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A RECURSION RELATION FOR POPULATIONS OF DIATOMS

EDWARD A. PARBERRY
Pennsylvania State University, State College, Pennsylvania

Diatoms are a type of one-celled algae whose unusual reproduction cycle
gives rise to an interesting problem in number theory. ‘Sparing the morpho-
logical details, the cycle can be describedas follows. Each diatom when it re-
produces (by cell-division) gives rise to one just like itself, and one a size
smaller. This process continues to produce smaller and smaller members of
the population until a size is reached where cell-division is no longer physio-
logically possible. These smallest members then grow until they become as
large as the first size, and then begin reproducing normally.

th generation

The problem is to determine Un’ the population on the n
as a function of both the number of sizes possible, and the growing period.

Let (m + 1) be the number of sizes possible including the growing size,
and let r be the number of generations it takes for the smallest size to be-
come mature.

We will show that

m ©
n - ir
(1) U fm,r) = 1+ 3" Z(m . j> ;
=1 i=0

and that Un satisfies the following m+r)th order linear recurrence relation:

kfm
2) Z -1 (k)U(n—k) = Un—(m+r) :
k=0

Diagram 1 illustrates the derivation of equation (1). The nth horizontal
row represents the population on the nth generation. In thefirst group of col-
umns, each entry is the sum of the two entries north and northwest of it. This
is be];:ause for 1<k <m+1, the kth and (k - 1)th sizes each give rise to
a kt

growing, or mature; in either case contributing one to the same column in the

size, and because in the (m + l)th column we have an individual either
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1969] A RECURSION RELATION FOR POPULATIONS OF DIATOMS 451

next generation. Clearly binomial coefficients are an efficient representation

since

() < (529 - ()

In the succeeding groups of columns (only the second group is shown) the
same procedure is followed except for the first column of the group. This col-
umn represents the second size members which arise from the new first sizes
in the last column of the previous group of columns and from the second sizes
in the past generation. Thus each element in the first row here is gotten by
adding the element north of it to the element (r + 1) places above it and in the
last column of the previous group.

Continuing in like manner, we see that in the (i + 1)th group of columns
on the nth generation, the top index of the binomial coefficients is n - ir,
and the bottom index runs from i) + 1 to (i + 1)(m). This gives equation
(1) since all the terms in (1) are zero as soon as the bottom index becomes
larger than the top.

We now derive the recurrence relation (2) using the expression in (1) for
Un(m,r). The indices in the double sums on the right will always be from j =
1 to m, and 1 =0 to .

From (1) and (3) we have:

\71

_ n - ir n-1-ir n-i-ir .

@ v - 1+;E<imﬂ) _ 1+z}:[(1m i R )]
therefore

‘ n-1-i
(5) U, -U1 ZZJ;<1m +j _llr)

©) 2 D <1§)Un—k =2
i
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_ n-t-1-ir n-t-1-ir
@ _;i}:[(im+j—t)+(im+j—t—1)]'

Equation (5) shows that (6) holds for t = 1, now assume it holds for t;
then replacing n with n - 1 in (6) and subtracting from (7), we have:

kft ‘ kft n-(+1) -ir
Z 1) (k) n-k [> (-1) (k) ZZ(lm +j -t + 1))
k=0 k=0

(o]

n-(t+1) -ir) _ k[t kf t
JZ; (im +j§ - (@t + 1)) - Un * Z [(_1) (k) Un—k + (1) <k - 1>Un—k]

k=1
_ kft+1 _ kft+1
= Uy +Z(_1) (k )Un—k B Z(—l) ( k )Un—k ’
k=1 k=0

hence (6) holds for (t + 1) and therefore for all t > 1.

Now letting t = m in (6), we have:
k[m _ n-m - ir
Z(_l) (k)Un—k - Zzl:(lm + - m)
m )
_ n-@m+r) -G-1r
DI L SF AR
m m o
_ N n—(m+r)+r n—(m+r)—(i—1)r
() (e )
j=1 i=1

=1 +ii<n - (ﬁln++rj) - ir)

n-(m+r)
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which establishes (2).
Note that from the diagram we get the following (m + r) initial condi-
tions on Un(m,r):

m
Un=z (E) 1<n< (m+r1) ,

- th
and also that Un(l,l) = Fn+2

deed, the diatom problem is a generalization of the famous Fibonacci rabbit

where Fn is the n* Fibonacci number. In-

problem.

PART II — GENERATING FUNCTIONS

We may find the generating function for Un(m, r) by using the recursion
above, however it is simpler to calculate the generating functions for each
individual size and then add them.

We use the following notation, with m and r fixed.

1l

a(i,n) total size i in nth generation, 1 S iS m.

b(j,n) = total of growing size which are j generations old in the nth

generation, 0 < j< r-1.

Then we have,

a(i,n) = ai - 1,n - 1) +a@,n - 1), a@,0 =0, 2<i<m
a(l,n) = b(r - 1,n - 1) +al,n - 1), a(1,0) = 1 .
(3)
b(jsn) = b(] -1,n-1) s b(.]90) =0, 1 S j S r-1
b(0,n) = am,n - 1) s b(0,0) =
Now we let
0 00

4) A(i,x) =Za<i,n)x“ B(j,x) =Zb(j,n)xn ,

n=0 n=0
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which, combined with (3), gives

A(i,x)

A(1,x)
(5)
B(j,x)

B(0,x)

= xAG - 1,x) + xA@,x), 2<i<m

= xA(l,x) + xB(r -1,x) + 1.

= xB{( - 1,x) , 1<j<r-1
= xA(m,x) .

Solving (5), we get

X

A@m,x)

=(.i.§_

m+r
X

a-x™

m-1 y m-1 X
(-]_——-_X) A‘(l,X) = (1 — X) (T——X B(I‘ - 1,X) +

m _r-1
X

A(m,x) +

m-1
B(0,x) + ————

X
a-x™

m-1
X

a-x™

e 1

A(m,x)

(1—x)m—x

®) Al , x) =

1

B » x)

A@m,x)

A@m,x) x

m-+r

o

i+l

Now we define P{m, r;x) as

Pm,r;x) = ZUn(m, r)xll

I

M

1l

T -

[Dec.

X

) m r-1
= E E a(i,n) + E b(j,n) X
n=0 n=0 \i=1 =0
B(j,x)
m-i =
1-x + Xj
X
Zj:l )
1 - x)m - X + xm(l - x)r
@ -9 -™Mex -1 @ -20"-x"Na - x

)
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It is of interest to know whether or not the polynomial

p(X) — (1 _ X)m _ Xm+r

has any repeated roots. To show that there are none, we set

p'®) = -m(@1 - X)m_l - (m + Jc')xmﬂl_1

and p(x) equal to zero simultaneously, and note that this implies

455

This cannot be a root of p(x) since the only possible rational roots of p(x)

are *1.
Let aj,ay, ***, @, be the roots of p(x) where Iails Iozi+1|.
m+r
Pm,r;x) = gx) n & - ai) )
i=1

Then

where g(x) isapolynomial. This expressionhas the partial fraction expansion,

m-+r B
Pm,r;x) = E m s
et
hence
o [ m+r n
1 n
P(m, r;x) =E E ﬁi(&—> X,
n=0 | ‘=1 !

therefore
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m-+r

1 n
(8 Un(m,r) = Z ‘Bi<a7.'> .
1

i=1

From (8) we see that

1
U (m,r) = 0 .
" <la1“)

We know that for r = 0, Un(m,O) = 2" since then we have ordinary cell di-
vision. Also, for r > 0, Un(m,O) grows slower than 2™ because of the time
lag. Indeed, we now show that for r > 0, «; is realand 1/2 < o5 < 1.

Since

m-+r

- r
(1'ai)_ai B

we see that if L is real, it must satisfy both 1 - @ =y and

In Fig. 1 we see that forany m and r > 0, there is always a positive real
solution, @, to these simultaneous equations where 1/2 < o < 1. Also,
when m + r is even, there is a large (K -1) negative solution. We now show
that o is actually the smallest possible in absolute value. We note that for all

i,

Hence 1 - @ must lie on the intersection of the circle about the origin with
radius
[Continued on p. 463. ]
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DIVISIBILITY PROPERTIES OF FIBONACCCI POLYNOMIALS

W. A. WEBB and E. A. PARBERRY
Pennsylvania State University, State College, Pennsylvania

1. INTRODUCTION

A famous unsolved problem in number theory asks the question, "Are
there infinitely many prime numbers in the Fibonacci sequence?' It is well

known that if {Un} is the sequence defined by:

then Un is prime only if n is prime. The converse, however, is not true
since, for example, Ujy = 113-37. Whether there are infinitely many primes
p such that Up is prime, or indeed whether there are infinitely many excep-
tions, has been an elusive problem for over a century.

In this paper we parametrize the sequence by using the recursion:

U ) =xU &) +U ,&; Ux) =0, Uylx) = 1.

n-2

(Note that U (1)
+3x%3 + 1, etc., satisfies all of the important divisibility relations of the orig-

1]

U, ) The resulting sequence: 0, 1, x, x*+ 1, x3 + 2x, x4

inal sequence with the following welcome exception:
Theorem 1. Un(x) is irreducible if and only if n is prime, which we

will prove here.
The following ndtation will be used throughout the paper.

_x+!x2+4 —=x—yxz+4
w = P ) >

Vn(X) = XVn—l(X) + Vn_z(X); Vo(X) = 2, Vl(X) = X .

2. SOME PROPERTIES OF THE SEQUENCE

The following are just a few of the results concerning the sequence which

may be readily proved.

457



458

1)

(3

@)

then,

(5)

(6)

@

®)

(9)

DIVISIBILITY PROPERTIES OF FIBONACCI POLYNOMIALS

n —
W - W

Up® = 5
we = -1

V) = o +a.

Un(X) U x)

n-1
2
m

S ) )  (r)

j=m

= (-1)%@n + 1) (mod (x%+4));

Rt
a
5
Hl

ii) U, n-1 « (mod 2 +4)) .

= (-1

BY
—
el
a2
1

i) U

e ® = U070 - DU, 6

i1) U 00 = UV, + (DU,

(Ua(x),Ub(X)) = U(a,b)(x) .

If p is a prime,

p-1

U = 62t ) 2 modp) .

[Dec.
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Equations (1), (2), and (3) are well known, and (4) follows immediately
from (1). Equation (5) follows from (1) by expanding and comparing coeffi-
cients, while (6) and (7) may be proved by routine calculation using (1), (2), and
(3). To prove (8), let

I = {n:f(x) | U &)

where

fx) = (Ua(X), Ub(X)).

If re I, thenby 4) mr €1 forany integer m. If r& I and t< 1, then
by (7), r-t& 1. Hence I is an ideal containing a and b, and therefore

(a,b) € I, which shows that

(Ua (X)s Ub(x) ) U(a,b) (X) )
and by (4) we have
U(a,b)(x) (Ua(X), Ub(X) )

The proof of the identity in (9) goes as follows.
By (5) we have,

p-1
o apm) =f )™ mod p)
m
hence
p-1
2 (1) a(2lm) Bl
Up(x) = X 4 = &+ 4) (mod p) .
m=0 \ ™
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3. PROOF OF THEOREM 1

That Un(x) is irreducible only if n is prime, follows immediately from
(8). We now prove that Up(x) is always irreducible.
Suppose that for some odd prime, p, Up(x) is reducible. Then we may

write

m
Up(X) = iI=]1 fi(X) ;

where the fi(x) are all monic irreducibles.

