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THE LUCAS-LEHMER TEST FOR MERSENNE NUMBERS 
SfDN£Y~l<RAVTTZ 
Dover, New Jersey 

The purpose of this note is to present certain computer calculations r e -
lating to the Lueas-Lehmer Test for the primality of Mersenne Numbers. 

The Lucas-Lehmer Test states that the Mersenne number M = 2P - 1 
p 

is prime if and only if S - = 0 mod M where 

(1) S1+1 = S» - 2 

and Si = 4e Lehmer further states* that this test is valid not only for Si = 4 
but for Si equal to 2p~ different numbers mod M . These 2P~ starting 

p-2 ^ 
values, S1 ., (i = l , 2 , e •• , 2F ) are determined by 

1 9 1 

(2) S- ._,_- = 14S- . - S- . -7 l , i+ l l , i 1,1-1 

where S- - = S- = 4 and S- 2
 = 52° 

Figure 1 demonstrates the Lucas-Lehmer Test for M7 = 21 - 1 = 127. 
Each of the 2P~ = 32 starting values, S1 ., as determined by Eq. (2) leads 

i , i 

to S6 = 0 mod M7 following Eqe (1). There are 16 different values of S2? 

8 different values of S3, e t c Note that S7 = -2 and S8 = 2 mod M?e The 
D - l 

result is that 2F + 1 = 65 different numbers mod M are involved in the 
Lucas-Lehmer t e s t 

What happens to the other qp~ - 2 = 62 numbers mod MT when we 
apply Eq. (1)? This is shown in Fig9 2e We see that successive terms do not 
lead to a zero term, but instead are repetitive in cycles whose periods are 
divisors of (p - 1). Figure 2 shows four cycles of double sixes and two cycles 
of double threes, 

A computer program was used to determine the structure of the Lucas-
Lehmer Test for MT, M13 and M17 with the following results. 

*D. H. Lehmer, "An Extended Theory of Lucas1 Functions," Annals of Math, , 
(2) 31 (1930), pages 419-448. 
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For Mf = 127 

A Lucas-Lehmer pattern of 2 
4 cycles of double sixes 
2 cycles of double threes 
The two terms ±1 

p - 1 + 1 terms making 65 terms 
making 48 terms 
making 12 terms 
making 2 terms 
Total 127 terms 

,P-1 

For M13 = 8191 

A Lucas-Lehmer pattern of 2F~JL + 1 terms 
165 cycles of double twelves 

9 cycles of double sixes 
1 cycle of double' fours 
2 cycles of double threes 
1 cycle of double twos 

The two terms ±1 

making 
making 
making 
making 
making 
making 
making 

4097 terms 
3960 terms 

108 terms 
8 terms 

12 terms 
4 terms 
2 terms 

Total 8191 terms 

For Mi7 = 131,071 

A Lucas-Lehmer pattern of 2 
2032 cycles of double sixteens 

30 cycles of double eights 
3 cycles of double fours 
1 cycle of double twos 

The two terms ±1 

P -1 + 1 terms making 
making 
making 
making 
making 
making 

65537 terms 
65024 terms 

480 terms 
24 terms 
4 terms 
2 terms 

Total 131071 terms 

p - 1 
For M19 = 524287 

A Lucas-Lehmer pattern of 2 
7252 cycles of double eighteens 

56 cycles of double nines 
4 cycles of double sixes 
2 cycles of double threes 

The two terms ±1 

+ 1 terms making 262145 terms 
making 261072 terms 
making 
making 
making 

making 

1008 terms 
48 terms 
12 terms 

2 terms 

* * * * * 
Total 524287 terms 



RECURRENCE FORMULAS 
JOSEPH ARKIN 

Spring Valley, New York 
and 

RICHARD POLLACK 
New York University, New York, New York 

In this paper p(n) shall denote, as usual, the number of partitions of 
n; that i s , the number of solutions of the equation: 

Xf + 2x2 + 3x3 + • • • + nx = n 

in non-negative integers. We state the following identity 

(1) P(n) = - £ p(i) e(j - i) p(n - j) , 
0<i<m 
m<j<n 

where e(k) = (-l)k if k = ~(3h2±h) , 0 otherwise, and p(0) = 1. 
The proof of (1) will be evident as a special case of the following more 

general form. (See acknowledgement.) Put 

*to = E a (n)x n , (f(x))"1 = £ b(n)x n , 
n=0 n=0 

where for convenience a(0) = b(0) = 1. Then 

n 
(2) £ a(j) b(n - j) = 0 (n > 0) 

Now consider the sums 

S = X n(i) b(j - i) a(n - j) , 
0<i<m 
m<j<n 

T = £ a(i)b(j - i) a (a - j) 
0<i<j<m 
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where 0 < m < n. Then in the f i r s t p lace , by (2), 

m j 
(3) T = £ a(n - j) £ a(i) b(j - i) = a(n) . 

j=0 i=0 

In the next p lace , 

S + T = E E a ( i )b ( j - i ) a ( n - j) 
0 < i < m i<j<n 

n - i 
= E a(i) J^ b(s) a(n - i - s) . 

0 < i < m s=0 

The inner sum on the e x t r e m e r ight vanishes un less n - i = 0; s ince m < n 

this condition i s satisfied for no value of i in the range 0 < i < m and t h e r e -

fore S + T = 0. 

Combining this with (3), we get S = -a (n) , o r , explici t ly , 

(4) X a W b(J - i) a ( n - j) = - a < n ) (0 < m < n) . 
0< i<m 
m < j < n 

The r e c u r r e n c e (1) c l ea r ly follows from (4). 

Note. Since we may equally well have s t a r t ed out with (f (x)) r a t h e r 

than f(x), we have also 

£ Mi) a(j - i) b(n - j) = -b(n) (0 < m < n) . 
0 < i < m 
m< j<n 
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THE f-FlBONACCl NUMBERS AND POLYPHASE SORTING 
W. C. LYNCH 

Case Institute of Technology, Cleveland, Ohio 

1. INTRODUCTION 

This paper i s divided into two p a r t s that can be read a lmos t independent-

ly. The f i rs t pa r t defines a general izat ion of the Fibonacci number s cal led the 

t - Fibonacci n u m b e r s , and inves t igates ce r t a in of the i r p rope r t i e s in detai l and 

without re fe rence to thei r appl icat ions . The second pa r t de sc r ibe s m e r g e s o r t -

ing and pa r t i cu la r ly polyphase sor t ing. A new solution to the ini t ial d i s t r ibu -

tion problem is p resen ted , which const i tu tes an impor tan t application of the 

theory developed in the f i r s t pa r t of this paper . 

The r e a d e r may s t a r t e i the r with the Fibonacci theory in P a r t 1 o r with 

the sor t ing application in P a r t 2. Resul t s from P a r t 1 a r e used only in Sec -

tion 7 j the l a s t sect ion of P a r t 2. The m a t e r i a l in Sections 2 , 5, and 6 i s an 

exposition of known re su l t s in a form designed to help introduce the new r e -

sul ts which appea r in the o ther sect ions . 

PART 1 

2. THE t-FIBONACCI NUMBERS 

Any sequence of number s U which sa t i s f ies 

(1) U = U n + • • • + U . 
n n - 1 n - t 

will be cal led a t -F ibonacci sequence. The i t -F ibonacc i sequence i s the 

special t -F ibonacc i sequence with ini t ial conditions U. = § . . for 1 < j < t. 

The Kronecker delta i s r ep re sen t ed by g.. 

c l l if i = j 
ij JO if i ^ j 

The cumulative t -F ibonacc i sequence is the special t -F ibonacci sequence 

with the init ial conditions U. = 1 for 1 < j < t. We will denote the n 
th ** th 

t e r m of the i t -F ibonacc i sequence by .U and the n t e r m of the c u m u -
lat ive t -Fibonacci sequence by yU . Clear ly 

6 
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t 

u =y\u . 
i= l 

Mention of t in the notation is suppressed since t will remain fixed for 

any given discussion in this paper. Further, we will restrict t so that t > 2. 

Values of .U and VU for t = 4 are given in Fig. 1. i n z n & & 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

lUn 

-1 

1 

0 

0 

0 

1 

1 

2 

4 

8 

15 

29 

56 

108 

2 n 

-1 

0 

1 

0 

0 

1 

2 

3 

6 

12 

23 

44 

85 

164 

3Un 

-1 

0 

0 

1 

0 

1 

2 

4 

7 

14 

27 

52 

100 

193 

4Un 

1 

0 

0 

0 

1 

1 

2 

4 

8 

15 

29 

56 

108 

208 

-2 

1 

1 

1 

1 

4 

7 

13 

25 

49 

94 

181 

349 

673 

Fig. 1 The 4-Fibonacci Numbers 

Many interesting relations can be observed in Fig. 1. We may verify 

directly that 

(2) i t+1 

Another central pair of relations is 

(3) 

(4) 

I n t n-1 

iUn = i-lUn-l+tUn-r f o r 2 < i < t 
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By (1) and the init ial conditions 

(5) i U n = 8 i n * < " ' < * 

we may verify (2) and (3) d i rec t ly for 2 < m < t. Equation (la) and the init ial 

conditions allow us to verify (2) and (3) for n = t + 1. By summing each s ide 

of (2) and (3) ove r the previous t t e r m s , we can, by induction on n , es tab l i sh 
the i r validity for al l n. 

F o r the case t = 2 , the sequence -U and ,U = 0U a r e both the 
^ I n t n 2 n usual Fibonacci sequences . F u r t h e r , for t = 2 , V U = -U + 0U = 0U -^ Z n 1 n 2 n 2 n - 1 

+ ?U = = 1 1 - . Thus for t = 2 , al l the sequences a r e the fami l ia r o n e s , dif-

fering only in the designation of the f i r s t e lement . 

3. NUMBER REPRESENTATIONS IN THE t-FIBONACCI NUMBER SYSTEM 

We will say a sequence C j , j > 1, i s a represen ta t ion of the in teger K 

in the t -Fibonacci number sys t em if andonlyi f the following conditions a r e met : 

(a) C. = 0 o r C, = 1 , 
J J 

00 

(b) K =X>i2UJ • 
j=l 

(c) j < t and C. = 0 impl ies that C. = 0 for al l i < j , 

(d) for al l i > 0, if C. = 1 for i < j < i + t - 1 then €._,, = 0. 
— j J l+t 

This r a t h e r technical definition d e s c r i b e s a b inary positional notation for 

r ep resen t ing in t ege r s . The coefficient digi ts a r e r e s t r i c t e d to zero and one. 
.th 

DosiEion in me notation i s V*L .. 
4 (refer to Fig. 1 again) , 

39 = 25 + 13 + 1 

The value of the j posit ion in the notation i s yU. . F o r example , when t = 

o r in the posit ional notation 

39 = 1100J1000 

(It i s convenient to i n s e r t a ve r t i ca l l ine t digi ts from the r igh t . ) 
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By condition (c), 39 = IIOQJQIOO would be incorrect, and by condition 
(d), 39 = 101111110 would be incorrect 

Condition (c) says that the positions of value 1 that we use must be the 
left-most ones available. Condition (d) says that we may have no more than 
t - 1 ones in a row* It is not immediately clear whether or not all positive 
integers are representable^ or whether such a representation is unique. 

We now present the 
COUNTING ALGORITHM: 

Let C. be a representation for K. 
Step (1) Select the largest j such that t > j > 1 and C, = 0 for all 

k < j . Change C. from 0 to 1. 
Step (2) If C. through C 1 are not all l f s then the algorithm 

terminates, 
Step (3) If C. through C. , , . are all l f s then change C. , , fromO to 

1 (if C. , is not 0 then the original sequence has l f s in C. - through C. , 
and thus violated condition (d) ). Increase j by t and go back to Step (2). 

We observe the following about the counting algorithm when C. is a 
representation of K: 

1. Step (1) increases by one the value of the representation. 
2. Step (3) does not change the value of the representation since U 
3. Each application of Step (3) reduces the number of l f s in the repre-

sentation so that the algorithm terminates. 
4. At termination, the resulting sequence of C.?s satisfies (a) through 

(d) and is thus a representation of K + 1. 
5. If C was the non-zero coefficient of maximum index in the origi-

nal representation of Ks then either 
5a. C - is still the non-zero coefficient of maximum index in the n-1 

representation of K + l or 
5b. The resulting representation of K + 1 contains the sole non-

zero entry C (K + 1 = VU ). 
J n I n 

As step 3 was or was not executed with j = n - t, 5a or 5b applies. 
Lemma 1. Each sequence C. which satisfies (a) through (d) represents 

an integer K such that K < ~U , where C - is the non-zero coefficient of 
maximum index. 
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Proof; Repeatedly apply the Counting Algori thm to C Since an infinite 

number of in tege r s can be r e p r e s e n t e d , some application of the a lgor i thm (say, 

the r ) m u s t t e rmina te with condition 5b holding. Then K + r = ,JJ so that ' 
& I n 

2 n 
We now prove 

T h e o r e m 2; (Extended Zeckendorf theorem) Each non-negative in teger 

has a unique represen ta t ion in the t -Fibonacci number sys tem. 

Proof; We will show that the theorem holds for all in t ege r s l e s s than 

U . The proof will p roceed by induction on n. 

Base Step: Take n = t + 1. Then J J = t. F o r a l l non-negative i n t e -

g e r s l e s s than t9 r epresen tab i l i ty i s a s s u r e d by having enough posi t ions 

(t) of value 1 avai lable . Uniqueness follows from condition (d). Condi-

tion (d) i s satisfied t r ivia l ly . 

Induction Step: Let yU - < K < yU and a s s u m e the theorem for al l 

non-negat ive in tege r s < ^U - . Using (3) a s a c lue , we obse rve that 

(6) VU = 2-U - - VU . - . 
2 n 2 n - 1 2 n - t - 1 

Since we a r e on an induction s t ep , n is g r e a t e r than t + 1 so that 

2 n - t - 1 

It then follows that 

(7a) V U - VU - < VU -
2 n 2 n - 1 2 n - 1 

and cer ta in ly 

(7b) 0 < K - ^ < ^ • 

Since, by induction, we can r e p r e s e n t K - ^U - (clearly with C - = 0 ) , 

we can r e p r e s e n t K except for some uncer ta inty about condition (d). But the 

only place (d) could be violated would be for C - down to C _, to be al l l f s . 

If that i s the c a s e , then K > VU 1 + * • • + ~U . = VU , con t r a ry to a s s u m p -

tion„ Thus K i s r ep resen tab le . By L e m m a 2 , every represen ta t ion of K 
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m u s t have C - = 1, Otherwise Lemma 1 a s s e r t s that K < yU - , con t r a ry 

to the induction assumpt ion . If K has two r ep re sen t a t i ons , say C. and CI, 
j j — 

then K - ^U 1 i s r ep re sen t ed by D. and D! where D. i s obtained from z, n - i j j j 
C. by changing C from 1 to 0. S imi la r ly , D! i s obtained from C!. Both 

D and D! a r e then dis t inct r ep resen ta t ions for K - VU - . Since by (7b), 
j . j & n—± 

K - V U , < VU , , Z n - 1 Z n - 1 ' 

this i s imposs ib le by the induction hypothesis . The represen ta t ion for K is 

thus unique. Q. E . D . 

T h e o r e m 2 for the case t = 2 i s the famil iar Zeckendorf T h e o r e m [2]*, 

In any r ep resen ta t ion , (d) impl ies that one of the t bottom posi t ions 

m u s t be zero* Select the l e f t -mos t ze ro posit ion from the bottom t posi t ions 

and change it to a one. This i n c r e a s e s the value of the represen ta t ion by one 

and p r e s e r v e s condition (c). It may , however , cause a violation of condition 

(d). If this is so , the 1 we a d d e d m u s t be the r i gh t -mos t in a s t r ing of t ones . 

Zero out that s t r ing of ones and change the next highest posit ion (it m u s t be 

ze ro o r there would a l ready have been a s t r ing of t ones con t r a ry to (d)) to a 

one. Repeat this " c a r r y i n g " step a s often a s n e c e s s a r y to a s s u r e condition (d). 

F igu re 2 depic ts counting in the 4-Fibonacci sys tem. 

4. t-FIBONACCI DISTRIBUTIONS 

We define the n t -F ibonacc i d is t r ibut ion to be the t d imensional v e c -
to r LU , JJ , ' ' e

 SjU ) = V . Using vec to r addition in the usual sense (add 
1 n 2 n t n n & 

cor responding components) , i t i s c l e a r that 

(8) V = V - + V 0 + - - - + V , . 
1 ; n n - 1 n-2 n - t 

That i s , the V ?s satisfy the t -Fibonacci equation. It i s c l ea r that the sum 

of the components of V is yU . 
We will say that V is the t -d is t r ibut ion for the in teger K if and only if 

v = 2 c. v. , 

where C. is the represen ta t ion for K. 



12 THE t-FIBONACCI NUMBERS AND POLYPHASE SORTING 

K 1 Representa t ion 4-Dis t r ibut ion 

[Feb. 

0 
1 

2 

3 

4 
5 
6 

7 

8 

9 

10 

11 

12 

13 

000 

000 

000 

000 

001 

001 

001 

010 

010 

010 

010 

011 

011 

100 

0000 

11000 

11100 

11110 

(0000 

(1000 

|1100 

(0000 

|1000 

11100 

11110 

10000 

11000 

I oooo 

(0, 0, 0, 0) 

(0, 0, 0, 1) 

(0, 0, 1, 1) 

(0, 15 1, 1) 
OOOJlll l (1 , 1, 1, 1) 

(1 , 1, 1, 2) 

(1 , 1, 2 , 2) 
00111110 (1 , 2 , 2 , 2) 

(1, 2 , 2 , 3) 
(1 , 2 , 3 , 3) 

(1, 3 , 3 , 3) 
0 1 0 | l l l l (2, 3 , 3 , 3) 

(2, 3 , 3 , 4) 

01111100 (2, 3 , 4 , 4) 

Fig . 2 Representa t ion and 4-Dist r ibut ion of 0 < K < 13 

The Counting Algori thm makes it c l e a r that the t -d is t r ibut ion for K + 1 

i s obtained from the t -d is t r ibut ion for K simply by adding 1 to the j c o m -

ponent where j i s the l e f t -mos t ze ro position in the bottom t posi t ions of the 

represen ta t ion for K. See Fig . 2. 

Corresponding to each non-negative in teger K, we now have two quant i -

ties, the represen ta t ion of K in the t -F ibonacci number sys t em and the t -

dis t r ibut ion for K. Given the (representat ion) ( t-distr ibution) for K we can 

calculate the ( representat ion) ( t-distr ibution) for K + 1. If K i s y\J for 

some n then the represen ta t ion for K has but one 1 b i t and the t -d is t r ibut ion 

has .U for i t s i component (the t -d is t r ibut ion i s a " row" in a tabulation 

l ike that in Fig. 1). Given the t -d is t r ibut ion for some —U we can eas i ly c a l -

culate the t -d is t r ibut ion for yU - by means of Eqs . (3) and (4). 

