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TAKE-AWAY GAMES

ALLEN J. SCHWENK
California Institute of Technology, Pasadena, California

I. INTRODUCTION

Several games of ''take-away' have become popular. The purpose of
this paper is to determine the winning strategy of a general class of take-
away games, in which the number of markers which maybe removedeach turn
is a function of the number removed on the preceding turn. By-products of
this investigation are a new generalization of Zeckendorf's Theorem [ 3], and
an affirmative answer to a conjecture of Gaskell and Whinihan [2].

Definitions:

(I-1) Let a take-away game be defined as a two-person game in which

the players alternately diminish an original stock of markers sub-
ject to various restrictions, with the player who removes the last
marker being the winner.*

(I-2) A turn or move shall consist of removing a number of these
markers.

(I-3) Let the original number of markers in the stock be N(0).

(I-4) After the kth move there will be N(kk) markers remaining.

(I-5) The player who takes the first turn shall be called player A. The
other player shall be called player B.

(I-6) Let T(k) = Nk -1) - N(Kk). That is, Tk) is the number of
markers removed in the kth move.

(I-7) The winning strategy sought will always be a forced win for Player
A.

All games considered in this paper are further restricted by the follow-

ing rules:
(@) Tk)> 1 forall k =1,2,°° .
(b) T() < N(0) (Thus, N(0) > 1.)
(¢) Forall k = 2,3,°*+, T(k) <m,_, where m, is some function of
Tk - 1).

*This definition is essentially taken from Golomb [1].
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226 TAKE-AWAY GAMES [April

Rule (a) guarantees that the game will terminate after a finite number of
moves since the number of markers in the stock is strictly decreasing, and
hence, must reach zero. Rule (b) dispenses with the uninteresting case of
immediate victory. Rule (c) is the source of the distinguishing characteris-

tics of the various games which shall be considered.

II. MOTIVATION
Example (II-1)

A simple game occurs when my is defined to be constant, m, and we
require T(1) = m. The well known strategy is: I N(0) # 0 mod (m + 1),
remove N(0) mod (m + 1) markers. On subsequent moves, Player A
selects T(2j + 1) to be equal to m + 1 - T(2j).
I N(©) = 0 mod (m + 1),
Player B can win by applying Player A's strategy above.
A simple way to express this result is to write the integer N(k) in a base m
+ 1 number system. Thus,

NK) = a9+ aym + 1) + apm + 17 + +oo i)

where this representation is unique. Player A's strategy is to remove a,
markers, provided ay, # 0. If a;, = 0, Player A is faced with a losing
position.

This result suggests a connectionbetween winning strategies and number
systems.

Example (II-2)

Consider the game defined by the rule m = Tk - 1), the number of
markers removed on the preceding move. In other words, T(k) <T(k - 1).
To find a winning strategy, express N(0) as a binary number, e.g., 12 =
1100B. Define /N(0)/ as follows: If

N = (atna.n_1 aiao)B ,

in the binary system, then
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/N/ = B ta 4 e tayt+oa
¥ /N@O)/ = k>1,
Player A removes a number corresponding to the last '"one' in the bi-

nary expansion. (Thus, for N(0) = 12 = 1100 Player A removes

s
4 = 100B.) Now /N(1)/ =k-1> 0. Player B 1]130w has no move which
reduces /N(1)/; to do so, he would have to remove twice as many as
the rules permit. In addition, any move Player B does make produces
an N(2) such that Player A can again remove the last '"1" in the expan-

sion of N(2). To see this, note that N(1) can be rewritten as

(apay 4t a,lec 1), + 1B.
Now, since N(k) is strictly decreasing, it must reach zero. However,
/0/ =0 and /N/ > 0 for all positive integers N. Since Player B
never decreases /N(k)/, Player B cannot produce zero; hence, Player
A must win.

If, on the other hand, /N(0)/ = 1,
it is clear that Player A cannot win because N(0) = 100 ««+ 0, = 11°-*

B
1, + 1. Any move by Player A permits Player B to remove the last

"ZE' inlihe expansion; thus applying the strategy formerly used by A

above.

Again we see a connection with number systems. A generalizationof this
method now suggests itself: Find a way to express every positive integer as a
unique sum of losing positions. Then a losing position has norm 1. For any
other position, the norm reducing strategy described above will work if, given
Player A's move,

(i) Player B cannot reduce /N(k)/, and

(ii) any move Player B does make permits Player A to reduce /Nk+1)/.

1. THE GENERAL GAME

Now consider any game in which my is a function of the number of
markers removed on the preceding move; i.e., let m = f(T(k - 1)). Suppose
f(n) = n and f(n) = f(n - 1) for all positive integers, n. Note that example

II-2 satisfied this hypothesis. We want f to be a monotonic nondecreasing
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function so that if Player B removes more markers he cannot limit Player A
to removing fewer markers and thus foil the norm reducing strategy. In addi-
tion, we want f(n)= n to guarantee the existence of alegal move at all times,
and to permit the following definition:

Definition (III-1)

Define a sequence (Hi) by: Hy =1 and Heq =H + Hj where j is
the smallest index such that f(HJ.) =ZH,.

k
Clearly this is well defined because if the above inequality holds for no

smaller j, atleast we know it holds for j = k.

Theorem (III-2)

Every positive integer canbe representedas a unique sum of Hi's, such
that

n

N =ZH. and f(H, )< H. for i=1,2,°**,n~-1.
oy i 4 i+l

Proof

The theorem is trivially true when N = 1, for H; = 1.

Assume that the theorem holds for all N < Hk; and let Hk =NK< Hk +1°
By induction,
n
N = H_+ > H;
i=1
where f(H, )< Hj for i = 1,2,°**,n-1. Thus, for the existence of a
i i+1
representation, we need only show that f(HJ. )< Hk' Suppose f(HJ. ) ZHk.
n n
Then recall that Hk+1 = Hk +Hy where { is the minimal coefficient for
: = : =
which f(H, )= Hk' Hence in= £ and so
— <<
How = B+ Hy SH 4 =N,

contradicting the choice of N. Thus we have existence.



1970] TAKE-AWAY GAMES 229

For uniqueness, note that: f(Hj ) < Hj implies
1 2

f(H. )< H., impli
( J2) is implies

3
S < n
i=1 !
fH, )< H, implies
n-1 In
n
H < H,

Thus, for Hk 41 >N = Hk’ the largest term in any sum for N _must be Hk'
If N has two representations, so does N - Hk’ but this violates the induction
hypothesis. Thus, the representation is unique.

Definition (III-3)

/N/ is the number of terms in the "H sum'" for N.

Lemma (II-4)

If /N(k)/ = 1 and theplayer cannot move N() markers, then any move

he does make permits his opponent to reduce /N(k + 1)/.
Proof
For simplicity, let us assume that k is odd. Thus, we will prove that

Player A can remove an appropriate number of markers so that /N(k +2)/ <

/N +1)/.
Rewrite Nk) = o
= H. + H.
jo-1 it
= H. + H. +eoe+ H, +
jom1 -1 ji-1 1

n
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for some n where

f(H. ) = H, > fH, )
Ji+1 j-1 Ji4q71

for i = 0,1, -+, n - 1. Note that this is equivalent to

Now Player B removes T(k +1), with Hj =Tk+1)< Hj1 for some i
i+1
between 0 and n, where Hj = 1. Player A may remove up to
n+1l

fTk + 1) =fH., )
Ji+1
=H1 .

Hence, Player A may elect to remove

H -Tk+1)=<H -H =H
3 i dia i
and

Nk + 2) = H, + e + H

Ji—l_l jo-1°

Since f(H, _1) <H _; fori=1,2,,n, wehave /NE + 2)/ =i.
Let]i Ji_l |

/Hj -Tk +1)/ =a>0.
i

Now Nk + 1) = Nk + 2) + Hj - Tk + 1).
Let Hp be the largest term in'the H sum of Hji - Tk +1). Clearly

H)=H whence f(HfZ) =< f(Hji—l) < Hj -1 Thus

ji~1 i-1

1

/Nk +1)/ = i+a>i= /Nk+2)/,

and this completes the proof of the lemma.
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Theorem (II-5)

Let us consider a game defined by f satisfying the properties stated
above. Also let (Hi) and the norm be defined as above.
If /N(0)/ >1, Player A can force a win. If /N(0)/ = 1, Player B
can force a win.
I /N(0)/ > 1,
let N(0) = Hjl +oeee + Hjn with jE(Hji) < Hji+1'
moves sz. Since Player B can remove at most f(H.i) < sz it
is clear that Player B cannot reduce /N(1)/ or affect any of the

Player A re-

last n - 2 terms in the sum, so we may just as well consider n =
2. Now we invoke Lemma (IlI-4), so Player A can reduce /N(2)/.
Thus, Player A can force a win.
I /N©)/ =1,

Since Player A cannot remove N(0) markers, Lemma ([II-4) tells
us that Player B will be able to reduce /N(1)/. If /N(1)/ =1,
this means that he can remove N(1) and win immediately. If
/N(@1)/ > 1, Player B can apply Player A's strategy from the first

part of this proof. Thus, Player B can force a win.

IV. BY-PRODUCTS

In the case when f(T(k - 1)) = 2T(k - 1), the foregoing results produce
the conclusions of Whinihan and Gaskell [2] regarding "Fibonacci Nim," We

note that in this case:

H1 =1
Hy = H + H =
Hy = Hp + Hy = 3
and in general, if
Hn—i = Hn—i—l * n-i-2

for i = 0, 1, and 2, then
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2Hn_32 Hn_2 > 2Hn_ 4
2Hn-—Z 2 Hn—l - 2Hn-—3

So

>
2H, ;= H >2H

n 2

by adding the inequalities above. Hence H = HI1 + Hn—l’ This process

+
continues by induction so that the sequencfe1 1(Hi) is indeed the sequence of
Fibonacci numbers.

Also in this case, Theorem (III-2) becomes 'Zeckendorf's theorem" [3].
which states that every positive integer can be uniquely expressed as a Fibon-
acci sum with no two consecutive subscripts appearing.

Another interesting fact, conjectured by Whinihan and Gaskell [2], is
that for the game m, = cT(k - 1), where c¢ is any real number =1, (Hi)
must become a simple recursion sequence for sufficiently large subscripts;
el = Hn + Hn—k for all
n > nj Let us now consider how to prove the conjecture, and how to calculate

i.e., there exist integers k and n;, such that H

k and n; as a function of c.
Lemma (IV-1)
If CHi-1< Hj < CHi’ then cHi+1 > Hj+1’

Proof
i < = =
Since CHi—l Hj .<_,.cHi, we must have Hj+1 Hj +Hi. Also, Hi+1
>
Hi + Hk where ch 2 Hi' Now
CH1+1 = cI—Ii + ch
>cH, + H,
=" i

Theorem (IV-2)
There exists an integer k such that CHn—k< H][1 for all n > k.

