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FIBONACCI REPRESENTATIONS I I 
L. CARLITZ* 

Duke University, Durham, North Carolina 

1. Let R(N) denote the number of representations of 

(1.1) N = F, + F, + . . . + F. , 
kt k2 k t 

where 

(1.2) kt > k2 > ••• > kj. j> 2 • 

The integer t is allowed to vary. We call (1.1) a Fibonacci representation of 
N provided (1.2) is satisfied. If in (1.1), we have 

(1.3) k - k . + 1 > 2 (j = 1,- • • , t - 1); k t > 2 , 

then the representation (1.1) is unique and is called the canonical representa-
tion of N. 

In a previous paper [1] , the writer discussed the function R(N). The 
paper makes considerable use of the canonical representation and a function 
e(N) defined by 

(1.4) e(N) = V l + Vl + '"+Vl ' 

It is shown that e(N) is independent of the particular representation. The 
first main result of [1] is a reduction formula which theoretically enables one 
to evaluate R(N) for arbitrary N. Unfortunately, the general case is very 
complicated. However, if all the kt in the canonical representation have the 
same parity, the situation is much more favorable and much simpler results 
are obtained. 

* Supported in part by NSF grant GP-7855. 
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114 FIBONACCI REPRESENTATIONS - II [March 

In the present paper, we consider the function R(t,N) which is defined 
as the number of representations (1.1) subject to (1.2) where now t is fixed. 
Again we find a reduction formula which theoretically enables one to evaluate 
R(t,N) but again leads to very complicated results. However, if all the kj in 
the canonical representation have the same parity, the results simplify con-
siderably. In particular, if 

N = F 2 k + . . . + F 2 k (kA > k2 > ••• > k r 2 1) , 

j = k - k ^ (1 < s < r); j = k , 
Js s s+1 - J r r ' 

fr(t) = f(t; jt, • • • , j r ) = R(t,N) , 

00 

Fr(x) = F(x; j i , ••• , j r ) = ] ^ f ( t ; j l f ••• , j r ) x , 
t=l 

Gr(x) = F(x; j ^ ••• , j r _ l f j r + 1) , 

then we have 

x(l - x r + 1 ) j r - l + 2 

(1.5) Gr(x) - X U
1 ^ X

x ' Gr+1(x) - x r X Gr_2(x) = 0 (r > 2) , 

where 

Ji+1 
G0(x) = 1, Gi(x) = X ( 1

1"_X
X

 ] 

In particular, if ji = *' • = j > then 

oo _ i 
£ G (x)zr = { l - [J + l ] x z + x j + 2 z 2 } , 

r 
r=0 

from which an explicit formula for G (x) is easily obtained. Also the case 
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Ji = ••• = J r - 1 = h j r = k 

leads to simple results. 
In the final section of the paper some further problems are stated. 
2. Put 

°o F F -
(2.1) <J>(a,x,y) = II (1 + ax n y n + 1 ) . 

n=l 

Then 

^i \ o /i , Fn+1 F n+2, n ,- _,_ n
 F n F n + L 

4>(a, x, xy) = II (1 + ay x ) = 11 (1 + ay x ) , 
n=l n=2 

so that 

(1 + axyXtKa, x, xy) = 4>(a, y, x) . 

Now put 

k m n 
(2.2) <J)(a, x, y) = £ A(k, in, n) a x y . 

k,mn=0 

Comparison of coefficients gives 
(2.3) A(k, m, n) = A(k, n - m, m) + A(k - 1, n - m, m - 1) , 

where it is understood that A(k,m,n) = 0 when any of the arguments is 
negative. 

In the next place, it is evident from the definition of e(N) and R(k,N) 
that 
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(2.4) n (l + a x F n y F n + 1 ) = £ R(k, N) ak x e ( N ) yN . 
a=1 N=0 

Comparing (2.4) with (2.1) and (2.2), we get 

(2.5) R(k, N) = A(k, e(N), N) . 

In particular, for fixed k, n, 

(2.6) A(k, m, n) = 0 (m ^ e(n) ) . 

It should be observed that A(k,e(n),n) may vanish for certain values of k 
and n. However, since 

R(n) = £ R(k, n) = § A<k> e<n)> n) > 
k=0 k=0 

it follows that, for fixed n, there is at least one value of k such that 

A(k, e(n), n) f 0 . 

If we take m = e(n) in (2.3), we get 

(2.7) R(t,N) = A(t, N - e(N), e(N) ) + A(t - 1, N - e(N), e(N) - 1) . 

Now let N have the canonical representation 

(2.8) N = F k j + . . . + F k r 

with k odd. Then 

e(N) = F M + . . . + F k r l ( I 

N - e ( N ) = F + . . - + F k r _ 2 
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Since k > 3, it follows that 

(2.9) N - e(N) = e(e(N)) 8 

On the other hand, exactly as in [ 1 ] , we find that 

e(e(N) - 1) = N - e(N) - 1 . 

It follows that 

A(t, N - e(N), e(N) - 1) = 0 , 

and (2.7) reduces to 

R(t, N) = A(t, e(e(N)) . 

We have, therefore, 

(2.10) R(t, N) = R(t, e(N) ) (kr odd) . 

Now let k in the canonical representation of N be even. We shall 
show that 

k -1 S k -2 
(2.11) R(t, N) = R(t - 1, e r (Nj)) + £ R(t - j , e r (N^ ) , 

J=2 

where k = 2s, 

(2.12) Ni = F k i + . . . + F k r _ i » 

and 

(2.13) ek(N) = e(ek"'1(N))s e°(N) = N . 
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Assume first that s > 1. Then as above 

(2.14) N - e(N) =e(e(N) ) , 

and 

(2.15) e(e(N) - 1) = e(e(N) ) . 

Thus (2.7) becomes 

(2.16) R(t, N) = R(t, e(N) ) + R(t - 1, e(N) - 1) (k > 2) . 

When k = 2, we have, as in [1] , 

N - e(N) = F k _ 2 + . . . + F k r - 1 - 2 = «(«(Ni) ) , 

e(N) - 1 = F ^ ^ + . . . + F k r - 1 _ ! = e(Ni) , 

e(e(N) ) = N - e(N) - 1. 

It follows that 

(2.17) R(t, N) = R(t - 1, e(Ni) ) (kr = 2) . 

Returning to (2.16), since 

e(N) - 1 = F + . . . + F + (F2 + F4 + . . . + F ^ ) 
K.~~ X 

= e(Nt) + (F2 + F4 + . . . + F 2 t _ 2 ) , 

it follows from (2.17) and (2.10) that 

R(t, e(N) - 1) = R(t - 1, e2(Ni) + F3 + . . . + F 2 t _ 3 ) 

= R(t - 1 , e3(Ni) + F2 + . . . + F 2 t _ 4 ) . 

Repeating this process, we get 
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R(t, e(N) - 1) = R(t - s, e2 s"2(N1) ) , 

so that (2.16) becomes 

(2.18) R(t, N) = R(t, e2(N)) + R(t - s, e 2 8 " 2 ^ ) ) (k = 2s > 2) . 

If k = 4, Eq. (2,18) reduces, by (2.17) and (2.10), to 

R(t, N) = R(t - 1, e4(NA) ) + R(t - 2, e 2 ^ ) ) , 

since 

(2.19) R(t, N) = R(t, e(Nt) ) (kr = 2) . 

For k4 = 2s > 4, Eq. (2,18) gives 

R(t, N) = R(t, e4(N) + R(t - s + 1, e2s""2(Ni) ) + R(t - s, e2s"~2(Ni) ) 

= R(t, e6(N)) + R ( t - s + 2 , e 2 s " 2 (N i ) ) + R(t - s + 1, e 2 s " 2 (Ni) ) 

+ R ( t - s, e 2 s " 2 (N i ) ) . 

Continuing in this way, we ultimately get 

s 
(2.20) R(t, N) = R(t, e2s"2(N) ) + J ] R(t - | , e2 s"2(N!) ) . 

3=2 

By (2.17), 

R(t, e2s~2(N) ) = R(t - 1, e2 s"1(N1) ) , 

so that (2.20) reduces to (2.11). 
This proves (2.11) when k > 2; for k = 2, it is evident that (2.11) 

is identical with (2.17). 
We may now state 



120 FIBONACCI REPRESENTATIONS - II [March 

Theorem 1. Let N have the canonical representation 

N = F + . . . + F k , 
1 r 

where 

k. - k j + 1 > 2 (j = 1, . . . , r - 1); k r > 2 

Then, for r > 1, t > 1, 

k - 1 S k -2 
(2.21) R(t, N) = R(t - 1, e r (N^ ) + £ R(t - j , e r (N*) ) , 

j=2 

where s = [k / 2 ], Nj = F, + • • • + F, 
r 1 r - 1 

3. For N = F , r > 2, Eq. (2.7) reduces to 

(3.1) R(t, F r ) = Aft, F r _ 2 , F r - 1 ) + A(t - 1, F r _ 2 , F ^ - 1) 

= R(t, F r _ 1 ) + Aft - 1, F r - 2 , F ^ 1 - 1) . 

Also, 

(3.2) Rft, F r - 1) = Aft, F r - 1 ~ e ( F r - 1), e ( F r - 1) ) 

+ Aft - 1), F r - 1 - e ( F r - 1), e ( F r - 1) - 1) 

Since 

e < F 2s + l " 1 } " F2s« e < F 2 S " 1J = F 2 s - 1 - 1 • 

we have 

Aft - 1, F 2 s _ 2 , F ^ - 1) - Eft - 1, P a B _ 2 - 1), 
Aft...- 1, F 2 g - 1) = 0 . 
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Thus (3.1) becomes 

|R( t , F 2 s ) • 

W, F^) 
( 3 2 ) { m

 R ( t ' F2s-1> + R ( t " l j F 2 s - 1 " » • 
) = Rft, F 2 s ) , 

In the next place, Eq. (3.2) gives 

R(t, F 2 s - 1) = Aft. F 2 g _ 2 , F 2 g _ 1 - 1) + Aft - 1, F 2 s _ 2 , F , ^ - 2) 

= Eft. F ^ - 1) 

R<t> F2s+1 " 1} = A ( t ' F 2 s - 1 " X' F2s> + A ( t " U F 2 s - 1 " X' F 2 s " 1} 

= Rft - 1, F 2 s - 1), 

that i s , 

(3.3) Rft, F r - 1) = Rft - X, F r _ 1 - 1) (r > 2) , 

where 

0 (r even) 
X = ^ 1 (r odd) . 

It follows from (3.3) that 

Rft, F 2 s - 1) = Rft - s + 1,0), Rft, F 2 g + 1 - 1) = Rft - s + 1,1) 

which gives 

| Rft, F 2 g - 1 ) = 8 
(3.4) I 

(Rft, F 2 g + 1 - 1) = 8 t j S • 

Combining (3.2) with (3.4), we get 

Rft, F 2 g ) = Rft, F 2 s + 1 ) = Rft, F2a_±) + « t j S , 
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It follows that 

R ( t 5 F 2 g ) = R(t, F 2 s _ 2 ) + 8 t > s 

R(t, F 2 g ) = 11 (1 ^ t £ s) 
0 (t > s) 

We may now state 
Theorem 2. We have, for s _> 1, t > 1, 

R( t> F 2 s + 1 " X) = R ( t ' F 2s + 2 

(3.5) R(t, F 2 g ) - R(t, F 2 g + 1 ) - >Q ( t - g ) 

" X) = S t , s • 
1 (1 < t < s) 

Let m(N) denote the minimum number of summands in a Fibonacci 
representation of N and let M(N) denote the maximum number of summands. 
It follows at once from (2.21) that 

(3.6) m(N) = r , 

where r is the number of summands in the canonical representation of N. 
Moreover, it is easily proved by induction that 

(3.7) R(r, N) = 1. 

As for M(N), it follows from (2.21) that 

(3.8) M(N) < M(F k i _ k 2 + 2 + -. 
r - 1 r 

where 
N = F

k l
 + --- + F k 
*• r 

is the canonical representation. Now, by Theorem 2, 
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M(Fk) = [Ik] . 

Hence by (3.8), 

M ( F k t
 + F k 2

) ^ ^ ( k * " k 2 ) ] + [ |k 2 ] + 1 . 

Again, applying (3.8), we get 

M ( F k j + Fk2
 + F k 8

) ^ ^ ( k l " k 2 > ] + ^ " k 3 ^ + ti^l + 2 • 

It is clear that in general we have 

(3.9) M(N) < [ l(ki - k2)] + . . . + [i(kr_>1 - k r ) ] + [ | k r ] + r - 1 s 

so that 

(3.10) M(N) < [-Jki] + r - 1 . 

We note also that (2.21) implies 

(3.11) R(M(N), N) = 1 . 

We may state 
Theorem 3. Let 

(3.12) N = F k + . . . + F k 
1 r 

be the canonical representation of N. Let m(N) denote the minimum number 
of summands in any Fibonacci representation of N and let M(N) denote the 
maximum number of summands. Then m(N) = r and M(N) satisfies (3.9). 
Moreover, 

(3.13) R(m(N), N) = R(M(N), N) = 1 . 

It can be shown by examples that (3.9) need not be an equality when r > 1. 
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4. While Theorem 1 theoretically enables one to compute R(t,N) for 
arbitrary t ,N, the results are usually very complicated. Simpler results can 
be obtained when the k. in the canonical representation 

(4.1) N = F k i + . - . + F k r 

have the same parity. In the first place, if all the k. are odd, then, by (2.10), 

R(t, F ^ + . . . + F k r ) = R(t, F ^ ^ + . . . + F k r _ ! ) . 

There is therefore no loss in generality in assuming that all the k. are even 
It will be convenient to use the following notation. Let N have the canon-

ical representation 

(4.2) N = F 2 k j + . . . + F 2 k r , 

where 

(4.3) kt> k2 > ••• > k r 2 1 • 

Then, by (2.21) and (2.10), 

(4.4) R(t,N) = R(t - 1, F 2 V 2 k r + . . . +Fakr_1-2kp> 

k r 
+ E » * " h F 2 k i _ 2 k r + 2 + ••• +F 2 k r _ 1 _2k r f2>-

3=2 

Put 

(4.5) j = k - k , (s = 1, ••• , r - 1); j = k Js s s-1 J r r 

and 

(4.6) fr(t) = f(t; J!, - - - . J r ) = R(t, N) . 
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Then (4.4) becomes 

(4.7) f(t; j l f . . . , j r ) = f(t - 1; Ji , . . . • j r _ i ) 

j r 

+ £ f ( t - u ; h> '" > Jr-2» Jr-1 + 1) • 
u=2 

By (2.18), we have 

R ( t ' F 2 k 1 - 2 k r + 2 + • • • + F 2k r _ i -2k r +2> 

= R ( t ' F 2 k r 2 k r
 + - " + F 2 k r _ r 2 k r ) 

+ R ( t - k r _ 1 + k r - l ; F 2 k r 2 k r _ i + 2 + . . . 

+ F 2 k r _ 2 - 2 k r _ 1 + 2 ) ' 

so that 

(4.8) f(t; j j , • • • , j r _ 2 , j r _ i + 1) 

= f(t; j i , — ,j r_2> j r _ i> +f( t - ' j r _ i - 1; Ji»- • • »jr_3»jr_2 + D-

If we put 

00 t 
(4.9) Fr(x) = F(x; j „ • • • , j r ) = £ f(t; Jlt • • • , j r ) x , 

t=l 

it follows from (4.7) that (for r > 1) , 
(4.10) F(x; j j , • • • , j r ) = xF(x; j t , • •• , j ^ ) 

j r 
+ X ( X " X ] F(x; Ji, • . . , j r _ 2 , j r _ i + D-

1 - x 

Similarly, by (4.8), 
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(4.11) F(x; Ji , . . . , j 2 , j T m m l + 1) 
3 r - l + 1 

= F(x; j i , • • - , j r _ 2 » 3 r - l ) + x r F f c j i , — f j r _ 3 l j r _ 2 + l ) . 

which yields 

(4.12) F(x; j l f • • • , j r _ 2 » J r - 1 + 1 ) 

3 r - l + 1 

= F(x; j i , - - . , j r _ 2 » J r - l ) + x F(x; J ! , - - . , j r - 3 > 3 r _ 2 ) 
K l + V - 2 + 2 K i + - - - + 32 + r - l 

+ X 1 " F(x; J i , - - - , j r _ 3 ) + . . . + x x ~ F ( x ; j t ) . 

