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FIBONACCI REPRESENTATIONS 1I

L. CARLITZ*
Duke University, Durham, North Carolina

1. Let R(N) denote the number of representations of

(1.1) N = Fk1+Fk2+"'+Fkt’
where
(1.2) k1>k2>--->kt_>_2.

The integer t is allowed to vary. We call (1.1) a Fibonacci representation of
N provided (1.2) is satisfied. If in (1.1), we have

- > i= ceo - H
(1.3) K-k 2 20 (=1, t-1; k22,

then the representation (1.1) is unique and is called the canonical representa-
tion of N.

In a previous paper [1], the writer discussed the function R(N). The
paper makes considerable use of the canonical representation and a function
e(N) defined by

(1.4) eN) = F + F +

k-1 T Fgpe1 o

It is shown that e(N) is independent of the particular representation. The
first main result of [1] is a reduction formula which theoretically enables one
to evaluate R(N) for arbitrary N. Unfortumtely, the general case is very
complicated. However, if all the k; in the canonical representation have the
same parity, the situation is much more favorable and much simpler results

are obtained.

* Supported in part by NSF grant GP-7855.
113



114 FIBONACCI REPRESENTATIONS — II [March

In the present paper, we consider the function R(t,N) which is defined
as the number of representations (1.1) subject to (1.2) where now t is fixed.
Again we find a reduction formula which theoretically enables one to evaluate
R(t,N) but again leads to very complicated results. However, if all the k; in
the canonical representation have the same parity, the results simplify con-
siderably. In particular, if

N =F, +-:++F ky >ky >+ > k. > 1),

=k -k 1 <s<r)y jr=kr’

fI'(t) = f(t, j1’ ceey, ]r) = R(t’N) ’
X t
FI‘(X) = F(x; j13"'9jr) =Zf(t; j;[:"'sjr)x s
t=1
GI‘(X) = F(X; jj, ceey, jr_ls j.r + 1) )

then we have

jo+1

r j +2
ws) o -XM_2_Jdg w-x"" @ ,0=0 @22,
where
ji+l
1 -
Gox) = 1, Gylx) = X_(T_??__)

In particular, if j; = - =jr’ then

00 . -1
> .6.@z" = {1~ [j+1]xz + 52,2

r=0

from which an explicit formula for Gr(x) is easily obtained. Also the case
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j1=-o.=j =j, j:k

leads to simple results.

In the final section of the paper some further problems are stated.

2. Put
ad F Fn+1
@.1) d@,x,y) = I 1 +ax "y ).
n=1
Then
o3 F F o F F
D@, x, xy) = I @ +ay "x ™) o 1 @ +ay % 2,
n=1 n=2
so that
(1 + axy)a, x, xy) = d@, y, x) .
Now put
[0 0]
2.2) @, x,3) = 3 Ak, m, na x™y"

k,m}1=0
Comparison of coefficients gives
(2.3) Ak, m,n = Ak, n-m,m) +Ak -1, n-m,m - 1),

where it is understood that A(kk,m,n) = 0 when any of the arguments is
negative.

In the next place, it is evident from the definition of e(N) and R(k,N)
that
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© F F 1 © K
2.4) 0 a+ax "y ™ = > Rk, N a N yN .
.n=1 N=0

Comparing (2.4) with (2.1) and (2.2), we get
(2-5) R(k: N) = A(ks e(N)’ N) .

In particular, for fixed k, n,

(2.6) Ak, m,n =0 (m#e@m).
It should be observed that A(k,e(n),n) may vanish for certain values of k
and n. However, since
R(n) = i Rk, n) = ff Ak, e(), n) ,

k=0 k=0

it follows that, for fixed n, there is at least one value of k such that
Ak, e(n), n) # 0 .
If we take m = e(n) in (2.3), we get

2.7 VR(t,N) = A, N -eN),eM)) + At -1, N - eN}), eN) - 1).
Now let N have the canonical representation
(2.8) N =TF +:00 +F
with kr odd. Then

e(N) = Fk1_1 4+ eee + Fkr—-l , ’

N -eM = F o+t
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117
Since kr > 3, it follows that

(2.9) N - e(N) = e(e(N)).

On the other hand, exactly as in [1], we find that

ee) - 1) = N-e(N) - 1.

It follows that

A, N - eN), eN) - 1) = 0,

and (2.7) reduces to

R(t, N) = A(t, e(e(N)) .

We have, therefore,

(2.10) R, N) = R(t, e(N)) (kr odd) .

Now let kr in the canonical representation of N be even. We shall
show that

k -1 S k_-2
R, N) = Rt -1,e’ (Ny))+ S REt-j.e’

=2

(2.11) wy)),

where k_ = 2s,
T

(2.12) Ny = Fy 4o P g0
and
(2.13) ek(N) = e(ek_l(N) )s

e'N) = N.
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Assume first that s > 1. Then as above

2.14) N - e(N) =e(e)),
and
(2.15) e(e) - 1) = ee(N) ).

Thus (2.7) becomes
(2.16) R, N) = Rt, eN)) + R{t - 1, e(N) - 1) (kr > 2).
When kr = 2, we have, as in [1],

N - eN) = Feog * oo ¥ Frp g2 = eleN;)) ,

e(N) -1 =F 4 eee Fkr—l'l = e(Ni) ,

eeM)) = N -e® - 1L
It follows that
2.17) R{t, N) = Rt - 1, e(Ny)) (_=2).
Returning to (2.16), since
)

eN) - 1 4 eae +F

1

+ (Fg + Fg+ .0 +F

Fl-1 -1 2-2

k-1
eMy) + (Fy + Fy + -+« + F

i

2t-2) 2

it follows from (2.17) and (2.10) that

R, e(N) - 1) Rt - 1, e(Ny) + Fg + <+« + F

f

2t-3)
Rt -1, e3Ny) + Fy + ++o + F

]

2t-4 ) -

Repeating this process, we get
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28-2

R, e - 1) = Rt - s, e Ny))

so that (2.16) becomes
(2.18) R, N) = R, e2) + RG - 5, €25720) €, = 25> 2).
If k =4, Eq. (2.18) reduces, by (2.17) and (2.10), to

r

R, N) = Rt - 1, e*(N;) ) + Rt - 2, €¥(Ny) ),

since
(2.19) R(t, N) = R(t, e®;)) (&, = 2).
For k; = 2s > 4, Eq. (2.18)gives
R(t, N) = R(t, e!®) + Rt - s + 1, e2572(N;) ) + Rt - 5, 2572(Ny) )
= R, eSN)) + R - 5 +2, e2572(N;)) + Rt - 5 + 1, e252(y))
+RE - s, e2572(Ny)) .
Continuing in this way, we ultimately get
S
2.200 Rt N = R, ¢2°7200) + T RE - 5, e720) ) .
=2
By (2.17),
REt, €25720)) = Rt - 1, 6251 (Ny) ) ,

so that (2.20) reduces to (2.11).
This proves (2.11) when kr > 2; for kr = 2, it is evident that (2.11)
is identical with (2.17).

We may now state
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Theorem 1. Let N have the canonical representation
N:Fk1+...+Fk ,
where
kj"kj+1—>v 2 (j=1,---,r—1);’kr_>2.

Then, for r > 1, t > 1,

k -1 s k -2
(2.21) R, N) = R(t-1,e  (N;))+ 2 REt-j,e  Np),
j=2
where s = [kr/Z], Ny = Fk1+“' +Fp
r-1
3. For N = Fr’ r 2> 2, Eq. (2.7) reduces to
3.1) R F,) = AG, F_ 0 F ) +AC-1,F o F ;-1
= R¢ F,_4) +AG-1,F o, F _,-1.
Also,
(3.2) Rit, Fr - 1) = Aft, Fr -1- e(Fr - 1), e(Fr - 1))
+ At -1), Fr-l—e(Fr—l), e(Fr—l)—l).
Since
eFagrn ~ 1 = Fagr eFpg - 1 = Fg g - 1o
we have
At-1,F, o, F, -1 =Rt-1F, , -1,
At.-1,F,_ ~-1) =0,

28
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Thus (3.1) becomes

R(t, Fy ) = RG, Fyo ) + Rt -1, Fy - 1),
(3.2)
Rit, FZs—l) = Rft, FZS) .
In the next place, Eq. (3.2) gives
R(t, Foq - 1) = Alt, FZS—Z’ F2s—1 =1 +A¢t-1, Fog_ 29 Fog 1™ 2)
= R(t, Fo 4 - 1)
R(t, Fogi1 = 1) = A(t, F2s~1 -1, FZs) + At -1, Fzs_l—l, Fog - 1)
= Rt - 1, FZS - 1),
that is,
3.3) R(t, F,- 1) = R - A, F.1- 1) (r>2),
where
0 (r even)
A

1 (r odd).

It follows from (3.3) that

R(t, FZS— 1) = Rtt-s+1,0), Rit, 1) = Rit-s+1,1)

Fost1 ™

which gives

Rt, F, -1) =38 )
3.4) { 2s tys-1
R, F 1) =5

28+l ~ tys °

Combining (3.2) with (3.4), we get

R(t, Fyo) = R, Fyogyg) = Rl Fog ) +8; 0
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so that
R, Fy ) = R, Fy  ,) + 5t’s .
It follows that
' _J1 @<Lt <s)
R(t, FZS) T )0t >s) .

We may now state
Theorem 2. We have, for s > 1, t > 1,

R, Fogiq = 1 = Rl Fog - 1) =8 o
_ 1 a<t<s
(3.5) RE, Fog) = R Fog1) = {0 65 o

Let m(N) denote the minimum number of summands in a Fibonacci
representation of N and let M(N) denotethe maximum number of summands.

It follows at once from (2.21) that
(3.6) mN) =r,

where r is the number of summands in the canonical representation of N.

Moreover, it is easily proved by induction that
(3.7) R(r, N) = 1
As for M(N), it follows from (2.21) that

LR 1
(3.8) M(N) < M(Fki_kz b + Fkr-l‘kr w2) t[Ek D

where

Ky k.

is the canonical representation. Now, by Theorem 2,
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M(F, ) = [3k] .
Hence by (3.8),
M(F, + B ) < (20 - k) ]+ [k + 1.

Again, applying (3.8), we get

M(Fk1 + sz + Fkg) < [y - ky)] + [Fy - kg)] + [Hg,] + 2.

It is clear that in general we have
(3.9 MM < [F0y - k)] +-or + [Fk, -k )]+ fk ]+ -1,
so that
(3.10) M®MN) < [$#&]+r-1.