Proof
Since Hj - Hj + Hi where cHiQ -Hj, it follows that
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H.
it 1
H. 2(l-l-c ‘

J

If we choose k such that

then

Hi k1

Thus, CHj—k< Hj for all j > k. This completes the proof of the theorem.
Corollary (IV-3)

(Hn) must become a simple recursion sequence for sufficientlylarge n.

Lemma (IV-1) says that the difference between successive indices as
described before is monotonically nondecreasing. Theorem (IV-2) says that
the sequence of differences is bounded. Thus the difference must be constant
for all large n. This is equivalent to saying that (Hn) is a recursion sequence
for n=n;, Q.E.D.

Theorem (IV-4)

I H e = By * By g
then this equation holds for every positive integer i.

for some j, and for i = 0,1, ,k + 1,

Proof

By induction, we need only show that Hj + Hj +9° BY defi-
+k+1 < CHJ.+1. Hj+1 = H] +

+e+3 = Hjplern
nition, Hj+k+2 = Hj+k+1 + Hj+1 implies ch < Hj

Hj—k implies

cH, < H, < c

j-k j+1 - Hj—k+1 ’

whence

oy + H ) < Hyoq + Hyy < e, + Hj_k+1) ,
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or

CI-Ij+1 < Hj+k+2 < CHj+2 g

so Hj+k+3 =
This theorem tells us that k has reached the recursion valuewhen k has
been the difference for k + 2 successive indices.

Hj+k+2 + Hj+2' Q. E.D.

V. CONCLUSION

We have discovered some interesting properties of take-away games and
their winning strategies. The subject, however, is by no means exhausted.
For example, in Theorem (IV-4) we showed that for every .c > 1 there

exists a k such that... . By inspection, I have found:

If ¢ = then k =

1}

w N o oo W
|

© 3 U W Rk @

It is not clear whether or not a simple relation exists between ¢ and k.

In Section IV, we found that f(x) = cx gives rise to a recursion rela-

tion for (Hi)' Other special cases of f can be studied, to learn about the
corresponding sequence (Hi); or one might try to reverse the approach by
proceeding from (Hi) to f, as opposed to the approach taken in this paper.

It is also possible to generalize in other ways. For example, if f(n)
and g(n) satisfy the hypotheses of Section I, then (f+ g)(n) = f(n) + g(n)
and (fg)(n) = f(n)g(n) also satisfy the hypotheses. Can the corresponding
strategies and sequences be related? Can the procedure be generalized for
functions which are not monotonic? These problems are suggested for those

interested in pursuing the subject further.
[Continued on page 241. ]



ON THE ENUMERATION OF CERTAIN TRIANGULAR ARRAYS

C. A. CHURCH, JR.
University of North Carolina, Greensboro, North Carolina

1. In [2], this quarterly, D. P. Roselle considered the enumeration of
certain triangular arrays of integers. He obtained recurrences for these which
had a Fibonacci character. In this paper, we obtain explicit formulae for the
enumeration of these arrays, with a slight change of notation, and some gen-
eralizations. Although difficult to state in its full generality, it will be seen
that the method of enumeration can be applied to a rather general class of
arrays in a given instance.

By a lattice point in the plane is meant a point with integral coordinates,
non-negative unless stated otherwise. By a path (lattice path) is meant a min-
imal path via lattice points, taking unit horizontal and vertical steps.

It is well known that the number of paths from (0,0) to (p,q) is

()
(355)

which start with a unit horizontal step.

and there are

With [x] the greatest integer =x, note that

R < s

2. To fix the idea, we take the simplest case first.
For integral n =1, m =1, consider the triangular array of integers
2y = 0or 1, i=1,2,"+,[n-1)/m] +1and j=@G-Dm+1, °**, n,

235
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with the restrictions 1= a, ., = a, .
is] i+1,j

§2]. Let f(n;m) denote the number of these arrays.

= = = =
0 and 1 ai,j ai,j+1 0, [2,

For example, with m = 3 and n = 11, the arrays have the shape

XXXXXXXXX
XXXXXX
XXX

£(11;3) = 88, and a typical array is

111111111]00
111]111j00
100 00

00

1t follows from the restrictions on the aij that
(2.1) fo;m) = f(n - 1;m) + f(n - m;m), n~m,
according as 4y o = 0 or 1 with the initial conditions
fmm) = n + 1, l=n=<=m,

We adjoin the conventional value f(0;m) = 1. Compare [2, (1.1) and (1.3)].
We show directly that

£

2.2) fom) = 5O (n - m - D - 1))

It is easy to show that (2.2) satisfies (2.1) and the initial conditions.
As in [2], we note in passing that f(n;1) = 2% and f(;2) = F
Fibonacci numbers.

n+2’ the

To get (2.2) directly, note first that there is only one array, consisting

of all zeros, if a; 1= 0. For each k =1, we get a new set of arrays in
H
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k, k-1)m+1 ~

each case where at least a = 1 and all the i1 j = 0, This ad-
3

joins an artificial row of zeros in the case of the last row, but it does not

change the count. In view of the restrictions on the aij’ we need only con-

sider the rectangular arrays

81, k-1)m+1 """ %1,n

A, k-m+1 """ %k,n
with

B, k-hme1 = b 1= LAk

These arrays correspond in a one-one way with the
n-(k-Ym - 1)
(2.3) ( I )

paths from ((kk - 1)m,0) to (n,k) which start with a unit horizontal step as
follows: for each path, place 1's in the unit squares above and to the left
(northwest side) of the path and 0's in the unit squares below and to the right
(southeast) of the path. For example, see the blocked out section of the pre-

ceding example, Sum (2.3) over
k = 0,1,7*, [@ - 1)/m] + 1

to get (2.2).
The preceding result also enumerates one-line arrays

2.4) n,n_c*°n , s = [@-1)/m] +1,

where ny =n and 0 < n_j_!_1 = nj - m. Compare [2, §4]. This is seen by

taking row sums of the aij m the case that all the 2, j = 1. This is pre-

cisely the original problem with n replaced by n - m. That is, there are
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f(n - m;m) such one-line arrays. These may also be thought of as combina-
tions of the first n natural numbers written in descending order; compare
[1, p. 222, problem 1].

If, in (2.4), we only require 0 < ny < n, we have the obvious additional
one-line arrays.

The arrays above had a row depth of one. It is easy to expand the prob-
lem to the case of row depth p = 1. That is, let f(n; m|p) denote the num-
ber of arrays of a;. = 0 or 1, where i = 1,2, **+ p[@ + m - 1)/m])
andfor i = (k-1)p+s (s = 1,2,c++,p and k = 1,2,.++, [0+ m - 1)/m])
j=&-1m+1,-*-,n, We have the same restrictions as before.

For example, with m = 3, n = 11, and p = 2, the arrays have the
shape

XXX
XXX

and f(11; 3/2) = 871.
We shall find in €3 that

]

m p
2.5  fomp) = D, Y

k=0 s=1

n-k-1m-p)+s-1
s+ (k- 1)p

is a special case of a more general class of arrays. With obvious notational
changes, the case p = m of (2.5) is Roselle's Nk(n,k)= Nn(k) [2, (1.11) and
(3.10)]. That is, f(n;k k) =Nk(n,k). Roselle's (3.10) gives the representation

m-1
(2.6) fosmlm) = L 3 {07 + 9™ - 1}l + )",

=0

where p is a primitive mth root of unity. Now (2.6) and
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[n+m—1]
m m
e oy = 2 % (22 830)

k=0 s=1

are the same. To see this first apply the binomial identity

n
+ k +n+1
(2.8) E(Xr)=(xr21)'(rf1)
k=0

to the inner sum of (2.7) to get

[n+m—1

m
(2.9) fn;m m) = E { (nk:nm> - ((k —nl)m)} :

k=0

Next (2.6) can be rewritten as

m-1 m-1
f(;m|m) = 1171 Z @ + 1 1‘15 Z O+ P
=0 j=0

But this is just another way of writing (2.9), c.f. [1, p. 41, problem 7].
Application of (2.8) to (2.5) yields the form

e

. _ n-(k-1m-p) +p n- (k- 1)m - p)
fosmip) = Y {( kp )'( k - p )} )

k=0

which can also be gotten by a direct combinatorial argument.
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3. With the same restrictions as before on the a , we consider a
slightly more general array. In this case, the indentationslgvill still be m =1,
the first block will have row depth q = 1, and the successive blocks will have
row depth p + (k - 1) respectively, k =2, 3, *++, [@-1)/m] +1, p= 1,
a =0,

As before, the case a3 = 0 contributes only one array, all zeros. For

each of the cases a =1, s=1,2,°°+,q, and a = 0 there are

S,1
n-+s-1
s

arrays — corresponding to the paths from (0,0) to (n,s) with an initial hori-

s+l,1

zontal step. Thus the q by n rectangle contributes

q
(3.1) 1+Z<n+z-1>=<n;q)

s=1

arrays. Note that this rectangle always gives the initial conditions; compare
[2, (1.4)]. For the count on the remaining blocks, we consider the case of

a k- =1 |,
q+k-2)p+{ 7, a+s, (k-1)m+1

where Kk =2 and s =1, 2, ***, p+ (k - 1) and the next row is all zeros,

in each case, these corresponding to the

(n+s—1-(k-1)(m-p)+(kél)aﬂ”l-p)

(3.2) n-(G(k-1m - 1

paths from ((k - 1)m,0) to

n,q+(k-2)p+(k;1)&+s

with an initial horizontal step.
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Thus the total number of arrays is

[n+m—1]
q m ptk-1)a oy ) (k-l)
n+s-1 n+s - 1(k-1)(m-p) + a+g-
(3.3) 1 +Z( s ) + Z Z ( P+, p)
s=1 k=2 s=1 n-G&-1m-1

We note that (3.3) can be simplified by replacing the first two terms by
the right member of (3.1) and the inner sum by applying (2.8).

We note some special cases of (3.3). First the case a = 0 is, with
obvious notational changes, Roselle's N.(m,k) [2, $3]. If, iir addition, we
take p = q, Eg. (3.3) reduces to (2.5), which in turn reduces to (2.2) for
p =1

As we remarked at the beginning, it is now quite clear that the descrip-
tion of a very general case of these types of arrays would be quite complicated,
However, it is clear that in any given instance, the method used above is easy

to apply.

REFERENCES

1. J. Riordan, An Introduction to Combinatorial Analysis, New York, 1958.
2. D. P. Roselle, "Enumeration of Certain Triangular Arrays,' Fibonacci

‘Quarterly, October, 1967.

