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A RECURSION RELATION FOR POPULATIONS OF DIATOMS 
EDWARD A. PARBERRY 

Pennsylvania State University, State College, Pennsylvania 

Diatoms are a type of one-celled algae whose unusual reproduction cycle 
gives rise to an interesting problem in number theory. Sparing the morpho-
logical details, the cycle can be described as follows. Each diatom when it r e -
produces (by cell-division) gives rise to one just like itself, and one a size 
smaller. This process continues to produce smaller and smaller members of 
the population until a size is reached where cell-division is no longer physio-
logically possible. These smallest members then grow until they become as 
large as the first size, and then begin reproducing normally. 

The problem is to determine U , the population on the n generation 
as a function of both the number of sizes possible, and the growing period. 

Let (m + 1) be the number of sizes possible including the growing size, 
and let r be the number of generations it takes for the smallest size to be-
come mature. 

We will show that 

m °° 

j=l i=0.\ ' 

and that U satisfies the following m + r) order linear recurrence relation: 

OO 

E <-»kteW 
k=o \ / 

<2> X ( - i n . l U , „ _ k ) =Un_(m+r) 

Diagram 1 illustrates the derivation of equation (1). The n horizontal 
row represents the population on the n generation. In the first group of col-
umns, each entry is the sum of the two entries north and northwest of it. This 
is because for 1 < k < m + 19 the k and (k - 1) sizes each give rise to 
a k size, and because in the (m + 1) column we have an individual either 
growing, or mature; in either case contributing one to the same column in the 

449 
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next genera tiona Clearly binomial coefficients are an efficient representation
since

(3)

In the succeeding groups of columns (only the second group is shown) the
same procedure is followed except for the first column of the group. This col-
umn represents the second size members which arise from the new first sizes
in the last column of the previous group of columns and from the second sizes
in the past generation. Thus each element in the first row here is gotten by
adding the element north of it to the element (r + 1) places above it and in the
last column of the previous group.

Continuing in like manner, we see that in the (i + 1)th group of columns
on the nth generation, the top index of the binomial coefficients is n - ir,
and the bottom index runs from i(n) + 1 to (i + 1) (m). This gives equation
(1) since all the terms in (1) are zero as soon as the bottom index becomes
larger than the top.

We now derive the recurrence relation (2) using the expression in (1) for
U (m, r). The indices in the double sums on the right will always be from j =n
1 to m , and i == 0 to 00.

From (1) and (3) we have:

(4) Un 1+���� - ��� = 1 ��������������. . lID + J .... 1m + JJ 1 J 1 .

In- i - i r)'���+ \. . 11m + J - I

therefore

(5)

(6 )

Now by induction on t we show:

00

'" (_l)k (t) ULA k n-k
k==O

'" ���� - t.- ir)
LJ LJ lID + J - t
j i
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(7) - EZ 
J 

^ [ ( im + j - t j + (im + j - t - 1 j j • 

Equation (5) shows that (6) holds for t = 1, now assume it holds for t; 
then replacing n with n - 1 in (6) and subtracting from (7), we have: 

oo oo . 

E <-1)k(t) <v* - E <-»t vk-: - ZZL- •*,+-\;'i))-
k=o V / k=o v ' J x \ / 

£ E (s.%V-Ii;?) -».+ E[<-»kQ v k * < - 4 - K -

k=l v ' k=0 x I 

hence (6) holds for (t + 1) and therefore for all t > 1. 
Now letting t = m in (6), we have: 

S^0'--??(t.----i) 
m =o 

= V* V*f n _ (m + r) - (i - l ) r \ 
Z-J Lu\ (i - Dm + j / 
j=l i=0 N ' 
m , v m » 

ZM n - (m + r) + r \ V ^ V"* / n - (m + r) - (i - l ) r \ 

/ I j - m )+2~i2J\ < i - l ) m + j j 
j=l X ' j=l 1=1 V ' 

m °° / \ 
y ^ y ^ / n - (m + r) - irl 
L—J ' J \ im + j / j=l i=0 

= U n- (m+r) 
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which establishes (2). 
Note that from the diagram we get the following (m + r) initial condi-

tions on U (m,r): 
n 

k=0 x ' 
1 < n < (m + r) , 

and also that U (1,1) = F l 0 where F is the n Fibonacci number. In-n n+2 n 
deed, the diatom problem is a generalization of the famous Fibonacci rabbit 
problem. 

PART II - GENERATING FUNCTIONS 

We may find the generating function for U (m,r) by using the recursion 
above, however it is simpler to calculate the generating functions for each 
individual size and then add them. 

We use the following notation, with m and r fixed. 

a(i,n) = total size i in n generation, 1 < i < m. 
b(j,n) = total of growing size which are j generations old in the n 

generation, 0 < j < r - 1. 

Then we have, 

a(i,n) = aft - l , n - 1) + a(i,n - 1), a(i90) = 0, 2 < i < m; 
a(l ,n) = b(r - l , n - 1) + a ( l , n - 1), a(l,0) = 1 . 

(3) 
b(j,n) = b(j - l , n - 1) , b(j,0) = 0, 1 < j < r - 1; 
b(0,n) = a(m,n - 1) , b(0,0) = 0 . 

Now we let 

oo oo 

2 a(i,n)xn B(j,x) = / ^b(j,n)xn , (4) A(i,x) 
" n ^ n=0 
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which 9 combined with (3), gives 

A(i,x) = xA(i - l,x) + xA(i,x)5 2 < i < m 
A(l,x) = xA(l,x) + xB(r - l ,x) + 1 . 

(5) 
B(j,x) = xB(j - l ,x) , 1 < j < r - 1 
B(0,x) = xA(m,x) . 

Solving (5), we get 

, m - l / \ m - l 
>x ) = (j^f'1 W'* - (i^)m" ( T ^ B(r" ljX) +r^)' 

(6) 

(7) 

m-1 
JB(0,x) + — 

(1 - x) 

m+r m-1 
x A(m,x) + X 

/t an /n xm 
(1 - x) (1 - x) 

m-1 
A(m,x) = ,., xm m+r 

(1 - x) - x 
/ l - x\mA 

A(i , x) = A(m,x) ( x I 

B(j , x) = A(m,x) x^+ 

Now we define P(m, r;x) as 

oo oo / m r - 1 
P(m,r;x) = y ^ U n ( m ? r ) x n = / J / /*(i>n) + / ^b ( j ,n ) )x n 

n=0 n=0 \ l = l j=0 

m r -1 
,x) 

"FT i=0 
VjA(i,x) +y^B(j?^ 

2} / m . r 
A(m,x)l> Lj^ + > x3' 

(1 - x ) m - x m , x m ( l - x ) r 

((1 - x ) m - x m + r ) ( 2 x - 1) ((1 - x ) m - x m + r ) ( l - x) 
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It is of interest to know whether or not the polynomial 

p(x) = (1 - x) - X 

has any repeated roots. To show that there are none, we set 

t / \ /i x m - l . , x m+r-1 
pf(x) = -m(l - x) - (m + r)x 

and p(x) equal to zero simultaneously, and note that this implies 

m + r 
x = 

This cannot be a root of p(x) since the only possible rational roots of p(x) 
a re ±1 . 

Let cxl9a29 • • • , a. be the roots of p(x) where \a. < la. . Then 

/

m+r 
n (x - a.) 
i=l X 

where g(x) is a polynomial. This expressionhas the partial fraction expansion, 

m+r Q 

P(m'r;x) = J 2 TT^xT^) 
i=i 

hence 

P(m,r;x) 

00 ni+r t v „ 

n=0 i=l V V 

n 
x , 

therefore 
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m+r 
(8) Un(m,r) 

From (8) we see that 

£ *)" 

Un(m,r) = 0 (w) 
We know that for r = 0, U (m,0) = 2 since then we have ordinary cell di-
vision. Also, for r > 0., U (m,0) grows slower than 2 because of the time 
lag. Indeed, we now show that for r > 0, at is real and 1/2 < at < 1. 

Since 

m+r 
(1 - a.) = a. r 

we see that if a. is real , it must satisfy both 1 - a. = y and 

m+r 
r 

a* = y 

In Fig. 1 we see that for any m and r > 0, there is always a positive real 
solution, a, to these simultaneous equations where 1/2 < a < 1. Also, 
when m + r is even, there is a large (< -1) negative solution. We now show 
that a is actually the smallest possible in absolute value. We note that for all 

1 - a.\ 
i 

m+r 
a.\ r 

1 

Hence 1 - a. must lie on the intersection of the circle about the origin with 
radius 
[Continued on p. 463. ] 

* * * * * 



DIVISIBILITY PROPERTIES OF FIBONACCCI POLYNOMIALS 
W. A. WEBB and E. A. PARBERRY 

Pennsylvania State University, State College, Pennsylvania 

1. INTRODUCTION 

A famous unsolved problem in number theory asks the question, "Are 
there infinitely many prime numbers in the Fibonacci sequence?" It is well 
known that if ( u } is the sequence defined by: 

U = U - + U -, U0 = 0, Ui = 1, n n-1 R-2 u » i * 

then U is prime only if n is prime. The converse, however, is not true 
since, for example, Ui9 = 113- 37. Whether there are infinitely many primes 
p such that U is prime, or indeed whether there are infinitely many excep-
tions, has been an elusive problem for over a century. 

In this paper we parametrize the sequence by using the recursion: 

Un(x) = xUn_1(x) + Un_2(x); U0(x) = 0, Ut(x) = 1 . 

(Note that U (1) = U . ) The resulting sequence: 0, 1, x, x2 + 1, x3 + 2x, x4 

+ 3x2 + 1, etc. , satisfies all of the important divisibility relations of the orig-
inal sequence with the following welcome exception: 

Theorem 1. U (x) is irreducible if and only if n is prime, which we 
will prove here. 

The following notation will be used throughout the paper. 

x + y x2 + 4 — _ x - y x2 + 4 
2" • ' W = 

Vn(x) = xVn_1(x) + Vn_2(x); V0(x) = 2, V^x) = x . 

2. SOME PROPERTIES OF THE SEQUENCE 

The following are just a few of the results concerning the sequence which 
may be readily proved. 

457 
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n —n 

(1) U (x) = " " H 
n o - u 

(2) wu = -1 . 

(3) Vn(x) = W
n + o n . 

(4) U (x) | U (x) 
n | nm 

If 

U (x) = 2 ^ A(n,m)xn 

m=0 

then, 

(5) ^ - ^ E V - O U R - : - 1 ) 
1) 

j=m 

U2n+1(x) E (-Dn(2n + 1) (mod (x2 + 4) ) ; 

ii) UQ (x) = (-l)n""1nx(mod (x2 + 4) ) . 

« U a + b ( x ) = U a ( x ) V b ( x ) - ( - 1 ) b u a - b ( x ) 

ii) Ua+b(x) = Ub(x)Va(x) + (-D\_b(x) 

(8) (Ua(x),Ub(x)) = U( a j b ) (x) . 

If p is a prime, 

p-1 
2 

(9) U (x) = (x2 + 4) (mod p) . 
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Equations (1), (2), and (3) are well known, and (4) follows immediately 
from (1). Equation (5) follows from (1) by expanding and comparing coeffi-
cients, while (6) and (7) may be proved by routine calculation using (1), (2), and 
(3). To prove (8), let 

where 

I = (n:f(x) J Un(x)} 

f(x) = (Ua(x), Ub(x)) . 

If r £ l , then by (4) mr E I for any integer m. If r E I and frE I, then 
by (7), r - t E I. Hence I is an ideal containing a and b , and therefore 
(a,b) E I, which shows that 

< U a ( x ) > U b ( x ) ) | U ( a , b ) ( x ) 

and by (4) we have 

U ( a , b ) ( x ) | ( U a ( x ) ' V x ) ) 

The proof of the identity in (9) goes as follows. 
By (5) we have, 

&(p,m) s I )4m(modp) , 

hence 

p-1 
2 / P z A 2 f c i - n i ) E=l 

U (x) E £ ( 2 ] x \ 2 / 4 m = (x2 + 4) 2 (mod p) . 
P m=0 \ m I 
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3. PROOF OF THEOREM 1 
That U (x) is irreducible only if n is prime, follows immediately from 

(8). We now prove that U (x) is always irreducible. 
Suppose that for some odd prime, p, U (x) is reducible. Then we may 

write 

m 
U (x) = 0 f.(x) , 

P i=i 1 

where the f. (x) are all monic irreducibles. 
Case 1. m > 3. Since U (x) contains only even powers of x, U (x) = 

U (-x). Hence for each i there exists a j such that f. (x) = ±f.(-x), and for 
that same j , f. (-x) = +f.(x). Therefore, 

f.(x)f.(x) = (±fj(-x))(±f.(-x)) = f.(-x)f.(-x) . 

Hence if i ^ j , U (x) is divisible by an even polynomial. On the other hand, 
if i = j , f.(x) is even since f.(0) ^ 0. In either instance, we have some 
factorization h(x)g(x) = U (x), where h(x) and g(x) have degree>2 and both 
a re even functions of x. Now by the division algorithm, we may write 

h(x) = ^(x)(x2 + 4) + h , 

and 

g(x) = *2(x)(x2 + 4) + g , 

where h and g are integers. Now by (6), we see that 

h(x)g(x) = ±p(modx2 + 4) , 

hence h = ±p and g = ±1 without loss of generality. On the other hand, by 
(9), we have 

k g(x) = (x2 + 4) (mod p) when p = 3 mod 4 , 
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and 

ki ko 
g(x) E (x + a) x(x - a) 2 (mod p) when p s 1 mod 4, 

where a = 2 \Pl mod p. In the second case, we note that kt = k2 since g(x) 
= g(-x) (mod p). Hence, in either instance, we may write 

g(x) =*3(x)p + (x2 + 4)k , 

where ^3(x) is even since g(x) and (x2 + 4) are . Therefore #3(x) = c (mod 
x2 + 4) for some integer c, and we have 

±1 = g(x) = cp (mod x2 + 4) , 

a contradiction. Hence if U (x) is reducible, it must have only two factors. 
Case 2. m = 2. Let U (x) = f(x)g(x) where f(x) and g(x) a re i r r e -

ducible and monic. Now either f (-x) = f (x) or f (-x) = g(x). (Note: since 
sgnf(O) - sgng(O) ^ 0, f(-x) £ -f(x) or -g(x)). If f(-x) = f(x), the a rgu-
ment in Case 1 is applicable, since f(x) and g(x) are even. Hence we may 
assume f(-x) = g(x). Now if p = 3 (mod 4), we get an immediate contradic-
tion. Since 

deg f (x) = deg g(x) = E-^— , 

which is odd, we have that the leading coefficients of f (-x) and g(x) have op-
posite signs. Therefore p = 1 (mod 4). Now if we let 

p-1 2-1 
2 £zl_n

 2 

f(x) = ^ anx 2 and g(x) = ] > j ( - « \ : 
n=0 n=0 

then we have 

f(x)g(x) = x p _ 1 + (2a2 - a i )x p " 3 + (2a4 - 2a3ai + a | )x p " 5 + 



462 DIVISIBILITY PROPERTIES OF FIBONACCI POLYNOMIALS [Dec. 

Now from (5) we have that (2a2 - a ^ = p - 2 which means aj must be odd 
and consequently a2 is even since 2a2 = 0 (mod 4). But also from (5), we 
have that 

(2a4 - 2 a 3 a i + aS) = (p " 3)
2
(p ~ 4) . 

which is odd; this is a contradiction since a2 is even. Therefore U (x) is 
irreducible. 

4. FURTHER CONSIDERATIONS 

The generating function for ( u (x)} is quite easy to derive, but not very 
illuminating for number theoretic purposes. We include it here for the sake of 
completeness. 

Let 

oo 

f(x,y) = 2 U
n

( x ) y n ' 
n=0 

then 

f(x,y) = £ , 
1 - xy - y2 

by using the recursion relation and the fact that U (x) = (-1) " U_ (x). 
The main theorem of this paper brings to mind the sequence of cyclotomic 

polynomials which are also irreducible for prime numbers. We conclude this 
paper by showing the following inherent connection between the two sequences. 

Theorem. The n - 1 roots of U (x) are given by 

U (2i cos — J = 0 , 

for k = l , 2 , - - - , n - l . 
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Proof. Let x = 21 cos 9, 0 < 9 < IT, then from (1), 

U (2i cos 9) (i cos 9 + sin 9) - (j cos 9 - sin 9) 
2 sind 

(-i) (e - e ) 
2 sin 6 

U (2i cos 9) n 
(i) s in n.9 

sin 6 

which i s ze ro for 

e = ^zr k = i , 2, ••• , n - 1 
n J 9 9 9 

* * * * * 

[Continued from page 456. ] 

m + r 

and the c i r c l e about (1,0) with rad ius \a. I. Now, for a. = a, the two c i r c l e s 

m u s t be tangent external ly (tangent, because 1 - a is rea l ; and ex terna l ly , 

s ince 0 < 1 - a < 1). Now if the re ex i s t s an i such that \a. J < a, then the 

rad i i of both c i r c l e s would be s m a l l e r , and hence they couldnTt i n t e r sec t . This 

shows that a = a. . 
I 

* * * * * 



ON THE COMPLETENESS OF THE LUCAS SEQUENCE 
D. E. DAYKIN 

University of Reading, England 

It is well known* that the Lucas sequence 

LQJ L J , L2, *'* = 2, 1, 3, ••• 

is complete. It is easy to see that if 0 < m < n, the integer L - - 1 can?t 
be represented as a sum of distinct L. with i f- m,n. Thus { L . } is not 
complete after the removal of two arbitrary terms L , L . We will also show 
that the sequence is complete after the removal of any one term L with n > 
2. 

Let N be a positive integer. It is well known that N is a (maximal) 
sum of L.Ts, that i s , I 

(1) N = L. + L. + • • - + L. with | !* - ° a m* 9 f n , „ , R 
it i2 i/3 \ i „ + 1 " V - 2 f 0 r 1 - v < P ' 

We suppose L is one of the terms in the representation (1), for otherwise we 
have nothing to show, say n = i < i~ Then 

(2) M = L. + L. + • • • 

( L n + 1 + 1 and 

" K+i - 1 and 

L' - + 1, we rep lace 

+ L,- < L + L „ + • • • + L. + LA *•# — n n-2 k 0 

k = 2 if n i s even, 

k = 3 if n is odd . 

the sum (2) for M by L + L in (1) If M = L' + 1, we replace the sum (2) for M by L + L in (1). If M 
= L n + 1 we replace the sum (2) for M by L - in (1). Observe that L -
does not appear in (1). If M < L - - 1, we can re-represent it as a sum of 
distinct terms L. with 0 < i < n - 1, and so we are through in this final 
case. 

*V. E. Hoggatt, Jr . , Fibonacci and Lucas Numbers, Houghton Mifflin Co. , 
Boston, 1969. 

* * * * * 
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REMARK ON A PAPER BY R. L DUNCAN 
CONCERNING THE UNIFORM DISTRIBUTION MOD 1 

OF THE SEQUENCE OF THE LOGARITHMS OF THE FIBONACCI NUMBERS 
L. KUfPERS 

Southern Illinois University, Carbondale, Illinois 

In the following we present a short proof of a theorem shown by H. L. 
Duncan [1]: 

Theorem 1. If lit, JUL2, • • • is the sequence of the Fibonacci numbers, 
then the sequence logfij, logM.2, • • • is uniformly distributed mod 1. 