We note also that (2.21) implies
(3.11) R(M(N), N) = 1.

We may state
Theorem 3. Let

(3.12) N =TF_ +-... +Fk
T

be the canonical representation of N. Let m(N) denote the minimum number
of summands in any Fibonacci representation of N and let M(N) denote the
maximum number of summands. Then m(N) = r and M(N) satisfies (3.9).

Moreover,

(3.13) Rm®), N) = RM®N), N) = 1.

It can be shown by examples that (3.9) need not be an equality when r >1.
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4, While Theorem 1 theoretically enables one to compute R(t,N) for
arbitrary t,N, the results are usually very complicated. Simpler results can
be obtained when the kj in the canonical representation
“4.1) N = Fk1+... +Fkr
have the same parity. In the first place, if all the kj are odd, then, by (2.10),

R{t, Fk1 + oo +Fkr) = Rft, Fki—‘l + e +Fkr"1) .

There is therefore no loss in generality in assuming that all the k., are even

It will be convenient to use the following notation. Let N have the canon-
ical representation

4.2) N = szi + oo +F2kr s
where
(4.3) k1> kz > "'> k Z 1

Then, by (2.21) and (2.10),

“.4) RE,N) = R(t - 1, Foky2k, * + Fok,_;-2k,.)

k
r

+ ), Rt -, F2k1—2kr+2 +oeee +Fok -2kp+2):
j=2
Put
4.5) j.o =k -k (s =1,++-,r-1); j. =Kk

and

4.6) fI‘(t) = f(t; jj_"":jr) = R, N) .
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Then (4.4) becomes

@7 £ §is e s dp) = F(E - 15 Gy oo ey Fpo1)
jI‘

+ z ft - w jgs oo, Jp-2s Jp-1 * D.
u=2

By (2.18), we have

Rl Foearea ¥ Pk gook +2)
= R(t’ F2k1—2k1‘ toeee FZkr__l-Zkr)

+ R(t-kyp 3 +kp- 15 F2k1—2kr-1+2+' e
+ szr_2_2kr_1+2) 9

so that

4.8) £t §gs *ov s Jp_2s Jp_1 D

= £ J10r 0+ 5dp_20 Jpo1) FEE = e 1 - 15 Jiet e s iy godpog + 1)

If we put

oo
(409) FT(X) = F(X; j:[s ceey JI‘) = z f(t, j19 Y jr)Xt s

t=1
it follows from (4.7) that (for r > 1) ,

(4.10) F&s §gs 20 » jp) = XFE jip =0y jpo1)

j
x(x - xr)

+ F&G jip o005 Jp-2s Jpo1 + D

1-x

Similarly, by (4.8),
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(4-11) F(x; j1s Tty jr_29 jI‘—l + 1)
+1

i
. . . r-1 . . .

= F& jg» ** o sjpogodp_1) +X Fi1s sip_gsdip-2+t1),
which yields

(4-12) F(X9 j]_,- °° !jI‘—Z:jr_l + 1)

jr—1+1
= F(X; jl:' ° :jr_Z:jr_]_) + X F(X; ji,' .. :jr—3’jr_2)
Jo 4t 12 Jou g e Hgtr-1
+x 712 F(x;ji,--',jr_3)+...+xr1 Fx; jp).
For brevity, put
(4-13) GI‘(X) = F(X; jj_, Y jI‘—l’ jI' + 1) 9
so that (4.10) becomes
(x jr)
_oxx - x
(4.14) FI'(X) - XFI‘—].(X) = —-1—-:—}-(-— GI‘—].(X) ’
while (4.11) becomes
jr_1+1
4.15) Gr—l(x) = Fr—l(x) + X Gr_z(x) .
Combining (4.14) with (4.15), we get
x(1 - xjrﬂ) jr—l-'_2
(4-16) GI'(X) - ——_].-T Gr_l(x) + X Gr_Z(X) =0,

Thus Gr(x) satisfies a recurrence of the second order. Note that

[e o]

. t
Gi®) = Fx; j; + 1) = ) R, F2j1+2) X
t=1
jit+l .
Sy b El- K1l
= X = ’
1 -x
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[e o]
Col) = PG jpo J2 + 1) = FIRE Foy piin + Fojun)
t=2

Now, by (2.21),
jot1

R(ts Fojiojpez + Fajpen) = BE =1 Fyy 1) + 20 RE = u, Fyy )

u=2
so that
i1 21 §gtHl
Got) = x xt + 3 x* > x
t=1 u=2 t=1

x2(1 - %) + x2(1 - x2) x(1 - |
1 - x 1-x 1-x

+1
)

1, Eg. (4.16) holds for all r > 2.

Hence, if we take Gyx)
We may state
Theorem 5. With the notation (4.2), (4.6), (4¢.9), (4.12), fr(t) = R(t,N)

is determined by means of the recurrence (4.16) with

_ g
Gox) = 1, Gyl = LX)
and
iyt
F.&) = G.& - x G, ;& .

It is easy to show that Gr(x) is equal to the determinant

'
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x[jg + 1] _xI1?2 0 oo 0
-1 x[jp+1]  -x2*2 . 0
(4.17) Dr(x) = 0 x[jg+1] e 0 ,
0 0 0 x[i, +1]
where
(4.18) [] = @-%x)/@-x.
Indeed,

Di(x) = x[j; + 1] = G4&) ,

Dyx) = x[jg + 1][jy + 1] - LJit2 X[ + 1] [52] + ¥[§1] = G,

and

+2

i
r-1
D, & -

(4.19) D &) = x[i_ +1]D_ ® - x

Since the recurrence (4.16) and (4.19) are the same, it follows that
Gr(X) = Dr(x) .

5. When
(5.1) j1=j2=--. =jr=j ’
we can obtain an explicit formula for Gr(x). The recurrence (4.16) reduces to

+2

(5.2) G,® - x[j - 1]G,_,@ + ¥, =0 (22).

Then
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b P
r .
Y G®zh =1+ [j+1]xz+ 3 G,r(x)zr
Ir= r=2
i j+2
=1+ [j+1]xz + 3 {x[j + l]Gr_l(x) - x Gr_z(x)} zF
r=2
3 [+ o]
=1+ ([j +1]xz + xJ"-2 z2) ), Gr(x) zr
r=0
so that

© . -1
Y G.&) zf = @ - [j+1]xz + «1*2 z%)
r=0
) . s
=Y 28+ - 1 )
s=0
0 S .
=YY n* (st) [i~+ 1]S_tx(3+1)t 2t
s=0 t=0
Hence
w .
(5.3) @ = ¥ 1 (r : t) [j+ 1251

2iKr

Finally, we compute Fr(x) by using

_ j+1
(5.4) Fr(x) = Gr(x) - X Gr_l(x) .

When j = 1, we have
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2 1 1
> 6w = = — ( -2 )

=0 1 - xz)1 - x%z) 1-x\1-xz 1-x%

which gives

r T
(5.5) G.&) = x?[r] = % (11 — L G=1r>1)
(5.6) F () = £ G=1.
In this case, we evidently have
N = Fyp t Fypgtrer ¥ Fy = Fypg-1s

so that (5.6) is in agreement with (3.4).
For certain applications, it is of interest to take

(5.7) j1=¢-- =j =j, J =k .

Then Gi(x), Gyx), ***, Gr_l(x) are determined by

6.8 G® = ¥ (-1>t(S - t) - 1152889 g <s<),

t
2t<s
while
j+2
(5.9) GL&x) = x[k - 1]G, ;&) - ¥ G, ,&) ,
where

G'r(X) = Gr(x; Jrreends k)

Also,
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(6.10)  FLed) = Fobado oo by k) = x[k]G, 160 - ¥ 76 6.

We shall now make some applications of these results. Since

L 4 eee

2j+1¥2k = Forezj * Fokazjoz " Fokaj

it follows from (5.10) that

2§+1

G.1) 3 R(t,L2j+1F2k)xt =gk - 51 - P 1) G <w.
t

(Note that formula (6.17) of [1] should read

R(L2j+1F2k) = 2jk - j) - 2j - 1)

in- agreement with (5.11).) If we rewrite (5.11) as

t _ _2j+1
> Rit, Loje1Fa)x = X {1+x+e+
t

k-j-1

+ XA +xzj'1)(x+- . +xk'j"1)}

we can easily evaluate R(t, L In particular, we note that

241 F o

(5.12) R, L )> 0 G < k)

2j+1F 2k
if and only if
2j+1 <t 3j+k-1.

Note that, for k = 3j,

2j-1

t 2+1 212
ZR(t,szﬂFGj)x = x {1+x+...+x o +xE e+ x )}.

t
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This example shows that the function R(t,N) takes on arbitrarilylarge values.
When j = k, we have
LokarFox = Faenn - 1o
so that, by (3.4),

v t _ 2k
(5.13) ZR(t, L2k+1F2k) X =X .
t

Next, since

LojtiFox =

Fojeak * Fajuok2 ¥ 0 T Fajop 2 G20,

we get

(5.14) Y R(, L2j+1F2k)xt = x5k - 1] [2k - 1] - 22k - 2]

t G>k>1).

Corresponding to (5.15), we now have

(5.15) R, L D0 G>k>),

2j+1%2
if and only if
2k < t < j+3k-2.

The case k = 1 is not included in (5.14), because (5.5) does not hold
when r = 0. For the excluded case, since

=F F,. ,

Loj+1 2j+2 T Fay

we get, by Theorem 1,



1970] FIBONACCI REPRESENTATIONS — II 133

x - x

(5.16) 3 R, L2j+1)xt =2+ )%
t

G21.

For t = 1, Eq. (5.16) reduces to the known result:

R( =2j-1.

Loj+1)
In [1] a number of formulas of the type

R(F 1) =Fy 4 @>0, REFY)=F, @>1

2 -
2n+1

were obtained. They depend on the identities

cee = 2 -
F4+F8+ +F4ﬂ F4n+1 1,

cee = T2
Fp + Fe * Faneo F2n

We now apply (5.10) to these identities. Then Gr(x) is determined by

(5.17) Gr(x) = Z (—l)t (1‘ t_ t) [3]r—2t XI‘+2t .
2t<r
Thus (5.10) yields

(5.18) Y RG Fy ., - Dx' = x( + %G, ;&) - xig, 6,
t

(5.19) Y R, F2)x' = xG__ () - ¥G_,6)
t

with Gn_l(x), Gn_z(x) given by (5.17) .
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It may be of interest to note that

_ tfr - t\or-2t _
G = X ('1)( t )3 = Forsg -
2t<r

6. The following problems may be of some interest.
A. Evaluate M(N) in terms of the canonical representation of N.
B. Determine whether R(t,N) > 1 forall t in m(N) < t < M(N).
C. Does R(t,N) have the unimodal property? That is, for given N,

does there exist an integer w(N) such that

R({t, N) < Rt + 1, N) m®N) < t< uiN)),

R, N) > Rt +1,N) (eN) <t < M(N)) ?