[Continued from page 234. ]
TAKE-AWAY GAMES

REFERENCES

1. Solomon W. Golomb, A Mathematical Investigation of Games of Take-
Away.
2. Michael J. Whinihan, "Fibonacci Nim,' The Fibonacci Quarterly, Vol. 1,
No. 4, p. 9, 1963.
3. J. L. Brown, Jr., "Zeckendorf's Theorem and Some Applications," The
Fibonacci Quarterly, Vol. 3, No. 3, 1964, p. 163.
e atan
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NANNETTE COX, JOHN W. PHILLIPS, and V. E. HOGGATT, JR.
San Jose State College, San Jose, California

"In [1], H. H. Ferns discussed minimal and maximal representations of
positive integers as sums of distinct Fibonacci numbers. S. G. Mohanty ex-
tended those results in [2] by employing a one-parameter family of generalized
Fibonaceci sequences. This paper provides clarification of the concepts of

maximality and minimality as employed by Ferns and Mohanty.

For convenience we will reiterate several definitions and results from
[2], with suitably altered notation.

Definition 1: The generalized Fibonacci sequence {Ur n} with param-

—_———— H

eter r is given by

r,1 Ur,z o r,r

r,n = Ur,n—l * Ur,n—r
for integers n and r such that n > r > 1.

For brevity, the parameter r will not be made explicit. Thus Ur n-
- ?
U and {Ur 'n} = {Un}. Since we wish to express positive integers as sums
2

of numerically distinct terms of {Un}’ we make the restriction that the first
r - 1 terms not be employed in any representation. After Mohanty, we assert
without proof that every positive integer N has at least one representation in
{Un} subject to that restriction. That is, there exist integers ay such that

ai= 0 or ai=1 for i=r, r+1, "+, s; aS=1; and
s

(1) N=ZaiUi.
i=r

Definition 2: Given a representation of N of the form indicated above,
we define the magnitude of the representation to be the sum of the coefficients

a,.
1

242
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Definition 3: A representation of N in { Un} is said to be Minimal (or
Maximal) if andonlyif the magnitude of the representation isless than or equal
to (or greater than or equal to) the magnitude of every other representation of
N in {U_}.

This definition agrees with the intuitive notions of minimal and maximal
representations in the sense that, for example, a minimal representation em-
ploys the fewest possible elements of the sequence {Un}. Ferns, working
with the special case r = 2 (the Fibonacci numbers) defined these ideas in a
mathematically simpler but intuitivelyless satisfying way, which Mohanty gen-
eralized essentially as follows:

Definition 4: A representation of the form given by (1) in { Un} is mini-
mal (or maximal) if and only if aiai + =0 (or a, + a, + > 1, respectively)
forall j=1,2,°**, r-1 and i=r, r+1, ¢, 8 -]

It is easy to see that, for r = 2, these two definitions are equivalent.
For if a representation in {Fn} fails Definition 4, then, for some i, a.a,

iTi+l

=1 or a, +ai = 0 and the relation

+1

can be applied to force conformity to Definition 4 and simultaneously to de-
crease (or increase) the magnitude of the representation, indicating that the
original representation failed Definition 3 also. On the other hand, any rep-
resentation not in accord with Definition 3 can be made to conform by suitable
application of the relation cited above, which applications require the existence
of coefficients 2y and 241 such that Definition 4 fails initially. Hence:

Theorem 1: If r = 2, then Definitions 3 and 4 are equivalent.

The main result of this paper is a proof (Theorems 2 and 3) of the con-
verse of Theorem 1. It is clear that every positive integer N has atleast one
Minimal representation and one Maximal representation in {Un}. Further,
we have

Lemma 1: Every positive integer has a unique minimal representation
in { Un} and a unique maximal representation in {Un}

Proof: This is established in [2], Lemmas 1 and 2.

Therefore, it suffices to display, for each value of r greater than 2,
an integer whose minimal (or maximal) representation is not Minimal (or

Maximal). Toward that end, we consider the triangular numbers.
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Definition 5: The triangular numbers {Tn} are given by

Ty = L T, =n+T -

If in the above definition n is allowed to take on successively the values
m+3, m+ 4, and m + 5, and the resulting equations are summed, the fol-
lowing useful identity is obtained:

(2) Tm+5 = Tm+2 + 3m + 12.

Lemma 2: If k is an infeger such that 1 <k < r, then:

@®) U =1

4) Uk = k+1

®) Uorse =%+ T

(6) U3r+k=r(k+2)+Tr+T1+T2+--- +Tk+1 .

Proof: These may be established by infinite induction.
Lemma 3: If r> 6 and r = 3m for some integer m, then

Uiom+ " Usm+3 * Ysm+1 = Yiom * Urmt4 -

Proof: Let r = 3m in Equations (4), (5), and (6):

@ U3m+k =k+1
" Ugmie = o+ Ty
6") U9m+k = 3mk + 2) +T3m+T1 +T2 4 e +Tk+1 .

Also,
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) U U U

6m+3 * Usm+1 ~

+ U

U + - =
10m+1 10m U7m+4; U9m+(m+1)

U U

6m-+(3) * U3m+(1) T Y9m+@m) T 6m+(m+4)

Since the parenthesized term in each subscript of (7) is less than or equal to
r = 3m > 6 implies that m +4 < r, we can substitute Equations (4'), (5'),
(6') in (7) appropriately with k equal to the term in parentheses:

U + U + U -U

3m+1 ~ Y10om ~ Urm+s

Bm@m + 3) + T +T1+T2+---+Tm+2)+(T4+3m)+(2)
)

10m+1 6m-+3

3m

- Bmm +2) + T + T, +T +eee +T )-(BGm+T

3m 1 2 m+1 m+5

=T +3m+12—Tm+

m+2 5 °

In view of Equation (2), this establishes the Lemma.

Lemma 4: If r2> 6 and r = 3m +1 for some integer m, then

Uiom+4 © Y6m+5 ¥ Usm+1 = Utom+s ¥ Urm+e *

Lemma 5;: If r > 6 and r = 3m + 2 for some integer m, then

Uiom+8 ™ Yem+7 * Usmia = Viom+7 ¥ Urmao *

Proof: Lemmas 4 and 5 are provedin a manner identical with thatabove,
using Equations (2) through (6). Details are omitted.

Theorem 2: Given a sequence Un satisfying Definition 1 with r 2 2,
there exists a positive integer N such that the unique minimal representation
of N in Un is not Minimal,

Proof: For r > 6, let

=U + U

6m+3 + U if r = 3m,

10m+1 3m+1

=U +U

]

U if r=3m+1,

10m+4 ¥ Yem+s © Usmi1

and
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N=1T + U + U if r=3m+ 2.

10m+8 6m-+7 3m-+4
The representation given for N is minimal, but in view of Lemmas 3, 4, and

5, is not Minimal. Similarly, let

1l

167 = Uys + Uy + Ug + Uy = Uy + Uyg + Uyy for r = 3,

N = 62 = Uy + Uy + Uy = Uy + Uy for r = 4,
and let
N =54 = U17 ~+ U“ + U5 = U16 + U14 for r = 5,

In each of these cases, the first expression for N is minimal but is obviously
not Minimal. Thus counterexamples to the minimal-Minimal correlation have
been exhibited for all sequences {Un} corresponding to r > 2; the proof is
complete.

Theorem 3: Given a sequence {Un} satisfying Definition 1 with r > 2,
there exists an integer N such that the unique maximal representation on N
in {U,} is not Maximal.

Proof: For r > 5, direct substitution using Equations (4) and (5) serves
to establish that

r+2 r
Uopis * 22 Upsi = Uspua ¥ Uy * Ugpyp * 2 Upi -
i=0 i=1

Similarly, we can show that for r = 4,

7
Ugg + Uyg + Ug + 37 U; = Upp+ Uy +Uge + Ug + Ug + U + Uy
i=3

and for r = 3,
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11
Uy + 3 Uy = Ug + Up + Uy + Uyg + Ug + Uy + Ug + Uy
i=4

As in the proof of Theorem 2, each of these equations provides two rep-
resentations for N: the first is maximal by Definition 4, but is of smaller
magnitude than the second, and hence not Maximal. This is sufficient to es-
tablish the theorem.

Taken together, Theorems 1, 2 and 3 establish that every minimal rep-
resentation is Minimal and every maximal representation is Maximal in { Un}
if and only if r = 2, which was the promised result.

Mohanty noted in [2] that {Un} is a special case of the generalized Fib-
onacci numbers of V. C. Harris and Carolyn C. Styles [3]; specifically,

[n/r]/ .
UH:ZKn_]i-(r—l)) ’

i=0

where [n/r] denotes the greatest integer in n/r. The Tribonacci numbers
of Mark Feinberg [4], [5] can be defined as the sums of the rising diagonals
of the trinomial triangle generated by (1 + x + x? )n, and canbe generalizedin
an analogous manner, If the coefficient of xk in the expansion of (1 +x+x2 "

is denoted by [2]3, then we can define the generalized tribonaccisequence
(Voo by

- i(r - 1)
_ n - 1ir -
Vr,n =Xz [ i ]3

=0

[

As before, we assert without proof that {Vn} = {Vr,n} is complete, evenun-
der the restriction that the first r - 1 elements of the sequence not to be em-
ployed in any integer representations. Further, we extend Definitions 3 and 4
to apply to the new family of sequences, and assert that Theorem 1 can be
similarly generalized.

The following theorem is offered without proof.
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Theorem 2': If r > 4, there exists a positive integer N such that the
minimal representation of N in {Vn} is not Minimal. Specifically,
N =YV =V

r+V v

4 2r+43 T Ve ar-1 7 Varaa

The left side is in proper form for a minimal but the right side has fewer
digits. One can easily find an infinite number of other exceptions for each r.

For example, add V to each side for j =1, 2, 3, **-.

51r+j
One can secure a counterexample for the maximal which is not Maximal

by subtracting each of those N's above from

4r+1
> v, .
]
Jr
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ERRATA

Please make the following change in the article by London and Finkel-
stein, "On Fibonacci and Lucas Numbers which are Perfect Powers,' Dec.
1969, p. 481:

Equation (14) should read: Y2 - 500 = X3 ,
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1. Let
Foun = Fp v Fpge Fo= 00 Fy

and define

[>e}

k cos

(1.7) f &) = Fo X /kt @ =0,1,2,°°°) ,

k=0
so that

f&=1f,.,&, { &®=1{x+f & .

Note that fn(O) = Fn.

In a recent paper [1] in this Quarterly, Elmore has pointed out that
many of the familiar formulas involving the Fibonacci numbers Fn can be ex-
tended to the functions fn(x). For example, the identities

S o= D™ F = 2 2
Fm—1Fm+1 Fm 1, I‘Zm-l Fm—l * Fm
become
_ o2 = (- m X
£ @ & -5 & = ()" e
and

fom.1@%) = £ & + £ & ,

respectively; the identity
¥Supported in part by NoF Grant GP-7355.

249
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F = F F +F_ F
m n-

m+n T m-1"n 1

becomes

fm+n(u + V) = fm_l(u)fn(v) + fm(u)fn +]‘(v) .