Moreover, we show the following proposition. 
Theorem 2. The sequence of the integral parts [log M-i] s [log M-2] » ' ' " 

of the logarithms of the Fibonacci numbers is uniformly distributed mod mfor 
every positive integer m > 2. 

Proof of Theorem 1. It is well known that 

K "n+1 . 1 + N/5 
r n 

or 

(1) log liR+1 - l o g ^ n ~ > l o g ^—^- , as n - > o o . 

In [2] (see th. 12.2.1), it is shown that if u f 0 is real and algebraic, 
then 9 is not an algebraic number. Therefore, 

1 +_js/5 

being an algebraic number, we conclude that 

, 1 + rsj 5 
log g 

is transcendental. (One can also argue as follows: let be given that 9 > 0 is 
algebraic. Now suppose that log 9 = u/v where u and v are integers. Then 
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we would have 9V = e . But this i s imposs ib le s ince 8 i s a lgebra ic and e 

i s t ranscendenta l (orally communicated by A. M. Mark) . 

According to a theorem due to J . G. van de r Corput we have that a s e -

quence of r ea l number s A4, A2, • '* i s uniformly dis t r ibuted mod 1 if 

A ,., - X — > 6 (an i r r a t iona l number) a s n - > <*>. n+i n 

(see [3]) . By the p rope r ty (1) we see that the sequence logjOLj, log/jL2," •" i s 

uniformly d is t r ibuted mod 1. 

Proof of Theo rem 2. F i r s t , we use the fact that the sequence 

logM n 
— (m, an in teger ^ 0), n = 1,2,* •• , 

i s uniformly dis t r ibuted mod 1 which follows by the s ame a rgument used in the 

proof of Theorem 1: we have namely 

logfi. + 1 logU log — ^ — • 
_—__ -$> _ (non-algebraic) a s n —> <*>. 

m m m & 

Then accord ing to a theorem of G. L. van den Eynden [ 4 ] , quoted in [5] the 

sequence 

[ l o g / i j ] , [logfXjj], • • • 

i s uniformly d is t r ibuted modulo m for eve ry in teger m > 2 , that i s , if 
A(N, j , m ) is the number of e lements of the set 

{ [ l o g ^ n ] } (n = 1,2, • • • , N) , 

satisfying 

[ l o g f i n ] = j ( m o d m ) , (0 < j < m - 1) , 

then 
[Continued on page 473. ] * • • • • 



SUMS OF POWERS OF FIBONACCI AND LUCAS NUMBERS 
L. CARLITZ 

Duke University, Durham, North Carolina 
and 

J. A. H. HUNTER 
Toronto, Ontario, Canada 

1. Hunter has s ta ted a s a p rob lem in this Qua r t e r ly [2] the identi ty 

(1) F 4
 n + F 4 + F 4 = 2 [2F 2 + ( - l ) n l 2 . 

n - 1 n n+1 L n J 

Th is can be proved rapidly in the following way. In the identi ty 

2 
(2) x4 + y4 + (x + y)4 = 2(x2 + xy + y2) , 

take x = F - , y = F . Then n - 1 J n 

Fi + F 4 + F 4 = 2 ( F 2 - + F - F + F 2 ) 2 

n - 1 n n+1 n - 1 n - 1 n n 

Since 

F 2 - + F , F + F 2 = F n F ^ + F 2 = 2F 2 + (-1) , n - 1 n - 1 n n n - 1 n+1 n n 

we immedia te ly get (1). 

S imi la r ly if we take x = L . , y = L in (2), then s ince 

L2 - + L , L + L2 = L -L ^ + L2 = 2L2 - 5 ( - l ) n , n - 1 n - 1 n n n - 1 n+1 n n 

we get the companion formula 

(3) L4 + L4 + L4 = 2 [ 2 L 2 - 5 ( - l ) n ] . 
v n - 1 n n+1 L n J 

In the s ame way the ident i t ies 

^Supported in p a r t by NSF gran t GP-5174. 
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(x + y)5 - xb - y5 = 5xy(x + y)(x2 + xy + y2) , 

(x + y)7 - xT - y7 = 7xy(x + y)(x2 + xy + y2 )2 , 

lead to the following: 

(4) F* - F5 - F 5
 n = 5F ^ F F , (2F2 + (-l)n) , 

n+1 n n-1 n+1 n n-1 n 

(5) L* - L5 - L5' = 5L ^ L L , (2L2 - 5 ( - l ) n ) , 
n+1 n n-1 n+1 n n-1 n 

(6) F 7 - F 7 - F 7 - = 7F A 1 F F , (2F2 + (-if)2 , 
n+1 n n-1 n+1 n n-1 n * 

(7) L7 - L7 - L7 = 7L ^ L L , (2L2 - 5(- l ) n ) 2 . v ' n+1 n n-1 n+1 n n-1 n ' ' 

Cauchy has proved (see [1 , p. 31]) that if p is a prime 3 then 

(8) (x + y)P - xP - yP = pxy(x + y)(x2 + xy + y2)f (x,y) , 

where f (x,y) is a polynomial with integral coefficients. For p = 1 (mod 
XT 

6) there is the stronger result: 

(9) (x + y)P - xP - yP = pxy(x + y)(x2 + xy + y2) g (x,y) , 

where g (x,y) is a polynomial with integral coefficients. Substituting x = 
F n - 1 ' y = F n ' w e g e t 

C l " Fn" ~ F l l = p F n + l F n F n - l ( 2 F n + ^ X . p • 

L S + 1 - L S " L L l = p L n + l L n L n - l ( 2 L n " ^ X . p ' 

where F and L are integers. If p = 1 (mod 6) we get n ,p n,p & f & 
2 

F P - F P - F P - = pF ^ F F ,(2F2 + (- l)n) F1 
n+1 n n-1 ^ n+1 n n-1 n n,p 

LP - L P - L P = pL A1L L ,(2L2 - 5(-l)n)2L> , n+1 n n-1 ^ n+1 n n-1 n n,p 



1969] SUMS OF POWERS OF FIBONACCI AND LUCAS NUMBERS 469 

where Ff and LT are integers. n,p n,p & 

2. To get more explicit results , we proceed as follows. Consider the 
identity 

(10) x
 + y + z = (x + y + z) - 2(xy + xa + yz)w + 3xyzw2 

1 - xw 1 - yw 1 - zw 1 _ ( x + y + z ) w + ( x y + x z + y z ) w 2 _ x y z w 3 

We take z = -x - y. Then (10) becomes 

x v x + y -2Uw + 3Vw2 
(11) _ x Y + x + y 

1 - xw 1 - yw 1 + (x + y)w x „ U w2 + V w 3 ' 

where 

(12) U = x2 + xy + y2, V = xy(x + y) . 

We have 

(1 - Uw2 + Vw3)"1 = £ ) w 2 r ( U " Vw) w û - vw; 
r=0 

r 
r-sT rs s V w = £"3rE<-»s(s)u 

r=0 s=0 

k=0 r 

Since the left member of (11) is equal to 

E r / -vk, ^ vk+1 k+1 k+1, k [(-1) (x + y) - x - y J w , 
k=0 

it follows that 
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z .vk, , vk+1 k+1 k+1 
(-1) (X 4- y) - x - y 

3r-k+2 T Tk-2r~l - M ^ E ^ - i - i ) " 3 " - 1 ^ 

3 r - k + 2 _ k - 2 r - l 

Since 

2 

we have 

•"^(k-i-,)"**** 

( r ) + si r ) = k + 1 ( r ^ 
\k - 2r - 1/ \ k - 2r - 2 / k - 2r - 1 \ k - 2r - 2 / ' 

t ^ Nk+1 , ^ k , k+1 ^ k + 1 , (x + y) - (-1) (x + y ) 

(13) 
T 3r-k+2 X T k-2r- l E k + 1 / r \ 3r-k+2 k 

k - 2 r - l \ k - 2r - 2 ) u v 

When k is odd, i t i s to be unders tood that for r = (k - l ) / 2 , the coefficient 

on the r ight i s 2. 

Replacing k by 2k in (13), we get 

, , ,2k+l 2k+l 2k+l 
(x + y) - x - y 

3r -2k+2 T r 2k -2 r - l S 2k + 1 / r \ 3r-2k+2 

2k - 2 r - l \ 2 k - 2 r - 2 / U 

the range of r i s de te rmined by 

(15) r < k, 2k - 2 < 3 r 

In pa r t i cu l a r (14) impl ies 



1969] SUMS OF POWERS OF FIBONACCI AND LUCAS NUMBERS 471 

, _, v6k+l 6k+l 6k+l (x + y) - x - y 

(16) k - 1 
T 3k-3r - l X T 2r+l E 6k + 1 / 3 k - r - l \ 3 k - 3 r - l v 2 

2 r + 1 \ 2 r / U V 

r=0 

F o r example , we have 

(X + y)7 - x7 - y7 = 7 u 2 V 

(x + y)13 - x13 - y13 = 13 U2V(U3 + 2V2) 

(x + y)19 - x19 - y19 = 19U2V(U6 + 7U3V2 + 3V4) . 

We a lso have from (14) 

, ^ ,6k+5 6k+5 6k+5 
(x + y) - x - y 

(17) S 6k + 5 / 3 k - r + l \ 
2 r + 1 I 2r / U 

r=0 

3k-3r+ l 2 r + l 

F o r example , 

(x + y)5 - x5 - y5 = SUV 

(x + y)1 1 - x1 1 - y1 1 = 11 UV(U3 + V2) 

(x + y)1 7 - x1 7 - y17 = 17(UV(U6 + 5U3V2 + V 4 ) . 

When 6k + 1 i s p r i m e , the coefficients on the right of (16) a r e divisible 

by 6k + 1; m o r e o v e r the r ight m e m b e r has the polynomial factor U2. When 

6k + 5 i s p r i m e , the coefficients on the r ight of (17) a r e divisible by 6k + 5; 

m o r e o v e r the r ight m e m b e r has the polynomial factor U. Thus (16) and (17) 

furnish explici t formulas for the fac tors f (x,y) and g (x,y) occu r r i ng in (8) 

and (9). 

In addition we have the identity 

, _, ,6k+3 6k+3 6k+3 
(x + y) - x - y 

(18) k 

S6k + 3 / 3 k - r \ n 
2 r + 1 \ 2 r / U 

r=0 

3 k - 3 r v 2 r + l 
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For example 

(x + y)9 - x9 - y9 = 9U3V + 3V3 

(x + y)15 - x15 - y15 = 15U6V + 50U3V3 + 3V5 . 

For even exponents we get 

,2k , 2k 2k (x + y) + x + y 

(19) 

(K3r<k 

In particular, (19) yields 

,6k _, 6 k ± 6k (x + y) + x + y 

(20) 

r=l 

3k-3r y 2r 

The first few coefficients in the right member of (19) are given by the 

following table. 

1 
2 

3 
4 
5 

6 
7 
8 

9 
10 

2 
2 
2 
2 
2 

1 2 

2 
2 

2 
2 

15 
24 
35 
48 
63 
80 

3 
14 
40 
90 

175 
3 

20 
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n l im^ —A(N,j,m) = — for j = 0 , 1 , . • • ,n - 1. 

(see [5]). 
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NOTE ON THE INITIAL DIGIT PROBLEM 
R. L. DUNCAN 

King of Prussia Graduate Center 
Pennsylvania State University, State College, Pennsylvania 

The initial digit problem is concerned with the distribution of the first 
digits which occur in the set of all positive integers. There are many possible 
interpretations of the heuristic question, "What is the probability that an inte-
ger chosen at random has initial digit equal to a ? " [1], If A = ( a } is the 
set of all positive integers with initial digit a, then the asymptotic density 
[2] of A would provide a suitable answer to this question if it exists. How-
ever, it is easily shown that the asymptotic density doesn't exist. 

The purpose of this note is to show that the logarithmic density [2] of A 
exists and is equal to log (1 + l / a ) , where log x is the common logarithm. 
This result is in agreement with previous solutions of the initial digit problem 
[ 1 ] . It is also of interest to note that the logarithmic density exists and is 
equal to the asymptotic density whenever the latter exists [2], 

The logarithmic density 6(A) is defined by 

6(A) = lim r^-Y^ — > 

and the lower and upper logarithmic densities _6(A) and 3(A) are obtained by 
replacing lim by lim and lim respectively. Now it is obvious that 

6(A) = lim L- V] r " 
k-> - ln<a 10 " D a <l?Ok-l " 

k-1 

= lim n j ~ J o Y ^ [H( (a + 1)10^ - 1) - H(a 101" - 1) ] 
k_>oo ^ 

lim — L ^ ^ [H((a + l)101') - H(a lo")] , 

v=l 

474 
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where 

H(n) = i + 1 + . . . + I . 

Using the well-known asymptotic formula [3] H(n) = In n + y + 0(l/n), we get 

6(A) = lim (k - l)(ln(a + 1) - In a)/k In 10 
k->°o 

= ln(l + l /a) / ln 10 = log(l + l/a) . 

Similarly, 

"5(A) = lim — - r Y^ — 
^ - l n ( ( a - M ) 1 0 k-l%<J££)10K1*V 

k 

lim n i T l o S [ H ( ( a + 1} 1QU) ~ H(a loU)] 
k —-̂  oo 

= log (1 + l /a) = 6(A) , 

and the desired result follows. 
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ON FIBONACCI AND LUCAS NUMBERS 
WHICH ARE PERFECT POWERS 

HYMIE LONDON AND RAPHAEL FINKELSTEIN 
McGill University, Bowling Green State University 

The Fibonacci numbers, defined for all rational integers n by 

Fi = F2 = 1, F ^0 = F ,- + F , 1 * n+2 n+1 n 

have for several centuries engaged the attention of mathematicians, and while 
many of their properties maybe established by very simple methods, there are 
many unsolved problems connected with them. One such problem is to deter-
mine which Fibonacci numbers are perfect powers. The case of the Fibonacci 
squares was solved by J. H. E. Cohn in [3] and also in [ 4 ] . (See [5] for 
some applications of CohnTs method to other Diophantine problems.) Cohn 
showed that the only squares in the sequence F are given by 

F_! = Fx = F2 = 1, F0 = 0 and F12 = 144 . 

Having solved the problem of the Fibonacci squares, one is led to inquire as to 
which numbers F can be perfect cubes, fifth powers, etc. A proof that 

Fi = F2 = 1, F6 = 8 and F12 = 144 

a re the only perfect powers in the sequence F for positive n was given by 
Buchanan [1] , but, unfortunately, Buchanan1 s proof was incomplete and was 
later retracted by him [2] . Thus the problem of determining all the perfect 
powers in the sequence F remains unsolved. In the present paper we first 
present a general criterion for solving this problem. We then apply our result 
to the case of the Fibonacci cubes and give the complete solution for this case. 
Finally, we give a similar criterion for determining which Lucas numbers are 
perfect powers, and determine all Lucas numbers which are perfect cubes. 

To determine which numbers F are perfect k powers, we may 
assume, by CohnTs result, that k = p , where p is an odd prime, and also 
that n is positive, since F0 = 0 and F_ = (-1) F . Let L be the n 
term in the Lucas sequence, defined by 
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L i . = 1, L2 = 39 L n + 2 = L n + 1 + L n , 

and let 

o _ l + ' s /5 , _ 1 - N / 5 a - — — — — , D - — - J 5 

By induction, it is easily verified that 

F = ^ - ^ - , L = a11 + b n , 
N/5 n 

and since ab = - 1 5 we have finally that 

(1) L2 - 5F2 = 4( - l ) n . 
n n 

Let us first assume that n is even and that F = z , L ='y, where 
n ' n J 

p is an odd prime. Then (1) becomes 

(2) y2 - 5z2 p = 4 . 

Now it is clear that the solution of (2) reduces to the solution of 

(3) y2 - 5xp = 4 , 

subject to 

(4) x = z2 . 

In (3) we set 

X Y 
x = 5 ' y " 7&W2 ' 

which yields 
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Y2 - 4 . 5 P - 1 * X p , 

subject to 

(5) ^ = z2 , X > 0, Y > 0, X = 0 (mod 5), Y = 0 (mod 5 ( p 1 ) / / 2 ) 

S imi la r ly , if n i s odd, the p rob lem reduces to solving 

Y2 + 4 . 5 P - 1 = X P 

subject to (5), and we have proved 

T h e o r e m 1. The p rob lem of de te rmin ing which n u m b e r s F , n > 0, 

a r e per fec t p p o w e r s , where p i s an odd p r i m e , r educes to the solution 

of the equations 

Y2 + 4 . 5 P - 1 ( - l ) n - 1 = X P , 

subject to the conditions 

^ = z2 , X > 0, Y > 0, X = 0 (mod 5), Y = 0 (mod 5 ( p " 1 ) / 2 ) . 

Le t us apply T h e o r e m 1 to the ca se p = 3. Here the p rob lem reduces 
to solving 

(6) Y2 - 100 = X3 , 

and 

(7) Y2 + 100 = X3 , 

subject to the conditions 

(8) ^ = z2 , X > 0, Y > 0, X = Y = 0 (mod 5) 
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Now Hemer proved [7] , [8] , that the only solutions of (6) with Y > 0 are 

[X,Y] = [ -4 ,6] , [0,10] , [5,15], [20,90], [24,118] and [2660J.37190]. 

Of these solutions, the only ones satisfying (8) are [5,15] and [20,90]. This 
yields [x,y] = [1,3] and [4,18] as the only solutions of (3) {with p =3) 
which satisfy (4), and from these solutions we derive 

L2 = 3, F2 = 1 and L6 = 1 8 , F6 = 8 . 

Thus the only cubes in the sequence F with n positive and even are F2 = 1 
and F6 = 8. 

In two previous papers [6] , [10], we showed that the only integer solu-
tions of (7) with Y > 0 are [X,Y] =[5,5], [10,30] and [34,198] . Of these 
solutions only [5,5] satisfies (8), and from this solution we derive F± = LA = 
1* Thus the only cube in the sequence F with n positive and odd is F t = 
1, and we have 

Theorem 2. The only cubes in the Fibonacci sequence F are 

F_6 = - 8 , F_2 = - 1 , F0 = 0, F_! = F t = F2 = 1 and F6 = 8 . 

Next, we give a criterion for determining which Lucas numbers are per-
fect p powers, where p is an odd prime. We note that the case of the Lucas 
squares was solved by Cohn [3] , who showed that the only Lucas squares are 
Lj = 1 and L3 = 4. 

In (1) let F = z, L = yP and n > 0, and assume first that n is 7 n ? n J 

even. Then we get 

(9) y 2 p - 5z2 = 4 . 

It is clear that (9) reduces to solving 

(10) x P - 5z2 = 4 , 

subject to x = y2 . 
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Equation (10) may be written 

5xP - (5z)2 = 20 , 

and, setting v = 5z, it reduces to 

(11) 5xp - v2 = 20 , 

subject to 

= y2, v = 0 (mod 5) . 

Finally, setting 

X Y 

(11) reduces to 

(12) Y2 + 4 • 5P = Xp , 

subject to the conditions 

(13) ^ = y2, X > 0, Y > 0, X = 0 (mod 5), Y = 0 (mod 5 ( p + 1 ) / 2 ) . 

Similarly, if n is odd, the problem reduces to 

Y2 - 4 - 5 p = Xp , 

subject to the conditions (13), and we have 
Theorem 3. The problem of determining all the perfect p powers in 

the sequence L , where p is an odd prime, reduces to solving the two 
equations 

Y2 + 4 - 5 p ( - l ) n = XP , 
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subject to the conditions 

^ = y2, X > 0, Y > 0, X = 0 (mod 5), Y = 0 (mod 5 ( p + 1 ) / 2 ) . 