We now ask what i s the effect of applying Eqs . (3) and (4) to a n a r b i t r a r y 

t -d is t r ibut ion . In p a r t i c u l a r , i s the r e su l t a t -d is t r ibut ion , and, if s o , for 

which i n t e g e r ? Let X be the t -d is t r ibut ion for K and le t the i component 

of f(X) be 
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f(X) = i X t if i = 1 
n ;i J X._1 + X if 1 < i < t 

(the subscripts refer to the component positions of the t-dimensional vectors). 
Notice that f is a linear function on the t-dimensional vector space. Now, 

X = Z C J V J ' 
j=l 

where the C.'s are the coefficients in the representation of K. 

f(x) = f(EcJvj) = E v ( v =1>3 v =ECMVJ 
\ j = l / j=l j=l 3=2 

Let Di = 0 and D. ... = C. so we have 1 J+l 3 

00 

f(x) =Evi • 
3=1 

Since D. satisfies (a) through (d), f(X) is the t-distribution for the in-
teger represented by the D.ffSo In other words, applying f to the t-distribution 
for K yields the t-distribution for an integer whose representation in the 
t-Fibonacci number system is the representation of K shifted left one place. 
Observe, in Fig. 25 the entries for 5 and 11. Applying f to the 4-distribution 
of 5 yields the 4-distribution of 11. The representation of 5 shifted left one 
place yields the representation of 11. 

Since it is a non-singular linear transformation, f is invertible. Con-
sidering g(X) where 

g(X)j 

X if i = t 

X.^- - X, if 1 < i < t 
i+ l 1 — 
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The inverse of f is clearly g. Applying g to the t-distribution of 
the t-distribution of the integer whose representation is the representation of 
K shifted right one place provided condition (c) is not violated by the right 
shift operation. 

Since f is not onto, the domain of g must be restricted to coincide with 
the range of f. Condition (c) will not be violated under precisely this condi-
tion. Thus the composition gf is the identity function. 

PART n 
5. SORTING BY MERGING 

In data-processing by digital computers, it very often proves to be con-
venient or essential to arrange large volumes of data into a linear sequence. 
The unit of data is called a record. Each record has associated with it a num-
ber called its key. The process of arranging the records into a sequence (or 
file) so that the key values are non-decreasing is called sorting. 

A utility company will keep its customer file in ascending order by cus-
tomer number. The incoming utility bill payments will be sorted into ascend-
ing order by customer number. The customer file (particularly the cus tomers 
balance) can now be adjusted to account for the payment. With both files in 
order by customer number, this can be accomplished without undue searching 
through either file. 

The sorting of large files is not particularly simple. Usually the files 
are much too large to be held in the memory of the computer, and they must 
be recorded on some linear medium such as magnetic tape. The primary 
method of sorting such external files depends on the technique of merging. If 
we have two files already sorted into order, we can combine, or merge, these 
into one file. We do this as follows. Call the two files to be merged A and 
B and the resulting file C. File C is initially empty. We look at the first 
records of A and B and select the one with the smallest key. We transfer 
this record from the input file to C, removing it from the input file. We r e -
peat this process until both A and B are exhausted. File C will now con-
tain the records from A and B and will be in ascending order. See Fig. 3. 

We will say that a file in ascending order by its key is a sorted file. The 
idea behind merge sorting is to begin with many small sorted files; perhaps 
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A JL SL 
2 4 2 
3 7 3 
5 8 4 
6 10 5 
9 6 

11 7 
8 
9 

10 
11 

Fig. 3 Merger of A and B to form C 

each contains but one record. By repeated mergers , the average length of the 
sorted files grows, and, more importantiy5 the number of files decreases after 
each merger. Since the number of files cannot increase indefinitely, the p r o -
cess must terminate with one file in sorted order. 

We propose to look into the details of this process, particularly a merge 
sorting technique called polyphase sorting. Let us begin by describing a sim-
pler technique called "balanced symmetric sorting.ff Suppose initially that we 
have twenty-seven files arranged on six magnetic tapes as follows: 

tapes 1 2 3 4 5 6 
files 9 9 9 0 0 0 e 

That i s , tapes 1, 2, and 3 contain nine files each (one after the other), while 
tapes 4, 5, and 6 are empty. By an obvious extension of the described merging 
process, we can merge together three files at once. Suppose we merge the 
files that appear first on tapes 1 ,2 , and 3. This new file is placed on tape 4 
so that we have twenty-five files. 

1 2 3 4 5 6 
8 8 8 1 0 0 
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By their nature, tapes 1, 2, and 3 are in position to read their second files 
and tape 4 is positioned to write a file after the one just constructed* Tape 4 
is not in a convenient position to re-read the file just written. Files from 1, 
2, and 3 are merged again, and the resulting file is written on tape 5. One 
more merger (the result to tape 6) gives us the twenty-one files. 

1 2 3 4 5 6 
6 6 6 1 1 1 

We make six more mergers,, writing the resulting files cyclically on tapes 4, 
5, and 6, yielding nine files. 

1 2 3 4 5 6 
0 0 0 3 3 3 

Each file is three times as long as the originals. We rewind all six tapes and 
make three mergers yielding 

1 2 3 4 5 6 
1 1 1 0 0 0 

We rewind again and one merger gives us 

1 2 3 4 5 6 
0 0 0 1 0 0 

All the records appear on tape 4 as one sorted file. It should be clear that the 
number of passes (i. e. , the number of times each record is processed) is 

l 0 %±i ) <f> 
2 

where t + 1 is the number of available tapes and f is the number of files. 
The more tapes, the faster it goes. Figure 4 tabulates a sort of forty-nine 
files on five tapes. Usually, the number of files and the number of tapes 
donft come out even as in the example above, and some "fudging" is needed. 
For a more complete discussion of merge sorting, see [4] and [s] . 
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Tapes 

16 
0 
5 

0 
1 
0 

16 
0 
6 

0 
1 
0 

17 
0 
6 

0 

1 
0 

0 
8 
0 

3 
0 
0 

0 
9 
0 

3 
0 

1 

Fig. 4 A Sort of 49 Files on Five Tapes 

6, POLYPHASE SORTING 

Let us try to construct a four-way merge process with just five tapes., 
The natural thing to do is work the problem backwards. Suppose we wish to 
end with just one file on tape 5e 

pass 
tapes 
1 2 
0 0' 

We must have gotten here by merging four files, one each on tapes 1, 2, 35 and 
4. 

pass 
5 

tapes 
1 2 3 4 5 
1 1 1 1 0 

one each from 1, 2, 39 and 4 to 58 How did we get here? We could get the 
one file on tape 4 by a four-way merger of one file each from tapes 1? 2, 3, 
and 5. 

tapes 
1 2 pass 

6 

one each from 19 29 35 and 5 to 4e Notice that the sorting process leaves files 
on tapes 19 2, and 3 and rewinds 5. The key idea of this process, called poly-
phase sorting [5] is not to exhaust all of the input files available,, The next few 
steps backward are : 
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pass 

7 

8 

9 

10 

11 

tapes 
1 

4 

8 

0 

15 

44 

2 
4 

0 

8 

23 

52 

3 

0 

4 

12 

27 

56 

4 

2 

6 

14 

29 

0 

5 

3 

7 

15 

0 

29 

2 each from 19 29 4, 5 to 3 
4 each from 19 39 4, 5 to 2 
8 each from 29 38 49 5 to 1 

15 each from 1, 2, 3, 4 to 5 
29 each from 1, 2, 3, 5 to 4 

At each step9 we four-way merge as many files as are available on the tape 
with the smallest number of files, then rewind this tape. We leave the res i -
due on the other tapes for subsequent passes. 

To simplify the analysis of this process f we can give the tapes "logical" 
names. We will select the names W and Ll9 L2, L3s L4. The tape we will 
write on is designated as W. The tape with the smallest number of files is LA 

and L2 is the tape with the next smallest number up to L4? the tape with the 
largest number of files. The correspondence of logical names to tape unit 
numbers was as follows for the previous example. 

pass 

4 

5 

6 

7 

8 

9 

10 

11 

tapes 
1 2 

W 

Li 
L2 
L3 

^4 

w 
Li 
L2 

Li 

L2 
L3 
L4 

W 

Li 

L2 

L3 

3 

L2 

L3 
L4 

W 

Li 

L2 

L3 
L4 

4 

L3 
L4 

W 

Li 

L2 

L3 

L4 

W 

5 

L4 

W 

Li 

L2 

L3 

L4 

W 

Li 

At the end of each pass , the logical labels shift right one with respect to the 
physical numbers. 

It will be much more convenient to organize the tableau containing the 
number of files per tape per pass by logical names rather than physical tape 
numbers. The example is given in Fig. 5. 

Usually the W column is dropped, since it is always zero. Compare 
Fig. 5 with Fig. 1 in Part 1. 
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pass 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Lt 
-1 
1 

0 

0 

0 

1 

1 

2 

4 

8 

15 

29 

L2 

-1 
0 

1 

0 

0 

1 

2 

3 

6 

12 

23 

44 

L3 
-1 

0 

0 

1 

0 

1 

2 

4 

7 

14 

27 

52 

L4 

1 
0 

0 

0 

1 

1 

2 

4 

8 

15 

29 

56 

W 
D 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Fig, 5 A Polyphase Sort of 181 Files 

The sorting rule for each pass is clean We four-way merge n times, 
where n is the number of files on Lj9 n files are written on W, which 
becomes L4 in the next pass* We rewind L4 and it becomes W (since it is 
empty) on the next pass* Now LA has lost n files and becomes L. - on the 
next pass. Hence if # L . is the number of files on L. at pass n we ha^e 
the sorting rule 

#n-lL4 = *nh. 
* n - l L l - l = # n L l " # n L l * < 1 < * • 

Applying these relations, we can fill in the tableau for 0 < n < 4e 

To construct the tableau in the opposite direction, it is clear that 

# n L l = # n - l L 4 
# L. = # ,L . •+ # - L . 1 < i < t n n i " n - 1 i - l " n - 1 4 — 

for 
1 < n < t # L. = 8. . 
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7. A DISTRIBUTION AND CONTROL ALGORITHM FOR POLYPHASE SORTING 

It is at once clear that # L. is .U and that row n of the tableau placed 
n 1 i n 

in vector form is the t-distribution for VU . Note that we have VU files at 
Z n z n 

pass n. 
We now raise two related problems. How do we adjust if the number of 

files to be sorted is not some yU ? And, in general, how do we determine 
the initial distribution of the files over t tapes? The answer to this second 
question is complicated by the fact that in general, we will not know how many 
files are to be sorted. The files will initially be contained on some other tape 
and we will read them one by one and distribute them over the input tapes. We 
must distribute them in such a manner that at any time we will be prepared to 
carry out the polyphase algorithm. This is because we wonrt know which file 
is last until we come upon it. This distribution problem is discussed in 8 . 

The following algorithm is proposed for calculating the initial distribu-
tion. We will number the files in sequence and represent the number in the 
t-Fibonacci number system. As we distribute a file we will obtain its number 
by counting up by one the number representation of the previous file. This in-
volves inserting a 1 in one of the lower t positions (say position j) of the 
representation of the number of the previous file and adjusting for carr ies . 
Refer back to the Counting Algorithm. The new file to be distributed is then 
copied to tape j . At each step, then, the distribution of files is the t-distribution 
for the number of files thus far distributed. 

If we distribute 11 files on four tapes, Fig. 2 indicates that the distribu-
tion would be (2, 3, 3, 3). If we take one pass on the polyphase sortalgorithm 
we obtain 5 files distributed (1, 1, 1, 2). (Two files each are merged from 
the four tapes, leaving three tapes with one file and creating a new tape with 
two files.) We can keep track of this by shifting the representation right one 
place. The representation for 11 is Oil] 0000 and the representation for 5 is 
01J1000. Another pass of the polyphase algorithm gives us two files with the 
4-distribution (0, 0, 1, 1) and the representation 0|1100. 

If we try another pass , nothing happens since L. contains no files. 
Also, the shift would give the unacceptable representation |0110 (this violates 
(c)). We instead should add dummy files to tapes Lj and L2. Dummy files 
are files with no records in them. By (d), this promotes the representation to 
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ljOOOO and the distribution to ( 1 , 1 , 1 , 1 ) . One more pass produces the rep-
resentation 0(1000 and the distribution (0, 0, 0, 1), and we are done. 
Actually, this last merger was only two-way, but we pretended it was four-way! 

The rule then is that when a shift of the representation to the right is not 
allowed because a zero would shift into position t, dummy files should be 
added to the indicated tapes* With this slight adjustment, any number of files 
maybe sorted. Figure 6 gives a blow-by-blow account of a five-tape, four-
way merger of nine files* g 

Operation 
distribute 
distribute 

sort 
sort 
sc >rt 

Representation 
000|1000 
000I1100 
ooojmo 
001|0000 
OOljlOOO 
00l | l l00 
010I0000 
oioiiooo 
010I1100 
00l|l000 
ooolnoo 
ooo|iooo 

Distribution 
(0, 
(0, 
(0, 
(1, 
(1, 
(1, 
(1, 
(1, 
(1, 
(1, 
(0, 
(0, 

o, 
0, 
1, 
1, 
1, 
1, 
2, 
2, 
2, 

1, 
0, 
0, 

0, 
1, 
1, 
1, 
1, 
2, 
2, 
2, 
3, 
1, 
1, 
0, 

1) 
1) 
1) 
1) 
2) 
2) 
2) 
3) 
3) 
2) 
1) 
1) 

Comment 
to tape 4 
to tape 3 
to tape 2 
to tape 1 
to tape 4 
to tape 3 
to tape 2 
to tape 4 
to tape 3 
dummy files 
added to 1, 2 

dummy files 
added to 1, 2 

Fig. 6 

A little thought will produce a slightLy more economical method of adding 
dummy files, but we leave this to the reader1 s imagination. 

8* CONCLUSION 
We have presented a generalization of the Fibonacci numbers and de-

veloped some of their salient properties. In particular, we proved an exten-
sion of Zeckendorfs theorem, and used this to develop the t-Fibonacci positional 
number system. We investigated the processes of counting and shifting in this 
number system. 



22 THE t-FIBONACCI NUMBERS AND POLYPHASE SORTING Feb. 1970 

In Part 2, we reviewed the basics of merge sorting and polyphase sort-
ing and went on to use the theory of Par t 1 to develop a new initial distribution 
and merge-control algorithm,, 

It seems clear that this sortof analysis can be carried out for many other 
merge sorting schemes (e. g. , oscillating [7] or cascade sort [s]|). With each 
sorting scheme, we should be able to associate a number system. This num-
ber system should be such that one pass of the merger corresponds to shifting 
the representation of the number of files right, one place0 The initial distr i-
bution of files is controlled by the mechanics of counting and imperfect distr i-
butions are adjusted to prevent shifting digits off the right end of the count. 
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1. INTRODUCTION AND SUMMARY 

The Fibonacci numbers F may be defined by the recurrence relation 
Fn = Fn-1 + Fn-2 f o r n - 2 w i t h F° = ° a n d F l = le T h e f a c t o r s o f t h e 

first 60 Fibonacci numbers were published by Lucas (with only two errors) in 
1877 [1] , and recently a table of factors of F for n < 100 has been pub-
lished by the Fibonacci Association in [.2], 

If F is the smallest Fibonacci number divisible by the prime p, then 
z = z(p) is defined as the entry point (or rank) or p in the Fibonacci sequence; 
furthermore p divides F if and only if n is divisible by z(p), and there 
are rules for determining what power of p will divide such an F ([3] , p« 
396). 

To find the entry point z(p) for a given p , we can generate the Fib-
onacci sequence modulo p until we obtain an element F = 0; on a computer 

z 
this process involves only additions and subtractions, and we work throughout 
with numbers less than 2p8 Tables of entry points have been published by 
Brother U. Alfred [ 4 ] , and have also been inverted to give p as a function of 
z. We extended the inverted table up to p = 660,000 by restricting our search 
to the first 256 Fibonacci numbers, L e. , to z < 256, and by this means we 
were able to give complete factorizations of 36 numbers F with n > 100 in 
[ 5 ] . 

In the present paper we shall adopt the alternative approach of fixing z 
and searching for primes for which this z is the entry point In Sections Sand 
4 we shall prove the following theorems: 

Theorem 1. If z is the entry point of a prime p > 5 then 
(i) if z is odd, we have either 

(a) p = 4rz + 1 and p = 1, 29, 41 , 49 (mod 60), 

or (b) p = (4r+2)z - 1 and p = 13, 17, 37, 53 (mod 60); 

23 
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(ii) if z = 2 (mod 4) , we have 

p = rz + 1 and p = 1, 11 , 19, 29 (mod 30); 

(iii) if z = 0 (mod 4) , we have e i the r 

(a) p = 2rz + 1 and p = 1, 29, 4 1 , 49 (mod 60), 

o r (b) p = (2r + l )z - 1 and p = 7, 23 , 4 3 , 47 (mod 60), 

where in al l e a s e s r i s an in teger . 

T h e o r e m 2. 2z(p) divides p ± l if and only if p = 1 (mod 4). 

In Section 5 we desc r ibe how we have used Theo rem 1 a s the ba s i s of a 

computer p r o g r a m for factorizing Fibonacci n u m b e r s , and in Section 6 we give 

some numer ica l r e su l t s obtained in this way. 

2. SOME PRELIMINARY RESULTS 

The Lucas numbers L a r e defined by the same r e c u r r e n c e re la t ion a s n J 

the Fibonacci numbers F , namely L = L - + L 0 for n > 2 , but with 
n9 J n n - 1 n-2 -

L 0 = 2 and L j = 1. We shall r equ i r e the following well known ident i t ies : 

(1) F 0 = F L 
2n n n 

(2) F 2 - F - F ^ = ( - l ) n _ 1 

n n - 1 n+1 

(3) L2 - L -L J.1 = ( - l ) n 5 . 
n n - 1 n+1 

When p i s an odd p r i m e and m i s an in teger p r i m e to p , t heLegendre 

symbol (m/p) i s defined to be +1 if m i s a quadra t ic res idue of p , i . e . , 

if the equation 

x2 = m (mod p) 

has a solution in in tegers ; whe rea s if the re is no such solution, (m/p) is de -

fined to be - 1 . It can be shown (ref. 6, Chap. 6) tha t , for p > 5, 

(4) (-1/p) = 1 if and only if p = 1 (mod 4) 
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(5a) (5/p) = 1 if and only if p = 1 o r 9 (mod 10) 

(5b) (5/p) = - 1 if and only if p = 3 o r 7 (mod 10) 

(6) (-5/p) = 1 if and only if p = 1, 3 , 7, o r 9 (mod 20) . 

It can a lso be shown (e .g . , using T h e o r e m 180, ref. 6), that if z is 

the Fibonacci en t ry point of p s then (for p > 5) 

(7) p - (5/p) = 0 (mod z) . 

This l eads to 

L e m m a 1 

(8a) p = qz + 1 if p = 1 o r 9 (mod 10), 

(8b) p - qz - 1 if p = 3 o r 7 (mod 10) , 

where z i s the en t ry point of p and q is an in teger . 
We shall fur ther use the fact that if p i s a p r i m e g r e a t e r than 5, then 

(9) p E 1, 7, 1 1 , 13, 17, 19, 23 , o r 29 (mod 30) , 

s ince o therwise p would be divisible by 2 , 3 , o r 5. 

If we reduce the Fibonacci sequence (for which F 0 = 0, F1 = 1) modulo 

p , we obtain a per iodic sequence. The per iod k = k(p) i s the sma l l e s t in t e -

g e r k for which 

F, = 0 (mod p) and F, - = 1 (mod p) . 