Case 1. m > 3. Since Up(x) contains only even powers of x, Up(x) =
Up(—x). Hence for each i there exists a j such that fi(x) = ifj (-x), and for
that same j, fi(-x) = _—_F_fj(x). Therefore,

fi(x)fj(x) = (ifj(—X))(ifi(—X)) = fi(-x)fj(-x) .

Hence if i # j, Up(x) is divisible by an even polynomial. On the other hand,
if i =j, fi(x) is even since fi(O) # 0. In either instance, we have some
factorization h(x)g(x) = Up(x), where h(x) and g(x) have degree >2 and both
are even functions of x. Now by the division algorithm, we may write

hx) = 4;x)x% + 4) + h,
and

gx) =L,x)x% + 4) +g ,
where h and g are integers. Now by (6), we see that

hx)g(x) = +plmod x* + 4) ,

hence h = zp and g = +£1 without loss of generality. On the other hand, by

(9), we have

gx) = (x* + 4)k (mod p) when p = 3mod4 ,
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and

gx) = (x + a)ki(x - oz)k2 (mod p) when p = 1 mod 4,

where o = 2A-1 mod p. In the second case, we note that k; = k, since g(x)

= g(-x) (mod p). Hence, in either instance, we may write
=1 2 k
gx) =L3&)p + x* + 4)° ,

where {3(x) is even since g(x) and (x® +4) are. Therefore {3(x) = ¢ (mod

x2 +4) for some integer c, and we have
+1 = g(x) = cp (mod X% + 4) ,

a contradiction. Hence if U_(x) is reducible, it must have only two factors.

Case 2. m = 2, Let Up(x) = f(x)g(x) where f(x) and g(x) are irre-
ducible and monic. Now either f(-x) = f(x) or f(-x) = g(x). (Note: since
sgn £(0) - sgn g(0) # 0, f(-x) # -f(x) or -gx)). If f(-x) = £f(x), the argu—

ment in Case 1 is applicable, since f(x) and g(x) are even. Hence we may

]

assume f(-x) = g(x). Now if p = 3 (mod 4), we get an immediate contradic-

tion. Since

deg f(x) = deg g(x) = £ ; L

which is odd, we have that the leading coefficients of f(-x) and g() have op-

posite signs. Therefore p = 1 (mod 4). Now if we let

p-1 p-1
Pé_l-—n 2 n Bé—l'—n
fx) = a x and gx) = (-1)7a x ,
n=0 n=0
then we have
fx)gx) = P71 (225 - a%)xp_?) + (2ay - 2agay + a%)xp'5 4 oees
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Now from (5) we have that (2a; - aﬁ) = p - 2 which means a; must be odd

and consequently a, is even since 2a; = 0 (mod 4). But also from (5), we
have that

(2a4 - 2agaq + ag) - -3k -4 3)2(p ~4)

which is odd; this is a contradiction since a, is even. Therefore Up(x) is

irreducible.

4. FURTHER CONSIDERATIONS

The generating function for {Un(x)} is quite easy to derive, but not very
illuminating for number theoretic purposes. We include it here for the sake of
completeness.

Let

fx,y) = Z Un(x)yn ,
n=0

then

fx,y) = ——L—o

1-xy-y

by using the recursion relation and the fact that Un(x) = (-1)n—1U_n(x).

The main theorem of this paperbrings to mind the sequence of cyclotomic
polynomials which are also irreducible for prime numbers. We conclude this
paper by showing the following inherent connection between the two sequences.

Theorem. The n -1 roots of Un(x) are given by

for k =1,2,*+,n - 1.
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Proof. Let x = 2icosf, 0< 86< m, then from (1),

. _ (icos O + sin )™ - (i cos 0 - sin 6)"
Un(21 cos ) = RSTR

(- i)n(e—ien _ eiQn)

2 sin 8

-1 .
U (2i cos 8) = 4) _sin nb
n sin

which is zero for

0=, k=12,
n
* A ok KK
[Continued from page 456. ]
m-+r
r

c,n-1.

463

and the circle about (1,0) with radius Iai|. Now, for a'i = o, the two circles

must be tangent externally (tangent, because 1 - « is real; and externally,

since 0 <1 - ¢« < 1). Now if there exists an i such that |ozi| < a, then the

radii of both circles would be smaller, and hence they couldn't intersect. This

shows that o = ai .

* Kk k Kk &



ON THE COMPLETENESS OF THE LUCAS SEQUENCE

D. E. DAYKIN
University of Reading, England

It is well known* that the Lucas sequence
Lo, Ly, Ly, =or = 2,1, 3, "

is complete. It is easy to see that if 0 < m < n, the integer L -1 can't

be represented as a sum of distinct Li with i # m,n. Thus n3114].} is not
complete after the removal of two arbitrary terms Lm,Ln. We will also show
that the sequence is complete after the removal of any one term L with n >
2.

Let N be a positive integer. It is well known that N is a (maximal)

sum of Li's, that is,

ilZ 0 and

1 N = Lil+LiZ+... +Li6 w1th{iu+1_iyZZ for 1<v<B.

We suppose Lm is one of the terms in the representation (1), for otherwise we

have nothing to show, say n = i, < i,B' Then
(2) M=L11+L-iz+ +Liaan+Ln-2+"'+Lk+L0

L +1 and k = 2 if n is even,

- n+1

L -1 and k = 3 if n isodd.

n+1
If M= Lo t1 we replace the sum (2) for M by L,+L ., in 1). ¥ M
=L 4 We replace the sum (2) for M by L 4 in (1). Observe that Lo+

does not appear in (1). If M < Ln -1, we can re-represent it as a sum of

+1
distinct terms Li with 0 <i<n-1, and so we are through in this final

case.

*V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin Co.,
Boston, 1969.

* ok K Kk Kk
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REMARK ON A PAPER BY R. L. DUNCAN
CONCERNING THE UNIFORM DISTRIBUTION MOD 1
OF THE SEQUENCE OF THE LOGARITHMS OF THE FIBONACCI NUMBERS

L. KUIPERS
Southern lllinois University, Carbondale, lllinois

In the following we present a short proof of a theorem shown by R. L.
Duncan [1]:

Theorem 1. If [y, Hy, -+ 1is the sequence of the Fibonacci numbers,
then the sequence loglly, logly, -+ is uniformly distributed mod 1.

Moreover, we show the following proposition.

Theorem 2. The sequence of the integral parts [log i4], [log Hp],* "
of the logarithms of the Fibonacci numbers is uniformly distributed mod m for
every positive integer m > 2.

Proof of Theorem 1. It is well known that

or

(1) log 4 .4 - logu."n———é log—l-——‘-z——'\]E , as n—> o ,

In [2] (see th. 12.2.1), it is shown that if w # 0 is real and algebraic,

then 6° is notan algebraic number. Therefore,

1+ A5
2

being an algebraic number, we conclude that

log _]'.in?.

is transcendental. (One can also argue as follows: let be given that 6 > 0 is

algebraic. Now supposethat log & = u/v where u and v are integers. Then

465
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we would have 0¥ = e, But this is impossible since 6V is algebraic and e
is transcendental (orally communicated by A. M. Mark).
According to a theorem due to J. G. van der Corput we have that a se-

quence of real numbers My, Ay, ** 1is uniformly distributed mod 1 if

A

il T )\n —> 60 (an irrational number) as n —> «,

(see [3]). By the property (1) we see that the sequence logiy, log sy, * is
uniformly distributed mod 1.

Proof of Theorem 2. First, we use the fact that the sequence

log

= (m, aninteger# 0), n = 1,2,--- ,

is uniformly distributed mod 1 which follows by the same argument used inthe

proof of Theorem 1: we have namely

1+ A5
log Mot log [J.n log —2—£

— = - — (non-algebraic) as n—> «.

Then according to a theorem of G. L. van den Eynden [4], quoted in [5] the

sequence

[log 4], [10g“'2] s 70T

is uniformly distributed modulo m for every integer m > 2, that is, if

A(N,j,m) is the number of elements of the set
{[10gun]} mh=1,2,--,N),
satisfying
[logun]zj(modm), 0<j<m-1),

then

[Continued on page 473. ] N



SUMS OF POWERS OF FIBONACCI AND LUCAS NUMBERS

L. CARLITZ
Duke University, Durham, North Carolina
and

J. A. H. HUNTER
Toronto, Ontario, Canada

1. Hunter has stated as a problem in this Quarterly [2] the identity

2
4 4 4 = 2 _1\R
1) FL o T Fp +F o= 202F + (1) .

This can be proved rapidly in the following way. In the identity

(2) x4+y4+(x+y)4=2(x2+xy+y2)2,
take x = Fn—l’ y = Fn' Then
Fpo1+ Fpt Frg = 200 ) + By Fp +FDT
Since
F?l—l * Fn—an * F%l = Fn—1Fn+1 * F?l = ZFE DY,

we immediately get (1).
Similarly if we take x = Ln-l’ y = Ln in (2), then since

2 2 = 2 _ B
+Ln_1Ln+Ln L Ln+1+Ln 2Ln 5(-1)" ,

2
Ln— n-1

1

we get the companion formula

2
4 4 4 - 2 _ s 1)\
(3) Lé |+ Lo +Le . = 2[2Ln 5(-1)"1 .

In the same way the identities

*Supported in part by NSF grant GP-5174.
467
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® +y)5 - x5 - y5 = bxylx + y)&% + xy + y?),

x + y)0 - - y7 Txyx + y)x% + xy + y2)%,

lead to the following:

@) Fé - F - FS = 5F FF @F+ DY),
© by T B - S nE, e - s,
© -, =, e )
() L,-u-xl =7 . LL @ -5 ™',

Cauchy has proved (see [1, p. 31]) that if p isa prime 3 then
(8 &+ 9P - xP - yP = pxyx + P&+ xy + ¥ )fp(x,y) ’

where f (x,y) is a polynomial with integral coefficients. For p = 1 (mod

6) there is the stronger result:
2
9) x+yP - xP - yP = pxyx + Y2 + xy + ¥?) gp(x,y) ,

where gp(x,y) is a polynomial with integral coefficients. Substituting x -

F y = Fn’ we get

n-1’
p p P = 2
Frpapn = Fp - Fpg = PFFF o @F, + 6 ol ¥y n,p’
Lpep = Lh = Tn g = PLy Tl @1 - 5CDYL, n,p’

where F and L are integers. If p = 1 (mod 6) we get
n,p n,p

(2F2 + (-1)° )F'

P _ gP _ gP =
N o F pFn+1nnl n,p’

p _ b _ P - 2 _ P
L L Ln an+1Ln e l(ZL 5(- 1) )L n,p’
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where F! and L! are integers.
n n,p

2. To get more explicit results, we proceed as follows. Consider the
identity

X _,_y ,_z _ &+ty+sz)-2@Ky+xa+yz)w+ 3xyzw?
1-xw 1-yw 1-2zw

(10)
1-&x+y+z)w+ Xy +xz +yz)w? - xyzwd

We take z = -x - y. Then (10) becomes

(11) _ X ¥y X +y - _-20w + 3Vw? ,
IT-xw 1-yw 1+&+yW | yu? 4 vl

where

(12) U=x+xy+y, V=xy&+y.