F o r b rev i ty , put 

(4.13) Gr(x) = F(x; ]t, • •• , j r - 1 , j r + 1) , 

so that (4.10) becomes 

3 r 

(4.14) F r (x ) - x F r _ 1 ( x ) = * V - X x } G r - l ( x ) ' 

while (4.11) becomes 

j -+1 
(4.15) G ^ x ) = F r _ 1 (x ) + x r " 1 Gr_2(x) . 

Combining (4.14) with (4.15), we get 

(i 3 r + 1 \ 3 i + 2 

(4.16) G (x) - x i ± T l ^ ' G - W + x r _ i G «(x) = 0 . 
v r \ 1 - x r - 1 r - 2 

Thus G (x) sa t i s f ies a r e c u r r e n c e of the second o r d e r . Note that r 

Gi(x) = F(x; jt'.+ 1) = £ R(t, F 2 j + 2 ) x t 

t= l 

- 4- J - x(l - xjl+1) 
" L, x - l - x x = 

fe=l 
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G2(x) = F(x; J l f j 2 + 1) = £ R(t, F 2 J i + 2 J 2 + 2 + F ^ ) . 
t=2 

Now, by (2.21), 

J2+1 

R ( t ' F2J1+2j2+2 + F 2 j 2 + 2 ) = * » " *• F2 j l +1> + E R ( t " "> F2J l +2> • 
u=2 

so that 

Ji J2+1 Ji+1 
G2(x) = x Z x* + 2 x u J ) 

t=l u=2 t=l 

u ^ x t 

= x2(l - x j l ) + x2(l - xJ2) x(l - x 3 l + 1 ) 
1 - x 1 - x 1 - x 

Hence, if we take G0(x) = 1, Eq. (4.16) holds for all r 2 2. 
We may state 
Theorem 5. With the notation (4.2), (4.6), (4.9), (4.12), f (t) = R(t,N) 

is determined by means of the recurrence (4.16) with 

G0(x) = 1, Gift) = X{\ _X
X ' 

and 

J +1 
Fr(x) = Gr(x) - x r G ^ x ) 

It is easy to show that G (x) is equal to the determinant 



128 

(4.17) 
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D (x) r 

[March 

x[Jl + l ] 

-1 

0 

0 

-x"™ 

X[j2 + 1] 

0 

0 

J l « 

x [ j s + l ] 

0 

. . . 

. . . 

. . . 

0 

0 

0 

* [J r + l] 

where 

(4.18) 

Indeed, 

[j] = (1 - x j ) / ( l - x) 

Di(x) = x[Jt + 1] = GiW , 

D2(x) = x\jt + l ] [ j 2 + 1] - x j i + 2 = x3[ji.+ l ] [ j 2 ] + x*[}t] = G2(x) , 

and 

(4.19) 
J r - 1 Dr(x) = x [ j r + l J D ^ W - x ^ Dr_2(x) 

Since the recurrence (4.16) and (4.19) are the same, it follows that 
Gr(x) = Dr(x) . 

5. When 

(5.1) Ji - 32 J r = 3 

we can obtain an explicit formula for G (x). The recurrence (4.16) reduces to 

(5.2) Gr(x) - x[j - l]Gr_1(x) + xj + 2Gr_2(x) = 0 ( r £ 2) 

Then 
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oo oo 
£ Gr(x)zr = 1 + [j + l]xz + ^ G,r(x)zr 

r=0 r=2 

J + 2 n fcrrt z
r = 1 + [J + l]xz + £ (x [ j + l j G ^ W - xJ+^Gr_2(x)} 

r=2 

= 1 + ([j + l]xz + x j + 2 z2) £ Gr(x) z r , 
r=0 

00 

C v r 

so that 

oo m _i 
£ Gr(x) z r = (1 - [ j + 1] xz + x j + 2 z2) 
r=0 

= E *s *s (D + 1 ] - xJ z> 
S=0 

= E x S z S E (-^(^[j + i r ^ ^ z * 
s=0 t=0 * ' 

Hence 

Gr(x) = X ( - D ' ^ j l J + l f * ^ (5.3) 
2t<r 

Finally, we compute F (x) by using 

(5.4) Fr(x) = Gr(x) - x j + 1 G ^ 1 ( x ) 

When j = 1, we have 
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£ G (x)r = — 1 = -_J_/_i L_\ , 
0
 r (1 - xz)(l - x2z) 1 - x \ 1 - xz 1 - x 2 z / r=0 

which gives 

(5.5) Gr(x) = X2[r] = X ^ J * } (j = 1; r > 1) 

(5.6) Fr(x) = x r 0 = 1 ) . 

In this case, we evidently have 

N = F + F + - . . + F = F - 1 . 
iN *2r *2r-2 *2 *2r+l x ' 

so that (5.6) is in agreement with (3.4). 
For certain applications, it is of interest to take 

(5.7) % = ••• = j ^ = j ; j r = k . 

Then G^x), G2(x), • • • , G Ax) are determined by 

(5.8) Gg(x) = £ ( - W S " ^ [j - i ] s"2 t xs+j t (i < s < r ) , 
2 t<s 

while 

(5.9) G^x) = x[k - l]Gr_1(x) - xj+2Gr_2(x) 

where 

G J » = Gr(x; j , ••• , j , k) 

Also, 
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(5.10) FJ.(x) = Fr(x; j , . - . f J, k) - x[k]Gr_1(x) - ^+\_2(x) . 

We shall now make some applications of these results. Since 

L2j+lF2k F2k+2j + F2k+2j-2 + " ' ' + F2k-2j 

it follows from (5.10) that 

(5.M) £ R ( ^ L
2 j + i F 2 k ) x t = x 2 J + 1 [ 2 J ] t k " J] " x2 J + 2 [2j - 1] 0 < k) . 

t 

(Note that formula (6.17) of [ l] should read 

R ( L 2 j + l F 2 k ) = 2 J ( k - » ~ (2J " 1} 

in agreement with (5.11).) If we rewrite (5.11) as 

£ R(t, L 2 j + 1 F 2 k ) x t = x 2 j + 1 { l +X + . . . + 
t , k- i -1 , / , , 2 j - l w , , k - j - l o 

+ x J + (x + « . ' + x J )(x + - - -+x J )} 

we can easily evaluate R(t, L 2 . + 1 F 2 , ). In particular, we note that 

(5.12) R(t, L 2 j + 1 F 2 k ) > 0 (j < k) 

if and only if 

2j + 1 ^ t £ 3j + k - 1 . 

Note that, for k = 3j , 

£ R ( t , L 2 . + 1 F 6 . ) x t = x2i+1{l + x + . . . + x 2 ] V l + (x+x 2 + °»- +x2j '"'1) } . 



132 FIBONACCI REPRESENTATIONS - H [March 

This example shows that the function R(t,N) takes on arbitrarily large values. 
When j = k, we have 

L2k+lF2k F4k+1 ~ * ' 

so that, by (3.4), 

(5.13) L I « t . L 2 f c f l F 2 k ) x t = x 2 k 

Next, since 

L2j+lF2k "" F2j+2k + F2j+2k-2 + ' ' ' + F2j-2k-2 (j > k ) • 

we get 

(5.14) £ R ( t , L2 ^ F ^ J x * = x 2 k [ j - k - 1] [2k - 1] - x 2 k + 1 [2k - 2] 
t (j > k > 1) . 

Corresponding to (5.15), we now have 

(5.15) R(t, L2jHKLF2k) > 0 (j > k > 1) , 

if and only if 

2k < t < j + 3k - 2 

The case k = 1 is not included in (5.14), because (5.5) does not hold 
when r = 0. For the excluded case, since 

L2j+1 F2j+2 + F 2 j • 

we get, by Theorem 1, 
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(5.16) £ R(t, L 2 j + 1 ) x t = X2 + (x2 + x3) ^ z A (j > 1) . 
t 

For t = 1, Eq„ (5.16) reduces to the known result: 

R(L 2 j + 1 ) = 2 j - 1 

In [ 1] a number of formulas of the type 

R<F2n+l " X> = F 2n + 1 <n > °> • R < F L > = F2n <n > « 

were obtained. They depend on the identities 

F4 + F8 + . - . + F 4 n = F | Q + 1 - 1 , 

F 2 + F i + . . . + F 4 n + 2 = F 2 n . 

We now apply (5.10) to these identities. Then G (x) is determined by 

(5.17) Gr(x) = E ( - ^ ( ^ " ^ [ S f ^ x 1 r-2t r+2t 
i- i ; | t j L^J " 

2 t< r 

Thus (5.10) yields 

(5.18) £ R(t, F | n + 1 - l)x t = x(l + x)Gn_1(x) - x4G^2(x) , 
• 4 n + l 

t 

(5.19) E R(t> F 2 n ) x t = x G n - l ( x ) " x 4 ° n - 2 ( x ) ' 

with G„ ..(x), GM 9(x) given by (5.17) n—J. n—4 
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It may be of interest to note that 

Gr(l) = £ (-l)Yr
t" M3r"2t = F 2r+2 

2 t< r 

6. The following problems may be of some interest. 
A. Evaluate M(N) in terms of the canonical representation of N. 
B. Determine whether R(t,N)_> 1 for all t in m(N) < t < M(N). 
C. Does R(t9N) have the unimodal property? That i s , for given N, 

does there exist an integer /x(N) such that 

R(t, N) < R(t + 1, N) (m(N) < t < /x(N) ), 

R(t, N) > R(t + 1, N) (M(N) < t < MCN) ) ? 

D. Is R(t, N) logarithmically concave? That i s , does it satisfy 

R2(t,N) > R(t - l,N)R(t + l,N) (m(N) < t < M(N) )? 

E. Find the general solution of the equation 

R(t, N) = 1 . 
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A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 
C. T. LONG and J. H. JORDAN* 

Washington State University, Pullman, Washington 

1. INTRODUCTION 

In the first paper [2 ] in this ser ies , we developed certain properties of 
the simple continued fraction expansions of integral multiples of quadratic 
surds with expansions of the form [a,b] or [a ,b ,c] where the notation is 
that of Hardy and Wright [1, Chapter 10]. For easy reference, we restate the 
principle results here. 

Theorem 1. Let £ = [ a ,b ] , let n be a positive integer, let p, /q. 
denote the k convergent to £ and let t, = q, - + q, - for k > 0 where 
we take q_x = 0. Then n£ = [ r / s ] if and only if n = <l2in_2> r = p 2m-2 ' 
and s = t0 0 for some m > 1. 2m-2 

Theorem 2. Let £, n, p, /q, and t, be as in Theorem 1. Then n£ = 
[u ,v ,w] if and only if vn = q 2 m _ l 9 vu = P 2 m _ 1 - If and vw = t 2 m _ 1 - 2 
for some integer m ^ 1. 

* 8 th 
Theorem3. Let £ = [ a , b , c ] , let p, /q, be the k convergent to £ , 

let t^ = qk_1 + q k + 1 and s k = pk_^ + p k + 1 for k > 1. Then, for every 
integer r > 1, we have 

q 2 r * ^ = [p2r9 fc2r> c t 2 r / b ] ' 
q2r-l °£ = tp2r-l " X' l> S r - i " 2 ] 

hv-l ' * = [S2r-1> q 2 r - l ' ( c ' + 4 c / b ) q 2 r - l J 

and 

t 2 r ' ( = [ s 2 r - 1, 1, q 2 r - 2, 1, (be + 4)q2 r - 2 ] . 

Of course, for a = b = c = 1, the preceding theorems give results in-
volving the golden ratio, (1 + V*5)/2, and the Fibonacci and Lucas numbers 
since, in that case, 

*The first author was supported by NSF Grant GP-7114. 
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{ = (1 + VB)/2. p k = F k + 2 , qk = F k + 1 , ^ = L k + 1 , and ^ = ^ 

where F and L denote respectively the n Fibonacci and Lucas numbers. 
In the present paper, we devote our attention primarily to the study of 

the simple continued fraction expansions of positive rational multiples of quad-
ratic surds with expansions of the form [a] . Again, we note that, for a = 1, 
the theorems specialize to results about the golden ratio and Fibonacci and 
Lucas numbers. 

2. PRELIMINARY CONSIDERATIONS 

Let the integral sequences {f } and {g } be defined as follows: 
n ri>0 n n>0 

(1) f0 = 0, ft = 1, fn = a ^ ! * ^ ' n - ° • 

and 

(2) go = 2, gt = a, gn = agn_1 + g ^ , n > 0 , 

where a is any positive integer. These difference equations are easily solved 
to give 

(3) fn = * " £ , n=> 0 , 
7a2 + 4 

and 

(4) gn = t + ?n , n > 0 , 

where 

£ = (a + Va2 + T) /2 and J = (a - */a2 + 4) /2 

are the two irrational roots of the equation 

(5) x2 - ax - 1 = 0 . 
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Incidentally, if fl is a quadratic surd, we will always denote the conjugate surd 
by p. The following formulas, of interest in themselves, generalize results 
for the Fibonacci and Lucas numbers and are easily proved by induction, 

f 2 n = > : ^ - M l 2 i + 1 = Z (2! + i)a 

i=0 ^ / 
(6) n > 0 , 

fo 2n+l 
i=0 

(7) %n = f n - l + W n ^ > 

( 8 ) f m + n + l = fmfn + Wn+1> m ^ 0 ' n * °> 

( 9 ) ^rnn-n+l = fm^n + Wn+1' m * °' n ^ °> 

(10) f f - f A ^ = (-l)m~h JJt9 l < m < n . 
m n m-1 n+1 m-n+1' 

Also, we obtain in the usual way from (8) the following lemma. 
Lemma 4. For the integral sequence (f } ^ 0 we have that f If if 

and only if m| n, where m and n are positive integers and m > 2 if a = 1. 

3, PRINCIPAL RESULTS 

Our first theorem, together with the results of the first paper in this 
couplet, yields a series of results concerning the simple continued fraction 
expansion of multiples of £ =: [a] by the reciprocals of positive integers* The 
theorem is also of some interest in its own right. 

Theorem 5. Let £ = (a + b*/c)/d with a, b , c, and d integers, c 
not a perfect square, and c and d positive. Let r be a positive rational 
number such that 2ar/d is an integer. Let a2 + d2 = b2c and let 1 < £ < r . 
Then 

r£ = [a0, al8 a2, ••• ] , 
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if and only if 

£ L 2 a r 1 
r | ' a° " ~ c P a i > a 2 ' ' " 1 * 

st that â  - 2ar/d is p 

[ar + r l W c | ^ r a + 
— 3 "J c 

Proof. We note first that â  - 2ar/d is positive. This is so since 
rbVc" 

so that 

a0 - ( _̂  ! ^ g. 

2ar ^ - r a + rbN/c" 

= 

51 

a 

r 
{ 

d 

(*-

U-
rd 

+ h\l~c 

- 1 => 

- b2c > 

b's/c" 

1 

o , 

by hypothesis. Now let /x = [a^ a2, a3, • • • ] so that 

r£ = a0 + - . 

Then 

tn 2ar "1 1 

0, a0 - — , als a2, ••• = 2 a r t 

2ar 

+ bVc 2a\ 
d ~ d J r i 

r ( -a + b's/c) 

-d(a + b^F) 
r(a2 - b2c) 

a + b^c" 
~ . dr 
= £_ 

r 
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and the proof is complete. 
Corollary 6. Let a and n be positive integers. Let £ = [a] and let 

n > f . Then 

n£ = [a0, al9 a2, ••• ] 

if and only if 

| = [0, a0, - an, al9 a2, " ' ] . 

Proof. Since 

* * •> a + \ / a 2 + 4 
f = [a] = j , 

we may use the preceding theorem with a = a, b = 1, c = a2 + 4, d = 2, 
and r = n. The result then follows immediately since 

2ar _ 2an 
d ~ 2 

is an integer and 

as required. 
Now for 

+ d2 = a2 + 4 = b2c , 

f = [a] = • s -

The convergents p, /q. are given by the equations 

p0 = a, P l = a2 + 1, p n = ap n _ 1 + p n _ 2 , 
(11) n ^ 2 , 

q0 = 1, qt = a, qn = a q ^ + qn__2 , 

and it is clear that p = f „ and q = f - for n ^ 0. Also, p' = f 
and qf = f - for n ^ 0, where pf /qT is the n convergent to l/f. The 
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following results could all be stated in terms of the sequences ( p } and {q }; 
instead, we use the sequences (f } and ( g }. 

Corollary 7. Let r , s, and n be the positive integers with n > £ = 

[ a ] . Then f /n = [0, r , s ] , if and only if, n = f
2 m - l ' r = f2m' a n d S = 

qn - for some m ̂  2. ^2m-l 
Proof. This is an immediate consequence of Theorem 1 with a = b, 

and Corollary 6. 
Corollary 8. Let u, v., w, and n be positive integers with n > £ = 

[ a ] . Then f/n = [0, u, v, w ] , if and only if, vn = f2m> vu = ̂ m + l " 1 ' 
and vw = g2 - 2 for some integer m ̂  2. 

