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TAKE-AWAY GAMES 
ALLEN J. SCHWENK 

California Institute of Technology, Pasadena, California 

L INTRODUCTION 

Several games of Tftake-away?f have become popular. The purpose of 
this paper is to determine the winning strategy of a general class of take-
away games, in which the number of markers which maybe removed each turn 
is a function of the number removed on the preceding turn. By-products of 
this investigation are a new generalization of Zeckendorfs Theorem [ 3 ] , and 
an affirmative answer to a conjecture of Gaskell and Whinihan [2]. 

Definitions: 
(1-1) Let a take-away game be defined as a two-person game in which 

the players alternately diminish an original stock of markers sub-
ject to various restrictions, with the player who removes the last 
marker being the winner** 

(1-2) A turn or move shall consist of removing a number of these 
markers . 

(1-3) Let the original number of markers in the stock be N(0). 
(1-4) After the k move there will be N(k) markers remaining. 
(1-5) The player who takes the first turn shall be called player A. The 

other player shall be called player B. 
(1-6) Let T(k) = N(k- 1) - N(k). That i s , T(k) is the number of 

markers removed in the k move. 
(1-7) The winning strategy sought will always be a forced win for Player 

A. 
All games considered in this paper are further restricted by the follow-

ing rules: 
(a) T(k) > 1 for all k = 1,2,-8 ' . 
(b) T(l) < N(0) (Thus, N(0) > 1.) 
(c) For all k = 2 , 3 , » " , T(k) < m, , where m, is some function of 

T ( k - 1). 

*This definition is essentially taken from Golomb [1]. 
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226 TAKE-AWAY GAMES [April 

Rule (a) guarantees that the game will terminate after a finite number of 
moves since the number of markers in the stock is strictly decreasing, and 
hence, must reach zero. Rule (b) dispenses with the uninteresting case of 
immediate victory. Rule (c) is the source of the distinguishing characteris-
tics of the various games which shall be considered. 

H. MOTIVATION 

Example (n-1) 

A simple game occurs when m, is defined to be constant, m, and we 
require f (1) — m. The well known strategy is: If N(0) ^ 0 mod (m + 1), 

remove N(0) mod (m + 1) markers . On subsequent moves, Player A 
selects T(2j + 1) to be equal to m + 1 - T(2j). 

If N(0) = Omod (m + 1), 
Player B can win by applying Player ATs strategy above. 

A simple way to express this result is to write the integer N(k) in a base m 
+ 1 number system. Thus, 

N(k) = a0 + a^m + 1) + a2(m + I)2 + ••• + a.(m+l)3 , 

where this representation is unique. Player Afs strategy is to remove a0 

markers , provided a0 ^ 0. If a0 = 0, Player A is faced with a losing 
position. 

This result suggests a connection between winning strategies and number 
systems. 
Example (IE-2) 

Consider the game defined by the rule m, = T(k - 1), the number of 
markers removed on the preceding move. In other words, T(k) <T(k - 1). 
To find a winning strategy, express N(0) as a binary number, e.g. , 12 = 
1100B. Define /N(0)/ as follows: If 

N = ( V n - l ' " a i a o ) B ' 

in the binary system, then 
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/ N / = an + an_1 + . . . + a i + a0 . 

If /N(0)/ = k > 1,. 
Player A removes a number corresponding to the last "one" in the bi-
nary expansion. (Thus, for N(0) = 12 = 1100 , Player A removes 
4 = 100 .) Now /N( l ) / = k - 1 > 0. Player B now has no move which 
reduces /N(l) / ; to do so, he would have to remove twice as many as 
the rules permit. In addition, any move Player B does make produces 
an N(2) such that Player A can again remove the last " 1 " in the expan-
sion of N(2)8 To see this, note that N(l) can be rewritten as 

V n - l ' " V ' - - 11)B
 + 1 B ' 

Now, since N(k) is strictly decreasing, it must reach zero. However, 
/ 0 / = 0 and / N / •> 0 for all positive integers N. Since Player B 
never decreases /N(k)/ , Player B cannot produce zero; hence, Player 
A must win. 

If, on the other hand, /N(0)/ = 1, 
it is clear that Player A cannot win because N(0) = 100 • • •• 0 = 11' • • 
1_. + 1 . Any move by Player A permits Player B to remove the last 
" 1 " in the expansion* thus applying the strategy formerly used by A 
above. 
Again we see a connection with number systems. A generalization of this 

method now suggests itself: Find a way to express every positive integer as a 
unique sum of losing positions. Then a losing position has norm 1. For any 
other position, the norm reducing strategy described above will work if, given 
Player ATs move, 

(i) Player B cannot reduce /N(k)/, and 
(ii) any move Player B does make permits Player A to reduce /N(k+1)/ . 

m . THE GENERAL GAME 

Now consider any game in which m, is a function of the number of 
markers removed on the preceding move; i. e. , let m = f(T(k - 1)). Suppose 
f(n) ^ n and f(n) ^ f(n - 1) for all positive integers, n. Note that example 
II-2 satisfied this hypothesis. We want f to be a monotonic nondecreasing 
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function so that if Player B removes more markers he cannot limit Player A 
to removing fewer markers and thus foil the norm reducing strategy. In addi-
tion, we want f(n) ^ n to guarantee the existence of a legal move at all t imes, 
and to permit the following definition: 

Definition (ni-1) 
Define a sequence (H.) by: Hj = 1 and H . + 1 = H . + H . where j is 

the smallest index such that f(H.) — H, . 
Clearly this is well defined because if the above inequality holds for no 

smaller j , at least we know it holds for j = k. 
Theorem (3II-2) 

that 
Every positive integer can be represented as a unique sum of H.fs, such 

n 
N = ^2 H. and f(H. ) < H. for i = 1, 2, • • • ,n ~ 1 . 

. = 1
 3i 3i 3i+l 

Proof 
The theorem is trivially true when N = 1, for Hi = 1 
Assume 

By induction, 
Assume that the theorem holds for all N < H, ; and let H, ^ N < H, -. 

n 

N = Hk + E H J. 
i=l x 

where f(H. ) < H. for i = 1,2,* •• ,n - 1. Thus, for the existence of a 
3i 3i+l 

representation, we need only show that f(H. ) < H,. Suppose f(H. ) — H,. 

Then recall that H, +- = H, + H^ where 
which f (Hg ̂  — H, . Hence j ^ i and so 
Then recall that H. - = H, + B.g where 4 is the minimal coefficient for 

H k + i = H k + H £ - H k + H
J n - N • 

contradicting the choice of N. Thus we have existence. 
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F o r un iqueness , note that: f(H. ) < H. impl ies 
Ji 32 

E H. < H. ,-
Jl 32+l 

i = l 

f(H. ) < H. impl ies 
J2 33 

3 

i= l 

f(H. ) < H. impl ies 
J n - 1 •'n 

n 

Z H. < H. J_1 

l. I +1 
i= i i n 

T h u s , for H, - > N > H, , the l a r g e s t t e r m in any sum for N m u s t be H, . 

If N has two r e p r e s e n t a t i o n s , so does N - H, , but this v iola tes the induction 

hypo the si s. T h u s , the r ep resen ta t ion i s unique. 

Definition (m-3) 

/ N / i s the number of t e r m s in the "H sum" for N. 

L e m m a (IH-4) 
If / N ( k ) / = 1 and the p l aye r cannot move N(k) m a r k e r s , then any move 

he does make p e r m i t s h i s opponent to reduce /N(k + 1)/* 

Proof 
F o r s impl ic i ty , l e t us a s s u m e that k i s odd. T h u s , we will prove that 

P l a y e r A can remove an appropr i a t e number of m a r k e r s so that /N(k + 2 ) / < 

/N(k + 1 ) / . 
Rewr i te N(k) = H. 

3o 
= H. , + H. 
: 30-1 Jl 

= H J o _ 1 + H J i _ 1 + . . . + H J n _ 1 + l 
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for some n where 

f(H. ) ^ H. , > f(H. , ) 
J i+1 J i * 3 i+ l x 

for i = 0, 1, • • • , n - 1„ Note that this i s equivalent to 

H. = H. - + H. 
3i k'1 3 i+ l 

Now P l a y e r B r emoves T(k + 1), with H. < T(k + 1) < H. for some i 
Ji+1 Ji 

between 0 and n , where H. = 1. P l a y e r A may remove up to 
Jn+1 

f(T(k + 1)) >f(HL ) 

Hence , P l a y e r A m a y e lec t to r emove 

3 i+ l 

and 

H. - T(k + 1 ) < H. - H. = H. _, 
3 i 3 i J i+1 J i 

N(k + 2) = H. . + • • • + H. -
J i - l " 1 JO"1 

Since f(H. _1 ) ^ H. 1 for i = l , 2 , - - - , n , we have /N(k + 2 ) / = i . 
T Ji Ji-1 Let 

/ H . - T(k + 1 ) / = a > 0 . 
h 

Now N(k + 1) = N(k + 2) + H. - T(k + 1). 
i Le t H# be the l a r g e s t t e r m in the H sum of H. - T(k + 1). C lea r ly 

Ji 
H , < H . T whence f(H*) < f(H. - ) < H. - . Thus 

3i 3i J i - 1 

/N(k + 1 ) / = I + a > i = /N(k + 2 ) / , 

and this comple tes the proof of the l e m m a . 
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T h e o r e m (III-5) 

Le t us cons ider a game defined by f satisfying the p r o p e r t i e s s ta ted 

above. Also l e t (H.) and the n o r m be defined a s above, 

If / N ( 0 ) / > 1, P l a y e r A can force a win. If / N ( 0 ) / = 1, P l a y e r B 

can force a win. 

Proof 

If / N ( 0 ) / > 1, 

l e t N(0) = H. + • • • + H j n with f(Hj.) < H - j . + r P l a y e r A r e -

moves H. . Since P l a y e r B can remove a t m o s t f(H. ) < H. i t 
J2 Jl 32 

is clear that Player B cannot reduce /N( l ) / or affect any of the 
last n - 2 terms in the sum, so we may just as well consider n « 
2. Now we invoke Lemma (HI-4)* so Player A can reduce / JN(2 ) / . 

Thus, Player A can force a win. 
If /N(0)/ = 1, 

Since Player A cannot remove N(0) markers , Lemma (ni-4) tells 
us that Player B will be able to reduce /N( l ) / . If /N( l ) / = 1, 
this means that he can remove N(l) and win immediately. If 
/N( l ) / > 1, Player B can apply Player A!s strategy from the first 
part of this proof. Thus, Player B can force a win. 

IV. BY-PRODUCTS 

In the case when f(T(k - 1)) = 2T(k - 1), the foregoing results produce 
the conclusions of Whinihan and Gaskell [2] regarding "Fibonacci Nim," We 
note that in this case: 

Hj = 1 
H2 = Hj + Hj = 2 
H3 = H2 + Hj = 3 

and in general, if 

H . = H . - + H . 0 n- i n - i - 1 n - i - 2 

for i = 09 1, and 2, then 
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2 H n - 3 ^ H n - 2 > 2 H n - 4 
2 H n - 2 * H n - 1 > 2 H n - 3 

So 

2H 1 ^ H > 2H 0 n - 1 n n -2 

by adding the inequal i t ies above. Hence H + - = H + H - . This p r o c e s s 

continues by induction so that the sequence (H.) i s indeed the sequence of 

Fibonacci n u m b e r s . 

Also in this c a s e , T h e o r e m (III-2) becomes "Zeckendorf ' s t heo rem" [3], 

which s t a t e s that every posit ive in teger can be uniquely exp res sed a s a Fibon-

acci sum with no two consecut ive subsc r ip t s appear ing. 

Another in te res t ing fact , conjectured by Whinihan and Gaskell [ 2 ] , i s 

that for the game m, = cT(k - 1), where c i s any r ea l number ^ 1 , (H.) 
m u s t become a s imple r e c u r s i o n sequence for sufficiently l a r g e subsc r ip t s ; 

i . e . , t he re ex is t i n t ege r s k and n0 such that H ,- = H + H , for al l & u n+1 n n -k 
n ;> n0. Le t us now cons ider how to p rove the conjec ture , and how to calculate 

k and n0 a s a function of c. 

L e m m a (IV-1) 

If cH. , < H. < cH. , then c H . ^ ^ H .^ , . 
I - I j ~ r I + I j+1 

Proof 

Since cH. < H. <i.cH., we m u s t have H . ^ = H. + H.. Also , H . , n = i - I j I 3+1 J i i+ l 
H. + H, where cH, ^ H.. Now 

I k k I 

c H . + 1 - cH. + cH k 

> c H . + H. 
- l l 

> H. + H. = H.J_1 . - J i J+1 

T h e o r e m (IV-2) 

T h e r e ex i s t s an in teger k such that cH , < H for al l n > k. 
n—Ac n 

Proof 
Since E.^ = H. + H. where cH. ^ H. , i t follows that 

J+1 J i i J 
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H., 

^H-
If we choose k such that 

H)k > c , 

then 

VJltAk>. 
H j-k+ l HJ 

T h u s , cH. . < H. for al l j > k. This comple tes the proof of the theorem. 
Coro l l a ry (IV-3) 

(H ) mus t become a s imple r ecu r s ion sequence for sufficiently l a rge n. 
Proof 

L e m m a (IV-1) says that the difference between success ive indices a s 

desc r ibed before is monotonically nondecreas ing . T h e o r e m (IV-2) says that 

the sequence of differences i s bounded. Thus the difference m u s t be constant 

for al l l a r g e n. Th is i s equivalent to saying that (H ) i s a r e c u r s i o n sequence 

for n ^ r n0. Q. E . D . 
T h e o r e m (IV-4) 

If H. . + 1 = H.+.. + H . + i _ k for some j , and for i = 0, l , - - - , k + 1, 

then this equation holds for eve ry posit ive in teger i . 

Proof 
By induction, we need only show that H . + k + 3 = H . + k + 2 + H. + 2 - By def i -

ni t ion, H. , , l 0 = H. , , ,- + H . , - impl ies cH. < H. , , ,- < c H . , - . H . , - = H. + 
3+k+2 j+k+1 j+1 p j j+k+1 ^ j+1 j+1 3 

H. , impl ies 
3 -k F 

cH. , < H.^- < cH. , _,_- , 
3-k 3+1 - 3-k+l 

whence 

c(H. + H. . ) < H . M _,, + H.^- < c O L ^ + H. . ^ ) , J j - k ' 3+k+l 3+1 3+1 J-k+1 
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or 

c H j+ l < Hj+k+2 * cHj+2 ' 

SO H
j + k + 3 = H j + k + 2 + Hj+2- Q - E - D -
This theorem tells us that k has reached the recursion value when k has 

been the difference for k + 2 successive indices. 

V. CONCLUSION 

We have discovered some interesting properties of take-away games and 
their winning strategies. The subject, however, is by no means exhausted. 

For example, in Theorem (IV-4) we showed that for every _c > 1 there 
exists a k such that . . . . By inspection, I have found: 

If c = 1 then k = 0 
= 2 = 1 
= 3 = 3 
= 4 = 5 
= 5 = 7 
= 6 = 9 
= 7 = 12 
= 8 = 1 4 

It is not clear whether or not a simple relation exists between c and k. 
In Section IV, we found that f(x) = ex gives rise to a recursion rela-

tion for (H.). Other special cases of f can be studied, to learn about the 
corresponding sequence (H.); or one might try to reverse the approach by 
proceeding from (H.) to f, as opposed to the approach taken in this paper. 

It is also possible to generalize in other ways. For example, if f(n) 
and g(n) satisfy the hypotheses of Section EI, then (f+ g)(n) = f(n) + g(n) 
and (fg)(n) = f(n)g(n) also satisfy the hypotheses. Can the corresponding 
strategies and sequences be related? Can the procedure be generalized for 
functions which are not monotonic? These problems are suggested for those 
interested in pursuing the subject further. 
[Continued on page 241. ] 



ON THE ENUMERATION OF CERTAIN TRIANGULAR ARRAYS 
C. A. CHURCH, JR. 

University of North Carolina, Greensboro, North Carolina 

1. In [2], this quarterly, D. P. Roselle considered the enumeration of 
certain triangular arrays of integers. He obtained recurrences for these which 
had a Fibonacci character. In this paper, we obtain explicit formulae for the 
enumeration of these ar rays , with a slight change of notation, and some gen-
eralizations. Although difficult to state in its full generality, it will be seen 
that the method of enumeration can be applied to a rather general class of 
arrays in a given instance. 

By a lattice point in the plane is meant a point with integral coordinates, 
non-negative unless stated otherwise. By a path (lattice path) is meant a min-
imal path via lattice points, taking unit horizontal and vertical steps. 

It is well known that the number of paths from (0,0) to (p,q) is 

and there are 

/P + q - A 
\ p " * ) 

which start with a unit horizontal step. 
With [x] the greatest integer <x , note that 

if m| n , 

+ 1 if m/n . 