It i s c l e a r that the en t ry point z(p) will divide the period k(p), and the fol-

lowing r e s u l t s have been proved by Oswald Wyler [ 7 ] : 

(10a) k(p) = z(p) if z(p) = 2 (mod 4) , 

(10b) k(p) = 2z(p) if zip) E 0 (mod 4) , 

(10c) k(p) = 4z(p) if z(p) i s odd. 
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We shall also use a result proved by D. D. Wall (ref. 8, Theorems 6 and 7) , 
namely 

(11a) k(p) divides p - 1 if p = 1 or 9 (mod 10), 

(lib) k(p) divides 2(p + 1), but not p + 1, if p = 3 or 7 (mod 10). 

3. PROOF OF THEOREM 1 

To prove Theorem 1 we have to consider separately the three cases of 
z odd, z twice an odd integer, and z divisible by 4, where z = z(p) is the 
entry point of a prime p > 5. 

(i) We first consider the case of z odd and prove 
Lemma 2. If z is odds then p = 1 (mod 4). 
To prove this, take n - 1 = z in the identity (2); then n - 1 is odd, 

and (by definition of z) p divides F - , so that we have (F )2 = -1 (mod 
it follows, as stated in (4), that p = 1 (mod 4). 

Combining this result with that of Lemma 1 we see that when z is odd 
we have either 

(a) p = 4rz + 1 and p = 1 or 9 (mod 10), 
or 

(b) p = (4r + 2)z - 1 and p = 3 or 7 (mod 10). 
Part (i) of Theorem 1, as stated in the introduction, then follows by using the 
result (9) and selecting those residues modulo 60 which satisfy p = 1 (mod 4). 

(ii) Next, we consider the case where z = 2s and s is an odd integer. 
In this case p divides F~ but not F , so that it follows from the identity 

4S S (1) that p divides L . Taking n - 1 = s in the identity (3) we have L2 = 5 s n 
(mod p), and it follows, as stated in (5a), that p = 1 or 9 (mod 10). Using 
this result together with Lemma 1 we obtain 

Lemma 3. If z is twice an odd integer, then 

p = qz + 1 and p = 1 or 9 (mod 10) . 

Part (ii) of Theorem 1 now follows by using the result (9). Moreover, Lemma 
3 establishes the following result which was conjectured by A. C. Aitken (pri-
vate communication to R. Rado in 1961): 
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Theorem 3a If p is a prime then d = 1 (mod p) for any divisor d of 
L . 

P 
(iii) Finally we consider the case where z = 2s and s is an even inte-

ger. As before, it follows from (1) that p divides L , but inking n - 1 = s 
s 

in (3) we now obtain L^ = -5 (mod p) since n is odd* Using the result (6) we 
deduce that p E 1, 3, 7, or 9 (mod 20), and combining this with Lemma 
with the result (9) we have that when z = 0 (mod 4) either 

(a) p = qz + 1 and p 5 1, 29, 41 , 49 (mod 60) , 
or 

(b) p = qz - 1 and p = 7, 235 43, 47 (mod 60) . 

Since the result (10b) applies to these cases, the period k is now given by k 
= 2z. Applying (11a), we see that in case (a), q must be an even integer, say 
q = 2r. Similarly, applying (lib) we see that in case (b) q must be an odd 
integer, say 2r -1- 1. This establishes part (ii) of Theorem 1. 

In proving Theorem 1 we have used only the identities (1), (2) and (3). It 
is interesting to note that, although we applied similar techniques to many other 
identities, these did not lead to any further significant results. 

4. PROOF OF THEOREM 2 

To prove that for p > 5, 2z(p) divides p - (5/p) if and only if p = 1 
(mod 4), we have to consider the three cases as before. 

(i) When z is odd, we have by Lemma 2 that p = 1 (mod 4); we also 
know from (7) that z divides p - (5/p), which is an even number, and hence 
when z is odd 2z divides p - (5/p). 

(ii) When z is twice an odd integer, we have by Lemma 3 that 

p = qz + 1 and p = 1 or 9 (mod 10) . 

It follows that 2z divides p - 1 if and only if q is even, and this condition is 
equivalent to p = 1 (mod 4) in this case. 

(iii) When z = 0 (mod 4), we have already proved (at the end of Section 3) 
that either 
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(a) p = qz + 1 with q an even in t ege r , 

o r 

(b) p = qz - 1 with q an odd in teger . 

In case (a) we have p = 1 (mod 4) and 2z divides p - 1, whe reas in case (b) 

we have p = 3 (mod 4) and 2z does not divide p + 1. 

This comple tes the proof of T h e o r e m 2. 

A r e s t r i c t e d form of this t heo rem, namely 2z(p) divides p ± 1 if p = 

1 (mod 4) , has recen t ly been proved by R. P . Backs t rom ( [ 9 ] , l e m m a s 4 and 

6). 

5. APPLICATION TO THE FACTORIZATION OF FIBONACCI NUMBERS 

Cons ider now the p rob lem of finding the p r i m e fac tors of F for a given 

n. If n i s not p r i m e , then F will have some i m p r o p e r fac tors p whose 

en t ry points z(p) divide n. Given n in the range 100 < n < 200, i t i s a 

s imple m a t t e r to cons ider al l the d iv i so r s d of n and use the known fac tor -

izat ions of F , for d < 100 (as given in [2 ] ) to l i s t a l l the i m p r o p e r fac tors 

of F . The remain ing fac tors p will then be p r o p e r fac tors such that z(p) = 

n , and these m u s t satisfy the conditions of Theorem 1 with z = n. 

Consider f i r s t the case of n odd. Our computer p r o g r a m ca lcula tes F 

and then divides i t in turn by al l the i m p r o p e r fac tors of F (with suitable 

mul t ip l icat ies) which a r e supplied a s data. We a r e then left with a quotient Q 

whose fac tors p m u s t have z(p) = n. To de te rmine these f a c t o r s , we l e t the 

computer genera te numbers N (not n e c e s s a r i l y pr ime) satisfying the condi-

tions for p in Theo rem l(i) with z = n. These number s N in genera l fall 

into 8 res idue c l a s s e s modulo 60n, but it was found that when n i s divisible 

by 3 , 5, o r 15 the number of r es idue c l a s s e s goes up to 12, 10, o r 15, r e -

spectively. F o r each n these res idue c l a s s e s w e r e de te rmined by the c o m -

pute r in accordance with T h e o r e m 1 and the number s N we re then genera ted 

sys temat ica l ly from the lowest upward. F o r each N the p r o g r a m t e s t s 

whether Q i s divis ible by N, and if i t i s i t p r in t s N a s a factor and r e -

p laces Q by Q / N . Any factor N found in this way will be a p r i m e , for if 

not , N would be the product of fac tors which should have been divided out 

from F o r Q a t an e a r l i e r s tage of the p r o g r e s s . F inal ly , when N b e -

comes sufficiently l a r g e for N2 to exceed the c u r r e n t value of Q , we can 



1970] FACTORIZATION OF FIBONACCI NUMBERS 29 

stop the process and conclude that Q is prime; for if not, we would have Q 
= Nj[N2 < N2 which implies that Qn has a factor smaller than N, and any 
such factor would have been divided out at an earlier stage. 

In the case of n even, say n = 2m, we can proceed slightly differently 
on account of the identity 

FQ = F L 2m m m 

The computer program now generates L and our object is to factorize this. 
We need only supply as data those improper factors of F which do not also 
divide F , and dividing L by these factors we obtain the quotient Q . 
According as -|n = m is odd or even we use Theorem 1 (ii) or 1 (iii) to gen-
erate numbers N satisfying the conditions for p when z = n = 2m. It was 
found that these numbers N in general fall into 8, 10, or 12 residue classes 
modulo 30n5 though in some cases 20 and even 30 residue classes occurred. 

6. NUMERICAL RESULTS 

A program on the lines described above was run on the Elliott 803 com-
puter at Reading University, using multi-length integer arithmetic. In addi-
tion to the factorizations listed by us in [5], the following further factoriza-
tions were obtained (the factors before the asterisk being improper factors): 

F103 = 519121 x 5644193 x 512119709 
F115 = 5 x 28657 • 1381 x 2441738887963981 
F133 = 13 x 37 x 113 * 3457 x 42293 x 351301301942501 
F135 = 2 x 5 x 17 x 53 x 109 x 61 x 109441 * 1114769954367361 
F141 = 2 x 2971215073 * 108289 x 1435097 x 142017737 
F149 = 110557 x 162709 x 4000949 x 85607646594577 

We also factorized a further 17 numbers F with n even, and because 
of the identity F 0 = F L it will be sufficient to list the prime factors of 

J 2m m m 
the corresponding Lucas numbers L (those factors that are improper fac-
tors of F ? are placed before the asterisk): 
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L61 = 5600748293801 (prime) 

L62 = 3 * 3020733700601 

L68 = 7 * 23230657239121 

L71 = 688846502588399 (prime) 

L73 = 151549 x 11899937029 

L76 = 7 * 1091346396980401 

L77 = 29 x 199 * 229769 x 9321929 

L80 = 2207 * 23725145626561 

L82 = 3 * 163 x 800483 x 350207569 

L85 = 11 x 3571 * 1158551 x 12760031 

L91 = 29 x 521 * 689667151970161 

L92 = 7 * 253367 x 9506372193863 

L93 = 22 x 3010349 * 63799 x 35510749 

L94 = 3 * 563 x 5641 x 4632894751907 

L96 = 2 x 1087 x 4481 * 11862575248703 

L98 = 3 x 281 • 5881 x 61025309469041 

L100 = 7 x 2161 * 9125201 x 5738108801 

In each case the process was taken sufficiently far to ensure that the final 

quotient is a prime, as explained in the previous section. In the case of F115 

this involved testing trial factors N almost up to 5 x 107. 

REFERENCES 

1. Edouard Lucas, Bull, di Bibl. e di St. d. Sc. Mat. e Fis. , Vol. 10 (March 
1877), pp. 129-170. 

2. Brother U. Alfred, An Introduction to Fibonacci Discovery, The Fibonacci 
Association, 1965. 

3. L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, 
Vol. 1, 1919. 

4. Brother U. Alfred, Tables of Fibonacci Entry Points, The Fibonacci Asso-
ciation, 1965. 

5. L. A. G. Dresel and D. E. Daykin, "Factorization of 36 Fibonacci Numbers 
F with n > 1009" Fibonacci Quarterly, Vol. 3, pp. 232-233, October, 
1965. 

[Continued on page 82, ] 



GENERALIZED FIBONACCI K-SEQUENCES 
HYMAM GABAI 

York College (CUNY) and University of Illinois (UICSM) 

1* INTRODUCTION 

For k > 2, the Fibonacci k-sequence F(k) maybe defined recursively 
by 

n - l 
f = 0 (n < 0), fj = 1, f = J2 f. (n > 1) . 

i=n-k 

A generalized Fibonacci k-sequence A(k) may be constructed by arbitrarily 
choosing al3 a0, a - , o e e , a?_ic5 and defining 

n - l 
a n = 0 (a < 2 - k)f \ = 2 a. (n > 1) 9 

i=n-k 

In this paper, some well-known properties of F(2) (see [1] and [8]) 
a re generalized to the sequences A(k). For some properties of F(k), see 
[ 4 ] , [6] , and [7 ] , The sequences A(3) are investigated in [9]. 

The pedagogical values of introducing Fibonacci sequences in the class-
room are well known. (See, for example [3] , pp„ 336-367*) It seems pos-
sible thatcthe generalizations described in this paper may suggest some areas 
of investigation suitable for high school and college students* (See, for exam-
ple [5].) For once a theorem concerning F(2) has been discovered, one may 
search for corresponding theorems concerning A(2), F(3), A(3), e o 8 and 
finally F(k) and A(k). (See [2].) 

2e THEOREMS 

The first theorem is a fPshift formulaf? needed in the proof of Theorem 6. 
Theorem 1. For n > 2 , a ,- = 2a - a . . 

— — - n+1 n n-k 

31 
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T h e o r e m 2 i s a genera l iza t ion of the theo rem that any two consecut ive 

t e r m s of F(2) a r e re la t ive ly p r i m e . 

T h e o r e m 2. F o r n > 2 , eve ry common d iv i sor of 

a n ' a n + l J a n+2 J " ' , a n + k - l 

i s a d iv isor of a2 , a3, • • • , a n _ i . 

Some summat ion t heo rems a r e given in T h e o r e m s 3 , 4 , and 5. 

T h e o r e m 3. (a) F o r n > 1 and m > 1, 

n kn+m 

2 ^ a k i + m + l = 2-rf a i ' 
i=0 i=m+l -k 

(b) F o r n > 1, 

n k n - 1 

E a k i = E ai 
i = l i=0 

(c) F o r n > 1, 

a k n " a 0 _ S s 
l < i < kn -1 
i^Olmodk) 

T h e o r e m 4„ F o r n > 2 - k , 

n . k -2 k-2' 

2 h = k4T( %+k - al + J>-i - E (k - l - 1)an-i] 
i=2-k V i= l i = l 

T h e o r e m 5. F o r n > 1, 

n k - 1 n 

E a? = a a ( 1 - a - a n - y / a .a . . . 
l n n+1 1 0 A—«-£-* l 1-3 

i = l j=2 i= l 
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T h e o r e m s 6, 7, and 8 show re la t ions between F(k) and A(k). 

T h e o r e m 6. F o r n > 1 and m > 1, 

J 
a ,i~^ 

n+m 2 ( Vk+j X) fm-j+l J 
j=l \ i= l / 

T h e o r e m 7. Le t d be the g r e a t e s t common d iv i sor of 

f m ' f m - l 5 " 8 s f m-k+2 8 

If m > 1, m divides n5 and d divides a , then d divides a . 
— ' 5 m n r m n 
Theo rem 8. Let r be the l a r g e s t root of the polynomial equation 

k - 1 
xk - E xi = ° -

i=0 

Then 

k+1 / j - 1 

(a) 

and 

(b) 

^WsH^) 
l im ( ^ ) 

3. PROOFS OF THEOREMS 

Theorem 1 follows directly f rom the definition of A(k). For , if n 

then 
n n-1 

a , , = V * a. = V * a. + a - a . = 2a - a„ . . n+1 Z-< 1 Z-> i n n-k n n-k 
i=n-k+l i=n-k 
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To prove Theo rem 2 , suppose that d i s a common d iv isor of a , a - , 

• • • j a ,. - . Since n+k-1 

n+k-2 n-fk-2 

*n+k-a""--l = E ai = Vl + Z ai • 
i = n - l i=n 

it follows that d a lso divides a -• It follows, by induction, that d divides 
n - 1 J 

a n - 2 J ' " 9 a 2 9 

F o r the proof of T h e o r e m 3(a), choose any in teger m > 1. Now T h e o -

r e m 3(a) holds for n = 1 because 

1 

2 ^ a k i + m + l = a m + l + a k + m + l 
i=0 

m k+m k+m 

E \+ E \ - E 
i=m+l -k i=m+l i=m+l -k 

a. 
I 

F u r t h e r m o r e , if Theo rem 3(a) holds for n = p , then i t holds for n = p + 1 

because we then have 

p+1 p 

2 ^ a k i + m + l = ak(p+l)-f-m+l + Z J a k i + m + l 
i=0 i=0 

k(p+l)+m kp+m 

- E ».+ E •. 
i=kp+m+l i=m+l -k 

k(p+l)+m 

• E s-
i=^m+l-k 

Hence Theo rem 3(a) holds for n > 1, m > 1. 

In the proof of T h e o r e m 3(b), we apply T h e o r e m 3 ( a ) , choosing m = k - 1: 
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kn+k-1 

ki+k Z**d i 
i=0 i=0 

T h e o r e m 3(b) follows s ince the left s ide of this equation i s equal to 

a kn+k 2Ld a k i 
i= l 

and the r ight side i s equal to 

k n - 1 kn+k-1 k n - 1 

Ea, 
i=0 i=kn 

a. = a. + a, ,, 
i i kn+k 

i=0 

T h e o r e m (3c) i s an immedia te consequence of T h e o r e m 3(b). 

Inductive proofs of T h e o r e m s 4 and 5 a r e omit ted. One m a y , however , 

verify (or discover!) T h e o r e m 4 by consider ing the following d i ag ram: 

*2-k 

Vk 
Vk 

a n+2-k 
a n + 3 - k a n + 3 

n - 1 

" a 2 - k 

" a 3 - k 

- a - l 

" ao 
" a i 

" a 2 

- a 
1 n 

" a n + l | 

~ a n+k- : 

" Vk-2 

-

-

3 " 

a 2 - k L 

a - 2 

a - l 
ao 
a x 

V l 
a n 

a n+k-4 
a n + k - 3 

-

^ 1 

. . . 

~ 1 
• - a f 1 n+1 
• — a 

n+2 

-

-

a 2 - k 

a 3~k 
a 4 - k 

V k 

a n+3 -k 
an+4»k 

a n 
an+l [ 
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It follows from this diagram that 

n n k-2 k-2 

2 h = Vk - al - (k - 2) E ai + E ia-i - Z (k - * - 1)an+i • 
i=2-k i=2-k i=l i=l 

For the proof of Theorem 6, let n be any integer such that n > 1. 
Theorem 6 holds for m = 1 because 

k j k 

S Vk+j Sfl-j+i = Z-) (an-k+jfl) = an+l ' 
j=l 1=1 j=l 

If Theorem 6 holds for m = p, then it holds for m = p + 1 because we then 
have 

k / j 

an+(p+l) " a(n+l)+p " 2-4 ( a n + l - k + j ^ fp-j+i 
j=l \ i=l 
k+1 

p+l-j+i ~ fp+l) 
j=2 \ (i=l 
k / j 

2-/ (V-k+j 2D fp+l-J+i) " an-k+lfp+l 
j=i \ i=i / 

k+1 / k + 1 
+ an+l 2 ^ f

p_k+i "I X , an-k+i) fp 
i=l \ 5=2 

k / J 

E 
3=1 

L» (an-k+j 2-» p+l-j+i) 
-i \ i=i 7 

+ f
P + l ( " V k + l + 2 a n + l - a n + 2 ) 

k / J 
zLrf I n-k+j 2~* p+l-j+i 
j=l \ i=l 

The last equality is obtained by applying Theorem 1. Hence Theorem 6 holds 
for n > 1 and m > 1. 
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T h e o r e m 7 obviously holds for n = m . We shall prove that if T h e o r e m 

7 holds for n = m p , then i t holds for n = m(p + 1). 