The formulas

(1.2) £ @f ) = (DT E @E 0 -FL . @+9],
u r .
(1.3) F E &-we = ()[f @f O -f@ N\ I

seem particularly striking. Elmore remarks that they may be special cases
of a more general formula in which no capital F's appear. This is indeed
the case, as we shall show below. The formula
W @ 0 - R ) = (DTN - 0 - %),
where x +y = u+v, reduces to (1.2) when x = 0 and reduces to (1.3) when
u=x, V=y.

2. Since it is no more difficult, we consider the following slightly more

general situation. Let

(2.1) Hn+1 = pHn - an—l’ Ho = 0, H1 =1,
and define
< K
(2.2) By() = D H g X/KE @0= 0,120
k=0
so that

h;l(x) = hn +1(x), hn+1(x) = phn(x) - qhn_l(x) .

Corresponding to (1.4), we shall show that
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2.3 h @ ) - h &h y =qF ™ h @ - xh - x,

m-+n-+r

provided x+y =u + v.
Let o, denote the roots of x% - px+q = 0. Then

n
H =2 &

(2.4) n - e - ’

and (2.2) implies

(2.5) h () = @ X - g PX)

1
a- P

It follows at once from (2.5) that

o0
k
(2.6) h g Xy /Kl =h&+y.
k=0
Consider
2 70
Z. {hm+r(u)hn+r(V) = hr(x)hm+n+r(y)} m!n!
m,n=0

]

hr(u + 2)h (v + W) - hr(x)hr(y + 7+ W)
B)-Z {(ar eoz(u+z) _ Br e,8(u+z) ) (ar ea(v+w) _ Br e,8(v+w)

]

@ -
R e,Bx)(ar eoz(y+z+w) _ g eB(y-l—z+W) )}

@ - B)-z {QZr eoz(u+v+z+w) + BZr eB(u+v+z+w)

_ qr(eoz(u+z)+ﬁ(v+w) + Plutz)+o(v+w) )
- - B)-z {QZr ea(’(+y+Z+W) + BZr eB(x+y+z+w)

_ qr(eax+5@v+z+w) 4+ Pxtalytztw) )]

If we take x+y = u+v, this reduces to



252 SOME GENERALIZED FIBONACCI IDENTITIES [Apr.

@ - B)-z qr {eafx+ﬁ(y+z+w) + eﬁxw(y+z+w)

_ Qlutz)+Bvw) eB(1,1+z)+a/(v+w)}

@ - B)-Z qr oPX {eoz(—x+y+z+w) + eB(-x+y+z+w)

_ e0z(—x+u+z)+ﬁ'(-x+v+w) _ ea/(-x+v+w)+ﬁ(-x+u+z)}

@ - ﬁ)-z qr oPX (ea(-x+v+w) _ e.B(—x+v+w))

. (ea(-x+u+z) _ eﬁ(-x+u+z))

In view of (2.5), we have therefore proved

< 20"
@.7 Z {hpp@h ) - h G ()} e
m,n=0

= qr ePx ho(-x + u + zZ)hy(x + v + w) .

But by (2.6),

0 A n
ho(-x + u + Z)hy(-x + v + w) = Z hm(-x + u)hn(-X + v) 'FVIZ" .
m,n=0

Equating coefficients of 2™ we immediately get (2.3).
3. Analogous to (2.2), we may define

o0
* x\,k
(3.1) h*@) = bYe,A) = Zﬁmk(k)" .
k=0
Then
Bt (0) = H_

and
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* - k4 *
hn +1(x) = hn(x) + hn_l(x) .

Moreover,

[e o]
* — Lk % -\ X k
%hn(x) B hn(X +1 - hn(x) - Hn+k<k - 1))\ :
k=1

so that
' — *
.}A{hn(x) = )\hn+1(x) .
Clearly the series in the right member of (3.1) converges for sufficiently small
|A]-
1t follows at once from (2.4) and (3.1) that

(3.2) W) = — 7 [+ he)® - B2+ AT
We have also
o0
(3.9) h¥(x +y) = h* () <§> .
k=0
Now by (3.2),

-qh;n_l(u)hr*l(v) + h‘;’n(u)h‘l"1 +1(V)
@ - A" X -q@®™ 11 + an)® - 271 + NTI[QPA +an)® - B + BNV
+ [+ en - AR + VI[P +on)Y - 2@+ p0 )

@ - B)-Z {(_qam+n—1 + C¥m+n+1) a+ ah)u+v

+ (_qﬁm-m—l + ﬁm+n+1)(1 + ﬁ”\)uw

- (qa/m—l,ﬁfn + amﬁn+1)(1 + o + gAY

- q@®™ L 4 ™ eV + BN

Since o = q and




254 SOME GENERALIZED FIBONACCI IDENTITIES Apr. 1970

this reduces to

(o4

o -¢q=oal-p), P -q=-pla-p,

_ ﬁ)’l 0{m+n(1 + ah)u+v _ ﬁm+n(1 + BMu+v .

We have therefore,

* _ L3 b L
(3.4) h @+ V) = —gif  @h &) +h @h .
Similarly, we have
(3.5) h* @h* @ - B2 = ™7+ pa + aat)? .

Finally, corresponding to (2.3), we have

(3.6)

provided

1. M. Elmore,
pp. 371-382,

h* (u)h*

m+r - n+r ) - h;' (b g

m-+n+r

= q" h @ = xh (v - (@ +pA + ar2)*,

Xty =u+v.,

REFERENCE

"Fibonacci Funetions,' Fibonacci Quarterly, Vol. 5 (1967),

-



A SIMPLE RECURRENCE RELATION IN FINITE ABELIAN GROUPS

H. P. YAP
University of Singapore, Singapore 10

A finite abelian group G is said tohave a simple recurrence relation of
length n if there exist distinct nonzero elements ay, a5, *--, a, of G such
that a; +ay, = a3, a,+ag = ay, **°, a ota =2, a ,+a =a and
an + a; = 2y It is proved that if n = 6m or n = 2038y &3), where (6,m)
=1, a=0,2,0or3 and B =0, 1, or 2, then there exists a finite abelian
group which has a simple recurrence relation of length n.

Let G be a finite abelian group written additively and a4, a5, ***, a
be distinct nonzero elements of G. If

ay +ay = ag, a9 +ag = Q4 °*° a = a_,

’ an—z * n-1 n

a +a = a and a +a, = a
n 1 n

n-1 1 2°

then we say that the ordered set

A = {ag, a5 ", an}
has a simple recurrence relation (SRR). If G has an ordered subset A such
that the cardinal of A is n &3) and A has a SRR, then we say that G has
a SRR of length n. We use the notation £(G) = n to mean that G has a SRR
of length n.

Suppose
A= fan o,y
has a SRR; then we have
ag = a4 + ay, a4 = a4 + 239, a5 = 2ay + 34y,

Upg=0, Uy=1, Uy=1, U3 =2, Uy =3, Us=5,, U,

i42 = U]'_+Ui+1" ce,
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be a Fibonacci sequence ([1], p. 148). Then

1 [f1+ BN [1-a8Y] .
(1) U1=E[<—j-2——> - <-—-2——>], i=0.

Thus

@) gy = Uy +Ujg2g, 120

From an_l +a.I1 =2, and a, + al = 2y, we have

3) U, 4 - Va; +Upa, =0
and
4) (Un_2 + 1)311 + @ g - Da, = 0.

Let

h) = U, , + VU - (U, 4 - D n=2,

n-2
d = (Un—l - 1)’ Un) H

the g.c.d. of U1 and Us and

tw) = 3 h) .

Using (1), we can verify

_ N ! .
®) UU, = UpaUpq = 607 Uy gq 350

Now
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hiw) i (t;n-z ¥ 12)(Un—2 *Upg) - Oy - 1
=Up2-Up1™ UpoUng * Upat 3Un—l -1
= (Un—Z * Un—l)(Un—:Z - Un—l) Uy aUng tUpg T U0pg -1
= UpgUp *UpoUp g Up1 ¥ Upug -1
= ()-ly, + U v U -1 (by ()

Define

5. = 1 if n is even
n 0 if n is odd

Then we have

(6) h@) = U + U - 28

n-1 n+1 n

Eliminate a, from (3) and (4), and we have f(n)a; = 0 and thusby per-

mutation, we have

(7) f@)a, = 0 forevery i=1,2, ", n.

Before we proceed further, we list some examples below. We use Cm
to denote the cyclic group of order m and Cm X Cn as the cartesian product

of Cm and Cn‘

E1) A = {(0,1), (1,0), 1,1)} has aSRRin Cy x Cy ;

(E2) A = {1, 3, 4, 2} has aSRRin Cj;

(E3) A = {1, 4, 5,9, 3 hasaSRRin Cy;

®4 A = {a,0), @,1, (0,1), (1,2), (1,3), (0,1)} hasaSRRin C; x Cg
(€5 A = {1, -5, -4, -9, -13, 7, -6} has a SRR in Cyy;
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(E6) A {(1’2’1)! (1’133)’.(2’0!4)’ (0,1!2)’ (2’131)! (2,2,3), (1’0’4),
(0,2,2)} has aSRRin Cg x C3 x Cj;

1l

®7) A = {1, 5, 6,11, 17, 9, 7, 16, 4} has a SRRin Cyy;
€8) A = {1,8,9,6,4,10,3,2,5, 7 hasaSRRin Cy.

We write £(G) # n if G does not contain any subset A whose cardinal
is n, such that A has a SRR. We note that

(i) because of (7), £(C,) # 3, £(Cg) # 6;

(ii) since (7,f(i)) =1 for i = 3, 4, 5, 6and (18,(1)) =1 for i = 3,
4, -+-, 12, therefore both C; and Cy3 have noSRR of any length;

@ii) although f£(8) = 15, £(Cy5) # 8 if {a;, ay, ***, ag} has a SRR
in Cjys, then from (4), we have 3a, = 9a; (mod 15) and thus a, =
-2ay, 3a4, or 8ay (mod 15).
Case 1: If a, = -2a;, then a3 = -ay, -++, ag = -3ay = a4, which

is impossible.

Case 2: If a, = 3ay, then ag = 4ay, ***, ag = 3a; = ay, which

is impossible.

1]

Case 3: If a, = 8ay, then ag = 9ay, +++, ag = 9ay ag, which
is impossible.
Now we prove

Lemma 1: If

(Un, f(n)) = 1, n # 2@2m + 1),

then l(Cf(n)) = n.

Proof: Since (Un, f(n)) = 1, therefore

d = (Un-l_l’ Un) =1,

and thus

(8) f(n) = h(n) = U

n-1 + U

n+l ~ 28n :
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Also, there exist r and t such that

(9) rU +tf) =1 .
From (3), we have

r(U

el = l)a1 + I'Una =0,

2

Substitute rU, =1- tf(n) into the above equation and make use of the
result of (7); we have

(10) ay = r(l - Un_l)a1 .

Thus

g = 2

+a, = [;‘(1 - Un-l) + 1]'3.1 ,

and in general,
(11) By = [rUi_'_l(l - Un_l) + Ui]al, 0<i=<n-2.