We have

E wzr(U - VW)r

r=0

1 - Uw? + Vw:")_1

o0 T

2r sfr\,.r-s;,S._s
Zw Z (-1) (s)U VvV w
r=0 s=0

Il

D L > (k _rzr)U3r-ka—2r.

k=0 r
Since the left member of (11) is equal to

[oe]

DD R (R S i) L
k=0 .

it follows that
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(—1)k(x + y)IL<+1 _ Xk+1 _ yk+1

3r-k+2  k-2r-1
—(1)22( Zr—l)U Vk

3r-k+2_ k-2r-1
SR (WA L

Since
r r _ k+1 r
2(k—2r—1) +3(k—2r—2) ~'1<'-2r—‘1(k-.zr-z) ’
we have
+
o+ P o et 4 R
(13)
_ k+1 r 3r-k+2 k-2r-1
= k—Zr—l(k—Zr-Z)U v .
r

When k is odd, it is to be understood that for r = (k - 1)/2, the coefficient

on the right is 2.
Replacing k by 2k in (13), we get

2k+1  2k+1  2k+1
x +y) - X -y

- 2k + 1 r USr—2k+2V2k—2r—1,
ZZk—Zr—l 2k - 2r - 2 ’

the range of r is determined by

(15) r<k, 2-2< 3r.

In particular (14) implies
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R N

(16) k-1
6k +1(3k - r - 1\ _3k-3r-1_2r+1
or + 1 ( 2r )U v
=0

For example, we have

&+ -xT -yl = 70%
13 U2v(U® + 2v?)

&+ yP - x¥ -y = 19UV(US + TURV? + 3VY) .
We also have from (14)

x + y)13 - xB _ y13

I

& + y)6k+5 _ X6k+5 _ y6k+5
/ k
(17 6k + 5 (3k - v + 1);3k-3r+1 2r+1
I 2r .
r=0

For example,

x +y)P® - xb - y® = 50V

&+ ytt - gyt = 11 0V@UE + V?)

I

x + P - x1T - yIT = 170V (Us + 502 + Vi),

When 6k + 1 is prime, the coefficients on the right of (16) are divisible
by 6k +1; moreover the right member has the polynomial factor U%. When
6k + 5 is prime, the coefficients on the right of (17) are divisible by 6k + 5;
moreover the right member has the polynomial factor U. Thus (16) and (17)
furnish explicit formulas for the factors fp(x,y) and gp(x,y) occurring in (8)
and (9).

In addition we have the identity

6k+3 6k+3 6k+3
x +y) - X -y

(18) k

2r + 1 2r

6k + 3( 3k - r>U3k—3rV2r+1.
r=0
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For example

& +y)? -x -y = 9U%V + 3V3
& + y)i5 - x5 - y15 = 1508V + 50U%V3 + 3V°.
For even exponents we get

x + y)Zk + XZk + y2k

(19)
_ 2Uk+ 2 : _1_(_(1{ - r - 1>Uk—3rV2r.
T sr -1

K3k

In particular, (19) yields

x + y)6k + x6k + y6k

(20) k
.3k 3k {3k - v - 1),,3k-3r 2r
=20+ ) -—( 2r_1>U v

The first few coefficients in the right member of (19) are given by the

following table.

'k\r 1 o 1 2 3

1] 2

2 | 2

3 | 2 3

4 | 2 8

5 | 2 15

6 | 2 | 24 3

7 |2 | 35 14

s |2 48 40

9 |2 63 90 3
10 |2 go | 175 |20
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[Continued from page 466. ]
1li —1A(N'm) =41 for j =0,1,oc+,n-1
n—5'w N ) m ) e ’
(see [5]).
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NOTE ON THE INITIAL DIGIT PROBLEM

R. L. DUNCAN
King of Prussia Graduate Center )
Pennsylvania State University, State College, Pennsylvania

The initial digit problem is concerned with the distribution of the first
digits which occur in the set of all positive integers. There are many possible
interpretations of the heuristic question, "What is the probability that an inte-
ger chosen at random has initial digit equal to a?" [1]. If A = {an} is the
set of all positive integers with initial digit a, then the asymptotic density
[2] of A would provide a suitable answer to this question if it exists. How-
ever, it is easily shown that the asymptotic density doesn't exist.

The purpose of this note is to show that the logarithmic density [2] of A
exists and is equal to log (1 + 1/a), where log x is the common logarithm.
This result is in agreement with previous solutions of the initial digit problem
[1]. 1Itis also of interest to note that the logarithmic density exists and is
equal to the asymptotic density whenever the latter exists [2].

The logarithmic density 0(A) is defined by

and the lower and upper logarithmic densities 0(A) and B(A) are obtained by

replacing lim by lim and lim respectively. Now it is obvious that

. 1 1

k>wln@ 10 -1, S5k, v
V—

k-1
lim ——— ) [H(@+110" - 1) - Ha 10V - 1) |
Kk k1ln 10
> v=1

k-1
lim — Z [H(@+110Y) - H@ 10")] ,

k1ln 10

k—> =1

474
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where

Hn) = 1 +

Do| =
+
+
Sl

Using the well-known asymptotic formula [3] H(n) = lnn +9 +0(1/n), we get

8(a)

lim (k - 1)(Ina + 1) - Ina)/k1n 10
k—>
In(1 + 1/2)/ln 10 = log(l + 1/a) .

Similarly,

3(A) = lim L Z =
k—>wln(@ + 1)10° - 1 a< (a+1)10k-1 v
V—

k

. 1 14 14
lim mz_[H((a + 1) 10 ) - H(a 10 )]
k—=e v=1

1l

log (1 + 1/a) = 6(4) ,

and the desired result follows.
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ON FIBONACCI AND LUCAS NUMBERS
WHICH ARE PERFECT POWERS

HYMIE LONDON AND RAPHAEL FINKELSTEIN
McGill University, Bowling Green State University

The Fibonacci numbers, defined for all rational integers n by

Fi = Fy =1, Fn+2 = Fn+1+Fn s

have for several centuries engaged the attention of mathematicians, and while
many of their properties maybe established by very simple methods, there are
many unsolved problems connected with them. One such problem is to deter-
mine which Fibonacci numbers are perfect powers. The case of the Fibonacci
squares was solved by J. H. E. Cohn in [3] and also in [4]. (See [5] for
some applications of Cohn's method to other Diophantine problems.) Cohn
showed that the only squares in the sequence Fn are given by

F_1 = F1 = Fz = 1, FO = 0 and F12 = 144 .

Having solved the problem of the Fibonacci squares, one isled to inquire as to

which numbers Fn can be perfect cubes, fifth powers, etc. A proof that
F1 = Fz =1, Fs = 8 and F12 = 144

are the only perfect powers in the sequence Fn for positive n was given by
Buchanan [1], but, unfortunately, Buchanan's proof was incomplete and was
later retracted by him [2]. Thus the problem of determining all the perfect
powers in the sequence Fn remains unsolved. In the present paper we first
present a general criterion for solving this problem. We then apply our result
to the case of the Fibonacci cubes and give the complete solution for this case.
Finally, we give a similar criterion for determining which Lucas numbers are
perfect powers, and determine all Lucas numbers which are perfect cubes.
To determine which numbers Fn are perfect kth powers, we may
assume, by Cohn's result, that k = p, where p is an odd prime, and also
that n is positive, since Fo = 0 and F__ = (—1)n+1Fn. Let L_ be the nfh

term in the Lucas sequence, defined by

476
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Ly =1, Lz = 3, Ln+2 = Ln+1 + Ln .
and let
_ 1+ A5 _1- W3
a = =5 b = —
By induction, it is easily verified that
n I
Fnza ——b . L :an+bn’
N5
and since ab = -1, we have finally that
@ L2 - 5F2 = 4(-1)" .
n n

Let us first assume that n is even and that Fn = zp, Ln =y, where

p is an odd prime. Then (1) becomes
2) ye - 5z21O = 4

Now it is clear that the solution of (2) reduces to the solution of

(3) y2 - 550 = 4,
subject to
@ x = z% .,

In (3) we set

which yields
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-1
¥2 - 4.5P7t = xP |

subject to
() 3=z, X>0, Y>0, X = 0(mod5), Y = 0 (mod 5®-1)/2)

Similarly, if n is odd, the problem reduces to solving
¥+ a5P7t o %P,

subject to (5), and we have proved
Theorem 1. The problem of determining which numbers Fn, n> 0,

are perfect pth powers, where p is an odd prime, reduces to the solution
of the equations

1

v+ 4.5t - xP

subject to the conditions

=22, X>0, Y>0, X = 0(mod5), Y = 0 (mod5P /2y,

el ™

Let us apply Theorem 1 to the case p = 3. Here the problem reduces
to solving

6) Y2 - 100 = X3 ,
and
(7) Y2 + 100 = X3,

subject to the conditions

(8) %:zz, X>0, Y>0, X =Y = 0 (mod5).
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Now Hemer proved [7], [8], that the only solutions of (6) with Y > 0 are

[X,Y] = [-4,6], [0,10], [5,15], [20,90], [24,118] and [2660,137190].

Of these solutions, the only ones satisfying (8)are [5,15] and [20,90]. This
yields [x,y] = [1,3] and [4,18] as the only solutions of (3) (with p =3)
which satisfy (4), and from these solutions we derive

L2=3, F2=1 and L6=18, FG:S‘

Thus the only cubes in the sequence Frl with n positive and even are Fy = 1
and Fg = 8.

In two previous papers [6], [10], we showed that the only integer. solu-
tions of (7) with Y > 0 are [X,Y] =[5,5], [10,30] and [34,198]. Of these
solutions only [5,5] satisfies (8), and from this solutionwe derive F;y= L;=
1. Thus the only cube in the sequence Fn with n positive and odd is Fy =
1, and we have

Theorem 2. The only cubes in the Fibonacci sequence Fn are
F_6=—8, F2=—1, F0=0, F_1=F1=F2=1andF6=8.

Next, we give a criterion for determining which Lucas numbers are per-
fect pth powers, where p is an odd prime. We note that the case of the Lucas
squares was solved by Cohn [3], who showed that the only Lucas squares are
L1=1and L3:4.

In (1) let Fn =z, Ln = yp and n > 0, and assume first that n is
even. Then we get
(9) y2p - 5z = 4,
It is clear that (9) reduces to solving

(10) P - 522 = 4,

subject to x = y%.
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Equation (10) may be written

5x° - (5z)% = 20 ,
and, setting v = 5z, it reduces to
(11) 5xP - v = 20,
subject to

¥, v = 0 (mod 5) .

o]
]

Finally, setting

5° 53p—1572 ’
(11) reduces to
12) Y2+ 4.5° = xP

subject to the conditions
(13) 2—; =y%, X>0, Y>O0, X = 0(mod5), Y =0 (mod 5(p+1)/2)'

Similarly, if n is odd, the problem reduces to
¥ - 4.5 = xP |

subject to the conditions (13), and we have
Theorem 3. The problem of determining all the perfect pth powers in
the sequence Ln’ where p is an odd prime, reduces to solving the two

equations

Y+ 4-5PC)"t = xP
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subject to the conditions

1

}—;_: ¥%, X>0, Y>0, X = 0mod5), Y = 0 (mod 5°+1/2)

Finally, we apply Theorem 3 to the case p = 3. Here the problem re-

duces to solving

(14) Y2 - 300 = X3,

and

(15) Y2 + 500 = X3

subject to

(16) ?.5( =y, X>0, Y>0, X =0 (mod5), Y = 0 @mod?25).