Proof. This is an immediate consequence of Corollary 6 and Theorem 2 
with u = v = w = a. 

The next corollary results from Theorem 3 and Corollary 6 by taking 
a = b = c. However, since, in this special case, parts (a) and (b) of Theo-
rem 2 yield results already obtained, we concern ourselves only with parts 
(c) and (d). 

Corollary 9. Let n be a positive integer greater than £. Then for 
r > 1 , 

4 = [°> < W f2r' <a2+'4>f
2r] 

and 

^ = [0, g 2 r - 1. 1, f2r+1 - 2, 1, (a* + 4)f2r+1 - 2 ] . 

The next theorem shows that the periodic part of the simple continued 
fraction expansion of n for siny positive integer n > f = [a] is almost sym-
metric. Of course, by Corollary 6, the same thing is true of f/n. 

Theorem 10. Let a and n be positive integers with n > £ = [a] . 
Then n£ = [a0, a t , • • • , a ] and the vector (al9 a2, ••• , a _-) is symmetric 
if r ^ 2. 
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Proof. Since a0 = [n£ ] , we have that 

0 < nf - fy < 1 

and 

f! = —1 - i , 
1 • n( - a0 

where f j is the first complete quotient in the expansion of n . Moreover, 

1 1 
f l = 

n£ - a0 ^ + a0 

so that 

-1 <|J" <0 f 

since ao + n/f is clearly greater than one, Thus, fj is a reduced quadratic 
surd and by the general theory (see, for example [3, Chapter 4]) has a purely 
periodic simple continued fraction expansion, say 

f l = [ait a2, ••• , a r ] . 

Additionally, we also have that [a , a - , ' °° , a-] is the expansion of the 
negative reciprocal of the conjugate of £lo Thus, 

r . o i I n , a , a ., j °a • , a- J = - —• = 7- + a* L r* r_]_» ' 1J j £ v 

so that 

(12) J = [0, a r - aQ, a r - l f a r_2 , • • - , a ^ a r ] 
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But, from above, 

n£ = [a0, &i, ••• , a r ] , 

and by Corollary 6, 

(13) - = [0, a0 - an, alf a2, • • • , a r ] . 

Thus, comparing (12) and (13), we have that the vector (als a2, • • • , a _-) is 
symmetric. 

We now turn our attention to the consideration of more general positive 
rational multiples of £ = [a] . 

Theorem 11. Let r be rational with 0 < r < 1. If the simple con-
tinued fraction expansion of r£ is not purely periodic, then 

r£ = [0, a1? a2, ••• , a j 

and 

I _ r . . , 
r ~ Lan " V V l ' a n - 2 ' " • » a 2 ' a n J 

for some n ^ 2. 
Proof. If r£ had a purely periodic simple continued fraction expansion, 

then r£ would have to be a reduced quadratic surd so that r£ > 1 and -1 ^ 
rT < 0. But the first of these inequalities implies that 

(14) j < r < 1 , 

and, since £ = - l / f , the second implies that 

(15) £ > r > 0 
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which is already implied by (14). Therefore, since r£ is not purely periodic, 
we have 

(16) 0 < r < i , 

so that 0 = [ r £ ] = a0. Now consider 

f 1 = ^ > 1 . 

and set aj = [£i] ^ 1. Again, 

1 _ „ f i - aj 
1 = h > 1 

and 

(2 = 2 " T T~~ 
— - H 7 + at 

since £?" = - 1 . Therefore, - 1 < J2 < 0 and £2
 i s reduced. Thus, £2

 n a s 

a purely periodic simple continued fraction expansion, 

6 = [a2i a3, • • • , an] , 

and 

r£ = [0, al5 a2, ••• , a j , 

as claimed. Also, 

— + ai = - —- = a , a - , •• • , a0 , 
r * T- L n ' n-1 ' 2J ' 

* 2 
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so that 

"~" ~~ I a — a., • a .., a ~ • « a^, a i 
r L n 1 n-1 r-2 2 nJ 

and the proof is complete. 
Theorem 12. Let r be rational with 0 < r < 1. If the simple contin-

ued fraction expansion of rf is purely periodic, then 

r£ = [ v ai» "•» *J 

and 

- = fa , a - , • • • , aA1 
r L n n-1 0 J 

for some n > 0. 
Proof. Since the simple continued fraction expansion of rf is purely 

periodic, it is reduced and we have by the preceding proof that 

| < r < 1 

Since we also have 

f i r - - i 
.2. = „ — = a , a . , • • • , a~ J , 
r T L n n-1 ° 

the proof is complete. 
In passing, we note that the periodic part of the expansions of rf need 

not exhibit any symmetry or even near symmetry. For example, for 

a = [1] = 2 , 

we have that 



1970] ON SIMPLE CONTINUED FRACTIONS - II 145 

| o r = [0, 2, l f 3, 1, 1, 3, 9] 
and 

| a = [1 , 4, 1, 2, 6, 2] . 

Also, it is easy to find rational numbers r with 0 < r < 1 such that the 
surds va and a/v are not equivalent where we recall that two real numbers 
JJL and v are said to be equivalent if and only if there exist integers a, b , c, 
and d with | ad - be j = 1 and such that 

u, = SL4 . 
^ cv + d 

However, as the following theorems show, there exist interesting examples, 
where near symmetry of the periodic part of the expansions of r f and £ / r 
and equivalence of r£ and r / f both hold. We will indicate that r f and f / r 
are equivalent by the notation 

b r 

Theorem 13. Let a be a positive integer, let f = [a ] , and let the 
sequences (f } and {g } be as defined above. Then, for n > 1, 

n n>0 

• £ = [aQ, ax , • • • , a r ] 

n n^O n n -0 

f2n+l 
f2n+2 

and 

2n+2 r. . o 1 
7—— • £ = a , a • , ? • " , a n J 
f2n-KL r ^ ° 

where the vector (a2, a3, *•• , a r , ao) is symmetric, a0 = a2 = 1, and aj = 
f - 1 
*4n+3 l o 
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Proof. We first demonstrate the purely periodic nature of the expan-
sions in question. From the definition, it is clear that f is strictly increas-
ing for n ^ 2. Also, f /f - is the n convergent to l/f. Therefore, 

(17) ^ L . < i <^£±1< 1 . 
i2n+l * x2n+2 

and it follows from the proof of Theorem 11 that f f2 - /fL 2 has a purely 
periodic expansion. Also, from Theorem 12, £f2 2 /f2 - has a purely 
periodic expansion whose period is the reverse of that for £f2n+l ^ 2 +2* 

Additionally, from (17), it follows that 

< 
f2n+l _ i < 1 / f2n+l __ f2n \ = _ 1_ 
f2n+2 f 2 \ f 2n+2 f2n+l/ 2f2n+lf! 2n+l 2n+2 

so that 

- . f2n+l > _ g , , 
1 < ^ _ . £ < _ + 1 

*2n+2 x2n+l 2n+2 

< 2 f
 t a n y + 1 < 2 
2n+l 2n+2 

Thus, a0 = [ff2n+1 / f 2 n + 2 ] = 1. Now 

2n+l . f . ! 
f2n+2 

and we claim that 

W * - K 1̂ < f 4n+3 ^ ! 4n+3 9 

so that a4 = f4 „ - 1. To see that this is so, we note mat, since f 2 /f -
is the n convergent to £ , 



1970] ON SIMPLE CONTINUED FRACTIONS 147 

f2n+2 ^ f4n+4 . 
f < f " < ^ 
2n+l 4n+3 

and 

1 ^ f2n+lf4n+4 ^ f 2n+l „ 
1 < ^ < . £ % 

2n+2 4n+3 2n+2 

But this gives, using (10), 

2n-fl 2n+l 4n+4 2n+2 4n+3 
* f x > f f — 

2n+2 2n+2 4n+3 

f2n+2 1 
f2n+2f4n+3 f4n+3 

o r 

(18) £ < f 

a s des i r ed . Also , we have that 

4n+3 

so tha t , again by (10), 

f2n+2 t
 f4n+3 

f * "̂  f 
2n+l 4n+2 

o < ^ S J i . f - i 
£2n+2 

*2n+lf4n+3 ~ f2n+2f4n+2 
^ , _ _ : , 

2n+2 4n+2 

f2n+l f2n+2f4n+2 

f 
2n+l 

f2n+lf4n+3 f2n+l 
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and 

Thus, aj = [f i] = f. „ - 1 as claimed. Finally, to show the symmetry of 
the vector (a2, &$, ••• , a , aQ) , it suffices to show that 

(19) 1 - £ = £ . « . 
2n+l 

a2 

f2n+l 
f7~7 " * " a0 

at 

2n+2 

Making use of the determined values of a0 and aj and setting a2 = 1, this 
means that we must show that 

(20) 1 = **** • f 
2n+l 

" <f4n+3 - « 

f2n+l 
f ( ' 1 
x2n+2 

which will also, of course, confirm the fact that a2 = 1. Now (20) is true if 

and only if 
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1 - _ f 2n+l 

2n+2 

( f4n+3 " « 

x2n+2 

which i s t rue if and only if 

1 
f2n+l . 
x2n+2 

- 1 
(f4n+3 " 1) - ^ 2 n + 2 

' f + f f 
x2n+l * 2n+2 

which, in tu rn , i s t rue if and only if 

f H 
2n+2 s 2n+2 f -

^ f 2 n + l - f 2n + 2 " f 2 n + l + ^ 2 n + 2 " to+3 " 

To see that th i s l a s t equation i s t rue we make use of (8), (10), and the fact that 
£2 = ^ + i £0 obtain 

f2n+2 ^f2n+2 =
 f2n+2f2n+l + *f2n+2 " ^ f2n+lf2n+2 + ^f2n+2 

£ f2n+l " f2n+2 " f2n-KL + ^ 2 Q + 2 " | f | n + 1 + £ V < - l f 2n+2 - W 2 n + 2 " ^ + 2 

2 ^ 2 n + 2 " a^ f2n+l f2n+2 

f f 2n+l + a f f 2n+l f 2n+2 " f f2n+2 

f (f + f ) 
2n+2u2n+2 2 n ; 

f f - f2 

1 2n+l 2n+3 2n+2 

f2 4 - f f + f f - f 2 - 1 
x2n+2 I2n+2 2n 2n+l 2n+3 2n+2 

f - 1 I4n+3 
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Th i s comple tes the proof. 

Because of the s imi l a r i t y of method, the following t heo rems a r e s ta ted 

without proof. The notation i s as before . 

T h e o r e m 14. F o r n > 2 , 

2n *. r • ° i 
7——•• £ = La0> ai> a2» " • » a r J 
2n+l 

and 

f 
2n+l ^ r -i • • i 

-f—- • £ = La3 - 1, a4, a5, • • • , a r , a2, a3J , 
2n 

where the vec tor (a3, a4, • • • , a r ) i s s y m m e t r i c , a0 = 0, a4 = 1, a2 

f 4n+l " l f a n d a3 = f3 + !• 
T h e o r e m 15. Let n >: 2 be an in teger . Then 

n+2 r . . , 
—— • f = [a0, at, ••• , ar J , 

11 >• _ r» . . . " 1 

?""" * ' ~" L a r ' a r - l ' ' ao Js 

n+2 

- ~ e f = [ b 0 , b j , • • • , b s ] , 

and 

T^-t = [ V V l ' •'••fco] 

T h e o r e m 16. Le t n be a posi t ive in teger . Then 

g 2n+ l t T . . , 
— — • f = [ a 0 , aA, a2, • • • , a r J , 
82n+2 
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and 

g2n+2 
2n+l r 

£ = [ 29 a4? a5, • . . , a . a2, a3 ] 

and the vector (a3, a4, • » • , a r ) is symmetric with a0 = 0, a,t = 1, 
f4n+3 " l s a n d a 3 = 3e 

Theorem 17, Let n be a positive integer. Then 

g2n 
=2n+l 

| = [a0, *U • • • , a r ] 

and 

g2n+i 
g2n 

£ = [ a r , a r_ l S • • • , aif a0] , 

where the vector (a29 a3, °«°, a r s a0) is symmetric with a^ - a2 = l f and 
a l = f4n+l " X« 

In view of the preceding results 9 one would expect an interesting theorem 
concerning the simple continued fraction expansion of 

i . £ and £.€ 
s n n 

but we were not able to make a general assertion value for all a. To illustrate 
the difficulty, note thats when a = 2 and £ = 1 + *J"29 we have 

f4 
— • £ = [ 0 , 1 , 5, 1, 3, 5, 1, 7] , 
&4 

g5 
and 

f 
f = [0, 1, 5, 1, 5, 3, 1, 4, 1, 7] , 
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f 
1- • £ = [0 , 1, 5, 1, 4, 1, 3, 5, 1, 4 , 1, 7] . 
&6 

However, for 

i; = ® = [1] = — « — ^ - » 

we obtain the following rather elegant result: 
Theorem 18. Let a = (1 + *v/5)/2 an 

Fibonacci and Lucas numbers, respectively. Then, for n > 4, 
Theorem 18. Let a = (1 + *v/5)/2 and let F and L denote the n 

F 
(21) _ £ . a = [0 , 1, 2, 1, • • • , 1, 3, 1, • • • , 1, 4 ] L n 

and 

L 
(22) -I- • a = [ 3, 1, • • • , 1, 3, 1, - • • , 1, 2, 4 ] , 

n 

where, in (21), there are n - 4 ones in the first group and n - 3 ones in the 
second group and just the reverse in (22). 

Proof. Set 

x n = [2 , 1, • - . , 1, 3, 1, • • • , 1, 4] 

= [2 , 1, • • • , 1, 3, 1, • • • , 1, 4, x n ] . 

Then it is easy to see by direct computation as on computes convergents, that 

a x + b 

™ \ • JT7T 
n n n 

where 
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a n " 4 ( L n - l F n - l + Fn-2>2 + ( L n-2 F n- l + Fn-3Fn-2> 

= 4 F n + F n F n - l + <-»*' 

bn = L n - l F n - l + F n -2 = F n • 

Cn " 4 ( L n - l F n - 3 + Fn-2Fn-4> + <Ln-2Fn-3 + V s W 

= 4Fn-l + F n F n - 3 • 

and 

d = L F + F F = F 2 

n V l n - 3 n-2 n-4 n-1 

Moreover, from (23), 

(a - d ) + J ( a - d )2 + 4b c n n7 y n n n n 
x 

2c n 

and 

yn = [o, i. x j 
X 

n x + 1 n 

(a - d ) + J ( a - d )2 + 4b c n n y n n n n 

(a - d +2c )+ (a - d )g+4b c n n n n n' n n 

(a - d -2b ) + J ( a - d )2 + 4b c 
= n n n Jn n n n 

2(a - b + c - d ) n n n n 

Now 
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a - d - 2b = 4F 2 + F F , + ( - l ) n - F 2 - 2F 2 
n n n n n n - 1 n - 1 n 

= 2 F 2 + F F , - F F 0 n n n - 1 n n - 2 

(25) = F (2F + F n - F Q ) 
n n n - 1 n - 2 ' 

F n^ F n+2 " F n - 2 * 

= F L , n n 

a - b + c - d = (a - d - 2b ) + b + c n n n n v n n n ' n n 

(26) 

and 

= F L + F 2 + 4F 2 + F F 0 n n n n - 1 n n - 3 

F L + 2F -L n n n - 1 n 

= L 2 
n 

<an " V 2 + 4 V n = <4 Fn + F n F n - l + ^ " pLl>' 

+ 4 F ^ ( 4 F ^ _ 1 + F n F n _ 3 ) 

(27) = KFl+3 + 4 F ^ 4 F L l + FnFa-3> 

= F n < F n + 3 + 1 6 F n - l + 4 F n F n - 3 > 

= 5 F 2 L 2 
n n 

T h u s , using (25), (26), and (27), in (24), we obtain 

F L + F L \ /5 F - J / • = • 
= n n n n __ _ji 1 + V5 

Y n " 2L2 =
 L ' 2 

n n 
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as claimed. The other part of the proof is an immediate consequence of 

Theorem 11. 

Finally, we comment on the question of the equivalence of r f and f / r . 

If r = g ^ /fn or r = g m /g^9 where m and n are nonnegative integers, 

it frequently turns out to be the case that rf ~ f/r. However, this is not 

necessarily the case and hence, & fortiori, it is.not necessarily the case for 

more general r. For example, for a = (l+\[5)f2 = [1] , 

J . a = [0, 1, 2, 3, 1, 4] 

and 

1 » a = [ 3 , 1, 3, 2, 4 ] 

where 3 = f4 = g2 and 7 = g4; and other examples are easily found. How-

ever, if r = f and s = f for nonnegative integers m and n then we 

always have 

s * r * 

as the following theorem shows. 