2. To fix the idea, we take the simplest case first. 

For integral n ^ 1, m ^ 1, consider the triangular array of integers 
a.. = 0 or 1, i = 1,2,-eo , [(n - l ) /m] + 1 and j = (i - l)m + 1, • 8 • , n, 

235 

[TT] + > - [^^\ m 

m 
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with the restrictions 1 ^ a. . ^ a.,- . ^ 0 and 1 ^ a. . — a. . ,- ^ 0. [2 . 
i»J i + l . J i , ] i i j + l L 

§2]. Let f(n;m) denote the number of these arrays. 
For example, with m = 3 and n = 11, the arrays have the shape 

xxxxxxxxxxx 
xxxxxxxx 

xxxxx 
XX 

f(ll;3) = 88, and a typical array is 

1 1 1 1 1 1 
1 1 1 

1 1 1 
1 1 1 
1 | 0 0 

0 0 
0 0 
o o\ 
0 0 

It follows from the restrictions on the a.. that 
i j 

(2.1) f(n;m) = f(n - l;m) + f(n - m;m), n > m , 

according as a. = 0 o r l with the initial conditions 

f(n;m) = n + 1, 1 < n < m , 

We adjoin the conventional value f(0;m) = 1. Compare [2, (1.1) and (1.3)]. 
We show directly that 

n+m-
^ 

(2.2) f(n;m) = E (n 

k=o 

- (m - l)(k - l)\ 

It is easy to show that (2.2) satisfies (2.1) and the initial conditions. 
As in [2] , we note in passing that f(n;l) = 2 ; and f(n;2) = F „, the 

Fibonacci numbers. 
To get (2.2) directly, note first that there is only one array, consisting 

of all zeros, if a- - = 0. For each k ^ 1, we get a new set of arrays in 
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each case where at least ak / k „ -n m + 1 = 1 and all the a , + 1 . = 0. This ad-
joins an artificial row of zeros in the case of the last row, but it does not 
change the count. In view of the restrictions on the a.., we need only con-
sider the rectangular arrays 

a l , ( k - l )m+l "*' a l , n 

with 

a k , (k- l )m+l °°° a k s n 

a i , (k- l )m+l - 1> i - 1 .2 , - ' - f k 

These arrays correspond in a one-one way with the 

(2.3) /n - (k - l)(m - lA 

paths from ((k - l)m,0) to (n,k) which start with a unit horizontal step as 
follows: for each path, place l f s in the unit squares above and to the left 
(northwest side) of the path and 0fs in the unit squares below and to the right 
(southeast) of the path. For example, see the blocked out section of the p re -
ceding example. Sum (2.3) over 

k = 0 , V - - , [(n - l ) /m] + 1 

to get (2.2). 
The preceding result also enumerates one-line arrays 

(2.4) R^-n^ s = [(n - l ) /m] + 1 , 

where nj = n and 0 < n. - < n. - m. Compare [2, #4] . This is seen by 
taking row sums of the a.. in the case that all the a- . = 1. This is p re -
cisely the original problem with n replaced by n - m. That i s , there are 
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f(n - m;m) such one-line arrays. These may also bethought of as combina-
tions of the first n natural numbers written in descending order; compare 
[ 1 , p. 222, problem 1] . 

If, in (2.4), we only require 0 < nt < n, we have the obvious additional 
one-line arrays . 

The arrays above had a row depth of one. It is easy to expand the prob-
lem to the case of row depth p — 1. That i s , let f(n; mjp) denote the num-
ber of arrays of a.. = 0 or 1, where i = 1, 2, • • % p[(n + m - l ) /m]) 
and for i = (k - l)p + s (s = 1,2,««- ,p and k = 1 ,2 , - . . , [(n + m - l)/m]) 
j = (k - l)m + 1,- • • ,n. We have the same restrictions as before. 

For example, with m = 3, n = 11, and p = 2, the arrays have the 
shape 

and f(l l ; 3/2) = 871. 
We shall find in 13 that 

xxxxxxxxxxx 
xxxxxxxxxxx 

xxxxxxxx 
xxxxxxxx 

xxxxx 
xxxxx 

XX XX 

(2.5) f(n;m|p) = 

fn+m-ll 
[ m J p 
E"E(" 
k=0 s=l 

(k - l)(m 
s + (k 

p) + s 
Dp •) 

is a special case of a more general class of arrays. With obvious notational 
changes, the case p = m of (2.5) is Roselle's N, (n,k)= N (k) [2, (1.11) and 
(3.10)]. That i s , f(n;k k) = N,(n,k). Roselle!s (3.10) gives the representation 

m-1 
(2.6) f(n;m|m) = I £ |(P~j + l ) m - l}(Pj + l ) n , 

3=0 

where p is a primitive m root of unity. Now (2.6) and 



1970] ON THE ENUMERATION OF CERTAIN TRIANGULAR ARRAYS 239 

fn+m-ll 
L m J m * 

(2.7, *,,„,„. 2 z(::i:»i) 
k=0 s=l % 

are the same. To see this first apply the binomial identity 

to the inner sum of (2.7) to get 

fn+m-ll 

S 1 ( ^ 1 vk-ni)m/} (2.9) f(n;mm) = 
k=0 

Next (2.6) can be rewritten as 

m-1 m-1 

j=o j=o 

But this is just another way of writing (2.9), c.f. [1, p. 41 , problem 7] . 
Application of (2.8) to (2.5) yields the form 

("n+m-l"| 

f, , \ V ) / n - (k - l)(m - p) + p \ (n - (k - l)(m - p ) \ ( 
f(n;m|p) = 2 - H kp )-{ (k - Dp ) \ 

which can also be gotten by a direct combinatorial argument. 
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3. With the same restrictions as before on the a , we consider a 
ij 

slightly more general array. In this case, the indentations will still be m - 1 , 
the first block will have row depth q — 1, and the successive blocks will have 
row depth p + (k - 1) respectively, k = 2, 3, • • • , [(n - l ) /m] + 1 , p ^ 1, 
a ^ 0. 

As before, the case a^ = 0 contributes only one ar ray , all zeros. For 
each of the cases a - = 1, s = 1, 2, • • • , q, and a - - = 0 there are 

S , X S • J-, J-

( • • I - 1 ) 

arrays — corresponding to the paths from (0,0) to (n,s) with an initial h o r i -
zontal step. Thus the q by n rectangle contributes 

q 

<"> ^E^r1)-^") 
arrays. Note that this rectangle always gives the initial conditions; compare 
[2 , (1.4)]. For the count on the remaining blocks, we consider the case of 

q+(k-2)p+( k 2 1 ) <*+s, (k-l)m-KL 

where k ^ 2 and s = 1, 2, • • * , p + (k - l)a and the next row is all zeros , 
in each case, these corresponding to the 

(n + s - l - f c - D(m - p) + ( k g XJa + q - p J 
n - (k - l)m - 1 ' (3.2) 

paths from ((k - l)m,0) to 

n,q + (k - 2)p + I " 9 " J a + s 

with an initial horizontal step. 

(v> 
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Thus the total number of arrays is 

fn+m-ll 
q / \ L m J p+(fc-l)a i x v 

(3-3) l + E \ I"1)-*- X S (n+B-lfc-1) to-p)+(vH-p) 
s=l v ' k=2 s=l \ n - (k - l)m - 1 / 

We note that (3.3) can be simplified by replacing the first two terms by 
the right member of (3*1) and the inner sum by applying (2.8). 

We note some special cases of (3.3). Firs t the case a = 0 i s , with 
obvious notations! changes, Rosellefs N.(msk) [2 , f 3 ] . If, iir addition, we 
take p = q, Eq. (3.3) reduces to (2.5), which in turn reduces to (2.2) for 
p = 1. 

As we remarked at the beginning, it is now quite clear that the descrip-
tion of a very general case of these types of arrays would be quite complicated. 
However, it is clear that in any given instance, the method used above is easy 
to apply. 
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[Continued from page 234. ] 
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NANNETTE COX, JOHN W. PHILLIPS, and V. E. HOGGATT, JR. 

San Jose State College, San Jose, California 

In [1] , H. H. Ferns discussed minimal and maximal representations of 
positive integers as sums of distinct Fibonacci numbers. S. G. Mohanty ex-
tended those results in [2] by employing a one-parameter family of generalized 
Fibonacci sequences. This paper provides clarification of the concepts of 
maximality and minimality as employed by Ferns and Mohanty. 

For convenience we will reiterate several definitions and results from 
[ 2 ] , with suitably altered notation. 

Definition 1: The generalized Fibonacci sequence {u } with param-
eter r is given by 

U - = U 0 = • ' • = U = 1 r , l r , 2 r , r 
U = U i + U 

r , n r , n - l r , n - r 

for integers n and r such that n > r > 1. 
For brevity, the parameter r will not be made explicit. Thus U = 

U and {u } = {u } . Since we wish to express positive integers as sums 
of numerically distinct terms of {u }, we make the restriction that the first 
r - 1 terms not be employed in any representation. After Mohanty, we asser t 
without proof that every positive integer N has at least one representation in 
{u } subject to that restriction. That i s , there exist integers a. such that 
a. = 0 or a. = 1 for i = r , r + 1, • • • , s; a = 1; and 

1 1 S 

(1) N = £a.U. 
i = r 

Definition 2: Given a representation of N of the form indicated above, 
we define the magnitude of the representation to be the sum of the coefficients 
a.. 

i 

242 
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Definition 3: A representation of N in { u } is said to be Minimal (or 
Maximal) if and only if the magnitude of the representation is less than or equal 
to (or greater than or equal to) the magnitude of every other representation of 
N in {Un}. 

This definition agrees with the intuitive notions of minimal and maximal 
representations in the sense that, for example, a minimal representation em-
ploys the fewest possible elements of the sequence {u }. Ferns , working 
with the special case r = 2 (the Fibonacci numbers) defined these ideas in a 
mathematically simpler but intuitively less satisfying way, which Mohanty gen-
eralized essentially as follows: 

Definition 4: A representation of the form given by (1) in { U } is mini-
mal (or maximal) if and only if a.a.+. = 0 (or a. + a. . _> 1, respectively) 
for all j = 1, 2, • • • , r - 1 and i = r , r + 1, • • • , s - j . 

It is easy to see that, for r = 2, these two definitions are equivalent 
For if a representation in ( F } fails Definition 4, then, for some i , a.a.+-
= 1 or a. + a., - = 0 and the relation i I + I 

Fn+2 = Fn+1 + F n 
can be applied to force conformity to Definition 4 and simultaneously to de-
crease (or increase) the magnitude of the representation, indicating that the 
original representation failed Definition 3 also. On the other hand, any rep-
resentation not in accord with Definition 3 can be made to conform by suitable 
application of the relation cited above, which applications require the existence 
of coefficients a. and a.+- such that Definition 4 fails initially. Hence: 

Theorem 1: If r = 2, then Definitions 3 and 4 are equivalent. 
The main result of this paper is a proof (Theorems 2 and 3) of the con-

verse of Theorem 1. It is clear that every positive integer N has at least one 
Minimal representation and one Maximal representation in { u }. Further, 
we have 

Lemma 1: Every positive integer has a unique minimal representation 
in {u } and a unique maximal representation in ( u ) . 

Proof: This is established in [2] , Lemmas 1 and 2. 
Therefore, it suffices to display, for each value of r greater than 2, 

an integer whose minimal (or maximal) representation is not Minimal (or 
Maximal). Toward that end, we consider the triangular numbers. 
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Definition 5: The triangular numbers { T } are given by 

Ti = 1; T = n + T - . 
1 n n-1 

If in the above definition n is allowed to take on successively the values 
m + 3, m + 4, and m + 5, and the resulting equations are summed, the fol-
lowing useful identity is obtained: 

<2> T m + 5 = T m + 2 + 3 m + 1 2 -

Lemma 2: If k is an integer such that 1 < k < r , then: 

(3) Uk = 1 

(4) U r + k = k + 1 

<5> U 2r + k = r + T k + 1 

<6> U 3r + k = r ( k + 2 ) + T r + T l + T 2 + — + T k + 1 

Proof: These may be established by infinite induction. 
Lemma 3: If r > 6 and r = 3m for some integer m, then 

U10m+1 + U6m+3 + U3m+1 U10m + U7m+4 

Proof: Let r = 3m in Equations (4), (5), and (6): 

<4'> U3m+k = k + 1 

(5'> U6m4k = ^ + T k + 1 

( 6 , ) U9m+k = 3 m ( k + 2 > + T 3 m + T l + T 2 + • *' + T k + 1 

Also, 
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( 7 ) U10m+1 + U6m+3 + U3m+1 " U10m " U7m+4 = U9m+(m+l) 
+ U6m+(3) + U3m+(1) " U9m+(m) ~ U6m+(m+4) 8 

Since the parenthesized term in each subscript of (7) is less than or equal to 
r = 3m > 6 implies that m + 4 < rf we can substitute Equations (4f), (5f), 
(6?) in (7) appropriately with k equal to the term in parentheses: 

U10m+1 + U6m+3 + U3m+1 ~ U10m " U7m+4 
= (3m(m + 3) + T 3 m + T± + T 2 + • • • + T m + 2 ) + (T4 + 3m) + (2) 

" ( ^ ^ + 2) + T 3 m + T l + T 2 + " ' + T m + l ) - ( 3 m + T m + 5 ) 

= T m + 2 + 3m + 1 2 " T m + 5 • 

In view of Equation (2)s this establishes the Lemma. 
Lemma 4: If r > 6 and r = 3m + 1 for some integer m, then 

U10m+4 + U6m+5 + U3m+1 U10m+3 + U7m+6 ' 

Lemma 5: If r > 6 and r = 3m + 2 for some integer m, then 

U10m+8 + U6m+7 + U3m+4 U10m+7 + U7m+9 ° 

Proof: Lemmas 4 and 5 are proved in a manner identical with that above 9 

using Equations (2) through (6), Details are omitted. 
Theorem 2: Given a sequence U satisfying Definition 1 with r ^ 2, 

there exists a positive integer N such that the unique minimal representation 
of N in U is not Minimal* 

Proof: For r > 6? let 

N = U10m+1 + U 6m + 3 + U 3m + 1 i f r = 3 m ' 
N = U10m+4 + U6m+5 + U 3m + 1 i £ ' = 3m + 1, 

and 
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N = U10m+8 + U6m+7 + U3m+4 i f r = 3™ + 2 

[Apr. 

The representation given for N is minimal, but in view of Lemmas 3 , 4 , and 
5, is not Minimal. Similarly, let 

N = 167 = U15 + Uu + U8 + U3 = U14 + U13 + U10 for r = 3, 

N = 62 = U15 + U10 + U5 = U14 + U13 for r = 4, 

and let 

N = 54 = Ulf + Uu + U5 = U16 + U14 for r = 5. 

In each of these cases, the first expression for N is minimal but is obviously 
not Minimal. Thus counterexamples to the minimal-Minimal correlation have 
been exhibited for all sequences {u } corresponding to r > 2; the proof is 
complete. 

Theorem 3: Given a sequence {U } satisfying Definition 1 with r > 2, 
there exists an integer N such that the unique maximal representation on N 
in (U } is not Maximal. 

u nJ — — 
Proof: For r > 5, direct substitution using Equations (4) and (5) serves 

to establish that 

r+2 r 
U2r+5 + E Ur+i = U2r+4 + U2r+3 + U 2r + 2 + £ U r + i • 

i=0 i=l 

Similarly, we can show that for r = 4, 

U13 + U10 + U9 + ^ U i = Ui2 + U i i + U i0 + U8 + UT + U5 + U4 

i=3 

and for r = 3, 
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11 
U14 + E U i = U13 + Ui2 + Ul t + U10 + U8 + U7 + U6 + U4 . 

i=4 

As in the proof of Theorem 2, each of these equations provides two rep-
resentations for N: the first is maximal by Definition 4, but is of smaller 
magnitude than the second, and hence not Maximal. This is sufficient to e s -
tablish the theorem. 

Taken together, Theorems 1, 2 and 3 establish that every minimal rep-
resentation is Minimal and every maximal representation is Maximal in {u } 
if and only if r = 2, which was the promised result. 

Mohanty noted in [2] that {u } is a special case of the generalized Fib-
onacci numbers of V, C. Harris and Carolyn C. Styles [3]; specifically, 

[n/r] 

E 
i=0 

[ n / r ] , v 

where [n/r] denotes the greatest integer in n / r . The Tribonacci numbers 
of Mark Feinberg [ 4 ] , [5] can be defined as the sums of the rising diagonals 
of the trinomial triangle generated by (1 + x + x2) , and can be generalized in 
an analogous manner. If the coefficient of x in the expansion of (1+x+x2) 
is denoted by , , then we can define the generalized tribonacci sequence 
(V } by 1 r , n J J 

v = £ 
r , n *-* 

i=0 

00 , - -, 
n - i(r - 1) 

As before, we asser t without proof that ( v } = ( v } is complete, evenun-
n r , n 

der the restriction that the first r - 1 elements of the sequence not to be em-
ployed in any integer representations. Further, we extend Definitions 3 and 4 
to apply to the new family of sequences, and assert that Theorem 1 can be 
similarly generalized. 

The following theorem is offered without proof. 
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Theorem 2f: If r > 4, there exists a positive integer N such that the 
minimal representation of N in \V } is not Minimal. Specifically, 

N = V 4 r + V 2 r + 3 + V r + 1 = V 4 r - 1 + V 3r + 2 • 

The left side is in proper form for a minimal but the right side has fewer 
digits. One can easily find an infinite number of other exceptions for each r. 
For example, add V5 . to each side for j = 1, 2, 3, • • • . 

One can secure a counterexample for the maximal which is not Maximal 
by subtracting each of those Nfs above from 

4r+l 

£ v, . 

REFERENCES 

1. H. H. Ferns , "On the Representation of Integers as Sums of Distinct Fib-
onacci Numbers," Fibon^£ci_Qu^£terj^, 3 (1965), pp. 21-30. 

2. S. G. Mohanty, "On a Partition of Generalized Fibonacci Numbers," 
Fibonacci Quarterly, 6 (1968), pp. 22-33. 

3. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Num-
bers , " F ibonacc i J^^ 2 (1964), pp. 277-289. 

4. Mark Feinberg, "Fibonacci-Tribonacci," Fibonacci Quarterly, 1(1963), 
pp. 71-74. 

5. Mark Feinberg, "New Slants," Fibonacci Quarterly, 2 (1964), pp. 223-227. 

ERRATA 

Please make the following change in the article by London and Finkel-
stein, "On Fibonacci and Lucas Numbers which are Perfect Powers ," Dec. 
1969, p. 481: 

Equation (14) should read: Y2 - 500 = X3 . 



SOME GENERALIZED FIBONACCI IDENTITIES 
L. CARLITZ* 

Duke University, Durham, No. Carolina 

1„ Let 

Fn-KL = F n + V r Fo = °. Fi 

and define 

00 

(1.1) fn(x) = ^ T FR+k xk/k! (n = 0 ,1 ,2 , — ) , 
k=0 

so that 

fn(x) = W( x )> W x ) = Vx> + Wx) • 
Note that f (0) = F . 

In a recent paper [1] in this Quarterly, Elmore has pointed out that 
many of the familiar formulas involving the Fibonacci numbers F can be ex-
tended to the functions f ( x h For example, the identities 

F . F - F2 = (» l ) m . F = F2 + F2 

* m - l m+1 m l 1 ; ' *2m- l m-1 m 

become 

f -(x)f ^ ( x ) - f2 (x) = ( - l ) m e x 
m-1 m+1 m ' 

and 

f9 -(2x) = f2 -(x) + f2 (x) , 2m-l v m - l v m w * 

respectively; the identity 
^Supported in part by NSF Grant GP-7855. 