In a previous paper [9], we showed that (15) is insoluble and that the
only solution of (14) with Y > 0 is [X,Y] = [5,25]. This solution clearly
fulfills (16) and also implies that Ly = ¥y = 1. Thus we have proved

Theorem 4. The only cube in the Lucas sequence Ln, n>o0, is Ly =

In conclusion, we wish to point out that Siegel [11] has shown that the
problem of determining all the complex quadratic fields of class number 1 can
be reduced to the problem of finding all the cubes in the sequences Fn and
Ln' Thus we have completed yet another proof of Gauss' famous conjecture on

complex quadratic fields of class number 1.
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THE DYING RABBIT PROBLEM

V. E. HOGGATT, JR., and D. A. LIND
San Jose State College, San Jose, Calif., and University of Cambridge, England

1. INTRODUCTION

Fibonacci numbers originally arose in the answer to the following prob-
lem posed by Leonardo de Pisa in 1202. Suppose there is one pair of rabbits
in an enclosure at the Oth month, and that this pair breeds another pair in
each of the succeeding months. Also suppose that pairs of rabbits breedin the
second month following birth, and thereafter produce one pair monthly. What

is the number of pairs of rabbits at the end of the nth month? It is not diffi-

th

cult to establish by induction that the answer is F where Fn is the n

Fibonacci number. In [1] Brother Alfred asked for:-azt solution to this problem
if, like Socrates, our rabbits are motral, say each pair dies one year after
birth. His answer [2], however, contained an error. The mistake was noted
by Cohn [3], who also supplied the correct solution. In this paper we gener-

alize the dying rabbit problem to arbitrary breeding patterns and death times.

2. SOLUTION TO THE GENERALIZED DYING RABBIT PROBLEM

Suppose that there is one pair of rabbits at the 0th

time point, that this
pair produces B; pairs at the first time point, B, pairs at the second time
point, and so forth, and that each offspring pair breeds in the same manner.

We shall let By = 0, and put
Bx) = >, B <,
n=0 n

so that B(x) is the birth polynomial associated with the birth sequence
[ee]
{B,}
2 h=0

The degree of B(x), deg B{x), may be finite or infinite. Now suppose a pair
of rabbits dies at the mth time point after birth (after possible breeding), and

let D(x) = x™ be the associated death polynomial. Ifour rabbitsare immortal,

482
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put D(x) = 0. Clearly deg D(x) > 0 implies deg D(x) > deg B(x), unless
the rabbits have strange mating habits. Let T, be the total number of live

pairs of rabbits at the nth time point, and put

(]
T) = ), T <,
n
n=0
where Ty, = 1. Our problem is then to determine T(x), where B(x) and D(x)
are known.
Let Rn be the number of pairs of rabbits born at the nth time point
assuming no deaths. With the convention that the original pair wasborn at the

Oth time point, and recalling that By = 0, we have

Ro = 1,
Ri = B0R1 + B1R0 ,

Ry = BoRy + B4Ry + BaRy -
and in general that
n
(1) R =2 BR , (@>D.

Note that for n = 0 this expression yields the incorrect Ry = 0. Then if
Rx) = 3, Rx ,

equation (1) is equivalent to
Rx) = R®)Bx) + 1 ,

so that

REx) = T-BR



484 THE DYING RABBIT PROBLEM [Dec.

The total number T; of pairs at the nth time point assuming no deaths is
given by

> i
T = R, ,
n =0 j

and we find

1 _ R&x) _ - k\[ < n
T -3[1 - BE) —1_x—<Zx)<ERnx>

©0 n (=]
> ( Y R.)xn = Y Tx" = T .

n=0\ j=0

(2)

Hoggatt [4] used slightly different methods to show both (1) and (2).
We must now allow for deaths. Since each pair dies m time points
after birth, the number of deaths Dn at the nth time point equals the num-

ber of births Rn_m at the (n—m)th time point. Therefore

= n _ < n _ D)
nz=:0 an = D) zr;o Rnx = 1T-B® -

Letting the total number of dead pairs of rabbits at the nth time point be

n
Cn = JZ:::O DJ )
we have
D(X) B ) K o n _ 0 n n
e - (£ )(E ) - £(E0):
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Now the total number of live pairs of rabbits Tn at the nth time point is
T; - C,» sothat

1 - DR)

3) T = T"&) - C&) = F— X1 - BE)]

3. SOME PARTICULAR CASES

To solve Brother Alfred's problem, we put Bx) = x%+x% +... +x1
and D) = x2 in (3) to give

- x12 - xi2
T) = 1-x _ 1-x

1-x01-x%-x-... -x12) 1-x-x2+x8

It follows that the sequence { Tn} obeys

T =T

n+13 nriz T

ni11 - Tp @20

together with the initial conditions Tn = Fm_1 for n=0,1, .-+, 11, and
Ty = Fy3 - 1, which agrees with the answer given by Cohn [3].

As another example of (3), suppose each pair produce a pair at each of
the two time points following birth, and then die at the mth time point after
birth (m> 2). In this case, B(x) = x +x2 and D(x) = . From (3), we

see

l—xm

1-x0Q-x - x2)

T) =

Making use of the generating function
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m-1 m-1 j
1 +x+ ... +x X
T&) = = Y, R
1-x-x% =0 1 - x - x2
1%31 i 0] m-1 f: n § m-1 n
4) = F X =y F X+ F X
=0\ n0 ™' =0 \ =0 K1 e e
= Hfl F .- Dx o+ f: (F .- F )<
— n+3 = n+3 n-m+3
n=0 n=m

For m = 4r it is known [5] that

Fn+3 - Fn—4r+3 - FZan—2r+3 ’

where Ln is the nth Tucas number, while for m = 4r + 2,

I L F s

n+3 ~ Frnoapsn T Pareifnoares

which may be used to further simplify (4). In particular, for m = 2,

0 20
_ n _ n
TX) = 1+ 2x + Z_: F g% = 2; Foio%
n=0 n=0
while for m = 4 we have
20
n

T (%)

I

1+ 2x + 4x% + 73 + 2 L %
n=4

1}

0
n
-X 2_: L g% -
n=0

Thus for proper choices of B(x) and D(x) we are able to get both Fibonacci
and Lucas numbers as the total population numbers.

The second-named author was supported in part by the Undergraduate
Research Participation Program at the University of Santa Clara through NSF
Grant GY-273.
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ORTHOGONAL EXPANSION
DERIVED FROM THE EXTREME VALUE DISTRIBUTION

J. C. AHUJA
Portland State College, Portland, Oregon

1. INTRODUCTION

The cumulative distribution function, F(X), of the extreme value dis-

tribution is given by

-X
(1) Fx) = e , for =< x < o,

and the density function, f(x) = F'(), is obtained as
-x
@) ) = & ) for cw< x< .

The extreme value distribution has found a number of applications.
Cramer [2] derives (2) as an asymptotic density of the first value from the
top for certain transformed variates in a random sample of n observations
drawn from Laplace's and normal distributions. The distribution function (1)
was first used by Gompertz [3] in connection with actuarial life tables and
later on has been used extensively in the study of growth.

The purpose of this paper is (i) to find an explicit expression for the
moment generating function of the standardized extreme value distribution and
(i) to derive an orthogonal expansion (Type A series) from the extreme value
density in a manner similar to the way in which Gram [4] and Charlier [1]
derived an orthogonal expansion from the normal density by making use of the
Hermite polynomials which are orthogonal with respect to the normal density.
The orthogonal expansion requires the calculation of first eight standardized
moments of (2) which in turn involve the evaluation of the Riemann zeta func-
tion. This difficulty is overcome by using the tabular values of the Riemann

zeta function given by Steiljes [6].

2. MOMENT GENERATING FUNCTION

The moment generating function, Mx(u), of the density function f(x) is

488
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0 -
f ux - (x+e X)
e e

MX(u) = dx

—o0

which, on substituting s = e_x, becomes

3) Mx(u) = Of s %e Sds
=T@ - u

= 3 %)
k=0

where I‘(k)(l) is the kth derivative of the gamma function, I'(p), at p = 1.
This proves the following.

Lemma 1. The moment generating function of the extreme value density
f(x) is given by (3).

According to Jordan [5], the nth derivative of I'(p) at p =1 is

' d
() ™) = (-1)nzm cM(s, /2% ... (Sy/m)

where the summation is over non-negative integers dy, dy, **-, dn such that
dy +2dy +3dg +--+ +nd, = n Sk is the Riemann zeta function defined by

and C is Euler's constant which, correct to nine decimal places, is
0.577215665 .
If T8} and |1, denote the mean and variance of f(x), then (3) and (4)

give us
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Hi = C and Hy = 8, .

Defining z = x - C)/ '\/§E, we get the standardized extreme value den-
sity function

(5) g(z) = NS, e_[C+'\/-S_ZZ+e—(C+'\/SZZ) ], for -w < z < o

The moment generating function, M, (w), of g(z) is obtained as
uz,

MZ ) = Ele

= NSy @/

which, by Lemma 1, becomes

M@ =| Y /&) o m || T r“"u)(-u/«/S;)k/kz]
z h=0 k=0
(6) w
= Z . ur/r! ,
r=0
th

where @, is the r~ standardized moment of g(z) and
) r < s
(M a, = 3 nFa/sy™ 2(’;>cr‘31‘°’(1>
j=0

This completes the proof of the following:
Theorem 1. The moment generating function of the standardized extreme
value distribution g(z) is given by (6).

The first eight of the expressions in (7), using (4), are

Qi = 0
042 =1
a; = 285/NS)
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a, = (383 + 68,)/S}

a5 = (208,8; + 24S;)/NS]

ag = (1583 + 408} + 90,8, + 1208;)/S}

g = (210838, + 4208,8, + 5045,S; + 72087)/A/S]

@ = (10553 + 11208,S2 + 1260838, + 1260S; + 2688S,S;

+ 33608,8; + 5040S;)/S3

The values of Sk for kK = 2, 3, ¢, 70 have been computed by
Stieltjes [6] up to 32 decimal places. Using his tabular values, we have

S, = 1.644934067 S¢ = 1.017343062
Sy = 1.202056903 S; = 1.008349277
S, = 1.082323234 Sg = 1.004077356
S; = 1.036927755

The substitution of S's give the numerical values of a's as

ay = 0,000000000 a5 = 18.566615980
ay = 1.000000000 g = 91.414247335
a3 = 1.139547099 ap = 493.149891500
oy = 5.,400000000 ag = 3091.022943246

3. ORTHOGONAL POLYNOMIALS
If @, denotes the rth standardized moment of g(z), then, according
to Szego [7], the orthogonal polynomials qn(z) associated with the density

function g(z) are given by

1 0o 1 o a
n
0 1 asg ay @
1
8) qn(Z) =5
n-1
%1 % %1 %2 0 %2l
1 z z2 73 z
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where the leading coefficient of qn(z) is one and

1 ag a
n
0 1 a3 ay L
9) Dn =
an—l a'n an+1 an+2 T aZn—l
n an+1 C¥n+2 an+3 o aZn

The polynomials qn(z) have the orthogonality property that

s D /D for m =n
_ n n-1
(10) _;{ qm(Z)qn(Z)g(z)dz = { for m £n

Substituting for o's in (8), the polynomials qn(z), correct to six deci-
mal places, for n = 0, 1, 2, 3, and 4, are obtained as

golz) =1

qiz) = z

ay(z) = z% - 1.139547z - 1

as(z) = z% - 3.634938z2 - 1.257817z + 2495391

z) = z' - 7.557958z3 + 6.560849z% + 14.769958z - 3.348201 .