F ina l ly , we apply T h e o r e m 3 to the case p = 3. Here the p rob lem r e -
duces to solving 

(14) Y2 - 300 = X3 , 

and 

(15) Y2 + 500 = X3 , 

subject to 

(16) ~ = y2, X > 0, Y > 0, X E 0 (mod 5), Y = 0 (mod 25) . 

In a previous paper [ 9 ] , we showed that (15) is insoluble and that the 

only solution of (14) with Y > 0 is [X,Y] = [5 ,25] . This solution c l ea r ly 

fulfills (16) and a l so impl ies that Lj = F j = 1. Thus we have proved 

Theo rem 4. The only cube in the Lucas sequence L , n > 0, i s Lj = 

1. 

In conclusion, we wish to point out that Siegel [11] has shown that the 

p rob lem of de te rmin ing a l l the complex quadra t ic fields of c l a s s number 1 can 

be reduced to the p rob lem of finding all the cubes in the sequences F and 

L . Thus we have completed yet another proof of Gauss ! famous conjecture on 

complex quadra t ic fields of c l a s s number 1. 
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THE DYING RABBIT PROBLEM 

V. E. HOGGATT, JR., and D. A. LIIMD 
San Jose State College, San Jose, Calif., and University of Cambridge, England 

1. INTRODUCTION 

Fibonacci numbers originally arose in the answer to the following prob-
lem posed by Leonardo de Pisa in 1202. Suppose there is one pair of rabbits 
in an enclosure at the 0 month, and that this pair breeds another pair in 
each of the succeeding months. Also suppose that pairs of rabbits breed in the 
second month following birth, and thereafter produce one pair monthly. What 

th 
is the number of pairs of rabbits at the end of the n month? It is not diffi 
cult to establish by induction that the answer is F l 0 , where F is the n J n+2 n 
Fibonacci number. In [l] Brother Alfred asked for a solution to this problem 
if, like Socrates, our rabbits are motral, say each pair dies one year after 
birth. His answer [2], however, contained an error . The mistake was noted 
by Cohn [3], who also supplied the correct solution. In this paper we gener-
alize the dying rabbit problem to arbitrary breeding patterns and death times. 

2. SOLUTION TO THE GENERALIZED DYING RABBIT PROBLEM 

Suppose that there is one pair of rabbits at the 0 time point, that this 
pair produces Bf pairs at the first time point, B2 pairs at the second time 
point, and so forth, and that each offspring pair breeds in the same manner. 
We shall let B0 = 0, and put 

B(x) = £ B x11 

n=0 n 

so that B(x) is the birth polynomial associated with the birth sequence 

( B j 
n=0 

The degree of B(x), deg B(x), may be finite or infinite. Now suppose a pair 
of rabbits dies at the m time point after birth (after possible breeding), and 
let D(x) = x be the associated death polynomial. If our rabbits are immortal, 
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put D(x) = 0. Clearly deg D(x) > 0 implies deg D(x) > deg B(x), unless 
the rabbits have strange mating habits. Let T be the total number of live 
pairs of rabbits at the n time point, and put 

T(x) = £ Tx11 

n=0 

where T0 = 1. Our problem is then to determine T(x), where B(x) and D(x) 
are known. 

Let R be the number of pairs of rabbits born at the n time point 
assuming no deaths. With the convention that the original pair was born at the 
0 time point, and recalling that B0 = 0, we have 

R0 - 1, 
Rj := BQR^ + BJRQ , 

R2 = B0R2 + B-^i + B2RQ • 

and in general that 

(1) R = £ B.R . (n > 1) . 
n po J n"J 

Note that for n = 0 this expression yields the incorrect R0 = 0. Then if 

RW = E Rnxn , 
n=0 

equation (1) is equivalent to 

R(x) = R(x)B(x) + 1 , 

so that 
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The tota] 
given by 
The total number T* of pairs at the n time point assuming no deaths is 

n 
T* = Y, R. , 

n • n 3 

and we find 

(1 - x) [1 - B(x7) 1 - A • k = Q 

(2) 

*».l±±){i^) 
00 / n \ °° 

= E E H. xn = D Tnxn = T*(x) • 
n=0\j=0 7 n=0 

Hoggatt [4] used slightly different methods to show both (1) and (2). 
We must now allow for deaths. Since each pair dies m time points 

af terbir th , the number of deaths D at the n time point equals the num-
ber of births R at the (n-m) time point. Therefore 

W = »«JV' = ^B-n=0 n=0 

Letting the total number of dead pairs of rabbits at the n time point be 

n c = y\ D. , n -* 3 

we have 

D(x) 
(1 - x) [1 ^=(lo*%foV°Ho(NX" 

= E Cx11 = C(x) 
n n n=0 
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Now the total number of live pairs of rabbits T at the n time point is 
T n " C n ' s o t h a t 

(3) T(x) = T*(x) - C(x) = T r ^ ^ L M _ 

3. SOME PARTICULAR CASES 

To solve Brother Alfredfs problem, we put B(x) = x2 + x3 + • • • + x12 

and D(x) = x12 in (3) to give 

1 - x12 1 - x12 

T(x) - X x _ l x (1 - x)(l - x2 - x3 - . . . - x12) 1 - x - x2 + x13 

It follows that the sequence { T } obeys 

T 1 - 0 = T_L 1 0 + T J _ 1 - - T (n > 0) , 
n+13 n+12 n+11 n — 

together with the initial conditions T = F - for n = 0, 1, ••• , 11, and 
T12 = Fi3 - 1J which agrees with the answer given by Cohn [3]. 

As another example of (3), suppose each pair produce a pair at each of 
the two time points following birth, and then die at the m time point after 
birth (m> 2). In this case, B(x) = x + x2 and D(x) = x . From (3), we 
see 

-i JH 
T(x) - l " x 

(1 - x)(l - x - x2) 

Making use of the generating function 

t Fn+1xn , 
- v n n+1 
1 - x - X- n=0 

we get 
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. , 1 + X + • • • + X V^ XJ 

T(x) = — — = 2^ — 
1 - x - x2 3=0 1 - x - x2 

m - 1 / °° ,. \ m-1 / n \ °° / m - 1 \ 
(4) = E E Fn+1xn^ = E E Fk+1)xn

 + E E Fn k + 1 x 1 

j=0 \ n=0 n X J n=0 \ k=0 K + i / n=m \ k=0 n K + 1 / 
m-1 °° 

= Eft (Fn+3 - Dx11 - E (Fn+3 - Fn_m+3)xn 

n=0 n=m 

For m = 4r it is known [5] that 

Fn+3 Fn-4r+3 F 2r L n-2r+3 ' 

where L is the n Lucas number, while for m = 4r + 2, n 

Fn+3 " F n -4r+l = L 2r+l F n-2r+2 ' 

which may be used to further simplify (4). In particular, for m = 2, 

T(x) = 1 + 2x + E F n + 2 x n = E F n + 2 x n 

n=0 n=0 

while for m = 4 we have 

T(x) = 1 + 2x + 4x2 + 7x3 + T L .x11 
~ , n+1 n=4 

^ n+l n=0 

Thus for proper choices of B(x) and D(x) we are able to get both Fibonacci 
and Lucas numbers as the total population numbers. 

The second-named author was supported in part by the Undergraduate 
Research Participation Program at the University of Santa Clara through NSF 
Grant GY-273. 
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ORTHOGONAL EXPANSION 
DERIVED FROM THE EXTREME VALUE DISTRIBUTION 

J. C. AHUJA 
Portland State College, Portland, Oregon 

1. INTRODUCTION 

The cumulative distribution function, F(x), of the extreme value dis-
tribution is given by 

-x 
(1) F(x) = e" e , for -oo < x < «> , 

and the density function, f(x) = FT(x), is obtained as 

(2) f(x) = e _ ( x + e \ for -oo < x < <*> . 

The extreme value distribution has found a number of applications. 
Cramer [2] derives (2) as an asymptotic density of the first value from the 
top for certain transformed variates in a random sample of n observations 
drawn from Laplace1 s and normal distributions. The distribution function (1) 
was first used by Gomperfcz [3] in connection with actuarial life tables and 
later on has been used extensively in the study of growth. 

The purpose of this paper is (i) to find an explicit expression for the 
moment generating function of the standardized extreme value distribution and 
(ii) to derive an orthogonal expansion (Type A series) from the extreme value 
density in a manner similar to the way in which Gram [4] and Charlier [1 ] 
derived an orthogonal expansion from the normal density by making use of the 
Hermite polynomials which are orthogonal with respect to the normal density. 
The orthogonal expansion requires the calculation of first eight standardized 
moments of (2) which in turn involve the evaluation of the Riemann zeta func-
tion. This difficulty is overcome by using the tabular values of the Riemann 
zeta function given by Steiljes [6], 

2. MOMENT GENERATING FUNCTION 

The moment generating function, M (u), of the density function f(x) is 
488 



Dec. 1969 ORTHOGONAL EXPANSION 489 
DERIVED FROM THE EXTREME VALUE DISTRIBUTION 

Mx(u) = J V V ( x + e }dx , 

•—X 

which, on substituting s = e , becomes 

(3) M (u) = / s ~ V s d s 

= r(i - u) 

,(k) = £ rw(i)(-u)K/ki 
k=0 

(k) th 
where r v '(1) is the k derivative of the gamma function, T(p), at p = 1. 
This proves the following. 

Lemma 1, The moment generating function of the extreme value density 
f(x) is given by (3). 

According to Jordan [5] , the n derivative of T(p) at p = 1 is 

(4) r<n>(i) = i-ifZ a ^ . . ^ cdl(s2/2)d2... (sn/n)dn . 

where the summation is over non-negative integers dl5 d2, • • • , d such that 
dj + 2d2 + 3d3 + • . . + ndn = n; S, is the Riemann zeta function defined by 

n=l 

and C is EulerTs constant which, correct to nine d e c i m a l places, is 
0.577215665"". 

If \± J and JLL2 denote the mean and variance of f(x), then (3) and (4) 
give us 
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M-i = C and fi2 = s2 • 

[Dec. 

Defining z = (x - C ) / N / S 2 , we get the standardized extreme value den-
sity function 

(5) = ^ ^ [ c W s ^ z + e - ( C + ^ z ) ] g(z) = Vs2 e , for -oo < z < 

The moment generating function, M (u), of g(z) is obtained as 
z 

M (u) = E(eUZ) z 

= e " C u / N / S 2 M ( U / N / S J ) D » 

which, by Lemma 1, becomes 

M (u) = E ( C / ^ ) h ( - u ) h / h ! 
h=0 

E r( k )(l)(-u/^)k/k! 
k=0 

(6) 
= E o> ur/rl 

r=0 L 

where a is the r standardized moment of g(z) and 

(7) ^ / 2 i «P = E (-Dra/s2)r/'(5)cr-j r^U) 

This completes the proof of the following: 
Theorem 1. The moment genera ting function of the standardized extreme 

value distribution g(z) is given by (6). 
The first eight of the expressions in (7), using (4), are 

at = 0 

a2 = 1 

^3 2S3/*/s3
2 
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a4 = (3S| + 6S4)/Sl 

a$ = (20S2S3 + 2 4 S 5 ) / A / S | 

a6 = (15S| + 4OS3 + 90S2S4 + 120S6)/S2 

a7 = (210Sis3 + 42OS3S4 + 504S2S5 + 7 2 0 S 7 ) / \ / s ] 

c*8 = (105s£ + 1120S2si + 1260SlS4 + 1260S4 + 2688S3S5 

+ 3360S2S6 + 5040S8)/S2 . 

491 

The values of S, for k = 2 , 3 , • • • , 70 have been c o m p u t e d by 

Stielt jes [6] up to 32 dec imal places* Using h i s tabular v a l u e s , we have 

s2 = 
S3 = 

s4 = 

s5 = 

1.644934067 

1.202056903 

1.082323234 

1.036927755+ 

s6 = 
S7 = 

s8 = 

= 1.017343062 

= 1.008349277 

= 1.004077356 

The substi tution of S!s give the numer ica l values of # ? s a s 

at = 0.000000000 

a2 = 1.000000000 

az = 1.139547099 

ai = 5.400000000 

a?5 = 18.566615980 

aQ = 91.414247335" 

a7 = 493.149891500 

az = 3091.022943246 

3. ORTHOGONAL POLYNOMIALS 

If a denotes the r s tandardized moment of g(z), then, accord ing 

to Szego [7] , the orthogonal polynomials q (z) a s soc ia ted with the densi ty 

function g(z) a r e given by 

(8) q (z) D n - 1 

n - 1 

1 

<*3 

n+1 
2 

ai 

n+2 

n+1 

2 n - l 
n 
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whe re the leading coefficient of q (z) i s one and 

(9) D = 
n 

1 
0 

a n-
a n 

•1 

0 
1 

a n 
V i 

i 
<** 

• 

V i 
an+2 

a3 
ai 

"n+2 
Vs 

n+1 

2 n - l 

*2n 

The polynomials q (z) have the orthogonali ty p rope r ty that 

(10) / V(z)qn(z)g(z)dz = 
D / D 

n / n-
for m = n 

for m f n 

Substituting for rfs in (8), the polynomials q (z), c o r r e c t to s ix d e c i -

ma l p l a c e s , for n = 0, 1, 2 j, 3 , and 4 , a r e obtained a s 

qo(z) 
Qife) 

Q2(z) 

qsfe) 
q4(z) 

= z2 - 1.139547z - 1 

= z3 - 3.634938z2 - 1.257817z + 2.495391 

= z4 - 7.557958z3 + 6.560849z2 + 14.769958z - 3.348201 

4. DERIVATION OF ORTHOGONAL EXPANSION 

Suppose that a densi ty function, h(z) , can be r e p r e se n t e d formal ly by 

an infinite s e r i e s of the form 

(ID h(z) = g(z) X) a
n Q n ( z ) • 

n=0 

where the q (z) a r e orthogonal polynomials assoc ia ted with the densi ty func-
tion g(z). 

Multiplying both s ides of. (11) by q (z) and in tegrat ing from -oo to *>, 
we have , in v i r tue of the orthogonali ty re la t ionship (10), 
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D 1 ? 
(12) a n = -jSl± J h(z)qn(z)dz . 

n -oo 

The reader familiar with harmonic analysis will recognize the resem-
blance between this procedure and the evaluation of constants in a Fourier 
ser ies . 

The first five values of a f s , given by (12), a re computed as 

a0 = 1 

a t = 0 

a2 = 0 

a3 = 0.0500572(ft - 1.139547) 

a4 = 0.0045512(ft - 7.557958ft + 3.212648) 

where p is the r standardized moment of h(z). 
Substituting for the afs in (11), we have 
Theorem 2. The orthogonal expansion (Type A series) derived from the 

standardized extreme value density g(z) is 

h(z) = g(z)[l + 0.0500572(ft - l,139547)q3(z) + 0.0045512(ft 
- 7.557958ft + 3.212648)q4(z) + - • • ] 
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REPRESENTATION OF NATURAL NUMBERS AS SUMS 
OF GENERALIZED FIBONACCI NUMBERS - II 

D. E. DAY KIN 
University of Malaya, Kuala Lumpur, Malaysia 

The well-known observation of Zeckendorf is that every positive integer 
N has a unique representation 

N = u. +u. + • • • +u . , 

where 

(1) ij ^ 1 and i - - i ^ 2 for i 4= v < d , 

and ju {• is the Fibonacci sequence 

••• , 0 , 0 , 1 , 2 , 3 , 5 , 8 , 1 3 , - " 

defined by 

u = 0 for n 4 0 , 
n 

(2) { ui = 1 , u2 = 2, and 
u , - = u + u ., for n =̂  2 . n+1 n n-1 

Existence of such a representation follows from (2), and its uniqueness follows 
easily from the identity 

(3) u , - = 1 + u + u 0 + u , + • • • for n ^ 0 
n+1 n n-2 n-4 

The object of this note is to discuss very general methods for uniquely 
representing integers, of which Zeckendorffs theorem is a special case. I feel 

494 
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that my results give a fairly complete description of the representations; they 
certainly extend the treatment of an earlier paper of the same name [5J. 

Here are some remarks on the notation which will be followed throughout 
this paper. We reserve the brackets j 8 * •} 9 (" • •) and [• • -J for sequences, 
vectors and matrices9 respectively* By V we denote the set of all vectors 
(ii,i2»e" • jid) of various dimensions d > 1, whose components ip are inte-
gers with 1 < ii < i2 < •a • ^ ifr Often we will write I instead of tiles' °"> 
i^) and M instead of fm 1 . Also {a | , n = 1,2,3,° 9° will denote any 
sequence of integers satisfying axiom 1. 

Axiom 1. The sequence is strictly increasing and its first term is 1. 
For conveniences we write a© or a(ii,i2»'8 ° 4d) f ° r the number 

a(I) = a ( i i , i 2 , 0 9 ' ,id) =a . +a. + - s - + a . . 
H x2 xd 

It will be noted that all small letter symbols stand for non-negative integers. 
In [_5j I discussed pairs ja }, {k \ which represent the integers accord-

ing to 
Definition 1. j a [, jk } represent the integers if, for each positive 

integer N there is one and only one vector I = (ij, i29 • " ,id) m V such that 
N = a(I) and 

(4) i^ + 1 - ip > k^ for 1 < v < d . 

Let us write h and k for ki and k2, respectively. Then it turns out ([JO* 
theorems C and D) that ja }, |k \ represent the integers if and only if 

(5) 0 < k - 1 < h < k = k^ for v > 2 , 

and | a J is the (h,k) Fibonacci sequence |v J defined by 

n for 1 < n < k , 
v - + v , for k < n < h + k, 

n-1 n-h k - h + v - + v , for n > h + k . n-1 n-k 

The Fibonacci sequence ju | has been defined by authors in various 
ways j such as 

(6) 
v = 
V = 

V = 



496 REPRESENTATION OF NATURAL NUMBERS AS SUMS [Dec. 

. . . , 0, 0, 0, 0, 09 0, 0, 0, 1, 2, 3, 5, 8, 13, • • • , 
••• , 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, ' • • , 

and 

. . . , - 8 , 5, - 3 , 2, - 1 , 1, 0, 1, 1, 2, 3, 5, 8, 13, ••• . 

One can sometimes simplify an argument by changing from one definition to 
another. We chose to define ju [ by (2) in order to use (3). Sometimes it is 
more convenient to define (v ) by 

v = 0 for n < k* , 
n 

(6.1) v n = 1 for k* < n < 1, and 
v = = k - h + v - + v , for n > 2, n n-1 n-k 

where k* = 1 if h = k - 1 but k* = -k + 2 if h = k. 
In the sequel, when we define a sequence, we will only consider the argu-

ment on hand at the time. 
Next observe that the (2,2) Fibonacci sequence is the ordinary Fib-

onacci sequence ju }, n > 1, and if kp = 2 for all v then condition (4) be-
comes condition (1). Thus in [5] I generalized Zeckendorffs theorem by r e -
placing the constant 2 in (1) by a sequence jk J. Later, I replaced jk | by 
an infinite matrix M = [m 1 , where /x, v > 1, of non-negative integers 
m as described in definition 2. 

Definition 2. ja i,M represent the integers if, for each positive i n t e -
ger N there i s one and only one vector I E V such that N = a (I) and 

(7) i ^ . i ^ > m M _ „ t J , for 1 < * < M < d . 