D. Is Rf(t, N) logarithmically concave? That is, does it satisfy
R2(t,N) > R(t - 1,N)R(t +1,N) (@@m(N) < t < M(N))?
E. Find the general solution of the equation
R, N) = 1.
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A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II

C. T. LONG and J. H. JORDAN¥*
Washington State University, Pullman, Washington

1. INTRODUCTION

In the first paper [ 2 | in this series, we developed certain properties of
the simple continued fraction expansions of integral multiples of quadratic
surds with expansions of the form [a,fo] or [a,]'o,&] where the notation is
that of Hardy and Wright [1, Chapter 10]. For easy reference, we restate the
principle results here.

Theorem 1. Let = [a,l'b], let n be a positive integer, let P /qk

denote the kth convergent to { and let t for k = 0 where

k= Yk-1 T Y1
we take q_, = 0. Then n{ = [r,8] if and only if n = Uymo9® T = Por 93

and s =t for some m = 1.
2m-2

Theorem 2. Let {, n, Py /qk and tk be as in Theorem 1. Then n{ =

[u,¥,%] if and only if vn = Aoy vu=p, -1, and vw =t 2

-1’ 2m-1 "~

for some integer m = 1.
Theorem 3. Let { = [a,].o,.c], let P /qk be the kth convergent to {,
let tk = g T and S = Pr_q1 TPy for k= 1. Then, for every

integer r = 1, we have

dp*L = [er’ tZr’mCtZr /o]
pp-1 "4 = [Pppg ~ 1 12’ typ-1 = 2
toper * & = [Spp_1» Yopgr @+ de/blay, 4]

and

top * { = [SZr -1, 1, Uy, - 2, 1, (be +4)q2r -2].

Of course, for a = b = ¢ = 1, the preceding theorems give results in-
volving the golden ratio, (1 + N5)/2, and the Fibonaceci and Lucas numbers

since, in that case,

*The first author was supported by NSF Grant GP-7114,
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(= (@+nN5)/2, p = F o0 o = F o i =Ly j,ands =1L

where Fn and Ln denote respectively the nth Fibonacci and Lucas numbers.
In the present paper, we devote our attention primarily to the study of
the simple continued fraction expansions of positive rational multiples of quad-
ratic surds with expansions of the form [21]. Again, we note that, for a = 1,
the theorems specialize to results about the golden ratio and Fibonacci and
Lucas numbers.
2. PRELIMINARY CONSIDERATIONS

Let the integral sequences {fn} and { gn} be defined as follows:
=0 =0

(1) fp=0, f1=1, f =af  +f 50 n=0,
and
() g =2, g1 =2, g =ag ;1 +g o D=0,

where a is any positive integer. These difference equations are easily solved

to give

(3) fn = Ln—_-—?i sy, h=0 ,
Jat + 4

and

@) gn=§n+°£n, n=0,

where

E= a+nNa2+4)/2 and €= (a - NaZ + 4)/2

are the two irrational roots of the equation

(5) x2-ax-1=20,
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Incidentally, if B is aquadratic surd, we will always denote the conjugate surd
by B. The following formulas, of interest in themselves, generalize results

for the Fibonacci and Lucas numbers and are easily proved by induction.

n-1

_ X n+ i\ 2i+1

fon = Z <2i + 1>a ’
i=0

(6) n=0,

n
_ n+i)2i
fon+1 = Z( 2i )a ’

i=0

™ gy = fhg * iy n=1,

() fm+n+1 = fmfn + fm+1fn+1’ m=0, n=0,

9) Sman+l fmgn + fm+1gn+1’ m=0, n=0,
_ m-1
(10 fmfn - fm-lfn+1 = (-1 f o pye l=m=n.

Also, we obtain in the usual way from (8) the following lemma,
Lemma 4. For the integral sequence {fn} =0 Wehave that £ mlfn if

and only if mln,where m and n are positive integers and m > 2 if a = 1,

3. PRINCIPAL RESULTS

Our first theorem, together with the results of the first paper in this
couplet, yields a series of results concerning the simple continued fraction
expansion of multiples of ¢ = [é] by the reciprocals of positive integers. The
theorem is also of some interest in its own right.

Theorem 5. Let { = (a +bac)/d with a, b, c, and d integers, c
not a perfect square, and ¢ and d positive. Let r be a positive rational
number such that 2ar/d is an integer. Let a2 +d? = b% and let 1 < { <r..
Then

r{ = [2g a3, ag, ]
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if and only if

2ar
é= [0’ a4 - —q 21 A "':I .

Proof. We note first that ag- 2ar/d is positive. This is so since
ay = [ar + rb"\/c] S ra+ rbNc 1

d d

so that

2ar _ -ra + rbNc 1
d d

r
—Z'—1>0,

by hypothesis. Now let m = [ay, ay, ag, ***] so that
r{ = Q) +r],:'

Then

2ar U 1
0s 80 = =g 21 2 = a1
ag - d + f_l,-

_ 1
B 2ar
|
_ 1
a + ba/c 2a
nN—a -4
d

r(-a + bNC)

-d(a + bnNc)
r(@? - bc)
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and the proof is complete.
Corollary 6. Let a and n be positive integers. Let £ = [.a] and let

n > §¢. Then

né = [ag, ag, Az, *°-]

if and only if

= [0, ag, - an, ag, ag, "] .

B v

Proof, Since

. + Na? + 4
f = [a] = E‘———’i/—g'——— N
we may use the preceding theorem with a =a, b=1, ¢ = al+4, d =2,
and r = n. The result then follows immediately since

2ar 2an

is an integer and

as required.
Now for

a + Na? + 4

£ = [a] = 5
The convergents Py /qk are given by the equations

Po = @ P1 = a® + 1, P, T a1 +pn_2,

(11)
G =1, g = 2 q; = ad, 5+ Uy 5 »

for n = 0. Also, pl'1 =f

and it is clear that P, = fn+2 and a, = fn+1 n

—3 Z ' ' i
and a fn 41 for n = 0, where P}, /qn is the n* convergent to 1/¢. The
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following results could all be stated interms of the sequences {pn} and {qn};
instead, we use the sequences {fn} and {gn}.
Corollary 7. Let r, s, and n be the positive integers with n > &=

[a]. Then &/n = [0, r, 8], if and only if, n = f r = f and s =

2m-1° 2m’

Y9m-1 for some m = 2,

Proof. This is an immediate consequence of Theorem 1 with a = b,
and Corollary 6.

Corollary 8. Let u, v, w, and n be positive integers with n > ¢ =

[2]. Then £é/n = [0, u, Vv, W], if and only if, vn = £ 1,

2m’ v = £

2m+1"
and vw = 8om ~ 2 for some integer m = 2,

Proof. This is an immediate consequence of Corollary 6 and Theorem 2
with u =v =w = a.

The next corollary results from Theorem 3 and Corollary 6 by taking
a =b = c. However, since, in this special case, parts (a) and (b) of Theo-
rem 2 yield results already obtained, we concern ourselves only with parts
(c) and (d).

Corollary 9. Let n be a positive integer greater than {. Then for

r =1,

§ 9 o,
EZ—- = [0, ng—l’ f ) (a + 4)f2r]
r
and
& _ p 2 :
= [0, g21‘ -1, 1, f2r+1 -2, 1, (a4 + 4)f2r+1 - 2].

g2r+1

The next theorem shows that the periodic part of the simple continued
fraction expansion of n for any positive integer n > £ = [&4] isalmostsym-
metric. Of course, by Corollary 6, the same thing is true of ¢/n.

Theorem 10. Let a and n be positive integers with n > & = [a].
Then n§ = [ag, dy, =+*, 4] and the vector (a;, 2z, ***, a_;) is symmetric
if r =2.
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Proof. Since ay = [né], we have that
0< né - gy <1
and

S
né - g

ee
-

>1 ,

where ¢ is the first complete quotient in the expansion of n . Moreover,

= 1 1
fi =_-—-—=_.—._..__

n
nf—ao —+ao

3

so that

-1 <§ <o,
since ay+n/¢ is clearly greater than one. Thus, ¢; is a reduced quadratic
surd and by the general theory (see, for example [3, Chapter 4]) has a purely
periodic simple continued fraction expansion, say

€ = [éis a2, °°°» ér] .

Additionally, we also have that [ar, a._1s "
negative reciprocal of the conjugate of £4. Thus,

Yy al] is the expansion of the

. o 1 n
[A,a, ., 00y 8] = -= = +ag
r’ “r-1 1
g ¢
so that
£ _ . .
(12) = = [0, a, - a,, 4. 10 2o s ags ar] .
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But, from above,
né = [ag, 4, *°°, ér] ’

and by Corollary 6,
(13) . [0, ag - an, dy, a, ***, 4]
n ’ 0 ’ 1s A2 s v

Thus, comparing (12) and (13), we have that the vector (a;, ay, *++, a ) is
symmetric.

We now turn our attention to the consideration of more general positive
rational multiples of &= [a].

Theorem 11, Let r be rational with 0 <r <1, If the simple con-

r-1

tinued fraction expansion of r¢ is not purely periodic, then

rf = [0, aq, {:-l.z, ceey, é,n]
and
£ - [a - a,, & a cee,a, a |
T n 1’ “n-1° “n-2° > 92 “n

for some n = 2,
Proof. If r& hadapurely periodic simple continued fraction expansion,
then ré would have to be a reduced quadratic surd so that ré =1 and -1 <

ré < 0. But the first of these inequalities implies that

(14) - <r <1,

and, since & = -1/¢, the second implies that

(15) E>r>0 |,
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which is already implied by (14). Therefore, since r¢ is not purely periodic,
we have
(16) 0<r< z
so that 0 = [ré] = ap. Now consider

S

§1=?1§’19

and set a; =[£;] = 1. Again,

= = > 1
1 _ . &1 -y &
M
and
= 1 1
§2 = 1 = - f 9
— - Tt
ré
since ¢ = -1, Therefore, -1< &, < 0 and ¢, is reduced. Thus, &, has

a purely periodic simple continued fraction expansion,

& = [50129 ags "% é’n] s
and
r§ = [0, ag, é.z, N E.ln] 9

as claimed. Also,

v

+ ai = - [a._n’ an_l’ cos, éz] ,

N
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so that

R lvee
|

- [an B LA L L

T By én]
and the proof is complete.