Suppose, therefore* that d divides a . By T h e o r e m 6, ^ m mp J 

m(p+l) mp+m /^ P m o - k + i ) j m-j+i I a m p m+1 " 
j= l \ i= l / 

Since d divides each t e r m of the sum m 
J 

"m-j+i 
i= l 

where 1 < j < k - 1, and d divides a , it follows that d divides — J — m mp m 
a m(p+l ) ' 

For the proof of Theorem 8(a), we once again apply Theorem 6. We 

choose n = 1 and divide by f. 1+m' 
a k / j f 

7 ^ = W * i I ^ T JT±1' 

In [6] i t i s shown that , for any in teger q, 

It follows, t he re fo re , that 

l i m j j£±a )= rq 
m—>oo I f 

k / J 

^-ftj-g^s^-1 
k / J 

-k+j 
j = l \ i= l 

k+l / j - 1 
- I T . V k-i 
" k L ai-k ^ r 

j=2 \ i = l 

Theorem 8(b) holds since 
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v / V l \ .. / a n + l fn f n+ l \ 
lim I I = lim I -s——• • — • -s-—I 

= I lim - ^ i i lim -^ 1 I lim -£— J = r 
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ON SOLVING Cn + j ^ + i+C^n1 1 1 BY EXPANSIONS AND OPERATORS 

R. J. WEItMSHEIMK 
Lockheed Missiles & Space Company, Sunnyvale, California 

and 
V. E. HOGGATT, JR. 

San Jose State College, San Jose, California 

1. INTRODUCTION 

It was the purpose of this paper to derive the general solution of the non-
homogeneous difference equation 

C _LO = C _,_- + C + n m 
n+2 n+1 n 

In so doing5 two distinct approaches were employed to derive the particular 
solution associated with this equation, 1) a polynomial expansion method and 
2) an operator method,, The latter approach is believed to be a unique com-
bined application of E9 A5 and the Fibonacci generating function. 

The general solution of the non-homogeneous difference equation 

W C n + 2 = C n + 1 + C n + ^ 

is composed of the solution to the homogeneous equation 

(2) C ^ = C . + C 
v ' n+2 n+1 n 

and a solution of the particular equation. See [4,5]„ Since the polynomial 
m term, n , is of degree ms a particular solution to (1) can be expected to be 

of the form 

m 
(3) (C ) = Y a. n1*1"1 
w N n p iLd im 

i=0 

from considerations produced in Section 48 A related problem appears in [ 8 ]. 

39 
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If 

(4) P (n) = (C ) , 
m n ' 

P 

the general solution of Eq. (1) can be expressed as 

(5) C = A F J _ 1 + B F - P ( n ) 
n m n+1 m n m 

where F , - = F + F - and F0 = 0, Fi = 1, since F ,- and F are n+1 n n-1 u l n+1 n 
linearly independent (Fibonacci numbers), and therefore span the space of 
solutions of the homogeneous part (e). 

2. THE PARTICULAR SOLUTION 

Since the particular solution of Eq. (1) is of the form 

m 
(6) (C ) = V a . n1*1"4 , 

n Z-r im 

P i=0 

substitution of (6) into Eq. (1) yields 
m m m 

(7) Y a. (n + 2)mA = V a. (n + I)™"1 + V a. n111"1 + n m . L-d im JLd im Z-* im 
i=0 i=0 i=0 

By transposing and expanding these terms and then equating coefficients of, 
say, the n "J terms for j ^ 0, the general term of (7) becomes 

/o m-j 2 (m- j + l ) n m - j 2 j m(m- l ) - (m- j+ l )n m " j \ 
( V + 1! a ( j - D m + + j ! a 0 m / 

. / > - J a . + ( m - j + Dn m - 3
 + _ + m t m - l ) » » ( m - ] + l )nm-J ) 

\ jm 1! (j-l)m j ! 0m/ 
(8) 

- a. n J = 0 j ^ O and all non-negative integers, n. 
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Since this equation is satisfied for all non-negative integer values of n, it i s , 
in particular, satisfied for n ^ 0. Therefore, combining like subscripted 
a. terms, this equation becomes 

_a. + ( 2 i - l ) ( m - j + l ) + . . . + 
jm 1! (j-l)m 

(9) 
, (2j - l)m(m - l)(m - 2) - » (m - j + 1) _ A 
• .o ' a~. — u 

.]! 0m 

Solving (9) for a. immedia t e ly y ie lds 

j - 1 ._. j - 1 
(10) a. = Y V l^L^^^ ^ j - i ^ / m - A 

jm dLj 1m (j - i)! (m - j).f Z«J im I j - I / 

Consequently, from Eq. (10), an expression for each a. of Eq0 (6) has been 
obtained in terms of the previous a. . 

For the particular case in which j = 1, Eq. (10) reduces to 

(H) a l m = a 0 m m . 

But Eq. (8) and those terms of the type aft n yield the expression 

/-,r»\ m m 
(12) - a 0 m n = n , 

which is valid for all non-negative integers n. Consequently, this equation 
immediately yields the result 

(13) a Q m = -1 

for all non-negative integers m. From Eq. (11), therefore, it is evident that 

(14) a l m = -m 

for all non-negative integers m. 
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Using the previously derived expressions, it is now possible to generate all of 
the coefficients, a. , of Eq. (6). In fact, the following theorem provides an 
expression for the a. which is independent of any summation. 

Theorem: 

3J\3 / (15) a j m = a . . { 7 ) for all j < m 

Proof by mathematical induction: 
From Eq. (10), it is evident that 

<16> V D ( 3 + D = Eai(J +D( 2 J + 1 _ i - 1 J 

i=0 

By the use of mathematical induction it can be easily verified that for j = 0 
and j = 1, 

= a M 
33\3 / 

(17) a . m = a . . ! " 1 ] for • 0 < m < j 

Therefore, assume 

33\3 / (18) a. = a^( . J for some particular j 

It must be shown that 

( 1 9 ) a(j+l)m = a ( j + l ) ( 3 + l ) ( j ^ l ) 

From Eq. (18) it is immediate that 

(20) i . / . , - = a . J J . J for i < 1(3+1) i i \ 1 / 

Substituting expression (20) into (16) yields 
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<21> VIHW-XX"""-"^ 1 ) 
i=0 

Multiplying both sides of (21) by 

(22) 

transforms the above equation into 

G-0 

(23) Vtyj+l)( j^ l) ~ S a i i ( 2 J + 1 _ 1 - 1] V.(m-T-l)'. ' (j + 1+ i): 
i=0 

But from Eq. (10), 

(24) a , . ^ 
(j+l)m 

= ya. (^^ - D(. f"1 .) 
Z~/ im \ j + 1 - \J 
i=0 

By substituting (18) into (24), one obtains the equation 

J 

i 
i=0 

(25) a , . ^ = V a . . ) ^ 1 " 1 - 1 ) - 1 ? / -r—rrj. i. i >\ 
! (j+l)m £*«s \\x 1! (m - j - 1)! (j + 1 - i) 

Consequently, equating expres s ions (23) and (25) yields the de s i r ed r e su l t that 

) ( j + i ) = <26> Vl)(J+l)(j + l) = a ( j + l )m ' Q - K D -

From this theorem and Eqs. (4) and (6), the particular solution of expression 
(1) can now be written in the final form 
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m 

i=0 

where, from (10) and (26), it is seen that 

k-1 k-1 

p=0 p=0 

where a~. = -1 and a-, = -k . 

3. THE GENERAL SOLUTION 

Using the expressions for the particular solution of (5) which were de-
rived in the previous section, the general solution of Eq. (1) can now be found. 
Assuming the general solution is of the form 

(29) C = A F _ + B F - P (n) , 
n m n+1 m n m 

an expression for A and B will now be derived. ^ m m 
From Eq. (29), it is clear that 

(30) C0 = A. - P (0) . 
' u m m 

But from Eq. (27), it is immediately evident that 

(31) P (0) = a 
m mm 

and, consequently, Eq. (30) becomes 

(32) A = CA + a 
m 0 mm 

Substituting this expression into Eq. (29) and solving for B by setting n = 1 
yields 
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(33) ]B = C- - Cn - a + P (1) . 
m 1 0 mm mN 

But since from Eq. (3) 

m 
(34) p (l) = Y \ . , 

in / Ji 1m 
i=0 

Equation (33) now becomes 

m-1 
(35) B m = Cl - C0 + J2. a. lm 

i=0 

The final expression for the general solution, Eq. (29), can be written 

m-1 
(36) C = (Cn + a )F ^ + ( Ci - C0 + T ^ a. F - P (n) . 

n 0 mm n+1 * u /,„.y 1m n m 
1-0 

4. THE USE OF OPERATORS TO FIND THE PARTICULAR SOLUTION, P (n) 

An interesting method for finding the particular solution of Eq, (1) with-
out the necessity of solving a large system of linear equations will now be in-
vestigated. The material in this section is experimental and unrigorous. For 
the difference operator, A, the method is valid for polynomials but for the 
forward shifting operator, E, the limitations are less clear. This method 
uses the two operators E and A which are defined in the following manner: 

(37) E[f(n)] = f(n + 1) 

and 

(38) Af(n) = f(n + 1) - f(n) 

Consequently, 
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(39) E = A + 1 . 

From Eq. (37), it is possible to write (1) as 

(40) (E2 - E - 1)C = n m . 

Therefore, the particular solution of this expression is the function generated 
by using the inverse operator (E2 - E - 1)"" , on n . That i s , 

(41) Pm(n) = (E2 - E - D ' V 1 . 

But from Eq. (39), it is immediate that 

(42) _ i = _ 1 
(E2 - E - 1) (A,2 + A - D 

From the definition of the Fibonacci generating function [ 1 ] , 

00 

1 V ^ i 

r^7= 2/i«* 
(43) 

1 _ v _ -v2 

i=0 

it is seen that 

(44) l l _ = - ^ F . ^ A 1 

tt-A-A») i=0 

Therefore, from Eqs. (41). (42), and (44), 

00 

(45) Pm(n) = .J\l+^m) 
i=0 

But from Eq. (38), i t is clear that 
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(46) A^n311) = 0 for all i > m. 

Consequently, the final form of the particular solution can be written as 

m 
(47) Pm(n) = - £ F 1 + 1 A W 

i=0 

As an example^ suppose m = 2. Then (47) reduces to 

(48) P2(n) = - ( F ^ 2 + F2[ (n + I)2 - n2] + F3[ (n + 2)2 - 2(n + I)2 + n2]) 

Combining terms reduces this equation to 

(49) P2(n) = -(n2 + 2n + 5) . 

Another expression for P (n) can be derived solely in terms of E. 
Clearly, 

(50) 1 1 / 1 
(E2 - E - 1) E2 J x _ _1 _ J_ 

But, once again, the right side of this expression can be written as 

( 5 1 ) E ^ ^ * 
* i=0 

Consequently5 the final expression for the particular solution can be written 
as 
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(52) Pm(n) = | ] F i + l E " ( i + 2 ) ( n m ) 

i=0 

where 

(53) E(n m ) = (n + l ) m 

and 

(54) E"1^111) = (n - l ) m 

Here we stop when n is reduced to zero. These solutions are of a different 
form than those using A and include the homogeneous part , too. We note the 
equivalence in a paper by Ledin [6]. See Brother Alfred [9] and Zeitlin [10]. 

50 CONCLUSION 

As far as the authors know, the conditions under which the methods in 
Section 4 remain valid is an open and interesting question. Douglas Lind has 
pointed out that if C - = C + n were to be solved by the method (E - 1)C 
= n, then 

k=0 

diverges unless some stopping rule is invoked. 
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ON PRIMES AND PSUEDO-PRiJVtES 
RELATED TO THE FIBONACCI SEQUENCE 

EDWARD A. PARBERRY 
Pennsylvania State University, State College, Pennsylvania 

The two sequences |U i and JV } which satisfy the recurrence rela-
tion f(n + 1) = f(n) + f(n - 1), and the initial conditions: J i = U2 = 1; Vj = 
19 V2 = 3; are called the Fibonacci and Lucas sequences 5 respectively. These 
sequences have some interesting divisibility properties which are related to the 
study of prime numbers. For instance 9 it is well known that every prime num-
ber divides infinitely many of the Fibonacci numbers [1, Th. 180, p. 150]; but, 
although for any particular prime we can give any number of the terms which 
it divides s we cannot in general give a general rule for finding the least such 
number. This is the so-called "rank of apparition" problem, where the rank 
of apparition of a number n, designated by o> , is the subscript of the least 
Fibonacci number which n divides. Wall [2] has shown that a number m di-
vides U if and only if a> divides N. This property is used frequently in 
the text without further reference. 

The particular divisibility properties with which this paper is concerned 
are the two "Lucas" equations which hold for all prime m > 5 [1, p. 150]: 

(1) U ( m _€ } = 0 (mod m) 

(2) U m = €m (mod m) , 

where 

[ 1 if m = ±1 (mod 5) 
-1 if m = ±2 (mod 5) J* 

Clearly it would be nice if (1) and (2) were to hold only for prime m, but this 
is not the case. 

In [3] , Emma Lehmer shows that there are infinitely many composite 
numbers, m, for which (1) is satisfied. She calls these numbers Fibonacci 
pseudo-primes. Her result is proved here as a special case of Theorem 3S 

and is extended in Theorem 4 to show that an infinite proper subset of her 

49 
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pseudo-primes also satisfy (2). For the purpose 
a composite number, m, which satisfies both (1) and (2), and which is rela-
tively prime to 30, a strong pseudo-prime. 

The main results in the text are as follows: 
Theorem 1. Let n be either a prime >5 or a strong pseudo-prime, 

then: 

(3) \] = 0 (mod n), iff n E 1 (mod 4), 
2(n-V 

(4) V1 = 0 (mod n); iff n = 3 (mod 4) 
2 ( Q-€n) 

Theorem 2. Let (n,30) = 1, and let m = U , then the following are 
all equivalent: 

(5) Un = €n (mod n) ; 
n ii 

(6) U( v = 0 (mod m) ; 
m 

(7) U1 = 0 (mod m) ; 
7 r (m-€ ) 
2 m 

(8) U s € (mod m) . 
m m 

Theorem 3. Let n be a prime > 5, or a strong pseudo-prime/ then 
for m = U 2 n , 

(9) U/ _ v = 0 (mod m); and m is composite. 

Remark: Theorem 3 is precisely Emma Lehmer!s observation in [3] for 
n actually prime. However5 it was not clear in her proof that the relation de-
pends only on n satisfying (1) and (2), and (n,30) = 1. Theorem4 now deter-
mines those n for which m = LL satisfies relation (2) as well. 

2n 
Theorem 4. If m = U? as in Theorem 3, then m is a strong pseudo-

prime if and only if n s 1,4 (mod 15). 
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T h e o r e m 1 es tab l i shes an identity s i m i l a r to (1) which gives a fur ther 

n e c e s s a r y condition for p r ima l i ty (and s t rong pseudo-pr imal i ty) . This r e su l t 

does not go ve ry far in es tabl ishing a s e t of sufficient condi t ions, but i t has the 

saving fea tures of de termining the pa r i ty of the rank of appar i t ion of many 

p r i m e s (Corol lar ies 1 and 2) , and of reso lv ing the conjecture by D. Thoro [ 4] 

that no p r i m e of the form 4n + 3 divides any Fibonacci number with an odd 

subsc r ip t (Corol lary 3). 

Theo rem 5 i s the famous Lucas theorem on the p r imal i ty of Mersenne 

n u m b e r s (numbers of the form 2 - 1 where p i s a p r i m e = 3 (mod 4)). It i s 

included h e r e because T h e o r e m 1 al lows a new and e l emen ta ry proof. 

It i s obvious [ 1 , p . 150] that U i s p r i m e only if n = 4 , o r n i s p r i m e . 

C lea r ly if m = U is p r i m e , i t m u s t satisfy (1), (2), and (3) when taken a s a 

subscr ip t . However if U i s not p r i m e , i t need not a - p r i o r i sat isfy any of 

them. T h e o r e m 2 shows that indeed U sa t i s f ies al l th ree t e s t s , and in fact 
P 

that U , if not p r i m e , gene ra t e s an infinite s e t of s t rong p s e u d o - p r i m e s 
r ecu r s ive ly . 

The following ident i t ies a r e used in the text and may a l l be found in [ 2 , 

pp. 148-150] . 

/ 1 f t , TT an - ^ , . - 1 1 + N/5 
(10) u = H , where a = - 0 = - — ^ i — 

n rp & 4§ 

(11) Vn = an + f 

(12) Un = ( -D n "V n , Vn = (-DnV_n 

[|(n-l)] 
(13) (a) * - \ - £ (2k\ ,) 5* 

k=0 

(13) (b) 2n"1Vn = y . (l) 5k ; 
[|(n-l)] 

2-J \2k) 
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(14) Vn+l* = *• ^ n ' V = 1 ; 

(15) (U ,'V ) < 2, and equality holds iff n = 0 (mod 3); 

(16) U2 - U -U ^ = (-l)11"1 

n n-1 n+1 

( 1 7 ) V n = U n + 1 + U n -1 

Also, in the proof of Theorem 5, we use the following theorem by Lucas 
[ 5 , p. 302]: 

(18) If to = N - 1, or N + 1, then N is prime 

L e m m a *• U a + b = U a V b + ( " 1 ) a U b -a 

Proof. Vb - (^fy+""' 
a+b 0a+b , a0b b0a 

a - p + a p - a p 

a+b ^+b b-a ^b-a £ -f _ (^)a£ z_L_ 
N / 5 <V/5 

= U a + b - ( " 1 ) a U b -a 

Lemma 2. (i) mV = U (mod 5) ; 
m m 

(ii) U = m (mod 5), if m = 1 (mod 4) ; 

(iii) U = -m (mod 5), if m = 3 (mod 4) ; 

(iv) U = - o-m (mod 5), if m = 0 (mod 4) ; m u 
(v) U = -^m (mod 5), if m = 2 (mod 4) . 
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Proof. F r o m (13), 

[|(n-lj] 
(19) 2 - \ = £ ( 2 k \ l ) 5 k ^ n ( - d 5) 

k=0 X f 

and 

[i(n-l)l 
(20) 2 ^ ^ = ^ ( 2 k ) ^ = * ( m 0 d 5 ) 

k=0 ^ ' 

Multiplying (19) and (20), and dividing out 2 n " , we get (i). F r o m 
4n 4n+l 

F e r m a t f s t heo rem, 2 = 1 (mod 5), 2 = 2 (mod 5), e t c . , and the o ther 
re la t ions follow s ince (2,5) = 1. 

T h e o r e m 1. Let n be e i ther a p r i m e > 5 o r a s t rong p seudo-p r ime . 
then 

(3) U x = 0 (mod n) iff n = 1 (mod 4) 

(4) V = 0 (mod n) iff n = 3 (mod 4) 
2 ( n - c n ) 

Proof. In Lemma 1, l e t 

a = i ( n - € n ) , b = i ( n + €n ) , 

then by Eq. (2), 

2 ( n " €n ) 
(21) U = U 1 V + (-if U = €n (mod n) 

3 ( Q - 6 n ) 2(n+cn) 

now 

2 ( n " €n ) 

\J1 = U x = 1, and (-1) u = € (modn) iff n 5 1 (mod 4) 
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(22) U 1 V 1 = 0 (mod n) iff n = 1 (mod 4) 
l ( n _ €n ) l ( n + 6 n ) 

Also , from (1), 

(23) 
(n - e n ) . l ( n + C n ) | ( n _ e n ) 

e l < 
Now suppose n = 1 (mod 4 ) , and the p In, while p 

from (22), 
e ! u i 

then 

V*„> 
and from (23), 

f^n* 
which i s imposs ib le s ince by (14), 

(Vv' V«n>) = 1 

Hence 

U 1 iff n = 1 (mod 4) , 
2(n"V 

which proves (3). 
If, on the other hand, n = 3 (mod 4); then (21) shows that p|n implies 

U V 
l ( n _ €n ) l ( n + £ n ) 

= ±2 (mod p) . 