I described all such pairs ja i, M to a splinter group of the 1962 International 
Congress of Mathematicians in Stockholm (see the programme). However in 
an effort to simplify my proofs, I made one further generalization as follows. 

Definition 3. ja J, W represent the integers, where W C V, if for 
each positive integer N there is one and only one vector I E W such that 
N = a(I). 
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There is very little one can say about ja },W as this definition stands, 
so with my eye on condition (7) , I make W satisfy axiom 2. 

Axiom 2. If 

( i i , i 2 , - - - ,id) E V; (j l 5J2>"*5je) € W; 1 < d < e 

and 

1p+l " 1p ~ J*>+l ~ ^v 

for 1 < v < d then 

(il9 i2, • • • , id) E W . 

This axiom merely says that if a vector is in W and we "cut its tail off" or 
"stretch" it , or do both things, it will still be in W. Important trivial conse-
quences of axiom 2 are the laws 

I ( i i , i 2 , - - - , id ) £ W<=>(ii + l , i 2 + l r - ,id + D ^ W and it > 1, 
{ and (Li,i2 , ' s # 4d - i » id) ^ W => ( i i , i 2 , 9 - 9 »id-i» id + 1 ) E w • 

If M = [m 1 is any matrix, and W is the set of all vectors I = ( i i , i 2 , , e o , 
id) satisfying (7), then clearly axiom 2 holds for W. Hence definition 3 with 
axiom 2 is more general than definition 2, which in turn is more general than 
definition 1. 

I will now state the fundamental theorem of all this work. 
Theorem 1. Suppose {a | , W represent the integers, W C V, and 

axioms 1 and 2 hold. Then for t = 1,2,3,° • • all the integers N such that 
a, < N < a,+ 1 , and only these integers, each have a representation N = a(I) 
with I = (ii,i2,* • • , id) in W and i , = t. 

It follows from the theorem that any part of a representation is a repre-
sentation. In other words, if 

Gi , i 2»"B
 9id) E w ; i < e < d 

and 
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• 1 < vt < v2 < • • • < v < d 

then 

( VS' '"'W E W * 
Also the theorem shows that the representations of the successive integers 
1,2,3,- • • change "continuously," in the same way as their representations in 
the binary scale do. All possible representations using only a j ^ , * " • >at are 
exhausted before a, , - is used. To determine the representation of a given 
integer N you find the suffix t such that a, < N < a, - , then the suffix s 
such that a < N - a. < a + - , and so on, 

Now suppose W satisfies axiom 2. Then clearly (1) E W, there is a 
least integer p such that (l,p) E W, and there is a largest integer q such 
that the vector (1,1," • • , 1) of dimension q is in W. One of the numbers p 
and q is 1 and the other is greater than 1. My proofs, of theorem 1 and the 
results below for representations under definition 2, all split into the two cases 
p = 1 and q = 1. I always establish a chain of lemmas, each of which in-
volves a number of complicated statements, and has a proof depending on nested 
induction arguments. One can gain some idea of the lengths of the proofs by 
inspecting [ s j . For this reason, I do not intend to publish any proofs in this 
paper. I have tried repeatedly, but unsuccessfully, to find analytic proofs. I 
think that such proofs would be elegant, and would at the same time settle my 
monotonicity conjecture below. 

An important result contained in the lemmas is the following: 
If N is an integer N > 1, and the representations of N and N + 1 are 

respectively 

N = a(ii , i2 , • •• 4d ) 

and 

N + 1 = (Ji9 J2>— »Je> 

then 
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1 < a(ji + 1, ja + l v » j e
 + W - a(ii + l , i 2 + l , - - - , i d + 1) < q + l . 

Notice the revelenee of (8) to this result. Moreover the result enables us to 
give bounds for the rate of growth of ja }, and these bounds are necessary 
in the proofs. Taking N = a, - 1 so that N + 1 = a. = a(t), we find that 

1 < a t + 1 - atti + l , i 2 + l , 8 - ° .id + D ^ q + 1. 

We can in fact say more than the above, and I will illustrate the account 
by starting to construct a pair ja }, W inductively. We must have aj = 1, 
and the vector (1) in W. We are free to have (1,1) in W or not. Suppose we 
choose not to have it in. Then we can choose to have (1,2) in W or not. Sup-
pose not. Then we are free to have (1,3) in W or not. Suppose we have it in. 
Then our construction could proceed as shown in Table 1. 

ai 
1 

a2 

- 2 

Table 1 
Construction of j a | , W when p = 3 

a5 

\ 

&4 

5 
5 

a6 

- • 1 2 19 
1 + 8 — • 1 + 12 
2 + 8 — - • 2 + 12 
3 + 8 r—•• 3 + 12 

\ ( l > ^ < ^ 8 ) \ l + 3 + 12 r -^ l 
V ^ I ^ g A W 5 + 12A—" 

^(l + 5 + 12 

In the table, a representation is circled if at the appropriate stage of the 
construction, we had freedom to admit or reject it. A representation is crossed 
out iff it is not admitted. A representation at the head of an arrow must be 
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admitted, or not as the case may be, by virtue of (8) or axiom 2, because the 
representation at the tail of the arrow was admitted or not. Notice that we had 
no freedom over the values of as or as» Also the representation 1+3+12 must 
be admitted even though it is not controlled by (8) and earlier representations. 
If 1+3+12 is rejected, then a7 = 16 and we have 17 = a(l ,7) = a(4,6) con-
tradicting the uniqueness of the representations. In general, for p > 1, when 
we have freedom over the value of a , (i.e. , we can accept or reject some 
representation N = a C L i ^ , - ' - , id) with i , = t - 1), if we choose the lower 
value for a. we will have freedom of choice over a, ,-. On the other hand, if t t+1 
we choose the higher value for a. we will have no freedom over a, - , a, ? , 
"*>af.+ o» and possibly over more te rms , and sometimes over all further 
te rms. 

A typical construction with q > 1 is shown in Table 2. 

Table 2 

Construction of j a | , W when q = 3 

a2 

^ 4 

—> 1+4 
> 1+1+4 
1+1+1+4 

4+4 
1+4+4 

1+1+4+4 
1+1+1+4+4 
—> 4+4+4 

1+4+4+A 

1+1+4+4+4 
^ ± 1 + 1 + 4 + ^ / 

•> ^ + 4 + 4 ^ 

a3 

-> 15 
-> 1+15 

-> 1+1+15 

15+15 

-> 15+15+15 

4+4+15+15+15 
l+4-i4+15+15+l£\ 

l+JJ^Mr+K+lB+15 
^+1+144+4+^^+15+15^ 

^^44+4^3:5+1^15 

a4 

-> 55 
~> 1+55 

-> 1+1+55 
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Whichever way the pair ja. }, W arise there will be a sequence j m \ 
of integers, 0 < mi < m2 < m3 < • • • , which may be finite or infinite, such 
that if we put 

(3) an = 0 for n < 0, 

then we have the identity 

(10) a . - = l + a + a + a + • • • for n > 0 , 
n+1 n n-mi n-m2 

This identity corresponds to (3). Moreover, if our use of the freedom of choice 
discussed above has a cyclic pattern, then jm j i s eventually periodic. It 
will then follow by subtracting equations (10) in pairs that high up terms in 
| a | satisfy a finite recurrence relation- For example, continuing the con-
struction of Table 1, let us use our freedom in column 3 ,4 ,5 , - • • according 
to the pattern; admit, no choice, reject, admit, no choice, r e j e c t , ' " . Then 
jm [ = 2 ,5 ,8 ,11 ,14 , ' • • , an arithmetical progression with common differ-
ence 3, and ja j is given by 

i a = 0 for n ^ 0, ai = 1, a2 = 2, a3 = 3, and 
a , . , = a + a 0 + a « - a 0 for n > 3 . 
n+1 n n-2 n-2 n-3 

The first 8 terms of | a } are 1, 2, 3, 5, 8, 12, 19, 30 and the next7 appear 
in (11.1) below. 

We can use the above facts to obtain bounds for any sequence j a | as 
follows. We define a sequence j b } which has the same construction as j a } 
to some particular stage, then from that stage on, whenever freedom arises 
we choose the largest (smallest) possible value for b , . The sequence jb } 
so constructed will satisfy a finite recurrence relation which we can use to 
evaluate the terms of jb J, and hence obtain upper (lower) bounds for {a J. 
As an example, let us find bounds for the sequence ja \ started in Table 1. 
If we admit as many representations as possible in the remainder of the con-
struction, we find that jm | = 2 ,5 ,7 ,10,12,15,• • • (first differences m -
- m are 3 , 2 , 3 , 2 , 3 , 2 , ' • •) and that j a } may be defined as 



502 REPRESENTATION OF NATURAL NUMBERS AS SUMS [Dec. 

!

ai = 1, a2 = 2, a3 ~ 3, a4 = 5, a5 = 8, and 

Vran + an-2 + V4 for n - 5 ' 

This sequence is the most highly divergent one which star ts like Table 1. 
Again starting from Table 1, we this time reject as many representations 

as possible. Then {m } is the finite sequence 2,5 and 

I a = 0 for n < 0 

a ... = 1 + a + a 0 + a , for n > 0. n+1 n n-2 n-5 

This sequence is the most slowly divergent one which starts like Table 1. The 
first 8 terms of any sequence starting like Table 1 are 1,2,3,5,8,12,19,30. 
I will now show some of the terms which follow these for the bounds (12) and 
(13), and for the example (11). 

(12.1) 

(11.1) 

(13.1) 

a9 

47 

46 

46 

aio 

74 

72 

71 

Hi 

116 

113 

110 

ai2 

182 

175 

169 

aI3 

286 

273 

260 

&14 

449 

427 

401 

&i5 

705 

664 

617 

ai6 

1107 

1035 

949 

Let us now consider the matrix M of definition 2. If there are three 
fixed integers r , s , t such that 

m < m , ,. + m, with 1 < t < r and 1 < s, 
r , s r-t ,s+t t,s 

then we will say that the element m of M is redundant. We do so because J r , s 
if in some representation N = a(I) we have 

r+s " s+t ~ r-t ,s+t s+t s t ,s 

then automatically 

i , - i > m r+s s r , s 
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There is in fact no loss of generality in assuming that redundant elements take 
the largest possible value (which does not alter the representations under def-
inition 2). In other words (applying an extension of the above argument) we 
assume that 

m > m , ,, + m, for all 1 £ t < r and 1 < s . 
r , s r-t ,s+t t ,s 

We extend the definition of redundancy to rows, by saying that a row of M is 
redundant if every element of the row is redundant. If any one element of a 
row is not redundant then we say that the row is non-redundant. 

Next let us assume that | a }, M represent the integers. Then it turns 
out that the matrix M has only two kinds of row, namely "straight" rows like 

(a$asa9a9 • • «), 0 <. a 

and "bent" rows of the form 

(p9a9a9a9 • • •) where 0 <. ft = a - 1. 

If either type of row is non-redundant then every element a in it is non-
redundant. If a bent row is non-redundant then every succeeding row is r e -
dundant (the bent row is the last non-redundant row of M). Moreover, if a 
bent row i s non-redundant, and its element p is non-redundant, then it is the 
first non-redundant row of M, and if in addition p > 0 then it i s the very 
first row of M. It follows from these facts that if M has infinitely many non-
redundant rows, then all i ts rows are straight. 

If the row 

( m r , l ' m r , 2 ' m r , 3 ' * " > 

of M is non-redundant, then 

m* <_ m - <: 1 + m* , r r , l r 

where 



504 REPRESENTATION OF NATURAL NUMBERS AS SUMS [Dec. 

m ; maximum | m 
l < t < r 

r - t , i+ t + m t , l 

This condition merely says that either m - i s redundant or it lays the weak-
r,± 

est possible new condition on the representations. Now we already know that 

m r , l - m r , 2 " m r , l + 1 

Hence it follows that (even if in n i s redundant), either HI 9 imposes the 
r,± r,4 

same condition as m - , or m 9 imposes the weakest condition on the rep-
resentations, which is stronger than that imposed by m - . 

r,± 
Satisfying the above rules in all possible ways produces all possible 

matrices M for which there is a sequence {a } such that ja }, M repre -
sent the integers. For example, the first corner of any matrix which starts 
with mil = 2 looks like one of the matrices in Table 3. 

2 2 2 - " 
4 4 4 -
6 6 6 • • • 

"2 2 2 
4 4 4 
6 7 7 

Table 3 

2 2 2 
4 4 4 
7 7 7 

2 2 2 
4 4 4 
7 8 8 

2 2 2 ••• 
4 5 5 ••• 
6 7 7 ••• 

2 2 2 •• ' 
5 5 5 - " 

2 2 2 
5 5 5 
7 7 7 

2 2 2 
5 5 5 
8 9 9 

2 2 2 
5 5 5 
7 8 8 

2 3 3 
5 6 6 
8 9 9 

Once the matrix M = fm 1 is given, the sequence ja j is determined 
by (9) and (10), provided | m „ | is derived from M as follows. If M has no 
bent row then j mA is infinite and 

mM = *V,i for 1 <. jtt. 
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On the other hand if M has a first bent row, and this row is the p row, then 
jm„} is finite with p terms given by 

m •fi mu 1 for 1 <. p, <. p . 

We get a simplification of (9) and (10) in the case when M has no bent row, but 
it has only a finite number of non-redundant rows. In this case, if the last non-
redundant row is the p , then jm I is periodic with period m. = m -. 
Hence not only (9) and (10) hold, but we also find by subtraction that 

(14) a ( 1 = a + a + a + • 
n+1 n n-Hii n-m2 

+ a n-in - + a ,- for n > m_. 
p - 1 n-m +1 P 

It is easy to see how relations (9), (10), and (14) generalize the definition (6) 
vth 

Jh 
of the (h,k) Fibonacci sequence. 

When we know that all rows of M after the p u u row are redundant, we 
usually remove them from M. Then M has order p X oo instead of oo x oo. 
However, the fact that M has order p X oo does not necessarily imply that 
the p row is non-redundant. 

The bounding sequences (12) and (13) which we found earlier are in fact 
the sequences ja I for the matrices 

M 2 2 2 2 
5 5 5 5 and M = 2 2 2 2 

5 6 6 6 

respectively. In these cases, our constructive process of Madmitting (rejecting) 
as many representations as possible" is equivalent to saying, "let all rows of 
the matrix after the 2nd be redundant. " The sequence (11) corresponds to the 
oo x oo matrix 

M = 

11 11 11 11 ••• 
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With this matrix, a vector (ii,i29• • • ,i&) satisfies condition (7) iff (i) we have 
iv+1 - iv > 2 for 1 <. v < d, and (ii) if 1 < TJ < 0 < d and 

Vl " S = W ~ *0 = 2 

then there is an integer X such that rj < A < 0 and i - - i > 4. 
It has long been known that the Fibonacci sequence ju \ can be obtained 

from Pascal 's triangle. The triangle is set out on the lattice points of the first 
quadrant of the (x,y)-plane. Then one draws a family of equispaced parallel 
lines on the triangle, choosing the slope and spacing of the lines, so that the 
sum of all the numbers of the triangle, whose lattice points lie on the n line 
of the family, is the n term u of the sequence. In 1959, I observed that 
the (h,k) Fibonacci sequence jv f could be obtained in the same way, pro-
vided that when h = k - 1 the first row (1 ,1 ,1 , - • • ) of the triangle is r e -
moved from the triangle ([6J theorem 8). 

Harris and Styles defined sequences by means of Pascal 's triangle in [9J, 
and discussed the properties of their sequences. Suppose Pascal 's triangle 
lies on the lattice points of the first quadrant of the (x,y)-plane. Then for p 

> 0, q > 0 they let u(n,p»q) be the sum of the n term in the first row 
(1 ,1 ,1 , • • •) of the triangle and those terms of the triangle which can be reached 
from it by taking steps (x,y) —> (x - p - q, y + q). When q = 1, we have 

u(n,p, l ) = V - p + i f o r n = 0, *!> ±2, ••• 

where jv J is the (p+l,p+l) Fibonacci sequence (6.1). 
Now suppose that M, ja } represent the integers, and that all rows of 

M after the p are redundant. Then the terms of |a \ can be obtained from 
th a p + 1 dimensional Pascal 's triangle. The n term of |a n [ is the sum of 

all the numbers of the generalized triangle which lie on the n number of a 
p-dimensional family of equispaced parallel hyperplanes. I will give the de-
tails for p = 2 and the second row non-redundant. The reader will immedi-
ately see the result for general p . With slight modifications, the method can 
be applied to a wide class of sequences satisfying finite recurrence relations. 

When p = 2 and the second row is non-redundant, the matrix M is of 
the form 
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fa a a a • • • 
M = [fir y y . . . 

where 

0 < 2 t f < / 3 < 2 a + l < y and /3 < y < /3 + 1 . 

The second row of M could be either straight or bent. Also the sequence 
{an} is given by 

a = 0 for n < a* , 

(15) ( a = 1 for a*< n < 1 , 
anV^^an + V, + Vnl for n - X ' 

where or* = l i f / 3 = y - l but a* = -a + 1 if /3 = y . 
Notice that when a = 2 and /? = y = 5 then we get back to the sequence 

(12) again. 
We now define our 3-dimensional Pascal1 s triangle. In other words, we 

define an integer-valued function 7r(x,y9z) on the 3-dimensional lattice by the 
relations 

0 if x < 0 or y < 0 or z < 0, 
7r(x,y,z) = { 1 if x = y = z = Q9 

7r(x- l ,y ,z) +7r(x ,y- l ,z )+w(x,y ,z-1) otherwise 

It is easy to see that Pascal 's triangle appears on each of the three planes 
x = 0, y = 0 and z = 0. My result is that the n term of ja J of (15) 
is the sum of all the values of 7r(x,y5z) (whose lattice points lie) on the plane 

x + (a + l)y +yz = n + t f - l + ( y - P)a 

provided that if y = P - 1 we remove the x-axis (i. e. , if y = p - 1, we r e -
place TT by rr* where 7r*(x,y9z) = 0 if y = z = 0 but ir* = rr otherwise). 
The proof is by induction. 

Next let r be a fixed integer r > 1. Let ( i j ^ j * •8 jitf) E W iff 



508 REPRESENTATION OF NATURAL NUMBERS AS SUMS [Dec. 

W"1^ * X 

vn-1 for 1 < v < d - r , and put b = (r + l ) n for n > 1. Then {b | , W rep-
resent the integers in the familiar scale of powers of r + 1, and the order of 
the terms in | b | is immaterial. Suppose, on the other hand, that 

( i 1 , i 2 , - - - , id) E W 

iff 

W - K* 2 

for 

1 < v < d, 

and jb }, W represent the integers. Then as I showed in [ l ] axiom 1 must 
hold, and in fact | b } = | u | . 

I would now like to state my monotonicity conjecture, which extends a 
conjecture that I made in [5 j . 

Conjecture. Suppose |b }, W represent the integers and axiom 2 holds. 
Then either axiom 1 holds for {b | or jb } is s ° , s 1 , s 2 , # " in some order 
and s is an integer s 2. 1, 

Another result which gives weight to the conjecture is 
Theorem 2. Let r > 1 be a fixed integer. Let M be the matrix whose 

only non-redundant row is its r row, and this r row is (0,1,1,-••)« If 
{b }, M represent the integers then axiom 1 holds for {b }. Moreover, 
bi = 1 and b , - = (r + l)b + 1 for n > 1. 1 n+1 n 

The first example of a pair | a j , W which is not equivalent to a pair 
{a | , M was given by my student A. J. W. Hilton in 1963. He took a fixed inte-
ger r > 4, and let W be the set of all vectors I of V such that 

1 < ii < i2 < — < iq 

and, for 1 < v < d, if i - - i = 1 then ip - i - > r. Then he put 
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w = 1 for n < 1 n 
w2 = 2 

w = w - + w o + w for n > 3, 
n n-1 n-2 n-p 

With these definitions, we have 
Theorem 3 (Hilton), jw | , W represent the integers but are not equiva-

lent to any system | b J-, M. 
I have tried to find an elegant classification for all sets ja I, W. How-

ever, I have so far been unable to improve on the constructive method which I 
have described for obtaining all sets ja J, W. 