Now we prove that A = {ai, Agy °°°, an}, where ay is chosen such that

(a3, f@)) = 1 and 8949 0<i<n-2 isgiven by (11), has a SRR.

We need to verify

(I ay,ag,*°* 3 considered as elements in C £(n)® are distinct and nonzero;

+ a =a, a

(I1) a;+ay =ag, ag+ag =ag, °°*, a o1 n a1

-+ =

-2 a, = ap, and
+ = .

s T

First we prove (II):
For this part, we need only to verify that a,_1ta, =2 and a,*ta; =

a In fact,

9°

-1 * 4= [I'Un(1 - Un-l) + Un—l]al = [(1 - Un-l) + Un--llal (by ©))
. al;
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ap +a; = [rUn_l(l - Un-l) + Un—?. + 1]3.1
= Un_la2 + (Un_2 + 1)a1 .
Since
= - _ 12
f(n) (Un—:2+1)Un (Un_1 1)?%,
therefore,

rUn(Un_2 + l)a1 + r{l - Un-l)(Un—l - 1)a1 =0,
from which it follows that

(U, 5+ Day + (U | - Day, =0 .

+ = .
Hence a, al 2y

To prove (I), we shall show that

1) ru, ,A-U _)+U; # U, 1-0, )40 0=i<j=n-2,
(13) U, -0, ) +U #1, 0=i=n-2;

and

(14) rU,, 0 -0, ) +U; #0, 0=<i=n-2.

Suppose for some i,j suchthat 0 =i<j=n - 2,

rUi+1(1 - Un-l) + Ui = I‘Uj_l_l(l - Un-l) + Uj .

then

Ty - Upyg)@ - Uy g) + (U - ) = 0

j+l i

and thus

rU, (U Upyg ) = Uy g) + U0 - T;) = 0,

j¥1 T
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from which it follows that

(Ugyg - Upyg)@ - Uy ) + U0 - T)) =0,

j+1
ic€ay

U0 = UjaUna) - G0 - UpgUpg) +

Applying (5), we have

TS i i _ _
(15) gli,j) = (1) Upojer * (VU 53+ Ujug - Ugg = 0

0O=<i<j=<n -2,
We can verify that
-f(n) = g(i,j)# 0) = f@) .

Hence (15) cannot be true.

Similarly, if

rU.

— << 3
1+1(1-Un_1)+Ui =1, 0=i=<n-2,

then

rU, U, @ -0, ) +T U -1 =0,

which implies that
}g:

U, -U ) +0, (U -1 =0,

i+l

i.€. s

U0, - UjqUp g) + Uy - Uy = 0

or
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) i+1 .
(16) k@) = (-1 U i 1*Uy-U, =0, 0=i=n-2,

-i- 1

We can also verify that
-f) <k()(#0) < f@).

Hence (16) cannot be true.
Finally, if

ry, 1 -U, )+ U, =0, 0=i=n-2,

then

i+l

17) w@i) = (-1) Un— + U, =0, 0=i=n-2,

i-1 i+l

But for n # 2 Cm +1), w(@i) # 0, and -f(n) < w(@i) < f(n). Hence (17)
cannot be true.
The proof of Lemma 1 is complete.

Lemma 2. Let Gy, Gy be two finite abelian groups. If
Gy = m, 4Gy =n, m<n, (m,n) = d,

then

=

2(Gy x Gy) = g mn.

Proof: Let

A = {31, Ay *° a‘nl}

be a subset of Gy such that A has a SRR and
B = {biv by s bp}

be a subset of Gy such that B has a SRR. Then we can prove that
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A® B = {ci, Cgy °°° cs}
where

and

c1 = (ags by)y cp = (2, D)y 3 = ey + ey =(ag, )y e = (a b ),

= (algbm+1)9°"’c = (am:bn) ’

C
S

m+1
has a SRR in Gy x Gy.

Lemma 3: If (n,6) = 1, then (Un,f(n)) = 1. :

Proof: We observe that U, is even if and only if n = 3m. Hence if
(n,3) = 1, then Un is odd.

Now, (n,2) = 1 implies that

fn) = 5 (U +U 1)

n-1 n+1

=

It can be proved that if Un is odd, then (Un’ U][1=1 + Un+1) =1 (1],
p. 148).

It is clear that (Un, h(n)) = 1 implies that d = 1. Hence f(n) = Un-l
041’ and thus (Un, fn)) = 1.

From Lemmas 1 and 3, we have

Lemma 4: If (n,6) = 1, then E(Cf(n)) =n.,

From (E1), (E2), (E6), (E7), Lemmas 2 and 4, we have

Theorem 1: If

+U

@l

n==6m or n=23m &3),

where (6,m) =1, o =0,2, 0or3 and B =0, 1, or 3, then there exists a

finite abelian group G such that £(G) = n.

REFERENCE
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SOME COUNTEREXAMPLES AND PROBLEMS ON LINEAR
RECURRENCE RELATIONS

DAVID SINGMASTER
American University of Beirut, Beirut, Lebanon

In [1, pp. 48-50], several false assertions are made concerning linear
recurrence relations (mod m). I will give counterexamples to these and will
establish one result on a stronger hypothesis. Theorems 3.6 and 3.7 of [1]
are false as stated, and it is an open question what additional hypotheses are

required for their validity.
Let

j

1) U = Z‘ai w, +b .
i=0

For a given modulus m, let X, be the least non-negative residue of w,
(mod m). In [1], it is assumed that a, =0, b=0, and

(aO’ aqy *°°, aj’ m) = (Xo, X{s '..’xjs b, m) =1 ’

although these hypotheses do not appear to be essential. Of course, all quan-
tities are integers. Let H(m) be the period of X (mod m). The following
false assertions are made in [1; (3.12), 3.6, 3.7 are his numbers]:

X is a purely periodic sequence, i.e.,

(3.12) AH: vn,k =0 X

Theorem 3.6 H(pe+1) = Hp®) or pHE®).

In the supposed proof, Cip is defined by

e
Yl T % T OkP
for m = pe, H = H(pe). Then Cik =0, Itis asserted that

264
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(2) p ,{' Cjp =>Cy = k ¢ (mod p) ,

and the proof is completely dependent on this:
Theorem 3.7. If

HE) = HE?) = - = B6®) #HE),

then H(pe+f) = pr(pe).

Example 1. U1

isfied for m = 2°. The sequence u is given below, together with the x
sequences (mod 2, 4, 8, and 16).

=u *2u 4, U =u =1 All hypotheses are sat-

n 0 1 2 3 4 5 6 7 8 9 10
un 1 1 3 5 11 21 43 85 171 341 683
X (mod 2) 1 1 1 1 1 1 1 1 1
X (mod 4) 1 1 3 1 1 1 3 1
X (mod 8) 1 1 3 5 5 5 3 5
Xn (mod 16) 1 1 3 5 11 5 11 5 11 5 11
We have
= @y )/
Upip T

For e = 1, X is purely periodic with period H(2) = 1. For e > 1, we

have
_ e
g = u < uy < o0 < ue< 2
and
= (mod Ze)
Ye_1 = Ye_142k ’
and
. (mod 2°)
e = UYeiok :

Clearly H(pe) =2 for e > 1, but x isnot purely periodic. Further,
for (mod 4), we have ¢y = 5, cyy =1, 2fcy but cgg Z 2+ cyy (mod 2).
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(Of course, X (mod 4) is not purely periodic as assumed in the proof of
Theorem 3.6, but we can drop the first term by shifting indices.) Equation (2)
does not even hold for p\cil since for X (mod 2), we have cgpp = 1, coy = 0
but cg # 2+ cgy (mod 2). Finally, we have H(2) # H(4), but H(8) # 4. H(2).
So we have shown that equations (3.12) and (2) and Theorem 3.7 are false as

stated.
The proper assertion for (3.12) is that X is (eventually) periodic, i.e.,

(3) dng, IH:Vn = ng, Vk = 0 X ol = % (mod m).

However, we can obtain pure periodicity under a different assumption.
Theorem. X is purely periodic (mod m) if (aj,m) =1,

Proof. Let ny be the least integer =0 such that (3) holds. From (1)

we have
j-1
atj Xn—j = X - Z a X . b (mod m) .
i=0
Since (aj,m) = 1, there is an a_jl such that ajaj_1 = 1 (mod m), so we have
j-1
o
- (4) Xn—j = aj X 41" a,x .- b} (mod m),
i=0

That is, we can reverse the recurrence relation to get terms of smaller index
from terms of larger index. If ny >0, set n =ng+j-1 and n = nyg+kH +
j-1 in (4) to get
j-1
-1
(5) Xn0'1 = aj xn0+j - Z a, Xn0+j—1—i -b | modm) .
j_:
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j-1
_ -1
(6) Xn0-1+kH = a, Y a - b}l (modm).

i Xno+j+kH 4o ixn0+j—1—i+kH
i=0

Now (3) shows that the right-hand sides of (5) and (6) are congruent (mod m),
so Xno-l = Xno—l +kH {mod m). Hence n; is not the least integer such that
(3) holds, hence ny = 0, thatis x s purely periodic (mod m).

In view of this result, one might ask if Theorems 3.6 and 3.7 and Eq. (2)
might be valid if (aj,m) =1,

Example 2.

n_z-u0=u1=1, u = 3,
Again, all hypotheses are satisfied for m = 2% and a, =1, so (a,m) = L.
The resulting sequence is X = 1 (mod 2) and X, = U, {mod Ze) e>1 u

n
is given by:

u
n

Clearly H() = 1, H@2®) = 3 for e > 1, but H(2?) # 2 - H(2) so that
Theorems 3.6 and 3.7 both fail. For pe =2, cg=1#2+cy =0 (mod 2)
and cy3 = 0 # 3 ¢cqy = 3 (mod 2), so (3.12) fails here also.

Further, it is clear that this example can be modified to work for any
modulus pe.

Finally, we remark that we can construct a less artificial example with

similar properties from

Wy =8 +un_1+1, uy = u =1
n 0 1 2 3 4 5 6 7 8 9 10
w 1 1 3 5 9 15 25 41 67 109 117
Xn (mod 2) 1 1 1 1 1 1 1 1 1 1
X, (mod 4) 1 1 3 1 1 1 1
x_ (mod 8) 1 i 3 5 1 1 1 3 5 1

n
[Continued on page 279. |



ADVANCED PROBLEMS AND SOLUTIONS
Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania
Send all communications concerning Advanced Problems and Solutions
to Raymond E. Whitney, Mathematics Department, Lock Haven State College,
Lock Haven, Pennsylvania 17745, This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit
solutions or other information that will assist the editor. To facilitate their
consideration, solutions should be submitted on separate signed sheets within

two months after publication of the problems.

H-169 Proposed by Francis DeKoven, Highland Park, Illinois.

Show n? +1 is aprime if and only if n # ab +cd with ad - be = #1
for integers a, b, c, d.