Theorem 18. If m and n are nonnegative integers, then 

f f 
m *. n t 
n m 
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Proof. Without loss of generality, we may assume that 0 < m < n and 
that (m,n) = 1. We let 

f f f f 
= m 2 3 m + 2 b = c = f d = -HJ 

J—' D c ^ q m + l ' a f 2qm+l' 
n ^ m 

where q is chosen so that 

2q + 2 = 0 (mod n) , 

as may easily be done since (m,n) = 1. With this choice for q it follows 

from Lemma 4 that f
nlf2Gim+2 ^ fmlf2am s o t n a t a» k» c» a n d d a r e a^-

integers. Also, by (10), 

ad - be = J*L*E1±2 . V p q m _ f2 
f f 2qm+l 
n m ^ 

= f f - f2 

2qm+2 2qm 2qm+l 
= -1 . 

Finally, we show that 

f 
(28) ^ • f 

/ f 
/ n 

a F " 
- \ m 

£ + b 

\ m 
H + c 

for this choice of a, b , c, and d. Making the indicated substitutions, we 
have that (28) holds if and only if 

fmf2qm+2 / fn J\ 
f f I F " ' * / 
m t n \ m / 

— '* = / f \ ' f: 

+ f 2qm+l 
T~ " * 7 T \ TT0 

n f / n t. I j . n 2 q m 
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and this is true if and only if 

^ f2qm+l + ^f2qm ^f2qm+2 + f2qm+l e 

But this is clearly true since af2 = a£ + 1 and af0 , - + fn = f0 , 0 J * 2qm+l 2qm 2qm+2 
and the proof is complete, 

Finally8 we note that the list of stated theorems is not exhaustive. One 
could no doubt prove theorems concerning 

f f f 
n , n y n y 

? " s 9 f § » f £ 
n+2 n+4 n+5 

and so on. However? we were not able to arrive at general formulations of the 
expansions of 

f f g 
m t m t ^ m t 

r ' f ' T"8^f o r T"• * 9 

n &n &n 

for arbitrary positive integers m and n. The results stated seem to be the 
most interesting. 
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CONVOLUTION TRIANGLES FOR GENERALIZED FIBONACCI NUMBERS 
VERNER E. HOGGATT, JR. 

San Jose State College, San Jose, California 

DEDICATED TO THE MEMORY OF R.J. WEINSHENK 
1. INTRODUCTION 

The sequence of integers Fj = 1, F2 = 1, and F 2 = F t + F are 
called the Fibonacci numbers. The numbers Fj and F2 are called the s tar t-
ing pair and F 2

 = F
n + i + F

n
 i s c a^ e c^ t n e recurrence relation. The long 

division problem 1/(1 - x - x2) yields 

1 = F t + F2x + F3x2 + . . . + F n + 1 x n + 
1 - X - X' 

This expression is called a generating function for the Fibonacci numbers. 
The generating function yielding 

= F 1
( k )

+ F , ( k ) x + . . . + F ( k U n + - " 
(1 - x - x 2 ) K + 1 n + 1 

i s the generating function for the k convolution of the Fibonacci numbers. 
For k = 0, we get just the Fibonacci numbers. We now show two different 
ways to get the convolved Fibonacci numbers. 

2. CONVOLUTION OF SEQUENCES 

If a j , a2, a3, • • • 9 a , • • • and b l 9 b2, b3, • • • , b n , • • • are two se -
quences, then the convolution of the two sequences is another sequence c j , c2, 
c3, • • • , c n , • • • whose terms are calculated as shown: 

c j = a j b j 

c2 = ajb2 + a2bi 

c3 = ajb3 + a2b2 + a3bj 

c = a^b + a0b - + anb . + . . . + a. b , , . , + • • • + a b-n I n 2 n-1 3 n-2 k n-k+1 n 1 

158 
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This l a s t express ion m a y also be wri t ten 

n 
cii = E a k b n - k + l • 

k= l 
Le t us convolve the Fibonacci number sequence with itself. These n u m b e r s we 
cal l the F i r s t Fibonacci Convolution Sequence: 

Fi( 1 ) = F J F J = 1 

F2
( 1 ) = F i F 2 + F 2 F i = 1 + 1 = 2 

F ! 1 ) = F 4 F 3 + F 2 F 2 + F 3 F 4 = 2 + 1 + 2 = 5 
F J P = F j F 4 + F 2 F 3 + F 3 F 2 + F 4 F t = 3 + 2 + 2 + 3 = 10 

*P = k E FkF5_k+1 = 20 

F { 1 } = E F k F 6 _ k + 1 = 38 
k=l 

(i) £ 
F* = SiFkVk+i = 71' 

Now le t us "convolve" the f i r s t Fibonacci convolution sequence with the 

Fibonacci sequence to get the Second Fibonacci Convolution Sequence: 

F<2 ) = F i r i
( 1 ) = 1 

F2
( 2 ) = F 2 F l

( 1 )
 + FiFU = 3 

F3
( 2 ) = F 3 F l

( 1 )
 + F2F2

( 1> + F ^ 1 ' = 9 

F4
( 2 ) = F4Fi ( 1 ) + FaF2

( 1 ) + F2F3
( 1 ) + F1F4

( 1 ) = 3 . 1 + 2 - 2 + 1-5 + 1- 10 = 22 

F|2) = s ^Kk+i =4l 

k=l 

Fi2) = EFfF 6 _ k + 1 =111 
k=l 
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The Fibonacci sequence i s obtained from 

[March 

1 n 
= F j + F2x + F3x2 + . . . + F -x + 

1 - X - X4 
L n+1 

The f i r s t Fibonacci convolution sequence i s obtained from 

,(D ,(D. = Fi + Fo ' x + Fo V + (1). 
+ F(1> x» + n+1 (1 - x - x2) 

The second Fibonacci convolution sequence i s obtained from 

,(2) ,(2). + Fo x + F i 'xi + (2). 
(1 x2)° 

+ F ( 2 > x n
 + . . n+1 

These could al l have been obtained by long division and continued to find a s 
(k) many F a s de s i r ed o r one could have found the convoluted sequence by the 

method of this sect ion. In the next sect ion we shall see yet another way to find 

the convolved Fibonacci sequences . 

3. THE FIBONACCI CONVOLUTION TRIANGLE 

Suppose one w r i t e s down a column of z e r o s . To the r ight and one space 

down place a one. To get the e l emen t s below the one we add the e lements one 

above and the one d i rec t ly left. This i s , of course., the ru le of formation for 

Pasca l 1 s a r i thmet i c t r iangle . Such a ru le genera tes a convolution t r i angle . 

Next suppose ins tead we add the one above and then diagonally left. Now 

the row sums a r e the Fibonacci number s . We i l lus t ra te : 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Column: 

1 
1 
1 
1 " 
1 

1 s 

1 
1 
0 

1 
N* 

3 \ 

\ 5 
6 \ 
7 
1 

^ l X 

1 3 
\ 6 
s 1<N 
1 15 

2 

1 
4 

1 10 
3 

1 
4 
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However, if we add the two elements above and diagonally left, we generate 
the Fibonacci convolution triangle as follows. Please note these are the same 
numbers we got in Section 20 The zero-th column are the Fibonacci numbers, 
F ; the first column are the first convolution Fibonacci numbers, F (1) , etc. 

0 
0 
0 
0 
0 

0 
0 
0 
0 

0 

0 
0 

1 
1 
2 

T 
5 \ 

13 
21 
34 
55 

~~\1 
2V 

U-^ ten 20 
38 
71 

1 
3 

9 
21 1 

Column: 

4. COLUMN GENERATORS OF CONVOLUTION TRIANGLES 

It is easily established that the column generating functions for Pascal1 s 
triangle are 

gk(x) = 
(1 - x) k+1 

n=0 

when the triangle is generated normally as the expansion of (1 + x) , n = 0 , 1 , 
2, • • • and as we said to do in the first part of Section 3. The column genera-
tors become 

2k 
gk(x) = 

(1 - x) ETi k = 0, 1, 2, 
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if we follow the second set of instructions. These column generators are such 
that the elements across the rows each are multiplied by the same power of x. 
We make the column move up or down by changing the power of x inV^e. YXQWLY-

erator of the column generating function. If we now sum 

k = 0 k=0 U " X) X / k=0 X > 

1 - X 2 i 2 
X^ 1 - X - XT 

1 " 1 - x 

Thus the row sums across the specially positioned (Position 2) Pascal triangle 
are Fibonacci numbers. These a re , of course, the numbers in the zero-th 
column of the Fibonacci convolution triangle. If we multiply the column gen-
erators of Pascal* s triangle by a special set of coefficients, we may obtain 
other columns of the Fibonacci convolution triangle. 

Recall that the k column generator of PascaPs triangle is 

k 
g k

( x ) = £ (kV = „ \k-ri 
n=0 \ / 

(1 - x)* 

Replace x by 

1 - x 

in the above to obtain 

t *> ) 
(l-A)' 
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\1 - x/ g k^ l - x) Z^ \k / gk / x2 \k+l 
2k 

( 1 - x - x 2 ) 2>k+l 

th Thus the row sums a r e the k convolution of the Fibonacci n u m b e r s s ince 
that i s the column gene ra to r we have obtained. We i l l u s t r a t e : 

Mul t ip l ie r s : 

Mul t ip l ie r s : 

(F i r s t column of Pasca l ) 
0 1 2 3 4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

7 
8 

1 

3 

6 

10 

15 

21 

1 

4 

10 1 

20 5 

(Second column of 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

1 

3 

6 

10 

15 

21 

28 

3 6 

1 

4 

10 1 

20 5 

35 15 

Row Sums: 

3-1 + 1-2 

4-1 + 3-2 

5-1 + 6-2 + 1-3 
6*1 + 10-2 + 4 - 3 
7-1 + 15-2 + 10-3 + 1-4 = 71 

8-1 + 21-2 + 20-3 + 5-4 =130 

= 1 

= 2 

= 5 

= 10 

= 20 

= 38 

10 Row Sums: 

1 
3 

9 

22 
51 

111 

233 

0) 
o 
o 
& 
o 

GO a o 
:tf 
F—4 

g 
o 
Q 
•iH O 
o 

rH 

m u 
•r-4 

0) 

o 

o 
o 
o a 
a o a$ a o 

ci 
o 
o 
0) 

CO 
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Thus if we use the numbers in the k column of Pascal* s arithmetic triangle 
(Position 1) as a set of multipliers with the columns of Pascal 's triangle 
(Position 2), we get row sums which form the k Fibonacci sequence. 

5. EXTENSION TO GENERALIZED FIBONACCI NUMBERS CONVOLUTION 
TRIANGLES 

The Fibonacci numbers are the sums of the rising diagonals of Pascal 's 
triangle which is generated by expanding (1 + x) . The generalized Fibonacci 
numbers are defined as the sums of the diagonals of generalized Pascal 's t r i -
angles which are generated by expanding 

(1 + x + x2 + . . . + x1""1)11. 

i-2 The sequences can be shown to satisfy u4 = 1, u. = 2J for j = 2 ,3 , 8 • • , r , 
and 

u , = 7 u , ., n > 1 , n+r / JI n+r-j 

and the generating functions are 

r - 1 x X A + I X I 1 
n=0 

The simplest instance is the Tribonacci sequence, where Tj = 1, T2 = 1, 
T3 = 2, and T + 3 = T + 2 + T - + T , and these sums are the rising diagon-
al sums of the expansions of (1 + x + x 2 ) for n = 0, 1, 2, 3, • •• . The 
first few terms are 1, 1, 2, 4, 7, 13, 24, 44, 81. 

If we return to our Fibonacci convolution triangle at the end of Section 3, 
we note the row sums are the Tribonacci numbers. The column generators of 
the Fibonacci convolution are 

3k 
gk ( x ) = " 2^+1 ' 

(1 - X - X4) 
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where the numbers on each row in the triangle all multiply the same powers of 
x in the column generators. Adding, we get 

fv „ . (_*_)£/_*_¥ . . 
^ ^ \ l - X - W ^ V . l - X - W 1 - X - X 2 - X 3 

which is the Tribonacci sequence generating function. If we use the special 
multipliers [ , J as before, we get 

b±%P>UJ •§(=)- 3k x 
(1 - X - X2 - X3 ) 2 v 3 > k + l 

and this is the k Tribonacci convolution sequence generator and the coef-
ficients appear in the k column of the Tribonacci convolution triangle. Thus 
we can obtain all the columns of the Tribonacci convolution triangle from the 
Fibonacci convolution triangle in the same way we obtained the Fibonacci con-
volution triangle from Pascal1 s arithmetic triangle. 

We can thus generate a sequence of convolution triangles whose zero-th 
columns are the rising diagonal sums taken from generalized Pascal triangles 
induced from expansions of (1 + x + x2 + • - • + x ) . The column generators 
for the r case 

rk 
>k ( T - x - x 2 - . . . ~ X r - l ) k + 1 

St 
can easily be seen to generate the column generators for the (r+1) case 

x(r+l)k 
gk(x) = ^ 

(1 - X - X^ - • • • - X ) 

using the preceding methods. 
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Referring back to the Fibonacci convolution triangle of section three, 
each number in the triangle is the sum of the one number above and the num-
ber diagonally left. Because the column generators must obey that law and 
multiplying by powers of x so that the proper coefficients will be added, we 
could write a recurrence relation for the column generators of the Pascal 
convolution triangle as follows: 

Gk(x) = xGk(x) + x2Gk_1(x) or G k « = ^ % ^ ) • 

By similar reasoning, each number of the Fibonacci convolution triangle is 
the sum of the two terms above it and one diagonally left. Proceeding to column 
generators, then, 

Gk(x) = xGk(x) + x2Gk(x) + x3Gk_1(x) 

or 

G k ( x ) = , G k - i ( x ) 

1 - X - X^ 

6. THE REVERSE PROCESS 

One can retrieve the Fibonacci convolution triangle from the Tribonacci 
convolution triangle quite simply. First recall 

k 
x § ( k ) x n = a-Dk+1 

Replace x by -x; then it becomes 

. < - i ) V = k/ /, A xk+1 ' 
n=0 ' ' ( 1 + x ) 
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or 

£©<--vn+k n x 
1) x = — 

n=0 " ( 1 + x ) 

With these multipliers, 

a ( -D n + k . 
we can return from Tribonacci to Fibonacci. 

Let the column generators of the Tribonacci case be 

3n 
gnvx) = zrrr » 

11 (1 - X - X2 - X 3 ) n + 1 

and multiplying through by 

0 n \ , -vn+k 

and summing, yields 

C<0 

n=0 n=0 

\ 1 - X - X2 - X3/ 

+ 1 /-, 2 \ k + 1 

(1 - X - X^) 

which are the column generators of the Fibonacci convolution triangle. The 
st same thing applies, in general, to return from the (r+1) convolution triangle 

to the r convolution triangle. 
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7. SPECIAL PROBLEMS 

1. Assuming Pascal 's triangle in Position 1 and the column generators 
are 

k 
Sk(x) = „ X,k-KL ' (1 - x) 

then show the row sums of Pascal 's triangle are the powers of 2. Hint: 

00 

1 V* 0n n 
inns = Z ^ 2 x 

n=0 

2. Assuming the Fibonacci convolution triangle has its columns positioned 
so that 

k 
gtto = 

(1 - X - X 4 ) 

then show the row sums are the Pell numbers P4 = 1, P2 = 2, P + 2
 = 2 P

n + i 
+ P . Hint: 

= V L / . l _ 2 x - X 2 *-H n + 1 
n=0 

3. Show that the convolution triangle for the sequence 1, 3, 32, • • • , 3 , 
• • • can be obtained from the convolution triangle for the sequence 1, 2, 22, 
23, • • • , 2 , • • • using the techniques discussed in this paper. 