Theorem 12. Let r be rational with 0 < r < 1. If the simple contin-
ued fraction expansion of rfis purely periodic, then

ré = [a'to, a, *tt, é.n]

e

=[a, a

n® 410 "7 aO]

for some n > 0.
Proof. Since the simple continued fraction expansion of r¢é is purely

periodic, it is reduced and we have by the preceding proof that

1
<< r< 1.
3

Since we also have

the proof is complete.
In passing, we note that the periodic part of the expansions of ré need
not exhibit any symmetry or even near symmetry. For example, for

we have that
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2a=100,21,3,1,1, 3, 9]
and

3 .
To=1[1,4, 1,26 2].

Also, it is easy to find rational numbers r with 0 < r < 1 such that the
surds ro and o/r are not equivalent where we recall that two real numbers
m and v are said to be equivalent if and only if there exist integers a, b, c,
and d with [ad - be| = 1 and such that

_av +b
T

However, as the following theorems show, there exist interesting examples,
where near symmetry of the periodic part of the expansions of r¢ and &/t
and equivalence of r¢ and r/f both hold. We will indicate that r¢ and &/r
are equivalent by the notation

r§~-§.

Theorem 13, Let a be a positive integer, let &= [a], and let the

sequences {fn} and { gn} be as defined above. Then, for n = 1,
n= n

=0 =0
f
+ N .
I‘M. f = [ao, al, e, ar]
2n+2
and
f
2n+2 . .
% Te [ar’ Apo1? U7 aO]

where the vector (aj, ag, ***, a,, 40) is symmetric, a; = a, = 1, and 23 =

faneg - 1
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Proof. We first demonstrate the purely periodic nature of the expan-
sions in question. From the definition, it is clear that fn is strictlyincreas-

ing for n =2, Also, fn /fn_'"1 is the nth convergent to 1/¢6. Therefore,

f £
ol

an
an+1 ¢ lopaz

f

and it follows from the proof of Theorem 11 that ¢f has a purely

2n+1 / f2n+2

periodic expansion. Also, from Theorem 12, «ffzn » /fzn +1 has a purely
periodic expansion whose period is the reverse of that for &f f

Additionally, from (17), it follows that

2n-+1 / 2n+2°

font1 1 1<f2n+1 f2n) ~ 1
b

0 < - < = -
f2n+2 3 2 f2n+2 f2n+1 2n+1f2n+2
so that
f
1<f2n+1'§<2f ff +1
2n+2 2n+1"2n+2
f
<3F zn;l +1< 2.
2n+1"2n+2
Thus, a9 = [¢f, 4 /f, ] = 1. Now
1
§1 = ’
f
2
2n-+2
and we claim that
fapag = 1 < & < fyn s

so that a; = f4n+3

is the n~ convergent to ¢,

- 1. To see that this is so, we note that, since fn+2 /fn+1
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f211+2 féln+4

<1 .<¢
2n+1 4n+3

and

f2n+1f4n+4c < f2n+1 .

< .
f2n+2f4n+3 fonvz  °

But this gives, using (10),

fon+1 CE-1> font1fan+a = Tansafanss
f2n+2 f2n+2f4n+3
_ f2n+2 - 1
f2n+2f4n+3 f4n+3
or
(18) & < £, .4

as desired. Also, we have that

so that, again by (10),

f
0<%@.§_1

2n+2
/f2n+1f4n+3 = fons2lans2
= f f

2n+274n+2

- f2n+1

f2n+2f4cn+2
_ f2n+1
T f f f

2n+14n+3 = “2n+1

147



148 A LIMITED ARITHMETIC [March

and

>ty - 1

ThU_S, aqy = [fl] = f4n+3

the vector (ay, ag, <--, 2. ao), it suffices to show that

-1 as claimed. Finally, to show the symmetry of

f
(19) 1 - f2n+2 &
2n+1

_.az

_ai

Making use of the determined values of a; and a; and setting a, = 1, this

means that we must show that

1 - on.+2 .
f2n+1

(20)

-1

4n+3 ~ 1)

which will also, of course, confirm the fact that a, = 1. Now (20) is true if

and only if
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1 o1 = f2n+1
Ef21f1+2
1 N
(f4n+3 -1
f2n+1
g ¢ -1 ’
2n+2
which is true if and only if
1 - S = onia
fons1 £-1 4n+3 fon1 * Ehonsz
f2n+2

which, in turn, is true if and only if

f2n+2 §f2n+2

ff2n+1 - f2n+2 f

= f - 1.
on+1 T Slon4p O3

To see that this last equation is true we make use of (8), (10), and the fact that
& = af +1 to obtain

2 _ &2 2
fon+2 fonvz  _ Tansolanss * Bnia ~ Elansafanss * Eanae
d font1 *Tanta g2 4 g f

&t - - 2 2,
2n+1  "2n+2 2n+1 an+1fonte = fan+ifonse ~ Efanse

2
2§f2n+2 - aL§f2n+1f2m+2

2
agf - €

€2

on+1 T 2fonafonis

£, (f )

- 2n+2
f2n+1f2n+3 -

an+2 ¥ fon
£

2
2n+2

f 1

£, .t +f _f

=f an+2fan * fan+1tan+s -

2 2 -
2n+2 + 2n+2

= f -1

4n+3
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This completes the proof.
Because of the similarity of method, the following theorems are stated
without proof. The notation is as before.

Theorem 14. For n = 2,

on o
T c & = [ag, ap Ay vty ap]
2n+1
and
f
2n+1 . .
Tn_" £ = [ag -1, ag a5 °°, ap, a3 3]
2n

where the vector (ag, a, °*°, ay) is symmetric, ag = 0, a; =1, ay =

f4n+1_1’ and ag = f3+1,
Theorem 15. Let n = 2 be an integer. Then
+ . .
"'r'l_g'f = [a()s a4y *°°y aI‘] ’
€n
g
a c £ = [ar, Ap_1» 0y ao],
n+2
+1 o o
2. £ = [b()s by coe, bS] ’
&n
and
g
n (] L
=& =[b, b s ***5 by,
fn+1 s’ "s-1 0

Theorem 16. Let n be a positive integer. Then

g2n+]L .
g2n+2

€ = [ag ag 2y, *°, ar] ’
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and

S2n+2
'g——'g =[Z, Agy gy coe, aI" gy éB]
2n+1

and the vector (ag, a4, °+, a,) is symmetric with ag =0, a; =1, a; =

f4:n+3 - 1, and ag = 3.
Theorem 17. Let n be a positive integer. Then
g
2n . .
e E = (B ap ot By
2n+1
and
g
2n+1 . .

where the vector (ag, ag, **°, 4, ap) is symmetric with as - a; =1, and
ay = f

4+l T L0
In view of the preceding results, one would expect an interesting theorem

concerning the simple continued fraction expansion of

fn gn
—© § aﬂd —— 0 §
gn fn

but we were not able to make a general assertion value for all a. To illustrate
the difficulty, note that, when a = 2 and £ = 1 + N2, we have

£y . .

— = [o, 1, 5, 1, 3, 5, 1, 7] ,

o £ !
f5 . .
g < & = [09 1, 5, 1, 3, 3, 1, 4, 1, 7] s

and
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£ .

o =[0,1, 5,1, 4, 1, 3, 5, 1, 4, 1, 7] .

However, for

£=a=() =13,

we obtain the following rather elegant result:
Theorem 18. Let a = (1 + N5)/2 and let F and L denote the n
Fibonacci and Lucas numbers, respectively. Then, for n = 4,

th

F . .
(21) rg'a’ = [0, 1, 2, 1, °*+, 1, 3, 1, ***, 1, 4]
n
and
Ln . .
(22) "l;?"a =[38, 1, **°, 1, 3, 1, ¢+, 1, 2, 4],
n

where, in (21), there are n - 4 ones in the first group and n - 3 ones in the
second group and just the reverse in (22).
Proof. Set

= [2: 1, ¢¢°, 1, 3, 1, ***, 1, 4:”

"
|

[2, 1, ==+, 1, 8, 1, ***, 1, 4, x ].

Then it is easy to see by direct computation as on computes convergents, that

ax +b
n'n n

23) xn=cx + d ’
nn n

where
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a = 4(Ln_1F

n +F_ )%+ (

n-1 n-2 Ln_zF

F

n-1 * n-SFn-Z)

= 2 n
= 4F2 + F F_. + (1",

= 2 - 2

bn Ln—an-l * Fn—Z Fn ’

cn = 4(Ln-an—S + Fn—ZFn—éL) + (Ln—ZFn—3 *+ Fn—3Fn—4)
— 2
- 41?n—l + FnFn-n{% ’

and

= = 2
dn Ln-an-S * Fn—ZFn—4 Fn—l °

Moreover, from (23),

(a -d)+1/(a - d )2+ 4bc
5 = D n Y'“n n n n
n

2¢
n

and

= [o, 1, %]
X
n

x +1
n

3‘4
I

2
(an - dn) + ‘V/(an - dn) +4bncn

- 2
(an - dn + ch) + (aI1 dn) +4bncn

_ 2
(a -d_-2b )+ J(an d )2+4b c

Z(an - bn + c, - dn)

Now

153
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(25)

(26)

and

(27)
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a -d -2b
n n n

= F (F

2
(an - dn) + 4bncn

4F2 + F F
n n n-

Fn(2Fn + Fn_

1 2 2
1 + (_1) - Fn—l - 2Fn

2F2 + F F -FF
n n n-

1 n n-2

1" Fn—Z)

F

n+2 ~ n—2)

FnLn s

(an-dn- 2bn) +b][1 + c,

FL +F2 +4F2 _ + F F
nn n n-1 n n-3

FL +2F _L
nn n-1"n

L2
n

2 n 2
@F2 + F F .+ (-1) - F2 )

2 2
+ 4FL4F: |+ F F, )

F F

2p2 2 (4F2
FF + 4Fn(4F n n_3)

n n+3 n-1 +

2(p2 2
F2(F2 o + 16F% | + 4F F_ )

5F2L2 .
nn

Thus, using (25), (26), and (27), in (24), we obtain

FL +FLANS
nn nn

1+ &5

Yo T

21.2
n

Hl'ﬁ
]

=1
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as claimed. The other part of the proof is an immediate consequence of
Theorem 11.

