exp^xyz - 4x2z2 - zH^ ' ***? } . 
' 1 - 4z2 ' 

~i 
= (1 - 4x2) % x p / ^ L ^ l S E L ± j d i 2 ! \ 

• I 1 - 4z2 f 

This completes the proof of (5.7). The proof is taken from Rainville 
[16, p. 197]. 

6. The formula of Saalschutz [ l , p. 9] , 

n (-n), (a), (b). (c - a) (c - b) (a i\ v ^ k k k n n 
A k! ^ W ~ <CVC - a - b J n ' 

where 

(6.2) c + d = -n + a + b + 19 

is very useful in many instances. 
If we replace c by c - n, (6.1) becomes 

f ^ k ^ k ^ k < d - a ) n ( d - b ) n 
( ) L E T ^ n l ^ = (d)n(d - a - b)n 

where now 

(6.4) c + d = a + b + l . 
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Now by <6.3) 

«> (d - a) (d - b) «> (d - a - b) n (-n). (a), (b). 
L n n n _ ^p n n y^ k k k 

_ _ ^ " ~ x ~ ^ _ " """nT X ^ k! (c-n). (d)~ 
n=0 'n n=0 k=0 k k 

°° (a) (b). . oo (d - a - b) 
V / i\k k k k v-* n n 

k=0 K " w k n=0 n# 

V / n.k ( a )k ( b )k k,, ,a+b-d 
k=0 K* w k 

Thus (6.3) is equivalent to 

(6.5) F(a,b; d; x) = (1 - x)d""a~b F(d - a, d - b; d; x) , 

where F(a,b; d; x) denotes the hypergeometric function. 
It is customary to prove (6.5) by making use of the differential equation 

of the second order satisfied by F(a,b;c;x). We shall, however, give an in-
ductive proof of (6.1) which we now write in the form 

n (-n), (a + n). (b). (c - b ) ( d - b) 
tia a\ V* k K K _ n n 
{ • } L, — k ' (c) Id) — TcTiai— 

k=0 K* lc'klcUk l c V a ; n 
where 

(6.7) c + d = a + b + l 

Let 

n / \ (a +• n), (b), 

s>.b.o,d) = E (-Dkm k k 
k=o W " ^ ^ " k 

where a ,b , c ,d satisfy (6.7). Then 
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S (a b c d) - V ( l ) k M ^ + n,+,1)k(b)k f , . k / n V ^ - ^ W ^ l *n+1 (a.b.c.d) - £ (-1) ^ j (c)k(d)k '& <"» ( k j - 7 5 J ^ ^ 
k+lv wk+l 

n , / \ (a + n+l) , (b), 
£ <-« k " 7 5 1 — W — ifc+k)(d + k) - (a+n+k + l)(b+k)}, 

k=o \ K / l c W w k + i 

Now put 

(c + k)(d + k) - (a + n + k + l)(b + k) = A(d + k) + B(c + k) , 

where A9B are independent of k. Then 

/fi Rv j (d - c)A = (c - b)(a - c + n + 1) , 
K*9*} j (c - d)B = (d - b)(a - d + n + 1) . 

It follows that 

Sn + 1 (a ,b ,c ,d) = A s n (a + l , b , c + l ,d) + ~ Sn(a + l , b , c , d + 1) 

Assuming that (6.6) holds9 we therefore get 

(c - b + 1) (d - b) B (c - b) (d - b + 1) 
0 / , , v A n n ± > n n Sn + 1(a,b,c5d) - - _ 1 _ T ) ^ ^ ^ + - - ( c ) n ( d + D ^ 

( c - b i l ) (d-b + 1) 
= - r i

n _ - i _ r JL± (A(d-b) (c-b+n) (d+n)+B(c-b) (d-b+n) (c+n)} 
l c ; n + l % + l 

By (6.8), 

(d - c){A(d - b)(c - b + n)(d + n) + B(c - b)(d - b + n)(c + n)} 

= (c - b)(d - b){(c - b + n)(d + n)(a - c + n + 1) - (d-b+n)(c+n)(a-d + n + l)} 
= (c - b)(d - b){(c - b + n)(d + n)(d - b + n ) - ( d - b + n)(c + n)(c - b + n)} 
= (c - b)(d - b)(c - b + n)(d - b + n)(d - c) . 

Therefore 
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(c - b)Q+1(d - b ) Q + 1 

Sn + 1 (a ,b ,c ,d) = (c)n + 1(d)n + 1 • 

which completes the induction. 
As an application we take (6.6) in the form 

k (-k).(a + k).(-a + b + c + 1). (a - b)k(a - c), 
(6'9) § —^inFi Dj(c + 1). } = TFl^c + Dk ' 

where now a ,b , c are arbitrary. Then 

«> (a), (a - b), (a - c) 
V k k k k 

,£- k! (b + 1). (c + 1),, X 

« xk ^ (-k).(a).+k(-a + b + c + 1). 
" & u £ 0 ji a,+ 1)^ + 1), 

<*> . (a)Q.(-a + b + c + 1). . °° (a + 2j). . 

3=0 J 'j 'j k=0 

so that we have 

™ (a), (a-b). (a-c) . . » . (a) (-a+b + c + 1) 

If we take a = -2n, x = 1; (6.10) reduces to 

2n (-2n)k(-2n - b)k(-2n - c)k Q (2n)! (b + c + 2n + l ) n 
( 6 , 1 1 ) £ ) k! (b + l)k(c + l ) k

 = ( _ 1 ) n! (b + l)Q(c + l ) n 

In particular, for b = c = 0, (6.11) becomes Dixon's theorem: 

(6.12) E <-l)kfeV = <-l) <*» . 
k=0 V 7 (n!)3 

-a-2 
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Note also that (6.10) implies, for a = -n , b = c = 0, 

377 

(6.13) fJP 2j<n (j!)3(n - j)! 

and in particular 

(6.14) 
k=0 2j<n (j!)3(n - j)I 

a result due toMacMahon. For other proofs of these formulas see [17, pp. 41 , 
42]. 

7. We now turn to some problems involving multiple generating func-
tions. To begin with, we take 

(1 - 2x - 2y + x2 - 2xy + y2) 2 = R l - x - y)2 - 4xyJ 

= ( 1 - x - y ) " 

r: i» 
4xy 

(1 - x - y)2 

_1 
2 

(xy)1 

(1 - x - y) 2r+l 

(2r + s+t)I a t V* P r l / \r V t^r + s+t j ! s t 

ifen, 
^ r!r!7m-r)! (n-r)2 

00 min(m,n) , , w 

E m n ^ (m + n)! x y ^ —-^ z-
m,n=0 

Since 

min(m,n) 
^ rJ r! (m - rJUn^rTl 

(m + n)l (m + n \ 
m / 

min(m,n) 

r=0 
n i i m + n )2 

r) ~ \ m j ' 

we have 
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2 "= t (mr)' 
m9n=0 \ / 

m n (7.1) (1 - 2x - 2y + x2 - 2xy + y2) = £ m ^ n xmyj 

m9n=0 \ / 

This is in fact a disguised form of the generating function for Legendre 
polynomials s 

-i -
(7.2) (1 - 2xz + z2) = £ P (x) zn . 

n=0 

However to save space, we shall not elaborate this point. 
One can extend (7.1) in various ways. For example , we can construct 

the generating function for the Jacobi polynomial 

It is known that 

(7.4) £ P M ( x ) z n = E ^ R ^ d - z + r)-Q( l - z + R ) ^ , 
n=0 

where 

R = (1 - 2xz + z2) . 

For a proof of (7.4) see, for example, [16, p. 140]. 
If we put 

u = -J- (x - l )z , v = x (x + l)z 

we have 

1 
(7.5) R = [(1 - u - v)2 - 4uv]2 
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and (7.4) becomes 

(7'5' i .Ll J A * r -% + i SR ^ l - u + v + R j ^ d + u - v + R)"'3 

with R defined by (7.5). 
We shall now give a simple proof of (IS). Consider the expression 

(1 - x)J '"(1 - y)J 

j,k=0 J k ^ j r ,s=0 

^ -m n S JL (-m).(-n). (a + m + 1). (j3 + n + l ) . 

m,n=0 3=0 k=0 J k ^ j 

The inner sum is equal to 

m (-m) (j8 + n + 1) k (-n)k(tf + m + l ) k (-n)m (-m)n 

£ "-jT— (p + x ) • L k! (of + 1). = (j8 + 1) (a + 1) 
3=0 J v^ '3 k=0 'k ^ m n 

by (2.3), which vanishes unless m = n. It follows that 

Now put 

u = " 7i ^ T 7 T - — ^ > v - T\ _ v)(i" (mEjir^T)' v - nr^rnrr-yj • 
Then 
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and (7.7) reduces to (7.6). 
8. We shall now extend (7.1) in another direction, namely a larger num-

ber of variables. Consider first 

[,1 - x - y - z>* - 4^ , -K £ M *•>' , m 
r=0 \ / (1 = x - y - z) 

Since 

J-sW' , 1 . x - , - , ) - 2 ' - 1 . r 2 \ + k t* + y + z)
k 

y^ (2r + s+ t+u) ! s t u 

s,a=o <2r>!s:t!u! x y z ' 
we get 

i 

t«- x.,. # - «*.,-*. z $ w ^ ^ m ^ *• >* *-
00 min(m,n,p) / , , \. 
y^ m y p y* ^ (m+n+p-r)! 

m , n , p = l X y Z vk rtr!fci-r)!«a-r)!<p-r)l 

Now by (6.1) 

= (m + n + p)I 
m! n! pi 

(m + n + p) 
m! n! p! 

(m + n)! (m 
m!m! r 

Z 
r=0 

! ( n 

m! 

+ p)f. 
L! n! p 

r!r! 
r 

+ 1) (p m ^ 
<n + 

(n + 
!p! 

p + 

P)I 

r ' 
- n -

+ 1>m 

'^m 

r 

/ m + n j / n + p j / p + m j 
\ m A n A P / 
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Finally therefore we have 

(8.1) [ ( l ^x -y - Z )2 -4xyz ] -2 -= £ ( m + n ) ( n + P ) / P + m ) x m ya *P «"]*-JM1('*')('>m)"-
To carry this further a different approach seems necessary. In the 

expansion 

(1 - v) •"•U& 
replace v by v / ( l - w) and multiply by (1 - w)~ . Then 

(1 

w 

Next replacing w by w/( l - x), we get 

(i-w-x)1
 M = t E £ ( 1 1 3 ) j : k V k ; r VwV [(1 - V)(l - x) - w ] 1 + 1 j=0 k=0 r=0 

Now replace x by x / ( l - y). This yields 

(';<)(T)(kr)< 

•f oo oo oo oo 

(8.2) [(1 - w)(l - y) - x] = E E E E 
[(1 _ v ) ( l - x - y) - (1 - y)w] j=0 k=0 r=0 s=0 

• (ir)(^k)(k")(rr)'J»k r s x y 

Now multiply both sides of (8.2) by u y and sum over i. It follows that 
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(8.3) {(1 - v)(l - x - y) - (1 - y)w - [(1 - w)(l - y) - x ]uy _ 1 }~ 

o o o o o o o o o o / \ / \ / \ / \ 

E E E I : Ef1;! (\+k)(k;ryr:>v 
i =0 3=0 k=0 r=0 s=0 \ J / \ / V r / \ S / 

k r s-i 
w x y 

We are concerned with that part of the multiple sum that is independent of y. 
The left member of (8.3) is equal to 

(L(l - v)(l - x) - w + u(l - w)] - (1 - v - w)y - (1 - w - x)xy } 

E f(l - v - w)y + (1 - w - x)uy ] 
r=0 [(1 - y)(l - x) - w + u(l - w)] 

r 

r+i 

Expanding the numerator by the binomial theorem, it is clear that the terms 
independent of y contribute 

"o \ 7 [a - v) 
vrH xr r 

v - w) (1 - w - x) u 
r=0 \ V [ ( 1 - v ) ( l - x ) - w + u ( l - w ) ] 2 r + 1 

= {['(1 - v)(l - x ) - w + u (1 - w)]2 - 4u(l - v - w ) ( l - w - x ) } " r 

= {(1 - U - V - W - X + UW + vx)2 - 4uvwx} 2 

We have therefore proved 

k r w x 

= { ( l - u - v - w - x + u w + vx)2 - 4uvwx} 2 . 