249 
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F , = F -F + F F -m+n m-1 n m n-1 

becomes 

f (m + v) = f , (u)f (v) + f (u)f _,, (v) . m+n m-1 n m n+1 ' 

The formulas 

(1.2) fm(u)fn(v) = (-Dr[fm + r (u)fn + r (v) - F r f m + n + r ( u + v)] . 

M Fmf
m

(v -u)eU = (-W'IU^W - yu)wwi. 
seem particularly striking. Elmore remarks that they may be special cases 
of a more general formula in which no capital FTs appear. This is indeed 
the case, as we shall show below. The formula 

(1.4) f ^ (u)f ^ (v) - f (x)f ^ ^ (y) = ( - l ) r e x f (u - x)f (v - x) , 
v ' m+r n+r r m+n+rJ m n 

where x + y = u + v, reduces to (1.2) when x = 0 and reduces to (1.3) when 
u = x, v = y. 

2. Since it is no more difficult, we consider the following slightly more 
general situation. Let 

(2.1) H n + 1 = pHn - qHn_1, H0 = 0, Hj = 1 , 

and define 

00 

(2.2) hn(x) = ^ H
n + k

x k / k ! (n = 0 , 1 , 2 , . . - ) , 
k=0 

so that 

hT (x) = h ^ ( x ) , h f1(x) = ph (x) - qh ,(x) . n n+lv " n+1 * n ^ n - l v 

Corresponding to (1.4), we shall show that 
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(2.3) hm+r(u)hn+r(v) - hr(x)hm+n+r(y) = q r eP X h m (u - x)hn(v - x) . 

provided x + y = u + v. 
Let a,p denote the roots of x2 - px + q = 0. Then 

(2.4) H = a ~ f 
n a - p 

and (2.2) implies 

(2.5) hn(x) =-±- {a
n eax - (? e1**) 

It follows at once from (2*5) that 

00 

(2.6) J^ W x ) ^ / k l = hn(x + ?> 
k=0 

Consider 

m n E {h ^ (u)h ^ (v) =. h (x)h ^ _,_ (y)} ^ L 1 m+rv n+r rv m+n+rv J mini 
m,n=0 

= hr(u + z)hr(v + w) - hr(x)hr(y + z + w) 

= (a - pr2{(aTea{n+z) - pT e^ ( u + z ) )(aT e a ( v + w ) - pr e^ ( v + w ) 

- (a r e ^ - pr e^)(ar e ^ " ™ * - £ r
 e ^ ^ + w ) ) } 

= (a - p)~2{a2r @^u + v + z + w) + / 5
2 r

 e^(u+v+z+w) 

- q
r ( e^( u + z )+0(v +w) + ej8(u+z)-to(v+w)v-i 

- (a - j3)""2{>2r
 e ^ + y + z + w ) + £ 2 r

 e^(x+y+z+w) 

_ r^ox+jSfy+z+w) + e£x-ta(y+z+w) y» 

If we take x + y = u + vs this reduces to 
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(a - j3)"2

 q
r { e ^ + / % + z + w ) + e^x-to(y+z+w) 

a(u+z)+]3(v+w) tf(u+z)+ar(v+w)\ — © — © j 

= (or - j8)"2qr e p x { e a ( " x 4 7 + z + w ) + e^-^Y+z+w) 
a(-x+u+z)+/3(-x+v+w) .a(-x+v+w)+|8(-x+u+zh 

— © — © J 
, m - 2 r px , or(-x+v+w) j8(-x+v+wh = (a - (3) q e* (e - e r ) 

. a(-x+u+z) j3(-x+u+z) v 
• ^6 "" © / • 

In view of (2.5), we have therefore proved 

m n 
(2.7) Y ^ ( h ,_ (u)h A (v) - h (x)h _,_ ^ (y)} ^ 7 

' J m+r n+r r m+n+r J J mSn! 
m,n=0 

= q r e p x h0(-x + u + z)h0(-x + v + w) 

But by (2.6), 

m n 
h m ( -x + u)hn(-x + v) -^y~j 

m,n=0 

Equating coefficients of z w we immediately get (2.3). 
3. Analogous to (2.2), we may define 

(3.1) h*(x) = h ; ( x , X ) = £ ) H n + k ( ^ X x \ v k 
<Vk\ 

k=0 

Then 

h*(0) = H nv n 

and 
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h*+1(x) - l£W + h^x) . 
Moreover 9 

k=l x ; 

so that 

Ah;(x) = Xh*+ 1(x). 

Clearly the series in the right member of (3.1) converges for sufficiently small 
|X | . 

It follows at once from (2.4) and (3.1) that 

(3.2) h*(x) = ^~L^ f^1 + ka^ - Pi1 + ^^X]» 

We have also 

(3.3) h*(x + y) =J^K^4lj-
k=0 x ' 

Now by (3.2), 

-qh* ,(u)h*(v) + h* (u)h* (v) M m-1 n m n+1 
= (a _ fSf\^\pF--\\ + aX)u - ^ n - 1 ( l + /3X)v][an(l +«X)U - A l + Pkf] 

+ [ « m ( l + aX)U - ^ ( 1 + /?X)V][an+1(l + *X)V - ^ n + 1 ( l +M) V ] } 

= fe _ / 3 ) - 2 { ( -qa m + n - 1 + a m + n + 1 ) ( l + aX)U+V 

+ ( - q A * - 1 + A + n + 1 ) ( l + /3X)U+V 

- ( q a m " V + amtP+1)(l + *X)U(1 + /3X)V 

- q(an
/Sm-1 + a n + 1 A ) d + <*X)V(1 + |3X)U} . 

Since ar̂ S = q and 
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a2 - q = a(a - 0), 02 - q = -0(<* - 0) , 

this reduces to 

(or - p) a (1 + G?X) - j8 (1 + j3X) 

We have therefore, 

( 3 ' 4 ) h m + n ( u + v ) " - < ^ m - l ( u ) h > > + h > ) h n + l ( v ) ' 

Similarly, we have 

( 3-5 ) h m - l ( u ) h m + l ( u ) " h m ( u ) = "V™'^1 + P* + ^ ^ • 

Finally, corresponding to (2.3), we have 

(3.6) h* A (u)h* (v) - h*(x)h* ^ ^ (y) 
m+r n+r r m+n+rv 

= q r hm(u - x)hn(v - x)(l + pX + q X 2 f , 

provided 

x + y = u + v 
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A SIMPLE RECURRENCE RELATION IN FINITE ABELIAN GROUPS 
H. P. YAP 

University of Singapore, Singapore 10 

A finite abelian group G is said to have a simple recurrence relation of 
length n if there exist distinct nonzero elements al9 a2, • • • , a of G such 
that a* + a2 = a3? a2 + a3 = a4, • • • , a + a 1 = a , a + a. = & and 

n—a II—x n n—± n i 
a n + a l = a24 tt i s P r o v e d t i i a t if n = 6m or n = 2^3^m fe3), where (6,m) 
= 1, ^ = 0, 2, or 3 and /3 = 0, 1, or 2, then there exists a finite abelian 
group which has a simple recurrence relation of length n. 

Let G be a finite abelian group written additively and al9 a2, , 8 S , a 
be distinct nonzero elements of G. If 

a-i + a2 = a3s a2 + a3 = a4, • • • , an_2 + a ^ = an , 
a . - + a = a- and a + a- = an 9 n-1 n 1 n 1 2 

then we say that the ordered set 

A = (al9 a2, • •• , an} 

has a simple recurrence relation (SRR). If G has an ordered subset A such 
that the cardinal of A is n ^ 3 ) and A has a SRR, then we say that G has 
a SRR of length n. We use the notation 1(G) = n to mean that G has a SRR 
of length n. 

Suppose 

A = (a*, a2, •• • , an} 

has a SRR; then we have 

a3 = a^ + a2s a4 = a t + 2a2, a5 = 2aj + 3a2, . 

Let 

U0 = 0, Ui = 1, U2 = 1, U3 = 2, U4 = 3, U5 = 5 , - , Ui+2 = U i + U i + l 5 " " s 

255 
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be a Fibonacci sequence ([1] , p. 148). Then 

[April 

(1) U. = — 
1 N/5 

l^j - (^)'] i > 0 

Thus 

(2) a 2 + i = U . a i + U. + 1 a 2 , i > 0 

From a , + a = a, and a„ + an = a„, we have n - l n 1 n x ^ 

(3) 

and 

<Un-l " 1 ) a l + U n a 2 = ° 

(4) <Un-2 + 1 ) a l + ( V l " 1)a2 = ° 

Let 

h(n) = (Un_2 + DUn - ( U ^ - I)2, n > 2 , 

d = ( U ^ - 1), Un) , 

the g. c. d. of Un_1 and UQ, and 

f(n) = Jhtn) 

Using (1), we can verify 

(5) U,U_ - U ^ U , = <-DJ+1Un , , . J < n J j"n " n + l " n - l n - j - 1 ' 

Now 
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h(n) = (Un_2 + l)(Un_2 + U ^ ) - ( U ^ - 1)» 
= Un-2 - U n -1 + U n - 2 U n - l + Un-2 + 3 U n - l " 1 

= <Un-2 + Un-l><Un-2 " Un-1> + U n - 2 U n - l + U n - 1 + Vl " 1 

= - U n-3 U n + U n - 2 U n - l + U n - 1 + U n + 1 " 1 

= ( - l )n- lu 2 + Va_1 + U n + 1 - 1 (by (5)) 

Define 

.1 if n is even 
"n JO if n is odd 

Then we have 

(6) h(n) = U ^ + U n + 1 - 2Sn 

Eliminate a2 from (3) and (4), and we have f(n)a4 = 0 and thus by per-
mutation, we have 

(7) f(n)a. = 0 for every i = 1, 2 * • • • , n 

Before we proceed further, we list some examples below. We use C 
to denote the cyclic group of order m and C x C as the cartesian product 
of C and C . m n 

(El) A = {(0,1), (1,0), (1,1)} has a SRR in C2 x C2 ; 

(E2) A = {l , 3, 4, 2} has a SRR in C 5 ; 

(E3) A = {l , 4, 5, 9, 3} has a SRR in C^ ; 

(E4) A = {(1, 0), (1,1), (0,1), (1,2), (1,3), (0,1)} h a s a S R R i n C2 x C4; 

(E5) A = ( l , - 5 , -4 , - 9 , -13 , 7, -6} h a s a S R R i n C29 ; 
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(E6) A = {(1,2,1), (1,1,3), (2,0,4), (0,1,2), (2,1,1), (2,2,3), (1,0,4), 
(0,2,2)} has aSRRin C3 x C3 x C5 ; 

(E7) A = ( l , 5, 6, 11, 17, 9, 7, 16, 4} has a SRR in C 19' 

(E8) A = { l , 8, 9, 6, 4, 10, 3, 2, 5, 7} has a SRR in Cn . 

We write Jt(G) ^ n if G does not contain any subset A whose cardinal 
is n, such that A has a SRR. We note that 

(i) because of (7), 4(C4) f 3, 4(C8) ^ 6 ; 
(ii) since (7,f(i)) = 1 for i = 3, 4, 5, 6 and (13,f(i)) = 1 for i = 3 , 

4, • • • , 12, therefore both C7 and C13 have no SRR of any length; 
(iii) although f(8) = 15, i(C1 5) ± 8; if {al9 a2, • • - , a8} has a SRR 

in C15, then from (4), we have 3a2 = 9at (mod 15) and thus a2 = 
-2aj , 3ais or 8aj (mod 15). 
Case 1: If a2 = -2al9 then a3 = -a l s ••• , a8 = -3aA = a4, which 

is impossible. 
Case 2: If a2 = 3al9 then a3 = 4al9 • • • , a6 = 3SL1 = a2, which 

is impossible. 
Case 3: If a2 = 8al9 then a3 = 9a1$ • • • , a7 = 9a4 = a3, which 

is impossible. 
Now we prove 
Lemma 1: If 

(Un, f(n)) = 1, n f 2(2m + 1), 

then l(Cf(n)) = n. 
Proof: Since (U , f(n)) = 1, therefore 

d = ^ n - l " 1 ' V = X> 

and thus 

(8) f(n) = h(n) = U - + U ^ - 28 w w n-1 n+1 n 
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Also 9 there exist r and t such that 

(9) rUn + tf(n) = 1 9 

From (3)f we have 

r ( U n - l " 1 ) a l + r U n a 2 = ° ' 

Substitute rUn = 1 - tf (n) into the above equation and make use of the 
result of (7); we have 

(10) a2 = r ( l - U n m l ) a 1 

Thus 

a 3 = ax + a2 = [r(l - U j ) + 1]^ 9 

and in generals 

(11) a2+. = [rUi + 1(l - U ^ ) + U . ] a i > 0 < i < n - 2 . 

Now we prove that A = {al 9 a2, • • • , a^}, where a4 is chosen such that 
(al5 f(n)) = 1 and a2+.f 0 < i < n - 2 is given by (11), has a SRR. 

We need to verify 

(1) a i j a 2 5 # 0 ' sa considered as elements in CL, y are distinct and nonzero; 
(II) ai + a2 = a39 a2 + a3 = a4s

 e • • , an_2 + a ^ = an? an_1 + an = a l t and 
a ~r a., == â o n 1 2 

Firs t we prove (n): 
For this part* we need only to verify that a - + a = a- and a + a- = 

a2. In fact, 

V l + a n - C r U n ( 1 " U n - 1 > + Un-lK = C(1 " U n - 1 > + U n - A < * <9)) 

— â  | 
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«n + \ = [ r U ^ J l - Un_1) + Un_2 + l ]a x 

= U n - l a 2 + <°n-2 + 1 ) a l ' 

Since 

f(n) = (U 0 + 1)U - (U - - I)2 , n-2 n n-1 ' 

therefore, 

r U n ( U n - 2 + 1 ) a l + r < 1 " U n - l ) ( U n - l " 1 ) a l = ° • 

from which it follows that 

( Un-2 + 1 ) a l + ( U n - l " 1 ) a 2 = ° ' 

Hence a + a- = a0. n 1 2 
To prove (I), we shall show that 

(12) rU i + 1 ( l - Un_1) + U. ^ rU J + 1 ( l - U ^ ) + U., 0 < i < j < n - 2 , 

(13) r U i + l ( 1 - U
n » l ) + U i ^ X' 0 < i < n - 2 ; 

and 

(14) ^ i + i * 1 - u
n - l ) + u i ^ ° » 0 < i < n - 2 . 

Suppose for some i , j such that 0 < i < j < n - 2 9 

^ i + l * 1 " Un-1> + U i = r U j + l ( 1 " Un-1> + U j ' 

then 

r < V - Ui+l^1 " Un-1> + <Uj - V " ° 

and thus 

rVU
j +l - V l " 1 " Un-1> + VUj " V = ° > 
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from which it follows that 

( V l - U i - M ) ( 1 - U n - l ) + U n ( U j - U i ) = ° ' 

i . e, j 

<UjUn " V A - l ' " <UiUn " U i + l U n - l > + U j + 1 " U i + 1 = 

Applying (5), we have 

(15) g(i,j) , ( - l ) J + 1 U n - j - l + ( - 1 ) i u n - i - l + U j + 1 " U i + 1 = °« 
0 < i < j < n - 2 

We can verify that 

-f(n) < g(i f j )# 0 ) < f(n) . 

Hence (15) cannot be true* 
Similarly, if 

rU1 + 1( l - U n - 1 ) + U. = 1, 0 < i < n - 2 , 

then 

which implies that 

i» e. s 

( U i U n - U i + l U n - l ) + U i + l - U n = ° 

or 
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(16) k(i) = ( - 1 ) i + l u
n „ i _ i + u

i + 1 - U
n
 = 0 ' 0 < i < n - 2 . 

We can also verify that 

-f(n) <k(i)(^0) < f ( n ) . 

Hence (16) cannot be true. 
Finally, if 

rU. + 1 ( l - U n - 1 ) + U. = 0, 0 < i < n - 2 , 

then 

(17) w(i) = (-l)i"l"1Un_.__1 + U i + 1 = 0, 0 < i < n - 2 . 

But for n ^ 2 (2m + 1), w(i) ^ 0, and -f(n) < w(i) < f(n). Hence (17) 
cannot be true. 

The proof of Lemma 1 is complete. 
Lemma 2. Let Gj, G2 be two finite abelian groups. If 

£(Gi) = m, -2(G2) = n, m < n, (m,n) = d, 

then 

4(Gi x G2) = -r mn . 

Proof: Let 

A = {a!, a2, • • • , a m } 

be a subset of Gi such that A has a SRR and 

B = ( b j , ba, • • • , bn} 

be a subset of G2 such that B has a SRR. Then we can prove that 
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A ® B = {c i 9 c2, • • - , c s } 
where 

and 

1 s = -7 mn d 

Ci = (al9 bi)9 c2 = (a2, b2) , c3 = c t + c2 = (a3,b3)9
e 8 • 9 c m = ( a ^ b ^ ) , 

c ,i = (ai s b . J , " ' ^ = (a 9 b ) 9 m+1 1 m + 1 " ' s m n 

has a SRR in Gj x G2. 
Lemma 3; If (n96) = 1, then (U 9f(n)) = 1. 
Proof; We observe that U is even if and only if n = 3m, Hence if 

(ns3) = 19 then U is odd, 
Now9 (n,2) = 1 implies that 

f(n) = i (U - + U _,,) . d n-1 n+1 

It can be proved that if U is odd, then (U , U - +U , J = 1 ( f l l , ^ n n n=l n+1 L JJ 

p . 148). 
It is clear that (U , h(n)) = 1 implies that d = 1* Hence f(n) = U -

+ Un+19 a n d t h u s < u
n ' fW) = 1. 