In this paper, I have been concerned with unique representations. It would 
be interesting to know what happens if the uniqueness condition was dropped, 
and perhaps only sufficiently large numbers N had to have a representation 
(N > constant). Results in this direction have been found by Brown, Ferns , 
Hoggatt, King, and others [ i j , [ 2 j , [ s j , [?J, and [8j, respectively. I feel 
that the results I have given in this paper are complete in the same sense as 
N. G. de Bruijn!s discussion is complete for representations 

N = HSi + S2 + S3 + • • • , 

where each s. belongs to a finite or infinite set S. of non-negative integers 
containing 0. In a paper [4j which is now classical, he showed that all such 
systems are what he called "degenerate British number systems. M 

Some results have been obtained concerning representing all integers in 
some interval by Harr is , Hilton, Hoggatt, Mohanty, Styles, myself and others 
|_6J, [9J. However, the problems concerning representations for all the inte-
gers 0, ±1, ±2,* • • are much more difficult and only a few special theorems 
are known. 
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H-162 Proposed by David A. Klarner, University of Alberta, Edmonton Alberta, 
Canada. 

that 
Suppose a . .> 1 for i , j = 1,2,- show there exists an x > 1 such 

(-1)1 

Hi ~ x a i 2 
l2 i a22 - x* 

n l n2 

In 
l2n 

a - x nn 

< 0 

for all n. 

H-163 Proposed by H. H. Ferns, Victoria, B. C, Canada. 

Prove the following identities: 

,2k-2T 
£ 2 LkFk+3 = 2 " " F - - 1 

k=l 
. 2n^2 

"n+1 

2. ,2k-2 . 2 n T 2 5 £ 2 F k L ^ Q = 2 - L ^ - 1 , 

511 
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where F and L a r e the n F i b o n a c c i and n L u c a s n u m b e r s , n n 
respect ive ly . 

H-164 Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan. 

Genera l ize H-127 and find a r e c u r r e n c e re la t ion for the product C = 

A (x)B (y), where A and B satisfy the genera l s e c o n d - o r d e r r e c u r r e n c e 

equations: 

(1) A
n + l ( x ) = R < x ) A

n
( x ) + s ( x > A

n _ l ( x ) 

(2) B
n + i ( y ) = p < y ) B

n
( y ) + Q(y)B

n_i(y> > 

n > 1 and A Q J A ^ B O J B I a r b i t r a r y . 

H-165 Proposed by H. H. Ferns, Victoria, B. C, Canada. 

P r o v e the identi ty 

s(")*rfeK * t 2) , 
k-2 

where F . denotes the i Fibonacci number . 
l 

SOLUTIONS 

A BASIS OF FACT? 

H-132 Proposed by J. L. Brown, Jr., Ordnance Research Laboratory, State College, 
Pennsylvania. 

Let 

Fi = 1, F 2 = 1, F ^ = F ,- + F for n > 0 1 ' L n+2 n+1 n 

define the Fibonacci sequence. Show that the Fibonacci sequence is not a b a s i s 

of o r d e r k for any posi t ive in teger k; that i s , show that not eve ry posi t ive 

in teger can be r ep re sen t ed a s a sum of k Fibonacci n u m b e r s , where r e p e t i -

t ions a r e allowed and k i s a fixed posit ive in teger . 
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Solution by the Proposer. 

Assume { F } is a basis of order k, where k is some fixed positive 
integer. Then, in particular, forgiven n > 0, any positive integer r < F 
would have a representation in the form 

( 1 ) r = % F n . 
1=1 1 

where nA < n2 < • • • < n, and n. < n. But the maximum number of distinct 
integers which could be formed by the right-hand side of (1) is clearly <n . 
Thus each of the F integers 1, 2, 3, • ' • , F would have to be expressed 

n kn 

in a form capable of representing at most n distinct integers. Since, by 
choosing n large enough, we can make F > n , a contradiction is obtained 

n k 
for the value of k under consideration. [The inequality F > n follows 
from the fact that F is approximately a / \/5 for large n, where a = 
(1+ N / 5 ) / 2 ] . 

SUM SHINE 

H-133 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Characterize the sequences 

F = u + V u. n n iH. j 
n-2 

3=1 

i n . 

n-2 n-4 i 
F = u + v u. + y\ y, u. 

n n ^ J . i • i J 
3 = 1 J i=l 3=1 J 

n-2 n-4 i n-6 m i 
F = u + y ] u . + y ] y i u . + T\ Y\ T\ ^. 

n n t-L 3 f-L f-* 3 i • i • -, 3 
3=1 J i=l 3=1 J m=l 3=1 3=1 J 

by finding starting values and recurrence relations. Generalize. 
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Solution by D. V. Jaiswal, Holkar Science College, Indore, India. 

We shall first prove the iii part. 

n-2 n-4 i n-6 m i 
F n = un + £ uj + £ 11 «j + E E E u 

J - - 1 J 1=1 ]=1 J m=l i=l j=l J 

n-3 n-5 i n-7 m i 

•'• Vi = Vi+ S ** + E £ u + E £ £ ^ 
n x n -1 j=l 3 i=l j=l J m=l i=l j=l 3 

n-4 n-6 i n-8 m i 

£ u. + £ £ u i + £ £ £ u4 • 
j = l J i=l j=l J m=l i=l j=l J 

n-2 n-2 
3 

Since F - F ., - F 0 = 0, we have n n-1 n-2 

0 = (u - u - - u «) + n n-1 n-2 (V2 - '^ «,) 
n-4 n-6 i \ / n-6 i n-8 m i \ 

£ u - E E u ) + ( E E - - E E E - . 
j = l J i = i j = i J/ \ i = i j=i 3 m=li=l j=l V 

Cancelling out the terms, we get 

n-8 m i 
u = u -, + E £ £ u-
n n-1 ^ " f-' l 

m=l i=l 3=1 J 

(ii) Proceeding as above, we shall get 

n-6 i 
u =u -, + £ £ u. 

n n-1 f-i f-* i 
i=l 3=1 J 

(i) Proceeding as above we shall get 

n-4 
u = u i + E :u. 
n n-1 f-' i 

3=1 J 
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General izat ion. If 

515 

n-2 n - 4 i 
F = u + Z u. + E Z u. 

M 3 

n - 2 r s 

i= l j= l 3 

^ Z I S - E I ; ^ 
s = l q=l p=l i= l j= l 

(r summations) 

then proceeding a s above, we shall get 

n -2^ -2 s q i 
u n = Vi+ L LL ••• hd.*] 

s = l q=l p=l i = l j= l J 

Edi tor ia l Note: P r o f e s s o r Hoggatt obtained the solut ions: 

i) 

ii) 

u = u(n; 2,2) 
n ' ' u n = u(n; 3,3) 

iii) u =u(n ; 4 ,4) where u(n;~p,q) r e p r e s e n t s the genera l ized Fibonacci 

number . 

See V. C. H a r r i s and C. C. S ty les , MA General iza t ion of Fibonacci N u m b e r s , " 

The Fibonacci Qua r t e r l y , Vol. 2 , No. 4 , pp. 277-289. 

CIRCLE TO THE RIGHT 

H-134 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Evaluate the c i rcu lan t s 

n+k 
F F 

n+(m- l )k n 

n+k n+2k 

n+(m-l)k 
n+(m-2)k 

n 

9 

Jn-hk 

n+(m- l )k n 

J n+(m- l )k 
Jn+(m-2)k 

n+1 L. h+2k 

Solution by the Proposer. 

We reca l l that 
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a - a~ m - 1 0 

a l a 2 

Hence if we put 

Am(D = 

VL) 

we have 

m - 1 
m - 2 

m - 1 m - 1 0 . / 
T-% , , r s , 27ri/mv 

= II £ a q Q (Q = e ) r=0 s=0 

n+k 
F n + ( m - l ) k F n 

n+2k n+2k 

""n+k 

n+(m- l )k n 

n+(m-l )k 

•n+(m-2)k 

J n+(m- l )k 
Jn+(m-2)k 

Jn+k Jn+2k 

m - 1 m - 1 m - 1 m - 1 

Am<*) = F T E Fn+SkUrS • *m(L) " T~T £ W U 
r=0 s=0 r=0 s=0 

r s 

P u t 

Then 

1 + N/5 R 1 a = , p = — N/5 
a - p ' n ^ 

m - 1 

s=0 

m - 1 

s=0 
mk 

a - p 
1 - ^ k I n 1 - a ji 

I i r k ~ ^ " r 0 k \ 1 - w or 1 - U j 8 

a
ng - amk)d - u y > - A i - ^ m - u

rak) 
{a - 0 ( 1 - orar)(l - ur/S) 

a1 1- ) 3 n - ( a n + m k - t?+mk) - U
r f e n

i ^ - a ' £ / 3 Q - a n - t m k ^ + /3a- t m k
Q^) 

(a - 0)(1 - u r a ) ( l - ur/S) 

F n " F n + m k " ( " 1 } " ^ n - k " FnH-(m-l)k ) 

(1 - u r a k ) ( l - o 1 " ^ ) 
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so that 

m - l m - 1 m-1 _ , ,k r , , n V F u r s = 1—T n n+mk l L> " l n - k n+(m-l)k' 
^-* n+sk I I . r k W l rJcv 

r=0 s=0 r=0 (1 - u a )<1 - u /T) 

<Fn " F n + m k > m " ^ V k " r n + ( m - l ) k > m 

(1 - amk)(l - ̂ k ) 

Therefore 

M A m ( F n - W m - ^ " X - k - F n + ( m - l ) k ) m 

( > A m ( F ) = 1 + ( -D«* - L k 

Similarly, 

m-1 m-1 

E T r s \ ^ / n+sk , Jti+skv r s 
Ln+skQ = L {a + P ) u 

s=0 s=0 

..-^e^i-^ _n 1 - a 
1 - u"V r_k "• " : ^FJE 

<*n + ̂  - gn+mk - ^ + m k - / ( ^ i ^ - ^ ^ A ) 
(1 - c/c*)(l - Qr/3) 

L - L L , - (-l)kwr(L , - L _,_, -v. ) n n+mk n-k n+(m-l)k 
(1 - u r a k ) ( l - u V ) 

It follows that 

(L - L A . ) m - (-D^L . -L u ^ . f (• ) A (L) n n+mk n-k n+tm-ljk7 

Also solved by D. Jaiswal (India). 
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THE GREATEST INTEGER! 

H-135 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

PART I 

Show that 

= E(J-/)2 J-j + i = >;r~ri2j"2 d(-Dd 

d=0 

where j > 0 and [ j / 2 ] i s the g r e a t e s t in teger not exceeding j / 2 . 

PART II 

Show that 

F _ *. x • M - d \ T j - 2 d , ^ ( n + D d 

d=0 

= F V(J - d Vj - 2 d ( - l ) ( n n L-J \ d / n 

where j > 0 and [ j / 2 ] i s the g r e a t e s t in teger not exceeding j / 2 . 

Solution by the Proposer. 
PART I 

We have (see fTA General izat ion of the Connection between the Fibonacci 

Sequence and P a s c a l ' s Tr iangle , f T by Joseph A. Raab , this q u a r t e r l y , Vol. 1, 

No. 3 , October 1963, pp. 25-26) that 

:A 
E(V)2)- 2d, - ,d 

(-1) = x 
d=0 

and x. l 0 = 2 x . . . - x. for al l j > 0. Le t S be the se t of a l l i n t ege r s (j + 1) 
> 0 for which the theo rem i s t r u e , 1 = x0 and 2 = x l 9 so 1 and 2 a r e in 
S. Suppose q and q + 1 a r e in S, so that q = x - and q + 1 = x . Then 
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Vl = 2xq " V l = 2(Q + 1} " q = Q + 2 • 

Thus q + 2 is in the set S and the proof is complete by mathematical 
induction. 

PART II 

The same reference as given in Part I yields the result that 

d=0 

and 

x. l 0 = L x. t1 + (-1) x. j+2 n j+1 j 

for all j > 0. Let S be the set of all integers (j + 1) > 0 for which the 
theorem is true. F = F x0 and F 0 = F L = F xl9 so 1 and 2 are in n n u 2n n n n * 
S. Suppose q and q + 1 are in S, so that F = F x . and F , ,-v = ^ ^ ^ ' qn n q-1 (q+l)n 
F x . Then n q 

F x ^ = F L x + F (- l)n + 1x n = L F , _,, + ( - l ) n + 1F = F , ^ n q+1 n n q n q-1 n (q+ln ' qn (q+2)n 

by a known identity (see "Some Fibonacci Results Using Fibonacci-Type 
Sequences," by I. Dale Ruggles, this quarterly, Vol. 1, No. 2, April, 1963, 
p. 77). Thus q + 2 is in the set S and the proof is complete by mathematical 
induction. 

Also solved by B. King, L. Carlitz, D. Jaiswal (India), and D. Zeitlin. 

SQUEEZE PLAY 

H-136 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California, 
and D. A. Lind, University of Virginia, Charlottesville, Va. 

Let (Hn) be defined by Hi = p, H2 = q, H n + £ = H n + 1 + Hn (n > 1) 
where p and q are non-negative integers. Shv there are integers N and 
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k such that F ,, < H < F • , ,- for all n > N. Does the conclusion hold i n+k n — n+k+1 
p and q are allowed to be non-negative reals instead of integers ? 

Solution by Gerald A. Edgar, Student, University of California, Santa Barbara, 
California. 

In order for the result to be true, we must have p > 0 or q > 0. Let 

a = (1 + N / 5 ) / 2 , b = (1 - N/5)/2 . 

Define f(n) = [ a n + 1/2], for n a positive integer, where [x] is the great-
est integer in x (thus f (n) is the nearest integer to an). We now prove that 
f(f(n)) = f(n) + n. The definition of f gives 

(1) an + {-> f(n) > an - \ 

(2) af(n) + i- > f(f(n)) > af(n) - f . 

But (1) is the same as 

f(n) 1 > > f(n) 1 
T" + 2a">n^lT-2i: ' 

or, since (l/a) = a - 1, 

(a - l)f(n) + (a - l ) /2 > n > (a - l)f(n) - (a - l ) /2 

or 

(3) af(n) + | - f > n + f(n) > af(n) - | + f . 

Equations (2) and (3) give 

| > f(n) + n - f(f(n)) > - | . 

But a/2 < 1, and f(n) + n - f(f(n)) is an integer, so it must be zero, and we 
have 
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(4) f(f(n)) = f(n) + n . 

Because of its recurrence, H must have the form H = ca11 + dbn for 
some constants c and d. Now lb I < 1, so 

lim (aH - H ^ ) = lim (can + 1 + dabn - c a n + 1 - db n + 1 ) n_^>oo n n+1 n ^ ^ 

= lim \T5dbn = 0 
n-^oo 

Thus there is an integer N such that laH - H +-1 < -j for all n > N. In 
particular, |aHN - H N + J < 1, so, since H N + 1 is an integer, 

H N + 1 = [aHN+"H = « V • 

It is now an easy induction to show that 

(5> HN+m = ^ V 

for m = 0, 1, 2, • • 8 , where is the m iterate of f defined by 

f°(x) = x 

f+1(x) = f(Ax)) . 

(Note that in particular, f(F ) = F - for n = 2, 3, 8 e e for the Fibonacci 
numbers.) Since HN is a positive integer, there is an integer k such that 

(6> F N + k < % < F N + k + l ' 

We m a y then obtain by induction (using the fact that f i s s t r i c t ly inc reas ing 

on the positive integers) 

F _,. < H < F _,. ,- , n+k n - n+k+1 

for all n > N. 
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The result does not hold for non-negative reals in general; take 

p = &/\l~59 q = a 2 / ^ ; 

then H > F when n is even and H < F when n is odd. n n n n 

Also solved by J. Desmond, A. Shannon, and M, Yoder. 
• • * • • . 



FIBONACCI AND THE ATOM 
H. E. HUNTLEY 

(Sometimes) Professor of Physics, University of Ghana 
Occasions of the appearance in the natural world of the Fibonacci series 

and of the golden section of Greek mathematics will be known to readers of 
this journal. In biology references, for example, the series crops up in con-
nection with the genealogy of the drone bee, with the Nautilus sea-shell , with 
the florets of compositae blossoms, and in Phyllotaxis. Its appearance in the 
inorganic world, however, is less frequently recorded. One example is the 
multiple reflection of a light ray by two sheets of glass (Vol. 1, No. 1, p. 56). 
Another, set out below, concerns the ideally simplified atoms of a quantity of 
hydrogen gas. 

Suppose that the single electron in one of the atoms is initially in the 
ground level of energy and that it gains and loses, successively, either one or 
two quanta of energy, so that the electron in its history occupies either the 
ground level (state 0) or the first energy level (state 1) or the second energy 
level (state 2). In this idealized case, the number of different possible histo-
ries of an atomic electron is a Fibonacci number (diagram, p. 000). 

Let us make the following assumptions.9 

1. When the gas gains radiant energy, all state 1 atoms rise to state 2; 
half state zero atoms rise to state 1 and half to state .2. 

2. When the gas loses energy by radiation, all the atoms in state 1 fall 
to state zero; half those in state 2 fall to state 1, and half to state zero. 

The Table shows the successive fractions of the total number of atoms 
found in each state. These fractions are formed exclusively of Fibonacci 
numbers. 

A point of interest is that the fraction of atoms in the intermediate energy 
level (state 1) remains constant at 38.2%. If u is the n term of the Fib-
onacci ser ies , this fraction is u /u - as n tends to infinity. 

u / u ., = 1 - u ^ Ax 0 -+<p'2, i . e . , 38.2%. nf n-1 n+1/ n+2 r 

The symbols cp and cp* stand for the limits of u .-./u and u /u - , 
respectively as n tends to infinity. They are the roots of the equation: x2 -
x - 1 = 0. 

523 
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POSSIBLE HISTORIES OF AN ATOMIC ELECTRON 

GAIN LOSS GAIN LOSS GAIN LOSS 

The number of possibilities of different histories of an electron are : 

Level 0 

1 

2 

5 | 

0 

1 
5 

3. 
5 

13 

JL 
13 

2l| ••• 

•g.-> 0-©r-qPf 

0 -> -<p% or 0 

The above fractions, showing the changing proportions of atoms in each 
state are formed of Fibonacci numbers. 

• • * * * 



FIBONACCI STATISTICS IN CONIFERS 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

The Editor of the Fibonacci Quarterly has received an urgent phone call 
from a Houghton-Mifflin representative; "Is the picture of the pine cone in 
your manuscript spiralling correct ly?" The thought was that possibly the neg-
ative had been turned over and so what should be steep spirals going to the 
left would become steep spirals going to the right. The Editor relayed the 
question to the Managing Editor who hurried to the basements picked up a 
pine cone and found on the first try that the direction of the spirals agreed with 
the picture. 