We now specialize (8.4) by taking u = w, v = x. Since 

2 
( l - 2u -2w+u 2 +w 2 ) - 4u2w2 = ( l - u - v ) 2 ( l - 2 u - 2 v + u2-2uv + v2) 

= ( i _ U - . v ) 2 [ ( l - u - v ) 2 - 4uv] , 

Eq. (8.4) becomes 
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(8.5) £ H(m,n)umvn = (1 - u - v ) " 1 [ ( l -u -v )2 - 4 u v ] " r 

m,n=0 

where 

If we multiply (8.5) by 1 - u - v and apply (7.1), we get 

(8.7) H(m,n) - H(m - l ,n) - H(m,n - 1) = ( m ^ ** J . 

an identity due to Paul Brock [2], [3]. We remark also that (8.5) implies 

=<-••>-S5( r : j ' ( m "i-"") • 
Also, since 

(1 - u - v ) _ 1 [ ( l - u - v)2 - 4uv] * = J^ \ * | (uv)r(l - u - v) 
r=0 

,4 _ V (2A^A^H „ ^-2r-2 

V |2r \ , ^r v (2r + s + t + 1)! s t 

y m nminp'a) L \ (m + n + 1)1 
= m^O U V r t t . W (2r+D!(m-r)!(n-r).' 

it follows that 

«... BM = hf ; f^B( i ] 
For the generalized version of (8.4), see [4] , [6] , [18, Ch. 4] , 
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9. We shall now briefly discuss some enumerative problems. The 
problem of permutations with a given number of inversions was called to the 
writer1 s attention by H. W. Gould. Let {a i ,a 2 , ' " ja^} denote a permutation 
of { l , 2 , - » - , n } . The pair a . ,a . is called an inversion provided that i < j 
but a. > a.. Thus {l,2,«-» ,n} has no inversions, while ( n , n - 1, ••• , l} 
has n(n - l ) /2 inversions. Let B(n,r) denote the number of permutations of 
{ l , 2, • • • , n} with r inversions. Clearly, 0 < r < n(n - l ) /2 . 

From the definition, it follows that 

r 
(9.1) B(n + l , r ) = £ B ( n , r - s) . 

s=0 
s<n 

This recurrence is obtained when the element n+1 is adjoined to any permu-
tation of { l , 2 , - « * , n } . Now put 

n(n-l)/2 
B(x) = £ B ( n , r ) x r . 

11 r=0 

Then by (9.1), 

n(n+l)/2 ^ r 
Wx ) = E x S B(n,r - s) 

r=0 s=0 
s<n 

n n(n-l)/2 
= £ xS £ B(n,r)xr , 

s=0 r=0 

so that 

(9.2) £n+l ( x ) = ( 1 + x + ' " +xn)/3n(x) 

Since pt(x) = 1, (9.2) yields 

(9.3) * W = ( l - x ) ( l - x 2 ) - . . ( l - x n ) 
(1 - x) 
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Thus, for examplej 

B(n,0) = 1, B(n,l) = n - 1, B(n,2) = -f(n + l)(n - 2) (n > 1), 

B(n,3) = -I- n(n2 - 7) (n > 2) , 

B(n,4) = fa n(n + l)(n2 - n - 14) (n > 3) . 

From (9.3), we get the generating function 

o.4) E /yx)z7(x)n = - 1 - X 

O Xi J.JL X ~" X "~ Z 

where 

(x)n = (1 - x)(l - x2) . . . (1 - x n ) , (x)0 = 1 . 

This is the first occurrence in the present paper of a generating function with 
denominator (x) ; see the remark in Section 11 below. 

If we make use of Euler1 s formula 

n < i - » » > = £ ( - i ) k x'k ( 3 k + 1 ) 
(9.5) 

n=l k= 
2 _L v 5 _t_ -v? -v-12 -y-15 = 1 - x - xr + xb + x( - x1^ - x1D + • . . , 

we obtain an explicit formula for B(n,r) when r < n. For example, we have 

B,n,4, = ( » ; 3 ) - ( n 3 2 ) - (" t ) *>-*• 

B < » . « - ( n ; 4 ) - ( " ; 3 ) - ( " 3 2 ) ^ < » i s > . 
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If we rewrite (9.3) in the form 

0n(x) = (1 + x)(l + x + x2) . . . (1 + x + ••• + x n - 1 ) , 

we obtain the following combinatorial theorem: B(n,r) is equal to the number 
of (integral) solutions x l 9 x 2 , . • • ,x n of the equation 

(9.6) xj + x2 + • • • + x = r 

subject to the conditions 

0 < xfc < k (k = l , 2 , ' " , n ) 

We remark also that (9.3) implies 

n(n-l)/2 
£ B(n,r) = n! , 
r=0 

n(n-l)/2 
£ ( - l ) r B(n , r ) = 0 (n> 1) , 
r=0 

n(n-l)/2 n /.v 
£ r B(n,r) = n! £ ± (Jj = | n ( n - 1) • n! . 

For referencesj see [12, pp. 94-97], 
10. As a second enumerative problem, we consider permutations with a 

given number of r i ses . If {a i ,a 2 , - • • , a n } is a permutation of { l , 2 , e a # , n } , 
a., a.. - is a r ise provided a. < a -. By convention there is always a rise 
preceding aj. For example., the permutation {3,4,1,2} has 3 r ises . 

Let A . denote the number of permutations of { l , 2 , a " ,n} with k 
r ises . Then we have the recurrence 

(10.1) A ^ . = (n - k + 2)A . - + kA . . 
n+l,k n , k - l n,k 

The proof is simple. Let {&i9
9 " 9&r} be a permutation of { l , 2 , - " , n } . If 

a. < a . , - and we place n + 1 between a. and a.,- the number of r ises is I I + I ^ I I + I 
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unchanged. If, however, a. > a.+ 1, the number of r ises is increased by 1; 
3 also true when n + 1 is placed to the 
It is also clear from the definition that 

this is also true when n + 1 is placed to the right of a , 

( 1 0 ' 2 ) A n , l = A n , n = 1 to - 1 . 2 , 3 . - ) ; 

the permutations in question are (n , n - 1 , • • • , l } and { l , 2 , " « , n } , r e -
spectively. By means of (10.1) and (10.2), we can easily compute the first few 
values of A n,k 

1 
1 1 
1 4 1 
1 11 11 1 
1 26 66 26 1 

If, in a given permutation {a1,a2,e • • ,&k}9 we replace a, by n - a, + 1 
(k = 1,2, - • • , n), it follows that 

<10-3> A n , k = A n , n - k + l ' 

Also it is evident that 

(10.4) T A . = n! 
k=l n ' k 

Put 

n , 
A0(x) = 1, A (x) = E A

n k
x (n = 1,2,3,-••) 

k t i n'k 

Then it can be shown that 

(10.5) - l ^ - * - = £ (x - l ) " n A (x)Z
n /n! 

e - x n=0 
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We shall not give the proof of (10.5). It is indeed easier to define A (x) by 
means of (10.5) and show that the other properties follow from this definition. 

For references, see [5] , [18, Ch. 8] . 
The symmetry property (10.3) is not obvious from (10.5). This suggests 

the following change in notation. Put 

(10.6) ACr.s) = A r + s + 1 > r + 1 

Then by (10.3), 

(10.7) A(r,s) = A(s,r) 

Also (10.5) implies, after a little manipulation, 

,10-8) F(x'y, = ; ^ - r ! o A ( - s , T ^ ^ 

Another symmetrical generating function is 

r s x (10.9) (1 + xF(x,y))( l + xF(x,y)) = £ A(r,s) , * / . -
r,s=0 l r + s ; ' 

The denominator in the right members of (10.8) and (10.9) should be noticed. 
11. We conclude with a few remarks about q-series; an instance has 

appeared in (9.4). Simple examples are 

(ii.i) n a - A r 1 = £ zn/(x)n, 
n=0 n=0 

(n.2) n (i + xn
Z) = £ x>n{n-1] zn / (x)n , 

n=0 n=0 

where as above 
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(x)o = 1, (x) = (1 - x)(l - x 2 ) • • • (1 - x n ) 
n 

A more general result that includes both (11.1) and (11.2) is 

°o n °o (a) 
(ii.3) n — - L j j - z 

n=0 1 - x z n=0 x 'n 

where 

(a)0 = 1, (a)n = (1 - a)(l - ax) ••• (1 - ax11 * 

To prove (11.3), put 

.. n *> 
1 - ax z F ( z ) , n i ^ i = 5]• AZ 1 1 , 

n=0 1 - x z n=0 

where A is independent of z. Then 

F(xz) = ̂ ±. F(z) , 

so that 

oo 

This gives 

(1 - az) £ An x n z n = (1 - z) £ A z n 

n=0 n n=0 n 

(1 - xn)A = (1 - ax11"1) A 1 , n n-1 

and (11.3) follows at once. 
k In particular, for a = x 5 (11.3) becomes 
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(11.4) 
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k , 
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k-i °° (x ) r i 
Yi ,., n v-1 v^ n n V k + n - 1 n 
II (1 - x z) = 2 ^ T ^ V — z = Z^ n z , 

n=0 n=0 l X 'n n=0 L n -» 

whe re 

( x )
k ^K^ (0 < n < k) 

- k k 
If we take a = x and rep lace z by x z we get 

(11.5) 
k - 1 k 
II (1 - xnz) = £ (-l)n 

n=0 n=0 
Jn(a-l)zn 

Note that when x = 1, r educes to 

It a l so follows from (11.3) that 
( » ) • 

(11.6) 
n r i 

£[3 (a), (b) , a = (ab) , k n -k n 

for a r b i t r a r y a , b . Special izing a , b o r using (11.5), we get 

(11.7) 
k 

roUmsj[sJ 
s 2 -ks+ms [m + n"| 

k J 

which evidently genera l i zes (2.2). 

The function 

e(z) = n (1 - x n z f * 
n=0 

can be thought of a s an analog of the exponential function. This sugges t s the 

definition (compare (4.2) ) , 
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oo oo 

(11.8) e(tz) £ a
n z n / ( x ) n = £ A ( t ) z n / ( x ) , 

n=0 n=0 n n 

where a n is a function of x that is independent of t and z. Using (11.1), we 
get 

(11.9) An(t) = | o [ J ] ak t11"1 

If we define the operator & by means of 

&f(t) = f(t) - f(xt) , 

it follows at once from (11.9) that 

(11.10) AAn(t) = (1 - x11)An_1(t) 

Conversely if a set of polynomials in t satisfy (11.10), then there exists a 
sequence {a } independent of t such that (11.8) holds. 