4. DERIVATION OF ORTHOGONAL EXPANSION

Suppose that a density function, h(z), can be represented formally by

an infinite series of the form

(11) h(z) = gz) E:‘o aa @ ,

where the qn(z) are orthogonal polynomials associated with the density func-
tion g(z).

Multiplying both sides of (11) by qn(z) and integrating from - to o,
we have, in virtue of the orthogonality relationship (10),
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°0

Dn—l
(12) a = D 0_0[ hz)q, (z)dz .

The reader familiar with harmonic analysis will recognize the resem-
blance between this procedure and the evaluation of constants in a Fourier
series.

The first five values of a's, given by (12), are computed as

ap = 1
a; = 0
ag = 0

ag = 0.0500572(B; - 1.139547)

a, = 0.0045512(B, - 7.557958B; + 3.212648)

th standardized moment of h(z).

where f . isthe r
Substituting for the a's in (11), we have
Theorem 2. The orthogonal expansion (Type A series) derived from the

standardized extreme value density g(z) is

h(z) = g(z)[1 + 0.0500572(8; - 1.139547)q3(z) + 0.0045512 (B,
- 7.557958B; + 3.212648)qy(z) + -+ ]
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REPRESENTATION OF NATURAL NUMBERS AS SUMS
OF GENERALIZED FIBONACCI NUMBERS - Ii

D. E. DAYKIN
University of Malaya, Kuala L umpur, Malaysia

The well-known observation of Zeckendorf is that every positive integer

N has a unique representation

N =u, +u, +°+°+u, ,
14 19 13

where

1) ig21and i, ,-i,2 2 foricv<d,

+1

and {un} is the Fibonacci sequence

©+¢,0,0,1,2,3,5,8,13,* "

defined by
u =0 for n< 0,
n
(2) w =1, u = 2, and
Uiy = un+un_1 for n = 2.,

Existence of such a representation follows from (2), and its uniqueness follows
easily from the identity

= cen AN
3) un+1 1+un+un_2+un_4+ for n 2 0.

The object of this note is to discuss very general methods for uniquely

representing integers, of which Zeckendorf's theorem is a special case. I feel
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that my results give a fairly complete description of the representations; they
certainly extend the treatment of an earlier paper of the same name [5].

Here are some remarks on the notation which will be followed throughout
this paper. We reserve the brackets {-- } , (-*+) and [---] for sequences,
vectors and matrices, respectively. By V we denote the set of all vectors
(i1,ig,° " »id) of various dimensions d 2 1, whose components i, are inte-
gers with 1< iy <ip < -+ < ig. Often we will write I instead of (iy,ip,°**,
id) and M instead of [m ,y]. Also {anf, n=1,2,3,°*° will denote any
sequence of integers satisfying axiom 1.

Axiom 1. The sequence is strictly increasing and its first term is 1.

For convenience, we write a(l) or af(ij,is,*-+,ig) for the number

al) = aliy,iy," " ",igq) = aii+aiz+- . +aid .
It will be noted that all small letter symbols stand for non-negative integers.

In [5] I discussed pairs {an}, {kn} whichrepresent the integers accord-
ing to

Definition 1. {an}, {kn} represent the integers if, for each positive
integer N there is one and only one vector I = (iy,is,°+*,ig) in V such that
N = a(l) and

(4) i -i >k, for 1<pv<d.

vil " v

Letus write h and k for k; and k,, respectively. Then it turns out ([5],
theorems C and D) that {an}, {kn} represent the integers if and only if

(5) 03k~1§h.<.k=ky for v2>22,

and {an} is the (h,k)™ Fibonacei sequence {vn} defined by

for 1< n<k,
+v h for k< n < h+k,
for n > h+k.

I
=

n
6) v, =V

]
=

I
:rl—-‘
+
<

+v
n-k

The Fibonacci sequence {un} has been defined by authors in various
ways, such as
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"':0! 0,0’03 0:0909 0’ 1929 39 5, 83 133..':
*»0,0,0,0,0,0,0,1,1, 2, 3, 5,8, 13, *** ,

and

¢¢¢,-8,5,-3,2,-1,1,60,1,1, 2, 3, 5, 8, 13, **° .
One can sometimes simplify an argument by changing from one definition to
another. We chose to define {un} by (2) in order to use (3). Sometimes it is
more convenient to define (Vn) by
0 for n< k*,

1 for kK* <n <1, and
k-h+v
n

6.1)

]

1 +Vn-k for n > 2,
where k* =1 if h=k-1 but K* =-k+2 if h = k.

In the sequel, when we define a sequehce, we will only considerthe argu-
ment on hand at the time.

Next observe that the (2,2)th Fibonacci sequence is the ordinary Fib-
onacci sequence {un}, n > 1, and if ku = 2 for all v then condition (4) be-
comes condition (1). Thus in [5] I generalized Zeckendorf's theorem by re-
placing the constant 2 in (1) by a sequence {kn}. Later, I replaced {kn} by
an infinite matrix M = [m#’y] , where w, v > 1, of non-negative integers
m, ., as described in definition 2.

Definition 2. {an },M represent the integers if, for each positive inte—
ger N there is one and only one vector I € V such that N = a(I) and

(7) i, -1i

< pv<u<
" vzmy.-v,u for 1 < v<pu<d

I described all suchpairs {an}, M to a splinter group of the 1962 International
Congress of Mathematicians in Stockholm (see the programme). However in
an effort to simplify my proofs, I made one further generalization as follows.

Definition 3. {an}, W represent the integers, where W CV, if for
each positive integer N there is one and only one vector I € W such that
N = a(l).
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There is very little one can say about {an} » W as this definition stands,
so with my eye on condition (7), I make W satisfy axiom 2.
Axiom 2. If

(ij,iz,"',id) e V; (jj_,jg,"’,je) e W; 1 <4< e
and

i1/+1 - iv 2 ju+1 -y

for 1 £ v < d then

(iiaiz,°'°,id) cE W.

This axiom merely says that if a vector is in W and we '"cut its tail off" or
"stretch" it, or do both things, it will still be in W. Important trivial conse-

quences of axiom 2 are the laws

(15,002 5ig) € W<=>(iy+ 1L,ig+1,°°+,ig+1) €EW and iy 21,
®) ) and (i1,15%* »id-q1 » id) € W => (ig,ip,"**»ig-1» ig+1) € W.

If M= [m”’v] is any matrix, and W is the setof allvectors I = (ij,ip,***
iq) satisfying (7), then clearly axiom 2 holds for W. Hence definition 3 with
axiom 2 is more general than definition 2, which in turn is more general than
definition 1.

I will now state the fundamental theorem of all this work.

Theorem 1. Suppose {an}, W represent the integers, W C V, and
axioms 1 and 2 hold. Then for t = 1,2,3,°++ all the integers N such that

2, S N<a and only these integers, each have a representation N = a(l)

t+1°
with I = (ij,ip,°**,iq) in W and ig=t
It follows from the theorem that any part of a representation is a repre-

sentation. In other words, if

(113129"':1(1) eEw; i<e<d

and



498 REPRESENTATION OF NATURAL NUMBERS AS SUMS [Dec.

lé V1< V2<"' < Ve<d

then

(iVi’in’ ,iVe) EW.
Also the theorem shows that the representations of the successive integers
1,2,3,°+* change "continuously,' in the same way as their representations in
the binary scale do. All possible representations using only aj,a;,***,at are
is used. To determine the representation of a given

< N<a

exhausted before a4q

integer N you find the suffix t such that a then the suffix s

t t+1°

such that a < N- a, < a and so on.

s

Now suppose W sat?:flies axiom 2. Then clearly (1) € W, there is a
least integer p such that (1,p) € W, and there is a largest integer g such
that the vector (1,1,°*°,1) of dimension ¢ is in W. One of the numbers p
and q is 1 and the other is greater than 1. My proofs, of theorem 1 and the
results below for representations under definition 2, all split into thetwo cases
p=1 and q = 1. Ialways establish a chain of lemmas, each of which in~
volves a number of complicated statements, and has aproof depending on nested
induction arguments. One can gain some idea of the lengths of the proofs by
inspecting [5] For this reason, I do not intend to publish any proofs in this
paper. I have tried repeatedly, but unsuccessfully, to find analytic proofs. I
think that such proofs would be elegant, and would at the same time settle my
monotonicity conjecture below.

An important result contained in the lemmas is the following:

If N is an integer N 2> 1, and the representations of N and N + 1 are

respectively
N = a(ij,ig, ***,id)
and
N+1 = Ggsds°°*sie)

then
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1 <a(E+1,ja+1,00c,je+1) —aliy+1,ig+1,°c,ig+1) <q+1.

Notice the revelence of (8) to this result. Moreover the result enables us to
give bounds for the rate of growth of {an}, and these bounds are necessary
in the proofs. Taking N = a, - 1 sothat N+1 = a, = a(t), we find that

1<a, ., -alij+1,ip+1,°*,ig+1) <g+1.

t+1

We can in fact say more than the above, and I will illustrate the account
by starting to construct a pair {an} » W inductively. We must have a; = 1,
and the vector (1) in W. We are free to have (1,1) in W or not. Suppose we
choose not to have it in. Then we can choose to have (1,2) in W or not. Sup-
pose not. Then we are free to have (1,3) in W or not. Suppose we have it in.

Then our construction could proceed as shown in Table 1.

Table 1
Construction of {an}, W when p = 3

ay ap ag ay as ag ag v
1 2 3 5 8 12 19 —
M@»zj\@+3)§1+5—>1+8—>1+12—>1+19,->
247 2T z+5 248 —— 2+12 — 2 +19
\ 3+8 3+12 —> 3+19

1+3+12¢>1+3+19
5+ 19

1+ 5+ 19

AN\\'2 + 5+ 19

In the table, a representation is circled if at the appropriate stage of the
construction, we had freedom to admit or rejectit. A representation is crossed

out iff it is not admitted. A representation at the head of an arrow must be
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admitted, or not as the case may be, by virtue of (8) or axiom 2, because the
representation at the tail of the arrow was admitted or not. Notice that we had
no freedom over the values of a; or ag. Also the representation 1+3+12 must
be admitted even though it is not controlled by (8) and earlier representations.
If 1+3+12 is rejected, then a; = 16 and we have 17 =a(1,7) = a(4,6) con-
tradicting the uniqueness of the representations. In general, for p > 1, when
we have freedom over the value of ays (i.e. , we can accept or reject some
representation N = a(ij,ij,***,ig) with ig=t- 1), if we choose the lower

value for a, we will have freedom of choice over a On the other hand, if

t t+1°
we choose the higher value for a, we will have no freedom over 210 Yup?
a2y +p-2° and possibly over more terms, and sometimes over all further

terms.

A typical construction with q > 1 is shown in Table 2.

Table 2

Construction of {an}, W when q = 3

ay ay ag ay
1 4 15 55
1+1 1+4 1415 —> 1455
@ 1+1+4 1+1+15 ——> 1+1+55
1+1+1+4 . .
S gy . .
1+4-+4 I 15+15
1+1+4+4
1+1+1+4+4
4+4-+4 15+15+15

1+4+4+4
1+1+4+4+4

= 4+4+15+15+15
1+4+4+15+15+15

1+1+4+4-+15F15+15
+14+1+4+4+15FI5+15
4+4 15
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Whichever way the pair {an}, W arise there will be a sequence fmn}
of integers, 0 € my < my < mg £ +-+, which may be finite or infinite, such
that if we put

3) a =0 for n<o,
then we have the identity

(10) 8. = 1+an+an_m1+an_m2+--- for n2>0 .