From Lemmas 1 and 39 we have 
Lemma 4; If (n96) = 1, then £(Cf, J = n8 

From (El), (E2), (E6), (E7), Lemmas 2 and 4, we have 
Theorem 1: If 

n = 6m or n = 2^3^m fe3), 

where (6,m) = 1, a = 0, 2, or 3 and jS = 0, 1, or 3, then there exists a 
finite abelian group G such that #(G) = n. 
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SOME COUNTEREXAMPLES AND PROBLEMS ON LINEAR 
RECURRENCE RELATIONS 

DAVID SINGMASTER 
American University of Beirut, Beirut, Lebanon 

In [1 , pp. 48-50], several false assertions are made concerning linear 
recurrence relations (mod m). I will give counterexamples to these and will 
establish one result on a stronger hypothesis* Theorems 3.6 and 3.7 of [ l ] 
are false as stated, and it is an open question what additional hypotheses are 
required for their validity. 

Let 

3 

<1} V l = 5 > i Un-i + b ' 
i=0 

For a given modulus m, let x be the least non-negative residue of u 
(mod m). In [1] , it is assumed that a. ^ 0, b ^ 0, and 

(a0, a4, • • • , a^, m) = (x0, xi$ • • • , Xj, b , m) = 1 , 

although these hypotheses do not appear to be essential. Of course, all quan-
tities are integers. Let H(m) be the period of x (mod m). The following 

n 
false assertions are made in [1; (3.12), 3.6, 3.7 are his numbers]: 

x is a purely periodic sequence, i. e. , 

(3.12) 3H: Vn,k ^ 0 x n + k H = XR (mod m) . 

Theorem 3.6 H(pe + 1) = H(pe) or p»H(pe). 
In the supposed proof, c , is defined by 

e u.,. TT = x. + c . p 1+kH l ik^ 

e e 
for m = p , H = H(p ). Then c , ~ 0 . It is asserted that 

264 
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(2) p I c i l ^ cik - k C i l ( m o d p* ' 

and the proof is completely dependent on this: 
Theorem 3.7. If 

H(p) = H(p2) = . . . = H(pe) ^ H ( p e + 1 ) , 

then H(pe+f) = pfH(pe). 
Example 1. u - = u + 2 u _-, u0 = Uj = 1. All hypotheses are sat-

isfied for m = 2 . The sequence u is given below, together with the x 
sequences (mod 2, 4 , 8, and 16). 

n 

un 
x (mod 2) 

x (mod 4) 

x (mod 8) 

x (mod 16) 

We have 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

1 

3 

3 

3 

3 

5 

1 

1 

5 

5 

4 

11 

1 

3 

3 

11 

5 

21 

1 

1 

5 

5 

6 

43 

1 

3 

3 

11 

7 

85 

1 

1 

5 

5 

8 

171 

1 

3 

3 

11 

9 

341 

1 

1 

5 

5 

10 

683 

1 

3 

3 

11 

un+l = ( 2 n + 1 + ( - 1 ) Q ) / 3 

For e = 1, x is purely periodic with period H(2) = 1. For e > 1, we 
have 

e 
u0 = Uj < u2 < • • • < u < 2 

and 

and 
u e - l = V l + 2 k <mod2e) . 

u e = u e + 2 k ( m 0 d 2 6 ) 

e Clearly H(p ) = 2 for e > 1, but x is not purely periodic. Further, 
n 

for (mod 4), we have c12 = 5, c^ = 19 2 / c41 but c12 ^ 2 • c^ (mod 2). 
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(Of course, x (mod 4) is not purely periodic as assumed in the proof of 
Theorem 3.6, but we can drop the first term by shifting indices.) Equation (2) 
does not even hold for pic.- since for x (mod 2), we have c02 = 1» Cot = 0 
but c02 i 2 . c0i (mod 2). Finally, we have H(2) f H(4), but H(8) ^ 4 . H(2). 
So we have shown that equations (3.12) and (2) and Theorem 3.7 are false as 
stated. 

The proper assertion for (3.12) is that x is (eventually) periodic, i.e*, 

(3) 3n0, 3H : Yn >: n0, Vk > 0 x n + k H = x n (mod m) 

However, we can obtain pure periodicity under a different assumption. 

Theorem, x is purely periodic (mod m) if (a.,m) = 1. 

Proof. Let n0 be the least integer 5:0 such that (3) holds. From (1) 
we have 

J-l 
i.x . = x ,- - 7 a. x . b (mod m) j n - j n+1 £-* i n - i v 

i=0 

-1 -1 
Since (a.,m) = 1, there is an a. such that a.a. = 1 (mod m), so we have 

M4) -1 
x . = a. n-J J 

J-l 

n+1 Z a . x . - b l n - i 
i=0 

(mod m) 

That i s , we can reverse the recurrence relation to get terms of smaller index 
from terms of larger index. If n0 > 0, set n = n0 + j - 1 and n = n0 + kH + 
j - l in (4) to get 

(5) x - = a. 
n0- l J 'n0+j " | ^ a i xn0+j-l-i # 

i=0 
(mod m) 
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(6) x - „ „ = a?1 
n 0 - l+kH ~ j 

0-1 
Xn0+j+kH " I Z-f a i X n 0 + j - l - i+kH (mod m) 

Now (3) shows that the r ight-hand s ides of (5) and (6) a r e congruent (mod m ) , 
S 0 x n - 1 " x n -1+kH ^ m o d m ^ H e n c e no i s n o t t n e l e a s t in teger such that 
(3) ho lds , hence n0 = 0, that i s x i s pure ly per iodic (mod m) . 

In view of th is resul t* one might a s k if T h e o r e m s 3.6 and 3.7 and Eq. (2) 

might be val id if ( a . ,m) = 1. 

Example 2. 

V - l = u n - 2 8 "o = *! = 1, u2 = 3 . 

e Again, al l hypotheses a r e sat isf ied for m = 2 and a. = 1, so (a . ,m) = 1. 

The resu l t ing sequence i s x = 1 (mod 2) and x = u (mod 2 ) e > 1. u 

i s given by: 

n 0 1 2 3 4 5 6 7 8 
u 1 1 3 1 1 3 1 1 3 

n 

C lea r ly H(2) = 1, H(2 e ) = 3 for e > 1, but H(22) / 2 • H(2) so that 

T h e o r e m s 3.6 and 3.7 both fail. F o r p e = 2 , C02 = 1 £ 2 • c o i = 0 (mod 2) 

and c13 = 0 ^ 3 • c j j = 3 (mod 2), so (3.12) fai ls h e r e a l so . 

F u r t h e r , i t i s c l e a r that th is example can be modified to work for any 

modulus p . 

F ina l ly , we r e m a r k that we can cons t ruc t a l e s s ar t i f ic ia l example with 

s i m i l a r p r o p e r t i e s f rom 

u ,- = u + u - + 1, Un = Ui = 1 . n+1 n • n - 1 u -1 

n 

u n 
x (mod 2) 

x (mod 4) 

x (mod 8) 

0 

1 

1 

1 
1 

1 

1 

1 

1 

1 

2 
3 

1 

3 

3 

3 

5 

1 

1 

5 

4 

9 

1 

1 

1 

5 

15 

1 

3 

7 

6 

25 

1 

1 

1 

7 
41 

1 

1 

1 

8 

67 
1 

3 

3 

9 

109 

1 

1 

5 

10 
117 

1 

1 

1 

[Continued on page 279. ] 
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Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney, Mathematics Department, Lock Haven State College, 
Lock Haven, Pennsylvania 17745. This department especially welcomes prob-
lems believed to be new or extending old results. Proposers should submit 
solutions or other information that will assist the editor. To facilitate their 
consideration, solutions should be submitted on separate signed sheets within 
two months after publication of the problems. 

H-169 Proposed by Francis DeKoven, Highland Park, Illinois. 

Show n2 + 1 is a prime if and only if n ^ ab + cd with ad - be = ±1 
for integers a, b , c, d. 

H-170 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia. 

Define the power sequence P to be the sequence of natural numbers 
which are perfect powers m , r > 1, arranged in increasing order of mag-
nitude. Define the first term in the sequence as Pi = 1. Then P = 1, 4, 8, 
9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, • • • . Find a formula for 
the n term, P , of the power sequence. Determine the asymptotic be-
havior of P . Define i//(n) to be the number of terms in the power sequence 

»^p and relatively prime to p . Then the consecutive values of i//(n) are 
1, 1, 3, 2, 5, 5, 4, 2, 9, 5, 8, ••• . Find a formula for i/i(n) and determine 
the behavior of this function <//. Find suitable generating series for p and 
i//(n). Finally, find a formula for the n non-power; i. e. , for the n term 
in the sequence complementary to P. Note: It may, or may not, be a good 
idea to include Pj = 1 in the sequence defined above. 

H-l 71 Proposed by Douglas Lind, Stanford University,, Stanford, California. 

Does there exist a continuous real-valued function f defined on a com-
pact interval I of the real line such that 

268 
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f f (x) n d x = F . J n 

What if we r e q u i r e f only be m e a s u r a b l e ? 

SOLUTIONS 
SUB MATRICES 

H-139 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Put 

A = n 

n+1 

n+k-1 n 

F n + 1 F n+2 

F n-te-1 
rnH4?:-l 

M = 

A mk 
A n + ( m - l ) k A n 

n+k n+2k 

A 
n+(m- l )k 
n+(m-2)k 

Evaluate det M. 
F o r m = k = 2 , the p rob lem reduces to Hr-117 (Fibonacci Qua r t e r ly , 

VoL 5, No. 2 (1967), p . 162). 

Solution by the Proposer. 

Put € = e 2 7 T i / k
9 co = e27Ti/m and define 

P = (€13) ( i , j = 0, 19 - ' 9 k - 1) , 

rs . U = (to P) ( r s s = 0, 1, • • • , m - 1) 

Also put 

M = CB J ( r } s = 0 , l 9 " M i i - l ) , 
i ~"0 
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where BQ» BJ , ' • • , B - are arbitrary square matrices of order k and 
B _, = B . Then r+m r 

MU = f E 3B
r-t

a>tSp ' = Yk- ts r s ^ a 
0) °0> P 1 , 

Since 

UMU = [ P E ^ U > P | 5 
u , t 

m-1 
E ^u(r+s) 

u=0 

J m (m I r + s) 
( o (m | r + s) , 

it follows that 

m-1 
|UMU! = n 

s=0 
p(E B ^ J P 

. l 0 m-1 
| p | 2 m n 

s=0 

m-1 
E BtoT 
t=0 

ts 

On the other hand, 

so that 

u2 = ( £ Jr+S)tv* 
) • 

| u 2 | = - . m L | 2 m m P 

Therefore, since | P | £ 0, 
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(1) |M| = 
H l - 1 

n s=0 

m-1 

E 
t=0 

Btco ts 

Now take 

t n+tk (t = 0, 1, • • • , m - 1) 

Then 

(2) 
m-1 

t=0 

ts 
m-1 

= E A 
t=0 

ts 
n+tku 

We shall limit ourselves to the case k = 2, so that 

*. • [ c Fc] • >- c : 
Then 

n F ^ F - * 
L n+2 n - l j 

/m-1 
E A 

,t=0 
n^"'8) * - [ SFn+2t+2a> S Fn+2t-

t s i 

so that 

(3) 
m-1 
£ A. 
t=0 

n+2t £0 -ts 
1-1 

^ Fn+2t+2: 

t=0 
CO ts 

fm~l 

t=0 
-,w ts.1 

n+2t-l 
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m-1 

t=0 

ts 
n+2t a) a - p 

F 

_n 1 - a 2 m „n l - f f 2 m 

1 - crco 2 s ^ 
1 - j t f |2

 S 

F - (F - F )(u 
n n+2m v n-2 n+2m-2 ; w 

(1 - <AoS)(l - pa?) 

and 

m-1 
n 

s=0 

m-1 
.ts n £ F ...oi- = 

( F n " Fn+2m) " ( F n-2 " Fn+2m-2) 

n+2t 
t=0 2 - L 2m 

It therefore follows from (l)f (2), and (3), that 

M = (-D m 

<L2xn " 2> 
(F - F ) m - (F - F ) m 

2 i n+2 n+2m+2; v n n+2m/ 

. l /xp F \^i , F F vml 
r n-1 " n+2m-2' " v n-3 * n+2m-3' 

It can be verified that when m = 2, the right member reduces to 
F 2 +6F2 i n a S r e e n i e n t w i t ^ H-117. 

The result for arbitrary k is presumably very complicated. 

SUM DIFFERENCE 

H-141 Proposed by H. T. Leonard, Jr., and V. E. Hoggatt, Jr., San Jose State College, 
San Jose, California. (Corrected Version) 

Show that 

(a) 
F 0 + 2 F 2n n 

h \ 2k + l)L2(n-
=0 ^ ' 

= L (2k+l)r 2k+l 
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(b) 
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fn-ll 
LQ - L 2n n 

k=0 
° ) 

k + II 
2k + l/-"2k+l 

273 

(c) 
LQ + L 2n n = £ 

k=0 
( ; > '2k 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Let a ^ 13 he the roots of z2 - z - 1 = 0 (a > /3) 
(b) and (c). We have 

n , [n /2] [tn-D/2] 

a) a + x)n = E nW 
i=0 ^ ' 

= E (2k)x2k+ E (2kn+iV 
k=0 \ / k=0 \ ' 

2k+l 

Since L = a + p , 1 + # = a2 (also for /3)? we add (1)9 for x = a, to (1) 
for x = jS to obtain 

(2) J2n 

[n/2] 

E / n 

k=0 
2 k | L 2 k + 

[(n-l)/2] 

E ( 2k + l ) 2k + 1 r ^ k + l 
k=0 

Since or + 0 = 1, we obtain, by addition of (1), for x = -or, to (1)? for x 

(3) 
[n/2] ^ 

L n = E I 2 k L2k 
k=0 

[(n-l)/2] 

E |2k + i r 
k=o V / 

J2k+1 -

Addition of (2) and (4) gives (c); subtraction of (3) from (2) gives (b). 
(a) We have 
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n 
,n v 1 / n \ 2(n-i) i ) = Z, I J y x 

i=0 ^ ' 

(4) (y2 + x)11 = 

i > / 2 ] 7 x [ (n-D/2] , 
;-l) 2k+l x 

k=0 N ' k=0 

Since F = (an - jS )/(c^ - jS), we subtract (4), for x = /3, from (4), for x = 
a, and divide the result by (a - p) to obtain 

[n/2]/ > [to-1'/2! 

k=0 v ' k=0 

Addition of (5), for y = a, to (5), for y = jS, simplifies to 

[ n / 2 ] , x [ (n -D/2 ] / v 
t y ^ - t t ) n - ( y ' + / 3 ) n _ V [ n \ 2(n-2k) V | n k 

a-p ~ L, U k / y *2k ^ \ 2 k + l P (5) v • - " ' „ - _ % 'H' = L U ; i y a ^ ' F , ^ £ U ^ i ) y 2 ( n _ 2 k _ 1 ) F 2 k + i 

[n /2 ] [(n-l)/2] ^ 
( 6 ) F 3n = ^ l2k)L2(n-2k)F2k + £ ' ( 2k + l ) L 2(n-2k- l ) F 2k+l 

k=0 V ' k=0 V ' 

Subtraction of (4), for x = -/3, from (4), for x = -a, gives 

n [n /2] , v [fo-D/2] 

a - ^ ? - - ^ l 2 k J y F 2 k 
k=0 \ ' 

[(n-l)/2] 
/ n \ 2(n-2k-l)1? 

2k+l 

(7) v-«:-_f-e?= E fiV**Flk- E 
k=0 

v / n \ 2(n-2k-l) 
^ 1 2k + 1 F F2 
k=0 V ' 

Addition of (7), for y = a, to (7), for y = /S, gives 

[n/2] , v [ (n- l ) /2 l . 

(8) - 2 n F n = 53 ( 2 k ) L 2 ( n - 2 k ) F 2 k " £ ( 2k + l ) L 2(n-2k- l ) F 2k+l 
k=0 X ' k=0 \ ' 
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Subtraction of (8) from (6) gives the desired result. 
Also solved by D. Jaiswal (India) and A. C. Shannon (Australia). 

ANOTHER SERIES 
H-142 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia. 

With the usual notation for Fibonacci numbers, F0 = 0, Fj =. 1, F -
= F + F 1$ show that 

wit V5 II 1 - VS I " Fn+1 ' 
k / ^ n - k 

where 

h ) = x(x - l)(x - 2) ••• (x - j + l ) / j ! 

is the usual binomial coefficient symbol. 

Solution by L. Carlitz, Duke University, Durham, North Carolina. 
Put 

R - 1 + V ^ = 3 + V 5 _ / l - ^ / * \ 2 

Then 

£ » / • £ ' " £ (f)(a"-f) 
n=0 n=0 k=0 

= £ (fVi: (n + (1
n"^)k)tn = £ ( f V a - t ) - ^ ^ 1 

k=0 N ' n=0 x ' k=0 



276 ADVANCED PROBLEMS AND SOLUTIONS [April 

Now in the formula (see Polya-Szego, Aufgaben und Lehrsatze aus der 
Analysis, Vol. 1, p. 126, No. 216) 

00 

£ IT/ ,v _ (1 - 0 x + p 
n=0 x ' 

Hw* = 2L 

where 1 - x + wx = 0, take x = (1 - t) . Then 

*— = t(l - tr = w. 

It follows that 

00 

n=0 k=0 V ' 

i - t a - xm + P = a - txi - w = i.^Dt^ 

so that 

^ V 2 / n i - 1 - t2 

n=0 x i t t 

Therefore 

M \ • ~ Fn+1 * 

ylfoo so/vec? &y D. Jaiswal (India). 



1970] ADVANCED PROBLEMS AND SOLUTIONS 277 

NEGATIVE ATTITUDE 
H-143 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tennessee. 