Another life situation. After giving a talk on Fibonacci numbers in na-
ture or exhibiting specimens which show the spirals and Fibonacci numbers, 
the query naturally ar ises ; "How constant are these numbers in nature?" 

With such questions in mind, an investigation was begun in the summer 
of 1969. Very quickly it was discovered that spirals on cones go in both direc-
tions. For example, if we consider two particular sets of spirals , one steep 
and the other more gradual where the count from one intersection to the next 
along the spirals is eight on one spiral and five on the other, then on some 
cones the steep spiral goes to the right and the more gradual spiral goes to the 
left, while on others, it is just the reverse. 

This led to the following general approach. Wherever possible cones 
would be studied for individual trees; approximately four hundred cones would 
be examined for each species. The information and results for the various 
species are set forth in the remainder of this article. 

LODGEPOLE PINE (Pinus Murrayana), also known as Tamarack Pine 
The cones on this tree are small and abundant. They were collected in 

the neighborhood of Huntington Lake in the middle Sierra. Because they are 
open and difficult to count in this state they were soaked in water to close them 
after which it was relatively easy to follow the spirals. 

In this report and those that follow the notation 8E means that the count 
along the gradual spiral from one intersection of the two spirals to the next was 
8, while that along the steep spiral was 5. Thus in the 8R case the gradual 

525 
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spiral goes to the right. It should be noted that this method of counting simply 
reflects the fact that there are eight steep spirals and five gradual spirals on 
the cone (i. e. , of the spirals we are considering). NS means non-standard: it 
was not possible to find the 8-5 pattern on cones listed under this headinge 
This does not mean that in all cases there was no Fibonacci pattern: some-
times there was double a Fibonacci number, for example. But we are not in-
terested in these deviants as such, but simply in their relative abundance. 

TREE 

1 

2 

Various 
TOTAL 

8R 

95 

84 

285 

464 

8L 

68 

70 

282 

420 

NS 
4 

1 

3 

8 

%8R 

56.9 

54.2 

52.0 

%8L 

40.7 

45.2 

47.1 

%NS 
2.4 

0.6 

0.9 

JEFFREY PINE (Pinus Jeffreyi) 
These large cones were collected in the vicinity of Huntington Lake. The 

count was made after they were closed by soaking. 
TREE 

1 

2 

3 

Various 
TOTAL 

8R 

42 

21 

38 
90 

191 

8L 

40 

22 

38 
93 

193 

NS 

1 

1 

13 
3 

18 

%8R 

50.6 

47.7 

42.7 

47.5 

%8L 
48.2 

50.0 

42.7 

48.0 

%NS 

1.2 

2.3 

14.6 

4.5 

SUGAR PINE (Pinus Lambertiana) 
The cones were studied on the spot in the area west of Kaiser Peak in the 

middle Sierra region. In many cases, due to the fact that they were not closed 
it was not possible to determine whether they had the pattern or not. Thus 
these cones do not provide positive information on the presence or absence of 
the given pattern. 

%NS 

1.1 

TREE 

1 
2 
3 

Various 
TOTAL 

8R 

25 
60 

57 

68 

210 

8L 

28 
29 

53 

80 

190 

NS 

1 

1 

2 

%8R 

47.2 

66.7 
51.8 

52.2 

%8L 

52.8 

32.2 
48.2 

47.3 0.5 
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It should be noted that this is a very regular cone and that only in the few cases 
noted was there positive evidence of the lack of the usual pattern, 

SILVER PINE (Pinus monticola) 
The cones were collected on Kaiser Ridge not far from Huntington Lake. 

They were soaked so as to make it possible to follow the spirals conveniently. 
The count was five along the gradual spiral and three along the steep spiral 
from one intersection to the next. 

%NS TREE 

1 

2 
3 

4 

Various 
TOTAL 

8R 
15 

26 

48 

64 

65 

218 

8L 
16 

33 
56 

65 

56 

226 

NS 

5 

5 

%8R 
48.4 

44.1 

46.2 

47.8 

48.6 

%8L 
5L6 

55.9 

53.8 

48.5 

50.3 

3.7 

1.1 

YELLOW PINE (Pinus ponderosa) 
The cones were collected in the middle Sierra between Auberry and Pine 

Ridge. They were soaked before the cones were examined. 
TREE 

1 

2 

3 

4 

Various 
TOTAL 

8R 
44 

59 

74 

35 

3 

215 

8L 
52 

46 

37 

58 

19 

212 

NS 

2 

2 

%8R 
45.8 

55.1 

66.7 

37.6 

50.1 

% 8 L 
54.2 

43.0 

33.3 

62.4 

49.4 

%NS 
Si 

1.9 

0.5 

ONE-NEEDLED PINYON (Pinus monophylla) 
There is a fine stand of these trees about eight miles from Tioga Pass on 

the east side of the Sierra. In one notable case it was possible to study 140 
fresh cones on the tree. Cones picked up from the ground were soaked before 
the count was made. The best way to study this cone is when it is fresh and 
green. Often after closing with water the old cones tend to retain some of their 
irregularit ies. 

(See table on next page.) 
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TREE 
1 

2 
3 

4 

Var ious 

TOTAL 

FIBONi 

5R 
6 

2 

67 

18 

107 

200 

ICCI STATE 

5L 
8 

5 

72 

18 

97 

200 

JTICS 

NS 

1 

4 

5 

IN CONIFERS 

%5R 
42.9 

28.6 

47.9 

50.0 

49.4 

% 5 L 
57.1 

71.4 

51.4 

50.0 

49.4 

[Dec, 

% N S 

0.7 

1.2 

FOXTAIL PINE (Pinus Balfouriana) 
Some forty miles south of Bishop is the town of Independence. Thirteen 

miles west of this township at over 9,000 ft. is a spot known as Onion Valley. 
It was there that specimens of foxtail pine cones were collected. They were 
soaked before the count was made and hence this species provides evidence of 
exceptions to the regular pattern. 

5R 5L NS %5R %5L %NS 
TOTAL 212 212 36 46.1 46.1 7.8 

LIMBER PINE (Pinus flexilis) 
These cones were examined on the spot at Onion Valley. Cones in which 

the pattern could not be discerned were simply not considered and hence these 
statistics give no evidence regarding exceptions. 

5R 5L %5R %5L 
TOTAL 226 182 55.4 44.6 

BRISTLECONE PINE (Pinus aristata) 

About fifteen miles below Bishop just above Big Pine there is a turnoff 
leading to the Ancient Bristlecone Pine Area. Since this is a protected area 
under the control of the Forest Service, it was necessary to study the cones on 
the spot. Those on which the pattern could not be discerned were eliminated 
from consideration and hence the following statistics give no evidence regard-
ing possible exceptions. 

(See table on next page.) 
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TREE 
1 
2 
3 
4 
5 
6 

Various 
TOTAL 

FIBONACCI STATISTICS IN CONIFERS 

8R 

27 
3 

24 

5 

13 

9 

93 

174 

8L 

23 

11 

18 

5 

23 

7 

88 

175 

%8R 
54.0 

21*4 

57.1 

50,0 

36.1 

56.3 

49.9 

529 

%8L 
46.0 
78.6 
42.9 
50.0 
63.9 
43.7 

50.0 

DIGGER PINE (Pinus Sabiniana) 
About 70 of these cones were found near Auberry, 30 on ML Diablo, and 

approximately 225 on Mt. Hamilton. These are very large cones and it would 
have been quite difficult to collect them, soak them, and thus arrive at positive 
evidence regarding exceptions. Hence they were counted on the spot, the un-
countable specimens not being given consideration. 

TREE 

1 
2 

3 

4 

Various 
TOTAL 

8R 

6 

7 

3 

12 

135 

163 

8L 

10 

15 

11 

19 

121 

176 

%8R 

37.5 
31.8 

21.4 

38.7 

48.1 

% 8 L 

62.5 

68.2 

78.6 

61.3 

51.5 

COUNTER PINE (Pinus Coulteri) 
About fifty of these cones were examined on Mt. Diablo and the rest on 

Mt. Hamilton and its vicinity. Again, these cones are very large and it would 
have been quite a problem to collect them, soak them, and thus get positive 
evidence regarding deviations from the usual pattern. 

TREE 

1 

Various 
TOTAL 

8R 

9 

159 

168 

8L 
6 

152 

158 

%8R 

60.0 

•51.5 

%8L 
40.0 

48.5 
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KNOBCONE PINE (Pinus at tenuate) 

About 140 of these cones w e r e examined a t St. M a r y ' s College (Contra 

Costa County) and the r e s t w e r e found wes t of Redding. Most of the cones w e r e 

countable but those that w e r e open we re collected and soaked before the count 

was made . Thus the fact that t he r e a r e no exceptions to the pa t t e rn i s signifi-

cant in this c a s e . 

TREE 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

Various 
TOTAL 

8R 
3 

4 

22 
14 

6 

9 

13 

8 

4 

7 

10 

9 

66 

175 

8L 
19 

5 

10 

8 

47 

1 

8 

4 

6 

10 

33 

10 

89 

250 

%8R 
13.6 

44.4 

68.8 

63.6 

11.3 

90.0 

61.9 

66.7 
40.0 

41.2 

23.3 

47.4 

41.2 

%8L 
86.4 
55.6 

31.2 

36.4 

88.7 

10.0 

38.1 

33.3 

60.0 

58.8 

76.7 

52.6 

58.8 

MONTEREY PINE (Pinus radiata) 

With the exception of about 20 cones examined at St. M a r y ' s Col lege , the 

r e s t w e r e col lected on Grizz ly Peak (near Berkeley) . Where n e c e s s a r y , the 

cones w e r e soaked so that these s t a t i s t i c s provide information regard ing ex -

cept ions to the usual ly obse rved pa t te rn . 

TREE 8R 8L NS %8R %8L %NS 

1 5 5 50.0 50.0 
2 13 8 61.9 38.1 

3 20 23 5 41.7 47.9 10.4 

Var ious 148 132 2 
TOTAL 186 168 7 51.5 46.5 1.9 



1969] FIBONACCI STATISTICS IN CONIFERS 531 

BISHOP PINE 
Cones were studied on trees north of Port Ross, The fact that there are 

no exceptions to the pattern is significant* 

TREE 

1 

2 

3 

4 

5 

Various 
TOTAL 

8R 

21 

22 

2 

15 

50 

3 

113 

8L 

9 

16 

15 

7 

32 

1 

80 

%8R 

70.0 

57.9 

11.8 

68.2 
61.0 

58.5 

%8L 

30.0 

42.1 

88.2 

31.8 

39.0 

41.4 

BEACH PINE (Pinus contorta) 
The t rees studied were found on Albion Ridge some ten miles south of 

Fort Bragg. The fact that there are no exceptions to the standard patterns is 
significant. 

TREE 

1 

2 
3 

4 

Various 
TOTAL 

8R 

28 

26 

13 

23 

68 

158 

8L 
21 

27 

23 

23 

22 

116 

%8R 

57.1 

49.1 

36.1 

50.0 

57.7 

% 8 L 
42.9 

50.9 

63.9 

50.0 

42.3 

DOUGLAS FIR (Pseudotsuga Menziesii according to Munz) 

Cones were collected from trees near St. Helena in Napa County. 

TREE 

1 

2 

3 

Various 
TOTAL 

5R 

54 

38 

31 

47 
170 

5L 

45 

42 

60 

40 

187 

NS %5R 

54.5 

46.9 

34.1 

%5L 

45.5 

51.9 

65.9 

47.5 52.2 

%NS 

1.2 

0.3 
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CONCLUSIONS AND OBSERVATIONS 

On the basis of this very qualitative investigation it is possible to arrive 
at a few conclusions and observations, 

1. Overall for most species of pines there appears to be a tendency to 
have about as many right as left spiral cones. (Right and left are purely rela-
tive to the definition of this investigation.) Overall for the pine cones (apart 
from Douglas fir) considered in this study, of the 8R-8L groups, 50.9% were 8R 
and 49.1%8L; of the 5R-5L groups, 51.1%were 5R and 48.9%were 5L. (The 
exceptional cases are not included in these percentages.) 

2. For any tree with, ten or more cones, there were always both right 
and left spiral cones. 

3. If the probability of right and left spiral cones is approximately 50%, 
then there were certain trees which seemed to deviate from this figure to a 
marked degree. Apparently they had a tendency to produce more of one type 
than the other. 

4. For lodgepole, Jeffrey, silver, yellow, one-needled pinyon, foxtail, 
knobcone, Monterey, bishop and beach pines, there were 74 exceptional cones 
out of 4290 which is 1.7%. If the foxtail pine is eliminated, the percent drops 
to 1.0. Note also that knobcone, bishop and beach pines showed no exceptions 
for the samples considered. 

5. Occasionally one finds a tree with a high percent of cones which devi-
ate from the usual pattern. 

* * * * * 



LINEAR RECURSION RELATIONS - LESSON SIX 
COMBINING LINEAR RECURSION RELATIONS 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

Suppose we have two sequences P . ( l , 5, 25, 125, 625, 3125, •••) with 
a recursion relation: 

(1) P x 1 = 5P , 
n+1 n 

and Q.(3, 10, 13, 23, 36, 59, • * • ) , A a Fibonacci sequence with recursion 
relation: 

(2) Q ^ = Q + Q ., 
1 ' ^n+1 ^n ^n-1 

Let 

(3) T = P + Q 
w n n ^n 

What is the recursion relation of T and how can it be conveniently obtained 
from the recursion relations of P and Q ? 

n ^n Proceeding in a straightforward manner, we could first eliminate P as 
follows: 

Tn+1 ~ Pn+1 + Qn+1 

5T = 5P + 5Q n n ^n 

Subtracting and using relation (1), 

T ., - 5T = Q ., - 5Q n+1 n ^n+1 ^n 

We can proceed likewise for Q. ,Thus 

533 
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T , - 5T = Q ., ~ 5Q 
n+1 n ^n+1 ^ n 

T n " 5 T n - l = Q n " 5 V l 

T n - 1 " 5 T n - 2 = V l " 5 Q n - 2 • 

Now sub t rac t the sum of the l a s t two equations from the f i r s t and use re la t ion 

(2). The r e su l t i s : 

T n - 6T + 4T - + 5T . = 0 , n+1 n n - 1 n -2 

a r ecu r s ion re la t ion involving only T. . 

A much s imp le r approach i s by m e a n s of an o p e r a t o r E , such that 

(3) (E)T n = T n + 1 . 

The effect of E i s to i n c r e a s e the subsc r ip t by 1. A re la t ion 

P ^ - 5P = 0 , 
n+1 n 

can be wr i t ten 

(E - 5 ) P n = 0, 

and a re la t ion 

^n+1 ^ n ^ n - 1 ' 

can be wr i t ten 

(E2 - E - l)Qn__1 = 0 . 

It is not difficult to convince oneself that these o p e r a t o r s obey the usual a l g e -

b r a i c l aws . As a r e s u l t , if 
T = P + Q , n n ^ n 



1969] LINEAR RECURSION RELATIONS 535 

(E - 5)(E2 - E - l ) T n = (E - 5)(E2 - E - l ) P n + (E - 5)(E2 - E - 1)Q . 

But (E - 5 ) P n = 0 and (E2 - E - l ) Q n = 0, so that 

(E - 5)(E2 - E - 1)T = 0 

o r 

(E3 - 6E2 + 4E + 5)T = 0 , 

which i s 'valent to the r ecu r s ion re la t ion 

T ^o = 6T ^ - 4T t 1 - 5T . n+3 n+2 n+1 n 

In gene ra l , if we have l i n e a r o p e r a t o r s such that: 

f(E)P = 0 and g(E)Q = 0 and T = AP + BQ , 
n & ^ n n n ^ n 

where A and B a r e cons tan t s , then 

f(E)g(E)Tn = Af(E)g(E)Pn + B£(E)g(E)Qn = 0 , 

s ince f(E)P = 0, and g(E)Q = 0. Thus when T i s the sum of t e r m s of n & n n 
two sequences with different r e cu r s ion r e l a t i ons , the r ecu r s ion re la t ion for T 

i s found by mult iplying T by the two r ecu r s ion o p e r a t o r s for the two 

sequences . 

Example . What i s the r ecu r s ion re la t ion for T = 2 x 5 + n2 - n + 4 ? 

The r e c u r s i o n re la t ion for 2 x 5 i s (E - 5)P = 0, and that for n2 - 4 + 4 

is (E3 - 3E2 + 3E - 1)Q = 0. Thus the r ecu r s ion re la t ion for the given s e -

quence i s 

(E - 5)(E3 - 3E2 + 3E - 1)T = 0, 

which i s equivalent to: 

1 ^ = 8 1 ^Q - 18T ^ + 16T _,_- - 5T . n+4 n+3 n+2 n+1 n 
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Example. Find the recursion relation corresponding to T if 

P n + 1 = P n + P n - 1 + P n -2 and V ^ " 4» + 5 a n d T n = P n + % • 

The operator expressions for these recursion relations are: 

(E3 - E2 - E - 1)P 0 = 0 and (E3 - 3E2 + 3E - 1)Q 0 = 0 . 
n™4 n - * 

Thus the recursion relation for T is: 
n 

(E3 - E2 - E - 1)(E3 - 3E2 + 3E - 1)T = 0 , 

which is equivalent to: 

T ^ = 4T _ - 5T _,_- + 2T ^Q - T ^Q + 2T _ - T . n+6 n+5 n+4 n+3 n+2 n+1 n 

It may be noted that two apprently different recursion relations may 
conceal the fact that they embody partly identical recursion relations. For 
example, if 

P = 4P , - 3P 0 - 2P Q + P A n n-1 n-2 n-3 n-4 
Q = 3Q - - 2Q n - Q o + Q , , ^n ^n-1 ^n-2 ^n-3 ^n-4 ' 

and we proceed directly to find the recursion operator and corresponding r e -
cursion relation for T = P + Q , we arrive at a recursion relation of order 

n n n 
eight. Howevers in factored form, we have: 

(E2 - E - 1)(E2 - 3E + DP n _ 4 = 0 , 

and 

(E2 - E - 1)(E2 - 2E + 1 ) Q ^ 4 = 0 . 

The recursion relation for T in simpler form would thus be: 
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(E2 - E' - 1)(E2 - 3E + 1)(E2 - 2E + 1)T = 0, 
n 

which is only of order six, 
If the terms of the two sequences are given explicitly, a slightly different 

but equivalent procedure using the auxiliary equation is possible. Thus if 

P = 5n + 2 + 2 x 3 n + F n n 
Q = n2 - 3n + 5 - 6 x 2n + L , ^n n 9 

the roots of the auxiliary equation for P are 1, 1, 3, r , and s, while 
those of the auxiliary equation for Q are 1, 1, 1, 2, r , s* Hence the roots 
for the auxiliary equation of T would be 1, 1, 1, 2, 3, r , s, where r and 
s are the roots of the equation x2 - x - 1 = 0, Thus the auxiliary equation for 
T would be: 

(x - l)3(x - 2)(x2 - x - 1) = 0 

which leads equivalently to the recursion relation 

T Jf7 = 9T _ - 31T „ + SOT ^ - 33T ^Q - 5T . + 17T ^ - 6T , 
n+7 n+6 n+5 n+4 n+3 n+2 n+1 n 

PROBLEMS 

1. If P is the geometric progression 3, 15, 75, 375, 1875, •e • and 

Qn = 5Fn + 2( - l ) n , 

what is the recursion relation for T = P + Q ? 
n n ^n 

2. Given recursion relations 

P n + 1 = 4 P n - P n - 1 - 6 P n - 2 a n d ^ + 1 = 6 Q n ~ 1 0 Q n - l + «n-2 + 6 Q n -3 • 

with T ,- = P ,- +Q , - , determine the recursion relation of lowest order n+1 n+1 n+1 
satisfied by T -. 
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3. Determine the recursion relation for T = P + Q where P is 
the arithmetic progression 3, 7, 11, 15, 19, ••• and Q is the geometric 
progression 2, 6, 18, 54, ••• . 