The special case a = 1 is of particular interest . Put 

00 

e(tz)e(z) = £ Hn(t)zn/(x)n 
n=0 

so that 

For properties of these and related polynomials, see [ 7 j , [ l l j , [ l9J . The 
H (t) a re in some respects analogous to theHermite polynomials. We cite the 
bilinear generating function 
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(11.11) £ Hn(u)Hn(v)z7(x)n = e(z)e(uZ)e(VZ)e(uvz) 
n=0 e(uvz2) 

00 - . n o 
II 1 - x uvz4 

n=0 (1 - x z)(l - x uz)(l - x vz)(l - x uvz) 

which may be compared with (5.7). For proof of (11.11), see [7]. 
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0. By the Perron matrices P. in an n-dimensional algorithm of the 
Jacobi-Perron type [1] we understand the analogue to the 2-dimensional 
matrices 

Pk-i \ 

built up from two consecutive "convergents" 

of an ordinary continued fraction. 
As explained in detail in Chapter I of a previous joint paper of ours [2] 

these n X n matrices P are defined recurrently by 

P k = P k - 1 A (k = 0 , 1 , ' • • ) , 

with the initial condition 

P - = I (n-rowed unit matrix) , 

where the matrices 

• 0 a Ok 
Llk 

1 a n- l ,k 
394 

(k = 0, ! , - • • ) , 
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a re built up from the "partial quotients" 

a 0k = l j a l k s ' " V l 5 

In the algorithmj which in the special case n = 2 of ordinary continued frac-
tions reduce essentially to only one a.,, in each step. 

From this recurrent definition it follows that the Perron matrices P 
are built up from an infinite sequence of n-termed columns w .. in the form 

J£ — JL 

p k - i = * W " ' * k - i > • 

satisfying the recurrency formulae 

<°-D a 0 k V n * - + V l , k * k - 1 (k>°> > 

with the initial condition that 

-n u -1 n-1 

a re the columns of the n-rowed unit matrix I. 
In the present paper the entries of the Perron matrices P. n shall be 

(v) denoted by pj_ , fvS where the super- and subscripts v = 0,* • • ,n - 1 and 

v% = 0,* • • 9n - 1 indicate the lines and columns, respectively: 

•*k-l v* columns \ ' 

Thus the recurrency formulae (0.1) with the initial conditions (0.2) become 

(0.3) 

with 

(v) y^1 (V) ( k > 0 \ 
p k " ^ V p k - (n-^) \ v = 0, • • • , n - 1 / 

(0 4) D M = e M - I1 for V = V'\ 
( U a 4 ; P - ( n -^ ) V ~ \0 for v £ V*) 

(entries of the unit matrix I) . 
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In Perron 's original paper [2] these p would be the A 
We shall consider only purely periodical algorithms. Let I be the 

length of the period. Then in the recurrency formulae (0.3) there are only 4 
different n-termed coefficient sets a t (v1 = 0 , ' • • ,n - 1), which recur 
periodically. In our first, purely algebraic part these I sets will be con-
sidered as algebraically independent indeterminates and denoted by a ^ (\ = 
0,«« • , £ - 1). For the sake of algebraic generality and formal symmetry we 
include in this stipulation also the coefficients &$ which in the actual algo-
rithm are throughout equal to 1. 

For purely periodical algorithms, the infinite sequence of recurrency 
formulae (0.3) reduces to a finite system 

n-1 
(o-5) PS* - E A W M - ) ix=0'- • • •'-1 

i/»=0 

k 0 
• •• I 

of i linear recurrencies with the n linearly independent initial conditions 
(0.4). 

We shall chiefly be concerned with the special case of period length t = 
1, where there remains only one single linear recurrency 

£4 / \ 
/n a\ W > r » I k > 0 \ 
(°-6> Pk - fa V * W ^ ) (v = 0,- r . , n . x J 

with the n linearly independent initial conditions (0.4). In this case we shall 
obtain the following simple explicit expressions for the entries p^ of the 
Perron matrices P^. (last column): 

(0.7) 
k<""''kn-i^ ° 

p k L(ko . - . . , k 1)=k+(n-i') ( k k
n M 

k 0 , - - - , k ° , > 0 \ K ° ' ' n - l / 

k n - l / k > 0 \ 
n - l I v=0,--- , n - l J 

k 0 + - - - + k
v
 k

0 

*<> + ••• + V i a° 

with summation restricted by the linear form 
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(0.8) L(k0, ••• , k ^ ) = nk0 + (n - l)ki + ••• + l k ^ 

in the summation variables k0,» • • , k n _ i , and with the polynomial coefficients 

(0.9) 
ko + . . . + kn__1\ (k0 + • • • + k n _ 1 ) ! 
k°' "' kn-l / = k°! •"• V l 1 " 

The procedure by which we reach our aim (0.7) is the very old method 
of Euler, viz. , to translate the recurrency formula (0.6) for the sequences 

(v) 
p^ into algebraic expressions for the generating functions 

>(l/)<x) = E P^xk 
y A {v = 0, • • - , n - 1) 

k>0 K 

and to determine the power series coefficients p* from those algebraic 
expressions. 

In the general case of arbitrary period length i we shall show that the 
same object can be achieved in principle. The explicit formulae, however, 
would be so complicated that one can hardly expect to write them down in ex-
tenso, but for simpler special cases. As an example, we shall carry through 
in extenso the very special case i = 2 with n = 2, i. e. , the case of purely 
periodic ordinary continued fractions with period length 2. 

There i s , however, a special case of a more general type in which we 
can obtain as definite a result as (0.7). Amongst the numerous periodic algo-
rithms, discovered by the first author in previous papers*, a particular period 
structure prevails, viz., of length ^ = n and with the following specialization 
of the coefficients in (0.5)s 

(0.10) a ™ = t n a ^ (A,z/J = 0, . . . f n - 1) , 

where 

See the complete list of references in [ 3] , 
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n ' 1 for X + V* > n 

is the so-called "number to be carried over" in the addition of the n-adic digits 
A,^f. In this i m p o r t a n t case we shall derive from (0.7) the following 
generalization: 

» _ r i ^ *YJ 
L(k0, . . . ,kn_1)=k+(n-i ' ) 

(0.12) p £ ' = t 

/ k 0 + " - + k n - l \ k 0 + ' - - +kv V 

\k0> ' V l / k 0 + - - + k n - l 

V l k0 kn- l lv n
 k>° , ) . 

a 0 " ° a n - l \ v = ° . • • • » n - l / 
kQ+- • • +k._ 

We shall come back to another significance of this case in our second 
chapter. 

CHAPTER I: ALGEBRAIC FOUNDATIONS 

1. We begin with considering the special case of period length 1=1. 
To the recurrency formula (0.6), viz. , 

n-1 

with the initial conditions (0,4), viz. , 

(1.2) P X - I / I ) = ew {V>V% = °>"-> n " D > 

we let correspond the characteristic polynomial 

n-1 

= F(x) = 1 - J^ V ^ ' 
l/f=0 

and the n generating functions 
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(V) (v). . y * (v) k 
pv = pv '(x) = £^ pi x 

399 

k>0 K 

Now 

V X p ~ 4 - ( V p k X 
k>0 

V * (u) k 
= k » a^-<*-v>) X 

_ V * (i/) k 
" ¥ ? 6 I / , P k - ( n - ^ ) X 

V " (i>) k 

- A-* V P k - ( n -k>0 - — - ^ ^ 

l a ^ x for i" < # 

) for v* > v 

the latter because the summation condition 0 < k < (n - V) - 1 is equivalent 
to -(n - î T) < k - (n-i>!) < - 1 , so that the initial conditions (1.2) are applicable. 

Summation over uT then yields 

k>o\i/»=o / 

v 

Here the negative terms on the left and right are equal to each other on account 
of the recurrency formula (1.1). This gives the algebraic expressions 
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(V) A{P) ... .«/) 
p^ = _ ^ W 1th Av 

(1.3) ^ 
(l°(x) = ^ V ^ " ^ (l/ = ° ' 8 - e ' n " X> » 

I"=0 
Av 

(I/) 
for the generating functions P . 

2. In order to obtain explicit expressions for the recurrent sequences 
(v) p , , we have to develop the rational functions (1.3) into power series in x. 

The power series for l / F is obtained easily from the geometrical series: 

n - l • " 

k>oWt=0 
a ^ x 

)...TJh.1>o\V ••••Vi/ (2.1) k 0 ' 

k0 k n - l n k o + ( n - 1 ) k l + - " + l k n - l 
x ao - V i x 

k>0 \LW=k\ k 0 ' •••• k n - l / ° n - 1 , L>0\] 

with the linear form 

(2.2) L(sm) = nk0 + (n - 1 ) ^ + • • • + l k ^ 

in the summation variable vector 

n = ^ ' • " • k n - l ) • 

In what follows the summation variables k0s- • • 9kn_i are throughout silently 
supposed to be 0. The solutions U of L(9$ = k correspond to the partitions 
of k into summands from !,• • • ,n; their number p ,, , is well known. 
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In order to obtain from (2.1) the power series for the rational functions 
p in (1.3), we have to multiply by the single terms a x ~ of the poly-
nomials A in the numerator and then sum up over ^f. Multiplication by one 
of these terms and subsequent transformation of the summation yields in the 
first place 

a I /» x 

F -L{z(kr:::kr) 
k>0\L(3J i )=kW ' V l / 

k 0 1V»+1 k n - l \ W-V) X a Q . -• zv, - - - a ^ Ix 

= E l E /k0 + " ° + k n - l \ 
k>oyL(sK)=k-(v-w)\ko! ;*'• V i z 

k0 k ,+1 ao 

In order to simplify the subsequent summation over 1" we have here formally 
admitted terms with L(ko9' • • 9kn_^) < 0, which actually vanish because the 
summation condition is empty. Summation over v* then yields the development 

k>0 \ i/'=0 L(3K)=k- (v-v*) V k 0 ' * " ' n-1 / 

kQ k^.+l 
X ao ' " °v* 

for the generating functions, and thus the explicit expressions 

p" = E E ( k , .... kn J 
( 2 t 3 ) Vt=0 L(9K)=k-(^-^) • ° ' 

k0 V 1 kn-l 
X aQ . . . a,,, ••• a n - 1 , 

for the recurrent sequences in question. 
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3, As a last step, the sum (2.3) of polynomials in a0," • • , a n . ^ can be 
put into canonical form, i .e . , represented as a single polynomial in a0,a • • , 
a -. This is achieved by a further transformation of summation which, in its n-1 J 

turn, allows to reverse the order of the two summations. 
The transformation, leading to this, is 

(3.1) ky, - ^ k y , - 1 . 

It is true that by it the silent summation condition k^f > 0 is transformed 
into k^ > 1. However here , too, after the transformation, the summation 
may again be extended formally over all k » > 0, because the polynomial co-
efficients with a negative term in the "denominator" vanish, if only the sum of 
all terms in the "numerator" is non-negative. The truth of this assertion is 
easily seen by expressing the factorials in the definition (0.9) of the polynomial 
coefficients as values of the Gamma-function and observing that this function 
has no zeros at all , and has poles only at 0, - 1 , -2,« • • . That the "numerator" 
here is non-negative, is seen as follows. Under the transformation (3.1), 
according to the definition (0.8), one has 

L M - > L M - (n - v<) 

and hence 

^ k0 K* kn-l 
X a

0 ° , B V t " 8 V l * 

Here the sum of all terms in the "numerator" is surely non-negative, because 
L W = k + (n - v) > k + 1 > 1 and hence not all k0,« • • >kn_i vanish. 