(Corrected version) 
Let |Hnj- be a generalized Fibonacci sequence and, by the recurrence 

relation, extend the definition to include negative subscripts. Show that 

( i ) L2j+1 L H(2j+l)k ~ H(2j+l)(n+l)H(2j+l)n " H°H-(2j+l) ' 
k=0 

(ii) L 2 j + 1 Yt H(2j+l)k " H(2j+l)(n+l) " H-(2j+l) " H° + H(2j+l)n ' 
k=0 

n 
(iii) L 2 j £ ( -D k H| j k = (-l)nH2j(n+l)H2Jn + H0H-2j • 

k=0 

and derive an expression for 

(iv) Z ( - 1 ) k H 2jk 
k=0 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Our proof uses the fact that if P(0) = R(0) and AP(n) = AR(n), then 
P(n) = R(n) (where AP(n) = P(n + 1) - P(n)). We note that H_n = (- l)n 

( H 0 L n - H n ) , so that 

( A ) H0L2j+l " H2j+1 " H-(2j+l) 

and 

(B) H0L2. - H2. + H^2j 
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Proof of (i). For n = 0, both sides of (i) are equal by (A). Using the 

A operator, it remains to show that 

( 1 ) L a H an + a = Han+2a " Han <a = * + 1} 

We recall now that 

(2) H ^ = F -H + F 'H ^ , 
m+p p-1 m p m+1 

<3) F
m + i F

m - i - F k - ( - 1 ) m • 

Thus, 

Han+a " F a - l H a n + F a H an+l ' 

and 

(4) L H _, = L F -H + F 0 H ^ , 
v a an+a a a-1 an 2a an+1 

( 5 ) Han+2a " Han = <"* + F 2 a - l ) H a n + F2aHan+l 

By (3), 

F F - F2 = -1 . 
a+1 a-1 *a x ' 

and so 

L F - = F . F , + F2 - = -1 + F2 + F2
 n = -1 + F 0 - . a a-1 a+1 a-1 a-1 a a-1 2a- l 

Thus, (4) and (5) gives (1) and (i). 
Proof of (iii). Both sides of (ii) are equal for n = 0 by (B). Using the 

A operator, it remains to show that 

( 6 ) L c H cn + c = * W * o + Hcn ( c = ai> 
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Proceeding as in the proof of (i), we obtain (6) by noting that L F - = 1 + 
F2c-r 

Proof of (ii). Identical to the proof of (i). 
Derivation of (iv)» Using (5) in my paper, "On Summation Formulas for 

Fibonacci and Lucas Numbers / ' this Quarterly, Vol. 2, No. 2, 1964, pp. 105-
107, we obtain (for x = p = - 1 , u = H , a = 2j, and d = 0) 

n 
(iv) (2 + L 2 J ) £ (~DkH2jk = ( -D n (H ( 2 j ) ( n + 1 ) + H 2 j n ) + H0 + H_2j . 

k=0 

Also solved by A. Shannon (Australia), C. Wall, and M. Yoder. 

[Continued from page 267. ] 

Here H(4> = 3H(2). But H(2e + 2) = 2@H(4). 
This leaves us with the following problems: When do Theorems 3*6 and 

3.7 hold? When does (2) hold? For the special case u ,- = u + u .,, the 
* n+1 n n-1 

theorems hold. A rather incomplete proof is given in [2, Theorem 5] . A 
complete proof is contained in [3] and will be published soon. It would be 
nice if these results could be established by the simple approach of [ l ] . Un-
til then, one must be cautious of any results in [1] . 
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BOOK REVIEW 
BROTHER ALFRED BROUSSEAU 

St. Mary's College, California 

LEONARD OF PISA 
by 

Joseph and Frances Gies 
Thomas Y. Crowell Company has just published a book entitled Leonard 

of Pisa with the sub-title, and the New Mathematics of the Middle Ages. 
The authors, faced with the well-known paucity of biographical material 

on their subject, have sought to reconstruct the picture of social life andmath-
ematical practice current in the circumstances in which Leonard of Pisalived. 
Their efforts in this direction are quite successful with the result that they 
have produced a very readable and interesting book. 

Since they were dealing with the life of a mathematician, it was neces-
sary to give some idea of his contribution to the progress of this field. This 
they have done in a manner that is devoid of forbidding technicalities and suit-
able for the general reading public. In particular, Chapter VI presents a 
clear summary of what is to be found in Liber Abaci. Chapter VII deals with 
the Fibonacci sequence which began in an incidental way in Leonard of Pisa fs 
work, but which has achieved considerable development in modern times. It 
may be noted that the Fibonacci Association is mentioned as part of the con-
tinuing history of Leonard of Pisa and in a final note the efforts of Dr. Grimm 
and Mrs. Marguerite Dunton in producing a reliable English version of Liber 
Abaci are brought out. 

Being a popular work, written by non-mathematicians, certain limita-
tions could be expected. The impression is left, for example, that Leonard of 
Pisa was almost solely responsible for introducing the Hindu-Arabic system, 
whereas there were others involved as well in this process (seeBoyer, History 
of Mathematics, John Wiley, 1968, pp. 279ff). Likewise, one could read into 
the text that there were no notable mathematicians from 1200 to 1500 (pp. 98-99). 

A couple of e r ro r s might be noted. A. H. Church (p. 82) was not the 
discoverer of phyllotaxis; he has numerous references to earlier pioneers in 
[Continued on page 323. ] 
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MOSAIC UNITS: PATTERNS IN ANCIENT MOSIACS 
RICHARD E, M. IVSOORE 

Anatomy Department, Guy's Hospital Medical School, London, S. E. I. 

Inspecting ancient floor mosaics, I noticed [ l ] that their geometric pat-
terns tend to fall into the same few size groups, despite the mosaics being in 
widely separated parts of the classical world, 

On measuring all alternative dimensions that it seemed reasonable to 
measure on each patternf and doing this for many patterns of the same size 
group 9 I obtained a histogram as in Fig* 1. 

In every size group I obtained the same basic pattern of histogram; some 
little peaks followed by a very tall peak* followed by a succession of diminish-
ing waves of small peaks. Examination of these histograms revealed that 
nearly every pattern has one dimension contributing to the very tall peak. 
This dimension can be said to be common to every pattern in the size group 
concerned. 

That virtually every pattern of a size group has one dimension of v i r -
tually (i. e. , within the spread of the very tall peak) the same length* suggests 
that this dimension was fixed by the mosaicists* Lack of many alternative di-
mensions would explain why patterns fall into size groups. 

Examining equal pattern dimensions on different mosaics, I found that 
they are not composed of equal numbers of stones. Even on the same mosaic, 
constant dimensions are often composed of varied numbers of stones* Mosai-
cists fixing dimensions by measurement, rather than by counting out stones, 
would explain this, 

Measuring (with a class interval of 1 millimeter) 121265 dimensions of 
patterns that had apparently been originally fixed by mosaicists1 measure-
ments , I obtained a frequency distribution as in Figure 2* Measuring more 
patterns, to a total of more than 310000 pattern dimensions, I found essentially 
the same distribution; the very tall peaks grew much taller, whilst some extra* 
but minute, peaks appeared,, From the distribution (Fige 2), it is clear that 
ancient floor mosaic geometric patterns are remarkably few different absolute 
sizes* Can we account for i t? 

281 
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130-i class interval 0-1cm 

120H 

110 

100 

90-j 

80 

70 

60H 
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CO 

7-05 8-05 9-05 10-05 11-05 12-05 13-05 14-05 15-05cms 
THE 397 DIFFERENT DIMENSIONS OF 
266 PATTERNS OF THE SAME SIZE GROUP 

(every pattern has one dimension contributing to the very ta l l peak) 

Figure 1 
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In the frequency distribution (Fig. 2), there are only 10 peaks higher 
than 1000 cases. For purposes of analysis, I call these major peaks (labelled 
B, C, D, • • • , Fig. 2). Many of the remaining minor peaks are so small that 
they have to be shown on an enlarged scale — lower part of Fig. 2. 

Peaks occurring at twice or three times the length represented by an-
other peak may owe their existence to just this, i. e. , mosaicists having used 
two or three times a measuring unit, the latter represented by the "basic" 
peak. Many of the observed peaks exhibit this property. That they arose as 
being multiples of a more basic unit would be reinforced if peaks which are 
multiples of another are small peaks, whilst the peak of which they are a mul-
tiple is a much higher peak. Many of the minor peaks lie at lengths that are 
whole multiples of the lengths represented by the major peaks. I regard these 
as probably having arisen in this way (marked accordingly, Fig. 2). 

The values of many ancient standard units of length have come down to 
us , so it is possible to see whether any observed peaks coincide with known 
ancient units. Some do, but surprisingly, only a few minor peaks agree with 
known standard units (marked "s u 1," Fig. 2). 

We are now left with the major peaks and a few minor ones. Some of the 
latter are caused by me measuring pattern dimensions which happen to also 
be the widths of single mosaic stones (marked with an asterisk, Fig. 2). The 
remaining minor peaks (with the exception of the one at 1.2 cm) have the com-
mon property of lying adjacent to one or other of the major peaks (two lie ad-
jacent to one of the tallest minor peaks). Identification of the pattern dimen-
sions that these minor peaks (marked "f,,T Fig. 2) represent, shows that they 
account for virtually every case of the few instances where I was unable to de-
cide which of two alternative measurements was the one I should measure, in 
the sense of trying to measure the distance most likely to have been set down 
by measurement by the mosaicists. One of these two alternatives must be 
wrong, in the sense that they cannot both be right. In all but two cases, the 
alternative measurement lies in the adjacent major peak. That it should coin-
cide with the dimension that the majority of pattern sizes exhibit, is reason to 
consider this value as the true one. On the other hand, we could reject both 
alternative measurements. It will not affect the results , for they account for 
less than 0.85 percent of the observations. 
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I find unusually wide stones are often associated [2] with distortion of the 
arrangement of neighboring stones* Construction can be deduced to have pro-
ceeded from the unusual stone through the area it distorts. Making maps of 
such effects leads me to think [2] that mosaics were normally started at their 
center, and constructed progressively outwards from it. 

Assigning imperfections in mosaics values on a numerical scale of in-
creasing imperfection [2] usually yields a map as in Figure 3. Assuming im-
perfections increase as construction progresses , this again indicates that 
construction was centrifugal, but also that it was fastest in the four axial di-
rections (A, B, C, D, Fig. 3). 

Consequently, the first parts of patterns to be reached in construction 
would be their parts nearest to the mosaic center (their innermost r im, for 
patterns centered on the mosaic center) and the first of these parts to be 
reached will be the part lying on the mosaic axis. Constructional measure-
ments would thus presumably have been made primarily in the mosaic axes 
and to the inner r ims of patterns. 

Figure 3 
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That the ancients usually proceeded like this is supported by the typical 
shape of the histogram as in Fig. 1. The dimension I deduce as being the one 
that the mosaicists made (because it l ies in the very tall peak (Fig. 1)), is also 
usually the dimension that I had measured to the inner r im of the pattern. The 
other alternative dimensions of each pattern, in the vast majority of cases , all 
lie to the right of this tall peak (Fig. 1). These, representing greater lengths, 
are those I measured mostly to outer r ims of patterns. The rari ty of cases 
where the mosaicists1 measurement was apparently not to the inner r im of the 
pattern, is shown by the scarcity of observations to the left of the very tall 
peak (Fig. 1). 

The crests of the waves of peaks following the very tall peak (Fig. 1) lie 
at intervals which agree with the lengths represented by the tall peak in each 
of the smaller size groups of patterns. Consequently, since these crests are 
caused by including the pattern "thickness" in the measurement, this reveals 
that pattern thicknesses were often also fixed in terms of the same units as 
were used to fix the sizes of the smaller patterns. 

Resuming analysis of Fig. 2, we are left with the major peaks and a 
minor peak at 1.2 cm. The modal values of the major peaks are: 2.4, 3.6, 
6.0, 9.6, 15.6, 21.6, 25.1, 40.7, 65.8, and 106.5 cm, respectively. Of the 
310000 pattern dimensions, 89% lie within ±3 standard deviations (a = 0 . 1 3 cm 
for each major peak) of these values. (A further 9% lie at whole multiples of 
these values. Of the remaining 2%, only approximately 1% can be identified 
with known standard units of length.) 

Presumably we can regard these ten values, responsible for 89% of the 
observed lengths, as the units that were marked on the rulers which Vitruvius 
(first century B.C.) tells us [3] that mosaicists "accurately used." I call 
these values mosaic units. 

DETERMINATION OF MORE ACCURATE VALUES FOR MOSAIC UNITS 
That it is right to regard mosaic units as a set, is suggested by them 

lying in a distinct series (ignoring 21.6 cm); each is virtually the sum of the 
preceding two. On this basis , we might expect, by extrapolation, larger pat-
tern sizes of 172.8, 279.6, and 452.4 cm. I find that the typical pattern sizes 
greater than 106.5 cm do occur very nearly at these distances, but fall pro-
gressively slightly short of these expected values (Fig. 4). 
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Observed 
modal value 

| 1-2 cm 

I 2-4 
3-6 
6-0 
9-6 

15-6 
1 21-6 

25-1 
! 40-7 

65-8 
106-5 

f 172-3 

278-9 
451-3 
730-2 

~1180-3 
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k = 1-2cm 

1-2 cm 
2-4 
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6-0 
9-6 

15-6 
„ 

25-2 

40-8 
66-0 

106-8 
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452-4 
732-0 : 

1184-4 
— 
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0 cm 
0 
0 
0 
0 
0 
-

0-1 
0-1 
0-2 
0-3 
0-5 
0-7 
1-1 
1-8 

~ 4 - 1 
— 

Number 
of cases 

1313 
5031 
6298 

13970 
15231 
16150 
10668 
14617 
12785 

5861 
3256 
1553 

426 
485 
144 
>10 

— 

Relative 
reliability 
of mode 

x4 I 
x7 
xB 

x 12 
x 12 
x13 
x10 
x 12 1 
x 11 
x8 
x6 
x4 J 
x2 
x3 

unity | 
- 1 
— 

Figure 4 
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Unfortunately, very large patterns are r a re , for there are few mosaics big 
enough to exhibit them* I do not yet have sufficient observations to confidently 
report a value for the observed pattern size corresponding to the expectation 
of 1184.4 cm, but an approximate observed value is 118083 cm. 

The two smallest lengths represented by major peaks are 3.6 and 2,4 cm. 
Extrapolating the series in this direction, we obtain 2.6 - 2.4 = 1.2 cm. This 
prediction is confirmed by the minor peak at 1.2 cm. Attempting to extrapo-
late again, we get 2.4 - 1.2 = 1.2 cm, demonstrating that 1.2 cm can be r e -
garded as the basis of the set of mosaic units. 

U mosaic units were in fact each the sum of the preceding two, that hypo-
thetical values based on a value of 1.2 cm for the first unit progressively ex-
ceed the longer observed lengths by slightly greater amounts (Fig. 4) suggests 
that the true starting value is slightly less than 1.2 cm. The value of the first 
mosaic unit (M^) in the series M = M - +M 0 which yields values with 

X X—X X—a 
the best fit to the observations can be determined as follows. 

If each unit is the sum of the preceding two, the series can be expressed 
by the Fibonacci numbers, taking the first value as unity. To give values in a 
particular system of measure, I introduce a constant k equal to the dimension 
of the first value in the units of measure desired. A generating relation for 
mosaic units is therefore: 

The expression in square brackets yielding Fibonacci numbers by successive 
substitution of integers 1, 2, 3, ••• . for x; and y, the value of the x 
mosaic unit, assumes the units of measure of k. 

The observed modal mid-interval value of the first mosaic unit is 1.2 cm. 
Its true value probably lies somewhere in the range of this modal value: 1.15 
-**1.25 cm caused by the class interval of 0.1 cm. 

From Eq. (1), division of each observed mosaic unit by its pertinent 
Fibonacci number gives a value for k. The larger the value that this is done 
for, the more accurate the result. For the first six mosaic units k = 1.2. 
For units 25.1, 40,7, and 65.8 cm, k begins to be slightly less than 1.2, and 
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for the five units bigger than 65,8 cm, k = 1.197 cm for each* It thus appears 
that k is less than 1.2 cm, probably about 1.197 cm. 

Hypothetical values based on 1.197 are shown in Figure 5. Also shown 
are these values corrected to the nearest whole millimeter, so as to bring 
them to a form comparable with the observations (class interval 1 mm). In all 
but one case (Fig. 5), values based on 1.197 cm match the observations. 

Trying k = 1.196 cm and k = 1.198 cm, in both cases the resulting 
theoretical values for mosaic units progressively diverge from the observed 
values. Moreover (Figure 6), they diverge in an approximately symmetrical 
way, indicating that 1.197 cm represents the best value (in cms, to three places 
of decimals) for k. 

A value for k yielding values agreeing with all the observed mosaic 
units is impossible. Taking k = 1.197 cm gives values fitting all observations 
(ignoring 21.6 cm) except 172.3 cm, for which the theoretical value is 172.36 cm 
(= 172.4 cm). The smallest change in 172.368 cm needed to make it fall into 
the same class interval as the observed value (172.3 cm) is 0.024 cm. The 
Fibonacci number for this unit is 144. Thus the necessary change in k is 
(0.024/144) cm = 0.0001666 cm. This gives anew set of hypothetical values 
for mosaic units, but whilst fitting the observation 172*3 cm, it begins to di-
verge from the observations at the 14th and 15th mosaic unit (Fig. 5). 

If the first mosaic unit was 1.197cmlong, it explains why some observed 
mid-interval values appear to be only approximately the sum of the preceding 
two. For example, we have the observed values 9.6, 15.6, 25.1 cm, but 9.6 + 
15.6 = 25.2, not 25.1. However, based on 1.197 cm, we have 9.576 + 15.561 
= 25.137 which is exact. Rounding each to the nearest whole millimeter 
(which is the effect of the class interval of 1 mm), we get 

9.576 (s 9.6) + 15.561 (= 15.6) = 25.137 (B 25.1) 

which explains this. 
We might expect a similar effect in pattern sizes that are multiples of 

others. In some cases, this is so; for example, a minor peak occurs (Fig. 2) 
with modal value 50.3 cm. This could be caused by use of 2x unit 25.1 = 
50.2 cm. If the true value of the eighth mosaic unit is 25.137 cm, we get 
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2 x 25.137 = 50,274 = 50.3 cm, matching the observed value. A minor peak 
occurs at 75.6 cm, but 3 x 25.1 = 75.3, and 3 x 25.137 = 75.4. Here, the ob-
servation slightLy exceeds both theoretical values. 