Therefore 
Aj- , n\ = 1 ; 

U ^ ) 
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hence from (23), 

55 

V 
| ( n -€n ) 

And finally if n = 1 (mod 4) , then n lU- ; and s ince 

I 2 ( n"V 
/ U , V \ < 2 , n J i 9 

Coro l l a ry 1. If p = 3 (mod 4) , then co i s even, 

Proof. This follows from (1) and T h e o r e m 1, s ince co |p - e which i s + 1 P | P 

2 (P - € ) . 
Coro l l a ry 2. If p = 13 , 17 (mod.20)?then t o p i s odd9 

Proof. Here € = - 1 , p = 1 (mod 4) , hence ^(p - e ) i s odd. T h e r e -
fo re , s ince u i 

2 (p-y 
impl ies to ^ t P - e p ) , 

co i s odd. 
P 

Coro l l a ry 3. (Thoro [3]) If P | U ( 2 n + 1 ) ? then p ^ 3 (mod 4). 
Proof. P)Uon+-| impl ies w |2n + 1 which in turn impl ies p = 2 , o r 

p = 1 (mod 4) by Coro l l a ry 1. 

T h e o r e m 2. Let (n,30) = 1, and l e t m = U . Then the following a r e 

a l l equivalent: 

(5) (a) U n 5 €n ( m o d n ) 

(6) (b) 

(7) (c) 

(8) (d) 

U(m-€ ) " ° (m0d m ) ; 
v m 

U-
2 ( m - €m ) 

= 0 (mod m) 

U = € (mod m) m m 

Proof. ( a )^^ (b ) . 

F r o m Lemma 25 we see that U = m = i n (mod 5), s ince n i s odd. 

There fo re € = e $ and replac ing e in (a)9 we have 
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n U - c -*=>U U = U 
n m n u - e m - c 

1 J n m m 
( b ) ^ M c ) 
Since n i s odd, and U is odd (since 3 | n ) we have: 

U = HI 
n 

U -*=*-n m - € -«^n m - e m m 2 m n U, 

2 ( m - €m ) 

(c) =Md) 

Using L e m m a 1, we have 

( 2 4 ) U m = U l , / . + (-1) - = (-1) (mod m) 

Now since n is odds we see by Coro l la ry 3 , that 

U = m = 1 (mod 4) n 

Hence 

(-1)2 m = € 
m 

(d) ^ ( c ) 

Compar ing (d) with (24), we see that 

(25) U l V l 
I ( m - €m ) 5 ( m +€m ) 

0 (mod m) , 

and from (16), we see that 

IP - U U 
HI m - e m+€ m m 

(-1) E 1 (mod m) , 

hence 

(26) U U s 0 (mod m) . m - e m+e m m 
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Now suppose p e jm 9 and P°^^m_e y then P j V ^ m + € } by (25), 

57 

Also 

(D \n and i s therefore odd? hence 

a) o M m - € ) =^oj ¥m - c =^-pe JrU 
A -e/f m m ^ m -€ 

m 

Therefore^ Eq„ (26) impl ies that p U ,^ . But &> i s a l so odd, hence 
^ l I m+€ w p 

I n F 

w | m + 6 =^w 
PI m p 

which i s a contradict ion s ince 

2 m F U 

i^J 

( • • 2
( m + e m ! 

, V 
l ( m + €m • ) < 

Hence 

e s e 
p m =**p U l 4(m-€ ) 2V m 

which m e a n s that 

iTL 
~(m-e ) 2 m 

Q . E . D . 

T h e o r e m 30 Le t n be a p r i m e > 5 , o r a s t rong p s e u d o - p r i m e , then 

for m = U 2 n J 

and m is compositee 

U ( m -€ ) = ° ( m o d m ) 
m 

Proofo We rjote that U 0 = U V by L e m m a 1, and i s there fore com-2n n n J 

posi te for n > 2, 
Now, using (2) and (17): 

U 0 E U V s € V = 6 (U ^ + U ) (mod n) , 
2n n n n n nN n+€ n-€ 

n n and using (1), and L e m m a 1: 



58 ON PRIMES AND PSEUDO-PRIMES [Feb. 

UQ = € (\Jt ^ , \ = € (U V^ + ( - l ) nU , £ v \ 2n n l (n+€n) I n y n 6 ^ _ ( n -€n ) y 

= e 2 V = V , s € (mod n) . n € € n 
n n 

Hence , n | m - € ; which, s ince n and m a r e odd9 imp l i e s : 

(27) 2 n | m - e Q - U 2 n = m | u } . 
I I n 

To complete the proof, we note that by Lemma 2 , 

U 0 = m = i n (mod 5), hence e = e 2n " m n 

T h e o r e m 4, If m = U 2 a s in Theo rem 3 , then m is a s t rong pseudo-

p r i m e if and only if n = 1,4 (mod 15). 

Proof, F r o m Theorem 3 , and L e m m a 1, 

I( m-em) 
U » = U1, , , \ + , . + ( _ 1 ) ^ 

T?(m-e ) -^(m+e ) m 
2 m 2 m 

Now if m = e (mod 4) , then 2n - ( m - € ) by (27); hence: 

U m = ( - i r m U€ = 1 (mod m) . 
m 

On the o the r hand, if m = -€ (mod 4) , then a new application of L e m m a 1 

g ives : 

Tr(m-2n-€ ) 
U m = U l V l + (-1] m U2n+€ ; 

m -i(m-2n-€ ) -±fai+2n+e ) Z n m 
2 m 2 m 

which shows, s ince now 2nhr(m - 2n - € ) , that 
u m 

U = U 0 ^ = U 0 £ £ ±1 mod m) , m 2n+6 2n-€ 
m m 
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hence U m = €m (mod m) iff c = 1 and m = l ( m o d 4 ) . This co r re sponds 

to n = ±1 (mod 5), and n = 1 (mod 3) ( i . e . , n = 1,4 (mod 15)). Q. E.D. 

Theo rem 5. (Lucas [ 5 , p . 310]) Let p = 3 (mod 4) be a p r i m e , then 

N = 2 P - 1 is a p r i m e if and only if V (p_i) = 0 (mod N). 

Remark . This i s the s imples t t e s t of p r imal i ty known; s ince 

V = V2, -v - 2 , 
2 n 2 ( n - l ) 

and hence can be calculated in only n s t eps . 

Proof. Sufficiency: 

Le t 

V 2 ( p _ 1 } - 0 (mod N) , 

then by L e m m a l s 

U = U / -vV / -v s 0 (mod N) = w_T 
2 P 2 ( P - D 2 ( P - D N 

and s ince 

= 2? : 

2 P 

( U
2 ( p - 1 ) > V

2 ( p - 1 ) ) = X ' <*N 

which by (18) gives that N i s p r i m e . 
Necess i ty : 
Le t N be p r i m e , and then s ince N = 3 (mod 4) , we have b y T h e o r e m l , 

N V l | ( N -€N ) 

and s ince 

2 P - 1 E 2 3 - 1 = 2 (mod 5) , 

€N = - 1 . The re fo re , N | V , _1 ) e Q . E . D . 
• 2 
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SOME FIBONACCI AND LUCAS IDENTITIES 
L. CARLITZ 

Dyke University, Durham, North Carolina 
and 

H. H. FERNS 
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1. In the usual notation, put 

_<**-{?• (1.1) F = £-=-£- , L = aa + /3n 

n a - p n ^ 

where 

(1.2) 
a = |(1 +V5), p = 4(1 - V5) f 

*2 = or + 1, £2 = £ + 1, ap = -1 

It is rather obvious that polynomial identities can be used in conjunction 
with (1.1) and (1.2) to produce Fibonacci and Lucas identities. For example, 
by the binomial theorem* 

2n a <• • » " - 1 : ("Vs 

s=0 

which gives 

n n 
tt-3) F 2n = E ( s ) F s ' L2n = E ( s ) L

£ , s / s 
s=0 * ' s=0 

and indeed 

Supported in part by NSF Grant GP 5174. 
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n n 
( 1 ' 4 ) F2n+k = 2 ( s ) F s + k s L2n+k = S ( s ) L s - & » 

s=0 X 7 s=0 x 

where k is an arbitrary integer. 
Again, since 

a3 = a(a + 1) = 2a + 1 , 

we get in the same way 

<"> -3,* - E (:)>*.*. n̂+k = E 0 ^ 
s=0 s=0 

More generally, since 

aT = F a + F - 9 r r - 1 

it follows that 

<«> *»* • E (") *K3u- v* - E (") » » r t 
s=o x ' s=o ' 

This can be carried further. For example, since 

(1.7) a2m = L m « m - < - l ) m , 

we get 

*2mn+k Z-# v L) s m ms+k ' 
s=0 \ / 

= V" / ^(n-sJ tm+D/nV 

s=0 
(1.8) 

T - V ( 1 x (n - s ) (m+l ) /n \ T s T 
ij2mn+k " ZJI {~l) s V m s + k 

s=0 
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The identity (1.7) generalizes to 

(1.9) a™ = ! l 2 f f
m - (_l)m F | - 1 > m 

m m 

Indeed (1.9) i s equivalent to 

which is obviously true. From (1.9)s we obtain 

n 
F n F = V / 1)(n-s)(m.+l)^n-s F s 

m rmn+k xLr (r- l)m rm ms+k 9 

s=0 
(1.10) 

n 
7n T „ y ^ / ^ (n -sMm+l^n-s ^ s 

s=0 
m rmn+k x J v~ ; (r- l)m rm ms+k 

With each of the above identities is associated a number of related iden-
tities. For example, we may rewrite 

r a = F a + F -r r - 1 

as either 

r r 
a - JP a = F * or a - F ^ = F a 

r r - 1 r - 1 r Hence we obtain 

s=0 
(1.11) 

E (-i,s(y F F = F F 
r r(n-s)+s+k r - 1 k ' 

JLX 

J2 (-D ( s ) F ? L r ( n - s ) + s + k = F r - 1 
S=0 v ' 

L k 
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and 

s=0 
(1.12) 

£W)»-sQF„:sF = F n F rs+k r n+k 

s=0 
rs+k r n+k 

We remark that (1.9) can be generalized even further, namely to 

(1.13) F asm - F a ™ = < - l ) s m F , , , 
rm sm (r~s)m 

and (1.10) can now be extended in an obvious way. 
2. Additional identities are obtained by making use of formulas such as 

(2.1) a2 + 1 = aV§~ . 

Note that 

(2.2) jS2 + 1 = -j3v5 . 

Thus we get 

E (sV2s = 5n/2 *n • S (sVs = (-1)n 5n/2 ^ • 
s=0 ^ ' s=0 

so that 

n 

^ s j ^ s + k ~ ° a - |8 S / \ /o Ta+k . i xn ^n+k 

/ n \ F = 5n/2 a - (-1) P s=0 

It follows that 
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(2.3) 
s=0 

2s+k 5 ( n - l ) / 2 L 
n+k 

(n even) 

(n odd) , 

S imi la r ly 

(2.4) Eft)-
s=0 ' 

2s+k 
5n/2 L n+k (n even) 

5 < n + 1 ) / 2 F n + k (n odd) 

We omit the v a r i a n t s of (283) and (2,4). 

We can genera l ize (2el) a s follows^ 

(2.5) 2m 2 m - 1 
2m+l x T /=-

« = L9™+1 a " L9.™^A 2m+l 2m 

The cor responding formulas for a r e 

(2.6) 
02m = -FQ p\/S - L0 , 2m 2 m - l 

^ - • - W '.«>* • 
We therefore get the following generalizations of (2.3) and (2.4): 

(2.8) 

(2.9) 

n 

Z2 W L2m-1 
s=0 

n 

X ) (s)L2m-l 
s=0 

2ms+k 

J2ms+k 

5 F 2m n+k 

1 2m n+k 

( 5 n / 2 F n L , ] 2m n+ic 
(m+l)/2 n 

( 5 F2mFn+k 

(n 

(n 

(n 

(n 

even) 

odd) , 

even) 

odd) , 

(2.10) !>>M(°) 
s=0 

L 2 m + 1 F 2m(n-s)+n+k 

0 (n even) 

- ( D - D / 2 ^ n 2 • 5V 
F 2 m ( n o d d ) > 
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n i n/2 2 / 

(2.11) E ^ - ' Q L ^ L ^ ^ ^ 2m 

0 (n s=0 

We omit the variants of (2.8), • • • , (2.11). 

3, In the next place, 

n n 

a + «*)°a + x)». v C°Vrxr v c v >*-E(;WS(:)= 
r=0 N / s=0 
2n k 

= yx k v ( n i n Vr-
L«d £~i \rf^L - r / k=0 r=0 

On the other hand, 

(1 + a x r ( l + x)11 = (1 + a2x + ax2) 

n 

E 
r=0 
n 

E 
r=0 
2n 

E 
k=0 

/ n \ r r , 1 la x (a 4 

w 
Q«r*rE 

s=G 

3s<2k 

x ) r 

( ^ r " S 

X ) ( k 3 

s 
X 

s \ 2k-

r 
-3s 

Comparing coefficients of x we get 

<«> E &.*" > - E (k! ,)(k; >2k-3" 
r=0 ' v ' 3s-2k v ' x ' 
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It therefore follows that 

*» S(;)(^r)'ry- E L 1 s)(k .- >2k.3s+) 
r=0 W X ' 3s£2k X ' X ' 

and 

r=0 3s£2k 
L2k-3s+j 

for all j . In particulars for k = ns these formulas reduce to 

E ©*'«, • E (.".)(*) 
r=0 3s ^2n 

F2n-3s+j 

and 

«•« E(;)!Vj= E (£)(?>, 2n-3s+j , 
r=0 * ' 3s^2n 

respectively,, 
We have similarly 

n n 
s a + A,»(1-*,» = £(») ^£w> s (S> 

r=0 s=0 

2n k 

k=0 T=Q f 
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(1 + Qf2x)n(l - x) n = (1 + ax - a*x2f 

r r /- xr 
x (1 - ax) r=0 x ' 

r = 0 ^ / s=0 x ' 

= E « k - k E w ) t " s ) ( k ; s ) 
k=0 2s<k V I X ' 

Comparing coefficients of x we get 

*•> E <-«^(;)(k ° r)«2r - «k E <-»B(k ° s)(k -. *) 
r=0 x / x ' 2s^k 

It follows that 

k 

M E w>k-r(;Vk - - W , - »*, E <-«t - s)(k 
r=0 W X f 2s<k X ' X 

k 

«.« s < W ; ) ( k » V r + J - Lk+j 2 <-»s(k! .f 
r=0 x ' x / 2s£k \ / X 

In particular, for k = n, we get 

»••» E W u V ' ^ , - *„+i E <-»s (t) ft) • 
r=0 ^ ' 2s<n 

(sao, £<-!,»-'(;)\r+) . v . £ <-Wa"s)M 
r=0 x ' 2s^n \ I \ I 
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More general results can be obtained by using (1.7). For brevity, we 
shall omit the statement of the formulas in question, 

4. The formulas 

k=o V / k=o \ / x ' 

were proposed as a problem in this Quarterly (Vol. 4 (1966), p. 332, H-97). 
The formulas 

•k ' 

were also proposed as a problem (Vol. 5 (1967), p* 70, H-106). They can be 
proved rapidly by making use of known formulas for the Legendre polynomial. 

We recall that [ l , 162, 166] 

->-±M-->)M k=0 

(4.5) 

s0!(-)k(-r=s-"iww 
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If we take u = (x + l ) / ( x - 1), we get 

(4.6) 

(4.7) 

k=0 x ; k=0 \ / > / 

t(^»k-E<-u""t)(^k>k,»-»""k-
k=o ^ / k=o > ' N ' 

Multiplying both s ides of (4.6) by i r and then take u = a,p. 

a - 1 = a , we get 

It follows that 

(4.8) 

zQ!*kt i-zQ(°;k)"i+k-n • 

k=0 X ' k=0 > / x / 

k=0 w k=0 x / x / 

Z ^ t k ) Lk+j = L U \ k )Lj+k-n (4.9) 
k=0 % f k=0 

F o r j = 0, (4.8) and (4.9) reduce to (4.1) and (4.2), respect ively . 
If in the next place we rep lace u = a2

9j32 in (4.6), we get 

t&^-Utiy •k+j 
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n , % n 

£ 0 ' ^ •§(:)(• : ^ •k+j 

so that 

(4.10) Z-#tkl F2k+j Z ^ l k / I k JFn-k+j ' 
k=0 x 7 k=0 X I X I 

(4.11) Z ^ t k ) L2k+j " Z ^ ( k ) ( n k )Ln-J 
k=0 X / k=0 % f X ' 

These fo rmulas evidently include (4.3) and (4.4). 

In exact ly the same way (4.7) yie lds 

k=0 X / k=0 \ / \ I 
F 2k+j -n ' 

z@\^i>"i;)(\+j L 2k+j -n 9 

k=0 x ' k=0 

and 

k=0 X / k=0 W V / 

k=0 X / k=0 X f X f 



72 SOME FIBONACCI AND LUCAS IDENTITIES [Feb. 

The identities (4.8), ••• , (4.15) can be generalized further by employ-
ing, in place of (4.5), the following formulas for Jacobi polynomials 1, 255 : 

eU)«=Z(n-i)(nr)(^)k(^)n"k 

/A + nV^/nVn + ̂  + 1)k/x-l\k 

\n )h\v (X + 1)* v 2 / 

-MIH^^-r 
where 

(X + l ) n = (X + 1)(X + 2)--- (X + n), (X + l)o = 1 

The final results are 

- sc-x-sM'-ise^ 1 , k F 
j+k-n' 

k=0 X ' X / X ' k=0 \ / 

+ 1 ) i L 
j - t k -n ' 

<«»> E(n,;xX-"K)-(^jE^) 
11 ' ' (n + X + M- + D k 

(A + D t
 F n-k+j ' 

<- E(^X->- • Ms®^^^w 



1 9 7 0 ] SOME FIBONACCI AND LUCAS IDENTITIES 73 

) k
 Fj+2k-n* «-> ze^(:-^-(^M^^'--k=0 k=0 

**> Z(T)(^H+i • (>: •)£(;) ^ * w 

«•» Z(\+A)(°:^2k+1 - (>:%(i) ^ P w 
k=0 v 'k=0 

n (n + A +fi + 1). 

We remark that taking u = -or in (4.6) leads to 

(4.24, ± l -W") ' Fk+J - ± <-l>°-*(») (» J ") r2n.2k+. , 
k=0 w n=0 w \ / 

(4.25, £ ( - « * ( » ) ' L n + . . £ , - ! , - * ( » ) (» k * ) L 2 „ . 2 k + . , 
k=0 k=0 

and so on, 
Some of the formulas in the earlier part of the paper are certainly not 

new. However, we have not attempted the rather hopeless task of finding 
where they first occurred. In any event, it may be of interest to derive them 
by the methods of the present paper. It would, of course, be possible to find 
many additional identities. 

REFERENCE 

1. E. D. Rainville, Special Functions, Macmillan, New York, 1960. 
• • • * * 
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RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions to 
Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit 
solutions or other information that will assist the editor. To facilitate their 
consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problems. 

H-166 Proposed by H. H. Ferns, Victoria, B. C, Canada. 