This identity corresponds to (3). Moreover, if our use of the freedom of choice
discussed above has a cyclic pattern, then {mn} is eventually periodic. It
will then follow by subtracting equations (10) in pairs that high up terms in
{an} satisfy a finite recurrence relation. For example, continuing the con-
struction of Table 1, let us use our freedom in column 3,4,5,¢-- according
to the pattern: admit, no choice, reject, admit, no choice, reject,”** . Then
{mn} = 2,5,8,11,14,°*, an arithmetical progression with common differ-

ence 3, and {an } is given by

n

+a for n =23 .

a =0 for n£0, a4y = 1,a; = 2, ag = 3, and
(11) _a
n-2 “n-3

= +a
n+l & n--2

The first 8 terms of {an} are 1, 2, 3, 5, 8, 12, 19, 30 and the next7 appear
in (11.1) below.

We can use the above facts to obtain bounds for any sequence {an} as
follows. We define a sequence {bn} which has the same construction as {an}
to some particular stage, then froni that stage on, whenever freedom arises
we choose the largest (smallest) pogsible value for bt’ The sequence {bn}
so constructed will satisfy a finite recurrence relation which we can use to
evaluate the terms of {bn} » and hence obtain upper (lower) bounds for { an}.
As an example, let us find bounds for the sequence {an} started in Table 1.
If we admit as many representations as possible in the remainder of the con-
struction, we find that {mn} =2,5,7,10,12,15,°°« (first differences m

n+1
-m  are 3,2,3,2,3,2,°°¢) and that {an} may be defined as
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(12) a

= + + f 25
n+l an a an—4 or D=9

{a1=1, a; =2, ag =3, a4 =5, ag =8, and
n-2

This sequence is the most highly divergent one which starts like Table 1.
Again starting from Table 1, we this time rejectas many representations
as possible. Then {mn} is the finite sequence 2,5 and

a =0 for n< 0
(13)

=1+a_ +a +a for n 2 0.
n n-2 n-5

This sequence is the most slowly divergent one which starts like Table 1. The
first 8 terms of any sequence starting like Table 1 are 1,2,3,5,8,12,19,30.
I will now show some of the terms which follow these for the bounds (12) and
(13), and for the example (11).

ag 49 aj a a3 ayn 215 a1g s
(12.1) 47 74 116 182 286 449 705 1107 sas
(11.1) 46 72 113 175 273 427 664 1035 soe
(13.1) 46 71 110 169 260 401 617 949 see

Let us now consider the matrix M of definition 2. If there are three

fixed integers r,s,t such that

m with 1<t<r and 1C<s,

< m
m. - t,s

+
T,S r-t,s+t

then we will say that the element m, of M is redundant. We do so because
b

if in some representation N = a(I) we have

i - > m and i -i 2 m
11('+s 1s+t = Tr-t,st+t st s t,s

then automatically

i
r+s S r,s
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There is in fact no loss of generality in assuming that redundant elements take
the largest possible value (which does not alter the representations under def-
inition 2). In other words (applying an extension of the above argument) we
assume that

m forall 1<t<r and 1 <s.

> m
r- t,s

m 2 -+
r,s t,s+t

We extend the definition of redundancy to rows, by saying that a row of M is
redundant if every element of the row is redundant. If any one element of a
row is not redundant then we say that the row is non-redundant.

Next let us assume that {an}, M represent the integers. Then it turns

out that the matrix M has only two kinds of row, namely "straight'" rows like
(@,a,a,a, *+¢), 0L &
and 'bent" rows of the form
By, 0,¢¢) where 0 X B=a -~ 1.

If either type of row is non-redundant then every element « in it is non-
redundant. If a bent row is non-redundant then every succeeding row is re-
dundant (the bent row is the last non-redundant row of M). Moreover, if a
bent row is non-redundant, and its element B is non-redundant, then it is the
first non-redundant row of M, and if in addition B > 0 then it is the very
first row of M. It follows from these facts that if M has infinitely many non-
redundant rows, then all its rows are straight.
If the row

(M 4o My s Mygs =0)
of M is non-redundant, then

m*<m

< 1+m*
T r,l— M. s

where
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* = .
my = maximum [m,. i + m .
r 1<t<r 14 t,1

This condition merely says that either m is redundant or it lays the weak-

Tr,l
est possible new condition on the representations. Now we already know that

< < +1 ,
mr,l - mr,z - m1[',1 1

Hence it follows that (even if m, 4 is redundant), either m,, imposes the
H] 2

same condition as m, 4, OF m imposes the weakest condition on the rep-
?

resentations, which is stronger flﬁn that imposed by mr,l'

Satisfying the above rules in all possible ways produces all possible
matrices M for which there is a sequence {an} such that {an}, M repre-
sent the integers. For example, the first corner of any matrix which starts

with myy = 2 looks like one of the matrices in Table 3.

Table 3
222 +o- 22 2 *°° 2 2 2 een 22 2 +oo
4 4.4 4 «os 4 4 4 oo 4 4 4 +o-
6 66 *o- 6 7T 7 son T T T eee 7T 8 8 sus
2 2 2 «»] [2 2 2 <-4 [2 2 2 4]
5 e 555 «¢ 55 5 ses
6 7 7 voe T 78 8 +en
i i R R ]
[2 2 2 «-] [2 2 2 - [2 3 3 ++]
55 5 oo 55 5 sos 56 6 -
g - 89 9 +ee 89 9 *°*

Once the matrix M = [m u V] is given, the sequence { an} is determined
?

by (9) and (10), provided {mﬂ} is derived from M as follows. If M has no

bent row then {m

M} is infinite and
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On the other hand if M has a first bent row, and this row is the pth row, then

{m#} is finite with p terms given by

<
m ©,1 for 1 < pu<p.

We get a simplification of (9) and (10) in the case when M has no bent row, but

it has only a finite number of non-redundant rows. Inthis case, if thelast non-

redundant row is the pth, then {mu} is periodic with period m,=m, ..
t]
Hence not only (9) and (10) hold, but we also find by subtraction that
(14) a =a +a +a +eee +g
n+1 n n-my n-my n—mp_1+an_m 41 for n 2 m,.

P

It is easy to see how relations (9), (10), and (14) generalize the definition (6)
of the (h,k)th Fibonacci sequence.

When we know that all rows of M after the pth row are redundant, we
usually remove them from M. Then M has order p X o instead of ooXoo.
However, the fact that M has order p X © does not necessarily imply that
the pth row is non-redundant.

The bounding sequences (12) and (13) which we found earlier are in fact

it

respectively. Inthese cases, our constructive process of "admitting (rejecting)

the sequences { an} for the matrices

2222 - _
M—|:5555“.:| and M—[

S 1\
[er N \V)
N
N

as many representations as possible" is equivalent to saying, 'let all rows of
the matrix after the 2nd be redundant. ' The sequence (11) corresponds to the

00 X oo matrix

2 2 2 2 -
5 5 5 5 -
8 8 8 8 ---
11 11 11 11 -=--
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With this matrix, a vector (ij,is,*,iq) satisfies condition (7) iff (i) we have

iv_l_l-iVZZ for 1< wv<d, and (ii)if L<m < @< d and

then there is an integer A such that m<A <6 and Lhag-4 2 4.

It has long been known that the Fibonacci sequence {un} can be obtained
from Pascal's triangle. The triangle is set out on the lattice points of the first
quadrant of the (x,y)-plane. Then one draws a family of equispaced parallel
lines on the triangle, choosing the slope and spacing of the lines, so that the
sum of all the numbers of the triangle, whose lattice points lie on the nth line
of the family, is the nth term w of the sequence. In 1959, I observed that
the (h,k)th Fibonacci sequence {vn} could be obtained in the same way, pro-
vided that when h = k - 1 the first row (1,1,1,°++) of the triangle is re-
moved from the triangle ([6] theorem 8).

Harris and Styles defined sequences by means of Pascal'striangle in [9] R
and discussed the properties of their sequences. Suppose Pascal's triangle
lies on the lattice points of the first quadrant of the (x,y)-plane. Then for p

>0, g > 0 theylet uln,p,q) be the sum of the nt
(1,1,1,-..) of the triangle and those terms of the triangle which canbe reached

term in the first row
from it by taking steps (x,y)-—>&-p-q, y+q). When q = 1, we have

um,p,1) = v for n =0, 1, 2, -

n-p+1
where {vn} is the (p+1,p+1)th Fibonacci sequence (6.1).

Now suppose that M, {an§ represent the integers, and that all rows of
M after the pth are redundant. Thenthe terms of {an} canbe obtained from

a p+1 dimensional Pascal's triangle. The nth

term of {aj} is the sum of
all the numbers of the generalized triangle which lie on the n™ number of a
p-dimensional family of equispaced parallel hyperplanes. I will give the de-
tails for p= 2 and the second row non-redundant. The reader will immedi-
ately see the result for general p. With slight modifications, the method can
be applied to a wide class of sequences satisfying finite recurrence relations.

When p = 2 and the second row is non-redundant, the matrix M is of

the form
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w55y s ]
where
0 <2< B <20+1< 7y and B<vy< p+1.

The second row of M could be either straight or bent. Also the sequence
{an} is given by

a, = 0 for n<oa*,
(15) a = 1 for o*<n <1,
41 = Y- Bra ta,  +a

>
n+ n-o¢ ‘n-y+1 for n 21,

where o* =1 if B = y-1 but o*
Notice thatwhen o = 2 and B
(12) again.

—a+1 if p=vy.

¥ = 5 then we get back tothe sequence

We now define our 3-dimensional Pascal's triangle. In other words, we
define an integer-valued function 7(x,y,z) on the 3-dimensional lattice by the

relations
0if x<0 or y<0 or z <0,
mX,y,z) = ({1 if x =y =12z =0,
wix-1,y,2) +7x,y-1,2z) +7&X,y,z- 1) otherwise
It is easy to see that Pascal's triangle appears on each of the three planes
x =0, y=0 and z = 0. My result is that the nth term of {an§of (15)
is the sum of all the values of 7(x,y,z) (whose lattice points lie) on the plane

x+l@+y+yz =n+a-1+(y- B

provided that if y= B -1 we remove the x-axis (i.e.,if y= -1, we re-

place 7 by 7* where w(,y,z) =0 if y =12z =0 but #* = 7 otherwise).
The proof is by induction.

Next let r be a fixed integer v > 1. Let (ij,iy,°**,ig) € W iff
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. i >
1V+I‘ i, > 1

for 1 Sv<d-r, andput b = (r +1)n-1 for n 2 1. Then {bn}, W rep-
resent the integers in the familiar scale of powers of r + 1, and the order of

the terms in {bn} is immaterial. Suppose, on the other hand, that
(iiiiZ" °e 11d) eEWw

iff

for
1 <v<d,

and {bn}, W represent the integers. Then as I showed in [1] axiom 1 must
hold, and in fact {bn} = {un}.

I would now like to state my monotonicity conjecture, which extends a
conjecture that I made in [5]

Conjecture. Suppose {bn} » W represent the integers and axiom 2 holds.
Then either axiom 1 holds for {bn} or {bn} is s%s!,8%,°-+ in some order
and s is an integer s 2 1.

Another result which gives weight to the conjecture is

Theorem 2. Let r > 1 be a fixed integer. Let M be the matrix whose
only non-redundant row is its rth row, and this rth row is (0,1,1,-++). If
{bn}, M represent the integers then axiom 1 holds for {bn}. Moreover,
by = 1 and bn+1 = (r+1)bn+1 for n > 1.