4. Determine the recursion relation for T = 2 + F2 given that the 
recursion relation for F2 is 

n 

F2
 i = 2F2 + 2F2 , - F2

 0 . n+1 n n-1 n-2 

5. Determine the recursion relation for T = 5L2 + ( - l ) n " + 4F . 
n n n 

(See page 544 for solutions to problems.) 

* * • • • 

A SHORTER PROOF 
IRVING ADLER 

North Bennington, Vermont 

In his article (April 1967) on 1967 as the sum of squares, Brother Brous-
seau proves that 1967 is not the sum of three squares. This fact canbe proved 
more briefly as follows: 

If 1967 = a 2 + b 2 + c2, where a, b and c are positive integers, then, 
as Brother Brousseau has shown, a, b and c are all odd. Then a = 2x + 
1, b = 2y + 1, and c = 2z + 1, where x, y and z are integers. 

Consequently, 

1967 = (2x + l)2 + (2y + l)2 + (2z + l)2 

= 4x2 + 4x + 4y2 + 4y + 4z2 + 4z + 3. 

Then 

1964 = 4x2 + 4x + 4y2 + 4y + 4z2 + 4z . 

Dividing by 4, we get 

491 = x 2 + x + y2 + y + z2 + z , 
[Continued on page 551. ] 



A FIBONACCI MATRIX AND THE PERMANENT FUNCTION 
BRUCE W. KING 

Burnt Hiils-Ballston Lake High School, Ballston Lake, New York 
and 

FRANCIS D. PARKER 
The St. Lawrence University, Canton, New York 

The permanent of an n-square matrix [a. .] is defined to be 

£ n a , 
0"€S i= l 1 J i 

where 
a = <Ji»J2»* • • »3n) 

is a member of the symmetric group S of permutations on n distinct ob-
jects. For example, the permanent of the matrix 

a i i a l 2 a i 3 

a 2 i a22 a 2 3 

a31 a32 a33 

is 
a l i a 2 2 a 3 3 - + a l i a 23 a 32 + a i2a21a33 + a i2 a 23 a 31 + a i 3 a 2 i a 32 + a13a22a31 • 

This is similar to the definition of the determinant of [a. . ], which is 
n 

£ ^ ii ^ . 
a e S n i=l 1Ji 

where e^. is 1 or -1 depending upon whether 0" is an even or an odd 
permutation. 

There are other similarities between the permanent and the determinant 
functions, among them; 

(a) interchanging two rows, or two columns, of a matrix changes the 
sign of the determinant— but it does not change the permanent at all. Thus, 
the permanent of a matrix remains invariant under arbitrary permutations of 
its rows and columns; and 

In this notation, (j19 j2? ° °w > 3 n ) i s an abbreviation for the permutation 

\J i 32 •••• 3 n / 
539 
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(b) there is a Laplace expansion for the permanent of a matrix as well 
as for the determinant. In particular, there is a row or column expansion for 
the permanent. For example, if we use "per [ a . . ] " for the permanent of the 
matrix [ a . . ] , then expansion along the first column yields that 

per 

a l i a i 2 a13* 
a21 a22 a23 

. a31 a32 a33. 

= a i iPer [a22 a 2 3 ] + a p e r [ a i 2 a i3 l + a 3 l P e r r a i 2 a i3l 
[a32 a33j 2 1 F [a32 a33j 3 1 F (j*22 ^ J 

For further information on properties of the permanent, the reader should see 
[ 1 , p. 578] and [3, pp. 25-26], 

Unfortunately, one of the most useful prpperties of the determinant — its 
invariance under the addition of a multiple of a row (or column) to another row 
(or column) — is false for the permanent function. As a result , evaluating the 
permanent of a matrix i s , generally, a much more difficult problem than eval-
uating the corresponding determinant. 

Let P be the n-square matrix whose entries are a l io , except that each 
entry along the first diagonal above the main diagonal is equal to 1, and the 
entry in the n row and first column also is 1. (P is a "permutation ma-
trix. ") For example, 

PR = 

' 0 1 0 0 0 " 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
1 0 0 0 0. 

The reader can verify that 

and 

Pi = 

P35 = 

""0 
0 
0 
1 

_0 

ro 
0 
1 
0 

Lo 

0 
0 
0 
0 
1 

0 
0 
0 
1 
0 

1 
0 
0 
0 
0 

0 
0 
0 
0 
1 

0 
1 
0 
0 
0 

1 
0 
0 
0 
0 

0 
0 
1 
0 
0 

0* 
1 
0 
0 
0 
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We now define the matrix Q(n,r) to be 
541 

L«J n 
3=1 

For example, 

Q(5,2) PB + Ps = 

0 1 1 0 0 
0 0 1 1 0 
0 0 0 1 1 
1 0 0 0 1 
1 1 0 0 0. 

It is not difficult to see that pe rQ(n , l ) = per P = 1, per Q(n,2) = 2, and 
that perQ(n,n) = nL It has been shown [2] that 

(1) ^^^.(i-L^^i^iy1 

The strategy used in the derivation of (1) was to use techniques for the solution 
of a linear difference equation on a certain recurrence involving perQ(n,3) . 
There a re , also, expressions available for perQ(n,4) , p e r Q ( n , n - 1) and 
p e r Q ( n , n - 2 ) . (See [3] , [ 3 , pp. 22-28] and [3, pp. 31-35], respectively.) 
However, per Q(n,r) has not been determined for 5 < r < n - 3. The ob-
jectives of this paper are to use a "Fibonacci matrix" to derive (1), and to de-
rive an explicit expression for perQ(n,3) other than that provided by (1). 
(By a "Fibonacci matrix" we mean a matrix M for which M = per M - + J n n ^ n-1 
p e r M n _ 2 . ) 

Let F be the matrix f f . . ] , where f.. = 1 if li - jl < 1 and f.. = 0 n L 13 13 1 J | - r j 
otherwise. Then, by starting with an expansion along the first column, we find 
that F is a Fibonacci m a t r i x / Since per F2 = 2 and per F3 = 3, per F 
yields the (n + 1) term of the Fibonacci sequence 1, 1, 2, 3, 5, • • a . It is 
well known that the n Fibonacci number is given by 

*There are other Fibonacci matrices. See problem E1553 in the 1962 volume 
of the American Mathematical Monthly, for example. 
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(1 + ^ ) n - (1 - */5)n 

2n-v/5 

This, it follows that 

i9\ v 1 + V5 - 1 - ^ 5 ) n + 1 
(2) per F = J n,-. — 

n 2 n V 5 

It is not quite as well known that the n Fibonacci number is also given 
by 

EH-1). 
where 

is the greatest integer in 

M 
n - 1 

(See [4, pp. 13-14] for a proof.) From this it follows that 

*•"»=£(";k) (3) 

Now let U (i, j) be the n-square matrix all of whose entries are 0 except 
the entry in row i and column j , which is 1. If we let R = F + U (n, l ) , by 
expansion along the first row of R we find that 
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p e r R n = per Fn__1 + p e r f F ^ - 11^ (2 ,1 ) + U ^ n - 1,1)] . 

But, by expanding along the first column, 

(4) per [ F n _ 1 - 11^ (2 ,1 ) + U ^ ^ n - 1,1)] = per F n _ 2 + 1 . 

Thus, 

per R = per F n + per F 0 + 1 = 1 + per F 
^ n ^ n-1 ^ n-2 K n 

If we now let S = R +U ( l ,n) , by expansion along the first row of S we 
find that 

per Sn = per F ^ + per [ F ^ - 11^ (2 ,1 ) + U ^ f o - 1,1)] 

(5) + per [Q(n - 1,2) - Un__1(n - 2,1) 

- u n - 1 ( n - i . 2 ) + p ; : J ] . 

If we substitute from (4) and use Z for the matrix of the third term of the 
right member of (5), we have 

per S = per F - + per F « + 1 + per Z 

= per F + 1 + per Z. 

Now expand Z along its first column to obtain per Z = 1 + per F 9 . Then 
n—̂  

per S = 2 + per F + per F ~ . 

Since per S = perQ(n,3) (because S can be obtained from Q(n,3) 
by a permutation of columns), it follows that 

per Q(n,3) = 2 + per F + per F 0 . 
n n—& 

By using (2), we obtain an expression for per Q(n,3) which reduces to that 
given by Mine in [ 1 ]. By using (3), we obtain: 
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k=0 k=0 
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[Continued from page 538. ] 

SOLUTIONS TO PROBLEMS 

T ^ = 5T + 2T - - 9T Q - 5T Q n+1 n n - 1 n-2 n - 3 

2 ' T n + 1 = 5 T n " 4 T n - l " 9 T n - 2 + 7 T n - 3 + 6 T n - 4 

3. T ^ = 5T - 7T - + 3T 0 
n+1 n n - 1 n - 2 

T ^ = 4 T ^Q - 2T ^ 0 - 5T _ + 2T 
n+4 n+3 n+2 n+1 n 

T j C = 2 T l C + 4T ,„ - 4T , „ - 6T l 0 + T n+6 n+5 n+4 n+3 n+2 n 

* * * * * 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLMAN 
University of Mew Mexico, Albuquerque, IMew Mexico 

Send al l communicat ions regard ing E lemen ta ry P r o b l e m s and Solutions 

to P r o f e s s o r A, P . Hi l lman, Depar tment of Mathemat ics and S ta t i s t i c s , Uni-

v e r s i t y of New Mexico , Albuquerque, New Mexico, 87106. Each p rob lem o r 

solution should be submit ted in legible f o rm , p re fe rab ly typed in double s p a c -

ing , on a s epa ra t e shee t o r shee ts in the fo rmat used below. Solutions should 

be rece ived within th ree months of the publication da te , 

Cont r ibutors (in the United States) who d e s i r e acknowledgement of r ece ip t 

of the i r contr ibut ions a r e asked to enclose se l f - addres sed s tamped p o s t c a r d s . 

B-172 Proposed by Gloria C. Padilla, Albuquerque High School, Albuquerque, New 
Mexico. 

Le t F 0 = 0, Fi = 1, and F l 0 = F + F ( 1 for n = 0 , 1 , ' • e . Show u ' i » n +2 n n+1 
that 

-p3 _ -p3 + -p3 -j- 3F F F 
n+2 n n+1 n n+1 n+2 

B-173 Proposed by Gloria C. Padilla, Albuquerque High School, Albuquerque, New 
Mexico. 

Show that 

F Q = F* - F 3
 i - 3F F L 1F - . 3n n+2 n - 1 n n+1 n+2 

B-174 Proposed by Mel Most, Ridge field Park, New Jersey. 

Le t a be a non-negat ive integer., Show that in the sequence 

2 F a + l > ***** 2 3 F a + 3 ' - " 

a l l differences between success ive t e r m s m u s t end in the s a m e digit . 

545 
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B-175 Composed from the Solution by David Zeitlin to B-155. 

Le t r and q be cons tants and l e t UQ = 0, Ui = 1, U 9 = rU 

[Dec. 

n+2 n+1 
qU . Show that ^ n 

U i H a U n + b - U
n + a + b U n = 1 U a U b -

B-176 Proposed by Phil Mana, University of New Mexico, Albuquerque, N M. 

Le t denote the Fibonomial Coefficient 

F F • • • F n n - 1 n - r + 1 / F i F 2 - - - F T 

Show that 

F s i - [" J2] - 4° 3'] - E 
B-177 Proposed by Phil Mana, University of New Mexico, Albuquerque, N M. 

Using the notation of B-176 , show that 

n - C*:"] - * [ " : * ] - - [ t t : x ] * B: 
for some in teger a and find a. 

SOLUTIONS 

A VERY MAGIC SQUARE 

B-154 Proposed by S. K L. Rung, Jacksonville University, Jacksonville, Fla. 

What i s special about the following "mag ic" s q u a r e ? 

^ 1 1 2 14 19 21 
8 13 3 22 1 

20 17 15 6 9 

7 24 18 10 12 
25 5 23 16 4 
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Solution by the Proposer. 

(a) The sum of a l l the number s contained in a row, o r in a column, o r 

in a diagonal i s a p r i m e . 

(b) The sum of the s q u a r e s of al l number s contained in a row, column, 

o r diagonal i s a lso a p r i m e , 

Solvers Guy A. Guillottee (Quebec, Canada) and Michael Yoder listed observation 
(a) above. 

A P E L L NUMBERS IDENTITY 

B-155 Composite of proposals by M. N. S. Swamy, Nova Scotia Technical College, 
Halifax, Canada, and Carol Anne Vespe, University of New Mexico, 
Albuquerque, New Mexico. 

Le t the n Pe l l number be defined by P 0 = 0, PA = 1, and P 2 = 

2P _ + P . Show that n+1 n 

P , P ,TU - P , ,wP = ( - D n P Px. . n+a n+b n+a+b n a b 

Solution by Wray G. Brady, University of Bridgeport, Bridgeport, Conn. 

One finds that 

n n 
P = r - s 

2N/2 9 

where r = 1 + A/2, s = 1 - <s/2, and r s = - 1 . Then 

oz-ri TI -o -r, \ 2n+ab n+b n+a n+a n+b , 2n+a+b 
8(P , P - - P _̂ , ,, P ) = r - r s - r s + s 

n+a n+b n+a+b n 0 , , , ,, , ,, 0 , ,, 
, 2n+a+b n+a+b n n n+a+b , 2n+a+bv - ( r - r s - r s + s ) / ^ n / a+b , a+b a b b a x = (-1) (r + s - r s - r s ) 

= ( - l ) n ( r
a - s a ) ( r b - s b ) = 8 P a P b ( - l ) n , 

and the des i r ed r e su l t follows. 
EDITORIAL NOTE: Let f (x) = 0, tt{x) = 1 and f ,9(x) = xf (x) + f (x); then 
f (2) = P . 
nN n 
Also solved by Herta T. Freitag, Guy A. Guillottee (Quebec, Canada), Serge Hamelin 
(Quebec, Canada), Bruce W. King, C B. A. Peck, A. G. Shannon (Boroko, T.P.N.G.), 
Gregory Wulczyn, Michael Yoder, David Zeitlin, and the Proposers. 
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PERIODIC REMAINDERS 

B-156 Proposed by Allan Scott, Phoenix, Arizona. 

Let F be the n Fibonacci number, G = F , - 2n, and H be n n 4n n 
the remainder when G is divided by 10. 

n J 

(a) Show that the sequence H2, H3, H4, ' • • is periodic and find the r e -
peating block. 

(b) The last two digits of G9 and G14 give Fibonacci numbers 34 and 
899 respectively. Are there any other cases? 

Solution by Herta T. Freitag, Hollins, Virginia. 

(a) Since Ft •=, 1 (mod 10), • • • , F59 = 1 (mod 10), F60 = 0 
we have Fj = F - ^ 1 5 , (mod 10), where k is any positive 
Also G = F 4 - 2n = H (mod 10) and 2n = 2, 4, 6, 8, 0 (mod 
10) for n = 1, 2, 3, 4, 0 (mod 5). Thus the repeating block of 15 
terms Hi, H2, • • • , Hl5 is 1, 7, 8, 9, 5, 6, 7, 3, 4, 5, 1, 2, 3, 
9, 0 and H. = H. -,_, for integers i and k. 

(b) By studying the corresponding pattern modulo 100 we detect another 
periodicity cycle such that all Fibonacci numbers smaller than 100 
must occur within the last two digits of G provided 1 < n < 150. 
More explicitly, we indicate the G corresponding to a given F in 
the following table: 

Subscript on F1 
Subscript on Gi 

| l o r 2 
1 l o r 26 

3 
87 

4 
118 or 143 

5 
55 or 80 

6 
48 

Subscript on F1 
Subscript on G] 

I 7 

j 103 or 128 
8 | 9 

121 or 146 1 9 
10 

5 or 130 
11 

14 or 139 

Also solved by Serge Hamelin (Quebec, Canada), C. B. A. Peck, and the Proposer. 

A TELESCOPING SUM 

B-157 Proposed by Klaus Gunther Recke, University of Gottingen, Germany. 

Let F be the n Fibonacci number and {g } any sequence. Show 
that 
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n 

E ^k+2 + Sk-fl - g k ) F k = g n + 2 F n + g n + 1 F n + 1 - g± . 
k=l 

Solution by John E. Horner, Jr., Union Carbide Corporation, Chicago, Illinois. 

The sum is equivalent to 

n 

Z g k ( F k -2 + F k - 1 " Fk> + Sn+2Fn + W F n + F n - 1 ) + g 2 F l - g2F2 - g l F l 
k=3 

= gr.4-9. n
 + gn4.lF 

since 

'n+2 n 5n+l n+1 6 1 ' 

F k -2 + F k - 1 - F k = ° 

yl/so solved by Wray G. Brady, Herta T. Freitag, Serge Hamelin (Quebec, Canada), 
Bruce W. King, Peter A. Lindstrom, John W. Milsom, C. B. A. Peck, A. G. Shannon 
(Boroko, T.P.N. GJ, Michael Yoder, David Zeitlin, and the Proposer. 

ANOTHER TELESCOPING SUM 

B-158 Proposed by Klaus Gunther Recke, University of Gottingen, Germany. 

Show that 

Z (kFk)2 = [(n2 + n + 2)F^+ 2 - (n2 + 3n + 2)F^+ 1 - (n2 + 3n + 4)F^ ]/2 
k=l 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Let H satisfy H „ = H - + H . Noting that 

H2 = 2H2 + 2H2 - H2 , n+3 n+2 n+1 n 

it is easy to show, using mathematical induction, that 
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n 
2 ] T k2H2 = (n2 + n + 2)H2 - (n2 + 3n + 2)H2 - (n2 + 3n + 4)H2 + C, 

k=l 

where 

C = 6H? + 2H2 - 8HiH2 

We note that C = 0 when H, = FT o r H, = L, . 
k k k k 

Also solved by Herta T. Freitag, Serge Hamelin (Quebec, Canada), John E. Homer, 
Jr., Bruce W. King, Peter A. Lindstrom, John W. Milsom, C B. A. Peck, A. G. Shannon 
(Boroko, T.P.N.G.), Michael Yoder, and the Proposer. 

THE EULER TOTIENT 

Le t T be the n t r i angu la r number n(n + l ) / 2 and l e t cp(n) be the 

<P(Tn) 

B-159 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tenn. 
tl Le t T be the n 

Eu le r totaent. Show that 

for n = 1,2,* • • . 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, N. M. 

We a s s u m e i t i s known that < (̂ab) = cp(a.)cp(h) if (a,b) = 1; cp{n) i s even 

if n > 2; and cp(2 ) if k > 1. Le t n = 2 s9 where 2 j[ s . The proof i s in 

th ree c a s e s . 

Case 1. k = 0. Then 

<p(Tn) = cpln • ^ ^ T / = (p(n)cp\^^J , 

s ince 

/ * n + 1 \ , 
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Case 2. k = 1. Note that 

cp{n) = (p(2)cp(s) = <p($) = <p 

so 

^(T n ) = < n | W ( n + 1) = g(n)cp(n + 1) . 