Since by this transformation the inner summation condition in (3.2) has 
become independent of the outer summation variable vf, the order of the two 
summations may now be reversed: 
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pP- £ (E (£:::::%:?::".+fc))* 
L(3K)=k+(n-y) \ i;i=0 n _ 1 ' 

(3.3) k0 k ., 
u n-1 

X a0 • • • a n l Thus the polynomial (2.3) has already been put into canonical form. But, 
moreover, it is even possible to consummate the inner sum in (3.3). For, by 
definition 

/ko + " « + (kj,, - 1) + ••• + k n _ 1 \ (k0 + --- + (ky, - 1) + ••• + k n _ l ) I 

V k o , - " ,k„ , - 1 . •'•' k n _ J = ko! •" (V -D! ••• V J ! 

/Tk0 + . . . + k n _ 1 ^ k„, 
= Uo . • • • . kn_Jk0H-...+kn_1 WS0 f° r K* = 0) ' 

and hence 

(3.4) 

» / k o + . . . + (ky, - 1) + . . - - f k ^ v 
^ \k0 , ••• . k - 1 , ••• , k J 
;t=0 

= /ko + ••• + k
n - i \ ko + " • + k v 

\k0 , ••• . ^ J k o t . . . +kn_1 

Thus (3.3) yields our first chief result 

/ k 0 + --- + k n _ 1 \ 

• " + k u k0 k
n - l / k > 0 \ 

• • + kQ_1
 a° * " V l » \v = 0 , - - - , n - 1 / 

P ^ = Zv U . . . . . t " " j X 
L(9tt)=k+(n-z/) 

(3.5) 
k0 + 

xkrr-

as announced in (0.7). 
We remark that (3.5), conveniently interpreted, holds even for k > -n, 

i8 e. j including the initial values corresponding to k = -(n - V) {v* = 0,» • • , 
n - 1 ) . For in these cases the summation condition L@tt) = P1 - v has no non-
negative solutions if v% < v9 only one such solution, viz. , k0,» • • ,k - = 0, 
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if vi = v9 and only such solutions with k0,«« • ,k^ = 0 if V1 > v. Hence for 
V* < v the sum is 0 by the usual convention for empty sums, for W > v it is 
also zero with regard to the factor 

k0 + - " + k n - l ' 

and for V* = V it is 1 if this factor of the indeterminate form 0/0 is under-
stood as 1. 

It is furthermore perhaps not useless to remark that for the first initial 
condition (1.2), i. e. , for v = 0 this result can also be written in the simpler 
form 

(3.6) P k = 2 - l k n , . . . , k J a 0 • • ' a l - V l ( k ^ 0 ) 

as is already clear from the intermediate result (2.3)0 

4. Since operating with polynomial coefficients, and in particular with 
their fundamental recurrency property 

U* v/k0 + " ' + ( V - 1 ) + - - + k n - A / k 0 + - ' + k n - l \ 

(special case v - n - 1 of (3.4)), is not so familiar and handy as in the special 
case n = 2 of binomial coefficients, we attach here the following simple r e -
duction of the former to the latter. 

From the definition (0.9) one has 

/ V " - + k n - l \ _(k0 + ~- + M X 

Vko • ••• • V i / \ko • ••• • V 
/(k0 + . . . + v +km + . . . + k n _ 1 \ 
\ k 0 + - . - + k v ; , kv+1 , ••• , k^J* 

(4.2) 
X 
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for any V = ! , • • • ,n - 2. For V = 1, the first factor on the right is the bi-
nomial coefficient 

/ko + kA 

Iterating this case of (4.2) in the second factor on the right, and putting 

kh = k o 
k i = ko + k i 

(4.3) / ° X 

k n - l = k o + k l + * " + k n - l ' 

one obtains the reduction 

- ft:::::a-fflfi)-(a-
Application of this reduction to our final result (3,5) yields the equivalent 

expression 

(4.5) 
SW=k+(n-i>) £..G)K-(&> 

K k0 ki"k0 ^ - 1 - ^ - 2 / k > 0 \ 
T—\ a l " " V l Vf = 0,- . . . n - l / 
n-1 \ / 

where 

(4.6) SW = kjj + . . . + k^x 

is the simpler linear form obtained by the transformation (4.3) from L(9tt) in 
(2.2). The silent summation condition k 0 , , # - , k - > 0 is transformed in 0 
< kf < • • • < kf 

~ 0 - - n - l ' 
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Special cases of the formulae (4.5), with n = 2 and n = 3, have r e -

cently been developed by Arkin-Hoggatt [ 4 ] . 

5. We now turn to the general case of an arbitrary period length i. To 
the £ recurrency formula (0.5), viz. , 

n-1 
(v) _ \^ (X) (v) ( k > o \ 

" i ; \lL+\ " LJ a ^ p(k£+X)-(n-^) \ \ = 0, ••• , n - 1/ 

with the initial conditions (0.4), viz. , 

(5.2) P ^ v f ) = et* C i " = 0f . . . , n - 1) 

we let correspond the I polynomials 

n-1 
,<X> _ W ( A ) ^ = , _ V ^ x

n ^ 

and the n generating functions 

pv'' = pv)(x) = E Px''x" 
k>0 

We split these polynomials and functions into components, corresponding to the 
residue classes mod# of the x-exponents: 

F(X) = 5 ? F £ > with p W B ^ W (5.3) A'=0 A A A 

A i/»=o 
n-v1 =A.?mod# 
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£-1 
V X „ vvx,xx p A f f - yXu .<"> - E pR «*> pf? - P K W 

X"=0 
(5.4) 

(v) k£+An E lf) J 
P K £ + A " x 

k>0 

In order to translate the recurrency formulae (5.1) .with the initial con-
ditions (5.2) into algebraic expressions for the generating functions, we multi-
ply, for each fixed X and v$ the terms a*,xn~ of a component F ! T by 
that component p. Tt for which 

(5.5) Xf + X" s X mod£ . 

Subsequently we sum up, first over the v% with 

(5.6) n - l>f = Xf mod£ , 

and then over the £ pairs Xf,Xtf with (5.5). According to the congruences 
(5.5) and (5.6), we put 

(5.7) (n - P*) + X" = X + M , 

with an integer h > 0. The whole procedure will be quite analogous to that in 
Section 1 for the special case ft = 1. In the first place, one has 

(X) n-i/ '(i/) _ V* (X) (v) v(kl+X")+(n-^) 

k>0 

kX) 

,(A) W k£+A E oWAV) 
V p(k-h)£+A'? 

k>h 

K>h 
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V a ( A ) o ( i ; ) xM+X 

LJ V pfe£-fA)-(n-^) 
k>0 

1L V pfe£+A)-(n-y')X 

0<k<h-l 

(A)(w) k£+A 

k>0 
Z-f V p« 

>o 

( aptr^"^ for V = V - A mod i and l/f < v\ 
0 otherwise / 

The latter one sees as follows. The summation condition 0 < k < h - 1 im-
plies, again by (5.7), the inequality chain 

-n < -(n - V) < A - (n - V) < (M + A) - (n - ff) < ( (h - IK + A") 

_ (n _ yf) = -(&. - A " ) ^ - 1 > 

so that the initial conditions (5.2) are applicable. They say that almost all 
terms of the sum in question vanish, save only one with 

(M + A) - (n - i/1) = -(n - v)9 or else, kl + A = V - V1 . 

Such a term can occur only if v% = v - X mod it and V* <> v. If these condi-
tions are satisfied, it actually occurs, because then the equation kS. + A = V -
vx has a solution k > 0 with 

M = (i; - i/t) - A < (n - i/T) - A = M - A " < h£ , 

and hence k < h - 1. 
Summation over the V1 = 0,» * * ,n - 1 with n - i>? = Af mod I , accord-

ing to (5.3) now yields 
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n-1 
<A) JO) sJW _ x^ / \7* „ (A) (V) \ M +A 

409 

(FAf - e A f ) p A „ - - W 2 ^ V p ( £ + A ) - ( n ^ ) 
k > 0 \ *"=0 

, x. 

(A) v-v* 
a i / i x 

n-z^=Af mod£ 
^-^f=Amodj2 

and summation over the pairs Af, A" with A? + Af? = A mod I further yields 

n-1 

E F(A) 
FA< 

Af+Aff=modi 

X ktf+A 
X 

A' 

+ 

V-

PW _ 
A 

n-1 

E 
i/f=Amod0 

-2 k>0 [ 

V x 

a (A) DG» 
V P( £+x)-(n-i;f) 

^f=0 
X 

Here the negative terms on the left and right a re equal to each other on account 
of the recurrency formulae (5.1). Thus the following system of I linear equa-
tions for the I components "9 \ of the generating function P results: 

£ I-WpJ) = A<A,*> with A(A,^) 
A'+A"=Amod« 

(5.8) 
= A<A,^) w 

n-1 

E 
l>-^=Amod0 

V x 

The matrix of its coefficients is built up from the components F . f of the 
(A) f 

characteristic polynomials F . Lines and columns of this matrix are speci-
fied by A and A" = A - AT mod i (not by A and Af). Written out fully, it 
is the matrix 
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(F(A) ) 
s \-\"' X lines X" columns 

/'? 
F « > 

\ ^ 
\ F ^ 

F<°> . . . 

0 

2-2 

rf 
' , W 

' J " U 
Here X - X" on the left is to be understood as reduced to its least non-negative 
residue mod i. 

Now let 

D = F(A) 
X lines 
X" columns 

denote the determinant of this matrix and (D^ ) its transposed adjoined 
matrix. Then the linear system (5.8) has the solution 

(5.9) P j ! = £ 2 g , (X" = (>,•••, I - 1) 

From this one obtains the following algebraic expressions for the generating 
functions themselves: 

A=0\X"=0 A A / 
J>) 

(5.10) V(V) = M ^ L Z T _ _ ^ , (1/ = 0, • • • , n - 1> . 

In order to obtain explicit expressions for the recurrent sequences p^ , 
one has to develop these rational functions of x into power series in x. This 
seems however extremely difficult. One would first have to find a sufficiently 
smooth expression for the determinant D and its minors D^_.„ . 

In the following two sections we illustrate this on the next-simplest case 
i = 2 and carry it through to the end under the special assumption n = 2. 
After what has been delineated in the preceding sections, we can be brief in 
doing this. 
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6. In the special case I = 2 we have to consider two alternating r e -
currency formulae 

n-1 

2k JLJ VfP2k-(n-^) ' 

n-1 
P2k+1 / ^ Vp(2k+l)-(n-&") , 

i"=0 

for each of the n linearly independent initial conditions 

V(Z-W) = *V< (" '1" = 0, - - - . n - 1) . 