Finally, we comment on the question of the equivalence of rf£ and &/r.
i¥fr= &n /fn or r=g_ /gn, where m and n are nonnegative integers,
it frequently turns out to be the case that ré ~ £/r. However, this is not
necessarily the case and hence, a fortiori, it is.not necessarily the case for

more general r. For example, for @ = (1 ++5)/2 = [i] ’
3.a=00,1, 3 3 1, 1]
7 - ? 2 9 ]

and

ca = [3, 1, 3, 2, 4]

ol =3

where 3 = f; = gy and 7 = g,; and other examples are easily found. How-

ever, if r = fm and s = fn for nonnegative integers m and n then we

always have

wis
sy
14
=Hlwn
e

as the following theorem shows.

Theorem 18. If m and n are nonnegative integers, then
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Proof., Without loss of generality, we may assume that 0 < m < n and
that (m,n) = 1. We let

f f ff
a = m 2gm+2 b=c =f d = n 2gm
fn 9 2qm+1’ fm_" t]

where q is chosen so that
2q +2 = 0 (mod n),

as may easily be done since (m,n) = 1. With this choice for q it follows

from Lemma 4 that fnlf and f so that a, b, ¢, and d are all

2qm-+2 m|f2qm
integers. Also, by (10),

f f ff
_ - _m2gm+2 = "n2gm 2
ad - be T T~ gme1
n m
= _ 2
f2qm+2f2qm f2qm+1
= -1,
Finally, we show that
fn
al—¢] +b
fm fm
(28) - £ = T
n c(—f-Il o £ > +c
m

for this choice of a, b, ¢, and d. Making the indicated substitutions, we
have that (28) holds if and only if

fmf2qm+2

2o.g) +f

f f T 2gm-+1

m.,_._m \m

f f ff

n £ _n.g + R 2gqm
2qm-+1 fm f

—ry
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and this is true if and only if

2 = -
§ f2qm+1 + ff2qm fqum+2 * 1?2qm+1

s 3 i 2 = 3 =
But this is clearly true since aé¢ aé +1 and a"qum at qum f2 qm-+2
and the proof is complete,

Finally, we note that the list of stated theorems is not exhaustive. One

could no doubt prove theorems concerning

and so on. However, we were not able to arrive at general formulations of the

expansions of

for arbitrary positive integers m and n. The results stated seem to be the

most interesting,
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CONVOLUTION TRIANGLES FOR GENERALIZED FIBONACCI NUMBERS

VERNER E. HOGGATT, JR.
San Jose State College, San Jose, California

DEDICATED TO THE MEMORY OF R.J. WEINSHENK
1. INTRODUCTION

The sequence of integers ¥; = 1, Fy = 1, and Fn+2 =F + Fn are

n+1
called the Fibonacci numbers. The numbers F; and F, are called the start-
ing pair and Fn 42 = Fn T Fn is called the recurrence relation. The long

division problem 1/(1 - x - x%) yields

1

l1-x-x

n
= + + 2 4 oie. + F oees
" F1 FzX F3X Fn+1X

This expression is called a generating function for the Fibonacci numbers.

The generating function yielding

1
1-x - x2)

_ k) (k) k) n ...
i = Fi +Fp x+-e0 +F 0 X +

is the generating function for the kth convolution of the Fibonacci numbers.
For k = 0, we get just the Fibonacci numbers. We now show two different

ways to get the convolved Fibonacci numbers.

2. CONVOLUTION OF SEQUENCES

If a4, ay, ag, *--, a, "t and by, by, by, **+, by, +++ are two se-
quences, then the convolution of the two sequences is another sequence c;, cj,

Cgs *** 5 Cp, *** whose terms are calculated as shown:

cy = ajhy
cy = a4by + azhy
Cc3 = alb3 + azbz + a3b1

Cp = Bgby taghy g HAghy ot eee Fagb) pig Fer by

158
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This last expression may also be written

n
Cp = Z by k1
k=1

159

Let us convolve the Fibonacci number sequence with itself. These numbers we

call the First Fibonacci Convolution Sequence:

Fgl) = F1F1 =
Y = B, + FE =1+1 -
F{1) = F,Fy + FyF, + FyFy =24+1+2 =
Ff) = FyF, + FyFy + FoF, + FJFy = 3+ 242+ 3 = 10
5
1) _ =
Fg ' = Z FFe = 20
k=1
6
(1) _ =
Fg' = 2, FiFe i = 38
k=1
7
(1) _ =
Fy’ = 1?521 F, Fo i =71 .

Now let us '""convolve' the first Fibonacci convolution sequence with the

Fibonacci sequence to get the Second Fibonacci Convolution Sequence:

=1

= 3

= 9

=11

- r

O p—

72 = rr® + w4 ppd

r? = rr® 4 rr® s rEp? + E® = 3014224105+ 1-10=22
5

IEEE D Nl S
k=1
6

7 = TRV

k=1
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The Fibonacci sequence is obtained from

1

—_— = Fy+ FXx 4+ Fx2 4+ .e0 + F_ X" 4o
1-x - x?

n+1
The first Fibonacci convolution sequence is obtained from

1
1 -x - x%)

n

= Fgl) +Fz(1)x+F;§1)x2+--- +F(1)x + e

n+1
The second Fibonacci convolution sequence is obtained from

(2)

1 - 7?4 7% 4 7

1-x-x)?

2 4 ... @ n ...,
X4 + +Fn+1x +

These could all have been obtained by long division and continued to find as
(k)
n

method of this section. In the next section we shall see yet another way to find

many F as desired or one could have found the convoluted sequence by the

the convolved Fibonacci sequences.

3. THE FIBONACCI CONVOLUTION TRIANGLE
Suppose one writes down a column of zeros. To the right and one space
down place a one. To get the elements below the one we add the elements one
above and the one directly left. This is, of course, the rule of formation for
Pascal's arithmetic triangle. Such a rule generates a convolution triangle.
Next suppose instead we add the one above and then diagonally left. Now

the row sums are the Fibonacci numbers. We illustrate:

=3 /|
= =

NEM
=

WO

N

=

coococoocococoooo
ORRHRERRMRMR

B co/bof =

H

Column:
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However, if we add the two elements above and diagonally left, we generate
the Fibonacci convolution triangle as follows. Please note these are the same

numbers we got in Section 2. The zero-th column are the Fibonacei numbers,

Fn; the first column are the first convolution Fibonacci numbers, Fél), ete.

0

0

0

0

0

0

0

0

0

0

0 34 38

0 55 71 21 1

Column: 0 1 2 3 see N

4. COLUMN GENERATORS OF CONVOLUTION TRIANGLES

It is easily established that the column generating functions for Pascal's

triangle are

g (X) = —.}il_{_—_— = i n Xn
k a - X)k+1 k

n=0

when the triangle is generated normally as the expansion of (1 + x)n, n=20,1,
2, +++ and as we said to do in the first part of Section3. The column genera-

tors become
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if we follow the second set of instructions. These column generators are such
that the elements across the rows each are multiplied by the same power of x.
We make the column move up or down by changing the power of x in ¥he Viumev-

erator of the column generating function. If we now sum

00 0 2k ! © k
_ X _ 1 X2
Fam =3 - () B(2)
k=0 k=0 k=
11 1
1-x 1 x2 1-x - x2
T1-x

Thus the row sums across the specially positioned (Position 2) Pascal triangle
are Fibonacci numbers. These are, of course, the numbers in the zero-th
column of the Fibonacci convolution triangle. If we multiply the column gen-
erators of Pascal's triangle by a special set of coefficients, we may obtain
other columns of the Fibonacci convolution triangle.

Recall that the kth column generator of Pascal's triangle is

& ny_n Xk
g %) = 2 (k)x RPN 25

N
n=0 (1= =x)

Replace x by

in the above to obtain
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1

i_x) <1§2x)k

2k

X

163

1-x

(1— 2 >k+1 L-x-x2)FL

Thus the row sums are the kth convolution of the Fibonacci numbers sgince

that is the column generator we have cbtained. We illustrate:

Multipliers:

Multipliers:

(First column of Pascal)

0

T T o T =T T S S S S S R S

o T S S S G o S = U SR S

1

W =3I O W s W DN

0

W oo ~1 O U oW N

2

10
15
21

1

10
15
21
28

3

10
20

3

10
20
35

4

6

Row Su

1

2

3.1 + 1:2
4.1 + 32

5ol + 62 + 13
6.1 + 10-2 + 4

ms:

3 =

7-1+ 152 + 10-3 + 1.4 =
81 + 21-2 + 20-3 + 5.4 =130

(Second column of Pascal)

10

Row Sums:

22
51
111
233

71

First Fibonacci Convolution Sequence

Second Fibonacci Convolution Sequence
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Thus if we use the numbers in the kth column of Pascal's arithmetic triangle

(Position 1) as a set of multipliers with the columns of Pascal's triangle

(Position 2), we get row sums which form the kth Fibonacci sequence.

5. EXTENSION TO GENERALIZED FIBONACCI NUMBERS CONVOLUTION
TRIANGLES
The Fibonacci numbers are the sums of the rising diagonals of Pascal's
triangle which is generated by expanding (1 + x)". The generalized Fibonacci
numbers are defined as the sums of the diagonals of generalized Pascal's tri-
angles which are generated by expanding
T +x+x2+.0. + xr—l)n.
The sequences can be shown to satisfy uw; = 1, uj = 2j-2 for j=2,3,"*",r,
and

and the generating functions are

1 _ u <
l—x-xz----—xr'l Zn+1 )

The simplest instance is the Tribonacci sequence, where Ty =1, Ty, =1,
Ts = 2, and Tn+3 = Tn+2 + Tn+1 + Tn’ and these sums are the risingdiagon-
al sums of the expansions of (1 +:»<:+x2)1[1 for n = 0,1, 2, 3, *** . The
first few terms are 1, 1, 2, 4, 7, 13, 24, 44, 81.