H-170 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia.

Define the power sequence P to be the sequence of natural numbers
which are perfect powers mr, r >1, arranged in increasing order of mag-
nitude. Define the first term in the sequence as Py = 1. Then P =1, 4, 8,
9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, °*°. Find a formula for
the nth term, Pn’ of the power sequence. Determine the asymptotic be-
havior of Pn' Define Yi(n) to be the number of terms in the power sequence

<P, and relatively prime to P, Then the consecutive values of Y(n) are
1, 1, 3, 2, 5, 5, 4, 2, 9, 5, 8, **+ . Find a formula for {(n) and determine
the behavior of this function ¢. Find suitable generating series for p_ and

th term

Y(n). Finally, find a formula for the nth non-power; i.e. , for the n
in the sequence complementary to P. Note: It may, or may not, be a good

idea to include P; = 1 in the sequence defined above.

H-171 Proposed by Douglas Lind, Stanford University, Stanford, California.

Does there exist a continuous real-valued function f defined on a com-

pact interval I of the real line such that
268
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[t "ax = F_.
I

What if we require f only be measurable?

SOLUTIONS
SUB MATRICES

H-139 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Put

n nt1 Fn-i-k—l
A = Fn+k-1 Fn " Fn+k-~1
n+1 Fn+2 e Fn
Ay Avk " Aptm-nk
M An+(m-1)k An e An+(m—2)k
Ajak Apo 77 Ay

Evaluate det M.
For m = k = 2, the problem reduces to H-117 (Fibonacci Quarterly,
Vol. 5, No. 2 (1967), p. 162).

Solution by the Proposer.
Zm/k’ © = eZm/m

Put € = e and define
= (€Y) (yj = 0,1, ¢, k=-1),
U = °P) (rys =0, 1, *++,m - 1)

Also put

M = (B ) (I‘,S=0,1, “'nm'l)s
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where By, By, *°°, Bm are arbitrary square matrices of order k and

-1
Br — Br‘ Then
ts -ts rs
MU =(23 B wP]=|3Bo oP],
t t
MU = (P ¥ o™ B0 p)
u,t
Since
m-1
) o2 T+s) _ {m (m|r+s)
u=0 0 (mlr+s) s
it follows that
m-1 _ts
lomuf = m (X B F )P
s=0
t
m-1 m-1
=pI*™ 1 [T Bo™| .
s=0 £=0
On the other hand,
U2 = Z w(r+s) bp2
t
so that
lv2] = w®fpf

Therefore, since |P| #0,
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m-1 m-1 .
(1) M= 11 [ X2 B.w o
5=0| =0
Now take
BtzAn+tk t=0,1,°***,m - 1).
Then
m-1 m-1
ts _ ts
@) Y B = 3 A 00 .
t=0 t=0
We shall limit ourselves to the case k = 2, so that
Fn Fn+1 1 1
An = \F F » P =
n+l n 1 -1
Then
AP = Fraz Fna
n F F ’
| " n+2 n-1
m-1 - < ts ts
-ts I opsa®  ~ EFp 00 1@
£=0 L n+2t+2 n+2t-1
so that
m-1 ‘ -1 m-1
-tsf _ ts ts
) 2 Apat® | = | X Fpeapan® 2 P 1®

t= t=0 t=0
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Now
m-1
ts __ 1 |n1-o™™ 1 - g
Z Fn+2tw T a-p @ s s
-0 1-dlw 1-p2
F - F -, , - F Jo®
_ _h n+2m n-2 n+2m-2
@ - 2®)1 - p2°)
and
m-1 m m
m-1 ts _ (Fp - Fn+2m) - (Fn-z - Fn+2m-2)
n ) F _,o° = .
5=0 n+2t 2 - L
t=0 2m

It therefore follows from (1), (2), and (3), that

b = —0° e g ¥ _® -F
n+2 n+2m-+32 n n+2m

" - ® F

» m
g(Fn-l - Fhiam-2 n-3 = Fniom-3’ %

It can be verified that when m = 2, the right member reduces to

F2n +6F211 in agreement with H-117.

The result for arbitrary k is presumably very complicated.
SUM DIFFERENCE

H-141 Proposed by H. T. Leonard, Jr., and V. E. Hoggatt, Jr., San Jose State College,
San Jose, California. (Corrected Version)

Show that

(a) —a = Z

[n-l:l
n 2
FZn + 2 Fn

n
<2k + 1)1‘2(11- @k+1))F 2k+1

w
o
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o

2n n n
(b) T = X <Zk + 1>L2k+1
k=0
3]
3
L. +1L

(c) N 5 =3 <2111<>L2k

k=0

Solution by David Zeitlin, Minneapolis, Minnesota.

Let ¢« # B bethe rootsof z2-z-1=0 (@> B) .
(b) and (c). We have

- n ~ [n/2] [-1)/2]
@ @+x" =Y <111>X1 = X (2?{) 2K 4 ¥ (an+ 1>‘x2k+1 .
i=0 k:o k=0

Since Ln ="+ ﬁn, 1+a =a? (also for B), we add (1), for x = @, to (1)

for x = B to obtain

[n/2] [-1)/2] |
n
@ Lop = 22 <2T<>L2k D <2k + 1>sz+1 .
k=0 k=0 \

Since o + B = 1, we obtain, by addition of (1), for x = -&, to (1), for x =

_B'n

[n/2] [@-1)/2]
n
®) L, = 2 <2111<> Log = 2 (Zk + 1> Lok+1
k=0 k=0

Addition of (2) and (4) gives (c); subtraction of (3) from (2) gives (b).
(a) We have
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n

@ +X)n _ E (I.l)yz(n_i)xi

1

i=0
[n/2] Panzk) 2 [n-1)/2]

_ Z (ZI;C)Y n- )X + Z <2kn+ 1)y2(n"2k'1)x2k+1 .
k=0 k=0

Since Fn = @"- ﬁn )/ (@ - B), we subtract 4), for x = 8, from (4), for x=
o, and divide the result by (o - B) to obtain

[n/2], [(0-1)/2]
(5) Qz.—a)z: 2+ B)" _> (n)yz(n—zk)F + ( n )yZ(n-Zk—l)F

2k 2k

B 2k+1

k=0 k=0

Addition of (5), for y = @, to (56), for y = B, simplifies to

[n/2] [(-1)/2]
- n . n
©® Fgy = 2 (Zk) Lom-okFox ¥ 2 (Zk + 1) Lo m-2k-1)F2k1 *
k=0 k=0
Subtraction of (4), for x = -8, from (4), for x = -a, gives
[n/2] [(-1)/2]
G-t - 2 -p" _ n\ 2(n-2Kk)
) —F = 2 )y Foom 2
k=0 k=0
oy ( )
n 2n-2k-1
- X (Zk + 1)5’ Foks1 *
k=0

Addition of (7), for y = a, to (7), for y = 8, gives

[n/2] [w-1)/2]
n n n
® -2'F, = 3 (2k> Lom-2iFak~ 2 (2k+1)L2(n—2k—1)F2k+1 '
k=0 k=0

2k+1 °
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Subtraction of (8) from (6) gives the desired result.
Also solved by D. Jaiswal (India) and A. C. Shannon (Australia).

ANOTHER SERIES
H-142 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia.

With the usual notation for Fibonacci numbers, Fy =0, Fy =1, F
= Fn + Fn— show that

n+1
1 H

1-V5 1-V5 = Fpa o

n Vs
1- V5" s LSRN | (R A/ N
P
=0\ g n -k

where

(’J‘) m X - D - 2) e & - ]+ D/

is the usual binomial coefficient symbol.

Solution by L. Carlitz, Duke University, Durham, North Carolina.

Put
B=1+\/§=_3+\/§=_1_+_\Z§2
1-Vs 2 2
n
_ Bk)(n - Bk
Uy T Z (k)(n—k) y
k=0
Then
0 00 n
oo - ey (5)(
=0 n=0 k=0
00 0 o0 k
> (ﬁlf)tk v (n”}l‘ B)k>tn > (Bli‘)tk(l-t)'(l'm -1,
k=0 n=0 k=0
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Now in the formula (see Pdlya-Szeg6, Aufgaben und Lehrsitze aus der

Analysis, Vol. 1, p. 126, No. 216)

2 pn}y n _ b:4
Z\W)Y “a—pxes ’
n=0

where 1 -x +WXB =0, take x = (1 - t)_l. Then

-’5—%—1 =t - 9Pl = .

X

It follows that

[+] [*e]
Youtt=a-nty <B§)wk

n= k=0

1 X - 1 - L
-t @-fx+p  @-00 -8 5 (51 q)ep2

so that

o L) I

— 1-t- t
n=l

Therefore

Also solved by D. Jaiswal (India).
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NEGATIVE ATTITUDE

H-143 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tennessee.
(Corrected version)

Let {Hn} be a generalized Fibonacci sequence and, by the recurrence

relation, extend the definition to include negative subscripts. Show that

n
. 2 = -
2 Lojsr 2 Blogek = Hegjen) )T @g4nn ~ HoH_(2541) »
k=0
n
@ Lo L Hopak = T - Boggrn) - B0+ By -
k=0
n
(iii) L, ¥ 0*m, = 1"H H,. + HH
2j 2jk 2j(+1)"2jn 025
k=0

and derive an expression for

n

. Kk

(iv) >, 1 Hoje -
k=0

Solution by David Zeitlin, Minneapolis, Minnesota.

Our proof uses the fact that if P(0) = R(0) and AP(n) = AR(n), then
P@m) = R(n) (where AP(n) = P(n +1) - P(n)). We note that H_n = (-1)n
(HoLn - Hn), so that

(A) Holgar = Hajur ~ Hogj41)

and

(B) HL,. = H,. + H
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Proof of (i). For n = 0, both sides of (i) are equal by (A). Using the
A operator, it remains to show that

(1) LaHa.n+a = Honvoa ~ Han @ =2j+1) .

We recall now that

2) H =F H +FH ’

- F2 = (p™®
@) Foi1Fme1 = Fop = D7
Thus,
Han+a = Fa—l an FaHa,n+1 ’
and
@ LaHan+a = LaFa—lHan + F29.qu1+1 ’
(5) Hont2a = Han = -1+ FZa—l)Han + FoaHanty
By (3),
2 = _
E‘a+1 a-1 Fa 1
and so
= 2 - 2 2 =
LoFar = Fau¥a gt Fa g = 1 F g+ F 1 =1+ Foaq -

Thus, (4) and (5) gives (1) and (i).
Proof of (iii). Both sides of (ii) are equal for n = 0 by (B). Using the

A operator, it remains {o show that

(6) Lchn+c - ch+20 * ch (e =2j) .
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Proceeding as in the proof of (i), we obtain (6) by noting that LF, =1+
F20-1'
Proof of (ii). Identical to the proof of (i).