For the sake of easier readability, we here have distinguished the two coef-
ficient sequences, hitherto denoted by a , instead by the upper indices A = 
0,1 by writing them with two different letters a ,b. In the same manner we 
denote the polynomial pairs F and A (A = 0,1) now by F , G and 

(v) (v) A , B , respectively. 
From the pair of characteristic polynomials 

n-1 

F = F(x) = 1 - ^ V x 1 1 " ^ = F0 + FA , 

n-1 
G = G(x) = 1 - ^)T bvtxn'^ = G0 + Gi , 

i>f=0 

each decomposed in its even and odd components, algebraic expressions for the 
generating functions 

P M « P M ( D =x)p- ) x k = p r + p r • 
k>0 

likewise decomposed, are found as follows. 
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The linear equation pair (5.8) for the component pair Pft , P- has the 
matrix 

( F° M 
\ G i G 0 / 

with the determinant 

D = F0G0 - FiGt , 

and with the transposed adjoined matrix 

/ G0 - F A 
V"GI F„/ 

The terms on the right are 

v 

z/-y?=0mod 2 

B M E , v-v' 

y-yf=lmod 2 

Hence the solution (5.9) for the components is 

w GpA^ - FtB<» (v) - G ^ H- F 0 B ^ 
0 F0G0 - FJGJ • P l F0G0 - F!Gi 

and the generating functions (5.10) themselves are 

, . (G0 - Gi)A(l,) + <F0 - F j j B ^ 
(6.1) P W = 

F0G0 - FjGj 



1969] BERNSTEIN AND HASSE 413 
It is worth remarking that this can be written in such a way that only the 

characteristic polynomials F,G themselves, not their components, figure in 
it. For, the component pairs are given by 

F | W - i w + pfc*) . FI(X) = F<*> ; F<~*> . 

G0(x) G(x) + G(-x) G!(x) G(x) - G(-x) 

Thus the determinant becomes 

D(x) = F(x)G(-x) + F(-x)G(x) 

and the generating functions become 

(6.2) V(V)(, _ G(-x)A{U)(x) + F(-x)B(i;)(x) 

7. Under the special assumption n = 2, one has 

1 - a tx - ZQX2 = (1 - a0x2) - ajx , 

G = 1 -
°> - « - ao 
0 ) = 0 

bix - box2 = (1 

A*1* = a , 
B ( 1 ) = b0x , 

- b ^ 2 ) - b t x , 

D 

,(0) 

(1 - a ox2) (1 - b ^ 2 ) - a ^ x 2 

1 - (a0 + b0 + ajb^x2 + ajbjx4 , 

a0 + a0biX - a0b0x2 

(1) aA + (b0 + ajbjjx - a0box3 

D D 

The power series development of l /D is 
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1_ 
D E ( (a0 + b0 + aib^x2 - a0boX4 ) 

kXO 

E ( k ° k
+ k l ) (ao + b0 + a1b1)kO(-a0b0)kix2ko+4ki 

k 0 , k £ D \ K l / 

E E ( -D k l ( k ° u k l V o + b0 + a ^ ^ f e o b o ) ^ 
k»>0 k0+2kf=k \ M / 

2k 

(7.1) 

0 D = E 
kXO 

- E 
k>0 

£1=k \ K 1 / 

2k 

+1 

From this, one obtains easily the following power series developments for the 
even and odd components of the two generating functions: 

( 0 ) _a0-aob0x2 _ v f 

ko+2k; 

S , -vk-i/ko+ki-lY , , , , \kn-l ki+l,kf ( -DM V 1 J(a0 + bo + a1b1) ° a0* b0* 
k0+2k1=k \ M / 

L (kq>D 

E T E ( - l ) k l ( k V + k l ) b 1 ( a 0 + b 0 + a 1 b 1 ) k O a ^ ^ l x 2 k + 1 

k>0 k0+2ki=k \ M / J 

E (~Dkl (k°k
+ k l ) ai(a0 + b0 + a l b l ) k ^ b k * l x 2 k 

k0+2ki=k \ M / J 

2k 

,(0) a0bi 

"IT" 

0 " D kXO 
^(1) ^ (bo+a^iJx-aobox 3 I~ / ^ k 

k>DLk0+2ki=k D (-if1 X 

X (
k ° k + k l ) (b0 + a l b l ) (a0 + b0 + a^/oa^lx21^1 

E f E (-Dklfk°k
+ kl"*V 

k>0 ko+2k!=k \ * I 
L (kt>L) 

i , i. , u ^ko-l k i + 1 u k i + 1 l 2 k + 1 
(a0 + b0 + a ^ i ) ° a0* bo1 x 

The sums in square brackets — or in the first and fourth cases , more exactly, 
their differences — are the looked for explicit expressions for the recurrent 
sequences (Q) (Q) (1 ) & ) 

P 2 k * P2k+1 a n d P 2 k ' P2k+1 ' 
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8. We finally come to consider the important special case, where H = 
n, i. e. , the period length coincides with the dimension of the algorithm, and 
where n2 indeterminate recurrency coefficients a , are specialized to com-V 
binations of only n + 1 indeterminates a^ and t as specified in (0.10), (0.11), 
viz. , 

,3.x, 4» = vx-\ ^v* ." , . ) ; ii j:r>:| 
In this case the recurrency formulae (0.5) specialize to 

(8 2) D<"> - y ' t ^ ' ^ a DW I k > 0 ^ 
[^> Pkn+A ~ ^ * Vp(kn+A)-(n-t") \u = 0,- •"• ,n - 1 ) ' 

with the n linearly independent initial conditions (0.4), viz. , 

<8'3) P-"(U<) = e ? (V'V' = 0, - - - . n - 1) . 

These recurrency formulae can be reduced to those of the special case 
t = 1, but with new coefficients. For this purpose consider the modified 
sequences 

(8 4) rT{v) = tk+VU) . 
1 5 e 4 j Pkn+A l Pkn+A 

They satisfy again the initial conditions (8.3). Now the p^ -subscripts on the 
right of (8.2) reduce as follows to the canonical form on the left: 

(kn + A) - (n - V) = (k - l)n + (A + i>f) = (k - 1 + dn(A,^T) )n + Af 

with 0 < Af < n - 1. 
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Hence 9 

V*-t» p<kn+A)-(n-i») * p(kn+A)-(n-i») 

From (8.4), (8.5), we obtain the following transformation of the recurrency 
formulae (8.2): 

Pkn+A Pkn+A 

n-1 k + l ^ y x ^ ) (v) 

~ ifco V p ( n+A)-(n-i") 

Thus the modified sequences pT ' satisfy the linear recurrency (0.6) with 
the modified coefficients ta„, , and, as already said, with the same initial 
conditions (0.4). According to (0.7), they are therefore given explicitly by 

-(v) = . y / k , + ••• +knV 
Pto+A L ^ + A H M r ' ••' ' kn/ 

(8.6) 
k 0 + - " +ku V - ' ^ n - l ^ kn-l 

x v ^ ~ n w t 

( k > ° ^ 
Vv = 0, • • • , n - 1 / ' 

Going back to the original sequences p V , by (8.4) and replacing the 

no longer necessary detailed subscripts nk+A by simply k, we obtain our 

second chief result, 
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(V) 
P k 

= t Ul * jr / k0 + . . . + kn j 
L(^)=k+(n-^)\kO 5 ° 6 9 9 k n / 

X 

k + • . . + k k + . . . + k t k . 
/o 7\ v 0 V . 0 n-1 0 n-1 

k0 + "•• + k n - l ° n " 1 

/ k > 0 \ 
\v = 0 , — , n - 1/ 

as announced in (0.12). The remark after (3.5), concerning validity even for 
k > -n, i. e. , including the initial values holds obviously for (8.7) as well. 

Application of the reduction (4.3), (4.4) of polynomial to binomial coef-
ficients to this result yields, in analogy to (4.5), the equivalent expression 

» - M1 
pjf' = t L n J £ /klYkA -• /kn-l\ 

(8.8) k ^ 0 a l - V l 
/ k > 0 \ 
\U = ( ) , • • • , n - 1) 

CHAPTER II. GENERALIZED FIBONACCI NUMBERS WITH TIME IMPULSES 
9. It is known from the history of mathematics [5] that the original 

Fibonacci numbers F k , named after their discoverer, and defined by the 
recurrency formula 

(9.1) F k + 2 = F k + F k + 1 (k > 1) 

with the initial values 

(9.2) Fi = 1, F2 = 1, 

describe the mathematical structure of a biological process in nature, viz. , 
of the way rabbits would multiply if no outside factors would interfere with this 
idealized fertility. From a purely speculative viewpoint this recurrency defin-
ition could be replaced by a variety of other structures. So, for instance, the 
initial values could be replaced by others, as was done by E. Lucas. Thus 
(9.2) by (in new notation) becomes 

(9.2') LA = 1, L2 = 3 . 
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Or the dimension 2 of the reeurrency could be increased to any n > 2, as was 
done by the first author [3] who substituted (9.1), (9.2) by 

(9.3) F _ = F . + ••• + F . A , . ( k > 1) , 
n 
F 

k+n 
n 
F 

n 
F k 

j9 . 

+ . 

j 

n 
F n 

+ 

-1 

n 
Fk+(n-

= o, (9.4) F-,» ••• , F - = 0, F = 1 . 
1 n-1 n 

This generalization to higher dimension could be carried further by considering 
recurrencies with constant weights a ,• • • ,a . given to the preceding te rms , 
viz. , 

n n n 
(9.5) F. • = aAF. + + a ,F . ^ , (k > 1) 

k+n 0 k n-1 k+n-1 — 

with arbitrary initial values 
n n 

Formula (9.5) is actually the reeurrency law (0.6) of our introductory section. 
The question which is the natural generalization of the original Fibonacci 

numbers is idle. The answer to it depends on the viewpoint one takes and is a 
matter of mathematical taste and preferences. Raney [6], for instance, has 
proposed a generalization widely different in viewpoint and preferences from 
those mentioned above. 

From a purely biological, or even mechanical, viewpoint one would rather 
expect that a process in nature, depending on n preceding positions, would 
not go on with such an idealized uniform law of passing to the next position as 
are those mentioned above, but rather with additional impulses, acting on this 
law, which are themselves functions of time. It is already a daring presump-
tion that such impulses, imposed by nature, would be recurring regularly. 
But the purely mathematical applications which will be given in a subsequent 
paper are some justification for the subsequent new, and in the view of the 
authors, more tfnaturaln generalization. 

For this proposed generalization of the Fibonacci numbers we modify the 
reeurrency law (9.5), i .e . , (0.6) by time impulses in the shape of a constant 
time factor t += 0, attached to some of the weights a0,**« ,a - according 
to the more general reeurrency law (0.5) of our introductory section. As ini-
tial values we admit throughout ihe n linearly independent standard sets (0.4). 
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From them any set of n initial values may be linearly combined, and the cor-
responding recurrent sequence will then be obtained from those corresponding 
to (0.4) by the same linear combination, 

10. Before we apply the general results (8.7), (8.8) of our first chapter 
to special cases of the generalized Fibonacci numbers with time impulses, let 
us make some preliminary remarks. 