4. By using the coefficients in 

J (°) <-»»* *", 
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as multipliers, show how to get the convolution triangle for the alternate Fib-
onacci numbers from the convolution triangle for the powers of three. Hint: 

00 

! _ 3 i + x 2 = Z F 2 n + l X n 
n=0 

5. By using the multipliers from 

n=0 L W J n=0 

on the Fibonacci convolution triangle with column generators 

k 
gk(x) 

1 - X - X4 

obtain the convolr" A.o ;riangle for every third Fibonacci number sequence, 
Hint: 

oo 
n 

2 LJ " 3n+l F« ,- x 

Let, 

1 - 4x + x- n = Q 

8. OTHER CONVOLUTION TRIANGLES 

k^r-I-"**--•• 
,th be the k convolution of the sequence u(n; p ,q) , where the sequences 

u(n; p,q) are the generalized Fibonacci numbers of Harris and Styles [1]. 
(Also see [2]..) 
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Let 

Jp+q)n 

(1 - x)n(*+1 

n=0 n=0 V 1 x> / 

(1 - x ) ^ 1 

(1 - x)q - x P + q 

But, 

Uk&-^ 
Thus, 

d - A ' .'M-1 

(1 - x)q - x P ^ 

oo / v t v n 

J. k + l 
(1 - x)q - XP+(1 

(1 - x ) ^ 1 ^ ^ (k), , n £^r = > u '(n; p,q)x 
(1 - x)q - X P ^ K=0 

(k) 
and the g (x) are the corresponding column generators in the Pascal 's t r i -
angle with the first k columns trimmed off. 
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9. REVERSING THE PROCESS, AGAIN 

If we consider the convolution triangles whose column generators are 

gn(x) - ( x > 
( ( l - x ^ - x ^ J 

and if we sum these with alternating signs, 

(-l)ng (x) 
n-0 ^ & " ^ - x P + q l + * P + q (1 - x)q 

(1 - x)q - x p + q 

while 

HkS(^k)("""s°w = (i->^ .(1 - x ) 4 - xJ 

Thus, we can recover the columns of Pascal1 s triangle from the above con-
volution triangle. This may be extended in many ways. Thus, we can obtain 
the convolution triangles for all the sequences u(n; p,q) by using multipliers 
from Pascal1 s triangle on the column generators of Pascal1 s triangle and taking 
row sums. 
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SOME PROPERTIES OF STIRLING NUMBERS OF THE SECOND KIND 
ROSEDITH SITGREAVES 

Logistics Research Project, George Washington University, Washington, D. C. 

INTRODUCTION 

In attempting to predict the number of demands that will occur during a 
given period of time, for supplies in military inventory systems, it becomes 
necessary to formulate suitable probability models for the distribution of de-
mands of individual items of supply. One such model, described in [1] , in-
volves two parameters , to be estimated from available data. For example, 
in the case of predicting demands for items installed on Polaris submarines, 
the data might consist of items demanded in a series of patrols. 

In studying the properties of estimation procedures for parameters of 
any model, one is led to a consideration of the sampling distributions of the 
estimates. For the model described in [1] , the sampling distributions of some 
proposed estimates were found to involve Stirling numbers of the second kind, 
and in the derivation of these distributions from the initial probability assump-
tions, some properties of these numbers become of interest. 

A Stirling number of the second kind, J l , , is the number of ways of 
partitioning a set of T elements into m non-empty subsets. Thus, if we 
have the set of elements (1, 2, 3) with T = 3 and m = 2, we have 
sible partitions 

(1,2), (3) 
(1,3), (2) 
(2,3), (1) 

with 

, i 3 (2) = 3 . 

If the order of the partitions is taken into account, that i s , 

(1,2)L (3) , 

172 
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and 

(3), (1,2). 

are considered to be two partitions, the number of ordered partitions is 

For example, suppose that a given item installed in aPolar is submarine 
is demanded in each of m partols, with a total quantity demanded of T units, 
(T ;> m)„ The number of different ways of partitioning T into m demands is 
0 T ; the number of ways in which a particular partition can be assigned to 
the m patrols is ml ; thus the number of possible assignments of the total 
quantity demanded to the m patrols is m!*L; • 

PROPERTIES OF STIRLING NUMBERS OF THE SECOND KIND 

The generating function of Stirling numbers of the second kind is 

T 

xT = J2 i i ^ x(x - 1) ••• fe - m + 1) . 
m=0 

In closed form, 

>*r = ^£ra<-«m-k* k=0 

Various properties of these numbers are known (e.g. , see [2]). Thus, 

J™ = 0 for T < m 

J ^ = 1 for T = 0, 1, 2, ••• 

J ^ 0 ) = 0 for T = 1, 2, ••• 

Jjp = 1 for T = 1, 2, ••• . 
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We have the recurrence relations 

(2) 4£rt = „jta> + ^toi-i) £or T , m 2 1 

If r = 1, Eq. (3) becomes 

(4) mJW - 2 (J)JM 
=m-l x f k=m-

The following results appear to be less well known. 
Lemma 1. For any integers r and k, with k = 0, 1, • • • , and r ; 

k + 1, k + 2, ••• , 

r 
(5) 

3 = ' =0 X ' 

Proof, We prove the lemma by induction on k. In the proof, we use 
the recurrences 

(r + k\ (r + k - l\ IT + k - l \ 

V j / = v J / I j - w 
and 

*r-j+k v r ] ' r-j+k-1 r-j+k-1 
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For k = 0 and r = 19 29 ° * * 9 

E(5)<-1) i iSj) = i : (;)(-!)' = a - »r = o 

For k = 1 and r = 2, 39 • •• , 

s ( r ; 1 ) « - i ) y ^ i " 2 ( j ) < - u U ^ 
f-j) 
-j+i 

i=o ' j=o 

r 
f-j) 
-j+l E^l)^!: 

j=0 

The last two terms cancel each other while the first one becomes 

r -1 

j=0 

r - i 

We suppose the result holds for k = m - 1, and r = m, m + 

and show that it holds for k = m, r = m + l , m + 2, 8 9 « „ We have 



|$6 SOME PROPERTIES [March 

r 
f(r-j) 
r-j+m g(TH 

j=o x ' 

r - l 
+ 

r - l 

2(r + T-)<-^Si 
y- /r + m - l \ ( ^ ^ ( r - j - D 
T T \ / r - j+m-l 

Again the last two terms cancel each other. The first term becomes 

1=0 x ' 

r 
r 

3 

-(r-.wf (*-»,— ' j^^V, 
3=0 

Since r > m + 1 and (r - 1) > m, both of these sums are zero, giving the 
desired result. 

Lemma 2. For any integers m and T such that T >: 2m 
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T-2 . , m-1 

E m^EftV-^r-" 
k=2(m-l) x ' j=0 X / 

)-0 * I 
Proof. 

T-2 v m-1 

k=2(m-l) x ' i=0 \ / 

m-1 ^ T-j-2 
= Cm - 1)! 

j=0 x ' (k-j)=2(m-l)-j 
From Eq. (4), 

EI<-»J E. I:i,>£S-,-I) 

E1. (l.-jV^ - *-»<* • 
T-j - l 

E 
(k-j)=m-j-l 

It follows that 

T-j-2 / x T- j - l 
-j-D 

. l k - i / ^ k - i 
(k-j)=2(m-l)-j x ' (k-j)=m-j-l 

i - j-D 

E (lij)^-1'= E (T,:])^-
/ T - j W m - j - 1 
^T - j - 1/^T-j-l 

= (m - j)J£H> - (T - j ) ^ : ^ 

m-j-3 

E T;'VrH) • 

2m-J-3 

E (uHr1* 
(k-j)=m-j-l 

2m-j-3 

E 
r=m-j- l 
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The r ight-hand side of Eq. (7) becomes 
[March 

j=o V / 
7 j ) - (m - 1)! 

m - 1 

E TI (-1)3 «(m-J) 

(j - 1)! (T - J)! * T - J 
L i = i 

m - 2 

E TI (-D 3 j ( m - l - j ) 
J K T - 1 - j ) | * T - 1 - J 

j=0 

- (m - 1) 
m - 1 . v 2 m - 3 - j / \ 

j=0 x ' r=m-l-j V ' 

The two sums in b racke t s cancel each o the r s ince 

m - 1 

E Ti (-1)J o(m-j) 

(j - DKT^jTT^T-j 3=1 

m - 2 
V T!( -1) J j f (m- l - j ) 
Z - . j ! ( T - 1 - j ) ! ^ T - l - j 
j=0 

In the final t e r m , we se t k = (m - 1 - j) so that k ranges from zero to 
( m - 2 ) . Interchanging the o r d e r of summat ion and rewr i t ing the exp res s ion , 
we have 

(m - 1)! 
m - 1 . v 2 m - 3 - j / v 

j=0 x ' r=m-l-j v ' 

m - 2 

k=0 k m .THt)fE("rk)«jti 
' L j=o v I 

j+k | 

From Lemma 1, each of the inner sums is zero, so that Eq. (8) becomes 



19701 OF STIRLING NUMBERS OF THE SECOND KIND 
m 
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and the lemma follows. 
These properties are useful in proving the following theorems. 
Theorem 1, Let t i i ^ " - , ^ be m integers such that 

t. > 1 i = 1, 2, • • • , m 

and 

m 

i=l 
m 

Then 

(9) 
k t2 

T! 
£-* m 
m n t.s 

i = l x 

= m!« p(m) 

t 

Proof. We write 

ti + t2 = T2 

ti + t2 + . . . + t m = T m = T 

The summation in (9) can be rewritten as 

S — xL - Eft E ?I 
rm - 1 \ m i / L LT2=2 ' L T ^ I ^ / 
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But 

T , - l 

Tf*l X ' 

From Eq. (4), 

T2=2 ^ / 

and, in general, 

T -1 

<T-IM E ( T
T r W" 1 } = r l 4 r ) • 

T ^ i A T r - V T r - 1 T =(r-l) r 

and the theorem follows* 

Theorem 2. Let t j , t2, • • • , t m be m integers such that 

t. > 2 i = 1, 2, • • • , m 

and 

m 
S fci = T ^ 2m » 
i=l 

then 
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m 

£ £ • • • 2 — 2 1 — - mf V(T\f_i>J.!<m-J> 
tj t2 

m t n 1.1 
m i = i x 

Proof, Again, let 

t2 = Tj 

ti + t2 = T2 

ti + to + • • • + t = Tm = T 1 L m 

The desired summation can now be written as 

181 

T / \ rT 3"2/ \ 
£ T \ )••• L(?J 
= 2 ( m - l ) \ m - V To=4V 7 

T .=2(m-l) m-1 

T2-2 

TA=2 \ ' 

T 2 ~ 2 / \ 

Ti=2 X ' 

T 2 T 2 
2 - 2 - 2 

3=0 

Repeated application of Lemma 2 leads to the desired result. 
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A GENERALIZED FIBONACCI SEQUENCE OVER AN ARBITRARY RING 
D. J. DeCARLI 

Rosary Hill College, Buffalo, New York 

Let S be a r ing with identi ty I. Consider the sequence {M } of e le -

men t s of S, r e cu r s ive ly defined by: 

(1) M ^Q = A ,M ^ + AAM for n 2 0 , 
n+2 1 n+1 O n ' 

where M0, Mi9 A0, and A4 a r e a r b i t r a r y e lements of S. 

Special c a s e s of (1) have been cons idered by Buschman [ 1 ] , Horadam 

[ 2 ] , and Vorobyov [ 3 ] where S was taken to be the se t of i n t ege r s . Wyler 

[ 4 ] a lso worked with such a sequence over a pa r t i cu l a r commutat ive r ing with 

identity. In this no te , we es tab l i sh seve ra l r e s u l t s for such sequences over S 

(not n e c e s s a r i l y commutat ive) which a r e analogues of r e s u l t s der ived for s i m -

i l a r ly defined sequences of i n t ege r s . 

We begin by cons ider ing a special ca se of (1), denoted by { F } and d e -

fined by: 

(2) F ^ = A - F ^ + AAF for n > 0 , 
n+2 1 n+1 O n — ' 

where F 0 = 0, F j = I and A0, A* a r e a r b i t r a r y e l emen t s of S. 

The fact that S need not be commutat ive cause s difficulty in t ry ing to 

de r ive r e s u l t s for the { F } sequence,, However , we note that the t e r m s of 

th i s sequence p o s s e s s an in ternal s y m m e t r y which enables us to make a s t a r t 

at der iv ing ident i t ies . 

T h e o r e m 1. If F ,„ = A - F ,- + AAF , then 
n+2 1 n+1 0 n 

<3> F n + 2 = F n + 1 A 1 + F n A 0 • 

Proof: The proof i s s t ra ight forward by induction. 

Coro l l a ry 1: 

(i) F ^ - F - - F 2 = F n A A F - - F A n F 0 , 
x ' n+1 n - 1 n n - 1 0 n - 1 n 0 n -2 
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( l i ) F n - l F n + l " Fl = F n - l A 0 F n - l " F n - 2
A 0 F n« n ^ 1 • 

Proof of (i): From (3), we have 

W n - l " *1 = KA1 + Fn- lVFn-l " Fn(AlFn-l + V W 

= F n - l A 0 F n - l " F n A 0 F n - 2 • 

The second result can be obtained in a similar manner. We note that the r e -
sults of Corollary 1 are analogues of Equation (11) of Horadam?s paper [2]. 

The { M } sequence does not, in general, possess the symmetry of the 
{ F } sequence and consequently it is even more difficult to work with. There 
i s , however, a relation between the ( M } sequence and the ( F } sequence. 

Theorem 2: 

M ^ = F AAM - + F _,,M , n > 1, r > 0 . n+r r 0 n-1 r+1 n ' — * — 

Proof: The result is easily established by induction. 
Corollary 2; 

M n = F n M l + F n - 1 A 0 M 0 ' ^ ^ 

Proof: Interchange r and n, replace n by n - 1 and set r = 1 in 
Theorem 2. 

We note that the result of Theorem 2 is identical with Equation (12) of 
Buschman's paper [1] which was derived for a similarly defined sequence of 
integers. 

For the { F } sequence. Theorem 2 becomes 

(4) F = F AAF , + F _ F , n > 1 . 
w n+r r 0 n-1 r+1 n* — 

If we replace n by n + 1 and r by n in (4), then we have 

<5> F n + 1 + F n A 0 F n = F 2 n + l ' 

The commutator of the { F } sequence is characterized by 
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Theorem 3: 

F F - F F 
n n+r n+r n 

= F F A F - - F -A.F F , n > 1, r > 1 . n r o n-1 n-1 0 r n — — 

Proof: If we replace n by r + 1 and r by n - 1 in (4), we have 

(6) F ^ = F -AAF + F F ^ . 
n+r n-1 O r n r+1 

From (4), (6), and the fact that S satisfies the associative law for multipli-
cation, we have: 

F n ( F r + l V = < F n F r + l ) F n » 

•'•VWn-^Wn-Vo^l' 
= (F -A^F + F F _,, - F ..A.F )F . n-1 O r n r+1 n-1 0 r n 

• ' • F n ( F n + r " F r A 0 F n - l ) = <Fn+r " F n - l A 0 F r ) F n • 

• ' F n F n + r " F n + r F n = F n F r A 0 F n - l " F n - l A 0 F r F n • 

The {M } sequence appears to be very difficult to work with directly. 
Investigations indicate that the best that can be done is to concentrate effort on 
the ( F } sequence and use Theorem 2 and Corollary 2 to derive analogous r e -
sults for the {M } sequence. 

As a final remark, we note that the sequence obtained from (l)by setting 
MQ = R, Mt = P + Q , P,Q arbitrary elements of S, and A0 = Ai = I, 
yields a nice set of identities which are analogues of those derived byHoradam 
[2] for a similarly defined sequence of integers. 
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A REMARKABLE LATTICE GENERATED BY FIBONACCI NUMBERS 
S. K. ZAREMBA 

University College of Swansea, Wales 

Functions which can be represented in the s~dimensional unit interval by 
rapidly convergent Fourier series of unit period in each coordinate can be in-
tegrated numerically over this interval with great efficiency by averaging their 
values over all the points obtained by reducing modulo 1 the coordinates of the 
multiples of a suitable vector "g = <gi /p , ° 8 * , g ,/p> , where gl9 • • • r g , 

s s 
and p are integers. The crucial property of this vector can be described as 
follows: For any vector h" = <hif • • • , h > put 

s 

R(h) = max(l , h 4 ) ••• max(l , h ) s 
s 

and denote by p(g) the minimum of R(h) for all the vectors having integral 
coordinates not all zero, and satisfying 

g • h = 0 (mod 1) , 

where the dot denotes, as usual, the scalar product* Hlawka [5] describes 
pg as a good lattice point modulo p if 

(1) p (g ) > pCSlogp)1"8 i 

because upper bounds for the e r ro r of integration can be expressed as rapidly 
decreasing functions of (g ) , and he proves the existence of good lattice points 
modulo any prime for any number of dimensions. The requirement that p 
should be a prime was introduced only in order to facilitate the proof. Under-
standably, however, one assumes in any event (gi, M , , g . i p ) = l» so that 

s 
g generates exactly p different multiples modulo 1. Of course, here and in 

f From September, 1969 at the Centre deMecherchesMathe^atiques, Universite 
de Montreal, Montreal, Canada. 