If we return to our Fibonacci convolution triangle at the end of Section 3,
we note the row sums are the Tribonacci numbers. The column generators of

the Fibonacci convolution are
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where the numbers on each row in the triangle all multiply the same powers of

x in the column generators. Adding, we get

o0 1 0 3 k 1
g x) = X =
;k (1-X-X2>E(1—X—X2)

=0 1-x-x*-x8

which is the Tribonacci sequence generating function. If we use the special

multipliers (E) as before, we get

1 ) = (n x k i(n\ x3k
_— —_— = g x) =
(1—x—x22k)(1—x—xz) k)k (1 -x-x2- )t

k=0

and this is the kth Tribonacci convolution sequence generator and the coef-
ficients appear in the kth column of the Tribonacci convolution triangle. Thus
we can obtain all the columns of the Tribonacci convolution triangle from the
Fibonacci convolution triangle in the same way we obtained the Fibonacci con-
volution triangle from Pascal's arithmetic triangle.

We can thus generate a sequence of convolution triangles whose zero-th
columns are the rising diagonal sums taken from generalized Pascal triangles
induced from expansions of (1 +x +x2+ .+ + xFhn

for the rth case

. The column generators

rk
X

g &) =
k 1-x-x*-... —xr'l)k+1

can easily be seen to generate the column generators for the (r+1)St case

X(r+1)k

gk(X) = T )K+1

1 -%x-x%x2-¢ee = x

using the preceding methods.
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Referring back to the Fibonacci convolution triangle of section three,
each number in the triangle is the sum of the one number above and the num-
ber diagonally left. Because the column generators must obey that law and
multiplying by powers of x so that the proper coefficients will be added, we
could write a recurrence relation for the column generators of the Pascal

convolution triangle as follows:

2
G = xG &) +x*G_ &) or G &) :%Gk—l(X) '

By similar reasoning, each number of the Fibonacci convolution triangle is
the sum of the two terms above it and onediagonallyleft. Proceeding to column

generators, then,
Gk(x) ka(x) + x Gk(x) + X Gk—l(x)

or

G, &) S
X) T e——— X) .
k 1 - x - x2 k-1

6. THE REVERSE PROCESS

One can retrieve the Fibonacci convolution triangle from the Tribonacci

convolution triangle quite simply. First recall

X k
s (n) & X
Lu\k B k+1
n=0 @ -3
Replace x by -x; then it becomes

o0
Z <n) (_ann _ (—l)kxk ,
k 1+ X)k+1

n=0
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or
k
n n+k_n X
(-1)" "% = ———— .,
> () s

With these multipliers,

n n+k
(.

we can return from Tribonacci to Fibonacci.

Let the column generators of the Tribonacci case be

3n
X

1 -x-x%-x3%)

and multiplying through by

n n+k
(e

and summing, yields

[= @) el . n
n n+k 1 n n+1 X
(-1) > (X) = ( )(—1) (—-—————)
Z(k) *n l—X—XZ-X3Z K 1-x-x%-x8
n=0 n=0

X3k/(1 X2 x3)k+1 ng

L 3 ’<+1 a-x- Xz)k+1
1-x-x2-x5

which are the column generators of the Fibonacci convolution triangle. The

same thing applies, in general, to returnfrom the (1"+1)St convolution triangle

to the rth convolution triangle.
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7. SPECIAL PROBLEMS

1. Assuming Pascal's triangle in Position 1 and the column generators
are

then show the row sums of Pascal's triangle are the powers of 2. Hint:

o

1 _}“,n n

T35 = 27 x .
n=0

2. Assumingthe Fibonacci convolution triangle has its columns positioned
so that

k
gk(x) - - k+1 °
1 -x - x%)
then show the row sums are the Pell numbers P; = 1, Py =2, Poio= 2Pn +1

+ Pn' Hint:

©
P
1-2x—x2 Znﬂ

n=0
3. Show that the convolution triangle for the sequence 1, 3, 3%, «--, 3n,
«++ can be obtained from the convolution triangle for the sequence 1, 2, 22,
23, eee, Zn, +++ using the techniques discussed in this paper.

4. By using the coefficients in

x ()(_1)n+k n

n=
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as multipliers, show how to get the convolution triangle for the alternate Fib-

onacci numbers from the convolution triangle for the powers of three. Hint:

o0
F,
1- 3x+x2 Z 2n+1 ™

n=0
5. By using the multipliers from

£

n=0
on the Fibonacci convolution triangle with column generators

k
X

e

obtain the convolr” )‘.o‘ iriangle for every third Fibonacci number sequence.

Hint:

F
1-4x+x2 Z 3n+1

8. OTHER CONVOLUTION TRIANGLES
Let

g-1 k+1 . ©
L X) = k . n
((1 - X)q - Xp+q) - Zu (n’ psq)x N

n=0

be the kth convolution of the sequence u(n; p,q), where the sequences
u(n; p,q) are the generalized Fibonacci numbers of Harris and Styles [1].
(Also see [2].)
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Let
< pan
g,x) = a x)nq+1
«© % p+q \n q-1
Yae - () - e
par ~\a-x (1 -x%- P
But,
[o o}
Z k + n)xn - 1
ot k 1 - X)k+1
Thus,
® prq \© (¢, Mag-1
1 Z(k+n>< X ) I
T -x k q T k+1
n=0 1 - x) a - X)q _ Xp+q
o0 ['e) n
k +n\ (& 1 k +n xP*d
Z k )gn &) = k+12< n )( q
n=0< (1 - x)< Lt a-x
a - X)(k+1)q—1—k
K+
a - X)q _ Xp+q
1 - x @D k1) =

-
k+1 2 ,u(k)(n; P, QX"
a - x)q - Xp4q n=0

k) (

and the g, x) are the corresponding column generators in the Pascal's tri-
angle with the first k columns trimmed off.



1970] FOR GENERALIZED FIBONACCI NUMBERS 171
9. REVERSING THE PROCESS, AGAIN
If we consider the convolution triangles whose column generators are

n
p+q
g x) = & )

n ((1 ] X)q ) XP+Q>n+1 ’

and if we sum these with alternating signs,

o0
1 1 1
z 1) ® = -
=0 n a - x? - P i+ ptq a - x4
1 - »9 - <P

while

k [e 8}
n-+k _ 1
[(1 _ X)q ] Z( ) 1) gn(X) B a - X)Q(k"‘l)

k=0

Thus, we can recover the columns of Pascal's triangle from the above con-
volution triangle. This may be extended in many ways. Thus, we can obtain
the convolution triangles for all the sequences uln; p,q) by using multipliers
from Pascal's triangle onthe column generators of Pascal's triangle and taking
row sums.

REFERENCES

1. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Num-
bers," Fibonacci Quarterly, Vol. 2, No. 4, Dec., 1964, pp. 277-289.
2. V. E. Hoggatt, Jr., "A New Angle on Pascal's Triangle,'" Fibonacci

Quarterly, Vol. 6, No. 4, Oct. , 1968, pp. 221-234,

3. H. T. Leonard, Jr., "Fibonacci and Lucas Identities and Generating
Function," San Jose State College, Master's Thesis, January, 1969,

4. David Zeitlin, "On Convoluted Numbersand Sums," American Mathematical

Monthly, March, 1967, pp. 235-246.
e o




SOME PROPERTIES OF STIRLING NUMBERS OF THE SECOND KIND

ROSEDITH SITGREAVES
Logistics Research Project, George Washington University, Washington, D. C.

INTRODUCTION

In attempting to predict the number of demands that will occur during a
given period of time, for supplies in military inventory systems, it becomes
necessary to formulate suitable probability models for the distribution of de-
mands of individual items of supply. One such model, described in [1], in-
volves two parameters, to be estimated from available data. For example,
in the case of predicting demands for items installed on Polaris submarines,
the data might consist of items demanded in a series of patrols.

In studying the properties of estimation procedures for parameters of
any model, one is led to a consideration of the sampling distributions of the
estimates. For the model describedin [1], the sampling distributions of some
proposed estimates were found to involve Stirling numbers of the second kind,
and in the derivation of these distributions from the initial probability assump-
tions, some properties of these numbers become of interest.

A Stirling number of the second kind, é,(I.m ), is the number of ways of
partitioning a set of T elements into m non-empty subsets. Thus, if we
have the set of elements (1, 2, 3) with T = 3 and m = 2, we have

sible partitions

(1,2), ()

(1,3), ()

2,3, @)
with

.-&3(2) = 3.

If the order of the partitions is taken into account, that is,

1,2, @ ,

172
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and

3, (1,2)

are considered to be two partitions, the number of ordered partitions is
m‘\g,(II,n )

For example, suppose that a given item installed in aPolaris submarine
is demanded in each of m partols, with a total quantity demanded of T units,
(T > m). The number of different ways of partitioning T into m demands is
J(m) ; the number of ways in which a particular partition can be assigned to

the m patrols is m! ; thus the number of possible assignments of the total

quantity demanded to the m patrols is m! ,XTSm).

PROPERTIES OF STIRLING NUMBERS OF THE SECOND KIND

The generating function of Stirling numbers of the second kind is

T
XT = E‘g,}m)x(x— 1) eee x -m + 1) .
m=0

In closed form,

m
(m) _ 1 m m-k T
Y
k=0

Various properties of these numbers are known (e.g., see [2]). Thus,

,3,(11,11)=0 for < m

;3,(I,T) =1 for
J'(I(‘)) = 0 for

(1)
J T

H =3 g M
I Il
2 o
D
. Do

1 for

il
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We have the recurrence relations

(2) 3 (m) mj,(lfn) + J’(I‘m-l) for T=m=1

T+1

r

T-r
(3) (m>>5,(rm) = Z (i)ﬁgzkyyém_r) for T=m=r.

k=m-r

If r =1, Eq. (3) becomes

T-1

(m) _ T\ ¢(m-1)
(4) m’JTm = 2 (k)jk

k=m-1

The following results appear to be less well known.

Lemma 1. For any integers r and k, with k =0, 1, *°*,

k+1, k+2, <*-,

r
@ % (*7 )t -
j=0

[March

and r =

Proof. We prove the lemma by induction on k. In the proof, we use

the recurrences

and
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For k

0 and r =1, 2, «°-,

r r

r Jfe-3) _ r - ro_
2 (j)(—l) .Xr_j =3 (j)(—l) =@-1n"=0.