1.) The restriction of summation 

L W = nk0 + (n - l)ki + •• • + Ik = k + (n - v) 

in the sums (8.7) with multinomial coefficients 
/ k0 + • • • 
\ k 0 , 

can be removed by eliminating the last summation variable k - (the only one 
with coefficient 1) on the strength of that restriction, viz. , by putting 

(10.1) k n - 1 = k + ( Q - ^ ) - ( n k 0 + . . . + 2kn_2) 

wherever k - occurs in the terms of the sum. It is convenient to combine n-1 
this elimination with the reduction (4.2) of the multinomial coefficients of order 
n to such of order n - 1 and binomial coefficients. Thus the formulae (8.7) 
become 

V / s o^> \ / k + (n-l>) - L0(^)\ 
P* ~ 2-> I t "... u- II a.fm\ " l x 

k 0 ' - " ' k n - 2 

X k + (n - V) - L0(3K) X 

(10.2) k-|!J+<n-i>)-l-L0$ii) x 
x t 

k 0 k l kn-2 k + ( n - ^ - L o W - S 0 ( ^ ) 
x a A a- • • • a 0 a ., 0 1 n-2 n-1 

( k - ° ) 
y = 0, •••, n - 2J 
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(10.2T) 

>-D V / S0W \ / k + l - L 0 ^ ) \ 

x t 
H^"Lo«x 

% k l kn-2 k + 1 - L o (^ ) -S 0 ^ ) 
xao ai ••• V 2 V i ( k> ° \ 

with the reduced linear forms 

(n - l)kn + . . . + Ik 9 , S0W = kn + . . . + k "0 n-2 0 n-2 

For confirmation of (10.2), (10.2!), notice that with the help of these two linear 
forms the substitution (10„1) takes the form 

k n - l = k + (n " V) " L ° ( 9 } l ) " S ° ^ * 

Notice further that the silent summation condition k - > 0 is trans-
n-1 — formed into the upper limitation of summation 

L0$JO + S0(^) < k + (n - v) 

This limitation may be passed over silently by the following conventions. For 
~LLQ{$R) < k + (n - v) no convention is necessary, because in this case the binom-
ial coefficient vanishes if S0($t) > k+(n-i>) - L0$K); in particular for L<j(3tt) = 
k + (n - v)9 however, we convene to consider the denominator of the subsequent 
fraction cancelled against the same factor of the factorial in the numerator of 
the binomial coefficient, as will actually be done later. For L0(Dtt) > k +(n-
v), we convene to consider the binomial coefficient as being 0-fl this is not in 
accordance with the usual extension of Pascal 's triangle to negative "numera-
tors n -k by means of the fundamental recurrency property, fixing arbitrarily, 
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(t) - > . 
since this extension gives them non-zero values as long as the T'denominator'f 

is non-negative. 
Observe, by the way, that for V = n - 2 one has k0.+ • • • + k = S0W>. 

Hence in this case the binomial coefficient can be combined with the subsequent 
fraction to 

/k + (n - V) - L0fa) - l \ 
V S0W - 1 / 

In (10.2), (10.2f)9 the restriction of summation L(9tt) = k + (n - v) has 
disappeared. This is deceptive, however, in cases where the recurrency co-
efficient a - is specialized to 0. For , in such cases only the terms in which 
a - has exponent k - = 0 remain in the sum. Thus the restriction r e -n-1 ^ n-1 
appears, so to say, by the backdoor, in a slightly modified form, viz., without 
the term Ik -. This is a change to the worse, even to the worst, into the 
bargain since now there is no longer a term with coefficient 1 which would allow 
a further elimination. 

2.) Things stand better with the sums (8.8), in which the polynomial co-
efficients have been reduced to products 

U/ 'VW 
of binomial coefficients. Here, in the restriction of summation 

S W = kjj + ••• + k ^ = k + (n -i>) , 

each of the n summation variables k*9°"9k* - has coefficient 1, so that 
there are n different ways of removing the restriction by elimination. How-
ever, in cases where a recurrency coefficient a f with v* > 1 is specialized 
to 0, only the terms with k' = kj,f 1 remain in the sum, so that the coef-
ficient of k» becomes higher than 1, and thus elimination of k^T is barred. 
For this reason the restriction can be removed only in cases where either at 
least one consecutive pair a,,., alf f,- with 0 < i " < n - 2 o r a . alone is 

v% i/'-f-x — — n—I 
not specialized to 0. 
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We shall chiefly be concerned with the lat ter case a - =# 0, in which 
reduction of the sums (8.7) to unrestricted summation has already been achieved 
in (10.2), (10.21). For treating the eases where some of the preceding a ^ are 
specialized to 0, it will, however, be more convenient to start from the cor-
responding reduction of the sums (8.8), viz. , 

(10.3) 

M „ 

V"'kk-2V 
v x k + (n -

xtk"LEJ 

kb k i 
x a Q a.x 

K 
~w^ 
(ti-V) 

K) \ 
__ v 

^mx 
-1 -S 0 M 

n-2 • • a 0 n-2 

k? 

^ n-

X 

-K-

- 3 / 

" 3x 

x a 
k+(n-^)-S0^,)-kJi_2 

ti-1 

( k > 0 \ 

(10.3') { 

kb-"kk-2Vko/ W - i A n-2 / 
k - l ^ -S0(^') X 

x t 
k'o k ' r k o 

x cir\ a-

k' „-k« „ 
a n - 2 n - 3 x 

n-2 

x a, 
k+l-S0(^)-k^_2 

n-1 

\?iv.) 
with the reduced linear form 

So(^!) kb + + k* 0 n-2 
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The remark made after (10.2), (10.2f) about the silent summation condi-
tion k* > 0 holds, mutatis mutandis, also for the silent summation condi-
tion k' > k' in (10.3), (10.3T), the latter corresponding to the former 

n—x — n— u 
under the transformation (4.3). We uphold the conventions made in that remark, 

We must enlarge, however, on the subsequent observation about the pos-
sibility of combining the binomial coefficient in (10.2) with the subsequent frac-
tion for v = n - 29 because this observation generalizes here to all v = 0, 
° • • , n - 2 and thus allows to get rid of these fractions altogether. This is 
seen by the following chain of reductions.8 

/k + (n - v) - S0(^f)\ k^ kj, /k + (n-i/) - S0(^?) = 1\ 
{ k^2 JTTlJr- v) - s0(R-) = k ^ \ k ^ - l J • 

which, of course, has to be considered only for k' > 1 and hence all subse-
quent k' , • • • , kf

 0 > 1, too. This chain of reduction yields 

/ ki+i\ / k ; - 2 v k + (n - v ) - s°m\ 
\ K)"\k'n-3A K-2-1 P 

K 
!k + (n - v) - S0$R') 

/ k m - x\ (K-2 ~ V * + (n"v) ~1 ~So(3K,)) 
\ K-1 J " W - s - V l K-2-1 ) 

By the transformation 

k i ; - i ^ k . ) - . - > k . + 2 - i - k ^ 2 

after which the summation range is again k* ,° • • ,kf
 2 > 0, then 
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S(9R') S(9R') + (n - V) - 1 , 

[Nov. 

and thus (10.3) becomes 

(10.4) 

C) 
Pk 

/k.e^-So^Ak-g] 

X 

^ - S o ^ ' ) 

k ^ ' k.-k- k ^ - k ^ 
X aQ ax • • • a y - - X 

(V) 

X a 
kn-2-kn-3 k + en-rS0<W ,>-kn-2 
n-2 n-1 

/ k > 0 \ 
^> = o , - - - , n - iy 

where the modified middle terms 

and 

(V) (V) are only meant for V - l , e e 9 ,n - 2, and where e;. ,ev ' are the coefficients 
in the first and last column of the unit matrix, introduced in (0.4); by inserting 
e - at the two places, the case v = n - 1, split off in (10.2!), (10.3f), could 
now be re-included. Formulae (10.4) could be expressed more concisely in-
troducing also the other e^f (i/f = 1,* • • ,n - 1) and using the product sign: 
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(10.5) { 

p k 

BERNSTEIN AND HASSE 

/ n - 2 / k ' + e(V)\ k' +e(I,)-k» ^ 
x 

k-f-l-S0Gwf) A + e W 

X t 

k+e^'-So&R^-k' 
X a n-1 n-2 

n-1 
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( k > ° ) 
yp = o,---,n - i y 

where one has to understand formally k* = 0. For our intention of passing 
to special cases, though, formulae (10.4) allow a better survey. 

Notice that for each V = 0,* • * ,n - 2 the silent summation condition for 
kf

p in the formula (10.4) or (10.5) for pV' has to be modified into k ' + 1 > 
kf 
V-l' 

Since the original formulae (3.5), (8.7), (10,2) and (1Q.21) with the poly-
nomial coefficients will not be referred to again, we shall hence forward sim-
plify the notation by omitting the dashes on kls • • • ,kn_2« 

3.) As to specialization of the recurrency coefficients RQia1,' • • »an_-^s 

we may suppose without loss of generality a0 ^ 0, by considering only recur-
rencies of the exact order n. In the Jacobi-Perron algorithm there is always 
even a0 = 1; see (0.1) and what was explained before and afterwards. 

4.) For a0 = 1 and t = 1 the two recurrent sequences p k and 
p 1 with the first and last set of our standard initial values (0.4) are essen-
tially equal to each other, i. e., they differ only by a translation of the sequence 
variable k: 

(10.6) (n-1) = P, 
(0) 
k+1 

(k > -n) 

M ,0. Hence by the recurrency formula 
, 0 , 1 . Since for 

For , p ^ has the initial values, 1,0, 
Pg = aQ = 1. Therefore p£+ has the initial values 0, 
t = 1 the recurrency formulae for pj^ ' and pj^~ ' a re the same, (10.6) 
follows. 
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11. We now apply our general results to special cases of the generalized 
Fibonacci numbers. We base these applications as far as possible on our 
appropriately adapted main result (10.4) for cases with recurrently coefficient 
a n ^ 0. Only in the cases with a _ = 0, treated at the end, we have to go 
back to the original result (8.8). 

1.) The uniform case; a0,ai,« • • , a n _ i = 1; t = 1. 
In this case we found it convenient, in order to avoid confusion, to put 

the recurrency order n on top of the sequence let ter , as already done in 
(9.3-5). Here (10.4) becomes simply 

k 0 , . - . 9 k n _ 2 \ V \ V l / \ k n - 3 / 

/ k + e ^ - S o W V ^ ^ ^ 

\ kn-2 / \V = 0 , -~ , n - l ] ' 

(11.1) 

X 

with 

S0(*R) = k0 + • • • + kn_2 . 

The first and last of these sequences, essentially equal to each other accord-
ing to (10.6), are essentially equal to the sequence of generalized Fibonacci 
numbers considered by the first author in his previous paper [3] , and men-
tioned above in (9.3). For , adaptation to the initial values (9.4) of those latter 
yields 

n n, m n, . 

In particular, for n = 2 there remains only one summation variable 
k0 = s, and (11.1) becomes 
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These two sequences are essentially equal to the sequence (9.1) of the original 
Fibonacci numbers. For, adaptation to the initial values (9.2) of those latter 
yields 

Notice that, unfortunately, the initial values (9.4) of the generalized Fibonacci 
numbers 

n 

are not in accordance with the traditional initial values (9.2) of the original 
Fibonacci numbers F^., corresponding to the special case n = 2. By (11.2), 
(11.4) the connection is 

(11.5) l k + 1 = F k , 

U e. , a translation by 1. The traditional initial values (9.2) are in accordance 
with the representation 

rk = i r _ £ r - , (k > o) 

where 

1 + *y/5 
€ 2 

whose analogue for the Lucas numbers is 

L k = ek + e'k (k > 0) 

The Lucas numbers, according to their initial values (9.2!)9 are obtained 
by the linear combination 
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2 , ^ 2, 
(11.6) > * - & • * & - £ ( * - : - • ) • » ( ' - : - • ) * > * 

The representations (11.4) and (11.6) of the historical Fibonacci andLucas 
numbers a re well known [5]. 

In all following cases we presuppose 

a0 = 1, t arbitrary , 

the latter with the only natural restriction t ^ 0 . 