JAs a result of a misprint, the exponent of 8 log p appears to be - s in 
Hlawka's paper, but his proof applies to lattice points satisfying (1). Thus 
his results are sharper than those of Korobov ( [7] , [8]). 
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what follows, by a multiple modulo 1 of any vector, we understand the result 
of reducing modulo 1 each coordinate of the multiple of the given vector. 

In the case of more than two dimensions no recipe other than trial and 
e r ror is known for finding good lattice points, and indeed such a recipe seems 
unlikely to exist. However, in two dimensions, the best lattice points in the 
sense of maximizing the ratio (g):p are obtained by putting 

P = F n , gi = 1, g2 = Fn__1 , 

where <F > are the Fibonacci numbers [9]. One finds, then, p(g) = F 0 , 
j n— & 

which is of a better order of magnitude than (1). 
The case when the integrand has not the required properties of period-

icity can be reduced to the periodic case. In the case of two dimensions, de-
noting the coordinates by x and y, we add to the integrand a suitable poly-
nomial in x with coefficients depending on y, and a polynomial in y with 
coefficients depending on x. The precise upper bounds for the e r ro r ( [9] , 
[ 12]) are too complicated to be discussed here in detail. Let it suffice to say 
that if the integrand f has partial derivatives up to 

a2rf 
dx d y r 

of bounded variation in the sense of Hardy and Krause (for a precise definition 
see, for instance [5] or [9]), and if we add to it suitable polynomials of degree 
r , this allows us to obtain the value of the integral with an e r ror of the order 

F log F by averaging f over the F points defined above. Trial 
computations carried out by this method [12] gave a very high degree of 
accuracy. For instance, taking r. = 3, the value of the integral over the unit 
square of exp (-x2 - 2y2) (true value 0.446708379 to nine decimals) was ob-
tained with eight correct decimals from n = 7 onwards, i . e . , using 13 or 
more points. 

The sets of points corresponding to n = 5, 6, and 7 are shown in Figs. 
1 , 2 , and 3. It will be seen that they define regular grids, and indeed square 
grids when n is odd. The importance of these grids lies not so much in the 
fact that they may be thought to be picturesque, as rather in conclusions of a 
far-reaching nature which can be drawn from their existence. 
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Fig. 1: n = 5 

Fig.2 :n = 6 Fig.3:n = 7 
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We begin, however, with a description of the grids themselves. It is 
easily seen that the sets of points in question form lattices. The lattice gen-
erated modulo 1 by the vector 

v = <F"1, F -F"^ 
n ' n-1 n 

will be denoted by L . It obviously has a base formed by the vectors V and 
"ej = <0, 1>. The more detailed nature of L depends on the parity of n. In 
its investigation, we shall repeatedly use the identities 

( 2 ) F m + l F n + l + F m F n " Fm-*H-1 

(see, for instance, I2e in [6]), and 

(3) F_ n = ( - l ) n + 1 F n . 

When n = 2[x + 1, an alternative basis of L is formed by the vectors 

V7 = < F M F I 1 ^ , - F -iFl1- , > and T2 = <F ^ F l * , -F F l * ->. 
1 ^ 2 j L t + l ' - / i - 1 2jLX+l L jLl+1 2 j L t + l ' -jll 2 / X + l 

Indeed, from (3) and from (2) with n = -2fx - 1 and with m = jit - 1 and 
m = jLi, respectively, we deduce 

F F 0 = -F - (mod F 9 , - ) 
[X 2jLt - / L l - 1 2jLt+l 

and 

jll+1 2j[i -jU 2jLt+l 

-so that 

F V = VA (mod 1) , 

and 
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Thus L 2 - contains the lattice generated by "Vj, and "V .̂ 
To prove that, conversely, L 2 - is contained in the lattice generated 

by Vj and "V f̂ we note that by (3)s 

while by (2) and (3), 

-F F - F F = 0 , 

F2 + F2 = F 

Hence 

- F -V- - F V0 = e0 . 
-jLl-1 1 -]Lt 2 2 

On the other hands by (3) and by (2) with m = -\x and with n = \x and n 
-\x - 1, respectively! we find 

and 

P - M P M + W M + 1 = Fl = X 

- F F - = F , F = F 9 , 
-JX -jtl-1 1-jU -jtl 2jLt 

so that 

F V- + F- VQ = V . 
-jU 1 1-jLt 2 

Thus Vi and V^ generate the same lattice as V and e^9 that is the lattice 

V+l' _ _ 
Since Vj and V2 are orthogonal and of equal length9 L 2 +- forms a 

grid of squares with sides inclined to the axes of coordinates. It will be seen 
that this grid is invariant with respect to rotations preserving the unit square. 
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Since clearly such rotations transform the grid into a parallel one, it suffices 
to show that a rotation by a right angle about the centre of the square t rans-
forms at least one lattice point into a lattice point. Now the point V of L0 

is transformed by such a rotation into the point 

<VlF2U'F21M-KL> " % - l ^ ( m ° d l ) ' 

since, by (2) with m = 1 - 2ju, n = 2JU, 

*VlF2„ B * <m0d * W 

Further rotations transform the point in question into 

These points form a square with vertices close to the sides of the unit square, 
but it does not follow that the sides of this new square are contained in the. grid 

formed by LQU+I* ^ i s s o ^ ' anc^ o n ^ ^* ^ i s e v e n » anc^ ^ s c a n ^ e s t ^ e 

seen as follows. 
By (I25) in [6] with n = ju, p = 1, or by Qio), we have 

<4) F ^ - + 1 - F M - 1 = F2M« 

and by (Ii9) in the same book, with n = \x - 1, k = 2, 

F2 = F F + (-1)^+ 1 

Hence 

FH+1(FM+1 " F M - 3 ) _ F2f* - X 

when jx is even. It follows that in this case, the abscissa of the point 
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IS 

^ F 2 M » 1 + F 2 J U ~ 1 ) F 2 jU+l 1 ~ F2M+1 

Since no pair of points L~ - in the unit square can have the same abscissa, 
this is necessarily the point 

<1 - F " 1 . F F " 1 > 

which was mentioned above as another vertex of the square in question. Let it 
be noted in passing that there are 4(F - - F ^) points of L 2 „ - on the 
perimeter of this square. In Fig* 1, this square is shown by thicker lines* 

When JU is odd* the ordinate of V2 is negative* Consequently, it is 
along V\ that we should attempt to move from 

< % - ! % + ! ' % + ! > 

to 

-1 -1 
K1 " F2JUH-1* F2jU-lF2iLi-H> e 

But by (2) with m = JU, n = JU - 1 , 

Wi-V-i* = *V • 
Hence if we add (F , - + F - )V- to the s t a r t i n g poin t , we obtain a point of 

jLt +1 ]LI - I 1 
abscissa 

<%-l + VF2iU = 1 ' 
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which shows that, for \x > 1, adding multiples of Vj to our starting point 
cannot produce a point of abscissa 1 - F~ + - . Thus indeed the square in 
question is not formed by the grid; this is illustrated in Fig. 3, where this 
square is marked in dotted lines. 

When n is even, say n = 2JU, the vectors 

v f = <F F l 1 , F F ; 1 > and v\ = <F . - F l 1 , F , F l 1 > 
jit 2 p t -jLA 2jLt * y+l 2JLT 1-jLt 2jtl 

form a basis of L 2 . Indeed, writing V as 

< F 2 M ' F1-2M
F2]U> ' 

we find, by easy applications of (2), 

(5) F V = v j (mod 1) and F +1V s Vj (mod 1) 

On the other hand, by (2) and (3), we find 

(6) F V» + F- V» == V and - F -V' - F V' = e 0 
-jLA 1 1 - j U 2 — jLt—X 1 - jLl 2 2 

but L 2 ] L | . 

Now (5) and (6) show that the lattice generated by V\ and V^ is nothing else 

^ - r - T 
However, VA and Vj are not orthogonal, their scalar product being 

since 

9 2 2 
(F F + F F )F = F F , 

fJL pi+1 - j i t 1-fJL 2fJL /Lt 2p t 

F F _ + F F- = F (F Ll - F - ) = F2 

[X j L l + 1 - ]L i l - ] L t jit j L t + 1 j t l - 1 jLl 

When n = 2jL4, L does not form a square grid; The determinant of LQ|I n u\x 
being equal to F~* , this would indeed require a pair of orthogonal vectors of 
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lengths F~"^ each. The cases of M = 2 and M = 3 being trivial, assume 
JU > 3. In our search for the required vectors, we can dismiss those which 
have a coordinate equal to, or bigger than, F XF~ in absolute value, since 
by (4), their length exceeds F~'* . All linear combinations o>V\ + (N\ in 
which p ^ 0 are thereby excluded because of their abscissa if « jSZo and 
because of their ordinate if afi < 0. There remain the multiples of "vf. But 
((78) in [1]) 

(7) FQ = F2 + 2F F , , ; 
2jLt jLt fX j t l + 1 ' 

This identity can also be deduced from (4) noting that 

F2 - F2 = F2 + 2F F 

It follows from (7) that when JU > 3, we have FQ > 2F2 , so that Vj is 
Ci fX jLl 

too short for our purposes, while 2V[ has an abscissa exceeding F - , so 
that it is too long. 

The figures representing the lattices with F 5 = 5, F 6 = 8, and F 7 = 
13 points show that in each case there is a relatively large number of lattice 
points on a straight line passing through the origin. In order to evaluate this 
number in general, we must again distinguish two cases according to the parity 
of n. 

If n = 2(JL + 1, one of the vectors Vj" and "V2 h a s both i t s coordinates 
positive, one being equal to 

FMF2M+1 

and the other to 

F F 

The origin being a lattice point, it follows that the line passing through it and 
parallel to the vector in question contains 
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rF2M+iF"Ai] + 1 

lattice points, where, as usual, [x] denotes the biggest integer not exceeding 
x. This number is easily determined as follows: By (2) and by (I13) in [6] , 
we have 

and 

xp2 + jp2 — y 
jU+1 jU 2JLH-1 

F F F2 = (-if 
H+l /Lt —X [i 

Hence 

Vl(Vl + V l > " F2M+1 + ('lf ' 

and consequently the number of lattice points on the line in question is 

When n = 2jit, one of the vectors V[ and Vj has its coordinates equal 
to F F~ and F - F " in either order. But by (2), 

FJU+1FJU + % F M - 1 = Ffy' 

and 

F F- + F ^ - F 0 = F 0 , 
jU, 1-fJL jU+1 2-jU 2 

or 
F F - F F = (-1)^ 
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Hence 

which shows that the line through the origin parallel to the vector mentioned 
above contains 

F , + V 2 + i ( 1 + (-1)P) 

points of L„ . 
Thus, in either case* there is a line, say 1, which contains a number of 

points of L n in the unit square which is of the order «v/TT". The importance 
of this fact is a consequence of the following considerations. 

Let S be any finite set of, say p points of the unit square 

0 < x < 1; 0 < y < 1 , 

and denote by P(X9J) the number of points of S with coordinates smaller than, 
or equal to, x and y, respectively. The function 

g(x,y) = p" i/(x,y) - xy 

can be regarded as describing the equidistribution of S oyer Q2. If a single 
number is required to characterize this equidistribution, it can be obtained by 
taking any of the plausible norms of g. In particular, it has been proposed 
( [1] , [11]) to call 

D(S) = sup Jg(x,y)| 
<x,yxEQ2 

the extreme discrepancy of S in order to distinguish it from other possible 
norms of g; the previously used term is simply discrepancy. If f is any 
function of bounded variation in the sense of Hardy and Krause over the closure 
of Q2, then its integral over Q2 is approximately equal to the average value 
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of f over the points of S, the absolute value of the e r ro r not exceeding VD(S), 
where V is the sum of the two-dimensional variation of f over Q2 in the 
sense of Vitali and of the (one-dimensional) variations of f(x,l) and f(l,y) 
over [0,1] ([3]; for a slight sharpening of this result, see [9]). 

Thus sets of points with low extreme discrepancies provide us with a 
method of numerical integration over Q2 even when the integrand cannot be 
expanded into a uniformly convergent Fourier series. In the case of the set of 
points determined by the multiples modulo 1 of V, the extreme discrepancy 
has been shown to be smaller than (7/6)F log (15 F ) [9]. However, the 
integrals we may want evaluated numerically do not necessarily lend them-
selves to a reduction to integrals over Q2. It might seem that, if the domain 
of integration, say D, is contained in Q2, we could replace the integrand by 
a function equal to it in D, and to O outside, integrating this new function 
over the whole of Q2; this is what would be likely to be done if the Monte 
Carlo method were applied. The difficulty lies in the fact that in general the 
new integrand will not be of bounded variation in the sense of Hardy and Krause 
over Q2, however regular the initially given function might be, and indeed 
even if it is a constant, consequently Hlawkafs theorem cannot be applied to this 
situation. 

The sets of points which have been described above show that even when 
the integrand is a constant, say 1, and the domain of integration i s , for in-
stance, convex, the integration er ror can be of the order of VF instead of 

-1 n 

that of F log F . To see this, it suffices to consider two lines, say 14 and 
12, on opposite sides of 1, parallel to it, and arbitrarily near to each other. 
Let D. be the part of Q2 above 1. (i = 1,2). Then the integrals over Dj 
and D2 will differ arbitrarily little, while the numerical values found for them 
will differ by the number of points of L on 1 divided by F , so that for 
one at least of the two integrals the e r ro r of the computation will indeed be of 

-4 the order of F 2. n 
When n = 2 jbt+ 1, JU, being even, by slightly expanding, or contracting 

„ the previously discussed square formed by the grid, it is possible to obtain a 
similar example of an integration domain leading to e r rors of the order of F~"2 

when applying the method in question; of course, many variations on this theme 
are possible. 
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All these considerations extend to an arbitrary number of dimensions, 
and the phenomenon illustrated by the lattice L in two dimensions becomes 
even more accentuated as the number of dimensions increases. The present 
author, impressed by the pattern of L n , proved [10] that if a set of p points 
of the s-dimensional unit interval Q s is generated by a good lattice point, 
then there exists an s-1-dimensional linear variety (or hyperplane, to use a 
rather old-fashioned terminology) which forms with Q s an intersection con-

1-s 1-l/s taining more than (4s) p ' points of the set. This leads again in an 
obvious way to an example of convex domains (actually simple polyhedral do-
mains) having the property that by integrating over them, by Hlawka!s method, 
arbitrarily regular functions, which could even reduce to constants, we are 

-1 / s always liable to commit e r rors of the order of p . 
This contrasts sharply with the e r ror committed when integrating over 

s the whole of Q a function of bounded variation in the sense of Hardy and 
Krause and using the same set of points; the discrepancy is then O (Log p) /p) 

4 , and the integration e r ror is of the same order of magnitude. With s > 2, 
in the former case the bound obtained for the e r ro r (and this is a sharp bound!) 
is much less favorable than that which is practically claimed by the Monte 
Carlo method, namely (3(p~2). 

The irrelevance of some traditional tests applied to so-called random 
numbers, or to pseudo-random numbers with a view to applications to Monte-
Carlo integration was discussed in detail by the present author 11 ; the con-
siderations adduced here show that when the domain of integration is not r e -
duced to a multidimensional unit interval, even discrepancy tests in the 
appropriate number of dimensions do not guarantee the success of Monte Carlo, 
although, naturally, nobody can be denied the right of hoping for the best. 
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AN EXTENSION OF THE FIBONACCI NUMBERS (PART II) 
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In this section we consider the generalized Fibonacci and Tribonacci 
numbers. 

We write the generalized Fibonacci numbers as 

OQ 

(1) (1 - alX - a2x2)~k = £ F^k) xV (Fy = F ^ ) , 
v=0 

where 

F n = a * F n - l + a 2 F n -2 ' F ° = l s F l = a*» F2 = a l + a2> 
k = 1, 2, 3, ••• and n = 0, 1, 2, ••• . 

The generalized Tribonacci numbers we write as 

" <W v (2) (1 - alX - a2x2 - a3x3) = ] T T v x 

v=0 

where 

T y = T ^ , T0 = 1, Tj = a1? T2 = 4 + a2, F3 = a? + 2aja2 + a3, 

T = a4T - + T 9a2 + a3T .„, k = 1 , 2 , 3 , " - and n = 0, 1, 2,-n n—x n—& n— o 

Note: Throughout this section we consider ai9 a2, and a3, as rational inte-
gers only. 