Small peaks at multiples of unit 9.6 cm occur (Fig. 2). However (Fig. 7) 
the observed values progressively increase beyond the theoretical values, 
taking the 5th mosaic unit as 9.576 cm. Although the observed values are 
fitted (Fig. 7) by values based on the assumption that this unit measures exact-
ly 9.6 cm, this does not necessarily mean that mosaic units were based on 
1.2 cm rather than 1.197 cm. If values that are multiples of others were 
measured out by repeating measurement of the basic unit the desired number 
of t imes, greater e r ror would tend to accompany greater multiples. This 
e r ror would tend mostly to add to the intended length (the observed condition) 
if rulers were butted end to end to achieve it. Providing rulers are not dis-
placed too much sideways, and as they are unlikely to be compressable, e r ro rs 
will tend to add to the intended value rather than reduce it. 

Lack of symmetry of some peaks might be expected if the first unit was 
1.197 cm long. For example, in the case of the 6th mosaic unit, the observed 
peak has a modal value of 15.6 cm. Its theoretical value based on 1.197 cm is 
15.561 cm. Although this l ies within the ±0.05 cm range of the observed modal 
mid-interval, it l ies very much to the left of the mid-interval (-0.04 cm). We 
might expect that the observations would form an asymmetrical peak, more 
values occurring in the left-hand half of the peak. I detect (Fig. 8) no clear 
tendency for this effect in the present data. 

WHY WERE MOSAIC UNITS USED? 
The ancient names for some everyday units of length which refer to 

finger, knuckle, palm, handspan, handlength, e tc . , suggest that people once 
actually used their limbs to measure things. Some tradesmen still measure 
out yards by the tip of their nose to their sideways stretched fist. According 
to Vitruvius [5], "Besides, the ancients took from the members of the human 
body the proportional (?) dimensions needed in all constructions, finger, palm, 
foot, cubit." Some [6]trace this back to Plato in the Theatus, nMan is the 
measure of all things. " 

If mosai cists used their fingers, hands, e t c . , for measuring out their 
patterns, would this give r ise to the observed situation? Whilst it might cause 
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patterns to fall into size groups, the variation between, say, the handlength on 
different people is far [4] in excess of the range of distances contributing to a 
typical mosaic pattern size» 

However9 the variation would be much reduced if, instead of each mosa-
icist using his own hand length, if each used a ruler calibrated from one single 
man. Slight support for this exists in that limb dimensions do roughly fit mo-
saic units. For example, my own approximate dimensions are as follows: First 
joint of index finger 2.5, first joint of thumb 3.5, thumb length 6.0, length of 
index finger 9.5, the "spithama" (tip of index finger to tip of thumb spread 
wide) 15.5, hand span 21.5, foot 25.0, "inner cubit" (tip of index finger to inner 
bend of bent elbow) 40.0, arm length withfist clenched 66.0 cms, respectively. 

Ancient units of length with anthropormorphic names, however, measure 
distances less coincident with mosaic units than this. For example, a typical 
Greek standard span is about 23*0 cm. Roman and Greek standard cubits 
mostly lie between 42.35 cm [7] and 46.000 cm [8], and some Hebrew cubits 
lie outside this range. Egyptian and Sumerian cubits are mostly longer; there 
is even a Chino-Sumerian cubit of 74.40 cm! 

In discussing why the ancients chose to so consistently make their mo-
saic patterns one or other of the set of mosaic units, it might be useful to ex-
press mosaic units in ancient units of length rather than in a modern system. 
Comparing 6646 values derived as whole multiples and likely fractions of so 
ancient units of length possibly pertinent to the mosaic craft, I find very few 
mosaic units are equal to a whole multiple (or multiple plus likely fraction) of 
a known standard unit. The only single standard unit which yields more than 
about two mosaic units appears to be the Greek finger of 1.92 cm [9], and this 
only fits five of the eleven mosaic units (Fig. 9). 

However, expressing the mosaic units (ignoring 21.6 cm) in terms of 
this Greek finger yields (to the nearest whole number) integers which are the 
actual Fibonacci numbers up to unit 65.8 cm (Fig. 10). This could be signifi-
cant, for expressing mosaic units in modern units produces integers (Fig. 10) 
lacking this property. Neither (Fig. 10) does the Roman digit from most 
Roman feet fit so well. 

Measuring in centimeters does, however, bring out the relationship 10 x 
unit 3.6 cm = 6 x unit 6*0 cm. This relation could be significant, for sexages-
imal relations are common in ancient metrology (some effects of which are 
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still with us , e. g . , division of 1° into 60 min. of arc). However, that 1.197 = 
^W can be dismissed as significant, for it is a result of using centimeters. 
Also the otherwise attractive relation that a right angle triangle of sides 10 and 
6 has a hypotenuse of just under 12. 

Translating Vitravius? next remarks , we learn that, "The Ancients 
grouped these body dimensions into the perfect number called teleon. They 
decided on the number ten as perfect' • • . But mathematicians, in disagree-
ment, say the number six is perfect* • •. Later they realized both six and ten 
are perfect, and they put them together, making the most perfect number 
sixteen- • •.?f As it happens, 16 x unit 6.0 cm = 10 x unit 9.6 cm. 

Dr. George Ledin, J r . has extracted [10] Fibonacci numbers from mo-
saic units by dividing the observed values in centimeters by 1.19, obtaining 
integer 18 from unit 21.6 cm. He has found [10] that the unit 21.6 cm, which 
is ffoddM in the sense that all the others are directly related to Fibonacci num-
bers , can itself be related to the Fibonacci ser ies , for 18 is a term in the 
Lucas series. Although multiplying 1.197 cm by 18 gives 21.5, not 21.6 cm as 
observed, adding unit 5.985 cm to unit 15.561 gives the same result. 

Ledin [10] draws attention to the connection: mosaic units —• Fibonacci 
numbers—>the so-called "golden section." Firm evidence that the ancients 
knew, and regarded as special, the "golden" ratio 1:1.618»»« is provided by 
Euclid's Elements Book 6, Definition 3 and Proposition 30. But did the an-
cients know the Fibonacci ser ies? D'Arcy Thompson has said [11], n . . . there 
is no account of it, nor the least allusion to it, in all the history of Greek 
ma thema t i c s . . . , " but also [11], "It is quite inconceivable that the Greeks 
should have been unacquainted with so simple, so interesting, and so important 
a series; so clearly connected with, so similar in its properties to, that table 
of side and diagonal numbers which they knew familiarly. " 

If the ancients did use mosaic units because of their connection with 
1:1.618, it seems to imply that they knew the Fibonacci series. If this could 
be shown to be their reason, we would apparently have unique evidence of 
knowledge of the Fibonacci numbers (F ) before Leonardo of Pisa. It would 
also mean that the knowledge 

Fx+1 lim - # ^ i = 1.618 . . . 
x -* oo F„ 
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existed before Kepler, who is apparently [12 ] regarded as the first to know it, 
Simply because written record of the series 1, 1, 2, 3, 5, 8, ••• has not 
come down to us from the Greeks of course does not mean that they did not 
know it. A dramatic example is the recent discovery [13 ] of the unexpected 
ancient Greek computing mechanism* complete with dials and gearing, to which 
no known allusion had reached us either,, 

The ratio between successive pairs of mosaic units greater than the pair 
6,0:9*6 is close to 1:1,616 (ignoring 21,6 cm). The ratio 6.0:9.6 is 1:1.600, 
The ratios for the smaller units are 1:1.6, 1:1.5, and 1:2. Had the mosaicists 
invoked the ratio 1:1.618 (without the Fibonacci series) we might expect their 
units measuring less than the pair 9.6:15.6 cm to exhibit the 1:1.618 ratio, 
Their smaller units would then measure 5.993, 3.667, 2.666, 1.648 cm, r e -
spectively. As such a series can be extrapolated indefinitely, we might expect 
another unit at 1.002 cm, another at 0.619 cm, and so on. However, the ob-
served frequency distribution of pattern sizes does not support this idea, 

Alternatively, if the ancients simply wanted units each the sum of the 
preceding two, and wanted this in order to invoke the ratio 1:1,618, there is 
no need for the units to be the lengths I call mosaic units. Consider the gen-
eral series U n + 2 = U n + 1 + Un-

Un+2 " V l " Un = °< 

Put U = Atn where A and t are any two constants. Then 
n J 

A t n + 2 - At n + 1 - Atn = 0. 

t2 - t - 1 = 0 (t ?* 0) . 

So 

t - i * v i - M ) = i ±\/5 
1 2 2 

Therefore, 
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where a and b are determined by the initial conditions; the values of the 
first two terms. 

lim TT - -\(H^)n-(H^r 
Since 

o < li-^Vl < i , 

then 

M^f -' 
Thus, by simplification, 

l l m ^ + 1 = l+^L = 
n 

Thus, very many different sets of units could have been used in mosaic con-
struction, yet all possessing a common property of the ratio between succes-
sive units approaching 1:1*618. 

As it i s , the consistent use of a particular set of absolute lengths (mo-
saic units) apparently throughout the classical world from about 400 B.C. to 
530 A. D. (the limits of my observations) could suggest some particular need. 
Could it be a practical matter? 

Pouring cleaned ancient mosaic stones (given to me by the Italian govern-
ment and lent by the British Museum for the purpose) into a machine I made to 
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pack stones in adjacent rows in the manner of a mosaic, a strip of mosaic was 
formed with stones in random sequence. Inspection of successively formed 
machine made mosaics revealed [14] a tendency for stones in adjacent rows to 
periodically align transversely across the rows (Fig* 11). 

Classical floor mosaicists apparently [2 ] , [15], [16] normally laid 
their stones without specially selecting them for size, or shaping them to sui t 
It is possible that they found this alignment phenomenon for themselves, and 
from then on took advantage of i t by making their pattern sizes which coincide 
with the tendency for alignments, thus causing less erratic r ims to their pat-
terns (and for no extra effort),, 

That the ancients may have noticed alignments is made more probable by 
the existence of alignments [14] in unpatterned ancient mosaics (Fig. 11), 
Alternatively, they could simply have noticed that their patterns often turned 
out most regular when made certain sizes, and from then on intentionally made 
patterns these sizes, without noticing the alignments as such. 

Measurements I made of the distances between alignments in intact un-
patterned ancient mosaics largely coincide [14] with the typical intervals be-
tween alignments in my machine-made mosaics. These, in turn, agree [14] 
with the typical pattern sizes — mosaic units. 

I find many mosaic patterns lie in sequence such that their dimensions 
lie in the same sequence as the units would lie if marked in ascending order 
on a ruler (Fig. 12). It seems likely that mosaicists might notice, even if 
they did not know beforehand, that the distance between two adjacent calibra-
tions on the ruler also measures one of the units in the same set. From this, 
it would seem a short step to perceiving that each unit (except 21.6 cm) is the 
sum of the preceding two. If they regarded the first unit as unity, and ignored 
unit 21.6 cm, they would have arrived at the Fibonacci series empirically. 

The liklihood of the Fibonacci properties of mosaic units being originally 
intentional is linked with whether it is correct to regard unit 21.6 cm as sec-
ondary, thus leaving the units possessing Fibonacci properties. In the sense 
that 21.6 cm can be expressed in terms of the other units (6.0 + 15.6 cm), 
21.6 cm does seem secondary* 

On the ruler (Fig. 13A) mosaic unit 21.6 cm is symmetrical with 9.6 cm 
about unit 15.6 cm, in the same way that 25.1cm is symmetrical about 15.6 cm 
with 6.0 cm. The most frequent pattern sizes I have found that are not single 
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**/ 25*1 cm L Alignment 

Figure 11 
A. Typical ancient mosaic pattern (Markets of Trajan, Rome). Pattern di-

mension agrees with mosaic unit 2501 cm. 
B. Typical pair of alignments in an intact Roman mosaic (Aldhorough, England). 

Alignment interval agrees with mosaic unit 25.1 cm. 
C. Typical alignment which occurred as a packing pehnomenon among loose 

ancient mosaic stones packed in rows by machine. Distance of alignment 
from starting place of aggregation agrees with mosaic unit 25.1 cm. 
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mosaic unit dimensions are 12.0, 50.3, 31,2, and 7.2 cm, respectively. They 
all possess similar symmetrical properties (Fig. 13, B-E). 

A V2"relationship is known [17] between the Royal cubit of Herodotus and 
the Egyptian remen. A square of side 21.6 cm has a diagonal of 30.55 cm 
(the modern English foot is 30.48 cm). Many ancient standard feet are known, 
most varying between the 29.3 cm Roman foot [18] to a foot used in Roman 
Europe and elsewhere of 33.5 cm [7], A typical value to the nearest whole 
millimeter is 30.8 cm for the Roman foot and 30.6 cm for the Greek. The 
latter fits this diagonal of 30.6 cm. That again Greek measure fits better than 
Roman would fit in with the mosaic craft being passed from the Greeks to the 
Romans. 

However, the value of 21.6 cm occurred, by natural causes, and about 
as frequently [14] as 6.0, 9.6, 15.6, and 25.1 cm in the form of the interval 
between alignments in both intact ancient mosaics and in my experimentally 
produced mosaics. From this point of view it seems as basic as the other 
values. 

That the pattern sizes tend to be the same few lengths for so long a per-
iod (1000 years) and over such a geographic extent, seems to me to indicate a 
practical reason rather than common subscription to some aesthetic. While 
aesthetic principles were apparently invoked in temple construction, it is less 
likely that they would be "debased" to the level of crude floor covering. The 
majority of mosaics in the present study are very humble, rife with imperfec-
tions and even e r rors . Even now, when they have the extra quality of "ancient" 
to recommend them, many are regarded as not worth bothering about, allowed 
to fall to pieces, or are openly permitted to be damaged. 

In contrast, original mistakes were not normally allowed to remain in 
the kind of work to which aesthetic principles were applied; witness the r e -
markable perfection of Greek temples* According to Vitruvius [5], " . . . the 
ancients have, in their works, determined that each part be an aliquot (?) 
part of the total plan.. „ especially in temples, wherein faults as well as beau-
ties will last for all time. " The latter is connected with ancient concern over 
the area contained by a ground plan. For example, Plutarch [19] calls the 
Parthanon hecatompedon (i. e. , the "hundred-footed"). The word templum (a 
temple) originally meant [20] a space that could be, or i s , enclosed. Possibly 
this concern with the area of a floor came from concern over the area (also 
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called "templum") within which the flight of birds was watched when looking for 
omens to guide decisions., Fixing the boundary of this area would be crucial to 
a believer, it must contain any relevant flight that might occur, but must not 
be too big so as to make proper watching impossible. The notion of an "ideal" 
also presents itself. 

Standardization of building material dimensions [21] is another factor 
leading to floor areas being defined in whole numbers of units. The latter is 
used by metrologists in deducing lengths of some ancient standard units. 
Flinders Petrie found [7] an average of only about 5mm "original" e r ror per 
nieter in ancient measured lengths. 

That so many floor mosaics do not fit their floor area suggests lack of 
relationship between the units used in their construction and the normal stan-
dard units fixing the floor area. That "special" units should be used for m o -
saics would fit the contrast [22] at one time between the cubit used for everyday 
life and the special cubit reserved for building. 

Given a stock of mosaic stones of very high constancy of size (a most 
unusual condition for ancient mosaic stones) and they are of side length equal 
to the smallest mosaic unit, one can construct the other mosaic units as fol-
lows (Fig. 14A). Set down one stone. Its side gives alength of 1.2 cm. Place 
another next to it. We have a new dimension of 2.4 cm. Adding the latter 
stone was equivalent to squaring the original length, for taking the side length 
of the first stone as unity. I2 = 1, so we added one stone, thereby obtaining 
the new length of two stones. Square this new dimension (22) adding four stones 
in a square. We obtain a new length of 2 + 1 stones = 3.6 cm. Square this 
new dimension, and 6.0 emerges. Continue this process, and all the mosaic 
units (except 21.6 cm) are formed. By simply adding stones until a square is 
formed on each new dimension, there is no need even to count stones. 

However, if, instead of moving around the starting stone, Dr. Michael 
Whippman of Pennsylvania University has pointed out to me that moving from 
side to side of the growing diagonal of the overall construction, as in his figure 
(Fig. 14B), the value 21.6 cm can also be obtained. He suggests that the mo-
saicists1 ruler could have been of this "flat plate" form. 

Dr. Wayne Cole of Abbott Laboratories, Illinois, has suggested to me 
that if the mosaicists used a tool of this form, it need not be bigger than unit 
40.7 cm. When the need ar ises , unit 65.8 cm can be obtained by using first 
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one edge of the tool and then the other (40.7 + 25.1 = 65.8 cm). If unit 106.5 cm 
is required, using the long edge twice and then the other fulfills this (40.7 + 
40.7 + 25.1 = 106.5 cm). He also suggests that such a tool could double as a 
square. 

Ancient rulers , often calibrated in inadequately examined units, have 
come dowi to us. It is possible that an original mosaicists1 ruler may still 
exist. If one does come to light, it might indicate how mosaic units arose. For 
example, many ancient rulers are square sectioned sticks with saw cuts for 
calibrations. On some, the cuts run around all four faces of the ruler for the 
prime units and only on one or two faces for other values. If the unit 21.6 cm 
was differentiated in this way, its secondary nature would seem established, 
emphasizing the Fibonacci properties of the others. 

In 1632, A. Bosio [23] gave an engraving showing a Roman tomb on which 
is depicted two kinds of dividers, a peg and line, a level, a chisel, a punch, a 
sharp bladed hammer, a square, and a ruler (Fig. 15). The calibrations on 
rulers shown on other monuments have been found to be accurate [24]. In the 
engraving, the two smallest divisions on the ruler , each marked by a dot, are 
equal, and the interval marked nRTT is equal to the unmarked interval at the 
extreme right. The interval marked ndot A dot" is equal to interval "R" plus 
the two intervals marked with dots. All these intervals can be constructed 
accordingly, providing we can fix the position for the second calibration from 
the right, and the size of the interval marked ndot.! t 

Taking the unmarked interval as unity, measurement shows that the in-
terval marked "dot" is 0.618 long. Thus "dot" corresponds to l / r . "R" cor-
responds to 1 + (2/r), where r is 1:1.618. 