Derivation of (iv). Using (5) in my paper, "On Summation Formulas for

Fibonacci and Lucas Numbers,'" this Quarterly, Vol. 2, No. 2, 1964, pp. 105-
107, we obtain (for x =p = -1, u, = Hn’ a =2j, and d = 0)

n

. k. n
(V) @+Ly) 3 (D) Hyy = CD E 0 )+ Hyg) +Hy + H o
k=0

Also solved by A. Shannon (Australia), C. Wall, and M. Yoder.

St
[Continued from page 267. ]

Here H(4) = 3H@). But HE®'?) = 2°HW@).

This leaves us with the following problems: When do Theorems 3.6 and
3.7 hold? When does (2) hold? For the special case W Su,tu o the
theorems hold. A rather incomplete proof is given in [2, Theorem 5]. A
complete proof is contained in [3] and will be published soon. It would be
nice if these results could be established by the simple approach of [1]. Un-
til then, one must be cautious of any results in [1].
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BOOK REVIEW

BROTHER ALFRED BROUSSEAU
St. Mary's College, California

LEONARD OF PISA
by
Joseph and Frances Gies
Thomas Y. Crowell Company has just published a book entitled Leonard
of Pisa with the sub-title, and the New Mathematics of the Middle Ages.
The authors, faced with the well-known paucity of biegraphical material

on their subject, have sought to reconstruct the picture of social life and math-
ematical practice current in the circumstances in which Leonard of Pisalived.
Their efforts in this direction are quite successful with the result that they
have produced a very readable and interesting book.

Since they were dealing with the life of a mathematician, it was neces-
sary to give some idea of his contribution to the progress of this field. This
they have done in a manner that is devoid of forbidding technicalities and suit-
able for the general reading public. In particular, Chapter VI presents a
clear summary of what is to be found in Liber Abaci. Chapter VI deals with
the Fibonacci sequence which began in an incidental way in Leonard of Pisa's
work, but which has achieved considerable development in modern times. It
may be noted that the Fibonacci Association is mentioned as part of the con-
tinuing history of Leonard of Pisa and in a final note the efforts of Dr. Grimm
and Mrs. Marguerite Dunton in producing a reliable English version of Liber
Abaci are brought out.

Being a popular work, written by non-mathematicians, certain limita-
tions could be expected. The impression is left, for example, that Leonard of
Pisa was almost solely responsible for introducing the Hindu-Arabic system,
whereas there were others involved as wellin this process (see Boyer, History
of Mathematics, John Wiley, 1968, pp. 279ff). Likewise, one could read into
the text that there were no notable mathematicians from 1200 to 1500 (pp. 98-99).

A couple of errors might be noted. A. H. Church (p. 82) was not the

discoverer of phyllotaxis; he has numerous references to earlier pioneers in

[Continued on page 323. ]
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MOSAIC UNITS: PATTERNS IN ANCIENT MOSIACS

RICHARD E. M. MOORE
Anatomy Department, Guy’s Hospital Medical School, London, S. E. I.

Inspecting ancient floor mosaics, I noticed [1] that their geometric pat-
terns tend to fall into the same few size groups, despite the mosaics being in
widely separated parts of the classical world.

On measuring all alternative dimensions that it seemed reasonable to
measure on each pattern, and doing this for many patterns of the same size
group, I obtained a histogram as in Fig. 1.

In every size group I obtained the samebasicpattern of histogram; some
little peaks followed by a very tall peak, followed by a succession of diminish-
ing waves of small peaks. Examination of these histograms revealed that
nearly every pattern has one dimension contributing to the very tall peak.
This dimension can be said to be common to every pattern in the size group
concerned.

That virtually every pattern of a size group has one dimension of vir-
tually (i.e., within the spread of the very tall peak) the same length, suggests
that this dimension was fixed by the mosaicists. Lack of many alternative di-
mensions would explain why patterns fall into size groups.

Examining equal pattern dimensions on different mosaics, I found that
they are not composed of equal numbers of stones. Even on the same mosaic,
constant wimensions are often composed of varied numbers of stones. Mosai-
cists fixing dimensions by measurement, rather than by counting out stones,
would explain this.

Measuring (with a class interval of 1 millimeter) 121265 dimensions of
patterns that had apparently been originally fixed by mosaicists' measure-
ments, I obtained a frequency distribution as in Figure 2. Measuring more
patterns, to a total of more than 310000 pattern dimensions, I found essentially
the same distribution; the very tall peaks grew much taller, whilst some extra,
but minute, peaks appeared. From the distribution (Fig. 2), it is clear that
ancient floor mosaic geometric patterns are remarkablyfew different absolute

sizes. Can we account for it?
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class interval 0-1cm

— R
705 805 905 1005 1105 12-05 1305 14-05 15-05cms

THE 397 DIFFERENT DIMENSIONS OF
266 PATTERNS OF THE SAME SIZE GROUP

(every pattern has one dimension contributing to the very tall peak)

Figure 1
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In the frequency distribution (Fig. 2), there are only 10 peaks higher
than 1000 cases. For purposes of analysis, I call these major peaks (labelled
B, C, D, -*-, Fig. 2). Many of the remaining minor peaks are so small that
they have to be shown on an enlarged scale — lower part of Fig. 2.

Peaks occurring at twice or three times the length represented by an-
other peak may owe their existence to just this, i.e., mosaicists having used
two or three times a measuring unit, the latter represented by the 'basic"
peak. Many of the observed peaks exhibit this property. That they arose as
being multiples of a more basic unit would be reinforced if peaks which are
multiples of another are small peaks, whilst the peak of which they are a mul-
tiple is a much higher peak. Many of the minor peaks lie at lengths that are
whole multiples of the lengths represented by the major peaks. I regard these
as probably having arisen in this way (marked accordingly, Fig. 2).

The values of many ancient standard units of length have come down to
us, so it is possible to see whether any observed peaks coincide with known
ancient units. Some do, but surprisingly, only a few minor peaks agree with
known standard units (marked s u l," Fig. 2).

We are now left with the major peaks and a few minor ones. Some of the
latter are caused by me measuring pattern dimensions which happen to also
be the widths of single mosaic stones (marked with an asterisk, Fig. 2). The
remaining minor peaks (with the exception of the one at 1.2 cm) have the com-
mon property of lying adjacent to one or other of the major peaks (two lie ad-
jacent to one of the tallest minor peaks). Identification of the pattern dimen-
sions that these minor peaks (marked '"f," Fig. 2) represent, shows that they
account for virtually every case of the few instances wherel was unable to de-
cide which of two alternative measurements was the one I should measure, in
the sense of trying to measure the distance most likely to have been set down
by measurement by the mosaicists. One of these two alternatives must be
wrong, in the sense that they cannot both be right. In all but two cases, the
alternative measurement lies in the adjacent major peak. That it should coin-
cide with the dimension that the majority of pattern sizes exhibit, is reason to
consider this value as the true one. On the other hand, we could reject both
alternative measurements. It will not affect the results, for they account for
less than 0.85 percent of the observations.
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I findunusually wide stones are often associated [2] with distortion of the
arrangement of neighboring stones. Construction can be deduced to have pro-
ceeded from the unusual stone through the area it distorts. Making maps of
such effects leads me to think [2]that mosaics were normally started at their
center, and constructed progressively outwards from it.

Assigning imperfections in mosaics values on a numerical scale of in-
creasing imperfection [2] usually yields a map as in Figure 3. Assuming im-
perfections increase as construction progresses, this again indicates that
construction was centrifugal, but also that it was fastest in the four axial di-
rections (A, B, C, D, Fig. 3).

Consequently, the first parts of patterns to be reached in construction
would be their parts nearest to the mosaic center (their innermost rim, for
patterns centered on the mosaic center) and the first of these parts to be
reached will be the part lying on the mosaic axis. Constructional measure-
ments would thus presumably have been made primarily in the mosaic axes

and to the inner rims of patterns.
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That the ancients usually proceeded like this is supported by the typical
shape of the histogram as in Fig. 1. The dimension I deduce as being the one
that the mosaicists made (because it lies in the very tall peak (Fig. 1)), is also
usually the dimension that I had measured to the inner rim of the pattern. The
other alternative dimensions of each pattern, in the vast majority of cases, all
lie to the right of this tall peak (Fig. 1). These, representing greaterlengths,
are those I measured mostly to outer rims of patterns. The rarity of cases
where the mosaicists! measurement was apparently not to the inner rim of the
pattern, is shown by the scarcity of observations to the left of the very tall
peak (Fig. 1).

The crests of the waves of peaks following the very tall peak (Fig, 1) lie
at intervals which agree with the lengths represented by the tall peak in each
of the smaller size groups of patterns. Consequently, since these crests are
caused by including the pattern "thickness' in the measurement, this reveals
that pattern thicknesses were often also fixed in terms of the same units as
were used to fix the sizes of the smaller patterns.

Resuming analysis of Fig. 2, we are left with the major peaks and a
minor peak at 1.2 cm. The modal values of the major peaks are: 2.4, 3.6,
6.0, 9.6, 15.6, 21.6, 25,1, 40,7, 65.8, and 106.5 cm, respectively. Of the
310000 pattern dimensions, 89% lie within +3 standard deviations (o = 0.13 cm
for each major peak) of these values. (A further 9% lie at whole multiples of
these values. Of the remaining 2%, only approximately 19% can be identified
with known standard units of length.)

Presumably we can regard these ten values, responsible for 89% of the
observed lengths, as the units that were marked on the rulers which Vitruvius
(first century B.C.) tells us [3] that mosaicists "accurately used.’ I call

these values mosaic units.

DETERMINATION OF MORE ACCURATE VALUES FOR MOSAIC UNITS
That it is right to regard mosaic units as a set, is suggested by them
lying in a distinet series (ignoring 21.6 cxﬁ); each is virtually the sum of the
preceding two. On this basis, we might expéct, by extrapolation, larger pat-
tern sizes of 172.8, 279.6, and 452.4 cm. I find that the typical pattern sizes
greater than 106.5 ¢cm do occur very nearly at these distances, but fall pro-
gressively slightly short of these expected values (Fig. 4).
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Unfortunately, very large patterns are rare, for there are few mosaics big
enough to exhibit them., I do not yet have sufficient observations to confidently
report a value for the observed pattern size corresponding to the expectation
of 1184.4 cm, but an approximate observed value is 1180.3 cm.,

Thetwo smallest lengths represented by major peaks are 3.6 and 2.4 cm.
Extrapolating the series in this direction, we obtain 2.6 - 2,4 = 1.2 cm. This
prediction is confirmed by the minor peak at 1.2 cm. Attempting to extrapo-
late again, we get 2.4 - 1.2 = 1.2 cm, demonstrating that 1.2 cm can be re-
garded as the basis of the set of mosaic units.

If mosaic units were infact eachthe sum of the precedingtwo, that hypo-
thetical values based on a value of 1.2 cm for the first unit progressively ex-
ceed the longer observed lengths by slightly greater amounts (Fig. 4) suggests
that the true starting value is slightly less than 1.2 cm. The value of the first
mosaic unit (My) in the series M =M _+M_, which yields values with
the best fit to the observations can be determined as follows.