2.) The multiple uniform case: all a j , 8 • • ,an_^ = a ^ 0. 
In this case we have to attach to the expression (11.1) the powers of t 

and a according to (10,4). In order to determine the exponent of a in the 
simplest possible manner, observe that the sum of the exponents of ao,aj,- • • , 
a - in (10.4) (or (10.5)) reduces to k + 1 - S0W. But since here only a4, n " 1 (v) 
. . . ,a - = a whereas a0 = 1* the exponent k0 + e0 has to be subtracted. 
Thus 

/ 

(11.7) 

^ / k l k , + 1 \ /kn-2Vk + en"A-So«V 
V . ^ k n > 0 •" V l / ' > n - 3 A V2 / 

k-[ | ]-So0O k+ l -e^ -So^J -ko 
X t a 

with 

S0^) = kQ + • • • + kn_2 

We illustrate this by the two lowest cases: 

n = 2 

«••> pf = i ; ( - k v k > k - ^ * - (;_»).. 
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D ( 0 ) 

,<D -

,(2) _ v / k A / k + l - (k0 + ki) \ 

k,kAk«;l ^ ; 

r A i V k - (ko + k1)Vk-[3j"( k o + k l ) k-(2ko+ki> 

&M ki / 
r /k, + l \ /k - (k0 + kl)Vk-[|]-(ko-*i)ak+l-(2k0+k1) 

k ^ k + 1 - (k0 + k l ) ^ k - ( | ] - ( k o -* i ) a k+ l - (2k 0 4k 1 ) 
(k > 0) . 

It would be worthwhile to confirm (11.8) from (7.1) by specializing there a0 

1, bo = 1, aj = a, bj = ta. 

3.) Reduced multiple uniform cases: some a,,. = 0, the other a 
v V 

a ^ 0 (i" = ! , • • • ,n - 1). 

a) Cases with a _1 = a ^ 0. 

As we saw in Section 10, in these cases, the general reduction (10.4) to 
unrestricted summation is effective. The results a re obtained from (10.4) by 
simply adding the summation conditions 

V = "V-l for a11 "' ^ " wift V = ° ' 
K = Vl " ! if V = ° • 

They effect that the correspondent binomial coefficients 

L : - 0 - (x:/) 
drop out becoming 1, and that the linear form S0(^) is changed to no longer 
homogeneous linear functions Spfa) of the remaining summation variables. 
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We illustrate this in the two eases where all but one or all of the coef-
ficients aj,* • • ,a 2

 a r e specialized to 0. 

(i) a i > * " ' a r - l ' ar+l'" "-n-2 
a„ o = °; a

r = a ^ 0 

(1 < r < n - 2) 

(11.10) .(y) 

) k-SJ,(k',k"), 

(n-1) 
pk>* 

/k»\/k " Syfe'.k'OX k-gJ-S^k'.k-
L' ,k"\ k 'A k" / 

/ k > 0 \ 
\v = ( > , • • • , r - 1} 

/k" + l \ / k - Si;(k',k»')\ k-^J-S^k'.k") k+l-SJ/k',1 

; ' ,k»\ k1 A k" / 

( k ^ ° ) 
\v = r , • • • , n - 2 / 

/ k » \ / k + 1 - S^(k',k")\ k-^J-S^k'.k'-: 

:',k"\k'A k" / 

') k+l-SJ/k^k") 
a 

with the linear functions 

I V for v = 0,'" , r - 1 

v - r for 
0 for 

v = (),••• , r - 1 ) 
1/ = r , - « - , n - 2 } 
y = n - 1 ) 

and 

Sj,(k',k") Sl/(kf,k") + k! = (r + l)kf + (n - 1 - r)k" 

!

v for v = 0, ••• , r - l ) 

v - r for 1/ = r , ••• 9 n - 2> 
0 for M n - 1 ) 

(ii) a l ' ' " ' a n - 2 " ° 
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1 ^ 
k ' / / \ 

\v = n - 1 / 

with the linear functions 

S^k') (n - l)k' + V for V = 0,--- ,n-2 
(n - l)k' for V = n - 1 

and 

S^(k') = Sj/k'J'+k' = nk' + V for v = 0 , - - - ,n-2 
nk' for V = n - 1 

We illustrate (11.10) and (11.11) by the lowest case: 

In (11.10) for n = 3 the only possibility is r = 1. But then a0 = 1; 
ai,a2 = a ^ 0, and no coefficient is specialized to 0. Hence formulae (11.10) 
must coincide with (11.9), which is confirmed at once. 

Formulae (11.11) for n = 3 specialize to 

(11.12) { 

\ 

(0) v> /k - 2k'\ tk-L3j-2k,
ak-3k. 

k - 2k' - l\<.k"L'5j"2k'"1 k-3k'-l ^, / t a 

k-|-gj-2k' k + 1_3 k, 
a 

( k > 0) 

The term with k = 0, kf = 0 in the second formula is an example for the 
necessity of our deviating convention after (10.2), (10.2?) about the binomial 
coefficients with negative "numerator. " From the recurrency 
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4] = IPS + °P-2 + ^ 1 
with 

p ( 1 ) = 0 p ( 1 ) = 1 p ( 1 ) = 0 

it is obvious that p^ = 0. But (11.12) would yield a non-zero value p^ , 
with negative exponents of t and a into the bargain, if the binomial coefficient 

~ of the first term of the sum would be given the usual value 1. 
b) Cases with a - = 0 

As we saw in Section 10, in these cases, the general reduction (10.4) to 
unrestricted summation is ineffective, and we can achieve our aim in the same 
way only if there is at least one consecutive pair of recurrency coefficients 
a , a f - with 0 < v% < n - 2, which are not specialized to 0. 

We shall consider here again only cases where all but one of the coef-
ficients a- ,• • %a 2 are specialized to 0; in the case where all of them are 0, 
the recurrency 

» _ Jv) p k = pk-n 

is trivial. 
Let a = a / 0 be the only coefficient remaining intact. For r = 1 

the pair a0 = 1, a = a satisfies the above condition, for r = 2,**« , n - 2 
however it is not satisfied. In both cases, we have to go back to our general 
result (8.8). 

(i) a4 = a ^ 0; a 2 , - " , a n _ ! = 0 

Here, in (8.8) are to be added the summation conditions 

K2 = ••• = K n-2 = K > 

so that now 

S(m) = S(K0,K) = K0 + (n - 1)K 

Thus (8.8) becomes 
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D ( 0 ) -
S<K, 

Z (K) 
„K)=k+nVK'/ 

2 (i-^\ 
S(Ko,K)=k+n\K9 " V 

K„ t
K l E j - l a K - K o 

K-Kn 

(11.13) 

S(K, 
K-K0 

» 
S{K0,K)=k+(n- . y ) \ K o / 

/ k > ( ) \ 

l" ""7 
.K-Kn 

/ k > 0 • \ 
^ = l , - - ' . n - 11' 

Since in the summation condition K0 has coefficient 1, i t can be eliminated, 
putting 

K0 = j k - (n - 1)K for v = 0 
| k + (n - V) - <n - 1)K for v = ! , • • • ,n - i f 

Making this substitution, we can however no longer silently pass over the sum-
mation conditions 0 < K0 < K. Thus we obtain 

(11.14) 

(n-l)K<k<nK\ 

M 

( K \ KinlnK-k 
^k - (n - l)Kf * ^ 

(Hi) 
= (n-l)K<k5(n-.)<nK( k + ( n " ^ " <n " 1 ) K ) X 

/ k >° \ 
y V = !,'•',n - 1J 

X ^ l n J - ^ n K - k ^ n - ^ ) 

We illustrate this by the lowest case: 
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n = 3 

[Nov. 

(11.15) 

M 

(i) 

P? 

( K ^ 
\k - 2K) 

, ? 2 < 3 K \ k + ^ 2 K ) 

c?i<3K(k + 1 - 2 K ) 

t
K-[3Ja3K-k 

2K<k<3k 

2K<k+2<3K 
tHjd"1

 a3K-k-2 

* 13] 3 K - k - l t L J a 
2K<k+l<3K 

( k> 0) 

F o r m u l a e (11.9), (11.12), (11.15) together cover al l poss ib le c a s e s of genera l -

ized Fibonacci number s of o r d e r n = 3 with t ime impu l ses . 

(ii) a l 5 - • • , a n _ l f a ^ , - • • 9*Rmml = 0; a^ = a ^ 0 

(2 < r < n - 2) 

H e r e , in (8.8) a r e to be added the summat ion conditions 

K0 = • • • = K 1 = K, K = • • • = K - = Kf , r - 1 n - 1 

so that now 

S W = S(K,KT) = rK + (n - r)K' . 

Thus (8.8) becomes 

(V) 
Pk 

(11.16) 

^ " [ H ] - 1 K'-K 

S(K 

/K'\JK 

, K ' ) = k + ( n - y ) \ K " V 

y MtK'"LnlaK'-K / k > o \ 

S(K,Kf)=k+(n-i^) 

S(K 



1969] BERNSTEIN AND HASSE 435 

Since here in the summation condition, both variables K, K? have coefficients 
r , n - r > 1, neither of them can be eliminated, so that by (11.16), other 
than (11.13), has to be considered as the final resu l t 

There i s , however, one very special case in which a different possibility 
of achieving unrestricted summation presents itself, viz. , if both coefficients 
r , n - r are equal, or else: 

n = 2r 

In this case the summation restriction is 

2. nc 4- K-n = ) k " v f o r v = °>e e 8 ' n / 2 ~ * 
2 ^ ^ ; ) k + ( n - i > ) for y = n / 2 , " - - , n - l 

(v) / 
Hence the sequences p contain non-zero terms:only for k = z^modn/2, 
respectively. Putting accordingly 

k = lfh + * 
l l h + („. • } ) 

for 

for 

v= 0 , » -

* - » • 

n 
' 92 
. . . 

- 1 

, n - 1 
(h > 0) , 

the restriction becomes 

K + Kf 

for V = 0 , — , ~ - 1 

h + 1 for i> = •£,••• ,n - 1 

Here KT, say, can be eliminated by the substitution 

h - K 
Kf = 

for P= 0$" ' , 2 " 1 

h + 1 - K for V = £ , • • • , n - 1 

Thus in this very special case the non-zero terms of the sequences pJ are 

the unrestricted sums 
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B h + , K V K / ^ = 0 , . - - , 2 - V 
(11.17) 

2 

K I'M Tf 
(t>) v / h + l - K \ t L2J • h+l-2K 

We illustrate this by the lowest case: 
n = 4 

(11.18) 

W - W h ~ KVh-L2j"K h-2K / h >: 0\ 

V- / h + 1 - K \ .h""L2j""K
Qh+l-2K / h >> 0 \ = £ \ K T a ^ = 2 , 3 J ' P2h+(^-2) K 

However formulae (11.17), (11.18) a re immediate consequences of the 
general result (11.8) for n = 2, because considering only the non-zero te rms , 
the corresponding recurrency formulae reduce to those for the generalized 
Fibonacci numbers of order n = 2 with time impulse. This shows the under-
lying true reason why reduction to unrestricted summation is possible in this 
very special case (and in similar cases with any proper division of n instead 
of 2 as well), in spite of what has been said in Section 10. 
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NUMBERS GENERATED BY THE FUNCTION exp ( l -e x ) 
V. R. RAO UPPULURI and JOHN A. CARPENTER 

Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 

A sequence of numbers {c , n = 0,1,2,- • •} is defined from its gen-
x 

erating function exp (1 - e ). A series representation for C (which is anal-
ogous to Dobinski's formula), a relationship with the Stirling numbers of the 
second kind, a recurrence relation between the C and a difference equation 
satisfied by C are obtained. The relationships between the Bell numbers and 
{C } are also investigated. Finally, three determinantal representations for 
C a re given. The 'Aitken Array1 for C , 1 < n < 21 is given in the appendix, 