If the engraving can be relied on, this is a case where the ancients 
apparently intentionally used units with 1:1.618 inter-relationships. The pro-
portions 

can be fitted by 21.6:15:6:6.0 cm. Thus the calibrations onBosio's ruler could 
be these three mosaic units,, I hope to find whether this tomb-face still exists, 
and whether this ruler does match mosaic units. 
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The origin of the craft of mosaic is unknown to us , so it is hard to know 
what ideas and knowledge were current during the development of mosaic tech-
niques. From the point of view of patterns sizes, I find the oldest (400 B. C.) 
known Greek mosaics exhibit the same dimensions as were apparently custom-
arily used throughout the Greek and Roman world thereafter. The floor mosaic 
patterns at Til Barsib and Arslan Tash (c. 900 B.C.) in Syria, from the infor-
mation available, appear to be also mosaic unit sizes. There is a distinctlack 
of primative mosaics in which we might see the mosaic unit phenomenon grad-
ually developing. This could suggest that there are mosaics older than the 
earliest we at present know, but, if they were of the type, where pebbles are 
simply placed in earth, they have probably perished. 
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LINEAR RECURSION RELATIONS - . LESSON EIGHT 
ASYMPTOTIC RATIOS IN RECURSION RELATIONS 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 

One of the marvels associated with Fibonacci sequences is the fact that 
for all such sequences the limit of the ratio T - / T as n approaches infin-
ity is the Golden Section Katio 

1 + V5~ 

The following table shows the ratio of successive terms for the Fibonacci 
sequence 2, 5, 7, 12, 19, 31, 8 o a . 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

T 
n 

2 
5 
7 
12 
19 
31 
50 
81 
131 
212 
343 
555 
898 
1453 
2351 
3804 
6155 
9959 
16114 

T /T -
n n-1 

1.4000000 
1.7142857 
1.5833333 
1.6315789 
1.6129032 
1.6200000 
1.6172839 
1.6183206 
1.6179245 
1.6180758 
1.6180180 
1.6180400 
1.6180316 
1.6180348 
1.6180336 
1.6180341 
1.6180339 

But is this indeed so remarkable ? There are many other sequences which 
have limiting ratios and likewise some in which there is no limit. For exam-
ple, in the Tribonacci Sequence: 1, 2, 4, 7, 13, ••• where the last three 
terms are added together to get the next term, successive ratios are as shown 
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te rms are added together to get the next term successive ratios are as shown 
in the following table. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

T 
n 
1 
2 
4 
7 
13 
24 
44 
81 
149 
274 
504 
927 
1705 

T /T -
n ' n-1 

1.7500000 
1.8571428 
1.8461538 
1.8333333 
1.8409090 
1.8395061 
1.8389261 
1.8394160 
1.8392857 
1.8392664 

A recursion relation: T - = 3T - 4T - yields a sequence which does 
not have a limiting ratio. For example, if FA = 5, T2 = 9, the ratios are as 
shown in the following table. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

T n 
5 
9 
7 

-15 
-73 
-159 
-185 
81 
983 
2625 
3943 
1329 

-11785 

T /T n n' n-1 

0.7777777 
-2.1428571 
4.8666666 
2.1780821 
1.1635220 
-0.4378378 
12.1358024 
2.6703967 
1.5020952 
0.3370530 
-8.8675696 

Clearly, several questions emerge: 

1. Which sequences have a limiting ratio? 
2. Which sequences do not have a limiting ratio? 
3. On what does the limiting ratio depend? 
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These questions can be answered conveniently on the basis of expressing 
T n in terms of the roots of the auxiliary equation 

THE FIBONACCI SEQUENCE 

Consider the sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, e 9 8 . Here, 

n n 
F = r " S 

where 

and 

The 

n vs~ 

r = 1±V^ = L61803 

s = L^Xl = -0.61803 . . . 

n n 
lim F /F - = — ~ " s , 

n -^oo n n-1 n-1 n-1 

vSt Dividing the terms of numerator and denominator by the (n-1) power of r , 
this ratio takes the form 

lim r - sts/r)*1"1 . 
n -°° 1 - (s/vf-1 

st Since the absolute value of s / r is less than 1, the limit of the (n-1) power 
of this ratio as n goes to infinity is zero. Thus 

lim F / F - = r • n-*oo n ' n-1 
' A similar analysis can be made for any Fibonacci sequence,, We have 

found that for such a sequence, 

T = Ar11 + Bs11 . n 
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Therefore, 

Ar n + 1 + B s n + 1 
lim T , /T = A r B s 

n —> oo n+1 ' n A n , _, n 
^ ° ° Ar • + Bs 

= lim r + (B/A)s(s/r)n
 = r 

n ~* o c 1 + (B/A)(s/r)n 

One thing we can learn from this analysis is that the root with larger absolute 
value, r , dominates the root with smaller absolute value, s. 

REAL AND UNEQUAL ROOTS 
Clearly, if 

T n = Ar11 + Bs11 + Ctn • • • , 

where the roots are real and unequal and r s t • • • then the limiting ratio 
of T + 1 / T will be r . 

EQUAL AND REAL ROOTS 

If some of the roots are equal, but there is another real root which has 
the largest absolute value, this latter root will dominate to give the limiting 
ratio in the sequence. If the equal roots have the largest absolute value, then 
(consider three equal roots, r) . 

T n = (An2 + Bn + Or1 1 + Ds11 + Etn • • • . 

Therefore lim T . - /R will equal n —̂  VJQ n~rJL n 

lim U(n + l)2 + B(n + 1) + c } r n + 1 + D s n + 1 + Et n + 1 • «• 
a™°= An2 + Bn + C vn + Dsn + Etn • • • 

l i m \(n + l)2/n2 + (B/A)(n + l)/n2 + C/(An2)}r + (Ds/An2) (s/r)n • • • = r 
n ~ > 0 0 1 + B/CAn) + C/(An2) + (D/An2) (s/r)n • • • 
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Thus the dominant real root again determines the limit of the sequence 
ratio. 

COMPLEX ROOTS 

For the type of linear recursion relation we are considering in which the 
coefficients are real numbers, the complex roots of the auxiliary equation 
occur in conjugate pairs. Let the portion of T dependent on these roots be 
given by 

n , . / ,vii cr + cf(rf) s 

where c and cf are complex conjugate coefficients. Now set: 

Xi -Ai 
c = Ce l and cf = Ce 1 

r = Re and rf = Re 

where C and R are the absolute values of the complex quantities c and r , 
respectively. Then 

cr11 + c'Crt)n = C R n e ( A + n ^ + C R V ( X + n c W i 

= 2CRn cos ( k + n0) . 

If there is a real root with greater absolute value than R, this real root will 
dominate and the sequence ratio will converge. However, if R is greater 
than any of the real roots, it will dominate them. Only the cosine factor in-
volving n will not converge either directly or in ratio. Thus a sequence in 
which there is a pair of complex roots whose absolute value is greater than the 
absolute value of any of the real roots will be a sequence without a limiting 
ratio. 

A COROLLARY 

Suppose we are seeking the roots of the cubic 

x3 - 7x2 + 8x - 4 = 0 . 
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From one point of view this might be looked upon as the auxiliary equation of 
the recursion relation 

T ^ = 7T - 8T - -+ 4T 0 . n+1 n n-1 n-2 

If we then calculate the terms of a sequence obeying this relation and find that 
their ratio approaches a limit with increasing n, this limiting ratio would 
correspond to the largest real root of the cubic. In the present instance, this 
ratio comes out to be 5.7245767. 

PROBLEMS 
1. Using the ratio of successive terms of a sequence, determine the 

largest real root of the equation: x3 - 12x2 + 9x - 7 = 0. 
2. By analyzing the roots of the auxiliary equation, determine the limit-

ing ratio of successive terms in the sequences obeying the recursion relation: 
T ^ = 8T , + 3T 0 . n+1 n-1 n-2 

3. By analyzing the roots of the auxiliary equation, determine the limit-
ing ratio of successive terms of sequences having the recursion relation: 
T n + l = - 3 T n + T n - l + 8

n
T n - 2 + 4 T n - 3 ' 

4. If R = 5(-l) and S = F , what is the limiting ratio of terms of 
n n n & 

the sequence T = R + S # 
5. If 

R = 211(n2 + 3n + 5) and S = 3S - + S 0 n n n-1 n-2 
with Sj = 1, S2 = 5, find the limiting ratio of T = R + S . 

6. By analyzing the auxiliary equation, show that the recursion relation 
T n + 1 = 3 T n " T n - l + 1 0 T n - 2 

governs sequences which do not have a limiting ratio. 

Solutions to problems may be found on page 324. 



MAGIC SQUARES CONSISTING OF PRIMES IN A. P. 
EDGAR KARST 

University of Arizona, Tuscon, Arizona 

Let a be the first prime in A. P. (not necessarily positive), d the 
common difference, s the last prime in A* P . , n the number of primes in 
A. P. , and let the residue r be the smallest positive integer such that a = r 
(mod d); if we keep a constant and increase d, we may speak of a search 
limit on d, designated by a , ; if we keep d constant and increase a and s, 
we may speak of a search limit on s, designated by s . 

The standard magic square of order 3 with elements 1, 3, • • • , 9 and 
center element c = 5, may be defined as 

8 

3 

4 

1 

5 

9 

6 

7 

2 

and the standard magic square of order 4 with elements 1, 2, ••• , 16 and 
center square 

8 

9 

5 

12 

whose sum is the magic constant C = 34, may be defined as 

1 

10 

7 

16 

15 

8 

9 

2 

14 

5 

12 

3 

11 

6 

13 

A magic square consisting of primes in A. Pe is formed by letting an increas-
ing sequence of 9 or 16 primes in A. P. occupy the locations corresponding to 
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the elements 1, 2, • • • , 9 or 1, 2, • • • , 16, respectively, in the standard 
magic squares. To avoid ambiguity, let | a | < ,s . 

The disposition of the prime factors and their powers in d to achieve 
maximum n was the topic for about 140 years and is reflected in four classical 
papers by Edward Waring (1734-1798) [15, p. 379], Peter Barlow (1776-1862) 
[ 1 , p. 67], Moritz Cantor (1829-1920) [3 ] , and Artemas Martin (1835-1918) 
J 8 ] . In 1910, E. B. Escott (1868-1946) [5, p. 426 and 2, p. 221] found a 
string of 11 primes in A. P. yielding one case of almost 16 primes in A. P. 
(except for two composite elements) 

-1061 

829 

199 

2089 

1879 

409 

619 

-23.37 

1669 

-13.17 

1249 

-641 

-431 

1039 

-11 

1459 

This sequence is treated with loving care in [9, pp. 152-54] and [14]. The 
concept of magic squares consisting of primes in A. P. may be extended to 
more or less magic squares of reversible primes [4] . 

The modern period of this interesting subject starts in 1944 with a paper 
by Victor Thebault (1882-1960) [13]. In 1958, V. A. Golubev (Kouvshinovo, 
USSR) [10, p. 348 and 6, p. 120] found a string of 12 primes in A. P. yielding 
two cases of almost 16 primes in A. P . (except for two composite elements 

23143 

293413 

1 203323 

1 23.59.349 

443563 

233353 

263383 

53173 

413533 

143263 

353473 

83203 

113233 

323443[ 

173293 j 

172.1327 I 

J 53173 

I 323443 

233353 

503623 

23.59.349 

263383 

293413 

83203 

443563 

173293 

172.1327 

133233 

1432631 

353473 

203323 

413533J 

with C = 993472 and C = 1113592 . 

In 1963, V. N. Seredinskij (Moscow, USSR) [11, p. 121 and 12, p. 48] found 
a string of 14 primes in A.P. , yielding four cases of almost 16primes in A.P. 
(except for two composite elements). 
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-19.23.401 

365303 

185123 

725663 

665603 

245183 

305243 

-149.773 

605543 

65003 

485423 

-55117 

4943 

425363 

125063 

545483 

-149,773 

1 425363 

1 245183 

' 17,46219 

725663 

305243 

365303 

-55117 

665603 

125063 

545483 

4943 

65003 

485423 

185123 

605543 

with C = 1100852 and with C = 1341092, 

1 -55117 

485423 

305243 

137.22859 

17.46219 

365303 

425363 

4943 

725663 

185123 

605543 

65003 

125063 

545483 

245183 

665603 

4943 

545483 

[365303 

905843 

37,22859 

425363 

485423 

65003 

17.46219 

245183 

665603 

125063 

185123 

605543 

305243 

725663 

with C = 1581332 and C = 1821572 . 

The magnitude of the last six C could be lowered essentially, when in 1966, 
the author found a string of 10 primes in A. P. yielding one case of almost 16 
primes in A. P . (except for two composite elements) with C = 30824, and in 
1967 [7J , found a string of 12 primes in A. P. yielding the only known case (so 
far) of almost 16 primes in A. P. (except for one composite element) with C = 
857548. 

[110437 

235177 

193597 

1318337 

304477 

207457 

221317 

124297 

290617 

165877 

262897 

138157 

152017 

249037 

179737 

13.61.349 

-9619 

1 11171 

ML241 

25031 

22721 

6551 

8861 

-7309 

20411 

-379 

15791 

-4999 

-2689 

13,17.61 

1931 

23.787 

with C = 30824 and with C = 857548 . 

Time may be near to find the first entire sequence of 16 primes in A. P. 
Even more fascinating is the magic square of order 3. One is tempted 

to ask: Given any c, is there always a' magic square of 9 primes in A. P. 
belonging to this c? This question may once be answered in the positive. For 
c = 5 and 7, Golubev found 
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41 

-19 

, -7 

-43 

5 

53 

17 

29 ! 

-31 ! 

97 

-53 

| -23 

-113 

7 

127 

37 | 

67 

-83 j 

Nevertheless, the center element may not be unique, since we have also the 
magic square 

2703607 

| -1802393 

i -901193 

-3604793 

7 

3604807 

901207 j 

1802407 1 

-2703593 1 

discovered recently by Seredinskij. The author found three further magic 
squares with low c, namely 

2089 

-13841 

-6911 

-27701 

19 

27739 

6949 

13879 

-20771 

127 

1 -23 

7 

-83 

37 

157 

67 

97 

-53 

• 1327 

-773 

-353 

-1613 

67 

1747 

487 

907 

-1193 

With the increasing scarcity of pr imes, one may wonder if there exists a 
magic square of order 3 and of primes in A. Pe whose smallest element is 
greater than, say, 8 million. In 1968, the author found 10 primes in A. P, 
starting with a = 8081737, and yielding the magic squares 

[8291947 

8141797 

8171827 

8081737 

8201857 

8321977 

8231887 j 

8261917 

8111767 

8321977 

8171827 

8201857 

8111767 

8231887 

8352007 

8261917 

8291947 

8141797 ! 

Or one could ask for a magic square of order 3 and of primes in A. P . whose 
greatest element is greater than, say, 40 million. The author found recently 
9 primes in A. P . starting with 2657, ending with 49011617, and yielding the 
magic square 
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' 42885497 

1 12254897 

' 18381017 

2657 

24507137 

49011617 

30633257 j 

36759377 

6128777 

All we need for further research is a list of known results of at least 9 
primes in A. P. with headings d, r , a, c, s, n, and s (in million). Such a 
list is published in the Appendix for the first time. Compiled from the new-
est discoveries around the globe , the author will be pleased to keep them up 
to date. Two additional tables are available from the author.* 
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APPENDIX 
MULTIPLES OF d = 210, YIELDING AT LEAST 9 PRIMES IN A. P. 

d 

210 

420 

630 

840 

r 

47 

139 

149 

179 

199 

67 

193 

317 

379 

11.37 

137 

97 

163 
181 

11.47 

11.71 

(sz 

a 

-373 

3499 

10859 

-241 

-11 

-1613 

-647 

61637 

52879 

56267 

279857 

-2423 

6043 

201781 

103837 

10861 

for 8 term) 

c 

467 

4339 

11699 

599 

829 

1039 

1249 

67 

1033 

63317 

54559 

54979 

57947 

282377 

937 

9403 

205141 

107197 

14221 

z 

1307 

5179 

12539 

1439 

2089 

1747 

2713 

64997 

56659 

59627 

284897 

4297 

12763 

208501 

110557 

17581 

n 

9 

9 

9 

9 

11 

9 

9 

9 

10 

9 

9 

9 

9 
9 

9 

9 

s 
z 

0.5 

0.5 

0.5 

0.5 

1050 on next page. 
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d 
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MAGIC SQUARES CONSISTING OF PRIMES IN A. P. 

r a c z n 

443 -2707 1493 5693 9 

s z 

0.5 

1260 

1470 

1680 

11.73 

859 
11.97 

227 
11.71 
1093 
1487 

2063 7103 12143 

363949 
101027 

369829 
106907 

375709 
112787 

216947 
316621 
31333 

258527 

223667 
323341 
38053 

265247 

230387 
330061 
44773 

271967 

9 
9 
9 
9 
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0.5 

0.5 

0.5 

1890 

2100 

11.37 

487 

31.43 

1543 

13.101 

1787 

19.109 

45767 

15607 

194113 

-4127 

34913 

176087 

102871 

53327 

23167 

201673 

3433 

43313 

45413 

184487 

111271 

60887 

30727 

209233 

10993 

53813 

192887 

119671 

9 

9 

9 

9 

10 

9 

9 

0.5 

0.5 

[Continued from page 280. ] 

his works. Also, Fibonacci numbers with prime subscripts need not neces-
sarily be primes (p. 83). 

In conclusion, we have in this publication a very readable work that fills 
a much needed place in the li terature. We now have an answer to the many 
requests for information on Leonard of Pisa which come to the Fibonacci 
Association. 

Specific information regarding the book is as follows: 
Publisher: Thomas Y. Crowell Company 
Title: Leonard of Pisa and the New Mathematics of the Middle Ages 
Authors: Joseph and Frances Gies 
Illustrator: Enrico Arno 
Number of pages, 128; cover, hard; price $3.95. 



324 LINEAR RECURRENCE RELATIONS April 1970 

(Continued from p. 316 .) 

SOLUTIONS TO PROBLEMS 

1. 11.2556550 
2. The roots are 3, and 

-3 ±y1T 
2 

Limiting ratio is 3 . 
3. The roots are -2,, - 2 , r and s. Limiting ratio is -2 . 
4. The roots of the combined recursion relation will be 1, r , s. Limiting 
ratio is r . 
5. The roots of the combined recursion relation are +2, +2, +2, 

3 ± y i 3 
2 ' 

The limiting ratio is 

3 + ^ = 3.3027756 . 