Prove the identity 

F 2mn i n 
l(°>' F . if m is odd 

m mi 

Y\ (-1) V F . if m is even , 
— m mi 
i= l 

where F and L are the n Fibonacci and n Lucas numbers, respectively. 

H-167 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Put 

00 

Sk = £ F~F~~T - n n+k n=l 

Show that, for k ^ 0, 

2 k k - [ | ( n - l)] 
( A ) F 2k + 2 S 2k + 2 = k + 1 " E F F 9 

n=l n n + 2 

74 
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2k-l k - [§| 
(B) F o l r ± 1 S O I _ , = Si - k + V L ^ J 

' 2k+l 2k+l * £JL F F l 0 
n=0 n n+2 

where £aj denotes the g r e a t e s t Integer function. 

Special c a s e s of (A) and (B) have been proved by Bro the r Alfred Brousseau , 

"Summation of Infinite Fibonacci S e r i e s , n Fibonacci Quar t e r ly ; Vol. 7, No. 2 , 

Apr i l , 1969, pp. 143-168. 

H-168 Proposed by David A. Klarner, University of Alberta, Edmonton, Alberta, 
Canada. 

If 

a . . (Vi;') 
for i5 j = l , 2 , - " , n , show that d e t { a . . | = 1. 

SOLUTIONS 

GENERALIZE 

H-137 Proposed by J. L. Brown, Jr., Ordnance Research Laboratory, State College, 
Pennsylvania. 

GENERALIZED FORM OF H-70: Consider the se t S consis t ing of the 

f i r s t N posit ive in tegers and choose a fixed in teger k satisfying 0 < k<^ N. 

How many different subse ts A of S (including the empty subset) can be 

formed with the p rope r ty that af - a" ^ k for any two e lements a? , aT? of A; 
that i s j the in tege r s i and k + k do not both appea r in A for any i = 1,2, 

• • • , N - k. 

Solution by the Proposer. 

Let N = r (mod k) so that N = tk + r with t a posi t ive in teger and 

0 <: r < k - 1. 

Each subse t A of S can be made to cor respond to a b inary sequence 

{ai9a2,ad9
B • • , a ' N ) of N t e r m s by the ru le that a. = 1 if i E A and a. = 

0 if i (J A. F o r a given subset A and i t s cor responding b ina ry sequence 

(ai$ aZ9 • • • , o ^ ) , define k b ina ry sequences a s follows; 
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A l 
A 2 

A r 

= (av « 1 + k . « 1 + 2 k » 

= (<V < W a2+2k' " 

r r+k r+2k 

"•'CW 
' " ' a2+tk) 

••-'ar+ik) 

Ar+1 " (ar+l' ar+l+k' ° r+l+2k' '" ' ar+l+(t-l)k) 

A k = (Vff2k'a3k'""'flftk) 

Then the subset A corresponding to (c^, a2, • •• , o>-^) satisfies the given con-
straint if and only if each A independently for m = 1,2,* °• ,k is a binary 
sequence without consecutive l f s . But it is well known that the total number of 
binary sequences of length n without consecutive I s is F 2 . Since each of 
the r sequences A- , - -« ,A has length t + 1 and each of the remaining 
k - r sequences A - ,• • • ,A, has length t, it follows that the total number 

r k—r of subsets with the required property is F +o F, _2 • 

Also solved by M. Yoder. 

FIBONOMIALS 

H-138 Proposed by George E. Andrews, Pennsylvania State University, University 
Park, Pennsylvania. 

If F denotes the sequence of polynomials F* = F2 = 1, F = F 1 + 
x " F 2 , prove that 1 + x + x2 + • • • + xp~ divides F +- for any prime 
p = ±2 (mod 5). 

Solution by L. Carlitz, Duke University, Durham, North Carolina. 

Let c£> (x) denote the cyclotomic polynomial: 

d>n(x) = n (xr - if(s) 

rs=n 

where JJL(S) is the Mobius function. We shall prove that F +- is divisible by 
<i> (x) if and only if n = ±2 (mod 5), where n is an arbitrary positive integer 
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(not n e c e s s a r i l y p r ime) . Indeed, we obtain the res idue of F - (model) (x)) 

for a l l n. In pa r t i cu l a r , we find that 

F n + 1 = 1 (mod <Dn(x) ) 

when n = ± 1 (mod 10). 

L Schur (Ber l iner Si tzungsberichte (1917), pp. 302-321) has proved that 
if 

Ft = F 2 = 1, F ^ = F _,, + x n F (n > 1) , 
1 L n+2 n+1 n — * 

then 

(1) 

where 

Fn+1 Xr
 { 1] X Le(k 

e(k) j"|(n + 5k)l, r = |"4(n + 2)1 

and 

/i n W l n - 1 , ,_ n-k+lx 
iL—S~JA - x ) - - (i - x ) ( 0 ^ k < n ) , 

T n l = ) (1 - x) ( l - x 2 ) . . . (1 - xK) 

(otherwise) 

r n l 
I, i s a polynomial in x with posi t ive in tegra l coefficients: a lso it i s evident 
from the definition that for \<L k ^ n , P i s divis ible by the cyclotomic 

polynomial <t> (x). 

Thus (1) impl ies 

»'.+i-«-«r^,B"iT.w]+<-i»r^"r,l ,[.<y * - * . « ) • 
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The following table is easily verified. 

n r e(r) e(-r) 

[Feb. 

10 m 

l O m + 1 
10 m + 2 

1 0 m + 3 

1 0 m + 4 

10 m + 5 
1 0 m + 6 

1 0 m + 7 

1 0 m + 8 

1 0 m + 9 

2 m 

2 m 

2 m 

2 m + 1 

2 m + 1 

2 m + l 

2 HI + 1 

2 HI + 1 

2 m + 2 

2 m + 2 

10 m 

10 m 

1 0 m + l 
10 m + 4 

10 m + 4 

1 0 m + 5 

1 0 m + 5 

10 m + 6 

10 m + 9 
10 m + 9 

0 

0 

1 
- 1 

- 1 

0 

0 

1 

- 1 
- 1 

Therefore, making use of (2), we get the following values for the residue of 
F n + 1 (mod <t>n(x) ): 

residue of F , - (mod <i> (x) ) 
n+i n 

10 m 

l O m + 1 

1 10 m + 2 

1 10m + 3 

1 0 m + 4 

1 10 m + 5 

10 m + 6 

j 10 m + 7 

10 m + 8 

10 m + 9 

m ( 1 0 m - l ) , m(10m+l) 9m ^ m 
x x + x ' = x + x 

m(10m+l) -x = 1 

o 1 
0 

(2m+l) (5m+2) _ 5m+2 

(2m+l)(5m+2) (2m+l)(5m+3) _ 4m+2 6m+3 
—X — X — ~X — X 

(2m+l)(5m+3) _ 5m+3 
•—X zz ""X 

0 

0 

(m+l)(10m+9) _ -
X =• X 

As a check, we compute F - , 2j£ n £ 10, and the corresponding 
residues, 
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n 1 F ^i 

n+1 
2 

3 

4 

5 

6 

7 

8 

9 

1 +x 
1 + X + X2 

1 + X + X2 •+ X3 + X4 

1 + x + x2 + x3 + 2x4 + x5 + x6 

1 + x + x2 + x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + x9 

1 + x + x2 + x3 + 2x4 + 2x5 + 3x6 + 2x7 + 2x8 + 2x9 + 2x10 + x1 1 + x12 

1 + x + x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 3x8 + 3x9 + 3x10 

+ Sx11 + 3x12 •+ 2x13 + x14 + x15 + x16 

1 + x + x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 4x8 + 4x9 + 4x10 + 4X11 

+ 5x12 + 4x14 + 3x15 + 3x16 + 2x17 + 2x18 + x19 + x2 0 

79 
res idue 

(mod <I>n) 

0 

0 

1 = -x2 

-X2 - X3 

1 = -X3 

0 

0 

1 

Remarks, 1. If we use the fuller notation F (x) in place of F and € 
denotes a primitive n root of unity, then the statement F -(x) is divisible 
by <t> (x) is equivalent to F - (c) = 0. Using the recurrence for F , it is 
not difficult to show that, for n odd, 

F^(«) = K(n+3)(*)2-|^(n_1)(e)|2 > -n+r 

while for n even, 

Fn+1<€) = | * W e ) | 2 + e " k I F k < £ ) | 2 <n = 2k) 

2. In the next place, it follows from the recurrence that 

(3) 2 Fn+laI1 " £ \ f 
n=0 

oo 2k k2 
x 

k=0 W 

where 

(a)k = (1 a)(l - ax) • • • (1 - ax ) . 

Since 
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fc-£[k!V 'k r=0 

we get 

& f ; k]' k
2 

Fn + 1 = 1 ; i " r_ - ix k 

2k<n 

If we take a = x in (3), we get 

k2 00 . _ . . - 1 . . . . . - 1 

fer = n 

n =l k=0 K'k n=0 

1 + ] L F
n

x = L - ^ ) - = n ( i - x ) a - x ) 

by the first Roger-Ramanujan identity (see, for example, Hardy and Wright, 
Introduction to the Theory of Numbers, Oxford, 1954, p. 290). 

Incidentally, if 

Gi = G2 = 1, G n + 1 = Gn + x n Gn_1 (n > 1) , 

ther 

(4) 

1 we have 

n=0 

00 2 k k 2 +k v* a x 

and 

£.[V* Gn+1= 2- r . . - i ^ k 
11+1 2k<n 

If we take a = x in (4), we get 
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1 , r n f> x k 2 + k « 5n+2 - 1 , , 5n+3 " 1 

1 + G n x = £• -̂ yr = V } (1"x ) 

k=0 'k n=0 

by the second Rogers -Ramanujan identity* 

INTEGRITY 

H-140 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

F o r a posi t ive in teger m , let a = a(m) be the l e a s t posi t ive in teger 

such that F = 0 (mod m) . Show that the highest power of a p r i m e p dividing 

F i F 2 - - - F n is 

00 r-

k=l 

where [x ] denotes the g r e a t e s t in teger contained in x, Using t h i s , show that 

the Fibonacci binomial coefficients 

[-] 
F F • • • F m m - 1 m - r + 1 

F - F 0 • • • F 
1 2 r 

(r > 0) 

a r e i n t ege r s . 

Solution by the Proposer. 

It i s known [ D . D. Wall , "Fibonacci Se r i e s M e d u l o m , " Amer . Math. 

Monthly, 67 (1960), 525-532] that F = 0 (mod m) if and only if r = 0 (mod 

a(m)). Then the number of F with r < n which a r e exactly divis ible by p 

is [ n / a ( p ) ] , es tabl ishing the f i r s t p a r t Note that a(p ) - * ©o a s k-*©o, so 

for fixed p this is actual ly a finite sum. 

Now le t (m) = F - F • • • F . Then 
x u m 

m (r).'(m - r ) ! 
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It suffices to show that for any prime p , the highest power of p dividing the 
numerator is not less than that dividing the denominator. By the first part, 
this is equivalent to 

<*> £ r^vi * £ f-r-i+ £ r ^ l • 
k=l L a(V

K) J k=l L a(pK) J k=l L a(pK) J 

But the elementary inequality [x + y] 2: [ x ] + [y] shows that 

implying (*) and the result. 
Also solved by M. Yoder. 

* • - • • * 

[Continued from page 30. ] 
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ARITHMETIC OF PENTAGONAL NUMBERS 
RODNEY T. HANSEN 

Montana State University, Bozeman, Montana 

The pentagonal numbers are the integers 

Pn = f On - 1), n = 1,2,— . 

Each number p can also be derived by summing the first n terms of the 
arithmetic progression 

1, 4, 7, 10, 13, • •• , 3m - 2 . 

Geometrically, considering regular pentagons nomothetic with respect to one 
of the vertices and containing 2, 3, 4, • • • , n points at equal distances along 
each side, the sum of all points for a given n yields p . Pictorially we have 
the following: [1 , p. 10] 

In this paper we shall give several algebraic identities involving pentagonal 
numbers of different orders . The principal result is that an infinite number 
of pentagonal numbers exist which a re , at the same time, the sum and differ-
ence of distinct pentagonal numbers. A similar result for triangular numbers 
has been found by W. Sierpinski [2 , pp9 31-32]. 
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A table of p f s will f i r s t be cons t ruc ted . 

Pn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

145 
590 

1,335 
2,380 
3,725 
5,370 
7,315 
9,560 

12,105 

1 

_ j -
176 
651 

1,426 
2,501 
3,876 
5,551 
7,526 
9,801 

12,376 

2 

- 5" 
210 
715 

1,520 
2,625 
4,030 
5,735 
7,740 

10,045 
12,650 

3 

~TF" 
247 
782 

1,617 
2,752 
4,187 
5,922 
7,957 

10,292 
12,927 

4 
— 22" 

287 
852 

1,717 
2,882 
4,347 
6,112 
8,177 

10,542 
13,207. 

5 

35~ 
330 
925 

1,820 
3,015 
4,510 
6,305 
8,400 

10,795 
13,490 

6 

~wr 376 
1,001 
1,926 
3,115 
4,676 
6,501 
8,626 

11,051 
13,776 

7 

70" 
425 

1,080 
2,035 
3,290 
4,845 
6,700 
8,855 

11,310 
14,065 

8 

~ 92" 
477 

1,162 
3,147 
3,432 
5,017 
6,902 
9,087 

11,572 
14,357 

9 

ITT 
532 

1,247 
2,262 
3,577 
5,192 
7,107 
9,322 

11,837 
14,652 

We note from the above-given a r i t hme t i c p r o g r e s s i o n that 

p - p - = 3n - 2 , for n = 2, 3 , • • • , 
*n * n - l ' ' 

and from the above table that 

P8 = P4 + P7» P24 == P? + P23> P49 = PiO + P48> a n d P83 = Pl3 + P82 • 

Noting that the f i r s t t e r m on the r ight of each of the above equal i t ies i s of the 

form 3n + 1, we find that 

?3nHhl = • ^ 2 L 1 L [3(n + 1) - 1 ] = I ( 2 7 n 2 + 1 5 n + 2 ) 

Setting 

p - p 1 = 3 m - 2 = ~ (27n2 + 15n + 2) ^m F m - 1 2 N 

we have 

m = ~ (9n2 + 5n + 2) , 

an in teger . The f i r s t t heorem follows. 
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T h e o r e m 1. F o r any in teger n > 1, 

Pi(9n2+5n-f-2) ~ P < 3 n + 1 ) P#(9n+5) 

A subset of the above defined pentagonal numbers yields o u r m a i n resu l t . 

T h e o r e m 2. F o r any posit ive in teger n , 

1 [9(3n)2+5(3n)+2] [3(3n)+l] 3n j - 9 ( 3 n ) + 5 ] 

Pi ~ P 
i-(6561n4+2430n3+4B5n2+5Gn+8) ~(6561n3+2430n2+495n+50) 

Proof. F i r s t i t is n e c e s s a r y to exp res s 

Pi 
•i(81n2+15n+2) 

in t e r m s of n. 

i (81n 2 + 15n + 2) ( r i -, 
P l = i 3 A(81n2 + 15n + 2) -
i(81n2+15n+2) * M - J 

~ (19 ,683n 4 + 7290n3 + 1485n2 + 150n + 8) . 

Equating p g - pQ_± to 

yields 

P-s 
^(81n2+15n+2) 

s = i (6561n4 + 2430n3 + 495n2 + 50n + 8) 
o 

By mathemat ica l induction on n we have that s is an integer; completing the 

proof. 
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F o r n = 1 and 2 we haves for example , 

P49 = PiO + P48 = Pii93 " P1192 

o r 

3577 = 145 + 3432 = 2,134,277 - 2,130,700 

and 

Pi78 - Pi9 + Pl77 ~ Pi5,813 " Pi5,812 

o r 

47,437 = 532 + 46,905 = 375,068,547 - 375,021,110 . 

A r a t h e r cur ious re la t ionship ex i s t s between n and p ; namely , that 

each posit ive in teger canbe expres sed in an infinite number of ways as a quad-

ra t ic express ion involving a pentagonal number . 

Theo rem 3. Any posit ive in teger n can be exp res sed a s 

1 + -J 1 + 24p * ^s-n 
6 - s 

for any posit ive in teger s. 
Proof. F r o m the definition of a pentagonal number we have 

p = » (3 • sn - 1) = 3 ( s n ) 2
9 ~ s n 

*sn 2 2 

0 = 3s2n2 - sn - 2p 
^sn 

+s ± ^ ( - s ) 2 - T ( 3 s 2 ) ( - 2 p s n ) 1 ± ^ 1 + 24p" 

2 • 3s2 
sn _ * *sn 

6s 
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Taking the posit ive root , the des i red r e su l t i s obtained. 

The pentagonal number s a r e not c losed with r e spec t to the operat ion of 

mult ipl icat ion. However* the following th ree c a s e s a r e quickly verified.9 

P8T = P2 P39» Pi8T = P4 P40* a n d P392 = P? P47 • 

It i s not known if an infinite number of such pa i r s exist . 
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CORRECTIONS 

P l e a s e make the following changes in "Associated Additive Decimal Digital 

B r a c e l e t s , " appear ing in the Fibonacci Qua r t e r l y in October , 1969: 

On page 288, l ine 2 5 , change " t e r m s " to "forms* " 

On page 289, l ine 2 , change " 8 " to read "B . " 

On page 290, l ine 1 1 , change "7842" to "6842. " 

On page 290, l ine 1 3 , change "and" to read "And, " 

On page 294, l ine 20 , change "19672" to r ead "1967). " 

On page 294, l ine 26 , change "1969" to r ead "1959. " 

P l e a s e change the formulas given in "Diagonal Sums of General ized 
P a s c a l T r i a n g l e s , " page 353, Volume 7, No. 5 , D e c e m b e r , 1969, l ines 11 and 
12, to r ead 



LITTERS TO THE EDITOR 

Dear Editor: 

It may be of interest to your readers to note that there is a simple ele-
mentary proof of Theorem 7, page 91, Vol. 6, No. 3, June 1968, by D. A. 
Lind, which uses the method of descent. 

To restate the Theorem, 
Theorem 

(1) 5x2 ± 4 = y2 , 

if and only if x is a Fibonacci number and y is the corresponding Lucas 
number. 

Proof. It is a simple identity to show that a Fibonacci and Lucas number 
satisfy (1) using the identities u = u . - - u .., v = u ,., + u - , and J & n n+1 n-1 n n+1 n-1 
u. ,-u - - u2 = (-1) . n+1 n-1 n 

To show the converse, suppose x is the smallest positive integer which 
is not a Fibonacci number which satisfies (1). Then x > 4 so that clearly 
2x < y < 3x and y is the same parity as x. Hence, let y = x + 2t with 
t < x. By substitution, 

solving for 2x, 

so that 

4x2 - 4tx - 4t2 ± 4 = 0 

2x = t + %/5t2 ± 4 

5t2 ± 4 = s2 

where t and s are integers. Therefore t is a smaller solution to (1) than 
x so t must be a Fibonacci number and s is the corresponding Lucas number. 
But then 
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2x = u ± v n n 

and s ince v > u ? n > 1 

2x = u + v = 2u ,-n n n+1 

so that x i s a Fibonacci number if t i s , QED, 

I have continued to enjoy the Fibonacci Qua r t e r ly s ince i ts inception. 