Case 3. k > 1. Now 

cp(n) = cp{2 )cp(s) = 2 cp(s) 9 

and 

<p $S = 2k"2^(s) . 

Also we obviously have n + 1 > 2; so let cp(n + 1) = 2m9 where m is an in-
teger. Then 

<p(Tn) = <p / | ] <p(n + 1) = 2k-2<p(s)2m = m • 2k~1cp(s) = mcp(n) . 

-4&o so/m/ by Herta T. Freitag, Guy A. Guillottee (Canada), Serge Hamelin (Canada), 
Douglas Lind (England), C B. A. Peck, Gregory Wulczyn, and the Proposer. 

• * • * • 
[Continued from page 538. ] 
or 

491 = x(x + 1) + y(y + 1) + z(z + 1) -

This is impossible, since x(x + 1), y(y + 1), and z(z + 1) are all even. 

• • • * • 

I • 
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KLARNER, DAVID A. P r o b l e m s Proposed : H - 1 6 1 , Vol. 7, No. 3 , p . 178; 
H-162, VoL 7, No. 5, p . 511. 

KLEIN, LESLIE M. P r o b l e m Solved: B-142 , VoL 7, No. 2 , p . 220. 

KONHAUSER, J . D. E. P rob l em comment on B-130a, Vol. 7, No. 3 , p . 333. 

KRISHNA, H. V. P r o b l e m s Solved: H-109, VoL 7, No. 1, p . 59; H-117, VoL 
7, No. 1, p . 63; B-149 , Vol. 7, No. 3 , p . 334; B-150, Vol. 7, No. 3 , 
p . 335; B-152 , Vol. 7 , No. 3 , p . 336. 

KUIPERS, L. "Remark on a P a p e r by R. L. Duncan Concerning the Uniform 
Distr ibut ion Mod 1 of the Sequence of Logar i thms of the Fibonacci Num-
b e r s , " V o l . 7, No. 5, pp. 465-466. 

KUNG, S. H. L. P r o b l e m s Proposed : B-154, Vol. 7, No. 1, p. 107; B-168 , 
Vol. 7, No. 3 , p . 331; B-154, VoL 7, No. 5, p . 546. P rob l em Solved: 
B-154 , Vol. 7, No. 5, p . 547. 

LAJOS, S. P r o b l e m Solved: H-117, Vol. 7, No. 1, p . 63. 

LEDIN, GEORGE, JR. P r o b l e m s Proposed : H-109, Vol. 7, No. 1, p . 59; 
H-117, Vol. 7, No. 1, p . 62; H-98 , VoL 7, No. 2 , p . 171. P r o b l e m 
Solved: H-98 , Vol. 7, No. 2 , p . 172. 
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LEHMER, D. P r o b l e m proposed jointly with E. L e h m e r : H-160, Vol. 7, 
No. 3 , p . 278. 

LEHMER, E. P r o b l e m proposed jointly with D. L e h m e r : H-160, Vol. 7, 
No. 3 , p . 278. 

LEONARD, HAL. P r o b l e m Proposed : B - 1 5 1 , Vol. 7 , No. 3 , p. 335. 

LIND, D. A. f 'Compositions and Fibonacci N u m b e r s , " Vol. 7 , No. 3 , pp. 
253-266 (Go-author, V. E. Hoggatt, J r . ) . "The Dying Rabbit P r o b l e m , " 
Vol. 7, No. 5, pp. 482-486 (Co-author, V. E . Hoggatt, J r . ) . P r o b -
l e m s Proposed : B-138 , Vol. 7, No. 1, p. 109; B-140, Vol. 7, No. 1, 
p . I l l ; H-123 , Vol. 7, No. 2 , p . 177; B-1659 VoL 7, No. 29 p . 219; 
B-145 , Vol. 7, No. 2 , p . 222; H-128 , VoL 7, No. 3 , p . 282; H-136, 
Vol. 7, No. 5, p . 519. P r o b l e m s Solved: H - l l l , Vol. 7, No. 1, p . 61; 
B-136 , Vol. 7, No. 1, p . 109; B-138 , Vol. 7, No. 1, p . 110; B-140 , 
Vol. 7, No. 1, p . 112; H-123 , Vol. 7, No. 2 , p . 178; B-145 , Vol. 7, 
No. 2 , p. 222; H-128, VoL 7, No. 3 , p. 284; B-148 , VoL 7, No. 3 , 
p . 333; B-149 , VoL 7, No. 3 , p . 334; B-150, VoL 7, No. 3 , p . 335; 
B-152 , VoL 7, No. 3 , p. 336; B-159, VoL 7, No. 5, p. 551. 

LINDSTROM, P E T E R A. P r o b l e m s Solved: B-157, Vol. 7, No. 5, p . 549; 
B-158 , VoL 7, No. 5, p , 550. 

LONDON, HYMIE. TfOn Fibonacci and Lucas Numbers which a r e Pe r fec t 
P o w e r s , " Vol. 7, No. 5, pp. 476-481 (Co-author , Raphael Finkels te in) . 

MADACHY* JOSEPH S. "Recreat ional Mathemat ics — d i f f e r e n c e Ser ies 1 R e -
sult ing from Sieving P r i m e s , " VoL 7, No. 3 , pp. 315-318. 

MANA, PHIL. P r o b l e m s P roposed : B-136 , VoL 7, No. 1, p . 108; B-137 , 
VoL 7, No. 1, p . 109; B-163 , VoL 7, No. 2 , p . 219; B-170, VoL 7, 
No. 3 , p . 332; B - 1 7 1 , Vol. 7, No. 3 , p . 332; B-152 , VoL 7, No. 3 , p. 
336; B-176, VoL 7, No. 5, p . 546; B-177, VoL 7, No. 5, p . 546. 
P r o b l e m s Solved: B-136, VoL 7, No. 1, p . 109; B-137 , Vol. 7 , No. 1, 
p . 109; B - 1 5 1 , VoL 7, No. 3 , p . 335; B-152, VoL 7, No. 3 , p . 336. 

MARSHALL, ARTHUR. P r o b l e m Solved: B-142, Vol. 7, No. 2 , p . 220. 

MILSOM, J . W. P r o b l e m s Solved: B-144, VoL 7, No. 2 , p . 222; B-149 , 
Vol. 7, No. 3 , p . 334; B-150, VoL 7, No. 3 , p . 335; B-152, VoL 7, 
No. 3 , p. 336; B-153 , VoL 7, No. 3 , p. 276; B-157 , VoL 7, No. 5, 
p . 549; B-158 , Vol. 7, No. 5, p. 550. 

MOST, MEL. P r o b l e m Proposed : B-174 , VoL 7, No. 5, p . 545. 

N E E L , AMANDA. P rob l em Solved: B-143 , Vol. 7, No. 3 , p. 333. 

PADILLA, GLORIA C. P r o b l e m s Proposed : B-172 , Vol. 7, No. 5, p . 545; 
B-173 , Vol. 7 , No. 5, p . 545. 
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PARBERRY, EDWARD A. "Divisibili ty P r o p e r t i e s of Fibonacci P o l y n o m i a l s , " 
Vol. 7, No. 5, pp. 457-463 (Co-author, W. A. Webb). "A Recurs ion 
Relation for Populat ions of Dia toms , " Vol. 7, No. 5, pp. 449-456. 

PARKER, FRANCIS D. "A Fibonacci Mat r ix and the P e r m a n e n t F u n c t i o n , " 
Vol. 7, No. 5, pp. 539-544 (Co-author , Bruce W. King). P r o b l e m s 
Solved: H-117, Vol. 7, No. 1, p . 63; H-124, Vol. 7, No. 2 , p . 179; 
B - 1 4 3 , Vol. 7, No. 2, p. 221. 

PECK, C. B. A. P r o b l e m s Solved: H-117, Vol. 7, No. 1, p . 62; B-136 , 
Vol. 7, No. 1, p . 109; B-137 , Vol. 7, No. 1, p . 109; B-139 , Vol. 7, 
No. 1, p . 110; B-140 , Vol. 7, No. 1, p. I l l ; H-120, Vol. 7, No. 2 , 
p . 173; H-124, Vol. 7, No. 2 , p. 179; B-142 , Vol. 7 , No. 2 , p . 220; 
B - 1 4 3 , Vol. 7, No. 2 , p . 221; B-144, Vol. 7 , No. 2 , p . 222; B-145 , 
Vol. 7, No. 2 , p . 223; B-146, Vol. 7, No. 2 , p . 223; H-129, Vol. 7, 
No. 3 , p . 284; B-148 , Vol. 7, No. 3 , p. 333; B-149 , Vol. 7, No. 3 , 
p . 334; B-150, Vol, 7, No. 3 , p . 335; B - 1 5 1 , Vol. 7, No. 3 , p. 336; 
B-152 , Vol. 7, No. 3 , p . 336; B-153 , Vol. 7, No. 3 , p . 276; B-155 , 
Vol. 7, No. 5, p . 547; B-156, Vol. 7, No. 5, p . 548; B-157 , Vol. 7, 
No. 5, p. 549; B-158 , Vol. 7, No. 5, p. 550; B-159, Vol. 7, No. 5, 
p . 551. 

RABINOWITZ, STANLEY. P rob l em Proposed : H-129, Vol. 73 No. 3 , p. 
284. P r o b l e m Solved: H-117, Vol. 7, No. 1, p. 63. 

RAMANNA, J . P r o b l e m Proposed: H-153 , Vol. 7, No. 2, p . 169. 

RECKE, KLAUS-GUNTHER. P r o b l e m s Proposed : B-157, Vol. 7, No. 1, 
p . 108; B-158 , Vol. 7, No. 1, p . 108; B-157 , Vol. 7, No. 5, p . 548; 
B-158 , Vol. 7, No. 5, p . 549. P r o b l e m s Solved: B-153 , Vol. 7, No. 3 , 
p . 276; B-157, Vol. 7, No. 5 , p . 549; B-158 , Vol. 7, No. 5, p . 556. 

SANDS, PAUL. P rob lem Solved: B-147 , Vol. 7, No. 2, p. 224. 

SATLOW, GERALD. P r o b l e m Solved: B-150, Vol. 7, No. 3 , p. 335. 

SCOTT, ALLAN. P r o b l e m s Proposed : B-156 , Vol. 7, No. 1, p . 107; B-156; 
Vol. 7, No. 5, p . 548. P r o b l e m Solved: B-156, Vol. 7, No. 5, p . 548. 

SHANNON, A. G. P r o b l e m Proposed : B-167 , Vol. 7, No. 3 , p . 331. 
P r o b l e m s Solved: H-109, Vol. 7, No. 1, p . 59; H-117, Vol. 7, No. 1, 
p . 63; B-136, Vol. 7, No. 1, p. 109; B-137 , Vol. 7, No. 1, p . 109; 
B-138 , Vol. 7, No. 1, p . 110; B-140 , Vol. 7 , No. 1, p . 112; H-120, 
Vol. 7, No. 2 , p . 174; H - 1 2 1 , Vol. 7, No. 2 , p . 177; H-124, Vol. 7, 
No. 2 , p . 179; H-126, Vol. 7, No. 3 , p . 282; H-128, Vol. 7, No. 3 , p . 
284; H-129, Vol. 7, No. 3 , p . 285; H-131 , Vol. 7, No. 3 , p. 286; B - 1 4 3 , 
Vol. 7, No. 3 , p . 333; B-146 , Vol. 7, No. 3 , p . 333; B-148 , Vol. 7, 
No. 3 , p . 333; B-149 , Vol. 7, No. 3 , p . 334; B-150, Vol. 7 , No. 3 , p . 
335; B-152, Vol. 7, No. 3 , p . 336; B - 1 5 3 , Vol. 7, No. 3 , p . 276; H-136, 
Vol. 7, No. 5, p . 522; B-155 , Vol. 7, No. 5, p . 547; B-157, Vol. 7, 
No. 5, p . 549; B-158 , Vol. 7, No. 5, p . 550. 
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SHEA, DALE B. "On the Number of Divisions Needed in Finding the Grea t e s t 
Common D i v i s o r , " Vol. 7, No. 4 , pp. 337-340. 

SMITH, PAUL. P rob l em Solved: H-124, Vol. 7 , No. 2, p. 179. 

SWAMY, M. N. S. P r o b l e m s Proposed : H-150, Vol. 7, No. 1, p. 57; B-155 , 
Vol. 7, No. 1, p . 107; H-155 , Vol. 7, No. 2 , p . 170; H-159, Vol. 7, 
No. 2 , p . 170; H-120, Vol. 7, No. 2, p. 172; H-158, Vol. 7, No. 3 , 
p . 277; B-155 , Vol. 7, No. 5, p. 547. P r o b l e m s Solved: H - l l l , Vol. 
7, No. 1, p . 60; B-118 , B-119 , B-135 , Vol. 7, No. 1, p . 108; B-136; 
Vol. 7, No. 1, p . 109; B-137 , Vol. 7, No. 1, p . 109; B-140 , Vol. 7, 
No. 1, p . 112; H-120, Vol. 7, No. 2 , p. 174; H-124, Vol. 7, No. 2 , 
p . 179; B-155 , Vol. 7, No. 5, p . 547. 

TALLMAN, MALCOLM. P r o b l e m Proposed : B-148 , Vol. 7, No. 3 , p . 333. 
P r o b l e m Solved: B-148 , Vol. 7, No. 3 , p . 333e 

TRIGG, CHARLES W. "Associated Additive Decimal Digital B r a c e l e t s , " 
Vol. 7, No. 3 , pp. 287-294. P r o b l e m Solved: B-144 , Vol. 7, No. 2 , 
p . 221. 

UPPULURI, V. R. RAO. "Numbers Generated by the Function e x p ( l - e X ) , " 
Vol. 7, No. 4 , pp. 437-448 (Co-author , John A. Carpen te r ) . 

VEGH, EMANUEL. "Remark on a T h e o r e m by W a k s m a n , " Vol. 7, No. 3 , 
p . 230. 

VESPE, CAROL A. P r o b l e m Proposed : B-155 , Vol. 7, No. 1, p . 107; B-155; 
Vol. 7, No. 5 , p . 547. P r o b l e m s Solved: B-137 , Vol. 7, No. 1, p . 
109; B-148 , Vol. 7, No. 3 , p . 333; B-149 , Vol. 7, No. 3 , p . 334; B-150 , 
Vol. 7, No. 3 , p . 335; B - 1 5 1 , Vol. 7, No. 3 , p . 336; B-152 , Vol. 7, 
No. 3 , p . 336; B - 1 5 3 , Vol. 7, No. 3 , p. 276; B-155 , Vol. 7, No. 5, 
p . 547. 

WALL, CHARLES R. P r o b l e m s P roposed : H-149, Vol. 7, No. 1, p . 56; 
B-159 , Vol. 7, No. 1, p . 108; B - 1 4 1 , Vol. 7, No. 1, p . 112; B-159 , 
Vol. 7, No. 5, p . 550. P r o b l e m s Solved: H - l l l , Vol. 7, No. 1, p . 61; 
H-112, Vol. 7, No. 1, p . 62; B - 1 4 1 , Vol. 7, No. 1, p . 112; Vol. 
7, No. 5, p . 551. 

WEBB, W. A. "Divisibil i ty P r o p e r t i e s of Fibonacci P o l y n o m i a l s , " Vol. 7, 
No. 5, pp. 457-463 (Co-author , E. A. P a r b e r r y ) . 

WESSNER, JOHN. P r o b l e m s Solved: H-124, Vol. 7, No. 2 , p . 179; B-142 , 
Vol. 7, No. 2 , p . 220; B-144, Vol. 7, No. 2 , p . 222; B-146, Vol. 7, 
No. 2 , p . 223. 

WHITNEY, RAYMOND E. Edi tor of "Advanced P r o b l e m s and So lu t ions , " 
Vol. 7, No. 1, pp. 56-65; Vol. 7, No. 2 , pp. 164-169; Vol. 7, No. 3 , 
pp. 277-286; Vol. 7, No. 5, pp. 511-522. P rob lem Solved: H-124, 
Vol. 7, No. 2 , p . 179. 
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WULCZYN, GREGORY. P r o b l e m s Solved: B-136 , Vol. 7, No. 1, p . 109; 
B-137 , Vol. 7, No. 1, p . 109; B-142 , Vol. 7, No. 2 , p . 220; B-146 , 
Vol. 7, No. 2 , p . 223; B-155 , Vol. 7, No. 5, p . 547. 

YALAVIGI, C. C. P rob lem Proposed : B-169 , Vol. 7, No. 3 , p. 332. P r o b -
l e m s Solved: B-149 , Vol. 7, No. 3 , p . 334; B-152, Vol. 7, No. 3 , p . 
336; B-153 , Vol. 79 No. 3 , p . 276. 

YODER, MICHAEL. P r o b l e m s Solved: B-136 , Vol. 7, No. 1, p . 109; B-137 , 
Vol. 7, No. 1, p . 109; B-138 , Vol. 7, No. 1, p . 110; B-140 , Vol. 7, 
No. 1, p . 112; B-142 , Vol. 7, No. 1, p . 220; B-143 , Vol. 7, No. 2 , 
p . 221; B-144, Vol. 7, No. 2 , p . 222; B-145 , Vol. 7, No. 2 , p . 223; 
B-146 , Vol. 7, No. 2 , p . 223; B-148 , Vol. 7 , No. 3 , p . 333; B-149 , 
Vol. 7, No. 3 , p . 334; B-150 , Vol. 7, No. 3 , p . 335; B-152 , Vol. 7, 
No. 3 , p . 336; B-153 , Vol. 7, No. 3 , p . 276; H-136, Vol. 7, No. 5, 
p . 522; B-154 , Vol. 7, No. 5, p . 547; B - 1 5 5 , Vol. 7, No. 5, p . 547; 
B-157 , Vol. 7, No. 5, p . 549; B-158 , Vol. 7, No. 5 , p . 500; B-159 , 
Vol. 7, No. 5, p . 550. 

ZEITLIN, DAVID. P r o b l e m s Solved: H - l l l , Vol. 7, No. 1, p . 61; H-117, 
Vol. 7, No. 1, p . 63; H-123 , Vol. 7, No. 2 , p . 178; B-142 , V o l . 7 , 
No. 2 , p . 220; B - 1 4 3 , Vol. 7, No. 2 , p . 221; B-148 , Vol. 7, No. 3 , 
p . 333; B-149 , Vol. 7, No. 3 , p . 334; B-150, Vol. 7, No. 3 , p . 335; 
B - 1 5 3 , Vol. 7, No. 3 , p . 276; H - 1 3 1 , Vol. 7, No. 3 , p . 286; H-135 , 
Vol. 7, No. 5 , p . 519; B-155 , Vol. 7, No. 5, p . 546; B-157 , Vol. 7, 
No. 5 , p . 549; B-158 , Vol. 7, No. 5 , p . 549. 
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BINDERS NOW AVAILABLE 

The F ibonacc i Associa t ion is making available a binder which 
can be used to take c a r e of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

11. . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ron ica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high from the 
bottom of the backbone, round c o r n e r e d , fitted wi th 
a 1 1/2 " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is d a r k 
g reen . There is a sma l l pocket on the spine for holding a tab 
giving year and volume. These la t te r w i l l be supplied with each 
o rde r if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3.50 which includes postage ( r ang ing 
f rom 50£ to 80£ for one b inder ) . The tabs will be sent wi th the 
rece ip t or invoice . 

All o r d e r s should be sent to : Bro ther Alfred Brousseau , 
Managing Edi tor , St. M a r y ' s Col lege, Calif. 94575 