If each unit is the sum of the preceding two, the series can be expressed
by the Fibonacci numbers, taking the first value as unity. To give values in a
particular system of measure, I introduce a constant k equal to the dimension
of the first value in the units of measure desired. A generating relation for

mosaic units is therefore:

el (1B L 1 [1-VEY
v YK\/E(2>V@(2)

The expression in square brackets yielding Fibonacci numbers by successive
substitution of integers 1, 2, 3, -+ for x; and y, the value of the xth
mosaic unit, assumes the units of measure of k.

The observed modal mid-interval value of the first mosaic unit is 1.2 cm.
Its true value probably lies somewhere in the range of this modal value: 1.15
=1.25 cm caused by the class interval of 0.1 cm.

From Eq. (1), division of each observed mosaic unit by its pertinent
Fibonacci number gives a value for k. The larger the value that this is done
for, the more accurate the result. For the first six mosaic units k = 1.2,

For units 25.1, 40,7, and 65,8 cm, k begins to be slightly less than 1.2, and
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for the five units bigger than 65.8 cm, k = 1,197 cm for each. It thus appears
that k is less than 1.2 cm, probably about 1.197 cm.

Hypothetical values based on 1.197 are shown in Figure 5. Also shown
are these values corrected to the nearest whole millimeter, so as to bring
them to a form comparable with the observations (class interval 1 mm). In all
but one case (Fig. 5), values based on 1.197 cm match the observations.

Trying k = 1,196 cm and k = 1.198 cm, in both cases the resulting
theoretical values for mosaic units progressively diverge from the observed
values. Moreover (Figure 6), they diverge in an approximately symmetrical
way, indicating that 1.197 cm represents the best value (in cms, to three places
of decimals) for k. .

A value for k yielding values agreeing with all the observed mosaic
units is impossible, Taking k = 1,197 cm gives values fitting all observations
(ignoring 21.6 cm) except 172.3 cm, for which the theoretical valueis 172.36 cm
(= 172.4 cm). The smallest change in 172.368 cm needed to make it fall into
the same class interval as the observed value (172.3 cm) is 0.024 cm. The
Fibonacci number for this unit is 144. Thus the necessary change in k is
(0.024/144) cm = 0.0001666 cm. This gives a new set of hypothetical values
for mosaic units, but whilst fitting the observation 172.3 cm, it begins to di-
verge from the observations at the 14th and 15th mosaic unit (Fig. 5).

If the first mosaic unit was 1.197 cmlong, it explains why some observed
mid-interval values appear to be only approximately the sum of the preceding
two. For example, we have the observed values 9.6, 15.6, 25,1 cm, but 9.6 +
15.6 = 25,2, not 25.1. However, based on 1,197 cm, we have 9.576 + 15.561
= 25,137 which is exact. Rounding each to the nearest whole millimeter
(which is the effect of the class interval of 1 mm), we get

9.576 (= 9.6) + 15,561 (= 15.6) = 25,137 (= 25.1)

which explains this.

We might expect a similar effect in pattern sizes that are multiples of
others. In some cases, this is so; for example, a minor peak occurs (Fig. 2)
with modal value 50.3 cm. This could be caused by use of 2x unit 25.1 =
50,2 cm. If the true value of the eighth mosaic unit is 25.137 cm, we get
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2 x 25,137 = 50,274 = 50.3 cm, matching the observed value. A minor peak
occurs at 75.6 cm, but 3 x 25.1 = 75.3, and 3 x 25.137 = 75.4. Here, the ob-
servation slightly exceeds both theoretical values.

Small peaks at multiples of unit 9.6 cm occur (Fig. 2). However (Fig. 7)
the observed values progressively increase beyond- the theoretical values,
taking the 5th mosaic unit as 9.576 cm. Although the observed values are
fitted (Fig. 7) by values based on the assumption that this unit measures exact-
ly 9.6 cm, this does not necessarily mean that mosaic units were based on
1.2 cm rather than 1,197 cm., If values that are multiples of others were
measured out by repeating measurement of the basic unit the desired number
of times, greater error would tend to accompany greater multiples. This
error would tend mostly to add to the intended length (the observed condition)
if rulers were butted end to end to achieve it. Providing rulers are not dis-
placed too much sideways, andas they are unlikely to be compressable, errors
will tend to add to the intended value rather than reduce it.

Lack of symmetry of some peaks might be expected if the first unit was
1.197 cm long. For example, in the case of the 6th mosaic unit, the observed
peak has a modal value of 15.6 cm. Its theoretical value based on 1.197 cm is
15,561 cm. Although this lies within the +0.05 cm range of the observed modal
mid-interval, it lies very much to the left of the mid-interval (-0.04 cm). We
might expect that the observations would form an asymmetrical peak, more
values occurring in the left-hand half of the peak. I detect (Fig. 8) no clear
tendency for this effect in the present data.

WHY WERE MOSAIC UNITS USED?

The ancient names for some everyday units of length which refer to
finger, knuckle, palm, handspan, handlength, etc., suggest that people once
actually used their limbs to measure things. Some tradesmen still measure
out yards by the tip of their nose to their sideways stretched fist. According
to Vitruvius [5], "Besides, the ancients took from the members of the human
body the proportional (?)dimensions needed in all constructions, finger, palm,
foot, cubit." Some [6]trace this back to Plato in the Theatus, '"Man is the
measure of all things, !

If mosaicists used their fingers, hands, etc., for measuring out their
patterns, would this give rise to the observed situation? Whilst it might cause
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Shift of theoretical value (k=1-197)
from mid-interval of observed modal value
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patterns to fall into size groups, the variation between, say, the handlength on
different people is far [4] in excess of the range of distances contributing to a
typical mosaic pattern size.

However, the variation would be much reduced if, instead of each mosa-
icist using his own hand length, if each used a ruler calibrated from one single
man. Slight support for this exists in that limb dimensions do roughly fit mo-
saic units. For example, myown approximate dimensionsare as follows: First
joint of index finger 2.5, first joint of thumb 3.5, thumb length 6.0, length of
index finger 9.5, the 'spithama' (tip of index finger to tip of thumb spread
wide) 15.5, hand span 21.5, foot 25.0, "inner cubit" (tip of index finger to inner
bend of bent elbow) 40,0, arm length with fist clenched 66.0 cms, respectively.

Ancient units of length with anthropormorphic names, however, measure
distances less coincident with mosaic units than this. For example, a typical
Greek standard span is about 23.0 cm. Roman and Greek standard cubits
mostly lie between 42,35 cm [7] and 46.000 cm [8], and some Hebrew cubits
lie outside this range. Egyptian and Sumerian cubits are mostly longer; there
is even a Chino-Sumerian cubit of 74.40 cm!

In discussing why the ancients chose to so consistently make their mo-
saic patterns one or other of the set of mosaic units, it might be useful to ex-
press mosaic units in ancient units of length rather than in a modern system.
Comparing 6646 values derived as whole multiples and likely fractions of so
ancient units of length possibly pertinent to the mosaic craft, I find very few
mosaic units are equal to a whole multiple {or multiple plus likely fraction) of
a known standard unit. The only single standard unit which yields more than
about two mosaic units appears to be the Greek finger of 1.92 cm [9], and this
only fits five of the eleven mosaic units (Fig. 9).

However, expressing the mosaic units (ignoring 21.6 cm) in terms of
this Greek finger yields (to the nearest whole number) integers which are the
actual Fibonacci numbers up to unit 65.8 cm (Fig. 10). This could be signifi-
cant, for expressing mosaic units in modern units produces integers (Fig. 10)
lacking this property. Neither (Fig. 10) does the Roman digit from most
Roman feet fit so well.

Measuring in centimeters does, however, bring out the relationship 10 x
unit 3.6 cm = 6 X unit 6.0 cm. This relation could be significant, for sexages-

imal relations are common in ancient metrology (some effects of which are
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Figure 9
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still with us, e.g. , division of 1° into 60 min. of arc). However, that 1.197 =
{%’ can be dismissed as significant, for it is a result of using centimeters.
Also the otherwise attractive relation that a right angle triangle of sides10and
6 has a hypotenuse of just under 12.

Translating Vitruvius! next remarks, we learn that, "The Ancients
grouped these body dimensions into the perfect number called teleon. They
decided on the number ten as perfect:*+. But mathematicians, in disagree-
ment, say the number six is perfect--.. Later they realized both six and ten
are perfect, and they put them together, making the most perfect number
sixteen*-." As it happens, 16 x unit 6.0 cm = 10 x unit 9.6 cm.

Dr. George Ledin, Jr. has extracted [10] Fibonacci numbers from mo-
saic units by dividing the observed values in centimeters by 1.19, obtaining
integer 18 from unit 21.6 cm. He has found [10] that the unit 21.6 cm, which
is "odd' in the sense that all the others are directly related to Fibonacci num-~
bers, can itself be related to the Fibonacci series, for 18 is a term in the
Lucas series. Although multiplying 1,197 cm by 18 gives 21.5, not 21.6 cm as
observed, adding unit 5.985 cm to unit 15.561 gives the same result.

Ledin [10] draws attention to the connection: mosaic units— Fibonacci
numbers — the so-called 'golden section.' Firm evidence that the ancients
knew, and regarded as special, the "golden' ratio 1:1.618-++ is provided by
Euclid's Elements Book 6, Definition 3 and Proposition 30. But did the an-
cients know the Fibonacci series? D'Arcy Thompson has said [11], "...there
is no account of it, nor the least allusion to it, in all the history of Greek
mathematics. .., but also [11], "It is quite inconceivable that the Greeks
should have been unacquainted with so simple, so interesting, and so important
a series; so clearly connected with, so similar in its properties to, that table
of side and diagonal numbers which they knew familiarly, "

If the ancients did use mosaic units because of their connection with
1:1.618, it seems to imply that they knew the Fibonacci series. If this could
be shown to be their reason, we would apparently have unique evidence of
knowledge of the Fibonacci numbers (Fx) before Leonardo of Pisa. It would
also mean that the knowledge

lim XL 1.618 +ee
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existed before Kepler, who is apparently [12] regarded as the first to know it.
Simply because written record of the series 1, 1, 2, 3, 5, 8, *++ has not
come down to us from the Greeks of course does not mean that they did not
know it. A dramatic example is the recent discovery [13] of the unexpected
ancient Greek computing mechanism, complete with dials and gearing, to which
no known allusion had reached us either.

The ratio between successive pairs of mosaic units greater than the pair
6.0:9.6 is close to 1:1.616 (ignoring 21.6 cm). The ratio 6.0:9.6 is 1:1.600,
The ratios for the smaller units are 1:1.6, 1:1.5, and 1:2. Had the mosaicists
invoked the ratio 1:1.618 (with<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>