199 



200 AN EXTENSION OF THE FIBONACCI NUMBERS [March 

CONVOLUTED SUM FORMULAS 
FOR THE GENERALIZED FIBONACCI AND TRIBONACCI NUMBERS 

By elementary means, it is easy to prove, if 

(3) (1 - yrk = f ) b « yv 

v=0 

then 

( " ^ - l 1 ) - ^ 

where 

V k - 1 1 ) = ( n + k - l ) l / n l ( k - 1)1, b0
(k) = 1, k = 1 , 2 , 3 , - - . and 

n = 0 , 1 , 2 , - - - . 

Now, in (1), we replace a*x + a2x2 with y so that combining (1) with (3) 
we may then write 

v=0 v=0 

It is easy to prove with induction that 

5=0 

and combining this result with 

EbS(n
J",)-^«J-'nW. 

b « /n + k - l\ 
V k - 1 / 
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leads to the following generalized Fibonacci convoluted sum formula: 

» F * ' " § ( n + k - i " , ) ( ° i J ) a ? " 2 i 4 

(n = 0 ,1 ,2 , - - - , k = l , 2 , 3 , - - - ) . 

Now in (2), we replace ajx + a2x2 + %x3 With y so that combining (2) 
with (3), we may then write 

t *?*" • t *?-r • 
v=0 v=0 

and by comparing coefficients, it is easy to prove with induction, that 

*r - E t k^t-i) (vk4r4l»2r~2)^ 
r=0 j=0 L -j 

(k) (n - 2r - l \ / 2 r + 1 - j \ n-4r-2+j 2r+l-2j j 
+ P n ^ r - l ^ r - l + J ^ j j 1 2 a 3 J 

and combining this result with 

tf-f;-;1) 
leads to the following generalized Tribonacci convoluted sum formula: 

^ = E E [ ( k + Y - V *) ( ^ - ^ ( ^ f j)a?-4r+ja2
2r-2jai 

r=0 j=0 L^ ' X 

, /k+n-2r-2 \ /n-2r-l \ /2r+l-j\ n-4r-2+j 2r+l-2j 
+ \ k-i J\2T+I-})\] n H 
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where n = 0, 1, 2 , • • • and k = 1, 2, 3 , • •• . 

THE GENERALIZED FIBONACCI NUMBER 
EXPRESSED EXPLICITLY AS A DETERMINANT 

We shall now prove the following five s t a tements : 

P ^ ) = O A\r J- v, 1 \ T ? W -L o iO\r _L n Q\pW n F r ' = aj(k + n - D F ^ + a2(2k + n - 2)F™2 , 

where 

F^ k ) = 1, F } k ) = ajk, n = 2, 3 , • • • , k = 2 , 3 , 

n F ^ 
H. * - p j + q, a^ q ^ q n 

Jb ^ 
n - 1 P2 + P3 + " • + P n - 1 + P n 

where p . = aA(k + n - j) (j = 1, 2 , 3 , • • • , n ) , 

% ! + ! = a 2 ( n - m)(2k + n - m - 1 ) . (m = 1 , 2 , 3 , - • • , n - 1), 
(n - 2 , 3 , • • • ) 
(k - 2 , 3 , • • • ) , 

F j k ) = ajk . 

m . (a2t + 4 a 2 ) k F ^ 1 = a i n F ^ k ) + a2(4k + 2n - 2 ) F * )
1 , 

(k) where Fp = 1 

F ^ = a,k 

n = 1, 2 , • • • 

k = 1, 2 , 3 , • • • . 

iv. y > ( v ) = 
*—' n -v 

((a1 + l + ( ( a 1 + l )2+4a 2 ) i4a 2 )^ ) /2 ) n - ((a1+l-((a1+l)2+4a2)^)/2)n 

~ ! " " v ((a1+l)2 + 4 a 2 ) 2 

where n = 1 , 2 , 3 , 
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,(k) V. F = K(pl9q2,» • • »qnsPn)/nS, (pn>qn are identical to those in (ii) withqj 

= 0). 

where n,k = l f 2 f 3 , - « - and K(plsq2,» • • ,q n + p n ) is the determinant given 
below in (6). 

(6) K(pl9q29"' , q n ,P n ) 

Pi 

- 1 

0 

0 

• 

0 

0 

Q2 

P2 

- 1 

0 

• 

0 

0 

0 

Q3 

P3 

- 1 

• 

0 

0 

0 

0 

Q4 

P4 

.. 

0 

0 

0 

0 

0 

45 

• 

0 

0 

. * o 

. . . 

. . . 

. . . 

. . . 

0 

0 

0 

0 

-

-a 
0 

0 

0 

0 

0 

• 

V i 
- l 

0 

0 

0 

0 

• 

% 

Pn 

The table below of the generalized Fibonacci Numbers (in the table, we 

have replaced al9 a2 in (1) with aA = a and a2 = b) 

0 

(7) 

0 

1 

2 

3 

0 

1 

1 

1 

0 

a 

2a 

3a 

0 

a2 

3a2 

6a2 

+ 

+ 

+ 

b 

2b 

3b 

0 0 

a3 + 2ab a4 + 3a2b + b2 

4a3 + 6ab 5a4 + 12a2b + 3b2 

10a3 + 12ab 15a4 + 30a2b + 6b2 

ka 

may be constructed as follows: 
(8) To get the k element in the n column, we add the product of a 
multiplied by the k element in the (n-1) column and the product of b 
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multiplied by the k element in the (n-2) column together with the (k-1) 
element in the n column, 

We write the k element in the n column as F , so that a restate-
n ' 

ment of (8) reads 

(9) F<k> = a ^ + a-F^ + F * ^ , 
n 1 n-1 2 n-2 n ' 

where 
F , « - 1 
F<k) = a l k 

0 = F<0) = F<°> = F<0) = - • 
n = 2, 3, • • ' 
k = 1 ,2 ,3 , - ' - . 

PROOF OF I, H, III, AND IV 

We use (9) to get 

(10) ± F « x* = a, £ F<» x* + a2 £ F<k_>2 x» + £ F ^ x* 
n=2 n=2 n=2 n=2 

00 

at 
n=l n=0 n=2 

4 x £ F n
W x n + a2x2 £ F n

W x n + £ F * " 1 * x11, 

for k = 1, 2, ••• . Then 

£ F « x n - F « - F<k )x = a l X £ F f x n - a r f * x + a2x* £ F ^ x11 

n=0 n=0 n=0 

£ F ^ 1 ' xn - FF"1 ' - Ff-i;x , 
n=0 

and therefore 
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00 

(1 - atx - a2x2) £ F f x n = F<k) - F ^ + (F^ - alF<k) - F ^ x 

+ V F ^ x 1 1 . £-* n 

Now 

and 

n=0 

n(k) _ ^(k-1) = j 1 - 0 = 1 if k = 1 
1 - 1 = 0 if k 2 

(k) « F(k-1) ( a i - a i - ° = ° i f k = l | 
! - a i F 0 - F4 " | a i k - aj - aj(k - 1) = 0 if k 2 | " ° ' F 

for k = 1, 2, 3, • • • , and 

00 

-£-* n 
n=0 

Therefore 

£ F « x11 = (1 - alX - a2x2)-1( £ F * " 1 * x n | (k = 2, 3, • • . ) , 

n=0 \n=0 

and 

£ F^x11 = (1 - alX - a^)"1 

n=0 

From this, we have at once 
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oo 
(11) (1 - alX - a2x2)~k = ^ F^k) x11 (k = 1,2,3,-••) . 

n=0 

Differentiation of (11) leads to 

( 00 \ 00 

n=0 / n=l 

k(2a2x + 

/ 

and comparing the coefficients we conclude that 

(12) M ^ F ^ 0 + 2 a 2 F ^ 1 ) ) = n F ^ (k = 1 ,2 ,3 , - - - , n = 2 , 3 , - - - ) . 

Combining (12) with (9), we get 

(13) nF^k) = aj(k + n - D F ^ + a2(2k + n - 2)F^k)
2 

for k = 2 , 3 , * ' • , n = 2 , 3 / •• , F^k) = 1, and F ^ = 54k. This completes 
the proof for L 

(k) When we divide (13) by F - , we have 

J p = aj(k + n - 1) + a2(2k + n - 2)(n - 1) (n=2,3,-• • ,k=2,3,-• •) 
F n - X (n - D F ^ 

F n-2 

which in turn along with FQ = 1 and F J = a^k, implies II. 
The identity 

aA + 4a2 = 4a2(l - a4x - a2x2) + (aj + 2a2x)2 

may be written as 
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A. + 4 a 2 4a2 (at + 2a2x)2 

• + • 

(1 - a l X - a2x2 ) k (1 - a i x - a2x2 ) k * (1 - a l X - a2x2 ) k 

( M ) (k = 1 , 2 , 3 , - - - ) . 

Differentiation leads to 

(a\ + 4a2)kx 4a2kx / oo 

^ r = T, 7F + (ai + 2a2X) E nFn x" 
, n= l 

(1 - &tx - a2x2) (1 - ajx - a2x2) 

Now, by compar ing coefficients, we conclude that 

(15) (a* + 4 a 2 ) k F ^ 1 ) = a ^ F ^ + a2(4k + 2n - 2 ) F ( k )
x , 

when FQ = 1 , F j = ajk, n = 1 , 2 , 3 , 9 8 - , and k = 1 , 2 , 3 , ' " , which 

p roves III. 

We obse rve that Equations (n) and (HI) immedia te ly give an exp re s s ion 

for 

(a2
1 + 4 a 2 ) F ^ 1

1 ) 

in the form of a continued fract ion, for n = 2 , 3 , " ' • , and k = 2 , 3 , 

(Proof of IV). In (9), we have 

F<k) = alF<k> + a2F<k> + F ^ 1 * , n 1 n - 1 L n-2 n 

so that 

n n - 1 n-2 n 

(16) V > ( V ) = a i y > ( v )
 1 + a 2 V F

( v ) „ + y F < V - 1 ) (n = 2>3)-% L-4 n -v 2 £-** n - v - 1 L L^d n -v -2 ^ n-v N 

v=l v=l v= l v=2 
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We see that 

n-1 n 

E F W = y > (v-1) 
n-v-1 Z ^ n-v 

v=l v=2 

and we write (16) as 

v=l \ v = l / v=l 

We let 

n 
A) n x-f n-v 

v=l 

then 

Vi-E'SU- - V.-S-J1, . 
v=l v=l 

so that (17) becomes 

(18) u n = 04 + l ) V l + a2un_2 . 

Replacing n with n + 2 in (18), we have 

<19) V2 - (al + 1 ) u n + l + V n • 

where 

Ui = F0 = 1, Fj ; + Fi = 1 + a4 = u2, and n = 1, 2, 3, 
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We now solve (19) for u^ by continued fractions (see [ l ] ) , and get 

n 

where 

un = « a i H + s ) n . ( a 1 + l - s)n) /2ns = ^ V v » 
v=l 

1 
s = ((aj + l)2 + 4a2) r , n = 1, 2, 3, 

which completes the proof of IV. 
PROOF OF V 

Combining Eulerfs expression for a continuant as a determinant (see [2]) 
with (n) and (6), leads to 

nF^k) K(pi ,q 2 f - - - f q ,p ) 
(20) n

 = n n 
" ^ ^ K(p2,q3,--- »Qn»Pn) ' 

n-1 
for n,k = 2 ,3 ,4 , ' •• . 

Note: For convenience we let 

*f/F»-Uk<„>. 

Now, using the values of p. and q - in (II), we write 

(21) nUk(n) = K(aj(k + n - 1),a2(n - 1)(2k + n - 2),• • •,a2(2k),a4k) 
K(at(k + n - 2)9SL1(JI - 2)(2k + n - 3 ) , . . .,a2(2k),aik) ' 

(n - l)Uk(n - 1) =K(ai(k + n - 2),a2(n - 2)(2k + n - 3),-•• • ,a2(2k),aik) 

k(aj(k + n - 3), a2(n - 3)(2k + n - 4), • • • ,a2(2k), a ^ ) 

3Uk(3) = K(a1(k + 2),a2(2)(2k + l ) , • • - , a2(2k), aAk) 

aj(k + 1) affikf 
-1 a4k 
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2Uk(2) aj(k + 1) 

- 1 

a2(2k) 

ajk 

ajk 

We now mult iply all the equations in (21) from top to bottom to get 

(22) n! n Uk(j) = n ! F ^ k ) / F i ( k ) = K ( P l , q 2 , . • • , q n , p n ) / a 1 k , 
j - 2 

for n , k = 2 , 3 , 4 , • • • . 
(k) Now combining (n , with F* = ajk) with (22) comple tes the proof of V. 

We reso lve for k = l (n = 0, 1, 2 , • • •) by the use of continued f r a c -

t ions (see [ l ] ) , and we have 

where 

F n = ( ( a ^ V ^ - f a ^ v r 1 ) ^ 1 , 

V = (a? + 4a 2 ) 2 , 

and 

F n = a l F n - l + a 2 F n - 2 ( F 0 = X> F i = a i> 

FORMULAS 

,(t) F o r F (t = 2 , 3 , and 4) as a function of F - and F . n N ' ' n - 1 n 
Le t 

A = &l + 4a2 , B(k,n) = 4k + 2n - 2 , 

where 
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F^ k ) = 1, F^ k ) = aik, n , k = 1 , 2 , 3 / ' • , 

and 

F = a t F - + a ? F 0 , n x n - 1 L n -2 

(where aj and a2 a r e ra t ional in tegers) ; then from (III), we have 

(23) A^^l} = a i n F n k ) + a2B(k,n)Fn
( k )

1 

In (23), we have the following: when k = 1, then 

(24) A F ^ = a i n F n + a 2 B ( l , n ) F n - 1 , 

when k = 2 , then 

2 A F ^ = a i n F ^ 2 ) + a ^ . n j F ^ , 

so that mult iplying by 1:A, we get 

2 ^ ^ ^ = a j n A F ^ + a 2 B ( 2 , n ) A F ^ )
1 , 

and combining this with (24), we wr i t e (using the identity F = a- F - + n 1 n - 1 
a 2 F n - 2 > 

21A2F®\ = a 2 B ( 2 , n ) ( a i n F n + a 2 B ( l , n ) F n - ) 
(25) 

+ a1n(a1(n + l ) F n + 1 + a 2 B ( l , n + l )F n > 

and replac ing F ... (in (25)) with F ,- = a - F + a 0 F - l eads to n+j. n-ri i n ^ n - 1 
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,(3) _ 

(26) 

A 2 n-1 = [(aia2nB(l*n + 1) + aja2nB(2,n) + afn(n + 1))F 

+ (a|B(lf n)B(2,n) + aia2n(n + D ) F n _ 1 ] 

when k = 3, then in the exact way we found (26), we prove that 

(27) 3!A3F(4) -
n-1 = M + N , 

where 

M = 

ajainBCUn + l)B(3,n) + a ^ n E ^ ^ E ^ n ) 

+ aja2n(n + l)B(3,n) + a ^ n B d , ! ! + l)B(2,n + 1) 

+ a^a2n(n + l)(n + 2) + aia2n(n + l)B(l ,n + 2) 

+ aja2n(n + l)B(2,n + 1) + ajn(a + l)(n + 2) 

F , n ' 

and 

N = 

a2B(l,n)B(2,n)B(3,n) + afa2n(n + l)B(3,n) 

+ aia|n(n + l)B(l ,n + 2) + aja2n(n + l)B(2,m + 1) 

+ aia2n(n + l)(n + 2) 

n-1 

REMARKS 

(k) The above method may be used to evaluate formulas of the FN for 
values of k = 5 and higher. 
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THE GENERALIZED FIBONACCI NUMBER EXPRESSED AS A LIMIT 

We now prove that 

VI lim ( F ( k + 1 ) /(n + l ) k F ) = (1 + a^aj + 4 a 2 ) ^ ) k / 2 k k ! , 

when 

lim ((4k - 2)/n) = 0 (k,n = 1 , 2 , 3 , " •) n —» oo 

Let 

(28) A = SL\ + 4a2, V = AJ, H = {(aj + V) , 

where 

F n = a i F n - l + a 2 F n-2 J F ° = lf F i = ai» a n d al>a2 

are rational integers. 
It is easy to prove by use of continued fractions (see [1]) that 

F n = ((a* + V ) n + 1 - (a i - V) n + 1 ) /2 n + 1 V (n = 0 , 1 , 2 , . . - ) , 

and then by elementary means we show that 

(29) lim (Fn / F n 1 ) = i(aj + V) = H . n —jc oo n n—i 

Now, combining (28) with (III), we have 

(30) A k F
n ^ l 1 ) = a i n F ( k ) + a2<4k + 2 n " 2 ) F

n
1?i ' 

where n,k = 1, 2, 3, 8 0 e . 
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In (30), we have the following: when k = 1, then 

A F ( 2 ' = a<nF + a2(2n + 2)F n-1 * n * n-1 

and dividing this equation by nF _-, we have 

i & - Si •-(^r1) • 
nF - F -n-1 n-1 

where combining this result with (29), we write 

(31) A( lim F™. /nF - ) = lim (atF / F - + a2(2n + 2)/n) = aiH + 2a2: vn —• oc n - 1 ' n-1 n->oo x n ' n-1 ^ ' l L-

when k = 2 (in (30)), then 

(32) 2AF(3)- = a<nF(2)(F / F ) + a2(2n + 6)F( 2 ) , 
n-1 * n v n ' n l n-1 

Multiplying both sides of (32) by A/n2F - , we now write 

2A2(F(3)
1 /n2F - ) = ai(AF(2) / F )(l/n)(F / F - ) n-1 ' n-1 1X n ' n ' n ' n-1 

(33) 
+ a5 

Then combining (33) with (31) leads to 

= a4(s 

= (ajH + 2 a 2 ) 2 ; 

\ n Ix n-1 ' n-1 

2A2( lim F ( 3 ) , /n2F - ) = aJajH + 2a2)H + 2a2(aiH + 2a2) , .. vn->oo n - 1 ' n-1 1 J L * * * 

when k = 3 (in (30)L then 

(35) 3AF(4)- = ainF( 3 )(F / F ) + a2(2n + 10)F(3)- , 
v ' n-1 1 n v n n dX n-1 

multiplying both sides of (35) by 2A2/n3F - , we now write 
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S I A ^ F ^ / n ' F ^ ) = a i ( 2 A 2 F f / n 2 F n ) ( F n / F n _ 1 ) 

^ -<^Hf>X-l> 
where combining (36) with (34) leads to 

3!A 3 ( n l im o o F^ )
1 /n 3 F n _ 1 ) = a ^ H + 2a2)2H + 2a2(aiH + 2a2)2 

( 3 7 ) = (ajH + 2a 2 ) 3 . 