The first example of a pair {an}, W which is not equivalent to a pair
{an} » M was given by my student A.J.W. Hilton in 1963. He took afixed inte-
ger r 2 4, andlet W be the set of all vectors I of V such that

< i e <
1 <£i) <iy i

and, for 1< v <d, if iu+1 - iv =1 then iv - iV_1 2 r. Then he put
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w =1 for n<1
n
Wy = 2
W= W +w +w for n 2 3,
n n-1 n-2 n-p

With these definitions, we have

Theorem 3 (Hilton). {wn } » W represent the integers but are not equiva-
lent to any system {bn}, M.

I have tried to find an elegant classification for all sets {an}, W. How-
ever, I have so far been unable to improve on the constructive method which I
have described for obtaining all sets {an} s WL

In this paper, I have been concerned with unique representations. Itwould
be interesting to know what happens if the uniqueness condition was dropped,
and perhaps only sufficiently large numbers N had to have a representation
(N > constant). Results in this direction have been found by Brown, Ferns,
Hoggatt, King, and others [1] , [2], [3], [7] , and [8] , respectively. I feel
that the results I have given in this paper are complete in the same sense as

N. G. de Bruijn's discussion is complete for representations
N = ©1 + 89 +8g +++

where each 8; belongs to a finite or infinite set Si of non-negative integers
containing 0. In a paper [4] which is now classical, he showed that all such
systems are what he called ""degenerate British number systems. "

Some results have been obtained concerning representing all integers in
some interval by Harris, Hilton, Hoggatt, Mohanty, Styles, myself and others
[6], [9] However, the problems concerning representations for all the inte-
gers 0, +1, +2,-++ are much more difficult and only a few special theorems

are known.
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ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania

Send all communications concerning Advanced Problems and Solutions to
Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit
solutions or other information that will assist the editor. To facilitate their
consideration, solutions should be submitted on separate signed sheets within

two months after publication of the problem.

H-162 Proposed by David A. Klarner, University of Alberta, Edmonton Alberta,

Canada.
Suppose aij > 1 for i, j = 1,2,---, show there exists an x > 1 such
that
a4y - X g 1n
a9 8y - X2 oo a,
1" . <0
a °o a o a — Xn
an1 n2 nn
for all n.
H-163 Proposed by H. H. Ferns, Victoria, B. C., Canada.
Prove the following identities:
2 2k-2 2n _2
1. 2 2L F =27 F -1
k=1
L 2k-2 2n . 2
2 5512 Fp L =2 Lo, -1,
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where Fn and Ln are the nt]fl Fibonacci and nth Lucas numbers,
respectively.

H-164 Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan.

Generalize H-127 and find a recurrence relation for the product Cn =

An(x)Bn(y), where A][1 and Bn satisfy the general second-order recurrence
equations:

M A6 = REIA () + SWA ()

@) B ;0 = PYB ) + QB ;&)
n >1 and Agy,A4,By,B; arbitrary.

H-165 Proposed by H. H. Ferns, Victoria, B. C., Canada.

Prove the identity

n F, . F_\"
n ki _ k
i=21 <1) P <Fk—2> R

where Fi denotes the ith Fibonacci number.

SOLUTIONS

A BASIS OF FACT?

H-132 Proposed by J. L. Brown, Jr., Ordnance Research Laboratory, State College,
Pennsylvania.

Let

Fy =1, Fp =1, F o =F , +F for n>0

define the Fibonacci sequence. Show that the Fibonacci sequence is not a basis
of order k for any positive integer k; thatis, show that not every positive
integer can be represented as a sum of k Fibonacci numbers, where repeti-

tions are allowed and k is a fixed positive integer.
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Solution by the Proposer.
o0
Assume {Fn}1 is a basis of order k, where k is some fixed positive
integer. Then, in particular, for given n > 0, any positive integer r < Fn

would have a representation in the form

k
(1) r:.ZFn. i

i=1 i

where ny <np < -++ < n and n < n. But the maximum number of distinct
integers which could be formed by the right-hand side of (1) is clearly < nk.
Thus each of the Fn integers 1, 2, 3, **°*, in would have to be expressed
in a form capable of representing at most n~ distinct integers. Since, by
choosing n large enough, we can make Fn > nk, a contradiction is obtained
for the value of k under consideration. [ The inequality Fn > nk follows
from the fact that F[1 is appraximately an/ A6 for large n, where a =

(1+ N5)/2].

SUM SHINE

H-133 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.

Characterize the sequences

n-2
i Fn = un + u
j=1
n-2 n-4 i
ii. F =u + u, + > u

n-2 n-4 i n-6 m i
iii. Fo=u + 2w+ Sou, + > 3w,
=19 =1 mE1Er = )

by finding starting values and recurrence relations. Generalize.
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Solution by D. V. Jaiswal, Holkar Science College, Indore, India.
We shall first prove the iii part.

n-2 n-4 i n-6 m i
Fo=u + 2, u+2 Yu+ 3 3> Xu
n =1 i=1 =1 m=i=1 4= )

n-4 n-6 i n-8 § i
F =u + u, + u, + u
n-2 -2 S AE|E ) paEE )
Since F_-F -F = 0, we have
n n-1 n-2
n-4
0 = - U1 “n-z) T\ U - ] u]
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Generalization., If

n-2 n-4 Zx
F =u + u, + u, + +
n n j=1 J i=1 j=1 )
n-2r 8 ¢ i
DN RS 3 I
s=1 g=1 p=1 i=1 j=1 J

(r summations)

then proceeding as above, we shall get

n-2r-2 i
B RS T
n n-1 s=1 g=1 p= i=1 = J

Editorial Note: Professor Hoggatt obtained the solutions:

i) u = u(n; 2,2)

ii) u = u(n; 3,3)

515

iii) u, = u(n; 4,4) where u(n; p,q) represents the generalized Fibonacci

number.

See V. C. Harris and C. C. Styles, ""A Generalization of Fibonacci Numbers, "

The Fibonacci Quarterly, Vol. 2, No. 4, pp. 277-289.

CIRCLE TO THE RIGHT

H-134 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Evaluate the circulants

Fn Fn+k Fn+(m—1)k Ln Ln-i-k
Fn+(m--1)k Fn T Fn+(m—2)k s Ln+(m—1)k Ln
F ok Foaae 777 Fp Lo Lok ©°

Solution by the Proposer.

We recall that

- L

Ln+(m— 1k
n+(m-2)k
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of I TR S | mol mo1
fn1 %0 "7 Zmea| = o > aswrs (0 = e27r1/m) )
r=0 s=0
a1 % "t 7y '
Hence if we put
Fn Fn+k Fn+(m-1)k
Am(F) = Fn+(m—1)k Fn Fn+(m—2)k ,
vk Flaok 00 Ty
Ly Lok 7" Tnrm-nk
Am(L) = I"n+(m—1)k Ln Ln+(m-2)k s
Lo oo 00 Iy
we have
m-1 m-1 m-1m-1
- rs _ rs
Am(F) B | IZ Fn+skw ’ Am(L) B I I Z Lhesk®
=0 s=0 r=0 =0
Put
1+ A5 1- A5 o - n
=Ty BT Fn=T——§ﬁ’ Ln=a+ﬁn'
Then
m-1 m-1
A\ rs _ 1 n+sk +sk, rs
L Fn+skw T a - B E(a/ —Bn yo
s=0 s=0
1 fn1- ™K Bnl—ﬂmk
“a-p)¢ r kK T K
1-wa 1-wp

{
_ P - o™a - W) - a - £ - oK)
@ - pa - oo - w'p

_ Mo Bn _ (an+mk_ Bn+mk) _ b’r(o(n ﬁ’k -ak Bn_an+mk ﬁk + /5'“+mkak)
@ - pa - wroz) a - wrﬁ)

k r
Fp - Fn+mk - (D% (Fn—k - Fn+(m—1)k')

- mrak)(l - wrﬁk)
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so that
m-1 m-1 m-1 k r
'I—‘I' Z F WIS - 'I_'l' Fo o~ Frimk - 1) (Fn—k B Fn+(m-1)k)
n+sk 1 T l«:)(1 rﬁk)
r=0 s=0 r= - wa -
m mk m
= (Fn - Fn+mk) - (1) (Fn—k - Fn+(m—1)k)
a - o™a - g5
Therefore
m mk m
®) A_(F) = (Fn - Fn+mk) - (1) (Fn—k - Fn+(m-1)k)
m 1+ (_Dmk L
~ Tmk
Similarly,
m-1 m-1
Z Ln+skwrs _ Z (an+sk + ﬁn+sk)wrs
s=0 =0
=an1—amk +Bn1_Bmk
1 - ofd® 1- o5

oM ‘gn _ ozn+mk _ Bn+mk _ ur(anﬁk+ﬁnak—an+mkﬂk— ﬁn+ma)
1 - oo - w'p

k r
= Ln - I"n+mk - (D7 (Ln—k - Ln+(m-1)k)
1 - ')A - «TE%)
It follows that
m mk m
(Ln B Ln+mk) - (1) (Ln—k " Ln+(m—1)k)_

(%) A m(L) =

1+ (1)K Lok

Also solved by D. Jaiswal (India).
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THE GREATEST INTEGER!

H-135 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida.
PART 1
i
2
j+r1=3 (J 2 d) 2i~2d(_p)d ,

d=0

Show that

where j > 0 and [j/2] is the greatest integer not exceeding j/2.
PART II

i
[72-] j - d),j-2d (n+1)d
- j-d)pi- n+
F(j+1)n = Fy ( d )Ln 1) ?
d=0

Show that

where j > 0 and [j/2] is the greatest integer not exceeding j/2.

Solution by the Proposer.
PART I

We have (see ""A Generalization of the Connection between the Fibonacci
Sequence and Pascal's Triangle,' by Joseph A. Raab, this quarterly, Vol. 1,
No. 3, October 1963, pp. 25-26) that

B
%(j p d)zj-Zd(_l)d - x

d=0

and xj+2 = 2Xj+1 - xj forall j > 0. Let S be the set of all integers (j + 1)
> 0 for which the theorem is true, 1 = xy and 2 = x4, so 1 and 2 are in

S. Suppose q and q+1 arein S, so that q = xq_1 and q+1 = xq. Then
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xq+1=2xq—xq_1=2(q+1)-q=q+2.

Thus q + 2 is in the set S and the proof is complete by mathematical

induction.

PART I

The same reference as given in Part I yields the result that

j - d),j-2d, . (o+1)d _
Z( a >Ln (-1) —xj

and

_ n+1
Xip = Lan+1 + (<17 7x,

for all j > 0. Let S be the set of all integers (j +1) > 0 for which the

theorem is true. F_=F x5 and F, =F L =TF x;, so 1 and 2 are in
n n nn n

2n
S. Suppose q and q+1 are in S, so that Fqn = anq—l and F(q+1)n =
F x . Then
hq
_ n+l _ n+l -
anq a1 = FnLan + Fn(—l) Xq-l = LnF (q+1n + (-1) Fqn F (@+2)n

by a known identity (see 'Some Fibonacci Results Using Fibonacci-Type
Sequences, " by I. Dale Ruggles, this quarterly, Vol. 1, No. 2, April, 1963,
p. 77). Thus q + 2 is in the set S and the proof is complete by mathematical

induction.

Also solved by B. King, L. Carlitz, D. Jaiswal (India), and D. Zeitlin.