Keep up the good work. 

David E . Fe rguson 
P r o g r a m m a t i c s s I n c . , 
L os Angeles9 California 

D e a r Edi tor : 

I cheerfully donate these formulas to you. I think they have a p lace in 

the Quar te r ly . If you ag ree and feel you would l ike to develop a note on the 

b a s i s of these fo rmu la s , I would be happy indeed, 

L = L n n 
L n = L 2 n + 2 ^ 
L n = L 3 n + 3 L n ( " « + 1 
L 4 = hA + 4L2 + 2 ( - l ) n + 1 ( - l ) n 

L 5 = LK + 5L3 + 5L ( - l ) n + 1 ( - l ) n 
n 5n n n -

L 6 = ha + 6L4 + 9L2 ( - l ) n + ± + 2 ( - l ) n 
n 6n n n - n 

L 7 = ^ + 7L5 + 14L 3 ( -D + 7L ( - l ) n 

n 7n n nv - n -
L 8 = L 0 + 8L6 + 2 0 L 4 ( - l ) n + 1 + 16L2 + 2 ( - l ) n X (~l)n 

11 8 n n n n+1 n n+1 
L 9 = L n + 9L* + 2 7 L 5 ( - l ) n + 1 + 30L3 + 9L ( - l ) n + 1 ( - l ) n 

n 9 n n n n+1 n n o n+1 n L1 0 = L 1 A + 10L8 + 3 5 L 8 ( - l ) n -1 + 50L4 + 25L2 ( - l ) n L + 2 ( - l ) n 
n lOn n n n n 

Har lan L. Umansky 
E m e r s o n High School 
Union City9 New J e r s e y 

• • * * * 



SPIRALS, CHECKERBOARDS, POLYOMIMOES, 
AND THE^ FIBONACCI SEQUENCE 

JEAN H. ANDERSON 
2400 lone Street, St. Paul, Minnesota 55113 

Any number N may be written as the sum of powers of two; that i s , 

N = a - • 211"*1 + a • 2n~2 + • • • + a, • 21 + a0 • 2° , n-1 n-2 * u ' 

where the coefficients are each either 1 or 0. Thus, for example, 

37 = 32 + 4 + 1 
= 1 • 25 + 0 • 24 + 0 • 23 + 1 • 22 + 0 • 21 + 1 • 2° 
= 100101 in binary notation. 

Suppose that, beginning at the right-hand side, the whole expression for 
N is coiled up and fitted onto a checkerboard with a0 • 2° at the lower-left 
(red) of the four central cells and the other terms proceeding in a counterclock-
wise manner. Then the upper left (black) cell of the board coincides with a63 • 
263. We can say that a vacant cell represents a 0 coefficient and a cell con-
taining a pawn represents a 1 coefficient Thus any number N (smaller than 
264) may be indicated by a unique arrangement of pawns on the checkerboard; 
conversely, any particular arrangement of pawns corresponds to a unique num-
ber N. 

The following observations may be made: 
1. Since the spiral can be continued indefinitely or terminated at any in-

teger, checkerboards of any size may be so covered. 
2. Cells can be labeled with the corresponding exponent of two. Pawns 

placed on 0, 4, 16, and 36, for example —along the upper left diagonal — 
correspond to the binary number 1000000000000000000010000000000010001, 
or 68,719,542,289 in the customary base ten notation. 

3. A k-by-k board can be used to represent any number K less than 
2 ( k ) l 

4. Any cell has a numerical value greater than the sum of all lesser 
cells. 

90 
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5. With the usual placement of the checkerboard having the lower left 
corner colored red, all red cells are labeled with even numbers — including 0 
— and all black cells are labeled with odd numbers. 

6. The "parity" of a number N is defined as the absolute value of the 
difference between the number of pawns on black cells and the number of pawns 
on red cells in its checkerboard representation. With an even number of 
pawns the parity is always even, while an odd number of pawns has an odd 
parity. 

7. Any cell n lies rookwise adjacent to at most four cells, with no cell 
greater than (k)2, the size of the board,, These cells are : 

(1) If n is a square, the adjacent cells are n + 1, n - 1 , n + W n 
+ 3, and n + 4*/n + 5, These values of n lie at the corners of the spiral 
which fall along the diagonal going upward to the left and passing through 
cells 0 and 1. If n - 1 is negative (for the 0 cell only), replace n - 1 
by 7. 

(2) For cells lying along the diagonal upward to the right, that i s , if 
n is of the form a • (a + 1), then the adjacent cells are n + 1, n - 1 , 
n + 4[\Zn] + 5, and n + 4[Vn] + 7, where the brackets [ ] indicate 
n - 1 is negative (for the 0 cell only), replace n - 1 by 3. 

(3) For all other cells, the adjacent cells are n + 1, n - 1 , n + 
4[*s/n] + 6 + j , and n - 4 |Vn ] + 2 - j , where j = +1 if n > [\fri ] % 
[\ln + 1 ] , and j = -1 if n < [Vn] . [*s/E + 1] . If n = [Vn] . (Wn + 
1 ] , the formulae in (2) should be used; if \Jn = [ \ /n] , the formulae 
in (1) should be used, 
The above rules enable us to travel from any cell to any other cell on any 

size checkerboard, without even seeing the board, simply by repeated appli-
cations of algebraic formulae. The only limitation is that the board be either 
square — (k)2 — or square plus one extra row — (k) • (k + 1) — for any k. 

NUMBERS REPRESENTED BY p PAWNS 

One can easily (in theory, anyhow) make a list N(p) of all numbers which 
can be expressed by exactly p pawns. For p = 5, for example, the list 
begins with N(5) . = 25 - 1 = 31, and continues 47, 55, 59, 61, 62, 79, 87, 
91, 94, 103, 107, 109, 110, 115, 117, 118, 121, ••• . 
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The number of integers less than 2 which can be represented by one 
pawn is obviously z; it is the number of ways of selecting one object from z 
identical objects. The number of integers less than z which can be repre-
sented by p pawns is 

G) ^>J p!(z - p)! 
or, for 5 pawns and a regulation checkerboard, 

64 • 63 • 62 • 61 • 60 
(?) - 7,624,512 , 

a not inconsequential number. For z = 16 the number of integers represented 
by 5 pawns drops to 4368. 

Question: What is the largest integer (decimal notation) that can be rep-
resented by 5 pawns on a 4-by-4 checkerboard? (See Fig. 1.) 

Answer: The board has (4)2 = 16 cells. The cells giving the largest 
number using five pawns are cells 15, 14, 13, 12, and 11, corresponding to 
the number 215 + 214 + 213 + 212 + 211, or 32768 + 16384 + 8192 + 4096 + 2048 
= 63, 448. 

THE FIBONACCI SEQUENCE 

Some interesting patterns on the checkerboard are obtained by plotting 
the Fibonacci sequence: F t = 1, F2 = 1, F 3 = 2 ,* 8 ' '^k+o = F, + F, - . 
(At each step simply add together the binary representations of the last two 
numbers. FA = F2 , F3 , F4 , F7 , F i 0 , F13, F i 6 , and F2 2, alone of ail Fibon-
acci numbers less than FlS0 (= 1548008755920), possess the property that each 
pawn lies rookwise adjacent to at least one other pawn. This happens to be 
the property defining the polyominoes. Specifically, F10 (= 55) is the U-
pentomino and F13 (= 233) is the P-pentomino. (See Solomon W. Golomb, 
Polyominoes, for an extensive discussion of polyomino properties and problems.) 

The Lucas sequence (Li = 1, L2 = 2, L. 2 = L . + L . - ) similarly 
produces several polyominoes at the beginning of the run, notably the pentom-
inoes P (= 47) and W (= 199). Other sequences do the same. (See V. E. 
Hoggatt, J r . , Fibonacci and Lucas Numbers.) 

Question: Given a large enough checkerboard, can any polyomino be so 
positioned as to result in a Fibonacci (or Lucas) number? 

Answer: Unsolved, 
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Fig. 1 
(The numbers in the center of the squares represent blue. The numbers in the 
corners represent red. The red cells of the checkerboard are the screened ones.) 

POLYOMINOES 

Finally we arrive at the focal point of this paper. We have shown that 
any set of pawns uniquely represents a particular number N. A particular 
configuration of pawns may be shifted up or down or sideways, or even rotated 
or reflected, thus generating an entire sequence of numbers describing the 
relative positions of the pawns within the set and differing only in the place-
ment of the set on the board* For example, the X-pentomino can be described 
by 171, 1287, 10254, 163896. We can specify that a configuration of pawns is 
best described by the least number N. 

Our purpose is to find the number P(p) of p-ominoes. 
We observe first that, since all p-ominoes can be placed on a checker-

board having no more than p x p cells, there are at the very most 
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I A = (P2H 
VV p! (p2 - p)I 

different p-ominoes. Thus for p = 5, P{5) — 53,130. This is the number of 
ways of choosing any five cells of the 25, without specifying that they be rook-
wise connected. 

But only the straight p-omino needs such a large board; in fact, it r e -
quires only one cell more than a (p - 1) x (p - 1) board. All other p-ominoes 
can be fitted onto a (p - 1) x (p - 1) board and in fact require only one cell 
more than a (p - 2) x (p - 2) board. For p = 5, P(5) thus becomes no more 
than 1 plus 

L - 2)2 + 1J 

or P(5) — 1 + 252. Actually, only tt pieces require such a large board; all 
the rest can be fitted onto a (p - 3) x (p - 3) board plus one cell. For p = 5, 
then, P(5) — 1 + tt + 1. The argument can be generalized for any p. 

A candidate for tj has at least one pawn which lies in the strip (p - 2)2 

= (p - 3)2; that i s , the decimal representation of a tA polyomino lies in the 
(p-2)2+l (p-3)2+l 

range 2 F down to 2 F . For pentominoes this range is 1024 to 32. 
Going back to the list N(5) of numbers having five pawns in their plots, 

we can see that for connected cells the parity of N(5) is no more than (p + 2)/4, 
that i s , either 3 or 1 for p = 5. This reduces the number of candidates for 
polyominoes; specifically, a parity of 5 means that all pawns lie on cells of the 
same color. A 4x4 board with one additional cell has 9 red cells and 8 black 
cells, producing 

8+ 0 • 126 + 56 = 182 

numbers of parity 5. A 3x3 board with one extra cell has 5 red cells and 5 
black sel ls , together yielding two numbers of parity 5. 

Now at last we start counting polyominoes. We countone straight p-omino 
first. Then we examine each number in the range 2 p " down to 2P (1024 
to 32 for the pentominoes), and finally count one for the p~omino formed by the 
first p cells of the spiral. Certain restrictions in the range can often be de-
veloped. Within the range, an acceptable number must have exactly p onefs 
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in its binary representation, and must have a parity of no more than (p + 2)/4. 
Then we look at the p exponents n i 5 n 2 s ° 8 s *% associated with 1 coefficients 
(in other words, the labels on the cells occupied by pawns). We calculate the 
rookwise adjacent cells associated with nt (from paragraph 7) and see if at 
least one of these is included in the set of p exponents, say n3. If so, we 
calculate the neighbors of n3 and see if at least one of these is included in the 
set of exponents. If any one of the exponents cannot be reached by a series of 
steps from n1? the number being tested does not represent a polyomino. 

Finally having excluded all numbers which do not correspond to poly-
ominoes, we are of necessity left with the list of numbers which do. We do not 
yet, however, have P(p), the total number of p-ominoes, for we have not yet 
excluded rotations, reflections, and translations. Methods of algebraically 
excluding these duplications can obviously easily be developed. 

The general expression for N(p) , corresponding to the straight p -
omino, is 2 p " p " • (2P - 1), and for N(p) . it is 2 - 1 , correspond-

^ mm ^ 
ing to an occupation of the first p cells of the spiral. 

Question: What are the ??bestn decimal and binary representations and 
parities of the twelve pentominoes ? 

Answer: 
Parity 

1 
1 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 

serves an nETf for effort, with a "well done!" for replotting it into its "best" 
configuration and decimal representation. 

Answer: Parity 1, 13 pawns forming a W, 991177* 

•k • -k -k • 

I 
L 
Y 
N 
X 
V 
T 
W 
F 
Z 
U 
P 

Binary 

11 11100 00000 00000 

Bonus Question: 

11111 00000 
11110 00001 
11001 00011 
101 01011 
11 11100 
11 10011 
11 01101 
11 01011 
11 00111 
1 01111 
11111 

The reader who dete: 

Decimal 

126976 
992 
963 
803 
171 
124 
115 
109 
107 
103 
55 
31 

rmines the 



LINEAR RECURSION RELATIONS - LESSON SEVEN 
ANALYZING LINEAR RECURSION SEQUENCES 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

Frequently one encounters problems such as the following: Find the next 
three terms in the following sequences: 

1, 3, 5, 7, 9, 11, ••• 
3, 4, 7, 11, 18, 29, ••• 
3, 6, 12, 24, 48, 96, ••• 

As has been pointed out many times, the solution to such problems is highly 
indeterminate. It is "obvious" that the general term of the first sequence is 

T = 2n n 

But 

T = 2n - 1 + (n - l)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)V 

where V is the n term of any sequence of finite quantities would do just as 
well. Similarly for the other cases. 

Or looking at the matter from the standpoint of linear recursion relations, 
the six numbers in each case might be the first six terms of a linear recur-
sion relation of the sixth order. Hence any infinite number of possibilities 
ar ises . 

How can the problem be made more specific? Possibly, one might say: 
Find the expression for the n term of a linear recursion relation of mini-
mum order. Whether this is sufficient to handle all instances of this type is an 
open question, but it would seem to take care of the present cases. 

The solutions in the three instances listed above are: 

T n+1 

n+1 
T n+1 

= 2T - T . n n - 1 
= T + T -n n - 1 
= 2T n 

96 
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If a sequence has terms which were derived from a polynomial expres-
sion in n9 this expression can be found by the method of differences. As was 
pointed out in the first lesson, if the terms derive from a polynomial of degree 
k, the k differences are constant and the (k + 1) difference is zero. A 
simple method of reconstituting the polynomial is to use Newton1 s Interpola-
tion Formula: 

(1) f W = ^ ) / ^ A ^ ! + 

Af(0jf(1)
 + f(o) 

k th (k) 
where A f(0) is the k difference taken at the zero value and n is the 
factorial n(n - l)(n - 2) • • • (n - k + 1) of k terms. 

Example. Determine the polynomial of lowest degree which fits the fol-
lowing set of values. 

n 
0 

1 

2 

3 

4 

5 

6 

7 

8 

f(n) 

6 

11 

48 

135 

290 

531 

876 

1343 

1950 

Af(n) 

5 
37 

87 

155 

241 

345 

467 

607 

A2f(n) 

32 

50 

68 

86 

104 

122 

140 

AH 

18 

18 

18 

18 

18 

18 

Using NewtonTs Interpolation Formula, 

f(n) = M n ( n - l)(n - 2) + | £ n(n - 1) + 5n + 6 

f(n) = 3n3 + 7n2 - 5n + 6. 
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Suppose that we have a sequence whose terms are the sum of the terms 
of two sequences: (1) A sequence whose values derive from a polynomial: (2) A 
sequence whose terms form a geometric progression* Is it possible to deter-
mine the components of this sequence ? 

Imagine that the terms of the sequence have been separated into their 
two component parts. Then on taking differences, the effect of the polynomial 
will eventually become nil. How does a geometric progression function under 
differencing? This can be seen from the table below. 

a(r - l)3 

a r ( r - I)3 

ar2(r - I)3 

Clearly, differencing a geometric progression produces a geometric progres-
sion with the same ratio. By examining the form of the leading term, one can 
readily deduce the value of a, the initial term of the geometric progression 
as well. 

Example. 
POLYNOMIAL AND GEOMETRIC PROGRESSION COMBINED 
n 
1 

2 

3 

4 

5 
6 

7 

8 

9 

T n 
4 

16 

70 

224 

616 
1624 

4346 

12040 

34444 

12 

54 

154 

392 

1008 

2722 

7644 

22404 

42 

100 

238 
616 

1714 

4972 

14710 

58 

138 

378 
1098 

3258 

9738 

80 

240 

720 

2160 

6480 

In the last column, one has a geometric progression with ratio 3, but not in the 
previous column. Hence the polynomial that was combined with the geometric 

ar 

ar2 

ar3 

ar4 

a(r - 1) 

ar(r - 1) 

ar2(r - 1) 

ar3(r - 1) 

a(r - I)2 

ar(r - I)2 

ar2(r - I)2 

ar3(r - l)2 
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progression was of degree 3. For the geometric progression, r = 3 and 

a x 24 = 80, so that a = 5 . 

Eliminating the effect of the geometric progression from the leading terms 
gives: 

58 - 23 x 5 = 18 
42 - 22 x 5 = 22 
12 - 2 x 5 = 2 

4 - 5 = -1 

To apply Newton1 s Formula, we have to go back to the zero elements by 
extrapolation. 

A3f(0) = 18, A2f(0) = 22 - 18 = 4, Af(0) = 2 - 4 = -2 
f(0) = -1 - (-2) = 1 . 

Hence 

f(n) = i £ n(n - l)(n - 2) + | j . n(n - 1) - 2n + 1 

f(n) = 3n3 - 7n2 + 2n + 1 

Hence the term of the sequence has the form: 

T = 3n3 - 7n2 + 2n + 1 + 5 x 3 n _ 1 . n 

The recursion relation for this term can be readily found by the methods of the 
previous lesson. 

POLYNOMIAL AND FIBONACCI SEQUENCE 

If we know that the terms of a sequence are formed by combining the 
elements of a polynomial sequence and a Fibonacci sequence, we have a situa-
tion similar to the previous case. For whereas the polynomial element vanishes 
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on taking a sufficient number of differences, the Fibonacci element persists . 
This can be seen from the following table. 

n 

1 

2 

3 

4 

5 

6 
7 

8 

T 
n 

Ti 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

A T 
n 

To 
Ti 

T2 

T3 

T4 

T5 

T6 

A2T 
n 

T_t 

To 

T2 

T3 

T4 

A3T 
n 

T-2 

T_i 

To 

Ti 

T2 

Example. 

n 

1 

2 
3 

4 
5 

6 

7 

8 

9 

T 
n 2 

8 
35 

106 
238 

453 

772 

1220 

1825 

6 

27 

71 
132 

215 

319 

448 

605 

21 

44 

61 

83 

104 

129 

157 

23 

17 

22 
21 

25 

28 

-6 

5 

-1 

4 

3 

The last column has a Fibonacci property, but the previous column does not. 
Hence the polynomial must have been of degree three. We identify the first 
terms of the Fibonacci sequence as being 3, the zero term as 4, the term with 
-1 subscript as - 1 , etc* The effect of these terms can be eliminated from the 
leading edge of the table to give: 23 - 5 = 18; 21 - (-1) = 2 2 ; 6 - 4 = 2; 2 -
3 = - 1 . Calculating the zero differences as before, the final form of the term 
to be found is: 

T = 3n3 - 7n2 + 2n + 1 + V n n 
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where 

Vi = 3, V2 = 7, and V ± 1 = V + V n . 1 '̂ n+1 n n-1 

PROBLEMS 

1. Determine the polynomial for which f(l) = -4; f(2) = 22; f(3) = 
100; f(4) = 200; f(5) = 532; f(6) = 946; f(7) = 1532; f(8) = 2320. 