Then, step-by-step, and with induction, we prove that 

(38) k!Ak lim (F<k + 1 )/(n + l ) k F n ) = ( a ^ + 2a2)k , 
ii —> oo n n 

where replacing the A and H in (38) with their respective values in (28), we 
complete the proof of VI. 

REMARK. It may be interesting to note that if a2 + 4a2 is replaced by 
a2 + 4a2 = (ajk)2 in the right side of VI, then of course 

lim (2kk!F( k + 1 ) / (n + l ) k F ) = e (e = 2.71828-••) . 
n —•oo n n 
k —> oo 

AN EXPLICIT FORMULA FOR THE TRIBONACCI NUMBERS 

Let 

t \ - l oo 
1 " 2 V̂ l = 1 + 2 c(n,t)xn , 

r=l / n=l 

where the a are rational integers. 
In a recent paper (see [3]), it was proved that it is always possible to 

express the c(n,t) by an explicit formula when t = 1, 2, 3, 4, and 5. 
Then, using the methods in [3] we find the following Tribonacci formula 

(Tn = c(n,3): 



with 

/(-D) 

and 
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, n+2 n+2 * , , n+2 n+2 x , t n+2 n+2 x 
Xj(x3 - X2 ) + X2(Xi - Xg ) + X3(X2 - X4 ) 

(39) T n = —— — — , 
X^Xg - X2) + X2(Xj - Xg) + X3(xf - Xj) 

where 
xj = zj + 4/9z t + 1/3 , 
x4 = z2 + 4/9z2 + 1/3 , 
x3 = z3 + 4/9z3 + 1/3 , 

Zi = ( l /3) (3/33 + 1 9 ) 1 / 3 , 
z2 = -(zj/2)(l - i / 3 ) , (. 
z3 = -(zi/2)(l + i / 3 ) 

n = 0 , 1 , 2 , - " . 
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FIBONACCI SEQUENCE MODULO a pr ime p = 3 (mod 4) 
GOTTFRIED BRUCKNER 

DAW, Institut fur Reine Mathematik, Berlin-Adlershof, Germany 

Shah [ l ] proved: For a prime q > 7 the Fibonacci sequence might con-
tain a complete residue system mod q only if q = 3 or 7 (mod 20). Here 
we show the 

Theorem. Let p be a prime, p > 7, p s 3 (mod 4), then in the Fib-
onacci sequence, a complete residue system mod p doesn't exist. 

It follows from this and Shahfs result: The only primes for which the 
Fibonacci sequence possesses a complete residue system are 29 39 5, and 7. 

Let p be a prime, p > 7, p = 3 (mod 4). In the following all residues 
and congruences are meant mod p . For the Fibonacci sequences 

u„j = 0f u0 = 1, Ui = 1* u2 = 2, ••• 

is true: 

( 1 ) u n = uaVa + ua-lVa-l' a = °' "' n ; n = °*1**" 

(2) u k + b = ± u k _ b , b = 0 , - - - , k , 

where g = 2k + 1 is the minimal index so that plu (for p = 3 (mod 4) g is 
uneven). 

( 3 ) Ux(g+l)+y s ±Uy> y = °* e*° > S; x = 0, l f 29 

(You verify these known facts by easy calculations.) 
Lemma. The residues 

u s V l ' s = 1, - - - . g , 

are all different. 
Proof. From 

217 
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U a V l 5 " b V l ' ^ a ^ b ^ «. 

we define (putting u = u - + u 2 and u, = u, - + u, 2 ) 

V l u b - 2 s V l U a - 2 ' 

continuing this way, we get 

u l V a = V a + l u 0 ' 

this means 

V a = V a + 1 ' 

hence u, - = 0, hence b = a. b-a-1 
Corollary 1. g ^ p. 
Corollary 2. The residues 

V V e ' s = e, • • • , g + e - 1, 

are all different, e being a given number 1 <1 e < . g. 
Proof, From 

u a V e = u b u a -e ' 

we conclude with 

and 

u = u u + u -u -a e a-e e-1 a-e-1 

u b = u e V e + V e - 1 

(from (1)) 
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V e - l V e £ V e - l V e 

and by the Lemma, a - e = b - e, a = b. 
(The Lemma and Corollaries hold, of course, for all pr imes,) 
Proof of the Theorem, From (2) and (3), it is clear that 

u = 0 or ±u * 1 < c < k n c — 

holds for all n. Therefore the question is whether 

{0, ± u c , 1<: c £ k} 

forms a complete residue system or not. This might be the case only if k 
takes its maximum (p - l ) /2 . Hence to prove the Theorem, it suffices to 
prove: Is g = p then there is a congruence 

<*) u a - i% 

for at least one pair (a,b), 1 < a < b < (p - l ) /2 . 
Putting e = 5, Corollary 2 givess The p residues 

u u" r9 s = 5, • • • , p + 4, s s -5 ' 9 * 

are all different. Hence there is a t , 5 < t < ^ p + 4 , satisfying 

u tU t -5 = 1 • 

From this, 

u = u, , for one t, 5<Lt<Lp + 4 . 

We differ 4 cases: 

a) 
b) 

t > p , 
p > t > t - 5 £ ( p - l ) / 2 , 
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c), t > (p - l ) /2 > t - 5, 
d) (p - l ) /2 > t . 
Case a) is impossible: 

Up±4 S ^ 3 ' Up±3 " ± U 2 ' up±2 " *"!' V l " ± U 0 ' Up ' ° 

(from (2) and (3)). (Check the cases t = p , • • • , p + 4 one after the other 
and take into account p > 5.) While Case (d) is a congruence (*) itself, we 
easily get such a congruence in Case (b) by utilizing (2). In the remaining 
Case (c), we put 

t = (p - l ) /2 + r , 1 £ r < ^ 4 . 

We have 

u(p- l ) /2+r " % - l ) / 2 - ( 5 - r ) ' 

From (2), we conclude 

u (p- l ) /2+r ' * u ( p - l ) / 2 - r • 

hence 

{**> u (p- l ) /2-(5-r) s ± U (p - l ) / 2 - r • 

p > 7 implies (p - l ) /2 > 4, therefore in (**), both indices are >1 , r and 
5 - r always being different (**) is a congruence (*). This finishes the proof 
of the Theorem. 
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SUMMATION OF POWERS OF ROOTS OF SPECIAL EQUATIONS 
FM. A. DRA1M 

Ventura, California 
and 

MARJORIE BICKNELL 
A. C. Wilcox High School, Santa Clara, California 

It is well known that the sums of the n powers of the roots of x2 - x -
1 = 0 give rise to the famous Lucas sequence 1, 3 , 4, 7, 11, • • • , V . . . , 
in which each term is the sum of the preceding two terms. In this case, one 
can find the roots 

a = (1 - V 5 ) / 2 , 

and 

p = (1 + V 5 ) / 2 f 

and easily calculate L = a + p for n = 1, 2, 3, ••• . 
But what of the sums of the n powers of roots of other equations of the 

form 

n n-1 n-2 . A 0 
x - x - x - • • • - x - l = 0 ? 

Soon the roots cannot be found directly but an interesting pattern of sequences 
of integers emerges. 

The problem can be solvedusing symmetric functions derived in elemen-
tary theory of equations , but we prefer matrix theory. We use the following 
matrix properties. The trace (sum of elements on mail diagonal) of a square 
matrix of order n is the coefficient of x in its characteristic equation, 
when the characteristic equation is computed by subtracting x from each main 
diagonal element and then taking the determinant. If a matrix is raised to the 
k power, then its new characteristic equation has as its roots the k 
powers of the roots of the original equation. So, raising a matrix to successive 
powers and summing its main diagonal is a way of calculating sums of powers 
of the roots of an equation. 

221 
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To sum the n powers of the roots of x2 - x - 1 = 0, which is the 
characteristic equation of 

i l l ] . 
simply calculate the trace for successive powers of the matrix. And for x3 

x2 - x - 1 = 0, we use 

1 0 0 
Lo I oj 

For 

k-1 0, 

write the square matrix of order k having each element in the first row equal 
to one, each element in the k column except the first equal to zero, and 
bordering an identity matrix of order k - 1 , as 

1 
1 
0 
0 
0 

0 

1 
0 

1 
0 
0 

0 

1 
0 
0 
1 
0 

0 

1 
0 
0 
0 

1 

0 

1 
0 
0 
0 
0 

1 

1 
0 
0 
0 
0 

0 

In the table of values occurring that follows, let £ r signify the sum of 
the n powers of the roots, and 

f(x)i = x - 1 
f(x)2 = x2 - x 

ct v n n-1 n-2 f(x) = x - x - x n 

= 0 
= 0 

- x - 1 = 0 
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Matric theory explains the general form given in the right column of the 
table. It can be proved by mathematical induction that if the nxn matrix M = 
(a..) is defined as 

l j
 fl = J i . i = 1 or i = j + 1 

a i j )0 , i ^ 1 and i £ j + 1 • 
then, if k ^ n, M = (b..) has the following form: 

by = 2k"1 for j = 1,2,-•• ,n + i - k, i = l , 2 , - - - , n ; 
b.. = 0 if k < i and i > i . 

Thus, the trace of M is 
2 k - l + 2k-2 + . . . + 2 + 1 = 2

k - i , k < n . 

Since M satisfies its own characteristic equation, 
Mn = M11"1 + M n " 2 + • • • + M + I 
M n + 1 = Mn + M n _ 1 + • • • + M2 + M , 

and the trace of M equals the sum of the traces of the matrices on the 
right, giving trace of 

Mn+1 = (2n _ 1} + ( 2 n - l _ 1} + . . . + (22 _ i) + (21- 1) 

= 2 n + 1 - n - 2 . 
k Since finding the trace of M for k ;> n involves summing the n preceding 

traces already obtained, we can form our table inductively without actually 
raising the matrices to powers. 

For example, to get the series for n = 5, the sum of the five roots 
raised to the zero power is 5. The sum of the five roots to the first power is 
one, the coefficient of -x4 in 

x5 - x4 - x3 - x2 - x - 1 = 0. 
The sum of the second, third, and fourth powers are given by 

22 - 1, 23 - 1, 24 - 1. 
The sum of the fifth powers is either 25 - 1 or the sum 

5 + 1 + 3 + 7 + 15. 
The sum of the sixth powers is the sum of the preceding five entries, 

1 + 3 + 7 + 15 + 31 . 



SUSTAINING MEMBERS 

*H. L. Alder 
V. V. Alde rman 
G. L. Alexanderson 
R. H. Anglin 

* Joseph Arkin 
L. L. Badii 
Don Baker 
Col. R. S. Beard 
M u r r a y Berg 
Leon Berns te in 

*Mar jo r i e Bicknell 
J . H. Biggs 
J . H. Bohnert 
M. B. Boisen , J r . 
C. A. Br idge r 

*Bro„ A. Brousseau 
* J . L. Brown, J r . 

C. R. Burton 
N. S. Cameron 
L. Car l i tz 
P . V. Char land 
P . J . Cocussa 
Lee Corbin 
Nannette Cox 
A. B. Cummings 
D. E. Daykin 
F r a n c i s DeKoven 
J . E . Desmond 
A. W. Dickinson 
M. H. Diem 
N. A. D r a i m 
D. C. Duncan 
M. H. E a s t m a n 

* C h a r t e r M e m b e r s 

M e r r i t t E l m o r e 
R. S. E r l i e n 
H. W. Eves 
F . A. F a i r b a i r n 
A. J . Faulconbridge 

*H. H. F e r n s 
D. Co F i e l d e r 
E. T. F ranke l 
C. L. Gardner 
G. H. Glabe 

*H. W. Gould 
Nicholas Grant 
G. B. Greene 
G. A. Guillotte 
B. H. Gundlach 
V. C. H a r r i s 
W. R. H a r r i s , J r . 

*A. P . Hil lman 
M r . and M r s . B. H. Hoel ter 

*V. E. Hoggatt , J r . 
*A. F . Horadam 

J . A. H. Hunter 
D. F . Howells 
F . R. J ach im 
A. S. Jackson 

*Dov J a r d e n 
J . H. J o r d a n 
R. P . Kel i sky 
Kenneth Kloss 
D. E. Knuth 
Sidney Kravi tz 
George Ledin, J r . 
Eugene Levine 

*D. A. Lind 
*C . T. Long 

A. F . Lopez 
F . W. Ludecke 
J . S. Madachy 

* J . A. Maxwell 
* S i s t e r Mary deSales NcNabb 

W. A. Morin 
Luci le Morton 
Stephen Nytch 
R. D. 0TConnell 
P . B. Onderdonk 
F . J . Oss iander 
Ann Pape 
R. J . Peg i s 
J . W. Phi l l ips 
Alvin Por tney 
M. M. Risueno 

*D. W. Robinson 
F . G. Rothwell 
B. B. Sharpe 
L. R. Shenton 
J . A. Shumaker 
D. C. Stone 
A. Sylwester 

*D. E. Thoro 
H. L. Umansky 
M. E. Waddill 

* L . A. Walker 
R. J . Weinshenk 
R, A. White 
R. E . Whitney 
P . A. Will is 
Cha r l e s Ziegenfus 

DUKE UNIVERSITY 
Durham, No. Carol ina 
NORWICK UNIVERSITY 
Northfield, Vermont 

ACADEMIC OR INSTITUTIONAL MEMBERS 
ST. MARYfS COLLEGE 
St. MaryTs Col lege , California 

VALLEJO UNIFIED SCHOOL DISTRICT 
Val le jo , California 

WASHINGTON STATE UNIVERSITY 
Pu l lman , Washington 

SACRAMENTO STATE COLLEGE 
Sac ramen to , California 
SAN JOSE STATE COLLEGE 
San J o s e , California 

THE CALIFORNIA 
MATHEMATICS COUNCIL 



BINDERS NOW AVAI LABILE 

The F ibonacc i Associa t ion is making available a binder which 
can be used to take c a r e of one volume of the publ ica t ion at a t i m e . 
This binder is desc r ibed as follows by the company producing it: 

11. . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ron ica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high from the 
bottom of the backbone, round c o r n e r e d , fitted w i th 
a 1 1/2 " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is d a r k 
g reen . There is a s m a l l pocket on the spine for holding a tab 
giving year and volume; These l a t t e r w i l l be supplied with each 
o rde r if the volume or volumes to be bound a r e indicated. 

The p r i ce per binder is $3 .50 which includes postage ( r ang ing 
f rom 50£ to 80£ for one b inder ) . The tabs wil l be sent w i th the 
rece ip t or invoice . 

All o r d e r s should be sent to : Bro the r Alfred Brousseau , 
Managing Edi to r , St. Mary1 s Col lege, Calif. 94575 