SQUEEZE PLAY

H-136 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California,
and D. A. Lind, University of Virginia, Charlottesville, Va.

Let {Hn} be defined by Hy =p, Hy=q, H _,=H , +H (@>1)

where p and g are non-negative integers. Sh. there are integers N and
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k such that ¥ , <H <F. ., . forall n>N. Does the conclusionhold if

p and g are allowed to be non-negative reals instead of integers?

Solution by Gerald A. Edgar, Student, University of California, Santa Barbara,
California.

In order for the result to be true, we must have p > 0 or q > 0. Let

a =@+ n~N5)/2, b=(@0-nA5)/2.
Define f(n) = [an +1/2], for n a positive integer, where [x] is the great-
est integer in x (thus f(n) is the nearest integer to an). We now prove that

f(f(n)) = f(n) + n. The definition of f gives

(1) an +%Z f@) > an - -;.-

@) afm) + L >f(@) > af( -

But (1) is the same as

or, since (1/a) =a -1,
@ - Dfm) + @-1/2>n2> @ - i) - @ - 1)/2

or

3) afm) + 5 - 4> n + ) > af) -

Do o
+
o

Equations (2) and (3) give

3> @) +n - £E@) > - 5 .

But a/2 < 1, and f(n) +n - £(f(n)) is an integer, so it must be zero, and we
have



1969] ADVANCED PROBLEMS AND SOLUTIONS 521
“) ff) = f(n) + n.

. n
Because of its recurrence, I—In must have the form HI1 = ca + dbn for

some constants ¢ and d. Now |b| <1, so

n+1 n+1 )

lim (cam'1 + dab” - ca - db

Mg, 6H, - Hg) = lim

. n _
nllgxoo'\/gdb = 0

. : 1
Thus there is an integer N such that |aH -H | <4 forall n2> N. In

. _ i . s .
particular, aHN HN +1| < 3+ S0, since HN 41 is an integer,

It is now an easy induction to show that

(5) Hy, = £ (H)

N-+m
_ s P th -
for m =0, 1, 2, s Where is the m™ iterate of f defined by

'x) = x

e = 16" ®) .

(Note that in particular, f(Fn) = Fn+1 for n = 2, 3, *** for the Fibonacci

numbers.) Since HN is a positive integer, there is an integer k such that

<H <K F

(©) F N 2 N+

N-+k

We may then obtain by induction (using the fact that f is strictly inereasing

on the positive integers)

forall n > N.
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The result does not hold for non-negative reals in general; take
p = a/N5, q = a¥/VB;
then H > F_ when n isevenand H < F_ when n is odd,
n n n n

Also solved by J. Desmond, A. Shannon, and M. Yoder.

* Ak ok
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FIBONACCI AND THE ATOM
H. E. HUNTLEY
(Sometimes) Professor of ‘Physics, University of Ghana

Occasions of the appearance in the natural world of the Fibonacci series
and of the golden section of Greek mathematics will be known to readers of
this journal. In biology references, for example, the series crops up in con-
nection with the genealogy of the drone bee, with the Nautilus sea-shell, with
the florets of compositae blossoms, and in Phyllotaxis. Its appearance in the
inorganic world, however, is less frequently recorded. One example is the
multiple reflection of a light ray by two sheets of glass (Vol. 1, No. 1, p. 56).
Another, set out below, concerns the ideally simplified atoms of a quantity of
hydrogen gas.

Suppose that the single electron in one of the atoms is initially in the
ground level of energy and that it gains and loses, successively, either one or
two quanta of energy, so that the electron in its history occupies either the
ground level (state 0) or the first energy level (state 1) or the second energy
level (state 2). In this idealized case, the number of different possible histo-
ries of an atomic electron is a Fibonacci number (diagram, p. 000).

Let us make the following assumptions:

1. When the gas gains radiant energy, all state 1 atoms rise to state 2;
half state zero atoms rise to state 1 and half to state 2.

2. When the gas loses energy by radiation, all the atoms in state 1 fall
to state zero; half those in state 2 fall to state 1, and half to state zero.

The Table shows the successive fractions of the total number of atoms
found in each state. These fractions are formed exclusively of Fibonacci
numbers.

A point of interest is that the fraction of atoms inthe intermediate energy
level (state 1) remains constant at 38.2%. If u, is the nth term of the Fib-

onacci series, this fraction is un/un 1 a8 n tends to infinity.

- 2 9
un/un_1 =1 - un+1/un+2 @', i.e., 38.2%.

The symbols ¢ and ¢' stand for the limits of 11n+1/un and un/unﬂ,
respectively as n tends to infinity. They are the roots of the equation: x2 -
Xx-1=0.
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state are formed of Fibonacci numbers.
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FIBONACCI STATISTICS IN CONIFERS

BROTHER ALFRED BROUSSEAU
St. Mary’s College, California

The Editor of the Fibonacci Quarterly has received an urgent phone call
from a Houghton-Mifflin representative: 'Is the picture of the pine cone in
your manuscript spiralling correctly ?' The thought was that possibly the neg-
ative had been turned over and so what should be steep spirals going to the
left would become steep spirals going to the right. The Editor relayed the
question to the Managing Editor who hurried to the basement, picked up a
pine cone and foundon the first try that the direction of the spirals agreed with
the picture.

Another life situation. After giving a talk on Fibonacci numbers in na-
ture or exhibiting specimens which show the spirals and Fibonacci numbers,
the query naturally arises: '"How constant are these numbers in nature?'"

With such questions in mind, an investigation was begun in the summer
of 1969. Very quickly it was discovered that spirals on cones go inboth direc-
tions. For example, if we consider two particular sets of spirals, one steep
and the other more gradual where the count from one intersection to the next
along the spirals is eight on one spiral and five on the other, then on some
cones the steep spiral goes to the right and the more gradual spiral goes to the
left, while on others, it is just the reverse.

This led to the following general approach. Wherever possible cones
would be studied for individual trees; approximately four hundred cones would
be examined for each species. The information and results for the various
species are set forth in the remainder of this article.

LODGEPOLE PINE (Pinus Murrayana), also known as Tamarack Pine

The cones on this tree are small and abundant. They were collected in
the neighborhood of Huntington Lake in the middle Sierra. Because they are
open and difficult to count in this state they were soaked in waterto close them
after which it was relatively easy to follow the spirals.

In this report and those that follow the notation S8R means that the count
along the gradual spiral from one intersection of the two spirals to the next was

8, while that along the steep spiral was 5. Thus in the 8R case the gradual
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spiral goes to the right. It should be noted that this method of counting simply
reflects the fact that there are eight steep spirals and five gradual spirals on
the cone (i. e. , of the spirals we are considering). NS means non-standard: it
was not possible to find the 8-5 pattern on cones listed under this heading.
This does not mean that in all cases there was no Fibonacci pattern: some-
times there was double a Fibonacci number, for example. But we are not in-

terested in these deviants as such, but simply in their relative abundance.

TREE 8R 8L NS J08R %8L 90NS
1 95 68 4 - 56.9 40.7 2.4
2 84 70 1 54.2 45.2 0.6
Various 285 282 3
TOTAL 464 420 8 52.0 47.1 0.9

JEFFREY PINE (Pinus Jeffreyi)
Theselarge cones were collected in the vicinity of Huntington Lake. The

count was made after they were closed by soaking.

TREE SR 8L NS %8R J08L %NS
1 42 40 1 50.6 48.2 1.2
2 21 22 1 47,7 50.0 2.3
3 38 38 13 42.7 42.7 14.6
Various 90 93 3
TOTAL 191 193 18 47.5 48.0 4.5

SUGAR PINE (Pinus Lambertiana)

The cones were studiedon the spot in the area west of Kaiser Peak inthe
middle Sierra region. In many cases, due to the fact that they were not closed
it was not possible to determine whether they had the pattern or not. Thus
these cones do not provide positive information on the presence or absence of

the given pattern.

TREE 8R 8L NS %8R " %8L %NS
1 25 28 47.2 52.8
2 60 29 1 66,7 32.2 1.1
3 57 53 51.8 48.2

Various 68 80

TOTAL 210 190 2 52.2 47.3 0.5
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It should be noted that this is a veryregular cone and that only in the few cases

noted was there positive evidence of the lack of the usual pattern.

SILVER PINE (Pinus monticola)

The cones were collected on Kaiser Ridge not far from Huntington Lake.
They were soaked so as to make it possible to follow the spirals conveniently.
The count was five along the gradual spiral and three along the steep spiral
from one intersection to the next,

TREE 8R 8L NS P8R %8L JoNS
1 15 16 48,4 51.6
2 26 33 44,1 55,9
3 48 56 46,2 53.8
4 64 65 5 47.8 48.5 3.7
Various 65 56
TOTAL 218 226 5 48.6 50.3 1.1

YELLOW PINE (Pinus ponderosa)
The cones were collected in the middle Sierra between Auberry and Pine

Ridge. They were soaked before the cones were examined.

TREE 8R 8L NS P8R % 8L J0NS
1 44 52 45.8 54,2 Si
2 59 46 2 55,1 43.0 1.9
3 74 37 66.7 33.3
4 35 58 37.6 62.4
Various 3 19
TOTAL 215 212 2 50.1 49.4 0.5

ONE-NEEDLED PINYON (Pinus monophylla)

There is a fine stand of these trees about eight miles from Tioga Pass on
the east side of the Sierra. In one notable case it was possible to study 140
fresh cones on the tree. Cones picked up from the ground were soaked before
the count was made. The best way to study this cone is when it is fresh and
green. Often after closingwith water the old cones tend to retain some of their
irregularities. '

(See table on next page. )
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TREE 5R 5L NS P5R % 5L 9% NS
1 8 42.9 57.1
2 2 5 28.6 71.4
3 67 72 1 47.9 51.4 0.7
4 18 18 50.0 50.0
Various 107 97
TOTAL 200 200 5 49,4 49.4 1.2

FOXTAIL PINE (Pinus Balfouriana)

Some forty miles south of Bishop is the town of Independence. Thirteen
miles west of this township at over 9,000 ft. is a spot known as Onion Valley.
It was there that specimens of foxtail pine cones were collected. They were
soaked before the count was made and hence this species provides evidence of
exceptions to the regular pattern.

5R 5L NS Y05R 9oL JoNS
TOTAL 212 212 36 46.1 46.1 7.8

LIMBER PINE (Pinus flexilis)
These cones were examined on the spot at Onion Valley. Cones in which
the pattern could not be discerned were simply not considered and hence these

statistics give no evidence regarding exceptions.

5R 5L %05R 9051,
TOTAL 226 182 55.4 44,6

BRISTLECONE PINE (Pinus aristata)

About fifteen miles below Bishop just above Big Pine there is a turnoff
leading to the Ancient Bristlecone Pine Area. Since this is a protected area
under the control of the Forest Service, it was necessary to study the cones on
the spot. Those on which the pattern could not be discerned were eliminated
from consideration and hence the following statistics give no evidence regard-

ing possible exceptions.

(See table on next page.)
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TREE 8R 8L %8R %8L

27 23 54.0 46.0

2 3 11 21.4 78.6

3. 24 18 57,1 42,9

4 5 5 50.0 50.0

5 13 23 36.1 63.9

6 9 7 56,3 43.7
Various 93 88

TOTAL 174 175 49.9 50.0

DIGGER PINE (Pinus Sabiniana)

About 70 of these cones were found near Auberry, 30 on Mt. Diablo, and
approximately 225 on Mt. Hamilton. These are very large <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>