For k=1 and r =2, 3, *°°,

=
=

o~
L
+
ot
N
™
jary
~
C
)
[ |
|-|_-l‘:';
11
AT
. kg
D
T
=
~
5y
i
e |
T
—

Comds
Il
o
Cod
I

r
a5 (J. r 1) g &0
=1

r
- r j g (r=3)
= Z <j)(—1) (r - ])Jr_j
j=0
r-1 r-1
T j g (r-j-1) r) j g (r=j=1)
+ (j)<-1> $ -2 <j)<-1> 40
=0 j=0

The last two terms cancel each other while the first one becomes

r-1

rz:<’“j"1>(-1)j = 0 .

=0

We suppose the result holds for k= m-1, and r =m, m+1, «--,

and show that it holds for k=m, r=m+1, m+2, - . We have
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r+m j 4 (r-j)
Z( j )(_I)J'Jr—jlm
j:
T
_ r+m-1 i g(r-3)
- E( j )(—1) ’gr—j+m
=0
r
r+m-1 j g(r-j)
+Z( j-1 >(_1) Jr—j+m
=1
T
_ r+m-1 j o g(e-j)
- Z( j )(_1) (r - J)(’gr-j+m—1
j=
r-1
r+m -1 j ¢ (r-j-1)
* Z ( j ) -1) ’Jr-j+m-1
i=0
r-1
r+m -1\ i gle-j-1)
- . (-1)
j=EO ( J ) Jr-j+m—1

Again the last two terms cancel each other. The first term becomes

T
r+m-1 jg-j)
t E ( j ) 1) Jr—j+m-1

j=0
r-1
r-1)+m-1 j ¢ (x-1-j)
- +m- 1)2( ] )(-1) ’Z(r-l)-j+m-1
j=0

Since r=m+1 and (r - 1) = m, both of these sums are zero, giving the
desired result.

Lemma 2. For any integers m and T such that T = 2m
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T-2 . m-1

T\ (o _ k j £ (m-1-j)
> (- S (5)erstn
k=2(m-1) j=0
(6) m
= 1 T - j (m—j)
mZ(1)( WMy
=0 "
Proof.
T-2 m-1
T k j g (m-1-j)
Z (k) - ) <j>(_1) e
k=2(m-1) j=0

m-1

T-j-2
= (m-1)! Z (}‘) (-1} Z (1'1;:;) l({f;l-}j—J—l)
' (k-j)=2(m-1)-
From Eq. (4),

T-j-1
T-j) ¢m-j-1) _ .\ plm-j)
> (k_ j)Jk_j = (m - DA
(k-j)=m-j-1
It follows that
T-j-2 T-j-1 »
T -j\ jm-j-1) _ T - j | #(m-j-1)
S (pme - S (mie
(k-j)=2(m-1)-j (k-j)=m-j-1
T -j g (m-j-1)
- (T - - 1)"4'1‘-]'-1
2m-j-3
T - j) 4 (m-j-1)
- Z (k— j) Jk—j
- (k-j)=m-j-1

- -y J (m-j) o f(m-j-1)
= m -4 - @ - DAL

2m-j-3

- X (T

r=m-j-1
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The right-hand side of Eq. (7) becomes

m m-1 .
- Ty (-1)) -j
m§;<)(1)JJ(mJ) m -0 Y Gy A
]:O J=1

(m-1-j)
E (T-l—]i' JT 1-j

m-1 ) 2m-3-j )
- (m - 1! Z <'f) (_1)3 E <T;J)$i‘m—1—l)

j=0 r=m-1-j

The two sums in brackets cancel each other since

m-1 .
T! (-1)! J(m-J)
iJ 1;' (T - Jil
j=1

m-2

Tt (-1) § -1-j)
Z JI(T - 1Tt 2 T-1-j .
=0

In the final term, we set k = (m-1-j) so that k ranges from zero to

(m - 2). Interchanging the order of summation and rewriting the expression,
we have

m-1 2m-3-j
(m -1 ) (?)(—1)3 >, <T;J>\J]<Cm—1—3)

j= r=m-1-j
m-2 m-1
- T -1+k) .\j g(m-1-j)
- Z(m—l+k) E( j >(1)Jm1]+k
=0 j=0

From Lemma 1, each of the inner sums is zero, so that Eq. (8) becomes
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m

. T i g(m-~j)

j=0

and the lemma follows.
These properties are useful in proving the following theorems.

Theorem 1. Let ty, ty, +--, t;;; be m integers such that

t. =1 i=1,2,°*, m

and
m
Zt. =T =m .
i
i=1
Then
= T! (m)
(9) 22 Y = midy
£yt tm T t.!
el |
i=1
Proof. We write
ty = Ty
t1 + tz = TZ

R
The summation in (9) can be rewritten as
T Ts-1 Ty-1
= T . T3 Tollf...
£ o-mea(f )| E ) (E)-]

T 1 -1 Ty=2 Ty=1
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But

From Eq. (4),

and, in general,

(r - 1)

SOME PROPERTIES

Tyl

Z)-

T -1
T

Tr=(r-- 1)

and the theorem follows.

Theorem 2.

and

then

Let ty, tp) *** s ty

,+

v
[
i

H.II

> (a

T
2 ' o2 =auj®

r-1

1’ 2’ cee, M

Ty

r )é(r-l) BT
> © u T ’

r-1

be m integers such that

[March
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m

T! . —.
(10) Ty Y = mt (?)(-1)34(1?_33)
ty ty t, It! j=0
i=1
Proof. Again, let
tg = Ty
ti + tz = T2
=Tm =T .

ty +tyg + e +tm

The desired summation can now be written as

> (TT ) Tﬁiz(gz) Tf(;{:)

m-1
Tm_1=2(m—1) Ty=4 T4=2
Ty-2
I ) TR
) = 2 -2-2
T1=2
2
T ig@-p
= 21 2 (-1 Y.
PIR SNCE A
j=0

Repeated application of Lemma 2 leads to the desired result.
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A GENERALIZED FIBONACCI SEQUENCE OVER AN ARBITRARY RING

D. J. DeCARLI
Rosary Hill College, Buffalo, New York

Let S be a ring with identity I. Consider the sequence {Mn} of ele-
ments of S, recursively defined by:

1) = A.M A M for n>0,

Mn+2 1" n+l * 0" n
where My, My, Ag, and A; are arbitrary elements of S.

Special cases of (1) have been considered by Buschman [1], Horadam
[2], and Vorobyov [ 3] where S was taken to be the set of integers. Wyler
[4 ] also worked with such a sequence over a particular commutative ring with
identity. In this note, we establish several results for such sequences over S
(not necessarily commutative) which are analogues of results derived for sim-
ilarly defined sequences of integers.

We begin by considering a special case of (1), denoted by {Fn} and de-
fined by:

2) F = A F

n+2 1Fna1 + AoF for n20,

n
where Fg =0, Fy =1 and Ay, A; are arbitrary elements of S.

The fact that S need not be commutative causes difficulty in trying to
derive results for the {Fn} sequence. However, we note that the terms of
this sequence possess an internal symmetry which enables us to make a start
at deriving identities.

Theorem 1. If Fn+2 = Aan+1 + AOFn’ then

®) Fpta = Fpaahq T Fpfy -

Proof: The proof is straightforward by induction.

Corollary 1:

_ 2 = -
n+1Fn-1 Fn Fn-lAOFn—l FnAOFn—Z ’

182
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.e Cme - _
(@) Fn—an+l Fn Fn—1A0Fn—1 Fn—ZAOFn’ n21.

Proof of (i): From (3), we have

F F2 = (F A
n

n+1Fn—1 - F + F AO)F - F (A F A F

1 n-1 n-1 n""1 n-1 * Ay n-2)
= Fn1%0%n-1 = FufoFnz -
The second result can be obtained in a similar manner. We note that the re-
sults of Corollary 1 are analogues of Equation (11) of Horadam's paper [2].
The {Mn} sequence does not, in general, possess the symmetry of the
{ Fn} sequence and consequently it is even more difficult to work with. There
is, however, a relation between the {Mn} sequence and the {Fn} sequence.

Theorem 2:

M = F_AM

n+r r 0 n—1+F

r+1Mp? n>1, r>0.

Proof: The result is easily established by induction.

Corolla_x_'z 2

M =FM
n

" +F _,AMg,  n2> 1L

1

Proof: Interchange r and n, replace n by n-1 and set r =1 in
Theorem 2.

We note that the result of Theorem 2 is identical with Equation (12) of
Buschman's paper [1] which was derived for a similarly defined sequence of
integers.

For the {Fn} sequence, Theorem 2 becomes

4) F = F A F

n+r 1’0n-1+F F nzi.

r+1"n’
If we replace n by n+1 and r by n in (4), then we have

2 =
(5) F + FnA 0Fn

n+l Font1 *

The commutator of the {Fn} sequence is characterized by
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Theorem 3:

FnFn+r - Fn+an

=FFAF ,-F AFF, n>l, r>1.

Proof: If we replace n by r+1 and r by n~ 1 in (4), we have

®) Fn+r = Fn—lAOFr * FnFr+1 ’
From (4), (6), and the fact that S satisfies the associative law for multipli-
cation, we have:

FF .F)=(F

n r+l n nFr+1)Fn °

oo Fn(FrAOF F

o1t - F AF

1'+1Fn r 0 n-1 )

= (F AF +FF

n-170"r n r+l © Fn—lAOFr)Fn :

"Fn(Fn+r - FrAOFn—l) = (Fn+r - Fn—l‘L\OFr)Fn .

o FFher - Fn+an = Fn;FrAOFn—l - Fn—lAOFan °

The { Mn} sequence appears to be very difficult to work with directly.
Investigations indicate that the best that can be done is to concentrate effort on
the { Fn} sequence and use Theorem 2 and Corollary 2 to derive analogous re-
sults for the { Mn} sequence.