1. INTRODUCTION AND SUMMARY 

While studying the moment properties of a discrete random variable 
associated with the Stirling numbers of the second kind, crJ, we encountered 
an interesting sequence of numbers. More explicitly, let X be a discrete 
random variable with probability distribution 

(1.1) P{X = j} =(Jl/\> i = 1 .2 , - - - .n 

where 

n 

EaJ = B , n = l , 2 , ••• n n 
3=1 

are called the Bell numbers. The k moment of the random variable X is 
given by 

n 

(1.2) D(Xk) = J ] ik(Ji/\ = B
n

k)/Bn (sa^ ; 

j=l 

*Research sponsored by the U. S. Atomic Energy Commission under contract 
with the Union Carbide Corporation, 

437 
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(k) and the f i r s t s ix values of B a r e given by 

B ( 0 ) - B n n 

B ( 1 ) = B + 1 - B n n+1 n 

B ( 2 ) = B _^ - 2B _ 
/! Q\ n n + 2 n + 1 

B = B ^ - 3B ^Q + OB ^ + B n n+3 n+2 n+1 n 

B ( 4 ) = B . - 4B ^Q + OB ^ + 4B , - + B n n+4 n+3 n+2 n+1 n 

B ( 5 ) = B _L_ - 5B ^ + OB ^Q + 10B ^ 0 + 5B _,, - 2B . n n+5 n+4 n+3 n+2 n+1 n 

(k) This led us to look for an express ion for B in t e r m s of the Bell number s 

B ,, j B ,, - , • • • , • • • , B of the form n+k n+k-1 ' n 

i=0 

The f i r s t few C , i = 1 ,2 , ' •• a r e given by C0 = 1, Cj = - 1 , C2 = 0, 

C3 = 1 , C4 = 1, C5 = - 2 , C6 = - 9 , Cf = -9 and C8 = 50. In this pape r we 

will study some p rope r t i e s of the sequence { c }. In the next sec t ion , we give 
r ~\ x 

an ad hoc definition of (C ) in t e r m s of the genera t ing function exp (1 - e ) 
and prove some p r o p e r t i e s . We a lso der ive a re la t ionship between Stir l ing 
number s of the second kind and the C . In Section 3 , we will de r ive some 

n 
re la t ionships between the Bell number s and the C . In Section 4 , we will o b -

tain some de te rminanta l r ep resen ta t ions for the C . The proofs a r e c losely 

re la ted to the proofs (due to s eve ra l authors) in the case of Bell number s a s 

s u m m a r i z e d by Finlayson in his thes i s [ 1 ] . 

2. THE NUMBERS GENERATED BY THE FUNCTION exp (1 - e X ) 

Definition: The sequence ( c , n = 0 , l , 2 , i - - } is defined by i t s expo-

nential generat ing function, 

oo 

„ k 
(2.1) 2^ c

k KT = e x p (1 ~ eX) • 
k=0 
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From the power series expansion of exp (1 - e ) we will give an infinite series 
representation for C, . 

Proposition 1; 

k 
(2.2) Ck = e 2 M ) r rT' k = 0,1,2,-•• . 

r=0 

Proof: From the definition we note that C, is the coefficient of x /k! 
x 

in the Maclaurin series expansion of exp (1 - e ). 

exp (1 - e x ) = e Y j ( - l ) r exr/r.? 

r=0 

z l Xr k k 
P V ("1) V x-iL-
6 LJ r! LJ- k! 

r=0 k=0 
OO OO 

k k 

k=0 r=0 

which shows that 

k 
Ck = e S ( - 1 ) r 7 F J k = 0 ,1 ,2 , ' -

r=0 

We will use this series representation to obtain the relationship between the 
Stirling numbers of the second kind cr? and C. . We define a 0 = 1 and cr£ = 
0, k = 1 ,2 , " - . 

Proposition 2: 

k 

(2.3) Ck = J^ ^ H • 
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Proof. In terms of the j differences of powers of zero, AJ(0 ), we 
have, according to Jordan [ 3 ] , 

k r 

c k 

j - 0 

r=0 

r=0 j=0 

--h^h^ 
r=0 j=0 

k i k 

j=0 r=j 

j=0 

which proves the result since A^O ) = j - 0 " ^ • 
Customarily, Stirling numbers of the first kind a re defined as numbers 

with alternate signs, whereas Stirling numbers of the second kind are defined 
as numbers with positive signs. The relation (2.3) for the C , and the cor-
responding relation for the Bell numbers B , given by 

B =V<r> , 
n L*d n 

j=0 

suggest that the Stirling numbers of the second kind may also be defined with 
alternate signs. 
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Using proposition 1, we now obtain a recursive relation between the 
C-numbers. 

Proposition 3. 

(2-4) Ck+1 = - Z ( j ) C j k = 0 , l , . . . ; C0 = 1 
j=0 

Proof: 

k+1 
ck+i = e Z <-«' V 

r=l 

= e £ (-1)S+1 ^ -
s=0 

s=0 j=0 

k 
) sJ 

j=0 * ' s=0 j=0 = -E0>E^ = -E0h 
In the next proposition we will show that C satisfies an n order dif-

ference equation. As before, let A denote the difference operator and let E 
= 1 + A, so that E:iC() = C , j = 1,2,' " . 

Proposition 4: 

(2.5) A*Cl = £ (-1)n"3( j ) C M = ~ C n ' n = 1,2,-
\ J / J'r-L n 

3=0 

Proof. The first equality will be established by the binomial expansion 
! - 1) , and the second equality follows from pr 

pleteness, the proof is sketched on the following page. 
of (E - 1) , and the second equality follows from proposition 1. For com-
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n 

AnCj = (E - l)nEC0 = J ] (-l)n"jMEjECo 
j=0 

j=0 ^ 4=0. 

r = l j=0 

00 

r = l 

The difference equation A C- = -C can be used on computing Ci ,C 2 ,* • • , C n 

for smal l values of n. This computation can be a r r a n g e d in a t r i angu la r a r r a y 

C! ACi A2CA A3Ci A4Ci • • • 

C2 AC2 A2C2 A3C2 . - • 
(2.6) c 3 AC3 A2C3 . . . 

C4 AC4 . . . 

c5 . . . 

The f i r s t column gives us the value of C n , n = 1 ,2 ,3 ,* •• , the second column 

gives us the f i r s t d i f fe rences , and "the j t n column gives us the j differences 

of C , n = 1 ,2 ,3 ,* • • . This table can be filled up a s follows: Le t us a s s u m e 

that we know Cj = - 1 . Equation (2.5) for n = 1, with ACi = -C i enables 

us to find C2 = C t + AC4 = 0. Now using (2.5) again for n = 2 , we find A2CA 

= - C 2 = 0. Since A2Ci + A C j = AC2 we find AC2 = 1 and s ince A2C2 + C2 = 

C 3 , we find C3 = 1. Now us ing (2.5) again for n = 3 , with A3Ci = - C 3 , we 

find A3Ci = - 1 , and so on. A p a r t of the difference a r r a y i s a s follows: 

- 1 1 0 - 1 - 1 2 
0 1 - 1 - 2 1 

(2.7) 1 0 - 3 - 1 
1 - 3 - 4 

-2 - 7 
- 9 
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The corresponding table for the Bell numbers B and their differences, based 
on A B- = B is given in Table 1 of Finlayson [ l ] . He used the same method 
of construction, which is at times referred to as the Aitken array by Moser and 
Wyman [4 ] , In the appendix we give the Aitken ar ray for the C for 1 < n < 
21. 

3. RELATIONSHIPS BETWEEN THE BELL NUMBERS B , AND THE C 
n n 

It is well known (Riordan [5]) that the exponential generating function of 
the Bell numbers B is given by 

(3.1) J B ^ = exp (ex - 1) 
n=0 

Since the generating functions of 

B C 
b = —r and c = —r-n n! n n! 

a re reciprocals of each other, following Riordan [ 5] we could have defined the 
sequence {c } as the inverse sequence of {b }. From this property we can 
easily derive the following 

Proposition 5: 

m ( 3-2 ) 1 J \ k / B k C n - k = °9 n = 1 ' 2 ' " * ' w i t h Bo = co 
k=0 

A less obvious relationship between B and C is given by the following: 
Proposition 6: 

£ fih (3.3) L l i h V i r 1 ' n o 0 . 1 , 2 . -
j=0 
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Proof: Differentiating (3.1) with respect to x, we obtain 

- x k - i 
LBk-3bi)7= e X e x p < e X - 1 ) • 

k=l 

Multiplying this by the exponential generating function of C we obtain 

(H(l^) -' 
which implies that 

oo 

E (n) ZL = e
x 

al n! e 

n=0 

where 

< - £ (?hvn • 
as defined in the introduction. 

/ „ \ 

Now it follows that Bj = 1, h = 0 , l , 2 , - " , since 

oo 
n x v ^ i x 

e = L 1 ^ 
n=0 

is the exponential generating function of the sequence with unity in every place. 
A !dualT to proposition 6 can be stated as 
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Proposition 7: 

445 

(3.4) s(°bc 
n+l-j - 1 . n = 0,1,2,-

Proof. This follows along the same lines as that of Proposition 6, where 
we now differentiate the exponential generating function of the C . 

4. DETERMINANTAL REPRESENTATIONS OF C 

We noted in Section 3 that the sequences 

{", •j - m and (c } •W 
are inverse sequences as defined on page 25 of Riordan [5], On page 45, 
Riordan gives as a problem the representation of n number of the sequence 
{a1} as a determinant of the elements of the inverse sequence { a }. This 
says 

, / . v i i - n - 1 
a n = ( - 1 } a 0 a l 

a 2 

^ 

V i 

ao 
1 

a 2 

a n-• 2 

0 
ao 
\ 

Vs 
a a - a n 

n n-1 n-2 

( - l ) n a - n " 1 6 n (say). 

The following recursive relation for 5 can be shown, 

n-1 
5n = E <-!> 

k=0 

k o k o « 
a 0 a k + l n - k - l ' °0 

= 1 

Applying this result for the Bell numbers B , and C we will have 
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a) 

(4.1) 

(4.2) 

Propos i t ion 8: 

C 

n! 

b) 

<- l ) n 
"B. 

1 
1! 

B 2 
2! 

B 3 
3! 

B 
n 

n! 

C 
(-Dn - a 

Bo 

B l 
TT Bo 

B 2 B l 
2! 1! 

B -, 
n - 1 

ft=Tjl 

n - 1 

= V (-

... BJ 
B o B J 

n -2 1 
(57151 1! 

1 ) k B k + 1 

( - l ) n ^ n (say) 

k=0 

In Proposition 3, we have shown that 

'n+1 
3=0 V / 

n = 0,1,2,-

with C0 = 1. From this nonsingular system of equations, using Cramer 's rule, 
we can derive the following: 

Proposition 9: 

'n+1 (-1) 

(4.3) 

1 

1 1 

3 1 1 

a t) 
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The corresponding determinantal representation for the Bell numbers which 
seems to be due to Ginsburg [ 2 ] , is also quoted by Finlayson [ l ] . Gins burg 
[2] derived another determinantal expression for the Bell numbers (also quoted 
by Finlayson [l]) and the corresponding representation for the C-numbers is 
given by the following: 

Proposition 10: 

'n+1 (-1)" n+li 1 

1 
1! 

1 
2! 

1 
31 

1 
n! 

1 

1 

1 
1! 

1 
2! 

1 

rar 

0 

2 

1 

1 
1! 

1 
Tn̂ 2Fl 

0 

0 

3 

1 

0 

0 

0 

4 
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