2. The following sequence of values correspond to terms T1? T2J etc. 
of a sequence which is the sum of a polynomial and a Fibonacci sequence: 0, 
4, 12, 29, 53, 87, 132, 192, 272, 381, Determine the polynomial and the Fib-
onacci sequence components* 

3. The values: 13, 72, 227, 526, 1023, 1784, 2899,4506,6839 include 
a polynomial component and a geometric progression component Determine 
the general form of the term of the sequence* 

4. The sequence values: 4, 14, 12, 22, 20, 30, 28, 38, 36, ••• com-
bine a polynomial and a geometric progression. Determine the general form 
of the term of the sequence. 

5. The sequence values: 7, 19, 45, 109, 219, 395, 653, 1017, 1515 
have a polynomial and a Fibonacci component Determine the general form of 
the polynomial and find the Fibonacci sequence. 
(Solutions to these problems can be found on page 112.) 

* + * • * 

CORRECTION 

Please- make the following changes to ^'Remark on a Theorem by Waksman,ff 

appearing in the Fibonacci Quarterly, October, 1969, p. 230, 
On line 1, change *Q = Q* U {l}" to °Q* = Q U {l}" 
Online 9, change °[2, p. 62]" to *[2, §62]" 
On line 18, change^ V n Q" = to*e V H U" 
Online 20, change *a prime" to xVan integer p E Q*" 



AN ALGORITHM FOR FINDING THE GREATEST COMMON DIVISOR 
V. C. HARRIS 

San Diego State College, Sao Diego, California 

Our p rob lem i s to find the g r e a t e s t common d iv isor (m,n) of two p o s i -

t ive in t ege r s m and n0 If m = 2TM and n = 2 N where M and N a r e 
a b odd and a and b a r e nonnegative i n t e g e r s , then (msn) = (2 ,2 )(M,N)„ 

a b 
Since (2 ,2 ) i s obtained by inspect ion, we a r e mainly concerned with find-
ing (M,N). Al ternat ively , we a s s u m e m and n a r e odd. 

Suppose m and n odd with n <• m . Then 

(1) m = q-jn + R l s 0 — Rj < n , 

and 

(2) m = (qt + l )n + (Rt - n) , 0 ^ Rj < n , -n ^ Rt - n < 0 . 

Select (1) o r (2) according as Rj o r R$ - n i s even (since n i s odd, one of 

Rj and Rj - n i s even, the o ther odd) and call the r e m a i n d e r Sj so that s^ = 
c 2 r^ where rA i s odd and c i s pos i t ive . Then (m,n) = ( n , ^ ) and the next 

division is with n and r j . At each s t e p , the even r e m a i n d e r i s chosen, and 

the even p a r t divided out , before the next division is performed,, The l a s t non-

ze ro r e m a i n d e r i s (m,n) . 

As an example , we find (28567, 3829). The divisions a r e 

28567 = 7 • 3829 + 4 • 441 

3829 = 9 • 441 - 4 • 35 

441 - 11 • 35 + 8 • 7 

35 = 5 • 7 

Hence (28567, 3829) = 7„ F o u r divis ions a r e requ i red . One notes that Euclid1 s 

method r e q u i r e s 6 divis ions and the l e a s t absolute value a lgor i thm r e q u i r e s 5 

divis ions in finding this g, c. d9 
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AN ALGORITHM FOR FINDING THE GREATEST COMMON DIVISOR ^3 

We have the theorem? 
If 17(a,b) is the number of divisions required to find (a,b) by the given 

algorithm, then the pair (a,b) with the smallest sum such that 7)(a,b) = k is 
k+1 k k 

the pair (2 - 3 , 2 - 1 ) whose sum is 3 • 2 - 4 . 
Working backward, we see that the divisions involving the smallest divi-

dend and divisor at each step for various values of 7} are: 

V 

1 

2 

3 

4 

5 

1 

5 

13 

29 

61 

= 1-1 

= 1.3+2-1 

= 1 • 7 + 2. 3 

= 1 . 15 + 2 • 7 

= 1 • 31 + 2 • 15 

Divisions 

3 = 3 • 1 

7 = 3-3-2-1 

15 = 3*7-2*3 

31 = 3 • 15 - 2 • 7 

3 = 3.1 

7 = 3-3-2-1 3 = 3. 1 

2 n + 1 - 3 = 1 • (2n - 1) + 2 - (2 n _ 1 - 1), 

As a consequence, if a < 2 - 1, then 7}(a,b)< k. The results are 
tabulated: 

No8 of digits in a 

i)(a,b) < 

1 

r 4 
2 

7 

3 

10 

4 

14 

5 

17 

6 

20 

7 

24 

8 

27 

9 

30 

10 

34 

It may be remarked that primes 3, or 5, and so on, may be removed 
from m and n, so that all factors of 3, 5 and so on, may be dropped from 
the subsequent divisors. Of course, for other than small pr imes, this would 
not reduce the work involved,, Also, if base 2 is used, dropping factors of 2 
from the divisors is trivial. 



NOTE ON THE NUMBER OF DIVISIONS REQUIRED 
IN FINDING THE GREATEST COMMON DIVISOR 

V. C. HARRIS 
San Diego State College, San Diego, California 

Lame [1] has shown that in applying Euclid's algorithm to two positive 
integers a and b, the number of divisions required is not greater than five 
times the number of digits in the smaller of a and b. (Only base ten is con-
sidered in this note.) In the proof given byUspensky and Heaslet [2] an upper 
limit for the number n — 1 of divisions required is shown to be p/log-j^ + 1 
where p is the number of digits in the smaller of a and b and 

f = (1 + v£)/2 . 

We have f = 1.61803* so that log10£ ^ 0.208978 and l/log10£ ^ 4.7852. 
Hence the number N of divisions required is 

N = n + 1 < p(4.7852) + 1 . 

Hence 

N <r 5p --0.21.48p + 1 

and so 

N ^ 5p + 1 + [-0.2148p] . 

One could use the simpler but less accurate N — 5p - [p/5]. Using this, the 
improvement over Lame's statement would be 1 for 5 — p — 9, 2 for 10 — p 
^ 14, etc. 

REFERENCES 
1. G. Lame, "Note sur la limite du nombre des divisions dans la recherche 

du plus grand commun diviseur entre deux nombres entiers,?? C. R. Acad. 
Sci. , Par i s , 19, 1844, pp. 867-870. 

2. Uspensky and Heaslet, Elementary Number Theory, McGraw-Hill, New 
York, 1939, Ch. III. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. H1LLMASM 
University of Mew Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions to 
Professor A. P. Hillman, Department of Mathematics and Statistics, Univer-
sity of New Mexico, Albuquerque, New Mexico, 87106. Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should be 
received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of receipt 
of their contributions are asked to enclose self-addressed stamped postcards. 

B-l 78 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

For all positive integers n show that 

F = Y 2
n ~ i F + 2 n 

*2n+2 .A; *2 i - l 
1=1 

and 

1=1 

Generalize. 

B-l 79 Based on Douglas hind's Problem B-l65. 
+ + 

Let Z consist of the positive integers and let the function b from Z 
to Z + be defined by b(l) = b(2) = l f b(2k) = b(k), and b(2k + 1) = b(k + 1) 
+ b(k) f o r k = 1,2,° •• . Show that every positive integer m is a value of 
b(n) and that b(n + 1) <> b(n) for all positive integers n. 
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B-180 Proposed by Reuben C. Drake, North Carolina A T University, Greensboro, 
North Carolina. 

Enumerate the paths in the Cartesian plane from (0,0) to (n,0) that 
consist of directed line segments of the four following types: 

Type 

Initial Point 

T e r m i n a l Point 

1 I 

(k,0) 

(k,D 

n 
(k,0) 

(k + 1,0) 

in 

(k , l ) 

( k + 1 , 1 ) 

IV 

( k , l ) 

(k + 1,0) 

B-181 Proposed by J. B. Roberts, Reed College, Portland, Oregon. 

Let m be afixed integer and let G - = -0, Gc =• 1, G = G ., + G n 
° -1 o ' n n-1 n-2 

for n > 1. Show that GQ, G , G2 f G~ * e " is the sequence of upper left 
principal minors of the infinite matrix 

1 

rm-2 

0 

0 

0 

1 

G m - 2 + G m 

(~Dm 

0 

0 

0 

1 

G m - 2 + G m 

(-Dm 

0 

G 
m-

( 

0 

0 

1 

-2 + G m 

- l ) m 

B-182 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

Show that for any prime p and any integer n, 

F = F F (mod p) and np n p N ^ L = L L = L (mod p) np n p n N ^' 

B-183 Proposed by Gustavus J Simmons, Sandia Corporation, Albuquerque, New 
Mexico. 

A positive integer is a palindrome if its digits read the same forward or 
backward. The least positive integer n such that n2 is a palindrome but n 
is not is 26. Let S be the set of n such that n2 is a palindrome but n is 
not. Is S empty, finite, or infinite? 
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SOLUTIONS 

FIBONACCI PYTHAGOREAN TRIPLES 

B-160 Proposed by Robert H. Anglin, Dan River Mills, Danville, Virginia. 

Show that if x = F n F n + 3 , y = 2 F n + 1 F n + 2 , and z = F ^ , then 

X2 + y2 = z2 . 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

Let' t r = F , 0 and v = F , - . Then n+2 n+1 

u2 - v2 _ (u + v ) (u - v) = F + 3 F = x , 2uv = y, u2 + v2 = z , 

and hence x2 + y2 = z2, 

Also solved by Herta T. Freitag, Bruce W. King, Douglas Lind, John W. Milsom, A. G. 
Shannon (Boroko, T. P. N. GJ, Gregory Wulcyzn, and the Proposer. 

P E L L NUMBER IDENTITIES 

B-161 Proposed by John Ivie, Student, University of California, Berkeley, California. 

Given the Pe l l n u m b e r s defined by ? n + 2 = 2 P n + 1 + V^ P 0 = 0S P t = 19 

show that for k > 0: 

a) p k = 
[<k-l)/2] t-D/2J,/ k \ 

£ Ur + l)2 
r=0 \ / 

W) P2k = i i i ; j 2 r p r •m 
Solution by Douglas Lind, Cambridge University, Cambridge, England. 

Let 

a = 1 + \ / 2 , b = 1 - ViT 
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be the roots of the characteristic polynomial x2 - 2x - 1. It follows from the 
theory of difference equations that there are constants A and B such that 

P n = Aa11 + Bbn . 

Solving the system of simultaneous equations resulting by setting n = 0 , 1 , we 
find 

A = 1/2V§", B = -1/2V? . 

Hence 

P = _L (a
k - bk) = -L= E ("P/2 - <-DJ2j/2l K 2VT 2V5 j=0 V J A -I 

Cioc-i)] [!(k-D] 

Also, since a and b satisfy x2 = 2x + 1, we have 

2 r 

Po,,--= - ^ ( a ^ - b 2 k ) = - ^ ( f e a + l ) k - (2b + l ) b ) ,= -J_ (a
2k 

2 k 2V2 ' 2V2~ 

UH'bf) - a®* r 

4/so so/ve<i fry i/erfa T. Freitag, Bruce W. King, Gregory Wulcyzn, Michael Yoder, 
and the Proposer. 

A REPRESENTATION THEOREM 

B-162 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Let r be a fixed positive integer and let the sequence uj, u2,* • * satisfy 
u = u - ,+u 0 + • • • + u for n > r and have initial conditions u. = 2J~ n n-1 n-2 n- r 3 
for j = 1,2,« • • , r . Show that every representation of U as a sum of distinct 
u. must be of the form u itself or contain explicitly the terms u - , u 9 , 1 n n-* x n—& 
u - and some representation of u 
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Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

For r = 1, the theorem is trivial; we therefore assume r ^ 2. Firs t 
we show by induction that 

n 

E u. < u l 0 . l n+2 
i=l 

For n = l , 2 , ' " , r this is obvious; and if 

n 
J2 u. < un + 2* where n < r , 
i=l 

n+1 
S ui < \ + 2 + V l ^ Vf-3' 
1=1 

Now let 

k<n 

c(k) = 0 or 1 for all k9 be a representation of u and assume c(j) = 0 for 
some j with n - r + 1<. j <; n - 1* Then 

n-1 
__ c(k)u^< 

k<n £<n k=l J 

(n - r - 1 n-1 \ 

E \\Z \)-Vr+l k=l k=n-r / 
/ n - r - 1 \ 
1 j ^ . k n-r+11 n n 
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which i s a contradict ion. Thus we mus t have 

u = u - + • • • + u ,- + S , n n - 1 n - r + 1 

where S i s some represen ta t ion of u _ . 

See "General ized Fibonacci Numbers and the Polygonal N u m b e r s , " 

Jou rna l of Recreat ional Ma thema t i c s , July* 1968, pp . 144-150. 

Also solved by the Proposer. 

A VARIANT OF THE EULER-BINET FORMULA 

B-163 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let n be a posi t ive in teger . C lea r ly 

(1 + V 5 ) n = a + b V 5 n n 

with a and b i n t ege r s . Show that 2 i s a d iv i sor of a and of b . 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Le t 

a = (1 + V § ) / 2 and ]8 = (1 - V§) /2 . 

El iminat ion of ^ f rom L = an + fi1 and V 5 F = an - /311 gives 

2c/1 = L + V 5 > . n n 

T h u s , 

(1 + V 5 ) n = 2n~"1L + V5"(2n""1F ) , n n 

where a = 2 n ~ L n and b = 2n"~ F . 

Also solved by Juliette Davenport, Herta T. Freitag, John E. Homer, Jr., John Ivie, 
Bruce W. King, Douglas Lind, Peter A. Lindstrom, A. G. Shannon (Boroko, T. P. N GJ, 
Michael Yoder, and the proposer. 
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A GENERALIZED SEQUENCE WITH CHARACTERISTIC 1 1 , 1 H 

B-164 Proposed by J. A. H. Hunter, Toronto, Canada. 

A F ibonacci - type sequence i s defined by: 

G . 0 = G , - + G , n+2 n+1 n 

with Gi = a and G2 = b . Find the min imum posi t ive values of in tege r s a 

and b , subject to a being odd, to satisfy: 

G , G ^ - G2 = - l l l l l ( - l ) n for n > 1. n - 1 n+1 n 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

If the given equation i s t rue for any one value of n , i t i s t rue for all 

va lues of n; hence taking n = 2, we get 

a (a + b) - b2 = -11111 , 
4a2 + 4ab - 4b2 = -44444, 

(2a + b)2 = 5b2 - 44444 . 

Now 5b2 - 44444 > b2 l eads to b > 105; t ry ing b = 106, 107, • • • in s u c c e s -

s ion, one finds the sm a l l e s t value of b to make 5b2 - 44444 a squa re 

b = 111. However , th i s gives 2a + b = 131, a = 10, and a i s supposed to 

be odd. Continuing with b = 112, 113, • •9 , we find 

1662 = 5(120)2 - 44444 , 

which gives a = 23 , b = 120 as the sma l l e s t solution,, 

Also solved by Christine Anderson, Herta T. Freitag, John E. Homer, Jr., Gregory 
Wulczyn, and the Proposer. 

A MONOTONIC SURJECTION FROM Z + TO z" 

B-165 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 
Define the sequence |b(n)} by b(l) = b(2) = 1, b(2k) = b(k), and 
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b(2k + 1) = b(k + 1) + b(k) for k > 1 . 

For n > 1, show the following: 

(a) b ( [2 n + 1 + (-l)n /3) = F n + 1 . 

(b) bQi-^+i-ifysi = Ln . 

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico. 

(a) For n = 0,1 the formula is easily verified. Assume it is true for 
n - 2 and n - 1 with n >, 2; then if n is even, 

b [ (2 n + 1 + l) /3] = b[(2n - l ) /3 + b (2n + 2)/3] 

= F n + b [(2n _ 1 + l ) /3 ] 

= F + F - = F ^ . n n-1 n+1 

Similarly, if n is odd, 

b [ (2 n + 1 - 1/3] = F n+1 ' 

(b) For n = 1,2 the theorem is true; and by exactly the same argument 
as in (a), it follows by induction for all positive integers n. 
Also solved by Herta T. Freitag and the Proposer. 

* • • * * 

(Continued from page 101.) 

SOLUTIONS TO PROBLEMS 

1. . 5n3 - 4n2 + 3n - 8 . 
2. 3n2 - 8n + 4 and the Fibonacci sequence: 1,4,5,9,14,' °  • . 

3. 7n3 + 3n2 - 5n + 2 + 3x2n . 

4. 4n + 3 + 3(-l)n . 

5. 2n3 - 3n2 - n + 5 and the Fibonacci sequence 4L 

• • • • * 
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Mel Most 
Stephen Nytch 
Roger OfConnell 
P . B. Onderdonk 
F . J . Oss i ande r 
L. A. Pape 
R. J . Peg i s 
Mo M. Risueno 

*D0 W. Robinson 
*Azr ie l Rosenfeld 

To J . Ross 
F . G. Rothwell 
I. D. RuggLes 
H« J . Schafer 
J . A. Schumaker 
H. D. Seie ls tad 
B. B. Sharpe 
L. R. Shenton 
G. Singh 
David S ingmas te r 
Ao N. Spitz 
M. N. S. Swamy 
A. Sylves ter 

*D. E . Thoro 
H. L. Umansky 
M. E. Waddill 

*C, R. Wall 
*L. A. Walker 

R. J . Weinshenk 
R. A. White 
V. White 
H. E . Whitney 
P . A. Willis 
C h a r l e s Ziegenfus 

ACADEMIC OR INSTITUTIONAL MEMBERS 

SAN JOSE STATE COLLEGE 
San J o s e , California 
ST. MARYTS COLLEGE 
St. M a r y f s Col lege , Cal i fornia 

DUKE UNIVERSITY 
D u r h a m , No. Caro l ina 

VALLEJO UNIFIED SCHOOL DISTRICT 
Val le jo , California 

WASHINGTON STATE UNIVERSITY 
Pu l lman , Washington 

SACRAMENTO STATE COLLEGE 
Sac ramen to , California 

UNIVERSITY OF SANTA CLARA 
Santa C l a r a , Cal ifornia 

THE CALIFORNIA 
MATHEMATICS COUNCIL 

NORWICH UNIVERSITY 
NORTHFIELD, VT. WAKE FOREST UNIVERSITY 

WINSTON-SALEM, N . C 



BINDERS NOW AVAILABLE 
The F ibonacc i Associa t ion is making available a binder which 

can be used to take c a r e of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

11. . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ronica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 -3 /4 f l high from the 
bottom of the backbone, round c o r n e r e d , fitted w i th 
a 1 1/2 " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is d a r k 
g reen . There is a s m a l l pocket on the spine for holding a tab 
giving year and vo lume. These la t t e r w i l l be supplied with each 
o rde r if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3.50 which includes postage ( r ang ing 
f rom 50£ to 80£ for one b inder ) . The tabs wil l be sent w i th the 
rece ip t or invoice. 

All o r d e r s should be sent to : Bro ther Alfred. Brousseau , 
Managing Edi tor , St. Mary1 s Col lege, Calif. 94575 