6. The roots of the auxiliary equation are 2, 

1 ± V l 9 i 
2 

The absolute value of the complex roots is greater than 2. Thus the sequences 
will not have a limiting ratio. 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by 

A. P. HILLMAN 
University of New Mexico, Albuquerque, New Mexico 

Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Department of Mathematics and Statistics, Uni-
versity of New Mexico, Albuquerque, New Mexico, 87106, Each problem or 
solution should be submitted in legible form, preferably typed in double spac-
ing, on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of receipt 
of their contributions are asked to enclose self-addressed stamped postcards. 

B-184 Proposed by Bruce W. King, Adirondack Community College, Glens Falls, New 
York. 

Let the sequence { T } satisfy T + 2 = T - + T with arbitrary initial 
conditions. Let 

g(n) ~ T2 T2 , Q + 4T2 ,- T2
 l 0 &v n n+3 n+1 n+2 

Show the following: 

(i) g(n) = < ^ + 1 + T ^ + 2 ) \ 
(ii) If T is the Lucas number L , g(n) = 25F2

 + 3 . 

(See Fibonacci Quarterly Problems H-101, October, 1968, and B-160, April, 
1969.) 

B-185 Proposed by L. Carlitz, Duke University, Durham, N. Carolina. 

Show that 

L- / L = L2 - (- l)nL0 - 1 5 n ' n 2n 2n 

325 
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B-186 Proposed by L. Carlitz, Duke: University, Durham, N. Carolina. 

Show that 

LK / L = TL0 - (-1)V|2 + (-l)n25F2 . 5n ' n L 2n J x n 

(For n even, this result has been given by D. Jarden in the Fibonacci Quar-
terly, Vol. 5 (1967), p. 346.) 

B-187 Proposed by Carl Gronemeijer, Saramtic Lake, N. York 

Find positive integers x and y, with x even, such that 

(x2 + y2)(x2 + x + y2)(x2 + | x + y2) = 1,608,404 . 

B-188 Proposed by A. G, Shannon, University of Papua and New Guinea, Boroko, Papua. 

Two circles are related so that there is a trapezoid ABCD inscribed in 
one and circumscribed in the other. AB is the diameter of the larger circle 
which has center O, and AB is parallel to CD. 9 is half of angle AOD. 
Prove that sin 0 = (-1 + V3) /2 . 

B-189 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let a0 = 1, a4 = 7, and a + 2 = a -a for n :> 0. Find the last 
digit (i. e. , units digit) of a999. 

SOLUTIONS 
GENERALIZATIONS OF SECOND-ORDER RECURRENCES 

B-166 Suggested by David Zeitlin's solutions to B-148, B-149, and B-150 

Let a and b be distinct numbers, U = (a - b ) / ( a - b ) , and V = 
a + b . Establish generalizations of the formulas 

(a) F , = F L L - - - L f 1 

( 2 t n ) n n 2n ^ t - l ^ 

<b> VlLn+3 + ^ R + 1 = 5 F n F n ^ 
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of B-148 and B-149 in which one dea l s with U and V ins tead of F and 
n n n 

L . n 

Solution by C. B. A. Peck, State College, Pennsylvania. 

(a) Since U V = U„ , induction on j f rom 1 yields 

U t = V t - 1 • " V t-1 U t i ' (2 n) (2l n) (2l 3n) (2l Jn) 

which, for j = t , i s the de s i r ed extension-

^ • n+1 n+3 ^ ^ * 

2n+4 _,_ , u x n+ l / u o , 2\ , i2n+4 , = a + (ab) (fcr + a^) + b + x 9 

while 

TT TT / n , n w n+4 , n + 4 W / ,v2 
y U n U n + 4 = y ( a " b ) ( a ~ b ) / ( a " b ) 

= [ a 2 n + 4 - ( a b ) V + a*) + b 2 n + 4 ] y / ( a - b>' . 

We can take, for instance, y = (a - b)2 and 

x = -(ab)n(b4 + a4) - (ab)n + 1(b2 + a2) = - (ab) n [b 4 + a4 + ab(b2 + a 2 ) ] 

= (ab)n(a2b2 - U5) . 

Then our generalization i s , for instance , 

V n + l V n + 3 + ^ ) n [ ( a b ) 2 - U , ] = (a - b ) 2 U n U n + 4 , 

which with a = (1 + V 5 ) / 2 and b = (1 - V"5)/2? s implif ies to the Fibonacci 

c a se in (b). 

Also solved by Wray G. Brady and David Zeitlin. 
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A LUCAS INEQUALITY 

B-167 Proposed by A. G. Shannon, University of Papua and New Guinea, Boroko, Papua 

th Le t L be the n Lucas number defined by Lj = 1, L2 = 3 , and 
L ,o = L ,- + L„ for n > 1. F o r which values of n is n+Z n+ l n — 

nL _,_- > (n + 1)L ? n+l n 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

The inequality holds for n = 1 and n = 3. Let i t hold for n = k > 3. 
Then 

(k + l ) L k + 2 = (k + l ) ( L k + 1 + L k ) > ( k + l ) L k + 1 + 2 L k > (k + l ) L k + 1 + L k 

+ L k - 1 = <k + 2 > L k + l -

s ince L k > 0 and L, > L, - for k 2 3. This p roves the inequality for 

n 2 3 by mathemat ica l induction; hence i t holds for al l posi t ive in t ege r s e x -

cept 2. 

Also solved by Herta T. Freitag, Peter A. Lindstrom, C. B. A. Peck, Gerald Satlow, John 
Wessner, and the Proposer. 

AN APPLICATION O F 1/7 

B-168 Proposed by S. H. L. Kung, Jacksonville University, Jacksonville, Florida. 

Using each of s ix of the nine posit ive digi ts 1, 2 , • • • , 9 exactly once , 

form an in teger z such that each of z , 2z , 3z9 4z , 5z, and 6z contains the 

s a m e s ix digi ts once and once only. 

Solution by Warren Cheves, Littleton, North Carolina. 

The solution i s z = 142857. This was obtained a s follows: 
Obviously, the f i r s t digit of z has to be 1. O the rwise , 6z would c o n -

tain m o r e than 6 digi ts . 
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Now cons ider the l a s t digit of z. It cannot be a 1. It cannot be a 2 , 4 , 

5, 6, o r 8, because these n u m b e r s when mult ipl ied by 5, 5, 4 , 5, and 5, r e -

spect ively , produce a l a s t digit of 0. This l eaves only 3 , 7, and 9 as possible 

candidates for the l a s t digit of z. 

Cons ider 

1 

2 

3 

4 

5 

6 

7 « 7 
7 = 14 

7 = 21 

7 * 28 

7 = 35 

7 = 42 

3 = 3 
3 = 6 

3 = 9 

3 = 12 

3 = 15 
3 = 18 

1 

2 

3 

4 

5 

6 

9 = 9 

9 = 18 

9 = 27 

9 = 36 

9 = 45 

9 = 54 

h e r e , the mul t ip les of both 3 and 9 have for thei r l a s t digi ts 6 different 

n u m b e r s , none of which i s the number 1. Hence , 7 m u s t be the l a s t digit of 

z. F u r t h e r m o r e , by looking at the l a s t digits of the mul t ip les of 7 (above), we 

see that the six digi ts of z mus t be 1, 2, 4 , 5, 7, 8, with 1 being the f i r s t 

and 7 the l a s t . 

The o r d e r of these six digi ts was found mainly by t r i a l and e r r o r . I n 

o ther w o r d s , mul t ip les of different combinations of the six digi ts we re c o m -

puted until ce r ta in e l iminat ions could be made . (I did find one hint: the " 8 " 

could not appear immedia te ly af ter the M 1 M o r e l se 6z would contain m o r e than 

6 d ig i t s . ) After my t r i a l and e r r o r method, I found that z = 142857 fitted 

the r equ i r emen t s of B-168. 

Also solved by Ed and Martha Clarke, Peter A. Lindstrom, John W. Milsom, C B. A. 
Peck, and the Proposer. 

A SEQUENCE OF IDENTITIES 

B-169 Proposed by C. C Yalavigi, Government College, Mercara, India. 

P r o v e the following iden t i t i es : 

(a) 

(b) 

F n + F n - 1 + F n + 1 = 2 ( F n F n - l ~ W * 

n n - 1 n+1 ° n n - 1 n + l l n n - 1 n + 1 ; ' 
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where Fi = F 2 = 1 and F , - = F + F .,. Show that these a r e two c a s e s 1 L n+1 n n - 1 
of an infinite sequence of ident i t ies . 

Solution by L. Carlitz, Duke University, Durham, North Carolina. 

The f i r s t identi ty should r ead 

( a )
 F n + F n - 1 + F n + 1 = 2 ( F n + l " V n - 1 ) 2 • 

This follows f rom 

F 4 + F 4 - + F 4 = F 4 + F 4 + (F + F , )4 
n n - 1 n+1 n n - 1 n n - 1 

2(F4 + 2 F 3 F - + 3 F 2 F 2 . + 2F F 3 + F 4 ) n n n - 1 n n - 1 n n - 1 n - 1 

= 2(F2 + F F - + F 2 - )2 
n n n - 1 n - 1 

= 2(F2 - F F , ) . n+1 n n - 1 

S imi la r ly , to prove (b), we have 

F* - F 5 - F 5 - = (F + F - ) 5 - F 5 - F 5 -n+1 n n - 1 n n - 1 n n - 1 

= 5F F , ( F 3 + 2 F 2 F , + 2F F 2 , + F 3 - ) n n - 1 n n n - 1 n n - 1 n - 1 

= 5F F - (F + F - )(F2 + F F - + F 2 - ) n n - 1 n n - 1 n n n - 1 n - 1 

= 5F F F (F2 - F F ) . ° n n - r n + 1 l J n + 1 n n - l ; 

To get a genera l r e s u l t , we reca l l that Gauchy (see P . Bachmann, Das 

F e r m a t p r o b l e m in se ine r b i sher igen Entwickelung, B e r l i n , ; 1919, p . 31) ha s 

proven that if p i s a p r i m e > 3 , then 

(1) (x + y ) P - x P - y P = pxy(x + y)(x2 + xy + y2)f (x,y) , 

where f (x,y) i s a polynomial with in tegra l coefficients. F o r p = 1 (mod 3) 

t he r e i s the s t ronge r r e s u l t , 

(2) (x + y ) P - x P - y P = pxy(x + y)(x2 + xy + y 2 )g (x,y) , 
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where g (x,y) is a polynomial with integral coefficients. 
Substituting x = FQ, y = F ^ in (1) or (2), we get identities of the 

required kind. In particulars for p = 7, 

F7 ., - F7 - F7 = 7F F F (F2 - F F ) n+1 n n-1 n n-1 n+lv n+1 n n - l ; * 

For further results of this kind, see "Sums of Powers of Fibonacci and 
Lucas Numbers,," by L, Carlitz and J . A. H. Hunter, Fibonacci Quarterly, 
December, 1969, p. 467. 

Also solved by the Proposer. 

A PERIODIC SEQUENCE 
B170 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let the binomial coefficient I 1 be zero when m r and let 

4—A * / 

Show that S ^0 - S ^ + S = 0, and hence S l 0 = -S for n = 0, 1, n+^ n+1 n n+o n 
2, 

Solution by F. D. Parker, St. Lawrence University, Canton, New York. 

If 

then 

s ô - s • - + s = y (~i)i 
n+2 n+1 n -̂* 

j=0 
( " - ] + 2 ) - ( " - ] + i ) + ( - i i ; 
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But 
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( n - r 2 ) - ( " - i + i ) " ( ° i i +
1

1 ) • 

[April 

so that 

00 

Sn+2 "" Sn+1 + Sn 

Changing indices, we have 

E <-Dj (•^1)*(v! 

z (-Dj(n j + ! r J ) - E (-Dj+1(n • j ) = £ ( - W n • j ) 
j=0 V ' j=-l \ / j=o V ' 

and therefore 

S „ - S , + S = n+2 n+1 •-M-(v)-(v)|--
Using this identitsr, we have 

0 = Sn+3 " Sn+2 + S
n + 1 = Sn+3 " ( Sn+l " S n ) + Sn+1 • 

311(1 s o Sn+3 = "Sn • 
Also solved by A. K. Gupta, C. B. A. Peck, John Wessner, David Zeitlin, and the Proposer. 

ZeitLin noted the following: 
The Chebyshev polynomial of the second kind, U (x), satisfies 

Un+2(x) = 2xUn+1(x) - Un(x) , 

and is defined by 
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i -2j 

333 

oo 
Un(s) - £ <-l)>/n - A(2x)n-

Thus, 

I . e. 

S = U (1/2), n n ' 9 

n+2 n+1 n 

AVERAGING EIBONACCI AND PERIODIC SEQUENCES 

B-lll Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

0 for m < r , and let Let « . 

' • • £ ( • » " ) 
j=0 

Obtain a fourth-order homogeneous linear recurrence formula for T . 

Solution by A. K. Gupta, University of Arizona, Tuscon, Arizona. 

n+3 

since 

= £(°+^-2 )) 
j=o \ 

= h3)+£[H-2)) + ( a i - 2 ! ) ] • 



334 ELEMENTARY PROBLEMS AND SOLUTIONS [April 

Tn+3 Tn+2 + ^ 
J=: 

= T n+2 

= T - T 
n+2 • 

= T - T 
n+2 -

> / n + 2 - 2 j \ 

+ y f/n + 3 - 2j\ _ /n + 2 - 2j\l 

Y (n + 3 - 2j\ 
n ^ 2 j - l 

i=i x ' 

«^*tr)-^tr^ 

Thus we get 

= T n+2 T + (T A n v n+4 Tn+3> 

n+4 2T l 0 + T rt n+3 n+2 T = 0 . n 

Also solved by C. B. A. Peck, John Wessner, David Zeitlin, and the Proposer. 

[Continued from page 310.!} 

20. Servius, Aeneid, IV. 
21. For example, titles of standard sizes, Vitruvius De Architectura V. 
22. C. Ro Lepsius, die Langenmasse der Alten, Berlin (1884). 
23. A. Bosio, Roma Sotterranea, Rome (1632). 
24. J. Greaves, A Discourse of the Romane foot and denarius, from whence 

the measures and weights used by the ancients may be deduced, London 
(1647). 

25. Since 1960, this work has benefitted by grants from the worshipful Com-
pany of Goldsmiths, University College, London, and the Leverhulme 
Trust, and particularly from the great encouragement from Prof. Roger 
Warwick, Guy's Hospital Medical School. I am most grateful to Dr. 
George Ledin, J r . , for his valuable suggestions, and I thank him and the 
Fibonacci Association for inviting me to prepare this paper. 
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UPS AND DOWNS 
Dorothy Fifield 

Woodside, California 
The 

Patterns 
Perfected 

By nature1 s talent 
Repeatedly favor, it seems, 
A number sequence named for Senor Fibonacci. 
It 's one, two, three, five, eight, thirteen, twenty-one, 
And up, until you come on down again. 
Pine cones, sunflowers and pineapples; what, cacti, too? 
No telling what this may lead to. 

Accept the challenge. 
Explore this 

Numbers 
"#~C5~*"<>^ Gamel 

A FIBONACCI RIDDLE 
Dorothy Fifield 

Woodside, California 

I'm 
Not dry, 

Nor thirsty, 
Yet drink a great deal. 

But look at me now, Ifm flying 
Around and down, up and around, plop, plop, up and down. 
The longer I spin, the warmer I get, 
But I never get dizzy, nor do I t i re . 
Just when I feel Ifm all afire, the trip is over. 

Loving hands caress and fold me 
Into a neat square 

For drying. 
What am 

I? 
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PROGRAM OF THE SEVENTH ANNIVERSARY MEETING 
OF THE FIBONACCI ASSOCIATION 

HARNEY SCIENCE CENTER - UNIVERSITY OF SAN FRANCISCO 
Saturday March 14, 1970 

INTRODUCTION TOPICS 

9:00 Registration 
9:20 Welcome, George Ledin, J r . , Institute of Chemical Biology, University 

of San Francisco 
9:30 Matrices and Fibonacci Numbers, John M e , Student, University of 

California at Berkeley 
10:45 Fibonacci Geometry, Brother Alfred Brousseau, St. Mary's College 
11:00 Recess, Question and Answer Period 
11:15 Problems from the Liber Abacci, Richard Grimm, University of Calif. 

at Davis, and Marguerite Dunton, 
Sacramento State College 

12:00 Lunch 

* * * 

AFTERNOON SESSIONS ON ADVANCED TOPICS 

Hard Analysis vs. Soft Analysis, Ivan Niven, University of Oregon, Eugene, 
Oregon 

Local Distribution of Gaussian Pr imes , James H. Jordan, Washington State 
University, Pullman, Washington 

Algorithms in Computing, Donald E. Knuth, Computer Sciences Department, 
Stanford University 

Generalized Fibonacci Numbers and Pascal 's Pyramid, Verner E. Hoggatt, J r . 
San Jose State College 

* * * * 

Refreshments and a banquet after the meeting for those interested in an oppor-
tunity for social contact with other Fibonacci enthusiasts. 
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BINDERS NOW AVAI LAB LE 
The F ibonacc i Associa t ion is making available a binder which 

can be used to take ca r e of one volume of the publ ica t ion at a t ime* 
This binder is desc r ibed as follows by the company producing it: 

l f . . . . The binder is made of heavy weight v i rg in vinyl, 
e lec t ron ica l ly sealed over r ig id board equipped with 
a c l ea r label holder extending 2 - 3 / 4 " high f rom the 
bottom of the backbone, round c o r n e r e d , fitted wi th 
a 1 1/2 " mult iple m e c h a n i s m and 4 heavy w i r e s . " 

The n a m e , FIBONACCI QUARTERLY, is pr in ted in gold on the 
front of the binder and the sp ine . The color of the binder is d a r k 
g reen . There is a s m a l l pocket on the spine for holding a tab 
giving year and vo lume. These la t t e r w i l l be supplied with each 
o rde r if the volume or volumes to be bound a r e indicated. 

The p r i ce pe r binder is $3.50 which includes postage ( r ang ing 
f rom 50£ to 8Q£ for one b inder ) . The tabs will be sent w i th the 
rece ip t or invoice . 

All o r d e r s should be sent to : Bro ther Alfred Brousseau , 
Managing Edi tor , St. M a r y ' s Col lege, Calif. 94575 