As a final remark, we note that the sequence obtained from (1) by setting
Myg=R, My = P+Q, P,Q arbitrary elements of S, and Ay = Ay = I,
yields a nice set of identities which are analogues of those derived by Horadam
[2] for a similarly defined sequence of integers.
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[Continued on p. 198. ]




A REMARKABLE LATTICE GENERATED BY FIBONACCI NUMBERS

S. K. ZAREMBA
University College of Swansea, Wales

Functions which can be represented in the s-dimensional unit interval by
rapidly convergent Fourier series of unit period in each coordinate can be in-
tegrated numerically over this interval with great efficiencyby averaging their
values over all the points obtained by reducing modulo 1 the coordinates of the
multiples of a suitable vector T = <g;/p, *°°, g /P>, where gy, S-S
and p are integers. The crucial property of this vector can be described as

follows: For any vector F = <hy, =--, hs> put
R(b) = max(1, hy) +-- max(1, h ),

and denote by p(g) the minimum of R(h) for all the vectors having integral

coordinates not all zero, and satisfying
ge+h =0 (mod 1),

where the dot denotes, as usual, the scalar product. Hlawka [5] describes

pg as a good lattice point modulo p if

@) p(8) > pBlogpl™ i

because upper bounds for the error of integration can be expressed as rapidly
decreasing functions of (g), and heproves the existence of good lattice points
modulo any prime for any number of dimensions. The requirement that p
should be a prime was introduced only in order to facilitate the proof. Under-
standably, however, one assumes in any event (g, °-*, s p) = 1, so that
g generates exactly p different multiples modulo 1. Of course, here and in

tFrom September, 1969 at the Centre de Recherches Mathématiques, Université
de Montreal, Montreal, Canada.

tAs a result of a misprint, the exponent of 8 log p appears to be -s in
Hlawka's paper, but his proof applies to lattice points satisfying (1). Thus
his results are sharper than those of Korobov ([71, [8D. ’

185
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what follows, by a multiple modulo 1 of any vector, we understand the result
of reducing modulo 1 each coordinate of the multiple of the given vector.

In the case of more than two dimensions no recipe other than trial and
error is known for finding good lattice points, and indeed such a recipe seems
unlikely to exist. However, in two dimensions, the best lattice points in the
sense of maximizing the ratio (g):p are obtained by putting

p=F, g =1 g = Fn—l’
where <Fj> are the Fibonacci numbers [9]. One finds, then, p(g) = F o
which is of a better order of magnitude than (1).

The case when the integrand has not the required properties of period-
icity can be reduced to the periodic case. In the case of two dimensions, de-
noting the coordinates by x and y, we add to the integrand a suitable poly-
nomial in x with coefficients depending on y, and a polynomial in y with
coefficients depending on x. The precise upper bounds for the error ([9],

[12]) are too complicated to be discussed here in detail. Let it suffice to say
that if the integrand f has partial derivatives up to

aer
ax dy"

of bounded variation in the sense of Hardy and Krause (for a precise definition
see, for instance [5] or [9]), and if we add to it suitable polynomials of degree
r, this allows us to obtain the value of the integral with an error of the order
po@+l)

n
computations carried out by this method [12] gave a very high degree of

accuracy. For instance, taking r = 3, the value of the integral over the unit

log F by averaging f over the Fn points defined above. Trial

square of exp (-x% - 2y2) (true value 0.446708379 to nine decimals) was ob-
tained with eight correct decimals from n = 7 onwards, i.e., using 13 or
more points.

The sets of points corresponding to n = 5, 6, and 7 are shown in Figs.
1, 2, and 3. It will be seen that they define regular grids, and indeed square
grids when n is odd. The importance of these grids lies not so much in the
fact that they may be thought to be picturesque, as rather in conclusions of a
far-reaching nature which can be drawn from their existence.
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Fig.2:n=6

Fig.1:n=5
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We begin, however, with a description of the grids themselves. It is
easily seen that the sets of points in question form lattices. The lattice gen-~
erated modulo 1 by the vector

V = <F_1 —1>

n’ Fn— 1Fh

will be denoted by Ln' It obviously has a base formed by the vectors V and
€; = <0,1>. The more detailed nature of Ln depends on the parity of n. In
its investigation, we shall repeatedly use the identities

F F

@ F n+1 + an = Fm-l-n+1

m-+1
(see, for instance, Iyg in [6]), and

3) F_ = )™F .

When n = 2u + 1, an alternative basis of Ln is formed by the vectors

- _ -1 -1 - - -1 -1
Vi = <FuFy o -F_, 1Fou > and Vo = <F Fo 0 -F_ Fy,p>

Indeed, from (3) and from (2) with n = -2y - 1 andwith m = pu-1 and

m = p, respectively, we deduce

F F = -F

= mod F
B 2p (

-pu-1 2;,;--1-1)

and

= -F (mod F ) )
-

Fofay, 2+l

so0 that
Fuv = _ﬂ (mod 1) ’

and
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F“ﬂv =V, {mod 1).

Thus Lzll« +1 contains the lattice generated by V; and V,.
To prove that, conversely, L

by Vi and V,, we note that by (3),

2u+1 is contained in the lattice generated

—F—M—lFM - F—MFM+1 = 0,
while by (2) and (3),
B2 1t = Ty
Hence
'F-u—lvz - F-uv; = _; *

On the other hand, by (3) and by (2) with m = -y and with n = p and n =

-p -1, respectively, we find

FopFu* Fopfun = Fp 7 1
and
-F F =F, F =TF
-p - -p-1 1-p ™ -p 2p °
so that
F V., vV, =V .

PRSP

Thus V; and V, generate the same lattice as V and e,, thatis the lattice

L .
2u+1 —

Since V; and V, are orthogonal and of equal length, Lzli +1 forms a
grid of squares with sides inclined to the axes of coordinates. It will be seen

that this grid is invariant with respect to rotations preserving the unit square.
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Since clearly such rotations transform the grid into a parallel one, it suffices
to show that a rotation by a right angle about the centre of the square trans-
forms at least one lattice point into a lattice point. Now the point V of L2” +1

is transformed by such a rotation into the point

1

- 1
2-17 2417

<F F2M+1> = 2M_1V (mod 1) ,

since, by (2) with m = 1 - 2p, n = 2p,

1 (mod F ).

FZ /.L-_leu 2 pt+l

Further rotations transform the point in question into

-1 Fl 5> ana <p. FL -1

<1 - Fou 1P 1Fapun ouFapst - Faun

These points form a square with vertices close to the sides of the unit square,
but it does not followthat the sides of this new square are contained in the, grid

formed by L It is so if, and only if, 4 is even, and this can best be

2u+1°
seen as follows.

By (Ip5) in [6] with n = p, p = 1, or by (Ij5), we have

2 2 —
) Pl - Fhy = Ty,

and by (Ijg) in the same book, with n = pu- 1, k = 2,

2 - 2 w+1
FM_1 F“+1F”_3 + (-1) .
Hence
Fun®up - Fug) = Fyy -1

when i is even. It follows that in this case, the abscissa of the point
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-1 -1 _
Fou-1Fopsrr Fopar” * Fppg - Fu_g)Vy
is
1 -1
Fop-1 T Fop = VFy = 1 - Fylyg -

Since no pair of points L2 el in the unit square can have the same abscissa,
this is necessarily the point

-1 -1

<1 - F2u+1’ FZu—1F2u+1>

which was mentioned above as another vertex of the square in question. Let it

be noted in passing that there are 4(F u+1'Fu-3) points of L2#+1 on the

perimeter of this square. In Fig, 1, this square is shown by thicker lines.
When p is odd, the ordinate of V, is negative. Consequently, it is

along V; that we should attempt to move from

<k, .FL .

2p-1%2 1’ Fay1”

to

1 -1
<L - Fouare FapoaFoua”

But by (2) with m =y, n = pu-1,

FF Lt F,1) = Fyy
Hence if we add (FIJ gt F“ _1)V_1 to the starting point, we obtain a point of
abscissa
-1 _
Fop-1 ¥ Fa ) Fope = 1o
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which shows that, for p> 1, adding multiples of V; to our starting point

2u+1*
question is not formed by the grid; this is illustrated in Fig. 3, where this

cannot produce a point of abscissa 1-F Thus indeed the square in

square is marked in dotted lines.

When n is even, say n = 2u, the vectors

ey -1 -1 o7 -1 -1
Vi = <F”F2“, F_MF2“> and V, = <Fu+lF2“’ Fl-y,FZp, >
form a basis of L2u' Indeed, writing V as
-1 -1
<Fa, Fyp,F5>

we find, by easy applications of (2),

— ——r — —
(5) FV=V (mod 1) and FoaV = Vy (mod 1) .
On the other hand, by (2) and (3), we find
(6) F Vi+F V5=V and F Vi -F Vb =

Now (5) and (6) show that the lattice generated by V{ and V{ is nothing else

but Lzu.
However, VI and V{ are not orthogonal, their scalar product being

-2 2 -2
FF .+F F, )F.° =TF°F
(u ptl -p l—u) 2p po2p

since

F F F = F (F F

F + - = F2 .
poutl b 1-p B optl [

u—l)

When n = 2u, Ln does not form a square grid. The determinant of L2 u

being equal to Fé;lx’ this would indeed require a pair of orthogonal vectors of
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lengths F;}” each. Thecasesof K =2 and 4 = 3 being trivial, assume
p > 3. Inour search for the required vectors, we can dismiss those which
have a coordinate equal to, or big er than, FIJ +1sz in absolute value, since
by (4), their length exceeds F, u All linear combinations aVj + BV} in
which B # 0 are thereby excluded because of their abscissa if af 2 0 and
because of their ordinate if o < 0. There remain the multiples of _V—i But

((78) in [1])

(7) F =FZ+2FF

2 ptpl

This identity can also be deduced from (4) noting that

FZ

”+1-F?h = F2 + 2F, F

-1 [ [ VRS
It follows from (7) that when p >3, we have F2”> ZF’i , So that ﬁ is
too short for our purposes, while 27{ has an abscissa exceeding F” 412 S°
that it is too long.

The figures representing the lattices with F5; = 5, Fg =8, and Fy =
13 points show that in each case there is a relatively large number of lattice
points on a straight line passing through the origin. In order to evaluate this
number in general, we must again distinguishtwo cases according to theparity

of n.
If n =2 +1, oneofthe vectors V; and V, has both its coordinates

positive, one being equal to
B 2u+l
and the other to

-1
F u+1F2 ptl’®
The origin being a lattice point, it follows that the line passing through it and
parallel to the vector in question contains
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-1
[FopsrFual t 1

lattice points, where, as usual, [x] denotes the biggest integer not exceeding

x. This number is easily determined as follows: By (2) and by (I;3) in [6],

we have
F7H_1 + Fﬁ = FzM+1
and
FoaFu - T o= (0 .
Hence
FoF g +F, ) = Fypy o+ 0F,

and consequently the number of lattice points on the line in question is

+1
® ) .

1
F”+1 + FM_1 +35 1+ (-1)

When n = 2u, one of the vectors 7{ and Vé— has its coordinates equal

-1 -1 . .
to FuFZ;L and F‘“_leu in either order. But by (2),
FoaF, +FFuq = Fyo
and
F;.L 1-p Pl 2-p Fy oo
or
F F .F = )",
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